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Abstract

Frustration in many-body spin systems is a situation where the spins cannot orient
themselves to fully minimize the interactions with their neighbors. It is caused, in
general, by competing interactions or by the lattice structure, as in the antiferromag-
nets on non-bipartite lattices. Over the years frustrated systems have been studied
substantially, since frustration can destabilize the antiferromagnetic order, lead to
different phases of matter and induce various exotic properties.

Frustration can be caused also by a choice of boundary conditions, i.e. the lattice
topology. For instance, a ring with an odd number of sites is non-bipartite, which
makes antiferromagnets in this setting frustrated. The subject of this thesis are zero-
temperature one-dimensional quantum systems exactly in this setting.

The major content is discussing how such a simple setting can influence the an-
tiferromagnetic order, by studying spin-1/2 chains with discrete symmetries, whose
breaking is related to the onset of the order. After reviewing the known results on
topological frustration, dealing with non-thermodynamic quantities, we develop an
approach for studying symmetry breaking, that is both suitable for exact analytical
computations and meaningful for discussing the order also in a finite system. It con-
sists of the realization that many spin-1/2 chains without external magnetic fields,
such as the quantum XY chain, possess anticommuting global symmetries when the
number of lattice sites is an odd number, implying the ground-state degeneracy al-
ready in a finite system.

In this framework, we discover that topological frustration, despite being in-
duced only by the choice of boundary conditions and even/odd system size choice,
can affect the magnetization in the thermodynamic limit and system’s quantum
phase transitions. We find that topological frustration can destroy local order, cre-
ate a site-dependent magnetization that varies in space with an incommensurate
pattern, induce a first-order quantum phase transition that is not present without
frustration and modify the nature of a second-order transition, by destroying local
order at both sides of the transition and preserving only non-local string order pa-
rameters. All these results indicate the incompleteness of the approach to quantum
many-body systems, based on the Ginzburg-Landau theory, that tries to capture the
properties of the system by taking the system size to infinity before computing the
observables and neglects the influence of the chain length as a relevant scale.

We find that topological frustration can affect also non-equilibrium properties, by
considering a local quantum quench setup. Namely, we study the Loschmidt echo
and find it displays qualitatively and quantitatively different behavior for antiferro-
magnetic rings with an even and odd number of sites. Most of all, the differences
become clearer for large system sizes, thus allowing to distinguish in a simple out-
of-equilibrium experiment a system made by a certain, large, number of spins from
the one with a single additional spin.

The thesis also contains a mathematical part. In studying order parameters of
models mappable to free fermions, Toeplitz determinants with symbols that possess
a part proportional to the delta function arise. We derive asymptotic formulas for
this type of determinants.
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Chapter 1

Introduction

1.1 Frustration in Spin Systems

In classical magnetic systems the spins orient themselves to satisfy the interactions
with the other spins. At zero temperature, in ferromagnets the spins are aligned as
their nearest neighbors, while in antiferromagnets the Néel order, with neighbor-
ing spins pointing in the opposite directions, is realized. Introducing sufficiently
strong thermal or quantum fluctuations, by increasing the temperature or changing
a Hamiltonian parameter, this magnetic order gets destroyed and the system exhibits
a thermal or a quantum phase transition [9-11]. This simple picture can account for
the behavior of a vast number of spin-systems. Yet, the set of possible behaviors of
spin-systems is much more rich, one of the most important phenomena that enables
it being frustration.

Frustration is a term that describes the situation where spins in a system cannot
find an orientation to fully satisfy the interactions with their nearest neighbors [12].
In general, frustration is caused either by competing interactions or by the lattice
structure, or a combination of both. Over the years frustrated systems have been
a subject of a lot of research. On one side, because many real magnetic systems
are frustrated, and on the other, because frustrated magnetism presents an excellent
ground to discover new states of matter and to test and improve theories [12, 13].
Let us review some of the effects of frustration, first focusing on classical, and then
on quantum systems.

In classical systems with competing interactions some of the most spectacular ef-
fects due to frustration are high ground-state degeneracy, existence of several phases
in the ground-state phase diagram, multiple phase transitions with increasing tem-
perature, reentrant phase with no long-range order below an ordered phase on a
temperature scale, disorder lines and partial disorder at equilibrium [12]. They can
be found already among the exactly solvable Ising models with nearest and next-to-
nearest neighbor interactions, the most famous, containing many of these phenom-
ena, being the J; — J> model on the square lattice [12]. A central property of these and
of general frustrated systems is high ground state degeneracy. The parts of the phase
diagrams of the models with competing interactions where alternative ground states
are close to degeneracy are likely, in general, to have the highest effects of frustra-
tion. Consequently, these parts are of primary theoretical interest. Note, however,
that it might be difficult to realize experimentally such a setting, with precise rela-
tion between different interaction strengths. The other kind of frustration, that arises
only because of the lattice structure, avoids this problem[13].

Frustration that is caused by the lattice structure is termed geometrical frustration
[13]. It arises, most notably, in antiferromagnetic systems on non-bipartite lattices.
The standard example for introducing the concept is the antiferromagnetic Ising tri-
angle, a building unit of the Ising antiferromagnet on a triangular lattice. Aligning
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FIGURE 1.1: Geometrical frustration in the Ising antiferromagnet on

the triangular lattice. Fixing two nearest neighbor spins to point in

the opposite directions, it is impossible for their common neighbor to
point oppositely from both.

two nearest neighbor spins on the triangle to point in the opposite directions, it is
impossible for their common neighbor to point oppositely from both, as presented
in Figure 1.1. In fact, the Ising antiferromagnet on a triangular lattice provided the
first results on geometrical frustration [14, 15], where it was noticed that the model
has different properties from ferromagnets or bipartite antiferromagnets. In geomet-
rically frustrated systems lattice itself may destabilize Néel order and create high
ground state degeneracy. For instance, the aforementioned Ising antiferromagnet
on a triangular lattice [16] and the classical Heisenberg antiferromagnet on the py-
rochlore lattice [17, 18], of corner sharing tetrahedra, do not posses long range order
at any finite temperature.

Geometrical frustration induces also other exotic phenomena. The high ground
state degeneracy of geometrically frustrated systems is related to the non-zero resid-
ual entropy, found already in the Ising antiferromagnet on the triangular lattice [14],
and the spin ice phenomenon [19]. The dependence of the magnetic susceptibility
on the temperature in geometrically frustrated systems is peculiar and is, in fact,
an important revealing property of geometrical frustration [13]. Algebraic decay of
correlations without criticality can arise in the presence of geometrical frustration
[20, 21]. Furthermore, geometrical frustration can be a platform to realize emergent
properties, such as artificial light [20, 21] and magnetic monopoles [22, 23].

Another interesting effect of geometrical frustration is order by disorder [24].
Since the high ground state degeneracy in geometrically frustrated antiferromagnets
is not a consequence of a symmetry, but a rather accidental, the spectrum of thermal
fluctuations around different ground states may be different. Thus at small finite
temperature some ground states may have greater contribution to the free energy
than the other and, moreover, it may happen that those states have some degree of
long-range order. In this way fluctuations can enhance the order that is not present
at zero temperature, rather than destroying it. Hence "order by disorder" [13, 25].
Notably, through this mechanism a coplanar order in the Heisenberg model on the
Kagome lattice of corner sharing triangles is established [26]. In quantum system:s,
to which we now turn, a similar order by disorder phenomenon is possible, with the
quantum fluctuations playing the role of thermal fluctuations in classical systems
[13, 25].

In quantum systems the definition of frustration as a competition between terms
in the Hamiltonian promoting different types of arrangement could be applied as
well. In this sense, frustration could be of a purely quantum origin, because of the
non-commutativity of different local terms in the Hamiltonian and the entaglement
in the ground state [27, 28]. Some measures have also been introduced to distinguish
this purely quantum contribution to frustration [29, 30]. However, to avoid calling
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a large number of quantum phases frustrated, the term frustration in quantum sys-
tems is usually reserved for its classical origin, whether it comes from competing
interactions or the lattice structure. Note that the notion of unfrustrated systems, in
this sense, is different from the notion of frustration-free Hamiltonians [31], whose
ground state minimizes all local terms.

Of quantum systems those with SU(2)-symmetric interactions typically receive
the most of the attention. In such systems a notable quantum phase that can arise as
a simple way to overcome frustration is the valence bond crystal phase, where the
neighboring spins are paired into rotationally invariant singlets or "valence bonds".
The system exhibts long-range order in these building blocks and no long-range
order in spin-spin correlation functions [32, 33]. An example is the spin-1/2 Heisen-
berg model on the checkerboard lattice [34, 35]. An alternative phase that can arise
in the presence of frustration is the resonating valence bond spin liquid phase, with
different long distance properties and different magnetic excitations [32, 33]. In the
spin-1/2 Heisenberg model on kagome and pyrochlore lattices, that have received
a lot of theoretical attention, it is, for instance, still not completely clear which of
the two phases is realized [32, 33]. Another model that has received a considerable
attention, although the nature of its phase in the frustrated regime is not completely
clarified yet, is the J; — J» Heisenberg model on the square lattice [33], where frus-
tration is caused by competing nearest neighbor and next-to-nearest neighbor in-
teractions. In this model several phenomena that are relevant for a wider class of
two-dimensional frustrated quantum magnets have been discovered: classical de-
generacy, destruction of long-range order by quantum fluctuations, break down of
the spin-wave expansion, opening of a spin gap, order by disorder and possibly
spontaneous translational symmetry breaking [33].

In one dimension, it is known that, even without frustration, quantum fluc-
tuations can suppress magnetism and give rise to a variety of zero-temperature
spin-liquid phases [36, 37], as in the exactly solvable antiferromagnetic Heisenberg
chain [36-42]. Adding frustration, through competing nearest neighbor and next-
to-nearest neighbor interactions, on top of it, can induce additional types of spin
liquid phases with exotic properties [36]. For instance, the J; — ], Heisenberg chain
exhibits a valence bond crystal phase, with incommensurate correlations and break-
ing of the lattice translation symmetry, through a spontaneous dimerization [33, 43—
46]. The dimerization can be understood simply by considering the exactly solvable
Majumdar-Ghosh point [47].

Frustration induces thus many exotic properties, both in classical and quantum
systems. We have mentioned only the theoretical results, but there is many exper-
imental results, motivating and confirming the theory [48-52]. For the end, let us
mention the geometrical frustration in the context of the Ginzburg-Landau theory, a
unifying theory of continuous phase transitions [53, 54]. The latter, justified by a mi-
croscopic averaging through a coarse-graining procedure [53], leads to the concept
of universality [9, 53, 55]: Different physical systems exhibit the same critical behav-
ior, irrespectively of the microscopic details, provided they have the same spatial di-
mension and order parameter symmetry. Geometrical frustration throws, in a sense,
the antiferromagnets outside the range of validity of the theory, since it makes their
properties strongly dependent on the lattice structure and, therefore, non-universal.
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FIGURE 1.2: Geometrical frustration arises if antiferromagnetically
interacting spins are set on a ring with an odd number of sites. For
classical Ising spins (a) the ground state configurations contain a fer-
romagnetic bond, while for classical Heisenberg spins (b) it is ener-
getically more favorable to realize long-wavelength spin waves. We
call the periodic boundary conditions with an odd number of sites
frustrated boundary conditions, and the frustration arising from it in an-
tiferromagnets fopological frustration.

1.2 Topological Frustration

Geometrical frustration can be caused also simply by a choice of boundary condi-
tions, i.e. by the lattice topology, in which case we term it topological frustration. For
instance, a ring with an odd number of lattice sites is non-bipartite, which makes
one-dimensional antiferromagnets in this setting frustrated. In this setting the spins
cannot be aligned so that they all point oppositely from their nearest neighbors. This
brings us to the topic of this thesis, one-dimensional quantum systems exactly in this
setting, i.e. periodic boundary conditions with an odd number of lattice sites, that
we term shortly frustrated boundary conditions (FBC). FBC are not the only setting
inducing topological frustration in one dimension. For instance, antiperiodic, i.e.
twisted, boundary conditions frustrate the ferromagnets, which can be often related
to the setting that we study.

It is instructive to see how topological frustration arises in one-dimensional clas-
sical systems. For antiferromagnetic classical Ising spins-1/2 with FBC, described
by the Hamitonian H = Z] 10j0j+1, where the possible values are 0; = +1 and N
is odd, the energy minimizing configuration has necessarily a ferromagnetic bond
(see Figure 1.2) and the ground energy is —N + 2. On the other hand, for classical
Heisenberg or O(2) interactions, described by H = Z}il s; - sj41 where s; are unit
vectors with three or two components respectively, it becomes energetically more
favorable to tilt the spins and to form spin waves in the presence of frustration.
To demonstrate this, let us focus on two components only. Each spin s; can then
be described by the angle 6; with the x-axis, and the interactions can be written as
sj - sj11 = cos(Bj,1 — 6;). Studying the first derivatives of the Hamiltonian with re-
spect to the angles 0, it is easy to see that configurations that extremize the energy
are those with a constant angle difference 6,1 — 6; = ¢ for all j. In these config-
urations, in order to account for the periodicity of the chain, the quantity Ng has
to be necessarily a multiple of 27t. For even N the energy is minimized simply by
qg= 2" N = 7, describing Néel order sj,; = —s;. For odd N, however, the value
q=r, and accordingly perfect Néel order, is not possible. The energy is minimized
instead by the closest possible values, § = 22Nl = 7 + 71/N. The energy of these
configurations is Ncosg = —N + 72/2N + O(N~2). It is, in particular, lower than
the energy of the configurations with a single ferromagnetic bond, equal to —N + 2.
Denoting the unit vectors along x and y-axis by e, e, the spins in these ground state
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configurations form a long-wavelength spin-wave
; T T
(Vi T (T
sj=(—1) [COS(N]:EQN> elj:sm(N]j:HN) e]. (1.1)

This configuration is shown in Figure 1.2, where it is assumed that the chain propa-
gates in the direction that lies in the plane spanned by e; and e;.

These simple classical examples illustrate the concept of topological frustration
and the way it arises in one dimension. Naturally, the real question is what happens
when quantum or thermal fluctuations are introduced. This thesis deals with the
former, in one dimension.

The interest in the topologically frustrated quantum spin chains is three-fold.
The first is along the line of interests in frustrated systems in general. Topological
frustration, as we will see, also provides a way for evading the standard antiferro-
magnetic order and leads to new phases of matter, which can lead further to insights
about general theories. Here, the insight is about the influence of the boundary con-
ditions and the even/odd system size choice, which trigger topological frustration,
on antiferromagnetic phases of matter. It is an important result of its own that these
choices can have any significant effects in large systems with only local interactions.

Second, studying topological frustration in quantum chains might provide some
insight on geometrical frustration in quantum systems in general, which is a field
of research where getting exact results can be very hard. Clearly, the advantage of
topologically frustrated spin chains is all the machinery that exists to deal with one-
dimensional quantum systems [31, 37, 56].

Third, topologically frustrated spin chains are interesting physical systems on
their own. One-dimensional systems are not anymore only a theorist’s toy. There
are now many experimental realizations of one-dimensional systems [37] and with
cold atoms, for instance, it is possible to tailor various interactions [57-61]. Thus, a
theoretically discovered property might be considered for the realization in the real
world.

1.2.1 Older Results on Topological Frustration

A particularly notable result on topological frustration is a discovery from 1980s
that topological frustration can affect the energy gap above the ground state [62,
63]. Namely, ferromagnetic quantum Ising chain with adjustable boundary condi-
tions has been studied and it has been shown, analytically, that, with periodic and
free boundary conditions the gap closes exponentially with the system size N, while
with antiperiodic boundary conditions the gap closes only algebraically, as 1/N2.
It is algebraic, but not like at criticality, where it closes as 1/N. Note that with
an odd number of sites the Ising ferromagnet with antiperiodic boundary condi-
tions is equivalent, through a direct unitary mapping, to the Ising antiferromagnet
with periodic boundary conditions, i.e. FBC, a setting that is the focus of this the-
sis. The authors suggest that these puzzling discovered phenomena are associated
with topological excitations. In the same papers, also other boundary conditions,
parametrized by the interaction strength at a single bond in the system, have been
addressed numerically and it has been found that antiperiodic boundary conditions
are a transition point, between algebraic and exponential closing of the gap. Soon
afterwards, these results have been recovered analytically using random walk and
perturbation theoretic arguments [64]. Influenced by these works, it has also been
discovered soon that the transfer matrix mass gap of the classical two-dimensional
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Ising model on a square lattice also depending on the boundary conditions vanishes
exponentially or algebraically [65].

Essentially the same problem of the energy gap in the Ising chain was revisited,
in a different form, more recently [66]. In agreement with the previous works, it has
been shown that the gap in the antiferromagnetic Ising chain with periodic boundary
conditions closes exponentially or algebraically, depending on whether we follow
even (N = 2M) or odd system sizes (N = 2M + 1), corresponding to FBC, respec-
tively towards infinity (M — o0). This work was motivated by the quantum adia-
batic algorithm, for which the implications of a possibility of only an algebraically
small gap have been discussed.

A few years later, the problem of the dependence of the gap in the Ising chain
with adjustable boundary conditions, i.e. a one bond defect, has been revisited in
[67]. It has been discussed how a bond defect can drive a quantum phase transition
from a magnet phase, in which the gap closes exponentially, to a kink phase, in
which the gap instead closes algebraically. Furthermore, a universal scaling behavior
has been discovered close to the transition point. Namely, the theory of a finite size
scaling at first-order quantum phase transitions [68], that would here be driven by
the external magnetic field in the direction of the order parameter spin operator,
has been applied. The scaling functions for the low-level energy differences and
the two-point correlation function have been computed, from which the universal
behavior has been inferred. A similar phenomenology can also be induced by two
local magnetic fields at the boundaries of an open chain, that are aligned with the
order parameter spin operator and point in the opposite directions [69], therefore
inducing frustration. Increasing the strength of the boundary fields the system goes
from a magnetic phase, where the gap closes exponentially, to a kink phase, where
the gap closes algebraically, and close to the transition the low energy properties
show a universal scaling behavior. Let us note that the algebraic closing of the gap
has also been discovered in the quantum XY chain in a transverse field with FBC
[70].

It should be noticed that in all these examples the presence of frustration in the
spin chain is accompanied by an algebraic gap above the ground state, while the
absence of frustration comes with an exponentially small gap. In fact, in the case
of the exponentially small gap, the system can be considered gapped, since above
the two lowest energy states, which can be considered quasi-degenerate, there is a
finite gap, that does not close in the thermodynamic limit. On the other hand, in
the case of algebraic gap the two lowest energy states are a part of the band, with a
macroscopic number of states, in which the energy gap between the states closes in
the thermodynamic limit. In the presence of frustration, the system is therefore gap-
less. The frustration in these examples, thus, turns the behavior of the system from
gapped to gapless. We note that gapless excitations in the presence of frustration are
not relativistic and are, thus, different from criticality.

The two-point correlation functions of order parameter spin operators have been
studied in more details in [71], in the context of the quantum Ising chain with FBC.
Together with [67], the result establishes that correlations in the ground state acquire
a peculiar correction, with respect to the unfrustrated case, at distances comparable
to the system size N. For two spins separated by a large distance r, the correction
is the factor (1 — 2r/N), implying that the correlations of the most distant spins on
the ring, separated by distance r = (N — 1) /2, for a unit cell of size unity, vanish
as 1/N. However, letting first the system size to infinity and then looking at cor-
relations the effects of topological frustration in the spin-correlation functions are
destroyed. As shown in [72], the same behavior of the spin-correlation functions is
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also a property of the whole lowest energy band of the model, with consequences
to the low-temperature behavior. Note that, although the final result of [71, 72] is
correct, there are some issues with the analytical content of the asymptotic analysis,
as we comment in Chapter 9.

The entanglement entropy in the ground state of the same model, with general-
izations to XYZ chain in a transverse field, is also found to differ from the unfrus-
trated model, when, in the bipartition of the system, the sizes of both subsystems are
comparable to the system size [73]. The entanglement entropy violates the area law,
while not diverging with the system size. Its behavior is well fitted by a universal
law, derived from a conjectured single-particle picture.

The aforementioned results deal with systems out of criticality, but there are also
some results for critical systems. Different proportionality constant with different
boundary conditions has been discovered in the closing of the gap of the quantum
Ising chain at a critical field [74]. In XXZ chain some finite-size effects related to FBC
have been discovered [75]. Furthermore, it has been shown that in several critical
spin chains a difference between even and odd antiferromagnetic rings arises in spin
correlation functions at distances comparable to the system size [76]. Finally, let
us mention that FBC have been recognized to be special in the antiferromagnetic
Heisenberg chain, even before all these results [38].

Summarizing the older results discussed in this section, we conclude that topo-
logical frustration closes the gap above the ground state, by making it algebraic yet
different from criticality, it suppresses the ground state spin-correlation functions at
distances comparable to the system size and induces corrections to the entanglement
entropy.

1.2.2 Non-Equilibrium Dynamics

Since the topological frustration closes the gap above the ground state, it is natural
to expect its influence on the non-equilibrium dynamics of the system. For instance,
as recognized in [67], the size dependence of the spectral gap determines the condi-
tions for the nearly adiabatic quantum dynamics [77, 78] so topological frustration
is relevant in this context. We are going to deal, in Chapter 2, with the consequences
for the quantum quench protocol [78-81], perhaps the simplest and most widely
studied way to bring the system out of equilibrium.

1.2.3 Spontaneous Symmetry Breaking

The primary goal of this thesis is to discuss whether and how topological frustra-
tion can affect the order parameter of antiferromagnetic phases, i.e. the (staggered)
magnetization. In one dimension, the ground states of quantum systems with con-
tinuous symmetries are disordered, according to the quantum analog of the Mermin-
Wagner theorem [11, 82-85]. Thus, we study how topological frustration affects the
antiferromagnetic order in quantum spin chains with discrete symmetries, whose
breaking is related to the onset of the order. In this section we cover different ap-
proaches for studying symmetry breaking in such systems, and compare the frus-
trated and unfrustrated case.

Ground State Degeneracy in the Thermodynamic Limit

The first symmetry breaking framework we cover is based on the realization that
although the ground state might be single, and therefore respecting the symmetries
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of the Hamiltonian, in the thermodynamic limit there might be the ground state
degeneracy.

Let us focus on the quantum Ising chain [10, 86], the prototype model for quan-
tum phase transitions, given by the Hamiltonian

N N
Hy=] ZU]?‘U]?‘H +h Z (sz. (1.2)
j=1 j=1

Here 07, for & = x, y, z, are Pauli matrices with support at site j, N is the system size
and periodic boundary conditions ¢7, \, = ¢} are imposed. The spins interact ferro-
magnetically (antiferromagnetically) for ] = —1 (J = 1) and are subject to a trans-
verse field h. The Hamiltonian commutes with the parity operator IT* = ®].Ii1 o7,
which constitutes the Z, symmetry of the model. The spontaneous breaking of this
symmetry is associated to the existence of the non-vanishing order parameter, the
longitudinal magnetization <0']?C> in the ground state. Note that when N is even the
ferromagnet ] = —1 and antiferromagnet | = 1 are related by a unitary transforma-
tion 0" — (—1) 0, that consist of rotating every other spin around the z-axis by an
angle 7, while for odd N there is no such unitary transformation.

Let us first examine the unfrustrated case, focusing on the antiferromagnet | =1
and even N, while the ferromagnet has analogous phenomenology, of course. From
the exact solution by mapping to free fermions [10, 56, 86], it is known thatat h = 1
the model exhibits a quantum phase transition from the ordered magnetic phase at
h € (0,1), with non-zero value of the ground state magnetization, to the paramag-
netic phase h > 1, with zero magnetization. In a finite system there is no symmetry
breaking. The ground state is single, with a definite II* parity and, therefore, zero
magnetization. However, in the magnetic phase, the first excited state, that car-
ries opposite I1* parity, is separated by an energy gap that is exponentially small in
N. This quasi-degeneracy becomes exact in the thermodynamic limit, which makes
it possible to form ground state superpositions, that break II* parity and have a
non-zero magnetization. For i — 0 these superpositions correspond to the states
gy =l+—+—...+—)and |g) =1*|¢1) = |—+ —+... — +), where by |£) we
denote the eigenstate of c* with the eigenvalue 1. The same phenomenology arises
in the antiferromagnet with free boundary conditions. This illustrates the symmetry
breaking mechanism based on the ground state degeneracy in the thermodynamic
limit.

The exact value of the magnetization is [56, 86]

(of),, = (=1 (1 =) (1.3)
1
Typically, this value is inferred from the spin-correlation functions (U]?‘U]?‘Jr» at large
distances r, using the cluster decomposition principle [11, 87, 88]

lim ((ofc,) = (0]} {0}.) ) =0, (14)

but a direct computation has also been performed [89]. The phenomenology in the
model with free boundary conditions is the same [86, 90].

Now let us examine the odd N case. From the works [62-64, 66, 67] mentioned in
section 1.2.1 it is known that, while there are no effects of frustration in the paramag-
netic phase, in the magnetic phase the energy gap above the ground state now closes
algebraically as 1/ N?, instead of exponentially as without frustration. Moreover, the
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ground state is now a part of a band of states and the system is gapless. This can be
understood simply from the lowest-order perturbation theory in h. Let us assume
thus that 0 < 1 < 1 and apply the perturbation theory.

At the classical point i = 0 the ground-state manifold is 2N-fold degenerate,
corresponding to N different positions where the ferromagnetic bond can be placed
and two different orientations of the spins. The ground state energy is equal to
—N + 2, because of the presence of a ferromagnetic bond. We call these ground
states the kink states. Let us denote by |j), for j = 1,2,..., N, the kink state with the
ferromagnetic bond ¢ = ¢}, ; = 1 and the remaining bonds antiferromagnetic. The

] j+1

other kink states, with the ferromagnetic bond (zj = 0¥

=1 and the remaining

bonds antiferromagnetic, can then be written as I'T* |j).
Turning on a small positive magnetic field h, the translationally invariant IT*-
symmetric states split in energy. These are the states

IR ES

L) = ey,
g, +) NI ]_Zl 17)

(1.5)

where the momentum g can assume any value from the set {277k/N : k =0,1,...,N —
1}, and their parity is [I* = £1. Their energies are obtained by diagonalizing the
perturbation, as presented in Appendix A, and are given by

Ej+ = —(N —2)+2hcosq. (1.6)

The ground state, in particular, is given by |g) = |0, —) and it is single. The en-
ergy gap above the ground state does not close exponentially with N, as without
frustration, but only algebraically as 1/ N?.

The ground state being single, there is no magnetization. From the perturbation
theory, as presented in Appendix A, we obtain the spin correlation functions

(707, = (—1)’(1 - 27\;) (1.7)

For most distant spins on the ring, separated by r = (N —1)/2, we have (07’07, ) ~
1/N so the correlations vanish in the infinite system. Interestingly, this is in agree-
ment with the value of the magnetization and the cluster decomposition principle.
The exact results do not change this picture [71, 73].

However, there are important differences from the paramagnetic phase. Here, in
the double scaling limit 1 < » < N the spin-correlations acquire the same, non-zero,
value as without frustration. Furthermore, the system is gapless and, as discussed
in the next section, by introducing symmetry breaking fields in the Hamiltonian it is
possible to select the ordered ground states.

Symmetry Breaking Fields

Another way to study order parameters is to introduce symmetry breaking fields,
aligned with the order parameter spin operator, and let them to zero after the ther-
modynamic limit [11]. Adding symmetry breaking fields to the Hamiltonian (1.2)
we get the Hamiltonian

N
H=Hy+) A}, (1.8)
j=1
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where A; specify the value of the field at different sites. The ground state |g) of H is
now, in general, single and exhibits non-zero magnetization.

Let us focus first on the unfrustrated case, the antiferromagnet with N even, in
particular. Although the model (1.8) is not anymore exactly solvable, it is easy to
understand, using perturbation theory in A, that taking the staggered field

Ap= (=1)/*1A (1.9)
results in the spontaneous magnetization

: : X\ _ ‘ 211/8
Alggi 1\1/1_120 (07) = £(-1)(1-h")", (1.10)
for h € (0,1). The staggered field, out of the two-fold degenerate ground state man-
ifold in the thermodynamic limit, simply selects the state with the antiferromagnetic
order that minimizes the energy. This is what constitutes the symmetry breaking
framework based on symmetry breaking fields. Note also that the opposite sign of A
yields the magnetization of the opposite sign, so the line i € (0,1), A = 0, represents
the first-order quantum phase transition.

For odd N there is, actually, an ambiguity with the staggered field. As the mag-
netization in the classical ground states, the staggered field cannot be completely
staggered, but one bond is necessarily singled out where two neighboring fields are
equal. The notation (1.9), in particular, selects this to be the bond between the sites
j=1andj = N, where A; = Ay. The staggered field thus breaks the translational
invariance. In this case, due to the gapless nature of the frustrated system with-
out symmetry breaking fields, the perturbation theory in A is a complicated prob-
lem. Still, a simple perturbation theory in / can be performed, telling us that, for
0 < h < 1, one of the two classical Néel states, |-+ —...+ —)or [+ —+... —+),
depending on the sign of A, is the ground state |g). The magnetization is thus ex-
pected to be the same as in the unfrustrated case, except for a single ferromagnetic
bond that breaks the translational invariance.

If we decide to break the translational invariance, we can also consider other
symmetry breaking terms. We can even consider a local symmetry breaking field,
present only at site j = N,

Aj = 6jNA. (1.11)

For even N, it’s easy to understand using perturbation theory in A, that even this
local symmetry breaking term will select the same antiferromagnetic order as the
global staggered field, described by (1.10).

For odd N, however, the situation is much more complicated. Again, we can
resort to the perturbation theory in h. For h = 0 there are N ground states, which
are the kink states that have o, = —1for A > 0 and 03; = 1 for A < 0. Turning
on a small positive & the degeneracy is lifted. The new ground state is obtained by
diagonalizing the perturbation in the subspace spanned by the aforementioned N
kink states, as done in Appendix A. We find that the ground state is single and the
system is gapless, with the energy gap above the ground state closing as 1/N 2 The
magnetization in the ground state is for A > 0 given by

; 2 1 1 2n 1
X — (Yt i1 o = [+ 2 i iz ,
(o, = (=1) { N+1<]+2>+(N+1)sin(hﬁl)81n[N+1<]+2>]}
(1.12)
while for A < 0 the sign is opposite. It is presented in Figure 1.3. Note that the
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FIGURE 1.3: The ground state magnetization (1.12) at different sites

of the lattice of N = 51 spins, for the quantum Ising chain with a local

symmetry breaking field, obtained from a perturbative approach. The

magnetization, represented by blue circles, joined to guide the eye,

is staggered, but modulated over the ring. The modulation is in a

large system described by the functions (1 — 2x + sin(27tx) / ), for
x = j/ N, represented by the dashed lines.

magnetization respects the mirror symmetry around site N, where the local field is
placed. The magnetization is staggered, but does not represent the standard simple
antiferromagnetic order. For N > 1 we have

(eF) = (=1 [1 _ - %sin (2”])] +O(NY), (1.13)

g N N

where we can see that the magnetization is modulated over the ring, by functions
+(1 — 2x + sin(27tx) /), for x = j/N. The modulation is such that the maximal
absolute value of the magnetization is at the site j = N, where the field is placed,
while the minimal value, of order 1/N, is at the diametrically opposed bond on the
ring, reflecting the mirror symmetry of the Hamiltonian around the site where the
symmetry breaking field is localized. Note that the modulated antiferromagnetic
order discovered here is similar to the one that we have discovered in the exactly
solvable quantum XY chain with FBC [2], that will be the subject of Chapter 4.

The point of the presented perturbative calculation is to notice how in the pres-
ence of topological frustration the notion of taking the thermodynamic limit and
afterwards computing the quantities of interest might be ambiguous. With a local
symmetry breaking field the ground state magnetization with FBC is site-dependent,
and, although locally antiferromagnetic, it takes different values at different parts of
the ring. Focusing on different parts of the ring and letting the system size to infinity
would yield different information about the system. The presented system has to be
considered as a whole.

We have considered a global staggered symmetry breaking field and a local one,
present at a single site. With FBC they yield different behavior of the magnetization,
and taking other configurations of symmetry breaking fields could yield results dif-
ferent from both. Due to large classical ground state degeneracy different pertur-
bations to the classical Hamiltonian select different states with different properties.
The sensitivity to perturbations due to large ground state degeneracy, discovered
here, is, in fact, a common property in frustrated magnetism [25].
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Ground State Degeneracy due to Anticommuting Symmetries

There is also another approach to symmetry breaking, that we have discovered in [1]
in the context of the XYZ chain. It does not work for the the discussed quantum Ising
chain, but works for a large class of spin chains in the absence of external magnetic
fields.

Let us consider the Hamiltonian

H = Z 0o+ ]ylgyaly + Ji10707), (1.14)

where the couplings ]]’?fl, for @ = x,v, z, describe the interactions of spin components
« between the sites j and [, and the sum is over all distinct pairs of j and I. For
instance, in one-dimension the XYZ chain [56] is the special case ]]‘?fl = ]"‘§| i—11r and
the XY chain [56, 91] has further J* =

We recognize that Hamiltonian (1.14) commutes with each of the parity oper-
ators ITI* = ®}i1 (7]‘-", for « = x,y,z, where N is the system size ([H,IT*] = 0).
This expresses the fact that the Hamiltonian is invariant under the transformation
0j — —0; Vj, for each choice of «. Crucially, we also recognize that, irrespectively
of the values of the couplings and the lattice geometry, we have the following prop-
erty. While different parity operators commute when N is even ([I1% I1f] = 0 for
N = 2M), when N is odd different parity operators anticommute ({IT%,T1} = 26, 4
for N =2M +1).

These properties have an important consequence on the structure of the Hamil-
tonian eigenstates when N is odd. The consequence is that, in this case, every eigen-
state is at least two-fold degenerate. Namely, suppose we diagonalize the Hamil-
tonian simultaneously with I'T?, and let |¢) be the simultaneous eigenstate, with
IT* = 1 and some energy. Since different parity operators anticommute, the state
IT* |ip) (or ITY |yp)) is also an eigenstate of the Hamiltonian, with the same energy,
but with IT* = —1. The states |) and IT* |i) have, thus, the same energy but are
orthogonal. The same conclusion holds also for more general Hamiltonians than the
one in (1.14), when they possess the discussed symmetries.

The ground state manifold, in particular, is at least two-fold degenerate. Fur-
thermore, for each ground state choice there is a parity symmetry that is broken and
for each parity symmetry of the Hamiltonian there is a ground state that breaks it.
Magnetization is, thus, in general, non-zero already in a finite system. For instance,
an eigenstate of I1* breaks the I1* symmetry and can exhibit a non-zero expectation
value of . Thus, as with the symmetry breaking fields, the magnetization can, in
principle, be computed in a finite system and followed towards the thermodynamic
limit (N = 2M + 1, M — o). However, in this approach no other limits are required
after the thermodynamic limit to discuss the order parameter and, as we will see, in
some exactly solvable models this approach is also suitable for analytical computa-
tions. In this thesis we work within this symmetry breaking framework to discuss
the influence of topological frustration on the order parameter. Since the frustration
inducing setting on which we focus are periodic boundary conditions with an odd
number of lattice sites, the requirement for odd N is satisfied automatically.

1.24 Boundary Conditions and Local Order

Since topological frustration is triggered by a choice of boundary conditions, which
typically, quite in agreement with intuition, do not influence the bulk, macroscopic,
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properties of the system, it is not obvious at all that topological frustration can have
any such effects. We would like to comment here topological frustration in this con-
text.

Let us first note that, although boundary conditions typically do not influence the
bulk properties of the system, there are known exceptions. It has been discovered
that the free energy (density) of the six-vertex model takes different values depend-
ing on whether periodic or domain-wall boundary conditions are imposed [92]. Fur-
thermore, it is known that this difference is intimately related to the appearance of a
macroscopic phase separation in real space when domain-wall boundary conditions
are imposed. The latter allow only ordered configurations close to the boundaries
and, due to strong correlations, induce ordered regions extending macroscopically
from the boundaries, that are sharply separated by the so-called arctic curve from
a central, also macroscopic, disordered region [93-98]. A similar phenomenon of a
phase separation due to boundary conditions appears also in other tilling problems
[99-104].

That being said, we recognize that tilling problems and fixed boundary condi-
tions seem a rather special from the point of view of the influence of the boundaries.
For systems with local interactions, such as Ising or Heisenberg, it can indeed be
proven rigorously that boundary conditions, such as free or periodic, do not influ-
ence the free energy in the thermodynamic limit. Let us focus on a quantum system
of N spins. If the system is described by the Hamiltonian H then the free energy is
given by

f= (e ), (1.15)

where B is the inverse temperature. A different Hamiltonian results, naturally, in
a different value of the free energy. For two different Hamiltonians, H; and H>,
describing interactions in such a system, it can be shown [105, 106] that the corre-
sponding free energies, denoted by f; and f,, satisfy the bound

1
|fi—fal < ﬁHHl_HzH- (1.16)

In fact, the relation holds for any Hermitian operators H; and H» acting on the same,
finite-dimensional, vector space. Note that at zero temperature, i.e. B = +o00, where
the free energy is given simply by the ground state energy, the same bound holds,
and is, in fact, more immediate. Now, if the two local Hamiltonians differ only
by boundary conditions, such as free or periodic, then the norm of the difference,
||H; — Hz||, is O(1) as N — oco. It follows from (1.16) that the difference between
the free energies vanishes in the thermodynamic limit N — oco. Boundary condi-
tions thus do not influence the free energy. A similar argument can be used to show
that even and odd system sizes cannot have a different thermodynamic limit for the
free energy. Classical Hamiltonians can be dealt with using similar methods [105,
106]. We conclude that topological frustration cannot affect the free energy in the
thermodynamic limit.

For this reason we might expect that topological frustration cannot affect the
bulk, local, order. In the end, in Landau symmetry breaking theory [11, 54, 107, 108],
or more generally the Ginzburg-Landau theory [53, 54], the free energy is the fun-
damental quantity. The value of the order parameter is the one that minimizes the
free energy. And although the Landau theory was originally developed for classical
systems and some quantum phases violate it, as the topological ones, the theory has
still been widely successful in the quantum regime [109].
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Leaving aside the question whether boundary conditions can influence the or-
der in other classical models, let us claim that, at least in the quantum case, the free
energy alone does not contain sufficient information to discuss order parameters.
For instance, we have seen that a local symmetry breaking field, which does not
contribute to the free energy in the thermodynamic limit, in the unfrustrated antifer-
romagnet introduces the energy splitting between two different antiferromagnetic
states. The sign of such a field determines the sign of the staggered magnetization
in the ground state. Moreover, we have seen that such a local field can result in a
different kind of ground state order between the frustrated and unfrustrated case.
Local contributions to the Hamiltonian are not negligible and their details can carry
important information. Thus, the property that boundary conditions do not influ-
ence the free energy does not preclude their influence on the order in the ground
state.

1.3 Organization of the Thesis and Main Results

This thesis presents the work the author of the thesis has done during his PhD with
his collaborators from the Ruder Boskovi¢ Institute in Zagreb. The thesis is based on
the publications, and papers still under evaluation, related to this work. The con-
tribution of the author in these works is the majority of the analytical computations
and the participation in the writing, while the author acknowledges his collabora-
tors for the majority of numerical work and the creation of the majority of figures.
One chapter of the thesis is devoted to each paper. While this introductory chapter
has presented a general motivation for studying topological frustration, we give sep-
arate introductions for different chapters, and in each chapter we make conclusions.
We end the main part of the thesis by a general conclusion. After the conclusion
there are different appendices, referenced in different chapters, that give the details
of the calculations done in the thesis. The main results, chapter by chapter, are the
following.

¢ In Chapter 2 we exploit the property that topological frustration closes the gap
above the ground state to construct a quantum quench protocol in which the
Loschmidt echo displays different features, qualitatively and quantitatively,
for antiferromagnetic rings with even and odd number of sites. The empha-
sis is on the quantum Ising chain, but we argue that the phenomenology is
general. This chapter is based on [8].

¢ In Chapter 3 we study the quantum XYZ chain with FBC, within the symme-
try breaking framework based on anticommuting symmetries. The leading
interaction in the model is set to be antiferromagnetic, and the other ones fer-
romagnetic. It is shown that topological frustration destroys local order. The
emphasis is on the quantum XY chain, where we are able to compute all the
quantities of interest analytically. This chapter is based on [1].

¢ In Chapter 4 we study the transition in the quantum XY chain when also the
subdominant interaction becomes antiferromagnetic. It is thus discovered that
topological frustration can induce a quantum phase transition. The incom-
mensurate antiferromagnetic order, characterized by a site-dependent magne-
tization modulated over the ring, is discovered here. This chapter is based [2].
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* In Chapter 5 we study the effects of defects, that break translational invariance,
on the orders discovered in the quantum XY with FBC in the previous chap-
ters. It is shown that, depending on the type of defects, the incommensurate
antiferomagnetic order can survive their presence. This chapter is based on [4].

* In Chapter 6, using perturbative arguments, we study more general models
within the symmetry framework based on anticommuting symmetries. It is
shown that the vanishing of the local order and the appearance of the incom-
mensurate antiferromagnetic order are phenomena that go beyond the specific
models studied previously, and it is discussed how the momentum of the de-
generate ground states determines which possibility occurs. This chapter is
based on [6].

¢ In Chapter 7, by studying the exactly solvable 2-Cluster Ising model, we demon-
strate that topological frustration can destroy local order at both sides of a
quantum phase transition. The transition can then be characterized only by
non-local quantities, so topological frustration has modified its nature. This
chapter is based on [7].

¢ In Chapter 8, motivated by the discovered effects of topological frustration on
magnetic phases, we examine several models exhibiting symmetry protected
topological order. The results suggest that symmetry protected topological
phases of one dimensional systems are not affected by topological frustration.
This chapter is based on [5].

* The Chapter 9 is a mathematical part of the thesis, where we derive the asymp-
totic formulas for determinants of large Toeplitz matrices whose symbols posses
a part proportional to a delta function. This is the type of determinants that ap-
pears in studying the order parameters of topologically frustrated spin chains
mappable to free fermions. This chapter is based on [3].
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Chapter 2

An Odd Thermodynamic Limit for
the Loschmidt Echo

It has been known [62-64, 66] that topologically frustrated spin chains are gapless
(see also Chapter 1). In this chapter we exploit this property to construct a (local)
quantum quench protocol in which the Loschmidt echo displays different features,
qualitatively and quantitatively, for the antiferromagnetic rings with even and odd
number of lattice sites. Consequently, measuring the Loschmidt echo in an exper-
iment would enable distinguishing antiferromagnetic rings made of N and N + 1
spins, for arbitrarily large N. We employ the prototypical quantum Ising chain to il-
lustrate this phenomenology, and argue that it is general for antiferromagnetic spin
rings. This chapter is based on [8].

2.1 Introduction

Quantum dynamics has been a very active field of research in the new century. A
sufficiently weak system-environment coupling has been achieved with ultra-cold
atoms on optical lattices [110-112], enabling us to perform reliable experiments on
the unitary dynamics of closed quantum systems. Stimulated by the experimental
progress, the theoretical questions about relaxation and the presence or absence of
thermalization [81, 113-116] have been studied intensively. Perhaps the most widely
studied, and the simplest, way of bringing a system out of equilibrium is the quan-
tum quench protocol [78-81]. Here, the system is prepared in the ground state of an
initial Hamiltonian and it is let suddenly to exhibit a unitary evolution governed by
a different Hamiltonian, obtained, for example, by changing suddenly a Hamilto-
nian parameter, such as the magnetic field.

Developments in quantum dynamics have lead to conceptual advancements in
the foundations of statistical mechanics [117-120] and, furthermore, older concepts,
such as the quantum phase transition [10], have received their characterizations in
terms of dynamic quantities. Quantum phase transitions are defined as points of
the non-analyticity of the ground state energy, and are accompanied by the gapless
energy spectrum and the change in the behavior of the order parameter [10]. In a
dynamical setting, there is, for instance, evidence [121] that order parameters are
best enhanced for quenches in the vicinity of quantum critical points. However,
even a more basic quantity, the Loschmidt echo (LE) [122, 123] has been proposed to
be used as a witness of quantum criticality [124].

The Loschmidt echo £(t) is defined as the squared absolute value of the overlap
between the initial and the evolved state at time t. Namely, suppose that the system
is prepared in the ground state |g) of the initial Hamiltonian Hy, and then, suddenly,
att = 0, it is left to evolve unitarily by Hamiltonian H;. The LE can then be defined
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as

2
‘ 2.1)

L(1) = |(gle™™0|g)
It is a quantity related also to the work probability distribution function [125, 126].
Following the initial work [124], a substantial evidence [127-135] has been collected
that the LE of quenches to quantum criticality is characterized by an enhanced decay
and periodic revivals, although there are known exceptions [136]. Importantly, LE
can be experimentally measured by coupling the system of interest to an auxiliray
two-level system, where the LE is the measure of the decoherence of the auxiliary
system [122, 124,129, 137].

Here we show that the Loschmidt echo can be used to distinguish an antifer-
romagnetic spin-1/2 ring consisting of N elements from the one consisting from a
single additional element, i.e. of total N + 1 elements, for arbitrarily large N. It is
known that in such systems, depending on whether we follow the even or odd sys-
tem sizes towards the thermodynamic limit, the energy spectrum is gapped or gap-
less respectively [62-64, 66] (see also Chapter 1), due to the presence of topological
frustration for odd N. Thus, similarly as bringing the system to criticality, topolog-
ical frustration closes its spectral gap, although the gapless excitations in frustrated
chains are not relativistic. We exploit the spectral differences for even and odd N to
construct a (local) quantum quench protocol in which the LE displays different fea-
tures, qualitatively and quantitatively, for the two cases. Consequently, measuring
the LE in an experiment would enable distinguishing systems made of N and N +1
spins, for arbitrarily large N.

2.2 Results

2.21 General argument

A deeper insight in the time behavior of the LE can be obtained by expanding the
initial state in terms of the eigenstates |n) of the perturbed Hamiltonian H;:
2
L(t) = , cn = (n|g). (2.2)

Ze_lEnt|Cn’2
n

In the general (nontrivial) case, the state |g) is not an eigenstate of the Hamilto-
nian H; and thus several coefficients ¢, assume a non-vanishing value and the time
evolution of the LE depends on their relative weights. Roughly speaking, we can
arrange the possible behaviors into two large families. The first is made of the cases
in which one of the coefficients is much greater, in absolute value, than the sum of
all the others. As a consequence, denoting by |0) the eigenstate of H; for which ¢,
reaches the maximum, from eq. (2.2) we recover that the LE will be characterized by
oscillations with an average value close to the identity and oscillation amplitudes
bounded from above by (1 — |co|?)|co|?>. On the other hand, if none of the ¢, domi-
nates over the others, we can obtain an evolution characterized by a more complex
pattern with larger oscillation amplitudes.

These two prototypical behaviors for the LE are generally associated with differ-
ent properties of the physical systems [138, 139]. For example, the first trend type
characterizes systems in which Hj shows an energy gap that separates the ground
state from the set of the excited states [128, 129]. Let us consider a quench with
Hy = Hp + AHjp, where A is the parameter whose non-zero value brings the system
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out of equilibrium and the eigenvalues of H, are of the order of unity [123, 140]. In
this case, assuming that A is much smaller than the energy gap, the coefficient (g1(g),
where |g1) is the ground state of Hy, is expected to be much larger than all the others.
Consequently, LE is expected to display the dynamics of the first kind. On the other
side, for systems in which the ground state of Hy is a part of a narrow band that, in
the thermodynamic limit, tends to a continuous spectrum, as at quantum criticality,
the perturbation A H, may induce a non-negligible population in several low-energy
excited states [141], resulting in the time evolution of the second kind.

Typically, these different spectrum properties do not turn into one another by
changing the number of elements that make up the system. Indeed, the presence or
the absence of the gap in the energy spectrum is related to the different symmetries
of the Hamiltonian, which are, usually, size-independent. Hence, keeping all other
parameters fixed and increasing the number of elements, we expect the same kind of
time-evolution, with finite-size effects that reduce with the system size up to some
point at which the dependence of the LE on the number of constituents is almost
undetectable. To have a LE evolution that changes as the number of elements turns
from even to odd and vice-versa, we need a system in which also the shape of the
energy spectrum is strongly dependent on it.

However, as we have seen in Chapter 1, while the antiferromagnetic rings with
an even number of lattice sites (N = 2M, M — o0) are gapped, those with an odd
number of lattice sites (N = 2M + 1, M — o0) are, due to topological frustration,
gapless [62-64, 66], with the ground state being a part of a narrow band of states.
Hence the properties of the spectral gap depend dramatically on whether the size of
the system is an even or odd number.

However, this property alone is not sufficient to ensure a dependence of the dy-
namics of the LE on the size of the system like the one we are looking for. The
perturbation that acts on the initial Hamiltonian must also be chosen carefully. On
the one hand, as the states in the lowest energy band of the frustrated system are
identified by different quantum numbers (namely, their momenta), the perturbation
should break the symmetry these numbers reflect, to ensure that the eigenstates of
the perturbed Hamiltonian can have a finite overlap in the whole band (otherwise,
we expect that the initial state would overlap only with states carrying the same
quantum number). On the other hand, in the unfrustrated system we want that the
ground state of the unperturbed Hamitonian has a significant overlap only with one
of the eigenstates of the perturbed Hamiltonian, to have a simple evolution of the
first kind. The unfrustrated system in a symmetry broken phase has an (asymptot-
ically) degenerate ground state manifold. We want the perturbation to preserve the
symmetry of the Hamiltonian not to mix different ground states.

2.2.2 Quantum Ising chain

To clarify these arguments and to provide a specific example, let us discuss a paradig-
matic model, i.e. the antiferromagnetic Ising chain in a transverse magnetic field
with periodic boundary conditions [10, 56, 86]. This well-known model is described

by the Hamiltonian
N

Hy = Z (U]?‘(TJ?CH + hajz) ) (2.3)

j=1
Here (7]‘?‘ with « = x,y, z stands for the Pauli operators defined on the j-th lattice site,
h is the relative weight of the local transverse field, N is the length of the ring and
periodic boundary conditions imply that oy, ; = 07'. As we can see from eq. (2.3), the
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FIGURE 2.1: Loschmidt echo comparison between frustrated and un-
frustrated chains of similar length N, fixing the magnetic field and
the perturbation parameter respectively to & = 0.4, A = 0.2 (left plot)
and h = 0.8, A = 0.1 (right plot). The time is rescaled for a better
comparison. For even N (unfrustrated systems), due to the negligible
hybridization with the first excited states, the LE presents small oscil-
lations around a value near one (left columns). For odd N instead the
higher number of hybridized states results in a strong sensitivity of
the LE oscillations to the system parameters.

system has the parity symmetry with respect to the z-spin direction, i.e. [Ho, IT*] = 0,
where IT? = @Y, ¢7. This means that the eigenstates of Hy can be arranged in two
sectors, corresponding to two different eigenvalues of IT*. Moreover, the model in
eq. (2.3) is also invariant under spatial translation which implies that there exists a
complete set of eigenstates of Hy made of states with definite lattice momentum [2].

In the range 0 < h < 1, for N = 2M the system shows two nearly degenerate
lowest energy states with opposite parity and an energy difference closing exponen-
tially with the system size [56, 142] while all the other states remain separated by a
finite energy gap. When N = 2M + 1, topological frustration sets in and the unique
ground state becomes part of a band in which states of different parities alternate. In
this case the gaps between the lowest energy states close algebraically as 1/N? [62-
64, 67,70,71,73].

A simple perturbation that satisfies the criteria we discussed above is H, = 05,
breaking the translational invariance which classifies the eigenstates of Hp, while
preserving the parity symmetry. Thus, we have

Hy = Ho+ Ad%, (2.4)

and we assume that A < 1, i.e. we assume that A is much smaller than the energy
gap above the two quasi-degenerate ground states in the unfrustrated case. Here A
is assumed to be small, but independent of N. A global quench where H; preserves
the parity and breaks the translational invariance, for example through a modulated
or a random transverse field, could also be considered. However, it is important
that the perturbation is not large enough to complicate the evolution of the LE in
the unfrustrated case, which we want to be of the first kind. Furthermore, we are
looking for a simple, unambiguous, system-size independent protocol, for which
the local quench is suitable.
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FIGURE 2.2: Comparison between the result for frustrated (red
squares) and unfrustrated (blue circles) chains of the time-average
(left panel) and of the standard deviations (right panel) of the LE for
several sets of parameters as a function of the inverse system length.
Differently from the frustrated case, the unfrustrated time average is
mostly size independent. The standard deviation for the frustrated
case is always larger, even a few orders of magnitude, than the one of
the unfrustrated case.

Since Hj is not invariant under spatial translations, we cannot diagonalize it ana-
lytically as is possible for Hy, by exploiting the usual approach based on the Jordan-
Wigner transformation followed by a Bogoliubov rotation [56]. Nevertheless, we can
resort to the diagonalization procedure reported in [91], which allows us to diago-
nalize numerically the Hamiltonians (2.3) and (2.4) in an efficient way [4], and thus
to calculate the LE (see the Methods section for the details). The results obtained are
summarized in Fig. 2.1, where several behaviors of the LE for even N and odd N + 1
sizes are compared.

The results fit well in the qualitative picture we have discussed in the first part.
When N is even and hence the system is not frustrated the LE presents small noisy
oscillations around a value close to unity, see Fig. 2.1. The average value is almost
independent from the parameters, while oscillations reduce as the system size in-
creases. This behavior reflects the fact that, A being small, the initial state shares a
significant overlap only with one of the lowest eigenstates of H; and the contribu-
tions from all other states above the gap produce fast oscillations that average out in
the long time limit.

For the frustrated case N = 2M + 1 instead, the picture is completely different.
The LE exhibits decays and periodic revivals, similarly to its behavior in quenches
to critical points [124, 127-135]. Here, because of the closing of the gap, the same
perturbation hybridizes several states, which thus contribute to the evolution of the
LE. Finite-size effects become important, since by increasing the chain length the
density of states changes and thus also the number of states which get hybridized.
These considerations imply a strong sensibility of the LE oscillation frequency and
amplitude to all the parameters in the setting.

The results presented in Fig. 2.1 make it clear that the behaviors of the LE for
even and odd N are completely different. To go beyond this qualitative assessment,
we can make a quantitative comparison of the difference between these two behav-
iors, by considering the time averaged value of the LE £ over a long period of time,
ideally infinite. This analysis, whose results can be found in the left panel of Fig. 2.2,
clearly shows that for the unfrustrated case (blue circles) the time average is almost
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independent from the size of the ring, while for the frustrated one (red squares) there
is a significant dependence on the ring size, with an asymptotic value in the thermo-
dynamic limit which differs from the even chain length case. The similarity between
the frustrated and unfrustrated values for small systems can be easily understood
by taking into account that in the frustrated model, for small N, the gap between the
ground state and the other states in the lowest energy band can be bigger than the
perturbation amplitude, hence giving life to an unfrustrated-like behavior for the
LE.

As we wrote above, since H, breaks the spatial invariance, it is impossible to ob-
tain an exact expression for the LE. For the unfrustrated case, it is possible to develop
a cumulant expansion [125] which provides the correct evolution of the LE, but its
reliability hinges on a clear separation of scales between the strength of the pertur-
bation and the energy gap. When N is odd, the gap closes and for sufficiently large
system size this approach fails. Nonetheless, to gain some insight into the LE when
the system is frustrated, we can resort to a perturbation theory around the classical
point (h = 0) and derive an analytic expression which can be compared to our nu-
merical results. Within this approach, we first compute the initial (ground) state of
Hj considering, in the beginning, Ac%; as the perturbation to the Hamiltonian at the
classical point (h = 0), and then bringing back the term /1 }_; 0; as a second-order
perturbation term. By construction, this approach is justified for 0 < h < A < 1.
The effect of the local term Acy; is to split the initial 2N degenerate states into three
groups. In particular, the ground space becomes two-fold degenerate, separated by
an energy gap of order A from 2N — 4 degenerate states, on top of which, separated
by a gap of the same value, there are two other degenerate states. The second pertur-
bation term /}; o7 does not act significantly on the two two-dimensional manifolds
but removes the macroscopic degeneracy, creating an intermediate band of 2N — 4
states.

Exploiting this perturbative analysis (see the Methods section for details), we
obtain for the LE

- N(Nz_l) (Nk_zll)/z a2 {(22(]‘1\[__1)17)7] exp{ — 12ht cos [(2;(\1_—11)71} } 25)

5 2
+ &P [tt(A+h)]

In Fig. 2.3 we compare the analytical results in eq. (2.5) with the numerical data and
we find a substantial agreement between the two in the region i < A (see the upper
panel). It is also worth noting that the two methods give similar results even when
h and A are comparable (middle panel of Fig. 2.3). The main difference between the
two behaviors is, apparently, only a rescaling of the oscillation frequency that seems
to be underestimated in the perturbative approach.

In the thermodynamic limit the term proportional to 2/N in eq. (2.5) can be ne-

glected and the expression of the LE can be approximated as: L(t) ~ F (%) where

the function F(x) is given by

(2.6)

The function in eq. (2.6) is somewhat reminiscent of the Weierstrass function [143]
and indeed it displays a continuous, but nowhere differentiable behavior. While

2
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FIGURE 2.3: Loschmidt echo’s comparison between the numerics
(dotted red line) and the analytic expression eq. (2.5) (blue line) for
a spin chain of length N = 201 and for A = 0.1. The time is rescaled
for a better comparison. The results are in agreement for & = 0.01,
that corresponds to the limit 0 < # < A < 1 (upper panel, the
curves are mostly superimposed). We also find similar results when
h and A are comparable, as shown in the middle panel for the case
A = h = 0.1. Finally, in the lower panel the failure of the approxi-
mation for i = 0.5 is shown, where the value of the magnetic field is
beyond the assumed range of validity.

its emergence in such a simple context is remarkable, we remark that such fractal
curves [144, 145] were already observed in LE evolution [146]. Furthermore, similar
curves were also observed in quenches to multicritical points [131, 135], where as
in our case the LE displays the period of revivals proportional to N?. Presumably,
an important reason behind this similarity is that both at the studied multicritical
points and in the studied topologically frustrated spin chain the spectral gap closes
quadratically with the system size.

2.3 Conclusions

We have analyzed the behavior of the LE in short-range antiferromagnetic one-
dimensional spin systems with periodic boundary conditions in the presence of a
perturbation that violates translational invariance, but leaves unaffected the parity,
namely a local magnetic field. Under these conditions, the LE shows an anomalous
dependence on the number of elements in the system. When this number is even,
LE shows small random oscillations around a value very close to unity that is al-
most independent from the system size, and the amplitude of these oscillations tend
to decrease with the size increasing until it disappears in the thermodynamic limit.
On the contrary, in the presence of a ring made out of an odd number of sites, the
oscillations are large and do not disappear in the thermodynamic limit while the
average value is strongly dependent on the system size. The presence of two differ-
ent behaviors can be traced back to the difference in the energy spectrum for even
and odd N, that arises from the presence of topological frustration in the latter case.
These general results have been tested in a paradigmatic model, the Ising model
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in the transverse field, using both exact diagonalization methods and perturbation
theory.

The LE can thus be used to distinguish the spin chains with N and N + 1 sites,
for arbitrarily large N. This result is especially relevant taking into account that LE is
an experimentally accessible quantity, by looking at the decoherence of a two-level
system interacting with the spin system [122, 124, 129, 137]. Our result is also inter-
esting if we take into account that LE plays a fundamental role in several problems of
current interest in quantum thermodynamics such as quantum work statistics [125,
126] and information scrambling [126, 147].

2.4 Methods

2.4.1 Exactresults by mapping to free fermions

Let us provide a detailed description of the method exploited to obtain the data
on the Ising model. Our starting point is to observe that, for spin systems that
can be mapped to free-fermionic models, eq. (2.1) can be rewritten in the following
form [128, 129]:

L(t) = |det(1 —r+re "] (2.7)

Here
At = (c{, .. .,c}r\], C1,---,CN), (2.8)

describes the fermionic operators, C is the matrix coefficient of the Hamiltonian H;

in the fermionic language, i.e.

H, = %A*CA, (2.9)

and r = (g| AfA;|g) is the two-point fermionic correlation matrix in the initial state.
The hermiticity requirement for the Hamiltonian fixes the matrix C to be of the block-

form
S T
C= < T _s >, (2.10)

where S is a symmetric and T an antisymmetric matrix.
It is useful to rewrite the r matrix in terms of the correlation functions of the
Majorana operators. Following [91] we define

Ai=cl+c, Bi=1(c—c). (2.11)

Exploiting eq. (2.11) and the fact that, since |g) is the ground state of Hy, (g| A;A;|g) =
(g| BiBj|g) = ¢jj it is straightforward to obtain:

1 T —GT
B <21+G+G G-G > (2.12)

T4 ~-G+GT 21-G-GT

Therefore, to calculate the LE it remains to evaluate the correlation matrix G on
the ground state of the unperturbed Hamiltonian Hy and the matrix C linked to H;.
Both can be determined following the same approach. Exploiting the Jordan-Wigner
transformation

N 1ot N s Tos:
cj = ( Uf) L1 = ( Uf) L1, (2.13)
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we map the spin system to a quadratic fermionic one. In fact, due to non-locality
of the Jordan-Wigner transformation the Hamiltonians in eq. (2.3) and eq. (2.4) can-
not be written as a quadratic form (2.9). However, they commute with the parity
operator I = @, 07 and it is possible to separate them into two parity sectors,
corresponding to the eigenvalues IT* = +1, so that in each sector they are a quadratic
fermionic form. In the following, we can restrict ourselves to the Hamiltonians Hy
and H; only in the odd sector (IT* = —1) since the ground state of the quantum
Ising model (2.3) with frustrated boundary conditions and # > 0 belongs to it [70,
73]. There, they can be written in the form of eq. (2.9), up to an additive constant. In
particular, the matrix C for Hj in the odd sector, present in eq. (2.7), can be obtained
easily by inspection.

The matrix G can be found easily from the exact solution of the quantum Ising
chain with frustrated boundary conditions [70, 73]. However, for a more efficient
numerical implementation we follow the approach from ref. [91, 129], where we
write Hp in the odd sector in the form of eq. (2.9) and where

Gi=—(Y'®) (2.14)

ij’
with the matrices ® and ¥ being formed by the vectors given by the solution of:

DS —T)(S+T) = Aidy, (2.15)
Op(S —T) = A Yy (2.16)

Here Ay are the free-fermionic energies. Their sign is a matter of choice. Transform-
ing Ay to —Aj corresponds simply to switching the creation and the annihilation
operator, and to transforming @y (Yy) into —®Py (—¥y). It is important to note that
the parity requirements do not allow for the ground state of Hy to be the vacuum
state for free fermions with positive energy [70, 73]. Thus, assuming the eigenvalues
A? in eq. (2.15) are labeled in ascending order, the ground state corresponds to the
vacuum state of fermions with A; < 0 and the remaining energies Ay positive.

2.4.2 Perturbation theory near the classical point

Let us now turn to provide some more details on the perturbative approach to the
LE near the classical point in the presence of topological frustration. The first step
consists of finding the ground state of the Hamiltonian Hy in eq. (2.3), treating the
term 11} ; 07 as a perturbation. It is known that, at the classical point, in the presence
of an odd number of spins the interplay between periodic boundary conditions and
antiferromagnetic interactions gives rise to a 2N-fold degenerate ground state man-
ifold. Such a space is spanned by the kink states |j) and IT*|j), j = 1,2,... N with
energy —(N — 2), that have one ferromagnetic bond 0j = 07y = £1 respectively,
the others being antiferromagnetic (of = —oj,; for k # j). The excited states out-
side this manifold are separated from the ground space by an energy gap of order
unity so that we can neglect them in a perturbative approach. By considering the
magnetic field the 2N-fold degeneracy is removed and a narrow-band of states is
created, with a gap that separates the ground state from the other elements of the
band closing as 1/N? (see Appendix A.1 for more details). To the lowest order in
perturbation theory in & we found for the initial state appearing in eq. (2.1), that is
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for the ground state of the unperturbed system, the expression:

1 M1-1F
SR Y 2.17
8) VNS V2 ) (2.17)

The next step is to find the lowest energy states of the Hamiltonian H; in eq. (2.4)
through a perturbation theory both for 1 > 0 and A > 0, and of the basis of this to
compute the Loschmidt echo. The details of this calculation are given in Appendix B,
while its main points are given in the following. Since we first apply the perturbation
theory in A while we consider / as a second-order perturbation, we are assuming
that 7 < A < 1. Also in this case we start from the 2N degenerate ground space
formed by the kink states and we treat the term Ac%; as a perturbation. Again we
find that the degeneracy is removed and, at this point, the system shows two-fold
degenerate ground states:

ya) = (N - 1) FIN)), @.18)

separated by an energy gap equal to A from 2N — 4 degenerate kink states. Above
this macroscopically degenerate manifold, separated by a gap A there are other two

states: 14117
¢+) = ——(IN=1)£[N)) (2.19)

We now consider the second-order perturbation 11} ; (sz. Its effect on the |¢1) and

|p+) states is only a shift in the energy respectively of Fh. Furthermore, it creates a
band of states from the kink ones given by:

14117 =2 CLomT N
(5=77) - (220)

withm =1,2,...,N — 2. The energies of the discussed eigenstates are given by

E(py) = —(N—-2)—(A+h), (2.21)
E(p+) = —(N—-2)+A+h, (2.22)
E(¢y,m) = —(N—2)F2hcos (Nmfl)' (2.23)

The calculation of the Loschmidt echo is now straightforward. From the defini-
tion eq. (2.1), expressing the initial state eq. (2.17) in terms of the eigenstates of the
perturbed model eq.s (2.18), (2.19), and (2.20) and applying the evolution operator
e~'Hit we finally obtain the expression in eq. (2.5).
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Chapter 3

Topological Frustration can destroy
Local Order

In this chapter, which is based on [1], we show that topological frustration can de-
stroy the order parameter of the system. We study the quantum XYZ chain without
external fields and with both antiferromagnetic and ferromagnetic interactions, set
on the ring with an odd number of sites (frustrated boundary conditions). In this
setting we are able to apply the approach to symmetry breaking based on the exact
ground state degeneracy due to anticommuting symmetries, discussed in section
1.2.3, in which we can, already in a finite system, compute the magnetizations that
are traditionally used as order parameters to characterize system’s phases. When
ferromagnetic interactions dominate, we recover magnetizations that in the thermo-
dynamic limit lose any knowledge about the boundary conditions and are in com-
plete agreement with standard expectations. On the contrary, when the system is
governed by antiferromagnetic interactions, due to topological frustration the mag-
netizations decay algebraically to zero with the system size and are not staggered,
despite the AFM coupling. We term this behavior mesoscopic ferromagnetic magne-
tization. Hence, in the antiferromagnetic regime, our results show an unexpected
dependence of spin expectation values on the choice of boundary conditions.

3.1 Introduction

In section 1.2.4 we have discussed the boundary conditions in the context of the
possibility to influence local order. Let us just note here that the older results on
topological frustration, discussed in section 1.2.1, also bring some evidence pointing
towards it, through a single, symmetric, ground state above which the energy gap
closes only algebraically [62-64, 66, 67], i.e. not exponentially, and through the two-
point function [67, 71, 73], which vanishes for the most distant spins in the ring, as
discussed also in section 1.2.3. Crucially, here we consider the magnetization directly
within a symmetry breaking framework.

After introducing the system under consideration, we will recap the two com-
plementary approaches to extract the order parameter in the absence of frustration
and then apply the same techniques to the case with frustration. Doing so, first we
show that our technique yields the expected results in the former case, and then we
apply it to the frustrated case.
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3.2 The spin chains and their properties

We consider an anisotropic spin—3 chain with Hamiltonian

N
— X X : Yy Y : Z Z
H = 2 Cosé(cosgbffj(?‘j+1+s1ngb(7].0j+l)—s1nc5c7j0‘j+1, (3.1)
j=1

where (T]‘?‘, with &« = x,y,z, are Pauli operators and N is the number of lattice sites,
which we henceforth set to be odd N = 2M + 1. Crucially, we apply periodic bound-
ary conditions (T]‘-"+ N= U]‘-".

The model is expected to exhibit a quantum phase transition every time two of
the couplings are, in magnitude, equal and greater than the third [148] (in that case,
the model becomes equivalent to a critical XXZ chain [56]). Dualities are connect-
ing different rearrangements of the couplings along the x, y, and z directions [148].
Moreover, to avoid additional effects (and degeneracies) that will be the subject
of subsequent chapters, we will allow only one antiferromagnetic (AFM) coupling
(namely, along the x direction), letting the other two to favor a ferromagnetic align-
ment. We thus limit the range of the anisotropy parameters such that ¢ € [—7/2,0]
and J € [0, 7r/2], so that the phase transition is at ¢ = —7/4 (for tand < 1/ V/2) and
separates two phases characterized by a two—fold degenerate ground state. In par-
ticular, for ¢ € [—71/2, —71/4) the phase favors a ferromagnetic alignment along the
y direction (yFM), while for ¢ € (—m/4,0] the dominant interaction is AFM along
the x direction (xAFM) and thus topologically frustrated.

With no external field, we can adopt the approach to symmetry breaking based
on anticommuting symmetries for odd N, discussed in section 1.2.3. All three par-
ity operators along the three axes I1* = ®j]\i1 0j commute with the XYZ Hamilto-
nian in eq. (3.1) ([H,I1*] = 0). Since we are considering systems made by an odd
number of sites N = 2M + 1, the IT* do not commute with one another, but rather
anti-commute ({I1% 11} = 264,8), and actually fulfill a a non-commuting algebra
[114,11F] = 1e%F72(—1)"7 17, which is essentially SU(2). This structure implies
that every state is exactly degenerate an even number of times, also on a finite chain.
If |'¥) is an eigenstate, say, of IT%, then IT* ['¥), that differs from I'TY [¥) by a global
phase factor, is also an eigenstate of the Hamiltonian with opposite z—parity but with
the same energy.

Applying an external magnetic field & along, say, the z—direction leaves only
IT* to commute with the Hamiltonian, thus restoring the original Z, symmetry
the model is known for and breaking the exact finite-size degeneracy between the
states [10, 56]. Nonetheless, up to a critical value of 4, it is known that the induced
energy split is exponentially small in the system size [142] and thus that the de-
generacy is restored in the thermodynamic limit, representing one of the simplest,
and most cited, examples of spontaneous symmetry breaking (SSB) [10]. To sim-
plify things, let us set 6 = 0, so that eq. (3.1) describes an anisotropic XY chain [56,
91]. For |h| < 1 we are in the SSB phase. This means that, although a ground state
with definite z-parity necessarily has zero expectation value concerning ¢ and U]-y ,
in the thermodynamic limit the degeneracy allows to select a ground state which is
a superposition of different z—parities, which can thus display a spontaneous mag-
netization in the x or y direction. In the yFM phase we expect the order parameter
my = <(7].y> to be finite, while in the xAFM the non-vanishing order parameter should

be the staggered magnetization m, = (—1)/ <(7]?‘>.
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FIGURE 3.1: Magnetizations along the three axes (in absolute value)
as a function of the chain length for the yFM phase at ¢ = —1.32. The
upper panel dots represent the data obtained by setting § = 0 and us-
ing the “trick” discussed in the text to evaluate the magnetizations as

determinants of % x N— == L matrices, while the dots in the lower one

are obtained taking 6 = 0.3 and using exact numerical diagonaliza-

tion. Regardless of the value of J, m, quickly saturates to its asymp-

totic finite value, while m, and m, decay to zero exponentially fast, as
shown by the best fit lines (plots presented in logarithmic scale).

3.3 The ferromagnetic case

Let us now turn back to the system in eq. (3.1) and focus on the ferromagnetic region
¢ € [—mt/2,—m/4). The (quasi-)long-range order represented by the order param-
eter can be extracted in two ways: from the two—-point function or by selecting a
suitable superposition of states at finite sizes and then following their magnetiza-
tion toward the thermodynamic limit. The former takes advantage of the cluster
decomposition property [11, 87, 88]

lim ({cfof,,) — (o) (0},) =0, (3.2)
to extract the order parameter from the large distance behavior of the system’s two—
point correlators.

Exploiting the Jordan-Wigner Transformation [56, 91, 149], which maps the spin
degrees of freedom into spin-less fermions:

j—1 1 Y

(7 +za iz (7 — 107
(l_la) (1_10’> , (3.3)
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the XY model can be brought into a free fermionic form. Before doing so, however,
states must be separated according to their parity I1?, since negative (positive) parity
corresponds to (anti-)periodic boundary conditions applied to the fermions. Thus,
the XY chain Hamiltonian can be written as

1+117 14117 1-1IF _1-1I*

H= H* H 4
5 >+ 5 (3.4)

where the exact expressions of H™ and H™ can be found in Appendix C.2. From
these Hamiltonians it is possible to determine, following the method described in
details in Appendix C.2, the fundamental two—point correlation functions. These
correlations are expressed as the determinant of a Toeplitz matrix, whose asymptotic
behavior can be evaluated analytically [150]:

) 2 t
oy s cot” ¢ (3.5)
G
2
> 4 cot¢ cot” ¢ =
(oot )T Vi-cofe |1+ 2 (k) % } o (3.6)
i Ojr) = 1 2 l1o 2 ( cote VP 1rcoPpcory =2m+1 '
—cot"¢p |1+ £ T-cotlgp) cotg A2 r=amt
gz y 2 [0 r=2m
<0']'0']‘+r> — {_ico:;i’ r=2m-+1 (3‘7)

From these large r behavior, taking into account the cluster decomposition hy-
pothesis, we can extract the different magnetizations m, = (a]‘.">, obtaining

my=m, =0, my = (1 — cot? qb)l/4 )

(3.8)

However, on an odd-length chain at 1 = 0, exploiting the symmetries that we
have already illustrated, we can provide a direct way to evaluate the different mag-
netizations even in finite systems. In fact, if |g;) is one of the degenerate ground
states with definite z—parity which can be constructed in terms of the Bogoliuobov
fermions [56], we can generate a ground state with definite x—parity (y—parity) as
|gx) = % (1411%) |g2), (18y) = % (1+11Y) |gz)). All these states have a vanishing

magnetization in the orthogonal directions while along their own axes we have

(8xl 07 Igx) = (8=l 0fIT¥|gz) = (8|11} |gz),
(gylof Igy) = (8|01l |gz) = (/1T |gz), (3.9)

where IZI}" = ®xj0] for a = x,y. These states are the analytical continuation at
h =0 of the zero-temperature “thermal” ground state that spontaneously breaks
the Z, symmetry.

Note that in this way, we turn the calculation of the expectation value of an op-
erator defined on a single-spin with respect to a ground state with a mixed z—parity
into that of a string made by an even number of spin operators on a definite z—parity
state, which is a standard problem. Thus the RHS of eq. (3.9) can be written again
as the determinant of a Toeplitz matrix, whose asymptotic behavior can be studied
analytically, similarly to what has been done in [90]. This “trick” can be understood
as originating from the fact that, at zero external fields, the chain in eq. (3.1) has a
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particle/hole duality and that, on a chain with an odd number of sites, the symmetry
relates states with different parities. The result of such analysis reproduces eq. (3.8),
proving the consistency of the two methods of evaluation for the order parameters.
More details on this direct approach in Appendix C.5.

While for 6 = 0 we can evaluate the magnetizations using the analytical “trick”,
for 6 # 0 we have to resort to numerical solutions. In Fig. 3.1 we present some
typical results for the finite size magnetizations for the XY and XYZ chain, showing
a quick exponential decay in N of m, and m; to zero and a fast saturation of m, (note
that each plotted magnetization m, is calculated with respect to the corresponding
ground state |gy)).

3.4 The frustrated case

We now turn to the case with ¢ € (—7/4,0], where the boundary conditions induce
topological frustration. For § = 0, the model can be solved through the same steps
used in the traditional cases and exactly mapped into a system of free fermions. In
the ferromagnetic phase, the degeneracy between the different parity states is due
to the presence of a single negative energy mode (only in one of the parity sectors),
whose occupation lowers the energy of those states. With frustration, the negative
energy mode moves into the other parity sector and, because of the parity selection
rules in (3.4), it cannot be excited alone. Therefore, the effect of frustration is that the
lowest energy states in each parity sector in (3.4) are not admissible.

The two degenerate ground states thus carry the signature of a single delocalized
excitation and lie at the bottom of a band of states in which this excitation moves
with different momenta (with an approximate Galilean dispersion relation). Hence,
another effect of topological frustration is to close the gap that would otherwise exist,
as in the older results on topological frustration, discussed in section 1.2.1.

Let us then repeat the extraction of the order parameters in the xAFM phase, fol-
lowing the same procedure we followed for yFM. However, in the present case, the
analytical computation of the spin correlations along the x and y directions requires
the knowledge of the asymptotic behavior of a new type determinants, whose sym-
bol contains a delta function with a peak at the momentum of the excitation. We
have studied such determinants in [3], that is the subject of Chapter 9, where we
also present the details of the analytical computation of the results presented here.
The computation of the correlations along z do not require these techniques and it is
given in Appendix C.5. The results are
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FIGURE 3.2: Magnetizations along the three axes (in absolute value)
as a function of the chain length for the xAFM/MFM phase at ¢ =
—0.25. The upper panel dots represent the data obtained by setting
0 = 0 and using the “trick” discussed in the text to evaluate the mag-
netizations as determinants of % X % matrices, while the dots in
the lower one are obtained taking 6 = 0.3 and using exact numerical
diagonalization. Regardless of the value of §, we see how all mag-
netizations decay algebraically to zero, as shown by the best fit lines

(plots presented in log-log-scale).
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While they imply quite clearly that m, = m, = 0 (in accordance with expecta-

tions), the extraction of m, is more subtle: using the standard prescription of taking
)"

N — oo first, one would get m, = (1 — tan?¢ * However, one could argue [73]
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FIGURE 3.3: Plot of the magnetizations as a function of ¢ for § = 0.3
and several system sizes. The yFM phase (¢ < —7/4) shows a fast
approach to saturation, while for the frustrated case the decay toward
zero is algebraically slow.



34 Chapter 3. Topological Frustration can destroy Local Order

that a better procedure would be to evaluate eq. (3.10) at antipodal points r ~ N /2
to minimize the correlations and then take the thermodynamic limit. In this way, one
would get my = # (1 — tan? 4))1/4 M3% 0. Note also that there are systems where
the violation of the cluster decomposition principle has been discovered [151].

It is thus important that we can directly access the single spin magnetization
using eq. (3.9). Once more, for the XY chain the expectation values can be cast as de-
terminants of Toeplitz matrices, whose behaviors are depicted in the upper panel of
Fig. 3.2: all magnetizations are characterized by an algebraic decay to zero with the
system size. The analytical results for are given in Appendix C.5, and demonstrate
clearly this property.

Several elements are surprising in these results. The most evident one is that
FBC kills the magnetization in the x—direction, that on an open or even-length chain
would be finite. Note that a finite magnetization can be measured in any finite sys-
tem, although it decreases algebraically with the system size, a phenomenon we
term “mesoscopic magnetization”. Quite surprisingly, however, this finite—size magne-
tization is not staggered, but rather ferromagnetic-looking (thus, we will call the AFM
phase with FBC, a mesoscopic ferromagnetic phase, MFM). In hindsight, we could have
expected this, since a staggered magnetization would have not been compatible with
PBC with an odd number of sites (note that this problem does not arise for the 2-
point function).

These analytical outcomes are corroborated by exact numerical diagonalization
results, which allow us to extended our analysis to the XYZ (§ # 0) ring, (see the
lower panel of Fig. 3.2). In Fig. 3.3 we plot the behavior of the magnetizations as a
function of ¢ for 6 = 0.3 for several chain lengths N: while in the yFM phase there
is little dependence on N, as the saturation values are reached quickly, in the MFM
phase we observe the slow, algebraic decay toward zero of the order parameters.

It is rather surprising that a finite chain, unable to sustain AFM order, would
nonetheless generate a ferromagnetic spontaneous magnetization and that in any fi-
nite system, a phase with a dominant interaction along the x direction would show
the weakest spontaneous magnetization in that direction, with 1, being the strongest
one (once more, these magnetizations refer to different states |g,)). Finally, we re-
mark that FBC also seem to somewhat spoil the cluster decomposition, since the
non-staggered mesoscopic magnetization we find is not compatible with (3.10), al-
though both of them vanish in the thermodynamic limit.

3.5 Conclusions

We have presented a comparative study of the ferromagnetic and AFM frustrated
case for the XYZ chain, showing that, contrary to expectations, the boundary con-
ditions are able to destroy local order. We have done so, by realizing that, with no
external field, we can exploit the anticommuting parity symmetries to construct an
exact ground state at finite sizes that breaks the Z, symmetry. For the XY chain, we
can express the one-point function as a determinant of a Toeplitz matrix and evalu-
ate it analytically, while for the interacting cases we can numerically diagonalize the
model and calculate the expectation values. We benchmarked these procedures on
a ferromagnetic phase with FBC to show that they reproduce the expected results
eq. (3.8), while in an AFM phase the magnetizations, while finite in a finite chain,
decay toward zero algebraically in the thermodynamic limit. Furthermore, despite a
dominant AFM interaction, no magnetization shows a staggered behavior: we thus
term this phase generated by FBC a mesoscopic ferromagnetic phase (MFM).
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Nonetheless, we should remark that our results are fully consistent with a straight-
forward perturbative calculation starting from the classical frustrated Ising chain,
similar to the one in [67, 69], as we show in Appendix C.7. Our important contribu-
tion is that we have found an exact way to approach the thermodynamic limit and
to calculate the order parameter.

Our results are surprising because they show that, within the symmetry breaking
framework that we have adopted, the boundary conditions can influence the bulk
behavior of a system, by destroying local order. Let us end with a couple of obser-
vations about this strange phenomenology. The first is that FBC provide a non-local
contribution to the system since frustration arises from an incompatibility between
local and global order. Thus, it is possible that the discovered phenomenology has
some topological origins. Another, somewhat more technical angle, is that in our
class of models, the single spin magnetization is dual to a non-local correlator (see
eq. (3.9)). From this point of view, it is not surprising that a non-local function is
sensitive to the boundary conditions. Nonetheless, we have to admit that it seems
to us a rather strange to consider single—site magnetizations as non-local quantities.
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Chapter 4

Topological Frustration can induce
a Quantum Phase Transition

In the previous chapter, we have already proved that when only one antiferro-
magnetic interaction dominates over ferromagnetic ones, topological frustration de-
stroys local order (expressed by the spontaneous magnetization) in the thermody-
namic limit, and replaces it with mesocopic ferromagnetic order. Here we focus on
the transition that occurs when also the second interaction in the quantum XY chain
becomes AFM. This transition is characterized, even at finite size, by a level crossing
associated with a discontinuity in the first derivative of the free energy at zero tem-
perature (i.e., the ground state energy). In the new phase, the ground state becomes
four-fold degenerate and this increased degeneracy allows for the existence of a dif-
ferent magnetic order. The order is characterized by a staggered magnetization as
in the standard AFM case, but with a modulation that makes its amplitude slowly
varying in space. The results are surprising not only because we find a different
kind of order, but also because the quantum phase transition, signaled by the dis-
continuity, does not exist with other boundary conditions (BC), such as open (OBC)
or periodic (PBC) boundary conditions with an even number of sites N. This chapter
is based on [2].

4.1 Results

4.1.1 Level crossing

Continuing the analysis of the previous chapter, we focus on the quantum XY chain
[91] at zero field with FBC. Even if the discovered phenomenology is not limited to
this model, it is useful to focus on it, because exploiting the well-known Jordan-
Wigner transformation [91, 149] we can evaluate all the quantities that we need with
an almost completely analytical approach. The Hamiltonian describing this system
reads

N
H= Z; cos§ ooty +sing oo, 4.1)
]:
where (f]‘-", with « = x,y,z, are Pauli matrices and N is the number of spins in the
lattice. Having assumed frustrated boundary conditions, we have that N = 2M + 1
is odd and ¢} = o, . The angle ¢ € (—%, %) tunes the relative weight of the
two interactions, as well as the sign of the smaller one. Hence, while the role of the
dominant term is always played by the AFM interaction along the x-direction, we
have that the second Ising-like interaction switches from FM to AFM at ¢ = 0.

As discussed in the previous chapter, the symmetries of Hamiltonian 4.1 imply
an exact ground-state degeneracy even in finite chains and thus the possibility to
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FIGURE 4.1: Site dependent magnetizations along x (Blue darker ar-

rows) and y (Red lighter arrows) for each spin of a lattice with N =9

sites. The magnetizations are obtained setting ¢ = T and recovering

the maximum amplitudes f, ~ 0.613 and f; ~ 0.329, see discussion
around eq. (4.7).

select states with a definite magnetization within the ground state manifold. Fur-
thermore, it is possible to directly evaluate the magnetization of these states: having
it as a function of the number of sites of the chain, we can take the thermodynamic
limit and thus recover directly its macroscopic value, without resorting to the usual
approach making use of the cluster decomposition. Let us repeat the reasoning. Re-
gardless of the value of ¢, the Hamiltonian in eq. (4.1) commutes with the parity
operators (II* = @N 0%),ie. [H,IT*] = 0, Va. At the same time, since we are con-
sidering odd N, different parity operators satisfy {I1*,IIf} = 26, 3, hence implying
that each eigenstate is at least two-fold degenerate: if |i) is an eigenstate of both
H and IT?, then IT* i), that differs from ITY |i) by a global phase factor, is also an
eigenstate of H with the same energy but opposite z—parity.

Using the standard techniques [56], that consist of the Jordan-Wigner transfor-
mation and a Fourier transform followed by a Bogoliubov rotation (more details in
Appendix C.2), the Hamiltonian can be reduced to

1+4+1F7 14+IFF 1-1IF, _1-T1I7

— +
H = 5 H 5 + 5 H >
1
HE = Y e(q) (a;aq — 2) . (4.2)
ger+

Here a, (a:;) is the annihilation (creation) fermionic operator with momentum 4. The
Hilbert space has been divided into the two sectors of different z-parity IT*. Ac-
cordingly, the momenta run over two disjoint sets, corresponding to two sectors:
I~ ={2nk/N}and I't = {27(k+ 1)/N} with k ranging over all integers from 0 to
N — 1. The dispersion relation reads

e(q) = 2|cos¢e® +sing|, g #0,7,
€(0) = —e(m)=2(cos¢p+sing) , (4.3)

where we note that only €(0), e(77) can become negative.
The eigenstates of H are constructed by populating the vacuum states |0%) in the
two sectors and by taking care of the parity constraints. The effect of frustration is
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that the lowest energy states are not admissible due to the parity requirement. For
instance, from eq. (4.3) we see that, assuming ¢ & (—%, %), the single negative en-
ergy mode is €(7r), which lives in the even sector (7 € I'"). Therefore the lowest
energy states are, respectively, |07) in the odd sector and af. |0") in the even one.
But, since both of them violate the parity constraint of the relative sector, they can-
not represent physical states. Hence, the physical ground states must be recovered
from |0~) and a, |0") considering the minimal excitation coherent with the parity
constraint.

While for ¢ < 0 there is a unique state in each parity sector that minimizes the
energy while respecting the parity constraint (and these states both have zero mo-
mentum), for ¢ > 0 the dispersion relation in eq. (4.3) becomes a double well and
thus develops two minima: +£p € I'” and +p’ € I't, approximately at 77/2 (for their
precise values and more details, see Methods 4.3.1). Thus, for ¢ > 0 the ground
state manifold becomes 4-fold degenerate, with states of opposite parity and mo-
menta. This degeneracy has a solid geometrical origin, which goes beyond the exact
solution to which the XY is amenable, and has to do with the fact that, with FBC,
the lattice translation operator does not commute with the mirror (or chiral) symme-
try, except than for states with 0 or 7 momentum (see Appendix C.4). Thus, every
other state must come in degenerate doublets of opposite momentum/chirality. In
accordance to this picture, a generic element in the four-dimensional ground state
subspace can be written as

18) = w1 |p) +uz|—p) +us|p’) +us|=p") , (4.4)

where the superposition parameters satisfy the normalization constraint }_; |u;? = 1,
|£p)= alp |0~) are states in the odd z-parity sector and |+p') = IT* |Fp) = alp,aHO*)
are the states in the even sector (for the second equality, that holds up to a phase fac-
tor, see Methods 4.3.2).

Hence, independently from N, once FBC are imposed, the system presents a level
crossing at the point ¢ = 0, where the Hamiltonian reduces to the classical AFM
Ising. The presence of the level crossing is reflected on the behavior of the ground
state energy E¢, whose first derivative exhibits a discontinuity

dE,
d¢

dE,

~ = 2(1 + cos E), (4.5)
¢—0~

N

¢—0F

which goes to a nonzero finite value in the thermodynamic limit. The presence of
both a discontinuity in the first derivative of the ground state energy, and a different
degree of degeneracy even at finite sizes, is coherent with a first-order quantum
phase transition [10].

However, such a transition is present only when FBC are considered. Indeed,
without frustration, hence considering either OPC or PBC conditions in a system
with even N, the two regions ¢ € (—%,0) and ¢ € (0, §) belong to the same AFM
phase, have the same degree of ground-state degeneracy, and exhibit the same phys-
ical properties [90, 91]. Hence it is the introduction of the FBC that induces the pres-
ence of a quantum phase transition at ¢ = 0.

4.1.2 The magnetization

Having detected a novel phase transition, we need to identify the two phases sep-
arated by it. In Chapter 3 we have proved that the two-fold degenerate ground
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FIGURE 4.2: Plot of the site dependent magnetizations along x (or-

ange points) and y (blue ones) for each spin of a lattice with N = 29

sites. The magnetizations are obtained setting ¢ = . The dashed
lines are a guide to the eye to show the almost staggered order, while

the modulation in space is given by eq. 4.7.

state for ¢ < 0 is characterized by a ferromagnetic mesoscopic order: for any finite
odd N, the chain exhibits non-vanishing, site-independent, ferromagnetic magneti-
zations along any spin directions. These magnetizations scale proportionally to the
inverse of the system size and, consequently, vanish in the thermodynamic limit. For
suitable choices of the ground state, this mesoscopic magnetic order is present also
for ¢ > 0 but, taking into account that now the ground state degeneracy is doubled,
the new phase can also show a different magnetic order, that is forbidden for ¢ < 0.
However, from all the possible orders that can be realized we can, for sure, discard
the standard staggerization that characterizes the AFM order in the absence of FBC.
In fact, for odd N, it is not possible to align the spins perfectly antiferromagnetically,
while still satisfying PBC. In a classical system, the chain develops a ferromagnetic
defect (a domain wall) at some point, but quantum-mechanically this defect gets de-
localized and its effect is not negligible in the thermodynamic limit as one would
naively think.

To study the magnetization let us consider a ground state vector that is not an
eigenstate of the translation operator:

5) = é( ) e p)) (4.6)

where 6 is a free phase. We compute the expectation value of spin operators on this
state. Having broken translational invariance, we can expect the magnetization to
develop a site dependence, which can be found by exploiting the translation and the
mirror symmetry (see Methods 4.3.2), giving

() = (—1)/cos n%—l—/\(a,G,N) fu (4.7)

where f, = |[(p| o} |p')|. The two phase factors, whose explicit dependence on the
arbitrary phase 6 is given in Appendix C.6.1, are related as A(y,6, N) — A(x,0,N) =
7t/2, which corresponds to a shift by half of the whole ring between the x and y
magnetization profiles. The obtained spatial dependence, depicted in Figure 4.1 and
4.2, thus breaks lattice translational symmetry, not to a reduced symmetry as in the



4.2. Conclusions 41

0.67 maﬁ-’u‘-ﬁ&%ﬂ&%dguooou
.‘,th...l..
N
N
0.4rf \\ -
fy |
“ s N=17
02f Q) | =
1
0 0 g " O ‘
z " 16 ¢
¢
0.47 b) ...OI.Q.. Ill-
c-o..o". -'.. S
fy .,..-n'...o-"' .----' = N=17
021 e ..I-lllll-. Y -
IIIIII--.... '
TTLLLL vVV v N=117
vy ‘
o Lrzzzryyyyrrrrrrrrrrrrnn I aaanst | 4 N=485
T . 0 :
. i . 16 ¢
(]

FIGURE 4.3: Behavior of matrix elements fy (upper panel) and f,
(lower panel) as function of the Hamiltonian parameter ¢ for differ-
ent sizes of the the system N.

case of the staggerization that characterizes the standard AFM order, but completely,
since we have an incommensurate modulation that depends on the system size over-
imposed to the staggerization.

While the simple argument just presented explains how and why the magneti-
zations along x and y acquire a nontrivial spatial dependence, we still have to de-
termine how their magnitudes scale with N. The magnitudes depend on the spin
operator matrix elements (p|o%; |p’) and their evaluation is explained in Methods
4.3.3.

As we can see from Figure 4.3, we have two different behaviors for the magneti-
zations along x and y. While for the former we can see that it admits a finite non zero
limit, which is a function of the parameter ¢ > 0, the latter, for large enough systems,
is proportional to 1/ N (see also Figure 4.4) and vanishes in the thermodynamic limit.
Hence, differently from the one along the y spin direction, the “incommensurate anti-
ferromagnetic order” along x survives also in the thermodynamic limit. By exploiting
perturbative analysis around the classical point ¢ = 0 it is possible to show that, for
¢ — 0" and diverging N, f; goes to 2/ (see Appendix C.7 for details). Moreover,
numerical analysis has also shown that in the whole region ¢ € (0, 7/4) we have

2 1
lim | (plo[p")| = —(1—tan®¢)+ . (4.8)

N—o0

4.2 Conclusions

Summarizing, we have proved how, in the presence of FBC, the Hamiltonian in
eg. (4.1) shows a quantum phase transition for ¢ = 0. Such transition is absent both
for OBC and for systems with PBC made of an even number of spins. This quantum
phase transition separates two different gapless, non-relativistic phases that, even at
a finite size, are characterized by different values of ground-states degeneracy: one
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FIGURE 4.4: Dependence of the two f, = | (p| 0% |p’) | on the inverse
of the size of the system 1/ N for ¢ ~ 0.692. The black points represent
the values obtained for fy while the red squares stand for f,

shows a two-fold degenerate ground-state, while in the second we have a four-fold
degenerate one. This difference, together with the fact that the first derivative of
the ground-state energy shows a discontinuity in correspondence with the change
of degeneracy, supports the idea that there is a first-order transition.

The two phases display the two ways in which the system can adjust to the con-
flict between the local AFM interaction and the global FBC: either by displaying
a mesoscopic ferromagnetism, whose magnitude decays to zero with the system
size [1], as discussed in Chapter 3, or through an approximate staggerization, so
that the phase difference between neighboring spins is 77 (1+ 5). For large sys-
tems, these 1/N corrections induced by frustration are indeed negligible at short
distances. However, they become relevant when fractions of the whole chain are
considered. Crucially, the latter order spontaneously breaks translational invariance
and remains finite in the thermodynamic limit. Let us remark once more that, with
different boundary conditions, all these effects are not present.

The results presented in this work are much more than an extension of those in
Chapter 3, where we have already proved that FBC can affect local order. While
there AFM was destroyed by FBC and replaced with a mesoscopic ferromagnetic or-
der, here we encounter a different type of AFM order, which spontaneously breaks
translational invariance, is modulated in an incommensurate way, and does not van-
ish in the thermodynamic limit. Most of all, the transition between these two orders
is signaled by a discontinuity in the derivative of the free energy, indicating a first-
order quantum phase transition.

The phase transition we have found resembles several well-known phenomena
of quantum complex systems, without being completely included in any of them. A
finite difference of the values of the free energy derivative at two sides of the tran-
sition characterizes also first-order wetting transitions [152-154], that are associated
to the existence of a border. On the other hand, in our system, we cannot individ-
uate any border, since the chain under analysis is perfectly invariant under spatial
translations. Delocalized boundary transitions have already been reported and are
called “interfacial wetting”, but they differ from the phenomenology we discussed
here, as they refer to multi-kink states connecting two different orders (prescribed at
the boundary) separated by a third intermediate state [155].

The transition we have found, and the incommensurate order, might also be ex-
plored experimentally. To observe them, one could, for example, measure the mag-
netization at different positions in the ring. In the phase exhibiting incommensurate
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AFM order, the measurements will yield different values at different positions, while
in the other phase, exhibiting mesoscopic ferromagnetic order the values are going
to be the same. One could also examine the maximum value of the magnetization
over the ring. In the incommensurate AFM phase this value is finite, while in the
other it goes to zero in the thermodynamic limit. The maximum of the magnetiza-
tion over the ring thus exhibits a jump at the transition point.

The strong dependence of the macroscopic behavior on boundary conditions that
we have found seemingly contradicts the Landau theory, that implicitly assumes
microscopic changes, such as the boundary conditions, are negligible in the thermo-
dynamic limit. Indeed, FBC are special, as the kind of spin chains we consider are
the building blocks of every frustrated system [28-30, 156-158] , which are known
to present peculiar properties. We can also speculate that FBC induce a topological
effect that puts the system outside the range of validity of the standard theory. In
fact, while in the ferromagnetic phases of the model the ground state degeneracy
in the thermodynamic limit is independent of boundary conditions, in the param-
eter region exhibiting incommensurate AFM order the degeneracy is doubled with
FBC, thus clearly depending on the (real space) topology of the system. But, there is
a second more subtle connection. Indeed, while magnetic phases show symmetry-
breaking order parameters, topological phases are characterized by the expectation
value of a non-local string operator that does not violate the bulk symmetry of the
system. In our system, as we have shown before, the value of the local magneti-
zation is associated with the expectation value of the operator o,II* = ®jzi I i,
which is a string operator that does not break the parity symmetries of the model.
However, while geometrical frustration induces some topological effects in the XY
chain, interestingly, we have found evidence that suggests that topological phases
are resilient to topological frustration [5], as we discuss in Chapter 8.

A natural question that emerges is how robust is the observed phenomenology
to defects, that destroy the translational symmetry of the model. In fact, a common
expectation is that such defect would pin the domain wall and restore the unfrus-
trated physics in the bulk. In Chapter 5 we address this question and show that a
complex picture emerges depending on the nature of the defects, but that ultimately
the incommensurate AFM order can survive under general conditions. Thus, the
physics we have discussed here goes beyond fine-tuned properties, to a physically
measurable phenomenon.

4.3 Methods

4.3.1 Ground state degeneracy

We have two different pictures depending on the sign of ¢. For ¢ < 0 the excitation
energy, given by eq. (4.3), admits two equivalent local minima, one for each parity,
ie.q=0€TI and g = m € I'". Consequently, the ground state is two-fold degen-
erate, and the two ground states that are also eigenstates of I1* are |g; ) = af|07)
and |g;) = IT*|g,) = |0"), where the last equality holds up to a phase factor.
On the contrary, when ¢ becomes positive, the energy in eq. (4.3) admits, for each
z-parity sector, two local minima at opposite momenta, £p € I'" and +p’ € T'¥,
where p = Z (1 — &) for a system size N satisfying Nmod4 =1,p = Z (1+ &)
for Nmod4 =3and p' = 7 —p.
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4.3.2 Spatial dependence of the magnetization

To study the spatial dependence of the magnetization it is useful to introduce the
unitary lattice translation operator T, whose action shifts all the spins by one posi-
tion in the lattice as

T*Uf‘T = ]’?‘H, X=X,z 4.9)

and which commutes with the system’s Hamiltonian in eq. (4.1), i.e. [H, T] =0. The
operator T admits, as a generator, the momentum operator P,ie. T = e?. Among
the eigenstates of P, we have the ground state vectors |+p) and |+p’) with relative
eigenvalues equal to £p and 7w £ p’ = Fp. A detailed definition of the operator and
a proof of these properties is given in Appendix C.3. The latter equality allows to
identify the ground states a', p,a; |0") with the states IT* |Fp).

We can exploit the properties of the operator T to determine, for each odd N,
the spatial dependence of the magnetizations along x and y in the ground state |§)
((¢7)g with & = x, y), defined in eq. (4.6). In fact, taking into account that [p) and
|p') live in two different z-parity sectors, we have that the magnetization along a
direction orthogonal to z on the state |§) is given by

1 / —1 / o
(of)e =810} 18) =5 (" {plof [p)+ e (Pl o} Ip) ). (4.10)

The magnetization is determined by the spin operator matrix elements (p| o7 |p’),
that can all be related to the ones at the site j = N. In fact, considering eq. (4.9) we
obtain

(plot|p') = eV {plof |p') - (4.11)

The advantage of this representation is that the matrix element (p|oy; |p’) is a
real number for & = x, and a purely imaginary one for « = y, making it simple to
express the magnetization. Let us illustrate the computation of the x magnetization,
while the details for the y magnetization can be found in Appendix C.6.1. The special
role of the site N is singled out by the choice made in the construction of the states
through the Jordan-Wigner transformation. To prove that the matrix element is real
it is useful to introduce the, unitary and hermitian, mirror operator with respect to
site N, denoted as My, that makes the mirroring

MN(T]‘-"MN = af]-, X=X,z (4.12)
and, in particular, leaves the N-th site unchanged. The operator satisfies My |£p) =
|Fp), while the reflections with respect to other sites would introduce additional
phase factors. A detailed definition of the mirror operators and discussion of their
properties is given in C.4. Exploiting the properties of My we have then

{pl I [=p) = (=p|oNIT" [p) = ((p| oNIT" | =p))", (4.13)

so (p| oy |p') is real. Evaluating (p| o3, |p’) using the methods of the next section we
can see that the quantity is actually positive, and therefore equal to its magnitude f,.
Then from eq. (4.10) and (4.11) we get the spatial dependence of the magnetization

(o) = cos(2pj = 0) (plox [P") (4.14)

Inserting the exact value of the momentum we get eq. (4.7) for « = x, where the
exact value of A(x, 60, N) is given in Appendix C.6.1.
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4.3.3 Scaling of the magnetization with N

The magnetization is determined by the matrix elements f, = | (p| o% |p’) |. To eval-
uate them we exploit a trick similar to the one used to compute the magnetization in
Chapter 3.

Within the ground state manifold, we define the vectors

g2 = é(\m +]-p)), (4.15)

and, further using the, already introduced, properties of the mirror operator My (see
Appendix C.6.2 for details), we get

1
(plotlp) = 5((g+|ohIT¥ ge) — (g ohIT* [g-)) -
(4.16)

In this way, we represent a notoriously hard one point function in terms of standard
expectation values of products of an even number of spin operators oy I1*, which
can be expressed as a product of an even number (parity preserving) of fermionic
operators. Using Wick’s theorem, the expectation values can then be expressed as
determinants and evaluated numerically efficiently (see Appendix C.6.2).

Moreover, in the limit ¢ — 0" the matrix elements can also be evaluated analyt-
ically using a perturbative approach (see Appendix C.7).
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Chapter 5

XY Chain with Bond Defects

In the previous chapters we have shown that frustrated boundary conditions, that is,
periodic boundary conditions with an odd number of lattice sites, can affect the bulk,
local, order in antiferromagnetic systems. For the quantum XY chain in zero external
fields, the usual antiferromagnetic order has been found to be replaced either by
mesoscopic ferromagnetic order or by incommensurate AFM order. In this chapter
we examine the resilience of these types of orders against a defect that breaks the
translational symmetry of the model. We find that, while a ferromagnetic defect
restores the traditional, staggered order, an AFM one stabilizes the incommensurate
order. The robustness of the frustrated order to certain kinds of defects paves the
way for its experimental observability. This chapter is based on [4].

5.1 Introduction

In general, it is known that the presence of defects in a spin chain can induce a
very rich phenomenology [159] and can influence the system geometry [160]. The
concept of topological frustration, in particular, is related to defects, as it is present
depending on the nature of the interaction at a single bond in the system. In this line
of research, it is known from the results by Campostrini et al. [67] that a one-bond
defect drives a quantum phase transition in the quantum Ising antiferromagnet, be-
tween a magnetic phase when the defect favors a ferromagnetic order on a bond, and
a kink phase with an AFM defect. The two phases are characterized by a different
scaling of the energy gap above the ground state. The magnetic phase is gapped,
with an exponential closing of the gap between the two quasi-degenerate ground
states, while the kink phase is gapless, with the ground state being part of an en-
ergy band and an algebraic closing of the gap. The frustrated boundary conditions
(FBC) represent exactly the transition point, with a universal scaling behavior of low
energy properties close to it.

In this chapter we extend the analysis of chapters 3 and 4, by investigating how
are the local orders in the quantum XY chain with frustrated boundary conditions,
discovered there, affected by the presence of a localized defect. Under usual condi-
tions, one does not expect that such defect can affect the system beyond some finite
distance around it. Even more, since the ground state with FBC is interpreted as a
single excitation state, the effect of a defect could be to localize this excitation, thus
restoring the traditional order, except for an exponentially limited area whose rel-
evance, in the thermodynamic limit, becomes negligible. These considerations are
probably one of the reasons for which the aforementioned orders emerging with
FBC have been overlooked for too long: they have been expected to be too weak
against a defect and thus impossible to be detected experimentally. We will show
that this picture is correct only when a ferromagnetic type defect (FTD), i.e. a defect
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FIGURE 5.1: Schematic representation of different phases as a func-
tion of the system parameters. The interval ¢ € (—m/4,7/4) cor-
responds to a dominating antiferromagnetic interaction along the x
axis. When the defect of the form (Jy # 0,6, = 0) favours a fer-
romagnetic alignment (FID), the effect of the defect is localized in a
small region and outside it the standard AFM order is restored. On
the other hand, when the defects tends to strengthen the antiferro-
magnetic interaction (AFTD) the incommensurate AFM order IAFM)
is realized.

that reduces the relative weight of the dominant AFM term, is considered. On the
contrary, when we take into account an antiferromagnetic type defect (AFID), i.e.
a defect that locally increases the dominant AFM term, an incommensurate AFM
order is induced in the system. This incommensurate AFM order holds a magnetic
pattern very close to the one in Chapter 4, but is, differently from it, associated to
a two-fold degenerate ground-state and not to a four-fold one. Furthermore, while
the mesoscopic ferromagnetic order described in Chapter 3 does not seem to sur-
vive the presence of a defect, the incommensurate AFM order is found to be resilient
also to the presence of a second defect, indicating that it can be observed under rel-
atively general conditions with FBC. The emergence of two different orders (i.e. the
standard AFM and the incommensurate staggered one) signals the existence of a
quantum critical point (QPT) separating them. The QPT we observe with the defect
is thus a similar phenomenology as the one observed in [67] for the quantum Ising
chain, but due to the symmetries of our model, we are able to apply the approach to
symmetry breaking based on anticommuting symmetries, discussed in section 1.2.3,
and discuss local order.

This chapter is organized as follows. In Section 5.2 we introduce the model under
study and briefly review its properties in the absence of defects. In Section 5.3 we
describe the analytical and numerical techniques we use to analyze the effects of
adding the defect, which requires particular care due to the gapless nature of the
system without defects. In Section 5.4 we show and discuss the results for various
types of perturbations. Conclusions and outlook are collected in Section 5.5.

5.2 The Model

We focus on the XY chain at zero fields with FBC and a local defect that, without
the loss of generality, we set between the first and the last spin of the chain. Such a
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system is described by the Hamiltonian

N-1
H:ZCOS¢UU+1+251n¢ ]+1

=1
+ cos(¢p + 6x) onoy + sm(gb +6y) o307, (5.1)

where (7]4", for @ = x,y, z, are Pauli operators defined on the j-th spin and the FBC are
achieved by imposing periodic boundary conditions 0y, ; = ¢} and an odd number
N of lattice sites. The parameter ¢ tunes the relative strength between the interac-
tions along the x and y directions, while 6, and J, govern the strength of the defect
along the x and y axis respectively. The presence of the defect in the interaction pat-
tern destroys the translational invariance of the model and all its mirror symmetries,
except the one with respect to the (N + 1) /2-th spin.

This is, clearly, not the most general defect that we can consider. The reason
behind our choice is that the Hamiltonian in eq. (5.1) still preserves the parity sym-
metries, [H, I[T%] = 0 with TT* = ®jli1 (7]?‘, with respect to all the three spin directions,
« = x,Y,z, as the unperturbed model. This property is of particular relevance in
our analysis, because, as in chapters 3 and 4, it implies an exact degeneracy for the
ground state already in a finite system when N is odd. Again, since N is odd, parity
operators anti-commute ({I1%,IT°} = 24,5). Hence, if the state |¢) is an eigenstate
of both the Hamiltonian and one of the parity operators, say I1?, the state IT* |¢p)
is still an eigenstate of both H and IT* but has the opposite I1* eigenvalue. Hence,
each eigenstate of the Hamiltonian is (at least) two-fold degenerate even at finite
size. This degeneracy enables us to study the magnetization directly, even in a finite
system, exploiting the trick introduced in chapters 3 and 4.

Before starting our analysis, let us briefly review here the main findings of chap-
ters 3 and 4, that deal with the model obtained by setting §, = 6, = 0 in eq. (5.1).
For ¢ in the region (—37/4, —7t/4) the dominant term is the ferromagnetic inter-
action along the y direction (yFM phase). In the thermodynamic limit, the two-fold
degenerate ground state manifold is separated from the rest of the spectrum by a fi-
nite energy gap and admits a ferromagnetic magnetization along y-axis, m, = <0']-y ).
This phenomenology is the same to the one that can be found taking into account
open boundary conditions or an even number of spins [90, 91, 150]. On the con-
trary, due to topological frustration, a different type of order is found in the region
¢ € (—m/4,t/4), where the antiferromagnetic interactions dominate. Without frus-
tration, this region would be simply a x-AFM phase characterized by a staggered
magnetization. Instead, assuming FBC, it is separated into two gapless regions (the
energy gap closing as 1/N?), ¢ € (—7/4,0) and ¢ € (0, 71/4), characterized by dif-
ferent ground state degeneracies and different magnetization patterns. Moreover,
the transition is accompanied by a finite discontinuity in the first derivative of the
ground state energy at ¢ = 0.

For ¢ € (—m/4,0), where the dominant antiferromagnetic interaction in the x
direction competes with the ferromagnetic one in the y direction, the ground state
manifold is two-fold degenerate. Although the dominant interaction along x is an-
tiferromagnetic, the magnetization my(j) = ((7]" ) (as well as m,(j), m,(j)) is found to
be uniform, ferromagnetic, and decays algebraically with the system size to zero, as
1/N, resulting in the zero value of the magnetization in the thermodynamic limit.
Qualitatively, this behavior stems from the fact that with an odd number of sites with
periodic boundary conditions, a staggered order cannot be sustained, and thus the
delocalized kink contribution eventually destroys the AFM order. Because of these
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properties, this order is termed Mesoscopic Ferromagnetic Order [1] (see Chapter 3).

For ¢ € (0, 1/4), where both interactions are antiferromagnetic, a more rich be-
havior is found. The ground state manifold is four-fold degenerate and it is possible
to select ground states with different properties. While there are states that also ex-
hibit mesoscopic ferromagnetic order, it is also possible to select states with a magne-
tization profile that varies in space with an incommensurate pattern and survives in
the thermodynamic limit. Qualitatively, in this case, the system accommodates the
frustration with a small shift in the staggered order, so that the magnetization varies
as sin [ (1 — &) j + a]: neighboring sites are almost perfectly staggered, but along
the chain, the amplitude varies and at its minimum one finds a ferromagnetic bond.
This new type of order has been termed Incommensurate Antiferromagnetic Order [2]
(see Chapter 4).

5.3 Methods

The model in eq. (5.1) can be analyzed by mapping spins into spinless non-interacting
fermions through the Jordan-Wigner transformations [91, 149]. Usually, in systems
that can be solved exploiting the Jordan-Wigner transformation, followed by a Bo-
goliubov rotation in Fourier space, all the physical quantities can be obtained in
terms of two-body correlation functions of Majorana operators that are determined
analytically [90, 91, 161-163]. However, in the present case, the local perturbation ex-
plicitly breaks the invariance under spatial translation and, therefore, prevents the
possibility to obtain analytical expressions for the Majorana correlation functions.
Nevertheless, since the Hamiltonian in eq. (5.1), is quadratic in the spinless fermion
operators, we construct an efficient algorithm, based on the work of Lieb et al. [91],
to obtain a numerical evaluation of the whole set of Majorana correlation functions
that allows to obtain all the analyzed quantities following the standard approach
(see Appendix D.1 for details).

Usually, a finite longitudinal field is required to have a finite magnetization in
the x-direction. The persistence of a finite value even after the removal of the field,
after taking the thermodynamic limit, is the signature of a spontaneous symmetry
breaking. However, in our case, we are working at zero fields to have an exact
degeneracy between states with different parities, so that the system can exhibit a
finite magnetization, even at a finite size, without the need to apply a symmetry-
breaking field. Since the different parity operators do not commute with each other,
any ground state vector necessarily breaks at least one of those symmetries. Once
the magnetizations are obtained for a chosen N, we follow this value toward the
thermodynamic limit to determine which order survives for large systems. Taking
inspiration from the result obtained in the absence of defects [1, 2] (see chapters 3
and 4), we focus mainly on the study of the pattern of the magnetization in the x
direction my(j) = (¢7), which is maximized by taking into account the states with
definite IT* parity. The state with IT* = %1 reads

_ 1

g) 7

Here |g~) is the ground state of the Hamiltonian in eq. (5.1) that falls in the odd
sector of IT*. Exploiting the trick introduced in Chapter 3, we can express the ex-
pectation value of ¢ on |g) with IT* = 1 in terms of the expectation value of the

@I [g7) - 52)
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operator o7'TT" on [g7), i.e.

mx(j) = (gl o7 [§) = (¢ | o7 1T [g7), (5.3)

which can be computed using the fermionic representation of the model, as dis-
cussed in Appendix D.1. The state with IT* = —1 would just exhibit the magnetiza-
tion (¢7) of the opposite sign.

To further corroborate these results, we also employ an analytical perturbation
theory, in two different ways. Treating either ¢ or 6, in eq. (5.1) as a small parameter,
we diagonalize the perturbation either in the kink state basis or just in the four-
dimensional ground state manifold on the unperturbed model. Details are given in
Appendix D.2. The first approach is more insightful and successful in describing
the numerical results, while the second gives a more quantitative agreement for the
incommensurate AFM order, although the truncation of the basis to just four states
is only empirically justified.

While for defect strengths d, , that go to zero sufficiently fast with the system size
(0xy — 0as N — oo) the orders found with FBC should be preserved, we are inter-
ested in determining the resilience of these orders to the presence of a finite, fixed,
defect, in the thermodynamic limit. To do so, we fix the strength (in absolute value)
of the defect to be comparable with the energy width of the (unperturbed) lowest en-
ergy band, namely |Jy,| = [¢|/10. In this way, the defect always hybridizes several
states of band.

In our analysis, we will have to face several different magnetization patterns
and, hence, we have to find a way to discriminate among them. Even if, sometimes,
it would be enough to look at a direct plot of the magnetizations to guess what kind
of pattern is realized in the system, it is better to have a more quantitative way to
discriminate between them. For this reason we decide to focus on the analysis of the
Discrete Fourier Transform (DFT) of the magnetization:

N .
rﬁx(k)z% Y me(j)e®H, k=1,...,N. (.4)

j=1

Hence, to determine the asymptotic behavior of the magnetization pattern in the
thermodynamic limit, we will perform a finite size scaling analysis of the DFT, and
compare the obtained result with some reference patterns.

For instance, the incommensurate AFM order has 1, (k) o Oy, N1, while the

mesoscopic ferromagnetic order would have 71y (k) o & 5, but with an amplitude
decaying algebraically to zero as N — oc. Finally, a perfectly staggered order would
have -momentum, which is, however, not allowed by the quantization rules with
FBC. The staggered order m,(j) = (—1)/, that has m,(N) = m, (1) and the remain-
ing bonds antiferromagnetic, would, on the other hand, be resolved over the allowed
momenta as 1

1y (k) o« ———— .
(0 14 e Wk

(5.5)

5.4 Results

In our analysis we study the behavior of the magnetization m,(j) in the presence of
a defect for finite chains and then extrapolate the behavior in the thermodynamic
limit. First we focus on the case where the defect affects only one spin direction, and
then we switch to the case where the defect acts on both.
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FIGURE 5.2: Magnetization my(j) = <a]?‘ ) as a function of the site j

for a chain made of N = 1019 spins (left), and the absolute value of
its Discrete Fourier transform (DFT) (5.4) as a function of the inverse

chain length, for chain lengths up to N = 2001 (right) and for dif-

ferent momenta: green diamonds |, (¥52)|, red squares |, (X52)],

and blue circles |m x(%) |. The results are obtained considering the

defect only along the x direction (6, = 0). An antiferromagnetic de-
fect yields an incommensurate AFM order, while a ferromagnetic one
gives standard AFM order in the bulk (see text for discussion).

Before starting a detailed discussion, in Fig. 5.1 we depict a schematic phase dia-
gram of the system in the presence of a defect with (6, # 0,6, = 0), where we can see
that the system shows two clearly different behaviors. As we can see from Fig. 5.2,
when the defect tends to strengthen the AFM interactions, i.e. when an AFTD de-
fect is considered, the max of the DFT 1, (k), that is obtained for k = %, goes
to a non-zero value as the system size diverges, while 1, (k) vanishes for all other
momenta. This picture is coherent with an incommensurate AFM order in which
the site-dependent magnetization is proportional to sin [77(1—4)j] as can also be
seen from the plots of the envelopes obtained for N = 1019 spins. It is worth not-
ing that the incommensurate AFM order is found both for ¢ € (0,77/4) and for
¢ € (—m/4,0), although in the latter region, without perturbation, a mesoscopic fer-
romagnetic order was present. Thus an AFTD stabilizes the incommensurate AFM
order, regardless of the order that characterizes the unperturbed underlying model.

A peculiar feature needs commenting: although one could naively expect that
a stronger AFM bond would concentrate around the defect the largest magnetiza-
tion amplitude, this is not the case and one observes the magnetization minimum
at the defect. We do not have a proper qualitative explanation for this behavior, al-
though the perturbative calculations below provide some technical justifications. It
seems that the system prefers to have the most constant magnetization profile far
away from the defect, so that at the center of the chain the order is hardly distin-
guishable from the unfrustrated one. Although the effect of FBC is to excite a single
quasi-particle over the vacuum, we cannot characterize the observed position of the
magnetization minimum as anything else but a many-body effect.

As we mentioned above, a single bond defect breaks all the mirror symmetries
of the chain, except the one crossing the site 2=, Accordingly, the magnetization
pattern with an AFTD satisfies this mirror symmetry with respect to this site and
one can wonder how much this fact constraints its regular structure. Hence, a ques-
tion that arises naturally is if the incommensurate AFM pattern survives even when
the second localized defect is added to the Hamiltonian in eq. (5.1), to break also the
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FIGURE 5.3: Magnetization with two bond defects, one between the
first and the last spin of the chain (dy, ), and the second between the
N>-1_th and the M -th spin (dy,). On the left, the magnetization
my(j) = (0]?‘> as a function of the site j for N = 1019 and on the right
the absolute value of its Discrete Fourier transform (DFT) (5.4) as a
function of the inverse chain length, up to N = 2001, for different mo-
menta: green diamonds |7y (N32)], red squares |y (N£2)], and blue
circles [fitx(N51)|. The results are obtained considering the defects
only along the x direction (d,, = dy, = 0). While in the case when
both defects are AFTD (upper row) the DFT clearly signals the rising
of a macroscopic incommensurate staggerization in which the mag-

netization on the j-th spin is proportional to sin [n(l - % ) ]} , when the

smaller defect is FTD the system sizes considered are not sufficient to
clearly characterize the emerging order.

remaining mirror symmetry. Thus, we introduce a smaller bond defect between the
N-1-th and the 21-th spins. The results for this case are presented in Fig. 5.3. Due
to the second defect, the convergence of the DFT is quite slow and chains longer
than N = 2001 would be required to clearly reach the asymptotic behavior, espe-
cially when the weaker defect is FTD. Nonetheless, when both defects are AFTD, it
seems that once more an incommensurate AFM order is established, proving that
its existence is not dependent on the presence of a mirror symmetry which needs to
be respected. All these results indicate that, even under realistic experimental situ-
ations (i.e. without perfect translational invariance), the incommensurate AFM can
exist and be observed. As a side note, while the defects are placed on the same bonds
in both cases, with two AFTDs, the minimum of the magnetization is located at an
intermediate point between them, while the FID fixes it very close to itself, but not
on it, probably because of a finite correlation length.

Turning back to the case of a single defect, the picture changes abruptly when
the defect turns to be an FTD, i.e. when it starts to suppress the dominant antiferro-

magnetic interaction on one bond. Not only the maximum, but all i, (k) go towards
N+3 N+5
finite values, satisfying precise ratio rules, such as - E Nfﬂi ;,T‘E Nil; £ L etc. This

behavior is compatible with a perfectly staggered AFM order in the bulk, with devi-
ations localized around the defect. As mentioned above, such bulk behavior would
be characterized by a sharp peak at 77, corresponding to a wavenumber N /2, which,
being N odd, is not allowed. The aforementioned ratios can be easily obtained by
taking the N — oo limit of eq. (5.5) and reflect the expansion of a perfect AFM order
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FIGURE 5.4: Upper panel: Behavior of M(j) as a function of j for a

system made of 2001 spins, for different values of ¢. Bottom panel:

Size dependent numerical estimation of the exponential ratio b for
different values of ¢.

over the available wavenumbers, which are symmetrically distributed around N /2.
As we can see also from the envelopes, the region affected by the presence of the
defect is small because its effect decays exponentially. This fact can be better appre-
ciated by looking at Fig. 5.4 where we have depicted the behavior of the function

M(f) = max |mx ()] — [mx(j)], (5.6)

where max; [, (j)| represents the value of the magnetizations in the bulk and the
analysis of M (j) helps to understand the dimension outside which the effect of the
defect is suppressed. As we can see from the figure, the effect decays exponentially
M(j,¢) o e~ with an exponential ratio b, that for large N becomes size indepen-
dent. Hence, in the thermodynamic limit the magnetic pattern is similar to the one
of a kink state.

However, Fig. 5.2 shows also another important result. By fixing the value of
¢ € (=%, %) and changing the defect from AFM to ferromagnetic (or vice-versa),
we have an abrupt change of the magnetization pattern. At one side we have the
standard AFM order with a localized defect and on the other an incommensurate
staggerization. The existence of two different orders is compatible with the results
by Campostrini et al. [67], mentioned before, although they did not consider the
behavior of the local order: changing the defect from AFM to ferro (and viceversa)
in a chain with FBC indeed drives the system across a QPT.

Finally, we note that different natures of the two magnetic orders are also visible
in the spatial dependence of the spin correlation functions. Indeed, in Fig. 5.5 we

show the spin correlation functions (o7c?) as a function of j, and we can see the

j .
following. For FTD the exponential decay | (¢707) | = a 4 be™ is present, indicating

the localization of the effect of the defect. On the other hand, with AFTD we have the
linear behavior | <a{‘¢7jx )| = a—0b(j —1), that is a typical signature of the frustrated
phase [1, 67,70, 73].

We can get more insight and reach the same conclusions, about the different



5.4. Results 55

N = 1019
1.0
~~~~~~~~ ¢»=m/8
< 6, =¢]/10

0.5 - o 4, = —|g|/10
AN
’ﬁb\ 0.0 v
~2€ 10 0 100 200 300 400 500
v | oess (Z) = —77/8
— & 8, = |6]/10

05 0 4, =—¢|/10

0.0 1 S5860066000000006 . S

0 100 200 300 400 500
J

FIGURE 5.5: Spin correlation | < (7{(7/?( > | as a function of the site

j, for a chain made of N = 1019 spins. The defect is along the x

direction. The exponential decay found for a FTD defect indicates the

standard AFM order. On the other hand, the linear decay in the AFTD
case is a typical signature of frustration.

magnetic order, through a perturbative analysis. We have done two different per-
turbation theories, which are presented in Appendix D.2. In both approaches, we
are going to ignore every state separated by a finite energy gap from the ground
states. However, the ground states are a part of a band of 2N states for which, in
the thermodynamic limit, the gap vanishes, complicating any perturbative calcula-
tion. Thus, in our first approach, we worked around the point ¢ = 0, and in this
way, we provide a good picture explaining our numerical results. At ¢ = 0 the
ground state manifold is 2N-fold degenerate, spanned by the “kink” states which
have a ferromagnetic bond ¢ = ¢7,; = +1 and an AFM bond between all other
sites, for j = 1,2,... N. Adding the small interaction in the y direction, proportional
to ) U;/O}y 1, the kink states split in energy. By developing a method introduced in
[69], we are then able to diagonalize the band of kink states under this term and do
not need to deal with the complications emerging from a perturbative series with
closing energy gaps. In the case of FTD, the ground states are, to the lowest order
in the perturbation theory, simply the kink states with the ferromagnetic bond be-
tween the first and the last site (07 = o}; = £1), and the other states are separated
by a finite energy gap, determined by Jy. In the case of AFTD, the ground states
are superpositions of kink states that have ¢ = —0%; and they belong to a band of
states, in which the energy gap between the states closes as 1/N?, as in frustrated
models without the defect [1, 2, 66, 71, 73]. Both of these cases are characterized by
a two-fold degenerate ground-state manifold, as expected.

Having the ground states, to the lowest order in perturbation theory, the magne-
tization can be computed. In the case of an FID, we find that for both signs of ¢ the
magnetization is given by

my(j) = (=1)/, (.7)

which represents the standard AFM staggerization, apart from the ferromagnetic
bond placed where the defect is. The numerical results of Fig. 5.2 show indeed the
standard staggered magnetization far from the defect, but zero value where the de-
fect is placed. Thus the perturbation theory explains well the bulk behavior of the
system, far from the defect. Close to ¢ = 0 the correlation length is small and the
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FIGURE 5.6: Comparison of the eq. (5.10) for the magnetization (solid

black line), obtained using a perturbative approach, with the exact

results (red dots), for a system made by N = 2001 spins and ¢ =
7T 7T
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kinks are extremely well localized, while the numerics refers to a choice of a finite
correlation length that provides a length scale over which the presence of the defect
is felt before the bulk order ensues (see Fig. 5.4).

In the case of an AFTD, the perturbation theory predicts, for both signs of ¢, the
magnetization

L (Wisin[(-3)] |1
My + =, 5.8
G) N sin (—27;\]) N ©8)
which is for large N well approximated by
2 T
N2 (T
my(j) = (—1) —sin <N]>' (5.9)

This order is the incommensurate AFM order of Chapter 4, with a locally staggered
magnetization, but modulated in magnitude over the length of the chain. Against
naive expectations, but in agreement with the numerics, the modulation is such to
have an exactly vanishing magnetization at the sites connected by the defect. This
perturbative calculation validates well our numerical results of Fig. 5.2, both close
and far from the defect.

The incommensurate AFM order is found whenever the defect is AFM, even
though, without the defect, it is present only for ¢ € (0,71/4) (see Chapter 4).
Without the defect, this region possesses a four-fold degenerate ground-state man-
ifold out of which it is possible to select the ground states exhibiting incommen-
surate AFM order. It is thus of interest to find which of these ground states are
selected through a small antiferromagnetic defect. We answer this question in Ap-
pendix D.2.2, by doing a (degenerate) perturbation theory for small J,. In this case,
we ignore the band above the ground states and consider the effect of the defect only
on the GS manifold. Of course, the resulting lowest energy state is odd under the
mirror symmetry passing across the site 23!, Combining the obtained ground state
with the techniques developed in Chapter 4, for the magnetization in the thermody-
namic limit we find,

ma(j) = (“1) 2 (1~ tan? )1 4sin (1), 510
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FIGURE 5.7: Magnetization my(j) = ((7]x> as a function of the site j

for a chain made of N = 1019 spins (left), and the absolute value
of its Discrete Fourier transform (DFT) (5.4) as a function of the in-

verse chain length (right), for different momenta: green diamonds
it (N52)|, red squares |ty (Y51)|, and blue circles |t (N52)|. The
defect is along both the x and y directions. An antiferromagnetic one
yields mesoscopic magnetization that varies in space, while a ferro-
magnetic defect yields the standard AFM order in the bulk (see text

for discussion).

which generalizes eq. (5.9) to the whole region ¢ € (0,771/4) and is in good agree-
ment with our numerical results, as presented in Fig. 5.6. Note that in the pertur-
bation theory in 6, we have neglected all excited states of the unperturbed model,
including those belonging to the lowest energy band. While in the case of interest
the procedure yields a result in agreement with numerics, this approach is not justi-
fied in general, because of the gapless nature of the unperturbed system. While the
quantitative agreement of this approach with the numerics is quite surprising, it pro-
vides a geometrical explanation of the observed qualitative behavior. In fact, since
the defect preserves the mirror symmetry across the site -, states (which always
come in degenerate duplets or quadruplets) are hybridized to select the combination
in each multiplet with definite mirror symmetry (with the odd one having lower en-
ergy): by explicit construction we observe that both states even or odd under mirror
symmetry have vanishing magnetization at the defect, in the thermodynamic limit.
At finite size, the former have a small ferromagnetic bond at the defect, while the
latter exhibit exactly zero value of the magnetization at the defect.

While we did not find qualitative differences between a defect in the x and in the
y direction, the same cannot be said when both are finite. We are now in presence
of two defects which can agree or disagree in favoring a ferromagnetic or an antifer-
romagnetic alignment. A typical example of our numerical results for these cases is
given in Fig. 5.7. In the case when both defects suppress the dominant antiferromag-
netic interaction, we can see a picture completely analogous to the one with a single,
FTD, defect. The behavior of the DFT is compatible with the Fourier transform of
a single kink state and the real space magnetization envelope shows an exponen-
tial decay of the effect of the defect as we move away from it, to reach a regular
AFM pattern in the bulk. Hence, in the thermodynamic limit the magnetic pattern
represents, except in the vicinity of the defect, the standard AFM staggerization.

On the contrary, when both defects are AFTD, the DFT goes very slowly to zero
in the thermodynamic limit, for all momenta, thus signaling that the magnetization
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is mesoscopic and vanishes in the thermodynamic limit. As in the case 6, = 0, also
in this case we can see that by fixing ¢ and turning the defect from AFM to ferro
(or viceversa), we have that the magnetization pattern changes abruptly from the
standard AFM one to the one with an incommensurate mesoscopic staggerization,
signaling the QPT.

5.5 Conclusions

We have analyzed what happens to the properties of the model studied in chapters
3 and 4, i.e. the XY chain at zero fields with FBC, when a localized defect is added to
the Hamiltonian. The resulting system has been characterized through the behavior,
both at finite-sizes and in the thermodynamic limit, of the magnetization m,(j) =
(U]?C ). Our motivation has been to challenge the naive expectation that a defect would
immediately spoil the features discovered in chapters 3 and 4, since the effect of FBC
is a single excitation in the system.

We have found that depending on the kind of defects we add, the system re-
sponds by selecting different types of orders. According to expectations, a defect
in the Hamiltonian that reduces the relative weight of the dominant antiferromag-
netic interaction restores the standard AFM order, except for a small region around
the defect. On the contrary, if the bond defect favors an AFM alignment, we find
an incommensurate AFM order: locally, two neighboring spins are anti-aligned, but
along the chain the amplitude of the magnetization varies in space and vanishes at
the defect. For a defect aligned along either the x or the y axis, this order is the
same as the one in Chapter 4 and survives the thermodynamic limit. On the other
hand, when the defect in both directions is considered, the amplitude of the, also
site-dependent, magnetization vanishes as N — o.

While the resurgence of the traditional AFM order is in line with the traditional
expectation that FBC can be accounted for by single particle physics, the other or-
ders challenge this point of view and promote a more many-body interpretation, as
signaled by the fact that the largest amplitude of the magnetization is not placed at
the AFM defect.

Let us note that the dependence of the order in our system on the details of the
defects is in line with a general property of frustrated systems: the sensitivity to per-
turbations due to large classical degeneracy [25]. Here, the ground state degeneracy
at the classical point ¢ = 0 is extensive with N. Due to large degeneracy different
perturbations can lift the degeneracy in a variety of different ways. It's important,
in particular, that not all the defects select the standard AFM order.

Furthermore, these results corroborate the analysis in [67], indicating that trans-
lationally invariant systems with FBC lie at the transition between a magnetic phase,
for a ferromagnetic defect that restores the unfrustrated order, and a kink phase,
when the defect is AFM, and that the local order remains sensitive to subdominant
contributions. Although the discovered transition is different from the one that is
the subject of Chapter 4, it also indicates that topological frustration can be respon-
sible for the existence of a quantum phase transition between different kinds of local
order.

To conclude, in agreement with the results that FBC are the threshold for a QPT,
we have shown that there is a sudden change in the local order driven by the defect.
In this way, we have shown that translational invariance is not a necessary condi-
tion for the appearance of frustrated phases, paving the way to their experimental
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observability and demonstrating that, close to FBC, the standard AFM order is not
generically stable.
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Chapter 6

General Systems

In chapters 3 and 4 we have shown that applying periodic boundary conditions with
an odd number of sites (Frustrated Boundary Conditions, FBC) can destroy or mod-
ify local order in the antiferromagnetic XY chain, and a perfectly staggered order
cannot be established there. Here, using perturbative arguments, we discuss the
effects of FBC on a wide class of spin-1/2 chains (integrable or non-integrable) with-
out external magnetic fields. Namely, we study spin chains whose Hamiltonians
commute with the parity operators in all three spin directions, so that we can work
within the symmetry breaking framework based on anticommuting parity symme-
tries, discussed in section 1.2.3. We establish that either a) local order decays to zero,
algebraically (or faster) in the chain length, or b) there is a degeneracy which allows
for a ground state choice that admits a finite magnetic order, which breaks trans-
lational symmetry. Which of the two possibilities is realized can also change if the
thermodynamic limit is reached through a different choice of the sequence of chain
lengths. The results are illustrated through examples. This Chapter is based on [6].

6.1 Introduction

In Chapter 3 we have shown that topological frustration can destroy the order pa-
rameter. The traditional order is staggered and quantum interactions resolve the
conflict between it and the FBC with an interference pattern that effectively cancels
the magnetization, leaving only a mesoscopic ferromagnetic order at finite sizes,
that vanishes algebraically with the chain length. This phenomenology has later
been enriched in Chapter 4, where we have found that the incommensurate antifer-
romagnetic order, characterized by a magnetization profile that varies in space with
an incommensurate pattern, can arise. This type of order has been shown in Chapter
5 to be stable against antiferromagnetic (AFM) defects [4]. Furthermore, the bound-
ary between the mesoscopic ferromagnetic order and the incommensurate AFM one
is the first-order quantum phase transition, which exists only with FBC. All these
results have established that, contrary to standard expectations, the boundary con-
ditions can indeed affect the local, bulk behavior of a system, or, at least, that this is
the case in presence of frustration.

It should, however, be remarked that the results discussed above have been
found in specific (integrable) models and one should wonder about their general
relevance. In this chapter, we address this issue and address the question of whether
topological frustration generically destroys local order or creates a modulated AFM
order with a site-dependent magnetization. As it is well known, local order param-
eters are central elements in Ginzburg-Landau theory. They are expectation values
of local operators, with support over a finite range of lattice sites, which, given the
symmetries of the system, should be zeroed and which, when they assume a value
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other than zero, signal the spontaneous breaking of the symmetry and the estab-
lishment of a macroscopic order. We consider general spin-1/2 Hamiltonians with
a dominant antiferromagnetic interaction, subject only to the symmetry constraint
that they commute with the parity operators in all three spin directions, which de-
scribes a wide class of systems without external fields. In fact, this constraint is
respected quite generally when the lattice has an odd number of sites. It allows us
to work in the symmetry breaking framework based on anticommuting parity sym-
metries, discussed in section 1.2.3. Namely, it ensures an exact degeneracy in the
ground state manifold (at least two-fold) and allows for the direct evaluation, even
in a finite-size system, of the expectation values for all local operators, i.e. operators
with support over a finite range of lattice sites. One can then follow the behavior of
these observables toward the thermodynamic limit.
In this way, we show that three possibilities arise:

¢ if the system only admits ground states with zero momentum, the only pos-
sible order is not staggered (ferromagnetic) and is decaying algebraically (or
faster) to zero with the system size, as in Chapter 3;

¢ if the model has an at least four degenerate ground state manifold with two
GS momenta differing by 7r in the thermodynamic limit an incommensurate
AFM order like that found in Chapter 4 can emerge. In this way the system
indeed preserves a semblance of the order it has under generic boundary con-
ditions, but with a modulation over the whole chain, which spontaneously
breaks translational symmetry;

¢ if the relative momentum between the degenerate ground states does not ap-
proach 7T, no finite order can survive for large chain lengths.

In particular, these results imply that, when the boundary conditions kill the order
parameter connected to the dominant interaction (namely, the magnetization), these
systems are unable to develop any other type of order with support over a finite
range of lattice sites, regardless of the type and nature of the other interactions in the
Hamiltonian.

To determine the ground state properties and analyze the local order in generic
systems, we will take advantage of the Hilbert space structure at a classical point
(with simple domain wall as lowest energy states) and use a highly degenerate per-
turbation theory. This will allow us to classify whether in a finite neighborhood of
the classical point any order vanishes in the thermodynamic limit or if a finite incom-
mensurate order can emerge. While the amplitude of any order generally depends
on the microscopic details of the model, its finiteness is a property of the given phase
and thus to establish its existence (or lack thereof) it is sufficient just to consider a
small finite parameter region. We will also corroborate these findings through the
exact numerical diagonalization of a few examples, as well as the analytical solution
of a series of Cluster-Ising models that showcase various phenomenologies.

6.2 Systems under consideration

We consider translational invariant spin-1/2 Hamiltonians with a dominant anti-
ferromagnetic Ising interaction in one direction, say x, to which we add arbitrary
interactions,

N N
H=) cfol +A) H;. (6.1)
j=1 j=1
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Here (7]‘-", for « = x,y,z, are Pauli spin operators, A is the ratio between the two
interactions and we impose FBC, i.e. periodic boundary conditions (07" = 07, )
and odd N. The only restriction we apply to H; is that it should commute with all
three parity operators I1T* = ®j1i1 (7]‘-" ([H,IT*] = 0 for &« = x,y,z), so that the whole
Hamiltonian becomes invariant under transformations (7]4‘ — —(Tj’?‘ Vj. All in all, this
class of Hamiltonians describes a wide range of systems without magnetic fields and
defects. The terms H; can include, for example, nearest neighbor interactions such
as (7’-"(7-“+1 in directions other than a = x, next-to-nearest-neighbor interactions such

]

xS 3 3 o 1 3
as 0707, and, more generally, interactions ool of spins separated by [ sites. It

also extends to arbitrary products of the terms above, as in the case of the cluster
interactions (ij ((7]?“(7]:12 s +n)(rjy +ny1 for even integers 1, on which we will focus
later. Note that H; can be a sum of different interactions with different weights. The
index j in H; indicates a reference site for the interaction, which is shifted in eq. (6.1)
to ensure translational invariance.

On a chain with an odd number of sites N, the three parity operators I'1* do not
commute. Instead, they anticommute ({H"‘,Hﬁ} = 26,,) and realize a non-local
SU(2) algebra ([I1%,ITP] = 1804”3,72(—1)¥H7). Since the Hamiltonian (6.1) com-
mutes with all I'T%, its ground state manifold is at-least two-fold degenerate (see sec-
tion 1.2.3), and any ground state breaks at least one of the parity symmetries. Thus,
in such a setting, it is always possible to break one of the Hamiltonian symmetries
already in a finite system and to follow the behavior of the order to N — co. More-
over, the same structure also allows for the direct computation of matrix elements
between states with different parities, whose calculation usually either requires ex-
tremely cumbersome expressions of limited practical use or is achieved indirectly
from certain expectation values by invoking the cluster decomposition property.

In particular, let |g) be an eigenstate of H and, simultaneously, an eigenstate of
IT* with eigenvalue equal to one, i.e. IT*|g) = |g). Since the parity operators mu-
tually anticommute ({I1%,ITP} = 24, g), it follows that the state I1* |¢) has the same
energy but opposite parity with respect to I, i.e. IT'TI* |g) = —I17 |g). States with
different parities can be constructed through superpositions of states above and thus
it is possible to calculate the ground state expectation value of operators O breaking
one symmetry of the Hamiltonian by choosing a suitable ground state. For instance,
for an eigenstate |g) of IT*, the magnetization in the x direction can be calculated as
(gl o |g). On the other hand, the magnetization in the z direction can be evaluated

on the state |§) = %(1 +1IT17) |g) and is equal to (g| o7 1) = (g] oF1I® 1g)-

6.3 Translational invariance and the ground state structure

Let us examine the structure of the ground states of the studied systems on the basis
of general arguments. At the classical point A = 0 the topological frustration does
not allow for every spin to point oppositely to its nearest neighbors. Instead, the
ground space is 2N-fold degenerate, spanned by the "kink states", which have a
single ferromagnetic bond (two spins aligned in the same direction), i.e. the "kink",
and N — 1 antiferromagnetic bonds (spins aligned in opposite directions). We denote
by |j) the kink state in which the ferromagnetic bond is between sites j and j + 1, with
(jlof |j) = 1, while the kink state that we obtain flipping all the spins, i.e. IT* |), has
(jIIFFofTI# [j) = —1. Above the states with a single kink there is an energy gap
of order unity separating them from the states with three kinks (due to odd N an
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even number of kinks is not allowed). At higher energies, one finds bands with a
progressively growing number of kinks separated by order of unity gaps.

By turning on a small coupling A in eq. (6.1), the degenerate states typically split
in energy. For small A (much smaller than the gap between the two lowest energy
bands), the ground state will be described accurately within the single kink sub-
space. Assuming, thus, |[A| < 1 and neglecting, for the moment, the states with
more kinks, because of translational invariance we write the ground states as

1
Is,)=—=Y &P |j), II%|s,)=—=Y ePI1I?|j). (6.2)
p Z 7 p \/N ]_Z; J

Here p = 27tk/N, with k running over integers from 0 to N — 1, is the lattice mo-
mentum, whose quantization is a result of periodic boundary conditions.

For progressively larger A, the ground state will acquire contributions from states
with more kinks. Because of the translational invariance, the states can still be la-
beled by their momentum p. To describe their structure let us introduce the trans-
lation operator T [2], a unitary operator that shifts cyclically the spins by one lattice
site, i.e. T+0 T=o0f4, for @ = x, v,z (see also Appendix C.3). The eigenvalues €'’ of
the translatlon operator fall on the unit circle, where the angle p defines the momen-
tum of the state. Now, for any eigenstate of the model with momentum p, ground
state in particular, the contributions coming from the subspaces with different num-
ber of kinks can be separated. For any state |B) = |B1,B2,...,BN) = ®jli1 1Bi),
where |B;) € {|+),|—)} are eigenstates of the Pauli operator ™, we can construct
the translationally invariant state

1B,p) \F Z e MT|B), (6.3)

with momentum p. For instance, the states |s,) in (6.2) are given by |B) = |+ — +
—...4+ —+) = |[N) (we have |j) = (T")/ |N)). We can write then any ground state
|gp) of H with momentum p as

Igp) = ;Cﬁ B.p). (6.4)

where the sum is over all different, and not equivalent by translation, states |f), and
the normalization implies Y g lcg|? = 1. Here we say that two states, |B1) and |B2),
are not equivalent by translation if |81) # TX|B,) for any integer k. For instance,
the states [s,) in (6.2) are given by cg = 1 for [B) = [+ —+ —...+ —+) = [N) and
cg = 0 for states |B) with more than one kink. Finally, we note that because of the
symmetries of the model, the states |g,) and IT* |g,,) are orthogonal, but have the
same energy. Hence, the ground-state manifold of the Hamiltonian in eq. (6.1) will
be spanned by a certain number of pairs |g,) and IT* [g,).

For a small A compared to the energy gap at the classical point, i.e. for [A| < 1,in
the ground state (6.4) the contribution of the states |B, p), and therefore the overlap
cp, is expected to decrease fast with the number of kinks in the state |B).

6.4 Matrix elements of local operators

In order to discuss local order we study the possible values of matrix elements of
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local operators between different contributions in the ground state decomposition
(6.4). Let us first neglect the contributions from the states with more than one kink
and focus on one-kink subspace only. Afterwards, we are going to generalize the
result to an arbitrary finite number of kinks. At this point let us recall that by local
operators we mean all operators having support over a finite range of lattice sites,
not scaling with N. Due to translation invariance, without losing generality we can
assume that the operator has support over the first L sites (for some fixed integer
L). Moreover, taking into account that Pauli spin operators together with the unit
operator provide a basis at a single site, we have that a local operator can always
be written as a linear combination of a finite number of monomials in the Pauli
operators 07052 ...07%, where ay, a2, ..., o, € {0,x,y,z} and cT]Q = 1. Thus, we can
focus only on monomials in Pauli operators. Furthermore, each single monomial
either commutes or anticommutes with a given parity operator. We are interested
only in monomials that anticommute with some of the parity operators, whose non-
zero expectation value would signal a breaking of a Hamiltonian symmetry. All such
monomials fall into one of the two categories, a) and b), in the following theorem,
that we prove:

Theorem 1. Let A = 07'05* ... 0} " be a product of Pauli operators, for some integer L. Let
us consider two states (not necessarily different) of the form as in eq. (6.2), |sp,) and |sp,),
and let us consider arbitrary superpositions |g;) = (uj1+ v;I1%) [sy,), for j = 1,2, where
[uj|? + |vj|* = 1. We have:

a) if Ais such that a; € {0,x} for all sites j € {1,2,...,L}, with aj = x for an odd
number of sites j, then

G
. 6.5
11 4152) | < g 5
b) ifin A there is at least one site j € {1,2...,L} for which wj € {y,z}, then
C
(g1 Alg2) | < - 6.6)

Here Cy and Cy are positive constants independent of N.

Note that the first term in (6.5) is well defined, since, by the quantization of the
momenta, with N being odd and finite, we cannot have p; — p» = 7. The proof
of the theorem takes into account that in the kink states apart from the kink there
is Néel order, while the contributions of the kinks can be bounded. A more formal
proof is provided in Appendix E, but its basic argument is the following.

In case 1), the operator A commutes with IT* and hence the evaluation of (g1| A |¢2)
reduces to the evaluation of (sp,| A|sp,). Moreover, in this case, the kink states are
also eigenstates of A, thus only matrix elements between the same kink state are
different from zero and we have

1 N
(spu| Alsp,) = Ze (1Al - (6.7)
]:1
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For j < L, A acts on a Neel state and we have (j| A |j) = c(—1)/, for some constant
c € {—1,1}. The first term in eq. (6.5) is the result of inserting the above expectation
in eq. (6.7) for the whole sum, while the second term is a correction due to the first L
elements in the sum differing from the rest.

In the case b) we have to consider two different situations. If the number of sites
with a; € {y, z} is even, the operator A commutes with I'T* and thus the evaluation
of (g1| A|g2) reduces to the evaluation of (s, | A|sp,), but the kink states are no
more eigenstates of A. On the contrary, since the operator A flips some spins, the
matrix elements between the same kink state vanish. Moreover, if the kink is outside
the support of A, the matrix elements (j| A |l) also vanish because of orthogonality.
Thus, we have

N
(sp| Alspn) = Z e Ay (6.8)

where the terms with L < j,I < N vanish and we are left with, at most, (L + 1)2
terms of order one, suppressed by the overall factor 1/N.

On the other hand, if the number of sites with a; € {y,z} is odd, the operator A
anticommutes with IT* and hence the evaluation of (g1| A [g2) reduces to the eval-
uation of (sp, | AIT* |s,). Analogously to the previous case we recognize that in the
sum

N
(sp, | AIT? [sp,) = Z H{pi=ph) (j] ATIZ 1), (6.9)

there is at most (L + 1)? non-vanishing terms, which are of order one and are sup-
pressed by an overall factor that scales with the length of the ring.

The theorem can be generalized straightforwardly to the states with more kinks
as follows.

Theorem 2. Let A = ¢)'0,*...0}" be a product of Pauli operators, for some integer L. Let
us consider two states of the type as in eq. (6.3), |B1, p1) and | Bz, p2), with momentum p;
and p, respectively.
a) Let A be such that a; € {0,x} for all sites j € {1,2,...,L}, with a; = x for an odd
number of sites j. If |B1) and |Bz) are different, and not equivalent by translation,
then

(B1,p1| A|B2, p2) = 0. (6.10)
If |B1) = |B2) then

C1

—_ 6.11
N|cos 2522 P2’ (611

[ (B, p1l A B2, p2) | <

b) Let A be such that there is at least one site j € {1,2...,L} for which a; € {y,z}.
Then

[ {B1,p1| A B2, p2) | < % (6.12)

Here Cy and C; are positive constants independent of N, that depend only on L and the
number of ferromagnetic bonds in the states |B1) and |B2).
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The proof of Theorem 2 is similar to the one of Theorem 1, but more involved.
The details are also given in Appendix E.

6.5 Local order in the ground state

Based on the derived theorems here we discuss the local order in the ground state,
depending on the ground state momenta. The various ground states, labeled by
momentum and parity, can be followed from the classical point A = 0 to a finite
A perturbatively, and represented in terms of states with a progressively growing
number of domain wall states. With generic boundary conditions, at some critical
point A, # 0 the system will undergo a quantum phase transition, characterized by a
change in the ground state properties, as well as by the non-analytic behavior of the
ground state energy (density) in the thermodynamic limit [10]. Since this quantity is
not sensitive to the choice of boundary conditions or the odd number of lattice sites,
the phase transition point cannot be moved by applying FBC. However, a system can
also cross smaller, non-extensive, discontinuities (boundary phase transitions), such
as the one discussed in [2], due to a GS level crossing, which also mark a change in
the ground state order. In any case, the order, or lack thereof, being a characteristic
property of a phase between critical points, it is sufficient to study it in a small finite
interval of A to determine the nature of a given phase.

We make a natural assumption that in the regime |A| < 1 the behavior of the lo-
cal order is captured within the subspace spanned by states with a finite, bounded,
although arbitrary, number of kinks. We note, for example, that the properties of the
magnetization in the exactly solvable quantum XY chain can be captured already
within the one-kink subspace [1, 2] (see Appendix C.7). We discuss also the contri-
bution of the states with more kinks, since some interactions can involve preferably
such states, and show that they do not change the obtained picture about the relation
between the ground state momenta and local order.

If the system’s ground space is only two-fold degenerate, i.e. if there exist only
a particular momentum p(N) (allowing for system size dependence), with the asso-
ciated ground states |g,(y)) and IT* [g,(n)), the theorems imply that the expectation
values of local operators that break a Hamiltonian symmetry are O(N~!). In partic-
ular, they vanish in the thermodynamic limit.

There is a simple explanation for this result if we look at the expectation value
of o' The states |&p(ny) and TT7 [g,(y)) have the same eigenvalue of the translation
operator T. If the ground space is only two-fold degenerate, the consequence is that
the expectation value of 7 = (T*)io3; T/ is independent of j in any ground state. The
leading interaction in the model being antiferromagnetic, the ferromagnetic order
should not survive in the thermodynamic limit, so it vanishes.

The situation becomes more complex if the system admits a larger ground state
degeneracy. Let us say that the system has 2d-fold degenerate ground space and de-
note the ground state momenta by p1(N), p2(N), ... ps(N), whose quantized value
depends on the system size, and by pj, p5, ..., p; the values they tend to in the ther-
modynamic limit, respectively. Then, unless p;, — p;, = 7 for some n and m, the
theorems imply again that there is no local parameters. On the other hand, if it is the
case that p;, — p;, = 7 for some n and m, then we can construct a ground state such
as

g(N)) = %ﬂgm(m +e?1g, o), (6.13)
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for some phase 6, which exhibits a non-zero order parameter. To explain this it is
sufficient to focus on the one-kink subspace, where [g,(n)) = [sp(n))- Applying the
procedure as in the proof of the Theorem 1 we find the site-dependent magnetization

(3(N)[o]g(N)) = E@T ﬁfﬁiﬁ%ﬁ%@ +O(N') (614)

where the phase €’ is related to 6, but its explicit expression is not needed. Since
pn(N) — pu(N) = 7+ O(N1), in the denominator the correction compensates the
factor N and produces a nonvanishing value of the magnetization in the thermody-
namic limit. Moreover, in the numerator it forces a slowly varying magnetization
profile. In fact, while for neighboring sites o7 is almost perfectly staggered, over the
whole chain the 1/ N correction adds up so that the amplitude of the order parame-
ter varies and even locally vanishes at some points. Thus, the one in eq. (6.14) isnot a
standard AFM order and the phase 6’ (9) selects a breaking of translational symmetry
(due to a ground state choice that is not an eigenstate of the translation operator). A
nice example of this phenomenology was discussed for the quantum XY chain with
two AFM interactions in Chapter 4. There, the model exhibits a four-fold degenerate
ground space, with p1(N) = —po(N) = 71/2 + (—=1)N+1/27x /2N so from (6.14) we
get approximately the magnetization (g| o7 [g) = 2(—1)/ cos (£j+0"), which was
termed incommensurate antiferromagnetic order.

Finally, we should also remark that it is possible for the ground state degeneracy
to depend on the system size and that a finite order parameter can be reached only
through a precise sequence of system sizes. This is a peculiar phenomenon in the
topologically frustrated models that has no counterpart in the unfrustrated ones.
We are going to provide an example for this phenomenology, given by the n-Cluster-
Ising chains. Before that, we examine the models with only two-body interactions.

6.6 Example: Models with two-body interactions

Let us consider models with only two-body interactions, both nearest-neighbor and
beyond. Such models can be specified by interactions

_ Yy Y z,.z 2z o
Hj = mojoja +1ioiofn+ ), ), uiojoly, (6.15)
1=23,...0=X,Y,Z

in (6.1), where yj are the coefficients that describe the relative strength within the
subleading interactions. In a realistic Hamiltonian it is expected that the interac-
tions decay with distance (|uf| > [uf,,]), and in order not to deal with long-range
interacting systems, which are known to have a peculiar phenomenology [164-167],
we assume there is some cut-off value of I. We show that as long as the model in
(6.15) is a small perturbation of the quantum XY chain, defined by || # 1 and
zero remaining couplings, it shows the same phenomenology. The properties of the
topologically frustrated quantum XY chain [1, 2] are thus not fine-tuned.

For this task we assume |A| < 1 and diagonalize the Hamiltonian within the one-
kink subspace, i.e. we perform the lowest order-perturbation theory, and determine
the ground state momentum. We also assume that the XY chain coupling is much
stronger than the others, i.e. |pu#| < [u)| forl # lora #y.
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It’s easy to see that in the one-kink subspace the nearest neighbor interactions act
by translating the kink by two sites, i.e.

N
Y ofof, =T+ (T"?, a=y,z (6.16)
j=1

The interactions of the x-components of spins for different I only shift the energy of
the states with different number of kinks and we neglect them. Finally, the matrix
elements of the interactions Z]-I\il ojof,, for « = y,z beyond the nearest neighbor
vanish in the one-kink subspace. Because of the latter the result will also hold when
the couplings y¥ for « = i,z and | > 1 are comparable to 3.

It follows then that the energy of the translationally invariant states |s,), IT* |s;,),
is

Ep = —(N —2) +2(p{ + 45 cos(2p). (6.17)

If 4 < 0 the ground state manifold is two-fold degenerate (with the momentum
p = 0) and there is no local order in the thermodynamic limit. On the other hand, for
] > 0 the degeneracy is four-fold, with ground state momenta p1(N) = —p2(N) =
71/2 + (—1)N+t1/271 /2N and the system exhibits incommensurate AFM order, dis-
cussed before. It follows that perturbing the XY chain with additional two-body
interactions does not change its properties.

6.7 Example: Cluster-Ising models

To provide a specific example of a system where the existence of local order de-
pends on the particular sequence of (odd) system sizes followed towards the ther-
modynamic limit, we consider the exactly solvable one dimensional n-Cluster-Ising
models, defined by the Hamiltonian

™M=

N
H= U‘]?CO';(+1—|—AZU‘], (U]‘Z+10‘]"Z+2 e (7]Z+n)0—j+n+1/ (618)
j=1

j=1

with n an even number (in order to commute with all the parity operators). While
the solution of such models, obtained using an exact mapping to free fermions, is
known for a few years [161-163, 168-170], under FBC a few subtleties have to be
taken into account and are presented in Appendix F.

With FBC, we find that the ground state degeneracy of the n-Cluster-Ising models
depends on the greatest common divisor (gcd) between the system size N and the
size n + 2 of the cluster in the many-body interactions. In particular, denoting g =
gcd(N,n+2), for A € (0,1) there are 4¢ ground states, while for A € (—1,0) the
degeneracy is halved (at A = 0 there is a level crossing, analogous to the one in the
XY chain [2]). The ground state degeneracy of the topologically frustrated n-Cluster-
Ising models is thus another example [171-173] how the question of divisibility of
numbers can appear in quantum mechanics.

The degeneracy can be understood on the basis of the symmetries of the model.
The details are given in Appendix F, while the main points are the following. The
Hamiltonian (6.18) can be written as a sum of ¢ commuting distinct Hamiltonians.
Namely,

H=HY +H® 4+ +H®, (6.19)
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FIGURE 6.1: The parameters in Hamiltonian (6.22) are set to A1 =

—0.5, Ay = —0.25 and the (odd) system sizes range from N = 5 to

N = 13. The ground state manifold is found to be two fold degen-

erate. Accordingly, the ground state expectation values of different
operators decay with N towards zero.

where H®) = (TH*H @Tk fork = 1,2,..., ¢ — 1, the different Hamiltonians H (k)
mutually commute ((H*), H!)] = 0) and they are invariant under translations by g
lattice sites([H (k) T8 ] = 0). Due to frustration, the ground state of H cannot mini-
mize the energy of all H*). On the other hand, it can be chosen as a ground state
of ¢ — 1 Hamiltonians H¥) and the first excited state of the remaining one. Due to
g possible choices of the excited one, the ground state degeneracy of H is at least
g-fold. Since the Hamiltonians H*) commute with TS it can be shown that this de-
generacy allows for the shift of the momentum by 27t/¢ in the ground space: If p is
the ground state momentum, so is p + 271/ ¢. Going further, the mirror symmetry of
H (the symmetry under the transformation ojf =0t for « = x,y,z and all j) implies
that for each ground state with momentum p there is a ground state with momen-
tum —p. Now, there are two-possible cases. The first one is that for any ground state
momentum p the momentum —p can be obtained by adding the certain number of
increments 271/ g to p. The second case is that this is not possible. In the first case the
mirror symmetry does not bring anything new so there are g distinct ground state
momenta, while in the second there are 2¢ distinct ground state momenta. Taking
into account also the parity symmetries, it follows that the ground state degeneracy
is 2g in the first case, and 4g in the second. It requires the exact solution to see that
the first case happens for A < 0, and the second for A > 0.

Thus, for n = 0,2 there are 2 ground states for negative A and 4 for positive one,
for all odd N. The situation changes abruptly if we consider n = 4. Let us focus on
A > 0 and take into account separately two chain length sequences, N = 12M + 1
and N = 12M + 3 for integers M.

For N = 12M + 1 the ground space is 4-fold degenerate and the momenta are
pi(N) = Z(1— %) and p2(N) = —p1(N). Letting M — oo we have p; — p; =
% # m and thus there is no finite local order parameters in the thermodynamic limit
for these chain lengths. On the other hand, for N = 12M + 3 the ground space is
12-fold degenerate, with momenta p;(N) = (2j+1)Z — (=1)/J5 forj = 1,2,...,6.
In this case we have, for instance, p; — p; = 7 so the system can exhibit a non-zero

2

magnetization. From (6.14) we find the magnetization ((7]" ) = 2(—1) cos (£j+9),

where the phase factor 8 depends on the ground state choice.
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FIGURE 6.2: The parameters in Hamiltonian (6.22) are set to A; =
0.5, A, = 0.25 and the (odd) system sizes range from N = 5 to
N = 13. The ground state manifold is found to be four fold de-
generate, with the ground state momenta p;(N) = —pa(N) =
/2 + (—1)<N+1)/27T/2N, as in the quantum XY chain with both
interactions AFM [2]. The absolute value of the matrix elements
(p1(N),IT* = 1| O |p2(N),IT* = —1) (the quantum numbers of the
ground states are indicated) is shown, for different operators O. Since

p1(N) — p2(N) N2 7 thereisa ground state choice that exhibits the
incommensurate AFM order, as the non-zero value for O = (zj in the
plot illustrates.

6.8 Example: Exact numerical diagonalization of more com-
plicated models

For the end, to corroborate our analytical results we are going to provide exact nu-
merical results on more complicated models with FBC. Diagonalizing a model of
interest simultaneously with one of the parity operators and the translation oper-
ator T it is possible to label the ground states by parity and momentum. It is not
obvious how to construct T numerically. For this task we use a representation for T
from [174], that reads

T =0NN-1QN-1,N-2---Q32Q21, (6.20)
where
1
Qi1 = 5 <1 + ) (Tf‘(ff‘). (6.21)
a=x,y,z

are the permutation operators between two sites. In this way the translation operator
is expressed in terms of spin operators and can be implemented numerically.
We are going to examine two models. The first one is given by the Hamiltonian

N N N
_ y Y y y
H= Za]?‘(f]?ﬁrl +Aq Za] 0l g A2 Z‘Tj (07410712)07, 5, (6.22)
=i =i =i

that includes the dominant Ising interaction in the x-direction, a subleading Ising
interaction in the y direction and an additional four-body interaction. We have diag-
onalized the model for (odd) system sizes ranging from N = 5 to N = 13. Further-
more, we have focused on the expectation value of the spin operators 7, O‘jy and of
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FIGURE 6.3: The parameters in (6.23) are set to A; = 0.5, A, = 0.25
and the (odd) system sizes range from N = 5 to N = 13. The ground
state manifold is found to be four fold degenerate, with the ground
state momenta p1(N), p2(N) given in the text. The absolute value of
the matrix elements (p;(N),IT* = 1|O|pa(N),I1* = —1) (the quan-
tum numbers of the ground states are indicated) is shown, for differ-
ent operators O. The difference p1(N) — p2(N) does not go to 7 for
N — oo, and accordingly local order decays to zero.

the operator 0]371(7]20'] 1 which are the order parameter operators associated to dif-
ferent interactions in (6.22). The results in Fig. 6.1 and 6.2 show, in accordance with
our analytical results, that depending on the ground state momenta the local order
goes to zero with N or there is a ground state choice with a finite (incommensurate
AFM) order.

The second model we examine is obtained by adding an additional nearest neigh-
bor interaction to the Cluster-Ising Hamiltonian in (6.18) for n = 2. It is given by the

Hamiltonian

H= Za +A12cf 07110742) 07, 3 +A22 (6.23)
=

We have set the parameters to A; = 0.5 and A, = 0.25. Diagonalizing the model for
(odd) system sizes ranging from N = 5 to N = 13 we find the same ground state
momenta (and degeneracy) as in the model obtained by setting A» = 0 and keeping
the same A, that we have solved analytically. The ground state momentum is given

by

T 1y, NmodB8=1
51 T
24+ = N d 8=3
pi(N) = o " s YO (6.24)
I T IN’ N mod 8=5
T+4v, Nmods8=7.

and p2(N) = —p1(N). The difference p1(N) — p2(N) goes to 71/2 for N — oo, which
is different from 71. Accordingly, the local order vanishes in the thermodynamic
limit. The results in Fig. 6.3 illustrate this property.
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6.9 Conclusions

We have studied generic Hamiltonians that commute with all three parity operators
and examined the expectation values of local operators that break a Hamiltonian
(parity) symmetry. With a dominant antiferromagnetic Ising interaction and in a
setting that induces topological frustration we have shown that there are two pos-
sibilities: a) The expectation values of all such local operators decay algebraically,
or faster, with the system size and vanish in the thermodynamic limit. b) There is
a ground state choice that admits a finite magnetic order, but at the price of break-
ing the translational invariance. Which of the two possibilities is realized can also
depend on the choice of the subsequence of (odd) chain lengths followed towards
infinity, as the Cluster-Ising models demonstrate. We conclude that FBC are special
for generic systems: since a perfect AFM order is not compatible with them, either
the system disorders or spontaneously breaks translational symmetry. While these
findings are probably not robust against a single ferromagnetic defect, we should
stress once more that in Chapter 5 it was shown that the standard AFM order does
not reappear in presence of at least one AFM defect, because, following also [67],
FBC are at the verge of a phase transition and an AFM defect pushes the system into
a phase that is either disordered or incommensurate. These results are intuitive from
one side, but surprising from the point of view that the onset of local order is sup-
posed to be independent from the applied boundary conditions and show once more
that frustrated systems (even weakly frustrated ones) belong to a different class of
systems altogether.
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Chapter 7

Topological Frustration can modify
a Quantum Phase Transition

Ginzburg-Landau theory [53, 54] of continuous phase transitions implicitly assumes
that microscopic changes are negligible in determining the thermodynamic proper-
ties of the system. In this chapter we provide an example that clearly contrasts with
this assumption. We show that topological frustration can destroy local order at both
sides of a continuous quantum phase transition, by considering the 2-Cluster Ising
chain with frustrated boundary conditions. While with other boundary conditions
each of two phases is characterized by its own local order parameter, with frustra-
tion no local order can survive. We construct string order parameters to distinguish
the two phases, but having proved that the transition cannot be characterized by
local order parameters, topological frustration has modified its nature. This chapter
is based on [7]

7.1 Introduction

In the previous chapters we have seen that topological frustration (TF) can destroy
and modify local order. Here we point out the existence of an even more surpris-
ing effect associated with TF than in the previous chapters. Namely, we investigate
the case in which the orders on both sides of a second order quantum phase transi-
tion (QPT) are "staggered" and thus both incompatible with the frustrated boundary
conditions (FBC). We show that, in some cases, FBC generate TF that prevents the
emergence of any local order, as quantified by observables spreading over a finite
support and breaking a Hamiltonian symmetry and hence the system remains lo-
cally disordered across the QPT. Since the scaling dimensions of local observables
close to the phase transition are usually one of the most important quantities to de-
termine the universality class at criticality [175], we have that, without local order,
the quantum phase transition changes its nature in presence of TF with respect to
the other physical situations.

We discover this phenomenology by considering the 2-Cluster Ising chain, an
exactly solvable model. Although frustration can prevent the establishment of any
local order, we expect that the singularity at the QPT indeed signals a rearrangement
of the system, although on lengths scaling like the total system size. Exploiting the
analytical solvability of the model in the example we consider, we prove the exis-
tence and provide the explicit expressions for string order parameters that replace
the local ones in distinguishing the two phases. In this way, we provide a path for
an extension of the Ginzburg-Landau theory, in the sense that the transition indeed
separates different types of global orders. Thus, with TF the transition becomes akin
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FIGURE 7.1: Relevant phase diagram of the 2-Cluster Ising model
with Frustrated Boundary Conditions and its comparison with the
established phase diagram with other BC.

to a topological one, although we are not able to provide a definite characterization
in this respect.

7.2 The Model

We consider the so-called 2-Cluster Ising model, in which a short-range two-body
Ising interaction competes with a cluster term acting simultaneously on four con-
tiguous spins [170]:

N N
H = cos¢ Z; 070} +sing Z; 07 107071107, (7.1)
= =
N N
= cos¢ ) 0j0j 4 +sing Y 0i0j41 . (7.2)
j=1 j=1

Here and in the following ¢ (« = x,y, z) stand for Pauli’s operators on the j-th spin,

O;= cT]y_laj?‘ (T]-y 11 is the cluster operator [163] that allows to rewrite the cluster interac-
tion term in a form resembling a two body one, ¢ is a parameter that allows to tune
the relative weight between the two terms and the periodic boundary conditions im-
ply that o7, \, = (7]?‘, as well as O;j;y = O;. Note that different cluster operators are
mutually commuting ([O;, O] = 0).

Usually, this model displays a second-order phase transition between two dif-
ferent ordered phases [170], depending on whether the Ising or the cluster terms
dominate. However, by applying FBC (so setting N to be an odd number), when the
interactions favor an antiferromagnetic alignment, TF sets in and the phase diagram
modifies accordingly, as we will discuss and is previewed by the phase diagram in
Fig. 7.1

In addition to the aforementioned quantum phase transition, this model pos-
sesses anticommuting parity symmetries, discussed in section 1.2.3, that are pivotal
in our discussion of local order. Namely, the Hamiltonian in eq. (7.1) is invariant
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under the transformation (7]‘-" > —U]‘-" Va, which implies that, defining the parity op-

erators as IT* = @}, o, we have [H,I1*] = 0 Va. Since we are considering the
case of odd N, different parity operators anti-commute ({I1%,I1f} = 0 for a # ),
implying that each eigenstate of the model is, at least, two-fold degenerate. Indeed,
if |¢) is an eigenstate of H with IT* = 1, the state IT* [) has the same energy, but
IT* = —1. We stress that this symmetry is quite generic with FBC and is typically
violated by the presence of external fields. Its importance is, as in the rest of the the-
sis, that it provides us a framework for symmetry breaking, bypassing the approach
with the symmetry breaking fields, since the ground state degeneracy implies that
any ground state vector breaks one of the invariances of the Hamiltonian and thus
can display a finite magnetization in that direction. We will also use the fact that
the mirror symmetry, which is the invariance under the transformation (7]?" O i’
where k is the generic site of symmetry, implies that eigenstates either have 0 or
-momentum, or they appear as degenerate doublets [2] (see Appendix C.4).

The Hamiltonian in eq. (7.1) also enjoys other properties that are convenient for
our analysis. Indeed, this model can be mapped exactly, although non-locally, to
a free fermionic systems (see Appendix G) and exploiting this fact we can treat
larger systems or even get exact analytical results. Moreover, a duality symmetry,
consisting of the invariance of the Hamiltonian under the simultaneous exchange
¢ <> 5 —¢and i <> Oj, relates the Ising and the nematic phases.

When ¢ € (37, 7F) the dominant interaction favors a ferromagnetic alignment
and thus FBC do not induce any frustration, which sets in only in the remaining part
of the phase diagram. Here, a double degenerate ground state (due to anticommut-
ing parity symmetries) is separated by a finite energy gap from the other states and
in the thermodynamic limit its behavior is indistinguishable from that with open
boundary conditions studied in [170]. At ¢ = 2 there is a quantum phase tran-
sition which separates two differently ordered phases. When the Ising interaction
prevails over the cluster one, i.e. for ¢ € (27, 27), the system shows a ferromagnetic
phase characterized by a non-zero value of the magnetization along x. On the other
side of the critical point, when ¢ € (%”, %”), we have that the system is in a ne-
matic phase identified by the zeroing of the magnetizations in all directions and the
simultaneous rise of a non-vanishing value for the expectation value of the nematic
operator O;.

On the contrary, when ¢ € (0, 5 ), both the cluster and Ising interaction are “anti-
ferromagnetic”, and hence TF is induced in the system. Similarly to the phenomenol-
ogy discussed in Chapter 4, the competition between two frustrated interactions in-
creases the ground state degeneracy to four. Denoting by |p) a ground state vector in
the odd sector of the z-parity with lattice momentum p, the GS manifold is spanned
by four states, two in the odd sector |£p), and two in the even one IT* |+p). The
value of p depends on the value of N mod 8 and takes the value p ~ Z or p ~ 3Z.
These states are surmounted by a band (of single particle) states, with the gap above
the ground state closing as 1/N? for large N.

7.3 Results

7.3.1 Local Order

As in the absence of TF, the ground-state energy displays a critical point when the
relative weights of the two interactions coincide, see Fig. 7.2. On the contrary, several
other physical aspects are completely spoiled. To highlight this fact, among all the
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FIGURE 7.2: (Color online) - Upper Panel: second derivative of the

ground-state energy density (i.e. the energy per site) as function of

¢ for different length of the system. N = 81 Black dot-dashed line,

N = 801 Red solid line, N = 8001 Green Dashed line. Lower Panel:

Dependence of the second derivative of the energy density evaluated
for ¢ = 71/4 on the size of the system N.

elements in the manifold, we focus on two of them that capture two different spatial
dependences of the order parameters,

1) = é(|p>+nx|p>>,
) = —=(Ip)+TF |=p)). 73)

V2

As we wrote before, in the unfrustrated regimes the role of the order parameters
is played by the expectation values of two operators, ¢; and O;. They share the
following properties: 1) they are defined on a finite subset of spins; 2) they commute
with I'T* and anti-commute with I'T*. For an operator K;, satisfying both 1) and 2), we
have that its expectation value in the state |g;) reduces to (g1| Kj |g1) = (p|IT*K; |p)
and, due to translational invariance we recover

(811Kjlg1) = (p|IT*Kn|p) V] (7.4)

Hence, on |g1) the order parameters assume the same value on each site of the sys-
tem. On the contrary, |g2) is not invariant under spatial translation, and we obtain

(82| Kj|g2) = cos(2jp) (—p|IT'Ky |p) - (7.5)

Therefore, on |g») the order parameters show an incommensurate periodic behavior.
Hence, to study the order parameters in the thermodynamic limit it is enough to
analyze the dependence on N of F; (Ky) = (p|IT*Ky |p) and F>(Ky) = (—p|IT*Ky |p).
This can be done borrowing the techniques developed in [1, 2] (chapters 3 and 4) and
applied to this case in Appendix G. The general behavior for the magnetic (Ky = o3;)
and the nematic (Ky = Oy = 03, ,0¥0}) order parameter for ¢ € (0, F) is depicted
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FIGURE 7.3: (Color online) - Dependence of F; (Ky) = (p|IT*Ky |p)

(red dots) and F>(Ky) = (—p|IT*Ky |p) (black square) on the size of

the system N at ¢ = 71/8 for different choices of Ky: upper panel

Ky = oy, displaying a power law behavior; lower panel Ky = Oy =

‘71}\,]71‘713\(]‘7% , showing an exponential decay. The data runs from N =9
to N = 505.

in Fig. 7.3 as function of the (inverse) size of the system.

In accordance with the unfrustrated case, in the thermodynamic limit we would
expect the system to be in a magnetic phase in which either F;(c}) or F(0%,) as-
sumes a non-zero value, while both F; (Oy) and F,(Oy) vanish. However, while the
exponential decay of the nematic order parameter is in agreement with this picture,
Fig. 7.3 clearly shows that, in the thermodynamic limit, there is also no magnetic
order since both F; (03;) and F,(cy;) go to zero linearly with the inverse of the size of
the system. Therefore, while in the non-frustrated models the system shows, in the
region ¢ € (0, §), an antiferromagnetic order, the introduction of TF in the system
induces a zeroing of the magnetic order parameter. In Appendix G we also show
that this behavior survives the introduction of an AFM defect in the chain, proving,
in accordance with Chapter 5, that the phenomenology we discuss is not restricted
to purely translationally invariant systems. Moreover, recalling the duality symme-
try held by the system, the behavior of the magnetic order parameter for ¢ € (0, %)
is mirrored by the nematic order parameter for ¢ € (%, 7). Hence, when FBC are
imposed, the order parameters characterizing the two macroscopic phases of the un-
frustrated models vanish at both sides of the critical point, making them unable to
characterize the phase transition.

But we can go further. Indeed, we can prove that not only the magnetization
and the nematic order parameter both vanish in both phases, but that this result ex-
tends to any possible local order parameter, i.e. to any expectation value of a local
observable that anticommutes with at least one of the parity operators I1*. In fact,
in Chapter 6, we have shown that a wide class of topologically frustrated models, to
which the 2-Cluster Ising also belongs, cannot exhibit a finite local order parameter
in the vicinity of the classical antiferromagnetic point (¢ = 0) unless the difference
between the momenta of two ground states tends to &7t in the thermodynamic limit.
Since in our case we have that this difference tends to 7t/2, the expectation values of
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all local observables that can play the role of the order parameter vanish in the ther-
modynamic limit close to the point ¢ = 0 and, hence, we expect that they stay equal
to zero until the quantum critical point at ¢ = 71/4 is reached. Moreover, apply-
ing the duality arguments, it follows that the expectation values of local observables
must vanish also in the vicinity of the point ¢ = 71/2 and therefore also in the whole
region ¢ = (7r/4,7/2). As a consequence, since the expectation value of all such
local observables vanishes at both sides of the critical point, there is no local order
parameter that can characterize the quantum phase transition at either sides. To our
knowledge, this is the first case in which topological frustration, and hence a change
in the boundary conditions of a system, affects the thermodynamic phase of a spin
system so deeply up to completely remove the presence of local order parameters.

7.3.2 String order

However, the result of Chapter 6 does not apply to operators whose support scales
with the length of the chain and this fact discloses the possibility that the two macro-
scopic phases can be distinguished by string order parameters, whose presence is
normally associated with some kind of phases with topological order [161, 163, 170,
176]. We have not been able to identify a strong geometric criterion to define the
string order connected with TF, but, exploiting the microscopical structure of the
model under consideration, we have indeed succeeded in constructing two string
operators that suit our needs, namely:

Z

(N) I[(N)

M = (03 203 1); N =[] (Os—204-1), (7.6)
k k=1

Il
—_

where I(N) depends on the length of the chain and it is equal to X for Nmod 4 = 1
and to 257 — 1 in case of Nmod4 = 3. Both operators commute with all the parity
operators IT*. It is easy to see that, defining F1,(K) = (g1,2/K|g1,2) for a generic
string operator K for which [, IT*] = 0 Va, we have F; (K) =F,(K).

These expectation values can be studied analytically using the asymptotic prop-
erties of determinants studied in [3] (see Appendix G), that are the subject of Chapter

9, and for K = M, N in the region ¢ € (0, 71/4) we obtain

AWM E ()N ),
AW Y22 0. (7.7)

In the same region the finite-size results for F;(M) and F;(N) are depicted in
Fig. 7.4, where it can be seen that the second goes to zero algebraically with the
system size. In the thermodynamic limit the expectation value of the string oper-
ator goes continuously to zero at ¢ = 71/4, and can thus serve to characterize the
quantum phase transition. This picture of the continuous quantum phase transition
is coherent with the one inferred from the second derivative of the ground state en-
ergy. Of course, taking into account that M and N are one image of the other under
the duality transformation, their behavior is mirrored in the region ¢ € (7t/4, 7w/2).
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7.4 Conclusions

We have shown how the presence of a TF, induced by the assumption of FBC in a
system with antiferromagnetic interactions, can change the nature of the phase tran-
sition in a one-dimensional spin system. While in absence of such kind of frustration,
the phases at different sides of the critical point admit two different (staggered) local
order parameters, when TF comes into play such quantities vanish in the thermo-
dynamic limit. And this fact is not limited to the expectation value of the operators
associated to the order parameters without frustration, but extends to all the opera-
tors that can act as local order parameters.

These results lead to the rethinking within the standard approach to phase tran-
sitions. Indeed, usually, approaching a phase transition, only one length scale be-
comes important: that of the (dominant) correlation length (or the inverse mass
gap). This is because the system size is already considered bigger than any other
length scale and thus irrelevant. However, this is an idealization, since in practice it
is much easier to reach a very large correlation length than to have a truly infinite
system. Thus, approaching a critical point, it would be important to also consider
scaling quantities that include the size of the system. While under all other bound-
ary conditions this turns out not to be necessary, in presence of FBC this is not the
case, as also already pointed out in Ref. [76], and the system size suppresses any
local order. Nonetheless, the divergences of the correlation length that causes the
discontinuity in the second derivative of the free energy can still be harvested to de-
fine an order (and disorder) parameter with different behaviors across the transition,
but requires an observable spreading through the whole loop, that is, a string order.
While we cannot guarantee that the string parameters that we defined in eq. (7.6)
are the optimal ones to classify the phases, nor we can provide an interpretation
for what they represent in this way, we have shown that the traditional elements
of GLT mix differently in the presence of TF and provide a completely unexpected
phenomenology.

From the results in Chapter 4, we can see that the quantum XY chain does not
posses the phenomenology discovered here for the 2-Cluster Ising chain. In the
quantum XY chain (4.1) at different sides of the QPT at ¢ = 71/4, on the other hand,
there are ground states with different incommensurate AFM orders. From the re-
sults in Chapter 6 we can see that for n-Cluster Ising models for other (even) n it
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can, in general, depend on the choice of the subsequence of (odd) system sizes fol-
lowed towards infinity whether we will have the phenomenology as in the quantum
XY chain or as in the 2-Cluster Ising model here. It would be interesting to explore
further which systems posses the phenomenology discussed here and which don't.

Before concluding, we wish to underline that the results from this chapter are
resilient to the presence of a localized AFM defect in the Hamiltonian, as we show
in Appendix G, thus proving that the phenomenon we have discussed here cannot
be considered simply as resulting from fine-tuning in the system parameters.
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Chapter 8

Topological Frustration does not
affect Topological Phases

In the previous chapters we have shown that one-dimensional antiferromagnetic
spin models with frustrated boundary conditions, i.e. periodic boundary conditions
with an odd number of elements, may show very peculiar behavior. Indeed, the
presence of frustrated boundary conditions can affect local magnetic orders and sys-
tem’s quantum phase transitions. Motivated by these results, in this chapter we
analyze the effects of the introduction of frustrated boundary conditions on several
models supporting (symmetry protected) topological order, and compare our results
with the ones obtained in other settings. We find that none of the analyzed topolog-
ical order phases are altered by frustrated boundary conditions. This observation
leads naturally to the conjecture that topological phases of one-dimensional systems
are in general not affected by topological frustration. This chapter is based on [5].

8.1 Introduction

In the previous century various different classical phases of matter and continuous
phase transitions were classified using the Landau symmetry breaking theory [107,
108]. When physicists begin to turn their attention to quantum phases, the Landau
theory was successfully borrowed to describe also the quantum regime and it was
believed that virtually all phases can be classified in this framework. However, in
the late 1980s it became clear that there are quantum phases beyond the Landau
paradigm and successively the concept of topological order was established [109].
Topological phases [109, 177-179] are quantum phases with different properties from
any symmetry breaking states. They are characterized by the properties such as
the topological ground state degeneracy, non-Abelian geometric phases and long-
range entanglement. For instance, the topological ground state degeneracy depends
on the system’s topology and cannot be lifted by any local perturbations. In one
dimension, only a weaker form of topological order can exist essentially, namely
the Symmetry Protected Topological (SPT) order. [109, 179-183], where topological
properties can occur only if symmetry requirements are imposed on the system and
with the ground states exhibiting only short-range entanglement.

While in this thesis we have found many effects that topological frustration can
have on antiferromagnetic phases of quantum spin chains, nothing has still been
done for phases exhibiting (symmetry protected) topological orders, in which the
system’s topology indeed determines some system’s properties. In the present chap-
ter, our goal is to fill this gap. For this task we focus on several exactly solvable
one-dimensional models known to exhibit the SPT order and analyze the effects of
imposing frustrated boundary conditions on them.
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At first, in Sec. 8.2, we study the so-called Cluster-Ising model [161, 162] that is
a one—dimensional model, in which a three-body cluster interaction competes with
an antiferromagnetic Ising one. Despite its apparent complexity, the model admits
an analytical solution obtained by mapping the spin degrees of freedom into spin-
less fermions using the Jordan-Wigner transformation [91, 149]. Since there is an
interplay between two different types of interactions, the model presents a transi-
tion between a phase dominated by the cluster interaction and one in which the
leading term is the Ising one. While in the second region the system (usually) ad-
mits a magnetically ordered phase, when the cluster interactions dominate over the
antiferromagnetic ones, the model is known to exhibit a symmetry protected topo-
logical order. We will show that, while the magnetic phase is deeply affected by the
rising of topological frustration, the SPT ordered phase is insensitive to frustrated
boundary conditions, a fact that we explain considering simple properties of the
two and three body interactions. The fact that the sensitivity of the model to the
change of boundary conditions is a function of the macroscopic phase and not only
of the model considered, strongly suggests that such a property must extend to all
other models that present SPT ordered phases.

To test such a suggestion we turn, in Sec. 8.3, to the AKLT chain [184, 185], which
is a one-dimensional model, with a SO(3) symmetric Hamiltonian, describing spin-1
degrees of freedom interacting antiferromagnetically. The model supports a unique
ground state (up to boundary state degeneracies), separated from the rest of the
eigenstates by a finite gap, and it exhibits exponentially decaying correlation func-
tions. It is characterized by spins paired into valence-bonds and symmetry protected
topological order [109, 182]. The model with periodic boundary conditions, includ-
ing FBC, has been already studied in details [31, 185] so we simply summarize and
discuss the results relevant for this work, showing that also in this model frustrated
boundary conditions, which induce topological frustration, do not affect the model
and its order.

Finally, in Sec. 8.4 we consider the last of the 1D topological models in our survey,
namely the Kitaev chain [186]. With open boundary conditions, the Kitaev chain is
known to be exactly mappable to the quantum XY chain in a transverse magnetic
field [56, 90], but moving to periodic BC there are some subtleties, that play an im-
portant role when we wish to analyze the effect of frustration. In all cases, the Kitaev
chain can be reduced to a free fermionic problem, and therefore diagonalized analyt-
ically [56, 91]. Exploiting this approach, we highlight that, regardless of the macro-
scopic phase, the Kitaev chain is completely unaltered by moving from an even to
an odd number of sites (or viceversa).

Thus in all models analyzed we find that their symmetry protected topologi-
cal orders are either resilient to the topological frustration imposed by frustrated
boundary conditions, or that the system is such that frustrated boundary conditions
do not introduce any incompatibility in the simultaneous minimization of the local
and global structure of the Hamiltonian. These observations naturally drive us to
conjecture that SPT ordered phases in one dimension are not affected by frustrated
boundary conditions. This result could be, to some extent, counter intuitive. In
fact, it shows that topological phases are not affected by the (real-space) topology
of the system. Most of all, our conjecture places a further clear distinction between
phases characterized by non-global order parameters, as the magnetic and the ne-
matic ones, studied in previous chapters, and topologically ordered ones, at least in
one dimension.
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8.2 The Cluster-Ising model

8.2.1 The Model

Let us start by introducing the Cluster-Ising model. We consider a system made
of spins-3, in which a two-body antiferromagnetic Ising pairing competes with a
three-body cluster interaction. The Hamiltonian of such model reads

= cos¢ Z ofof +sing Z o 1070, (8.1)

where 07, for &« = x,y, z, are the Pauli operators on the j-th spin and the parameter
¢ allows to change the relative weight between the two terms. Since our goal is to
study the effect of topological frustration, we assume periodic boundary conditions

o LN = 0'] and that N is an odd number (N = 2M + 1). Due to the existence of an an-
alytical solution, the family of spin-1/2 cluster models was intensively studied in the
past years [161-163, 168-170, 187]. For the Cluster-Ising model in eq. (8.1) it is well-
known that for ¢ € (—m/4, w/4) the model is in an antiferromagnetic Ising phase,
for ¢ € (371/4,57/4) in a ferromagnetic phase, while for ¢ € (71/4,37/4) and
¢ € (—3m/4,—m/4), where the many-body interactions dominate over the Ising
ones, the model exhibits a symmetry protected topological order. Such order can
be characterized by a non-zero expectation value of the non-local string operator,

defined as .

O(r) = o{o3 ( X cr]Z) 0107 . (8.2)
j=3

Before we start the detailed solution of the model based on the Jordan-Wigner
transformation, let us make some general considerations. Both from the seminal
Toulouse’s works [156, 157] for classical models and from their generalization to
the quantum regime [29, 30], we have that, to determine whether or not a model is
geometrically or topologically frustrated, we need two elements. The first of these
elements is a prototype model, i.e. a model in which frustration is absent. The
second element is a set of local unitary operators, by which we try to reduce the
model under analysis to the prototype one. If it is possible to find such a set of local
unitary operations that map our Ising-like model into the prototype one, then the
system is free from geometrical frustration. Otherwise, we have that the system is
geometrically or topologically frustrated.

In the case of an antiferromagnetic Ising model the prototype model is the model
in which each bond is turned into a ferromagnetic one. Let us now focus on the case
of a one-dimensional lattice with periodic boundary conditions in which all bonds
between neighboring spins are antiferromagnetic. Such model is exactly the Ising
term of the Hamiltonian in eq. (8.1) and can be written as ZN 10707 4. If N is even,
the sign of all the terms ¢'c,; can be inverted simply by 1nvert1ng every second
spin, starting from j = 1, hence reducing it to a purely ferromagnetic Ising model
and thus proving that the model is not frustrated. On the contrary, with odd N,
the system is not bipartite and there is no such transformation, hence proving the
presence of frustration.

Let us now consider the cluster term of the eq. (8.1), i.e. 2] 10'Z ;- Differently
from the Ising case, inverting every single spin of the lattice through a unitary op-
eration generated by the spin operators (ij it is always possible to change the global
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sign of the model. As a consequence, the three-body cluster interaction is not ex-
pected to show any geometrical frustration. This should be contrasted to the case
of the cluster interaction with an even number of sites, such as the 2-Cluster-Ising
chain [163, 170], studied in chapters 6 and 7, which does not have topological order.
According to the argument above, in these cases we expect for the frustration to be
effective and indeed we have proven this to be the case in chapters 6 and 7.

When we have the simultaneous presence of both interactions, arguments like
those just made become more complex. However, in the parameter region in which
the Ising type interaction dominates over the cluster one, taking inspiration from ar-
guments such as adiabatic deformation [188], we expect the system to present signa-
tures of the presence of geometrical frustration. Viceversa, in the region dominated
by cluster-type interaction, these signatures can be expected to be absent. Such re-
gion is expected to show a symmetry protected topological order [161], and therefore
it is expected to be unaffected by the presence of frustration.

Let us now turn to the exact solution of the Cluster-Ising model in presence of
frustrated boundary conditions. It is well known [161, 170] that it can be diagonal-
ized exactly, using the Jordan-Wigner transformation

j ) o + 107 RN e o

S g = (@) 5 &3

1=1 =1

that maps spins into spinless fermions. In the process of diagonalization, of which
the details can be found in Appendix H.1, the Hamiltonian is divided in the two
parity sectors of IT* = ®]’AL1 o7,

4TI 14T 1T 1—TF
H= " —H' "+~ H ——, (8.4)

and in each sector the Hamiltonian can be written in terms of free fermionic opera-

tors ,
HT — Z &g <a2;aq — 2> , (8.5)
ger+
where a, are Bogoliubov fermions. The fermionic momenta 4 in eq. (8.5) belong to
two different sets, respectively ¢ € I't = {3X(k + })} for the even parity sector
(IIF =1)andg € T~ = {ZW”k} for the odd one (IT* = —1), where, in both cases, k
runs over all integers between 0 and N — 1.
To each fermionic momentum is associated an energy, given by

gg =2y/1+sin2¢cos3qg Vq#0,m,
eo  =2(sin¢ + cos¢) g=0eTI", (8.6)
ex  =2(sing —cos¢) g=meTt.

It is worth noting that the momenta 0 € I'~ and 7 € I'" (since we study the case
in which N is odd), are different from the others because: a) they do not have the
corresponding opposite momentum; b) their energies can be negative.

From egs. (8.6) it is easy to determine the ground states of the system starting
from the vacuum of Bogoliubov fermions in the two sectors (|Oi>), which, by con-
struction, have positive parity II* = 1, and taking into account the modes with
negative energy and the parity requirements. We are going to examine the antifer-
romagnetic phase and the cluster phase separately. To compute the ground state



8.2. The Cluster-Ising model 87

expectation of observables it is going to be convenient to use the Majorana fermions,
defined as

A] = C; + Cjs B] = Z(C}- - C]'), (87)

which are related to the spin operators as

j—1 j—1

A= (Qvoi)or, B= (gl)of)ajy. (8.8)

I=1

On the basis of Wick theorem [189-192] the expectation values of observables are
determined by the two-point correlators of Majorana fermions.

Antiferromagnetic phase

In studying the antiferromagnetic phase ¢ € (—7/4, 1/4) we focus on the param-
eter region ¢ € (—m/4,0) without loosing generality since to any ground state
|g(¢)) corresponds the ground state |g(—¢)) = IT* |g(¢)) In particular, the spin-
correlations functions are the same in the two states, (¢(—¢)|oj07,,[g(—¢)) =
(§(¢)| oi0i, [§(¢)), and, similarly, the magnetization (g(¢)| o7 [g(¢)) =
(2(—9)] o7 [g(—¢))-

We find that the ground state degeneracy depends on whether (odd) N is di-
visible by 3. When N is not divisible by 3 the ground state is single, given by
|g) = al |07), corresponding to the energy minimizing mode g = 0. When N is di-
visible by 3 there are three energy minimizing modes, given by g = 0,27/3, —27t/3.
The ground state manifold is thus three-fold degenerate and a general ground state
is a superposition

g) = (wrad + uza% + u3ai%ﬂ) 07), (8.9)

where the normalization 2?21 |u; > = 1is assumed. However, regardless the dimen-
sion of the ground state manifold, it always falls into a single IT* sector, with an
energy gap above it that closes as 1/ N? for large (odd) N.

The Majorana correlators in the ground state (8.9) are found to be

21 . [2m,.
(AjAD, = 81— (2> = |us) sin [ 25— 1)]
0 N L3 N (8.10)
-N [(u}‘uz — wiup)e'sUHD 4 c.c.} sin [g(j - Z)},
21 . [2m,.
(BjBr), = & — 3 (lual? = us ) sin [ 55 = 1)
0 N 3 N (8.11)
o o % 1% (j+1+1) N
N {(uluz uzug)e's —|—c.c.} sin {3 (j l)},
(A N—oo /2” cos ¢ +sin¢ e 3 —(—1-1) 41
IPHe = Jy Jcos¢ +sing e~ 2
S+ (2l + Py cos | S5 -1-1)] } 512
2 £, )0+ LT
N [(uluz + uzuy)e's +c.c.] cos {3 (j—1 1)}
2 * —128(j
- N |:1/l21/l3 e 30D 4 C.C.},

while, for N not divisible by 3, the correlators can be reproduced from the previous
expressions by taking formally u, = u3z = 0. The exact finite-N result for the last
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correlator can be found in Appendix H.1. In the correlators we can see corrections
of order 1/N, that would not be present in a model without topological frustration.
Although they vanish in the thermodynamic limit, they cannot be neglected, as they
can influence the spin-correlation functions at large distances, i.e. for a distance that
scales with the dimension of the system. Indeed, as shown in Appendix H.1, we find
the spin-correlation functions

r—00
(oo ),

(—1)"(1 — tan? ¢)%/4 (1 — %) (8.13)

The correlations at large distances r decay linearly and for the most distant spins on
the ring, separated by r =~ N /2, they vanish in the thermodynamic limit. The mag-
netization order parameter also vanishes in the ground state, above which there is
only an algebraically small gap, similarly to the quantum Ising chain with FBC [66,
67,71, 73], discussed in Chapter 1. Thus, topological frustration affects the antifer-
romagnetic phase of the Cluster-Ising chain, closing the energy gap and destroying
the magnetization and spin-correlations at large distances, which are the effects of
topological frustration encountered throughout the whole thesis.

Cluster phase

We find that for ¢ € (71/4,37/4) the ground stateis |¢) = |07) and it is separated by
a finite energy gap from the excited states above it. Similarly, for ¢ € (—37/4,7w/4)
the ground state is |g) = a |07), also with a finite energy gap above it. These two
regions of the model’s phase space are those known to display symmetry protected
topological order [161, 170].

As shown in Appendix H.1, the correlators of Majorana fermions are (A;A;)

<BjBl>g = 0j] and

g:

27
; 13
N—roo sin ¢ + cos ¢ ™1 o—a(i-1+2) dq
7

~ _
8 | sin ¢ + cos ¢ €3] 27
0

(A;B)) (8.14)

which is the same result as without frustration [161, 170], i.e. the same result would
be obtained for even N. There is no corrections of order 1/N as in the antiferromag-
netic phase.

The consequence of this result is that the expectation value of any bulk observ-
able remains the same with frustrated boundary conditions, generic periodic BC or,
arguably, open BC. Indeed, in the antiferromagnetic phase the effect of frustration
arises as a correction to the Majorana correlation function. Since, any observable can
be expressed in terms of Pauli spin-operators, while Pauli spin-operators can be ex-
pressed as a product of Majorana fermions, the expectation value of any observable
can be expressed as an expectation of a product of Majorana fermions, which is by
Wick theorem determined by two-point correlators of Majorana fermions. Therefore,
since the two-point correlators of Majorana fermions are the same as without frus-
tration for large N, and since the same applies for the Jordan-Wigner transformation
(8.7), so is the expectation value of any bulk observable.
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In particular, in Appendix H.1 we compute the expectation value of the string
operator, obtaining

ro [ (1= cot? 9)3, ¢ € (37)
<O<r)>g - {(_1)7(1 — cot? 4))%, (NS (—%T”/—%) &1

as without frustration [170]. On the contrary, in the topologically ordered phases,
the expectation values of the operators <(7]’?‘> for « = x,y,z are zero. Namely, since
the ground state does not break the I'T* parity symmetry of the model we have im-
mediately ((7]" ) =0, ((7] ) = 0, while the relation (¢ 0 #) = 0 follows from the equality
0; = —1A;jB;j and the property that the corresponding integral in (8.14) vanishes.

The non-zero expectation value of the non-local string operator, and zero expec-
tation value of local observables, such as spin operators, characterizes the symmetry
protected topological ordered phase in the Cluster-Ising model. It is, hence, proved
that such a phase is not affected by FBC.

8.3 AKLT model

The AKLT model [184, 185] is a one dimensional model, describing spin-1 degrees
of freedom interacting antiferromagnetically. It is defined by the SO(3) symmetric

Hamiltonian N
H=Y[5 8+
=1

—

(5;- sjﬂ)z} . (8.16)

W =

The FBC are achieved by imposing an odd number of lattice sites N = 2M + 1
and periodic BC S AN = S Naively, we can expect that FBC induce frustration in
the AKLT model, by cons1der1ng its classical limit, namely the classical Heisenberg
model, and thus neglecting the second term in eq. (8.16). As discussed in Chapter
1, with periodic boundary conditions and even N the energy is minimized by the
perfectly staggered configuration S = —§j+1. However, for odd N, corresponding
to FBC, such a configuration is impossible because the lattice is not bipartite. There-
fore, not all local terms in the Hamiltonian can be minimized simultaneously, and
the Hamiltonian is frustrated.

Turning back to the quantum case, the AKLT Hamiltonian in eq. (8.16) acquires
a (symmetry protected) topological order and it is thus an ideal candidate to test our
conjecture that this property protects it from the effect of FBC. It is easy to check that
eq. (8.16) can be written as a sum of projectors

(8.17)

where P(?) (§]~, S)) projects the state of two spin-1 at sites j and [ into their spin-2
representation.

The AKLT model with both open and periodic BC has been studied in detail
in [185] (for a more pedagogical approach see the book [31]). It is known that the
ground state is unique with PBC, and four-fold degenerate with open BC, with this
degeneracy related to the existence of edge states and thus not influencing the expec-
tation values of bulk observables, which are the same in the different ground states
(similarly to what happens in the Cluster-Ising model and the Kitaev chain that we
will analyze later). The AKLT ground state, with periodic boundary conditions, is
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a valence-bond solid state. To show this, one represents each spin-1 degree of free-
dom through two spin-1/2 in their triplet representation. Then, these spin-1/2 on
neighboring sites are paired as singlet to prevent the ferromagnetic alignment pe-
nalized by the Hamiltonian. Denoting by |«);, |8); the two spin-1/2 on the j-th site,
the valence bond state is

i _ 1
V)= Vg lag)in = S5 (101 0 = 101 D). 619)

0 1
where V = \[<_1 0

) . We then construct the ground state of (8.16) as

N

N
Gs) =12V ®Iv);, (8.19)
j=1

=1

B = PY o) el (Bl = | +1);(11 | + \1@!0>]-(<N |+ (1 I) +=1);(H | (820

projects the two spin-1/2 into their spin-1 representation, with the Clebsch-Gordan
coefficients P*! = <(1) 8) P = \1[ <(1) (1)> and P! = (8 (1)> and where the site
N + 1 is identified with the first, since periodic boundary conditions are assumed.
As already discussed in [185], the only difference between having even or odd N is
the need of a different index contraction in the spinorial representation of the valence
bond state. However, the even-odd choice does not change the gapped nature of the
system and the bulk behavior of the correlation functions [31, 185].

Moreover, the string order parameters that encode the topological order of the
AKLT model

s® = <GS|5?61”E@;1]‘+1S%S;X|GS>/<GS\GS>, (8:21)
W — (0 _ 4
SOt i S = o

for @ = x, v, z, remain non-zero and unchanged.
We thus conclude that the (symmetry protected) topological order of the AKLT
model is not affected by frustrated boundary conditions.

8.4 Kitaev chain

The Kitaev chain [186] is a model of a spinless fermions topological superconductor,
with the Hamiltonian

N
=—u Z (c cj— ) Zl { cf jCj+1 +hec)—A (C]'C]'+1 + h.C.)} , (8.23)
]:

where y is the chemical potential, w is the hopping amplitude and A is the supercon-
ducting gap. As we have done so far, also with the Kitaev model we will focus on the
case of FBC, i.e. with periodic boundary conditions (¢j; y = ¢; ) and an odd number
of lattice sites N = 2M + 1. However, before we start the analysis of the case with



8.4. Kitaev chain 91

periodic boundary conditions, let us summarize the main results that were obtained
for the open ones.

It is well-known that the Kitaev chain with open boundary conditions, that can
be obtained from eq. (8.23) restricting the range of the second sum up toj = N —
1, can be mapped, inverting the Jordan-Wigner transformation in eq. (8.3), to the
quantum XY chain in transverse field [56, 90, 91, 150]

N-1 N
w+A w—A 4y U
H=- Z ) ]x ]x+1 + 72 0'](7']+ + E EU}Z (8.24)

j=1 j=1

Hence, exactly as the correspondent spin model, in the thermodynamic limit, it
shows a phase transitions at ¢ = +2w. This quantum phase transition separates
a topologically trivial phase for |u| > 2|w| without edge modes in the open chain,
from a topologically ordered phase |y| < 2|w| characterized by the presence of Ma-
jorana edge modes. The latter, for the spin chain, was shown to be affected by FBC
when the Ising term promotes an AFM order [1, 2, 73], with a phenomenology sim-
ilar to that of the Cluster-Ising chain we discussed in Sec. 8.2.1. Due to the relation
between the XY and the Kitaev chain, it is natural to wonder if the latter can also
be affected by FBC, although we cannot compare the spinless model to a related
classical one which is affected by frustration.

Moving from open to periodic boundary conditions, the exact equivalence be-
tween the fermionic and the spin model ceases to exist. The reason for such quite
surprising result is connected to the fact that the Jordan-Wigner transformations
breaks the invariance under spatial translation, by selecting a reference site. This
implies that the interactions terms between the first and the last spin of the chain
are no more mapped in a standard two-body fermionic term, but in a string term
that makes it impossible to map a short-range fermionic model into a short range
spin model. To provide an example, we have that the term o307 is mapped into
the string operator —IT?(c}; — cn) (¢! + ¢1) where I'? is the parity operator along the
z axis that has support on the whole lattice. A similar result stands also for Uly\laly .
When either w £ A < 0 (and |p| < 2|w|), the XY chain, with an odd number of sites,
becomes frustrated: the energy gap above the ground states closes (algebraically)
in the thermodynamic limit [66, 70, 71, 73], the correlation functions acquire pecu-
liar algebraic corrections [1, 71, 73], the entanglement entropy violates the area law
[73], and, for u = 0, the AFM local order is replaced by the ferromagnetic meso-
scopic order or by the AFM incommensurate modulated one, with a quantum phase
transition separating the two (see chapters 3 and 4).

From a physical perspective, the main difference between the Kitaev and the
XY chain is that only the former supports (symmetry protected) topological order.
Given the close relation between the two models and the fact that the effects of frus-
tration have already been established for the spin chain, we may wonder whether
there is an even-odd effect also in the Kitaev chain

As presented in Appendix H.2, exploiting the approach illustrated in Ref. [56],
we can diagonalize the Kitaev chain with periodic boundary conditions and odd N,
obtaining

H=Y eg(aba; - %) (8.25)

gel
where a, are Bogoliubov fermions, whose momenta g belong to the set I = {37k},
with k running over integers between 0 and N — 1. It is worth to note that, assuming
N to be odd, g = 7 is not an allowed momentum in this model. The dispersion
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relation is given by

&g = \/(4w cosq+u)2+4A%sin’g, q#0 (8.26)
g0 = —2w — U, (8.27)

Similarly to the Cluster-Ising model case, the mode q = 0 is special because it is
the only one in which the energies can be negative. The eigenstates of the model
are constructed by populating the vacuum state |0). Taking into account the disper-
sion relation, it is easy to see that the ground state of the Kitaev chain with periodic
frustrated boundary conditions, is always non-degenerate, with a finite energy gap
above it, except at the phase transition points 4 = 42w, where the spectrum be-
comes gapless and relativistic. Similarly to the Cluster-Ising model, in the topologi-
cally ordered phase |u| < 2|w|, the ground state degeneracy, in the thermodynamic
limit, is different from the one that characterizes the model with open boundary
conditions. While the former is two-fold, with PBCs the ground state is unique.
Nevertheless, the expectation values of bulk observables are the same, as we now
show.

For this purpose, we define Majorana fermions using eq. (8.7). Then, similarly to
the Cluster-Ising model, all operators acting on the Fock space generated by c]J-r can
be expressed in terms of Majorana fermions, and using the Wick theorem it follows
that the ground state expectation value of any observable is determined by the two-
point correlators of Majorana fermions. As shown in Appendix H.1, the two-point
correlators of Majorana fermions in the ground state, in all parameter regions of the
model, are (A]'A1>g = <B]-Bl>g = dj; and

2 .
N—o0 ) 2w cos q + 12 + 2A1 smgyg e—zq(j—l) dl

AiB o~ 8.28
(4 l>8 / |2w cos q + p + 2A1sing| 2r (8.28)

Hence, for large N, the expression of the Majorana correlation functions do not de-
pend on the boundary conditions (the result for free boundary conditions follows
from the equivalent spin chain[150]). Therefore, the expectation values of all bulk
observables in the Kitaev chain with FBC are equal to those in other settings and no
difference emerges when w £ A < 0. We conclude, in particular, that topological
order in the Kitaev chain is, as in the Cluster-Ising model, not affected by frustrated
boundary conditions.

8.5 Conclusions

We have presented an analysis of the effects of frustrated boundary conditions on
(symmetry protected) topologically ordered phases of different one-dimensional mod-
els. At first, we have focused on the one-dimensional Cluster-Ising model with an
odd number of spins and periodic boundary conditions. We have presented general
arguments by which the symmetry protected topological order of the cluster phase
is not expected to be affected by frustration, while the antiferromagnetic phase is.
These speculative arguments have been confirmed by our analytic results. While in
the antiferromagnetic phase FBC close the energy gap and destroy both the spin-
correlations at large distances and the magnetization, the string order parameter in
the cluster phase is not affected by FBC. The property that the effects of topological
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frustration are lost when the cluster interactions start dominating over the antifer-
romagnetic ones is, in some extent, similar to the situation in the frustrated Ising
model [66, 71, 73], where the effects of frustration are suppressed by increasing the
magnetic field, resulting in the resilience of the paramagnetic phase to geometrical
frustration.

Our results on the Cluster-Ising model are even more interesting if we observe
that we can directly transfer our general arguments to the n-cluster Ising model,
studied in Refs. [163, 170], which consists of n-body cluster interaction competing
with the antiferromagnetic Ising pairing. It is known that for any odd n, the model
is characterized by a symmetry protected topologically ordered phase, which is, by
our general arguments, expected not to be affected by geometrical frustration. A
question that arises naturally already at this point is whether FBC do not affect only
models with cluster interactions or it is a general property of systems supporting
topological order. For this reason, we have extended our analysis to two additional
one-dimensional models that also exhibit SPT: the AKLT model and the Kitaev chain.
In both cases, the topological phase is unaffected by FBC, as is also shown by the
fact that a typical effect of frustration is the closing of the energy gap [66, 70, 71,
73] (see also previous chapters), which remains open in the topological phases of all
the models analyzed. Since we have found in various models that the topologically
ordered phases analyzed so far are not affected by FBC, we arrive naturally to the
conjecture: Frustrated boundary conditions do not affect symmetry protected topo-
logical phases of one dimensional systems. One could also think that only Landau
local orders are thus sensitive (and fragile) to topological frustration, but we have

shown in Chapter 7 that this is not the case and that nematic order can be destroyed
by FBC.
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Chapter 9

Toeplitz determinants with a delta
function singularity

In this chapter we find the asymptotic behaviors of Toeplitz determinants with sym-
bols which are a sum of two contributions: one analytical and non-zero function
in an annulus around the unit circle, and the other proportional to a Dirac delta
function. The formulas are found by using the Wiener-Hopf procedure. The deter-
minants of this type are found in computing the spin-correlation functions in low-
lying excited states of some integrable models, mappable to free fermions, where the
delta function represents a peak at the momentum of the excitation. In topologically
frustrated models this type of determinants appears already in studying the ground
state properties. As a concrete example of applications of our results, using the de-
rived asymptotic formulas we compute the spin-correlation functions in the lowest
energy band of the topologically frustrated quantum XY chain in zero field, and the
ground state magnetization. In particular, we derive results presented in Chapter 3.
This chapter is based on [3].

9.1 Introduction and Results

We consider Toeplitz determinants

N (7 FZ(n)\n =(n 1 27 i
Du(f) =det (F)}y, f" =5 [ FOme P ao ©.1)
with a symbol
f(8,n) = f(e?)[1+ 27z, 5(6 — 69)] (9.2)

Here § is Dirac delta function, 6 € [0,277), (z4)nen is an arbitrary sequence in C and
f is a continuous function on the unit circle.

It follows that for 6y # 0 the elements f].(n) are equal to

fj(”) =fi+ zuf ()™, (9.3)
where
1 2 10 ,—1j6
f]:ﬁ/o F(e®)ePde . 9.4)

For 6y = 0 there is an ambiguity in the delta function integral. In this case we use
(9.3) to define the coefficients fj(n) and the Toeplitz matrix Dy, (f).
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We restrict ourselves to symbols f that are non-zero and analytic in an annulus
including the unit circle. A general such symbol can be written as

f(z) = a(2)2", ©9.5)

where a is a function that is analytic and non-zero on the annulus and has zero
winding number, while v € Z is the winding number of the symbol f (see e.g. [193,
194]).

We are interested in asymptotic formulas for D, (f) as n — co. The asymptotic
formulas for

Du(f) = det(fj—x)jx=1 9:6)

for analytic non-zero symbols f are by now considered classical, and exist under
much more general conditions. For v = 0 they are given by the strong Szeg6 limit
theorem (originally proven in [195], for a review of later developments see [196—
198]). The asymptotic formulas for nonzero v have been first obtained in [199, 200],
and later under different conditions and using different methods in [201, 202]. The
delta function in the symbol (9.2) might also be considered, in a suitable limit, as a
singularity of the symbol, different from the widely studied Fisher-Hartwig singu-
larities (for a review see [203]).

We decided to solve this problem motivated by the appearance of determinants
of type (9.1) in spin-correlation functions of certain low energy states in quantum
spin chains mappable to free fermonic systems. In such instances, the determi-
nant D, (f) reflects the ground state correlations (in absence of frustration) and the
delta function of the symbol has a peak at the momentum of the fermionic excita-
tion on the vacuum state. For chains with boundary frustration, the spin-correlation
functions in the lowest admissible state are already determined by (9.1), where 6
emerges as the mode minimizing the energy and lying at the bottom of a band of
states (in the thermodynamic limit) [1, 2, 71-73], as discussed in Chapter 3. The lead-
ing asymptotic term for particular determinants of the type (9.1) in the case v = 0
was found in [71] in the context of the frustrated quantum Ising chain, without dis-
cussion of the subleading terms and without rigor: providing a reliable proof has
been the initial inspiration for this work, together with the possibility of extending
the conditions of applicability.

To introduce the notation, we are first going to review some results on the asymp-
totics of the determinant D, (f) where f is non-zero and analytic in an annulus
around the unit circle. The asymptotic formulas of [199, 200] are appropriate for
this case. The function a(z) = Y3> ., 2z, defined in (9.5), is analytic in an annulus
including the unit circle so

lim sup la_ M =p_ <1<py = liininf|ak|*1/k . (9.7)
—00

k—oc0

An analytic logarithm of 2 on p_ < |z| < p exists so we can introduce the Wiener-
Hopf factorization (see e.g. [193, 204])

[ee] [ee]

a_(z) =exp y_(loga)_,z*, ai(z) =exp ) (loga)iz", (9.8)
k=1 k=0

where loga(z) = Y32 (loga)iz" and thus a = a_a... We also introduce the func-

tions

b= a_af, c=a,a’}, bc=1. (9.9)
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For expressing the subleading terms in the asymptotic formulas for D, (f) it is useful
to define p € (0,1) by
p_<p<l<pl<p,. (9.10)

The function 4 is then analytic on p < |z| < p~'and a; = O(p/), a_; = O(p/), for
j >0, for all p satisfying (9.10). Analogous relations hold for the functions b and c.

The asymptotic behavior of D,(f) in the case of zero winding number of the
symbol (v = 0) is given by the strong Szeg® limit theorem. The version of [199, 200]
in the case of analytic symbol reads

Dy (a) = exp [n(loga)o + i k(loga)(loga) x+O(p*")] asn —oco.  (9.11)
k=1

We note that in the same reference an explicit formula for the term O(p*") in (9.11)
is given, up to corrections O(p*").

For v # 0 the asymptotic behavior of D, (f) is determined by the asymptotic
behavior of D, (a) and the determinant of the |v| x |v| Toeplitz matrix, defined by

Ay = det (d")"

) _ Jbuyj forv<O
i—1, Wwhere d; —{ / 9.12)

cpj forv>0 '

The asymptotic formula is

Di(f) = (=1)" Dy (@) [Au,u + O(p"H¥) . (9.13)

The formula (9.13) follows from the more precise result of [199, 200], given by Theo-
rem 4 in [199] and Theorem 6 in [200].

We will extend these formulas to determinants of type (9.1). In order to do so, we
first define the determinants A, ,,(I), for = 1,2, ..., |v|, for v # 0, as the determinants

of the matrix (d](f)k)]‘vljzl with the column [ replaced by the vector (1, e %, e=2%, ..,

e*l(h"*l)go)T for v < 0 and by (1,e%,e%%, ., e’(”*l)GO)T for v > 0. This definition can
be written as
(1-— 5]{,1)61](")]{ + (5k,le—z(j—1)90 forv <0

A, (1) = det dN(Z) M ,  where dﬂ) = , .
w(D) ( ]’k)]’k:1 ik (1— 5k,l)d(n)k + 5k,1€'(]_1)9° forv >0

Our main results are the following two theorems.

Theorem 3. For v = 0 we have

Du(F) = D@ {1+ 2 [n-+ 1.8 togb(e?)

+ O(p”)] } asn — oo,  (9.15)
6=t

where p is defined by (9.10).

Theorem 4 (not rigorous). Let v # 0 and suppose Dy (f) # 0, Ayn # 0, for n > ny,
ny € IN. If for sufficiently small p, satisfying (9.10), we have

lim AV'”(])pZ” =0 forallj€{1,2,..,|v|}, (9.16)

n—0o Av,n
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where A, ,(j) are defined by (9.14), then for n > ny

Du(f) = Du(P{1+ 2, —blee iﬁ

— v,n

( 1 +O(p”)) +n+O(1)]}

ifv <0, 9.17)

Du(F) = D) {1 20— clemper v 3 82l (o o)) +n-+0(1)| )

j=1
ifv > 0. (9.18)

Compared to the usual behavior of Toeplitz determinants without delta-function
singularities, in this case we see the emergence of algebraic contributions in the ma-
trix rank n. The terms inside the sums in (9.17) an (9.18) are expected to be of the
(n)

order of magnitude of the inverse of the coefficients d;

(n)

since d j
with exponentially suppressed subleading corrections.

We are going to derive these theorems by relating the determinant to a linear
problem, which in turn can be expressed as a linear functional equation, whose solu-
tion can be obtained in the limit of large n. The leading contributions to this solution,
obtained using the Wiener-Hopf procedure, provide the asymptotic formulas above
for the determinant. The estimates on the order of magnitude of the corrections to
the terms we have calculated explicitly rely on the intuitively clear property that
a small perturbation to the functional equation yields a change to the solution of a
similar order of magnitude. For the case of a zero winding number of the symbol we
have also provided a rigorous proof of this statement, which makes Theorem 3 rig-
orous. For the case of a non-zero winding number we have not provided a rigorous
proof, but the corrections are plausible for the same reasons and we have confirmed
Theorem 4 numerically on a few relevant examples.

We derive the theorems in section 9.2. To give a concrete example of applications
of these theorems (and to explicitly show the unusual behavior of these determi-
nants) in section 9.3 we compute the spin-correlation functions in the lowest energy
band of the frustrated quantum XY chain in zero magnetic field, and the ground
state magnetization. In particular, results presented in Chapter 3 are derived.

for |j| < |v|. Therefore,
= O(p") as n — oo, they are expected typically to grow faster than p~",

9.2 Derivation of the Theorems

9.2.1 Linear Problem

The first step in the derivation of the theorems is to use (9.3) and the basic property
that the determinant is an alternating mutilinear function of its columns, to expand

D,(f) as

n

Du(f) = Du(f) + zuf(e®) Y eU"V%D,, i(f), (9.19)
j=1
where by D, ;(f) we denote the determinant obtained by replacing the column j in
D, (f) by the column vector (1,e %0,e 2%, e=1n=1)00)T
We assume that there is 19 € IN such that D,,(f) # 0 for n > ngy. Inthe case v =0
this assumption is justified by the Szeg6 theorem, while for nonzero v we restrict
ourselves to symbols for which this assumption holds. This assumption implies that
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(m)

there exists a unique solution x i j=0,1,..,n =1, of the linear problem

n—1 )
Y fixxl” = e, forj=0,1,.,n—1, (9.20)
k=0

that is by Cramer’s rule given by

() _ Dnj+1(f)

X, = 9.21
T D) 20
This solution can be inserted in (9.19) to get
n—1 o
Da(f) = Da(f)[1+ zuf (e®) » x|, 9.22)
]:
Defining the analytic function
n—1 )
X (z) = ¥ 2"z (9.23)
j=0
we have )
Da(f) = Daf) (14 2af ()X () ). (9.24)

We are thus going to find an asymptotic formula for X(")(z), and hence for D, (f),
by using the Wiener-Hopf procedure, similar to the one of [204, 205] used to compute
the spin correlation functions of the Ising model. The prerequisites and details are
given in the following sections.

Let us comment that the presented method of relating the determinant to a linear
problem would not work with more than one delta function in the symbol (9.2). In
arriving to expression (9.19) we have used the property that different column vec-
tors resulting from the delta function in the symbol are one scalar multiple of the
other. This has lead to many cancellations, since determinant is an alternating func-
tion. With more delta functions, column vectors arising from different delta func-
tions could not anymore be related simply by scalar multiplication, which prevents
cancellations.

9.2.2 Equivalent Problem

For a function g(z) = L gjz/, defined and analytic in an annulus p_ < |z| < p4
including the unit circle, we define its components

M(@zigﬂt MJ@Zi&i 9.25)
j= j=

The function [g]_ is analytic on |z| > p_, while the function [g], is analytic on
|z| < p4. For definiteness, in the following we are going to restrict the domain of
these functions to the annulus p_ < |z| < p, where both are analytic.

As shown in Appendix 1.1, defining the coefficients

n e U, ied0,1,..,n—1
Y = jed ¥ 9.26)
0, jez\{0,1,.,n—1}
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and the analytic function

n—1 )
Y (z) = Yy (9.27)
i=0

solving the linear problem (9.20) is equivalent to finding functions xm) g, vy,
defined and analytic on an annulus including the unit circle, satisfying

X0 =y gz 4y (9.28)
and having the properties

[x™] =0, [x"Wz ], =0, U™ =0, [Vv], =0. (9.29)
With D,,(f) # 0 the solution exists and is unique, with X(") corresponding to (9.23).

By solving this equivalent problem we find the asymptotic formula for X (n) (6190) in
(9.24).

9.2.3 Evaluating the components

Following the standard Wiener-Hopf approach, we seek the solution of (9.28) by ex-
ploiting the different analytical properties of the different components of the func-
tions appearing in it. The components (9.25) can be evaluated as the following inte-
grals. Let z belong to the annulus p— < |z| < p4,andletp; € (p—, |z]), 02 € (|z], p+)-
Then

R T NCEP TS S

27 Sjwl=p 2 — W 2711 Jjw|=p, w — z

These formulas can be shown by summing, in accordance with definition (9.25), the
Laurent series coefficients

1 dw 1 dw
&—mﬂmm%m—mﬂmm%m 9.31)

and interchanging the sum and the integral, which is valid since the Laurent series
is uniformly convergent on every closed subannulus in the interior of its annulus.

In the derivation of the theorems we are going to encounter functions G, analytic
on the annulus p_ < |z| < p4, that are of the form

_ g(Z) _g(elgo) 190 190 _ dg(Z)
G(z) = e for z # €', G(e™) = P

) (9.32)

7= 6190
where g is analytic on the same annulus. For instance, the function (9.27) satisfies

M ezneg %o dz"

(n) _ ,—1(n—=1)6p
YW(z)=e P

Y () =y = "1 (9.33)

z—eb ’

z=c'%

For z # e it will be convenient to consider the function G as a sum of two
functions with a singularity on the unit circle, or, as we are about to show, the sum
of two functions analytical inside/outside the unit circle. We thus need to introduce
another structure. Let G be defined by the rule

G(z) = 8(2) forp_ < |z| < ps, z # €%, (9.34)

z — et
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with ¢ being a function analytic on the annulus p— < |z| < p4. The function G
is thus analytic on the annuli p_ < |z| < 1and 1 < |z| < p4. Its Laurent series
coefficients are different on two different annuli, let us denote them by

G(z) =), Q].(<)zj forp_ <|z|] <1, G(z)= ), Qj(>)zj forl < |z| < py.
j=—00 j=—o0
(9.35)
There are thus two ways of defining + and — components of the functions G. We

define

6190 =Y. 6927, 6P =Y 64, (9.36)
=1 : i j=0 !
Gy — v a>), - COPRNER <P W
6] 7(2) =Y. 6277, (6] () =) Gz (9.37)
j=1 j=0

In this work we are going to make use of the functions [G] (_<) and [G] f), both of
which are analytic on p_ < |z| < p4. We are going to use the obvious notation

I A P G o3

7z — 6190 _ — 7z — 6190 + +

Analogously to (9.30) we have the integral representation

g 19 y_ 1 g(w) .
{z — el90L (z) = 27 ?{w|:pl (w —e)(z — w)dw' wherep1 € (p-, min{1, [z}),

g 1Pyt g(w)
[z _ 6190:|+ (z) = Zm?{wl—m (0 — o) (w — z)dw' where p; € (max{1, |z|},p4).
(9.39)

Expanding 1/ (w — ¢%) under integrals into series and interchanging the series and
the integral, we get the following representation:

(<) o
] @=L @)

z — et -~
o ° (9.40)
8 - 1] —j—
{Z — 6190] (z) = 26190 [gz ] 1]+(z).
+ j=0

With the introduced definitions, for the function G defined by (9.32) we have

4

6] - [g—g(el"O)}(@ _[-£ ]<<>

__ p16, __ 16,
z—e™ z— et (9.41)

6], = [g—g(e"’())}(” [ g ]<>>

z—ef g z—ely '

where the first equality follows immediately from the integral representations and
the second is obtained using

(%) 1) _ o 8@ )>)
[m}_ =0, [Z_eleoL =0, (9.42)
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which follows from (9.40). From (9.41) it follows

G:[ g }(<)+[ 8 ](>). (9.43)

z — etth z—eto] 4

We clearly have also the following linear property. Let & be a function analytic on
the same annulus as g. Then

hG] = { hg }(<) B [hg(eleﬂ)](<)

z—ett]_ z—ett ]

h (>) he(e0)1(>)
[+G] + [z —gel"J + [zg—( 6190)] +
(9.44)
The definitions we have introduced are going to be useful because of the follow-
ing two elementary lemmas that we state and prove.

4

Lemma 1. Let ¢ be a function analytic on an annulus p_ < |z| < p, that includes the
unit circle. Then for z # ¢'% belonging to the annulus

8 V= BoE e g g0 @) i)

z—ef ] z — et z—efly z — et
(9.45)
Proof. Let us prove the first equality. From the representation (9.40) it follows
8]+ < —
[z sl B 0, (9.46)
which implies
(<) (<)
8 _ [ lsl-
] [ 017
We now define a function G(-) as
_ 109
G)(2) = 8]-(z) [gg]_(e ) forz #e%, p_ < |z| <py,
z — et
q (9.48)
(=) (o100 — &
GO = gld-()|
and, using the decomposition (9.43) for this function, we have
(<) >) (<)
S 1 I O L S .49
z—et | z—e| z—et|_

where the last equality follows from (9.40). Combining (9.47) and (9.49) proves the
tirst equality of the lemma. The second equality is proven in an analogous way. [

Lemma 2. Let (g,)nen be a sequence of functions analytic on an annulus p_ < |z| < p4,
that includes the unit circle, and let p_ < p1 < 1 < pp < p4. Moreover, let (s,)ecN be a
sequence of positive numbers.

(a) If gu = O(sy) uniformly in z at the circle |z| = p}, for some p} € (p—, p1), then

(<)
[g0]_(2) = O(s), [& L<w=ow> 9.50)

z — et

uniformly in z on p1 < |z| < po.
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(b) If gn = O(sy) uniformly in z at the circle |z| = pb, for some p € (p2,p+ ), then

(>)
(9], (2) = O(s0), [g] (2) = O(s) ©51)

— 8190 n
uniformly in z on p1 < |z| < pa.
Proof. Let us prove the first part of (a). By assumption there is K > 0 such that
|gn(z)| < Ks, for all z on the circle |z] = pj. (9.52)

For p1 < |z| < p2 we have, from (9.30), the integral representation

_ 1 g(w)
8]_(2) = 2711 ﬁw% z— ™ (9:53)
Then from the assumption (9.52) and using |z — w| > p; — p] it follows
Ke'
z)| < Su, (9.54)
[s] )] P

which means that [g] (z) = O(s,) uniformly in z on p; < |z| < p,. The other parts
of the lemma are proven in an analogous way by using the integral representations
(9.30) and (9.39). [

9.2.4 Solution for the zero winding number case

Having introduced the tools for the separation in components of the various func-
tions, we can present the solutions. In the case v = 0, on the basis of a Wiener-Hopf
procedure, presented in Appendix 1.2, we construct the following functions, which
are the specialization of (1.37), (1.32), and (I.25) and are defined and analytic on the
annulus (9.7), given for z # €% by

Z"c(z) — e ()

X%n) (z) = efz(nfl)f)oall (3100)[1_7_1 (2) — ) (9.55)
" i a7 Y(z) — a7l (et
. a:l z _a:l 8190
v (z) = e%a_(2) ( i — ) (9.57)

and for z = ¢% by continuity. It’s easy to see that these functions satisfy the equation
(9.28)

aX{" =Y uz v, (9.58)

where, in this case, according to (9.5), f = 4, and the function a+ in (9.55) have been
defined in (9.8) and we remind that ¢ = a,a”".

Let p be defined by (9.10). A straightforward application of Lemma 1 and Lemma
2 yields the properties

(X("]_=o0@p"), [x{"z"], =0("), [u"] =0, [W], =0 (959
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where O(p") holds on p < |z| < p~!, uniformly in z. For example, let us show the
first property. We have

1 7(<) a1 (<)
] —elaoa_l(eleo)[+] . (9.60)

z — et

[XIM] = et Doog 1 (g0 [ S

z — et

Applying Lemma 2 on the first term, with p} € (o_,p), p1 = p, p2 = p L 80 = ",

we see that it is equal to O(p") on p < |z| < p~!, uniformly in z. The second term is

zero, by Lemma 1. The other properties in (9.59) are shown in an analogous way.
The properties (9.59) should be compared with (9.29). They imply that the func-

tion X%n) with the components j < 0 and j > n removed, i.e. the function Xg”) =

XY‘) — [Xgn)]_ —z" [Xin)z*”h, is a solution of the problem
axy = v "z v (9-61)
XM _=o0, XUz, =0, [W"]_=0, [%"], =0, (0.62)

where [Yz(n)], =0, [Yz(")z_”]+ =0, and
Yz(n)(z) —Y"(z) = O(p") uniformly in z on the unit circle |z| = 1. (9.63)

Thus, we have constructed a linear problem whose corresponding functional equa-

tion is a O(p") perturbation of the original one on the unit circle. It is intuitively

clear that the solution X(") will result into a O(p") perturbation of Xén) on the unit

circle. This passage is made rigorous by applying Lemma 3, stated and proven in
Appendix 1.3, on X(") and Xé”). It follows

Xé”) (z) — X" (z) = O(p") uniformly in z on the unit circle |z| = 1 (9.64)

and therefore, since Xé") (z) — Xin) (z) = O(p") uniformly in z on the unit circle, we
have

XM (z) = Xi")(z) + O(p") uniformly in z on the unit circle |z| = 1. (9.65)

This, together with (9.55), gives

d
X(n)(ezeo) — aJ—rl (eleo)a:l (ezeo)n 4 ezeoulz(ezeo) ZI(ZZ) 6 + O(pn). (9.66)
z=¢e'""0
It follows
a(e®) XM () = 5 — z% log c(e") +O(p"). (9.67)
=0

Theorem 3 follows from (9.24) and (9.67). Let us comment here that the leading term
in this solution was already determined in [71, 72], but without rigor, with a cavalier
use of the component analysis and an improper analytical continuation. Most of all,
the approach employed there does not allow to treat the non-zero winding number
case.
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9.2.5 Solution for the non-zero winding number case

Let us assume that v > 0. The result for v < 0 follows from this one by transposing
the original Toeplitz matrix in (9.1) and doing the integral transformation 6 — —#.
On the basis of the Wiener-Hopf procedure presented in Appendix 1.2, as a special-
ization of (1.37), (1.32) and (I.25) we construct the functions X%n), Uf"), Vl("), analytic
on the annulus (9.7). For z # €%, p_ < |z| < p., they are defined by the rule

(z)2" Y — c(e%0)e!(mH)0

X%”) (Z)ZV _ e—z(n—&-v—l)egall (z)ajrl (ezeo)c

z — et
—1(n—1)6y ,—1 n+v = -1 Zkiv — el(kiv)eo -1 = (n) n+v—k
+e %a”"(z)z Z(“+ )kw +ay () Z“k [CZ ]+(Z)r
k=0 k=1
(9.68)
—-1,—v [, 1,—v 10y v
Uz = _gmim-Dbog., () [a7lz ]+(zi Zet 274 () ra®) Y el
o k=1
(9.69)
-1 _ =116 v
Vl(”)(z) = e'%g_(z2) - <Z; — Zlgo () _ a_(z) ) oc,(cn) [cz" K] (2), (9.70)
k=1

and for z = ¢ by continuity. Here ocgn), ocgn), .y 0&5") € C are for the moment unspec-

ified, and it is simple to check that for any choice of them the functions above satisfy
(9.28) as
az' X\ =y 4y v, (9.71)

Let p be defined by (9.10). As in the previous section, a straightforward applica-
tion of Lemma 1 and Lemma 2 yields

(X{"z]_(z) =0("), [W"]_=0, V"], =0, 0.72)

where O(p") holdson p < |z| < p~!, uniformly in z. The coefficients agn), uc;n), . ocl(,”)

are chosen to satisfy

(x2), = 0(p") forj=0,1,..,v 1, ©0.73)

thus extending (9.72) to also [X%”)} ~=0(p").
Thus, one computes the components (Xg")z")]. using (9.31), by integrating at the

circle |[w| = p, and imposes (9.73). As shown in Appendix 1.2, this procedure results
in

(n) _

wy = —a:l(eleo)e’l("’l)eow (9.74)

7
Av,n

where A, , is defined by (9.12) and A, , (k) by (9.14).
We have shown so far

X" =06, Ww"]_=0 W], =0 ©75)
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which should be compared to (9.29). It remains to discuss [X%”)z_”] .- Application
of Lemmas 1 and 2 yields

[X%”)z*”] L =0(p") + ) zx,((") [a+1z(”+v) [zt K] J . (9.76)
k=1 +
We have further
D(]En) a;lZ_(n—H/) [CZ"JFV_k]J _ _lxl({n) [afrlz_("J”’) [Czi’l-i-l/—k]:| _ —Dc,({n)O(p@
+ +
(9.77)

where in the last equality we have applied Lemma 2 two successive times for some
p1 € (p—,p), and O(p3") holds on p < |z| < p~1, uniformly in z. Now, assuming that
the condition (9.16) of Theorem 4 holds, using (9.74) we get

& 0(p2") = O((p1/p)?) (9.78)

Defining
o = max{(01/p)* p} 9.79)

we have thus

[X%")} (z) = O(c™), [X%”)an =0(o"), [ul(n)] =0, [Vl(")]+ =0, (9.80)
where O(¢") holds on p < |z| < p~!, uniformly in z. These properties should
be compared with (9.29). Because of the same reasoning as for the zero winding
number case we expect

XM (z) = X;(z) + O(c™) (9.81)

on the unit circle |z| = 1. In this case we cannot provide a rigorous proof for this
estimate, but we find it very natural and we have checked numerically that the final
result, i.e. Theorem 4, holds in several relevant cases.
It follows
d

(n) ( 100\, 100 — ,—1(n+v—=1)6 ,—2 100\ n+v
X" (e0)e e a. (e )dz(c(z)z )

z=¢'%

+ ez(v+l)90a:1 (6190) Z (ﬂjrl) %Zk—v
k=0

z=¢'%

+ u;l (6160) Z lx,({n) [Czn+v—k] +(6190) + O(O’n)
k=1
(9.82)

from which we get

X(n) (ezﬁ’o)eszo — LZ_T_l (6190)(1:1 (6190) (n + 1/) + 6190a12(6190> d((?i(zz)
z—¢'00
T (e®) (k= v) (a1 e+t (o) ) af) [e2" ] (%) + O(e").
k=0 k=1
(9.83)

Lemma 2 gives a simplification

VK] (p100) = (100 et (nHv—k)bo _|_O( ”) (9.84)
N o
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from which it follows

v

X(n)(ezf)o)ewf)g —a 160 Z 1(n+v— kGO—I—O(p )) a+1(€190)a:1(6100)1’l+O(l).

(9.85)
Theorem 4 follows directly from (9.24) and (9.85), where the result for the case v < 0
descends from the one for v > 0 by transposing the original Toeplitz matrix in (9.1)
and making the integral transformation 6 — —6.

9.3 Application of the results: Frustrated quantum XY chain
in zero field

As an example of a concrete application of our results we compute the lowest en-
ergy band spin-correlation functions and the ground state magnetization for the
frustrated quantum XY chain, studied in chapters 3 and 4, and defined by the Hamil-
tonian

N
H= 21 (o1 = Acle,). (9.86)
]:

Here A € (0,1) is the anisotropy parameter, N = 2M + 1 is the number of lattice
sites, which is imposed to be odd, ¢* for « = x,y, z, are Pauli matrices, and periodic
boundary conditions are imposed (0"‘ = ]-”‘+N). The notation used here can be re-
lated, up to multiplying the Ham11t0n1an by a positive constant, to the one in (3.1),
by setting 6 = 0 and A = —tan¢. The one used here is simpler and shorter for the
present purpose.

As discussed in Chapter 3 and Appendix C.2, in each sector of given z-parity, the
XY chain can be mapped exactly, although non-locally, to a system of free fermions.
This mapping allows to represent every state in a Fock space: one defines a vac-
uum |0*) which is annihilated by fermionic operators a,, with ¢ € I'* belong-
ing to a different set (of integers or half-integers) depending on the parity (I'* =

{% (2] + #) :7=0,1,..,N — 1}), a,|0%) = 0 for all g € I'*, and applies the
Bogoliubov creation operators a; to create all other states. Only states with a num-
ber of excitations compatible with the parity are admissible in the Hilbert space of
(9.86): assigning zero excitations to the vacua |0*), each a; adds one. Even excitation
states belong to the positive z-parity sector, while odd excitation ones have negative
z-parity. As a consequence of the symmetries, each eigenstate of the model is at
least two-fold degenerate. Furthermore, for each state |¢) in the IT* = —1 sector we
can construct the state IT* |p) = (—1)(N=D/2[1¥ |) with the same energy, but with
opposite I'T%.

Due to the frustrated boundary conditions, the system is gapless with the energy
gap above the ground state closing as 1/N2. The ground state is part of a band,
spanned by the (single excitation) states |q) = a} |0~), which have negative z-parity
I = —1, and the states IT* |g) = 1(—1)(N=D/211¥ |¢), with TT* = 1 and the same
energy. The energy of the states |g) and IT" |g) is equal and the index g is the mo-
mentum of the excitation, that can be related to lattice translations (see Appendix
C.3). The ground state, in particular, has momentum g = 0, and is two-fold degen-
erate. A generic ground state is, therefore, a superposition

|g) =cos@|g™) +sinfe?|gh), (9.87)



108 Chapter 9. Toeplitz determinants with a delta function singularity

where [¢7) =|g=0),|¢gT) =11 |g7),0 € [0,277) and ¥ € [0,271).

We are interested in the spin correlation functions (q| o7, , |q) and (q] of o} )
and in the ground state magnetizations (g| o7’ |¢) and (g| o7 |g). The spin correlation
functions (q| o7, |q) and the magnetization (g| o7 |g) can be computed using sim-
pler techniques, as done in Appendix C.5. As discussed throughout the thesis, as a
consequence of the symmetries and of the exact degeneracies, it is possible to have
a spontaneous finite magnetization even for finite N.

Spin-correlation functions

As shown in Appendix C.5, using the Majorana fermions representation of the spin
operators and performing the Wick contractions as in [72], the spin correlation func-
tions can be expressed in terms of Toeplitz determinants

(alotots, gy = (=1)"[(Du(F) +cc.) = Dulf)], (9.88)
where c.c. stands for the complex conjugate and
7(n) 1 19\ ,—14]
fio =t fene, (9.89)
1 10y ,—1jo N2 1/2” 10y ,—1j6
fi= N 9g2r—f(e Je ~ o) f(e)e ap, (9.90)

f(z) =a(z)z", a(z) = \/11__/\/\2;22. (9.91)

The winding number is v = 0 for &« = x and v = 2 for « = y. Comparing with (9.3)
we see that z, = —1/N, thus a constant with respect to n, although, from physi-
cal considerations, we must have n < N/2. We are going to neglect the difference
between the sum and the integral in (9.90), and similarly later in computing the mag-
netization. We observe numerically that these differences are exponentially small in
N. All the results are obtained within this approximation.

We see that a is analytic on A1/2 < |z| < A~1/2 and by inspection we find

ay(z) =a"l(z7h) = (1-Az2)71/2,

(9.92)
c(z) =b'(z) =ap(z)a’t(z) = [(1 — A2%)(1 — Az ?)]

-1/2

The determinant D, (f) has already been computed in [150] because it determines
the ground state spin-correlation functions in absence of frustration. For v = 0 it is
given by

Dn(f)

A \2 A" _

:(1—)\2)1/2[1+4(m> Z5 (14 0(n 1))}, for 1 = 2mas m — co, (9.93)
2 2 an

:(1—)\2)1/2{1—1—21&)\ <1_AA2> 2n2(1+0(n’1))],forn:2m—|—1asm—>oo.

(9.94)
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Applying Theorem 3, with the term

2Asing
= R
14+ A2 —2Acos2g <

d
o7 log b(e'?) (9.95)

0=¢q

not contributing in (9.88), we find

(glovory, lq)
=) A (100 )] 1= 31 0uit )
forn =2masm — oo,
(9.96)

! t‘AZ (1 _)‘AZ)z A; 1+ O(n—l))} [1 - Zﬁn (1 n O(A%(m)))},

forn=2m+1asm — oo,

= —(1-A%)12[142

(9.97)
where € > 0 is arbitrarily small.
To compute (q] 0707, |q) using Theorem 4 we need to find
1 wnfl
= — dw. 9.98
271 7|{w|—1 [(1—Az2)(1 —Az~2)]1/2 @ (©.98)

Integrals of this type have been computed in [90, 150, 204, 205], for the purpose of
computing the ground state spin-correlation functions, using the properties of the
hypergeometric functions. This one is given by

o1/2 )\% 1
Cop = A=D1 (1 +O(n )) for n = 2m as m — oo. (9.99)
c,=0 forn=2m+1. (9.100)

Applying Theorem 4, where the condition (9.16) of the theorem is satisfied for p close
to v/A, and using the result (9.13) for D, (f), we find
(gl oo, a)

132\22(“0( h)+2

forn =2masm — oo.

n

cos ng Az 9
1+0
(1+ A2 —2Acos2q)1/2 N\/nn( +O(n )>

(9.101)
2 A"
— g (100
A~ fcos[(n—l—l)q] + Az cos[(n—1)g] A2 (9.102)
+27 (14 A% —2Acos2q)l/2 Ny/ntn (1+O( )>

forn =2m-+1asm — oo.

In the ground state (g = 0) terms proportional to 1/N in (9.96) and (9.101) are due
to the delta-function singularity in the symbol and make the difference between the



110 Chapter 9. Toeplitz determinants with a delta function singularity

frustrated model and the model without frustration (that is, periodic boundary con-
ditions with N = 2M or free boundary conditions). In this case, the difference is rel-
evant only at distances n comparable to the system size N. Without these terms, the
x correlation function would converge exponentially fast to a saturation value as the
distance between sites is increased, while the y corrrelation decays to zero, reflecting
a spontaneous magnetization developing only in the x direction. The dependence
(9.96) implies, instead, that the correlations between the most distant spins, sepa-
rated by n = (N —1)/2, decay as 1/N as we increase the (odd) system size N. This
kind of behavior in frustrated quantum chains was first found in [67, 69] and later
further discussed, and checked numerically, in [71-73]. We discuss it in details in
Chapter 3.

9.3.1 The ground state magnetization

As discussed in Appendix C.5, the magnetization in the ground state is ferromag-
netic, i.e. (g o7 |g) = (g| o7 |g) for j =2,3,...,N and & = x,y,z, in a generic ground
state |¢) defined by (9.87). For « = x, y it is given by

(gl |g) = cospsin26 (g~| o111 [g7), (9.103)
(glol |g) = (~1)"7 sinysin20 (37| o} T [g7). (9.104)

The absolute values of the quantities (g| o{T1* |g), for & = x,y, are the maximal val-
ues of the magnetization on the ground state manifold, and it is shown in Appendix
C.5 that these quantities can be expressed as Toeplitz determinants, as

_ . N—>oo ~ -
(g7 ot T1*[g7) "= (—=1)"Du(f), (9.105)
where
N—1 2
n=—— f]‘():ff_ﬁ’ (9.106)
_ 1 / 7 (o) 1Pdp (9.107)
f]_27'[ 0 f€ e s .

f(z) =a(2)z", a(z) = 1/11__)32\;1. (9.108)

Here the winding number is v = 0 for « = x and v = 1 for « = y. Theorems 3 and 4
can be applied with z, = —2/N = -2/(2n+1).

We proceed in a similar way to the previous section. The function a(z) is analytic
on A < |z| < A71, and by inspection we find

ap(z)=a'(z7h) = (1-A2)"12,

) . Cg-1)2 (9.109)
c(z) =b"'(z) =ay(z)a”’ (z) = [A—Az)(1—Az"H)] "
The coefficients c_, are given by
1 wn—l Al .
= i g [T T2 = e (O ).

(9.110)
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Applying Theorems 3 and 4 we find
(g 0T g ) = (1) S - (10 F09)), e
(g7 oIV [g7) = 2(1“‘;;(1 +O(A%<”E>)), (9.112)

CN@1-A

where N = 2M + 1, as M — co. Here € > 0 is arbitrarily small.

We remark that without frustration (that is, without the delta-function in the
symbol) the Toeplitz determinant in (9.111) would approach a constant exponen-
tially fast, while the one in (9.112) would similarly decay to zero, while with the
delta-function they both show an algebraic decay in the matrix rank. In particu-
lar, both magnetizations go to zero as N = 2M + 1, M — co. These results for the
magnetization describe mesocopic ferromagnetic order, as discussed in Chapter 3.
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Chapter 10

Conclusions

In this thesis we have studied the effects of topological frustration on low-energy
properties of various quantum spin-1/2 chains with discrete symmetries, in which
frustration is induced by imposing periodic boundary conditions and an odd num-
ber of lattice sites. To discuss the influence of frustration on the order parameter,
we have developed a simple approach to symmetry breaking, which consists of the
realization that many systems without external magnetic fields posses global anti-
commuting symmetries if the number of lattice sites is an odd number. This ap-
proach allows for a discussion of the order already in a finite system, and tracking
it towards the thermodynamic limit afterwards. Moreover, in the studied exactly
solvable models this approach allowed us to get exact analytical results.

While our symmetry breaking framework in ferromagnets yields the same re-
sults as the standard ones, namely the one with the ground state degeneracy only
in the thermodynamic limit and the one with symmetry breaking fields, in topolog-
ically frustrated antiferromagnets different approaches can yield different results.
This is in line with the general property of frustrated systems: the sensitivity to per-
turbations, due to large classical degeneracy [25]. In the studied topologically frus-
trated spin chains the classical point exhibits large degeneracy and different quan-
tum perturbations can lift this degeneracy in a variety of different ways. The impor-
tant realization is that, in general, this degeneracy is not lifted in a way to restore the
standard staggered antiferromagnetic order, but different phenomenology arises.

Within our symmetry breaking framework, we have discovered that topologi-
cal frustration can destroy local order, induce a site-dependent magnetization that
varies in space, induce a first-order quantum phase transition and modify the nature
of a second order quantum phase transition, by destroying local order parameters at
both sides of the transition, so that the transition can be characterized only through
non-local order parameters. We have discovered that topological frustration can af-
fect also non-equilibrium properties of spin chains. Namely, the Loschmidt echo
in a local quantum quench setup displays qualitatively and quantitatively differ-
ent behavior for rings with an even and odd number of lattice sites, thus providing
a simple out-of-equilibrium experiment to distinguish between the two, no matter
how large they are.

All this phenomenology is due to a single interacting, frustrating, bond, intu-
itively negligible in a large system. The standard approach, based on the Ginzburg-
Landau theory, that accepts this intuition and attempts to capture the properties of
the system by taking the system size to infinity before computing the observables,
cannot account for it. In topologically frustrated spin chains the chain length is a
relevant scale. We hope, thus, that our results indicate the incompleteness of the
standard approach, at least in the presence of topological frustration.

There are, of course, many properties of topologically frustrated spin chains left
unexplored and nothing has been said about potential technological applications or
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experimental realizations. We hope that the results presented in this thesis can raise
the interest to discover more properties of these simple yet complex systems.
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Appendix A

Quantum Ising Chain: Perturbative
Analysis

This is the appendix related to Chapter 1. It includes the details of perturbative
calculations. The different parts of the calculation in section A.1 were done by us
in [1, 8], and in a similar form the calculation has already been done in [66, 67, 69],
while the calculation in section A.2 is original content of this thesis.

A.1 Without symmetry breaking fields

Here, to the lowest order in perturbation theory in & we discuss the low energy
physics of the Hamiltonian (1.2) with FBC and | = 1. For h = 0 the ground state
manifold is 2N-fold degenerate, spanned by the kink states |j) and I1* |j), for j =
1,2,...N. These are the states with the ferromagnetic bond U]?C = (T]?‘H = 1 and
0f = 04 = —1 respectively, and the remaining bonds antiferromagnetic. Note
that the kink states are eigenstates of I1*. The energy of the kink states is equal to
—(N — 2). The excited states are separated by an energy gap of order unity and we
neglect them in our perturbative treatment.

Making h non-zero the degenerate states split in energy. The eigenstates of the
model are found by diagonalizing the perturbation h} ; 07. It's easy to see that we

have the the matrix elements

(| g TT% |1) = 6; k01— j4+1 mod N,0 + O1kj—1+1 mod N0/ (A1)

and, since 0} anticommutes with IT*, the matrix elements of ¢} between the states
with the same I'T* vanish. Furthermore, from (A.1) we get

N
Ciy = (jI Y 07 TP 1) = 6j_1—1 mod N,0 + Fj—1-+1 mod N,0- (A2)
P

Thus, ordering the states as [1),(2),...,|N),IT*|1),I1*|2),...,IT*|N), the pertur-
bation can be written as a 2N x 2N block matrix,

N
Y of = <g g) (A3)
k=1

where Cis an N x N matrix with the elements defined in (A.2).
To diagonalize the perturbation we note the following mathematical fact. If A is
an eigenvalue of an n X n matrix M, then, denoting the corresponding (normalized)
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eigenvector by v, the (normalized) eigenvector of the block matrix

(13[ 1;“) (A4)

corresponding to the eigenvalue £ can be constructed as 1/v/2 (v :|:V)T. In this
way all the eigenvectors of the block matrix can be constructed.
Now, the matrix C is a cyclic matrix,

Co CN—-1 ... (2 C1
C1 Co ... C3 Co
c=| : T A (A.5)
CN—2 CN-1 ... C0 CN-1
CN—-1 CN—2 ... (O Co
with
cj = (5]',1 + (Sj,N—l- (A.6)

The diagonalization of the cyclic matrix is a standard problem (see e.g. [204]). Diag-
onalizing it and constructing the eigenvectors of the block matrix we find that to the
lowest order in perturbation theory in i we have the eigenstates

14117 Y

, e A7
%) ="55 L Z i) (A7)
with the energies

Ej+ = —(N —2) £ 2hcosq. (A.8)

Here g can assume any value from the set {27k/N : k =0,1,...,N —1}. Forh > 0
the ground state, in particular, is given by |g = 0, —) so we can write

1 1—Hz
8) \ﬁz V2

The ground state is single and the system is gapless, with the gap above the ground
state closing as 1/N2.
The spin correlation functions in the state |g, £), for any g, are equal to

(A.9)

(9, £| 070, |g, %) *Z (tloror, i (A10)

From the definition of the kink states it follows, as recognized in [1],

orjy =4 D 1= L2 (A1)
(-0,  1=j,j+1,...,N

From (A.11) we get
G, = o (1-%). (A12)

In particular, these are also the spin correlation functions in the ground state (A.9).
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A.2 Local symmetry breaking field

Here, to the lowest order in perturbation theory in & we compute the ground state
magnetization of the Hamiltonian (1.8) ,with FBC and | = 1, when the symmetry
breaking field is localized at one site,

A= i (A.13)

We focus on the case when the field is localized at the site k = 1 and then comment
how the result for an arbitrary site k can be obtained from this one.

Let us assume A > 0, while the opposite sign of A just gives the opposite sign
of the magnetization. For 1 = 0 the ground state manifold is N-fold degenerate.
It is spanned by all the kink states that have o = —1. These are the states |}), for
j=2,4,6,...,N—1, and the states IT* |j), for j = 1,3,5,... N. Ordering the states
in this way and using (A.2), we find that in this subspace the perturbation can be

written as a block matrix N
0 D
Y%= <DT 0) : (A.14)
k

-1
where Disan (N —1)/2 x (N + 1) /2 matrix with the elements
Djx =ik + 611k (A.15)

forj=1,2,...(N—1)/2and k=1,2,...,(N +1)/2. In the matrix form it reads

1100 000
0110..000

D=1t~ 10 i (A.16)
0000 ..110
0000 ..011

To diagonalize the matrix (A.14) we simply guess the eigenvectors, based also on the
similarity with some matrices in [69]. It’s easy to check, using (A.15), and putting
n = (N — 1) /2, that the normalized eigenvectors are

(m)
m_ 1 (#n A7
Vi _\/n+1<V£m)>, i

form=1,2,...,n+ 1, where the components are given by

m)\ _ . mm . .
(v1 )j_sm[Z(rH—l)Z]}' j=12,...,n,

m (A.18)
(m)\ _ | T L
(Vz )j_SIH |:2(7’l+1)(2] 1):|/ ) 1,2,--.,1’[—|—1.
The corresponding eigenvalues are given by
m
- Al
i2cos[2<n+1)] (A.19)
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It follows that, to the lowest order in perturbation theory in /, the lowest energy

states are
5 (N-1)/2 m
)=/ ———=49 =L i 27l 127

(A.20)
(N+1)/2 o
i 2i —1)|IT# |27 —1
L sin | 43 @i - D) 12 - 1) |,
form =1,2,...(N+1)/2, and the corresponding energies are
m
En+=—(N—2)—A+£2hcos {N—Fl]. (A.21)

For A > 0 the energy is minimized by taking m = 1 and the minus sign, so the
ground state is given by |g) = |49, —). The ground state is single and the system is
gapless, with the gap above the ground state closing as 1/ N>.

After a bit of algebra we obtain the ground state magnetization

iy ; 1 1 . 2 (. 1
(8leylg) = (1) {1 N1 <]_ 2) TN s () " [N+1 (J_ 2>] }
(A.22)
The obtained expression is valid for j = 1,2,..., N. The right hand side is not in-
variant under the transformation j — j + N, but it takes the same value for j = 1
and j = N + 1. The expression for the magnetization for the symmetry breaking
tield localized at the site k = N can be obtained, thus, by making the transformation
j — j+1ontherhs. of (A.22). More generally, for the field localized at an arbitrary
site k the transformation j — (j — k) mod N + 1 is required on the r.h.s. of (A.22).
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Appendix B

Loschmidt Echo: Perturbative
Analysis

This is the appendix for Chapter 2. Here we present the details of the perturbative
analysis for the Loschmidt echo in the quantum Ising chain.

B.1 Diagonalization of the perturbed Hamiltonian

We start by finding the lowest energy states of the Hamiltonian

N
Hi =) <(zj(7]?‘+1 + h(Tj-Z) + Aoy (B.1)
j=1

for h > 0 and A > 0, using the perturbation theory in i and A. The perturbation
theory for the model with A = 0 has already been done in Appendix A.1.

First, we use the perturbation theory in A for 1 = 0 and find how the 2N de-
generate ground states of the classical point split. Then we treat the term h }; oj as
a second-order correction and apply the perturbation theory in & to the degenerate
states. Doing the perturbation theory in this way ensures the validity of the results
in theregime h < A < 1.

Thus, first we assume & = 0 and examine how the ground state degeneracy is
lifted by turning A # 0. Ordering the ground states as |1), |2), ..., |N), IT* |1), IT* |2),
..., IT*|N), and using (A.1) we find that the operator ¢3; in the ground space is given

by the block matrix
o cW
oN = <C(1) 0 > , (B.2)

where C(V) is an N x N matrix, given by

(B.3)

oo o
O OO e
—_ OO -
o~ o
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The diagonalization of CV) is trivial. Constructing the eigenvectors of the block
matrix, as discussed around eq. (A.4), we find the eigenstates

[9e) = T (N - 1) F N)), -
ps) = 1i2” (IN=1)£N)),
with the energies
E(ys) = —(N—2)— ), 55

The remaining states are simply |j) and I'T* |j), forj = 1,2,..., N — 2, with no change
in energy. Thus, the presence of A splits the 2N degenerate states into three parts.
The two ground states, separated by an energy gap A from 2N — 4 kink states, above
which there are another two states.

Now we add the perturbation /1}’; 07 to the Hamiltonian. We study separately
three different degenerate subspaces. The ground space spanned by |) and |¢_),
the subspace spanned by |j) and IT*|j) for j = 1,2,...,N — 2, and the subspace
spanned by |¢, ) and |¢_). Using (A.2) it’s easy to see that the perturbation is already
diagonal in the subspace spanned by the states |+) and in the one spanned by |¢+ ).
These states acquire only an energy shift,

E(p+) =—(N—-2)—(A+h), (B.6)
E(¢ps) = —(N—2)+A+h. (B.7)
Also using (A.2) we find that in the subspace spanned by the states |1), |2), ...,

IN —2), IT*|1), IT#|2), ..., IT* [N — 2), ordering the states in this way, we have the
matrix representation

N
. o C®@
Z O, = <C(2) 0 ), (BS)

where C?) is an (N — 2) x (N — 2) matrix given by

010 ... 00
1 01 ... 00
010 ... 00
c@=1 . (B.9)
000 ... 01
000 ...10O0

The elements of the matrix in (B.9) are equal to 1 on the subdiagonal and super-
diagonal, while they are zero elsewhere. The matrix of this type has already been
diagonalized in Ref. [69], by writing a recursion relation for the characteristic poly-
nomial. Using their results and constructing the eigenvectors of the block matrix we
find the states

(B.10)

Y 1) (5)

j=1

|Cs,m
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form=1,2,...,N — 2, with the energies
mrt
E(¢.,m) = —(N —2) ¥ 2hcos (m) (B.11)

Therefore, the presence of non-zero / in addition to A creates a band of states out of
the degenerate states |j) and IT* |j) forj = 1,2,..., N — 2, while the remaining states
acquire only an energy shift.

B.2 Computing the Loschmidt echo

Now we can compute the Loschmidt echo, using the perturbative results of the pre-
vious section. First, we express the ground state |g) of the model with A = 0, given
by (A.9), in terms of the eigenstates of the model with A # 0.

From (B.10) we find

1-1F . 2 N2 ,
77 =0 =g Eosin (g7 7) le-m). (B.12)

This representation, together with the definition (B.4) and the representation (A.9) of
|¢) enables us to express |g) in terms of the eigenstates of the model with perturbed
magnetic field. We find

- 2 N2 jN—zsin mr 5 2
9=\ & s () e+ 2. e

]

Now it is easy to apply the time evolution operator,

e |g) =\ 2o O [y )

B.14)

2 N-2 N-2 mr (
- _ 1Y) . Mt L\ —itE(E-,m)

NN =D ];( 1 mzlsm<N—1])e -, m).

Multiplying from the left by (g|, performing a bit of algebra and using the expres-
sions (B.11) and (B.5) for the energies we get

—i(N— _ 2
e {IN=2)t (o] emtHhE o) — 37 &P [tt(A+h)]

(B.15)

Finally, the Loschmidt echo is the squared absolute value of this quantity, given by
(2.5).
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Appendix C

Quantum XY Chain: Exact and
Perturbative Analysis

This is the appendix related to chapters 3 and 4. Here we show in details how to
compute different magnetizations and the spin-correlation functions for the antifer-
romagnetic XY chain in zero magnetic field, with frustrated boundary conditions.
This appendix is based on the supplementary materials of [1] and [2].

C.1 The Model and its Symmetries

The XY chain is given by the Hamiltonian

N
H= Z% (cos<p ;074 +sing U]y(T]y+1) , (C1)
]:
where (7]-”‘, with & = x,y,z, are Pauli operators acting on the j-th spin, N is the

number lattice sites and we assume frustrated boundary conditions (FBC), given
by periodic boundary conditions ¢ = ¢7, y and an odd number of lattice sites. We
focus, without the loss of generality, on the region ¢ € (—37/4,71/4), while the
rest of the phase diagram is related by rotations of the spins around the z-axis. For
¢ € (—3m/4, —m/2) both couplings are ferromagnetic. For ¢ € (—m/2, —7t/4) only
the larger coupling, in magnitude, is ferromagnetic, and the other is antiferromag-
netic. For ¢ € (—71/4,0) only the larger is antiferromagnetic, while for ¢ € (0, 77/4)
both are antiferromagnetic.

Since the model in eq. (C.1) does not include an external magnetic field, the
Hamiltonian commutes with all three parity operators I1* = ®]-Ii 108, = x,Y,z,
ie. [H,I1"] = 0, Va. However, assuming FBC and hence setting the number of sites
to be an odd number, different parity operators anticommute, satisfying {I1%,I1f } =
264,5- As explained in chapters 3 and 4, the fact that the different parity operators
anticommute has an immediate relevant consequence: each eigenstate is at least two-
fold degenerate. To explain this point, let us assume that |¢) is simultaneously an
eigenstate of H and one of the three parity operators, for instance I'1*. Then, the im-
age of |@) under the action of one of the other parity operators, for example IT* |¢),
is still an eigenstate of both H and IT*. But while |¢) and IT* |¢) have the same
energy, they have different z parity. As a consequence, for each eigenstate of the
Hamiltonian in the even sector of one of the parities (II* = 1), there will be a sec-
ond eigenstate of the Hamiltonian, with the same energy but living in the odd sector
(I = —1). Hence each eigenvalue of the Hamiltonian is, at least, two-fold degener-
ate.
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However, other symmetry properties of the Hamiltonian will prove to be of ex-
treme relevance in the following. Due to periodic boundary conditions, the model
exhibits exact translational symmetry, which is expressed in the commutation of the
Hamiltonian with the lattice translation operator T. The model also exhibits mirror
symmetry with respect to any lattice site. Namely, for any lattice site k the Hamil-
tonian in eq. (C.1) is invariant under the mirror image with respect to it, achieved
by the transformation j — 2k — j on spins, associated to the action of the mirror
operator M.

C.2 Exact solution

As is well-known, the model in eq. (C.1) can be diagonalized exactly, using standard
techniques of mapping spins to fermions [56, 91]. The Jordan-Wigner transformation
defines the fermionic operators as

j—1 j—1
R z + + _ z —
c]_(®al)®aj, cj_< a,)®aj, (C2)
I=1 I=1
where a].i = (U]x + zo*jy )/2 are spin raising and lowering operators. In this notation,

not explicitly mentioning a lattice site in the tensor product corresponds to making
a tensor product with an identity operator on that site. In terms of Jordan-Wigner
fermionic operators, the Hamiltonian in eq. (C.1) reads

N—1
H= Z [(singb — cos¢)cicji1 — (cos ¢ + sin gb)c]-c;ﬂrl + h.c.}
=1

—IT*[(sin¢ — cos ¢)cncr — (cos + sin)ene} + huc.]

(C.3)

Due to the presence of the parity operator along z, the Hamiltonian given by eq. (C.3)
is not in a quadratic form, but becomes quadratic in each of the two parity sector of
1T, i.e.
1T 141 1-11F 11T
H= 5 H >t H 5 (C4)

where both H* and H™ are quadratic. Being quadratic, they can be brought to a
form of free fermions, which is done conveniently in two steps. First, H* are written
in terms of the Fourier transformed Jordan-Wigner fermions,

1 N , 1 N ,
by=——=Y cie W, pt=——Y cFe9, (C.5)
q \/N]g ] q VN ; ]
for g € T*, where the two sets of quasi-momenta are given by T~ = {27k/N} and

I't = {27(k+ 3)/N} with k running on all integers between 0 and N — 1. Then a
Bogoliubov rotation

a5 = cos b, by +1sin 6, btq, q#0,m

C.6
with a momentum-dependent Bogoliubov angle given by
. qu (s
6, —arctan | sin ¢ + cos ¢ 1| — (sin¢p + cos ¢p) cos g C)

(cos¢p —sin¢) sing
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is used to bring them to a form of free fermions. The Bogoliubov angle also satisfies

20, _ g COSP +sing e~ 12
| cos¢p +sing e=21|

(C.8)

The right hand side is also defined for the mode g = 0, for which eq. (C.7) is unde-
fined, and as such it is used later in eq. (C.30) and eq. (C.97). We end up with

1
HE — q;i e(q) (a:;aq — 2) , (C.9)

where the dispersion law is given by

e(q) = 2[sing+cospe?|, q#0,7,
€(0) = —e(m) =2(sing+cos¢) . (C.10)
The eigenstates of H are formed by populating the vacuum states |0*) of Bogoli-

ubov fermions a4, g € I'*, and by taking care of the parity requirements in (C.4). The
parity-dependent vacuum states are given by

0%)= I  (cosb;—1sin6, bjb’,)|0), (C.11)
0<g<m, geT*
where |0) = ®].I\L 111j) is the vacuum for Jordan-Wigner fermions, satisfying the

relation ¢; |0) = 0 Vj. As it is easy to see from eq. (C.11), the vacuum states [0") and
|0~) by construction have even I'T* parity. Since each excitation a:; changes the parity

of the state it follows that the eigenstates of H belonging to II* = —1 sector are of
the form af af ...af |07) with g; € T~ and m odd, while IT* = +1 sector eigenstates

are of the same form but with g; € I'", m even and the vacuum |0") used.

On the other hand, as we have discussed, from an eigenstate of one parity of
IT* we can, by applying I1¥, obtain a second eigenstate, with the same energy, but
different I'T* parity. This implies that to each aforementioned odd parity state, for
instance, there is a corresponding even parity state Hxa:;la;/rz...a;/fm |0~) with the same
energy.

As we can see from eq. (C.10), for ¢ € (—37/4, —m/4) the energy of the mode
g = 0 is negative. The consequence is that here the ground states are the states

lg7) =al|07), odd sector, 12
|gT) =TT*al |07), even sector, '

where the latter is, up to a phase factor, equal to |07). Above the two ground states
there is a finite energy gap, that does not close in the thermodynamic limit. On
the other hand, for ¢ € (—7/4,1/4) there is no momenta in the odd sector with a
negative energy. Accordingly, the ground states in the odd parity sector of IT* are
constructed by exciting the lowest energy modes g € I'” and have the form a;r |07).
To each such state is associated an equivalent ground state in the even sector of the
form H"az; |0~). Similarly, the lowest lying excited states are obtained by exciting
the other single modes. Therefore, the ground state is part of a band of 2N states.
Due to the spectrum of the form eq. (C.10), the gap closes as 1/N? and the system
is gapless. The closing of the gap is a phenomenology analogous to Refs. [62-64, 66,
67,71, 73].
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In the region ¢ € (—m/4,0) the energy in eq. (C.10) for the momenta in the odd
sector is minimized by g = 0, so the ground state manifold is two-fold degenerate,
and, as in the phase ¢ € (—37/4, —71/4), it is spanned by the states (C.12).af[07)
and IT%a} |0~ ). Note that, although the expressions in eq. (C.12) describe the ground
states both in the unfrustrated region, ¢ € (—37/4, —7/4), and the frustrated one,
¢ € (—m/4,0), they characterize quite different structures. In the frustrated case,
since the GS is obtained as the lightest excitation on top of the lowest possible en-
ergy state, adding different excitations provides states with an almost continuum
of energy, which becomes a dense, gapless band in the thermodynamic limit. On
the other hand, in the unfrustrated case there is a finite energy gap above the two
ground states.

For ¢ € (0,71/4) the energy would be minimized assuming q = +7/2. How-
ever, for any finite system with odd N the momenta g = +71/2 are not allowed. As
a consequence the modes in the odd sector with the lowest energy, that we denote
as £p € I'", are given by

~

Hence the two states |£p) = alp |0~) represent the two ground states in the odd
parity sector. The ground state manifold is, therefore, four-fold degenerate and a
generic ground state can be written as a superposition

(1-%), Nmod4=1

C.13
(1+%), Nmod4 =3 ( )

ISIER S/

18) = u1|p) +uz|—p) +us IT" |—p) + ug 11" |p) , (C.14)

where we have assumed that the normalization condition ) ; |u |2 = 1 is satisfied.

C.3 The Translation Operator

The lattice translation operator T is a linear operator that shifts cyclically all the spins
in the lattice by one site. To define it, we choose a basis of the space and specify its
action on the basis. One basis of the Hilbert space of N spins are the states

) = Qo )™ %) (C.15)

where 11,1y, ..., ny € {0,1}. The translation operator T can then be defined by

N
Tlp) = Qo )™ [1%) . (C.16)

k=1

where we make the identification ny.1 = n;. From eq. (C.16) it follows immediately
that, for each state |), we have that (| T'T |¢p) = 1. Hence the translation operator
is unitary, i.e. T'T = 1 and the adjoint T plays the role of the translation operator
in the other direction. Moreover, applying the T operator N times translates the
spins by the whole lattice and results in recovering the initial state, implying the
idempotence of order N of T, i.e. TN = 1. As a consequence, the only possible
eigenvalues of the translation operator are the N-th roots of unity, given by ¢'1,g €
|
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On the other hand, moving from the spin states to the operators, it is easy to see
that the translation operator shifts the Pauli operators as

TJFU']'O‘T = ]4"+1, X=Xz, (C.17)

where o}, ; = 07, and, consequently it commutes with both the Hamiltonian in
eq. (C.1) ([T, H] = 0) and the parity operators ([T,I1*] = 0 for « = x,y, z).

The fact that the Hamiltonian and the translation operator commute implies that
they admit a complete set of common eigenstates. In the following we prove that
such a complete set is made by the eigenstates introduced in the previous section.
Let us start by proving the following theorem.

Theorem 5.
(a) The states b} bf,..b} |0), with m odd and {qy} C T~ are eigenstates
of T with eigenvalue equal to exp [1 )" qk].

(b) The states bj b}, ...b} |0), with m even and {qy} C T, are eigenstates
of T with eigenvalue equal to exp [1 Y} qk].

Proof. We write [T{L, b:;k to indicate the ordered product of fermionic operators

b:;l b;rz...bg;m. From the defining properties of T we know how it acts on spin states
and how it transforms the spin operators. Hence to study its action on the fermionic

states (H,Z"zl b;;k) |0) it is convenient to write them in terms of spin states. This can

be done in two steps. At first, using the eq. (C.5), we can write our state in terms of
the Jordan-Wigner fermions, obtaining

(kHl b;fk> |0) Nm n Zelik ﬂk]k]‘[( ) (C.18)

]m—1

Being the c;fk operators fermionic, only the terms with all different j survive. The sec-
ond step is to invert the Jordan-Wigner mapping to bring back the fermionic states
to spin ones. To do this step we first sort the fermionic operators, after which it’s
easy to invert the Jordan-Wigner transformation. To provide an example we have

N
clcicd [0) = —cfcich [0) = —oy (07)0y (070303)0, ® [Tk) = —0y 05 0 ® [ Tk)

k=1
(C.19)
More generally we can write

é ( ]k> 10) = S[{jk}] é( Jk) ® te) (C.20)
k=1

k=1

where S[{j}] is the sign of the permutation that brings the tuple {j;} to normal
order. Hence, the states (C.18) can be re-written in terms of spin operators as

m 1 N ) " oom B N
<Hb2k> 0) = i L ST R (o) @ )
k=1 =1 k=1 k=1

Having the representation of the state in terms of spins, it is easy to see what is the
result of the application of T. Using its discussed properties and taking into account
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that that T leaves the state ®p_; |1}) unchanged we recover

T (H b;k) 0) = <7z Z 5 [{ji ]! Hie e ® (0']-,(,1) X I1e)
k=1 Ji- k=1 k=1
1Yk Gk m N
_ eNkT;Z Z S[{ji}]e' Tt autie—1) ®( - 1) R 1) . (C21)
Jireerjm=1 k=1 kK'=1

Let us focus now on part (a) of the Theorem. We have two different cases. If none
of the elements in {ji} is equal to 1, then none of the elements in {j; — 1} is equal
to zero, and trivially S[{jx}] = S[{jk — 1}]. On the contrary if one element of {ji} is
equal to 1, then jx — 1 becomes 0. However, the number m of the elements in {j;}
is odd. Hence to move an element from the first to the last place requires an even
number m — 1 of permutations and hence the sign of the permutation S[{j;}] =
S[{jx — 1}] remains the same if we replace jy —1 = 0 with N. From this and the
fact that, since {g;} C I'", the exponential ¢%Uk~1) remains the same if we replace
jk — 1 = 0 with N, it follows that we can write

m DY @Y m N
T (H %) 0= S- DT @ (o) @ 1)
k=1 J1s k=1 k=1

jm=1
(C22)
where, if for some k we have j, — 1 = 0, we can identify it with jy —1 = N. Because
of this identification it’s easy to write each term in the sum in terms of fermions:

m 1Y Gk N - ) m
T (H b,;rk> 0) = i ;;2 Z ot T 9k Gk—1) H ( 1 1) 0) . (C.23)
k=1 N j j 1

I k=

In eq. (C.23) we can, again on the basis of the identification of 0 with N, rename the
indices to get

m s el Yl gk N T .om m ;
T[T )l =" L e k:ﬂk]k]’[( )|o = exp qu [1v: )10),
k=1 Jirejm=1 k=1 k=1
(C.24)
which proves part (a) of Theorem 5. Part (b) is proven in a similar way. O

From Theorem 5 it follows immediately, by taking into account the definition
of the Bogoliubov particles in eq. (C.6), the definition of the Bogoliubov vacua in
eq. (C.11), and the linearity of the translation operator, that also the Hamiltonian

eigenstates (H,’Ll “;k) |0%) are eigenstates of T with eigenvalues equal to exp (1 Y} ; gx)-

C.4 The Mirror Operator

As we have seen in the first section of this appendix, the Hamiltonian is invariant
under the mirror transformation with respect to a generic site k that changes spin
operators defined on the site j to ones defined on the site 2k — j. Note that, with
the odd number N of sites we work with, in a circular geometry, the line of mirror
reflection crosses a site and a bond. Hence, only site k remains unchanged by the
mirror action.

As we have done for translations, the mirror transformation can also be ex-
pressed by the action of a suitable operator. The mirror operator My, that makes
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the mirror transformation of the states with respect to the k-th site, is defined by its
action on the spin basis states |), defined in eq. (C.15), as

N N
M |y) = M @(07)" 1)) = Q)07 )" [1;) (C.25)
j=1 j=1

where, as always, nj N = nj. From eq. (C.25) it follows immediately that, for each
state |¢), we have that (| M My [) = 1. Hence, as the translation operator, also
M is unitary, i.e. M{M; = 1. Moreover, applying the mirror operator two times
results in recovering the initial state, hence implying the idempotence of order 2 of
the operator M, i.e. M,% = 1. This implies that M is also Hermitian, i.e. M;{ = My,
and that the only possible eigenvalues of Mj are £1. Moreover, different mirror
operators are related by translations,

T'MiT = M4 (C.26)

From this relation it is also clear that the mirror operators do not commute with the
translation operator ([My, T] # 0).

Since each of the mirror operators commutes with the Hamiltonian, the Hamil-
tonian shares a common basis with each one of them. The following theorem gives
the relation between the eigenstates we have constructed and the mirror operators.
Essentially, the mirror operators change the sign of the momenta of the excitations,
up to a possible phase factor, depending on k. Since different mirror operators are
related by eq. (C.26) we focus on the one with k = N for which the phase factor is
absent.

Theorem 6.
(a) The mirror opemtor My acts on the states bJr bJr b;;m |0), with m odd
and {q;} C T,

My by by, ..bf |0y =T, BT, BT |0) (C.27)

(b) The mirror operator My acts on the states b} b} ...b} |0), with m even
and {qx} C T, as

N by byl |0) = b, bt bt |0) (C.28)

The theorem is proven in a similar way as Theorem 5, and we omit the details.
The other mirror operators My, with k # N, would introduce an additional phase
factor by acting on the aforementioned eigenstates. The phase factor depends on the
momentum of the state and can be reconstructed from eq. (C.26). The N-th site being
special here is a consequence of its special position in the Jordan-Wigner transforma-
tion, which implicitly enters in the definition of the states we work on. In the proof
of Theorem 6 the N-th site is special because for k = N the exponentials of the type
¢'ll can be replaced by e'(~7(2~J) while for other k a compensating factor has to be
introduced.

Similarly as after Theorem 5, but using also the property 6 _; = —6, of the Bo-
goliubov angle, it follows from Theorem 6 that the mirror operator My acts on the
Hamiltonian eigenstates af af ...a} [0%)as My af af ..af |0%) =al, ot — ..a® |0%).
Note that, as a consequence, only the states with the total momentum satisfying
exp [1 =1 ;] = %1 can simultaneously be the eigenstates of T and My. Finally,
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let us notice that mirroring does not change the parity and so the mirror operator
commutes with the parity operators, i.e. [My,I1*] =0, « = x,y, z.

C.5 One Antiferromagnetic, One Ferromagnetic Coupling

Here we focus on the regions ¢ € (—7/2, —mt/4) (yYFM) and ¢ € (—71/4,0) (xAEM),
where one coupling in the Hamiltonian (C.1) is antiferromagnetic and the other fer-
romagnetic. Another part of the yFM region, given by ¢ € (—3m, —71/2), where
both couplings are ferromagnetic, can be treated in the same way as the former, with
the same results. Different correlations and magnetizations can be computed by in-
troducing the Majorana fermionic operators [91],

j—1 j—1
Aj = <® crf) of, Bj= <® af) (7}’ , (C.29)
I=1 I=1

and exploiting Wick’s Theorem [189-192]. From the exact solution we find the Ma-
jorana two-point correlation functions to be given by

(8 1AjrAjlg™) = (g | BirBilg™) = dro

- - 1 1 —1gr 2
G(r) = —1(g [ AprBilg ) = = 1 e + —£(r).
qel’~

(C.30)

Here the function f(r) is zero for —/2 < ¢ < —m/4, while for —71/4 < ¢ < 0 we
have f(r) = —1.

C.5.1 Two-spins correlation function along the x and y directions:

Let us now move to analyze the behavior of the two-spin correlation functions along
x and y directions as a function of r. Following the path traced in Ref. [90, 91], it is
easy to express such correlations in terms of determinants of r x r Toeplitz matrices.
More precisely, the two-spin correlation function along x at distance 7, i.e. Cxx(r) =
(g% |oFot, |g7), is given by

Cix(r) = (—1)" detpyy (C.31)

where the matrix p, is given by

G(1) G(0) G(-1) --- G(2-r)
G(2) G(1) G(0) - G(B—r)

px=| GG G(2)  GQA) - GE—1) | (C.32)
G(r) G(r—1) G(r—2) G(1)

At the same time the correlation function along y at distance r is given by

ny(”) = <8i| ijijH |gi> = (_1)rdetpyy (C.33)
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where
G(-1) G(O) G(1) - G(r—2)
G(-2) G(-1) G(0) - G(r—3)
b= |63 G2 6D e Go-a) [ cay
G(=r) G(1-r) G@2-r) - G(-1)

As we anticipated, the behavior of these two correlation functions is very dif-
ferent in the two phases of our system. In the ferromagnetic phase, the asymptotic
behavior is well known from the literature [150]: Cy,(r) exponentially decays to zero,
while C,(r) saturates exponentially fast to the square of the y-magnetization, that
isto /1 — cot? ¢.

In the xAFM phase, the evaluation of the asymptotic behaviors of the Toeplitz de-
terminants is more complicated, but can also be done analytically, using the asymp-
totic formulas for such determinants, that we have derived in [3]. There, we have
computed the spin correlation functions using another representation of them in
terms of Toeplitz determinants, similar to the one found in [72], which can also be
used for arbitrary definite-momentum state in the lowest energy band. We derive
this representation now. The computation of the spin correlation functions is pre-
sented in Chapter 9, based on [3]. The results for the spin-correlations are given in
the Chapter 3.

Let us consider the state |p) = a |0_> for arbitrary p € T'~. We start by noting
that the spin correlation functions <p[ orot, |p) inany such state are independent of

the site j and depend only on the distance r. To see this we recognize that o707, =

(TYY lofo; HT] !, where T is the translation operator, introduced in sectlon C.3.
According to Theorern 5, the state |p) is an eigenstate of T with the eigenvalue e’?,
so the left and right eigenvalue in (p| (T*)/~lofof, , T/~ |p) cancel, and we are left
with

{plojois, Ip) = (ploror, p), V). (C.35)
Next, we recognize that the spin correlation functions can be expressed as
r
(plotors, [p) = (=1)" (07| ap [ [(—1Aks1Bi)ay [07) (C.36)
k=1

and then we make Wick contractions in the vacuum state |0~). Adopting the short
notation (-)o = (07| - |07), we have (A;Ax)o = (BjBi)o = Jjx and

1 (AjBr), Z ¢ 20510~ (C.37)
qu*

Moreover, since for ¢ € (—m/4,0), as well as for ¢ € (0,71/4), we can express the
Majorana fermions as

(C.38)
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we can easily obtain the contractions

1 (apAf)y (Byat)y = —xere P07,
1 ' (C.39)
—1{(ayBy), <A]-a’;,>0 = Ne—lzepezp(]—k),

Performing all the Wick contractions in eq. (C.36) and using the basic properties
of determinants, the spin correlation functions can be expressed as

(plotot,, |p) = (—1)"[(detp®) + c.c.) — det fine], (C.40)

(p)

where )y and Py are r X r matrices with the elements
(Pxx)jx = —1(Aj+1Br)y

‘ C.41)
~(p) _ (5 _l 120, ,—1p(j—k+1) (
(P) = By = e 70700,

for j,k € {1,2,...,r}, which give an alternative expression to eq. (C.31) for the eval-
uation of the spin correlation functions in the ground state. Here the vacuum expec-
tation value is given simply by

1{AjBy), = — Z ¢ 20e140i— (C.42)
qer—

In an analogous way we find
(plofa,, Ip) = (—1)"[( detﬁ%) +c.c.) —detpyy], (C.43)
where
(Byy) ;o = —1{AjBri1)g

~ . 1 po ip(ike
(P%))j’k = (Oyy) i — N¢ eI,

(C.44)

forj,ke{1,2,...,r}.

C.5.2 Magnetizations along the x and y directions

In this section, we show how it is possible to exploit the particular symmetries of the
model in eq. (C.3), to evaluate, for any odd N, the magnetization along the x and the
y directions. For sake of simplicity, we limit ourselves to illustrate the method for
the magnetization along the x direction and we report the results for both at the end.
In the region that we are analyzing, the ground state manifold has always di-
mension equal to two. An arbitrary ground state can be written as a superposition

lg) = [cos(@) —i—sin(é))e”/’ﬂx} 1g7), (C.45)

for some real numbers 6 and ¢. Equivalently, it can be written using 11, since
IT* |¢7) and I'1Y |¢~) only differ by a global phase factor.
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Let us now choose a generic site j of the system. For the generic ground state in
eq. (C.45) the magnetization along x on the j-th spin is

mx(j) = (8|7 g) (C.46)
= cos?(0) (g7 | o |g7) +sin’(6) (g~ | TT*oFTT" |g™)

1 . 1 — | A XTTX| A —1 — X X| 4=
+ 5 sin(20)]e (g |07 I g )+ (g~ [T [g7) |

Being both [¢7) and IT* |¢™) eigenstates of IT*, the two expectation values (¢ ™| o7 [¢ )
and (g~ | [Tor I |¢7) vanish. On the contrary, because the number of spins in the
system is odd, the operator [l = o1, that is equal to I} = &) 07, is an oper-
ator that commutes with I'T* and hence can have a non-vanishing expectation value
on |¢7). Therefore we have

my(j) = cos(y)sin(20)(g™[IT} [g7) . (C47)

which reaches the maximum for ¢ = 0 and 0 = 7, and this is the state on which we
focus.

Hence, to evaluate the magnetization, we only need to determine the expectation
value (g~ |fI;‘ |g~ ). Since [fI;‘, IT#] = 0, the magnetization can be easily evaluated ex-
ploiting the representation of ﬁ;‘ in terms of the Majorana operators in eq. (C.29) and
Wick’s theorem. Now, it’s important to notice that, since the translation operator T
commutes with IT*, the states |g~) and IT*|¢~) have the same eigenvalue of the
translation operator (equal to zero). It follows that the magnetization m.(j) is in-
dependent of site j, i.e. ferromagnetic. We can, thus, without loss of generality, set
j=1

From the definition of the Majorana operators in eq. (C.29), the operator I} can
be written as

Z

- L 2
NG} 2 H —1A2111By) - (C.48)
1=1

Exploiting Wick’s theorem, we obtain that the expectation value (¢~ |1} |¢7) is

(8 I [g7) = (=1)"%" detpx, (C49)
where p, is an Y1 x N-1 Toeplitz matrix py, that reads
G(1) G(-1) G(-3) G(4—N)
G(3) G(1) G(-1) G(6—N)
ox=| G0) G(3) G(1) G(8—N) |, (C.50)
G(N=2) G(N—4) G(N—6) --- G(1)

with G defined in (C.30). Similarly, the magnetization along y reads
my(1) = cos(y)sin(26) (g~ [T/ ") , (€51)

where IT] = @}, 07. Also in this case the maximum of the magnetization is equal
to (g~ ]Hy |g~ ), which in turn can be written as

(¢ [g7) = (~1)"7 detp,, (C.52)
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where py is an Y1 x M- Toeplitz matrix, that reads
G(-1) G(-3) G(-5) G(2—N)
G(1) G(-1) G(-3) G(4—N)
o—| 6B G G(-1) - Gle-N) | €53
G(N—4) G(N—6) G(N_6) G(—1)

C.5.3 Magnetizations in the ferromagnetic phase

If we are in the yFM phase the expressions for the magnetizations in the thermody-
namic limit can be obtained analytically in the following way. We have in eq. (C.30)
the function f(r) = 0 and hence G(r) reads

; —12q
Gr)= Ly Cospasinge ). (C.54)

Jer- | cos¢ +sing e~124|

For large N we can approximate the sum with an integral, obtaining

2 : —12g
G(r) = = / cosprsinge T uirt)g,. (C.55)
2t Jo |cos¢ + sing e~124|

To evaluate the determinants det p,, of the Toeplitz matrices in eq. (C.50) and
eq. (C.53) we introduce

1 27 14 cotge"
D,=G2n—-1) = ——/ — T~ ey, C.56
" (2n—1) 27t Jo |1+Cotcpel‘7|e q ( )

and rewrite them as

D, Dy ... Ds,
detpy = % D:l - Do—r| r=¥, (C.57)
D, D, D,
and
Dy D_ Dy,
detp, = L?l L?O sz’, r:¥. (C.58)
D,y Dya ... Dy

The latter can be evaluated straightforwardly for large N using strong Szegd limit
theorem [196], yielding, to leading order,

(¢ T |g7) = (1 — cot? §)1. (C.59)

The magnetization in the x direction, instead, is more complicated, because the gen-
erating function of the corresponding Toeplitz matrix has a non-zero winding num-
ber. To overcome this problem, we proceed as in Ref. [205] and notice that the de-
terminant detp,(r) in eq. (C.57), where we have indicated the size r of the matrix,
can be seen as the minor of p,(r + 1) in eq. (C.58), obtained removing the first row
and the last column. To calculate this minor, we use Cramer’s rule and consider the
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following linear problem:

r
Z Dy Xm = Onp, n=0,...,r. (C.60)
m=0
Then,
detpy(r) = (=1)"x, detp,(r +1), (C.61)

where det p, (7 + 1) is a Toeplitz determinant satisfying the conditions for the Szego
theorem. For large 7, x, can be evaluated following the standard Wiener-Hopf pro-
cedure as in Ref. [205]. The result is

roeo §tdg
r me\/l%—cotcpé )(1+cotp 1)
—cot¢ X'~ 1/2 dx C62
- _7/ v/ (1 +cotep x)(—cotp —x) (C.62)

where we deformed the contour of integration around the branch cut. The integral
in eq. (C.62) can be expressed in terms of hypergeometric functions,

roe  (=1)"  cot’ ¢ F( +3) (1 1 cot? ¢ )
Xy Pz 5+, ————— ), (C.63)
4 NG W (r+1) 2°2 cot?¢p — 1
whose asymptotic behavior gives to the leading order
o (1) '
y, 2 () cot'g (C.64)

v \/1—cot? ¢

since o F; tends to 1 for large r. Combining eq. (C.64) with eq. (C.61) and eq. (C.59)

we arrive at
roeo  (—1)"cot" ¢

det o, ~ T ’
etpx(r) (1 —cot? p)a+/mr

which means that the magnetization in the x direction decays exponentially with the
system size,

(C.65)

—1
N—vco cot 2 ¢

(1—cot2¢)i/T(N—-1)/2

Alternatively, the same result could be obtained using the theorem proven by Fisher
and Hartwig in [199, 200], given by eq. (9.13). Note that, despite the x interaction
being AFM, the corresponding magnetization is not staggered.

Finally, the magnetization in the z—direction is just equal to the Majorana two—
point function in eq. (C.30) and thus its exponential decay to zero arises as the differ-
ence between the finite sum in eq. (C.30) and vanishing of the corresponding integral
in the N — oo limit.

(g7 ITT{ |g™) (C.66)
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C.5.4 Magnetizations in the frustrated phase

If we are in the xAFM phase we have that in eq. (C.30) the function f(r) # 0 and the
function G(r) becomes

2 1 cos ¢ + sin¢ e 1% o 1a(r—1)

N +qur* | cos ¢ + sin¢p e~

G(r)=

) (C.67)

in which, for large N, we can approximate the sum with an integral, hence obtaining

e 10y (C.68)

2 1 /2” cos ¢ +sing e
0

G(r)= -2+ —
(r) Nt | cos ¢ + sin ¢ e—724|

This function reflects the fact that, effectively, the ground states of the frustrated
case have a single, delocalized excitation. Thus, in this phase, we write the Toeplitz
determinants in eq. (C.50) and eq. (C.53) as

1?0 12,1 s 1?171’
D Dy ... Dy_ _
P e % (C.69)
D,.1 D,» ... Dy
and . - .
D, D, D,
Do D_; ... D _
detp, = | . S r:¥, (C.70)
Dr—Z Dr—3 D,1
where ) 5 | o
Di=G@n+1) = —% +5- /0 D (¢) g, (C.71)
with
D () = 1ttange™™ (C.72)
T 1+tangpe |’ '

Note that, compared to the definitions employed for the yFM phase, we changed the
definition of the generating function by shifting its Fourier series, so that eq. (C.72)
has zero winding number. Using these determinant representations the magnetiza-
tions can be computed analytically, similarly to the two-point correlation functions.
We have done also this analytical computation in [3], and present it in Chapter 9.
The result, for large (odd) N, is

~ — 00 N-1 1 1
(g7IMT ™) "2 (-1) 7 S (1~ tan? ), (€73)
N—eo 2 (1—tan¢)

I o) =~ C.74
(& I [g7) N (15 tang) (C.74)

[ENOS) TN
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C.5.5 Two-spins correlation function and magnetization along the z di-
rection in the frustrated phase

The correlation function along z is simply the determinant det p,,, where

_ (G(0) G(=r)
Pzz = <G(1’) G(O) > . (C.75)

The integral in (C.68) can be studied by deforming the contour around the branch
cuts and using the properties of hypergeometric functions, as in [90, 150, 205]. In
this way we get

G(r) = —%, r=2m, (C.76)
ﬂ
G(r) & —% +4/2(1 — tan? 4>)(_ta\/%)2 r=2m+1, (C77)
G(—r) 2 _2_ 2 (~tang)¥ r=2m+1. (C78)
N N 1—tan? ¢ 3 - : '

Using these formulas we get the result in Chapter 3. Finally, the magnetization in

the z direction is given by G(0) so it is simply equal to — .

C.6 Both Couplings Antiferromagnetic

C.6.1 The Spatial Dependence of the Magnetization

As we have shown in section C.2, in the region ¢ € (0,7/4) the ground state man-
ifold is four fold degenerate. Hence a large variety of possible ground states with
different magnetic properties can be selected. Among them, the ground states at the
center of Chapter 4 are of the form

5) = \1@( p) + e T | —p) ), (C.79)

where 0 is a free phase. For such state the magnetization in the 7y direction, with
¥ = x, y, shows the peculiar incommensurate antiferromagnetic order, that we have
discussed in Chapter 4 and that we will elaborate on in the following. By definition,
the magnetization in the -y direction is equal to

—_

0
((7]7)g = E(el (p| U}YHX |—p) +cc.). (C.80)
The magnetization is thus determined by the quantities (p| (7]71—1" |—p), which are
matrix elements of the spin string operators (7]7 between the ground states vectors

|p) and IT* |—p). The matrix elements at any site j can be related to the ones at site
N, using the translation operator. Using the relation ¢ = (T*)*o%(T)* and knowing
the eigenvalues of T we get

(pl o] 11 |=p) = eI (p| oUIT* | =p) . (C.81)

The advantage of expressing the quantity (p| cT]-WHx |—p) in terms of the one at site
j = N is that this last one is real for v = x and purely imaginary for v = y, as we
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will now show. The reason why the N-th site is special is because the Jordan-Wigner
transformation, which implicitly enters into the definition of the states, breaks the
invariance under spatial translation by identifying the first (and the last) spin in the
ring.

To show that the quantity (p| oxIT* |—p) is real we resort to the mirror operator,
which relates the states with opposite momentum as My |p) = |—p), according to
Theorem 6. Using this relation and taking into account that My is hermitian we get

(pl oNIT* [=p) = (—p| MnoNIT*My |p) . (C.82)

But, as we have said, IT* commutes with the mirror operator, which together with
the property Myox My = oy, gives

(Pl oXIT* | —p) = (=p| o{IT" [p) = ({p|oRIT* |-p))", (C.83)

where the last equality holds because the operator ¢, I1* is hermitian. Hence

(p| o} I1* | —p) is equal to its conjugate and therefore real. To show that (p| oy, IT* |—p)
is purely imaginary we can use the same method together with the property that
(T]y\ll—l" is antihermitian, or we can use the relation

IT° = (—1)NTIVTI? (C.84)
and the eigenstate property IT* |£p) = — |£p), which give
(Pl X1 |=p) = = (=)™ (p| X1V | —p) . (C.85)

The quantity (p| o;IT |—p) is real, by the same argument which shows that
(p| oXIT* | —p) is real and the factor in front, due to oddity of N, makes the whole
quantity imaginary.

Taking these properties into account, we get the following spatial dependence
for the magnetizations

(o), = cos(2pj = 0) (p| oXTT" |=p) , (C.86)
(o), = cos(2pj — 0 + Ng +71) (p| 4TI | —p) . (C.87)
Inserting the exact value of the momentum (C.13), which is equal to p = 7 +

(—1)%%, we get finally the dependence of the magnetizations on the position
in the ring,

= (—1) cos [nlil + A7, 0, N)} (p| o117 |=p) , (C.88)

where
N-1

A(7,6,N) = {(_1) =

' . C.89
(- T0+%, =y (©8)

The magnetization is antiferromagnetic, i.e. staggered, but its magnitude is mod-
ulated. Since the number of sites is odd, it is not possible to have every bond aligned
antiferromagnetically, but there is necessarily at least a one ferromagnetic one. The
magnetization is modulated in such a way to achieve the minimal absolute value at
the ferromagnetic bond, thus minimizing the energy. The position of this ferromag-
netic bond is determined by the phase 6. The position of the ferromagnetic bond of
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the magnetization in the x direction is shifted by half of the ring with the respect to
the ferromagnetic bond of the magnetization in the y direction.

C.6.2 Explicit evaluation of the magnetizations on the N-th site

We can evaluate the magnetization on the N-th spin of the lattice exploiting a method
similar to the one for the other parameter region, described in section C.5. It consists
of expressing the matrix elements (p| o, IT* |—p) in terms of expectation values of
o IT* in a definite I1? parity state, using the representation of o, IT* in terms of Ma-
jorana fermions

j—1 j—1

A= (Qci) oo, Bi=(Qd)ad, (C.90)

I=1 =1

using Wick’s theorem [189-192] to express the expectation values as a determinant,
and finally evaluating the determinant.

We express (p| oy IT* |—p) in terms of expectation values of ¢/ IT* on ground
states living in the odd parity sector of IT*. A general ground state belonging to the
odd parity sector of I'T* can be written as in eq. (C.14) setting u3 = uy =0,

lu1,uz) = uq |p) +uz[—p) (C.91)
It is immediate to see that
(G, oo AT 0 = (Pl T [=p) 4 (—pl o IT [p) (C.92)
1 V2’ 2 V2 1 V2’ 2 V2

Using the properties of the mirror operator, in the previous section we have shown
that (p| oy IT* |—p) = (—p| oNIT* |p), while in an analogous way we have also
(p| o IT¥ |—p) = (—p| o, IT* |p). Using these relations we get, finally,

1
(Pl [ =p) = 5 (M) ey = ORI,y ) (C99)
Now, o, IT* and o3, IT¥, being products of spin operators, can be expressed in

terms of Majorana fermions, as

oNIT* = (=1) 2 | [(—1AyBy-1),
(C.94)
O'Iy\]Hx = —Z(—l)T (—lAzszz,l) (—ZANBN) .

The expectation values of these operators in a definite z parity ground state can be
expressed as a Pfaffian of the matrix of two-point correlators, using Wick’s theorem.
To do so, we write the state (C.91) as a vacuum state for fermionic operators, in
terms of which the Majorana fermions (C.90) are linear. These fermions are defined
by
np = ula; + uzatp, N_p = UoAp — U1A_p (C.95)
and by a; = a, for q # p, —p. It's easy to check that the operators «, satisfy fermionic
anticommutation relations and annihilate the state |1y, 1) = &, [07), i.e. that we
have a, |11, u2) = 0 for g € ™. Moreover, since the Majorana fermions in eq. (C.90)
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can be written as a linear combination of Bogoliubov fermions aq, az;, they can also
be written as a linear combination of fermions «a,, oc:;. In this way, we are able to
straightforwardly apply Wick’s theorem to evaluate the string operators in eq. (C.94)
over the chosen ground state vectors.

The two-point correlators of Majorana fermions are evaluated to be

21 . )
(AGAD 11y = (BB, = 0t — 3 (12 = lu2) sin [p(j - 1)], (C.96)
1 ; 2
—1(AjB), =+ g0 — = cos [p(j — 1) — 20,]
] 2 N q; N
— % (ufuz e PUth 4 c.c.), (C.97)

where the Bogoliubov angle 6, is defined in eq. (C.7).

As a matter of fact, in the evaluation of the matrix elements we encounter only
states of the type |u;| = |up| = 1/+/2, for which the correlators (C.96) vanish for
j # . This allows us to use the standard approach [91] on the basis of Wick’s theorem

to express the expectation value of (C.94) as a determinant. For (o, I1* >u1,uz we have
that
N-1
(OXIT9),,, = —1(=1)"7 detC, (C.98)
with the (N +1)/2 x (N + 1) /2 correlation matrix C given by
F(2,1) F(2,3) F(2,5) F(2,N —-2) F(2,N)
F(4,1) F(4,3) F(4,5) F(4,N —-2) F(4,N)
C= f : : : :
F(N-1,1) F(N-1,3) F(N—-1,5) --- F(N—-1,N—-2) F(N—-1,N)
F(N,1) F(N,3) F(N,5) -+ F(N,N-2) F(N,N)
(C.99)
where F(j,1) = —1 <AJ'Bl>u1 4,- On the contrary
(I, . = (~1)"7 detC’, (C.100)

where the (N —1)/2 x (N — 1)/2 correlation matrix C’ is obtained from C by re-
moving the last row and the last column.

The determinants we encounter have a more complicated form than those for
which the standard analytical approach [90] applies, and than those in section C.5,
so we have evaluated them numerically. The results are shown in Chapter 4.

C.7 Perturbative analysis

The discovered phenomenology in the quantum XY chain with FBC is captured well
also by a simple perturbative analysis around the classical Ising point ¢ = 0, similar
to the one used in [67], that we have done in [1, 2]. In addition, the perturbative anal-
ysis provides analytical expressions for the matrix elements f, discussed in Chapter
4,1in the limit ¢ — 0*.

At the classical Ising point ¢ = 0 the model is diagonal in the basis where ¢/
are diagonal. The ground state manifold is 2N-fold degenerate and consists of kink
states |j) and IT? |j), for j = 1,2, ..., N. Here, the kink state |j) is defined as the state

iy =1.1,-1,1,1-11,..), (C.101)
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with the ferromagnetic bond 0i = 0j;, = 1 between sites j and j + 1, and antiferro-

magnetic bonds between all other adjacent sites. The kink state IT* |j), with all spins

reversed, has the ferromagnetic bond 0’ = 0'] ‘1 = —1 and all the other bonds an-

tiferromagnetic. The parity of the states |j) is TTI* = (—1)(N=1/2, while I'T? |j) have,
of course, the opposite parity. The higher energy states are separated by a finite gap
and can be neglected in perturbation theory

For small nonzero ¢, the term Z] 1 kicks in, lifting the 2N-fold ground state
degeneracy. The corresponding elgenstates and the correction to the energies are
found by diagonalizing the perturbation in the ground space. The excited states
at ¢ = 0 are separated by a finite gap and we neglect them in this perturbative
approach. Since the matrix elements of the perturbation between two different I'T*

sectors vanish (because the (7 ; +1 terms still commute with all the parities I1%), we

can focus on each sector separately. In the IT* = (—1)(N 1)/2 gactor they read
l’ Z ]+1 = 0]—k+2 mod No T O1—k—2 mod N,O - (C.102)

It follows that the perturbation in the subspace spanned by [j), j = 1,..., N, is a cyclic
matrix

Co CN-1 ... (2 C1
N 'y C1 Co ... C3 Co
Z 0i0i = : : T : ’ (C.103)
=1
/ CN—2 CN-1 ... €0 CN-1
CN—-1 CN—2 ... (C Co
with
Cj = 51‘,2 + (5]‘,1\],2 . (C.104)

Diagonalizing the cyclic matrix [204] we find the energies
E; = —(N —2)cos¢ +2sin¢cos(27), gel, (C.105)

corresponding to the states

|sq) = \F Z e |f) (C.106)

Clearly, the states with opposite IT* corresponding to the same energies can be con-
structed as IT* |sq>. The energies of the exact solution reduce, of course, to those of
perturbative calculation when ¢ is close to 0.

It’s easy to see that for ¢ < 0 the energy is minimized by q = 0, while for ¢ > 0
itis by g = p, where p is given by eq. (C.13), as in the exact solution. Evaluating the
derivative of the ground state energy E, we find a discontinuity at ¢ = 0,

d¢

¢—0~ d(l)

which goes to a constant non-zero value in the thermodynamic limit N — co.

We can identify the states from the perturbation theory with those from the exact
solution, in the limit ¢ — 0, by looking at the eigenstates of various operators. The
translation operator shifts the kink as T |j) = |j — 1), from which it follows that the

— (1 + cos %) (C.107)

¢p—0+
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states [s;) are eigenstates of T with the eigenvalue ¢'7. The mirror operator acts on
the kink states as My |j) = |—j — 1), and therefore

My |sq) =e " |s_g) . (C.108)

Knowing that the eigenstates |q) = a} [07) from the exact solution have parity IT* =
—1, are eigenstates of T with the eigenvalue ¢ and that under mirroring behave as
My |q) = |—q), we can make the identification

1-1I7 1-1I7

lq) = V2 I59) » |—4) = 2

up to an irrelevant phase factor which is the same for the two states.

For ¢ < 0 the energy is minimized by g = 0 and thus the ground state manifold
is two-fold degenerate. From the identification (C.109) we have that the states in
eq. (C.12) from the exact solution, in the limit ¢ — 07, are equal (up to a phase
factor) to

e Mls_g), (C.109)

§7) = \}5“ CTE) sg0), Ig) =TT [g). (C.110)

The magnetization is determined by the element (so| o s0) = (so| o3 |s0). From the
property of the kink states

, , (-1, j=12,.,N-1
Y1) = , C.111
{low 17) {1’ =N (C111)

that follows from their definition, we find

1y 1
(50| o lsg=0) = 57 X (o 1) = - (C112)
]:1

It follows that in the generic ground state eq. (C.45) the magnetization is equal to
me(j) = (=1) N2 cos(p) sin(ZG)%, (C113)

describing mesoscopic ferromagnetic order. The two-point correlator can be com-
puted, as in Appendix A, using the generalization of (C.111), given by (A.11). We
get

2
<g |U ]+r |g > ( 1)1’(1_1\7[’)’ (C114)

in agreement with the exact solution.

For ¢ > 0 the energy is minimized by g4 = £p, where p is given by eq. (C.13) so
the ground state manifold is four fold-degenerate. The magnetization in a generic
ground state (C.14) is determined by the matrix elements (p| o 1T |p) and (p| o 11 |—p).

While for any g € I'” we have, generalizing (C.112),

11
(gl NI lg) = (=1) = 5, (C.115)
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where the factor (—1)(N"1)/2 stems from the parity of the states |s,), the matrix ele-
ments of the type (g o5 IT* |—g) can have a different behavior. From the identifica-
tion (C.109) we have

N-1

(gl oI [=q) = (=1) 2 e7" (sq] of [s—g) - (C.116)
Using the definition of the states on the right we get
N1 1

(gl NI =g) = (=1) =
J

e 2 (jloy |j) (C.117)

™=z

Il
—_

which can be evaluated using (C.111). We end up with

a1
Ncosq

‘ z
N

(gl onIT" =) = (1) (C.118)
The matrix element for the ground state momentum p = /2 + (—1)(N+1/27r /2N

becomes ,

= — 119
Nsin 7 ! (C.119)

(p| oNIT" |=p)

and in the limit ¢ — 0 determines the maximum value the magnetization achieves
over the ring in the ground state |§), defined in eq. (C.79). For large N it becomes

XTTX |4\ — E us —4
(PloRIT" [=p) = — + 1575 TONTT), (C.120)

which approaches quadratically the value 2/7 =~ 0.64 in the thermodynamic limit.
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Appendix D

XY Chain with Bond Defects:
Methods Details

This is the appendix for Chapter 5, based on the appendix in [4].

D.1 Numerical procedure

To diagonalize the Hamiltonian in eq. (5.1) we resort to the Jordan-Wigner transfor-
mation [56, 91, 149], that maps spin operators into fermionic ones

j-1 j-1
¢j = (@ a,f) ® 0, cf = (@ 0,‘?) ®0;, (D.1)
k=1 k=1
+

where o = ((7]" + Z(ij )/2 are the Pauli ladder operators. Through eq. (D.1) the
Hamiltonian in eq. (5.1) can be recast into the form

N-1
H=}. {(COS‘P —sing) cjcjr1 — (cos¢ +sing) c]-c;rﬂ} +
j=1

—II* [ (cos(¢ + 0x) —sin(¢p + J,)) cnc1 — (cos(¢ + 6y) + sin(¢p + 6y)) chﬂ +h.c.
(D.2)

Since [H, IT*] = 0 we can identify two different disconnected sectors corresponding
respectively to the values IT* = +1. In the following we focus on the Hamiltonian of
the odd sector, i.e. we fix IT* = —1, since once the ground state |¢~) with IT* = —1
is obtained, the other one with the same energy in the even sector is IT* [g7).

There, the Hamiltonian is quadratic in the fermionic operators, i.e. it can be
rewritten as

N-1
1
H= Z; |:C;r5j,j+lcj+1+2 <C;T]',]‘+1C}+1 +h.c.)] , (D.3)
]:

where the matrices S = S and TT = —T can be easily obtained by inspection from
eq. (D.2). Following the standard approach [91] we introduce the linear transforma-
tion

(OIS § D — Yy
77k:2|: kl;— klZ k12 kzc;[-:|, (D4)
i
D + Vi ) Y
7]}-{#:2|: kz;’ kzc;r k12 ki z:|/ (D5)
i
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where the vectors @ and ¥ are given by the solution of the problem

DS —T)(S+T) = Aidy, (D.6)
DS —T) = AfYr. (D.7)

The Hamiltonian in eq. (D.3) can then be reduced to the form

1
H = ZAkﬂ;ﬂk + 5 TrS — ZAk] . (D.8)
k k

For definiteness we take the energies Ay to be all positive.

At variance with the unperturbed model, in which the GS degeneracy depends
on the type of interaction, tuned by the ¢ parameter, the GS of the perturbed one
is two-fold degenerate, due to the breaking of the translational invariance of the
system. The most general GS can be written in the form

|g) = (cos O +e¥sinf ITY) |g7), (D.9)

where |¢7) is the (unique) GS of the system in the odd parity sector, and 6 and ¢ are
real numbers.
The magnetization for the ground state in eq. (D.9) is given by

(gl o7 |g) = cosysin(26) (g~ [ 711" [g7), (D.10)

since the matrix elements of ¢* between different IT* sectors vanish. Of interest is
the maximal magnetization that can be obtained on the ground state manifold. It is
achieved in the states with definite IT* parity. This is

mx(j) = (g~ o7 1T [g7) (D.11)
for IT* =1 (achieved by ¢y = 0, 0 = 71/4) and

m(j) = — (g~ | ofIT" [¢7) (D.12)

for IT* = —1 (achieved by ¢ = 0, 8 = —7r/4). These are the magnetizations that we
discuss in Chapter 5.

Eq. (D.11) can be evaluated expressing the operators on the rh.s. in terms of
Majorana fermions

j—1
A= C}L +cj = <® af> ® U]-x, (D.13)
Bj = 1(c] —¢)) <® al> (D.14)

Furthermore, we can resort to Wick theorem to express the expectation values in
eq. (D.11) in terms of the contractions F(j,l) = —1(g~| AjB; |g7).

Let us denote the vacuum state for fermions #; by [07), i.e. we have #;[07) =0
for j = 1,2,...N. We numerically verify, by direct computation, that the parity of
the state [07) is II* = 1. On the other hand, the Hamiltonian without defects is
also written in terms of free fermions with positive energy and the vacuum |0~) has
positive parity by construction there (see Appendix C.2).
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Assuming the eigenvalue of the matrix appearing on the Lh.s. of eq. (D.6) are
labeled in descending order, the GS is then |¢~) = 7{,|07). From this identification
a straightforward calculation gives

N-1
E(j,1) = ) ¥i®Pu- (D.15)
k=1

D.2 Perturbation theory

In this section we study perturbatively the Hamiltonian in eq. (5.1) with 6, = 0. Let
us for the purpose of perturbation theory write the Hamiltonian as

N N
H=cos¢) ofof, +sing) olo , +oyor, (D.16)
=1 =1

so that > 0 corresponds to an antiferromagnetic defect, while ¢ < 0is a ferromag-
netic defect. The case { = 0, of course, corresponds to FBC.

First, in section D.2.1 we are going to make the perturbation theory close to the
classical point ¢ = 0, which explains well our numerical results. Then, in sec-
tion D.2.2 using the perturbation theory around { = 0 we are going to find which
of the four-fold degenerate ground states of the region ¢ € (0,71/4), present with-
out the defect, are selected by taking the limit of the small antiferromagnetic defect
¢ — 07, which also explains well the order we have found numerically.

D.2.1 Perturbation theory around ¢ = 0

The perturbation theory around ¢ = 0 without the defect (for { = 0) has already
been done in Appendix C.7. Without the defect, exactly at the classical point ¢ =0
the ground state manifold is 2N-fold degenerate and consists of kink states

‘]> = “"’ 1/ _11 1/ 1/ _11 11---'>/ (D17)

for j = 1,2... N, which have one ferromagnetic bond U]?C = (T]?‘H = 1 and antifer-
romagnetic bonds between other adjacent sites, and the kink states obtained from
|/) by reversing all spins, which have 0j = 07;; = —1 and all the other bonds anti-
ferromagnetic. The latter can be written as IT* |j). Note that the states |j) have the
parity IT* = (—1)(N=1/2 while IT? |j) have, of course, the opposite parity. By turn-
ing on ¢ # 0, the term proportional to } ; (T]-ya]-y 11 kicks in and the 2N-fold degenerate
ground state manifold splits, resulting in the two-fold ground state degeneracy for
¢ < 0 and four fold for ¢ > 0.

The new ground states and the corresponding energies are found by diagonaliz-
ing the perturbation in the basis of the kink states, while the other states are sepa-
rated by a finite energy gap and can be neglected. The procedure is similar also with
a defect, but not all the states will enter into the perturbation theory, because the
defect will induce an energy gap between the kink states. Namely, the states which
have a ferromagnetic bond between the sites j = N and j = 1 have a different energy
from the others. At ¢ = 0, the states |N) and IT* |[N) have the energy

Ep=—(N-2)+¢, (D.18)
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while the other kink states have the energy
Ey=—-(N—-2)—-C¢. (D.19)

Thus, for { < 0 the ground states at ¢ = 0 are only |[N) and IT* |[N). The other
kink states are separated by a gap 2 and can be neglected, so the perturbation theory
is very simple. In fact, the perturbation, proportional to }; (7] ; +1' does not mix
different IT* sectors and is already diagonal in the basis |[N) , IT* |N).

We conclude that for { < 0 and small ¢ the ground states are (approximately)
the states |N) and IT* |N), with magnetization

(N| o IN) = (=1)/*! (D.20)

and the one with all spins reversed, respectively. This result explains well the mag-
netization at Fig. 5.2 in the bulk of the system, far from the defects.

For { > 0 the ground state manifold at ¢ = 0 is 2(N — 1)-fold degenerate. It
consists of the states |j) and I'T* |j) for j = 1,2,... N — 1. Turning on the perturbation
the degeneracy splits. To get the new ground states and the corresponding energies
we diagonalize the perturbation in the aforementioned states.

Since the perturbation, proportional to }; 0'] j +1' does not mix different IT* sec-
tors we can focus on just the states |j), for j = 1,2,... N — 1. If we include also the
state |N), the perturbation is an N x N cyclic matrix with the elements

N
(k[ Yool 1 1) =60 -k12) mod N0 + 8(1—k-2) mod N0- (D.21)

Without the state |N) the perturbation is a matrix obtained by removing the last row
and the last column of the cyclic matrix. It reads

0010 00 1

0001 00 0
N 1000 000
2‘7]%1— 0100 00 0 (D.22)
= .

1000 ..100

A similar matrix, obtained by deleting the last row and the last column of the
N X N cyclic matrix with the elements

O(1-k+1) mod N,0 T O(1—k—1) mod N,0 (D.23)

instead of eq. (D.21) was diagonalized analytically (as a special case) in [69], by writ-
ing a recursion relation in N for the characteristic polynomial. We diagonalize the
matrix in (D.22) in a less dignified way. Based on the similarity with the aforemen-
tioned matrix of [69] we simply guess the eigenstates. As is easy to check, the nor-
malized eigenstates of the matrix in eq. (D.22) are

las) = Z 1)¥ sin (—]) 1), (D.24)
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with the eigenvalues a; = 2 cos (%), and

—N-1 i
Z Z (_1)SJ+L 2 Jsm( )|]> Nmod4=1
bs) = (D.25)

Z( 1)+l Jsm(S” )j), Nmod4=3
=

with the eigenvalues by = —2 cos (2££). Here s takes values from the set {1,2,... (N —

1)/2}. It follows that the energies associated to the eigenstates in eq. (D.24) and
(D.25) are respectively

E,s = —(N —2)cos¢ — { + 2sin¢ cos (217;5),
(D.26)

Eps = —(N —2)cos¢p — { — 2sin¢ cos (2%)

The parity of the states in eq. (D.24) and (D.25) is equal to IT* = (—1)(N-1/2_ The
states of the opposite parity are constructed, of course, by applying the I1* operator.

Thus, the 2N-fold degenerate ground state manifold splits, for small ¢, into a
band of states, with a two-fold degenerate ground state manifold and an energy gap
between the states that closes as 1/N2. For ¢ > 0 the ground states are |g) = |as)
fors = (N —1)/2 and IT* |g), while for ¢ < 0 the ground states are |g) = |bs) for
s = (N —1)/2 and IT* |g). After a bit of straightforward algebra, using

_1)HH = P
topiy =470 e m 2 (027)
(-)*,  I=jj+1,...N

we find that the magnetization in the ground state |g) is, for both signs of ¢,

gloflg) = —~ TN (D.28)

In the ground state I'T* |¢) the magnetization acquires, of course, an additional minus
sign. The obtained order is in agreement with the numerical results on the magne-
tization in the presence of an antiferromagnetic defect, presented in Fig. 5.2. Note
that, for large N, the magnetization in eq. (D.28) is approximated by

2
(), = (= 1)Jf sin (N]> (D.29)
which is the incommensurate AFM order present for ¢ € (0,71/4) in the absence of
the defect (see Chapter 4). The magnetization is modulated in such a way to achieve
zero value where the defect is placed.

D.2.2 Perturbation theory around { = 0

In this section by using perturbation theory around ¢ = 0 we find which of the four-
fold degenerate ground states of the region ¢ € (0, 71/4) are selected in the limit of
a small antiferromagnetic defect { — 0. For this task we treat the term o0y in
eq. (D.16) as a perturbation. The model with { = 0 has been solved in details in
Chapter 4 and Appendix C, and we use the same notation. Thus, while before we
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used the kink states as basis for the perturbation, here we employ the four ground
states states determined in Chapter 4.

For { = 0 the ground state manifold is spanned by states |p), |—p) , IT* |p) , IT* | —p)
which are simultaneous eigenstates of the Hamiltonian in eq. (D.16), with { = 0,
the parity operator IT* (with eigenvalues, respectively IT* = —1,—1,1,1) and the
translation operator T (with eigenvalues, respectively T = ¢e'F,e™'?,¢e'?,e"'F). Here
p = /2 + (—=1)N+D/271 /2N is the momentum of the states. Above the ground
states there is a band of states, with the energy gap closing as 1/N2.

To find which ground state vectors are selected in the limit of a small defect we
diagonalize the perturbation {oy,07 in the basis of the four ground states above. We
are going to neglect all the excited states of the model, including those belonging
to the lowest-energy band. This is not justified in general, because of the gapless
nature of the system, but the procedure is going to yield the results in agreement
with numerics, as we comment in the end. Since the perturbation does not mix
different IT* sectors it is sufficient to focus on the subspace spanned by |p), |—p).
Thus, we need to compute and diagonalize the matrix

v o x (ployotlp)  (ployoy |—p) )
T — . D.30
Nl <<—P!Ui‘wﬂp> (~plotot |—p) (B30

The elements of the perturbation matrix are computed using the Majorana fermions
representation of the spin operators, in terms of which

oxoy = IT*(—1A1BN), (D.31)

and using the representation of the Majorana fermions in terms of Bogoliubov fermions
a4, that can be obtained from the exact solution presented in Appendix C.2. We have

1 .
Aj=—= Y (at +a_g)ee ¥
i= S q ,
PquF* 7
(D.32)

\/ﬁjqer—

where I'™ = {27tk/N : k = 0,1,...N — 1}, and the Bogoliubov angle 6, is defined
by (C.7) for ¢ # 0 and 6y = 0. In terms of Bogoliubov fermions the ground states
are given by |£p) = alp |07), where |07) is the vacuum state, satisfying a, [07) =
0, g € I'". Using eq. (D.31), (D.32) and this ground states representation we get the
matrix elements of the perturbation. For (p|o¥,07 |p) = (—p|o¥0f |—p) we recover

2 1 _
(plofef |p) = 5 cos(20, —p) — & 3 &7 (D.33)
gel’~

while for (p| oXof | —p)
2 _,
<P’Uﬁ0f’ p>-_ PJe P. ([134)

Then, diagonalizing the perturbation matrix we obtain the eigenstates

2) = —=(p) £e? | -p), (D3
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which are also even/odd under the mirror symmetry crossing the site X3! (see Ap-
pendix C.4). These states have energies

2

1 2
Ex=Eo—{ Y e 4 Ly 08(20p—p) £ 0 (D.36)

gel'~

where Ej is the ground state energy of the unperturbed model. For the antiferro-
magnetic defect { > 0 the state [¢~) = |¢_) is lower in energy and, therefore, (ap-
proximately) the new ground state, belonging to II* = —1 sector. Of course, the
ground state belonging to IT* = +1 sector is |g1) = IT* [¢_).

The magnetization can be computed using the same techniques as in Chapter 4,

that employ the translation operator. Denoting |g) = %@ (1411%) |g~), we get

(o), = (g7 1o 1" [g7)

(D.37)

= (— J(— BA ZE '__1, XTTX | X TTX
(—1)(=1)" sin | (= 5) | (plo¥IT [=p) + (pl o1 |p),

where we have used (p| oI |—p) = e 2 (p| o} IT* |—p) and (p| o} IT* |—p) =
(—p|oyIT* |p) from Chapter 4 and Appendix C.6.1. The matrix elements encoun-
tered in this expression have also been computed in Chapter 4. It has been found
numerically that in the thermodynamic limit N — co we have

(PlOXIT [ =p) = Z(1—tan? )", (D38)
(ploxIT*|p) = 0, (D.39)

which gives the magnetization

o), =2 gt n [ (53 (D.40)

The obtained magnetization generalizes eq. (D.29) to the whole region ¢ € (0, 77/4)
(the factor (—1)(N=1)/2 of difference arises because of the different parities of the in-
volved states) and describes well our numerical results. Note that, since the states
in eq. (D.35) are eigenstates of the mirror symmetry across the site 2=, the magne-
tization pattern they generate must be even under such transformation, a property
present in that is in eq. (D.40) and (D.28), but not in eq. (D.29).

Since we have performed two different perturbation theories, we can check their
agreement in the regime where both applies and at finite sizes. From Appendix C.7

we know that in the limit ¢ — 0™ we have

XTTX | _ _ 1
(plonIT"| P>—7Nsin(LN), (D.41)
N1 1
(plodIl*[p) = (1) = & (D.42)

Sticking this into eq. (D.37) gives us exactly eq. (D.28), up to factor (—1)(N=1)/2 that
arises from the parities of the involved states. The two perturbation theories are,
thus, in agreement.

The perturbation theory done in this section describes well our numerical results
in the region ¢ € (0,71/4) in the case of an antiferromagnetic defect and shows to
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which ground states out of the four-fold degenerate manifold the discovered order
corresponds. The same perturbation theory would not be successful in describing
the order in all cases of ¢ and {. The reason is that due to the gapless nature of the
system it is not justified to neglect the low-lying states of the model in the perturba-
tion theory, so the procedure does not have to give the right results in general.
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Appendix E

Matrix Elements of Local Operators
Between Kink States

In this appendix we prove theorems 1 and 2 from Chapter 6, on matrix elements of
local operators between translationally invariant states formed from states with one
or more kinks. This appendix is based on [6].

E.1 Proof of Theorem 1

1 2 --- L ]
-+ -4+ -+ - -+ -

FIGURE E.1: Graphical representation of a kink state |j), where the

kink is far on the right. Away from the kink, there is the standard

antiferromagnetic order. Let the blue rectangle represent the portion

of the lattice where A has the support. Flipping any state in the rect-
angle will necessarily create a second kink.

— X1 82 X,
Forany A = 07'0,”...0," we have

(511 4 lga) =2 (5| A5y} + 102 (5| ATE sy) -
+ viuy (sp, | TI* A [sp,) + 0102 (sp, | TIZALT? |5, ) . '
Now, since the kink states |) are eigenstates of IT¥, with the eigenvalue (—1)(N-1/2,
the states [s,) are also eigenstates of IT*, with the same eigenvalue. From this fact
and the property that A either commutes or anticommutes with IT* we have that
two out of four terms in (E.1) necessarily vanish. If A commutes with IT* ([A, IT¥] =
0) then the second and the third term in (E.1) vanish. Using the Cauchy-Schwarz
inequality we get
(g1l Alg2) | < | (5] Als) I E2)

Similarly, if A anticommutes with IT* ({A,I1*} = 0) then the first and the fourth
term vanish and we have

| (811 Alg2) | < [ (sp| AT [sp,) |. (E.3)
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Thus we focus our analysis on elements (s, | A [sp,) and (sp, | AIT* |sp,). In terms of
kink states they read

N
<Sp1|A|sz= }: = G Ay, (E.4)

N
(sp, | AT [sp,) = 2 el (j AT 1) (E.5)

Case a): In case a), A commutes with I'T* so (E.2) holds. Moreover, A acts only as a
phase factor on the kink states, so (j| A |I) = 0 for j # I. Since far from the kink we
have simply staggered antiferromagnetic order (see Figure E.1) we conclude that for
all j > L we have

(jlAlj) = c(=1) for some constant c € {—1,1}. (E.6)
Putting this into (E.4) we get

c

(5| Alsp) = 55 (=1 PP -2y, (E7)

Mz

Il
—_

j

where Cy is a correction coming from the terms 1 < j < L in (E.4) for which (E.6)
does not have to hold. It is equal to

L-1
i = 5 3 e PRI AL — (1) €3)
=1

and, clearly, satisfies
2(L—-1)

~ (E.9)

1SN <

Performing the sum in (E.7) we are left with

—i(p— 1
(Spi| Alsp,) = —ce (pr1—p2)/2 Noos P +&n. (E.10)
Taking the absolute value we get
1 2(L-1
[(snl Als) | < =l (&)

+
N|cos P5P2| N

Using (E.2) proves this part of the theorem. We can take for the theorem the constant
Ci=1+2(L-1)=2L-1.

Case b):  The case b) is even simpler. Here A does not act only as a phase on
the kink states, but it flips some spins. Flipping any state far from the kink will
necessarily create a second kink (see Figure E.1), so all the elements (j| A |I) and
(j| ATT? |I) vanish for L < j < Nor L < I < N. There are thus at most (L + 1)?
non-zero elements in the sums (E.4) and (E.5). It follows

(L+1)2

(L+1)2
N ‘

[ (5pl Alsps) | < N

| (spu| ATT [spy) | <

(E.12)
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B)=lEF+H-+-+-—+-EFH-+—+-)

FIGURE E.2: Examples of the first excited states of H at the classical

point A = 0, and their symbolical representation. The white regions

represent the Néel order, while the shaded ones include spins that
participate in ferromagnetic bonds (kinks).

Now, using (E.2) and (E.3) proves this part of the theorem.

E.2 Proof of Theorem 2

To prove the theorem it is convenient to we write the matrix elements of interest as

(B1, p1| A B2, p2) = Z e (B (TTY AT |Ba) - (E.13)

It is also convenient to introduce a symbolical representation of the structure of the
states |B), in terms of white and shaded regions, as in Figure E.2. We define the
shaded regions to consist of all spins participating in a ferromagnetic bond (kink)
with some of its neighbors, and the white regions to consists of the remaining spins,
that participate only in antiferromagnetic bonds. Clearly, the number of white re-
gions in a state |B) is equal to the number of shaded regions. Let us denote the
number of shaded regions in | 1) and |B,) by Nj and N, respectively. Let us denote
the number of kinks by N; and N, respectively. We have then, clearly, N; < Nj and
N> < Na. Let us also introduce the concept of the size of a region. We will say that
a particular region is of size R if there are R spins inside. For example, in the part a)
of Figure E.2 there are two shaded regions, of size Ry = 3 and R, = 2.

Case a): In case a) the matrix elements (81| (T*)/ AT |B,) can be non-zero only if
B1 = B2 and j = [, since A acts then only as a phase factor on the eigenstates of 7.
For B1 # B2 the elements (E.13) are thus zero, while for f; = B2 we are left with
1 N=1 . S
BrplAlBup) =5 L e P B(TYAT |B). (E19)

j=0

Let us focus now on a particular white region in |fB1), exhibiting Néel order, and
suppose it extends from site j = r to site j = r + R — 1. This region has a contribution

+R—
S=— Z (1| (THY AT/ |By) (E.15)
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in the sum (E.13). If R > L then we have necessarily the staggered dependence
(B1| (TYY AT/ |B1) = c(—1) (E.16)

forr < j < r+ R — L, i.e. before the support of (T')/ AT/ starts overlapping with
the next shaded region, and with the constant ¢ € {—1,1} given explicitly by ¢ =
(—=1)" (B1] (TT)" AT" | B1). We have thus

1 r+R—-1 ) )
S = N ; e~ P=plic(—1) 4 ¢, (E.17)
where the correction is given by
1 r+R-1 ) i ) )
(=y L ' PIBI(TYVAT ) —c(-1)]. (E.18)
j=r+R—L+1

Clearly, the correction satisfies

(L-1)

2
< E.19
HEE (E.19)
Performing the sum in in (E.17) we are left with
o1y (1) R mpR 4 g
5 = celm- b e E20
2N cos PP2 : (E.20)
Taking the absolute value we get
1 2(L-1)
S| < . E.21
| ‘_N|cos—p1£p2| N (E21)

In the other case, R < L, this bound holds trivially. To obtain the bound for the total
contribution of the white regions we have to multiply (E.21) by the number of white
regions in |B1), which is not greater than the number of kinks Nj.

We have thus obtained the bound for the contribution of white regions. We can
obtain the bound for the contribution of the shaded regions in (E.14) by recognizing
that the total number of spins in the shaded regions is not greater than 2N;, where
Nj is the number of kinks. Altogether, we get

Ny 2(L-1)N; 2Ny
, 1| A | B, < , E.22
| {B1, p1| A[B1, p2) | N] cos ESEE| t=— TR (E.22)
so we can take for the theorem the constant
C1 =3N; +2(L—1)Nj. (E.23)

Case b): We examine the elements (81| (T*)/AT'|B2) and what are the necessary
conditions for them to be nonzero. Let us suppose, without loss of generality, that
N; < N, i.e. the number of shaded regions in |B,) is greater than or equal to the
number of shaded regions in |fB1).

First we notice that all the states AT’ |B,) where [ is such that A creates a new
shaded region have necessarily zero product with the states T/ | 1), for all j, because
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////////////

FIGURE E.3: The states T' |B,) for different values of I, where we

focus on one shaded region of | B,) and its translations. The blue rect-

angle represents the sites 1 < j < L, where the support of A is found.

All values of | for which the range 1 < j < L either borders or over-

laps the shaded region are represented. See the proof of case b) of
Theorem 2.

of a strictly greater number of shaded regions in AT' |B,) in that case. Thus, first we
bound the number of states T' | 8;) in which A does not create a new shaded region.
The only states for which this is is a possibility are the states in which the shaded
regions overlap or border the range 1 < j < L, where the support of A is placed,
since A creates kinks when acting on a white region. These states are represented in
Figure E.3.

For a particular shaded region in | 8;), of size R, there is at most R + L + 1 states
T'|B2) which place the shaded region to overlap or border with the the range 1 <
j < L (see Figure E.3). Denoting the sizes of different shaded regions in |B2) by
Ri,Ry,..., RN2 we have that there is at most

(Ri+L+1)+(Re+L+1)+...+(Rg, + L+1) (E.24)
such states. Recognizing that the total size of the shaded regions is bounded as
Ri+ Ry +...+ Ry, <2N,, (E.25)

where N, is the number of kinks in |f8;), and that N, < N,, we can bound (E.24)
by the number N, (L + 3). Thus, there is at most N»(L + 3) different values of I for
which the product of AT' |B,) with T/ |8;) is nonzero for some j..

The next step is to bound the number of states T/ |B;) which have a nonzero
product with a given state AT |8,), for fixed I. There are two cases to consider. The
first one is if there is a shaded region in T! |B2) that is outside therange 1 < j < L,
or at least a part of size 2 of the shaded region. In this case the necessary condition
for a nonzero value of the elements (81| (T1)/ AT |B,) is that some shaded region of
T/ |B1) coincides exactly with the aforementioned shaded region of T |8,). There is
at most one such state T/ |8;) for each shaded region of |B1). Thus the number of
states T/ |B1) which have a nonzero product with a given state AT’ |8;) is at most
Nj in this case. The second case is if in T! | ;) there is no shaded region, or a part of
size 2, outside the range 1 < j < L. In this case there is at most L + 1 states T/ |B;)
that give a nonzero product, since the translation of any state by L + 1 sites will
necessarily create a shaded region outside the support of A. We can include both
cases by taking the sum of the bounds from each one, i.e. the number L + 1 + Nj.

Therefore, there is at most N»(L + 3) values of I which give a nonzero product
of AT!|B,) with some of the states T/ |8;) and each of these N, (L + 3) states has a
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nonzero product with at most L + 1 + Nj states T/ |81). We conclude

[(Bu il Ao, pa) | < EHIFRVEEING (8.26)

We prefer to express the bound in terms of the number of kinks Nj, which satisfies
N; > Nj, so we can take for the theorem the constant

Ca= (L+1+ Ny)(L+3)Ny. (E.27)
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Appendix F

n-Cluster-Ising Models:
Diagonalization, Symmetries

Here we diagonalize the exactly solvable n-Cluster-Ising models

H= ZU A Za A IR EL (1)

w1th frustrated boundary conditions (given by periodic boundary conditions 7', , =

oj, for & = x,y,2, and odd system size N = 2M + 1) and discuss the symmetries of
the models. We consider the Cluster Ising models with an even number 7, since
they belong to the symmetry class considered in Chapter 6, i.e. they posses anticom-
muting parity symmetries for odd N. Moreover, we focus on the parameter region
A € (—1,1), where the Ising coupling is larger than (and dominating over) the clus-
ter one.

It is known [161, 170] that the models described by Hamiltonian (F.1) can be
solved through an exact mapping to a system of free fermions, employing the same
techniques as in the diagonalization of the quantum XY chain [56, 91], which can
be considered the special case n = 0. The diagonalization is thus similar to the
diagonalization of the XY chain with FBC, presented in details in Appendix C. This
appendix is based on [6].

F1 Diagonalization of the n-Cluster-Ising models

We are now diagonalizing Hamiltonian (F.1), when 7 is an even number. Let us note
that the procedure works for odd n as well, the difference being in the expression for
the energy of the rt-mode in (F.10) later. The Hamiltonian commutes with I'T* and
we split the diagonalization in two sectors of 117,

1+11F 14117 1-11F  _1-1I*
H= "y H- :

2 2 2 2

(F2)

In each sector the Hamiltonian is quadratic in terms of Jordan-Wigner fermions
Y

/ 2(7]?‘+1(7y j—-1 oF —10;
o= (@) 57 §=(Qd)-

1=1 I=1

(E.3)

It reads

N N
H* — — Y (cjcjpa + c]-c;rﬂ +he)+A Y (cicjini — Cjc;'r+n+1 +he), (F4)
j=1 j=1
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where ¢j;y = F¢; in the sector IT* = +1.

The Hamiltonian in each sector is quadratic so it can be brought to a form of free
fermions. To achieve this, first HE are written in terms of the Fourier transformed
Jordan-Wigner fermions,

1 N , 1 Y ,
by=——=Y cie W, pt=——Y cte9, (E5)
q \/N]Z; ] q \/ﬁ ]Z; ]
for g € T+, where the two sets of quasi-momenta are given by I~ = {27tk/N} and
q q g y

I't = {2n(k+ 3)/N} with k running over all integers between 0 and N — 1. The
Bogoliubov rotation

_ ino. bt
ag = cos by by +1sinf, b_q, q#0,7m (E6)
ag=>bs;, q=0,7

with the Bogoliubov angle

1+ A et 24| — Acos [(n+1)q] — cosq

8, = arctan E7
7= —Asin [(n+1)g] + sing E7)
then brings H* to a free fermionic form. The Bogoliubov angle also satisfies
147 e~ t(n+2)q
120, _ ,iq
et =¢ 15 A i) (E.8)
After these sets of transformations, the original Hamiltonian is mapped into
1
HT = Z &g <a;aq — 2) , (F9)
ger+
where the quasi-particle energies are given by
gy =21+ A7 = 2\/1 + A%+ 2Acos [(n+2)q] Vq#0,m,
e0=2(1+A7) g=0eI", (F10)
ex=—-2(1+A) g=mel™.

Before proceeding, let us note one technical subtlety in the diagonalization of the
model. The Bogoliubov angle 6, defined by (F.7) can become undefined for some
modes g # 0, 7t also point-wise, by fine—tuning of the parameters n, N, and A. This
problem can be circumvented by using (F.8) to define the Bogoliubov angle and such
points can be neglected.

F2 Eigenstates construction for the n-Cluster-Ising models

The eigenstates of H are formed by applying Bogoliubov fermions creation operators
on the vacuum states [0%), which satisfy a,|0%) = 0 for 4 € I'* and taking care of
the parity requirements in (F.2). The vacuum states are given by

0%) = cos 0, —1sinf, bIb' ) 0), (F11)
q 97979
0<g<m, ger*
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where |0) = |11 ... ) is the state of all spin up and the vacuum for Jordan-Wigner
fermions, satisfying c; [0) = 0. The vacuum states [0*) and |0~) both have, by con-
struction, parity II* = +1. The parity requirements in (F.2) imply that the eigenstates
of H belonging to the IT* = —1 sector are of the form a;rla;rz...a;m |07) withg; € T~
and m odd, while IT* = +1 eigenstates are of the same form but with q; € I'", m even
and the vacuum |0") used. It is important to stress that the total quasi-momentum
of these Hamiltonian eigenstates is also the momentum of the states that generates
lattice translations, i.e. the action of translation operator T on these states acts as a
phase factor

T=exp (1 E qa;aq), (F12)

ger+

which follows from Theorem 5 from Appendix C.3. The identification of the quasi-
momentum from the exact solution with the momentum that generates lattice trans-
lations allows us to draw a connection between the general results of Chapter 6 and
the exactly solvable cluster models.

Because of the anticommuting parity symmetries of the model, having constructed
the states of one sector, say II* = —1, the states of the other sector can be constructed
also by applying the parity operator IT* (or IT¥). Namely, if |¢) is the eigenstate of
H with IT* = —1 then IT* |¢) is also the eigenstate, with the same energy, but with
IT* = +1.

From our construction of the eigenstates we see, in particular, that the ground
states of the model (F.1) are the states a]; |0~) and Hxa;r |0~) for all momenta g € T~
that minimize the energy (F.10). Note that in the studied parameter region A €
(—1,1) the energy of every mode g € I'™ is positive. A consequence of this fact is
that the system is gapless, with the energy gap above the ground state closing as
1/N?, a phenomenology analogous to that of Refs. [1, 2, 66, 71, 73].

Determining the ground states, their momenta and the ground state degeneracy
becomes, thus, a matter of finding the modes g € I'” with minimal energy. From
(F.10) we see that the modes g € I'~ with minimal energy are, for A € (0,1), those
that minimize cos[(n + 2)g], and, for A € (—1,0), those that maximize cos[(n + 2)q].
The number of such momenta is given by the theorem which is the subject of the
next section. Denoting by ¢ = gcd(N, n + 2) the greatest common divisor of N and
n + 2, from the theorem it follows that the number of modes minimizing the energy
is2¢and g for A € (0,1) and A € (—1,0) respectively. Taking into account the two-
fold degeneracy between different parity sectors, we conclude that the ground state
degeneracy is 4¢ and 2g for A € (0,1) and A € (—1,0) respectively.

Let us determine explicitly some of the ground state momenta. We are going to
focus on the example presented in Chapter 6, given by n = 4 and A € (0,1). From
part b) of the theorem in the next section we see that the ground state momenta
g € I'™ are those that satisfy

_ g
cos(6q) = — cos (nﬁ) , (E13)
where ¢ = gcd(N,6). We are going to focus on the cases N mod 12 = 1 and
N mod 12 = 3, that illustrate our points in Chapter 6, while the other cases can
be treated in an analogous way. In the case N mod 12 = 1 we have ¢ = 1 so the
ground space is four-fold degenerate (corresponding to two different momenta). It
is easy to see that momenta

_27N—1 271IN+1

N 12 " N 12 (E14)
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indeed belong to I'” and satisfy the relation (F.13), and are thus the ground state
momenta. In the case N mod 12 = 3 we have, on the other hand, g = 3 so the
ground space is 12-fold degenerate (corresponding to six different momenta). The
ground state momenta are in this case

_2tN-3 2713N+3 275N -3 277N +3 279N -3 27 1IN +3
"N 12'N 12N 12N 12 'N 12 'N '

2
(F.15)

E3 Extremization of the energy spectrum for the n-Cluster-
Ising models

In this section we prove the following theorem, that enables to find the ground state
degeneracy of the n-Cluster-Ising model setting m = n + 2.

Theorem 7. Let m and N be positive integers, such that m < N and N is odd. Let us denote
2mm ;

their greatest common divisor by ¢ = ged(N, m). Consider the function f(j) = cos (#7%})
defined for j € {0,1,...N —1}.

(a) The function f has ¢ maxima on the set {0,1,... N — 1}, where the function reaches
value 1.

(b) The function f has 2¢ minima on the set {0,1,... N — 1}, where the function reaches
value — cos(rtg/N).

For the proof we will use the concept of a multiset, i.e. a set in which elements
can repeat. Two multisets are equal if they contain the same elements, with the same
multiplicities. We define the multiplication of the multiset of numbers by a constant:
If A= {a:a e A}isamultiset of (complex) numbers and ¢ a (complex) number
we define the multiplication in the obvious way, by multiplying each element of the
multiset by c,

cA={ca:a€ A} (E.16)

We also introduce the distance of a number from a set, or a multiset, of numbers. Let
B be a (complex) number and A a set, or a multiset. Then the distance of B from A is

d(B;A) = min{|a — B| 1« € A}. (E17)

More generally inf should be used instead of min, of course, but for our purposes it
is going to be the same.

Now we introduce a definition about modular arithmetic and multisets. Suppose
we have two multisets of integers, A and B, and let m also be an integer. We say that
A = B (mod m) if

{amodm:a € A} = {pmodm: B € B}, (E18)

i.e. if looking at equalities modulo m the elements and multiplicities are the same.
With these notions introduced we can prove the theorem.

Proof. (a) If we expand the domain j € {0,1,... N — 1} of function f to real values
j € R then it is easy to see that the function is maximized for j € XZ, with
value f(j) = 1. Within our restricted domain of integers, the elements j that
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minimize the function f(j) are simply those that satisfy both j € {0,1,... N —
1}andj€ N7, ie. thosej € {0,1,... N — 1} satisfying

. N
d(j; aZ) ~0. (F.19)
Since 0 < j < N — 1 the condition (F.19) is equivalent to
. N
d(J,%{O,l,Z...,m—l}) —0. (F.20)
Clearly, there are as many minimizing values j as there are integers in the set
N
—{0,1,2...,m —1}, (E21)
m
and this number is, further, equal to the number of zeroes in the multiset

AE{Nlmodm:l:{0,1,2,...m—1}}. (F.22)

We proceed by exploring the properties of the multiset A. Bringing N out of
the multiset we get

A=N{0,1,2...,m—1} (mod m). (E23)

Introducing the greatest common divisor of N and m, denoted by ¢ = gcd(N, m),
and defining
B=g¢{0,1,2,...m—1} (F.24)

we can write N
A= EB (mod m). (E.25)

The first step is to show that B consists of repeating blocks, if we look at equal-
ities (mod m). Multiplying with g in (F.24) we get trivially

B=1{0,g,2¢...,(m—1)g} (mod m). (F.26)
But notice (mod m)
mod m m
em—1)""E" i — g = (g —1>g. (E27)

This means that the multiset B consists mod m of repeating blocks
m
0,¢2¢....{——1)g (E.28)
(i

We know that the number of elements in the multiset is m, while we see that
the number of elements in the block is m/g. We conclude that the total number
of blocks that form the multiset B must be g.

The next step is to examine each block as a multiset and show that it is unaf-
fected by multiplication by N /g, i.e. that

I;{O,g,Zg,... (Z — 1>g} ={0,4,2g,... (Z — 1)g} (mod m). (E29)
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(b)

For this purpose, it is sufficient to show that all elements on the left are dif-
ferent. It is simple to see that this is the case by assuming the contrary and
reducing to contradiction. We assume, thus, that there are two elements which

are equal,
N N
- p

g hg) = g rg) (mod m), (E.30)

for some I1,1, € {0,1,...,m/g — 1} such that I; < I,. The assumed equality
implies

N(l; — 1) =0 (mod m), (E31)
so that N (I — 1) is divisible by m, and (I, — ;)N /g is divisible by m/g. But
since l, — 11 € {0,1,...m/g — 1} we have that I, — I; is not divisible by m/g.
It follows that N /¢ must have common divisors with m /g, which is in contra-
diction with the property of g being the greatest common divisor of N and m.
Thus, we have shown that each block is unaffected by multiplication by N/g.

The last step is to conclude from (F.25) that the set A consists of g repeating
blocks (F.28). In particular, A contains g zeroes, which proves part (a) of the
theorem.

If we expand the domain j € {0,1,... N — 1} of function f to real values j € R
then it is easy to see that f(j) is minimized for j = X (21 4+ 1), | € Z, with value

2m
f(j) = —1. However, since for odd N these values of j are never integers, they

do not coincide with our restricted domain j € {0,1,..., N — 1}, and we have
to find how close to these values we can get. The minimum of f is achieved by
those values j € {0,1,..., N — 1} that minimize the distance

. N . N
d(],%{zl +1:1¢ Z}) = d(],%{ZZ +1:1€{0,1,...,m— 1}), (E32)
where the equality holds since 0 < j < N — 1. To count all j that minimize the

distance we take the following approach. Let us denote the minimal distance
by dmin. We first count how many values of I € {0,1,...,m — 1} have

N
d(%(zl +1);{0,1,...,N — 1}) = dumin, (E33)
and then for each such minimizing I we countallj € {0,1,..., N — 1} with
N .
|5-21+1) = j| = dmin, (F.34)
To each such [ there can be associated one or two values of j, depending on

whether dmin < 1/2 or dmin = 1/2 respectively. It is easy to see that, since
m < N, the same value of j cannot be associated to different values of .

We will now use a similar procedure as in part (a) and explore the multiset
C= {N(zl+1) mod (2m) : | = {0,1,2,...m—1}}, (E35)

which determines the distances of interest. Bringing N out we have

C=N{L1,3,...2m —1} (mod 2m). (E36)
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Now we introduce the greatest common divisor ¢ = gcd(N, m) = ged(N, 2m),
where the last equality holds since N is odd, and define the multiset

D=g¢{1,3,...,2m —1}. (F.37)

Then we can write N
C= gD (mod 2m). (E.38)

The first step is to show that D consists of repeating blocks, if we look at equal-
ities (mod 2m). Multiplying with g in (F.37) we get trivially

B={g,3g9...,(2m —1)g} (mod 2m). (E39)

But notice
g2m—1) "L 0 g = (2’;Z ~1)g. (F40)

This means that the multiset D consists (mod 2m) of repeating blocks
m
,38,...,(2——1)g. (F41)
898 < q )8

We know that the number of elements in the multiset is m, while we see that
the number of elements in the block is 71/ g. We conclude that the total number
of blocks that forms the multiset D must be g.

The next step is to examine each block as a multiset and show that it is unaf-
fected by multiplication by N /g, i.e. that

I;{g,?)g, .. (2;’: - 1>g} = {g,3g,... (2’; . 1>g} (mod 2m).  (F42)

Since N/g is odd, for this it is sufficient to show that all elements on the left
are different. It is simple to see that this is the case by assuming the contrary
and reducing to contradiction. We assume, thus, that there are two elements
which are equal,

g’(zzl +1)g = 1;(212 +1)g (mod 2m), (F43)

for some 4,1, € {0,1,...,m/g — 1} such that l; < I,. The assumed equality
implies (F.30), and by the same argument as in part (a) we conclude there is a
contradiction. Thus, blocks are unaffected by multiplication by N/g. It follows
that C consists of g repeating blocks (F.41)

The last step is to conclude from the block structure of C about the number of
minima. We look separately at two cases, § = m and g < m. In the first case,
g = m, we have 2m — ¢ = g so C consists only of elements ¢ = m, implying
the distance

d(%(21+1);{0,1,...,1\1— 1}) = % (F.44)

foralll € {0,1,...m — 1}. For each [ there is necessarily j € {0,1...,N — 1}
such that

(FA45)

‘%(214—1) —j| = ‘%(mﬂ)— (+1)| = %
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Counting all corresponding j and j + 1 it follows that f has 2¢g minima on the
set{0,1,...N —1}.

In the second case, ¢ < m, the values | with

NEI+1) ™ o and N@I+1) S om— g (F46)

minimize the distance (F.33), with

i
donin = 5 (F47)

Since dmin < 1/2 in this case, for each such [ there is only one value j &
{0,1,...,N — 1} with

N .
Due to block structure of C, there is g values of [ satisfying the first and g values

satisfying the second equation in (F.46). It follows that the number of minima
of f is again 2g. Both in the case m = g and m < g the value of the minimum is

cos [27;;” (N(Zzln;f— D) + 2‘;)} = —cos (%) (F.49)

O

In fact, in the proof of part (a) of the theorem the property of N being odd was
nowhere used, and the same statement holds for the case of even N. The part (b)
would be different in the case of even N, since then, in general, N(2I + 1)/ (2m)
could achieve integer values and belong to the domain {0,1,..., N —1}.

F4 Ground state degeneracy from the symmetries

Here we explain the ground state degeneracy of the n-Cluster-Ising chain based on
the symmetries, in details. We denote ¢ = gcd (N, n + 2). Let us introduce the short-
hand notation

Rj =0 0f + /\‘ij CART I ‘7]'Z+n)‘7jy+n+1 (F.50)

so that H = Zj]\il R;. The Hamiltonian can then be decomposed as

8
H — Z H®), (E51)
k=1
where
H®) = Ry + Ryg + Rag +... + Ry (E52)
and K
HK — (T*) H(& Tk (F.53)

fork =1,2,...,9 — 1. All the Hamiltonians H k) commute with TS. Crucially, we
find that all these Hamiltonians mutually commute ([H®), H?)] = 0). Since different

: YV(,z z z Y : :
cluster terms, i.e. 7; (U'j 11070 0 +n)cT]- a1 for different j, mutually commute, to

show the latter it is sufficient to show that all the terms ¢ ;07 appearing in H ) for
k # g commute with all the cluster terms (T].y (071075 "T]"Z+n)‘7]‘y+n .1 appearing in



F4. Ground state degeneracy from the symmetries 167

H®). This follows simply from the observation that oy (0505 ...0%) 0 41 commutes
with (7]?‘_10]?‘ forj € {0,1,2,...,n+2} —{0,4,2g,...,n + 2}, where the minus sign
stands for the exclusion.

Thus, different Hamiltonians H*) mutually commute and they commute with
the total Hamiltonian H. Moreover all these operators commute with T€. Since
all these operators mutually commute they can be diagonalized simultaneously.
Suppose then that the state |¢) is a common eigenstate of H, T8 and H®) for k =
0,1,...g — 1. Due to topological frustration the ground state of H does not coincide
with the ground state of H) for all k, but it is the first excited state for a particular
k and the ground state for the other (it is easy to see for A = 0, while for general
A € (—1,1) this can be seen in the fermionic picture of the exact solution). This im-
plies that the states TX |¢) for k = 0,1, ... ¢ — 1 are mutually orthogonal and that the
ground state manifold is at least g-fold degenerate.

We can relate this degeneracy to the momentum shift. Suppose that |i) is an
eigenstate of T¢ with the eigenvalue '7 for some momentum p € %Z. Any eigen-
value of T8 can be written in this form. It follows that the (normalized) state

\}g L+ e T+ (e T) 2 4+ (T ) (F.54)

is an eigenstate of T with the eigenvalue e’’. However, since the transformation
p — p+ 2m/g does not change the value of ¢'¢?, the state obtained from (F.54) by
this transformation is also an eigenstate of T. Thus, if there is a ground state with
momentum p, there is also a ground state with momentum p +27/g.

The ground state degeneracy of the model, 2g or 4g, now follows from the parity
symmetry and the mirror symmetry, as discussed in Chapter 6.
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Appendix G

2-Cluster-Ising Chain: Exact
Methods, Bond Defect

This is the appendix for Chapter 7, based on [7].

G.1 Diagonalization of the Hamiltonian:

The n-Cluster Ising model for arbitrary even n has been already diagonalized in
Appendix E. The Hamiltonian (7.1) can be obtained from Hamiltonian (F.1) by mul-
tiplying the latter by cos ¢ and setting A = tan¢, n = 2.

It follows that decomposing the Hamiltonian of the 2-Cluster Ising Model eq. (7.1)
in two I'I* sectors as

1+117  14+11F 1-1IF  _1-1IF
H= H H~ A
5 s+ 5 (G.1)
in each one it can be brought to a form of free fermions
+ t 1
H* = Z eq | agay — 5 (G.2)
ger'+
The Bogoliubov fermions a, are defined by (F.6), with the Bogoliubov angle
0 — tan-l | sin ¢ + cos ¢ €'41| — sin ¢ cos(3g) — cos p cosq G.3)
T —sin ¢ sin(3q) + cos ¢ sing '
for g # 0, r and by 6y = 6, = 0. The Bogoliubov angle also satisfies
p20, _ g COSP +sing e~ (G4)

~ |cos¢ +sing e 4|’
The energies ¢, associated to each mode with momentum g € I'* are given by

g; = 2|cos¢+sing | Vq#£0,7;
eg = 2(cos¢ +sin¢) g=0eT; (G.5)
ex = —2(cos¢ +sin¢) g=mel™r.

Depending on the value of ¢, the energies of the modes with g4 = 0 € I'" and
q = 7 € T'" are different from the others because they can become negative. With-
out frustration, these negative energy modes are responsible for the ground state
degeneracy that allows for the spontaneous symmetry breaking mechanism, while
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in presence of frustration they play a different and pivotal role in the emerging phe-
nomenolgy. Indeed, for each ¢ the ground states of the system can be determined
starting from the vacuum of Bogoliubov fermions in the two sectors (|Oi>), which,
by construction, have positive parity I1* = 1, and taking into account both the pres-
ence of modes with negative energy and the parity constrains.

When ¢ € (—m, —7%) (both interactions are “ferromagnetic”), we have ¢, > 0
while g9 < 0 and hence, in each parity sector, the state with the lowest energy, re-
spectively [07) and af |07), fulfills the parity requirement. They are separated from
the other states by a finite energy gap that, in the thermodynamic limit becomes
equal to —2¢g = 2e, # 0. This is the same physical picture that can be found also
assuming open boundary conditions [170] and hence also the thermodynamic be-
havior is the same. A quantum phase transition at ¢ = —37 separates two different
ordered phases. When the Ising interaction prevails over the cluster one, i.e. for
¢ € (—m,—3%), the system shows a ferromagnetic phase characterized by a non-
zero value of the magnetization along x. On the other side of the critical point, when
¢ € (—=3%,—7%), we have that the system is in a nematic phase identified by the
zeroing of the magnetization in all directions and the simultaneous setting up of a
non-vanishing value of the expectation value of the nematic operator O;.

On the contrary, when ¢ € (0, 5 ), both the cluster and Ising interaction are “anti-
ferromagnetic”, and hence we have topological frustration (TF) in the system: in this
region g9 > 0 while e; < 0. As a consequence of this, the two states with the lowest
energy are, respectively, at |0") in the even sector and |0~) in the odd one. Both of
them violate the parity requirements in (G.1) and, therefore, cannot be eigenstates
of the the Hamiltonian in eq. (7.1). Instead, the ground-states belong to a four-fold
degenerate manifold spanned by the states |+p) = alp |0~) in the odd sector and
IT* |£p) in the even one, where the momentum p obeys

T~ 1y, Nmod8=1
3 7T
2T T N mod 8=3
p={ 3 Ay MO (G6)
1+ 1y, Nmod 8=5
T+ 1y, NmodB8=7.

These states are surmounted by a band states, with the gap above the ground state
closing as 1/N? for large N.

G.1.1 The order parameters and their representation as determinants:

In evaluating the order parameters it is useful to first define the Majorana fermions

Aj = (@Uf)g*, Bj = <é®af>a}j. (G.7)

The expectation values of interest will be expressed in terms of determinants of Ma-
jorana correlation matrices, employing techniques similar to the ones used in Chap-
ter 4 for the magnetization. Among the states in the ground space manifold a special
role is played by two of them, defined as
8) = = (I £ 1-p)) G8)
8+) = /2 p p)). .
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which are eigenstates of I1* with eigenvalue —1 and of the mirror operator with
respect to site N, denoted by My, (see Appendix C.4) with eigenvalue +1 (respec-
tively). Note that the site N is defined with respect to the beginning of the Jordan-
Wigner string in eq. (F.3).

As discussed in Chapter 7, for an operator Ky, that commutes with IT* and
anticommutes with I, the ground state expectation values depend on the ma-
trix elements F;(Ky) = (p|II*Ky |p) and F2(Ky) = (—p|IT*Ky |p). Assuming
MnKnMy = Ky, we have both (p| KNIT* |p) = (—p| KNIT* |—p) and (—p| KNIT* |p)
= (p| KNIT* |—p), so the matrix elements can be expressed through the expectation
values of the states in eq. (G.8) as

F(Kn) = 5((g+|KnIT¥|g1) +(g|KNTT¥[g)), (G.9)
B(Kn) = 5((g+|KnIT*|g+) —(g—[KNIT*[g—-)) .

Now, because the operator KyIT* commutes with IT%, the expectation values
(g+|KNIT¥|g+) can be obtained following a well known approach that applies to all
operators that commute with IT* and all ground states of well-defined parity [90,
91].

The first step is to express KyI1* as a product of Majorana fermions. The second
step is to use Wick theorem (the same argument as in Appendix C can be used to
justify the validity of Wick theorem in these states) to express the expectation values
as determinants of matrices of two-point Majorana correlators. Adopting the short
notation (-)+ = (g+| - [g+), we have that (A;A)+ = (B;By)+ = Jjx and

1
2
1
2

1 ; 2 . 2 .
—1(AjBy) . = N Y e UR) — = cos [p(j — k) —20,] F N 08 [(j+k)p].

gel'~ N
(G.10)

Local Order Parameter
Following this approach, for Ky = o3; we get

(eETT%). = (—=1)"z detC®, (G.11)
where the elements of the % X % matrix C(V are equal to C(l),x,ﬁ = —1(AnByp_1)=,
forw,p € {1,2,...(N —1)/2}. Similarly, for Ky = On we obtain

(ONTT)+ = (—1)"7 detC®, (G.12)
where C) isan NH % NH matrix. Its elements are given by C(Z),X,ﬁ = —1{Af)Bs(p)) £/

where as a,  goover 1,2,... (N +1)/2 we have that f(«) and f'(B) assume the val-
ues f(a) =1,3,5,...,N—4N-2,N—1and f'(8) =1,2,4,6,...,N—3,N — 1.

String Order Parameters

To define string operators that can be exploited to characterize the quantum phase
transition at ¢ = /4 we started from an observation made in Ref. [161]. In that
work, the authors prove that in the thermodynamic limit of the unfrustrated cluster-
Ising model, the only Majorana correlation functions that are not zero are those for
which the site indices satisfy the relation i — j = 3k — 1 where k is an integer. Even
if this observation was made for a different model and in the absence of frustration,
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from the expression of the Majorana functions it is easy to observe that a similar
property holds also in our case. In fact, it is possible to see that, in our case, all the
Majorana correlation functions that do not satisfy the property i — j = 4k — 1 van-
ish in the limit of large N. The presence of TF adds 1/N corrections to Majorana
fermions so it does not affect these properties, but it can affect the values of order
parameters because they are expressed in terms of determinants of Majorana corre-
lation matrices whose size grows with N. Hence, we tried to see if string operators,
whose expectation value depends only on Majorana correlators that do not become
zero in the thermodynamic limit, are able to characterize the quantum phase transi-
tion. Among all the possibilities we focus on two of them that are one the image of
the other after the duality transformation, namely

I(N) I(N)
M =TT (05 2081); N =]] (Os—204-1), (G.13)
k=1 k=1

where I(N) = Y- for Nmod4 = 1and I(N) = &2 — 1 for Nmod 4 = 3.

We can use the same approach as for the local operators for the evaluation of the
expectation values for two string order parameters, 71 (M) and F;(/N), in terms of
determinants. With respect to the states |g+) they read

FK) = (K, +K)), (G14)
with K = N, M. In this case we have the determinant representation

(M) = (=1)IN)detC®,
Ny = (1) detCc®, (G.15)

where C® and C® are I(N) x I(N) matrices, with I(N) = Y- for Nmod4 =
land I(N) = M1 —1 for Nmod4 = 3. Their elements are given by C®), 5 =
—Z<A4“,1B4ﬁ_2>i and C(4)a’/3 = —Z<A4“B4‘3_3>:t, for CK,‘B S {1,2, ey I(N)}

Analytic evaluation of the string order parameter

The expressions in eq. (G.14) are efficient for the numerical evaluation of the string
order parameters. Here we show how to analytically evaluate the value that the
string order parameter F; (M) assumes in the thermodynamic limit. To do so we
express it in terms of Toeplitz determinants, using an approach similar to the one
used in [3, 72] (see Appendix C.5.1) for the two-point spin correlation functions. The
string order parameter F; (') can be studied in an analogous way.

We start by noting that the string order parameter is equal to

I(N)

Fi(M) == N (0" | a,] J(—1As-1By—2)a} |07) (G.16)
k=1

and then we make Wick contractions in the vacuum state |0~). Adopting the short
notation (-)o = (0| - |07), we have (A;Ay)o = (BjBx)o = djx and

1(AjBr), Z ¢ 2e1ali=k), (G.17)
qEF*
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Moreover, since we can express the Majorana fermions as

4B — 1 Y (af —a_g)e e (G.18)
we can easily find the contractions
1 {apA), (Beal), = _%ezzepe—wu—k),
(G.19)

1 _ i
— <”ka>o<AJ‘“;>o = 3¢ 126, ,1p(j—k)

Performing all the Wick contractions in eq. (G.16) and using the basic properties
of determinants, the string order parameter can be expressed as

Fi(M) = (-1)/NV[(detC+ c.c.) — detC], (G.20)
where C and C are I(N) x I(N) matrices with the elements

Cup = —1(Asa—1Bap-2),,
~ 1 (G.21)
CDL,‘B — Cﬂé,‘B — Nel(zeﬁfp)efﬂp(‘x*ﬁ)/
fora, B € {1,2,...,I(N)}, which give an alternative expression to eq. (G.14) for its
analytical evaluation.

Using eq. (G.4), approximating the sum in eq. (G.17) by an integral, and doing
some simple manipulations we get

o [27 do
S A (G22)
where ]
l1+tange™
10
= 2
fe") 1+ tang e ] (G:23)

With this definition we can also write

Cop = Cap— %f (e)e1h@=p), (G.24)

where 6y = 4p.

Thus for ¢ € (0, 71/4) the matrix C is a standard Toeplitz matrix, whose symbol is
a non-zero analytic function in an annulus around the unit circle, with zero winding
number. Its determinant can be computed in the standard way using strong Szeg6
limit theorem (see [196]) and we get

detC V27 (1 - tan? )i (G.25)

To compute the determinant of C we need to use Theorem 1 from [3] (Theorem 3
from Chapter 9), which gives a correction to Szegé theorem for this type of Toeplitz
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matrices. We get

~ N—oo I(N) N—oo 3 2 1
detC < (1—7) detC =" L(1—tan’ ). (G.26)

Finally, from eq. (G.20) we get the string order parameter

N—co 1
F(M) =T ()N

(1 —tan? ). (G.27)

For ¢ € (m/4,7/2) the symbol f has a non-zero winding number. It follows
immediately from Theorem 2 from [3] (Theorem 4 from Chapter 9) that the string
order parameter is zero in the thermodynamic limit,

N—oo

Fi(M) = 0. (G.28)

G.1.2 Effects of the presence of a defect

The scenario that we have depicted for the 2-cluster-Ising model is very peculiar,
and it is normal to wonder whether it is resilient to the presence of noise, or it is the
result of fine-tuning in the system parameters. Obviously, a complete analysis of the
effects of the presence of defects in our model is far beyond the scope of Chapter 7
and has been the subject of analysis in Chapter 5, but for a different model. Here we
discuss a simple example that shows that the phenomenology that we have depicted
in the main body of this work is quite resilient.
Hence let us take into account the Hamiltonian

N N-1
H' =sing ) o/ 1070710/, + +cos¢ ) oFofq + cos(¢p+ 6x) oo,
-1 -1

that coincides with the Hamiltonian in eq. (7.1) except for the presence of a defect in
the Ising interaction, localized between the first and the last spin of the model. Such
a presence implies that the new Hamiltonian in eq. (G.29) is neither translationally
invariant nor preserves the mirror symmetries, except the one with respect to the
(N +1)/2-th spin, while it continues to commute with all the parity operators. As
a consequence, the ground state degeneracy of H' is reduced to two, even in the
region where H, without the defect, presents a four dimensional manifold. However,
independently of the parameters, H' always includes states of both parities so we
can continue to use the already described approach to evaluate directly the order
parameter.

Since H’ is no more translationally invariant, it is now impossible to find an exact
analytical expression for the ground states. We are then forced to resort to an efficient
numerical procedure based on the fact that the Hamiltonian is, in each IT* sector, still
quadratic in terms of the fermionic operators and hence its eigenstates can be found
following Ref. [4, 91] (see Appendix D). We focus on the odd sector (IT* = —1), since
having the ground state |g" ) of H' belonging to the odd sector we can construct the
ground state of H' belonging to the even sector as |g/.) = IT*|g" ). We write H' in

the odd sector as N

1
H'= ‘kzl [C;Sj,kcw > (e Tyuet + h-C-)] : (G29)
jk=
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FIGURE G.1: Absolute value of the Discrete Fourier transform (DFT)
of the magnetization (¢'| o7 | g') at ¢ = %, as a function of the inverse

chain length, for chain lengths up to N = 1019. Data corresponds

to the following different momenta: green diamonds k = N£2, red
squares k = %, and blue circles k = # A ferromagnetic type de-

fect (upper panel) yields a staggered AFM order, while the presence

of an antiferromagnetic one (lower panel) gives rise to an algebraic

decay of the magnetization, characteristic to the presence of TF (see
the text for discussion).

where the matrices S = S" and T' = —T can be easily obtained by inspection from
eq. (G.29). In this approach, the ground state |¢’ ) can be expressed in terms of the
vectors @y and ¥y, that are the solution of the problem:

DS —T)(S+T) = AZdy, (G.30)
Op(S —T) = AYy, (G.31)

with the eigenvalues A? sorted in descending order. From the knowledge of @y
and Y it is easy to recover the correlation functions of the Majorana operators. With
respect to the odd-sector ground state we have (g | AjAx|g" ) = (8" | BjBx|g) = djk
and

N-1
—1(g" | AjBr|g") = ) ¥jPp (G.32)
1=1
If we consider the ground state choice
19) = 5180+ 1) = = (1) +TFI1)), (G33)
V2 V2

we obtain that the site dependent expectation values of the magnetization and the
nematic order parameter are

(gl lg) = (Lo |gh),
('10;1g") = (¢LIT"0O;[gl). (G.34)
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FIGURE G.2: Dependence of the absolute value of the ground state
expectation values F (M) (blue circles) and F(N') (red squares), for
the string operators defined in eq. (G.13), on the inverse chain length,
for chain lengths up to N = 1019, at ¢ = §. We observe that, while
F (M) tends to a finite value, F(N') goes to zero. For both types
of defects we have thus qualitatively a behavior as in Fig. 7.4. The
exact asymptotic value for large N depends on dy: F (M) ~ 0.95 and
F (M) =~ 0.17 in the upper and lower panel respectively.

These site dependent expectation values can present a complex pattern, from which
the behavior in the thermodynamic limit might not be obvious. Hence, following [4]
(see Appendix D) we resort to their Discrete Fourier Transform (DFT)

N
K= — Z "|K;|8") eNM, k=1,...,N, (G.35)
j=1

that allows a quantitative analysis of their behavior in the thermodynamic limit.

In Fig. G.1 we focus on the analysis of the magnetization, presenting the results
obtained for its DFT 7+ as a function of the inverse chain length. We see that for
dx > 0 (upper panel) all sampled values go towards finite values in the thermo-
dynamic limit, hence reproducing the typical behavior of the DFT of the staggered
AFM order [4]. On the contrary, changing the sign of J,, the DFT goes to zero for
all k, hence signaling zeroing of the magnetization independently of the site taken
into account. The effect of a negative defect (0, < 0) for ¢ > 0 is to strengthen the
AFM interaction, so reinforcing the topological frustration, while a positive defect
(0x > 0) weakens the Ising term, so reducing the effect of the frustration and, as a
consequence, allowing the existence of a macroscopic phase characterized by a lo-
cal magnetic order parameter. Note that the property that changing the sign of the
defect yields different properties is a similar phenomenology to the quantum phase
transition driven by the defect in the quantum Ising chain [67] and the XY chain [4]
(see Chapter 5).

Our results imply that, while it is possible to remove the peculiar phase that we
have found by the presence of a localized defect as the one we have considered,
this fact depends on its sign and hence our results are, at least partially, resilient
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to the presence of a defect. To further strengthen this result in Fig. G.2 we have
also analyzed the behavior of the ground state expectation values of the two string
order operators, F(M) = (¢'| M |g') = (¢ |M]g") and F(N) = (¢'|N|g) =
(¢" | N'|¢g"), as a function of 1/ N. In the figure we can appreciate that, regardless of
the sign of the defect, 7 (M) remains finite in the thermodynamic limit. This result
is in strong agreement with the fact that the phases discovered in the 2-Cluster-Ising
model are partially resilient to the presence of a localized defect.
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Appendix H

Cluster-Ising Chain and Kitaev
Chain: Exact Solution

This is the appendix for Chapter 8, based on the Supplementary Information for [5].

H.1 Cluster-Ising Chain

H.1.1 Diagonalization

The diagonalization of the Cluster-Ising chain is analogous to the diagonalization of
the XY chain, presented in details in Appendix C.2. The Cluster-Ising Hamiltonian

N N
H=cos¢) ;074 +sing ) (fj.yflajzajyﬂ (H.1)
j=1 j=1

in terms of Jordan-Wigner fermions

1 y

N T - ¥ — 10
c]-:(®af) ! 5 L, c}r:<®af> ! 5 L, (H.2)
=1 =1

H=—cos¢ [ Y (cjcji1 + cjc}LH) — IT(cner +ened) + hee.

: + + +
+sin¢ [ (cj_1cj+1 - Cj—1Cj+1) —IT*(en—101 + cNC2 — cn—1¢] — €NCy) +hec.].

W.
N

(H.3)

Because of the presence of IT?, the Hamiltonian is not quadratic in the fermions,
but becomes such in each I'T* parity sector. Namely, we can split the Hamiltonian as

_ 1+HZH+1+HZ+1—HZH_1—HZ

H 2 2 2 27

(H.4)

where both H" and H™ are quadratic. As such, they can be brought to a form of free
fermions.
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This is achieved by first writing H* in terms of the Fourier transformed Jordan-
Wigner fermions,

1 X , 1 Y ,
byg=—=Y cie W, bl=—=Y cle, (H.5)
\/N j=1 1 \/N j=1 !

for g € T*, where the two sets of momenta are given by I'™ = {27k/N} and I't =
{27t(k + 3)/N} with k running over all integers between 0 and N — 1. Then the
Bogoliubov rotation

a5 = cos b, by +1sin 6, biq, qg#0,m

(H.6)
ag="bs;, q=0,7
with the Bogoliubov angle
6, — arctan | sin¢ + cos ¢ e’3q.| + cos q> cosq — sin ¢ cos 2 (H7)
cos ¢ sing — sin ¢ sin2g
brings H* to a free fermionic form. We end up with
+ _ t 1
H™ = Z eq | agay — 5] (H.8)
ger+
where the energies are given by
gg =24/1+sin2¢cos3q Vg #0,7,
g0 = 2(sin¢ + cos¢) g=0eT", (H.9)

ex  =2(sing —cos) g=meTlr.

The eigenstates of H are formed starting from the vacuum states |0F), which
satisfy a, |0¥) = 0 for g € I'*, and applying Bogoliubov fermions creation operators,
while taking care of the parity requirements in (H.4). The vacuum states are given
by

0y = I  (cos,—1isinf, bjb",)10), (H.10)

0<g<m, gel'*

where [0) is the vacuum for Jordan-Wigner fermions, satisfying c;|0) = 0. In par-
ticular, [0) = |11 ... 1) is the state of all spin up. The vacuum states |0") and |07)
both have parity I1* = +1 by construction. The parity requirements in (H.4) imply
that the eigenstates of H belonging to IT1* = —1 sector are of the form a;rla;rz...a;rm |07)
with g; € '™ and m odd, while IT* = +1 sector eigenstates are of the same form
but with g; € T", m even and the vacuum [0") used. The ground states are given
explicitly in Chapter 8.

Let us also note one technical subtlety of the model. The Bogoliubov angle 6;,
defined by (H.7) can become undefined for some modes g4 # 0, 7t also point-wise,
by fine-tuning of the parameters N and ¢. The Bogoliubov angle for these modes
0; can be defined in the same way as for modes g = 0, 7t in the next section and
the problem with them can be circumvented. These points do not have different
expectation values of observables and can be neglected.
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H.1.2 Majorana correlators

We are going to present the computation of two-point correlators of Majorana fermions
T t
A= ¢j +¢j, B; = z(c]- —¢cj), (H.11)

in the cluster phase in some details, because essentially the same reasoning is valid
also for the Kitaev chain. For this computation it is convenient to write the Hamilto-
nians H* in terms of positive energy fermions d, that we now define. For g # 0, 7t
we put simply

dy = ag. (H.12)

For the modes g = 0, r the Bogoliubov angle (H.7) is undefined. We are going to
define it also for these modes and use the analogoue of (H.6) to define d,. First, we
note that the Bogoliubov angle defined by (H.7) for q # 0, 7t satisfies

: 13
26, _ g SINP+cospe 1

e _ :
| sin ¢ + cos ¢ €|

(H.13)

Although for modes g = 0, 7t the expression (H.7) is undefined, there is no problems
with expression (H.13). We exploit this property and define

1
0, = % log 2%, g=0,m, (H.14)
where by ¢?% the expression on the right hand side of (H.13) is understood. Having
t; we define, as in (H.6),
d; = cos B, by +isinb, btq, g=0,m. (H.15)

Since for g = 0, T we have
%0 = sgn(eg) (H.16)

these definitions will result in the property that all fermions d, have positive ener-
gies, i.e. we can write
H* =Y e (d;dq — ;) . (H.17)
ger+
With these definitions the ground state of H~ (H™), let's denoteitby |g, H™) (|g, HT))
is the state that is annihilated by all d, forg € T~ (I'"),1.e. d, |g, H™) = 0.

It is easy to see from the exact solution that the ground state |g) of the Cluster-
Ising Hamiltonian H, coincides with |g, H") for ¢ € (7t/4,37/4) and with |¢g, H™)
for ¢ € (—3m/4, —m/4). We note that a typical effect of topological frustration [1,
2, 71, 73] is that |g) does not coincide with either of them, because of the parity
requirements in (H.4), which is not the case here.

Let us thus compute the Majorana correlation functions in the state |g, H ™), while

an identical analysis can be made also for |g, HT).
From the definitions (H.12) and (H.15), we obtain

by = cos 0,d; +1sin qutq. (H.18)
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Now, using the definition (H.5) we get

1 : + 1qj
¢j=—= ) (cosBydy —1sinfyd" )e'?, (H.19)
VPquF* 7
from which we get easily the correlation functions
1 .
(cict), o = = Y sin26,e"U70), (H.20)
gH™ 2N ger-
1 .
(cicl), =50 Y (1 + cos26,)e0=D, (H.21)
gH ~ 2N ger-

Finally, from the definition (H.11) of Majorana fermions we get

(AjAD, - = <B'Bl> oH- = il (H.22)
—1(AB)), = 1 Z ¢2e=tl=1), (H.23)
qu*

The only difference in the ground state |g, HT) is that the sum in (H.23) would be
over I'" instead of I'". In the limit of a large system the results are the same since
the sum becomes an integral, exponentially fast. We have

(AjAr)

= (BjB) 6j

g, H* = 9jl, (H24)

g H*

Nooo (27T oo ia(i—1) 99
_1<A]'Bl>g,Hi ~ /0 e“re1Y 7 (H.25)
In the antiferromagnetic phase the ground state of the Cluster-Ising chain with
FBCs is not anymore a vacuum state for positive energy fermions, i.e. the ground
state coincides neither with the ground state of H™ nor with the one of H™. Instead,
it corresponds to the vacuum state with one excitation on top of it. Correspondingly,
the Majorana correlation functions acquire corrections of order 1/N. For the ground
state for ¢ € (—7/4,0) when N is divisible by 3, presented in Chapter 8, and given

by
) = (wad + uza%ﬂ + M3Elt%n) 07), (H.26)

after some algebra we get

. [2m .
(Ajai) =0 — (s — usf?)sim [ 27— 1)]
” . (H.27)
- N [(uluz — whuy)e 30D 4o | sin [g(]’ - l)},
21 . [2m,.
(BiBy), =0 — ~y (ual? = s ) sin [ S5 = 1)]
2 - - (H.28)
— N {(ufuz — whuy)et 3 U 4 c.c.] sin [5(] — l)},
2 27
- 120, ,—19(j—1) 2 2 2 -
ABZ Z eV N{]uﬂ + (Jua|® + |us| )cos[3 (j—1 1)]}

qEF*

2 (i T 2 27
_“ * * 15 (j+1) A R —15 (j+1)
N {(uluz + uzuqp)e's + C.C.} cos [3 (j—1 1)} N |:M2Ll3 e’ + c.c.]
(H.29)
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The ground state and the correlators when N is not divisible by 3 can be reproduced
from these expressions by taking formally 1, = u3 = 0.

H.1.3 Spin-correlation functions

In this section we compute the spin-correlation functions (o7 oy +r>g in the ground

state |g) in the antiferromagnetic phase of the model, given in Chapter 8. We start

from the relation
T

oyoty, = (=1)" [ [(—iAj41B)) (H.30)
j=1
and use the Wick theorem [189-192] to reduce the spin-correlation functions to the
pfaffian of the Majorana correlation matrix.

Let us first discuss the applicability of the Wick theorem. When N is not divisible
by 3, or when N is divisible by 3 and u; = 1 for some j € {1,2,3}, it’s easy to
write the ground state as a vacuum state for some fermionic operators, so the Wick
theorem can be applied. In a more general case when N is divisible by 3 it’s a bit
more complicated. If some coefficient u; is equal to zero then the same argument
as in Appendix C.6.2 can be given for the applicability. If all of them are non-zero
we proceed in the following way. First, similarly to Appendix C.6.2, we define the
fermions «; by

_ 1 + + . 1
= T a7 208+ 0 ) ey = (s (e — ).
(H.31)
for p = 27/3, and by a; = a, for g # p, —p. Then we make another similar step and
define the fermions §, by

,BO =&_p, ﬁp = ulﬂa + (‘I/l2|2 + |1/l3|2)1/20¢p, ‘B,p = (|u2|2 + |u3|2)1/2a0 — ul(x;r,,

and by B; = a4 for g # 0,p, —p. Then the state (H.26) satisfies |g) = B,[07) and
it’s easy to see that it is annihilated by all ,, i.e. we have B, |g) = Oforallg € I'".
Thus, we have expressed the ground state as the vacuum for fermions ;. Moreover,
since Majorana fermions A;, B; can be expressed as a linear combination of fermions
ag, a:]f , they can also be expressed as a linear combination of Bg, ,B;/r Therefore, Wick
theorem can be applied.

Applying the Wick theorem, we express the spin-correlation function as a pfaf-
fian

i A C
it = U ee (e ). 132

Here A and B are antisymmetric r X r matrices, defined by the elements A;; =
(A]'+1Az+1>g and Bj; = <B]-B1)g for j < I, while C is an r x r matrix with the ele-
ments C;; = —1 (Aj+1Bl>g (j and [ range from 1 to r). In a more simple special case
when the correlators (AjAl>g and <Bsz>g in the ground state |g) are zero for j # I,
the spin correlations become simply the determinant

(oiof,,), = (~1)" detC, (H.33)

as in ref. [91].
Now let us compute the spin-correlation functions. When N is not divisible by
3 the correlators <A]-Al>g and (Bsz>g are zero so we can use (H.33). Approximating
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the sum in (H.29) by integral we get

27
—13
o Noo [ lttange ™ o odg 2 (H.34)

W= / |1+ tan ¢ e—*34| 2t N’

Without the second term, that stems from frustration, we would be able to apply
strong Szeg®6 limit theorem [196, 204] to find the asymptotics of the Toeplitz de-
terminant, and, therefore, of the spin-correlation functions. The second term is a
correction, which can be understood as resulting from the part proportional to the
delta function 4(g) in the symbol of the Toeplitz matrix C. The asymptotics of such
determinants has been studied in ref. [3], presented in Chapter 9. The correction to
the elements of the Toeplitz matrix results in a multiplicative correction to the de-
terminant. Using Theorem 3, from Chapter 9, in combination with the strong Szeg6
limit theorem [196, 204], we get

r—00 2r

(oot = (—1)’(1—tan2¢)3/4<1 N). (H.35)

For a three-fold degenerate ground state when N is divisible by 3 the calculation is
more complicated. Then we use directly (H.32) and resort to the numerical evalua-
tion of pfaffians. However, we find that the result is the same, given by (H.35).

H.1.4 Expectation value of the String operator

For completeness we also compute the ground state expectation value of the string
operator

.
O(r) = 003 ( (09 sz) 010 o (H.36)
j=3

In terms of Majorana fermions (H.11) the operator reads

r

O(?") = H(—lAij+2). (H37)
j=1

Let us focus on the region ¢ € (7/4,37/4). Since the correlators (A]-Al>g and
<B]-B,>g vanish for j # [, the expectation value of the string operator can be ex-
pressed, using Wick theorem, as a determinant

<O(r)>g = detD, (H.38)
where D is an 7 X r correlation matrix with the elements

~q-) 3. (H.39)

D, = —1(AB = _reote
i H{ABri2) \1+cotc])el3q\e 27

N—sc0 /2” 1+ cot¢ e
J 0

For ¢ € (—3m/4, —7t/4) the only difference is that there is an additional factor (—1)"
in front of the determinant in (H.38), because in this case sin¢ < 0 in (H.13). The
asymptotic behavior as r — oo of the Toeplitz determinant det D is obtained using
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the Strong Szeg6 limit theorem [196, 204]. The result is

roo | (1 — cot? qb)%, ¢ € (5 )
<O(1’)>g — {(_1>r<1 — cot? 4;)%, ¢ € (140

H.2 Kitaev chain

The diagonalization of the Kitaev chain Hamiltonian

N s 1 N +

H=—-pu Z; (c]- cj— 5) - Z; [w (¢jej+1+he) — A (cjci +h.c.)} (H.41)

= =

with periodic BC is very similar to the diagonalization of H~ of the Cluster-Ising

chain, discussed in section H.1.1. The Hamiltonian is brought to a form of free
fermions

1
H=Y &(aja—5), (H.42)
qelr~

where a; are, again, Bogoliubov fermions, and the dispersion is now given by

gy = \/(4w cosq+ )2 +4A%sin*q, q#0,7 (H.43)
P — (H.44)
eq = 2W — M. (H.45)

The Bogoliubov angle satisfies

_ |2wcosq + p +2Asing| +2wcosq + p
2Asing

tan6, = (H.46)

and ]
0, _ _ 2wcosq+p+ 2A1sing

" |2wcosq + p + 2Atsing]

for g # 0, t. Note that the mode g = 7t does not exist with FBC, since N is odd and
momenta are quantized as integers.

Since in the Kitaev chain we do not have parity restrictions like in (H.4), the
ground state can always be written as a state annihilated by all positive energy
fermions d,, defined in section (H.1.2). This also implies that the Majorana corre-
lation functions in the ground state are given by (H.24) and (H.25), with ¢* given
by (H.47). This is valid both for N odd and N even.

e (H.47)
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Appendix I

Toeplitz determinants with a delta
function singularity

This is the appendix for Chapter 9, based on the appendix in [3].

I.1 Existence and uniqueness of the solution

For all n > ng we have D,(f) # 0 so there exists a unique solution x}n), forj =

0,1,..,n —1, of the linear problem

n—1
Z fj,kxlgn) = y](n), forj=0,1,..,n—1, (L1)
k=0

(n)

for arbitrary complex numbers y i j=0,1,...n —1. We define the coefficients

ul = {ZZ& f]’—k+nxl(<n)f forj=0,1,2,..

! 0, forj=—1,-2,..
(L2)
(n) 0, forj=0,1,2,..
% T Y yn (n) -
Yoo fikx ', forj=-1,-2,..
and the functions . N
_ (n)_j - (n)_—j
um — ]Z(:)uj” Z, v — ]; vz ] (13)

The functions U™ and V(™ are well defined, and therefore analytic, on the same
annulus as f(z), the one defined by (9.7). To see this pick some z from the annulus.
We have

0 (n) ) oo n—1 (n) ) n—1 (n) ' o) -
I e Y W A g | e W E S 1 Y N -
j=1 j=1k=0 k=0 j=1

< ( X 1pli) (T 1) <o,

j=—c0

(1.4)

where the last inequality holds because Laurent series is absolutely convergent in
the interior of its annulus. In an analogous way it is shown that U(") is well defined.
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It follows from definition (I.2) that the equation

n—1
) fj_kx,(cn) = y](") - u]@n + v](n), (15)
k=0

with y](n) defined to be zero for j < 0 and j > n, holds for all j € Z. Multiplying the

equation by z/, with z belonging to the annulus (9.7), and summing from j = —oo to
j = oo it follows

F(2)XM(2) =YW (2) + UM (2)2" + VM (z), (L6)
where : .
XM (z) = ;) x}n)zj, Y (z2) = ;)y](n)zj. (L7)
j= j=

Thus we have shown that, for arbitrary polynomials Y ") of degree not greater than
n — 1, i.e. analytic functions with the properties

Y] =0, [y"Wz], =0, (L.8)

+

that the functions X", U V(") are the solution of the functional equation
XM =y gz 4y (1.9)
on the annulus and by construction they have the properties

[x"] =0, [x"Wz] =0, [UM] =0, [V®W] =0. (L10)

The uniqueness of the solution of (I.1) implies the uniqueness of the solution of (I1.9)
under constraint (I.10).

1.2 Wiener-Hopf procedure

I.2.1 Wiener-Hopf equations

We assume v > 0. The determinant (9.1) for v < 0 can be obtained simply by
transposing the Toeplitz matrix for the opposite sign of v and making the integral
transformation § — —6. From (1.9) it follows, separating the components,

a 2" XM — [a:lY(”)]+ — [atu™z"] | = a7tV 4 [aZYM] 4 [aTtumzn]
(L11)
where a4 have been defined in (9.8). We now use the standard Wiener-Hopf argu-
ment [204]. Namely, the properties (I.10) imply that through it’s Laurent series the
left-hand side defines a function analytic on |z| < p., while the right-hand side de-
fines a function analytic on |z| > p_, that goes to zero for |z| — oo. The two sides
together define a function analytic on the whole plane and zero at infinity, thus, by

Liouville’s theorem, zero on the whole plane. It follows

+

XMz = ajrl([a:l}((”)]+ + [a:lu(”)znh), (1.12)
v = —a_([aty™] 4 [aZtumz"] ). (L13)
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Similarly, denoting

o) = (' UMz, (1.14)
and multiplying (1.9) by a;'z=("*"), we can make the separation
(allu(n)z—v _ Zﬂ(}({n)z—k> + [ally(n)z—(n—&-v)]Jr + [ajv(n)z—(nw)h
k=1 , (1.15)
—a XMz [q Yy (t)] gy g -] y {XI({”)Z—k _
k=1
It follows
14
umz—v — _aJr([aily(n)z—(nvtv)]+ + [allv(n)z—(n+v)]+) +ay Z a}({”)z—k, (1.16)

k=1

x(m)—n _ ail([ally(n)zf(nﬂf)}_ + [allv(n)zf(wrv)]_) +a1 Z a}({”)sz_ (L17)
k=1

This result is also valid for v = 0 adopting the convention Y'9_; = 0.
The solution of the set of equations (1.12), (I.13), (1.16) and (I.17), together with
the requirement
(x"2"), =0 forj=0,1,.,v 1, (1.18)
that fixes the coefficients ocgn),océn), ey ocl(,"), is the solution of (I.9) with the desired
properties (1.10).

1.2.2 The solution

In this section we solve asymptotically the functional equation (1.9) with Y (") defined

by (9.26) and (9.27). For the set of equations (1.12), (I.13), (I.16) and (1.17) a solution

in the closed form might not exist so we follow the standard approach [204, 205] and

we look for the solution by making an assumption on the function U and then

checking whether the final solution we obtain is consistent with this assumption.
We assume that

umz—v _g - Mk — 001
+k; k (1) 119)

uniformly in z, on p < |z| < p~ !, for all p defined by (9.10).

The second term in (I.13) is equal to

v
a+a:1 E “I((n)znw—k

[alu™z] = {ailz”“ (U(”)z_v —ay é oc,((")z_k” +

k=1 _
(1.20)
Applying Lemma 2 on the first term in (I.20) gives
v
[alu™z] = [a+a:1 Y alMz ko), (1.21)
k=1 _

where O(p") holds on p < |z| < p~1, uniformly in z, for all p satisfying (9.10). From
now on it is always the case and we don’t write every time that O holds uniformly
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inzonp < |z| < p~}, for all p satisfying (9.10). We can thus write (I.13) as
V(z) = —a_(z) [a:lY(”)]_(z) —a_(z) ) oc,(( )[a+a 127K () + O (p"). (122)
k=1

We use (9.33) to rewrite the first term on the RHS of (1.22) as

-1 (<) -1 (<)
[aZly™] = 1= Dfo { a_z ] — ¢t [a_ } . (1.23)

z—ef| z—eb|

The first term here is O(p") by Lemma 2. Applying Lemma 1 to the second term
gives

-1 _ 190
[a:lY(n)]_(Z) _ _ezeoﬂ, (Z; Z’ZGO( ) —i—O(pn) for z 75 ezeolp < ‘Z’ < pfl.
(1.24)
The value at z = ¢ is obtained by continuity and from now on we omit writing
z # e, p < |z| < p~! every time. It follows

190

a~l(z) — a:l(eleo)

z — et

Vi (z) = ea_(2) i [a a2k (z) +O(p") .

(I.25)
This expression can be used in (I.16) to find U™ Before we do so, we use (9.33)
again to get for the first term on the RHS of (1.16):

g [a+1z ”} >) _ ot [W] ) _ (1.26)
+

1 _
[a+ Y, (n+v)] -y . Ty

+

The second term is O(p") by Lemma 2. Applying Lemma 1 to the first term we get

—1_—y [, 1,—v 16
[ally(n)zf(wrv)]_'—(z) — efz(n—l)é)o [a—O— z ]+(Zi — 6[59—(&]- Z ]+(€ O) + O(pn) ) (1_27)

We can now substitute (1.25) in (I.16) and apply Lemma 2 to the second term on the
RHS of (I.16) to get

[a_—i_lv(n)z—(n—&-v)]Jr(z) - _ Z“](( )[11 a;l —(n+v) [a_laJan—w_k]f]Jr(Z) —f—O(pn) )

(1.28)
Collecting everything it follows from (1.16)
umz—v — _ e—l(n—l)eoaJr (2) [ullz_v]—k(z) — [aellz_vh(ezeo) +
z — et
14
+ay(z) ) ol (z‘k + [a_ailz= () [ lg VK] ] +(z)) +O0(p").
k=1
(1.29)

The coefficients agn),zxén), ey oq(/") remain to be determined. However, if we as-

sume that, for sufficiently small p, they satisfy

Mo(p*) = 0(1), fork=1,2,..v, (130)
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then, taking a p; such thatp_ < p; <p<1<pl< Pfl < p4, the last term in (1.29)
is, by Lemma 2,

ai(z) ) uc]((n) [a_ajlz (V) [a=lg z TV oh] ] @) =as(2) ), oc,((”)O(p%”) =O0((01/p)%),
k=1 k=1

onp <lz[ <p7h.
(131)
It follows
v

—1_,—v —-1,—v 16
n),—v __ —1(n—1)6, [a z ]+(Z) - [61 Z ]+(€ 0) (n) _—k n
UMz7V = —e=t1=Dbog 7)1+ Z_eleJOF —|—a+(z)k;zxk z " +0(c"),

(L32)
where ¢ = max{(p1/p)% p}. Then (1.32) is consistent with the starting assumption
(1.19), while assumption (1.30) will be checked below for its consistency.

Finally, X (") is computed using (I.12). The first term in (I.12) is found from (9.33)
and (I.24), using
[a=tYW] = aZty™ — [aZtY] (33)
We get
_ El:l (6190 )61”90
z — et
The second term in (I.12) is found from (I.21) and (1.32),

-1 n
a71Y0], () = om0t +0(p").  (139)

[atuWzr], = atu™zt — [a2tuz"]
1 .y =1 160\ ,—1v0
1) a; (z)z7" —a (e)e 0
. i(n 1)90a_1(z)a+(z)zn+v + Z_;GO
v—1 k—v _ 1(k—1/)90
Lot 1)90a_1(z)a+(z)z”+"k;)(hl)kw
v
+ a+a:12a£n)zn+”_k] (z) +0(c"), (139
k=1 +
where we used 1
v
[a'z7], = a2 = Y (e ) (130
k=0

Now, summing (I.34) and (1.35) in (I.12) gives

a4 (z)at (2)2" — ay (e%0)a=t (e0)e! (V)%

X(n) (Z)ZV :efl(nJrvfl)Qoa:rl (Z)Dljrl (6190)

z — et
v—1 k—v _ i(k—v)6y
(n— _ _ z e
te 1(n 1)o;—1 (Z)Z”+V I;)(a+l)k — (L37)

v
+a7'(z) Y ol [ala 2"V (z) + O(0") .
k=1

It remains to determine the coefficients utgn), ngn), v 0&1(,”) from requirement (1.18)

and to see whether (1.30) is satisfied. We compute the coefficients (X(z~) j by
(9.31), integrating at |w| = p. All the terms in (1.37) containing the factor z" result in



192 Appendix 1. Toeplitz determinants with a delta function singularity

O(p™) corrections, while

1 a_l (w) dw —1 ] — —1(7i—
27 ,7{0|:p w+— el i tl —e™™ ];) (a+1)ke (=R (1.38)
It follows
v ] '

where c = a a”!.

Thus if the coefficients txgn), zxg”), ey oc(vn) satisfy

v j .
0— kzlal(cn) (a-T—l [Czn+v—k] +) + a:l (6190) 2 (ﬂll)ke_l(]_kwo, fOI‘j —0,1,..,v—1,

J k=0
(I.40)
then
(X"z"), = 0(c"), forj=0,1,.,v~1. (141)
Using
]
CRICANIED M Crd JR—" (142)
m=0
it’s easy to see that (1.40) is equivalent to
v .
Y ale; g = —a= (¢®)e %, forj=0,1,..,v—1. (143)
k=1
The set of equations (1.43) is solved by Cramer’s rule. The solution is
2 = g7 () Ben) (L44)

J Av,n
where Ay, and A, ,(j) are defined by (9.12) and (9.14) respectively. We see that the
condition (I.19) of Theorem 4 ensures that the assumption (1.30) is satisfied.

The solution of equations (1.12), (I.13) and (I.16) we have found is consistent with
assumptions (I.19) and (1.30), that we have made to find it, up to O(¢") terms. On
the basis of this solution we construct the functions Xi"), U{”) and Vl(") discussed in
sections 9.2.4 and 9.2.5.

I.3 Remarks on rigor

To prove theorems 3 and 4 we have used the intuitive property that a small per-
turbation to the functional equation (I.9) results only in a small perturbation to the
solutions. Here we show it rigorously for the case of a zero winding number of the
symbol, and thus make Theorem 3 rigorous.

The result we need is given by Lemma 3, that we are going to state and prove.
The proof of the lemma uses a similar procedure to the one used in the proof of Szeg6
theorem in chapter X of [204], based on the Wiener-Hopf equations. Let us note that
the complication with non-zero winding number is the presence of the third term in
(I.16) and we omit this case.
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Before introducing the lemma let us introduce two norms for functions analytic
on an annulus around the unit circle. The first one is the supremum norm on the
unit circle. Let g be analytic on the annulus p— < |z| < p4 that includes the unit
circle. We define

gl = sup [g(2)]. (L45)

zeC:|z|=1
The second norm is defined as the sum of the absolute values of Laurent series coef-
ficients of g, which is well defined since the Laurent series is absolutely convergent
in the interior of its annulus. If g(z) = ¥ _, gjz/, we denote

sl = X Igjl- (L46)
j=—o00
We have clearly
181l < 1181l - (1.47)

Let us discuss the properties of the norms related to the components (9.25). From
their integral representation (9.30) we have

8- < 72 sup g gl < 2 sup [g@)], 049)

= P1 zfz=p, 27 4 zifz|=ps

for any choice p; € (p—,1), 02 € (1, p+). On the other hand, the second norm clearly
satisfies

Ig)-1h < llgll, [Igl+lly < liglls - (1.49)

If ¢ and h are two functions analytic on an annulus around the unit circle we
have

ghll < [l Il Nghlly < ligly M7l (.50)

where the first inequality is trivial and the second is proven easily using the abso-
lute convergence of the Laurent series inside the annulus. Finally, for a sequence of
functions (g(")),en analytic on an annulus around the unit circle and a sequence of
positive numbers (s,,),en We have clearly that

¢ (z) = O(s,) uniformly in z on the unit circle |z| = 1

0., (L51)

if and only if Hg(”)

Lemma 3. Let a be non-zero analytic function on an annulus around the unit circle, defined
by (9.7), and with a zero winding number. Let Yj(n), forj=1,2and n € N, be polynomials
of degree not greater than n — 1, i.e. analytic functions with

Y™ =o, [1/].(")2_”]+

=0, (1.52)
and let X]("), U].("), V]-("), for j = 1,2, be analytic solutions of the functional equation
(n) _ () () _n (n)
ax" =y L uz v (L53)
on the annulus, such that they satisfy the properties

(M _ (n) —n
[Xj] =0, [Xj z "],
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Yl(n) (z) — Yz(n) (z) = O(sy) uniformly in z on the unit circle |z| = 1 (L55)

x"(z) — X{"(z) = O(ns,) uniformly in z on the unit circle |z = 1. (1.56)

Y(n) — Yl(”) o YZ(H)/ X(Vl) — X%”) . Xé”)/ u(n) — ul(”) o Ué”), V(?l) — Vl(n) . VZ(”),

(L57)
proving the lemma becomes equivalent to showing that if HY(”) = O(sy) then the
solution X of the problem (1.9) (for v = 0) and (I.10) satisfies HX(”) ’ = O(nsy).

The lines of the proof are the following. First we use the Wiener-Hopf equations
(I.13) and (1.16) to show that H u) ‘ = O(nsy,) and H 174%
recognize that directly from (I.9) and the properties of the norm it follows

(ns,). Then we

170 < a2 ([

), (158)

and conclude that since the right hand side of the inequality is O(ns,), so is the left
side.

We now work out the details. Note first that the Laurent series coefficients y](”) of
the function Y(") (z) = ;.:01 y](")zf satisfy \y](-")\ < HY(”) H, which can be seen easily
from the integral representation of the coefficients. It follows

HY(”) < HY(”) (1.59)
From the Wiener-Hopf equation (1.13) we get
|ve| = (=Y + fla il || [a=tuz") |- (L60)

To bound the first term we notice

ety < lavt] [, < oty

< o=

5 ety e

where all the inequalities except the last follow simply from the discussed properties
of the norms, and the last one follows from (I.59). To bound the second term in (1.60)
we use (1.48) with p; = p for some p defined by (9.10). We have

n+1

sup {|a=(z)U™ (z)|}. (L62)

[le=u=) || < 7=, sup

Since the Laurent series coefficients of U define a function analytic inside the
whole circle |z| < p~! we can apply the maximum modulus principle to conclude

sup {|U®(z)[} < sup {Ju(z)|} = |[u (163)

z:|z|=p z:|z|=1
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It follows
pn+1

[fatuem=] | < £ sup (la ')} Ju

zlz|=p

. (L64)

We conclude that there are positive constants A; and A, (independent of #) such

that

Hv("> + A" |[ur®™ (L65)

< AMn HY(”)

Using the same methods we conclude from the Wiener-Hopf equation (I.16) that
there are positive constants A3 and A4 such that

Hu<n> )

< Azn HY(”)

+ )\4pn

(L66)

We have obtained a system of two inequalities. Inserting the second into the first,
and rearranging the terms, we get

(1—A2740™")

‘V(”)

< (A1 + AaAsp™)n HW)

. (L67)

For sufficiently large n the factor on the right is positive and greater than, say, 1/2,
so we conclude

H vl = O(nsy). (L68)

Using (1.66) again we get also

H u™|| = o(ns,). (L69)

Finally, from (1.58) we get then HX ()

= O(nsy, ), which completes the proof. O

In applying Lemma 3 for functions Yz(n) and Y in section 9.2.4 we have s, = p",
for any p defined by (9.10). Note that since p can always be made smaller, the factor
nin O(ns,) in (1.56) is irrelevant.
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