
J
H
E
P
0
3
(
2
0
1
4
)
0
8
3

Published for SISSA by Springer

Received: October 9, 2013

Revised: January 20, 2014

Accepted: February 15, 2014

Published: March 18, 2014

Beta functions of topologically massive supergravity

R. Percacci,a M.J. Perry,c C.N. Popeb,c and E. Sezginb

aSISSA, via Bonomea 265, Trieste, Italy and INFN, Sezione di Trieste
bGeorge and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy,

Texas A&M University, College Station, TX 77843, U.S.A.
cDAMTP, Centre for Mathematical Sciences, Cambridge University,

Wilberforce Road, Cambridge CB3 0WA, U.K.

E-mail: percacci@sissa.it, M.J.Perry@damtp.cam.ac.uk,

pope@physics.tamu.edu, sezgin@physics.tamu.edu

Abstract: We compute the one-loop beta functions of the cosmological constant, New-

ton’s constant and the topological mass in topologically massive supergravity in three

dimensions. We use a variant of the proper time method supplemented by a simple choice

of cutoff function. We also employ two different analytic continuations of AdS3 and con-

sider harmonic expansions on the 3-sphere as well as a 3-hyperboloid, and then show that

they give the same results for the beta functions. We find that the dimensionless coefficient

of the Chern-Simons term, ν, has vanishing beta function. The flow of the cosmological

constant and Newton’s constant depends on ν; we study analytically the structure of the

flow and its fixed points in the limits of small and large ν.

Keywords: Field Theories in Lower Dimensions, Supergravity Models, Renormalization

Group

ArXiv ePrint: 1302.0868

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP03(2014)083

mailto:percacci@sissa.it
mailto:M.J.Perry@damtp.cam.ac.uk
mailto:pope@physics.tamu.edu
mailto:sezgin@physics.tamu.edu 
http://arxiv.org/abs/1302.0868
http://dx.doi.org/10.1007/JHEP03(2014)083


J
H
E
P
0
3
(
2
0
1
4
)
0
8
3

Contents

1 Introduction 1

2 Topologically massive supergravity 2

3 The method for computing the beta functions 3

3.1 Proper time representation of the beta functions 3

3.2 Theta function cutoff 5

3.3 The evaluation of the heat kernel 5

3.4 Beta function definitions for topologically massive supergravity 6

4 The quadratic action and spectra 7

4.1 The bosonic sector 7

4.1.1 Euclideanization to S3 and diagonal gauge 9

4.1.2 The physical gauge 10

4.2 The fermionic sector 12

4.2.1 The diagonal gauge 12

4.2.2 The physical gauge 14

5 The beta functions of pure supergravity 15

6 The beta functions of topologically massive Supergravity 18

6.1 The large µ̃ limit 18

6.2 The small µ̃ limit 19

7 The RG flows 21

7.1 The large ν limit 21

7.2 The small ν limit 22

8 Conclusions 23

A Variational formulae 26

B Exponential cutoff 26

C Euclideanization rules 27

C.1 S3 27

C.2 H3 28

D Some heat kernel checks 28

E Properties of Γk 30

F Quasi-supersymmetry of gauge fixing conditions 30

G Beta functions on the hyperboloid 31

– i –



J
H
E
P
0
3
(
2
0
1
4
)
0
8
3

1 Introduction

Topologically massive gravity (TMG) [1] is described by a Lagrangian in three dimensions

consisting of the Einstein-Hilbert term, cosmological term and Lorentz Chern-Simons term.

Positivity of the energy for the black hole solution requires that Newton’s constant G be

positive. However, in this case a negative mass graviton solution arises assuming standard

boundary conditions. It was observed in [2] that if the topological mass µ is related to the

cosmological constant Λ by µ =
√
−Λ, and suitable boundary conditions are imposed, then

this negative mass graviton mode can be confined to propagate only on the boundary.1 It

would be interesting to study the properties of chiral TMG at the quantum level. This

is complicated by the fact that there is an enhancement of the local symmetries at the

chiral point [4]. One can ask instead whether a generic TMG, upon quantization, flows to

the chiral point. To this effect the one-loop beta functions for the dimensionless couplings

G̃ = Gk, Λ̃ = Λ/k2 and µ̃ = µ/k, where k is the cut-off parameter, have been computed

in [5] for generic values of the couplings. It was found that the one-loop beta function for

ν ≡ µG = µ̃G̃ (the coefficient of the Chern-Simons term) vanishes. Then the RG flow

occurs in the Λ̃-G̃ plane with ν held constant. This two-dimensional flow was shown not

to preserve the ratio µ2/Λ = µ̃2/Λ̃2.

In this paper we shall study the one-loop beta functions in the locally supersymmetric

version of TMG, which we shall refer to as TMSG. Our principal motivations for doing so

are as follows. Firstly, the determination of whether local supersymmetry helps in making

the chiral point condition robust upon the running of the coupling constants.

Another motivation comes from studies of the renormalization group for gravity [6, 7],

mostly with the aim of supporting the hypothesis of asymptotic safety [8–11]. Most of this

work has been done in gravity, possibly coupled to ordinary matter, in four dimensions.2

In this work we shall extend this approach to supergravity, also taking into account the

gravitational Chern-Simons term, with the attendant subtleties due to the odd number of

derivatives in the field equation.

Finally, we wish to develop methods to deal with the renormalization group analysis

in three-dimensional supergravities, which apparently have not been addressed so far in

the literature. There are a number of subtleties having to do with the fact that the Chern-

Simons term has an odd number of derivatives, with the dependence on gauge conditions

and on cut-off schemes. Here we have developed methods which can be applied in a wider

class of theories. In particular, we use the proper time flow equation [13–15], combined

with a simple choice of cutoff, to express the beta functions directly in terms of the heat

kernels of appropriate wave operators. We also employ two different analytic continuations

of AdS3 and consider harmonic expansions on the 3-sphere as well as a 3-hyperboloid, and

then show that they give the same results for the beta functions. The heat kernel methods

1There has also been an alternative approach in which the bulk graviton is maintained but the negative

energy black hole solution is viewed as being possibly irrelevant by imposing a suitable superselection

rule [3].
2In the so-called Einstein-Hilbert truncation the results seems to be relatively independent of dimension,

but when one looks in detail at the the physical mechanism underlying the existence of the nontrivial fixed

point there are interesting differences above and below three dimensions [12].
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for arbitrary backgrounds are not available for the model we are considering due to the fact

that the wave operator is not of the canonical type because of the third order derivative

operator coming from the Lorentz Chern-Simons term.

Our main finding with regard to the fate of the chirality condition is that local su-

persymmetry does not qualitatively change the conclusion reached in the purely bosonic

TMG. The general structure of the flow is not altered significantly by the presence of the

fermionic fields: for fixed ν the flow in the Λ̃-G̃ plane has a Gaussian fixed point (at van-

ishing couplings) with one UV-attractive and one repulsive direction, and a non-Gaussian

fixed point with positive G̃ which is UV-attractive in both directions.

The paper is organized as follows. In section 2 we describe the theory. In section 3 we

describe the method used to compute the beta functions. In section 4 we give the expansion

of the action to second order in fluctuations. In section 5 we give the calculation of the beta

functions for pure supergravity, i.e. in the absence of Chern-Simons term. The calculation

of the beta functions for TMSG is given in section 6 and the corresponding flows are

described in section 7. Section 8 contains final comments and conclusions. Several helpful

formulae and computations have been relegated to appendices A-G.

2 Topologically massive supergravity

The action for topologically massive off-shell N = 1 supergravity is given by3

e−1L = Z

[
R− 2S2 − 4mS − 2εµνρψ̄µDν(ω)ψρ −mψ̄µγ

µνψν

−1

4
µ−1 εµνρ

(
Rµν

abωρab +
2

3
ωabµ ωνb

cωρca

)
− µ−1R̄µγνγµR

ν

]
, (2.1)

where Z = 1
16πG , m =

√
−Λ and the curvatures are given by

Rµν
ab = ∂µω

ab
ν + ωacµ ωνc

b − (µ↔ ν) , (2.2)

Rµ = εµνρDν(ω)ψρ. (2.3)

The real scalar S is the auxiliary field and the covariant derivative of the gravitino in (2.6)

is defined as D[µ(ω)ψν] = ∂[µψν]+
1
4ω[µ

abγ|ab|ψν]. The spin connection is not an independent

field, but rather it is given by

ωµab = ωµab(e) +
1

2

(
ψ̄µγaψb − ψ̄µγbψa + ψ̄aγµψb

)
, (2.4)

3This is a straightforward generalisation [16] of the on-shell model of Deser and Kay [17], and its extension

by Deser [18] to include the cosmological constant. The pure off-shell supergravity with cosmological

constant was constructed in superspace in [19].
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where ωµab(e) is the spin connection that solves the vanishing torsion equation dea+ωab ∧
eb = 0. The local supersymmetry transformations are [20]

δeaµ = ǭγaψµ ,

δψµ = Dµ(ω)ǫ+
1

2
Sγµǫ ,

δS =
1

2
ǭγµRµ −

1

2
ǭγµψµS. (2.5)

The field equation for S gives S = −m. Substituting this back into the action yield the

on-shell theory with the Lagrangian [17, 18]

e−1L = Z

[
R+ 2m2 − 2εµνρψ̄µDν(ω)ψρ −mψ̄µγ

µνψν

−1

4
µ−1 εµνρ

(
Rµν

abωρab +
2

3
ωabµ ωνb

cωρca

)
− µ−1R̄µγνγµR

ν

]
, (2.6)

and supersymmetry transformations

δeaµ = ǭγaψµ ,

δψµ = Dµ(ω)ǫ−
1

2
mγµǫ. (2.7)

The maximally supersymmetric vacuum solution is given by the AdS3 metric ḡµν with

curvature scalar R̄ = −6m2.

3 The method for computing the beta functions

3.1 Proper time representation of the beta functions

In this section we describe the general idea behind the calculational method we shall use.

The one-loop effective action can be written formally as4

Γ = S +
1

2
tr log(∆) , (3.1)

where S is the classical action and ∆ = δ2S
δφ2

, the inverse propagator, is a differential

operator of dimension5 ω with eigenvalues λn and multiplicities dn. We implicitly assume

that spacetime is compact without boundary. The trace of the logarithm can be written,

again formally, in the proper time representation

tr log(∆) = log det∆ = −
∫ ∞

0

dt

t
Y (t) , (3.2)

where

Y (t) =
∑

n

dne
−tλn (3.3)

4For fermions the formula is Γ = S − tr log(∆F ).
5Usually ω is also equal to the order of the differential operator, but in this paper we will need to

distinguish the two notions.
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is the trace of the heat kernel of ∆. Note that the dimension of t is −ω. The lower end

of the integration corresponds to the UV, the upper end to the IR. One can make sense

of this expression by cutting off the integral over small t. We also cut-off the integral for

large t, thereby eliminating any spurious IR divergences. Ignoring the UV problems for a

moment, we define the Wilsonian one-loop effective action Γk as6

Γk = S − 1

2

∫ ∞

0

dt

t
Y (t)Ck(t). (3.4)

Here Ck(t) is a dimensionless cutoff function which can be written as Ck(t) = C̃(t̃), where

t̃ = tkω and C̃ itself does not depend on k. The function C̃ is required to be monotonically

decreasing; to go rapidly to zero for t̃≫ 1; and for t̃≪ 1 C̃ should to go sufficiently rapidly

to one [13–15]. The functional Γk contains the contribution of all quantum fluctuations with

momenta larger than k, and therefore it can be regarded as a realization of the Wilsonian

prescription for an “effective action” at scale k. For k → 0, Ck → 1 and Γk reduces to the

ordinary effective action. We can define a “beta function” of the theory as the logarithmic

derivative of Γk:

β = k
dΓk
dk

= −1

2

∫ ∞

0

dt

t
Y (t) k

dCk(t)

dk
. (3.5)

Owing to the fall-off properties of Ck, this “proper time beta function” is automatically

UV convergent, even though the functional Γk itself is ill-defined in the UV. In fact, the

integral receives its main contribution from momenta of order k. One can therefore take

the view that β is the basic object and that Γk can be obtained by integrating the flow

defined by β.

The beta functions defined by this procedure encode the cutoff dependence of the

quantum effective action and therefore also contain the information about divergences: if

there are divergences in the theory they will manifest themselves when one integrates the

flow in the direction of increasing k. It is important, however, not to confuse the two

notions. Even though we shall not compute it here, the flow defined by (3.5) contains all

the information about the finite, nonlocal parts of the effective action too. In particular in

a finite theory these beta functions would not be zero: they would describe the finite flow

of all the couplings.

The beta functions of individual couplings in Γk can be obtained as the coefficients of

the respective operators in the functional β. The common way of calculating approximate

beta functions is to truncate the effective action to contain only the terms of interest. For

example, to obtain the beta functions of Λ, G and µ one can assume that the effective

action has the form (2.6) and use it to calculate the r.h.s. of (3.5).

The beta functions obtained in this way will generally depend on the choice of the cutoff

function Ck(t). We shall refer to this as scheme dependence. However, the beta functions

of the dimensionless couplings are scheme-independent. This can be seen as follows. Let

Yn be the coefficient of tn in the series expansion of Y . In particular Y0, the t-independent

6Due to the presence of the cut-off function, Γk is no longer a product or ratio of determinants, as

explained in appendix E.
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term, is dimensionless, so its coefficient in the action is a dimensionless coupling. Using

the homogeneity and the boundary conditions of C̃ we have

− 1

2

∫ ∞

0

dt

t
Y0 k

dCk(t)

dk
= −1

2
ω Y0

∫ ∞

0
dt̃
dC̃

dt̃
=

1

2
ω Y0. (3.6)

Thus we see that the beta functions of dimensionless couplings are actually “universal” in

the sense that they do not depend on the choice of cutoff function. When the flow equation

is integrated, these couplings run logarithmically, and in the limit k → ∞ they correspond

to logarithmic divergences in Γk. On the other hand, the beta function of the coupling

that multiplies the term Yn (n 6= 0) will be scheme dependent. It will scale as k−nω and

therefore, for n < 0, corresponds to a power law divergence. These beta functions coincide

with those that one would obtain as the coefficients of divergent terms in Γ.

3.2 Theta function cutoff

Let us consider the cutoff

C̃(t̃) = θ(1− at̃) , (3.7)

where θ is the Heaviside step function, a is a constant parameter we have introduced, and

we recall that t̃ = tkω. Then

k
dCk(t)

dk
= −aωt̃ δ(1− at̃) = −ωt δ

(
k−ω

a
− t

)
. (3.8)

When we insert this in (3.5) we get simply

β ≡ k
dΓk
dk

=
1

2
ω Y

(
k−ω

a

)
. (3.9)

In this regularization scheme the one loop beta functions of the individual couplings can

be simply obtained from the small-t expansion of the heat kernel Y (t), for which much

information is available in the literature. An alternative choice of cutoff that also allows

an explicit evaluation of the beta functions is discussed in appendix B.

3.3 The evaluation of the heat kernel

In this paper we will have to evaluate the heat kernel for differential operators ∆1,∆2 and

∆3 of order 1, 2 and 3 respectively. Assuming that the coefficients of the highest order

terms are dimensionless, the corresponding kernels are

Y1(u) = tr e−u∆1 , Y2(t) = tr e−t∆2 ; Y3(s) = tr e−s∆3 , (3.10)

where u, t and s are real parameters of dimension L, L2 and L3, respectively. In the

following, we will encounter situations where the highest order part of the operator is

multiplied by 1/µ. By expanding the exponential for small or large µ, we will reduce the

calculation to the evaluation of traces of the form given above with insertions of operators

coming from the µ expansions. Such traces will be dealt with in the same way as we shall

now describe.
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The evaluation of the sums Y (t) =
∑

n dne
−tλn can be conveniently carried out by

using the Euler-Maclaurin formula,

∞∑

n=n0

F (n, t) =

∫ ∞

n0

F (x, t) dx−
∑

k≥0

Bk+1

(k + 1)!
F (k)(n0, t) , (3.11)

where F (x, t) = dxe
−tλx and Bk is the k’th Bernoulli number. Note that since we need only

the terms in the small-t expansion of Y (t) up to and including the t0 term, only the first

few terms in the summations involving the Bernoulli numbers will be required. Since the

terms in the summation can only contribute non-negative powers of t, in our calculation

they only appear in the t-independent terms. The integral has the asymptotic expansion
∫ ∞

n0

F (x, t)dx = I−3/2 t
−3/2 + I−1 t

−1 + I−1/2 t
−1/2 + I0 +O(t1/2) . (3.12)

The resulting spectral sums can be expanded in powers of Ricci scalar R. The leading

terms are R-independent and they are given by

Y (1)(u) =
V N1

π2u3
, Y (2)(t) =

V N2

(4πt)3/2
, Y (3)(s) =

V N3

6π2s
, (3.13)

where Ni are the numbers of independent components of the field on which the operators

act. The beta functions will consist of appropriately weighted sums of the heat kernels.

There is freedom in introducing a suitable proportionality factor in the relations between

u, t, s and k. This can be viewed as another instance of scheme-dependence. We will choose

t = u2π1/3/4 , s = u3/6 , (3.14)

in such a way that the denominators in (3.13) become equal so that Y (i)(t) = NiV/(4πt)
3/2.

We show in appendix D that these choices are natural, since they imply that the leading

terms are the same when the beta functions are computed directly from the heat kernel of

the Dirac operator or from the heat kernel of its square.

3.4 Beta function definitions for topologically massive supergravity

The beta function of the theory, being expressible in terms of heat kernels, will have the

same general structure as the heat kernels themselves. When evaluated on S3 Euclideaniza-

tion of AdS3 (see appendices C.2 and G, where Euclideanization to the hyperboloid H3 is

also considered), it will have the form

k
dΓk
dk

=
V k3

16π

[
A(Λ̃, µ̃) +B(Λ̃, µ̃)R̃+ C(Λ̃, µ̃)R̃3/2 +O(R̃2)

]
, (3.15)

where we have inserted powers of k such that the coefficients A,B and C, and the tilded

quantities

Λ̃ =
Λ

k2
, µ̃ =

µ

k
, R̃ =

R

k2
(3.16)

are dimensionless. The prefactor 1/(16π) is conventional and is useful to simplify the form

of the beta functions. The volume of S3 with radius ℓ is V (S3) = 2π2ℓ3 with ℓ =
√

6
R .
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Evaluating the Euclidean version of the renormalized TMSG action (2.6) on the S3

background, it can be written in the form

Γk = V

(
2Λ

16πG
− 1

16πG
R+

1

12
√
6πGµ

R3/2 +O(R2)

)
, (3.17)

where we have used that the integral of the CS term on S3 is given by
∫
tr(ωdω + 2

3ω
3) =

32π2. The couplings Λ, G, µ are now renormalized couplings evaluated at scale k. In

addition, rescaling the coupling constant G as

G = G̃k−1 , (3.18)

so as to make G̃ dimensionless, and comparing the t-derivative of (3.17) with (3.15), we

obtain:

k
dΛ̃

dk
− k

dG̃

dk

G̃

Λ̃
= −3Λ̃ +

1

2
AG̃ , (3.19)

k
dG̃

dk
= G̃+BG̃2 , (3.20)

1

µ̃G̃

(
k
dG̃

dk
G̃−1 + k

dµ̃

dk
µ̃−1

)
= −3

√
3

2
√
2
C , (3.21)

From the first two equations one obtains the one-loop beta functions of G̃ and Λ̃:

k
dG̃

dk
= G̃+B G̃2 ,

k
dΛ̃

dk
= −2Λ̃ +

1

2
AG̃+BG̃Λ̃. (3.22)

These equations have exactly the same form as in pure gravity with cosmological constant,

except that the coefficients A and B will depend on µ̃. From equation (3.21) one can

determine the running of µ.

4 The quadratic action and spectra

The approach we shall take is to Euclideanize the theory, and consider the special case of

a 3-sphere background [23]. (The rules for Euclideanization are summarized in appendix

C.) In this background, we can write down the eigenvalues of all the relevant operators

describing the quadratic fluctuations of the action, and then perform the sums in (3.3). By

making use of the Euler-Maclaurin summation formula, we are able to obtain asymptotic

expansions for the Y (t) functions for the various operators.

4.1 The bosonic sector

The first step is to calculate the operator O that describes the quadratic fluctuations of

the action:

S
(2)
h =

Z

4

∫
d3x

√−g hµν Oµν,ρσ hρσ . (4.1)

– 7 –
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In the metric formalism, it can be read off from eq. (3.7) of ref. [5]. Since we are considering

a theory that contains spinor fields we must work in dreibein formalism, and this gives rise

to a new contribution to O, which can be understood as follows. The first variation of the

action in the metric formalism is of the form δgµνE
µν , where Eµν = −Gµν −Λgµν − 1

µC
µν ,

Gµν being the Einstein tensor and Cµν the Cotton tensor. The second variation is then

obtained by varying Eµν . In the dreibein formalism the first variation is ηabδe
a
(µe

b
ν)E

µν . The

second variation contains, in addition to the variation of Eµν also a term ηabδe
a
(µδe

b
ν)E

µν .

This term vanishes on shell, but since we are calculating the beta functions off shell, it has

to be retained [21, 22]. Since the Cotton tensor is proportional to covariant derivatives of

the Ricci tensor and Ricci scalar, it vanishes for the metric of the sphere. Therefore the

additional terms in the second variation are just

Z

24

∫
d3x

√−g (R− 6Λ)hµνh
µν , (4.2)

where hµν = 2eaµδe
a
ν .

Since AdS3 (and S
3) have no moduli, the resulting operator O has zero modes only cor-

responding to infinitesimal coordinate transformations and local Lorentz transformations.

To make it invertible, one adds the coordinate gauge fixing term

SBGF = − Z

2α

∫
d3x

√−ḡGµḡµνGν , (4.3)

where7

Gν = ∇µh
µ
ν −

β + 1

4
∂νh (4.4)

Then one has to add the ghost action

SBgh =

∫
d3x

√−g C̄µ
(
−δνµ�− 1− β

2
∇µ∇ν −Rµ

ν

)
Cν , (4.5)

where Cµ is an anticommuting complex vector. A standard gauge condition to fix the local

Lorentz symmetry is to set the antisymmetric part of the dreibein equal to zero [29, 30].

This leads to a ghost Lagrangian of the form C̄ab(C
ab+DaCb) where Ca = Cµē

µ
a is the ghost

associated with the general coordinate transformations. Redefining Cab+DaCb = C ′ab we
see that the ghost C ′ab does not propagate and hence it will be neglected.

In order to extract the eigenvalues of the operator O it is convenient to decompose the

graviton field hµν into its irreducible parts: the spin-2 transverse traceless part hTTµν , the

spin-1 transverse vector ξTµ, the spin-0 components σ and h:

hµν = hTTµν +∇µξ
T
ν +∇νξ

T
µ +∇µ∇νσ − 1

3
gµν�σ +

1

3
gµνh. (4.6)

Similarly, the ghost is decomposed into a spin-1 transverse vector V and a scalar S:

Cµ = Vµ +∇µS . (4.7)

7We use the convention that Dµ is the covariant derivative using the spin connection whereas ∇µ means

covariant derivative using the Christoffel symbol.
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It is also convenient to define

√
−�− R

3
ξTµ = ξ′Tµ ,

√
(−�)

(
−�− R

2

)
σ = σ′ ,

√
−�S = S′ (4.8)

The Jacobian of this field redefinition cancels the one of (4.6).

4.1.1 Euclideanization to S3 and diagonal gauge

In the following we restrict ourselves to the “diagonal” gauge

β =
(2α+ 1)

3
(4.9)

which will ensure that there is no mixing between σ and h. At this point we pass to the

Euclidean theory on S3 (see appendix C.1 for details and appendices C.2 and G for a

discussion of an alternative Euclideanization to the hyperboloid H3). The quadratic part

of the Euclideanized bosonic action reads

S(2)+SBGF =
Z

4

∫
d3x

√
g
[
hTTµν∆(hTT )µν

ρσhTTρσ +cξξ
′Tµ∆(ξT )µ

νξ′Tν +cσσ
′∆(σ)σ

′+chh∆(h)h
]
,

(4.10)

and the ghost action reads

SBghost =

∫
d3x

√
g
[
V̄ µ∆(V )µ

νVν + cSS̄′∆(S)S
′] , (4.11)

where we have defined the operators [5]8

∆(hTT )µν
ρσ =

(
−�+

R

2
− Λ

)
δ
(ρ
(µδ

σ)
ν) +

1

µ
ε(µ

λ(ρδ
σ)
ν)∇λ

(
�− R

3

)
,

∆(ξT )µ
ν =

(
−�− 3α− 2

6
R− 3αΛ

)
δνµ ,

∆(σ) = −�− R

2
− 3αΛ

4− α
,

∆(h) = −�− 12Λ

4− α
,

∆(V )µ
ν =

(
−�− R

3

)
δνµ ,

∆(S) = −�− 2

4− α
R , (4.12)

and coefficients

cξ =
2

α
, cσ =

2(4− α)

9α
, ch = −4− α

18
, cS =

4− α

3
. (4.13)

8In comparing with [5], one needs to take into account the new contribution (4.2) which arises due to

the use of the dreibein formalism.
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Next we recall the following results for the action of Laplace and curl operators on relevant

harmonics on S3 [5]:

−�Y (n,±2)
µν (x) = ρ2[(n+ 1)2 − 3]Y (n,±2)

µν (x) , (4.14)

−�Y (n,±1)
µ (x) = ρ2[(n+ 1)2 − 2]Y (n,±1)

µ (x) , (4.15)

∇[µY
(n,±1)
ν] (x) = ± 1

2
ρ(n+ 1)εµν

ρ Y (n,±1)
ρ (x) , (4.16)

−�Y
(n,0)
0 (x) = ρ2[(n+ 1)2 − 1]Y

(n,0)
0 (x) , (4.17)

∇[µY
(n,±2)
ν]ρ (x) = ± iρ(n+ 1)εµν

σ Y (n,±2)
ρσ (x). (4.18)

Using these results, the eigenvalues of these operators are found to be

λh
TT±

n = ρ2(n2 + 2n+ 1)− Λ± ρ3

µ
n(n+ 1)(n+ 2) , n ≥ 2 ,

λξ
T

n = ρ2
(
n2 + 2n− 3 + 3α

)
− 3αΛ , n ≥ 2 ,

λσn = ρ2
(
n2 + 2n− 3

)
− 3αΛ

4− α
, n ≥ 2 ,

λhn = ρ2
(
n2 + 2n

)
− 12Λ

4− α
, n ≥ 0 ,

λVn = ρ2
(
n2 + 2n− 3

)
, n ≥ 1 ,

λSn = ρ2
(
n2 + 2n− 12

4− α

)
, n ≥ 1 , (4.19)

where we have defined

ρ ≡
√
R

6
(4.20)

and the multiplicities are

dT+n = dT−n = n2 + 2n− 3 ,

dξn = dVn = 2(n2 + 2n) ,

dσn = dhn = dSn = n2 + 2n+ 1. (4.21)

Requiring positivity of the Euclideanized version of the gauge fixing action (4.3), and

staying on one side of the singular point α = 4, we are led to impose the condition

0 ≤ α < 4. (4.22)

Then, ch < 0 and the operator O acting on the trace h is negative. This corresponds to

the well-known conformal factor problem [24]. The α = 0 case is special and it will be

discussed next.

4.1.2 The physical gauge

It is sometimes convenient to use a slightly different approach to quantisation, in which one

works in a physical gauge rather than integrating also over the gauge degrees of freedom.

In the present context, this amounts to setting to zero, as a physical gauge choice, the
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longitudinal part of the metric fluctuations, which correspond to general coordinate trans-

formations. In our notation, this means that ξTµ and σ should be set to zero. This can be ac-

complished as follows. Setting α = 0 implies that the gauge condition ∇µh
µ
ν− β+1

4 ∂νh = 0

is to be imposed strongly in the sense that it can be used in the action. Substituting for hµν

hµν = hTTµν +∇µξν +∇νξµ +
1

3
gµνh

′. (4.23)

where ξµ is no longer divergence-free and h′ is no longer the trace of hµν , and choosing

β = 1/3, the gauge condition becomes

∇µ(∇µξν +∇νξµ)−
2

3
∇ν∇µξ

µ = 0. (4.24)

Multiplying this equation by −ξν and integrating over the Euclidean-signature compact

manifold without boundary gives

1

2

∫ √
g d3x (∇µξν +∇νξµ −

2

3
gµν∇ρξ

ρ)2 = 0 , (4.25)

which shows that the kernel of the operator in (4.24) is the conformal Killing vectors, which

satisfy

∇µξν +∇νξµ −
2

3
gµν∇ρξ

ρ = 0 . (4.26)

There are in total ten conformal Killing vectors, of which six are Killing vectors, on S3.

We can therefore set ξµ = 0 in the action, and take account of the ten zero modes later, in

the computation of the heat kernel. This means setting ξTµ = 0, σ = 0 and h′ = h. Since

in this gauge one deals only with the physical degrees of freedom hTTµν and h, we shall call

this the “physical gauge”. Thus, in the physical gauge the action (4.10) becomes

S(2) + SBGF =
Z

4

∫
d3x

√
g

{
hTTµν∆(hTT )µν

ρσhTTρσ +
2

9
h(�+ 3Λ)h

}
. (4.27)

Regarding the ghost action, however, setting α = 0 in (4.11) does not produce the correct

answer. Instead, one needs to consider the Jacobian associated with the changing of the

path integral measure, namely

Dhµν = ZghDhTTµν DξµDh′ , (4.28)

where [25–27]

Zgh =

√
det1

(
�+

R

3

)
det0

(
�+

R

2

)
. (4.29)

The Jacobian Zgh can be represented in the path integral by using

√
det1

(
�+

R

3

)
= det1

(
�+

R

3

)(
det1

(
�+

R

3

))−1/2

=

∫
DuµDvµ exp

{∫
d3x

[
uµ⋆

(
�+

R

3

)
uµ + vµ

(
�+

R

3

)
vµ

]}
,

(4.30)
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and similarly

√
det0

(
�+

R

2

)
= det1

(
�+

R

2

)(
det0

(
�+

R

2

))−1/2

=

∫
DuDv exp

{∫
d3x

[
u∗

(
�+

R

3

)
u+ v

(
�+

R

3

)
v

]}
, (4.31)

where (uµ, u) are anticommuting complex vector and scalar fields and (vµ, v) are commuting

real vector and scalar fields. These are Nielsen-Kallosh type ghost fields [28].

4.2 The fermionic sector

We now repeat the steps of the preceding section for the fermions. The first variation of

the fermionic part of the action is given by

S
(1)
F = −4Z

∫
d3x

√−gδψ̄µ
(
Rµ +

1

2
γµνψν +

1

2µ
Cµ

)
, (4.32)

where the “Cottino” vector-spinor is given by

Cµ = γργµν∇νRρ − εµνρ
(
Rρσ −

1

4
gρσR

)
γσψν , (4.33)

Next we perform the second variation, denoting by ψµ the fluctuation of the gravitino field

without using the background field equations but rather the supersymmetric background

given by the AdS3 metric whose inverse radius ℓ−1 is not identified with m, so as to remain

off-shell. Furthermore, decomposing the gravitino field as

ψµ = φµ +

(
Dµ −

1

3
γµ /D

)
χ+

1

3
γµψ , (4.34)

Dµφµ = 0 , γµφµ = 0 , (4.35)

we find that

S
(2)
F =

∫
d3x

√−g
{
2φ̄µ

[
− /D +

1

2
m+

1

µ

(
−�+

3

8
R

)]
φµ

+
4

9
χ̄

(
�+

1

8
R

)(
/D− 3

2
m

)
χ+

4

9
ψ̄

(
/D+

3

2
m

)
ψ− 8

9
ψ̄

(
�+

1

8
R

)
χ

}
. (4.36)

4.2.1 The diagonal gauge

It is convenient to choose a gauge condition that eliminates the mixing between ψ and χ.

This is achieved by the gauge fixing term [29, 30]

SFGF =
4

9α′

∫
d3x

√−g F̄OnkF , (4.37)

where α′ is a dimensionless gauge fixing parameter,

Onk = /D − 3

2
ρ , (4.38)
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and

F = α′ψ +

(
/D +

3

2
ρ

)
χ . (4.39)

The cancellation of the cross term can be seen by noting that acting on a spin-12 field

we have
(
/D + 3

2ρ
) (

/D − 3
2ρ

)
=

(
�+ 1

8R
)
. Performing the decomposition (4.34) of the

transformation (2.5) and taking the γ-trace and the divergence, one finds δψ =
(
/D + 3

2ρ
)
ǫ

and
(
�+ 1

8R
)
(δχ− ǫ) = 0. Therefore, the fermionic ghost action is given by

SFgh =

∫
d3x

√−g η̄
[
α′

(
/D − 3

2
m

)
+

(
/D +

3

2
ρ

)]
η. (4.40)

Given that the gauge fixing involves the operator Onk a factor det(Onk)
−1/2 has to be

included in the path integral measure to ensure on-shell gauge independence. This can

be represented as a Gaussian integration over Nielsen-Kallosh ghost fields [28], comprising

commuting Dirac spinor ω and an anticommuting Majorana spinor γ, with action

SNK =

∫
d3x

√−g [ω̄Onkω + γ̄Onkγ] , (4.41)

At this point it is convenient to perform the redefinition

χ′ =

√
�+

1

8
R χ. (4.42)

whose Jacobian cancels that of the transformation (4.34). The total quadratic fermionic

action including the gauge fixing and ghost terms become

S
(2)
F + SFGF + SFgh =

∫
d3x

√−g
[
cφφ̄µ∆(φ)φµ + cχχ̄

′D(χ)χ
′ + cψψ̄D(ψ)ψ + cηη̄D(η)η

]
,

(4.43)

where

∆(φ) = /D − 1

2
m− 1

µ

(
�− 3

8
R

)
,

D(χ) = /D +
3(ρ− α′m)

2(1 + α′)
,

D(ψ) = /D +
3(m− α′ρ)
2(1 + α′)

,

D(η) = /D +
3(ρ− α′m)

2(1 + α′)
, (4.44)

and

cφ = −2; cχ = cψ =
4(1 + α′)

9α′ ; cη = 1 + α′. (4.45)

Note also that the value α′ = −1 is singular. Thus we shall restrict α′ to obey

α′ > −1 , (4.46)

which can be seen to be an acceptable range.
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Next, we continue from AdS3 to S
3 as explained in appendix C, and perform harmonic

expansions on S3. (As in the bosonic sector, one could alternatively continue to H3, as

discussed in the appendices C.2 and G). The eigenvalues of the Dirac and Laplace operators

on the appropriate spinor harmonics on S3 are

i /DY (ℓ,±3/2)
a = ±ρ(ℓ+ 1)Y (ℓ,±3/2) , ℓ =

3

2
,
5

2
, . . .

−�Y (ℓ,±3/2)
a = ρ2

[
ℓ(ℓ+ 2)− 3

2

]
Y (ℓ,±3/2)
a , ℓ =

3

2
,
5

2
, . . .

i /DY (ℓ,±1/2) = ±ρ(ℓ+ 1)Y (ℓ,±1/2) , ℓ =
1

2
,
3

2
. . .

−�Y (ℓ,±1/2) = ρ2
[
ℓ(ℓ+ 2)− 1

2

]
Y (ℓ,±1/2) , ℓ =

1

2
,
3

2
. . . (4.47)

with multiplicities ℓ(ℓ + 2) − 5
4 for spin 3/2 and ℓ(ℓ + 2) + 3

4 for spin 1/2. Using the

formula (4.47) we find, after defining ℓ = n− 1
2 , that the eigenvalues of the operators listed

in (4.44) and (4.38) are

λφ±n = ±ρ(n+
5

2
)− 1

2
m+

ρ2

µ
(n+ 2)(n+ 3) , n = 0, 1, . . .

λχ
′±
n = ±ρ(n+

3

2
) +

3(ρ− α′m)

2(1 + α′)
, n = 1, 2, . . .

λψ±n = ±ρ(n+
3

2
) +

3(m− α′ρ)
2(1 + α′)

, n = 0, 1, . . .

λη±n = ±ρ(n+
3

2
) +

3(ρ− α′m)

2(1 + α′)
, n = 0, 1, . . .

λNK±
n = ±ρ(n+

3

2
)− 3

2
ρ , n = 0, 1, . . . (4.48)

with multiplicities

d(n,3/2) = (n+ 1)(n+ 4) ,

d(n,1/2) = (n+ 1)(n+ 2). (4.49)

Note that for λχ
′±
n we leave out the eigenvalues n = 0 which correspond to Killing spinors

and do not contribute to ψµ.

4.2.2 The physical gauge

Letting α′ → 0 implies that the gauge condition (4.39) is to be strongly imposed in the

sense that it is to be used in the action. This implies that ( /D+ 3
2ρ)χ = 0, and consequently,

χ = 0 except for those that are Killing spinors. Next, it is convenient to decompose ψµ as

ψµ = φµ +

(
Dµ −

1

2
mγµ

)
ζ +

1

3
γµψ

′ , (4.50)

since ζ will not appear in the action due to the fact that the ζ dependent term in (4.50)

is a supersymmetry transformation. Comparing the trace of ψµ using (4.34) and (4.50) we
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find that
(
�+

R

8

)
(χ− ζ) = 0 , (4.51)

ψ − ψ′ =

(
/D − 3

2
m

)
ζ. (4.52)

From (4.51) it follows that χ = ζ up to linear combination of conformal Killing spinors.

This can be seen by noting that, acting on a spinor, �+ R
8 = ( /D− 3

2ρ)( /D+ 3
2ρ). Thus the

physical gauge χ = 0 implies that ζ = 0 modulo the four conformal Killing spinors of S3,

and ψ = ψ′. Consequently, in the physical gauge we get

S
(2)
F + SFGF =

∫
d3x

√−g
[
−2φ̄µ∆(φ)φµ +

4

9
ψ̄

(
/D +

3

2
m

)
ψ

]
. (4.53)

In the ghost sector, the correct result is not simply SFgh+SNK with α′ set to zero. Rather, we
need to consider the Jacobian associated with the changing of the path integral measure as

Dψµ = ZghDφµDζDψ′ , (4.54)

where [31]

Zgh =

[
det 1

2

(
�+

R

8

)]−1

. (4.55)

This admits a path integral representation by using

[
det 1

2

(
�+

R

8

)]−1

=

∫
Dκ exp

{∫
d3x

[
κ̄

(
�+

R

8
κ

)]}
, (4.56)

where κ is commuting Dirac spinor field.

5 The beta functions of pure supergravity

The Chern-Simons term in topologically massive supergravity gives rise to a third-order

operator and thus leads to certain complications when calculating the heat-kernel expan-

sions. In this section we shall therefore begin by turning off the Chern-Simons term and its

superpartners, and consider just three-dimensional supergravity with a cosmological term.

We have seen in section 3.3 that the beta function of a coupling can be expressed

directly in terms of the heat kernel. In our specific case, each spin component of the

graviton and gravitino has a separate heat kernel and we have to specify the way in which

these individual contributions are assembled. For the special case of pure Einstein theory

on S3, we show in appendix D that the heat kernel of the complete wave operator O
acting on hµν is reproduced by simply summing the heat kernels of the individual spin

components, each normalized so that the coefficient of −� is unity. The same holds for the

ghosts and gravitino, so for each of these fields the contributions of its spin components

will have the same weight. The bosonic ghosts contribute with a factor −2 relative to

the graviton, the gravitino with a factor −1, the fermionic ghost with a factor 2 and the
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Nielsen-Kallosh ghost with a factor 1. It remains to fix the identification of the spectral

parameter with the cutoff. As in section 3.2, for dimension two operators we will identify

t = k−2. For dimension one and three operators, by the argument explained in section 3.3,

we will identify u = 2π−1/6k−1 and s = 4
3
√
π
k−3. In this way, the beta function reads

β = Y∆
hTT

(
1

k2

)
+ Y∆

ξT

(
1

k2

)
+ Y∆σ

(
1

k2

)
+ Y∆h

(
1

k2

)
− 2Y∆V

(
1

k2

)
− 2Y∆S

(
1

k2

)

−Y∆(φ)

(
2

π1/6k

)
−Y∆(χ)

(
2

π1/6k

)
−Y∆(ψ)

(
2

π1/6k

)
+2Y∆(η)

(
2

π1/6k

)
+Y∆NK

(
2

π1/6k

)
. (5.1)

We will now use this formula to obtain the beta function of pure supergravity.

Using (3.11), (4.19) and (4.21), the first few terms in the heat kernel expansions for

each bosonic spin operator are given by

Y∆
(hTT )

(t) =
V

(4πt)3/2

(
2− 8

3
R t+ 2Λ t

)
+ 10 + . . .

Y∆
(ξT )

(t) =
V

(4πt)3/2

(
2 +

2− 3α

3
R t+ 6αΛ t

)
− 5 + . . .

Y∆(σ)
(t) =

V

(4πt)3/2

(
1 +

2

3
R t+

3α

4− α
Λ t

)
− 5 + . . .

Y∆(h)
(t) =

V

(4πt)3/2

(
1 +

1

6
R t+

12Λ

4− α

)
+ . . .

Y∆(V )
(t) =

V

(4πt)3/2

(
2 +

2

3
R t

)
+ 1 + . . . ,

Y∆(S)
(t) =

V

(4πt)3/2

(
1 +

16− α

6(4− α)
R t

)
− 1 + . . . (5.2)

The terms I−1 in (3.12) are all zero on account of the fact that the coefficient of n is

twice the coefficient of n2 in all the sets of eigenvalues. The ellipses stand for terms with

positive powers of t.

Next, we list the results for the heat kernels for the fermions. They are

Y∆(φ)
(u) =

V

π2u3

[
2−

(
3

8
R− 1

4
Λ

)
u2

]
+ 4 + . . .

Y∆(χ)
(u) =

V

π2u3

(
2 +

(8− 2α′ − α′2)R− 18α′√6ΛR+ 54Λα′2

24(1 + α′)2
u2

)
− 4 + . . .

Y∆(ψ)
(u) =

V

π2u3

(
2− (1 + 2α′ − 8α′2)R+ 18α′√6ΛR− 54Λ

24(1 + α′)2
u2

)
+ . . .

Y∆(η)
(u) =

V

π2u3

(
2 +

(8− 2α′ − α′2)R− 18α′√6ΛR+ 54Λα′2

24(1 + α′)2
u2

)
+ . . .

Y∆NK
(u) =

V

π2u3

(
2 +

1

3
Ru2

)
+ . . . (5.3)
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Using the formula (5.1) we obtain the total beta function

βSUGRA =
V k3

(4π)3/2

[(
20 + 25α− 6α2

4− α
− 2

π1/3
5− 4α′

1 + α′

)
Λ̃

−1

6

(
92 + 7α− 6α2

4− α
− 2

π1/3
13 + 4α′

1 + α′

)
R̃+O(R̃2)

]
. (5.4)

A number of remarkable cancellations have occurred in obtaining (5.4). The Y0 terms,

which correspond to the integers outside the brackets in (5.2) and (5.3), cancel separately

for the trace and tracefree parts of hµν , for the bosonic ghost, for the γ-trace and γ-tracefree

part of ψµ and for the fermionic and Nielsen-Kallosh ghosts. Furthermore, the Y−3/2 terms

also cancel exactly, for the bosons and fermions separately. This is related to the fact that

the coefficient Y−3/2 of each spin is proportional to the number of corresponding degrees

of freedom, and in this theory there are no physical propagating degrees of freedom. We

shall discuss the consequences of these cancellations later on.

The expression (5.4) has a well-defined limit for α→ 0 and α′ → 0. There is a subtlety

if one tries to evaluate the beta function directly with α = 0 and α′ = 0, because the

unphysical fields ξTµ , σ and χ are not present in this gauge and the constant terms +10 and

+4 in Y∆T
and Y∆φ

seem to remain uncancelled. In this gauge these terms are canceled

in another way. If one looks at the eigenvalues (4.14) in the gauge α = 0 one sees that

λξn = λVn and λσn = λSn , but in the spectrum of V the six zero modes with n = 1 (i.e. the

Killing vectors) are retained, while in the spectrum of ξ they are absent. As a consequence,

Y∆ξ
= Y∆V

−6, and similarly Y∆σ = Y∆S
−4. Therefore, the bosonic contribution to (5.1) is

Y∆
(hTT )

(
1

k2

)
+ Y∆(h)

(
1

k2

)
− Y∆(V )

(
1

k2

)
− Y∆(S)

(
1

k2

)
− 10. (5.5)

The last term removes the constant term from the spin two sector. In a similar way, in

the fermionic sector Y∆ξ
= Y∆η − 4, where the four modes correspond to conformal Killing

spinors, of which two are Killing spinors. So the fermionic contribution to (5.1) is

− Y∆(φ)

(
2

π1/6k

)
− Y∆(ψ)

(
2

π1/6k

)
+ Y∆(η)

(
2

π1/6k

)
+ Y∆NK

(
2

π1/6k

)
− 4 . (5.6)

The result is the same as taking the limit in (5.4).

We note that the effective action in physical gauge can be derived directly from a

change of variables in the functional integral, bypassing the standard Faddeev-Popov con-

struction [26]. This procedure has recently been applied to three-dimensional gravity in [27]

by using the results given in sections 4.1.2 and 4.2.2.

As discussed in section 3.3, by comparing (5.4) with (3.15) we read off the coefficients

A, B and C as follows:

A =
2√
π

(
20 + 25α− 6α2

4− α
− 2

π1/3
5− 4α′

1 + α′

)
Λ̃ , (5.7)

B = − 1

3
√
π

(
92 + 7α− 6α2

4− α
− 2

π1/3
13 + 4α′

1 + α′

)
, (5.8)

C = 0. (5.9)

– 17 –



J
H
E
P
0
3
(
2
0
1
4
)
0
8
3

The beta functions of Λ̃, G̃ and µ̃ are given in (3.22) with the above values A, B and C.

The vanishing of C follows from the cancellation of the Y0 terms. It implies that a Chern-

Simons term is not generated by quantum corrections at one loop. Due to the cancellation

of the leading terms Y−3/2, the beta function of Λ̃ is proportional to Λ itself. As a result,

Λ̃ = 0 is a fixed point. This is the same as in bosonic three-dimensional Einstein gravity [5].

The existence of a fixed point in the beta function for G̃ requires B to be negative. This is

true for any value of α and α′ in the ranges specified earlier in (4.22) and (4.46). Then the

fixed point is at G̃ = −1/B. In the gauge α = 0, α′ = 0 the numerical position of the fixed

point is (Λ̃, G̃) = (0, 1.013); it is attractive in both directions, with scaling exponents −1

in the G̃ direction and −4.045 in the Λ̃ direction. The flow of pure supergravity is depicted

in figure 1, left panel.

We also observe that on shell, i.e. for R = 6Λ, the whole beta function becomes

independent of the gauge parameters α and α′, as expected:

βon−shellSUGRA =
2V k3

(4π)3/2

(
8

π1/3
− 9

)
Λ̃. (5.10)

6 The beta functions of topologically massive Supergravity

From (4.12) and (4.44) we see that the Chern-Simons term and its superpartner contribute

to the wave operators of the spin-2 and spin-3/2 fields only. The computations for the

lower-spin sectors of the preceding section will not be affected. Therefore, in this section

we will focus on the heat kernels of the spin-2 and spin-3/2 operators in the presence of the

Chern-Simons term proportional to µ−1. The eigenvalues for the spin-2 field are now third-

order polynomials in n, and the Euler-Maclaurin integrals of the form
∫
dxdxe

−λx (see (3.3)

and (3.11)) cannot be computed in closed form. In what follows, we shall compute these

integrals for the two cases of large µ̃, and small µ̃, separately, where µ̃ = µ/k.

6.1 The large µ̃ limit

In this limit, we can treat the contribution of the Chern-Simons term as a small pertur-

bation of the results for pure supergravity discussed above. For the bosons, using the

eigenvalues and multiplicities in (4.19), (4.21), the integral term in (3.11) can be expanded

in ρ/µ, yielding for the two polarization states
∫ ∞

2
dx(x2 + 2x− 3)e−t(ρ

2(x2+2x+1)−Λ)

[
1∓ tρ3

µ
x(x+ 1)(x+ 2) + . . .

]
. (6.1)

Summing the contributions of the positive and negative spin-2 polarizations, including also

the Bernoulli sums in (3.11), the odd powers of 1/µ cancel and to order 1/µ2 this leads to

the result

Y∆
(hTT )

(t) =
V

(4πt)3/2

(
2− 8

3
R t+ 2Λ t+

105

8µ2t
− 15R

4µ2
+

105Λ

8µ2

)
+ 10 + . . . (6.2)

The ellipses refer to terms that contain increasing powers of t but also 1/t, the latter coming

from the increasing powers of x in the integral. One should obviously not regard this as

an expansion for arbitrarily small t, rather, the expansion is valid for 1
µ2

≪ t≪ 1
R .
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Similarly, for the fermions, using the eigenvalues and multiplicities given in (4.48)

and (4.49), and expanding the integrand occurring in (3.11) in ρ/µ, we get

∫ ∞

0
dx (x+ 1)(x+ 4)e−u[ρ(x+

5
2
)∓ 1

2
m]

[
1∓ uρ2

µ
(x+ 2)(x+ 3) + . . .

]
. (6.3)

Note that convergence for positive u requires that the eigenvalues should tend to +∞
for large n. In the case of the eigenvalues λ

(φ)−
n , which tend to −∞, we have reversed

their overall sign. (Since we are interested in the scaling behaviour of the (regularised)

determinant
∏
n λn, an overall sign reversal of the λn has no material effect.) This leads

to the result

Y∆(φ)
(u) =

V

π2u3

[
2−

(
3

8
R− 1

4
Λ

)
u2 +

√
Λ

µ

(
−12 +

5

12
Ru2 − 1

2
Λu2

)

+
1

µ2

(
−11

2
R+ 45Λ +

360

u2

)]
+ 4 + . . . (6.4)

Thus, the µ-dependent contribution to the beta function, to order 1/µ̃, is

∆βµ =
V k3

(4π)3/2

[
4
√
Λ̃

π1/3µ̃

(
3π1/3 +

1

2
Λ̃− 5

12
R̃

)
+O

(
1

µ̃2

)]
. (6.5)

Notice that the inverse powers of t and u in (6.2) and (6.4) have become positive powers

of k which combine with powers of 1/µ to produce an expansion in 1/µ̃. The total beta

function for topologically massive supergravity in the large µ̃ limit is

βTMSG = βSUGRA +∆βµ

=
V k3

(4π)3/2

{(
(20 + 25α− 6α2)

4− α
− 2

π1/3
5− 4α′

1 + α′

)
Λ̃ +

1

µ̃

(
12Λ̃1/2 +

2

π1/3
Λ̃3/2

)

+

[
−92 + 7α− 6α2

6(4− α)
+

1

3π1/3
13 + 4α′

1 + α′ − 5

3π1/3
Λ̃1/2

µ̃

]
R̃

}
. (6.6)

For µ̃→ ∞, this agrees with (5.4). Regarding on-shell gauge-parameter independence,

we observe that this had already been shown for βSUGRA and that the correction terms

∆βµ, are gauge parameter-independent even off-shell, since they derive entirely from the

spin-2 and spin-3/2 contributions.

6.2 The small µ̃ limit

In the regime where µ is small relative to k, the cubic term in the spin-2 wave operator is

dominant and we can consider the quadratic term as a small perturbation. Likewise, for

the spin-3/2 operator the quadratic term is dominant. We therefore replace the operators

∆(hTT ) and ∆(φ) by µ∆(hTT ) and µ∆(φ) respectively, so that the leading-order terms have

dimensionless coefficients. Correspondingly, we use the spectral parameter s, which has
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dimension L3, for the spin-2 operator, and t, with dimension L2, for the spin-3/2 opera-

tor. Thus, to evaluate the heat kernel for spin-2, in the integral in (3.11) we expand the

eigenvalues in the exponential and obtain
∫ ∞

2
dx(x2 + 2x− 3)e−sρ

3x(x+1)(x+2)
[
1∓ sµ(ρ2(x2 + 2x+ 1)− Λ) + . . .

]
. (6.7)

Note that, following the same logic as in (6.3), for convergence we have changed the overall

sign of the eigenvalue when summing over λh
TT−
n . Summing the contributions of the positive

and negative spin-2 polarizations the odd powers of µ cancel and keeping terms up to order

µ2 one obtains9

Y∆
(hTT )

(s) =
V

6π2s

(
2 +

1

3
Γ(

4

3
)
(
4µ2 − 11R

)
s2/3

)
+ 10 + . . . (6.8)

Similarly for the fermions, using the eigenvalues in (4.48) and expanding the integrand

occurring in (3.11), we obtain
∫ ∞

0
dx (x+ 1)(x+ 4)e−tρ

2(x+2)(x+3)

[
1− tµ

(
±ρ

(
x+

5

2

)
− 1

2
m

)
+ . . .

]
. (6.9)

The sum of the positive and negative spin 3/2 polarizations gives

Y∆(φ)
(t) =

V

(4πt)3/2

(
2 +

1

12

(
−17R+ 6µ(2

√
Λ + 3µ)

)
t+ . . .

)
+ 4. (6.10)

With the use of s and t, as opposed to t and u, as the spectral parameters, the formula (5.1)

for the total beta function is now replaced by

β = Y∆
hTT

(
4

3
√
πk3

)
+Y∆

ξT

(
1

k2

)
+Y∆σ

(
1

k2

)
+Y∆h

(
1

k2

)
−2Y∆V

(
1

k2

)
−2Y∆S

(
1

k2

)

−Y∆(φ)

(
1

k2

)
−Y∆(χ)

(
2

π1/6k

)
−Y∆(ψ)

(
2

π1/6k

)
+2Y∆(η)

(
2

π1/6k

)
+Y∆NK

(
2

π1/6k

)
.(6.11)

Putting together the above results in the formula (6.11), we obtain the total beta function

βTMSG=
V k3

(4π)3/2

[
− µ̃

√
Λ̃ +

(
3(4 + 9α− 2α2)

4− α
− 9

π1/3
1− α′

1 + α′

)
Λ̃ (6.12)

+

(
4− 21α+ 4α2

4(4− α)
+

1

6π1/3
1− 17α′

1 + α′ − 44Γ
(
4
3

)

3π1/362/3

)
R̃+O(µ̃2)

]

Note that the limit µ̃ → 0 can be taken without difficulty. We observe that the leading,

curvature-independent, term is no longer proportional to Λ̃. On-shell, the beta function is

again gauge-parameter independent:

βon shellTMSG =
V k3

(4π)3/2

[
− µ̃

√
Λ̃ +

(
9

2
− 88Γ(43)

π1/362/3
+

8

π1/3

)
Λ̃ +O(µ̃2)

]
. (6.13)

9In practice the integral with a cubic polynomial in the exponent is still too hard. We get around this

difficulty by keeping only the cubic term in the exponential and Taylor expanding the exponential of the

quadratic and linear term.
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7 The RG flows

Comparing the results (6.6) and (6.13) with (3.15), one can read off the coefficients A,

B and C, and write out the beta functions as in (3.22). It turns out that A and B are

functions of µ̃ and Λ̃. Due to the cancellation of the Y0 terms (separately for bosons and

fermions), the coefficient C is zero. This result is independent of the shape of the cutoff

and is therefore a truly universal feature of the theory. It implies that the dimensionless

combination

ν ≡ µG (7.1)

has vanishing beta function. Since ν does not run, in equations (3.22) we can replace µ̃ by

ν/G̃, with ν constant. The beta functions for G̃ and Λ̃ thus have the form

k
dG̃

dk
= G̃+B(Λ̃, ν/G̃)G̃2 ,

k
dΛ̃

dk
= −2Λ̃ +

1

2
A(Λ̃, ν/G̃)G̃+B(Λ̃, ν/G̃)G̃Λ̃. (7.2)

This system describes a flow in the Λ̃-G̃ plane, depending on the fixed external parameter

ν, as well as the gauge parameters α and α′. We shall now analyse these flows in the large

and small ν approximations, using the beta functions presented above.

7.1 The large ν limit

Since ν = µ̃G̃, for any fixed finite G̃ the large µ̃ expansion is also a large ν expansion.

Conversely, for ν ≫ 1 we can use the results of subsection 6.1 to gain information on the

flow in the Λ̃-G̃ plane for G̃ of order one or smaller. From equations (3.15) and (6.6) we

read off

A =
2√
π

(
20 + 25α− 6α2

4− α
− 2

π1/3
5− 4α′

1 + α′

)
Λ̃ +

4

π5/6ν
G̃
√

Λ̃(Λ̃ + 6π1/3) , (7.3)

B = − 1

3
√
π

(
92 + 7α− 6α2

4− α
− 2

π1/3
13 + 4α′

1 + α′

)
+

20

3πν
G̃
√
Λ̃ , (7.4)

C = 0 , (7.5)

where we have kept only the leading term in 1/ν. Up to this order we see that the coefficient

A vanishes for Λ̃ = 0, so any fixed point in the Λ̃-G̃ plane will be at Λ̃ = 0. From (6.6), we

see, however, that at order 1/ν2 this property generically does not hold.

For ν → ∞, the results go over to those of pure supergravity with cosmological constant

which we discussed in section 5.2. A new feature that arises for finite but nonvanishing

values of ν is that the flow equation for G̃ now depends on Λ̃. For ν−1 6= 0, the fixed point

of pure supergravity gets shifted by a small amount in the negative Λ̃ direction.

Since A and B contain terms proportional to G̃, the fixed point equations are cubic

(see (7.5)) and will generically admit three solutions. The position of these solutions is

plotted in figure 1. The continuous and dashed blue curves give the values of Λ̃ and G̃

for the solution that asymptotes to the SUGRA solution. For ν > 3.7 the additional two
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Figure 1. Position of the fixed points in the large ν approximation. The red, green, blue continuous

curves give the value of G̃∗ for the three solutions, the dashed curves give the corresponding values

of Λ̃∗. Only the blue solution is reliable, the remaining two are artifacts of the approximation.
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Figure 2. Flows in the Λ̃-G̃ plane in the gauge α = 0, α′ = 0, and large ν. Left: pure SUGRA

(ν → ∞); right: ν = 10.

solutions are real, one (red) with positive, and one (green) with negative G̃. For these

solutions |G̃| grows linearly with ν with a coefficient of order one, therefore µ̃ ≈ 1 and they

occur outside the domain where the approximation is reliable. For ν ≈ 3.7 one of these

solutions merges with the one that asymptotes to SUGRA, and they become complex, but

at this low value of ν the approximation is unreliable even for G̃ of order one. A picture of

the flow for ν → ∞ (pure supergravity) and ν = 10, in the region of the plane where the

approximation is reliable, is shown in figure 2.

7.2 The small ν limit

Since ν = µ̃G̃, for finite G̃ the small µ̃ expansion is also a small ν expansion. Conversely,

for ν ≪ 1 we can use the results of subsection 6.1 to gain information on the flow in the
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Figure 3. Flows in the Λ̃-G̃ plane in the gauge α = 0, α′ = 0, for ν = 0 (left) and ν = 0.1

(middle). The shift of the nontrivial fixed point is too small to be seen on this scale, but one notices

a different behavior near the origin. An enlargement of this area (right panel) reveals that the

Gaussian fixed point is absent for ν = 0.1. In fact, the beta functions become singular on the Λ̃

axis. This, however, is an artifact of the approximation, which breaks down when G̃ becomes too

small, in this case of order 0.01.

Λ̃-G̃ plane for G̃ of order one or larger. From equations (3.15) and (6.13) we read off

A =
2√
π

[
3(4 + 9α− 2α2)

4− α
− 9

π1/3
1− α′

1 + α′

]
Λ̃− 2ν√

π

√
Λ̃

G̃
,

B =
2√
π

[
4− 21α+ 4α2

4(4− α)
+

1

6π1/3
1− 17α′

1 + α′ − 44Γ
(
4
3

)

3π1/362/3

]
,

C = 0. (7.6)

We have kept only the leading term in ν. Even though there is just one term arising in A

that depends on ν, it should be stressed that the ν-independent parts are not those of pure

supergravity with cosmological constant, and their form depend on the Chern-Simons term.

The limit ν → 0 can be taken without difficulty and results in a flow with two fixed

points: the usual Gaussian fixed point and a non-Gaussian one. In any gauge, the Gaussian

fixed point, which is at the origin, has scaling exponents equal to the canonical dimensions:

1 in the G̃ direction and −1 in the Λ̃ direction. In the gauge α = 0 and α′ = 0 the non-

Gaussian fixed point occurs at Λ̃ = 0, G̃ = 1.692 and it has scaling exponents −1 in the G̃

direction and −6.003 in the Λ̃ direction.

For ν 6= 0 the flow develops a singularity for G̃ → 0 and the Gaussian fixed point

seems to disappear, but we recall that the picture of the flow is not reliable in this limit.

A picture of the flow for ν = 0 and for ν = 0.1 is given in figure 3.

8 Conclusions

We have calculated the renormalization group beta functions for topologically massive su-

pergravity in three dimensions. Logarithmic divergences in four dimensional supergravities

have been computed previously using heat kernel methods for example in [25, 32, 33]. How-

ever, these calculations were limited to second order wave operators of Laplace type. Here
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we have been able to deal with a third order operator for which the heat kernel coefficients

are not available and in addition we have calculated also the power law divergences. We

have found that, as expected, ν, the coefficient of the Chern-Simons term, does not get

renormalized. This accords with the notion that the coefficient of the Chern-Simons term

is quantized, at least for suitable boundary conditions.10 The flow of the cosmological con-

stant and Newton’s constant depends parametrically on ν. We have studied their behavior

in the limit of ν very large or very small. Even though the presence of fermionic fields has

an effect on the beta functions, there is no exact cancellation and the qualitative picture

of the flow is similar to that encountered in TMG [5]. There are both a Gaussian and a

non-Gaussian fixed point, the main difference with TMG being that the latter now occurs

for vanishing cosmological constant and positive Newton’s constant in both limits, while

for finite ν it always has negative cosmological constant.

We now return to the question raised in the introduction, namely whether the generic

theory flows to the chiral point. With the quantization procedure described here, which

makes sense for generic values of the couplings, we find that the ratio µ/
√
Λ = 1 is not

preserved by the flow. It would be interesting to quantize the chiral TMG (or TMSG) and

to determine whether its RG flow preserves the chirality condition.

It has been argued [35–37] that TMG is renormalizable. In this case there must be

a neighborhood of the origin in the Λ-G plane where the picture of the flow given in

figure 2 is correct to all orders. However, perturbative renormalizability is not sufficient

to guarantee the existence of the theory: only asymptotically free theories can be proven

to exist by perturbative methods. In the present case, a glance at figure 2 shows that in

the neighborhood of the Gaussian fixed point, the G-direction is not asymptotically free.

Thus, if one starts anywhere with G̃ > 0, G̃ will grow. The question is whether this growth

leads the theory outside the domain of perturbation theory or not. Our calculations seem

to imply that the theory tends to a non-Gaussian fixed point, and that the growth of G̃

ceases.

It would be interesting to extend our results to other three-dimensional models that

contain higher-order curvatures [38], as well as the conformally-invariant model discussed

in [39, 40], where only the Chern-Simons term survives. In this latter case one cannot

simply take the µ→ 0 limit of our results for the beta function, since the additional local

Weyl symmetry would have to be built into the quantisation procedure from the outset.

There are a number of issues related to background supersymmetry and various scheme

dependences in the calculation of the beta functions. Firstly, in the off-shell computations,

by which we mean those in which the on-shell equation R = 6Λ is not used, the total

quadratic action including the gauge fixing and ghost actions is clearly not invariant under

the rigid background supersymmetry transformations (F.1). In view of the results of

appendix F, this symmetry cannot be present on-shell either. This is not a problem,

however, since the symmetry in question is a rigid one. This state of affairs arises in

all quantum supergravity computations performed in their component formulations; see,

10It has been argued in [34] that ν need not be quantized on the three-sphere, but unless the topology

is fixed a priori, it is enough to find one topology where large gauge transformations exist to impose

quantization of ν.
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for example [41]. The study of this issue by means of the background field method in

curved superspace, and in backgrounds that are not purely bosonic, is beyond the scope of

this paper.

Secondly, the beta functions of G and Λ depend on the choice of cutoff profile function,

which we have chosen to be simply a Heaviside theta function. To compare with approaches

adopted in the literature, we note that in the context of beta functions in N = 4, D = 4

gauged supergravity, ζ-function regularization has been used in [41, 42], and the method

of modifying the kinetic term by the introduction of a suitable term in the total quadratic

action has been used in [43]. As is well known in the case of ζ-function regularization, only

the logarithmic divergences can be probed, and it is not useful for the computation of the

beta functions for dimensionful couplings.

Thirdly, there is a choice to be made in relating the spectral parameters s, t and

u (3.10) to the cutoff k. We have made a natural choice such that the contributions to the

beta function of the cosmological constant (which is proportional to the leading terms of

the heat kernels) are proportional to the number of degrees of freedom of each field.

Finally, dependence of the beta functions on the choice of gauge parameters in the

gauge fixed action is to be expected off-shell, but we have shown that there is no dependence

on shell. We refer the reader to ref. [41] for a discussion of various issues that arise in the

context of the expected gauge dependence.

All this arbitrariness casts doubts on the physical meaning of the beta functions of

dimensionful couplings. Experience with statistical models indicates, however, that there

is some physical information hidden in these largely arbitrary beta functions, namely when

there is a nontrivial fixed point its position can be shifted but its existence is a “universal”

feature and the associated critical exponents are measurable quantities [44]. In many cases

one even obtains good agreement between theory and experiment.

In the case of gravity this is hampered by our poor understanding of what constitutes

a physical observable. If we stick to a traditional field theoretic framework one would

typically look at some scattering cross section. In this context it has been argued that in

four dimensions the running Newton’s constant cannot be straightforwardly inserted into

an amplitude to obtain an “RG improved” one [45, 46]. Indeed, in the calculation of a

typical field theoretic observable, even to lowest order in perturbation theory, there are

contributions from terms in the effective action that are not accounted for by the Hilbert

term. In this connection note that to calculate a typical n-point function at one loop it is

enough to know the effective action to n-th order in the field, but one has to retain the

full momentum dependence. By contrast, in our calculation (as well as other similar ones)

we are retaining the full field dependence but we truncate the momentum dependence to

some low order (in our case to third order). One would expect that when we will be able

to properly track the full momentum dependence then the effect of the arbitrary choices

will be much reduced and the fixed point will manifest itself in physical observables.
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A Variational formulae

The first variation of the Einstein-Hilbert action in d-dimensional spacetime, up to total

derivative terms assumed to integrate to zero, is given by

δ

∫
ddx

√−gR =

∫
ddx

√−g
(
−Rµν + 1

2
gµνR+∇µ∇ν + gµν�

)
δgµν

=

∫
ddx

√−g (−2Rµν + gµνR) eµ
aδeνa. (A.1)

The second variation, for an arbitrary background and up to total derivative terms, assumed

to integrate to zero, and using the notation δgµν = hµν , yields

δ2
∫
ddx

√−gR =

∫
ddx

√−g
[
(−2Rµν + gµνR) δeµ

aδeνa

−1

2
hµν∇Lhµν + (∇σhµσ)

2 + h∇µ∇νhµν −
1

2
h�h

]

−hRµνhµν −
1

2
Rhµνhµν +

1

4
Rh2 + 2Rµνh

µαhνα

]
, (A.2)

where hµν = 2e(µ
aδeν)a and hµν = gµρgνσhρσ and

∇Lhµν = −�hµν − 2Rµρνσh
ρσ +Rµρh

ρ
ν +Rνρh

ρ
µ. (A.3)

B Exponential cutoff

An alternative choice is to use a smooth cutoff rather than a step function. A natural

possibility that one might consider is the exponential function, C̃(t̃) = e−t̃, since this indeed
tends rapidly to zero at large t̃, and it approaches 1 as t̃ tends to zero. Unfortunately e−t̃

does not approach 1 sufficiently rapidly at small t̃. For our present purposes, it turns out

that C̃(t̃) = e−t̃
2

will work. In order to encompass more general situations, we shall start

by considering

C̃(t̃) = e−t̃
p

, (B.1)

where p is allowed to be an arbitrary positive real constant. This also has the properties

that it approaches 1 for small t̃, and it goes rapidly to zero at large t̃. Indeed, it clearly
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ensures that the integration is convergent at large t. With this exponential choice for the

cutoff, we have

k
dCk(t)

dk
= −pω tp kpω e−tpkpω , (B.2)

and so if we plug this and the asymptotic expansion for Y (t), namely

Y (t) ∼
∑

n

Yn t
n , (B.3)

into (3.5), we get

β =
1

2
pω kpω

∑

n

Yn

∫ ∞

0
tp+n−1 e−t

pkpω dt ,

=
1

2
ω
∑

n

k−nω Yn

∫ ∞

0
un/p e−u du ,

=
1

2
ω
∑

n

Yn k
−nω Γ

(n
p
+ 1

)
. (B.4)

Recalling that the asymptotic expansion (B.3) for Y (t) runs over a discrete semi-infinite

set of values for n, with n ≥ n0 where n0 is some negative number, we see that in order

to get UV convergence of all the integrals in (B.4), we must choose the constant p in the

cutoff function (B.1) such that

p > |n0| . (B.5)

In our case, the most negative n0 that we encounter in any of the heat kernel expansions

is n0 = −3/2, and so for our purposes it suffices to take p = 2.

It is interesting to compare the expansion for the beta function obtained in the last

line of (B.4) with the one for the step-function cutoff, which follows from (3.9):

β =
1

2
ω
∑

n

Yn k
−nω . (B.6)

Unsurprisingly, the terms with n 6= 0 (which are scheme dependent) differ when different

cutoffs are chosen. Note, however, that the Y0 term in (B.6) is identical to the Y0 term

in (B.4), for any non-zero choice of p. One advantage of the theta-function cutoff is that

the β-function can be given, as in (3.9), as a closed-form expression in terms of Y (t).

C Euclideanization rules

C.1 S3

For the details of the continuation of AdS3 to S3 and harmonic expansions on S3, see [23].

The AdS3 metric is

ds2 = − cosh2 ρdt2 + dρ2 + sinh2 ρdφ2. (C.1)

Our rule for Euclideanization is ρ 7→ iρ, which gives

ds2 7→ −(cos2 ρdt2 + dρ2 + sin2 ρdφ2) = −ds2(E) , (C.2)
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which is locally the metric of the three-sphere with negative-definite signature. The Ricci

scalar of AdS3 is equal to minus the Ricci scalar of the standard positive-definite metric on

the three-sphere. Therefore, the rules for transforming equations on the AdS3 background

to equations valid on the three-sphere background are

gAdS
µν 7→ −gS3

µν ; RAdS 7→ −RS3
; Λ 7→ −Λ. (C.3)

The Dirac equation for a Majorana spinor on AdS3 is ( /D +m)Ψ = 0. The Euclidean

continuation of the (tangent frame) Dirac matrices is

γ0 7→ iγ0(E), γ1 7→ γ1(E), γ2 7→ γ2(E). (C.4)

At the same time, for the dreibein components

e0t 7→ e
(E)0
t , e1ρ 7→ ie(E)1

ρ , e2φ 7→ ie
(E)2
φ . (C.5)

where e(E) are the dreibein for the standard Euclidean-signature metric on S3. These

transformations together imply the rule /D 7→ i /D
(E)

. Because the metric we use on S3

is positive definite, we can no longer have Majorana spinors. However, as usual, we use

the Euclidean signature only to compute determinants in spacetime, without doubling the

degrees of freedom.

C.2 H3

An alternative Euclideanization procedure is to map t 7→ it, which gives

ds2 7→ cosh2 ρ dt2 + dρ2 + sinh2 ρdφ2 = ds2(H3) , (C.6)

which is locally the metric of the hyperboloid with positive-definite signature. This is often

referred to as ‘Euclidean AdS3. Since this is just a complex coordinate transformation,

the rules for transforming equations on the AdS3 background to equations valid on the

hyperboloid are

gAdS
µν 7→ gH

3

µν ; RAdS 7→ RH
3
; Λ 7→ Λ. (C.7)

The Dirac matrices are treated in the same way as in (C.4), whereas the dreibein compo-

nents do not change under this Euclideanization.

D Some heat kernel checks

In this appendix all calculations are performed directly in the Euclidean signature. Con-

sider the contribution of a fermion field to the beta function. It can be computed in either

of two ways: from the heat kernel of the Dirac operator, or from the heat kernel of its

square

∆ = /D
2
= −�+

R

4
(D.1)

The former has eigenvalues ±ρ(n+ 3
2) and multiplicity (n+1)(n+2), the latter ρ2(n+ 3

2)
2

and multiplicity 2(n+ 1)(n+ 2), with n = 0, 1, . . . in both cases. The heat kernels can be
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computed as spectral sums, along the lines of section 3.1. From the spectral sums of the

Dirac operator one finds

Y /D(u) =
V

π2u3
(2 + . . .) (D.2)

whereas from the spectral sum of the eigenvalues of the squared Dirac operator one gets

Y∆(t) =
V

(4πt)3/2
(2 + . . .) (D.3)

The two results agree if we make the identification t = π1/3u2/4.11

Next we check that the correct way of summing the contributions of different spin

components to the beta functions is to sum the heat kernels of the respective operators,

with coefficient one for the highest order part, i.e. the coefficients given in (4.13) and (4.45)

do not play a role. We check this in the case of pure bosonic gravity in the gauge α = 1,

in which case the operator acting on metric fluctuations is equal to [47]

∆h = (1−P)

(
−�+

2

3
R− 2Λ

)
− 1

2
P

(
−�− 1

3
R− 2Λ

)
, (D.4)

where Pµνρσ = 1
3g
µνgρσ projects on the trace and 1−P on the tracefree part of hµν . The

heat kernel of an operator of the form −�+E can be computed from the standard formula

Y (t) =
1

(4πt)3/2

∫
d3x

√
g tr

[
b0 + b2t+ b4t

2 + . . .
]

(D.5)

with

b0 = 1 (D.6)

b2 =
R

6
1−E (D.7)

From here one finds

Ytrace(t) =
V

(4πt)3/2

[
1 +

(
1

2
R+ 2Λ

)
t+ . . .

]
, (D.8)

Ytracefree(t) =
V

(4πt)3/2

[
5 +

(
−15

6
R+ 10Λ

)
t+ . . .

]
. (D.9)

The result for Ytrace agrees with Y∆(h)
(t), evaluated in the gauge α = 1, while Ytracefree(t)

agrees with the sum Y∆
(hTT )

(t) + Y∆
(ξT )

(t) + Y∆(σ)
(t). Note in particular that when one

adds up the heat kernels of the differentially constrained fields hTT , ξT and σ the terms

with half-odd powers of t cancel out. (The trace and tracefree parts are defined by purely

algebraic conditions.)

11There are significant differences in the next term of the expansion, and it has been argued in [22] that

only the former procedure is correct.
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E Properties of Γk

The computation of the β-functions require only the logarithmic derivative of Γk with

respect to k. Nonetheless it is useful to examine the effect of the cut-off procedure described

above in the computation of Γk itself. While Γk is a divergent, and thus ill-defined quantity,

the following formulae make sense after taking their k-derivatives. With the theta-function

cutoff, the representation (3.4) becomes

Γk = S − 1

2

∫ 1/(akω)

0

dt

t
Y (t). (E.1)

By adding and subtracting a constant for each mode, we can rewrite this as

Γk = S − 1

2

[∫ 1/(akω)

0

dt

t

∑

n

(
1− e−tλn

)
−
∫ 1/(akω)

0

dt

t

∑

n

1

]
. (E.2)

The sum in the second integral can be interpreted as ζ∆(0), where ζ∆(s) ≡
∑

n λ
−s
n is the

zeta function of the operator ∆, and the first integral can be performed explicitly in terms

of the exponential integral Ein(x) ≡
∫ x
0 (1− e−t)t−1dt:

Γk = S − 1

2

∑

n

Ein(λn/(ak
ω))− γ(k) , (E.3)

where γ(k) = ζ(0)
∫ 1/(akω)
0 t−1dt and ζ(s) is the standard Riemann zeta function, ζ(s) =∑

n≥1 n
−s. For k → 0, Ein(λn/(ak

ω)) → log(λn/(ak
ω)), so this reduces to the standard

determinant formula with eigenvalues measured in units of akω, modulo the irrelevant

infinite constant γ(0). For k > 0, however, Γk is not given as the logarithm of a determinant

any more, but writing Ein(λn/(ak
ω)) = log(λn/(ak

ω)F (λn/(ak
ω))), where F tends to one

when k → 0, we can still interpret Γk as the logarithm of a determinant, but now of a

modified wave operator ∆̃, where the eigenvalues are weighted by the function F (λn/(ak
ω)).

Note that the term γ(k) contributes an infinite constant to the beta function which is

cancelled by a contribution of opposite sign coming from the second term in (E.3).

F Quasi-supersymmetry of gauge fixing conditions

Th gauge fixing conditions (4.4) and (4.39) are motivated by the property that they elim-

inate the mixing terms between lower spin components of the fluctuation fields. Here we

study their behavior under the rigid supersymmetry transformations that leave the back-

ground invariant and act on the fluctuation fields as

δhµν = ǭγ(µψν) ,

δψµ = −1

4
(∇ρhσµγ

ρσ +mhµνγ
ν) ǫ , (F.1)

where ǫ is understood to be a Killing spinor. Varying the bosonic gauge condition (4.4)

under these transformations gives

δGµ = ǭFµ , (F.2)
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where Fµ = ǭ( /D − 5
2m)φµ + · · · , with ellipses denoting terms depending on χ, ψ and their

derivatives. A gauge condition that preserves supersymmetry about the supersymmetric

background would require that δGµ be proportional to ǭγµF . This is not the case here

due to the presence of the φµ dependent terms, which are nonvanishing on-shell as well.

Nonetheless, we find that

γµFµ = −α
3

(
/D − 3

2
m

)
ψ +

10

3

(
�+

R

8

)
χ. (F.3)

Comparing this result with the action of Onk on the gauge condition F which gives

OnkF =
1

α′

(
/D − 3

2
ρ

)
ψ +

(
�+

R

8

)
χ , (F.4)

we see that on shell, for which ρ = m, we have the relation

γµFµ = −10

3
αOnkF. (F.5)

provided that we choose

α = −10α′. (F.6)

A similar phenomenon has been encountered in [48], where 3D supergravity was quantized

around Minkowski spacetime.

G Beta functions on the hyperboloid

As we saw in appendix C.2, one can view the hyperboloid H3 as the Euclidean section

of AdS space. In this case the complete set of eigenfunctions of −� corresponds to the

principal series representations of the isometry group SO(3, 1). They are labelled by a

real positive continuous spectral parameter σ and the integer or half-integer spin s. The

eigenfunctions D(σ,s) of the Laplacian are

−�D(σ,s) = −R
6
(σ2 + 1 + s)D(σ,s) (G.1)

with spectral density function [49]

µ(σ,s) = σ2 + s2. (G.2)

Up to an overall sign, these can be obtained from the corresponding results on the sphere

by letting n 7→ −1 + iσ.

The heat kernel of an operator ∆ = −� + aR + bΛ, acting on fields of spin s and

having eigenvalues λ(σ) = −R
6 (σ

2 + 1 + s) + aR+ bΛ is then expressed as

Y∆(t) =
1

2π2

∫ ∞

0
dσ µs(σ)e

−tλ(σ). (G.3)

Like the heat kernel in flat space, this will be infrared divergent because the volume of H3

is infinite. If we put an infrared cutoff at finite ρ = ρmax, the volume of H3 is

(−6/R)3/22π2 sinh2(ρmax). (G.4)
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Note that in the case of S3 the same calculation gives

(6/R)3/22π2 sin2(ρ)|ρ=π/2. (G.5)

The 2π2 factor, which is just the volume of the unit sphere, cancels the one in (G.3). In

any case, in the calculation of the beta functions, the volume naturally drops out.

The integrand in (G.3), up to an overall sign, agrees with the integrand in equa-

tion (3.11). Recall that the lower end of integration in (3.11) does not affect the first two

terms in the curvature expansion. Furthermore, taking the lower end of the σ-integration

to be zero gives a vanishing result for the third term in the expansion (namely the term of

order R3/2). This is remarkable because in the calculation on S3 this result arises from both

the lower end of the integral as well as the finite correction terms in the Euler-Maclaurin

formula.

In the case of spin 1/2 the heat kernel is obtained by the replacement n 7→ −3/2 −
iσ [50], whereas in the case of spin 3/2 the replacement is n 7→ −5/2− iσ.

Open Access. This article is distributed under the terms of the Creative Commons
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