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Abstract

Metadynamics is an atomistic simulation technique that allows, within the same framework,
accelerating rare events and estimating the free energy of complex molecular systems. The
key idea at its basis is modifying iteratively the potential energy of the system by a sum
of Gaussians centered along the trajectory followed by a suitably chosen set of collective
variables (CVs). These Gaussians iteratively “fill” the free energy landscape as a function
of the CVs, forcing the system to migrate from one minimum to the next. The potentiality
of this idea is demonstrated by the large number of extensions and variants of the original
approach that were developed during the years. The first scope of this review is presenting
a critical comparison of these variants, discussing their advantages and disadvantages. The
efficaciousness of metadynamics, as well as that of the numerous alternative methods that
enhance the sampling by biasing selected CVs, is strongly influenced by the choice of the CVs:
if an important variable is forgotten, the approach does not provide a reliable estimate of the
free energy, and can predict qualitatively wrong transition mechanisms. The second scope of
this review is discussing how the CVs should be selected, how one can verify if the CVs that
are chosen are sufficient or redundant, and how one can iteratively improve the CVs using
machine-learning approaches.
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Many systems of interest in material science and biophysics are characterized by metastability.
Technically speaking, this means that the probability distribution as a function of the atomic
coordinates is characterized by the presence of at least two peaks (the metastable states) separated
by a region in which the probability is many orders of magnitude lower. The prototypical example
of this situation is a molecule which can undergo a chemical reaction: the two probability peaks
correspond to the reactant and the product states. Other secondary probability peaks, when
present, correspond to the intermediate states of the reaction. In practical terms, metastability
means that a molecular dynamics (MD) or a Monte Carlo (MC) simulation is likely to remain
stuck in only one probability maximum (typically an energy minimum) for all the duration of the
run. Since the very early days of molecular simulations, researchers have attempted developing
approaches to fight this problem, and observe all the relevant metastable states in the limited time
that can be afforded in a simulation.

The simplest root to achieve this goal requires choosing, based on chemical or physical intuition,
a collective variable, namely a function of the coordinates which takes a different value in all the
relevant metastable states. Let us denote by x the coordinates on the system, and by P (x) the
probability distribution. Denote by S(x) the collective variable (CV). The reduced probability
distribution as a function of the CV is obtained by integrating over all the coordinates x under the
constraint s = S(x):

P (s) =

∫
dxP (x)δ(s− S(x)). (1)

We assume that P (x) is the canonical distribution associated to a potential energy function V (x):
P (x) ∝ exp (−V (x)/T ), where T is the temperature (to simplify the notation we assume that the
Boltzmann constant is one). The free energy as a function of s is then given by

F (s) = −T log (P (s)) . (2)

If the CV is well chosen, see next section, the metastable states will appear as separate and well-
defined peaks in P (s). Correspondingly, the free energy as a function of a good CV, for a system
with metastable states, has (at least) two minima.

If in a molecular system one knows a good collective variable, and an approximation B(s) of
the negative of the free energy, the metastability problem in that system can be considered as
solved. Indeed, one can run MD or MC with a modified potential Ṽ (x) = V (x) + B(S(x)). The
probability distribution as a function of the CV becomes

P̃ (s) = C

∫
dxe−

V (x)+B(S(x))
T δ(s− S(x)) = C ′e−

F (s)+B(s)
T . (3)

where C and C ′ are normalization constants. Therefore, if B(s) ∼ −F (s) the probability dis-
tribution as a function of s is approximately flat. The simulation is not confined any more in a
metastable state, and can freely diffuse across the barrier. Even if the simulation is performed
under the action of a potential which is modified by an external bias, one can easily estimate the
unbiased free energy from the biased probability distribution of s. Taking the logarithm of both
members of Eq. 3 gives F (s) = −B(s)− T log

(
P̃ (s)

)
+ C, where C is a constant.

This "trick" is well known since the very first days of molecular simulations [1], but its practical
applicability is hindered by three problems:

1. Before performing the simulation one does not know how the free energy looks like, and a
good choice for B(s) is in general unavailable.

2. In many cases finding a good CV is non-trivial. One can build, based on intuition, a CV
capable of distinguishing the metastable states, but this variable is not necessarily good for
describing the transition. This topic is discussed in detail in Section 1.

3. In other cases one does not even know where the relevant metastable states are. For example,
one may want to study the conformational transition of a complex biomolecule, knowing only
the structure of the molecule in one state. This situation is possibly the most relevant for
practical applications.

Metadynamics[2] is an algorithm which can satisfactorily solve problem 1 by building B in an
iterative process. Instead, it does not offer a solution to problem 2, even if, as we will see, it allows
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verifying if a CV is good, and improving it for a successive simulation. Moreover, and possibly
most importantly, metadynamics allows using at the same time multiple CVs. This, as we will
see, allows being less greedy in the choice of the CVs and, in some special cases, even addressing
problem 3.

Several reviews discussing the theory of metadynamics and its applications in a number of
different fields are available [3, 4, 5, 6, 7, 8]. This review is mostly focused on the technical
decisions one has to take before performing a metadynamics simulation. In particular, we will
discuss the advantages and disadvantages of the different variants of this approach, the proper
assessment of errors, the detection of critical cases where metadynamics is difficult to apply, the
recently introduced methods to determine CVs using machine-learning techniques, and the available
implementations of the method.

Figure 1: Illustration of the working principle of adaptive umbrella sampling, AUS (top) and
metadynamics (bottom). Panel a, b and c illustrate three successive iterations of AUS. The points
with error bars represent the histogram of the CV s estimated in each iteration. The purple lines
in panel b and c represent the sum of the free energy and of the bias. Panel d shows the CV s as
a function of time in the three iterations, represented with different colors. Panel e, f and g show
the sum of the free energy and of the metadynamics bias potential (Eq. 7) at three different times,
marked by arrows in panel h. Panel h shows the CV s as a function of time.

The algorithm was originally developed following the spirit of the time-stepper based approaches[9],
embedding in this framework the idea of filling the free energy minima, like proposed in ref. [10],
and biasing the dynamics by a history-dependent potential, like it was previously done in Taboo
Search[11, 12], local elevation[13] and Wang-Landau sampling[14]. However, in order to understand
more clearly the working principle of metadynamics, it is convenient heuristically introducing it
as a limiting case of adaptive umbrella sampling (AUS)[15]. AUS requires running a sequence of
relatively short simulations, here labeled by an index r. Each simulation is biased by a different
external potential Br(s), built according to the following rules:
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• Run a simulation under the action of the potential V (x) +Br(S(x)).

• Compute the histogram of the collective variableHr(s); the first part of the simulation should
be discarded, in order to allow an appropriate equilibration.

• Update the bias:
Br+1(s) = Br(s) + T log (Hr(s)) (4)

In practice, if one wants to use Br as an external bias in a MD simulation, one should take
care to represent the logarithm of the histogram by a smooth function, for example a spline.
Defining appropriately this function can be non-trivial, since the histogram is affected by
non-uniform errors.

The first three iterations of the algorithm are illustrated in Figure 1. At the beginning, the bias
is zero. Since the simulation is short, the system remains stuck in the first metastable state. The
histogram H1(s) spans only that minimum (black points with error bars in panel a). The key
idea of AUS is that the logarithm of this histogram is an estimate of the free energy, restricted to
the region that has been explored so far. In other words, F (s) + T log (Hr(s)) is approximately
constant in the region of the minimum. In the second run, the system, due to the effect of the bias,
will explore a wider range of the CV (purple line), performing a transition to the second minimum.
The new histogram (purple points with error bars in panel b) will be approximately flat in the
region already explored in the first run, and it will provide information on the shape of the free
energy on a wider range. In the example in Figure, the bias potential has already "filled" the free
energy landscape after three iterations (top-right panel, red curves). At this point, Br(s) ∼ −F (s).

Metadynamics can be viewed as a limiting case of AUS: imagine to make the simulation time
between two updates of the bias so short that the value of the CV does not change significantly
anymore during the run. In this case, the label r designing the different runs in AUS can be replaced
by a label t, labeling simulation time. The histogram Ht(s) becomes a single peak, localized in the
close neighbourhood of st = S(xt). The key idea of metadynamics is approximating the logarithm
of this histogram with a simple, differentiable function. Typically one uses a Gaussian of width σ
and height w:

1

β
log (Ht(s)) ∼ w exp

(
− (st − s)2

2σ2

)
(5)

This turns Eq. 4 in

Bt+1(s) = Bt(s) + w exp

(
− (st − s)2

2σ2

)
(6)

or, equivalently

Bt(s) = w
∑
t′<t

exp

(
− (st′ − s)2

2σ2

)
(7)

The behaviour of the algorithm is illustrated in Fig. 1, bottom. At the beginning, the Gaussians are
all localized in the first free energy minimum. These Gaussians induce larger and larger fluctuations
to the CV (panel h). After some time, the first free energy minimum is almost completely filled
by Gaussian (panel e) and the system performs a transition to the second minimum. This is also
filled with Gaussians (panel f). After that moment, the CV starts diffusing freely between the two
minima (panel h). The sum of the Gaussians now compensate almost exactly the free energy (panel
g). This sum can be therefore used to estimate the F (s). The two parameters w and σ can be tuned
to control the speed at which the free energy landscape is filled and, thus, flattened. If one uses
larger Gaussians, the bias will grow quickly, but the system will be strongly out of equilibrium. If,
instead, the Gaussians are small, metadynamics becomes a quasi-equilibrium process, very similar
to AUS. The precise role of these parameter is discussed in Section 2.

Replacing the logarithm of the histogram in Eq. 4 with a Gaussian in Eq. 6 can be viewed as
a convenient manner of smoothing the former, in a spirit similar to kernel density estimators [16].
If, for example, one wants to compute the free energy as a simultaneous function of three different
CVs, in AUS one should first compute a histogram as a function of three coordinates, and then
represent its logarithm by a regular and differentiable function. In metadynamics, this function is
built as a sum of three-dimensional Gaussians localized along the trajectory followed by the system
in CV space. As it has been shown in many applications, and rigorously demonstrated for model
dynamics, Eq. 7 provides a good approximation to the negative free energy in three dimensions or
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even more. This is the most important practical advantage of metadynamics with respect to other
methods.

In the formulation of Eq. 7 it is apparent that in metadynamics the coordinates of the system
evolve under the action of a non-Markovian process, in which the forces are history-dependent:
indeed, the dynamics at time t is biased by an external potential defined by a sum of Gaussians
localized on the sequence of values taken by the collective variable up to that moment. Conjecturing
that the history-dependent potential in Eq. 7 can be used to estimate the free energy is the most
important contribution of the original work where metadynamics was introduced[2] with respect
to local elevation[13], where the idea of enhancing the sampling by using Gaussians is introduced,
but no attempt to estimate the free energy from the sampled states is done.

The non-Markovianity of the dynamics makes its theoretical description more complex. How-
ever, as shown in Ref. [17], by explicitly considering the external bias as a dynamic variable the
resulting dynamics is fully-Markovian in an extended space, the coordinates x and the bias B(s) In
these variables, the evolution of the system at time t depends only on its state at that time. When
compared with the heuristic derivation above, the demonstration of Ref. [17] makes the assump-
tion of adiabatic separation between the biased CV and the other degrees of freedom of the system
but allows for an exact demonstration that is valid also in the case of a finite Gaussian deposition
rate. This is the most important conceptual difference with respect to AUS. In this formulation it
becomes natural treating the bias potential as one would treat an ordinary observable in a finite
temperature MD or MC run: its instantaneous shape is not particularly meaningful, since it is
affected by fluctuations. Instead, the relevant free energy estimator is not the bias itself, but its
time average, in which the fluctuations become progressively smaller and smaller. These topics are
treated extensively in Section 2.

Since the amplitude of the fluctuations in the bias potential is proportional to the height of
the added Gaussian w, it is possible to reduce these fluctuations during the simulation by suitably
reducing w. A possible way to do it is to employ the well-tempered variant of metadynamics [18],
where the height of the Gaussians is chosen proportional to a decaying exponential function of the
potential deposited in the currently visited point of the CV space. This turns Eq. 6 into

Bt+1(s) = Bt(s) + exp

(
−Bt(s)

∆T

)
exp

(
− (st − s)2

2σ2

)
(8)

Here ∆T is a parameter that controls how quickly the Gaussian height is decreased. Often this
is written in term of a so-called bias factor γ = T+∆T

T . It can be shown that with such a choice
the height of the Gaussian deposited in a given point will decrease proportionally to the inverse
of the time the simulation spent in that point [18]. This one-over-time relationship is a commonly
used schedule for the learning rate in stochastic minimizations in machine-learning approaches [19],
since it is guaranteed to converge [20]. However, by using a height that implicitly depends on the
position in the CV space, in the long-time limit the system will not sample a flat distribution. It
can be shown that the bias potential does not converge to −F (s) but rather to an a priori known
fraction of the free energy − ∆T

T+∆T F (s), and that the system will thus sample the distribution

P ∝ exp
(
− F (s)

(T+∆T )

)
. This means that the ∆T parameters has both the role of damping the

fluctuations of the estimator and that of controlling the effective temperature at which the chosen
CV is sampled. In non-well-tempered metadynamics, this effective temperature is infinite. The
scheme can be further generalized to independently control the fluctuations of the estimator and
the effective temperature of the CV [20].

An important difference between well-tempered and non-well-tempered metadynamics is that,
if boundary conditions are properly treated, the latter is guaranteed to reach a stationary state
where the bias potential fluctuates as long as the relevant free-energy wells have been filled. The
former, instead, will reach a quasi-equilibrium state, where the bias potential provides an exact
estimator for the free-energy [18, 20]. Since this is guaranteed only for an infinitely long trajectory,
it is heuristically possible to use the time-average of the bias potential as a better estimator for
the free-energy surface also in well-tempered metadynamics (see Section 2).

Finally we notice that whereas metadynamics has been initially introduced as a method to
explore and reconstruct the free-energy along biased variables, by suitable reweighting techniques
[21, 22, 23, 24] it can be used also to reconstruct the free-energy along non-biased variables,
although in these cases one should pay particular attention to make sure that analyzed variables
are sufficiently sampled.
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1 The key ingredient: choosing the collective variables
The capability of metadynamics to accelerate rare-event sampling and to reconstruct free-energy
landscapes crucially depends on the employed collective variables (CVs). This dependence is com-
mon to all methods based on adding a bias potential that only depends on selected CVs.

CVs are arbitrary functions of the atomic coordinates and, since their are usually much less
than the number of atomic coordinates, provide a low-dimensional projection of the conformational
space. For a multistable system, a minimum criterion for this low-dimensional projection is that
different metastable states should correspond to different values of the CVs. If this condition is
not satisfied, any bias potential added to one state will equally disfavor all the other states that
correspond to the same value of the CVs. An example of such a case is shown in Figure 2, panel d.
Even if the potential energy landscape (panel a) has two minima, the free energy as a function of x
has a single minimum. In this condition metadynamics is not able to accelerate in any manner the
transitions between the two minima (panel g). A second requirement is that the CVs should be
able to distinguish transition states. Indeed, metadynamics tends to work similarly to biological
enzymes, namely it accelerates transitions by stabilizing the transition state relatively to reactants
and product states. If the CV distinguishes the metastable states, but not the transition state, the
transition will also not be enhanced. An example is provided by the landscape in panel b. The
corresponding free energy as a function of x (panel e) has two minima, but the value of the CV at the
transition state approximately coincides with the value of the CV in states with lower free energy
that are part of the basin of attraction of reactants and products. In this case, under the action of
metadynamics the CV reaches a perfectly diffusive dynamics (panel h). However, this behaviour
is not an indication of convergence: after the first transition observed after approximately 5000
steps, the dynamics explores only the product state and the secondary minimum in the top-left
corner. Therefore, the bias potential estimates the free energy without taking into account the
state R. Indeed, the transitions between R and P are not enhanced at all by a bias acting on
s1, and transitions between R and P can happen only due to thermal fluctuations. As we will
discuss in Section 2, in such a situation the bias potential in Eq. 7 cannot be used to estimate
the free energy. Instead, the WT version of the bias, defined in Eq. 8, asymptotically provides a
correct estimate. However, the bias does not accelerate the transition between the two minima, and
therefore convergence is not significantly enhanced with respect to unbiased molecular dynamics.

The approach effectively works only if the CV takes different values in the metastable states
and in the transition state between them. In other words, from the value of the CV one should
be able to deduce with certainty whether the system is in a metastable state or in the other or
in the transition state. An example is shown in panel c and f. In this situation, metadynamics
induces several transitions between the two metastable states, and the free energy can be reliably
estimated from the bias in Eq. 7 or in Eq. 8.

A further requirement is that the number of employed CVs should not be too large. Filling a
multidimensional space becomes more expensive as the dimensionality of the space grows. Since
the overall idea of metadynamics is to disfavor the conformations that have been already visited,
if the number of CVs is too large the system will never return to exactly the same value of all
the CVs. Approaches that employ multiple replicas to allow a large number of CVs to be biased
alternately [25] or simultaneously [26] can be used to alleviate this requirement. In the first case,
bias-exchange metadynamics, each replica biases a single CV, so that a large number of CVs can be
simultaneously probed. In the second case, multiple independent biases are constructed in order
to flatten the distribution of multiple CVs using well-tempered metadynamics. All CVs are biased
in all replicas, but the ∆T parameter is modulated across the replica ladder, so that one replica
provides unbiased sampling and the other replicas provide the capability to easily cross barriers.
In both cases, coordinates are exchanged between replicas using an acceptance ratio that depends
on the value of the biased CV of the different replicas. PBMETAD [27] allows to reproduce the
character of bias-exchange metadynamics by using a single replica where the weight (or probability)
for each of the variables to be biased is computed on the fly, thus with the practical advantage of
allowing simulating a single replica.

Over the years, many other variants of metadynamics have been developed with the scope of
addressing the problem of reconstructing the free energy in high dimensions. A very popular strat-
egy is using a variable describing a path in a multidimensional CV space [28, 29]. This approach
will be described and discussed in detail in Section 3. In ref. [30] Metadynamics is combined with
standard Umbrella Sampling to sample orthogonal collective variables in a simultaneous way. In
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Figure 2: Three potential energy landscapes, the corresponding free energies, and metadynamics
trajectories. The three landscapes are representative of cases where the chosen collective variable
(CV) cannot distinguish reactant (R) and product (P) (panel (a)), cannot distinguish the transition
state (TS) from R (panel (b)), and can distinguish R, P and TS (panel (c)). (a), (b) and (c): The
landscapes V (s1, s2) are shown as functions of two coordinates (s1 and s2) using contour lines.
Regions within kBT from the two mestastable minima are colored in orange (R) and green (P). s1

represents the chosen (biased) CV. The corresponding free energies F (s1) are shown in panels (d),
(e), and (f). Panels (g), (h), and (i) report metadynamics trajectories for the biased CV s1. The
color of the points depends on where they are located in the (s1,s2) space. The points are green
(resp, orange) if they are located in the green (resp, orange) region in the top panel. Points that
do not belong to these regions are shown in blue.
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Figure 3: Schematic representation of error calculation in ordinary (upper) and well-tempered
(lower) metadynamics. In ordinary metadynamics, the negative bias potential is used to estimate
the free energy as a function of the biased CV. As the simulation proceeds, the time series of
the potential changes and fluctuates around the correct profile. The initial part of the simulation
should be discarded (dashed profiles). After that, a time average of the potential can be computed
and block analysis can be used to compute the error. In well-tempered metadynamics a similar
procedure can be used to analyze the histogram of the biased CV. In particular, one computes the
histogram over a series of blocks and use their standard deviation to obtain the error on the free
energy profile. Also in this case it is convenient to discard the initial part of the simulation, where
the bias potential has not filled yet the relevant free-energy basins.

ref. [31] it is proposed to perform metadynamics on a one-dimensional variable embedded in mul-
tidimensional CV space, whose direction is learned on-the-fly during the simulation. In altruistic
metadynamics [32], the computational cost is reduced by simulating simultaneously multiple dif-
ferent molecular systems, predicting simultaneously their free energy surfaces. In Ref. [33] the free
energy estimator of metadynamics and of adaptive force bias[34] are combined in a single history-
dependent bias, significantly boosting convergence speed. Another variant of metadynamics has
been developed to deal with situation in which the presence of large free energy basins stabilized by
the entropy hinder convergence. This is the example for instance of protein-ligand binding, where
one entropic bottleneck arises from the need of the ligand to find its way to the binding pocket.
In cases like this one, where these bottlenecks are a priori known, their effect can be moderated
by setting proper restraints [35].

2 Computing the free energy and controlling the error
The manner of estimating the free energy and controlling the error is different in ordinary Meta-
dynamics and in its well-tempered variant. Therefore, we consider these two cases separately.

In ordinary Metadynamics, if the CVs are well chosen, after a time tfill all the free energy
minima are filled with Gaussians, and the dynamics becomes diffusive in CV space (see for example
Figure 2i). After this time, the bias potential keeps on changing, since new Gaussians are added
again and again. However, Bt(s) becomes stationary, namely its shape remains qualitatively the
same at different times, as shown in Figure 3. Bt(s) behaves like an ordinary observable in a finite
temperature molecular simulation: after a transient time (the equilibration time) the observable
does not remain constant, but keeps on fluctuating. A meaningful estimator of its thermodynamic
average is the time average. Similarly, in metadynamics one does not consider meaningful the
instantaneous value of the bias potential, but, rather, its time average after tfill, which plays the
role of an equilibration time. Therefore, at time t the best estimator of the negative of the free
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energy is

Bt(s) =
1

t− tfill

t∑
t′=tfill

Bt′(s) (9)

This average has been shown to converge exactly to −F (s) for t → ∞ if the dynamics in
the CV is adiabatically separated from the dynamics in the other variables [36, 17]. Even if this
condition is violated, if transitions between reactants and products are observed on a time scale
compatible with diffusion on a flat landscape, the average in Eq. 9 converges to the free energy
within numerical accuracy. This is illustrated in the example in figure, and has been verified
numerically in a Metadynamics simulation of a lattice model in which the free energy is known
analytically [37]. If under the action of metadynamics transitions between reactants and products
happen only rarely, like in the example in Figure 2h, the time average is not guaranteed to converge
to the negative of the free energy. In particular, transitions should be considered as rare if they
happen on a timescale that is compatible with that of an unbiased plain MD simulation, which
implies that they are not accelerated by the metadynamics bias. It is important to remark that if
in a Metadynamics simulation of a real system one observes a behavior like the one in figure 2-h,
one should conclude that the CV is not appropriate, stop the simulation, and try to find a more
appropriate variable. The statistical accuracy of the estimator in Eq. 9 is controlled by the same
techniques one would use to monitor the accuracy of the average value of an observable in a finite
temperature run. For example, one can perform a block analysis: one first splits the simulation
time after tfill in blocks and estimate the error by looking at how different are the average bias
potentials in the used blocks. One can then monitor how the error estimator depends on the
number of blocks. If the total averaging time t − tfill is significantly larger than the correlation
time, the error estimate will be approximately independent on the number of blocks (see schematic
representation in Fig. 3).

A similar analysis can be performed when running well-tempered metadynamics. In this case,
however, one should take into account the fact that since the increments in the bias potential
become by construction smaller and smaller as the simulation progresses, the changes in the bias
potential itself are not a good indication of the convergence of the simulation. Qualitatively, one
should make sure that, even if the bias potential becomes quasi-constant, the system still undergoes
transitions between the relevant free-energy minima. Quantitatively, this can be observed by
performing a block analysis in the histogram of the biased CV. Indeed, as shown in [22] the
standard free-energy estimator used in well-tempered metaydnamics can be replaced with the
standard umbrella sampling formula F (s) = −T logH(s) + V (s), where H is the histogram of the
visited points in the CV space, that must be computed with a proper smoothing. This procedure
is equivalent to reweighting each visited frame of coordinates q with a factor proportional to
exp

(
V (s(q),tfinal

T

)
, where tfinal is the simulation length. The following procedure can be used to

estimate the error on the free-energy:

• Discard a suitable initial part of the simulation, where the main free-energy wells are filled

• Break the following part of the simulation in blocks and compute the histogram of the CVs
in each block, as well as its error using block analysis

• Convert the error on the histogram to an error on the free-energy estimator.

In particular, when computing the error on the histogram one can exploit the relationship be-
tween the bias potential and the histogram itself [18], namely N(s) ∝ C + exp

(
V (s)
∆T

)
, where C

is an arbitrary constant. The histogram accumulated in the i-th block is thus proportional to
e

B(s,tfill+(i+1)Lb)

∆T − e
B(s,tfill+iLb)

∆T , where Lb is the length of the block. The error on the free energy
can thus be estimated as

1√
Nb

√
Vari

[
log
(
e

B(s,tfill+(i+1)Lb)

∆T − e
B(s,tfill+iLb)

∆T

)]
(10)

where Nb is the number of blocks and the variance should be computed across all the blocks. A
schematic representation of this procedure is shown in Figure 3.

The free-energy difference between reactants and products evaluated for two of the model sys-
tems reported in Fig. 2 is reported in Table 1. Here one can appreciate that in case 2, where
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Reference Ordinary (short) Ordinary (long) WT (short) WT (long)
Final/Average Final/Average

case 1 1.07 1.40 ± 0.34 1.44 ± 0.02 1.20 / 1.47 ± 0.32 1.03 / 1.14 ± 0.09
case 2 1.57 2.45 ± 0.56 1.50 ± 0.02 1.65 / 0.88 ± 0.78 1.57 / 1.59 ± 0.03

Table 1: Estimated free-energy differences between the two minima and statistical errors on the two
model landscapes shown in Figure 1b (case 1) and 1c (case 2). The system is evolved for 105 steps,
as in Figures 1h and 1i (short simulations) or for 108 steps (long simulations). Long simulations
present a large number of recrossings also for the difficult case 1, and are thus representative of
an infinitely long simulation or of a simulation where a different enhanced sampling method was
used to enhance the probability of crossing a barrier not seen by the biased CVs. The reference
value is obtained from the exact projections shown in Fig. 1e and 1f. When using ordinary
metadynamics, the free-energy difference is estimated taking the time average of the bias potential
and the statistical error is estimated using block analysis on the bias potential. When using well-
tempered metadynamics, the difference is estimated either using the final bias potential or the
average bias potential, and the error is computed using block analysis on the histogram.

the biased CV can identify the transition state correctly, both ordinary and well-tempered meta-
dynamics provide results that are compatible with the reference value for a short simulation and
converge to a virtually exact estimate when running an infinitely long simulation. On the other
hand, in case 1, where the biased CV cannot identify the transition state correctly and transitions
are not actually enhanced by the metadynamics potential, ordinary metadynamics reports a biased
result. These cases are easy to detect and directly indicate that a different CV should be tried or
an additional CV should be added.

3 Automatic determination of the collective variables
As we have seen, cases in which metadynamics does not converge or converges to an incorrect
result can be often ascribed to a common problem: the chosen CVs do not correctly describe
the relevant barriers. As we discussed in detail, this problem is easy to detect, if the simulation
is analyzed properly. Practitioners using metadynamics, when they meet such a problem, are
thus immediately exposed to the need to search a "better" CV capable to describe correctly the
conformational change of interest. This is perhaps the reason why, especially in the community
using metadynamics, a lot of different CVs have been developed in the last years. In this section
we review recently developed approaches for “learning” the correct CVs automatically.

We first describe the so-called path CVs [28, 29]. These variables are based on the definition
of a series of reference structures for the system under investigation. If a transition from a state
A to a state B is to be studied, these reference structures are ideally located in between A and B
(see Fig. 4, top). A progression CV is then defined using the following exponential average

s(r) =

∑
i ie
−λdi∑

i e
−λdi

(11)

Here di is the squared distance between the current atomic configuration and the i-th reference
structure, and λ is a smoothing parameter. This exponential average identifies which among the
reference structures are closest to the current one and assigns to the CV a value that interpolates
between the indexes of those structures. A metadynamics simulation can then be used to enforce
transitions between A and B and viceversa biasing this CV. The procedure can be generalized
to vector indexes rather than scalar ones in order to allow for a higher dimensional embedding
of the configurational space [38]. Importantly, it is possible to optimize the location of the land-
mark structures through an iterative series of simulations. In Ref. [28], a procedure inspired to
nudged-elastic-band [39] was introduced, where at every new simulation the reference structures
are changed in order to become more similar to the real intermediates observed in the MD sim-
ulation. The actual definition of the CV is thus different at every new iteration. Ideally, the
intermediate structures will relax towards a path passing through the transition state and, after a
sufficient number of iterations, a metadynamics simulations biasing this CV will be able to make
the system diffuse from A to B and viceversa. In Ref. [29], a progression CV with a definition
similar to Eq. 11 has been introduced. In this case, however, the definition of the path CV was
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evolved during the metadynamics simulation, potentially speeding up the search for the optimal
path.

The function defined in 11 allows for a highly dimensional representation (coordinates of the
atoms) to be reduced to a lower dimensional one (a single CV). More generally, arbitrary features
can be used as a starting point to perform a dimensional reduction of this type. Clearly, if some
previous knowledge is available, it is possible to exploit it in order to define the distances di in an
already reduced space. All the automatic methods used to construct CVs are based on the idea
of constructing a small number of linear or non-linear functions of a larger set of a priori chosen
features.

One of the possible criteria used in dimensional reduction algorithms is that of preserving the
distance between structures computed using the full set of coordinates. This is what is done for
instance in classic multidimensional scaling [40]. However, one should consider that distances
between structures are typically informative only for a narrow range of values. Diffusion maps
can be used to tackle this issue [41]. Here, a fictitiuous random walk connecting microstates that
are close to each other in the initial feature space is constructed, and the slow modes of this
random walk are assigned the larger distances in the low-dimensional representation. The sketch-
map algorithm instead constructs a low-dimensional embedding where only distances in a selected
range are preserved in the procedure. Specifically, sigmoid functions of the distances in the initial
feature space are used in order to tune the distance range that is considered as relevant for the
dimensional reduction [42].

ADVANTAGES DISADVANTAGES

Path CV [28, 38, 29]

It allows describing
complex reaction
pathways. It can be
iteratively optimized

It requires the knowledge
of the initial and the final
states

Committor
parametrization [43]

It provides the best
possible reaction
coordinate

It requires the knowledge
of the initial and the final
states; it requires running
many short MD
trajectories and can be
very costly

Spectral gap
optimization [44]

Simple and
computationally cheap.

It requires the knowledge
of the initial and the final
states. It finds the best
variable in a set, but does
not allow parametrizing a
new one.

Machine
learning

Distribu-
tion based
[41, 42, 45,
46, 47, 48]

It only requires ensemble
averages.

Resulting CVs might
suboptimally describe
barriers.

Dynamics
based

[49, 50, 51,
52, 53]

It takes into account
explicitly the kinetics of
the system.

It requires long unbiased
trajectories or
reweigthing methods.

Table 2

Recently, machine learning inspired procedures have been used in order to design variables the
are capable to distinguish reactants and products. Indeed, CVs or this type are closely related
to representations provided by supervised learning algorithms, where a parametric representation
is optimized in order to be able to correctly distinguish a priori provided labeled examples. In
Ref. [45] for instance, support vector machines and logistic regressions where used in order to
classify folded and unfolded states of a protein, and the classifier was then used as a biased CV. A
similar approach based on linear-discriminant analysis was used in Ref. [46]. This latter approach
was applied for instance to the characterization of chemical reactions [47, 48]. The methods
discussed so far aim at finding a low-dimensional embedding that correctly represents the structures
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Figure 4: Sketch of three possible approaches for finding automatically the best CV.

seen in a preliminary run or to distinguish preassigned basins in the energetic landscape of the
system. However, they are not explicitly taking into account how good these variables would
be in representing the kinetics of the system. The ideal CV for describing a transition between
two metastable states R and P is the so-called committor function [54]. The committor of a
configuration x to the metastable state R is the probability that a trajectory starting from x
reaches the state R before P . Finding the committor explicitly is possible only in simple model
systems, but several approaches were developed to estimate its value, and parametrize it [43].
These approaches can in principle be used to find an appropriate CV to perform metadynamics.

As we have seen, typically good CVs exhibit large free-energy barriers, that are instead appar-
ently removed when an incorrect dimensional reduction is done mixing the true transition states
with other more stable states. The idea of spectral gap optimization [44] is to select linear combi-
nations of putative CVs in order to choose the one that exhibits the slowest transition rate between
two minima. Under the assumption that different CVs have comparable diffusion constants, this
would be the one with the larger barrier separating reactants and products (see Fig. 4, central
panel, for a pictorial representation of this procedure). Performing a proper reweighting is crucial
in this approach to recover the free energy along putative linear combinations. With a similar
goal, it is possible to use time-independent components analysis (TICA), that construct a linear
combination of pre-selected features that is "as slow as possible" (i.e., with the largest possible au-
tocorrelation time). The first few components of a precomputed TICA can be used as biased CVs
for metadynamics [49]. Reference [50] also introduced a TICA-based approach, where however the
TICA are directly computed during the biased simulation, thus allowing conformational changes
that are only visible in biased sampling to be studied. We notice that if one performs metadynam-
ics using the correct CV, one changes significantly the relaxation dynamics of the system, since,
ideally, the lowest dynamics will take place in the hyperplane of constant CV. Therefore, in order
to compute the correct TICAs one should apply a reweighting technique. This method was used
then to identify slow molecular motions in complex chemical reactions [55]. Following a similar
idea, it was recently shown that variational autoencoders can be used in a similar fashion in order
to construct non-linear functions that optimally represent the kinetics of the system [51, 52]. A
related approach was also used in [53], where a linear encoder was combined with a non-linear
decoder. Limiting the encoder step to linear combinations in principle allows for the generated
CVs to be easier to interpret.

4 Implementation
The CVs are often defined by very complex functional forms, but they normally depend on the
coordinates of a limited number of atoms. Moreover, the same CVs and the same variants of meta-
dynamics can be used across different applications (e.g., ab initio and classical molecular dynamics).
For this reason metadynamics is optimally implemented in separate library (e.g. PLUMED[56],
COLVARS[57], or SSAGES[58]), which can then be used in combination with any molecular dy-
namics code (see Table 3). These libraries typically have their own input files that are read during
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initialize initialize

compute 
forcescompute CVs

compute 
biasing forces

propagate 
positions

terminateterminate

MD engineLibrary

Figure 5: Typical architecture of a library to perform metadynamics simulations. The library is
initialized at the beginning of the simulation and usually needs a separate input file specifying the
options needed to perform metadynamics. At every step, coordinates are passed to the library and
extra forces are received back and added to the physical forces computed by the MD engine. The
library is then finalized when the simulation ends.

initialization and are then called at every iteration of the MD simulation (see Fig. 5). Coordinates
should be passed to the library. In some cases, this might lead to a slow down of the simulation,
in particular if the MD engine stores the coordinates on a graphical processing units whereas the
library requires coordinates on the central processing unit. The library then computes the re-
quested CVs and bias potentials resulting forces that should be added to those computed by the
MD engine. In principle metadynamics can also be used with Monte Carlo, although we are not
aware of Monte Carlo codes interfaced with the mentioned libraries.

The typical aim of these libraries is to allow a user to add arbitrary bias potentials on chosen
CVs. In particular, a significant flexibility is usually given to the user in the choice of the CVs
since tuning their definition, either manually or automatically as discussed above, is a crucial step
in the application of any biasing technique. The code should then compute the derivatives of the
i-th CV si with respect to qj , that is the position of the atom j: ∂si

∂qj
. An arbitrarily constructed

bias potential can then be applied to these CVs and results in a force fj acting on the j-th atom
computed via the usual chain rule

fj =
∑
i

∂B(s)

∂si

∂si
∂qj

(12)

Arbitrary combinations of CVs can also be used, the gradient being propagated in the same
manner. At least two of the mentioned packages indeed allow users to specify arbitrary algebraic
functions in their input that are then automatically differentiated [57, 56]. The possibility of
using arbitrary combinations of CVs makes it possible to implement some of the automatically
determined CVs discussed in Section 3 directly in the input script. Whereas this option is often
suboptimal from the performance point of view, it clearly speeds up the development of new ideas.

It must be observed that any method based on the idea of adding a bias potential or a force
to a set of chosen CVs can be implemented in the same manner. This is the reason why these
packages typically provide the user with many other enhanced sampling methods based on biasing
CVs, such as umbrella sampling [1], steered MD [75], or other more recently developed techniques.

We also notice that whereas the calculation of metadynamics forces can be implemented by
explicitly summing on the history of visited conformation (as in Eq. 7), usually the computational
cost is significantly decreased by accumulating the sum of Gaussian functions on a grid so that
cost of the calculation of the forces is independent of the simulation length. The update of the bias
potential stored on the grid is done using Eq. 6 and its cost grows exponentially with the number
of biased CVs. For this reason, it is convenient to use interpolation schemes that allow less dense
grids to be employed, thus accelerating the update of the potential.

The availability of the discussed features in the three libraries is summarized in Table 4. The
PLUMED package is the most complete in term of support for metadynamics variants, since it was
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native PLUMED COLVARS SSAGES
ACEMD [59] no yes no no
AMBER [60] no yes no no
CP2K [61] yes yes no no

DLPOLY [62] no yes no no
DESMOND [63] yes no no no
GROMACS [64] no yes yes yes

i-Pi [65] no yes no no
HOOMD [66] no no no yes
LAMMPS [67] yesa yes yes yes
NAMD [68] yesb yes yes no

OPENMD [69] no no no yes
OPENMM [70] yes yes no no
ORAC [71] yes no no no

PINY-MD [72] no yes no no
QUANTUM-ESPRESSO [73] no yes no no

QBOX [74] no no no yes

Table 3: Availability of metadynamics in a list of commonly used MD codes. The ‘native’ column
refers to implementations of metadynamics that do not require any additional libraries. Compat-
ibility with the three libraries discussed in this review is also indicated. Notice that these three
libraries are currently under development and that this table reflects the respective documentation
in October 2019.

aA copy of the COLVARS code is included in the official LAMMPS repository.
bA copy of the COLVARS code is included in the official NAMD repository.

PLUMED COLVARS SSAGES
Ordinary MTD yes yes yes

WT-MTD yes yes no
Grids yes yes yes

Multiple walkers yes yes yes
Bias exchange yesa no no
Arbitrary CVs yes yes no

Table 4: Feature comparison of three software that implement metadynamics and can be used as
libraries in other MD codes. These three libraries are currently under development. This table
reflects the respective documentation at the time of this writing.

aonly in combination with GROMACS
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developed by a community centered around the developers of the method, can be load at runtime
as a plugin, and also implements a number of analysis and post-processing tools that might be
crucial for dealing with advanced methods. The COLVARS package can be extended using TCL
language and some of the non supported features might be implemented using scripts that have
been made available by the community. Finally, the SSAGES package is still at a pre-release stage
and thus its support is relatively limited. The documentation of the three mentioned packages can
also be considered as a starting point to explore the wide range of CVs used in the literature. The
PLUMED community has recently made available a public repository of data needed to reproduce
enhanced sampling simulations named PLUMED-NEST, that can also be of great use to new users
[76].

5 Discussion and perspectives
Metadynamics provides a framework for studying molecular systems affected by metastability,
namely characterized by the presence of two or more probability maxima. The guiding principle of
this approach is making the dynamics diffusive as a function of a set of suitably chosen collective
variables. This is achieved by biasing the dynamics by a history-dependent potential consisting of
Gaussians localized along the trajectory in CV space. This working principle proved to be very
effective, stimulating the development of several variants and extensions over the years. The most
important one is well tempered Metadynamics, in which the height of the Gaussians is progressively
reduced during the dynamics, following a protocol which ensures asymptotic convergence. Other
important extensions are the ones combining replica exchange and Metadynamics, or weighted
histogram analysis and Metadynamics. A question that naturally arises in applications is which
variant of the approach should one use. We are now going to discuss this issue.

A preliminary observation is that the convergence of well tempered Metadynamics has been
proved rigorously in any condition and for any possible choice of the CV. Indeed, in this method the
bias potential asymptotically does not change any more, making the approach technically equivalent
to ordinary umbrella sampling. The approach requires choosing an extra parameter, the efficacious
temperature ∆T in Eq. 8, whose optimal value depends on the knowledge of the height of the
relevant barriers. A possible manner for overcoming the problem of choosing this parameter has
been proposed in ref.[77]. However, as we already underlined, if the CV is not correctly chosen,
the convergence speed is not significantly enhanced with respect to ordinary molecular dynamics.
Ordinary Metadynamics is instead a process in which the dynamics happens in an extended space,
including not only the coordinates but also the bias potential. This dynamics has the advantage
to enforce diffusion in the CV even when this is not correct. The properties of this dynamics have
not yet been fully understood, and its convergence was rigorously proved only even in conditions
of adiabatic separation of the CV dynamics[17]. If this condition is violated, systematic errors
may arise, like those observed in the examples described in this review, and as rigorously proven in
Ref. [78]. However, if the CVs are appropriately chosen these errors are in practice well below the
statistical accuracy of the free energy estimator[37]. It is also important to recall that in practical
applications, where adiabatic separation is often violated, it can be convenient reconstructing the
free energy a posteriori, not as an average of the bias potential, but using estimators based on the
mean force observed during the biased run[57, 79] or Gaussian process regression[80].

To understand better the differences between these different approaches it is important to
discuss what happens if the CV are not appropriately chosen. In Figure 2 we presented three
examples of two-dimensional potential energy landscape associated to a system with two metastable
states. In two cases, in particular, the free energy as a function of the x coordinate is very similar
(two minima separated by a barrier). However, we have seen that the capability of the method of
estimating the free energy is strikingly different in the two cases. In one of the cases, estimating the
free energy is practically impossible: the collective variable identifies the two metastable states, but
not the transition state between the two, and therefore the bias potential does not accelerate the
transitions. In figure 6, left, we show a potential energy landscape characterized by the presence
of 4 minima. The free energy landscapes as a function of x and y, also shown in same Figure,
are approximately flat, despite the presence of very significant barriers in the two-dimensional
landscape. In this case, if one uses the x as a CV, well tempered Metadynamics is by construction
unable to generate a bias potential capable of enhancing the sampling in the x direction, and
the same happens if one uses y as a CV. Indeed, at convergence the bias potential is a constant,
and this bias is not affected anymore by the new Gaussians, whose height becomes smaller and
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smaller at the end of the run. Therefore, the system will get stuck in one of the minima. In short,
the problem is that a bias potential compensating exactly the free energy does not necessarily
make the landscape barrierless. The behaviour of ordinary Metadynamics on this system is rather
different: the approach by construction enforces transitions even when the collective variable is
not correct, as long as the CV takes different values in the different minima. The system will go
on performing transitions but the bias potential will be affected by large fluctuations, and the free
energy estimate will not converge. Indeed, since the transition states are not identified correctly
by the CV, forward and backward transitions might follow different paths, determining hysteresis
in the estimated free energy.

A possible way out to address this problem is offered by replica exchange methods. One can
combine metadynamics with parallel tempering [81], collective variable tempering[26] or solute
tempering [82] in order to enhance sampling in directions that are not directly biased. These
approaches address to some extent the problem of metastability in degrees of freedom which are
orthogonal to the biased collective variable. Another manner for addressing the same problem is
by using Bias Exchange metadynamics[25], an approach in which several metadynamics are run in
parallel and at the same temperature, each biasing a different CV. Exchanges of the coordinates
between different replicas are attempted at regular time intervals, and accepted according to the
Metropolis criterion. This approach allows using at the same time a very large number of CVs,
and dramatically reduces the hysteresis if one biases in at least one replica all the relevant CVs.

Using replica Bias Exchange in combination with well-tempered Metadynamics is delicate, since
in this approach the simplest manner of checking if the simulation is meaningful requires verifying
if the system at the end of the simulation is able to diffuse through all the region in which one
wants to estimate the free energy. In a situation like the one depicted in Figure 6, if one uses a
single replica one will immediately notice that the CV tends to freeze in one of the local minima.
If one uses any replica exchange method, an accepted exchange move can induce a jump of the CV
from one minimum to another one. However, these jumps are not sufficient to ensure that the free
energy estimator is correct. One should rather check that continuous trajectories, traveling across
the space of available replicas, display transitions between the relevant states.

Figure 6: Left: an example of a potential energy landscape characterized by the presence of deep
minima, but whose free energy as a function of two variables (x and y) is approximately flat. This
situation is rather common in practical applications. Right: a decision tree for choosing the most
appropriate version of metadynamics.

These considerations allow drawing some guidelines for choosing among the different versions
of Metadynamics, summarized in the decision tree in figure 6, right. The well-tempered version of
metadynamics in the opinion of the authors offers some advantages for estimating the free energy as
a simultaneous function of two or more collective variables. Indeed, this approach has been proved
to converge rigorously, and allows performing the calculation without defining explicitly the region
in which the free energy should be estimated: one simply chooses the maximum value of the free
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energy that one considers interesting, and the approach automatically fills the free energy minima
approximately up to that level. If one uses ordinary Metadynamics to estimate the free energy
in a multidimensional domain, one should fix the appropriate boundary conditions, restricting the
dynamics in the domain[83, 37, 8].

If one does not know the correct CV one can consider using a method combining Metadynamics
and replica exchange. In Bias Exchange Metadynamics one can bias simultaneously an arbitrarily
large number of CV. Ordinary Metadynamics has the advantage to force transitions even when the
CV is not correct, like in the example of Fig 6. This features allows converging a low-dimensional
free energy estimate even in the condition of Fig 6, if one uses the approach in combination with
replica exchange. Well-tempered metadynamics instead might remain stuck unless the CV describe
very well the transition state. Therefore, the authors see some advantages in using ordinary
metadynamics with respect to the WT version in bias-exchange methods. It, is also important
underlining that in any version of Metadynamics the free energy estimator is practically meaningful
only if at the end of the simulation the dynamics in CV space is approximately diffusive, namely
if the CV is able to explore in a short time all the relevant regions of the CV space. This can be
considered as the true general guiding principle of this approach, in any of its variants.

As we hope it was clear in this review, one should always bear in mind that the usefulness of
metadynamics (and of any enhanced sampling method based on biasing CVs) is largely determined
by the capability to identify a proper CV able to describe the relevant transitions. Historically,
CVs have been searched by trial and error, and their discovery has been part of the process of
understanding the system under investigation. Going beyond this protocol is, in our opinion, the
frontier of enhanced sampling methods. The community is well aware of the importance of this
problem: recently, a number of approaches for the automatic search of CVs have been proposed.
Some of these approaches, inspired by the quickly developing field of machine learning, are described
in Section 3. Automatically training procedures allow using functions of arbitrary complexity, such
as artificial neural networks. Whereas this can bring to important steps forward, one should also
consider that complex functional forms might be difficult to interpret and, in the end, could teach
less about the investigated system. In addition, highly flexible functional forms might easily lead
to situations where data are overfitted. We thus believe that finding a solution to the problem of
automatically finding the CVs ensuring the appropriate balance between accuracy, generality and
interpretability, is still an open problem, that will likely attract a lot of interest in the near future.
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