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Introduction

Of particular interest for both mathematics and physics are non-abelian gauge theories
introduced by C. N. Yang and R. Mills in 1954 [53]. They are generalization of
Maxwell’s equations of electromagnetism with the abelian group U(1) of internal
symmetries replaced by a non abelian one, the starting example being SU(2).

Self-dual solutions of SU(2)-Yang-Mills equations, commonly called instantons,
are connections with self-dual curvature on a smooth SU(2)-bundle over the four
sphere S*. These equations were previously studied by physicists in terms of min-
ima of some Lagrangians; first solutions were introduced by A. Belavin, A. Polyakov,
A. Schwartz and Y. Tyupkin [5] and G. 't Hooft [64]. Later, other solutions, called
multinstantons, were provided [22], [23], [31], [38]. It is in the seventies that the re-
lations between Yang-Mills theory and the mathematical theory of fibrations became
clear. General solutions, not only for SU(2), were constructed by M. Atiyah, V. G.
Drinfeld, N. J. Hitchin and Yu I. Manin [2]. Important contributions were also given
by S. K. Donaldson [27], G. Penrose [55], I. M. Singer [3], R. S. Ward [4].

The classification of such solutions on S* is equivalent to the classification of
certain rank-2 holomorphic bundles on the complex projective space P3(C) [4]. This
was showed by using the Penrose twistor approach [55] to spacetime translating a
problem on S* into a problem of complex variables. The identification S* ~ P'H of
the four sphere with the projective line over the quaternions was used.

In particular it was shown [3] that the parameter space of instantons on the SU(2)-
bundle is a smooth manifold M (k) of dimension 8k — 3. The integer k, called the
instanton charge, is the second Chern class of the bundle. For £ = 1, the moduli
space M (1) is isomorphic to an open ball in R [35]. In this construction, generic
moduli are obtained from the so called basic instanton. The latter is though as a
quaternion line bundle over P'H with connection induced from H? by orthogonal
projection. Others charge 1 instantons are then obtained from the basic one by
the action of the conformal group SI(2,H), modulo the isometry group Sp(2). The
resulting homogeneous space is the space of quaternion norms in H?.

Recent years have seen a lot of activity in extending gauge theory (fibrations,
connections, etc.) to noncommutative differential geometry. One of the motivation
for developing such noncommutative geometry and gauge theories within comes from
the desire to describe fundamental forces of nature; more precisely to unify commuta-



2 Introduction

tive geometric Einstein’s theory of gravity with noncommutative quantum-mechanical
theories of nuclear interactions. Nevertheless, the beautiful mathematical techniques
behind the study of these physical theories is itself source of great interest.

Noncommutative geometry is based on the algebraic reformulation of differential
geometry which takes its origin from Gel’fand Naimark (commutative) theorem (1943)
[30]. The basic idea is to use the correspondence between geometric spaces and
commutative algebras, like it is done in algebraic geometry.

The attempt to generalize to the quantum case the ADHM construction of SU(2)
instantons together with their moduli space is the topic of this thesis. The con-
tent of the chapters which follow explains the research shared in these years with
Prof. Landi, Prof. Reina and (in the last months) with Walter van Suijlekom and
culminated in the two papers “A Hopf bundle over a quantum four-sphere from the
symplectic group” (to appear in Commun. Math. Phys.) [46] and [47] in preparation.

In the noncommutative context vector bundles are replaced by projective modules
of finite type. This reflects the classical correspondance between a vector bundle on
a manifold and its module (over the algebra of continuous functions on the manifold
itself) of sections (Serre Swan theorem [63]). Symmetries, which play a central role
in gauge theories, at a deformed level, are implemented by means of quantum groups
[51], [57], [67], and their coactions [15, 17].

Finally, good candidates for noncommutative principal fiber bundles are faithfully flat
Hopf-Galois extensions, or more generally coalgebra-Galois extensions. Indeed in the
commutative limit, Hopf-Galois extensions are objects dual to principal fibrations [61].

The general notion of quantum principal bundles was first introduced in [15] where
the construction of the g-monopole on two dimensional quantum spheres was also pre-
sented. A step toward the construction of instantons and their principal bundles was
taken only ten years later in [7], but the resulting bundle was only a coalgebra exten-
sion [8].

In our paper [46] we constructed a new quantum version of the Hopf bundle
S7 — S* giving one of the first concrete examples of a Hopf-Galois extension with
non abelian quantum structure group. The explanation of this construction is the
subject of the first chapters of this thesis.

The fibration was obtained by deforming symplectic structures and groups enter-
ing into the classical fibration which provides one with the geometric interpretation
of instantons:

ST == 8p(2)/Sp(1) — S* = Sp(2)/(Sp(1) x Sp(1)) -

In analogy with the classical case [1], it is hence natural to start with the quantum
version A(Sp,(n)) of the (compact) symplectic groups (Ch. 1). These Hopf algebras



are generated by the entries Tij of a 2n x 2n matrix 7T'; the commutation rules among
these generators come from RT'T equations, where the R matrix is the one of the
C-series [57]. Furthermore, A(Sp,(n)) is endowed with a antipode S(T"): S(T)T =
TS(T) = I. These quantum groups have comodule-subalgebras A(S;"™') yielding
deformations of the algebras of polynomials over the spheres S**~!. These comodules
are obtained by observing that the matrix elements of the first and the last columns of
T generate a subalgebra of A(Sp,(n)) and the condition S(T")T" = 1 gives the sphere
relation (Sect. 1.1.2).

The case in which we are more interested is for n = 2. The resulting symplectic

quantum 7-sphere A(S; ) turns out to be the quantum version of the homogeneous
space Sp(2)/Sp(1) (Sect. 2.2.1). Indeed we found a Hopf ideal I, in A(Sp,(2)) such
that the corresponding quotient is isomorphic to A(Sp,(1)) ~ A(SU,.(2)). Then
the restriction of the coproduct of A(Sp,(n)) to this quotient yields a coaction of
A(Sp,(1)) with algebra of coinvariants given by the 7-sphere.
The injection A(S]) < A(Spe(2)) is a quantum principal bundle with “structure
Hopf algebra” A(Sp,(1)) >~ A(SU,p(2)) . Indeed we showed that the extension is
Hopf Galois, giving another example of the general construction of principal bundles
over quantum homogeneous spaces [15] (Sect. 3.3.1).

Most importantly, we showed that A(ST) is the total space of a quantum SU,(2)
principal bundle over a quantum 4-sphere A(S;): A(S;) < A(S]) with a ‘non abelian
structure quantum group’ given by the quantum group SU,(2) (Sect. 2.2). The
algebra A(S,) is constructed as the subalgebra of A(S7) generated by the matrix
elements of a self-adjoint projection p which generalizes the anti-instanton of charge
—1. This projection is of the form vv* with v a 4 X 2 matrix whose entries are made
out of generators of A(Sg ). The naive generalization of the classical case produces
a subalgebra with extra generators which vanish at ¢ = 1. Luckily enough, there
is just one alternative choice of v which gives the right number of generators of an
algebra which deforms the algebra of polynomial functions of S*. At ¢ = 1 this gives
a projection which is gauge equivalent to the standard one.

This good choice becomes even better because there is a natural coaction of SU,(2)
on A(S]) with coinvariant algebra A(S;) and the injection A(Sy) — A(S]) turns out
to be a faithfully flat A(SU,(2))-Hopf-Galois extension (Sect. 3.3). This is also shown
by the explicit construction of a strong connection [32] (Sect. 3.3.2).

This quantum principal bundle dualizes the classical instanton of charge —1. Here
the charge is computed through the pairing between K-homology and K-theory. Fol-
lowing a general strategy of noncommutative index theorem [18], we construct repre-
sentations of the algebra A(S;) and the corresponding K-homology.

The analogue of the fundamental class of S* is given by a non trivial Fredholm module
(. The natural coupling between p and the projection p is computed via the pairing of
the corresponding Chern characters ch*(u) € HC*[A(S;)] and ch.(p) € HC,[A(S]))
in cyclic cohomology and homology respectively [18]. The result of this pairing is an
integer by principle being the index of a Fredholm operator. The computation allows
to us to conclude that the charge is —1 (Sect. 2.4). As a consequence of the non
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vanishing of this pairing, we can also conclude that the bundle A(S;l) — A(S;) is
non trivial.

Another deformation of the instanton bundle was then provided in [48] with a
similar procedure. A Hopf Galois extension A(S;) — A(S§) was constructed working
over the Connes-Landi spheres A(S7) [21]. In both cases the construction leads to
the (deformed) basic instanton. The construction is based on the requirement that
the matrix v giving the projection is linear in the generators of the seven sphere and
such that v*v = 1. This last property is false even classically at generic moduli and
charge greater than one. Hence a more elaborate strategy is needed to tackle the
general case.

In paper [47] we are facing with this problem. The idea is to obtain generic charge 1
instantons by reproducing the action of the homogeneous space SL(2, H)/Sp(2) which
parametrizes norms in H?. Indeed, as said, classically instantons are constructed from
the basic one by moving the norm on H? [1]. This is possible for the f-case, with
the construction of #-deformations A(SLy(2,H) and A(Spy(2)) of the corresponding
classical groups (Sect. 4.2.2). This leads to a noncommutative 5-dimensional moduli
space My and a 1 parameter family of 4-sphere of radius p*> = v*v. The 4-sphere
A(S}) seats at the “boundary” of My like in the classical picture (Sect. 4.2.4). The
corresponding projections are provided and the charge is explicitly computed (Sect.
42.5).

More difficult is the question of instantons of charge £ > 1. Classically they are
obtained by means of a map v = Cz+ Dy from P'H to the Stiefel variety St(k, k+1).
The matrices C, D € Mat((k + 1) x k),H) are suitable constant matrices satisfying
some requirements. The 3k% + 13k parameters which enter in the construction are
then reduced to 8k — 3 by quotient by the action of Sp(k + 1) and Gl(k,R). At a
noncommutative level, the map vy has been constructed by means of suitable algebras
C, D but the question of symmetries is still open (see Sect. 4.2.6).

The noncommutative symplectic case is more difficult from the point of view of
the algebra structure of the algebras involved. Some steps have been made toward
the construction of others charge 1 instantons but the problem is still open (Sect.
43).

The structure of the thesis

Chapter 1

The first chapter deals with some basic elements of the theory of noncommutative
spheres. We describe in details symplectic quantum spheres A(S qzn*l). These algebras
are obtained as subalgebras of the compact real form Sp,(n) of the symplectic quan-
tum groups and the sphere relation is obtained from the existence of the antipode.
The algebra at n = 2 will be used in the construction of the quantum instanton



bundle as the total space of the fibration. We then briefly recall some facts about
so-called Connes-Landi spheres, S}’ [21].

We conclude with few facts about the construction of Fredholm modules for even
quantum spheres following [36].

Chapter 2

This chapter contains the construction of the deformed version of the Hopf bundle
ST~ Sp(2)/Sp(1) — S* =~ Sp(2)/(Sp(1) x Sp(1))

constructed from the quantum symplectic group. Here we limit ourself to describe
the algebras involved in the construction while in Ch. 3 we will study the nature of
the resulting bundle.
As said, following the common idea to replace spaces by algebras of functions, the
basic ingredients for the formulation in noncommutative geometry of a theory of
principal bundles will be two algebras corresponding to the (algebras of functions on
the) total and base spaces and a Hopf algebra, or a quantum group, playing the role
of the structure group. The chapter begins with a brief review of the classical (dual)
picture. The algebra A(S;) introduced in the previous chapter becomes in Sect. 2.2
the total space of a quantum SU,(2)-fibration in which the base space A(S;) is firstly
given in terms of a projection and then described as the space of coinvariants of the
SU,(2)-coaction. (This fact is presented here with two proofs).
Furthermore we show that the algebra A(S ; ) can be made in a quantum homogeneous
space. Indeed we show that it is the algebra of coinvairnats with respect to the
coaction of A(Sp,(1)). Here A(Sp,(1)) is obtained as quotient of A(Sp,(2)) by a
Hopf ideal 1.

Finally a Fredholm module is constructed over A(S;‘) in order to compute the
Chern-Connes pairing between K-homolgy and K-theory giving the topological in-
variant of the bundle, the instanton charge.

Chapter 3

In the first section we discuss quantum bundles as introduced in [15]. In the second
section we study principal bundles from the more algebraic point of view of Hopf-
Galois extensions [61]. The overlap between these two construction is recovered when,
in the first formulation, the algebras are endowed with the universal differential calcu-
lus. Finally, in Sect. 3.2.1 we recall the concept of connection on quantum principal
bundles, concluding the review of the general theory.

Then we show that the two extensions A(S]) C A(Spy(2)) and A(S;) C A(S])
described in the previous chapter are examples of quantum principal bundles. For
both of them we will define a strong connection, firstly on the generators of the
structure groups and then on the whole algebras.
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Chapter 4

We briefly review the construction of the deformation of the instanton bundle S7 — S*
provided in [48] over the Connes-Landi 6 sphere. In both the symplectic and the theta
case (see Ch. 2 and Sect. 4.2.1) the construction was limited to the basic instanton
of unit charge. The results obtained until now [47] in the attempt to generalise this
picture to generic SU(2)-instantons is the topic of this chapter.

After a brief review of the classical situation [1] we try to reproduce it in the
noncommutative case. We first deal with the instanton bundle A(Sj) — A(Sj) over
the Connes-Landi sphere (Sect. 4.2). Then we address our attention to the more
complicated case of the symplectic fibration A(S]) < A(S;) (Sect. 4.3).

Finally, Appendix A lists the complete commutation relations of the algebra
A(Sp,(4,C)) computed from RTT equations.



Chapter 1

Noncommutative Spheres

This first chapter contains some basic elements of the theory of noncommutative
spheres. Generalizing the classical correspondence between spaces and algebras of
functions on them, spheres are described and studied in terms of deformations of
the algebras of functions on the classical ones. These *-algebras are given in terms
of generators z; plus a sphere relation » .  afx; = 1. The integer n becomes the
dimension of the sphere and we refer to even/odd spheres accordingly to the parity
of n. We recall here some general facts about such algebras we will need later on.

A first class of spheres was obtained considering suitable quotients of quantum

groups. Into this class of examples we can cite (even and odd) quantum orthogo-
nal spheres and (odd) quantum unitary spheres which are homogeneous spaces of
R-matrix deformations of orthogonal and unitary group respectively, see resp. [57]
and [65]. (Anyway in [36] it has been shown that odd orthogonal spheres and odd
unitary spheres are the same.) Furthermore, two-dimensional spheres were obtained
by Podles [56] as homogeneous SU,(2)-spaces. We refer to [24] for a reviewing list of
quantum spheres.
In the following, our attention concentrates in (odd) symplectic quantum spheres
that we discuss in details. The existence of these spheres was indicated in [57] and
their structure described in [46]. These algebras are obtained as subalgebras of the
compact real form of symplectic quantum groups and the sphere relation follows from
the existence of the antipode.

The other class of noncommutative spheres, called the Connes-Landi spheres, S5,
was introduced in [21]. These algebras are obtained by solving some equations in
cyclic homology. They are part of a more wide construction of noncommutative
manifolds from #-deformations in which a central role is played by noncommutative
tori. A noncommutative torus 7% being the algebra generated by two unitaries, say
U,V with the relation UV = >V U [58]. In Sect. 1.2 we will briefly discuss the
general construction while we postpone to Ch. 4 the description of a concrete example
consisting of the deformation A(S;) of the usual algebra of functions on the 4-sphere.
Note that we refer to these #-spheres as “manifolds” since they can be endowed with a
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noncommutative geometry structure consisting of a spectral triple, [21]. On the other
hand, there is no a general way to construct a spectral triple on quantum spheres but
Fredholm modules constitute a suitable substitute. We will recall few facts about the
construction of Fredholm modules for (even) quantum spheres in Sect. 2.4 following

[36].

1.1 Noncommutative spheres from R-matrix de-
formations: the case of symplectic spheres

Notations. In the following algebras are assumed over C and unadorned tensor prod-
uct stands for ®c. Also, ® stands for tensor product of algebras and matrix multipli-
cation. From here on, whenever no confusion arises, the sum over repeated indexes
is understood.

The first examples of quantum groups, as R-matrix deformations of the algebras
of polynomial functions of Lie groups, were provided by Drinfel’d [28] and Jimbo [43]
in terms of quantum enveloping algebras. Important has also been the contribution
of Manin [51]. In this brief introduction to the topic which follows we will refer to
Reshetikhin, Takhtadzhyan and Faddeev’s paper [57] in which the theory has been
extended to every Lie group.

Let us first consider the free commutative algebra Cl[t;;] of polynomials in the n?
generators t;;, that for convenience we arrange in a N x N matrix T = (¢;;). We will
refer to T' as the defining matrix. In addition to the algebra structure, C[t;;] has a
dual structure of bialgebra with coproduct and counit given respectively by

A C[tij] — C[tij] &® C[tij] s T—T ® T )
or, in components,
Alty) = tw®ty 1 elty) =0 .
k

This commutative algebra can be seen as a particular case of a more general classes
of algebras. The so called R-matrix deformations. We assume that the elements ¢;;
satisfy RT'T equations

RV, =TT R, (1.2)

where ) =T ®1, T, = 1®T, or in components (T’ ® 1)ijkl =T/%6;'. Risa N?x N2
matrix whose entries depend on a parameter ¢ € C-{0}.
The matrix R is also assumed to fulfil Yang-Baxter equations

R12R13R23 = R23R13R12 (13>
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where R, = R ® R ® 1 and analogous definitions for Ri3, Ros3.

Hence, let us consider the quotient Ag of the free algebra Clt;;] under the two-
sided ideal generated by RTT equations. This is a bialgebra with co-structures given
like above in (1.1) and in addition it has a Hopf algebra structure given by introducing
an antipode S, whose definition depends on the structure of R (which depends on
the Lie group we are deforming). This leads to the notion of quantum groups. The
commutative case is recovered at ¢ = 1 when the matrix R becomes the identity
matrix and therefore Ar reduces to the commutative algebra of coordinate functions
on the matrix algebra G L, (C).

In the classical case different Lie groups can be obtained as subgroups of M,,(C) by
asking that some further structures are preserved. With the same procedure, allowing
R to vary compatibly with the above requests and introducing further conditions, we
recover noncommutative deformations of the Hopf algebras of smooth functions on
the different Lie groups [57].

For our future needs, we discuss real forms of quantum groups. They are classified
by x-anti involution. We remind that a s-structure, or *-conjugation, over a Hopf
algebra H is an algebra anti-automorphism, (na b)* = 7b*a*, a,b € H, n € C, a
coalgebra automorphism, A% = (* ® *)A, and moreover *x = id and (Sx)? = id. We
say that two conjugation * and x are equivalent if there exists an automorphism « of
the algebra such that x = ax o~
Following [57], in general, there are at least two ways to define a conjugation on a
quantum group of matrix type. Requiring the compatibility with RTT equations, in
accordance with the value of ¢, we can define a conjugation by setting 7% = T or
using the antipode, as T* = US(T)'U~!, where U € Mat,(C) is a diagonal matrix
depending on the quantum group.

Next we give the example of the symplectic case with the description of A(Sp,(4,C))
and its compact real form Sp,(2).

1.1.1 The symplectic quantum groups Sp,(N,C).

The algebra A(Spy(N,C)), is the associative algebra generated over C by the entries
T/, i,7 = 1,...,N of a matrix T. The integer N being even: N = 2n. The
noncommutativity is introduced as said, by imposing that T satisfy RTT equations,
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where the N? x N? matrix R is the one for the CN series and has the form [57],

= qzez ® e’ +Z€z ® e’ +q° 12@ ® e’

1]1

1735,
N
q - q Z 61 X 6] q - q Z qpiiijiEj eij X €Z'/j/ (14)
Zz]>]1 lzj>]1

Some explanation for notations is due:

e/ =N+1—4i ,foreachi=1,...n,
e the matrices e;/ € M, (C) have elements (e;")F = 6,0 ;

e g, =1 fori=1,....n ;,=—1,fori=n+1,...,N

finally, (p1,...,pn) = (n,n—1,...,1,—1,...,—n)
The elements of the matrix R will be denoted by R;;, with ¢,5,k,l =1,... N and
Rap = RN(ifl)Jrj,N(kfl)H = Rij,kl-

As described in the general theory,
AT)=T®T, &T)=1 (1.5)

endow A(Sp,(4,C)) with a bialgebra structure.
The symplectic group structure comes from the anti-diagonal matrix C

Cl] = qug’iéij’ (16)
by imposing that C' is preserved by 7', i.e. requiring the additional relations
TCT'C ' =CT'C7'T =1.

In accordance with the above equation, the bialgebra structure (1.5) can be completed
to a Hopf algebra structure (A, ¢, S) for A(Sp,(N,C)) by introducing the antipode

S(T)=coT'c™t,
which in components explicitly reads
S(T)ZJ = —qpi’+pj6i€j/Tj/"/ . (17)

As said, the classical limit is recovered at ¢ = 1 when the Hopf algebra A(Sp,(N,C))
reduces to the algebra of polynomial functions over the symplectic group Sp(N, C).

We now discuss admissible real forms which depend on the range of the parameter
q [57]. If [¢] < 1, the xstructure is T* = T, i.e. tj; = t;;, and the corresponding
algebra is denoted by A(Sp,(n,R)). The compact real form A(Sp,(n)) of the quantum
group A(Sp,(N,C)) is given by taking ¢ € R and the anti-involution

T = S(T) =Cc'T(C™h)". (1.8)
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On the compatibility between R and C

We notice that the matrices R and C' are strictly related one to the other. In particular
once one has fixed the symplectic structure, i.e. the matrix C', then R can not be
generic.

Let us assume the invertibility of R, then RTT equations can be rewritten as

TlTQRil - RingTl (19)
Thus
RT1T2 = T2T1R = S(TQ)R T, = TlR S(TQ) (110)
S(T1)S(Tz) R= R S(13)S(Th)
T'I,R™' = R'TLT =  S(T))R'TIy = LR 'S(T) (1.11)
S(Ty)S(TY)R™ = R7'S(T1)S(T)

where S(T1) = S(T)®1=S(T), = CTC;* ® 1 =C,T!C .
Starting from eq. (1.11) S(Ty)R~'Ty = ToR™'S(T}) and substituting S(7T') as given

in (1.24) we have
C/TPCT'R™'Ty = LR O\T O

where ¢, means transposition with respect to the first factor of the CV ® C¥ tensor
product and we used the fact that 77 = T}*. Then multipling on the left by C; ' and
by C on the right side and observing that 75 and C'; commute, we have

TV'CT'R™C\T, = TOU 'R CI T
that we can rewrite as
(CT'R™'Cy)" " Ty = T[Ty (CT Ry
Finally we transpose ¢; and use the fact that 75" = T, concluding that
(CI'RT'ODMTVT, = ToyTy (O P R™MC)™ (1.12)
Comparing this equation with RT'Ts we see that it is satisfied if
vR = (C{'R™'Cy)™

that is
vROIR" = C} (1.13)

with v a constant parameter.
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On the other hand, if we start by eq. (1.10) and we susbstitute the expression of
S(T), we have
CoTy?Co'R Ty = TR CoTyCy

As done before, multipling on the left by C;* and on the right by Cy and using the
commutativity between Cy and T}, we have

TyCo 'R Oy T = TYCy 'R OyTy?
that we write in the form
[(C'R )P T)* Ty = Ty [To(Cy 'R C5)™)"™ .

Then we transpose t5 :

(Co 1 RCY) 2Ty Ty = TyTo(Cy ' RCH)™ . (1.14)
We may conclude that for

pH(RTH2C'RT =0y (1.15)

i a constant paramter, the previous equation is satisfied. Putting eqs. (1.13) and
(1.15) together we have

VRClRtl = Cl — R_l = _CIRhClV
— Rt = /JJ/710102R0201

For p = v = 1 eq. (1.13), (1.15) reduce to eq. (1.10) of [57]. We write this
condition in components:

(C1C2RCHCh) 5 0 = Z CiaCjipRap,caCarCex

a,b,c,d

If Cj; o< dij" then
MVﬁlRZ’/]’/’k/l/ X Rkl,ij (116)

This force the matrix R to be of a particular form.

Yang-Baxter equations

The form of R as given in (1.4) automatically assures that Yang-Baxter equations are
satisfied. Let R be of the form

= Zaij eii ® ejj + wa eij X €ji + Zcij €ij (29 Gi/jl .

1>7 i>]
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Then

R12 = Zaijeii®€jj®1+Zbij€ij®6ji®1+zcij€ij®6i/j,®1;

i>j i>j
and similarly

Rizs = Y aye’@1®e/ +> bie/ @1@e/ +Y cjef @1@e

i>7 i>7
. . . . . .,
R23 = E aij X €Z‘Z (29 6]'] + E bij X €Z‘J X €jz + E Cij X 61'] X €i/] .
i>7 i>7

and hence it is straightforward to check that

i j !
RipRi3Ro3 = E aiagaje; e’ e = RozRi3Rio

0,5,

The example of A(Sp,(2)).

We discuss in details a concrete example setting NV = 4. The corresponding algebra
A(Sp,(2)) will play a crucial role in the construction of the (deformed) instanton
bundle in Ch. 2.

The algebra A(Sp,(4,C)) is generated by the elements ¢;;, i, 7 = 1, ...4 subjected
to RTT equations. Esplicitly the matrix R (1.4) is given by

g 00 0 o0 0 o0/0 0 00]00O0O
010 0 |00 0 0[O0 0 00/000°0
001 0 |00 0 0[O0 0 00/000°0
000 2 Jo0O 0 0[0 0 000000
OX0 0 |10 0 0/0 0 00/00O00O
000 0 |0g 0O 0[O0 0 00/000°0
000 —21J00 2 0/0 0 000000
000 0 |00 0 1/0 0 00/0000

B=190x 0 00 0 01 0 000000 (1.17)
000 & |00 X+2 0(0 £ 00[0000
000 0 |00 O 0/0 0 ¢ 0[00O0O0
000 0 |00 0 0[O0 0O 01/0000
OOOA+q%OOq%OO—§OO%OOO
000 0 |00 0 XO 0 00/0100
000 0 |00 0 0[O0 0 0AXOOT10
000 0 |00 O 0/0 0 00/00°0¢g

where \ := ¢ — ¢~ . Tt is an invertible matrix with inverse R™! = R(q¢ — ¢7').



14 1. Noncommutative Spheres

The symplectic structure is given by the C' matrix

0 0 0 g2
o 0o ¢t o0
C=1 0o —; 0 o (1.18)

Remark 1.1. In the identification between quaternions and reals, H ~ R* we can
associate three matrices to the quaternions units i, j, k. In the quantum case, the three
matrices

0 —¢° 0 0 0 0 g¢'@ 0
¢ 0 0 0 ] o 0 0 —¢2|
=10 o —gt o |77 g o 0 0 Ky =0
0 0 0 g 0 ¢ 0 0

(1.19)
have the properties I; = J; = K = =1 and 1,J; = K4 and cyclic. Furthermore they
reduce to the classical ones at ¢ = 1.

The explicit commutation rules among the generators of this algebra obtained
from RTT equations are listed in Appendix A.
The matrix S(T) = CT'C~! as the following form

taa q s —q 3tas —q M

| qtas tss  —q s —q 3t
S(T) = —@tyy —q*t3 22 q o (1.20)
—q¢*'ty  —¢Pta qtor t11

We restrict ¢ to be real and we consider the comapct real form A(Sp,(2)) of A(Sp,(4,C))
obtained by setting 7* = S(T')'. In components

T = S(T)j = =" Pejen Ty
Hence T" in Sp,(2) assumes the form

tas qtas t13 ti4
_1_ 7
q "tz t33 toz o4
T = e e 1.21
—q szzx —q 2f23 3z t34 ( )
—q My —q stz tw

1.1.2 Odd spheres from quantum symplectic groups

Let us now finally come to the construction of spheres from symplectic quantum
groups A(Sp,(n)). We concentrate on the elements of the last column of the defining
matrix 7" and those of the last row of S(7):

=T, vV=8(T), i,j=1,...,N.
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Using RTT equations we can show that these generators give subalgebras of A(Sp, (N, C))
and furthermore that, with the natural involution (1.8), the algebra generated by the
{zi, v/} can be thought of as the algebra A(S;"~') of polynomial functions on a
quantum sphere of ‘dimension’ 4n — 1.

In components the RTT equations are given by

R™ T, T,F = T/* Ti"™ Ry . (1.22)
Hence
Rijkl Tkr — 7’1]'17 Em RmpTSS<T)5l 7

and in turn

S(T)pj Rijkl =T Raprs S(T)sl S(T)rk )

so that ' .
S(T)," S(T),” Ri;™ = Ry, S(T),' S(T),* . (1.23)

Conversely, if we multiply Rijkp T, = le T.™ R, S(T)s" on the left by S(T') we
have
S(T)? R™ T," = T™ Ro™ S(T).P . (1.24)

We shall use equations (1.22), (1.23) and (1.24) to describe the algebra generated by
the z;’s and by the v'’s.

Commutation rules for z;

We start with eq.(1.22) Rjjkp Thr Tps = Ljp Tim Rmprs and show that the x; generate
an algebra. Let r =s= N:

Rijrp xkp = Tjp Tim Rmp,nn (1.25)
The only element Ry, vy ¢ emn®epn, m,p < N different from zero is Ryn vy = ¢ :
Rijkp Thtp = q T;; (1.26)
We can write explicitly the commutation relations. We have
(Emn @ €rs)ijkp ThTp = Omilrj Tnls
and we consider each summand of R, separately:

1.
N

q E (€aa @ €aq)ijhp ThTp = q TiT; Oij

a=1
a#a’
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N
Z (Caa ® ebb)ij,kp TpTp = T;iTj, & F 5,7

a,b=1

atb,b/

N
—1 _ -1 K
q (ea’a’ & eaa)ij,kp TpLyp = (4 TiX5045

a=1
aa’

N
(¢—q") Z(eab ® €ha)ijhp ThTp = (¢ — ¢ ajwi, P> ]

a,b=1
a>b

N
_(q - q_1> Z qpa_pbgagb (eab ® ea’b’)ij,k:p Ty =

a,b=1
a>b

—_

71—
—(g—aq7) ) q" "eiy 0y TpTY
1

S8
I

Now we can write down commutations relations between the z; :

Tr; = qrjr;, 1<], i,
i—1

Tyl = q_zxiﬁi’ + (q_2 — 1) qui_pké“i&“k TpTy , 1< i . (1.27)
k=1

Commutation rules for v’
Take eq.(1.23): S(Tyi) S(Ty;) Rijki = Raprs S(Ts1) S(Trx) and let a =p = N :
viijij,kl = RNN,TSS(TSZ)S(TM:>

The sum on the right reduce to Ryn vy S(Tni)S(Tng) since
Rynys ~ enr ® ens and, by construction, the only term of this type in R is obtained
forr =s = N.
The v"’s algebra is given by

VI Ry, i = quiv? (1.28)
As before we split R. Using

l m,,r
v Ug<€mn X ers)lg,ji = 5si5nj v

we have



1.1. Noncommutative spheres from  R-matrix deformations: the case of symplectic spheres 17

1.
N
qu'v? Z(eaa ® €aa)lg.ji = qvivi@j
ata’
2.
N
V07 Y " (Can @ enp)igi = vV, i j, 5§
)
3. N
g v Z(ea’a’ ® €aa)lgji = Cl_lvjvi(;ij'
ata’
4.
N
(¢ —q ' Z(eab ® €ba)igyi = (¢ — ¢ o', P>
b
9.
N
—(g —q ")v'o? Z q* " cagp (Cap @ eay )ig,ji =
pies
—(g—q" Z q"* P €40y v

b=j+1
The commutation relations between the v’ are the following: Explicitly
vl =gt i<, i#]" :
' = gPo'e” + ( Z ¢ et i< (1.29)
k=i'+1
Commutation rules for z;,v
Finally let [ =7 = N in eq. (1.24):
UjRij,kp Ty = ,I;mRmN,NsS(Tsp)

Observing once more that the only term in the matrix R of the form e,,y®ens, m < N
is eyny ® enyny we have

V' Ry kp T = q 2,07 (1.30)
From
l r
v (emn ® ers)il,kj Tp =V xndmiésj

we have
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1.
N
l i
qu E (Caa ® €qa)itkj Tk = q V'x; Oy
a=1
a#a’
2.
N
l y . -
v E (Caa ® €wp)itkj Th = V4, 1 F 7,7
a,b=1
astbb’
3.
N
—1.1 -1,
q v E (Earar @ €aq)itkj T = q V' x; Oy
a=1
a#a’
4.
N i-1
1 -1 b
(q—q ) E (€ab @ €pa)ithj Tk = (@ —q ) V7T 0
a,b=1 b=1
a>b
5.
N
“1 - _
—(g—q v E ¢ P eqen (€ab @ €arvy )itk =
a,b=1
a>b

_ .. s/ . .
—(q—q g gy vy, P> g

Summarizing, explicitly the mixed commutation rules for the algebra C,[x;, v/] read,

i-1
i, 1 —2 k 1 =2\ pi—pis 0,0
' =v'r; + (1 —q7%) vxk—i—\( —q )q v Ty

k=1 if i
-/ 9 gl
vt =q ',

zv! =q¢ at, i#£j and i<y
v’ = q it 4+ (g7 - 1)gh P 5z~5j/vi/xj/ , 1#j and i>j . (1.31)
The quantum spheres S;‘”fl

Let us observe that with the anti-involution (1.8) T* = S(T')" we have the identifica-
tion

Ui = S(Yj)]\[Z :fi 5
where Z' denotes the conjugate (z;)* of x;. The subalgebra A(S;"~") of A(Spy(n))
generated by {x;,v' =7, i =1,...,2n} is the algebra of polynomial functions on a

sphere. Indeed
ST =1 = Y STNTN =6y =1
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1.e.

> T =1. (1.32)
Note that the restriction of the comultiplication is a natural left coaction:
Ap: ASI) — A(Spy(n) @ A(SIY)

The fact that Ay, is an algebra map then implies that A(S;ln’l) is a comodule algebra
over A(Spy(n)).

At ¢ = 1 this algebra reduces to the algebra of polynomial functions over the
sphere S*"~! as homogeneous spaces of the symplectic group Sp(n) : S =

Sp(n)/Sp(n —1).

In the first part of Ch. 2 we will elaborate more on the structure of these algebras
at n = 2 with A(Sq7 ) entering into the construction of a quantum principal bundle.

1.2 Spheres from idempotents, ¢ deformations

We recall here some facts about the construction of noncommutative manifolds in
terms of @ deformations as introduced in [21]. Here we are mainly interested in the
case of spheres. We refer to [21], [45] for details. For selfconsistency we will briefly
recall some basic notions of cyclic homology and cohomology in the appendix 1.A at
the end of this Chapter.

Starting from general considerations of noncommutative differential topology, the
algebra of functions A on such a noncommutative n-sphere is generated by the matrix
components of a cycle of dimension n of the K-theory of A. This cycle being given
by the Chern-Connes character of an idempotent e or a unitary v € Mat(A) in the
even and odd cases respectively. We recall here only the even case, starting by the
definition of the Chern character of an idempotent.

Definition 1.1. Let A be an associative unital algebra over C and e an idempotent:
e = (e;) € Mat.(A), e’ =e. (1.33)

The component chy,(e) of the even (reduced) Chern-Connes character ch.(e) = ) chy(e)
(formal sum) of e is an element in A ® A®?" given by the formula

chn(e) = <(e—%-]l)®é®...®é>

1 N . ~
= )\n Z(eioil - 5(51‘01’1) X €itio (24 €igisg R...Q €ionio 3 (134)

wherqfl 1s the quotient of A by the scalar multiples of the unit and € is the class of
e in A. Here )\, is a normalization constant.
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The main point is that ch,(e) defines a cycle in the bicomplex of cyclic homology
Bchy,(e) = b chypyq(e)

and the map e — ch,(e) gives rise to a well defined map from the Grothendick group
Ko(A) of A to cyclic homology of A [18]. Spherical manifold are defined by imposing
that only the top component of the Chern-Connes character of e does not vanish.
More in details.

Let A, be the algebra generated by the r? entries of an idempotent e € Mat,(A)
subjected to the condition e? = e. We introduce further relations in A, by requiring
that the components chy(e) of the Chern-Connes character of e vanish if & is less than
a certain integer m:

chp(e)=0, Vk<m. (1.35)

Moreover, let us define an admissible morphism to be a map p from A, to a generic
algebra B such that

ple)* =ple), chi(ple)) =0, Yk <m.

Then we denote by A, the quotient of A, by the intersection of the kernels of the
admissible morphisms.

It turns out that the elements of A,,,. can be represented as polynomials P in the
elements e;;. This algebra can be endowed with a *-structure by requiring that e is
self-adjoint:

*

Furthermore A,,, can be endowed with a norm: if p is a polynomial p = p(e;;) in A,
we set

Ipll = supl|=(p)]

where 7 ranges through all representations of A,,,.. For each p this quantity is finite.
We rename A,,, to be the completion with respect to the above norm.

Allowing to m and r to vary, one obtains different algebras. In particular for
m = 2 and r = 4, equations (1.35) admits both a commutative and a noncommuta-
tive solution. The latter being a one-parameter family of noncommutative 4-spheres
A(Sj). The algebras A(Sj) consitute deformations of the x-algebra of polynomial
functions on the classical 4-sphere; the classical case is recovered at 6 = 0. Finally,
we stress that these algebras can be endowed with a noncommutative structure given
by a spectral triple, i.e. are noncommutative manifolds in the sense of [19], see [21].

We will remind the structure of the resulting algebra A(Sj) in Sect. 4.2.1 and we
refer to the original paper [21] for the detailed construction.
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1.A Appendix: Some elements of cyclic homology
and cohomology

We remind few elements of cyclic homology following [18], [49] to whom we refer for
details.

Let A be an associative algebra over C. For any integer n, let C,,(A) := A®"*1,
i.e. the tensor product of A with itself (n + 1) times. Define the map

b:Ch(A) — Ch_1(A)
n—1

W®.. . ®a, = Y (Da®... ®aam@... Qa+(—1) 0@ @ ... @ a,_; .

1=0

Since b* = 0, we have a chain complex (C,(4) := ,,C,(A),b). By definition, the
Hochschild homology HH,.(A) of A is the homology of this complex:

HH,(A) := H,(C.(A),b) = Z, /B,
where Z,,, B, are respectively the kernel and the image of the boundary map b:
Zn =ker(b:Ch(A) — C,_1(4)) , Bp=1im(b: Cri1(A) — C,(A4)) .
We can also introduce the map

B:C,(A) — Chi1(4), B=DByoA

with
Bylag®@ a1 ®...®a,) = 1Qa®@a ®...Qa,
1 - ni
Alag® a1 ® ... @ ay,) = n+1;(_1) a; Qi1 @ ... Q0 a;_1 .

We have B2 = 0 and bo B+ Bob = 0 and thus the bi-complex (C,(A),b, B). The
cyclic homology HC,(A) of A is the homology of the total complex (CC(A),b+ B)
in which the n-th term is given by CC,,(A) := @p44=nCp—q(A) and

HC,(A) := H,(CC(A),b+ B) = Z)/B)
with cyclic cycles and cocycles given respectively by

7> = ker(b+B : CC(A) — CC,_1(A)) , B)=im(b+B:CCpi1(A) — CCL(A)) .
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Let us now dualize the above picture giving few notions of cyclic cohomology. Let
C™(A) := Hom(A®""! C) the space of n-cochains, i.e. by definition a Hochschild
cochain is a (n + 1)-linear functional on A. We define the coboundary map

b:C"(A) — C”“(A)
flag, ... ,anp1) = Z(_l)if(a(]w--7aiai+17---7an+1) + (—1)"+1f(an+1a0,a1,...an) .
i=0

Then b? = 0. The Hochschild cohomology HH*(A) of A is by definition the cohomol-
ogy of the complex (C*(A) := &,C™(A),b):
HH"(A) := H"(C*(A),b) = Z"/B"

with cocycles Z" = ker(b : C"(A) — C"1(A)) and coboundaries B" = im(b :
i (A) — C"(A)).

We now introduce the following definition [18]: a cochain f € C™(A) is said to be
cyclic if it satisfies

flag, ..., a,) = (=1)"f(an,ag,...,an_1) .

A cyclic cocycle is a cyclic cochain f for which bf = 0.

These cyclic cochains form a sub-module of C™(A) that we denote by C}. Since
the image under b of a cyclic cochain is still cyclic, then (C}(A) := @,CY(A),b) is a
well defined sub-complex of (C*(A) = @,C"(A),b). We define the cyclic cohomology
HC*(A) of the algebra A to be the cohomology of this sub-complex:

HC"(A) .= H"(C}(A),b) = Z3/BY
with cyclic cocycles and coboundaries given respectively by

7% =ker(b: CY(A) — CYTHA)) |, BY=im(b: Oy 1(A) — CY(A)) .

We conclude by recalling the so called periodicity operator S that we will need
later in the definition of the Chern character in K-homology. This is a map of degree
2 between cyclic cocycles defined by

S:Z;\L*1 — Z;LJrl

1 n
L an - i1, - - - G 1.36
f(a07 a +1) — n(n+1) ;f(ao Q-1 (i1 a +1)+ ( )
1 i o
_m Z (—1) +Jf(a0, I ¢ 7 N 7RI ¢ 710 7 S P an+1) .

1<i<j<n

The induced map in cohomology will be denoted in the same way, S : HC"(A) —
HC"2(A).
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1.A.1 K-homology: Fredholm modules

In what follows we briefly recall few definitions and results concerning k-homology
following once more [18], [49].

We remind that the K-homology of an involutive algebra A is given in terms of
homotopy classes of Fredholm modules [18], [37]. We are interested here in even
Fredholm modules:

Definition 1.2. [18] An even Fredholm module p := (H, F,v) over an involutive
algebra A is given by

1. a representation U of the algebra by means of bounded operators on a Hilbert
space 'H,

2. an operator F on H such that F?> =1, F*=F and

[F,¥(a)] is compact Va € A ,

3. a Zy grading v of H such that v* =~, ~*=1 and

Fy+~F =0, VY(a)y—7¥Y(a)=0, Yae A.

We denote by ‘H*, U* the components of H, ¥ with respect to the grading. The
existence of such a grading ~ distinguishes even Fredholm modules from odd ones.

We need also the following

Definition 1.3. A Fredholm module is p-summable if for any element a of the algebra
[F,¥(a)] € L7(H) ,

where LP(H) is the Schatten ideal made of bounded operators T such that » (u,)P <
00, iy eigenvalues of |T.

Notice that given a Fredholm module over A, it is possible to construct a Fredholm
module (H,, F},v,) for the algebra Mat,(A) ~ A® Mat,(C) (for generic r € N) by
setting

H,=HC, V,=VRid, F,=FI, ~=7I.

We come now to the definition of the Chern-Connes character of a Fredholm module,
[18]. Given an operator 7" on ‘H we define

Tv/(T) = %TT(F[F, ia)
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Then let n be a generic integer. Assume that the even Fredholm module (H, F,~)
over A is (at least) n + 1 summable. Then one defines the character of the Fredholm
module (H, F,~) to be the cyclic cocycle 7" € Z¥(A)

" (ag, a1, . .., a,) := Tr' (yao[F,ai], ... [F,ay]) . (1.37)

It is defined in terms of quantized differential forms, i.e. operators of the form
w=ag[F,a1],...[F,a,], a; € A, see [18].

Notice that the integer n is not fixed but it is only required to fulfil (n + 1)-
summability [F, ¥(a)] € L(H), Ya € A. Hence, using the inclusion £ C L, p < ¢,
we get a sequence of cyclic cocycles 7772 ¢ € N (with the same parity). These
cocylcles are related by means of the periodicity operator S : HC™(A) — HC™2(A):

2
Tm+2:_m——|—25(7-m)7 Vm:n—l—Qq,qu

This sequence {7772} __ determines a class [7"] in the periodic cyclic cohomology

lim

of A defined as the inductive limit H*(A) :=— (HC™(A), S), [18]. By definition, the
Connes-Chern character ch,(H, F,~y) € H*(A) is the periodic cyclic cohomology class
7.

After these definitons, we finally recall the following important result [39] in the
“even” case involving unitaries. Analogous result can be stated in the odd case in
terms of unitaries.

Theorem 1.1. Let (H, F,~) be a Fredholm module over an algebra A, let e € Mat,(A)
be a self-adjoint idempotent. Then

U (e)F. W) (e) : UF(e)H, — U, (e)H,

is a Fredholm operator whose index depends only on the class of e in K-theory, |e| €
Ko(A). This leads to the additive map

v: Ko(A) — Z
le] — Index(¥ (e)F,U'(e)).

If Ais a C*-algebra, the map ¢ depends only on the homotopy class of the Fred-
holm module, [39].

The index pairing ¢([e]) can be given using the Chern-Connes characters in
cyclic cohomology and homology, respectively ch*(H, F,~) € HC*(A) and ch.([e]) €
HC,.(A), through [18]

p(le]) = (ch™(H, F, ), chu([e])) -
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Chapter 2

The instanton bundle

The purpose of the research which moved us to the study of quantum symplectic
spheres was the construction of a deformed version of the Hopf bundle

ST~ Sp(2)/Sp(1) — S* =~ Sp(2)/(Sp(1) x Sp(1)) -

The starting point for such a deformation is the rewritting of the classical theory from
the algebraic point of view of associated vector bundles considered as finite projective
modules. This dual picture illustrated in [44] is the topic of the first section of this
Chapter.

The discussion then moves to noncommutative geometry. The algebra A(S;)
introduced in the previous chapter becomes in Sect. 2.2 the total space of a quantum
SU,(2)-fibration in which the base space A(Sy) is firstly given in terms of a projection
and then described as the space of coinvariants of the SU,(2)-coaction. (This fact is
presented here with two proofs, one of those presented in App. 2.A.) Here we limit
ourself to describe the algebras involved in the construction while we postpone to Ch.
3 the study of the nature of this bundle.

Finally a Fredholm module is constructed over A(S;l) in order to compute the
Chern-Connes pairing between K-homolgy and K-theory giving the “charge” of the
bundle.

Note. The paper “A Hopf bundle over a quantum four-sphere from the symplectic
group” by G. Landi, C. Pagani, C. Reina, [46] will be the common reference of this
Chapter.

2.1 The (classical) Hopf fibration S™ — S*

As said, in order to formulate a quantum version of the SU(2)-Hopf bundle S7 — S4,
the starting point is to dualise the classical picture. This consists in working with a
finite projective module representing the module of sections of the vector bundle on
which instantons live. Taking advatage of Serre-Swan theorem [63], this module is
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identified with the image of a suitable projection p € Mats(C>(S*, C)), i.e. a self
adjoint idempotent matrix p = p? = p* whose entries are elements of the algebra
C>(S*,C) of smooth functions defined over the base space.

We review the classical construction of the basic anti-instanton bundle of charge
-1 following [44]. We begin with some notations.
A quaternion ¢ € H is identified with C? by

=G +qi+q@j+tek = (@+qi)+ (g +q1)]
=1 v +0ef = v + Uy = (v, 02) € C?,

with conjugate

G =71 — JUs =T —vgj ~ (U1, —02) .

The right multiplication of ¢ by ¢’ = w; + wyj reads

_ N w;  w
(v1,v2) — (V1w — VW) + (ViwWa + Va1 )j = (v1, V2) (_%2 @j) (2.1)

or equivalently, we can consider the left multiplication of ¢ by ¢’

()= (5 52) ) &
U2 —w2 Wi )
The equations (2.1), (2.2) give respectively the right and the left representation of
SU(2) on C2.

The generic element w of the group SU(2), in accordance with the group isomor-
phism SU(2) ~ Sp(1) provided by (2.2), is written in the form

w:(w1 wQ); ww=1. (2.3)

—Wy Wi

The total space of the SU(2) principal fibration over the sphere S* is

4
ST={z=(21,2,23,2) €C*, ) |z[* =1},

i=1
with right block-diagonal action
w1 Wo 0 0
—wy, W 0 0
STx SU2) — ST, z-w:= (2,2, 23 24) 0 2 01 w0 W (2.4)
0 0 —Wa @1
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The bundle projection 7 : S — S% is just the Hopf projection and it can be explicitly
given as m(z1, 29, 23, 24) 1= (2, @, ) with

=z + |2 = |z = Jaul = =1+ 2(Ja1f + [22%) = 1= 2(|23]* + |24)) ,
a = 2(21Z3 + 2224) , B =2(—2z124 + 2923) . (2.5)

with

o + 6 +2* = 4(|z1|zs? + |22P|za® + |21 P |2a]® + |22 28]%) + Z(|Zz|4) +

2(|Zl|2|Z2|2 - |Zl|2|2’3|2 - \2’1’2|Z4\2 - |Z2|2’Z3|2 - |Z2\2|Z4|2 + |Z3|2’Z4|2)

= (laPr=1.

We need the rank 2 complex vector bundle E associated with the defining left
representation p of SU(2) on C2. The quickest way to get this is to identify S7 with
the unit sphere in the 2-dimensional quaternionic (right) H-module H?:

S ={(a,b) € H*/|a]* + |b]* = 1}

and S* with the projective line P!(H), i.e. the set of equivalence classes (wy, ws)! =~
(wy,wa)! A with (wy,wse) € S” and A € Sp(1) =~ SU(2). In other words, action (2.4)
reads

ST x Sp(1) = S*  (a,b)w = (aw, bw)

The corresponding equivariant functions ¢ : ST — H, p(p - w) = wlp(p) are of the
form

p(a,b) =af +bg,

with f and g H-valued functions invariant under the above action: f, g € C*°(S* H).
As a general result, this right C°°(S*, H)-module of equivariant functions is isomor-
phic to the right module of sections I'(S?, E) of the associated bundle E = S7x g,,1)C?.
We are ready to introduce the projection p which give to I'(S%, E) the projectivity

property:
['(S*, E) ~ p(C>(S* H))* (2.6)

Identifying H ~ C?, the vector (wy,ws)! € ST reads

21 Z9
v=| 2 . (2.7)

23 24
—Z4 Z3

This is actually a map from S” to the Stieffel variety of frames for E. In particular,
notice that the two vectors [i1), |1)9) given by the columns of v are orthonormal,
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indeed v*v = 5. As a consequence, p := vv* = |11) (1] + |1hs) (12| is a self-adjoint
idempotent (a projector), p*> = p, p* = p. Of course p is SU(2) invariant and hence
its entries are functions on S* rather than S”. Indeed the Sp(1) action is simply given
on v by v — v -w and hence

*

p=vv" — vww* v
~~
1

1s invariant.

An explicit computation yields

1+ 0 Q 15}
1 0 14z -3 @
P=31 @ 5 1-z2 o0

I} « 0 1—x

: (2.8)

where (z, a, 3) are the coordinates (2.5) on S*. Then p € Mat,(C>(S%, C)) is of rank
2 by construction.
Furthermore, the explicit isomorphism (2.6) is given by

I'(S* E) — p(C*=(5*, H))*
U:p<f> g, =(a,b) (g) —af + by

g
with f, g € C>(S*, H).

Remark 2.1. The matriz v in (2.7) is a particular example of the matrices v =
Czx + Dy given in [1], forn =1, k=1, Co =0, C; =1, Dy =1, D; = 0. This
gives the (anti-) instanton of charge —1 centered at the origin and with unit scale.
The only difference is that here we identify C* with H? as a right H-module. This
notwithstanding, the projections constructed in the two formalisms actually coincide.

Proof. In Atiyah [1] the two column vectors which compose the matrix v, (which we
denote in the following by v4 to distinguish it from (2.7)), are

1) = (21,2’2723724)t |2 = (=22, 71, —74,53)t .

The second vector (o(x)! in Atiyah’s notations) is obtained after the identification

q = 21 + %j of quaternions with C? and taking the transforamtion induced on x =
(21, 22, 23, 24) € CP? by the left multiplication of (21 + 297, 23 + 24i) € P! by the unit
j. The corresponding projector p4 = v4v7 reads

1+y 0 a

1 0 1+y —b
Pa= 2 b 1-y
a 0 1—y

o o

o> Q|
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where (y, a, b) are given by
Yy = |Zl|2+ |22|2— |23|2— |Z4|2 =, a:2(§1z3+2224) s b:2<512’4—2’223) .

Hence p and py are equivalent (in particular they coincide) and the algebras gener-
ated by their entries are isomorphic. O]

The canonical connection associated with the projector,
Vi=pod : (S, E) — I'™(S" E) ®cw(sic) Q'(5* C), (2.10)

corresponds to a Lie-algebra valued (su(2)) 1-form A on S7 whose matrix components
are given by

A = (Ys|dyy) 1,7 =172. (2.11)

This connection can be used to compute the Chern character of the bundle. Out of
the curvature of the connection V? = p(dp)? one has the Chern 2-form and 4-form
given respectively by

Cilp) =~ t(pldp)?)
Calp) =~ [0(P(dD)!) — i PICA() (2.12)

with the trace tr just an ordinary matrix trace. It turns out that the 2-form p(dp)? has
vanishing trace so that C;(p) = 0. As for the second Chern class, a straightforward
calculation shows that,

Colp) = —32—22[(x0da:4—x4dx0)(d§)3+3da:0dx45(d§)2]

3
= _ﬁ[xgd:cldazgdazgdm + x1dradrzdrsdry +
s

xodrgdrydrodr, + v3drydrodrdey + xydrgdrdradrs)

_ —% d(vol(S)) . (2.13)

The second Chern number is then given by

ca(p) = /54 Ca(p) = _ 3 d(vol(§*)) = ———-m* = —1. (2.14)

812 Jgu 812 3
The connection A in (2.11) is (anti-)self-dual, i.e. its curvature Fy := dA+ AN A
satisfies (anti-)self-duality equations, xyF4 = —F4, with *z the Hodge map of the
canonical (round) metric on the sphere S*. Tt is indeed the basic Yang-Mills anti-
instanton found in [5].
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2.2 Quantum symplectic Hopf bundle

In this section we introduce the basic ingredients will enter into the quantization of
the above picture. What we need in the first instance are quantum deformations of
the algebras of functions on the seven and four-spheres. The latter being given by
the SU,(2)-equivariants entries of a projection.

2.2.1 The total space: the symplectic 7-sphere Sg

We take the total space A(ST) to be the algebra A(Sz"!) for n = 2 introduced in Sect.
1.1.2. We first recall the algebra structure of A(S]), then we describe it as the subal-
gebra of coinvariants of A(Sp,(2)) dualising the classical picture S ~ Sp(2)/Sp(1).

The algebra A(S]) is generated by the elements z; = T;* and 7@ = S(T), =
¢*trigy Tyt for i = 1,...,4 of the defining 4 x 4 matrix T of the quantum group
Sp,(2) explicitly described in pag. 13. As it happens for generic n, the equations
S(T) T =1 give the sphere relation

4
E le’i =1.
i=1

Since we will systematically use them in the following, we shall explicitly give the
commutation relations among the generators.
From (1.27), the algebra of the x;’s is given by

X1Ty = qTo7, , T1X3 = qT3Ty

Lplly = QUuLy ,  Tylly = Q4T (2.15)
_ =2 _ =2 —2(,.—1

Tyl = q “T1Ty, T3Ty = q “TrX3 + ¢ (q - Q)xlxax )

together with their conjugates (given for general n in (1.29)).
We have also the commutation relations between the z; and the 77 deduced from
(1.30):

T =7'r,, ,7° = ¢ 7%, ,

0,7 =q ', , .7 =q T,

1,7 = T2, + (1 — ¢ 27w, ,

1,70 = q 2T, ,

1,7 = q T, + ¢ (g2 = 1), (2.16)

2,7 =725 + (1 — ¢ 2) [Tz, + (1 + ¢ )72, ,
Tt = q_1§4x3 + (1 - q_z)q_Sfol )

v, =72, + (1 — ¢ 2)[(1 + ¢ HT 'z, + T2, + Tx5)
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again with their conjugates.

Now we come to show that the algebra A(S; ) can be realized as the subalgebra
of A(Sp,(2)) generated by the coinvariants under the right-coaction of A(Sp,(1)), in
complete analogy with the classical homogeneous space Sp(2)/Sp(1) ~ S7.

Lemma 2.1. The two-sided *-ideal in A(Sp,(2)) generated as
Iq = {Tll - 17 7j44 - 17 T127 T137 T147 T217 T247 T317 T347 T417 T427 T43}
with the involution (1.8) is a Hopf ideal.

Proof. We remind that a subspace I C H of a given coalgebra (H, A, ¢) is a coideal if
AICIQH+H®I, e(I)=0.

If in addition H is endowed with an antipode S, then the compatibility condition
which gives to I the structure of a Hopf ideal is S(I) C I.

Firstly, since S(T)/ oc T;", then S(I,) C I,. This also proves that I, is a *-
ideal. Then, using e(T) = I, A(T) = T ® T it is easy to show that e(I,) = 0
and A(l,) C I, ® A(Spy(2)) + A(Spy(2)) ® 1,. O

It is a well known result that the quotient of a Hopf algebra H by a Hopf ideal is
still a Hopf algebra with co-structures induced from H. Then we have the following

Proposition 2.1. The Hopf algebra B, := A(Sp,(2))/1, is isomorphic to the coordi-
nate algebra A(SU2(2)) = A(Sp,(1)).

Proof. Using T = S(T)* and setting T»*> = a, T3*> = 7, the algebra B, can be
described as the algebra generated by the entries of the matrix

10 0 0
r_ 0 « _C]27 0
T = 0+ @ 0 (2.17)
0 0 0 1
(Compare with the matrix in (1.21).)
The commutation relations deduced from RTT equations (1.22) read:
ay=q¢Fa ,  ay=q¢ra, =77, (2.18)

aan+yy=1 ; aa+gyy=1.

Hence, as an algebra B, is isomorphic to the algebra A(SU,(2)). Furthermore,
the restriction of the coproduct of A(Sp,(2)) to B, endows the latter with a coal-
gebra structure, A(T") = T’ @ T’, which is the same as the one of A(SUz(2)).
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We can conclude that also as a Hopf algebra, B, is isomorphic to the Hopf alge-
bra A(SU.(2)) = A(Spy(1)). m

We come now to the following nice result stating the correspondence
ST~ Sp(2)/Sp(1) > A(SZ) = A(Spq(2>)CO(A(Spq(1))

Proposition 2.2. The algebra A(S]) C A(Spe(2)) is the algebra of coinvariants with
respect to the natural right coaction

AR : A(Spy(2)) — A(Spe(2)) @ A(Spg(1)) ; Ar(T) =TT . (2.19)

Proof. 1t is straightforward to show that the generators of the algebra A(S;) are
coinvariants:

AR(QTZ) = AR(ZFZZL) = XT; & 1 3 AR(fl) = —q2+’0i€i AR<T;1) = fz X 1

thus the algebra A(SZ ) is made of coinvariants. There are no other coinvariants of
degree one since each row of the submatrix of 7" made out of the two central columns
is a fundamental comodule under the coaction of A(SU,(2)). Other coinvariants
arising at higher even degree are of the form (T;27;3 — q2Ti3T,-2)”; thanks to the com-
mutation relations of A(Spy(2)), one checks these belong to A(S]) as well. It is an
easy computation to check that similar expressions involving elements from different
rows cannot be coinvariant. 0

Remark 2.2. The previous construction gives one more example of the general con-
struction [15] of a quantum principal bundle over a quantum homogeneous space, see
Sect. 3.1.1. The latter is the datum of a Hopf quotient m : A(G) — A(K) with the
right coaction of A(K) on A(G) given by the reduced coproduct Ag := (id®@m)A where
A is the coproduct of A(G). The subalgebra B C A(G) made of the coinvariants with
respect to Ag is called a quantum homogeneous space. To prove that it is a quantum
principal bundle one needs some more assumptions and we postpone this topic to Ch.
3. In our case A(G) = A(Sp,(2)), A(K) = A(Sp,(1)) with n(T) =1T". We will prove
in Sec. 3.3 that the resulting inclusion B = A(S7) — A(Spq(2)) is indeed an Hopf
Galois extension and hence a quantum principal bundle.

2.2.2 The base space: the subalgebra A(S,)

We now face the fundamental step which constists in making the sphere A(S]) itself
into the total space of a quantum principal bundle over a deformed 4-sphere. Un-
like what we saw in the previous section, this is not a quantum homogeneous space
construction and it is not obvious that such a bundle exists at all. Nonetheless the
notion of quantum bundle is more general and one only needs that the total space
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algebra is a comodule algebra over an Hopf algebra with additional suitable properties.

The first natural step would be to construct a map from S; into a deformation
of the Stieffel variety of unitary frames of 2-planes in C* to parallel the classical
construction as recalled in the Sec. 2.1. The naive choice we have is to take as
generators the elements of two (conjugate) columns of the matrix 7. We are actually
forced to take the first and the last columns of the matrix 7" because the other choice
(i.e. the second and the third columns) does not yield a subalgebra since commutation
relations of their elements will involve elements from the other two columns (see App.
A). If we set

4

T T,
—1+3

. q T Ty

v=| e | (220)
_q_4fl Ly

we have v*v = [, and the matrix p = v v* is a self-adjoint idempotent, i.e. p = p* = p?.
At ¢ = 1 the entries of p are invariant for the natural action of SU(2) on S” and
generate the algebra of polynomials on S*. This fails to be the case at generic ¢ due
to the occurrence of extra generators e.g.

pu=1—q¢ )7, py=(1—q 27" (2.21)
which vanish only at ¢ = 1.

These facts indicate that the naive quantum analogue of the quaternionic projec-
tive line as a homogeneous space of Sp,(2) has not the right number of generators.
Rather surprisingly, we shall anyhow be able to select another subalgebra of A(Sg )
which is a deformation of the algebra of polynomials on S* having the same number
of generators. These generators come from a better choice of a projection.

Obviously, in differential geometry a principle bundle is more than just a free and
effective action of a Lie group. In our example, thanks to the fact that the “structure
group” is SU,(2), from Th. I of [61] further nice properties can be established. We
shall elaborate more on these points later on in Sect. 3.3 .

The quantum sphere S;l

Firstly we introduce some notations we will need later. On the free module &£ :=
C'® A(S; ) we consider the hermitean structure given by

4
h(l€1) . 1€2)) = Zf_ljfé :
j=1
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To every element |§) € £ we associate an element (£| in the dual module £* by using

the pairing
(€l (Im) == (€lm) = h(I€) , [n)).

Following the classical (dual) construction illustrated in Sec. 2.1, we search two ele-
ments |¢1), |¢2) in € with the property that

(rlgr) =1, (alpa) =1, (d1]d2) =0.

As a consequence, the matrix valued function defined by

p = |g1) (D] + |P2) (#2] , (2.22)

is a self-adjoint idempotent (a projection).

In principle, p € Maty(A(S])), but we can choose |¢1), |¢2) in such a way that the
entries of p will generate a subalgebra A(S7) of A(ST) which is a deformation of the
algebra of polynomial functions on the 4-sphere S*. The two elements |¢1), |p2) will
be obtained in two steps as follows simply using the noncommutativity of the algebra.

Firstly we write the relation 1 = Y Z'z; in terms of the quadratic elements 7'z,
T, X%, T°xs, x,T* by using the commutation relations (2.16). We have that

1= Zf’xl = ¢ T, + ¢ 2, + ¢ T, + 2, T
Then we take,
|¢1> = (q73x1, —Cfl?, qilx?ﬂ _54)t ) (223>
(t denoting transposition) which by construction is such that (¢;]|¢1) = 1.

Next, we write 1 = Y Z'z; = > T'x; as a function of the quadratic elements z, 7", 2,
T3, Ty
1= ¢ 20,7 + ¢ 'Ta, + 0,7 + T,
By taking,
(62) = (¢ 2y, +¢7'T", £, +7°)"

we get (¢9|p2) = 1. The ambiguity in the choice of the signs allows to us to obtains
also the orthogonality condition (¢;|p9) = 0: for

|¢2> = (q_QfL'za q_lfly — Ly, _fg)t (2.24)

this is satisfied.

The resulting matrix is
q_?’xl q_2x2

—1=2 —151
-q r q
v=(lo).le) = | L0 0

_fﬁl _EJ

, (2.25)
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which by construction satisfies v*v = 1. Hence p = vv* is a self-adjoint projection.

We can state (and prove) the following:

*

Proposition 2.3. The entries of the projection p = vv*, with v given in (2.25),
generate a subalgebra of A(S;) which 1s a deformation of the algebra of polynomial
functions on the 4-sphere S*.

Proof. Let us compute explicitly the components of the projection p and their com-
mutation relations.

1. The diagonal elements are given by

— =6, 1 —4,. 72 =272 —2=1
P11 =¢q T +q T,X7, Pa=q TX,+q T X,
=2, =3 —4 =4 =3
P33 = q “T3x° + x,T Pay =TTy +2T°25

and satisfy the relation
—2 2 _
¢ Pt @ Pt psstpu=2. (2.26)

Only one of the p;’s is independent; indeed by using the commutation relations
and the equation Y Z'r; = 1, we can rewrite the p;’s in terms of

t:= P22 , (227)

as
pi=qt , pp=t, pp=1l—q 't , pu=1-¢t.
Equation (2.26) is easily verified. Notice that ¢ is self-adjoint: ¢ = t.

2. As in the classical case, the elements pio, p34 (and their conjugates) vanish:

pr2=—q ‘mxs+q ww =0, psy = —q '@, + 2,3, =0

3. The remaining elements are given by

_ . —4,. 53 —2,. 74 _ -3 —2
bPis=¢q T, &° —q "T,x, Py = —q "1 Xy — q "Xy,

_ —2752733 — 151574 _ =12 —1+1
b3 = —q "T°x" —q "TT, Poaa=¢q Ty —q T T3,

with pj; = p;; when j > .
By using the commutation relations of A(S]), one finds that only two of these
are independent. We take them to be py3 and py4; one finds py3 = ¢ 2p,, and

D24 = _q2]313-

Finally, we also have the sphere relation,

(¢° = g)p, + 12+ P340 (PraDss +Prapan) @ (PraPaz+Paspin) = (ZEZ%)Q =1.(2.28)
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Summing up, together with ¢ = pos, we set a := p13 and b := p14. Then the projection
p takes the following form

g%t 0 a b
0 t q b —qa

p= : (2.29)
a g% 1—q* 0

b —¢%a 0 1— g%

By construction p* = p and this means that = ¢, as observed, and that @,b are
conjugate to a,b respectively. Furthermore p? = p: this property gives the easiest
way to compute the commutation relations between the generators. One finds,

ab = q¢*ba, ab=ba,

ta = q 2at, tb=qt, (2.30)
together with their conjugates, and sphere relations
aa + bb = ¢ (1 — q~t) , ¢*aa + q*bb = t(1 —t) ,
bb — q*bb = (1 — ¢~ )t% . (2:31)
It is straightforward to check also the relation (2.28). [

We define the algebra A(S;‘) to be the algebra generated by the elements a, @, b, b, t
with the commutation relations (2.30) and (2.31). For ¢ = 1 it reduces to the algebra
of polynomial functions on the sphere S*.

Before to address our attention to the research of a “quantum group structure”
we make some observations.

Observation 2.1. At q = 1, the projection p in (2.29) is conjugate to the classical one
given in Sec. 2.1 by the matriz diag[l,—1,1,1] (up to a renaming of the generators).

Proof. We remind that two projectors p, ¢ € Mat(A) are said to be equivalent (in the
sense of Murray-von-Neumann) p ~ ¢ if there exists a matrix u € Mat(A) such that
p = uw*u and ¢ = uu*. Note that the condition to be equivalent in noncommutative
geometry is weeker with respect to the classical one. If p, ¢ are conjugate through a
matrix B, p = BqB~! with B~! = B*, then u = Bgq is such that

p=DBg¢B'=Bq¢*B™' = uu*, u'u=q'B"Bq=q'q=q,

where we used p = p? = p*, ¢ = ¢* = ¢*.
Now we prove that the projections in (2.29) and (2.8) are conjugate (and hence
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equivalent). At ¢ = 1, the matrix v in (2.25) reads

Xy Lo
=2 =1
—XT xXr
qul = . (2.32)
Tz —Ty
_fﬁl _Ts

Then the corresponding projector p,—1 = v,—1v;_; is conjugated to p in (2.8) by means
of u = diag[l, —1,1,1]: uvv;_ju* =pifonesets a =a, b= Gt =1+uz. ]

Observation 2.2. Let us consider the algebra A(S;l,l) obtained from A(S;‘) by map-
ping ¢ — q~ . This algebra is isomorphic to the previous one. Indeed, we obtain
exactly the same commutation rule as (2.30), (2.31), i.e. an algebra isomorphism, if
we take as generators of A(S, ) the elements

t'=q%, d = q¢*a, V=q7%b.
Hence we can limit ourselves to |q| < 1.

Observation 2.3. Our sphere S;l seems to be different from the one constructed in
[7]. Two of our generators commute and most importantly, it does not come from a
deformation of a subgroup (let alone coisotropic) of Sp(2). However, at the contin-
uous level these two quantum spheres are the same since the C*-algebra completion
of both polynomial algebras is the minimal unitization IC @ CI of the compact opera-
tors on an infinite dimensional separable Hilbert space, a property shared with Podles
standard sphere as well [56]. This fact will be derived in Sect. 2.3 when we study the
representations of the algebra A(S;*). See also Remark 3.3

2.2.3 The SU,(2)-coaction and A(S,) as algebra of coinvari-
ants

In this rewritting of the bundle S” — S*, the structure group is replaced by the
algebra of functions on the deformed SU(2). Indeed we now provide a coaction of
the quantum group SU,(2) on the sphere A(S7). This coaction will be used later in
Sect. 3.3 when analyzing the quantum principle bundle structure.

Let us observe that the two pairs of generators (x,, z,), (x5, z,) both yield a quan-
tum plane,

T1Ty = Ty , 7' = ¢ 7T,

T3y = qT,T5 7’7 = ¢ T .

Next, these couples of generators are exactly those which are present in the rows of
the matrix v in (2.25) hence we look for a right-coaction of SU,(2) on A(S]) to be
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firstly defined on v itself. (Note that other pairs of generators yield quantum planes
but the only choice which gives a projection with the right number of generators is
the one given above. We postpone this discussion to pag. 41.)

We recall the structure of the quantum group SU,(2) also in order to fix the
notations, see e.g. [67]. The defining matrix of the quantum group SU,(2) reads

<O‘ —gv) (2.33)
voo@
with commutation relations

ay = gqya, ay = qya, VY= (2.34)
aad+¢Hy =1, aa+5yy=1. '

We define a coaction of SU,(2) on the matrix (2.25) by,

-3 2
q Ty g "X

—1=2 —1=1 _
—q¢ T ¢ T (o —qy
(SR(U) = qill’3 2, (29 (7 = ) . (235)
-z -7

We shall prove presently that this coaction comes from a coaction of A(SU,(2)) on
the sphere algebra A(S]). For the moment we remark that, by its form in (2.35) the
entries of the projection p = vv* are automatically coinvariants, a fact that we shall
also prove explicitly in the following.

On the generators, the coaction (2.35) is given explicitly by

r(z) =1, Qa+qr, @7, dr(T")
5R($2) = =X ®7+3§'2 X, (5R(Tz) :f2®06—fl®’}/:53($2),
(53(1‘3)21’3@0&—(]1‘4@7, 5R(E)
Or(zy) =2, Q7+, Q@ , IR(T) =T'Qa+7T*®vy=0gr(x,) ,

(2.36)

from which it is also clear its compatibility with the anti-involution, i.e. dx(T%) =
dr(z;). The map g in (2.36) extends as an algebra homomorphism to the whole of
A(S7). Then, as alluded to before, we have the following

Proposition 2.4. The coaction (2.36) is a right coaction of the quantum group
SU,(2) on the 7-sphere ST,

Or : A(S]) — A(ST) @ A(SU,(2)) . (2.37)

Proof. By using the commutation relations of A(SU,(2)) in (2.34), a lengthy but
easy computation gives that the commutation relations of A(Sg ) are preserved. This
fact also shows that extending dr as an algebra homomorphism yields a consistent
coaction. O

This coaction allows to us to interpret the “base space” A(S;‘) as the (projective)
algebra of equivariant functions.
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Proposition 2.5. The algebra A(S;l) is the algebra of coinvariants under the coaction
defined in (2.36).

Proof. We have to show that A(S;) = {f € A(S]) | 0r(f) = f ® 1}. By using the
commutation relations of A(S]) and those of A(SU,(2)), we first prove explicitly that
the generators of A(S;) are coinvariants:

dr(a) = q "0r(2:)0R(T*) — ¢ *0r(2,)0R(T")
= ¢ 27 ® (@ +¢*77) — ¢ *n.7' ® (Y7 + Ga)
= ("7 - q¢*r,7)®1l=a®1

Or(b) = —q_353($1)53(.’£4) - q_25R<$2)5R(1‘3)
= —¢ ’na,® (0@ + 7)) — ¢ Cxw, @ (VY + aa)
(¢, + ¢ ) @1 =031

op(t) = q 20r(T)0r(x:) + ¢ *0R(T")or(z:)
= ¢ T2, @ (a@ + ¢FY) + ¢ Tz, ® (77 + aq)
= (¢ 2, +q¢Tr)R1=tx®1

By construction the coaction is compatible with the anti-involution so that
op(@) = 0p(a) =a® 1, dr(b)=0r()=b®1

In fact, this only shows that A(S;) is made of coinvariants but does not rule out the
possibility of other coinvariants not in A(S;‘). However this does not happen for the
following reason. From eq. (2.36) it is clear that wy € {x,,z;,7%, 7'} (respectively
w_y € {xy, x,,T",7%}) are weight vectors of weight 1 (resp. —1) in the fundamental
comodule of SU,(2). It follows that the only possible coinvariants are of the form
(wiw_1 — qw_ywy)". When n = 1 these are just the generators of A(Sy). O
In the appendix 2.A we will provide another proof of this proposition by using the so
called Diamond lemma [6].

Remark 2.3. The last part of the proof above is also related to the quantum Pliicker
coordinates. For every 2 x 2 matriz of (2.25), let us define the determinant by

det (CLH CL12) = 11022 — (q Q120271 - (238)
A21 Q22

(Note that aya, a9 do mot commute and so in the previous formula the ordering
between them is fizved.) Let m;; be the minors of (2.25) obtained by considering the
i,7 rows. Then

m12:q2p11:t, miz =piu = b,
My = —q P13 = —q a, M3 =Py = —¢*a, (2.39)
Moy = —q a3 =—q b, Mga=—qpszs=q °t—q.
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At q = 1, these give the classical Pliicker coordinates [1].

The right coaction (2.35) of SU,(2) on the 7-sphere A(S]) can be written on the
vector (,, x,, x5, x,) made of generators as

a =7 0 0
Sr(T1, o, T3, ) = (X1, Ty T3, T,) @ o oa 00 (2.40)
1y &2y &3y 4 1y &2y &3y 4 0 0 o 7 9 .
0 0 —qy @

together with dg(7;) = dg(z;). Once more, extended as an algebra map.
Notice that in the block-diagonal matrix which appears in (2.40) the second copy is
given by SU,(2) while the first one is twisted as

(o @)= 2 D65

qQy « 0 -1/ \—qy @) \0 —1)°

A similar phenomenon occurs in [7].

Remark 2.4. It is also interesting to observe that
Sr(v'v)=vvR1=1®1.

Indeed,

or((p1l¢n)) = Or(q™"T'w, + ¢ 27" + ¢ °T'x, + ,7)
= (—q¢ Tz, + ¢ 22,7+ ¢ T, — 2,7 @ Fa
—i—(q‘%%z + q_2x T+ W@ + z,7%) @ 7y
+(¢~ %', + ¢ xga: + ¢ T, + 2,7) ® aa
H=q’T'a, + q 2T + T, — 2T ) @ ay
= (P2]d1) @ T + (2| p2) @FY + (d1]d1) @ v + (d1]d2) @ Ay
= 1le@Fy+an)=1®1,

Sr((da]dn)) = Orlq 2@ + ¢ *T 0, + x,7° + T'x)
= (¢'7%2, — ¢ ', 7 —T'r, + qr,T) @ aF
+qg T, + ¢ T + T :c4—|—x?a:)®aa
+q 7w, + 2,7+ T+ P, T @y
(¢'T'w, — ¢ T — Tr, + qu,T) @
= —q(¢2|$1) ® T + (2| h2) ® a@ + ¢* (D1]¢1) @ VT — ¢ (D1]d2) ® v@
= 1®(a+¢W) =101,

+

O0r({p1ld2)) = q0r(T")0r(2.) — ¢ *Or(2.)0R(T")
—q"'Or(T")0r(2,) + Or(x,)0R(T") = 0

since O defines a coaction on S; and so preserves its commutation relations. [l
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On the crucial choice of |¢;), |p2).

As seen, the choice of |¢1) , |¢2) has been particularly lucky allowing to use to construct
a noncommutative principal bundle (see Sect. 3.3). Is it the only possible choice?
The answer seems to be positive if one requires

e |01),|po) orthonormal: crucial to have p projection;

e quantum planes on the rows of v: necessary to define a right SU,(2)-coaction
directly on v (and hence, such that the entries of p are automatically coinvari-
ant;)

e p with the “correct” number of generators.

Firstly, the choice similar to Atiyah’s one would be with the elements z; into a vector
and their conjugates on the other one: we deduce these two orthonormal vectors in
A(S]) ® C* from the sphere relation ) T;z; = 1 as before:

V1) = (@1, T, T3, 4) [g) = (_q_352>q_4fla —547(1_153) :

Unfortunately, this choice fails the conditions to have quantum planes on the rows of
the matrix (|¢1), |P2)).

The only possible ways to take couples of generators of A(S;) which generate
quantum planes are, from page 30,

(z1, 2) (1, x3) (Ta, 1)
a) , b) , c) ;
(z3, T4) (z2, 74) (T3, )

in the latter case with a ¢>-plane.

Case a) is exactly the one used in the construction of the instanton bundle. We
know that it works.
In case b) the first corresponding orthonormal vector would be

|61) = (¢ w1, £q7'7°, ¢y, 7).

But then it is no longer possible to find out another orthonormal vector |¢s) such
that (¢1|¢2) = 0. This problem does not occur for the last choice ¢), but here
the corresponding projection generate an algebra with too many generators, not a
4-sphere.

Observation 2.4. We remind that classically, under the identification S* ~ P'H,
the group which acts on S” is Sp(1). At a quantum level hence the natural choice
would be the c) (being Sp,(1) ~ SUp(2)) but as said this choice fails to produce a
4-sphere .
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2.3 Representations of the algebra A(Sg)

We conclude this Chapter by computing the instanton charge. As recalled in App.
1.A, this is done by computing the pairing of the Chern-Connes characters ch* (i) €
HC* [A(S;l)] and ch.(p) € HC., [A(S;‘)] in cyclic homology and cohomology respec-
tively. Here p being a Fredholm module over A(S;‘) that we compute now.

What we need firstly are irreducible *-representations of A(S;L) as bounded oper-
ators on a separable Hilbert space ‘H. For the moment, we denote in the same way
the elements of the algebra and their images as operators in the given representation.
As mentioned before in Obs. 2.2, since g — ¢~ ! gives an isomorphic algebra, we can
restrict ourselves to |¢| < 1. We will consider the representations which are ¢-finite
[41], i.e. such that the eigenvectors of ¢ span H.

Since the self-adjoint operator ¢ must be bounded due to the spherical relations,
from the commutation relations ta = ¢~ 2at, tb = ¢ *bt, it follows that the spectrum
should be of the form A¢*® and a, b (resp. @,b) act as rising (resp. lowering) operators
on the eigenvectors of t. Then boundedness implies the existence of an highest weight
vector, i.e. there exists a vector |0,0) such that

£10,0) = tg0[0,0), @]0,0) =0, 5]0,0) =0. (2.41)
By evaluating ¢*@a + bb = (1 — ¢*t)t on |0,0) we have
(1— ¢ *too)too = 0

According to the values of the eigenvalue oy we have two representations.

2.3.1 The representation (3

The first representation, that we call 3, is obtained for too = 0. Then, ¢|0,0) = 0
implies t = 0. Moreover, using the commutation relations (2.30) and (2.31), it follows
that this representation is the trivial one

t=0, a=0, b=0, (2.42)

the representation Hilbert space being just C; of course, §(1) = 1.

2.3.2 The representation o

The second representation, that we call o, is obtained for oo = ¢*. This is infinite
dimensional. We take the set |m,n) = N,,,a™b"[0,0) with n,m € N, to be an
orthonormal basis of the representation Hilbert space H, with Nog = 1 and N,,, € R
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the normalizations, to be computed below.
Then

tim,n) =ty |m,n) |
alm,n) = ap, |lm+1,n) |
blm,n) =byn|m,n+1) .
By requiring that we have a x-representation we have also that
alm,n) =am_1,|m—1,n) , blm,n) =by,_1|mmn—1),
with the following recursion relations
Amntl = qi2am,n ) bmil,n = qubm,n ) bm,n = q2a2n+1,m .
By explicit computation, we find

2 4 4
b = @2

(1 . q2m+2)%qm+2n+1 , (2.43)

-1
Qm,n = NmnNm+1,n =

bm,n _ NmnNT;1n+1 _ (1 . q4n+4)%q2(m+n+2) ]
Proof. of egqs. (2.43). Firstly
¢ ’m’ 7’L> _ Nmnq2m+4nambnt |O, 0> _ Nmnq2m+4nfooambn ’0’ 0> _ q2m+4(n+1) |m’ 7’L> ]

Using @b = ba and |m + 1,n) = N,,y1,a™ 6" [0,0) = N1 ,a™b"a |0,0) we have

Nmn
@lm,n) = Ny, ,a™ " 0,0) = N +’1 lm +1,n)

and similarly

Nm,n
mon+1
so that in order to compute a,, p, b, We only need to determine the quotients of the
normalizing constants. We use the following

b|m,n) = m,n+1)

a™a = a™(aa) = a™(q*aa + (¢ —1)t) =
= (¢*=Da™ +q*a™ (¢*aa + (¢* — Dt)a
= (¢° -1 +¢)a™+ " *(¢*aa+ (¢* = t)a® = ...
-0+ +¢" "+ +¢)a™t+ (- )aa

2m—+2

. ; 1—
Then, using Zi”io ¢ = —1‘?1_ =

and a|0,0) = 0 we have
(m+1nm+1,n) = N2 _,(00]| b a™ a1 |0, 0)

= ¢ (1= ¢"?)N2 1, {0,0]b"a™ta™b" |0,0)

— q—2<1 . q2m+2)q2m+4n+4NT2n+1’n <O, 0| I—)namambn |0, O>
N72n+1,n

-2 2m+2\ 2m—+4n+4
= ¢ (1- )a
Nin

q (m,n|m,n) .
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Assuming the orthonormality of the bases vectors, we can conclude that
N2 o
N2

m+1,n

2(m—+2n+1) (1 2m+2)

=4q -4

and hence the a,,, have the expression given in (2.43).
For b,,, the computation is analogous: as a first step

P = (1—q% Z "0t +

and then

l=(mn+1mn+1) = ¢ *(1—¢"™N2,,, (0,0[a™b" t?b"a™ |0,0)
An+4\ 4(n+m+2) Ngz,n—&-l
= (1—¢ )q N2

and so

blm,n) = m.n+1) = (1= g™ )™ D jm n 4+ 1) . O

m,n+1

Summarizing, we have the following action
tlm,n) = @ m, n), (2.44)
alm,n) = (1—¢*"*) 2™ Im + 1,n),
alm, ) = (1= @#™)3q™ 2 jm — 1,m),
blm,n) = (1 — ¢t 2242 |y 4 1)
blm,n) = (1 — ¢z jm,n —1).
It is straightforward to check that all the defining relations (2.30) and (2.31) are
satisfied.

In this representation the algebra generators are all trace class:
4

T(t) = ¢*> ¢ ¢ = 1- q;)](l —q*)

m m n q m 1
Tr(la]) = QZ ) gm :1_—(]22(1 R R

m

- QZQ (1-4q) (1—612) ’ (24

4
Tr(|b]) = gq 2 : 4 +4 2( +m) _ ’ E :(1 _q4 +4)2q2

1—gq

2n

(1—4q?)
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From the sequence of Schatten ideals in the algebra of compact operators one
knows [62] that the norm closure of trace class operators gives the ideal of compact
operators K. As a consequence, the closure of A(S)) is the C*-algebra C(S;) = KCL.

2.4 The index pairing: the charge

The ‘defining’ self-adjoint idempotent p in (2.29) determines a class in the K-theory
of S;, ie. [p] € Ko[C(S;)]. A way to prove its nontriviality is by pairing it with
a nontrivial element in the dual K-homology, i.e. with (the class of) a nontrivial
Fredholm module 1] € K°[C(Sy)]. In fact, in order to compute the pairing of K-
theory with K-homology, it is more convenient to first compute the corresponding
Chern characters in the cyclic homology ch,(p) € HC.[A(S;)] and cyclic cohomology
ch*(u) € HC* [A(Sél)] respectively, and then use the pairing between cyclic homology
and cohomology [18].

Like for the g-monopole [33], to compute the pairing and to prove the nontriviality
of the bundle it is enough to consider HC) [A(S;l)] and dually to take a suitable trace
of the projection.

The Chern character of the projection p in (2.29) has a component in degree zero
cho(p) € HCH[A(S,)] simply given by the matrix trace,

cho(p) :=tr(p) =2 — ¢ ' (1 - ¢*)(1 —¢") t € A(S)). (2.46)

The higher degree parts of ch,(p) are obtained via the periodicity operator S; not
needing them here we shall not dwell more upon this point and refer to [18] for the
relevant details.

As mentioned, the K-homology of an involutive algebra A is given in terms of
homotopy classes of Fredholm modules. In the present situation we are dealing with
a l-summable Fredholm module [] € K°[C(S;)]. This is in contrast to the fact that
the analogous element of K,(S*) for the undeformed sphere is given by a 4-summable
Fredholm module, being the fundamental class of S*.

The Fredholm module p := (H, ¥, ) is constructed as follows. The Hilbert space
is H ="H, & H, and the representation is ¥ = o ¢ 3. Here o is the representation
of A(S;) introduced in (2.44) and § given in (2.42) is trivially extended to H,. The

grading operator is
(1 0
7= \o -1)-

The corresponding Chern character ch* (1) of the class of this Fredholm module has
a component in degree 0, ch’(p) € HC°[A(S2")]. From the general construction [18],
the element ch’(piey) is the trace

Hz) = Tr (y¥(2)) = Tr (o(x) — B(x)). (2.47)
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The operator o(z) — B3(x) is always trace class. Obviously 7'(1) = 0. The higher
degree parts of ch™(pey) can again be obtained via a periodicity operator.

A similar construction of the class [u] and the corresponding Chern character were
given in [52] for quantum two and three dimensional spheres.

We are ready to compute the pairing:

([, [p]) == (ch®(w), cho(p)) = —¢*(1 — ¢*) (1 — ¢*) 7'(2)
== ' (1-AA - Tr(t) = —¢ 1 - A —¢)" 1 =) (1 —¢") "
= 1. (2.48)

This result shows also that the right A(S;)-module p[A(S;)"] is not free. Indeed, any
free module is represented in K,[C(S;)] by the idempotent 1, and since ([u], [1]) =0,
the evaluation of [u] on any free module always gives zero.

We can extract the ‘trivial” element in the K-homology K°[C(S,)] of the quantum
sphere S;‘ and use it to measure the ‘rank’ of the idempotent p. This generator
corresponds to the trivial generator of the K-homology Ky(S?*) of the classical sphere
S%. The latter (classical) generator is the image of the generator of the K-homology
of a point by the functorial map K, (i) : Ko(*) — Ko(S™71), where ¢ : + — SN~ is
the inclusion of a point into the sphere. Now, the quantum sphere S;‘ has just one
‘classical point’, i.e. the 1-dimensional representation 3 constructed in Sect. 2.3.1.
The corresponding 1-summable Fredholm module [¢] € K°[C (S;l)] is easily described:
the Hilbert space is C with representation 3; the grading operator is v = 1. Then the
degree 0 component ch’(e) € HC[A(S")] of the corresponding Chern character is the
trace given by the representation itself (since it is a homomorphism to a commutative
algebra),

(x) = B(x) , (2.49)

and vanishes on all the generators whereas 7°(1) = 1.
Not surprisingly, the pairing with the class of the idempotent p is,

([e], [p]) = 7"(cho(p)) = B(2) = 2 . (2.50)

The non triviality of this pairing will be used later in Sect. 3.3 to conclude that the
bundle A(S;) C A(S]) is non trivial.

2.A Appendix: An alternative proof of A(S;l) =
A(s?)SUq(Q)
q

In this appendix we supply an alternative proof of the inclusion A(S;l) D A(S; )SUQ(Q)

stated in Prop. 2.5 in Sect. 2.2.3:
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Proposition 2.6. The algebra A(Sg‘) coincides with the subalgebra A(SJ)CO(SU"(Q)) of
A(S;) made of the coinvariants with respect to the right coaction dg of the quantum

group A(SU,(2)):

A(S;;) _ A<S'q7)CO(SUq(2)) pp— {.Z' c A(g’q?) ‘ 5}{(.1') _ x@ 1}

The proof uses the so called Diamond Lemma, Th. 1.2 [6]. Given an algebra
defined in terms of generators and relations, the Diamond lemma provides a way to
prove that a certain set of elements is a basis for that algebra. We briefly remind the
points of the theorem that will be used. We adopt the notation of [6] and we refer to
it for details.

Let k be a commutative associative ring with unity, X a set, (X) the free semigroup
with unity on X and k(X) the free associative k-algebra generated by the elements
of X. On (X) we introduce a partial order < such that A < B implies CAD < CBD
for all A, B,C, D € (X).

A reduction system S is, by definition, a subset of (X) x k(X). Given any element
o= (W, f,) € Sand A B € (X), we define the reduction raw, g : k(X) — k(X)
which maps AW,B +— Af,B and acts as the identity on the other elements. An
element of k(X) is irreducible if every reduction acts trivially on it, i.e. leaves it
unchanged. Observe that an element is unchanged under ray, 5 if and only if the
monomial AW, B does not appear in it. Let I¢ =< W, — f,, 0 € S > be the two-
sided ideal of k(X) associated to S. The order in (X) is called compatible with S if
for each element ¢ of S, the monomials which constitute f, are < W,.

Let us introduce the notion of ambiguities. Two elements o,7 € S produce an
overlap ambiguity if W, = AB, W, = BC. The ambiguity can be solved if r(f,C) =
r'(Af;) through compositions of reductions. We say that o, 7 produce an inclusion
ambiguity if W, = BW,C' and an analogous definition of resolution should be given.

After the assumption that the order is compatible with S and it has descending
chain condition, then the Diamond lemma states that if (and only if) all ambiguities
of S are resolvable, then the S-irreducible monomials of (X) are a (vector space) basis

for k(X)/Is.

Proof. of Prop. 2.6. The idea is to show that there are as many coinvariants as
classically and then to show that any coinvariant can be written in terms of elements
of A(S;*).

Let X be the set {z;, T;, i« = 1,...,4}. Let C,,~1(X) be the corresponding free
algebra and (X) the free semigroup with 1 on X i.e. the set of monomials.
We introduce on (X) an ordering: monomials are ordered according to their lenght
and for monomials of the same lenght we adopt the anti-lexicographic ordering in-
duced by

fi<§j<$i<$]’, Z>]
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This ordering satisfies the requested descending chain condition.

We take the following reduction system given by elements of the form o = (W, f,)
with W, € (X) and f, € C, -1 (X):

( (31711'27 qx2$1) ) (1'11'3’ q1135(}1) , (5525547 q:zc4x2) ) )
(1‘31‘4 ,QI4{E3) s (951934 7q2x4x1) ) (J;QwB ,q2x3x2 + (q3 - Q)x4$1) )
(flfz’ q—lz2fl) (flf:S’ q—lfiifl) , <§2§4, q—lleEQ) ,

(EBE4 ,q—1§4§3) , (f1f4 ,q_2f4fl> , <f2f3 ’q—2§3f2 + (q—3 _ q—l)félfl) ,

(.7, 7'2y) (2.7, q~'7x,) |
(:17133 7q_153x1) ) (517134 7q—2§4x1) )
g (2,7, q7'T'x,) , (2,7, T2, + (1 — ¢ 2)T'xy)
(2.7, q7°T°n,) , (T, ¢ 'T'e+ ¢ g% - 1)T,)
(27", q7'T'ay) (2,7 Ta + (L — ¢ ?)[T'e, + (L+ ¢ )7,)) |
(2,7, q%2,7%) , (2,7, ¢ ' Ty + (1 — ¢ 2)q °T%2,)
(2,7, ¢ *T'w,), (2.7, ¢ ' Tx, 4+ ¢ g2 = 1)T'a,) ,

(2.7, ¢ ' Pu,+ (1 — ¢ 2)q 3T x,) |
(x, 7t T, + (1 — ¢ )[(1 + ¢ HT 2, + T2, + T2))

| @'z, , 1 =Tz, —Txy, — T1,) .

This system is choosen in such a way that the corresponding two-sided ideal
[S:<Wa—fg, O'ES>

coincides with the defining ideal for A(S7), i.e. A(S)) = Cgq4-1(X)/Is.

The ordering introduced above is compatible with S, that is Vo € S f, is a linear
combination of monomials < W,. There are only overlap ambiguities in .S, which
can be all resolved. For example, (z,x,, qx,2,), (x,24, qr,x,) is an overlap ambiguity
but there exist r, r’ compositions of reductions such that r(z,z,z,) = r'(z,2,2,).
Indeed it is enough to take r = r,, or,, and r = r,, o r,, where o = (2,2, q2x4x1),
o9 = (2,24, qr,x,) and o3 = (2,2, qT,1,).

Using the diamond lemma we can conclude that a vector space basis for A(S; ) is
given by the set of S-irreducible monomials of (X):

—a4 —a3 =a2 —=a1 by a3 ,.ba b1 —
R R S Pl PR s S Sl a;, b e N, aby =0 (2.51)

According to the degree d = 3~ (a; + b;) of monomials, we split A(S7) into subspaces
Aq(S]) of homogeneous polynomials of degree d.
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7yco(SUq (2))
(Sg) "

We observe that the subalgebra of coinvariants A coincides with the ker-

nel of the map

0 A(ST) — A(ST) ® A(SU,L(2))
r — Op(r)—z®1 (2.52)

where dp is the coaction map (2.36) and 1 denotes the unit aa + ¢?7v of the algebra
A(SU,(2)). .

By construction, the coaction map g (and as a consequence the map ) preserves
the degree of polynomials, that is 0 : Ag(S7) — Aa(S]) @ A(SU,(2)).

In particular we can observe that for d odd, the unit of A(SU,(2)) cannot be in the
image of d and hencefore there cannot be coinvariants of odd degree.

For d = 2m, let 4 be the restrictions of 4 to Aq(S]). The dimension of the kernel

of 5d,i e. of the subspace of coinvariants does not depend on ¢ and it is equal to the
classical case ¢ = 1. Indeed it is possible to rescale (by powers of ¢) the generators in
the source and in the target of d, in such a way that the matrix representing 0, has
scalar entries which are independent of q.

In order to conclude our proof, we now exibit at each degree a basis of coinvariants
showing that the elements which constitute this basis also generate the classical sub-
space of coinvariants.

For d = 2 this has already been checked. At higher degrees we use once more the dia-
mond lemma. We choose the reduction system in such a way that the corresponding
ideal of relations gives the commutation relations (2.30), (2.31) (and their conjugates)
and it is the following one

(ba,q *ab) , (ba,ab) (b, git(l1 —t) — qgaa)_
g (at,¢*ta) ,  (at,q *ta@), (bd, (1 —q *)t*+q*bb)

(ba, ab) , (ba, q*ab) ,  (bb,q %t(1 — ¢~%t) — aa)

(bt q_4tb) (bt,q*th) ,  (aa, (1 — ¢ 2)t — ¢*aa)

We take the “lexicographic” ordering induced by the following ordering of the letters
t<a<a<b<b.

It is compatible with S and obviously satisfies the descending chain condition. As
before, there are only overlap ambiguities in .S and can all be resolved. We are in the
hypothesis of the diamond lemma and we can conclude that a vector space basis for
the space Ad(S;l) is given by the S-irreducible elements

(6@’ DV with kK = 0; i+j+j/ +k+ K = d}.

These same elements give also a basis for the classical subspace of coinvariants and
this conclude our proof. O]
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2. The instanton bundle
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Chapter 3

Noncommutative principal bundles

In the previous Chapter we presented the two “bundles” A(S7) C A(Spy(2)) and
A(S]) € A(S]) in terms of algebras, coactions and subalgebras of coinvariants. Here
we make more clear and precise the concept of principal bundles in noncommutative
geometry giving, in the first part of the chapter, a review of some elements of the
general theory [15]. In the second one, we will elaborate on the two examples just
mentioned. (In a certain sense, Sect. 3.1 conceptually precedes Ch. 2.)

As said, following the common idea to replace spaces by algebras of functions,
the basic ingredients for the formulation in noncommutative geometry of a theory of
principal bundles will be two algebras correspondent to the (algebras of functions on
the) total and base spaces and a Hopf algebra, or a quantum group, playing the role
of the structure group.

In the first section we discuss quantum bundles as introduced in [15] by Brzezin-
ski and Majid in which the theory is developed with a particular attention to the
differential calculus of which the algebras are endowed. In the second section we
study principal bundles from the more algebric point of view of Hopf-Galois exten-
sions [61]. The overlap between these two construction is recovered when, in the first
formulation, the algebras are endowed with the universal differential calculus. (A
quite different approach to differential geometry of quantum bundles was developed
by Durdevich [29], in this case without refering to the theory of Galois extensions.)
The concept of connection on quantum principal bundles was introduced in [15] and
then developed in [32], [25]. This will be the topic of Sect. 3.2.1.

Finally we conclude by showing that the two extensions A(S]) € A(Sp,(2)) and
A(S;]) € A(S]) are examples of quantum principal bundles. For both of them we will
define a strong connection, firstly on the generators of the structure groups and then
by extending these maps to the whole algebras.
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3.1 Quantum principal bundles

In the approach [15] to quantum principal bundles, the theory is developed accord-
ingly to the differential structure of the total space and the structure group. For
self-consistency and in order to fix the notations, we begin by recalling some basic
definitions of the theory of differential calculus on algebras.

Definition 3.1. A first order differential calculus over an algebra A consists of a pair
(I',d) such that T" is a bimodule over A, d : A — T is a linear map which satisfies
Leibnitz rule: d(ab) = d(a)b+ ad(b), a,b € A and every element of T is a finite sum
Zk akdbk, ag, b, € A.

Given a first order differential calculus on A we can associate the external algebra

Q(A) = & Q"(A) constructed by defining
QA =4 ; QA CT®4...04T, n>0
as the span of elements
(ag, a1, ...a,) :=ag®adag @4 ...4da, , Vap € A.

Q(A) is endowed with a structure of a Zs-graded algebra by taking n mod 2 and
setting

n

(CL(), s an) ' (an—l-la s an—i—m) - Z(a07 <o Qp—i—1, Ap—iQn—i41, - - - an—i—m)
=0

for each (ag,...an) € O, (Ani1, .- Gnim) € Q"™ The map d is extended to the
external algebra by setting

d(ag,...an) = (1,a1,...a,) ; d(1,ap,...a,) =0.

Example 3.1. Of particular interest is the so called universal differential calculus.
In this case the module of one form is defined through the exact sequence

0—T —AA4A5 A—0

that is T is the kernel of the multiplication map m of A. The module I' = ker(m) is
usually denoted by A%. The differential d =: d is defined by setting

da)=1®a—a®1 € ker(m)

and endowing I' with the A-bimodule structure

C(Zak@)bk) :ank(}bbk; (Zak@)bk)c:Zak@bkc,
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d satisfies the Leibnitz rule. Moreover, every element aj, ® by, € A? can be written in
the form ay ® by = apdby.

The external algebra corresponding to the universal differential calculus is usually
denoted by QA. Let us observe that for the universal differential calculus the space
Q" A of n-forms coincides with

Q"A={pec A®""/Vi=1,...n, mi(p) =0}

where m; : A" — A®" js the multiplication on the i,i+ 1 factors, m; =id® ... ®
m...® id.

The importance of this differential calculus is the fact that every first order dif-
ferential calculus can be obtained from this one. If N is a sub-bimodule of A2,
m:A? - T := A?/N, then (I,7 o d) is a first order differential calculus over A.
Conversly, any first order differential calculus (I',d) over A can be obtained in this
way. Define ©: ap @b, € A%+ apdb, € T'. Then T is isomorphic as bimodule to the
quotient A?/kerr.

Let us now introduce the building blocks for quantum principal bundles. The
“total space” of the fibration will be an algebra P playing the role of the algebra of
functions on the total space of an ordinary bundle. On this algebra we assume the
existence of a right coaction of a “structure group” H that we assume to be a Hopf
algebra, like the algebra of functions of a Lie group or a deformation consisting of
a quantum group. We denote by Ar : P — P ® H this coaction and we will use
Sweedler-like notations Ar(p) = pe) ® pa). The base space B is constructed as the
set of those functions which are coinvariant:

B=rP°".={aec P/Ag(a) =a®1} C P.

This is a subalgebra of P: if a,b € B, since the coaction map is an algebra homomor-
phism, we have

AR(CLb) = AR(G)ARa)) =ab®1 =abeB.

The inclusion j : B — P dualises the canonical projection 7. It is also clear that P
is both a left and a right B-module.

Remark 3.1. We deal in the following with the case in which P is endowed with
the universal differential calculus but we point out that the theory can be developed
also in the case of a non universal differential calculus. In that case one should
take care of the compatibility between the differential calculus of the total space and
the coaction of the structure group and request some further covariant conditions no
longer automatically granted. Since we don’t need it here, we don’t discuss this point
and we refer to [15].
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We endowe P with the universal differential calculus, let us denote by I'p, I'p
the bimodules of one forms on P and B respectively and by QP, QB the external
algebras associated. The inclusion map extends to j : QB — QP since the definition
of the spaces of n-forms depends only on the product on P. Furthermore, also the
comultiplication map extends naturally to the space of one forms by

AR . Fp — FP (24 H s AR(akdbk) = AR(CLk)(d (24 Zd)AR(bk)

and to the external algebra 2P in analogous way.

We consider the space of horizontal forms I'y,,, defined as the subspace
Fhor = P](FB>P g Fp .

An element of I',, is called an horizontal form. It is hence of the form ). p;(db;)p’;,
b; € B, p;,p'; € P. (Horizontal forms are defined in analogy with the classical case by
pullback from the base, see [15] for a discussion.) The definiton is extended to higher
orders through

QnPhor = PJ(FB)PJ(FB) e ](FB)P )

the space of horizontal n-forms, with Q°P,,, := P.

Definition 3.2. [[15], Def 4.1] Let P, B, H defined as before, we say that P is a
quantum principal bundle with universal differential calculus, structure group H and
base B if the two following conditions are satisfied

o the map (m ®id)(id @ Agr): P® P — P ® H is surjective;
o Dhor = ker (m ®id)(id @ Ag)),,)

We will refer to the previous first condition as the the freeness condition because
it dualises the condition for the structure group to act freely. The second one, the
exactness condition, is related to the fact that fibers are copies of the structure Lie

group.
Note that the above points imply that the following sequence is exact

0 — Thor - Tp — P@ ker(c) — 0, (3.1)

where ¢ is the counit of H and the penultimate row is the map (m ® id)(id ® Ag), ,
whose image is in fact P ® ker(e) rather than the whole P ® H.

Definition 3.3. Let P, B, H defined as before, we say that P is a quantum trivial
principal bundle if there exists a convolution invertible map V : H — P such that

ApoVU =(U®id)oA; V(ly)=1p.

The map V is called a trivialization.
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In this case, one can check explicitly that the above contruction is in the first
instance a quantum principal bundle in the sense of Def. 3.2. Furthermore, the map

b& h s j(b)U(h)

realizes an isomorphism of linear spaces between B ® H and P.

3.1.1 Quantum principal bundles over homogeneous spaces

A particular case of quantum principal bundle is when the total space is itself a
quantum group and the structure group is a subgroup acting by restriction of the
coproduct.

Definition 3.4. Let P be a quantum group (endowed with a differential calculus,
not necessarly the universal one), let m : P — H a Hopf-algebra map, that is H is
obtained by P under quotient by a Hopf ideal. Consider the natural coaction of H on
P given by the restriction of the coproduct A of P: Ag = (id @ w) o A. The algebra
of coinvariants B = {b € P/bu) @ m(b2)) = b® 1} is called a quantum homogeneous
space.

In [15] a sufficient condition under which P is a quantum principal bundle is
discussed. In Sect. 3.3.1 we will describe the example given by the extension
A(ST) C A(Spe(2)) which perfectly fits in the above class of bundles over quantum
homogeneous spaces.

3.2 Hopf-Galois extensions

If we consider principal bundles from the point of view of affine algebraic geometry
rather than concentrate in the differential structure of the total space, the notion of
quantum principle bundle translates in the one of Hopf-Galois extension [60]. The
notion of Hopf-Galois extensions was introduced by Kreimer and Takeuchi [42].

We recall here some relevant definitions, see e.g.[54] and describe the overlap be-
tween Galois theory and quantum bundles as introduced in Def. 3.2. In section 3.3
we will prove that the extensions A(S]) C A(Spy(2)) and A(S;) C A(S]) are both
Hopf Galois.

Definition 3.5. Let H be a Hopf algebra and P a right H-comodule algebra with
multiplication m : P ® P — P and coaction Ar : P — P ® H. We use Sweedler-
like notation Agpp = pwy @ py. Let B C P be the subalgebra of coinvariants, i.e.
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B={pe P| Agr(p) =p®1}. The extension B C P is called a right H-Hopf-Galois
extension if the canonical map

X: PP —P®H,

X :=(m®id)o(id®gAr), P @pp— x('®@sp)=0po)@pa) (3:2)
15 bijective.
In the following we will skip writing “right”.

Observation 3.1. Note that if the antipode of H is bijective, one could equivalently
consider the map X' = (m ® id) o (Ag ®p id). Indeed in this case X is injective or
surjective if and only if X' is respectively injective or surjective, [42].

We notice the similarity between the definition of Hopf-Galois extension and the
one of quantum principal bundles recalled in Def. 3.2. In particular, if y is surjective
then freenes and exactness conditions follow, [15]. The converse is also true, we have
the following;:

Proposition 3.1 ([32], Prop. 1.6). Let P,B,H as in Def. 3.5, then P is a H-
Hopf Galois extension if and only if P(B, A) is a quantum principal bundle with the
unwversal differential calculus.

By its definition, the canonical map is left P-linear and right H-colinear and is a
morphism (an isomorphism for Hopf-Galois extensions) of left P-modules and right
H-comodules. Moreover Yy is determined by its values on the generators.

Note that, if y is bijective, then also the inverse map y ! is P-linear and so it is
completely determined once one knows its values on the elements 1 ® h, being h € H
a generator. Hence we introduce the restricted map

7 H—-PegP, 7(h)=x'(1®h). (3.3)

The map 7 is called the translation map . It was introduced in [9], where some prop-
erties and examples of 7 were also discussed. See also [25]. Classically, if we suppose
to have a group GG which acts freely on a manifold, then a translation map is defined
as the map which associates to any two point on a orbit, the element of G which
relates these two points. In [9] the translation map is defined by dualisation.

Observation 3.2. The injectivity of the canonical map dualizes the condition of a
group action to be free. Let G acts on the right on a set, X x G — X, x— x-g, let
us denote by o the map o : X X G — X X X, (x,9) — (z,x - g) then o = x with
P, H the algebras of functions on X, G respectively and M := X /G being the space of
orbits with projection map 7 : X — M, w(x-g) = n(x), for allz € X, g € G. Then
the action is free if and only if a is injective. Furthermore, a is surjective if and only
if for all v € X, the fibre 7= (w(x)) of w(x) is equal to the residue class x - G, that
is, if and only if G acts transitively on the fibres of w. [54].
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The notion of Hopf Galois extension is in some sense too general to be useful.
In order to assure that some further good geometric properties at level of algebraic
principal bundles are preserved, one has to require that the extension B C P, beside
being Hopf-Galois, is also faithfully flat. We briefly recall this notion.

Denote by gpM (resp. Mp) the category of left (resp. right) B-modules and by
M (vesp. p M) the category of (P, H)-Hopf modules, that is right P-modules and
right (resp. left) H-comodule with P-linear comodule structure. Then

Definition 3.6. A right module P over a ring R is faithfully flat if the functor P®g-
1s exact and faithful on the category rRM of left R-modules.

Flatness means that the functor associates exact sequences of abelian groups to exact
sequences of R-modules and the functor is faithful if it is injective on morphisms (and
not necessarly on objects). Equivalently one could state that a right module P over
a ring R is faithfully flat if a sequence M’ — M — M" in pM is exact if and only
if PopM' — P®r M — P®g M" is exact. See [66] for a discussion of faithfully
flatness.

Among the contributions to Galois theory given by Schneider, there is a particu-
lar usefull Theorem which characterizes faithfully flat Hopf-Galois extensions. This
result, reported below, assures that if the structure group has nice properties, then

the surjectivity of the canonical map is enough to conclude that the extension is
Hopf-Galois and faithfully flat:

Theorem 3.1. [[61], Th. I]: Let H be a Hopf-algebra, let P be an algebra carrying a
right H-comodule structure Ag with coinvariant algebra B = {p € P | Ar(p) = p®1}
and let

X:P®pP — P®H be the canonical map (see e.g. (3.2)). Assume that the antipode
of H is bijective, then the following conditions are equivalent:

1. P is injective as right H-comodule and x is surjective;

2. P is faithfully flat as left B-module and x is an isomorphism;
3. P is faithfully flat as right B-module and x is an isomorphism.
4. the map Mg — M M w— M ®p P is an equivalence;

5. the map pM —p MH M +— P ®p M is an equivalence;

In particular, if the Hopf algebra H is also cosemisimple (as is the case for A(SU,(2))
in the examples on Sect. 3.3), then any right H-comodule is injective [54] and the
above theorem hence states that the surjectivity of the canonical map is enough to
ensure that it is bijective (so that we have an H-Galois structure) and (left and right)
faithfully flat. Usually to prove the injectivity of x is much more complicated that
proving the surjectivity and the above theorem is also particularly useful from the
computational point of view.
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Remark 3.2. A generalization of Hopf-Galois extension is encoded in the notion of
coalgebra Galois extensions obtained by giving up the condition for the coaction map
to be an algebra homomorphism and relaxing the condition for the coalgebra H to be
a Hopf algebra [17], [13]. Such a generalization was introduced in order to consider
gauge theories on some important quantum homogeneous spaces, such as for example
Podles spheres. Anyway, as we will show in the next section, the two extensions
constructed in Ch. 2 fit in the more restricted theory of Hopf-Galois extensions and
therefore we are not interested here in deal with coalgebra extensions.

We conclude by giving the following

Definition 3.7. A H Hopf-Galois extension B C P 1is called cleft if there exists a
unital convolution invertible linear map ® : H — P which fulfils Aro® = (P®id)o A,
where A, A g are respectively the coproduct and the coaction on P. The map ® is called
a cleaving map.

Note that by construction, a cleaving map is injective and moreover that the
above properties are not enough to complitely characterise ®. Moreover, notice that
the condition of unitality is not necessary in the sense that if we have a map ¢ which
satisfies all the above requests except that ¢(1) = b, then ® := b~'¢ is also a unital
cleaving map. In other worlds, it is possible to normalise any such a map.

We have to stress that cleftness of an extension is not exactly the same of triviality
of a bundle. A trivial bundle is cleft, but the converse in general is not true. This is
why we call ® a cleaving map rather than a trivialization. See [26] for a discussion
and for equivalent notions of cleftness of extensions.

3.2.1 Strong connections

We deal now with the topic of connections on quantum principal bundles. As before,
we treat here only the case of algebras endowed with the universal differential struc-
ture, that is of Hopf-Galois extensions. We follow [15], [32] and [25] and we also refer
to them for connections on quantum principal bundles with general differential calculi.

Definition 3.8. [15] Let B C P a Hopf-Galois extension, with structure group H. A
left P-module projection I1 on I'p, 11> =11, is called a connection if

1. kerll =T, = P(I'p)P
2. Agoll = (IT®id)o Ag (i.e. 11 is right-invariant).

We used the same notations of the previous section: I'p, ['g are respectively the
spaces of one forms of P and B with respect to the universal differential calculus.
Here Ar denotes the coaction on P and also its extension to the external algebra 2P.
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The space I'mll is by definition the space of vertical forms, it is a left P-submodule
[yere € I'p and a connection is an assignment of such a vertical space. Once one has
introduced a connection, then the space I'p splits as I'p = ['yepr @ i and every
one-form can be written in a unique way as a sum of a horizontal form and a vertical
one.

Given a connection, one can introduce the notion of connection form, [15]. For
Hopf-Galois extensions there is a one to one correspondence between connection forms
and connections.

Definition 3.9. Given a connection II as in Def. 3.8, the connection form of Il is
the map w : H — I'p defined by

w(h) =o(1 @ (h—e(h))),
where € is the counit of H and o : P ® ker(e) — I'p is the map such that
oo (m®id)(id® Ag)|p: = id .

The existence of such a map o is ensured by the fact that we are dealing with a
Hopf-Galois extension. Indeed, as said, this implies that the sequence (3.1)

0—>Fh07«L>FP—>P®]{I6T(€)—>O,

is exact. The existence of II is equivalent to the existence of a map o : P® ker(g) —
I'p which splits the sequence. Moreover, by definition II should be a right invariant
left P-module map and hence ¢ has the same property and they are related by

[MI=0o0(m®id)(id® Ag)|p2 .

We refer to [15] for details and relations with the classical picture.

In the space of connections, a particular class is the one of strong connections.
The importance of such a kind of connections is related to the fact that for Hopf
Galois extensions admitting a strong connection it is easier to study the projective
structure of associated bundles [32]. Moreover, constructing a strong connection is
an alternative way to prove that one has a Hopf Galois extension [25, 32].

Definition 3.10. Let IT a connection on B C P, it is called strong if
(id — M) (dP) € (U'p) P .

The space Q! , P := (I'g)P is called the space of strongly horizontal one-forms.

s—hor

Note that Q'B @ P = ker(m|pgp) = (I's)P, [16].

There are different equivalent characterisations of strong connections [32], [25]. In
particular an equivalent description of a strong connection is the following
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Definition 3.11. A strong connection on B C P s as a unital left B-linear right
H-colinear (i.e. which preserves the H-comodule structure of P) splitting s of the
maultiplication map B @ P —» P. In this case we say that B C P is equivariantly
projective.

In the following examples we will take advantage of the fact that a H-Hopf-Galois
extension B C P for which H is cosemisimple and has a bijective antipode is also
equivariantly projective. More in general:

Theorem 3.2. [60] Let H be a Hopf algebra and P a right H-comodule algebra
with subalgebra of coinvariants B = P, Assume that P is injective as a right
H-comodule. Then

1. B C P is equivariantly projective if and only if P is projective as a left B-
module;

2. if the extension B C P is Hopf-Galois and the antipode of H is bijective, then
B C P s equivariantly projective.

The above statement follows by recalling that a Hopf algebra is cosemisimple if
and only if any right H-comodule is injective.

Furthermore, if H has an invertible antipode S, an equivalent description of a
strong connection s can be given in terms of a map ¢ : H — P ® P satisfying the
conditions we list below [50, 14] (see also [34, 12]). We denote by A the coproduct on
H with Sweedler notation A(h) = k) ® h) by Apg: P — P® H the right-comodule
structure on P with notation Ag(p ) D(0) ® Py, and Ay : P — H ® P is the induced
left H-comodule structure of P defined by

Ai(p) = (S~ @id)(flip o Ar(p)) = S~ (pay) ® p(o)

where flip: P® H — H ® P is given by flip(p ® h) = h ® p. Note that

Ai(pg) = S~ payam) @ poyae = S (q1) S~ (pa)) @ Po)q)

so that A;(pq) # Ai(p)Ai(q). Then, for the map ¢ one requires that /(1) = 1® 1 and
that for all h € H,

xomp(l(h)) =1®h,
f(h(l)) ®h (2) = (Zd@AR) Of(h),
% Uh) = (A @ id) o £ (h) (3.4)

where g is the surjection 75 : P® P — P ®p P. In the following we simply write

x(€(h)).
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The splitting s of the multiplication map is then given by [14]
s:P—>B®P, p—pollpy),

that is
s=(m®id)o(id®l)oAg.

Note that the first condition in (3.4) could also be written by means of the trans-
lation map (3.3) as mg o £ = 7. Connections are liftings of the translation map. The
translation map also allows to construct ¢ once one knows s: if 7(h) = hY) @5 h?),
then the map £ is given by ¢(h) = hMs(h®) [14].

If H has a PBW basis [40], one can try to extend the defintion of ¢ on the basis
and then iteratively construct ¢ once one knows its value on the generators of H.
In the next section we will make such a construction explicitly for the two examples
given by the extensions illustrated in the previous chapter.

The importance of strong connection, as already pointed out, is also related to the
fact that if a H-Hopf-Galois extension admits a strong connection, then the modules
associated through a representation of H are projective and finitely generated (as
vector bundles in Serre-Swan’s spirit) [25].

3.3 Two examples.

After the brief introductory description of the general theory of Hopf-Galois exten-
sions given above, we come now to illustrate two concrete examples which are provided
by the algebras A(S]) € A(Spe(2)) and A(S;) € A(S]) constructed in the previous
chapter. As mentioned before, for Hopf algebras which are cosemisimple and have
bijective antipodes, as is the case for SU,(2), Th. 3.1 grants further nice properties.
In particular the surjectivity of the canonical map implies bijectivity and faithfully
flatness of the extension.

An additional useful result [59] is that the map x is surjective whenever, for
any generator h of H, the element 1 ® h is in its image. This follows from the
properties of left P-linearity and right H-colinearity of the canonical map. Indeed,
let h, k be two elements of H and } p; ® p;, ».¢; ® ¢ € P ® P be such that
XQopi ®ppi) =1®@h, x(32¢; ®p ¢;) = 1®k. Then x(3_piq; ®p qjpi) = 1 ® kh,
that is 1 ® kh is in the image of y. But, since the map Y is left P-linear, this implies
its surjectivity.

We need also the following
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Definition 3.12. Let P be a bimodule over the ring B. Given any two elements |£;)
and |&2) in the free module € = C™ ® P, we shall define <§1 Q5 §2> € P®g P by

GENIED -8 (3.5)
j=1

Analogously, one can define quantities <£1 ® £2> € P ® P with the same formula as

above and tensor products taken over the ground field C.

3.3.1 The Hopf-Galois extension A(S]) C A(Sp,(2))

Proposition 3.2. The extension A(S]) C A(Spe(2)) is a faithfully flat A(Spe(1))-
Hopf-Galois extension.

Proof. Now P = A(Spy(2)), H = A(Spy(1)) and B = A(S]) and the coaction Ag of
H is given on the defining matrices AgT = T ® T". Since A(Sp,y(1)) ~ A(SU.(2))
has a bijective antipode and is cosemisimple ([41], Chapter 11), from the general
considerations given above in order to show the bijectivity of the canonical map

X+ A(SPq(2)) ®acsy) A(Spe(2)) — A(Spe(2)) @ A(Spe(1))

it is enough to show that all generators «,v,@,7 of A(Sp,(1)) in (2.17) are in its
image.

Let |T?%),|T®) be the second and third columns of the defining matrix 7" of Sp,(2).
We shall think of them as elements of the free module C* @ A(Sp,(2)). Obviously,
(T*|T7) = 6Y. Recalling that A(Spe(2)) is both a left and right A(S])-module and
using Def. 3.12, we have that

(1 oasp 72) (T sy T°) S
X —1® . (36)
<T3 ®A(Sq7) T2> <T3 ®A(Sq7) T3> Y a
Indeed, using Ag(T/) = TF @ T", with T = (T/ and T" = T"/ the defining matrices
of A(Sp,(2)), A(Sp,(1) respectivley, we have
Ap(TY) =T/ @a+ TP @y Ap(lY)=—¢T} @7+ T} @a.
Hence
V(T2 sy T)) = TIARTE = (T*T?) @ a+ (TT%) @y =180
=3

V(T sy T2)) = TiARTE = (T|T?) @ a+ (THT%) 0y = 1@,



3.3. Two examples. 63

and similar computation giving the other two generators:
V(T2 Gap T)) = TIARTY = —*(TUT?) 07 +(T1?) @ a = 18 (—¢*7) |
X(<T3 Sas) T3>) -7 1

ART? = —*(T°|IT*) @7+ (T*IT*) @ @ a) .

]

As already pointed out, it is important to notice that this extension also provides
an example of principal bundle on quantum homogeneous space as described in Sect.
3.1.1. We talk about principal homogeneous Hopf-Galois extension ,i.e. a P/I Hopf-
Galois extension given by a Hopf ideal I in a Hopf algebra P and coaction given by
the restiction of the coproduct, as in (2.19), [26].

In this case we have another way to prove the bijectivity of the canonical map,
that is by constructing directly its inverse. Following [9], let us consider the map

71 Spg(1) — A(Spe(2)) @5 A(Spe(2)) , 7([p]) = S(p(r)) @B P2y 5 (3.7)
where [p] is the image of p € P under 7 : P — P/I, that we remind was given by eq.
(2.17)

m(T)=T = (3.8)

oo o~
o2 0 o
|
o Q] o
2|
— o oo

Proposition 3.3. The map 7 in (3.7) is the translation map.

Proof. We have to show that x := (m ® id)(id ® 7) is the inverse of the canonical
map x = (m ®id)(id ® Agr). Using the fact that x and x are both left P-linear it is
enough to show the following

(xox)1®[T;]) = x(mid)(1® S(Ty) ®@p 1) =
S(Ta)x(1®p Ti;) = S(Tu)(m @ id)(1 @p Ar(T};)) =
S(T) (T © T) = 83y & T,
Thus x o x = idpgy and similarly
(xox)(I®@pTy) = xX(m®id)(1®p Ar(Ty)) =
X(Th ® Tl’J) =Ty(m®id)(ido7)(1® T/j) =
Til(S(Tlp) ®B ij) = 0ip ®B ij :

which means y o x = tdpg,p. [
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We can now construct a strong connection for A(S]) C A(Spy(2)). As said,
a H-Hopf-Galois extension for which the structure group is cosemisimple and has
a bijective antipode always admits a left B-linear right H-colinear splitting s of the
multiplication map. We can constuct s by means of the map ¢ (3.4). We do it by using
the translation map 7. The map ¢ should satisty mgol = 7 where 7 : PQP — PP
is the surjection. We set /(1) =1 ® 1 and on the generators

la) = S(Ty) @ Tg U(y) = S(Tz:) ® Tiz
l(@) = S(Txi) @ Tiz ((7) = —q2S(Toi) ® Tis. (3.9)

Proposition 3.4. The map ( : A(Sp,(1)) — A(Sp,(2)) ® A(Spy(2)) constructed in
(3.9) defines a strong connection on the generators of A(Spy(1)).

Proof. We have to show that all the properties (3.4) are satisfied. Firstly x(¢(h)) =
1 ® h, for each generator h of P = A(Sp,(2)):

x(¢(a)) S(Ty) (T @a+T;®y) =10 a;
X(U(7) = S(G)(Te@a+Ti®@y)=107;
x(l(@) = S(T3)(—q T2®7+T3®04)— lQa;

)

(¢ = —@S(To)(—q  Tpeo7+TzRa)=127.

=

(
The second property (id @ Ag)l(h) = £(ha)) ® he) holds:

(id® Ag)l(a) = S(Tu)® (z2®04+Tz3®7)—£(> Qa—gl{) @y =
o) ® o) ;

(id @ Ap)l(y) = (T31)®( z2<>z>oa+Tzs<>_2w)—5( )@ a+Ll(@) @y =
() ®

(id® Ap)(@) = S(T Z)@( 2E2®7+E3®a)— —l(y) @7+ (@)@ a =
U(@ny) ®ag) ;

(id@ ARME) = —q 2S(To) @ (—q T @7+ Tiz®a) = (o) @F + (7)) @a =

(V1)) @2 -

Observe now that
AR(S(TZ‘J)) S(Tkj) ® S(Tz/k)

Indeed, using (1.7),

S(Tkj) 2 S(T@'/k) _ _qpk/+pj6k€lej,k/ ® _qpi/‘i'pkgigk/T]é/i/ = _qﬁi/—l-/)jgiéj/Tj/k & T;Qi, =
_qpk’+pj€k€j/AR(j}’i’) = AR(S(T’U)) :

Thus the induced left action 4\; reads
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We can now show that iy ® ((h)) = (A @ id){(h):

(A @id)i(a) = a®S(Ty)®@To— 7@ S(T5) @ T = a®l(a) — 7@ (y) =
am) ® o) ;

(Ar@id)l(y) = 7@S(Ty) @ T +a® S(Ty) @ T =7 l(a) +a @ (y) =
Yy ® () ;

(A @id)i@) = 7@ S(To) @Tis +a®S(Ty) @ Tiy = —¢*y @ L(7) + A @ () =
an @ L(a) ;

(A @id)l(7) = —q2a®S(Ty)@Ts+72S(Ts) @ Tz =a@ () +7® a) =
Yy ® LV 2)) -

O

We can now try to extend the definition of £ to the whole algebra, firstly defining ¢
on the product of two generators. Let g, h € {a, v, @, 7}, £(g) = g'®g?, £(h) = h'@h2.
Observe that using the translation map as defined in (3.7), ¢ should satisfy

g 0 l(gh) = (gh)' ®5 (gh)* = 7(gh) = S(h))S(9)) ®5 gyhe) = h'g" @p g°h*
This suggests to define
((gh) == h'g" ® g*h? (3.10)

on the product of any two generators. We show now that with this definition, prop-
erties (3.4) are satisfied:

Proof. Firstly observe that in general, if g, h € H satisfy x(¢(g9)) = 1® g, x(¢(h)) =
1 ® h, so does £(gh) defined by (3.10). Indeed, using the fact that y restricted to
1 ® P is an homomorphism, we have

x(l(gh)) = h'g'x(1®¢°h*) =h'g'x(1 @ g*)x(1® h*) = h' (1 @ g)x(1 @ h?) =
1®gh'xQAeh*)=1xgh. (3.11)

It is usefull to arrange the generators of H into the matrix 7" so that the map ¢ given
in Prop. 3.4 reads
UT};) = S(Tim) @ T

v

and we now show that (¢ ® id)A = (id ® Ag)¢ on the product gh =TT :

1) pg”

Ugmhay) ® gohe = UTRT,) @ Ty Thy = S(Tom)S(Tin) @ Tk Tomn @ Ty Ty,
= S(Tpm)S(Tin) @ Ar(TnjTing) = (id @ AR)U(T;Ty,) -

1) prq

Moreover, using A;(S(T};)) = T}, @ S(T};) we have

who ® Ugehe) = TiT,, @ U(T,T,.,) = TiTym @ S(Tn)S(Tis) @ Ty, T,
= (A ®@id)[S(Tr)S(Tis) ®Tszrq] = (A @ id)((T};T;,) -

] pq
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and this conclude our proof. O]

We can now extend the definition of ¢ on the whole of H = A(Sp,(1)) by using
(3.10) on the PBW basis of H:

ribm = ofyymfor kilm >0 5 M=k for k1> 0,m > 0.

Let g,h € {a,7,a@,7}, £(g) = g' ®g°, £L(h) = h' @ 1?, then we set £(gh) = h'g' ® g*h?,
from which:

LRttty = Pmale(rtmya® = U S (T ) 0(rH ) Ty

f(?“k’l+1’m> = v g( klm)fy = S(Tgﬁg(rk’l’m)j—’ﬁ )

{(rkbmat (AR = —q 28 (T ) O (rFh™) T
and

g(skﬂivm) = qgmylﬁ( k’l’m)VQ = QQmS(T?n‘)E(Tk’l’m)ﬂQ )

(P = (M = =D S(Ty ) (P T
g(sk,l,m-i-l) — alg( klm)—Q S(ng)g( kl’m)irz?)a

where the sum over ¢ is suppressed and
S(Tw) =q¢" 'eTys ; S(Ta) = —q" el

This complete the definition of a strong connection for our extension A(S7) € A(Spy(2)).

3.3.2 The Hopf-Galois extension A(S;) C A(S])

In this section the notation can be misleading: here o, v, @, denote the generators of
A(SU,(2)) while in the previous section the same letters were used for the generators

of A(Spy(1)) = A(SU.(2)).

Proposition 3.5. The extension A(Sy) C A(S]) is a faithfully flat A(SU,(2))-Hopf-
Galois extension.

Proof. Now P = A(S]), H = A(SU,(2)) and B = A(S;) and the coaction dp of H is
given in Prop. 2.4. As already mentioned A(SU,(2)) has a bijective antipode and is
cosemisimple, then as before in order to show the bijectivity of the canonical map

Xt A(Sg) ®acsy A(Sg) — A(Sg) ® A(ST,(2)) |
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we have to show that all generators «, v, @, 7 of A(SU,(2)) in (2.33) are in its image.
Recalling that A(S]) is both a left and right A(S;)-module and using Def. 3.12, we
have that

<¢1 ®A(Sf}) ¢1> <¢1 ®A(53) ¢2> | N
X —1 7
<¢2 ®A(Sf§) ¢1> <¢2 ®A(Sg) gb2> vy a

where |¢1) , |¢2) are the two vectors introduced in egs. (2.23) and (2.24). Indeed

X(<<Z51 ®A(sg) ¢1>) = X (qf%l ®a(s4) 1 + q ", ®a(s1) T°
+q7°T ®A(s3) Ty + Ty Da(ss) f4>
= ¢ °TOr(x:) + ¢ *2.0r(T°) + ¢ T 0R(2s) + 1.0R(T")
= ¢ T2, Ra+ ¢ TT Y+ LT Qo —q T Q1
T, Qa0 — ¢ T, Oy F T Qa+ T @y
= (pi]lp)®@a=1®a,

X(<¢2 ®A(sg) <Z51>) = ¢ "Bp(1)) — ¢ 22,0R(7%) — ¢ T 6R(1;) + 2,0R(T")
= ¢ Tr@a+q¢ T,y - B Oa+q T Ry
T, Ra+ T, @Y+ 1T @ a+ 1,7 @y
= (¢2|d1) @ a+ (P2]d1) ®7=1®7,

with similar computations for the conjugated generators:

(61 Gy 62)) = a7 F0n(ws) — ¢ 2 20n(T) — 4T 0n(w) + w.0r(F)
= (THRY+( TR0 - ¢ BT QY- ¢ ‘nT ®a
—q¢ P, 07— ¢ T, @0 — T Y+ 1,7 @
= —q(¢1]o1) @7 + (d1]¢2) @A =1® (—¢7) ,

X(<¢2 ®A(sg) ¢2>) = ¢ 2,05(T") + ¢ T 0r(x,) + 230R(T°) + T R (zy)
= (P OV+q¢ T @a— ¢ Pr, @7+ ¢ T
—qr, T RV + T QA+ T, QY+ T, QQ
= <¢2’¢2> a=1a.



68 3. Noncommutative principal bundles

Remark 3.3. It was proven in [§] that the bundle constructed in [7] is a coalgebra
Galois extension and not a Hopf-Galois extension [17, 13]. The fact that our bundle
A(S]) C A(S]) is Hopf-Galois shows also that these two bundles cannot be the same.
See also Rem. 2.5.

As in the previous example, since the structure group H = A(SU,(2)) is cosemisim-
ple and has a bijective antipode, on our extension A(S;) C A(S]) there is a strong
connection. Also in this case, we provide a strong connection in terms of the map ¢
starting by giving a suitable definition on the generators of H. We set ((1) = 1 ® 1.
Then, on the generators we set

o) = (o), @)= (h&0n),
l(y) = <¢2 ® ¢1> ; ((7) :=—q" <¢1 ® ¢2> :

The same expressions can be written in a more coincise way as

Umig) = (69 6;) = @)@ (B9)r (3.12)
where m = (m;;) = (?; _éﬁ).

Proposition 3.6. The above expressions for ¢ satisfy all the properties (3.4).
Proof. Firstly, x(¢(h)) = 1 ® h, for h any generator of A(SU,(2)), follows from the
proof of Prop. 3.5. Then,
(id®d)o l(a) = ¢ °T' @z, + ¢ 2, ®0T° + ¢ °7° @ 6y + 2, ® 0T
= <¢1®¢1>®a+<¢1®¢2>®7
= ) ®a—ql(¥)®7 =llaw) ®@ag) -
In the same way:
(id®d)o l(y) = ¢ °T°®6r, —q *x, ® 67 — ¢ T @ dxy + 1, ® 6T
= <¢2®¢1>®@+<¢2®¢2> ® 7y
= (Y @a+l@ey =)@
and so for @, 7.

This property can be shown in a more coincise way by using (3.12). The right
coaction (2.35) is

0((¢5)i) = (d1)i @ My
so that :

(id @ 0)l(my) = (031 @((5)1) = (D)1 @ (D)1 @ Myj =
l(miy) @ my; = (0@ id)A(my;)
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In order to show the last property (6;®id)ol(h) = hy®£(h(2)) we need the induced
left coaction &; : A(S]) — A(SU,(2)) ® A(S]) defined by di(p) = S~ (p(1)) ® p(oy: with
the above notations is

a((05)i) = S_l(mlj) ® ()i -

We can also write this map explicitly. We remind that the antipode for A(SU,(2))
and its inverse are given respectively by

)5 e D) (D
vy o@ —qy a) vy o@ -y«

hence the induced left coaction is given on the generators by !

Sr)=a®r, — Y@z, §@T)=-FFT+a®T,
(r) =71, +a®z,, 6T =aT +q¢'yRT", 213
(zry)) =a @z, +vRx, , T =T +ax T, (3.13)
(r) =—-yQu,+taxx,, §T)=axT —¢ Y1

We can now compute the following

(Gr@id)o Lmi;) = 0((6)) @ (&)1 = S(mm) ® (6,1 @ (¢ =
Mir ® (gbr)l X (¢j)l =M & E(mrj) )

where we used the fact that *S = S~'x and S(my) = my;, so that §,((¢;)) =

mir @ (,);. For example, explicitly,

(G ®id)o la) = ¢ a®T —FFRT)@x, +¢ ((FR1, +a®1,) T
+ PR T + )@, + (—(V Q1 +a®1,) ® T

R CICE IR ICE LY
= a®/la) =gy ®Uy) = an) @ o) -

Having defined ¢ on the generators, let us now extend it as done in (3.10):
((gh) == h'g* ® ¢*h* .
On the product of two generators m;;, myy, this reads
Umigmin) = (61)i(1)g @ (65)g(dn )1 - (3.14)

We prove now that this map is well defined, that is, it satisfies properties (3.4):

'Notice that &, (Z;) # §;(z;).
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Proof. The first property x(¢(m;jmgn)) = 1 ® m;jmg, has showed in (3.11) holds.
Then

(@ id)A(mimun) = Emimgs) @ mejman = (6)p(9:)g © (9r)g(ds)p @ Mnjman =
(01)p(¢1)g @ 0(05)q(Pn)p = (id @ O)E(migmun) -

Moreover

(id ® OA(migmen) = Migmis @ Lmegman) = mismis @ (6)0(6,)p @ (67)p(0n) =
0 ((D)i1(0:)p) ® 6(95)p(Pn) = (0 @ id)L(mizmp) -

where we also used 0;(pq) = S’l(q(l))Sfl(p(l)) ® P0)4(0)- O

We can now use an iterative procedure constructed by using (3.14) on the PBW
basis to construct a well defined ¢ on the whole of H = A(SU,(2)). On the PBW
basis

Tk’l’m — Oék’}/lﬁm 7 for k}, l, m >0 : Sk,l,m = fykﬁlam , for k,l >0 ,m > 0
this reads
ﬁ(rk"'l’l’m) — ql—o—malg( klm)a — ql+m [q_ﬁflé( kl,m)x1 + q_2x2€(rk’l’m)f2+

(™ gy + 2z (PP T
(rHFm) = )R ST, — g R T
—q ' TR g+ p 0(rR T
O(rFhmthy = E( REMF2 = —q T 0 (r" ™)y 4 g B, (PP T -
(™, — gt (PP T

and

€(8k+1’l’m) — qm,ylg(sk,l,m),YQ _ qm [q_STQE(Sk’l’m)Il . q_leg(sk’l’m)TQ—{—
—q TS @y + (M
ﬁ(sk’l+1’m) — qmﬁlﬁ( klm)"}/2 _ q [ q76§1£(5k,l,m)x2 +q*3x2€(sk’l’m)fl+
2_36( k,l,m) T, _q ZL‘4€(8k’l’m)TS] 7
g(sk,l,m—&-l) — _lﬁ( klm) q—4f2€<sk,l,m)x2 +q_2x1€(8k’l’m)fl +
(™), + (ST
Observation 3.3. Note that for both the examples, the definition of £ on the product
through £(gh) = >_ hlg' @ g?h? give rise to a well defined map on the whole algebra.
But this cannot be assumed as a general properties: if a map £ defined on the genera-

tors of an algebra satisfies (3.4) it is not possible in general to show that the same is
true for its extension given above (in particular the property of right colinearity) [11].
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3.A Appendix: The associated bundle and the co-
equivariant functions

We now give some elements of the theory of associated quantum vector bundles [15]
(see also [29]). Let B C P be a H-Galois extension with Ag the coaction of H on P.
Let p: V — H ®V be a corepresentation of H with V' a finite dimensional vector
space. A coequivariant map is an element ¢ in P ® V with the property that

(Arp®id)p = (id® (S ®@id)p)p; (3.15)

where S is the antipode of H. The collection I',(P, V) of coequivariant maps is a
right and left B-module.

The algebraic analogue of bundle nontriviality is translated in the fact that the
Hopf-Galois extension B C P is not cleft. On the other hand, it is known that for a
cleft Hopf-Galois extension, the module of coequivariant maps I',(P, V') is isomorphic
to the free module of coinvariant maps I'o(P, V) = B® V' [15, 33].

For our A(SU,(2))-Hopf-Galois extension A(S;) C A(S]), let p; : C; — C2 ®
A(SU,(2)) be the fundamental corepresentation of A(SU,(2)) with I't(A(S, ), CZ) the
right A(S;l)—module of corresponding coequivariant maps.

Now, the projection p in (2.29) determines a quantum vector bundle over Sg whose
module of section is p[A(S;)*], which is clearly a right A(S;)-module. The following
proposition in straightforward

Proposition 3.7. The modules £ := p[A(S,)*] and I'1(A(S]),C2) are isomorphic as
right A(S,)-modules.

Proof. Remember that p = vv* with v in (2.25). The element p(F) € &£, with
F = (f1, fa, f3, f4)", corresponds to the equivariant map v*F € I'1(A(S]), C?). O

We expect that a similar construction extends to every irreducible corepresentation

of A(SU,(2)) by means of suitable projections giving the corresponding associated
bundles.

Proposition 3.8. The Hopf-Galois extension A(S;) C A(ST) is not cleft.

Proof. As mentioned, the cleftness of the extension does imply that all modules of
coequivariant maps are free. On the other hand, the nontriviality of the pairing (2.48)
between the defining projection p in (2.29) and the Fredholm module p constructed
in Sect. 2.4 also shows that the module p[A(S))!] ~ T',(A(S]),C?) is not free. O



72

3. Noncommutative principal bundles




73

Chapter 4

Moving away from the basic
instanton

In [46] and [48] two deformations of the instanton bundle S — S* over two dif-
ferent noncommutative 4-spheres, the symplectic and the 6 one respectively, were
constructed. In both cases (reviewed resp. in Ch. 2 and Sect. 4.2.1) the construction
was limited to the basic instanton of charge —1. The attempt to generalise this pic-
ture to generic SU(2)-instantons is the topic of the paper in preparation [47]. Here
we explain the results we have obtained until now.

The Chapter is organised as follows. The first section is a brief review of the
classical situation [1]. We try then to reproduce it in the noncommutative case firstly
for the instanton bundle A(S;) — A(Sj§) over the Connes-Landi sphere (Sect. 4.2)
and then for the (more complicated) symplectic case A(S]) — A(S;) (Sect. 4.3).

4.1 The classical construction of instantons

We illustrate the procedure used by Atiyah et al. [1] [2] to construct all the solutions
of the SU(2)-Yang-Mills theory on S*. See in particular [1] Sect. I1.3 for the geometric
interpretation of what follows.

We use quaternionic notations

H > 2=y + 290 + 237 + 24k =~ (21 + 291, 13 + 247) € C?
with quaternion differential
dr = dxi + dxsi + drsj + dxsk
and complex conjugate dr = dxT, — dZi — dx3j — dx4k. In the identification of the

algebra of quaternions as a subalgebra of complex 2 x 2 matrices, the group SU(2)
get identified with the group Sp(1) of quaternions of unit norm, being ||z|* = 27 =
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Tr =) %

Let (z,y) be a point of S* ~ P'H with the identification (z,y) ~ (2q,yq), z,y,q €
H. The instanton connections on S* are induced from H'**, by orthogonal projection,
by suitable maps

v:PH — Sty(k,k+1),

with St being the Stiefel variety. Let
v(z,y) =C(x 1) + D(y - Iy) € Mat((k+ 1) x k,H) (4.1)

with C, D constants matrices of quaternions independent of x,y.!(In the following we
will write = instead of x - I).

We assume that this matrix v has maximal rank for all (z,y) # (0,0) in such a
way that its columns span a subspace of H'** of dimension k. The projection onto
this subspace is Q = vp~2v*, with p? := v*v. The orthogonal complement E(;,) has
dimension 1 over H and P = 1 — ) = wu* is the complementary projection, with u
the orthogonal matrix

vu=1 ; uv=0.

The gauge potential corresponding to v is constructed by projection from H!**
and it is explicitly expressed in terms of u as A = u*du. One has also to assume that

p? =v'v =2*C*Cx + y*D* Dy + (2*C*Dy + y* D*Cx)

is a real matrix for each x,y € H (where real means that in the identification between
quaternions and 2 x 2 complex matrices the entries v;; are real two by two diagonal
matrices). Under this assumption, the curvature F' = dA + A A A involves only the
selfdual expression dz dT.

The topological invariant of the resulting bundle F is then proved to be k being
E* a direct sum of k line-bundles of charge —1 [1].

In particular, it is important to recall that all SU(2)-instantons arise in this way
[2]. The number of quaternionic parameters which occur in the matrices C, D in (4.1)

n the general case of Sp(n)-instantons, the matrix v is in Mat((k + n) x k, H).
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are 2 - (k + 1)k. The condition p* real is equivalent to the following 2

1
C*C and D*D real ~» 2. [§3k(k — 1)] conditions; (4.2)

1
C*D symmetric (as quaternion matrix) ~» 4 5]{:(1{: — 1) conditions (4.3)

Hence we have 8%k*+ 8k real parameters with 5k(k — 1) conditions. We obtain a gauge
equivalence if we replace v (and u) by

o' = RvS, Re Spk+1), S €GIkR). (4.4)

Indeed under this transformation the projections get conjugate by R. Hence, being
dimrSp(k + 1) = 2(k + 1)*> + (k + 1) and dimgGI(k,R) = k? we can conclude that
the number of effective real parameters is

8k? + 8k — [5k(k — 1)] — [3k* 4+ 5k +3] = 8k — 3 .

When k£ = 1, the matrices C, D reduce to 2 x 1 matrices and eq. (4.1) can be
rewritten as

v=A (y) , A=(C,D)e Mat(2 x 2,H) . (4.5)

In this case

p2 — vy = (I'*,y*>A*A (';)
is a real 2 x 2 matrix by construction, i.e. conditions (4.2), (4.3) are automatically
satisfied. Notice that the projection Q depends on C, D only through p~2, therefore

it is the datum of (A™')*A~!. Then, if B € Mat(2 x 2,H), M := B*B has the form

M= (5 i) (4.6)

with p, v € R and b € H. The gauge equivalence under left multiplication by
R € Sp(2) is here evident: if B ~ B’ := RB then B*B (and hence p~?) is unchanged.
Moreover the invariance under GI(1) allows to us to assume that det(B) = 1. Sum-
marizing, the moduli space of equivalence classes of instantons of charge |k| = 1 on
S* is the five-dimensional quotient manifold SL(2,H)/Sp(2) parametrized by the 6
real parameters which enter in (4.6) subjected to the relation uv — bb* = 1. [1].

2The condition v*v real splits in three parts since 2*C*Cx, y*D*Dy and z*C*Dy + y*D*Cx
contain different elements. Then, C*C and D*D has to be real. Let C*D = N, then imposing that
z*Ny + y*N*x is real means

Oifa#b
(@*Ny +y*"N*z)ijap =
(x*Ny + y*N*$)ij7a/a/ ifa=0»b

The above two conditions imply the same result: using the commutativity between the complex
entries of IV and the one of x,y we have Nyj o = Njj aa and Nijara = Njiara, i-€. N is symmetric.
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Observation 4.1. As illustrated above, charge 1 instantons are generated by the basic
instanton, say w, by applying a matriz A € SL(2,H)/Sp(2): v = Aw, with w*w =1
and v'v = p?. The projection is the *selfadjoin idempotent Q = vp~2v*. One can
also consider
Qu=v0"M, M= (A1H*A"",
This is an idempotent:
Q3 = v Muyv*M = Qy .

As matrices () and Qy; coincide:
Qu = Aww*A™ = Q = Awp?w* A* <= p* = w A" Aw

but they are x-self-adjoint in two different metrics. Indeed Qs is self-adjoint in the
new metric (s,t) := s*Mt and not in (s,t) := s*t:

<87 QMt>M = <(QM)*M87 t>M = (QM)*M = QM
while Q%; # Qur whenever A* # A™L.

4.2 Moduli space for the Connes-Landi sphere

We move to noncommutative geometry addressing our attention to the Hopf fibration
A(Sg) — A(S}) constructed in [48] over the Connes-Landi sphere A(Sj). We begin
by briefly reviewing the algebras involved and the construction of the basic instanton.
We follow [48]. Then we will try to produce other instantons of charge k > 1.

4.2.1 The principal fibration A(Sj;) — A(Sj)

The algebra A(S7) is defined as the *-algebra generated by the elements z# z#, (1 =
1,...4) with relations

2PV = NV VR ZRY = NPEZVZR 2RV = NV ZEYER (4.7)

and spherical relation Y z#z* = 1. Here A is taken to be of the following particular
form

N = (4.8)

=T T
__T T

=Rl ==
=Rl ==

Indeed this choice allows the definition of a coaction of SU(2) on A(Sj) given on the
generators of the algebra as [48]

1 2
(24,2227, 20 = (21, 2223 2 (z(;) 3}) , W= (_wa v ) e SU(2) .

wl
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The algebra of coinvariants under this coaction is identified with A(Sy), the latter
being generated as a x-algebra by a central element x and elements «, 3 satisfying

af =p*fa, af =@fa, aa’=a‘a, BB =50, (4.9)

and a spherical relation given by aa* + 33* + 22 = 1. Explicitly, these elements can
be expressed in terms of the generators of A(S]) as

a =2(2'2% 4+ 2274 B =2(—z2'2* + 2%2%)
—z

=27 + 2727 - 257 - 2t (4.10)
As it happens for the symplectic 4-sphere, the generators of A(S;) can be obtained
as the entries of a projection p [21]. Let us consider the matrix

wu= (). )= 5 4 (4.11)

z z
_F 33

where the vectors [1)1) , [1)9) are elements in the right A(S])-module C*® A(S}). They
are orthonormal with respect to the hermitean structure given by (£,n) = >_ & so
that u*u = I5. The matrix

p=uu" = [1) (1| + [1h2) (o]

is a projection with entries in A(Sj):

1+ 0 Q@ 16}
1 0 1+x —pf* pot
21 o —mB 1—2z 0
Ioa J1%e? 0 1—x

(4.12)

This projector describes the basic instanton on A(Sj) in the sense that p defines a fi-
nitely generated projective module £, and a connection on it, which has a anti-selfdual
curvature in some proper sense. Moreover the construction of a noncommutative spin
geometry on S; allows to compute the instanton charge as the index of a Dirac oper-
ator obtaining the value 1. We refer to [20] for the precise formulation.

Remark 4.1. The inclusion A(Sy) — A(S]) is another example of a principal Hopf-
Galois extension, i.e. it is a principal bundle in noncommutative geometry in the

sense of Ch. 8. We refer to [48] for more details.
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4.2.2 The quantum groups SLy(2, H) and Spy(2).

In this section we focus on the question of how to generate other instantons of charge 1.
Classically, as said before, (charge 1) instantons are generated from the basic instanton
by the action of the conformal group SL(2,H) of S*. The action of elements of the
subgroup Sp(2) C SI(2,H) generates gauge equivalent instantons, hence in order to
get new instantons we quotient SL(2,H) by the isometry group Sp(2).

Here we will closely follow the above classical construction of instantons in our
attempt to generate instantons on A(Sy). In particular, we shall describe the quantum
group SLy(2,H) and its quantum subgroup Sp,(2).

We look for the coaction of a Hopf algebra (to be determined) on A(S}) by con-
sidering a generic 4 x 4 matrix Ay acting as

u— ApQ@u .
More explicitly, in components we have

AL L Ujg Az] X 'Lbja = u;a (413)
with 4,7 =1,...,4 and a = 1,2. We suppose that this transformation is a (not unit-
preserving) *-algebra map from A(S§) to the tensor product A(My(2,H)) ® A(S}),

where Ay := A(My(2,H)) is the algebra generated by the entries of Ajy.

From the condition that Aj respects the involution and the particular form of
u, we obtain the following form of A, with “quaternion entries” (hence the notation
My(2,H)):
a; ay by b
ai; by —as a; —by by
Ay = (Czj d;) = & o 4 &l (4.14)
G ¢ —dy dy

The transformations induced on the generators of A(Sj) reads

w' = A= @2 — @@+ —bhez!
w o= AP =@+ +h 2 +bheZ
w = AL =ca®s7 -7 +di® -d®Z
wt = AN =@+ +d 2 +d® 7 (4.15)

Then we impose that Ay respects the algebra structure. It follows that the algebra
generated by the a;; is commutative, as well as the algebras generated by the b;;, ¢;;
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and the d;;. However, the whole algebra is not commutative:

arby =71 bias azby = p biag ai1c1 = fb 10
arby = 1 baay azby =Tt baas a1C = [b C2aq
arby = 1 bray azby = i byas a1cy = [ C1aq
aiby = baay asby = 1 byas a1Co = [ Coliy

asdy = M2 dyasy
a2d2 = d2a2
a2§1 = EQ dyasy
a2d2 = d2a2

aydy = dyay
ardy = ,u2 daay
ard; = dya;
ardy = [i* daay

azC1 = W C102
A2Cy = [ CoQ2
asCy = [L €102
a9Co = [I CoQy

(4.16)
bici = #2 c1by bacy = c1by bidy = p dib
bica = caby bacy = ,U2 Cabo 51512 = U £l2b1
bic, = @? ¢1by baci = ¢1by b1£_i1 =n C_llbl
bicy = by baCy = i Caby bidy = i daby
del = U dlbg Cldl = ﬁ d101 Czdl = U d102
bady = pu d2bs crdy = pdycy Cody =T dacy
bady = Tt diby ady = pdicy cody =Tt dycy
bady = 71 daby cidy =i dacy Cody = pu dacy
together with their conjugates.
The above commutation rules can be rewritten in a condensed form as
Aij A = 0" A Ay (4.17)
with n the matrix:
L1 7w op
7 L1 p @
iy
pop 11

Observation 4.2. In particular, the relations (4.17) could be computed by observing
that the elements of the matriz uw in (4.11), due to eqs. (4.7), satisfy

UiqUjp = TjiUjpUiq - (4~19)
Then, if we impose that (4.13) defines an algebra homomorphism, we have
D (AinAj = njimuAjAik) © gty = 0

and equations (4.16) follow by observing that for a < b the elements ug,uy, should be
taken to be all independent. Then, Ay Aj — njinuAjiAir = 0 hold for each a,b, being
independent of a, b.
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Observation 4.3. The splitting homomorphism introduced in [20], allows us to reduce
computations to the classical case. Let us briefly recall what this means in the case
of the algebra A(Sy). Firstly, we define an action o (by automorphisms) of the torus
T2 on the classical generators denoted Zﬁ)) by

N v

627ri82z€) (,LL = 37 4)7

(4.20)

(=]

with s € T?. The noncommutative torus A(T32) is the algebra generated by two uni-
taries U, U? satisfying
U'U? = UPU*, (4.21)

This algebra carries a natural action T of the torus T2, defined by
7(8) : UF s e2™sn gk
In [20], it was shown that the map
st 1 A(S)) — A(ST) @ A(T2) (4.22)

o] dy@U,  (1=1,2);

4.23
Zét))®U27 (M:374)7 ( )

is an isomorphism onto the fized points of the action o @7~ of T on A(S7)® A(T3).

Also the matrix A can be expressed in terms of this splitting homomorphism st,
very similar to the case of the matriz quantum groups introduced in [20].3 We intro-
duce two unitary elements Uy, Us, satisfying

U1U2 :ﬁ U2U1. (424)

therefore generating the algebra A(T?,). We then define the splitting homomorphism
as a map

st @ A(My(2,H)) — A(M(2,H)) ® A(T2) @ A(T?,) (4.25)
Ay AD © Uy (4.26)

with AE?) the classical coordinates of M (2,H) and U;; the following matrix

UlteU, UleU; U'eU, U'eU;

(U) ': Ul* ® Ul Ul* ® Ul* Ul* ® U2 Ul* ® U2*
w) UleU, UeU; U?@U, U*@Us
UU, U*eU; U*eU, U*QU;

(4.27)

One can check that st is indeed a homomorphism. Its image is again a fized point
subalgebra, under an action of T?> @ T? defined as follows. We define the matrix

3Indeed, we are considering a quotient of the quantum group A(GLg(8,R)) introduced therein.
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U( )(3 t) as the classical analogue of the matriz U;;, that is, with U0 (5) := e*msn

bemg the unitaries defining the torus. An action o of T? x T? on A(M ( ,H)) is then
defined by
o(s,t): Aﬁ?) - Ui(JQ)(s,t)Agg) (4.28)

whereas A(T2) ® A(T?,) carries a natural action 7 @ 7 of T? x T2. It is not diffi-
cult to check that st becomes an isomorphism onto the subalgebra of A(M(2,H)) ®
A(T2)® A(T?,), consisting of the fived points with respect to the action c @1 @771

In terms of the differential calculus of [20], we can introduce an element called the
determinant by setting

Ap(dz'dz?dzdz?) = detyA ® dz'dz?dz*dz". (4.29)
Explicitly, we find

detgA = al[dl (dlal + dQC_ZQ) —+ 52 (MCgal — dg&l) - 51 (ﬁCgEQ + d151>]
—ao[—ay(dvdy + dad) + ba(ficrdy + dats) + by(—pcids + diTy)]
+b1[—62(026_il — EdQEl) — 51 (clc_ll —+ /Jdg@g) + l_)l (0161 + 0252)]
—b2 [62(0232 + /Ld151> -+ 61 (Clag — ﬁd152> — [_?2(6151 -+ CQEQ)]. (430)

Observe that in the limit # — 0 the element detgA reduces to the determinant of the
matrix.

The particular form of the matrix A defining the relations in A(Sj), implies that
detyA is a central element in the algebra generated by the entries of A. Hence we can
take the quotient of this algebra by the two sided ideal generated by detyA — 1, which
we will denote by A(SLy(2,H)) and will be referred to as the algebra of polynomials
on the quantum group SLg(2,H). The image of A;; in this quotient will again be
denoted by A;;. Note that in the limit # — 0, we recover the algebra of polynomials
on the Lie group SL(2, H).

Remark 4.2. The determinant detyA can be expressed in a condensed form as

detgA =Y " (=1)l7le?W7 @GN A ) Ag 50) As o(3) Aso(a)
o€Sy
with
1324 2413 3241 4132 1423 _ cycl

€ =€ =€ =€ =u ; £ =N

and equal to 1 otherwise. (Note that (€9*)? = npiin'*t with n in (4.18).)

Let us now justify the name quantum group. Similar to [20], a coproduct is defined
by A(A;j) == >, Air ® Ayj, a counit by €(A4;;) := 0;;, whereas an antipode S can
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be constructed using the determinant detyA. However, we can also derive an explicit
expression for the antipode, using the splitting homomorphism as in Obs. 4.3.%

Lemma 4.1. The antipode in A(SLy(2,H)) is given on A;; = A%)) ® U, by
S(Ayj) = SOUAN e U,
where S\ is the classical antipode of A(SL(2,H)).
Proof. Let us compute for example,
AS(Ay) = ADSOAD) @ UL U (4.32)

For fixed k, j, the expression Uy;U}; is independent of the column index ¢, as can be
easily seen from the form of the matrix U;;. Therefore,

ZAM i) = (D ARSOAD)) ® UnlUy, = bk © Ui Ujy, (4.33)

A

(4.31)

following from the classical case. Since the matrix U;; consists of unitaries, we con-

clude that indeed
D AkS(Ay) = b (4.34)

]

Note that due to the particular form of the matrix A, we have the following form of
S on conjugates:

(@) = SOAD) ® U (4.35)
Let I denote the two-sided *-ideal in A(SLg(2,H)) being generated by the elements

Dok A_MAkj — ;5 fori,5 =1,...,4. Recall that an ideal I in a Hopf algebra A is called
a Hopf ideal if

AN)CTIRA+ARI, e(l)=0, S(I)C 1. (4.36)
Lemma 4.2. The above ideal I C A(SLy(2,H)) is a Hopf ideal.

Proof. The first two properties follow easily from the definition of A and e, whereas
the third follows from Lemma 4.1 and (4.35):

ZAUAd = 5O ZA ADAO _ 5.y @ TUnUp, (4.37)
using similar arguments as above. Hence, this property follows from the classical
case. 0

Let us summarize these results in the following proposition.
Proposition 4.1. 1. The collection (A(SLg(2,H)), A €, S) is a Hopf algebra.

2. The quotient A(Spy(2,H)) := A(SLy(2,H))/I is a Hopf algebra with the induced
Hopf algebra structure.

4At this point, we will not distinguish any more between an element in A(SLg(2,H)) and its
image under the splitting homomorphsim.
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4.2.3 Coaction of A(SLy(2,H)) on the Hopf fibration

The image of A(Sj) under the coaction Ay, in (4.15) of A(SLg(2,H)) is a subalgebra

of A(SLgp(2,H)) ® A(Sj), which we will denote by A(5~’97). We will now see that, in
some sense, this is a #-deformation of a family of inflated 7-dimensional sphere. First,
consider the element ., 27", being the identity in A(S]). Since Ay is an algebra

map from A(S}) to A(§g7), we conclude that °

pri= D) wht = ALY 7 (4.38)

I3 %

is a central element in A(§97). In particular if A € A(Spg(2) then Ap(D_, zH2!) =
1®> L 2t
The element p? parametrizes a whole family of noncomutative 7-spheres 597. Indeed,

we can evaluate p® as any real number 7> € R, to obtain an algebra A(Sy,) which is
a deformation of the the algebra of polynomials on a 7-sphere of radius r.

Also in this case, one can define a (right) coaction Ag of A(SU(2)) on A(§97) in
such a way that the algebra of coinvariants forms an algebra of polynomials on some
noncommutative 4-sphere. It is most natural to assume that Az commutes with the
abovely defined left coaction of A(SLy(2,H)). As in [48], similarly, the algebra of
coinvariants is generated by

& = 2w + wwt) , B =2—wwt+wu?) ,
i =w'w' + v’ — v — w'w! (4.39)

together with p?. The resulting algebra will be denoted by A(§94). It has the same
commutation relations as A(Sj) (cf. (4.9)), but a different spherical relation following
from (4.38), which now reads:

aa* + B3 + 72 = pt. (4.40)

We conclude that the coaction Ay of A(SLyg(2,H)) on the SU(2) principal Hopf
fibration A(S;) — A(S]), generates a family of SU(2) principal Hopf fibrations
A(§94) — A(§97). Indeed, by evaluating the central element p?, we find a princi-

pal Hopf fibration A(Sy,) — A(Sj,) for any r € R, consisting of spheres of radius
r.

5The elements p? can also be expressed as

p* = Zziink ® Ujr1Uk1 -
ijk
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Since by construction &, 3,7 are the images of a, 3, x, respectively, we can write
explicitly:

a = 2(@151 —+ &252) X x19 + 2(1)181 + bzag) X T34 + (alal + Mbgég) X o (441)
+(ardy — ib1T2) @ B+ (b1T1 + flaads) @ o + (bo?y — pasd;) @ B*

o0
I

2(@201 — alcQ) X x19 + 2(b2d1 — bldg) X x34 + (—a1d2 + ﬂbQCl) X o (442)
+(ardy — bicy) @ B+ (=bice + Trasdy) @ a* + (—bocy + pasds) @ B*

i = (@ + axly) ® 19 + (biby + baby) ® w34 + %(all;l + pbotiy) @ @ (4.43)
+%(b161 + Jlaghy) ® o + %(a@ — ibyas) @ B+ %(bZa1 — paghy) ® B*

— (€181 + €2C2) ® w19 — (dydy + dods) @ w34 — %(016_11 + pdyty) ® a
—%(dla + icads) @ a* — %(0132 — dCy) ® 8 — %(dﬁl — pcad;) ® B

where 715 = 2'Z! 4+ 222? and 234 = 2°7% + 2724

We have thus established a coaction of A(SLy(2,H)) on the noncommutative prin-
cipal Hopf fibration A(Sj) — A(S}). Note that the coaction of its quantum subgroup
A(Spy(2)) is such that it does not ‘inflate the spheres’, i.e. p* = 1.

4.2.4 The moduli space My

Classically, the moduli space of instantons on 5% is given as the quotient SL(2, H)/Sp(2).
In this section, we will construct an algebra that describes the moduli space My of
instantons on A(S;). The latter turns out to be a noncommutative space.

Motivated by the classical construction of instantons, let us consider the quantum
quotient space as defined by:

A(My) :={a € A(SLy(2,H))|(r ® id) o Aa =1 ® a} (4.44)

where 7 denotes the quotient map from A(SLy(2,H)) to A(Spy(2)). Note that since
Spy(2) is a quantum subgroup of SLy(2, H) this quotient is well-defined.

Lemma 4.3. The quantum quotient space A(My) is generated as an algebra by the
elements Y, ApiAgj.

Proof. From the fact that the relations in the quotient A(Sp,y(2)) are quadratic in
a;; and @;;, the generators of A(My) have to be at least quadratic in them. For
the first leg of the tensor product A(a) to involve these relations, we need to have
a =), apa;, so that

(7T ® 1d>A<a> - 7‘-(%0/2‘11) & Umkln; = 6mn & Uk Anl, (445>
giving the desired result. [
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We will work with this set of generators m;; := ), A_MA;U- and define the matrix
M := (m;j). The structure of the algebra A(Mj) can be deduced from the structure
of A(SLy(2,H)) as follows. First of all, the entries of M read:

miq 0 mi3 Mg

M— _0 myr —fMag T3 _ (mgz g >’ (4.46)
miz —H My m33 0

g nl
m14 ﬁ mis O mss3

with g of the following “#-quaternionic” form:

g= ( g1 g2 )
_WZ M?la .

We have the following relations between the entries:

max=2xm:; nr=xn Vrée My
9191 = 9191 ; 9292 = G292 ;
9192 = T20291 ;9102 = 101, (4.47)

together with
mnly, —g g* =1y, (4.48)

coming from the condition detyA = 1 (as classically). Here g ¢* = (919, + 920-)1>.
Proof of eq. (4.48): Firstly

= @iay + Goas + biby + babsy
n = ¢+ Cacy + dydy + dads
g1 = TiC1 + TaCy + bidy + bods
Go = —T1Cy + Gy — bidy + bod; .

Then, using the fact that the elements of the form Ay;Ay; are central in the algebra,
we have that mn and ¢1g; + g2g, are both central elements in A(Mj) and

mn — gg* = Elalaldl -+ 61a132d2 + agagaldl -+ GQCLQC_ZQdQ + Blblélcl + Blbléch +
52[)26161 + BQbQEQCQ — dlclalbl — alclagbg — 520281[)1 — 62023262
—I;ldlélal — Eldlzgag — l_)zdgélal — ggdgégag — alégdgbl + 6162(1162 +

@Eldgbl — agéldlbg — 513202a1 + Blagclag + 523102@1 — Egalclag

which can be shown to coincide with detyA given in (4.30) by using the commutation
rules (4.16). O
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The geometric structure of the moduli space

The structure of the noncommutative space My becomes more clear if we introduce
two central elements x and y, defined in terms of m,n by

T i=m—+n; Yy :=m—n. (4.49)
Relation (4.48) then reads
22y — 2y — gg* =1 (4.50)
so that My is a #-deformation of a hyperboloid in 6 dimensions. Let us examine the
structure at ‘infinity’. We first adjoin the inverse of = to A(My) (hence removing the
origin), and stereographically project onto the coordinates: j := 2~y and g := 27 1g.
Then the above relation becomes:

I, — 721, — §g* = Lya ™2 (4.51)

Evaluating x as a real number, and then taking the limit to infinity, we find the
spherical relation:

T+ 5107 + Gags = 1. (4.52)
If we combine this with relations (4.47), we can conclude that at the ‘boundary’ of My,
we re-encounter the noncommutative 4-sphere A(S;). This fact exactly resembles the
classical case, in which S* is found at the boundary of the moduli space.

4.2.5 The instanton projections

We will now construct the instanton projections in terms of the matrix v’ = A ® u.

. .. 5 4 57 . . .
For this, we first adjoin p=2 to A(Sy ) C A(Sp ) as the inverse of p?. Using the matrix
u’ we can construct a projection (as in Sect. 4.1) by

po=up () (4.53)
or in components: o

()ig = uiap ™ up (4.54)
The condition (u')*u’ = p® implies that p’ is an idempotent. Moreover it is -

selfadjoint, and hence a projection.
By an argument similar to that of [48], one can prove that the entries of this
matrix are coinvariants under the coaction of A(SU(2)), and hence elements in the

algebra A(§94). As a check of this, one can compute the elements of p" explicitly. We
have

P+z 0 & 3
1 0 pP+3 —pbf*  [a
/ 2
_ : 4.55
B picx 0 p-z

, (4.40) of A(5~‘94) can here be deduced from the

~—

where the commutation rules (4.39
condition (p/)* = p'.
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The topological charge

The relation of this projection with the basic instanton projection (4.12), can be
seen by writing it in terms of elements in the tensor product A(SLy(2,H)) @ A(Sj)
using (4.41). However, expressing the projection p’ in terms of &, (3 and 7 allows to
conclude that p’ indeed describes another instanton on Sj. Since @, 3,7 satisfy the
same commutation relations as the «, # and x (differing only in the spherical relation),
the splitting homomorphism only differs on the first leg, i.e. the classical part. For
example, o = o® ® U'U%*, and & = &® @ U'U%*, where now & is an element in
the tensor product A(SL(2,H)) ® A(S*). The curvature p'(dp’)? of the connection
V = pod then becomes an element in some fixed point subalgebra

(A(SL(2, H)) @ Q*(5*) ® A(T2))"™" (4.56)

in which the Hodge star operator can be defined using the splitting homomorphism.
The projection p’ turns out to describe a family of instantons on Sj [47].

The rank of the instanton bundle is given by the zeroth Chern character, defined
as the trace of the projector. In our case:

cho(p') = tr(p') =2 (4.57)

On the other hand, taking advantage of the possibility to endow -deformations of
S4 with a spin geometry, the charge of the instanton is given by:

tr, (357 () [D, 7' ()] D) (4.58)

where tr,, denotes the Dixmier trace (cf. [18]), D the Dirac operator, v; the grading

of the Hilbert space, and 7" a representation of the algebra A(§94) onto some Hilbert
space. It is not difficult to see from the commutation relations and the spherical

. . 5 4 . . . .
relation in A(Sp ) that this representation can be obtained from the representation
of A(S3) on L?(S%,S), with S the space of spinors (cf. [21]). Without changing the
Hilbert space, it is simply given by a rescaling on the generators:

7'(a) :=rm(a); 7' (p%) == r*id (4.59)

where a = «, 3, x and r € R. Hence, from the definition of p’ we see that 7'(p’) = 7(p).
Of course, also the Dirac operator scales by a factor of r, but this is readily seen to
cancel in the Dixmier trace. We conclude that the charge of the instanton defined by
p’ is equal to the charge of the basic instanton, which is one.

4.2.6 On the construction of instantons of generic charge

Let us now address our attention to instantons of generic charge k. As said before
in Sect. 4.1, in the classical construction, [1], [2], instantons are constructed in terms
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of a (k+ 1) x k matrix of quaternions v(z,y) = Cz + Dy with (z,y) € P'H and
C,D € Mat((k + 1) x k,H) constant matrices. The matrix v is assumed to be
of maximal rank for each (z,y) # (0,0) (hence its columns span a k-dimensional
subspace of H*"!) and p? := v*v is assumed to be a real matrix. A gauge equivalent
potential is obtained by considering the action on v of the groups Sp(k + 1) on the
left and GL(k,R) on the right. The moduli space of instantons reduces, as said, to a
space of real dimension 8k — 3.
Let us try to reproduce this construction for A(Sy).

Let us organise the elements of A(S}) into two “quaternions”

2t 22 23 24
T = o _ = 4 -
_z2 5l Y ot 33

with commutation relations (4.7) which read

T
Tab¥Yed = Ecaledab, € = _
bYed d%ab (—,u ,u)

and TepTed = TedTab, YablYed = YedYab, 1-€. the elements inside a quaternion commute.

We consider . ‘
v(z,y) =CRz- -+ Dy-I (4.60)

a matrix whose quaternionic entries v;; = C; @ v + D;; ® y are 2 x 2 matrix
Vijab = Cijal @ Tiy + Dijar @ Ynp

where i =1,....k+1,7=1,...,k, a,b = 1,2 and sum over [ = 1,2 is understood.
Let us also introduce the notation ' =3 —a for a = 1, 2.

Note that in this case the algebra generated by the entries of C'and D and the one
generated by the entries of v are both unkonwn. Anyway, following the classical case
in which the columns of v are elements of H¥!, it is natural to assume that the ¥
satisfy commutation relations which generalise the ones of H?, i.e. the ones between
the elments x, y of v at k = 1. Firstly, the condition for v to have quaternionic entries
means that Vjjaa = Vija'a’ and v;‘jm, = —;jaq- The algebra generated by the entries

of C' and D, that we will denote with C, is computed by assuming © that

Vij.abUkh,cd = Nki,ca Vkh,cdVij,ab (4.61)

where the matrix 1 generalises the one given in (4.18):

Nisab = 1 ; Nijaa = 1 if 1< 7 Nijaar = p i 1< g

60bserve that in principle the commutation rules between the elements of v should also depend
on the columns indices:

Vij,abVkh,cd = MNki,ca®ljh,bd Vkh,cdVij,ab »

but this would cause immediately an absurd into the commutation rules of C.
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and 7j.ab = 7;; o5 We have

C’ij,alckh,cr = nki,cackh,crcij,al ) Dij,aleh,cr = nki,cath,chij,al
Cij,aleh,cs = nki,caglekh,csCij,al ; th,cscij,al = nik,cagslcij,aleh,cs (462)

Observation 4.4. Note that when k reduces to 1, the above commutation relations
are the one given in (4.16) with C = (a;;, )", D = (bij, di;)" and A= (C/D).

The compatibility with the involution requires C7; ., = Cij oo, C; = —Cijaa

ij,aa ij,aa’
and analogous for D, i.e. the matrices C' and D have quaternionic entries and the
above equations imply

* * . * _ * .
Crt,cdCriap = Mk cCli aChied 5 DiieaDyjap = Mik e D3 apDitea 5 (4.63)
* = * . . * _ = *
ChtcaD3j ap = NMik v Eard D 0pChl cd ; ;o O avDried = MkjeEdar Dit edCj ap -

Dualising the classical assumption, we ask v*v to be real:
* * ok _
(V*0)ijaa = (V' V)ijarar 5 (V0)ijaar = 0.

Using the fact that the elements in 2*z, y*y and x*y do not contain the same elements,
also in this noncommutative case, the condition v*v real splits in C*C and D*D real
and C*D symmetric. Imposing that the matrices C*C, D*D are real is not in contrast
with the commutation relations among the elements of the algebra C:

(C*C)ij,aa = (C*C)ij,a’a’v (C*C)ij,aa’ =0

are compatible with commutation relations (4.63) being (C*C');j.qq a central element
in the algebra generated by the entries of C' and D for each ¢, j,a. The same result
holds for D*D. The other condition C*D symmetric (as a quaternion matrix) reads

(C*"D)ijab = (C*D)jiap

and can be imposed without conflict with the algebra structure. Indeed the commu-
tation relations between (C*D);; . and the generators of the algebra depends only on
the indices a,b = 1,2 into the block quaternion through €.

Remark 4.3. We point out that the conditions imposed are motivated from the clas-
sical case but it is still to be understood if these requests are the correct ones also in
the noncommutative case.

Observation 4.5. If k = 1, then the matrices C, D which constitute A = (C, D)
automatically satisfy these conditions, as it happens in the commutative case.
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4.2.7 Symmetries

Let us now try to reproduce the gauge invariance (4.4). Let us consider two matrices
R, S (generating two algebras R, S to be determined) such that the map

v RS (4.64)

defines a left-coaction of R and a right coaction of S and the resulting matrix is still
of the form (4.60): ' @z + D' ®y.

The two matrices R and S must have a “quaternionic structure” in order to pre-
serve the “quaternionic form” of v. Let us analyse the two actions separately.

Let © = v ® S. In order to have o = C' ® x + D’ ® y we need that S and z,y
commute:

(aj ® S)ij,aa —= T(S ® I)ij,aa = Sij7aal — O P (465)

($ ® S)ij,aa’ - T(S ® x)ij,aa’ = Sij,aa - Sij,a’a’ 5 (466)

(7 being the flip) so that the matrix S is a real matrix, as in the classical case. Let
us now impose that the commutation relations (4.61) are preserved. Here it is no

longer necessary to split the quaternion entries of v. Let o = (0;;), i = 1,...k + 1,
jg=1,...k, then Vi, j, k,I

0 = 03jUp1 — MiiViivsj = Z VimVkn @ (SmjSni — SniSmj) (4.67)

We introduce a basis (as a vector space) for the algebra generated by the entries
of v. This is simply given by introducing a lexicographic order v; < vy if ¢ <
k or v = k,j < [ then extended to higher degrees. For degree two we may take
{virvg @ < k}J{vigva j < 1} Hence if i < k we may conclude that

Sijnl = SnlSmj
and since it does not depend on i, k it holds also for generic ¢, k. Summarizing, the

algebra S generated by the entries of S has to be commmutative.

On the other hand, if we assume a left coaction R ® v, the algebra generated by
the entries of R has to be noncommutative. Indeed, with a procedure similar to the
above one, we can conclude that the entries of R have to satisfy

Ry Rym = WkiUZmkaRu .
4.3 On the moduli space for the symplectic prin-
cipal fibration A(S;) — A(S])

Let us now consider the symplectic fibration A(S;) < A(S7) obtained in [46] from the
quantum symplectic group Sp,(2) and described in Ch. 2. In this case the attempt
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to generalise the construction to generic instantons becomes immediatly difficult due
to the complicated commutation rules among the elements of the algebras involved.
We have made only few steps toward the construction of other instantons of charge
1 that we report below.

4.3.1 The algebra A,

We consider the transformation induced on the elements of A(S]) by appling a matrix
transformation A on v:

AL L Vg A'LJ X ’Uja =. ’U;a (468)

with A a generic 4x4 matrix. The structure of the matrix A and relations between
the entries of A can again be deduced by requiring that Ay, be a (not unit preserving)

x-algebra map. From the condition on Ay to be a x-map, we infer the following form
of A:

aq Qo bl b2
3— — 27 7
_ | —q a2 a q°by  —qb
Aq = o . d1_ C_lg (4.69)
¢*cc —q et —qdy  dy

and hence the transformation reads on the generators of A(S7):

a1 @1, — ¢Pas T + ¢°by @ 15 — ¢°by @ T
= GO, +quT —¢b @, — T
= 010, —RT +d @1, — qdy DT
= (0@ - 'aT +d 91, +dheT (4.70)

8 8 &8 8
B b~ .

together with (7;) = (/).

The algebra map condition entails the following complicated commutation rela-
tions:

araz = q asay + (¢ — ¢ *)baby;

_3 . azby = brag;
arby = q "biay;

asby = Qszaz;

a1by = boay;
e o asey = ¢erag + (1 — q*)doby + (g7 — q)dyby;

a1C1 = gqciay,

aicy = q*coay + (q — q3)01a2 + (95 - qg)d2b1 + (q4 — 1)d;by;
3 A2C = qC202;

ardy = dyay + (¢ — ¢°)crby;

asdy = qdyas;
ardy = ¢*daay + (¢ — 93)0152; . 41 ’
asdy = ¢ dras;
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biby = q 'baby;

bic; = q401b1;

bics = ¢°caby + (¢ — ¢°)dyas;

bidi = qdiby;

bidy = ¢*dyby + (¢ — q3)d1b2;

c1ca = q 'eaer + (% — g’

ady = g dyey;

c1dy = dacy;

didy = q" ' dady,

together with their conjugates.
Moreover, we have

aja; = a1a1 +(¢° — ¢"oibi + (¢* — ¢*)azas + (¢* — Dbabo;
as0y = Gas + (q

a2b2 =q b2a2;

a1Gy = ¢ CL2CL17
arby = ¢ %baay + (q2 — 1)asby;
ayb; = ql_?1a1 + (g — q3)62b2;

e, .
a1C2 = q CaQ1;

a9y = q 'Cray + (¢7°

bac1 = qcrby;

baco = caba + (¢ — ¢*)daas;
body = q2d1b2;

bady = qdaby;

cody = djc;

Cody = q3d202;

G251 = q251 a2;

a1C = q 'Ca; + (¢—q )d1bl + (C] — q)C2az —I—jq — 4, )d252,

ardy = ¢ *dsay + (q — ¢~ ")eaby;
ardy = dia; + (1 —¢q )02525

and

biby = ¢ 'baby;

biby = biby + (¢° — 1)boby;
biCa = qCabn;

biey = Ciby + (1 — ¢%)daas;
bidy = q 2daby;

bid, = ¢ 'diby + (¢ — qfl)asz;

a2C1 = (¢ C1 2;
a2d2 =q d2a2;

6231 = qal a2,

52(_72 = 1_7252§

byCy = ¢ *Caby;

bats = ¢ *Cibs + (¢ — ¢ dias;
bady = ¢ 'dabs;

bydy = q *dyb,

— 1)byby + (g2 —

—q )diby + (¢7° —

g *)baby;

q_S)Ezb%
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and finally

ot =q "G+ (¢ = @Qaaw;
ot =aa + (¢ — ¢)didi + (¢* — ¢*)eaca + (¢* — 1)dodz + (¢* — ¢*)aray;
+ (@ +¢" = — O)arae + (—¢" + @ + ¢® — ¢")babo + (—¢* — ¢© +2¢°)biby;
crdy = q 2docy + (7 — 1)eady + (> — Dbaay + (¢° — 1 — ¢* + ¢*)aaby;
crdy = qdicy + (¢ — ¢*)eads + (¢° — 4" + ¢ — ¢*)asbs + (¢° — ¢*)bran;

Gy =Cocr + (¢ = D)didy + (7% — ¢ N dadz + (¢* — ¢*)azas;

+ (=g Naar + (g2 + ¢ = 2)baby + (1= ¢" = ¢7° + ¢°)biby;
cady = q rdycy + (¢* — q)bras + (¢° — q)ayby;
cody = q*dicy + (¢° — ¢")brag + (¢° — ¢ 2)arby;

didy = q 'dady + (¢ — q)boby;
didy = dyd; + (q2 - 1)32612 + (C]4 — q2)51b1 + (C]6 — ¢t f - 1)5252;

dady = dady + (¢* — ¢*)b2bs + (¢* — ¢~ *)baby,
again with their conjugates. We denote this algebra by A,.

Observation 4.6. In an analogous way, we can look for a matriz B, such that
v = Bp'. Of course the algebra given by the entries of B, and the algebra A, are
isomorphic by construction. If we assume that the matriz A, is invertible, then the
matriz B, would be the inverse, but this is still to be checked. In particular it remains
to find (if there exists) a central element det, € A, to be interpreted as a quantum
determinant.

4.3.2 The projection p,

In spite of the fact that the commutation relations among the elements of the algebra
A, are much more complicated than the one of the algebra Ay, the element p? =

; Tix) is again a central element in the corresponding algebra, being the image of 1
under the algebra map Ay:

Pt = A1) = (#1]0) = (¢ald') = D _alai

The observation of this property allows us to introduce the element p~2, being defined
by requiring that it is a central element in the algebra A4, such that p>p™2 =1 .

The projection is constructed as in the classical (and 6-) case as p, = v'p~2¢'" and it
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is given by
% 0 a b
_ 0 t q 20 —q*a*
2
— - - 4.71
pP p @* q—Qb p2 _ q_4t O i ( )
b* —QQEL O )02 . q2t
where
f = (]7251 ’xll + quEQ /l’; :
CNL — q_4l‘1/fs I q_2l‘;f4 / 7
b = —q v, —q

are the elements obtained by applying the transformation A, to the generators of
A(S;‘). The commutation relations among these elements can be computed by using
P, = p, and are given by

ab=¢%a, a*b=ba*
- L < 4.72
ta =q %at, tb=q*bt, (4.72)
together with their conjugates, and relations
Sok g pik =270 2 —2F 4% 74~*B — (2 _ 7
aa” +bb* = g t(p* —q7°t) | g'a*a+q b =1t(p* — 1), (4.73)

bb* — g b = (1 — ¢ Hi2.

The algebra generated by the entries of p, when evaluating p?, i.e. in the quotient
p? = r? € R, is a deformation of the algebra of polynomials on a 4-sphere of radius
7. We denote this algebra with A(S)),.

Representations of the algebra A(S,), and the charge

We compute now the instanton charge with a procedure analogous to the one used in
Sect. 2.3. We start by associate a Fredholm module i over A(S;), and we procede
by computing the pairing of the Chern-Connes characters ch*(u) € HC*[A(S;),] and
ch.(p,) € HC.[A(S,),] in cyclic homology and cohomology respectively.

We consider irreducible *-representations of A(S;*)T as bounded operators on a
separable Hilbert space H. We denote in the same way the elements of the algebra
and their images as operators in the given representation. We can restrict ourselves
to |g| < 1 and we consider the representations which are ¢-finite [41], i.e. we assume
that the eigenvectors of ¢ span H.

With observations similar to the ones done in Sect. 2.3 we conclude that the
spectrum should be of the form g% and a, b* (resp. a*, 5) act as rising (resp. lowering)
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operators on the eigenvectors of . The boundedness implies that there exists a highest
weight vector |0,0) such that

£10,0) =10 ]0,0), @|0,0) =0, b*|0,0)=0. (4.74)
Using eqs. (4.73) we have ¢'a*a + bb* = (r*> — ¢~*1)f that evalueted on |0,0) gives
(r? — ¢ *to0)too = 0

According to the values of the eigenvalue t, we have two representations. The calculus
which follow are analogous to the ones done at p? =1, i.e. at A, = L.

The representation [

The first representation, say (3, is obtained for 5o = 0. This representation is the
trivial one

t=0, a=0, b=0, (4.75)
with representation Hilbert space being C and (1) = 1.

The representation o

The second representation, that we call o, is obtained for {yy = p?q¢*. This is infinite
dimensional; we take the set |m,n) = N,,a*™b"|0,0) with n,m € N, to be an
orthonormal basis of the representation Hilbert space H, with Nog = 1 and N,,,, € R
the normalizations, to be computed.
Then ~ ~

tim,n) =ty |m,n) |

a*|m,n) = app |lm+1,n)

blm,n) = by |m,n+1) .

By requiring that we have a *-representation we have also that
alm,n) = am_1n|m—1,n) , b*|m,n) =by,_1|mn-—1)

with the following recursion relations

~ +2~ +2 2~
Umnt+l = 4 Qmn , bm:tl,n =dq bm,n ) bm,n = q @2n+1,m -
We have ~ ) oA
tm,n = pq meAnt 5
~ _ -1 _ 2 2m+42Y % 2n+1
mp = Npn Nophy = p°(1 = ¢?m12)zgmt2edt (4.76)

Em,n = NmnNrg,ln-I—l = p2(1 - q4n+4)%q2(m+n+2) :

Proof. Firstly

f’m7 n> _ Nmnq2m+4nd*mgni’|0’ O> — Nmnq2m+4nf~00d*mgn |0’ 0> _ r2q2m+4(n+l) |m’ n) .
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In order to compute a,,, and an we only need to compute the quotients of the
normalizing constants being

a* |m,n) = Ny na*™ 15" |0,0) = lm +1,n)
m+1,n
and
blm,n) = |m,n+1) .
m,n+1
We use aa* — g*a*a = p*t(¢~2 — 1), then
amtlar = am(adt) = am(q'a'a+ p*(q 2 — i) =
= P = Dari+gla" N (g'da+ (g - 1)p*ha
= P =D+ @am + a2 @ a+ o2 - Dh)ad = ...
= pQ(q ~ DA+ F+¢ 4+ P+ ()
= ¢ (1 —@mHamt + (---)ata

Then we have
1= <m + 17n|m + 17n> = N??”Hrl,n (O 0| prngmtlgrm+1pn |07 O)

PP (1= " PING L, (0, 0107a ™t b 10, 0)
2m+4n+4N72n+1 . <O, 0| g*nama*mgn |07 0>

= plqa*(1—¢"")g
N2
_ ,04q_2(1 . q2m+2)q2m+4n+4 jf\r;;rln (m,n|m,n) )
mn
Hence we can conclude that
2
N]\imm _ p4q2(m+2n+l)(1 _ q2m+2)
m+1,n

and hence the a,,, have the expression given in (4.76):

2m+2) = m+2n+1

dm,n = P2<1 q q

For by, the computation is analogous: as a first step
b*n+1b Z q4zb*nt + ( )bb*

and then

l=(mn+1mn+1) = ¢ *(1—¢"™N2, ., (0,0[a"b"b"a"™ [0,0)

2
4(n+m+2) Nm,n+1

o 4n+4)
N

q
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and so

’m_|_ 1;”) _ p2(1 _ q4n+4)%q2(m+n+2) |m’n+ 1> O

l; ‘m7n> = o
m,n

Summarizing, the representation o is given by

tlm,n) = p*@" " Im, ) (4.77)
a* |m’n> =p (1 2m+2) qm+2n+1 ’m 4 17”) ’
alm,n) = p*(1 — m) A — 1, n),

blm,n) = p*(1 — 4”+4>%q () |, m 4+ 1)
2 3

b* |m,n) = p*(1 — ¢™™) 22 |m,n — 1) .

We need also to observe that, once p? = r? is fixed, the algebra generators are all
trace class operators:
4

Te(f) — 7‘2(]4 q2m q4n:7,,2 q 7
" 2 Z =)0 ¢

~ m m n q m 1 m
Tlll) = X1 g =t S

l—gq
r2q r’q
m 4.78
‘1—q2§m:q 1-q)(1-¢) )
4
I o .24 _Antant o(ngm) 2 4 _ L Antani on
Tr(p]) = r°q ;(1 q""")2q R ;(1 ¢"")2q

l—qr22 "= 1—Q)

The closure of A(S,), is the C*-algebra C(S,), = K & CIL.

We can construct a nontrivial Fredholm module [p,] € K°[C(S;),] which we will
need later on to compute the charge.

The Fredholm module p, := (H, ¥, ) is constructed exactly as for A(S;). The
Hilbert space is H = H, & H, and the representation is ¥ = ¢ @& 3. Here o and f3
are the representations of A(Sy), introduced in (4.77) and (4.75), respectively, with
0 trivially extended to H,. The grading operator is

()
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The index pairing

As done in Sect. 2.4, in order to compute the pairing between K-theory and K-
homology, we need to compute the Chern characters in the cyclic homology ch,(p,) €
HC,[A(S;),] and cyclic cohomology ch*(p,) € HC*[A(S;),] respectively. Here p,, is
the projection introduced in (4.71) and s, is the Fredholm module described above.

The idempotent p, determines a class [p,] € Ko[C(S;),] in K-theory. The compo-
nent in degree zero cho(p,) € HCy[A(S,)] of the Chern character ch,(p,) is given by
the matrix trace:

cho(p,) == tr(p,) =2 - p ¢ '(1 = ¢*)(1 = ¢*) T € A(S,).- (4.79)

The component in degree 0, ch®(,) € HC[A(S2")] of the Chern character ch* ()
of the class of the Fredholm module p, is the trace

TH(x) := Tr (y¥(x)) = Tr (o(x) — B(z)). (4.80)
The operator o(z) — 8(z) being always trace class and 7!(1) = 0.
Hence the pairing is given by

(o) [po]) = <Ch p)> cho(py) >
=g ( ¢)(1 ¢
—p 2 (1= *)(1 - 4

— )1 —q") T'(?)

ﬁ
»Q

Tr t)
P (l—¢ ) 1—g) T =—1. (481

—_ —
B D

4.3.3 The matrix M,

In the classical case we have seen that the 5-parameters family of instantons is de-
scribed by the elments of SL(2,H)/Sp(2), i.e. the space of quaternion norms on H?Z.
Let us compute the elements of the matrix M, := B} B, = (h;;), with B, a matrix of
the form (4.69) and generating an algebra isomorphic to A,. © We first observe that
the transformation v = Bgv' can be written also as v* = v"*B;. This fact allows to
deduce that

a3 —q’ay ¢ Q2012

- g a C2 —q "C;

b, ¢*by 4 —qd, (4.83)
by —gb; dy d;

"The two column vectors |¢';), |¢’,) which constitute v/ are orthonormal in the metric

(€ln)ay = EMgn = &by’ (4.82)
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We can compute explicitly the elements of the matrix M, = B;B,. They are given
by

hy; = a@a; + ¢%as@; + Tici + ¢caCy
hj, = @jay — ¢*asa; + €1cy — ¢CaCy
hy, = @a; — ¢*aja; + C2¢1 — ¢ciCo
hy, = @ay + a;a; + C2¢2 + ¢ 21 Gy
hi; = &by — ¢°asb, + €1d; — ¢Pcody
hiy = a;b, + ¢*asb; + €1ds + ¢*cad;
hys = &by + ¢’aiby + Cody + ¢1d;y
hy, = @b,y — ga;by +Cody — ¢ 'eydy
h3; = bib; + ¢*bsbs + didy + ¢*dads
h3s = biby — ¢*byby + didy — gdody
hy = byby + ¢?b1b; + dod, + did;

By using the commutation relations founded before, we have

hy, = 0;

hyy = 0;

hy; = ¢ *hy;
hy = —hy;
hy = hgsz;

h,; = q2h22 + (1 — q2)h33 ;
hy, = has +¢°aja; + ¢®aza; — ¢°bib; — ¢*byby + ¢ €10y +
¢*cacy — ¢*did; — ¢ 2dad,

Hence setting

m = hy — hyg; = ¢°aa; + ¢"@aa; — ¢°bib; — ¢’byby +
¢ *Cic1 + ¢°Cacy — ¢°didy — ¢ *dady
n := hy =¢'bib; +¢°boby + did; + ¢*dady
g: = hyz=q"'ab; — ¢’bray +¢1d; — ¢°dacy
g» = hy =q'aby +¢*biay +1dy + ¢'dicy
we have
¢m+n 0 g g
0 m+n ¢’g, —g
M, = _ _ 4.84
q gl q 2g2 n O ( )
[ g1 0 n

The surprising fact is that inspite of the fact that the algebra generated by the entries
of B, has commutations rules complicated, the resulting matrix M, has a form which
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is similar to the classical ones (4.6) with two real parameters m, n and two complex
ones g1, g» arranged in a quaternion. ® This fact suggest that a description of the
moduli space of charge 1 instantons as homogeneous space could be constructed also
in this quantum case. Anyway it is important to notice that the entries of M fail
to generate an algebra. The non-vanishing commutator between any two elements
m, n, g1, 82, 8, 8, can not be expressed in terms of the product of other elements.
This fact suggest that some further conditions should be imposed on the matrix A,.

8Note that the central element p? can be written in terms of the elements of the algebra A(Sf]l)
and those of the matrix M, := A7 Ay:

p* =mt +n+q(g1a+7g,0) + ¢ (o + g2b) - (4.85)

Here m, n, ... denote the elements of the matrix M, whose form is the same as that of M, as well
as the expression of its elements.

Also in this case, the element p? reduces to 1 when M, becomes the identity matrix, i.e. n =1, m =
g1 =92 =0.
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Appendix A

Commutation relations for the

algebra A(Sp,(4,C))

In this appendix we list the commutation relations of the elements t;; of the 4 x 4
defining matrix 7" for the algebra A(Sp,(4,C)). They are computed through RTT’s
equations (1.22) with the matrix R given in (1.17).

Furthermore at the end of this appendix, we write explicitly the sixteen equations

TS(T) = S(T)T = 1.

Notations. The inscription rtt; ; beside each relation denotes that it has been
obtained by setting (RT1Ty — T»T1R);; = 0, Vi, j = 1...16. Moreover A :=¢q — ¢ '.
Commutation relations t;; - t1;

rtt15  tiitip = q tiat11
rttig  tiatis = q tigtin
rttiiz tiatia = ¢ tiatia
rtt110  tigtiz = ¢ tiatio+ Miatia
rttiia tigtia = q tiatio

rtti1s tiztia = q tiati3
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Commutation relations ¢, - t2;
rttar  tiaten = q taati

1
rttay  tiates =tastin + (¢ — 5)752,1751,2

1
rttas  tiatag =tastin + (¢ — §)t2,1t1,3

1 A A A
rttos  tratos = §t2,4t171 - Et2,3t1,2 + Etzztm + A+ E)tg,ltl,zx

1
rttsas tiatea = (¢ — &)t2,1t1,4 +q tasti
rttas  trata1 = ta1t12

rttas  Tiatap = q taoty2

A A
=) +tastiz(A+ =)
¢ q*
1 A 1
rtts10  tiste2(q — 5) + a3l = t1,1t2,4(—5) + t1,2t2,3a

rtto;  tiataz = t2,3t1,25 + toatya

1
rttas  tiates =tost1o+ (¢ — 5)152,2151,4
rtlag  T13ta1 = t21t13
rttai0 q tigtas = — Aot a +taoti3

1 A A
rtts7  toat13 = Z51,3152,25 + Z51,1152,4(5) + t1,2t2,3(?)
rtto1r  tislasz = qtastis
1
rttars  tistea = tiates(q — 5) + t9.4t1 3
rtta1z g tiato1 = 1lo1t14
1 1
rttsa  qtoili4a = —t13l22 + (?)tl,ZtQ,S + (E)tl,ltZA

rtta1s  tratop = lootia
rtta1s  tratoz = la3t1a

rtta1e  tratoa = q laatia
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Commutation relations ¢ ; - t3;

rttz1  tiatsn = q taqitin

1
rttso  tiatse = t3ati1 +t3at12(q — 6)

1
rttss  tiatss = tsstin +taatis(q — 5)

1 A A A
rttss  tiatsa = t3,4t1,1a + 753,3151,2(—5) + t3,2t1,3($> +t31t14(A + g)

1 1
rttors  t3atin + tiatzi(q — 5) = t1,1t3,45

rtt3s  ti2t31 = t31t12

rttss  ti2t32 = q l32t12

A

1 A
rtts7;  tiat33 = Z53,3751,25 + t3,1t1,4(¥) + t39t13(A + ?)

1 A 1
rttoro  t3stiz + tistsa(q — 5) = t1,1t3,4(—5) + t1,2t3,36

1
rttss  tiotsa = t3atio +tsat14(q — 5)
rttzg  t13t31 = t31t13
rttzi0 qtiglze = —At3itia+i30ti3
A

A
q3) + t1at3 (N + ?)

rttor  tsatis + tiatss(q — é) = t173t3,2$ + t1,1t34(
rtts1n tislss = q tzstis

rttsie  tistsa = tastia(q — %) + 3413

rttz13 g tialz1 =t31t14

1

1
Ttloa  l3atia = —ti3tso + t1,2t3,3(?) + t1,1t3,4(q3

)

rtt31a  tratze = 132014
rttz1s  lratzz = t33t14

rttz1e  tratsa = q t3atia
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Commutation relations ¢ ; -

Ttt471
Ttt472

rtti31
rttye
rtt136
rtty 11
rtti3,11
rtty 16

rit1316
T'[Zt1375
Ttt475

Ttt1372
T’tt772

rttio5
rtty s
rttio,2
rtty3
rtti3,9
rttyg
rtti13,3
rtty 3
rttio,9
rttr g

Ttt1073

tiatsn = ¢ taitiy

t4,j and tgﬂ' -

ts,;

1
tiatas = q taotin + (¢ — 5)t1,2t4,1

toatss = qtzatar + Atiatas

tiotss = (*taotio
2232

t13t43 = q2t4’3t173

= q2t3,275272 + Aot

tostss = tastas + At1stas

tiatss = ¢ taatia

toatza = (tzatos + N1 atsy

1
—t32l21 + 12213 l(q

t12ts1 = q tyit12

1
)+t12t41(q )=

1 1
—taiti2 + 13112 2(—5) + t2.1t3 2<q

A 1
t1,1t4,2(—5) + t2,1t3,2a = t39to1 + t31t22(q —

1 A
tgolo1— +tiota1(—
q C]

oot = q taatas + Aty otan

1
—t31l2.2 + 11114 2(q

1
)+ to, 1t32(q ) =

tiatas = q tagtin + A tista

1 1
t3sto1(——) + tastsi(—
q q

t13ts1 = q tyati3

qtyatiz —t31t23 =t 113 S(q

1
)+t

A
)+t22 31()\+q

1
)+t13t41(
q

= qtyt11

|P~

)+ t1atas(

I

)

QIP—‘Q

) =ta1t3
= t12t41
) =143t

1
t
1 43(q )

toatss = q taglog +q Algataz + A tiilas

1 A
tsstor— +tistar(—
q C]

tasts1 = q tzitaz + A tistan

1
—t31l23 + 11,1t 3(q

1
)+ to, 1t33(q ) =

A
)+t23t31()\+q

) =ta1ts33

= t13t41

) =

0
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Ttt4,4
rtt13,13
’l“tt477

rit1310
Ttt4710

T’tt13’7

T’tt4713

rtt13,4
rtty 4
rtt10,13
rtty 7

rtt10,10
rtt7 10
ritioz
rit7 13

Ttt10’4

Ttt4,8
rtt13,14
Ttt4714

Tttlg,g

tiataa = taatin — Mastyo + taoty 5(

tiatag = taatin — A taato +toatsy
A

t1ot43 = ta3l12 +t41t14(q ) +taotizg (A +

tiotaz = tagtio — A t33t22+t23t32(q

tistas = taoti s — A taitia

A

q
A A

t12t4 3(q ) =tistao +tiats 4(q

taot1s — A t3atos + taatss(

t1ata1 = taatia

PQ/_\y Ql\.’)l >

3) +

A
)+t12f43(q)

1 1
—l31t24 + t2,1t3,4(?) = —t13l42 + t1,2t4,3(?)

—Atiatag +taitsa = taatar — A tsstaon + t3alas(

A
—)

q

)+t32t23q (>\+

A
to1t34 = t34l21 +t14t41(q ) +toatsig (A +
A
— A tiotas +tootss = tastas + t31ts 4(q

A A
Lotz sz =33l + 1 3t42(q ) +tastsoq (A + =

tostso = t3atas + A tsitos + At 3tas

A A
lostso = t3ola3 + t1,2t4,3(?) — t2,1t3,4(?)

toatsn = taatoa + Atiats

A
ol

'le )

) + t471t1’4q ()\ -+

)+t14t41q ()\4‘

) + t371t274q ()\ +

A A
t31t2.4 + 1114 4<q )+ taatsa( q) =toat31 — A taslso

A A
t22t33(q )+t 1t34(q )

tiotaa = q taatio + Aty atao

1 1
—tyal12 + t3419 2(—5) + t9.4t3 2(q

t1atso = q tyoti4

1 1
—ty2l14 + 3202 4(——) + t90t3 4(q

)+ t1ata o

1
7'

1
+ t12ta4
) (q

) =0

) =

0

by

prl
A
e

A
)+ t13ta2q (/\+q

)+ X tiatsa

A
el

— )+ Ataitsa

A
el
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A 1 1
rttrg t1,2t4,4(—5) + f2,2t3,45 = t34too + t32t24(q — a)

1 A A
rttio14  lootsa = t3,4?52,25 + t1,4t4,2($) + otz a( A+ ?)

ritria toalso = q t3atos + A liatsn

1
?) = t1ala2

1
rttio,8 —139t24 + t1,2t4,4($) + to otz a(
rttaie tigtaa = qtaatiz + A tiatas
1 1 1
rtt13,15 —ly4t13 + t3,4t2,3(—5) + t2,4t3,3(¥) + t174t4,3(g) =0
rtta1s  tratasz = q taztia

1 1 1
rtti3,12 —tl43t14 + t3,3t2,4(—a) + t2,3t3,4($) + t1,3t4,4(¥) =0
A 1 1
rtty 12 t1,3t4,4(—5) + 752,3153,45 = t33t24(q — 5) + t34023

1 A A
rtt10,15 t3,4t2,35 + t1,4t4,3(¥) +toatss(N + ?) = ta3t34
rtlr1s  toalsz = q tagtos + A tiatss

1 1
rttio,12 —t33t2.4 + t1,3t4,4(5) + t2,3t3,4(?) = t14la3

Commutation relations o, - t2 ;

rttes  to1tao = q laata
rtteo  toitaz = q taslay
rtters  toites = taatan
rtte1o  tastas = @Ptastos + A taitay
rtteg1a  toatos = q laatao

rtle1s  lostos = q taatas
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Commutation relations to; - t4;

rits to1la1 = qtaaton

1
rttss  toatas = taotar + taatao(q — 5)

1
rttss  toitas = taglor + taatas(q — 5)

1 A A A
rttgs  loatss = f4,4t2,15 + 754,3152,2(—5) + t4,2t2,3($) + taatoa( X+ q_4)

1 1
rttiaas taator +toatan(q — 5) = t2,1t4,45

rttss  lootsn = tyitos
rttge  loatso = tyota2q
1 A A
rits 7 ooty s = t4,3t2,25 + t471t2’4<$) + t4,2t2’3(>\ + ?)
1 A 1
rttisio  tastoo + tastso(q — a) = t2,1t474(—5) + t272t4’36
1

rttss  tootas = taatoo + taotas(q — 5)

ritsg  tosts1 = ta1to3

A 1
rttg 10 lo3ts2 = t4,1t2,4(—5) + t4,2t2,35

1 A A
rttia;  lagtaz = t2,3t4,2a + t2,1t4,4(¥) + t2,2t4,3(?)
rttg11 to3taz = la3t23q

1
rtts1a  tostsa = tystoa(q — 5) + ta 423

1
rttg13  toats1 = 754,1752,45

1 1 1
rttiga  taitos = t2,3t4,2(—a) + t2,2t4,3($) + t2,1t4,4(¥)
rttg1a  loatso = laolay
rttg1s  toatsz = la3tos

rttg16  toataa = qtaalos
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Commutation relations t3; - t3 ;

ritis  lsalse = q tsatsa
rtting  t3alssz = q lastsn
rttinis taatsa = QPtaatsn
rttinie taalss = @ lsatsz 4+ Asitsy
rttii,a t32t34 = q l34t32

rtt11,15  t33t34 = q 134133

Commutation relations t3; - t4;

’I“ttlg,l

Tttu’g
Ttt12’3

Ttt1274

rit15,13
?”tt12’5
T'tt1276

rtti5,10
Ttt1278

T’ttlg,g
rtti12,10

rttio11
rtti2,12
rtt12,13

Ttt1574

Ttt1277

rtt12,14
rtti2.15

rtt12,16

l31ta1 = qlaats;

1
tsatao = taots1 + taatsa(q — a)

1
tsatas = tastss + taatss(q — a)

1
taatsn = ——tastzo + —taolsz + —laitsa
q q q

t3itaa = qlaats s + Maitsa
t32ts1 = t41132
t32t42 = t42132q
t3otas = q tagtso +q A tgstas + M3 itaa
1
tgotsa = taatss + taotsa(q — E)
t33t41 = ta1l33
taotss = qtsstas + Aqtsata
t3.3t43 = t4,31339
1

t3atsa = tastsa(q — 5) + 144133
L1134 = ql3 s

1 1 1
t34ts1 = t3,3t4,2(—a) + 753,1%4(@) + t3,2t4,3¥

1 A A
t32t43 = 5t4,3t3,2 + Et4,1t3,4 + (A + ?)M,zts,?,

t34l40 = tyol34
t3.4t43 = t43t34

t34ts4 = qlyatsy
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Commutation relations t4; - t4;

rtties  taatap = q taotsn
rttigg  Taataz = q tastan
rttisas  taitas = Ctaatas
rttig10  taataz = C_I2754,3t4,2 + Myitaa
rttie,14a  taolas = q laatsp

rttie,15  taglas = q Taatss

We conclude this section by writing explicitly the conditions for S(7") to be the
antipode of A(Sp,(4,C)). However we can notice that these relations are already
contained in (or can be deduced from) the above ones.

—q*tiats — @*tistas + qlistss + tiatas =1
— @ tuats — tistss + tiatss + ¢ tiatss = 0 ;
qtiator + tiztos — ¢ tiatas — ¢ Ptiitas = 0 ;
tutin + ¢ st — ¢ tiotiy — ¢ it =0 ;
—q*toats — @ tastas + qlostas + tortas = 0 ;
@’tostsr — @Plastss + taotss + ¢ tortss = 1;
taator + togtas — ¢ taotay — ¢ Pttty = 0 ;
toatin + g astiz — ¢ Ptastis — ¢ Montia =0
—q*tsatsy — @*tastas + qlastss + tartas = 0
—@*tsatsr — Plastan + taotss + ¢ taitsn =0
qtsator + tazbas — q *taotay — ¢ Ptarbas = 1;
taatin + ¢ tsstio — ¢ Ptsatis — ¢ Maitia =0
—q"tusts — ¢*tastas + qlastsz + tatss =0
—@Ptuatsr — @Ptastss + tastss + ¢ tartss = 0 ;
Gtaator + tagtar — ¢ tastay — ¢ Ptartas = 0 ;
taatin + ¢ Mtagtio — ¢ Ptastis — ¢ Hatia =1
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