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Abstract

According to the standard cosmological (ΛCDM) model, the universe today is mainly
composed by a cosmological constant, denoted by Λ, and by Cold Dark Matter (CDM).
Whereas this standard paradigm is tremendous agreement with Cosmic Microwave
Background (CMB) and Large-Scale Structure (LSS) data, some discrepancies exist,
on the cosmological and local determination of the Hubble parameter H0, and on the
measurement of the amplitude of the matter fluctuations, σ8. Additionally, assuming the
ΛCDM model, cosmological N -body simulations predict too many dwarf galaxies and too
much (C)DM in the innermost regions of galaxies, with respect to observations. Moreover,
the dynamical properties of the most massive Milky Way satellites are not reproduced
in simulations. The inclusion of baryon feedback is crucial to give a realistic picture of
the aforementioned problems, and it shows that baryons can indeed mitigate this CDM
“small-scale crisis”. Nevertheless, in the absence of a solution within the ΛCDM framework,
and driven by the fact that the fundamental nature of the dark sector is still unrevealed,
alternative DM scenarios emerged as a possible way to explain the tensions. In fact, many
non-cold (nCDM) candidates have been proposed in order to provide a better description of
the structure formation and distribution at small scales, with respect to the ΛCDM model.

The effect of the existence of a nCDM particle is a suppression of the matter
power spectrum P (k) on small scales, induced, e.g., by its small mass or some non-
standard interaction. The suppression in the power spectrum can be described by the
so-called transfer function T (k), namely the square root of the ratio of the matter
power spectrum in the presence of nCDM with respect to that in the presence of CDM
only. Most of the constraints from structure formation data obtained so far, refer to
a specific shape of the power suppression, corresponding to the case of thermal Warm
DM (WDM), i.e., candidates with a Fermi-Dirac/Bose-Einstein momentum distribution.
However, most of the viable particle DM candidates do not feature a thermal momentum
distribution, making the oversimplified notion of thermal WDM incapable to describe
the shape of their transfer functions. Besides particle DM scenarios, another intriguing
possibility that can be tested against small-scale observations is the case where a significant
fraction of DM is made by Primordial Black Holes (PBHs), given that Poisson fluctuations
in the PBH number density induce a small-scale power enhancement departing from
the standard CDM prediction.

In this thesis, we firstly introduce a new analytic parametrisation for the transfer
function, simple yet versatile enough to describe the gravitational clustering signal of
large classes of non-thermal nCDM models, such as sterile neutrinos, ultra-light scalar
DM, mixed DM fluids, and interacting DM. The goal is to systematically test these
models against the most constraining data set for small-scale deviations with respect
to ΛCDM, i.e., high-resolution and high-redshift measurements of the Lyman-α forest,
the absorption line pattern produced by intervening inter-galactic neutral hydrogen
in the spectra of distant quasars. We thus illustrate how to exploit such observable
to constrain practically any non-standard DM scenarios without the need to run any
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specific numerical simulations, due to the novel parametrisation proposed, to a large
suite of pre-computed hydrodynamic simulations, and to an advanced scheme efficiently
interpolating across different cosmological models. We demonstrate that the shape of
the linear matter power spectrum for thermal WDM models is in mild tension (∼ 2σ
C.L.) with data, compared to non-thermal scenarios, and we probe for the first time the
small-scale shape of the DM power spectrum for a large set of nCDM models, through
extensive Monte Carlo Markov Chain (MCMC) analyses.

We then use the Lyman-α data to update current constraints on ultra-light scalar DM
models, and we further investigate the cosmological implications at high and low redshifts.
For scalar DM constituting more than 30% of the whole of the DM, we obtain a lower limit
m & 10−21 eV for the scalar DM mass, which implies an upper limit on the initial field
displacement of φ . 1016 GeV. We derive limits on the energy scale of cosmic inflation
and determine an upper bound on the tensor-to-scalar ratio of r < 10−3, in the presence
of scalar DM. We also find that there is very little room for scalar DM to solve the CDM
small-scale crisis without hitting the Lyman-α bounds. We then focus on quantifying
the impact of the Quantum Potential (QP) during the non-linear evolution explored
by our hydrodynamic simulations. We improve upon the nearly universally adopted
approximation to encode the non-standard nature of the DM candidate in the transfer
function used to produce the initial conditions for the simulation, by accurately following
the scalar DM evolution in aN -body set-up without approximating its dynamics. Since the
new constraints do not depart significantly from the previous ones, this represents the first
direct validation of the approximations generally adopted in the literature. Furthermore,
we perform a thorough characterisation of the DM halo properties, determining the
typical mass scale below which the QP has a significant impact.

We then focus on interacting DM scenarios, specifically on models where the dark
sector is composed by two types of relic particles, possibly interacting with each other:
non-relativistic DM, and relativistic Dark Radiation (DR). Based on the general parametri-
sation previously discussed, we introduce a new Lyman-α likelihood, applicable to a wide
range of non-standard cosmological models, with complementary scale and redshift
coverage with respect to CMB and Baryon Acoustic Oscillation (BAO) data. In fact,
for two of the considered interacting scenarios, we find that Lyman-α data strengthen
the CMB+BAO bounds on the DM-DR interaction rate by many orders of magnitude.
However, models solving the missing satellite problem are still compatible with the new
bounds. For the third class of models, Lyman-α data bring no stronger constraints on
the interaction rate than CMB+BAO data, except for extremely small values of the DR
density. Using a theory-motivated prior on the minimal density of DR, we also find that
in this framework the H0 tension can be reduced from 4.1σ to 2.7σ, while simultaneously
accommodating smaller values for σ8, as hinted by cosmic shear data.

Finally, we present Lyman-α constraints on the PBH mass and abundance, by means
of a new grid of high-resolution hydrodynamic simulations. We obtain a marginalised
upper limit on the product of the PBH mass and fraction of fPBHMPBH ∼ 60 M� at
2σ C.L., when a Gaussian prior on the reionisation redshift is imposed, preventing its
posterior distribution to peak on very high values, which are in disagreement with various
recent independent measurements. Such constraint weakens to fPBHMPBH ∼ 170 M�,
when a more conservative flat prior is instead assumed. Both limits improves previous
bounds from the same observable by roughly 2 orders of magnitude. We also extend our
predictions to non-monochromatic PBH mass distributions, ruling out large parts of the
parameter space for two of the most accredited PBH extended mass functions.
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“Può darsi che il visibile sia nato
da una bagarre di spiriti inferociti.
Ma tempo e spazio erano già creati?
Peccato, dice Crono al suo collega.
Si stava molto meglio disoccupati.”
Eugenio Montale

1
Introduction

1.1 The standard cosmological model

The Big Bang cosmology predicts that the universe started in a hot and dense state,
and has been expanding over time. The rate of expansion depends on the types of
matter and energy present in the universe. The most accredited parametrisation
of this theory is the standard cosmological model or ΛCDM model, which assumes
that General Relativity is the correct theory of gravity on cosmological scales.
According to this model, the universe contains a cosmological constant, denoted
by Λ, associated with Dark Energy (DE), Cold Dark Matter (CDM), i.e. non-
baryonic matter which decoupled while non-relativistic from the primordial plasma,
and the small amount of ordinary matter which explains the primordial light
element abundances (Alpher et al. 1948). The fundamental nature either of DE
or (C)DM still remains undiscovered, however the former is responsible for the
accelerating expansion of the universe observed in the light from distant galaxies
and supernovae (Hubble 1929; Riess et al. 1998; Perlmutter et al. 1999). The
existence of the latter is necessary to explain the shape of the galaxy rotation
curves (Corbelli & Salucci 2000), the galaxy cluster dynamics observations (Clowe
et al. 2006), and the formation of all the structures present today in the universe,
which arose through gravitational instability from the small perturbations originated
by quantum mechanical fluctuations in the very early universe.

Many observations are indeed explained and reconciled among each other
assuming that we live in an expanding universe, described by the scale factor a(t),
which accounts for the time-dependence of physical distances due to the expansion,
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1.1. The standard cosmological model 2

and by the current value of the Hubble parameter H0 = 100 ·h km s−1 Mpc−1 (with
h ' 0.7 (Aghanim et al. 2018; Riess et al. 2019), via the Friedmann equation:

H2 = 8πG
3 ρtot −

k

a2 ,

where G is the universal gravitational constant, the Hubble parameter H ≡ 1
a
da
dt

represents the expansion rate of the universe, ρtot ≡
∑
i ρi is the total energy

density of the universe and k is the spatial curvature, which can assume the values
k = −1, 0,+1 respectively in the case of open, flat or closed universe. The values
of the energy densities of the different components of the universe ρi control a(t).
They are typically expressed in units of the so-called critical density ρc:

Ωi ≡
ρi
ρc

= 8πGρi
3H2 ,

where ρc ≡ 3H2/8πG is the critical density, namely the total energy density
of a flat universe (k = 0).

The evolution of each cosmological component is fully specified by its equation of
state:

wi = pi
ρi
,

where ρi and pi are the density and pressure of the i-th component, respectively.
Whereas DM and baryons have zero pressure (wDM = wb = 0), DE is interpreted
as a cosmological constant, so that wDE ≡ wΛ = −1. Concerning the radiation
density, it accounts for two components, namely Ωr = Ωγ + Ων : the former is the
photon contribution (wγ = 1/3), the latter is the neutrino contribution, following
from the assumption of 3 neutrino species, with mass mν � 1 eV. Massive
neutrinos have an equation of state wν = 1/3 while relativistic, and wν = 0
after they become non-relativistic. Neutrinos contribute to the radiation density
only until they are relativistic. Since the universe appears to have zero global
spatial curvature (k = 0), its total density ρtot has to be equal to the critical
density ρc, so that Ωtot ≡ ρtot/ρc ' 1. In the ΛCDM framework, the current
values of the relative densities Ωi of DE, DM, baryonic matter and radiation are:
ΩΛ ' 68.3%; ΩDM ' 26.8%; Ωb ' 4.9%; Ωr ' 10−5 (Aghanim et al. 2018).

Density fluctuations are determined through the gravitational instability of an
initial spectrum of perturbations. The most plausible mechanism to account for the
origin of the perturbations in the universe and produce a set of initial conditions is
the cosmic inflation, namely a very early phase (presumably 10−34 seconds after
the Big Bang) in which the universe exponentially expanded with time (Liddle
1999). The inflationary hypothesis predicts that quantum fluctuations are produced
in the very early universe, when the relevant scales are casually connected, then



1.1. The standard cosmological model 3

these perturbations are whisked outside the causal horizon by expansion, so that
they remain frozen with constant amplitude until they re-enter the horizon at a
later time, to serve as initial conditions for the evolution of inhomogeneities and
anisotropies (Lyth & Riotto 1999). From inflation one obtains an initial spectrum
of perturbations that is a power law with a power law index or tilt ns ' 1.

The standard paradigm that we have briefly illustrated predicts the existence of
the Cosmic Microwave Background (CMB), a thermal radiation left over when the
universe went out of thermal equilibrium and could not be considered as a plasma
any longer (Dicke et al. 1965). The CMB, predicted by Gamow in 1948 (Gamow
et al. 1948) and discovered by Penzias and Wilson in 1965 (Penzias & Wilson 1965),
has an almost isotropic black body spectrum with temperature T ' 2.7 K. It
can be considered as a snapshot of the universe when it was about 300000 years
old. However, the CMB is not perfectly uniform: it presents fluctuations in its
temperature field across the sky, detected for the first time by the FIRAS experiment
in the COBE spacecraft in 1992 (Smoot et al. 1992). Since the end of the 1990’s
several satellites have been sent in space to improve COBE measurements: the
spacecraft WMAP operated nine-year observations both on temperature anisotropies
and polarisation until 2010 (Bennett et al. 2013); the ESA satellite Planck was
launched in 2009 to take data with extremely high sensitivity (down to an angular
scale of a few arc-minutes) both on CMB temperature and polarisation. The
Planck Collaboration made three public data releases: in 2013 (Ade et al. 2014), in
2015 (Ade et al. 2016a), and in 2018 (Aghanim et al. 2018), all of them in excellent
agreement with ΛCDM predictions. Besides CMB, also the gravitational clustering
signal on large scales matches very well the expectation for a CDM scenario. Large-
Scale Structure (LSS) surveys such as BOSS/SDSS (Palanque-Delabrouille et al.
2013; Alam et al. 2017) have completed the picture at low and intermediate redshifts,
through detection of galaxies (z < 0.7) and the Lyman-α forest (z ' 2.4).

Hence, the possibility to simultaneously explain the early time CMB anisotropies
and the LSS of the universe at late times, has solidified the standard CDM paradigm,
in which DM is cold and collisionless, as a cornerstone of modern cosmology.

Despite its remarkable success, the standard ΛCDM model has been challenged
by possible disagreements in different data sets. The most notable of these is
the H0 tension, where the value of the Hubble Constant inferred from CMB and
BAO data (Aghanim et al. 2018), is significantly lower than the value locally
measured with supernovae (Riess et al. 2019). Similarly, measurements of σ8 – the
root-mean-square matter fluctuations in a sphere of 8 Mpc/h radius – also yield
a mild discrepancy across different observations; the latest CMB+BAO inferred
value (Aghanim et al. 2018) is slightly higher than the value obtained from weak
lensing experiments (Hildebrandt et al. 2018; Abbott et al. 2018; Joudaki et al. 2019).
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In addition to these tensions, the standard CDM paradigm clearly exhibits some
limits at sub-galactic scales, often denoted as the ΛCDM small-scale crisis. In fact,
assuming the ΛCDM model, cosmological N -body simulations predict too many
dwarf galaxies (missing satellite problem (Klypin et al. 1999; Moore et al. 1999)
within the Milky Way (MW) virial radius, and too much DM in the innermost
regions of galaxies (cusp-core problem (Donato et al. 2009), as well as showing more
diversity in the inner density profile (diversity problem (Oman et al. 2015; Tulin
& Yu 2018)), with respect to observations. Moreover, the most massive predicted
subhalos, which have so much enclosed mass that they should have ignited, remain
unseen (the too-big-to-fail problem (Boylan-Kolchin et al. 2011).

These small-scale problems could be alleviated by invoking baryon physics, still
not perfectly understood and implemented in cosmological simulations (Garrison-
Kimmel et al. 2017; Sawala et al. 2016; Pawlowski et al. 2015). For instance, it is
known that photo-evaporation from ultraviolet (UV) sources during the reionisation
period pushes gas out from small halos, preventing star formation and reducing
the number of observed substructures (Okamoto et al. 2008). Moreover, supernova
feedback may be able to make the inner parts of halo density profiles significantly
shallower (Governato et al. 2012). However, it is currently hard to model and
implement these baryon effects in hydrodynamic simulations, without being affected
by large uncertainties. Whereas a more accurate modelling of baryon feedback is
crucial to provide a realistic picture of these problems and probe to which extent
baryons can alleviate the CDM crisis, another possible solution is to modify the
nature of DM, by going beyond the standard CDM paradigm.

DM candidates are generally classified according to their velocity dispersion,
which defines a free streaming length. On scales smaller than their free streaming
length, density fluctuations are erased and gravitational clustering is suppressed. The
velocity dispersion of CDM particles is by definition so small that the corresponding
free streaming length is negligible for cosmological structure formation. The most
accredited CDM candidate, very well motivated by theoretical particle physics,
is in the form of a Weakly Interacting Massive Particle (WIMP) (Jungman et al.
(1996)). Nonetheless, such particles have so far eluded detection in direct and
indirect searches, as well as at colliders (Bertone & Tait 2018).

On the other hand, non-standard DM scenarios featuring small DM particle
masses, large momenta and/or non-standard interactions tend to suppress the
gravitational clustering at small scales. Such models have thus gained a lot of
interest in recent years, as viable alternatives to the standard ΛCDM paradigm. The
“golden goal” is to find a theoretically well motivated non-cold DM (nCDM) model,
providing nearly the same predictions of ΛCDM in terms of CMB and LSS, while
simultaneously solving the H0 and σ8 tensions, and inducing a small-scale clustering
suppression which better fits the astrophysical observations at non-linear scales.
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1.2 The matter power spectrum

Even though both matter inhomogeneities and CMB anisotropies originated in the
same context, they appear very different today. Whereas matter inhomogeneities
have grown because of gravitational attraction, the radiation pressure prevents the
same process from occurring in the photons. Hence, while the matter distribution
on scales roughly below O(10 − 102 Mpc) is organised in the form of non-linear
structures like filaments, galaxies and clusters, photon perturbations are linear
even on small scales. The linear regime is the easiest to work in from a theoretical
standpoint, as linear cosmological perturbation theory is well understood and
gives definite predictions.

Though CMB anisotropy observations have nowadays reached incredible levels
of precision, they only give us a partial view of the universe, as it was on a thin
shell at around redshift z ' 1100, known as the last scattering surface. The
main difference between LSS and CMB is in the number of scales that one can
measure. While the CMB is coming from a thin spatial shell, the LSS is 3-
dimensional. We thus expect the latter to have more constraining power than
the former. Nevertheless, only recent constraints coming from LSS have become
comparable to the CMB bounds on cosmological parameters, due to the different
physical regimes that the two approaches probe.

However, it is already now evident that DM, though dominant in terms of
its overall energy density, is only one ingredient in a complex system of matter
components that are responsible for forming the structures that we observe. Driven
by the tensions between observations and simulations, briefly discussed in the
previous Section, our picture of structure formation is indeed becoming progressively
more complicated. Ongoing and future LSS surveys have been (or will be soon)
providing increasingly accurate measurements of the matter distribution on various
scales and redshifts, offering tremendous opportunities to further stress-test the
standard ΛCDM model and its possible alternatives.

In order to describe and model the observed clustering of matter, galaxies or
gas, it is useful to look at the correlation function of the overdensity field of these
tracers. Assuming that the overdensity is a homogeneous and isotropic Gaussian
random field with zero mean value, all the information is contained in the 2-point
(auto-)correlation function1, ξ(r), defined as an excess probability of finding a pair
of galaxies at a given distance r12 = |x1 − x2|, namely:

dP = n2δV1δV2[1 + ξ(r12)], (1.1)
1Let us stress, however, that the non-linear structure evolution tends to move part of this

information into higher n-point correlation functions, as we will see in the following Subsections.
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where n is the average number density and δVi are the volume elements separated
by a distance r12, so that

ξ(r12) = 〈δ(x1)δ(x2)〉, (1.2)
where δ(x) describes the matter overdensity field at a given time t, i.e.

δ(x, t) = ρ(x, t)
ρ̄(t) − 1, (1.3)

with ρ̄ being the matter field mean density of the universe. Note that ξ only depends
on the amplitude r12 of r12, following from the fact that the density perturbation
field δ(x) is assumed to be a homogeneous and isotropic random field.

From Equation (1.3) one can notice that the overdensity field must satisfy
−1 ≤ δ(x, t) < ∞. As we already stated, the overdensity δ is � 1 only at large
enough scales and/or at early enough times, so that the linear perturbation theory
is applicable only in such regimes.

The power spectrum P (k) of the overdensity field can be identified as the
Fourier transform of the correlation function, i.e.

ξ(r12) =
∫ d3k

(2π)3 P (k) e−ik(x1−x2), (1.4)

where the wavenumber k is related to the wavelength λ of the matter fluctuation
by k = 2π/λ. It is thus defined as:

P (k) = 1
(2π)3 〈|δ(k)|2〉. (1.5)

The shape of the power spectrum is sensitive to the values of the cosmological
parameters, and different cosmological probes allow us to measure it at different
scales. To illustrate this point, in Figure 1.1 we report the reconstructed linear
matter power spectrum at redshift z = 0, obtained using different observations. Such
plot is taken from the latest public release from the Planck Collaboration (Akrami
et al. 2018), to which we refer for the details on the data sets under consideration.

Let us note that, at the linear perturbation level, different k-modes evolve
independently, and the covariance matrix is purely diagonal. However, as the
density field becomes non-linear, different modes couple among each other. In fact,
late-time LSS analyses can be roughly split into three regimes:

• large (linear) scales (& 30 Mpc/h), where fluctuations are Gaussian and
practically fully characterised by the two-point correlation function (as defined
in Equation (1.2));

• intermediate (mildly non-linear) scales (∼ 1− 30 Mpc/h);

• small (highly non-linear) scales (. 1 Mpc/h), where galaxies are forming and
galaxy cluster cosmology becomes important.

In the following Subsections we will briefly discuss these three different regimes,
and the impact of non-linear effects on the large-k region of the power spectrum.
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Figure 1.1: The linear matter power spectrum, at redshift z = 0, inferred from different
cosmological probes. Different colours refer to different cosmological probes; the black
solid line represents the standard ΛCDM prediction. This plot is taken from Akrami et al.
(2018), to which we refer for the details on the data sets under consideration.

1.2.1 Large scales

As it has been already explained, fluctuations on a sufficiently large scale (and/or at
sufficiently high redshift) can be described by linear perturbation theory. Therefore,
in this regime, the linear matter power spectrum gives a complete statistical de-
scription of the density fluctuations. Even before the formulation of the inflationary
paradigm, a scale-invariant power spectrum of the initial perturbations in the
gravitational potential Φ – i.e., PΦ(k) ∝ 〈|Φ((k))|2〉 – was suggested, so that

k3PΦ ∝ const. (1.6)

It is thus common to express such primordial power spectrum in terms of deviations
from pure scale-invariance, namely:

PΦ ∝
kns−1

k3 , (1.7)

where the spectral index ns has a value close to 1, and the case of ns = 1 is known
as the Harrison-Zel’dovich power spectrum. In this case, fluctuations on different
length scales correspond to the same amplitude of fluctuation in the gravitational
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potential. Inflation theories predict an almost scale-invariant primordial power
spectrum, characterised by a tiny deviation from the Harrison-Zel’dovich case
(see, e.g., Guth & Pi (1982); Bardeen et al. (1983)).

Let us now relate the power spectrum PΦ of the perturbations in the gravitational
potential to the matter power spectrum, as defined in Equation (1.5). This can
be done through the Poisson equation, which relates the gravitational potential
Φ to the matter overdensity field δ:

∇2Φ = 4πGa2ρ̄δ, (1.8)

from which we see that δ(k) ∝ k2Φ(k), finally leading to

P (k, z) ∝ kns . (1.9)

The value of the primordial tilt was lately measured with great precision by
Planck (Aghanim et al. 2018), obtaining ns = 0.965± 0.004, which is in excellent
agreement with the predictions from inflation.

The rate at which matter fluctuations grow on different scales is determined by an
interplay between self-gravitation, pressure forces and damping processes, yielding
a modification of the shape of the primordial power spectrum, i.e. a modification of
Equation (1.9). Density fluctuations on scales larger than the size of the Hubble
horizon (∝ H−1) grow through self-gravity. At very early times, all relevant scales
are outside the horizon and do not grow. However, since the horizon grows with
time, it progressively incorporates density fluctuations on larger scales, which start
growing depending on the epoch when the horizon-crossing occurs. Fluctuations
on very small length scales cross the horizon at early times, when the universe is
radiation dominated, so that they are effectively frozen until the matter/radiation
equality, due to the fact that the radiation pressure prevents their gravitational
collapse. After matter/radiation equality (z ∼ 3000) DM fluctuations, which do
not interact electromagnetically with the radiation, can grow. On the other hand,
baryons are still coupled to photons, which provide a pressure force that prevents
their gravitational collapse until redshift z ∼ 1000, when baryonic matter decouple
from the radiation, and progressively fall into DM gravitational potentials.

The interpretation of the shape of the linear power spectrum, as shown in
Figure 1.1, is now clear. Its turn-over corresponds to the horizon scale at mat-
ter/radiation equality: high k-modes, which entered the horizon at earlier times,
are suppressed, while low k-modes follow the trend given by Equation (1.9).

All of this information is typically encoded in terms of a transfer function T (k, z),
which allows us to finally express the power spectrum as a function of scale and time:

P (k, z) = A(z)T 2(k, z)kns , (1.10)
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where the normalisation A(z) has to be determined observationally.
Let us remark that the power spectrum shown in Figure 1.1 and described

by Equation (1.10) is the linear one. We must therefore keep in mind that it is
supposed to accurately match observations only at sufficiently large scales, i.e. at
wavenumbers k . 0.2 h/Mpc. Furthermore, in reality we do not directly measure
the matter power spectrum. What we do observe are tracers of the underlying
matter field, such as galaxies or gas. However, on large scales, where density
fluctuations are small, one can safely assume that galaxies follow the distribution of
the total matter up to a linear factor, dubbed as the linear galaxy bias bg:

Pg(k, z) = b2
g(z)P (k, z). (1.11)

By relating an observable quantity such as the galaxy power spectrum Pg(k) to
the matter power spectrum P (k), Equation (1.11) allows one to test the large-scale
matter distribution of the universe simply by solving linear perturbation theory
equations. To do this, two publicly available numerical codes are are mostly used:
CAMB (Lewis et al. 2000) and CLASS (Lesgourgues 2011; Blas et al. 2011). The
latter is the one used in this thesis.

The approach described in this Subsection is completely inadequate on inter-
mediate and small scales, where higher order perturbation methods or numerical
N -body/hydrodynamic simulations are needed to efficiently compare theoretical
predictions with astrophysical observations, accounting for the non-linear effects
affecting such scales.

1.2.2 Intermediate and small scales

In the previous Subsection we have seen that the evolution of a small-amplitude
density fluctuation on a given scale can be followed by using linear perturbation
theory, independently of fluctuations on other length scales. However, as anticipated
above, in the later stages of gravitational collapse, fluctuations on different length
scales become coupled and the subsequent evolution is non-linear.

Gravitational instability of matter fluctuations, as already mentioned, somehow
drives galaxy formation, which proceeds via a two-step process. First, gravitational
instability acting on DM, induces the formation of self-gravitating DM halos.
Baryonic gas also takes part in the collapse, and it is heated by shocks to the
thermal (or virial) temperature of the DM halos. Second, the hot gas cools radiatively.
Although the physical principles governing the gravitational, (hydro-)dynamical
and radiative processes involved in galaxy formation are well established, the
systems under consideration are too complex to be studied analytically. Therefore,
cosmological numerical simulations have to be employed to study the final collapse
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of matter fluctuations, and to properly model the shape of the matter power
spectrum at intermediate and small scales.

Presently, the most efficient way to investigate the non-linear regime of structure
formation is through N -body simulations, which numerically solve the coupled
equations of motion of N particles, interacting only through gravity, in an expanding
universe. Such approach has been very successfully applied to model the evolution
of collisionless CDM. N -body simulations can be supplemented with hydrodynamic
routines to follow the evolution of the gas, gravitationally interacting with DM, but
also subject to the aforementioned cooling and heating processes. Two different
approaches are currently in use: Eulerian methods, and Lagrangian methods, also
known as Smoothed Particle Hydrodynamics (SPH). The hydrodynamic simulations
used in this thesis were performed adopting the latter approach (see Chapter 2 –
Section 2.4 and references therein – for further details). In principle, hydrodynamic
simulations can follow the evolution of both the gas and DM without relying
on simplified approximations. In practice, however, simulations are limited by
numerical resolution and computational power. Consequently, some of the key
physical processes, in particular star formation and feedback, have to be modelled
approximately, using semi-analytic recipes. The arbitrariness in the implementations
of these processes make their validity still uncertain, in particular when analysing
very low-redshift and very small-scale regimes, such as the internal structure of
DM (sub)halos. When looking for possible deviations from the standard CDM
predictions, it is then often useful to focus on relatively smooth overdensities
(δ . 20), intermediate scales, and relatively high redshifts (z & 2), where the impact
of non-linearities and galactic feedback is much less prominent.

1.3 The Inter-Galactic Medium (IGM)
Most of the matter in the universe does not reside in collapsed objects. In fact,
by definition, at sufficiently early times, all baryons and DM were part of the
the Inter-Galactic Medium (IGM), i.e. the diffuse gas filling the voids between
galaxies. Even at present time, the large majority of cosmic matter is still in the
IGM. The IGM is indeed a crucial ingredient of any theory of galaxy formation and
evolution. Its characteristics can be investigated through its absorption of radiation
from background sources or through the radiation that it generates in emission.
Studying the IGM properties as a function of redshift can thus provide important
information on galaxy formation and evolution, as well as insight into cosmological
events occurred since recombination: for the purposes of this thesis, we are mostly
interested in the latter possibility. For a comprehensive review on the IGM physics
we address the reader to, e.g., Meiksin (2009); McQuinn (2016).
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Most of the IGM gas observed at relatively high redshift (z & 2) has experienced
only mild gravitational collapse. Moreover, it has gone through little astrophysical
processing other than heating by photo-ionisation and compression, in competition
with the adiabatic cooling by Hubble expansion. These facts make it an ideal
cosmological laboratory.

At redshifts around z ∼ 1000, the IGM has recombined, it has then been neutral
until the first radiative sources, capable to reionise it, were produced. Once the
first galaxies formed, they photo-ionised nearly all the inter-galactic hydrogen, and
heated the IGM to temperatures of O(104 − 105K), smoothing the gas distribution
and affecting the subsequent formation of galaxies. Whereas at high redshift this
ionising background was sourced by stars, by z ∼ 3 quasars became important, if
not dominant. The process of reionisation began as individual sources started to
generate expanding bubbles of ionised hydrogen. As more and more UV sources
switch on, the ionised volumes grow in size, until they overlap and fill all the
inter-galactic space. The IGM is completely reionised when the rate of emission
of UV photons per comoving unit volume balances the radiative recombination
rate, so that hydrogen atoms are photo-ionised faster than they can recombine.
Due to the history that we have just sketched, over 2 . z . 5 there is a wealth of
absorption line data for inter-galactic hydrogen, helium, and metals. Being a tracer
of the non-linear collapse of cosmological structures, the IGM is indeed known
to be a highly inhomogeneous network of filamentary structures, the cosmic web.
Its main manifestation is the Lyman-α forest, namely the absorption pattern of
neutral hydrogen along the line of sights to high-redshift quasars. Such observable
represent an effective probe of the underlying DM overdensity field on a range of
scales (0.5 . k . 50 h/Mpc) which makes it complementary to estimates of the
matter power spectrum from CMB and other LSS probes, such as galaxy surveys
or weak gravitational lensing observations. At least in the intermediate redshift
regime, where the Lyman-α lines are strong enough to be detected, yet not too
strong to be saturated, the absorption spectra of distant quasars are expected to
provide a record of the initial conditions of gravitational structure formation.

1.4 The Lyman-α forest
The Lyman-α forest is a region in the spectra of high-redshift quasars characterised
by a set of absorption lines arising from the absorption of Lyman-α photons,
produced by the distant source, by the residual neutral hydrogen along our line of
sight. Due to the expansion of the universe, each neutral hydrogen “cloud” sees
the photons at a different wavelength, thus leaving its imprint in the spectrum as
an absorption line at 1216 · (1 + z) Å, where z is the redshift of the “cloud”. The
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link between the observable appearance of the Lyman-α forest and cosmology can
be described through the fluctuating Gunn–Peterson approximation, which yields
the following relation for the for Lyman-α optical depth, in velocity space:

τ(z) = 1.3∆b

(
xHI

10−5

)(1 + z

4

)3/2 (H(z)/(1 + z)
dv/dx

)
, (1.12)

where ∆b is the baryon density in terms of the cosmic mean, and xHI is the fraction of
neutral hydrogen. As long as the gas is in photo-ionisation equilibrium, the value of
xHI is given by the balance between photo-ionisation and recombination, except for
regions which have been shock heated to temperatures higher than O(105 − 106 K),
where collisional ionisation is not negligible. Note that Equation (1.12) imply that
the Lyman-α forest is sensitive to xHI ∼ 10−5 at z = 3, which corresponds to very
low neutral hydrogen number densities, i.e. nHI ∼ 10−10 cm−3, and to overdensities
with respect to the mean density of the universe less than about a factor δ ∼ 10−15.

Inference on cosmological parameters from the Lyman-α forest spectra is
complicated by there being no reliable analytic description for the mildly non-
linear densities probed by the forest. All of the analyses do require, indeed, to
be confronted against cosmological numerical simulations, accounting for all the
typical astrophysical contaminants of the signal. Once again, we refer to the
review by McQuinn (2016) for a detailed review of the most commonly adopted
prescriptions to extract reliable mocks from simulations. Let us point out that the
simulations used in this thesis have also been performed following such prescriptions,
which are indeed discussed in the next Chapters, when the methods and results
of our Lyman-α analyses are presented.

Although the absorption line parameters, appearing in Equation (1.12), are
directly related to the physical properties of the absorption systems, estimating such
parameters in numerical simulations can be very computationally demanding. Easier
comparisons can be made by directly focusing on the statistics of the transmitted
Lyman-α flux, F ∝ e−τ . In particular, one of the most studied observable quantities
is the 1D flux power spectrum:

PF (k) = L−1|δF (k)|2, (1.13)

where δF (k) is the Fourier transform of δF (x), namely the overdensity in the
transmitted flux at a position x over a line of sight L, i.e.

δF (x) = F (x)− 〈F (x)〉
〈F (x)〉 , (1.14)

with 〈F (x)〉 being the mean flux transmission fraction, obtained by averaging
over all the considered lines of sight.
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Let us stress that the 1D flux spectrum is, by construction, a projection of
the 3D one, i.e.

P1D(k) = 1
2π

∫ ∞
k

dk′k′P3D(k′), (1.15)

so that:

PF(k) = b2(k)P1D(k), (1.16)

where b(k) is a scale-dependent bias factor.
Clearly, Equation (1.15) implies that the 1D flux power is much more sensitive

to the small scales with respect to the 3D spectrum. This fact, in addition to
its robustness to the messiest astrophysical processes – such as spatial variations
in the IGM temperature or in the ionising UV background, as well as galactic
feedback (see, e.g. Meiksin & White (2004) or the review by McQuinn (2016)
and the references therein) – makes this observable an ideal tool to investigate
the small-scale DM distribution.
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2
A new & general approach to test

non-standard Dark Matter

2.1 Overview
In order to give a better description of the structure formation and distribution
at small scales with respect to the standard ΛCDM model, many non-cold DM
(nCDM) candidates, well motivated by particle physics theories, such as sterile
neutrinos (de Vega et al. 2012; König et al. 2016; Schneider 2016; Merle 2017; Yèche
et al. 2017; Adhikari et al. 2017) or axion-like particles (Hu et al. 2000; Marsh &
Silk 2014; Hui et al. 2017; Iršič et al. 2017a; Armengaud et al. 2017; Kobayashi
et al. 2017; Nori et al. 2019), have been recently studied in the literature. In
addition, there are other non-standard hypotheses potentially able to induce a
small-scale suppression in the matter power spectrum: a mixed (cold and warm)
DM fluid (Viel et al. 2005; Schneider et al. 2017; Diamanti et al. 2017; Gariazzo
et al. 2017), DM particles coupled to DE (Wang et al. 2016; Murgia et al. 2016;
Murgia 2016) or to some relativistic fluid (Boehm et al. 2014; Bringmann et al. 2016;
Archidiacono et al. 2019), or Self-Interacting Dark Matter (SIDM) (Cyr-Racine
et al. 2016; Vogelsberger et al. 2016).

Different scenarios lead to different shapes in the suppression of the power
spectrum, allowing for a direct link between DM models and astrophysical ob-
servations (Murgia et al. 2017; Murgia 2018; Murgia et al. 2018; Archidiacono
et al. 2019; Miller et al. 2019). However, most of the constraints from structure
formation data which have been published so far, refer to a very specific shape of
the small-scale power suppression, corresponding to the case of thermal Warm Dark
Matter (WDM), i.e., candidates with a Fermi-Dirac or Bose-Einstein momentum

15
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distribution (Viel et al. 2013; Baur et al. 2016; Lapi & Danese 2015; Iršič et al.
2017b). Nonetheless, most of viable nCDM candidates do not have thermally
distributed momenta (i.e., they feature truly non-thermal distribution functions),
which may lead to a non-trivial suppression in their power spectra. In particular,
given that non-thermal distributions may feature more than one characteristic
momentum scale, these settings may in fact provide a whole new approach to
resolving the small scale issues of CDM.

The suppressed gravitational clustering characterising nCDM models is usually
parametrised through the transfer function T (k), i.e., the square root of the ratio
of the matter power spectrum predicted by the given model with respect to that
in the presence of CDM only, for fixed cosmological parameters. In this Chapter
we introduce a novel, general approach to test nCDM models, based on a new
analytic fitting formula for T (k), which is simple yet flexible enough to reproduce
a large variety of shapes with only three free parameters.

This Chapter is organised as follows: in Section 2.2 we introduce and motivate
our general approach; in Section 2.3 we show that the new formula is an useful
tool for fitting the behaviour of the most viable DM models provided by particle
physics; in Section 2.4 we discuss the results of the cosmological simulations that
we have performed in order to investigate different parametrisations of the new
transfer function; in Section 2.5 we discuss preliminary astrophysical constraints on
its free parameters, based on linear perturbation theory only; in Section 2.6, we
present the most up-to-date accurate limits on such parameters, obtained through
an extensive analysis the high-resolution and high-redshift Lyman-α forest data,
easily translatable to bounds on the fundamental nCDM properties.

2.2 The novel parametrisation

The suppression of gravitational clustering in nCDM scenarios can be described
through the transfer function T (k), given by:

T 2(k) ≡ PnCDM(k)
PCDM(k) , (2.1)

where PCDM and PnCDM are the power spectra of the CDM and the nCDM
models, respectively.

For the special case of thermal WDM, the transfer function can be well
approximated by the fitting function (Bode et al. (2001)):

T (k) = [1 + (αk)2µ]−5/µ, (2.2)
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Figure 2.1: The blue, green, and red surfaces represent the regions of the {α, β, γ}-
space corresponding to thermal WDM masses of 2, 3, and 4 keV, respectively. The
dots constitute the non-regular grid that we considered for our analyses: the black ones
correspond to the first 55 {α, β, γ}-combinations listed in Table 2.1, while the blue ones
correspond the the remaining 54 combinations reported in the same Table.

where α is the only free parameter, and µ = 1.12. Therefore, constraints on
the mass of the WDM candidate translate into bounds on α, by the following
formula (Viel et al. (2005)):

α = 0.24
(

mx/Tx
1 keV/Tν

)−0.83 (
ωx

0.25 · (0.7)2

)−0.16

Mpc

= 0.049
(
mx

1 keV

)−1.11
(

Ωx

0.25

)0.11 (
h

0.7

)1.22

h−1Mpc ,
(2.3)

where the subscripts x and ν refer to WDM and active-neutrino properties, respec-
tively, and the second equation holds only in the case of thermal relics.

Let us now generalise Equation (2.2) and write down the following fitting formula1

T (k) = [1 + (αk)β]γ, (2.4)

which is a function of three free parameters: α, β, and γ. In Section 2.3 we show
that the simple function given by Equation (2.4) is generic enough to describe
the majority of nCDM models from the literature.

1Note that equivalent fitting functions have already been used by, e.g., Barkana et al. (2001);
Viel et al. (2012); Destri et al. (2013). However, they have only been applied to special cases, and
its general applicability had not been recognised to our knowledge.
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Figure 2.2: Squared transfer functions computed by Equation (2.4), and associated
to the 109 {α, β, γ}-combinations that we used for our analyses (grey solid lines), each
of them corresponding to a different nCDM model (see Table 2.1). We also plot three
squared transfer functions computed through Equation (2.2), corresponding to thermal
WDM models with masses 2, 3 and 4 keV (red, green and blue dashed lines, respectively).

As a next step, let us define the characteristic half-mode scale k1/2, obtained
by setting T 2 ≡ 1/2. Using Equation (2.4), we therefore have:

k1/2 = 1
α

( 1√
2

)1/γ

− 1
1/β

. (2.5)

Whereas through Equations (2.2) and (2.3) we had a one-to-one correspondence
between mx and α, constraints on the DM mass are now, by Equations (2.4) and
(2.5), mapped to 3D surfaces in the {α, β, γ}-space. In other words, given a value of
k1/2, which corresponds to a certain (thermal) WDM mass, we can easily compute
the corresponding surface in the 3D parameter space from Equation (2.5) – but
this information alone is not yet sufficient to decide about the validity of the
point under consideration. In Figure 2.1 we plot the three surfaces associated
to the k1/2-values listed below:

k′1/2 = 14.323 h/Mpc (if thermal: ←→ m′x = 2 keV),
k′′1/2 = 22.463 h/Mpc (if thermal: ←→ m′′x = 3 keV),
k′′′1/2 = 30.914 h/Mpc (if thermal: ←→ m′′′x = 4 keV).

(2.6)

It is indeed well established that thermal warm DM candidates with masses
of the order of 3 keV can induce a suppression in the corresponding matter power
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spectra such that the CDM small-scale crisis vanishes or it is largely reduced (Lovell
et al. (2016, 2017)). Hence, it is compelling to investigate the volume of the
{α, β, γ}-space associated to thermal WDM masses roughly between 2 and 4 keV.
We did that by building a 3D grid in the parameter space which samples such
volume, with each of the grid points unequivocally identified by a certain {α, β, γ}-
combination, corresponding to a different nCDM model. The {α, β, γ}-combinations
which constitute such grid are listed in Table 2.1 and plotted as black and blue dots
in Figure 2.1. Note that, although the points marked in Figure 2.1 may appear to
be somewhat sparsely distributed at first sight, they in fact cover a large fraction of
the relevant parameter space. The reason for this lies in a quasi-degeneracy between
the two parameters α and γ, which we discuss in detail in Appendix A.

For each of the models listed in Table 2.1, we computed the corresponding
transfer function by using Equation (2.4). We report them in Figure 2.2, where the
red, green and blue dashed lines represent the “old” transfer functions, i.e. computed
through Equation (2.2), for m′x = 2 keV, m′′x = 3 keV, and m′′′x = 4 keV, respectively.

Let us now qualitatively describe the role of the different parameters in the
generalised fit for the transfer function. The value of α gives the general scale of
suppression, i.e., it is the most important parameter for setting the position of
k1/2. The parameters β and γ are responsible for the slope of the transfer function
before and after the half-mode scale k1/2, respectively. The parameter β has to
be positive in order to have meaningful transfer functions, since negative values
for β lead to transfer functions which increase with k and reach 1 at small scales.
The larger is β, the flatter is the transfer function before k1/2. Analogously, the
larger is the absolute value of γ, the sharper is the cut-off.

2.3 Connection to particle physics models
The purpose of this Section is to see to which extent the suggested 3-parameter
fitting formula is able to match the transfer functions from different nCDM models.
We chose to focus on sterile neutrinos from resonant production (RP), sterile
neutrinos from particle decay production, mixed (cold plus warm) DM models,
ultra-light scalar DM, and another class of models suggested by the effective theory
of structure formation (ETHOS).

2.3.1 Sterile neutrinos by resonant production

Given that keV sterile neutrinos generically mix with the active-neutrino sector, it is
a natural idea to use this mixing to produce sterile neutrino DM in the early universe.
While it is nowadays known that the production by non-resonant transitions
(Dodelson-Widrow mechanism) (Langacker (1989); Dodelson & Widrow (1994);
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α [Mpc/h] β γ α [Mpc/h] β γ
nCDM1 0.008 1.5 -10.00 nCDM56 0.023 2.0 -6.00
nCDM2 0.005 1.5 -10.00 nCDM57 0.009 2.0 -6.00
nCDM3 0.003 1.5 -10.00 nCDM58 0.006 2.0 -6.00
nCDM4 0.012 1.5 -5.00 nCDM59 0.029 2.0 -4.00
nCDM5 0.008 1.5 -5.00 nCDM60 0.011 2.0 -4.00
nCDM6 0.006 1.5 -5.00 nCDM61 0.008 2.0 -4.00
nCDM7 0.039 1.5 -1.00 nCDM62 0.042 2.0 -2.00
nCDM8 0.025 1.5 -1.00 nCDM63 0.016 2.0 -2.00
nCDM9 0.018 1.5 -1.00 nCDM64 0.011 2.0 -2.00
nCDM10 0.013 2.0 -10.00 nCDM65 0.047 4.0 -6.00
nCDM11 0.008 2.0 -10.00 nCDM66 0.019 4.0 -6.00
nCDM12 0.006 2.0 -10.00 nCDM67 0.012 4.0 -6.00
nCDM13 0.019 2.0 -5.00 nCDM68 0.053 4.0 -4.00
nCDM14 0.012 2.0 -5.00 nCDM69 0.021 4.0 -4.00
nCDM15 0.009 2.0 -5.00 nCDM70 0.014 4.0 -4.00
nCDM16 0.045 2.0 -1.00 nCDM71 0.063 4.0 -2.00
nCDM17 0.029 2.0 -1.00 nCDM72 0.025 4.0 -2.00
nCDM18 0.021 2.0 -1.00 nCDM73 0.017 4.0 -2.00
nCDM19 0.018 2.5 -10.00 nCDM74 0.060 6.0 -6.00
nCDM20 0.012 2.5 -10.00 nCDM75 0.023 6.0 -6.00
nCDM21 0.008 2.5 -10.00 nCDM76 0.016 6.0 -6.00
nCDM22 0.024 2.5 -5.00 nCDM77 0.064 6.0 -4.00
nCDM23 0.016 2.5 -5.00 nCDM78 0.025 6.0 -4.00
nCDM24 0.011 2.5 -5.00 nCDM79 0.017 6.0 -4.00
nCDM25 0.049 2.5 -1.00 nCDM80 0.073 6.0 -2.00
nCDM26 0.031 2.5 -1.00 nCDM81 0.028 6.0 -2.00
nCDM27 0.023 2.5 -1.00 nCDM82 0.019 6.0 -2.00
nCDM28 0.011 2.0 -5.00 nCDM83 0.020 3.0 -7.50
nCDM29 0.010 2.0 -5.00 nCDM84 0.010 3.0 -7.50
nCDM30 0.015 2.5 -5.00 nCDM85 0.009 3.0 -7.50
nCDM31 0.013 2.5 -5.00 nCDM86 0.029 3.0 -2.50
nCDM32 0.025 5.0 -5.00 nCDM87 0.015 3.0 -2.50
nCDM33 0.022 5.0 -5.00 nCDM88 0.013 3.0 -2.50
nCDM34 0.032 10.0 -5.00 nCDM89 0.041 3.0 -1.00
nCDM35 0.028 10.0 -5.00 nCDM90 0.021 3.0 -1.00
nCDM36 0.095 2.5 -0.30 nCDM91 0.019 3.0 -1.00
nCDM37 0.169 2.5 -0.15 nCDM92 0.030 5.0 -7.50
nCDM38 0.061 2.5 -0.30 nCDM93 0.015 5.0 -7.50
nCDM39 0.108 2.5 -0.15 nCDM94 0.014 5.0 -7.50
nCDM40 0.044 2.5 -0.30 nCDM95 0.037 5.0 -2.50
nCDM41 0.078 2.5 -0.15 nCDM96 0.019 5.0 -2.50
nCDM42 0.057 2.5 -0.30 nCDM97 0.017 5.0 -2.50
nCDM43 0.101 2.5 -0.15 nCDM98 0.046 5.0 -1.00
nCDM44 0.051 2.5 -0.30 nCDM99 0.024 5.0 -1.00
nCDM45 0.090 2.5 -0.15 nCDM100 0.021 5.0 -1.00
nCDM46 0.082 5.0 -0.30 nCDM101 0.035 7.0 -7.50
nCDM47 0.109 5.0 -0.15 nCDM102 0.018 7.0 -7.50
nCDM48 0.052 5.0 -0.30 nCDM103 0.016 7.0 -7.50
nCDM49 0.069 5.0 -0.15 nCDM104 0.042 7.0 -2.50
nCDM50 0.038 5.0 -0.30 nCDM105 0.022 7.0 -2.50
nCDM51 0.050 5.0 -0.15 nCDM106 0.019 7.0 -2.50
nCDM52 0.049 5.0 -0.30 nCDM107 0.048 7.0 -1.00
nCDM53 0.065 5.0 -0.15 nCDM108 0.025 7.0 -1.00
nCDM54 0.043 5.0 -0.30 nCDM109 0.022 7.0 -1.00
nCDM55 0.058 5.0 -0.15

Table 2.1: Here we report the 109 {α, β, γ}-combinations that we considered for our
analyses, each of them associated to a different nCDM model. We used the corresponding
transfer functions, computed via Equation (2.4), as initial conditions to perform the
cosmological simulations described in Section 2.4. Models highlighted in bold-face are
accepted at 2 σ C.L. by our reference Lyman-α forest analysis (see Section 2.6).
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Figure 2.3: Example distributions functions (left) and corresponding transfer functions
(at z = 0; right) for resonant (Shi-Fuller) production, including one example for non-
resonant (Dodelson-Widrow) production, green curve, for comparison. On the right panel,
one can see that the transfer functions are fitted very well by the parametrisation from
Equation (2.4).

Merle et al. (2016)2) is incompatible with structure formation (Viel et al. (2013);
Adhikari et al. (2017)), a suitable lepton number asymmetry in the early universe
(whose origin is not necessarily clear, though) can resonantly enhance the active-
sterile transitions (Shi-Fuller mechanism) and yield spectra that are more likely
to be in agreement with data (Enqvist et al. (1990); Shi & Fuller (1999); Abazajian
et al. (2001); Canetti et al. (2013); Venumadhav et al. (2016); Ghiglieri & Laine
(2015)). Note, however, that also this mechanism is restricted to a small successful
region in the parameter space (Cherry & Horiuchi (2017); Adhikari et al. (2017)).

As can be seen from Abazajian et al. (2001); Venumadhav et al. (2016); Ghiglieri
& Laine (2015), the distribution functions resulting from resonant production can
be highly non-thermal: typically, they feature one or more narrow peaks on top
of a continuous spectrum, see Figure 2.3. This Figure shows different momentum
distribution functions (left) and the corresponding transfer functions (right), for
a few example values of the sterile neutrino mass mN , the active-sterile mixing
angle sin2(2θ), and the lepton asymmetry Lµ.3 Note that the green curve actually

2Note that, contrary to previous statements in the literature (Dodelson & Widrow (1994);
Colombi et al. (1996)), non-resonantly produced sterile neutrinos also feature a non-thermal
distribution (Merle et al. (2016)), rather than a suppressed thermal spectrum. However, while this
slightly changes the published numerical values of the bounds on this setting, the basic conclusion
of non-resonant production being excluded remains valid (in fact, it is even made stronger) (Merle
et al. (2016)).

3Due to the current technical limitations of the software developed in conjunction with Venu-
madhav et al. (2016), the lepton asymmetry can only be placed in the muon sector, if the package
sterile-dm is used. However, as shown by Ghiglieri & Laine (2015), the results would not be
altered dramatically if the lepton asymmetry was present in another sector.
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features Lµ ≡ 0, i.e., a case of non-resonant production. Compared to the red
curve, one can see that in this case a larger mixing angle is required to meet the
correct abundance, and also the spectrum is different from the resonant cases. The
plots in the right panel illustrate the corresponding transfer functions (solid lines),
along with the fits obtained from Equation (2.4) using a least squares approach
(dashed lines). As can be seen already by eye (and is confirmed by a goodness-of-fit
test), our general transfer function, Equation (2.4), provides excellent fits to these
cases, with parameter values within the grid that we defined (see Figure 2.1 and
Table 2.1). This remains true also for distributions with more than one scale, which
can e.g. be seen for the orange curve in the plots.

Given that the distributions that we tested (more than shown here) are very
representative for resonant production of sterile neutrino DM, we conclude that
our fitting function describes this class of models very well.

2.3.2 Sterile neutrinos from particle decays

����� ����� ����� � �� ���
��-�

��-�

��-�

�����

�����

ξ≡S-�/��/�

ξ
�
�(
ξ
)

������ ������� �����
���������� �� ��� �������
�������� ���� ������

���������
�� [���]
�� [���]
λ [��-��]
� [��-�]

ξ≡
�

�
S-�/�� S≡

�� (�)

�� (��)
��� ������� ������
��� ����� ����

����
����
����
����

����
����
����
����

����
����
����·���

����
����
����
����
����

��� � � �� �� ���
���

���

���

���

���

���

� [�/���]

�
(�
)

�� �� �� �� ��
����

����

����

����

����

������ ������ �������� ���������

����� �����������
(α�β�γ)-���

���������
α [���/�]
β
γ

�����
���
-���

�����
���
-���

�����
���
-���

�����
���
-���

Figure 2.4: Example distributions functions (left) and corresponding transfer functions
(at z = 0; right) for scalar decay production. On the right panel, one can see that the
transfer functions are fitted very well by the parametrisation from Equation (2.4).

Another potential production mechanism for sterile neutrino DM relies on the
decay of a hypothetical parent particle in the early universe, whose properties (in
terms of the momentum distribution) translate into those of the resulting keV sterile
neutrino. A very simple case discussed frequently in the literature is that of a
singlet scalar particle which may via its interactions with the Standard Model Higgs
boson either thermalise (and thus be equilibrated and ultimately freeze-out) or
not (and thus freeze-in), see Kusenko (2006); Petraki & Kusenko (2008); Merle
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et al. (2014); Merle & Totzauer (2015); Shakya (2016); König et al. (2016) for very
detailed treatments. Other possibilities for parent particles, like pions (Lello &
Boyanovsky (2015)) or electrically charged scalars (Frigerio & Yaguna (2015)), do
not exhibit any qualitatively different behaviour.

For decay production, the resulting distribution functions are highly non-thermal,
with spectra not only having a shape very different from the thermal one but also
featuring, in general, two distinct characteristic scales (Merle & Totzauer (2015);
König et al. (2016)), or even three if a subdominant subsequent Dodelson-Widrow
modification is taken into account (Merle et al. (2016)). Four example distributions
are depicted in the left panel of Figure 2.4, for different values of the sterile
neutrino and decaying scalar masses, along with the two parameters λ (Higgs portal)
and y (Yukawa coupling), which shape the distributions (see Merle & Totzauer
(2015); König et al. (2016) for details). The plots in the right panel illustrate the
corresponding transfer functions (solid lines), along with the fits obtained from
Equation (2.4) using a least squares approach (dashed lines). As for the case of
resonantly produced sterile neutrinos, the general parametrisation of Equation (2.4),
provides an excellent fit to the “exact” transfer functions, with parameter values
within the grid that we defined (see Figure 2.1). This is true also for distributions
with more than one scale, which can be seen for the green curve in the plots.

Given that the distributions that we tested (more than shown here) are very
representative for decay production of DM, independently of the details of the
particle physics setting under consideration, we conclude that our fitting function
describes this class of models very well.

2.3.3 Mixed (cold plus warm) models

In principle, the DM sector may consist of a complicated mixture of different DM
particles (Boyarsky et al. (2009)). Here we study a toy model that assumes the
presence of both a cold and a warm (thermal) component. This simple model,
dubbed as mixed DM, leads to a large variety of shapes in the transfer function,
therefore providing an ideal test for the novel parametrisation, i.e., the fitting
formula of Equation (2.4).

Mixed DM is characterised by two parameters: the mass of the WDM component
and the fraction f of the warm to the total DM abundance, i.e., f = ΩWDM/Ωtotal,
where Ωtotal = ΩWDM + ΩCDM denotes the total DM abundance in the universe. The
fraction f parametrises the example settings illustrated in Figure 2.5, where we
depict both the power spectra (left) and the transfer functions (right). For mixed
DM, it had been pointed out by Boyarsky et al. (2009) that a non-zero plateau
can be present in the transfer function at large k’s, corresponding to the remaining
CDM component once the reduction of small scales by the warm component has
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Figure 2.5: Example power spectra (left) and corresponding transfer functions (right)
for mixed DM, derived with CLASS (Blas et al. (2011)). On the right panel, one can see
that even the transfer functions featuring some type of plateau are fitted well by the
parametrisation from Equation (2.4).

died off. However, although our fitting function does not formally feature a plateau,
it provides a very good fit to the majority of mixed DM cases, not only by eye
but also when performing a goodness-of-fit test. In Chapter 4 (Section 4.4) we
will discuss a further generalisation of our fitting formula, which allows much more
flexibility to describe scenarios where only a fraction of DM is non-standard.

2.3.4 Fuzzy Dark Matter

A conceptually different class of DM candidates that also affects the small scales of
structure formation is the so-called ultra-light scalar DM, or Fuzzy DM (FDM) (Hu
et al. (2000); Marsh & Silk (2014); Hui et al. (2017)). This type of DM consists
of (initially) condensed scalar particles with tiny masses, ∼ 10−22 eV, such that
their wave-like nature becomes relevant at astrophysical scales. A comprehensive
treatment of such scenario is carried out in Chapter 3. However, let us now briefly
introduce its main features, before to show that the induced small-scale power
suppression is also well described by our {α, β, γ}-parametrisation.

These ultra-light scalar particles are assumed to have no self-interactions – quite
like axions (Hui et al. (2017)) – which could modify the picture if sufficiently
strong (Rindler-Daller & Shapiro (2014)). In the absence of such interactions, the
class of FDM models is conveniently described by a single parameter, namely the
DM mass m22 ≡ mψ/10−22 eV, where mψ denotes the actual physical particle mass.
However, note that strong constraints exist on these scenarios, e.g. upper limits
m22 < 1.5 from the kinematics of dwarf galaxies (Marsh & Pop (2015); Calabrese



2.3. Connection to particle physics models 25

� � �� �� ���
��-�

��-�

��-�

����

�

���

���

� [�/���]

��
�
(�
)

����� ������� ��� ����� ��

���������

���≡
�ψ

��-�� ��

���=�

��
��

��

��� � � �� ��
���

���

���

���

���

���

� [�/���]

�
(�
)

�� �� �� �� ��
����

����

����

����

����

����� ��� �������� ���������

���������
����������
(α�β�γ)-���

���������
α [���/�]
β
γ

�����
���
-���

�����
���
-���

�����
���
-���

�����
���
-���

Figure 2.6: Example power spectra (left) and corresponding transfer functions (right)
for FDM, derived with axionCAMB (Hlozek et al. (2015)). On the right, we also show the
analytic result by Hu et al. (2000). On the right panel, one can see that the transfer
functions are fitted very well by the parametrisation from Equation (2.4).

& Spergel (2016)), which were recently complemented by strong lower limits from
the abundance of high-z galaxies (Menci et al. (2017)), m22 > 10, superseeding
earlier limits from their luminosity functions (m22 > 1.2 (Schive et al. (2016)))
by nearly one order of magnitude. Even more recently, the IGM provided the
tightest limits on the mass of m22 > 20 (2 σ C.L.) for a very conservative analysis
of high-redshift data, while m22 > 37.5 is obtained for a less conservative scenario
where some priors on the IGM thermal history are assumed (Iršič et al. (2017a);
Kobayashi et al. (2017); Nori et al. (2019)).

In Figure 2.6, we show a few example power spectra (left) and transfer functions
(right), associated with different values of m22. The point that we want to illustrate
is that, even though the known oscillations are present in the FDM power spectra,
their transfer functions are still well described by our general parametrisation from
Equation (2.4), simply because the oscillations appear only at the smallest scales or,
equivalently, at large values of k. To achieve a good fit, we have simply cut off the
oscillations, which are very suppressed and therefore negligible for most applications,
including the MW satellite counting and the Lyman-α forest methods. Under this
approximation, we see that the novel parametrisation in fact provides a very good
fit to the FDM transfer functions (see the right panel of Figure 2.6). We show
in Section 2.5.3 how well this strategy truly works, when both the actual models
and our fits are subjected to a “reality-check”. Moreover, we address the reader to
Section 2.6.3 and Chapter 4 (Section 4.2.1), where the validity of this procedure is
explicitly demonstrated by means of dedicated hydrodynamic simulations.
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2.3.5 Effective theory of structure formation (ETHOS)
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Figure 2.7: Power spectra (left) and corresponding transfer functions (right) for a few
cases of interacting DM as derived with ETHOS, see Figure 1a from Cyr-Racine et al.
(2016). On the right panel, one can see that the transfer functions are fitted well by the
parametrisation from Equation (2.4). However, note that we have only fitted the part of
k left of the first oscillation.

In order to further demonstrate the flexibility of our approach, we now compare
it to that of ETHOS (Cyr-Racine et al. (2016); Vogelsberger et al. (2016)), which
consists of an attempt to formulate an effective theory of cosmic structure formation,
to map virtually any particle physics model to the constraints from astrophysics and
cosmology. In Chapter 4 we will carry out a comprehensive analysis of the ETHOS
framework, which to some extent has been developed in the same spirit as ours.
Here we just want to point out the main differences with respect to our approach:

• Lagrangian-based vs. transfer function-based approach:
While we are simply trying to parametrise the transfer function for nCDM, the
approach of ETHOS is to start directly from the particle physics Lagrangian.
While at first this seems like a clear disadvantage of our strategy, since a particle
physicist would need to compute the matter power spectrum (e.g., using
CLASS (Blas et al. (2011))) before being able to apply our results to their model,
we would like to point out that the mapping of DM models into the quantities
relevant for cosmic structure formation is injective. In other words, many
models that look quite different from the particle physics point of view lead
precisely to the same predictions for structure formation (this can be seen easily
for thermal examples, e.g., by re-scaling both temperature and DM mass).
With our approach it is therefore possible to summarise most DM models in a
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much simpler framework. In fact, it may be a too big effort to start from any
possible particle physics Lagrangian, when the key point for comparison lies in
the transfer function. We thus consider our approach to be the most economic.

• Validity for small scales, i.e., for large k:
As we pointed out, e.g., in Section 2.3.4, our approach cannot capture the very
smallest scales, which are suppressed in the transfer function due to dividing
by the CDM power spectrum. However, given that this is in any case the
part of the spectrum with the smallest power, we do not expect big effects
of this region, unless we find an observable that is truly sensitive to very
small scales. The ones that we are using (i.e., satellite counts and Lyman-α)
are not sensitive to that extreme region. For instance, as visible in the left
panel of Figure 2.7, oscillations in the transfer functions seem very prominent
when plotted in log-scales, although they are in fact unimportant for most
aspects of structure formation (once again, for further details on this issue,
see Sections 2.6.3 and 4.2.1). We thus consider our approach to be safe as
long as the regions for (very) large k’s play no role.

• Model coverage:
By construction, our approach of fitting the transfer function is much simpler
and therefore less versatile than a method starting from the particle Lagrangian.
However, we want to point that the original fitting function of Equation 2.4
can be easily generalised if necessary. For example, a plateau in the transfer
function can be described by adding one more parameter δ4, i.e.

T (k) = [1 + (αk)β]γ → T (k) = (1− δ) · [1 + (αk)β]γ + δ. (2.7)

In principle, oscillatory patterns could also be included, for example by simply
adding a cosine function of the form

T (k) = [1 + (αk)β]γ · cos2(δk) (2.8)

where δ is an additional free parameter. We thus consider our approach to be
easily extendable to basically cover the same range of models as ETHOS does.

Given that, we can now fit some of the transfer functions obtained by ETHOS,
and for this purpose we take the ones given in Figure 1a from Cyr-Racine et al.
(2016) as example (see that reference for the details on the data chosen).5 This allows

4This will be the subject of Section 4.4
5Note that Cyr-Racine et al. (2016) use an alternative definition of the transfer function

of TETHOS(k) ≡ P (k)nCDM/P (k)CDM, instead of the more common definition of T 2(k) ≡
P (k)nCDM/P (k)CDM, which is the one we are using. This difference in definitions is what creates
the seeming difference between the right panel of our Figure 2.7 and Figure 1a from Cyr-Racine
et al. (2016).
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us to investigate whether our approach yields a similar result as the more detailed
ETHOS analysis. We have again fitted the transfer functions with Equation (2.4),
however, note that this time we have only fitted the part for small k’s, i.e., left of
the first oscillation. In Section 2.5.3 we show that regarding the number of MW
satellites as well as the power spectrum from the Lyman-α forest, there is hardly
any difference between our simplified fit without oscillations and the full transfer
function from ETHOS. In Section 2.6.3 and Section 4.2.1, we further demonstrate
the accuracy of this procedure by means of dedicated hydrodynamic simulations.

2.4 Cosmological simulations
In order to put constraints on the nCDM models, we modified the numerical code
2LPTic (Crocce et al. (2006)) – which generates initial conditions for running
cosmological simulations by displacing the DM particles from a cubic Cartesian grid
according to second-order Lagrangian Perturbation Theory – by implementing the
new, general transfer function: now the code takes as inputs {α, β, γ} instead of the
thermal WDM mass, and it computes the corresponding T (k) from Equation (2.4).

Thus, we generated the initial conditions corresponding to the 109 {α, β, γ}-
combinations listed in Table 2.1, at redshift z = 99, and we used these snapshots
as inputs to perform two different sets of cosmological simulations, described in
the following Subsections. To do that, we used the numerical code GADGET-3, a
modified version of the publicly available N -body hydrodynamic cosmological code
GADGET-2 (Springel et al. (2001b); Springel (2005)), devised to to reconstruct the
density field from the particle distribution through advanced and refined Smoothed
Particle Hydrodynamics (SPH) routines.

The general SPH approach relies on the concept that the density field ρ

underlying a discrete set of particles can be approximated at particle i position
with the weighted sum of the mass m of neighbouring particles NN(i)

ρi =
∑

j∈NN(i)
mjWij, (2.9)

where the mass is convoluted with a kernel function Wij of choice, characterised by
a particle-specific smoothing length hi, and whose extent is fixed imposing

4
3πh

3
i ρi =

∑
j∈NN(i)

mj (2.10)

so that only a given mass is enclosed within it. Once the density field is reconstructed,
every observable is locally computed through weighted sums as

Oi =
∑

j∈NN(i)
mj

Oj

ρj
Wij (2.11)
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and its derivatives are iteratively obtained with

∇Oi =
∑

j∈NN(i)
mj

Oj

ρj
∇Wij (2.12)

where the derivative is applied on the window function.
The exact scheme of the SPH algorithm is not fixed, since each observable can

be expressed in many analytically equivalent forms that, however, translate into
different operative summations. An important consequence of such flexibility is
that different but analytically equivalent expressions will map into operative sums
that carry different numerical errors. This issue is particularly relevant when one
wants to implement non-standard DM features in the non-linear regime explored
by cosmological simulations, as we will do in Chapter 3.

2.4.1 Dark Matter–only simulations

The first set of simulations that we used for our analyses is constituted by 55+1 pure
N -body (DM-only) simulations (5123 particles; 20 comoving Mpc/h box length),
corresponding to the first 55 {α, β, γ}-combinations listed in Table 2.1, plus the
standard CDM case, with cosmological parameters Ωm = 0.301, Ωb = 0.0457,
ns = 0.961, H0 = 70.2 km s−1 Mpc−1 and σ8 = 0.829 (Ade et al. (2016a)), evolved
down to redshift z = 0. On top of these simulations, we have used a Friends-of-
Friends (FoF) algorithm (Davis et al. (1985)) with the standard linking length
b = 0.2, in order to extract the DM halos. We also run the SUBFIND code (Springel
et al. (2001a)) for searching for the substructures bound to each main FoF group.
Since the constraints presented in Section 2.5 are primarily based on the linear
theory, this set of simulations is mainly used as a first cross-check that the results
are not significantly altered by non-linearities, with the following purposes:

• present a first assessment of non-linearities for the nCDM models discussed;

• address quantitatively how the DM (sub)halo mass functions based on linear
theory predictions compare to the actual results of the N -body simulations
(Section 2.5.1 and Appendix B);

• assess whether non-linearities in the matter power spectrum could affect the
constraints obtained through the so-called “area criterion” for the Lyman-α
forest (Section 2.5.2).

Let us now briefly illustrate the non-linear statistics that we extracted from this
suite of simulations, i.e. the matter power spectra and the DM halo mass functions.
In Figure 2.8 we report the ratios of the nCDM non-linear matter power spectra
with respect to the standard CDM power spectrum. We show the power spectra
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Figure 2.8: Ratios of the nCDM non-linear matter power spectra with respect to the
standard CDM power spectrum, at redshifts z = 5 and z = 2. The black lines correspond
to the first 55 models listed in Table 2.1. The red and blue dashed lines refer to thermal
WDM models with masses of 2 and 4 keV, respectively.

of all nCDM models at redshift z = 5 (left panel) and redshift z = 2 (right panel).
Additionally, we show the thermal WDM cases with 2 and 4 keV, which are in
agreement with a similar study made by Viel et al. (2012). The differences between
the models gradually decrease when going to smaller redshifts. Below z = 2, the
small-scale power enhancement from the non-linear structure evolution starts to
dominate the signal from different nCDM models, resulting in a progressive shift of
the corresponding half-mode scales towards larger values of k. This is the reason
why the Lyman-α data from the highest redshift bins typically provide the strongest
limits on the nature of DM, as we show in Section 2.6.
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Figure 2.9: Ratios of the nCDM halo mass functions with respect to the standard CDM
halo mass function, at redshifts z = 1 and z = 0. The black lines correspond to the first
55 models listed in Table 2.1. The upturn at low masses is due to artificial clumping,
while the oscillation pattern at large masses is due to the cosmic variance. The red and
blue dashed lines refer to thermal WDM models with masses of 2 and 4 keV, respectively.

In Figure 2.9 we report the ratios between the nCDM halo mass functions with
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respect to the standard CDM halo mass function, at redshift z = 1 (left) and
z = 0 (right). Note that all the nCDM models predict a lower abundance of DM
halos with masses between 108 and 109 M�/h: for some of the {α, β, γ}-triplets
the number of halos included in this mass range is expected to be 80% smaller
with respect to standard CDM predictions.

The visible upturn at low masses is not physical, but a consequence of the
phenomenon of artificial clumping, which affects models with suppressed initial
power spectra (see also Chapter 3 – Section 3.5.1 –), due the limited resolution of
the simulations (Angulo et al. 2013; Schneider et al. 2013; Schneider 2015). This is
why it is crucial to have good theoretical predictions for the low-mass behaviour
of the (sub)halo mass functions. This issue, essential for the analyses presented in
Section 2.5.1, is discussed in more detail in Appendix B. The oscillatory pattern
which characterises the region corresponding to masses & 1010 M�/h is due to the
cosmic variance, since the size of our simulated box does not allow to have enough
large DM halos to have statistically fully meaningful results.

2.4.2 Hydrodynamic simulations

As it has been explained in Chapter 1 (Section 1.4), the physical observable for
Lyman-α forest experiments is the flux power spectrum PF(k, z). Therefore, the
second set of simulations that we performed is a large suite of full hydrodynamic
simulations, where the gas particles are treated with the Quick-Lyman-Alpha method,
specifically developed for Lyman-α forest analyses (Viel et al. (2004)); it consists in
converting into collisionless stars all gas particles which reach densities larger than
1000 times the mean density. Since the absorption systems producing the Lyman-α
forest have small overdensity, this criterion has little effect on flux statistics, while
significantly speeding up the computations. The goal of the simulations is to provide
a reliable template of mock flux power spectra to be compared with observations.

As in the analyses by Iršič et al. (2017b), our reference model simulation has
a box length of 20/h comoving Mpc with 2 · 7683 gas and CDM particles (with
gravitational softening 1.04/h comoving kpc) in a flat ΛCDM universe with cosmo-
logical parameters Ωm = 0.301, Ωb = 0.0457, ns = 0.961, H0 = 70.2 km s−1 Mpc−1

and σ8 = 0.829 (Ade et al. (2016a)).
Given that the flux power spectrum is affected both by astrophysical and

cosmological parameters, it is important to properly take them into account and
accurately quantify their impact. To this end, along the lines of Iršič et al. (2017b),
we explored several values of the cosmological parameters σ8, i.e. the normalisation
of the linear matter power spectrum, and neff , namely the slope of the matter power
spectrum at the scale of the Lyman-α forest (0.009 s/km). Specifically, we considered
five different values for both σ8 (in the interval [0.754, 0.904]) and neff (in the range
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[−2.3474,−2.2674]). There have been several studies in the past (e.g., Seljak et al.
(2006); McDonald et al. (2006); Arinyo-i Prats et al. (2015)), that have shown that
the Lyman-α forest is really measuring the amplitude of the linear matter power
spectrum, the slope of the power spectrum, and possibly the effective running, all
evaluated at a pivot scale of around 1-10 Mpc/h. Thus σ8 and neff used are good
tracers of what is actually measured. Given that all our modelling in simulations
kept Ωmh

2 fixed, σ8 can be directly translated into the amplitude of linear matter
power at the pivot scale (similarly to how neff is used). As pointed by Seljak et al.
(2006), these matter power amplitude parameters are equivalent. The linear matter
power only weakly depends on Ωmh

2, and moreover, the effects of Ωm and H0 on
the linear matter power are already captured in the tracers of the amplitude σ8 and
slope neff . Therefore the constraints are not sensitive to the value of Ωm nor H0.

Concerning the astrophysical parameters, we varied the thermal history of the
IGM in the form of the amplitude T0 and the slope γ̃ of its temperature-density
relation, generally parametrised as T = T0(1 + δIGM)γ̃−1, with δIGM being the IGM
overdensity (we refer to Hui & Gnedin (1997) for the physical motivation of why
the IGM is expected to follow the relation above). Specifically, we considered a set
of three different temperatures at mean density, T0(z = 4.2) = 6000, 9200, 12600 K,
which evolve with redshift, as well as a set of three values for the slope of the
temperature-density relation, γ̃(z = 4.2) = 0.88, 1.24, 1.47. The reference thermal
history has been chosen to be defined by T0(z = 4.2) = 9200 and γ̃(z = 4.2) = 1.47,
and it provides a good fit to observations, as demonstrated by Bolton et al. (2017)
where several hydrodynamic simulations with the same reference thermal history
as the one used here have been carried on.

We have also varied the redshift of the instantaneous reionisation model, for
which we considered the three different values zreio = 7, 9, 15, with zreio = 9 being
the reference value. Furthermore, we considered UV fluctuations of the ionising
background, that may be particularly important at high redshift. The amplitude
of this effect is described by the parameter fUV: the corresponding template is
built from a set of 3 models with fUV = 0, 0.5, 1, where fUV = 0 corresponds to
a spatially uniform UV background (Iršič et al. (2017b)).

We do not consider IGM temperature fluctuations which have been advocated
as potentially mimicking the presence of a cut-off at small scales (Hui et al. (2017)).
However, according to sophisticated hydrodynamic simulations such effects appear
to happen at large rather than small scales (Cen et al. (2009); D’Aloisio et al.
(2015)). A comprehensive treatment of spatial UV and temperature fluctuations
would require computationally prohibitive radiative transfer calculations in large
volumes, and it is beyond the analysis performed here.

Finally, we varied the mean flux 〈F (z)〉 by selecting 9 different values for
it, namely (0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4) · 〈FREF〉, with reference values from
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SDSS-III/BOSS measurements (Palanque-Delabrouille et al. (2013)). Aiming to have
a very fine grid in terms of mean fluxes, we also included 8 additional values, obtained
by re-scaling the optical depth τ = − ln〈F 〉, i.e. (0.6, 0.7, 0.8, 0.9, 1.1, 1.2, 1.3, 1.4) ·
τREF.

Concerning the nCDM sector, we used the initial conditions corresponding to
all the 109 {α, β, γ}-combinations listed in Table 2.1, as inputs for running 109 full
hydrodynamic simulations (5123 particles; 20 comoving Mpc/h box length), keeping
the astrophysical and cosmological parameters fixed to their reference values.

Before investigating the fully general {α, β, γ}-space, we wanted to be able to
reproduce the same results obtained by Iršič et al. (2017b), when the analysis is
limited to the thermal WDM case. In order to do that, we extended our grid
of 109 nCDM points with 8 additional hydrodynamic simulations, in which the
values for α correspond to thermal WDM masses of 2,3,4,5,6,7,8,9 keV, β and γ
are fixed to their thermal values, i.e. β = 2.24 and γ = −4.46, and all the other
cosmological and astrophysical parameters are fixed to their reference values. The
full nCDM grid, including both thermal and non-thermal simulations, consists
thereby in 117 points sampling the {α, β, γ}-space.

2.5 Constraints from the linear theory

In this Section we present the first limits on {α, β, γ} from structure formation
data, based on linear perturbation theory. We constrained the parameters by
using two powerful independent methods for testing the “non-coldness” of DM:
MW satellite counts (Subsection 2.5.1), and the so-called “area criterion” for the
Lyman-α forest data (Subsection 2.5.2).

Satellite counts rely on the simple fact that any nCDM model must predict a
number of substructures within the MW virial radius not smaller than the actual
number of MW satellites that we observe. The “area criterion” is instead a simple
and effective method, based on linear theory, for testing different nCDM scenarios
with Lyman-α forest data, by using an approximate yet intuitive estimator. With
such method it is not possible to extract absolute limits on the nCDM parameters,
but it allows to look into deviations with respect to a given reference case, which is
typically chosen to be the most updated bound from full statistical analyses (Murgia
et al. (2017); Kobayashi et al. (2017); Murgia (2018); Murgia et al. (2018)).

Finally, in Subsection 2.5.3, we compare the predictions in terms of MW satellite
counts and “area criterion” estimator, by using both the fitted and the “exact”
transfer functions of some particle physics models defined in Section 2.3, in order
to put our fitting formula, Equation (2.4), to the “reality-check”.
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Figure 2.10: The 3D orange contour in the {α, β, γ}-space represents the upper bound
(i.e., with the largest modulus for γ) on the region of the parameter space which is in
agreement with MW satellite counts. The left panel refers to the conservative analysis
(Nsub ≥ 57), whereas the right panel refer to the non-conservative case (Nsub ≥ 63).

2.5.1 Milky Way satellite counts

Assuming the standard CDM model, cosmological N -body simulations predict too
many dwarf galaxies within the MW virial radius, with respect to observations.
Therefore, MW satellite counts represent a very useful tool for constraining DM
properties (see, e.g., Jethwa et al. (2018); Vegetti & Koopmans (2009); Vegetti
et al. (2012, 2014)). We can estimate the number of MW satellites following the
approach of Polisensky & Ricotti (2011); Schneider (2016), i.e., by multiplying
the 15 ultra-faint satellites from SDSS by a factor 3.5, in order to account for the
limited sky coverage of the survey, and by finally summing the 11 MW classical
satellites. We thus obtain Nsat = 63 as an estimate of the number of observed
satellites within the MW viral radius.

Nsub

nCDM1 39
nCDM2 78
nCDM3 105
nCDM4 25
nCDM5 68
nCDM6 104
nCDM7 18
nCDM8 59
nCDM9 103
nCDM10 41
nCDM11 78

Nsub

nCDM12 105
nCDM13 27
nCDM14 69
nCDM15 104
nCDM16 19
nCDM17 60
nCDM18 103
nCDM19 52
nCDM20 83
nCDM21 106
nCDM22 38

Nsub

nCDM23 75
nCDM24 105
nCDM25 28
nCDM26 68
nCDM27 104
nCDM28 76
nCDM29 89
nCDM30 69
nCDM31 85
nCDM32 49
nCDM33 68

Nsub

nCDM34 42
nCDM35 57
nCDM36 52
nCDM37 71
nCDM38 81
nCDM39 90
nCDM40 106
nCDM41 106
nCDM42 86
nCDM43 93
nCDM44 95

Nsub

nCDM45 99
nCDM46 26
nCDM47 45
nCDM48 63
nCDM49 76
nCDM50 105
nCDM51 106
nCDM52 71
nCDM53 82
nCDM54 86
nCDM55 93

Table 2.2: Number of subhalos (with mass Msub ≥ 108 M�/h) within the virial radius
of a halo with mass Mhalo = 1.7 · 1012 M�/h. Each of the 55 models corresponds to a
different {α, β, γ}-combination, according to Table 2.1. Models that predict a number of
subhalos consistent with observations (i.e., at least as many subhalos as the number of
observed MW satellites, Nsat = 63) are written in bold-face.
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We can now compare Nsat with the number of subhalos Nsub predicted by our
models, in order to extract some constraints on {α, β, γ}. According to Schneider
(2015, 2016), we can use the following formula for estimating the number of
substructures for a given model:

dN
dMsub

= 1
44.5

1
6π2

Mhalo

M2
sub

P (1/Rsub)
R3

sub

√
2π(Ssub − Shalo)

, (2.13)

where Msub and Ssub are the mass and the variance of a given subhalo, Mhalo and
Shalo are the mass and the variance of the main halo, defined as follows:

Si = 1
2π2

1/Ri∫
0

dk k2P (k); Mi = 4π
3 Ωmρc(cRi)3; c = 2.5; (2.14)

with P (k) being the linear power spectrum of a given model, computed at redshift
z = 0. In Appendix B we demonstrate that the mass functions extracted from
the grid of N -body simulations described in Section 2.4.1 are in good agreement
with the theoretical mass function formalism outlined above.

Under the assumption of a MW halo mass Mhalo = 1.7 · 1012 M�/h (Lovell
et al. (2014)), and by considering subhalos with masses Msub ≥ 108 M�/h, we
can obtain the number of subhalos Nsub predicted by our models, by simply
integrating Equation (2.13). The results are reported in Table 2.2, where the
models highlighted in bold-face are those in agreement with the number of observed
satellites, i.e. with Nsub ≥ 63.

In Figure 2.10 we show a 3D contour plot in the {α, β, γ}-space, where each
triplet is associated with a different model: the orange contour represents the upper
bound on the region of the parameter space which is in agreement with MW satellite
counts, according to the method that we have just described. Hence, in the right
panel of Figure 2.10, all the {α, β, γ}-combinations which sample the orange volume
correspond to models that predict a number of substructures at least equal to
Nsat = 63. In the left panel, instead, we show the allowed volume of the parameter
space whether we require the number of subhalos predicted by each nCDM model
to be equal or larger with respect to a more conservative estimate for the number
of MW satellites, Nsat = 57. This number has been chosen in order to account for
a 10% sampling variance in the number of satellites at a given MW halo mass.

By marginalising over β and γ we obtain the following limits on α:

α ≤ 0.067 Mpc/h (2 σ C.L.) requiring Nsub ≥ 63,
α ≤ 0.061 Mpc/h (2 σ C.L.) requiring Nsub ≥ 57, (2.15)

which would correspond, in the old one-to-one parametrisation, to a thermal WDM
particle with mass mWDM ≈ 2 keV (see Equation (2.2) and Equation (2.3)). These
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limits are less constraining than the latest constraints from structure formation data:
as expected, modelling the power suppression with three free parameters weakens
the constraints on k1/2. Within our general approach, due to the dependence of
α on β and γ, even lighter DM candidates may provide suppressed power spectra
in agreement with MW satellite counts.

Looking at Equation (2.15), it may seem surprising that the constraint on α
strengthens when we use a weaker rejection criterion for the nCDM models, i.e. a
smaller value for Nsat. The reason is that, by relaxing the limit on the number
of substructures, we accept a larger number of {α, β, γ}-triplets characterised by
very small values of α. This is a straightforward consequence of the shape of the
volume of the parameter space shown in Figure 2.10. By accepting all those models
which predict 57 ≤ Nsub < 63, we are slightly shifting towards higher values of α
the whole orange 3D surface in the plot. As one can see by comparing the two
panels of Figure 2.10, due to the geometry of the orange contour, this shift mainly
concerns {α, β, γ}-combinations with α very close to zero. Therefore, by imposing
a smaller value for Nsat and marginalising over β and γ, small values of α increase
their contribution to its probability distribution with respect to the high-value tail
of the distribution, which instead is only minimally affected by the choice of a more
conservative value for Nsat. We are therefore pushing the peak of the probability
distribution of α towards zero, yielding a stronger upper bound on it. However, at
this approximate level of analysis, the difference between the two bounds reported
in Equation (2.15) is negligible, as visible from Figure 2.10.

2.5.2 The “area criterion” for the Lyman-α forest

δA

nCDM1 0.61
nCDM2 0.45
nCDM3 0.34
nCDM4 0.63
nCDM5 0.45
nCDM6 0.32
nCDM7 0.64
nCDM8 0.45
nCDM9 0.31
nCDM10 0.61
nCDM11 0.45

δA

nCDM12 0.34
nCDM13 0.63
nCDM14 0.45
nCDM15 0.32
nCDM16 0.64
nCDM17 0.45
nCDM18 0.31
nCDM19 0.59
nCDM20 0.44
nCDM21 0.34
nCDM22 0.61

δA

nCDM23 0.44
nCDM24 0.32
nCDM25 0.62
nCDM26 0.44
nCDM27 0.31
nCDM28 0.42
nCDM29 0.37
nCDM30 0.42
nCDM31 0.37
nCDM32 0.40
nCDM33 0.34

δA

nCDM34 0.39
nCDM35 0.33
nCDM36 0.57
nCDM37 0.54
nCDM38 0.42
nCDM39 0.42
nCDM40 0.31
nCDM41 0.33
nCDM42 0.40
nCDM43 0.40
nCDM44 0.36

δA

nCDM45 0.37
nCDM46 0.61
nCDM47 0.57
nCDM48 0.41
nCDM49 0.40
nCDM50 0.27
nCDM51 0.27
nCDM52 0.38
nCDM53 0.37
nCDM54 0.33
nCDM55 0.33

Table 2.3: Here we list the 55 models that we have tested, each of them with its
corresponding δA, namely the estimator of the small-scale power suppression associated
to it. A model is excluded (at 2 σ C.L.) if δA > δAREF,1, i.e., if it shows a power
suppression & 38% with respect to the standard CDM power spectrum. Each of the
models corresponds to a different {α, β, γ}-combination, according to Table 2.1. Accepted
models are highlighted in bold-face.
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Figure 2.11: The 3D contour plot in the {α, β, γ}-space represents the region of the
parameter space which contains models in agreement with the Lyman-α forest data,
according to the “area criterion”. The left panel refers to the conservative analysis
(δA < 0.38), whereas the right panel refer to the non-conservative case (δA < 0.21). The
red contours represent the 1 σ C.L. limits on the {α, β, γ}-combinations, while the blue
and green contours represent the 2 σ and 3 σ C.L. limits, respectively. All those models
associated to {α, β, γ}-triplets placed outside of the 3D coloured region are therefore
excluded at 3 σ C.L. by the “area criterion”.

The Lyman-α forest, i.e., the Lyman-α absorption produced by intervening inter-
galactic neutral hydrogen in the spectra of distant quasars, provides a powerful tool
for constraining the DM properties at small scales. While we present absolute and
accurate limits from a comprehensive Monte Carlo Markov Chain (MCMC) analysis
of Lyman-α data in Section 2.6, the goal of this Section is to introduce a simpler
yet approximate method, dubbed as “area criterion”. Instead of computing absolute
bounds, the goal of this Section is indeed to investigate deviations of our nCDM
models with respect to a thermal WDM reference model, i.e., mWDM = 3.5 keV,
which is one of the most updated constraints on WDM candidates (at 2 σ C.L.),
obtained through extensive Lyman-α analyses by Iršič et al. (2017b).

Firstly, we slightly modify the method developed by Schneider (2016), by
parametrising the deviation of a model with respect to the standard CDM scenario
through the ratio

ζ(k) = P1D(k)
PΛCDM

1D (k) , (2.16)

where P1D(k) is the 1D power spectrum of the model that we are considering,
computed by the following integral on the 3D matter power spectrum:

P1D(k) = 1
2π

∞∫
k

dk′k′P (k′), (2.17)

where P (k′) is the 3D linear matter power spectrum, computed at redshift z = 0.
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We are now able to determine whether a model deviates more or less from plain
CDM, with respect to the thermal WDM reference model that we have chosen, by
adopting the following criterion: a model is excluded (at 2 σ C.L.) if it is characterised
by a larger power suppression with respect to the reference model. In order to
quantify the suppression in the power spectra, we define the following estimator:

δA ≡ AΛCDM − A
AΛCDM

, (2.18)

where A is the integral of ζ(k) over the typical range of scales probed by Lyman-
α observations (0.5 h/Mpc . k . 20 h/Mpc for the MIKE/HIRES+XQ-100
combined data set used by Iršič et al. (2017b)), i.e.,

A =
kmax∫
kmin

dk ζ(k), (2.19)

such that AΛCDM ≡ kmax − kmin by construction.
Analogously, by plugging the power spectrum of the thermal WDM reference

model into Equations (2.16) and (2.18), we find δAREF,1 = 0.38, which is an estimate
of the small-scale power suppression with respect to standard CDM for models that
are excluded at 2 σ C.L. by Lyman-α forest data. In Table 2.3 we list the 55 models
that we tested, each of them with its corresponding δA: a certain model is excluded
(at 2 σ C.L.) if δA > δAREF,1, i.e., if it shows a power suppression & 38% with respect
to the standard CDM power spectrum. Accepted models are highlighted in bold-face.

Let us now stress that the constraint on the thermal WDM mass associated
to δAREF,1 (i.e. mWDM = 3.5 keV) has been obtained under very conservative
assumptions on the thermal history of the universe (see Iršič et al. (2017b); Murgia
et al. (2018) for details). By modifying these assumptions, the lower limit on thermal
WDM masses strengthens to mWDM = 5.3 keV (at 2 σ C.L.), which represents
the tightest bound from Lyman-α forest data up to date. By taking this limit as
reference, we find indeed a corresponding small-scale suppression δAREF,2 = 0.21,
with respect to the standard CDM power spectrum.

In Figure 2.11 we show a 3D contour plot in the {α, β, γ}-space, which represents
the region of the parameter space that contains models in agreement with Lyman-
α forest data, according to the “area criterion”. The left panel refers to the
conservative analysis, whereas the right panel refers to the less conservative case.
The red contours represent the 1 σ C.L. limit on the {α, β, γ}-combinations, while
the blue and green contours represent the 2 σ and 3 σ C.L. limits, respectively.
All those models associated to {α, β, γ}-triplets placed outside of the 3D coloured
region are therefore excluded at 3 σ C.L. by our analysis. By marginalising over
β and γ we obtain the following limits on α:

α ≤ 0.058 Mpc/h (2 σ C.L.), conservative analysis,
α ≤ 0.044 Mpc/h (2 σ C.L.), non-conservative analysis. (2.20)
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These limits would correspond, in the old one-to-one parametrisation, to a thermal
WDM particle with a mass of mWDM ≈ 3 keV (see Equations (2.2) and (2.3)). Even
at this approximate level of analysis, the Lyman-α forest tends to provide more
stringent constraints than MW satellite counts. Note that, however, this is not true
for all models: e.g., the point nCDM35 is allowed by the Lyman-α forest, while
rejected by satellite counts. This is because, after all, the two methods probe slightly
different scales, and thus are in reality complementary when it comes to constraining
DM models. Note that this is a qualitative difference of non-thermal settings com-
pared to thermal WDM: indeed, using different methods to constrain DM models is
paramount to obtain a clear picture of what is allowed and what is not. Still, the limit
shown is weaker compared to the most updated constraints on thermal WDM masses.
As we discussed before, this is primarily due to the new general parametrisation
of T (k). With our approach, thanks to the mutual dependence among α, β, and γ,
it is possible to model nCDM scenarios with non-trivially suppressed power spectra.
Therefore, models with shallower transfer functions may be found to be in agreement
with Lyman-α forest data even if the corresponding DM candidate mass lies below the
current constraints for thermal WDM masses, given that those constraints refer to a
very specific shape of the power suppression (i.e., a very specific {β, γ}-combination).

As a double-check, we applied our method to the non-linear power spectra
extracted from the N -body simulations described in Section 2.4.1, finding consistent
results with respect to the linear analysis. All the models rejected when comparing
their linear power spectra are also rejected when comparing the non-linear ones.

Finally, let us recall that the actual physical observable in Lyman-α forest
experiments is the flux power spectrum PF(k, z), and not the 1D or 3D linear
matter power. However, two different key aspects of the Lyman-α forest physics
suggest that the analysis that we just presented could be also quantitatively correct.
Firstly, the relation between linear matter and flux power can be modelled as
PF = b2(k)P (k) (see Chapter 1), with a bias factor b(k) which differs only very
little between CDM and nCDM models, at least for models reasonably close to the
standard case (see, e.g., Croft et al. (2002); Viel et al. (2005)): this justifies the
application of Equation (2.16) to flux power spectra as well. Secondly, the “area
criterion” is motivated by the fact that IGM peculiar velocities (typically < 100
km/s) tend to redistribute the small-scale power within a relatively wide range of
wavenumbers in the probed region of the flux power (Gnedin & Hamilton (2002)).

It is thus important to check the bounds derived in this Section against full
hydrodynamic simulations which can provide a forward modelling of the flux power
spectrum. This has been done for the first time by Kobayashi et al. (2017), in
the context of ultra-light scalar DM, finding a relatively good agreement between
the predictions of the two methods, as we will see in Chapter 3. Furthermore, in
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Section 2.6.4 we perform an even more explicit comparison, by testing all the nCDM
models listed in Table 2.1 with a full statistical analysis, probing the effectiveness
of the “area criterion” as a tool to perform preliminary tests on nCDM scenarios
in an immediate and simplified way.

2.5.3 Constraints on particle physics models

The goal of this Section is to compare the predictions in terms of MW satellite
counts and power in the range probed by the Lyman-α forest (estimated through
the “area criterion”) for the fitted and the “exact” transfer functions of some
particle physics models defined in Section 2.3. Hence, we want to put our fitting
formula, Equation (2.4), to the “reality-check”.

α β γ k1/2 [h/Mpc] Nfit
sub (N true

sub ) [%] Agree? δAfit (δAtrue) [%] Agree?
0.025 2.3 −2.6 17.276 38 (39) [−2.6%] X 0.555 (0.571) [−2.8%] X

RP 0.071 2.3 −1.0 9.828 15 (14) [+7.1%] X 0.743 (0.754) [−1.5%] X
neutrinos 0.038 2.3 −4.4 8.604 5 (5) [±0.0%] X 0.799 (0.810) [−1.4%] X

0.035 2.1 −1.5 15.073 35 (37) [−5.4%] X 0.599 (0.613) [−2.3%] X
Neutrinos 0.016 2.6 −8.1 19.012 38 (42) [−9.5%] X 0.521 (0.535) [−2.6%] X

from 0.011 2.7 −8.5 28.647 91 (97) [−6.2%] X 0.339 (0.360) [−5.8%] X
particle 0.019 2.5 −6.9 16.478 27 (28) [−3.6%] X 0.582 (0.576) [+1.0%] X
decay 0.011 2.7 −9.8 26.31 79 (87) [−9.2%] X 0.375 (0.390) [−3.8%] ×

0.16 3.2 −0.4 6.743 9 (9) [±0.0%] X 0.823 (0.834) [−1.3%] X
Mixed 0.20 3.7 −0.18 7.931 28 (27) [+3.7%] X 0.738 (0.752) [−1.9%] X
models 0.21 3.7 −0.1 11.36 60 (62) [−3.2%] X 0.596 (0.610) [−2.3%] X

0.21 3.4−0.053 33.251 110 (114) [−3.5%] X 0.365 (0.377) [−3.2%] X
0.054 5.4 −2.3 13.116 8 (9) [−11.1%] X 0.691 (0.708) [−2.4%] X

Fuzzy 0.040 5.4 −2.1 18.106 21 (23) [−8.7%] X 0.543 (0.565) [−3.9%] X
DM 0.030 5.5 −1.9 25.016 56 (60) [−6.7%] X 0.376 (0.399) [−5.8%] ×

0.022 5.6 −1.7 34.590 121 (126) [−4.0%] X 0.228 (0.250) [−8.8%] X
0.0072 1.1 −9.9 7.274 18 (19) [−5.3%] X 0.780 (0.788) [−1.0%] X

ETHOS 0.013 2.1 −9.3 16.880 36 (39) [−7.7%] X 0.568 (0.581) [−2.2%] X
models 0.014 2.9 −10.0 21.584 50 (53) [−5.7%] X 0.463 (0.477) [−2.9%] X

0.016 3.4 −9.3 23.045 53 (56) [−5.4%] X 0.430 (0.439) [−2.1%] X

Table 2.4: Here we list 20 {α, β, γ}-triplets, with the corresponding values of k1/2,
which represent the real model examples presented in Section 2.3, split into five groups.
For each case, we have confronted the {α, β, γ}-fit (the real model) with both satellite
counting, Nfit

sub (N true
sub ), and the Lyman-α forest area estimator, δAfit (δAtrue), where for

each case we also indicate the percentage (in purple for better visibility) by which the
value predicted from the fit differs from the “true” value predicted by the model point.
Bold-faced numbers indicate that both the restrictive and conservative bounds are met,
while Italic numbers indicate that only the conservative bound was met. For each case
we have indicated whether the conclusion drawn from the fit – i.e., whether or not a
certain choice of parameters is allowed by the data – does (X) or does not (×) agree
with the one drawn from the data for the real model.
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Note that we do not aim to give a full account of the validity (or invalidity)
of the different nCDM models presented in Section 2.3, since in any case a few
example points will not be able to give us a clear answer. Instead, we would like
to find out whether the {α, β, γ}-fit to a certain nCDM setting would lead us to
the same conclusion about its validity when confronted with MW satellite counts
and Lyman-α bounds, while we do not care very much at this stage about whether
a certain point in the model parameter space is now marked as rejected or allowed –
we only want to check whether our conclusion about the points under consideration
changes when we look at the fits instead of looking at the actual points.

To do so, we depict in Table 2.4 first of all the fit parameters for the example
model points discussed in Section 2.3, which should be rather simple to grasp. For
example, the second line for RP corresponds to the green curves in Figure 2.3, while
the first line for particle decay corresponds to the blue curves in Figure 2.4. For each
point, we computed the number of satellites for both the fit and the corresponding
transfer function of the real model, Nfit

sub (N true
sub ), as well as the Lyman-α area

estimator, δAfit (δAtrue) – with the difference of the fit to the real point indicated by
the percentages in square brackets – which are in both cases matched to the respective
conservative and non-conservative observational constraints. In all cases, no matter
if the resulting number corresponds to a real model or to a fitted point, we use
bold-faced scripts/Italic scripts/Roman scripts to indicate that a certain number is
in agreement with both the conservative and non-conservative bounds/only with the
conservative bound/with none of the bounds. As can be seen from the distribution
of bold-faced or Italic numbers, many of the example points shown here are not
in agreement with the bounds. However, what we are interested in is whether or
not the fitted points would have brought us to the same conclusion. Indeed, this
is the case for the vast majority of cases. In fact, given that the predictions from
the fits deviate from the real model predictions only by a few percent at most, we
would expect agreement of the conclusions drawn from both versions of the transfer
function (i.e., fitted and “exact”) in all cases up to a few percent.6

Thus, except for a tiny amount of borderline cases, the fitted points always
yield the same conclusion as the actual model points. We can thereby conclude
that our fitting formula reproduces the true results to a very high degree. Hence,
whenever is it desired to match a nCDM setting to observational data, there is
no need to do the whole computation. Instead, it is perfectly sufficient to match
the resulting transfer functions to our Equation (2.4) and to check whether the
fitted points are allowed by data.

6Two fails in forty comparisons, i.e., an empirical failure rate of 5% seems to support this
prediction rather well – even though, of course, we have not selected the examples shown completely
arbitrarily, but rather we have picked them to somehow reflect some of the variation possible for
the different production mechanisms.
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In light of all of that, in the next Section we will go beyond the simple and
approximate data analyses just presented, by discussing a more comprehensive
approach, not limited to linear theory, which provides accurate absolute bounds
on α, β, γ, easily translatable to constraints on the fundamental nCDM properties
through the scheme that we have illustrated.

2.6 Accurate limits from the Lyman-α forest
In this Section we discuss the results of the comprehensive MCMC analyses of
the high-resolution and high-redshift Lyman-α forest data from the MIKE/HIRES
spectrographs, based on the large suite of cosmological hydrodynamic simulations
illustrated in Section 2.4.2.

2.6.1 Data set and methods

The data set that we used for our analyses is constituted by the high-resolution
and high-redshift HIRES/MIKE samples of quasar spectra. It has been obtained
with the HIRES/KECK and the MIKE/Magellan spectrographs, at redshift bins
z = 4.2, 4.6, 5.0, 5.4 and in 10 k-bins in the interval 0.001-0.08 s/km, with spectral
resolution of 6.7 and 13.6 km/s, for HIRES and MIKE, respectively (Viel et al.
(2013)). As in the analyses by Viel et al. (2013); Iršič et al. (2017b), we imposed
a conservative cut on the flux power spectra obtained from MIKE/HIRES data,
and only the measurements with k > 0.005 s/km have been used, in order to
avoid possible systematic uncertainties on large scales due to continuum fitting.
Furthermore, we did not consider the highest redshift bin for MIKE data, for
which the error bars on the flux power spectra are very large (see Viel et al. (2013)
for details). We have therefore used a total of of 49 (k, z) data points for the
MIKE/HIRES data set, which has the advantage with respect to other surveys
of exploring small scales and high redshifts, being thereby the most constraining
up-to-date, for the models that we have considered.

Note that low-resolution surveys such as SDSS-III/BOSS (Palanque-Delabrouille
et al. (2013)) can be used for constraining nCDM scenarios in the quasi-linear
regime which characterises larger scales with respect to the ones that we are
focusing on. An interesting attempt of modelling the relevant features of the
flux power spectrum in order to obtain an approximate estimator for testing such
relatively large scales was recently done by Garny et al. (2018). Let us stress
that the two approaches are complementary, since the different scale and redshift
coverage may lead to different constraints and degeneracies, with the common
goal of developing an effective framework which does not require to run specific
numerical simulations per each nCDM model.
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With the models of the flux power spectra obtained from the large suite of hydro-
dynamic simulations presented in Section 2.4.2, we set a sparse grid of points in the
multidimensional parameter space of {〈F (z)〉, T0(z), γ̃(z), σ8, zreio, neff , fUV, α, β, γ}.
For the interpolation between different grid points, we adopted an improved method
with respect to the linear interpolation scheme used by Iršič et al. (2017b,a), i.e., the
Ordinary Kriging method, which is widely used in very different fields from cosmology,
such as geo-statistics or environmental science, since it is particularly effective for
dealing with sparse and non-regular grids (see, e.g., Webster & Oliver (2007)). Such
method basically consists in predicting the value of the flux power at a given point
by computing a weighted average of all its known values, with weights inversely
proportional to the distance from the considered point. The interpolation is done
in terms of ratios between the flux power spectra of the nCDM models and the
reference one. We first interpolate in the astrophysical and cosmological parameter
space for the pure CDM case, i.e., in the α = 0 plane. We then correct all the
{α, β, γ}-grid points accordingly, and we finally interpolate in the {α, β, γ}-space.
This procedure relies on the assumption that the corrections due to non-reference
astrophysical or cosmological parameters are universal, so that we can apply the
same corrections computed for the standard CDM case (α = 0) to all the nCDM
models described by our parametrisation.

We carefully tested the new interpolation scheme, by iteratively predicting the
value of the flux power spectrum at a given grid point without using that grid point,
as well as by reproducing the bounds on the thermal WDM mass obtained by Iršič
et al. (2017b). Let us note that, in doing the latter, rather than using the full
nCDM grid of 117 points, we only used the 8 thermal WDM simulations mentioned
in Section 2.4.2, and hence applied the interpolation procedure to the same parameter
space investigated in the previous analyses (Viel et al. (2005, 2013); Iršič et al.
(2017b)). The results of such comparison are discussed in details in Appendix C.

Another difference with respect to previous analyses is that we did not use cross-
simulations between the nCDM parameters and the astrophysical and cosmological
ones. Notice, however, that the expected degeneracies, e.g., between the IGM
temperature and α, emerged consistently with respect to the results published so
far (see Appendix C). On the other hand, we noticed that our current interpolation
scheme is not fully accurate for reproducing power spectra which are very far
from the reference cases. This issue does not affect our final results on the nCDM
parameters, having the only consequence of a further weakening of the bounds
for those cosmological parameters which were not tightly constrained even in
previous IGM studies (see Section 2.6.2). Regarding this aspect, in Chapter 4 we
will combine Lyman-α data with other complementary cosmological observables,
such as CMB and Baryon Acoustic Oscillations (BAOs), obtaining a remarkable
improvement in the constraining power.
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In light of the aforementioned caveats, we determined the constraints on both
astrophysical, cosmological, and nCDM parameters, by maximising a Gaussian
likelihood with a MCMC approach, using the publicly available affine-invariant
MCMC sampler emcee (Foreman-Mackey et al. (2013)).

Regarding the IGM thermal history, we carried out two different analyses:
following the approach of Iršič et al. (2017b), we modelled the redshift evolution
of both T0 and γ̃ as power laws, such that T0(z) = TA0 [(1 + z)/(1 + zp)]T

S
0 and

γ̃(z) = γ̃A[(1 + z)/(1 + zp)]γ̃
S , where the pivot redshift zp is the redshift at which

most of the Lyman-α forest pixels are coming from (i.e. zp = 4.5 for MIKE/HIRES).
We adopted weak priors (TA ∈ [0, 20000] K and T S ∈ [−5, 5]) on the slope and
amplitude of those power law relations. We refer to this power law parametrisation
as our reference MCMC analysis.

However, in order to be conservative, we repeated the same analysis by letting
the amplitude T0(z) free to vary in each bin, only requiring to forbid differences
greater than 5000 K between adjacent redshift bins (Viel et al. (2013)). Furthermore,
in order to prevent unreasonably cold values for the IGM temperatures, which would
hardly be physically motivated, we adopted broad Gaussian priors centred on T0(z)
reference values, with standard deviation σ = 3000 K. As it has been thoroughly
discussed by Iršič et al. (2017b), different choices of the thermal history priors
sensibly affect the results, due to the degeneracy between the IGM temperature
evolution and the nCDM parameters (see also Garzilli et al. (2017); Garzilli et al.
(2018) for different analyses on the impact of very different thermal histories). When
the power law evolution for T0(z) is not assumed, the constraints on the small-scale
power suppression associated to nCDM are expected to be weaker. For these
reasons, in Appendix C we compare different prior choices on the IGM thermal
history, both in the standard and the new framework, showing and discussing
how they do influence the final results.

For the mean fluxes 〈F (z)〉 we have chosen Gaussian priors with standard
deviation σ = 0.04, approximately corresponding to the normalisation uncertainties
given by different observations. For all other free parameters we adopted flat priors
within the boundaries given by the grid of simulations.

2.6.2 Results and discussion

Let us now discuss the results of the comprehensive MCMC analyses that we
performed for the MIKE/HIRES data set. Firstly, we focused on the thermal
WDM case, by switching off the parameters responsible of non-trivial features in
the shape of the small-scale power cut-off (i.e. β and γ), and thus by constraining
the same parameter space studied by Viel et al. (2013); Iršič et al. (2017b), where
α plays the role of the thermal WDM mass parameter. In Appendix C we compare
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Figure 2.12: 1 σ and 2 σ C.L. contour plots for α, β and γ, obtained by assuming a
IGM temperature power law evolution. The dashed vertical lines and the black cross
stand for the thermal WDM case, i.e. β = 2.24 and γ = −4.46. The other symbols shown
in the legend correspond to the {α, β, γ}-combinations associated to the nCDM models
discussed in Section 2.3, and listed in Table 2.5. Different colour gradients are used for
distinguishing between different models belonging to the same class of nCDM scenarios.
For each class, the darkest tonality corresponds to the first model listed in Table 2.5, the
lightest one corresponds to the last model evaluated.

our results for this specific class of nCDM models with the constraints previously
published, probing the full consistency between them.

In this Section, let us then focus on our main goal, i.e., putting limits on the
{α, β, γ}-space. In Figure 2.12 we condense our main results, namely the 1 σ and
2 σ C.L. exclusion plots showing the bounds on the three parameters describing
the power suppression induced by nCDM. We chose to focus on the analysis based
on the assumption of a power law evolution for both the amplitude and the slope
of the IGM temperature, which is also the case adopted as reference by Iršič et al.
(2017b), due to its robust physical motivations. However, as it is manifestly shown
in Figure 2.13, the more conservative assumption of a thermal history with freely
floating T0(z) does not change at all our conclusions.

From Figure 2.12 we note that, even in our new general framework, the parameter
α, responsible of the position of the cut-off in the power spectrum is well constrained
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Figure 2.13: 1 σ and 2 σ C.L. contour plots for both α, β, γ, and the main astrophysical
free parameters. The blue contours refer to the freely floating IGM temperature analysis,
while the red contours refer to our reference analysis, i.e., when a power law evolution
is assumed. The values of the temperature are expressed in 104 K units.

by current data. On the other hand, both β and γ are quite unconstrained. It is
interesting to notice, however, that the 1D posterior distribution of the former shows
a peak around β = 7, which is far from its thermal value, i.e., β = 2.24. The natural
interpretation is that standard thermal WDM models are not favoured by Lyman-α
data with respect to non-thermal scenarios. In the plots, the thermal values for β and
γ are highlighted by the dashed vertical lines and the black cross. More specifically,
the black cross, which corresponds thereby to β = 2.24 and γ = −4.46, lies slightly
outside of the 2 σ C.L. contour. The peak in the 1D distribution of α corresponds
to the standard CDM model, and the mild degeneracy between large values of α
and small values of |γ| is extensively discussed in Section 2.2 and Appendix A.

In Section 2.3 we described several viable classes of nCDM models motivated by
particle physics (i.e., sterile neutrinos both from resonant production and particle
decay, FDM models, mixed DM fluids, DM-Dark Radiation interaction models),
and we analysed some examples from each of the families. The symbols reported
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in Figure 2.12 correspond to the {α, β, γ}-combinations which have been shown
to provide a good fit for the transfer functions associated to such example models.
In order to quantify their viability, we list all of them, with the corresponding
α, β, γ and k1/2, in Table 2.5, where we report the χ2-values determined through
our reference analysis. Clearly, the χ2-values were computed only for those models
associated to {α, β, γ}-combinations sampling a parameter region which is covered
by our grid of simulations (see Table 2.1). In Figure 2.12, different colour gradients
are used for distinguishing between different models belonging to the same class
of nCDM scenarios. For each group of models, the darkest tonality corresponds
to the first model listed in Table 2.5, while the lightest one corresponds to the
last model evaluated.

0 3 6 9 12

|β/γ|

thermal WDM

Figure 2.14: Marginalised 1D distribution of |β/γ|, which is a useful estimator
for condensing the constraints on the two parameters governing the slope of the
power suppression. The vertical dashed line corresponds to the thermal WDM {β, γ}-
combination, i.e. β = 2.24 and γ = −4.46.

Let us shortly recall that the first group of models corresponds to few example
values for RP sterile neutrino mass (mS = 5, 7, 15 keV), the active-sterile neutrino
mixing angle, and the lepton asymmetry. Concerning sterile neutrinos from particle
decay, each of the model is characterised by different values of the sterile neutrino
and decaying scalar particle masses, along with different Higgs portal and Yukawa
coupling parameters. FDM scenarios rely on the assumption that all of DM is
constituted by an ultra-light scalar particle: the first two models belonging to this
class correspond to DM masses of 5 · 10−22 and 10 · 10−22 eV, and they are rejected
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by our analysis; the latter two FDM scenarios correspond to masses 20 · 10−22

and 40 · 10−22 eV, and they are accepted.
Let us stress that, thanks to the new general parametrisation, it has not been

necessary to run any specific numerical simulations in order to test such nCDM
scenarios. Whenever one wants to constrain any model belonging to one of these
families, it is sufficient to fit the corresponding linear power spectrum in terms
of {α, β, γ}, and interpolate in the parameter space delineated by our full grid of
simulations, i.e., in a refined χ2-table having a similar structure to Table 2.5, but
also including the astrophysical and cosmological parameters involved.

By looking at the positions of the various symbols in Figure 2.12, one cannot give
a definitive answer about the viability of the whole classes of candidates. This aspect
is particularly relevant for the models suggested by ETHOS, which often feature
oscillations at very small scales, that our parametrisation cannot capture. For the few
examples considered here, all referring to a weak Dark Acoustic Oscillation (DAO)
regime, the presence of such oscillations is totally negligible for the data analyses, as
it is explicitly displayed in Section 2.6.3. In Chapter 4 we will carry out a thorough
investigation for quantifying to which extent our fitting procedure is able to cover
the whole class of ETHOS models, both in the weak and in the strong DAO regime
(see also Cyr-Racine et al. (2016); Vogelsberger et al. (2016) for further details). A
similar issue concerns FDM models, which are expected to modify the dynamics
during the non-linear phase of structure formation, due to Quantum Pressure (QP)
effects. Concerning this point, we instead address the reader to Chapter 3, where
we will demonstrate that such effects do not affect predictions obtained under the
standard approximation of treating ultra-light scalars as standard collisionless DM,
at least for models where FDM constitutes the whole of the DM amount.

Taking into consideration all the points above, it is now possible to see which
nCDM models are excluded by current data and which ones are not. The FDM
model examples that we have considered (green crosses) are associated to values
for β and γ which are in perfect agreement with data. However, from Figure 2.12
it is manifest that only the values of α relative to the last two models reported
in Table 2.5, i.e., those featuring a power suppression at the smallest scales, are
allowed by our analysis. This means that a DM fluid fully composed by ultra-light
scalar particles is characterised by a shape for the power suppression which can
always accommodate Lyman-α data, provided that the mass of the FDM particle
is sufficiently large. Analogous arguments apply to the four RP sterile neutrino
models that we have tested (blue stars). Conversely, by looking at the positions
of the orange and yellow crosses in Figure 2.12 we conclude that, even though
the power suppression due to sterile neutrinos from particle decay occurs at scales
allowed by data, the corresponding {β, γ}-combinations lie at the border of the
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2 σ contour, displaying that it is the peculiar shape of the power suppression to
slightly disfavour this class of models. Concerning the ETHOS example models
that we have analysed (purple triangles), it is interesting to note that, whereas all
the corresponding values of α are in agreement with data, the {β, γ}-combinations
associated to the first two scenarios are rejected. Such combinations lead indeed to a
power suppression at relatively large scales, as it is quantified by the corresponding
k1/2 values listed in Table 2.5.

To summarise the take-home message from this Chapter, due to the new
parametrisation it is now possible to test a wide variety of nCDM models with
Lyman-α data, by simply fitting their linear power spectra in terms of {α, β, γ},
and confronting the corresponding {α, β, γ}-combinations against exclusion plots
like the ones shown in Figure 2.12. In other words, it is sufficient to look at
which region of the parameter space they sample, without the need of running
any numerical simulations.

Now we would like to stress that none of the mixed (cold plus warm) DM
scenarios discussed in Section 2.3 is over-plotted in Figure 2.12. This is due to the
fact that the values of α which are needed in order to fit the transfer functions
associated to such models must necessarily be greater than 0.1, well beyond the
constraint that we obtained. By marginalising over all the other parameters, we
obtain indeed an upper limit on α < 0.03 Mpc/h (2 σ C.L.), which could be
interpreted as the largest possible scale at which a power suppression induced by
any nCDM scenario can be present, in order to be in agreement with Lyman-α
data, provided that such nCDM scenario is captured by our parametrisation. Such
constraint constitutes a strong hint that DM fluids composed by a mixture of a
cold and a warm (thermal) component are disfavoured by structure formation data.
A more comprehensive and systematic study focused on this particular class of
models is needed before claiming that they are completely ruled out. Nevertheless,
in light of our analyses it is clear that only scenarios with large masses and/or
tiny abundances for the warm (thermal) component may accommodate Lyman-α
data, i.e., scenarios which are practically indistinguishable with respect to the
standard CDM model, with current structure formation observations.

In Figure 2.13 we show the 1D and 2D distributions for both α, β, γ, and
the main astrophysical free parameters. The blue contours refer to the freely
floating IGM temperature analysis, while the red contours refer to the case where
a power law evolution is assumed. Both in Section 2.6.1 and in Appendix C we
extensively discuss how different prior choices on the IGM temperature evolution
influence the constraints on the WDM mass, when the analysis is limited to
thermal models. Interestingly, the consequences of such different choices on α

are mitigated in the generalised {α, β, γ}-analysis, where the effects of different
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assumptions on the thermal history are somehow spread on the distributions of
the three parameters associated to the nCDM nature. By examining the contour
plots shown in Figure 2.13, the relative stability of the 1D distribution of α is
visibly evident. However, by dropping the assumption of a temperature power law
evolution and letting T0(z) free to vary bin by bin, the marginalised 2 σ C.L. limit
on α is weakened, becoming α < 0.05 Mpc/h.

α [Mpc/h] β γ k1/2 [h/Mpc] χ2

0.025 2.3 −2.6 17.276 101
RP sterile 0.071 2.3 −1.0 9.828 266
neutrinos 0.038 2.3 −4.4 8.604 283

0.035 2.1 −1.5 15.073 149
Neutrinos 0.016 2.6 −8.1 19.012 104

from 0.011 2.7 -8.5 28.647 38
particle 0.019 2.5 −6.9 16.478 105
decay 0.011 2.7 -9.8 26.31 45

0.16 3.2 −0.4 6.743 229
Mixed 0.20 3.7 −0.18 7.931 -
models 0.21 3.7 −0.1 11.36 -

0.21 3.4 −0.053 33.251 -
0.054 5.4 −2.3 13.116 169

Fuzzy 0.040 5.4 −2.1 18.106 104
DM 0.030 5.5 -1.9 25.016 40

0.022 5.6 -1.7 34.590 30
0.0072 1.1 −9.9 7.274 -

ETHOS 0.013 2.1 −9.3 16.880 153
models 0.014 2.9 −10.0 21.584 70

0.016 3.4 −9.3 23.045 60

Table 2.5: Here we list 20 {α, β, γ}-combinations, with the corresponding value for k1/2,
each of them referring to one of the nCDM particle models examined in Section 2.3 and
over-plotted in Figure 2.12. They are split into five groups, which represent some of the
most viable classes of nCDM scenarios up-to-date. In the last column we report the
corresponding χ2-values from our reference MCMC analysis. Those models for which the
χ2 is not shown are associated with {α, β, γ}-combinations sampling a parameter region
not covered by our grid of simulations (see Table 2.1). Models highlighted in bold-face
are accepted (at 2 σ C.L.) by our analysis.

It is also informative to look at the marginalised 1D distribution for the quantity
|β/γ|, reported in Figure 2.14, which somehow compresses the information about
the slope of the power suppression, and appears to be well constrained by our
analysis. The corresponding 2 σ C.L. upper limit, obtained by marginalising over α,
is the following: |β/γ| < 14. The vertical dashed line refers to the position of the
{β, γ}-combination associated to thermal WDM models. Consistently with what
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we have already pointed out, its position shows that the particular shape of the
power suppression induced by a thermal WDM candidate is not favoured by data.

As it was expected, the bounds on the astrophysical and cosmological parameters
do not present dramatic differences with respect to the thermal WDM case, apart
from a mild overall weakening due to the addition of two more free parameters
to the analysis. The effects on the flux power spectra induced by variations of
most of the astrophysical and cosmological parameters, in fact, mainly occur at
larger scales with respect to the ones influenced by the nCDM parameters, with
the remarkable exception, e.g., of the IGM temperature T0(z).

Lastly, in Figure 2.15 we explicitly show, among the 109 {α, β, γ}-combinations
listed in Table 2.1, the squared transfer functions corresponding to nCDM models
which are accepted at 2 σ C.L. by our reference MCMC analysis (red lines) and
the ones associated to models that are rejected (blue lines). The nCDM models
corresponding to the red curves are associated to the {α, β, γ}-triplets highlighted
in bold-face in Table 2.1.
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Figure 2.15: Here we show the squared transfer functions associated to the 109 {α, β, γ}-
combinations listed in Table 2.1, and we highlight which ones are accepted by our reference
MCMC analysis at 2 σ C.L. (red lines), and which ones are rejected (blue lines).

In Table 2.6 we report the best fit parameters and their 1 σ and 2 σ C.L. intervals,
corresponding to our reference MCMC analysis, namely to the assumption of a
power law evolution for both the IGM temperature amplitude and slope. By looking
at Table 2.6, one might notice that the lower limits on σ8 and neff are sensibly
underestimated with respect to the previous results. This effect cannot be fully
addressed to the overall weakening of the constraints due to the presence of two
additional free parameters in the MCMC analysis. As it was already mentioned in
Section 2.6.1, this issue is partly due to intrinsic difficulties of the new interpolation
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Parameter (1 σ) (2 σ) Best Fit
F̄ (z = 4.2) [0.35, 0.39] [0.33, 0.41] 0.35
F̄ (z = 4.6) [0.27, 0.32] [0.25, 0.35] 0.26
F̄ (z = 5.0) [0.16, 0.21] [0.15, 0.24] 0.18
F̄ (z = 5.4) [0.05, 0.09] [0.02, 0.11] 0.07
TA0 [104 K] [0.55, 0.95] [0.41, 1.23] 0.74

TS0 [-5, -2.72] [-5, 1.34] -4.38
γ̃A [1.35, 1.53] [1.21, 1.60] 1.45
γ̃S [-2.16, -1.32] [-2.41, 1.07] -1.93
σ8 [0.67, 0.99] [0.53, 1.11] 0.84
zreio [7.73, 10.32] [7, 12.30] 9.16
neff [-2.6, -2.35] [-2.6, -2.20] -2.46
fUV [0, 1] [0, 1] 0.02
β [1.5, 10] [1.5, 10] 3.2
γ [-6.24, -0.15] [-10, -0.15] -4.8

α [Mpc/h] [0, 0.01] [0, 0.03] 0.005

Table 2.6: Marginalised constraints at 1 σ and 2 σ C.L., and best fit values for all the
free parameters of our reference MCMC analysis (see the text for further details). Our
best fit model has a χ2/d.o.f. = 29/38.

scheme when sampling regions that are very far from the range covered by our
simulations, a situation which can only occur for σ8 and neff . These two parameters
are indeed the only ones for which we are scanning an interval of values spread
significantly beyond the range covered by our simulations. Nevertheless, such
parameters were nearly unconstrained even in previous IGM analyses, and our
results are not biased by this problem. We made sure of that by performing several
times each of our analyses, for both the thermal case and the general one, imposing
Gaussian priors centred around Planck values for σ8 and neff (Ade et al. (2016a)),
both individually and in combination, with various values for the standard deviations.
None of the runs provided sensibly different bounds on the other parameters. Thus,
we can conclude that not being able to perfectly constrain extremely low values for
σ8 and neff does not affect any of our predictions. Let us remark, in this context, the
importance of combining Lyman-α data with other cosmological probes, e.g., CMB
and BAO measurements, to achieve tighter constraints. Such an extended data
set will be used in Chapter 4 to test interacting DM models.

2.6.3 Robustness of the method

This Section is devoted to test both the {α, β, γ}-fitting procedure and the interpo-
lation scheme previously illustrated, in order to demonstrate the robustness and
accuracy of the novel approach. To this end, we focus on three specific nCDM
models belonging to the ETHOS framework, i.e., associated to DM-Dark Radiation
interaction scenarios with three different strengths. For the purposes of this Section,
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Figure 2.16: (a) In the left panel we plot the “exact” squared transfer functions
associated to three different ETHOS models (solid lines), all of them featuring small-scale
oscillations. We also plot the corresponding fitted transfer functions (dashed lines),
obtained by neglecting such oscillations when fitting the “exact” ones. (b) In the right
panel we plot the ratios with respect to a pure CDM model (at redshift z = 5.4) for
the flux power spectra extracted from two sets of simulations: the solid lines by using
as initial conditions the “exact” transfer functions, the dashed lines by using as initial
conditions the fitted T (k). The colour code of the two panels is the same.

it is not necessary to go into the particle physics details of the models, we just need
to notice that the corresponding transfer functions are characterised by a cut-off
at the scales of interest for Lyman-α forest observations. Such squared transfer
functions are plotted as solid lines in Figure 2.16a, together with the corresponding
{α, β, γ}-fits (dashed lines). The solid lines are dubbed as “exact” T (k), since
they have been produced by a specific version (Archidiacono et al. (2019)) of the
numerical Boltzmann solver CLASS (Blas et al. (2011)), where the non-standard
interactions characterising the considered models are fully implemented. That is
why they feature small-scale oscillations which our {α, β, γ}-parametrisation is not
able to capture. For each squared transfer function plotted in Figure 2.16a, we also
reported the corresponding {α, β, γ}-values, obtained by fitting the solid curves
down to their first minima, completely neglecting the oscillations. In Figure 2.16b
we have plotted the ratios with respect to a pure CDM model (at redshift z = 5.4)
for the flux power spectra extracted from two sets of simulations: the solid lines by
using as initial conditions the aforementioned “exact” transfer functions, the dashed
lines by using as initial conditions the fitted ones. By analysing the two panels,
for which we adopted the same colour code, it is clear that differences between the
“exact” flux power spectra and the {α, β, γ}-predictions appear only when the power
suppression with respect to the standard CDM case is more than 50%. Furthermore,
this is true only for nCDM models characterised by suppression at significantly
large scales, which are indeed associated with α-values well above the marginalised
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2 σ upper limit presented in Section 2.6.2, i.e., α < 0.03 Mpc/h. Let us highlight,
in fact, that the fitted transfer function of the most viable model that we considered
(green dashed line), is practically superposed with the corresponding “exact” T (k)
(green solid line). For both these reasons, we conclude that the differences due
to our inability to capture the small-scale oscillations appear only for flux power
spectra which lie anyway very far from the Lyman-α forest data points. This
completely justifies ignoring such oscillations when applying our fitting procedure
(regarding this subject, see also Chapter 4, where further applicability checks of
the method are successfully carried out).
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Figure 2.17: Flux power spectra for the most viable model shown in Figure 2.16,
together with MIKE/HIRES data points and error bars. Different colours stand for
different redshifts, i.e., from the bottom to the top, z = 4.2, 4.6, 5.0, 5.4. See the text for
the detailed discussion about the different power spectra listed in the legend.

Let us now look at Figure 2.17, where we focus on the flux power spectra of the
model described by the green curves in Figure 2.16, given that its α-value is the
only one accepted at 2 σ C.L. by our analysis. Different colours stand for different
redshifts, i.e., from the bottom to the top, z = 4.2, 4.6, 5.0, 5.4. For each redshift
bin we plot both MIKE and HIRES data points and error bars, as triangles and
squares, respectively. Firstly, we note again the excellent agreement between the
flux power obtained by using the “exact” initial conditions (solid lines) with respect
to the fitted ones (dashed lines). Most importantly, the dotted lines correspond to
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flux power spectra computed by simply interpolating in our coarse grid, without
running any dedicated simulation, and they nicely coincide with the solid ones, at
each redshift. It is thus evident that models associated with {α, β, γ}-combinations
sampling our grid of simulations are perfectly reproduced by the novel interpolation
scheme. As a reference, we also plot our best fit flux power spectra (dot-dashed
lines), associated to the parameter values reported in Table 2.6. The grey dashed
areas represent instead the region spanned by flux power spectra with values of
α varying up to its 2 σ C.L. marginalised upper bound.

2.6.4 Comparison with the “area criterion”
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Figure 2.18: Correlation between the area estimators δA relative to each of the nCDM
models examined in Section 2.3, and the corresponding χ2-values, obtained with our
reference MCMC analysis and reported in Table 2.5. Different symbols refer to points
belonging to different groups of nCDM models, consistently recalling the convention
adopted in Figure 2.12. The dashed line represents the linear regression fit to the results.
The grey dots correspond to the {α, β, γ}-combinations listed in Table 2.1, each of them
associated to a different nCDM simulation. The vertical and horizontal shaded bands
represent the regions corresponding to the 2 σ C.L. for the “area criterion” and the
MCMC analysis, respectively.

In Section 2.5.2 we introduced a simple method, based on linear perturbation
theory, for testing different nCDM scenarios with Lyman-α forest data by using
an approximate yet intuitive estimator, and we named it as “area criterion”. We
have shown that with such method it is not possible to extract absolute limits on
the nCDM parameters, but it allows to look into deviations with respect to a given
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reference case. Let us stress that the choice of the reference thermal WDM model
for calibrating the “area criterion” is crucial for establishing the threshold which
defines which models to accept/reject. In Section 2.5.2, we performed an analysis
in the {α, β, γ}-space by calibrating the method with mWDM = 3.5 keV (i.e., the
2 σ C.L. limit from the conservative MIKE/HIRES+XQ-100 analysis by Iršič et al.
(2017b)). We quantified the reference power suppression through the area estimator
δA, and we rejected (at 2 σ C.L.) all those nCDM models that feature a larger
power suppression with respect to the reference one. Since the aforementioned
2 σ reference limit roughly coincides with the constraint quoted in Appendix C
for thermal WDM masses (power law analysis), we can consistently compare the
results presented in Section 2.6.2 with the approximate conclusions reported in
Section 2.5.2. It is interesting, indeed, to quantify the precision of the simple “area
criterion” with respect to the full statistical data analysis that we just illustrated.

Firstly, let us note that by marginalising the “area criterion” results over β and
γ, we obtained the following upper limit on α < 0.058 Mpc/h (2 σ C.L.), which
is weaker with respect to the bounds quoted in Section 2.6.2. This could mostly
be due to the unavoidably prominent tail at large values in the 1D α-distribution,
when the analysis is done with the approximate area method. As we pointed
out in Section 2.6.2, such tail corresponds to extreme values for both β and γ,
as well as very cold IGM temperatures, unlikely to be physically motivated. By
simply applying the “area criterion” it is intrinsically impossible to account for
this astrophysical information.

Let us now compare the results listed in Table 2.5 with the conclusions reported
in Table 2.4, which have been obtained by applying the “area criterion” to the same
nCDM particle model examples. In Figure 2.18 we show the correlation between
the area estimators δA relative to each of the examined nCDM models and the
corresponding χ2-values, obtained with our reference MCMC analysis and reported
in Table 2.5. The two different sets of predictions are visibly correlated, with
correlation coefficient r = 0.94. The dashed line represents the linear regression fit
to the results. Different symbols are used to identify points belonging to different
groups of nCDM models, consistently recalling the convention adopted in Figure 2.12.
The vertical and horizontal shaded bands represent the regions which are included
at 2 σ C.L. by the “area criterion” and the MCMC analysis, respectively. All those
models sampling the lower left intersection between the two bands are thus accepted
(at 2 σ C.L.) by both the analyses, whereas models which sample the white region
are excluded by both of them. Interestingly, none of the particle model examples
examined is rejected by one analysis and accepted by the other.

When considering also the grey dots, which correspond to the {α, β, γ}-triplets
listed in Table 2.1, the correlation between the conclusions drawn by the two
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methods is even more evident. Since the grey dots which sample the vertical shaded
band refer to models accepted at 2 σ C.L., they are also associated to the red
transfer functions shown in Figure 2.15. Note that the departure from the linear
correlation occurring for small values of δA is an intrinsic feature of the method.
Whereas the χ2-distribution saturates when approaching the best fit χ2-value, the
area estimator can assume arbitrarily small (positive) values. It is remarkable that,
among 109 models thoroughly sampling the {α, β, γ}-space, only two of them are
accepted by the “area criterion” while rejected by the MCMC analysis. Conversely,
it is worthwhile to notice that only one borderline {α, β, γ}-triplet is rejected by
the “area criterion” while accepted by the MCMC analysis, that is a confirmation
of the suitability of the former as an approximate yet effective and conservative
method to perform preliminary tests on non-standard DM scenarios.
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3
Ultra-light scalar Dark Matter

3.1 Overview
Ultra-light scalar DM – also denoted as Fuzzy DM (FDM) – scenarios describe the
DM sector as made up of very light bosonic particles (see, e.g., Hui et al. (2017) for
a review on the topic), so light that their quantum nature becomes relevant also on
cosmological scales. This requires a description of the DM dynamics in terms of
the Schrödinger equation, in order to take into account for quantum corrections,
and can be mapped in a fluid-like description where a Quantum Potential (QP)
enters the classical Navier–Stokes equation (Hu et al. (2000)).

The typical wave-like quantum behaviour adds to the standard CDM dynamics
a repulsive effective interaction that, along with creating oscillating interference
patterns, actively smooths matter overdensities below a redshift-dependent scale
that decreases with the cosmic evolution – as confirmed by FDM linear simulations
(see, e.g., Marsh & Ferreira (2010); Hlozek et al. (2015)) – thus potentially easing
some of the small-scale tensions of the standard CDM paradigm.

The lack of density perturbations at small scales induced by the QP is represented,
in Fourier space, by a sharp suppression of the matter power spectrum, that persists
– at any given scale – until the action range of the QP shrinks below such scale and
cannot balance any longer the effect of the gravitational potential (see, e.g., Marsh
(2016a) for another detailed review on the subject). As a matter of fact, while
linear theory predicts that perturbations at scales smaller than the cut-off never
catch up with those at larger scales – untouched by FDM peculiar dynamics –,
non-linear cosmological simulations have shown that gravity is able to restore
intermediate scales to the unsuppressed level, in a sort of healing process (Marsh
(2016b); Nori & Baldi (2018)).

59
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FDM non-linear cosmological simulations have been performed over the years
either with highly numerically intensive high-resolution Adaptive Mesh Refinement
(AMR) algorithms able to solve the Schrödinger-Poisson equations over a grid (Schive
et al. (2010, 2018)) or with standard N -body codes that, however, include the (linear)
suppression only in the initial conditions, but neglect the integrated effect of the FDM
interaction during the subsequent dynamical evolution (Schive et al. (2016); Iršič et al.
(2017a); Armengaud et al. (2017)) – basically treating FDM as standard collisionless
CDM with a suppressed primordial power spectrum, as it is routinely done in
nCDM simulations, like the ones presented in Chapter 2. The former approach led
to impressive results in terms of resolution (Woo & Chiueh (2009); Schive et al.
(2014); Veltmaat et al. (2018)) but is extremely computationally demanding, thereby
hindering the possibility of adding a full hydrodynamic description of gas and star
formation for cosmologically representative simulation domains. On the other hand,
the latter allows for such possibility because of its reduced computational cost which
is, however, gained at the price of the substantial approximation of neglecting QP
effects during the simulation (Schive et al. (2016)).

For these reasons, following the idea proposed by Mocz & Succi (2015), Nori &
Baldi (2018) devised AX-GADGET, a modified version of the numerical code GADGET
(Springel et al. (2001b); Springel (2005)), to include the dynamical effect of QP
through SPH numerical methods. The explicit approximation of the dependence on
neighbouring particles results in a less numerically demanding code with respect
to full-wave AMR solvers, without compromising cosmological results, with the
additional ability to exploit the gas and star physics already implemented in GADGET.
Given that gravity, as mentioned above, can restore the suppressed power at
intermediate scales in the non-linear regime, major observables related to the LSS at
such scales may appear similar in both FDM and CDM cosmologies at sufficiently
low redshifts. For this reason, Lyman-α forest observations could play a crucial
role in distinguishing such radically different models of DM, being one of the most
far reaching direct astrophysical probes in terms of redshift of the LSS observables,
sampling the redshift range z ∼ 2 − 5.

This Chapter is organised as follows: in Section 3.2 we briefly describe the FDM
models under consideration; in Section 3.3 we present the most updated FDM
constraints obtained from Lyman-α forest data, we discuss their implications for
the CDM small-scale crisis, and we quantify for the first time the impact of the full
non-linear treatment of the QP; in Section 3.4 we address the implications of such
results for the early universe: in particular, on the initial value of the scalar field,
isocurvature perturbations, and the tensor-to-scalar ratio; in Section 3.5 we study
the statistical properties of DM halos, and extract information on how FDM affects
the abundance, the shape, and density profiles of DM (sub)structures.
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3.2 Theoretical framework
The idea of describing DM and its key role in the LSS formation in terms of
ultra-light scalar particles, i.e., particles with mass ∼ 10−22eV/c2, was introduced
by Hu et al. (2000), in which the term Fuzzy DM was used for the first time and
the cosmological implications induced by the quantum behaviour of an ultra-light
scalar DM field on linear cosmological perturbations were outlined. In this Section
we recall the main properties of such light bosonic field in a cosmological framework,
and how it affects the growth of LSS.

3.2.1 Fuzzy Dark Matter as a fluid

Let us start by describing FDM as a cosmological fluid, using the formalism discussed
by, e.g., Arvanitaki et al. (2010); Hu et al. (2000); Hui et al. (2017); Widrow &
Kaiser (1993). A large number of scalar particles with mass m behaves as a classical
field obeying the Klein–Gordon and Einstein’s equations,

∇µ∇µφ = m2φ, Gµν = 8πGTµν , (3.1)

where the scalar field contributes to the energy-momentum tensor as

T φµν = gµν

(
−1

2∂ρφ∂
ρφ− 1

2m
2φ2

)
+ ∂µφ∂νφ. (3.2)

Regarding the metric of the Friedmann-Robertson-Walker (FRW) universe with
perturbations, we take the Newtonian gauge and ignore anisotropic stress,

ds2 = −(1 + 2Φ)dt2 + a(t)2(1− 2Φ)dx2. (3.3)

The Hubble rate is defined as H = ȧ/a, with a dot denoting a derivative with
respect to cosmic time t. When H � m, and hence the scalar field is harmonically
oscillating, it is convenient to re-write φ as

φ = 1√
2m

(
ϕe−imt + ϕ∗eimt

)
, (3.4)

in terms of a complex field ϕ describing the oscillation amplitude whose time-
dependence is slow compared to the oscillation period. We re-write the Klein–
Gordon equation in terms of ϕ under the assumption of tiny perturbations |Φ| � 1,
and thus ignoring terms that contain quadratic or higher orders of Φ. Furthermore,
let us focus on non-relativistic modes (k/a � m), and suppose the time scales
for the variations of Φ, ϕ, a, and their derivatives to be much longer than the
oscillation period, i.e., |Φ̇| � m|Φ|, |ϕ̈| � m|ϕ̇|, etc. This, in particular, allows
us to drop second time-derivatives in the equation. After taking an average over
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the oscillation period, the Klein–Gordon equation reduces to a Schrödinger-type
equation (Widrow & Kaiser (1993)),

i
(
ϕ̇+ 3

2Hϕ
)

= − ∂2ϕ

2a2m
+mΦϕ, (3.5)

where ∂2 ≡ ∂i∂i, and sum over repeated spatial indices is implied irrespective
of their positions.

In terms of the amplitude and the phase of ϕ, we now define

ρφ ≡ mϕϕ∗, vi ≡
∂i{arg(ϕ)}

am
= − i

2am

(
∂iϕ

ϕ
− ∂iϕ

∗

ϕ∗

)
, (3.6)

whose meaning will soon become clear. Multiplying both sides of the Schrödinger
equation (Equation (3.5)) by ϕ∗, its real and imaginary parts respectively lead
to the following equations:

v̇i +Hvi + vj∂jvi
a

= −∂iΦ
a

+ 1
2a3m2∂i

(
∂2√ρφ
√
ρφ

)
, (3.7)

ρ̇φ + 3Hρφ + ∂i(ρφvi)
a

= 0. (3.8)

One can also re-write the Einstein’s equation in a similar fashion. Focusing on
sub-horizon and non-relativistic modes, i.e., H � k/a� m, it can be checked that
the (0, 0) component of the Einstein’s equation yields

∂2Φ
a2 = 4πG

(
ρφ + T others

00

)
− 3

2H
2, (3.9)

where T others
00 denotes the contributions to the energy-momentum tensor from

components other than FDM. Interpreting ρθ and vi as the density and velocity
fields, the set of Equations (3.7), (3.8), and (3.9) are seen to correspond respectively
to the Euler, continuity, and Poisson equations; thus we have arrived at a fluid
description of the scalar DM. The only difference with the familiar CDM fluid is the
existence of the last term in the right hand side of Equation (3.7), which represents
a pressure due to the wave-like nature of the scalar field on small scales.

3.2.2 Evolution of the density perturbations

Let us now study the evolution of density perturbations in a matter dominated
universe that is filled with FDM and CDM. We also describe CDM as a fluid obeying
the Euler and continuity equations as in Equation (3.7) and (3.8), except for that
there is no pressure term, and replace T others

00 in the Poisson equation (Equation (3.9))
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by the CDM density ρc. Then one immediately sees from that the homogeneous
and isotropic background satisfies

˙̄ρφ
ρ̄φ

=
˙̄ρc

ρ̄c
= −3H, ρ̄φ + ρ̄c = 3H2

8πG, (3.10)

where a bar is used to denote unperturbed values. We discuss the density fluctuations
around the background in terms of the density contrast,

δn = ρn − ρ̄n
ρ̄n

, (3.11)

where n = φ, c,m, with ρm = ρφ + ρc being the total DM density. Expressing the
ratio between the unperturbed densities of the scalar and total DM as

F = ρ̄φ
ρ̄m
, (3.12)

which is a constant in the range 0 ≤ F ≤ 1, the density contrast of the total
DM is written as

δm = Fδφ + (1− F )δc. (3.13)

Expanding Equations (3.7), (3.8), and (3.9) up to linear order in δ and vi, and then
combining them to eliminate vi and Φ, one arrives at the evolution equations
for the density contrasts,

δ̈φk + 2Hδ̇φk + c2
sk

2

a2 δφk −
3
2H

2δmk = 0, (3.14)

δ̈ck + 2Hδ̇ck −
3
2H

2δmk = 0. (3.15)

Here we have written the linearised equations in terms of the Fourier compo-
nents (k is a comoving wavenumber, with k = |k|), and the sound speed of
the FDM component is

c2
s ≡

k2

4a2m2 . (3.16)

From their derivations, it should be noted that Equations (3.14) and (3.15) are valid
during the matter dominated epoch, and for wavenumbers that are sub-horizon
and non-relativistic, i.e., H � k/a� m.

In the case where FDM constitutes the entire DM, i.e., F = 1, one can read off
its Jeans wavenumber from the last two terms in Equation (3.14) as

kJ

a
=
√
Hm, (3.17)
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where we have ignored numerical factors. As we are interested in FDM masses
larger than the Hubble rate at matter/radiation equality, the Jeans length is
smaller than the Hubble length throughout the matter dominated epoch. On
length scales larger than the Jeans length (k < kJ), the pressure term is negligible
and FDM behaves similarly to CDM; thus the density fluctuation possesses the
usual growing mode δφk ∝ a. However, below the Jeans length (k > kJ), δφk

undergoes oscillations of ∝ exp(±2icsk/aH) and thus does not grow. Here note
that in a matter dominated universe, the comoving Jeans wavenumber grows as
kJ ∝ a1/4. Hence for modes that are sub-Jeans at the time of matter/radiation
equality, i.e., k > kJeq, the FDM perturbation is prevented from growing until the
mode k crosses the Jeans scale at a = ak, where

ak = aeq

(
k

kJeq

)4

. (3.18)

With a slight abuse of language, we will refer to kJ as defined in Equation (3.17)
as the Jeans wavenumber, even in cases with F 6= 1.

If DM is a mixture of FDM and CDM, i.e., 0 < F < 1, then the matter
fluctuations grow even on small scales, albeit slowly. This is seen by dropping δφk

in Equation (3.15) by taking an average over δφk’s oscillation period, giving
d2δck

da2 + 3
2a
dδck

da
− 3(1− F )δck

2a2 = 0. (3.19)

Here we have re-written the derivatives in terms of time by those of a, using
H ∝ a−3/2 (see Equation (3.10)). This equation has a general solution of

δck = C+a
n+ + C−a

n− , with n± = −1±
√

25− 24F
4 , (3.20)

whose first term is a growing mode, and the second a decaying mode. The growing
CDM perturbation drags the FDM component and thus δφk starts to grow even
before crossing the Jeans scale.

On the other hand, wave modes with k < kJeq stay super-Jeans throughout the
matter dominated epoch. We should also note that during radiation domination,
there is no significant growth for both FDM and CDM perturbations on sub-horizon
scales.1 Therefore the difference in the matter perturbations between cases with
and without FDM becomes prominent on wavenumbers k > kJeq, mainly due to
the difference in the evolution during the matter dominated epoch. For reference,
the Jeans wavenumber at the matter/radiation equality is

kJeq

a0
= aeq

a0

√
Heqm ≈ 7 Mpc-1

(
m

10−22 eV

)1/2
, (3.21)

where the subscript “0” denotes quantities today.
1The evolution of the matter fluctuations prior to matter/radiation equality can be described

by further including a homogeneous radiation component ρ̄r ∝ a−4 to T others
00 in Equation (3.9)

(hence ignoring radiation perturbations on sub-horizon scales); this amounts to multiplying the
term (3/2)H2δmk in Equations (3.14) and (3.15) by ρ̄m/(ρ̄m + ρ̄r). During radiation domination
(ρ̄m/ρ̄r → 0), δφk has general solutions of exp{±i(csk/aH) ln a}.
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3.2.3 Impact on the linear matter power spectrum
In order to evaluate the growth of the perturbations for arbitrary F , we suppose
an adiabatic initial condition and consider δφ to behave similarly to δc during
radiation domination, and on super-Jeans scales. For wavenumbers k > kJeq,
let us make a rough approximation that the total matter perturbation follows
δmk ∝ an+ since matter/radiation equality until crossing the Jeans scale at a = ak,
then subsequently grows as the usual δmk ∝ a. This approximation is crude, but
allows us to understand the overall spectral shape of the suppression and how
it is determined by the FDM parameters.

By comparison with the pure CDM (F = 0) case where δmk ∝ a throughout
matter domination, one can estimate the suppression of the linear matter power
spectrum due to FDM. For wave modes that have crossed the Jeans scale, the matter
perturbation containing FDM is suppressed relative to that with pure CDM by∣∣∣∣∣∣δ

(φ+c)
mk

δ
(c)
mk

∣∣∣∣∣∣
kJeq<k<kJ

=
(
aeq

ak

)1−n+

=
(
kJeq

k

)4(1−n+)

. (3.22)

On the other hand, for modes that are still sub-Jeans at the time the matter
perturbations are measured, the suppression saturates to a k-independent value of∣∣∣∣∣∣δ

(φ+c)
mk

δ
(c)
mk

∣∣∣∣∣∣
k>kJ

=
(
aeq

a

)1−n+

=
(
kJeq

kJ

)4(1−n+)

. (3.23)

See also Arvanitaki et al. (2010), where similar results were obtained.
The relative suppression of the linear matter power spectrum Pm(k) ∝ |δmk|2 due

to FDM, obtained from squaring Equations (3.22) and (3.23), is sketched in the left
panel of Figure 3.1. The actual spectrum with FDM can be oscillatory, and so what
is illustrated in the figure should be considered as the envelope. We stress that while
the FDM massm determines the Jeans wavenumber at equality kJeq above which the
suppression appears, the spectral index of the suppression is set by the fraction F .
Moreover, the suppression saturates at the Jeans wavenumber kJ at the time of the
measurement, where the saturated suppression factor is independent of m.2

Provided that the square of Equation (3.23) is smaller than 1/2, we can define
the wavenumber k1/2 at which the power spectrum Pm(k) is suppressed by 1/2,
as in Chapter 2. From Equation (3.22), k1/2 is obtained in terms of the Jeans
scale at equality (Equation (3.21)) as

k1/2

kJeq
= f(F ), where f(F ) = 2

1
10−2

√
25−24F . (3.24)

2The suppression function presented in Equation (8) of Hu et al. (2000) behaves quite differently
from what we discussed in the region k � kJeq. This is because the function of Hu et al. (2000) was
obtained to describe the first few efolds of suppression at around kJeq, instead of the asymptotic
behaviour. We thank Wayne Hu for private communication on this point.
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Figure 3.1: Left: A sketch of the suppression of the linear matter power spectrum
containing FDM relative to that with pure CDM. Right: The wavenumber k1/2 at which
the linear matter power spectrum is suppressed by 1/2, in units of the Jeans wavenumber
at matter/radiation equality kJeq, as a function of the FDM fraction F .

This ratio as a function of F describes how the suppression effect is diluted for a
smaller FDM fraction. We plot this in the right panel of Figure 3.1, where one sees
that k1/2 ∼ kJeq for F > 0.1, whereas k1/2 becomes exponentially larger than kJeq

for F . 0.1. In particular if F . 0.07, then k1/2 even exceeds the present-day Jeans
scale kJ0 = (a0/aeq)1/4kJeq ∼ (3000)1/4kJeq (here we are ignoring DE for simplicity);
namely, the linear power spectrum today does not fall below 1/2 of that from pure
CDM. This indicates that FDM, no matter how light its mass is, would not impact
structure formation as long as its fraction is below ∼ 10% of the total DM.

We have also numerically solved the coupled evolution Equations (3.14) and
(3.15). In order to incorporate the slow growth of the CDM perturbation towards the
end of the radiation dominated epoch, we further included a background radiation
component as explained in Footnote 1, and started the computations at a = aeq/10
with a simplified adiabatic initial condition δφk = δck, δ̇φk = δ̇ck = 0.3 The ratio of
the resulting linear matter power spectrum today between cases with FDM and pure
CDM is shown in Figure 3.2, for various values of the FDM fraction F . The FDM
mass is fixed to m = 10−22 eV, and the spectrum is shown for wavenumbers that are
sub-horizon and non-relativistic (H < k/a < m) at the initial time of the calculation.
As was indicated by the analytic arguments, the suppression appears at around
the Jeans scale at equality kJeq/a0 ∼ 7 Mpc-1, and saturates at around the Jeans
scale today kJ0/a0 ∼ 50 Mpc-1. It is also clearly seen that k1/2 ∼ kJeq for F > 0.1,
whereas for F . 0.1 the suppression does not fall much below 50% on any scale.

3A more rigorous treatment would involve solving the relativistic perturbation equations
until the fluid description becomes valid (Khlopov et al. (1985); Nambu & Sasaki (1990); Ratra
(1991); Hwang (1997)), and including other components such as baryons and DE. However, our
simplified treatment should suffice to estimate the relative suppression of FDM perturbations at
the order-of-magnitude level.
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Figure 3.2: Suppression of the linear matter power spectrum today due to FDM with
mass m = 10−22 eV, for various values of the FDM fraction F . The results are obtained
by numerically solving Equations (3.14) and (3.15).

The scale k1/2 also offers a rough guide to estimate the mass of halos whose
formation are suppressed. The mass contained in a sphere of diameter 2πa/k1/2 is

M1/2 = H2

2G

(
πa

k1/2

)3

∼ 1010M� f(F )−3
(

m

10−22 eV

)−3/2
, (3.25)

where in the far right hand side we substituted Equation (3.24) to k1/2, used the
fact that M1/2 is time-independent during matter domination, and thus estimated
its value at matter/radiation equality. From linear perturbation theory, we can
thereby infer that FDM suppresses the number of halos with masses below M1/2.

3.3 Lyman-α forest constraints

The FDM mass was recently constrained from the Lyman-α forest by Iršič et al.
(2017a); Armengaud et al. (2017), for the case where FDM constitutes the entire
DM, and under the universally adopted approximation that ultra-light scalars
behave as standard pressureless CDM at redshift z < 99. All the limits available
in the literature have been indeed established by comparing Lyman-α data with
flux power spectra obtained from standard SPH cosmological simulations, which
completely neglected the QP effects during the non-linear structure evolution. In
other words, the non-standard nature of the DM candidate is simply encoded
in the suppressed initial conditions, computed at z < 99, and used as inputs
for performing the hydrodynamic simulations. In this Section we extend such
analyses in two different directions:
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• we study the case where DM consists of both FDM and CDM, which is crucial
for constraining general theories with light scalars which are not necessarily
designed to explain the DM of our universe (Subsection 3.3.1);

• we use the aforementioned numerical code AX-GADGET (Nori & Baldi (2018)) to
provide the first fully accurate constraints on the FDM mass, by going beyond
the standard dynamical approximation of ignoring the time-integrated QP
effect, and perform a meticulous comparison with the bounds determined under
such approximation, in order to exactly quantify its validity (Subsection 3.3.4).

For both the two analyses, we rely on a sample of 100 medium-resolution,
high-signal-to-noise quasar spectra of the XQ-100 survey (López et al. (2016)),
with emission redshifts 3.5 < z < 4.5. A detailed description of the data and the
power spectrum measurements of the XQ-100 survey has been discussed by Iršič
et al. (2017c). The spectral resolution of the X-shooter spectrograph is 30-50 km/s,
depending on wavelength. The flux power spectrum PF(k, z) has been calculated for
a total of 133 (k, z) data points in the ranges z = 3, 3.2, 3.4, 3.6, 3.8, 4, 4.2 and 19 bins
in k−space in the range 0.003-0.057 s/km. We also use the measurements of the flux
power spectrum by Viel et al. (2013), at redshift bins z = 4.2, 4.6, 5.0, 5.4 and in 10
k−bins in the range 0.001-0.08 s/km. In this second sample the spectral resolution
of the quasar absorption spectra obtained with the MIKE and HIRES spectrographs
are about 13.6 and 6.7 km/s, respectively (see Chapter 2 – Section 2.6.1 – for a
more comprehensive description of this data set).

Compared to XQ-100, the HIRES/MIKE sample has the advantage of probing
smaller scales and higher redshift, where the primordial power spectrum is more
linear and thereby more constraining for the models considered here. Since the
thermal broadening (measured in s/km) of the Lyman-α forest lines is approximately
constant with redshift, the presence of a cut-off in the matter power spectrum
due to the wave-like nature of FDM becomes more prominent in velocity space
at high redshift, due to the H(z)/(1 + z) scaling between the fixed comoving
length scale set by the FDM properties (see Equations (3.21) and (3.24)) and
the corresponding velocity scale.

To obtain the results presented in Subsection 3.3.1, we simulated 9 different
FDM models with GADGET-3 (Springel et al. (2001b); Springel (2005)), with FDM
massesm of 1, 4 and 15.7·10−22 eV, and density ratios F between the FDM and total
DM (i.e., FDM plus CDM) of 1, 0.75 and 0.25. We also simulated the corresponding
ΛCDM model, and since the interpolation is done in terms of α = 10−22 eV/m,
the entire range from α = 0 (ΛCDM case) to α = 1 (m = 10−22 eV) is covered
by interpolation alone. For larger values of α, or equivalently m < 10−22 eV,
linear extrapolation is used. In the plane of the DM ratio and the FDM mass,
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we assume that the ΛCDM model is exact on the axis of F = 0 and any m.
The initial conditions have been produced at redshift z = 99 using the 2LPTic
code (Crocce et al. (2006)), according to a random realisation of the suppressed
linear power spectrum as calculated by axionCAMB (Hlozek et al. (2015)), for the
different FDM models under investigation.

Concerning the analysis presented in Subsection 3.3.4, we performed a set of 6+1
hydrodynamic simulations with AX-GADGET (Nori & Baldi (2018)), consisting in three
pairs of simulations (plus the ΛCDM case), one pair for each considered FDM mass,
evolved either including or neglecting the effect of the QP in the non-linear dynamics
– labelling these two cases as FDM and FDMnoQP , respectively. As already stated,
the goal of this set is to assess and quantify the entity of the approximation typically
employed in the literature. Each of the simulations follows the evolution of 5123

DM particles in a comoving periodic box with side length of 15 Mpc/h. The initial
conditions have been generated at redshift z = 99 using the 2LPTic code (Crocce
et al. (2006)), according to a random realisation of the suppressed linear power
spectrum as calculated by axionCAMB (Hlozek et al. (2015)) for the different FDM
masses under investigation. To ensure a coherent comparison between simulations,
we used the same random phases to set up the initial conditions. In particular, the
FDM masses mχ considered here are 2.5 · 10−22, 5 · 10−22 and 2.5 · 10−21eV/c2, in
order to sample the mass range preferred by the first Lyman-α constraints in the
literature (Iršič et al. (2017a); Armengaud et al. (2017); Kobayashi et al. (2017)).

Regarding the astrophysical parameters, we vary the IGM thermal history
parameters in the form of the amplitude T0 and the slope γ̃ of the IGM temperature
density relation, usually parametrised as T = T0(1 + δIGM)γ̃−1, with δIGM the IGM
overdensity. The thermal parameters (T0, γ̃) were assumed to follow a power law
redshift evolution (e.g., T0(z) = TA0 (1 + z)TS0 ), However, even if a more conservative
temperature evolution with redshift was allowed in the MCMC runs, the MCMC
constraints are expected to become weaker by only an order of unity (as was the
case for F = 1 in the study by Iršič et al. (2017a)). The conservative approach
allowed T0(z) to vary independently in each redshift bin, but prevented non-physical
jumps in temperature (jumps with > 5000 K were not allowed between consecutive
redshift bins). Regarding this aspect, see also Section 2.6.2 and Appendix C.

We also vary the timing of the instantaneous reionisation model zreio. As in
Chapter 2, three values for each of these parameters are considered, in the regime
based on recent observational results. As we already discussed, the IGM thermal
history is supposed to be the most important contaminant since a hotter medium
in general tends to produce a smoother flux distribution and a flux power with
less substructure at small scales, like nCDM models do. However, the redshift
evolution of thermal and cosmological effects is very different and the wide range
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Figure 3.3: Constraints on the FDM mass m and fraction F of the total DM density in
FDM obtained from Lyman-α forest data; the two different areas indicate 2 and 3 σ C.L.
These results have been obtained for the reference combination of data sets described
by Iršič et al. (2017a), with a physically motivated conservative prior on the IGM thermal
evolution. The regime of m < 10−22 eV has been extrapolated.

explored by our data allows to break the degeneracies between the parameters in a
very effective way. We further consider ultraviolet (UV) fluctuations of the ionising
background, which could be particularly important at high redshift, and build
a refined power spectrum template that incorporates this effect. The amplitude
of this effect is let free and is described by the parameter fUV = [0, 1], which
we marginalise over in the final constraints. All other cosmological parameters
are fixed: Ωm = 0.317, ΩΛ = 0.683, Ωb = 0.0492 and H0 = 67.27 km/s/Mpc,
As = 2.20652 · 10−9 and ns = 0.9645 (Ade et al. (2016a)).

3.3.1 Constraints on mixed (cold plus fuzzy) models

With the models of the flux power spectra obtained from the hydrodynamic
simulations that we just described, we established a sparse grid of points in the
parameter space and by using linear interpolation between the grid points we
obtained predictions for the quantity PF(k, z,p), with p a vector containing all the
parameters described in the analysis, by performing a Taylor expansion for the
desired models in a much finer grid for the highly multidimensional parameter space.
We refer to Viel & Haehnelt (2006) for a more detailed description of the basic
idea of this approach. We used an MCMC code in order to estimate the parameter
constraints, and the results in terms of FDM mass and fraction have been obtained
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by marginalising over the whole set of other parameters. The MCMC results for
the mixed models are shown in Figure 3.3, using the reference analysis of Iršič et al.
(2017a) which relies on all the data sets, and the assumption that the IGM thermal
evolution follows a power law, with flat priors on the cosmological parameters.

When FDM constitutes the entire DM, i.e., F = 1, the Lyman-α forest data
yields a lower bound on the FDM mass of m & 10−21 eV, as was also shown by Iršič
et al. (2017a). On the other hand, the Lyman-α forest becomes insensitive to
FDM at F . 0.2, which reflects the fact that the matter power spectrum is only
mildly suppressed by FDM with such small fraction, no matter how light it is (as it
was explicitly shown in Section 3.2.3 through analytic computations of the linear
matter power spectrum). Although the regime of m < 10−22 eV is only explored
through extrapolation of our simulation models, we do not expect the bound in
this regime to change significantly even with actual simulations, as the finite size
of the error bars on the measured flux power spectrum makes it difficult to detect
the mild suppression of the matter power.

Let us stress that the results presented in this Subsection have been obtained
by completely neglecting the effect of QP during the non-linear evolution. However,
this should not impact our results for FDM masses down to m ∼ 10−22 eV, as we
explicitly demonstrate in Subsection 3.3.4 (see also, e.g., Iršič et al. (2017a); Schive
et al. (2016)). On the other hand, we have just shown that for even smaller masses
the FDM fraction becomes small, hence the QP is also expected to be negligible
there. Anyhow, if the QP at the non-linear level is actually non-negligible, it should
lead to further suppression of structure formation; hence the bounds presented here
for the FDM parameters can be considered as conservative.

3.3.2 Comparison with the “area criterion”

We want now compare the Lyman-α forest constraints determined through the
full MCMC analysis discussed in detail in Section 3.3.1, against the bounds which
can be obtained by applying the simple and intuitive “area criterion”, introduced
in Chapter 2 (Section 2.5.2).

In order to use the “area criterion” for constraining the FDM mass m and abun-
dance F , we calibrate the method by taking as references the 2 and 3 σ C.L. limits
on the FDM mass where it constitutes all the DM content of the universe, namely
the values given by the intercepts between the 2 and 3 σ C.L. contours with the
F = 1 line in Figure 3.3. We can then compute the corresponding linear power
spectra with axionCAMB (Hlozek et al. (2015)) and plug them into Equations (2.16)
and (2.18). The resulting δAREF2σ and δAREF3σ are the estimate of the small-scale
power suppression with respect to standard CDM, for FDM models that are excluded
at 2 and 3 σ C.L., respectively. Thereafter, we build a grid in the {m,F}-space,
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Figure 3.4: Here we compare the 2 and 3 σ C.L. limits from the MCMC analysis
(red regions), with the 2 and 3 σ C.L. limits determined through the “area criterion”
(superposed grey regions bounded by dashed lines). All the combinations of FDM mass
and fraction which sample the region outside the grey contours are thus rejected by the
“area criterion”.

where each grid point is associated to a different combination of FDM mass and
fraction, in order to compare all the corresponding δA with δAREF, and accept only
those combinations which exhibit a smaller power suppression, i.e., δA < δAREF.

The results are reported in Figure 3.4, where the red contours refer to the 2 and
3 σ C.L. contours from the MCMC analysis, while the superposed grey areas bounded
by dashed lines correspond to the 2 and 3 σ C.L. contours determined through
the “area criterion”. Hence, all the combinations of FDM mass and fraction which
sample the region outside the grey contours are not allowed by the “area criterion”.

Firstly we notice that for the case F = 1 the numbers returned by the area crite-
rion are by definition in agreement with the more exact and comprehensive MCMC
analysis discussed in Section 3.3.1. However, below FDM abundances of around 30%,
the contours predicted by applying the “area criterion” clearly depart from the results
of the full statistical analysis that we performed. This is due to the fact that when we
apply the “area criterion” to models with small masses, even the practically negligible
suppressions associated with small fractions (see Section 3.2.3) correspond to larger
estimators δA with respect to the reference one. In other words, shifting the position
of the cut-off at lower wavenumbers (i.e., investigating small FDM masses) unavoid-
ably leads to a suppression which, quantified through the area estimator, is larger
than the reference one. Consequently, although the Lyman-α bound is expected to be
insensitive to FDM with small fractions, the bound obtained using the approximate
area estimator improves towards smaller mass even in the regime m . 10−22 eV.
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3.3.3 Implications for the Milky Way satellites

In this Section we discuss the astrophysical implications of an ultra-light scalar DM
scenario: the possibility, in this framework, of alleviating the “small-scale crisis” of
the standard CDM paradigm. In particular, we focus on the well known missing
satellite problem (Klypin et al. (1999); Moore et al. (1999)).

As we already discussed in Chapter 2, it is nowadays well established that
DM models described by suppressed matter power spectra may be able to relax
the tensions present in the standard CDM context at sub-galactic scales, i.e., the
discrepancy between the observed number of dwarf galaxies within the MW virial
radius and the number of MW substructures predicted by cosmological N -body
simulations, assuming the standard CDM model. It is thus interesting to investigate
the implications of a FDM scenario at sub-galactic scales, in order to check if the
{m,F}-combinations which have been found to be in agreement with Lyman-α
forest data are also capable of solving/alleviating such tension.

An accurate calculation of the number of substructures Nsub with FDM would
require very high-resolution numerical simulations. Here we instead make a rough
estimate of Nsub, following the approach described in Section 2.5.1, i.e., using the
analytic expression for the number of MW subhalos, proposed by Schneider (2015,
2016), given by Equation (2.13). Let us recall that the use of this procedure is
supported by the analysis performed by Murgia et al. (2017), where the accuracy
of the theoretical predictions has been checked against a large suite of N -body
simulations (see Appendix B).

For a given MW halo mass, e.g., Mhalo = 1.7 · 1012 M�/h (Lovell et al. (2014)),
we can now obtain the number of subhalos Nsub with masses Msub ≥ 108 M�/h

predicted by different parametrisations of the FDM scenario (i.e., by different
combinations of m and F ). This is done simply by integrating Equation (2.13).
Note that a different choice of Mhalo mainly leads to an overall shift in Nsub for
all DM scenarios, as is seen from the Mhalo-dependence in Equation (2.13). Hence,
instead of studying the absolute value of Nsub, which is sensitive to the MW halo
mass, we firstly would like to focus on the relative suppression of Nsub, i.e., the
ratio between Nsub for cases with and without FDM. As a benchmark value for
the relative suppression of Nsub, we take the thermal WDM with masses in the
interval between 2 and 3 keV as reference models, and consider the mixed FDM
and CDM scenarios that yield similar relative suppressions to be able to solve the
missing satellite problem (Lovell et al. (2016, 2017)).

The parameter window for {m,F} where the number of subhalos lies within
the “solving” range is shown in Figure 3.5 as a cyan shaded area bounded by
dashed lines. For reference, when usingMhalo = 1.7 ·1012 M�/h, the aforementioned
computation gives the number of subhalos with CDM only as Nsub = 158, while
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Figure 3.5: Comparison between the constraints on the FDM parameter space from
the Lyman-α forest data analysis at 2 and 3σ C.L. (red regions, see Figure 3.3), and the
region capable of “solving” the missing satellite problem (cyan region bounded by dashed
lines). The green and blue dotted lines refer to models which predict Nsub = 60, when
choosing Mhalo = 1012M�/h and Mhalo = 3 · 1012M�/h, respectively.

20 ≤ Nsub ≤ 60 for the reference WDM models. However, as we explained, these
absolute values are irrelevant when focusing on the relative suppression of Nsub.
The red areas in Figure 3.5 represent the 2 and 3σ C.L. contours from the Lyman-α
forest data analysis, discussed in Section 3.3.1. As one can easily see from the
plot, there is very little room for simultaneously satisfying these constraints and
solving the missing satellite problem.

Let us also discuss the effects of the observational uncertainties in the MW
halo mass; for instance, a recent comprehensive dynamical analysis of redshifts and
distances of 64 dwarf galaxies around the MW has led to Mhalo = 2.8 ·1012 M� (Pee-
bles (2017)). The detailed value of Mhalo does matter when focusing instead on the
absolute value of Nsub, and past studies such as the analysis by Kennedy et al. (2014)
pointed out the degeneracy between the MW halo mass and the DM parameters
required for relaxing the missing satellite problem.

In order to take into account these issues, we have iterated the same analysis
with different input values for Mhalo, and compared the corresponding predictions
to a fixed satellite number Nsub = 60; as in Chapter 2, this value is chosen as a sum
of the 11 MW classical satellites and the 15 ultra-faint satellites from SDSS, with
the latter value multiplied by a numerical factor which accounts for the limited
sky coverage of the survey (Polisensky & Ricotti (2011); Schneider (2016); Murgia
et al. (2017)). For Mhalo = 1.7 · 1012 M�/h, the number Nsub = 60 is realised
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at the lower boundary of the cyan band. The green and blue dotted lines in
Figure 3.5 respectively indicate where Nsub = 60 is realised for Mhalo = 1012M�/h

and Mhalo = 3 · 1012M�/h; these values for the MW halo mass roughly correspond
to the current observational limits (Cautun et al. (2014); Wang et al. (2015)).

ForMhalo = 1012M�/h, even in the pure CDM case the satellite number is as low
as Nsub = 94, indicating that the missing satellite problem itself is ameliorated if the
MW halo mass takes a value close to its lower bound. Consequently, the green line
lies inside the region allowed by the Lyman-α forest. On the other hand, a larger
MW halo mass makes the problem worse (Nsub = 274 for Mhalo = 3 · 1012M�/h

with pure CDM), and thus further reduces the FDM parameter space for satisfying
the Lyman-α forest constraint and solving the missing satellite problem at the same
time. To summarise, unless the MW halo mass is close to its current lower bound
and thus the satellite number is suppressed, the Lyman-α constraint leaves very
little room for FDM to serve as a solution to the missing satellite problem. However,
we should also remark that we have used rather simple analytic approximations
for estimating the satellite number, hence it would be important to verify this
conclusion with numerical simulations.

3.3.4 Quantum Potential in the non-linear evolution

This Section is devoted to a scrupulous comparison between the Lyman-α constraints
previously discussed, obtained neglecting the time-integrated QP effect during the
non-linear evolution, with the first constraints extracted from the same astrophysical
observable accurately accounting for the full non-linear treatment of the QP (Nori
et al. (2019)), thanks to the numerical module AX-GADGET (Nori & Baldi (2018)).

In Section 2.4 we gave a brief description of the SPH approach – which all GADGET
modules rely on – that we exploited in order to perform all the hydrodynamic
simulations used for our analyses. Let us remark that, with such method, physical
observables can be expressed in many analytically equivalent forms that translate
into different operative summations, carrying thereby different numerical errors.
AX-GADGET features a new type of particle in the system – i.e., ultra-light-axion
(ULA) – whose strongly non-linear quantum dynamics is solved through the
following equations:

∇ρi =
∑

j∈NN(i)
mj∇Wij

ρj − ρi√
ρiρj

(3.26)

∇2ρi =
∑

j∈NN(i)
mj∇2Wij

ρj − ρi√
ρiρj

− |∇ρi|
2

ρi
(3.27)

∇Qi = ~2

2m2
χ

∑
j∈NN(i)

mj

fjρj
∇Wij

(
∇2ρj
2ρj

− |∇ρj|
2

4ρ2
j

)
. (3.28)
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Among the several strategies that have been employed in the literature to reduce
the residual numerical errors (Brookshaw (1985); Cleary & Monaghan (1999);
Colin et al. (2006)), Equation (3.26) has indeed proven to be the more stable and
accurate for the QP case (for a comparison between different implementations,
see Nori & Baldi (2018)).

The implementation of FDM physics in AX-GADGET includes the possibility to
simulate universes with multiple CDM and FDM species, or FDM particles with
self- or external interactions, due to the merging of the AX-GADGET module with
the C-Gadget module for Coupled DM models (Baldi et al. (2010)). Furthermore,
AX-GADGET inherits automatically all the large collection of physical implementations
– ranging from gas cooling and star formation routines to DE and modified gravity
implementations – that have been already developed for GADGET-3.

Among the different Lyman-α flux statistics that can be considered, we focused
on the 1D flux power spectrum, and on the flux Probability Distribution Function
(PDF), by extracting them from the three pairs of FDM and FDMnoQP simulations
described in Section 3.3. Unless otherwise stated, we normalise the extracted
flux arrays in order to have the same observed mean flux over the whole sample
considered, and for all the simulations. In any case, we do find that the scaling
factor for the optical depth arrays over the whole simulated volume is 1.6, 1.4 and
1.1 times higher than in the ΛCDM case in order to achieve the same mean flux
for the m22 = 2.5, 5 and 25 FDM cases with negligible (∼ 1 − 2%) differences
between the FDM and FDMnoQP cases.

In Figure 3.6 we show the flux (left) and gas (right) PDF ratios between the
simulations that include the QP and those that do not include it – FDM and
FDMnoQP, respectively – at z = 5.4, one of the highest redshift bins in which
Lyman-α data are available.

It is possible to see that there is a 2 − 6% peak at flux ∼ 0.6 − 0.8, i.e., in
regions of low transmissivity that are expected to trace voids. The fact that FDM
simulations display a more peaked PDF compared to FDMnoQP ones for this
range of fluxes means that, on average, in those models it is more likely to sample
such void environments. In fact, the different PDFs should reflect the underlying
different gas PDFs at the same redshifts and along the same lines of sight. In
the right panel of Figure 3.6, showing the corresponding gas PDF, it is indeed
apparent that in models with QP the gas PDF is more skewed towards less dense
regions, that are typically associated to high transmission. The effect due to the
QP is thus to increase the volume filling factor of regions below the mean density
with respect to the corresponding FDMnoQP case.

In Figure 3.7 we plot the percentage difference in terms of flux power spectrum
at three different redshifts for the FDM simulations (i.e., with QP), compared both
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Figure 3.6: Relative differences of the flux PDF (left) and gas PDF (right) for FDM
models with respect to their corresponding FDMnoQP counterparts, at redshift z = 5.4.

to pure CDM (right panels) and to the corresponding FDMnoQP case (left panels).
The increase of power at z = 5.4 in the largest scales – compared to the standard
CDM case – is due to the imposed normalisation at the same mean flux, while
the evident suppression at small scales is related to the lack of structures at those
scales. The comparison with the FDMnoQP set-ups, instead, reveals an additional
suppression which is always below the 5% level for all the masses considered.

Since the Lyman-α constraint are calculated by weighting the contribution
from all the scales, we expect the bound on m22 found by Iršič et al. (2017a) to
change comparably to the additional suppression introduced, that in our case
is about of 2 − 3%.

This is exactly what can be seen in in Figure 3.8, where the marginalised
posterior distribution of mχ obtained by our analysis (with QP) is plotted and
compared with the results presented by Iršič et al. (2017a). The red line refers to
our MCMC analysis, whereas the green line corresponds to the results obtained
by Iršič et al. (2017a). The corresponding vertical lines show the marginalised
2 σ C.L. limit on the FDM mass. Such constraint on the FDM mass changes from
20.45 ·10−22 eV to 21.08 ·10−22 eV, which matches with our expectation and confirms
that the universally adopted approximation of neglecting the QP dynamical effects
is legitimate to investigate the Lyman-α typical scales. The agreement between
the sets of results obtained with and without the dynamical QP implementation
is evident and is not sensibly affected by varying the assumptions on the IGM
thermal history. Such agreement implies that the non-linear evolution of the cosmic
structures at intermediate scales, and the non-linear mapping between flux and
density, effectively make up for the additional suppression introduced.



3.3. Lyman-α forest constraints 78

z = 5.4

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
log10 k [hMpc 1]

-100%

-80%

-60%

-40%

-20%

  0%

 20%

 40%

P(
k)

i
/P

(k
) LC

D
M

1
[%

]

FDM-2.5
FDM-5
FDM-25

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
log10 k [hMpc 1]

 -6%

 -5%

 -4%

 -3%

 -2%

 -1%

  0%

  1%

  2%

P(
k)

i
/P

(k
) j

1
[%

]

FDM-2.5 / FDMnoQP-2.5
FDM-5 / FDMnoQP-5
FDM-25 / FDMnoQP-25

z = 4.0

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
log10 k [hMpc 1]

-80%

-70%

-60%

-50%

-40%

-30%

-20%

-10%

  0%

 10%

P(
k)

i
/P

(k
) LC

D
M

1
[%

]

FDM-2.5
FDM-5
FDM-25

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
log10 k [hMpc 1]

 -4%

 -3%

 -2%

 -1%

  0%

  1%

P(
k)

i
/P

(k
) j

1
[%

]

FDM-2.5 / FDMnoQP-2.5
FDM-5 / FDMnoQP-5
FDM-25 / FDMnoQP-25

z = 3.0

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
log10 k [hMpc 1]

-20%

-15%

-10%

 -5%

  0%

  5%

 10%

 15%

P(
k)

i
/P

(k
) LC

D
M

1
[%

]

FDM-2.5
FDM-5
FDM-25

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
log10 k [hMpc 1]

-2.5%

 -2%

-1.5%

 -1%

-0.5%

  0%

0.5%

  1%

1.5%

P(
k)

i
/P

(k
) j

1
[%

]

FDM-2.5 / FDMnoQP-2.5
FDM-5 / FDMnoQP-5
FDM-25 / FDMnoQP-25

Figure 3.7: Flux power spectrum comparison between all simulations and ΛCDM (left
panels), and between FDM simulation and their FDMnoQP counterparts (right panels)
at different redshifts.
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Figure 3.8: Here we plot the marginalised posterior distribution of 1/mχ from both the
analyses performed by Iršič et al. (2017a) (green lines, without QP) and ours (red lines,
with QP). The vertical lines stand for the marginalised 2 σ C.L. limits.

3.4 Cosmological implications
We now move on to discuss the implications of the Lyman-α constraints for the
scalar field, and for the early universe. After evaluating the field range of the
scalar (Subsection 3.4.1), we compute the isocurvature perturbations in the scalar
DM density sourced during cosmic inflation. Combining with CMB constraints
on DM isocurvature perturbations, we also derive bounds on the inflation scale
(Subsection 3.4.2). All the results presented in this Section are based on the
constraints reported in Section 3.3.1, hence they have been obtained neglecting
the QP effects during the non-linear phase of structure formation and evolution.
Nevertheless, as we explicitly showed in Section 3.3.4, such approximation is expected
to have a marginal effect at the scales probed by the Lyman-α forest.

3.4.1 Initial displacement of the vacuum
A light scalar field stays frozen at its initial field value in the early universe. Hence,
any initial displacement from the potential minimum gives rise to a FDM density
in the later universe. We consider such an initial vacuum misalignment to be the
main source of the density, and also suppose the FDM mass to be time-independent
(unlike the QCD axion whose mass depends on the cosmic temperature). Then
the scalar can collectively be described by a homogeneous Klein–Gordon equation
in a FRW background universe,

φ̈+ 3Hφ̇+m2φ = 0, (3.29)

where an dot denotes a derivative in terms of the cosmic time t, and H = ȧ/a. The
homogeneous scalar field forms a perfect fluid with an energy density and pressure of

ρφ = 1
2
(
φ̇2 +m2φ2

)
, pφ = 1

2
(
φ̇2 −m2φ2

)
. (3.30)
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We denote the initial displacement of the scalar field from its potential minimum
by φ?. In the early universe, when H � m, the scalar field is frozen at φ? due to
the Hubble friction, and thus contributes to the vacuum energy. On the other hand
in the later universe, when H � m, the scalar undergoes harmonic oscillations
along the quadratic potential and behaves as pressureless matter. Thus the scalar
densities in the two epochs are written as

ρφ =


1
2m

2φ2
? when H � m, (3.31)

1
2m

2φ2
?

(
aosc

a

)3
when H � m. (3.32)

These asymptotic behaviours smoothly connect to each other at around H ∼ m.
Here aosc represents the scale factor at the onset of the scalar oscillation; the
explicit value of aosc is chosen such that the scalar density in the asymptotic
future matches with Equation (3.32). We also denote quantities measured at
a = aosc by the subscript “osc”.

We are interested in ultra-light scalars that start oscillating in the radiation
dominated epoch, instead of during times prior to reheating. The exact solution
of the Klein–Gordon equation in a radiation dominated background is given in
Appendix D, where the ratio between the mass and Hubble rate at a = aosc

is shown to take the value of

m2

H2
osc

=
( 8
π

)4/3 [
Γ
(5

4

)]8/3
≈ 2.68. (3.33)

Since the total energy density, and hence the Hubble rate, of a radiation dominated
universe are related to the cosmic temperature by

ρr = 3M2
pH

2 = π2

30g∗T
4, (3.34)

with Mp = (8πG)−1/2 being the reduced Planck mass, the temperature at a = aosc

is obtained as

Tosc ≈ 0.5 keV
(
g∗osc

3.36

)−1/4 ( m

10−22 eV

)1/2
. (3.35)

Thus for instance, a scalar with m = 10−22 eV starts oscillating when the cosmic
temperature drops to Tosc ≈ 0.5 keV. Moreover, the scalar would be oscillating at
matter/radiation equality as long as m � 10−28 eV.

Using that the entropy of the universe is conserved since the radiation dominated
epoch, the scalar density today can be expressed in terms of the entropy density s as

ρφ0 = 1
2m

2φ2
?

s0

sosc
, (3.36)
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where the subscript “0” denotes quantities in the present universe. Here, sosc is
written in terms of Hosc using Equation (3.34) as

sosc = 2π2

45 gs∗oscT
3
osc = 2π2

45 gs∗osc

(
90
π2
M2

pH
2
osc

g∗osc

)3/4

. (3.37)

Thus, the present FDM abundance is obtained by combining Equations (3.33),
(3.36), and (3.37). Expressing it in terms of the ratio to the CDM density
measured by Planck (Ade et al. (2016a)), Ωch

2 = 0.1186 ± 0.0020 (1 σ C.L.,
TT+lowP+lensing), one finds4

F ≡ Ωφ

Ωc
≈ 0.6

(
g∗osc

3.36

)3/4 (gs∗osc

3.91

)−1
(

φ?
1017 GeV

)2 (
m

10−22 eV

)1/2
. (3.38)

Using this relation, the Lyman-α constraints on {m,F}, reported in Figure 3.3,
are translated into bounds on the scalar parameters {m,φ?}. In Figure 3.9 we
plot the 2 and 3σ C.L. limits on {m,φ?} from Lyman-α forest data, where the
shaded regions indicate the allowed parameter space. Here we have set g∗osc = 3.36,
gs∗osc = 3.91, since Tosc � 1 MeV for the displayed masses (see Equation (3.35)).
The dashed lines in Figure 3.9 indicate the contours of constant fraction F . We find
that the initial displacement is bounded from above as |φ?| . 1016 GeV for most
values of the mass. For masses of m & 10−21 eV, φ? is constrained mainly by the
requirement that the scalar should not lead to over-abundance of DM (i.e., F ≤ 1).
On the other hand for m . 10−21 eV, the Lyman-α forest gives the strongest
constraint. As one goes to even smaller masses m . 10−22 eV, the Lyman-α bound
on φ? weakens since the FDM density F decreases. There the Lyman-α bound
closely follows the F = 0.2 contour, allowing φ? to take larger values.

3.4.2 Isocurvature perturbation and inflation scale

The ultra-light scalar acquires super-horizon field fluctuations during cosmic infla-
tion.5 As a consequence, the initial field value φ? possesses fluctuations with
a power spectrum of

Pδφ?(k) =
(
Hk

2π

)2
, (3.39)

4Note that we defined F as the density ratio between FDM and total DM (i.e., FDM plus
CDM). Here we are identifying the measured CDM density with the total DM density.

5This is not necessarily the case if the scalar arises after inflation as a pseudo Nambu–Goldstone
boson of a spontaneously broken global U(1) symmetry. However in such cases, topological defects
are produced, which would over-close the universe (unless the number of degenerate vacua along
the bottom of the Mexican hat potential is N = 1) (Vilenkin & Everett (1982); Sikivie (1982);
Linde & Lyth (1990)). For a recent discussion, see also Visinelli (2017). Thus in this Section we
suppose the scalar field to have existed already during inflation.
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Figure 3.9: Upper limits on the initial displacement of the scalar field φ? from Lyman-α
forest data (2 and 3 σ C.L.) as a function of the FDM mass m. The coloured dashed lines
show contours of constant FDM fraction F .

where Hk represents the Hubble rate during inflation when the comoving wavenum-
ber k exits the horizon. Since the scalar does not dominate the universe until
matter/radiation equality, its field fluctuations lead to isocurvature perturbations.

From Equation (3.36) the FDM density depends on the initial field value as
ρφ ∝ φ2

?, therefore the density fluctuates as

δρφ
ρφ

= 2δφ?
φ?

, (3.40)

up to linear order in the field fluctuations. Identifying this with the FDM isocur-
vature perturbation Sφγ using Equation (3.39), and further multiplying with the
DM fraction yields the effective CDM isocurvature power spectrum,

Pcγ(k) = F 2Pφγ(k) =
(
FHk

πφ?

)2

. (3.41)

Given that the Hubble rate during inflation is nearly constant, the isocurvature
spectrum is nearly scale-invariant. Moreover, the scalar φ does not contribute to
curvature perturbations and hence there is no correlation between the isocurvature
and curvature perturbations.

Since the FDM compatible with the Lyman-α analysis behaves similarly to
CDM on large scales, the CMB constraints on CDM isocurvature perturbations
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Figure 3.10: Upper bound on the inflation scale Hinf and tensor-to-scalar ratio r at the
pivot scale kpiv/a0 = 0.05 Mpc-1, as a function of the FDM mass m (2σ C.L.). Differently
coloured regions represent the allowed parameter space when the FDM constitutes a
certain fraction F of the total DM.

also apply to FDM. Parametrising the isocurvature power spectrum in terms
of the curvature power as

Pcγ(k) = βiso(k)
1− βiso(k)Pζ(k), (3.42)

uncorrelated and scale-invariant CDM isocurvature is constrained by Planck (Ade
et al. (2016c)) at the pivot scale kpiv/a0 = 0.05 Mpc-1 as

βiso(kpiv) < 0.038 (95% C.L., TT, TE, EE+lowP), (3.43)

with Pζ(kpiv) ≈ 2.2 · 10−9.
The CMB upper bound on the isocurvature translates into a bound on the

inflation scale through Equation (3.41); eliminating φ? using Equation (3.38), we
obtain an upper limit on the Hubble rate when the pivot scale leaves the horizon as

Hkpiv < 4 · 1012 GeV
(
g∗osc

3.36

)−3/8 (gs∗osc

3.91

)1/2
F−1/2

(
m

10−22 eV

)−1/4
. (3.44)

This can also be expressed as a bound on the tensor-to-scalar ratio,6

r(k) = PT (k)
Pζ(k) = 1

Pζ(k)
2H2

k

π2M2
p

, (3.45)

6Here we assume that the sound speed of the tensor fluctuations is unity.
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as
r(kpiv) < 2 · 10−4

(
g∗osc

3.36

)−3/4 (gs∗osc

3.91

)
F−1

(
m

10−22 eV

)−1/2
. (3.46)

Alternatively, in terms of m and φ?, the bound is written as:

r(kpiv) < 4 · 10−4
(
g∗osc

3.36

)−3/2 (gs∗osc

3.91

)2 ( m

10−22 eV

)−1
(

φ?
1017 GeV

)−2

. (3.47)

These constraints become weaker for a smaller m. On the other hand, the
Lyman-α forest sets a lower bound on m. Thus, by combining the Lyman-α and
CMB constraints, an upper bound on the inflation scale can be obtained. This is
presented in Figure 3.10, where each coloured region represents the values allowed
for the FDM mass m and the tensor-to-scalar ratio r, or the inflation scale Hinf ,
when the FDM constitutes a certain fraction F of the total DM. Here we combined
the 2σ C.L. limit on FDM from the Lyman-α forest analysis (see Figure 3.3) with
the CMB 2σ C.L. limit on isocurvature perturbations (i.e., Equation (3.46) with
g∗osc = 3.36, gs∗osc = 3.91). The former sets the left boundaries of each region,
and the latter the upper boundaries.7 One clearly sees that FDM is incompatible
with an observably large r, with the upper limits on r becoming stronger for a
larger F . In particular if FDM constitutes more than 20% of the total DM, the
tensor-to-scalar ratio would be as low as r < 10−3. This in turn suggests that any
detection of primordial Gravitational Waves (GWs) in the near future would rule
out FDM produced from a vacuum misalignment as the main component of DM.8

We also illustrate this point in Figure 3.11, where contours of the upper bounds
of r (Equation (3.47)) are shown on the {m, φ?}-plane; regions above the contour
would be excluded if r is detected at the displayed value. Figure 3.11 actually
summarises all the main results discussed in this Section, showing the allowed values
for the mass m and initial displacement of the scalar field φ?. The field displacement
is generically bounded as |φ?| . 1016 GeV; otherwise the scalar would either lead to
too much DM in the universe, or suppress structure formation and contradict the
Lyman-α forest measurements.9 By combining the Lyman-α constraints with the
CMB bounds on DM isocurvature perturbations, we further derived upper limits on

7Isocurvature perturbations can also impact the Lyman-α forest (Beltran et al. (2005)), thus for
a rigorous treatment, the isocurvature should also be included in the Lyman-α analyses. However,
since the FDM isocurvature is nearly scale-invariant, its effect on the Lyman-α should be tiny;
hence here we simply combine the result of Section 3.3.1 with the CMB limit.

8However, we should also remark that there have been attempts to make light FDM consistent
with high-scale inflation by adding further ingredients. One such example is an axion-like field
with a time-dependent decay constant (Linde & Lyth (1990); Linde (1991); Higaki et al. (2014);
Chun (2014); Fairbairn et al. (2015); Kobayashi & Takahashi (2016)).

9 In Subsection 3.4.3 we show that if the scalar is an axion-like field, the bound on φ? corresponds
to that on the product of the axion decay constant and the initial misalignment angle, faθ?, when
anharmonic effects are negligible.
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Figure 3.11: Summary of constraints on the scalar field mass m and the initial
displacement φ? (for an axion-like field, φ? = faθ?). The 2 and 3σ C.L. regions allowed
by Lyman-α forest data are shown in red. The upper-right corner is excluded by the
over-abundance of DM. The dashed lines indicate the parameter regions that will be ruled
out by a detection of a tensor-to-scalar ratio r. The cyan band bounded by dashed lines
shows where the missing satellite problem can be solved. On the white dotted contour,
FDM constitutes 20% of the total DM.

the scale of cosmic inflation in the presence of FDM. These are shown in Figure 3.11
as dashed lines, indicating the parameter regions that will be ruled out if primordial
GWs are detected in the future. A dotted white line is also overlaid to indicate where
the fraction of the DM in FDM is 20%; this value serves as the fraction threshold
below which the Lyman-α forest becomes insensitive to the presence of FDM.

3.4.3 Comments on axion-like fields
Scalar fields with approximate continuous shift symmetries, often referred to as
axion-like fields, have been studied as an ultra-light DM candidate (Arvanitaki
et al. (2010); Ringwald (2012); Hui et al. (2017)). These models are typically
described by an action with a periodic potential of

S =
∫
d4x
√
−g

[
−1

2f
2
ag

µν∂µθ∂νθ −m2f 2
a (1− cos θ)

]
, (3.48)

with fa being an “axion decay constant”. When focusing on the vicinity of a
minimum θ = 0, the potential is expanded as

V (θ) = m2f 2
a (1− cos θ) = 1

2m
2f 2
aθ

2 +O(θ)4. (3.49)
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Thus our analyses apply to axion-like fields by replacing φ with a product of the
decay constant and the angle, i.e.,

φ→ fa θ. (3.50)

In particular, if the initial misalignment angle θ? is of order unity, then the bounds
on φ? directly translates into bounds on the decay constant fa.

However, we should also remark that the discussions are modified if the initial
angle is as large as |θ?| > 1; then the expansion (Equation (3.49)) breaks down and
the axion potential can no longer be approximated as quadratic. The non-quadratic
nature of the axion potential would lead to (i) an increase in the final axion DM
density due to a delayed onset of the scalar oscillation (Turner (1986); Bae et al.
(2008)), and (ii) a significant enhancement of the axion isocurvature due to a
non-uniform onset of the oscillation, giving much stronger bounds on the inflation
scale (Lyth (1992); Strobl & Weiler (1994); Kobayashi et al. (2013)). We also note
that, besides such anharmonic initial conditions, a time-dependent m (e.g., of the
QCD axion) or fa (e.g., Linde & Lyth (1990); Linde (1991); Higaki et al. (2014);
Chun (2014); Fairbairn et al. (2015); Kobayashi & Takahashi (2016)) might also
modify the cosmological evolution of the axion.

3.5 Non-linear structure characterisation
This Section is dedicated to an extended analysis of the statistical and structural
properties of the DM halos in FDM cosmologies, with and without QP.

By exploiting the large statistical sample at our disposal, we have extracted
valuable information about how FDM affects, among others, the halo mass function
as well as the shape and density distribution of DM halos. To this end, we performed
a set of 6+1 DM-only simulations, evolved down to z = 0 , and we have used it to
characterise the small-scale structures at low redshift. As before, this set consists

Model QP mχ [10−22eV/c2] N halos N genuine halos MCUT [1010M�]
ΛCDM × - 57666 56842 -
FDM-25 X 25 25051 13387 0.04056
FDM-5 X 5 10058 2736 0.1645
FDM-2.5 X 2.5 8504 1301 0.3151

FDMnoQP-25 × 25 25432 13571 0.04056
FDMnoQP-5 × 5 10376 2856 0.1645
FDMnoQP-2.5 × 2.5 8819 1374 0.3151

Table 3.1: Summary of the properties of the set of simulations used for structure
characterisation (see the text for the details).
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in three pairs of simulations (plus the ΛCDM case), one pair for each considered
FDM mass, evolved either including or neglecting the effect of QP in the dynamics
(once again, labelling these two cases as FDM and FDMnoQP, respectively). All
simulations follow the evolution of 5123 DM particles in a comoving periodic box
with side length of 15 Mpc/h. The mass resolution is 2.2124 · 106M�. A summary
of their properties can be found in Table 3.1.

The structure of this Section is the following: in Subsection 3.5.1 and 3.5.2
we outline the procedures to deal with numerical fragmentation, and to match
halos across different simulations, respectively; in Subsection 3.5.3 we present
and discuss our results.

3.5.1 Numerical fragmentation

For cosmological models whose LSS properties depart sensibly from ΛCDM only
at small scales, as FDM models, the thorough analysis of the statistical overall
properties and the specific inner structures of halos represents the most relevant
and often largely unexploited source of information. In N -body simulations, this
implies the use of a suitable clustering algorithm to build a halo catalogue in
order to identify gravitationally bound structures that can then be studied in
their inner structural properties.

As in Chapter 2, in this Section we rely on the SUBFIND routine (Springel et al.
(2001a)), already implemented in GADGET-3, namely a two step halo-finder which
combines a FoF algorithm (Davis et al. (1985)) to find particle clusters – that defines
the primary structures of our halo sample – with an unbinding procedure to identify
gravitationally bound substructures within the primary halos. Hereafter, we use the
terms primary structures to identify the substructures of each FoF group containing
the most gravitationally bound particle, subhalos for the non-primary structures
and halos when we generally consider the whole collection of structures found.

As we already discussed in Chapter 2, a long-standing problem that affects
N -body simulations, when characterised by a sharp and resolved cut-off of the
matter power spectrum, has to be taken into account in the process of building a
reliable halo sample. This is the artificial clumping, often referred to as numerical
fragmentation, i.e., the formation of artificial low-mass spurious clumps within
filaments (see, e.g., Wang & White (2007); Schneider et al. (2012); Lovell et al.
(2014); Angulo et al. (2013); Schive et al. (2016)).

While it has been initially debated whether the nature of such fragmentation
was to be considered physical or numerical, the detailed analysis by Wang & White
(2007) showed that in nCDM simulations (as, e.g., Bode et al. (2001)) characterised
by a highly suppressed matter power spectrum, the formation of low-mass subhalos
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was resolution-dependent, and related to the large difference between force resolution
and mean particle separation (as already suggested by Melott & Shandarin (1989)).

To identify spurious halos in simulations, and select a clean sample to study and
characterise the FDM structures halos, we take cue from the procedure outlined
by Lovell et al. (2014): in particular, we use the mass at low redshift and the
spatial distribution of particles as traced back in the initial conditions as proxies
for the artificial nature of halos, as described below.

In fact, the more the initial power spectrum is suppressed at small scales, the more
neighbouring particles are coherently homogeneously distributed, thus facilitating
the onset of artificially bounded and small ensembles that eventually outnumber the
physical ones. As already shown by Wang & White (2007), the dimensionless power
spectrum peak scale kpeak and the resolution of the simulation – expressed by the
mean inter-particle distance d – can be related together to get the empirical estimate

Mlim = 10.1 ρb d / k2
peak (3.51)

describing the mass at which most of the halos have a numerical rather than a
physical origin. In Lovell et al. (2014), this mass is used as a pivotal value for the
mass MCUT used to discriminate genuine and spurious halos – lying above and
below such threshold, respectively – which is set as MCUT = 0.5Mlim.

In addition to the mass discriminating criterion, Lovell et al. (2014) showed
that particles that generate spurious halos belong to degenerate regions in the
initial conditions and are more likely to lie within filaments, stating that the
reconstructed shape of the halo particles ensemble in the initial conditions can
be used to identify spurious structures. N -body initial conditions are generally
designed as regularly distributed particles on a grid from which are displaced in
order to match the desired initial power spectrum. Hence, numerical fragmentation
originates mostly from particles lying in small planar configurations, belonging to
the same row/column domain, or a few adjacent ones.

Therefore, we need a method to quantitatively describe the shape of subhalos and
of the distribution of their member particles once traced back to the initial conditions
of the simulation. To this end, we resort to the inertia tensor of the particle ensemble

Iij =
∑

particles
m (êi · êj) |r|2 − (r · êi) (r · êj) (3.52)

where m and r are the particle mass and position, respectively, and ê are the unit
vectors of the reference orthonormal base. The eigenvalues and the eigenvectors
of the inertia tensor represent the square moduli and unitary vectors of the three
axes of the equivalent triaxial ellipsoid with uniform mass distribution. We define
as a ≥ b ≥ c the moduli of the three axes, and the sphericity, s = c/a, as the
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Figure 3.12: Sphericities of all DM particle ensembles as found by SUBFIND, as function
of their mass (upper panels), at redshifts z = 0 and z = 99 (left and right panels,
respectively). The black shaded area represents the discarded region below the different
mass cuts MCUT, corresponding to each model. Each black dot represents a subhalo and
the solid (dot-dashed) lines describe the median (99-th percentile) of the total distribution,
which are all gathered and contrasted with ΛCDM in the lower panel. The total sphericity
distribution – integrated in mass – is represented in the side panels, where the contribution
of the discarded sample to medians and distributions are portrayed in black. Lower panels
feature the median of the mass-sphericity distributions, presented as the ratio with respect
to ΛCDM. The shaded areas, corresponding to the ±1 σ of the distribution, are colour
coded as in the upper panels. The blackened median and shaded areas represent the
excluded portion of the sphericity distributions below the corresponding MCUT.
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ratio between the minor and the major ones: a very low sphericity will characterise
the typical degenerate domains of numerical fragmentation. For these reasons, we
use the combined information carried by the mass and the sphericity in the initial
condition to clean the halo catalogues from spurious ones by applying independent
cuts on both quantities, as it is be detailed below.

In Figure 3.12, the mass-sphericity distributions of the different simulations
are plotted at redshift z = 0 (upper left panel) and at z = 99 (upper right panel)
where each point represents a halo identified by SUBFIND, without applying any
selection. Solid and dot-dashed lines denote the median and the 99-th percentile of
the distribution; in the side panels we display the cumulative distributions, where
the contribution of spurious halos is highlighted in black.

By looking at the two panels, it is possible to notice that the total cumulative
sphericity distribution at low redshift is fairly model-independent, so that distin-
guishing spurious halos from genuine ones is impossible. However, if we trace the
particle ensembles of each halo found at z = 0 back to the initial conditions at
z = 99, using particles ID, and we study the resulting reconstructed mass-sphericity
relation, the anomalous component of the distribution associated with spurious
halos clearly emerges as a low-sphericity peak, which is more pronounced for smaller
values of the FDM particle mass.

In fact, as the mass mχ decreases, the smoothing action of QP becomes more
efficient, inducing homogeneity at larger and larger scales in the initial conditions
and increasing, consequently, the contamination of numerical fragmentation. It
clearly appears that the population of halos in the initial conditions is homogeneously
distributed in a pure CDM scenario, while a bimodal structure emerges at lower
and lower FDM mass. In particular, an increasing number of halos are located in a
small region characterised by low mass (M . 109M�) and low sphericity (s . 0.20).

As there is no theoretical reason why QP should favour the collapse of ensembles
with very low sphericities in the initial conditions with respect to the ΛCDM case,
we consider this second population as the result of numerical fragmentation.

As in Lovell et al. (2014), we chose to compute MCUT = 0.5Mlim using Equa-
tion (3.51) – one MCUT for each value of the FDM mass, as reported in Table 3.1 –,
that defines the upper bound of the discarded mass regions, i.e., the black shaded
areas in all panels of Figure 3.12. It is interesting to notice that the masses
MCUT appear to be very close to the values at which the sphericity medians of the
simulation sample – in the initial conditions – depart from the ones of ΛCDM, as
can be seen in the lower right panel of Figure 3.12. As the MCUT-values we obtain
are slightly larger compared to these departing values, we confirm the choice of
the former over the latter, as a more conservative option for the mass thresholds
dividing spurious from genuine halos.
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mχ [10−22eV/c2] N halos N genuine halos
25 101.6% 101.4%
5 103.5% 104.4%
2.5 103.1% 105.6%

Table 3.2: The total and genuine number of halos, presented as the ratio between the
simulations neglecting (FDMnoQP) and considering (FDM ) the QP dynamical effects.

In Lovell et al. (2014), the selection in terms of initial sphericity was operationally
performed discarding every halo with sphericity lower than sCUT = 0.16, equal to
the 99-th percentile of the distribution of halos with more than 100 particles in
the ΛCDM simulation. In our set of simulations, a similar value denotes the 99-th
percentile as measured at the MCUT mass in each simulations, so we adopt it as
our own threshold in sphericity. Let us stress that the halos that are discarded
through sphericity selection in the initial conditions have sphericities at z = 0 that
are statistically consistent with the genuine sample, making their numerical origin
impossible to notice based only on the sphericity distribution at z = 0. However,
the mass constraint is far more rigid than the sphericity one in all models but
ΛCDM, where no mass limit is imposed.

Finally, in Table 3.2 we summarise the comparison of the number of halos in
the FDMnoQP set-up with respect to the corresponding FDM set-up, presented
as the ratio of the total number of halos found by SUBFIND and the number of
genuine halos remaining after the exclusion of spurious ones. It is possible to see
that in the FDMnoQP simulations, for the three FDM masses considered, the total
number of halos is overestimated by a factor ∼ 2.5% on average while the genuine
halos excess becomes more important as the FDM mass decreases, up to 5.6%
for m22 = 2.5. This means that neglecting the QP effects during the simulation
leads to the formation of halos which are not present when the full QP dynamics is
taken into account and that, using our à la Lovell et al. (2014) spurious detection
selection, such halos pass the numerical fragmentation test and contaminate any
halo statistical property characterisation.

3.5.2 Inter-simulations halo matching

In FDM models, as we have extensively discussed, not only the initial power
spectrum of matter perturbation is suppressed at small scales, thereby preventing
the formation of low-mass structures, but the dynamical evolution of density
perturbations changes due to the effect of QP, intimately affecting the development
of structures during the whole cosmological evolution by opposing gravitational
collapse. The implementation of such effect in AX-GADGET breaks the one-to-one
correspondence of the spatial position of collapsed structures in simulations with
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different FDM masses – especially for smaller objects –, despite the identical
random phases used to set up the initial conditions.

We indeed expect bigger halos not to change dramatically their position at low
redshift across different simulation, while this is not the case for lighter subhalos
which are more affected by the evolving local non-linear balance between gravity
and QP of the environment. This makes it more difficult to identify matching
collapsed objects of common origin across the simulations, to study how FDM
models affect the inner structure of halos on a halo-to-halo basis.

To this end, we devised an iterative matching procedure, to be repeated until
no more couples are found, as the following: given a halo i at position ri and
total mass mi in simulation A,

1. select all halos j belonging to simulation B as potential counterparts if
|ri − rj|/(ai + aj) < R̃ where ai and aj are the major axes of the halos
computed through the inertia tensor of all their member particles.

2. within the ensemble selected at the previous point, retain only the halos k ⊆ j

whose masses satisfy the condition |mi −mk|/(mi +mk) < M̃

3. if more than one halo l ⊆ k is left, then choose the one for which |ri−rl|/(ai+al)
is minimum.

4. after having considered all the halos in A, if more than one are linked to
the same halo l belonging to B, choose the couple (i, l) that minimises
[|ri − rl|/(ai + al)]2 + [|mi −ml|/(mi +ml)]2, in order give the same weight
to the two criteria.

This method is flexible enough to account for the shift in mass and position
we expect from simulations with different FDM mass models, yet conservative
enough to ensure the common origin of the subhalo couples. Moreover, using the
combination of position and mass filters, we are able to discriminate couples in all
mass ranges: position filtering is a weaker constraint in the case of bigger halos
– since they occupy a big portion of a simulation – where instead the mass filter
is very strict; vice versa, it is more powerful for smaller halos for which the mass
filter select a large number of candidates.

Operatively, we used the previous procedure to match halos in each simulation
with the ΛCDM one and we refer to the subset of halos that share the same ΛCDM
companion across all the simulations as the common sample.

For geometrical reasons, we set the limit value for R̃ to be 0.5: this represents
the case in which two halos with the same major axis a have centres separated
exactly by the same amount a. The configurations that are selected by point (i) are
the ones for which the distance between the halo centres is less or equal the smallest
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M̃ mmin/mmax N matches
1/39 95% 53
1/19 90% 162
3/37 85% 234
1/9 80% 279
1/7 75% 304
1/3 50% 346
3/5 25% 361
1 0% 389

Table 3.3: Number of common matches across ΛCDM and FDMs simulations, using
different values of the parameter M̃ representing the minimum allowed ratio between the
minimum and maximum masses for each candidate couple.

major axis between the two. A higher value for R̃ would include genuine small halos
that have been more subject to dynamical QP drifting but would also result in a
spurious match of bigger halos. For these reasons, we adopt R̃ = 0.5, checking that
the selected sample gains or loses ∼ 5% of components if values 0.45 and 0.55 are
used, without modifying the overall statistical properties of the sample itself.

With respect to M̃ at point (ii), instead, we applied the matching algorithm
using several values, each denoting a specific threshold of the minimal value allowed
for the mass ratio of halo couples in order to be consider as a match. As reported
in Table 3.3, more than 60% of all the matching halos across ΛCDM and FDM
simulations without mass selection – M̃ = 1 case – have a mass ratio in the 100−85%
ratio range and almost 80% in the 100 − 75% range. In order not to spoil our
matching catalogue, especially with very close but highly different in mass halo
couples, we chose the limiting value of M̃ = 1/7.

3.5.3 Results and discussion

The statistical properties of the genuine halos belonging to each simulation are
summarised in Figure 3.13, where we display the cumulative halo mass function
(top right panel), the halo mass outside R200 (top left panel) – where R200 identifies
the distance from the halo centre where the density is 200 times the critical density
of the universe and M200 the mass contained within a R200 radius sphere –, the
subhalo mass function (bottom left panel), and the subhalo radial distribution
(bottom right panel).

In order to highlight the impact of numerical fragmentation and simplify the
comparison of the different models to ΛCDM, relative ratios are displayed in
the bottom panels, and shaded lines represent the distribution of the full halo
sample, i.e., including also spurious halos.
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Figure 3.13: Properties of the halo and subhalo samples at z = 0, with (dashed lines) and
without (solid lines) including the halos marked as spurious as described in Section 3.5.1.
In particular, the cumulative distributions of halo mass (top left panel), the halo mass
outside R200 (top right panel), the subhalo-halo relative mass (bottom left panel) and the
subhalo-halo distance (bottom right panel) are displayed. The fitting functions of the
cumulative halo mass distribution from Schive et al. (2016) (Equation (3.53)) are plotted
for reference (dotted line in the top left panel).

The analytic fit used by Schive et al. (2016) to parametrise the cumulative halo
mass function drop of the FDM models with respect to ΛCDM

N(> M)FDM =
∫ +∞

M
∂MNCDM

[
1 +

(
M

M0

)−1.1]−2.2

dM (3.53)

with M0 = 1.6 · 1010m
−4/3
22 M�, are plotted as reference – one for each FDM mass –

in the top left panel of Figure 3.13 (dotted lines).
As expected, we find that the number of low-mass subhalos is drastically reduced

in the FDM models, and the cumulative distributions depart from ΛCDM at higher
and higher masses, as the mχ mass decreases. The values at which the drop occurs
are approximately 5 · 1010M�, 2.5 · 1010M� and 5 · 109M� for values of m22 of 2.5,
5 and 25, respectively: this suggest a linear trend of the threshold mass

Mt ' 5 · 1010M�

( 2.5
m22

)
(3.54)
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describing the approximate mass below which the number of halos starts decreasing
with respect to ΛCDM.

Looking at the distribution of subhalo masses as compared to their associated
primary haloM200 and the radial distribution to R200, it is evident how the numerous
small subhalos in ΛCDM, far from the gravitational centre of the main halo, are
the ones that were not able to form in a FDM universe.

The halos that have masses above Mt not only have been able to survive the
disrupting QP action up to redshift z = 0, but the cumulative distribution shows how
they also gained extra mass, at the smallest (sub)halo expenses. This is confirmed by
the cumulative distribution of the primary structuresN(> Mtot−M200), representing
the mass accumulated outside the R200 radius, which is systematically higher with
respect to the ΛCDM case as the FDM mass lowers – up to peaks of 200% ratio
for the lowest m22 –: this is consistent with the picture of bigger primary halos
accreting the mass of uncollapsed smaller subhalos that did not form.

The fitting function expressed by Equation (3.53) is consistent with the scale
of the drop of the halo mass function, which is indeed expected to be almost
redshift-independent, since it is predominantly given by the initial cut-off in the
power spectrum (Hu et al. 2000). However, it fails to reproduce the data on two
levels: on one hand it does not recover the slope of the cumulative distribution
– especially in the mass range close to Mt where the halo mass function departs
from ΛCDM – and, on the other hand, does not account for the mass transfer from
smaller halos, unable to collapse due to QP repulsive interaction, to bigger ones,
that accrete the more abundant available matter from their surroundings. The
discrepancies between the Schive et al. (2016) fitting function and our results are
probably due to the fact that the former is based on simulations with approximated
FDM dynamics and evolved only to redshifts z = 4, thus representing a different
collection of halos that are, moreover, in an earlier stage of evolution.

Therefore, the analysis of the aggregated data of cumulative distributions of
genuine halos in each simulation lead us to conclude that formation, evolution and
properties of a FDM halo subject to the real effect of QP – as compared to the
FDMnoQP approximation – can follow three general paths depending on its own
mass and on the mass of the FDM boson: if the halo mass is M �Mt, there is high
chance that the halo does not form at all since gravitational collapse is prevented
by QP; if M &Mt, the halo can be massive enough to form but its properties will
be affected by QP – especially on its internal structure, as we will see below –,
while for M �Mt the halo is not severely affected by QP, and will simply accrete
more easily uncollapsed mass available in its surroundings.

In order to study in more detail the impact of QP on the halo properties and
structures, we divided our common sample, that by construction collects the halos
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across all the simulations that share the same ΛCDM match (as described in detail
in Section 3.5.2), in three contiguous mass ranges. Let us remind that matching
halos have similar but not necessarily equal mass, so mass intervals are to be
referred to the ΛCDM halo mass; the other matching halos belonging to the FDM
simulations are free to have lower and higher mass, compatibly with the limit
imposed by the M̃ parameter of the common sample selection procedure. The
common sample low-mass end is clearly limited by the FDM-2.5 model, since it is
the one with higher Mt, below which halos have statistically lower chance to form.
The three mass ranges are [0.5 − 4], [4 − 100], [100 − 4000] · 1010M�, in order to
be compatible with the three halo categories described in the previous paragraph
for the FDM-2.5 model, being Mt(m22 = 2.5) ∼ 5 · 1010M�

For all the matching halos considered, we have tested the sphericity distribution,
the halo volume and the total halo mass with respect to ΛCDM, as well as the
radial density profiles.

Properties of inter-simulation matching halos are gathered in Figure 3.14, where
the total sample is divided column-wise in the three mass ranges. The sphericity, the
volume occupied and the total mass of the halos – contrasted with the corresponding
ΛCDM match – are shown in the first row (left panels), together with related
distribution functions (right panels). The second and the third row represent the
overall density profiles, stacked in fractional spherical shells of R200 and ellipsoidal
shells of the major axis a – identified with the vertical dashed lines –, respectively.
Density profiles are divided by the value of the density calculated within the R200-
and a-shells, and are shown both in absolute value (top panels) and relatively
to ΛCDM (bottom panels).

The sphericity distributions confirm that, in the mass range considered, there
is no statistical deviation from ΛCDM, except for a mild deviation towards less
spherical configurations of the less massive halos, especially in the m22 = 2.5
model. This is consistent with the analysis of the sphericity distributions of the
genuine samples (see lower panels in Figure 3.12) that reveals that halos appear
to be statistically less spherical with respect to ΛCDM at z = 0 when lower FDM
masses are considered, down to a maximum of ∼ 10% decrease in sphericity for
m22 = 2.5 and halo mass of ∼ 5 · 109M�.

For all FDM models, the volume occupied by the halos is systematically larger,
consistently with a delayed dynamical collapse of the halos. All mass ranges show
such property and it is emphasised by lower m22 mass – i.e., stronger QP force –;
however, while bigger halos occupy almost systematically 20% more volume for
m22 = 2.5, smaller halos can reach even twice the volume occupied by their ΛCDM
counterparts, when the same model is considered.

Comparing the mass of the halos in the various models with the one in ΛCDM,
it is possible to see that small halos are less massive and big ones, on the contrary,
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Figure 3.14: Properties of inter-simulation matching halos. The total sample is divided
column-wise in three mass ranges. The sphericity, the volume occupied and the total mass
of the halos – contrasted with the corresponding ΛCDM match – are shown in the first
row (left panels), together with related distribution functions (right panels). The second
and third row represent the overall density profiles, stacked in fractional spherical shells
of R200 and ellipsoidal shells of the major axis a – identified with the vertical dashed
lines –, respectively. Density profiles are divided by the value of the density calculated
within R200 and a, and are shown both in absolute value (top panels) and relatively to
ΛCDM (bottom panels).
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become even more massive, confirming our hypothesis of mass transfer from
substructures towards main structures.

The stacked density profiles provide even more insight on the underlying different
behaviour between the chosen mass ranges. Starting from the less massive one, the
stacked profiles look very differently if plotted using the spherical R200-based or the
ellipsoidal a-based binning. This is due to two concurrent reasons related to the
properties of this mass range: first of all, as we said before, the sphericity is mχ-
dependent, and thus it is not constant with respect to ΛCDM, so that the geometrical
difference in the bin shape becomes important when different models are considered;
secondly, since the FDM halos have lower mass but occupy larger volumes, the two
lengths are different from each other – being R200 related to density and a purely
to geometry – so that the actual volume sampled is different. Nevertheless, it is
possible to see that in FDM models there is an excess of mass in the outskirts of
the halo – seemingly peaking exactly at distance a – and less mass in the centre.

The intermediate mass range shows also a suppression in the innermost regions
but a less pronounced overdensity around a as expected, since the effectiveness of
the repulsive force induced by the QP in tilting the density distribution decreases
as its typical scale becomes a smaller fraction of the size of the considered objects.
In fact, stacked density profiles of the most massive halos are very similar in
the two binning strategies, being R200 ∼ a and sphericity constant among the
various models, and consistent with no major deviation from ΛCDM, except for
a central overdensity. It is our opinion, however, that such feature in the very
centre of most massive halos could be a numerical artefact, since its extension is
comparable with the spatial resolution used.

The results presented in this Section have been obtained through the detailed
analysis of the statistical properties of halos found at z = 0 in the FDM simulations.
The same analysis, repeated at z = 0, of the FDMnoQP simulations yield very
similar results which are, therefore, not shown. Such consistency suggests that the
properties of halos at low redshift are – at the investigated scales – not sensible to
modifications induced by the dynamical QP repulsive effect, which are expected to
appear more prominently at scales of ∼ 1 kpc with the formation of solitonic cores.
Higher resolution simulations will soon allow us to explore such even smaller scales.
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4
Interacting Dark Matter

4.1 Overview
A class of nCDM models that has gained a lot of interest in recent years is that
in which DM couples to an additional relativistic dark sector, known as Dark
Radiation (DR) (Bringmann et al. 2016; Buckley et al. 2014; Boddy et al. 2014;
Buckley & Fox 2010). Some of these models have been proposed to solve the missing
satellite problem (Archidiacono et al. 2017; Vogelsberger et al. 2016; Schewtschenko
et al. 2016) or to delay reionisation (Das et al. 2018) by means of a cut-off in
the matter power spectrum. Other classes of DM-DR models, with a smooth
damping of the matter power spectrum, can alleviate the cosmological tensions
on H0 and/or σ8, as proposed by Buen-Abad et al. (2015); Lesgourgues et al.
(2016); Buen-Abad et al. (2018).

Given the suppression that these interacting DM-DR models can have on small-
scale structure growth, the matter power spectrum is an essential tool to study these
dark sector interactions (Gluscevic et al. 2019). The main goal of this Chapter is to
apply the novel parametrisation for suppressed matter power spectra, described in
Chapter 2, to test DM-DR interaction scenarios with small-scale structure formation
data. As it has been already discussed, in the framework presented in Chapter 2, the
full shape of the cut-off is captured by a three-parameter analytic fitting formula.
High-resolution simulations are performed on a grid of nodes given by several
combinations of these parameters, allowing one to interpolate at a later stage on
the pre-existing grid to derive constraints on a specific model.

To this end, we developed a new likelihood for the parameter inference code
MontePython (Audren et al. 2013; Brinckmann & Lesgourgues 2018), making use
of the method discussed in Chapter 2. This has been used together with the
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implementation in the Boltzmann code CLASS (Blas et al. 2011) of the generic
ETHOS parametrisation (Cyr-Racine et al. 2016) for DM-DR interactions, also
introduced in Chapter 2 (Section 2.3.5).

Note that there have been several studies in the past that used the Lyman-α
forest data to constrain DM-DR and DM-baryons interactions. In particular Dvorkin
et al. (2014); Krall et al. (2017); Xu et al. (2018) used measurements of the linear
matter power spectrum amplitude and slope obtained from SDSS-II low-resolution
low-signal-to-noise quasar spectra. However, these measurements were obtained
assuming a vanilla ΛCDM cosmology or small departures from it (McDonald et al.
2006, 2005). More recently, Garny et al. (2018) compared interacting dark sector
models to the 1D flux power spectrum derived from SDSS-III data. They proposed
a new modelling of the flux power spectrum in which the non-linear evolution
is calculated analytically using viscous two-loop perturbation theory (Blas et al.
2015), while uncertainties on the flux power spectrum modelling are accounted for
by marginalising over several nuisance parameters. None of these investigations
rely on a forward modelling of the flux power spectrum based on high-resolution
hydrodynamic simulations, and this is the approach that we discuss here.

This Chapter is organised as follows: in Section 4.2 we present the interacting
DM-DR model, we describe its impact on structure formation and cosmological
observables, we then describe the implementation of our Lyman-α likelihood
(Subsection 4.2.1), as well as our modifications to the CLASS code (Subsection 4.2.2);
in Section 4.3 we present and discuss our results; in Section 4.4 we briefly describe
a further generalisation of our methods, and its future applications.

4.2 Theoretical framework and methods
In order to solve the missing satellite problem, besides self-interactions, DM has
to scatter off a relativistic particle. The Standard Model particles (neutrinos and
photons) cannot play this role both because of model building issues (Bringmann
et al. 2016) and because of cosmological consequences (e.g., bounds on free streaming
neutrinos (Archidiacono & Hannestad 2014; Brust et al. 2017)). Therefore, we need
to invoke the existence of an extra DR component, which requires an extension of
the Standard Model of particles. Here, we will not focus on one specific particle
model, because our aim is to devise a general phenomenological approach that
can be applied to several models.

In order to keep the discussion as general as possible, we assume the ETHOS
parametrisation of DM-DR interactions (Cyr-Racine et al. 2016), already introduced
in Chapter 2 (Section 2.3.5). The ETHOS framework was first implemented in
CLASS by Archidiacono et al. (2017) (see Section 4.2.2 for more details), where
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the effects on cosmological observables at large scales due to DM-DR interactions
through a massive mediator were investigated, determining that, given the ETHOS
parametrisation, the impact of the specific particle physics model (e.g., the DM mass,
the presence of DR self-interactions, the vector/scalar nature of the mediator (Binder
et al. 2016)) have no (or negligible) impact. The only relevant physical quantities are:

• the temperature dependence of the comoving interaction rate ΓDR−DM ∝ T n,
where ΓDR−DM can be seen as the DR drag opacity, i.e., the scattering rate of
DR off DM,

• the strength of the interaction adark (ΓDR−DM ∝ adarkT
n),

• the amount of DR parametrised through the temperature ratio ξ = TDR/Tγ,
where Tγ is the temperature of CMB photons,

• the nature of DR (i.e., free streaming or not).

The effects of DM-DR interactions on the CMB were already discussed in detail
by Cyr-Racine et al. (2014) and Archidiacono et al. (2017). Here we summarise
the most important differences between such models and a ΛCDM model with
an equivalent number of extra neutrino-like particles Neff (i.e., with the same
background density of radiation):

• Non-free streaming DR: due to its self-interactions and/or its coupling with
DM, DR does not lead to additional anisotropic stress, and thus, does not
induce the damping and phase-shift of the CMB acoustic peaks that is typically
expected in presence of additional relativistic degrees of freedom;

• Non-growing DM fluctuations: the momentum exchange between DM and
DR particles reduces the growth rate of DM perturbations compared to
the ΛCDM model; this can lead to a fast mode in the DM perturbation
evolution (Weinberg 2002; Voruz et al. 2014) and thus to a gravitational
coupling between DM and photons that suppresses the odd (compression)
CMB peaks.

Since we want to derive Lyman-α bounds on DM-DR models, we are interested
in the behaviour of the matter power spectrum P (k) on small scales. As described
by Buckley et al. (2014); Archidiacono et al. (2017), the effect of the coupling
between DM and DR is twofold:

• The late kinetic decoupling induced by DM-DR scattering yields a collisional
damping of the matter power spectrum. The damping translates into a cut-off
in the halo mass function, possibly alleviating/solving the missing satellite
problem.
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• Besides the exponential damping (only apparently similar to thermal WDM),
the opposite forces of DM gravitational clustering and DR relativistic pressure
may lead to a series of so-called Dark Acoustic Oscillations (DAOs) typical of
models of DM-DR interactions mediated by a new light mediator (Cyr-Racine
et al. 2014).

A special comment has to be dedicated to a class of models discussed by Buen-
Abad et al. (2015); Lesgourgues et al. (2016); Buen-Abad et al. (2018), like for
instance Non-Abelian Dark Matter (NADM), in which the momentum transfer
rate from DM to DR, related to the ETHOS rate by Γ = −ΓDM−DR/a, scales
like a−2. In this case the suppression of the matter power spectrum is smooth,
as the temperature dependence of the interaction rate (n = 0 in the ETHOS
parametrisation) is the same as the temperature dependence of the expansion rate
during the radiation dominated epoch. Moreover, DR particles tend to have strong
self-interactions caused either by their charge under the new gauge group of the
dark sector, or by the fact that they are the gauge bosons of this group. These
models are described by the parameters:

• ∆Nfluid ≡ ρdr/ρ1ν , which gives the amount of self-interacting DR, parametrised
as the effective number of extra neutrino families;

• Γ0 ≡ Γ (a/a0)2, which gives the momentum transfer rate from DM to DR at
redshift z = 0.

They can thus be described with the ETHOS parametrisation in the n = 0 case,
provided that DR is treated as a perfect fluid.

4.2.1 The Lyman-α likelihood

In order to provide limits on the properties of interacting DM-DR scenarios from
the Lyman-α forest, we have devised a new MontePython (Audren et al. 2013;
Brinckmann & Lesgourgues 2018) likelihood, based on the general parametrisation
introduced in Chapter 2. The corresponding data set is the HIRES/MIKE sample
of quasar spectra, described in detail in Section 2.6.1.

The new likelihood takes advantage of the scheme illustrated in Chapter 2,
which allows to interpolate between different cosmological models without the need
of running dedicated numerical simulations. Such procedure relies in fact on the
large set of pre-computed hydrodynamic simulations described in Section 2.4.2, and
on the advanced interpolation method discussed in Section 2.6.1.

Let us just remark that the non-standard nature of the dark sector is accurately
followed only at the linear level, i.e., its impact is assumed to be fully encoded in the
suppressed initial power spectra produced by our modified version of CLASS and used
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Figure 4.1: Left: Linear transfer functions T 2(k) = P (k)/P (k)ΛCDM at z = 0, for n = 4
(top row), n = 2 (second row), n = 0 (bottom row). The different colours correspond to
different values of the amount of dark radiation ξ and of the strength of the interaction
adark. Solid lines depict the true T 2(k), while dashed lines of the same colour show the
corresponding {α, β, γ}-fit. Right: Relative deviation of the {α, β, γ}-fit from the true
T 2(k) (solid lines) for the same models (colours) as in the left panel. The vertical lines
show k1/2 (dot-dashed lines) and kfit (dashed lines - for n = 0, kfit = kmax). The grey
shaded region approximately represents the k range probed by Lyman-α data.

as inputs for 2LPTic; while during the non-linear structure evolution investigated
by our numerical simulations, DM is treated as standard, pressureless CDM. The
motivation for this treatment is twofold. First, DM-DR interactions have significant
effects only at earlier times (z > 99) (Cyr-Racine et al. 2016). Second, DM self-
interactions – which are expected to be relevant at late times – can also be safely
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Figure 4.2: Ratio between the non-linear matter power spectra (left panel) and the
corresponding ratio of 1D flux power spectrum (right panel) at z = 5. The spectra are
obtained from simulations with the linear input given either by the true T (k) (solid
lines) or by the fit T (k, α, β, γ). The theoretical model is n = 4 and it has ξ = 0.5 and
adark = 3 × 105 Mpc−1. The grey shaded region defines the k range of MIKE/HIRES
data.

neglected during the non-linear evolution, since the scales probed by Lyman-α are
somewhat too large to be affected by such exotic DM properties (Vogelsberger et al.
2016) (but see also Chapter 3, where we explicitly demonstrated it in the analogous
context of small-scale power suppression induced by ultra-light scalar DM).

The main advantage of the {α, β, γ}-parametrisation is that it allows to system-
atically explore the parameter space of any non-standard DM cosmological model,
provided that the corresponding linear power spectrum can be fitted in terms of
the three aforementioned parameters. The new likelihood directly translates the
limits on α, β, and γ obtained through MIKE/HIRES data into constraints on the
fundamental particle physics parameters. The scheme is the following:

• The linear matter power spectrum associated to a given combination of
cosmological parameters (six ΛCDM parameters plus additional non-standard
DM parameters) is produced by CLASS up to a maximum wavenumber chosen
to be kmax = 200h/Mpc. Corresponding values of the derived parameters
{σ8, neff , zreio} used to define the N -body simulations are computed. When
these values fall outside of the conservative range assumed in the simulations,
the model can safely be rejected, given that such models would be very bad
fits to the Planck data (this will be further cross-checked in some dedicated
runs called “Lyman-α prior”, discussed in Section 4.3). The only exception is
the case of models with a low reionisation redshift. The prior used in our grid
of simulations, 7 < zreio < 15, was motivated by Planck 2013 results. Instead
Planck 2015 + BAO data are compatible with zreio = 8.7 ± 1.1 (1 σ C.L.),
such that in our runs, models with 6 < zreio < 7 might still be acceptable fits
and should not be systematically rejected. In practice, within our Lyman-α
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likelihood, we re-map any 6 < zreio < 7 to zreio = 7. This is a satisfactory
approximation given that the value of the reionisation redshift has a small
impact on the flux power spectrum.

• The linear matter power spectrum of the “equivalent” ΛCDM model is
also produced. Note that our grid of hydrodynamic simulations for ΛCDM
models assumes a fixed standard value of the ultra-relativistic relic density,
corresponding to Neff = 3.046. In general, for nCDM models with the same
Neff , computing the spectrum of the “equivalent” ΛCDM model would be
very straightforward: we would just need to re-run CLASS with an infinite
DM mass and/or zero interaction rates. However, all models discussed in this
Chapter include DR and an enhanced value of Neff . To deal with this, we
use the accurate procedure described by Rossi et al. (2015), which allows to
re-map a ΛCDM model with Neff > 3.046 to another one sharing the same
matter power spectrum up to some scale, but with Neff = 3.046: this can be
achieved by adjusting the value of other cosmological parameters according
to some analytic relations. In other words, for each model with Neff > 3.046,
our Lyman-α likelihood automatically reformulates the problem in terms of
an equivalent ΛCDM model with Neff = 3.046, for which we study the effect
of a suppression in the small-scale matter power spectrum caused only by
non-standard DM effects.

• The transfer function, i.e., the square root of the ratio between the two power
spectra, is fitted in terms of {α, β, γ} with a simple least squares method. The
fitting algorithm only includes points until a finite value kfit which is set by
default to kmax = 200h/Mpc. However, for transfer functions with oscillations
within the range [0, kmax], kfit is reduced to the first zero of the function. The
fit is also restricted to values of {α, β, γ} within the region covered by the
grid of simulations: 0 ≤ α ≤ 0.17, 1.5 ≤ β ≤ 10, and −10 ≤ γ ≤ −0.15.
Furthermore, if the difference between the “exact” transfer function and the
fitted one is too large in a region in which the power spectrum is not strongly
suppressed, our method cannot be considered accurate and reliable enough.
Thus we need to implement a conservative “applicability check” rejecting
models giving bad {α, β, γ}-fits, but such that the Lyman-α data remain more
constraining than the applicability check itself. If this condition is met, this
check is just a technical step, not biasing our final results, because rejected
models would anyway conflict the data. In practice, our likelihood requires
that the {α, β, γ}-fit to the transfer function is accurate to better than 10%
in the whole region where this function is larger than 0.2. The 10% accuracy
is sufficient for data with statistical uncertainties of ∼ 10% such as in Iršič
et al. (2017c). In Section 4.3 we will describe some dedicated runs probing
that this applicability check is much less constraining than the data and has
no impact on our final results.
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• At this point, if the considered model has passed the aforementioned ap-
plicability checks, its flux power spectrum is produced by performing the
interpolation procedure described in Section 2.6.1. By confronting such flux
power spectrum against Lyman-α forest data, a χ2-value is associated to the
corresponding combination of parameters.

• The procedure is iterated per each MCMC step, until convergence is reached, i.e.,
until accurate constraints on the cosmological and astrophysical parameters
of the model are determined.

• At each step, the fitted values of {α, β, γ} are kept in the MCMC chains as
derived parameters, to check a posteriori the range of power spectrum shapes
covered by a given cosmological model.

In order to show how the pipeline described above works, we plot in the left
panels of Figure 4.1 the square of the linear transfer function of a few selected
DM-DR models, or in other words, their linear matter power spectrum divided by
that of the ΛCDM equivalent model. By construction, the transfer function always
has an asymptote of one in the small-k limit. For each model, we compare it with
its best fit using the {α, β, γ}-parametrisation. In the right panels we show the
relative error of the fit. Notice that the {α, β, γ} cannot reproduce the oscillations
in T (k) after the first zero (for k > kfit). However, the power of the subsequent
oscillations is small. Figure 4.2 demonstrates that the impact of these oscillations on
structure formation is negligible and located at scales smaller than those probed by
Lyman-α, even for a rather large interaction strength. As it has already been shown
in Chapter 2 (Section 2.6.3), significant differences between the “exact” flux power
spectrum and the {α, β, γ}-prediction appear only when the power suppression with
respect to the standard CDM case is more than 50%, i.e., for models whose power
spectra lie very far from the Lyman-α forest data points. This fully justifies ignoring
such oscillations when applying our fit. For k . kfit, the {α, β, γ}-parametrisation
works rather well in reproducing the real transfer function (see Figure 4.1). The
relative error features a small bump at scales k1/2 < k < kfit, with an amplitude
related to the DR content. Then it diverges at k −→ kfit, which is unavoidable
given that the reference transfer function goes to zero, but harmless due to the
small power of those scales. This is not a problem for our applicability check, which
only applies up to the wavenumber at which the transfer function crosses 0.2.

We stress one important point here. Our Lyman-α forest likelihood significantly
improves over previous likelihood analyses present in the literature addressing DM-
DR interactions (e.g., Krall et al. (2017)). In previous works, the likelihood was based
on an estimate of the linear matter power spectrum amplitude slope and curvature
obtained from low-resolution and low-signal-to-noise SDSS-II data (McDonald et al.
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2006). These measurements were derived only in the standard ΛCDM model, and
are expected to be valid only for small deviations around this model. There exists no
explicit proof that models with interacting DM-DR fall inside the range of validity of
this method. We are instead fitting the observed quantity, the 1D flux power, using
a set of dedicated simulations that take in input the linear power spectra of the
{α, β, γ}-parametrisation, thus fully taking into account the cosmological signature
of DM-DR interactions. Such a dedicated investigation of the non-linear evolution
of structures in interacting DM-DR scenarios using N -body/hydro simulations has
only been performed by Bose et al. (2019). However, the focus of the latter reference
was actually on the survival of oscillatory features in the flux power spectrum,
and not on a full MCMC analysis of the flux power. Furthermore, the data set
that we used is expected to be the most updated and constraining one for models
with a small-scale suppression. Indeed, let us stress again that high-resolution
high-signal-to-noise quasar spectra can go down to the smallest scales probed by
IGM structures (Viel et al. 2013; Boera et al. 2018). Conversely, low-resolution
data from surveys like SDSS have smaller statistical errors, but they are limited
to larger scales. They are thereby more appropriate for constraining neutrino
masses and/or cosmological parameters (Palanque-Delabrouille et al. 2013), and
less constraining for small-scale features.

4.2.2 Dark Matter–Dark Radiation interaction in CLASS

CLASS already incorporated several DM species and related input parameters: the
CDM sector (including the effects of energy release from DM annihilation or decay
into electromagnetic particles (Poulin et al. 2017a)); the decaying DM sector into
DR (Poulin et al. 2016); and the nCDM sector featuring an arbitrary number of
nCDM species (Lesgourgues & Tram 2011).

In Archidiacono et al. (2017), the ETHOS framework for an effective description
of DM-DR interactions (Cyr-Racine et al. (2016)) was implemented in CLASS as
a set of modifications to the existing CDM equations. For our purposes (and for
the public release of the code (Archidiacono et al. 2019)), we re-implemented the
same set of equations, but for a new “interacting DM species” coexisting with the
plain CDM species and enlarging the total number of DM sectors available. This
allows to investigate mixed DM models, and it has an appropriate structure for
accommodating in future versions more types of DM interactions (e.g., DM-baryon
or DM-photon), either separately or at the same time. For the moment, the new
sector includes parameters like the DM mass (m_dm), the fraction of the total CDM
density (f_idm_dr), as well as other parameters related to the ETHOS model, fully
described in explanatory.ini, and appearing here in typefaces.



4.2. Theoretical framework and methods 108

Here we only recall the main equations of DM and DR perturbations in the
ETHOS model, and we refer to Cyr-Racine et al. (2016); Archidiacono et al.
(2017) for further details.

As already mentioned in Section 4.2, the amount of DR is set by the temperature
ratio ξ = TDR/Tγ (xi_idr), and its physical density is:

ωDR =
(
gDR

2

)
fDRξ

4ωγ, (4.1)

where the statistical factor fDR (stat_f_idr) is 7/8 for fermionic DR and 1 for
bosonic, gDR is the DR number of internal degrees of freedom and it is assumed to be
2. The input parameter idr_nature describes the DR nature, i.e., free streaming or
fluid: in the former case the DR hierarchy is evolved up to `dark (l_max_idr) (set by
default to 17), while in the latter only the modified continuity and Euler equations
are present. In the free streaming case, the DR hierarchy in Newtonian gauge is:

δ̇DR + 4
3θDR − 4φ̇ = 0, (4.2)

θ̇DR + k2
(
σDR −

1
4δDR

)
− k2ψ =

ΓDR−DM (θDR − θDM) , (4.3)

π̇DR,` + k

2`+ 1 ((`+ 1)πDR,`+1 − `πDR,`−1) =

(α`ΓDR−DM + β`ΓDR−DR) πDR,`, 2 ≤ ` ≤ `dark. (4.4)

The density and velocity dispersion perturbations are labelled as δ and θ, respectively,
the DR shear perturbation is πDR = 2σDR, φ and ψ are the gravitational potentials.
The specifications related to the DR-DM interactions are embedded into ΓDR−DM,
which is the comoving interaction rate (see the formula and the discussion below),
and α` (alpha_dark) is the array of the interaction angular coefficients for ` =
2, ..., `dark. The DR self-interactions are encoded in the comoving rate ΓDR−DR,
whose strength is b_dark, and whose angular coefficients are β` (beta_dark).

The DM perturbation equations are:

δ̇DM + θDM − 3φ̇ = 0, (4.5)
θ̇DM − k2c2

DMδDM +HθDM − k2ψ =
ΓDM−DR (θDM − θDR) , (4.6)

where c2
DM is the dark sound speed. The interactions are embedded in the right

hand side of DR and DM dipole equations, and of DR higher order momenta. The
effective comoving scattering rate of DR off DM can be parametrised as:

ΓDR−DM = −ΩDMh
2adark

( 1 + z

1 + zd

)n
, (4.7)
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where zd = 107 is a normalisation factor, n (nindex_dark) is the temperature
dependence, and adark (a_dark) is the interaction strength. Applying energy-
momentum conservation, we obtain:

ΓDM−DR = RdarkΓDR−DM

=
(

4
3
ρDR

ρDM

)
ΓDR−DM. (4.8)

With respect to Archidiacono et al. (2017), the present version of the code
implements the tight coupling regime between DM and DR. By default, CLASS
uses a stiff integrator (ndf15) (Blas et al. 2011) for the perturbation equations,
which means that rather large values of the interaction rate can be reached while
using the default equations and keeping the code fast. However, in order to
investigate the very small scales probed by Lyman-α, the tight coupling is required.
This regime is fully operational in our released CLASS version (Archidiacono et al.
2019). The tightly-coupled equations are switched on automatically whenever the
ratio between the conformal interaction rate and Hubble times, H/ΓDR−DM, falls
below a threshold set by default to 0.005, and the ratio between the conformal
interaction and acoustic oscillation times, k/ΓDR−DM, falls below 0.011. At first
order in Γ−1

DR−DM the DM-DR slip is:

Θ̇TCA
DM−DR = θ̇DR − θ̇DM

=
(
n− 2

1 +Rdark

)
ȧ

a
(θDM − θDR) + 1

1 +Rdark

1
ΓDR−DM

×

×
[
− ä
a
θDM −

ȧ

a

(
k2 1

2δDR + k2ψ
)

+ k2
(
c2

DMδ̇DM −
1
4 δ̇DR

)]
,

where a dot denotes the derivative with respect to conformal time. The slip is then
plugged into the exact equations for the DM and DR dipole moments θ̇DM and θ̇DR.

4.3 Results and discussion

With the method described in the previous Section, we have used the parameter
inference code MontePython (Audren et al. 2013; Brinckmann & Lesgourgues 2018),
interfaced with our modified CLASS version, in its default Metropolis Hastings mode,
to scan the combination of {ωb, ωcdm, log(1010As), ns, τreio, H0, ξ, adark}, for the
ETHOS models with n = 4, n = 2, and n = 0 (corresponding to different powers of
the temperature dependence of the comoving interaction rate Γ ∝ T n).

1The two thresholds are defined as the precision pa-
rameters dark_tight_coupling_trigger_tau_c_over_tau_h and
dark_tight_coupling_trigger_tau_c_over_tau_k.
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For n = 4 and n = 2 we assume DR to be free streaming and we neglect
the impact of DR self-interactions (Archidiacono et al. 2017) (ΓDR−DR = 0,
b_dark= 0), while for n = 0 we assume DR to behave like a fluid (ΓDR−DR →∞,
idr_nature=fluid). For the final case, we have also studied the impact of a differ-
ent parameter choice to match the NADM model by Lesgourgues et al. (2016); Buen-
Abad et al. (2018), thus giving us {ωb, ωcdm, log(1010As), ns, τreio, H0, ∆Nfluid, Γ0}.

For each of the studied ETHOS models, we performed MCMC analysis for
two different data combinations:

• Planck + BAO: This is the combination of Planck 2015 high-` TT+TE+EE,
low-` data (Aghanim et al. 2016) and Planck 2015 lensing data (Ade et al.
2016b). We further add BAO data, using measurements of DV /rdrag by 6dFGS
at z = 0.106 (Beutler et al. 2011) by SDSS from the MGS galaxy sample at
z = 0.15 (Ross et al. 2015), and additionally by BOSS from the CMASS and
LOWZ galaxy samples of SDSS-III DR12 at z = 0.2− 0.75 (Alam et al. 2017).

• Planck + BAO + Lyman-α: Same as above, with the additional Lyman-α
likelihood discussed in Section 4.2.1.

The results for the different cases are discussed in the following Subsections.

4.3.1 ETHOS n = 4 model

The underlying particle physics model that leads to the n = 4 temperature
dependence of the comoving interaction rate is represented by fermionic relativistic
particles (DR), e.g., sterile neutrinos, interacting with DM particles through a new
massive boson mediator of a new U(1) broken symmetry. Given the negligible
impact of DR self-interactions induced by these processes on the matter power
spectrum (Archidiacono et al. 2017), we set ΓDR−DR = 0. The results of our
MCMC runs for this model are shown in Figure 4.3 and Table 4.1, for both of
the data set combinations mentioned above.

CMB constraints. We expect a clear degeneracy between the amount of DR ξ and
the interaction strength adark, because the data should remain compatible with
DM interacting either strongly with a small amount of DR or barely with a large
amount of DR. To capture this behaviour, we chose to use a flat prior on log10(adark)
in the range [−3, 20]. Indeed, a linear prior on adark would only give weight to
the region with a high interaction rate and thus a tiny DR density. This would
lead to very strong bounds on ξ that would not reflect the fact that the data is
perfectly compatible with values up to ξ ∼ 0.40.

In the middle plot of the left panel of Figure 4.3, we can see the expected
degeneracy between ξ and log10(adark). The results of MCMC runs are usually
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Figure 4.3: Left: 2D posterior distributions for all main parameters for the n = 4
case, with Planck + BAO (red), Planck + BAO + Lyman-α Data (dark blue), and the
Lyman-α Prior check run explained in the text (light blue), when running with a flat
prior on ξ and logarithmic prior on adark. The smoothing has deliberately been turned
off to show the sharp boundaries of the preferred regions more clearly. Right: Posterior
distributions when using linear priors on ∆Neff and adarkξ

4.

plotted as smoothed contour plots. In this particular context, we choose instead
to plot the non-smoothed density of points in the chains2, in order to precisely
visualise the edges of the region preferred by the data. The Planck+BAO allowed
region has two sharp edges set by the data rather than the priors:

• a vertical line corresponding to the maximum allowed value of ξ (and therefore
∆Neff) in the ETHOS n = 4 model. We find ξ < 0.40 (95% C.L.), which is
consistent within 1 σ with the bound obtained by Archidiacono et al. (2017),
with our bounds being slightly tighter. This small difference can be attributed
to the inclusion of the lensing and BAO likelihoods, which were not used in
the previous study. This can be translated into ∆Neff < 0.10, but the latter
result must be taken with a grain of salt because it derives from a flat prior on
ξ. Later in this Subsection we will report another bound obtained with a flat
prior on ∆Neff . The physical interpretation of this boundary is that CMB data
are incompatible with too much DR, even when the latter is self-interacting.
This is caused by various effects, the dominant one being the influence of the
amount of extra radiation on the CMB damping tail (Hou et al. 2013). DR

2In practice this is achieved by analysing the chains with a high number of bins (one hundred).
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ΛCDM ETHOS n = 4
Parameter Planck+BAO Planck + BAO + Lyman-α

100 ωb 2.219+0.013
−0.014 2.221+0.015

−0.015 2.222+0.017
−0.014

ωcdm 0.1192+0.0011
−0.0010 0.1195+0.0011

−0.0014 0.1192+0.0011
−0.0010

log(1010As) 3.050+0.023
−0.023 3.053+0.025

−0.023 3.057+0.024
−0.024

ns 0.9618+0.0042
−0.0041 0.9622+0.0044

−0.0045 0.9626+0.0044
−0.0037

τreio 0.060+0.012
−0.012 0.061+0.013

−0.013 0.063+0.013
−0.013

H0 / [km/(s Mpc)] 67.94+0.46
−0.49 68.06+0.52

−0.54 68.09+0.46
−0.48

σ8 0.8234+0.0085
−0.0090 0.823+0.024

−0.013 0.826+0.010
−0.009

neff −2.3080+0.0034
−0.0035 −2.9+4.3

−22.1 −2.3070+0.0039
−0.0035

ξ – < 0.40 < 0.38
log10(adark /

[
Mpc−1

]
) – n.l. < 6.8

∆χ2 – 0 −3.62
∆Neff – – < 0.23

adarkξ
4/
[
Mpc−1

]
– – < 30

Table 4.1: Preferred regions at the 68% C.L. (or at the 95% C.L. in the case of upper
bounds) for the parameters of the ETHOS n = 4 case, both with Planck + BAO and
Planck + BAO + Lyman-α. With the first data set, the interaction parameter is not
bounded within the prior range. The ∆χ2 is given with respect to ΛCDM with the same
data sets. The last two rows show the results obtained with linear priors on ∆Neff and
adarkξ

4 using the second data set. Entries with “n.l.” means that there is no upper limit
within the prior range, while “–” means that the parameter is not present.

has other effects on the scale and amplitude of the acoustic peaks that depend
on the rate of DR self-interactions and DR-DM interaction (Archidiacono
et al. 2017): thus the bound found in this case is specific to the ETHOS
n = 4 model, and in principle different from what one would obtain in a plain
ΛCDM+Neff fit with only free streaming relativistic relics.

• a roughly hyperbolic boundary, corresponding physically to the limit set by
the CMB on the effect of the DM-DR interaction. In particular, a too large
rate ΓDM−DR implies that DM develops a fast mode (Weinberg 2002; Voruz
et al. 2014) that influences the CMB power spectrum, with a suppression of
the clustering of the baryon-photon fluid (Archidiacono et al. 2017; Cyr-Racine
et al. 2016, 2014).

We obtain no upper bound on log10(adark), since in the limit of small DR density
the DM-DR and DR-DM interaction rates can be arbitrarily high. Thus the allowed
region extends up to our upper prior boundary log10(adark) ≤ 20.
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For the other cosmological parameters, error bars are slightly larger than for the
ΛCDM model with the same data combination, but smaller than for the ΛCDM+Neff

model. This arises from several reasons: our flat prior on ξ gives more weight to
small values of ∆Neff ; we only allow Neff to increase beyond 3.046, while a run with a
flat prior on Neff would return Neff = 2.98± 0.18 (68% C.L.) (Ade et al. 2016a); and
in our model, increasing ∆Neff comes at the price of introducing DM-DR interaction
effects not favoured by the data. In any case, we see that the ETHOS n = 4
model offers no clear opportunities to accommodate the high value of H0 (Riess
et al. 2019) and/or the low value of σ8 hinted by some data sets (Hildebrandt et al.
2018; Abbott et al. 2018; Joudaki et al. 2019).

Lyman-α constraints. With the addition of the Lyman-α likelihood, we obtain
approximately the same bound on ξ < 0.38 (95% C.L.), as the number of additional
relativistic degrees of freedom is already well constrained by CMB data. Instead
the upper limit on the interaction rate shrinks by about ten orders of magnitude,
because DM-DR interactions result in a suppression of the small-scale matter power
spectrum strongly constrained by Lyman-α data. Quantifying this effect is our
main goal. Figure 4.1 already showed that a larger value of adark could potentially
be compensated by a smaller value of ξ leading to the same cut-off scale. Indeed, we
checked explicitly that the edge of the allowed region is a curve of constant adarkξ

4.
This behaviour was expected because the term that accounts for interactions in the
DM Euler equation has a coefficient ΓDM−DR ∝ ρDR ΓDR−DM ∝ adarkξ

4.
This run gives an upper bound log10(adark/Mpc−1) < 6.8 (95% CL) that is

strongly prior-dependent. Indeed, since adark is compatible with zero, upper bounds
on log10(adark) are inevitably influenced by the choice of a lower prior boundary on
this parameter. Moreover, the data are compatible with arbitrarily large values
of adark for arbitrarily small ξ’s, such that the bound would entirely disappear if
we had chosen a logarithmic prior on ξ.

The analysis with flat priors on ξ and log10(adark) is particularly useful for
identifying the physical mechanisms responsible for the various bounds. It allowed
us to check that the data are mostly sensitive to the effect of the density of extra
radiation, proportional to ∆Neff , and of the DM-DR rate ΓDM−DR, parametrised by
adarkξ

4. Therefore, the most informative and robust way to formulate our final results
is to quote bounds on {∆Neff , adarkξ

4}, assuming flat priors on these parameters.
We thus performed another MCMC run with such a choice of priors. The

results are shown in the right panel of Figure 4.3. Our final results for the n = 4
ETHOS model are summarised by the 95% C.L. upper bounds ∆Neff < 0.23 and
adarkξ

4 < 30 Mpc−1. The upper limit of the Bayesian confidence interval for ∆Neff is
slightly stronger than for a ΛCDM+Neff model with extra free streaming relativistic
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relics and Planck+BAO data, ∆Neff < 0.28 (95% C.L., see Ade et al. (2016a)),
because in our case models with ∆Neff > 0 also come with DM-DR interaction
effects that are not favoured by the data.

Knowing the upper bound on adarkξ
4 is also convenient for model building. A

typical particle-physics-motivated model would predict a given value of ξ (related
to the physics of the dark sector and to its interactions with the visible sector).
In such a case one can immediately conclude that the Lyman-α data impose a
maximum value on the scattering rate adark given by 30 ξ−4 Mpc−1.

It is important to check that our results are actually driven by the Lyman-α
data, and not by the restrictions imposed on the small-scale matter power spectrum
by the method implemented in our likelihood, described in Section 4.2.1. For this
purpose, we also performed a run with the Planck+BAO likelihoods combined with
a modified version of the Lyman-α likelihood that returns a constant value if the
power spectrum passes all of the applicability checks, and a zero likelihood otherwise.
Thus this run relies on the Planck+BAO data and on the Lyman-α likelihood prior,
but not on the Lyman-α data. It allows us to derive regions of validity for our
implementation. We call it “Planck+BAO+Lyman-α Prior” and its results are also
shown in the left panel of Figure 4.3. If the edge of the allowed region was similar
in the Lyman-α Prior and Lyman-α Data runs, we would know that our bounds are
driven by the applicability of the method and not by the data. This is not the case,
as we can clearly see when comparing the dark and light blue regions in Figure 4.3.
As such, we conclude that the applicability checks of our implementation impose
no further restriction besides the region that is already excluded by other means.

Furthermore, when adding the Lyman-α likelihood, our error bars on neff , which
is the slope of the Lyman-α spectrum, are greatly reduced. This comes mainly
from our improved bound on adark; when the interaction strength is allowed to
vary over many orders of magnitude, our P (k) is not monotonic, and thus neff

can assume any value, both negative and positive (if the corresponding k value
is, for example, just after the first oscillation in P (k)).

The inclusion of Lyman-α data tightens the error bars on σ8, while the mean
value is not significantly affected. The mean value and error bars of H0 are not
impacted by the addition of Lyman-α data for this model. The bounds for both
parameters are in very close agreement with those obtained for a standard ΛCDM
model with the same data sets.

Finally, the χ2 obtained in the Planck+BAO case is not any better than for
the vanilla ΛCDM model, while the addition of Lyman-α data brings it down by
∆χ2 = −3.6. Considering that the model features two additional parameters, we
conclude that interacting DM-DR models provide a fit of Planck+BAO+Lyman-α
as good as ΛCDM.
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Figure 4.4: Left: 2D posterior distributions for all main parameters for the n = 2 case,
with Planck+BAO (red), Planck+BAO+Lyman-α Data (dark blue), and the Lyman-α
Prior check run explained in the text (light blue), when running with a flat prior on ξ
and logarithmic prior on adark. The smoothing has deliberately been turned off to show
the sharp boundaries of the preferred regions more clearly. Right: Posterior distributions
when using linear priors on ∆Neff and 102adarkξ

4.

4.3.2 ETHOS n = 2 model

The scenario where the comoving scattering rate of DR off DM scales like T 2 can
be realised, e.g., with 4-point contact-only interaction. As for n = 4, we neglect
the subdominant contribution of DR self-interactions.

CMB constraints. The results of our MCMC run with Planck+BAO data for
the n = 2 case are shown in Figure 4.4 and Table 4.2. Once more, the middle
plot in the left panel of Figure 4.4 shows that the data impose two limitations
on the ETHOS parameter: an upper bound ξ < 0.43 at the 95% C.L. and a
hyperbolic-shaped limit on {ξ, adark}.

For the other parameters, the preferred intervals only widen moderately with
respect to the ΛCDM model, excepted for σ8 which is compatible with much smaller
values. The contour plot for {ξ, σ8} shows a degeneracy allowing to reach such
small values for specific values of ξ and a large interaction rate adark > 107. The
degeneracy is captured by the relation σ8 ' 0.823 − 210 ξ4, and stretches down
to σ8 = 0.75 for ξ ' 0.14. It is potentially interesting to explain the low value of
σ8 returned by several data on cosmic shear and cluster counts, but we will not
investigate it in details because this region will be excluded in the next paragraph
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by Lyman-α bounds on the interaction rate. Once this region is ignored, we find
that the ETHOS n = 2 model does not offer opportunities to accommodate larger
H0 or smaller σ8 values than ΛCDM.

Lyman-α constraints. Like for n = 4, the inclusion of Lyman-α data marginally
affects the bound on ξ, but considerably strengthens the upper limit on the
interaction rate, which is given once more by a line of constant adarkξ

4. This
limit is stronger than in the n = 4 case by about two orders of magnitude. We
checked explicitly that the suppression in the matter power spectrum takes place
roughly at the same scale when we change n and keep the same 10−nadarkξ

4. This
is consistent with the fact that the scales constrained by our Lyman-α data crossed
the Hubble scale roughly around z ' 106, and have been suppressed according
to the rate ΓDM−DR(z) evaluated at that time. Equations (4.7) and (4.8) show
that up to constant numbers,

ΓDM−DR(z) ∝ (1 + z)
( 1 + z

1 + zd

)n
adarkξ

4 (4.9)

with zd = 107, implying

ΓDM−DR(106) ∝ 106−nadarkξ
4 . (4.10)

Thus it is normal that the Lyman-α data set provides comparable limits on the
combination (10−nadarkξ

4) for all n’s, and that limits on adarkξ
4 become one hundred

times stronger when n decreases by two.
We find a bound ξ < 40 (95% C.L.) very similar to that in the n = 4 case,

while the bound log10(adark/[Mpc−1]) < 8.4 (95% C.L.) should again be taken
with great care due to its strong dependence on the choice of a linear prior for
ξ and on the lower prior edge for log10(adark). We thus switch to linear priors
on the parameters directly related to the physical effects probed by the data,
and obtain our final results for the ETHOS n = 2 model: ∆Neff < 0.29 and
102adarkξ

4 < 18 Mpc−1 (95% C.L.). The first bound is identical to what is obtained
when fitting Planck+BAO with a ΛCDM+Neff model.

Once again we performed a “Planck+BAO+Lyman-α Prior” run to check that
our bounds do not come from the limitations of the method. In this case, if we
compare the ξ − log(adark) posteriors for the Lyman-α Prior and Lyman-α Data
runs in the left panel of Figure 4.4, we see that for ξ > 0.05 our constraints are
really derived from the data rather than from the range of validity of our method.
This is not true anymore in a very small region with ξ < 0.05, where the two
contours overlap. This is because for these models, the {α, β, γ}-parametrisation is
not accurate. However ξ < 0.05 implies a tiny DR density ∆Neff < 2 · 10−5. This
small region is not very interesting for model building, because such tiny values
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ΛCDM ETHOS n = 2
Parameter Planck+BAO Planck+BAO +Lyman-α

100 ωb 2.219+0.013
−0.014 2.220+0.014

−0.014 2.220+0.014
−0.016

ωcdm 0.1192+0.0011
−0.0010 0.1195+0.0011

−0.0013 0.1194+0.0011
−0.0011

log(1010As) 3.050+0.023
−0.023 3.053+0.025

−0.025 3.051+0.023
−0.024

ns 0.9618+0.0042
−0.0041 0.9621+0.0044

−0.0043 0.9618+0.0039
−0.0043

τreio 0.060+0.012
−0.012 0.061+0.013

−0.013 0.059+0.013
−0.013

H0 / [km/(s Mpc)] 67.94+0.46
−0.49 68.02+0.51

−0.51 67.99+0.51
−0.51

σ8 0.8234+0.0085
−0.0090 0.819+0.021

−0.017 0.8244+0.0088
−0.0095

neff −2.3080+0.0034
−0.0035 −2.9+7.0

−3.5 −2.3080+0.0034
−0.0037

ξ – < 0.43 < 0.40
log10(adark /

[
Mpc−1

]
) – n.l. < 8.4

∆χ2 – 0 −0.12
∆Neff – – < 0.29

102adarkξ
4/
[
Mpc−1

]
– – < 18

Table 4.2: Preferred ranges at the 68% C.L. (or 95% upper bound in some cases)
for all relevant parameters for the ETHOS n = 2 case, both with Planck+BAO and
Planck+BAO+Lyman-α. With the first data set, the interaction parameter is not bounded
within the prior range. The ∆χ2 is given with respect to ΛCDM with the same data sets.
The last two rows show the results obtained with linear priors on ∆Neff and 102adarkξ

4

using the second data set.

are difficult to motivate theoretically (for instance, they may derive from a DR
particle decoupling from thermal equilibrium with standard model particles when
the number of relativistic degrees of freedom is unusually large, g∗ ∼ O(104)). Also,
even if our method was improved in order to deal correctly with this corner of
the parameter space, there would be no reason for the 95% C.L. upper bound on
{ξ, adark} to be different from 102adarkξ

4 = 18, since the shape of this limit can
be inferred from simple analytic arguments. Thus we can safely extrapolate it
below ξ = 0.05. Finally, we should note that this minor issue is irrelevant when
running with a flat prior on ∆Neff , since with such a prior it affects a completely
negligible fraction of the preferred region volume.

Like for the n = 4 case, we obtain a significantly tighter bound on neff , while
the mean value and error bars of H0 are not impacted by the addition of Lyman-α
data. The preferred intervals for H0 and σ8 are very close to those of the ΛCDM
model. For both data combinations, the difference obtained in the ∆χ2 with
respect to the base ΛCDM are negligible, thus we once again find no preference
for the interacting DM-DR models.
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Figure 4.5: Left: Two-dimensional posterior distributions for all main parameters for
the n = 0 case, with Planck+BAO (red), Planck+BAO+Lyman-α Data (dark blue), and
the Lyman-α Prior check run explained in the text (light blue), when running with a flat
prior on ξ and logarithmic prior on adark. The smoothing has deliberately been turned
off to show the sharp boundaries of the preferred regions more clearly. Right: Posterior
distributions when using linear priors on ∆Nfluid and 104adarkξ

4.

4.3.3 ETHOS n = 0 model

The n = 0 case is motivated by several particle physics set-ups in which the DM-DR
momentum transfer rate with respect to proper time scales like T 2, meaning that the
ETHOS rate ΓDR−DM is constant. This occurs for instance in the NADM scenario,
in which DM particles are charged under a dark non-Abelian symmetry whose dark
gluons play the role of DR (see, e.g., Buen-Abad et al. (2015); Lesgourgues et al.
(2016); Buen-Abad et al. (2018); Krall et al. (2017); Pan et al. (2018)). Since these
models tend to predict strong self-interactions in the DR sector, in this Subsection we
always assume that DR is a relativistic perfect fluid described by one continuity and
one Euler equation (unlike for n = 4 and n = 2). To stress this point, we will denote
the DR density (in units of effective neutrino number) ∆Nfluid instead of ∆Neff .

For the n = 0 model, we can use different parametrisations and priors corre-
sponding to different approaches discussed in the previous literature – either in the
ETHOS general framework, or for specific models like the NADM one. We first
look at the standard ETHOS parametrisation, with the same choice of priors as in
previous cases. Then, to compare our results with the ones from Lesgourgues et al.
(2016); Buen-Abad et al. (2018), we will switch to linear priors on the interaction
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rate, combined with either linear or logarithmic priors on the parameter ∆Nfluid.
This will also allow us to see the influence of the choice of priors on our results.

CMB constraints with ETHOS n = 0 parametrisation. Our results for this case,
assuming a flat prior on ξ ≥ 0 and on −3 ≤ log10(adark/Mpc−1) ≤ 20, are shown
in Figure 4.5 and Table 4.3. In this case, the general behaviour is similar to the
previous cases: we obtain an upper bound on ξ and a hyperbolic-shaped upper
limit on {ξ, adark}. CMB bounds are much stronger in this model than in previous
cases, which is consistent with the fact that the rate ΓDM−DR(z) evaluated near
photon decoupling, when z ∼ O(103), is much larger for the same value of adarkξ

4

when n decreases (as shown by Equation (4.9)). We shall see that for n = 0, CMB
bounds dominate over Lyman-α bounds at least for some values of ξ. Thus it is
worth quantifying these bounds precisely. In the space {ξ, log10(adark)} and within
our prior range, the 95% C.L. preferred region is defined in good approximation by:

• either ξ < 0.13,

• or ξ < 0.38 and 104adarkξ
4 < 14 Mpc−1.

This means that the CMB excludes all ETHOS n = 0 models with either a too large
DR density (ξ > 0.38) or a too large ΓDM−DR rate (104adarkξ

4 > 14 Mpc−1), but
looses sensitivity to these parameters when the DR density is very small (ξ < 0.13).

Another interesting aspect of these results is that the ETHOS n = 0 model
allows to reach larger values of H0 or lower values of σ8 than the ΛCDM model. By
looking at the 2D contour plots in the left panel of Figure 4.5, we see that:

• high values of H0 require a large DR density, ξ > 0.4 (i.e., ∆Nfluid > 0.1):
indeed this is a consequence of the well known H0 −∆Nfluid degeneracy, that
works particularly well in this case because DR is self-interacting, and thus less
constrained by CMB observables than extra free streaming relics (Lesgourgues
et al. 2016). Our 95% C.L. preferred region reaches values up to H0 '
70 km s−1Mpc−1 for ξ ' 0.38 (∆Nfluid ' 0.08). With our choice of priors,
this part of the allowed parameter space has little weight, and the 68% C.L.
preferred interval for H0 is still nearly the same as for ΛCDM. Later in this
Subsection, runs with different priors will give more weight to this degeneracy;

• a close inspection of the {ξ, σ8} contour plot of Figure 4.5 shows that in this
plane, the marginalised posterior is bimodal, i.e., made of the superposition
of two separate categories of models. The first one has σ8 = 0.823 ± 0.017
(95% C.L.) for any allowed value of the DR density parameter (in the range
0 < ξ < 0.38). The second one corresponds to a strongly degenerate direction
in {ξ, σ8}, captured by the relation σ8 ' 0.823− 210 ξ4 (like for the ETHOS
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ΛCDM ETHOS n = 0
Parameter Planck+BAO Planck+BAO +Lyman-α

100 ωb 2.219+0.013
−0.014 2.220+0.015

−0.015 2.221+0.015
−0.015

ωcdm 0.1192+0.0011
−0.0010 0.1195+0.0011

−0.0014 0.1192+0.001
−0.001

log(1010As) 3.050+0.023
−0.023 3.053+0.025

−0.024 3.054+0.025
−0.024

ns 0.9618+0.0042
−0.0041 0.9621+0.0042

−0.0045 0.9624+0.0044
−0.0041

τreio 0.060+0.012
−0.012 0.061+0.013

−0.012 0.061+0.013
−0.014

H0 / [km/(s Mpc)] 67.94+0.46
−0.49 68.04+0.50

−0.60 68.03+0.47
−0.49

σ8 0.8234+0.0085
−0.0090 0.815+0.044

−0.009 0.8237+0.0097
−0.0093

neff −2.308+0.0034
−0.0035 −3.4+9.5

−4.2 −2.3100+0.0071
−0.0079

ξ – < 0.38 < 0.33
log10(adark /

[
Mpc−1

]
) – n.l. < 3.3

∆χ2 – 0 −0.70
∆Nfluid – – < 0.47

104adarkξ
4/
[
Mpc−1

]
– – < 14

Table 4.3: 68% C.L. constraints (or 95% upper bound in some cases) for all relevant
parameters for the ETHOS n = 0 case, both with Planck+BAO and Planck+BAO+Lyman-
α. With the first data set, the interaction parameter is not bounded within the prior
range. The ∆χ2 is given with respect to ΛCDM with the same data sets. The last two
rows show the results obtained with linear priors on ∆Nfluid and 104adarkξ

4 using the
second data set.

n = 2 model), and requires a large interaction rate adark ≥ 1. It stretches
down to σ8 = 0.68 for ξ ' 0.16. This part of the parameter space will also
play an enhanced role in some of the runs that we will discuss later with
different physical motivations and priors.

Lyman-α constraints with ETHOS n = 0 parametrisation. At first sight, the
discussion of the Lyman-α constraints seems very similar to that for n = 2 or 4. We
expect that Lyman-α data will slightly tighten the bound on ξ and put a strong limit
on 104adarkξ

4 < O(10). This is indeed what happens in our run with a linear prior
on ξ and a logarithmic prior on adark: we get ξ < 0.33 and 104adarkξ

4 < 14 Mpc−1

(95% C.L.). Doing a second run with flat priors on (∆Nfluid, 104adarkξ
4), we find

∆Nfluid < 0.47 and a confirmation of 104adarkξ
4 < 14 Mpc−1 (95% C.L.).

However, a run with the “Planck+BAO+Lyman-α Prior” combination shows
that the previous results must be taken with great care. Looking at the middle
plot of the left panel of Figure 4.5, we see that:

• the different checks performed inside our Lyman-α likelihood induce a cut at
ξ < 0.33. Thus the previous bound on ξ did not come from the Lyman-α data
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but from our methodology, i.e., from the fact that ETHOS n = 0 models with
ξ > 0.33 do not yield a power spectrum that can be accurately represented
by the {α, β, γ}-parametrisation. Thus we should not trust any bound on ξ
apart from the one obtained with Planck+BAO alone, namely ξ < 0.38;

• for ξ > 0.13, the upper bound on adarkξ
4 is nearly the same in the three

ETHOS n = 0 runs (without Lyman-α likelihood, with Lyman-α Prior and
with Lyman-α Data), suggesting that CMB data alone provide the strongest
bounds in this case: 104adarkξ

4 < 14 Mpc−1 (95% C.L.). Given the impact of
this model on CMB and LSS observables, already discussed in the previous
works by Lesgourgues et al. (2016); Buen-Abad et al. (2018), this is not
a surprise: for parameter values leading to significant effects in the CMB
temperature and polarisation spectrum, this model only generates a very
smooth and progressive suppression in the small-scale matter power spectrum,
much more difficult to constrain with Lyman-α data than the sharp exponential
cut-off observed for n = 2, 4;

• for ξ < 0.02, the Lyman-α Prior run sets no upper limit on the interaction
rate, while the Lyman-α Data run returns 104adarkξ

4 < 14 (95% C.L.): thus
we can trust this bound which really comes from the data;

• there is a problematic range 0.02 < ξ < 0.13 in which the Lyman-α Prior
run also sets an upper limit 104adarkξ

4 < 14 Mpc−1. The reason is that for
n = 0 and ξ > 0.02, the {α, β, γ} parametric function cannot provide an
accurate fit of the suppression in the matter power spectrum. This indicates
that for this class of models, the bounds are driven by the limitations of the
method, in particular by the flexibility of the parametric fitting function, and
not by the data. We could search for a better method, but we believe that
this is not well motivated, for two reasons. First, 0.02 < ξ < 0.13 means
6 · 10−7 < ∆Nfluid < 10−3. The weight of this region would be negligible if we
would run with a flat prior on ∆Nfluid, so we may simply ignore it. Second,
the analytic argument suggesting that the Lyman-α bound on the DM-DR
interaction takes the form of an upper limit on adarkξ

4 worked very well for
n = 2 and n = 4, and still works very well in the present case for ξ < 0.02
and ξ > 0.13. We have no reason to believe that this would not be the case in
the intermediate range. Thus it is reasonable to expect that a better method
would return 104adarkξ

4 < 14 (95% C.L.) throughout the range of allowed
values 0 < ξ < 0.38.
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In summary, we should retain from this analysis that for ξ > 0.13, Lyman-α
data, at least with our approach, cannot improve over Planck+BAO bounds, which
give 104adarkξ

4 < 14 Mpc−1 (95% C.L.). For 0 < ξ < 0.02, the Lyman-α data give
the same bound. In the intermediate range, a different approach would be needed,
but there are some hints that the Lyman-α data would give again the same bound.

CMB constraints with a particle-physics-motivated flat prior on ∆Nfluid ≥ 0.07.
Several works have presented particle physics models that can be effectively described
by the ETHOS n = 0 parametrisation, with weakly interacting DM-DR, and strongly
self-interacting DR. In the NADM model by Buen-Abad et al. (2015), the DR is
made up of the dark gluons of a non-Abelian gauge symmetry SU(N). Its density
is parametrised by ∆Nfluid = 0.07(N2 − 1) with N ≥ 2. Lesgourgues et al. (2016)
presents a second set-up leading to approximately the same cosmological signature,
in which the DR has two components: the dark photon of a dark U(1) gauge
symmetry, plus Nf massless fermions with a dark charge q. For q ≥ 1/3 the DR
density is parametrised by ∆Nfluid = 0.07(1 + 7

4Nf), but for smaller charges one
gets ∆Nfluid = 0.07. These models motivate dedicated runs with a flat prior on
∆Nfluid ≥ 0.07. To compare our results with previous works, we will also adopt a flat
prior on the DM-DR momentum exchange rate evaluated today, Γ0, related to the
ETHOS parameters through a0Γ0 = ΓDM−DR(z = 0) = 4

3ωDR adark = 4
3ωγ adarkξ

4.
With such a correspondence, we checked that we could accurately reproduce Figures
3-6 from Buen-Abad et al. (2018): thus our version of CLASS modified for the
ETHOS parametrisation does agree perfectly with the version of CLASS modified
specifically for the NADM model by Buen-Abad et al. (2018).

The prior ∆Nfluid ≥ 0.07 translates in the ETHOS parametrisation to ξ ≥ 0.367.
Looking at our previous results, we see that this clearly corresponds to the region
in which the CMB bounds are at least as strong as the Lyman-α bounds: thus
for this case it is sufficient to run with Planck+BAO data only. Note that with
such a prior, we avoid the bimodality of the posterior found in the results of the
previous run (corresponding to a degeneracy between σ8 and ξ for ξ ≤ 0.16). Thus
the theoretical prior ∆Nfluid ≥ 0.07 offers a technical advantage: it limits the
exploration of the model parameter space to a region where the posterior is smooth
and unimodal, leading to more robust MCMC results.

Our findings, presented in the left panel of Figure 4.6 and middle column of
Table 4.4, are consistent with those from Lesgourgues et al. (2016); Krall et al.
(2017) when using Planck 2015+BAO 2011 data. Our bounds are however slightly
stronger and more up-to-date, because we include Planck lensing data and more
recent BAO data. We do not compare directly our results with those from Buen-
Abad et al. (2018), as the latter always included direct H0 measurements, as well
as Planck data on Sunyaev-Zel’dovich cluster counts.
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Figure 4.6: Left: 2D posterior distributions for all main parameters using Planck+BAO,
for the NADM case (red) and for ΛCDM (blue), with the lower prior ∆Nfluid > 0.07.
Right: Same as left but with the log prior −5 ≤ log10(∆Nfluid) ≤ 0.

We find 0.07 ≤ ∆Nfluid ≤ 0.59 (95% C.L.), corresponding to 0.367 < ξ < 0.626
with a non-flat prior on ξ, and Γ0 < 1.2 · 10−7Mpc−1 (95% C.L.), corresponding to
104adarkξ

4 < 36 (95% C.L.). We see that the lower prior edge on ∆Nfluid and the
linear prior on both ∆Nfluid and Γ0 have pushed the MCMC to explore regions that
were not reached with the previous ETHOS n = 0 prior: the previous preferred
region only stretched up to twice smaller values of ξ and 104adarkξ

4. However, the
current run is not forced to explore a region in tension with the data, since the
best-fit χ2 only increases marginally (by 1.9) with respect to the best-fit ΛCDM χ2.

Even if this model is not preferred by Planck+BAO data, it remains very
interesting as a possible way to reconcile CMB+BAO data with high values of H0

and low values of σ8 (Lesgourgues et al. 2016; Buen-Abad et al. 2018). Indeed, we
find that this model can accommodate a large H0 = 69.6+0.8

−1.3 (68% C.L.) reducing the
tension with the most recent SH0ES data (Riess et al. 2019) from 4.1 σ to 2.7 σ, and
a low σ8 = 0.813+0.015

−0.012 (68% C.L.). It also allows for smaller values of the parameter
combination S8 ≡ σ8

√
Ωm/0.3 = 0.813+0.015

−0.012 (68% C.L.)3 than the ΛCDM model
which gives S8 = 0.8235+0.0088

−0.0091 (68% C.L.) for the same data set. Thus it increases
the compatibility with the combined KiDS+VIKING-450+DES-Y1 measurement

3For this model, we find exactly the same bounds on σ8 and S8, because Ωm remains very close
to 0.3.
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Parameter ΛCDM Γ0 > 0, ∆Nfluid > 0.07 Γ0 > 0, −5 ≤ log(∆Nfluid) ≤ 0

100 ωb 2.219+0.013
−0.014 2.232+0.017

−0.019 2.219+0.014
−0.016

ωcdm 0.1192+0.0011
−0.0010 0.1249+0.0023

−0.0037 0.1192+0.0011
−0.0011

log(1010As) 3.050+0.023
−0.023 3.069+0.026

−0.025 3.054+0.025
−0.026

ns 0.9618+0.0042
−0.0041 0.9653+0.0042

−0.0045 0.9617+0.0042
−0.0045

τreio 0.060+0.012
−0.012 0.0696+0.013

−0.013 0.06181+0.013
−0.014

H0 / [km/(s Mpc)] 67.94+0.46
−0.49 69.55+0.84

−1.3 67.94+0.48
−0.50

σ8 0.8234+0.0085
−0.0090 0.813+0.015

−0.012 0.806+0.029
−0.011

neff −2.308+0.0034
−0.0035 −2.332+0.018

−0.011 −3.261+0.96
−0.36

Γ0 /
[
Mpc−1

]
– < 1.2 · 10−7 < 1.5 · 10−5

∆Nfluid – < 0.59 –
log10(∆Nfluid) – – < −2.66

∆χ2 – 1.90 2.34

Table 4.4: 68% C.L. constraints (or 95% upper bound in some cases) for all relevant
parameters for the NADM case with two different prior choices, and using Planck+BAO.
The ∆χ2 is given with respect to ΛCDM with the same data sets.

by Joudaki et al. (2019) from 2.3 σ to 1.8 σ level4. The physical explanation is
that this model is able to exploit the H0 −∆Nfluid degeneracy thanks to its self-
interacting DR component, while reducing at the same time the small-scale matter
power spectrum amplitude thanks to the effect of DR dragging DM perturbations.

These results are consistent with those based on the previous ETHOS n = 0
parametrisation (with flat priors on ξ and log10(adark) and the same data set),
although the comparison is not straightforward since the new run explores a
different region of the parameter space. The previous results did show the trend to
accommodate a larger H0 when ∆Nfluid increases. This is even clearer in this run
that reaches higher values of ∆Nfluid. The previous results also showed that when
the interaction rate increases from log10(adark) ' −2 to log10(adark) ' 0, smaller
values of σ8 can be reached. This is confirmed in the new run by the clear correlation
between the interaction rate and σ8 in the left panel of Figure 4.6.

The comparison between the two runs alerts us on the fact that the ability of
this model to reconcile data sets depends on the priors: the model would appear
less effective in this respect with a lower prior edge ∆Nfluid ≥ 0 (or with logarithmic
priors on ∆Nfluid or Γ0). This prior-dependence of the conclusions applies anyway
to most of the models attempting to resolve the tensions, and would only go away
if we included the anomalous H0 and σ8 data in the analysis: then, even with

4Measurements of S8 from weak lensing surveys are still very debated and potentially affected
by poorly known systematics; for instance, the independent analysis by Fluri et al. (2019) gives a
result compatible with our ΛCDM S8 bounds at the 1.2 σ level.
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different priors, some non-zero values of ∆Nfluid and Γ0 would be preferred with
a statistical significance of a few sigmas.

CMB constraints with a logarithmic prior on ∆Nfluid. Buen-Abad et al. (2018)
explored the same model with a flat prior on −5 ≤ log10(∆Nfluid) ≤ 0 and on
Γ0 ≥ 0. The motivation for this choice was to provide complementary results to the
previous case, exploring very small values of the DR density which can always be
motivated by specific particle physics constructions. We now update these results
with our Planck+BAO data set, still not using Lyman-α data here, as we have seen
that our method cannot provide accurate constraints for these models.

Our results are presented in the right panel of Figure 4.6 and right column
of Table 4.4. We find −5 ≤ log10 ∆Nfluid ≤ −2.66 (95% C.L.), corresponding to
0.04 < ξ < 0.15 with a non-flat prior on ξ, and Γ0 < 1.5 · 10−5Mpc−1 (95% C.L.),
corresponding to adarkξ

4 < 0.45 (95% C.L.). With this prior choice, we no longer
allow for larger H0, which is in agreement with our ETHOS n = 0 results. This
can be understood in the following way: the flat prior on ξ (and indeed the
logarithmic prior on ∆Nfluid) gives less weight to large amounts of DR, and thus
the possibility to relax the H0 tension goes away. However, we can accommodate
a lower σ8, thanks to a degeneracy between σ8 and log10 ∆Nfluid that is clearly
visible in the right panel of Figure 4.6. This degeneracy is equivalent to the σ8 − ξ
degeneracy previously observed in the ETHOS n = 0 results, and could in principle
reconcile the Planck+BAO data with values as low as σ8 ∼ 0.7. The model predicts
S8 = 0.8058+0.0088

−0.0085 (68% C.L.), which is compatible with KiDS+VIKING-450+DES-
Y1 (Joudaki et al. 2019) at 1.7 σ level.

4.4 Towards a more flexible parametrisation
All the results discussed in this Chapter have been obtained under the assumption
that the whole of DM is interacting. Therefore, it is paramount to extend our
analyses to scenarios in which only a fraction of DM is non-standard.

In Chapter 2 we have already stressed that our {α, β, γ}-parametrisation is
capable to capture models where the DM sector is made by a mixture of standard
CDM and thermal WDM (Section 2.3.3), as well as being easy to be further
generalised by adding an extra free parameter (Section 2.3.5). Indeed, the goal of
this Section is to briefly outline a further generalisation of our approach, which
will enable one to test in full generality any mixture of CDM and nCDM. In
order to do so, we introduce the following new analytic fitting formula (to be
compared with Equation 2.4):

T (k) = (1− δ) · [1 + (αk)β]−1.5·β + δ, (4.11)
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Figure 4.7: Here we show a set of squared transfer functions, each of them corresponding
to a different {α, β, δ}-combination. The red solid curves coincide with {α, β, γ}-triplets
re-mapped to the new parametrisation, whereas the dashed blue lines have been chosen
in order to fully exploit the flexibility given by the introduction of δ, i.e., to investigate in
full generality mixtures of CDM and nCDM.

where the slope of the power suppression is primarily governed by the value of β
(i.e., given a value for β, γ is now fixed). The motivation for this choice is threefold:
firstly, the quasi-degeneracy between α and γ, discussed in Appendix A, allows to
trade changes in the latter parameter for changes in the former one; secondly, as it
has been shown in Chapter 2 (Section 2.6), current structure formation data do
not have enough resolution to put tight constraints on the very large-k region of
the matter power spectrum (see Figure 2.12, where γ is practically unconstrained);
lastly, models where the whole of the DM is exotic imply relatively sharp power
suppressions, allowed by Lyman-α data only if the nCDM candidate is so massive
(or so “weakly” interacting) to be almost indistinguishable from pure CDM. On the
other hand, scenarios where just a DM fraction is non-standard induce shallower
transfer functions, featuring a large-k plateau corresponding to the remaining CDM
component once the small-scale suppression by the non-standard component has
died off. For this reason, the more flexible formula (Equation 4.11) is characterised
by a new free parameter δ, directly responsible for the height of the plateau, i.e. for
the relative abundances of the different DM components.
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Notice that these arguments apply to any of the nCDM models that we analysed
previously: see, e.g., Figure 3.3 for the Fuzzy DM case, from which the dependence
of the bound on the DM particle mass with respect to its abundance is manifest.
In fact, we are currently working on implementing another MontePython likelihood,
devised along the lines of Section 4.2.1, but based on the {α, β, δ}-parametrisation.
The goal is to use it to systematically scan the whole parameter space of both DM-
DR and DM-baryon interaction scenarios, testing models with arbitrary fractions
of interacting DM.

To visually illustrate the versatility of the new formula, in Figure 4.7 we show a
set of squared transfer functions, each of them corresponding to a different {α, β, δ}-
combination. The red solid curves coincide with {α, β, γ}-triplets re-mapped to
the new parametrisation, whereas the dashed blue lines have been chosen in order
to fully exploit the flexibility given by the introduction of δ. Indeed, another nice
feature of the newer framework is that its flexibility allowed us to re-map in terms
of the new parameters the vast majority of the simulations that we had already
performed (and used in this Chapter and in Chapter 2).



4.4. Towards a more flexible parametrisation 128



This Chapter is mainly based on:
R. Murgia, G. Scelfo, M. Viel, A. Raccanelli
Lyman-α forest constraints on Primordial Black Holes as Dark Matter
PRL 123, 7, 071102 (2019); arXiv:1903.10509

5
Primordial Black Holes as Dark Matter

5.1 Overview

The standard CDM scenario is characterised by two assumptions: the DM is made
by heavy (& GeV), weakly interacting particles; and cosmic structures are formed
from initial inhomogeneities through a hierarchical bottom-up process. Both these
assumptions may be questioned and tested against astrophysical and cosmological
observations: in the previous Chapters we focused on the possibility that the
DM sector comprises some non-cold particles and/or is characterised by some
non-standard interaction; in this Chapter we will instead investigate the intriguing
possibility that (part of) the DM might be constituted by a population of Primordial
Black Holes (PBHs) formed in the very early universe.

PBHs were first theorised decades ago (Hawking 1971) from the collapse of
overdense regions originated by large curvature perturbations in the early universe.
Many proposals have been made so far for the specific formation mechanism, such
as collapsing large fluctuations produced during inflation (Ivanov et al. 1994; García-
Bellido et al. 1996; Ivanov 1998), collapsing cosmic string loops (Hawking 1989;
Polnarev & Zembowicz 1991; Wichoski et al. 1998), domain walls (Berezin et al.
1983; Ipser & Sikivie 1984), bubble collisions (Crawford & Schramm 1982; La &
Steinhardt 1989), or collapse of exotic DM clumps (Shandera et al. 2018).

After the first GW detection revealed merging Black Hole (BH) binaries of masses
O(10 M�) (Abbott et al. 2016a,b), the interest toward PBHs as DM candidates
has been revived (Bird et al. 2016). Since then, several proposals to determine the
nature of the merging BH progenitors have been made, involving methods such as
GW×LSS cross-correlations (see, e.g., Raccanelli et al. (2016); Scelfo et al. (2018)),

129
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BH binary eccentricities (Cholis et al. 2016), BH mass function studies (Kovetz
et al. 2017; Kovetz 2017), and lensing of fast radio bursts (Muñoz et al. 2016).

Several constraints on the possibility that PBHs could compose a DM frac-
tion have been determined through different astrophysical observables, such as
gravitational lensing (Barnacka et al. 2012; Katz et al. 2018; Griest et al. 2014;
Niikura et al. 2017; Tisserand et al. 2007; Calchi Novati et al. 2013; Alcock et al.
2001; Mediavilla et al. 2009; Wilkinson et al. 2001; Zumalacarregui & Seljak 2018),
dynamical (Graham et al. 2015; Capela et al. 2013; Quinn et al. 2009; Brandt
2016; Ali-Haïmoud et al. 2017; Magee et al. 2018), and accretion effects (Gaggero
et al. 2017; Ricotti et al. 2008; Ali-Haïmoud & Kamionkowski 2017; Poulin et al.
2017b; Bernal et al. 2017), exploring all possible PBH mass ranges. Nevertheless,
varying the numerous assumptions involved might significantly alter these limits
(see, e.g., Aloni et al. (2017); Bellomo et al. (2018); Nakama et al. (2017)). Therefore,
the investigation towards PBHs as DM candidates is still fully open. In particular,
two mass “windows” are currently of large interest: one around O(10−10M�), and
another around O(10M�); see Sasaki et al. (2018); Carr & Silk (2018); Kashlinsky
et al. (2019) for details on the state-of-the-art development of the field.

Another suitable and mostly unexplored method for constraining the mass and
abundance of PBHs is offered by the Lyman-α forest. As we extensively discussed
in the previous Chapters, such observable represents a very powerful tool for tracing
the DM distribution at (sub-)galactic scales. Lyman-α forest data were used almost
two decades ago to set an upper limit of few 104M� on PBH masses, in the simple
case in which all DM is made by PBHs with the same mass (Afshordi et al. 2003).
In this Chapter, based on Murgia et al. (2019), we update and improve such limit,
by using the highest-resolution Lyman-α forest data set up-to-date (Viel et al.
2013), and a new set of high-resolution hydrodynamic simulations that allows a
more precise modelling of the full 1D flux power. Furthermore, we generalise our
results to different PBH fractions with respect to the total DM amount, and to
non-monochromatic mass distributions.

This Chapter is organised as follows: in Section 5.2 we discuss the impact on
the linear matter power spectrum due to the existence of PBHs; in Section 5.3 we
extend the discussion to non-monochromatic PBH mass distributions; in Section 5.4
we present the data set and the methods used for our analyses; in Section 5.5
we report and discuss our results.
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5.2 Impact on the linear matter power spectrum
Stellar-mass PBHs would cause observable effects on the matter power spectrum;
due to discreetness, a small-scale plateau in the linear matter power spectrum
is induced by a Poisson noise contribution (Meszaros 1975; Afshordi et al. 2003;
Carr & Silk 2018; Gong & Kitajima 2017).

Let us firstly consider the simple case where PBHs are characterised by a
Monochromatic Mass Distribution (MMD), i.e., they all have the same mass MPBH.
In this scenario, PBHs are parametrised only by their mass and abundance, so
that the fraction parameter fPBH ≡ ΩPBH/ΩDM = 1 in the case where the whole
of the DM is made of PBHs.

Assuming that PBHs are randomly distributed, their number follows a Poisson
distribution, and each wavenumber k can be associated to an overdensity δPBH(k),
due to Poisson noise. The PBH contribution to the power spectrum is thus defined as

PPBH(k) = 〈|δPBH(k)|2〉 = 1
nPBH

, (5.1)

where nPBH is the comoving PBH number density, i.e.

nPBH = ΩDMρcrfPBH

MPBH
, (5.2)

with ρcr being the critical density of the universe. Since nPBH is a k-independent
quantity, PPBH is scale-invariant. In other words, as anticipated above, the
existence of PBHs induces a small-scale plateau departing from the standard
ΛCDM prediction.

A crucial concept pointed out by Afshordi et al. (2003); Gong & Kitajima (2017)
is that the PBH overdensity δPBH can be interpreted as an isocurvature perturbation
(see also Gong & Kitajima (2018) for the case of a Lognormal spatial distribution
of PBHs). Hence, the CDM power spectrum can be written as:

PCDM(k, z) = D2(z)
(
T 2

ad(k)Pad + T 2
iso(k)Piso

)
, (5.3)

where D(z) is the growth factor, Piso is the isocurvature power spectrum, and Pad ∝
Ask

ns is the primordial adiabatic power spectrum. Tad and Tiso are the adiabatic
and isocurvature transfer functions, respectively (see, e.g., Bardeen et al. (1985) for
their analytic expressions). The PBH linear power spectrum is thus defined by:

Piso = f 2
PBHPPBH = 2π2

k3 Aiso

(
k

k∗

)niso−1

, (5.4)

where we set the pivot scale k∗ = 0.05/Mpc, and the primordial isocurvature tilt
niso = 4 in order to ensure the scale-invariance of the power spectrum. Given that the
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Figure 5.1: Relative difference, at redshift z = 5, between ΛCDM and ΛPBH scenarios
for the linear matter (dashed), non-linear matter (dotted) and 1D flux (solid) power
spectra. Blue/red colours correspond to MPBH = {102, 103} M�, respectively, for a
monochromatic scenario with fPBH = 1. The grey shaded area refers to the scales covered
by Lyman-α forest data.

adiabatic power spectrum evolves as k−3 at large k’s, the isocurvature contribution is
expected to become important only at the scales probed by the Lyman-α forest. The
parameter Aiso sets the amplitude of the isocurvature modes, depending on the PBH
mass of the considered model. Indeed, by combining the equations reported in this
Section, we can eventually express the isocurvature-to-adiabatic amplitude ratio as:

fiso =
√
Aiso

As
=
√
k3
∗f

2
PBH

2π2nPBH

1
As

=
√
k3
∗MPBHfPBH

2π2ΩCDMρcr

1
As

, (5.5)

where the last equality holds only for MMDs. In this case it is immediate to see
a degeneracy between fPBH and MPBH: different combinations of PBH mass and
abundance correspond to the same isocurvature-to-adiabatic amplitude ratio if
the quantity fPBHMPBH is the same.

In our framework, the effect on the linear matter power spectrum due to the
presence of isocurvature modes consists of a power enhancement with respect
to the standard ΛCDM spectrum, in the form of a small-scale plateau. As a
straightforward consequence of Equation (5.1), the larger is the PBH mass, the
stronger is the small-scale power enhancement.

In Figure 5.1 we provide the relative differences with respect to a pure ΛCDM
scenario for the 3D linear and non-linear matter power spectra, at redshift z = 5,
for ΛPBH models with MPBH = {102, 103}M�, assuming fPBH = 1. We also show
the 1D flux power spectra, which are the Lyman-α forest observables, associated to
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the same ΛPBH models. The grey shaded area refers to the scales covered by our
Lyman-α data set, obtained from MIKE/HIRES spectrographs (see Section 5.4 for
details). The non-linear power spectra have been extracted from the snapshots of
cosmological simulations, thus they include both the linear contribution (encoded
in the initial conditions) and, on top of that, the effects of the non-linear evolution
computed by the numerical simulation itself. The PBH contribution is thereby
included in the initial conditions, whereas during the non-linear evolution both
the isocurvature and adiabatic DM modes are treated as cold and collisionless (see
Section 5.4). It can be easily seen how non-linearities in the 3D matter power
spectrum wash out the differences induced by the presence of PBHs. Conversely, as
we already stressed in the previous Chapters, the 1D flux spectra are a much more
effective observable to probe the small-scale power, being a projection of the 3D ones.

5.3 Extended Mass Distributions
The PBH formation is, in the most standard case, a consequence of large perturba-
tions in the primordial power spectrum; while the exact details of the peak required
to form PBH and how this is linked to the real-space overdensities are still unclear,
it seems not unlikely that the most realistic scenario involves the presence of a
PBH population with an extended mass function. Moreover, a non-monochromatic
mass distribution would be created by different merger and accretion history of
each PBH. Focusing on EMDs is also intriguing due to the possibility that PBHs in
the high-mass tail of the distribution may account for the seeds of supermassive
BHs (Bernal et al. 2018; Carr & Silk 2018). A general method to convert MMD
constraints to limits on Extended Mass Distributions (EMDs) has been developed
by Carr et al. (2017); Bellomo et al. (2018).

The extension to EMDs of the observable considered for our analyses arises
naturally from the second equality in Equation (5.5), by directly considering
the PBH number density corresponding to a given EMD. Let us then consider
EMDs in the form:

dnPBH

d lnMPBH
= fPBHρDM

dΦPBH

dMPBH
, (5.6)

where the function dΦPBH/dMPBH describes the shape of the EMD, and ρDM =
ΩDMρcr. Given a certain EMD, one can define the so-called Equivalent Mass Meq,
which is the mass of a MMD providing the same observational effect (i.e., in our
case, the same Aiso ∝ f 2

PBH/nPBH) (Bellomo et al. 2018).
Therefore, the conversion from MMD(Meq) to EMD(MPBH) is given by

f 2
PBH

ΩDMρcrfPBH

Meq

−1

= f 2
PBH
nPBH

= f 2
PBH

∫ dnPBH

dMPBH
dMPBH

−1

(5.7)
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where we assume that the PBH abundances are the same for both the MMD
and EMD cases. We finally have:

Meq =
∫ 1

MPBH

dΦ
dMPBH

dMPBH

−1

. (5.8)

Let us now estimate Meq for two popular EMDs: Lognormal and Powerlaw.
The Lognormal EMD (Dolgov & Silk 1993) is defined by

dΦPBH

dMPBH
=

exp
{
− ln2(MPBH/µ)

2σ2

}
√

2πσMPBH
, (5.9)

where σ and µ are the standard deviation and the mean of the PBHmass, respectively.
Such function is representative of a wide family of EMDs, since it describes well
the scenario of PBHs forming from a smooth symmetric peak in the inflationary
power spectrum (Green 2016; Kannike et al. 2017).

The Powerlaw EMD, corresponding to PBHs formed from collapsing cosmic
strings or scale-invariant density fluctuations (Carr 1975), is given by

dΦPBH

dMPBH
= NPL

M1−γ̃
PBH

Θ(MPBH −Mmin)Θ(Mmax −MPBH) , (5.10)

characterised by an exponent γ̃ ∈ (−1,+1), a mass interval {Mmin,Mmax}, and a
normalisation factor NPL; Θ is the Heaviside step function.

5.4 Data set and methods
In order to extract limits on the properties of PBHs as DM candidates from
the Lyman-α forest, we adapted the method proposed in Murgia et al. (2018)
and discussed in Chapter 2 in the context of suppressed linear matter power
spectra. To do so, we have built a new grid of hydrodynamic simulations in terms
of the properties of PBHs, corresponding to initial linear matter power spectra
featuring a small-scale plateau. Beside that, our analyses rely on a pre-computed
multidimensional grid of hydrodynamic simulations, associated to several values of
the astrophysical and cosmological parameters affecting the Lyman-α flux power
spectrum, sampling all the viable volume of the corresponding parameter space.
The simulations have been performed with GADGET-3, a modified version of the
publicly available numerical code GADGET-2 (Springel et al. 2001b; Springel 2005).
The initial conditions have been produced with the numerical code 2LPTic (Crocce
et al. 2006), at redshift z = 199, with input linear matter power spectra for the
ΛPBH models obtained by turning on the isocurvature mode in the numerical
Boltzmann solver CLASS (Blas et al. 2011).
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As in Chapters 2 and 4, our reference model simulation follows Murgia et al.
(2018); Iršič et al. (2017b); it has a box length of 20/h comoving Mpc with 2× 7683

gas and CDM particles in a flat ΛCDM universe with cosmological parameters (Ade
et al. 2016a): Ωm = 0.301, Ωb = 0.0457, ns = 0.961, H0 = 70.2 km s−1 Mpc−1,
σ8 = 0.829, and zreio = 9.

For the cosmological parameters to be varied, we sample different values
of σ8, i.e., the normalisation of the linear matter power spectrum, and neff =
d lnPm(k)/d ln k|kα , namely the slope of the matter power spectrum evaluated at
the scale probed by the Lyman-α forest (kα = 0.009 s/km) (Seljak et al. 2006;
McDonald et al. 2006; Arinyo-i Prats et al. 2015). Hence, we have included
five different simulations for both σ8 (in the range [0.754, 0.904]) and neff (in the
interval [−2.3474,−2.2674]). Additionally, we included simulations corresponding
to different values for the instantaneous reionisation redshift, i.e., zreio = {7, 9, 15}.

Regarding the astrophysical parameters, we modelled the thermal history of the
IGM with amplitude T0 and slope γ of its temperature-density relation, parametrised
as T = T0(1 + δIGM)γ−1, with δIGM being the IGM overdensity (Hui & Gnedin
1997). We ran simulations with temperatures at mean density T0(z = 4.2) =
{6000, 9200, 12600} K, evolving with redshift, as well as a set of three values for
the slope of the temperature-density relation, γ(z = 4.2) = {0.88, 1.24, 1.47}. The
redshift evolution of both T0 and γ are parametrised as power laws, such that T0(z) =
TA0 [(1+z)/(1+zp)]T

S
0 and γ(z) = γA[(1+z)/(1+zp)]γ

S , where the pivot redshift zp is
the redshift at which most of the Lyman-α forest pixels are coming from (zp = 4.5 for
MIKE/HIRES). The reference thermal history is defined by T0(z = 4.2) = 9200 and
γ(z = 4.2) = 1.47, since such values provide a good fit to observations (Bolton et al.
2017). Furthermore, we have considered the effect of ultraviolet (UV) fluctuations
of the ionising background, the impact of which is controlled by the parameter fUV.
Its template is built from a set of three simulations with fUV = {0, 0.5, 1}, where
fUV = 0 corresponds to a spatially uniform UV background (Iršič et al. 2017b). We
have also included 9 grid points obtained by re-scaling the mean Lyman-α forest flux
〈F (z)〉, namely {0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4} × 〈FREF〉, with the reference
values being the ones of the SDSS-III/BOSS measurements (Palanque-Delabrouille
et al. 2013). With the goal to have a more refined grid in terms of mean fluxes,
we have also included 8 additional values, obtained by re-scaling the optical depth
τ = − ln〈F 〉, i.e. {0.6, 0.7, 0.8, 0.9, 1.1, 1.2, 1.3, 1.4} × τREF.

Concerning the PBH properties, we have extracted the flux power spectra from
12 hydrodynamic simulations (5123 particles; 20 comoving Mpc/h box length)
corresponding to the following PBH mass and fraction products: log(MPBHfPBH) =
{1.0, 1.5, 2.0, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 3.0, 3.5, 4.0}1, whereMPBH is expressed in units

1Hereafter log ≡ log10.
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Flat prior on zreio Gaussian prior on zreio

Parameter (2 σ) Best Fit (2 σ) Best Fit

〈F (z = 4.2)〉 [0.35, 0.41] 0.37 [0.35, 0.41] 0.37
〈F (z = 4.6)〉 [0.26, 0.34] 0.28 [0.27, 0.34] 0.28
〈F (z = 5.0)〉 [0.15, 0.25] 0.20 [0.15, 0.23] 0.16
〈F (z = 5.4)〉 [0.03, 0.12] 0.08 [0.04, 0.11] 0.05
TA0 [104 K] [0.44, 1.36] 0.72 [0.46, 1.44] 0.84

T S0 [-5.00, 3.34] -4.47 [-5.00, 3.35] -4.53
γA [1.21, 1.60] 1.51 [1.19, 1.61] 1.44
γS [-2.43, 1.30] -1.76 [-2.25, 1.51] 0.46
σ8 [0.72, 0.91] 0.79 [0.72, 0.91] 0.81
zreio [7.00, 15.00] 14.19 [7.12, 10.25] 9.07
neff [-2.40, -2.22] -2.30 [-2.41, -2.22] -2.33
fUV [0.00, 1.00] 0.02 [0.00, 1.00] 0.03

log(fPBHMPBH) < 2.24 1.96 < 1.78 0.34
χ2/d.o.f. 32/42 33/43

Table 5.1: 2 σ limits and best fit values for all the parameters of our analyses, for the
two different prior choices on zreio that we adopted. The values for MPBH are expressed
in units of M�.

ofM�. For this set of simulations, all the astrophysical and cosmological parameters
have been fixed to their reference values, and the equivalent ΛCDM flux power
spectrum has also been determined.

As in Chapters 2 and 4, our analysis is based on the Ordinary Kriging in-
terpolation method (Webster & Oliver 2007), and the interpolation is done in
terms of ratios between the flux power spectra of the ΛPBH models and the
reference ΛCDM one. Along the lines of Murgia et al. (2018), we first interpolate
in the astrophysical and cosmological parameter space for the standard ΛCDM
case; we then correct all the {MPBHfPBH}-grid points accordingly, and we finally
interpolate in the {MPBHfPBH}-space.

Our data set is constituted by the MIKE/HIRES samples of quasar spectra,
obtained with the MIKE/Magellan spectrographs and the HIRES/KECK, at redshift
z = {4.2, 4.6, 5.0, 5.4}, in 10 k-bins in the range [0.001− 0.08] s/km, with spectral
resolution of 13.6 and 6.7 s/km, respectively (Viel et al. 2013). As in Chapters 2
and 4, we applied a cut on the flux power spectra, by using only the measurements
at k > 0.005 s/km, to avoid large-scale systematic uncertainties due to continuum
fitting. Moreover, we did not include in our analyses the highest redshift bin for
MIKE data, for which the errors on the flux power spectra are very large (Viel et al.
2013). We have thus used a total of 49 (k, z) data points.
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Figure 5.2: 1 and 2 σ contour plots for some of the parameters of our analyses, for the
two different prior choices on zreio that we adopted. The values for MPBH are expressed
in units of M�. The dashed lines represent the Gaussian priors imposed on F̄ (z = 5) and
zreio, with the latter referring to the blue plots.

5.5 Results and discussion
We have determined the constraints on both astrophysical, cosmological, and
PBH properties, by maximising a Gaussian likelihood, using the publicly available
affine-invariant MCMC sampler emcee (Foreman-Mackey et al. 2013). We adopted
Gaussian priors on the mean fluxes 〈F (z)〉, centred on their reference values, with
standard deviation σ = 0.04 (Iršič et al. 2017b), and on σ8 and neff , centred
on their Planck values (Ade et al. 2016a), with standard deviation σ = 0.05,
given that the latter two parameters, whereas very well constrained by CMB
data, are poorly constrained by Lyman-α forest data alone (Murgia et al. 2018).
Concerning the IGM thermal history, we adopt flat priors on both TA0 and T S0 ,
in the ranges [0, 2] · 104 K and [−5, 5], respectively. When the corresponding
T0(z) are determined, they can assume values not enclosed by our template of
simulations. When this occurs, the corresponding values of the flux power spectra
are linearly extrapolated. Regarding γS and γA, we impose flat priors on the
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corresponding γ(z) (in the interval [1, 1.7]). The priors on zreio and fUV are flat
within the boundaries defined by our grid of simulations. We adopt a logarithmic
prior on fPBHMPBH. However, let us stress that our results are not affected by
this choice. By re-running our analyses assuming a flat prior on it, the constraints
are indeed unmodified, provided that a conservative Gaussian prior on the IGM
temperature is also imposed, namely TA0 = 7500 ± 1500 (1σ) (motivated by the
most up-to-date IGM studies by Boera et al. (2018)). All the other priors are flat
within the boundaries defined by our grid of simulations.

Let us firstly focus on the simple case of PBHs featuring a MMD. In Table 5.1 we
report the marginalised 2 σ constraints and the best fit values for all the parameters
considered in our analyses. The first two columns refer to the case in which a
flat prior is applied to the reionisation redshift. The limit on the PBH abundance
under this assumption corresponds to

fPBHMPBH . 170 M� (2 σ), (5.11)

However, both Planck CMB results and measurements by Boera et al. (2018) clearly
favour zreio values around 8.5. For this reason, we have repeated our analysis by
imposing on the reionisation redshift a Gaussian prior centred around zreio = 8.5,
with standard deviation σ = 1.0. The results obtained under such assumption are
shown in the last two columns of Table 5.1, and in this case we have

fPBHMPBH . 60 M� (2 σ). (5.12)

In the simplest case where all DM is made by PBHs (fPBH = 1), these constraints
can be interpreted as absolute limits on the PBH mass. On the other hand, such
absolute upper bounds on MPBH weaken linearly when a smaller PBH abundance
is assumed (0.05 < fPBH < 1)2.

The degeneracy between zreio and the PBH mass can be understood as follows:
a higher reionisation redshift, having fixed the thermal history at late times,
corresponds to a more effective (i.e., larger) filtering scale, and thus to a suppression
of power that is compensated by a larger value of the PBH mass. The fact that the
degeneracies are much more prominent for this parameter, unlike the nCDM case
in which the cut-off is more degenerate with the thermal cut-off (see Chapters 2
and 3), is telling us that the increase of power at small scales is a distinctive feature
whose effect is more likely to be degenerate with a different gas filtering scale.

In Figure 5.2 we show the 1 and 2 σ contour plots for some of the parameters
considered in our analyses, for both the aforementioned prior choices on zreio. The

2The lower limit on fPBH is given by the fact that, for the monochromatic case, at z =
199, i.e. the redshift of the initial conditions of our simulations, if fPBH is smaller, the Poisson
effect is subdominant with respect to the seed effect, the treatment of which goes beyond our
purposes (see Carr & Silk (2018) for further details).
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Figure 5.3: 1D flux spectra for ΛCDM and ΛPBH, for different PBH masses. Symbols
are data from MIKE/HIRES, lines are obtained by interpolating in the {MPBHfPBH}-
space defined by our simulations; while the best fit is technically for MPBH 6= 0, it
is indistinguishable from the ΛCDM case. Red, blue, black and green indicate z =
4.2, 4.6, 5.0, 5.4, respectively. The grey shaded areas represent regions sampled by flux
power spectra corresponding to values for TA0 spanning its marginalised 2 σ interval.

mild degeneracy between the amplitude of the IGM temperature TA0 (z = zp) and
the PBH mass derives from the opposite effects on the flux power spectra due to the
increase of the two parameters. A hotter IGM implies a small-scale power suppression
which can be balanced by increasing MPBHfPBH. Slightly larger values for the mean
fluxes 〈F (z)〉 are also required for accommodating the power enhancement induced
by relatively large values of the PBH mass. The dashed lines represent the Gaussian
priors imposed on F̄ (z = 5) and zreio, with the latter referring to the blue plots.
Note that our MCMC analyses favour higher values for F̄ (z = 5) (still in agreement
with its prior distribution), allowing in turn a larger power enhancement due to
PBHs. This is a further hint of the conservativity of our constraints.

In order to test the stability of our results, we also performed an analysis with
flat priors both on σ8 and neff . Under these assumptions, the constraint (using a
Gaussian prior for zreio) on fPBHMPBH is mildly weakened, up to 100 M�. However,
the largest values for the PBH mass are allowed only in combination with extremely
low values for neff , allowed in turn by our data set due to its poor constraining power
on such parameter. As we have already stated, this is the main reason to impose a
(still conservative) Gaussian prior motivated by CMB measurements on neff .
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In Figure 5.3 we show the dimensionless 1D flux power spectra for our best
fit model (last column in Table 5.1), together with the spectra corresponding to
different values of MPBH. The latter ones are obtained by keeping fixed to their
best fit values all other cosmological and astrophysical parameters. Symbols refer
to MIKE/HIRES data. To exhibit the variations in the flux power induced by
different IGM thermal histories, we also show, as grey shaded areas, the impact
of different IGM temperature evolutions.

In Figure 5.4 we report the updated plot with the constraints on the fraction
of DM in PBHs, as functions of their masses, in the monochromatic case. The
“LIGO window” of PBHs between ∼ 20− 80M� initially suggested by Bird et al.
(2016) has been probed and tentatively closed by constraints from Ultra-Faint
Dwarf galaxies (Brandt 2016) and lensing of Type Ia Supernovæ (Zumalacarregui
& Seljak 2018); these constraints have been questioned because of astrophysics
uncertainties (see, e.g., Li et al. (2017); Carr et al. (2016)3): we show them in a
patterned area. With our results we robustly close the higher mass part of that
remaining window. There remains however, an interesting possibility in the very
low-mass range, . 10−10M� (see, e.g., Pi et al. (2018); Bartolo et al. (2019)).

By defining an equivalent mass Meq one can easily convert the aforementioned
marginalised 2 σ limits on fPBHMPBH for the MMD case, to bounds on the
parameters of a given EMD. In Figure 5.5 we provide such bounds, similarly
to what was shown in Figure 3 from Carr et al. (2017) for other observational
constraints, by plotting the parameters of the two EMDs discussed in this Chapter,
as functions of Meq. In other words, each of the panels maps the limits on MMDs
peaked at Meq to constraints on EMDs. The left panel shows the Powerlaw EMD,
with γ̃ = 0, focusing on the following mass range: Mmin, Mmax ∈ [10−2, 107]M�. In
the right panel we focus on the Lognormal EMD, scanning the parameter space
defined by µ ∈ [10−2, 107] M�, and σ ∈ [0, 5]. The two black lines correspond
to the marginalised 2 σ constraints quoted above, i.e. Meq = 60 M� (solid), and
Meq = 170M� (dashed). The blue regions are therefore admitted by our analyses,
while the red areas are ruled out.

All our analyses are based on the straightforward assumption that the PBH
number density nPBH is fixed during the cosmic time investigated by our simula-
tions, i.e. from z = 199 to z = 4.2, which indeed corresponds to epochs when PBHs
do not form anymore. However, the possibility that PBHs can fully evaporate
during such time interval would alter our conclusions, since in that case nPBH

would vary with time. Nevertheless, from z = 199 to now, only PBHs with masses
smaller than O(10−18) M� might completely evaporate (Hawking (1974)). For
this reason, such value has to lie below the PBH mass ranges investigated in this
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Figure 5.5: Equivalent Mass Meq for EMDs. Left: Powerlaw with Mmin, Mmax ∈
[10−2, 107] M�, and γ = 0. Right: Lognormal with µ ∈ [10−2, 107] M�, σ ∈ [0, 5]. The
solid line refers to the case of Meq = 60 M�, while the dashed line refers to Meq =
170M�, i.e. they correspond to the marginalised 2 σ limits. The red regions are thereby
ruled out by our analyses, whereas the blue ones are admitted.

work. We have thus set 10−18 M� as lower limit for the integral in Equation (5.8),
and 107 M� as upper limit.

In the near future, it is expected that a larger number of high-redshift, high-
resolution and high-signal-to-noise quasar spectra collected with the ESPRESSO
spectrograph (Pepe et al. 2013) or at the E-ELT could further allow to use the
small-scale flux power spectrum to achieve tighter constraints. Another relevant
aspect would be an accurate modelling of the heating and ionisation due to accretion
effects around the PBHs, to quantify how and if they could impact on the (much
larger) scales of the Lyman-α forest.

Whereas PBHs with mass O(10) can potentially solve some tensions in the
cosmic infrared background (Kashlinsky 2016, 2005; Kashlinsky et al. 2005), the
accumulation of limits on the PBHs as DM model in the mass range probed by LIGO
seems to suggest that the hypothesis of 30M� PBHs being the DM is less and less
likely to be true. It has however become clear that these studies brought a plethora
of astrophysical information, and even the exclusion of certain PBH mass ranges
will bring information on some of the processes happening in the very early universe.

3For a discussion on some of these points, see Primordial versus Astrophysical Origin of Black
Holes – CERN workshop

https://indico.cern.ch/event/686745/
https://indico.cern.ch/event/686745/


“The task is not so much to see what no one has yet seen;
but to think what nobody has yet thought,
about that which everybody sees.”
Erwin Schrödinger

“Rubare, in teatro, è cosa buona,
copiare è da co∗∗∗oni.”
Dario Fo

6
Conclusions

6.1 Summary
The standard ΛCDM model appears to be in excellent agreement with both CMB
and LSS observations. Some tensions exist, though, on the cosmological and
local determination of the Hubble parameter H0, and on the amplitude of the
linear power spectrum σ8. Furthermore, the standard CDM paradigm shows some
discrepancies with structure formation data at sub-galactic scales (the CDM small-
scale crisis). At such relatively small scales, observations tend indeed to favour
cosmological models with suppressed matter power spectra with respect to the
standard CDM scenario. Moreover, despite huge experimental efforts, DM in the
form of WIMPs has so far eluded detection in direct and indirect searches, as well
as at colliders. For all these reasons, the interest in models beyond the standard
CDM paradigm has recently reinvigorated.

Combining together various independent observations is the key for shedding
light on the dark sector, by building bridges to consistently link different studies,
and exploring the interfaces between complementary lines of research, given that
different scale and redshift coverage generally lead to different constraints and
degeneracies. The main goal of all the works included in this thesis was to develop,
step by step, a simple and versatile framework providing a direct link between
particle physics model building and structure formation observations, addressed to
both the cosmology and particle physics communities, enabling to systematically
test a large variety of alternative cosmological models. Chapters 2 and 4 are entirely
and explicitly dedicated to this subject. Whereas Chapters 3 and 5 are focused
on studying specific non-standard DM models (i.e., Fuzzy DM and Primordial
Black Holes, respectively), also those analyses might be seen in light of our efforts
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towards devising a unified framework to model and constrain any departure from
the standard CDM paradigm. Besides CMB and LSS observations, which accurately
probe the linear matter power spectrum at large scales, high-redshift Lyman-α data
make nowadays possible to study the detailed slope of the power spectrum at large
k’s, rather than simply the position of the small-scale cut-off. Such investigation
is thereby compelling per se, independently of whether non-cold DM (nCDM)
models provide a better match to the data, and it is worth to be performed with
a simple and fully general approach.

Chapter 1 is a general introduction into basic and well known concepts in
cosmology, intended to give a clearer understanding of the following Chapters. We
briefly described the standard ΛCDM scenario, highlighting its remarkable success,
its puzzles and possible alternatives. We then introduced the basics of cosmic
structure formation and evolution, primarily focusing on the IGM and its main
manifestation, i.e., the Lyman-α forest, which is one of the most powerful probes
to investigate possible departures from the CDM paradigm.

In Chapter 2 we presented a new analytic fitting formula for the linear matter
power spectrum, simple yet flexible enough to reproduce the clustering signal of
large classes of non-thermal nCDM models, which are not at all adequately described
by the oversimplified notion of thermal WDM. We showed that the formula is able
to fully cover the parameter space of sterile neutrinos (whether resonantly produced
or from particle decay), mixed cold and warm models, fuzzy DM, as well as other
models suggested by effective theory of structure formation (ETHOS). We performed
a large suite of N -body simulations and we extracted important non-linear statistics,
such as the matter power spectrum and the halo mass function. We first presented
preliminary astrophysical constraints, based on linear perturbation theory, from
both the number of MW satellites and the Lyman-α forest. We then presented fully
accurate limits from the Lyman-α forest, determined through an extensive analysis of
the high-resolution, high-redshift data obtained by the MIKE/HIRES spectrographs.
By using a large set of hydrodynamic simulations, we provided constraints on both
astrophysical, cosmological, and nCDM parameters by performing a comprehensive
MCMC analysis. We obtained a marginalised upper limit on the largest possible
scale at which a power suppression induced by nearly any nCDM scenario can
occur, i.e., α < 0.03 Mpc/h (2σ C.L.). We explicitly described how to test several
of the most viable nCDM scenarios without the need to run any specific numerical
simulations, due to the novel parametrisation proposed, and due to a new scheme
that interpolates between the cosmological models explored. We showed that the
shape of the linear matter power spectrum for standard thermal WDM models is
in mild tension (∼ 2σ C.L.) with the data, compared to non-thermal scenarios.
We also showed that a DM fluid composed by both a warm (thermal) and a cold
component is in tension with the Lyman-α forest, at least for large α-values.



6.1. Summary 145

In Chapter 3 we investigated constraints on ultra-light scalar DM (a.k.a. Fuzzy
DM (FDM)) by analysing the most updated high-resolution Lyman-α forest data,
and by studying the cosmological consequences at high and low redshift. For
FDM that constitutes more than 30% of the total DM density, we obtained a
lower limit m & 10−21 eV for the FDM mass. This implies an upper limit on
the initial field displacement (or the decay constant for an axion-like field) of
φ . 1016 GeV. We also derived limits on the energy scale of cosmic inflation and
established an upper bound on the tensor-to-scalar ratio of r < 10−3, in the presence
of FDM. Furthermore, we showed that there is very little room for FDM to solve
the small-scale crisis of CDM without spoiling the Lyman-α forest results. We
then focused on quantifying the impact of the Quantum Potential (QP) during
the non-linear dynamical evolution of the FDM, by going beyond the universally
adopted approximation of comprising the non-standard nature of the DM candidate
in the suppressed linear power spectrum used to produce the initial conditions for
the simulations. With the use of the new N -body cosmological hydrodynamic code
AX-GADGET (Nori & Baldi 2018), we performed and analysed several hydrodynamic
simulations in order to constrain the FDM mass by quantifying its impact on
Lyman-α forest observations, as obtained for the first time in a N -body set-up
without approximating the FDM dynamics. These simulations allowed us to perform
a fully consistent comparison of mock Lyman-α observations with available data,
and to update the existing constraints on the allowed FDM mass range. As
the new constraints are not significantly different from the previous ones, this
represents the first direct validation of the approximations adopted in all previous
works. Furthermore, our large halo sample allowed us to perform an extensive
characterisation of the properties of DM halos in the context of FDM scenarios,
highlighting the typical mass scale below which QP effects start to appear.

In Chapter 4 we focused on the ETHOS parametrisation (Cyr-Racine et al.
2016) of interacting DM models, which includes a DR-DM scattering rate scaling
like a power-law of the temperature, T n. Scenarios with n = 0, 2, or 4 can easily
be realised in concrete dark sector set-ups. We updated constraints on these three
scenarios using recent CMB, BAO, and high-resolution Lyman-α data. Based on the
general approach discussed in Chapter 2, we introduced a new Lyman-α likelihood,
which is applicable to a wide range of cosmological models with a suppression
of the matter power spectrum on small scales. For n = 2 and 4, we found that
Lyman-α data strengthen the CMB+BAO bounds on the DM-DR interaction rate
by many orders of magnitude. However, models offering a possible solution to the
missing satellite problem are still compatible with our new bounds. For n = 0,
high-resolution Lyman-α data bring no stronger constraints on the interaction
rate than CMB+BAO data, except for extremely small values of the DR density.
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Using CMB+BAO data and a theory-motivated prior on the minimal density of
DR, we found that the n = 0 model can reduce the Hubble tension from 4.1σ
to 2.7σ, while simultaneously accommodating smaller values of the σ8 and S8

parameters hinted by cosmic shear data.
In Chapter 5 we presented new limits on the Primordial Black Hole (PBH) mass

and abundance, from a comprehensive analysis of high-resolution, high-redshift
Lyman-α forest data. Using a grid of hydrodynamic simulations exploring different
values of the astrophysical and cosmological parameters, we obtained a marginalised
upper limit on the PBH mass of fPBHMPBH ∼ 60 M� at 2σ C.L., when a Gaussian
prior on the reionisation redshift is imposed, preventing its posterior distribution
to peak on very high values, which are disfavoured by the most recent estimates
obtained both through CMB and IGM observations. Such bound weakens to
fPBHMPBH ∼ 170 M�, when a conservative flat prior is instead assumed. Both
limits significantly improves previous constraints from the same physical observable.
We also extended our predictions to non-monochromatic PBH mass distributions,
ruling out large regions of the parameter space for some of the most viable PBH
extended mass functions.

6.2 Future perspectives

The numerical tools that we have presented and used in this thesis are suitable to
constrain a large variety of theoretical models inducing a small-scale departure in
the linear matter power spectrum with respect to ΛCDM. Therefore, they may also
be applied, e.g., to investigate the properties of massive neutrinos, by combining
Lyman-α forest data with cluster abundance and/or cosmic shear measurements.
Furthermore, they can easily be adapted to test non-standard cosmological scenarios
with many other astrophysical probes. As we have already stressed, combining
different data sets with complementary redshift and scale coverages, is paramount to
break degeneracies, improve the present constraints, and make forecasts for upcoming
surveys. Some of the possible directions for pursuing these tasks are the following:

• As we briefly discussed in Chapter 4 (Section 4.4), we are already working on a
refinement of the method presented in Chapter 2, which will enable us to test
alternative DM models with arbitrary fractions of interacting DM. One of the
main goals is to apply such newer parametrisation to constrain DM-baryon
interaction scenarios, since the interest towards such class of models has revived
after the recent measurements by the Experiment to Detect the Global Epoch
of Reionization Signature (EDGES) (Bowman et al. 2018; Barkana 2018).
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• More accurate measurements of the IGM thermal history will provide strong
priors for future analyses, allowing to better constrain the shape of the
linear power spectrum at small scales (see, e.g., Boera et al. (2018)). Such
improvements, in addition with new, higher-resolution Lyman-α forest spectra –
as the ones collected with the ESPRESSO spectrograph (Pepe et al. 2013)
or at the ELT1 – are in principle expected to tighten all the limits reported in
this thesis, both the ones on nCDM particle candidates (Chapters 2, 3 and 4)
and the ones on PBHs (Chapter 5).

• Forthcoming instruments like DESI2, LSST (Bechtol et al. 2019), or the
Euclid3 satellite might help to constrain the nCDM parameters by exploiting
the weak lensing signal and the clustering of galaxies at small scales. These
surveys will clarify the connection between luminous galaxies and the DM
cosmic web, enabling high-precision tests applicable to all of the non-standard
cosmological models discussed throughout this thesis.

• The study of the sub-galactic power spectrum through strong gravitational
lensing is a very promising probe for testing the small-scale implications of
nCDM scenarios, at cosmological distances from the MW. Investigating the
gravitational imprints of DM structures on the lensed images in galaxy-scale
strong lens systems allows indeed to put observational constraints on the
substructure power spectrum, to be confronted against the results of very high-
resolution hydrodynamic simulations (see, e.g., Vegetti et al. (2012, 2014);
Bayer et al. (2018); Diaz Rivero et al. (2018); Díaz Rivero et al. (2018)).
This will make it possible to disentangle more efficiently the consequences
of different nCDM models. For instance, as we showed in Chapter 3, it is
expected that higher-resolution Fuzzy DM simulations will soon allow us to
observe the formation of solitonic cores.

• Another very intriguing possibility for testing alternative DMmodels is to make
use of the global intensity mapping signal of the 21 cm transition produced
by neutral hydrogen, which has the advantage of being at very high redshifts,
where the non-linear evolution is less prominent (see, e.g., Sitwell et al. (2014);
Carucci et al. (2015); Carucci et al. (2017a,b)). The cosmological 21 cm signal,
studied both in absorption (Bowman et al. 2018) and in emission (Villaescusa-
Navarro et al. 2018; Bacon et al. 2018), offers indeed a new probe, complemen-
tary to the existing ones, that could open a fresh window on the early universe
to further test the imprints of alternative DM models (see, e.g., Schneider
(2018); Kovetz et al. (2018); Lopez-Honorez et al. (2019)).

1https://www.eso.org/public/teles-instr/elt/
2https://www.desi.lbl.gov/
3https://www.euclid-ec.org/



6.2. Future perspectives 148

To sum up, structure formation at small cosmological scales represents a pivotal
frontier for DM research. Astrophysical observations are extremely complementary
to high-energy physics programs and other experimental searches, given that it is
basically impossible to separate the microscopic DM physics from its macroscopic
distribution. Concurrently with ongoing and future experimental efforts, further
theoretical work is needed to interpret observations in terms of fundamental
models, to combine outcomes from different observational methods, and to develop
novel DM probes.
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A
Quasi-degeneracy between α and γ

By considering the high-k limit of Equation (2.4), we can easily notice the quasi-
degeneracy between the two parameters α and γ. For large k’s (i.e., small scales),
such that (αk)β � 1, we have indeed:

T (k)|kα�1 ' αβγkβγ. (A.1)

If we now change α to a new value α → α̃ = x · α, where x is some real number,
we can absorb this changes into a k-dependent change of γ:

αβγkβγ → α̃βγkβγ = αβγxβγkβγ = αβγ
(
klnx/ ln k

)βγ
kβγ = αβγkβγ(1+lnx/ ln k), (A.2)

where we have used the obvious identity x = klnx/ ln k. Thus, in Equation (A.1),
we can trade a change in α for a k-dependent change in γ:

γ → γ̃(k) = γ(1 + ln x/ ln k), (A.3)

which reproduces the effect of the change from α to α̃. Now, this does not seem
like a real degeneracy – and mathematically it is not, due to the k-dependence of
γ̃. However, this dependence is only very weak (logarithmic), so that one can, in
spite of the k-dependence, view γ̃ as approximately constant:

γ̃(k) ' const. (A.4)

This approximation will be even better if | logk x| = | ln x/ ln k| � 1, due to this
quantity only appearing in the sum in Equation (A.3). Thus, indeed, to a very good
approximation there is a degeneracy between α and γ: a change in one of them can
be traded for a change in the other. Hence, by covering several different values of γ
in Figure 2.1, we have information about many different α’s at the same time.
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Comparing simulated mass functions with

theoretical predictions
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Figure B.1: For some of the models that we tested, we compare the theoretical DM halo
mass function predicted by Equation (B.1) with the DM halo mass function extracted
from the corresponding N -body simulation. The former is plotted as a solid line, the
latter as a dotted one. Different colours refer to different models. The good agreement
between them ceases to hold below masses of the order of 109 M�/h, where artificial
clumping strongly affects the results of the simulations. That mass indeed corresponds to
the upturn highlighted in Figure 2.9.

We already highlighted in Section 2.4.1 the low-mass upturn in the halo mass
functions, due to artificial clumping. To account for this effect and subtract the
corresponding numerical artefacts, we estimated the number of subhalos predicted
by our models by integrating over Equation (2.13), which is the theoretical subhalo
mass function derived by an extended Press-Schechter approach (Press & Schechter
(1974); Sheth & Tormen (1999)) based on a sharp-k window (Bertschinger (2006);
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Benson et al. (2013)). This leads to the following expression (Schneider et al.
(2013); Schneider (2015)):

dn
dM = 1

12π2
ρ

M2νf(ν)P (1/R)
δ2
cR

3 , (B.1)

where ρ is the average density of the universe, ν = δ2
c,0/S(R) is the peak-height of the

perturbations (at z = 0), and f(ν) is obtained by the excursion-set approach (Bond
et al. (1991)). The relation between the sharp-k filter scale and mass and the
variance S(R) are defined in Equation (2.14).

In Figure B.1, we compare example theoretical DM halo mass functions pre-
dicted through Equation (B.1) to the DM halo mass functions extracted from the
corresponding N -body simulations. The former is plotted as a solid line, the latter
as a dotted line. Consistently with the trend outlined in Figure 2.9, below masses of
the order of 109 M�/h, artificial clumping induces the upturn in the simulated halo
mass functions, and hence the discrepancies with the theory which are manifest
in Figure B.1, below masses of the order of 109 M�/h.
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C
Reproducing the thermal Warm Dark

Matter limits

This Appendix is dedicated to a comparison between the predictions that we
obtained, when limiting our Lyman-α analysis to the thermal WDM case, and the
most updated published results obtained with the standard approach (Iršič et al.
(2017b)). The goal is to check the accuracy of the novel interpolation scheme and
sampling method, introduced in Chapter 2, in order to safely extend our analyses
to the full {α, β, γ}-space, as it is done in both Chapters 2 and 4.

In Figure C.1a we report a comparison between the 1D and 2D posterior
distributions for the main parameters of the analysis with freely floating IGM
temperature. The overall agreement between the previous results (green contours)
and ours (blue and orange contours) is evident. Both have been obtained by using
the same data set, i.e. MIKE/HIRES data, as described in Section 2.6.1. Firstly,
we notice the expected degeneracy between T0(z) and α. Due to this degeneracy,
different prior choices on the IGM thermal history may sensibly affect the limits
on the WDM mass. That is why, by looking at the 1D distribution for mWDM and
T0(z = 5.4), one can note a discrepancy between our prediction (blue) and the one
by Iršič et al. (2017b) (green). In the previous study, in fact, flat priors on T0(z) were
assumed, only forbidding unphysical jumps ∆T0 > 5000 K between adjacent redshift
bins, whereas the blue contours are obtained by imposing broad Gaussian priors on
T0(z) centred around their reference values, with standard deviation σ = 3000 K.
The latter choice still constitutes a conservative assumption, given that it only
prevents the temperatures to peak at T0 = 0 at high redshifts, without precluding
them from assuming reasonably cold values. Even though the blue 1D distribution
is peaked at higher temperatures, only extremely cold values are excluded from
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Figure C.1: Here we compare the 1 σ and 2σ C.L. exclusion plots obtained with our
thermal WDM analyses against the results by Iršič et al. (2017b), which are displayed
as green contours. The values of the temperatures are expressed in 104 K units. (a) In
the left panel we focus on the freely floating temperature analysis (blue and orange
contours). (b) In the right panel we focus on the power law analysis (red contours).

the corresponding 2 σ C.L. region. Quantitatively, the previous analysis led indeed
to a 2 σ lower limit on the thermal WDM mass mWDM > 2.1 keV, while we have
obtained mWDM > 2.7 keV. For a more direct comparison with the previous results,
we also performed an analysis assuming flat priors on T0(z), shown by the orange
contours in Figure C.1a. Under this assumption, which exactly corresponds to
the prior choice adopted by Iršič et al. (2017b) for the freely floating temperature
case, we obtained mWDM > 2.2 keV (2σ C.L.), in excellent agreement with the
previously published result. Such agreement is also manifest when looking at the 1D
posterior distribution for both mWDM and T0(5.4). The orange curves are in very
good agreement with the previous results, probing that the discrepancies between
blue and green contours are driven by the different thermal history choice, rather
than by some of the approximations characterising the new interpolation scheme.

In Figure C.1b we compare the 1D and 2D distributions for the main free
parameters of the power law analysis, chosen to be the reference case by Iršič et al.
(2017b) as well as by us. Analogously to the freely floating temperature plots,
the green contours refer to the results by Iršič et al. (2017b); the red contours
represent our results. Most of the considerations that we did above apply to this
case too. The main difference between the results of the two analyses consists
in a significant tightening of the upper bound on the thermal WDM mass, due
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to the less conservative prior choice, as it has been explained in Section 2.6.1.
The previously published 2σ C.L. limit is mWDM > 4.1 keV, whereas we obtained
a slightly weaker constraint, namely mWDM > 3.6 keV. In the aforementioned
freely floating T0 case, our study yielded to a more aggressive limit with respect
to the one by Iršič et al. (2017b). Conversely, in our reference analysis, the lack
of cross-simulations, which is the main difference characterising our work (see
Section 2.6.1), resulted in a weaker upper limit on the thermal WDM mass. From
this point of view, the power law analysis that we adopted as our reference MCMC
analysis can be considered conservative.
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D
Exact solution of Klein–Gordon equation

In this Appendix we provide the exact solution of the homogeneous Klein–Gordon
equation (Equation (3.29)) in a radiation dominated universe whose Hubble rate red-
shifts as

H ∝ a−2. (D.1)

Here we should note that the redshifting of the Hubble rate can depart from ∝ a−2

when the effective number of relativistic degrees of freedom g(s)∗ changes in time;
however as long as g(s)∗ stays constant while the scalar makes the transition from
vacuum energy-like (non-oscillatory) to matter-like (oscillatory), then the solution
under Equation (D.1) can be used to accurately compute the scalar density in
the asymptotic future.

The solution of Equation (3.29) with Equation (D.1) is given in terms of a
Bessel function of the first kind as

φ = φ? Γ
(5

4

)(4H
m

)1/4
J1/4

(
m

2H

)
, (D.2)

where we have chosen the initial condition for φ such that it approaches a constant
value φ → φ? as m/H → 0. Hence, after the scalar starts to oscillate, its
density, given by Equation (3.30), asymptotes to

lim
m
H
→∞

ρφ = 4
π

[
Γ
(5

4

)]2
m1/2φ2

?H
3/2. (D.3)

Equating this with Equation (3.32):

lim
m
H
→∞

ρφ = 1
2m

2φ2
?

(
aosc

a

)3
= 1

2m
2φ2

?

(
H

Hosc

)3/2
, (D.4)
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yields the ratio between the scalar mass and Hosc as

m2

H2
osc

=
( 8
π

)4/3 [
Γ
(5

4

)]8/3
≈ 2.68. (D.5)

With this Hosc, one can compute the scalar density not only during radiation
domination, but also in the subsequent epochs as demonstrated in Section 3.4.1.
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