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CHAPTER 1

Introduction

Dubrovin Frobenius manifold is a geometric interpretation of a remarkable system of differ-
ential equations, called WDVV equations [12]. Since the beginning of the nineties, there has
been a continuous exchange of ideas from fields that are not trivially related to each other, such
as: Topological quantum field theory, non-linear waves, singularity theory, random matrices
theory, integrable systems, and Painleve equations. Dubrovin Frobenius manifolds theory is a

bridge between them.

1.1. Topological quantum field theory

The connections made by Dubrovin Frobenius manifolds theory work because all the men-
tioned theories are related with some WDVV equation. In [12], Dubrovin showed that many
constructions of Topological field theories (TFT) can be deduced from the geometry of Dubrovin-
Frobenius manifolds. For instance, one of the main objects to be computed in TF'T are correlation
functions, which are mean values of physical quantities. Since in TFT it is possible to have
infinite many correlation functions, an efficient way to compute all of them is encoding all the
correlators in a single function, called partition function. In [21], Konsevitch proved that a
partition function of a specific Quantum gravity theory can be obtained from the solution of
KdV hierarchy, which is an example of integrable hierarchy, i.e. an infinitely list of integrable
partial differential equations. This discovery opened a new field of research in mathematical
physics, because for this case, it was found an effective way to compute exactly all the correlation
functions due to its integrable system nature. In [16], Dubrovin and Zhang constructed a method
to derive an integrable hierarchy from the data of Dubrovin Frobenius manifold, furthermore, in
many important examples, they were able to relate these integrable hierarchies with partition

functions of some TFT.

1.2. Orbit space of reflection groups and its extensions

In [12], Dubrovin points out that, WDVV solutions with certain good analytic properties are
related with partition functions of TFT. Afterwards, Dubrovin conjectured that WDVV solutions
with certain good analytic properties are in one to one correspondence with discrete groups.
This conjecture is supported in ideas which come from singularity theory, because in this setting
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there exist an integrable systems/ discrete group correspondence. Furthermore, in minimal
models such as Gepner chiral rings there exist a correspondence between physical models and
discrete groups. In [20], Hertling proved that a particular class of Dubrovin-Frobenius manifold,
called polynomial Dubrovin-Frobenius manifold is isomorphic to orbit space of a finite Coxeter
group, which is a space such that its geometric structure is invariant under the finite Coxeter
group. In [8], [9],[11], [12], [14], [15], [35], there are many examples of WDVV solutions that
are associated with orbit spaces of natural extensions of finite Coxeter groups such as extended
affine Weyl groups, and Jacobi groups. Therefore, the construction of Dubrovin Frobenius
manifolds on orbit spaces of reflection groups and their extensions is a prospective project of
the classification of WDV'V solutions. In addition, WDDYV solutions arising from orbit spaces
may also have some applications in TFT or some combinatorial problem, because previously
this relation was demonstrated in some examples such as the orbit space of the finite Coxeter

group Aj, and the extended affine Weyl group A; [13], [16].

1.3. Hurwtiz space/ Orbit space correspondence

There are several other non-trivial connections that Dubrovin Frobenius manifolds theory
can make. For example, Hurwitz spaces is the one of the main source of examples of Dubrovin
Frobenius manifolds. Hurwitz spaces Hy no,n,,..,n,, are moduli space of coverings over CP*! with

a fixed ramification profile. More specifically, Hy ng ni,...n,, 15 moduli space of pairs
{Cy,\: Cy > CPY
where C, is a compact Riemann surface of genus g, A is meromorphic function with poles in
A1 (00) = {00, 001, .., 00 }.

Moreover, A has degree n; +1 near co;. Hurwitz space with a choice of specific Abelian differential,
called quasi-momentum or primary differential, gives rise to a Dubrovin Frobenius manifold, see
chapter 3 for details. In some examples, Dubrovin Frobenius structures of Hurwitz spaces are
isomorphic to Dubrovin Frobenius manifolds associated with orbit spaces of suitable groups.
For instance, the orbit space of the finite Coxeter group A, is isomorphic to the Hurwitz space
Hy ,,, furthermore, orbit space of the extended affine Weyl group A, and of the Jacobi group
7 (Ay) are isomorphic to the Hurwitz spaces Hy,—1,0 and Hy, respectively. Motivated by

these examples, we construct the following diagram

Hj ,, = Orbit space of A, . SN Hg y—1,0 = Orbit space of A,

2| |1

Hi ,, = Orbit space of 7 (A,,) -3 Hy 1027



From the Hurwitz space side, the vertical lines 2 and 4 mean that we increase the genus by 1,
and the horizontal line means that we split one pole of order n + 1 in a simple pole and a pole
of order n. From the orbit space side, the vertical line 2 means that we are doing an extension
from the finite Coxeter group A,, to the Jacobi group ¢ (A,), the horizontal line 1 means that
we are extending the Orbit space of A, to the extended affine Weyl group A,. Therefore, one
might ask if the line 3 and 4 would imply an orbit space interpretation of the Hurwitz space
Hj ,—1,. The main goal of this thesis is to define a new class of groups such that its orbit space
carries Dubrovin-Frobenius structure of Hj ,—1,0. The new group is called extended affine Jacobi
group A,, and denoted by ¢ (A,). This group is an extension of the Jacobi group Z(Ay), and
of the extended affine Weyl group A,,.

1.4. Thesis results

The main goal of this thesis is to derive the Dubrovin Frobenius structure of the Hurwitz
space Hy 10 from the data of the group /(An) First of all, we define the group /(fln)
Recall that the group A, acts on C" by permutations, then the group ¢ (fln) is an extension

of the group A, in the following sense:

PROPOSITION 1.4.1. The group #(A,) > (w,t,7) acts on Q:=C®C"* 2 O H > (u,v,7) as

follows

w(u,v,7) = (u,w e v,T)

1
(1.1) t(u,v,7) = (u— < A\v >z ) <MA> T, U+ AT+, T)

c<v,v>z v ar+b
2(ct+d) er+d et+d

y(u,v,7) = (u+ )

where w € A, acts by permutations in the first n-+1 variables of C"*2 > v = (vg, v1, .., Un, Vnt1),

t=(\p) €z

b
(a ) € SLa(Z),
c d
<v,v >A'n: ZU?
1=0

See section 8.1 for details.

—n(n+ v,
2z vi=0

In order to define any geometric structure in the orbit space of _# (fln), first it is necessary to
define a notion of invariant _# (A,) sections of the orbit space of 7 (A,). For this purpose, we
generalise the ring of invariant functions used in [8], [9] for the group _#(A,), which are called
Jacobi forms. This notion was first defined in [18] by Eichler and Zagier for the group _#(A;),
and further it was generalised for the group _#(4,) in [34] by Wirthmuller. Furthermore, an
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explicit base of generators were derived in [8], [9] by Bertola. The Jacobi forms used in this

thesis are defined by

DEFINITION 1.4.1. The weak ¢ (A,) -invariant Jacobi forms of weight k € Z, order [ € N,
and index m € N are functions ¢ on Q = C&C"*2 & H > (u,vo,v1, ..., Uny1,7) = (u,v,7) which
satisfy

o(w(u,v,7)) = p(u,v,7), A, invariant condition

(p(t(u, v, T)) = So(u7 v, T)
(1:2) (1 (10,7)) = (e + d)Fp(u, v, 7)

1 0

—%%go(u, v,7) = me(u,v,7), Euler vector field

Ep(u,v,7) :=

Moreover, the weak A,, -invariant Jacobi forms are meromorphic in the variable Up41 With
poles on a fixed divisor, in contrast with the Jacobi forms of the group ¢ (A,) ,which are
holomorphic in each variable, see details in the definition 8.2.1. The ring of weak A,, -invariant
Jacobi forms gives the notion of Euler vector field. Indeed, the vector field E defined in the last
equation of (1.2) measures the degree of a Jacobi form, which coincides with the index. The
differential geometry of the orbit space of the group ¢ (/Nln) should be understood as the space
such that its sections are written in terms of Jacobi forms. Then, in order for this statement to

make sense, we prove a Chevalley type theorem, which is
THEOREM 1.4.2. The trigraded algebra of weak ¢ (A,,) -invariant Jacobi forms J:{(.A W =
®k,l,m J,fl”m is freely generated by n + 1 fundamental Jacobi forms (¢o, ¢1,, ¥2, .., , Pn) Over the

graded ring F,
An
(13) J::ﬁo,(o ) = EO,O [9007@177302%'7’9071] ’
where
Eeo = Joeo 1is the ring of coefficients.
More specifically, the ring of function E, o is the space of coefficients f(vy41,7) such that for
fixed 7, the functions v, 41 — f(vny1,7) is an elliptic function.

Moreover, (o, ©1,, 92, .., Pn) are given by

COROLLARY 1.4.2.1. The functions (¢, ¢1, .., pn) obtained by the formula

A\n — 2miu [[io 61 (2 — vi + vny1,7)
07 (2, 7)01(2 + (n+ 1)vny1)

(1.4) = 0n" 2 (2,T) F Pp_19" (2, T) F o+ 0op(2,T)

T1[C(2,7) = C(z+ (n 4+ Dongr, 7) + (0 + Donga)] + o

are Jacobi forms of weight 0, —1, -2, .., —n, respectively, of index 1, and of order 0. Here 6; is

the Jacobi theta 1 function, ( is the Weiestrass zeta function, and p is the Weiestrass p function.
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The corollary 1.4.2.1 realises the functions (¢o, ¢1,, 92, - , Pn, Un+1,T) as coordinates of the
orbit space of _# (A,). The unit vector field, with respect the Frobenius product defined in

theorem 1.4.7 see below, is chosen to be

0

1.5 -7
(1.5) = 50

because ¢ is the basic generator with maximum weight, see the sections 8.2, 8.3 for details.
The last ingredient we need to construct is the flat pencil metric associated with the orbit space

of #(A,), which is two compatible flat metrics g* and n* such that
g + A"
is also flat, and the linear combination of its Christoffel symbols
Ty o+ AT

is the Christoffel symbol of the flat pencil of metrics (see section 4.4 for the details). The natural
candidate to be one of the metrics of the pencil is the invariant metric of the group ¢ (A,).

This metric is given by

0 0 0 0 0 0 0 0
(1.6) 9*:; ij1@®%_"(”+l)avn+l®6vn+1+§®%+%®5’
where
2 11 1
1 2 1 1
Aj=111 2 1
1 1 1 1
1 1 1 2

This metric is called intersection form. The second metric is given by
n* := Lie.g",

and it is denoted by Saito metric due to K.Saito, who was the first to define this metric for
the case of finite Coxeter group [28]. One of the main technical problems of the thesis is to
prove that the Saito metric n* is flat. For this purpose, we construct a generating function for
the coefficients of the metric n* in the coordinates (¢ o, ©1,,©2, s, Pns Un+1,T). We prove the

following.

COROLLARY 1.4.2.2. Let n*(dy;, dp;) be given by

g™ (dy;, dp;)
3800

(1.7) n*(dey;, dpj) ==



The coefficient 1*(dy;, dp;) is recovered by the generating formula

% (_1)k+j N*(d - d ) ( )(k—z) ( ,)(j_Q) B
k,j=0 (k=1 — 1)!77 ¥i, AP;)pP\U p(v —

=2mi(D;A(v) + D A(V')) +

1p'(v) + ¢'(v )[d)\( v') d/\(v)}
2 p(v) —p@) " dv dv
)

B 1 O(p 1 Np) O [OANP)
(1'8) ( + 1 8900 8Un+ v Un+1 n + 1) 3Un+1 8900 avn—i—l
1 zn: (—1)k+I 0 < Dpj ) o
n(n+1) Py (k=!G — 1)1 dpg \ Ovnt1) Ovpia
P ji: (=D dp; 9 ( dpx >
n(n + 1) Ki=0 (k — 1)'(] — 1)! 8@n+1 dpo 8vn+1 ’
where
7" (dpi, dpj) = 0" (dpi, dpj), 4,5 #0,
(1.9)

1" (dpo, dpj) = 0" (dpi, dpj) + dmik;ep;.
See section 8.4 for the definition of D, and for further details. Thereafter, we extract the

coefficients n*(dy;, dy;) from the generating function (1.8)

THEOREM 1.4.3. The coefficients n*(dy;, dy;) can be obtained by the formula,
i A0, i1,

)
i (dp1,dpj) = 0. j#0,
( )

7" (di, dpo) = 0
(1.10)

~

dp1,deo) = p((n + 1)vpg1)er.

Inspired by the construction of the flat coordinates of the Saito metric done in [28], we

construct explicitly the coordinates t°, ¢!, t2,..,t" v,41,T by the following formulae

n n+l—a n+l—a
¢ ———— n 1+, n
) 0 ((n+ 1)vpt1) .
0 = -1 nt + 47 ,
20 B Do) T 91(7) 2
where
n o oo n+l—o
(L+@) =Y < n >
(1.12) @dzo ;
pd — (n 11) - (n— 7'd).
: 2. o

i1 +ig+..+ig=1
The Theorem 1.4.3 together with the formulae (1.11), and some extra auxiliary technical lemmas,

implies the flatness of the Saito metric 7.



THEOREM 1.4.4. Let (t9,t!,42,..,t") be defined in (1.11), and n* the Saito metric. Then,

n*(dt®, dt" 3P = —(n+1)d,p, 2<a, <0
n*(dtt, dt®) =0,
(1.13) 0 (dt?, dt™) = 0,
n*(dt', dr) = —2mid;,
A 5
“(dt', dvpyr) = ———.

Moreover, the coordinates t%,t!,¢2, ... t", v,41, T are the flat coordinates of n*. See details in
sections 8.5 and 8.6.

A remarkable fact to point out is that, even though the intersection form ¢* and their Levi
Civita connection are ¢ (A,,) invariant sections, its coefficients g%/, Fij are not Jacobi forms,

but they live in an extension of the Jacobi forms ring. Hence, we have the following lemma

LEMMA 1.4.5. The coefficients of the intersection form ¢®? and its Christoffel symbol T g’g
on the coordinates t°,¢!,..,t",v,41, 7 belong to the ring E.,. [t L., tin], where E.,. is a

suitable extension of the ring F, .

This lemma 1.4.5 is important because it gives a tri-graded ring structure for the coefficients
g*% and Ff;'g . In particular, the lemma 1.4.5 implies that g®? and Fﬁ’g are eigenfunctions of the
Euler vector field given by the last equation (1.2). Using this fact, one can prove that ¢*? and
ngﬁ are at most linear in the variable t°, and this fact together with Theorem 1.4.4 proves that

g*,n* form a flat pencil of metrics, and consequently we can prove

LEMMA 1.4.6. Let the intersection form be (1.6), the unit vector field be (1.5), and the Euler

vector field be given by the last equation of (1.2). Then, there exists a function

tO 2 tO
(1.14)  F@O, 4,62, " vpp, 1) = (4) Ty 3 > napt™’ + G, A v, T,
m o, G207
such that
LiegF' = 2F + quadratic terms,
(1.15) Lieg (F*%) = g°7,
PGt 12t vps1, T) = 4 o 1
] Ll € Byt t7, .., ", —],
ot ot ol t”]
where
’ ! 8F2
1.16 FoB = poel B8

Using the lemma 1.4.6 with some more technical results, we obtain our final result
7



THEOREM 1.4.7. A suitable covering of the orbit space (C & C"*! ¢ H) / #(A,) with
the intersection form (1.6), unit vector field (1.5), and Euler vector field given by the last
equation of (1.2) has a Dubrovin Frobenius manifold structure. Moreover, a suitable covering of
CaoC"' @ H/ _#(A,) is isomorphic as Dubrovin Frobenius manifold to a suitable covering of

the Hurwitz space Hq ,—10.
See section 8.11 for details. In particular, in chapter 6, we derive explicitly the WDVV
solution associated with the orbit space of ¢ (/Nll),which is given by

(1.17) F (8, 2,8,80) = = ()78 — 20126 — (12)* log p o0\
s byl A7 91 (2t3,t4)

The results of this thesis are important because of the following

(1) The Hurwitz spaces Hi ,,—1, are classified by the group ¢ (fln), hence we increase the
knowledge of the WDVV/ discrete group correspondence. In particular the WDVV
solutions associated with this orbit spaces contains a kind of elliptic function in an
exceptional variable, which is exotic in theory of WDVV solutions, since most of the
known examples are polynomial or polynomial with exponential function. Recently,
the case 7 ([11) attracted the attention of experts due to its application in integrable
systems [17], [19], [26].

(2) It is well known that Hurwitz spaces are related to matrix models, then, if one derives
the associated matrix model of the Hurwitz spaces Hy ,—1,0, we would immediately
classify it by the group _# (Ap).

(3) Even though the orbit space of _#(A,) is locally isomorphic as Dubrovin Frobenius
manifold to the Hurwtiz space Hy 1,0, these two spaces are not necessarily the same.
Indeed, the Dubrovin Frobenius manifold associated to Hurwtiz spaces is a local
construction, because it is defined in a domain of a solution of a Darboux-Egoroff
system. On another hand, orbit spaces are somehow global objects, because their ring
of invariant function are polynomial over a suitable ring. In addition, the notion of
invariant functions gives information about the non-cubic part of the WDDV solution
associated with the orbit space, see the last equation of (1.15) for instance.

(4) The orbit space construction of the group _# (A,) can be generalised to the other
classical finite Coxeter groups such as B,,, D,. Hence, these orbit spaces could give rise
to a new class of Dubrovin Frobenius manifolds. Furthermore, the associated integrable
hierarchies of this new class of Dubrovin Frobenius manifolds could have applications

in Gromov Witten theory and combinatorics.

The thesis is organised in the following way. In chapter 2, we recall the basics definitions
of Dubrovin-Frobenius manifolds. In chapter 3, we recall the Dubrovin Frobenius manifold
8



construction on Hurwitz spaces. In chapter 4, the construction of Dubrovin Frobenius mani-
folds on the orbit space of the finite Coxeter group A, is considered in order to give a gentle
introduction to this framework. In chapter 5, based in the work done in [8] and [9], we consider
a Dubrovin Frobenius manifolds arising from more involved group called Jacobi groups, from
the section 5.4 to section 5.9, we use an alternative approach, which is more closely related
with the methods done in [28] and [11], to construct the Dubrovin Frobenius structure in the
orbit space of Jacobi groups. In chapter 6, we defined extended affine Jacobi group ¢ (;11)
and , we construct Dubrovin-Frobenius structure on the orbit spaces of ¢ (A;) and compute
its Free-energy. Furthermore, we show that the orbit space of the group ¢ (1211) is isomor-
phic ,as Dubrovin-Frobenius manifold, to the Hurwitz-Frobenius manifold Hj oo [12], [17]
,[29]. See theorem 6.3.4 for details. In chapter 7, we describe Dubrovin Frobenius manifold of

the orbit space ¢ (A1). In chapter 8, we generalise the results of chapter 6 for the group p (Ap).



CHAPTER 2

Review of Dubrovin-Frobenius manifolds

2.1. Basic definitions

We recall the basic definitions of Dubrovin Frobenius manifold, for more details [12].

DEFINITION 2.1.1. A Frobenius Algebra 7 is an unital, commutative, associative algebra

endowed with an invariant non degenerate bilinear pairing
n(,): o @ — C,
invariant in the following sense:
n(AeB,C)=n(A,Be(C),
VA, B,C € &.

DEFINITION 2.1.2. M is smooth or complex Dubrovin-Frobenius manifold of dimension n
if a structure of Frobenius algebra is specified on any tangent plane T; M at any point t € M,

smoothly depending on the point such that:

(1) The invariant inner product 7(,) is a flat metric on M. The flat coordinates of 7(,) will
be denoted by (¢!,t2,..,t").
(2) The unity vector field e is covariantly constant w.r.t. the Levi-Civita connection V for

the metric 7(,)
(2.1) Ve=0
(3) Let
(2.2) c(u,v,w) :=n(uev,w)
(a symmetric 3-tensor). We require the 4-tensor
(2.3) (V) (u,v,w)

to be symmetric in the four vector fields u, v, w, z.
(4) A vector field F must be determined on M such that:

(2.4) VVE =0

10



and that the corresponding one-parameter group of diffeomorphisms acts by conformal

transformations of the metric n, and by rescalings on the Frobenius algebras T; M .

Equivalently:
(2.5) [E,e] = —e,
(2 6) .,%E’I?(X,Y) = En(Xa Y) - U([E,XLY) - U(Xv [Ea Y])
| = (2= dm(X,Y),
o Lrc(X,Y,Z):= Ec(X,Y,Z) —c(|[E,X],Y,Z) —c(X,[E,Y], Z)
2.7

— «(X,Y,[E, Z]) = (3 — d)c(X, Y, Z).

The Euler vector E can be represented as follows:

LEMMA 2.1.1. If the grading operator @) := VE is diagonalizable, then F can be represented
as:
n
(2.8) E = Z((l — qi)ti +173)0;
i=1
We now define scaling exponent as follows:

DEFINITION 2.1.3. A function ¢ : M — C is said to be quasi-homogeneous of scaling

exponent d, if it is a eigenfunction of Euler vector field:

(2.9) E(p) = dyyp
DEFINITION 2.1.4. The function F(t),t = (t!,#2,..,¢") is a solution of WDVV equation if its

third derivatives

O*F
2.1 iy = ——————
(2.10) Cafy = Hraatbory

satisfy the following conditions:
(1)
Nap = Clap
is constant nondegenerate matrix.

(2) The function
g =m"caps
is structure constant of associative algebra.

(3) F(t) must be quasi-homogeneous function
F(cMtt, . ¢y = APF(E )
for any nonzero ¢ and for some numbers dy, ..., d,, dp.

LEMMA 2.1.2. Any solution of WDVV equations with d; # 0 defined in a domain t € M
determines in this domain the structure of a Dubrovin-Frobenius manifold. Conversely, locally

any Dubrovin-Frobenius manifold is related to some solution of WDVV equations.
11



2.1.1. Intersection form.

DEFINITION 2.1.5. Let z = n(X,),y =n(Y,) € I'(T*M) where X,Y € I'(T'M). An induced
Frobenius algebra is defined on I'(T*M) by:

vey=n(XeY,).
DEFINITION 2.1.6. The intersection form is a bilinear pairing in 7*M defined by:
(wi,w2)* = tp(w1 ®ws)

where wi,ws € T*M and e is the induced Frobenius algebra product in the cotangent space. the
intersection form will be denoted by g* .

Remark 1: Let z =n(X, ),y =n(Y,) € I'(T*M). Then:

g (x,y) =n(X eY,E)=c(X,Y, E).
Remark 2: It is possible to prove that the tensor ¢g* defines a bilinear form on the tangent

bundle that is almost everywhere non degenerate [12].

PROPOSITION 2.1.3. The metric g* is flat, and VA € C, the contravariant metric n*(, ) +Ag*(,)
is flat, and the contravariant connection is V7 4+ AVY, where V", VY9 are the contravariant
connections of n* and g* respectively. The family of metrics n*(,) + Ag*(,) is called Flat pencil

of metrics.

LEMMA 2.1.4. The induced metric n* on the cotangent bundle T*M can be written as Lie

derivative with respect the unit vector field e of the intersection form g*. i.e
(2.11) nt = Z.g".

LEMMA 2.1.5. The correspondent WDV'V solution F(t!,..,#"%) of the Dubrovin-Frobenius
manifold works as potential function for g*. More precisely:
(2.12) g*(dt',dt’) = (1 4+ d — gi — 4;)V (ayir V(a1 F-
where the form (dt/ )ti is the image of dt/ by the isomorphism induced by the metric 7.

2.1.2. Reconstruction. Suppose that given a Dubrovin-Frobenius manifold M, only the

following data are known: intersection form ¢*, unit vector field e, Euler vector field E. From

the previous lemmas we can reconstruct the Dubrovin-Frobenius manifold by setting:
(2.13) nt =29
Then, we find the flat coordinates of n as homogeneous functions, and the structure constants
by imposing:
(2.14) g*(dt',dt’) = (1 +d — gi — 4;)V (guir V (qus): F-
12



Therefore, it is possible to compute the Free-energy by integration. Of course, we may have

obstructions when, 1 +d = ¢; + g;.

2.1.3. Monodromy of Dubrovin-Frobenius manifold. The intersection form g of a

Dubrovin-Frobenius manifold is a flat almost everywhere nondegenerate metric. Let
Y ={te M :det(g) =0}

Hence, the linear system of differential equations determining g*-flat coordinates

o 0’z e 0T

has poles, and consequently its solutions z,(t!, ..,t") are multivalued, where (¢!, ..,t") are flat

=0

coordinates of 1. The analytical continuation of the solutions z.(t!,..,#") has monodromy
corresponding to loops around ¥.. This gives rise to a monodromy representation of 71 (M \ ),

which is called Monodromy of the Dubrovin-Frobenius manifold.

2.1.4. Dubrovin Connection. In the theory of Dubrovin Frobenius manifold, there is
another way to associate a monodromy group on it. Consider the following deformation of the

Levi-Civita connection defined on a Dubrovin Frobenius manifold M

(2.15) Vv = Vv +zuev, u,vel(TM),
where V is the Levi-Civita connection of the metric 7, e is the Frobenius product, and z € CP'.

Then, the following connection defined in M x CP!

Vv := Vv + zu e v,
d - d
2% Vg T

~ 1
Vaiv=0,v+FEev——puv).
dz z

(2.16) v 0,

where p is the diagonal matrix be given by

d

(2'17) Hap = (QQ - 5)5016'

The monodromy representation arise by considering the solutions of the flat coordinate systems

(2.18) Vdi = 0.

After doing some Gauge transformations in the system (2.18), and writing it in matricidal form.

The system 2.18 takes the form

Y
ZTa = 2CaY,
(2.19)
dY 7
S U

13



where

(2.20) Coly=cly UJ=EC.

2.2. Semisimple Dubrovin Frobenius manifolds

DEFINITION 2.2.1. A Frobenius algebra is called semisimple if it does not have nilpotent, i.e.
if @ # 0 implies
(2.21) a™#0, forany meZ.

LEMMA 2.2.1. [12] Let A be a semisimple Frobenius algebra, then there exist a base

e1, €2, ..,e, of A, such that the Frobenius product e in this base is described by
(222) €, ® €; = (52']'61'.

DEFINITION 2.2.2. A point in a Dubrovin Frobenius manifold is called semisimple, if the

Frobenius algebra in its tangent space is semisimple.
REMARK 2.2.1. Note that semisimplicity is an open condition.

LEMMA 2.2.2. [12] In a neighbourhood of a semi semisimple point, there exist local coordi-
nates (u1,u2, .., u,) such that
0 0 0
o — — 7

The coordinates (u1,usg, .., uy,) are called canonical coordinates.

(2.23)

LEMMA 2.2.3. [12] Let M a semisimple Dubrovin Frobenius manifold, on the canonical
coordinates (u1, ug, .., uy) the intersection form, Euler vector field, and unit vector field can be

written as

L)
(2.24) =2 Ou;’

PROPOSITION 2.2.4. [12] In a neighborhood of a semisimple point all the roots (u1, ua, .., uy)

of the characteristic equation
(2.25) det(g*® —un®?) =0

are simple. They are canonical coordinates in this neighbourhood . Conversely, if the roots of
the characteristic equation are simple in a point p € M, then p € M is a semisimple point on
the Frobenius manifold and (uj,us, .., u,) are canonical coordinates in the neighbourhood of
this point.

14



DEFINITION 2.2.3. [12] A diagonal metric on a n-dimensional manifold

n
(2.26) n="3 nadu?
i=1
is called potential, if there exist a function U (uy,usg, .., u,) such that
ou
2.27 i = =—.
( ) i Oul

DEFINITION 2.2.4. [12] A potential diagonal flat metric  on a n-dimensional manifold is

called Darbou-Egoroff metric.

LEMMA 2.2.5. [12] Let be n a diagonal potential metric on a n-dimensional manifold
n
(228) D=3
i=1

Then, the metric (2.28) is Darboux-Egoroff iff its rotational coefficients 3;;

(2.29) 4 =

satisfy the system of equations

OkBij = BikBr;j,

2.30 n
(230) > 0B =0.
k=1

15



CHAPTER 3

Review of Dubrovin-Frobenius manifold on Hurwitz spaces

3.1. Hurwitz spaces

The main reference of this section are [12] and [29].

DEFINITION 3.1.1. The Hurwitz space Hg ... n,, is the moduli space of curves C, of genus

m

g endowed with a N branched covering, A : C, — CP! of CP! with m + 1 branching points over
oo € CP! of branching degree n; +1,i =0, ...,m.

DEFINITION 3.1.2. Two pairs (Cy, \) and (Cy, \) are said Hurwitz-equivalent if there exist

an analytic isomorphic F': Cy — C'g such that

(3.1) AoF =X

Roughly speaking, Hurwitz spaces Hg n,.....n,, are moduli spaces of meromorphic functions

which realise a Riemann surface of genus g C,; as covering over CP! with a fixed ramification
profile.
Example 1:

A generic point of the Hurwitz space Ho,, is

n n

(3.2) Hon = {\p, 20, 21,02, ., 2) = [ [(p — 2:) : Y 2 = 0}
i=0 i=0
Example 2:
A generic point of the Hurwitz space Ho,—1,0 is
_ a
(3.3) Hop = {Mp, a2,a3, .., i1, ans2) = p" + azp™ 2 + oo + anp + apg1 + —.}
Example 3:
A generic point of the Hurwitz space H , is
n n
—omiul limo (P — Vi, T
(3.4) Hy = {\p,u,v0,v1,..,0n,T) =€ Q’T“‘HZ_STLH( io7) : Zvi =0}
1 (U’T) i=0

here 0; is the Jacobi theta function, see (3.25).

16



Example 4:
A generic point of the Hurwitz space is Hy ,—10 is
(3.5)

—27iu H?:O 61 (p — Ui, 7—) -

: P = — v,
07 (v, 7)01 (v + (n+ 1)vpi1, 7) ;” (n+1)vp41}

Hl,n—l,o = {/\(p,u,vo,vl, "7vn7vn+177—) =€

The covering H= FIgm,m,nm consist of the set of points

(Cgs Xsko, ooy ki an,.yag,b1,..,09) € Hy g oonm

where Cy, A\ are the same as above, ay, ...,aq,b1,...,by € Hi(Cy,Z) are the canonical symplectic
basis, and ko, ..., k;, are roots of A near ocog, 001, ..., 00,, of the orders ng + 1,n1 +1,...,ny, + 1.
resp.,

EMTY(P) = A(P), P near oo;.

3.2. Bidifferential W
DEFINITION 3.2.1. [29] Let P, @ € Cy. The meromorphic Bidifferential W is given by
(3.6) W(P,Q) = dpdglog E(P,Q),
where E(P, Q) is the prime form on the Riemann surface Cj;. Alternatively, it can be characterised

by the following properties

1) symmetric meromorphic differential in C, x C,, with second order pole on P = () with
g g

biresidue 1

A W(P,Q) = 2miwg(P)

where {wy(P)} are the normalized base of holomorphic differentials, i.e. faj wi(P) = 6;j

The dependence of the bidifferential W on branch points of the Riemann surface is given by

the Rauch variational formulas

oW (P,Q) 1 . .
e = SW (P, P)W (P, Q),

where W (P, P;) is the evaluation of W (P, Q) at @Q = Pj with respect to the standard local
parameter z;(Q) = /A — A(Q)
W(P,Q)

A remarkable consequence of the Rauch variational formula is that it induce a flat metric in the

(3.8)

Hurwitz space. Indeed,
17



PROPOSITION 3.2.1. [29] Let be the metric

n

(3.10) dsiy =) @h(Q)W(Q, Pi)>2 (dus)?,

i=1
where [ is a smooth contour in the Riemann surface such that P; ¢ [, and h(Q) is a smooth
function independent of {u;}. Then, the rotational coefficients of (3.10) satisfies a Darboux-

Egoroff system in lemma 2.2.5.

For particular choices of the function h(Q) the metrics (3.10) coincides with the metrics
induced by the primary differentials see section 3.3 and [12] for details. This fact is remarkable,
because, it shows that from only the data of the Hurwtiz space, one can construct a flat metric

for the desired Dubrovin Frobenius manifold.

3.3. Reconstruction of Dubrovin Frobenius manifold

Over the space H 9,n0,....nm» it 18 possible to introduce a Dubrovin-Frobenius structure by
taking as canonical coordinates the ramification points (u1, u2, ..un) of Hy py.....n,,. The Dubrovin-

Frobenius structure is specified by the following objects:

0
(3.11) multiplication 0; ® 0; = 6;;0;, where 0; = o’
(3.12) Euler vector field FE = Z u;0;,
i
(3.13) unit vector field e = Z Oi,
i

and the metric 1 defined by the formula
(3.14) ds? = Zres .¢—2(dui)2
¢ D) ’
where ¢ is some primary differential of the underlying Riemann surface Cy. Note that the
Dubrovin-Frobenius manifold structure depends on the meromorphic function A, and on the

primary differential ¢. The list of possible primary differential ¢ is in [12].

Consider a multivalued function p on C by taking the integral of ¢

P
p(P)=vp [ ¢

000
The principal value is defined by omitting the divergent part, when necessary, because ¢ may be
divergent at oog, as function of the local parameter kg. Indeed the primary differentials defined
on [12] may diverge as functions of k;.
¢ = dp.
18



Let lEI¢ be the open domain in H specifying by the condition

o(P;) # 0.

THEOREM 3.3.1. [12] For any primary differential ¢ of the list in [12] the multiplication
(3.11), the unity (3.13), the Euler vector field (3.12), and the metric (3.14) determine a structure
of Dubrovin Frobenius manifold on ﬁ¢. The corresponding flat coordinates t4, A = 1,..., N

consist of the five parts

(3.15) ta= (" i=0,.ma=1,..n;p",¢i=1,..,mr' s i=1,.9)
where
(3.16) the = reseo; k; “pd\ i =0,.m,a=1,..,n;
. 00
(3.17) p = U.p/ dp i=1,.m.
00
(3.18) ¢ = —Treseo, Adp 1 =1,..m.
(3.19) ri:/ dp i=1,.g.
a;
. 1
. §'=—— p i=1,.g.
3.20 ! AMp i=1
21 b,

Moreover, function A = A(p) is the superpotential of this Dubrovin Frobenius manifold, i.e.
we have the following formulas to compute the metric n = (,), the intersection form g* = (,)

and the structure constants c.

(N (A
(3.21) (@,0") == reSdAOde
' (Log\)9d" (Log\)
(3.22) (@,0") = = resarogr=0 oo
/ /! /1
(323) 0(8', 8”, 8/”) = — Z I‘eSd)\:O8 (A)a C;i\)a (A) dp

REMARK 3.3.1. The Dubrovin Frobenius structure on Hurwitz spaces depend on a choice of
suitable primary differentials. Dropping this suitable choice implies that we typically lose the
quasi homogeneous condition of the WDVV equation or the fact the unit is covariant constant.
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3.3.1. Example ﬁ17070. Hj 0,0 is the space of elliptic functions with 2 simple poles, i.e:

01(p—clt)  01(p+clT)
3.24 Ap,a,be,7)=a+b|= -1
(3:24) (p,a,b,¢,7) e At
where
(3.25) B1(v,7) =23 (—1)"e™ 2 sin((2n + 1)v)
n=0

We take the holomorphic primary differential dp. Applying the Theorem (3.3.1) in this case we
get that the flat coordinates for the metric n are exactly (a, b, ¢, 7). Furthermore, using formula

(3.23) we get the following formula (page 28 of [13]).

i 07(0,7)
2 F(a,b = —a’7 — 2abc — b log(b———~
(3.26) (a,b,c,T) 47Ta T — 2abc og( 01 (o0, T))

Remark: There is a typo in the last term of the expression in the paper [13]. The expression
(3.26) in a correct form can be found in [17], and [19]. Further, we derive the expression (3.26)

by using orbit space techniques, see section 6.3.
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CHAPTER 4

Review of Dubrovin Frobenius manifolds on the orbit space of

Ay

The main goal of this section is to introduce the construction of Dubrovin Frobenius manifolds
on orbit spaces. For this purpose, we start with the orbit space of the finite Coxeter group A,.

This example is particularly important, because:

(1) It gives a intrinsic description of the differential geometry of the universal unfolding of

the simple singularity A = p"*1 [11]
M = {A(p,az, a3, .., ans1) = p"7 + aop™ " + azp" 2 + .+ anp + ania}

or equivalently to of Hurwitz space Hy .

(2) It describes the topological minimal model associated with the A,, group [11].

This section is a resume of [11] and [28] which will works as gentle introduction to the orbit
space construction. Indeed, the techniques used in this section will be further adapted to be

applied in Chapter 6 and 8.

4.1. Finite Coxeter group A,

Step 1:
The first step of the orbit space construction is the definition of the desired group action. In
this particular case, the definition of the A,, action on C™.

Let A,, be a finite Coxeter group that acts on a lattice
(LAn, <,>4,) with a bilinear form <, >4, where L4 is defined below

n

LAn = {Z = (ZOaZl; ‘-7Zn) S Zn+1 : ZZZ' = O}’
=0

The bilinear pairing <, >4, is the Euclidean metric restricted to the condition . ;z; = 0.

More explicitly,

n—1
< Z,2>4p, =% 2222Z12+2Z'Zizj
i=0

i>j

~
— = = =N
— = = N
_ o= N =
N = = = =
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Recall that A,, acts on L by permutations:
wi(Z07 21y R2y ooy Zn) - (zio7 Ziqsy ey Zin)-

Moreover, the A,, group acts on the complexification of Ly, , <, >4,
n
L@ C = {v=(g,21,..,00) € Z"T : > 2; =0},
i=0

by permutation.

Note that, we can identify L4» @ C with C" by the maps

n

(UO7 "7vn71) = (UO, vy Up—1, — Zvi)a

i=0
(UO) ey Un—1, UTL) — (1}07 ooy U?’L—l)'

4.2. Invariant ring of A,
Step 2: The second step consist in the description of a suitable ring of invariant functions.
In this particular case, the ring of invariant functions is the ring of polynomials which are
invariant under the A, action. The main result of this section is the Chevalley theorem. This
theorem realise the ring of the A, invariant polynomials as the finite generated ring of the
symmetric polynomials as, as, ..., ap+1 in the variables vg, v1, va, .., vn. In practice, this fact allow

us to use a base of symmetric polynomials as coordinates for the orbit space, furthermore, it

gives a global description of the orbit space of the A,, by considering as
SpecClag, as, .., ap.an+1] = C".

DEFINITION 4.2.1. The Invariant ring of A, are homogeneous polynomials g on 2 = C" 3

(vo, v1, .., V) satisfying
(4.1) g(w(vg,v1,..,vp)) = g(vo,v1,..,0p), wE A, (A, invariant condition)

Examples:

The elementary symmetric polynomials

n
a1 (vg, V1, .., Up) = g v; =0,
i=0

)

n
a2 (Vo, V1, .., Up) = E V0,
i=0

n p—
i—o vi=0

an+1(Vo, V1, ., Un) = HUZ'
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THEOREM 4.2.1. Chevalley theorem[10] The Invariant ring of A, is free module of rank

n + 1 over C, with generators a9, as, .., ap+1. Namely:
Invariant A, polynomials = Clag,as, .., an.an11]

REMARK 4.2.1. The basis for generators is not unique, indeed fixing a base, one could derive
another base by doing a weighted polynomial transformation. However, the degree d; of the

homogeneous polynomials are invariant, in particular they are called Coxeter numbers.

THEOREM 4.2.2. There exist a formula for a specific basis of generators given by

n

(4.2) AMrp) =[] —vi) =" + agp™™ " + ... + anp + ang,
=0

where Y jv; = 0.

REMARK 4.2.2. It is well-know that one can associated any generating function with a

recursive operator. In the case of (4.2), the recursive operator can be obtained by the following

A (p) = [ (H@c—m)]

=0

obeservation

=0
Then, we can obtain ao, .., an11 by doing the following transformation in a,41

n
an41 = H'Ui
1=0

n

= Ayl = H(p —v;)

Z?:O ;=0 i=0

il

n \—
i=o vi=0

and by applying the recursive operator 8% in Gp41 in the following sense

&nJrl |$:0 = Gn+1,

O (ans)
— (a =a
O n+1 0 n)
0% .
@ (anJrl) = ap—1,
=0
an—l
—(a =a
Oxn—1 ( n+1) —0 2
o
— (a =a; =0
or™ ( TL+1> 0 1 )
8n+1 .
W (an+1> = 17
=0
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Note that the operator % can be interpreted as a vector field in a enlargement of the orbit
space of A, on the coordinates (vg, vy, .., v, z). Sometimes is also useful write this vector field

a% the following coordinates

2 =0 +x,
as

o "9
(4.3) (%_;a%.

The relation (4.3) will be useful in the next chapter.

4.3. Geometric structure of the orbit space of A,

Step 3: In this section, we introduce the minimal geometric data to reconstruct a Dubrovin
Frobenius manifold structure as it was already announced in the subsection 2.1.2. The geometric
structure on a orbit space of A,, must be invariant A, sections, therefore, we need to construct

an intersection form, Euler vector field, and unit vector field which are A,, invariant.

DEFINITION 4.3.1. The metric g is the following tensor:
n
(4.4) g = Z dv?'Z?:o ;=0 d'Uide = gijdvidvj,
i=0

where g% is

(4.5) (9ij) =

= = R =N
— = = N

1
1
2
1
1

[ R

DEFINITION 4.3.2. The intersection form g* is given by

.0 o
* . if 7
(4.6) 9 =950 % oy,

where gV = gij_l.
PROPOSITION 4.3.1. The intersection form (4.6) is A,, invariant.

PRrROOF. The intersection form (4.6) is A,, invariant iff (4.4) also is. But is a particular

restriction of the Euclidean metric, which is clearly A, invariant. O

DEFINITION 4.3.3. Let be d; the degree of the polynomial a;, then the Euler vector field £
is given by
0
4. E = d;ja; —
(1) Z “9a

)
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DEFINITION 4.3.4. The Unit vector field e is given by

- 0
B Oap41

(4.8) e

LEMMA 4.3.2. The unit vector field (4.8) and Euler vector field (4.7) are A,, invariant

sections.

PROOF. Both (4.8) and (4.7) are written in terms of invariant A,, polynomials.

4.4. Differential geometry preliminaries

In order to derive the Dubrovin Frobenius manifolds, we recall some results related with
Riemannian geometry of the contravariant ”metric” ¢¥. By metric, I mean symmetric, bilinear,

non-degenerate. In coordinates, let the metric

gijdxidxj
and its induced contravariant metric

0 0

i il

g a$l ®© 3$j

The Levi Civita connection is uniquely specified by
(4.9) Vigi; = Okgij — Liigsj — Tr;9is = 0,
or
(4.10) Vig" = 0kg" — Thug™ ~T]9" =0,
and
(4.11) Iy, =Tk

The Christoffel symbol can be written as
T = " (9igs; + 0;9is — 0s9s5) -

But, for our purpose it will be more convenient to use
(4.12) I .= g1’ .
Then, the equations (4.9), (4.10), and (4.11) are equivalent to

8kgij = Fg + F?:,
(4.13) o o

gzsl—\gk _ g]SFZk.
Introducing the operators

vi = gisv87
(4.14) . . .

V& = " 08 + TP Es.
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The curvature tensor lek of the metric measures noncommutativity of the operators V;or,

equivalently V*

(4.15) (ViV; — V;Vi) & = RL &
where
(4'16) z]k =0 ij 0j Flk + Fzs jk — F]s ik

We say that the metric is flat if the curvature of it vanishes. For a flat metric local
flat coordinates p1, ..., p, exist such that in these coordinates the metric is constant and the
components of the Levi-Civita connection vanish. Conversely, if a system of flat coordinates for
a metric exists then the metric is flat. The flat coordinates are determined uniquely up to an

affine transformation with constant coefficients. They can be found from the following system
(4.17) ViOkp = g"0s0kp + T¥0sp = 0.

The correspondent Riemman tensor for the contravariant metric g can be written as

(4.18) R = g g By = g (0,13 — OT3*) + DU — 1Ty,

The aim of this section is to construct a Dubrovin Frobenius structure on the orbit space of
A,. The strategy to achieve this goal is based on the derivation of a WDVYV solution from the
geometric data of the orbit space A,. More specifically, the WDVV solution will be derived

from the flat pencil structure which the orbit space of A, naturally has.

DEFINITION 4.4.1. [11] Two metrics (¢g*,n*) form a flat pencil if:
(1) The metric
(4.19) g5 = g + M,
is flat for arbitrary .
(2) The Levi-Civita connection of the metric (4.19) has the form

. ij ij
Fk yi=Tg,+ )\ka
where sz > ij o are the Levi-Civita connection of ¢g*, and n* respectively.

The main source of flat pencil metric is the following lemma

LEMMA 4.4.1. [11] If for a flat metric g* in some coordinate ag, as, .., a,+1 both the coefficients
of the metric ¢ and Levi Civita connection sz are linear in the coordinate a,y1, and if
det(g*) # 0, then, the metric
0g"

4.20 EANEp\
(4.20) 9+
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form a flat pencil. The corresponding Levi-Civita connection have the form

g g y or
4.21 v .=7% 1% .— k
(4.21) ko =1k hn'T go

Hence, our goal is first to construct a flat globally well defined metric in the orbit space of
A, such that there exist coordinates as, as, .., ap+1 in which both the metric and its Christoffel

symbols are at most linear on a,y1.

4.5. The Saito metric 7

Step 4:
This section will be devoted to construct the flat pencil metric on the orbit space of A,,. The
first flat metric was already constructed in (4.6), therefore, this section will concentrate in the
construction of the second flat metric. The second metric as the lemma 4.4.1 suggests is given
by
Lie_o g7 :=n".

aan+1

Hence, we will derive the coefficients of the metric (4.6) in the coordinates ag, as, .., a,+1 and

from it we derive the coefficients of the second metric of the flat pencil.

PROPOSITION 4.5.1. [28] The coefficient of g*(day,day) is recovered by the generating

formula

n+1

Z g*(dai’daj)unJrlfiwnJrlfj —
(4.22) 6J=0

_n+1 dw du U —w

1 d\(w) dA\(u) N 1 <)\(w) dA(u) d)\(w))\(u)> .

Before proving it, we state the following corollary.
COROLLARY 4.5.1.1. [28] Let be n* defined by

(4.23) n*:=Lie_o g":

An41

Then, the coefficient of n* in the coordinates as, as, .., an41 is recovered by the formula

*(dai, da; .
(4.24) n*(da;, daj) := 99" (dai, day) =—(2n+4—1i—j)aitj—n—3.
aa/nJrl

The metric * is called Saito metric due to Saito, who is the first one that defined such metric
[28].

PROOF.

n+1 %
(4.25) Z Mun—i—l—iwn-&-l—j _ 1 (d/\(u) B d/\(w)>

Oa U —w du dw
i,j=0 s
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Note that

n+1

Alp) = Z aip"
i=0

(4.26) N
p ) i
— = n+1—1d)a;p""
i ;;;( Ja:p

Then substituting (4.26) in (4.25)

1 n+1

D (n+1—da;(w ™" —w" )]

=0

n+1 *
09 (das, dag) 15 ny1-j _
da “ v Cu—w
ij=0 e
n+ln—1-—12

= Z Z (n+1—i)au™ Iy

i—=0 =0
(4.27) Y
n+ln—1

= Z Z(n +1 =i+ j)aj_ju

=0 7=0
n+3 n+1

- Z Z(Qn +4—i— f)appjon_gu™ T
=2 j=2

O]

In order to prove the proposition 4.5.1 it will be necessary to prove some auxiliary lemmas.
At first steep, it will be required to extended the metric g*(da;, da;) on the space C" @ C 3

(vo, v1, .., Un, ), the extension goes as follows

n+1

0 0
42 x _
( 8) g ZZ; 81‘1 ®© axl
and also we extended A\(p) as
(4.29) Ap) =[] —pi) =p"" +p1p" +p2p™ " + . 4 Pup + Pri1,

i=0
by forgetting the condition > ;' jv; = 0. Then, we have the following relation between

(p17p27p37 "7pn7pn+1) and (a2> as; .-, an, an+1)
(4.30) pi(vo, ..., v”)‘Zf:o w0 = @i(V0; - Un).
Then, we can state

LEMMA 4.5.2. [28] Let the extended intersection form (4.28), and the extended generating
function (4.29). Then, the following identity holds

n+1 v N

(4.31) > G (dpi, dpj)un T T = A(v) - Au)]
,j7=0




PROOF.

n+1
Z g*(dpi,dpj)u”+1_zw”+1_] = §" (d\(u), d\(w))
i,j=0
n+1
- AON(u) O (w)
=Y §*(dpi,dp;) }
520 Ipi Opj
n+1
(4.32) =3 L Swiw)
i P TP
1 n+1 1 1 B B
= — A(u)A(w
Ay e MW
1 < di\(u)  d\(w) <
= w) =~ 70 )]

LEMMA 4.5.3. [28] Let the extended intersection form (4.28), and the extended generating
function be given by (4.29). Then, the following identity holds

(4.33) g (dpy,dpi) = —(n+2 —i)pia
ProOF.
n+1 n+1
dp1 ON(w -1 < 5
" (dp1, dA(v l; o 6vm = mz::O oMW =X (w)

n+1 n+1

(4.34) = Z n+1—m)pw " =" §*(dp1, dp;)uw™ "

m=0

n+2

o Z TL+2* n—l—l—m

O]

LEMMA 4.5.4. [28] Let be P, @ two polynomials in £ > (v, vy, ..,v,), and P, Q two polyno-
mials with variable in @ = Q& C > (vo, V1, .., Un, p) such that
P=P+pifi,
Q=Q +p1f,

where f1, fo are polynomial functions in py, po, .., ppt1. Then,
g"(dP,dQ) = g"(dP,dQ) + prhahy.

where hy, hy are polynomial functions in p1, po, .., Dnt1-
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PROOF. We have the orthogonal decomposition of dP

where

Similarly for dQ

1 -
=g+ ——§*(dp1,dQ)d
NG+ 579 (dp1, dQ)dp:

where

n+1 ~
g 1
o= 8vkd (vk e 1171)

k=0

Since, §*(dp1,dp1) =n+1,

~x D 2 ~ % 1 ~ % A\ ~*
9" (dP,dQ) = g"(np,ng) + e (dp1,dQ)g" (np, dp1)

n 1 ~ % A\ ~* D
mg (dp1,dQ)g*(dP, dp)

1 - -
— % B 5 ~% ~% P
9 (psng) + 9" (dp1, dQ)g"(dP, dpy)

1 ~
——§*(dp1,dP)§* (ns, d
+ 19 (dpy, dP)g (ng, dpy) +

PRrROOF. of proposition 4.5.1 Note that

n+2-—1 .
@ =pi— |\ = o | P i=2,..,n+1
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Then, applying the lemmas 4.5.4, 4.5.3, we have

~% ~% 7’L+2—j ~% TL+2—] ~%
g"(da;,da;) = g (dp;, dp;) — (n—i—l) 19" (dp;, dp;j—1) — <n—i—1> Pj—1G" (dp;, dp1)

- (n:i?)mﬁ*(dpj,dpi_ﬂ - (%) pi-1g" (dpj, dp1)
() (ot

(5T (557 e )

+ <n;—i;z> (nj;i;])p1pi—1§*(dp17dpj—1)

i (niil) (RZLj)”—lpj—lé*(dphdm)

x n+2—1 n+2—j
= g"(dps, dp;) — ( > < ol >Pz’1pj1 + p1h,

where h is some polynomial in the variables p1, p2, .., pn+1. Then,

(4.35)
n+1

_ . . 1 dA(w) d\(u) 1 d\(u)  d\(w)

*did.n+1zn+1]:_ A o A h.
”z::(]g (da, da;)u v n+1 dw du +u—v (w) du dw () | +p1
]
4.6. Flat coordinates of the Saito metric 7
Step 5:

This section will be dedicated to prove that the Saito metric 7 is flat and non degenerate. This

fact, implies the existence of the hypothesis of the lemma 4.4.1. In practice, we will construct

the flat coordinates of the Saito metric n as follows.

Let be t, 2, ..,t" given by the following generating function

1 ¢ gl 2 t 1
4.36 — o - v L

kn
defined by the following condition

p(k)”'H + agp(k)"_l + agp(k:)”_2 + .o+ app(k) + any1 = gl

LEMMA 4.6.1. The functions ¢!,#2,..,#" be defined in (4.36) can be obtained by the formula

1 ntl-a
(437) = e e (N )
ProoF. Consider the integration by parts
]. n —« n — —a
(4.38) niir_a/ (/\ i (p)dp> — pA T _/pA?’H—ld)\_
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Lemma proved.

LEMMA 4.6.2. The functions t!,#2,..,#" be defined in (4.36) can be obtained by the formula

(4.39) t“ = — res (p()\)/\ﬁd)\) .

A=00

PROOF. Let k = A+, then

—a 1 ¢ gl 12 t 1

- L ) yio
a1 xR T e ) T

o )) k™ (n + 1) k"dk

N 1
n+l—a § :
=1

Hence, the residue is different from 0, when o = 3, resulting in this way the desired result.

O

LEMMA 4.6.3. [28] Let the functions ¢!,2,..,#" be defined in (4.36), then

n + 1 n+l—a
(4.40) t* = ntl_o 14+ Apyoqo)

where

(4.41) d=

i1+io+..Fig=1
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PROOF.

n+ 1 nt+l—a
tO‘ = —  ~ res (>\ n+1 d )
e (p)dp
: + 1 B nt+l—a
=————res (" +aop"  +asp" P+ A anp+ angr) " dp
n+1—ap=c
n+l—a
_ n + 1 n+1l—ao dn sl "
Tt l—aps? 1+ 2+ 3+ +7L+ i dp
d
n+1 n+1—a Z an Zntl
=~ res pr !
n—i—l—ap:OOp p”+p”+1 '
n+1 00 ntl—a d! a n a 72 a
S n;) > m<3> ) - <Z
n+1— ap=c d=0 jibotin=d JTI2 I AP ! g
0o +1—
n+1—ap=x d=0 d Jit+in=d Jkjaleojt
ntl s (e Tl a
- n+1_a2< T > AN R
d=0 Ji+.+jn=d e

2j1+3j2+..+(n+1)jn=n+2—«

oo n+l—«o

LELS(E) S,

d=0 i1+..Fig=n+2—a

00 +1—
_ n+1 Z nn+1a A
n+l-as=\ d e

n+1 ntl—a
=——(1+A _ ntl
n 1 a ( n—+2 a)

LEMMA 4.6.4. [28] Let the functions ag, as, .., @y, an+1 be defined in (4.2), then

1 1 n+l—1
n
“ n+1—i<1 n) , igntL

(4.42) n+1
an+1=(Mm+1)log|1— Tt
n+1)’
where
(4.43) Ti= ) tiy.ti,
i1+..ig=1
LEMMA 4.6.5. Let T be defined in (4.43), then
Ty _ ),
ot;
(4.44)

Y ThTIm, d=di+ ..+ dm.

i1t im=i
Here T? = dj.
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LEMMA 4.6.6. [28] Let
(4.45) 96(T) = 9T}
d=0

a formal power series in T; be defined in (4.43), then

agk(Tl) I
at] _gk<ﬂ—j)7

G (T)egm(T) = > 1(Ti,)-gm(T;,)-

i1+ Fim=1

(4.46)

Here the symbol 7 in the right hand side of the first equation of (4.46) means derivative with

respect the formal variable T;.

THEOREM 4.6.7. [28] Let (¢!,t2,..,t") be defined in (4.36), and * be defined in (4.23).
Then,

(4.47) n*(dt®, dt" 3 P) = —(n +1)84p.

PrOOF. Consider the metric n* in the coordinates (¢!,t2,..,t")

Oa; Oa;
(4.48) *(dag, da) Lt (dt, ditP)
! ; ; o Oty

Moreover, consider gT‘Z, and use the first line of the equation (4.46)

+2—i

6ai . ( 1 )n '

- Tifa ’
Ot n+1

n
8ai 8an+3_j 1 1
(4.49) = I \nt2—i T N1
11— 1 _ a—j
n+1 ) ( n+1 )

1 8to¢ 87fn—l—?)—a (
Using the second of the equation (4.46) in (4.49)

Then,

Z 8&2 0an+3 —j _ 1
8ta 6tn+3—a (1 Ty >n+1—z’+j
(4.50) ntl

<n+1—i+j)
= _— ai*j
n—+1

Substituting (4.50) in (4.48)

Oa; aanJriS Oan43—j da; aan+3 j
(4'51) Z 6ta atn—i—?) « Z Z 8ta 87571-&-3 aﬁ-
=18=1
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On another hand, using equation (4.24), we have

n*(dai,dant3—j) = —(n+1—i+jlai—;

o Z Z Oa; aafn-|-3 Uln43—j *(dta dtn+375)

2 2 Bty Dty
Oa; Oan 3 j
n+1 B
;;1 Oto Otynis—p %a

Then, we obtain

n*(dt®, dt" 3 P) = — (n 4 1) Gup.

COROLLARY 4.6.7.1. The Saito metric 7 is non degenerate.

4.7. The action of Euler vector in the geometric data

Step 6:
We realise the geometric data of the orbit space of A,, as eigenfunctions of the Euler vector field.
The eigenvalues of the Euler vector field introduce a notion of degree in the geometric data of

the orbit space of A,.

DEFINITION 4.7.1. A function f is quasi homogeneous of degree d if it is an eigenfunction of

the Euler vector field (4.7) with eigenvalue d, i.e.
E(f)=df.

LEMMA 4.7.1. Let ag, .., an+1 be defined in (4.2), and E theEuler vector field be defined in
(4.7), then polynomials a; has degree d;, i.e

(4.52) E(az) = diai

PROOF.
n+1

O

LEMMA 4.7.2. [11] Let ag,..,an+1 be defined in (4.2), and E the Euler vector field be
defined in (4.7), then coefficients of the metric g/, and its Christoffel symbols in the coordinates
as, .., an+1 are A, invariant polynomials, furthermore,

E(g"7) = (d; + d; — 2)g”
(4.54) i i
E(Fk ) = (dz + dj — dk — Q)Fk:
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COROLLARY 4.7.2.1. [11] The functions g (a) and sz(a) are at most linear on an41.

COROLLARY 4.7.2.2. [11] There exist homogeneous polynomials t!,¢2,..,¢", with degrees

dy, ...,d, respectively such that the matrix

(4.55) 7% = Gt pnir

Moreover, the Euler vector field in this coordinates becomes

& o
4, E = Wt
(4.56) Zajdt T

COROLLARY 4.7.2.3. [11] The orbit space of the group A,, carries a flat pencil metric g (a),

7% (a), with n¥(a) is polynomialy invertible globally on the orbit space of A,,.

4.8. Construction of WDVYV solution

Step T7:
The main aim of this section is to extract a WDVV equation from the data of the group A,.
The following lemma shows that flat pencil structure is almost the same as Dubrovin

Frobenius structure.

LEMMA 4.8.1. [11] For a flat pencil metric ¢®*, n®? there exist a vector field f = 70, such
that the tensor
(4.57) AT = T ]T — geor]Y
and the metric ¢®? have the following form
ACBY — na#nﬁvauayfv
(4.58)
9 =00 f + 00, f + e

for some constant c¢. The vector field f should satisfy

(4.59) APAT = ATAY

where

(4.60) ASF = e A = 0,0, |7
. (naegﬁé _ gaénﬁis)aeaéf’y — 0

Conversely, for any metric n*# and for f solution of the system (4.59) and (4.60) the metrics

n*? and ¢ form a flat pencil metric.

LEMMA 4.8.2. [11] Let t!,#2,..,¢" be defined in (4.36), then
gna = dataa
(4.61) . N
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LEMMA 4.8.3. [11] Let t!, ..., #" be the Saito flat coordinates on the space of orbits of a finite
Coxeter group A, and

Dg*B
aﬁ —_ —
(4.62) " o

be the correspondent constant Saito metric. Then there exists a quasihomogeneous polynomial
F (t) of the degree 2(n + 1) + 2 such that

ws  (da+ds—2)
g° = —( b )n Anﬁ“éh@F.

(4.63) 5

The polynomial F(t) determines on the space of orbits a Dubrovin Frobenius structure
(4.64) g = 102030 F.

with the structure constants the unity

(4.65) e=—

and the invariant inner product 7.

4.9. Mirror symmetry between the orbit space of A,, and the Hurwitz space H,

THEOREM 4.9.1. The Dubrovin Frobenius structure of the orbit space A,, is isomorphic as

Dubrovin Frobenius manifold to the Hurwitz space Ho,.

Proor. Both the orbit space A,, and the Hurwitz space Hy, have the same intersection
form, Euler vector, unit vector field. From this data, one can reconstruct the WDV'V solution
by using the relation

ot otb" — deggh”

' sy O’F b
(4.66) B _ oo, 880 g

Theorem proved. O

REMARK 4.9.1. The Dubrovin Frobenius structure in the orbit space of A, and in the
Hurwitz space Hy, is globally well-defined. i.e. the structure constant (4.64), the Saito metric
1 (4.23) , the unit vector field (4.8) , and the Euler vector field (4.7) are globally well-defined.
However, the flat coordinates of the intersection form (4.6) is multivalued due to the fact that
the intersection form (4.6) is not everywhere non degenerate, see subsection 2.1.3 for details.
Note that the monodromy of the flat coordinates of the intersection form (4.6) is exactly the
group A,. Moreover, we generate a n-sheeted covering over the orbit space of A, by fixing
a chart in the orbit space of A,, i.e. choosing a representative to each orbit, and after that
we act the group A, in this space.Therefore, the flat coordinates of the intersection form are
globally well defined in each sheet of this covering, and fixing a sheet solves the problem of the
multivalueness of the flat coordinates of the intersection form.
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REMARK 4.9.2. The result of the Theorem 4.9.1 implies that the orbit space of A, is
isomoprphic to the Hurwitz space Hp . In the remark 4.9.1, we defined a Dubrovin Frobenius
manifold in each sheet of the associate covering over the orbit space of A,, then, one could ask
what happens in the Hurwitz space side. Indeed, the Hurwitz space Hy , is also associated with
a n-sheeted covering, and we can fix sheet by choosing a root of A near oo, which is equivalent

to fix a root of unity of 2" = 1.
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CHAPTER 5

Review of Dubrovin Frobenius manifolds on the orbit space of

A (An)

This chapter is a summary of the work done in [8] and [9], which generalises the constructions

done in chapter 4 for a suitable extension of the A,, group.

5.1. Ordinary Jacobi group 7 (A4,)

Step 1:
The first step of the orbit space construction, as it was previously done for the A,, is the
definition of the desired group action. In this particular case, the definition of the #(A,) action
on C @ C" @ H, see [8] for details.

Consider the action of the group 4, on (LA, (,)4,) done in section 4.1. Then, consider the

following group L4 x LA x Z with the following group operation
VYA, 1, k), (N, i, k) € LA x LA x 7Z
A k) o (N k) = AN+ X+ ik +k+ (A Na,)
Note that <, >, is invariant under A,, group, then A, acts on LA4» x LA x Z. Hence, we can
take the semidirect product A, x (LA" x LA" x Z) given by the following product.
Y(w, A, i, k), (0, \, i, k) € Ay x LA x LA™ x Z
(w, A\, 1, k) ® (0, \, i, k) = (wid, w\ + N, wp + fi, k+k+ (AN a,)
Denoting W (A4,) := A, x (LA x LA x Z), we can define
DEFINITION 5.1.1. The Jacobi group _#(A,) is defined as a semidirect product W (A4,)
SLo(Z). The group action of SLo(Z) on W(A,,) is defined as
Ady(w) =w

ac bd
Ad’Y(Av H, k;) = (alu‘ — bA, —cp+ dA k + ?<H7 :U’>An - bC<:ua )\>An + ?<)‘a )\>An)

for (w,t = (A, i, k)) € W(A,),y € SLy(Z). Then the multiplication rule is given as follows

(w,t,7) ® (0,t,7) = (Wi, t o Ad(wt),¥7)

Recall the following identification Z" =2 LA» C" =2 LA» @ C done in 4.1.
Then the action of Jacobi group ¢ (A,) on Q:=C @ C" @ H is given as follows
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PROPOSITION 5.1.1. [8] The group #(Ay) 3 (w,t,7) actson Q:=CHC" @ H > (u,v, 1)

as follows:
w(u,v,7) = (u, wv, T),
5.1) o, 0,7) = (= (A )4, — 5NN 4,70+ A+ ),
)= il o el
5.2. Jacobi forms of ¢ (A4,)
Step 2:

The main goal of this section is construct notion of invariant ring which generalise the
symmetric polynomials in chapter 4. The ring of invariant suitable for Jacobi groups is called
ring of Jacobi forms. This notion was first defined in [18] for the Jacobi group Ay, and further
generalise in [34]. In [8] and [9], Jacobi forms were used in the context of Dubrovin Frobenius

manifolds.

DEFINITION 5.2.1. [8] The weak Jacobi forms of #(A,) of weight k, and index m are
functions on Q@ = C® C* @ H > (u, v, 7) which are holomorphic on (u,v,7) and satisfy

o (w(u,v,7)) = @(u,v,7), A, invariant condition

‘:O(t(ua v, 7-)) = cp(u, v, T)

52 o(+(,0,7)) = (e7 + d)Fpu,0,7)
Eo(u,v,71) := iggo(u,v,r) = me(u, v, T)
271 Ou
Moreover,

(1) ¢ is locally bounded functions on v as &(7) — +oo (weak condition).

The space of Invariant functions of ¢ (A,) of weight k, and index m is denoted by J,ffn.
DEFINITION 5.2.2. J;{(A") =®@rm J,f;l.

REMARK 5.2.1. The condition Ep(u,v,7) = me(u,v,7) implies that ¢(u,v,7) has the
following form
e?ﬂ'imu

<p(u, Uy, 7_) = f(% 7_)

and the function f(v,7) has the following transformation law
f(w(’U,T)) = f(v77_)a
AN

(5.3) Ft(v, 7)) = e 2T £ (g, 1),

. c(v,v)
Fy(v,7)) = (er + d)~Fe™ ™ e f (o, 7).
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The functions f(v,7) are more closely related with the definition of Jacobi form of Eichler-Zagier

type [18]. The coordinate u works as kind of automorphic correction in this functions f(v, 7).

REMARK 5.2.2. Note that the ring of Jacobi forms of #(A,) is not exactly invariant under
the action of #(A,). Indeed, the first two equations of (8.2) show that Jacobi forms are
invariant under the first to action of (5.1), but the third equation of (8.2) gives a modular

behaviour to the ring of Jacobi forms.

The main result of section is the following.

The ring of A, invariant Jacobi forms is polynomial over a suitable ring M, :=
J,”E(A") on suitable generators g, 2, ..0n+1-

Before state precisely the theorem, I will define the objects M,, ©o, @2, ..Ont1-

The ring M, := J::TJ(A”) is the space of Jacobi forms of index 0, by definition.

LEMMA 5.2.1. The sub-ring J::%fAn) is equal to M, := € M}, where My, is the space of
modular forms of weight k for the full group SLo(Z).

PROOF. Using the Remark 5.2.1 , we have that functions ¢(u,v,7) € J:f)(A") can not
depend on u, then ¢(u,v,7) = ¢(v, 7). Moreover, for fixed 7 the functions v; — (v, 7)) are
holomorphic elliptic function for any ¢. Therefore, by Liouville theorem, these functions are

constant in v. Then, ¢ = ¢(7) are standard holomorphic modular forms. O

At this stage, we can state the main theorem of this section

THEOREM 5.2.2. [34] The ring of A,, invariant Jacobi forms is free module of rank n + 1

over the ring of modular forms, i.e. there exist Jacobi forms g, 2, .., Yn+1 such that

7 (An
J:,go( ) :M0[¢07¢27"7¢n+1]‘
An explicit base of generators were derived in [8]. The strategy done by Bertola in [8] was
starting with a basic Jacobi form of A,,, which was constructed in [34] as
_ 27iu - 61(Ui7 T)

(5.4) Pni1 =e IR
* L4007

thereafter, Bertola defined a recursive operator to generate the other basic Jacobi forms.
For this purpose, it is necessary to enlarge the domain of the Jacobi forms from C& C" @ H >
(u,v0,v1, .., Un,T) to CHC" ™ @ H > (u,vo, v1, .., Vn, p, 7). In addition, we lift the Jacobi forms
definedin CeC"@H to C® C"* @ H as

o(u, v, V1, V2, .., U, T) = () = @(u,v9 + p,v1 + P, .oy Uy + P, T).
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A convenient way to do computation in these extended Jacobi forms is by using the following

coordinates
2
oy 9T 7
n—+1
(5.5) zi=vi+p, 1=1,..,n+1.

T=T.

The bilinear form (v,v) 5, is extended to

n+1
(5.6) (21,22, 5 -2Zns Znt1), (215 225 -y Zns Zn+1) ) E = sz,
i=1
or equivalently,
(57) <(U07 1, "7vn)p)7 (7)077}17 cey Unvp)>E = Z AZJUZU] + (n + 1)p2
The action of the Jacobi group A,, in this extended space is
'UA)E(U,U,p, T) = (u,w(v),p, T)a
1
(58) tE(“’vU:va): U_</\7’U>E—§<)\7)\>E7'+kav+17+)\7'+ﬂ77' )
B c(v,v)g v p ar+b
VB (t, v, p,7) = <u+ 2(ct+d) et +d et +d’ c7'+d) '

PROPOSITION 5.2.3. [8] Let ¢ € Jk/(A"), and ¢ the correspondent extended Jacobi form.

m

Then,
9 7 (An)

5.9 —(p eJ7 V.

(59) 5 @) €

PROOF. (1) Ap-invariant
The vector field 8% in coordinates s, 21, 29, .., Zn, Zn+1, T reads
+1 .
’ op 0z n+1 Ou

i=1
Moreover, in the coordinates s, 21, 29, .., Zn, Zn+1, T the A, group acts by permutation
on the variables {z;}. Then

% (@(87 Zi1s Rigs s+ Riny Ant1y T))

n+1
0
= (Z 82’) (¢(S7 Zi1 9 Ziza 9 "Z’ina Zin+177—)) |p:0
p=0 i v
n+1
d¢
= (Z 82?@) (37 ziov Zi17 9 "Zina Zin+1 ) T) |p:0

n+1
= % (8,205 215 5 - Zns Zng15T)| g -
X 8ZZ' p
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(2) Translation invariant

0
8*(%0(’&—<)\,’U>E—<)\,/\>E,U+p+AT+M,T))
14 p=0
0 dy 1
= 8p()\,v)E pzogo(u,v,T)—l— o <u—(/\,'u>A1 — 2<A,)\>An7+k,v+)\7+u,7>
I S ) W (NI iy ps
=% u ) An = 5 AN AT+ R0+ AT+ T
= % (u,0,7)
Op p=0

(3) SL2(Z) equivariant

o0 (u+ c(v,v)p v P aT—i—b)
Jp 4 2(ct+d) et+d et +d eT+d

p=0

B c 2@7)) (u,0,7) + 1 Op " c(v,v)a4, v D aT+b)
- 2er+d)op' Epzoga T o dap 2(ct+d) et+d et+d et +d
1 oy c(v,v)a, v p ar+b
et +dop 2(ct+d) et+d er+d e +d

1 0y
=@t dr %(U,U,T) -

Then,

(u,v,7)

Jdyp ( clv,v)g v P a7’+b)’ B 1 Do
p—0 ( p=0

dp 20ct+d) etr+d et+d et +d T (er+d)kT ap

(4) Index 1
100, 100, 0
271 Ou 8p80 - 2miOp ﬁutp N Gp%
O

(An)

COROLLARY 5.2.3.1. [8] The generators of the algebra J;{ "’ are given by the following

generating function

8 ‘ n+1 0+ (2
(5.11) [ezap <e2m“ 91,((02)) = Oni1+ P2t on 122+ A 22" 2" T O (2" 2)
i=1 1 p=0

where
8n+1—j
(5.12) pj = oprtii (Pn+1) o
PRrROOF. Acting 8% k times in ¢, 1, we have
+1
ik e27riun 91(2:1‘) e J/(An)
akp p 9/1(()) —n—1+k,1"
= p=0
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COROLLARY 5.2.3.2. [8] The generating function can be written as

n+1 n
22 ; 91 (Zz) —97i(— 1 2 91(2 — 'Ui)
(5.13 e“op | 2miu — e 2mi(—ut(n+1)g1(7)z%) .
| o), 05w

The next lemma is one of the main points of [8] and [9], because this lemma identify the
orbit space of the group _#(A,) with the Hurwitz space Hj . This relationship is possible due
to the construction of the generating function of the Jacobi forms of type A,,, which can be
completed to be the Landau-Ginzburg superpotential of H; , as follows

Comi( " 01 (z — ;) o [ g 61(z — vi, 7)
14 27i(—u+(n+1)g1(1)2?) 1 2miu 1 14=0 )
. ‘ 5w 0 (v, )

=0
LEMMA 5.2.4. There is a local biholomorphism between 2/ #(A,,) and Hi ,,, i.e the space

of elliptic functions with 1 pole of order n, and one simple pole.

PROOF. The correspondence is realized by the map:

—2miu H?:O 61 (z — Vg, T)

(515) [(U7 V0, U1y -5 Un—1, T)] — )‘(Z) =e 9n+1(v 7_)
1 )

Note that this map is well defined and one to one. Indeed:

(1) Well defined
Note that proof that the map does not depend on the choice of the representant of
[(w, v, V1, ..y Un—1, Unt1,T)] is equivalent to prove that the function (5.15) is invariant
under the action of #(A,). Indeed

(2) A, invariant
The A,, group acts on (5.15) by permuting its roots, thus (5.15) remais invariant under
this operation.

(3) Translation invariant
Recall that under the translation v — v + m + n7, the Jacobi theta function transform
as [8], [33]:

22
(5.16) 01(v; + pi + N7, 7) = (=1 NitHHie 2wt T, (4 1)

Then substituting the transformation (5.16) into (5.15), we conclude that (5.15) remains
invariant.

(4) SLy(Z) invariant
Under SLy(Z) action the following function transform as

V4 at+d
91 (CTer’ CTId) 7TiC'U2 01 (UivT)
(5.17) N ™\ ord) v,
o (0 ) T

Then substituting the transformation (5.17) into (5.15), we conclude that (5.15) remains

invariant.
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(5) Injectivity
Two elliptic functions are equal if they have the same zeros and poles with multiplicity.
(6) Surjectivity
Any elliptic function can be written as rational functions of Weierstrass sigma function
up to a multiplication factor [33]. By using the formula to relate Weierstrass sigma

function and Jacobi theta function

2 T) exp(—2m’g1(7')v2)

7

(5.18) o(vi, ) =

where ¢1(7) is a specific normalization of Eisenstein 2 [8]. Hence, we get the desire

result.

O

At this stage, it is possible to show the relation between the Jacobi forms ¢y, .., pp+1 and

the elementary symmetric polynomials ag, as, .., an41.

PROPOSITION 5.2.5. [8] Let the Jacobi forms ¢y, .., ¢n+1 be defined by (5.11), then the

lowest term of the Taylor expansion in the variables {v;} are given by

Ont1 = ang1 + O(|[v]["),
en = an +O(|v]|"")

Pn—1 = ap-1+ O(HUHH_Z)
(5.19)
p2 = as + O(|[v][")
Y1 =a1 = 0
o = ao + O(||v][*)
where a9, as, ., an4+1 are defined in (4.2)
Proor. Expanding the 6;(v;, 7) in ¢,+1, we obtain
(5.20) Pnt1 = any1 + O(|[v][").

Applying the operator (5.10) in ¢,+1 and using (4.3), we get the desired result.
O

COROLLARY 5.2.5.1. [8] The Jacobi forms ¢q, .., pn+1 be defined by (5.11) are algebraically
independent.
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PrOOF. The Jacobi forms ¢y, .., on+1 are algebraically independent iff as,as, .., an+1 are
algebraically independent due to 5.19. The functions ag, as, .., a,41 are algebraically independent
due to Chevalley theorem 4.2.1.

O

COROLLARY 5.2.5.2. The functions (¢q, ¥2, .., ¥n+1) obtained by the formula

A\ = e—27riu H?:D 91(2 — Ui, T)
(5.21) 07+ (z,7))
= Ont10" (2, 7) + " 2(2,7) + o + p20(2,T) + @0,

are Jacobi forms of weight 0, —2,.., —n — 1 respectively, index 1.

PRrROOF. Let us prove each item separated.

(1) A, invariant, translation invariant
The Lh.s of (5.21) are A,, invariant, and translation invariant by the lemma (5.2.4).
Then, by the uniqueness of Laurent expansion of A, we have that ¢; are A,, invariant,
and translation invariant.

(2) SLa(Z) equivariant
The Lh.s of (5.21) are SLy(Z) invariant, but the Weierstrass functions of the r.h.s have

the following transformation law

(k=2) z ar+b

— dk’ (k—2) )
CT—l—d’cr—i-d) (er +d)%p (z,7)

(5.22) 1)

Then, ¢ must have the following transformation law

c(v,v)a, v ar+b

2 — d —k )
(5 3) (Pk(u_}— 2(CT+d)’CT—|—d’CT+d) (CT+ ) ‘Pk(%”ﬂ')
(3) Index 1
1 0
5.24 — A=
( ) 271 Ou
Then
1 0
5.25 = 0= 0
( ) 27 8u% i

5.3. Intersection form, Unit vector field, Euler vector field and Bertola’s

reconstruction process

Step 3:
This section focus on the Bertola approach to construct a Dubrovin Frobenius structure on the
orbit space of _#(A,). The first step of this process is to build the invariant #(A,) invariant
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sections : intersection form, Unit vector field and Euler vector field, and from this data, Bertola

reconstruct the Dubrovin Frobenius structure of the Hurwitz space H .

REMARK 5.3.1. _#(A,) invariant sections means invariant under the first to action of (5.1)

and modular with respect the third action of (5.1).

DEFINITION 5.3.1. [8] Let bilinear pairing be given in coordinates (u, v, v1, .., n, T) by

_ 2
g= Z dv; ‘Z?:o vi=0 T 2dudt
(5.26) =0
= Z Aijdvidvj + 2dudr,
,J

where matrix A;; is equal to the matrix g;; in (4.5). The intersection form is given by

0 0 0 0 0 0
* Ail - -~ -~ - iy
(5.27) g Z]: i g0 S oy T oular o7 © du
PROPOSITION 5.3.1. [8] The intersection form (5.27) is invariant under the first two actions

of (5.1), and behaves a modular form of weight 2 under the last action of (5.1).

Note that (5.27) is modular with respect the SLy(Z), but this does not means that its
coefficients on some coordinates have the same modular behaviour. Indeed, taking the coordinates
00, P2, -y Pn+1, T, we have that if under the SLy(Z)

(2
Pi (CTL—Fd)i’
then,
dy; B icp;dT
et +d) (et +d)itL
Since (5.26) and (5.27) behaves as modular, the coefficient g;; and g/ have to transform in a

dgoi —
(

non modular way to cancel the cancel the non modular contribution of dy; and % For this

i

purpose, Bertola considered the following metric.

LEMMA 5.3.2. [8] Let ¢; € Jf,*;i m, and n(7) the Dedekind eta function, then the metric
given by

Lo 2 2j 9 9 9 (9
(5.28) s o)) - (i) @ 90, (n.)
is invariant under the first two actions of (5.1), and behaves a modular form of weight 2 under
the last action of (5.1).

Moreover, the coeffiecients of the metric (5.28) are given by
M (dgi, dipy) = ey (P s, dni ;)
) j) = o ) '
(529) 7721+2]
= g" (dpi, dp;) — 4migi () (kimj + kjm;) vip;,
An
furthermore, M (dy;, dy;) € Jfkifkj+2,m¢+mj'
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PROOF. The metric (5.28) is is invariant under the first two actions of (5.1), because propo-
sition 5.3.1, and because 1 do not change under this action. The equivariance with respect the
SLs(7Z) follows again from proposition 5.3.1, and from the fact that the transformation laws of

7 get canceled.

The equation (5.29) follows from the chain rule, from the identity

(5.30) ?;m — (7).
Il

The ring of Jacobi forms of ¢ (A,) give us the data to build the remaining part of the

Dubrovin Frobenius structure. Indeed:

DEFINITION 5.3.2. The Euler vector field with respect the orbit space _# (A,) is defined by
the last equation of (5.2), i.e

1 0
31 EF=—-———
(5-31) 271 Ou

DEFINITION 5.3.3. The Unit vector field with respect the orbit space ¢ (A,) is the vector
associated to the invariant coordinate ¢q defined in (5.21) , i.e

0

5.32 = —
(5.32) = B

At this point, we can state the main result of [9].

THEOREM 5.3.3. [9] The Dubrovin Frobenius structure of the orbit space of ¢ (A4,) is

locally isomorphic as Dubrovin Frobenius manifold to the Hurwitz space Hj ;.

PRrROOF. Both the orbit space ¢ (A,) and the Hurwitz space Hj , has the same intersection
form, Euler vector, unit vector field. From this data, one can reconstruct the WDV'V solution
by using the relation
gaﬁ

. FoP — .
(5.33) Togg™?

Theorem proved, see details in [9]. O

REMARK 5.3.2. Note that even though the Hurwitz space Hi,n is locally isomorphic to the
orbit space of _#(A,,), this does not mean that the two constructions are completely equivalent.
The Dubrovin Frobenius structure on the Hurwitz space depends on the Hurwitz space, and in
choice of a primary differential, and the Dubrovin Frobenius structure on orbit space depends
on the data of the group. Moreover, Dubrovin Frobenius structure on the Hurwitz space is a
local construction, since it is constructed on a solution of a Darboux-Egoroff system. The orbit
space construction instead, have the invariant ring of function, which gives a global picture.
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5.4. The Saito metric for the group ¢ (A4,)

Step 4:
From this point, we will prove the existence of a Dubrovin Frobenius structure in the orbit space
of 7 (A;) by using a strategy that is more closed related to the Saito and Dubrovin approach
of differential geometry of orbit spaces [28], [11]. The effort to do this alternative proof worth,
because, it would stress even more the fact that the construction of Hurwitz spaces and orbit
spaces are independent, furthermore, this construction could be more suitable for the others
Jacobi groups associated to the finite Coxeter group. This section will be devoted to construct
the flat pencil metric on the orbit space of _#(A;). The first flat metric was already constructed
in (5.27), therefore, this section will concentrate in the construction of the second flat metric.
The second metric as the equations (5.36) suggests is given by

Lie o g¥ :=nY.
%0

Hence, we will derive the coefficients of the metric (5.27) in the coordinates g, @2, .., ¢n+1 and
from it we derive the coefficients of the second metric of the flat pencil.

In order to derive the coefficients of the metric n*, first, we derive a generating function for

the coefficients of g*.

DEFINITION 5.4.1. [8] Let E* the space of elliptic function of weight k. The elliptic connection
D, : EX — E* is linear map defined by
1 0i(v,7)

(5.34) DrF(v,7) = 0-F (v, 7) = 2kgu(r)F (v,7) = 52 03

F'(v,7),

where F(v,7) € E*.

THEOREM 5.4.1. [8] The coefficient of M*(dy;,dy;) be given (5.29) is recovered by the

generating formula

n+1 (_1)k+j M (ds, dip; ol )(k—2) ( /)(j—2) _
k;o Gt D e et
55 1 d\(v) dA(V))

= 2mi(A(V") D A(v) + A(0) Dr A(v')) —

L) + o) M) M),
2 p(v) — p(v) ) dv’ dv AW

Starting from this point, there exist some original work. For these results, I will not put

n+1 dv dv

references.

COROLLARY 5.4.1.1. Let 7*(dy;, dp;) and n*(dy;, dp;) be given by

aM*<d(pi, d(pj)
Do

99 (dpi, depj)
Do

1" (depi, depj) :=

I

(5.36)

n*(dei, dpj) =
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The coefficient of 7*(dy;, dy;) is recovered by the generating formula

n+1 (—1)k+i |
2. GG dendepe)* o) =
(5.37) k,j=0

dA(v')  dA(v)
dv' dv ]

, Lp'(v) +p'(v')
=27i(DA(v) + D)) + =
(DeMw) + DX + 5 S
Moreover,
(5.38 i (di, dej) = n"(dpi, dej), 4,5 #0
" (dpo, dp;) = 0" (di, dp;j) + dmikjep;

PRrROOF. Just differentiate equation (5.35) with respect g, and use the equation (5.21). O

COROLLARY 5.4.1.2. The metric 7* and n* defined in (5.36) behave as modular form of
weight 2 under the last action of (5.1).

THEOREM 5.4.2. Let n*(dy;, dy;) defined in (5.36), then its coefficients can be obtained by
the formula
n"(dei,dpj) = (i +j = 2)pitj—2, 4,j#0

(5.39)
n*(dp;, dpo) =0, 1 #0.

ProoOF. Consider the equation (5.21) written in a concise way as follows

n+1

(5.40) Z
0

Substituting (5.40) in (5.37)

1 n—k Lk
(0 — )1 P k" ().

= DT OM* (dgi, dy;) :
1) J v (k—2) U/ (1-2) _
E , G=1) 0 p(v)" T p(v)

0
(5.41) i —)™ ]:gam_l . [2m (Dfp"_l_k(v)+D7pn_1_k(v/))}

ntl (_1 n—k

(n— Ry Ptk [(C(v — ) +¢(V) — ((v)) <pn—k(vl) B @n_k(vl)>}

+
i (

Expanding the left-hand side of (5.41), we get

ntl k+j *
1R OM* (de;, de; - .
§ : (k ( ) ( P @])p(v)(k’ 2)9(,0/)(] 2)

, -G —1)! o
k,j=0
(5.42) ’ .
o~ OM*(dg;, dp;) 1
— E OM”(dpi, dp;) = + Other terms,
P Do vk (v')!
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where ”Other terms” in the equation (5.42) means positive powers of either v or v'. For

convenience, define

(1) : = 2mi (D,o" 7 (w) + Do)

(5.43) ‘
+ (Co =) + <) = ¢) (") - p" )

In order to better to compute (5.43), consider the analytical behaviour of the term

_ 1 6w, T)
271 01 (v, T)

(5.44)  Drp" " F(0) = 9,0" H W) — 20+ 1 — k)i ()" 0) 0" (v).

The term

&—pn_l_k(v)

in (5.44 ) is holomorphic, therefore, it does not contribute for the Laurent tail. The term

(5.45) 2n+1—k)gi(r)p" 1 * @)

also do not contribute, because the full expression (5.44) behaves as modular form under the
SLy(Z), but (5.45) is clear a quasi-modular form, since it contains ¢;(7). Hence, (5.45) is

canceled with the Laurent tail of

1 6i(v,7)

(5.46) T

"R (v).

To sum up, the analytical behavior of (5.44 ) is essentially given by (5.46). Under this

consideration, and by using the equation

01 (v, )
01(v, 1)

C(Uv T) =

— 4rigi(T)v
(5.47) 1
- ; + 0(7)3)

the equation (5.43) became
o1



(1) = =C(0)p" *(v) = ¢(v")p" *(v)

+ (C(v — )+ () — C(v)) (pn_k(vl) - go"_k(v)) -+ Other terms

= () (W) 9" — C)p" ) - ()" H(w) + Other terms
1 <(—1)"‘k(n —k=D! (=) Fn—k- 1)!)

v =0 U/n+2_k pnt2—k

L))" n—k—=1)! 1 (=D)"Fn-k-1)
N ; ,UITH—2—]€ QT Un+2_k
1

k n+2 k _ /n+27k
=(-1)"*(n—k—1)!
( ) (n/ ) v— v (I7U)n+2_k

LD n-k-1)! 1 (=D)"*n-k-1)

+ Other terms

T =~ " + Other terms

v /M2 k / ont2—k
( n+2—k
7=0
L(=1)" 1 ( (n—k—1)!
o /n+2 k a o2k + Other terms
n+1—k
n— k
N ( 1) ZO UlJr]U/n-i-Q 14 m+2—k—j —J
J:
(=)™ 1( (n—k—1)!
s /n+2 % g Tk + Other terms
n—k
k
= ()" (n—k—1)! v”iv’”*? ——————5—— | + Other terms
7j=1
n+1 k
(=D k ] + Other terms
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Substituting (5.48) in right-hand side of (5.41)
- (_1)n_k 1-k 1—k
m¢n+17k [27ri (Dvpnf “P(w) 4+ Dyt (v'))]

k=0 ’

S (_1)n_k / / ko o/ koot
F D ek (€0 =)+ 6@ = ¢) (9N - o))

k=0 ’

n+1ln+l—k

1-k _

= (n+ , 3in+1 " 1 Other terms

il Vo 3—k=]

(5.49) .
+1ln+1 .
1-k ks
= (n+ - ) Pttty + Other terms
: vjv/n+3—k

k=0 j=2

n+1n+1 (k+]) i
= Z 7k+2+] + Other terms

k=0 j=2 vl

n+3n+1

(k+5) Prtj-2

Uj,U/k

4 Other terms

I
(]

Eond
||
I\

<
[|
N

Comparing (5.49) with (5.42), we get the desired result.

5.5. Flat coordinates of the Saito metric 7

Step 5:
This section will be dedicated to prove that the Saito metric 7 is flat and non degenerate to
complete that hypothesis of the lemma 4.4.1. In practice, we will construct the flat coordinates
of the Saito metric n as follows.

Let t', t2,..,t" be given by the following generating function

-1

(5.50) v(z) = ] (" 4472 + L+ 22+ O(2")).
Defined by the following condition

1
Av) = g
Moreover,
(5.51) t' = @o + 4migy (1) 2.

LEMMA 5.5.1. The functions 2, ..,#"*! be defined in (5.50) can be obtained by the formula

1 nt2-a
(5:52) “ = e (VT ).
PRroOOF. Consider the integration by parts
]. n —« n — 1—a
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Lemma proved.
O

LEMMA 5.5.2. The functions #2,..,t" be defined in (5.50) can be obtained by the formula
(5.54) t% = — res (v(z))\ﬁd)\> .
A=00

PROOF. Let

then,

—a 1
AN = < T 1) ("2 4 72 e+ 22 O("R)) 2T (4 1) 2R
n

n+1
— Ztﬁz"+2_ﬁ + O(z”+2) 203,
B=2

n+1
— Z B o—B-1 | O(zafnf?’) dz.
5=2

Hence, the residue is different from 0, when o = 3, resulting in this way the desired result.
O

COROLLARY 5.5.2.1. The coordinate t"t1 can be written in terms of the coordinates

©0, P2, -+ Pn+1 aS
_1
(5.55) " = (ppy1) ™

PROOF.

1
"t = res A7t (v)dv

O

LEMMA 5.5.3. Let the functions #2,..,#"*! be defined in (5.50), then the following identity
holds

n-+1 n+2—a n+2—o
(5.56) = o () T (L4 @upi)
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where

(5.57) 4=0
<I>d _ Z @(n—l—l—il) @(n—l—l—zd)
' 11+i2+..+iq=1 P+l Prtl
PRrROOF.
t¢ = ntl res ( nﬁrla )
n -+ 2 — o v=0
n+1 Ont1 V2 nidse
:n+2—a11;e%(v"+1+7+"+F+O(l)> dv
n+2—a
1 n:?—a _ nt1
__nt res (SOZID i (1 + Py + Pl 2 + ..+ P2 n-l +0 (vnﬂ)) dv
n+2—av=0\v ©On+1 P41 Pn+1
1 7L;t27a o0 n+2—« _ d
_ n —+ (80;1111> +1 Z( nt1 ) <1+ ©n U+<Pn 17}24_”4_ P2 Un1_|_0(vn+1)> dv
n+2—av=0\v = d Pn+1 Pn+l Prn+1
1 ni2fo¢ o0 n+2—« . i\ Ji .
- (e () w2 T ("””“ 2 00y
n+2—av=0\v =0 St otdn= ]1 J2!-.Jn! paley $n+1
n + 1 nt+2—o > nt+2—o Pn+1—i 7 n- 1 —2—
et I ol (i IO SR oy ey
n+2—a = d P Jl]2 Jnt i\ Pl
+0(1)
n 4+ 1 n+2—« © nt2—o Pn+1—i 3
- M > el
n+2—a« = d it ot in=d Ji! ,72 -In: i1 Pn+1
J142j2+3j3+..+(n—1)jn_1=n+1—a
. n —+ 1 (90 +1)n:i—la > <n;i;i;0¢) Z (P(n+17i1) go(nJrl*id)
=—— (v,
nt2-a i L R A N Pl
n+1 nt2—a oo n42—«a d
T2 (Pnt1) ™+ Z( n:irl Prii-a
d=0
n + 1 n+2—a nt+2—«o
“n +2 -« (Pnt1) T (14 Ppy1-0) 1
]
LEMMA 5.5.4. Let o, 92, .., pnt1 and A(v) be defined in (5.21), then
(5.58) kr, = res ExoPdw.
V="
PROOF.
res kxR tdy = re%k <¢Zj:11 + =+ + — + + - + O(1 )) v ldy
v= v= v
= k‘cpk.
]
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LEMMA 5.5.5. Let o, 92, .., pnt1 and A(v) be defined in (5.21), then
(5.59) ko = — res vFd.
A=00
PROOF. Using formula (5.59) and integration by parts

ko = res kMNP tdo = — res vFd.

A=00

O

LEMMA 5.5.6. Let ©q, 02, .., oni1, A(v) be defined in (5.21) and (¢2,..,#"*1) be defined in
(5.50) , then

( : ) Pr = m n+1»
where
(561) TT’LC—&-I Z t(n+2_i1)...t(n+2_ik)'

11+ +ip=n+1

PROOF. Let z := (%) T , then by using equation (5.59):

1)vk(2)d
s vFd) = reg (T DV (2)dz
A=c0 z=0 Zn+2
(_1)k +1 2 2 +2 dz
:I‘GSW(tn Z+tn2 + ..+t Zn+0(2n ))W
( 1)k +1_\J1 2\ J2 2 Jn +9\\Jn+2 dz
= s S0 (n + 1)k1 Z (£ 2) " (172%) 7 L (727) T (0(2"F2)) )
J1+ge+.+Intinte=k
(=1)* k! W -
= ——— Z e (tn-‘rl)Jl (tn)JQ . (t2)J
(n+1) 1+t Hin=k J1g2s-gn:
J14+2j2+3j3+..4+(n) jn=n+1
(_1)k (n+2—i1) p(n+2—ig)
- T k-1 Z t Vot k
(’I’L + 1) i1+..ip=n+1
(=) Tk
- (n+ 1)k—1 n+1
]

LEMMA 5.5.7. Let 7%, be defined in (5.61), then

s = kTF .

(5.62) i
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PROOF.

k
Ty, _ 0 S gl gnz-a)
ote ote
i1+..0,=n+1
= Z kbnt2—i, Oét(”JrQ*il) g A2—ik )
i1+..1=n+1

ChY g geseny
i1+..ik,1:a—1
= kTh
O
THEOREM 5.5.8. Let (¢2,..,¢""1) be defined in (5.50), and n* be defined in (5.36). Then,

(5.63) 0 (dt®, dt"3P) = —(n + 1)dag

Proor. If 4,5 #0

n+1n+1 8@ 8(,0
1 ] * ﬁ
(5.64) (i, dips) =D ) ara o0 (dt%,dt7)
a=2 =2
Using (5.62) and (5.60), we get
dpk (=D ok
5.65 = ETF L
(5.65) ot (n+1) a-l
Then,
1 1 o
(5.66) L Oni3-j _Ti (=17 qi—1nt+2—j
. ot gn+3—a (n+1)z Jtntl a—1"nt2—a"
=2

Using the second of the equation (4.46) in (5.66)

ntl n+1+i—j
0pi Oonyz—j  Tniy

a Am+3—a
— Ot~ o't (n+1)

(5.67)

_ (n+1+1i—7)

= n—HSO(nHH—j)-
Note that

+1 +1n+1
(5 68) S 8901 a‘ﬂn+3 Y¥n+3—j nz nz 8801 a907L4r3 j
' < OLe Ptr+3-o Bt pn+3-5 00
o=

o7



On another hand, using equation (5.39), we have

0 (dpi, dpnis—j) = (n+1+1i— j)ontitij

n+1n+1
Z Z i Oppy3— ] n*(dt®, dtn+3fﬁ)
ote Pent3—8
a=2a=2
n+1n+1
8()01 a§0n+3 ]
n+1 Zzata tn+3 B'
a=2 a=2

Then, we obtain

0 (dt®, dt"3P) = (n 4 1) dug

LEMMA 5.5.9. The metric

n+1
5.69 *(dt®, dt" P3O At d Y + 24t dr
( n

a=2

behaves as a modular form of weight 2, under the SLy(Z) action of (5.1).

PROOF. Under the SLy(Z) action of (5.1), we have that t! ¢2,.. t""! have the following

transformation law (see lemma 5.6.1)

n+1
c c
tl — tl _ tl tatn—i-?) «
* 2(c7’+d)<p2 * 4(n+1)(cr+d)a§:2
o
% — 1.
o+d © 7
Hence, its differentials transform as
c n+1
dtt v dtt + D (At gt
(5.70) 4(n+1)(cT +d) s
dt® ct®dr
dt® — — 1.
ct+d (et +d)?’ a7
Substituting (5.70) in (5.69), we get the desired result. O

LEMMA 5.5.10. Let t! defined in (5.51), and n* defined in (5.36). Then,
(5.71) n*(dt', dt*) =0, a#1.

PROOF. If i # 0, using the definition of n* in equation (5.36) and formula (5.39)
0 (dt', di) = 0" (deo, di) + Amigi (T)n" (dipz, dipi) + dmig] (T)” (d7, dr)
= 1" (dgo, dpi) + dmigi (T)n* (dp2, dp;)
= 7" (dpo, dpi) — 4dmigr (T)kipi + dmigi (T)kip; = 0
= —Admigy (1) kip; + 4migr (7)kip; = 0.
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Then,

n+1 @

ot
* 1 @\ _
n(dt,dt)_za

a=2

n*(dtl, de;) = 0.

2

O]

THEOREM 5.5.11. Let (t',¢2,..,¢"*1) be defined in (5.50), and n* be defined in (5.36). Then,
(5.72) n*(dt®, dt" 3 P) = —(n + 1)dap-

PROOF. The theorem is already proved for «, 8 € {2,..,n + 1} in theorem 5.5.8, and for

a =1, and 8 # 1 in the lemma 5.5.10. The only missing part is to prove
(5.73) n*(dt', dt') = 0.

Recall that from corollary 5.4.1.2, the metric n* behaves as modular form of weight 2 under
the SLy(Z) action. Moreover, the same statement is valid for (5.69), because of lemma 5.5.9.
However, the tensor dt' @dt!' behaves as quasi-modular. Hence, if the coefficient of the component
dt' @ dt! is different from 0, we have a contradiction with corollary 5.4.1.2.

O

0g* (dwi,de;)

COROLLARY 5.5.11.1. The metric n*(dw;, dp;) := =52

is triangular, and non degen-

erate.

DEFINITION 5.5.1. Let n* = naﬂa% ® % be defined in (5.36). The metric defined by

(5.74) 1N = Napdt® @ dt’
is denoted by 7.

5.6. The extended ring of Jacobi forms

The main point of this section is to point out that the flat coordinates of the Saito metric n
does not live in the orbit space of #(A,), but it lives in suitable covering over it. Therefore,
all the geometric data of Dubrovin Frobenius manifold are in suitable extension of the ring of

Jacobi forms.

LEMMA 5.6.1. [9] The coordinates (t1,#2,..,#""1 7) defined on (5.50) have the following
transformation laws under the action of the group ¢ (A,): they transform as follows under the
third action (5.1)

¢ Za,ﬁ;ﬁl,f naﬂtatﬁ
2(n+1)(er +d)

«

(5.75) o L 1
HCT-Fd’ a#l,

r_>a7'—|—b
ct+d

ths ¢t 4+

99



Proor. Note that the term <I>;-i equation (5.57) has weight +i, then using that ¢,,4+1 has
weight —n — 1, we have that the weight of ¢* for o # 1 must have weight —1 due to (5.56). The

transformation law of ¢! follows from the transformation law of g (7)

ar+b

5.76
(5.76) p——

) = (er + d)2g1 (1) + 2¢(er + d),

and by using equation (5.60) for k = 2.
O

In addition , from the formula (5.56) it is clear that the multivaluedness of (¢!, ..,#" 1) comes
from (cpnﬂ)n%l. Therefore, the coordinates lives in a suitable covering over the orbit space of
the group #(Ay). This covering is obtained by forgetting to act the Coxeter group A,, and the
SLy(Z) action of #(A,) on C@® C" @ H. The only remaining part of the #(A,) action are

the translations
Vi v+ AT A+ i

Hence, the coordinates (t!,..,#"*1) live in n-dimensional tori with fixed symplectic base of the
torus homology and with a branching divisor Y := {¢,+1 = 0}. Another geometric interpretation

of this covering can be done by the use of the following coordinates

LEMMA 5.6.2. The equations

n

-1
4= g | om0 ) = (r2ha)
1=

(5.77)

determine local coordinates in Hi ,, where 7 = {(w,w,w’) is Weiestrass Zeta function evaluated

mn w.

PROOF. Expressing the o function for the lattice generated by w,w’ in terms of Jacobi theta

1
0,(Z, <
(5.78) o(z,w,w) = 2wwe%22
00.)
1\M W

Substituting (5.78), we obtain

/ n+1
(5.79) — 2miu = log ((2w)‘”‘1W> ,
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Then, the following equations determines the inverse map of (5.77)

n+l _ 93 (O’T)n+1 —27iu
[T 02 (vi, 7) ’

zi =2wv;, +=0,1,..,n,

(2w)
(5.80)

w':nu.

O]

Using the coordinates (5.77), the covering of the orbit space of #(A4,,) is a n-dimensional
tori in lattice (w,w’) with fixed symplectic base of the torus homology and with a branching
divisor Y := {% = 0}. There exist another geometric interpretation of this covering in terms of
the flat coordinates of the intersection form w,vg, v1, .., vn, 7. Indeed, in these coordinates the
covering is defined to be the quotient of C & C" @ H by the group _# (A,) without the A,, and
SLs(Z) action, i.e. doing the quotient only by the action of the group Z™ @ 7Z" in the notation
of section 5.1.

This covering space of the orbit space of #(A,), in the coordinates w,vp,v1,.., vy, T, is
defined by

(5.81) CECraH/ 7(Ay) = (CaCaH) /(Z"arZ").
Note that
(5.82) EM =C"/(Z" & rZ")

is a n-dimensional tori with respect the lattice (1,7). Then, the covering (5.81) can be thought

as line bundle over n-dimensional toric fibration.

REMARK 5.6.1. Following the same discussion regarding the correspondence between covering
of the orbit spaces and covering of Hurwitz space started in remarks 4.9.1 and 4.9.2, we will
consider the correspondence between the covering (5.81) and a suitable covering of the Hurwitz
space H1,. Note that, a base in the first homology class of a torus is isomorphic to a lattice,
therefore, fixing a SLo(Z) orbit in the orbit space of #(A,,) (fixing a lattice) is equivalent to fix
a base of homology in the Hurwitz space Hi,. Moreover, the action of "forget” the A, action is

equivalent to choice a root of A (5.21) near oo due to the discussions of remarks 4.9.1 and 4.9.2.

In order to manipulate the geometric objects of this covering, it is more convenient to use

their ring of functions. Hence, we define:

DEFINITION 5.6.1. The extended ring of Jacobi forms with respect the ring of coefficients is
the following ring

(5.83) Ma[po, 92, -, Pn+1l,
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where
(5.84) M, = M, & {gi(7)}.

LEMMA 5.6.3. The coefficients of the intersection form g% on the coordinates (g, Y2, .., Pni1, T

belong to the ring M, [©0, 02, - Ont1]-

PROOF. It is a consequence of the formula (5.29).
O

LEMMA 5.6.4. The coefficients of the intersection form ¢®? on the coordinates t!,..,t" ! 1
belong to the ring M,[t!, .., t" 1, ).

PrOOF. Using the transformation law of g*?

ot otP
5.85 B = g(depi, dpj),
we realise the term % as polynomial in ¢!, .., #"+1, tn% due to the relations (5.56) and (5.60).
O
Recall that the quotient
(5.86) fi= -
Pn+1

is a elliptic function of weight i — n — 1 in the variables (vg,v1,.,vn,7), and @p+1 = W
Then, we can promote the elliptic function f; in the lattice (1,7) to a elliptic function in the

lattice w,w’ by doing
A 1
(587) fi(’l)o, V1, -y Un, 7') — fi(ZO, 21y ey By, W, w') = Wﬂ(vo, V1, ., Un, 7').

The same can be done in the modular forms in (1, 7) of weight k. Indeed,

(5.88) h(T) = h(w,w') := (2w)kh(7).

Therefore, due to the equation (5.56), in the coordinates defined in (5.77) the ring M, [th, ..ttt

takes the following form
(589) M‘w,w’ |:f07f27"7fn]

where ﬁ is defined in (5.87) and M.Mw/ is the space of modular forms in the lattice w,w’.
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5.7. Christoffel symbols of the intersection form

In this section, we will focus to prove that the Christoffel symbols of the intersection

form belongs to the algebra M,[(po, ©2, .., Pn+1] on the coordinates pg, @2, .., Yn+1, T, and to the

algebra M, [t .. L tnlﬂ] on the coordinates t!,..,t" "1 7. Moreover, we will prove that on

the coordinates g, ©2, .., pn+1, T the Christoffel Christoffel symbols of the intersection form is

at most linear on ¢qg. This fact is necessary to realise the pair ¢*,n* as a flat pencil metric.
Recall that the Christoffel symbols Fg(ga) associated with the intersection form g* is given

in terms of the following conditions (4.13).

LEMMA 5.7.1. Let ¢q, 2, .., on, T, be defined in (5.21), then F;l depend at most linear on
$0-

PRrROOF. Using the first condition of (4.13)
8kgii = 2F?.

Recall that due to the theorem 5.4.2, the metric ¢*/ depend at most linear on ¢gy. Then,
Ty

2
It

= 0R0kg" = 0,029 = 0.

LEMMA 5.7.2. Let ¢, ,®1, 92, .., on+1, T, defined in (5.21), then

7 =0,
(5.90) 5.
Ik = —2%1%.

PRrOOF. Let Fg(:p), in the coordinates x1, .., Zn, and I'7?(y) in the coordinates y1, .., yn, then
the transformation law of the Christoffel symbol in defined in the cotangent bundle is the
following

ij Oz’ 97 Oy oz’ 9 (da
(5.91) I} (z) = @@erq(y) * o 0aF (3yq> 9" (y)-

In particular, the sz(gp) in the coordinates (¢, ©1, .-, Pn, Un+1,7) could be derived from the

Christoffel symbol in the coordinates vg, v1, .., vn4+1, 7 Which is 0. Then,

J O 0 (0,
.92 ' (p) = L) gP(v).
(5.92) 20 =52 50 (52 ) o

Computing I‘;T,

| o 0 [ or
(o) = (5 ) 100
(5.93) k v, dpp \ v,

= —27rg0iaik (1) =0.
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Computing F]T-i by using the first condition of (4.13),

(5.94) I7*(p) = 039" =Ty
5.94 S
kT 95k
= 9,g" = —2mi%k,
;g i
0
PROPOSITION 5.7.3. The Christoffel symbols F?((p) belong to the ring M, (00, V2, s Ont1]-

PRrROOF. Note that the invariance of the Jacobi form ¢; with respect the first two actions of
(5.1), and equivariant by the third one implies that the differential dip; is invariant under the
first two actions of (5.1), and behaves as follows under the SLy(Z)

dei — cp
et +d)ki (T + d)kitl’

(5.95) dp; — (
Therefore the Christoffel symbol sz
(5.96) Vagrdps = T de,

is a Jacobi form if (p; has weight 0. Hence, doing the change of coordinates
(5.97) pi = i =10 (1) @i,

we have that the Christoffel symbol f;g

1 R T

is a Jacobi form.

Comparing f‘g with FZj
Vidp#dPi =V 50020 drn2ide; ) (2igin* pidr + n*'de;)
- v(2j9m2j%dﬂ# (%‘qm%%dﬂ * v(2j917721<ﬂjd7)# (n%d%)
TV gy (0 QdT) Y i (17 i)
= 2jgin” stg”VG% (2in* grsdT) + 2jg1n™ sajg”Va%l (n*deps)
(5.99) + 12 gl Ve (2ig1n* psdr) + 0 g7 Ve (" dees)
= dijghgrom™ g dr + 42§ g ojpig T dr + dijgin® T 9" dr
+4ijgin* T 097 dpi + 2§ T o T der + 4P gt igT dr
+ 2Zgin27,+2jgozgl]d7_ + 22917721+2]92de + 21914,017722+2]ng90k
2% g T des + n2i+2jriid(pk‘
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Dividing the equation (5.99) by %%% and isolating Fiidcpk, we have

M) ey = —4ijgig1010,9" dT — 4% jglpioigT dr + 4ijg* ¥ ;g dr
(5.100) — 4ijgi ;g dp: — 2jgrpiTE dor — 4% gpigT dr

' — 2igipigUdr — 2igin* ¥ gdr — 2igipiTY dpy
— g1 dy; + T dey.

Since the differential forms has a vector space structure and the right hand side of (5.100)
depends only on g%/, g1(7), ¢;, and I';’ which belongs to the ring M, [©0, 2, -y ©n+1], the desired
result is proved.

O
LEMMA 5.7.4. The Christoffel symbols I‘Zj(cp) depend at most linearly on .

PROOF. The proposition 5.7.3 gives to the space of Christoffel symbols the structure of
graded algebra, in particular we can compute the degree m regarding to the algebra of Jacobi

forms. Let ¢ € M.[gpo, ©2, .., Pnt+1] With index my and weight kg, then we write

degme = me,
(5.101)
degrp = kg.
Ttk + 7,
» dp; 0 [0,
. deg,,I'Y = degy, LR [ A WL =1.
(5.102) egml'y eg (@vp oon <3vq> g (v))

Therefore, I’Zj is at most linear on ¢q. If k =7,

. Op; 0 (0p; .
1—‘1’-] = R 73 pq = —7 — 4
degi¥ = degy, <8vp 57 <8vq> g (U)) i— 7+

Suppose that T contains a the term a(7)@g, where a(r), then

degpa(vp+1,7) =—i—j+4>0.
The possible Christoffel symbols that could depend on ¢Z are
(5.103) 194 a0 122 1720 o2 700,
But I'22,T% is linear on g due to lemma 8.8.1.

.. 8@1’ 0 6@ .
T — I e ) pq
a%&<m)g@)

_0¢i 9 (995
_avpavq<87)g ()

Recall that in (5.19), there exist a relation between the Jacobi form {y;} and the he elementary

Computing ry

(5.104)

symmetric polynomials ag, .., an+1 be given by the Taylor expansion of {¢;}.
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Note that the Christoffel symbol depend on g iff it contains the term constant in its
expansion. Our strategy is to show that the Christoffel symbols (5.103) contains only higher
order polynomials in its expansions. Computing the lowest degree term in the expansion of
(5.104)

;s atpi 6 8(pj
ij Y9 pa
5= %0, 0, < or > g ()
804 3 ab T
p OVq
_ BB 8bj (7’) 8aj+1 pq
C v, O Oy, g+
0b;(T)

J
= ——Qj+it3 T+ ...
or it

(5.105)

Therefore, we have that the associated Christoffel symbol do not depend on gpg. O

5.8. Unit and Euler vector field of the orbit space of #(A,)

This section is devoted to study the action of the Euler vector field, and Unit vector field in
the geometric structure of the orbit space of the group #(A,). The action of the Euler vector
field is particularly important, because it would give rise to the quasi homogeneous condition to

the WDVV solution, which we aim to construct.

LEMMA 5.8.1. Let A\, 0, .., ©n, Pni1, Pnr2 = 7 be defined in (5.21), (¢t!,.,#"*1 7) the flat
coordinates of 7 defined in (5.50), and the Euler vector field be defined by (5.31). Then,

E(\) = A,
(5.106) E(p;i) = dip;,
E(tY) = dut*,
where
d; = 1, 1< n+ 2,
(5.107) d; =0, 1=n+2,
d. = n+1-— a’
n

PRrROOF. Recall that the function A is given by

A\ = e—27riu HZT’L:O b1 (Z — U, T)
07 (2, 7)

= g0n+1p”_1(z, T)+ gonp”_z(z, T) + oo + 2p(2,T) + o.

Hence,

19
271 Ou

(A=A

= B(pn+1)p" " (2,7) + E(pn)p" 2 (2,7) + ... + E(p2)0(2,7) + E(0),
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therefore,

E(pi) = i,
furthermore,

E(r)=0.

Recall that t* can written in terms of equation (5.54) or in more convenient way

(5.108) = H%aqfi%A w()dv, e,

th = o + 4mig1 (T) 2.

Applying the Euler vector in (5.108) we get the desired result.
O

COROLLARY 5.8.1.1. The Euler vector field (5.31) in the flat coordinates of n* has the

following form

n+1 a
5.109 FE = dot® —,
5109 > g
where
n+2—«
5.110 dy = ————
( ) n+1
PRrOOF. Recall that
_ 19
27 Ou
0
=FEt*
( )8750"
n+1
=> d“taaia'
a=1

O]

LEMMA 5.8.2. The Euler vector field (5.31) acts in the vector fields %, % and differential

forms dt®, dp; as follows:
Lz'eEdgoi = d,;dgoi,

Liepdt® = d,dt®,

(5.111) 9 )
L = _diia

e i D

.0 0
LZeE@ = —da@
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LEMMA 5.8.3. The intersection form g be defined in (5.27) and its Christoffel symbol Fij
in the coordinates g, .., Yn, Ynt1, Pnt2 = 7 be defined in (5.21) are weighted polynomials in

the variables g, v2, .., Yn+1, With degrees

deg (gij) =d; +dj,
5.112)
( deg (Fgﬁ> =d; +d; — dj.

PRrOOF. The function g¥/ and sz belong to the ring M,[gpg, ©2, ..y Pn+t1] due to lemma 5.6.3

and 5.7.3. The degrees are computed by using the following formulae

B(67(0) = B (55 goad ™)

i\ 9pj i -, (09
- B m E m
<8vl> aom? (v) + vt gom? )

_ aE((pl) 890j lm(v) + 8901 aE(QO]) Im v

aol oum? vl ovm ()
- (dl + d]) avl avmg (’U)

and

o) -5 (2% (22) o)

-2 (3) e (32) o e 3 (32) )
_ OE(¢s) 9 (agoj) ) 4 261 0 (M(w)) 4™ ()

ol dpy \ dvm vl Do \ B

a(pi (9 a<pj Im
—d vt Dy, <8vm g w)

(4 d;— a2 9 (9% im

O]

LEMMA 5.8.4. The intersection form g®* be defined in (5.27) in the coordinates (¢!, ., "1, 1)
be defined in (5.50) and its Christoffel symbol F.OY‘B are weighted polynomials in the variables

th et t”% with degrees

deg (go‘ﬁ) = dq + dg,

(5.113)
deg (T57) = do + dg — d.

68



PROOF. Lemma 5.6.4 guarantee that ¢*® € M, [t9 L, .. et tnﬂl]. Using the formula

55 = B0 2 ()
~ 8GO 01+ S B S50+ S5 Bl )
~ B 2L () - i 2 i) + S 2 i) - 0, S 2 g
i )52 i)
~ o+ ) 5 ),

The Christoffel symbol F?B is given by the following

pos _ 07 00 dgup Ot 0 (0PN
v agoz- 8(,0]' oty Ogoi oty 8ng

I‘;j,% € M,[tl,..,tnﬂ] due to Lemma 5.7.3 and equations (5.65), (5.61). But % €

M, [t .. ¢+ tnlﬂ], see the proof of lemma 5.6.4 for details. Therefore, Ff‘;‘ﬁ are weighted

polynomials in the variables ¢!, .., ¢t"*1, t"{*'l' Computing the degree of I’f‘,ﬁ

o> ot dpy, i Ot 9 [OtPN
aBy _ OV OPk 1ij I A e ¥
E(F’Y ) E(ﬁgpl Ogoj at7 Fk 6% Ot’Y (a¢j> )
« 8 . « B ..
e a2 Dohr g O O D

0ip; O O D; Dpj Ot7
ot OtP Doy, i ot o (0N
5ov i a0 (55 )

o> o [otP\ .. o> o [otP\ ..
_ - - | = 1) AN~ | 1]
T (3%) 97 e i) o <680j> !

o o (ot .
F+ )55 (5,) 9

= (da +dg — d,)T”.

+ (dk - d’y)

O]

LEMMA 5.8.5. The Unit vector field (5.32) in the flat coordinates of n* has the following

form

(5.114) e=——.
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PROOF.

o o 9
dpo Do Ot
0
=

O
LEMMA 5.8.6. Let the metric n* defined on (5.36) and the Euler vector field (5.31). Then,

(5.115) Liepn®® = (do + dg — di)n™”

5.9. Construction of WDVYV solution

The main aim of this section is to extract a WDVV equation from the data of the group

S (An).

LEMMA 5.9.1. The orbit space of ¢ (A,) carries a flat pencil metric

690‘5
5.116 of af .
( ) g ) n atl
with the correspondent Christoffel symbols.

af
(5.117) pas a8 ._ Oy

PROOF. The metric (5.116) satisfies the hypothesis of Lemma 4.8.1 which proves the desired
result.

O

The following lemma shows that flat pencil structure is almost the same as Dubrovin

Frobenius structure due to lemma 4.8.1.

LEMMA 5.9.2. Let the intersection form (5.27), unit vector field (5.32), and Euler vector
field (5.31). Then, there exist a function

(2t
Tty D7 naptt? + G2, ),

aﬂB#l’T

5.118 F(t' 2, .. 1) =
( ) ( ) ? ) 77—) 471'1

such that

LiegF' = 2F + quadratic terms,

(5119) LieE <Fa5) = gaﬁ’
2 tl t2 . t7L+1 __ 1
a G( 9 VRS 77—) e M.[tQ,--,thrl, ]’
ot ots tntl
where
/ ! an
5.120 e | A —
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PROOF. Let Ff‘,ﬁ (t) the Christoffel symbol of the intersection form (5.27) in the coordinates
the flat coordinates of n*, i.e t',¢2, .., t"T! 7. According to the lemma 4.8.1, we can represent
r2%(t) as

(5.121) TP (t) = 0.0, f7(t).
Using the relations (5.113), (5.111) and lemma 5.8.6
Liew(T2(t)) = Liew(n)0.0 f(t) + 1 Liew (0.0, £ (£))
= (do + de — d1)n™ 00, fP (t) + (—de — dy)*“0e0 Liep(f°(t))
= (do + dg — d)° 00, fP(t).
Then, by isolation Lieg (fﬁ(t)) we get
(5.122) Lieg (fﬁ(t)) = (dg+d1)f° + AP - BP, AP BP cC.
Considering the second relation of (4.13) for a = 7
(5.123) gTy = g"ry,
and using lemma 5.7.2 and the fact that
g(d‘ﬂzv dT) = 271—1’807;7
which implies
g(dt®, dr) = 2midt*,
we have.
(5.124) 2midaton 0,0, f7 = 2mid, 07 g,
which is equivalent to
(5.125) Liep (nﬁeaE f’v) = g,
Using (5.122) in the equation (5.125), we have
(5.126) (dg + dy)n 0 f = d.g™.
If v # 7, we define
f
(5.127) F7 ==
dy
and note that ¢%7 is symmetric with respect the indices 3,~. Hence,
(5.128) (dg + d)n* 0 FY = (dg + dy)n "0 F",
which is the integrability condition for
(5.129) F7 =n"o,F.
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In order to extract information from v = 7, take 5 = 7 in equation (5.126)

dyn™ 00 f7 = dyg™
(5.130)
2midy 0o f7 = 2midt7

which is equivalent to

N0 00 F =17,
inverting n7¢
(5.131) 0000 F = naryt7,

integrating equation (5.131), we obtain

tl 2 tl
(5.132) P2, ety = T T D Mast™t? + G, 7).
Q,B#I,T

Substituting the equation (5.132) in the (5.126) for v # 7, we get

4

gﬂv = (dg + dv)nﬁenw@eaﬁ,
(5.133)
= Lieg(F™)

Since ¢%7 is a symmetric matrix, the equation (5.133) is equivalent to the second equation of
(5.119) for either  and ~ different from 7. Therefore, the missing part of the second equation
of (5.119) is only for the case 8 = v = 7. Moreover, the intersection form g?7 is proportional to
the Hessian of the equation (5.132) for for either 5 and ~ different from 7. Recall that from the
data of a Hessian, we can reconstruct uniquely a function up to quadratic terms, therefore, by
defining

. 82F T
(5.134) Lieg ((%12> =g
Then substituting (5.132) in (5.134).

, 0*F _ T
LZeE <8t12) = LZ@E (%)
—0= gTT.

Hence, we proved the second equation (5.119). Substituting the equation (5.132) in the second
equation (5.119) for o, B # 7

2
Lieg (F*?) = Lieg ( o'y _OF )

n n ata/atﬁl
' am OG?
7 aa’ BB
= LZeE (77 n ata/atﬁ/>
—~ 1
frd gaﬁ e M.[t27 ..7tn+1, t’l’L-‘rl].
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Hence, the second equation (5.119) prove the third equation of (5.119).

Substituting (5.132) in (5.122), and using (5.129), we obtain
Lieg (fﬁ) = Lieg (nﬁeaeF)
— Liep (nﬁfaeF) OeF + 1% Lieg (0. F)
= (dg + de — d1)nP O FO.F + 0’0, Lieg (F) — den 0. F
= (dg — d1)n** 0. FO.F + 0O Lieg (F)
= (dg + d1)n* 0. F + ABt® + BP
Hence, isolating Lieg (F')
nP<dcLieg (F) = 2n°°0.F + APt + BP,
inverting 7%
OaLier (F) = 200 F + nas A2t + napB”,
integrating
Lieg (F) = 2F + nagASt*t7 + 1,5 B %,

Lemma proved.

LEMMA 5.9.3. Let

OF3
(5135) Cocﬂq/ = 78150!615,38{7’
then,
(5.136) Cop =N Cape

is a structure constant of a commutative algebra given by the following rule in the flat coordinate

of n

(5.137) Oa @ 05 = ¢ 50,

such that

(5.138) 1(0n ® 03,0y) = 1(0a,03  0y), Frobenius condition.
PROOF.
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(1) Commutative
The product defined in (5.137) is commutative, because its structure constant (5.136)

is symmetric with respect its indices «, 8,y due to the commutative behaviour of the

0 0 0
ot Itb 1 It

(2) Frobenius condition

partial derivatives

1(0a ® 95,0y) = 03,877(867 )
= 0357757
= Capy
= C3yNae = 1(0n; 05 © 0,).
Lemma proved.

O]

LEMMA 5.9.4. The unit vector field defined in (5.32) is the unit of the algebra defined in

lemma 5.9.3.

PROOF. Substituting (5.129) and (5.127) in (5.121), we obtain

(5.139) 1% = dged”,
where
(5.140) cf;’B =

Substituting o = 7 in (5.139) and using lemma 5.7.2
B — 9ridasP
77 = 2midgdy,

= dgcff.
Then,
8 _
Coy = 55.
Computing
0o 0y = ch 95 =0
0@ 0y = Cpy0p = Oy
Lemma proved. O

LEMMA 5.9.5. The algebra defined in lemma 5.9.3 is associative.

PRroOOF. Recall that the Christoffel symbol Ff;‘ﬂ is proportional to the structure constant of
the algebra defined in lemma 5.9.3 for 8 # 7
F;"ﬂ = dﬁcgﬁ .
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Then, using (4.59), we obtain
(5.141) refroy = roped
Substituting (5.139) in (5.141), we have
P =P for B,y £
ftg=r,
STl = 2midg el
= 2micd”
= 2mioY ¢
=77,

O

Recall of the covering space of the orbit space of #(A,) defined in (5.81), see section 5.6

for detalils.

THEOREM 5.9.6. The orbit space C OCr @ H/ _# (A;) with the intersection form (5.27), unit

vector field (5.32), and Euler vector field (5.31) has a Dubrovin Frobenius manifold structure.

PrOOF. The function (5.118) satisfy a WDVV equation due to the lemmas 5.9.2, 5.9.3,
5.9.4, 5.9.5.
O

REMARK 5.9.1. The Dubrovin Frobenius structure associated with the group ¢ (A,) does
not live in the orbit space of #(A,), but in a suitable covering. This covering is described by

the space such that the ring of functions is M, [tl, 2.t tn%H]'

REMARK 5.9.2. There are two interpretations of the Dubrovin Frobenius structure on the
orbit space of ¢ (A,). In the first one, the Dubrovin Frobenius structure in the orbit space
of 7 (Ay) exist only locally due to the SLy(Z) action, then the orbit space of #(A,) is said
to have a twisted Frobenius structure, see details in appendix B of [12]. The second one, the
Dubrovin Frobenius manifold structure exist truly in the a covering, where we fix the ambiguity,

in this case, we fix a symplectic base of homology and a branching of the root of 4.
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CHAPTER 6

Differential geometry of orbit space of Extended Jacobi group
A

This chapter is based in the work done in [1], which have the aim to give a gentle introduction
to the general theory of orbit space of the group _# (fln), see section 8 for details. The focus
of this chapter is the definition of a new extension of the finite Coxeter group A; such that it
contains the affine Weyl group A; and the Jacobi group 7 (A1). This new extension will be
denoted by Extended affine Jacobi group _# (1211) Further, we prove that from the data of the
group 7 (1211), we can reconstruct the Dubrovin Frobenius structute of the Hurwitz space Hi g
on the orbit space of ¢ (fll) The advantage of this orbit space construction is the Chevalley
theorem 6.2.9, which gives a global interpretation for orbit space of ¢ (/11) Furthermore, it
attaches the group ¢ (1211) to the Hurwitz space Hj 0, and this fact might be useful in the
general understanding of WDVV /group correspondence. The results of this chapter is interesting
because the Hurwitz space Hi 0 is well know to have a rich Dubrovin Frobenius structure
called tri-hamiltonian structure [26], [27], and [25]. This fact realise the orbit space of _# (A;)
as suitable ambient space for Dubrovin Frobenius submanifolds, furthermore, it gives interesting
relation between the integrable systems of the ambient space and the integrable systems of its

Dubrovin Frobenius submanifolds.

6.1. The Group /(1211)

The main goal of this section is to motivate and to define the group ¢ (Ay). In order to do
that, it will be necessary to recall the definition of the group A;, and some of its extensions.

Moreover, the goal is to understand how to derive WDDYV solution starting from these groups.

Recall the action of the group A, in L4 ® C in section 4.1, but let us concentrate on the

simplest possible case, i.e n = 1. In this case, the action on C = L4 ® C is just:
(6.1) Vo = —9.

The understanding of the orbit space of A; requires a Chevalley theorem 4.2.1 for the ring of

invariants. In the Ay case, the ring of invariants is just

Clvg] = Claz],
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then the orbit space of Ay is just the
Spec ((C[US]) .

In the paper [11] and [12], it was demonstrated that C/A; has structure of Dubrovin-Frobenius
manifold, furthermore, it is isomorphic to the Hurwitz space Hy 1, i.e. the space of rational

functions with a double pole. The isomorphism can be realized by the following map

(6.2) [vo] = A (p, vg) = (p — v0) (p + v0) = p* + a.

Note that the isomorphism works, because A1 (p,vg) is invariant under the A; action. Applying
the methods developed in [11] and [12], one can show that the WDVV solution associated with

this orbit space is

(6.3) F(t') = ~—=,

where ! is the flat coordinate of the metric 7.
In [12], [15] it was also considered the extended affine A; that is denoted by A;. The action

on
1

(LAl ® (C) e C= {(1}0,1}1,’02) eC3: Zvi = 0}
i=0

is:

v — Vo + o,
(6.4)

V2 — V2 + H2,
where po, o € Z.
A notion of invariant ring for the group extended affine A,, were define in [15] , and Dubrovin

and Zhang proved that this invariant ring for the case A is isomorphic to
Cle*™ ™2 cos(2mivg), 2™02].
Therefore, the orbit space of A; is the weight projective variety associated with
Spec (C [GZMUQ cos(2mivg), 62””2}) .
Further, a Dubrovin Frobenius manifold structure was built on the orbit space of A; with the

following WDV'V solution

11242
(6.5) P 82) = (t;t et

The orbit space of A; is also associated with a Hurwitz space, but the relation is slightly less

straightforward. The first step is to consider the following map

[vo, v2] — )\Al(p, vo, vg) = eP + e2miva cos(2mivg) + e2miv20=P
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The second is to consider the Legendre transformation of Sy type (Appendix B, and Chapter 5
of [12]). Consider

b= 627TiU2 — e27riv2

cos(2mivg), a ,

and the following choice of primary differential dp implicity given by

dp
dp =
P=s"5
Then, in this new coordinates M1 s given by
(6.6) A(p,a,b) = p+ —
: pab)=p+ sy

Hence, the orbit space of A; is isomorphic to the Hurwitz space Hy 0,0, i.e. space of fractional
functions with two simple poles.
The next example of group to be considered is the Jacobi group #(A;) already considered

in 5.1, which acts on

1
Q7 (A = (LA1 ®C)®C@®H = {(vo,v1,u,T) GC?’@H:ZW €Z+ 1L}

i=0
as follows:
Aj action:
(6.7) vo = —vo, U U, T T
Translations:
2
(6.8) vo +> o + po + AoT, u|—>u—)\0v0—?07, T T,
where g, Ao € Z.
SLy(Z) action:
2
0 cvg at +b
6.9 e, U U o T ———
(6.9) e ra YT 2(ct + d) Tt d

where a,b,c,d € Z, and ad — bc = 1.
The notion of invariant ring of # (A1) was first defined in [18]. However, the definitions stated

in [34], [8], [9] are more suitable for this purpose. Then, we use the definition of Jacobi forms
5.2.1 for the case #(A1).
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DEFINITION 6.1.1. The weak A; -invariant Jacobi forms of weight k, and index m are
holomorphic functions on @ = C& C & H > (u, vo, 7) which satisfy

o(u, —vo, 7) = ¢ (u,v9,7), A invariant condition
Ao”
o | u— Aovo — 5 Th 0 + AT+ 1,7 | = ¢ (u,v9,7)
(6.10)

2
cvg vo ar+b L
= d
90<u+2(c7'—|-d)’c7'—|—d’c7'+d> (e7 +d)" o (u, vo, 7)
1 0
ESO(U7 o, T) = omi 8u¢(u7 o, T) = mgp(u, Vo, T)
Moreover,

(1) ¢ is locally bounded functions of vy as (1) — +oo (weak condition).
The space of A;-invariant Jacobi forms of weight k, and index m is denoted by JA - and

k,m>
J;{(Al) = @km J,?}n is the space of Jacobi forms A; invariant.

In [18], it was proved the following a version of the Chevalley theorem, which is a particular

case of the Theorem 5.2.2 and corollary 5.2.3.1 .

THEOREM 6.1.1. Let J.{(Al) the ring of Jacobi forms A; invariant, then
(6.11) J&Y = ML [0, 2]

where M, is the ring of holomorphic modular forms, and

o 01(vo, T) 2
_ 27iu 1\%0,
e <ea<o,7>> ’

(6.12)
Yo = @2@(1}0) T)7

61 is the Jacobi theta 1 function (3.25), and g is the Weierstrass P function, which is defined as

(6.13) plv,7) = 1712 + i (v— ml— n)2  (m —I—lm')?’
m2+4+n2#£0

Note that this Chevalley theorem is slightly different from the others, the ring of the
coefficients is the ring of holomorphic of modular forms, instead of just C. The geometric
interpretation of this fact is that the orbit space of #(A;) is a line bundle such that its base
is family of elliptic curves E; quotient by the group A; parametrised by H/SLy(Z). In [8]
and [9], it was proved that orbit space of # (A1) has a Dubrovin Frobenius structure, for the
convenience of the reader this result was also prove in chapter 5. Furthermore, the orbit space
of #(A;) is isomorphic to Hy 1, i.e space of elliptic functions with 1 double pole. The explicit
isomorphism is given by the map

2miu 61 (U — o, 7')91(1} + o, T)

(6.14) [(u, 0, 7)] = A7 A (0, 0,09, 7) = e 2
91(”77-)
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As in the A; case, the isomorphism is only possible, because the map (6.14) is invariant under
(6.7), (6.8), (6.9). A WDVV solution for this case is the following
Y27 | t(t?)?  wi(t?)?

1,2
(6.15) Ftht5, 1) = 5 + 5 15 Ey (1),

where
3 = 1
Eyr)=14— — .
2(7) sz Z (m + nr)?
m#0 n=—00
A remarkable fact in these orbit space constructions are its correspondences with Hurwitz spaces,

which can be summarize in the following diagram.

Ho1 = CJA; ———— Hyoo = C2/A;

Ql l4
Hi12(CoCaH)/ 7(A) —>— Higo?
The arrows of the diagram above have a double meaning. The first one is simply an extension of
the group, the arrow 2 is ”Jacobi” extension, and the arrow 1 is ”affine” extension. The second
meaning is related with the Hurwitz space side: the arrow 2 and 4 increase by one the genus,
and the arrow 1 and 3 split a double pole in 2 simple poles. The missing part of the diagram is
exactly the orbit space counter part of Hy 0. The diagram suggest that the new group should
be an extension of the A; group such that combine the groups A;, and J (A1), furthermore, it
should preserve Hj g in a similiar way for what was done in (6.14). To construct the desired
group, we start from the group _#(A;) and make an extension in order to incorporate the Ay

group. Concretely, we extend the domain Q- (41) to
0/ @A)~ g CoCoH = {(vo,v1,v2,u,7) € C*®H : vy + v, € Z B TZ},

and we extend the group action _# (A1) to the following action:

Aj action:
Vo — —9,
Vg — V2,
(6.16)
U — U,
T T.
Translations:
vo > Vo + Ho + AoT,
() i—>U2+M2+)\27’,
(6.17)

w > u — 220V + 2Aov9 — NAT + N3T + k.
T T
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where (Ao, A2), (10, p2) € Z%, and k € Z.
SLy(Z) action:
Vo
er+d’
U2
(618 er+d’
‘ c(vg — v3)
U~ U+ m
ar +b

— .
cTt+d

Vo

V9 >

?

where a,b,c,d € Z, and ad — bc = 1.
The group action (6.16), (6.17), and (6.18) is called extended affine Jacobi group A;, and denoted
by 7 (A1).

REMARK 6.1.1. The translations of the group A; is a subgroup of the translations of the
group _# (Ay). Therefore, it is in that sense that ¢ (A;) is a combination of A; and _# (A;).

In order to rewrite the action of _# (A1) in an intrinsic way, consider the A; in the following

extended space
3

Lh = {(20, 21, 22) € VAR Zzz =0}.
i=0

The action of A; on LA s given by
w(20, 21, 22) = (21, 20, 22)

permutations in the first 2 variables. Moreover, Ay also acts on the complexfication of LM ®C.

Let us use the following identification Z? = LA ,C? =~ LA @ C that is possible due to the maps
(vo, v2) — (vo, —vg, v2),
(vo, v1,v2) — (vo,v2).
The action of A; on C? 3 v = (vg, v2) is:
w(v) = w(vo, v2) = (—vo, v2).
Let the quadratic form (,) 7 is given by

(v,v) 1, = UTMAIU

_ T 2 0 ;
- St )
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Consider the following group LA x LA x Z with the following group operation

YO k), (N i k) € LY x LA x 2,

(A k) o (N k) = N+ A b ik +k 4+ (AN 1),

Note that (,) 4, is invariant under A; group, then A; acts on LA x LA x 7. Hence, we can

take the semidirect product A; X (I/211 x LA x Z) given by the following product.
Y(w, \ 1, k), (@, N, i, k) € Ay x LY x LY x 7,
(w, A, p, k) ® (@, A, fi, k) = (wib, wh + N, wp+ fi, k+k+ (A A) 4,)-
Denoting W (A;) := A; x (LA1 x LA1 x Z), we can define
DEFINITION 6.1.2. The Jacobi group # (A;) is defined as a semidirect product W (A;) x
SLo(Z). The group action of SLy(Z) on W (A;) is defined as
Ady(w) = w,
ac bd
Ad’y()‘a Ky k) = (aH - b)‘a —Ccp+ d)" k+ ?<,U,, M>A1 - bC<,LL, A>Al + E<)‘7 >‘>A1)
for (w,t = (A, u, k)) € W(A1),y € SLy(Z). Then the multiplication rule is given as follows
(w,t,7) & (w,1,79) = (w, tAd, (wi), 7).
Then the action of Jacobi group £ (A;) on QFf M) . =CpC?aHec (u,v, ) is described
by the main three generators
(w 0,15, Z))
(IAly)\ M, k ‘[SLQ(Z))

(el )

, which acts on Q/ (A1) as follows:

w(u, v = (vg,v2),7) = (U, —vg, V2, T),

1
t(u,v = (vo,v2),7) = <U— (Av) g, — 5()\’)\>,§17+k,vo + AoT + pio, v2 +>\27+M2,T> ;

(0 = (v0,v),7) = u+0<’U7’U>Al (2 vo  ar+b
T, U= 00, V2), T) = 2(cr+d) et +d et +d et +d
where A,u,kELAle‘Z‘le,

A= ()\Oa)‘Q)a M= (/JOMUQ)-

Writing in a more condensed way, we have the following proposition:
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PROPOSITION 6.1.2. The group # (A1) 3 (i0,t,7) acts on @ := CE&C? @ H > (u,v,7) as

follows

w(u,v,7) = (u,w(v),7),

1
(6.20) t(u,v,7) = <“ - <)‘7U>A1 - §<)‘a)‘>[117—+ k,v+ At +,LL,T> ,

c(v,v) 4, v ar+ b>

v, v,7) = (u—i— 2(ct+d) et +d et +d

Substituting (6.19) in (6.20), we get the transformation law (6.16),(6.17), and (6.18). The
explanation of why (6.20) is an group action for _# (A;) is just straightforward computations,

but a bit long, then, this part of the proof will be omitted.

6.2. Jacobi forms of /([11)

In order to understand the differential geometry of orbit space, first we need to study the
algebra of the invariant functions. Informally, every time that there is a group W acting on a
vector space V', one could think the orbit spaces V/W as V, but you should remember yourself
that it is only allowed to use the W —invariant sections of V. Hence, motivated by the definition
of Jacobi forms of group A,, defined in [34], and used in the context of Dubrovin-Frobenius

manifold in [8],[9], and summarised in Chapter 5 we give the following:

DEFINITION 6.2.1. The weak ¢ (A;) -invariant Jacobi forms of weight k € Z, order I € N,
and index m € N are functions on Q = C® C2 @ H > (u, vg, v2,7) = (u,v,7) which satisfy

¢ (w(u,v,7)) = p(u,v,7), A invariant condition

12 (t (u7 v, T)) = QO(U, v, 7—)7

(621 o (v (,0,7)) = (e + d) ™ (0. 7),
Ep(u,v, 1) := —igcp(u,vo,vgﬁ) = me(u, vy, v2,T).
27t Ou
Moreover,

(1) ¢ is locally bounded functions of vy as (1) — +oo (weak condition).
(2) For fixed u, vy, T the function ve — p(u, vy, ve, T) is meromorphic with poles of order
at most I 4+ 2m at in vg :0,%,%,1‘% mod Z & TZ.
(3) For fixed u, vy # 0, %, 5 H?T mod Z & 7Z, T the function vy — ¢(u, vy, ve,T) is holo-
morphic.
(4) For fixed w,vg,ve # 0,%,%,1‘% mod Z & 7Z. the function 7 — ¢(u, vy, v, T) is
holomorphic.
The space of Aj-invariant Jacobi forms of weight %, order I, and index m is denoted by J,é l17m’
and J;{ffh) = @k,l’m J]fll,m is the space of Jacobi forms [11 invariant.
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REMARK 6.2.1. The condition Ep(u, vy, v, T) = my(u, vg, v2, 7) implies that ¢(u, v, ve, T)
has the following form

o(u,v0,v2,7) = f(vo, ve, 7)™
and the function f(vg,vs,7) has the following transformation law
f(vo,v2,7) = f(—vo,v2,7)

) (W)
_2mm(</\’v>+TT)f(Uo + mg + noT, va + M2 + noT, T)

)

(6.22) f(Uo,UQ,T) = e

c(v,v)

Tim b
f(UO) U2, 7—) - (CT + d)ik62 (((;Ter) )f( Vo V2 aT +

cr+d er+d er+d

The functions f(vg,vs,7) are more closely related to the definition of Jacobi form of Eichler-
Zagier type [18]. The coordinate u works as kind of automorphic correction in this functions
f(vg,v2, 7). Further, the coordinate u will be crucial to construct an equivariant metric on the

orbit space of _#(Ay), see section 6.3.

REMARK 6.2.2. Note that the Jacobi forms in the Definition 6.1.1 are holomorphic, and in
the Definition 6.2.1, the Jacobi forms are meromorphic in the variable vo. This fact will also
reflect in the difference between the Chevalley theorems of 6.2.1, and 6.1.1. See Theorem 6.2.9

for details.

The main result of this section is the following.

The ring of A; invariant Jacobi forms is polynomial over a suitable ring Eeo:=
g7 (A1)

Je0 ~oOn suitable generators o, 1.

Before stating precisely the theorem, I will define the objects F, o, ¢0, 1.

The ring Fo; := J, .{ E) V) is the space of meromorphic Jacobi forms of index 0 with poles of
order at most [ at 0, %, o 177 mod Z ® 77, by definition. The sub-ring Jz‘(’)f[z)%) C E,, has a

nice structure, indeed:

LEMMA 6.2.1. The sub-ring Jff)’(gh) is equal to M, := @ My, where My, is the space of
modular forms of weight k for the full group SLy(Z).

€ J:%Eéil) can

PRrROOF. Using the Remark 6.2.1, we know that functions ¢(u,vg,va,T)
not depend on u, then ¢(u, vy, v, 7) = @(vg,v2, 7). Moreover, for fixed ve, 7 the functions
vo — ©(vo,ve,7) are holomorphic elliptic function. Therefore, by Liouville theorem, these
function are constant in vg. Similar argument shows that these function do not depend on wvs,
because [ + 2m = 0, i.e there is no pole. Then, ¢ = ¢(7) are standard holomorphic modular
forms. O
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LEMMA 6.2.2. If g € By o = J72 )

if p € JO{ (OAl) for fixed 7 the function vy — (v, 7) is an elliptic function with poles of order at

most [ on 0, %, 3 H'TT mod Z & 7.

, then ¢ depends only on the variables v, 7. Moreover,

PROOF. The proof is essentially the same of the lemma (6.2.1), the only difference is that

17 147 mod Z @ 7Z. Then, we have dependence on vs. ]

now we have poles at v2 =0, 5,3, -5

As a consequence of lemma 6.2.2, the function ¢ € Ej; = J];{ (OAI) has the following form

¢(ve,7) = f(1)g(va, T)

where f(7) is holomorphic modular form of weight k, and for fixed 7, the function vg — g(ve, 7)
is an elliptic function of order at most [ at the poles 0, %, 3 H'TT mod Z & TZ.

At this stage, we are able to define g, ¢1. Note that a natural way to produce meromorphic
Jacobi forms is by using rational functions of holomorphic Jacobi forms. Starting from now,
we will denote the Jacobi forms related with the Jacobi group _#(A;) with the upper index
7 (Ay), for instance

o’ (A1)
and the Jacobi forms related with the Jacobi group ¢ (A;) with the upper index B4 (Ap)

o (),

In [8], Bertola found basis of the generators of the Jacobi form algebra by producing a

holomorphic Jacobi form of type A, as product of theta functions.

n+1
(6.23) o7 (An) — p2miu 01 (z,7)
| R0

i=1
Afterwards, Bertola defined a recursive operator to produce the remaining basic generators. In
order to recall the details see section 5.2. Our strategy will follow the same logic of Bertola
method, we use theta functions to produce a basic generator and thereafter, we produce a

recursive operator to produce the remaining part.

LEMMA 6.2.3. Let be gpgﬂA2)(u1,z1,z2,7) the holomorphic Ay — tnvariant Jacobi form
which correspond to the algebra generator of maximal weight degree, in this case degree 3. More

explicitly,

(6.24) o A2) _ g=2ming HI(ZI’T)HI(ZQ,’T)HI(?,_ZI — 7).

91 (Ov 7—)
Let be gozj (Al)(ug, z3,T) the holomorphic A; — invariant Jacobi form which correspond to the
algebra generator of maximal weight degree, in this case degree 2.

9 2

(625) (péf(Al) _ e—27r1u2 1/(2377—)2 )

01(0,7)
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Then, the function

_ S (A2)
(6.26) pf A = ¥

A
(péf( 1)

is meromorphic Jacobi form of index 1, weight -1, order 0.

PROOF. For our convenience, we change the labels z1, 2o, z3 to vy + v, —vg + v2, 2vo Tespec-

tively. Then (6.26) has the following form

—omin01(v0 + v2, T)01(—vo + vo, T)
01(0,7)01(2v2,7)

(6.27) o A0 (4, vg,v3,7) = e

Let us prove each item separated.

(1) A; invariant
The A group acts on (6.27) by permuting its roots, thus (6.27) remains invariant under
this operation.

(2) Translation invariant
Recall that under the translation v — v +m + n7, the Jacobi theta function transform
as [8], [33]:

22
(6.28) O1(v; + i + N7, 7) = (—1) N2, (4, 7).

Then substituting the transformation (6.42) into (6.27), we conclude that (6.27) remains
invariant.

(3) SLy(Z) invariant

Under SLy(Z) action the following function transform as

o (g, 22t 2\ 010
(6.29) ( i +d) = (cr +d) exp kad; 1,(1}“7—).
0, <0 ar+2l) cr+d) 6;(0,7)
’eT+
Then, substituting (6.43) in (6.27), we get
. F(A
oA of
! et +d
(4) Index 1
1 0 5 /(A1)
6.30 L0 A = oA
(6.30) 5. gy P17 (A1) = ¢

(5) Analytic behavior
Note that gofg (’2‘1)9%(2@2, 7) is holomorphic function in all the variables v;. Therefore
go'lf (A1) are holomorphic functions on the variables vy, and meromorphic function in
the variable vy with poles on % + %,j,l = 0,1 of order 2, i.e [ = 0, since m = 1.
O
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In order to define the desired recursive operator, it is necessary to enlarge the domain of the
Jacobi forms from C @ C2 @ H > (u,vp,v2,7) to CH C> @ H > (u, vg, v2,p, 7). In addition, we
define a lift of Jacobi forms defined in C @ C?2 @ H to C @ C3 @ H as

SO(U, Vo + v2, =g + U277-) = @(p) = SO(U, vo + v2 +p, —vo + V2 +p77-)

A convenient way to do computation in these extended Jacobi forms is by using the following

coordinates
s =u+ g1(7)p?,
Z1 = vo + v2 +p,
(6.31) Z2 = —vp + V2 +p,
23 = 2vg + p,
T=T.

The bilinear form (v,v) 5, is extended to

(6.32) (21,22, 23), (21,22, 28)) B = 21 + 25 — 23,

or equivalently,

(6.33) ((v0,v2, ), (vo,v2,p)) = 205 — 20 + p°.

The action of the Jacobi group A; in this extended space is
wg(u,v,p,7) = (u,w(v),p, T)

1
(6.34) tp(u,v,p,7) = (u =\ = 5 AW NET kv +p+ AT+ %T)

( )= (u+ c(v,v)p v p ar+b
VB, U, P, T) = U 2(cr+d) etr+d et +d et +d

PROPOSITION 6.2.4. Let be ¢ € J7 4D and ¢ the correspondent extended Jacobi form.

km,e
Then,
(6.35) 9 @) e AN
ap p:O 31Ty
PROOF. (1) Aj-invariant

The vector field a% in coordinates s, z1, 29, 23, T reads

2_i+i+i+2 (7-)7
Op 0z 0z Oz g1 p@u
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Moreover, in the coordinates s, z1, 22, 23, 7 the A; group acts by permuting z; and z5.

Then

9
op

(D0 e
pfo_ 621 622 823 P\S, 22, 21, 23, p=0

_(aaa

(90(57 22, 21, 2377—))

s T om 6z3> (p(s: 21, 22,23, 7)) 0 -

(2) Translation invariant

B,
— (plu—(Nv)g — (NN B, v+ D+ AT+ 1, 7))
p=0

Oy 1
o(u,v,7) 4+ p (u— (Av)g, — 2<A,A>A17+k,v+)\r+,u,7>

0 1
_ 9 <u— ANv)g, — 2()\,/\)AlT+k,v+/\T+u,T)

(3) SL2(Z) equivariant of weight &

0 (u+ c(v,v)p v P aT—I—b)
dp 4 2(ct+d) et +d et +d eT+d

p=0

_ Lg< ) ( ) + % c(v,v)p v D a7'+b)
~ 2(er+d)Op vpr:OSOu,v,T cr+dop der+d) eortd er+d ertd
— 1 8790 u C<U,’U>E v P CLT‘l—b
et +dop Ner+d) ervd er+d et +d
_éaﬁ(uv )
Tt dFap T
Then,
Oy c{v,v)E v p ar+b\ 1 9,
aip (u+ 2(CT+d)’CT+d7CT+d,CT+d - (CT_’_d)k._laip(u,fU,T)
(4) Index 1

190, 100, 0.
omioudp’  2miopou’  op”

COROLLARY 6.2.4.1. The function

22 01 (vo + v2 + p)0i(—vo + v2 +P)>] J(A) | () 2
6.36 o [ T =7 Vo Y2+ 0(29),
(6:30) [ ( 61(202 + p)0; (0) o LT =
generates the Jacobi forms cpbj A1) and goi] (Al), where
J(A) _ O (., 7(A)
(6.37) %0 = ap (‘Pl ) o
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PROOF. Acting 8% k times in SDT—«“(AO

[ak (egmu91(vo +v2 +p)bi(—vo + v2 +p)>]
Okp 61(2v2 + p)67(0)

, we have

e I

p=0

COROLLARY 6.2.4.2. The generating function can be written as

(6.38)

_ €—2m'(u+igl(7')z2) th (Z — Vo + V2, 7_)91(2 + vg + va, 7-)

[ezﬁap <e2”“ 61 (vo + v2 + p)01(—vo + v2 +p))}

01(2v2 + p)01(0) p=0 01(0)01(z + 2v2)
PRrooFr.
[eza[; <e2mu‘91(vo + v2 + p)bi(—vo + v2 +p)>] _
01(0)01(2v2 + p) p=0
(6.39) = [ezgp <e27”'(5+i91(7)p2 01(vo + v2 + p)0i(—vo + v2 + p))]
61(2v2 + p)67(0) p=0
_ - 2mi(utig (7)2) 01(z — vo + va, 7)01(2 + vo + v2,T)
61(0)01(z + 2v2)
O

The next lemma is one of the main points of this Chapter, because this lemma identify the
orbit space of the group _# (A;) with the Hurwitz space H 1,0,0- This relationship is possible
due to the construction of the generating function of the Jacobi forms of type A1, which can be
completed to be the Landau-Ginzburg superpotential of Hj ¢ as follows

(6.40)
—omi(u+tigy (r)22) 91(2 — Vg + V2, 7’)91(2 + vo + va, T) —omiu «91(1} — Vg + V2, T)91(U + vo + Vo, 7’)
e = € .
61(0)01(z + 2v2) 01(vT)01 (v + 209, T)

LEMMA 6.2.5. There exists a local isomorphism between Q//(fll) and Hy .

PRrOOF. The correspondence is realized by the map:

—2miu 91 (U — o, 7)91 (U + o, T)
01(v — va, 7)01 (v + va, T)

where 61 (v, 7) is the Jacobi theta function defined on (3.25).

(6.41) [(w,vo,v2,7)] +— A(v) =e

It is necessary to prove that the map is well defined and one to one.

(1) Well defined
Note that the map does not depend on the choice of the representative of [(u, vg, va, T)]
if the function (6.41) is invariant under the action of _# (A;). Therefore, let us prove
the invariance of the map (6.41).

(2) A; invariant
The A group acts on (6.41) by permuting its roots, thus (6.41) remains invariant under
this operation.
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(3)

(6.42)

(6.43)

Translation invariant

Recall that under the translation v — v +m + n7, the Jacobi theta function transform
as [33]:

. A?
O1(v; + pi + N7, 7) = (=) NiTHieT 2T, (1),

Then substituting the transformation (6.42) into (6.41), we conclude that (6.41) remains
invariant.

SLy(Z) invariant

Under SLy(Z) action the following function transform as

v;  ar+d
01 <c7'jrd’ ct+d

at+d
9/1 (0’ CTid)

91(1)2', 7')
01(0,7)°

m’cvf

) = (e +d) " exp <cr+ d)

Then substituting the transformation (6.43) into (6.41), we conclude that (6.41) remains
invariant.
Injectivity
Note that for fixed v, vy, v, u, the function 7 — f(7) := A(v,v0,v2,u,7) is a modular
form with character [18]. This is clear because A(v,vg,v2,u,T) is rational function
of 01(z,7), which is modular form with character for special values of z [18]. Let
Av,vg, v, u, 7) = (v, 0y, V2, U, 7), then for fixed v, vy, va, u, 0y, 02, U, we have f(1) =
f(7), in particular, f(7), f(7) have the same vanishing order, and this implies that 7,7
belongs to the same SLy(Z) orbit.

Two elliptic functions are equal if they have the same zeros and poles with multi-

plicity mod Z & 7Z. Then, for a fixed 7 in the SL2(Z) orbit

1o = vo + AoT + Ho,
Uy = Vo + AT + po2,
()\i,,ui) € ZZ.

Furthermore, for two different representative of the same SLy(Z) orbit, but considering

fixed cells, we have

N V)
UO_CT+d’
o
hCa—
A_aT—}—b
(—
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a b
where ( > € SLy(Z).
c d

Since, A(v, vy, v, u, T) is invariant under translations, and SL9(Z), for 7 = 7, we have

. T
uzu_</\7U>A1_</\7)‘>A1§+k'
~ __ ar+b
ForT—CTjr'd,
c<v,v>Al
Gy YA
w=u 2(CT+d)+’
where k € Z.

(6) Surjectivity
Any elliptic function can be written as rational functions of Weierstrass sigma function

up to a multiplication factor [33]. By using the formula

o(vi,7) = mexm—zmm(r)vf)
(6.44) o
gy =" (1)
n(T)

where 7(7) is the Dedekind 7 function, we get the desire result.

O

REMARK 6.2.3. Lemma 6.2.5 is a local equivalence between Hj o, and the orbit space of
4 ([11), but it is not a global statement. The Theorem 6.2.9 below characterises the ring of
invariants of Q7 (A1) / 7 (Ay), therefore, we have the global understanding of Q- (A1) / 7 (A;) by
using the ring of functions/ manifold correspondence. On another hand, the Dubrovin Frobenius
structure in a Hurwitz space is based on an open dense domain of a solution of a Darboux-Egorrof
system [12], [29]. Hence, it is a local construction . In this way, the construction of the orbit
space of 7 (;11) complements the construction of the Hurwitz space Hi g, because now, there
exist global object where the local Dubrovin Frobenius structure of Hi g lives. In addition,
lemma 6.2.5 associates a group to Hi 0, and this could be useful for the general understanding

of the WDDV solutions/ discrete group correspondence [12].

REMARK 6.2.4. Lemma 6.2.5 is a local biholomorphism of manifolds, but this does not
necessarily means isomorphism of Dubrovin Frobenius structure. On a Hurwitz space may exist
several inequivalent Dubrovin Frobenius structure. For instance, in [27] Romano constructed
two generalised WDDV solution on the Hurwitz space Hj g, furthermore, in [8] and [9], Bertola
constructed two different Dubrovin Frobenius structures on the orbit space of the Jacobi group
(2. The Dubrovin Frobenius structure of this orbit space will be constructed only on section
6.3.
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COROLLARY 6.2.5.1. The functions (¢§1’¢f1) obtained by the formula

)\Al — ¢~ 2miu 01 (U — Y0, 7-)‘91 (U + vo, 7_)
(6.45) 01(v —v2,7)01 (v + v2,T)

= oM [C(0 =g, 7) = C(v + v, ) + 2 (v, )] + o

are Jacobi forms of weight 0, —1 respectively, index 1, and order 0. More explicitly,

oA = 61 (vo + v2,7)01(—vo + 112>T)€—2mu
(6.46) 1 61(0,7)01(2v2,7) ’

ot = — o [C(vo — v2,7) = (w0 + v2,7) + 2 (v2,7)]

where ((v, T) is the Weierstrass zeta function for the lattice (1,7), i.e.

(6.47) ((v, f+ Z TR

o 2
gV T m+nt  (m+nT)

PROOF. Let us prove each item separated.

(1) Ay invariant, translation invariant
The first line of (6.45) are A; invariant, and translation invariant by the lemma (6.2.5).

A are Ay invariant, and

Then, by the Laurent expansion of )\Al, we have that ]
translation invariant.

(2) SLy(Z) equivariant
The first line of (6.45) are SLo(Z) invariant, but the Weierstrass zeta functions of the

second line of (6.45) have the following transformation law

z ar+b
6.48 — | = d .
(6.48) (g o) = e+ dglann)
Then, 90?1 must have the following transformation law

c<v ) v at +b Al(u )
900 2(07'—{—d) ct+d er+d = Yo YT

(v,

(

(6.49) > ,
cv v at + k A
d 1 .
801 ( 207'—1—d) c7'—i—d’c7'—|—d> (er +d)” (u, v, 7)
(3) Index 1
1 0 ; i
6.50 A A
( ) 27t Ou
Then
1 0 3 i
6.51 =T o4 =
( ) 271 au(pz Yi
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(4) Analytic behavior
Note that A\416?(2vg,7) is holomorphic function in all the variables v;. Therefore cpfh
are holomorphic functions on the variables vy, and meromorphic function in the variable

v9 with poles on J 2 Z. 7,0 =0,1 of order 2, i.e [ =0, since m = 1 for all <p
To prove the formula (6.46) let us compute the following limit

lim )\Alw = (pf‘il — o 2miu 01 (vo + va, 7)01(—vg + va, T)
202 1 9/1 (0, 7')91 (21}2’ 7-)

Let us compute the zeros of AL

A (vg) = 0 = " [C(vo — va,T) — C(vo + v2, T) + 2((v2,T)] +<P8L

LEMMA 6.2.6. The functions <p0 , @Al are algebraically independent over the ring E, .

PROOF. If P(X,Y) is any polynomial in F, «(X,Y), such that P(cpgil,gp‘fl) = 0, then, the

fact goo L o] A1 have index implies that each homogeneous component Pd(goél,gofl) has to vanish

A1 Pq (‘Po 7901 ) 1
identically. Defining py < > = ——— <, we have that pg (soo ) is identically 0 iff o
‘p (@£A1)> ¥1 3t 801
is constant (belongs to F, ), but
Al /
(6.52) Yo _ o (v2,7) # a(ve, T)

4'0‘141 KJ(UO, T) - p(v% 7-)

where a(vg, 7) is any function belongs to Eeo. Then, gpo ) ] &

are algebraically independent
over the ring E, .

Recall that p(v,7) is the Weierstrass P function (6.13). O

Consider the formula (5.21) for the #(A3) case

COROLLARY 6.2.6.1. [8] The ring of As invariant Jacobi forms is free module of rank 3 over
the ring of modular forms, moreover there exist a formula for its generators given by

o—2mius 01(z + vo + va, 7)01(2 — vo + v2,7)01 (2 — 209)

A2 =
03 (z,7)

(6.53)

9
= ; O (2,7) + 052 p(2,7) + 02

LEMMA 6.2.7. Let {goo , 01 1} be set of functions given by the formula (6.45) ;and {gao , g02 , <p3 2}
given by (6.53), then

A A A

(1032:@11()021

A A, A A, A
(654) @22:‘;00 @21“'@2(”277)@]' (1021

0l = ag(va, ) A + bo(va, 7)o o
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where
(,OAl — 9%(211277—) e27ri(—UQ+u1)
2 9,(0,7)°

and a;, b; are elliptic functions on vs.

Proor. Note the following relation

M2 01(2 — 209, 7)01 (2 + 202), T 2mi(—ug+us)
M1 0z, 7) ’
= 031 0(2,7) — @5 (202, 7)
Hence,
05 Ay Ay _
T R A R A

= (6= 7) = €2+ 200, 7) + 20 (2, 7)) + 607 ) (987 0(2,7) = 0 (202, 7) )

Then, the desired result is obtained by doing a Laurent expansion in the variable z in both side
of the equality.
O

COROLLARY 6.2.7.1.

A A A
@02 9022 9032]

Eo,o {@6417901141] = Eo,o A0 A0 A
©o' Pyt Pyt

Moreover, we have the following lemma

LEMMA 6.2.8. Let be ¢ € Jf:‘l

0o pp? pa2
0 2 3
om> then ¥ € EO,O Ay Ay Ay |t

P2 Y2 P2

oo m>

PROOF. Let be ¢ € J, A1 then the function ( ;’ = is an elliptic function on the variables
1
®1 )

1

(vo, v2) with poles on vy — va, vy + v2, 2v9 due to the zeros of 4,0‘14 and the poles of ¢, which are

by definition in 2v,. Expanding the function ( A‘p = in the variables vg, vy we get
1
1 )

m m

¥ i (i i (i
(656) (@Al)*m = .Zl a p( )(’U() + 7)2) + ‘ZI b p( )(—1}0 =+ ’[)2) —+ C('UQ, 7'),
1 1=— 1=—

where p~!(v) := ((v), and c(vq,7) is an elliptic function in the variable vy.

But the function (A‘pm is invariant under the permutations of the variables vy, then the
2 1)

equation (6.56) is

(6.57) (@{;pl)m = iz_:l at (p(i)(vo + v2) + o (—vg + UQ)) + c(ve2,T),
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Now we complete this function to As invariant function by summing and subtracting the

following function in e.q (6.57)

flug, 1) = Z a’ oW (20y).

i=—1
Hence,
(6.59) o= Y a (90 w0+ v2) + 9 (0 + v2) + 0 (20)) + g(v3,7),
(th) i——1

Multiplying both side of the equation (6.58) by go’lql, we get
(6.59)

o (i a* (9 (vo + v2) + o0 (o +v2) + @‘”(%z))) (#52)" + g2, 7) (£52)".

i=—1

To finish the prove, we will show that

( i a’ (p(i)(vo + ) + 9@ (—vp +va) + @(i)(2v2)>> <80§42)m

i=—1
is a weak holomorphic Jacobi form of type As. To finish the proof note the following

(1) The functions (@?2>m (9 (vo + v2) + @ (—vo + v2) + P (2v2)) are Ay invariant by
construction,

(2) The functions <g0§42>m (0@ (vg + v2) + W (—vg + v2) + P (2v2)) are invariant under
the action of (Z&7Z)?, because gp?Q invariant, and %) (vg+vs)+p® (—vg+v2)+ 9 (209)
are elliptic functions.

(3) The functions (go?z)m (99 (vo + v2) + @ (—vo + v2) + 9P (2v2)) are equivariant un-
der the action of SLy(Z), because @32 is equivariant, and o (vy + ve) + @ (v +
v2) + ' (2v9) are elliptic functions.

(4) The function cp{;b has zeros on vy — vz, vy + vz, 20y of order m, and ) (vy + vo) +
p(i)(—vo +v2) + p(i)(2v2) has poles on vy — v9, Vg + V2, 2v9 of order i + 2 < m. Then,
the functions <¢§2>m (@ (vg + v2) + @ (—vg + v2) + p?(2v2)) are holomorphic.

Hence,
Ay Ay Ao
$o~ P2 P3
(6.60) @€ Eqe A A A1] .
Po - P2 P2

At this stage, the principal theorem can be stated in precise way as follows.
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THEOREM 6.2.9. The trigraded algebra of weak _# (A;) -invariant Jacobi forms J./.(f‘ 1) —

Diim J,fllm is freely generated by 2 fundamental Jacobi forms (cpgh, 90’141) over the graded ring

Eo,o
(6.61) L = B [oft ol
PROOF.
Ay Ay A _ _ _
A ' ' ¥ A A
(662) Jf;l7. C E‘,. ?41 s ?41 s :9’41 = E”. |:(’00 1, SDl 1i| C t]fi,..
Yo Yo Py

O]

REMARK 6.2.5. The structural difference between the Chevalley theorems of the groups
J(A1), and ¢ (A1) lies in the ring of coefficients. The ring of coefficients of Jacobi forms with
respect J(A;) are modular forms, and the ring of coefficients of Jacobi forms with respect _# (A;)

1 7 147

are ,for fixed 7, the ring of elliptic functions with poles on 0, 5, 5, =5~ mod Z @ 7Z. See lemma

6.2.2.

REMARK 6.2.6. The geometry of Q/(Al)/j(;h) is similar to Q' (41)/ #(A;). Indeed, the
orbit space of _# (fll) is locally a line bundle over a family of two elliptic curves E;/A; ® E;,
where the first one is quotient by Aj, and both are parametrised by H/S Ly (Z).

6.3. Frobenius structure on the Orbit space of _#(4;)

In this section, a Dubrovin-Frobenius manifold structure will be constructed on the orbit
space of _# (A;). More precisely, It will be defined the data (Q7 (A1) #(A;), g* e, F), with the
intersection form ¢*, unit vector field e, and Euler vector field F. These data will be written
naturally in terms of the invariant functions of ¢ (A;). Thereafter, it will be proved that these
data are enough to the construction of the Dubrovin-Frobenius structure.

The first step to be done is the construction of the intersection form. It will be shown that
such metric can be constructed by using just the data of the group _# (1211) The strategy is to
combine the intersection form of the group A; and _# (A;). Recall that the intersection form of
the group A; [12], [15] is:

ds® = 2dv(2) — 2dv3,
and the intersection form of ¢ (A1) [8], [9], [12] is:

ds? = dv§ + 2dudr.

Therefore, the natural candidate to be the intersection form of ¢ (A;) is:

(6.63) ds* = 2dv3 — 2dv3 + 2dudr.
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The following lemma proves that this metric is invariant metric of the group _# (A;). To be
precise, the metric will be invariant under the action of A;, and translations, and equivariant
under the action of SLy(Z).

LEMMA 6.3.1. The metric
(6.64) ds* = 2dva — 2dv3 + 2dudr

is invariant under the transformations (6.16),(6.17). Moreover, the transformations (6.18)

determine a conformal transformation of the metric ds?, i.e:

2dv3 — 2dv3 + 2dudr

(6.65) 2dvg — 2dv3 + 2dudT o 1 )2

ProOOF. Under (6.16),(6.17), the differentials transform as:

dvg — —duyg,
dvo — dvg + Aodr,
(6.66) dvy — dvg + Xodr,
du — du — N3dT — 2Xodvg + N3dT + 2 advo,

dr — dt.

Hence:

dvd — dv?,

dvd = dvg + 2\odvodT + N3dT?,
(667) dv? 5 dv? + 2\gdvadr + N2dr?,

2dudr — 2dudr — 2)\2dr? — 4)odvodT + 20\3dT? + 4)odvadr.
Then:
(6.68) 2dv3 — 2dvi + 2dudT — 2dvi — 2dvi + 2dudr.

Let us show that the metric has conformal transformation under the transformations (6.18):

dvg vodT
d _
UOHCT—l—d (et + d)?’
duvy VodT
d _
02’_)0’7"'—(1 (et + d)?’
(6.69)
dT — diT
(et +d)?’
s du c(2vpdvg — 2v2dv3) B c(v3 — v3)dr
cr+d (e + d)?
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Then:

do2 s dv3 _ 2wpdvodT vidr?
O " (er+d)?  (er4+d)3 " (er+d)Y
(6.70) do2 s dv3 2vadvadT v3dr?
: 2

(cr+d)?  (cr+d)3 " (cr +d)*
2dudr c(4vodvg — dvadvg)dT (208 — 2v3)dr?
(e + d)? (e 4+ d)? (et +d)*

Then,

2dvg — 2dv3 + 2dudr
(er +d)?

(6.71) 2dvg — 2dv3 + 2dudT —

O]

The next step is the construction of the Euler vector field. Recall that the coordinates
(u,v0,v2, T) are natural coordinates of the orbit space of ¢ (A;). The Euler vector field will be
defined as:

10
(6.72) E=—f o

The last structure to be defined is the unit vector field

0

6.73 e=—.
(6.73) oo

In order to construct the Dubrovin Frobenius structure, it will be necessary to introduce the

coordinates (!, 2,3 t4).

LEMMA 6.3.2. There is a change of coordinates in Qf(Al)//(Al) be given by:

01 (v2|7)
th = o+ 262 =2
T ()
2 _
(6.74) =
3 = V9,
th=1

PROOF. Note that the function (6.41) can be parametrised by (t!,#2,#3,¢%) as follows

A =0+ @1[C(v —va|T) = C(v + v2|T) + 2¢(v2)]
01 (v — va|7) B 07 (v + va|7) 9 01 (v2|7)
O1(v —va|T)  O1(v+ va|T) 01 (va|T)
(6.75) 0 (va|7) 01 (v —v2|T) 01 (v+wal7)
)

]

= o + 1]

01 (val7) M0 (v —valT)  O1(v + valT
01 (v =2t o (v + t3|t4)]
O1(v —t3[t)  O1(v+ t3|t4)

=@o+2

=t! + 47
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from the first line to the second line was used the following equation

01 (v — va|7) :
- — TRy — vy).
C(v—vg,T) 01 (v = val7) + 4migi (1) (v — v2)
In this way, (t!,¢2,¢3,t*) are local coordinates of Q/(Al)//(fll) due to lemma 6.2.5. O

The side back effect of the coordinates (t!,¢2,3,t*) is the fact that they are not globally

single valued functions on the quotient.

LEMMA 6.3.3. The coordinates (t!,¢2,3,t*) have the following transformation laws under
the action of the group _# (Ay): they are invariant under (6.16). They transform as follows
under (6.17):

ths 1 — N\ot?
12— 12

(6.76)
t3 = 3+ pg + Aot?
4 ¢

Moreover, they transform as follows under (6.18)

RN 2ct?t3
ctt +d
t2
ct* +d
t3
ct* +d
1, at* +b
ctt +d

2
(6.77)
3

PROOF. The invariance under (6.16) is clear since only ¢! depend on v, and its dependence
is given by ¢ which is invariant under (6.16). Let us check how ¢* transform under (6.17),
(6.18): Since t3 = vy, t* = 7, we have the desired transformations law by the definition of

_Z(A;). The coordinate t? = ¢y is a invariant under (6.17) and transform as modular form of

weight -1 under (6.17). The only non-trivial term is ¢!, because it contains the term zli EZE}:;,
which transform as follows under (6.17),(6.18) [33].
01(val7) , Oi(valT) Srring
(6.75) Or(va|7) 01 (v2|7)
' 01 (va|7) 01 (va|7) . 3
— =~ (et +d)———= + 2mict
o(ear) T DGy (wglr)
The proof is completed when we do the rescaling from ¢! to 2%
O
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In order to make the coordinates (t!,2 3 t%) being well defined, it will be necessary to
define them in a suitable covering over Q7 (A1) / 7 (A1). Tt is clear that the multivaluedness
comes from the coordinates t3,t* essentially. Therefore, the problem is solved by defining a
suitable covering over the orbit space of # (Aj). This can be done by fixing a lattice (1,t%),

and a representative of orbit given by the action
(6.79) 3 13 4 g + Aot

In order to realise also the coordinates (u, vy, v2.7) as globally well-behaviour in the covering of
the orbit space of ¢ (Al), we also forget the A; action by fixing a representative of each orbit.

Therefore in the following covering the problem

(6.80) QS A g (Ay) =0 A)z8 7

where Z @ 77 acts on Q7 (A1) a5
v — Vo + AoT + po,

U= U — 2XgV9 — n%r,
(6.81)
Vg > V2,

THT.

This covering is similar to the covering defined in section 5.6 for the orbit space of #(A4,). In
the covering (6.80) the coordinates t*, and the intersection form g* are globally single valued.
Hence, we have necessary condition to have Dubrovin-Frobenius manifold, since its geometry
structure should be globally well defined. Note that, Q7 (41) / 7 (A1) has the structure of
Twisted Frobenius manifold [12].

REMARK 6.3.1. (t!,¢?) lives in an enlargement of the algebra of Es ¢[00, ¢1]. The extended
01 (v2,7)
01 (v2,7)

algebra is the same as F, o[¢0, 1], but it is necessary to add the function in the ring of

coefficients E, .

REMARK 6.3.2. As it was already discussed in remark 5.6.1, a covering in the orbit space
correspond to a covering in the Hurwitz space. The fixation of a lattice in the orbit space of
B (fll) is equivalent to a choice of homology basis in the Hurwitz space Hi . Moreover, a
choice of the representative of the action 6.79 in the variable vy is a choice of logarithm root in
the Hurwitz space Hj oo, furthermore, fixing a representative of the A; action is to choice a
pole or equivalently to choice a sheet in the Hurwitz space Hi .

P

THEOREM 6.3.4. There exists Dubrovin-Frobenius structure on the manifold €/ _# (A;)
with the intersection form (6.64), the Euler vector field (6.72), and the unity vector field (6.73).

Moreover, Q/_# (A;) is isomorphic as Dubrovin-Frobenius manifold to Hioo0
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PROOF. The first step to be done is the computation of the intersection form in coordinates

(t',2,13,t*). Hence, consider the transformation formula of ds?:

_ovor
Ozt Oxd g

ij

(6.82) g’ (t)

where 2! = u, 2% = vy, 2° = v, 2* = 7.

From the expression:

ds? = 2dvg — 2dv3 + 2dudr = g;;dz'da?,

we have:
00 0 1
02 0 O
gii) =
Wi =10 0 2 o
10 0 O
Therefore
00 0 1
0% 0 0
g’L] = (g; -1 _ 2
@h=t)"= |00 D
10 0 0
To compute g*?(t), let us write t* in terms of z’.
th=r,
3 _
(6.83) =2,
2 Bi(vo+ v, m)01(vo — 02, T) _oriy

01(2vq,7)67(0,7)

using the following formulae [33]

(6.84) p(vo, 7) = p(v2,7) = —U(US(ZEZ 3257(}22_;;2 .
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it is possible to rewrite ¢! in a more suitable way:

/
th = —t?[C(vo — v2,7) — C(vo + v, T) + 2¢(v2, T)] + o201(v2,7)
91(U2>T)
g Pt
o(vo, ) — p(va, T) 61(v2,7)
655 g @nBenBen) L a0e)
1(vg +v9,7)01(vg — V2, T 0,7 1(v2, T
' 01( )61 ( )01(0,7)° 01(v2, 7)
_ @/(U% 7—)9% (’Ug, 7_)9%(1107 T) 6—2m’u + 2t2 9/1 (U27 T)
91(21}2,7')9/1(0,7')3 91(112,7‘)
9%(1)077-) -2 20/1(1}277—)
— YINAY 2t
Blonr) 7 (o)
Summarizing:
02(1)0 T) 9. 9/(1)2 T)
6.86 = 2130 7/ —2miu 275217”
(650 03 (v, 7) 01(v2, )
01(vo + va, 7)01(vg — V2, T) _o
2 _ 1\Y0 2, ) 2miu
(6.87) t° = 51209, )0, (0.7) e ,
(6.88) 13 = Vg,
(6.89) =

Computing ¢*? according to (6.82):

wp 1Ot OtP 10t ot ot o’ o orP
(6.90) 9 = e s r T T
20vg vy 20v9 0vy  Ou OT or Ou

Trivially, we get:

(6.91) gt =g =0,
: 1

6.92 38— _Z

(6.92) g 5

and

(6.93) g = —2mit?,

(6.94) gt = —2mitt,

The following non-trivial terms are computed in Appendix.

23 _ﬁ 201 (2%, 7)

6.95 =
(6.95) g 7 +1g, (20.7)
2 0 07 (0,7)
. 13 _ o 42 1 1Y,
(6.96) g 2mit 57 <og o (2753,7')) ,
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0" 2t3, 2t3
(6.97) g =2()° [ell Ezt?’, 3 ]
o2 | 02 01 (0,7)
o = -2 ) (557 (2 (555
LO(57) 0 (000 [0 o (28r)
=) G o (eﬁ <t3,7>> [2911 ) o)
9" 7 0" (2t3, 1 9/2 263, 7
(6.99) +8M () [911 E2t3,7'; 02 ((2t3,7))]

o (o #.n))\] A
-2(2)’ [(%3 (;1 Etg,Tm — 16mi (%) ) Et?)’

Differentiating ¢ w.r.t. t! we obtain a constant matrix n*:

0 0 0 -—2mi
N Q4 0 0 -3 0
(n*?) = =5(9"") = Ll
ot 0 -3 0 0
—27i 0 0 0

So th, 2, t3, t* are the flat coordinates.
The next step is to calculate the matrix F*? using formula (2.12), namely
g’

6.100 ) e R —
( ) deg (g*P)

We can compute deg (g""g ) using the fact that we compute deg (t*). Indeed:

19
(6.101) E=——o
Implies that:
(6.102) deg (t') = deg (#*) = 1,
(6.103) deg (t*) = deg (t*) = 0.

Then the function F' is obtained from the equation:

0*F '
(6104) W = naa/nIBB/Fa B
Computing
4 9a4
6.105 FY = —2
(6.105) deg (g°4)’
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we derive

OPF
(6.106) e = lag,
Hence
(6.107) F= -2 (¢1) ¢4 — 2023 4 f (12,463,14).

Substituting, F23,F'3 in (6.107)

i 2 2 H, (0’t4) « «
(6.108) F =~ (1)t — 2% — (#%)" log (W + h (£?) + Aapt®t” + Cot® + D,

where A,3,Co,C, are constants. Note that F 22 F12 contains the same information, furthermore,

there is no information in F33,F3* F4 because:

(6.109) deg (g33) = deg (934) = deg (944) =0

However, h(t?) can be computed by using g3

1 t2
(6.110) 933 = 3 = E€773“773)‘Cep>\ = ZC222-
Using the formula (2.10), we have:
; 0 (O t4)
6.111 F (62,88, 41) = 2 (19244 — 200268 — (12) % log [ 2220 ) )
( ) ( A A ) 47T( ) ( ) 0g 91(2t3,t4)

The remaining part of proof is to show that the equation (6.111) satisfies WDDV equations.
Let us prove it step by step

(1) Commutative of the algebra
Defining the structure constant of the algebra as

PF

commutative is straightforward.
(2) Normalization
Using equation (6.106), we obtain

PF

(6.113) clap(t) = ooy Nas

(3) Quasi homogeneity
Applying the Euler Vector field in the function (6.111), we have

(6.114) E(F) = 2F — 2%
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(4)

(6.115)

(6.116)

(6.11

7)

(6.118)

(6.119)

det <

i
ov;

Associativity In order to prove that the algebra is associativity, we will first shown
that the algebra is semisimple. First of all note that the multiplication by the Euler

vector field is equivalent to the intersection form. Indeed,
E ¢ 0y =17c3,05 = 70, (17000, F ) 05 =
= (do — dg)n*"0a0,F O = napg 93

Therefore, the multiplication by the Euler vector field is semisimple if the following

polynomial
det(1aug"’ —udf) =0,
has only simple roots. Since det(na,) # 0, the equation (6.116) is equivalent to
det(¢*® —un™®) = 0.
Using that 7% = 9,¢*?, we have that
det(g*? — un™?) = det (go‘ﬁ(t1 - u,tQ,tg,t4)> =0.

Then, it is enough to compute detg™®. In particular, computing detg in the coordinates
(@0, 1,02, 7). Recall that

g% = g(dt®,dt?), in coordinates(t!, 2,3, t4),

gm = g(dvy, dvy,), in coordinates(u, vg, ve, T),

gij = g(dp;,dyp;), in coordinates(yo, @1, v2,T).

" dpi dp;
/- J Im
detg det ((%l ) det ((%m) det <g ) .

REMARK 6.3.3. The coordinates (u, vy, v, 7) are defined away from the submanifold

Then,

defined by detg = 0. Then, we have to change coordinates to compute the roots of
detg = 0.

Hence, it is enough to compute the det (gf’)
1

9p0  9p0  Opo o
Ovg Ova or 271—“'00

o1 O Op1 9.
) _ | Bw dm B M| digop [29'1(00) _ (vt wva) | 03(vo + )
0o 1 0 0 01(vo)  O1(—vo+v2)  O1(vo+ v2)
0 0 1 0
Y P 61(200) 5.
01(2v2)07(0)
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Then, equation (6.119) has four distinct roots vy = 0, > 55,y 137 Hence, the following

system of equation

det (g“ﬁ(tl,tZ,t3,t4)) =0,

(6.120)
det (naﬁ(tl,tQ,t?’,t“)) #0,
implies in existence of 4 functions y;(¢2,3,*) such that
(6.121) th= (2,2, 8Y, i=1,2,3,4.
Sending ! + t! — u in (6.120), we obtain
(6.122) ut =t —yt (t%,83,1Y), i=1,23,4.
The multiplication by the Euler vector field
g;- = njkgki, in canonical coordinates(u', u?, u?, u4)
is diagonal, then
(6.123) g7 = u'n7by,

where 1/ is the canonical coordinates (u', u?,u3,u*), and the unit vector field have the

following form

Ou;
(6.124) Z 8::1 Ou; Z Oou;

Moreover, since

0 e 0 8} —e
ol ot?’ ot! ’

the Euler vector field in the coordinates (u',u?, u?, u*) takes the following form

(6.125) [E,e] = [t

4
-0
6.126 E= ¢ .
(6.126) > v,
1=1
Using the relation (6.115) in the coordinates (u',u?,u?, u*), we have
(6127) Ulnzjfs = Ulnlmn Clmn,
differentiating both side of the equation (6.127) with respect ¢!

(6.128) ok = bij,

which proves that the algebra is associative and semisimple.

The Function F is exactly the Free energy of the Dubrovin-Frobenius manifold of the Hurwitz
space H 1,0,0- Therefore, the equation (6.111) solves the WDVV equations by the lemma 2.1.2,
then the theorem is proved.
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Conclusion

The WDVYV solution of Hj ¢, which is (6.111), contains the term log <6V(gt3t2)) on the two
exceptional variables (#3,¢*). This is a reflection of how the ring of invariants affects the WDVV
solution. The same pattern is obtained in ¢ (A;), and A;. The equation (6.15) contains Ea(7)
which is a quasi modular form, and the equation (6.5) contains e”. These facts could be useful

on the understanding of the WDVV/ groups correspondence.

The arrows of the diagram of in section 6.1 may have a third meaning, which is an embedding
of Dubron Frobenius submanifolds [31], [32] in to the ambient space Hjpo. The fact that
Hj 0,0 contains 3 Dubrovin Frobenius submanifolds is not an accident, this comes from the tri
hamiltonian structure that Hi o has [25], [26]. In a subsequent publication, we will study the

Dubrovin Frobenius manifolds of H1 o, and its associated integrable systems.

6.4. Appendix

Computing ¢'?

2y _ 108 1 [ 0 (v —v2,7) | 04 (v +v2,7) 0% <2v2,7>}
2 Ovg 91(00-—-02, 7) 601 (vo+ v2,T) 61 (2v9,7)
:_ﬁ |: 6/( — V2, T ) (U0+1)27 ) _201 (7)2;7-):| —t29{l (’UQ,T)
2 | 01 (vo—v2,7) 91(Uo-+-02, ) 01 (va,7T) 01 (va,7)
9/ (21)2 )
201 (2v2,7)
+t 01 (21)2,T)
(6.129) - [—¢ (vo —v2,7) + ( (vo + v2,7) — 2¢ (v2, 7)] — tL/ (v2,7)
27 (v2,7) ’ ’ G )
0/ (21)2 T)
201 (2v2,7)
+t 01 (21)2,7‘)
1 1 2 0] (va,7) L 07 (2v2,7)

20 (20,7) — o (22,7) 01 (va, T) 01 (2v9,7)
t! 0 (2
— L 201 (2v2,7)
61 (2v2,7)°
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Computing ¢'3:

20vs 01 (ve,T) p(20) — p(22) Ouvg by (v2,7)

[ o
01 (v,7) 6% (v,7)

_ 9’1 (1)2,7‘) 1 _t19/1 (UQ,T) —2t29/1 (21}2,7') 9/1 (UQ,T)
01 (v2,7) p (20) — p (22) 01 (va, T) 01 (202, 7) 01 (v2,T)
6.130
- g [91’ (v.7) _OF <m>]

i) ol Q) 6] (v2,7) o [0 (v,7) 6 (v,7)
0% (va, 7) 01 (2v2,7) b1 (v2,7) o1 (v,7) 6% (v,7)
_pti () ot (20,7) 0] (v2,7) 0 (0,7)
6% (va, 7) 01 (2v2,7) 01 (v2,T) 01 (v,7)

To simplify this expression we need the following lemma:

LEMMA 6.4.1. [8] When x + y + z = 0 holds:

Hier)  O) 0w 0
61 (.’E, T) 61 (ya 7—) 01 (JJ, T) th (y T

) _
)

(6.131) '
i ? (i [ B0T) 0 (o —y,7) [0 (7) 0 (y,7)
~ o (1 g (9(96 —y77)>> "%, (x—y,7) [91 (z,7) 01 (y,7)
PRrOOF. Applying the formulas
C(v,7) = 01 gz’:; + 4migy (1) v,
(6.132) 9”; TR
6 (v 1 (v, T ~ dmian (r
p(/U?T)* 01(U,T)+<01(’U,7')) 4 gl( )7
in the identity [33]
(6.133) @)+ +CEF =p @) +pH) +p(),
we get:
el(xaT) 911(?/77—) 91(277—) 2
(6.134) Gi@n o TaGn)
' — o Oz, 7) 9/12($,T) 0y, 7) 0’12(3/, 7)  0{(z71) 9’12(7:,7)
= —12migi(7) 01(z,7) 03 (z,7) bi(y,7) + 02(y,7)  b1i(z,7) + 02 (2, 1)
Simplifying:
phw—y ) [0 (x.7) O (y7)] G016 (y,7) _
(6135) th (:U - Y, T) th (:Ea’rl) th (y77—) 61 (.7),7') th (va)
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using the fact that

_127T2g1 (T)a

0-01(0,7)
(6.136) i
2
(6.137) 0 —01(v,7) = 47rz201(v T),

0%v or

and doing the substitution y — —y, z — = — y, we get the desired identity.

Substituting in the lemma x = vy, y = —vo we get:
0] (va, T) 07 (va, T)
6.138 21 = L2 L = dmi—
(6138) 2 o) T2 () oy

Substituting (6.138) in (6.130)
(6.139)

Computing ¢

1(0,7)

0 0
13 —_9 -t27 1 1 ’
g 7T’L 87’ 8 01 (21]2, 7')

)
)

07 (2vg,7) 0]

(027 T)

01 (2v2,7) 01 (vo,T)

L (OPN' 10N o or
7 =9 \ow) 2\ 0w ou or
(6.140) )
_ LNt 1 oeNt a0
2 \ Dy 2 \ Ovg or
First, we separately compute g—i, g—fj), %—f
(aﬂ) (2)? [9; (v0+v2.7) | 6 (00— UQ,T)]Q
Ovg 2 01 (U() + v2, 7') 01 (v() — V2, T)
(8152) _ (t2)2 [ 0} (vo — vo,7) 0] (vo +v2,T) _20{ (21)2,7-)}2
(6 141) Ova 2 91 1)0 — V9, T ) 01 (’Uo + 1)2,7') 01 (21)2,7')
—47TZt28t2 . [8 91 ”U() + v9, T ) 0,04 (Uo — 'UQ,T) B 0,61 (21)2,7')
or 01 (vo + v2, 7) 01 (vo — va,T) 01 (2v2,7)
[ O 6/ 0 T }
Summing the equations we get:
(6.142)
22 _ (%) vo + v2,7) 0 (vo —

|:49/1( V2, ):|
2 91(U0—|—U2,7’)01(U0—’U2,7’)

+( %)? 201 (202,7) [_9’1(00—02,7)+9'1
2 01 (2’[)2,7') 01 (’U(]—UQ,T) 01 (’Uo—l—’Ug,’T)
(t2)? [ 07 (vo + v2,7) 07 (vo — va,7) . [
— — 8mi | —
2 04 (U0+7)2,T) 01 (UQ—UQ,T)

(UO + 'U277—):| . 499

0:01 (2v2,T) B

v (202, 7)
% (2v9, T)

0-0} (0,7)

01 (2va,7)
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where was used (6.137). Substituting in the lemma 2.3 z = vy + va, y = vg — v2 We get:

(6.143) 01 (vo —v2,7) 01 (vo +v2,7) 01 (vo — va,T)

01 (vo —w2,7) 07 (vo+va,7) 29’1 (vo — v, 7) 0 (vo + v2,T)
1(Uo+0277)

0 (vo — va,T)

.0 7 (0,7) 9’ (202, 7) [0} (vo + va, T
=4mi— (log | ———=
or 0 (21}2, T) 91 21)2, 01 (’Ug + vo, T
Substituting the last identity in ¢g*? we get:

" (209,7)  OF (209, 7)
144 22:27522 1 (202, ! )
(6.144) =20 o) B2

Computing ¢'2

12 lottor 1ottot*  ottot? ot ot!

(6.145)

5900 v 2003 0vy | Ou O | Ou or

01 (vo — v2,T)

1otr o2 10t ot? 5 Ot t18t2

S ] A—— 713
20vg Ovg 2 0vg Ovg mit or g

‘We have that:

or

O 00, 7) 03(00,7) _gmiu o Ot Oi(02,7)

vy 61 (vo, ) 62 (va,T) Ovg 01 (va, 7)’

Ot _ ,01(va,7) 02(v0,T) —omin , 0O O1(02,7) | 0 | 01 (v2,7) 0} (v2,7)
(6.146) dv2 61(v2,7) 0 (v2, 7) Qug 01(v2,7) 01(v2,7)  62(va,7)

87751 _5 0-01(vo,7)  Orf1(v2, ) 02 (vg, T) o —2riu +2877520’ (va,T)

ar 01(v0,7)  O1(v2,7) | B2(va,7)° d7 01 (ve, 7)

0 0i(va,
+2t267(elgv2, ; .
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Therefore:

10t ot® 42 [9'1(1)0 +v2,7) | 01(vo — 0277)] 01 (vo,7) 6%(7}0’7){2’”’“
2600 81)0 91(U0+U2,T) 01(’1)()—122,7') (91(1)0,7') 9%(1}2,7')
N 87752 0} (va, T)
vy ) 01(ve,7)’
_lodor [_e;wo —5,7) | G0+ 05,7 >] 1(02,7) 07 (00, 7) 3
2 Ovg Ovo 01(vo —vo,7)  O1(vo+ v2,7) | O1(v2, T) 62 (va,T)
42 |:_29/1(2’U2’7-)] (’027 ) (UO’T) e~ 2miu
01(2v2,7) ] 01(v2,7) 6% (v 277')
_ 8i 2‘9/1(0277—) _ 287252 93/(02’7-) _ 9/12(1)277—)
(6 147) 8112 (91 (Ug, T) 81)2 01 (7}2,7') 9%(1)2, T) ’
2 . 2
_2mt16i — o |:(37—91 (’Uo + vo, T) 87—01 (’Uo V2, T):| t2 (9;(1)0, 7') e_zmu
or 91(1)0—1—1)2,7') 91(’[)0—1)2,7) 91(02,7')
— o _87'91(2”277_) _ 87'9/1(077—) t29%<v077_) e~ 2miu
91(21)2, ) 0/1(0,7') 9%(’02,7’)
67‘ 91(112, )’
1 2
—2mt28t it [8791(210,7') B 8T(91(v2,7')} 0;(1}0,7) —oriu
or 01(vo, T) 01(v2, 7) | 67(v2,7)
ot 0 (va, T) _ 0 [6(va,T)
— 4Amit? — L Ami(P)? = [ = .
ot 01(ve, 7) mi(t%) or (91(1)2,7')
Let us separate g12 in three terms:
(6.148) g2 =)+ (2)+(3)
where:
(6.149)
) _ 2000, 7) _oriu [9'1(0077) <9'1(U0 +va,7) | O1(vo— 0277))]
02 (va, 7) 01(vo, 7) \b1(vo +ve,7)  O1(vo — v2,T)
+t29%(vo,7)672m [0 (v2,7) ( 01(vo —v2,7) | Oi(vo +v2,7) 93(20%7)”
9%(1)2,7’) 91(7}2, 91(2}0—1}2, ) 91(1}0—}—’02,7) 91(202,7’)
+t29%(1}0,7)672mu (8 91 Uo—l—’Ug, ) 87-91(1)0—’02,’7'))]
02 (va, T) 01(vo + va, T 01(vg — va, T)
+ t2 9%(1}0’7) 6727m'u a 91 2’1)2, 87'9/1(0’7_)
9%(1}2,7') 01 ( 21)2, 61(0,7)
+t29%(vo,7)672m (3 701 ( vov Ot (vg, T ))}
0% (v, T) 61 (vo, T 01 (ve,7) ’
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/ 2\ 2 2 2
(2) 201 (v2,7) | (07" 8i — 8mit?—— ot
01 (7}2, T) 87)0 (%2 or

(6.150) i
IACRIPPS [9/{(21}2,7) 9 (21)2,7)]

=4
01 (’1}2, 7—) 91 (2U27 7—) 9%(21}2) T)

where was used the previous computation of g%?

(6.151) (3) = —47ri(t2)2£ <9’1(v2,7)> —tza—t2 [9’1’(02,7) B 9/12(1;2,7)] .

(97' 91(1)2,7’) 8112 91(’02,7’) 9%(1)2,7’)

To simplify the expression (1) we need to use the lemma 6.4.1 with the following substitutions

T = v,y = va:

67 (vo, ) N 07 (va,7) 29’1(1)0,7-) 01 (v2,7) _
(6.152) 61(vo,7)  O1(v2,7) " O1(v0,T) O1(v2,T)
| —4ri 2 (1o ( %(0.7) >> L o010 = v2,7) [91(0077) _ 91(@2,7)]
or i 0( 0= Y2, ) 91(1}0 - U27T) 91(”077) 91(1)2,7’)
Using the substitutions x = vg,y = —vo
01 (vo,7) | 07(v2,7) 01 (v0,7) O3 (ve,7) _
(6.153) Or(vo, 7) ~ Oi(va,7)  O1(vo,7) O1(v2,7)

) 97(0,7) 0} (vo + va,7) [0 (vo,7) = O} (v2,7T)
=Adri— [ log [ ——2—~— 21 ’ 1 IRLCIEDN I
"or ("g <e<vo +vw>>) T80+ v02,7) [02(v0,7) " Oa(vz)

Summing (6.152) with (6.153):

0% (vo, ) 07 (va, T) 0 01(0,7)
91(110, Jr291(1)27 )_47”87 tog O(vo — v2,T)

l
471'2— <10g< fofvz ))>

2

(6.154)

( 01 (vo + vo, T 1(1)@-1)2,7'))
0,7) \ 01 vo+v2, 601 (vo — v, T)
( ( — V9, T) N 01 (vo —}—1)2,7')) '
61 (v2 01(vo —v2,7)  O1(vo + v2,T)
Substituting in (1) we get :
(6.155)
92(1)0 7') o (9’ (2’[)2 ) (UQ 7')
1 :t2 1 e 2miu |:_2 1 ) ) :|
= (0, 7) 01202, 7) Br (02, 7)
9 ( ) _ 9 . 0. 91(21}2 T) 67—9/(0 7') 0 91(’1)2 )
2Y1 2miu -9 ) 1\Y )
)" [ " @mn T a0 ) T

)
9 (’Uo ) o (9/ (2’02 7') (9/ (UQ 7') . 8 9/ (0 7') 9”(1}2 7’)
t2 1 ) 2miu —9 1 ) 1 ) —omi— (1 1\M 2) 1 ’ .
63 (va, [ 01(2va, 7) 01 (v2, ) i o8 01 (2v2, 7) * 01 (va, 7)

"
Using the identity (6.131), We get:

(271800, 1) 01 ( ) e~ 2miu [0/1/(1}2’ T) 9/12 (U2> 7_)] .

(6.156) (1) = 02(v2,7) 01(va,7)  03(v2,T)




We compute (3)

B g @ (0)(va,T) o2 |0 (va, 1) 07 (ve, 7)
o =i (3025) -5 leiwm - elfwz,ﬂ]
i (0T o 5201202, 7) 0y (va,7) 0} (va,7)
o 4 (t) 87- <91(’U2,7‘)> ¢ <t 2t 91(2’02,’7’)) [91(1}2,7') (9%(2}2,7’)]
B o (0 (va,7) 0, (209, 7). | 0" (va,7) 07 (va, T)
(6157) —_47T'L(t2)25 <01(U2,T>> +2(t2)291(202’7_)) [01(1}277_) - 9%(1)277_)]

6158 ot \ 01 (ve, 7)
(0459 _o(2)? [9/1(1’2,7) _ 9/1(2112,7'))] 01 (v, 7) 0 (va, 7)
01(va,7)  01(202,7)"] | O1(v2,7)  OF(v2,T)

Computing g'2:

(6.159)

PPLACT Py e %) 9'122(21)2,7)
01(va, T) 61(2v2,7) 07 (202,7)

To simplify this expression we need to prove one more lemma:

LEMMA 6.4.2.
0 (va,7) 0 (va, )0, (ve,7) O] (va,T) .02 0)(0,7)
2 2 —4 =4 1 —_—
91 (’Ug, 7’) 91 (’1)2, T) (9‘(15 (Ug, 7') 7TZ 61)287' 8 91(202, 7')
(6160) 4l GumT) 0i(T) 07 (202, 7) 0 (va,7) 01 (209, 7) 05 (v2, T)
91(2?)2,7') 01(1)2,7’) 9%(21}2,7') 91(1)2,7') 91(2’02,7’) 91(7)2,7')
B 49’1(21)2, T) 9’12 (vg, T)
01(2va, T) 0%(1}2,7)

PRroOOF. Differentiating the identity with respect to vo we obtain (6.160).
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Computing g'?:

_ 0,1//(027 7) 9/1 (v2, 7')91/(2)2, 7) 0,1 (v2, 7) 9/1,(7)27 7)

1(v2,7) 62 (va, 7) ~ 01(va, 7) 01 (2, T) 03 (v, 7)

0 (ve, T) 0/1’(21)2,7)]

(6.162) g'? = —2mi(t?)? [82; <10g (M)ﬂ .

Computing g¢'':

Lot 1 fat\? L0t ot
e
_ Lo\ et o
=3 (o) ~2(5w) 5

2 2
o 1 (ot 1 (ot 10t
Computlng bl (87’00) y 3 (@) and —4mit or -

To simplify the computation let us define:
(6.164) A= "+

Then,

6165 L (8t1>2 _ o0 ) g2y 00, 7) OF B (va,7) <8t2>2 07 (v2, 7)
2

L0\ 8 () s

2 87)2 9%(7)2,7’)

0,1(UQ7T) 2871529/1(0277-)
91(’02,7’) 81)291(1)2,7’)

(
Lo (9N OilenT) 08 (v, T)
Ova ) 62(va,T) 0vg 61 (v2,T)

+2A4 + 2t?

0/1,<7)27 T) 9,12 (1}27 T)
01 (va, T
(6.166)

) 2
90422 9’1’(712»7')_9/1(”277)
20 [91(02,7) 9%@2,7)] |
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(6.167)

0791 (U()v T) 67'01 (U27 7_):| atz 0/ ( )

ot!
—Amit' = = — 81 A? [ — — 8miA——
61(vo, T) 01(v2,7) or 91(112, )

or
8 9/ (Ug 7')) 9/ (1)2 T) 6 91(1)0 ) ((97—91 (’02 7')
— 8miAt’ — ( ! — 16miAt? = ’ ’
or 91(027 ) ( T) 91(007 ) 91(”277—)
2 /

o202 ) @ (B(02,7)
aTm UG o )&( <2,T>>'

Then, we have:

(6.168) gt =M+ 2)+B)+ )+ (5),
where:
0’ (vo, 7) 0! (va7) 0:01(vo, 7)  0:01(v2,7)
1) =A% |22 2 o1 -8 u A ’
M) 0% (vo, 7) 62 (va, 7) ™ 01(vo, T) 61 (v2,7)
42 29’122(1)0,7) B 29;1 (va1) 29’1’(110,7') +2¢9’1’(v2,7)
(6.169) 91(’00,7') 91(1)2,7') (91(1)(),7’) 31(2)2,7')
16w*
=24%[p(vo) — p(va)] =2 5 [9(vo) — p(v2)]
p(vo) — p(v2)]
4
—39“ ,
p(vo) — p(v2)
(6.170)
8 0/ ('UQ 7')
— 2A7 1 )
(2) = — 8mit 5r <01< o)
+2At20/1 (vg,7) [ /1(’00,’7') {0’1 vy — V9, T 9’1(110 —{—UQ,T)”
9%(”277) | 01(vo, T) [O1(vo — v2, T 91(Uo+1}277')
07 (v 7) [(0i(v2,7) [~0i(v0 — v2,7)  Oi(vo+va,7) ,04(202,7)
+2At2 1 ) 2 |: ) _|_ 1 ) _2 1 ) :|:|
0% (v2,7) | 91 (vo,7) | O1(vo —v2, T 61(vo + v2,7) 61(2v2,7)
+ 2At2 9/12 (UQ’ T) 0//(U27 T) 9/2( ) — 87 |:6791 (UOa T) n a‘1'01 (U27 7_):|
9%(7}2,7') 01(’02, ) 92( ) 91(1}0,7') 91(’02,7‘)
24P 0 (va,7) _747”, [8791 (vo +v2,7) | Orbi(vo —v2,7) 001 (202, 7) 079’1(0,7')”
02 (v, T) 01 (vo + v2,7) 01(vo — v2,7) 01(2v2,7) 61(0,7)

Using (6.131),

(6.171)

o e (o (070 )) e (v () -
_ 20’1(1)0,7) (0'1(00 + v, T) N 07 (vo — v2,7)> N 29;(1;2,7) ( ! (vo — v, T) . 9, (vo +v27T)>
01 ( 1(

61 (vo, ) 01(vo — v, 7)  O1(vo + v2,7)
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(6.172)

~
=
<
+
~—~
T\T/
=]
(0
~ |~
owlll
e
B
=
<t
P
—~
[
NI
2|2
A |~
SIS

Using again (6.131):

1
|~
SEES
NI
2|2
QA |~
SIS

07 (v2, 7)
91 (U27 T)

(7)27 T)
(U27 T)

12
1

2
1

0
0

(0277—)> 2
+ 8At
01(ve, T)

/
1

(0

9
or

(2) = —8mit*A

(6.173)

| — |
L&
QI
(]
-~ -~
T
= [ |
—
A__; NS
Sl e
~ NS
~—/
LS Lo~
QS DI
SN— |
— | |~
| | =
NI
o~ B
> 28
ﬁvo Tl
SS
QS =B
~—— ~
— | &
_ -~
SN—
—~ —
e W e
N NI
Sl 2=
L o L o
9191 aulaul
<t 0
I |
~—~
o)
S—
—
<
I~
—
©
~—

7N
SN
NI
ISI RS
S— | —
~ —

>
~__
SIS
e
NI
ISI RS
S— | —
~ —

>

)F — 16mi(t?)?

/1(02’ T)
01(va, T)

9
Ovy

(4) = —2(2)? [

(6.175)

(6.176)

N\
|~
(S
Q| &
ISERS]
S— | ~—
~ |~
DD
N—_
aiw
Q
|
(SIS
NI
ISERS]
S— | —
~ i =
DD
o | N
= D
QD
A~
N
-~
~—
<t
,
Il
—
Yol
~—

|

|~
S I O
~ ~ k| &
NI
S| 2 N| N
A | AV ISHIRS]
S [ [ ~—
~r o |
> D
[ [}
_ _
—~|—~ |
Ll & &
Al & & &
IS IS SRS
++ |+
ol o ol o —~|—~
S|S 5|5 w|w
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~ ~ i
S SIS SN ES
+ + g
~—~ ~— llm
— —
Cle Se o
S I P
S S~
_ _ _ | (SIS
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_ R | 2 SR
N e b=t
TS TS <
_ | ~
L 1 L 1l L 1
7 N N 7 N
—~|—~ |~ |
(S IS S A SR SN I O
Q| & Q& &l &
ISHIRSTERSI IRSTRNRSI IpS]
S [ [ |
Dl D ] D ] D
> > >
N~ N~
ﬁiw 87@ noinv/.
e} Q 5]
|/ /| /|
S I S S I S o I S
Al & & & & &
ISHIRSTERSH IRSIRSH RS
A D e e
D] D ] D T N D
DD > DD
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Summing (2) and (5):

(v2,T) (v2,7) | O1(va,T)  O2(va,T

(2)+(5) = — 8 m( W>>+8At29’2 >[9’1’<vw>_9'ﬁ<vw

O (va,7) O [0 (vo, T
—4 t2 1 ) Y 1 )
()4 01(v2, T 0 ( 01 (va, T )
4(t2 29 V2, T i < /1( ) |:20/1(U27T) _ 29/1(2U27T):|
61 ( v2, 1(?)27 O1(va,7)  61(2v2,7)
42 o0 (va, T i 0 (v, T 20’1(02,7) B 29’1(2112,7')
91 (v2,7) Ovg \ O1(v2, T 01(ve, T) 01(2v2,7)
(6.177) o | 0" (va,7) O (v, )91 (va,7) 07 (v2,7)
+ At° | -2 +6 —4
61(va, T) 61(v2, T) 63 (va, 7)

L 201 (v2,7) O (61(v2,7) 01(v2,7)  01(202,7)
a 4(t2 01(va, T) Ovg <01(v2,7)> [291(1)2,7') 201(21)2,7')]
+2At2 /(UQ)
ov201(v2,7) O (01(va, T) 01 (va, 7) 01(2v2,7)
A T o (aeem) o)~ 2]
W

p(vo) — p(va)’

—32

Summing (1) and (2) + (5):

0178 )+ @+ () = P D (T i) )
v2 \ U1
From the above results, we find:
g't =(1) +(2) + (5) + (3) + (4)
_ —4(t2)29 (02? )88 (gi(U%T)) |:29/1(027T) _ 20,1(2U27T):|

91(?}2, ) ( 2,7’) 91(1)2,7') 91(2’02,7’)
(6.179) 0 (v2,7) 200 | 0F(202,7) 0
+89%(U2, >(t ) 01(2?}2, ) 9%(2@2,7’)

s [ (MEDN] gaptitnn) 0 ()
9

Summarizing, we have proved the identities (6.95)-(6.99).
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CHAPTER 7

Coalescence phenomenon and Dubrovin Frobenius submanifold

of the orbit space of /(1211)

In differential geometry, one of the most common problem is the study of the submanifolds.
Dubrovin Frobenius manifolds consists in a manifold with a large number of geometric conditions,
therefore, quite often some of these conditions are not satisfied in a submanifold, for instance
flatness. In [31] and [32] , Strachan investigates the geometric structure of the discriminant

locus and the caustic of Hurwitz spaces, which is described as
u; = 0, discriminant locus,
u; = u;, for @#j, caustic.

In these spaces, there exist a very rich geometric structure, which is almost a Dubrovin Frobenius
structure, but, the induced metric of the ambient space is quite often curved. The aim of this
section is to point out the rich geometric structure that the orbit space of _# (1211) has. Indeed,
n [26], Romano proved that the Hurwitz space Hj oo have a tri-hamiltonian structure. This
fact realise the Hurwitz space Hj o0 as suitable ambient space to support the Hurwitz space
Hi 1 as Dubrovin Frobenius submanifold. This was done supported in the argument that the
Darboux-Egoroff systems of both Hurwitz spaces are parametrized by the same Painleve VI
transcendents. In addition, in [30] Shramchenko shows that the Stokes matrices of the Hurwitz
space H1 0,0 depends on the Stokes matrices of the Hurwitz space Hp . This fact suggests that
there exist some submanifold of H; o which contains some geometric information regarding
the Hurwitz space Hp . Therefore, this section will investigates the submanifolds of Hy o by

coalescing the canonical coordinates.

7.1. Review of Tri-hamiltonian structure

In [26], Romano inspired by the work done in [25] introduced the a notion of tri-hamiltonian
structure. This new structure implies in the existence of third flat metric compatible with the

flat pencil structure of the Dubrovin Frobenius manifold.

DEFINITION 7.1.1. [26] A 2n-dimensional Dubrovin Frobenius manifold has a tri-hamiltonian

structure if its Euler vector field has the following form

n 2n
0 0
=1 1=n+1
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for some non zero constant .
The name tri-hamiltonian is motivated by the following

PROPOSITION 7.1.1. [26] Let be a 2n-dimensional Dubrovin Frobenius manifold with tri-

hamiltonian structure, then the metric
(7.2) 78 = e (@) wg = B,

e’

is flat.

COROLLARY 7.1.1.1. [26] Let a 2n-dimensional Dubrovin Frobenius manifold with tri-

hamiltonian structure, then the metrics n*, g*, 1 form a 2-parameter flat pencil metric
(7'3) Ger,e0 = 1 — €19 — €21).

If the a 2n-dimensional Dubrovin Frobenius manifold with a tri-hamiltonian structure is

semisimple, the metrics n, g, 7, in canonical coordinates, have the following form
2n
n=> mildu)?,
i=1
2n i
7.4 = (du;)?,
(7.4) g ZZ} . (dus)

2n
=y 77%(dui)Q,
; uz
=1 7
7.2. Review of Dubrovin Frobenius submanifolds

The aim of this section is to introduce the definition of Dubrovin Frobenius submanifolds,
for this purpose, it will be necessary to introduce the notion of induced structure first. Dubrovin
Frobenius manifolds is manifold together a large amount of conditions, therefore, we will

gradually introduce the induced structure once by time.

7.2.1. Induced structure.

DEFINITION 7.2.1. [32] An F-manifold is a pair (M, e) where M is a manifold and e is a

commutative, associative multiplication e : T'M x T'M — T M satisfying the following conditions
(7.5) Liexey (o) = X @ Liey (o) + Y o Liex(e), VX,Y € TM.

DEFINITION 7.2.2. [32]
(1) An Fg manifold is an F-manifold with an Euler vector field of weight d. This is a
global vector field satisfying the conditions
(7.6) Liep(e) =d.e.
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(2) An F, is an F-manifold with a metric 7(,) compatible with the multiplication:
(7.7) n(XeY,Z)=n(X,YeZ), X,Y,ZcTM.
(3) An .# is both Fg and F;, manifold with £ and 7 related by the relation

(7.8) Liegn(,) = Dn(,)

for some constant D.
At this stage, we can define the notion of natural submanifold.

DEFINITION 7.2.3. [32] A natural submanifold N of an Fr manifold (M, e, E) is a submani-
fold N C M such that

TNeTN CTN,
(7.9)
E,.€TN, VreN.

Then, we say that the vector field E|y is the induced Euler vector field.

DEFINITION 7.2.4. [32] Consider a F,, manifold (M, e,n) with a submanifold N C M, then

we define an induced metric on N by 7|y, and an induced product x by
(7.10) X*xY=pr(XeY), X YeT,NcCT,M,

where pr denotes the projection with respect the metric . Moreover, if we also have a unit

vector field e, we defined an induced unit vector field by e| .

At this point, we have collected the minimal definitions to give a notion of Dubrovin

Frobenius submanifolds.

DEFINITION 7.2.5. [32] Let (M, e, 7, e, E) be a Dubrovin Frobenius manifold with Frobenius
product e, metric 1, unit vector field e, and Euler vector field E. Then, we say that a submanifold
N C M is a Dubrovin Frobenius submanifold if (IV,*, n|y , €|y, E|y) is a Dubrovin Frobenius

manifold. i.e. N is a Dubrovin Frobenius manifold with respect the induced structure.

In [31], Strachan proved an important Theorem, which could give a source of Dubrovin

Frobenius submanifolds.

THEOREM 7.2.1. [31] Let N be a natural flat submanifold of a Dubrovin Frobenius manifold
M. If the unit vector field e and the Euler vector field £ are both tangential to NV at all ¢t € N,

then N is a Dubrovin Frobenius submanifold.
For two-dimensional submanifolds we have an even stronger result.

THEOREM 7.2.2. [32] Let M a Dubrovin Frobenius manifold of dimension n and N a
two-dimensional submanifold. If the unity vector field e is tangential to the submanifold N at
all points ¢t € N, then N is a Dubrovin Frobenius submanifold.
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7.2.2. Semisimple Dubrovin Frobenius submanifold. The goal of this subsection is to
show that the discriminant locus and the caustic of a semisimple Dubrovin Frobenius manifolds
is a promising source of Dubrovin Frobenius submanifolds, since the caustic for instance fails to

be a Dubrovin Frobenius manifold only due the non-flatness of the induced metric 7.

Consider a semisimple .% manifold, then there exists coordinates (u1,u2,us, .., u,) such that

the Frobenius product and the Euler vector field assume the following form

0 0 0
=0,
Ou;  Ouy; ou;
(7.11) g
E=% u
;u ou;
DEFINITION 7.2.6. [32]
(1) A submanifold defined by the condition u; = 0 for one or more values of i is a

discriminant hypersurface, and will be denoted by Z.
(2) A submanifold defined by the condition u; = u; for some pair u; and u; for i # j is

known as caustic, and will be denoted by % .

The next Theorem proved by Strachan in [32] shows that discriminant and caustic hyper-

surfaces are the only source of possible Dubrovin Frobenius submanifolds.

THEOREM 7.2.3. [32] Let (M, e, E,n) be a semisimple .% manifold. Then

(1) The only natural submanifolds are the caustic and the discriminant hypersurfaces.
(2) The identity is tangential to a natural submanifold if and only if it is pure caustic. i.e.

it does not have intersection with any discriminant hypersurface.

Thereore, the Theorems 7.2.1, 7.2.2, and 7.2.3 proves the following corollary, which is our

main source of Dubrovin Frobenius submanifolds.

COROLLARY 7.2.3.1. [32] Any flat caustic of semisimple Dubrovin Frobenius manifold is
itself a Dubrovin Frobenius manifold, i.e. Dubrovin Frobenius submanifold. All two-dimensional

caustic are Dubrovin Frobenius submanifolds.

7.3. Discriminant of ¢ (4,)

We start this section by comparing the Landau-Ginzburg superpotential of Hi o and H ;.
In the appendix J of [12], Dubrovin proved the following lemma relating the coordinates
(z,w,w’) with the coordinates (u,vg, 7).
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LEMMA 7.3.1. [12] The map

u= 2_77rz 2log o (20, w,w') — gzg]
_ 2
(7.12) vo =5
CL)/
T=—.
w

determine local coordinates in Hj 1, where n = ((w,w,w’) is Weiestrass Zeta function evaluated

mn w.

LEMMA 7.3.2. The canonical coordinates of the orbit space #(A;) are given by

(7.13) Uy = —tt 232

where (t1,¢?,7) are the flat coordinates of 1 with respect the orbit space # (A;).

PRrROOF. Consider the Landau-Ginzburg superpotential (5.21) for n = 1

(7.14) A A (v) = pap(v, 7) + 0.
where
(7.15) o = —p2p(vo, 7).

Computing the critical points of (7.14),
(7.16) A A () = o/ (v,7) = 0.

We obtain v = 1, Z, 3T as roots of (7.16). Then, by writing (7.14) in terms of the flat coordinates
of
d?log0y(v,7)

7 (A _
(7.17) N (0) = oy =BT
147

We obtain the desired result by substituting v = %, 5, =5+ in(7.17), and by using the following

relations between the Jacobi theta functions [33]

1
O2(v,7) =61 (U + 2,7‘) ,

(7.18) O3(v,7) = e(iHmTT)Hl (v + 1—;7—,7) )
- (iv imT T
Os(v,7) = ie( ) g, (v+ 5,7) :
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LEMMA 7.3.3. The canonical coordinates of the orbit space ¢ (A;) are given by

01 (t3,7)
=t o2 L
. 0,(£3,7)’
vo =t — 22 0l2(t3’7-)
719) el
vy = 92 95(753»7')
‘93(t3’ T)’
IAG 7)
— tl _ 2t2 4 b
o 04(83,7)

PRroOOF. Consider the critical points of (6.75),

N(p) = t* [—p(p = *.7) + p(p +*,7)]
_ 2 o(2p, 7)o (2t3,7) _
0-2(p - t37 7')(72(]? - t3? 7—)
Then, p =0, %, 5 1;” solves (7.20). Consequently, the canonical coordinates of the orbit space
of #(A;) read

(7.20)

01 (t3,7)
S
. 0185, 7)°
05 (t3,7)
=l 2?2
2 02(t37 7—)’
05 (t3,7)
=l o2
" 0315, 7)’
0, (t3,7)
=t o2 L
o 04(8%,7)°
due to (7.18). O
LEMMA 7.3.4. The equations
—1
U= 4log (29, w,w’) —loga(zg — 22,w,w’) —logo(zg + 22, w,w’) — g (zg - zg)]
20
vy =
2w’
(7.21) py
V2 ﬂ
w/
T=—,
w

determine local coordinates in Hj ¢, where n = ((w,w,w’) is Weiestrass Zeta function evaluated

mn w.

PROOF. The o function for the lattice generated by w,w’ in terms of Jacobi theta 1 is

0( 2 <
(7.22) o(z,w,w') = 2w (55, Y )6%22
01(0,%)
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Substituting (7.22) into (7.21), we obtain

(7.23) — 2miu = log ((2w)2 01 (va, T) > ’

01(vo — v, 7)61(vo + v2, 7)67(0, 7)?
Then, the equations (7.21) determine the inverse map of (7.24) below

2 _ 01 (Uo - 1}2,7')91 (UO + Vg, 7)93(0,7)26727”'11

A 0% (vs, 7) ’
(7.24) 20 = 2w,
z9 = 2Wu9,
(U/ = TW.

O]

Consider the Landau-Ginzburg superpotential of Hj oo (6.45) written in the coordinates

(Zo, 22,W, w’)

LeEMMA 7.3.5. The Landau-Ginzburg superpotential of Hjgg (6.45) in the coordinates

(20, 22, w,w’) have the following form

i 1 1
(7.25) A = o(z0,w,w") — (22, w,w) B o(z,w,w') — p(z2,w,w’)’
PrOOF.
V(A e_gmu01(v — 09, 7)01 (v + vg, T)
01(v — v2,7)01 (v + vo,T)
_ (2w)? 0% (va, 7) 291(v—vo,7)91(v+vo,7)
01(vo — va, 7)01(vo + v2,7)0(0,7)% 01(v — v2,7)01 (v + v, T)
B ot (22, w,w') o(z — 20, w,w)o(z + 20, w,w’)
(7.26) o(20 — 22, w, W0 (20 — 22,w,w’) 0(2 — 29,w,wW )0 (2 + 29, w,w)
0%(22)0(20) o2(2)o(20) o(z—z0)o(z + 20)
o(20 — 22)0(20 + 22) (2 — 22)0 (2 + 22)  02(2)o(z)

p(zo,w,w’) B p('z?(‘U’w,)
(W(ZO, W, w/) - p(z% w, w/)) (@(Z’ w, wl) - @(22, w, w/))
1 1

p(z0,w, W) — p(22,w,w)  p(z,w,w) — p(z2,w, )"

O
A convenient way to write the Landau-Ginzburg superpotential (7.14) is by taking the new
coordinates
40? = P2,
20
(7.27) o= "
w/
T=—.
w
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Then, substituting (7.27) in (7.14)
(7.28) A A (2) = p(z,w,w') — p(20,w,w').

Hence, identifying the w,w’ of the Landau-Ginzburg superpotential of # (A1) (7.28) and of
7 (Ay) (7.25), we obtain

i 1 1
2 S A () = - .
(7.29) A (v) 0(z0,w, W) — (22, w, W) )\f(Al)(v)

Consequently, we receive the following corollary.

COROLLARY 7.3.5.1. Let (v1,va,v3,v4) the canonical coordinates of the orbit space of _# (A;)
be given by (7.19), and (u1, u2,u3) the canonical coordinates of the orbit space of # (A1). Then,

the following relation holds

V1 = V1,
1
V2 = V1 — ’U/77
1
(7.30) 1
U3 = U1 — ;7
2
1
V4 = V1 — uf
3

PROOF. From the equations (7.19) and (6.74), we have

(731) V1 = @o-

, %, 5 HTT are the critical points of (6.45) and %, 5 HTT are the critical

points of (7.14), we obtain the desired result by using the equation (7.29).

Hence, recalling that 0

O

Note that the Hurwitz space Hj o0 has a tri-hamiltonian structure due its Euler vector field

(6.72) in flat coordinates of 7. i.e.

(7.32) E = tla(zl + t2£2.

This fact implies that Hy oo has three flat metrics n*, g*,7*. The next proposition will realise
a discriminant hypersurface of the Hurwitz space Hi o as Dubrovin Frobenius submanifold.
However, we should consider the induced vector field E?, instead of the induced unit vector field

e of the orbit space of Hiy .

PROPOSITION 7.3.6. Consider the orbit space of the group ¢ (A;), and let (u,vg,va,T)
be the flat coordinates of its intersection form ¢g* (6.64). Then, the submanifold vg = 0 is a
2
E‘ E |vo:0)'
Moreover, the hyperplane vy = 0 is isomorphic as Dubrovin Frobenius manifold to the orbit
space of 7 (Ay).

Dubrovin Frobenius submanifold with respect the induced structure (g*|

vo=0" vo=0"
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PRrOOF. The intersection form (6.64) induces the metric
(7.33) — 2dv3 + 2dudr,

in the submanifold vg = 0. Note that the induced intersecition form (7.33) is flat and is equal to
the intersection form of the orbit space of # (A1) (once, we send u — —u) . Then, it remains to
show that the induced Euler vector field and unit vector field are the same of those of the orbit
space of ¢ (A1), because due to 2.1.2, we can reconstruct the Dubrovin Frobenius structure
from this data.

The equations (7.30) in the submanifold vy = 0 have the following form

v = 0,
V2 = —,
Uy
(7.34) 1
v3 = —,
uz
1
vy = —.
us

The unit vector field e , Euler vector field E and the square of the Euler vector field E? in

canonical coordinates read

4
(7.35) E=> v 847

In the submanifold vy = 0, the vector fields (7.35) have the following form

’LL
UO =0 — Z Zau

)
(7.36) Ely_o= Zu%

Therefore, the Euler vector field on the ambient space induces the correct Euler vector in the
submanifold, but the unit vector does not induces the unit vector field of H; ;. Fortunately, E?
E2‘fu0:0> are

the same data of the Hurwitz space Hp 1 and using the Theorem 5.9.6, we can reconstruct the

induces the correct unit vector field of Hy 1. Hence, we have that (g*[,,—q» £l,,—0

Dubrovin Frobenius manifold of Hj ;.
126



O]

REMARK 7.3.1. The metric 7 of H; o does not induce the metric n of Hy 1, but, Hy o has
the tri-hamiltonian structure with three flat metric. The third metric 7 of Hj o induce the
metric 1 of Hy 1. The vector field E? inducing the correct unit vector field in the submanifold

vo = 0 is the realisation of this fact.

COROLLARY 7.3.6.1. The Dubrovin Frobenius submanifold described in proposition 7.3.6

lives in the discriminant locus of the orbit space of _# (A;).

PROOF. It is a direct consequence of the equation (7.34).

7.4. Nilpotent caustic of the orbit space #(A;)

LEMMA 7.4.1. Consider the orbit space of the group /(Al), and let u,vg, ve, T be the flat

coordinates of its intersection form ¢*. Then, the submanifold defined by
(7.37) N = {(u,v9,v2,7) € (COC?*DH) / Z(A1):u=0, Im(r)+ oo}
lives in the caustic of the orbit space of the group ¢ (Ay).

PROOF. Recall the following relation of the log derivatives of Jacobi theta functions [33]

01 (v, 7) = ¢
L =cotv+4 sin(2nw),
D14

01(v, ) g
05(v,7) gy 4"
a0, 7) = tanv + 42:1(—1) T sin(2nv),
(7.38) o.m) . " ,
Os(v, 7 q"
=14 1" 2
duo,) 2V T )
0y (v, ) > n
= —1—42 5 sin(2nv)
04(v,T) —1—q
Doing the limit I'm(7) — oo in (7.38), we obtain
Oi(v,7) _ cot v
el(va) B ’
9/
2(v,7) _ tan v,
92(1), T)
(7.39) ,
A
93(”77-) -
04(v,7)
=0.
94(1), T)
Substituting (7.39) in (7.19), we obtain
(7.40) v3 = vy4.
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Then, N is the caustic of the orbit space of _# (Ay). O

ProrosITION 7.4.2. Consider the orbit space of the group /(Al), and let u, vy, ve, T be

the flat coordinates of its intersection form g*. Then, the submanifold defined by
(7.41) N = {(u,v9,v2,7) € (COC?OH) / £(A1):u=0, Im(r)+ oo}

is Dubrovin Frobenius submanifold with respect the induced structure (x, 7%y, E|y , €|y)-

Moreover, N is isomorphic as Dubrovin Frobenius manifold to the orbit space of Aj.

PROOF. From lemma 7.4.1, and corollary 7.2.3.1, we derive that N is Dubrovin Frobenius
submanifold of the orbit space of _# (A1). In order to proof the remaining part. Note that the

induced intersection form in u = 0, Im(7) + o0, is given by
2dvg — 2dvs,

which is the intersection form of the orbit space of A;. Taking the limit u +— 0, Im7 — 00 in
(6.45), we have

(7.42) lim 2\ (A sin(v — vp) sin(v + vp)
. ImT=00,u0 sin(v — vg) sin(v + vg)’

after doing some Moebius transformation in v and some change of coordinates the (7.42) became

the superpotential
(7.43) A= P g+ be P

From the data of (7.43) we can derive the Euler vector field and unit of the orbit space of A;
[15]. Hence, we can reconstruct the Dubrovin Frobenius structure of the orbit space of A; by

the arguments of section 2.1.2. O

PROPOSITION 7.4.3. Consider the orbit space of the group # (A1), and let u,vg, T be the

flat coordinates of its the intersection form ¢*. Then, the submanifold defined by
(7.44) N ={(u,v0,7) € (COEC®H)/ 7(A1):u=0, Im(r)— oo}

is a Dubrovin Frobenius submanifold of the orbit space of # (A1) with respect the induced
structure (x, 7%y, E|y » €| ). Moreover, N is isomorphic as a Dubrovin Frobenius manifold to

the orbit space of Aj.
PROOF. The induced intersection form in u = 0, I'm(7) — oo, is given by

2dvg,
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which is the intersection form of the orbit space of A;. Recall that the canonical coordinates of

the orbit space ¢ (A1) are given by

05(0,7)
“ 62(07 T) 7
6%(0,7)

7.45 =t 232
(74 " 63(0,7)’
01 (0,7)
s 94(077-)

In the limit u = 0, Im(7) — o0,, the canonical coordinates take the form
(7.46) Ul = U2 = U3z = tl.

Hence, the unit vector field of Hy; takes the form
0
7.47 =3—
( ) € atl ’
which is the unit and the Euler of the orbit space of A;. Lemma is proved due to the discussion
of section 2.1.2.

O]

COROLLARY 7.4.3.1. Consider the orbit space of the group _# (A1), and let u, vg, T be the

flat coordinates of its intersection form g*. Then, the submanifold defined by
(7.48) N ={(u,v0,7) € (C&CaH)/ 7(A1) :u=0, Im(r)— oo}
lives in the caustic of the orbit space of the group ¢ (A;).

PROOF. It is a direct consequence of (7.46).
O

PROPOSITION 7.4.4. The Dubrovin Frobenius submanifolds described in proposition 7.4.2
and 7.4.3 live in the nilpotent locus of the orbit space of ¢ (A;) and _# (A;) respectively.

ProoF. Consider the following identity

2m

> sin?(mmv
(7.49) o (o ) = los(sin(r)) 43 L =)
m=1

61(0|7) 1—g¢*m m

where ¢ = ¢'™". Differentiating with respect 7 and then computing the limit 37 — 0o, we receive

, 0 01(v,7) . = [ 2mg®™ 2mg*™ 7 sin?(mmo)
. lim — (1 =4 lim — = 0.
(7.50) Sres00 OT ( °8 (9’1(0, T) . — [1-¢" (1—¢*m)? m

Therefore, considering the WDVV solution given by (6.111), we have that c4op evaluated in the

Dubrovin Frobenius submanifold v = 0, 37 + oo is 0. Therefore

(7.51) Oy ® Oy = 44401 + 44309 + C44003 = 0.
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Then, the vector field dy is nilpotent in the submanifold v = 0, 37 +— oo .
Consider the identity

0" (0 e 2n

1,(’7):—1+2427q .
Differentiating with respect 7 and then computing the limit 37 — oo, we receive

o 0///(0 7_) o 2nq2n an4n

7.53 lim — (2 2= ) =-24 i - =

(7:53) Imresso OT < 6;(0,7) Imresss z; 1—q2)2  (1— )3
From appendix C of [12], we have that the WDVV solution of the orbit space of #(A;) is
(t1)27_ tl(t2)2 Zj

(7.52)

7.54 F= tHE.

(7.54) R AL

Using the fact that Es(7) is proportional to %, we have that J; is nilpotent in the
1\

submanifold v = 0,37 — oo in the orbit space of #(A;), by the same reason of the case

u = 0,37 > oo in the orbit space of # (A;) .
0
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CHAPTER 8

Differential geometry of the orbit space of extended Jacobi

group A,

This Chapter is dedicated to generalise the group ¢ (/Nll) defined in Chapter 6 for arbitrary
n, this new class of groups will be denoted by ¢ ([ln) From the data of the group # (A,), we
will construct the Dubrovin Frobenius manifold in the orbit space of _¢# (A,). Furthermore, this
Dubrovin Frobenius manifold will be locally isomorphic to the Hurwitz space Hi,—1,. In the
section 1.4, there is a scheme of the technical steps that we should take to built the desired

Dubrovin Frobenius manifold.

8.1. The Group /(z‘in)

In this section, we define the group _# (A,). In order to understand the motivation of this

group see 1.4.

Consider the A, in the following extended space

n
LA” = {(20?Z17 "7Zn72n—|—1) € Zn+2 . ZZZ‘ e O}
=0

The action of A, on LA s given by

W(205 21, 225 -y Zn—1, Zns Znt1) = (Zigs Ziys Zigs -3 Zip_ 15 Zins Znt+1)
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permutations in the first n 4+ 1 variables. Moreover, A, also acts on the complexfication of

LA ® C. Let the quadratic form (,) ; be given by

v,); =viM; v
<7>An A

2 11 .1 1 0
121 .11 0
112 .11 0

:UT 0 v

0
111 .21 0
111 2 0
000 0 —n(n+1)

n—1
= 221}22 +22ij —n(n+ 1)v2,.
i—0 i>j

Consider the following group LA x LAn x 7 with the following group operation
YO k), (O i, k) € LA x LA x 7,
At k) o (N i, k) = N+ A o4 i k+k+ (A A) 1)

Note that (,); is invariant under A4, group, then A4, acts on LA x LA x 7. Hence, we can

take the semidirect product A, X (LA" x LAn x Z) given by the following product.

V(w, >‘7 L, k)> (QII, 5‘7 /la I;:) € An X LA” X LA" X Z,

(w, \, i, k) ® (0, \, fi, k) = (Wi, w\ + X\, wp + fi, k+ k + <)\,5\>An).

Denoting W([ln) = A, X (LA" x LAn x Z), we can define

DEFINITION 8.1.1. The Jacobi group ¢ (A,) is defined as a semidirect product
W (A,) x SLy(Z). The group action of SLy(Z) on W(A,) is defined as

Ady(w) = w,
ac bd
Ad’}/()‘v K, k) = (CL;L - b)" —Ccp+ d)‘? k+ E<:u’a M>An - bC<,U,, >‘>An + E<)‘a >‘>An)v

for (w,t = (A, 1, k)) € W(Ay),y € SLy(Z). Then the multiplication rule is given as follows

(w,t,7) o (0,t,7) = (wid, t e Ady(th),*y’y).
132



Let us use the following identification Z"*! = LA”, CrHl = LA © C that is possible due to

maps
n

(U07 ey Un—1, Un+1) = (U07 ey Un—1, — Zvia UTL+1)7
=0

(UO7 coy Un—1,Un, vn—i—l) — (UOa oy Un—1, vn—i—l)-
Then the action of Jacobi group ¢ (Ap) on  :=C & C" @ H is given as follows
PROPOSITION 8.1.1. The group j([ln) > (w,t,y) actson Q:=CHC""' @ H > (u,v,7) as
follows
w(u, v, 7) = (u, wv, T)
1
(8.1) t(u,v,7) = (u—(Av) g, — 5()\, AN ATV + AT+, 7)

C<U,U>An v ar +b
2(ct+d) et +d et +d

7(u7v77) = (¢+ )

The proof of the proposition 8.1.1 follows from the proposition 5.1.1 with small adaptation

with the extra trivial action in the exceptional variable v,11 with respect the A, action.

8.2. Jacobi forms of ¢ (A,)

This section is the generalisation of the section 5.2 and 6.2 for the case of the group ¢ (/Nln)

DEFINITION 8.2.1. The weak /(fln) -invariant Jacobi forms of weight k € Z, order [ € N,
and index m € N are functions on Q@ = C® C*""' @ H 3 (u, v, vp41,7) = (u,v,7) which satisfy

o(w(u,v,7)) = p(u,v,7), A, invariant condition

‘P(t(uv v, T)) = (P(u7 U, T)

52 o2, 0,7)) = (o7 + d) ol v.7)
Ep(u,v,7) := —L,QQO(U,U,T) = me(u, v, T)
271 Ou
Moreover,

(1) ¢ is locally bounded functions on v’ as J(7) — +oo (weak condition).
(2) For fixed u,v’, 7 the function v,11 — p(u,v', v41,7) is meromorphic with poles of
order at most [ + 2m on vn41 :%—i—% modZ®77Z,0<1,<n-—1.
(3) For fixed u, T, vp41 = % + % mod Z& 7Z, 0 < 1,5 <n—1 the function (i # n+ 1)
v; = o(u, v, vy 41, 7) is holomorphic.
(4) For fixed u,v',vp41 = % + % mod Z & 7%, 0 < I,j < n— 1. the function 7
o(u,v', vy 41, 7) is holomorphic.
The space of /ffln)—invariant Jacobi forms of weight k, order [, and index m is denoted by
Jézm, and Jgiff") = @k,l’m J]él’fm is the space of A,, invariant Jacobi forms .
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REMARK 8.2.1. The condition Ep(u, v, vp11,7) = me(u, v', vy41, 7) implies that o(u, v', vy 41, T)

has the following form

@(ruﬂ /U/) Un+1, T) = f(vlv Un+1, 7—)627rimu‘

See also remarks 6.2.1.

The main result of section is the following.

The ring of A, invariant Jacobi forms is polynomial over a suitable ring
Fuu:=J7, (4n)

000

on suitable generators g, 1, 2, .., On.

Before state precisely the theorem, I will define the objects F, o, ©0, 1,92, .., ©n.

The ring F,; = J:{ BA”) is the space of meromorphic Jacobi forms of index 0 with poles

of order at most [ on v,11 = % + %, 0<1!l,j<n-—1mod Z & 7Z, by definition. The sub-ring
J;’zféq n) C F, e has a nice structure, indeed:

LEMMA 8.2.1. The sub-ring J:f)f?") is equal to M, := @ M}, where My, is the space of
modular forms of weight k for the full group SLy(Z).

PRrROOF. Using the Remark 8.2.1, we know that functions ¢(u,v’, v,41,7) € J,’/f),(aan) can not
depend on u, then p(u,v’,vp41,7) = @V, vpy1, 7). Moreover, for fixed v,41,7 the functions
v; = (v, vp41, 7)) are holomorphic elliptic function for any i # n + 1. Therefore, by Liouville
theorem, these function are constant in v’. Similar argument shows that these function do
not depend on v,11, because | + 2m = 0, i.e there is no pole. Then, ¢ = ¢(7) are standard

holomorphic modular forms. O

LEMMA 8.2.2. If p € Fq 4 = J;{f(;q"), then ¢ depends only on the variables v, 41, 7. Moreover,

if pe JO{ E)A") for fixed 7 the function 7 — @(v,41,7) is a elliptic function with poles of order
at most [ vy = %—{—%,Ogl,j <n-—1mod Z ® 7.

ProOOF. The proof follows essentially in the same way of the lemma 8.2.1, the only difference

is that now we have poles on v, = % + %,0 <Ul,j7 <n—1mod Z ® 7Z. Then, we have
depedence in vy,11. O
As a consequence of lemma 8.2.2, the function ¢ € Ej; = J,ji (0 ") has the following form

QD(UnJrly T) = f(T)g(Un+1a T)

where f(7) is holomorphic modular form of weight k, and for fixed 7, the function v, —
g(vn+1,7) is an elliptic function of order at most [ on the poles vy,41 = % + %, 0<l,j<n—-1

mod Z @ 77.
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At this point, we will generalise the construction in sections 5.2 and 6.2 regarding a generating
functions of the basic generators of the algebra of Jacobi forms.

Note that a natural way to produce meromorphic Jacobi form is by using rational functions
of holomorphic Jacobi forms. Starting from now, we will denote the Jacobi forms related with

the Jacobi group _# (Ay+1) with the upper index ¢ (A,41), for instance

SO/(Anﬂ)7

and the Jacobi forms related with the Jacobi group ¢ (fln) with the with the upper index
S (An)

In [8], Bertola found basis of the algebra of Jacobi form by producing a holomorphic Jacobi
form of type A, as product of theta functions.

n+2
(83) I (Ant1) _ e—27riu M

¢n - .
i 11 01(0,7)

Afterwards, Bertola defined a recursive operator to produce the remaining basic generators. In
order to recall the details see section 5.2. Our strategy will follow the same logic of Bertola
method, we use theta functions to produce a basic generator and thereafter, we produce a

recursive operator to produce the remaining part.

LEMMA 8.2.3. Let be cp;ﬁ(;"“)(ul, 21, 22, -, Zn, T) the holomorphic A, 1 —invariant Jacobi
forms which correspond to the algebra generator of maximal weight degree, in this case degree
n+2. More explicitly,

n-—+2
(84) S (A2) _ e—27riu1 M

Prn42 - p 9/1 (O, 7_) :
Let be gp{ (Al)(uQ, Zn+1,T) the holomorphic A; — invariant Jacobi form which correspond to

the algebra generator of maximal weight degree, in this case degree 2.

. f ~ 2
(8.5) of (40 _ gaminn 012 7).
01(0,7)

Then, the function

. S (Any1)
(86) SDK(AVL) _ ()OTH*Q i

T (A
SDéf( 1)

is meromorphic Jacobi form of index 1, weight -n, order 0.
135



PRrOOF. For our convenience, we change the labels uy — uq, 21, 29, ..., Zn+2 to
U = U2 —uy,
Z1 = Vo — Un41,

22 = V1 — Un+1,

(8.7)

n
“n+l = — Zvi — Un+1,
i=0
Znt2 = (N 4+ 1)vp41.
Then (8.6) has the following form

7 (A _ O 7-1_ 91(’0‘—7} +1 T)
8.8 7{(An) , , ey Unt1s — 2miu Hz_O ? n+1,
(8.8) @ (U, V0, V1, ooy Upt1,T) = € 70,701 (0 T Domre )

Let us prove each item separated.

(1) A, invariant
The A, group acts on (8.8) by permuting its roots, thus (8.8) remains invariant under
this operation.

(2) Translation invariant
Recall that under the translation v — v 4+ m + n7, the Jacobi theta function transform
as [8], [33]:

22
(8.9) O1(vi + pi + N1, 7) = (=) NiTHieT 2T, (4 1),

Then substituting the transformation (8.9) into (8.8), we conclude that (8.8) remains
invariant.

(3) SLy(Z) invariant

Under SLy(Z) action the following function transform as

01 (=% aTer) wicv? 0 (viy T)
8.10 —ertdr erhd _ (er 4 d)lex Ly
10 0= R U

Then, substituting (8.10) in (8.8), we get

_ J (An
o An) or
" (et +ad)"
(4) Index 1
1 0 sd) _ _#(An)
811 - n — & n .
(8.11) omi du " on
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(5) Analytic behavior

Note that ga;f (A”)Q%((n + 1)vp41,7) is holomorphic function in all the variables v;.

Therefore go;{g An) are holomorphic functions on the variables {v;}, and meromorphic

function in the variable v,41 with poles on % + %,]’,l =0,1,..,n — 1 of order 2, i.e

[ =0, since m = 1.

O]

In order to define the desired recursive operator, it is necessary to enlarge the domain of the
Jacobi forms from C® C" @ H > (u,vg, v1, .., Vpi1,7) to COC" L @ H > (u,v0, V1, .y Upg1, D5 T)-
In addition, we define lift a of Jacobi forms defined in C @ C>?® H to C & C> @ H as

O(Uy V9—Vpt1, V1—Vnt1, -, (NA1D)Upp1,7) = S(p) := @(u, v9—Vp4+1+D, V1 —Vpt1+D, .., (R+1)Vp 414D, T)

A convenient way to do computation in these extended Jacobi forms is by using the following

coordinates
s=u-+ ngl(T)p2,
Z1 = V0 — Un+1 + D,
Z9g = V1 — Up+1 + D,
(8.12)

n
Zn+l = — E Vi — Un4+1 + D,
i=0

Znt2 = (N + 1)vpg1 + p,

T=T.
The bilinear form (v,v) 5, is extended to
n+1
(8.13) (21, 22, .., Zn42), (21, 22, s Zng2)) E = Z 2t — 22,
i=1
The action of the Jacobi group A, in this extended space is

zI)E(u, v, P, T) = (u7 w(’u),p, T)

|
(8.14) te(u,v,p,7) = <u — (N 0)p = 5N ET + kvt p+ AT+M,T>

clv,v v at +b
)= (s Ll p e

2(ct+d) et+d et +d eT+d
137



PROPOSITION 8.2.4. Let be ¢ € J/( ), and ¢ the correspondent extended Jacobi form.

k,m,e
Then,
o . An
p=0
PROOF. (1) A,-invariant

The vector field 8% in coordinates s, 21, 29, .., 2n+2, T reads

n+2

Z ~+ 2 (7 aau

Moreover, in the coordinates s, 21, 29, ., Zn+1, 2nt2, T the A, group acts by permuting

21,22, -y Zn1 - Then

0

aip (SD(Sa 22, 214 %3, 7-))

n+2 o
= (Z az) ((10(57 Rty Rig-es Zin+1’ An+2; 7-)) }pZO
- i

n+2
0
- < ) ((70(5’21"22;7"72n+1?zn+2’7—))’p:0.

8817 (p(u— (A v)p = (AN A E,v+p+ AT+ 1,7)) p=0

B 68p<)\’v>E pow(u’U’T)—Fg(; <u—<)\,v>,§n_;<)\,>\>An7’+k,v+)\7+u,7’>
_ g;j (u <)\7U>An _ ;<)\’)\>Anr+k,v+)\7+um>

— ?;;(U,U,T) o

(3) SL2(Z) equivariant

0 (u+ c(v,v) g v D aT+b)
op 4 2(ct+d) et +d et +d et +d

p=0

= — 2<vv> (u,v,7) + L 90 u vv)g, v p_ar+b
20t +d)op Ep:0<,0 T et +d dp 20ct+d) et +d et+d et +d
1 8790 wt C<U,U>An v P at +b
et +dop 2(ctr+d) et +d et +d eT+d
-t 8g0(uv )
Tl aF ap

Then,

g - c(v,v) g v p ar+b _ 1 890(uv7_)

dp 2(ct+d) et+d et+d et +d (e +d)k1 op =0
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(4) Index 1

1090, 19006, 9,
271 Ou 8p 2mi Op o’ 0p(p
O
COROLLARY 8.2.4.1. The function
[ez;?p <ezm : H?zonﬁ(pvwi ~ Unt1,7) ﬂ
(816) 0 (0 7') 91(p + (n + 1)’Un+1, T) p=0
:(pﬁf(A n) f(A")z—i—gof( ")z2—|— _HD/( An) Oz,
is a generating function for the Jacobi forms gof (A ”), gp{ (1 ") go;i (2,4 ”), o g%/ (A”), where
n—k -
o A _ 9 57 (An)
(8.17) R S
P (o)
PrOOF. Actlng k times in @,{J(A"), we have
[5'“ (ezm [T7 01(p + i = V41, 7) ﬂ ¢ /()
Okp 01(0,7)"01(p+ (n+ L)vpy1,7) p=0 —n+k,1e
O]

COROLLARY 8.2.4.2. The generating function can be written as

(8.18)
— ¢ 2mi(utng (1)22) H?:o 01(2 + v — Vpy1,7)

% (ornz oghlo v —venr) )
0:(0,7)"01(p+ (n + vy, )

o0 07(0,7)"01(z + (n + L)vyy1,7)°

PROOF.

(s ) -

25 : 2 JIig01(p 4+ vi — Vg1, 7)
819 fd e op 627”(8"_77'91 (T)p ’l—(’)n
( ) [ ( 01(0,7)"01(p+ (n + 1)vpy1,7)

— 6727Ti(u+ng1 (1)2?) H?:O 01(2’ + Vi — Un41, T)
T0, 7701 (= + (1 Doner, 1)

p=0

O]

The next lemma is one Of the main points of this section, because this lemma identify the
orbit space of the group #(A,) with the Hurwitz space Hi,_1,0. This relationship is possible
due to the construction of the generating function of the Jacobi forms of type A, which can be

completed to be the Landau-Ginzburg superpotential of Hi ,_10 as follows

LEMMA 8.2.5. There is local biholomorphism between the orbit space ¢ (fln) and Hy p,—1,0,
i.e the space of elliptic functions with 1 pole of order n, and one simple pole.
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ProOOF. The correspondence is realized by the map:

(8.20)

—2miu H?:O 01(z — v, 7)
07 (v, 7)01(v+ (n+ 1)vpg1,7)

[(w, v, V1, ooy Un—1, V41, T)] — A(v) =€

Note that this map is well defined and one to one. Indeed:

(1)

(8.21)

(8.23)

Well defined

Note that proof that the map does not depend on the choice of the representant of
[(¢,v0,v1, .., Un—1,Vn+1,T)] is equivalent to prove that the function (8.20) is invariant
under the action of _#(A,). Indeed

A, invariant

The A,, group acts on (8.20) by permuting its roots, thus (8.20) remais invariant under
this operation.

Translation invariant

Recall that under the translation v — v +m + n7, the Jacobi theta function transform
as [8], [33]:

2

) A7
01 (vi + i + N7, 7) = (=) NTHieT 2t 3T, (4 )

Then substituting the transformation (8.21) into (8.20), we conclude that (8.20) remains
invariant.
SLy(Z) invariant

Under SLy(Z) action the following function transform as

i d .
1(CTU+d’ (cliid) _ eXp( 7”01}@2 )01 (Uiﬂ T)
67(0, ‘gig) cr+d” 67(0,71)

Then substituting the transformation (8.22) into (8.20), we conclude that (8.20) remains
invariant.

Injectivity

Two elliptic functions are equal if they have the same zeros and poles with multiplicity.
Surjectivity

Any elliptic function can be written as rational functions of Weierstrass sigma function
up to a multiplication factor [33]. By using the formula to relate Weierstrass sigma
function and Jacobi theta function

01 (v, T

_ ) :
= W exp(—2mig (7)v7)

o(vi, T)
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COROLLARY 8.2.5.1. The functions (4,0’04", cpf”, . cpf}") obtained by the formula

)\An — 627riu H?:O 91 (Z — V; + Upt1, T)
07 (2, 7)01(z + (n + 1)vn41)

.24 A, n— in  n— A,

(8.24) = A" 2 (2, 1) + i 032, ) + o 4 i (2, T)
+ 01" [C(z,7) = C(z 4+ (n+ Dvnsr, 7) + 05"

are Jacobi forms of weight 0, —1, —2, .., —n respectively, index 1, and order 0.

PRrROOF. Let us prove each item separated.

(1)

(8.25)

(8.26)

(8.27)

(8.28)

A, invariant, translation invariant

The Lh.s of (8.24) are A,, invariant, and translation invariant by the lemma (8.2.5).
Then, by the uniqueness of Laurent expansion of )\A”, we have that (p?" are A,
invariant, and translation invariant.

SLy(Z) equivariant

The Lh.s of (8.24) are SLy(Z) invariant, but the Weierstrass functions of the r.h.s have

the following transformation law

_ z at +b
P2

_ k (k—2)
) = (er+ f I ),

Then, go?” must have the following transformation law

i c(v,v);, v ar+b ;

4 —k A
k (u+2(CT—|—d)’CT—|—d’CT—|—d) (e7 +d) " ey (u, v, 7)
Index 1
1 0 i i
— A\ =\
2mwi Ou
Then
1 0 A, A,
omion’t ~ Yi-

Analytic behavior

Note that A4 0?((n+1)vp41,7) is holomorphic function in all the variables v;. Therefore
cpfi” are holomorphic functions on the variables vy, v1, .., v—1, and meromorphic function
in the variable (n + 1)v,4+1 with poles on % + %,j,l =0,..,n—1of order 2, i.el =0,

since m = 1 for all gp{”.

O
141



8.3. Proof of the Chevalley theorem

At this stage, the principal theorem can be state in precise way as follows.

THEOREM 8.3.1. The trigraded algebra of weak #(A,) -invariant Jacobi forms J.ff(f‘ n) =

®k,l,m J,fl"m is freely generated by n + 1 fundamental Jacobi forms (¢o, ¢1,,¥2, .-, , Pn) Over the
graded ring F, o

An
(829) Jo{(o ) — Eo,o [9007 P1y5 P25 w055 (Pn] 5

where

Eeo = Joopo 1is the ring of coefficients.

More specifically, the ring of function E, o is the space of coefficients f(vp41,7) such that for

fixed 7, the functions v,41 — f(vny1,7) is an elliptic function.

Before proving this Theorem, some auxiliary lemmas will be necessary.

LEMMA 8.3.2. Let {Lpf"} be set of functions given by the formula (8.24) ,and {(p;‘"“} given
by (5.21) , then

I (Ant1) An F (A1)

Pr+2 = ¢n"P3 )
n An A n A,) F(A
%ﬁ(l +1) 90{_( ) /( 1) +an—1907{( )902;( 1)7
n A A n P A A 7 (A
§07{k(2 +1) 907{( ) f( 1)+an %@{(1 n) 2/( 1)+ am_ 2907{7( )ﬁpéj( 1)’
(8.30)
()02/( +1) _ /( ) /( 1)+Za90/( ) /( 1)
j=1
(An+1) Za 903 2 (Al)
where cpgj(Al) is defined on (8.5) for z,12 = (n + 1)vy41, and ag = a{(vnH,T) are elliptic

functions on vy41.

ProOF. Note the following relation

A/ A1) 01 (2 — (n 4 Dvpgq, 7)01 (2 + (n+ Dvgsr), 7 o~ 2miuz
2 (An) 02(z,7)

A 7 (A
= 3 @(z,f)*cp{( Do((n + 1)vpi1,7)
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Hence,

(8.31)

An n— 2 An n— 2 An A’n
SOZZ(Q +1)p 2(277)+¢;{k(1 H)@ 3(Z,T)+...+<p2/( H)@(z 7')+<,0/( +1)

7 (An) _n— An) An
= (o "2z, m) + Moz ) + o+ 0 Mz, )

+ o ez m) = C+ (n+ Dopgn, ) + 08 D)0 Moz, ) — of M o((n + V)vasr, 7).

Then, the desired result is obtained by doing a Laurent expansion in the variable z in both side

of the equality.
O

As a consequence of the previous lemma, we have
COROLLARY 8.3.2.1. The Jacobi forms {gozj (A")} are algebraically independent.

PROOF. Suppose that there exist polynomial h(zg,z1, .., z,) not identically 0, such that

A n A~.n
hed ) o ) o ) o ) =0

then, because Jg /. ;A ") i graded ring h(zo, z1, .., £, ) should be 0 in each homogeneous component

A m A 2 An -~ An
= (pg M) hm(%@( o ) o (An) | o (An)y,

in the variables v;, then h,, vanishes iff its vanishes in each

hm (0,21, .., y) of index m. Let B

S (An)

Let us expand the functions ¢;

order of this expansion.

From equations (5.19), we know that the lowest term of the taylor expansion of <p/ (Ant1)

are the elementary symmetric polynomials. Using lemma 8.3.2, we conclude that the lowest

S (An) . /( n+1)

term of ¢ is the same as the lowest term of ¢, , but those terms are exactly the
elementary symmetric polynomials. But the elementary symmetric polynomials are algebraically

independent, then they can not solve any polynomial equation. Lemma proved. ]

COROLLARY 8.3.2.2.

~ ~ I (An An An
B [f( W) F(An)  7(An) /(An)}:E o Ant) At 7 ()
o0 |Pp y P1 y P9 5oy P11 o0 (A FAD Z(AD)
#2 2 2

Moreover, we have the following lemma

74 n) s0](1%-5—1) f(An-H) S (Apy1)
LeEMMA 8.3.3. Let ¢ € Jiom™, then ¢ € Eeo | 5y, f<A1) y ooy Pgasy
%3 #2

Proor. Let p € J;{%”), then the function —%;— is an elliptic function on the variables
o

(V0, V1, s Un—1,Vpt1) With poles on v; — vp41, (n + 1)vp41. Expanding the function —75— in
74
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the variables vg, v1, .., vp—1 We get

1 n—1
/fAn) _ Z a:np(m—m (Vi — Ups1) + Z afn—lp(m—?’) (Vi = Vpy1) + ..
o7 P i=0
n—1 '
+ 3 a0 i) + b, )
i=0

But the function % is invariant under the permutations of the variables v;, then
w5

n—1 n—1
% = dm Z "2 (07 = vns1) + @ Z O (0 — 1) + .
" =0 i=0

(8.32) -
+a1 Yy (" (v = o) + b(vn1,7)
i=0

Now we complete this function to A,y1 invariant function by summing and subtracting the

following function in e.q (8.32)

n—1 n—1

f(Ons1,7) = am Z @(m_g)((n + 1vn41) + am—1 Z p<m_3)((n + Dvn41) + -
1=0 =0
n—1

+ar Y ¢ (n+ Donga)

i=0
Hence,

n—1
% = an (D 9" P (vi = vpg1) + 0 (0 + Do)
i=0

n

n—1
(8.33) + am-1 Z(p(mfg) (0i = vpa1) + (0 + Do) + -
=0

n—1
+ar (¢ (i = vng1) + <P (0 + Dvnga)) + b(vnta, 7)
1=0

To finish the proof note the following
(1) The functions (p;ﬂ;"“)[pm(vi — Uns1) + 99 (n + 1)v,y1)] are A,y1 by construction,
(2) The functions @;ﬁ(QA"“) [0 (v;—vpi1)+ 9P (n+1)v,41)] are invariant under the action
of (Z & 77Z)?"*2, because go;{i(;”“) invariant, and pU) (v; — v1) + 9 (0 + Dvpy)]

are elliptic functions.

(3) The functions w;ﬁ(;"“)[p(j)(vi —Vpt1) + 99 (n + 1)v,11)] are equivariant under the
action of SLs(Z), because @{;(QA"“) is equivariant, and o) (v; — v, 1)+ (n+1)v,11)]

are elliptic functions.

(4) The function wéﬁm"“) has zeros on v; — Uni1, (n + 1)v,41 of order m, and W) (v; —

Un+1) + p(j)(n + 1)vp+1)] has poles on v; — vp41, (n+ 1)v,41 of order j 4+ 2 < m. Then,
the functions cpgi(;"“)[p(j)(w — Unt1) + 9 (n + 1)v,41)] are holomorphic.
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(5) We conclude that g; := cpf( "*1)[p(j)(vi—vn+1)+p(j)(n+1)vn+1)] € J.j].(A"“). Hence,

(8.34)
m F(Apgr) ™ S (Ant1) I (Ant1) F (Ant1)
o ] 9i 7 Son+2 30 30(2 Pn
SO_Z‘” Fany T s T o) € Bl of A0 7 I A T (A )
i1 (93 ) Y2 Y2 P2
O
Proor
(8.35)
- Ap Ap Anp _ - .
R B I e S il B [, ) o ) ot ()
o 00 [N ) \,/a(Al) ) f(Al) PR f(Al) (N} 900 7301 7302 y - Pn
P2 P2 ¥3

8.4. Intersection form

This section generalise the definitions and results of the section 5.3. In addition, we generalise
the formula (5.35).

REMARK 8.4.1. From this point, we will use (¢, ¢1, ., ¢n) to denote the Jacobi forms of the

group ¢ (fln) again, since there will not be anymore Jacobi form from others Jacobi groups.

DEFINITION 8.4.1. Let

g= Z dv? ‘Zl e n(n+ 1)dv2,; + 2dudr,

n—1
(8.36) = " Ajjdvidv; — n(n + 1)dv?,, + 2dudr,
i,j=0
n+1
= Z gijdvidv; + 2dudr.
1,7=0

where A;; is same as g;; of the Coxeter case (4.5). The intersection form is given by

n—1
0 0 1 0 0 0 0 0 0
(8.37) g Z,]Z:O Qv © ov;  n(n+1)0vp4 ®© OVp41 * o ou ®© or + or ®© ou

PROPOSITION 8.4.1. The intersection form (8.36) is invariant under the first two actions of

(8.1), and behaves a modular form of weight 2 under the last action of (8.1).

PrOOF. The first action of (8.1) only acts on the variables v;, the intersection form is
invariant under this action because A;;dv;dv; is invariant under permutation.
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Under the second action of (8.1), the differentials transform as:

dv; — dv; + A\;dT,

n+1
(8.38) du > du — (A Ndr — 2 gijAjdvi,
=0
dr — dr.
Hence:
gijdvidvj — gijdvidvj + QQij)\idvidT + gij&-/\jdr2,
(8.39) ol
2dudr — 2dudr — (\, \)d*r =2 " gV \jdvqdr.
=0
Then:
n+1 n+1
(8.40) > gijdvidv; + 2dudr — Y gijdvidv; + 2dudr.
i,j=0 i,j=0

Let us show that the metric has conformal transformation under the third action of transforma-
tions (8.1):

do: s dvi  cvdr
Verdd  (er+d)?
dr
. d _ar
(8.41) T e dE
cgijvidvy  c{v,v)dr
d d - )
urdnt ct +d 2(cr + d)?
Then:
giidvidv; — gijdvidv, . 2cgijvidvjdT gz'j'Uinde
(8.42) ST (e T (er P (er+ )T
' ddudr  2egividvidr  clv,v)dr?
2dud J J . ) '
uaT (cr +d)2 + (e + d)3 (et +d)4
Then,
w Zf”rl duv.d '+2d d
oy Aoy . z,j:OgZ] V; AV uaT
(8'43> ijzzo Gij d'Usz] + 2dudt — (CT n d)2

O]

An efficient way to compute all g*(dy;, dp;) is by collecting all of them in a generating
function. Note that (dy;, dy;) is not a Jacobi form, and this fact makes the computation more
difficult. Hence, in order to circle around this problem, we define the following coefficients in
(8.45).
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LEMMA 8.4.2. Let p; € Jé”mi, then the metric given by

(n*.)

is invariant under the first two actions of (8.1), and behaves a modular form of weight 2 under
the last action of (8.1).

1 | N BN
. g (o dnP o)) 2 () © ——
(8.44) 9 i i o) 5 (n )®a%

Moreover, the coeffiecients of the metric (8.44)

1 . .
M (dei, dg;) == —5—-g" (dn* @i, ™ o)
(8.45) S !

= g" (dys, dpj) — 4migi (1) (ksmj + kjmy;) pie;,

An
belong to Jki+kj—2,mi+mj'

PROOF. The metric (8.44) is invariant under the first two actions of (8.1) due to proposition
8.4.1, and because 1 do not change under this action. The equivariance with respect the SLy(Z)
follows again from proposition 8.4.1, and from the fact that the transformation laws of 7 get

canceled.

The equation (8.45) follows from the chain rule, from the identity

(8.46) j’;m — ()
]

PROPOSITION 8.4.3. [8] Let E* the space of elliptic function of weight k. The elliptic
connection D, : EX — E* is linear map defined by

1 0i(v,7)
271 01 (v, T)

(8.47) D,.F(v,7) = 0;F(v,7) — 2kg1(7)F (v, T) — F'(v,7),

where F(v,7) € E*.

In order to compute the coefficient of M*(dy;, dp;) it will be necessary to define an extended

intersection form g.

DEFINITION 8.4.2. The extended metric g is defined by

(8.48) g = Z dU?‘Z?:o 0=~ n(n+1)dv2_, + 2dudt + ndp* + 4ngy (7)pdpdr + 2ng} (T)p*dr?,
i=0

or alternatively,
n+1

8.49 a = d2’2 — d2’2 + 2dsdr s
7 n+2
i=1
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where (s, 21, ..., Zn4+2, 7) is given by (8.12). The extended intersection form read as

(8.50)
g*:ZA.—la ) 1 ) 8 10 o o9 o8 o 0
7‘7

i 9o C 0y, n(n 1) Oongs - Oumsr ndp - dp 05 Cor or s

The following technical result proved by Bertola in [8] will be useful to prove the subsequent

results.

PROPOSITION 8.4.4. [8] The following formula holds

L), L)L), D=

(8.51) <a<x> Ty ale)al) -y | lalz—y)

where a(p) is given by the second equation (8.55).
The desired generating function is a consequence of the following lemmas.

LEMMA 8.4.5. Let ®(p) be given by

n+1
—omiu—2mi 01(zi,7) 607(0,7)
8.52 P —e 2miu—2mip®ngy (T) 1\%4, 1Y, 7
(8.52) (p) ZI:II 0,(0,7) 61(2n42,7)

and M the extended modified intersection form

(8.53) M(d®(p), dd(p')) = nizr (d (220(p))  d (20 ()

then,

PN (d2(p), () =
(8.54) - Vealp-p)  dp-p) dP(p') dP(p)

o 27'['7/7-1/ P a P , 7
alp-p)  alp-7) gy vy
where
1 0 (n?*F) g
TF s —= bl F E )
\V (U T) n2k or <
. 91(p7 7—)
(8.55) V=0
n+1
P(p) _ ,—2miu 91/(2“7_) 0/1 (O’T) .
41 91(()77') (91(211—&-277_)
PROOF.
e27ringl(T)(P2+p/2)]\7(dq)(p)7 do(p'))
(8.56)

— 2migi(rn(p®+p"%) 1 (d (e—%inm (T)pzp(p)> .d <6—27Tm91 (T)p’Qp(p/)»
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Note that

OP(p)

o &2 9
— = 2
op~ 2= 0a + 2npg1 (1) - 3
a n+1 8 a
— _ 1
OV 41 ; 0z Tt >(9Zn+2
o _9, (7)o
o = or T
Hence,
n+1
27rmg1 (r)p? Y 0 —2ming: (T ) Z 8P
(8.57) o S 82@
27rzng1(7')p2 0 aP( )

( —27ring1(T)p2p(p)) =

or
Substituting (8.57) in (8.56) we get

e2ming: (T)(p2+pl2)M(dq> (p), do (p/)) =

aP n+1

6Zn—i—2

1 OP(p) OP(p)

_ A1
Z ij (%j

1,7=0

n+1
OP(p')
+ Z 822 P 0z;

41 9P (p) OP(p")

n(n+1) Qvpy1 Ovpta

1 aP(p n+1 ) 1 oP(p n+1

5 252 B3
n 0zZp+2 “ 821 n 0zp+2 — (92’@

—2miP(p)V,P(p") — 2miP(p )V, P(p)

P (p) OP(p')

n O0znt+2 0Zpy2

— — 2miP(p)V,P(p') — 2miP(p') VP (p).

821‘ 6Zi

Using the following identity in (8.58)

ZA_lap ) 1 i (p) o= OP ()
v 81}1 87)j ; azz 7

(8.59) VY . -
- 82Z 0z n(n+1 — 8271 P 3Zz ’
we get

o2ming: (T)(P2+P/2)M(d@(p), do(p')) =

(8.60) ntl g )

p
o Z 821 0z;

P (p) OP(p')
" Oznta Oznio

= 2miP(p)V,P(p') — 2miP(p)V+P(p),
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we now compute

n+1 /
Z 8P<p) 8P(p) _ QFiP(p)VTP(p/) — 27TiP(p/>VTP(p) =

n+1 n / n
_ Z 8; )8];2 P) 27; P(p)i(9 (n281:(p) ) +P(p’)78 (n28f(p))
(8.61) = OF gE
LAEgNIPY o (w; o (z) ! (w;
() ) i
i=1 1 K3 Z 'L
1 "(zn+2) | @ (wny2) o (zn42)d (Wny2) /
(e e Y e ) PRIPOD,

where z; 1= z;(v;, p), w; := z;(v;,p). Substituting (8.51) in (8.61)

- 1 n+1 oz”(zl-) o/’(wl-) B O/(Zi)o/(wz) /

25 (50 S~ Yoo ) POPW) + trianPOIP)
(8.62) 1 (a"(znt2) | " (wni2) _ o (zna2)d (Wnyo) ,

i 2 ( oz(zn+2) * a(wn+2) 2 Oé(zn+2)a(wn+2) ) P(p)P(p)

_ o Yo —p)  a(p—p) dP(p) . 4P (D)
S —p) T alo—v) [P(p) ) ] '

O]

LEMMA 8.4.6. For the coefficients M of intersection form, we have the following formula

Z Cr(p d‘Pk dSOJ)
soy = mv;?;(p_ o)+ S22 P ) pn T
- Z M (de(P)7 dC; (p,)) Pnt+1—kPn+1—j
where Cy(p) is given by
1)k
Culp) = " 020
(8.64) o 1 (p) =Cp) — Cp+ (n+ Dvggr) + (0 + 1)C(vnt1),
p2(p) =1

and

19C,(p) C,(v))

M (dCy(p), dC;(p)) == — 2mi (Cr(p)V-C; (1) + Cj(p)V-Ci(p)) + 0 op oy

(8.65)

1 9Ck(p) Z i 3903 i,

nn+1) v,y (9Un+1 g’ 81}n+1 Ovpat
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PRrROOF. Note that P(p) =

n+1 Ck( )gok, then

627rm(p2+p’2)ﬁ(dcl>(p), de(p')) =

:ZM(d(Ck

_ch

(8.66)

er),d (Ci()e;))

M (dey, dip;) +ZC )orM (dCy(p), dy)

+ Z Cr(p) i M (diog, dC;(p')) + Z erpi M (dCy(p), dC;(p'))
= ZCk M (dyy, dej) — 2mi Z C;(p")erp;V+Cr(p)
7.k
) 1 9Cx(p) 9C;(p')
— 27 C o V-Ci(p) + = i —L—
%; k(P)eiorVCi(0) + ]Z; PRI o
1 9Ck(p) 9C;(p') 1 Opr 0C;5(p")
n(n+1) %: PrP Ovpt1 Ovpyt n(n+1) ]zk: Cr(P)#; Ovpt1 Oupaq
dp; 9Ck(p)

n(nl+1) > Ci)en
ik

Ovpy1 Ovppr

Then, isolating Zk,j Ci(p)Cj (p,)M(d@k, dyj)
Z Ck (dgpk, d(pj)

— > " M (dCy(p),dC
k,j

THEOREM 8.4.7. The coefficient of M*(dy;, dyp;) is recovered by the generating formula

(8.68)
- (=1)k*H

2. &

— 17 =1\
vz (k=15 - 1)!

= 27mi(A(v)

D A(v) + Mv)D-A®W)) —
dA(v')

j(p/)) Pnt+1-kPn+1—j-

M*(dei, dpj) p(v) "2 p(v) 072 =

1 dA(v) dA(V)
n+1 dv dv
_dA(v)

1L O\p) 0N )

S MO

SR 1x<p>X<p’>

n k+]

n(n+1) Ovp41 8vn+1

_ 0 d
'p(v)(k D p(v) =2 T Tk

n+1 Z ‘j—l)
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PROOF. We start by dividing the expression (8.67) by o™ (p)a™(p’)

n

Z (—1)k+d M*(di, ;) o (0)F=2) (/)02 —
oo (k=D - 1)! @i, dpj)p(v o _

B m,nVTa(p—p’) N dp—1p) ar(p’) 1, dP(p) 1
(869) =2 (p p) )‘(p))‘(p)+a(p_p/) A(p) dp/ an(p/) )‘(p) dp an(p)
—Z de di)( ))90n+17k80n+1—j
_w-@
Computing separately
(8.70)
V-a(p —p') N, o(—p) aP(p’) 1, dP(p) 1 ] _
() = zmin a(p—p') » )\(pHa(p—p’) [A(p) dp’ o™ (p') M) dp a™(p)|
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and

5 M (dCy(p),dC;(p))

(2) = n n (o n+l-k¥nt+l—j =
-~ o (p)an(p') Pn+1—-kPn+l1
= 201 (DTG + AT AR) — 2min 191 + 200 0 5 5)3)
1 [0Ap) ,  o'(p) oY) W),
+n[ o "alp) )\(p)H o aly) Mo )]

1L amay) | ¢ (=1)kt (k—-2)  nG-2) 9¢i Ok
n(n + 1) Ovp41 Ovpta * Z (k=D — 1)!p(7)) o) OUp41 OUpy1

= =27 (Mp) V@) + A0 ) V- A (D))

o s i (Orep) | F-alp)) o/ (p)d(p) /
R G ) R o RN
LOXp) OAP') | (p),, \OA() | ' (p)), 1 OA(Y)
wop o o) P ey e ) oy

1L AP AY) | ¢ (=1)FH (k—2), (. n(G-2) 9P Ok
2(n+ 1) Oons1 Oonrr 2 LA ORI Favey rav

k,j=0

(8.71)

k,j=0
= —2mi (A(p) D-A(P) + AP ) D-A(p))

s =i (%-ap) | Ora(p)\ o (p)/(¥)
[8 gtz (a(p) " a(p)) p ]

LOAP) OAY) | ((p) () dA(p') 1 dA(p)
2 g (o ) P o))

1 OA(p) OA(Y') (=D (k=2) (. N(G—2) dpj  Opy
n(n+1) Qvpr1 Qv + Z (k — () p(v) OVpy1 Ovpi

Computing (1)-(2), and using equation (8.51), we obtain

(8.72)
n ki |
k;o (k —( 1)1!)(3' M e dioj)p(v)F 2 p(v)U ) =

1 dA(v) dA(V)
n+1 dv dv’

DD PO ) - L)

= 2mi(A (V') D A(v) + M) D-A(V')) —

1)+ ')
T3 o) — () )

n ki
1 Apoay) 1 (=1 (0)E=D (/)02 9pj vk

n(n+ 1) Ovngt Ovnpr  n(n+1) k;o k- DI — 11" On i1 Ot
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COROLLARY 8.4.7.1. Let 7*(dy;, dp;) and n*(dy;, dp;) be given by
aM*(d(pi, d(pj)

Do ’
9g* (dgi, dpj)

Do

n*(dgi, de;) =
(8.73)
n*(dp;, dpj) =

The coefficient of 77*(dy;, dy;) is recovered by the generating formula

kZO (=1~ 1)

77" (dgpi, dip)p(v) "D p(v') U2 =

19'(v) + ¢/ (v )[d/\( V) _ dA),
2 p(v) —p() " d dv

1 OX(p ) 1 OX(p) O [ONY)

(8.74) n(n+1) 8@0 GU,H OUnt1 n(n+1) vyt Opo \ Ovpt1
1 i 1)k+] 0 < &pj > 6g0k
(”+1) —~ (k DG — 1)1 0po \Ovny1) Ovpyr

I S L R (262
n(n+1) P’ (k—Dj — 1) Ovpy1 Opo \ Ovpta

%

= 2mi(D A\ (v) + DA(V)) +

Moreover,
" (di, dpj) = 0" (dpi, dpj), i,j #0,

(8.75) - ) .
77 (dpo, dp;) = 1" (dpi, dp;) + 4mik;p;.

PRrROOF. Just differentiate equation (8.68) with respect g, and use the equation (8.24). O

COROLLARY 8.4.7.2. The metric 7* and n* defined in (8.73)is invariant under the second

action of (8.1), furthermore, behave as modular form of weight 2 under the last action of (8.1).

PROOF. The metric 77* and n* are given by

= LieaiM

(8.76) o
n* = Lie o ¢*

dpq

The fact that 8%90’ g%, M* is invariant under the second action of (8.1),furthermore, behave as

modular form of weight 2 under the last action of (8.1) give the desired result.
O

8.5. The second metric of the pencil

In the (8.73), it was defined the second metric 7, furthermore, it was derived a generating
function for it. The main goal of this section is to extract the coefficients n(dy;, dy;) from its
generating function. In order to do this extraction, some auxiliaries lemmas are needed.
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LEMMA 8.5.1. Let ¢1, ¢, be defined on (8.24), then

01 = p2miu [T 01 (vi + nvpgr)
07 ((n + 1)vn41)07(0)

8.77
( ) ___2miu H?:Oel(_vi—i_vn-l-l)
on =€ o
O1(—(n + 1)vn41)04(0)
ProoF.
, i Hico 07 (—vi —nvnia) oy [ling 01(vi + nonga)
= lim + (n 4 Dvpg1) A(p) = —e?™u 2= = T = ,
o g, P T F Uont) M) O+ Domr)0) 87+ Do) (0)
) n 91(—7)1' +1}n+1)
n = i DY _ 2miu Hz—O .
A ) = i T D)0 (0
O]

LEMMA 8.5.2. Let ¢, @1, ¥2, .., pn be defined on (8.24), then

(8.78) 880 < 2 ) =n,

ProOF. Computing -2 8v — by using the first equation of (8.77)

(8.79) dipn (zn: = —; + Vpt1) (et 1)0’1((n + 1;1)“_,_1)) on.

8vn+1 —v; + Un+1) (91((71 +1 Un—i—l)

Recall the recursive relation between {p;} in (8.17)

0", (p)

p=0

In particular,

¢en(p) - ;i +vpt1)  01((n + Dvpgr)

8.81 1= - :
( ) ot Ip p:() Z 01(—vi + vny1)  O1((n+ 1)vpt) o
Then,

d¢n 1((n+ Dvpgq)
8.82 =Pp_1—"n ,
(552 B Do)
consequently
0 ( Opn ) 0
8()00 avn—l—l ‘
Suppose that for ¢ > 1, we have
(8.83) @i = f(=v0 + Vnt1, =V1 + Vni1, s (0 + 1) Ung1, T) P,
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where f(—vo 4+ Vpt1, —v1 + Upt1, .., (0 + Dvpg1,7) is an elliptic function on the variables
V0, V1, .., Unt1 With zeros on —v; 4+ vy,4+1 and poles on (n + 1)v,4+1. Consider the extended ¢;(p)

as

©0i(p) = f(p —v0 + Vny1,0 — V1 + Vg1, - P+ (N + D) Vpg1, T)on.

The action of the vector fields 6% and (%3 - in ¢; (p) and ¢; are given by

0pi 0
p p=0 8]? p=0 (9]9 p=0
0pi 0 0
SOZ _ f (pn +f ()O’n .
OVpt1 Ovpgr V41
Note that
of
—= — = b(vp+1,7),
dp p=0 avn+l ( i )
where b((n 4+ 1)v,41,7) is an elliptic function on (n + 1)v,41, because 37]; and &iﬁ - are

p=0
elliptic functions with the same Laurent tail in the variables —v; + v,,+1. Hence, using equation

(8.80)

dpi _ O¢i(p)
8'Un—l-l Op

+ h(anrl’ T)Qpna
p=0

= pi-1+ h(vn—&—h T)Son-

0 6(,02' ) .
e =0, 72>1,
o <81}n+1

Then,

Computing ¢q

_ 91
®o Gp

(Vi +nvp41) 01((n + 1)vps1)

_ [Z i (v +nvn+1> RACCRS 1>vn+1>] o

Computing ag“”il in terms of g

op1 01 (vi + nvny1) 01((n+ 1)vpy1)
_LZ: 0 n(n+1) NG ©1

(8.84) Ovn11 (vi + nanrl) 01(( D)vn41)
— gy — n91((n + Dvng o
01((n+ Lvpgr
Then,
8 8@1 _
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Computing {%0 ( 9o )

8’Un%»l

2 2
0vo 8 log 1 (v; + nvp41) (41 )8 log 61((n + 1)vp41) o
8vn+1 o2, o2,
1(vi + nvpg1) 01 ((n+ vpt1) | O
+ -n
[Z 91 Uz + nvn—i—l) 91((” + 1)'Un+1) a'Un—‘,-l
02 1og 01 (v; + nvny1) 0?log 01((n + 1)vpe1)
= |n —n(n+1) Y1
[ ; o2, o2,
i + nng) 01((n + Dvnia) 01((n + Dvpia)
(8.86) + (vi “n —npg — 1
Z 01 (v + nvnr1) Ot Dogen) | L0 "0 (n+ Dopga)
2 2
_ 8 log 01 (v; + nvp41) —n(n+ 1)8 log 01 ((n + 1)vp41) o
i= 0 a,Un+1 avn—l—l
n 2
Z 1 (vi + nup1) B 01 ((n+ 1)vpt1) 3 n@’ n+ 1)vp41
01(vi + nvpt1)  O1((n+ Dvpsa) 7 01((n + 1)vn1) 7o
O log (a4 Donar)  O4((n+ Do
= — -n + na
o2 PG (A Do) 0

where a is defined by

(8.87)
2

Z 0?log 91 vl + nvng1) 0% log 61 ((n + 1)vpt1) z”: 1(wi +nvpg1)  01((n+ 1vpyr)
01(vi + nvpt1)  O1((n+ Dvpia)

”H'l aUn—&—l
Note that nay; can not be proportional to byg, for any b = b(v,41,7) elliptic function in the

variable v,41. Indeed, if

zn: 1(vi + nvng1) n@’l((n + Dvpy1)
61 (

=} ,
B (v +nvs1) O (0 Do) |
we obtain,
(04 nons1) O ((n+ 1)vpgr) |
8.88 na==b -n
( ) Z 91 Uz + nvn+1) 91((?1 + 1)Un+1)

Analysing the Laurent tail in v; + nv,41 of (8.87)
(8.89)
n

- Z 01 (vi + nvpg1) 01 (vj + nvyyr) N 29’1((n + D)vpt1) Z 0% (vi + nvpt1)
01(vi + nvpg1) 01(vj + nvpyr) O1((n+ )vpg) 01 (v + nvpg)

+ regular terms,
i=0
then, the first term of the equation (8.89) implies that the left-hand side and right hand side of
the equation (8.88) have a different Laurent tail which is an absurd. Hence,

K2 < 90 ) _ Bl D)
8(,00 8Un+1 (91 ((n + 1)Un+1) ’

157



O]

COROLLARY 8.5.2.1. Let g, p1, @2, .., pn be defined on (8.24) and the metric n* defined in

(8.73), then
n*(dpi, dvpy1) =0, 0> 1,
(8.90) 1 (der; dvn i) = _n-lu’
0" (dpo, dvn+1) = —— Jlr : giggz j: B:ZB
PRrROOF.

0 (a% ):0, i>1,

n*(dpi, dvp41) = D00

g, dimy) = —— L0 (O ) L
AGPL, GUnt1) = nn+1)0py \Ovnr1)  n+1’

*(deg, dvp, =—
n ( Yo, aU +1) TL(TL+1) 5@0

LEMMA 8.5.3. Let ¢o, 1, ¢2, .-, ¢n be defined on (8.24) and the metric n* defined in (8.73),

then
W*(d%a dT) = Oa { 7é 07
(8.91)
n*(dpo, dr) = —2m1i.
PrROOF.
Dp;
*(dp;, dT) = =271 —— = ;0.
n*(depi, dr) m&Po 0

O]

THEOREM 8.5.4. Let n*(dy;, dy;) be defined in (8.73), then its coefficients can be obtained
by the formula

, 1#0, i#L
(8.92)
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PrROOF. We start by dividing the right hand side of the expression (8.74) in two parts:
, 1¢'(v) + ¢'(v') [ dA(W)  dA(v)
= 2mi(D D ! — _
(a’) 7”’( 7')‘(1)) + TA(U )) + 2 p(v) o @(U,) [ d’Ul dU ]7
() = — 0 <3A(p)> OAp) 1 0Ap) 9 <3A(p’)>
" n(n41)0po \Ovni1) Ovprr  n(n+1) Qv Opg \ Ovnat
(8.93) 1 i (—=1)k+ 9 < D > don
n(n+1) 2 (k=D —D!0py \ Ovpt1 ) Ovpia

SR B o G <a¢k>.
n(n+1) g (k=17 — D! Ovpy1 Opo \ Ovpta

Consider the equation (8.24) written in a concise way as follows

no ok
(8.94) Ao =3 Y

k=0

Substituting (8.94) in the first equation of (8.93)

e 1)!90kpk‘2(v)-

)= 3 e o (e 400 D4 0)
(8.95) 0 )
3 g (€0 =)+ ) = o) (74 = 4w
k=0

(5.96) +3 ,w{«w—w@+<wv—aw)@ﬂ*wv—pwwuny

(
p1 (21 (Drp™ (v) + Drp™ (v)))]

+o1 [(Cv=v') + () = ¢() (71 (v) = p~ (v)] -

Expanding the left-hand side of (8.74), we get

n (D OM*(dpsdey) o\ 0-2) o\ G-2)
(8.97) lc%_:o (k=D — 1! D0 p(v) o(v)V

+ Other terms,

_ i OM*(dpi,dpj) 1

- Y
Km0 Do vk (V')

where ”Other terms” in the equation (8.97) means positive powers of either v or v'. For

convenience, define
1) : = 2mi (DTW—?) (v) + DTW—?)(U’))

+ (Co =) + () = ) (V) = o4V ()
159
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In order to better to compute (8.98), consider the analytical behaviour of the term

1 61(v,7) x

899) Dot (0) = 0682 (0) 20k~ 2er ()0 ) — gl e ()

The term 9, *2(v) in (8.99 ) is holomorphic, therefore, it does not contribute for the Laurent
tail. The term

(8.100) 2(k — 2)g1(r)p" > (v)

also does not contribute, because the full expression (8.99) behaves as modular form under the
SLy(Z), but (8.100) is clear a quasi-modular form, since it contains g;(7). Hence, (8.100) is
canceled with the Laurent tail of

(8.101) 217”.2/1 EZ:; ©*(v).

To sum up, the analytical behaviour avior of (8.99 ) is essentially given by (8.101), under this
consideration, and by using the equation

0, (v, 7)
v, T) =
C( ) 01 (Uv T)

— 4migi(T)v
(8.102)

_1 3
—U+O(U )7

the equation (8.98) became

(1) = =¢(0)p" " (v) = ¢(v)p" (V)
+ (v =) + ¢ (") = ¢(v)) (pk_l( ) + Other terms
= (=) (§71) = ) = C)h () -
_ 1 ((—1)’%! (—1)'%!) L(=D*! 1

C(v")p" 1 (v) 4+ Other terms
(= )kk'

4 Other terms

o — R Skt v 'kt o okl
1 oR PN (DR 1 (—1)RR!

_ k

= (—1)"k! (v—v’ (v’v)k+1 T g g + Other terms
ko k—j, 1i k7. k.

8.103 1k vl 1(=1)%! 1 (=1)"!
( ) = (—1)"k! ZW P, s pl R + Other terms
§=0
k
1 L(=DFk! 1 (=1)Fk!

_ k

= (—=1)"k! Zvl+jv/k+1_j v = e + Other terms
=0
i 1

_ k

— (—1) ]{I' Z W + Other terms
=1
k+1 1

— (_1\k11 -

= (—=1)"k! ,szfm—j + Other terms.
j:
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Substituting (8.103) in right-hand side of (8.95)

$- o (0500t
=0
n 1 - B
* (l(<: )1)1‘% (o= v) + @) = ¢) (¢ @) = ()]
k=0 :
n k+1
k
(8.104) =22 ( ,)Cff - + Other terms
k=0 j=2 Y
n n+l .
= Z % + Other terms
0= UV
n+2n+1 .
k -2 i
= Uh) ; ),:Okﬂ 2 | Other terms.
k=2 j=2 v’

Computing the second expression of (8.96)

(8 105)
a)y =1 [2mi (Drp~ " (v) + DT@‘I(U )]
[<<v—v ) (571 700
=¢1[¢(v) (— +p<v+( + Dontr)) + (v ’)( p(v') + o' + (n+ vpt1))]
+1 (Cv - ¢(v) )(p( p(v+ (n+ 1)vpi1))
+ @1 (C(v - ) () (—p(") + 9" + (n + 1)vn11)) + Other terms

= p1¢(v =) (p( ) - ( +(n+ )vn+1) = p(v) + p(v' + (n+ Dvny))

+ o1 [C(v) (—p(v') + p(v" + (n + Dvnsa)) + C(0) (—p(v) + p(v + (n + 1)vnt1))] + Other terms
= p1¢(v =) (=pv + (n + Dvnyr) + (0" + (n+ Dvpga))

+ 01 [C0)p(W + (n+1)vp1) + C(0)p(w + (n+ 1)vn41)] + (a)2 + Other terms,

where (a)2 are terms that were already computed in (8.104). To compute the second expression
in (8.93), consider

G Do, @+ 0+ Der et (nt Done) = pl(n 4+ Doasa)]
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and

(8.107)
g (OAwv)) 0 0p1 ~tlo 4 (n ; " . 0
dpo <3vn+1> e <81}n+1> [C(v) = C(v+ (n+ Dvnga) + C((n + Dvnga)] + 920

0, ((n + 1vns)
AT

— 1 [C() = (0 + (0 + Dvesr) + C((n + Lvnin)] - n

= n[¢(v) = W+ (n+ Lvni1)].

Substituting (8.106) and (8.107) in the the second expression in (8.93)

()= — 0 <8A0ﬂ> NP) 1 9Ap) 9 (aAQy)>

n(n+1)dpp \Ovpt1 /) Ovpyr  n(n+1) vy Opg \ Ovnt1

1 - (=1)k* 9 dp; Doy
n(n+1) 3::0 (k=D = 1)! 9o < )

Ovpy1 ) Ovpyr
(8.108) S U G VR R ( o9 )
n(n + 1) Py (k‘ — 1)'(] — 1)' 8Un+1 OQOO aanrl

(

o
aanrl

=1 [C(V) = (V" + (n+ Dony)] [p(v + (n+ D)vpi1) — p((n+ 1)vgg1)]
+1[¢(v) = v+ (n+ Dvn)] [p(0" + (n+ Dvpgr) — p((n + 1)ony1)] -

Subtracting (8.105) and (8.108)

(8.109)
(a)2 = (b) = —¢1 [C(v) = C(v" + (n+ Dvp)] [p(v + (0 + Dvpy) — p((n + Dvp1)]
=1 [C(v) = (v + (n+ Dvngr)] [p(0" + (0 + Dvngr) = p((n + Dvp1)]
+ p1¢(v =) (=p(v + (n+ 1)vpy1) + p(0 + (0 + 1vgg1))
+ 1 [¢(
= p1p((n + Dvpsr) [C(0) = €0+ (n + D)vpt1)] + p10((n + L)vps1) [((v)
+ o1 [Co =] (p(v+ (04 Dvns1) + o0 + (n+ V)vni1))
+o1 [C(0' + (n+ D)vnt1)] (p(v + (1 + 1)vp41))
+ 1 [C(v+ (n+ Dvng)] (0" + (0 + Dvpia))

+ (a)2 + Other terms

= p10((n + Dng) [C(0) = ¢ + (n 4 Donga)] + @19((n + Dong1) [C(0) —

+ (a)2 + Other terms.
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Summing (8.109) and (8.104), we have
n

5~ . (_1)(k+j 8M*(d(,0i7d@j)p(v)(k—Q)p(U/)(jfZ)

(7 — |
S G=DIG =D 9

"\ OM*(dgp;,dp;) 1
= (dipi, dep) - + Other terms,
Do vk (v)7

Z (k+Jj—2)Prij2
viy'*

n+ Dopsr) [C) = ¢ + (n 4 Dwng1)]

n+ Dvptr) [C(v) = C(v + (0 + Dvny)]
+ Other terms.

— o~

Hence, we get the desired result.

O]

COROLLARY 8.5.4.1. Let n*(dy;,dy;) be defined in (8.73), then its coefficients can be
obtained by the formula
n*(dpi, dpj) = (i +J = 2)ivj—2, 5 #0
N (dei,dpo) =0, i#0, i#1,
n*(dpr,dpj) = 0. j#0,

0% log(61(n + 1)vpy1)
2 ¥1
8vn+1

(8.110)

n*(dp1, dpo) =

8.6. Flat coordinates of 7

This section is dedicated to construct the flat coordinates of 1 and its relationship with the
invariant coordinates g, @1, .., n, Unt1, 7. Our strategy will be an adaptation of the work done
n [28]. See section 4.6 for the summary of this approach, and section 5.5 to see this techniques
applied in ordinary Jacobi group. The flatness of the Saito metric 7 is proved in the Theorem
8.6.12.

Let t1,#2,..,t" be given by the following generating function

~1
(8.111) v(z) = — ("2 + "2 2T e 1 0 Y),

1
Av) = —
)=
Moreover,
01((n + Dvpt1) ,
8.112 0 =y — L " +4 .
( ) %0 91((n+1)vn+1)¢1 mig1(7)p2
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LEMMA 8.6.1. The following identity holds

n ntl—a l1—a
(8.113) oS (/\ n (p)dp) =~ res <v(z)/\ " d)\>
ProOOF. Consider the integration by parts
n n+l—a nt+l—a l1—a

Lemma proved.
O

LEMMA 8.6.2. The functions ¢!,2,..,¢" defined in (8.111) can be obtained by the formula
(8.115) 9= — res (U(Z)APT‘”CM) .

PRrOOF. Let

then,

— 1
v(z))\le/\ = <) ("2 + 1" L+ T 2+ 02" ) 2 e
n

Ztﬁzn+1—ﬂ + O(Zn+1) Za—n—2d2
ps=1

= (Dt P 0z | da
B=1

Hence, the residue is different from 0, when o = 3, resulting in this way the desired result.
O

COROLLARY 8.6.2.1. The coordinate " can be written in terms of the coordinates yq, ©1, Y2, .., Pn+1

as
(8.116) £ = 1 (n)" .
PRrROOF.
t" = nres )\%(v)dv
v=0
1
_ $n | Pn—1 P2 Y1 n
= nres (v—n R +0(1))" dv
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LEMMA 8.6.3. Let t!,¢2,..,t" be defined in (8.111), then

n n+l—a nt+l—a
A1 4= — 1+, n
(8.117) n+1_a(90N) (1+®Pn_0) )

where

(1+q) n+1a i(n-&-l a>

(8.118) =0

of =y A
; _. ¥n ©n
i1+io+..+ig=1
ProoF
o= " res ()\Hrlt_a (v)dv)
n+1—av=0
n+l—a
_ n Pn Pn—1 ©2 Y1 n
—iri s (e e g row) T
n+l—a n+:L [
s res(&) T ey P22y P2y g Plynel g g (o) dv
n+1—av=0\p" " n N N
ntl-a O /ntl-o d
n+1—av=0\9" = d ©n on
ntl-a O /ntl-o '
= % res (%) " < q > Z — H <¢" ad ) (O(v™))"dv
n e d=0 it g 102Gl
o ntl—a d! n—1 i i o
s Y () Y T () e
. d=0 ttgn=d JTI2I 0\ P
+0(1)
0 ntl—a i
n ntl—a Oni
e (r) % ()
- 15 |
ntloa A J14etjn=d J1lg2lgn
j14+2j2+3j3+..+(n—1)jn_1=n—«
o0 ntl—o
n nt+l—a ()0 . (p .
e (M) X e
d=0 i1+..Fig=n—a Pr+1 Pn

O]

COROLLARY 8.6.3.1. The coordinate ¢! can be written in terms of the coordinates @q, ©1, ¥2, .., ¥n

as

(8.119) th= ¢
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PrOOF. Using the relation (8.117) for a =1

o
(8.120) t=on (14 @n1) =pn 3 e

i1=n—1

O
LEMMA 8.6.4. Let ¢g, ¢1, 92, .., pn and A(v) be defined in (8.24), then
(8.121) ko = res kxR~ tdv.
V=
Proor.
res kAv"ldv = res k (ﬁ S S RSN < B N O(l)) V" ldy
=0 =0 L pn—1 vk V2 v
= kg
O
LEMMA 8.6.5. Let ¢g, ¢1, 92, .., pn and A(v) be defined in (8.24), then
(8.122) kor = — res vFd.
A=00
ProoF. Using formula (8.122) and integration by parts
ki = res kMNP ldo = — res vFd).
v=0 A=o00
O

LEMMA 8.6.6. Let o, , 01,92, .., on, A(v) be defined in (8.24) and (!, ..,t") be defined in
(8.111) , then

(8.123) ko = (;)f Ty,
where
(8.124) Th= Y gt gt
i1+ +ig=n
PROOF. Let z := (%)%, then by using equation (8.122):
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k
— res v"d)\ = res vi(z)dz

(=D* 1.2 2 n—1 L1k dz
= res e (e 1T L+ T OGM) T o
(—1)F — . o o
= res o Z (t"z) (tn 1Z2)32 B (t2zn 1)] (O(z"*l))J 42 o
Jit+jo+. AJn+int1=k
(=1)F ! ) ,
kel > m(t ()2 (12)
J1tjet.+in=k n
J1+2j2+3j3+..+(n)jn=n
_ (_l)k Z t(n—i—l—il) t(n+1_ik)
- ’I’Lkil
’i1+..ik:n
_ (—1)ka;
pk—1 1"
LEMMA 8.6.7. Let T} be defined in (8.124), then
oTk 1
(8.125) o= kT
PRrROOF.
ork 0 . .
=2 gintl=in) | p(ntl=ie)
ot ote % Jrzi n
1+.. 0=
D kbngrg ot gt
’i1+..ik:n
=k Z (k=) y(ntl—ig )
11+.ip—1=a—1
k—1
= kTafl .

At this stage, we are able to compute the coefficients of n(dt®, dt?).
THEOREM 8.6.8. Let (t!,..,#") defined in (8.111), and * defined in (8.73). Then,
(8.126) 7 (dt®, dt"3P) = ndyp.

Proor. Ifi,7 #0

Dp; Dpj o (d1°
(8.127) 7 (dgi, dip;) = Zzafa S (e, dt?)
a=1 =1

Using (8.125) and (8.123), we get

Iy (—1)k k—1
(8.128) Sia — T kTH]
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n n 1 —17
Op; Opp 13— (=1)iatntl o
(8.129) It Hinti—a Z WT; 1Tna-4
=1 a=1

Using the second of the equation (4.46) in (8.129)

i
"~ 0p; Opnis—j T
o n+3—a
(8.130) — Ot* Ot n
(n+14+i—j)
= TSO(nHij)

Note that the following identity holds
+1 +1n+1

< a@z 890714—3 OPn43—35 =— 6901 8(Pn—i-S j

ot Hin+3—a Z Z ot Hn+3— Hn+3—5 0‘5

= a=2 a=2

(8.131)

On another hand, using the first equation of (8.92), we have

n (dgi, depnys—;) = (n+ 1410 — j)Pnt1+i—j

n+1 n+1 8(,0 8g0 5
o J n+ ]
”Z Z ote gnt+3—8 CVB
a=2a=2
n+1n+1
_ Z Z 8901 a@n+3 Y¥n+3—j *(dta dtn+3_5)
! ote Htn+3— B
a=2 a=2

Then, we obtain

n* (dt™, dt"T37P) = ndyp.

LEMMA 8.6.9. Let (t,..,t") be defined in (8.111), and * be defined in (8.73). Then,

n*(dt', dr) = —2mid,
(8.132) | 5
n*(dt, dvpgr) = ——

n+1

ProoF. Using corollary 8.5.2.1 and lemma 8.5.3, we have

i

n*(dt', dr) = w'n*(d(pj, dr) = —2mid.
j
In addition, if ¢ #£ 0
ot )
n*(dt', dvpy ) = I, 0" (dpj,dvp1) =0, i #1,
* * 1
n*(dt', dvns1) = n*(der, dvny1) = o1
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Computing dt" with respect the variables o; by using (8.112),
9% log (0 1oy, dlog(6 1o,
dto — dSDO _ (n + 1) Og( 1((” + )U +1)§01dvn+1 _ Og( l(a(n + )U +1)
(8.133) 8vn+1 Vn+1
+ 4dmig) (7)podT + 4migy (T)dps.

dp1

Hence,

dlog(0 + v, .
og(®r((n+1) +1)77 (dp1, dvni1)

n*(dt°, dvpi1) = n*(depo, dvptr) —

Ovpy1
=0.
O
LEMMA 8.6.10. Let t° be defined in (8.112), and n* be defined in (8.73). Then,
(8.134) n*(dt®, dt*) =0, a#0.
PRrOOF. Using the definition of n* in equation (8.73), formula (8.92), and (8.75)
Ife>1,
7 (dt’, i) = 0" (dpo, dii) + dmigi (T)n" (da, dips) + 4dmigy (T)n" (dr, d;)
= 1" (dgo, dei) + dmigy (T)n* (dpz, dii)
= 7" (dpo, dp;) — 4mig (T)kipi + 4migr (T)kipi = 0
= —dmigy (7)kip; + 4migr (T)kip; = 0
Then, if a > 1
0 (dt°, dt®) Z 0 (dt°, dp;) =
Computing 7*(dt%, dt') by using (8.133)
. . 02 log(01((n + 1w, .
(@0, ) = (o, dg) — (n+ 1) PO g
n+1
=0.
O

Instead of considering the coefficients of the metric n*, let us investigate the flatness of its

inverse 7 in order to make the computations shorter.
LEMMA 8.6.11. The metric

- 1
(8.135) D n(de®, dt" ) dtdt T — 2(n + 1)dt dvn g — EdtOdT
a=2

is invariant under the second action of (8.1).
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PRrOOF. Under the second action of (8.1), we have that

n
Z T](dta, dtn+37a)dtadtn+37a
a=2
are invariant under the second action of (8.1), because the relationship between t* and ¢; be
given by (8.117), and the fact that the Jacobi forms {¢;} are invariant under the second action
of (8.1). t¥ and v, 41 have the following transformation law
9 10 — 2mi(n + 1)\t

(8.136)
Ungl P> Ungl + A1 T + fng

Hence, its differentials are
dt® — dt® — 2mi(n + 1) Ay 1dt!
(8.137)

dvp1 = dvp1 + Apprdr

Substituting (8.137) in (8.135) we get the desired result. O

THEOREM 8.6.12. Let (tV,¢!,#2,..,t") defined in (8.111), and n* defined in (8.73). Then,

n*(dt®, dt”+3_’8) =—(n+1)dp, 2<a,f<n
n*(dt!, dt®) =0,
(8.138) 0 (dt?, dt®) = 0,
n*(dt', dr) = —2mid,
; di1
(dt', dvpyy) = —

Moreover, the coordinates t°, ¢!, 2, ..,t", v, 1,7 are the flat coordinates of n*.

PROOF. The theorem is already proved for «, 8 € {2,..,n} in theorem 8.6.8, and for the

rest in the lemma 8.6.10 and 8.6.9. The only missing part is to prove
(8.139) n*(dt°, dt) = 0.

Recall that from corollary 8.4.7.2, the metric n* is invariant under the second action of (8.1).
Moreover, the same statement is valid for (8.135), because of lemma 8.6.11. However, the tensor
dt® @ dt° have a non-trivial transformation law under this action. Hence, if the coefficient of the
component dt’ @ dt° is different from 0, we have a contradiction with corollary 8.4.7.2.

O]

Ag* (dpi,dy;)

COROLLARY 8.6.12.1. The metric n*(dw;, d;) := =52

is triangular, and non degen-
erate.
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DEFINITION 8.6.1. Let n* = n®?-2 e a?ﬁ defined in (8.73). The metric defined by
(8.140) N = Napdt® @ dt’
is denoted by 7.

8.7. The extended ring of Jacobi forms

This section generalise the results of section 5.6 and lemma 6.3.3. The flat coordinates of
the Saito metric 7 of the orbit space of ¢ (A,) does not live in the orbit space of _#(4,,), but
live in a suitable covering of this orbit space. The main goal of this section is in describing this

covering as the space such that the ring of functions is a suitable extension of the ring of Jacobi

forms.

LEMMA 8.7.1. The coordinates (t°,t', 2 .., v,41,7) defined on (8.111) have the following
transformation laws under the action of the group ¢ (A,): They transform as follows under the
second action of (8.1):
9= 10 — 2mi(n + 1)\t
st a£0

(8.141)
Unt1 = Ungl + fnt1 + A1 7
T T

Moreover, they transform as follows under the third action (8.1)

2c 201,,8750,7' naﬁtatﬁ
cr+d

a#0

10— 9 4+

% — ° ,
(8.142) T +d
Un+41

ct+d
ar +b
—>
ct+d

Un41 >

ProOOF. Note that the term <I>§l equation (8.118) has weight +i, then using that ¢, has
weight —n, we have that the weight of t* for av # 1 must have weight —1 due to (8.117). The

transformation law of ¢! follows from the transformation law of % and g1(7)
O1((n+ Dongr + (4 D7+ it ) _ (0t Domn) o gy
01((n + Dvpt1 + (n+ VA1 T + fing1,7) 01((n + 1)vn41) e
0/ ((n+1)vn+l aT+b) 0/ ((TL + 1)’U )
(8.143) 1N _crid verid _ 71 " omic(n 4 1)vna,
(ED ] A D
+b
gl(aT ) = (em +d)°g1(7) + 2¢(cT + d)

and by using equation (8.123) for k = 2.
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In addition , from the formula (8.118) it is clear that the multivaluedness of (¢!, ..,#") comes
from (gpn)%. Therefore, the coordinates lives in a suitable covering over the orbit space of
the group ¢ (fln) This covering is obtained by forgetting to act the Coxeter group 4, and
the SLy(Z) action, and the translation action v,41 — Unt1 + Apt17 + pfing1 of /(An) on
C @ C"!' @ H. The only remaining part of the ¢ (A,,) action are the translations

Vi v+ AT 4 g, £ n+ L

Hence, the coordinates (¢!, ..,¢") live in n-dimensional tori with fixed symplectic base of the
torus homology, a fixed chamber in the tori parametrised by (v,41,7), and with a branching
divisor Y := {¢,, = 0}. Another way to describe this covering is using the flat coordinates of

the intersection form (u,vg,v1, .., Un+1,7), and to fix a lattice 7, a representative of the action
(8.144) Up+1 > Upt1 + )\n—&-lT + Un+1,

and a representative of the A,, action. Then, the desired covering of the orbit space of the group
Z(Ay) is defined by

(8.145) CoCrtloH/ #(4,) :=CaC" o H/(Z" ¢ 1Z"),
where Z" & 7Z" acts on C & C"t! ¢ H by
v = v+ T A+ g, 7;7577,—1—1,

Ur—>u— 2Aij)\ivj — Aij)\i)\jT,
(8.146)
Un+1 Y7 Un+1,

THT.

where A;; is given by (4.5).

REMARK 8.7.1. As it was already discussed in the remarks 4.9.1, 4.9.2 , 5.6.1, and 6.3.2, we
expect that the covering space covering space for the tilde an case is isomorphic to a suitable
covering over the Hurwitz space Hy,—10. The covering over Hi ,_10 is given by a fixation of
base of the homology in the tori generated by the lattice (1, 7), fixation of root A (8.24) near oo,

and a fixation of a logarithm root.

In order to manipulate the geometric objects of this covering, it is more convenient to use

their ring of functions. Hence, we define:

DEFINITION 8.7.1. The extended ring of Jacobi forms with respect the ring of coefficients is
the following ring

(8147) EQ,O[QOOa D1y ey Son]v
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where

1((n+1)onta)
1((n + Dvnyr)

LEMMA 8.7.2. The coefficients of the intersection form ¢/ on the coordinates ¢q, ©1, .., Pns Vnt1, T

(8.148) Eve=FEeo®{q1(1)} ® {g

)

}.

belong to the ring E.,.[goo, Ol ey Pr)-

PRrROOF. It is a consequence of the formula (8.45).
O

LEMMA 8.7.3. The coefficients of the intersection form g on the coordinates t9, t', ... ", vp41, T
belong to the ring E.,.[to, th, .t L.

P AL

PrOOF. Using the transformation law of g*?

ot o8
8.149 B = 22 g(dp;,do;),
we realise the term g%: as polynomial in t°, ¢!, .., ", tin due to the relations (8.117) and (8.123).

O

8.8. Christoffel symbols of the intersection form

In this section, we will generalise the results done in 5.7. Roughly speaking, we consider the
Christoffel symbols of the intersection form as object living in E.y. [©0, @1, --» n] in coordinates
00y, P15 P2, -y Pny Unt1, T, in addition, we will show that the Christoffel symbols depend at most
linear in g in this coordinates.

Recall that the Christoffel symbols Fﬁg(gp) associated with the intersection form g* is given

in terms of the conditions (4.13).

LEMMA 8.8.1. Let o, ,®1, 92, -, ¢n, Un+1, T be defined in (8.24), then Fy depend at most

linear on ¢g.
PRrROOF. Using the first condition of (4.13)
Org"t = 2I¥
Recall that due to the corollary 8.5.4.1, the metric ¢*/ depend at most linear on (. Then,

oIy

2
O3

= 030kg" = 0r039" = 0.

LEMMA 8.8.2. Let ¢, ,®1, 92, --s ©n, Un+1, T be defined in (8.24), then

7 =0,
(8.150) 5.
Tk — —2m'%.
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PRroOOF. Let sz(m), in the coordinates 1, .., Zn, and I'7?(y) in the coordinates y1, .., yn, then

the transformation law of the Christoffel symbol defined in the cotangent bundle is the following

. i l { J
(8.151) [ (g) = ox' 0x7 dy P oxt 0 ((‘99&

“apapor W o anr o

) 9" (y)-

In particular, the F?(go) in the coordinates (¢o,¥1, .., ¥n, Un+1,r) could be derived from the

Christoffel symbol in the coordinates vg, v1, .., Un4+1, 7 Which is 0. Then,

i dpi 0 (dp;
152 'Y (p) = L) gP(v).
(5,152 20 = 5o (52) 7100

Z‘Un«&»l

Computing I';"™,

ire) o i 9 (0T
) = g () 70

0

(8.153)

Computing F;”“i by using the first condition of (4.13),

I7*(p) = 9;9" — T}
(8.154) 5.
= 0;9" = —27rij?k.

LEMMA 8.8.3. Let ¢o,, @1, 92, ..; ©n, Un+1, T be defined in (8.24), then

. 8 Un+1 ~
(8.155) Lyt = %@, € Eeelp0, 01, ¢,
J

Fi{z+1 € E’ﬂ[(va P15 - Qpn]-

Moreover, these Christoffel symbols are at most linear on ¢g.

ProOF. Let Fﬁcj(m), in the coordinates z1, .., z,, and I'}?(y) in the coordinates y, .., yn, then

the transformation law of the Christoffel symbol defined in the cotangent bundle is the following

(8.156) T (z)

B oz’ Ox? Ayt pq ozt 9 [0x)
- oo a1+ s o

).

In particular, the sz(go) in the coordinates (¢o,¥1, .., ¥n, Un+1,r) could be derived from the

Christoffel symbol in the coordinates vg, v1, .., Un41, 7 Which is 0. Then,

1 ' (p) = ———— =22 ) ¢*(v).
(8.157) 20 = 525 (52) o
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ivn+1

Computing I'; "™,

TUn+1 8 7 8 8Un
T+ () = 22 < +1)sf”q(v)

(8.158) 8;1’ a@’“a 9vq
Pi ) v
= L (1) goroni (v) = 0,
Ovp 11 Oy, )

Computing an“i by using the first condition of (4.13),

T () = Ppg'ntt — Fj.“"“
(8.159) .
= Opg"r .

Since, g+t € E.,[gpg, 1, - n), we have that I‘Z”“i(ga) € E.,[(po, ©1, -, ¢nl. In addition, since
the metric "+ is independent of ¢y due to the corollary 8.5.4.1, we have that J,g™»+! is at
most linear on g

Computing Ffﬂlﬂ,

i dpi 0 (Oyp;
] — J\ ,pa
Fvn+1 ((,0) avp 8Un+1 <81)q> 9 (U)

_9vi 0 (8@1> §P1(v)

N Ovp Ovg \ Ovpy1

(8.160)

In the subsequent computation, whenever appears a function depend only on vy41, 7, we will
call it by h(vp41,7), because for our purpose, it is enough to prove that the subsequent function
belong to the ring E.,.[goo, O1y -5 Pn)-

If 7 > 1, using equation (8.82),

y _ 0 i\ gpa
FvnH(QO) dvy, v, <8vn+1) g ()

_ 0% 9 i«

= Go, B (Pi1 + B0, )en) g71(0)
dp; 0

- aw v, (pj—1 + h(Uny1,7)eon) g7 (v)

(8.161) el

_ 890ii( 1) g"(v) + h(v T)%i( ) gP4(v)
dvyp Oy Hmd T 9, dv, o

N @n% 0 (W(Ung1, 7)) gorint (v)

Ovp 11 Ovpgt
n ('Un—l—l ’ T)

D+ 1) (i + 9(Vng1, T)Pn) On-

= gi(j_l)(go) + h(’Un+1, T)gm(SOn) +

175



If j = 1, using equation (8.84)

i Op; 0 0p1
1—\11 — Dpq
() av, v, ((%W) g7 (v)

dpi 0
= St om0 + h(vnss, 7)) g7(0)
p q
dp; 0
= St om0 + h(vnss, 7)) g(0)
(8.162) 5 P aq Do 9
_9%i 0 pq g¢i 9 Pq
a0, D, (nspo) g7 (v) + A(vnt1,7) v, D, (1) g™ (v)
8(‘OZ a Un+4+1Un+1
+ ST — (h(vnt1,7)) g (v)
i ; B (vpe1, T
= 1g0) + Alonin,7)g" 1) + 2 (gt B, ) .
If j = 0, using equation (8.86)
(8.163)
; dp; 0 [ Opo
FzO — 7 Ppq
R e L
dpi 0 pq
=3 aTq(—nhl(vn+m)soo+h2(vn+177)901)g (v)
p
dp; 0
= o o (= (v, 7)o + ha(vnin, 7)) 67 (0)
p q

_%pi 0 pq Ipi 0 pq
- a’Up avq ( nhl (U’fH‘lvT)QOO) g (U) + h2(vn+177—) avp 8’0(1 (301) g (U)
8@1 0

+ 1 (h2(vnt1,7)) g™+ (v)

OVnt1 Ovpy1
/
h2 ("U»,H_l, T)

7 h n+1, n
TL(TL+1> (90 + 3(U +1 7—)80 )901

= —nhi(vn+1,7)9° (@) + ho(vnt1, 7)g" (on) +

h&(vn+1’7)
- - N Z h n ) n .
"+ 1) (i + h3(vnt1,7)en) Po

Hence Ff,{LH (p) € E’.,[@O, ©1, - pn), furthermore, it is at most linear on .
O]

PROPOSITION 8.8.4. The Christoffel symbols sz(cp) belong to the ring E.,[goo, D1y ey P

Proor. Note that the invariance of the Jacobi form ¢; with respect the first two actions of
(8.1), and equivariance by the third one implies that the differential dy; is invariant under the
first two actions of (8.1), and behaves as follows under the SLy(Z)

dp; CY;

. dy; ! —
(8.164) vir (et +d)ki  (cT + d)kit!

Therefore the Christoffel symbol F;j

(8.165) Vagoyrdies = Tj dex
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is a Jacobi form if ; has weight 0. Hence, doing the change of coordinates
(8.166) @i > @i =" (T)i,

we have that the Christoffel symbol T/

1 . TP

is a Jacobi form.

Comparing fzj with sz
~ . 21 21
Vidg)#Pi = V(950002 0 dr i dip, ) (2igin™ pidr + 1 dep;)
- . ”
o V(2j91n2jsojd7)# (219177 l%dT) + v(2jg1n2jeode)# (77 Zd%)
. 21 21
TV iagyy (900 @idT) +V g (17 dii)
=2jgn”0ig" "V o (2in" g1pidr) + 29107067V o (n*dgi)
l 1
(8.168) +07g7V o (2igin*pidr) +0¥g"V o (n*'dpi)
l l

2i+25 2i+2;

= dijgigrom™ o9 dr + 42§ g g dr + dijgin* T " dr
+4ijgin® M g de; + 2jg1n* T o T ey + 4P gin® T pigT dr
+ 27/9/17721+2]S019l]d7— + 2Zgln21+2]gl]d7_ + 2291@27722+2]F?-d¢k
4 2% gy g oo + n2i+2j11iids0k.

Dividing the equation (8.168) by 7%*2/ and isolating I‘?:dgok, we have

I'dey, = —4ijgig1pip;g" dr — 4i%5g3 0j0ig" dT + 4ijgin® T 9" dr

— 4ijgipig T doi — 2510, T} dox — 4i° g3 pig™ dr
(8.169) e

— 2igig0igljd7' — 2ig1m gide — 2iglcpiF};ng0k

— q19'7depi + f?:d#%

Since the differential forms has a vector space structure and the right hand side of (8.169)
depends only on g%, g1(7), i, and I';* which belongs to the ring E.,[«po, ©1, -, ¢n], the desired
result is proved.

O

LEMMA 8.8.5. The Christoffel symbols Fg(go) depend linearly on .

ProOF. The result was already proved, when k& = v, 41 in the lemma 8.8.3. The proposition
8.8.4 gives to the space of Christoffel symbols the structure of graded algebra, in particular we
can compute the degree m regarding to the algebra of Jacobi forms. Let ¢ € E’.,[«po, D1y s Pn)

177



with index my and weight kg, then we write

degm® = my,
(8.170)
degk(b = k¢.
If £ 7£ T, Un+1,
. dp; O dpi
171 deg,, IV = deg, L L) gHe =1.
wm et (2 (32) 70

Therefore, sz is at most linear on ¢q. If k = 7,

. Op; 0 (0p; .
1—‘1’] = o 73 pq = —7 — 4
degiI¥ = degy, <8vp 57 <8vq> g (U)) =+

Suppose that T contains a the term a(vnt1,7) 2, where a(vy41,7) is an elliptic function in

Un+1, then
degra(vpt1,7) = —i—j+4>0.
The possible Christoffel symbols that could depend on ¢Z are
(8.172) %4 140 pls 3t 122 p2l pl2 p20 002 pli plo 101 100,

But I'22, T T is linear on ¢y due to lemma 8.8.1.
Computing rY

j_ Opi 0 (0p; Opi 0 (0yp;
ij G AP ey = I (%S e
(8.173) b vy, OT <3vq ) g(v) dvp Ovg \ OT g(v)

In order to compute it, recall there exist a relationship between the holomorphic Jacobi forms
of A,41 type and the meromorphic Jacobi forms of A,, type given by (8.30). Moreover, in (5.19)
it was demonstrated that the lowest degree term in the Taylor expansion of cpz/ (An+1) with
respect the variables v, v1, .., 41 are the elementary symmetric polynomials a;(vg, v1, .., Unt1)
of degree i. Hence, using the equations (5.19) and (8.30), we can estimate the degree of the

lowest degree term of the meromorphic Jacobi forms of A,,, more specifically,

(8.174)

A~n 7 (A n
ol U)o A — o (0) + by (Vng1, T)ansa(©) + O(| o)),

A, F(A n An n
o Mo ) Lm0 A A g () b (Ung, T)ans2(v) + O(][o][MF3),

S (An) _J (A1)

7 (An n—-1 _JZ(A,) F(A n )
S (An) 1 A )%/( 1)+%72<P‘n 3

) 7(A ) n
o G W) pplo G = an(©) + bt (Vni1, T)ant1 (v) + O(|0]|"F2),

L) 7(A) | N~ F(A) (A
e ed ST Mo N = as(v) + by (01, as(v) + O(loll).
j=1
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Note that the Christoffel symbol depend on ¢y iff it contains the term a3(v) in its expansion. Our
strategy is to show that the Christoffel symbols (8.172) contains only higher order polynomials

in its expansions. Computing the lowest degree term in the expansion of (8.173)

a(/)z 0 dpj
1—\01 s pq
v, 0v, < or ) g ()

aai 0 Ob: Un+1,T
= g (PG ) )+
P q
~ 0aiy2 0bj 11 (g1, T) Dajys
= o D0, ? (0) + -

0b; 1 (Vpat1, T
= j—HEan—H )ai+j+3 + ...
T

(8.175)

Therefore, for i +j > 1, we have that the associated Christoffel symbol do not depend on 3. Tt
remains to check only I'%! and T'1. Computing T'}Y by using the second equation of (4.13) for
t=1,j=0,k=0

n+2 n+2
ZgllFOO ZgOlFIO
n+1
— ZgOZFIIO + gOTI‘\}_O.
=0
Isolating T'10,
n+2 n+1
8.176 1ZFOO OlFIO

we have that the right hand side of (8.176) depend at most linear on ¢y. Moreover, using the
first equation (4.13), we have
BRT10 = 9,241 03F10
T
_ 8 82 10 _

Lemma proved.

8.9. Unit and Euler vector field of the orbit space of #(4,)

The aim of this section is to define the Unit and Euler vector field and its respective actions
on the geometric data of the orbit space of ¢ (A,). Further, these objects will be fundamental
to define the unit of the Frobenius algebra of the desired Dubrovin Frobenius structure, and to
give a quasi homogeneous property to the desired WDVV solution.
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DEFINITION 8.9.1. The Euler vector field with respect the orbit space _# (A,) is defined by
the last equation of (8.2), i.e

10
(8.177) Ei= s

DEFINITION 8.9.2. A f is quasi homogeneous of degree d if it is an eigenfunction of the
Euler vector field (8.177) with eigenvalue d, i.e.

E(f) = df.

LEMMA 8.9.1. Let A, ©0, -, ©n, @ni1 = Unt1, Pni2 = T be defined in (8.24) and (¢°, ., ", vp11, 7)
the flat coordinates of eta defined in (8.111). Then,

E(\) =\,
E(t*) = dut®,
where
di=1, 1<n+1,
di=0, i1>n+1,
(8.179) 1—
dy = u, o #0,
n
do = 1.

PRrROOF. Recall that the function A is given by

\ = —2miu [0 01(z — vi + Vg1, 7)
07 (2, 7)01(z + (n+ 1)vpy1)

= gpnp"*Q(z, T)+ gon_1pn*3(z, T)+ ... + ap(z,7)
+¢1[¢(z,7) = (2 + (n + Dvpg1, 7) + wo.

Hence,
1 0
= %%(A)
= E(pn)e"*(2,7) + Elpn-1)¢"(2,7) + ... + E(p2)p(2,7)
+ E(wl)[C(za 7—) - C(Z + (7’L + 1)Un+17 T) + E(@O)a
therefore, E(p;) = ¢;, and E(v,41) = E(1) = 0.

Recall that t* can written in terms of equation (8.115) or in more convenient way

o= res A n (v)dv, a#0,

(8.180) B(n+ D)

01((n + 1)vni1)
Applying the Euler vector in (8.180) we get the desired result.

10 — o1 + 4migr (7)) 2.
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COROLLARY 8.9.1.1. The Euler vector field (8.177) in the flat coordinates of n* has the

following form

- 0
8.181 FE = dot*——
( ) (;) « 8ta7
where
n+1l—a«

doy = ——, a#0,
(8.182) ¢ n

do =1

PROOF. Recall that

1 0 0 - 0
E:77:E N~ — a Oéi_
2mi Ou (t )Bta (;]d ! ote

O]

LeMMA 8.9.2. The Euler vector field (8.177) acts on the vector fields 52, é%i and differential

forms dt®, dip; as follows:

Liegdp; = d;dyp;,

Liepdt® = ddt®,

(8.183) ;) 9
L -2
ZeEf)(Pi 0pi
0 0
Lieg— = —d,-2_.
tepgia = ~daga

PrOOF. Recall that the Lie derivative acts in vector fields by using the Lie bracket and in

differential forms by the use of Cartan’s magic formula
tien o= [5. 2]
(8.184) ot ot
Liepdt® = dE(dt®) + E(d*t®) = dE(dt%).
Using (8.184) and (8.178), we obtain the desired result.
O

LEMMA 8.9.3. The intersection form g% defined in (8.36) and its Christoffel symbol I‘Zj in
the coordinates ¢g, .., ¥n, Pnt+1 = Unt1, Pnt+2 = 7 defined in (8.24) are weighted polynomials in
the variables g, .., pn, with degrees

(8.185) deg (gij) =d; +dj, deg (I‘gﬁ) =d; +d; — di.
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PRrROOF. The function g% and F;j belong to the ring E,}.[(pg, ©1, -, Pn) due to 8.4.2 and 8.8.4.

The degrees are computed by using the following formulae

E(g7(¢)) =E (gff gf,f;glm(vo

(0% 005 i Opi 1 [ 005 im
_E<8vl>8vmg (U)+3le aom? )

_ aE((pZ)% lm(v) + Dpi aE((pJ) Im (4

ol ovm? ol gum I (v)
(g1 g% 0% m
- (dl + d]) 8'Ul avmg (U)

and

s (5) -5 (2% (22) o)

o(85) & (B2)omo 9 (32) )
20 D (2a) dme)+ S (T ) o)

vl Dy \ Ovm vl Do \ B
9% 9 (995 im
di ol Ay, <8vm> 9" (v)

—(ditd— a2 0 (925 m
— et - 550 () o)

O

LEMMA 8.9.4. The intersection form g®# defined in (8.36) in the coordinates (%, ., ", vy 41, 7T)

defined in (8.111) and its Christoffel symbol Ff;'B are weighted polynomials in the variables
0 ¢t tin with degrees

deg (go‘ﬁ) = dy + dg,

deg (T9) = do +dg — .,

(8.186)

PROOF. Lemma 8.7.3 guarantee that ¢*? ¢ E.,[to,tl, AL %] Using the formula
E(g*) = E(gf:; g;ig”(w))
=BG e+ SEBGU I 0) + 50 5 Bl (o)
= aggj) gfjgij () - igf:; g;ig” () + gf;: (Wg(gj)g’j () — d; gi: g;ig” ()
o+ )5S ()
~ o+ 450 5 9(0)
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The Christoffel symbol F?ﬁ is given by the following

s 000 Dy 000 0 (00
v 0y; 8(pj oty Op; Ot atpj

I‘;j, %% € E.,.[to, t1,..,t"] due to Lemma 8.8.4 and equations (8.128), (8.125). But using (8.117),
we realise that g%; is polynomial in !, 2, .., t", tin due to due to equations (8.123) and (8.118).

Therefore, ngﬁ are weighted polynomials in the variables t°,¢!, .., ", L. Computing the degree

tn
of 197

E(r9P) = B(

o §ib 3 o N
0 0 Dy 00 O (7
Dip; Dpj O Dip; Ot7 \ Dp;

0t 0t% dpr i 0% 91" Dot
= (e —d) g G0 o Lk s~ )55 an
o> ot? Dy, ij oK 0 (0 Y
)5 G e o3 ()

o o [otP\ . o 9 [otP\
— - | = v —d)— [ )

o> o [otP\ ..
. N 17
= (do +dg — d, )T,

O]

DEFINITION 8.9.3. The Unit vector field with respect the orbit space ¢ (A,) is the vector

associated to the invariant coordinate ¢y defined in (8.24) , i.e

(8.187) e:= 66900'
LEMMA 8.9.5. The Unit vector field (8.177) in the flat coordinates of n* has the following
form
0
(8.188) e= s
PROOF.

o oo 9

Opo  Opo Ot 010
O

LEMMA 8.9.6. Let the metric n* be defined on (8.73) and the Euler vector field (8.177).
Then,

(8.189) Liegn®® = (do + dg — dy)n™".
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8.10. Discriminant locus and the monodromy of the orbit space of /(/Nln)

This section relates the critical points of the (8.24) with the zeros of the determinant of
the intersection form g¢* (8.37). Further, in section 8.11, it will be built a Frobenius algebra
in the sections of the orbit space of #(A,), furthermore, the intersection form g* (8.37) can
be realised as the multiplication by the Euler vector field (8.177). The results of this section
will imply that the intersection form g¢* (8.37) is diagonalisable with eigenvalues generically
different from 0, and this is equivalent to the Frobenius algebra be semisimple. Moreover, we can
realise the isomorphism of orbit space of ¢ (fln) with the Hurwitz space Hy 1,0 as a Dubrovin

Frobenius manifolds, see Theorem 8.11.7 for details.

DEFINITION 8.10.1. Let g* the metric defined on (8.37). The discriminant locus of the orbit
space of Z(A,) CaC'' @H/ _#(A,) is defined by

(8.190) Y={reCaC' oH/ 7(A,): det(g*) = 0}.

LEMMA 8.10.1. The fixed points of the action #(A,) belong to the discriminant locus
(8.190).

PRrROOF. Note that the fixed points of the action /(fln) on CEC" 1 aH > (u, v, V1, -, Un—1, Vnt1,T)
are the fixed points of the action A,, on C" > (vg, v1, .., Vs, ). Therefore, the fixed points are the

hyperplanes
(8.191) vi=v; 4,j€{0,1,..,n—1}.

The intersection form (8.37) is given by

g—Zdv ‘Z" " n(n + 1)dv2, | + 2dudr
(8.192)

= Z Ajjdvidv; — n(n + 1)dv2 1 + 2dudT
i,j=0

The intersection form is given by

0 1 0 0 0 0 0 0
g—ZAU Q=+ ®

(8.193) C%l 82}] n(n+1) Gons ® oo " oo Tor %o

4,7=0
became degenerate on the hyperplanes (8.191), because two columns of the matrix A;jl became

proportional.
O

LEMMA 8.10.2. The function \(p,u, v, v1, .., Un41,7) defined on (8.24) has simple critical
points if and only if (u,vg,v1, .., 41, 7) is a fixed point of the action /(An)
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Proor. Using the local isomorphism given by 8.20
—2miu H?:O 91(2 ) T)
07 (v, 7)01(v+ (n+ )vpg1,7)’

we can realise the discriminant locus as the space of parameters of A(p, u, vg,v1, .., Vp+1, 7) such

(8.194) [(w, Vo, V1, ooy Un—1, Vg1, T)] — A(v) =€

that A(p,u, vo, v1, .., Unt1,7) has repeated roots. In these cases A(p, u,vg, v1, .., Un41,7) has non
simple critical points.
O]

DEFINITION 8.10.2. The canonical coordinates (u1, usg, .., unt2) of the orbit space /([ln) is

given by the following relation
Agi) = u;,
N(ai) = 0.
LEMMA 8.10.3. The determinant of the intersection form ¢g* defined on (8.36) is proportional

n+2
to Hi:l Uj.

(8.195)

PROOF. If u; = \(¢;,u,vg, .., vpt1,7) = 0, we have that detg® = 0 due to lemma (8.10.2),
then u; are zeros of the equation detg* = 0.
O

PROPOSITION 8.10.4. In the canonical coordinates (ui,us, .., un+2) the unit vector field
(8.187), the Euler vector field (8.177), and the intersection form (8.36) have the following form

g" = u'n"d,

n+2 9
e = )
(8.196) ~ u;
n+2
0
E = i

where 1" are the coefficients of second metric n* in canonical coordinates.
Proor. Note that g* is diagonalisable with distinct eigenvalues if the following equation
(8.197) det(Naug"® —udl) =0,
has only simple roots. Since det(na,) # 0, the equation (8.197) is equivalent to
(8.198) det(g™? — un™?) = 0.
Using that 7% = 9yg®?, we have that
(8.199) det(gaﬁ — unaﬁ) = det (gaﬂ(to —u, t 83t v, T) =0.
Due to the lemma 8.10.3 the equation (8.198) has n + 2 distinct roots

(8.200) b =t — (283, v, T).
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In the coordinates (u',u?,..,u"2) the matrix g;- is diagonal, then

(8.201) g7 = u'n's;;

and the unit vector field have the following form
n+2 n+2

8751 Z 8751 8u2 Z Ou;

(8.202)

Moreover, since

(8.203) Z dot ma 8t1 = —e,

the Euler vector field in the coordinates (u1 u?, .. u””) takes the following form
n+2

(8.204) E= Z '

aul

Lemma proved.

8.11. Construction of WDVYV solution

The main aim of this section is to extract a WDVV equation from the data of the group

S (An).
LEMMA 8.11.1. The orbit space of _# (A,) carries a flat pencil of metrics

890‘*3

8.205 of af . _

( ) g, n 8t0

with the correspondent Christoffel symbols.
ory?

(8.206) ngcﬁ, n? = 8;0

PRrOOF. The metric (8.205) satisfies the hypothesis of Lemma 4.8.1 which proves the desired

result.

O]

LEMMA 8.11.2. Let the intersection form be (8.36), unit vector field be (8.187), and Euler
vector field be (8.177). Then, there exist a function

tO 2 tO
(8.207)  F(°, 4,62, . t"vpy1, 7) = ) +5 D> napt™t? + G, vy, T),

Ami 0,80,
such that
LiegpF' = 2F + quadratic terms,
(8.208) Lieg (F o ) =g,
O?G(t 12 " vps1, T) = 4 .o 1
] L€ Byt 7, .., t", —],
ot ot ol t"]
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where

' py OF2
8.209 e | A —

PROOF. Let F?,B (t) the Christoffel symbol of the intersection form (8.36) in the coordinates
the flat coordinates of n*, i.e t ¢!, 2, .., t".v, 1,7. According to the lemma 4.8.1, we can

represent T'27 (t) as
(8.210) To%(t) = 100, f7(t).
Using the relations (8.186), (8.183) and lemma 8.9.6
Liep(D5 (1)) = Liew(n**)0:0y f*(1) + n** Lier(0:0 f*(t))
= (do + de — d1)if* 00y f7(t) + (—de — dy)1j*0c0, Liep(f7 (1))
= (do + d3 — d,)n"0.0, (1),
Then, by isolation Lieg (fﬁ(t)) we get
(8.211) Lieg (fﬂ(t)) = (ds+dy) P+ AP + B, AP BfecC.
Considering the second relation of (4.13) for « = 7
(8.212) 9Ty = g"Ty,
and using lemma 8.5.3 and 8.8.2, we have.
(8.213) —27idgt"n 0,0, f) = —2mid,6)g",
which is equivalent to
(8.214) Liep (nﬁeaE fV) =dg".
Using (8.211) in the equation (8.214), we have
(8.215) (dg + dy)n° 0 f7 = d.g™.
If v # vpy1, 7, we define
(8.216) ot
and note that ¢%7 is symmetric with respect the indices 3,~. Hence,
(8.217) (dg + d)n 0. F" = (dg + d)n "0 F”,
which is the integrability condition for

(8.218) FY = k9, F.
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In order to extract information from v = 7, take 5 = 7 in equation (8.215)

dwTanf” = d’ygTW
(8.219)
—2mid, 0o f7 = —2midyt7

which is equivalent to

N 000 F =17,
inverting n7¢
(8.220) a0 F = nart?,

integrating equation (8.220), we obtain

(t0)27'
4

tO
+5 D7 naptt? + G, " v, T).
a7/8#0?7-

(8.221)  F(t% t', 4% . " vppr,T) = —

Substituting the equation (8.221) in the (8.215) for v # vp41, T, We get

97" = (dg + dy)n* N 00, F,

(8.222) _ Lieg(5™

Since ¢77 is a symmetric matrix the equation (8.222) is equivalent to the second equation of
(8.208) for either 8 and ~ different from v,41,7. Therefore, the missing part of the second
equation of (8.208) is only for the cases 8 = v = v,41 and 8 = v = 7. Moreover, the intersection
form ¢®7 is proportional to the Hessian of the equation (8.221) for for either § and ~ different
from v,41, 7. Recall that from the data of a Hessian, we can reconstruct uniquely a function up

to quadratic terms, therefore, by defining

2

ot1?
(8.223)
L 82F — TT
iep ot) = g
Just the second equation of (8.223) needs to be proved, since the first equation defines the
coefficients of the Hessian g:f; , in another words, it defines g:g . The second equation must

be compatible with the equation (8.221), then substituting (8.221) in the second equation of
(8.223).

) 0*F , T
LZEE <8t12> = L'LeE (%)

188



Hence, we proved the second equation (8.208). Substituting the equation (8.221) in the second
equation (8.208) for a, B # T

/ ’ 8F2
; B — 1, BB
LZ@E (Fa ) = L'LeE <770é01 n ata'3t5'>

sy OG?
I aa’ 8P
— LleE <77 n ata'at5'>
1
) t?]
Hence, the second equation (8.208 prove the third equation of (8.208).

= g% € By Jt!, 1%, ., t"

Substituting (8.221) in (8.211), (8.218)
Lieg (fﬁ) = Lieg (77568€F)
— Liep (nﬁeaeF) O.F + 1P Lieg (9.F)
= (dg + de — d1)n* O FO.F + 0’0, Liep (F) — den 0. F
= (dg — d1)n* O FO.F + 1°°O.Lieg (F)
= (dg + d1)n* O F + ASt® + BP
Hence, isolating Lieg (F')
n%d.Lieg (F) = 2°0.F + APt + B”,
inverting n%¢
OaLiep (F) = 200 F + 0o A2t" + 1o B”,
integrating
Lieg (F) = 2F + nagASt™t7 + 145 B°t*,

Lemma proved.

LEMMA 8.11.3. Let be

OF3
(8224) CO‘B'Y = m,
then,
(8.225) Clﬁ = Tﬂecaﬁe
is a structure constant of a commutative algebra given by the following rule in the flat coordinate
of
(8.226) 0o ® 05 = ¢} 30,
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such that

(8.227) 1(On ® 03,0y) = 1(0a,03  0y), Frobenius condition.

PROOF.

(1) Commutative
The product defined in (8.226) is commutative, because its structure constant (8.225)

is symmetric with respect its indices «, 8,y due to the commutative behaviour of the

0 90 9
ot> gtb 7 ot -

(2) Frobenius condition

partial derivatives

(00 @ 0, 0y) = cop7(0e, 0y)
= Cgﬁnew
= Capy

= C3yNac = 1(Oa; g ® Oy).
Lemma proved.

O

LEMMA 8.11.4. The unit vector field be defined in (8.187) is the unit of the algebra defined

in lemma 8.11.3.

PROOF. Substituting (8.218) and (8.216) in (8.210), we obtain

(8.228) 1% = dgc2?,
where
(8.229) 03"8 = 0

Substituting o = 7 in (8.228) and using lemma 8.8.2
77 = —2midgdl

’)/7
= d/gcgﬁ.
Then,
B _
Coy = 55.
Computing
_ B 5 _
80 [ ] &y = 00785 = 87.
Lemma proved. ]

LEMMA 8.11.5. The algebra defined in lemma 8.11.3 is associative and semisimple.
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PROOF. Recall that the Christoffel symbol Fffﬂ is proportional to the structure constant of
the algebra defined in lemma 8.11.3 for § # vy41, T

FSB = d/gc;“ﬁ.
Then, using (4.59), we obtain
(8.230) refroy = roped
Substituting (8.228) in (8.230), we have
2Pt =P for B,y # Ung1, T
fg=r,
ST = —2midg el
= —2mic!

= —2mid] co

_ .y, 0T
=c5lc.

In order to prove the associativity for 8 = v,+1, note that the multiplication by the Euler vector

field is almost the same of the intersection form ¢*. Indeed,

B e 0y = 176,05 = 170, (7000, F ) 05 =

(8.231)

= (da — dﬁ)nﬁuaaauFaﬁ = naug“ﬁﬁﬁ
Then,
(8.232) BB = gob,
Using the relation (8.232) in the coordinates (u',u?, ...,u""2), we have
(8.233) u'n 6 = uln™ " cm,

differentiating both side of the equation (8.233) with respect ¢!

(8.234) cf; = 04,

which proves that the algebra is associative and semisimple.
O

Recall of the covering space of the orbit space of ¢ (A,) defined in (8.145), see section 8.7

for details.

THEOREM 8.11.6. The covering C OCn @ H/_#(A,) with the intersection form (8.36), unit
vector field (8.187), and Euler vector field (8.177) has a Dubrovin Frobenius manifold structure.
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ProOF. The function (8.207) satisfy a WDVV equation due to the lemmas 8.11.2, 8.11.3,
8.11.4, 8.11.5.
O

Taking the same covering taking in the orbit space of ¢ ([ln) in the Hurwitz space Hi 510,
fixing a symplectic base of cycle, a chamber in the tori where the variable v, lives, and

branching root of ¢,, denoting this covering by
(8.235) Hin 10,

we obtain

THEOREM 8.11.7. The Dubrovin Frobenius structure of the covering space C &Cr o H | 7 (Ay)

is isomorphic as Dubrovin Frobenius manifold to the covering Hy ,,—1,0.

PRroor. Both the orbit space ¢ (An) and the Hurwitz space Hj 1,0 has the same inter-
section form, Euler vector, unit vector field due to proposition 8.10.4, lemma 8.10.2 and 8.10.3

From this data, one can reconstruct the WDVV solution by using the relation

/ / 82F ga’B
8.236 FoB = poa’ B8 = .
( ) T e orB degg®h

Theorem proved. O
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