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Abstract. In this work we propose and analyze a weighted reduced basis method to solve elliptic
partial differential equations (PDEs) with random input data. The PDEs are first transformed into
a weighted parametric elliptic problem depending on a finite number of parameters. Distinctive
importance of the solution at different values of the parameters is taken into account by assigning
different weights to the samples in the greedy sampling procedure. A priori convergence analysis
is carried out by constructive approximation of the exact solution with respect to the weighted
parameters. Numerical examples are provided for the assessment of the advantages of the proposed
method over the reduced basis method and the stochastic collocation method in both univariate and
multivariate stochastic problems.
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1. Introduction. When modeling a complex physical system, uncertainties in-
evitably arise from various sources, e.g., computational geometries, physical parame-
ters, external forces, and initial or boundary conditions, and may significantly impact
the computational results. When these uncertainties are incorporated into the under-
lying physical system, we are facing stochastic problems or uncertainty quantification.
Various computational methods have been developed depending on the structure of
the stochastic problem, including perturbation, Monte Carlo, stochastic Galerkin,
stochastic collocation, reduced basis, and generalized spectral decomposition meth-
ods [21, 40, 1, 33, 7].

The perturbation method [25] based on Taylor expansion was developed for the
random functions with only small fluctuations around a deterministic expectation.
This method is applicable only when dealing with small uncertainties and suffers
from inevitable errors and an extremely complicated structure for high order expan-
sions. The most commonly used “brute-force” Monte Carlo method [20] as well as
its multiple versions, e.g., quasi Monte Carlo [30] and multilevel Monte Carlo [23],
converge very slowly and become prohibitive for achieving accurate results.

The stochastic Galerkin method, originated from spectral expansion of the random
functions on some polynomial chaos, for instance, Hermite polynomials of independent
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random variables, applies the Galerkin approaches to approximate the solution in both
stochastic and deterministic space [21, 2]. It enjoys fast convergence provided the so-
lution is regular [14, 13]. However, it yields a very large algebraic system, leading to
the challenge of designing efficient solvers with appropriate preconditioners [19].

The stochastic collocation method was developed from the nonintrusive determin-
istic collocation method [36, 39, 1]. In principle, it employs multivariate polynomial
interpolations for the integral in the variational formulation of the stochastic sys-
tem with respect to probability space rather than the Galerkin approximation in the
spectral polynomial space. Due to the heavy computation of a deterministic system
at each collocation point in high-dimensional space, isotropic or anisotropic sparse
grids with suitable cubature rules [31, 32] were analyzed and applied to reduce the
computation load. This method is preferred for more practical applications because
it features the advantages of both direct computation as a Monte Carlo method and
fast convergence as a stochastic Galerkin method [3].

In principle, to solve a stochastic problem we need to solve one deterministic
problem at many different realizations of the random inputs in order to evaluate the
quantity of interest depending on the stochastic solutions. However, the solutions are
“not far from” each other in practice. Therefore, instead of projecting the solutions on
some prescribed bases, such as polynomial chaos for the stochastic Galerkin method
[40], we can project the solution on some space generated by a few precomputed so-
lutions, which leads to the development of reduced basis method. The reduced basis
method has been proposed to solve primarily parametric systems [37, 34] and has
been applied to stochastic problems lately [7, 6, 10]. In the latter context, it regards
the random variables as parameters and selects the most representative points in the
parameter space by greedy sampling based on a posteriori error estimation. The es-
sential idea for the deterministic and stochastic reduced basis method is to separate
the whole procedure into an offline stage and an online stage. During the former,
the large computational ingredients are computed and stored once and for all, in-
cluding sampling parameters, assembling matrices and vectors, solving and collecting
snapshots of solutions, etc. In the online stage, only the parameter-related elements
are left to be computed and a small Galerkin approximation problem needs to be
solved [34]. Both the reduced basis method and the stochastic collocation method use
precomputed solutions as approximation/construction bases. However, the former
employs a posteriori error estimation for the construction and thus is more efficient
provided that a posteriori error estimation is easy to compute. Comparison of the
convergence property as well as the computational cost for offline construction and
online evaluation between the reduced basis method and the stochastic collocation
method was investigated in [10].

To our knowledge, the reduced basis method is currently used only for stochastic
problems with uniformly distributed random inputs or parameter space with Lebesgue
measure [6, 10]. In order to deal with more general stochastic problems with other
distributed random inputs, we propose and analyze a new version of reduced basis
method and name it the “weighted reduced basis method.” The basic idea is to
suitably assign a larger weight to samples that are more important or have a higher
probability of occuring than the others according to either the probability distribution
function or some other available weight function depending on the specific application
at hand. The benefit is to lighten the reduced space construction using a smaller
number of bases without lowering the numerical accuracy.

A priori convergence analysis for the reduced basis method by greedy algorithm
has been carried out in previous works [28, 8, 5, 26] under various assumptions. More
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specifically, an exponential convergence rate for a single-parameter elliptic PDE was
obtained in [28] by exploring an eigenvalue problem; an algebraic or exponential
convergence rate for greedy algorithm in multidimensional problem was achieved im-
plicitly depending on the convergence rate of Kolmogorov N-width in [8] and improved
in [5]; an exponential convergence rate was also recently obtained in [26] through di-
rect expansion of the solution on a series of invertible elliptic operators. In this work,
we carry out a priori convergence analysis of our weighted reduced basis method based
on constructive spectral approximation for analytic functions, which is different from
[28, 8, 5, 26].

The paper is organized as follows. An elliptic PDE with random input data is
set up with appropriate assumptions on both the random coefficient and the forcing
term in section 2. Section 3 is devoted to the development of the weighted reduced
basis method consisting of a greedy algorithm, an a posteriori error estimate, as
well as offline-online computational decomposition, which is followed by regularity
analysis and a priori convergence analysis in section 4. Numerical examples for both
the one-dimensional problem and the multiple-dimensional problem are presented
as verification of the efficiency and convergence properties in section 5. Some brief
concluding remarks are made in the last section 6.

2. Problem setting. Let (2, F, P) be a complete probability space, where ( is
a set of outcomes w € Q, F is o-algebra of events, and P : F — [0,1] with P(Q2) =1
assigns probability to the events. Let D be a convex, open, and bounded physical
domain in RY (d = 1,2,3) with Lipschitz continuous boundary D. We consider the
following stochastic elliptic problem: find u : D x £ — R such that it holds almost
surely that

(2.1) =V (a(,w)Vu(,w)) = f(,w) inD,
u(-,w)=0 on dD,

where f : D x  — R is a random force term and a : D x Q@ — R is a random
coefficient; a homogeneous Dirichlet boundary condition is prescribed on the whole
boundary 0D for simplicity. We consider the following assumptions for the random
functions f(-,w) and a(-,w).

Assumption 2.1. The random forcing term f(-,w) is square integrable with re-
spect to P, i.e.,

(2.2) ||f||%§)(9)®L2(D) ::/Q . A (z,w)dzdP(w) < oo.
X

Assumption 2.2. The random coefficient a(-,w) is assumed to be uniformly
bounded from below and from above, i.e., there exist constants 0 < a.min < Gmaz < 00
such that

(2.3) P(w € Q: amin < a(r,w) < amaz Yo € D) =1.

We introduce the Hilbert space V = L%(Q) @ H}(D) and equip it with the
following norm:

(2.4) ol = 110112 @y (o) = ( /

Qx

1/2
|Vv|2da:dP> < 0.
D
The weak formulation of problem (2.1) is stated as follows: find u € V such that

(2.5) / aVu - VudzdP = fodzdP Yv e V.
QxD QxD
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The existence of a unique solution to problem (2.5) is guaranteed by the Lax—Milgram
theorem [36] under Assumptions 2.1 and 2.2 and the stability inequality holds for the
solution straightforwardly,

(2.6) [ullv < ||f||L§D(Q)®L2(D)a

mn
where the constant Cp comes from the Poincaré inequality ||v||z2(p) < Cp||V||12(p)
Vo € HY(D).

The uncertainty of the random functions a(-,w) and f(-,w), in many practical
applications, can be approximately projected to a series of finite dimensional random
variables via statistical techniques. For instance, finite linear regression models are
widely used to approximate various random fields [15]; under the assumption that
the second moment of a(-,w) exists, we can apply Karhunen-Loéve expansion [38] to
the covariance kernel and truncate it up to a finite number of linear terms, etc. For
this consideration, we make a further assumption to the random functions a(-,w) and
f(-,w) as follows.

Assumption 2.3. The random coefficient a(-,w) and forcing term f(-,w) are linear
combinations of a number of random variables Y (w) = (Yi(w), ..., Yx(w)) : @ — RE
as follows:

(2.7) a(z,Y) = ao(z +Zak and f(z,Y) +ka

where a;, € L>®(D) and fr € L*(D) for 0 < k < K. More specifically, {V;}X |
are real valued random variables with joint probability density function p(y), being
y = Y(w) € R. By denoting I'y = Y;(Q),k = 1,..., K, and I' = IIX_ T, we can
also view y as a weighted parameter in the parametric domain I' endowed with the
measure p(y)dy. In particular, we assume that the random variables y are bounded
in a continuous domain I' for the sake of convergence analysis.

Remark 2.4. When the random variables Y,*,1 < k < K, for a and ka, 1<k <
Ky, for f are not the same, we collect them as Y = (Y7, .. ,YI‘;G,Ylf, e ,Y};f) and
reorder them as (Y1,...,Yx) with K = K, + K.

Remark 2.5. In the more general case that the random function a(z,Y") does not
depend on Y linearly, for instance,

(2.8) a(z,Y) = ao(x) + exp <Z ag(x ) )

one can employ the empirical interpolation method [4, 12] to approximate (2.8) with
finite affine terms in the form

(2.9) a(z,Y) ~ ao(x +Zak, )0k (Y (w)),

where Oy/(-),1 < k¥ < K’, are functions of Y and can be transformed to random
variables Zp = Op(Y(w)),1 < k' < K, resulting in a new random vector Z =
(Z1,...,Zxks) and a(z, Z) still satisfies Assumption 2.3.

Under the above assumptions, the weighted parametric weak formulation of the
stochastic elliptic problem reads as follows: find u(y) € H}(D) such that the following
equation holds for all y € I':
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(2.10) A(u,v;y) = F(v;y) Y € Hg(D),

where A(-,+;y) and F(-;y) are parametrized bilinear and linear forms featuring the
expansion

K K
(2.11) A(u,v5y) = Ao(u,v)+ Y Ax(u,0)ye  and  F(v;9) = (fo,0)+ D (fr, v)u

k=1 k=1

with the deterministic bilinear forms Ay (u,v) given by Ag(u,v) := (axVu, Vv),k =
0,1,..., K. Because of assumption (2.3) the bilinear form is coercive and continuous,
and thus the existence of a unique parametric solution u(y) € H}(D) Vy € T to
problem (2.10) is guaranteed by the Lax—Milgram theorem [36]. More often, we are
interested in a linear functional s(u;y) as output, e.g., s(u;y) = F(u;y), as well as its
statistics, e.g., the expectation E[s], which is defined as

(2.12) E[s] = /FS(u; y)p(y)dy.

Given any approximation space XN c H}(D) (e.g., finite element space) of di-
mension A/, we approximate the solution of (2.10) by solving the following problem:
given any y € I, find vV € X* such that

(2.13) A(u,v;y) = Fvjy) Yo e XV,

Consequently, the quantity of interest s(u;y) and its statistics, e.g., E[s], can be
approximated by s(u;y) ~ sV (y) := s(u; y) and E[s] ~ E[s"], respectively.

3. Weighted reduced basis method. The basic idea behind the weighted re-
duced basis method is to assign different weights in the construction of reduced basis
space at different values of parameter y € I" according to a prescribed weight function
w(y). The objective is that when the parameter y has distinctive weight w(y) at dif-
ferent values y € I, e.g., stochastic problems with random inputs obeying probability
distribution far from uniform type, the weighted approach can considerably atten-
uate the computational effort for large-scale computational problems. The general
paradigm of the weighted reduced basis method is formulated by following closely the
reduced basis method in [34, 37, 10].

Given a training set of parameter samples Zy.q;, C I' as well as a prescribed
maximum dimension N4, < A, we build the N-dimensional (Lagrange) reduced
basis space X]Q,/ c XN for N = 1,..., Npae in a hierarchical way by taking into
account the weight of the parameter at different values until we satisfy a certain
tolerance requirement. The reduced basis space X ]@f is spanned by the “snapshots”
(solutions uN € XA of problem (2.13)) based on suitably chosen samples Sy =
{y',...,y"V} from the training set Z¢,qin

(3.1) XN = span{u™N(y"),1 < n < N}.

Note that X3V ¢ X3V ¢ --- C X]J\\,/m”. In order to evaluate s(u;y) at any new
parameter y € T, we first seek the solution wy € X C XV in the reduced basis
space X ]@f by solving a reduced system

(3.2) A, vyy) = F(v;y) Yo e XA
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and then approximate s(u;y) by s(u% ;y). Moreover, we can also compute the statis-
tics of the output, e.g., expectation E[s%], by the numerical quadrature formula
(Gauss or Clenshaw—Curtis quadrature [32]),

M
(33) Elsy]~ Y s(ui;y™w(y™),
m=1
where y™ and w(y™),m = 1,..., M, are the K-dimensional quadrature abscissas and

weights with respect to the probability density function, which can be chosen based
on different schemes, e.g., full tensor product quadrature or sparse grid quadrature
[32]. Note that the weights w(y™),m = 1,...,M, may be distinct to each other
depending on both the quadrature formula (e.g., Clenshaw—Curtis or Gaussian type)
and the probability density function, so that the solution uf (y™) is expected to be
more accurate where w(y™) is significantly larger than the other realization of the
parameter y € I.

Accurate computation of the solution ufv/ and the output sf\v/ depends crucially on
the construction of the reduced basis approximation space—more specifically, how to
take different weight of the solution into consideration, how to cheaply and accurately
select the most representative samples in order to hierarchically build the reduced basis
space, as well as how to efficiently evaluate the solution and output based on the way
of construction of the approximation space play a key role in the weighted reduced
basis method. We address these issues in the following three aspects: the weighted
greedy algorithm, the a posteriori error estimate, and the offline-online computational
decomposition.

3.1. Weighted greedy algorithm. Let X be a Hilbert space equipped with
the norm ||v||x = \/A(v,v;§) Yo(y) € H}(D) at some reference value § € I' and let
Xw be a weighted Hilbert space with norm [[v(y)||x,, = w(y)||lv(y)||x Vv € X and
Vy € I, being w : I' — R be a weight function taking positive real values. Note that
both X and X,, are equivalent to Hi (D). The weighted greedy algorithm essentially
deals with the L>°(T"; X,,) optimization problem in a greedy way [37], seeking a new
parameter y~ € I' such that
(34) yN = argsup [V (y) — Py ()] x.,

yel’

where Py : XN — XJ/\\,/ is the Galerkin projection operator (by solving the Galerkin
projection problem (3.2)). By solving the infinite dimensional problem (3.4) we would
locate the least matching point y¥ € T'in || - ||x, norm. A computable (finite dimen-
sional) greedy algorithm relies on the following: (i) replace the parameter domain I"
by a finite training set Etqin C ' with cardinality |E¢,qin| = Ntrain < 005 (ii) replace
the mismatching term |[u (y) — PyuN (y)||x, by a cheap weighted posteriori error
bound A% that should be as sharp as possible, i.e.,

(3.5) en AR () < JuM (y) — PnuN (y)llx., < OnAK(y),

where C' /e is close to 1. We leave the computation of the a posteriori error bound to
the next section and present the weighted greedy algorithm in the following procedure;
see Algorithm 1.

We note that for efficient computation of Galerkin projection and offline-online
decomposition in practice, we normalize the snapshots with the Gram—Schmidt pro-
cess to get the orthonormal basis of {¢V,..., ¢} such that (Y, M)x = dn, 1 <
m,n < N, and construct XJ/\\,/ = span{¢V,... ,Cﬁ}.
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ALGORITHM 1. A weighted greedy algorithm for the construction of reduced basis
approximation space.

1: procedure INITIALIZATION:

2: sample training set Z;.4;, C [ according to probability density function p;

3 specify a tolerance e, as stopping criteria of the algorithm;

4 define the maximum number of reduced bases Ny, qz;

5 choose the first sample y* € Zy.4s, and build the sample space S1 = {y'};
6:  solve the problem (2.13) at y*, construct XV = span{u™ (y")};
7
8
9

: end procedure
: procedure CONSTRUCTION:
for N =2,..., Ny do

10: compute a weighted posteriori error bound AR _;(y) Yy € Etrain;
11: choose ¥V to maximize AY_,, i.e., y¥ = argmaxyez,, ... AY_,(y);
12: if A]“{,fl(yN) < &t then

13: Npaz = N — 1

14: end if

15: solve problem (2.13) at y~ to obtain u (yV);

16: augment the sample space Sy = Sy_1 U {yV};

17: augment the reduced basis space XX = XA, @ span{uV (y™)};
18: end for

19: end procedure

Another algorithm that might be used for the sampling procedure is proper
orthogonal decomposition (POD) [37], which is rather expensive in dealing with
L? (Etrain; X ) optimization and thus more suitable for low-dimensional problems. We
remark that for both the greedy algorithm and the POD algorithm, an original train-
ing set Zipqin is needed. Two criteria should be followed for its choice: (1) it should
be cheap without too many ineffectual samples in order to avoid too much compu-
tation with little gain; (2) it should be sufficient to capture the most representative
snapshots so as to build an accurate reduced basis space.

Adaptive approaches for building the training set have also been well explored by
moving from a small number of samples to more samples in the space I' adaptively;
see [41] for details.

3.2. A posteriori error bound. The efficiency and reliability of the reduced
basis approximation by weighted greedy algorithm relies critically on the availability
of an inexpensive, sharp, and weighted a posteriori error bound AY;. For every y € T',
let R(v;y) € (X)) be the residual in the dual space of X, which is defined as

(3.6) R(viy) := F(v;y) — A(uj (y),v;y) Yo e XV

By the Riesz representation theorem [36], we have a unique function é(y) € X such
that

(3.7) (e(y), v)xx = R(viy) Yo € XN and [|e(y)l[xx = ||R(5 )l xxys

where the XV norm is specified as |[v||xx = \/A(v,v;7) at some reference value
y € I'. Define the error between the “truth” solution and the reduced basis solution
as e(y) := uN(y) — uN (y); by (2.13), (3.2), and (3.6) we have the equation

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/31/17 to 147.122.97.182. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

3170 PENG CHEN, ALFIO QUARTERONI, AND GIANLUIGI ROZZA
(3.8) Ale(y),v;y) = R(v;y) Yo e XV,

For every y € T', we define the coercivity constant a(y) such that a(y)||v|[3x <
A(v,v;y) Yo € XN and denote by azp(y) its lower bound, i.e., arp(y) < a(y). By
choosing v = e(y) in (3.8) and using the Cauchy—Schwarz inequality, we have

(3.9) ars@)lle)xr < Ale(y),e(y);y)
= R(e(y);y)
<IRCy )l xnvy e xa

= [le@)llx lle()lx

so that we can define a weighted posteriori error bound A% (y) for the solution
uN(y),y €T, as

(3.10) AR () = lle)llx. /aLs(y)

and obtain immediately the relation ||uN (y) — uN (y)||x, < A% (y) from (3.9). As for
output s(u),

(311)  [s(™) = s(up)wly) < sl eyl (y) = uf W)l]x. < sl ey 2% (),

where |[s||(x~y is a constant independent of y, the same error bound can also be used
in the greedy algorithm when considering the output sf\vf . The efficient computation
of a sharp and accurate a posteriori error bound thus relies on the computation of a
lower bound of the coercivity constant azp(y) as well as the value ||é(y)||x,, for any
given y € I'. For the former, we apply the successive constraint linear optimization
method [24] to compute a lower bound arp(y) close to the “truth” value a(y). For
the latter, we turn to an offline-online computational decomposition procedure.

3.3. Offline-online computational decomposition. The evaluation of the
expectation E[sf\vf] and the weighted a posteriori error estimator A%, requires us to
compute the output sJ]\V/ and the solution uf\vf many times. Similar situations can
be encountered for other applications in the context of many query (optimal design,
control) and real-time computational problems. One of the key ingredients that makes
the reduced basis method stand out in this ground is the offline-online computational
decomposition, which becomes possible due to the affine or linear assumption such as

that made in (2.7). To start, we express the reduced basis solution in the form

N
(3.12) uN () = Y N ()G
m=1

where we recall that (N 1 < m < N, are the orthonormal bases of the reduced
basis space XN . Upon replacing the reduced basis solution in (3.2) and choosing
U—CN1<n<N we obtain forn=1,..., N

N K K
(3.13) > (Ao(cﬁ,c,ﬁ“) + ZykAk(cﬁ,dY)) uN (1) = (fo. Q) + D (i, G
k=1

m=1 k=1

From (3. 13) we can see that the quantities A (¢, ¢Y),0 <k < K,1 <m,n < Npax,
and (fr,Y),0 < k < K,1 < n < Ny, are independent of y, and we may thus
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precompute and store them in the offline procedure. In the online procedure, we only
need to assemble the stiffness matrix in (3.13) and solve the resulting N x N stiffness
system with much less computational effort compared to solving a full N'x A stiffness
system. As for the computation of the error bound Apn(y), we need to evaluate
[lé(y)||x~ at y chosen in the course of sampling procedure. We expand the residual
(3.6) as

K
(3.14) R(v;y) = F(v;y) = A(u,viy) = Y _(fr,v) yk_ZuNn (ZAk ((GAE )
k=0

where yo = 1. Set (Ck,v)x~ = (fx,v) and (LE, v)xn = —Ap(Y,v)Ww € XY ,1 <
n < N,0 < k < K, where C; and £ are the representatives in XN of fr and
C,JZ\/ , respectively, whose existence is secured by the Riesz representation theorem. By
recalling (é(y),v)x~ = R(v;y), we obtain

(3.15)
K
)|5n = Zyk <Z Yir (Cr, Crr XN> +ZzykuNn (v) <Z yk/2(0ku£ﬁ)xzv>
k=0n=1 k'=0
—I—ZZyku%n <Z Z yrrun, () (LF, £F) ¢ ) .
k=0n=1 n’/=1

Therefore, we can compute and store (Ck,Cr/)xn, (Cr, LF) xn, (LE, £F /)XN,l < n,
7' < Npaz,0 < k, k' < K, in the offline procedure and evaluate ||é(y)||x~ in the
online procedure by assembling (3.15) with O((K + 1)2N?) scalar products, which is

far more efficient provided that O((K + 1)2N?) < V.

4. Regularity and a priori convergence analysis. Without loss of generality,
we work in the space X rather than in the discretization space X for regularity and
a priori error estimates for the weighted reduced basis method; the regularity with
respect to random variables y € I" and convergence results of the weighted reduced
basis approximation hold the same in the discretization space X*V.

4.1. Regularity results.

LEMMA 4.1. Under Assumptions 2.1-2.3, the solution to problem (2.10) satisfies
u € C°; HY(D)). Moreover, if u and @ are two weak solutions of problem (2.10)
associated with data a, f and a, f , respectively, we have the stability estimate

C
L L fllco:zz(oy

CP

(4.1) lu —al[cor;m(py) <

(oylla = allcor;z=(p))-

Proof. We rewrite (2.10) explicitly as Vy € T
(4.2) / a(z,y)Vu(z,y) - Vo(z)dz = / f(z,y)v(x)de Vv e Hi(D).
D D
A similar problem holds for f and a. By subtraction we obtain the difference equation:

(4.3) / aV(u —a) - Vodz = / (f — fudz —|—/ (@ —a)Vi - Vudz.

D D D
By taking v = u — @, applying the Cauchy—Schwarz and Poincaré inequalities, and
using Assumption 2.2 we have
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(4.4) Amin |[U — ﬂ||§13(D) < Cpllf = fllezpyllu — ﬂ||Hg(D)
+ @l gy oyl 1w — @l (pyll@ — @l | e ().

so that the following stability estimate holds for Vy € T by the fact [|a|[g1p) <
(Cp/amm)||f||Lz(D) (due to the Lax—Milgram theorem and Assumption 2.2 for a):

(4.5) luly) — @)l my ) < ||f( ) = FWllz2(p)

mzn

F)l|z2 () llaly) — @)l L= (p)-

min

Setting a(y) = a(y + 0y) and f(y) = f(y + dy) such that y + éy € T, we have
by Assumption 2.3 that a(y) — a(y) in L(D) and f(y) — f(y) in L*(D) so that
(y) = u(y+9y) — u(y) in H (D) when dy — 0. Therefore, the solution is continuous
with respect to the parameter y € T, i.e., u € CO(T; Hi(D)). |

A direct application of Lemma 4.1 leads to the following lemma for the existence
of partial derivatives of the solution with respect to the parameter y € I' as well as
their bound in H}(D).

LEMMA 4.2. For any y € I', there exists a unique 9yu(y) in H}(D) provided
that Assumptions 2.1-2.3 are satisfied for any y € I and v = (v1,...,vk) € A, where
A C N¥ is a multiple index set. Moreover, we have the following estimate:

v v CP v—e
(4.6) 10y w520y < B(y)lv|n +— v! Z ("= fxllL2(p))
min Jo—
where
(4.7)
C ||ak|| LoD
B) = ZE a0, W = 0+ + v = [ o=

k=1

Proof. We use an induction argument for the proof in the following few steps.
Step 1. First, when |v| = 0, there exists a unique solution u € Hg (D) of problem
(2.10) for every y € I' thanks to the Lax—Milgram theorem. Moreover, the estimate

y C
@8 110uwllnyw) = W lligo) < @) llxo) = B)

holds, which verifies (4.6) for |v| = 0.
Step 2. For |v| > 1, we are about to prove that there exists a unique function
dyu(y) satisfying the following general recursive equation (write a(y) in short for

a(z,y), etc.):
(4.9)
a(y) Vo u( - > uk/ arV oy~ u(y) Vot Y /fkv Yo € H} (D),

D k:v #0 kiv=ey

where ¢}, is a K-dimensional vector with the kth element as 1 and all the other elements
as 0. To see this, let us first show that for [v| =1, i.e., v = e, 1 < k < K, there exists
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a unique solution d;u(y) to (4.9). We take the perturbation a(y) = a(y — heg), fy) =
f(y—hey), and @(y) = u(y — hey) in (4.3) and set D¥u = (u(y) —u(y — hex))/h; then
(4.3) becomes

(4.10) /D a(y)VDEu(y)Vu(y) = /D frv — /D apVu(y — hey) - Vo Yo € Hy(D),

which results in a unique solution Dfu(y) € H}(D) by the Lax—Milgram theorem.
Taking the limit » — 0, we have by the continuity result in Lemma 4.1 that u(y —
her) — u(y) so that Dfu(y) — Oyu(y) exists. Therefore, d;u(y) is a unique solution
of (4.9) for v = e,1 < k < K. By induction we suppose that there exists a unique
function 82 u(y) satisfying (4.9) for 7| = [v|—1,i.e., » = v —e; forsome j = 1,..., K;
then we claim that there exists a unique function 9y u(y) satisfying (4.9) for each v
such that |v| > 1. By the same argument of perturbation and continuity property,
we are able to take the derivative of (4.9) with respect to y;, where v is replaced by
U =v—e;in (4.9), yielding

(4.11) /D a(y)Vo,u(y) - Vo + /D a; Vo, “u(y) - Vv

= — Z l/k/ akvaé’_@’“u(y) -V
D

k#£j:v#0

~0y =1 [ avoy e ver X [ g

k:v=ep

which can be simplified by summing up the same terms to end up with (4.9). By the
Lax-Milgram theorem, we have that there exists a unique solution du(y) € Hg (D)
to (4.9).

Step 3. We are going to show that the estimate (4.6) holds for |v| > 1 in this
step. Upon replacing v by dyu(y) in (4.9), we have by Assumption 2.2 as well as the
Cauchy—Schwarz and Poincaré inequalities the following estimate:

v vV—e CP
@12)  oyu@)llmyoy < Y vemelldy ™ ullay o) + —— Y [fsllzao)-

ki £0 man

k:v=ey
Observe that when |v| =1, i.e., v = ¢k, 1 < k < K, estimate (4.12) becomes

Cp

(4.13) 10y )l 13 0y = 10y w1y (p) < Bw)m + —— |l fxllz2 (),

Gmin

which is the same as in (4.6). If |v| > 1, estimate (4.12) becomes

(4.14) 1ozu) ey < S vl u(y)ll s oy
k:v #0
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Suppose estimate (4.6) holds for any |P| < |v| with |v| > 1; then we have
(4.15)
10y u () ()

< Z vinil|0y ™ w(y)| a1 o)
j:l/j;éo

C
< ST v [ Bl = D=+ =l =00 ST (07 il 2 (o))

;70 Gmin kv #£0
In? Cp | v—eg
=B > v |(vl-Dn+ - S v | (vl =0 (" fellz2 o))
G 70 T\ v, #£0 kv #0
v P v—e — v
=B +——[' > 0" fll2p)) = Cap@)lvlin”,
min -
where
|fxll 20
(4.16) Cos) =BG +Cr 3 g
ke 0, |ar | Loo () 0 L=(D)
so that estimate (4.6) also holds for v with |v| > 1. a0

An analytic extension of the solution u in a certain region ¥ such that I' C ¥ is
a consequence of the regularity result in Lemma 4.2 provided conditions are suitable,
as stated in the following lemma.

LEMMA 4.3. Holding all the assumptions in Lemma 4.2, and defining

K
(4.17) Y= {z ceCl:Iyel st |(n-|z—y|)| = an|zk — k| < 1} )

k=1
we have the existence of an analytic extension of the stochastic solution w in the
complex region ¥ and we define X(T;7) = {z € X : dist(2,T) < 7} C X for the
largest possible vector T = (11,...,TK)-

Proof. By the Taylor expansion of u(z) about y € I" in the complex domain we

obtain

al/
(4.18) u(z) = Z L

u(y) v
v
with v! = 1! - vg!. Thanks to the regularity result in Lemma 4.2, we obtain

oY
>, ‘”V!(y) (z—y)"

v

(4.19) ‘

|Z_y|y v
< Z TH‘%“(Z/)HH@(D)
H{(D) v '
]! v
<Cayl) Y. —r-lz—y)

n>0:lv|=n

K n
= Cas(y) Z (Z Mk|2k — yk|>

n>0 \k=1

o Oa,f(y)
= = ,
1- Ek:l 77k|zk - yk|
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where the second inequality is due to Lemma 4.2 and the first equality comes from
the generalized Newton binomial formula. In the complex region defined in (4.17),
we obtain that the function u(z) admits a Taylor expansion around y € I' so that the
solution u can be analytically extended to the complex region (4.17). d

4.2. A priori convergence analysis. To prove the exponential convergence
of the weighted reduced basis method for problem (2.10) for the case of one random
variable, i.e., ' C R, we bound the error by another type of constructive spectral
approximation or, more specifically, extension of the Chebyshev polynomial approxi-
mation for analytic functions (see [17, Chapter 7]). The idea has also been used in the
proof of the exponential convergence property of the stochastic collocation method [1].
Based on this idea we also obtain the a priori error estimate of the reduced basis ap-
proximation for multidimensional problems, e.g., I' C RX K > 1.

We define the weighted space CO (T'; X) equipped with the norm

(4.20) vllco (rix) = 1gllé‘ig(w(yﬂ|v(y)||x)

for any positive continuous bounded weight function w : I' — R,. Because of As-
sumption 2.3, the linear coefficient a and forcing term f satisfy a € C°(I'; L>°(D))
and f € C%(T; L%(D)).

THEOREM 4.4. Under Assumptions 2.1-2.3 with bounded I' C R, the error be-
tween the reduced basis solution Pnu of problem (3.2) (recall that Pn : u — un
represents the Galerkin projection operator) and the true solution u of problem (2.10)
enjoys the exponential convergence

(4:21) = Pdleg ey < C7e ™ max [fu(z)]lx.

where the constant C* depends on the weight w, and the rate r is defined as

27 472
(4.22) l<r=log| = +4/1+=5 -
T T2

Remark 4.5. The convergence rate stated above does not depend on the specific
problem (2.1). In fact, as long as u = u(y) is an analytic function, the exponential
convergence rate (4.21) holds for reduced basis approximation as demonstrated in the
proof of this theorem later, which provides the same a priori convergence property
for problems other than the elliptic problem (2.1) under linear or affine assumptions
(2.7) as studied in [28, 26].

Proof. First, we note that the results obtained in the above lemmas in H{ (D)
norm are still valid in the equivalent X-norm. Given a bounded and continuous one-
dimensional domain I' C R, we introduce the change of variables y(t) = gy + |—g‘t with
t € [-1,1] and g the center of domain I', so that y : [-1,1] — T is bijective. Let
the solution of problem (2.10) be set as 4(t) = u(y(t)) for ¢ € [—1,1]; then we have
that 4 : [-1,1] — X can be analytically extended to X([—1,1],27/|T'|) by Lemma
4.3. Consequently, their exists a spectral expansion of % on the standard Chebyshev
polynomials ¢ : [-1,1] = R and |¢,| < 1,7 =0,1,..., in the form

(4.23) alt) = % + 3 ().
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The nth (n =0,1,...) Chebyshev coefficient satisfies [17]

1 ™
(4.24) Uy = ;/ G(cos(t)) cos(nt)dt, ||tn|lx <20 " max [la(2)]]x,
where the elliptic disc D, is bounded by the ellipse E, with foci £1 and the sum of the

half-axes ¢ = 27/|T'| + /1 + (472/|T'|?). Define the Nth order Chebyshev polynomial
approximation of 4 as the truncation of (4.23) up to N terms, written as

N
. ug X '
(4.25) IIya = 5 + 321 UnCn(t);
then the truncation error is bounded by using |c,| < 1,n = N +1,..., and (4.24) as

follows:

A A A 2
(4.26)  |o — Inallooqrix) < D laallx < —
n>N+1 e

167 log(0) N ?é%f [[a(2)]]x-

Therefore, by the identity 4(t) = u(y(t)),t € [-1,1], we have

(4.27)

2

—re Y max[a(@)llx < S=ge ™ max lu(z)llx,

|lu — Inullcor;x) <

where we define 7 := log(p), as given in (4.22). It’s left to prove that the reduced basis
approximation error can be bounded by the above truncation error. In fact, for any
function v € Py (I') ® X, a tensor product of polynomial space of polynomials with
total degree at most NV and X, we have that Zyv = v [9, 1], where Zy is the Lagrange
interpolation operator based on the interpolation points y™,n =1,..., N + 1; see [1].
We have the following estimate with the help of the Lagrange interpolation operator:

(428) ||U—PN+1U||X S C() inf ||u—v||x
vEXN 41

< Collu — Inul|x
<Co _inf (lJu—v|[x+Ilv—Znullx)

vePN (D)X
ovepér(lr)@)X(HU v|[x + [|[Znvv — Inu)llx)
S (OF O i vl

where the first inequality is due to Cea’s lemma [36] with constant Cy < oo and the
second due to the fact inf,cx,,, [|[u—v||x < ||lu —Zyul|x; as for the last inequality,
we have used the property that the Lagrange interpolation operator Zy is linear and
|| Znol|x < Cillvllx Yo € CO(T, X) for a constant C; < oo (see [1]). Moreover,
because the Chebyshev polynomials ¢, € Pn([—1,1]),k =0,1,..., N, we have

(4.29)

inf fju—vl[x = o —ollx < la —Tya|lx = [lu—Tyul|x.

inf
vePN(D)®X €PN ([-1,1])®X

A combination of (4.27), (4.28), and (4.29) leads to the following bound for the reduced
basis approximation error with C'= 2(Cy + C1)e" /(o — 1):

(4.30) [|lu — Pyul|x < Ce ™ max [lu(2)]|]x-
zeX(yT)
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Since the reduced basis approximation Pyu satisfies the linear system (3.13), which
can be written in the compact form as

(4.31) A(Pnu,v;y) = F(v;y) Yo e Xp,

we obtain the same regularity for Pyu as for the solution u to system (2.10) with
respect to the parameter y. In particular, Pyu € C2(T; X), so that u — Pyu €
CY(T; X). Multiplying both sides of (4.30) by the weight function w and taking
the maximum value over the parameter domain I', we have obtain the exponential
convergence result (4.21) with the constant C* = C' maxyecr w(y). O

Remark 4.6. The exponential convergence result (4.21) holds for the case of a
single parameter in a bounded parameter domain |I'| < oo. Extension to a single
parameter in the unbounded domain, e.g., a normal distributed random variable,
requires that the data a and f feature a fast decrease at the parameter far away from
the origin, and the constructive approximation by spectral expansion on Chebyshev
polynomials (4.23) is replaced by that on Hermite polynomials [1]. The proof follows
the same procedure as for Theorem 4.4 and we skip it for simplicity.

As for the reduced basis approximation in the multidimensional case, we have the
following a priori error estimate.

THEOREM 4.7. Under Assumptions 2.1-2.3 withT' C RX, K > 1, the approzima-
tion error of the reduced basis solution can be bounded by

K
(4.32) llu — Pnulloo r,x) < max luz)l[x 3 G,
7 k=1

where the constants C}’,1 < k < K, depend on the weight w and dimension k,
N = Hiil Ny, and the rate ry is defined as

2

27T 4T
4.33 l<rp=log| = +4/1+ =L | 1<k <K.

Proof. Let us choose the training set as all the nodes of a tensor product grid,
ie., Egain = {1, Y), 1 < nip < Ni,1 < k < K}, for instance, the Gauss
quadrature nodes corresponding to the probability density function of the random
vector y. We define the reduced basis space X ]’i,, 1 < k < K, as a linear combination of
the snapshots u(y) at y = (yi,y5), .., (Y, y}), where y? € Ty, 1 <n < N, and yj is
any point in the rest of the K —1 dimensional domain denoted as I';. Correspondingly,
we define the Galerkin projection operator Py : X — X%,1 <k < K, such that P¥u
is the solution of the reduced problem (4.31) in X% whenever u is the solution of
the original problem (2.10) in X at any y = (yx,y;) € I'n X I';. Let Xn be the
reduced basis space spanned by the snapshots at all the N = Hle N} samples and
Py : X — Xy be the associated Galerkin projection operator; then we have for the
solution u € X of problem (2.10) at any y = (y1,y7) € I'1 x I'],

(4.34) Pyu= P}o--- 0 PEu,

the symbol o being the composition of the projection operators. By triangular in-
equality, we have

(4.35) lu — Pyvullx < |lu— Pyullx +||Py(u— Py o---o P{u)|x,
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where we can bound the first term as in (4.30) by

(4.36)

llu — Pyullx < Cre™™ max lu(2)|lx < Cre™™ ™ max_|lu(2)l|x,
(z1,27)€X(T1 x5 57) zeX(IT)

where the constant Cy has similar definition as C' in (4.30) and ry, is defined in (4.33).
As for the second term, thanks to the fact that ||PLv||x < ||v]|x we have

(4.37) ||[Pr(u— P% o0 PEu)||x < |lu— P&o---oPkul|x.

By iteration, we obtain the error bound
(4.38) [lu — Pnul|x < max ||u ||XZCke "Nk

which leads to the a priori error estimate (4.32) by multiplying by the weight func-
tion w on both sides and noting that Pyu € C2(I'; X), where the constants Ci* :=
Cr maxyepw(y),l <k<K. O

Remark 4.8. In practice, the training set =44, can be chosen in a more general
way, e.g., by sampling according to the probability density function, and the cardinal-
ity of the reduced basis space X is much lower than Hszl Ny, given in the theorem.
In fact the error estimate obtained in this theorem is rather crude. An improved con-

—T'NPITEY was achieved in [5] provided that the Kolmogorov N-width
—rN#8

vergence rate e
by the optimal N dimensional approximation decays as e in a more general set-
ting, e.g., if I' is not bounded. However, the Kolmogorov N-width is not available in
general.

A direct consequence of Theorems 4.4 and 4.7 for the convergence of quantity of
interest and its statistical moments is as follows.

COROLLARY 4.9. Suppose that the assumptions in Theorem 4.4 are satisfied. We
have

(4.39) I[s(u) — s(Pnu)llco ) < Isl|x||v — Pyullco 0, x)
and for the kth order statistical moment, where k = 1,2, ..., we have by (3.3)

(4.40)  [E[s"(u)] - E[s" (Pnu)]]
M

~ D wy™(s(usy™) — s(Pasy™ (Zs’“ Husy )l(PNU;y’”)>‘

m=1
< M||s(u) — s(Pyu)||co ) CE,
where C* is a constant depending on the output s and the statistical moment k with
Ccl=1.

5. Numerical examples. In this section, we present several numerical examples
to illustrate the efficiency of the weighted reduced basis method compared to the
reduced basis method and the stochastic collocation method. The output of interest
is defined as the integral of the solution over the physical domain D

(5.1) s(y):/Du(x,y)d;v.
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We define the following two errors as criteria of different numerical methods:
(5.2) l[s = snllco@ and [E[s] —E[sn]],

where sy is the approximated value of s obtained using N bases for (weighted) re-
duced basis method or N collocation points for the stochastic collocation method.
In particular, we use the weight function in one dimension as the probability density
function of the random variable obeying Beta(c, ) distribution with shape parameter
« and B providing distinctive property of the weight, defined as

(5.3) w(y; o, B) = m(l +y) -yt yel-1,1],

where Beta(q, ) is a constant (beta function) chosen so that w(-; a, 8) is a probability
density function. In our numerical experiments, we use the Gauss—Jacobi quadrature
formula to compute expectation (5.2) with the solution at the abscissas evaluated
by the reduced basis methods. As for the stochastic collocation method, we use the
Gauss—Jacobi abscissas as the collocation points, which is more accurate than other
choices, especially when the weight function is more concentrated. We specify the
detailed setting of the weighted reduced basis method in the following subsections.
The physical domain is a square D = (—1,1)? and homogeneous Dirichlet boundary
conditions are prescribed on the entire boundary 9D.

5.1. One-dimensional problem. We set the stochastic coefficient a(z,w), z =
(z1,22) € D, in problem (2.1) as

(5.4) a(z,w) = %0(1.1 + sin(27z1)Y (w))

with random variable Y ~ Beta(a, 8) with (o, 8) = (1,1), (10,10), and (100, 100),
respectively. We remark that when (o, 8) = (1,1) the weighted reduced basis method
becomes a reduced basis method with uniformly distributed random variable, which
has been examined in [10]. The left of Figure 5.1 depicts the shape of weight at dif-
ferent locations. The forcing term is the deterministic value f = 1 for simplicity. We
use a tolerance at the same value € = 1 x 107!° for three different weight functions to

T T T T
—— Beta(1,1) —&— Beta(1,1) true error

(
Beta(10,10) —— Beta(10,10) true error
ol o —— Beta(100,100) o} —&— Beta(100,100) true error
A\ — © — Beta(1,1) error bound
— * — Beta(10,10) error bound
4t ~ ¢ — Beta(100,100) error bound H
sk
= o .
I % * 2 N
3 * é N
2 * * b 8 -
af g SEDAN
2 N
oS _1of AN o _
\ o
2r© o ] AN A
o © o —12 a 4
O ~ ~ :
C ~ S .
O N N
N P —
-1 08 06 -04 02 [ 02 0.4 06 0.8 1 o 2 4 6 8 10 12 14 16
Y N

Fic. 5.1. Left: probability density function of Beta(c, 8) distribution with different o, 8 and
samples selected by weighted reduced basis approzimation in order; the bigger the size the earlier it
has been selected. Right: convergence of the error logyg (|Is — sn|lco (F)) by weighted RBM.
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stop the greedy algorithm. 7.4, = 1000 samples are uniformly selected to construct
the reduced basis space. Another 1000 samples are used to test the accuracy of differ-
ent methods. The exponential convergence of the error |[s — sn|/co (r) and the error
bound (3.11) in logarithmic scale for three different weight functions are displayed on
the right side of Figure 5.1 for the weighted reduced basis method. The maximum
number of bases Ny,q, = 16,11,6 built at the training samples with selection order
are visualized by the marker size on the left side of Figure 5.1; they are quite different
for different weight functions. From the location and selecting order of the samples
on the left of Figure 5.1, we can tell that the weight function plays an important role
in choosing the most representative bases.

In the comparison of the convergence property of the reduced basis method, the
weighted reduced basis method as well as the stochastic collocation method, we select
the weight function of Beta(10,10) and compute the two errors defined in (5.2) with
the results shown in Figure 5.2. It’s evident that the weighted reduced basis method
outperforms the reduced basis method in both norms, and these two methods are
more accurate than the stochastic collocation method in the || - [|co (ry norm. As for
the expectation, the weighted reduced basis method is the best and the reduced basis
method does not beat the stochastic collocation method because it doesn’t take the
weight into account.

However, as demonstrated in [10], the computation of both reduced basis meth-
ods for the one-dimensional stochastic problem is more expensive than that of the
stochastic collocation method because of the offline construction with a large number
of training samples, especially for the problem requiring low computational effort in
one deterministic solving. Similar numerical examples for some other weight functions
are presented in the appendix for expository convenience.

5.2. Multiple-dimensional problem. For the test of a multiple-dimensional
problem, we specify the coefficient a(z,w),z = (x1,22) € D, as

I\ /2
(5.5) a(z,w) = % (4 + (g) yl(w)>

2
+ % (Z VA (sin(nmay )yon (w) + cos(nwx1)y2n+1(o.2))> ;

RBM
—+— wRBM
- - - SCM

RBM
—+— wRBM
- - - SC™m

log10(lIs-syllg? 1))
log10(|E[s]-E[s,]))

Fic. 5.2. Left: convergence of the error logyg (||s — SNHCQJ(F)) by the reduced basis method
(RBM), the weighted reduced basis method (wRBM), and the stochastic collocation method (SCM).
Right: convergence of the error log o (|E[s] — E[sn]|) by RBM, wRBM, and SCM, both with K =
1, Beta(10, 10).
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Fic. 5.3. Left: convergence of the error logq (||s—sn||co (F))‘ Right: convergence of the error
logqo (|E[s] — E[sn]|), computed by RBM, wRBM, and SCM, both with K =5, Beta(100, 100).

where yi,1 < k < 5, obeying Beta(100,100), L = 1/4, and A; = 0.3798, A2 = 0.2391.
A sufficient number of 144, = 10000 samples (in fact n4rqim = 1000 provides almost
the same result in this example) obeying independent and identically distributed
yr ~ Beta(100,100),1 < k < 5, are taken within the parameter domain I' = [—1,1]5
to construct the reduced basis space and another 1000 samples following the same
distribution are taken independently to test different methods. We compare the per-
formance of the weighted reduced basis method, the reduced basis method, and a
sparse grid collocation method, with results displayed in Figure 5.3. The two reduced
basis methods are obviously more efficient in both norms (5.2) with the weighted type
providing faster convergence: the number of bases constructed for the weighted re-
duced basis method (N4, = 15) is half that necessary for the reduced basis method
(Nmaz = 30).

As for the computational effort, the stochastic collocation method with sparse grid
depends critically on the dimension [32], while the reduced basis methods are near the
best approximation in the sense that they considerably alleviate the “curse of dimen-
sionality” for the analytic problem and save the computational effort significantly for
high-dimensional problems, especially those with a cost for one deterministic solving.
The weighted reduced basis method uses fewer bases than the conventional reduced
basis method in both offline construction and online evaluation and thus costs less
computational effort, particularly for high concentrated weight function as shown in
the above examples. For a detailed comparison of computational cost for the reduced
basis method and the stochastic collocation method in various conditions, notably for
large-scale and high-dimensional problems, see [10].

6. Concluding remarks. We proposed a weighted reduced basis method to deal
with parametric elliptic problems with distinctive weight or importance at different
values of the parameters. This method is particularly useful in solving stochastic
problems with random variables obeying various probability distributions. Analytic
regularity of the stochastic solution with respect to random variables was obtained
under certain assumptions for the random input data, based on which an exponential
convergence property of this method was studied by constructive approximation of
general functions with analytic dependence on the parameters. The computational
efficiency of the proposed method in comparison with the reduced basis method as
well as the (sparse grid) stochastic collocation method was demonstrated numerically
for both univariate and multivariate stochastic elliptic problems.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/31/17 to 147.122.97.182. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

3182 PENG CHEN, ALFIO QUARTERONI, AND GIANLUIGI ROZZA

There are a few potential limitations we would like to warn the reader about: first,
the performance of the weighted reduced basis method for low regularity problems is to
be investigated, possibly improved by combination with the hp-adaptive reduced basis
method [18]. Second, the efficient empirical interpolation method [4, 12] needs to be
applied in order to use the weighted reduced basis method to solve nonlinear stochas-
tic problems or linear stochastic problems with nonaffine random inputs exhibiting
various probability structure. Finally, we would like to mention that application of
the weighted reduced basis method to more general problems, e.g., parabolic prob-
lems [22], fluid dynamics [35], multiphysical problems [27], stochastic optimization
problems [11], and inverse problems [29], as well as more general stochastic problems
with various probability structures is ongoing research.

7. Appendix. To illustrate more about the efficiency of the weighted reduced
basis method, we present the following numerical examples with some widely used
weight functions other than those considered in section 5:

1. weight function as truncated probability density function of normal distributed
random variable:

a(z,w) = 11—0(3.1 + sin(27z1) Y (W)I(JY] < 3)),

where

1 Y
Y ~ Normal(u, o), w(y) = o exp (—7@205) ) ;

2. weight function as truncated probability density function of gamma dis-
tributed random variable:

1
a(z,w) = E(IO.I +sin(27z1)Y (w)I(Y < 10)),
where

Y ~ Gamma(k, ), w(y) = #yk*1 exp <——) ;
v

3. weight function as truncated probability density function of Poisson dis-
tributed random variable:

a(z,w) = %(100.1 + sin(27z1)Y (w)I(Y < 100)),

where

AeA
Y ~ Poisson(A), w(y) = e' .
y!

The selected samples for different weight functions and error of logyo(||s — sn||co ()
are displayed in Figures 7.1, 7.2, and 7.3, respectively, from which we can observe that
the samples are effectively chosen according to the weight functions. Consequently,
both the offline construction and the online evaluation become more efficient by the
weighted reduced basis method than the conventional one.
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zor

Fic. 7.1. Left: probability density function of Y ~ Normal(u, o) with different p, o and samples
selected by weighted reduced basis approximation in order; the bigger the size the earlier it has been
selected. Right: convergence of the errorlogg (\ ‘S_SNHC?U(F)) by the weighted reduced basis method.
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FiG. 7.2. Left: probability density function of Y ~ Gamma(k,~) with different v and samples
selected by weighted reduced basis approzimation in order; the bigger the size the earlier it has been
selected. Right: convergence of the errorlogq (||s—sn/||co (F)) by the weighted reduced basis method.
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Fic. 7.3. Left: probability density function of Y ~ Poisson(\) with different X and samples
selected by weighted reduced basis approximation in order; the bigger the size the earlier it has been
selected. Right: convergence of the errorlogg (\ [s—sn||co (F)) by the weighted reduced basis method.
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