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Abstract

Testing the gravitational phenomenology of compact objects: superradiance,
scalarization and screening mechanisms

by Alexandru DIMA

In the last decades, an interesting variety of extended models of gravity has been
proposed with the goal of capturing cosmological effects such as the accelerated
phases of expansion and/or the so-called "dark sector" of our universe. In paral-
lel, the quest for a full-fledged theory of quantum gravity proceeds by investigating
the low-energy limit of candidate models. Many of these modified gravity models
might leave imprints in the physics of compact objects and with gravitational-wave
astronomy we have the unprecedented opportunity to test them against data with
improving accuracy. A popular class of models (scalar-tensor theories) extends the
field content of general relativity with an additional scalar field. These theories pro-
vide multiple examples where black hole and neutron star physics deviates from
general relativity and can be constrained with observations. In this sense, superra-
diance and spontaneous growth of scalar fields around black holes and neutron stars
are potentially detectable signatures of new physics. Screening mechanisms can in
principle hide scalar effects, but their effectiveness in the strong-field regime is still
largely unmodeled. In this thesis I briefly review the traditional tests of gravity, from
the weak-field observations to gravitational-wave tests, before moving to discuss in
details a collection of personal contributions in modeling the aforementioned scalar
effects.
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Chapter 1

General relativity: theory and tests

1.1 The Theory of Gravitation

1.1.1 The Equivalence Principle

Physical intuition moves under the guiding light of fundamental principles, that his-
torically marked the path towards the greatest results and most successful theories.
In the development of the theory of gravitation a fundamental role was played by
the principle of equivalence in its various incarnations, from the original Newtonian
formulation to the Finsteinian interpretation. In particular, the latter lies at the foun-
dation of the Einsteinian logic that built the theory of general relativity. Nowadays,
the equivalence principle not only has an undoubted historical and pedagogical im-
portance, but represents a powerful tool in the classification of the large number of
alternative theories of gravity. Here I will borrow this illuminating perspective from
influential works from the past [1-3]: a hierarchy between the different equivalence
principles can be established, based on the sophistication of their requirements. In
this regard, this series of nested definitions determine an incremental specialization
in the space of gravitational theories that abide them, until general relativity is sin-
gled out as the theory satisfying the most restrictive formulation.

The Newtonian Equivalence Principle identifies, based on empirical evidence
first elaborated by Newton [4], the concept of inertial mass, appearing in the fun-
damental laws of dynamics, with the gravitational mass, the physical quantity that
sources the gravitational attraction between bodies. In practice, the Newtonian
Equivalence Principle is satisfied by all theories that recover Newtonian gravity
when restricting to "weak" gravitational fields and slow motion of sources (i.e., the
Newtonian limit). Although typically identified with the previous, the Weak Equiv-
alence Principle is a separate formulation that encodes the empirical notion of uni-
versality of free-fall, as old as the work of Galileo Galilei at least: test bodies (i.e.
backreaction on the surroundings and self-gravity effects are negligible) all respond
with a universal behavior under the effect of solely gravitational forces, indepen-
dently of their properties. There is a natural temptation to interpret the universality
of free-fall as due to a geometric effect of spacetime, but to do so on the basis of the
Weak Equivalence Principle alone only an affine connection is strictly necessary for
determining the rules for parallel-transport on the spacetime manifold [3]. The need
of a metric tensor that mediates gravity is required only when invoking the Einstein
Equivalence Principle, which includes the weak formulation with the addition of lo-
cal Lorentz and position invariance. The latter identifies "metric theories of gravity",
in which gravity is geometric and encoded in the spacetime curvature of the metric-
compatible Levi-Civita connection. Finally, the Strong Equivalence Principle is the
most stringent formulation of the family of equivalence principles. It requires the
validity of local Lorentz and position invariance of all experiments, even the ones
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gravitational in nature, together with the extension of Weak Equivalence Principle
to bodies with non-negligible self-gravity. As it turns out, general relativity is the
only known theory in four dimensions that satisfies the Strong Equivalence Prin-
ciple, although there is a notable exception represented by Nordstrom gravity [5]
that abides the principle but is ruled out by observations (i.e. does not predict the
bending of light) [6].

1.1.2 General relativity

The Strong Equivalence Principle actually selects the class of "Lanczos-Lovelock"
theories [7-9], which is the unique class of Lorentz-invariant theories in D dimen-
sions that satisfy the requirements of the equivalence principle and feature second
order field equations and thus propagate only two physical degrees of freedom asso-
ciated to a massless graviton. A consequence of Lovelock’s theorem [10] the unique
realization of Lanczos-Lovelock gravity in four dimensions is general relativity, de-
scribed by the Einstein-Hilbert action [11]

4 Mgl
SEH:/d x\/ng [R_ZA]+Sm[gVV/III]/ (11)

where ¢ is the determinant of the metric tensor g,,; R is the Ricci scalar, constructed
from an appropriate combination of second derivatives of the metric and M, =

1/v/87G is the reduced Mass Planck in natural units, # = ¢ = 1. In action (1.1)
a term proportional to the cosmological constant, A, has been included to describe
the most general four-dimensional theory compatible with Lovelock’s theorem. The
matter sector is introduced via the action S| Suvs ¥], which is here kept as a generic
action of the matter fields, all collected together under the symbol ¥, coupled to
the spacetime metric g;,,. In general relativity, the matter fields are universally and
minimally coupled to the metric through the covariant volume element d*x,/—g, but
alternative theories might give different prescriptions as we will see in the following
sections. From (1.1) one can derive the Einstein field equations,

G],“/ + Ag}/ﬂ/ - 87TGT],“/ ’ (1.2)

where G, = Ry, —1/2g,R is the Einstein tensor, Ty, = —2//—g (65./6g"") is
the matter stress-energy tensor. As a consequence of Bianchi identities, the Einstein
tensor is divergence-free, fact that together with the Einstein equations enforces the
weak equivalence principle (i.e. matter test field move along spacetime geodesics)
and the covariant conservation of the matter stress-energy tensor, V,T#" = 0. Alter-
native theories of gravitation can be found when generalizing on the assumptions
underlying the Lovelock theorem, for instance by admitting additional gravitational
degrees of freedom other than the standard massless graviton.

1.2 Tests of gravity

In this section I will give a brief review of the main probes of the gravitational
interaction available to date. I will start from the classical weak-field tests (bend-
ing of light, orbital precession, general-relativistic time-delay, Nordtvedt effect) and
the post-Newtonian bounds that can be hence extracted. From here, I will then
move to discuss more thoroughly the observations that allow us to pierce the veil
of the previously forbidden strong-gravity realm, focusing first on the novel tests
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with gravitational-wave observations and then reviewing the other main sources of
strong-field constraints.

1.2.1 Weak-field tests

The standard framework to compare the predictions of different theories of grav-
ity in the weak-field regime and test them against observations is the parametrized
post-Newtonian (PPN) formalism [12-17]. This is a powerful tool to parametrize
the deviations from general relativity in the limit of slowly-moving, v/c < 1, and
weakly-gravitating bodies, GM/Rc? < 1, where the latter can be regarded as the
ratio between the gravitational (Schwarzschild) radius of the system with typical
mass scale, M, and size R. To be more precise, the PPN framework is based on the
post-Newtonian (PN) expansion of the metric around flat Minkowski space with
expansion parameter € ~ GM/rc? ~ v?/c%. In general, the post-Newtonian correc-
tions to the metric are controlled by ten post-Newtonian parameters. However, for
conservative metric theories of gravity such as the scalar-tensor theories considered
in this thesis, the relevant parameters are only two: 7, which quantifies the amount
of spatial curvature induced by a unit mass; and B, controlling the nonlinearity of
the gravitational potential at first post-Newtonian order. In this case, the PPN met-
ric, up to second order corrections, outside a (spherically symmetric) body of mass
M at distance r reads

GM GM GM
goo = —1 +27(1 - ﬁT), gi=0, gj=(1 +277)5ij- (1.3)

The full expression including higher post-Newtonian orders, together with a more
detailed treatment of the topic can be found in [1, 2, 18]. As already mentioned,
the PPN formalism is perfect to parametrize general relativistic corrections in the
gravitational field of non-relativistic stars like our Sun. The PPN framework can be
extended to capture also to alternative theories of gravity, such as scalar-tensor theo-
ries involving higher-order derivative operators in the action (see [19]). In particular,
several observations in the Solar System already delivered precise measurements of
the lowest order PPN parameters and allow to put tight contraints on physics be-
yond general relativity. On this point, here follows a brief summary of the main
results.

Deflection of light

The bending of light as a consequence of the spacetime curvature around massive
objects is perhaps the most famous predictions of general relativity and certainly the
first to receive observational confirmation thanks to the fascinating results obtained
by Sir Arthur Eddington in 1919 [20]. The angular deflection of a light ray traveling
from a distant source and reaching the Earth after passing the Sun at a distance b (at
the point of its trajectory closest to the Sun) can be computed in the PPN framework
to be:

30 = (T)T(1+cos®), (1.4)

where v is the relevant PPN parameter, M is the mass of the Sun and @ is the
angular separation between the undeflected trajectory of light and the Sun-Earth
distance. The bending of light is a prediction shared by all theories satisfying the
Weak Equivalence Principle: if the trajectory of test bodies are independent on their
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mass, the "Newtonian" deflection of light can be computed by considering the pho-
tons as test bodies in the limit v — c¢. GR, however, predicts an additional /2
contribution, with v = 1, due to the curvature of space around massive objects.
Different theories predict different values of v, e.g. Nordstrom scalar gravity pre-
dicts v = —1 and is thus ruled out. The most relevant and tightly constraining
observations available nowadays are obtained through very-long-baseline (radio)
interferometry (VLBI) techniques, which offer data on the light emitted by distant
quasars and bent by our Sun. Most recent analysis of such data [21] offer a con-
strainty — 1 = (—1.6 4+ 1.5) x 10~* [21]. On kiloparsec scales, constraints on y come
from observations of the lensing effect around elliptic galaxies [22]: while not be-
ing compatitive with solar-system bounds, the constraints (at 10% level) produced
with these techniques are still interesting since they probe light-deflection on larger
galactic scales. In the near future, the GAIA mission [23] promises to deliver accurate
astrometric data of Solar-System objects, thanks to which a one-order-of-magnitude
improvement in the current bounds on <y will hopefully be achieved [24].

Shapiro time-delay

In passing a massive body, light (or, equivalently, a photon) is not only deflected
but also slowed down in terms of coordinate speed (although locally free-falling
observers would always measure ¢ = 1). In practice, the echoes of a signal sent from
Earth and bouncing off a planet in the Solar System would be detected back after a
delay in time given by (in the special case of a Sun-grazing light ray) [25]

4d o dy
o0t =2(14v)MgIn ( R > , (1.5)
©

where M and R, are the mass and radius of the Sun and d, (d») is the distance of
the Sun to the planet (Earth). Note that formula (1.5) contains a Newtonian contri-
bution (i.e., it can be derived from Newtonian gravity with the requirement of EEP),
and the one induced by curvature of space, proportional to -y [26]. The astronomer
Irwin Shapiro was the first to discover this effect and observe it thanks to radio
pulses reflected back at Earth from Mercury and Venus [27, 28]. More recent exper-
iments make use of artificial satellites that actively retransmit the radar signals (as
opposed to planets, used as passive reflectors) and, in fact, from the measurement of
the Shapiro time-delay of radio signals retransmitted by the Cassini spacecraft pro-
vide ¥ — 1 = (2.1 £2.3) x 107>, which are the most stringent bounds up to date on
the 7y post-Newtonian parameter [29].

Orbital precession

Another classical test of gravity consists in the prediction of the perihelion preces-
sion of Mercury. Historically the orbital precession of Mercury has been an open
problem for a long time, until the famous calculation by Einstein [30] that con-
tributed largely to his fortune and provided the very first successful prediction of
GR. In the PPN framework, the computation of the orbital precession of a body of
mass my gravitating around a heavier body of mass m; delivers an advance (in arc-
seconds) per orbit of

e (1 JR2
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where a2 and e are the semi-major axis and eccentricity measure of the orbit, y =
M; + M, is the sum of the masses and ] is the (dimensionless) quadrupole moment
of the heavier body. The measurement of Mercury’s perihelion advance obtained
by the Messenger spacecraft [31], combined with the Cassini bound on 7 yields a
constraint on B = 1+ (—0.2+25) x 107°. Improvements in this constraint are
typically bounded by accuracy to which ¢ and the Sun quadrupole moment are
measured. Nonetheless, the BepiColombo spacecraft launched in 2018 could offer
improvements in the future in this constraint [32].

Nordtvedt effect

Many alternative metric theories of gravitation can predict violations of the Weak
Equivalence Principle for gravitating objects (sometimes referred to as the Gravi-
tational Weak Equivalence Principle or Gravitational Weak Equivalence Principle).
The violation of the equivalence of inertial and gravitational mass is called "Nordvedt
effect" [33], and is realized, for instance, in scalar-tensor theories where the gravita-
tional constant is varying depending of the position in space [34]: in the Newtonian
limit, the acceleration induced in a massive object by an external gravitational po-
tential ® can be parametrized as

E
a=(1-yng Ve, (1.7)

where M and E; are the mass and gravitational self-energy of the object. The PPN
parameters enter in 7y = 48 — vy — 3 (yn = 0 in GR) when preferred-frame ef-
fects typical of non-conservative theories have been neglected. A classic test of
the Nordvedt effect consists in continuous monitoring of the Earth-Moon distance
by precise measurements of the round-trip travel times of laser pulses sent from
Earth and reflected from a mirror placed on the surface of the Moon during the
Apollo 11 mission. Recent analysis [35] of the data obtained with Lunar Laser Rang-
ing [36, 37] offer a constraint on the Nordvedt parameter of |7y| < 2.9 x 1074, The
Nordvedt effect can also be tested in the strong-field regime of triple systems com-
posed of a pulsar and two white dwars [38, 39] from which one can place a bound on
A =yn(Eg/M) = (0.5 £1.8) x 10~ at 95% of confidence level. Given that roughly
E,/M ~ 0.1 for a relativistic star, one can deduce that |7n| < 107°.

1.2.2 Strong-field tests
Binary pulsars

The first (isolated) radio pulsar was discovered in 1968 [40]: radio pulsars are rapidly
rotating and highly magnetized neutron stars that emit radio pulses at each rotation
due to a magnetic dipole misaligned with the rotation axis, following the standard
"lighthouse model" [41-43]. A large part of the population of radio pulsars consists
in "young" neutrons stars rotating with periods 30-500 ms, that are the remnants
of supernovae explosions (e.g. like [44]). In 1982 with the observation [45] of the
first fast rotating pulsars with periods < 30 ms, hence the name millisecond pulsars,
evidence was provided for the existence of a population of "older" rotating neutron
stars (also referred to as recycled pulsars) that have been spun up by accretion from a
companion star [46—48]. In addition to their shorter periods, millisecond pulsars also
appear to be more stable in their rotation as their secular change in period are typ-
ically smaller than standard pulsars. In practice, the time of arrival of radio pulses
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FIGURE 1.1: Comparison of the expected shift of periastron time according
to general relativity (parabola) with measurements from PSR B1913+16.
Credit: [66]

coming from these very precise "pulsar clocks" is measured by radio telescopes on
Earth over time scales of several years.

A true gamechanger for gravitational physics was the discovery of the first bi-
nary pulsar system in 1974 by Russell Hulse and Joseph Taylor [49]. Not only the
measurement of the decrease of orbital period provided the first indirect confir-
mation of the existence of gravitational waves, but it also opened an entirely new
avenue for testing gravity with strongly-gravitating bodies [50]. With pulsar tim-
ing techniques, any deviation from general relativity predictions can be constrained
with great precision by fitting with accurate models the relativistic effects due to
the orbital motion of the binary, time dilation and time delays in the signal [47,
51, 52]. The two-body problem in general relativity generally does not admit an
analytical solution: the orbital dynamics of binary systems must be solved either
numerically or within the post-Newtonian framework under the slow-motion and
weak-field assumptions. The equations describing the relative motion in the gen-
eral relativistic post-Newtonian approximation have been worked out to high post-
Newtonian orders [53-56] and have been extended also to describe orbital motion
and gravitational-wave emission of binaries in alternative theories of gravity [57-
65].

The parametrized post-Keplerian (PPK) formalism [67] is an alternative way of testing
gravity with strongly-gravitating binary objects, which extends its scope beyond the
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weak-field and slow-motion limitations of the PPN framework. Building on the ear-
liest results in this direction [68-70] the PPK approach consists in a phenomenolog-
ical modeling of the pulsar timing data with five Keplerian parameters: the orbital
period, Py, the eccentricity of the orbit, e, the projected semi-major axis of the orbit,
x, the epoch of periastron passage, T, the longitude of the periastron, w. On top of
that, up to 19 post-Keplerian parameters can be considered in order to account for
the quasi-stationary evolution of the binary system. Among these, we shall just men-
tion the secular damping of the orbital period due to gravitational-wave emission,
Dy, the periastron advance due to the relativistic precession of the orbit, w, and the
parameter controlling the time-dilation in the pulses due to a sum of gravitational
and dynamical effects, .

The post-Keplerian parameters can be related to the masses of the pulsar and
its companion and to the Keplerian parameters, but each gravitational theory can
predict largely different functional forms and direct dependence on the (additional)
fundamental parameters of the theory. Independent measures of at least two pa-
rameters can be combined in general relativity to obtain several estimates of pulsar
and companion masses, which can be then compared to do consistency checks for
general relativity predictions. Historically, the first of such tests was possible only
some years after the discovery of the first binary pulsar PSR B1913+16. After the bi-
nary system masses could have been determined thanks to measurements of 4 and
w, a measurement of the orbital decay rate proved the general relativity predictions
correct up to one part in 10'? [66, 71]. The gravitational-wave-induced orbital period
damping can be tested to even grater accuracy with double pulsar systems like [72,
73].

Largely asymmetric systems like PSR J1738+0333 [74], which is composed by a
pulsar and a white-dwarf companion, are the best source of constraints for theories
that violate the strong equivalence principle and predict dipolar gravitational-wave
emissions as the latter, in fact, is typically proportional to the square of the difference
of the additional "gravitational charges" [75] and is maximized when the companion
is a weakly gravitating body like in PSR J1738+0333 [76].

Black-hole X-ray observations

The strong-field regime of gravity can be also tested through observations of the
electromagnetic radiation emitted by infalling matter in accretion disks around as-
trophysical black holes. Such tests are sensitive to the interactions between gravity
and matter, the geodesic motion of the latter and, thus, probe the Eistein equiva-
lence principle. In this sense, they are complementary to gravitational-wave tests
(see next subsection), which are directly sensitive to the Einstein equations (1.2) and
to potential deviations from them. The sketch of the system consists in a black
hole surrounded by accreting matter distributed in two main structures: a cold,
geometrically-thin and optically-thick disk; and a hot, lower-density and quasi-spherical
"corona". The disk can locally be approximated as a system at thermal equilibrium
that emits a black-body spectrum, which is typically peaked in the X-ray band for
stellar-mass black holes (or in the optical/UV for supermassive black holes). The
disk temperature is expected to change with the distance from the black hole, so that
the sum of all radial contributions will give a multi-temperature black-body spec-
trum. A part from this thermal radiation, disk-corona model (sometimes referred to as
"lamppost" model) predicts electromagnetic emissions with two additional compo-
nents: thermal photons that, after emission from the disk, Compton-scatter off the



8 Chapter 1. General relativity: theory and tests

Continuum
Component

Component Reflection

Component
) ////\ //////
— ‘ .

Accretion Disk

Black Hole

FIGURE 1.2: Sketch of the black hole-corona-accretion disk model.
Credit: [77]

hot electron corona; and photons that, after Compton-scattering in the corona, get
are reflected off by the disk [78].

The field of X-ray reflection spectroscopy deals with analyzing observational data
of the reflected component with accurate astrophysical models, from which one can
extract information about the properties of the accreting black hole and, potentially,
test fundamental theoretical assumptions [79]. In particular, the reflected radiation
spectrum contains two relevant features: the fluorescence emission lines left by the
elements of the cold disk when illuminated by the hot corona and a characteris-
tic Compton "hump" around energies of 20 — 30 keV. Information about the curved
spacetime region where the radiation was produced is encoded in relativistic effects
that distort these features (gravitational redshift, Doppler beaming and light bend-
ing). In general relativity these effects depend mainly on the spin of the spacetime
at the innermost stable circular orbit (ISCO), assumed to coincide with the inner
boundary of the disk; thus, naturally the iron-line fitting technique has been mainly
used to estimate the spin parameter in X-ray binaries or active galactic nuclei [80-
83].

An alternative approach consists in fitting the continuous multi-temperature spec-
trum due to thermal radiation, method called continuum fitting [84, 85]. However,
contrary to the latter, the continuous spectrum depends on five parameters: the
mass, M, and spin, a, of the black hole, the accretion rate, M, the distance of the
source, D, and the viewing angle of the disk, «. In addition to that, the effects of
these parameters are largely degenerate and independent estimates of a subset of
the parameters (typically, M, D and ¢ thanks to optical observations) are required to
break the degeneracy.

Recently, however, increasing effort has been devoted to model numerically the



1.2. Tests of gravity 9

FIGURE 1.3: Array of observatories of the Event Horizon Telescope collabo-
ration. Credit:ESO/O. Furtak, [101]

X-ray emissions from accretion disks in non-Kerr spacetimes modeled with paramet-
ric black-hole metrics, which contain an infinite sum of parameters controlling pos-
sible deviations from the Kerr metric (e.g.: Johansen metric [86] or Rezzolla-Zhidenko
metric [87]). The results are then compared with X-ray reflection observations, either
to conduct null-tests in order to verify that the data are compatible with vanish-
ing non-Kerr parameters [88-90] or to conduct model-specific tests [91-95]. Tests of
gravity with the continuum-fitting technique have been considered [96-98] but are
limited because of a degeneracy between spin and nnon-general-relativistic defor-
mations effects [79].

In addition to these two methods, a promising new probe of the strong-field
regime around astrophysical black holes consists in the quasi-periodic oscillations
(QPOs) that have been observed in the time series of X-ray emissions of black holes [99].
Once a robust astrophysical model for their mechanism will be found, QPOs promise
to become a new source for stringent bounds on deviations from the Kerr paradigm [100].

In conclusion, although many systematics still have to be taken into account and
astrophysical models need improving before being able to provide strong-field con-
straints that are competitive with the ones coming from gravitational-wave obser-
vations [88], these techniques for probing gravity are only relatively recent and the
development is proceeding in parallel with the roaring growth of gravitational-wave
astronomy.

Black Hole shadows

In 2017 the Event Horizon Telescope collaboration (EHT) announced the successful
reconstruction of the first horizon-scale image of a supermassive black hole [102,
103], which added a brand new observational probe of the strong-gravity region
surrounding astrophysical black holes. Most galaxies host at their center very bright
regions that, in the case of quasars [104-106], represent some of the most luminous
sources of electromagnetic emissions in the observable universe. The mechanism
behind these intense emissions is believed to be high-rate accretion of supermassive
black holes from matter distributed in a cold, geometrically-thin and optically-thick
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disk [107]. Some galaxies instead, including the Milky Way [108-110] and M87 [111,
112], host at their center supermassive black holes accreting at low rates from hot-
ter, geometrically-thick and optically-thin disks [113-115]. In these low-luminosity
active galactic nuclei (LLAGN) the accretion flow and/or the relativistic plasma jets
launched from the near-horizon region contribute via synchrotron radiation to elec-
tromagnetic emissions in the radio and far-infrared bands [114-118]. Because of the
optical transparency of the medium in which LLAGNs are immersed, such systems
are optimal candidates for observations of horizon-scale features with VLBI tech-
niques [119] at ~ 1.3 mm wavelengths. But what features can a distant observer
resolve in such systems? Black hole spacetimes typically feature a photon capture
radius, R., that marks the critical impact parameter for which photons approach-
ing from infinity are captured and plunge into the black hole: for a Schwarzschild
spacetime [120] the corresponding photon capture radius is Rc = 31/3r,, where
re = GM/c? is the characteristic scale of the black hole. Note how the photon cap-
ture radius is more than two times larger than the Schwarzschild radius, Ry = 2rg,
which determines the size of the (spatial section) of the event horizon. Thus, the
EHT cannot access directly the "image of the event horizon" but only the lensed
image of the "photon ring", i.e. the unstable circular orbit of photons with impact
parameter exactly equal to R.. For rotating black holes, described in general rela-
tivity by the Kerr metric [121], the latter may not be circular anymore as the shape
of the cross section depends now on the orientation of the light ray with respect to
the spin angular momentum of the black hole [122-124]. In particular, when the lat-
ter is surrounded by a geometrically-thin and optically-thick disk simulations have
shown that the system would appear to a distant observer as a combination of a thin
emission ring and a lensed image of the thin disk [125]. In the case of LLAGNS,
instead, the expected image consists in a darker region ("shadow") surrounded by
a bright ring-shaped emission region that, due to spin and relativistic effects, can
appear to have a "crescent" shape [119, 126-129]. The size of the observed emission
ring is proportional to the photon capture radius, R, and encodes information re-
garding the strong gravitational field of the central object. However, in addition to
the dependence on the black-hole parameters (mass, spin and spin orientation), the
shape and size of the observed shadow strongly depends on the instrumental res-
olution and on the details of the astrophysics of the hot, turbulent and magnetized
emitting region. By modeling the latter with advanced general-relativistic numer-
ical simulations [130] and by combining independent mass and mass-to-distance
ratio estimates [111] with the radio observations obtained with VLBI [131], the EHT
collaboration was able to provide an estimate of the emission ring of M87* that is
compatible with the lensed photon capture radius of a general relativistic black hole
within 17% error at 68% confidence level [103].

The idea of using this observation to extract information about the underlying the-
ory of gravity has been developing for many years now [133-135], and several pre-
dictions for the size and shape of alternative objects [136—-140] or of black holes in
extended models of gravity [141-149] are now available for comparison with ob-
servational data. Tests of strong-gravity with black hole shadow measures follow
mainly two directions. The first one consists in employing the shadow measure-
ment in the theory-agnostic framework of deformed metrics [86, 87], in order to con-
straint the deformation parameters and test multiple spacetimes alternative to gen-
eral relativity black holes at a time. An example of this approach is given by [150],
in which an attempt to constraint higher order terms in post-Newtonian expanded
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FIGURE 1.4: Shadow size in the case of a Schwarzschild black hole.
Credit: [132]

deformed metric. Note however that the approachs used in this work raised several
critiques, from the validity of the post-Newtonian expansion in strong-field regimes
to the unjustified a priori assumptions made on the different post-Newtonian pa-
rameters [151]. Indeed, the main problems in parametric tests with one black-hole
shadow measurement is that, naively, with only one data point available only com-
binations of the deformation parameters can be constrained. Furthermore, the de-
formed parameters are not directly connected to the fundamental parameters of the
alternative compact object/extended theory, thus making immediate physical inter-
pretations more difficult. The alternative approach consists in constraining directly
physical properties of the modified horizon-scale geometry, i.e. angular momentum,
electric charge and/or extra (scalar) charges [150, 151]: such model-specific tests ob-
viously loose in scope but gain in robustness and tightness of the constraints, allow-
ing to probe fundamental aspects of the theory like no-hair and cosmological censor-
ship conjecture [150] or the Kerr hypothesis, when future measurements will improve
in precision down to the level of observable spin effects.

In conclusion, black-hole shadow measurements are not yet capable of provid-
ing bounds on alternative spacetimes that are comparable with the ones coming
from gravitational-wave observations, but are nonetheless an important probe of the
strong-field regime of gravity in the scale of masses typical of supermassive black
holes.

1.2.3 Gravitational-wave tests

The prediction that accelerating masses with a varying quadrupole moment can ra-
diate gravitational waves dates back to the early days of general relativity. However,
the physical interpretation of gravitational radiation was debated for many years:
its very existence and/or observability was initially critically questioned by Einstein
himself [153, 154]. The first indirect observational confirmation of the existence of
gravitational waves came with the measurement of the orbital period damping in the
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FIGURE 1.5: Stages of the coalescence of a binary system of compact objects.
Credit: [152]

Hulse-Taylor pulsar [49], while the first direct detection of a gravitational wave pro-
duced during the merger of a distant black-hole binary system came in 2015 [155].
Since then the number of observed gravitational-wave events grew significantly
and the current catalog of detections includes numerous binary black-hole merg-
ers, two binary neutron stars [156, 157] and two black hole-neutron star events [158].
Currently all the gravitational-wave observations come from the Laser Interferom-
eter Gravitational-Wave Observatory (LIGO) Scientific Collaboration [159] and the
VIRGO Collaboration [160] thanks to the three L-shaped ground-based interferom-
eters respectively located in Livingston and Hanford (US) and Cascina (Italy). Since
2020 the array of gravitational-wave antennae has been extended as the Kamioka
Gravitational Wave Detector (KAGRA) [161] became operational and plans to join
LIGO-VIRGO in the fourth observational run are currently under discussion. Mean-
while, third-generation ground-based interferometers like the Einstein Telescope [162]
and Cosmic Explorer [163] are currently under planning and share the ambition
of reaching ~ 100 times higher sensitivities than the older generation. The real-
ization of space-based interferometric experiments is prospected for the mid 2030s.
Such space-bourne gravitational-wave telescopes are completely unaffected by stan-
dard (i.e. seismic and anthropic) noise sources that instead affect the sensitivities of
ground-based experiments; and thanks to the very large design arm-lengths they
are devised to be sensitive to sub-Hertz signals that are not accessible by current in-
terferometers. Currently, the proposed future missions include the realization of the
Laser Interferometric Space Antenna (LISA) [164, 165], TianQin [166] and the Deci-
Hertz Interferometer Gravitational-wave Observatory (DECIGO) [167, 168]. An in-
teresting approach in alternative to laser interferometry given by Pulsar Timing Array
(PTA) techniques: a gravitational wave in passing will leave tiny fluctuations in the
otherwise extremely regular periodic signals emitted from pulsars [169, 170], which
could be detected by computing the time residuals in the measured time of arrival of
radio pulses from a correlated array of known stable (millisecond) pulsars [171]. Ob-
servational efforts implementing the PTA program consists in the monitoring of 25
pulsars by the Parkes Pulsar Timing Array [172], 45 pulsars by the North American
Nanohertz Observatory for Gravitational Waves (NANOGrav) [173] and 42 pulsars
by the European Pulsar Timing Arrays (EPTA) [174], which together constitute the
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FIGURE 1.6: Gravitational-wave sources and detector sensitivity curves.
Credit: [176]

International Pulsar Timing Array (IPTA) [175] monitoring a total of 65 independent
millisecond periodic radio sources.

Gravitational-wave signals can be divided into four categories based on their
origin and properties: bursts, stochastic gravitational waves, continuous periodic
signals and chirps from the coalescence of compact binaries. At the end of their
life-cycles, red giant stars and/or white dwarfs accreting from a companion are be-
lieved to undergo gravitational collapse to a black hole or neutron star remnant.
Such cataclysmic events can produce supernovae (respectively of Type Il and Type I)
associated with emissions of (mainly) neutrinos, electromagnetic radiation and, de-
pending on the geometry of the collapse, also gravitational-wave bursts which can
carry away a significant part of the binding energy of the original system (see [177,
178] for reviews). Because of the complexity of the problem the most of the details
of the mechanism that ignites the supernovae explosion are still unknown [179].
Such fascinating extreme phenomena are mainly investigated with numerical sim-
ulations [177], although incorporating consistently all relevant physics (e.g. general
relativity, magneto-hydrodynamical turbulence, neutrino transport) is still an open
challenge [178]. On the observational side, much effort has been put to detect signals
from collapsing stars [180], neutron-star excitations [181, 182] and other more exotic
sources of short-duration gravitational-wave transients [183, 184]. However, only
upper bounds on the source-rates have been put so far [185].

Because of conservation of mass and total angular momentum, rotation of spher-
ically symmetric or axisymmetric objects does not generate gravitational waves in
general relativity. However, rapidly rotating NS that feature even a tiny asym-
metry in their geometry [186] could in principle produce periodic and continuous
gravitational-wave signals analogous to the radio pulses produced by pulsars [187,
188]. So far, none of such continuous gravitational-wave signals has been detected
by the LIGO-VIRGO collaboration [189-191].
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The incoherent sum of unresolved signals produced throughout the history of
the Universe will constitute a random gravitational-wave field of astrophysical ori-
gin [192]. Analogously to the cosmic microwave background, a cosmic gravitational-
wave background is predicted to be composed of relic gravitational radiation from
early universe processes [193]. These are the astrophysical and cosmological compo-
nents of the stochastic gravitational-wave background that is the object of modern
sky-surveys conducted by the LIGO-VIRGO collaboration [194, 195] and PTA sur-
vey [196]. Recently, the NANOGrav collaboration claimed the observation of strong
evidence for stochastic process that could be interpreted either as a gravitational-
wave background due to an early-universe phase-transition occuring at tempera-
tures below the electro-weak scale; or as the astrophysical contribution due to unre-
solved coalescences of supermassive black holes [197, 198].

All events detected so far by the LIGO-VIRGO collaboration fall in the category
of compact binary coalescence. A binary system of coalescing compact objects emits
gravitational waves throughout the three stages of its dynamical evolution: inspiral,
merger and post-merger ringdown of the remnant (see Fig. 2.1). During the inspi-
ral the orbits decay dynamically because of the energy lost through gravitational-
wave emission. As the two objects come closer, their orbital velocities increase un-
til reaching a significant fraction of the speed of light during the last orbit before
the violent merger. As a consequence, the frequency and amplitude of the gravita-
tional waves emitted also increase, producing the typical "chirp-like" signal. After
the merger, while relaxing to a stable axisymmetric configuration, the remnant emits
a ringdown signal composed of characteristic frequencies that contain information
about the properties of the object. Mergers of two neutron stars can form, as an
intermediate stage, a supramassive or hypermassive neutron star that exceeds the
maximum mass limits, which eventually collapse to a black hole. Current ground-
based interferometers are sensitive to gravitational waves in the frequency range
O(10)-O(1000) Hz being mainly limited by seismic and thermal noise in the low-
frequency end. This translates in a limited window of masses for the detectable
binary systems, which coincides exactly with stellar-origin black holes and neutron
stars. The characteristic frequency, f, of a binary system can be estimated via the Ke-
pler law GM ~ R3f, where G is the Newton constant, M and R are the characteristic
mass and length scale of the system. For an order of magnitude estimate, M can be
chosen to be the total mass of the binary and R the gravitational radius of the sys-
tem R = GM/c?. The final estimate yields a typical gravitational-wave frequency
that is inversely proportional to the characteristic mass of the binary f ~ 1/M:
intermediate-mass black hole binaries (typical masses in the ballpark of 100 to 10*
solar masses) or supermassive black hole binaries (up to 10°~107 solar masses) will
be observable at low frequencies (from deci-Hertz down to micro-Hertz), which will
be the future operativity range in frequencies of third generation detectors and/or
space-bourne interferometers. Finally, binaries composed of a compact object orbit-
ing closely around an intermediate or supermassive black hole (respectively called
intermediate and extreme mass ratio inspirals) are an additional potential source of low-
frequency gravitational waves that is predicted to be relevant for instrument like
LISA [199].

Waveform modeling can be very challenging already in general relativity, and
is typically even more so when trying to include extensions/modifications thereof.
The problem of computing the gravitational waveforms is naturally connected to
solving the dynamics of a system of N bodies interacting gravitationally. In particu-
lar, the two-body gravitational problem admits an analytical solution only in Newto-
nian gravity and already in general relativity it requires resorting either to numerical
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methods or approximated analytical techniques. Historically, the first contributions
in the latter direction started shortly after the publication of the theory of general rel-
ativity [200-203], although the seminal works that constitute the foundation of the
modern post-Newtonian formalism appeared only decades later [204-208]. At zero
order in the post-Newtonian expansion, the Newtonian contribution to gravitational
waves is given by the Einstein quadrupole formula [200, 202]

_ 2Gd*Q;
L P T

(t—r/c)+0(e), (1.8)

where Q;; is the quadrupole moment of the source evaluated at the retarded time, t —
r/c. The quadrupole formula has been proven successful when compared with ob-
servations (see section 1.2.2) and modern day post-Newtonian formalism has evolved
to include also higher-order relativistic corrections to the Newtonian contribution [56].
Although being a very powerful tool for analytical solutions of gravitational waves,
the weak-field and slow-motion approximations on which the post-Newtonian ex-
pansion relies are known to break down in interesting systems. For instance, in the
coalescence of compact objects these are strictly valid only in the early inspiral phase
and results obtained with this method become unreliable at small separations. Nu-
merical realtivity is the key tool for exploring the otherwise unaccessible nonlinear
strong-field regime of gravity [209-212]. For instance, in the merger and post-merger
phases one has to resort to accurate numerical simulations to decode the coalescence
of compact binaries and, in particular, to model the gravitational waveforms [213—
221]. Finally, the black-hole perturbation theory framework is typically employed
to describe the characteristic ringdown of the remnant (for reviews,see [222, 223]).
Combining the results obtained with the three different methods to produce a sin-
gle waveform that is consistent throughout the whole coalescence stages requires
sophisticated techniques based on the effective-one-body formalism [224].

In the following sections I will give a summarized introduction to the type of
tests that have been conducted with gravitational-wave events detected by the LIGO-
VIRGO collaboration [225-228].

Consistency tests

In practice, the easiest tests one can conduct with gravitational-wave observa-
tions consists in evaluating how well does the general relativity waveform tem-
plate fit the data and analyze the residuals in search for new physics that one might
have missed. Typically gravitational-wave signals originated from the coalescence
of compact objects are buried in noise and must be "dug out" via match-filtering
techniques, which consist in correlating the times series coming from the detector
with parametrized template waveforms until a threshold in the signal-to-noise ratio
is reached. The latter is a quantity introduced to estimate the probability of detec-
tion of the signal and, as the name suggests, is a function of the signal over noise
power spectral densities (for more details see, for instance, [229] for a pedagogical
review). The best-fitting template is only the waveform that most likely explains the
data. If there were significant residual power in the data stream, then it would mean
that the parametrized templates is not suited to explain all the physical features of
the signal. This could happen for several reasons, for instance because either the
signal is actually composed of several independent gravitational waves that are su-
perimposed; because of non-negligible modeling systematic errors or the signal is
better described by non-general-relativistic waveforms. The first simple test that is
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conducted on detected signals consists in analysis of the residuals, which is done by
looking for physical features in the signal after subtraction of the best-fitting wave-
form, i.e. ones that are not correlated with the instrumental noise [225-228]. The
analysis of the residuals can tell how well do general relativity templates fit the ob-
served signals and whether there are some physical effects that one is missing by
assuming general relativity as the fundamental theory of gravity.

A more refined way to check that the assumption of general relativity fits well
the observed data consists in conducting consistency checks between the physical
properties of the system as deduced from different portions of the signals. For in-
stance, by comparing the mass and spin estimates obtained from the inspiral, merger
and ringdown signal phases any statistically relevant inconsistency between the dif-
ferent estimates would signal the presence of non-general-relativistic effects [230-
233]. This technique is referred to as inspiral-merger-ringdown (IMR) consistency
check, and recent examples of its application typically are implemented within a
parametrized framework [234] (see, instead, [235] for model-specific forcasted bounds).
Moreover, with the same spirit one can test the validity of Hawking’s "area law" [236]
by elaborating estimates of the event horizons areas in the pre-merger and post-
merger phases [237].

Parametrized tests: wave generation

The first theory-agnostic frameworks attempted to incorporate phenomenological
modifications to the general relativity waveforms at each post-Newtonian order [18,
230, 238, 239]. Metric theories of gravity that have a well-defined Newtonian limit
can also fit in the parametrized post-Newtonian framework. For instance, the dy-
namics of binary sources and analytical waveforms in scalar-tensor theories are now
available up to third [64, 65] and second post-Newtonian order [61-63] respectively.
Tests of post-Newtonian gravity with parametrized inspiral waveforms with this
approach have been proposed [56, 240, 241] and later the formalism was extended
to what is now known as the parametrized post-Einsteinian (PPE) formalism [242],
which was built to capture generic non-general-relativistic effects entering at any
post-Newtonian order. In the frequency-domain such parametrized waveforms for
quasi-circular inspiral read

h(f) = hor(f)(1+au)e¥, 5Y = pu’, (1.9)

where hgp is the (frequency-domain) general relativity waveform, u = (M f )1/3
is the effective relative velocity of the binary components (with M the chirp mass)
and f the gravitational-wave frequency. The gravitational-wave phase modifications
are introduced via the factor 6¥. The post-Einsteinian parameters («, 8) and (a,b)
determine, respectively, the amplitude of the deviations and post-Newtonian order
at which they appear. Each alternative model of gravity predicts different values for
these parameters and dictionaries between the PPE and fundamental parameters can
be constructed [243, 244]. The parametrized post-Einsteinian framework has been
since generalized to include dipole radiation [245], other polarizations and higher
harmonics [246]. Thanks to the currently available mass of data from gravitational-
wave events, several bounds on the post-Einsteinian parameters can be placed [227,
228] and compared, for instance, with the post-Newtonian bounds from binary pul-
sars [233, 247, 248].
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FIGURE 1.7: Violin plots of the posteriors on the dispersion relation phe-
nomenological parameters. Credit: [228]

Parametrized tests: wave propagation

Parametrized tests of the gravitational-wave propagation are employed to constrain
a set of phenomenological parameters, A, and «, introduced to account for power-
law deviations from the gravitational-wave dispersion relation [249]:

E? = p*® + Aup“c” (1.10)

where E and p are the gravitational-wave energy and momentum, c is the speed of
light. While the general-relativistic relation is trivially reobtained when A, = 0 for
all «, a variety of alternative (typically Lorentz-violating) theories have a (leading-
order) correspondence with the phenomenological corrections [250-253]. With the
available gravitational-wave data stringent bounds have been placed on the devia-
tions in the gravitational-wave dispersion relation [227, 228] (see Fig. ??). Of particu-
lar interest is the correction &« = 0, which corresponds to the effects due to a graviton
mass g = A(l)/ 2 /¢2 [254]. Current bounds from the collection of data in the first and
second observing runs of the LIGO-VIRGO collaboration put a tight upper bound
on the graviton mass, i.e. my < 1.76 x 1072 eV /c? [228]. The terms with a = 2
correspond to a frequency-independent correction to the speed of propagation of
gravitational waves. In general relativity the latter is equal to the speed of light, but
in other metric theories deviations from this paradigm are in principle allowed, de-
pending on the structure of the gravitational field equations. For instance, simple
massless scalar-tensor theories maintain this property while theories with higher
derivative operators can easily predict subluminal or even superluminal propaga-
tion of gravitational waves without incurring in causality violations [255-257]. The
first constraints on the speed of propagation of gravitational waves have been placed
by analyzing the times of arrival of signals to widely separated detectors [258, 259].
As we will see in the next subsection the tightest bounds available on the speed of
gravitational waves comes from multi-messenger events.
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Multi-messenger observations

Mergers of binary neutron stars not only produce emissions in the gravitational-
wave channel, but also observale radiation across the electromagnetic spectrum, in
particular prompt gamma-ray bursts and long-lived x-ray afterglows. The multi-
messenger nature of these events offer a treasure of data that would not be acces-
sible through the each individual channel alone, creating an incredible opportunity
for testing alternative models of gravity.

In 2017 the LIGO-VIRGO Collaboration detected a gravitational-wave event com-
patible with the coalescence of two neutron stars [156]. A nearly simultaneous
gamma-ray burst event (GRB170817A) was detected by the network of gamma-ray
observatories [260] and later on an optical counterpart was identified [261]. The
direct comparison of the times of arrival of the gravitational radiation and of the
gamma-ray burst (assuming nearly simultaneous emission) allows to place the tight-
est bounds to date on the speed of gravitational waves, which matches the speed of
light up to an impressively small error of few parts in ~ 10'% [260]. The presence
of an electromagnetic counterpart in GW170817 also allowed the first direct confir-
mation of binary neutron star mergers as (one possible) source of short gamma-ray
bursts [226], in addition to other improved constraints on deviations from general
relativity, such as in the polarization content (see next subsection).

Gravitational-wave polarizations

As a consequence of the fact that the theory propagates only two degrees of freedom
associated to the massless graviton, in general relativity there are only two physi-
cal and independent gravitational-wave polarizations. In the appropriate (traceless-
transverse) gauge they are typically referred to as cross, hy, and plus, h, polariza-
tions. Other metric theories of gravity can predict up to six independent polarization
states: one additional transverse "breathing"” mode and three additional longitudinal
modes, including a "streching" mode along the direction of propagation [262, 263].
A detector’s response to different gravitational-wave polarizations is determined
by the antenna pattern functions [2, 264] and a network of at least five detectors
should in principle be able to do a complete analysis of the polarization content of a
gravitational-wave signal [228]. However, the currently available network of three
antennae can test the hypothesis of pure tensor polarization against purely-scalar or
purely-vector alternatives [265-267], the latter two being strongly disfavored by the
collection of data from the second catalog of gravitational-wave transients by the
LIGO-VIRGO collaboration [228]. Because of the detection of an electromagnetic
counterpart a more accurate sky-localization was possible with GW170817, fact that
helped placing the tighest bounds on alternative polarization contents [226]. In the
future, as the array of detectors is expected to enlarge the sky-localization of ob-
served events is expected to improve significantly and test with mixed-polarization
states will be available.

Black-hole spectroscopy

In the framework of general relativity the most general stationary black hole space-
time is described by the Kerr-Newman family of solutions of the Einstein equa-
tions, as stated by no-hair theorems [268-270]. From an astrophysical perspective, the
no-hair conjecture maintains that dynamical processes (e.g. gravitational collapse)
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FIGURE 1.8: Gravitational-wave polarizations. Effect of the passage of a
gravitational wave on a circle of test masses. Credit: [1]

will lead to axisymmetric Kerr(-Newman) spacetimes regardless of the details and
field content of the process. The coalescence of two black holes lead to a third per-
turbed black hole that eventually relaxes to a stable axisymmetric state after a ring-
down phase. During this transient, the higher multipole moments of the remnant
are dissipated away through the emission of gravitational waves with specific fre-
quencies. The quasi-normal modes [271-273] of the remnant object are characteristic
modes corresponding to dampened sinusoidal oscillations with complex frequen-
cies, wyyy, labeled by two angular quantum numbers [, m, and one overtone number
n =0,1,2,... As a consequence of no-hair theorems, the quasi-normal mode fre-
quencies of Kerr black holes are parameterized entirely by the black-hole mass and
spin. For astrophysical black-holes, the electric charge is expected to be suppressed
to irrelevant values because of Schwinger pair-production, accretion of matter and
interaction with the magnetic fields of accretion disks [274-278]).

This is the so-called Kerr paradigm that in the era of gravitational-wave astronomy
can be tested via black-hole spectroscopy [279-285], which consists in the determination
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of the remnant properties from the analysis of the ringdown part of gravitational-
wave signals. The spectrum of quasi-normal mode frequencies is completely deter-
mined by the mass and spin of the final black-hole but the relative amplitude of the
excited quasi-normal modes depends on the properties of the progenitor system, e.g.
individual spins and mass ratio [286—290]. In particular, the dominant mode in ring-
down signals is the fundamental mode corresponding to I = m = 2 [291], followed
by the I = m = 4 mode in non-spinning, equal-mass binaries [286, 287] or by a very
loud I = m = 3 mode for unequal-mass black-hole binaries or neutron-star black-
hole mergers [288-290]. For black-hole spectroscopy to achieve sufficient precision
to test the no-hair theorem it is necessary the detection of at least two quasi-normal
modes with accurate damping times and frequencies measurements: in practice,
these requirements translate in lower bounds on the signal-to-noise ratio of the ring-
down signal for such tests [280, 292].

From analyzing the ringdown signal of the first (and loudest) gravitational-wave
event detected to date, GW150914 [155], and by including in the analysis not only the
fundamental mode I = m = 2 but also its first overtone the authors in [282] managed
to provide the first constraints on the validity of no-hair theorems. Very recently a
new spectroscopic study analyzed the ringdown signal of the event GW190521 [284],
which is compatible with the merger of an asymmetric system of two intermediate-
mass black holes [293]. The detection and analysis of the fundamental mode and
the subdominant [ = m = 3 mode allowed to test the Kerr hypothesis with a higher
precision than the one achieved with the overtone analysis in [282], finding results
that are compatible with a general-relativistic Kerr black hole up to a < 10% uncer-
tainty and allowing to disfavor alternative explanations of GW190521 in terms of
merger of more exotic objects [294]. Recently a parametrized framework for testing
the quasinormal ringdown of black holes has been developped [295, 296] and the
prospected constraints from future observations have been analyzed in [297].

Parametrized vs model-targeted tests

There are some limitations to the type of tests reviewd so far. Consistency tests
can only give a quantitative estimate of how well general-relativistic predictions fit
the observational data, but cannot exclude the possibility that a competitive theory
could yield better fits. The parametrized tests listed above are in essence null tests of
gravity that assume general relativity as a null hypothesis and are capable of placing
bounds on the phenomenological parameters that control deviations thereof [227,
228]. In practice, however, it is sometimes hard to translate such bounds into tight
constraints on the fundamental parameters of a particular theory, as the former typ-
ically correspond to combinations of the latter. Parametrized approaches might just
not be the best option to capture strong-field effects that can produce large devia-
tions from general relativity.

An alternative and complementary approach consists in direct tests of theories
beyond general relativity. These consist in model-dependent searches for strong-
field signatures of new physics. In the following chapter I will review a relevant
subset of scalar-tensor theories of gravity on which my research has recently focused.
Then in section 2.2, I will give a brief introduction to three strong-gravity effects that
can produce (or hide) large deviations from general relativity and that can serve as
interesting testing grounds for modified gravity.
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Chapter 2

Scalar fields beyond General
Relativity

2.1 Scalar-tensor theories

2.1.1 Minimal coupling

One of the simplest extensions of General Relativity that can be considered consists
in extending the number of dynamical degrees of freedom to include an additional
scalar field. When the scalar field is minimally coupled to the metric it will essen-
tially count as some sort of exotic matter appearing in the right hand-side of the
Einstein equations. The action of a minimally coupled scalar field reads

MZ
Sy = [ dixy/ =g [R—2"9,92.9 ~ V(9)] @.1)

All the key properties of the scalar field are enclosed in the potential, which can
vary wildly depending on the desired applications. Historically, such simple models
were first applied in Cosmology as quintessence models of dynamical dark energy or
inflation [298, 299]; and models of scalar (or "fuzzy") dark matter [300-304].

2.1.2 Bergman-Wagoner

The classic example of non-minimal coupling is given by Fierz-Jordan-Brans-
Dicke theory [305-307], which was first introduced as a theory in where the gravi-
tational constant, G, is promoted to a dynamical scalar field ¢. The corresponding
action can be formulated as:

M?> . w
SrjBD = /d4x\/—g”7pl [qu — %g”*“’ay(pavq) + Su[§us Y], (2.2)

where "standard" matter, represented collectively under the symbol ¥, is minimally
coupled to the §,, metric; and all quantities with a tilde are constructed from the
metric §. The natural generalization of this model is given by the Bergman-Wagoner
formulation of scalar-tensor theories [308, 309], described by the action

M1
B = / dix/—g—- {‘PR B E(?)é?“vawaqu —U()| +Smlguw; Y],  (23)

which promotes the constant wpp to a function of ¢ and endows the scalar field
with a self-interaction potential U(¢). Through the conformal transformation of the
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metric g = ¢§,v and a scalar field redefinition ¢(¢) = A(¢) 2 and 3 + 2w(¢) =
a(¢) 72, where a(¢) = dIn A(¢)/d¢, the action (2.3) can be recast into the form

M2
Sst = /‘1495\/_7ng1 [R - zgwayfpavq’ - V(‘P)] + Sm [A(‘P)zgw?‘ﬂ ’ (2.4)

where the potential has been redefined as V(¢) = A(¢)*U(¢(¢)). The two ac-
tions (2.3) and (2.4) describe the same theory in two different but equivalent frames
called, respectively, Jordan and Einstein frame. In the first, the scalar field is mani-
festly an additional gravitational degree of freedom because of its non-minimal cou-
pling to the metric. This is sometimes referred to as the "physical" frame since test
particles and matter fields in general propagate on geodesics of the Jordan-frame
metric, §,v. Nonetheless, it is often more convenient to solve problems (e.g. finding
solutions in vacuum) in the Einstein frame, in which the metric and scalar field are
disentangled and the field equations are treatable with the same approach used in
general relativity.

2.1.3 Horndeski and beyond

Several generalizations of the models described above have been considered in
the literature so far. The class of Horndeski theories is the most general formulation
of scalar-tensor theories that yields second order field equations [310] described in
terms of the following action:

5
S+ Sw= [ %/~ Y Lilgu $] + Snlgini ¥, (2.5)
=2

where the gravitational sector, S, is given as a linear combination of the Lagrangians:

L, = G(¢ X), (2.6a)
£3 = Gg((l), X)D(P, (26b)
Ly = Gu(¢, X)R —2GCax(¢, X) [(Op)* — ¢" ] + (2.6¢)
+Fy ((P/ X)ewptfey,wp/aqbyqby/qbw’¢pp// (2.6d)
Ls = Gs(p,X)Gugp™ + %GSXW, X) [(O¢)° = 30¢put” + 20 ¢"¢" ] 2.6¢)
+ F5(, X)e" e 0 o Pop P - (2.6f)

The notation used in (??) is standard, denoting derivatives of the scalar field with
multiple greek indices, i.e. ¢, = 9,¢ and ¢, = V,0,¢; the laplacian of the scalar
field is denoted with (¢ = ¢""V,,d,¢ and the symbol X = —1/2¢"" ¢, ¢, was intro-
duced as a short notation for the canonical kinetic term of the scalar field. Terms with
coefficients G; with i = 2,...5 strictly belong to the Horndeski class. Instead, terms
proportional to F; and Fs belong to the so-called "beyond Horndeski" or Gleyzes-
Langlois-Piazza-Vernizzi theories which, although yielding third-order equations
of motion, do not propagate undesired extra degrees of freedom (except the scalar
one) [311, 312]. This fact is possible thanks to the imposition of special constraints,
or degeneracy conditions, that prohibit the propagation of ghosts: such degeneracy
conditions can be employed to identify the most general degenerate higher-order
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FIGURE 2.1: Space of scalar-tensor theories. Credit: [315]

scalar-tensor theory (DHOST) featuring higher-order derivative operators but prop-
agating only one extra scalar mode [313-316].

2.1.4 Quadratic gravity

General Relativity considered as a quantum theory of gravity is known to be non-
renormalizable, as it receives additional contributions proportional to higher cur-
vature invariants at each loop order [317, 318]. It was soon realized, however, that
extending the Einstein-Hilbert action to include from the start one-loop quantum
corrections proportional to quadratic curvature-invariants was enough to obtain a
renormalizable theory [319]. Inclusion of higher-derivative operators in the action,
however, inevitably introduces so-called Ostrogradski ghosts, unwanted modes with
unbounded negative energy that destabilize the theory [320], thus renormalizability
is achieved at the cost of introducing problems with unitarity. One simple way out
of this impasse is to adopt an effective field theory perspective and to treat higher-
curvature quantum corrections as small perturbations that remain under control up
to energies comparable with the Planck scale [321, 322]. Many attempts to solve the
ghost problem of quadratic gravity outside of the EFT approach (e.g. [323-327]) but
no flawless solution has been found yet. Two quadratic curvature invariants are of
particular interest namely the Gauss-Bonnet term, § = R? — 4Ry R" + Ryyypoe RMVFY,
and the Chern-Simons term, (*RR) = 1/ ZRWPUGVVATR%, which arise in the low-
energy limit of quantum gravity theories [328-331]. In four dimensions these cur-
vature scalars do not contribute to the field equations when included alone in the
action, because their integrals over the four-dimensional volume element are actu-
ally topological invariants. For this reason, they are typically considered coupled to
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a dynamical field, e.g. a scalar field in the simplest case. The most general action for
a scalar field coupled to quadratic curvature operators can be written as [332, 333]

4 Mlil
S = [ dxy/=g— [R—2g"0,40.9 — V(9)+
+aq (QD)Rz + Dcz(q))RWRW + 0(3(47)RWPURWPU + 0{4(4))(*RR)] . (2.7)

Action (2.7) describes a generalization of the ghost-plagued quadratic gravity, which
corresponds to the functions w;(¢) = constant for i = 1,2,3,4, and is generally also
prone to develop Ostrogradski instabilities. The only known sub-class of quadratic
gravity models that avoids propagation of ghosts correspond to Einstein-Scalar-
Gauss-Bonnet gravity, defined by the choice a0y = —4ap, = a3 = f(¢), a4 = 0 and
V(¢) =0 = A(¢) in a minimal realization [334]. In fact, it can be demonstrated that
ESGB theories are a particular subclass of Horndeski gravity [335], which is by defi-
nition the most general ghost-free scalar-tensor theory with second-order field equa-
tions [310]. Finally, a bridge between standard scalar-tensor theories and quadratic
gravity is represented by f(R) theories, which can both accept a description in terms
of a specific sub-class of FJBD scalar-tensor theories and be viewed as an example of
higher-curvature gravity [336, 337].

2.1.5 Other theories

Other natural generalizations consist in the addition of multiple scalar [338], vector
and/or tensor fields; or even combinations of the three at once. However, all the
models that introduce new dynamical fields that couple to matter typically violate
the strong equivalence principle and can be constrained by experimental searches
of such violations. In addition, many of the vector-tensor [339, 340] and scalar-
vector-tensor [341, 342] theories considered in the literature also introduce a fun-
damental violation of the Lorentz symmetry, although this is a small price that can
buy such theories a better behaved high-energy limit [250]. Recently a new surge
of interest in diffeomorphism-breaking theories has been stimulated by the minimal
modified gravity program, that aims at building theories propagating only two ten-
sor degrees of freedom at the cost of preserving only space-diffeomorphisms [343—
345]. A non-extensive list of possible extensions of general relativity that have been
extensively studied in the past literature includes massive gravity [346-348], bimet-
ric gravity [349-352] and theories with torsion and non-metricity [353, 354]. The
work collected in this thesis, however, focuses mainly on the scalar-tensor models
described in the subsections above.

2.2 Scalar effects beyond General Relativity

221 Superradiance

The mechanism known as superradiance is a classical process of wave-amplification
that appears in many contexts [355]. One of the incarnations of superradiance, in
the context of black hole physics, is superradiant scattering [355-361], which consti-
tutes a sort of "wave" generalization of the Penrose process [356]: bosonic waves
(and also nonlinear Dirac waves [362]) as they scatter off the ergoregion of a black
hole can extract energy and angular momentum (and possibly charge [363]) from
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it. In gravitational physics, the existence of an ergoregion in a certain spacetime is
a sufficient condition for superradiance [362]. The ergoregion is a portion of space-
time delimited by an infinitely-redshifted surface, which allows for negative-energy
states in its interior: in general relativity it can be shown that if a stationary and ax-
isymmetric spacetime possesses an event horizon (e.g. is a rotating black hole), then
it must also feature an ergoregion [364]. Note however that neither the presence of
an horizon nor of an ergoregion are necessary conditions for superradiance, which
can manifest also with horizonless objects (though in association with an instabil-
ity [362]) and in the context of stars [357, 365-368]. Arguably more interesting is the
case in which the bosonic field is interacts repeatedly with the black hole ergoregion,
for instance by placing a reflecting mirror around the black hole. In this scenario,
the boson will get continuous superradiant amplification over time that will trigger
an exponentially growing instability dramatically called a black hole bomb [369]. A
more natural realization of superradiant instabilities occurs, for instance, when black
holes of sufficiently high spins interact with massive bosons of sufficiently small
mass [361, 369, 370]. In fact, superradiant instabilities are known to be relevant (i.e.
the typical timescale does not exceed the age of our universe) only when the boson
Compton wavelength, A, = fi/mc, is comparable to the gravitational radius of the
black hole, r, = GM/ 2, such that re/ Ac < 1. For a solar-mass black hole, the order-
of-magnitude mass for a superradiant boson field will correspond to m ~ 10710
eV. The Standard Model does not contain such ultralight massive bosons, which are
very common in extended particle and gravitational physics models: axion-like par-
ticles [371-377], dark photons [378-380] massive gravitons [346-348] and massive
scalar-tensor theories [381, 382]. If the conditions for the instability to set in are met, a
stationary superradiant cloud forms powered by the energy extracted from the black
hole, which on its turn spins down until the instability is quenched (which happens
typically for dimensionless spin parameters x = cJ/(GM?) ~ 0.1-0.4, c.f. e.g. Fig.
1 of Ref. [383]). In fact, the typical size of these scalar clouds is large and the energy
density stored inside them low enough as to make the backreaction on the geometry
negligible [384]. The cloud, generally non-spherical, will emit gravitational waves
and dissipate over time [375, 383-387]. Fully nonlinear numerical simulations that
follow through the evolution of the superradiant instability, from onset to satura-
tion and final dissipation, are very challenging because of the long characteristic
timescales (around 10°-10° ), but recent numerical effort has confirmed the picture
described above [388-393]. As a matter of fact, when the instability develops in an
axisymmetric Kerr spacetime no-hair theorems guarantee that the endstate will be
again a Kerr black hole with reduced spin and mass [268, 270, 394-396]. There are
some notable exceptions to this picture, one of them consisting in black holes with
"sinchronized hair" [397] in which a time-dependent complex scalar field can evade
no-hair theorems and yield non-Kerr vacuum configurations [397-401]. And finally,
ultralight bosons with either an axion-like coupling to the electromagnetic sector or
a nonlinear self-interaction can predict catastrophic endstates, in which the energy
stored in the superradiant cloud is released in violent bursts of electromagnetic [402—
404] or scalar radiation (i.e. bosenovae) [375, 405, 406]. In Chapter 3 I will elaborate
thoroughly on a study of photon superradiant instabilities triggered by plasma ef-
fects in the accretion disks of black holes.

2.2.2 Scalarization
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The phenomenon scalarization was first discovered in the context of neutron
stars in scalar-tensor theories 4 Ia Damour-Esposito-Farese [338, 407], which can pre-
dict observable scalar effects in the strong-field regime while still abiding the weak-
tield bounds [1, 2, 29, 408, 409]. In particular, scalar fields that are suitably coupled
to the trace of its stress-energy tensor of matter become unstable inside sufficiently
compact neutron stars [407]. At the perturbative level, the onset of the instability can
be observed as the appearance of a negative mass (squared) term that makes scalar
perturbations grow unbounded. At the full nonlinear level, the compact star is un-
dergoing a phase-transition (analogous, for instance, to spontaneous magnetization
in ferromagnetism [58]) to an energetically-favoured configuration with non-trivial
scalar charge [58, 407, 410]. Related "dynamical" scalarization effects [411-414] are
present in the same theories for neutron star binaries, whenever their separation is
sufficiently small (or the binary’s "compactness" sufficiently large). In fact, binary
pulsar experiments are the main source of constraints on theories that predict spon-
taneous scalarization [52, 58, 59, 76, 409, 410]. However, in the class of theories
considered in [407, 411-414], scalarization is not present without matter, and vac-
uum solutions are standard general-relativistic black holes. Note that black holes
can scalarize if they have matter in their vicinity [381, 415], but the densities neces-
sary to obtain a measurable effect are probably astrophysically unrealistic.

In general, scalar-tensor theories do not typically leave any characteristic imprint
in the physics of vacuum solutions: no-hair theorems (see [416—418] for reviews) ex-
ist for stationary BHs in scalar-tensor theories [394, 395], and static, spherically sym-
metric and slowly rotating BHs in shift-symmetric Horndeski theories [419, 420].
In fact, no-hair theorems also exist for stars in shift-symmetric scalar-tensor theo-
ries [421-424]. Nonetheless, it turns out that there is a single coupling term in the
Horndeski class that gives rise to hair: a linear coupling between the scalar and the
Gauss-Bonnet invariant [420, 425], given by

G = RMP7Ryyo0 — 4 R R,y + R (2.8)

Considering that the Horndeski class contains all actions for a massless scalar non-
minimally coupled to gravity that yield second order equations upon variation, ab-
sence of hair actually seems to be the norm rather than the exception for scalar fields.
Indeed, known hairy black hole solutions circumvent theorems by evading one or
more of their assumptions, see e.g. [381, 397, 415, 418, 420, 426, 427]. An interesting
alternative isgiven by theories in which both vacuum solutions with and without
hair can coexist. These have been considered only recently, as the first models of
black hole spontaneous scalarization appeared in the literature [428, 429]. For concrete-
ness, consider the action

5= [ x5 (R- 39,07+ 0)0), 29)

where f is some function of ¢, and where we have also set 871G = ¢ = 1. Varying
the action with respect to ¢ yields

D¢ = —f'(¢)9, (2.10)

where f'(¢) = df /d¢. Assume that f'(¢o) = 0, for some constant ¢. Then solutions
with ¢ = ¢ are admissible and they are also solutions of general relativity. A no-
hair theorem [428] ensures that they are unique if they are stationary, provided that
f"(¢)G < 0. The fact that black holes in general relativity are stationary solutions
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is not sufficient to conclude that there are no observable deviations, as the perturba-
tions over these solutions do not generally obey the Einstein field equations [430].
These perturbations may even grow unstable, thus rendering the general-relativistic
solutions irrelevant. Indeed, one can think of — f”’G as the (square of the) mass of the
scalar perturbation on a fixed background. Hence, the condition above ensures that
this effective (squared) mass is positive. If the condition is violated and the effective
(squared) mass becomes sufficiently negative, the general relativity solutions suffer
a tachyonic instability and the scalar develops a nontrivial profile, in strict analogy
to the neutron star scalarization phenomenon described above.

Black hole scalarization is fairly well understood [149, 420, 425, 427-429, 431,
432]. It starts as a linear tachyonic instability and, as such, its onset is controlled
only by terms that contribute to linear perturbations around general relativity solu-
tions. In this sense, action (2.9) with f(¢) = 7¢?/2 is sufficient to study the onset of
scalarization [428, 433]. As the instability develops and the scalar grows, nonlinear
terms become increasingly important and eventually quench the instability. Hence,
the endpoint and properties of the scalarized solutions are actually controlled by
the nonlinear interactions of the scalar [434, 435]. A characteristic example is that
in models with different nonlinear interactions, scalarized solutions have different
stability properties [434, 436].

Theories that include couplings to the Gauss-Bonnet invariant have been intro-
duced in section 2.1.4, and the onset of scalarization in high-spin black hole back-
grounds will be discussed extensively in Chapter 4.

2.2.3 Screening mechanisms

Scalar extensions to the gravitational standard model have been traditionally con-
sidered for their cosmological applications, although agreement with both local and
cosmological scales is not always easy to ensure. In fact, these models naturally in-
troduce deviations from general relativity in the weak-field regime and are severely
affected by Solar-System bounds [1, 2, 29, 408, 409]. S Particularly interesting is the
existence of classes of scalar-tensor theories that are endowed with screening mecha-
nisms devised to hide non-general-relativistic effects on astrophysical (local) scales,
while leaving room for modifications on cosmological ones. To introduce the dif-
ferent varieties of screening mechanisms, we shall consider a general scalar-tensor
theory described, schematically, by the following action for the scalar sector [437]

s=[dx/g [—;zmp, 3, )0up0up — V(9) +a(@)Tu|  @1D)

where ¢ is the dimensionful scalar field, V is a generic potential, Z*" and a(¢) Ty, are
a schematical representation of,respectively, the derivative self-interactions of the
field and its universal coupling to the trace of the stress-energy tensor of matter, T.
Specializing to a single source object of mass M and radius R in the static Newtonian
limit (where T, typically reduces to ~ —p) the scalar perturbation equation reduces
to a generalized Poisson equations [438]

Z1($)9ipdj¢p + m*(p)p = 8nGa(P)p, (2.12)

where ¢ is a background solution for the scalar field, m? is an effective mass term
derived from V, and p is the rest-mass density of the object. The schematic solution



28 Chapter 2. Scalar tields beyond General Relativity

to this equation can be written as

“(‘)4f3§£fe
Pz
and based on the detailed mechanism that suppresses (2.13) and its gradient, which
is proportional to the fifth-force mediated by the scalar field [438], one can distin-
guish the three cathegories of screening;:

—m(@)r (2.13)

e ZU > 1, kinetic screening based on the kinetic factor becoming large in the
nonlinear regime. Examples are k-mouflage [439-442] and Vainshtein screen-
ing [443-446];

* & < 1, screening based on an environmentally-dependent coupling of the scalar
field to matter becoming weak in dense matter distributions. Such mechanisms
are realized in symmetron [447-449] and dilaton models [450, 451]);

* mR > 1, environmentally-dependent mass screening mechanisms, in which large
densities correspond to the scalar dynamics being suppressed by the large
mass. Screening in chameleon models of gravity follows this principle [452,
453].

Proof of the effectiveness of screening mechanisms in suppressing deviations from
general relativity is typically provided in the weak-field regime, but there are counter-
examples that indicate they might break down when considering higher-order oper-
ators [454-460] or strong-gravity regimes such as those of isolated neutron stars [461]
or binary systems [462].

Chameleon screening is realized by endowing the scalar degree of freedom with
an effective mass that depends on the ambient matter density: in high-density envi-
ronments (e.g. compact objects, our solar system or even galaxies and clusters) small
perturbations are suppressed by the large inertia of the field, while on larger cosmo-
logical scales lower densities allow for quintessence-like effects, arising from to the
non-trivial self-interaction potential [453]. Moreover, the scalar charge of compact
objects receives contributions only from a small volume located close to the sur-
face: this thin-shell effect effectively suppresses the scalar force [452]. The chameleon
screening mechanism in highly-relativistic compact stars will be discussed in details
in Chapter 5.
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Chapter 3

Black holes and plasma-driven
superradiance

3.1 Black holes, superradiance and superradiant photons

The detection of gravitational waves [463] by Advanced LIGO [159] and Advanced
VIRGO [464] was a major milestone in the history of astronomy. Not only have
these observations confirmed directly the existence of gravitational waves (already
indirectly proven by binary pulsars [49, 50]), but they also provide a way to test
astrophysical models for the formation of binaries of compact objects [465] and to
verify the validity of general relativity in the hitherto unexplored highly relativistic
strong field regime [226, 227]. Crucial in both respects are the spins of the binary
components, which could in principle be large, especially for black holes.

Black hole spins provide useful diagnostics to discriminate between astrophysi-
cal formation scenarios for binaries [466, 467], e.g. the field binary formation chan-
nel [468] vs the dynamical one [469]. Moreover, thanks to superradiance (see sec-
tion 2.2.1), moderate to large black hole spins would allow for testing the presence
of ultralight bosons [374, 375, 383, 384, 387]. Unfortunately, LIGO and VIRGO have
so far gathered (mild) evidence for non-zero spins in only two of the ten black hole
binaries detected during the first and second run of observations [470, 471]. This is
quite surprising, since black holes in X-ray binaries have spins (measured by fitting
the continuum spectrum [85] or iron Ku lines [472]) that seem distributed uniformly
between zero and the maximal Kerr limit [473], and because field binary formation
models tend to predict non-vanishing values for the effective spin parameter x.sr
measured by LIGO-VIRGO [474]. Since x.fy is only sensitive to the projections of the
spins on the orbital angular momentum direction, it is of course possible that LIGO
binaries may simply have moderate/large and randomly oriented spins. However,
in the field binary scenario, random spin orientations are generally produced only
by large supernova kicks [475, 476], which are disfavored by the merger rate mea-
sured by LIGO-VIRGO [477]. The dynamical formation channel, where random
orientations are natural [478], typically predicts fewer coalescences than observed.

An interesting proposal to explain the low values of the LIGO-VIRGO black hole
spins was put forward by Conlon and Herdeiro [479] (see also Ref. [480]), who noted
that spinning black holes surrounded by a tenuous plasma may be susceptible to
superradiant instabilities. Indeed, the plasma induces a change in the dispersion
relation of photons propagating through it [481]: w? = k> + w’?; , where n, is the
electron number density and & = ¢?/(47) is the fine structure constant in natural
units (G = = ¢ = 1, which we will adopt throughout this chapter). As a result,
photons acquire an effective mass equal to the plasma frequency, u = wp, defined
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4”“”6 =12:1072 [~ — (3.1)
10— 3cm

For 1, ~ 1073-1072 cm™3, corresponding to typical conditions in the interstellar
medium (ISM) [482—484] the photon develops an effective mass y ~ 10712-10~10
eV, whose wavelength is comparable to the gravitational radius of LIGO-VIRGO
black holes. Indeed, for these densities the "mass coupling” —i.e. the ratio between
the black hole’s gravitational radius M and the Compton wavelength 1/p —is

UM = (&i) (10]1’%\/) ~ 0(0.01)-0(1) (&i) . (3.2)

Since the fastest growing superradiant modes are found numerically for nearly ex-
tremal black holes (xy = 0.99) and uM ~ 0.42 [485], Ref. [479] argues that LIGO-
VIRGO black holes immersed in a plasma with 1, ~ 1073~10~2 cm 2 are potentially
unstable to superradiance, i.e. rotational energy can be extracted from them and
transferred to a "photon cloud" surrounding the black hole, and as a result the black
hole spin decreases.

As already pointed out in Ref. [479], however, one obvious problem with this sce-
nario is its applicability to accreting black holes in the real Universe. The standard
picture of accretion onto black holes assumes that the accreting gas will generally
have sizeable angular momentum per unit mass and will form an (energetically fa-
vored) disk configuration as it spirals in [105]. Because of effective viscous processes
(probably due to magneto-hydrodynamic turbulence [486, 487]), angular momen-
tum is trasferred outwards and as a result a net mass inflow arises toward the black
hole. The gravitational energy of the gas will be dissipated into heat, which will be
either radiated away or advected directly into the black hole.

Accretion disk models can be classified according the accretion rate M (see e.g.
Ref. [488] for a review). A natural scale for accretion is given by the Eddigton accre-
tion rate Mgy = Lgg4/1, where L, is the Eddington luminosity and 7 the disk’s
radiative efficiency. For M < Mgy, the radiative efficiency is sufficient to remove
the heat, and the result is a cold geometrically thin disk [107, 489, 490]. The case
M > Mgy, corresponds to a thick disk, where high accretion rates produce high
densities that make the gas optically thick and the radiative transport inefficient.
This results in a hot and "inflated" disk [491, 492]. If instead M < Mg, the radia-
tive transport is not sufficiently effective to cool down the (low density) gas, which
therefore expands into quasi-spherical configurations, often referred to as Advection
Dominated Accretion Flows (ADAFs) [113-115]. Note that ADAFs, even though dy-
namically very different, are geometrically somewhat similar to spherically symmet-
ric Bondi accretion flows [493]. The latter correspond to purely radial accretion of
matter, and are a good approximation for compact objects accreting gas with negli-
gible angular momentum from the surrounding interstellar medium.

A common element to all these accretion models is the increase of the matter
density as the black hole is approached, even though the density may be as low
as 1, ~ 1073 cm3 far away from it. Notice, for example, that the Bondi accre-
tion model predicts that the plasma number density should be enhanced by a fac-
tor vs(c0) 3, where vs(o0) is the speed of sound at infinity [493, 494]. Therefore,
number densities close to black hole horizons are expected to be potentially several
orders of magnitude higher than in the surrounding insterstellar medium. Simi-
larly, ADAF models in the literature also feature very high electron number densities

by
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1, ~ 10 (Mg /M) cm~3 [115] near the black hole horizon.

Ref. [479] thus concluded that only relatively "bare" black holes could be prone
to plasma-driven instabilities, e.g. black holes surrounded by a tenuous plasma be-
cause they may have been kicked out of their dense accretion disk after a merger,
or because they formed from a violent supernova explosion that blew away most of
the stellar material. Nevertheless, it is not at all clear whether superradiance will
occur even under these favorable conditions, because the increase of the plasma
density near the black hole (and particularly inside the ergoregion) was not studied
by Refs. [479, 480], and may suppress the instability. In fact, it seems likely that the
plasma density near the horizon may increase not only because of accretion, but also
because of pair production [274] due to the large electromagnetic field produced by
the instability.

Note that on physical grounds one would expect the plasma density in the er-
goregion, and not at spatial infinity, to play a role, since the existence of an er-
goregion is crucial for superradiance and the Penrose process (as it allows for the
presence of the negative energy modes responsible for the extraction of rotational
energy from the black hole). Indeed, a well-known semi-analytic result by Eard-
ley and Zouros [495], valid for scalar perturbations with constant mass y > 1/M
and based on a WKB approximation scheme near the peak of the effective potential,
seems to suggest that high densities close to the black hole would produce instabil-
ities with very long and practically unobservable timescales, i.e. 71 ~ 107 ¢1-84Mp pg
for the fastest growing mode [495].

However, another important analytic result by Detweiler [360], valid in the op-
posite limit My < 1 and based on matching two asymptotic wave solutions (one
valid near the black hole and one near spatial infinity), seems to suggest instead that
only the density at large distances from the black hole should matter. Indeed, in
the matching procedure of Ref. [360] the scalar’s mass (corresponding to the plasma
frequency and thus to the density) only appears in the solution valid near spatial
infinity, and not in the near-black hole solution. The resulting instability timescale
is [360] 17 ~ 48(uM)~°M/x.

In the light of the conflicting intuition from these analytic results, we will under-
take in this work a detailed numerical analysis of superradiance for fast spinning
Kerr black holes surrounded by tenous but accreting plasmas. To this end, we adopt
a simplified toy model where we represent the electromagnetic field propagating
in a plasma by a scalar field with a position-dependent mass. The dependence on
position is required to identify the mass with the plasma frequency, whose local
value changes with the density. We evolve the Klein-Gordon equation for this toy
scalar field in the time domain, by using a spectral technique that was introduced
in Ref. [496], and which allows for efficiently integrating over long timescales. We
consider several choices for the density profile of the plasma, in order to explore the
impact of the different astrophysical accretion models outlined above.

This chapter is organized as follows. In Sec. 3.2, we outline the physical setup
and present several models for the plasma density profile that we employ. In Sec. 3.3
we present our numerical method, while in Sec. 3.4 we describe our results. Our
main conclusions are discussed in Sec. 3.5. Throughout this work, we will adopt a
signature (—, 4, +, +) for the metric. Partial time derivatives will be denoted by an
overdot, and radial derivatives by a prime.
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3.2 Physical Model

3.2.1 Background and perturbation equations

In general relativity, the spacetime of a rotating black hole is described by the Kerr
vacuum solution of the Einstein field equations. In Boyer-Lindquist coordinates
{t,1,0,¢}, the corresponding line element is

ds? =gudxtdx"

(14—-2£4r)dt2 il@f@ﬂlﬁdtdcw P ar? 4 p2d0*+
2 .
+(ﬂ+ﬁ+Z”ﬁ?“%aﬁwﬁ, (3.3)

where M is the mass of the black hole, 1 = YM, A = 1> — 2Mr + a* and p2 =
r? + a% cos? 6. On this background, we study the evolution of scalar perturbations
with a mass term depending on r and 6 (to be specified in detail in the following), as
a toy model for photons propagating in a plasma surrounding the black hole.
The evolution of the perturbations is governed by the Klein-Gordon equation on
a curved background:
(O—4?(r,0)) ¥ =0. (3.4)

The explicit form of the d’Alembertian differential operator is given by

1
I:l‘{f - 78[ - yVaVT ’ 3.5
7= (v/—88"aY) (3.5)

where g is the determinant of the metric.
Since the Boyer-Linquist azimuthal coordinate ¢ is known to be singular on the
Kerr event horizon, we change it to Kerr-Schild angle, ¢, defined by

d¢=m+§w. (3.6)
We also change the radial coordinate r to the tortoise radial coordinate, x, defined by

r2 +a2

dx = A

dr. (3.7)

Using then Egs. (3.6) and (3.7) in Eq. (3.4), we obtain the following explicit expression
for the Klein-Gordon equation in our coordinates:

2aA
[Zzatt +4aMro;y — (r2 + az)zaxx — 2a(r2 + az)ax(,, +24%A0, + ”—a

2 2
A(—899+c0t989+ '12 dy )—I—A(—M——a—i—(r + a® cos® 0) u? (r,G))}‘I’zo,
sin? 7 (38)

where ¥? = (12 4 a%)? — Aa® cos? 6.

From Eq. (3.8), one can observe that the separability of the perturbation equations in
a radial and an angular part depends crucially on the effective mass term. Indeed,
only the special choice p%(r,0) = (F(0) + G(r))/(r*> + a® cos? §) renders the equa-
tions separable [381]. Except for this special case, the equations are non-separable,
and the properties of the perturbations (with particular regards to their spectrum
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Model | Mass profile

O [0 =1 ()
I | y2(r)sin®0
D | wi(r) + p?
(IV) y%(r) sinZ 0 + u?
V) | 1) = 140O(r —ro) (1 20 ()"
(VD | p2(r)sin? 6
(VID | pi(r) + pi
(VIID) | p3(r) sin? 0 + p2

TABLE 3.1: Mass terms models considered in this work. The effec-
tive mass at the horizon is chosen in the range uy = (1-5)M~!,
corresponding to ng ~ O(10) — O(10%)(Ms/M)? cm=3 .The con-
stant mass term can take the values y. = {0.1,0.2,0.3,0.42, 0.5}M_1,
with corresponding densities in the range n. ~ O(0.1) -
O(1)(Ms/M)?>cm™3.  The slope A is chosen among A =
{1/2,1,3/2,2}. For models featuring an inner edge, the latter is
placed at vy = {rISCO/3/ 6, S}M.

and their possible superradiant instabilities) are more conveniently computed in the
time domain (i.e. via an initial value evolution) than in the frequency domain.

3.2.2 Mass terms

The various mass terms that we consider (corresponding to different density profiles
for the plasma) are summarized in Table 3.1. Model (I) aims to qualitatively describe
Bondi spherically symmetric accretion. The latter predicts a power-law density pro-
file [493], which in turn gives, through Eq. (3.1), a mass term

2 2 (T
Ho = Wh (7) : 3.9)
The normalization is provided by the mass up at the horizon r, while the radial
profile is set by the slope A. In this work, we explore values uy = (1-5)M ™!, which
can be converted [via Egs. (3.1) and (3.2)] into plasma densities near the horizon
ny ~ 0(10) - O(10?) (Mg /M)? cm 3.

We adopt such low values of the density to focus on the case of black holes ra-
dially accreting from the insterstellar medium, like in Ref. [479]. As we will discuss
in Section 3.4, larger values of i will not produce superradiant instabilities. Bondi
accretion in the transonic flow regime would predict a slope A = 3/2, but we also
explore the impact of different values A = {1/2,1,3/2,2}.

In model (I), we multiply the mass term of model (I) by sin? 0:

1 (r,0) = uj(r)sin®6. (3.10)

Model (II) therefore attempts to capture the effect of an axisymmetric "thick" disk
that qualitatively realizes the ADAF models mentioned in the introduction. The
case of a much thinner disk than model (II) is difficult to study with our code, for
reasons that we will discuss in the following. Nevertheless, we will make the case
that model (II) captures the main qualitative effect of axisymmetric accretion.
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In order to understand the interplay between the values of the density (and ef-
fective mass) far away from and close to the black hole, in models (III) and (IV) we
consider respectively the mass terms

A
kA = wdh (5F) 4 (3.11)

and N
KA, 0) = iy () sin?0 442, (3.12)

where the additional constant term serves as a non-trivial asymptotic value p(r —
o) = i, and we choose p. = {0.1,0.2,0.3,0.42,0.5} M~! [corresponding to plasma
densities n ~ {0.1,0.5,1.2,2.3,3.2} (M /M)?cm~3]. We recall that u = 0.42M~!, in
the constant mass case, gives the fastest growing superradiant mode for a = 0.99M [496],
which will be also our choice for the spin parameter.

In order to account for the possibility that the accretion disk may be truncated at
some finite distance from the black hole, we also consider the effective mass radial
profile

10

i(r) = O(r —ro)u (1 - LO) (f)A , (3.13)

r r

where r is the radius of the disk’s inner edge. In our numerical experiments, we
choose g = {r1sco,3,6,8} M, where rsco is the radius of the innermost stable circu-
lar orbit around a Kerr black hole. This radial profile is employed, respectively with
and without a sin? 6 factor, in models (V) and (VI).

Finally, models (VII) and (VIII) only differ from models (V) and (VI) because
of the addition of a constant mass term . = {0.1,0.2,0.3,0.42,0.5} M~'. The latter
allows for mimicking the presence of a spherical "corona" inside the disk’s inner
radius, whose density is non-vanishing but suppressed relative to that of the disk.

3.3 Numerical method

3.3.1 Spectral decomposition

Our time-domain evolution code for scalar perturbations with a space-dependent
mass term utilizes the setup described in Ref. [496] for the constant mass case. We re-
fer the reader to that work for more details, and we focus here solely on the changes
that we had to introduce to deal with a non-constant mass term.

The method is based on a decomposition of the scalar field in a series of spherical
harmonics (see e.g. appendix A in Ref. [497]):

¥(t,r,0,¢) =Y i Wylm(e)em. (3.14)

By inserting this decomposition into Eq. (3.8), we obtain a set of coupled partial
differential equations in the t and x variables. Because of axisymmetry, different
m-modes decouple from one another, but the decomposition in spherical harmonics
generates couplings for each [-mode to the [ = 2 modes.

A first set of couplings arises from the cos? f terms present both in the coefficients
of the time derivatives of the field and in the coefficient in front of the mass term [c.f.
Eq. (3.8)]. The projection of these terms on the basis of spherical harmonics can be
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computed by using

. O 2 2141, .
m __ 2 _ b < ] .
cj = (Im| cos” 0|jm) = 3 + 3\/ 1 1(],2,m,0\l,m) (,2,0,0|1,0), (3.15)

where we have defined
1
(m\f(@)jm) =27 [ i, (0)f(6)Y; (0)d(cos0), (316)

and the notation (j1, jo, m1, ma|j3, m3) is used for the Clebsch-Gordan coefficients [498].

The cos? 0 terms generate couplings to 77,15, which are present also in the mass-
less case, and to y;1,, which appear in the constant mass case. Both of these "classes"
of couplings are "geometric" in nature, as they arise from the g'' element of the in-
verse metric. Let us stress that both classes of couplings can in principle be elimi-
nated by projecting onto a basis of spheroidal (rather than spherical) harmonics [499,
500], at least in the constant mass case. Note however that spheroidal harmonics are
not easy to manipulate in practice, since there are no general analytic expressions for
them. The latter is presumably the reason why Ref. [496] used spherical harmonics
even in the constant mass case.

Another different set of I-couplings arises from the angular dependence of the ef-
fective mass term. For this reason, these couplings do not appear in the evolution of
scalar perturbations with a constant mass term studied in Ref. [496]. In our problem,
couplings of this kind are encountered only in the case of the 6-dependent mass pro-
file used in models (II), (IV), (VI), (VIII), and can be computed by projecting sin® §
and sin? 0 cos? 0 as follows:

20 2 [2j+1

(Im| sin® 0| jm) = = 3 m<j,2,m,oyl,m> -(j,2,0,0|1,0), (3.17)

m __

S]l

i 35 8 [2j+1
m_ .2 2015\ ! i ] . Nz
= (Im| sin” 0 cos” 0|jm) = - +—35 35 721+1(],4,m,0|l,m> <],4,0,0|(l,0).)
3.18

The angular dependence of our mass models therefore generates additional cou-
plings to ¢;1, and .4, as a result of the intrinsic non-separability of the scalar
perturbation equations. Therefore, these couplings cannot be eliminated, even if we
were to perform a decomposition into spheroidal harmonics.

Finally, we stress that in practice we cut off the decomposition (4.3) at a maxi-
mum angular momentum number, [y, which we vary to check the robustness of
our results.

cs

3.3.2 Perturbation equations

By inserting the decomposition (4.3) into the scalar perturbation equation and intro-
ducing the auxiliary variable 71 = ¢, we can reformulate the problem in first order
form. The result is a system of coupled partial differential equations:

(Z%o) + azAc}’]) 7t + @A (¢ o7t + ¢ _p70) =

A
(r* + a2)2 v+ [Ziam (r* +a*) — 2a2? W) — diamMrr — Vo — Vi — Vieg — Viag,
(3.19)
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where we defined

2
) = (P +a?)" —a’a, (3.20)
2M a? 2iam
VO—A[Z(I+1)+r<1—Mr>+ ; }1/)1, (3.21)

Vi=A [‘ulz(r) (r* + a’c)} + 17 + aPes])) + u2 (r* + a’c)}) }1/]1 , (3.22)

Vieo = A [%2(”) (’Z2CTI+2 + 7’25?,11+2 + azcszzuz) +y§a2cﬁ+2} Yoo+ [(1+2) = (1-2)],
(3.23)
Viea = DM (r) (aPes]i ) Y+ [(1+4) — (1—4)]. (3.24)

Eq. (3.21) gives the effective potential for a scalar in the Kerr spacetime. That
potential is obviously common to all the mass models that we consider (and to the
massless and constant-mass problems as well). In Egs. (3.22) and (3.23), the terms
proportional to p? are also present in the constant-mass case, while the terms pro-
portional to y? are typical of the inhomogenoeus-mass problem. The index i selects
between the two radial profiles given by Egs. (3.9) and (3.13). As already discussed,
terms in (3.22), (3.23) and (3.24) that are proportional to 5711 and cs}’] are only en-
countered in models (II), (IV), (VI) and (VIII), which feature an axisymmetric mass
term.

3.3.3 Evolution scheme

We evolve numerically Eq. (4.4) by the method of lines. We obtain a set of ordinary
differential equations by approximating the spatial derivatives with a fourth-order
finite-difference scheme in the interior of a finite uniform grid in the tortoise coor-
dinate x. The grid extends typically from xg = —300M to xo = 600 —1000M, with
typical values of the spacing Ax = 0.125M. In more detail, we employ a symmet-
ric fourth order approximation scheme for the first and second derivatives of the
variables at the inner points of the grid:

) “Yir2 + 81 — 8Yi1 + i

P; OAx (3.25)
— iy + 16941 — 309; + 16¢; 1 —
%(/ ~ ¢1+2+ lpz+1 12A;f21+ 1P1 1 lpz 2 (3.26)

where we have defined ¢! = ¢'(x; = xg + iAx). In the neighborhood of the end-
points of the spatial grid we resort to a symmetric but lower order, O(Ax?), deriva-
tive scheme

r_ Yir1 —Pia
P; ~ T oAr (3.27)
Y =29+ i
1,01’-/ ~ Ax; ! (3.28)

At the innermost and outermost points of the grid we impose appropriate bound-
ary conditions, discussed in details in the following subsection. The time evolu-
tion of the equations is performed by a fourth-order Runge-Kutta algorithm with a
time-step properly chosen to satisfy Courant-Friederich-Lewy bound for numerical
instabilities, At = xAx, with ¥ < 1. Here, we choose k¥ = 0.8.
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3.3.4 Boundary conditions

Boundary conditions play a key role in the study of the spectrum of characteristic
modes of a system. Physical wave solutions in the near-horizon region of a Kerr
spacetime must propagate into the event horizon (which corresponds to r, — —o0),
i.e. they must behave as ¢ o« e “(+7) when r, — —oo. This reflects the known
fact that the event horizon effectively behaves as a one-way membrane for clas-
sical fields [501]. These boundary conditions , which one can equivalently recast
as  ~ ' when r, — —oo, are usually referred to as "ingoing" (into the horizon)
boundary conditions , and are the ones typically adopted to determine e.g. the spec-
trum of quasi-normal modes of massless scalar perturbations [273]. At spatial infinity,
r« — oo, the general solutions to a wave equation are comprised of both ingo-
ing (i.e. moving into the grid) and outgoing (i.e. moving away from the systems)
modes, i.e. a generic solution will be ¢ ~ Ae~@(+7) 4 Be~iw(t=r-) (with A and B
constants). If the system is isolated, as assumed in the calculation of quasi-normal
modes [273], it is appropriate to impose outgoing boundary conditions ( ~ —¢')
to eliminate fluxes entering the system from infinity. However, when considering
fields that have a mass y # 0, physical modes with frequency |w| < u!/? are expo-
nentially (Yukawa) suppressed at spatial infinity. For this reason, when solving for
the quasi-bound states of massive perturbations, one typically adopts "simple zero"
(i.e. reflective) boundary conditions at spatial infinity, (r — o0) = 0, as considered
in [496].

Implementing proper physical boundary conditions in a numerical method is a
non-trivial task. In our numerical setup, for example, the left and right grid bound-
aries are placed at finite values of the tortoise coordinate, and imposing any bound-
ary condition on them generates spurious reflections of the scalar perturbations. In-
going/outgoing boundary conditions involve spatial derivatives of the field, which
we approximate with an asymmetric fourth order scheme, e.g. at the innermost
point of the spatial grid (i = 0) we impose

. 11¢;—y — 18y~ Py — 21;—
wi:O _ le{zo ~ ¢z_0 ¢1_61A"; le_z 7701_3 ) (329)

Thus, imposing such boundary conditions generates a spurious reflected flux of the
same order of the numerical error, ~ O(Ax*). For outgoing boundary conditions
at the right boundary, we adopt the same scheme. The si ro boundary conditions
behave instead as a perfect mirror: they reflect back the entire incident flux (includ-
ing the non-superradiant modes) and give rise to unphysical instabilities known as
"black hole bombs" [369], which could potentially pollute the spectrum of the super-
radiant modes.

To deal with these artificial reflected scalar fluxes at the left boundary of the grid
(i.e. at the horizon), we utilize the same solution suggested in Ref. [496]. We adopt
the finite-difference implementation of an ingoing boundary condition [Eq. (3.29)],
and we also define a near-horizon region where the equations are modified by the in-
troduction of an artificial damping, in the spirit of the perfectly-matched layers (PML)
technique. This way, the propagation of any spurious reflected signal is effectively
suppressed. For further details about the PML technique, we refer the interested
reader to Ref. [496] and references therein.

At the right boundary, instead, we observed that for our problem the choice of
an outgoing boundary condition is preferable over the simple zero boundary con-
dition used in Ref. [496]. In fact, we found that an outgoing boundary condition
yields smaller reflected scalar fluxes than the simple-zero condition. The reason of
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Convergence order test — Integrator, O(Ath
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FIGURE 3.1: Convergence order test - time discretization. Convergence

order in At vs time. The convergence order is estimated as n.(t) =

log, (|®1 — ®s]/|®; — a]), where ©F = LI gy, (x = ;1)

with r labelling the resolutions At/M = {0.08,0.04,0.02}. The fig-
ure shows the moving average of n.(t) with period ~ 1.5M.

the poorer performance of the simple-zero boundary condition relative to what was
observed in Ref. [496] is probably to be ascribed to the non-constant mass term that
appears in our problem. Since the plasma density, and thus the mass term, increase
when approaching the black hole, the potential barrier is higher near the ergoregion
in our scenario. A higher potential barrier is more effective at reflecting back inci-
dent modes generated by the spurious reflection at spatial infinity. As a result, these
modes remain trapped between the outer grid boundary and the potential’s peak,
polluting the numerical evolution. This behavior is instead suppressed if we use
outgoing boundary conditions at spatial infinity.

3.3.5 Validation

We have performed several tests to validate our results. First, we have tested that
the difference of the results obtained with various time and space resolutions scales
as expected from our finite difference scheme, as shown in Figs. 3.1 and 3.2.

Second, we have extracted from our evolutions the quasi-normal modes of the
scalar perturbations of the Kerr spacetime, and obtained results in good agreement
with the frequencies tabulated in the literature [273]. We have also computed the
superradiant spectrum for a scalar field with a mirror (black hole-bomb) and for a
scalar field with a constant mass term, and found good agreement respectively with
the approximated formulae of Ref. [369] and with the numerical results of Ref. [496].
Moreover, we have reproduced the frequency domain results obtained by Ref. [381]
for a scalar field with a specific mass term yielding separable perturbation equations.
Finally, we have verified that the total energy and angular momentum of the scalar
tield (supplemented by the scalar fluxes at infinity and through the horizon) are con-
served to within a good approximation along our numerical evolutions, and we have
checked the robustness of our results against changes of the "internal” parameters of
our code (e.g. grid size, step, angular momentum cutoff and PML parameters).



3.4. Results 39

Convergence order test — Operator, O(Ax?)
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FIGURE 3.2: Convergence order test - space discretization. The same as
Fig. 3.1, but for the convergence order in Ax vs time. The resolutions
used are Ax/M = {0.25,0.125,0.0625}.

3.4 Results

In the following, we present examples of numerical results for the time-domain evo-
lution of the scalar field around a Kerr black hole with spin 2 = 0.99M, with the
various mass terms reviewed in Sec. 3.2 and Table 3.1.

3.4.1 Models (I) and (II)

We find no evidence for quasi-bound states and for superradiant instabilities in mod-
els (I) and (II), in which the asymptotic mass value at infinity is zero. In fact, in
these numerical experiments the scalar field decays exponentially in time, and the
extracted spectrum resembles the usual Kerr quasi-normal mode ringdown, though
with modified frequencies. A representative example of the spectra that we obtain
is given in Fig. 3.3, where we show the time evolution of the amplitude of the scalar
mode | = m = 1 in a realization of model (I).

From these results, we conclude that a non-vanishing asymptotic mass value at
infinity is a necessary condition for the existence of quasi-bound states and superra-
diant instabilities. This can be understood by looking at the effective potential in the
limit a — 0: if Vogs(r — 00) — const and Ve’ff(r — o0) — 07, then the potential fea-
tures a trapping well that can host quasi-bound states [502]. As one can immediately
notice, this is not the case for models where V,¢r ~ O(1/r") at infinity.

As we have already mentioned, however, the quasi-normal mode frequencies
are modified by the presence of a plasma-induced effective mass, with respect to
those of a massless scalar on a Kerr background [273]. We find that the presence of
the plasma can sustain the quasi-normal oscillations for slightly shorter times than
in pure vacuum. As expected, in the limit ug — 0, one recovers the usual Kerr
spacetime quasi-normal modes.
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FIGURE 3.3: Quasi-normal mode ringdown. Example of ringdown in
model (I), with Mupy = 1 and A = 3/2: the plot shows the amplitude
of Py, (with [ = m = 1), extracted at x = 0. This mode decays quickly
over time, which signals stability. As discussed in the main text, this
is to be expected since mass profile goes to zero at infinity (u(r —
c0) = 0). The extracted quasi-normal mode frequency Mw = 0.566 —
i4.99 -1072 is to be compared with the frequency for a massless scalar
field in Kerr, Mw = 0.493 — i 3.67 - 1072 [273]. Qualitatively similar
results are obtained for the other modes, and for model (II).

3.4.2 Models (IIT) and (IV)

For these models, superradiant modes exist with instability timescales typically longer
than in the corresponding constant mass problem. In more detail, we find instability
timescales of the order of 77 = Im(wM)~! ~ 10''M, which is still shorter than the
typical accretion timescale, and thus potentially relevant in astrophysics.

Nevertheless, these instabilities appear to be very "fragile", as they are present
only in a small region of the parameter space of models (III) and (IV). In fact, we find
no superradiant modes for iy > 2M ™1, i.e. a small increase (from ny; ~ 0.1 cm 3 to
ny ~ 0.5 cm~?) in the density at the horizon is sufficient to quench completely the
superradiant instability. When that is the case, the time evolutions of the scalar field
show a damped quasi-normal mode ringdown, like for models (I) and (II), but with
typically longer decay times ~ 10° — 10!°M. Similarly, as discussed in the previous
section about models (I) and (II), a non-zero value for the mass ji. at spatial infinity
is needed to get superradiant instabilities, but as soon as y.M is above a critical value
HeritM =~ 0.5 the instability disappears.

The details of the time evolutions depend also on the exponent A that controls the
slope of the density (and thus mass) profiles: the smaller A, the slower the decrease
of the mass profile toward its asymptotic value, and the shorter the lifetime of the
stable modes. Moreover, we also find that there is a critical exponent, Ay >~ 2,
below which no superradiant modes exist at all.

Fig. 3.4 shows examples of two scalar field evolutions. The two upper panels
show a realization of model (III) that is subject to superradiant instabilities, while
the two lower panels correspond to a realization with higher effective mass at the
horizon, and thus no instabilities. In both cases, we show the power spectrum (i.e.
the absolute value of the Fourier transform of ¢;,,, with I = m = 1), where one can
clearly see the dominant mode and its overtones, as well as a plot of the time evo-
lution, which is dominated by the main mode and which shows a clear exponential
growth/decay in the unstable/stable case respectively .
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Overall, we find that the differences between the spherically symmetric model
(ITI) and the axisymmetric model (IV) are minor, although "thick" disks [model (IV)]
seem to produce slightly faster instabilities.

3.4.3 Models (V) and (VI)

In these models, in which the mass (and plasma density) profiles feature an inner
edge but go to zero at spatial infinity, we find both stable quasi-normal modes and
superradiantly unstable modes. Fig. 3.5 shows examples of both.

Mass profiles with the inner edge placed close to the horizon —rg = r5co, 3M
— only show signs of stable modes. We have compared the quasi-normal mode fre-
quencies and decay times extracted from our simulations with the corresponding
quantities for massless scalar perturbations on a Kerr background [273]. We find
that, for fixed rp, in the limit ; — 0 one correctly recovers the massless Kerr quasi-
normal modes: Re(Mw) — 0.493, Im(Mw) — 3.67 - 1072, for a = 0.99M. In the
opposite limit of increasing yp, Re(Mw) grows rapidly, while the decay time shows
indications of a maximum around g ~ 1M~! and then relaxes to an almost con-
stant value. The latter depends on the choice of the slope and inner edge parameters
and is, in general, different from the decay time of the quasi-normal modes for a
massless scalar in Kerr.

Superradiant unstable modes appear instead only when the inner edge is placed
sufficiently far away from the horizon. To make sense of this result, one can again
rely on intuition from the shape of effective potential in the limit 2 — 0. When
ro S 3M, the peak of the mass profile and that of the effective potential for mass-
less fields are roughly in the same region, which results in a "flattening” of the total
effective potential, which in turn prevents the formation of quasi-bound states. For
ro = 6M,8M, instead, a potential well clearly appears, which can lead to the for-
mation of quasi-bound states. In fact, for rp = 6M,8M one obtains fast growing
instabilities with 7; ~ 10°M for spherically symmetric models, while instabilities
triggered by "thick" disks seem to grow even slightly faster (by a few percent). For
these reasons, we expect that similar (or even stronger) superradiant instabilities
should be present even in the limit of razon-thin disks (which we cannot simulate
numerically) with inner edge sufficiently far from the black hole. Furthermore, the
superradiant spectrum resembles closely the results obtained in Ref. [381] for mass
terms similar to ours but yielding separable perturbation equations for the scalar.

In spite of these results, we will argue in the following, when dealing with mod-
els (VII) and (VIII), that in more realistic accretion scenarios the presence of a non-
zero (albeit very low) plasma density in a quasi-spherical "corona" inside the disk’s
inner edge will likely quench these superradiant instabilities.

3.4.4 Models (VII) and (VIII)

These models show results qualitatively similar to models (V) and (VI). When the
peak of the mass profile (which is in turn set by the disk’s inner edge) is well sep-
arated from the centrifugal potential barrier, perturbations can get trapped in a po-
tential well and grow superradiantly with a typical timescale of 7; ~ 10°M. Instead,
when the peak of the mass profile overlaps with the centrifugal barrier, no quasi-
bound states can form and perturbations undergo a damped ringdown. Fig. 3.7
shows an example of superradiant mode growing over time. In the upper panel, we
present snapshots of the quasi-stationary oscillations of a superradiant mode with



42 Chapter 3. Black holes and plasma-driven superradiance

support in the ergoregion, a t different times. The lower panel, instead, shows the
fractional amplitude increment of the perturbation over the spatial grid.

Note however that models (VII) and (VIII) present a constant mass term y, mim-
icking the presence of a "corona", i.e. a (roughly spherical) region within the disk’s
inner edge where the accretion flow (and thus the density) are suppressed but non-
zero. Note that astrophysical black holes, and particularly those in intermediate
states between ADAF and "thin" disk accretion are expected to present this kind of
additional structure [503]. This corona suppresses the superradiant modes that were
found in models (V) and (VI). Indeed, as can be seen from the examples shown in
Fig. 3.6, the superradiant modes are completely quenched (for both spherically sym-
metric and axisymmetric models, irrespective of the slope A) for Mu. 2 0.42. For
a black hole of M = 10M, this corresponds to a very tenuous corona of density
ne ~ 0.02cm™>. Even higher densities in the corona are expected for realistic ac-
cretion scenarios, where the densities in the accretion disk may also be significantly
higher. This will have the effect of quenching the instabilities even further, as larger
densities correspond to large scalar field masses, which stabilize the dynamics. We
therefore conclude that realistic accreting black holes are likely safe from superra-
diant instabilities even when triggered by mass profiles, such as the ones of models
(VID) and (VIII), that exhibit a sharp cut-off at some inner edge.

3.5 Discussion

3.5.1 Conclusions

We have investigated the superradiant instabilities that Refs. [479, 480] suggested
might be triggered by tenuous plasmas (with densities 17, ~ 1073~10"2 cm > close
to those of the insterstellar medium) around spinning astrophysical black holes. We
have used a 1+1 spectral decomposition inspired by Ref. [496] to numerically evolve
scalar perturbations with a position-dependent mass on a Kerr spacetime. This
scalar is a toy model for the photon field, while the position-dependent mass term
captures the effective photon mass induced by the plasma frequency. The profile of
this mass term is a non-separable function of the radial and polar angle coordinates,
and is chosen to mimic astrophysically relevant accretion disk profiles.

From the results of our numerical experiments, we conclude that a small (~
1073-10~2 cm~3) but non-zero asymptotic plasma density at spatial infinity is crucial
for the development of superradiant modes. Indeed, mass (and thus density) pro-
tiles that decrease monotonically exactly to zero at spatial infinity do not develop an
instability in our simulations. However, even if the asymptotic plasma density at in-
finity is small and non-zero, superradiant instabilities can be easily quenched if the
plasma density increases (even slightly) near the black hole, as expected in realis-
tic accretion flows. This non-trivial interplay between the two asymptotic mass (i.e.
density) values, near the horizon and near spatial infinity, can be qualitatively un-
derstood by looking at the effective potential for the scalar in the limit of vanishing
or low spin. Indeed, one can easily see that while a constant mass term generates a
"trapping well" where quasi-bound states can form and grow exponentially, a mass
term that increases near the black hole does not allow for the formation of mimina
(and thus quasi-bound states) in the effective potential. We find indeed that plasma
densities as low as 1, ~ O(1)(Mg/M)? cm~ near the black hole are enough to
prevent the the formation of superradiant states.

A notable exception is provided by a plasma density profile exhibiting a sharp
cut-off at distances from the horizon larger than a few gravitational radii. If the
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plasma density is zero within such an inner edge, superradiant modes can form.
However, if the accretion flow (as expected in astrophysically relevant scenarios)
forms a corona with densities as low as ~ 0.02 cm ™2 (for a 10 M, black hole), even
these instabilities will be easily quenched.

Overall, our results suggest that astrophysical black holes are likely unaffected
by plasma-driven superradiant instabilities.

3.5.2 Limitations

Our work presents several limitations, which we expect should not affect our main
conclusions. First, our numerical integration scheme cannot handle plasma densi-
ties that rise too fast as the black hole horizon is approached. Indeed, large plasma
densities correspond to large scalar field masses, which make our equations stiff.
As a result, here we only consider mass terms as large as uM ~ 5, which corre-
spond to 1, ~ 3 cm ™ for a black hole with mass of ~ 10M,. While implicit-explicit
methods [504, 505] would probably allow for dealing with even larger mass terms,
the values that we consider are already enough to quench superradiant instabilities,
and on general physical grounds larger masses are anyway expected to stabilize the
dynamics even further.

Second, our numerical method cannot handle a razor-thin accretion disk, but
only "thick" disks. The reason is that to resolve a thin disk one would need to push
our spectral decomposition to multipole numbers | — co. Nevertheless, the scenario
envisioned by Ref. [479], where black holes are immersed in a tenous insterstellar
medium plasma, is expected to produce radiatively inefficient geometrically "thick"
accretion flows, which we can study with our code. Moreover, densities and accre-
tion rates in geometrically thin accretion disks are expected to be much larger than
in thick disks, which would make the effective mass term larger, thus suppressing
superradiant instabilities even further.

Obviously, another approximation that may impact our work is the choice of
studying simple toy scalar perturbations instead of a massive photon (i.e. a Proca
field). While superradiant instabilities, when present, are generally stronger for vec-
tor modes than for scalar ones [391, 506, 507], the effective potential is very similar
for scalars and vectors. Therefore, we expect that our qualitative arguments, which
relate the suppression of superradiant modes to the shape of the effective potential,
should hold even in the vector case.

We also stress that the dispersion relation given by Eq. (3.1) and which pro-
vides the effective mass term for the photon is only valid for an unmagnetized cold
plasma. This approximation is likely to break down as the temperature of the ac-
cretion disk rises close to the black hole, where magnetic fields are also expected to
be present. However, if the dispersion relation given by Eq. (3.1) is modified, it is
not even clear if superradiant instabilities would arise in the first place, even under
favorable conditions.

Note that a further increase of the plasma density near the black hole may occur
due to pair production by the large electromagnetic fields produced by the superra-
diant instability [274]. While computing this effect is beyond the scope of this work,
as it would require deriving the structure of the black hole magnetosphere produced
by the instability (which we cannot do in our scalar toy-problem), it would actually
strengthen our results, since it would lead to an even stronger suppression of super-
radiant instabilities.
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More recent work has investigated further the matter focusing on cases in which
accretion is negligible, e.g. the rotating black hole originated from a mergers ca-
pable of projecting the remnant out of its hosting galaxy (i.e. "super-kicks" [508—
511]). Their findings indicate that even in this ideal condition there are several
other mechanisms that can alter either the dispersion relation or the plasma fre-
quency itself (3.1), effectively quenching the photon superradiant instability of short
timescales [380, 512-515].
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FIGURE 3.4: Spectral analysis - model III. Power spectrum and time
evolution for two realizations of model (III), one giving a superradi-
ant instability (top panel) and one giving a stable evolution (bottom
panel), for the [ = m = 1 mode. The two model realizations are re-
spectively one with Muy = 1 (density at the horizon 1, ~ 0.13 cm ™3
for a black hole with M = 10M,), and one with Muy = 2 (n, ~ 0.52
cm 3 for the same black hole mass). Time evolutions are band-pass
filtered to avoid showing the transient due to the initial conditions.
This band-pass filter is responsible for the artifacts at the start and
end of the evolution. Dotted lines show Lorentzian fits to the power
spectra and log-linear fits to the time evolutions. The extracted fre-
quencies of the dominant modes are Mw = 0.413 +i3.99 - 10~!! and
Mw = 0.416 — i 3.61 - 10719, respectively.
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FIGURE 3.5: Spectral analysis - model V. Same as in Fig. 3.4, but for

unstable and stable modes (I = m = 1) obtained with two realizations

of model (V), namely one with an inner edge at ry = 8M (top panel)

and one where density profile is cut off at the ISCO. The top panel

shows a strong instability (WM = 0.340 + i 5.13 - 107°), while the

bottom one shows a stable evolution with dominant mode wM =
0.823 —i2.62-102.
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FIGURE 3.6: Spectral analysis - model VIII. Same as in Fig. 3.4, but for
two realizations of model (VIII), one with My, = 0.3 (top panels;
corresponding to 1, ~ 0.01 cm 2 for a black hole of 10M) and one
with My, = 042 (i.e. n, >~ 0.02 cm 3 for a 10M, black hole). Note
that the minor increase of the corona density from the top to the lower
panels is enough to quench the instability (WM = 0.412+i1.19-107°
vs wM = 0.468 — i 1.39 - 10~* for the top vs bottom case). Results are

for the | = m = 1 mode.
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Chapter 4

Black hole scalarization

4.1 Black holes in "curvature-squared" gravity

In this chapter we will focus exclusively on the onset of scalarization (see section 2.2.2),
so we will restrict our attention to quadratic scalar Gauss-Bonnet (qsGB) gravity, i.e.
f(¢) = n¢?/2 (without loss of generality [433]). The effective (squared) mass of the
scalar on a fixed background is then

e = —19. @4.1)

For the Schwarzschild solution, one has G = 48M?2/#°, which is always positive
and decreasing with r, and which yields the horizon value G(r = 2M) = 3/ (4M?*).
Hence, a tachyonic instability only occurs for # > 0, and the instability is expected to
be more violent for smaller masses. Note that in curved spacetimes %, can be some-
what negative without necessarily developing a tachyonic instability (see Fig. 4.1).
This is why the focus in the literature so far has been on 77 > 0 (or the equivalent
condition in more complicated models). However, for a Kerr black hole of mass M
and spin parameter a in Boyer-Lindquist (t, 7,6, ¢) one has

48 M2
Grers = CEan (76 1542 4 1512yt — X6) 4.2)

where, for brevity, x = a cos 0. Clearly, Gkerr is not monotonic, and can even become
negative close to the horizon. This explains the results of [148, 516], where it was
shown that rotation suppresses scalarization for 77 > 0.

We specialize to # < 0, which yields a real effective mass piesf for low black hole
spins, but which can yield an imaginary p.g for high spins. We investigate the be-
havior of linear scalar perturbations to the general relativity solution by evolving
Eq. (2.10) on a Kerr background, with the goal of assessing for what black hole
spins and couplings 1 the perturbations become unstable. Indeed, at least two pos-
sible instability mechanisms may be at play in Eq. (2.10). The first is the tachyonic
instability associated to spontaneous scalarization, mentioned above. The second
could be a superradiant instability, which is known to exist at high spins for con-
stant real masses [360, 370, 485, 495], and potentially also for non-constant effective
masses [517] such as the one of Eq. (4.1). Superradiance occurs when bosonic waves
with non-vanishing angular momentum are amplified when scattered by a spinning
black hole, at the expense of the rotational energy of the black hole, which as a re-
sult spins down. For massive bosons, superradiant scattering can develop into an
instability because the field is confined near the black hole by its own mass.

It should be stressed that, in principle, both instabilites could be present. How-
ever, they have distinct features (timescales, the angular momenta involved, depen-
dence on the black hole spin). We show below that the tachyonic instability is by far
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the dominant effect for # < 0. More broadly, our results strongly suggest that there
exist theories in which scalarization occurs only for rapidly rotating black holes.

4.2 Onset of spin-induced scalarization

For f(¢) = 0 and over a Kerr background, Eq. (2.10) separates into ordinary differ-
ential equations when ¢ is decomposed onto a basis of spheroidal harmonics. How-
ever, the choice f(¢) = 7¢?/2 yields an intrinsically non-separable equation. We
therefore resort to a time-domain numerical integration of this equation, by using
techniques akin to those presented in [496, 517], to which we refer for more details.

In brief, the idea is to project Eq. (2.10) onto a basis of spherical' harmonics Y},
which yields 1+1 evolutions equations (in t and r) for the components of the scalar
field,

Yin(t,1) = [ Y, (rg)d (4.3)
These equations are coupled and given explicitly by
(P +a)? = a®A(1 = )] 1 + a® A} oiin + ]ty i) + 4iamMri

A
— (r* +a*)?y) — <2iam(r2 +a%) — 2a2r> W

2M  24*>  2iam :
o fiaen+ 2020 B A+ %) iy =0, (4
j
A =1r>—2Mr+a?, (4.5)
) oy 2 /274+1 . ,
m _— 2 — i - ] .
cjj = (Im|cos“6|jm) 3 T3V +1<],2,m,0|l,m> (j,2,0,0]1,0), (4.6)

where (ji, j2, m1, my|j3, m3) are the Clebsch-Gordan coefficients [498]. Note that the
evolution of modes of different m decouples because of the axisymmetry of the prob-
lem. Moreover, because of reflection symmetry with respect to the origin, even-/ and
odd-I modes also decouple: the evolution of a mode (I,m) is coupled to that of all
the modes (I + 2k, m), withk =1,2,3,. ...

To numerically evolve the system (4.4), we discretize the spatial grid and use a
method of lines. By integrating in time using a fourth order explicit Runge-Kutta
time-step inside the computational grid (as done e.g in [517]), it becomes apparent
that the equations are stiff for large 77, and that the numerical integration becomes
unstable. To overcome this problem, we have used an Implicit-Explicit (IMEX)
Runge-Kutta solver with adaptive time step, namely the IMEX-SSP3(3,3,2) and IMEX-
SSP(4,3,3) schemes of [518]. Note that implicit methods [519], while effective at
dealing with stiff problems, are typically less accurate and more computationally
expensive. However, implicit-explicit algorithms, by employing explicit steps for
the non-stiff terms and implicit steps only for the stiff ones, can tackle stiff problems
with limited computational overhead. We successfully compared our code to results
from both frequency-domain techniques [273] and similar time-domain codes [496].
Our implementation was also tested by analysing the convergence of the results (and
their overall robustness) vs time-step and spatial-grid resolution.

IThere is no advantage in using spheroidal harmonics, for which analytic expressions are unavail-
able, as they do not lead to a separable equation anyway:.
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FIGURE 4.1: Instability timescale T (color code) for the reconstructed field
as a function of spin and Gauss-Bonnet coupling. The instability thresh-
old for the total reconstructed field is shown by the solid green line,
while the threshold when the m = 0 modes are excluded is shown
by a blue dotted line. The red dashed line corresponds the instability
threshold for the m = 0 odd modes, while the dot-dashed cyan line
marks the instability threshold for the spherical mode | = m = 0 (see
text for details). Note that all shown values of 77 are unconstrained by
different observables (c.f. discussion in the conclusions).

4.3 Results

To investigate the possible presence of an instability, we evolve the scalar field by
integrating the system given by Eq. (4.4), with [ ranging from 0 to Imax = 30 and
|m| < I, and with Gaussian initial conditions for each mode ,,. The results are
robust against the choice of the cutoff /a.x — as long as that is sufficiently large — and
initial conditions, which only affect the early transient evolution of the scalar and
not the unstable growth phase, if present. We consider black hole spins a/M ~ 0.5
-0.999 and qsGB coupling |17|/ M? ~ 0.1 -10°.

From the simulations showing an exponential scalar growth, we extract the in-

stability timescale T of the reconstructed field |¢p| = (¥, |¢1m|2)1/ ? exp(t/T) by
fitting the time evolution of the scalar’s amplitude after the initial transient. The
contours in Fig. 4.1 show 77! as a function of a/M and ||/ M?. The instability be-
comes stronger as either the spin or the coupling increases. Moreover, there is a min-
imum spin amin below which the instability disappears. For || — oo, it appears that
Amin/ M — 0.5 (up to percent level numerical errors). The solid green line denotes
the combinations of parameters for which the instability disappears (i.e. T — ).
With the blue dotted line we show the same marginal instability curve for the recon-
structed field, but excluding the m = 0 modes. As can be seen, when the latter are
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excluded the parameter space region yielding an instability shrinks, i.e. the main
contribution to the instability comes from the m = 0 modes. As a further test of this
conclusion, we also computed the marginal instability curve for the m = 0 modes
alone, and that does indeed match the solid green line in Fig. 4.1.

Even and odd parity modes (i.e. modes with even and odd /) automatically de-
couple in Eq. (4.4). In the m = 0 sector, which dominates the instability shown in
Fig. 4.1, the odd and even modes give roughly comparable contributions. We have
verified this by considering the marginal instability curves for the odd and even
m = 0 modes separately, which are both very close to the solid green line of Fig. 4.1.
As an example, the red dashed line in Fig. 4.1 represents the marginal instability
curve for the m = 0 odd modes.

Indeed, odd modes seem to have only marginally shorter instability times (by
~ 1 —2%) than even ones for high spins and large couplings. Conversely, in the
region |77| < 1,a/M > 0.9 the even modes are slightly more unstable, as can be seen
from the somewhat increased distance between the red dashed and solid green line
curves.

Next we consider if some individual angular mode I/, m gives the dominant con-
tribution to the instability. To answer this question, we have to override the non-
separability of the problem. To this end, we have forcefully decoupled each I-mode
in Eq. (4.4) , suppressing "by hand” all the couplings between angular modes (i.e.
(Im|u2e(r* 4+ x*)|jm) with | # j) generated by the Gauss-Bonnet invariant; we have
only kept active the contributions to the effective mass of the single I-mode. We have
then let the system evolve, selecting Gaussian initial data for the chosen mode only.
By this technique, we have isolated, for instance, the instability parameter space for
the spherical mode | = m = 0, whose marginal instability curve is shown in Fig. 4.1
by a cyan dot-dashed line. However, we could not find any single /,m mode for
which the marginal instability curve obtained in this way matched, even roughly,
the solid green line for the whole reconstructed field. We therefore conclude that the
gravitational coupling between angular modes plays a fundamental role in the onset
of the observed instability.

We now proceed to examine whether the instability is dominantly tachyonic or
powered by superradiance. The growth times, as shown in Fig. 4.1, can be as small
as ~ 0.01M . This seems to favor a tachyonic origin, as superradiance acts on longer
timescales (see e.g. [485, 517]). Moreover, the fact that the instability is mostly due to
the m = 0 modes, and that even the spherical mode | = m = 0 can be unstable (see
cyan long-dashed critical line in Fig. 4.1) bodes ill for superradiance, as these modes
can never satisfy the superradiance condition w < m(Q) (with w and () respectively
the wave and horizon angular frequencies).

One may naively expect the spherical mode I = m = 0 not to suffer from a tachy-
onic instability either, since u2; = —7G is positive everywhere in a Schwarzschild
spacetime when 77 < 0 (as considered here). However, the (squared) effective mass
for the I = m = 0 mode is actually —#(00|Gkerr|00), which only matches the naive
estimate —#Gschwarzschild at leading order in spin, correcting it by terms O(a?). This
explains, in particular, why the spherical mode is stable at low spins.

To further confirm the tachyonic nature of the instabilities, we have conducted
the following test. We re-ran our simulations with the (squared) effective mass re-
placed by its absolute value, %, — |p%|. This is enough to suppress the instabilities,
and further shows that the latter were due to the change of sign of the Gauss-Bonnet
invariant close to the horizon. One can also look at the scalar fluxes through the
event horizon after the initial transient. In Fig. 4.2, we compare the scalar field’s en-
ergy flux through the horizon for 7 = —10M? (blue) vs the same fluxes for minimally
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FIGURE 4.2: Energy flux Fg through the black hole horizon vs time, for a =
0.99M. The blue, orange and magenta lines correspond respectively
to 7 = —10M?, to a tachyonic mass M = i, and to a constant, real
mass yM = 0.42. The inset zooms on the constant, real mass flux (of
which we show a moving average to decrease the oscillations caused
by the dynamics). That flux is negative, signaling energy extraction
from the black hole, as expected for superradiant instabilities.

coupled scalar fields with imaginary (orange) and real (magenta) constant masses.
Clearly, the flux for a scalar coupled to the Gauss-Bonnet invariant resembles more
closely the tachyonic (i.e. imaginary mass) scalar field evolution, both in timescale
and sign. Note that the constant, real mass case, whose evolution is unstable due
to superradiance, shows a slower growth and negative energy fluxes. The latter are
indeed the hallmark of a superradiant instability, which removes rotational energy
and angular momentum from the black hole.

The most plausible explanation for why Kerr black holes in gsGB do not suffer
from superradiant instabilities seems to be the rapid falloff of the Gauss-Bonnet in-
variant (thus of the effective mass) at large distances, G(r — o) ~ 1/7°. Scalar per-
turbations with a position-dependent mass were studied in [517], which showed that
a steep decay of the mass with distance quenches the superradiant instability. This
happens because the effective potential for scalar perturbations does not develop
wells, and thus quasi-bound states, unless the mass remains relatively constant till
atleastr ~ 2 —3M [517].

4.4 Conclusions

We have shown that a coupling, with a suitable sign, between a scalar and the Gauss-
Bonnet invariant can lead to an instability triggered by rapid rotation. We have
also demonstrated that this instability is not related to superradiance, but is instead
tachyonic in nature. Nonlinear effects, which our approach does not capture, are
expected to quench that instability and lead to a black hole with scalar hair. The
process is analogous to the more conventional spontaneous scalarization, but the
threshold is controlled by the black hole rotation instead of its curvature.
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The action that we use is sufficient for studying the onset of the instability that
we have found for black holes. However, the endpoint of this instability, and hence
the amount of hair a black hole would carry, will strongly depend on nonlinear
(self)interactions. There is no obvious reason to believe that this instability is re-
stricted to black holes, and it could well affect rapidly rotating stars as well. Hence,
our results demonstrate that there is a broad class of theories where rotation might
control deviations from GR. Our findings also have clear implications for searches of
new physics in the strong-field regime. Black hole scalar hair induces vacuum dipole
gravitational emission, which is potentially observable in the low frequency inspiral
of binary system by gravitational wave interferometers [520, 521], deviations from
general relativityin the spectrum of the gravitational wave ringdown [522] or in the
electromagnetic spectrum of accretion disks [96], and it may also impact the black
hole shadow observed by the Event Horizon Telescope [102].

We stress that we are not aware of any observational upper bounds on 77, which
we therefore allow here to reach very high values, for illustrative purposes and in
order to excite higher modes. Note that slowly rotating black holes in gsGB would be
identical to their general relativitycounterpart. Compact stars can scalarize for y < 0
[428] and hence yield constraints. However, this effect could easily be quenched by
adding a coupling between the scalar field and the Ricci scalar [433, 523]. The latter
might be necessary to get a sensible cosmology [524], and would have no effect for
black holes, thus leaving our analysis unaffected.
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Chapter 5

Screened scalar fields around
compact stars

5.1 Compact objects in screened modified gravity

Screening mechanisms generally make modifications of gravity elusive and hard to
constrain with astrophysical observations. Nonetheless, their efficacy at screening
compact stars is typically tested in the static non-relativistic limit, and little work
has been done outside these simplifying approximations (e.g. see [525, 526] for the
dynamics of k-mouflage). This is also the case for chameleon screening, the robust-
ness of which has only been tested so far in the dynamical Newtonian limit [527],
or in the relativistic but static regime [461, 528, 529] (see also [530, 531] for other
relevant work on chameleon screening). In this regard, one potential loophole in
chameleon screening could be opened by a tachyonic instability developing inside
relativistic compact stars. This instability arises in scalar-tensor theories without
screening [532], where it leads either to scalarization or alternatively to gravitational
collapse [533]. Past work [528, 529] reported instabilities of the chameleon field in-
side neutron stars that feature a pressure-dominated core. These instabilities were
interpreted as due to the chameleon effective potential not having a well defined
minimum for the scalar field to relax to, as a consequence of the trace of the mat-
ter stress-energy tensor changing sign in the highly-relativistic interior of the stars.
Recently, however, Ref. [461] has studied static neutron star solutions coupled to
chameleon scalar fields and, in contrast to previous work, found no sign of such
instabilities. Instead, they observed that neutron stars with pressure-dominated
cores typically present a partial descreening in their interior and are linearly stable.
Many realistic candidates for the equation of state (EoS) of nuclear matter predict
pressure-dominated cores at sufficiently high densities, while agreeing with current
experimental constraints [534]. One may therefore place bounds on theories with
chameleon screening from observations of the most massive neutron stars.

As our first main contribution, in this work we will confirm and generalize the
conclusions obtained in Ref. [461], which are in principle valid only at the level
of linear perturbations around static solutions. We will do that by demonstrating
numerically the long-term nonlinear stability of neutron star solutions coupled to
a chameleon scalar field, which we will henceforth refer to as chameleon neutron
stars (CNSs). To our knowledge, these are the first dynamical simulations of the
chameleon screening mechanism, thanks to which we confirm that the partial de-
screening inside pressure-dominated cores leads to stable CNSs that deviate strongly
from GR.

As is well know, in GR, radial oscillations of relativistic stars do not source grav-
itational wave (gravitational wave) emissions (although in principle they can couple
to non-radial modes [535-537] and potentially be observable during the post-merger
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phase [538-540]). For this reason, they are typically studied only for assessing the
stability of neutron star solutions [541-545]. However, in scalar-tensor theories a
new family of modes typically appears in association with the additional degree of
freedom [546, 547]. These radial modes can source the emission of (scalar) grav-
itational waves [548] (for instance, during collapse [526, 549-551]). In this work,
we study the spectrum of radially perturbed CNSs, characterizing the deviations
from general relativity induced by the chameleon field. In addition, we compute the
scalar flux radiated by CNSs when oscillating or collapsing to a BH, focusing on the
comparison between screened and descreened stars and on the observability with
current and future gravitational wave detectors.

This Chapter is organized as follows. In Sec. 5.2 we briefly review chameleon
gravity and its screening mechanism. We also discuss the current constraints and
the relevance of these theories for cosmological applications. In Sec. 5.3, we dis-
cuss the initial data that are used in our simulations and the numerical method em-
ployed to produce them. The evolution formalism is presented in Sec. 5.4, where we
also discuss the stability of CNSs. In Sec. 5.5 we discuss characteristic radial oscilla-
tions of CNSs and in Sec. 5.6 we characterize the monopole emission of oscillating
and collapsing CNSs. Finally, in Sec. 5.7 we discuss our conclusions and the future
prospects to test chameleon screening with neutron stars. Throughout this Chapter,
we use natural units where i = ¢ = 1.

5.2 Theoretical framework

5.2.1 Screened modified gravity action

ST theories with environmentally dependent screening, such as symmetron, dila-
ton or chameleon screening (including certain f(R) models), are described by the
following action [552]:
4 M 1231 1
S :/d /=8 | R = 58"V, Vi — V() (5.1)

+ Sm [A(QD)ZgWi Pm)

where ¢ and R are the determinant and Ricci scalar of the Einstein frame metric vy
and My = 1/4/(87G) is the (reduced) Planck mass. The scalar field ¢ has a self-
interaction potential V(¢), and is coupled to matter (collectively represented by the
field ;) through the conformal coupling A(¢). Because of this coupling, test parti-
cles do not follow geodesics of g, but ones of the Jordan frame metric [309]

G = A(9) 8- (52)

Matter fields in the Jordan frame are minimally coupled to the metric (5.2) and
follow its geodesics. Therefore, in this frame one can define a stress-energy tensor,

2 [3Sy
T‘u]/ — \/jg' ((Sg'.l“/> 7 (5-3)
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and a baryon mass current, J¥, that are covariantly conserved

V.t =0, (5.4)
v, T =0, (5.5)

where V indicates the covariant derivative compatible with the Jordan frame met-
ric (5.2). In this work, the matter content of the spacetime is modeled as a perfect
fluid in the Jordan frame, with stress-energy tensor

T, = (e+p)ara’ + pgh . (5.6)

The Jordan-frame fluid variables in this equation (total energy density, € and isotropic
pressure, p) are defined as measured by an observer comoving with the fluid ele-
ments with four-velocity i".

By defining the Einstein-frame stress-energy tensor as Ty, = —2//—g (6Su/5g"")
and comparing the latter with (5.3), one obtains the relation Ty, = A(4>)2T’TV. From
this conformal transformation, and from u* = A(¢)i* (obtained from the normal-
ization g, u’u” = —1) one can read the dictionary between fluid variables in the
two frames, € = A(¢)*¢ and p = A(¢)*p. The conserved Jordan-frame baryon mass
current, J# = pii¥, where p is the rest-mass density, is related to the corresponding
Einstein-frame quantity by J# = A(¢)°J* [412]. Note that in the Einstein frame co-
variant conservation of the stress-energy tensor and baryon mass current is lost, and
Egs. (5.4), (5.5) are replaced by:

_dInA(¢)

Vit = g, (57)
Hv dlnA((P) v
VT = T TV, (5.8)

where T™ = ¢""T}}; is the trace of the stress-energy tensor.
Variation of the action (5.1) with respect to the Einstein metric gives the modified
Einstein field equations:

Gy = 871G (T,‘fv + T;';,) , (5.9)

which are sourced by the stress-energy tensor of the scalar field

T = ViV~ g (550770 +V(0) ) (5.10)

The scalar field equation is obtained by variation of (5.1) with respect to ¢:

_ dv(¢) _dinA(¢)
He = d¢ d¢

which is a generalized wave equation on curved spacetime with L1 = ¢V, V,,
sourced by the scalar self-interaction and by the coupling to the Einstein-frame trace
of the stress-energy tensor.

Specifying V(¢) and A(¢) one specializes to a particular model of chameleon
gravity. In this work, we will focus on the classic chameleon models that feature
an inverse power-law self-interaction potential in combination with an exponential

™, (5.11)
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conformal coupling to matter, i.e.:

Al +4

V(g) = o

where A is the chameleon energy scale and «g is the dimensionful conformal cou-
pling. Plugging (5.12) into (5.11), one can see that the chameleon scalar field obeys
an effective potential

A(P) = exp (xo@) , (5.12)

An+4

1 402
Vest () = — —e™T,, . (5.13)

pr 4

In this project, we consider only the simplest chameleon model n = 1. The scalar
configuration that minimizes the potential (5.13), ¢, can be found by requiring d Ve /d¢|5 =
0 or, equivalently, by solving the trascendental equation ¢?¢**? + A5/ (aoT,y) = 0,
which in the limit ¢ < M, yields

- N2
L

From the effective potential (5.13) one can determine the chameleon effective mass,

(5.14)

d*v, 2A5 -

5.2.2 Chameleon screening

The field configuration that minimizes the effective potential (5.13) strongly de-
pends on the ambient matter distribution: in denser regions the chameleon will set-
tle to lower field values and scalar perturbations around the minimum will feature a
larger effective mass (5.15). As a result, the chameleon fifth force will be short-range
in high-density environments (i.e. stars, clusters or galaxies), while being effectively
long-range on cosmological scales. In addition, a thin-shell effect will further suppress
the fifth force around compact objects (e.g. neutron stars [453]).

As an illustrative example, let us consider a non-relativistic, static and spherical
star of mass M and radius R, surrounded by a medium (e.g. the interstellar medium,
or even the cosmological background) with lower density, €. Inside the star and far
from it, the chameleon will settle to different field values. The large effective mass,
corresponding to the high density in the interior, will suppress exponentially the
scalar perturbations and keep the chameleon field small up to a screening radius, ts.
The latter can be defined as the distance from the center at which the field starts
rolling towards the "exterior” minimum. Inside the screening radius, the gradient
of the scalar field is negligible and the fifth force (proportional to the gradient) reac-
tivates only outside of it, 2 rs. One can show that sufficiently far away from the
star, at r > Rgy,r, the scalar field solution is

. ) (5.16)

Q Me*moo(r*Rsmr)
¢2¢w_<ym4)
pl

with Q being the (dimensionless) effective scalar charge of the object and m., the
chameleon effective mass (5.15) at large distances. From (5.16) one can notice that
the chameleon mass term introduces an exponential suppression of the "Yukawa”

type.
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In the non-relativistic Newtonian limit the charge reads QM =~ agM (M —
M(rs)), where M(rs) is the gravitational mass contained inside the screening ra-
dius [452, 553]. When the star is efficiently screened, i.e. s ~ R, the scalar charge
is only sourced by a "thin shell” of matter between r; and R, and the fifth force is
additionally suppressed by the factor Q < 1 [452, 453, 554, 555]. Aslongas T < 0
(which in the non-relativistic limit is automatically satisfied), the chameleon effec-
tive potential (5.13) has a minimum in the stellar interior, and this thin-shell effect
is present. However, in the pressure-dominated core of very dense neutron stars, T
can change sign, leading to a partial breakdown of chameleon screening [461]. In
this project, we will explore the dynamics of this breakdown, or descreeeing.

5.2.3 Constraints

Although it has been demonstrated that chameleon scalar fields cannot give rise
to self-acceleration [556], they could still be relevant for cosmological applications
in combination with a cosmological constant, as both could have a common origin
at high-energies [557]. Indeed, the low-energy effective theories derived from string
theory are generically populated with light scalar fields and the chameleon screening
might be a viable mechanism to hide their presence in experiments. In this perspec-
tive, relatively recent work has found that chameleon models are compatible with
the swampland program, provided that a lower bound on the conformal coupling is
satisfied [558].

However, while not completely ruled out yet, classic chameleon models are con-
strained by a variety of observations (see [438, 555, 559] for reviews). The viable
region of the parameter space of the most studied chameleon model (i.e. (5.13) with
n=1)is agMp < O(10?) for energy scales A < Apg [555], where Apg = 2.4 meV
is the Dark Energy scale. Further constraints may come from the scales of galax-
ies/galaxy clusters, although they have not been worked out in detail [560], and
from short-range experiments [561].

5.3 Initial Data

In this section, we derive static and spherically symmetric solutions for CNSs, by
generalizing the Tolman-Oppenheimer-Volkoff (TOV) equations to the chameleon
case and solving them numerically. We also discuss the EoS of nuclear matter and
the boundary conditions used, and present results for the mass-radius relation of
CNSs.

5.3.1 Chameleon-TOV equations

To obtain the modified TOV equations, we adopt the following spherically symmet-
ric ansatz (in polar coordinates):

ds? = —e2 g2 4 Mg 412 (362 + sin? 0d¢?) . (5.17)
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By inserting the ansatz (5.17) in the chameleon field equations (5.9) and (5.11), one
obtains

dv e —1 o ano A 2N

R et IX (P p - T T A~ 2

- < o > +47Gre (e p+ p o ) , (5.18)
dA 1—e* 2A [ dag A’ e

—_— = ¢~ - =, T T A 2

I < > + 4rtGre ( é p 5 o ) , (5.19)
d dA A°

d(: _ ( - — _ > o — e <0¢0€4‘X°‘P(3ﬁ — &)+ (Pz) , (5.20)
dp  _

- = o, (5.21)
dp oo [V

The differences from the TOV equations ingeneral relativity depend on the confor-
mal coupling &y and the chameleon energy scale A, both introduced in Eq. (5.12).
This system of equations can be solved numerically by using suitable boundary con-
ditions and choosing an adequate EoS for nuclear matter, as we explain in detail in
the next subsection.

5.3.2 Equation of state and boundary conditions

To close the system of equations (5.18), (5.19), (5.20), (5.21) and (5.22), a relation be-
tween the fluid variables must be provided. We choose to describe the stellar interior
with a polytropic EoS

~ ~\ 1/T
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where K is the polytropic constant and I’ is the (constant) adiabatic index. This EoS,
while approximate, allows for reproducing the relativistic effects found in pressure-
dominated neutron star cores (e.g., see [533] for an application to scalarized neu-
tron stars) for appropriately stiff polytropic coefficients [534]. In this work, we
generally set I' = 3, which approximates the polytropic exponent of more realis-
tic EoSs [562], and K ~ 6.9 x 104G6M‘éc_10. In GR, this EoS yields a maximum
mass Mmax =~ 2.03My, consistent with current bounds [563]. As we will see, this
stiff EoS yields static stars with a partially descreened interior. We will also use a
different polytropic EoS with T = 2 and K = 123 G®*M?2c* to obtain CNSs with
similar baryon mass but with a completely screened interior, for comparison (see
section 5.5).

Outside the star, r > Ry, we assume a homogeneous atmosphere, é = €, =
const., with "cosmological” EoS, j = —é&w, corresponding to a cosmological con-
stant. Chameleon models with a runaway potential such as that of Eq. (5.12) do not
admit a constant scalar field solution in pure vacuum, and for this reason a homo-
geneous atmosphere is required to have a well-behaved exterior solution. In fact, it
is easy to see that with this cosmological atmosphere the field equations allow for
the asymptotic solution é = €, f = —€w, ¢ = Poo at r > Ryyar, with Rgpsr being the
radius of the star. Once fixed the atmosphere density, €, the asymptotic chameleon
configuration, ¢, is determined by (5.14), where T, = —4é. Consistently, the
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metric is then given (asymptotically) by the Schwarzschild-de Sitter solution
ds* = — f(r)dt> + f(r) " tdr* 4 r*(d6* + sin® 0d¢?) , (5.24)

where f(r) = 1—2GM/r — br?/3, with M the gravitational mass and b = 871G Vet (€ ) |-
Instead, the (Jordan-frame) baryon mass of the star is defined as

My = / P/ —g]. (5.25)

Other prescriptions for the atmosphere are possible, for instance in terms of a non-
relativistic homogeneous dust distribution modeling the interstellar medium, but
the advantage of choosing a cosmological EoS is that it yields a simple exterior solu-
tion [461].

5.3.3 Static Chameleon Neutron Stars

Static and spherically symmetric CNS solutions are obtained numerically by inte-
grating outwards the modified TOV equations starting from the center of the star,
where we impose regular boundary conditions. To implement the Schwarzchild-de
Sitter boundary conditions [Eq. (5.24)] far away from the star, we use a direct shoot-
ing method.

We consider atmosphere densities of order € ~ 10_6—10_4pnucc2, where pnye =
1.7 x 101 g/cm3 is a typical nuclear density. These are the lowest atmosphere den-
sity values that our direct shooting method can deal with, and our results and con-
clusions are robust to changes of up to one order of magnitude in this parameter.
Notice that this value is many orders of magnitude higher than the background cos-
mological density, p. ~ 1.0 x 1072 g/cm?® . An alternative realistic atmosphere
value that could be considered is given by the density of the interstellar medium (in
a giant molecular cloud [565]), pomc =~ 1.7 x 10720 g/cm3.

For the chameleon action parameters, we set agpMp = 1 and A =~ 73-175 GeV.
Note that these chameleon energy scales are inconsistent with current bounds [555],
but lower (and viable) values of A are impossible to explore with our shooting
method. This is because to solve for CNSs we have to utilize code units adapted
to the problem, where G = ¢ = My = 1. Reinstating all 1, c and G factors one
obtains A% = (871)7%/2(Mp1/hic)>(GMea /c*)*(A/Mp)® ~ 2.6 x 1072 (A/Mp)°, and
realistic values of A therefore become tiny and hard to handle numerically. This is
a problem commonly encountered when simulating compact stars in theories with
screening (see e.g. [441, 461, 526]), and it stems from the separation between the
cosmological scale A and that of neutron stars.

Mass-radius curves for different values of A are shown in Fig. 5.1, where we also
show thegeneral relativity case (A = 0). These curves are comprised of stable and
unstable stars, which lie, respectively, on the right of the maximum mass configu-
ration (red star tokens) and on its left. Additionally, solutions between the red star
token and the cyan round token have T > 0 (pressure dominated core).

As mentioned previously, in chameleon gravity, a pressure-dominated core can
produce a partial descreening. As can be observed from Fig. 5.2, that consists of a
re-activation of the scalar gradient (and thus of the fifth force) in the stellar interior,
where it would normally be suppressed by screening. For fixed mass, screened CNSs
are typically smaller in size and more compact than neutron stars in GR. However,

IThe critical cosmological density is p. = 1.8788 x 107212 g/cm3: for Hy = 0.732 £ 1.3 km s~*
Mpc_1 [564], one obtains the estimate above.
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FIGURE 5.1: Mass-radius plots for varying chameleon energy scales.
Dotted, dashed-dotted and dashed lines correspond to CNSs with
aoMp; = 1 : darker lines correspond to lower chameleon energy
scales. The darkest solid line corresponds to neutron star solutions
in GR (¢p = 0 and A = 0). Red star tokens indicate the solutions
with maximum mass. Cyan round tokens, instead, indicate the light-
est star featuring a pressure-dominated (T > 0) core: stable CNSs
with a partially descreened core are those between the star and round
tokens.

in the limit A — 0 screened solutions tend smoothly togeneral relativity configura-
tions. Descreened solutions, instead, feature strong deviations, as can be observed
from the fact that the maximum mass is typically lower than in general relativity and
in the limit A — 0 the most massive general relativity configuration is not recovered
smoothly. Moreover, the branch of unstable solutions shows the strongest structural
deviations from GR, even for smaller chameleon energy scales A.

5.4 Time evolution in spherical symmetry

In this section, we explain in detail how we perform fully non-linear evolutions of
CNSs and summarize our numerical methods. We present results for the dynam-
ics of CNS stars by analyzing their stability. We have considered screened and de-
screened CNSs, under perturbations that trigger either oscillations or collapse to a
BH.

5.4.1 Evolution equations

The fully non-linear evolution of CNS stars is followed in the Einstein frame, where
the equations of motion for CNSs are given by the Einstein equations (5.9); the
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FIGURE 5.2: Partial descreening of CNSs. Gradient of the chameleon
field around CNS solutions with varying central densities: less dense
stars (blue end of the color scale) are screened in their interior, as can
be seen from the suppression of the scalar field gradient; stellar solu-
tions with higher central densities (red end of the color scale) feature a
scalar field gradient (proportional to the chameleon-propagated fifth
force) reactivated in their interior as a result of relativistic effects, i.e.
the pressure-dominated cores.

conservation laws for the Einstein-frame baryon mass current [Eq. (5.7)] and stress-
energy tensor [Eq. (5.8)]; and the scalar field equation (5.11). We restrict our study to
spherical symmetry and decompose the spacetime tensors into their space (radial)
and time components.

We consider the following line element:

ds? = —a?(t,7)dt* + g, (t,r)dr* + 1’ gee(t, 7)dO? (5.26)

where «(t,7) is the lapse function, g, (t,7) and gg(t, ) are positive metric functions,
and dO? = d6? + sin? 8d¢? is the solid angle element. These quantities are defined
on each leaf ¥ of the spatial foliation, which has normal vector 1, = (—a,0) and
extrinsic curvature Kj; = —%ﬁn'yij. Here, L, is the Lie derivative along n" and Yij is
the metric induced on each leaf.

The Einstein equations (5.9) are written as an evolution system by using the Z3
formulation in spherical symmetry [566, 567]. We can express Eq. (5.9) as a first
order system by introducing first derivatives of the fields as independent variables,
namely

rr 06

1
Ar = Ear“z Drrr = %argrr/ Dr99 = %arg%/
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and write the system of equations in the conservative form
20U +9,F(U) =S(U), 5.27)

where U = {«, g1, 00, K/, Ke®, A, ,D,, D’ , 7, } is a vector containing the full
set of evolution fields. In the Z3 formulation, the momentum constraint has been
included in the evolution system by considering an additional vector Z; as an evolu-
tion field [568]. In fact, the Z, component is the time integral of the momentum con-
straint. In addition, F(U) is the radial flux and S(U) is a source term. The evolution
equations for the Z3 formulation can be found explicitly in Ref. [569]. A gauge con-
dition for the lapse is required to close the system. We use the singularity-avoidance
1 + log slicing condition d;a« = —2a trK, where trK = K] + 2K g, see [570].

In addition, the equations of motion for the fluid [Eq. (5.7)-(5.8)] and for the scalar
tield [Eq. (5.11)] are written in conservative form:

9;({D) = —0,[{Dav"] — alD <3vr L CACES g”H)) , (5.28)

2
Gt = ~3,6a'| + og [k, + 25K = 8" (44 2) ~aal VEmT |

(5.29)
at(gsr) = _ar[glxsrr] + ‘Xg |:Srr (Drrr - f) + 2599 (Dr()g + 1) - UAr + ‘XOTCD:| ’
(5.30)
14
A = 11, (5.31)
= s
%D = 9, [ ‘; = n} ) (5.32)
ol =0, | @| +—“ (2(Dy? + 1) @+ 2 /3K T — g, V) | (5.33)
t — Oy %grr grr r0 r grr 0 grr d (P s .
where { = /8899 and
® = 0, Il= Lf”atcp. (5.34)

Note that Egs. (5.28)-(5.30) are given in terms of the conserved quantities {D, U, S, },
which are defined in terms of the physical (or primitive) variables, i.e.: fluid pressure
p, rest-mass density p, specific internal energy & 2, radial velocity of the fluid v’, and
the enthalpy of the fluid, h = p(1 + ) + p. The conserved quantities are explicitly
defined as follows:

D = oW, U=hW?—-p, S, = hW?,, (5.35)
S, = WW?vo +p, S =p, T=—h+4p, (5.36)

with W? = 1/(1 — v,0") the Lorentz factor, and S,” and Sy the spatial projections
of the stress energy tensor of the fluid in the Einstein frame. Finally, to recover the
physical fields {p, {, p, v" } during the evolution, the algebraic relation (5.35) has to be
inverted, which involves solving a nonlinear equation at each time-step. During this

2Note that this quantity must not be confused with the (total) energy density, e. The connection
between the too is given by the relation { = €/p — 1, from which it becomes clear that ¢ is adimensional.
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process, we employ an ideal-gas EoS P = (T’ — 1)p¢ (see Appendix B in Ref. [571]),
with the appropriate I depending on the CNS simulation, as explained in Sec. 5.3.

5.4.2 Implementation

The one-dimensional (1D) numerical code used in this work is an extension of the
one presented in Ref. [571] for fully non-linear simulations of fermion-boson stars,
and used in Refs. [525, 566, 572, 573] to study the dynamics of BHs, boson stars,
anisotropic stars and neutron stars with kinetic screening mechanism. As initial
data, we use the static CNS solutions discussed in Sec. 5.3, transformed from the
areal coordinates of Eq. (5.17) to the maximal isotropic coordinates, in which the line
element is given by

ds* = —a®(r)dt* + ¢*(r) (dr* + r*dQY?) (5.37)

being 1 the conformal factor.

We have used a high-resolution shock-capturing finite-difference (HRSC) scheme,
described in Ref. [566], to discretise the spacetime, the scalar field and the fluid mat-
ter fields. In particular, this method can be viewed as a fourth-order finite difference
scheme plus third-order adaptive dissipation. The dissipation coefficient is given by
the maximum propagation speed at each grid point. The method of lines is used to
perform the time evolution through a third-order accurate strong stability preserv-
ing Runge-Kutta integration scheme, with a Courant factor of At/Ar = 0.25, so that
the Courant-Friedrichs-Levy condition imposed by the principal part of the system
of equations is satisfied. Most of the simulations presented in this work have been
performed with spatial resolutions of Ar = {0.005,0.0025,0.00125} M), in a domain
with outer boundary located between r = 500M and r = 1000M. We have ver-
ified convergence of results with increasing resolution as well as their robustness
against changes in the position of the outer boundary. We use maximally dissipative
boundary conditions for the spacetime variables, and outgoing boundary conditions
for the scalar field and for the fluid matter fields.

5.4.3 Screened and descreened CNSs

To test the stability of CNSs, we have first evolved the initial data described in
Sec. 5.3, subjected only to the small perturbations given by truncation errors. In
addition, we have tested the migration of CNSs from the unstable to the stable
branch of solutions. In the subsections below we report and discuss examples of
such tests. Finally, we discuss the results from simulations of gravitational collapse
to a BH. All results shown in this section have been produced for the parameter
choice (A, &x) = (175 GeV, 6.5 x 10'° g/cm3).

Stability

In Fig. 5.3 we show the time evolution of the central density (upper panel) and cen-
tral scalar field (bottom panel) for two CNSs, one with complete screening (solid
magenta line) and one with partial descreening in the core (dash-dotted cyan line).
The first star has a lighter gravitational mass M = 1.72M, and initial (Jordan-frame)
central density p, ~ 1.38 x 10'°> g/cm3. The descreened star is heavier, with a mass
of M = 1.84M,, and initial central density p, ~ 1.57 x 10'® g/cm?. The simulations
were conducted on a grid that extends up to r = 1000M, with a spacing as fine as
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Ar = 0.0025M, for the screened star. For simulations of the descreened star, how-
ever, we have doubled the number of points of our spatial grid, which correspond
to Ar = 0.00125M;. We have observed that simulations of descreened stars are
more challenging, as higher resolutions are typically needed to keep the numerical
dissipation under control during the evolution. We interpret this technical issue as
stemming again from the separation between stellar and cosmological scales.

Both stars were evolved in time with no other perturbation but the one intro-
duced by truncation errors: their stability is manifest in Fig. 5.3, which shows that
the central density and central scalar field remain constant over time.

Migration

The migration test is a standard diagnostics tool utilized in general relativity to char-
acterize the (in)stability of neutron star solutions (e.g., see [574-576]): depending on
the initial perturbation [577], solutions that lie on the unstable branch (i.e. to the left
of the maximum mass configuration in mass-radius plots such as Fig. 5.1) can either
collapse to a BH or undergo a series of wide oscillations and migrate towards a so-
lution on the stable branch (with approximately the same mass). In our simulations,
migration of highly compact and unstable CNSs is induced via small perturbations
given by the truncation error. An example of migration is given in Fig. 5.4, where a
star with initial central density p. ~ 1.87 x 10 g/cm? can be seen undergoing large
dampened oscillations, which eventually relax it to a stable descreened star with ap-
proximately the same gravitational mass M = 1.88M, (modulo a small loss due to
numerical dissipation) and central density p. ~ 1.66 x 10*° g/cm3.

Spherical collapse

We have conducted simulations of spherical collapse to BHs, which are another stan-
dard benchmark for numerical relativity simulations of neutron stars. The collapse
has been induced by an initial pressure gradient up to ten percent. We illustrate the
results of this test by discussing the case of a collapsing descreened CNS with grav-
itational mass M = 1.89M, and initial central density p. = 1.70 x 10'°> g/cm3. In
Fig. 5.5, we show the time evolution of the density, chameleon field and lapse at the
center of the collapsing star. As matter collapses to the center of the star, the density
and pressure in the core grow, pushing the chameleon field down its effective poten-
tial (i.e. to higher values). This is counterintuitive, as the minimum of the effective
potential (5.13) moves to larger ¢ when the density increases, as long as the star re-
mains non-relativistic. However, this behavior breaks down when the configuration
becomes relativistic, as a result of the change of sign of Tj,. Indeed, for T, > 0 the
effective potential has no minimum, and the scalar field rolls down to larger and
large values.

The lapse decreases to zero and, as a consequence of the 1 + log slicing coordi-
nate choice that we employ, the time evolution of matter in the collapsing core is
effectively frozen. In Fig. 5.6, we show time snapshots of the radial profile of the
lapse and chameleon scalar field. Inside the star, as the lapse goes to zero an appar-
ent horizon (black dots) forms and slowly expands, until it eventually engulfs the
whole matter content. While the chameleon field inside the apparent horizon grows
as a result of the (runaway) effective potential, outside the horizon it slowly relaxes
to the exterior configuration minimizing the effective potential in the presence of an
atmosphere. No instabilities develop during collapse outside the apparent horizon,
and the end state is therefore a BH with a trivial scalar field solution.
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FIGURE 5.3: Stability of CNS. Top panel: p.(t) = p(t,r = 0) (Jor-
dan frame) vs time. Bottom panel: ¢.(t) = ¢(t,r = 0) vs time.
The (magenta) solid line corresponds to a screened CNS with ini-
tial central density p. ~ 1.38 x 10'° g/cm3. The (cyan) dash-dotted
line corresponds to a descreened CNS with initial central density
pc ~ 1.57 x 1015 g/ cm?. The matter and chameleon field configu-
rations are stable against small perturbations given by truncation er-
rors.

5.5 Radial oscillations

In this section, we analyze the spectrum of the radial oscillations of spherically sym-
metric CNSs, and compare to the oscillation spectrum of neutron stars with simi-
lar gravitational masses in GR. The CNSs have been produced with the parameter
choice (A, éx) = (175 GeV, 6.5 x 101 g/cm?). As a first step, we test the accuracy
of our code by producing a neutron star in GR, with gravitational mass M = 1.4M,
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FIGURE 5.4: Migration test. The time evolution of the (Jordan-frame)
central density p.(t) = p(t,r = 0) (red solid line) and central scalar
field ¢.(t) = ¢(t,r = 0) (blue dashed line), for an unstable and
partially descreened CNS with gravitational mass M ~ 1.88M and
pc >~ 1.87 x 1015 g/ cm3. The star is expanding in volume and relaxes
through large dampened oscillations to a stable descreened CNS with
the same mass, but lower central density p. >~ 1.66 x 1015 g/ cm?.

and EoS defined by I' = 2 and K = 100 G*M2¢c~*. From sufficiently long simula-
tions, the frequencies of the characteristic radial oscillations (induced by truncation
errors) have been extracted and compared with the ones estimated in [577] from an
independent three-dimensional (3D) code. The results, summarized in Table 5.1, are
an indicator of the accuracy of our frequency estimates.

] mode \ 1D code (kHz) \ 3D code (kHz) \ Rel. diff. (%) ‘

F 1.443 1.450 0.6
H1 3.952 3.958 0.2
H2 5.902 5.935 0.6
H3 7.763 7.812 0.6

TABLE 5.1: Radial oscillations frequencies of a neutron star in GR. Com-
parison between estimates with our 1D code vs an independent 3D
code [577].

From long-term simulations of several CNSs with central densities in the range
pe = (0.96 —1.67) x 10'° g/cm3, we have then computed the power spectral density
(PSD) of the density perturbations and extracted the peak frequency of the funda-
mental radial mode (F) and its higher overtones (Hy, with N = 1,2,...). As a ref-
erence, we have also evolved spherical neutron stars produced in general relativity
with comparable gravitational masses, using the same EoS (I' = 3).
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0.5

FIGURE 5.5: Collapse of a descreened CNS. Time evolution of the lapse
(solid red line), density (dashed green line) and chameleon field (dot-
ted blue line) at the center of a collapsing descreened star with grav-
itational mass M = 1.88My, normalized by their initial value. As
matter collapses towards the center, the density chameleon field in-
crease. The lapse function decreases to small values close to zero.

The presence of the chameleon field coupled to matter inside the star has multi-
ple effects on the spectrum. The first, which can be observed in Fig. 5.7, consists in a
modification of the relation between the peak frequencies and the properties of the
stars.

Radial oscillations of neutron stars in general relativity have been studied exten-
sively in the past. For instance, it is known that non-relativistic homogeneous stars
feature a fundamental mode frequency, F, that is proportional to the (constant) rest-
mass density [494]. This relation is more complicated in the relativistic regime, and
the result for non-relativistic homogeneous stars only holds approximately at low
densities [545, 578]. In order to quantify the difference between spectra in general
relativity and chameleon gravity, we have fitted the relation between the F-mode fre-
quency and the average density, p = (471/3) ' M/R3,,,, in either theory. We present
the result of the comparison in Fig. 5.8.

The additional scalar degree of freedom of scalar-tensor theories can also pro-
duce a new family of characteristic oscillations inside neutron stars. These scalar
radial modes correspond to monopole gravitational wave emission. Indeed, in the
spectra of CNSs, we observe several high-frequency peaks that do not have any cor-
respondence in the general relativity power spectra (see Fig. 5.7, bottom panel). We
interpret these peaks as due to the chameleon field oscillations. The fundamental
(massive) scalar mode of oscillation has a frequency, F; = meg /27, that is of order
of the inverse of the Compton wavelength: the larger the mass, the larger the cor-
responding frequency (see e.g., Fig. 2 in [547]). For A = 175 GeV, the chameleon
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FIGURE 5.6: Collapse of a descreened CNS. Snapshots of the radial pro-

file of the lapse function (top panel) and scalar field (bottom panel) for

the same collapsing star as in Fig. 5.5. Black dots indicate the position
of the apparent horizon.

field inside objects as dense as neutron stars acquires a very large mass (5.15), which
yields frequencies F; ~ O(10) kHz. This is indeed the correct order of magnitude
for the frequencies of the new family of modes that we observe. For A ~ 2.4 meV,
one can check that F; > kHz, because the chameleon acquires even larger masses
inside relativistic stars. These modes are hardly excited and are unobservable with
gravitational wave detectors.

Regarding the shift in the peak frequencies, note that such effect is present even
in CNSs with a screened interior (see e.g. the p. ~ 1.38 x 10'® g/cm? configuration
in Fig. 5.7). Like in the case of the mass-radius relation (c.f. Fig. 5.1 and related
discussion), we expect deviations from general relativity in the spectrum of oscilla-
tions to disappear in the limit A — 0 for screened stars, while they could survive for
descreened CNSs. As we will see in the following, however, these effects are likely
outside the reach of ground-based gravitational interferometers.

5.6 Scalar radiation

In this section, we investigate the characteristic gravitational wave output of CNSs,
focusing on detectability with current and future detectors. To this end, for each
signal produced with our simulations we estimate the signal-to-noise ratio (SNR)

as [264] 3 ,
_ [ 4]h(f)]
0’ = /O S Y (5.38)

where i(f) is the strain signal in the frequency domain and S, (f) is the one-sided
noise power spectral density of the detector. As a reference, we compare the simu-
lated signals with the design sensitivity curves of the Advanced Laser Interferometer
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FIGURE 5.7: Spectra of radial oscillations. The two plots show the PSDs

of the radial modes extracted from the time evolution of the central

rest-mass density for three CNSs and one general relativity neutron

star. Top panel: F, H1 and H2 modes. Bottom panel: higher overtones,

Hy with N > 2, and the new family of scalar modes (F; and higher

overtones). The results shown in this plot are valid for the parameter
choice (A, &) = (175 GeV, 6.5 x 1010 g/cm?).

Gravitational-Wave Observatory (Advanced LIGO) [159, 579]°, Einstein Telescope

3For the sensitivity we refer to the zero detuning, high power configuration.
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FIGURE 5.8: F-mode frequency vs average density. Linear fits of the fun-

damental mode (F) frequency as a function of the average density (7)

for neutron stars respectively in general relativity (blue dotted line,

cyan cross tokens) and in chameleon gravity (magenta dash-dotted

line, red round tokens). The results shown in this plot are valid for
the parameter choice (A, &) = (175 GeV, 6.5 x 1010 g/cm?).

(ET) [580] and Laser Interferometer Space Antenna (LISA) [164, 581]. The geome-
try of the detector is encoded in the pattern functions, F., Fy, Fy, which are different
in the case of a tensor wave (i(f) = Fihiy(f) + Fxhx(f)) and for a scalar wave
(breathing mode, /1(f) = Fol(f)). For simplicity, we will assume optimal detector
orientation [549, 582, 583] in our calculations, i.e. Fp = 1/2.

The effect of gravitational waves on the detector is encoded in the Newmann-
Penrose curvature scalars [584]. The latter can be obtained by projecting the Rie-
mann tensor onto a null tetrad basis (k, I, m, 171) adapted to the wavefronts. In partic-
ular, the scalar mode is encoded in @2, = — R, (computed in the Jordan frame) [263].
This quantity can be computed from our simulations (which are performed in the
Einstein frame) via

©y = A(9) 2 (@ + I"I"V,Vylog A(9) — (I"Valog A(9))?) (5.39)

where @, is the same Newman-Penrose scalar in the Einstein frame. Since in that
frame the scalar-tensor theories that we consider simply reduce (in vacuum) to GR
with a minimally coupled scalar field, we can conclude that ®%, ~ 0, and the only

significant contribution comes from the oscillating chameleon field, i.e. [411]
5 1
@22 >~ 206()at (p + 0 1’7 ’ (540)

in deriving which we have used 97¢ ~ O(1/r) and neglected terms decaying as 1/12
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or faster. In practice, ®; is computed from our simulations by evaluating (5.40) at an
extraction radius placed sufficiently far away from the star, 7,y > Rgtqr. At the same
time, the extraction radius must be far from the cosmological horizon, rext < cosmo,
in an intermediate region where geometrical effects from the de Sitter asymptotics
are negligible and the geometry is approximately flat. In addition to the spacetime
flatness requirement, the extraction radius must also be chosen to satisfy 7oyt > A =
1/me, so that the extracted signal is decoupled from the dynamics of the matter and
chameleon field inside the star. The extraction region where all the requirements
listed above are satisfied, sometimes referred to as the "wave zone”, is thus defined
by Ae K Text K Teosmo- (Note that one typically has A; > Rqtqr.) Because of the rather
large effective cosmological constant, in our simulations the wave zone requirements
are met only in a rather tight range of the isotropic radius coordinate (e.g. 7ext = 50 —
100M, for A = 175 GeV). We have checked that our results are robust with respect
to variations of the extraction radius in this range and to the position of the outer
boundary of our simulations, which we place sufficiently far from the extraction
point, at distances typically larger than 500M.

The signal is produced as a function of the retarded time, t,,; ~ t —r,, defined
in terms of the Schwarzschild-de Sitter tortoise coordinate, r. = [dr/f(r). This
approximate prescription works well for our purposes, even though more involved
expressions can be employed [585, 586]. We finally reconstruct the scalar strain in
two independent ways. In the first method, with a Fast Fourier Transform algorithm
we compute the frequency-domain Newmann-Penrose scalar @, (f), from which
we reconstruct the scalar strain /g (with ®y = B%hs) with the following filter in the
frequency domain:

=

(5.41)

() = —ﬁézz(f) f>fo
T _((zzgjf;))i‘i’zz(f) f<h '

inspired by [586, 587] with the addition of a factor ~ (f/ fy)* suppressing unphysi-
cal low-frequency noise. The frequency cutoff, fy, is chosen according to the lowest
physical frequency of the system. In practice, for simulations of oscillating stars we
fix this to be of the order of the fundamental mode of radial oscillations, F, since
under this threshold there is no stellar mode that can source the scalar radiation.
Instead, the gravitational collapse produces what is sometimes referred to as an "in-
verse chirp” [549-551]: the gravitational wave burst excites lower and lower fre-
quencies as the matter collapses. In this case, the mass of the chameleon field in
the exterior introduces a natural cutoff frequency, fo = Mo /27, as the propagation
of modes with lower frequencies, f < f«, is exponentially suppressed. As a test
we checked the robustness of our results by varying the cutoff frequency down to
the lowest resolvable frequency in our simulations, fy ~ 1/T, where T is the total
simulation time. The second method consists in computing the strain of the scalar
monopole radiation directly from the formula [549-551]

hs = 200(¢ — o), (5.42)

which comes from combining ®; = B%hs and Eq. (5.40), which is approximately
valid in the "wave zone” defined earlier. The agreement of the results obtained with
the two methods confirms the robustness of our conclusions.
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FIGURE 5.9: Scalar radiation from oscillating stars. Top panel: ®y, vs re-
tarded time. Bottom panel: strain amplitude vs retarded time. The re-
sults shown in these plots have been obtained for (A, éx) = (175 GeV,
6.5 x 1010 g/cm3). The scalar radiation is extracted from simulations
of oscillating CNSs respectively with (dashed magenta lines) and
without (continuous cyan lines) screening in the interior. The grav-
itational masses of the stars are, respectively, M = 1.02M, (screened
CNS) and M = 1.84Mg, (descreened CNS). The distance of the detec-
tor from the source is set to D;, = 10 kpc. To trigger the oscillations,
an initial perturbation with amplitude 6&, = 10~ is employed.

5.6.1 Oscillating CNSs

Oscillations in the CNSs were induced by an initial perturbation in the specific in-
ternal energy (see sec. 5.4.A), 5¢(r) = 6& cos(or) exp(—r?/0?), with ¢ = 5M, and
5¢& = {107%,107%,107%,1073,4 x 1073}. We have compared CNSs with different
masses, the lighter one having M = 1.02M, and belonging to the screened branch
of solutions, while the heavier, M = 1.84M, belongs to the branch with partial
descreening. Here we take (A, &) = (175 GeV, 6.5 x 10'° g/cm3).

Let us first assess the effectiveness of the screening mechanism at suppressing
the scalar radiation emitted by CNSs. In Fig. 5.9 we plot the monopole gravitational
wave signal sourced by an oscillating star at a luminosity distance of D; = 10 kpc.
One can observe that both the ®y, curvature scalar and the strain amplitude ks, re-
spectively in the top and bottom panel, are suppressed (by a factor ~ O(10)) when
the screening mechanism is active inside the star.

To investigate the observability of the gravitational waves sourced by the charac-
teristic modes of matter inside oscillating CNSs (see Fig. 5.7), we compare the strain
amplitude (in the frequency domain) of the signals produced by the screened and
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FIGURE 5.10: Signal vs detector sensitivity curves - oscillating stars. The
strain amplitude in the frequency domain is compared to the design
sensitivity curves of Advanced LIGO (red dot-dashed line) and ET
(blue dotted line). The source-detector distance is set to D; = 10
kpc. The signals correspond to the monopole gravitational waves
produced by screened (continuous magenta line) and descreened
(dashed cyan line) stars. The gravitational masses of the stars are,
respectively, M = 1.02M (screened CNS) and M = 1.84M (de-
screened CNS). The initial perturbations (in the specific internal en-
ergy) employed to triggered the oscillations and scalar gravitational
waves emission have an amplitude of 6¢y = 4 x 1073, The visible
peaks in the signals correspond to the fundamental mode, F, of the
characteristic radial oscillations of the CNSs. The results have been
obtained for (A, &) = (175 GeV, 6.5 x 1010 g/cm?).

descreened stars (both perturbed with the largest initial perturbation that we con-
sider, ¢y = 4 x 1073) with the sensitivity curves of Advanced LIGO and ET, as is
shown in Fig. 5.10. We observe that only the fundamental mode F (and, depending
on the mass of the star, the first overtone H;) have frequency falling in the (high
end of) the sensitivity range of ground-based detectors. We conclude that oscillating
CNSs located within our Galaxy would produce signals that are well above the sen-
sitivity threshold of Advanced LIGO, even in the case of the screened star, for the
theory considered in these simulations. Conversely, oscillating stars located outside
our Galaxy (D; 2 Mpc) might be undetectable by Advanced LIGO (even in case of
descreened CNSs) but within reach of third generation detectors such as the ET, for
which we predict higher SNR values (see Table 5.2).

The scaling of our results with the the initial perturbation amplitude is shown
(together with a power-law fit) in Fig. 5.11. As can be seen, the logarithmic depen-
dence on the initial amplitude suggests that our results are robust against changes in
that quantity. We stress again, however, that all the results presented in this section
have been obtained for A ~ 175 GeV. When the chameleon energy scale is com-
parable to the dark-energy scale (~ meV), we expect the frequency of the F-mode
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FIGURE 5.11: Scalar strain vs initial perturbation amplitude. The plots
show the maximum amplitude of the monopole scalar radiation
against the maximum amplitude of the initial perturbation of the
specific internal energy, 6¢. Top and bottom panel correspond to a
screened star with M = 1.02Mg and a descreened star with M =
1.84M,, respectively, located at a Dy, = 10 kpc distance from the de-
tector. The initial perturbation (in the specific internal energy) am-
plitudes considered are 6y = {10’6, 107°,107%,1073,4 x 10’3}. The

parameters of the model are set to (A, €x) =

(175 GeV, 6.5 x 1010

g/cm?). The black dashed lines show a power-law fit.
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to approach the general relativity predictions and thus to remain in the kHz range.
However, the fundamental scalar mode, F;, will have even higher frequencies be-
cause of the huge mass (5.15) acquired by the chameleon field at nuclear densities,
which may render detection of scalar effects challenging. As for the amplitude of the
scalar signal, we expect it to be suppressed for A ~ meV and more realistic atmo-
sphere densities. We will show this in detail for the (much stronger) scalar emission
produced in gravitational collapse, in the next section.

| Scenario | Screening | LIGO | ET |

Yes 4 3.3 x 10!
No 2.0 x 10" | 1.6 x 10?
Yes 7.6 x10% | 7.8 x 10*
No 5.6 x 10° | 5.6 x 10*

Oscillations

Collapse

TABLE 5.2: SNR. Estimates of the SNR of scalar gravitational waves
produced by oscillating and collapsing CNSs. Results are labelled by
the presence or absence of screening in the core of the stars, and by
the detector taken as a reference (Advanced LIGO or ET). The source-
detector distance is set to D;, = 10 kpc. The gravitational masses of
the oscillating stars are, respectively, M = 1.02M, (screened CNS)
and M = 1.84M, (descreened CNS). The collapsing CNSs have been
chosen to have a fixed baryon mass My,, = 1.75M. The results are
obtained for (A, &) = (175 GeV, 6.5 x 101° g/cm?).

5.6.2 Collapsing CNSs

In this subsection, we extract the scalar (monopole) gravitational wave emission
from simulations of collapsing unstable CNSs, respectively with and without de-
screened cores. In particular, we fixed the parameters of the theory to (A, €x) =
(175 GeV, 6.5 x 101 g/cm?®) and chose two CNSs with the same baryon mass (5.25)
My, = 1.75M; but with different EoS polytropic index, respectively I' = 3 and
I' = 2. For the latter value (and unlike for the former), the CNS does not feature a
pressure-dominated core and the chameleon screening is fully effective. The collapse
is induced with a small initial perturbation, introduced by decreasing the polytropic
index by a tiny amount (~ 0.1%), which corresponds to a small increase of the ini-
tial pressure (by less than two percent) and of the specific internal energy (by half a
percent).

The plots in Fig. 5.12 show the monopole scalar gravitational wave produced by
the two CNSs described above, at a distance of D;, = 10 kpc. The infalling matter
produces a typical burst signal, visible in both the Newman-Penrose scalar ®;, (top
panel) and in the scalar strain amplitude /s (bottom panel). In these simulations we
see no evidence of a suppression of the scalar emission due to screening (complete or
partial). In Fig. 5.13 we compare the two scalar strain amplitudes, in the frequency
domain, to the design sensitivity curves of current and next-generation terrestrial
interferometers. As can be seen in the plot, a collapsing (screened or descreened)
CNS would produce a very loud burst that would correspond to large SNR already
in Advanced LIGO (see Table 5.2).

One may wonder, however, whether this large monopole radiation persists for
smaller values of (A, é). To answer this question, let us try to gain some insight on
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FIGURE 5.12: Scalar radiation from collapsing stars. Top panel: Ppp

vs retarded time. Bottom panel: strain amplitude vs retarded time.

Bursts signals are extracted from simulations of collapsing CNSs, re-

spectively with (dashed magenta lines) and without (continuous cyan

lines) screening in the interior. The source-detector distance is set to
D; =10 kpc.

why large scalar signals are produced in our simulations. As mentioned in Sec. 5.3,
the end state of the collapse of a CNS is a "hairless” BH with the chameleon field
lying in the constant "exterior” vacuum, ¢ = ¢. Note indeed that vacuum solutions
with "hair” (i.e. non-constant scalar field) are forbidden by a trivial generalization
of the Hawking-Bekenstein "no-scalar-hair” theorem [394, 588, 589]. As a result, the
scalar charge of the star must be shed away via gravitational wave emission during
collapse. Therefore, larger initial charges will correspond to larger burst amplitudes.
Note that a similar mechanism, whereby gravitational collapse has to shed away
(because of no-hair theorems) any scalar hair that a star may initially have, thus
producing a strong scalar monopole emission, was recently discovered for theories
that yield kinetic screening [526].

In our case, we observe that at large values of (A, ) the scalar charges of CNSs
are not efficiently suppressed by the "thin-shell” effect. In fact, one can notice that
the screening radius (see sec. 5.2.2 for the definition) of the TOV solutions obtained
by choosing (A, &x) = (175 GeV, 6.5 x 10! g/cm3) is typically < 70% of the size
of the stars (see Fig. 5.2 and also Fig. 2 in [461]). The relativistic stars are thus in
a "thick-shell” regime, i.e. a non-negligible fraction of the stellar mass sources the
scalar charge. In our simulations, in particular, the screened and descreened CNSs
shown in Fig. 5.12 emit loud scalar gravitational waves because they have relatively
large and comparable charges, respectively Q ~ 0.15 and Q ~ 0.11. The descreened
star actually features a charge slightly smaller than the screened CNS. We interpret
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FIGURE 5.13: Signal vs detector sensitivity curves - collapsing stars.
The strain amplitude in the frequency domain is compared to the
design sensitivity curves of Advanced LIGO (red dot-dashed line)
and ET (blue dotted line). The source-detector distance is set to
D; = 10 kpc. The signals correspond to the monopole gravitational
waves produced by screened and descreened stars undergoing grav-
itational collapse. The vertical dash-dotted black line corresponds to
feo = Me/2m, ie. the peak frequency of the burst, below which all
frequencies are Yukawa-suppressed.

this as due to the descreened core, which gives a negative contribution to charge and
thus decreases the its total value.

To extrapolate the charges of CNSs to realistic values of (A, € ), we use the scal-
ing

QA &x) = (A/N0)"(Ew/&)"Q(Ao, &), (5.43)
where the coefficients 2 ~ 2 and b ~ —3/5 were obtained by power-law fits of
simulations with baryon mass My, = 1.75M, (c.f. Figs 5.14-5.15).

Based on Eq. (5.43), we predict that the CNSs of mass My,, = 1.75M, considered
above will have a scalar charge of, respectively, Q ~ 6 x 10~ and Q ~ 5 x 10~
for the realistic values (A, &x) =~ (2.4 meV,1.67 x 1072 g/cm?®). We interpret this
suppression of the scalar charge as a vindication of the "thin-shell” effect, which
appears to be restored, even for relativistic stars, at realistic values of the parameters
of the theory.

Motivated by this result, we turn now to estimate the SNR of burst signals for
realistic/viable values of (A, ). To overcome the technical challenges of directly
simulating stars at very small A and é., (see discussion in Sec. 5.4), we resort again
to determining the scaling of the scalar monopole signal with these quantities. From
simulations of the collapse with A ~ {175,122,73} GeV and é, = const., we fit the
maximum strain amplitude of the burst as a function of A using a power law, as is
displayed in Fig. 5.16. We then fit (again with a power law) the same quantity against
the exterior density, & = {6.5,2.6,1.1} x 10 g/cm3, using simulations with fixed
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FIGURE 5.14: Scalar charge vs chameleon energy scale. The plot shows

the scalar charge, Q, of CNSs with My, = 1.75M against chameleon

energy scale, A; the atmosphere density is kept constant, €, =

6.5 x 101% g/cm3. Red dots represent data corresponding to A =

{175,122,73} GeV. The black dashed line represents the power law
Q ~ A" (with a ~ 2) fitting the data.

¢eo. The result is shown in Fig. 5.17.
Combining the results from these power-law fits, one obtains a scaling relation
for the maximum scalar amplitude

Ns(A, Eeo, Distret) = (A/ M) (e0/E0)*(Do/Dy) -
: hs(AO/ €o, Do; (m()/moo) tret) ’ (5-44)

with ¢ ~ 5/2 and d ~ —7/10. Note that the scaling with A coincides with that
of the quantity (¢ — ¢s), where ¢ is the minimum of the scalar field inside the
CNS. Indeed, from (5.14) one obtains ¢, Ps ~ A5/2. Let us also note, as can be
seen from Fig. 5.13, that the burst signal peaks at f = fo = Moo (A, €x) /27, while
lower frequencies are suppressed. Making use of expression (5.15), one can check
that lower values of A and é. correspond to smaller chameleon masses, and thus
lower peak frequencies. Hence, to extrapolate to lower (A, &) one also needs to
rescale the time by the factor (1 /me ) that appears in (5.44).

Finally, by applying Eq. (5.44) to extrapolate to (A, éx) ~ (2.4 meV, 1.67 x 1072
g/cm?) (the latter corresponding to the order of magnitude of the density inside
large molecular clouds), we find that the monopole signal would peak in the mHz
band, outside the band of terrestrial detectors but within that of LISA. Although we
have computed the SNR for LISA, that is completely unobservable (o ~ 10~1°), even
for distances of a few kpc.
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FIGURE 5.15: Scalar charge vs atmosphere density. The plot shows
the scalar charge, Q, of CNSs with My, = 1.75M; against atmo-
sphere density, €; the asymptotic value of the chameleon field is
fixed to ¢poo =~ 0.17Mp. Red dots represent data corresponding to

€w = {6.5,2.6,1.1,0.34,0.081} x 10 g/cm>. The black dashed line
represents the power-law Q ~ &b (with b ~ —3/5) fitting the data.

5.6.3 Binary systems

From the extrapolation presented in the previous section, we have concluded that
the monopole emission from collapsing CNSs is pratically unobservable with cur-
rent (and future) detectors, at least for realistic values of the chameleon model.
When it comes to (quasi-circular) binary systems involving at least oneneutron star,
the strongest effect is expected to be dipole scalar emission, which potentially domi-
nates the binary’s evolution at low frequencies [52, 58, 76, 338, 411, 412, 520, 530] The
deviations from general relativity induced by dipole emission can be parametrized
via [520]

. . B
E=Eqr (1 + zﬂ) ) (5.45)

where v is the relative velocity of the binary, E and Egy are the total energy fluxes in
chameleon gravity and in GR, respectively, and B ~ (Q; — Q>)? (with Q; ad Q, the
component charges).

Note that Eq. (5.45) is valid for scalar-tensor theories with a massless scalar, while
the chameleon field possesses a non-vanishing mass. We therefore expect the en-
ergy loss due to dipole radiation to be given by Eq. (5.45) only at binary separa-
tions smaller than the Compton wavelength. For (A, &) ~ (2.4 meV,1.67 x 10-2°
g/cm?), the Compton wavelength is Ac = 1/« ~ O(10%) km, which is larger than
the typical separation of binary pulsars (which is < 10° km). However, from the
scaling (5.43), the scalar charge of relativistic stars extrapolated at (A, €x) ~ (2.4
meV, 1.67 x 1072 g/cm?) would be Q < O(10~9), corresponding to B ~ 10~%.
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c ~ 5/2) fitting the data.

This is at least 10 orders of magnitude lower than what is currently measurable [520]

5.7 Conclusion

In this work, we have investigated the chameleon screening mechanism in the fully
dynamical and nonlinear regime of oscillating and collapsing neutron stars, in spher-
ical symmetry. Our simulations confirm the static results of Ref. [461], and in par-
ticular the partial breakdown of the chameleon screening inside stars with pressure-
dominated cores, but also provide evidence of the nonlinear stability of both screened
and partially descreened stars in chameleon gravity.

We have focused first on the characteristic spectrum of (radial) oscillations of
neutron stars. We observed a shift in the frequencies of the fundamental mode and
higher overtones with respect to the general relativity predictions. While this effect
could be degenerate with the EoS, the appearance of a new family of modes may
potentially constitute the "smoking gun” of a gravitational scalar field. However,
these modes have frequencies of the order of the large mass that the chameleon field
acquires inside relativistic stars (i.e. 2 kHz). Moreover, we find that chameleon
screening is also very efficient at suppressing the scalar mode amplitude in oscil-
lating screened CNSs, already at large A ~ 100 GeV. For this reason, scalar effects
in oscillating stars are probably unobservable for realistic chameleon energy scales
A ~ meV.
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FIGURE 5.17: Maximum burst amplitude vs atmosphere density. The
plot shows the maximum amplitude, fimax, of the scalar gravitational
wave burst against the atmosphere density, €. The collapsing CNSs
have a fixed baryon mass My,, = 1.75M¢ and the asymptotic value
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dashed line represents the power law fmax ~ &% (with d ~ —7/10)
fitting the data.

We have also simulated gravitational collapse of neutron stars, which can lead to
larger monopole scalar signals than stellar oscillations. We have assessed detectabil-
ity by existing and future gravitational wave interferometers, concluding that the
scalar radiation would be observable in the Galaxy for large chameleon energy scales
A ~ 100 GeV. However, if one extrapolates our results down to viable chameleon
energy scales A ~ meV, the screening suppresses the signal’s amplitude, and the
signal also gets shifted to lower (~ mHz) frequencies. We have checked that, as a
result, this scalar emission would be undetectable even with LISA. Similarly, our re-
sults for the scalar charge of isolated neutron stars suggest that scalar effects would
be suppressed by screening also in pulsar binary systems for A ~ meV.






85

Chapter 6

Concluding remarks

During the research work collected in this thesis I have explored the signatures that
a scalar field could leave in the strong-gravity environment of black holes and neu-
tron stars, focusing in particular on the observability through gravitational-wave
astronomy.

The hypothesis of superradiant instabilities triggered by a plasma-induced mass
of the photon was considered in Chapter 3. As it turned out, while the conditions for
observable superradiant effects might be achieved in a homogeneous plasma distri-
bution with an appropriately low density (i.e. of order of the interstellar medium
one), a more realistic plasma distribution around astrophysical black holes would
need to include the effects of an accretion-induced density increment that spoils
the conditions for the onset of the superradiant instability (see Chapter 3). In addi-
tion, more recent work has demonstrated that even when accretion is negligible (e.g.
black holes kicked out of their accretion nest) other mechanisms will intervene and
quench superradiance very rapidly before any observable effect is produced [380,
512-515].

In Chapter 4 we discussed a similar problem involving scalar effects in vacuum
spacetimes triggered by a position-dependent effective mass term. We considered
an alternative model of gravity in which the gravitational interaction is mediated by
both the metric and an additional fundamental scalar field. The key element of the
model is the coupling of the scalar field to the spacetime curvature, which is neg-
ligible where gravity is weak (i.e. the Solar System) and typically relevant only in
the strong-field regime of compact objects. While because of no-hair theorems many
scalar-tensor models predict no deviation from General Relativity in the physics of
black holes, there are known examples of models with a coupling to higher-order
curvature invariants that allow vacuum solutions with scalar hair. In particular, the
specific model to which we specialized in Chapter 4 is protected by a no-hair theo-
rem in the case of static spherically symmetric vacuum spacetimes. By generalizing
to an axisymmetric scenario, we were able to discover the onset of an interesting
variant of the curvature-induced scalarization process that triggers the growth of
scalar hair only in rapidly rotating black holes. Other groups subsequently con-
firmed our findings [590, 591] and further explored the evolution and endstate of
spin-induced scalarization [149, 432, 592, 593].

In general, extending the theory of gravity with an additional scalar sector re-
quires the introduction of a free scale that controls the scalar effects. In typical
scalar-tensor theories this scale can be tightly constrained with the standard set of
weak-field tests of gravity that we briefly reviewed in section 1.2.1. With the ad-
vent of the era of gravitational-wave observations and with the increasing number
of other strong-gravity probes, even tighter bounds can now be placed and large
portions of the space of viable scalar-tensor theories of gravity have already been
ruled out (see section 1.2.3 and 2.1.3). Instead, screened scalar-tensor theories are
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inherently more difficult to constrain because of the built-in mechanisms that hide
the scalar signatures. However, proof of the effectiveness of screening mechanisms
is typically produced with semi-analytic arguments in the static, non-relativistic
Newtonian limit. Given the complexity of the problem the results obtained outside
these simplifying assumptions are scarce in number. The fully dynamical, highly-
relativistic and strong-field regimes of screened modified gravity remain still largely
unknown. Chapter 5 was dedicated to work that attempts to improve on this issue:
the investigation of isolated neutron stars coupled to a scalar field with chameleon
screening. The nonlinear potential of the chameleon field in combination with the
conformal coupling to matter result in a dynamical effective mass that grows with
the local value of the ambient density. The large inertia acquired by the scalar in cor-
respondence of dense matter distributions (e.g. the Earth, a star or the Solar System)
effectively screens the scalar field dynamics. Our work presented in Chapter 5 is
among the first contributions to the numerical modeling of neutron stars in screened
modified gravity with full-fledged numerical relativity techniques.

The general approach employed in all the work collected in this thesis followed
closely the model-builder logic of exploring alternative theories of gravity starting
from minimal modifications. In particular, my research was focused on strong-field
effects produced by scalar fields with dynamical mass terms when interacting with
strong-gravitating compact objects like black holes and neutron stars. The mass dy-
namics was given either by a photon-plasma coupling, a universal conformal cou-
pling to matter or a coupling to spacetime curvature (see Chapters 3, 4 and 5, respec-
tively). The restricted scope of this approach can be both a point of strength and a
limitation at the same time. On the one hand, considering only a (generalized) mass-
term potential in the action of the gravitational model can simplify significantly the
process of producing quantitative predictions. On the other hand, scalar fields with
more general potentials or higher-order derivative operators (like those that appear
in the most general scalar-tensor Lagrangian in section 2.1.3) could keep in store in-
teresting new physics to explore. To list only a few examples concerning vacuum
spacetimes: "higher-order" black-hole scalarization [594], novel families of solitonic
scalar solutions [595-597], "stealth" hairy black holes [598-600]. Regarding extreme
matter spacetimes, higher-derivative scalar-tensor theories allow for an entirely dif-
ferent class of kinetic screening mechanisms (see section 2.2.3) whose behavior in the
strong-field regime remains yet mostly unknown.

However, numerical modeling of the strong-gravity regime in more general scalar-
tensor theories presents many unsolved challenges, an example of which is given by
the multiscale problem introduced by screening mechanisms. Resolving numeri-
cally the typically large separation of scales between the screened solution (in the
nonlinear regime of compact objects) and the cosmological solution (recovered suf-
ficiently far outside compact stars) can be in practice very challenging both for stan-
dard methods for initial data production and for the subsequent time evolution. This
issue was discussed in Chapter 5 in relation to chameleon screening. Note, how-
ever, how this issue seems not unique to chameleon gravity but apparently plagues
also theories with different screening mechanisms (see [462, 526]). Future prospects
for addressing this particular issue could consist of resorting to adaptative stepsize
and/or implicit-explicit algorithms for handling arbitrarily small values of the fun-
damental scale of the problem (see Chapter 4 for an example); or to more refined
numerical methods for multiscale problems [601].

Moreover numerical simulations are destined to fail if the theory does not ad-
mit a well-posed initial value problem or, in other words, if it is not granted that



Chapter 6. Concluding remarks 87

the field equations admit a unique, continuously dependent and bounded solu-
tion [602]. Well-posedness of the initial value problem has been a longtime major ob-
stacle in the way of numerical modeling of the strong-field regime of gravity. In fact,
since the seminal work by Yvonne Choquet-Bruhat [603, 604] it took several decades
before a well-posed formulation of the nonlinear Einstein field equations could be
found [605]. In recent years modified gravity is facing a tougher incarnation of the
same problem, since finding a well-posed formulation of the modified/extended
field equations beyond-General Relativity can be highly non-trivial [606-611]. In
fact, well-posedness has been fully established only for scalar-tensor theories in the
Bergman-Wagoner formulation [612, 613], for Lovelock gravity and Horndeski theo-
ries at weak coupling [614-618], and Einstein-aether theories [619]. However, due to
the enhanced nonlinearities in the field equations the initial value problem can see a
dynamical breakdown of the well-posedness during the simulations [620-622]. One
solution that has been proposed consists in adapting the Israel-Stewart techniques
used in hydrodynamics problems to numerical relativity [623, 624]. Another inter-
esting alternative to the quest for well-posed schemes tailored for modified gravity
is given by order-reduction schemes. In brief, these consist in a small-coupling expan-
sion of the system of field equations followed by numerical simulations conducted
order-by-order, the leading-order typically coinciding with the limit of decoupled
evolution of the extra degrees of freedom on a general relativistic background (or de-
coupling limit). With this approach numerical results have been obtained earlier on in
cubic galileon theories [625], on binary black hole simulations in Chern-Simons grav-
ity [626—-629] and Einstein-scalar-Gauss-Bonnet models [610, 630, 631]. Although the
order-reduction approach allows one to study such involved theories with only min-
imal modifications to the numerical schemes used in general-relativistic problems,
typically concerns are risen regarding the applicability of the method to theories
where the fundamental couplings are not necessarily small, e.g. in screened mod-
ified gravity, and such perturbative approaches necessarily fail to capture impor-
tant nonlinear effects. Moreover, a well-known problem in perturbative methods
for near-periodic problems (like the inspiral of two compact objects [629, 632, 633])
consists in the pertubed numerical solution growing secularly apart from the true
non-perturbative solution. Recently progress has been achieved on remeding with
dynamical renormalization group methods to the secular growth of perturbative solu-
tions see [634].

In conclusion, the research work behind this doctoral thesis allowed me to face
the scientific questions and technical challenges involved when testing our current
understanding of the theory of gravitation. Although I had the opportunity to give
a little personal contribution to some of these questions and challenges, many more
still lie ahead: in the era of gravitational-wave astronomy, renewed efforts are re-
quired in modeling systematically the strong-gravity phenomenology of compact
objects beyond general relativity.
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