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Abstract

For weakly interacting many-body quantum systems one can apply the extensive frame-
work of perturbative quantum �eld theory. On the other hand, strong interactions can not
be treated practically in perturbation theory because of the absence of a small control param-
eter. In this context variational methods are a powerful tool to obtain reliable informations
regarding the properties of the ground state of the strongly correlated electron system. In
this thesis we present novel formulations of two widely used methods: the Gutzwiller wave
function and the slave-spin theory. These techniques share a similar philosophy and the
extensions are based on the common attitude towards a more detailed description of the
high-energy incoherent excitations characterizing interacting electron systems together
with low-energy quasiparticles excitations, captured by standard approaches. Our task is
not only crucial for a faithful description of the insulating phase but also improves the
variational characterization of the low-energy quasiparticle excitations.

We apply the novel ghost-Gutzwiller wave function technique to tackle an intriguing
phenomenon, namely the exciton Mott transition in photoexcited semiconductors. Despite
being a quite old topic that goes back to the 1970’s, the nature of the exciton Mott transition
still de�es a complete understanding. By considering an idealised model of photoexcited
semiconductors we unveil the important role of the exciton binding energy in determining
the nature of the transition. Moreover, our results uncover rather anomalous electron-hole
liquid phase next to the transition, which still sustains excitonic excitations although being
a degenerate Fermi liquid of heavy mass quasiparticles.

By means of the Dirac-Frenkel variational principle, we generalize the ghost-Gutzwiller
wave function to study the out of equilibrium dynamics of strongly correlated electron
systems. Numerical results on the single-band Hubbard model show a remarkable agreement
with those obtained with time-dependent dynamical mean �eld theory. We believe that the
method opens the way to several promising developments and future applications.

Concerning the slave-particle approach, we consider Anderson impurity models and we
show that, within our formulation, the constraint on the slave-spin variable can be removed,
leaving thermal average free by any projection on the "physical" subspace of the enlarged
Hilbert space. To the best of our knowledge, this represents an exception and shows that our
formulation is more convenient than other slave-particle approaches, where the constraint
have to be implemented explicitly. The method, suited to deal with impurity models, �nds
direct application in studying time-dependent transport across an interacting quantum
dot. To this aim we formulate, by means of the Keldysh Green’s function, the slave-spin
mean-�eld theory in the out of equilibrium framework and we apply the method to the
dynamics of a driven quantum dot.

Finally we study the current-voltage characteristic of an interacting quantum dot tunnel-
coupled to the edge of a superconductive nanowire. The appearance of the topological
Majorana edge mode is signalled by distinctive features in the charge transport properties
of the junction. Apart from the well known half-integer zero bias conductance we �nd that
the topological region is characterized by a vanishing Fano factor, that can be measured in
experiments to detect the presence of a Majorana zero mode hybridized with the quantum
dot.
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1
Introduction

In this Section we brie�y introduce the main ideas and results of this thesis, ranging from the main
methodological advances to the physical results obtained with these new techniques.

1.1 Methodological advances

Strong correlations in condensed matter physics are at the origin of a plethora of intriguing
collective phenomena, high-Tc superconductivity, and a variety of other conventional and
unconventional phase transitions. The understanding of the microscopic mechanisms underlying
these phenomena has a central importance not only re�ected in the theoretical advances but
also in potential technological applications. The typical number of interacting constituents
in solids, ∼ 1023, makes their experimental and theoretical study extremely challenging. To
clarify this aspect let us consider the simple example of a system composed of N lattice site each
occupied by a single spin that can point either ↑ or ↓. It is not hard to realize that the number of
con�gurations contained in the many-body wave function grows exponentially with the system
size ∼ 2N . Even for writing the informations contained in the ground state the computational
time and memory required is prohibitive large already for small lattice size. Therefore, it is
crucial to develop techniques that are tractable and yet remain �exible enough to allow theorists
to incorporate material-speci�c details into the calculations. There has been a great theoretical
e�ort in developing reliable and e�cient schemes to treat strongly correlated electron systems
that allow to provide a consistent and robust description of emergent collective phenomena in
Condensed Matter Physics, like for instance dynamical mean �eld theory (DMFT), quantum
Monte Carlo, improved density functional theory in the local density approximation LDA+DMFT,
matrix-product states and tensor networks.

A class of particularly physically transparent and �exible approximations are based on
variational wave functions that often capture the main aspects of the ground-state properties.
This thesis �nds its place in this framework, and it is motivated by the need of simple and semi-
analytical variational methods for strongly correlated electron systems. Our main contribution
from a methodological point of view are two remarkable extensions of the standard approaches
of this kind, namely a constraint-free slave-spin method and a generalization of the Gutzwiller
wave function. Despite the existence of more precise many body techniques, these methods
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2 Introduction

Figure 1.1: Scanning tunnel microscopy measurements of the local density of states of a monolayer Sn
on the Si(111) surface with various bulk doping levels. As the density of hole increases, we observe the
growth of the low-energy quasiparticle peak (QPP) that is accompanied by the reduction of the spectral
weight of the lower (LHB) and upper (UHB) Hubbard bands. Adapted from [190].

are still largely used and often allow to interpret the results of more accurate calculations. For
instance, we mention the Brinkman-Rice scenario for the metal-to-insulator Mott transition [38],
built with the Gutzwiller approximation, or early theories for high-Tc superconductors based
on analytical calculations performed with slave-boson mean-�eld theory [155, 168]. Moreover,
given the complexity of the electronic structure of real materials it would be desirable to have
at disposal approximate techniques enough simple and �exible to deal with realistic situations
otherwise prohibitive with more accurate numerical approaches, as those previously mentioned.

The conventional Gutzwiller wave function [81] and the slave-particle mean-�eld theory
[156] generally capture only the low-energy coherent quasiparticles, but cannot describe inco-
herent charge excitations located at energies of the order of the Coulomb repulsion ∼ U , that
form the higher and lower Hubbard bands, see Fig. 1.1. Therefore, these variational approaches
describe properly the low-energy properties of the correlated metal (Fermi liquid) but are not
able to provide a faithful description of the Mott insulating regime, where low-energy fermionic
quasiparticles are absent. A major breakthrough in this direction is represented by the develop-
ment of the dynamical mean �eld theory (DMFT) [95], which provides a tool for treating the
di�erent energy scales that competes in a strongly correlated electron system. The approach,
which neglects spatial dependence of the correlations among the electrons, becomes exact in the
limit of in�nite lattice coordination [187]. DMFT is nowadays one of the few approaches able to
give a detailed description of both low- and high-energy excitations and of the �rst-order metal-
to-insulator Mott transitions. In this thesis we present a novel variational wave function that
successfully overcomes the aferomentioned problem characterizing the conventional Gutzwiller
wave function and slave-particle mean-�eld theories. The method, named ghost-Gutzwiller wave
function variational technique, is characterized by the introduction of N subsidiary fermionic
degrees of freedom, it provides a more accurate description of the Mott insulator and captures
the coexistence region between the correlated metal and the insulator in the Mott transition.
Numerical results in the single-band Hubbard model show noteworthy agreement between the
ghost-Gutzwiller wave function and the dynamical mean �eld theory (DMFT). We will see that
the number of auxiliary fermionic levels N represents a crucial parameter and, by increasing N,
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we will observe an improvement in the variational energy and in the physical properties of the
ground state. This perspective introduces similarities between our variational wave function
and matrix-product states or neural network states where the number of "hidden" degrees
of freedom is directly connected with the amount of entanglement in the variational wave
function. Remarkably, our variational method can be directly extended to the out of equilibrium
evolution of strongly correlated electron systems. In this thesis we will present in details the
time-dependent ghost-Gutzwiller technique [106] and we will benchmark the method with
DMFT and conventional Gutzwiller results on the single-band Hubbard model [72, 73, 247, 248]
demonstrating a substantial improvement over the basic Gutzwiller.

In the framework of the slave-particle approach, we will focus on Anderson impurity models
and we will introduce a new slave-spin formulation free from any constraint on the slave-spin
variables, eliminating the need of any projection on the "physical" subspace of the enlarged
Hilbert space. This clearly shows that the new formulation is more convenient than other slave-
particle approaches, where the constraints have to be implemented explicitly. Our mapping
applies straightforwardly to multi-orbital Anderson impurity models in the absence of local
exchange terms on the impurity. Notably, we will also show that single-particle Green’s functions
of the physical electron can be calculated without any constraints. The latter result enables
to perform perturbative calculations that, within a Random Phase Approximation, reproduces
not only the low-energy Kondo resonance but also incoherent valence �uctuation peaks. A
possible application of the method as DMFT impurity solver for particle-hole nonsymmetric
multi-band Hubbard models is foreseen. This slave-spin mapping can be more convenient than
working in the original representation. Indeed, as already shown in Ref. [121], the slave-spin
mapping endows the Mott transition of a genuine order parameter associated with the local
Z2 gauge symmetry. Thus, it allows to develop an equivalent of the Landau-Ginzburg energy
functional for the Mott transition [152]. We conclude by observing that the slave-spin mapping
�nds direct application to transport in quantum dots. To this aim we will further extend the
method to study the out of equilibrium evolution of Anderson impurity models by employing the
Keldysh Green’s function approach [105]. In order to highlight the improvement achieved with
respect to more conventional techniques, we benchmark the results of our novel approaches with
numerical renormalization group (NRG) [157, 158] and DMFT ones, by studying well-known
model Hamiltonian, such as the Anderson impurity model and the lattice single-band Hubbard
model.

In the following we brie�y list the four problems that we studied with the above methods as
well as our main results.

1.2 Mott transition in photoexcited semiconductors

Photoexcited electron-hole systems in semiconductors o�er a unique arena to study novel
collective ground states emerging from the electron-electron interaction. One of the intriguing
aspects of these systems is that the strength of the Coulomb interaction can be e�ectively
controlled by changing the density of photoexcited electron-hole pairs through the screening
e�ect, by simply changing the excitation light intensity. Above the exciton condensation
temperature, the change of the photoexcited carriers causes a metal-to-insulator Mott transition
(exciton Mott transition), or crossover, from the insulating exciton gas phase in the low density
regime to the metallic electron-hole plasma in the high density regime, see �g. 1.2.

In order to clarify the mechanism that drives the exciton Mott transition we recall the
argument originally presented by Sir Neville Mott [197] to explain the insulating phase observed
in transition-metal oxides with partially �lled bands [63]. Let us consider an ideal system of
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Figure 1.2: Sketch of the typical phase diagram of a photoexcited semiconductor above the exciton
condensation temperature.

Hydrogen atoms arranged in a d-dimensional cubic lattice of lattice constant a, that can be varied
by an external pressure. Each Hydrogen provides one electron, that can move on the lattice
formed by positively charged protons and is subjected to the Coulomb repulsion of the other
electrons. The electron hopping amplitude depends on the overlap between the s-atomic orbitals,
which, ultimately, is determined by the intersite lattice spacing a. In the atomic regime, when
the lattice constant is so large that the hopping amplitude is vanishing, the Coulomb repulsion
drives the system towards localization and each site is occupied by a single electron. As soon as
the lattice constant becomes �nite, it is clear, even in the Mott insulating phase, that the system
must allow for charge �uctuations around the mean value, implying some doublon and holon, or
it would lose all the hopping energy-gain. In order to describe an insulator, doublons and holons
have to be con�ned in a bound state; otherwise a small electric �eld could induce an electric
current. If we further reduce the lattice constant the density of charge excitations grows and,
eventually, due to the screening of the Coulomb excitations, the doublon-holon bound states
dissociate into a plasma of free carriers, see Fig. 1.3. Thus, the metal-to-insulator Mott transition
can be understood as the transition from an unbound to a bound state of doubly occupied sites
(doublons) and empty sites (holons) induced by the screening of the Coulomb interaction.

The most natural realizations of the Mott-Hubbard physics are strongly correlated oxides.
Yet, an even more idealized experimental setup for a Mott transition is realized in photoexcided
semiconductors above the exciton condensation temperature. In particular, these systems are
characterized by a pure Mott transition which is not accompanied by spatial symmetry breaking,
in contrast with transition-metal oxides where antiferromagnetic order is usually realized. In
this regard, electrons in conduction band and holes in valence one play the role of doublons and
holons excitations, the Mott insulator corresponds to the exciton gas and the correlated metal to
the electron-hole liquid.

In this thesis we tackle this problem using a powerful extension of the Gutzwiller wave
function, named ghost-Gutzwiller wave function, which appears well suited to address some
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b)  Metala)  Mott insulator

Figure 1.3: Left panel shows schematically the Mott insulating phase, where doublons and holons bind
to form "chargeless" states. Right panel, instead, represents the metal, where doublons and holons are
free excitations that hop around the lattice. The transition is driven by the density of charge excitations.

important questions raised by the controversial experimental observations and in general by the
intriguing physics of photoexcited semiconductors. In this perspective we consider a minimal
model that, since the seminal work by Nozières and Schmitt-Rink [213], is believed to capture
the essential physics of the exciton Mott transition, i.e., the half-�lled single-band Hubbard
model at �xed, and large, spin-polarization. Quite surprisingly, despite the half-�lled single-band
Hubbard model has been scrutinized in depth by an incredible number of di�erent state-of-the-
art techniques, including dynamical mean �eld theory and Quantum Monte Carlo variational
approach, yet the nature of the Mott transition at �xed spin-polarization remains controversial.
We will show that this upgraded variational approach substantially improves over the standard
Gutzwiller approximation in the description of magnetized Mott insulator in lattices with large
coordination number, that, in our model, maps into the exciton gas. Our results on the Mott
transition in photoexcited semiconductors, that we present in this thesis, agree with experiments
and allow identifying the key parameter that controls the nature of the transition: the magnitude
of the exciton binding energy. Speci�cally, we �nd that for large exciton binding energies (small
dielectric constant), the exciton Mott transition occurs as a gradual transition, where in the
coexistence region, as the density of electron-hole pairs increases, the fraction of electron-hole
droplets grows continuously till the formation of a �nite spectral width at the Fermi level. Instead,
in the regime of small exciton binding energies (large dielectric constant), the intermediate region
is characterized by bistability with a sharp transition from the exciton gas to the electron-hole
liquid.

1.3 Nonequilibrium Dynamics

Photoexcited semiconductors can be also seen as a paradigmatic and pioneering example of a
novel metastable state, induced by a laser pulse, that provides new informations, complementary
to those attainable by studying the matter at equilibrium [28, 51]. Recent years have seen
enormous experimental progress in preparing, controlling and probing strongly interacting
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Figure 1.4: Schematic set-up of a time resolved pump probe experiment. The pump excite the sample in
an out of equilibrium state. After a delay time ∆t the probe pulse measure the pump-induced changes in
the optical properties of the system.

quantum systems in di�erent nonequilibrium regimes which led to the development of an entire
new �eld of nonequilibrium quantum physics which aims at the control and manipulation
of nonequilibrium matter. Pump-probe experiments, for instance, allow to selectively excite
speci�c degrees of freedom in correlated materials and to disentangle high and low-energy scales
otherwise entangled in single-particle excitations and open the way to create novel metastable
phase, that cannot be reached via thermodynamic transformations. In this experiments, an
ultrafast laser pulse (10-100 fs) is split in two portions; a stronger beam (pump) is used to excite
the sample generating an out of equilibrium state, and a weaker beam (probe) is used to measure
the transient state, see Fig. 1.4. Monitoring the changes in the optical constants as a function of
the delay time yields informations about the relaxation of the system towards the steady-state.
Theoretically, a popular protocol to study the nonequilibrium evolution of closed quantum
systems consists of the so-called quantum quench [45]. Here the system is initially, at time
t = 0, prepared in the many-body ground state |Ψi〉 of some Hamiltonian Hi. For times t > 0 the
system evolves unitarily according to the dynamics given by a di�erent Hamiltonian H f , which
may be related to Hi by varying a parameter such as an external �eld.

From a theoretical perspective the amount of information, needed to describe the evolution
of the ground state of a strongly correlated system, grows exponentially [8] with time and
makes the description of the out of equilibrium evolution an extremely challenging problem.
Thus, state of the art numerical methods, such as the time-dependent density matrix renormal-
ization group (tDMRG) and time-dependent DMFT, can only access the short-time dynamics
and their predictions are limitated to the transient dynamic regime at least in their current
implementations.

Motivated by the remarkable improvement observed by introducing subsidiary degrees of
freedom in the Gutzwiller wave function at equilibrium, in this thesis we extend the ghost-
Gutzwiller method to study the out of equilibrium evolution of strongly correlated systems
[106]. Di�erently from the equilibrium case, where the saddle-point is determined by optimizing
the variational energy, the variational principle for the nonequilibrium evolution, also known
as the Dirac-Frenkel principle, is obtained by requiring the stationarity of the time-dependent
action. This will allow us to cast the time-dependent many-body Schrödinger equation into
a simpler, yet non trivial, one. We formulate the method for a generic multi-band Hubbard
model. In the out of equilibrium dynamics the subsidiary degrees of freedom induces dephasing
mechanism that reduces substantially the coherent oscillations observed in the conventional
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Figure 1.5: Red line shows the ground state energy of a magnetic impurity embedded in a metallic host,
measured respect atomic con�guration where the magnetic moment on the impurity site is free. The
system gain energy in forming a singlet bound state between the spin density of the contacts and the
magnetic moment on the quantum dot.

Gutzwiller technique. In particular we will show that the addition of just 2 subsidiary fermions
in the Gutzwiller wave function (N = 3) provides a more realistic description of the evolution
of the charge and quasiparticles degrees of freedom, that much resembles the more accurate
results obtained by DMFT [72, 73]. Despite being closer to DMFT results, the method still lacks
convergence toward a stationary state in the limit of large time. In this respect, the number
of subsidiary degrees of freedom N appears to have a crucial role and we believe that only
in the limit of N � 1 relaxation towards a steady-state can be observed. Our approach is
richer than the conventional time-dependent Gutzwiller dynamics, it can be easily applied to
realistic materials and shows noteworthy agreement with nonequilibrium DMFT results. Thus,
the ghost-Gutzwiller represents a computationally cheap alternative to DMFT, which, in the
time-dependent case, becomes an extremely demanding method.

1.4 Transport in quantum dots
While in bulk materials the electron-electron interaction can be screened by the large concentra-
tion of carriers, the behavior of quantum dots is greatly a�ected by the large Coulomb repulsion
experienced by localized electrons. In these interesting systems the e�ect of interaction gives
rise to the Kondo e�ect, that can be considered the simplest collective phenomenon due to strong
correlations. Originally observed in magnetic alloys [17, 153], this e�ect arises in quantum
dots with an odd number of electrons, where the ground state of the isolated dot is typically
a spin doublet1. Connecting the dot to external leads induces a novel state. In particular, the
tunnel-coupling amplitude between the contacts and the quantum dot lifts the spin-doublet
degeneracy and creates a collective state where, as displayed in Fig. 1.5, the electronic spin
density of the contacts screens the localized magnetic moment2. In quantum dots the Kondo
e�ect is manifested by the unitary conductance observed by measuring the charge-current
characteristic of the junction, that is composed by two metallic contacts coupled to a quantum
dot (N-QD-N), see Fig. 1.6. The state of art technique to actually see the screening of the
impurity magnetic moment below the Kondo temperature TK is the Numerical Renormalization

1A minimal model that allows to describe the physics of quantum dot is the Anderson impurity model.
2The energy splitting of the spin-doublet is controlled by the Kondo temperature TK , a collective energy scale

that measures the energy gain in forming the singlet state between the localized magnetic moment and the spin
density of the leads.
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Group method (NRG). The method developed by K.G. Wilson in the early 1970’s [287] allows to
understand the Kondo and related e�ects at equilibrium.

Figure 1.6: Top panel: charge conductance as a func-
tion of the barrier gate voltage. Di�erent lines cor-
respond to di�erent values of the temperature, in
particular the temperature increases from the blue
to the red line. At low temperature the conductance
approaches the unitary limit, G = 2e2/h, in corre-
spondence of an half-integer number of electrons
in the quantum dot. Bottom panel: di�erential con-
ductance by applying bias between source and drain
contacts. As the temperature increases the zero-bias
anomaly is suppressed and disappears for T � TK .
Adapted from [276].

Di�erently from metallic alloys, nanoscale
quantum dots can be driven out of equilibrium
by applying, for instance, a time-dependent
gate voltage to the quantum dot or a charge
bias to source and drain contacts. From a theo-
retical perspective, the interplay between the
time dynamics and strong correlation e�ects
makes the description the nonequilibrium dy-
namics of quantum dots extremely challeng-
ing. In order to address this problem many
innovative approaches have been developed.
However, these methods are often limited to
study the short-time evolution minimal mod-
els, such as the Anderson impurity models
or Kondo models, and hence they become
intractable for more realistic situations. To
ful�ll the need of simple and �exible meth-
ods, in this thesis, we extend a recently de-
veloped slave-spin technique [107] to study
the out of equilibrium dynamics of quantum
dots [105]. Remarkably, we will show that
the time-dependent evolution of these sys-
tems can be described in the slave-spin repre-
sentation without any constraint. The advan-
tages with respect to other slave-particles are
twofold. On one side we reduce the number
of dynamical equations. On the other side, we
avoid the mean-�eld mixing of the physical
and unphysical subspaces.

To highlight the importance of our formu-
lation we apply the method to study nonequi-
librium transport properties of a single-level
Anderson impurity model. In the steady-state
regime a simple self-consistent Hartree-Fock
calculation is able to show not only the zero-
bias anomaly but also the expected peak at
bias of the order of the on-site Coulomb re-
pulsion ∼ U . Furthermore, we study the time
evolution induced by a time-dependent voltage applied to the metallic contacts. After a transient
regime ∼ TK , the dynamic relaxes to a nonequilibrium steady-state characterized by a �nite
current through the quantum dot.

Finally, we consider the problem of two quantum dots coupled via a tunnel amplitude. We
devise a slave-spin mapping to write the Hamiltonian of the system in the enlarged Hilbert
space without any need of local constraint. Although the slave-spin representation allows us to
evidence some distinctive features of the model, a simple mean-�eld calculation predicts a �rst
order transition instead of the expected crossover from the Kondo screened phase to the singlet
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Figure 1.7: The edge of a semi-in�nite superconductive nanowire is tunnel-coupled with an interacting
dot. To measure in�uence on the current-voltage characteristic of the MZM, located at the edge of the
nanowire, we couple the system to L and R metallic contacts.

one (localized magnetic moments bind to form a singlet state and decouple from the contacts).

1.5 Transport across a Majorana-Anderson junction

One of the most intriguing collective behavior that is realized in Condensed Matter Physics is
the emergence of edge states at the boundary of topological materials. An example of these
striking phenomena is the appearance of Majorana zero modes (MZM) at the edge of a 1D
p-wave topological superconductor, that was originally predicted by Kitaev in Ref. [148]. Strong
evidence suggests MZMs have been observed in experiments on proximitized semiconductor
nanowires [199] and ferromagnetic chains [128]. Stimulated by the promising application of the
MZMs as topologically protected qubits for quantum computations [10, 11, 204], the past few
years have seen a large number of theoretical proposal exploiting their non-Abelian nature to
produce intriguing phenomena, an outstanding example is the topological Kondo e�ect [31].

Recently, a new direction has emerged which explores the interplay between pure Majorana
physics and electronic correlations. The characterization of phase of matter due to strong
Majorana-Majorana interactions predicts novel phenomena that connects Condensed Matter sys-
tems to phenomena usually observed in High Energy Theory, i.e. Sachdev-Ye-Kitaev model can
be used to describe black-holes. Motivated by theoretical studies [258] and recent experiments
[66, 293], we consider electronic transport through a novel class of Hamiltonian models, named
Majorana-Anderson impurity models, that consist of a semi-in�nite topological superconductor
tunnel-coupled with an interacting quantum dot that can be used as a spectrometer to detect the
topological properties of the nanowire. By coupling the dot to two metallic contacts we compute
the current and the shot noise across the junction which is displayed in Fig. 1.7. Our work
shows that the presence of the MZM is manifested by an half-integer zero-bias conductance
G0 = e2/2h. Di�erently from the in-gap Yu-Shiba-Rosinov-like bound states, the MZM signature
in the conductance is robust and is not a�ected by the Coulomb interaction on the quantum
dot. Moreover, we point out that the topological region is characterized by a Fano factor F = 0,
induced by the tunnel-coupling with the MZM. Combined measurements of the conductance
and the shot noise allow to detect the topological properties of the superconducting wire and
to distinguish the low-energy contribution of a MZM from other possible sources of zero-bias
anomaly. We argue that the predicted behavior of the Fano factor persist even for more realistic
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models, that include a more detailed description of the quantum dot and the surrounding leads.

1.6 Plan of the thesis
After introductory Sections, where we will introduce the Gutzwiller wave function and slave-
particle techniques with a particular emphasis on the relations between the approaches, we will
present in Chapters 3 and 6 the original theoretical methods which have been developed in our
work, the ghost-Gutzwiller variational wave function and the slave-spin technique. For details
we refer to Appendixes A and C. Additional results of this thesis will be presented in Chapters 4,
5, 7 and 8.

In Chapter 4 we will study photoexcited semiconductors by drawing their phase diagram
in the full Eex − ne-h plane (Exciton binding energy vs. density of electron-hole pairs), with
particular interest in the intermediate regime where the exciton Mott transition occurs. This
way we will highlight the important role of exciton binding energy in determining the character
of the Mott transition. The evaluation of the single-particle spectral function allows to show the
presence of the characteristic excitonic peak, below the bottom of the conduction band, that
persists even in the electron-hole liquid phase. Moreover, we �nd that the e�ective mass of the
unbound electrons and holes is quite large, as is clear from the narrow width of the coherent peak
at the chemical potential. Both of these features have been observed experimentally. Additional
details on the physics of photoexcited can be found in Appendix B.

In Chapter 5 we present the time-dependent ghost-Gutzwiller variational approach. After a
�rst technical Section, where we formulate the nonequilibrium variational approach for multi-
band Hubbard models in the absence of superconductive correlations, we apply the method to
the interaction quench dynamics of the single-band Hubbard model. Numerical calculations
show a remarkable agreement with more accurate DMFT results.

In Chapter 7 we discuss the extension of the novel formulation of slave-spin technique to
nonequilibrium dynamics, a method that allows to study the out of equilibrium dynamics of
quantum dots. Notably, the out of equilibrium dynamics of the quantum dot can be obtained in
the slave-spin representation without any constraint. Finally we extend the slave-spin mapping
to the case of two impurities coupled via a tunnel-coupling amplitude. More details and explicit
calculations are left to Appendix D.

In Chapter 8 we study charge transport in a new class of Hamiltonian, named Majorana-
Anderson Hamiltonian. These models are not only interesting from an academic point of view
but can be realized experimentally. Our aim is to present a complete characterization of the
low-energy charge transport properties induced by the presence of a MZM at the edge of a
superconductive nanowire. Transport measurements allow to detect the topological properties of
the superconductive nanowire and, consequently, to reconstruct the topological phase diagram.
The explicit expression of the scattering states, average current and shot noise can be found in
Appendix E.



2
Overview on the Gutzwiller wave function

and slave-particle theories

In this Chapter we provide an overview of approaches based on the Gutzwiller wave function and
slave-particle theories with particular emphasis on the parallelism between these two di�erent
methods. Our aim is not only to give a basic introduction to these techniques but also to show their
weaknesses and strengths that, in part, are going to be successfully overcome in this work. We
provide some crucial considerations that are going to be develop in Chapter 3 and 6, where we report
the novel formulation of the Gutzwiller wave function and the constraint-free slave-spin theory.

2.1 The Gutzwiller wave function
A simple wave function that allows to describe correlations e�ect beyond the independent
particle methods (Hartree Fock, Density Functional Theory etc.) was conceived by M. Gutzwiller
[111, 112] to describe the ferromagnetism in transition metals. The Gutzwiller wave function
is constructed starting from the non-interacting ground state |Ψ∗〉 and then applying a local
projector P that suppresses the weight of con�gurations with doubly occupied sites:

|ΨG〉 =
∏

i

P(i)|Ψ∗〉. (2.1)

This wave function can then be used within the variational principle, where both |Ψ∗〉 and P(i)
are determined minimizing the expectation value of the Hamiltonian. Despite the simplicity
of the wave function (2.1), the aforementioned average value on a �nite dimensional lattice
model cannot be computed exactly and one has to resort to a numerical evaluation or to
further approximations. The latter direction has been taken by Gutzwiller, who gave a classical
combinatorial estimation of the expectation value of the lattice kinetic energy and Coulomb
correlation energy on the quantum wave function (2.1) (Gutzwiller approximation).

Remarkably, the simple Gutzwiller approximation, used to describe the metal-insulator
transition in the half-�lled single-band Hubbard model [111, 119, 140], predicts that the Mott-
Hubbard transition is signalized by a diverging e�ective electron mass and a vanishing spectral
weight at the Fermi level. This prediction, that is also known as Brinkman-Rice scenario [38], is

11
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qualitatively con�rmed by DMFT, the exact theory in in�nite dimensions d → ∞. On the other
hand, the numerical optimization of the Gutzwiller wave function on a �nite dimensional lattice
never stabilizes a genuine Mott insulator, i.e. an insulator that does not break any symmetry. The
explanation of these contrasting results relies on the following considerations, that are based on
Mott original picture of a correlation-driven insulator [197]. At half-�lling, there is, on average,
one particle per site and density excitations are represented by doublons (doubly-occupied
sites) and holons (empty sites). In the non-interacting state |Ψ∗〉, these excitations are free
to move and then responsible for the conductivity (we are imagining the lattice as a positive
background so that a doublon (holon) has charge -1 (+1)). The e�ect of the local projector is to
penalize the formation of such excitations; however, once created, doublons and holons are no
longer correlated, thus being free to move independently. Therefore, as long as the value of the
electron-electron repulsion is �nite, the system is characterized by a non vanishing the density
of charge �uctuations and the ground state is metallic.

In order to observe the Mott insulator one has to introduce spatial correlations [47], neglected
in the Gutzwiller wave function (2.1), among doublons and holons. This can be achieved by the
following generalization:

P = exp

−g
∑

i

(ni − 1)2

→ J = exp

−∑
i, j

vi, j

2
(ni − 1)(n j − 1)

 ,
where J is the so-called Jastrow factor.

At this point one may think that the wave function (2.1) is not a good variational Ansatz to
describe the Mott transition. However, we observe that in lattices with in�nite coordination
number the e�ect of the non-local Jastrow factor disappears. Indeed, the variational coe�cients
have to be rescaled for the lattice coordination number Z, and

lim
Z→∞

vi, j

Zdi j
→ 0,

where di j is the Manhattan distance on the lattice. Thus, only in that limit wave function like (3.1)
can faithfully describe a Mott insulator. Furthermore, Metzner and Vollhardt [187] showed that
right in the limit Z→ +∞ the Gutzwiller approximation provides exact expressions of average
values and becomes a variational wave function approach. However, the same expressions
for expectation values are typically used also for �nite-dimensional lattices, hence the name
Gutzwiller approximation.

Moreover, the development of DMFT [94, 95] has brought novel insights in the physical
meaning of the Gutzwiller approximation. The comparison with DMFT, which is exact in
the limit of in�nite coordination number, clari�es that the Gutzwiller wave function provides
a variational prescription to determine an approximate low-frequency behavior of the [165]
self-energy, that reads:

Σ(ω) ' Σ(0) + ω

(
1 −

1
Z

)
, (2.2)

hence describing a Fermi liquid with quasiparticle residue Z. On the other hand, the Mott
insulator is described with the conventional Gutzwiller wave function as a featureless collection
of independent sites that corresponds to the limit of in�nite Coulomb repulsion among the
electrons. This is a major limitation of the method when compared with DMFT.

Notably, it is possible to go beyond the conventional Gutzwiller wave function by introducing
auxiliary fermionic degree of freedom in the on-site projector P(i), and, correspondingly, in the
Slater determinant |Ψ∗〉 [109, 163]. In brief, the novel wave function, named ghost-Gutzwiller
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wave function, provides an accurate description of both the low-energy quasiparticles and
the incoherent high-frequency Hubbard bands, and allows us to describe faithfully the Mott
insulating phase. We will introduce the ghost-Gutzwiller wave function in Chapter 3, where we
will present a detailed derivation of the method and then consider several interesting applications.

Motivated by experimental advances in driving and probing strongly correlated electron
systems out of equilibrium, the standard Gutzwiller wave function has also been applied to
study the real time dynamics of closed quantum systems in many circumstances, for a detailed
review we refer to Ref. [81]. The method allows to approximate in a simple way the Schrödinger
equation of the complicated many-body problem with a set of coupled equations, that describe
the evolution of the on-site projector and the Slater determinant wave function. In particular,
the time-dependent equations are obtained by requiring the stationarity of the action with
respect to the time-dependent variational parameters. The method, originally applied to the
single-band Hubbard model [247, 248], shows remarkable agreement with more accurate DMFT
results [72, 73], which justi�es the use of the Gutzwiller wave function as a valid alternative to
more numerically expensive approaches like DMFT.

Within this approach it is possible to follow the evolution of both the low-energy quasiparti-
cle, described by the non-interacting Slater determinant, and the charge degrees of freedom that
are encoded in the parameters of the local projector. The coupling between these degrees of
freedom is treated in a mean-�eld fashion and, therefore, the method lacks relaxation mecha-
nisms that are responsible for driving the system toward a stationary regime. Encouraged by
the remarkable improvement in the equilibrium calculations we present the generalization of
the ghost-Gutzwiller variational wave function to the time-dependent evolution. A detailed
discussion is left to Chapter 5.

2.2 Slave-particle approaches
Another class of widely employed methods to study strongly correlated electron systems are
slave-particles techniques. Originally formulated as slave-bosons, they have been pionereed
in the context of magnetic impurities in metals [25, 58, 206, 232], and applied to study the
Mott transition at half-�lling [156] and high-Tc superconductors in doped Mott insulators
[125, 168]. More recently slave-particles have been extended to new implementations such as
rotationally invariant slave-boson [126, 166], slave-spin [65, 107, 120, 240] and slave-rotor [87].
These approaches are based on the idea that, in a strongly correlated system, the electrons are
"dressed" by a cloud of spin and density excitations of the medium. Formally, this qualitative
idea is implemented by rewriting the original electron operators in terms of pseudofermion
and bosonic operators that encode charge �uctuations. For instance, in the original slave-boson
formulation by Barnes [25], the electrons ↑ and ↓ annihilation dσ operators are replaced by:

d
↑
→ f †

↓
b + e† f

↑
,

d
↓
→ e† f

↓
− f †

↑
b ,

(2.3)

where b and e annihilate doublon and holon bosonic excitations, respectively, while fσ are
fermionic operators, that preserve the fermionic statistics of the original electrons. As conse-
quence of the bosonic nature of b and e operator, by performing the mapping, we add an ∞
number of additional con�gurations. The physical subspace H of the enlarged Hilbert space
H∗ is de�ned by the operatorial condition:

Q = b† b + e† e +
∑
σ

f †σ fσ = 1. (2.4)
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Figure 2.1: Schematic representation of the slave-spin mapping. Whilst the pseudofermion describes
low-energy fermionic excitations, the Ising spin variable σσσ encodes the charge �uctuations with charac-
teristic energy scale given by the on-site Coulomb repulsion ∼ U . Notice that we consider only those
con�gurations of H∗ belonging to the physical subspace H .

In the physical subspace, Eq. (2.3) becomes an identity and the model Hamiltonian H∗ is
equivalent to the original one, H. The previous representation Eq. (2.3), that looks at �rst sight
more cumbersome, allows to encode valence �uctuations in terms of the number operator of
bosonic degrees of freedom: n↑ n↓ = b† b and (n↑ − 1)(n↓ − 1) = e† e. Within this convenient
formulation the low-energy coherent excitations ( fσ pseudofermion) are disentangled from the
incoherent background (e and b bosons), and a simple self-consistent mean-�eld calculation
allows to describe non-perturbative e�ects, that are hard to obtain solving the original fermionic
model with conventional approaches.

We observe that the slave-boson theory (2.3) is invariant under the U(1) transformation:

fσ → fσ eiϕ,

e→ e eiϕ,

b→ b eiϕ.

(2.5)

A crucial problem with the mean �eld in slave-particle theories is that the constraint (2.4) is only
satis�ed on average, which implies an unphysical gauge-symmetry breaking, i.e., mean-�eld
solutions mixing the physical subspace with the nonphysical one. For instance, in the case of
the slave-bosons, we observe that the mean-�eld solution is characterized by 〈e〉, 〈d〉 , 0, that
breaks the U(1) gauge symmetry (2.5). This result is an artifact of the mean-�eld approximation.
Gauge symmetry is restored beyond the saddle-point approximation as discussed in Ref. [232].

In this thesis, this problem is successfully overcome by introducing a novel constraint-
free slave-spin mapping. In its simplest formulation the slave-spin theory is based on the
correspondence:

dσ → σx fσ

where σx is the x component of a spin 1/2 operator and fσ is a fermionic operator, see Fig.
2.1 for a schematic representation. As we discuss in Section 6, within our slave-spin theory
a generic single-level Anderson impurity model can be mapped, without any constraint, onto
a resonant level model coupled to two Ising spins, or just one in the simpler case when the
hybridization with the bath is particle-hole symmetric. The result extends straightforwardly
to the multi-orbital Anderson impurity models, if the electron interaction does not include
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Coulomb exchange terms. Thus, under this assumption, the multi-orbital Anderson impurity
model can be written as N resonant level model coupled with 2N Ising spin, where N is the
number of orbitals, without any need of local constraints. The slave-spin formulation posses a
local Z2 × · · · × Z2 = (Z2)2N gauge symmetry, which, depending on the model at hand, can be
spontaneously broken at zero temperature. It is important to remark that here the symmetry
breaking is not an artifact of the mean-�eld approximation but a real feature of the model [26].

Furthermore, we will also show that single-particle Green’s functions of the physical electron
can be calculated without any constraints. Considering the single-Anderson impurity model, we
�nd that the mean-�eld decoupling of the pseudofermion is able to reproduce quite accurately
the magnetic properties of the model even deep inside the large-U Kondo regime and it improves
considerably the results obtained by conventional slave-boson mean-�eld theory.

The slave-spin theory can be readily extended in the framework of the Keldysh Green’s
function to deal with transport properties in quantum dots. This application will be discussed in
details in Chapter 7.

2.3 Connection between the approaches
In spite of their formal di�erence, the conventional Gutzwiller approximation and slave-particles
theories are intimately related. Already in Ref. [156], Kotliar and Ruckenstein pointed out
that the saddle-point of the slave-boson action coincide with the results obtained with the
conventional Gutzwiller wave function. However, they observe that, as a consequence of the
U(1) gauge symmetry, within the slave-boson formulation there are many Hamiltonians that
lead to the same spectrum as the original model when restricted to the physical subspace. This
arbitrariness presents no di�culties as long as the constraints are handled exactly. However,
the mean-�eld decoupling, that treats the constraint on average, is sensitive to the precise
choice of the slave-boson Hamiltonian. In any practical calculation the ambiguity is removed by
requiring that the saddle-point solution agrees with the expected results in the uncorrelated
limit (vanishing on-site interaction U = 0) and in the atomic limit (vanishing hopping amplitude
between di�erent sites t = 0).

Di�erently from the slave-boson technique, slave-spin theory is not a�ected by the aferomen-
tioned ambiguity and the saddle-point of the slave-spin action coincides with the conventional
Gutzwiller in the limit of lattices with in�nite coordination. Considering the simple case of the
single-band Hubbard model, it is interesting to observe that in this limit the hopping renormal-
ization amplitude 〈σx

iσ
x
j〉 goes like:

〈σx
iσ

x
j〉 → 〈σ

x〉2 , 0

in the Z2 symmetry broken phase, that corresponds to the metallic solution. On the contrary,
when the symmetry is restored, then 〈σx〉 = 0, that corresponds to the Mott insulating phase
[121]. We notice that 〈σx〉2 coincide with the quasiparticle residue Z1, and at mean-�eld level
the slave-spin theory gives the same result obtained with the Gutzwiller approximation. We
conclude by observing that a �nite value of 〈σx〉 is possible in spite of Elitzur’s theorem because
we are working in the limit of in�nite lattice coordination [183]. The same consideration applies
to the Anderson impurity model, where a �nite 〈σx〉 signals the formation of the Kondo singlet
between the localized magnetic moment and the metallic host.

1The quasiparticle residue Z quanti�es the amount of coherent quasiparticle excitations in an interacting Fermi
liquid. In metals Z can be computed experimentally from measurements of the speci�c heat. For more details we
refer to the original work by Landau [165] and classic books on many-body theory [2, 211].
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We observe that the novel Gutzwiller wave function, presented in Chapter 3, does not
correspond to a saddle-point of any current formulation of the slave-particle theory. As we
will see the method accounts for the charge �uctuations and, in order to do so, introduces
more than one pseudofermion degree of freedom for each physical orbital. Di�erently from
other slave-particle approaches, our slave-spin theory for the Anderson impurity models is
free by any projection on the physical subspace of the enlarged Hilbert space. This feature
avoids the mean-�eld mixing of the physical subspace and the unphysical one that a�ects other
slave-particles theories, where the constraints have to be implemented explicitly. Consequently,
our saddle-point is more accurate than conventional Gutzwiller wave function results [252]
and provides a qualitatively good description of the magnetic properties of the impurity even
deep inside the large-U Kondo regime. Moreover, the technique allows, by performing a simple
self-consistent calculation, us to reproduce not only the low-energy spectral properties but also
the high-energy charge-�uctuation peaks. We will discuss in detail these results in Chapter 6.



3
Beyond the Gutzwiller wave function: theory

and relevant applications

In this chapter we present a very powerful variational technique that improves the Gutzwiller
approximation by adding N auxiliary degrees of freedom. We formulate the method for a generic
multi-band lattice model, neglecting superconducting correlations. The additional degrees of freedom
allow describing not only the low-energy quasiparticles but also the high-energy charge �uctuations,
which are neglected in the conventional Gutzwiller wave function. To highlight the new features of
the method we apply the variational approach to the single-orbital Anderson impurity and to the
single-band lattice Hubbard model.

3.1 Introduction
A simple approach that allows us to describe strong correlations in lattice models of interacting
electrons is the Gutzwiller approximation. In this Chapter we go beyond the simple Gutzwiller
wave function, presented in Section 2.1, introducing subsidiary fermionic degrees of freedom
both in the local projector and in the Slater determinant. For the sake of clarity we remind that
the Gutzwiller wave functions reads:

|ΨG〉 =
∏

i

P(i)|Ψ∗〉 (3.1)

where |Ψ∗〉 is a variational Slater determinant, and P(i) a linear operator that acts on the local
Hilbert space at site i and depends on a set of variational parameters. As already explained in
Section 2.1, the wave function (3.1) is a good variational Ansatz in the limit of large coordination,
that is the limit we consider hereafter.

The Gutzwiller approximation is generally able to describe only the low-lying quasiparticle
excitations, and for this reason it becomes a very poor approximation in the Mott regime where
the number of coherent quasiparticle excitation is vanishing and the quantum dynamics is
determined by the spin degrees of freedom and incoherent charge �uctuations. A recent work
[163] pointed out a novel class of variational Gutzwiller wave functions, named ghost-Gutzwiller
wave functions (g-GWs), which is able to describe not only the low-frequency behavior but also
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to give a faithful representation of the high-frequency Hubbard bands characteristic for the Mott
insulator. The crucial ingredient that enriches the Gutzwiller description of strongly interacting
models lyes in the decomposition of the physical electrons in terms of auxiliary fermionic
degrees of freedom, which is performed by de�ning in Eq. (3.1) both the Slater determinant
|Ψ∗〉 and the local projector P(i) in an enlarged Hilbert space. Hence, the optimization of the
g-GW energy determines the redistribution, induced by the electron-electron interaction, of the
spectral weight to di�erent energy scales. The trick of adding subsidiary degrees of freedom to
improve the accuracy of a variational wave function has a long history that goes back to the
shadow wave functions for 4He [278], and is still very alive, as testi�ed by the great interest
in matrix-product states and tensor networks [217, 236], or, more recently, in neural-network
quantum states [50]. In this respect the parameter N, that de�nes the number of subsidiary
fermionic degrees of freedom, can be considered as a counterpart of the the bond dimension in
matrix product states and somehow is related to the amount of entanglement in the variational
wave function (3.1). This point of view poses a question about the limit of large number of
subsidiary degrees of freedom, N � 1, as to whether the variational g-GW solution approaches
the exact DMFT result [95]. To clarify the connection between these two methods we believe
that a detailed analysis of the g-GW solution as a function of N will be necessary.

In the next Section we introduce the g-GW for the ground state calculations in detail by
considering the generic case of a multi-band Hubbard model, while neglecting superconductive
correlations. After a brief introduction on the method we will focus on all the new features that
we have developed and that considerably improve the Gutzwiller approximation. The extension
of the method to the out of equilibrium dynamics of strongly correlated electron systems is left
to Chapter 5.

3.2 The ghost-Gutzwillerwave function for amulti-orbital
model

Let us consider the general tight-binding multi-orbital Hubbard model:

H = −
∑

i j

2M∑
αβ=1

d†iα tαβi j
√

Z
d jβ + H.c.

 +
∑

i

Hi (3.2)

where the operator d†iα creates and d jβ annihilates an electron at site i and j, respectively, and
indices α and β denote single particle states and stand both for di�erent orbital (assuming M
orbitals) and spin (↑ and ↓) degrees of freedom. The �rst term accounts for the kinetic energy
where tαβi j represents the hopping amplitude between the two sites i and j, and Z the lattice
coordination number. The second term is associated to a purely local two-body interaction Hi.

The g-GW di�ers from the standard Gutzwiller wave function by the addition of subsidiary
degrees of freedom. In order to provide a variational description of both low- and high-energy
features of strongly interacting electron systems the Slater determinant |Ψ∗〉 in Eq. (3.1) is taken
as the ground state of a tight-binding Hamiltonian H∗ de�ned in an enlarged Hilbert space with
2N ≥ 2M spinful orbitals, while

Pi =
∑
Γγ

λΓγ(i)|Γi〉〈γi| (3.3)

is a linear map at site i, parametrized by the variational parameters λΓγ(i), from the local 2N-
orbital Hilbert space, spanned by the states |γi〉, to the physical orbital local space, spanned
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instead by |Γi〉. In what follows, we shall denote as cia, a = 1, · · · , 2N, the fermionic operators,
respectively, of the N spinful orbitals per each site i in the enlarged Hilbert space, while diα,
α = 1, · · · , 2M, denote the operator of the physical spinful orbitals. We note that for N = M the
approach reduces to the conventional Gutzwiller wave function [111, 112]. Both P(i) and |Ψ∗〉
have to be determined variationally to minimize the total energy:

E [ΨG] =
〈ΨG|H|ΨG〉

〈ΨG|ΨG〉
, (3.4)

where E [ΨG] > Egs is an upper bound to the ground state energy Egs.
Analogously to the conventional Gutzwiller, expectation values of the local and nonlocal

operators in the g-GW (3.1) can be computed analytically in lattices with in�nite coordination
provided the following constraints are satis�ed:

〈Ψ∗|P
†(i)P(i)|Ψ∗〉 = 1,

〈Ψ∗|P
†(i)P(i) c†ia cib|Ψ∗〉 = 〈Ψ∗|c

†

iacib|Ψ∗〉 ≡ ∆ab(i),
(3.5)

where ∆ab(i) is the single-particle density matrix and the fermionic operators cia belong to the
enlarged Hilbert space, a = 1, · · · , 2N. Constraints in Eq. (3.5) simplify considerably all the
calculations in in�nite lattice-coordination limit, and allow to compute explicitly expectation
values. Instead of proving this well-known result, that can be found in the review [81], in the
following we focus on a key point that allows rewriting the variational parameters in terms
of the amplitudes of an impurity wave function and clari�es the connection between g-GW
and DMFT [162]. Before presenting the mapping, we brie�y report the expressions of average
quantities in terms of the variational parameters |Ψ∗〉 and λΓγ(i).

3.2.1 The expectation values in in�nite lattice coordination
As already discussed in the previous Section 3.2, in the limit of in�nite coordination the average
values of the local and non-local operators can be computed exactly if the two constraints in Eq.
(3.5) are satis�ed.

Local operators; given a generic local many-body bosonic1 operator Oi acting on site i, its
expectation value on the Gutzwiller wave function reads:

〈ΨG|Oi|ΨG〉 = 〈Ψ∗|P
†(i)OiP(i)|Ψ∗〉. (3.6)

Non-local operator; the average value of a non-local bosonic operator Oi j reads:

〈ΨG|Oi j|ΨG〉 = 〈Ψ∗|P
†(i)P†( j)Oi jP( j)P(i)|Ψ∗〉. (3.7)

Particularly interesting is the average value of the inter-site single-particle density operator
d†iαd jβ which appears in the hopping Hamiltonian:

〈Ψ∗|P
†(i)d†iαP(i)P†( j)d jβP( j)|Ψ∗〉 =

2N∑
ab=1

R†aα(i)Rβb( j)〈Ψ∗|c
†

iac jb|Ψ∗〉, (3.8)

where the wave function renormalization R(i), which describes the redistribution of the spectral
weight induced by correlations, is a rectangular matrix Rαa(i) composed by 2N columns a =

1Many-body bosonic operators are composed by an even number of fermionic ones.
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1, · · · , 2N and 2M rows α = 1, · · · , 2M. In other words, in in�nite coordination lattices the
action of the on-site projector is to renormalize the creation and annihilation operators:

P†(i)diαP(i)→
2N∑
a=1

Rαa(i)cia, (3.9)

where, if N > M, the annihilation of a physical fermion diα corresponds to destroy a cloud of
auxiliary fermions cia in the extended Hilbert space. We conclude by noticing that the wave
function renormalization matrix is obtained by solving the algebraic equation:

〈Ψ∗|c
†

ibP
†(i)diαP(i)|Ψ∗〉 =

2N∑
c=1

Rαc(i)∆bc(i), (3.10)

where the local single-particle density matrix ∆bc(i) has been introduced in (3.5).
Following Ref. [80], we introduce the parametrization:

φ(i)Γγ =
∑
η

λΓη(i)
( √
P0(i)

)
ηγ
, (3.11)

where P0(i) is the uncorrelated local probability distribution, de�ned as:

P0(i)γη = 〈Ψ∗|ηi〉〈γi|Ψ∗〉, (3.12)

where γ and η are local con�gurations belonging to the enlarged Hilbert space. We notice that in
the conventional Gutzwiller variational approach φ(i)Γγ is equivalent to the slave-boson saddle-
point value within the rotationally invariant slave-bosons (RISB) [126, 166], which extends the
original Kotliar-Ruckenstein scheme [156]. In the context of the g-GW the correspondence
between φ(i) and the slave-bosons suggests a promising extension of the Kotliar-Ruckenstein
approach that involves an enlarged number of bosonic degrees of freedom as well as additional
fermionic ones. The parametrization in Eq. (3.11) allows writing expectation values in a
convenient form. In terms of φ(i)Γγ the Gutzwiller constraints read:

Tr
(
φ†(i) · φ(i)

)
= 1,

Tr
(
φ†(i) · φ(i) ·C†ia ·Cib

)
= ∆ab(i),

(3.13)

where · is the ordinary matrix product, Cia is the matrix representation of the fermionic operator
cia in the enlarged Fock space:

(Cia)γη ≡ 〈γi|cia|ηi〉. (3.14)
The expectation value of a bosonic local operator Oi (3.6) is:

〈Ψ∗|P
†(i)OiP(i)|Ψ∗〉 = Tr

(
φ†(i) · Oi · φ(i)

)
, (3.15)

where the matrix Oi is de�ned as

(Oi)ΓΩ = 〈Γi|Oi|Ωi〉, (3.16)

with |Γi〉 and |Ωi〉 Fock states of the physical Hilbert space. Finally, Eq. (3.10) becomes:

Tr
( √
P0(i) ·C†ib ·

√
P0(i)−1 · φ†(i) · Diα · φ(i)

)
=

2N∑
c=1

Rαc(i) ∆bc(i) (3.17)
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whose solution is
R(i) = Q(i) · S (i), (3.18)

where Q(i) is a 2M × 2N matrix:

Qαa(i) = Tr
(
C†ia · φ

†(i) · Diα · φ(i)
)

(3.19)

and S (i) a 2N × 2N one:
S T (i) =

[ √
∆(i) · (1 − ∆(i))

]−1
. (3.20)

Combining the results in Eqs. (3.6) and (3.8) with the parametrization in Eq. (3.11) of
the Gutzwiller projector, we readily obtain the variational g-GW energy for the multi-orbital
Hubbard model (3.2):

E
[
φ(i),Ψ∗

]
=

∑
i

Tr
(
φ†(i) · Hi · φ(i)

)
+ 〈Ψ∗|H∗|Ψ∗〉, (3.21)

where H∗ is the quasiparticle Hamiltonian that reads:

H∗ = −
∑

i j

2N∑
ab=1

2M∑
αβ=1

c†ia R†aα(i)
tαβi j
√

Z
Rβb( j) c jb + H.c.

 . (3.22)

The g-GW ground state wave function is obtained by minimizing E
[
φ(i),Ψ∗

] with respect to the
variational parameters φ(i) and |Ψ∗〉 under the conditions in Eq. (3.13). To this aim we introduce
a convenient mapping of the variational parameters φ(i)Γγ into the amplitudes of an embedded
impurity model ψ(i; Γ, γ).

3.2.2 Mapping to the embedded impurity model
The space of 22M × 22N matrices φ(i) can be conveniently mapped into an embedded impurity
model, where diα plays the role of the impurity while cia is one of the bath levels. To this aim we
introduce the impurity wave function

|ψ(i)〉 =
∑
Γγ

eiπNγ(Nγ−1)/2φ(i)ΓγUPH|Γi〉 × |γi〉

=
∑
Γγ

ψ(i; Γ, γ)|Γi〉 × |γi〉
(3.23)

where the coe�cients φ(i)Γγ are the Gutzwiller amplitudes in Eq. (3.5), the Fock state:

|Γi〉 =

2M∏
α=1

(
d†iα

)νΓ
α
|0〉, (3.24)

describes the con�guration on the impurity at site i with NΓ electrons:

NΓ =

2M∑
a=1

νΓ
α, (3.25)

where νΓ
α = 0, 1. The ket |γi〉 describes the bath con�guration

|γi〉 =

2N∏
a=1

(
c†ia

)νγa
|0〉, (3.26)
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where the number of electrons in the bath levels is

Nγ =

2N∑
a=1

νγα, (3.27)

with νγα = 0, 1. In Eq. (3.23) we have introduced the unitary particle-hole transformation UPH
that acts on the bath levels:

U†PHciaUPH = c†ia, (3.28)
and leaves the impurity invariant:

U†PHdiαUPH = diα. (3.29)
Remarkably, expectation values in Eqs. (3.13), (3.15) and (3.19) can be rewritten in terms of
averages on the embedded wave function |ψ(i)〉 [162], which allows rephrasing the optimization
of the Gutzwiller energy as a non-linear eigenvalue problem of a self-consistent impurity model.
This important result, that is proved in the Appendix A.1, is summarized by the following
identities

〈ψ(i)|ψ(i)〉 = Tr
(
φ†(i) · φ(i)

)
,

〈ψ(i)|cibc†ia|ψ(i)〉 = Tr
(
φ†(i) · φ(i) ·C†ia ·Cib

)
.

(3.30)

Furthermore, given a bosonic operator Oi acting on the physical Hilbert space Oi[{d
†

iα}, {diα}] we
have

〈ψ(i)|Oi|ψ(i)〉 = Tr
(
φ†(i) · Oi · φ(i)

)
. (3.31)

Finally, the overlap between spinful orbital diα and the bath level cia reads:

〈ψ(i)|c†iadiα|ψ(i)〉 = Tr
(
C†ia · φ

†(i) · Diα · φ(i)
)

= Qαa(i). (3.32)
Thanks to Eqs. (3.30), (3.31) and (3.32), the g-GW Lagrange function, which gives the g-GW

energy when evaluated at the saddle-point, reads

L
[
ψ(i),Ψ∗, µ(i),Λ(i)

]
=

∑
i

〈ψ(i)|Hi|ψ(i)〉 + 〈Ψ∗|H∗|Ψ∗〉

−
∑

i

Λ(i)(〈ψ(i)|ψ(i)〉 − 1〉) − Λ∗ (〈Ψ∗|Ψ∗〉 − 1)

−
∑

i

2N∑
ab=1

[
µab(i)

(
〈ψ(i)|cibc†ia|ψ(i)〉 − 〈Ψ∗|c

†

iacib|Ψ∗〉
)] (3.33)

where µab(i) and Λ(i) are Lagrange multipliers that impose the constraints in Eq. (3.5).
In order to provide evidence of the quality of the g-GW wave function and, in turn, to

validate the improvement obtained by introducing auxiliary fermionic degrees of freedom in
the Gutzwiller projector, in Sections 3.3 and 3.4 we provide benchmark calculations of the
single-band Anderson Impurity model (SIAM) and the Mott metal-to-insulator transition in the
half-�lled single-band Hubbard model. We will compare our numerical results with numerical
renormalization group (NRG) and DMFT calculations. Before entering the discussion, we present
in the next Section 3.2.3, two optimization schemes for the saddle-point solution of (3.33).

3.2.3 Numerical optimization of the g-GW Lagrangian
The optimization of the ghost-Gutzwiller wave function is reduced to the minimization of the
g-GW Lagrange function in Eq. (3.33). Depending on the problem at hand, we can adopt di�erent
optimization strategies. In the following we illustrate two minimization schemes, that we are
going to use for solving di�erent problems presented in this work.
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Wave function optimization

In this case we treat all the components ψ(i; Γ, γ) of the wave function as free variational
parameters, except for those determined by the normalization and the constraints imposed by
the symmetries that we would like to preserve in the variational ground state (e.g. SU(2) spin
symmetry). As a consequence of the symmetries the coe�cients ψ(i; Γ, γ) of the embedded wave
function are not all independent. Apart from these details that depend on the speci�c properties
of the lattice model, the optimization of the g-GW Lagrangian reduces to the solution of the
following equations:

∆ab(i) = 〈ψ(i)|cibc†ia|ψ(i)〉, (3.34)

R(i) = Q(i) · S (i), (3.35)

〈Ψ∗|c
†

iacib|Ψ∗〉 = ∆ab(i), (3.36)H∗ −
∑

i

2N∑
ab=1

µab(i)c†iacib

 |Ψ∗〉 = Λ∗|Ψ∗〉, (3.37)

F [ψ(i),Λ(i)] =

Hi −

2N∑
ab=1

µab(i)cibc†ia

 |ψ(i)〉 +
∂

∂〈ψ(i)|
〈Ψ∗|H∗|Ψ∗〉 − Λ(i)|ψ(i)〉 = 0. (3.38)

Given |ψ(i)〉 and Λ(i), we compute ∆ab(i) and the wave function renormalization matrix R(i)
through Eqs. (3.34) and (3.35), respectively. By solving Eq. (3.36) we compute the matrix of
Lagrange multipliers µab(i) that allows us to determine the Slater determinant as the ground
state of the Schrödinger Eq. (3.37). Then, we update the values of |ψ(i)〉 and Λ(i) by looking for
the solution of the eigenvalues problem in Eq. (3.38). The saddle-point wave function |ψ(i)〉 and
Λ(i) satisfy the vector equation

F [ψ(i),Λ(i)] = 0, (3.39)

i.e. |ψ(i)〉 and Λ(i) are eigenstate and eigenvalue of the embedded impurity Hamiltonian. We
conclude by noticing that this approach is convenient if one needs to introduce additional
conditions on the ground state properties, i.e. �xed magnetization or number of particles.
To be more speci�c, we will adopt this strategy to study the Mott transition in photoexcited
semiconductors, Chapter 4, where we �x the number of holes and electrons in valence and
conduction bands, respectively, on the variational wave function |ψ(i)〉.

Single-particle density matrix optimization

A di�erent strategy, presented in Ref. [162], consists in introducing three additional set of
Lagrange multipliers Vaα(i), λab(i) and λc

ab(i) that enforce the identities (3.18) and (3.13):

〈ψ(i)|c†iadiα|ψ(i)〉 =

2N∑
b=1

Rαb(i)
[( √

∆(i) · (1 − ∆(i))
)T

]
ba
, (3.40)

〈ψ(i)|cibc†ia|ψ(i)〉 = ∆ab(i), (3.41)

〈Ψ∗|c
†

iacib|Ψ∗〉 = ∆ab(i), (3.42)

where ∆ab(i) and Rαa(i) are matrices of independent parameters that at the saddle-point corre-
spond to the local single-particle density matrix and the wave function renormalization factors,
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respectively. Thus, the g-GW Lagrangian becomes:

L̃
[
ψ(i),Ψ∗, µ(i),Λ(i),V(i),R(i), λ(i), λc(i),∆(i)

]
=

∑
i

〈ψ(i)|Hi|ψ(i)〉 + 〈Ψ∗|H∗|Ψ∗〉

− Λ∗ (〈Ψ∗|Ψ∗〉 − 1) −
∑

i

Λ(i)(〈ψ(i)|ψ(i)〉 − 1〉)

−
∑

i

2N∑
ab=1

[
λab(i)

(
〈Ψ∗|c

†

iacib|Ψ∗〉 − ∆ab(i)
)]
−

∑
i

2N∑
ab=1

[
λc

ab(i)
(
〈ψ(i)|cibc†ia|ψ(i)〉 − ∆ab(i)

)]
+

∑
i

2N∑
a=1

2M∑
α=1

Vaα(i)

〈ψ(i)|c†iadiα|ψ(i)〉 −
2N∑
b=1

Rαb(i)
[( √

∆(i) · (1 − ∆(i))
)T

]
ba


+

∑
i

2N∑
a=1

2M∑
α=1

V†αa(i)

〈ψ(i)|d†iαcia|ψ(i)〉 −
2N∑
b=1

[( √
∆(i) · (1 − ∆(i))

)T
]

ab
R†bα(i)

 .

(3.43)

Under the assumption of having the translational invariant ground state (i.e. variational param-
eters do not depend on the site index), the saddle-point condition for L̃ provides the following
equations:

〈Ψ∗|c
†

iacib|Ψ∗〉 = ∆ab, (3.44)
2N∑
c=1

[( √
∆ · (1 − ∆)

)T
]

ac
Vcα =

1
V

∑
k

2N∑
b=1

2M∑
β=1

〈Ψ∗|c
†

kb R†bβ ε
βα
k cka|Ψ∗〉, (3.45)

λc
ab = −λab +

∂

∂∆ab

∑
cdγ

VcγRγd

[( √
∆ · (1 − ∆)

)T
]

dc

+
∂

∂∆ab

∑
cdγ

[( √
∆ · (1 − ∆)

)T
]

cd
R†dγV

†
γc,

(3.46)

Hemb[V,V†, λc]|ψ〉 = Λ|ψ〉, (3.47)

F1[R, λ] = 〈ψ|cibc†ia|ψ〉 − ∆ab(i) = 0, (3.48)

F2[R, λ] = 〈ψ(i)|c†iadiα|ψ(i)〉 −
2N∑
b=1

Rαb(i)
[( √

∆(i) · (1 − ∆(i))
)T

]
ba

= 0, (3.49)

where k is the momentum, belonging to the Brillouin zone, and ε
αβ
k from Eq. (3.45) is the

dispersion relation of a generic multi-band model, which is de�ned in the Eq. (A.12) of Appendix
A.3. Moreover, in Eq. (3.47) we have introduced the embedded impurity Hamiltonian that reads:

Hemb[V,V†, λc] = Hi +

2N∑
a=1

2M∑
α=1

(
c†iaVaαdiα + d†iαV†αacia

)
−

2N∑
ab=1

λc
abcibc†ia. (3.50)

Given Rαa and ∆ab we compute λab through Eq. (3.44). In order to obtain the embedded impurity
model Hemb[V,V†, λc], we invert Eq. (3.45) for the tunnel-coupling amplitudes Vaα and we
compute the single-body potential λc

ab in Eq. (3.46). Then, the eigenvalue equation (3.47)
is solved for the ground state eigenvector |ψ〉 with eigenvalue Λ. Finally, we compute the
embedded single-particle density matrix and the overlap matrix elements in Eqs. (3.48) and
(3.49), respectively. In conclusion, the saddle-point Rαa and ∆ab solve the following equations:

F1[R, λ] = 0, F2[R, λ] = 0. (3.51)
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This optimization scheme is more convenient when the number of bath levels becomes large
and the size of the Hilbert space grows exponentially. Indeed, the number of Eqs. in (3.51) is
considerably smaller than the number of independent amplitudes, that compose the embedded
impurity wave function |ψ(i)〉, in the eigenvalue problem Eq. (3.38).

3.3 Magnetic Impurity embedded in a metallic host
Originally introduced by Anderson to describe localized magnetic moments dissolved in non-
magnetic metals [17], the single-impurity Anderson model (SIAM) and its extension have had a
tremendous impact in condensed matter theory [117]. Generalizations to higher spins and di�er-
ent kinds of conduction electrons media have been constructed and studied in Refs. [59, 124, 192].
Mesoscopic electronic devices such as quantum dots o�er new physical realizations, where the
parameters of the AIM can be controlled to unprecedented accuracy [60, 99, 101, 186, 207]. In a
di�erent context SIAM serves as the simplest reference system to describe lattice models via
the dynamical mean �eld theory (DMFT) mapping [95]. Some of these topics will be covered in
other Sections of this work.

The SIAM Hamiltonian reads:

H =
∑
σ

∑
k

εkψ
†

kσψkσ +
1
√

V

∑
kσ

(
d†σ V∗k ψkσ + ψ†kσ Vk dσ

)
+ U

(
n↑ −

1
2

) (
n↓ −

1
2

)
−

h
2

(
n↑ − n↓

)
−
µ

2
(
n↑ + n↓ − 1

)
,

(3.52)

where nσ = d†σdσ, U is the on-site Coulomb repulsion, µ the chemical potential and h the Zeeman
�eld. The properties of the metallic host are encoded in the hybridization function:

∆R(ω) =
1
V

∑
k

|V(εk)|2

ω − εk + i0+
=

∫
dε
π

Γ(ε)
ω − ε + i0+

(3.53)

where Γ(ω) = πρ(ω)|V(ω)|2 and ρ(ω) is the density of state of the metal.
In the regime U/Γ(0) � 1, µ = h = 0, the local atomic con�gurations {| ↑〉, | ↓〉} are

degenerate and well separated in energy ∼ U from {| ↑↓〉, |0〉} states. The tunnel-coupling
amplitude induces an e�ective magnetic exchange between the magnetic moment of the impurity
and the electron bath such that at low temperature the impurity spin is entangled in a singlet
state with the metallic host. The energy gained by forming the singlet bound state is known as
Kondo temperature [153] and can be computed exactly using the Bethe Ansatz [273]:

TK =

√
2UΓ(0)
π

exp
(
−πU
8Γ(0)

)
. (3.54)

The conventional Gutzwiller wave function gives a quantitatively poor description of the
strong coupling regime, also known as Kondo regime. In particular, it has been shown in Ref.
[107] that the conventional Gutzwiller predicts an unphysical spontaneous magnetization of the
impurity above some critical value of the interaction2. To improve the variational description
we introduce auxiliary degrees of freedom in the Gutzwiller wave function, that reads:

|ΨG〉 = P |Ψ∗〉 (3.55)
2For detailed calculations we refer to Section C.4 in Appendix C.
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Figure 3.1: Comparison between the conventional Gutzwiller (N = 1), g-GW with N = 3 and NRG. Top
panel: quasiparticle residue as a function of U/Γ(0). Bottom panel: double occupancy as a function of
U/Γ(0). In both panels black dots represent NRG results obtained employing the open source code in Ref.
[291]. Results are computed adopting a �at hybridization function (3.58), where W is the half-bandwidth
of the metallic host that we use as the unit of energy, U/W = 0.1 and we consider di�erent values of the
hybridization Γ(0).

where the projector P acts on the impurity site and the Slater determinant |Ψ∗〉 is the ground
state of the e�ective resonant level model (RLM) characterized by 2N spinful orbitals at the
impurity site, N ≥ 1. Applying Eq. (3.10) we readily �nd the e�ective RLM

HRLM
∗ =

∑
σ

∑
k

εk ψ
†

kσψkσ +
1
√

V

∑
kσ

N∑
a=1

(
c†aσ R∗σ,aσ V∗k ψkσ + ψ†kσ VkRσ,aσ caσ

)
−

∑
σ

N∑
ab=1

c†aσλab,σcbσ,

(3.56)

where we separate the spin σ =↑, ↓ and the orbital a = 1, · · · ,N indices. In Hamiltonian (3.56)
both the wave function renormalization Rσ,aσ, de�ned in Eqs. (3.18), and the matrix of Lagrange
multipliers λab,σ have to be determined by the saddle-point condition (3.51). On the other hand,
the embedded impurity model reads:

Hemb[V,V†, λc] =U
(
n↑ −

1
2

) (
n↓ −

1
2

)
−

h
2

(
n↑ − n↓

)
−
µ

2
(
n↑ + n↓ − 1

)
+

∑
σ

N∑
a=1

(
c†aσ Vaσ,σ dσ + d†σ V†σ,aσ caσ

)
−

∑
σ

N∑
ab=1

λc
ab,σcbσc†aσ,

(3.57)

where the variational tunnel-coupling amplitudes Vaσ,σ and the Lagrange multipliers λc
ab,σ are

given by Eqs. (3.45) and (3.46), respectively.
In the following we present the results obtained for an impurity embedded in a metallic host

characterized by a �at hybridization function:

Γ(ω) = Γ(0)θ(W − |ω|) (3.58)
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Figure 3.2: Comparison between quasiparticle residue for N = 1 and N = 3. Logarithmic scale reveals
the di�erent prefactor of U/Γ(0) in the exponential behavior of Z. Data are obtained by �xing U/W = 0.1
and varying Γ(0).

where θ(x) is the Heaviside step function and W is the half-bandwidth of the metallic host that
is going to be used as the unit of energy. Our calculations of the SIAM are benchmarked against
NRG [157, 158, 287, 291]. The results of the optimization for h = µ = 0 are shown in Fig. 3.1
where we plot the quasiparticle residue Z, which is de�ned in the Appendix A.4, and the double
occupancy on the impurity site, D = 〈ψ|d†

↑
d↑d

†

↓
d↓|ψ〉, as a function of U/Γ(0). In particular, in

the top panel of Fig. 3.1 we compare the quasiparticle residue Z as a function of the on-site
repulsion U/Γ(0) obtained with g-GW with N = 1 (red line), N = 3 (blue line) and NRG (black
dots). On another side, in the bottom panel of Fig. 3.1 we show the comparison between the
double occupancy obtained with these methods. By adding two auxiliary degrees of freedom
the results given by g-GW improve considerably compared to the conventional Gutzwiller wave
function calculations. It is interesting to analyze more in detail the behavior of Z, which is
proportional to the Kondo temperature, in the Kondo regime. For U/Γ(0) � 1 Fig. 3.2 shows the
improvement on the evaluation of the quasiparticle residue Z while increasing the number of
bath levels from N = 1 to N = 3. A numerical analysis of the results shows that the g-GW with
N = 3 provides a more accurate estimate of the Kondo temperature TK ∝ exp [−πU/12.3Γ(0)],
which is, however, still overestimated with respect to the exact universal prefactor π/8 of U/Γ(0)
Eq. (3.54) obtained with Bethe Ansatz [273].

The e�ect of a magnetic �eld h on the impurity site is shown in Fig. 3.3, where we plot
the quasiparticle residue and the magnetization as a function of U/Γ(0) at small magnetic �eld,
h/U = 0.001. The top panel of Fig. 3.3 shows the quasiparticle residue as a function of U/Γ(0).
Initially, by increasing the value of the interaction, the quasiparticle residue Z decreases due to
correlations. Then, when the magnetization on the impurity site increases (lower panel of Fig.
3.3), it changes its curvature and eventually Z → 1 in the U/Γ(0)→ +∞ limit, i.e. fully-polarized
solution is not correlated. Indeed, in the limit of large magnetization the dominant e�ect of the
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Figure 3.3: Top panel: quasiparticle residue as a function of U/Γ(0) at �xed magnetic �eld. Bottom panel:
magnetization as a function of U/Γ(0) at �xed magnetic �eld. Dashed lines represent the variation of m
by varying interaction strength U . The sharp peak denotes the instability of N = 1 toward spontaneous
magnetization. This unphysical feature of the conventional Gutzwiller wave function is discussed in
detail in Section C.4. Data are obtained using the half-bandwidth of the metallic host W as unit of energy,
U/W = 0.1, h/U = 0.001 and varying the tunnel-coupling with the bath Γ(0).

interaction is to introduce a spin-dependent Hartree shift that enhances the spin ↑ occupation
while decreases the spin ↓ one. In the bottom panel we compare the magnetization obtained
with g-GW and NRG. In comparison with the conventional Gutzwiller, the g-GW solution with
N = 3 is less susceptible to the applied Zeeman �eld, and the magnetic susceptibility, which is
diverging for N = 1 (for more details we refer to Appendix C.4), becomes a smooth function of
U/Γ(0).

Despite the remarkable improvement with respect to the conventional Gutzwiller, g-GW
with N = 3 still overestimates the magnetization if compared with the more accurate NRG
solution. Finally, in Fig. 3.4 we compare the spectral functions obtained with the two di�erent
techniques (details on the evaluation of spectral functions in the g-GW approach are given
in Appendix A.3). As a consequence of the larger susceptibility the splitting induced on the
low-energy resonance is overestimated with respect to the exact result obtained with NRG.
In agreement with NRG results, we notice that the spin unbalance e�ect is stronger in the
high-energy Coulomb peaks than in the low-energy Kondo resonance.

3.3.1 Pseudogap Anderson impurity model
In this Section we apply the g-GW variational approach to a magnetic impurity described by
the Hamiltonian in (3.52) with h = µ = 0 and coupled to a fermionic bath characterized by a
pseudogap hybridization function, which we parametrize as

Γ(ω) = (1 + r)Γ
∣∣∣∣∣ εW

∣∣∣∣∣r θ(W − |ε |). (3.59)

The chosen functional form interpolates between the metallic case r = 0 and the hard-gap
case r = +∞. These two limiting regimes are characterized by two completely di�erent strong
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Figure 3.4: Spin resolved spectral functions, comparison between g-GW N = 3 (blue) and NRG (black).
Solid and dashed lines represent the spin ↑ and ↓ impurity density of states, respectively. The e�ect of the
Zeeman term on the low-energy Fermi liquid is less pronounced in NRG than in the g-GW, which, thus,
overestimates the magnetic susceptibility of the SIAM. Numerical results are computed for U/W = 0.1,
Γ(0)/W = 0.01 and h/U = 0.001.

coupling �xed points. As we have already seen in the previous Section 3.3, for r = 0 the impurity
magnetic moment is screened by the metallic host, leading to the screened phase (SC). In the
r = +∞ regime, the absence of low-energy electrons suppresses the exchange coupling and the
spin on the impurity site is a free magnetic moment. The latter behavior is known as the local
moment (LM) regime. The pseudogap case, realized for the intermediate values of r, leads to a
very rich behaviour, in particular to a continuous transition between a LM and a SC [89, 102, 288]
which represents an ideal test for our approach.

We notice that for r = 0 (metallic bath), Z smoothly crosses over to an exponentially small
value in the strong coupling Kondo regime and the system �ows to the SC Kondo screened �xed
point. However, we can see from the top panel of Fig. 3.5 that, as soon as r , 0, it is possible to
have a vanishing quasiparticle residue at �nite U/Γ. In Fig. 3.6 we show the line of the critical
points Uc(r)/Γ where the quantum phase transition between the SC and the LM regimes occurs.
For U < Uc(r) the variational ground state has a �nite Z (see Fig. 3.5), meaning the system is a
local Fermi liquid, as one expects at the Kondo strong-coupling �xed point. On the contrary,
for U > Uc(r), the low-energy Kondo resonance disappears due to the vanishing quasiparticle
residue Z = 0 as shown in Fig. 3.5. It is important to notice that in this regime the impurity is
still coupled to the high-energy bath levels that induce the broadening of the charge �uctuation
peaks in the physical electron spectral function depicted in Fig. 3.7.

A more complete inclusion of quantum �uctuations would reveal an even richer phase
diagram. Indeed, it has been shown by means of NRG [102] and �eld-theoretical analysis [89],
that the QCP is present only for r ∈ (0, 1/2), while for r > 1/2 the system always �ows to the
LM �xed point. This is not captured by the novel Gutzwiller variational wave function for N = 3
that, as displayed in Fig. 3.6, predicts a �nite Uc for r ≥ 1/2. We expect that by increasing the
number N the phase diagram would improve and possibly approach the exact vanishing value
of the critical interaction Uc = 0 in the regime r ≥ 1/2. It is interesting to look at the di�erent
behavior of the impurity spectral function in the two di�erent regimes. As shown in Fig. 3.7,
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Figure 3.5: Top panel: quasiparticle residue as a function of U/Γ for di�erent values of r. Bottom panel:
double occupancy as a function of U/Γ for di�erent values of r. Vertical dashed lines denote the critical
value of the on-site interaction. We notice that the double occupancy is �nite in the LM regime.
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Figure 3.6: Phase diagram r versus U/Γ. Solid black points are computed with g-GW N = 3, while
dashed black line is the critical line Uc = 16Γ(1 + r)/πr obtained with conventional Gutzwiller [245].
By �xing the value of r the system undergoes a quantum phase transition at the critical value of the
interaction Uc/Γ depicted by the black line. For r > 1/2 no Kondo e�ect occurs.
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Figure 3.7: Spectral function computed for r = 0.1. Red and blue lines are computed at U/Γ = 10 (SC)
and U/Γ = 20 (LM), respectively. In the LM regime the absence of Kondo screening is signalized by a
gapped spectral function.

for U < Uc (SC) the spectrum is characterized by the low-energy Kondo resonance, while for
U > Uc the spectrum presents a gap at the Fermi energy, signalizing the absence of magnetic
screening of the spin on the impurity site.

In comparison with the previous results obtained with the conventional Gutzwiller wave
function [245], the g-GW improves the impurity phase diagram by reducing the overestimated
values of the critical interaction Uc(r). The g-GW gives a much more realistic description of the
LM regime, which in the conventional Gutzwiller is described by an isolated magnetic impurity
completely decoupled from the metallic host. Indeed, as one can see from the top panel of
Fig. 3.5, despite a vanishing quasiparticle residue in the LM regime (bottom panel of Fig. 3.5),
g-GW is characterized by a non-zero average value of the double occupancy on the impurity
site. This additional feature could enrich the out of equilibrium dynamics analyzed with the
conventional Gutzwiller approach in Ref. [245]. A non-vanishing hybridization with the high-
energy bath levels induces additional relaxation channels that may drive the nonequilibrium
evolution towards a stationary state even in the regime of the strong interactions.

3.4 TheMott transition in the single-bandHubbardmodel
The conventional Gutzwiller approximation applied to the half-�lled Hubbard model predicts
a continuous Mott metal-to-insulator transition, the so-called Brinkman-Rice scenario [38],
characterized by vanishing spectral weight at the Fermi level and diverging e�ective mass. In
spite of its simplicity, the approach is a powerfull tool for extracting the Landau parameters
[24, 93, 235, 279, 280] of strongly correlated Fermi liquids [165, 211] and it captures the main
ingredients of the Mott transition that are con�rmed by more accurate DMFT calculations [94].
The main drawback of the Gutzwiller approach is the poor description of the Mott insulator.
Indeed, within this approximation, the insulating state is described by a collection of single
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electrons frozen on each lattice sites. Remarkably, the g-GW captures both the (low-energy)
quasiparticle bands and the (high-energy) Hubbard bands within the same theoretical framework.
In order to show this striking result we apply the g-GW to the single-band Hubbard model
[111, 119, 140], which is described by the Hamiltonian:

H = −
t
√

Z

∑
〈i, j〉

∑
σ

(
d†iσd jσ + H.c.

)
+ U

∑
i

(
ni↑ −

1
2

) (
ni↓ −

1
2

)
, (3.60)

where 〈i, j〉 means nearest-neighbor bonds, and Z is the lattice coordination number that must
be sent to +∞ to ensure a variational character. This model contains the basic elements that
identify the physics of strongly correlated electrons systems: the kinetic energy of the electrons,
the interaction between them and the static ionic potential and the electron-electron interaction
at the minimal level. Despite its apparent simplicity, no exact solution of this model is known in
dimension d > 1 [78, 173]. The physics of this model is the object of an intense investigation by
means of analytical and numerical methods [231]. The Hubbard model is able to describe the
Mott transition from a metallic state to a correlated insulator, as we already discussed in Chapter
1. The proximity to such transition is universally recognized to be an essential ingredient for the
many unexpected properties (e.g. high-Tc-superconductivity) which characterize the strongly
correlated electron systems [19, 27, 169].

In the following we present the numerical computations obtained with g-GW on a Bethe
lattice, whose density of state, in the limit Z→ +∞, is given by

ρ(ε) =
2

πW2

√
W2 − ε2θ(W − |ε |) (3.61)

where W is the half-bandwidth, W = 2t. Referring to the formulation presented in Section 3.2.2,
we shall assume a translational invariant ground state, that implies a site-independent embedded
impurity wave function:

|ψ(i)〉 = |ψ〉, (3.62)

in the paramagnetic sector (i.e. SU(2) spin-rotations invariance):

∆aσ,bσ′(i) = δσσ′∆ab, Rσ,aσ′(i) = δσσ′Ra, Vaσ,σ′(i) = δσσ′Va, (3.63)

where we split the spin σ =↑, ↓ and the orbital a = 1, · · · ,N indices. Moreover, we require that
the variational wave function is invariant under the particle-hole transformation Cσ, that acts
on the embedded impurity model in Eq. (3.50) as

Cσ :
(
dσ → d†σ ∪

∏
a

(
caσ → −c†

Caσ

))
(3.64)

while for the quasiparticle lattice model (3.22) reads:

cia → (−1)Ric†iCa
, (3.65)

where (−1)Ri can be either ±1 depending on the parity of the lattice site i, and in Eqs. (3.64)
and (3.65) a and Ca are particle-hole conjugated bath levels. We notice that the particle-hole
symmetry (3.64-3.65) implies that the single-particle density matrix satis�es the relation:

∆ab = δab − ∆CbCa , (3.66)
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where a and b are particle-hole conjugated to Ca and Cb, respectively. Similar relations hold for
the matrix of Lagrange multipliers

λab = −λCbCa , λc
ab = −λc

CbCa
(3.67)

and
R∗a Rb = R∗Cb

RCa . (3.68)

Finally, The expectation value per site E of the Hamiltonian (3.60) on the variational wave
function (3.1) can be written as a functional of |ψ〉 as shown in Eq. (3.33). The Slater determinant
|Ψ∗〉 is the ground state of the auxiliary non-interacting Hamiltonian

H∗ =

3∑
ab=1

∑
σ

∑
k

c†k aσ

(
εk R∗a Rb + µab

)
ck bσ , (3.69)

where the dispersion relation reads

εk = −
t

2
√

Z

n.n. of i∑
j

eik·(Ri−R j), (3.70)

and the sum over j is extended only to the nearest neighbors of i.
The optimization of the g-GW Lagrangian (3.33) is performed by using the iterative scheme

presented in Section 3.2.3, considering N = 3 auxiliary orbitals. Then, in order to analyze
the e�ect of additional levels we consider the variational ghost-Gutzwiller solution for N = 5.
In particular, we compare N = 3, 5 and DMFT results to determine the improvement in the
description of the ground state properties of the metallic and the Mott insulating phases provided
by an enlarged number of subsidiary levels. Before entering the discussion, we present the
results obtained for N = 3. Fig. 3.8 shows the evolution of the g-GW total energy and the wave
function renormalization factors Ra (3.18) as a function of the Hubbard interaction strength
U/W for N = 3. Our ground state energy is shown in comparison with the DMFT one, the latter
is obtained by using exact diagonalization as impurity solver with 7 bath levels [44, 49]. The
agreement between g-GW and DMFT is quantitatively noteworthy. In particular, the g-GW
wave function enables us to account for the coexistence region of the Mott and metallic phases,
which is not captured by the standard Gutzwiller. Solid blue line in the top panel of Fig. 3.8
shows the energy of the Mott insulator, while solid red line is the one corresponding to the
metallic solution. We notice that the Mott insulator exists only above a critical value of the
interaction Uc1, below which the only stable solution is the metal, light red region in Fig. 3.8.
In the intermediate white region, the metastable Mott insulator coexists with the stable metal.
Finally, at the critical value Uc2 the metallic solution merges continuously into the insulating
solution and for U > Uc2 the system is a pure Mott insulator, depicted as the blue region in the
top panel of Fig. 3.8. The values of the boundaries of the coexistence region, Uc1/W ' 1.85 and
Uc2/W ' 2.88, are slightly underestimated with respect to DMFT predictions, Uc1/W ' 2.39
and Uc2/W ' 2.94 [95]. Moreover, in Fig. 3.9 we report the ground state kinetic, potential and
total energy contributions comparing the DMFT results with the g-GW technique.

Approaching the Mott transition from the metallic side, we �nd that R1 = R3 → 1/
√

2 and
R2 → 0, see bottom panel of Fig. 3.8. Just like in DMFT, the Mott transition is characterized by
the vanishing hybridization between the impurity and the bath level at the Fermi energy,

Q2 = 〈ψ|c†2σdσ|ψ〉 → 0, (3.71)
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Figure 3.8: Top panel: total energy E per site vs. U , in units of the half-bandwidth W , for the stable metal
and metastable insulator solutions, red and blue lines, respectively. The starred symbols are obtained
from DMFT calculations using exact diagonalization as impurity solver with 7 bath levels instead of the
N = 3 as in the variational g-GW. In the light red region only the metallic solution exists, while in the blue
one the system is a pure Mott insulator. Intermediate white region is characterized by the coexistence of
the two solutions. Bottom panel: renormalization parameters R1 = R3 and R2. We note that the Mott
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tion, respectively, computed with g-GW for N = 3. Black points are DMFT data obtained using exact
diagonalization as impurity solver with 7 bath levels. Vertical black lines report the values of Uc1 and
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Figure 3.10: Expectation value 〈ψ|S · S2|ψ〉 of the spin correlation between the impurity and the level 2.
Note that 〈ψ|S · S2|ψ〉 increases in absolute value with U , and is continuous across the Mott transition,
despite the vanishing expectation value 〈ψ|d†σ c2σ|ψ〉 of the hybridization, also shown. In the light blue
region the metallic solution is destroyed, 〈ψ|d†σ c2σ|ψ〉 = 0, and only the Mott insulator exists.

see Fig. 3.10. In the insulating phase, the wave function |ψ〉 thus factorizes into a spin-1/2 wave
function |φσ〉 for the impurity and the auxiliary levels 1 and 3, with the spin mostly localized on
the impurity since 1 and 3 are far from the chemical potential, and a spin-1/2 wave function |ϕσ〉
of the decoupled singly-occupied level 2. However, due to Eqs. (3.13) and (3.18) that determine
both Hamiltonian H∗ in (3.22) and its ground state, the variational wave function with lowest
energy is actually the singlet combination

|ψ〉 = (|φ↑〉 × |ϕ↓〉 − |φ↓〉 × |ϕ↑〉)/
√

2 (3.72)

lying at ∼ J/8 = W2/8U below the triplet3. In other words, despite level 2 is not hybridized
with the impurity, it remains entangled with the latter in the optimized wave function. This
result is shown Fig. 3.10 where we plot, as a function of U around the Mott transition, the
expectation value 〈ψ|S · S2|ψ〉, where S and S2 are the spin operators of the impurity and the
level 2, respectively. We note that this quantity is continuous across the Mott transition and
approaches the spin-singlet limit −3/4 at large U . This wave function evidently describes a pure
state that cannot be interpreted as the ground state of an Anderson impurity model. Indeed,
the spin entanglement between |φσ〉 and |ϕσ〉 can only be rationalized through an e�ective
antiferromagnetic exchange between level 2 and the remaining sites of the impurity model,
which is not a one-body potential. The above result, Eq. (3.72), turns out to be of fundamental
importance. Indeed, as we will explain in Section 4.5, it allows us to capture the physics of the
Mott transition in photoexcited semiconductors. Before entering the argument, we would like
to conclude by analyzing the e�ect of two additional bath levels on the g-GW description of the
metal and Mott insulator.

Fig. 3.11 shows the ground state energy and double occupancy of the metallic solution as a
function of U/W . As expected, by enlarging the number of variational parameters the ground
state energy of the metallic solution improves. A closer look at the inset of Fig. 3.11 shows that
the value of Uc2/W increases from ' 2.88 for N = 3 to ' 2.9 for N = 5, second value being closer
to the DMFT prediction [95]. The lower panel of Fig. 3.11 depicts the enhancement of the double
occupancy by increasing N from N = 3 up to N = 5. The additional levels are located close to

3In the large-U Mott insulating regime the variational wave function can be obtained analytically for N = 3, we
refer the interested reader to Section A.2 for detailed calculations.
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Figure 3.11: Ground state energy and double occupancy as a function of U/W . Top panel: Red and
blue lines represent the energy of the metallic solution computed with N = 3 and N = 5 bath levels,
respectively. Instead, black line is the Mott insulator energy computed for N = 3. A closer look at the
critical region is shown in the inset, where red and blue arrows point out the di�erent values of Uc2
for N = 3, 5. Bottom panel: Red and blue lines represent the double occupancy of the metallic solution
computed with N = 3 and N = 5 bath level respectively. The black line represents the Mott insulating
state.
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Figure 3.12: Evolution of the density of states of the correlated metal for di�erent values of U/W . Red
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respectively. Black stars are DMFT data taken from [41]. The inset shows the region close to the spinodal
point Uc2/W of the metallic solution.
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the Fermi energy in the metallic phase. This feature is displayed in Fig. 3.12 where we compare
the spectral function4 for N = 3, 5 computed at di�erent values of the interaction. On the
other hand, in the insulating regime U > Uc2 the lower and upper Hubbard bands split, giving
rise to two di�erent high-energy spectral features. It is interesting to notice that the Hubbard
gap becomes smaller as the number of bath level increases. This tendency suggests that the
spinodal point for the Mott insulator Uc1/W increases by increasing N, and it eventually reaches
a converged value for N � 1. Finally, in Fig. 3.13 we show the g-GW quasiparticle distribution
function, which is de�ned in Eq. (A.23) of Appendix A.4, for di�erent values of U/W and N = 5.
Remarkably, the method describes the quasiparticles close to the Fermi level and high-energy
charge excitations. By increasing the interaction the discontinuity at the Fermi level decreases
and eventually vanishes above the critical interaction Uc2, U ≥ Uc2. This behavior is shown
in Fig. 3.14, where we plot Z as a function of U/W comparing the g-GW results for N = 3, 5
with DMFT ones. The agreement between g-GW and DMFT is quantitatively remarkable, and
becomes better by increasing N.

3.5 Conclusions and perspectives
In this chapter, we present the formulation of the g-GW approach for a generic multi-band
Hubbard model, neglecting superconductive correlations. The variational wave function is
characterized by the addition of auxiliary fermionic degrees of freedom and allows describing
not only the low-energy quasiparticles but also the high-energy Hubbard bands due to incoherent
charge �uctuations. The improvement with respect to the conventional Gutzwiller wave function
is outstanding. We underline that the g-GW is much richer than the standard Gutzwiller wave
function and, on the other hand, less numerically expensive than DMFT, which makes the
method more likely applicable to realistic simulations. Moreover, the �exibility of the g-GW
allows us to apply the variational approach both to single-impurity and lattice models.

The application of the method to the SIAM improves the estimation of the Kondo temperature
with respect to the conventional Gutzwiller (Fig. 3.2), which is however still overestimated for
N = 3. It is interesting to look at the scaling of the Kondo temperature obtained by increasing
the number of bath levels N. This future project will shed light on the role of the parameter N,
that is expected to play a similar role of the bond dimension in matrix-product states [217, 236]
or the number of "hidden" variables in neural networks states [50] and, therefore, related to the
amount of entanglement in the variational wave function. Fig. 3.3 shows that the addition of
subsidiary degrees of freedom allows removal of the magnetic instability that characterizes the
conventional Gutzwiller solution of the SIAM (discussed in detail in Section C.4).

An ideal test for our approach, we study the quantum phase transition between the screened
(SC) regime and the local magnetic moment (LM) one occurring in the pseudogap SIAM. In
comparison with the conventional Gutzwiller, the method with N = 3 improves substantially
the impurity phase diagram 3.6. In the LM regime the valence �uctuation peaks in the spectral
function (blue line in Fig. 3.7) are broaden due to the residual e�ective coupling of the impurity
with the high-energy levels of the bath. Correspondingly, the LM phase is characterized by
a non vanishing value of the double occupancy on the impurity site. As already observed at
the end of Section 3.3.1, this additional feature could enrich the out of equilibrium dynamics
analyzed with the conventional Gutzwiller approach in Ref. [245].

Finally, we apply the approach to describe the Mott transition in the single-band Hubbard
model. As expected from previous results for the impurity models, the g-GW reproduces not

4For more details on the single-particle spectral function within the g-GW, we refer the interested readers to
Appendix A, Section A.3.
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only the low-energy quasiparticle excitations, but also the Hubbard bands (see Fig. 3.12). It
is important to remark that the approach allows us to capture the coexistence between the
Mott insulator and the metal, which is not described by the conventional Gutzwiller technique.
The comparison with more accurate DMFT, displayed in Figs. 3.8 and 3.9, shows an excellent
agreement even for a relatively small number of auxiliary sites, N = 3. Finally, we investigate
the variational results by increasing the number of subsidiary site up to N = 5. Interestingly, the
estimations of the end points of the coexistence region and the quasiparticle residue improve by
increasing the number of subsidiary sites, see Figs. 3.11 and 3.14. This result poses a question
about the limit of N � 1. In particular, one may argue that the variational g-GW solution
approaches the exact DMFT result [95] for N → ∞. To clarify the connection between these
methods we believe that a detailed analysis of the variational g-GW results as a function of N is
required.
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4
Exciton Mott transition in photoexcited

semiconductors

The dissociation of excitons into a liquid of holes and electrons in photoexcited semiconductors,
despite being one of the �rst recognized examples of a Mott transition, still de�es a complete
understanding, especially regarding the nature of the transition, which is found continuous in
some cases and discontinuous in others. Here we consider an idealized model of photoexcited
semiconductors that can be mapped onto a spin-polarised half-�lled Hubbard model. Our phase
diagram reproduces most of the phenomenology of those systems and uncovers the key role of the
exciton binding energy in determining the nature of the exciton Mott transition. We �nd indeed that
the transition changes from discontinuous to continuous as the binding energy increases. Moreover,
we uncover a rather anomalous electron-hole liquid phase next to the transition, which still sustains
excitonic excitations despite being a degenerate Fermi liquid of heavy mass quasiparticles. We
tackle the problem with the ghost-Gutzwiller variational wave function introduced in Chapter 3.

4.1 Introduction

The transition between an exciton gas (EG) and an electron-hole liquid (EHL) in photoexcited
semiconductors (PES) above the exciton condensation temperature is since long known [39, 198,
234] to realize an almost ideal Mott transition [196], i.e., a metal-insulator transition driven by
interaction and not accompanied by any symmetry breaking. Away from the critical region,
in the regime of small density of electron-hole excitations, most of the photoexcited carriers
are bound in excitons (EG) that propagate as chargeless particles in the semiconductor. In the
opposite regime of large concentration of photoexcited pairs, where the Coulomb interaction is
strongly screened, the system is a plasma of free carriers (EHL), that, di�erently from the EG,
exhibits a �nite current to an applied electric �eld. Hence, we expect at �rst glance to observe,
in the intermediate regime, a phase transition analogous to the liquid-gas one where, as the
density of electron-hole pair increases, the gas of excitons gradually dissociates into an unbound
liquid of electrons and holes. It is important to remark that the di�erent electrical characteristics
of the insulating EG and the metallic EHL complicate the interpretation of experimental results
by introducing the intriguing possibility of a metal-insulator Mott transition separated from the

41
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liquid-gas one. Nevertheless and despite the great progresses in the theoretical understanding of
the Mott transition, several aspects remain puzzling; in the �rst place the nature of the transition.
On one hand, the liquid-gas analogy suggests that, as the number of photoexcited electron-hole
pairs increases, a gradual crossover between the two phases takes place via the formation, within
the EG, of liquid droplets that grow till the system transforms entirely into an EHL, just like
in any phase-separation scenario of a �rst-order transition. However, the concurrent growth
of screening might lead to an avalanche e�ect [234] and thus to an abrupt transition into the
EHL. This scenario could reveal itself either by the existence of a Mott transition distinct from
the gas-liquid one, as Landau and Zeldovich originally proposed for liquid mercury [164], or
through a bistability [254].

In view of the revived interest in the physics of excitons, the solution of the basic yet open
issues in the exciton Mott transition cannot be further delayed. The scope of this Chapter is just
putting together some pieces of that puzzle. For that purpose, we consider an idealized model of
PES that can be mapped onto a half-�lled repulsive Hubbard model at �nite spin polarization,
where the fully polarized state, a trivial insulator, maps onto the unexcited semiconductor,
and each spin �ip corresponds to adding one electron and one hole in the conduction and
valence bands, respectively. In turns, the insulator-metal Mott transition reached at large
enough Hubbard U upon decreasing spin polarization translates into the EG-EHL transition on
increasing the density of photoexcited electron-hole pairs. We �nd that such Mott transition can
be either continuous or discontinuous, in the sense speci�ed above, depending on the strength
of U , which translates into the magnitude of the exciton binding energy, in good agreement
with experiments.

Before presenting our theoretical results, we shall review some experimental studies on the
EG-EHL transition in PES. Furthermore, we discuss some recent cutting-edge experiments on
monolayer transition metal dichalcogenides (TMDs). This new class of materials with high
control and tunability, for instance through interfaces with light sources, promises to be a fruitful
future platform for condensed matter theory, somewhat similar to graphene and ultracold atoms
[281].

4.2 Controversial experimental evidences

Experimentally, the nature of the transition, which can be studied by photoluminescence or
optical absorption, is till now rather controversial. There are, indeed, evidences of two distinct
transitions [264–266], as well as of a bistable behavior [13, 254, 270], but also of a gradual
transition [141, 146, 239, 271].

To the latter scenario belongs the experimental observations in Ref. [141] where they study
photoexcited 80 Å InxGa1−xAs quantum well (QW), with a low indium content of x = 5%
grown by molecular-beam epitaxy. This QW is embedded in the middle of a GaAs layer. The
sample is optically excited by means of laser pulses at a photon energy of 1.57 eV corresponding
to 80 meV above the QW band gap. Figure 4.1 shows photoluminescence spectra integrated
from 130 to 180 ps after excitation, using various excitation powers. At low excitation density,
ne-h < 1 × 1010cm−2, we can easily distinguish the free-carrier luminescence appearing at the
band gap 1490 meV and, separated by the exciton binding energy of Eex = 6.5 meV below the
band gap, the 1s exciton resonance. Moreover, we notice that the free-carrier contribution
displays an exponential decrease to higher energy corresponding to a Boltzmann distribution of
the carriers in the bands. The relative magnitude of the exciton and free-carrier luminescence
components remains approximately constant in the density range of the �rst two spectra.
At higher pair densities (between 2 × 1010cm−2 and 1 × 1011cm−2) the exciton as well as the
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Figure 4.1: Photoluminescence spectra for di�erent excitation powers integrated between 130 and 180 ps
after excitation. The free-carrier luminescence threshold is located at the band gap 1490 meV and the 1s
exciton contribution around 6.5 meV below the band gap. Peak intensities are equally spaced for improved
readability. The carrier densities are (from lower to upper curve): ne-h = 1.6×109cm−2, 7.8×109cm−2, 2.3×
1010cm−2, 4.7 × 1010cm−2, 7.8 × 1010cm−2, 1.6 × 1011cm−2, 3.1 × 1011cm−2, and 6.2 × 1011cm−2. Adapted
from Ref. [141].Figures and Figure captions 

 

 
 

Fig. 1 Schematic picture of a bistable system. (a) Output y as a function of input x. (b) 
Free energy at each cut in Fig. 1(a). 
 

 
Fig. 2 (a) Schematic picture of exciton ionization into unbound e-h plasma and exciton 
formation from e-h plasma. (b) Ionization ratio of excitons, D, at thermal equilibrium at 
different temperatures, calculated with a fixed binding energy Eb = 4.2 meV assuming the 
case of bulk GaAs. (c) The exciton binding energy Eb calculated using the expression of 
band-gap renormalization by Vashishta and Kalia.40) Horizontal axis corresponds to the 
total pair density ntotal. (d) Ionization ratio of excitons D at thermal equilibrium at different 
temperatures, calculated with a density-dependent binding energy Eb shown in Fig. 2(c). 
 

Figure 4.2: Schematic picture of a bistable system. (a) Output y as a function of input x. (b) Free energy
at each cut in Fig. (a). Adapted from Ref. [254].

continuum luminescence progressively broaden masking the onset of band-to-band transitions.
However, the spectra in this pair density regime still display an excitonic resonance revealed
by the nonexponential high-energy tail. At higher density (above 1.6 × 1011cm−2) the excitonic
resonance completely disappears, evidenced by an exponential high-energy photoluminescence
tail which is the signature of the emission of a nondegenerate EHL. Therefore, the Mott transition
is manifested by a gradual enhancement from an exciton-dominated population to an unbound
electron-hole pair population as the pair density ne-h increases.

On the contrary, the bistable transition implies an abrupt transition from the EG to the
EHL at the critical Mott density of electron-hole pairs. To clarify the concept of bistability we
report in Fig. 4.2 panel (a) the function y(x), which exhibits a bistable region as a function of the
control parameter x. The bistable system has one thermodynamically unstable branch between
two stable branches, and the transition from one branch to another one is accompanied by a
hysteresis behavior, like in any ordinary liquid-gas transition where the control parameter is
the applied pressure. As one can clearly see from Fig. 4.2 panel (a), the Maxwell construction
is not allowed and the system jumps discontinuously to the stable branch. The correspondent
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Figure 4.3: The PL properties for excitation in both wells EL > ENW at temperature T = 1.5 K. (a) The
linewidth, (b) the PL energy shift, and (c) the diamagnetic coe�cient as a function of the power density.
(d) The diamagnetic shift at two power levels, below and above the transition. Adapted from Ref. [270].

free energy is reported in Fig. 4.2 panel (b) and shows the presence of two stable solutions
in the intermediate region. This scenario is observed in Ref. [270], where a sample made by
coupled QWs is arranged in an n+ − i − n+ structure grown by molecular beam epitaxy on a
semi-insulating GaAs substrate. The i region consists of two GaAs QWs of di�erent width, 7 and
10 nm, separated by a 5 nm Al0.28GaAs barrier and surrounded by two AlGaAs spacer layers.
Moreover, an electric �eld of 24 kV/cm was applied in a direction perpendicular to the QWs,
such that the electron level in the wide well is higher than that of the narrow well. By a laser
pulse with energy EL > ENW electron-hole pairs are excited both in the narrow and wide wells,
such that direct (within the same well) and indirect (among di�erent wells) excitons can be
formed. Fig. 4.3 panel (a) shows the photoluminesce linewidth, which changes from 1.0 meV to
1.2 meV at the critical power density of 0.75W/cm2. The di�erent nature of the phases across
the abrupt transition are probed by measuring the diamagnetic response to an applied magnetic
�eld B as reported in Fig. 4.3 panel (d). At large power density P = 1.0W/cm2 the system is
composed by free-carriers in Landau orbitals and, thus, characterized by a diamagnetic energy
shift linear in the magnetic �eld, ∆E(B) = ~ωc/2 ∝ B. Conversely, for low electron-hole pairs
density P = 0.3W/cm2, the system is an EG, which is characterized by ∆E = αB2〈r2〉 ∝ B2 [40],
where 〈r2〉 is the average value of the exciton radius squared.

Di�erently from the precedent experiments, in Refs. [264–266] authors observe a double
phase transition. They �nd out that at low temperature, starting from the low density EG, a
liquid-gas transition to an excitonic condensed phase occurs, and then, as the total density of
pairs is raised, the condensed phase undergoes a �rst-order Mott transition into droplets of
EHL. The experimental results agree with the prediction proposed by Landau and Zeldovich in
the seminal paper [164] that suggests the presence of two critical points, one for the liquid-gas
transition and the other for the metal-to-insulator one. However, the theoretical description of
this interesting scenario requires to include spacial correlations in the variational wave function
and goes beyond the scope of our work.
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Figure 4.4: Top panel: Linear absorption (red line, right axis) and two-photon photoluminescence
excitation spectrum (blue symbols, left axis) measured on monolayer WSe2 at room temperature. Lower
panel: Second-order numerical derivative of the linear absorption spectrum of (a). Black dashed line
denotes the band gap energy of 2.02 eV. In addition to the lowest energy exciton states, labeled as A
(1.65 eV) and B (2.08 eV) (located at the two non equivalent lattice points K and K′), the spectra present
additional features whose detailed description is given in Ref. [115]. Adapted from Ref. [115]

Yet despite this fact, our theoretical calculations allow obtaining a phase diagram that
reproduces most of the phenomenology observed in the previous experimental results and
uncovers the key role of the exciton binding energy in determining the nature of the exciton
Mott transition. Before entering the discussion, we shall present in the next Section an overview
on the exciton physics in monolayer TMD.

4.2.1 Exciton Mott transition in monolayer TMD

The exciton physics in semiconductors has been given a new lease of life by monolayer TMD
[71, 282, 283, 289, 290]. TMDs are semiconducting layered van der Waals crystals characterized
with hexagonal lattice structure that are attracting an ever increasing attention for the potential
technological impact of their electronic and optical properties. In the single layer limit, they
exhibit an indirect-to-direct band gap transition due to the lack of interlayer interaction [283, 289].
Interestingly, the reduced screening results in a signi�cantly enhanced Coulomb energy. This
yields large exciton binding energies of several hundred meV [115, 219, 274], together with other
multiparticle excitations, such as trions, and biexcitons. Top panel of Fig. 4.4 shows the linear
absorption (red line) of monolayer WSe2 in the energy range 1.5− 2.2 eV, which is characterized
by the presence of two prominent exciton peaks at 1.65 eV and 2.08 eV. Remarkably, the
measured exciton binding energy is Eex = 0.37 eV, which is about an order of magnitude larger
than that in III-V semiconductor quantum wells and renders the exciton excited states observable
even at room temperature. The direct band gap of monolayer TMDs and their large exciton
binding energy make them potentially interesting candidates for various applications in optics
and optoelectronics [200]. Furthermore, the two direct gaps located at K and K′ are characterized
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by di�erent orbital polarization, which allow pumping selectively one of the two valley by
exciting the sample with circularly polarized light [132, 171, 181, 260]. This phenomenon o�ers
fascinating opportunities to realize novel phenomena and emerging applications, often referred
to as valleytronics.

The dynamics of photoexcited electron-hole pairs in monolayer TMD has been investigated
in many experiments, see, e.g., Refs. [29, 54, 61, 131, 222, 241, 262, 269]. At low excitation density,
there is a consensus that both the excitons and the electronic gap red shift [61, 222, 262] signalize
an important contribution of Coulomb repulsion in the semiconducting state of TMD. At higher
excitation densities, where the EG-EHL transition is expected to happen, the situation is less
clear. Re�ectance measurements in WS2 [54] irradiated by an ultrashort laser pulse show a
gradual bleaching of the exciton absorption peak and, at lower energies, a loss of re�ectance that
is attributed [54] to an EHL phase with a more than 20% reduction of the gap. The coexistence
of both signals indicates phase separation, and thus a continuous transformation from the EG
to the EHL. On the contrary in Ref. [29], time-resolved photoluminescence in MoS2 during a
long 500 ns pulse photoexcitation reveals, at low pump �uence, the aforementioned red shift
and a broadening of the exciton emission peak, which, above a threshold �uence, suddenly
turns into a much broader and �ve times more intense emission peak, centred 200 meV below.
This behaviour is rather suggestive of a discontinuous transition, unlike what observed in WS2

[54]. Surprisingly, photoluminescence stops right after the 500 ns pump pulse [29], which
can be interpreted as if the system undergoing a transformation from direct to indirect gap
semiconductor, possibly driven by lattice expansion. All this suggests that photoexcited TMD
may show rather interesting properties, especially because of the important role played by
Coulomb repulsion.

4.3 The Model
In Fig. 4.5 we describe schematically a PES in the simple case of a direct-gap single-valley
semiconductor. A laser pulse excites electrons across the gap, thus leaving behind holes in the
valence band and creating electrons in the conduction one (panel (a)). If the electron-hole (e-h)
recombination time is long enough, a quasi-stationary local-equilibrium state sets in (panel (b)) at
�nite densities of electrons, ne, and holes, nh, which, at low temperature, are equal to the density
ne-h of photoexcited e-h pairs, i.e., ne = nh = ne-h. Some of them bind together and form excitons,
that we depict in Fig. 4.5 as e-h pairs connected by strings, while others remain unbound. Such
quasi-stationary state can be probed either by absorption or photoluminescence, blue and red
light beams in panel (c). Speci�cally, the system can absorb light by creating additional e-h pairs
above an absorption edge shifted by the presence of already existing particles and holes, or, at
lower energy, through intra-exciton transitions [136]. Photoluminescence is expected to arise
by the radiative recombination both of unbound e-h pairs and of excitons. These two processes
emit at di�erent frequencies, and thus the corresponding emission intensities give a measure
of the relative populations of bound and unbound e-h pairs. When the gap is instead indirect,
light absorption and emission must be accompanied by emission of phonons to compensate the
momentum mismatch.

The quasi-stationary state in the simple case shown in Fig. 4.5 can be described by the
Hamiltonian

H =
∑
kσ

(
εhk h†kσ hkσ + εek e†kσ ekσ

)
+

∑
q

U(q)
2V

(
ρh q − ρe q

)(
ρh−q − ρe−q

)
, (4.1)

at �xed and equal densities of particles and holes, ne = nh = ne-h. The operators h†kσ and e†kσ
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(a) (b) (c)

Figure 4.5: Photoexcitation of a semiconductor by a laser pulse. (a) A semiconductor initially at
equilibrium is shot by a laser pulse. (b) A transient quasi-stationary local equilibrium state is established
with excitons in the gap, and electron and holes in the conduction and valence bands, respectively. (c)
Such local equilibrium state can be probed by optical absorption of light, blue beams, which either
transfers additional electrons across the gap, above an absorption edge blue shifted by the presence of
other electrons and holes, or excites internal states of the exciton. Alternatively, photoluminescence can
be used as probe, red beams, which corresponds to radiative recombination either of bound or unbound
electron-hole pairs.

create, respectively, a hole in the valence band, with energy cost εhk, and an electron in the
conduction one, with energy cost εek, both with momentum k and spin σ. U(q) is the Coulomb
interaction screened by all bands except the valence and conduction ones, while ρh q and ρe q the
densities at momentum q of holes and electrons, which have opposite charges. Because of our
assumption of quasi-stationarity, we do not include in (4.1) the recombination processes, so that
ne and nh are both conserved.

In order to single out the interaction physics, we consider here an idealized modelling,
discussed, e.g., in Ref. [213], obtained by further simplifying the Hamiltonian (4.1). First, since
the e-h Coulomb binding is primarily a charge e�ect, we ignore the spin, and thus assume
spinless holes and particles. Second, we neglect the e�ective mass di�erence between valence
and conduction bands, assuming εhk = εek ≡ εk, and, for simplicity, take the latter as the
dispersion relation of a tight-binding model with nearest neighbour hopping, which is also
quadratic in the small-k regime pertinent to low density. Finally, we replace the long-range
Coulomb interaction U(q) by a short range Hubbard-like term U constant in q, so that the
Hamiltonian (4.1) transforms into

H =
∑
kσ

εk
(
h†k hk + e†k ek

)
− U

∑
i

ne i nh i − µ
∑

i

(
ne i + nh i

)
, (4.2)

where nh(e) i is the local density at site i of holes(electrons), and the chemical potential µ is
such as to �x 〈nh i〉 = 〈ne i〉 = ne-h, where ne-h � 1 is the density of photoexcited e-h pairs. We
remark that the model (4.2) can describe the same physics of (4.1) only if U is large enough to
create bound states below the two-particle continuum, which play the role of the excitons in
the original system1. The simpli�ed Hamiltonian (4.2) can be mapped onto a standard repulsive

1In the limit case of a single pair of e-h excitations the critical U for the bound state formation can be computed
exactly, we refer to Section B.1 for more details.
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Hubbard model

H =
∑

k

∑
σ

εk d†kσ dkσ + U
∑

i

ni↑ ni↓ − h
∑

i

(
ni↑ − ni↓

)
, (4.3)

through the particle-hole transformation Cph:

C
†

ph ei Cph = di↓, C
†

ph hi Cph = (−1)Rid†i↑, (4.4)

where (−1)Ri can be either −1 or +1 depending on the parity of the lattice site i. Clearly the
tight-binding part of the simpli�ed Hamiltonian (4.2) is invariant under the transformations
generated by Cph, while the interaction part changes its sign. Thus, the model in Eq. (4.2) is
mapped to the repulsive one (4.3). At equilibrium, the empty lattice of e-h pairs is mapped to
the:

Cph|0〉 =
∏

i

d†i↑|0〉

which is the fully spin polarized half-�lled band state. In this context each e-h pair corresponds
to a spin-�ip excitation ↑→↓. The particle-hole transformation (4.4) a�ects the e-h number
operator in a non-trivial way,∑

i

C
†

ph

(
e†i ei + h†i hi − 1

)
Cph =

∑
i

(
d†i↓di↓ − d†i↑di↑

)
,

and relates pair and magnetization densities

2ne-h − 1 = −m→ ne-h =
1 + m

2
. (4.5)

Moreover, the unbalance between the electron in conduction band and the holes in the valence
one transforms under (4.4) as:∑

i

C
†

ph

(
e†i ei − h†i hi

)
Cph =

∑
i

(
d†i↓di↓ + d†i↑di↑ − 1

)
,

which by assuming a compensated semiconductor, 〈nei〉 = 〈nhi〉, implies the half-�lling condition:

〈ni↑〉 + 〈ni↓〉 = 1. (4.6)

It follows that the model (4.2) with a �xed ne-h maps to a repulsive model at half-�lling with a
�xed magnetization m = 1 − 2ne-h, which can be enforced by the Lagrange multiplier h playing
the role of a �ctitious Zeeman �eld. Finally, we observe that the Hamiltonian (4.3) is invariant
under the particle-hole transformation:

C† diσ C = (−1)iσd†iσ̄ (4.7)

where σ = +1 for spin ↑ and −1 for ↓. Thus, spin ↑ and ↓ observables of the repulsive model
(4.3) are not independent but are related by the unitary transformation (4.7).

Therefore, the physics of PES can be captured by the half-�lled repulsive Hubbard model at
�xed, and large if ne-h � 1, magnetization m, provided all assumptions above are valid. Indeed,
the Hamiltonian (4.3) is expected to display several phases in one to one correspondence to
those of PES [48, 123, 172, 195]: a low-temperature canted antiferromagnetic insulator, which
translates into a phase of condensed excitons, and high temperature magnetized Mott insulating
and metallic phases, which correspond to the EG and EHL, respectively. In particular, the EG,
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Figure 4.6: Magnetization m vs. h for increasing values of U/W , obtained by DMFT using exact diago-
nalization at zero temperature with 8 bath sites, and a semicircular density of states of width 2W . In the
large U regime relevant to PES, we always �nd, upon increasing h, a �rst order transition from a partially
polarized metal to a fully polarized insulator.

composed by bound electron and hole pairs, corresponds to a set of incoherent singlet bound
states in the background of a spin ↑ polarized system. On the other hand, the EHL, characterized
by a non-vanishing fraction of unbounded e-h pairs, is a strongly spin ↑ polarized solution
where a fraction of ↑ and ↓ electrons are decon�ned excitations free to propagate on the lattice.

In this chapter we study the zero temperature stability of variational solutions assuming
that it is representative of �nite temperature (i.e. the entropic contribution does not spoil the
physical picture).

4.4 The Method
The Hamiltonian (4.3) is ideally suited to DMFT [95]. However, earlier results on the simple half-
�lled repulsive Hubbard model in a Zeeman �eld [30, 48, 145, 160, 294] show some di�erences
in the nature of the transition, despite an overall agreement on the main features of the phase
diagram. In particular, in the large U � h regime pertinent to PES, the Mott transition is
always found to be of the �rst order, but Refs. [160] and [48] predict a transition between a
partially polarized metal and a partially polarized insulator, while Refs. [30] and [294] report a
transition between a partially polarized metal and a fully polarized insulator, and no evidence
of a partially polarized insulator. We also performed a zero-temperature DMFT calculation
using exact diagonalization as impurity solver, and we could not stabilize a partially polarized
insulator, see the magnetization m vs. h shown in Fig. 4.6, in agreement with [30] and [294].

The reason for this discordance can be readily traced back to the iterative scheme employed
to solve DMFT, which fails to converge when forcing the translational symmetry and the
residual U(1) spin-rotational symmetry around the z-axis parallel to h, both of which are
instead spontaneously broken in the true canted antiferromagnetic ground state. In DMFT,
assuming a semicircular density of states (DOS) and forcing the aforementioned symmetries, the
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lattice model (4.3) is mapped onto an Anderson impurity model (AIM), where the spin-resolved
hybridization function with the bath, Γσ(ε) (de�ned in Eq. (3.53)), is self-consistently determined
by the single-particle DOS of the impurity, Aσ(ε) [95] – which in turn must correspond to the
local DOS of the lattice model – through the equation

Γσ(ε) =
πW2 Aσ(ε)

4
, (4.8)

where W is the half-bandwidth. Let us consider the iterative solution of Eq. (4.8) at h � W,U
in the Mott insulating regime, which translates into an AIM whose hybridisation function
Γ(ε) = Γ↑(ε) + Γ↓(ε) has a gap of order U at the chemical potential. This implies that, at any
iteration i, the hybridization function is obtained by the impurity DOS at the previous iteration,
Γ

(i)
σ (ε) = W2 A(i−1)

σ (ε)/4, and thus acquires the same spin polarisation. Since in this regime
the impurity is characterized by a diverging local magnetic susceptibility, χloc → ∞, and the
impurity-bath hybridization entails an e�ective antiferromagnetic coupling at a given iteration
the spin of the impurity will be polarized in the opposite direction of that of the bath, thus
opposite to the same impurity at the previous iteration. The reversal of the impurity spin from an
iteration to the next one is unavoidable when Γ(ε) is gapped, unless h is large enough to prevail
over the e�ective antiferromagnetic coupling with the bath and thus align the impurity spin
parallel to it. If so, at the next iteration also the bath will be aligned with h, and the iterations
will converge to a trivial solution where both bath and impurity are fully spin polarized along h,
which is evidently eigenstate of the AIM. In other words, the iterative procedure in the Mott
insulating phase either oscillates between solutions of opposite spin or, for h above a threshold,
it converges to a trivial solution that represents a fully spin-polarized insulator, in accordance
with our calculations and Refs. [30] and [294], or, in the language of PES, to the equilibrium
state without photoexcited e-h pairs.

The lack of convergence at small h, which prevents the stabilization of a partially polarized
insulator and simply signalizes the tendency to form an antiferromagnetic state, can be formally
avoided by choosing a convergence criterium only within the same-parity iterations, i, i + 2,
. . . , and, at the end, assuming as impurity DOS, Aσ(ε), the average of those at even and odd
iterations [48]. This choice is equivalent to assume a mixed state, despite the temperature is
zero, where the partial spin polarization of the Mott insulator results from a statistical ensemble
of pure states, with the impurity spin polarized in opposite directions. Since the impurity spin
polarization maps in DMFT into the lattice magnetization, m, which, in turn, translates into
1 − 2ne-h in the language of PES, see Eq. (4.5). Hence, such statistical ensemble of states with
1 − 2ne-h = m ∼ +1 and 1 − 2ne-h = m ∼ −1 actually describes a rather strange, and not very
physical, phase-separated exciton Mott insulator, where the bound e-h pairs are circumscribed
within a �nite portion of the system, ne-h ∼ 1, while they are almost absent in the rest, ne-h ∼ 0.
This result would not change when solving, still iteratively, the DMFT self-consistency equation
(4.8) at small but �nite temperatures [160].

4.4.1 The variational g-GW applied to PES

We emphasize once more that the issue here is the iterative implementation of DMFT when
forcing symmetries that are instead spontaneously broken in the true ground state. For instance,
we would not expect to �nd the same unsatisfactory results in a direct routinely constrained
optimization of the DMFT functional [154], which however has never been implemented to
the best of our knowledge. A less accurate approach, but equally free of the problems outlined
before, would be the minimization of the expectation value of the Hamiltonian on a constrained



4.4 The Method 51

variational wave function, forced to be invariant under the aforementioned symmetries. In what
follows we shall adopt just this variational approach.

The main di�culty in this context is �nding a variational wave function that can faithfully
describe a Mott insulator. This is the case of the g-GW, that we present in Chapter 3. The wave
function (3.1) is simple and bears close similarity to DMFT. Indeed, as proved in Section 3.2.2, the
variational parameters λΓγ(i) can be associated to the components ψ(i; Γ, γ) of a wave function
|ψ(i)〉 =

∑
Γγ ψ(i; Γ, γ) |Γi〉× |γi〉 that describes an impurity at site i coupled to a bath of N spinfull

levels. The analogy with DMFT is thus self-evident.

Hereafter, in order to enforce translationally symmetry and the U(1) symmetry under spin
rotation around the z-axis, we shall assume that |Ψ∗〉 is translationally invariant, |ψ(i)〉 = |ψ〉, ∀ i,
and that both wave functions are eigenstates of the total z-component of the spin S z. As shown
in Section 3.4, where we apply the g-GW to describe the paramagnetic Mott transition in the
half-�lled Hubbard model, symmetry conditions naturally reduce the number of independent
variational parameters.

We apply the g-GW approach to study the model (4.3) on a Bethe lattice with in�nite
coordination, which corresponds to a semicircular tight-binding DOS (3.61). We choose to work
with N = 3 subsidiary orbitals, which, as shown in Section 3.4, provide already very accurate
ground state properties in comparison with DMFT. Moreover, we treat all components ψ(Γ, γ) of
the wave function describing the quantum impurity coupled to the bath of N = 3 levels as free
variational parameters, apart from the normalization and the constraints imposed by spin U(1)
and particle-hole symmetries. This means that we adopt the optimization scheme in Section
3.2.3 and we do not require ψ(Γ, γ) to be a ground state of an auxiliary Anderson impurity model,
i.e., an interacting impurity hybridized with a non-interacting bath, an unnecessary requirement
which would lead to the same problems of the DMFT iterative solution.

The expectation value per site E of the Hamiltonian (4.3) at h = 0 on the variational wave
function (3.1) can be written as a functional of |ψ〉 that only depends parametrically on the
magnetization m, and reads [163]

E
[
|ψ〉,m

]
=

1
V
〈Ψ∗|H∗|Ψ∗〉 + U 〈ψ|n↑ n↓|ψ〉 , (4.9)

where V is the number of sites, and nσ the spin-σ occupation number of the impurity. The Slater
determinant Ψ∗ is the ground state of the non-interacting Hamiltonian

H∗ =

3∑
ab=1

∑
σ

∑
k

c†kaσ

(
εkR∗σ,aσ Rσ,bσ + µab,σ

)
ckbσ , (4.10)

where the Lagrange multipliers µab,σ in (4.10) enforce the constraint in Eq. (3.13), while the
parameters Rσ,aσ are de�ned in Eq. (3.18). The energy functional E

[
|ψ〉,m

] in (4.9) must be
minimized with respect to |ψ〉, which is subjected to the constraints �xing the density to 1 and
m to the desired value 1 − 2ne-h, i.e.,

〈ψ|n↑ + n↓|ψ〉 = 1 , 〈ψ|n↑ − n↓|ψ〉 = 1 − 2ne-h . (4.11)

In the following Section we consider the case relevant for PES. Starting by recalling the
crucial result obtained in Section 3.4 we report the form of the impurity wave function to describe
PES. Then, we present our phase diagram and we conclude by stressing the important role of
the exciton binding energy in the EG to EHL Mott transition in PES.
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4.5 Exciton Mott transition in PES
In the Mott insulating regime U > Uc2, where valence �uctuations from the low energy site
are vanishing, measured by R2 as can be seen in bottom panel of Fig. 3.8, the saddle-point
impurity wave function is a singlet combination, reported in Eq. (3.72), between the low energy
site and the remaining sites of the embedded model. Remarkably, this result highlights the
spin-liquid like character of the Mott insulator, which despite being paramagnetic posses singlet
short-range correlations in its ground state. The above result, which in the large-U regime is
analytically proved in Section A.2 of the Appendix A, naturally suggests how to construct a
good trial insulating wave function with �xed impurity magnetization m:

|ψ〉 = cos φ |φ↑〉 × |ϕ↓〉 − sin φ |φ↓〉 × |ϕ↑〉, (4.12)

with cos 2θ ' m. This wave function (4.12) evidently describes a pure state that cannot be
interpreted as the ground state of an Anderson impurity model. Indeed, the spin entanglement
between |φσ〉 and |ϕσ〉 can only be rationalized through an e�ective antiferromagnetic exchange
between the low energy level and the remaining levels of the impurity model, which is not a
one-body potential. It is interesting to notice that in the large-U regime the variational wave
function (4.12) allows us to recover the expected t − J model result. Moreover, it allows us
to obtain exact predictions on the EG in the regime of large-U and small densities, which are
particularly relevant for systems characterized by large binding energies, e.g. monolayer TMDs.
We refer the interested reader to Section B.2 where detailed analytical calculations are performed.

Let us consider the phase diagram of the Hamiltonian (4.3) as a function of its parameters,
i.e., the number of photoexcited e-h pairs ne-h and the exciton binding energy Eex, with the
half-bandwidth W as the unit of energy. We choose these parameters because they are directly
connected with physical properties that can be measured in experiments on PES. From the
mapping in Eq. (4.5), we can relate the ne-h with the magnetization m of a repulsive Hubbard
model in the presence of an external magnetic �eld. On the contrary, the binding energy Eex in
PES is not directly related to the short-range Hubbard U , since the latter is just meant to mimic
the role of the long-range Coulomb interaction in binding electrons and holes into excitons.
This implies that the model Hamiltonian (4.3) must have in common with PES the existence of
exciton states.

In the present case of a semicircular DOS (3.61), whose square root behavior at the edges
reproduces that one found at the bottom or top of a band in three dimensions, the on-site
interaction U must exceed a threshold to produce a bound state, unlike long-ranged Coulomb
repulsion. Its binding energy Eex can be calculated exactly solving the problem of a single e-h
pair, see Section B.1. However, for consistency with the calculation at ne-h > 0, we determine
Eex by the variational optimisation in the limit ne-h → 0. In the top panel of Fig. 4.7 we show
for the model Hamiltonian (4.3) the single particle DOS of a spin down electron in the Mott
insulator at almost full polarization, m = 0.98, which, through Eq. (4.4), corresponds to the DOS
of an electron in the conduction band within the EG phase at ne-h = 0.01, as well as, since we
assumed particle-hole symmetry, to the DOS of a hole in the valence band. We note at positive
energies, i.e., above the chemical potential of the quasi stationary local equilibrium state in
Fig. 4.5 (c), the continuum of empty states in the conduction band, and at negative energy a very
narrow peak that accommodates all the ne-h = 0.01 density of photoexcited electrons. This peak
evidently corresponds to the exciton, and its distance from the bottom of the conduction band
de�nes the binding energy Eex, whose dependence on U is shown in the bottom panel of Fig.
4.7. Only when Eex > 0, i.e., U/W > Uex/W ' 1.5, the model Hamiltonian (4.3) can be used to
describe the physics of PES. In the language of the repulsive Hubbard model (4.3), the exciton
peak below the chemical potential and the broad continuum above translate into the lower and
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Figure 4.7: Top panel: density of states (DOS) of an electron in the conduction band at U/W = 2.4 with
a density ne-h = 0.05 of photoexcited electron holes pairs. The narrow peak at negative frequency, the
occupied side of the spectrum, corresponds to the �lled exciton state, whereas the conduction band at
positive frequency is empty. Such DOS thus describes an exciton gas, and allows extracting a exciton
binding energy Eex through the distance of the exciton peak from the bottom of the conduction band,
which is shown as function of U/W in the bottom panel. Note that a �nite Eex requires U/W above a
threshold ' 1.5. The region below that threshold, in light red, is therefore not representative of PES.
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Figure 4.8: Density of states (DOS) for a spin down particle corresponding to an electron in the conduction
band, as well as a hole in the valence one. Top: DOS in the metallic EHL solution at U/2t = 2.2, which
corresponds to Eex/2t ' 0.9, and ne-h = 0.08. Bottom: same quantity in the EG Mott insulator at the
same value of U but smaller ne-h = 0.01. In the language of the repulsive Hubbard model, the features
associated with lower and upper Hubbard bands are indicated by LHB and UHB, respectively. Note that
they both survive also in the correlated metal phase, top panel, despite the emergence of quasiparticles
narrowly peaked at the Fermi energy.
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upper Hubbard bands, respectively, while the threshold value Uex is actually the limit of the
Mott insulator spinodal value of interaction, so-called Uc1 [95], when the magnetization m→ 1.

Before discussing in detail the phase diagram, it is worth to hightlight the properties that
characterize the EHL as opposed to the EG. In Fig. 4.8 we show the DOSs of an electron in the
conduction band, or a hole in the valence one, in a representative EHL solution at Eex/W ' 0.9
and ne-h = 0.08, top panel, in contrast to a representative EG one at the same Eex/W ' 0.9 but
at smaller ne-h = 0.01, bottom panel. We note in the EHL phase, top panel, still clearly visible
Hubbard bands, the lower one (LHB) corresponding to the exciton, and the upper (UHB) to the
incoherent contribution of the conduction (for the electron) and valence (for the hole) bands. In
addition, a narrow quasiparticle peak emerges at the chemical potential, which distinguishes
the EHL DOS in the top panel from the EG one in the bottom panel. The �nite gap between
the quasiparticle peak and the UHB is most likely an artefact of the use of a small bath (N = 3).
We expect that further bath levels would �ll that gap by small spectral weight. Nonetheless,
the correlated metal feature of a coherent quasiparticle peak distinct from the UHB incoherent
background should persist.

Our ground state calculation does not allow us to easily compute the two-particle response
functions associated to the optical absorption and luminescence. However, the DOS shown in
the top panel of Fig. 4.8 suggests that the optical spectrum of the EHL should still display exciton
signatures, which have been indeed observed experimentally [104, 255, 271], and predicted
theoretically [179]. Moreover, the narrow width of the quasiparticle peak suggests an anomalous
strongly correlated EHL metal, also not in disagreement with experiments [255].
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Figure 4.9: Phase diagram as function of the exciton binding energy Eex and the density ne-h of pho-
toexcited e-h pairs, left y and bottom x axes, respectively, or, equivalently, U/2t and magnetization
m = 1− 2ne-h, right y and top x axes, respectively. In red we plot the insulator spinodal line, while in blue
the metal one. The di�erent regions, labeled from (I) to (VI) are discussed in the text. The inset shows a
zoom of the phase-diagram around region (I).

Let us now discuss the phase diagram, which is shown in Fig. 4.9 as a function of the exciton
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Brief description of the phase diagram in Fig. 4.9
region description

(VI) regime of small ne-h, stable EG
(IV) regime of large ne-h, stable EHL
(I) phase separation between the EHG and the EHL
(II) phase separation between the EG and the EHL
(III) bistability region between the EG and the EHL
(V) the metastable EG coexists with the stable EHL

Table 4.1: Summary of di�erent regions in the PES phase diagram displayed in Fig. 4.9.

binding energy Eex and the density of photoexcited e-h pairs ne-h. For completeness, we also
show the values of magnetization m and interaction U that correspond to ne-h and Eex in the
repulsive Hubbard model (4.3) and we summarize the main information in Table 4.1. The red
curve in that �gure corresponds to the spinodal line above which an EG solution exists, which
is also the spinodal Uc1(m) of the Mott insulator [154] in the repulsive model (4.3), and becomes
for m → 1 the threshold value Uex in Fig. 4.7. On the contrary, the blue curve is the spinodal
line above which the EHL becomes unstable, and thus only the EG exists, which is the metal
spinodal Uc2(m) in the repulsive model (4.3).

Considering instead the di�erent phases in Fig. 4.9, in the dark region (I) for very small ne-h,
which is zoomed in the inset and, strictly speaking, is not pertinent to PES since U < Uex, we
�nd phase separation between two metallic phases, one liquid (EHL) at larger ne-h, and the other
gaseous (EHG), at smaller ne-h. The two phases merge at a second order critical point. In the light
grey region (II) above Eex/W ' 0.557, now relevant to PES, we instead �nd phase separation
between an EG and an EHL. In the top panel of Fig. 4.10 we plot the chemical potential obtained
from the energy per site E and ne-h through µ = −∂E/∂ne-h, together with the common tangent
construction. It follows that for ne-h ∈ [0.05, 0.095] the system phase separates into an EG at
low density ne-h = 0.05 and an EHL at larger density ne-h = 0.095.

On the contrary, within the intermediate region (III) (dark grey in the phase diagram Fig. 4.9)
a common-tangent construction is not possible, see bottom panel of Fig. 4.10. This may suggest a
bistable behavior with a sudden transformation of the EG into the EHL, which has been invoked
[254] to explain some experimental evidences [255], even though we cannot exclude a numerical
artifact since the variational optimization is hard at very low ne-h.

In region (IV), below Uc1(m), only the EHL is stable. On the contrary, in region (V), white in
the �gure, we �nd coexistence between a stable EHL and a metastable EG. Finally, in region
(VI), blue in the �gure, only the EG is stable. We �nd that the transition line separating (V) and
(VI) has a second order character. We note that in the language of the repulsive Hubbard model
(4.3), this second order line persists down to m = 0, while, for the reasons outlined in Section
4.4, DMFT calculations �nd a continuous transition only at m = 0, and a discontinuous one at
any m , 0 [30, 48, 160, 294].

The phase diagram in Fig. 4.9 has been obtained at zero temperature forcing all symmetries
of the Hamiltonian (4.3), and should be representative of the one above the exciton condensation
temperature with the caveat that the character of all transition lines, and the size of the stability
domain of each phase might change when accounting for entropy e�ects. Let us therefore
discuss the possible e�ect of a �nite temperature. Since the exciton peak in Fig. 4.8 presumably
carries more entropy than the quasi-particle peak [95], it is most likely that the second order line
separating regions (V) and (VI) transforms into a �rst order transition accompanied by phase
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Figure 4.10: Top panel: phase separation at Eex/W ' 1, region (II) in Fig. 4.9. We plot the chemical
potential extracted by E vs. ne-h for both EHL (red line) and EG (blue line) solutions. The vertical line
indicate the EHL spinodal value of ne-h, below which this phase is not stable anymore. The dotted line
corresponds to the common tangent construction, which implies that for ne-h ∈ [0.05, 0.095] the system
phase separates into an EG at ne-h = 0.05 and an EHL at ne-h = 0.095. Bottom panel: bistability at
Eex/W ' 1, region (III) in Fig. 4.9. Here the behavior of the chemical potential of the EHL (red line) and
EG (blue line) solutions does not allow a common tangent construction.

separation, i.e., a gradual transfer of charges from the EG phase to the EHL one as ne-h increases
that simply extends region (II) to higher values of ne-h.

On the other hand, we cannot exclude that, if the bistability in region (III) is true and not
due to numerical issues, it might survive at �nite temperature, nor that, at the border between
regions (I) and (III), a discontinuous exciton Mott transition appears besides the gaseous-liquid
transition EHG→ EHL.

4.6 Conclusions

Despite its extreme simplicity, the spin-polarized half-�lled repulsive Hubbard model shows a
rather rich phase diagram in Fig. 4.9 with phase transitions that, upon translation in the language
of semiconductors at �nite density of photoexcited electron-hole pairs, bear strong similarities
with the transitions from an exciton gas to an electron-hole liquid observed in those systems,
among the earliest known realizations of Mott transitions. In particular, taking into account
�nite temperature entropy e�ects not included in our calculation, the phase diagram in Fig. 4.9
encompasses a �rst order exciton Mott transition that almost everywhere is accompanied by
phase separation, thus implying a continuous transformation of the exciton gas into the electron-
hole liquid. However, within a small region in the phase diagram at low exciton binding energy,
we also �nd bistability, which would correspond to a sudden transformation of the exciton gas
into the electron-hole liquid without phase-separation. We mentioned that experimentally there
are both evidences of continuos exciton Mott transitions, i.e., phase separation [54, 141, 146, 239],
as well as of discontinuous ones [13, 29, 254, 255, 264–266, 270]. The discriminant parameter
might well be the exciton binding energy Eex, as we do �nd, since a discontinuous transition is
mostly observed in bulk semiconductors, while a continuous one in con�ned geometries, like
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quantum wells, where Eex is supposedly larger due to the smaller screening of the Coulomb
interaction. Transition metal dichalcogenides seem to constitute an exception to this rule. In
spite of their large exciton binding energy, they have been shown to display either a continuous
transition [54] after an ultrashort laser pulse, or a discontinuous one [29] under continuous-wave
photoexcitation, although we cannot exclude that the di�erent photoexcitation processes are
responsible of the di�erent outcomes.

We conclude this Section remarking that the electron-hole liquid that we �nd is rather
unconventional, see the single-particle density of states shown in the top panel of Fig. 4.8,
since it still displays excitonic signatures despite being a degenerate Fermi liquid of holes and
electrons. This is in contrast with the expectation that the exciton binding energy should vanish
at the transition. Moreover, we �nd that the e�ective mass of the unbound electrons and holes
is quite large, as clear from the narrow width of the coherent peak at the chemical potential. In
the EHL we observe the characteristic red-shift of the bottom of the e-h continuum, displayed
in the top panel of Fig. 4.8, where the low-energy quasiparticle peak crosses the vertical black
line which de�nes the band gap of the semiconductor. Conversely, in the EG, bottom panel of
Fig. 4.8, we observe the blue-shift of the e-h continuum. These features have been observed
experimentally [255].
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5
The time-dependent ghost-Gutwiller wave

function

By means of the Dirac-Frenkel variational principle we employ the ghost-Gutzwiller wave function,
introduced in Chapter 3, to describe the out of equilibrium dynamics of isolated quantum systems.
We present the method for a generic multi-orbital system, neglecting, like in the equilibrium case,
superconducting correlations. The method is able to access the full out of equilibrium dynamics also
far from the linear response regime. In the out of equilibrium case, the additional degrees of freedom
introduce dephasing channels that suppress the coherent oscillations observed in the conventional
Gutzwiller dynamics. Despite this remarkable improvement, the ghost-Gutzwiller dynamics lacks
dissipative channels to describe the system �owing towards a steady state. We apply the method
to the single-band lattice Hubbard model and we benchmark our results with the more accurate
DMFT. The goal of this Chapter is not a new characterization of the dynamical phase transition,
but rather a benchmark of the novel time-dependent ghost-Gutzwiller with respect to DMFT and
conventional Gutzwiller.

5.1 Introduction

Recent years have seen enormous experimental progress in preparing, controlling and probing
strongly interacting quantum systems in di�erent nonequilibrium regimes [43, 96]. These de-
velopments have triggered a set of fundamental questions concerning dynamics, dissipation,
transport and the approach to thermal equilibrium in quantum many-body systems [74, 223].
Furthermore, nonequilibrium experiments provide additional information that are complemen-
tary to those attainable by studying the matter at equilibrium [28]. For instance, the possibility
of selectively exciting speci�c degrees of freedom in correlated materials opens the way to create
novel metastable states, that cannot be reached via thermodynamic transformations [51].

The interplay between the equilibrium energy scales of the problem and the time dynamics
makes the theoretical description of the nonequilibrium evolution of strongly correlated systems
extremely challenging. A powerful and numerically inexpensive approach to tackle these
problems is the time-dependent Gutzwiller variational wave function (t-GW) [81], which has
been applied to study the evolution of strongly correlated lattice problems in many circumstances
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[161, 184, 215, 243, 247, 253]. However, as a consequence of the mean-�eld like character of the
approach, the time-dependent Gutzwiller dynamics is dominated by coherent oscillations and
lacks dissipative channels to describe the system �owing towards a steady state.

The aim of this Chapter is presenting the time-dependent ghost-Gutzwiller wave function
(t-g-GW), that enriches the conventional Gutzwiller out of equilibrium evolution of driven
quantum systems by introducing additional degrees of freedom. We will show that the method
is able to access the full nonequilibrium dynamics also far beyond the linear response regime
discussed in Ref. [82]. In particular a nice feature of the t-g-GW is its ability of treating on equal
footing the dynamics of both low-energy quasiparticles and high-energy incoherent excitations,
which are commonly referred as Hubbard bands. A particularly interesting fact emerging
from the time-dependent extension of the g-GW is that in the weak-coupling regime dynamics
the additional degrees of freedom introduce dephasing processes that suppress the coherent
oscillations observed in the t-GW, and eventually lead to a quasi-stationary regime. However, in
contrast to Ref. [191], we do not �nd any relaxation to a thermal state for long times. In this
respect we believe that, as already observed in the equilibrium case, the number N of subsidiary
degrees of freedom may strongly in�uence the out of equilibrium dynamics and introduce, in
the regime of N � Nphys, relaxation to a thermal state. In the strong coupling limit the dynamics
is characterized by the coherent oscillations with the period ∼ 2π~/U , in agreement with Refs.
[72, 73, 247, 248], that signalizes the freezing of double-occupancies dynamics due to the absence
of the elastic channel to decay [151, 238].

Our calculations of the single-band Hubbard model, which are benchmarked against the
time-dependent DMFT [20, 72, 73], show that the t-g-GW dynamics quantitatively improves
the t-GW results [247, 248] and allows us to describe coherent oscillations as well as dephasing
processes.

5.2 Time-dependent ghost-Gutzwiller wave function
We shall assume that both the Slater determinant as well as the Gutzwiller projectors are
time-dependent, hence:

|ΨG(t)〉 =
∏

i

Pi(t)|Ψ∗(t)〉. (5.1)

The Slater determinant |Ψ∗(t)〉 is characterized by 2N ≥ 2M spinful orbitals, while

Pi(t) =
∑
Γγ

λΓγ(t, i)|Γi〉〈γi| (5.2)

is a linear map at site i, parametrized by the time-dependent variational parameters λΓγ(t, i),
from the local 2N-orbital Hilbert space, spanned by the states |γi〉, to the physical orbital local
space, spanned instead by |Γi〉. We recall that 2N is the number of physical spinful orbitals, and
2M is the number of the auxiliary ones. Adopting the same notation used in Chapter 3, we
remind that cia, a = 1, · · · , 2N, are the fermionic operators of the N spinful orbitals per each site
i in the enlarged Hilbert space, while diα, α = 1, · · · , 2M, denote the operators of the physical
spinful orbitals. Clearly, for N = M the approach reduces to the conventional time-dependent
Gutzwiller [247, 248]. The Dirac-Frenkel principle, which can be interpreted as the extension
of the variational principle out of equilibrium, allows the approximation of the Schrödinger
dynamics of an interacting system with the equations of motion for λΓγ(t, i) and |Ψ∗(t)〉, obtained
at the saddle point, δS = 0, of the Gutzwiller action:

S [ΨG(t)] =

∫
dt 〈ΨG(t)| i∂t − H(t) |ΨG(t)〉 =

∫
dtL(t) , (5.3)
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where H(t) is the time-dependent version of the multi-band Hubbard model in Eq. (3.2) and L(t)
is the ghost-Gutzwiller Lagrangian. Following Section 3.2.2, we associate the time-dependent
variational parameters λΓγ(t, i) to the components ψ(t, i; Γ, γ̄) of an impurity wave function and
we express the average value of the local observables in terms of |ψ(t, i)〉.

Like in the conventional t-GW, the time-dependent expectation values of the local and non-
local operators, de�ned in Section 3.2.1, can be computed analytically in the in�nite-coordination
lattices [81] provided that the Gutzwiller constraints (3.5) are satis�ed at any time:

〈ψ(t, i)|ψ(t, i)〉 = 1, (5.4)
〈ψ(t, i)|cibc†ia|ψ(t, i)〉 = 〈Ψ∗(t)|c

†

iacib|Ψ∗(t)〉 ≡ ∆ab(t, i), ∀ a, b. (5.5)

As long as Eqs. (5.4) and (5.5) are satis�ed the expressions for the wave function renormalization
factors and the average of local in Eqs. (3.18) and (3.31) hold and, thus, the average value of H(t)
will have the same expression as in Eq. (3.21), i.e.:

E(t) =
∑

i

〈ψ(t, i)|Hi(t)|ψ(t, i)〉 + 〈Ψ∗(t)|H∗(t)|Ψ∗(t)〉 (5.6)

where H∗(t), de�ned in Eq. (3.22), becomes time-dependent since R(t, i) in Eq. (3.18) depends on
time. Finally, the term with the time derivative in Eq. (5.3) can be rewritten as [81]

i〈ΨG(t)|∂tΨG(t)〉 = i
∑

i

〈ψ(t, i)|∂tψ(t, i)〉 + i〈Ψ∗(t)|∂tΨ∗(t)〉 (5.7)

and the ghost-Gutzwiller Lagrangian (5.3) reads:

L(t) =i
∑

i

〈ψ(t, i)|∂tψ(t, i)〉 + i〈Ψ∗(t)|∂tΨ∗(t)〉

−
∑

i

〈ψ(t, i)|Hi(t)|ψ(t, i)〉 − 〈Ψ∗(t)|H∗(t)|Ψ∗(t)〉

+
∑

i

2N∑
ab=1

[
µab(i)

(
〈ψ(t, i)|cibc†ia|ψ(t, i)〉 − 〈Ψ∗(t)|c

†

iacib|Ψ∗(t)〉
)]
.

(5.8)

In the previous expression µab(i) stands for the matrix of Lagrange multipliers such to satisfy
the Gutzwiller constraints in Eq. (5.5). It is important to notice that even in the presence of
subsidiary degrees of freedom the Lagrange multipliers µab(i) are time independent since the
Gutzwiller constraint is preserved during the time evolution. In other words, provided that
Eq. (5.5) is satis�ed at t = 0, and Eq. (5.4) is enforced by construction, then the constraint is
automatically satis�ed by the saddle point solution of the action (5.3) at any time t ≥ 0. This
important result can be easily proved for the g-GW by following the same line of reasoning
presented in Ref. [82].

The saddle-point condition:

δS
δ〈ψ(t, i)|

= 0,
δS

δ〈Ψ∗(t)|
= 0

gives the equations of motion:

i∂t|ψ(t, i)〉 =

Hi(t) −
2N∑

ab=1

µab(i)cibc†ia

 |ψ(t, i)〉 +
δ

δ〈ψ(t, i)|
〈Ψ∗(t)|H∗(t)|Ψ∗(t)〉, (5.9)
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and

i∂t|Ψ∗(t)〉 =

H∗(t) +
∑

i

2N∑
ab=1

µab(i)c†iacib

 |Ψ∗(t)〉. (5.10)

As it can be appreciated from Eqs. (5.9) and (5.10), within the t-d-GW the electron dynamics is
described by the Schrödinger equation of the Slater determinant |Ψ∗(t)〉which is self-consistently
coupled to the evolution of the embedded model |ψ(t, i)〉. Compared with the standard Gutzwiller
dynamics, the addition of subsidiary degrees of freedom provides a more realistic description
of the evolution of a strongly-correlated systems, which is characterized by the coexistence of
di�erent time scales associated with the low- and high-energy excitations. Furthermore, the
hybridization of the physical orbital diα with the electron bath cia provides energy exchange
mechanisms that suppresses the mean-�eld like coherent oscillations observed in the t-GW.

Given the initial conditions |ψ(t = 0, i)〉 and |Ψ∗(t = 0)〉, that solve the equilibrium g-GW
problem in Section 3.2.3, the solution of the system of coupled equations can be obtained by
a standard 4th order implicit Runge-Kutta method [35]. In particular, Eq. (5.9) consists of the
evolution of the independent amplitudes ψ(t, i,Γ, γ) of the embedded wave function |ψ(t, i)〉1. For
what concerns the Slater determinant, we mention that for translationally invariant systems the
evolution of |Ψ∗(t)〉 (5.10) can be recast in terms of the Heisenberg dynamics of the single-particle
density matrix:

〈nkabσ(t)〉 ≡ 〈Ψ∗(t)|c
†

kaσckbσ|Ψ∗(t)〉. (5.11)

Therefore, the strategy for the solution of the Gutzwiller dynamics corresponds to the evolution
of 〈nkabσ(t)〉 for each k point in the Brillouin zone, that, summed over the k space, at any instant
of time determines the hybridization amplitudes between the impurity diα and the bath cia.

We conclude by noting that the t-g-GW approach presented in this Section allows us to study
the out of equilibrium dynamics of a generic lattice model in the absence of superconductive
correlations. Furthermore, we observe that the stationary equilibrium problem, presented in
Section 3.2.3, is obtained by substituting the expressions:

|ψ(t, i)〉 = e−iΛt|ψ(i)〉, |Ψ∗(t)〉 = e−iΛ∗t|Ψ∗〉, (5.12)

in Eqs. (5.9) and (5.10). In the following we consider the speci�c example of the interaction
quench dynamics of the repulsive single-band Hubbard model. This problem has already been
studied with DMFT in [72, 73] and with conventional Gutzwiller in [247, 248]. Therefore, we
had a possibility to benchmark our method.

5.3 Application to the half-�lled Hubbard model

We now apply the above formalism to the simple case of a single-band Hubbard model at half-
�lling, where each lattice site hosts a single orbital M = 1 and the physical degree of freedom
α reduces to the spin projection σ =↑, ↓ along the quantization axis. The analysis allows us
to compare the results obtained with our time-dependent variational approach together with
the previous studies on the dynamics of the single-band Hubbard model [72, 191, 247]. We will
show that with our approach we can recover known results, but also �nd additional features
that are missing from the conventional Gutzwiller evolution.

1The number of amplitudes ψ(t, i,Γ, γ) grows exponentially with the dimension of the embedded impurity
model. To reduce the number of Eqs. of motion it is important to implement the symmetries inherited from the
lattice model directly on |ψ(t, i)〉.
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We consider the dynamics of the single-band Hubbard model induced by a time-dependent
interaction U(t):

H(t) = −
t
√

Z

∑
〈i, j〉

∑
σ

(
d†iσd jσ + H.c.

)
+ U(t)

∑
i

(
n↑ −

1
2

) (
n↓ −

1
2

)
, (5.13)

where 〈i, j〉 stands for the nearest-neighbor bonds on a Bethe lattice, and Z is the lattice coordina-
tion number that must be sent to +∞ such that the calculations are truly variational. Analogously
to the equilibrium case, we use the Bethe lattice density of state ρ(ε) = θ(W−|ε |)2

√
W2 − ε2/πW2,

where W is the half-bandwidth. We study the Hamiltonian (5.13), assuming that during the
evolution the time dynamics preserves the translational symmetry:

|ψ(t, i)〉 = |ψ(t)〉, ∀ i, (5.14)

and does not induce any magnetization (i.e. SU(2) spin-rotations invariance):

∆aσ,bσ′(t) = δσσ′∆ab(t), Rσ,aσ′(t) = δσσ′ Ra(t), (5.15)

where we separate the spin σ =↑, ↓ and the orbital a = 1, · · · ,N indices. Furthermore, the
invariance of the embedded and the e�ective tight-binding H∗(t) lattice model, under the particle-
hole symmetries (3.64) and (3.65), reduces the number of independent entries of the single-particle
density matrix:

∆ab(t) = δab − ∆CbCa(t),

where a and b are particle-hole conjugated to Ca and Cb, respectively. Similar relations hold for
the elements of the Lagrange multipliers matrix and wave function renormalization factors:

µab = −µCbCa , R∗a(t) Rb(t) = R∗Cb
(t) RCa(t).

The embedded wave function |ψ(t)〉, invariant under the symmetry transformations in (3.64) and
(3.65), lives in the subspace characterized by the quantum numbers

Q = N − Nsites = 0, S z = (N↑ − N↓)/2 = 0,

where Nσ = d†σdσ +
∑N

a=1 c†aσcaσ is the operator that counts the total number of electrons with
spinσ, N = N↑+N↓ and Nsites is the number of bath levels plus the impurity site Nsites = Nlevels +1.
Within the subspace (5.3) the |ψ(t)〉 reads:

|ψ(t)〉 =
∑

n

1
√gγ(n)

sn ψγ(n)(t) |n〉 (5.16)

where n runs over the many-body states of the subspace (5.3), |n〉 describes an embedded impurity
model con�guration, gγ(n) is a degeneracy factor that counts the number of di�erent con�gu-
rations {|n1〉, · · · , |nl〉} characterized by the same weight |ψγ(n)|. Therefore, the corresponding
amplitudes ψγ(n) may di�er only for the sign factor, that we denote as sn. We notice that the
parametrization in Eq. (5.16) implies that the normalization condition (5.4) reads:

〈ψ(i)|ψ(i)〉 =
∑
γ

|ψγ(t)|2,
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where we sum only the independent amplitudes of the impurity wave function. In terms of the
amplitudes ψγ the Eq. (5.9) takes the form:

i∂tψγn(t) =
∂

∂ψ∗γn
(t)

∑
ml

gγn
√gγm gγl

sm sl ψ
∗
γm

(t)ψγl(t)〈m|

Hi(t) −
∑
σ

N∑
ab=1

µabcibσ c†iaσ

 |l〉
+

gγn

V

∑
kσ

εk

N∑
ab=1

〈nkabσ(t)〉
∂

∂ψ∗γn
(t)

[
R∗a(t) Rb(t)

]
,

(5.17)

where we have performed the Fourier transform of H∗(t), whereas 〈nkabσ(t)〉 is the quasiparticle
distribution in momentum space de�ned in Eq. (5.11). The latter quantity evolves according to
the Heisenberg equation

i∂t〈nkabσ(t)〉 =

N∑
c=1

(
H∗(t,k)bc〈nkacσ(t)〉 −H∗(t,k)ca〈nkcbσ(t)〉

)
, (5.18)

where
H∗(t) =

∑
kσ

~Ψ†kσ ·H∗(t,k) · ~Ψkσ,

with
H ∗(t,k)ab = εk R∗a(t) Rb(t) + µab,

and ~Ψkσ = (ck1σ, · · · , ckNσ)T . In the following we analyze the solution of the Eqs. (5.17) and
(5.18) considering the case of a sudden change of the Hubbard U on-site interaction.

5.4 Quench dynamics
We now turn to the application of the formalism to discuss the out of equilibrium evolution in
the half-�lled single band Hubbard model (5.13). Among di�erent nonequilibrium protocols
we consider one of the most popular, the evolution under a sudden change of the Hamiltonian
parameters, i.e. quantum quench. This protocol corresponds to prepare the system in the many-
body variational ground state |Ψi〉 of the Hubbard model with initial interaction U(t ≤ 0) = Ui,
then for times t > 0 the state evolves under an Hamiltonian characterized by a value of the local
interaction di�erent from the initial one U(t > 0) = U f , Ui.

The improved characterization of the Mott insulator, provided by the g-GW variational wave
function, allows us to describes the time-dependent dynamics taking as initial condition both
the metallic and the Mott insulating solutions, the latter not being accessible by the conventional
time-dependent Gutzwiller wave function. However, in order to make a clear comparison with
pre-existing results [72, 73, 247, 248], we focus our analysis by considering as initial condition a
correlated metal Ui < Uc2 which is evolved by quenching the local interaction U f > Ui. Under
these circumstances the dynamics is characterized by the presence of a dynamical critical point
Ud

c that splits the evolution in three di�erent regimes of weak U f < Udyn
c , intermediate U f ∼ Udyn

c

and strong U f > Udyn
c quenches. In order to characterize the dynamics in the di�erent regimes,

we focus on three physical quantities, namely the double occupancy D(t) = 〈ψ(t)|d†i↑di↑d
†

i↓di↓|ψ(t)〉,
the quasiparticle residue Z(t) and the discrete Fourier transform (DFT) of D(t).

5.4.1 Weak quenches
For weak quantum quenches the t-g-GW evolution of the double occupancy D(t) is shown in Fig.
5.1 (a) and its discrete Fourier transform (DFT) in Fig. 5.1 (b) in comparison with the t-GW results
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Figure 5.1: Double occupancy as a function of time for di�erent values of U f taking as initial condition the
ideal Fermi gas Ui/W = 0. Black and red lines represent the standard GW and g-GW results, respectively.
Panel (a) shows D(t) for U f /W = 0.3, 0.6 and 1.0 plotted from top to bottom. Panel (b) we plot the DFT
of the double occupancy for the same values of U f .
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Figure 5.2: Quasiparticle residue as a function of time for di�erent values of U f starting from the ideal
Fermi gas Ui/W = 0. Black and red lines represent the standard GW and g-GW results, respectively. Z(t)
is computed for the following values U f /W = 0.3, 0.6 and 1.0.
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Figure 5.3: Double occupancy as a function of time in the weak quenches regime. Di�erent lines
correspond to t-g-GW, while black points are DMFT results for Ui/W = 0 and di�erent values of U f /W .
DMFT data are taken from Ref. [73].

[247, 248]. Interestingly, the auxiliary fermionic degrees of freedom introduced in the g-GW
wave function provide dephasing mechanisms that reduce the amplitude of the oscillations, with
respect to the t-GW dynamics, in the regime large times. By increasing the value of U f /W , from
top to bottom of Fig. 5.1 (a), we observe that the amplitude of the residual oscillations increases
due to the excess of injected energy that the system is not able to dissipate. The DFT of the
double occupancy D(t) time series is shown in Fig. 5.1 (b). Remarkably, the signal is dominated
by a single mode whose frequency is close to the one observed in the standard t-GW, which is
represented by the black solid vertical line. Moreover, we notice that the frequency of the mode
is decreasing as the value of the interaction increases from U f /W = 0.3 to U f /W = 1.0. On the
other hand, the evolution of the quasiparticle residue Z(t), in Fig. 5.2, shows deviations from
the results obtained with the standard t-GW. For U f /W = 0.3, 0.6 we observe the tendency of
the time-dependent evolution to approach the thermal regime, characterized by a vanishing
renormalization factor Z(t → ∞) = 0. However, the time scale associated to the thermalization
process is much longer than the estimate made in [191], i.e. τtherm ∼ ~W3/8U4.

In Fig. 5.3 we compare the dynamics of the double occupancies D(t) obtained both with
t-g-GW and DMFT [72, 73]. Instead, Fig. 5.4 shows the comparison between the evolution of the
quasiparticle residue factor Z(t) computed with t-g-GW and DMFT. At short times we observe
a good agreement between the two di�erent approaches. However, at larger times we notice
deviation from the DMFT dynamics due to the residual oscillations characteristic for the t-g-GW
at N = 3. We expect that the amplitude of the oscillations reduce by increasing the number of
bath levels N.
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Figure 5.4: Quasiparticle residue as a function of time in the weak quenches regime. Di�erent lines
correspond to t-g-GW, while black points are DMFT results for Ui/W = 0 and di�erent values of U f /W .
DMFT data are taken from Ref. [73].

5.4.2 Strong quenches

For quenches at large U f , above the dynamical critical interaction Udyn
c , the evolution is charac-

terized by coherent oscillations with period ∼ 2π~/U f both in D(t) and Z(t). This behavior is
easy to understand in the limit of large quenching, W/U f → 0, where the evolution operator
takes the form ∏

i eiU f (ni↑−1/2)(ni↓−1/2)t. For any �nite value of the ratio W/U f we expect to observe
damping of the periodic oscillations induced by hopping processes. Figs. 5.5 and 5.6 shows
the comparison between standard GW and t-g-GW dynamics. The comparison between the
t-g-GW evolution and DMFT is shown in Figs. 5.7 and 5.8, where we plot double occupancy
and quasiparticle weight as a function of time. Figs. 5.7 and 5.8 show that as the value of U f

increases, the evolution given by the t-g-GW is closer to the exact dynamics obtained in DMFT.
Despite the reduction of the amplitude of the oscillations with respect to the standard GW
dynamics, relaxation processes are missing in the g-GW dynamics and the long time evolution
is dominated by the presence of persistent oscillations.

5.4.3 Intermediate quenches and dynamical phase diagram

In this Section we consider the regime of intermediate quenches close to the dynamical critical
point Udyn

c , that, as shown in Fig. 5.10, we �nd to be located in the interval Udyn
c ' [1.62, 1.65]2.

This regime is characterized by the critical slowing down of the dynamics, and, correspondingly,
by the presence of a low energy mode in the D(t) oscillations. Therefore, the system undergoes a
dynamical phase transition that separates the two di�erent regimes of strong and weak quenches.

2We notice that for numerical reasons the time-evolution of the ghost-Gutzwiller wave function does not allow
us to �nd a precise value for the critical U , but rather an interval where the critical point is located.
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Figure 5.5: Double occupancy as a function of time for di�erent values of U f starting from the weakly in-
teracting regime Ui/W = 0. Black and red lines represent the standard GW and g-GW results, respectively.
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Figure 5.9: Comparison between t-g-GW (solid lines) and DMFT (black dots) results, taken from [73],
for U f /W = 1.5, 1.65. Panel (a) shows the evolution of the double occupancy. Panel (b) depicts the
quasiparticle residue Z(t). Finally, in panel (c), we report the DFT of D(t).

Figure 5.10: Fourier transform of the double occupancy for di�erent values of the quench interaction
U f /W . The presence of a �nite spectral weight |D(ω)| with vanishing frequency characterizes the
dynamical critical point, indicated by the white arrow.
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In Fig. 5.9 panel (a) and (b) we compare the t-g-GW dynamics of the double occupancy and
the quasiparticle residue with DMFT results. The comparison with Figs. 5.7 and 5.8 points out
the characteristic slowing down of the dynamics and the correspondent onset of a low-energy
mode in the D(t). Remarkably, even in the dynamical critical regime, we observe good agreement
in the short time dynamics between t-g-GW and DMFT. However, di�erently from DMFT results,
the coherent oscillations characterizing the t-g-GW dynamics are persistent and give rise to the
spectral features shown in panel (c) of Fig. 5.9 for U f /W = 1.5 and U f /W = 1.65. We notice
that in the critical region of the interaction quenches U f /W = 1.65 the dynamics is a composed
by a superpositions of several modes dominated by the zero frequency one, see panel (c) of Fig.
5.9.

Finally, we report in Fig. 5.10 the color map that shows the DFT of the double occupancy as
a function of the quench interaction U f . For weak quenches, the frequency ωD of the double
occupancy oscillations is close to the result obtained with the conventional Gutzwiller (solid
white line). In the strong coupling regime, instead, we observe that the frequency of the
oscillations approaches the atomic limit ω ∼ U f , U f /W ≥ 2. Finally, in the intermediate regime
we observe the presence of a dynamical critical point characterized by a vanishing value of the
frequency of the double occupancy D(t), namely ωD ∼ 0. Our numerical calculations predict
that Udyn

c /W ' [1.62, 1.65], taking as initial state the ideal Fermi gas, that is not far from the
value obtained with DMFT Udyn

c /W ' 1.6 [72, 73] .

5.5 Conclusions
We extend the ghost-Gutzwiller wave function to describe the out of equilibrium evolution of
multi-band Hubbard models in the absence of superconductive correlations. To benchmark our
method with DMFT and conventional Gutzwiller result we study the out of equilibrium dynamics
in the single-band Hubbard model induced by a quench in the local interaction. The addition of
subsidiary degrees of freedom in the Gutzwiller wave function provides a more accurate and
complete description of the evolution of a strongly-correlated system, which is characterized
by the coexistence of di�erent time scales associated with low- and high-energy excitations.
Di�erently from the conventional Gutzwiller results, the hybridization of the physical orbital
diσ with N, N > 1, bath levels cia provides energy exchange mechanisms that suppress the
mean-�eld like coherent oscillations observed in the t-GW. However, as long as the number
of bath levels is �nite, the novel channels do not act as a reservoir that absorbs the excess of
energy injected by the time-dependent perturbation and the system never reaches an asymptotic
stationary state. We expect that numerical simulations with N > 3 would certainly improve the
results presented in Section 5.4 by a further suppression of the residual oscillations.
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6
Unbinding slave-spins in Anderson impurity

models

In this Chapter we show that a generic single-orbital Anderson impurity model can be exactly
mapped without any constraint onto a resonant level model coupled to two Ising variables, which
reduce to one if the hybridization is particle-hole symmetric. It is interesting to notice that the
mean-�eld slave-spin solution of the single-orbital Anderson impurity model (SIAM) is found to be
stable to unphysical spontaneous magnetisation of the impurity, unlike the saddle-point solution
in the standard slave-boson representation [81, 156]. Remarkably, the mean-�eld estimates of the
Wilson ratio RW and of the quasiparticle scattering amplitudes tend to the exact Nozières’ local
Fermi liquid result in the Kondo regime [194, 212, 214]. We discuss quantum �uctuations on top
of the mean-�eld results and their contribution to the Green’s function of the impurity electrons.
The previous analysis allows us to employ the self-consistent mean-�eld slave-spin theory as an
approximate impurity solver within the dynamical mean �eld theory (DMFT) [152].

6.1 Introduction

Within any approximate technique based on independent particles, as, e.g., Hartree-Fock, the
electron’s quantum numbers, i.e., its charge, spin, and, eventually, orbital component, are
inevitably all entangled into the single-particle excitations. This is ultimately the reason why
such independent-particle schemes fail in correlated electron systems where charge degrees of
freedom are instead well separated in energy from spin and orbital ones.

An e�cient and popular trick to disentangle the di�erent degrees of freedom is to enlarge
the Hilbert space adding auxiliary particles, slaves to the physical charge excitations. So far
there exists a number of various implementations of such a technique, starting from the elder
slave-boson theory [25, 58, 156] to more recent rotationally invariant slave-boson [126, 166],
slave-spin [65, 120, 240] and slave-rotor [87] ones. Those auxiliary particles are bound by a
product of local constraints that project the enlarged Hilbert space H∗ onto the physical subspace
H , and concurrently the e�ective Hamiltonian H∗ of the electrons plus the auxiliary particles
onto the original electron-only one, H. As is common in such cases, H∗ possesses a local gauge
invariance that translates into local conserved quantities. The constraints simply �x the values

73
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that those conserved quantities have in the physical subspace.
The big advantage of this apparently more cumbersome approach is that a mean-�eld

decoupling of the electrons from the slave particles naturally provides the desired disentangle-
ment of charge from all other degrees of freedom, hence allowing the access to phenomena
like Mott localization [156] otherwise inaccessible by mean-�eld in the original electron-only
representation.

The problem with the mean-�eld in slave-particle theories is that the constraints are only
satis�ed on average, which brings out unphysical gauge-symmetry breaking, i.e. mean-�eld
solutions mixing the physical subspace with the non-physical one. There is actually an exception
where the constraint is not required: a particle-hole (p-h) symmetric SIAM that is represented
in terms of a resonant level coupled to a two-level system, one level corresponding to the
singly occupied impurity and the other to the empty or doubly occupied impurity. Because of
the p-h symmetry, the partition function within the physical subspace is equal to the one in
the unphysical one, so that the former is just half of the partition function calculated in the
whole enlarged Hilbert space without any restriction [248]. In this representation the constraint
translates into a local Z2 gauge symmetry, which is spontaneously broken at zero temperature
[26] since the model e�ectively corresponds to a two-level system in a sub-ohmic bath [46].
Therefore, the symmetry breaking is here not a spurious result of mean �eld but a real feature of
the model. Since a p-h symmetric Hubbard model in in�nitely coordinated lattices maps within
dynamical mean-�eld theory (DMFT) [95] just onto that same SIAM, one can show [248] that
the free energy of the lattice model can be straightforwardly obtained by the corresponding one
of its Z2 slave spin representation [120, 240] without imposing any constraint. One outstanding
consequence of such mapping is that the metallic phase of the Hubbard model translates into a
phase where the local Z2 gauge symmetry breaks spontaneously [121] whereas the symmetry
is restored in the Mott insulator1. This mapping thus endows the Mott transition of a genuine
order parameter. More recently, a similar trick of exploiting particle-hole symmetry to get rid of
the local constraints was used [152] to derive a Landau-Ginzburg theory of the orbital-selective
Mott transition in a two-band Hubbard model at half-�lling.

In the next Section, we formulate the slave-spin mapping for a generic SIAM, showing
that both local observables and Green’s functions can be evaluated without any need of local
constraints. Remarkably, this result extends to multi-orbital impurity model under certain
assumptions on the form of the local interaction on the impurity site.

6.2 The model
In this Section we formulate the slave-spin mapping for a generic SIAM2 where the tunnel-
coupling amplitudes Vkσ are spin-dependent and nonsymmetric under ε → −ε:

H =
∑
kσ

[
εkσ ψ

†

kσ ψkσ +
Vkσ
√

V

(
d†σ ψkσ + ψ†kσ dσ

)]
−

U
4

Ω −
µ

2
(
n↑ + n↓ − 1

)
−

h
2
(
n↑ − n↓

)
, (6.1)

where dσ is the annihilation operator of an electron state on the impurity, nσ = d†σdσ is the
corresponding density, while Ω = −

(
2n↑ − 1

)(
2n↓ − 1

) and n = n↑ + n↓. Despite a nonsymmetric
Vkσ, we can always assume, without loss of generality, a p-h symmetric spectrum εkσ, which
implies the existence of a one-to-one correspondence between spin-dependent pairs of momenta,

1We notice that the spontaneous breaking of the discrete Z2 gauge symmetry is possible only when the lattice
coordination number is in�nite [183].

2For more details on the SIAM we refer to Section 3.3.
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k and p = Cσ(k), such that εkσ = −εpσ. It is convenient to de�ne for all k such that εkσ < 0 the
following combinations:

ψ1kσ =
(
ψkσ + ψCσ(k)σ

)
/
√

2,

ψ2kσ =
(
ψkσ − ψCσ(k)σ

)
/
√

2,
(6.2)

as well as tunnel-coupling amplitudes:

V1kσ =
(
Vkσ + VCσ(k)σ

)
/
√

2,

V2kσ =
(
Vkσ − VCσ(k)σ

)
/
√

2.
(6.3)

In terms of ψ1(2)kσ and V1(2)kσ the Hamiltonian (6.1) reads:

H(U, µ, h,V2↑,V2↓) =
∑
σ

εkσ<0∑
k

εkσ
(
ψ†1kσ ψ2kσ + ψ†2kσ ψ1kσ

)
+

∑
σ

εkσ<0∑
k

2∑
a=1

Vakσ
√

V

(
d†σψakσ + ψ†akσdσ

)
−

U
4

Ω −
µ

2
(
n↑ + n↓ − 1

)
−

h
2
(
n↑ − n↓

)
,

(6.4)

where we simply denoted Vakσ as Vaσ, and as it will stand in the following.
Under a spin-σ p-h transformation:

Cσ :

dσ → d†σ
⋃ ∏

k

(
ψ1kσ → −ψ

†

1kσ

⋃
ψ2kσ → ψ†2kσ

) , (6.5)

the Hamiltonian (6.4) changes as follows:

C
†

↑
H(U, µ, h,V2↑,V2↓)C↑ = H(−U,−h,−µ,−V2↑,V2↓)

C
†

↓
H(U, µ, h,V2↑,V2↓)C↓ = H(−U, h, µ,V2↑,−V2↓),

(6.6)

while εkσ and V1kσ are invariant. Since the partition function, de�ned as:

Z(U, µ, h,V2↑,V2↓) = Tr
[
exp

(
−βH(U, µ, h,V2↑,V2↓)

)] (6.7)

is invariant under any unitary transformation, we have:

Z(U, µ, h,V2↑,V2↓) = Z(−U, h, µ,V2↑,−V2↓)
= Z(−U,−h,−µ,−V2↑,V2↓)
= Z(U,−µ,−h,−V2↑,−V2↓).

(6.8)

The previous identities will be used in the next Section, where we will get rid of the slave-particle
projector from the evaluation of the SIAM partition function.

6.3 Mapping within the slave-spin representation
In the local magnetic moment regime, when U is by far the largest energy scale, the charge
�uctuations are well-separated in energy from the spin ones. However, the Hamiltonian (6.4)
lacks a clear separation between the charge and spin degrees of freedom which is desirable in
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the large-U regime. To disentangle low and high-energy sectors, we enlarge the original Hilbert
space H by adding two Ising variables τττ↑ and τττ↓:

|n〉 → |n〉 ⊗ |s〉↑ ⊗ |s〉↓,

where |n〉 describes the fσ pseudofermion con�gurations {|0〉, | ↑〉, | ↓〉, | ↑↓〉} on the impurity
site, while |s〉σ refers to the con�guration of a two level quantum system {|+〉σ, |−〉σ}. Thus, in
the enlarged Hilbert space H∗ we introduce the two commuting operators:

P↑ = τz
↑

(
2n↑ − 1

)
, P↓ = τz

↓

(
2n↓ − 1

)
, (6.9)

which have eigenvalues pσ = ±1 and can therefore be regarded as parity operators. A represen-
tation of the physical Hilbert space is obtained by requiring the correspondence:

|0〉σ ≡ |n f
σ = 0〉 ⊗ |τz

σ = −1〉,

|1〉σ = d†σ|0〉 ≡ |n
f
σ = 1〉 ⊗ |τz

σ = +1〉,
(6.10)

which comprises all states of the enlarged Hilbert space H∗ even under the parity transformations
in Eq. (6.9), i.e. with pσ = +1. The projector onto the physical subspace is thus

P = P↑ P↓ =
1
4

(
1 + P↑

) (
1 + P↓

)
, (6.11)

and corresponds to the operator equivalence

τz
σ ≡

(
2nσ − 1

)
, (6.12)

which is just the slave-spin constraint [65]. From Eq. (6.10) we readily realize that in the physical
subspace of the enlarged Hilbert space the original annihilation operator dσ is replaced by:

dσ = τx
σ fσ, (6.13)

ensuring the anticommutation relations {dσ, d†σ′} = δσσ′ . Plugging Eq. (6.13) in Hamiltonian (6.4)
we obtain:

H2(U, µ, h,V2↑,V2↓) =
∑
σ

εkσ<0∑
k

εkσ
(
ψ†1kσ ψ2kσ + H.c.

)
+

2∑
a=1

τx
σ

Vakσ
√

V

(
f †σψakσ + H.c.

)
+

U
4
τz
↑
τz
↓
−
µ

4
(
τz
↑

+ τz
↓

)
−

h
4
(
τz
↑
− τz

↓

)
,

(6.14)

where we have used the constraint in Eq. (6.12) to rewrite the local Hamiltonian in terms of τz
↑

and τz
↓

only. The Hamiltonian in Eq. (6.14) commutes with P↑ and P↓, so that each eigenstate of
H2 can also be chosen as an eigenstate of Pσ with eigenvalues pσ, σ =↑, ↓. We notice that in the
physical subspace of H∗ there are several possible de�nitions of the original fermionic degree
of freedom:

τx
σ fσ = τ−σ fσ = −iτy

σ fσ, (6.15)
with τ−σ = τx

σ − iτy
σ. The previous identity (6.15) allows us to rewrite the Hamiltonian as:

H2(U, µ, h,V2↑,V2↓) =
∑
σ

εkσ<0∑
k

[
εkσ

(
ψ†1kσ ψ2kσ + H.c.

)
+ τx

σ

V1kσ
√

V

(
f †σψ1kσ + ψ†1kσ fσ

)
+ iτy

σ

V2kσ
√

V

(
f †σψ2kσ − ψ

†

2kσ fσ
) ]

+
U
4
τz
↑
τz
↓
−
µ

4
(
τz
↑

+ τz
↓

)
−

h
4
(
τz
↑
− τz

↓

)
.

(6.16)
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We shall prefer the previous expression of the slave-spin Hamiltonian, since here the role of the
p-h symmetry transformation Cσ (6.6) is simply played by τx

σ. Indeed, the equivalences below
hold straightforwardly:

H2(−U, h, µ,V2↑,−V2↓) = τx
↓ H2(U, µ, h,V2↑,V2↓) τx

↓ ,

H2(−U,−h,−µ,−V2↑,V2↓) = τx
↑ H2(U, µ, h,V2↑,V2↓) τx

↑ ,

H2(U,−µ,−h,−V2↑,−V2↓) = τx
↑ τ

x
↓ H2(U, µ, h,V2↑,V2↓) τx

↓ τ
x
↑,

(6.17)

so that, through Eq. (6.8), we �nd

Z(U, µ, h,V2↑,V2↓) = Tr
(
e−βH2(U,µ,h,V2↑,V2↓) P

)
= Tr

(
τx
↓e−βH1(U,µ,h,V2↑,V2↓) τx

↓ P
)

= Tr
(
τx
↑e−βH1(U,µ,h,V2↑,V2↓) τx

↑ P
)

= Tr
(
τx
↑ τ

x
↓e−βH1(U,µ,h,V2↑,V2↓) τx

↓ τ
x
↑ P

)
.

(6.18)

Since
1 = P + τx

↑ P τ
x
↑ + τx

↓ P τ
x
↓ + τx

↑ τ
x
↓ P τ

x
↓ τ

x
↑ , (6.19)

it readily follows that

Z(U, µ, h,V2↑,V2↓) =
1
4

Tr
(
e−βH2(U,µ,h,V2↑,V2↓)

)
=

Z2(U, µ, h,V2↑,V2↓)
4

. (6.20)

Eq. (6.20) is our main result. It states that the partition function of the original impurity model
(6.1) can be calculated without any constraint through the partition function of the model (6.16)
that describes two resonant levels, one for each spin species, each coupled to an Ising variable,
with the latter two coupled antiferromagnetically to each other by the U-term. The equivalence
(6.20) allows us to compute the thermodynamic expectation values of the SIAM in the slave-spin
representation without any constraint (we refer to Appendix C.1 for more details).

Similarly, it can also be shown that the average value of observables O, that commutes with
Cσ, can be obtained in the the slave-spin representation without any constraint:

〈O〉 =
〈
OS S

〉
2

(6.21)

where the operator OS S is now constructed out of operators { fσ, ψakσ, τττσ} that act on the enlarged
Hilbert space, and 〈· · · 〉2 denotes the thermal average with the Boltzmann distribution of H2 in
Eq. (6.16):

〈· · · 〉2 = Tr
[
exp

(
−βH2(U, µ, h,V2↑,V2↓)

)
· · ·

]
/Tr

[
exp

(
−βH2(U, µ, h,V2↑,V2↓)

)]
, (6.22)

where the trace is extended to the enlarged Hilbert space H∗. The proof of Eq. (6.21) is left to
Section C.2 of the Appendix C.

Interestingly, also the physical single-particle Green’s functions in the imaginary time τ of
the impurity can be computed through the Green’s functions of the composite operators τ−σ fσ
and f †στ+

σ in the slave-spin representation without constraints. In particular (details can be found
in Appendix C Section C.3)

Gσ(τ) = −
〈
Tτ

(
dσ(τ)d†σ(0)

)〉
= −2

〈
Tτ

(
τ−σ(τ) fσ(τ) f †σ(0)τ+

σ(0)
)〉

2
,

(6.23)
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where τ±σ = τx
σ ± iτy

σ, the average 〈· · · 〉2 is de�ned in Eq. (6.22) and time evolved operators reads:

fσ(τ) = eτH2 fσe−τH2 ,

τ±σ(τ) = eτH2τ±σe−τH2 ,
(6.24)

where H2 = H2(U, µ, h,V2↑,V2↓). This result is not only useful by its own but also because it
allows implementing DMFT [95, 121] in the slave-spin representation of Hubbard-like models in
lattices with in�nite coordination, which in some cases could be more convenient than working
directly in the physical representation.

6.3.1 Charge-orbital decoupling: an equivalent representation

The Hamiltonian (6.16) lacks a clear separation between the charge and spin degrees of freedom
which is desirable when the interaction U is large. The latter is coupled to the combination τz

↑
τz
↓
,

which is therefore the actual operator that controls the large-U freezing of valence �uctuations.
Since τz

↑
τz
↓

is still an Ising variable, with value ±1, we can exploit a convenient change of
variables. Following Ref. [83] we de�ne

τz
↑
τz
↓

= −σz , (6.25)

and thus, consistently,
τz
↑

= τz , τz
↓

= −τz σz ,

τx
↑ = τx σx , τx

↓ = σx ,

τ
y
↑

= τy σx , τ
y
↓

= −τz σy .

(6.26)

After this transformation Hamiltonian (6.16) changes into

H2(U, µ, h,V2↑,V2↓) =
∑
σ

εkσ<0∑
k

[
εkσ

(
ψ†1kσ ψ2kσ + H.c.

)
+ σx(τx δσ↑ + δσ↓

) V1kσ
√

V

(
f †σ ψ1kσ + H.c.

)
+ i

(
τy σx δσ↑ − τ

z σy δσ↓
) V2kσ
√

V

(
f †σ ψ2kσ − H.c.

)]
−

U
4
σz −

[
µ

4
(
1 − σz) +

h
4
(
1 + σz)] τz ,

(6.27)

where δσσ′ is the Kronecker delta.
The previous Hamiltonian notably simpli�es when the nonsymmetric component of the

tunnel-coupling amplitude is vanishing, V2kσ = 0. By following the same steps of Section 6.3 but
in the reverse order we can reduce the number of Ising variables to one. To this aim we absorb
the τx Ising variable inside the pseudofermion operator f↑ and, so, we reduce the dimension of
the enlarged Hilbert space by a factor of two. Therefore, the slave-spin model involves a single
auxiliary Ising variable and by using the operatorial identity τz = 2n↑ − 1 we obtain:

H1(U, µ, h) =
∑
σ

εkσ<0∑
k

[
εkσ

(
ψ†1kσ ψ2kσ + H.c.

)
+ σx V1kσ

√
V

(
f †σ ψ1kσ + H.c.

)]
−

U
4
σz −

[
µ

4
(
1 − σz) +

h
4
(
1 + σz)] (2n↑ − 1) ,

(6.28)
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with the projector on the physical subspace:

P =
1 − σz (2n↑ − 1) (2n↓ − 1)

2
. (6.29)

Following the same line of reasoning of Section 6.3, it is possible to prove that the partition
function of the SIAM in Eq. (6.1) with V2kσ = 0 can be computed without any constraint through
the partition function of the model (6.28):

Z(U, µ, h, 0, 0) =
1
2

Tr
(
e−βH1(U,µ,h)

)
. (6.30)

The latter identity (6.30), where the Hamiltonian H1 is de�ned in Eq. (6.28), generalizes the
result obtained in Ref. [248] to the case of a spin-dependent chemical potential shift applied on
the impurity site and a p-h symmetric tunnel-coupling amplitude Vkσ, i.e. Vkσ(εk) = Vkσ(−εk) or
V2kσ = 0.

6.3.2 Extension to multi-orbital impurity models

The mapping in Section 6.3 can be straightforwardly extended to a multi-orbital impurity model
with Hamiltonian

H = Himp +
∑
σ

M∑
α=1

εkασ<0∑
k

[
εkασ

(
ψ†1kασ ψ2kασ + H.c.

)
+ V1kασ

(
d†ασ ψ1kασ + H.c.

)
+ V2kασ

(
d†ασ ψ2kασ + H.c.

)]
,

(6.31)

in the simple case where the isolated impurity Hamiltonian Himp contains only the occupation
numbers nασ = d†ασ dασ, where α = 1, . . . ,M is the orbital index, i.e., Himp = Himp

(
{nασ}

)
, does

not include Coulomb exchange terms. Moreover, we assume that the tunnel-coupling amplitude
between the bath and the impurity is diagonal in the spin and the orbital indices. Analogously
to Section 6.3 we de�ne a generalized p-h transformation that involves the spin as well as the
orbital degree of freedom:

Cασ :

dασ → d†ασ
⋃ ∏

k

(
ψ1kασ → −ψ

†

1kασ

⋃
ψ2kασ → ψ†2kασ

) . (6.32)

Under this circumstance we can extend the slave-spin mapping to the multi-orbital by
introducing an Ising variable τττασ for any spinful orbital on the impurity site and de�ning:

dασ = τx
ασ fασ, (6.33)

where the equality holds in the physical subspace of the enlarged Hilbert, that is selected by the
projector:

Pασ =
1 + τz

ασ(2nασ − 1)
2

. (6.34)

We notice that the enlarged Hilbert space H∗ is 22M larger than the original one. Therefore, we
can exploit the p-h transformations in Eq. (6.32) for each orbital species and follow exactly the
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same reasoning as in Section 6.3 to show that the partition function Z of the Hamiltonian (6.31)
can be calculated as

Z =

(
1
2

)2M

Tr
(
e−βH2M

)
, (6.35)

where the trace Tr extends over the enlarged Hilbert space and

H2M =
∑
σ

M∑
α=1

εkασ<0∑
k

[
εkασ

(
ψ†1kασ ψ2kασ + H.c.

)
+ τx

ασ V1kασ
(

f †ασ ψ1kασ + H.c.
)

+ iτy
ασ V2kασ

(
f †ασ ψ2kασ − H.c.

)]
+ Himp

({
τz
ασ

})
.

(6.36)

The equivalence between the partition functions (6.35) allows us to compute the thermodynamic
average values of a multi-orbital AIM in the slave-spin representation without any constraint.
Remarkably, also the physical single-particle Green’s functions of the impurity in our slave-spin
theory is free from any constraint, and in imaginary time τ reads:

Gασ(τ) = −
〈
Tτ

(
dασ(τ) d†ασ(0)

)〉
= −2

〈
Tτ

(
τ−ασ(τ) fασ(τ) f †ασ(0) τ+

ασ(0)
)〉

2M
,

(6.37)

where

〈· · · 〉2M =
Tr

(
e−βH2M · · ·

)
Tr (e−βH2M )

(6.38)

is the average over the enlarged Hilbert space.

6.4 A relevant application: mean-�eld solution of the SIAM
In order to appreciate the importance of a mapping without constraints, we perform the mean
�eld-calculation of the impurity magnetic susceptibility χimp and charge compressibility κimp of
a simple spin-SU(2) invariant and p-h symmetric Anderson impurity model. The Hamiltonian
is therefore the one from Eq. (6.4) at �nite h & 0 and µ & 0, with V2kσ = 0 and spin-independent
εkσ = εk and V1kσ = Vk.
The mean-�eld approach to the conventional slave-boson representation of such Hamiltonian
erroneously yields at large-U a negative χimp < 0, discussed in Section 3.3 (detailed calculations
can be found in Section C.4 of the Appendix C), signalizing an instability of the paramagnetic
solution towards spontaneous spin polarization [252]. This is the tangible evidence that imposing
the constraint on average may lead to unphysical results.

Let us consider instead our mapping onto the equivalent Hamiltonians (6.27) and (6.28), which
do not require any constraint to be imposed. The mean-�eld approach consists in approximating
the ground-state wave function with a factorized one, a product of a fermionic |Ψ∗〉 part times
an Ising one |χ〉. We underline that this approximation is physically sound as long as the two
subsystems are controlled by well-separated energy scales, otherwise we have no guarantee that
the �uctuations beyond the mean-�eld are negligible. This is indeed realized in the model (6.27)
when U is large. On the contrary, a sharp distinction is absent in the equivalent representation
(6.16), where, after the mean-�eld decoupling, the Ising sector (τττ,σσσ) = (τττ↑, τττ↓) always contains
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excitation energies within the resonant spectral width. Therefore, even though Eq. (6.16) is
equivalent to Eq. (6.27), the mean-�eld approximation is, strictly speaking, only justi�ed in the
latter model and when U is large, which we shall consider hereafter.

Within mean-�eld applied to (6.28) the Ising degree of freedom is controlled by the Hamilto-
nian

Hσ
∗ = −

U
4
σz + 〈T 〉∗ σ

x −
h − µ

2

〈
n↑ −

1
2

〉
∗

σz, (6.39)

where
〈T 〉∗ ≡ 〈Ψ∗|T |Ψ∗〉 =

1
√

V

∑
k

∑
σ

Vk

(
〈Ψ∗| f †σψkσ|Ψ∗〉 + c.c.

)
,〈

n↑
〉
∗
≡ 〈Ψ∗|n↑|Ψ∗〉 = 〈Ψ∗| f

†

↑
f
↑
|Ψ∗〉

(6.40)

are expectation values in the variational fermionic wave function |Ψ∗〉. The ground state of the
e�ective Ising model (6.39) is identi�ed by

〈σx〉χ ≡ sin θ =
Bx/Bz√

1 + (Bx/Bz)2
,

〈σz〉χ ≡ cos θ =
1√

1 + (Bx/Bz)2
,

(6.41)

where 〈· · · 〉χ ≡ 〈χ | · · · |χ〉, and for convenience we have introduced the self-consistent �eld:

BBB =

(
− 〈T 〉∗ , 0,

U
4

+
h − µ

2

〈
n↑ −

1
2

〉
∗

)
. (6.42)

The fermionic problem is thus reduced such to �nd the ground state of the Hamiltonian

H f
∗ =

∑
kσ

εkσ ψ
†

kσ ψkσ +
1
√

V

∑
kσ

sin θVkσ
(

f †σ ψkσ + ψ†kσ fσ
)
−

∑
σ

λσ
2

nσ, (6.43)

where
λ↑ = h(1 + cos θ) + µ(1 − cos θ), λ↓ = 0. (6.44)

By performing straightforward calculations, that are summarized in the Section C.5 of Appendix
C, the expectation values in Eq. (6.40) become

〈T 〉∗ = 2
∑
σ

∫
dω

(
ω +

λσ
2

)
f (ω)A fσ(ω)/ sin θ, (6.45)

〈
n↑

〉
∗

=

∫
dω f (ω)A f↑(ω), (6.46)

where f (ω) = 1/(eβω + 1) and the fσ pseudofermion spectral function reads:

A f
σ(ω) =

1
π

−ImΣR
fσ(ω)[

ω + λσ/2 − ReΣR
fσ(ω)

]2
+ ImΣR

fσ(ω)2
. (6.47)

In the latter expression the fσ pseudofermion self-energy is given by:

ΣR
fσ(ω) = sin2 θ

∫
dε
π

Γ(ε)
ω − ε + i0+

. (6.48)



82 Unbinding slave-spins in Anderson impurity models

Given the spectral properties of the bath, i.e. Γ(ε), Eqs. (6.45) and (6.46) provide the self-consistent
fermionic �eldBBB, which depends on the ground state variational parameter θ. Therefore, we
close the set of mean-�eld Eqs. and the ground state is obtained by solving

sin θ =
Bx(θ)/Bz(θ)√

1 + (Bx(θ)/Bz(θ))2
, (6.49)

which corresponds to a root-�nding problem g(θ) = 0 in a single angular variable.
Assuming that the half bandwidth W is much larger than the other energy scales (this limit

is discussed in detail in Section C.4 of the Appendix C), the hybridization function ∆R(ω) with
the bath can be approximated as

∆R(ω) ' −iΓθ(W − |ω|).

In order to compute the charge and magnetic susceptibilities of the impurity we consider
separately the e�ect of applying a chemical potential shift and a Zeeman term on the impurity
site. Under these circumstances we have:

〈T 〉∗ = −
2Γ∗

π sin θ

2 log
W
Γ∗

+ log
1√

1 +
[
ε
(
1 ±
√

1 − Γ∗/Γ
)
/2Γ∗

]2


and 〈

n↑
〉
∗
−

1
2

=
1
π

tan−1
ε
(
1 ±
√

1 − Γ∗/Γ
)

2Γ∗

where the plus sign applies to ε = h, while the minus relates to ε = µ, and Γ∗ = Γ sin2 θ. It
is more convenient to use Γ∗ as the variational parameter said so, the saddle-point Eq. (6.49)
becomes

1 =
2Γ

π

√
1 −

Γ∗

Γ

2 log W/Γ∗ + log
{

1/
√

1 +
[
ε
(
1 ±
√

1 − Γ∗/Γ
)
/2Γ∗

]2
}

U/4 ± ε arctan
[
ε
(
1 ±
√

1 − Γ∗/Γ
)
/2Γ∗

]
/2π

. (6.50)

For large U the solution of Eq. (6.50) at h, µ � Γ∗ reads:

Γ∗(h) ' Γ∗(0)
(
1 −

h2

4Γ2
∗(0)

)
, Γ∗(µ) ' Γ∗(0)

(
1 +

µ2

64Γ2

)
(6.51)

where Γ∗(0) ' W exp [−πU/16Γ] is the same in the slave-boson mean-�eld theory3, and can be
associated with the Kondo temperature TK , though overestimated with respect to its actual value
[26]. In the regime of small applied �elds, the magnetization and the charge on the impurity site
are:

m =

〈
(1 + σz)

(
n↑ −

1
2

)〉
1

=
4

πΓ∗(0)
h
2

+ O
(
h2

)
, (6.52)

and
q =

〈
(1 − σz)

(
n↑ −

1
2

)〉
1

=
Γ∗(0)
4πΓ2

µ

2
+ O

(
µ2

)
, (6.53)

3We refer the interested reader to Section C.4 of the Appendix C for more details.
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Figure 6.1: Numerical calculation of the symmetric AS (blue line) and antisymmetric AA (red line)
quasiparticle scattering amplitudes. In the Kondo regime the values of AS and AA approach the exact
result AS = −AA = 1. We emphasize that the universal values follow directly from the expression of the
impurity charge and spin vertices in the slave-spin representation (6.28).

where the average 〈· · · 〉1 is performed over the enlarged Hilbert space obtained by adding a
single Ising variable. Therefore, the impurity contribution to the charge and spin susceptibilities
becomes:

χimp =
4

πΓ∗(0)
, (6.54)

and
κimp =

Γ∗(0)
4πΓ2 ' 0. (6.55)

We emphasize that χimp in Eq. (6.54) is positive, unlike in slave-boson mean-�eld theory. The
impurity contribution to the speci�c heat at low temperature only comes from the fermionic
degrees of freedom and reads explicitly

cimp '
2π2

3
T

πΓ∗(0)
. (6.56)

Hence, our simple calculation predicts a Wilson ratio at large U:

RW =
χimp/χ

0
imp

cimp/c0
imp

= 2, (6.57)

in agreement with the exact result in the Kondo regime [273]. We notice that in Eq. (6.57) χ0
imp

and c0
imp are non-interacting impurity quantities. According to Nozières’ Fermi liquid description

of the Kondo e�ect [212] (see also Ref. [189]),

χimp = 2ρ∗
(
1 − AA

)
, κimp = 2ρ∗

(
1 − AS

)
, (6.58)

where ρ∗ = 1/πΓ∗(0) = Zρ0 is the quasiparticle density of states at the chemical potential, as
opposed to its bare value ρ0 = 1/πΓ, with Z = sin2 θ � 1 the quasiparticle residue, while AS

and AA are the quasiparticle scattering amplitudes in the symmetric (S) and antisymmetric (A)
channels, respectively. The mean-�eld results, derived in Eqs. (6.52)-(6.53), and presented in Fig.
6.1, are thus compatible at large U with AS = −AA = 1, which, together with Eq. (6.56), are the
bases of Nozières’ local Fermi liquid theory of the Kondo e�ect [212]. This phenomenological



84 Unbinding slave-spins in Anderson impurity models

-0.4 -0.2 0 0.2 0.4

�x

-0.02

0.00

0.02

⇥E
(�

x )
/⇤

�E
Γ

Figure 6.2: Mean-�eld energy measured with respect to the free magnetic moment (i.e. Γ = 0) as a
function of 〈σx〉 for U/W = 0.1 and Γ/W = 2.0 × 10−3. The state at 〈σx〉 = 0 corresponds to the local
magnetic moment on the impurity site decoupled from the conduction electrons. The system gains energy
by developing a �nite 〈σx〉 that corresponds to a non magnetic state where the impurity spin is coupled
in a singlet con�guration with the conduction electron spin. We notice that the energy reveals two
degenerate minima symmetric under the Z2 parity transformation 〈σx〉 → −〈σx〉. At zero temperature
the ground state breaks spontaneously the Z2 symmetry by choosing one of the two minima.
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Figure 6.3: In red solid and dashed lines we plot the mean-�eld values of the e�ective hybridization
width Γ∗(h)/Γ∗(0) and magnetization m(h) as a function of the applied magnetic �eld ε = h. Whereas,
in blue solid and dashed lines we plot the mean-�eld values of Γ∗(µ)/Γ∗(0) and n(µ) − 1 as a function
of a chemical potential shift. We notice that the response to an external chemical potential is strongly
suppressed due to the missing 1/U corrections to the charge susceptibility. The parameters used are
U/W = 0.1 and Γ/W = 1.96 × 10−3, which corresponds to Γ∗(0)/W ' 4.01 × 10−5.
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theory has been successfully exploited in many contexts, not least to derive universal properties
in transport across quantum dots [86, 100, 142, 193, 257]. We emphasize that the universal values
in Eq. (6.58) simply follow from the expressions of the impurity charge and spin density vertices,
the former proportional to (1 − σz) and the latter to (1 + σz), and the fact that, in the Kondo
regime, σz is found to be σz ' 1 with negligible �uctuations. As a result, the mean-�eld solution,
σz → 〈σz〉, not only predicts the suppression of the charge compressibility and the enhancement
of the magnetic one, but also captures the leading vertex corrections, remarkably. By contrast,
the mean-�eld approximation does not allow one to recover the nonuniversal corrections to
the Kondo regime, which are polynomials in 1/U for large U [118, 250]. These corrections are
subleading in the spin susceptibility, but leading in the charge one (see Eq. (6.53)).

We conclude by mentioning that the model 6.28 can still be viewed as a dissipative two-level
system [46] in a subohmic bath, as it was the case at ε = 0 [26]. Each potential well corresponds
to a value of σx = ±1, while σz induces quantum tunneling between the two wells. Localization
inside one of the two minima, displayed in Fig. 6.2, is signalized by a �nite expectation value of
σx, and it also corresponds to spontaneous breakdown of the local Z2 gauge symmetryσx → −σx

and fσ → − fσ. The Kondo temperature TK ∼ 〈σ
x〉2 thus plays the role of a bona �de order

parameter.
In this language, the �eld ε translates into an assisted tunneling that hampers localization

but, at least within mean-�eld, cannot rule it out, as shown in Fig. 6.3 where we plot in red
and blue the response of the system to an applied magnetic �eld and a chemical potential
shift, respectively. We believe that the persistence of Z2 gauge-symmetry breaking even in the
presence of the assisted tunneling is a real feature of the model and not just an artifact of the
method.

6.4.1 Self-consistent evaluation of the physical fermionic propagator

In this Section we show that within a simple conserving mean-�eld approximation we �nd an
impurity spectral function that displays both the expected low-energy Kondo resonance and
the high-energy valence �uctuations peaks. In order to provide a consistent description of the
high-frequency feature one has to include RPA corrections in the Ising variable propagator.

For simplicity we present the self-consistent calculation of the physical fermions Green’s
function for the Hamiltonian (6.28) at µ = h = 0. In this case we have:

Gσ(τ) = −
〈
Tτ

(
dσ(τ)d†σ(0)

)〉
= −

〈
Tτ

(
σx(τ) fσ(τ) f †σ(0)σx(0)

)〉
1

(6.59)

where 〈· · · 〉1 is the average over the extended Hilbert space obtained by introducing a single
Ising variable. The generalization to the generic case (6.16) is straightforward and can be found
in Section 6.5.

The mean-�eld self-consistent calculation of the electron Green’s function is based on
representing the σσσ-matrices by bilinear combinations of Fermi operators [1]:

φ†α σ
i
αβ φβ = σ̂i, (6.60)

where the upper index i = 1, 2, 3 denotes the Pauli matrices and the lower ones are α, β = ±.
The fermion substitution Eq. (6.60) introduces two additional con�gurations |0, 0〉 and |1, 1〉 to
the two dimensional Hilbert space of theσσσ-matrices, which is composed by |1, 0〉 and |0, 1〉. The
physical states satisfy the condition:

N = φ†+φ+ + φ†−φ− = 1. (6.61)
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Figure 6.4: a) Bare Green’s functions. b) Bare interaction. Hartree-Fock self-energy diagrams corre-
sponding to the slave-spin mean-�eld approximation: c) elastic scattering between fσ and ψkσ fermions
renormalized by 〈φ†ασx

αβφβ〉χ, d) φ fermion self-energy determined by valence �uctuations induced by the
hybridization operator T .

Remarkably, previous constraint can be implement exactly [147, 224] by introducing an imaginary
chemical potential in the fermionic representation of the spin Hamiltonian:

Hσ → H f + iπN/2β

which results in a rigid shift of the fermionic Matsubara frequencies iεn = iπT (2n + 1) →
iπT (2n + 1/2). However, in the following we perform a zero temperature calculations, where the
constraint (6.61) is automatically satis�ed. Indeed, the unphysical con�gurations are excluded
since physical quantities involve only averages of products of σ̂i, which have the property of
giving zero when acting on the nonphysical states |0, 0〉 and |1, 1〉. In this representation, the
hybridization term in Eq. (6.28) becomes the four-leg fermionic interaction vertex depicted in
Fig. 6.4 b). The Hartree-Fock approximation corresponds to the mean-�eld decoupling presented
in Section 6.4 and is described by the self-energy diagrams in Figs. 6.4 c) and d):

Σφ = σx 〈T 〉∗ ,

Σ f k = Vk
〈
φ†ασ

x
αβφβ

〉
χ
,

(6.62)

where the averages 〈· · · 〉∗ and 〈· · · 〉χ are de�ned in Eqs. (6.40) and (6.41). Consistently with the
Hartee-Fock approximation the physical fermion spectral function reads:

Adσ(ω) =
〈
φ†ασ

x
αβφβ

〉2

χ
A fσ(ω) +

1
π

∫
dεA fσ(ω − ε)ImΠΠΠR

xx(ε)
[
f (ω − ε) + n(−ε)

] (6.63)

where f (ε) = 1/(eβε + 1) and n(ε) = 1/(eβε − 1). We have extracted the condensate contribution
from the two-particle correlation function:

ΠΠΠR
xx(t − t′) = −iθ(t − t′)

〈[
~φ †(t) · σx · ~φ(t), ~φ †(t′) · σx · ~φ(t′)

]〉
1

(6.64)
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Figure 6.5: Random phase approximation (RPA) for the Πxx two-particle correlation function.

where ~φ † =
(
φ†+ φ†−

)
.

In a consistent scheme Hartree-Fock solution the evaluation of Πxx includes quantum �uctu-
ations obtained using the irreducible vertex, the latter is determined by the functional derivative
of the self-energy. In our speci�c example, the bosonic operator σ̂x, i.e. the valence �uctua-
tions, are directly coupled to the hybridization amplitude T , which implies the random phase
resummation (RPA) displayed in Fig. 6.5:

ΠΠΠR
xx(ω) =

ΠR
xx(ω)

1 − ΠR
xx(ω)χR

TT (ω)
, (6.65)

where Πxx is the bare propagator:

ΠR
xx(ω) = −i

∫
dε
2π

Tr
[
σxGR

φ

(
ε +

ω

2

)
σxGA

φ

(
ε −

ω

2

)]
= cos2 θ

(
1

ω − ω0 + i0+
−

1
ω + ω0 + i0+

)
,

(6.66)

with ω0 energy of the spin excitations ω0 = U/2 cos θ, while

χR
TT (t − t′) = −iθ(t − t′)

〈[
T (t),T (t′)

]〉
1 . (6.67)

Performing the straightforward calculations we obtain:

χR
TT (ω) =

3U
4 cos θ

+
4

sin2 θ

∑
σ

∫
dx f (x)A fσ(x)

[ (
x +

ω

2

)2
GR

fσ(x + ω)

+

(
x −

ω

2

)2
GA

fσ(x − ω)
]
.

(6.68)

The dσ electron spectral function in Eq. (6.63) is shown in the color map displayed in the
top panel of Fig. 6.6, where we plot the evolution of the spectral features as a function of
U/Γ. As the value of the interaction increases we observe a transfer of the spectral weight
from the low-energy Kondo resonance, that becomes narrower, to the high-energy valence
�uctuations peaks. It is interesting to notice that in the absence of the RPA corrections the width
of high-energy features is Γ∗, i.e. the same as the low-energy quasiparticle peak. This unphysical
result, that is a consequence of neglecting the RPA corrections, implies the narrowing of the
high-energy spectral features in the large-U regime. To highlight the di�erence let us present in
the bottom panel of Fig. 6.6 the spectral function obtained neglecting (red line) and including
(black line) RPA corrections. We clearly see that the RPA allows us to reconstruct incoherent
sidebands characterized by a width of the order of the bare hybridization Γ, centered around
±U/2 and identi�ed by the spectral weight 1 − 〈σx〉2χ. In this respect, a possible direction, worth
exploring, is the analysis of the feedback of the RPA corrections on the self-consistent Eq. (6.50).



88 Unbinding slave-spins in Anderson impurity models

ω
/W 0.00

0.05

0.10

-0.05

-0.10
22 24 26 28 30 32

U/Γ

60

50

40

30

20

10

0

ω0/W

-0.10 -0.05 0.00 0.05 0.10

ω/W

0

40

80

A
d(ω

) U/Γ=28.57RPA
no RPA

Figure 6.6: Top panel: evolution of the physical electron spectral function Ad(ω) as a function of U/Γ for
U/W = 0.1 and di�erent values of Γ/W obtained by performing the self-consistent mean-�eld calculation,
see Eqs. (6.63) and (6.65). White dashed line corresponds to the charge �uctuations energy ω0 = U/ cos θ.
Bottom panel: Ad(ω) as a function of ω/W for U/W = 0.1 and Γ/W = 3.5 × 10−3, which corresponds to
Γ∗/W ' 8.8 × 10−4. Black solid line is obtained including the RPA corrections, while the red dashed line
is obtained plugging the bare propagator from Eq. (6.66) into Eq. (6.63).
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6.5 Slave-spin as approximate impurity solver for DMFT
In this Section we present the self-consistent slave-spin theory applied as an approximate solver
for DMFT calculations. Even though we will consider only the case of a single-band Hubbard
model away from half-�lling, the following results are easily generalizable to the case of a
multi-band Hubbard model in the absence of Coulomb exchange interaction.

In DMFT we de�ne the Weiss �eld as the bare Green’s function of (6.1):

G−1
σ (z) = z − ∆σ(z),

where
∆σ(z) =

∫
dε
π

Γ(ε)
z − ε

is the hybridization function of the bath. It is important to remark that the properties of the
dynamical bath are encoded in a single quantity, i.e. the hybridization amplitude Γσ(ε). Given a
certain bath, Γσ(ε), we compute the single-particle Green’s function of the model Hamiltonian
(6.16):

G−1
σ (z) = z − ∆σ(z) − Σσ(z),

with the aim of solving the DMFT self-consistency equation, that in the Bethe lattice reads:

Γσ(ω) = πW2Adσ(ω)/4 (6.69)

where W is the half-bandwidth.
In practice Eq. (6.69) is used in an iterative manner to update the spectral function of the

bath degrees of freedom Γi
σ(ω)→ Γi+1

σ (ω). DMFT self-consistency is reached when the distance
between nearest neighbors Γσ(ε) is smaller than a �xed tolerance δ:

‖Γi+1
σ − Γi

σ‖L1 =

∫
|Γi+1
σ (ω) − Γi

σ(ω)|dω < δ. (6.70)

In the following we consider a generic SIAM, which is the relevant case when we consider
the single-band Hubbard lacking of any particle-hole symmetry. Given the tunnel-coupling
amplitudes V1kσ and V2kσ, introduced in Eq. (6.3), that depend on k only through εk, we de�ne:

Γabσ(ω) = πρ(ω)Vaσ(ω)Vbσ(ω)/2.

Therefore, in terms of the hybridization function Γσ(ε) we have:

Γ11σ(ε) =

(√
Γσ(ε) +

√
Γσ(−ε)

)2

4
, Γ22σ(ε) =

(√
Γσ(ε) −

√
Γσ(−ε)

)2

4
, (6.71)

and
Γ12σ(ε) =

Γσ(ε) − Γσ(−ε)
4

= Γ21σ(ε), (6.72)

such that Γσ(ω) = Γ11σ(ε) + Γ22σ(ε) + Γ12σ(ε) + Γ21σ(ε). Mean-�eld decoupling of Eq. (6.16) gives
rise to two problems, an e�ective resonant level model:

H f
∗ = Hb +

∑
σ

〈τx
σ〉χT1σ +

∑
σ

〈τy
σ〉χJ2σ, (6.73)

and a spin model:

Hτ
∗ =

U
4
τz
↑
τz
↓
−
µ

4
(τz
↑

+ τz
↓
) −

h
4

(τz
↑
− τz

↓
) +

∑
σ

τx
σ〈T1σ〉∗ +

∑
σ

τy
σ〈J2σ〉∗. (6.74)
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Figure 6.7: Schematic representation of the iterative procedure needed to reach the mean-�eld saddle-
point. Convergence is reached when δV i

σ = 1 −
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χ

∣∣∣ is smaller than a given tolerance.

In Eq. (6.73) we have introduced:

T1σ =

εkσ<0∑
k

v1kσ
√

V
( f †σψ1kσ + H.c.)

and

J2σ = i
εkσ<0∑

k

v2kσ
√

V
( f †σψ2kσ − H.c.),

that act on the Ising degrees like the x and y components of a self-consistent �eld, respectively.
To determine the mean-�eld e�ect of the fermions on Ising degrees of freedom we have to
compute the f pseudofermion Green’s function; as usual the Dyson equation is:

G−1
fσ(z) = z − Σ fσ(z), (6.75)

at mean-�eld level we have:

Σ fσ(z) = 〈τx
σ〉

2∆11σ(z) + 〈τy
σ〉

2∆22σ(z), (6.76)

where
∆abσ(z) =

∫
dω
π

Γabσ(ω)
z − ω

. (6.77)

For completeness we report the analytic expression of the average values 〈T1σ〉∗ and 〈J2σ〉∗ in
Appendix C.6.

The numerical procedure for obtaining the slave-spin mean-�eld solution is described in Fig.
6.7. Given an initial con�guration for the slave-spin degree of freedom 〈τττσ〉χ we compute the
average quantities 〈T1σ〉∗ and 〈J2σ〉∗, that determine the e�ective magnetic �eld acting on the
spin degrees of freedom τττσ. Then, we �nd the ground state |χ〉 of the updated spin Hamiltonian
Hτ
∗ that allows us to obtain the expectation values 〈τττσ〉. The mean-�eld solution is reached when

the variation of δV i
σ = 1 −

∣∣∣〈τττσ〉i+1
χ · 〈τττσ〉

i
χ

∣∣∣ is smaller than a given tolerance.
Once the saddle-point solution is obtained, we compute the self-consistent dσ fermions

spectral function:

Adσ(ε) = 2〈χ|τ−σ|χ〉〈χ|τ
+
σ|χ〉A fσ(ε) + 2

∫
dx
π

A fσ(ε − x)ImΠΠΠR
−+,σ(x)

[
f (ε − x) + n(−x)

]
, (6.78)
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where:
ΠΠΠR
−+,σ(t − t′) = −iθ(t − t′)

〈[
τ−σ(t), τ+

σ(t′)
]〉

2 . (6.79)

Following the same line of reasoning presented in Section 6.4.1, the evaluation of the Π−+,σ

includes RPA corrections due to the low-energy pseudofermions coupled with the charge
�uctuations on the impurity site.

The bare propagator of the Ising degrees of freedom can be easily computed as:

Πab,σ(z) =

n,0∑
n

(
〈χ|τa

σ|φn〉〈φn|τ
b
σ|χ〉

z − ωn0
−
〈φn|τ

a
σ|χ〉〈χ|τ

b
σ|φn〉

z + ωn0

)
, (6.80)

where n = 0 refers to the ground state |χ〉, while n > 0 stands fo the excited states of the e�ective
spin model Hτ

∗ . In this case the RPA corrections are more involved and take into account the
coupling to the hybridization T1σ and the current J2σ operators. Diagrammatics calculations
enable us to derive the equations for the RPA spin correlation functions (dropping the spin index
σ and the frequency dependence): Π−1

xx

(
1 − ΠxxχT1T1 − ΠxyχJ2T1

)
−Π−1

xx ΠxyχJ2 J2 − χT1 J2

−χT1T1 − Π−1
yx ΠyyχJ2T1 Π−1

yx

(
1 − ΠyyχJ2 J2 − ΠyxχT1 J2

)  · ( ΠΠΠxx

ΠΠΠyx

)
=

(
1
1

)
, Π−1

xy

(
1 − ΠxxχT1T1 − ΠxyχJ2T1

)
−χJ2 J2 − Π−1

xy ΠxxχT1 J2

−Π−1
yy ΠyxχT1T1 − χJ2T1 Π−1

yy

(
1 − ΠyyχJ2 J2 − ΠyxχT1 J2

)  · ( ΠΠΠxy

ΠΠΠyy

)
=

(
1
1

)
,

(6.81)

where
χT1T1(t) = −i〈Tt(T1(t)T1)〉, χJ2 J2(t) = −i〈Tt(J2(t)J2)〉,

and
χT1 J2(t) = −i〈Tt(T1(t)J2)〉, χJ2T1(t) = −i〈Tt(J2(t)T1)〉.

Given ω, Eq. (6.81) is algebraic problem:

K̂(ω) · ~ΠΠΠ(ω) = ~1 =⇒ ~ΠΠΠ(ω) = K̂−1(ω) · ~1,

which can be solved analytically through:(
a b
c d

)
→

1
ad − bc

(
d −b
−c a

)
.

Finally, the linear combination of the spin correlation functions, obtained by inverting Eq. (6.81):

ΠΠΠ−+ =
ΠΠΠxx + ΠΠΠyy + iΠΠΠxy − iΠΠΠyx

4
,

gives the RPA spectral function ΠΠΠ−+, giving us the possibility to compute self-consistently the
second contribution in the right hand side of Eq. (6.78). Thus, by means of Eq. (6.78) we obtain
the dσ electrons spectral function, which allows, through Eq. (6.69), updating the bath Γσ(ω).
The procedure is iterated up to the DMFT self-consistency (6.70) as displayed schematically in
Fig. 6.8.

Before concluding let us note that the previous approach extends straightforwardly to the
multi-orbital case (6.36) by simply introducing an additional index related to the orbital quantum
number.
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Figure 6.8: Schematic representation of the DMFT loop. The bath Γσ(ω) is updated by using the self-
consistent slave-spin impurity Green’s function.

6.6 Conclusions
In this Chapter we have shown that a generic SIAM can be mapped without any constraint
onto a resonant level model coupled to two Ising spins, or just one in the simpler case when
the hybridization with the bath is particle-hole symmetric. Remarkably, the slave-spin mapping
can be directly generalized to the multi-orbital case within the assumptions of an impurity
Hamiltonian that does not include Coulomb exchange terms.

In order to appreciate the importance of the mapping we show that the mean-�eld decoupling
of electrons from the Ising variables is able to reproduce quite accurately the magnetic properties
of the model even deep inside the large-U Kondo regime (Figs. 6.1 and 6.3), speci�cally, the
�nite susceptibility χ ∼ 4/πTK and Wilson ratio RW = 2 [212, 214]. By comparison, in the same
Kondo regime, conventional slave-boson mean-�eld theory yields a spin-polarized lowest-energy
solution that unphysically breaks spin SU(2) symmetry [252].

We also demonstrate that the single-particle Green’s functions of the physical fermions can
be calculated without constraints. This important result allows, for example, solving in the
slave-spin representation a generic particle-hole nonsymmetric Hubbard model with DMFT.
This could, in some cases, be more convenient than directly working within the physical
Hilbert space, though smaller than the enlarged one, especially when one wants to prevent
spontaneous symmetry breaking that usually accompanies a Mott transition. Indeed, the slave-
spin Hamiltonian (6.28) is invariant under a particle-hole transformation acting on the fermions
fσ, despite the fact that the Hamiltonian of the physical electrons dσ is not.

By introducing the Abrikosov representation of the 1/2 spin variable [1, 147, 224] we show
that the slave-spin mean-�eld approach corresponds to a Hartee-Fock approximation. This
convenient representation allows us to perform a self-consistent calculation of the single-
particle physical fermions Green’s function that, as shown in Fig. 6.6, reproduces both the Kondo
resonance and the high-energy incoherent charge �uctuations peaks.

Finally, in Section 6.5, we present the slave-spin mean-�eld technique as approximate
impurity solver for DMFT. Our proposal is a numerically inexpensive approach that allows
studying the zero temperature properties of the multi-bands Hubbard models, where more
accurate impurity solvers are extremely demanding.



7
Transport in quantum dots within the

slave-spin technique

In this Chapter we study transport across a magnetic impurity by means of the constrained-free
slave-spin technique formulated in Chapter 6. We prove that also the out of equilibrium evolution
of quantum dot can be obtained in the slave-spin representation without any constraint on the
enlarged Hilbert space. We formulate the slave-spin mean-�eld theory to study the evolution of a
quantum dot driven out of equilibrium by an external perturbation. The method is able to access
the full out of equilibrium dynamics also far from the linear response regime. Within a conserving
mean-�eld approximation we �nd a conductance that displays not only the well-known zero-bias
anomaly, G = 2e2/h, but also the expected peak at bias of order U . Moreover, we apply the method
to investigate the time-evolution of a quantum dot induced by a time-dependent electrochemical
potential applied to the contacts. Similarly to the time-dependent Gutzwiller approximation, the
mean-�eld slave-spin dynamics is able to capture dissipation in the leads, so that a steady-state is
reached after a characteristic relaxation time.

7.1 Introduction

Originally observed in magnetic alloys [117], the Kondo e�ect [18, 153], which may be the
simplest collective phenomena due to strong correlations, is now routinely realized in magnetic
nanocontacts, either by real magnetic atoms and molecules [182, 218, 267] or arti�cial ones
[23, 143], e.g. quantum dots. In these systems the Kondo e�ect reveals itself by the so-called
zero-bias anomaly [60, 99, 101, 207]. It arises by the coupling between a single magnetic atom,
such as cobalt, and the conduction electrons of an otherwise non-magnetic metal. Such an
impurity typically behaves like a local moment that, due to spin exchange, forms a many-body
spin singlet state with the itinerant electrons.

Unlike magnetic alloys, nanoscale Kondo systems can be driven out of equilibrium by
applying charge or spin bias voltages across the devices [150]. In such a nonequilibrium situation,
the interplay between the time dynamics and strong correlation e�ects makes the theoretical
description extremely challenging. In order to address this problem, many innovative approaches
have been developed, such as time-dependent numerical renormalization group [14–16], real
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time Monte Carlo [246, 284], time-dependent density-matrix renormalization group [37, 249, 286],
�ow equation methods [88, 144, 272], perturbative renormalization group [139, 188, 210, 237, 251],
time-dependent variational approaches [22, 161], slave-particle techniques [57, 69, 176, 228] and
exact approaches [36, 185]. Despite the rich variety of methods, they often become numerically
costly at long times, which limits their application to the short times evolution of simple models.
Some semi-analytical approaches [57, 161] sacri�ce the accuracy in order to access the full
dynamics.

The nonequilibrium slave-spin technique for magnetic impurities presented in this Chapter
belongs to the latter class of techniques. Following the same strategy presented in Section 6.3, we
map, without any constraint, a SIAM, characterized by a particle-hole symmetric hybridization
with the contacts, onto a resonant level model coupled to a single Ising variable. Remarkably,
the mapping applies for the out of equilibrium dynamics and allows us to disentangle spin and
charge dynamics, which are characterized by well-separated time-scales. In this representation, a
simple self-consistent Hartree-Fock calculation is able to reproduce qualitatively the di�erential
conductance of a single-orbital magnetic impurity both in the small and large bias regimes.
Moreover, the slave-spin technique allows us to study the full time evolution of magnetic
impurities coupled with metallic leads under a nonequilibrium protocol.

The plan of the Chapter is as it follows. We �rst introduce the model to describe a quantum
dot coupled to two metallic contacts in Section 7.2. Then, in Section 7.3, we present the out
of equilibrium extension of our slave-spin theory that allows computing the time-dependent
average values without any constraint. In Section 7.4 we present the mean-�eld approximation
for the out of equilibrium dynamics of a quantum dot. By assuming that the system relaxes
after an initial transient, we present, in Section 7.5, the mean-�eld approximation for the
nonequilibrium steady-state regime. To highlight the importance of the approach presented in
this work, we devote the Section 7.6 to applications of the method to transport in quantum dots
coupled to metallic contacts.

7.2 The slave-spin Hamiltonian for a quantum dot

A quantum dot is an arti�cial droplet of electron liquid with characteristic dimension ranging
from nanometers to a few microns. The dot, which is often realized in semiconductors het-
erostructures, can be coupled to metallic contacts such to allow the electronic transport across
the system. Applying a gate voltage it is possible to create con�gurations with an odd number
of electrons, which are degenerate with respect to spin and typically in a spin-doublet state.
The coupling with the contacts induces an e�ective magnetic exchange that, at temperature
below TK

1, removes the degeneracy and induces a collective state where the impurity magnetic
moment is screened by the electrons of the contacts.

A minimal model, that in many circumstances describes the physics of quantum dots, is the
SIAM (3.52). In the presence of two metallic contacts the model Hamiltonian reads:

H(t) = HC(t) + HT,C(t) + HD(t), (7.1)

where the �rst term is the dot Hamiltonian

HD = −
U
4

Ω −
Vg(t)

2
(n − 1) −

h(t)
2

(n↑ − n↓),

1We have already encountered this important energy scale in the context of magnetic impurities in metals, see
Sections 3.3 and 6.4.
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where dσ is the annihilation operator of an electron state on the quantum dot, nσ = d†σdσ
the corresponding density, while Ω = −

(
2n↑ − 1

)(
2n↓ − 1

) and n = n↑ + n↓. In Hamiltonian
(7.2) U denotes the charging energy, while Vg(t) the gate potential and h(t) the Zeeman �eld,
both time-dependent. The non-interacting right (R) and left (L) leads are represented by a free
electron gas with half-bandwidth W

Hc =
∑

a=L,R

∑
kσ

(εk − φa)ψ†akσ ψakσ, (7.2)

where φa is the electrochemical potential that �xes the number of electrons in each contact,
φL = −φR. Finally, the tunnel-coupling between the contacts and the quantum dot is represented
by:

HT,C(t) =
∑

a=L,R

∑
kσ

(
Vak(t)ψ†akσ dσ + H.c.

)
/
√

V , (7.3)

where Vak(t) is a time-dependent amplitude, and V is the number of k states. In this Chapter
we limit the analysis to the symmetric case where VLk(t), VRk(t) do not depend on the spin and
the channel quantum number, VLk(t) = VRk(t) = Vk(t). Furthermore, we assume a particle-hole
symmetric bath, i.e. for any εk there exist a k∗ such that εk∗ = −εk and:

Γ(−ε, t) = Γ(ε, t),

where the time-dependent hybridization function reads:

Γ(ε, t) =
∑

k

|Vk(t)|2δ(ε − εk)/V.

We observe that, by means of the results presented in Section 6.3, the slave-spin theory for the
out of equilibrium dynamics of quantum dots can be generalized to more complicated situations,
e.g. VL(t) , VR(t) or multi-levels quantum dots.

Since the particle-hole transformation CσLR will be important in the following, let us writedσ → d†σ
⋃∏

k

(
cLkσ → −c†Rk∗σ

⋃
cRkσ → −c†Lk∗σ

) (7.4)

that acts on the spin-σ electrons and mixes R and L contacts, leaving the chemical potential
shift (7.2) invariant. Under such transformation the parameters of Hamiltonian (7.1) change as
follows:

U → −U, Vg → ∓h, h→ ∓Vg, (7.5)

where upper and lower signs refer to the action of C↑LR and C↓LR, respectively.
By using the mapping presented in Section 6.3.1, considering the case of a particle-hole

symmetric hybridization function, the dot Hamiltonian (7.1) can be written in the slave-spin
representation as an e�ective resonant level model coupled to a single Ising variable:

H1(t) = HC + σxHT,C(t) + HD(t), (7.6)

where HC remains unaltered, HT,C(t) is obtained by replacing the electron dσ with the pseud-
ofermion fσ, while the dot Hamiltonian takes the same form as in Eq. (6.28) but with time-
dependent parameters:

HD(t) = −
U
4
σz −

h(t)
4

(1 + σz)
(
2n↑ − 1

)
−

Vg(t)
4

(1 − σz)
(
2n↑ − 1

)
. (7.7)
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We remind that the representation of the electron annihilation operator in terms of the slave-spin
and the pseudofermion operator is dσ = σx fσ. The model Hamiltonian (7.6) is equivalent to the
dot Hamiltonian (7.1) providing that the enlarged Hilbert space is projected at any time t in the
physical subspace by the projector P de�ned in Eq. (6.29).

Remarkably, the time-dependent evolution of the quantum dot, Eq. (7.1), can be obtained
from the auxiliary model in Eq. (7.6) without any constraint on the enlarged Hilbert space. The
proof of this equivalence follows the same steps of the equilibrium case, see Section 6.3. However,
we consider valuable to show, in the next Section, the possibility to remove the constraint in
the time-dependent average value of physical operators. In particular, since our aim is to study
the charge transport across the junction, we are going to prove the previous statement by
considering the charge current operator, that, in terms of the original fermions dσ, is de�ned as:

IQ(t) =
IL(t) − IR(t)

2
, (7.8)

where the current Ia(t) reads

Ia(t) = i [H(t),Na(t)] = −i
∑
kσ

(
Vk(t)ψ†αkσ dσ − H.c.

)
/
√

V

with Na number operator in lead a and a = L,R. Performing the slave-spin mapping the latter
quantity becomes

IQ(t) = σx IL(t) − IR(t)
2

= σx I f
Q, (7.9)

where the IL and IR are obtained by replacing dσ with fσ.
Before moving on, we introduce the Glazman-Raikh rotation [99]:(

ψ1kσ
ψ2kσ

)
=

1
√

2

(
1 1
1 −1

) (
ψLkσ
ψRkσ

)
. (7.10)

The previous unitary transformation is particularly convenient to study the transport across
quantum dots. Indeed, it is easy to realize that the anti-symmetric combination of the electron
states in the leads ψ2kσ is decoupled from the impurity, while the symmetric combination ψ1kσ
remains coupled to dσ, see Eq. (7.3). Thus, the Kondo screening involves only the ψ1kσ variables.
On the other hand, the current operator (7.8) is expressed in terms of ψ2kσ only.

7.3 Fate of the slave-spin constraint in the evolution
Without losing generality, we assume the model in Eq. (7.1) placed at time t = 0 in thermal
equilibrium at temperature T = 1/β:

ρ(U,Vg, h) =
e−βH(U,Vg,h)

Z(U,Vg, h)
,

where Z(U,Vg, h) = Tr
(
e−βH(U,Vg,h)

)
and the impurity is decoupled from the contacts Vk(0) = 0.

For t > 0 we let the system to evolve by suddenly changing the coupling between the dot and
the leads: Vk(t > 0) = Vk. We note that the initial distribution may include a chemical potential
bias between the L and R contacts. The average current �owing across the dot is:

IQ(t; U,Vg, h) = Tr
[
ρ(U,Vg, h)U†(t, 0; U,Vg, h)IQU(t, 0; U,Vg, h)

]
,
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where U is the unitary time evolution operator:

U(t, 0; U,Vg, h) = Tt

[
exp

(
−i

∫ t

0
dt′H(t′,U,Vg, h)

)]
.

Since the trace is invariant under similarity transformations and C†
↓LR commutes with IQ, Eq.

(7.5) implies:
IQ(t; U,Vg, h) = IQ(t;−U, h,Vg),

and

IQ(t; U,Vg, h) =
I(t; U,Vg, h) + IQ(t;−U, h,Vg)

2
. (7.11)

Within the slave-spin representation the initial equilibrium distribution is described by

ρ1(U,Vg, h) =
e−βH1(U,Vg,h)

Z(U,Vg, h)
,

and the average value of the current reads

IQ(t; U,Vg, h) = Tr
[
ρ1(U,Vg, h) U†1(t, 0; U,Vg, h)σx IQ U1(t, 0; U,Vg, h)P

]
,

where the trace is on the enlarged Hilbert space, P (6.29) is the projector in the physical subspace
and U1 is the time evolution operator generated by H1(t). In the slave-spin representation (7.6)
the role of the particle-hole symmetry transformation C↓LR is simply played by σx:

IQ(t;−U, h,Vg) = Tr
[
ρ1(−U, h,Vg) U†1(t, 0;−U, h,Vg)σx I f

Q U1(t, 0;−U, h,Vg)P
]

= Tr
[
ρ1(U,Vg, h) U†1(t, 0; U,Vg, h)σx I f

Q U1(t, 0; U,Vg, h)σx Pσx
]
.

Eq. (7.11) implies:

2IQ(t; U,Vg, h) =Tr
[
ρ1(U,Vg, h) U†1(t, 0; U,Vg, h)σx I f

Q U1(t, 0; U,Vg, h)P
]

+ Tr
[
ρ1(U,Vg, h) U†1(t, 0; U,Vg, h)σx I f

Q U1(t, 0; U,Vg, h)σx Pσx
]
.

Since 1 = P + σx Pσx, it readily follows that:

IQ(t; U,Vg, h) = Tr
[

e−βH1(U,Vg,h)

Z1(U,Vg, h)
U†1(t, 0; U,Vg, h)σx I f

Q U1(t, 0; U,Vg, h)
]
, (7.12)

where we have used the equivalence in Eq. (6.30), Z1(U,Vg, h) = 2Z(U,Vg, h). Eq. (7.12) states
that the time-dependent average value of the current �owing across the impurity (7.8) can be
computed in the slave-spin representation (7.6) without any constraint.

Following the same idea, the previous result extends to any time-dependent average of phys-
ical observables, that commutes with C↓LR, and holds for any nonequilibrium protocol. Hence,
the out of equilibrium evolution of the observables, commuting with C↓LR (7.1), can be obtained
within the slave-spin representation (7.6) without projecting out unphysical con�gurations
introduced by the mapping.
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7.4 Time-dependent mean-�eld equations
In this Section we present the mean-�eld approximation to describe the out of equilibrium
evolution of a driven quantum dot. Within the slave-spin mapping the dynamics of the model
(7.1) is described by the time-dependent Schrödinger equation:

i∂t|Ψ(t)〉 = H1(t)|Ψ(t)〉, (7.13)

where |Ψ(t)〉 describes the collective state of the resonant level model coupled to the Ising degree
of freedom, and at t = 0 the system is placed in the ground state con�guration |Ψ(0)〉 of the
initial Hamiltonian Eq. (7.6).

The mean-�eld slave-spin approach consists in approximating the time-dependent wave
function |Ψ(t)〉 with the direct product of a fermionic part |Φ(t)〉 times a spin one |χ(t)〉:

|Ψ(t)〉 = |χ(t)〉 × |Φ(t)〉. (7.14)

We stress again that the previous approximation becomes accurate as we approach the local
moment regime, i.e. U/Γ � 1, where the two subsystems are characterized by well-separated
energy scales. This is indeed the regime we consider hereafter.

The dynamics of the interacting model (7.1) is, thus, reduced to the evolution of a spin degree
of freedom:

∂t〈σ
i(t)〉 = −2 εi jk B j(t) 〈σk(t)〉, (7.15)

where εi jk is the Levi-Civita tensor in three dimensions and BBB(t) is the self-consistent time-
dependent fermionic �eld:

BBB(t) =

(
−

〈
HT,C(t)

〉
, 0,

U
4

+
h(t) − Vg(t)

2

〈
n↑(t) −

1
2

〉)
.

Eq. (7.15) is coupled with the Schrödinger equation of the Slater determinant |Φ(t)〉:

i∂t|Φ(t)〉 = H f
∗ (t)|Φ(t)〉, (7.16)

where H f
∗ (t) is

H f
∗ (t) = HC + 〈σx(t)〉HT,C(t) −

∑
σ

λσ(t)
2

nσ, (7.17)

and
λ↑(t) = Vg(t)(1 − 〈σz(t)〉) + h(t)(1 + 〈σz(t)〉), λ↓ = 0.

For a given initial con�guration, |Ψ(0)〉 = |χ(0)〉 × |Φ(0)〉, Eqs. (7.15) and (7.16) allow us to
study the dynamics of the original correlated model in terms of the evolution of a spin 1/2
coupled with a time-dependent resonant level model. As observed in Section 7.3, we emphasize
that the nonequilibrium evolution of the Hamiltonian (7.1) can be obtained in the slave-spin
representation without any need of local constraints, that project out unphsyical con�gurations
introduced by the mapping.

The dynamical Eqs. (7.15) and (7.16) are similar but not equivalent to the ones obtained
applying the conventional time-dependent Gutzwiller approximation (t-GA) [245] to the AIM
[161]. In this regard, the evolution of the time-dependent Gutzwiller parameters resembles the
dynamics of the spin variable, while the bath ψakσ and the pseudofermion fσ degrees of freedom
evolve under the time-dependent self-consistent Hamiltonian (7.17).

For large time, namely after the transient, we assume that, due to the coupling with in�nite
contacts, the solution of Eqs. (7.15) and (7.16) thermalizes to a steady-state. In order to describe
the asymptotic regime we develop, in the next Section, the nonequilibrium stationary mean-�eld
approach.
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7.5 Mean-�eld for the nonequilibrium steady-state
Without losing generality, we shall assume that at t = 0 the contacts are disconnected from the
dot but in the presence of a �nite bias, so that they are distributed according to:

〈ψ†L(R)kσψL(R)kσ〉 = fL(R) (εk) = f (εk ∓ φ/2) , (7.18)

where φ is the voltage di�erence applied to the contacts and f (ε) is the Fermi-Dirac distribution
function. Once the tunnel-coupling (7.3) is turned on, a time-dependent current starts to �ow
across the junction according to Eqs. (7.15) and (7.16). For large time, t → ∞, we assume that
the system described by the ground-state |Ψ(t)〉 reaches a stationary state

|Ψ(t)〉 → |Ψ〉st, (7.19)

characterized by a constant current. We show in the following, Section 7.6, that Eq. (7.19) is a
justi�ed assumption.

The stationary mean-�eld approach assumes a factorized steady-state wave function:

|Ψ〉st = |χ〉st × |Φ〉st, (7.20)

where |Φ〉st is the fermionic part and |χ〉st the spin one. We observe that even though the
approximation (7.20) looks similar to the mean-�eld decoupling performed at equilibrium in
Appendix 6.4, the two di�erent wave functions are conceptually di�erent. As we will see,
the stationary state |Ψ〉st is characterized by a distribution function that is di�erent from the
equilibrium one (Fermi-Dirac). In order to capture this feature we work in the framework of the
Keldysh technique, that is brie�y introduced in Appendix D.1.

At stationarity, the pseudospin degree of freedom is controlled by the Hamiltonian:

H∗σ = −BBB ·σσσ, (7.21)

where, for convenience, we have introduced the e�ective self-consistent �eld:

BBB =

(
−
〈
HT,C

〉
st, 0,

U
4

+
(
h − Vg

) 〈
n↑ −

1
2

〉
st

)
, (7.22)

and 〈· · · 〉st = 〈Φ| · · · |Φ〉st. By de�ning 〈σσσ〉st = (sin θ, 0, cos θ), the steady-state ground-state |Ψ〉st

is obtained by solving the self-consistent equation:

tan θ = Bx/Bz, (7.23)

where Bx explicitly reads:

Bx = −

√
2
V

∑
k

∑
σ

(
Vk

〈
ψ†1kσ fσ

〉
st

+ V∗k
〈

f †σ ψ1kσ

〉
st

)
, (7.24)

while Bz contains:
〈n↑〉st = 〈 f †

↑
f
↑
〉st. (7.25)

We notice that fermionic averages (7.24) and (7.25) are computed on the steady-state of the
stationary Hamiltonian:

H f
∗ = Hc + sin θHT,C −

∑
σ

λσ
2

nσ (7.26)
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where
λ↑ = h(1 + cos θ) + Vg(1 − cos θ), λ↓ = 0.

Eq. (7.24) requires the evaluation of the lesser Green’s function G<
1k fσ(t, t) = i〈 f †σ(t)ψ1kσ(t)〉,

which, by means of the Dyson’s equation, can be expressed in terms of the dressed Green’s
function of the fσ pseudofermions and the free Green’s function of the contacts. Instead, Eq.
(7.25) can be expressed in terms of the pseudofermions Green’s function only. By performing
the straightforward calculations, that are summarized in Appendix D, Section D.3, we obtain:

Bx = −
2

sin θ

∑
σ

∫
dε(ε + λσ) fneq(ε)A fσ(ε), (7.27)

〈n↑〉st =

∫
dε fneq(ε)A f↑(ε), (7.28)

where the nonequilibrium distribution on the impurity is fneq(ε) = ( fL(ε) + fR(ε))/2 and the
spectral function A fσ(ε) is equivalent to Eq. (6.47) with the only di�erence that the self-energy
Σ

R/A
fσ (ω), in Eq. (6.48), is multiplied by a factor of 2 counting the presence of the two di�erent

contacts.
Given the spectral properties of the contacts, the bias φ and the external �elds applied to the

quantum dot Eqs. (7.27) and (7.28) give an analytic expressions for the e�ective magnetic �eld
B, which depends on the steady-state average 〈σx〉st. The steady-state variational problem is
obtained by solving:

tan θ =
Bx(θ)
Bz(θ)

. (7.29)

Even though numerically equivalent to the equilibrium problem, it contains the nonequilibrium
properties of the steady-state |Ψ〉st.

Before concluding the Section, we observe that the nonequilibrium steady-state self-consistent
Eq. (7.29) is similar but not equivalent to the one obtained with the out of equilibrium Gutzwiller
approach for quantum dots [161]. This feature has been already observed at equilibrium in
Section (6.4), where the slave-spin allowed the removal of the magnetic instability observed in
the Gutzwiller approach. Furthermore, in comparison with the latter approach, the slave-spin
method has the advantage of permitting one to use the machinery of quantum �eld theory, i.e.
Wick’s theorem, to improve mean-�eld results by including �uctuations.

7.6 Two relevant applications
To highlight the importance of our formulation here we consider the simple case of a quantum
dot with Vg = h = 0, and we take the wide-band limit (WBL). Moreover, we will �rstly analyze
the steady-state regime by computing the nonequilibrium ground-state and the di�erential
conductance as a function of the voltage applied to the contacts. Then, we will study the out of
equilibrium evolution induced by a slowly varying time-dependent voltage.

7.6.1 The steady-state solution in the wide-band limit
Initially, we assume the dot disconnected by the leads, which are placed at two di�erent chemical
potential ±φ/2, hence their initial distribution function is described by Eq. (7.18). Once the
tunneling amplitude is turned on, after the initial transient, the steady-state Hamiltonian (7.21)
is characterized by the self-consistent magnetic �eld:

BBB =
(
−〈HT,C〉st, 0,U/4

)
.
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current. d) Self-consistent correction due to valence �uctuations.

In the WBL (C.25) the fσ electron self-energy reduces to

ΣR
fσ(ω) = −i2Γ sin2 θ, (7.30)

and
Bx =

4Γ∗

π sin θ
log

D√
Γ2
∗ + φ2/4

, (7.31)

where Γ∗ is the renormalized hybridization amplitude Γ∗ = 2Γ sin2 θ and Γ the bare one. The
steady-state variational ground-state is obtained by solving the self-consistent Eq. (7.29). For
large U , and for φ � Γ, the solution reads:

Γ∗(φ) ' Γ∗(0) −
φ2

8Γ∗(0)
, (7.32)

where Γ∗(0) is the equilibrium renormalized hybridization function in Eq. (6.51). As shown in
Eq. (7.32) the e�ect of an external voltage φ, in the regime of φ � Γ, is to reduce the equilibrium
value of the renormalized hybridization Γ∗(0). Moreover, the mean-�eld steady-state breaks
spontaneously the Z2 gauge symmetry by choosing one of the two degenerate minima 〈σx〉st , 0,
as already observed in the equilibrium case analyzed in Section 6.4.

At the steady-state variational minimum we can compute the average value of the current:

〈IQ〉st = −
i
√

2V

∑
kσ

(
〈Vkψ

†

2kσσ
x fσ〉st − c.c.

)
(7.33)

that involves the two-particle correlation function G<
x·2kσ(t, t′) = i〈ψ†2kσ(t′)σx(t) fσ(t)〉st. The

self-consistent evaluation of the current (7.33) can be conveniently performed by means of the
Abrikosov fermions. As already shown in Section 6.4.1, in this representation the slave-spin
mean-�eld theory corresponds to the Hartee-Fock decoupling and allows us to identify the
electron self-energies that, through the Bethe-Salpeter equation, determine the corrections that
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are included in the two-particle correlation functions. In terms of Abrikosov fermions φα, de�ned
in Eq. (6.60), the average value of the current reads:

〈IQ〉st = −
i
√

2V

∑
kσ

(
Vk〈ψ

†

2kσ φ
†
α σ

x
αβ φβ fσ〉st − c.c.

)
= −

2
√

2V

∑
kσ

Re
[
Vk G<

x·2kσ(t, t)
]
.

(7.34)

Consistently with the slave-spin mean-�eld decoupling the current has two contributions, Figs.
7.1 c) and d):

〈IQ〉st = 〈φ†α σ
x
αβ φβ〉st〈I

f
Q〉st + 〈δI f

Q〉st (7.35)

where the former, 〈I f
Q〉st, involves only the low-energy pseudofermion degree of freedom, and

can be obtained by straightforward calculations summarized in Appendix D.3. Here, we report
the �nal result:

〈I f
Q〉st = 2Γ∗(φ)

2e
h

arctan
(

eφ
2Γ∗(φ)

)
, (7.36)

where e is the elementary charge and h the Planck’s constant. Instead, the latter term in Eq.
(7.35) takes into account the contribution of valence �uctuations and can be expressed as

〈δI f
Q〉st = −

4Γe
h

∫
dω ( fL(ω) − fR(ω)) ReK(ω) (7.37)

where the kernel K(ω) is given by:

K(ω) =

∫
dε
2π

[
ΠΠΠ<

xx(ε) GR
f (ω − ε) + ΠΠΠR

xx(ε) GR
f (ω − ε) + ΠΠΠR

xx(ε) G<
f (ω − ε)

]
,

and ΠΠΠxx is the φ fermion σx − σx correlation function introduced in Eq. 6.64 for the equilibrium
case. The spin correlation function ΠΠΠxx satis�es the Dyson’s Eq. in Fig. 6.5 that for the di�erent
Keldysh components reads:

ΠΠΠR/A
xx (ω) =

1[
Π

R/A
xx (ω)

]−1
− ΣR

xx(ω)
, (7.38)

and
ΠΠΠ<

xx(ω) = ΠΠΠR
xx(ω)Σ<xx(ω)ΠΠΠA

xx(ω), (7.39)
where Σ̂xx = χ̂TT . For more details we refer the interested reader to Appendix D.3. The self-
energies appearing in Eqs. (7.38) and (7.39) are obtained by contracting the four-leg vertex in
Fig. 7.1 b). Speci�cally, the self-energy Σxx(ω) allows us to reconstruct the incoherent side bands
characterized by a width of the order of the bare hybridization Γ and centered around ±U/2 as
shown in Fig. 6.6.

Numerical integration of Eq. (7.37) enables us to compute the di�erential conductance

G(φ) =
d〈I〉st

dφ
,

which is shown in Fig. 7.2. We observe two distinct contributions: (i) the well-known zero-
bias anomaly which derives from the Kondo peak at the Fermi level and controls the low-bias
behavior and (ii) an incoherent peak, which mainly contributes to the large bias features of the
conductance.
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Figure 7.2: Di�erential conductance as a function of the applied voltage φ/2Γ for U/W = 0.1 and
di�erent values of 2Γ.

In order to compare our result G(φ) with the universal behavior of the conductance in the
Kondo regime, obtained with renormalization group approach in Refs. [225, 257], we expand
〈IQ〉st around φ/Γ � 1 obtaining:

G(φ) =
2e2

h

1 − 1
4

(
φ

Γ∗(0)

)2 . (7.40)

In agreement with our self-consistent Hartree-Fock approximation, Eq. (7.40) reproduces ex-
actly the φ2 contribution given by the phase shift, while it neglects the contribution from the
residual scattering among low-energy quasiparticles [212]. We believe that, in the slave-spin
representation, the latter contribution arises from vertex corrections that are not included in the
self-consistent mean-�eld theory.

7.6.2 Adiabatic dynamic induced by a time-dependent voltage

In the presence of a time-dependent voltage between the source and the drain contacts the
single-particle energies become time-dependent: εk → εk − φa(t) (here a label refers to the left
L or right R lead) [130]. Starting, at t = 0, from an equilibrium con�guration characterized by
φL = φR = 0 (NL = NR) and a �nite tunneling amplitude Vk, we consider the evolution induced
by a time-dependent electrochemical potential:

φL(t) = θ(t)φ
1 − e−t/t∗

2
, φR(t) = −φL(t), (7.41)

where t∗ is the characteristic time scale of the external perturbation, φ is the asymptotic value of
the voltage and θ(t) is the Heaviside step function such that φL(t) = 0 for t ≤ 0. To simplify the
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calculations we consider the WBL (C.25). Hence, eq. (7.15) becomes:

∂t〈σ
x(t)〉 = U〈σy(t)〉/2,

∂t〈σ
y(t)〉 = −2〈HT,C(t)〉〈σz(t)〉 − U〈σx(t)〉/2,

∂t〈σ
z(t)〉 = 2〈HT,C(t)〉〈σy(t)〉,

(7.42)

where the time-dependent average value of the hybridization is given by:

〈HT,C(t)〉 = 2

√
2
V

∑
kσ

Re
(
Vk〈ψ

†

1kσ(t) fσ(t)〉
)
. (7.43)

The dynamics of the slave-spin variable (7.42) is coupled to the evolution of the fermionic degrees
of freedom 〈HT,C(t)〉, that evolve under the time-dependent e�ective resonant level model:

H f
∗ (t) = HC(t) + 〈σx(t)〉HT,C.

The solution of the time-dependent problem is obtained by integrating Eq. (7.42) and the
Heisenberg evolution of the single-particle density matrix 〈ψ†1kσ(t) fσ(t)〉, which gives the self-
consistent �eld acting of the slave-spin degrees of freedom. However, under the assumption of a
slowly varying external perturbation, i.e. t∗TK � 1, it is possible to obtain the solution of the
dynamics (7.42) by performing a controlled expansion around the quasistatic approximation. To
this aim we notice that Eq. (7.43) can be written as:

〈HT,C(t)〉 =
2

〈σx(t)〉

∑
σ

Im
[∫

dt1 Σ<fσ(t, t1) GA
fσ(t1, t)

]
=

2
〈σx(t)〉

∑
σ

Im
[∫

dε
2π

Σ<fσ(t, ε) ?GA
fσ(t, ε)

]
,

(7.44)

where in the last passage we perform the Wigner transform (D.4) and ? is the Moyal product:

? = exp

i←−∂ ε−→∂ t −
←−
∂ t
−→
∂ ε

2

 ,
for more details we refer to Appendix D.4. Under the assumption of φ(t) slowly varying function
of time, i.e. t∗TK � 1, we can assume that the temporal inhomogeneity is weak and only
lowest-order terms in the variation are kept, the so-called gradient expansion [12, 229].

To the �rst-order in the temporal variation we have:

〈HT,C(t)〉 '
2

〈σx(t)〉
Im

∫
dε
π

[
Σ<f (t, ε)GA

f (t, ε) +
i
2

{
Σ<f (t, ε),GA

f (t, ε)
}
ε,t

]
= 〈HT,C(t)〉(0) + 〈HT,C(t)〉(1),

(7.45)

where { f , g}ε,t = ∂ε f ∂tg − ∂t f ∂εg, more details can be found in Appendix D.4.
The evolution of the pseudospin variable at zero order in the gradient expansion Eq. (7.45) is

displayed in Fig. 7.3. In the limit of t∗TK � 1 we observe, as expected, the quasistatic dynamics,
i.e. the system follows the change of µ(t) adiabatically. However, for any smaller value of t∗TK

the evolution is characterized by persistent oscillations, that become, eventually, centered around
the steady-state result represented by the solid black line.

It is interesting to observe that the �rst-order correction, given by the latter term in Eq.
(7.45), introduces damping in Eq. (7.42) and the dynamics converge to the expected stationary
regime. This is shown in Fig. 7.4, where we compare the time-dependent average value of the
current obtained within the zero and �rst order in the gradient expansion.
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Figure 7.3: From top to bottom: evolution of 〈σz(t)〉, 〈σy(t)〉 and 〈σx(t)〉 as a function of t TK for several
values of the external voltage time scale t∗, U/W = 0.1, 2Γ0/U = 0.06 and φ/U = 0.05. Solid black line
represents the steady-state result for the same set of parameters.
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Figure 7.4: Time-dependent average value of the current as a function of t TK for t∗TK = 1.5, U/W = 0.1,
2Γ0/U = 0.06 and φ/U = 0.05. Orange and purple lines represent the evolution of the current obtained
within the �rst and zeroth order in the gradient expansion. As shown from the inset, the �rst order
corrections to the quasistatic approximation introduce relaxation processes that suppress the residual
oscillations.

7.7 The slave-spin mapping for coupled quantum dots
We consider the problem of two quantum dots coupled via a tunneling amplitude (double
quantum dot). Besides the energy scale Γ(ε) the model is characterized by an additional parameter
t⊥ that competes against the Kondo screening, see Fig. 7.5. A rich phase diagram emerges out
of this competition, which is characterized by a crossover regime that separates the phase in
which the impurity magnetic moments are quenched by Kondo screening from that in which
the quenching is due to the antiferromagnetic coupling generated via superexchange processes
[7, 135, 149].

We can model the double quantum dot as a two impurity Anderson model

H(U1,U2, µ1σ, µ2σ, t⊥σ,∆⊥σ) =

2∑
i=1

∑
σ

(
Hiσ

C + Hiσ
T,C − µiσρiσ

)
+

Ui

4
ρi↑ ρi↓


−

∑
σ

t⊥σ
(
d†1σd2σ + d†2σd1σ

)
−

∑
σ

∆⊥σ
(
d†1σd†2σ + d2σd1σ

) (7.46)

where for convenience, in addition to the normal tunneling t⊥σ, we include also the superconduc-
tive pairing ∆⊥σ. Only at the end we will set ∆⊥σ = 0 to zero, t⊥↑ = t⊥↓ = t⊥ and U1 = U2 = U .
In Eq. (7.46) Hiσ

C is de�ned in (7.2) where indices i and σ refer to the contact and the spin
projection, Hiσ

T,C , de�ned in (7.3), describes the spin σ tunnel-coupling between the contact i and
the respective quantum dot, ρiσ = 2niσ − 1 where niσ = d†iσdiσ is the number operator on the
quantum dot. Moreover, we assume that the hybridization function Γ(ε) is even as a function
of ε: Γ(ε) = Γ(−ε). Before considering the slave-spin mapping, let us introduce the Majorana
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Figure 7.5: Two-impurity Anderson model. Each impurity is coupled to the respective metallic contact
with hybridization function Γ(ε), where Γ(ε) = Γ(−ε). We add a tunnel coupling amplitude between the
dots.

fermions γiσ and ξiσ:
diσ =

γiσ + iξiσ

2
, d†iσ =

γiσ − iξiσ

2
,

such that the coupling between the two quantum dots can be written as:

T (t⊥σ,∆⊥σ) = −
∑
σ

t⊥σ
(
d†1σd2σ + d†2σd1σ

)
−

∑
σ

∆⊥σ
(
d†1σd†2σ + d2σd1σ

)
= −i

∑
σ

(λ1σ γ1σ ξ2σ + λ2σ γ2σ ξ1σ) = T (λ1σ, λ2σ)

where λ1σ = (t⊥σ − ∆⊥σ) /2 and λ2 = (t⊥σ + ∆⊥σ) /2. We consider the particle-hole transforma-
tion Ciσ, de�ned as:

Ciσ :

(diσ → d†iσ
)⋃∏

k

(
ψikσ → −ψ

†

ik∗σ

) , (7.47)

hence, by considering the spin orientation σ, we have

C
†

1σ H(U1,U2, µ1σ, µ2σ, λ1σ, λ2σ)C1σ = H(−U1,U2,−µ1σ, µ2σ, λ1σ,−λ2σ),

C
†

2σ H(U1,U2, µ1σ, µ2σ, λ1σ, λ2σ)C2σ = H(U1,−U2, µ1σ,−µ2σ,−λ1σ, λ2σ),

C
†

2σC
†

1σ H(U1,U2, µ1σ, µ2σ, λ1σ, λ2σ)C1σC2σ = H(−U1,−U2,−µ1σ,−µ2σ,−λ1σ,−λ2σ),

(7.48)

where, obviously, the component −σ remains unchanged under particle-hole transformation
Ciσ.

We introduce four Ising variables, one for each site i and spin σ con�guration

γiσ = τ−iσ fiσ + τ+
iσ f †iσ, ξiσ = −iτ−iσ fiσ + iτ+

iσ f †iσ, (7.49)

where the physical subspace is selected by the projector operator:

P =

2∏
i=1

∏
σ=↑,↓

Piσ,

with
Piσ =

1 + τz
iσ ρiσ

2
.
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We can easily realize that di�erent representations of the fermionic operators are allowed.
Within the physical subspace we use this freedom to choose the representation where the role
of the particle-hole transformation is simply played by τx

iσ:

γiσ = τx
iσ ( fiσ + f †iσ), ξiσ = −τ

y
iσ ( fiσ + f †iσ).

Within the previous representation the model Hamiltonian becomes:

H∗(U1,U2, µ1σ, µ2σ, λ1σ, λ2σ) =

2∑
i=1

∑
σ

(
Hiσ

C + τx
iσ Hiσ

T,C − µiστ
z
iσ

)
+

Ui

4
τz

i↑ τ
z
i↓


+ i

∑
σ

(
λ1στ

x
1στ

y
2σ − λ2στ

x
2στ

y
1σ

)
γ

f
1σγ

f
2σ

(7.50)

where γ f
iσ = fiσ + f †iσ. Moreover, it is straightforward to prove that τx

iσ reproduces the same
transformations (7.48) obtained by applying Ciσ to the original Hamiltonian (7.46):

τx
1σ H(U1,U2, µ1σ, µ2σ, λ1σ, λ2σ) τx

1σ = H(−U1,U2,−µ1σ, µ2σ, λ1σ,−λ2σ),
τx

2σ H(U1,U2, µ1σ, µ2σ, λ1σ, λ2σ) τx
2σ = H(U1,−U2, µ1σ,−µ2σ,−λ1σ, λ2σ),

τx
2στ

x
1σ H(U1,U2, µ1σ, µ2σ, λ1σ, λ2σ) τx

1στ
x
2σ = H(−U1,−U2,−µ1σ,−µ2σ,−λ1σ,−λ2σ).

(7.51)

This result allows us to remove the constraint from the evaluation of the partition function.
Indeed,

Z(U1,U2, µ1σ, µ2σ, λ1σ, λ2σ) = Tr
[
e−βH

]
= Tr

e−βH∗
2∏

i=1

∏
σ=↑,↓

Piσ

 , (7.52)

where we omit the Hamiltonian parameters to lighten the notation. By using the invariance of
the trace under the unitary transformations and the results in (7.48) and (7.51), we can obtain:

Z(U1,U2, µ1σ, µ2σ, λ1σ, λ2σ) =
1
16

Tr
[
e−βH∗

]
. (7.53)

Thus, we conclude that thermodynamic properties of the double quantum dot problem (Ui =

U, λiσ = t⊥/2, µiσ = 0) can be obtained by studying the equivalent slave-spin Hamiltonian:

H∗ =

2∑
i=1

∑
σ

(
Hiσ

C + τx
iσ Hiσ

T,C

)
+

U
4
τz

i↑ τ
z
i↓

 + i
t⊥
2

∑
σ

(
τx

1στ
y
2σ − τ

x
2στ

y
1σ

)
γ

f
1σγ

f
2σ (7.54)

once again without any constraint on the enlarged Hilbert space H∗. An interesting feature of the
slave-spin model (7.54) is that the tunneling t⊥ couples only the real components of the complex
pseudofermions f1σ and f2σ. This result resembles the physics observed in the two channel Kondo
model where half of the impurity degree of freedom remains disentangled and gives rise to a �nite
entropy at zero temperature [5, 75]. Despite the absence of superconductive correlations in the
original model (7.46), we notice that the slave-spin representation (7.54) presents superconductive
pairing ∼

(
f †1σ f †2σ + f2σ f1σ

)
. We conclude by observing that Hamiltonian (7.54) is symmetric

under the Z2 transformation τz
iσ ρiσ.

To start our analysis let us check if the slave-spin model reproduces correctly the atomic
limit, Γ(ε) = 0.
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Figure 7.6: In the absence of the bath the model reduces to the H2 molecule. We report the tunnel
processes connecting di�erent con�gurations on the double quantum dots and the spectrum of the
subspace characterized by S z = 0 and vanishing charge Q =

∑
σ

∑2
i=1 niσ − 2 = 0.

7.7.1 The atomic limit: the H2 molecule
In the absence of hybridization with the contacts the Hamiltonian (7.54) reduces to:

H∗ =
U
4

2∑
i=1

τz
i↑ τ

z
i↓ + i

t⊥
2

∑
σ

(
τx

1στ
y
2σ − τ

x
2στ

y
1σ

)
γ

f
1σγ

f
2σ (7.55)

and in the following we will show that the model (7.55) reproduces the characteristic spectrum
shown in Fig. 7.6.

In the original representation, see Fig. 7.6, the ground state is invariant under the inversion
1↔ 2 is a singlet S 2 = 0 and reads:

|GS 〉 =
1
2

√
1 +

1√
1 + ξ2

⊥

(
d†1↑d

†

2↓ + d†2↑d
†

1↓

)
|0〉+

1
2

√
1 −

1√
1 + ξ2

⊥

(
d†1↑d

†

1↓ + d†2↑d
†

2↓

)
|0〉 , (7.56)

with energy Egs = −U
√

1 + ξ2
⊥/2, where ξ⊥ = 4t⊥/U . We observe that γ f

1σγ
f
2σ commutes with

the slave-spin Hamiltonian and does not have any quantum dynamics. By assuming that the
inversion symmetry 1↔ 2 is preserved we de�ne:

J⊥(σ) = −i
t⊥
2

〈
γ

f
1σγ

f
2σ

〉
,

and the e�ective spin model reduces to:

Hτ
∗ =

U
4

2∑
i=1

τz
i↑ τ

z
i↓ − 2i

∑
σ

J⊥(σ)
(
τ+

1στ
−
2σ − τ

−
2στ

+
1σ

)
. (7.57)

In the regime of U > t⊥, we can easily realize that the low-energy con�gurations are:

{|+,−〉 × |+,−〉, |+,−〉 × |−,+〉, |−,+〉 × |+,−〉, |−,+〉 × |−,+〉}.
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We clearly observe that the two con�gurations in the middle are coupled by the J⊥(σ) to the high-
energy con�gurations {|+,+〉 × |−,−〉, |−,−〉 × |+,+〉}. It is convenient to de�ne the symmetric
and antisymmetric combinations:

|ϕS/A〉 =
|+,−〉 × |−,+〉 ± |−,+〉 × |+,−〉

√
2

,

| ηS/A〉 =
|+,+〉 × |−,−〉 ± |−,−〉 × |+,+〉

√
2

.

(7.58)

There are two di�erent solutions depending on the value of J⊥(σ).

Spin-independent solution; Let us assume that the lambdaσ parameter is spin independent,
such that:

J⊥(σ) = −
t⊥
2
.

In this case t⊥ couples the state |ϕS 〉 to |ηA〉, while |ϕA〉 and |ηS 〉 are eigenstates of the Hamiltonian
(7.57) with energies ±U/2 and correspond to the triplet con�gurations T1/2. In the subspace of
|ϕS 〉 to |ηA〉 the Hamiltonian reads:

Hτ
∗ =

(
−U/2 −2it⊥
2it⊥ U/2

)
.

The ground state is

| χgs 〉 = i

√
1
2

+
1

2
√

1 + ξ2
⊥

|ϕS 〉 +

√
1
2
−

1

2
√

1 + ξ2
⊥

| ηA〉,

with energy

Egs = −U
√

1 + ξ2
⊥/2.

Spin-dependent solution; Di�erently from the previous case, we consider a spin dependent:

J⊥(σ) = −
t⊥
2
σ.

In this case |ϕS 〉 and |ηA〉 are eigenstates of (7.57) with energies ±U/2, while |ϕA〉 and |ηS 〉 are
mixed by t⊥:

H∗ =

(
−U/2 2it⊥
−2it⊥ U/2

)
.

Thus, the ground state reads

| χgs 〉 = −i

√
1
2

+
1

2
√

1 + ξ2
⊥

|ϕA〉 +

√
1
2
−

1

2
√

1 + ξ2
⊥

| ηS 〉,

with energy given by Egs = −U
√

1 + ξ2
⊥/2.
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Connection with average values of physical observables; Both spin-dependent and in-
dependent J⊥(σ) solve the atomic problem giving the same spectrum as the one obtained in the
original representation2, Fig. 7.6. In the slave-spin formalism the double occupancy operator
D =

∑2
i=1 ni↑ni↓ reads:

D =
∑

i

(1 + τz
i↑)(1 + τz

i↓)

4
. (7.59)

Whilst, the bonding charge between the impurity sites, Kσ = d†1σd2σ + H.c., is given by:

Kσ = −iγ f
1σγ

f
2σ(τx

1στ
y
2σ − τ

y
1στ

x
2σ)/2.

It is straightforward to check that independently from the choice of J⊥(σ):

〈 χgs | D | χgs 〉 =
1
2
−

1

2
√

1 + ξ2
⊥

, (7.60)

and
〈 χgs | K | χgs 〉 =

∑
σ

〈 χgs | Kσ | χgs 〉 = 2
ξ⊥√

1 + ξ2
⊥

, (7.61)

in agreement with the results obtained in the original representation.

7.7.2 Mean-�eld solution
In the opposite regime of vanishing tunneling, t⊥ = 0, and Γ(ε = 0) , 0 the two quantum dots
are decoupled and each is Kondo screened by the respective bath. From the previous calculations
performed in Section 6.4 we know that the T = 0 equilibrium ground state is characterized by
〈τx

iσ〉 , 0 and breaks the (Z2)4 symmetry by choosing one of the 16 degenerate minima. The
perturbation introduced by t⊥ goes like ∼

(
τx

1στ
y
2σ − τ

y
1στ

x
2σ

)
and, therefore, couples the di�erent

minima giving rise to a new ground state with lower energy. We expect that, by increasing t⊥,
the ground state solution would evolve smoothly from the asymptotic con�guration of pure
Kondo screening realized at t⊥ = 0, to the singlet one t⊥ � Γ(ε).

In spite of the absence of a clear hierarchy of energy scales betweenτττiσ and fiσ in Hamiltonian
(7.54), we can look for the best mean-�eld ground state:

|Ψ〉 = |χ〉 × |Φ〉

where |χ〉 is the Ising part, while |Ψ〉 the fermionic one. The mean-�eld Hamiltonian for the
Ising degrees of freedom reads:

Hτ
∗ =

U
4

2∑
i=1

τz
i↑τ

z
i↓ −

2∑
i=1

∑
σ

Biστ
x
iσ −

∑
σ

J⊥(σ)
(
τx

1σ τ
y
2σ − τ

y
1σ τ

x
2σ

)
, (7.62)

where:
Biσ ≡ −〈Hiσ

T,C〉,

J⊥(σ) ≡ −it⊥
〈
γ

f
1σγ

f
2σ

〉
/2.

(7.63)

The latter fermionic average values are determined by the e�ective resonant level-model

H f
∗ =

2∑
i=1

∑
σ

[
Hiσ

C +
〈
τx

iσ
〉

Hiσ
T,C

]
− i

∑
σ

λ⊥(σ) γ f
1σ γ

f
2σ, (7.64)

2Overall, considering spin σ and site i degrees of freedom there are 16 di�erent equivalent representations and
each of them reproduces the atomic spectrum.
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Figure 7.7: Top panel: the dotted black line represents 〈τx〉 as a function of Γ0/t⊥ for a single dot. Blue
and red lines describe 〈τx〉 as a function of Γ0/t⊥ coming from large and small values of Γ0/t⊥, respectively.
Bottom panel: the same as top panel but for 〈τz〉.

where we have introduced the self-consistent coupling:

λ⊥(σ) ≡ −
t⊥
2

(〈
τx

1σ τ
y
2σ

〉
−

〈
τ

y
1σ τ

x
2σ

〉)
.

Assuming that the ground state solution does not break 1↔ 2 symmetry and the 〈τx
iσ〉 does

not depend on i and σ, we �nd:

[
Gγγ
σ (z)

]−1
=
σ0

(
iε − 〈τx

σ〉
2∆(z)

)
− 2σyλ⊥(σ)

2
,

[
Gξξ
σ (z)

]−1
=
σ0

(
iε − 〈τx

σ〉
2∆(z)

)
2

,

(7.65)

and Gξγ
σ (z) = Gγξ

σ (z) = 0. We notice that the Green’s functions, written in terms of the Majorana
fermions γ f

iσ and ξ f
iσ, are 2 × 2 matrices in the site indices i, j, for instance:

Gγγ
i j,σ(τ) = −

〈
Tτ

(
γ

f
iσ(τ) γ f

jσ

)〉
.

After straightforward calculations we obtain:

Biσ =Bσ = −
1

2
〈
τx
σ

〉 ∫
dω f (ω)

 ∑
s=−1,+1

(ω + 2sλ⊥(σ)) A f (ω + 2sλ⊥(σ)) + 2ωA f (ω)

 ,
J⊥(σ) = t⊥

∫
dω f (ω)

[
A f (ω − 2λ⊥(σ)) − A f (ω + 2λ⊥(σ))

]
,

(7.66)
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where we have introduced:

A f (ω) = −
1

2πi

[
1

ω − 〈τx〉2∆R(ω)
−

1
ω − 〈τx

σ〉
2∆A(ω)

]
.

The numerical solution of the mean-�eld equations is obtained by proposing an initial value
for Bσ and J⊥(σ), and then solving for the ground state the spin Hamiltonian (7.62). The spin
ground state allows us to compute λ⊥(σ) and 〈τx

σ〉 and, therefore, the updated values of Bσ and
J⊥(σ) via Eq. (7.66). By iterating the procedure we evolve toward a �xed point that corresponds
to the mean-�eld ground state.

Numerical results, obtained for a �at hybridization function Γ(ω) = Γ0θ(W − |ω|), are shown
in Figs. 7.7, 7.8 and 7.9. We notice that for Γ0/t⊥ > 1 the ground state is Kondo screened and the
two impurities are decoupled, signalized by a vanishing value of

〈
τx

1σ τ
y
2σ

〉
−

〈
τ

y
1σ τ

x
2σ

〉
in Fig. 7.9.

On the contrary, for Γ0/t⊥ � 1 the solution is the singlet phase, where the two impurities are
decoupled from the bath. We observe that in Fig. 7.8 we report the evolution of the e�ective
coupling constants J⊥ and B obtained by following the mean-�eld solution starting from the
singlet phase (red lines) and Kondo screened one (blue lines).

The �rst order character is highlighted by the hysteresis cycle observed by following the
mean-�eld solution starting from small and large values of Γ0/t⊥.

The slave-spin mean-�eld theory predicts a �rst order transition at a critical value of the
ratio Γ0/t⊥ ∼ 0.4 for U/W = 0.1. A similar result was obtained with slave-boson mean-�eld
theory, see Ref. [7].

7.8 Conclusions

We have shown that the out of equilibrium evolution of a quantum dot (7.1) can be studied in
the slave-spin representation (7.6) without any constraint on the enlarged Hilbert space. The
advantages of the new representation are twofold. On one side, we disentangle the charge and
spin degrees of freedom. On the other side, we avoid the mean-�eld mixing of unphysical and
physical subspaces, that a�ects the time evolution of other slave-particle techniques. In the
steady-state regime the self-consistent Hartree-Fock decoupling is able to predict the properties
of the model even deep inside the large-U Kondo regime. Speci�cally, the conductance shows
both the known zero-bias anomaly but also the expected peak at bias of order U . Furthermore,
we have extended the slave-spin approach to study the transient dynamics of a driven magnetic
impurity. It is important to observe that the time-dependent slave-spin approach can be applied
to study the dynamics in quantum dots for any nonequilbrium protocol, e.g. periodic driving,
quantum quench, etc. For simplicity we apply the above method to study the dynamics induced
by slowly varying chemical potential applied to the metallic contacts. After a characteristic time,
which depends on the product TK t∗ between TK and the time scale of the external perturbation
t∗, the dynamics relax to the nonequilibrium steady-state.

We mention that the technique, presented in this Chapter, can be applied to study the out of
equilibrium of quantum dots with L and R leads characterized by di�erent tunneling amplitude
ΓL and ΓR by using the generalized mapping presented in Section 6.3. Moreover, it is also possible
to study multi-orbital quantum dots by exploiting the mapping presented in Section 6.3.2.

The slave-spin has been further extended to the case of transport in a double quantum dots
coupled via a tunnel amplitude t⊥. Despite the promising form of the slave-spin Hamiltonian,
preliminary equilibrium mean-�eld calculations predict a �rst order transition from the Kondo
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screened phase to the singlet one. Higher order e�ects have to be included in order to reproduce
the expected crossover behavior between the two phases.
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8
Probing Majorana edge states by charge

transport across a magnetic impurity

Motivated by recent experiments we consider transport across an interacting magnetic impurity
coupled to the Majorana zero mode (MZM) observed at the boundary of a topological superconductor
(SC). In the presence of a �nite tunneling amplitude we observe hybridization of the MZM with the
quantum dot, which is manifested by a half-integer zero-bias conductance G0 = e2/2h measured
on the metallic contacts. The low-energy feature in the conductance drops abruptly by crossing
the transition line from the topological to the non-topological superconducting regime. Di�erently
from the in-gap Yu-Shiba-Rosinov-like bound states, which are strongly a�ected by the on-site
impurity Coulomb repulsion, we show that the MZM signature in the conductance is robust and
persists even at large values of the interaction. Notably, the topological regime is characterized by
a vanishing Fano factor induced by the MZM. We propose an experimental set-up to measure the
conductance and the shot-noise in order to detect the topological properties of the superconducting
wire and to distinguish the low-energy contribution of a MZM from other possible sources of zero-
bias anomaly. Despite being interacting, the model is exactly solvable, which allows us to have an
exact characterization of the charge transport properties of the junction.

8.1 Introduction

In a seminal paper [148], Kitaev pointed out the existence of electronic collective modes rem-
iniscent of the Majorana fermions, speculated in 1937 by Ettore Majorana [180], in a simple
many-body system: a one-dimensional (1D) chain of spinless fermions with a p-wave pair-
ing. The key ingredient is the superconductive pairing induced in the 1D system by the
proximity to a superconductive reservoir. Stimulated by this remarkable results, quasi 1D
systems, hosting two or more Majorana zero modes (MZMs), have attracted both experimental
[9, 62, 66, 79, 110, 116, 178, 199, 208, 293] and theoretical [90, 127, 216, 233] interest. One among
them worth mentioning is the experiment in Ref. [62], where the authors studied semiconducting
wires made of InAs, characterized by a strong spin-orbit coupling interaction, in proximity
to an Al s-wave superconductor and in the presence of high magnetic �elds. The con�ning
electric �eld acting on the electrons in the wire induces the Rashba spin-orbit coupling (SOC),

117
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Figure 8.1: The evolution of the energy gap at p = 0 (dotted blue), at pF (dotted yellow), and the overall
energy gap (dashed black) with Zeeman energy, EZ . Taken from [62].

that forms chiral states characterized by spin-orientation related to the momentum direction.
The combined e�ect of the proximity induced pairing potential, the external magnetic �eld
and the Rashba SOC produces an interesting phase diagram. As shown in Fig. 8.1 there is a
critical magnetic �eld Ez where gap closes and the system enters in the topological phase. In
correspondence of the topological region, the transport measurements show the presence of a
zero bias anomaly which can be associated to Majorana zero modes (MZMs) at the edge of the
wire.

From a quantum computing perspective MZMs can realize qubits, topologically protected
against disorder, and local perturbations. Intrigued by the exciting possibility of manipu-
lating, and realizing MZMs [10, 11, 204], theoretical studies focused on zero-bias and cur-
rent measurement across a junction of metallic leads and topological superconductors (SCs)
[3, 4, 55, 56, 85, 97, 113, 220], shot noise measurement [68, 98], interferometer measurement [67],
persistent current in hybrid normal-superconducting rings [129, 202, 203, 221] and topological
realization of the Kondo e�ect [32, 76, 77]. Recently, a new direction has emerged which explores
the interplay between pure Majorana physics and electronic correlations [6, 52, 226, 227].

In this Chapter we fully characterize the electronic transport through a novel class of
experimentally realizable systems [66, 293] which have recently attracted great interest for their
easily realization and control. The MZM, emerging at the endpoint of a 1D semi-in�nite wire
with strong spin-orbit interaction (i.e. InAs wire) deposited on top of a s-wave SC and exposed
to an external magnetic �eld, is coupled to an interacting magnetic impurity that can be used as
a spectrometer. Hence, we probe the properties of the MZM though measurement of the current
and the shot noise across the junction.

8.2 The Model Hamiltonian
To model the junction displayed in Fig. 8.2 we consider the Hamiltonian

H = Himp + HC + HK + HT,C + HT,K , (8.1)
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Figure 8.2: Sketch of a quantum dot coupled to two fully-polarized metallic leads and a semi-in�nite
topological p-wave SC hosting a MZM at its edge.

where
Himp = −

U
4

Ωd −
h
2

(
nd
↑
− nd

↓

)
+
µ

2

(
nd
↑

+ nd
↓
− 1

)
(8.2)

is the dot Hamiltonian, with nd
σ = d†σdσ the number operator on the impurity site and Ωd =

−(2nd
↑
− 1)(2nd

↓
− 1). In (8.2) U denotes the on-site interaction, µ the gate potential and h the

Zeeman �eld applied on the dot level. The Hamiltonian of the semi-in�nite Kitaev chain reads

HK =

∞∑
j=1

[(−tc†jc j+1 + ∆c jc j+1 + H.c.) − µc†jc j] (8.3)

where t is the hopping amplitude between nearest neighbor sites, ∆ the p-wave superconducting
pairing and µ the chemical potential of the wire. We notice that left (L) and right (R) metallic
contacts are described by Hamiltonian (8.3) with ∆ = 0 and di�erent electrochemical potentials
µL = −µR = φ/2. In our model both the Kitaev and the metallic chains are described by spinless
particles. This is a reasonable assumption if one considers that topological SCs are realized
in systems which are characterized by a strong spin-orbit coupling and large magnetic �elds,
and if we assume fully-polarized ferromagnetic contacts. In this regime the magnetic exchange
between the impurity spin and the leads is suppressed and the low-energy physics is dominated
by the coupling with the MZM [53, 122, 167, 261, 285]. The tunneling between the dot and the
metallic contacts reads:

HT,C = Vc

∑
α=L,R

(
c†1αd

↑
+ H.c.

)
(8.4)

where Vc is the tunneling amplitude and α = L,R. Finally, we consider the hybridization with
the boundary site of the semi-in�nite Kitaev chain:

HT,K = −i
∑

j

V jγ jγ
d
↑
, (8.5)

where the sum extends to the semi-in�nite Kitaev chain and we have introduced the Majorana
operators γ = c + c† and ξ = −i(c − c†). The simple model in Eq. (8.5) allows us to study exactly
the e�ect of correlations on the non-local Majorana edge state tunnel-coupled to an interacting
quantum dot.

The interacting model is exactly solvable because the d↓ electrons are localized and nd
↓

can
be treated as a Z2 real number (= 0, 1). This property makes the Hamiltonian (8.1) an e�ective
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quadratic model, where similarly to the Falicov-Kimball model (FKM) [84] the ↓ con�guration is
obtained by minimizing the ground-state energy of the ↑ degrees of freedom.

In the absence of metallic contacts, Vc = 0, the equilibrium properties of the model in Eq.
(8.1) has been already studied in Ref. [258]. In this thesis we consider the charge transport
properties of the junction obtained by measuring both the charge current and the shot noise.
Before entering the discussion, we reshape the Hamiltonian into a convenient form. In particular
we perform the gauge transformation:

ξ
η

↑
= ξd

↑
(1 − 2nd

↓
), γ

η

↑
= γd

↑
, (8.6)

such that, in terms of γη
↑

and ξη
↑

fermions, the Hamiltonian (8.1) becomes:

H∗ =HC + HK − i
∑

j

V jγ jγ
η

↑
− i

U
4
γ
η

↑
ξ
η

↑
−

(µ + h) − i(µ − h)γη
↑
ξ
η

↑

4
qd
↓

+ i
Vc

2

∑
α=L,R

(
γ
η

↑
ξ1α − qd

↓
ξ
η

↑
γ1α

)
.

(8.7)

To avoid irrelevant complications we consider the case µ = h = 0. Introducing the novel Dirac
fermion η

↑
= γ

η

↑
+ iξη

↑
, the model Hamiltonian reads

H∗ = HC + HK +
1
2

∑
α=L,R

(
~η†
↑
· V̂c · ~c1α + H.c.

)
+

1
2

∑
j

(
~η†
↑
· V̂ j · ~c j + H.c.

)
−

1
2
~η†
↑
·

U
2
σz · ~η↑, (8.8)

where in the Nambu representation ~ψ = (ψ, ψ†)T , V̂ j is the hybridization matrix between the
dot and the j-th site of the Kitaev chain:

V̂ j = iV j

(
1 1
1 1

)
, (8.9)

and V̂c couples the metallic contacts to the dot

V̂c =
Vc

2

(
(1 + qd

↓
) −(1 − qd

↓
)

(1 − qd
↓
) −(1 + qd

↓
)

)
. (8.10)

To characterize the transport properties of the junction we compute the charge current,
IQ = (IL − IR)/2 with Iα = −i[Nα,H], that in the new representation (8.6) reads:

IQ = −i
Vc

4

∑
α=L,R

sign(α)
[
γ1αγ

η

↑
+ qd

↓
ξ1αξ

η

↑

]
(8.11)

where sign(L) = +1 and sign(R) = −1, and the zero frequency limit of the IQ �uctuations

S Q =

∫
d(t − t′)

〈{δIQ(t), δIQ(t′)}〉
2

, (8.12)

with δIQ = IQ − 〈IQ〉. In the following we study transport through the junction by performing
calculations with Keldysh Green’s function technique, see Appendix D or Refs. [114, 229],
which we compare with the scattering matrix approach. For a detailed introduction to the latter
technique we refer the interested reader to Refs. [34, 205, 209].
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Figure 8.3: Scattering matrix coe�cients for the system in Fig. 8.2 in the trivial regime (left panel) and
in the topological one (right panel) at �nite interaction U/t = 1.6. Blue: normal re�ection; red: normal
transmission, orange: Andreev re�ection and crossed Andreev re�ection. Vertical black lines show the
"bulk" superconducting gap ∆gap. The di�erent scattering processes are summarized in Fig. 8.4.

8.3 ProbingMZMswith charge conductance and shot noise
Experimental measurements of the charge conductance at the boundary of topological materials
reveal the emergence of low-energy MZMs [9, 62, 66, 110, 178, 208, 293] and provide an experi-
mental tool to detect topological transitions by studying surface states via scanning tunneling
microscopy (STM) [70, 128, 170, 201, 244].

In this Section we present a detailed characterization of the low-energy signatures observed
in the charge conductance and shot noise measurements that allows the classi�cation of di�erent
regions of the Kitaev chain phase diagram. Despite being done on a toy model, the analysis
may give physical insight in understanding the outgoing experiments where the e�ect of local
on-site interaction cannot be neglected. We start by reporting the expression of the current
�owing through the metallic contacts:

〈
IQ

〉
=
πe2

h

∫
dερ̄(ε) ( fL(ε) − fR(ε)) ImTr

(
T̂A
η↑

(ε)
)
, (8.13)

where fL(ε) = f (ε − φ/2), fR(ε) = f (ε + φ/2), Tr is the trace in the 2 × 2 Nambu space, T̂R/A(ε)
is the impurity transfer matrix

T̂R/A(ε) = V̂†c · Ĝ
R/A
η↑

(ε) · V̂c, (8.14)

and ρ̄(ε) is the boundary density of states for the semi-in�nite normal contacts (we refer to
the Section E.3). The resulting value of the current is obtained by averaging over the spin ↓
con�gurations:

〈〈IQ〉〉 =
∑

n f
↓
=0,1

p(n f
↓
)〈IQ(n f

↓
)〉, (8.15)

where in the absence of any gate potential or Zeeman �eld on the quantum dot p(0) = p(1) = 1/2.
In the topological regime, the low-energy physics is governed by the in-gap states that

emerge from the hybridization between the real and imaginary part of the spin up dot fermion
and the MZM of the Kitaev chain. The coupling between γd

↑
and γ1 induces an energy splitting
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Figure 8.4: The electron, coming from the L contact, undergoes four di�erent scattering processes at
the interface with the quantum dot that is tunnel-coupled to the Kitaev chain. We notice that only the
normal transmission and the Andreev re�ection are responsible to a net charge variation between L and
R contacts.
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Figure 8.5: Quasiparticle residue Z of the low-energy MZM as a function of µ/t and U/t, for ∆/t = V/t =

0.4. Symbols from (I) to (IV) characterize di�erent charge transport behavior, see Fig. (8.8).
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Figure 8.6: Evolution of the conductance G(φ) as a function of µ/t, for U/t = 1.6, ∆/t = V/t = 0.4 and
Vc/t = 0.3. Dashed white line shows the superconducting gap measured on the boundary site of the
semi-in�nite Kitaev chain. White vertical line corresponds to the topological transition.

∼ V , while the interaction on the dot generates an energy splitting ∼ U between γd
↑

and ξd
↑
.

The combined e�ect of the dot-Kitaev chain coupling and the interaction, on an odd number of
MZMs, is to split the two of them by a term ∼ f (U,V) that eventually, for U strong enough, push
them out from the superconducting gap. On the other hand, the third state is a topologically
protected, and robust to the interaction, zero energy mode. In the trivial regime we have an
even number of MZMs, no zero energy mode is preserved as any �nite interaction induces a
hybridization ∼ U between them.

These features can by easily detected resorting to the scattering matrix approach of Ref.
[205, 209]. This technique allows us to interpret the transport properties of the system in terms
of the scattering processes across the junction that are depicted schematically in Fig. 8.4. In
the trivial regime (left panel of Fig. 8.3), the presence of massive in-gap modes suppresses
low-energy scattering processes, so that the L and R contacts are disconnected in the large U/Vc

limit (Coulomb blockade regime). On the contrary, in the topological regime (right panel of Fig.
8.3), the presence of the MZM keeps alive all the scattering processes at low-energy. The normal
transmission (T), the Andreev re�ection (A) and the crossed Andreev re�ection (C) are equal to
one fourth at any value of U and V . As a consequence, the charge current, IQ, that measures the
charge imbalance between left and right lead, is ∝ A + T ∼ 1/2 and the zero-bias conductance
is reduced from e2/h to e2/2h, as already observed in previous studies [91, 167, 174, 175, 277].
Remarkably, the on-site local repulsion does not modify the result e2/2h while it a�ects the
curvature of the low-bias conductance by renormalizing the MZM:

G(φ) =
∂
〈
IQ

〉
∂φ

'
e2

2h

1 − (
φ

2ΓcZ

)2 , (8.16)

where Γc = 2πρ̄(0)V2
c is the hybridization with the metallic contacts, ρ̄(ω) the boundary metallic
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Figure 8.7: In�uence of the interaction U/t on the conductance G(φ) for µ/t = 0.0, ∆/t = V/t = 0.4 and
Vc/t = 0.3. Horizontal dashed lines show the width of the bulk superconducting gap ∆gap.

density of states and Z the quasiparticle residue. The latter quantity is shown in the color
map 8.5, where we analyze the evolution of Z in di�erent regions of the phase diagram of the
Kitaev chain. We stress that Eq. (8.16) is valid in the topological regime |µ| < 2t where the SC
is topologically non-trivial and a MZM appears at the edge of the semi-in�nite Kitaev chain.
Conversely, in the region |µ| > 2t the MZM disappears and we enter in the Coulomb blockade
regime where the zero-bias conductance is suppressed.

The topological transition is associated to a drastic variation of the conductance G(φ). Indeed,
as shown in Fig. 8.6, by crossing the critical line, µ = 2t, we observe a jump from G0 = e2/2h
in the topological region to G0 ' 0 in the trivial one, which allows distinguishing the two
di�erent phases. Moreover, we notice that in the non-topological region, for µ/t ' 2.5, the
conductance presents coherent in-gap peaks attributable to Andreev bound states induced by the
impurity, reminiscent of Yu-Shiba-Rosinov states [177, 242, 259]. The e�ect of the interaction
on the G(φ) is shown in Fig. 8.7, where we report the evolution of the low-energy MZM and of
the Yu-Shiba-Rosinov-like bound states as a function of U/t. Being non-topological, the latter
features are strongly a�ected by the interaction, and indeed, as shown in Fig. 8.7, above a certain
value of U/t they enter in the continuum of Cooper-pairs excitations of the SC. On the other
hand, the contribution to the zero-bias conductance G0 of the MZM is robust and persists for
any value of U/t. The interaction renormalizes the coupling (8.9) between the dot and the MZM
according to V → V

√
Z, where Z the quasiparticle residue is displayed in Fig. 8.5, and enhances

the curvature of the conductance close to the zero-bias anomaly (8.16).
We also compute the shot noise S Q that at zero temperature reads:

S Q =
2πe3

h
π

2

∫
dερ̄2(ε)

fL(ε) − fR(ε)
2

Tr
[ (

T̂R
η↑

(ε) + T̂A
η↑

(ε)
)
·
(
T̂R
η↑

(ε) + T̂A
η↑

(ε)
) ]
, (8.17)

for more details we refer the interested reader to Appendix E Section E.5. Analogously to the
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Figure 8.8: From top to bottom current J(φ), conductance G(φ) and shot noise S Q(φ) as a function of the
bias φ/∆gap, where ∆gap is the bulk superconducting gap. Left side panels (I) and (II) describe di�erent
regions in the Topological SC phase: parameters are U/t = 0.8, 2.0, V/t = 0.4, Vc/t = 0.3 and µ/t = 0.0
with bulk superconducting gap ∆gap/t = 1.6. Right side panels (III) and (IV) describe di�erent regions
in the Trivial SC phase: parameters are U/t = 0.8, 2.0, V/t = 0.4, Vc/t = 0.3 and µ/t = 2.5 with bulk
superconducting gap ∆gap/t = 1.0. In the topological phase (I) and (II) the zero-bias anomaly e2/2h shows
the presence of a MZM, that is absent in the trivial-SC, regions (III) and (IV).

previous case, we perform the average over ↓ con�gurations

〈S Q〉 =
∑

n f
↓
=0,1

p(n f
↓
)S Q(n f

↓
). (8.18)

A complete characterization of the low-energy transport properties is given in Fig. 8.8, where
we plot the current IQ, the corresponding charge-conductance G(φ) and its �uctuations S Q(φ)
as a function of the applied bias. We notice that dependently on the region of the Kitaev phase
diagram 8.5 we predict di�erent low-energy response. In particular behavior (I) and (II) denote
the presence of a MZM, while (III) and (IV) characterize the non-topological regime. Di�erently
from (I) and (IV), regions (II) and (III) present additional in-gap bound states distinguished by
sharp peaks in G(φ) away from the zero-bias anomaly.

We observe that an additional signature of the MZM is given by the low-bias behavior of
the shot noise S Q(φ), which is shown in the bottom panel of Fig. 8.8. Indeed, in the topological
regime, for small bias, the shot noise goes like:

〈S Q〉 '
e3

h
φ3

24 (ΓcZ)2

1 − 3
10

(
φ

ΓcZ

)2 , (8.19)

while it becomes linear in the non-topological region, S Q ∝ φ for |µ| > 2t. From the shot noise
we compute the Fano factor

F =
S Q

JB

∣∣∣∣
φ=0

= qe (8.20)
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Figure 8.9: Top Panel: Shot noise 〈S Q〉 as a function of the backscattering current JB. Bottom panel:
Ratio 〈S Q〉/JB as a function of the bias φ measured in units of the hybridization with the metallic contacts
Γc/t = 2πρ(0)V2

c /t = 0.18. Dashed black line corresponds to Eq. (8.22). Di�erent lines represent di�erent
values of the chemical potential of the Kitaev chain: µ/t = 0.0, 1.4, 1.7 and 2.1. The other parameters
are V/t = ∆/t = 0.4, Vc/t = 0.3 and U/Γc = 5.5̄.

which determines the charge of the elementary carriers [64]. In Eq. (8.20) we have introduced
the backscattering current, de�ned as the deviation from the unitary transmission through the
junction [256]:

JB =
e2

h
φ − 〈〈JQ〉〉. (8.21)

As a consequence of the small bias behavior of Eqs. (8.16) and (8.19), the topological regime
|µ| < 2t is characterized by a vanishing Fano factor F = 0, independently from the value of
the interaction U/t, as shown in the bottom panel of Fig. 8.9. On the other hand, in the non-
topological region F is a function of U/t which becomes equal to 1 in the non-interacting limit
U/t → 0. In particular for |µ| > 2t we �nd:

F =
(2Γc/U)2

1 + (2Γc/U)2 . (8.22)

Thus, experimental measurements of the shot noise give additional informations complemen-
tary to the characteristic zero-bias conductance G0 = e2/2h. Combined measurements of the
conductance and the shot noise in the experimental set-up presented in Fig. 8.2 allow detecting
the topological properties of the superconducting wire as well as distingishing the low-energy
contribution of a MZM from other possible sources of zero-bias anomaly. We argue that the
predicted behavior of the aforementioned observables persists even for a more realistic Hamilto-
nian, that presents a detailed description of the leads and of the quantum dot [53, 103, 167, 285].
A detailed analysis of this problem is left to future investigations.
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8.4 Conclusions
We compute charge transport across a Majorana-Anderson model by measuring the charge
current across the metallic contacts. The presence of a MZM is outlined by a fractional zero-bias
conductance e2/2h that, as we have shown, is robust against the dot interaction. Additionally,
for small values of the on-site repulsion, we �nd in-gap bound states that represent the only low-
energy feature in the topologically trivial region of the phase diagram in Fig. 8.5. Furthermore,
we �nd that the topological regime is characterized by a vanishing Fano factor induced by the
tunnel-coupling with the MZM at the edge of the superconducting wire.

Our analysis gives a complete characterization of charge transport measurements that can
experimentally detect the presence of MZM on the edge of real materials and, indirectly, allow
reconstructing their topological phase diagram.
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9
Conclusions and perspectives

In this thesis we introduce and explore two novel approaches for strongly correlated electron
systems: the ghost-Gutzwiller wave function and the constraint-free slave-spin theory for impurity
models. For the sake of clarity we summarize the main �ndings of this thesis in Sections 9.1 and 9.2,
where, together with a brief description of the main methodological advances, we present the results
obtained by applying these approaches to problems of current interest.

9.1 The ghost-Gutzwiller wave function

The ghost-Gutzwiller, presented in Chapter 3, extends the conventional Gutzwiller wave function
by introducing subsidiary fermionic orbitals both in the local projector P and in the Slater
determinant |Ψ∗〉. The novel method improves substantially the description of strongly correlated
electron systems already for small number N of auxiliary states, N = 3.

For the single-level impurity Anderson model (SIAM) the method is able to describe not
only the low-energy Kondo resonance but also the expected valence �uctuation peaks at ±U/2.
Furthermore, the variational estimation of the Kondo temperature TK improves respect con-
ventional Gutzwiller and slave-particle mean-�eld results, which is however still overestimated
for N = 3. In this regard, it is interesting to look at the scaling of TK as a function of 1/N
and determine whether in the Kondo regime log TK approaches the exact result ∼ −πU/8π for
N � 1. This future project will shed light on the role of the parameter N, that is expected to
play a similar role of the bond dimension in matrix-product states [217, 236] or the number
of "hidden" variables in neural networks states [50] and, therefore, related to the amount of
entanglement in the variational wave function.

The �exibility of the variational method makes it applicable to any quantum impurity problem.
As an ideal test for our approach, we apply the method to the pseudogap SIAM that presents
a quantum phase transition between the local moment (LM) and the Kondo screened phase
(SC) [89, 102, 288]. The technique for N = 3 improves substantially the pseudogap SIAM phase
diagram respect conventional Gutzwiller and slave-particles mean-�eld calculations. Di�erently
from the latter approaches, where in the LM phase the impurity decouples from the electron
bath, our variational technique predicts that the LM regime is characterized by a non vanishing
value of the double occupancy on the impurity site and, correspondingly, by broadening of the
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charge peaks at ±U/2. This additional feature could enrich the out of equilibrium dynamics,
analyzed with the conventional Gutzwiller approach in Ref. [245] by inducing relaxation towards
a stationary state. In view of these promising results we are applying the variational method
to the double quantum dots model, in order to determine whether the novel Gutzwiller wave
function is able to capture the quantum critical point that separates the Kondo screened phase
from the singlet one [134, 135].

The improvement in the variational description of impurity models opens the intriguing
possibility of applying the g-GW as impurity solver for DMFT. In this respect, it is important
to notice that the g-GW has the same numerical cost of exact diagonalization (ED) [44, 49].
However, in contrast to ED, which describes the impurity spectral function with a �nite number
of discrete peaks, the g-GW gives a continuous spectrum which is determined by optimizing the
embedded impurity model. This feature may guarantee better physics of using ED as impurity
solver at the same cost.

To highlight the importance of the novel Gutzwiller wave function we apply the method
to the single-band lattice Hubbard model. Numerical results, obtained for N = 3 and N = 5,
show that the approach allows the description of both the low-energy quasiparticles and the
high-energy Hubbard bands. Furthermore, the estimation of the ground state energy, double
occupancy and quasiparticle residue is not far from the results obtained with DMFT. This crucial
result, originally presented in Ref. [163], highlights that the ghost Gutzwiller wave function is
not only a powerful method to determine a variational estimation of the quasiparticle residue
Z in the Fermi liquid regime but also gives a detailed description of the correlation-driven
insulating phase. It is interesting to remark that the variational estimation of the spinodal
points Uc1 and Uc2, as well as the value of the quasiparticle residue Z improve by increasing
the number of subsidiary degrees of freedom N. This result poses a question about the limit
of N � 1, whether the variational g-GW solution approaches DMFT [95], that is exact in the
in�nite-coordination limit.

We underline that the ghost Gutzwiller wave function is simple and �exible enough to
allow theorists to incorporate material-speci�c details into the calculations. Therefore, it can
be exploited in combination with electronic structure calculations to provide more realistic
description of correlated materials.

In this thesis we have faced, by means of the ghost Gutzwiller variational approach, two
di�erent problems of current interest.

• Exciton Mott transition

The exciton Mott transition in photoexcited semiconductors is actually quite an old topic
that goes back to the 1970’s. Nonetheless, basic issues have remained unsolved in the huge
literature that has appeared in the last decades on the theory of correlated systems and
the Mott transition. In particular in some systems, the exciton Mott transition appears to
be characterized by phase separation, like a liquid-gas transition, while in the others by a
Mott transition distinct from the gas-liquid one [164], or through a bistability [254].
The interest in the exciton physics of semiconductors has been recently boosted, mainly by
the great potentials o�ered by monolayer transition metal dichalcogenides, see e.g. [281].
This revival is triggered also by the interest in exciton behavior under photoexcitation,
not only in dichalcogenides, as, for instance, in Ref. [54], but also in more conventional
semiconductors, see, e.g., Ref. [255].
In light of this renewed interest, we decide to address the nature of the exciton Mott
transition in Chapter 4. In particular, we consider a minimal model that, since the seminal
work by Nozières and Schmitt-Rink, [213], is believed to capture the essential physics of the
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exciton Mott transition, i.e., the half-�lled single-band Hubbard model at �xed, and large,
spin-polarization. Quite surprisingly, despite the half-�lled single-band Hubbard model
has been examined on every side by an incredible number of di�erent state-of-the-art
techniques, including the most sophisticated ones, yet the nature of the Mott transition at
�xed spin-polarization remains controversial. We emphasize that, even though the model
is ideally suited to DMFT, earlier results [30, 48, 145, 160, 294] show some di�erences in the
nature of the transition. The reason of this discordance can be traced back to the iterative
scheme employed to solve DMFT, which fails to converge in the regime of large-U and
�nite magnetization. For this reason we decide to use the novel Gutzwiller wave function
approach that is free of the problem outlined before, which is discussed more in details in
Section 4.4.
The results, that we present in Section 4.5 and summarized in Section 4.6, agree with
experiments and allow identifying the key parameter that controls the nature of the
transition: the magnitude of the exciton binding energy. Speci�cally, we �nd that for large
exciton binding energies (small dielectric constant), the exciton Mott transition occurs
as a gradual transition (liquid-gas). Hence we observe a coexistence region where, as
the density of electron-hole pairs increases, the fraction of electron-hole droplets grows
continuously till the formation of a �nite spectral width at the Fermi level. Instead, in
the regime of small exciton binding energies (large dielectric constant), the intermediate
region is characterized by bistability with a sharp transition from the exciton gas to the
electron-hole liquid.

• Nonequilibrium dynamics

Recent years have seen enormous experimental progress in preparing, controlling and
probing strongly interacting quantum systems in di�erent nonequilibrium regimes. This
led to the development of an entire new �eld of nonequilibrium quantum physics which
aims to the control and manipulation of nonequilibrium matter.
Motivated by the outstanding improvement observed at equilibrium, in Chapter 5 we
extended the ghost-Gutzwiller wave function to describe the out of equilibrium evolu-
tion of multi-band Hubbard models in the absence of superconductive correlations. To
benchmark our method with DMFT and conventional Gutzwiller result, in Section 5.4 we
study the out of equilibrium dynamics in the single-band Hubbard model induced by a
quench in the local interaction. The tunnel matrix elements connecting the physical orbital
diσ with N (N > 1) bath levels cia provides energy exchange mechanisms that suppress
the mean-�eld like coherent oscillations observed in the conventional time-dependent
Gutzwiller. However, as long as the number of bath levels is �nite, the novel channels do
not act as a reservoir that absorbs the excess of energy injected by the time-dependent
perturbation and the system never reaches an asymptotic steady-state regime. We expect
that N > 3 would certainly improve the results presented in Section 5.4 by a further
suppression of the residual oscillations.

9.2 The Slave-spin theory

Concerning the slave-spin theory we have shown in Section 6.3 that a generic single-level
Anderson impurity model (SIAM) can be mapped without any constraint onto a resonant level
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model coupled to two Ising spins, or just one in the simpler case when the hybridization is
particle-hole symmetric. The result straightforwardly applies to a generic multi-levels Anderson
impurity model if the impurity Hamiltonian involves only the occupation numbers, i.e. it does
not include Coulomb exchange terms, see Section 6.3.2. Moreover, the single-particle Green’s
functions of the physical electron can be calculated without any constraints. The latter result
allows exploiting DMFT to study in the slave-spin representation particle-hole nonsymmetric
multi-band Hubbard models in lattices with in�nite coordination. In some cases this could
be more convenient than directly working within the physical Hilbert space, though smaller,
especially when one wants to prevent spontaneous symmetry breaking that usually accompanies
a Mott transition, since the slave-spin Hamiltonian (6.28) is particle-hole symmetric in terms
of the auxiliary fermions, despite the fact that the Hamiltonian of the physical electrons is not.
Moreover, as already shown in Ref. [121], the slave-spin mapping endows the Mott transition
of a genuine order parameter associated with the local Z2 gauge symmetry. Thus, it allows to
develop an equivalent of the Landau-Ginzburg energy functional for the Mott transition [152].

It is interesting to notice that by exploiting our novel slave-spin theory the mean-�eld
solution of the single-orbital Anderson impurity model (SIAM) is found to be stable to unphysical
spontaneous magnetisation of the impurity, unlike the saddle-point solution in the standard
slave-boson representation [81, 156]. Remarkably, the mean-�eld estimate of the Wilson ratio
RW and the quasiparticle scattering amplitudes tend to the exact Nozières’ local Fermi liquid
result in the Kondo regime [194, 212, 214]. Moreover, we perform a self-consistent calculation of
the single-particle physical fermions Green’s function that reproduces both the Kondo resonance
and the high-energy incoherent charge �uctuations peaks. The latter result allows to apply
the self-consistent slave-spin mean-�eld theory as an approximate impurity solver within the
DMFT.

The slave-spin mapping �nds a direct application to transport in quantum dots. For this
reason the method has been further extended to study the out of equilibrium evolution of
quantum dots by employing the Keldysh Green’s function approach. In particular we have
considered two applications.

• Transport in quantum dots

We have shown in Chapter 7 that the evolution of quantum dots can be described within
the slave-spin representation without any need of local constraint on the enlarged Hilbert
space. The advantages are twofold. On one side, we have disentangled high and low-
energy degrees of freedom, by encoding the dynamics of the charge degrees of freedom in
the Ising variables while the evolution of the low-energy ones in the e�ective resonant
level model. On the other side, we avoided the mean-�eld mixing of unphysical and
physical subspaces, that a�ects the time evolution of other slave-particle techniques.
Furthermore, we have presented in Section 7.4 the time-dependent slave-spin mean-�eld
theory that reduces the solution of the many-body Schrödinger equation to a set of
equations that describe the evolution of the Ising variables coupled to the dynamics of
the Slater determinant. It is important to observe that the time-dependent slave-spin
approach can be applied to study the dynamics on a quantum dot for any nonequilbrium
protocol, e.g. periodic driving, quantum quench, etc. For simplicity we apply in Section
7.6 the above method to study the dynamics induced by slowly varying chemical potential
applied to the metallic contacts. After a characteristic time, which depends on the product
TK t∗ between TK and the time scale of the external perturbation t∗, the dynamics relax to
the nonequilibrium steady-state.
In the steady-state regime, Section 7.6, the self-consistent Hartree-Fock decoupling is
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able to predict the properties of the model even deep inside the large-U Kondo regime,
speci�cally, the conductance shows both the known zero-bias anomaly but also the
expected peak at bias of order U .

• Slave-spin mapping for double quantum dots

In Section 7.7 we consider a double quantum dots model see Fig. 7.5. Each dot is coupled
to the respective metallic contact, and the dots are connected via a tunnel-coupling t⊥.
At equilibrium this model shows a crossover between the Kondo screened phase and
the unscreened one, where the magnetic moments on the quantum dots are coupled in a
singlet con�guration. The crossover becomes a quantum critical point in the large-U limit,
when the tunnel-coupling t⊥ can be approximated by an antiferromagnetic exchange J⊥.
Remarkably, even in the case of a �nite t⊥, we show in Section 7.7 that the thermodynamical
properties computed within the slave-spin representation can be obtained without any
need of constraints on the enlarged Hilbert space. Despite the promising form of the slave-
spin Hamiltonian, preliminary equilibrium mean-�eld calculations predict a �rst order
transition between the Kondo screened phase and unscreened one. In order to reproduce
the expected crossover we are currently trying to go beyond mean-�eld approximation.
In particular one possible direction, that we are considering, is performing degenerate
perturbation theory around the t⊥ = 0 solution and generalizing the result for �nite values
of t⊥. Once the equilibrium properties of the model are reproduced, we will proceed by
considering the nonequilibrium transport across the double quantum dots.

In recent experiments [66, 293] a new direction has emerged which explores transport across
an interacting magnetic impurity coupled to the edge of a 1D superconductive nanowire. It
has been observed that, when the superconductor enters the topological regime, low-energy
conductance measurements show zero-bias anomaly, that may signal the appearance of Majo-
rana zero modes (MZM) at the boundary of a topological superconductor. To characterize the
distinctive contribution given by the MZMs to electronic transport properties of the junction, we
consider in Chapter 8 an idealized model that resembles the set-up realized in the aforementioned
experiments. By performing calculations with both Keldysh Green’s functions approach and
Scattering matrix formalism we obtain that in addition to the well-known half-integer zero-bias
conductance, the topological regime is characterized by a vanishing Fano factor F = 0, signature
of the Majorana nature of the zero-bias anomaly. We argue that the predicted behaviors of
the conductance and of the Fano factor persists even for realistic models, that include a more
detailed description of the quantum dot and of the metallic leads.

Combined measurements of the conductance and the shot noise, in the experimental set-
up analyzed in Refs. [66, 293], allow experiments to detect the topological properties of the
superconducting wire and to distinguish the low-energy contribution of a Majorana zero mode
from other possible sources of zero-bias anomaly.
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A
Supplemental informations on the g-GW

In this Appendix we report some additional informations on the g-GW approach and an interesting
calculation. In Section A.1 we show that average quantities computed as traces on the Gutzwiller
projector φ̂(i) can be expressed in terms of expectation values on the embedded wave function
|ψ(i)〉. In the large-U regime, where charge �uctuations are negligible, the g-GW wave function
can be computed exactly and provides a faithful description of the Mott insulator, see Section A.2.
Finally, in Sections A.3 and A.4 we report the expression of the single-particle propagator and of the
quasiparticle residue, respectively, in the g-GW approach.

A.1 Expectation values of the embedded model

Given the impurity wave function in Eq. (3.23) we are going show that identities in Eqs. (3.30),
(3.31) and (3.32) hold.

Gutzwiller constraints; let us consider the norm of the wave function |ψ(i)〉:

〈ψ(i)|ψ(i)〉 =
∑
Γγ

∑
Γ′γ′

δγγ′δΓΓ′φ
∗(i)Γγφ(i)Γγ = Tr

(
φ†(i) · φ(i)

)
. (A.1)

The single-particle density matrix is:

〈ψ(i)|cibc†ia|ψ(i)〉 =
∑
Γγ

∑
Γ′γ′

δΓΓ′ φ
∗(i)Γγ′ φ(i)Γγ 〈γ

′
i |U
†

PHcibc†iaUPH|γi〉eiπ[Nγ(Nγ−1)−N′γ(N′γ−1)]/2

=
∑
Γγ

∑
γ′

φ∗(i)Γγ′ φ(i)Γγ

(
〈γi|c

†

iacib|γ
′
i〉
)∗

= Tr
(
φ†(i) · φ(i) ·C†ia ·Cib

)
,

(A.2)

last equality follows from the fact that 〈γi|c
†

iacib|γ
′
i〉 can be either 0 or ±1.
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Average of a local bosonic operator; we consider the expectation value of the local (bosonic)
operator Oi, which depends on the impurity degree of freedom only Oi[{d

†

iα}, {diα}]

〈ψ(i)|Oi|ψ(i)〉 =
∑
Γγ

∑
Γ′γ′

δγγ′ φ
∗(i)Γ′γ φ(i)Γγ 〈Γ

′
i |Oi|Γi〉

= Tr
(
φ†(i) · Oi · φ(i)

)
.

(A.3)

Overlapmatrix element; the hybridization between the impurity and the bath is determined
by the average value

〈ψ(i)|c†iadiα|ψ(i)〉 =
∑
Γγ

∑
Γ′γ′

〈γ′| × 〈Γ′|ciadiα|Γ〉 × |γ〉φ
∗
Γ′γ′(i)φΓγ(i)eiπ[Nγ(Nγ−1)−N′γ(N′γ−1)]/2

=
∑
Γγ

∑
Γ′γ′

(−1)Nγ+NΓφ∗Γ′γ′(i)φΓγ(i)〈γ′|cia|γ〉〈Γ
′|diα|Γ〉

(A.4)

in the relevant cases we will consider in this work the coe�cient φΓγ is not vanishing if the
half-�lled condition is satis�ed: NΓ + Nγ = N + M. Moreover, we always consider an embedded
impurity model composed by an even number of sites N + M = 2n, n ∈ N. Thus,

〈ψ(i)|c†iadiα|ψ(i)〉 =
∑
Γγ

∑
Γ′γ′

φ†γ′Γ′(i)φΓγ(i)
(
〈γ|c†ia|γ

′〉
)∗
〈Γ′|diα|Γ〉

= Tr
(
C†ia · φ

†(i) · Diα · φ(i)
)
,

(A.5)

where we have used the fact that 〈γ|c†ia|γ′〉 is either 0 or ±1.

A.2 The analytical evaluation of the g-GW in the large-U
regime

We present the analytical calculations of the g-GW for the deep Mott insulator solution (U � Uc2,
where Uc2 is the spinodal point for the correlated metal). In this regime the low-energy bath
level does not contribute to valence �uctuations on the impurity site, R2 = 0 see bottom panel
of Fig. 3.8, and it is an e�ective spin degree of freedom. By physical reasons, based on the
short-range singlet correlations that characterizes the Mott insulator, we consider a variational
wave function where the low-energy spin is coupled in a singlet con�guration to the remaining
levels:

|ψ〉 = (|φ↑〉 × |ϕ↓〉 − |φ↓〉 × |ϕ↑〉)/
√

2

where |ϕσ〉 = |σ〉, with σ =↑, ↓, while |φσ〉 describes the con�guration of the remaining sites
composing the embedded model that, for N = 3, is made by the impurity site and the high-energy
levels. In the large-U regime charge �uctuation on the impurity site are strongly suppressed
and the three site wave function φ(n; n1, n3), where n is the physical orbital con�guration and
na the bath site a con�guration, a = 1, 3, contains a leading component φ(σ; 2, 0), σ =↑, ↓, in
the subspace with total spin S = 1/2 and its z-component S z = σ. Taking into account the
next-to-leading con�guration, we will further assume non-zero the components φ(0; 2, σ) and
φ(2;σ, 0), which are generated by the hybridization between the physical orbital and the bath
sites. Therefore, as shown in Fig. A.1, the three site trial wave function can be written as

|φσ〉 = φ(σ; 2, 0)|σ; 2, 0〉 + φ(2;σ, 0)|2;σ, 0〉 + φ(0; 2, σ)|0; 2, σ〉.
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a) ��(�; 2, 0) b) ��(0; 2, �) ��(2;�, 0)c)

Figure A.1: Relevant con�gurations in the large-U regime. a) leading component φ(σ; 2, 0), while b)
and c) are the next-leading amplitudes φ(2;σ, 0) and φ(0; 2, σ), respectively, which are generated by the
hybridization between the impurity and the high-energy bath levels.

Normalization condition (3.13) implies:

〈ψ|ψ〉 =
1
2

∑
σ=↑,↓

〈φσ|φσ〉 = 1,

that is automatically satis�ed by the following parametrization:

φ(σ; 2, 0) = cos θ,

φ(2;σ, 0) = −φ(0; 2, σ) = sin θ/
√

2,
(A.6)

where we shall assume θ ∼ 0. It follows that ∆ab = 〈ψ|cbc†a|ψ〉 reads:

∆̂ =

 sin2 θ/4 0 0
0 1/2 0
0 0 1 − sin2 θ/4

 ,
and

Q1 = Q3 =
sin θ cos θ

2
√

2
,

while by construction Q2 = 0. Therefore, for θ ∼ 0:

R1 = R3 =
1
√

2
+ O

(
θ2

)
,

and thus the quasiparticle Hamiltonian reads:

H∗ = −
t

2
√

Z

∑
〈i j〉σ

[(
c†i 1σ + c†i 3σ

)(
c j 1σ + c j 3σ

)
+ H.c.

]
+
µ

2

∑
iσ

(
c†i 1σci 1σ − c†i 3σci 3σ

)
, (A.7)

that naturally satis�es the condition on the occupation of the low-energy site 〈Ψ∗|c†i 2σci 2σ|Ψ∗〉 =

1/2. The Lagrange multiplier µ is determined by imposing the constraint:

〈Ψ∗|c
†

i 1σci 1σ|Ψ∗〉 =
1
V

∑
k

n11σk =
sin2 θ

4
,
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where
n11(33)σk =

1
2
∓

1
2

1√
1 + ε2

k/µ
2
,

n13(31)σk = −
1
2

εk/µ√
1 + ε2

k/µ
2
,

(A.8)

and εk is de�ned in Eq. (3.70). In the large-U regime we expect µ ∼ U and εk/µ � 1:

〈Ψ∗|c
†

i 1σci 1σ|Ψ∗〉 '
1

4V

∑
k

ε2
k

µ2 →
µ

W
=

1
2θ

+ O (θ) ,

where W is the half-bandwidth, W = 2t. Therefore, the kinetic energy per site is:

E∗ =
1

2V

∑
k

∑
σ

εk (n11kσ + n33kσ + n13kσ + n31kσ) = −W
[
θ

2
+ O

(
θ3

)]
,

and the average value of the Hubbard repulsion is:

U〈ψ|n↑n↓|ψ〉 = U
[
θ2

2
+ O

(
θ4

)]
.

Finally, the variational energy reads:

E(θ) = −W
θ

2
+ U

θ2

2
,

and the saddle-point equation, ∂θE(θ) = 0, reads:

−
W
2

+ Uθ = 0→ θ =
W
2U

,

and
µ = U.

The ground-state energy is

E
(
θ̄
)

= −
W2

8U
= −

J
8
, (A.9)

the double occupancy reads: 〈
ψ

(
θ̄
)∣∣∣∣ n↑n↓ ∣∣∣∣ψ (

θ̄
)〉

=
W2

8U2

and 〈
ψ

(
θ̄
)∣∣∣∣ S2 · S

∣∣∣∣ψ (
θ̄
)〉

= −
3
4

(
1 −

W2

8U2

)
.

Eq. (A.9) is, indeed, the correct ground state energy per site for U/W � 1, the limit in which
the Hubbard model tends to the t − J model:

Ht−J =
J
Z

∑
〈i j〉

(
Si · S j −

1
4

)
,

where Z � 1. In this limit and for a paramagnetic wave function only the second term survives
and Et−J/V = −J/8. Furthermore, the dispersion relation of the high-energy auxiliary degrees
of freedom is:

E±(k) =
εk

2
±

U
2

√
1 +

ε2
k

U2 ,
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and gives rise to the upper and lower Hubbard bands.
Before concluding, we notice that the trial wave function obtained by a triplet combination

|ψ〉 = |φσ〉×|ϕσ〉

is separated by an energy gap ∆ET-S = W2/8U from the singlet ground-state. Indeed, by
performing similar calculations to those presented before, it is straightforward to obtain that in
the large-U regime the variational energy per lattice site reads

ET (θ) =
U
2
θ2 −Wθ2 → θ̄ = 0.

A.3 Spectral properties of the physical electrons
The variational Hamiltonian H∗ in Eq. (3.22) has rigorously no physical meaning but for the
ground state properties. However, it is common [42, 109, 163] to interpret it as the Hamiltonian
of the quasiparticles. Within such an assumption, the g-GW approximation can be regarded as
a tool to extract low-energy quasiparticle and high-energy features. More precisely, suppose
we already have the saddle-point values of Rαa(i) and λab(i), then under the assumption of
translational invariant ground state the quasiparticle Hamiltonian reads

H∗ =
∑

k

2N∑
ab=1

c†kaH∗(k)ab ckb, (A.10)

with

H∗(k)ab =

 2M∑
αβ=1

R†aα ε
αβ
k Rβb + λab

 , (A.11)

and

ε
αβ
k = −

n.n. i∑
j

e−ik·(R j−Ri) tαβ
√

Z
, (A.12)

where the sum extends only over nearest neighbors of i. The quasiparticle Green’s function is a
2N × 2N for any k point in the Brillouin zone and reads:

G−1(k, z) = z1 −H∗(k), (A.13)

where z is a complex variable. Within the g-GW approximation, the physical electron Green’s
function is given by:

Gαβ(k, z) =

2N∑
ab=1

RαaGkab(k, z) R†bβ ≡
[

1
z1 − εk − Σ(z)

]
αβ

, (A.14)

where εk is the 2M×2M matrix de�ned in Eq. (A.12). The momentum-resolved spectral function
is:

Aαβ(k, ω) = −
1
π

ImGαβ(k, ω + i0+). (A.15)

By summing over k we obtain the local spectral function

Aαβ(ω) =
1
V

∑
k

Aαβ(k, ω). (A.16)
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Before concluding the section, we present the single-particle Green’s function of the impurity
electrons of a generic single-level impurity model (we recall section 3.3 for an introduction to
impurity models). By following the same assumptions used before, we can interpret the auxiliary
degrees of freedom caσ of the self-consistent g-GW RLM in Eq. (3.56) as the quasiparticle
excitations of the correlated model. It readily follows:

Gcσ(z) = G0
cσ(z) + G0

cσ(z) · Σcσ(z) ·Gcσ(z), (A.17)

where z is a complex variable, Gcσ(z) is the dressed caσ fermions Green’s function while G0
cσ(z)

is the bare one: [
G0

cσ(z)
]−1

= z1 − λ̂σ. (A.18)
Finally, the caσ fermions self-energy in Eq. (A.17) reads:

Σcσab(z) = R∗σ,aσ ∆(z) Rσ,bσ, (A.19)

where ∆(z) is the hybridization function, de�ned in Eq. (3.53) and evaluated at the complex
frequency z. The solution of the Dyson’s equation (A.17) is:

[Gcσ(z)]−1 =
[
G0

cσ(z)
]−1
− Σcσ(z), (A.20)

and allows computing the impurity fermion Green’s function, that reads:

Gdσ(z) =

N∑
ab=1

Rσ,aσ Gcσab(z) R∗σ,bσ =
1(

G0
dσ(z)

)−1
− Σdσ(z)

, (A.21)

where G0
dσ(iε) includes the non-interacting local Hamiltonian and the hybridization with the

metallic host.
Before concluding the section, we remark that in the g-GW the wave function renormalization

matrix is a rectangular matrix R̂ and, thus, is not invertible. Consequently, the g-GA lattice Σ(z)
and impurity Σdσ(z) self-energies in Eqs. (A.14) and (A.21) are not necessarily linear functions
of the frequency z.

A.4 Low-energy Fermi liquid parameters: the quasiparti-
cle residue

The Landau theory1 for Fermi liquids asserts that in the vicinity of the Fermi surface k ' kF ,
where the Fermi momentum is de�ned as εkF = 0, the singular part of the Green’s function reads
[2, 211]:

G(k, ω) '
Zk

ω − ~v(kF) · (k − kF) + i0+sign(|k| − |k|F)
. (A.22)

The presence of low-energy coherent excitations induces a discontinuity of the fermionic
distribution function:

nk = −i
∫ ∞

−∞

dω
2π

eiω0+

G(k, ω). (A.23)

In particular, we have:
nk−F − nk+

F
= ZkF ≤ 1 (A.24)

1We notice that the Landau theory holds for repulsive interaction among the electrons. In the presence of
attraction between electrons the ground state is radically di�erent from the that of the non-interacting Fermi gas.
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where k∓F indicates the limit k→ kF from below and above, respectively, the upper bound comes
from the Pauli exclusion principle. In the case of the Fermi gas, the jump goes to unity. As
anticipated, the jump gives the fraction of excitations of the interacting systems, which can be
described in terms of e�ective free particles.

By applying the result in Eq. (A.23) to the g-GW approach we �nd that the quasiparticle
residue in g-GW for a lattice model reads:

Zαβ = nαβ(ε = ε−F ) − nαβ(ε = ε+
F ), (A.25)

where ε∓F indicates the limit ε → εF from below and above, respectively, and

nαβ(ε) =

2N∑
ab=1

R†αa

 1
V

∑
k

δ(ε − εk)〈Ψ∗|c
†

kackb|Ψ∗〉

 Rbβ. (A.26)

We remind that cka is the auxiliary fermion operator described by the quasiparticle Hamiltonian
in Eq. (A.10). Finally, for impurity models the quasiparticle residue is obtained by exploiting the
relation:

Zdσ =
1

1 − ∂ω Σdσ(ω)

∣∣∣∣∣∣
ω=0

(A.27)

where
Σdσ(z) = z − εd

σ − ∆σ(z) −G−1
dσ(z), (A.28)

and εd
σ is single-body on-site energy of the impurity fermion dσ.
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B
Details on the physics of photoexcited

semiconductors

In this Appendix we report some useful calculations that allows a better understanding of Chapter
4. In Section B.1 we consider the simple example of a single e-h pair, where a simple calculation
allow us to show that, in the presence an on-site attraction and for lattices in dimensions large
than 2, a �nite value of U is needed to form a bound state below the two-particle continuum. In
Section B.2 we compute analytically the g-GW wave function for the exciton gas in the regime
of large-U .

B.1 A single pair of e-h excitations: the critical U

In this section we perform a simple calculation that in lattices with large coordination Z � 1
and in the presence of short-range attraction between e-h pairs U > Uc in order to observe a
bound state below the two-particle continuum. A single pair of e-h excitations is described by
the wave function:

|Ψe-h(Q)〉 =
∑

k

L(Q,k) e†k h†Q−k|0〉 (B.1)

where the coe�cients L(Q,k) are obtained by looking for the eigenstates of the Hamiltonian
(4.2). The secular Eq. reads:

L(Q,k) = −
U
V

∑
p

L(Q,p)
E(Q) − εk − εQ−k

. (B.2)

By de�ning:
J(Q) =

1
V

∑
p

L(Q,p),

and summing over k, Eq. (B.2) becomes:

1 = −
U
V

∑
k

1
E(Q) − εk − εQ−k

,
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whose solutions determine the eigenvalues of the e-h wave function (B.1). In particular, since
we are interested to the ground state solution, we set Q = 0 and we look the critical value of U
where a bound state solution appear below the two-particle continuum:

1 + U
∫

dε
ρ(ε)

E − 2ε
= 0, (B.3)

with E < −2W . For ρ(ε) given by the semicircular DOS in Eq. (3.61) we obtain Uc = 1. We
notice that for cubic lattice structures Uc = 0 for dimensions D = 1, 2, while Uc is �nite for
D > 2.

B.2 The exciton gas in the large-U limit
In this section we perform an analytic calculation for the exciton gas in the limit of large-U and
arbitrary density of e-h pairs. For convenience we perform the unitary transformation in Eq.
(4.4) that translates the problem of a gas of bound e-h pairs in a magnetized Mott insulator. By
following the same line of reasoning presented in Section A.2, the embedded impurity wave
function is parametrized by the wave function in Eq. (4.12):

|ψ〉 = cos φ |φ↑〉 × |ϕ↓〉 − sin φ |φ↓〉 × |ϕ↑〉

where |ϕσ〉 = |σ〉 describes the spin con�guration on the low-energy site, and |φσ〉 is parametrized
by:

φ↑(↑; 2, 0) = cos θ,

φ↑(2; ↑, 0) =
sin θ
√

2

cos φ1

cos φ
,

φ↑(0; 2, ↑) = −
sin θ
√

2

cos φ2

cos φ
,

(B.4)

and
φ↓(↓; 2, 0) = cos θ,

φ↓(2; ↓, 0) =
sin θ
√

2

sin φ1

sin φ
,

φ↓(0; 2, ↓) = −
sin θ
√

2

sin φ2

sin φ
.

(B.5)

We notice that Eq. satis�es the normalization condition (3.13). Moreover, the wave function
(4.12) corresponds to mix the triplet S z = 0 and the singlet component. The relevant components
of the bath single-particle density matrix read:

∆11↑ =
sin2 θ sin2 φ1

2
,

∆11↓ =
sin2 θ cos2 φ1

2
,

∆33↑ = 1 −
sin2 θ cos2 φ2

2
,

∆33↓ = 1 −
sin2 θ sin2 φ2

2
,

(B.6)

while the impurity magnetization reads:

m = 〈ψ|d†
↑
d↑|ψ〉 − 〈ψ|d

†

↓
d↓|ψ〉 = cos 2φ cos2 θ. (B.7)
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We notice that particle symmetry (4.7) implies ∆11↑ = 1 − ∆33↓ and ∆11↓ = 1 − ∆33↑, thus, from
Eq. (B.6) it follows that φ1 = φ2. Therefore, the tunnel-coupling matrix elements are:

〈ψ|c†1↑d↑|ψ〉 = 〈ψ|c†3↓d↓|ψ〉 = cos θ sin θ sin φ sin φ1/
√

2,

〈ψ|c†1↓d↓|ψ〉 = 〈ψ|c†3↑d↑|ψ〉 = cos θ sin θ cos φ cos φ1/
√

2,

and

R1↑ = R3↓ = cos θ sin φ/
√

1 − sin2 θ sin2 φ1/2 ' sin φ,

R1↓ = R3↑ = cos θ cos φ/
√

1 − sin2 θ cos2 φ1/2 ' cos φ,

where we are assuming θ ∼ 0 since U/W � 1. The quasiparticle Hamiltonian is given by:

H∗ = −
t
√

Z

∑
〈i j〉

[(
sin φ c†i1↑ + cos φ c†i3↑

) (
sin φ ci1↑ + cos φ ci3↑

)
+ H.c.

]
−

t
√

Z

∑
〈i j〉

[(
cos φ c†i1↓ + sin φ c†i3↓

) (
cos φ ci1↓ + sin φ ci3↓

)
+ H.c.

]
+
µ + ε

2

∑
i

(
c†i1↑ci1↑ − c†i3↓ci3↓

)
+
µ − ε

2

∑
i

(
c†i1↓ci1↓ − c†i3↑ci3↑

)
,

and in k space becomes

H∗ =
∑

k

~Ψ †k↑ ·
(
εk

2
1 − cos 2φ

εk

2
σz + sin 2φ

εk

2
σx +

µ

2
σz +

ε

2
1
)
· ~Ψk↑

+
∑

k

~Ψ †k↓ ·
(
εk

2
1 + cos 2φ

εk

2
σz + sin 2φ

εk

2
σx +

µ

2
σz −

ε

2
1
)
· ~Ψk↓,

where we have introduce the spinor ~Ψk↓ = (ck1σ ck3σ)T . The eigenvalues are:

E1(3)↑(k) =
εk + ε

2
±

1
2

√
(µ − cos 2φ εk)2 + sin2 2φ ε2

k,

E1(3)↓(k) =
εk − ε

2
±

1
2

√
(µ + cos 2φ εk)2 + sin2 2φ ε2

k,

while the eigenstates are:
fk1σ = cos

θkσ

2
ck1σ + sin

θkσ

2
ck3σ,

fk3σ = cos
θkσ

2
ck3σ − sin

θkσ

2
ck1σ,

where the angle θkσ is given by:

tan θk↑(↓) =
sin 2φ εk

µ ∓ cos 2φ εk
.

In the large-U regime we expect that the bands 3 ↑ and 3 ↓ are fully occupied while 1 ↑ and
1 ↓ orbitals are empty. It follows that the Gutzwiller constraints on the single-particle density
matrix (3.13) become:

∆33↑ − ∆11↑

2
= −

1
2V

∑
k

〈Ψ∗| ~Ψ
†

k↑ · σ
z · ~Ψk↑ |Ψ∗〉 ,
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and
∆33↓ − ∆33↑

2
=

1
2V

∑
k

(
〈Ψ∗| c

†

k3↓ck3↓ |Ψ∗〉 − 〈Ψ∗| c
†

k3↑ck3↓ |Ψ∗〉
)
.

In terms of the quasiparticles fkaσ the latter Eq. reads:

sin2 θ cos 2φ1

2
=

1
V

∑
k

(
cos2 θk↑

2
− cos2 θk↓

2

)
= 0 =⇒ φ1 = π/4, ε = 0,

where the sum on the Brillouin zone vanishes because θk↑ = −θk+Q↓with Q = (π, · · · , π). By
expanding the former Eq. in εk/µ � 1 and keeping terms up to ε2

k/µ
2, we obtain:

1 −
sin2 θ

2
=

1
V

∑
k

(
1 −

1
2

sin2 2φ
ε2

k

µ2

)
=⇒ µ =

W
2

sin 2φ
sin θ

.

The average value of the kinetic energy reads:

E∗ =
1
V

∑
k

(
εk cos 2φ cos θk↑ − εk sin 2φ sin θk↑

)
,

' −
sin2 2φ
µ

1
V

∑
k

ε2
k = −

W
2

sin 2φ sin θ.

On the other hand, the energy contribution given by the on-site repulsion is:

U〈ψ|n↑n↓|ψ〉 = U
sin2 θ

2
.

Since the parametrization is meant to describe the large-U limit, we assume θ � 1 so that Eq.
(B.7) becomes

m ' cos 2φ,

and
E(θ,m) ' −

W
2

√
1 − m2θ +

U
2
θ,

where the magnetization m is regarded as a parameter �xed by the density of e-h excitations.
Therefore, the optimization of the variational energy gives:

∂θE(θ,m) = −
W
2

√
1 − m2 + Uθ = 0 =⇒ θ̄(m) =

W
2U

√
1 − m2

and µ = U . Finally, we obtain that the energy of the large-U Mott insulator in the presence of a
�nite magnetization reads:

E(θ̄,m) = −
W2

8U
(1 − m2) = −

J
8

(1 − m2)

in agreement with the result predicted by the t−J model in the presence of a �nite magnetization:

Et−J(m) '
1
V

J
Z

∑
〈i j〉

(
m4

4
−

1
4

)
= −

J
8

(1 − m2),

where Z→ ∞.
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In the context of the PES the previous result implies that the energy of the an EG, in the
regime of small ne-h, is:

EEG(ne-h) = −
W2

2 |U |
ne-h(1 − ne-h), (B.8)

and its charge susceptibility κ is always larger than zero, κ = 1/∂2
ne-h

EEG(ne-h) = |U | /W2 > 0.
The exciton binding energy goes like:

Eex = E1↓(0) − E3↓(Q) = |U | + O
(
W2

|U |

)
(B.9)

which signals the presence of strongly bound excitons. Furthermore, the area under the exciton
spectral function Aex(ω): ∫

dε Aex(ε) = R2
3↓ = sin2 φ =

1 − m
2

= ne-h,

i.e. all the photoexcited carriers are bound pairs. Thus, the g-GW predicts that in the asymptotic
limit of small densities and large on-site attraction (small dielectric constant) the e-h excitations
bind to form a stable phase EG, that is characterized by the exciton binding energy (B.9),
that grows linearly with the strength of the on site attraction, and the charge susceptibility
κ = |U | /W2 ∼ Eex/W2 (B.8).
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C
Details on the slave-spin technique

In this Appendix we present additional details on the slave-spin mapping in Chapter 6. In Section
C.1 we show the consequences of Eq. (6.20). In Section C.2 we prove that certain observables can
be computed in the enlarged slave-spin Hilbert space without any constraint. In Section C.3 we
extend this result to the single-particle Green’s function. The slave-boson instability respect to
magnetic ordering is reported in Section C.4. In Section C.5 we report supplemental informations
on the slave-spin mean-�eld theory reported in Section 6.4. Finally, in Section C.6 we present some
additional results useful to exploit the slave-spin mean-�eld theory as approximate impurity solver
for the DMFT.

C.1 Thermodynamic averages in the physical subspace
The equivalence between the partition functions (6.20) implies the following equalities.

Average value of the energy;

〈H〉 = −∂β log [Z] = −∂β log [Z2/4] = 〈H2〉2. (C.1)

Average magnetization;

m ≡ 〈n↑ − n↓〉 =
2
β
∂h log [Z] =

2
β
∂h log [Z2/4] =

〈
τz
↑
− τz

↓

2

〉
2
. (C.2)

Average occupation;

ρ ≡ 〈n↑ + n↓ − 1〉 =
2
β
∂µ log [Z] =

2
β
∂µ log [Z2/4] =

〈
τz
↑

+ τz
↓

2

〉
2
. (C.3)

Average value of the hybridization; in order to obtain the average value of the hybridization
of the impurity fermion with the fermionic host we introduce two di�erent parameters γa such
that Vakσ → γaVakσ and

H = Hbath + Hloc +
∑
a=1,2

γaTa, (C.4)

149
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where

T1 =
∑
σ

εkσ<0∑
k

V1kσ
√

V

(
d†σψ1kσ + ψ†1kσdσ

)
,

T2 =
∑
σ

εkσ<0∑
k

V2kσ
√

V

(
d†σψ2kσ + ψ†2kσdσ

)
.

(C.5)

Once the derivative respect to is performed we set the correspondent value to one, γa = 1.

〈T1〉 = −
1
β
∂γ1 log [Z2/4]

∣∣∣∣
γa=1

=

〈∑
σ

εkσ<0∑
k

τx
σ

V1kσ
√

V

(
f †σψ1kσ + ψ†1kσ fσ

)〉
2

,

〈T2〉 = −
1
β
∂γ2 log [Z2/4]

∣∣∣∣
γa=1

=

〈∑
σ

εkσ<0∑
k

iτy
σ

V2kσ
√

V

(
f †σψ2kσ − ψ

†

2kσ fσ
)〉

2

.

(C.6)

Average value of the energy variation of the bath; in this case we perform the substitution
εkσ → ασεkσ and:

〈Hbath,σ〉 = −
1
β
∂ασ log [Z2/4]

∣∣∣∣
ασ=1

=

〈εkσ<0∑
k

εkσ
(
ψ†1kσ ψ2kσ + ψ†2kσ ψ1kσ

)〉
2

. (C.7)

In the previous Eqs. we have used the notation introduced in Eq. (6.22):

〈· · · 〉2 = Tr
[
exp

(
−βH2(U, µ, h,V2↑,V2↓)

)
· · ·

]
/Tr

[
exp

(
−βH2(U, µ, h,V2↑,V2↓)

)]
. (C.8)

We conclude by remarking that higher order derivatives of the log [Z] respect conjugated
�elds give impurity thermodynamic susceptibilities, i.e. magnetic susceptibility χimp, charge
compressibility κimp, etc.

C.2 Average values in the physical subspace
Let us consider a generic operator O that commutes with the p-h transformation in Eq. (6.6):

[O,Cσ] = 0. (C.9)

Its average value on the impurity model (6.1) reads:

〈O(U, µ, h,V2↑,V2↓)〉 =
Tr

[
e−βH(U,µ,h,V2↑,V2↓)O

]
Tr

[e−βH(U,µ,h,V2↑,V2↓)
] =

Tr
[
e−βH2(U,µ,h,V2↑,V2↓)OS SP

]
Tr

[e−βH(U,µ,h,V2↑,V2↓)
] (C.10)

where the operator OS S is now constructed out of operators
{
fσ, ψakσ, τ

i
σ

}
that act on the enlarged

Hilbert space, the latter Tr is extended to the enlarged Hilbert space H∗ and the projector P
(6.11) �lters out the physical subspace where H2 (6.16) is equivalent to the SIAM in Eq. (6.1).
From Eq. (C.9) it readily follows:

〈O(U, µ, h,V2↑,V2↓)〉 = 〈O(U,−h,−µ,−V2↑,V2↓)〉,
= 〈O(−U, h, µ,V2↑,−V2↓)〉,
= 〈O(U,−µ,−h,−V2↑,−V2↓)〉.

(C.11)
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Since the action of Cσ in the enlarged Hilbert space is implemented by τx
σ we have:

〈O(U, µ, h,V2↑,V2↓)〉 =
1

4Tr
[e−βH(U,µ,h,V2↑,V2↓)

]{Tr
[
e−βH2(U,µ,h,V2↑,V2↓)OS SP

]
+ Tr

[
e−βH2(U,µ,h,V2↑,V2↓)τx

↑O
S SPτx

↑

]
+ Tr

[
e−βH2(U,µ,h,V2↑,V2↓)τx

↓O
S SPτx

↓

]
+ Tr

[
e−βH2(U,µ,h,V2↑,V2↓)τx

↑τ
x
↓O

S SPτx
↓τ

x
↑

] }
.

(C.12)

Being invariant respect Cσ, it implies that in the slave-spin representation τx
σOS S τx

σ = OS S .
Finally, by using Eq. (6.19) we obtain:

〈O〉 =
Tr

[
e−βH2OS S

]
4Tr

[e−βH] = 〈O〉2, (C.13)

where we drop the indices referring to the Hamiltonian parameters.

C.3 Single-particle Green’s functions in the physical sub-
space

In the original representation, the impurity single-particle Green’s functions in imaginary time
are de�ned through:

Gσ(τ) = − 〈Tτ

(
dσ(τ)d†σ(0)

)
〉 = −

θ(τ)
Z

Tr
(
e−βHeτHdσe−τHd†σ

)
+
θ(−τ)

Z
Tr

(
e−βHd†σeτHdσe−τH

)
,

(C.14)

where the Hamiltonian H = H(U, µ, h,V2↑,V2↓) and the partition function Z = Z(U, µ, h,V2↑,V2↓).
Through the action of the particle-hole transformations C↑ and C↓, and exploiting the invariance
of the trace under a unitary transformation, one readily �nd the following relationships between
the Green’s functions in Matsubara frequencies iε:

G↑(iε; U, µ, h,V2↑,V2↓) = G↑(iε;−U, h, µ,V2↑,−V2↓) = G↑(−iε;−U,−h,−µ,−V2↑,V2↓)
= G↑(−iε; U,−µ,−h,−V2↑,−V2↓),

G↓(iε; U, µ, h,V2↑,V2↓) = G↓(iε;−U,−h,−µ,−V2↑,V2↓) = G↓(−iε;−U, h, µ,V2↑,−V2↓)
= G↓(−iε; U,−µ,−h,−V2↑,−V2↓).

(C.15)

Because of Eq. (C.15) we de�ne the physical Green’s function as:

G↑(iε; U, µ, h,V2↑,V2↓) ≡
G↑(iε; U, µ, h,V2↑,V2↓) + G↑(iε;−U, h, µ,V2↑,−V2↓)

2
,

G↓(iε; U, µ, h,V2↑,V2↓) ≡
G↓(iε; U, µ, h,V2↑,V2↓) + G↓(iε;−U,−h,−µ,−V2↑,V2↓)

2
.

(C.16)

In the slave spin representation, the physical Green’s functions can be alternatively obtained
using the slave-spin Hamiltonian in Eq. (6.16) through the following expressions:

Gσ(τ) = −
θ(τ)
Z

Tr
(
e−βH2eτH2τ−σ fσe−τH2 f †στ

+
σP↑P↓

)
+
θ(−τ)

Z
Tr

(
e−βH2 f †στ

+
σeτH2τ−σ fσe−τH2P↑P↓

)
,

(C.17)
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where Z is the partition function of the physical system, the slave-spin operators τ±σ = τx
σ ± iτy

σ,
and Pσ is the projector on the physical subspace of the enlarged Hilbert space H∗:

Pσ =
1
2

(
1 + τz

σ(2nσ − 1)
)
. (C.18)

We remind that τx
σPστ

x
σ = P̄σ = 1 − Pσ. Noticing that given σ and σ̄ = −σ:

Tr
(
e−βHeτHdσe−τHd†σ

)
= Tr

(
C
†

σ̄e−βHCσ̄C
†

σ̄eτHCσ̄dσC
†

σ̄e−τHCσ̄d†σ
)

= Tr
(
e−βC

†

σ̄HCσ̄eτC
†

σ̄HCσ̄dσe−τC
†

σ̄HCσ̄d†σ
)

= Tr
(
e−βτ

x
σ̄H2τ

x
σ̄eττ

x
σ̄H2τ

x
σ̄τ−σ fσe−ττ

x
σ̄H2τ

x
σ̄ f †στ

+
σPσPσ̄

)
= Tr

(
e−βH2eτH2τ−σ fσe−τH2 f †στ

+
σPσPσ̄

)
.

(C.19)

By using the de�nition in Eq. (C.15) and the previous result (C.19) we get rid of the projector on
the opposite spin species Pσ̄:

Gσ(τ) = −
θ(τ)
2Z

Tr
(
e−βH2eτH2τ−σ fσe−τH2 f †στ

+
σPσ

)
+
θ(−τ)

2Z
Tr

(
e−βH2 f †στ

+
σeτH2τ−σ fσe−τH2Pσ

)
.

(C.20)

We then observe that the operators τ−σ fσ and f †στ+
σ are by de�nition vanishing in the unphysical

subspace of the enlarged Hilbert space H∗. It follows that the projector Pσ is unnecessary and
the Green’s function reads

Gσ(τ) = −
θ(τ)
2Z

Tr
(
e−βH2eτH2τ−σ fσe−τH2 f †στ

+
σ

)
+
θ(−τ)

2Z
Tr

(
e−βH2 f †στ

+
σeτH2τ−σ fσe−τH2

)
,

= − 2
〈
Tτ

(
τ−σ(τ) fσ(τ) f †σ(0)τ+

σ(0)
)〉

2

(C.21)

where the thermal average:

〈· · · 〉2 =
Tr

(
e−βH2 · · ·

)
Tr (e−βH2)

(C.22)

is performed without constraints.

C.4 Slave-boson mean �eld in a magnetic �eld
The mean-�eld approximation within the paramagnetic sector of the slave-boson representation
of an Anderson impurity model is long since known [25, 33, 58, 206, 232]. However the mean-
�eld results allowing for spontaneous magnetization of the impurity are not as widely known.
It was mentioned in Ref. [252] that at large U the actual lowest-energy mean-�eld solution
is magnetic, though no details were presented. For this reason and in relation to the results
presented in the thesis (Sections 3.3 and 6.4) we think it is worth to give here all details of such
calculation. It is known that the slave-boson mean-�eld theory in the consistent formulation of
Kotliar and Ruckenstein [156] is equivalent to the conventional Gutzwiller [92], so we shall use
the latter technique, for which we refer to Ref. [81] for details.

Within the conventional Gutzwiller the variational energy reads

E(θ,m) = E∗(θ,m) −
U
4

cos θ −
h
2

m , (C.23)
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where E∗(θ,m) is the lowest expectation value of the e�ective resonant level Hamiltonian

H∗ =
∑
kσ

[
εkσ ψ

†

kσ ψkσ + R(θ,m)
Vk
√

V

(
c†σ ψkσ + ψ†kσ cσ

)]
−

h∗(θ,m)
2

(
n↑ − n↓ − m

)
, (C.24)

where h∗(θ,m) is the Lagrange multipliers that selects the subspace of wave functions |Ψ∗〉 such
that 〈Ψ∗|n↑ − n↓|Ψ∗〉 = m. In the following we consider the regime of small magnetization. In
particular, we perform an expansion of the variational energy E(θ,m) in m keeping terms up
to m2. Moreover, in order to make the calculations as simple as possible we consider a �at
hybridization function Γ(ω) = Γθ(W − |ε |) and we take the wide band-width limit (WBL), i.e.
the half bandwidth W of the metallic host much larger than the other energy scales. In the WBL
the hybridization function in Eq. (3.53) becomes:

∆R(ω) = −iΓθ(W − |ε |) −
Γ

2π
log

[
(ω −W)2 + 0+

(ω + W)2 + 0+

]
' −iΓθ(W − |ω|). (C.25)

The tunnel-coupling amplitude Vk is renormalized downwards by the quantity

R(θ,m) =
1

√
1 − m2

sin
θ

2

[√
cos2 θ

2
+ m +

√
cos2 θ

2
− m

]
' sin θ

[
1 +

1
2

m2 cos θ
(
2 + cos θ

)(
1 + cos θ

)2

]
≡ sin θ

(
1 +

ρ(θ)
2

m2
) (C.26)

where the second expression is the expansion for cos2 θ/2 � m to the second order in m. We
de�ne the e�ective hybridization width

Γ∗(θ,m) = R(θ,m)2 Γ ' Γ∗(θ)
(
1 + ρ(θ) m2

)
, (C.27)

with Γ∗(θ) = Γ sin2 θ, being Γ its bare value (C.25). Once �xed the value of the magnetization,
the e�ective �eld h∗(θ,m) in Eq. (C.24) is the solution of the equation:

m = 〈Ψ∗|n↑ − n↓|Ψ∗〉 =

∫
dε f (ε)

[
A∗↑(ε) − A∗↓(ε)

]
(C.28)

where f (ε) = 1/(eβε + 1) and the quasiparticle spectral function A∗σ(ε) reads:

A∗σ(ε) =
1
π

Γ∗(θ,m)
(ε + σh∗(θ,m)/2)2 + Γ2

∗(θ,m)
, (C.29)

with σ = ±1. By performing the integral in Eq. (C.28) we obtain:

m =
2
π

tan−1 h∗(θ,m)
2Γ∗(θ,m)

, (C.30)

which, at small m, is simply
h∗(θ,m) ' πΓ∗(θ)m. (C.31)

By de�ning E0 the energy of the metallic host in the absence of the impurity the variational



154 Details on the slave-spin technique
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Figure C.1: Top panel: blue line is the critical interaction Uc above which the lowest energy mean-
�eld solution is magnetic, in units of the bare hybridization width Γ. Lower panel: impurity magnetic
susceptibility computed for Γ/W = 0.04 (red dashed line in the top panel) as a function of U/Γ. The
energy unit is the cuto� W = 1.

energy is readily found to be

E(θ,m) = E0 − 2
Γ∗(θ,m)

π
ln

eW√
h∗(θ,m)2/4 + Γ∗(θ,m)2

−
U
4

cos θ −
h
2

m , (C.32)

and has to be minimized with respect to θ and m. Our aim is to study at h = 0 the stability of
the m = 0 solution towards developing a spontaneous magnetization m � 1. Expanding the
energy we �nd

E(θ,m) ' E0 − 2
Γ∗(θ)
π

(
1 + ρ(θ) m2

) [
ln

eW
Γ∗(θ)

−
1
2

ln
(
1 + 2ρ(θ) m2 +

π2

4
m2

)]
−

U
4

cos θ

' E0 − 2
Γ∗(θ)
π

ln
eW

Γ∗(θ)
−

U
4

cos θ + 2
Γ∗(θ)
π

m2
{
π2

8
− ρ(θ) ln

W
Γ∗(θ)

}
.

(C.33)
The paramagnetic solution is stable as long as the expression Ξ(θ) in the curly bracket is positive
at the saddle point value θ = θ∗ with m = 0, which satis�es

4Γ

π
cos θ∗ ln

W
Γ∗(θ∗)

=
U
4
. (C.34)

It follows that
Ξ(θ∗) =

π2

8
− ρ(θ∗)

πU
16Γ cos θ∗

> 0, (C.35)

is the stability condition respect to the development of a spontaneous magnetization:

χimp =
∂m

∂ (h/2)

∣∣∣∣∣∣
h=0

=
π

2Γ∗(θ∗)Ξ(θ∗)
(C.36)

where χimp is the thermodynamic magnetic susceptibility of the impurity. The equality Ξ(θ∗) = 0
de�nes the critical Uc above which the lowest energy solution is magnetic, shown in the top
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panel of Fig. C.1. For instance, when Γ/W = 0.04 we �nd Uc ' 4.44 Γ, as shown in the lower
panel of Fig. C.1 where we plot χimp versus U/Γ. Thus, in the Kondo regime U/Γ � 1 the lowest
energy solution is magnetic, which is evidently unphysical.

C.5 Expectation values for the mean-�eld slave-spin at
equilibrium

In the following we summarize some useful result for the slave-spin mean-�eld approach to
the SIAM at equilibrium presented in Section 6.4. In particular, given the e�ective resonant
level model in Eq. (6.43), we derive the analytic expressions for the hybridization (6.45) and the
average occupation (6.46).

Before going to the evaluation of the average values we recall the expression of the fσ
fermion Green’s function that, in terms of the complex frequency z, reads:

G fσ(z) =
1

z + λσ/2 − Σ fσ(z)
, (C.37)

where λ↓ = 0, while λ↑ is given in Eq. (6.44), and

Σ fσ(z) = sin2 θ

∫
dε
π

Γ(ε)
z − ε

. (C.38)

(a) Expectation value of the hybridization;

〈Ψ∗|T |Ψ∗〉 = 1
√

V

∑
k
∑
σ Vk

(
〈Ψ∗| f

†
σψkσ|Ψ∗〉 + c.c.

)
= 1
√

V

∑
k
∑
σ Vk

(
Gk fσ(0−) + G f kσ(0−)

)
where Gk fσ(0−) is the mixed Green’s function that, in terms of Matsubara frequencies,
reads:

Gk fσ(iω) = sin θ
Vk

iω − εk
G fσ(iω),

where G fσ(iω) is given in Eq. (C.37). By straightforward calculations we obtain:

〈Ψ∗|T |Ψ∗〉 =
2T

sin θ

∑
iω

∑
σ

Σ fσ(iω)G fσ(iω),

which can be equivalently computed on the real axis as:

〈Ψ∗|T |Ψ∗〉 =
∑
σ

∫
dω

(
ω +

λσ
2

)
f (ω)A fσ(ω)/ sin θ.

(b) Expectation value of the occupation;

〈Ψ∗|nσ|Ψ∗〉 = G fσ(0−) = T
∑

iω

G fσ(iω)eiω0+

.

By deforming the integration contour the previous sum can be computed as an integral
along the brunch cut of the integrand:

〈Ψ∗|nσ|Ψ∗〉 =

∫
dω f (ω)A fσ(ω).
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C.6 Details on the mean-�eld slave-spin applied as impu-
rity solver for DMFT

Once �xed the bath Γσ(ω), and given the slave-spin con�guration 〈τττσ〉 the mean-�eld loop
displayed in Fig. 6.7 requires the evaluation of the fermionic average values 〈T1σ〉∗ and 〈J2σ〉∗.
In terms of Green’s function of the fσ pseudofermions the latter quantities are:

〈T1σ〉∗ =
2〈τx

σ〉

π

∫
dx

∫
dyA fσ(x)Γ11σ(y)

f (x) − f (y)
x − y

,

and
〈J2σ〉∗ =

2〈τy
σ〉

π

∫
dx

∫
dy A fσ(x)Γ22σ(y)

f (x) − f (y)
x − y

,

where Γ11σ(ω) and Γ22σ(ω) are de�ned in Eq. (6.71), A fσ(ω) is the fσ pseudofermion spectral
function (6.75). The knowledge of 〈T1σ〉∗ and 〈J2σ〉∗ allows us to obtain the new ground state of
the spin Hamiltonian (6.74). This procedure is iterated up to the mean-�eld consistency.

From de�nitions in Eqs. (6.71) and (6.72) we obtain:

∆11σ(−z) = −∆11σ(z), ∆22σ(−z) = −∆22σ(z)

and
∆12σ(−z) = ∆12σ(z), ∆21σ(−z) = ∆21σ(z).

Previous Eqs. imply:
G fσ(−z) = −G fσ(z),

i.e. the fσ pseudofermion spectral function is symmetric under ω → −ω, A fσ(ω) = A fσ(−ω).
Finally, we notice that the physical fermion spectral function in Eq. (6.78) is normalized to 1:∫

dxAdσ(x) = 2〈τ−σ〉χ〈τ
+
σ〉χ −

1
π

∫
dx ImΠΠΠR

−+,σ(x) coth
βx
2

=
〈{
τ−σ, τ

+
σ

}〉
1 = 1.
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In this Appendix we brie�y review the key concepts of the Keldysh formalism. This method is the
fundamental tool used in Chapters 7 and 8. In the following we focus on the fermionic case, for more
detailed discussions we refer to the books [12, 138, 229] and to the review articles [21, 137, 230, 263].

D.1 Closed time contour
Quantum averages on interacting many-body systems require the knowledge of the interacting
eigenstates, which in many cases is a very hard task. To avoid this issue, the construction
of equilibrium many-body theories involve the adiabatic switching on of the interaction at a
distant past, say t = −∞, and o� at a distant future t = +∞. The crucial assumption is that the
non-interacting state at t = +∞, | +∞〉0, di�ers from the initial state | − ∞〉0 by a trivial phase
factor:

0〈−∞|| +∞〉0 = eiL.

Clearly, this assumption does not work in the nonequilibrium case, where the interaction may
lead to a �nal con�guration completely di�erent from the initial one. For this class of problems
one must use the Keldysh strategy, which consists in evolving the system �rst in the forward
direction in time and then to trace back its evolution backwards. Therefore, time-dependent
average are computed respect the initial state and no assumption on the �nal con�guration is
made. Following this recipe one ends up, with the need to construct a theory with the time
evolution along the two-branch contour, C, depicted on Fig. D.1. In this way the absence of

time

t = �1 t = +1

t = �1

�

+

Figure D.1: C is the path along the real axis that goes from t = −∞ to +∞ and then back to the initial
time −∞. Times belonging to the upper branch are assigned the sign "-", while the ones in the lower
branch are denoted by the sign "+".
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time

�

+

t0
t1

t0

t0 � i�

Figure D.2: The Keldysh contour C, ranging from time t0 to a maximum time t1, back to time 0, and
�nally to −iβ on the imaginary-time branch. The latter segment has been introduced to deal with an
interacting initial state.

information about the �nal state at t = +∞ is bypassed. The price to pay is that there are actually
several Green’s functions to calculate. In the following we present the di�erent Green’s function
components de�ned on the Keldysh contour in Fig. D.1.

We de�ne the time-ordering of two fermion operators in the Keldysh contour as:

TC
[
ψα(t)ψ†β(t

′)
]

= θ(t, t′)ψ(t)ψ†(t′) − θ(t′, t)ψ†(t′)ψ(t)

where θ(t, t′) is di�erent from zero if t is later than t′

θ(t, t′) =

1 if t > t′,
0 otherwise.

.

We notice that times ” + ” are always later than ” − ” ones. Therefore, on the Keldysh contour
the single-particle Green’s function acquires the 2 × 2 matrix structure:

Ĝab
αβ(t, t

′) = −i
〈
TC

(
ψα(ta)ψ†β(t

′
b)
)〉
,

where a, b = ±. In particular we have:

G−−αβ (t, t′) = −i
〈
Tt

(
ψα(t)ψ†β(t

′)
)〉
,

G−+
αβ (t, t′) = i

〈
ψ†β(t

′)ψα(t)
〉
,

G+−
αβ (t, t′) = −i

〈
ψα(t)ψ†β(t

′)
〉
,

G++
αβ (t, t′) = −i

〈
T t

(
ψα(t)ψ†β(t

′)
)〉
,

(D.1)

where Tt is the ordinary time-ordering:

Tt

[
ψα(t)ψ†β(t

′)
]

= θ(t − t′)ψ(t)ψ†(t′) − θ(t′ − t)ψ†(t′)ψ(t),

while T t is the anti-time-ordering:

T t

[
ψα(t)ψ†β(t

′)
]

= θ(t′ − t)ψ(t)ψ†(t′) − θ(t − t′)ψ†(t′)ψ(t).
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In Eq. (D.1) the average 〈· · · 〉 is performed respect the state where the system is prepared at the
initial time t0.

We observe that the Keldysh formalism can be generalized to the case of the transient
evolution from an initial state at t0 described by H. In the case of a initial correlated state the
statistical average:

〈· · · 〉 = Tr
(
e−βH · · ·

)
/Z,

can be performed by the time propagation along the in imaginary time axis:

e−βH = exp
[
−i

∫ −iβ

0
dτH

]
.

Therefore, the Keldysh contour becomes the one depicted in Fig. D.2, where the additional
branch parallel to the imaginary axis takes care of the average respect the initial correlated state.
This introduces additional Green’s function components, for more details we refer to [20, 268].
We conclude by observing that the problems considered in this work are characterized by a
non-interacting initial Hamiltonian. Thus, the thermal average 〈· · · 〉 can be performed exactly
and the additional branch parallel to the imaginary axis is not necessary.

D.2 Basic results
From the de�nition in Eq. (D.1) follows

G−− + G++ = G−+ + G+−, (D.2)

where we drop fermionic quantum numbers and time variables. From now on we shall adopt
the notation:

G−+ ≡ G<, G+− ≡ G>,

for the lesser and greater components. We de�ne the retarded and advanced Green’s function:

GR
αβ(t, t

′) = −iθ(t − t′)
〈{
ψα(t), ψ†β(t

′)
}〉
,

GA
αβ(t, t

′) = iθ(t′ − t)
〈{
ψα(t), ψ†β(t

′)
}〉
,

(D.3)

where {A, B}=A B+B A. It follows that

GR = G> −G++,

GA = G−− −G>,

GR + GA = G−− −G++.

(D.4)

As a result of Eq. D.2 there are only 3 independent Green’s functions. It is convenient to
express the 2 × 2 matrix in terms of the independent Green’s functions components only:

Ĝ =

(
G−− G<

G> G++

)
→ Û · Ĝ · V̂ =

(
GR G<

0 GA

)
(D.5)

where:
Û = σz + σ−, V̂ = 1 − σ−

and 2σ− = σx − iσy. Correspondingly, the self-energy term transforms as:

Σ̂ =

(
Σ−− Σ<

Σ> Σ++

)
→ V̂−1 · Σ̂ · Û−1 =

(
ΣR Σ<

0 ΣA

)
. (D.6)
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We know that the TC ordered Green’s function on the Keldysh contour satis�es the same
perturbation rules valid at equilibrium, see [21, 137] for more details. Therefore, the strategy to
perform calculations is to �rst derive the Dyson’s Eq. for the TC Green’s function, perform the
change of basis (D.5) and (D.6), then take the particular component GR, GA or G<. For instance,
the Dyson’s Eq. for the TC component takes the general form

Ĝ = Ĝ0 + Ĝ0 ◦ Σ̂ ◦ Ĝ,

the product ◦ is de�ned as
Â ◦ B̂ ≡

∫
dt1 Â(t, t1) · B̂(t1, t′), (D.7)

where Â and B̂ are 2 × 2 matrices in the Keldysh space. Following the steps introduced before
we can easily obtain:

GR/A = GR/A
0 + GR/A

0 • ΣR/A •GR/A,

and
G< = G<

0 + G<
0 • ΣA •GA + GR

0 • Σ< •GA + GR
0 • ΣR •G<,

where • represents the convolution between two scalar functions:

A • B ≡
∫

dt1 A(t, t1)B(t1, t′). (D.8)

D.3 The steady-state regime
In this section we derive analytic expressions for the average values of the hybridization (7.24)
and the current (7.36). Morover, we compute the Keldysh’s components of the fσ and φα fermion
Green’s function within the Hartree-Fock approximation.

fσ pseudofermion Green’s function; The unperturbed retarded and advanced Green’s
functions of the contacts are

GR/A
11σ(ε, k) = GR/A

22σ(ε, k) =
1

ε − εk ± i0+
,

GR/A
12σ(ε, k) = GR/A

21σ(ε, k) = 0,

and

G<
11σ(ε, k) = G<

22σ(ε, k) = 2iπδ(ε − εk)
fL(ε) + fR(ε)

2
,

G<
12σ(ε, k) = G<

21σ(ε, k) = 2iπδ(ε − εk)
fL(ε) − fR(ε)

2
,

where we have already performed the rotation in Eq. (7.10). The Dyson’s equation for the fσ
pseudofermion Green’s function on the Keldysh’s contour is:

Ĝ fσ = Ĝ0
fσ + Ĝ0

fσ ◦ Σ̂ f ◦ Ĝ fσ (D.9)

where Ĝ fσ is the dressed Green’s function, Ĝ0
fσ the unperturbed one and we have used the

notation in Eq. (D.7). In the stationary regime the time translational invariance is restored, thus,
by taking the Fourier transform of Eq. (D.9) we obtain:

GR/A
fσ (ε) =

1

ε + λσ/2 − Σ
R/A
fσ (ε)

(D.10)
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and
G<

fσ(ε) = GA
fσ(ε) Σ<fσ(ε) GR

fσ(ε). (D.11)
Within mean-�eld approximation the self-energy Σ fσ reads:

Σ
R/A
fσ (ε) =

2
V
〈σx〉2st

∑
k

|Vk|
2 GR/A

11σ(ε,k) = 2〈σx〉2st

∫
dω
π

Γ(ω)
ε − ω ± i0+

and
Σ<fσ(ε) =

2
V
〈σx〉2st

∑
k

|Vk|
2 G<

11σ(ε,k) = 4i 〈σx〉2st Γ(ε) fneq(ε). (D.12)

Expectation values; The average occupation on the quantum dot (7.25) follows from Eqs.
(D.11) and (D.12). The average value of the hybridization (7.24) involves the lesser component of
the mixed Green’s function:

G<
1k fσ =

√
2
V

Vk〈σ
x〉st

[
Ĝ11kσ ◦ Ĝ fσ

]<
. (D.13)

Thus, 〈
HT,C

〉
st =

2
〈σx〉st

∑
σ

∫
dε
2π

Im
[
Σ̂ fσ(ε) ◦ Ĝ fσ(ε)

]<
. (D.14)

By using Eqs. (D.10), (D.11) and D.12 we readily obtain Eq. (7.27) reported in the main text.
Finally, we brie�y derive the expression for the low-energy contribution to the current Eq. (7.36).
In this case the mixed Green’s function involved is G<

2k fσ(t, t) = i〈 f †σ(t)c2kσ(t)〉st and its Dyson’s
equation reads:

G<
2k fσ(ε) =

√
2
V

Vk〈σ
x〉stG<

21kσ(ε)GA
fσ(ε).

The average value of the current is:〈
I f

Q

〉
st

=
∑
σ

∫
dε
2π

Re
[
Σ<21σ(ε)GA

fσ(ε)
]
, (D.15)

where
Σ<21σ(ε) = 〈σx〉2st

2
V

∑
k

|Vk|
2 G<

21kσ(ε) = 2i〈σx〉2stΓ(ε) ( fL(ε) − fR(ε)) .

In the wide-band limit Eq. (D.15) gives Eq. (7.36).

φα fermion Green’s function; The Dyson’s equation for the φα fermion reads:

Ĝφ = Ĝ0
φ + Ĝ0

φ ◦ Σ̂φ ◦ Ĝφ, (D.16)

where the Hartee-Fock self-energy, depicted in Fig. 6.4 d) is:

Σ̂φ = σx〈T 〉st.

In Eq. (D.16) we are using the same notation introduced in Eq. (D.7), where the hat refers to the
matrix structure (D.5). By performing straightforward calculations we obtain:

GR(A)
φ (ε) =

∑
µ

σµGR(A)
φµ (ε),
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where µ = 0 denotes the identity and µ = 1, 2, 3 the remaining Pauli matrices, while GR(A)
φ2 (ε) = 0

and

GR(A)
φ0 (ε) =

1
2

(
1

ε + ω0/2 ± i0+
+

1
ε − ω0/2 ± i0+

)
,

GR(A)
φ1 (ε) =

sin θ
2

(
1

ε + ω0/2 ± i0+
−

1
ε − ω0/2 ± i0+

)
,

GR(A)
φ3 (ε) =

cos θ
2

(
1

ε + ω0/2 ± i0+
−

1
ε − ω0/2 ± i0+

)
,

with ω0 = U/2 cos θ and θ solution of the self-consistent Eq.. Finally, we report the lesser
component:

G<
φ(ε) =

∑
µ

σµG<
φµ(ε),

where G<
φ2(ε) = 0 and

G<
φ0(ε) = iπ f (ε) [δ(ε + ω0/2) + δ(ε − ω0/2)] ,

G<
φ1(ε) = iπ f (ε) sin θ [δ(ε + ω0/2) − δ(ε − ω0/2)] ,

G<
φ3(ε) = iπ f (ε) cos θ [δ(ε + ω0/2) − δ(ε − ω0/2)] .

RPA corrections to the spin correlation function; Consistently with the mean-�eld de-
coupling in Eq. 7.20 the Dyson’s equation for the σx − σx correlation function reads:

Π̂ΠΠxx = Π̂xx + Π̂xx ◦ Σ̂xx ◦ Π̂ΠΠxx,

where we adopt the notation introduced in Eq. (D.7). At RPA level the bosonic self-energy reads:

Σ̂xx = χ̂TT , (D.17)

with:
χTT (t, t′) = −i〈TC(δHT,C(t)δHT,C(t′))〉

where δHT,C = HT,C − 〈HT,C〉st, and HT,C is the tunnel-coupling with the metallic leads, Eq. (7.3).

D.4 Gradient expansion for a slowly varying perturbation
By assuming a slowly varying electrochemical potential (7.41), it is possible to perform a con-
trolled expansion in the temporal variation of the external perturbation, i.e. gradient expansion.
To this aim we de�ne the Wigner transform of the fσ pseudofermion Green’s function:

GR(A)
fσ (t, ε) =

∫
dτeiετGR(A)

fσ

(
t +

τ

2
, t −

τ

2

)
,

which satis�es the Dyson’s equation:(
ε − Σ

R(A)
fσ (t, ε)

)
?GR(A)

fσ (t, ε) = 1

where ? denotes the Moyal product introduced in the main text. The solution of the Dyson’s
equation up to �rst-order is:

GR(A)
fσ (t, ε) =

1

ε − Σ
R(A)
fσ (t, ε)
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where in the WBL the time-dependent self-energy is Σ
R(A)
fσ (t, ε) = ∓2iΓ0〈σ

x(t)〉2. The lesser
self-energy is given by:

Σ<fσ(t, ε) = 2iΓ0〈σ
x(t)〉2 −

2Γ0

π

∫
dτ

eiετ

τ
cos γ(t, τ)

〈
σx

(
t +

τ

2

) 〉〈
σx

(
t −

τ

2

) 〉
' 4Γ0i〈σx(t)〉2 fneq(t, ε),

(D.18)

where γ(t, τ) =
∫ t+τ/2

t−τ/2
φL(x)dx and the nonequilibrium distribution reads

fneq(t, ε) =
1
2

+
i

2π

∫
dτ

eiετ

τ
cos γ(t, τ).

In the last passage of Eq. (D.18), we assume that the dependence of 〈σx(t)〉 on the relative time τ
is negligible. In the following, we report the zeroth and �rst-order contributions to the gradient
expansion of 〈HT,C(t)〉.

Zeroth order; The zeroth order contribution, �rst term in Eq. (7.45), reads:

〈HT,C(t)〉(0) =
4

〈σx(t)〉

∫
dεA f (t, ε)ε fneq(t, ε),

where the fσ pseudofermion time-dependent spectral function is

A f (t, ε) =
1
π

Γ∗(t)
ε2 + Γ∗(t)2 ,

with Γ∗(t) = 2Γ〈σx(t)〉2.

First order; The �rst order correction reads:

〈HT,C(t)〉(1) =
1

π〈σx(t)〉
Im

∫
dε

[
i
(
∂εΣ

<
f (t, ε) ∂tΣ

A
f (t, ε) + ∂tΣ

<
f (t, ε)

)
GA

f (t, ε)2
]
.

After straightforward calculations we obtain

〈HT,C(t)〉(1) = −
2Γ∗(t)
π〈σx(t)〉

∫
dε

[
Im

[
GA

f (t, ε)2
]
∂t fneq(t, ε) + 2

∂t〈σ
x(t)〉

〈σx(t)〉

(
fneq(t, ε)Im

[
GA

f (t, ε)2
]

+ ∂ε fneq(t, ε)Γ∗(t)Re
[
GA

f (t, ε)2
] )]
.

Since ∂t〈σ
x(t)〉 = U〈σy(t)〉/2 the latter contribution modi�es the Heisenberg equation (7.42) by

introducing a �nite relaxation in the evolution of the 〈σy(t)〉 component.



E
Calculations of the current and shot-noise in

the Majorana-Anderson model

In this Appendix we illustrate some details about the calculations carried out in Chapter 8. To start
with, We present the Keldysh-Nambu formalism in Section E.1. In Section E.2 we present the surface
Green’s functions, characterizing the semi-in�nite metallic and superconductive chains. Then, in
Section (E.3), we brie�y compute the impurity’s transfer matrix, that is the basic building brick to
study transport across the metallic contacts in Fig. 8.2. We perform the calculation of the charge
current (8.11) and the shot noise (8.17) in Sections E.4 and E.5, respectively.

E.1 The Keldysh-Nambu formalism

We brie�y present the Nambu-Keldysh formalism used to study transport properties of the
junction in Fig. 8.2. Within the Nambu formalism we de�ne the Keldysh Green’s functions of a
fermionic operator ψα as:

Ĝαβ(ts, t′s′) = −i
〈
TC

 ψα(ts)ψ
†

β(t
′
s′) ψα(ts)ψβ(t′s′)

ψ†α(ts)ψ
†

β(t
′
s′) ψ†α(ts)ψβ(t′s′)

〉 , (E.1)

where TC is the contour ordering and s, s′ = ±, − and + are the forward and backward branches
of the Keldysh contour, respectively (see Fig. D.2). Therefore, the Green’s function (E.1) is a
4 × 4 matrix in the Nambu-Keldysh space. We stress that the basics results of the Keldysh’s
formalism, presented in Section D.2, are still valid.

E.2 Boundary Green’s functions

The boundary Green’s function, used in this Section, was originally introduced in Ref. [275],
and implemented for a semi-in�nite Kitaev chain in Refs. [108, 133, 258, 292]. In the following
we present the results without reporting detailed calculation that can be found in the articles
cited before.
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Metallic leads. In the 2 × 2 Nambu space the R and A Green’s functions of the metallic leads,
evaluated on the boundary site 1, are given by:

Ĝ(z)11αα =
z

2t2

1 −
√

1 −
(
2t
z

)2
 1, (E.2)

where R and A are obtained by z→ ω ± i0+. The greater and lesser components are

Ĝ
<

11αα(ω) = 2iπρ(ω)
(

f (ω − µα) 0
0 f (ω + µα)

)
,

Ĝ
>

11αα(ω) = −2iπρ(ω)
(

1 − f (ω − µα) 0
0 1 − f (ω + µα)

)
,

(E.3)

with

ρ(ω) = θ(2t − |ω|)

√
4t2 − ω2

2πt2 . (E.4)

Kitaev chain. For what concern the Kitaev chain the R and A Green’s function components
on the boundary site, name site 1, are obtained by:

Ĝ
R/A

11 = ĜR/A
11 − ĜR/A

10 •
(
ĜR/A

00

)−1
• ĜR/A

01 . (E.5)

The Green’s function entering in Eq. (E.5) are:

Ĝxx(z) = ωσ0F−1(z) + (2tF0(z) − µF−1(z))σz,

and
Ĝx+1x(z) =

∑
µ

σµGµx+1x(z), Ĝxx+1(z) =
∑
µ

σµGµxx+1(z),

where
G0x+1x(z) = G0xx+1(z) = −zF0(z),

G2x+1x(z) = −G2xx+1(z) = 2i∆
(

1
4t2 − 4∆2 − F1(z) + F−1(z)

)
,

G3x+1x(z) = G3xx+1(z) = 2t
(

1
4t2 − 4∆2 − F1(z)

)
+ µF0(z).

In the previous expression we have introduced the quantity:

Fm(z) =
1

4(t2 − ∆2)
1

Q+(z) − Q−(z)

∑
s=±1

sQm
s (z)√

1 − 1/Q2
s(z)

,

and
Q±(ω) =

1
2(∆2 − t2)

[
−tµ ±

√
∆2µ2 − (∆2 − t2)(z2 − 4∆2)

]
.

E.3 Impurity transfer matrix
By performing perturbation theory in the tunnel-coupling (8.9) and (8.10) between the leads and
the impurity we obtain the following Dyson’s equation

Ĝη↑ = Ĝη↑ + Ĝη↑ ◦ Σ̂η↑ ◦ Ĝη↑ , (E.6)
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where the impurity electrons self-energy

Σ̂η↑ =
∑
α=L,R

V̂α
c · Ĝ11αα ·

(
V̂α

c

)†
+ V̂ · Ĝ11 · V̂†, (E.7)

with Ĝ11αα boundary Green’s function of the metallic lead α and Ĝ11 boundary Green’s function
of the superconductive chain. We report the results in Section E.2. After straightforward
calculations we �nd that:

Ĝ1aη↑ = Ĝ11aa • V̂†a · Ĝη↑ , Ĝη↑1α = Ĝη↑ · V̂a • Ĝ11aa. (E.8)

where a refers to one of the three leads connected to the impurity. Finally, the hybridization
with the dot induces a direct coupling between di�erent leads:

Ĝ11ab = δabĜ11aa + Ĝ11aa • T̂ab
η↑
• Ĝ11bb (E.9)

where the indices a, b refer to the metallic leads as well as the Kitaev chain and we have
introduced the transfer matrix:

T̂ab
η↑

= V̂†a · Ĝη↑ · V̂b. (E.10)

In particular transport across the metallic contacts involves T̂αβ
η↑ with α, β = L,R. From now on

we consider symmetric metallic leads, i.e. V̂L
c = V̂R

c = V̂c, such that T̂αβ
η↑ = T̂η↑ does not depend

on α and β.

E.4 The charge-current
The average value of the current for the lead α = L,R reads:

〈Jα〉 =
Tr

[
σz · Ĝ<

1αη↑
(t, t) · V̂c

]
− Tr

[
σz · V̂†c · Ĝ<

η↑1α
(t, t)

]
2

.

Therefore, the charge current, JQ = (JL − JR)/2, across the junction is

〈JQ〉 =
∑
α=L,R

sign(α)
∫

dω
2π

Tr
[
σz · Ĝ

R

11αα(ω) · T̂<
η↑

(ω)
]
− Tr

[
σz · T̂<

η↑
(ω) · Ĝ

A

11αα(ω)
]

4

+
∑
α=L,R

sign(α)
∫

dω
2π

Tr
[
σz · Ĝ

<

11αα(ω) · T̂A
η↑

(ω)
]
− Tr

[
σz · T̂R

η↑
(ω) · Ĝ

<

11αα(ω)
]

4
,

(E.11)

where sign(L) = +1 and sign(R) = −1. We notice that L and R leads are characterized by
the same hybridization matrix V̂c as well as the same spectral properties. Therefore, the �rst
contribution to the current in Eq. (E.11) vanishes and:

〈JQ〉 =

∫
dω
8π

Tr
[
σz ·

(
Ĝ
<

11LL(ω) − Ĝ
<

11RR(ω)
)
· T̂ A(ω) − σz · T̂ R(ω) ·

(
Ĝ
<

11LL(ω) − Ĝ
<

11RR(ω)
)]
,

(E.12)
where

Ĝ
<

11LL(ω) − Ĝ
<

11RR(ω) = 2πiρ(ω) ( fL(ω) − fR(ω))σz,
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and ρ(ω) is the boundary spectral function of the metallic leads. By rescaling for −2πe2/h we
obtain

〈JQ〉 =
πe2

h

∫
dερ(ε) ( fL(ε) − fR(ε)) ImTr

(
T̂A
η↑

(ε)
)
. (E.13)

Moreover, we notice that
T̂A(ε) = V̂†c · Ĝ

A
η↑

(ε) · V̂c, (E.14)

and [
ĜA
η↑

(ε)
]−1

= ε1 +
U
2
σz −

∑
α=L,R

V̂c · Ĝ
A

11αα(ω) · V̂†c − V̂ · Ĝ
A

11(ω) · V̂†, (E.15)

with Ĝ
A

11αα(ω) boundary Green’s function of the metallic contacts (E.2) and Ĝ
A

11(ω) of the Kitaev
chain Eqs. (E.5). The value of the current is obtained by averaging Eq. (E.13) over the spin ↓.

E.5 The shot-noise
The correlation function between currents Jα and Jβ reads:

S αβ(t, t′) = 〈TC

(
δJα(t)δJβ(t′)

)
〉

where TC is the time-ordering operator on the Keldysh contour, δJα = Jα − 〈Jα〉. The shot
noise, de�ned in (8.12), contains the Ω = 0 limit of the Fourier transform of the current-current
correlation function:

〈{δJα(t), δJβ(t′)}〉 = 〈TC

(
δJα(t−)δJβ(t′+)

)
〉 + 〈TC

(
δJα(t+)δJβ(t′−)

)
〉

= S <
αβ(t, t

′) + S >
αβ(t, t

′).

In the steady-state regime we have:

Pαβ = lim
Ω→0

∫
dte−iΩ(t−t′) 〈{δJα(t), δJβ(t′)}〉

2
=

S <
αβ(Ω = 0) + S >

αβ(Ω = 0)

2
,

where

S <
αβ(Ω = 0) =

∫
dω
4π

[
Tr

(
σz · T̂<

η↑
(ω) · σz · Ĝ

>

11βα(ω)
)

+ Tr
(
σz · Ĝ

<

11αβ(ω) · σz · T̂>
η↑

(ω)
)

− Tr
(
σz · V̂†c · Ĝ

<
η1β(ω) · σz · V̂†c · Ĝ

>
η1α(ω)

)
− Tr

(
σz · Ĝ<

1αη(ω) · V̂c · σ
z · Ĝ>

1βη(ω) · V̂c

) ]
,

(E.16)

and

S >
αβ(Ω = 0) =

∫
dω
4π

[
Tr

(
σz · T̂>

η↑
(ω) · σz · Ĝ

<

11βα(ω)
)

+ Tr
(
σz · Ĝ

>

11αβ(ω) · σz · T̂<
η↑

(ω)
)

− Tr
(
σz · V̂†c · Ĝ

>
η1β(ω) · σz · V̂†c · Ĝ

<
η1α(ω)

)
− Tr

(
σz · Ĝ>

1αη(ω) · V̂c · σ
z · Ĝ<

1βη(ω) · V̂c

) ]
.

(E.17)

We notice that
S >
αβ(0) = S <

βα(0) =⇒ PLR = PRL, (E.18)

and
S Q(Ω = 0) =

PLL + PRR − 2PLR

4
. (E.19)
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By using Eqs. (E.15), (E.8) and (E.9) we obtain:

S Q =
1

16π

∫
dω

[
Tr

(
σz · T̂<

η↑
(ω) · σz ·

(
Ĝ
>

11LL(ω) + Ĝ
>

11RR(ω)
))

+ Tr
(
σz · T̂>

η↑
(ω) · σz ·

(
Ĝ
<

11LL(ω) + Ĝ
<

11RR(ω)
))

+ Tr
(
σz · T̂R

η↑
(ω) ·

(
Ĝ
<

11LL(ω) − Ĝ
<

11RR(ω)
)
· σz · T̂R

η↑
(ω) ·

(
Ĝ
>

11RR(ω) − Ĝ
>

11LL(ω)
))

+ Tr
(
σz · T̂A

η↑
(ω) ·

(
Ĝ
<

11LL(ω) − Ĝ
<

11RR(ω)
)
· σz · T̂A

η↑
(ω) ·

(
Ĝ
>

11RR(ω) − Ĝ
>

11LL(ω)
)) ]

.

(E.20)

From Eqs. (E.2) and (E.3) we have

Ĝ
<

11LL(ω) − Ĝ
<

11RR(ω) = 2iπρ̄(ω)( fL(ω) − fR(ω))σz,

Ĝ
>

11RR(ω) − Ĝ
>

11LL(ω) = −2iπρ̄(ω)( fL(ω) − fR(ω))σz,

Ĝ
<

11LL(ω) + Ĝ
<

11RR(ω) = 2iπρ̄(ω)( fL(ω) + fR(ω))σ0,

Ĝ
>

11LL(ω) + Ĝ
>

11RR(ω) = −2iπρ̄(ω)(2 − fL(ω) − fR(ω))σ0.

(E.21)

Finally, the expression of the white-noise component of IQ �uctuations reads:

S Q =π

∫
dωρ̄2(ω)

[2 − fL(ω) − fR(ω)
2

fL(ω) + fR(ω)
2

Tr
(
T̂R
η↑

(ω) · T̂A
η↑

(ω) + T̂A
η↑

(ω) · T̂R
η↑

(ω)
)

+
fL(ω) − fR(ω)

2
fL(ω) − fR(ω)

2
Tr

(
T̂R
η↑

(ω) · T̂R
η↑

(ω) + T̂A
η↑

(ω) · T̂A
η↑

(ω)
) ]
.

(E.22)
Since we are interested in quantum-�uctuations we take the zero-temperature limit:

2 − fL(ω) − fR(ω)
2

fL(ω) + fR(ω)
2

=
fL(ω) − fR(ω)

2
fL(ω) − fR(ω)

2
=

fL(ω) − fR(ω)
4

,

we have

S Q =
2πe3

h
π

4

∫ φ/2

−φ/2
dωρ2(ω)Tr

[ (
T̂R
η↑

(ω) + T̂A
η↑

(ω)
)
·
(
T̂R
η↑

(ω) + T̂A
η↑

(ω)
) ]
, (E.23)

where 2πe3/h is the rescaling factor, ρ(ω) is the boundary DOS of the metallic chain (E.4). The
shot noise is obtained by averaging over the spin ↓.

E.6 Scattering matrix approach
The Hamiltonian (8.8) can be exactly solved looking for the solutions of the secular equation:[

ΓE,δ,H
]

= EΓE,δ.

Through the ansatz

ΓE,δ =
∑̀
j=1

∑
α=L,R

(
uα; jcα j + vα; jc

†

α j

)
+

(
udd↑ + vdd†

↑

)
+ φ γ1,
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the Bogoliubov-de Gennes (BdG) equations take the form

−tα
(
uα; j−1 + uα; j+1

)
− µαuα; j = Euα; j

tα
(
vα; j−1 + vα; j+1

)
+ µαvα; j = Evα; j (E.24)

within the bulk of the metallic leads, that is for j > 1. At the boundary BdG equations are

−tαuα;2 − µαuα;1 − Vαud = Euα;1

tαvα;2 + µαvα;1 + Vαvd = Evα;1 (E.25)

for the endpoints of the leads,

−VLuL;1 − VRuR;1 − 2iVφ + qUud = Eud

VLvL;1 + VRvR;1 − 2iVφ − qUvd = Evd (E.26)

for the dot, and
iVvd + iVud = E (E.27)

for the two Majorana fermions. The solutions of the BdG equation inside the bulk take the form(
uα; j

vα; j

)
=

(
uα
vα

)
eikα j (E.28)

that inserted into Eq. (E.24) gives the secular equation(
E + 2t cos (kα) + µα 0

0 E − 2t cos (kα) − µα

) (
uα
vα

)
=

(
0
0

)
, (E.29)

and the dispersion relation
E2 − (2t cos (kα) + µα)2 = 0. (E.30)

The latter equation admits four kind of waves (incoming particle in-p, outgoing particle out-p,
incoming hole in-h, outgoing hole out-h), such that the most general eigenfunction with energy
E is given by

(
uα; j

vα; j

)
= Aα

p−in

(
1
0

)
e−ikp;α j + Aα

p−out

(
1
0

)
eikp;α j + Aα

h−in

(
0
1

)
eikh;α j + Aα

h−out

(
0
1

)
e−ikh;α j (E.31)

with

cos kp;α = −
E + µα

2t
, cos kh;α =

E − µα
2t

. (E.32)

The actual energy eigenstates are determined imposing the boundary BdG equation. Scattering
through the quantum dot junction is fully encoded in the single-particle scattering matrix, S ,
that relates the outgoing waves, Āout =

(
A1

p−out, A
2
p−out, A

1
h−out, A

2
h−out,

)t
, to the incoming waves,

Āin =
(
A1

p−in, A
2
p−in, A

1
h−in, A

2
h−in,

)t
. Combining Eq. (E.27) and Eq. (E.26) together we can write(

ud

vd

)
=

(
Q+ Q0

Q0 Q−

) (
−VLuL;1 − VRuR;1

VLvL;1 + VRvR;1

)
(E.33)
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with

Q± =
E

(
E2 ± EqU − 2V2

)
E4 − E2q2U2 − 4E2V2 ,

Q0 =
E

(
2V2

)
E4 − E2q2U2 − 4E2V2 . (E.34)

Inserting Eq. (E.33) into Eq. (E.25), we �nally arrive to(
M̂Φ̂1 + t̂Φ̂2

)
Āout +

(
M̂Φ̂

†

1 + t̂Φ̂†2
)

Āin = 0, (E.35)

where we have de�ned

M̂ = EI + σz ⊗

(
µ1 0
0 µ2

)
+

(
−Q+ Q0

Q0 −Q−

)
⊗

(
V2

L VLVR

VLVR V2
R

)
, (E.36)

and

t̂ = σz ⊗

(
t1 0
0 t2

)
, (E.37)

and

Φ̂ j =


eikp;α j 0 0 0

0 e−ikp;α j 0 0
0 0 e−ikh;α j 0
0 0 0 eikh;α j

 . (E.38)

We have then

Āout =

[(
M̂Φ̂1 + t̂Φ̂2

)−1 (
M̂Φ̂

†

1 + t̂Φ̂†2
)]

Āin

= Ŝ (E) Āin. (E.39)

The scattering matrix is an unitary matrix that encodes all the possible single-particle processes
at the junction with E the energy of the incoming particle/hole from the leads. Consistently
with the notation above, we have

Ŝ (E) =


rp,p

1,1 tp,p
1,2 ap,h

1,1 cp,h
1,2

tp,p
2,1 rp,p

2,2 cp,h
2,1 ap,h

2,2

ah,p
1,1 ch,p

1,2 rh,h
1,1 th,h

1,2

ch,p
2,1 ah,p

2,2 th,h
2,1 rh,h

2,2

 , (E.40)

where rµ,µα,α (E) denotes the re�ection amplitude of a particle or of an hole, tµ,µα,ᾱ (E) is the trasmis-
sion amplitude between the leads, aµ,µ̄α,α (E) corresponds to the Andreev re�ection, that is the
conversion of a particle (hole) into an hole (particle) within the same lead, �nally cµ,µ̄α,ᾱ (E) is the
crossed Andreev re�ection amplitude, that is the conversion of a particle (hole) in one lead to an
hole (particle) in the other lead. The scattering matrix allows us to introduce the four kind of
eigenstates that de�ne the scattering states basis. We have:

(i) incoming particle from left lead (pL) upL
L; j

vpL
L; j

 = ApL

(
e−ikp,1 j + re,e

1,1eikp,1 j

ah,e
1,1e−ikh,1 j

)
 upL

R; j

vpL
R; j

 = ApL

(
te,e
2,1eikp,2 j

ch,e
2,1e−ikh,2 j

)
; (E.41)
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(ii) incoming particle from right lead (pR) upR
L; j

vpR
L; j

 = ApR

(
te,e
1,2eikp,1 j

ch,e
1,2e−ikh,1 j

)
 upR

R; j

vpR
R; j

 = ApR

(
e−ikp,2 j + re,e

2,2eikp,2 j

ah,e
2,2e−ikh,2 j

)
; (E.42)

(iii) incoming hole from left lead (hL)(
uhL

L; j
vhL

L; j

)
= AhL

(
ae,h

1,1eikp,1 j

eikh,1 j + rh,h
1,1e−ikh,1 j

)
 upL

R; j

vpL
R; j

 = AhL

(
ce,h

2,1eikp,2 j

th,h
2,1e−ikh,2 j

)
; (E.43)

(iv) incoming hole from right lead (hR)(
uhR

L; j

vpR
L; j

)
= AhR

(
ce,h

1,2eikp,1 j

th,h
1,2e−ikh,1 j

)
(

uhR
R; j

vpR
R; j

)
= AhR

(
ae,h

2,2eikp,2 j

eikh,2 j + rh,h
2,2e−ikh,2 j

)
; (E.44)

with Aδ appropriate normalization constants. In the following, to simplify the notation, we will
assume particle-hole symmetry, S µ,λ

α,β (E) =
[
S λ,µ
α,β (−E)

]∗
, and assume the junction to be symmetric

respect the lead exchange, S µ,λ
α,β (E) = S µ,λ

β,α (E). Because of these symmetries, we have only four
relevant scattering coe�cients,

∣∣∣S i, j

∣∣∣2, that fully describe the physics at the junction. We refer
to them as R (E), normal re�ection, T (E), normal transmission, A (E), Andreev re�ection and
C (E), crossed Andreev re�ection. It is important to highlight that the normal transmission and
the Andreev re�ection are the only processes that creates an imbalance in the relative number
of particles within the two metallic contacts. Whereas Andreev re�ection and crossed Andreev
re�ection do not preserve the total number of particle in the metallic lead subsystem, as shown
in Eq. (E.45)

R →

(
ṄL − ṄR

)
2

= 0;

(
ṄL + ṄR

)
2

= 0;

T →

(
ṄL − ṄR

)
2

= 1;

(
ṄL + ṄR

)
2

= 0;

A →

(
ṄL − ṄR

)
2

= 1;

(
ṄL + ṄR

)
2

= −1;

C →

(
ṄL − ṄR

)
2

= 0;

(
ṄL + ṄR

)
2

= −1. (E.45)

The coe�cients are shown in Fig. 8.3 of Section 8.3.
In the absence of Majorana fermions and for U = 0, the junction is trasparent, in the zero

energy limit, due the resonance with the zero energy quantum dot states. However, for any
�nite U , the resonance is suppressed by the interaction that removes low energy states in the
quantum dot. On the other hand, in the presence of a MZM we observe a zero bias trasmission
and Andreev peaks that persist even for large values of U . Finally, in the presence of two
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Majorana, no zero energy state survives due to the hybridization between the Kitaev chains
and the quantum dot. The robust topological peak in the scattering matrix coe�cients is then
expected to be an interesting signature of the presence of a MZM. In the following we will relate
these features to physically measurable quantities like the current and the shot noise.

To spell out the relation between the scattering matrix amplitudes and the current, it us
useful to express the fermionic creation and annihilation operators in real space as a function of
the system eigenvectors

cα j =
∑
E>0

∑
δ

([
uδ,Eα; j

]∗
Γδ,E +

[
vδ,Eα; j

]
Γ
†

δ,E

)
c†α j =

∑
E>0

∑
δ

([
uδ,Eα; j

]
Γ
†

δ,E +
[
vδ,Eα; j

]∗
Γδ,E

)
, (E.46)

with δ running over the four scattering states. The eigenvectors satisfy the fermionic algebra{
Γδ,E,Γ

†

δ′,E′

}
= δδ,δ′δE,E′ (E.47)

all other anticommutator vanish.
The Landauer-Buttiker approach, that consist in shooting particles and holes agains the

junction from thermal reservoirs at �xed temperature and voltage biased chemical potentials,
allows us to express the transport properties of the systems in terms of the voltage bias into the
leads and the scattering matrix amplitudes. By using the expressions (8.11) for the current and
the de�nition of the shot noise (8.12) we obtain results in agreement with those obtained with
the Keldysh Green’s function approach
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