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1 Introduction

Determining the type of neutrino mass spectrum, which can be with normal or inverted

ordering (NO or IO) or hierarchy (see, e.g., [1]), is one of the most pressing and challenging

problems of future research in neutrino physics. The recently measured relatively large

value of the angle θ13 of the Pontecorvo, Maki, Nakagawa, Sakata (PMNS) neutrino mixing

matrix in the Daya Bay [2] and RENO [3] experiments1 opens up the possibility of the

neutrino mass hierarchy determination in an experiment with reactor ν̄e. This possibility

was discussed first in [6] and later was further investigated in [7–12] (see also [13]). It

is based on the observation that for cos 2θ12 6= 0 and sin θ13 6= 0, θ12 being the solar

neutrino mixing angle (see, e.g., [1]), the probabilities of ν̄e survival in the cases of NO

(NH) and IO (IH) spectra differ [6, 14]: PNH(ν̄e → ν̄e) 6= P IH(ν̄e → ν̄e), and |PNH(ν̄e →

ν̄e)− P IH(ν̄e → ν̄e)| ∝ sin2 2θ13 cos 2θ12. For sufficiently large | cos 2θ12| and sin2 θ13 and a

baseline of several tens of kilometers, this difference in the ν̄e oscillations leads, in principle,

to an observable difference in the deformations of the spectrum of e+ [6], produced in the

inverse beta-decay reaction ν̄e + p → e+ + n by which the reactor ν̄e are detected.

In the present Addendum we re-evaluate the potential of the reactor ν̄e experiments

for determination of the neutrino mass hierarchy using the Daya Bay and RENO data

on θ13. Such a re-evaluation is necessary since sin2 θ13 was measured with a relatively

high precision in the Daya Bay and RENO experiments and found to have a relatively

large value. We expect the latter to lead to less demanding, than previously estimated,

characteristics of the ν̄e detector, required for getting information about the type of the

neutrino mass spectrum.

We perform the analysis uing the methods descibed in detail in [12]. We assume the

experiment is performed with a KamLAND-like (see, e.g., [15]) 10 kT detector (planned,

e.g., within the project Hanohano [16]), located at L = 60 km from a reactor ν̄e source,

having a power of ∼ 5 GW. As in [12] (see also [7]), the threshold of the visible energy

used is set to Evisth = 1.0MeV. As is well known, for the experimentally determined values

1The angle θ13 was found to be different from zero, respectively at 5.2σ and 4.9σ in the Daya Bay and

RENO experiments. Subsequently, the Double Chooz [4] and T2K [5] experiments reported 3.1σ and 3.2σ

evidences for a nonzero value of θ13.
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of the solar and atmospheric neutrino mass squared differences, which we give below, the

optimal baseline of the experiment of interest is approximately 60 km (see, e.g., [6, 8, 9]).

We present results also for the shorter non-optimal baseline of L = 30 km. For the reactor

angle θ13, we use the results of the Daya Bay experiment [2]:

sin2 2θ13 = 0.092± 0.016± 0.005 , 0.04 ≤ sin2 2θ13 ≤ 0.14 , 3σ . (1.1)

In what concerns the other oscillation parameters which enter into the expressions

for the reactor ν̄e survival probabilities in the cases of NO and IO spectra, the solar and

atmospheric neutrino mass squared differences, ∆m2
⊙ ≡ ∆m2

21 and ∆m2
A ≡ ∆m2

31
∼=

∆m2
32, and the solar neutrino mixing angle, θ12, we use the values obtained in the global

analysis of the neutrino oscillation data, including the data from the Daya Bay and RENO

experiments, performed in [18]. It follows from the results obtained in [18], in particular,

that we have cos 2θ12 ≥ 0.28 at 3σ .

Since the sensitivity to the neutrino mass hierarchy of a reactor ν̄e experiment depends

critically on the value of the angle θ13, we have redone our earlier analysis [12] taking into

account the new data on sin θ13, eq. (1.1), including the allowed 3σ interval of values. In

the following section we present our updated analysis and results.

2 Updated χ
2-analysis of the sensitivity to the type of the neutrino mass

spectrum

We perform a full χ2 analysis of the hierarchy sensitivity of a medium-baseline reactor ν̄e
experiment with a detector of the prototype of KamLAND, choosing the optimal baseline

of 60 km unless otherwise stated. The hierarchy sensitivity is computed by simulating an

”experimental” event spectrum for a fixed ”true” hierarchy (we choose a normal hierarchy

here, the difference being minimal if it is chosen to be the inverted one). A ”theoretical”

event spectrum is simulated with the other or ”wrong” hierarchy. A standard Gaussian

χ2 is then obtained, which determines the confidence level at which the ”wrong” hierarchy

can be excluded.

Our rigorous analysis involves optimizing the event binning to give the best sensitivity

while being compatible with constraints of detector resolution, marginalizing over the neu-

trino parameters |∆m2
atm| and θ13, and taking into account systematic and geo-neutrino

uncertainties by the method of pulls (for further technical details of the analysis see [12]).

We have checked in [12] that doing a marginalization over sin2 θ12 and ∆m2
21 over their

present 3σ ranges of sin2 θ12 = 0.26−0.36 and ∆m2
21 = 7.0×10−5 eV2−8.2×10−5 eV2 [18]

does not significantly affect the results on hierarchy sensitivity, since they are relatively

small variations. Hence, we have presented in [12] the final results with the values of sin2 θ12
and ∆m2

21 fixed at their best-fits of sin2 θ12 = 0.31 and ∆m2
21 = 7.6× 10−5 eV2. We follow

the same procedure here. 2

2We have made use also of the results found in [12] (see also [7–9]) that the inclusion of systematic

and geo-neutrino uncertainties as well as of ∼ 1% energy scale shrink/shift uncertainty (even if energy-

dependent), has only a minimal effect on the neutrino mass hierarchy determination.
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Figure 1. The hierarchy sensitivity (χ2)stat as a function of the number of L/E bins, for fixed

neutrino oscillation parameters, sin2 2θ13 = 0.1 and detector’s energy resolution of 3%, statistics of

200 kT GW yr, baseline of 60 km and different L/E binnings in the range L/E = 5− 32 km/MeV.

We present results for different values of θ13, the detector exposure and the energy

resolution. As was done in [12], a prior term is added to take into account information

from other experiments on parameter uncertainties. We find that the uncertainties in

the values of |∆m2
atm| and θ13 play a crucial role in the sensitivity to the neutrino mass

hierarchy, and hence the reduction in the allowed range of θ13 as well as its increased

value aid in hierarchy determination. We study the effect of the detector energy resolution,

exposure, parameter marginalization and data binning using the new data on θ13, eq. (1.1).

We consider the following error ranges for the two marginalized parameters: i) |∆m2
31|

is allowed to vary in the range 2.3× 10−3 − 2.6× 10−3 eV2, and ii) sin2 2θ13 is varied from

0.04 to 0.14, to be consistent with the 3σ range found in the Daya Bay experiment.

Figure 1 shows the behaviour of the χ2 sensitivity with an increase in the bin number

for fixed neutrino parameters and an exposure of 200 kT GW yr, using sin2 2θ13 = 0.1,

∆m2
31(NH) = 2.4×10−3 eV2, ∆31(IH) = −∆31(NH)+∆m2

21 and a detector resolution of

3%, for different numbers of L/E bins in the range L/E = 5− 32 km/MeV. The sensitivity

is seen to improve dramatically with an improvement in the fineness of division, and the

binning is optimized at 150 L/E bins to derive the best possible sensitivity while being

consistent with the detector resolution. For 150 (100) L/E bins, the bin width in energy

in the case we are considering is about 68 (100) keV.

Table 1 lists the values of the hierarchy sensitivity (χ2)min
stat for different values of θ13

and the detector energy resolution, after a marginalization over the parameter ranges in-

dicated above, for an exposure of 200 kT GW yr and a 150-bin analysis. The true θ13
values are chosen within the 3σ range allowed by the Daya Bay data. Prior experi-

mental information regarding the other neutrino parameters is included in the analysis

in the form of ”priors”, using the present 1σ error ranges of the respective parameters:

σ(|∆m2
atm|) = 5%×|∆m2

atm|
true and σ(sin2 2θ13) = 0.02. Table 2 gives the values of the

hierarchy sensitivity [(χ2)min
stat]prior for different values of θ13 and the detector energy reso-

lution with a parameter marginalization including priors, for the same values of detector

– 3 –
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(χ2)min
stat Energy resolution

sin2 2θtrue13 2% 3% 4%

0.07 6.21 4.99 3.81

0.1 12.91 10.41 7.90

0.12 18.80 15.10 11.48

Table 1. Values of (χ2)min

stat
marginalized over the parameters θ13 and |∆m2

31
|, for |∆m2

31
|true =

2.4 × 10−3 eV2, σ(|∆m2

31
|) = 5%×|∆m2

31
|true, σ(sin2 2θ13) = 0.02, three values of sin2 2θtrue

13
and

three values of the detector energy resolution. The detector exposure used is 200 kT GW yr. The

baseline is set to 60 km. The values of (χ2)min

stat
are obtained in an analysis using 150 L/E bins in

the range 5–32 km/MeV.

exposure and event binning. The slight improvement in the results with the inclusion of

priors is enhanced if a lower prospective 1σ error of σ(sin2 2θ13) = 0.01 is considered. As

recent reports from Daya Bay and RENO have shown, such an improvement in the preci-

sion of θ13 is not far out of reach of present experiments. Moreover, a combined analysis

of the global data on the angle θ13 performed in [17] already yields σ(sin2 2θ13) = 0.013.

In table 3, we list the values of the hierarchy sensitivity [(χ2)min
stat] for sin

2 2θtrue13 = 0.07

and 0.1, for 3 different values of the detector resolution and a scaling in the detector

exposure. These results show the strong dependence of the sensitivity on the detector

exposure. For example, a hierarchy sensitivity of nearly 3σ may be possible even for

sin2 2θtrue13 = 0.07 and an energy resolution of 4%, with an exposure of 400 kT GW yr, and

this would improve further with a higher detector mass/power.

To highlight the improved sensitivities possible even for smaller detector exposures

when θ13 is close to the present best-fit value, we present in table 4 the hierarchy sensitivity

[(χ2)min
stat] for sin

2 2θtrue13 = 0.1 and 0.12 for lower detector exposures 100 kT GW yr and 150

kT GW yr with 3 different values of the detector’s energy resolution. We note that even

with an energy resolution of 4%, a 2σ sensitivity is achievable with a relatively low exposure

of 100 kT GW yr for the indicated values of θ13. With a better energy resolution of 2%,

the sensitivity can go up to 3σ or even to a higher value.

In table 5 we list the values of hierarchy sensitivity obtained for two detector exposures

and three values of detector resolution when the baseline is chosen to be 30 km instead of 60

km. This table shows that the sensitivities decrease for the indicated shorter baseline, i.e.,

when the baseline deviates significantly from the optimal one of 50–60 km. For example,

with a baseline of 30 km, a resolution of 2% and an exposure of 200 kT GW yr would

be required for a hierarchy sensitivity of 3σ if sin2 2θtrue13 = 0.1, while with a baseline of

60 km similar sensitivity is achievable with an exposure of 150 kT GW yr with the same

detector resolution.3

3The optimal baseline for hierarchy sensitivity lies in the region of maximization of the effect of the

phase ∆m2

21L/2E in the expression for the ν̄e survival probability. With the present error range of ∆m2

21,

and the peak of the reactor ν̄e event rate spectrum at 3.6MeV, this gives an optimal baseline range of

55 to 64 km. Hence, the hierarchy sensitivity becomes worse for baselines significantly shorter than the

indicated range.

– 4 –
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[(χ2)min
stat]prior Energy resolution

sin2 2θtrue13 2% 3% 4%

0.07 6.37 5.15 3.90

0.1 13.17 10.58 8.05

0.12 19.10 15.26 11.60

Table 2. The same as in table 1, but for σ(sin2 2θ13) = 0.01.

(χ2)min
stat sin2 2θtrue13 = 0.07 sin2 2θtrue13 = 0.1

Detector exposure, Energy resolution
kT GW yr

2% 3% 4% 2% 3% 4%

200 6.21 4.99 3.81 12.91 10.41 7.90

400 12.40 9.98 7.60 25.80 20.80 15.78

600 18.61 14.95 11.71 38.70 31.20 23.50

Table 3. The same as in table 1, but for three values of the detector exposure and sin2 2θtrue
13

=

0.07; 0.1.

(χ2)min
stat sin2 2θtrue13 = 0.1 sin2 2θtrue13 = 0.12

Detector exposure, Energy resolution
kT GW yr

2% 3% 4% 2% 3% 4%

100 6.50 5.20 3.98 9.45 7.57 5.75

150 9.70 7.80 5.95 14.15 11.35 8.60

Table 4. Values of (χ2)min

stat
marginalized over the parameters θ13 and |∆m2

31
| for lower detector

exposures (in kT GW yr), sin2 2θtrue
13

= 0.1 and 0.12, for three values of the detector’s energy

resolution and a baseline of 60 km. The results are obtained in an analysis using 150 L/E bins in

the range 5–32 km/MeV.

3 Conclusions

We find that the data on the parameter θ13 from Daya Bay experiment allow us to get

information or determine the neutrino mass hierarchy with a greater efficiency, than was

previously estimated, using a reactor ν̄e experiment: the stringent requirements of the

detector’s energy resolution and exposure obtained in the previous studies can be relaxed

significantly. Since hierarchy sensitivity depends strongly on the the true value of θ13, the

energy resolution and the exposure, a relatively large value of sin2 2θtrue13 close to the Daya

Bay best fit of 0.092 makes it easier to achieve hierarchy determination using lower detector

exposures and less demanding energy resolution.

– 5 –
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(χ2)min
stat (30 km) sin2 2θtrue13 = 0.1 sin2 2θtrue13 = 0.12

Detector exposure, Energy resolution
kT GW yr

2% 3% 4% 2% 3% 4%

150 6.60 4.90 3.80 9.65 7.15 5.54

200 8.79 6.50 5.05 12.81 9.48 7.35

Table 5. Values of (χ2)min

stat
marginalized over the parameters θ13 and |∆m2

31
| for two values of

detector exposures (in kT GW yr), for sin2 2θtrue
13

= 0.1 and 0.12, three values of the detector’s

energy resolution and a baseline of 30 km. The results are obtained in an analysis using 150 L/E

bins in the range 5–32 km/MeV.

For example, (χ2)min
stat for the “wrong” hierarchy improves from 3.5 (1.8σ sensitivity)

for sin22θtrue13 = 0.05 (close to the Daya Bay 3σ lower limit), an energy resolution of 2% and

a detector exposure of 200 kT GW yr, to 12.9 (a 3.6σ determination) for sin22θtrue13 = 0.10

(close to the Daya Bay best fit) for the same values of the resolution and exposure. With

this value of sin22θtrue13 , even an energy resolution of 4% can give a sensitivity of nearly 3σ.

To summarise, for the values of θ13 from the interval allowed at 3σ by the Daya Bay

data, a significant hierarchy sensitivity is possible even with a detector energy resolution

of σ ∼ 4% and an exposure of 200 kT GW yr. For sin22θtrue13 = 0.10 (0.12) and an energy

resolution of σ ∼ 2%, a 3σ sensitivity to the neutrino mass hierarchy can be achieved

with an exposure of 150 (100) kT GW yr. The indicated requirements on the detector

specifications make the discussed reactor ν̄e experiment more feasible than the previous

analyses have suggested.
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