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Introduction

The Sobolev space theory had a huge impact during the XXth century in the analysis of partial
differential equations (PDEs). A consolidated principle in the modern analysis is by-now the
fact that enlarging the space of functions from smooth to Sobolev ones gives, in turn, a better
understanding of problems with groundbreaking results especially concerning the regularity of
solutions to PDEs.

When moving from classical (e.g. Euclidean space, Riemannian manifolds...) to the singular
framework of metric measure spaces the same principle certainly applies. Here, by metric measure
space we mean a structure (X, d,m) composed of a metric space (X, d) equipped with a reference
measure m that plays the role of the volume measure. In this situation, it is by no means trivial
to derive a notion of the Sobolev space W 1,p(X), as the underlying lack of smooth coordinates
makes unclear what smooth functions should be. Several definitions have been proposed during
the past years, here we mention [64], [178] and [21, 20] (recall also the previous work [134, 118]
and the manuscripts [114, 117]) and we recall that they turned to be equivalent [20] (truth to be
said, in [178] it has been previously proved the equivalence with [64]). In all the aforementioned
references, the notion of W 1,p(X) comes with an approach to define the ‘modulus of the distri-
butional differential’ and, given that these approaches are interchangeable, there is an advanced
understanding at disposal of the space W 1,p(X) and the object |Df |p.

It is worth to describe here informally the approach of [21, 20] that will be the predominant
one of this work. Roughly speaking, a function f ∈ Lp(m) is Sobolev and |Df |p ∈ Lp(m) is its
minimal p-weak upper gradient, provided the inequality

|f(γ1)− f(γ0)| ≤
� 1

0

|Df |p(γt)|γ̇t|dt, (0.0.1)

holds true among almost every curve γ and |Df |p is the m-a.e. minimal Lp(m) function obeying the
above inequality. This requirement, which is true and defining in the smooth category, should be
interpreted as the duality between the distributional differential and the velocity of a curve. More
in details, the correct way to require the Sobolev condition, is to superpose the duality expressed
in (0.0.1) with the help of the notion of q-test plan. Roughly, a q-test plan, with q conjugate
exponent of p, is a probability π concentrated on q-absolutely continuous curve with values in X
that do not accumulate mass with respect to the reference measure

π({γ : γt ∈ B}) ≤ Comp(π)m(B), for every t ∈ [0, 1], B ⊂ X Borel,

where Comp(π) is the least constant C > 0 for the above to hold. In particular, with this powerful
notion at hand, a solid nonsmooth calculus has been achieved [21, 95] that revealed to be capable
of backing up many important calculations in the field.

Without any further assumptions on (X, d,m), requiring a function to be Sobolev in any of the
aforementioned senses may be also a void condition (for instance a Sobolev function in a metric
space equipped with a Dirac mass must be constant). Therefore, many properties of the classical
Sobolev space on Euclidean domains should not be expected at this high level of generality. To
mention only a few that are particularly relevant for this Thesis, it is in general false that W 1,p(X)
is reflexive, separable and that the object |Df |p is independent on the integrable exponent p.
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Moreover, this dependence [82] maybe incredibly pathological going against the intuition given
by the classical setting (where, evidently, such dependence is not even an issue). Nevertheless,
when a regularity assumption is enforced to X, the space W 1,p(X) and its calculus inherits many
extremely useful properties that are crucial to pursuing geometric investigations of the space X.

In this fashion, we are going to see that the framework of metric measure spaces plays in
geometric applications the same role that the Sobolev space played in the analysis of PDEs. The
analogy indeed carries on as, allowing the presence of singular spaces in the theory, makes it
possible to get access to a novelty of ‘implicit’ techniques capable of dealing also with regularity
questions from a new viewpoint.

This Thesis is devoted to the geometric analysis of metric measure spaces through the non-
smooth calculus. The main goal of this note is to study the Sobolev space and its calculus in
combination with the regularity of the underlying metric measure space. By this, we mean that:

A) we look for specific regularity assumptions of (X, d,m) ensuring a well-behaved Sobolev
calculus;

but also, and somewhat conversely, we mean that:

B) we study the Sobolev space W 1,p(X) to shed light on the regularity of the underlying geo-
metric structure of X.

A remarkable instance of the A-principle is the thorough investigation conducted by many
authors concerning metric measure spaces satisfying a Doubling condition and supporting a weak
Poincaré inequality (Doubling & Poincaré). When a metric measure space meets these two condi-
tions, Sobolev functions enjoy a number of fine properties that are widely employed in applications.
We refer to the monographs [114, 117, 42] for a presentation of those and to the references therein.
Here we only mention that Cheeger in [64] showed - among many deep results around Lipschitz
and Sobolev functions - that a metric measure space satisfying Doubling & Poincaré has a pre-
cise first order differentiable structure. Indeed, with the goal of proving a generalized Rademacher
Theorem for Lipschitz functions, he obtained a concrete description of the cotangent bundle where
naturally differentials of Lipschitz functions live (see also the recent work [88]).

On the other hand, an abstract notion of (measurable section of the) cotangent bundle in the
language of normed modules can be always built on arbitrary metric measure spaces [97] through
the Sobolev calculus. Even though at this high level of generality, the notion of differentials and
cotangent bundle is analytical rather than concrete and geometric, these module structures are
capable of detecting many important geometric properties. For instance, given a metric measure
space (X, d,m), we can wonder whether the underlying geometry at small scales looks Hilbertian,
meaning that there is a hidden scalar product so to compute angles between attached cotangent
vectors at m-a.e. points. Addressing positively this question requires studying the Sobolev space
as understood in [95], where the notion of ‘infinitesimal Hilbertianity’ was derived. In particular,
what one should (equivalently) do is try to prove that W 1,2(X) is Hilbert (a fact that is not true
in general). This is a remarkable instance of the B-principle, since the study of the space W 1,2(X)
can give in turn a better understanding of the geometry of X. In this direction, we register
growing efforts in studying the infinitesimal Hilbertianity property in different settings of interests
(weighted Euclidean spaces, weighted Riemannian manifolds, sub-Riemannian manifolds...)[103,
144, 84, 81], but also in more sophisticated frameworks [79].

The typical regularity that will be encountered in the sequel is the one of curvature bounds of
a metric or metric measure space. We begin now a brief detour of such settings as they will be
predominant in this work. Nevertheless, we mention that the frameworks that will be faced are
not limited to this one, meaning that part of the main results of this work holds without curvature
assumptions.

The synthetic approach to curvature bounds

The study of synthetic treatments of curvature bounds initiated in the late ’40s by the work
of A. D. Alexandrov [8] where the first brick was posed towards a theory that is now called
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Alexandrov geometry. The concept of Alexandrov space has been later considerably developed [52]
in the context of metric spaces to speak about sectional curvature bounds. By synthetic, we mean
that an ‘implicit’ notion is worked out on an abstract setting without relying on the ‘explicit’
smoothness of any kind of the underlying space. Moreover, this notion is coherent, i.e. when we
restrict the attention to only Riemannian manifolds, it is equivalent to the smooth one. This is
the case of Alexandrov spaces, whose definition builds upon the classical Toponogov’s Theorem
that encodes a sectional curvature bound via a suitable triangle comparison condition.

In this manuscript, we shall only deal with upper bounds κ ∈ R on the sectional curvature
and the resulting metric structure is commonly called a CAT(κ) space1. We do not enter now into
further details of such definition and postpone it to Chapter 2. Here, we recommend [47, 51, 113,
39, 6, 7] for a broad picture on Alexandrov geometry.

Moving to Ricci lower bounds, the setting of metric measure spaces very naturally comes into
play. The reason being that the notion of a distance is no more sufficient to encode Ricci bounds,
hence the need to decouple the metric and measure structure in the triple (X, d,m).

The theory of Ricci limit spaces, developed in [65] and further investigated in [66, 67, 68] is
certainly a first step towards this direction. It is remarkable that on Ricci limits, that are measure
Gromov-Hausdorff (mGH) limits of Riemannian manifolds with uniform Ricci lower bounds, many
important structural results persist. We mention in this direction, the Cheeger-Gromoll splitting
theorem [69], brought to the context of Ricci limit spaces in [65] and the constancy of the dimension
of a Ricci limit space [70]. Nevertheless, even though this class certainly posses singularities, their
study comes from the knowledge of their smooth approximations and progress have been later put
to capture the essence of Ricci lower bounds via a fully synthetic theory.

In the independent works [143] and [180, 181], it has been clarified for the first time what
a Ricci lower bounds for a metric measure space should be. The authors, by means of Optimal
Transport techniques, gave birth to the celebrated curvature dimension condition thus producing
the notion of CD(K,N)-spaces, namely metric measure spaces having ‘Ricci bounded from below
by K ∈ R’ and ‘dimension bounded from above by N ≥ 1’. Again, this synthetic definition is
coherent with the classical one. Indeed, it is formulated by prescribing suitable convexity property
of entropies, a condition that on a Riemannian manifold encodes Ricci lower bounds as understood
in [71, 188]. Moreover, the goodness of this notion is reflected by many instances as, to mention
only the most relevant ones for our discussion, the following ones:

B the curvature dimension condition is stable for mGH-convergence [180, 181, 143, 100]. In
particular, it is a fully synthetic theory containing Ricci limit spaces;

B important geometric inequalities are available in this class, such as the Bishop-Gromov
monotonicity formula, the Brunn-Minkowski inequality, the Bonnet-Meyers diameter esti-
mates [181] and the Isoperimetric Inequalities à la Lévy-Gromov [58];

B important functional inequalities are available in this class, such as the sharp Lichnerowitz
spectral gap inequality [143], a weak local (1, 1)-local Poincaré inequality [174] and Laplacian
comparison estimates [95].

However, a CD-space may not look Riemannian, as the basic example of the Euclidean space Rn
equipped with a norm not arising from a scalar product reveals. With the underlying goal of propos-
ing a synthetic theory of Ricci limits, a notion of ‘Riemannian curvature dimension condition’ was
proposed to single out Finsler geometries and goes under the name of RCD(K,N)-condition (the
letter R stands for Riemannian). This definition, derived first in the infinite dimensional case
(N = ∞) in [22] and later in the finite dimensional case (N < ∞) in [95], is essentially obtained
by coupling the curvature dimension condition with the infinitesimal Hilbertianity [95] (recall, the
fact that the Sobolev space W 1,2(X) is Hilbert, false in general on CD-spaces). It is precisely this

1Gromov [111] in 1987 coined the acronym CAT: the letters are in honor of E. Cartan, A. Topogonov and A. D.
Alexandrov
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latter condition that detects the typical geometry of a Riemannian manifold at small scales. It has
to be said that the RCD-condition, as it is commonly presented nowadays, builds upon the key
contributions [33, 23, 18, 26, 87, 56] that filled the gaps with the CD-theory and identified impor-
tant equivalent formulations. For brevity reasons (and since we shall never need other formulations
of the RCD-class here), we will not discuss them and refer to the aforementioned literature and
the surveys [10] and [186, 184] for more references and insight on synthetic treatments of Ricci
lower bounds.

As of today, it is well established that the RCD-class is the suitable one among the currently
available synthetic notions to re-produce and push further typical results valid on Riemannian
manifolds. We briefly list some important instances reflecting this fact:

B the validity of many ‘splitting’ type of results, such as the Cheeger-Gromoll Splitting theorem
in RCD-class in [93, 94] and the fact that equality in the 1-Bakry-Émery inequality forces a
splitting [11];

B the validity of many rigidity theorems, such as the Cheng’s rigidity of the maximal diameter
[132], the Obata rigidity Theorem [131] and the ‘volume cone to metric cone’ theorem [75];

B the RCD-class enjoys compactness property in the mGH-topology [180, 181, 143, 91, 22, 100]
(and thanks to [113]). Therefore, many rigidty theorems can be turned in almost rigidity
theorems providing new results even in the smooth situation. We mention, among many, the
almost rigidity of the Lévy-Gromov isoperimetric inequality [58] and of the Obata Theorem
[159].

Additionally, there has been an incredible research effort in recent years to develop a satisfac-
tory structure theory of RCD-spaces and they turned out to possess a strong m-rectifiable structure
[103, 129, 76] (improving on [158]) with constant dimension [50]. Nowadays, this tendency took a
significant turn towards a structure theory in codimension one after the proof of the De Giorgi
structure theorem for sets of finite perimeter on finite dimensional RCD-space [49]and it culmi-
nated recently with the proof of the constancy of dimension for boundaries of finite perimeter
sets in [48]. We mention finally the recent work [53] where an existence and uniqueness theory of
parallel transport has been developed (in a suitable subclass of RCD space, extending the previous
work [105]). All in all, we believe that the RCD-class has proved over the years, not only to encode
from a synthetic point of view a Riemannian manifold but also to provide new powerful tools for
its study.

Finally, before passing to introduce the original contributions of this Thesis, we explain the
plan we are going to pursue throughout this note.

We will address the problem of defining new differential objects with associated calculus rule
that behaves like in the smooth category; we aim at studying many aspects of the Sobolev space
and of functions with bounded variations that are ‘fundamental’, meaning that they are obtained
- not assuming regularity of any kind - of the underlying metric measure space; we aim at singling
out a first order condition of a metric measure space that ensures a strong independence of |Df |p
on the integrable exponent. Also, it is our task also to show that this condition is shared by a
large class of spaces that play a central role in the current literature; we also aim at studying
spaces with second-order curvature bounds and achieve original results. In this direction, we prove
new rigidity and almost rigidity results on RCD-spaces by the study of (non) compact Sobolev
embeddings.

Main contributions

Gradient flows on CAT(κ) spaces and applications

Here we introduce the main results of the joint work [102] with N. Gigli.

The theory of gradient flows in metric spaces has been initiated by De Giorgi and collaborators
[74], [73] (see also the more recent [19]): a basic feature of the approach is to provide a very general
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existence theory - at this level uniqueness is typically lost - without neither curvature assumptions
on the space nor semiconvexity of the functional.

In this setting gradient flow trajectories (xt) of E (or curves of maximal slopes) are defined by
imposing the maximal rate of dissipation

d

dt
E(xt) = −|ẋt|2 = −|∂−E|2(xt), a.e. t,

where here |ẋt| is the metric speed of the curve and |∂−E| is the descending slope of E. It has been
later understood [19, 22],[95], [189],[166],[161] that if E is λ-convex and the metric space has some
form of some Hilbert-like structure at small scales, then an equivalent formulation can be given
via the so-called Evolution Variational Inequality (EVI)

d

dt

d2(xt, y)

2
+ E(xt) +

λ

2
d2(xt, y) ≤ E(y) a.e. t (0.0.2)

for any choice of point y on the space. We refer to [161] for the precise definition and a thorough
structural study of the EVI condition. Moving to the setting of our main interests, it is reasonable
to expect that the EVI-condition is achievable on CAT(κ) spaces. The reason being that a CAT-
space looks Hilbertian as many properties persist in this setting (see e.g. the monograph [39] and
the survey [38]).

Our contribution aims at completing the previously available results of [153, 124], [170, 146, 166]
around gradient flows on CAT(κ) spaces. More precisely, we show that a differential theory of
gradient flows as {

x′+t ∈ −∂−E(xt) ∀t > 0,
lim
t↓0

xt = x, (0.0.3)

is possible on (locally) CAT(κ) spaces X for semi-convex and lower semicontinuous functionals
E : X→ [0,∞]. In particular, we study the notion of the ‘minus subdifferential set’ appearing and
prove the equivalence between (0.0.2) and (0.0.3).

Finally, using the notion of ‘Korevaar-Shcoen’ energy of an L2-map derived in [109] (revisiting
the original paper [133]), we produce a notion of Laplacian for a sufficiently regular Sobolev map
u : X → Y with RCD-source and CAT(0) target building on top of (0.0.3). Basic calculus rules
associated with this Laplacian are also derived. The motivation behind this application comes
from the study of the Lipschitz regularity of harmonic maps in a fully synthetic setting, a program
initiated by Gigli and collaborators (see [79, 106, 108, 109, 80] for the full treatment) aiming also
at stating a full Bochner-Ells-Sampson inequality [86] in a nonsmooth context. Knowing what a
Laplacian of a CAT(0) valued map is, is a crucial step for this program.

A first-order condition for the independence on p of weak gradients

Here we introduce the main results of the joint work [101] with N. Gigli.

The classical Sobolev space defined on the Euclidean space Rd requires a functions f ∈ Lp to
posses integrable weak derivatives ∂if ∈ Lp satisfying

�
f∂iϕdL d = −

�
f∂iϕdL d, ∀ϕ ∈ C∞,

for all i = 1, ..., d. As these are defined in distribution, it is evident that they do not depend on p.
However, moving to the setting of metric measure spaces (X, d,m), this is definitely not the case.

Assuming for simplicity m(X) = 1, one should always expect that for p1 ≤ p2, if f ∈ W 1,p2(X)
then f ∈W 1,p1(X) and also

|Df |p1 ≤ |Df |p2 m-a.e.. (0.0.4)

Nevertheless, without any further assumption on X, when p2 ≤ p1 the picture is generally more
complicated. Here we recall the work [82], where a detailed study on weighted Euclidean spaces
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has been performed to build a family of metric measure spaces for which only strict inequality
may occur in (0.0.4).

On the contrary, the independence of weak gradients on p is strictly linked to the regularity of
the underlying metric measure space and efforts have been put to rule out both of these situations.
In [64], it has been also shown that equality in (0.0.4) is ensured on doubling spaces supporting a
weak and local Poincaré inequality. More recently, in [99] the RCD-condition has revealed to be a
positive framework for the independence of |Df |p on p especially suggesting that a stronger kind
of independence is possible.

Our motivation is twofold: on one hand, we aim at completing the picture on this topic, on
the other, we propose advances around it discussing a new point of view, the guideline being:

to define the object |Df |p, only the first-order differential structure of (X, d,m) is
involved. Hence, its independence on p should require the regularity of the underlying
metric measure space at first-order.

More in details, we propose a condition that we call Bounded Interpolation Property (BIP) en-
suring the following kind of stronger independence: for every p1, p2 ∈ (1,∞) it holds

f ∈W 1,p1(X) with f, |Df |p1
∈ Lp2(m) ⇒ f ∈W 1,p2(X),

|Df |p1
= |Df |p2

, m-a.e..

This condition, inspired by [174], is defined by requiring suitable compression estimates of trans-
portation geodesics and is stable for (pointed) Gromov Hausdorff convergence of metric measure
structures. Moreover, we show that it is shared by a broad class of spaces satisfying (different
type of) curvature dimension conditions and, in these settings, it extends the previously available
weaker independence based on the Doubling & Poincaré condition.

Finally, building on top of the recent analysis developed in [169], we prove that a single test
plan, called master test plan, is enough to test the Sobolev property on every metric measure
space. By this, we mean that it is capable to establish whether f ∈ W 1,p(X) and to detect the
object |Df |p by quantifying the exceptional curves for which (0.0.1) fails. On spaces satisfying
the (BIP), this can be also taken concentrated on geodesics curves.

On master test plans for the space of BV functions

Here we introduce the main results of the joint work [162] with E. Pasqualetto and T. Schultz.

The first notion of a function of bounded variation (or just a BV function for short) in the
setting of metric measure spaces dates back to a paper by M. Miranda Jr., published almost 20
years ago [156]. Since then, several equivalent definitions of BV function have been introduced
and studied in the literature. The most relevant ones for the purposes of the present paper are the
notions proposed in [13], which we are going to describe informally. While the original approach
in [156] is of ‘Eulerian’ nature as it is based upon a relaxation procedure using Lipschitz functions,
the definition in [13] is ‘Lagrangian’ as it ultimately looks at the behaviour of functions along well-
chosen curves. The motivation of the latter approach comes from the BV -theory in the classical
Euclidean space where it is well established that BV functions behave well under one dimensional
restrictions (see [16] for a thorough discussion). In the absence of smooth coordinates, the key
concept to mimic this characterization is that of a ∞-test plan (the extreme case q = ∞ for the
Sobolev case). Following [78], we define the space BV ∗(X) as the collection of f ∈ L1(m) for which
there exists a constant C > 0 such that

�
f(γ1)− f(γ0) dπ ≤ Comp(π)Lip(π)C, for all ∞-test plan π, (0.0.5)

where Lip(π) is the least constant L > 0 for which π is concentrated on L-Lipschitz curves (and
it is finite, as a defining requirement of an ∞-test plan). Then, by appealing to the equivalent
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definitions of a BV function [13], it is actually possible to achieve a ‘true’ total variation measure
|Df | so that |Df |(X) is the least constant that can be chosen in (0.0.5).

The main goal of this part is to push the analysis performed in [101] in the extreme case of
functions of bounded variations. Our main result is that:

on an arbitrary metric measure space, a countable collection of∞-test plans is sufficient
to detect a BV function and its total variation measure |Df |. Moreover, on CD spaces
(non branching with finite reference measure), we are also able to require these test
plans to be concentrated on geodesics.

However, due to the ‘lack of the linearity w.r.t. π’ on the right-hand side of (0.0.5), it is
not possible to directly employ the techniques of [169] to reduce the countable collection to a
single plan (observe that this is not an issue in the Sobolev case when integrating (0.0.1) w.r.t.
π). To this aim, we derive yet another definition of a ‘curvewise BV space’ denoted BV cw(X)
by adapting the ‘AM -modulus approach’ of [151, 152] with the concept of a test plan. We show
that this approach is compatible with the ones of [156, 13] and roughly requires the existence of
(gn) ⊂ L1(m) with supn ‖gn‖L1 < ∞, called curvewise bound for f , that controls from above the
total variations of the one dimensional restrictions of f . With this notion at hand, we are able to
reduce to a singleton the countable family of∞-test plan detecting the BV space. We thus derive
the notion of master test plan in the curvewise sense that, by construction, can be also required
to be concentrated on geodesics in the (non branching with finite measure) CD class.

To conclude, we mention that the present result is relevant for the analysis of [48], where the
authors pushed the constancy of dimension result for RCD-spaces up to codimension one.

Rigidity and almost rigidity of Sobolev inequalities

Here we introduce the main results of the joint work [163] with I. Y. Violo.

The standard Sobolev inequality in sharp form reads as

‖u‖Lp∗ ≤ Eucl(n, p)‖∇u‖Lp , ∀u ∈W 1,p(Rn),

where p ∈ (1, n), p∗ := pn
n−p is the Sobolev conjugate exponent and Eucl(n, p) is the smallest positive

constants for which the above inequality is valid. Its precise value was computed independently by
Aubin [31] and Talenti [182] (see also [72]). When moving to the setting of Riemannian manifolds
with positive Ricci lower bounds, it is not straightforward what an optimal constant should be
and, the notion and value of optimal Sobolev constant is one of the main object of study of the
so-called AB-program (see [115] and [85] for a thorough discussion).

Postponing a proper discussion to Chapter 6, here we just mention that on a compact n-
dimensional manifold M , a typical Sobolev inequality reads as

‖u‖L2∗ (M) ≤ A‖∇u‖L2(M) +B‖u‖L2(M), ∀u ∈W 1,2(M).

Then, the value Aopt(M) of the optimal Sobolev constant in the above can be suitably defined
optimizing on constants A,B > 0 (that is the reason of the name AB-program). It turns out that
this value is completely characterized in the case of the n-sphere M = Sn with n ≥ 3, after [30, 40]
while, under Ric ≥ n− 1 we have [122]

Aopt(M) ≤ Aopt(Sn). (0.0.6)

The very same notion of optimal Sobolev constant have been brought to different nonsmooth
context and the above comparison has been generalized in the works [35, 173, 59]. In particular,
it holds true on compact RCD spaces.

Our main results are then the rigidity and almost rigidity of Sobolev inequalities on compact
RCD-spaces, both results are new even in the smooth setting. Considering, for simplicity, a closed
n dimensional manifold M with n ≥ 3 and Ric ≥ n− 1 we prove:
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equality (resp. almost equality) occurs in (0.0.6) if and only if M is isometric to Sn
(resp. mGH-close to a spherical suspension)

Remarkably, the smoothness of the objects involved plays no role as the sought rigidity will follow
from the study of the noncompact embedding

W 1,2 ↪→ L2∗ .

The idea of the proof consists of a fine geometric investigation of extremizing sequences, namely
bounded sequences in W 1,2 for which the optimal Sobolev inequality saturates (note, the fact
that this sequence is smooth is irrelevant). Therefore, by taking care of the technicalities arising
from a synthetic approach, the proof reads verbatim on compact RCD-spaces where we can take
advantage of specific compactness properties of the RCD-condition to produce the sought almost
rigidity statement. To conclude, we just mention two key tools for our proof and an application
of independent interest:

B a new concentration compactness dichotomy principle in the spirit of [140, 141] under mGH-
converging RCD-spaces to study the shape of almost extremal functions on varying spaces;

B a new Polya-Szego principle in the spirit of [159] for Euclidean monotone rearrangements of
Sobolev functions on finite dimensional CD-spaces without nonbranching assumptions;

B an existence theory of solutions of the Yamabe equation set on compact RCD-spaces and
an application concerning the mGH-continuity of the generalize Yamabe constant pushing
further [121].

Structure of the Thesis

This Thesis is divided into two parts and ends with an Appendix.

B In Part I, we collect all the needed preliminary material in two different chapters.

In Chapter 1, we start presenting basics facts about metric measure spaces concerning their
analysis and geometry at a first-order level with special emphasis on the theory of gradient
flow and optimal transport of (geodesic) metric spaces and on the theory of normed modules.
Then, we move to the presentation of the nonsmooth calculus via the test plan approach and
derive the notion of Sobolev functions, Sobolev maps and BV functions. Next, we consider
metric measure spaces asking for regularity conditions, namely Doubling & Poincaré and
infinitesimal Hilbertianity. Finally, we study how the nonsmooth calculus benefits from
these kinds of assumptions.

In Chapter 2, we then face the preliminary materials concerning the geometry of nonsmooth
spaces at a second-order level and we consider several synthetic notions of curvature bounds.
We start presenting the CAT-condition of metric spaces and their concrete first-order cal-
culus. Then we move to the CD-condition and list important geometric and functional
inequalities, as well as the existence of test plans concentrated on transportation geodesics.
We shall then discuss the RCD-condition and recall some important characterizations of
Sobolev maps available in this setting, the fact that weak gradients do not depend on p
and present some rigidity theorems. We end Part I by discussing convergence and compact-
ness results of spaces satisfying curvature dimension conditions and by listing other possible
curvature conditions via Optimal Transport.

B In Part II, we present the main contributions in Chapters 3,4,5,6 following the order of
appearance in this introduction. Each of them is organized as follows: a specific introduction
is given to present the main results and possibly the main statements of the chapter. We
end all of them with a brief structure of the chapter that serves as a guideline for the reader.

B In Appendix A, we extend the interpolation estimates of [174] and [57] for Wasserstein
geodesics on spaces satisfying synthetic Ricci curvature bounds. These estimates, achieved
in the 2-Wasserstein space are to be used in this Thesis with generalized exponent q ∈ (1,∞).
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1 | First-order analysis of metric mea-

sure spaces
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1.1 Metric measure spaces

1.1.1 Notation and basics

A metric measure space is a triple (X, d,m) where

(X, d) is a complete and separable metric space,

m 6= 0 is non negative and boundedly finite Borel measure.

In this Thesis, metric measure spaces will play a fundamental role. For this reasons, we will refer to
m as the reference measure on X. Moreover, we will be working under the simplification condition
(see (1.1.1) below for the definition of support) that

supp(m) = X.
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This choice will let us avoid some technicalities during the note. Often, we will need the (weighted)
Euclidean space as a model metric measure space. We denote then by L 1 the one dimensional
Lebesgue measure on R. We start now recalling basic facts and the main notation around metric
measure spaces.

We denote the ball of radius r and centred at x by

Br(x) := {y ∈ X: d(x, y) < r}, ∀x ∈ X, r > 0,

and, to avoid confusion when it may occur, we will write BX
r (x) to emphasize the space where

the ball belongs. We define, for E ⊂ X, the diameter of E, and write diam(E) ∈ [0,∞], the
possibly infinite quantity supx,y∈E d(x, y) (with diam(∅) = 0 by convention). We say that E ⊆ X
is bounded, provided diam(E) < ∞. We recall that compact sets must necessarily be closed and
bounded while we say that (X, d) is proper, provided the converse also holds. The metric space
(X, d) is called metrically doubling provided there exists C ∈ N so that any open ball B or radius
r > 0 can be covered by C-many open balls centred in B of radius r/2.

If not differently stated, X will be always thought as a measurable space with the Borel sigma-
algebra B(X) and we denote by M +

b (X) the space of finite Borel positive measures over X. Given
µ ∈M +

b (X), we define

supp(µ) :=
⋂
{C ⊂ X: C closed and µ(X \ C) = 0}, (1.1.1)

and say that a Borel set E is µ-negligible, if µ(E) = 0. We say then that µ is concentrated on
C if X \ C is µ-negligible and we notice that, thanks to the separability of X, µ is concentrated
on its support. Also, we write P(X) for the space of probability measures over X and equip it
the following weak topology: given any sequence (µn)n∈N∪{∞} ⊆ P(X), we say that µn weakly
converges to µ∞ as n→∞ (or, briefly, µn ⇀ µ∞ as n→∞) provided

�
ϕdµ∞ = limn→∞

�
ϕdµn

for all ϕ ∈ Cb(X), where Cb(X) stands for the space of bounded, continuous real-valued functions.
Notice that there exists a complete and separable distance dP which metrizes this topology. This
choice is motivated by the fact that, when X is compact, this topology reduces to the standard
weak-* topology. A family K ⊂P(X) is called tight, provided

∀ε > 0,∃Kε ⊂ X compact so that µ(X \Kε) ≤ ε, ∀µ ∈ K.

For later use, we report without proof a well known characterization of compactness in the weak
topology.

Theorem 1.1.1 (Prokhorov). Let (X, d) be a complete and separable metric space and K ⊂P(X).
The following are equivalent:

i) K is precompact in the weak topology;

ii) K is tight;

iii) There exists a functional ψ : X→ [0,∞] with compact sublevels so that

sup
µ∈K

�
ψ dµ <∞.

Finally, if ϕ : X → Y is a Borel map between two metric spaces and µ ∈ P(X), the set-value
map B(Y) 3 B 7→ ϕ]µ(B) := µ(ϕ−1(B)) belongs to P(Y) and it is called the pushforward measure
of µ via φ. When ϕ is continuous, the operation ϕ] is weakly continuous.

Two metric measure spaces (Xi, di,mi)i=1,2 are said to be isomorphic, and we write
X1 ' X2 for short, if there exists an isometry ι : X1 → X2 such that (ι)]m1 = m2.
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Let L0(m) be the space of equivalence classes up to m-a.e. equality of Borel functions on X
equipped with the topology of local convergence in measure. Then, for a given exponent p ∈ [1,∞],
we denote by Lp(m) the subset of L0(m) of usual Lebegue p-integrable functions equipped with
the norm

‖f‖Lp(m) :=


( �
|f |p dm

)1/p

if p <∞,
ess sup |f | if p =∞.

Then, the space Lploc(m) is the subset of L0(m) consisting of (equivalence class of) functions which
are p-integrable when restricted to bounded sets. For a given non negligible Borel set E ⊂ X, an
analogous definition leads to the space Lp(m|E), sometimes simply written Lp(E) and, for Ω ⊂ X

open, Lploc(E) is then the subset of (the equivalence class of) Borel functions f ∈ L2(C) for every
C ⊂ Ω closed. Here, the restriction measure is defined as m|E(B) := m(E ∩B) for all B ∈ B(X).

Alternatively, denoting χE the (equivalence class of the) function m-a.e. equal to 1 on E and zero
otherwise, we have obviously m|E = χEm, here having denoted fm(B) :=

�
B
f dm for every non

negative f ∈ L0(m). In the case when m(E) < ∞ and u : E → [0,+∞) a non-negative Borel
function we recall that the distribution function µ : [0,+∞)→ [0,m(E)], is defined as

µ(t) := m({u > t}), ∀t ≥ 0. (1.1.2)

In the sequel, we will consider distribution functions of u ∈ L0(m|E). By this, we mean that it is

possible to select a Borel representative to define (1.1.2); but it is evident that the outcome µ is
independent on this choice.

Next, we recall without proof the following well known fact of Lebesgue spaces. For any µ ∈
P(X), we have that ‖f‖Lp(µ) ≤ ‖f‖Lp′ (µ) for every p, p′ ∈ [1,∞] with p ≤ p′ and f : X→ [0,+∞)
Borel, as a consequence of Hölder’s inequality. Moreover, we have that

‖f‖L∞(µ) = lim
q→∞

‖f‖Lp(µ), for every µ ∈P(X) and f : X→ [0,+∞) Borel. (1.1.3)

1.1.2 Lipschitz class

We shall denote as usual by Lip(X), Lipbs(X) and Lipc(X) the spaces of Lipschitz functions,
boundedly supported Lipschitz functions and compactly supported Lipschitz functions. For a
given open subset Ω ⊂ X, we also write Lipc(Ω) and Liploc(Ω) the space of Lipschitz with compact
support and locally Lipschitz functions on Ω, respectively. Here, by locally Lipschitz functions on
Ω, we mean f : Ω→ R so that, for any x ∈ Ω, there exists a ball B centred at x so that f ∈ Lip(B).
We will also consider metric valued Lipschitz maps u : X1 → X2 from two metric spaces X1,X2

and we denote by Lip(u) the analogous Lipschitz constant in this case. A special situation is when
we consider curves γ defined on [0, 1] and valued on a metric measure space; we shall then say
that γ is Lipschitz writing γ ∈ Lip([0, 1],X) and that γ is L-Lipschitz, L > 0, if Lip(γ) ≤ L.

Moreover, if f ∈ Lip(X), we call Lip(f) its Lipschitz constant and we can define

lip f(x) := lim
y→x

|f(y)− f(x)|
d(x, y)

,

(set to be 0 is x is isolated) the local Lipschitz constant.
In what follows, we are going also to deal with Lusin-Lipschitz functions. We recall that a

function f : X → R is Lusin-Lipschitz, provided there are N,Kn Borel, n ∈ N, with N negligible
and Kn compacts, so that X := N ∪ (∪nKn) and f |Kn is Lipschitz for every n ∈ N.

Conversely, suppose we are given a functions f : E → R with E ⊂ X that is Lipschitz, it is
well known that an extension f̄ : X → R with f̄ = f on E and Lip(f̄) = Lip(f) exists. A way to
produce such extension, called McShane extension, is

f̄(x) := inf{f(y) + Lip(f)d(x, y) : y ∈ E}, ∀x ∈ X.
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1.1.3 Absolutely continuous curves

We recall some basic fact about continuous curves valued in a complete metric space.
We denote by C([0, 1],X) the space of continuous and X-valued curves, and equip it with the

uniform distance
dsup(γ, η) := max

t∈[0,1]
d(γt, ηt), γ, η ∈ C([0, 1],X).

When (X, d) is complete and separable, then (C([0, 1],X), dsup) is also complete and separable.
The evaluation map is the assignment et : C([0, 1],X)→ X defined via et(γ) := γt.

Then, given q ∈ [1,∞], the set of q-absolutely continuous curves, denoted by ACq([0, 1],X), is
the subset of γ ∈ C([0, 1],X) so that there exists g ∈ Lq(0, 1) satisfying

d(γt, γs) ≤
� t

s

g(r) dr, ∀s ≤ t in [0, 1]. (1.1.4)

It is evident that the notion of AC∞ space is coincident with the one of Lipschitz curves, i.e.

Lip([0, 1],X) = AC∞([0, 1],X).

We will use both notations interchangeably. Also, by Hölder inequality, we have Lip([0, 1],X) ⊆
ACq([0, 1],X) ⊆ AC([0, 1],X) holds for every q ∈ (1,∞). We recall that, for any γ ∈ ACq([0, 1],X),
there exists a minimal a.e. object playing the role of absolute value of the velocity.

Theorem 1.1.2 (Metric speed). Let (X, d) be a metric space and q ∈ [1,∞]. Then, for every
γ ∈ ACq([0, 1],X) there exists the limit

lim
h↓0

d(γt+h, γt)

h
a.e. t ∈ [0, 1],

which we denote by |γ̇t| and call metric speed. Moreover, it is the least, in the a.e. sense, function
g ∈ Lq(0, 1) that can be taken in (1.1.4).

See, for the proof, [19, Theorem 1.1.2]. More generally, we can define the metric speed func-
tional ms(γ, t) : C([0, 1],X)× [0, 1]→ [0,∞] as follows:

ms(γ, t) := lim
h→0

d(γt+h, γt)

h
, if γ ∈ AC([0, 1],X) and ∃ lim

h→0

d(γt+h, γt)

h
,

setting ms(γ, t) :=∞ otherwise. Then, we have that ms is Borel regular (see, e.g., [104]). Then, for

finite q’s, we define the Kinetic energy functional C([0, 1],X) 3 γ 7→ Keq(γ) :=
� 1

0
ms(γ, t)q dt =� 1

0
|γ̇t|q dt, if γ ∈ ACq([0, 1],X) and ∞ otherwise. We recall the following well known lemma,

whose proof we give for completeness.

Lemma 1.1.3. Let (X, d) be a metric space, q ∈ (1,∞) and (γn) ⊆ ACq([0, 1],X) uniformly
converging to γ ∈ C([0, 1],X) with supn Keq(γ

n) <∞.
Then, γ ∈ ACq([0, 1],X) and Keq(γ) ≤ limn Keq(γ

n). Moreover, if Keq(γ
n) → Keq(γ) (i.e.

there is conservation of the Kinetic Energy), then one also recovers |γ̇n· | → |γ̇·| in Lq(0, 1).

Proof. For the first part, it suffices to notice that any weak-Lq limit G (possibly along a not
relabeled suitable subsequence) of |γ̇n· | in Lq(0, 1) satisfies

d(γt, γs) = lim
n

d(γnt , γ
n
s ) ≤

� t

s

G(r) dt, ∀s, t ∈ [0, 1].

Thus, γ ∈ ACq([0, 1],X) and, by minimality of |γ̇t| and weak lower semicontinuity of Lq-norms,
one has

Keq(γ) ≤
� 1

0

Gq(t) dt ≤ lim
n→∞

Keq(γ
n)

Moreover, under the hypotheses of the second claim, the above becomes a chain of equalities
ensuring that G = |γ̇t| is a strong limit in Lq(0, 1).
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We face now two important compactness criterions for collection of absolutely continuous
curves. The first deals with q <∞ while the second deals with the limit case.

Lemma 1.1.4 ([100]). Let (X, d) be a complete and separable metric space, q ∈ (1,∞) and ψ : X→
[0,∞] be a functional with compact sublevels. Then, the lifted functional Ψ: C([0, 1],X) → [0,∞]
defined via

γ 7→ Ψ(γ) :=

� 1

0

ψ(γt) + |γ̇t|q dt, if γ ∈ ACq([0, 1],X), ∞ otherwise,

has compact sublevels in C([0, 1],X).

In [100, Lemma 5.8], the above Lemma is proven only for q = 2, but the proof works with
straightforward modification for q ∈ (1,∞). Lemma 1.1.4 will be often frequently used in combi-
nation with Prokhorov’s theorem to lift functionals to the space of continuous curves.

When dealing with Lipschitz curve, we instead recall the following variant of the Arzelà–Ascoli
theorem (see [167, Proposition 2.1]).

Theorem 1.1.5 (Arzelà–Ascoli theorem revisited). Let (X, d) be a metric space. Let K be a closed
subset of C([0, 1],X) which satisfies the following properties:

i) K ⊆ Lip([0, 1],X) and sup
{

Lip(γ) : γ ∈ K
}
< +∞.

ii) Given any ε > 0, there exists a compact set Kε ⊆ X such that

L 1
({
t ∈ [0, 1] : γt /∈ Kε

})
≤ ε, for every γ ∈ K.

Then the set K is compact in C([0, 1],X).

Geodesics and tangent cone of directions

A special role in this Thesis will be played by geodesics and geodesic metric spaces. We fix then
a complete metric space (Y, dY): a curve [0, 1] 3 t 7→ γt ∈ Y is a minimizing constant speed
geodesic (or simply a geodesic) if dY(γt, γs) = |t− s|dY(γ0, γ1), for every t, s ∈ [0, 1]. Throughout
this manuscript, geodesics are always considered minimizing with constant speed defined on [0, 1].
We say that Y is a geodesic metric space provided for any couple of points, there exists a constant
speed geodesic joining them. Sometimes we shall deal also with non branching geodesic spaces,
i.e. geodesic spaces for which we have

γ, θ geodesic with γ|[0,t] = θ|[0,t] for some t ∈ (0, 1) ⇒ γ ≡ θ on [0, 1].

Basic examples of non branching spaces are Euclidean spaces, Riemannian manifolds but also
Banach spaces with strictly convex norms. More sophisticated examples will be then faced during
this note.

Whenever the geodesic connecting y to z is unique, we shall denote it by Gzy. Fix y ∈ Y, and
denote by GeoyY the space of constant speed minimizing curve emanating from y, and defined
on some right neighbourhood of 0. We endow this space with the pseudo-distance dy defined as
following:

dy(γ, η) := lim
t↓0

dY(γt, ηt)

t
∀γ, η ∈ GeoyY. (1.1.5)

It is easy to see that dy naturally induces an equivalence relation on GeoyY, by simply imposing
γ ∼ η if dy(γ, η) = 0. By construction, dy passes to the quotient GeoyY/ ∼ and with (a common)
abuse of notation, we still denote dy the distance on the quotient space. The equivalence class of
the geodesic γ under this relation will be denoted γ′0. In particular this applies to the geodesics
Gzy defined on [0, 1], whose corresponding element in GeoyY/ ∼ will be denoted by (Gzy)′0. Even at
this high generality, it is possible to speak about tangent cones from a metric viewpoint as follows.
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Definition 1.1.6 (Tangent cone). Let Y be a geodesic space and y ∈ Y. The tangent cone
(TyY, dy), is the completion of (GeoyY/ ∼, dy). Moreover, we call 0y ∈ TyY, the equivalence class
of the steady geodesic at y.

Without any other regularity assumption, it is clear that the above definition is purely abstract.
Nevertheless, in Section 2.1 it will provide a good framework to build a first order differential
calculus under curvature constraints in the Alexandrov’s sense.

1.1.4 Optimization and gradient flows on geodesic metric spaces

Let us first clarify the notion of semiconvexity on a geodesic metric space.

Definition 1.1.7 (Semiconvex function). Let (Y, dY) be a geodesic metric space and E : Y →
R ∪ {+∞}. We say that E is λ-convex, λ ∈ R, if for any geodesic γ it holds

E(γt) ≤ (1− t)E(γ0) + tE(γ1)− λ

2
t(1− t)d2

Y(γ0, γ1) ∀t ∈ [0, 1].

If λ = 0, then we simply speak of convex functions. We shall denote by D(E) ⊂ Y the set of y’s
such that E(y) <∞.

Next, we define the (descending) slope |∂−E| of a functional E setting, for every y ∈ D(E)

|∂−E|(y) := lim
z→y

(E(y)− E(z))+

dY(y, z)
. (1.1.6)

The domain of the slope is the collection of points where the slope is finite and will be denoted by
D(|∂−E|) ⊂ D(E). It is easy to prove that for λ-convex functionals, the slope admits the following
‘global’ formulation. The proof is taken from [19, Theorem 2.4.9]).

Lemma 1.1.8. Let Y be a geodesic space and E : Y → R ∪ {+∞} be λ-convex, λ ∈ R, and lower
semicontinuous. Then, for every y ∈ D(E),

|∂−E|(y) = sup
z 6=y

(
E(y)− E(z)

dY(y, z)
+
λ

2
dY(y, z)

)+

.

Moreover, y 7→ |∂−E|(y) is a lower semicontinuous function.

Proof. The inequality |∂−E|(y) ≤ supz 6=y

(
E(y)−E(z)
dY(y,z) + λ

2 dY(y, z)
)+

is of immediate verification.

On the other hand, by definition of geodesic, we have,
E(y)−E((Gzy)t)

dY(y,(Gzy)t)
=

E(y)−E((Gzy)t)

tdY(y,z) , for every

t ∈ [0, 1]. Notice that, the semiconvexity implies

|∂−E|(y) ≥
(
E(y)− E((Gzy)t)

tdY(y, z)

)+

≥
(

(E(y)− E(z))

dY(y, z)
+
λ

2
dY(y, z)

)+

,

and, by taking the suprimum over z ∈ Y, the first part of the lemma is shown. Finally, from this
news characterization, lower semicontinuity follows immediately.

We now consider a notion of gradient flow on a metric space defined by means of the so-called
Evolution Variational Inequality (EVI).

Definition 1.1.9 (EVI gradient flow). Let Y be a geodesic metric space, E : Y → R ∪ {+∞},
y ∈ Y and λ ∈ R.

A curve [0,∞) 3 t 7→ yt ∈ Y is gradient flow in the EVI sense starting at y ∈ Y, provided it
is locally absolutely continuous on (0,∞) with yt → y as t ↓ 0 and

d

dt

d2
Y(yt, z)

2
+ E(yt) +

λ

2
d2

Y(yt, z) ≤ E(z) a.e. t > 0, (EVI)

for every z ∈ Y.
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We are not interested in discussing, at the highest level of generality, existence and different
formulations of gradient flows in this Thesis. We are going to deal with gradient flows only on
Hilbert spaces (Section 1.4.3) and Geodesic metric space satisfying a suitable curvature constraint
in the sense of Alexandrov (Chapter 3). We thus refer to [19] for a much more complete picture
and [161] for a structural analysis of the EVI-condition.

1.1.5 Optimal transport

In this subsection we recall some basic notions in Optimal Transport theory. The problem of
optimal transportation dates back to G. Monge [160] and seeks for optimal transport maps min-
imising the transportation cost of two probability measures in the Euclidean space. Here instead
we consider the more general formulation of L. Kantorovich [126] in terms of optimal plans and
follow modern approaches to the theory on complete and separable metric spaces (X, d), referring
for instance to [185] (see also [17]) for a thorough presentation of this topic.

Let q ∈ (1,∞] and denote by Pq(X) the set of probabilities µ ∈P(X) with finite q-moment,
i.e. so that d(·, x0) ∈ Lq(µ) for some (and thus, any) x0 ∈ X. By Hölder inequality, we also have
Pq′(X) ⊆ Pq(X) for every q, q′ ∈ [1,∞] with q ≤ q′. Also, for a (possibly countable) cartesian
product of the space X, denote by P i and P 1,...,i the canonical projections onto the i-th factor
and the first i factors, respectively. For q <∞, we equip Pq(X) with the Wasserstein distance

Wq(µ0, µ1) :=
(

inf
α∈Adm(µ0,µ1)

�
X×X

dq(x, y) dα(x, y)
)1/q

, for every µ0, µ1 ∈Pq(X), (1.1.7)

while in the limit case q =∞, the ∞-Wasserstein distance W∞ on P∞(X) is defined as

W∞(µ0, µ1) := inf
α∈Adm(µ0,µ1)

ess sup
α-a.e. (x,y)

d(x, y), for every µ0, µ1 ∈P∞(X). (1.1.8)

where Adm(µ0, µ1) := {α ∈ P(X × X): P 1
] α = µ0, P

2
] α = µ1} is the set of admissible plans

between µ0 and µ1. We denote by Optq(µ0, µ1) the set of all optimal plans between µ0 and µ1,
i.e. of all minimisers of (1.1.7) or (1.1.8). By using the direct method in the calculus of variations,
one can readily show that Optq(µ0, µ1) 6= ∅ for every q ∈ [1,∞] and µ0, µ1 ∈ Pq(X). Also, it is
well-known that W∞ is the monotone limit of Wq as q tends to infinity:

W∞(µ0, µ1) = lim
q→∞

Wq(µ0, µ1), for every µ0, µ1 ∈P∞(X). (1.1.9)

For a proper treatment of the∞-Wasserstein distance we refer to [110, 63]. In the sequel, we refer
to (Pq(X),Wq) as the Wasserstein space and we report now some basic facts about convergence
and compactness under Wasserstein convergence. Let (µn) ⊆Pq(X) with q <∞ and recall that

Wq(µn, µ)→ 0 ⇔ µn ⇀ µ�
dq(x, x0) dµn →

�
dq(x, x0) dµ

(1.1.10)

as n goes to infinity for µ ∈Pq(X) and for some (hence, any) x0 ∈ X. Moreover, (Pq(X),Wq) is
complete and separable if X is and, for q <∞ we recall that a family K is compact with respect
to the topology induced by Wq if and only if is tight and q-uniformly integrable.

In the sequel, we shall also need the dynamical formulation of the Optimal Transport problem.
The dynamical viewpoint was first discovered by R. McCann [154], where he derived the notion
of displacement interpolations in the Euclidean space. Here instead, we shall work on the more
general setting of complete and separable geodesic metric spaces and consider optimal dynamical
plans [17, Theorem 2.10] (whose proof is inspired by [142] and extends the previous works [143, 185]
for compact and locally compact spaces). It is well known that the q-Wasserstein space is geodesic
if X is and thus, given µ0, µ1 ∈Pq(X) and q ∈ (1,∞], we can define the set of q-dynamical optimal
plans between µ0 and µ1 as

OptGeoq(µ0, µ1) := {π ∈P(Geo(X)) : (ei)]π = µi, i = 0, 1, (e0, e1)]π ∈ Optq(µ0, µ1)}.
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Remark 1.1.10. If π ∈ OptGeoq(µ0, µ1) it is easy to see that t 7→ (et)]π is a Wq-geodesic and
that

W q
q (µ0, µ1) =

� 1

0

|γ̇t|q dtdπ, if q <∞, (1.1.11a)

W∞(µ0, µ1) = ‖ms‖L∞(π⊗L 1), if q =∞. (1.1.11b)

In other words, the transportation cost can be equivalently evaluated as the superposition of
kinetic energies of transportation geodesic in the support of optimal dynamical plans. These facts
are well known for q < ∞, while for the limit case q = ∞ consider taking s, t ∈ [0, 1] with s ≤ t
and observe that it holds

W∞
(
(es)]π, (et)]π

)
≤ ess sup

π-a.e. γ
d(γs, γt) = (t− s) ess sup

π-a.e. γ
d(γ0, γ1) = (t− s)W∞(µ0, µ1),

where in the first inequality we used the fact that (es, et)]π ∈ Adm
(
(es)]π, (et)]π

)
. This yields

that [0, 1] 3 t 7→ (et)]π ∈P∞(X) is a W∞-geodesic. By plugging s = 0 and t = 1 in the previous
estimates, we obtain the identity in (1.1.11b). �

Finally, assuming further that the underlying metric measure space is non branching, the
behavior of geodesic in Pq(X) is particularly nice. Indeed, (see e.g. [17, Proposition 2.16] for the
proof with q = 2, but it works with standard modification for finite q) in this case we have

If (X, d) is geodesic and non branching ⇒ OptGeoq(µ0, µ1) is a singleton, (1.1.12)

for every µ0, µ1 ∈Pq(X) and q ∈ (1,∞). Sometimes we will consider the Wasserstein space also
over the complete and separable space (C([0, 1],X), dsup). To avoid confusion, we will denote the
corresponding Wasserstein space as (Pq

(
C([0, 1],X)

)
,Wq).

1.1.6 Gromov-Hausdorff convergence

A very weak notion of distance and convergence of sets in a metric space (X, d) is the one of
Hausdorff convergence. For simplicity, given ε > 0 and B ⊂ X, we denote by Bε := {x ∈
X: d(x,B) ≤ ε} the ε-enlargement of the set B. Then, given A,B ⊂ X, the Hausdorff distance
between A and B, is the quantity

dH(A,B) := inf{ε > 0: A ⊂ Bε, B ⊂ Aε} ∈ [0,∞],

where, as costumary, the above is set ∞ when no competitors exist. This may happen when A,B
are unbounded, however it is finite when they are bounded. We shall not recall basics fact about
this distance and refer e.g. to [51] to a complete presentation.

Next, we move to basic facts about convergence and limits of metric measure spaces as intro-
duced in [113] (see also [180], in this Thesis instead we follow the extrinsic approach described in
[100]). Instead, for a thorough presentation of Gromov-Hausdorff convergence and topology, we
refer again to [51].

A pointed metric measure space, is a quadruple (X, d,m, x), where (X, d,m) is a metric measure
space and x ∈ X. Also, we put N̄ := N ∪ {∞}.
Definition 1.1.11 (pmGH-convergence). Let (Xn, dn,mn, xn), n ∈ N̄, be a sequence of pointed
metric measure spaces. We say that that (Xn, dn,mn, xn) pointed-measure Gromov Hausdorff-
converges (pmGH-converges for short) to (X∞, d∞,m∞, x∞) provided there exists a complete and
separable metric measure space (Z, d) and isometric embeddings

ιn : (Xn, dn)→ (Z, dZ),

ι∞ : (X∞, d∞)→ (Z, dZ),

such that (ιn)(xn)→ ι∞(x∞) and

(ιn)]mn ⇀ (ι∞)]m∞, in duality with Cbs(Z).

In this case, we write for brevity Xn
pmGH→ X∞.
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For the above, recall that we are assuming reference measures to be of full support. In the
sequel, we shall identify the spaces Xn, n ∈ N̄, with their isomorphic images in Z via extrisinc
approach [100]. Details of this formulation will be given later in the appropriate context.

Also, we will be frequently consider just the case of compact (with uniformly bounded diameter)
metric measure spaces, for which we can reduce the above convergence to the so-called measure
Gromov Hausdorff convergence, mGH-convergence for short. In this case, we will simply consider

non pointed sequences (Xn, dn,mn) and write Xn
mGH→ X∞. It can be checked that Z realizing the

convergence can be also taken to be compact.

1.1.7 The language of normed modules

We recall the algebraic notion of a normed module over (X, d,m) and discuss a nonsmooth differ-
ential calculus on metric measure spaces as defined in [97]. We will sometimes also refer to the
more recent works [104, 168].

In the following definition, we denote by 1̂ the equivalence class up to m-negligible set of the
function constantly equal to one.

Definition 1.1.12 (L0(m)-normed module). Let (X, d,m) be a metric measure space. We call a
L0(m)-normed module the quadruple (M , τ, ·, | · |), where

i) (M , τ) is a topological vector space;

ii) · : L0(m)×M →M is a bilinear map satisfying the product’s axioms

g · (f · v) = (fg) · v, 1̂ · v = v, ∀f, g ∈ L0(m), v ∈M ;

iii) The map | · | : M → L0(m), called pointwise norm, satisfying |v| ≥ 0 and |f · v| = |f ||v|
m-a.e. for every f ∈ L0(m), v ∈M , is s.t. the function dM : M ×M → [0,∞] defined via

dM (v, w) :=

�
|v − w| ∧ 1 dm′, for some chosen, fixed m′ so that m� m′ � m,

is a complete distance on M inducing the topology τ .

It is possible to check that point iii) does not make such definition ill posed, since the metric
dM may depend on the choice of m′, but the induced topology τ on M does not. We recall that
a module isomorphism between two L0(m)-normed modules M ,N is a bijection Φ : M → N
preserving the module’s operations, namely the pointwise isometry |Φ(v)| = |v| m-a.e. and the
multiplication Φ(f · v) = fΦ(v), for every v ∈M and f ∈ L0(m).

We face now basic construction of normed modules that are going to be used during this note.

Dual of a module

Motivated by the need to discuss in this note also tangent structures over a metric measure space
it is natural to give a definition of dual of a module.

Definition 1.1.13 (Dual of L0(m)-normed module). Let (X, d,m) be a metric measure space and
M be a L0(m)-normed module. Then, we define its dual module M ∗ as

M ∗ := {L : M → L0(m) : L is L0(m)-linear and continuous},

equipped with the following operations

(L+ L′)(v) := L(v) + L′(v),

(f · L)(v) := L(f · v),

|L|∗ := ess sup {L(v) : v ∈M , |v| ≤ 1 m-a.e.},

for any f ∈ L0(m), L,L′ ∈M ∗, v ∈M .

It is an easy task to check that M ∗ has a natural L0(m)-normed module structure.
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Pullbacks

There are situations in which, given two metric measure spaces (X, d,m) and (Y, dY, µ) and a
Borel map u : X → Y, one wants to carry a differential structure on Y directly over X. This
can be done, provided a suitable compressibility condition is satisfied. The reason is that µ-a.e.
defined objects (e.g. functions in L0(µ)) are pulled back to m-a.e. defined ones (e.g. functions in
L0(m)), provided µ-negligible sets are also u]m-negligible.

Proposition 1.1.14. Let (X, d,m) and (Y, dY, µ) be two metric measure spaces, M a L0(µ)-
normed module, u : X→ Y Borel so that u]m� µ.

Then, there exists a unique couple (up to a unique isomorphism) (u∗M , u∗) so that u∗M is a
L0(m)-normed module and u∗ : M → u∗M is linear, continuous and so that |u∗v| = |v| ◦ u m-a.e.
for every v ∈M . Moreover, the set {u∗v : v ∈M } generates u∗M .

Then, we call u∗M the pulled back module while the map u∗ is called pullback map.

Restrictions and extensions

There are two canonical ways to localize or extend a given normed modules, namely restrictions
and extensions.

Given a L0(m)-normed modules M and a Borel non negligible set E ⊂ X, we define the
restriction M |E := {χEv : v ∈ M } and, when equipped it with the module operations inherited

from M , it is straightforward to see that the resulting structure is a L0(m|E)-normed module.

Conversely, defining ν := m|E and given a L0(ν)-normed modules M , we can canonically

associate a L0(m)-normed module denoted Ext(M ). We stress what the intuition is: the module
Ext(M ) ‘should coincide’ with M on E, therefore its elements are going for convenience to be set
equal to ‘zero’ outside E. This discussion can be made rigorous recalling the extension operator:
given E ⊂ X Borel, we consider the map ext : L0(m|E) → L0(m), sending f ∈ L0(m|E) to the

(equivalence class up to m-a.e. equality of the) function ext(f) agreeing with f on E and set
zero on X \ E. Then, given a L0(m|E)-normed module M , we define the set Ext(M ) := M as

a set and we equipp it with the operation f · v := proj(f) · v ∈ M , for every f ∈ L0(m) and
v ∈ Ext(M ) = M , where proj(f) ∈ L0(m|E) is the projection operator given by passage to the

m-a.e. equality on E. We also consider on the pointwise norm |ext(v)| := ext(|v|) ∈ L0(m). It can
be directly checked that the resulting structure is the one of an L0(m)-normed module. Moreover,
the extension of a module commutes with the dual operation in a trivial way noticing that

Ext(M ∗) ∼ Ext(M )∗, via ext(L)(ext(v)) = ext(L(v)),

for every v ∈M , L ∈M ∗.

Hilbert modules

An L0(m)-normed module H is called a Hilbert module provided

2|v|2 + 2|w|2 = |v − w|2 + |v + w|2, m-a.e.,

holds for any v, w ∈H . Then, by polarization, it can be readily checked that the formula〈
v, w

〉
:=

1

2
(|v − w|2 − |v|2 − |w|2) ∈ L0(m), (1.1.13)

defines a L0(m)-bilinear map on its entries, called pointwise scalar product, satisfying〈
v, w

〉
=
〈
w, v

〉
,∣∣〈v, w〉∣∣ ≤ |v||w| m-a.e.,〈

v, v
〉

= |v|2,
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for every v, w ∈ H . It can be readily checked that a Hilbert module is preserved by the action
of restriction, extension and pullback. Also, a direct check shows that a module is Hilbert if and
only if its dual is Hilbert. Indeed, the two can be identified via a suitable Riesz isomorphism of
L0(m)-normed modules R : H → H ∗, sending v 7→ R(v) =: L, where L ∈ H ∗ is the unique
element satisfying

|L(v)| = |v|2 = |L|2∗, m-a.e..

Finally, a Hilbert base of a Hilbert module H is a collection (ei)i∈N ⊂H satisfying

{ei : i ∈ N} generates H ,
〈
ei, ej

〉
= δi,j m-a.e., ∀i, j ∈ N.

We say that a Hilbert module H has dimension d ∈ N, provided a base of d-elements can be taken
as in the above.

Lp(m)-normed L∞(m)-modules

Given a L0(m)-normed modules, we can restrict our attention to elements which are not just Borel,
but integrable. To this aim, fix p ∈ [1,∞] and, given a L0(m)-normed module M , we can consider
the set

Mp := {v ∈M : |v| ∈ Lp(m)}.

Differently from the original structure, that is topological, the latter can be turned into a Banach
space by declaring

‖v‖Mp
:= ‖|v|‖Lp(m), ∀v ∈Mp.

It is also easy to see that Mp is a module over the commutative ring of L∞ functions as the
product operation (inherited from the M ) between a bounded function with an integrable object
is easily seen to be closed.

We shall not discuss further these spaces (and refer to [97] for a complete treatment), but
we mention that the resulting structure goes under the name of Lp(m)-normed L∞(m)-modules.
Truth to be told, in the theory developed in [97], Lp(m)-normed L∞(m)-modules are the main
object of study employed to build a nonsmooth differential calculus over metric measure spaces.
Then, the author introduces L0(m)-normed modules a posteriori via a L0-completion construction.

1.2 Nonsmooth calculus at first order

1.2.1 Test plans

We follow the definition of Sobolev spaces proposed in [20] (for earlier approaches see the original
work [64] of Cheeger and the one [178] of Shanmugalingam).

Definition 1.2.1 (q-test plan). Let (X, d,m) be a metric measure space and q ∈ (1,∞). A measure
π ∈P(C(X, [0, 1])) is said to be a q-test plan, provided

i) There exists C > 0 so that (et)]π ≤ Cm for every t ∈ [0, 1];

ii) We have
�
Keq(γ) dπ <∞.

Moreover, we say that π is an ∞-test plan if, instead of ii), we require

ii’) π is concentrated on Lipschitz curves with Lip(γ) ∈ L∞(π).

We usually refer to i) as the ‘compression condition’ and denote by Comp(π) the smallest
constant C satisfying i) (and call it compression constant of π). Moreover, we shall sometimes
deal with plans π having bounded support: this is equivalent to say that the trace

[π] :=
⋃

t∈[0,1]

supp
(
(et)]π

)
= {γt : γ ∈ supp(π), t ∈ [0, 1]} ⊂ X, (1.2.1)
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is bounded. We define the kinetic energy of a q-test plan π as follows:

Keq(π) :=

�
Keq(γ) dπ, if q ∈ (1,∞),

Ke∞(π) := ‖ms‖L∞(π⊗L 1), if q =∞,

For q <∞, we recall that

π 7→ Keq(π) is weakly lower semicontinuous. (1.2.2)

This can be easily seen as the integrand Keq(γ) appearing in the definition of Keq(·) is a lower
semicontinuous on C([0, 1],X) by Lemma 1.1.3 and bounded from below, therefore it admits the
representation as supremum of continuous and bounded functions. For q = ∞, we introduce an
alternative terminology that reflects the extreme case, namely

Lip(π) := Ke∞(π), ∀π ∞-test plan.

Remark 1.2.2. Given any ∞-test plan π on (X, d,m), the quantity Lip(π) can be equivalently
characterised as the minimal L ≥ 0 such that π is concentrated on L-Lipschitz curves.

Indeed, by Fubini’s theorem we know that π-a.e. γ is Lipschitz and satisfies |γ̇t| ≤ Lip(π) for

L 1-a.e. t ∈ [0, 1], thus accordingly d(γt, γs) ≤
� t
s
|γ̇r|dr ≤ Lip(π)|t − s| for every s, t ∈ [0, 1]

with s ≤ t, which shows that γ is Lip(π)-Lipschitz. On the other hand, if π is concentrated on
L-Lipschitz curves for some L ≥ 0, then for π-a.e. curve γ we have that

|γ̇t| = lim
h→0

d(γt+h, γt)

|h|
≤ lim
h→∞

L|(t+ h)− t|
|h|

= L, a.e. t ∈ [0, 1],

whence it follows that Lip(π) = ‖ms‖L∞(π⊗L1) ≤ L. Therefore, the claim is achieved. �

Let us clarify now a weak continuity of plans under the pushforward of the evaluation map.

Remark 1.2.3. We point out that, given any t ∈ [0, 1], it holds that

P
(
C([0, 1],X)

)
3 π 7→ (et)]π ∈P(X), is continuous,

where both the domain and the target are endowed with the weak topology. Indeed, the continuity
of et ensures that ϕ ◦ et ∈ Cb

(
C([0, 1],X)

)
whenever ϕ ∈ Cb(X), so that if we assume πn ⇀ π,

then we have that
�
ϕd(et)]πn →

�
ϕd(et)]π for every ϕ ∈ Cb(X).

In particular, if we further assume that π and (πn)n∈N are q-test plans for some q ∈ [1,∞]
and C := limn→∞ Comp(πn) < +∞, then it holds that Comp(π) ≤ C. This can be proved by
observing that, chosen a subsequence (ni)i∈N which satisfies C = limi→∞Comp(πni), we have�
ϕd(et)]π = limi

�
ϕd(et)]πni ≤ C

�
ϕdm for every t ∈ [0, 1] and ϕ ∈ Cb(X)+. �

The kinetic q-energies can be extended to functionals Keq : P
(
C([0, 1],X)

)
→ [0,+∞] and

Lip: P
(
C([0, 1],X)

)
→ [0,+∞] by declaring that Keq(π) := +∞ whenever π is not a q-test plan

and Lip(π) = ∞ when π is not an ∞-test plan. Finally, we conclude this part by recalling two
well known closed operations within the class of q-test plans, namely restrictions and rescalings.
Given their importance in this manuscript, we give their proof for completeness.

Lemma 1.2.4 (Restriction and rescaling). Let (X, d,m) be a metric measure space, q ∈ (1,∞]
and π a q-test plan π. Let also Γ ⊂ C([0, 1],X) be Borel with π(Γ) > 0 and s, t ∈ [0, 1] with s < t.

Then, the probabilities
π|Γ
π(Γ)

and (Restrts)]π, (1.2.3)

are q-test plans, where Restrts : C([0, 1],X)→ C([0, 1],X) is defined via Restrts(γ) := γ(1−·)s+·t.

14



Proof. Let us start observing that, for every r ∈ [0, 1], we have

π(Γ)−1(er)]π|Γ ≤ π(Γ)−1Comp(π)m,

(er)](Restr
t
s)]π = (er ◦ Restrts)]π = (e(1−r)s+rt))]π ≤ Comp(π)m.

Next, for q <∞, we estimate

Keq(π(Γ)−1π|Γ) ≤ π(Γ)−1Keq(π) <∞,

Keq((Restr
t
s)]π) ≤ |t− s|q−1Keq(π) <∞,

having used in the second inequality the change of variable formula Keq(Restr
t
s(γ)) = |t−s|q−1Keq(γ)

valid for every γ ∈ C([0, 1],X). While, if q = ∞, it is immediate to see that both the plans are
concentrated on equiLipschitz curve and they satisfy

Lip(π(Γ)−1π|Γ) ≤ Lip(π), (1.2.4)

Lip((Restrts)]π) ≤ |t− s|Lip(π). (1.2.5)

The proof is then concluded as we checked i)-ii)/ii’) in Definition 1.2.1.

1.2.2 Sobolev functions

We are finally ready to present the definition of Sobolev class via duality with q-test plans.

Definition 1.2.5 (Sobolev class). Let (X, d,m) be a metric measure space and p ∈ (1,∞). A
Borel function f belongs to Sp(X), provided there exits G ∈ Lp(m), G ≥ 0, called p-weak upper
gradient so that

�
|f(γ1)− f(γ0)|dπ ≤

� 1

0

G(γt)|γ̇t|dtdπ, ∀π q-test plan. (1.2.6)

Let us comment on the well-posedness of the definition.

Remark 1.2.6. First, we notice that, given a q-test plan π, the composition G ◦ γ is π-a.e.
independent on the chosen representative. Indeed, given G1, G2 : X → R be two Borel represen-
tatives and notice A := {G1 6= G2} is m-negligible. Then, by the compression condition, we have
π({γt ∈ A}) = 0 for every t ∈ [0, 1] and ultimately that

0 =

� 1

0

π({γt ∈ A}) dt =

� 1

0

χA ◦ et dtdπ,

having used Fubini’s Theorem. Therefore, we deduce that π-a.e. γ it holds
� 1

0
χA(γt) dt = 0. For

any such γ, this means that γt /∈ A a.e. t ∈ [0, 1] and, accordingly, that G1(γt) = G2(γt) a.e..
Being the collection of these γ of full measure, the claim is proved.

Secondly, fixing with abuse of notation any Borel representative G, we notice that the assign-
ment (t, γ) 7→ G(γt)|γ̇t| is Borel (see, e.g. [104]) and the right hand side in (1.2.6) is finite. Indeed,
the properties of any q-test plan π ensure

� 1

0

G(γt))|γ̇t|dtdπ ≤
(� 1

0

Gp(γt) dtdπ

)1/p(� 1

0

|γ̇t|q dtdπ

)1/q

≤ Comp(π)‖G‖Lp(m)Ke1/q
q (π) < +∞.

(1.2.7)

�
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The calculation (1.2.7) shows at the same time finiteness of the integral and that

Lp(m) 3 G 7→
� 1

0

G(γt))|γ̇t|dtdπ is linear and continous. (1.2.8)

Let us give a simple example of functions belonging to the Sobolev class. The inequality |f(γ1)−
f(γ0)| ≤

� 1

0
lip f(γt)|γ̇t|dt for every f ∈ Lipbs(X) and γ ∈ C([0, 1],X) reveals that

Lipbs(X) ⊂ Sp(X), ∀p ∈ (1,∞).

and lip f ∈ Lp(m) is a p-weak upper gradient.
Next, we recall two important properties of weak upper gradients and, in the following propo-

sition, a lower semicontinuity property.
Convexity. For every f, g ∈ Sp(X) and λ ∈ (0, 1), it holds

|D((1− λ)f + λg)|p ≤ (1− λ)|Df |p + λ|Dg|p, m-a.e..

Minimum. For every f ∈ Sp(X), if G1, G1 are p-weak upper gradient of f , we have that

min{G1, G2}, is a p-weak upper gradient.

Proposition 1.2.7 (Closure of p-weak upper gradients). Let (fn) ⊂ Sp(X) and f : X→ R so that
fn → f m-a.e. and let (Gn) be a sequence of p-weak upper gradients. Assume that Gn ⇀ G for
some non negative G ∈ Lp(m) as n goes to infinity.

Then, f ∈ Sp(X) and G is a p-weak upper gradient of f .

Proof. Observe that, by assumptions, f is Borel and {limn fn(x) 6= f(x)} is Borel negligible hence,
we have

(et)]π({lim
n
fn(x) 6= f(x)}) ≤ Cm({lim

n
fn(x) 6= f(x)}) = 0, .

for all t ∈ [0, 1]. This in turn implies that fn(γt) → f(γt) for π-a.e. γ and, by Fatou’s Lemma,
ultimately that

�
|f(γ1)− f(γ0)|dπ ≤ lim

n→+∞

�
|fn(γ1)− fn(γ0)|dπ

≤ lim
n→+∞

� 1

0

Gn(γt)|γ̇t|dtdπ
(1.2.8)

=

� 1

0

G(γt)|γ̇t|dtdπ.

Then, Proposition 1.2.7 and the two properties before ensures that the set of weak upper
gradients of a given function is convex and closed in Lp(m) and has a lattice structure. This leads
then to the well-posedness of the following key definition.

Definition 1.2.8 (The object |Df |p). The p-minimal weak upper gradient of f ∈ Sp(X), denoted
by |Df |p, is the minimal normed element in Lp(m) of the set of weak upper gradient of f . Moreover,
|Df |p is minimal also in the m-a.e. sense.

Remark 1.2.9. Differently from the smooth category, if p1 6= p2 and f ∈ Sp1(X) ∩ Sp2(X) then
we should not expect directly from Definition 1.2.8 that |Df |p1 agrees with |Df |p2 . Let us clarify
on their relation: for p1 ≤ p2, Hölder inequality easily implies {q1-test plans} ⊆ {q2-test plans}.
Therefore the implication

p1 ≤ p2 and
f ∈ Sp2(X)
|Df |p1 ∈ Lp1(m)

⇒
f ∈ Sp1(X)
|Df |p2

is a p1-weak upper gradient
|Df |p1

≤ |Df |p2
m-a.e.

(1.2.9)

can be easily seen to be true on arbitrary an metric measure space. In general, there are examples
[82] showing that strict inequality may occur. �
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We recall next three important properties of minimal weak upper gradients and refer to [21, 95]
for the proof.

Locality. For every f, g ∈ Sp(X), it holds

|Df |p = |Dg|p m-a.e. on {f = g}.

Chain rule (ineq.). Let ϕ ∈ Lip(X) and f ∈ Sp(X), then

ϕ ◦ f ∈ Sp(X) and |D(ϕ ◦ f)|p ≤ Lip(ϕ)|Df |p, m-a.e..

Leibniz rule. For f, g ∈ Sp(X) ∩ L∞(m) we have fg ∈ Sp(X) with

|D(fg)|p ≤ |f ||Dg|p + |g||Df |p, m-a.e.. (1.2.10)

Before passing to the definition of the full Sobolev space, we recall that arguing by restriction and
rescalings [21] (see, also [104]), it is possible to see (indeed, it is equivalent) that if f ∈ Sp(X) then
for every q-test plan π it holds that

π-a.e. γ f ◦ γ ∈W 1,1(0, 1) and (f ◦ γ)′t ≤ |Df |p(γt)|γ̇t| a.e. t. (1.2.11)

We now are going to the define the full Sobolev space and, to this aim, we define the p-Cheeger
energy as the functional Chp : Lp(m)→ [0,∞] defined by

Chp(f) :=

�
|Df |pp dm,

if f is (the equivalence class of a Borel function) belonging to Sp(X), and +∞ otherwise. It is
immediate to see, using the convexity of minimal weak upper gradients and applying Proposition
1.2.7 with G := |Dfn|p for a Lp-converging sequence (fn), that

Lp(m) 3 f 7→ Chp(f) is convex and weakly lower semicontinuous. (1.2.12)

Hence, requiring as customary a function in the Sobolev class to be also p-integrable leads to the
definition of the full Sobolev space.

Definition 1.2.10 (Sobolev space W 1,p(X)). Let (X, d,m) be a metric measure space and p ∈
(1,∞). The Sobolev space, denoted by W 1,p(X), is Lp(m)∩Sp(X) as a set, equipped with the norm

‖f‖W 1,p(X) :=
(
‖f‖pLp(m) + Chp(f)p

) 1
p , ∀f ∈W 1,p(X).

To be more precise in the above, an element f ∈ Lp(m) ∩ Sp(X) is (the equivalence class
of a) function in Lp(m) that admits a Borel representatives that is in the Sobolev class Sp(X).
Proposition 1.2.7 and standard arguments grant that W 1,p(X) is a Banach space but it is in
general false that it is reflexive. This will occur under a suitable doubling assumption of the space
(see Theorem 1.3.5 below), especially implying that Lipschitz functions are dense. However, on
arbitrary metric measure spaces, a weaker type of density of the Lipschitz class can be deduced
[20].

Theorem 1.2.11 (Density in energy of Lipschitz functions). Let (X, d,m) be a metric measure
space, p ∈ (1,∞). Then, the class Lipbs(X) is dense in energy in W 1,p(X), i.e. for every f ∈
W 1,p(X), there exists a sequence (fn) ⊂ Lipbs(X) so that

fn → f, lip fn → |Df |p, in Lp(m).

We finish this part by recalling the definition of local Sobolev class and Sobolev space defined
on open subsets with possibly homogeneous boundary conditions.
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Definition 1.2.12. Let (X, d,m) be a metric measure space, p ∈ (1,∞). A Borel function f
belongs to Sploc(X), provided there is G ∈ Lploc(m), G ≥ 0, such that for any k > 0 and η ∈ Lipbs(X),
we have ηfk ∈ Sp(X), where fk := k ∧ (f ∨ −k), with

|D(ηfk)| ≤ |η|G, m-a.e. on {η = 1}.

In this case, we define |Df |p ∈ Lploc(X) via

|Df |p = |D(ηfk)|p m-a.e. on {η = 1} ∩ {|f | < k},

for every η and k as before.

We point out that, the locality of the minimal p-weak upper gradient grants that the above
definition is well-posed and the object |Df |p is m-a.e. well defined. It can also be proven (see [95])
that f ∈ Sploc(X) if and only if for some G ∈ Lploc(X) non-negative (1.2.6) holds. In the sequel, we
shall also deal with Sobolev functions defined on open subset Ω ⊂ X of the space. Following [95],
we can define:

Definition 1.2.13 (The spaces W 1,p(Ω),W 1,p
0 (Ω)). Let (X, d,m) be a metric measure space and

Ω ⊂ X be open. We define W 1,p
loc (Ω) as the subset of f ∈ Lploc(Ω) so that ηf ∈ W 1,p(X) for every

η ∈ Lipbs(X) with supp(η) ⊂ Ω and, in this case, we define

|Df |p := |D(ηf)|p m-a.e. on {η = 1}.

Then, we say that f ∈W 1,p(Ω) if f ∈W 1,p
loc (Ω) with f, |Df |p ∈ Lp(Ω) and define ‖f‖pW 1,p(Ω) :=

‖f‖pLp(Ω) + ‖|Df |p‖pLp(Ω). Finally, we set

W 1,p
0 (Ω) := {f ∈W 1,p(Ω): supp(f) ⊂ Ω}

W 1,p(Ω)
.

The above definition, again, is well-posed in light of the locality property of the minimal p-weak
upper gradient. Moreover, it can be readily checked that W 1,p(Ω), and consequently W 1,p

0 (Ω), are
Banach when considered with the defined norm. Finally, standard arguments show that calculus
tools such as chain and Leibniz rule are in place.

1.2.3 Sobolev maps

We recall that for an open subset Ω ⊆ X (possibly Ω = X) of a metric measure space, and for
(Y, dY) a complete (not necessarily separable) metric space, the space L0(Ω,Y) is the collection
of Borel maps u : X→ Y (identified up to m-a.e. equality) which are essentially separately valued,
i.e. there exists a m-negligible set N ⊂ X so that u(X \N) ⊂ Y is separable. Then, for p ∈ (1,∞)
and a pointed complete metric space (Y, dY, ȳ), we define Lp(Ω,Yȳ) ⊂ L0(X,Y) as the subset of
(equivalence class of) maps so that

�
Ω
dY(u(x), ȳ) dm(x) <∞. Obviously, if m(Ω) <∞, this space

is independent on the choice of ȳ, and in this situations we drop the subscript simply writing
Lp(Ω,Y). We consider

dpLp(u, v) :=

�
Ω

dpY(u, v) dm, ∀u, v ∈ Lp(Ω,Yȳ),

and observe that it is a metric turning Lp(Ω,Yȳ) into a complete metric space with density of
finite range maps.

Following [119], we recall the definition of a metric valued Sobolev map. Notice that in such
paper, the case p = 2 has been extensively discussed, but is is also remarked that for general
p ∈ (1,∞) all the statements directly extends without difficulties.

Definition 1.2.14 (Sobolev class Sp(X,Y)). The set Sp(X,Y), is the collection of all Borel and
essentially separately valued maps u : X → Y so that there is G ∈ Lp(m), G ≥ 0 called p-weak
upper gradient of u, such that for any ϕ ∈ Lip(Y), we have ϕ ◦ u ∈ Sp(X) and

|D(ϕ ◦ u)|p ≤ Lip(ϕ)G m-a.e..
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The least, in the m-a.e. sense, function G for which the above holds will be denoted |Du|p and
called minimal p-weak upper gradient.

The object |Du|p in the above definition is well-posed, as the set of p-weak upper gradient of
a given map u is a closed lattice. Moreover, it can be computed by

|Du|p = ess sup|D(ϕ ◦ u)|p, (1.2.13)

as ϕ varies in Lip(Y) with Lip(ϕ) ≤ 1. See [106] for this claim. Next, we report for later use the
following.

Proposition 1.2.15 ([106]). Let u ∈ Sp(X,Y) and let f ∈ Sp(Y). Then, there is g ∈ Sp(X) so
that g = f ◦ u m-a.e. on {|Du|p > 0} with

|dpg| ≤ |dpf | ◦ u|Du|p, m-a.e..

More precisely, there is a sequence (fn) ⊂ Lipbs(Y) so that

fn → f µp-a.e. lipa(fn)→ |dpf | in Lp(µp),

fn ◦ u→ g m-a.e. lipa(fn) ◦ u|Du|p → |dpf | ◦ u|Du|p in Lp(m).

Finally, requiring a Lp(X,Yȳ)-integrability of a map in Sp(X,Y) yields certainly a notion
metric Sobolev space W 1,p(X,Yȳ) which, for the sake of generality, can be suitably adapted for
maps defined on open domain as follows.

Definition 1.2.16 (The space W 1,p(Ω,Yȳ)). Let (X, d,m) be a metric measure space, Ω ⊂ X be
open, (Y, dY, ȳ) be a pointed complete metric space and p ∈ (1,∞).

We say that u ∈ Lp(Ω,Yȳ) is a Sobolev map, and we write u ∈ W 1,p(Ω,Yȳ), if there is G ∈
Lp(m|Ω) positive so that for every 1-Lipschitz ϕ : Y → R with ϕ(ȳ) = 0, we have ϕ ◦ u ∈W 1,p(Ω)

with |D(ϕ ◦ u)|p ≤ G m-a.e. on Ω.

However, for the applications considered in the sequel, we shall need instead a definition of
Sobolev map in the sense of ‘Korevaar-Schoen’ [133] (a notion considered first with smooth domains
and metric targets). We postpone this definition to the setting where it will be actually considered
and linked with the above definition.

1.2.4 BV functions and sets of finite perimeter

We introduce the space of functions of bounded variation and sets finite perimeter following
[156, 14].

Definition 1.2.17 (BV -functions). A function f ∈ L1(m) is of bounded variation, and we write
f ∈ BV (X), provided there exists a sequence of locally Lipschitz functions fn → f in L1(m) such
that

lim
n→∞

�
lip fn dm <∞.

By localizing this definition, we can define accordingly

|Df |(A) := inf
{

lim
n→∞

�
A

lip fn dm : fn ⊂ Liploc(A), fn → f in L1(A)
}
, (1.2.14)

for every open A ⊂ X. Often BV functions are defined with the approximate Lipschitz constant
rather than the local Lipschitz constant used here. However, the two approaches are perfectly
compatible, see e.g. [29, Lemma 2.9].

It turns out (see [14] and also the previous work [156] for locally compact spaces) that the map
A 7→ |Df |(A) is the restriction to open sets of a non-negative finite Borel measure called the total
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variation of f , obtained via a Carathédoroty extension and still denoted |Df | by common abuse
of notation. Directly from the definition, we see that

|Df |(A) ≤
�
A

lip f dm ∀f ∈ Lipbs(X), A ⊂ X open. (1.2.15)

hence in particular |Df | ≤ lip fm for every f as in the above. Let us comment about the type of
convergence given by (1.2.14).

Remark 1.2.18. Let f ∈ BV (X) and consider, by definition, a sequence (fn) ⊂ Lip(X) so that
fn → f in L1(m) and

�
lip fn dm→ |Df |(X) as n goes to infinity. We claim that

lip fnm⇀ |Df | in duality with Cb(X). (1.2.16)

Indeed, for every ϕ ∈ Cb(X), ϕ ≥ 0, setting µn := lip fnm, by Cavalieri’s formula (applied twice),
we have

lim
n→∞

�
ϕlip fn dm ≥

� ∞
0

lim
n→∞

µn({ϕ > t}) dt ≥
� ∞

0

|Df |({ϕ > t}) dt =

�
ϕd|Df |,

having used, in the central inequality, that the set {ϕ > t} is open and that (fn) is a competitor
sequence in the definition of the quantity |Df |({ϕ > t}). Now, taking instead φ := supϕ− ϕ, we
get by optimality of the sequence (fn) for the quantity |Df |(X) that

lim
n→∞

�
−ϕlip fn dm ≥ −

�
ϕd|Df |,

which proves (1.2.16).
We point out that the principle hidden behind the above verification is that, given µ ∈M +

b (X)
and a sequence of measure (µn) ∈ M +

b (X) satisfying µ(A) ≤ limn µn(A) for every A open and
µn(X)→ µ(X), then necessarily µn ⇀ µ weakly in duality with Cb(X). �

Let us then clarify from this point a notation to be kept in the sequel:

Notation. In the sequel, whenever |Df | � m, we denote by |Dacf | the density of
|Df | with respect to m.
Moreover, for BV (0, 1) we denote the classical space of functions with bounded vari-
ation on the real line and, for φ ∈ BV (0, 1), we denote by |Dφ| the total variation of
the measure Dφ defined in distribution.

If we suitably modify Definition 1.2.17 for functions in L1
loc(m) we can choose f = χE for any

E ⊂ X Borel and define:

Definition 1.2.19 (Perimeter and finite perimeter sets). Let E be Borel and A open subset of X.
The perimeter of E in A, written Per(E,A) is defined as

Per(E,A) := inf
{

lim
n→∞

�
A

lip un dm : un ⊂ Liploc(A), un → χE in L1
loc(A)

}
.

Moreover, we say that E is a set of finite perimeter if Per(E,X) <∞.

Again, (see, e.g. [9, 14, 156]), when E has finite perimeter, it holds that A 7→ Per(E,A) is
the restriction of a non-negative finite Borel measure to open sets, which we denote by Per(E, ·).
Moreover, as a common convention, when A = X we simply write Per(E) instead of Per(E,X).

For a Borel set E ⊂ X of finite measure we also define its Minkowski content as:

m+(E) = lim
δ→0+

m(Eδ)−m(E)

δ
,

where Eδ := {x ∈ X : d(x,E) < δ}. In general we only have Per(E) ≤ m+(E), however the
following approximation result is valid:
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Proposition 1.2.20 ([15]). Let (X, d,m) be a metric measure space and let E ⊂ Br(x) be Borel
with finite perimeter and m(E) < +∞. Then for every r′ > r there exists a sequence En ⊂ Br′(x)
of closed sets such that χEn → χE in L1(m) and

Per(E) = lim
n→∞

m+(En).

Proof. The result is contained in [15], however since it does not appear in this exact form we
provide some details. The result follows observing that there exists a sequence fn ∈ Lip(X) with
supp(fn) ⊂ Br′(x) so that fn → χE in L1(m) and Per(E) = limn

�
lip fn dm. Indeed from this

fact, the conclusion follows arguing as in the end of the proof of [15, Theorem 3.6].
To construct the sequence (fn) we known that from the definition of perimeter there exist

gn ∈ Liploc(X) so that gn → χE in L1(m) and Per(E) = limn

�
lip gn dm. Moreover we can

build a cut-off function η ∈ Lip(X) such that η = 1 in Br(x), 0 ≤ η ≤ 1, supp(η) ⊂ Br′(X) and
Lip(η) ≤ 2(r′ − r)−1. Then we simply take fn := gnη. Clearly fn → χE . Moreover

Per(E) ≤ lim
n→∞

�
lip fn dm ≤ lim

n→∞

�
lip gn dm +

2

r′ − r

�
Ec
gn dm = Per(E),

that is what we wanted.

We recall that the following coarea formula is valid for locally compact space [156, Proposition
4.2], but the proof works more generally on arbitrary metric measure spaces.

Theorem 1.2.21 (Coarea formula). Let (X, d,m) be a metric measure space and f ∈ BV (X).
Then the set {f > t} is of finite perimeter for a.e. t ∈ R and given any Borel function g : X →
[0,∞), it holds that

�
{s≤u<t}

g d|Df | =
� t

s

�
g dPer({f > t}, ·) dt, ∀s, t ∈ [0,∞), s < t. (1.2.17)

For later use, we recall a key property of distribution functions in the Lipschitz class.

Lemma 1.2.22 (Derivative of the distribution function, ([159])). Let (X, d,m) be a metric measure
space and let Ω ⊆ X be an open subset with m(Ω) < +∞. Assume that u ∈ Lipc(Ω) is non-negative
and |Dacu|(x) 6= 0 for m-a.e. x ∈ {u > 0}. Then the distribution function µ : [0,∞) → [0,m(Ω)]
(as defined in (1.1.2)) is absolutely continuous. Moreover it holds

µ′(t) = −
�

1

|Dacu|
dPer({u > t}, ·) a.e., (1.2.18)

where the quantity 1/|Dacu| is defined to be 0 whenever |Dacu| = 0.

Equivalent definitions of BV -functions

In Definition 1.2.17, a BV function and its total variation measure are given through a relaxation
procedure in the L1-topology. Even tough this approach is very effective in applications (see
Chapter 6), in this Thesis we are also going to conduct an investigation related to the BV space
and fill the gap with previously derived approaches in the literature.

We recall next two equivalent characterization (close in spirit to the approach of Sobolev
functions defined in duality with test plans).

Theorem 1.2.23 ([13]). Let (X, d,m) be a metric measure space. Then, the space BV (X) admits
the following characterizations: let f ∈ L1(m), then it holds that

a) f ∈ BV (X) if and only if for every ∞-test plan π it holds

i) f ◦ γ ∈ BV (0, 1) π-a.e. γ;
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ii) there exists a finite Borel meausure µ ∈M +
b (X) so that

�
γ]|D(f ◦ γ)|(B) dπ ≤ Comp(π)Lip(π)µ(B), ∀B ∈ B(X);

b) f ∈ BV (X) if and only if there exists C > 0 so that

�
f(γ1)− f(γ0) dπ ≤ Comp(π)Lip(π)C, ∀π ∞-test plan.

Moreover, if f ∈ BV (X), then the minimal measure µ satisfying ii) agrees on open sets with
(the set value map defined in (1.2.14)) |Df | and the least constant C in b) is equal to |Df |(X).

Remark 1.2.24. We point out three facts concerning the above theorem.

B We notice that a) is a well posed condition. Indeed, if f ∈ L1(m), then the bounded
compressibility of any plan π ensures that f ◦ γ ∈ L1(0, 1) is π-a.e. independent of the
chosen representative of f (see Remark 1.2.6 for details). Moreover, the family of B for
which γ 7→ γ]|D(f ◦γ)|(B) is Borel measurable can be directly checked to be coincident with
the Borel σ-field B(X) by appealing to the definition of total variation measure of a function
of bounded variation on the real line and the π-λ theorem. Finally, a minimal µ ∈M +

b (X)
satisfying ii) always exists [13] (provided the set of µ’s is not empty), and can be achieved by
taking the least upper bound, in the complete and separable lattice M +

b (X), of the family
of measures

B 7→
�
γ]|D(f ◦ γ)|(B) dπ

Comp(π)Lip(π)

as π runs over all the class of ∞-test plans. Well posedness of b) is instead obvious.

B It has to be said that in [13] it is actually proven:

a’) f ∈ BV (X) if and only if for every ∞-test plan π it holds

i) f ◦ γ ∈ BV (0, 1) and |f(γ1)− f(γ0)| ≤ |D(f ◦ γ)|(0, 1) π-a.e. γ;

ii) there exists a finite Borel meausure µ ≥ 0 so that

�
γ]|D(f ◦ γ)|(B) dπ ≤ Comp(π)Lip(π)µ(B), ∀B ∈ B(X).

It is clear that the characterization a’) implies the one of a). So the validity of Theorem 1.2.23
follows by showing the converse. We are then left to show that the condition |f(γ1)−f(γ0)| ≤
|D(f ◦ γ)|(0, 1) for π-a.e. γ is redundant; this is a direct consequence of Lemma 1.2.26.

B Let us clarify how to improve the last part of the statement, as notice in [13]. A set value
map Ω 7→ ν(Ω) defined only for Ω ⊂ X open can be extended to the Borel σ-field according
to the Carathéodory extension

ν̃(B) := inf{ν(Ω): B ⊂ Ω open}, ∀B ∈ B(X).

However, in general it need not be a measure. If f ∈ BV (X), extending as above the set
value map |Df | as defined in (1.2.14) provides instead a Borel measure as proven in [156, 13]
and thus satisfies

|Df |(Ω) = µ(Ω), ∀Ω ⊂ X open,

where µ ∈ M +
b (X) is the minimal measure satisfying a)-ii). Given that µ is outer regular,

we see that (the Charathéodory extension of) |Df | agrees with µ on the whole σ-field B(X)
of Borel sets. Thus, in what follows we will say, with slight abuse of notation, that |Df | is
the minimal measure satisfying a)-ii) for every f ∈ BV (X). In light of this clarification, we
have no ambiguity in the sequel.
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�

With the characterization a) of the BV space, it is easy to see that Sobolev functions are BV
functions.

Proposition 1.2.25. Let (X, d,m) be a metric measure space and p ∈ (1,+∞). If f ∈ Sp(X) is
so that f, |Df |p ∈ L1(m), then f ∈ BV (X) and

|Df | ≤ |Df |pm. (1.2.19)

Proof. Observe that any ∞-test plan is a q-test plan for every q ∈ (1,+∞]. Hence, for every
π a ∞-test plan, we have by (1.2.11) that for π-a.e. γ it holds that f ◦ γ ∈ W 1,1(0, 1) and
|(f ◦γ)′t| ≤ |Df |p(γt)|γ̇t| for a.e. t. Thus, recalling |D(f ◦γ)|(I) =

�
I
|(f ◦γ)′t dt for every I ⊂ [0, 1]

Borel, we have a)-i) in Theorem 1.2.23. Finally, for every B ∈ B(X), observe that

�
γ]|D(f ◦ γ)|(B) dπ =

� 1

0

χγ−1(B)(t)(f ◦ γ)′t dtdπ

≤
� 1

0

χB(γt)|Df |p(γt)|γ̇t|dtdπ

≤ Comp(π)Lip(π)

�
B

|Df |p dm.

The above computation concludes the proof, as µ(B) :=
�
B
|Df |p dm is a competitor measure in

a)-ii), hence (1.2.19) follows.

Lemma 1.2.26. Let (X, d,m) be a metric measure space. Let π be a ∞-test plan on (X, d,m).
Suppose f ∈ L1(m) satisfies f ◦ γ ∈ BV(0, 1) for π-a.e. γ. Fix any t̄ ∈ [0, 1]. Then it holds

|D(f ◦ γ)|({t̄}) = 0, for π-a.e. γ.

In particular, it holds that
∣∣f(γ1)− f(γ0)

∣∣ ≤ |D(f ◦ γ)|(0, 1) for π-a.e. γ.

Proof. Let us just prove the statement in the case where t̄ = 0, since the other t̄’s can be treated
in a similar way. To prove it amounts to showing that

lim
t↘0

 t

0

∣∣f(γs)− f(γ0)
∣∣ds = 0, for π-a.e. γ. (1.2.20)

We know [16, Theorems 3.27 and 3.28] that there exists
{
λγ : γ ∈ C([0, 1],X)

}
⊆ R such that

lim
t↘0

 t

0

∣∣f(γs)− λγ
∣∣ds = 0, for π-a.e. γ. (1.2.21)

Now fix any sequence tn ↘ 0. Given any ε > 0, we can find a function fε ∈ LIPbs(X) such that
‖f − fε‖L1(m) ≤ ε. Then for any n ∈ N we may estimate

� tn

0

∣∣f(γs)− f(γ0)
∣∣ dsdπ(γ)

≤
� tn

0

|f − fε| ◦ es dsdπ +

� tn

0

∣∣fε(γs)− fε(γ0)
∣∣dsdπ(γ) +

�
|fε − f | ◦ e0 dπ

≤ 2 Comp(π)‖f − fε‖L1(m) + Lip(fε)

� tn

0

d(γs, γ0) dsdπ(γ)

≤ 2 Comp(π)ε+ Lip(fε)Lip(π)tn.

By first letting n → ∞ and then ε ↘ 0, we see that limn→∞
�� tn

0

∣∣f(γs) − f(γ0)
∣∣ dsdπ(γ) = 0.

Hence, up to taking a not relabelled subsequence, we have limn→∞
� tn

0

∣∣f(γs)− f(γ0)
∣∣ds = 0 for

π-a.e. γ. Recalling (1.2.21), we conclude that λγ = f(γ0) and limt↘0

� t
0

∣∣f(γs) − f(γ0)
∣∣ds = 0

hold for π-a.e. γ. This proves the validity of the first π-a.e. identity in (1.2.20), as desired.

23



1.2.5 Nonsmooth differential structures

In this part, we exploit the machinery of L0(m)-normed modules developed in Section 1.1.7 to
speak about differential calculus over arbitrary metric measure spaces. This has been developed
in [97], but we will sometimes refer also to [104, 168].

We recall the existence and uniqueness theorem of a suitable cotangent structure over a metric
measure space in the language of L0(m)-normed modules.

Theorem 1.2.27. Let (X, d,m) be a metric measure space and p ∈ (1,∞). Then, there is a unique
couple (L0

p(T
∗X),dp) where L0

p(T
∗X) is a L0(m)-normed module and dp : Sploc(X) → L0

p(T
∗X) is

linear and satisfying

i) For any f ∈ Sploc(X), it holds |dpf | = |Df |p m-a.e.;

ii) The space {dpf : f ∈W 1,p(X)} generates L0
p(T
∗X).

Here, uniqueness is intended up to unique module isomorphism, i.e. if (M , L) is another couple
with the same properties, then there is a unique isomorphism Φ: M → L0

p(T
∗X) so that Φ◦L = dp.

In the above statement, by generating, we mean that simple L0-linear combinations are
dL0

p(T∗X)-dense. Moreover, writing dpf for f ∈ W 1,p(X) causes no trouble (recall that we de-

fined a differential for a Borel map) as the object dpf is built from the equivalence class of f up
to m-a.e. equality.

Definition 1.2.28. Let (X, d,m) be a metric measure space and p ∈ (1,∞). We define the p-
cotangent module and the p-differential, as L0

p(T
∗X) and dp given by Theorem 1.2.27. Moreover,

we define the q-tangent module by duality

L0
q(TX) :=

(
L0
p(T
∗X)

)∗
,

where 1
p + 1

q = 1.

We sometimes informally call elements of the above modules ‘Borel covector fields’ and ‘Borel
vector fields’, respectively. In the sequel, we shall sometimes require to work with p-integrable
covector and vector fields among the Borel ones. In these situations, we restrict the attention to
the spaces

Lp(T ∗X) := {ω ∈ L0
p(T
∗X): |v| ∈ Lp(m)}, ‖ω‖pLp(T∗X) :=

�
X

|ω|p dm,

Lq(TX) := {X ∈ L0
q(TX): |X|∗ ∈ Lq(m)}, ‖X‖qLq(TX) :=

�
X

|X|q∗ dm,

that have the natural structure of Lp(m)-normed (resp. Lq(m)-normed) L∞(m)-module. Again,
we will not discuss such structure and refer to [97] for a thorough presentation.

Following [106], we recall next the notion of differential of a metric valued Sobolev map. Fix
then (Y, dY) a complete metric space and a map u ∈ Sp(X,Y). We consider, as previously done,
equipping (Y, dY) with the measure µp := u](|Du|ppm). Ideally, the p-differential dpu should
be a L0(m)-linear map from L0

p(TX) to the pullback u∗L0
p(TY). However, the map u satisfies

suitable compressibility condition only between the spaces (X, d, |Du|ppm) and (Y, dY, µp), therefore
the pullback u∗L0

p(TY) may be defined according to Proposition 1.1.14 as a L0(|Du|ppm)-normed
module. A way to overcome this issue, is by noticing that the set {|Du|p = 0} is irrelevant, as any
definition of dpu should be zero on such set. Thus, appealing to the extensor functor of normed
modules we can define:

Definition 1.2.29 (p-differential of a map). Let (X, d,m) be a metric measure space and (Y, dY)
a complete metric space. The differential dpu of u ∈ Sp(X,Y) is defined as the operator

dpu : L0
p(TX)→ Ext

(
(u∗L0

p(T
∗Y))∗

)
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sending any v ∈ L0(TX) to the object dpu(v) characterized by: for every f ∈ Sp(Y), considering
g ∈ Sp(X) given by Proposition 1.2.15, we have

ext(u∗dpf)(dpu(v)) = dpg(v), m-a.e.. (1.2.22)

Again, in [106], it is remarked that the above definition is well-posed (given for p = 2, but
working for arbitrary p), meaning that it does not depend on the particular function g given by
Proposition 1.2.15, but only on its properties. Moreover, for u ∈ Sp(X,Y), we have [106]

dpu is L0(m)-linear and continuous and |dpu| = |Du|p m-a.e..

1.3 Doubling and Poincaré

Definition 1.3.1 (Doubling & Poincaré). Let (X, d,m) be a metric measure space. We say that

i) it is uniformly locally doubling provided, for every R > 0, there exists a constant C := C(R)
so that

m(B2r(x)) ≤ Cm(Br(x)), ∀x ∈ X, r ∈ (0, R).

For brevity, we shall also say that (X, d,m) is a doubling metric measure space or that m is
a doubling reference measure.

ii) it supports a weak local (1, 1)-Poincaré inequality, provided for every R > 0 there exists
τ,Λ > 0 so that for any f : X→ R Lipschitz it holds

 
Br(x)

|f − fBr(x)|dm ≤ τr
 
BΛr(x)

|lip f |dm, ∀r ∈ (0, R), x ∈ X,

with the convention fB :=
�
B
f dm for every B ∈ B(X).

The notion of Poincaré inequality is often given on a metric measure space with the concept of
upper gradient, rather than local lipschitz constant. Nevertheless, we shall never use this concept
in the present note and we remark that, by appealing to Theorem 1.2.11 (the main result of [20])
and [64] (see Theorem 1.3.4 below), the two approaches to define the Poincaré type inequality are
in any case fully equivalent.

It is clear that, in the above definition, we are asking first order constraints to hold on a
metric measure structure. In partiuclar, it is the Poincaré assumption that involves the first order
differential structures, as it contains the notion of local lipschitz constant (or in general, a notion
of weak gradient). Next we are going to face the deep consequences related to the the Doubling
& Poincaré assumptions.

1.3.1 Lebesgue differentiation

In general, on an arbitrary metric measure space, there may be a lot of points in a Borel set E for
which the following limit

DE(x) := lim
r↓0

m(Br(x) ∩ E)

m(Br(x))
(1.3.1)

computed at x ∈ X (= supp(m) under our assumptions) may not exists or it is different to 1 (i.e.
porosity may occur). It is trivial to see that DE(x) ∈ [0, 1] when it exists and it will be called
density of E at x ∈ X. This, contrary to the Euclidean setting, is an obstacle to the study fine
property of functions where measure-theoretic notions of limits naturally enters into play. A way
to avoid this is by working with doubling reference measures:

Theorem 1.3.2. Let (X, d,m) be a doubling metric measure spaces. Then, for every Borel set
E ⊂ X, there exists DE(x) = 1 m-a.e..
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Proof. It is well known (see, e.g., [119]) that, a doubling metric measure space (X, d,m) is a Vitali-
space and the following Lebesgue differentiation theorem holds: namely for every f ∈ L1

loc(m),
there exists the limit

lim
r↓0

 
Br(x)

f dm = f(x), m-a.e..

To conclude, just consider f = χE as a L1
loc(m) function and apply the above.

We start now recalling the notion of approximate limits. Denote R̄ := R ∪ ±∞ and, given
f : X→ R̄ Borel, we define the approximate liminf and limsup as the quantities

ap- lim
y→x

f(x) := inf{t ∈ R : D{f≤t}(x) = 1},

ap- lim
y→x

f(x) := sup{t ∈ R : D{f≥t}(x) = 1},

where, as customary, we set the first +∞ and the latter −∞, when no such t’s exist (here, a
competitor t is also intended to be so that the limit in (1.3.1) exists).

Differently from the concept of upper and lower limits, the above notions are measure-theoretic:
consider changing f in m-negligible set, then it can be readily checked that the above values do not
change. Moreover, it is also evident that in general we have ap- limy→x f(x) ≤ ap- limy→x f(x) and
strict inequality may also occur. When equality occurs at x ∈ X, we shall say that the approximate
limit of f at x exists and we shall write

ap- lim
y→x

f(x) := ap- lim
y→x

f(x) = ap- lim
y→x

f(x).

In this case, we say that f is approximate continuous at x. Also, we can relax the notion of
approximate local Lipschitz constant, defined as

ap-lip f(x) := ap- lim
y→x

|f(y)− f(x)|
d(x, y)

,

and 0 is x is isolated.

Remark 1.3.3. Let (X, d,m) be a Doubling metric measure space and f, g : X→ R be two Borel
functions. From the previous consideration, we see that the approximate Lipschitz constant is
local, namely

ap-lip f = ap-lip g, m-a.e. on {f = g} (1.3.2)

and that
ap-lip f = lip f, m-a.e. ∀f : X→ R Lipschitz, (1.3.3)

for every f, g : X → R̄ Borel. The proof of the latter fact can be found e.g. in [109, Proposition
2.5]. �

1.3.2 Fine properties of Sobolev functions

We start recalling a deep implication of the seminal work by Cheeger [64] concerning the Sobolev
calculus on metric measure spaces under doubling and Poincaré assumptions.

Theorem 1.3.4 ([64]). Let (X, d,m) be a doubling metric measure space supporting a weak local
(1, 1)-Poincaré inequality. Then, for all p ∈ (1,∞) it holds that

|Df |p = lip f, m-a.e., ∀f ∈ Lipbs(X). (1.3.4)

Another remarkable result holding in this class is the reflexivity of the Sobolev space. Nev-
ertheless, the Poincaré assumption has been later removed in [12], thus we give for the sake of
generality the following statement.
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Theorem 1.3.5. Let (X, d,m) be a metrically doubling metric measure space. Then, for every
p ∈ (1,∞), the space W 1,p(X) is reflexive.

In particular, the above holds for doubling metric measure space. A simple but crucial Corollary
is the following, taken from [12].

Corollary 1.3.6 (Strong density of Lipschitz functions). Let p ∈ (1,∞) and (X, d,m) be a metric
measure space so that W 1,p(X) is reflexive (in particular, under the assumption of Theorem 1.3.5).

Then, Lipbs(X) is a strongly dense subset.

We also recall a well known fine property of Sobolev functions in this context.

Theorem 1.3.7. Let (X, d,m) be doubling and p ∈ (1,∞). Then, any f ∈ W 1,p(X) is Lusin-
Lipschitz, i.e. there are N,Kn Borel, n ∈ N, with N negligible and Kn compacts, so that X :=
N ∪ (∪nKn) and f |Kn is Lipschitz for every n ∈ N.

The proof of this fact essentially follows from the characterization of the space W 1,p(X) with
the so-called Haj lasz Sobolev space under doubling condition (see, e.g., [114, Theorem 3.2], then
argue e.g. as in [53, Proposition 3.8]). We omit the details.

1.3.3 Independence of weak upper gradients

In this part, we face a first remarkable result of independence on the integrable exponent of the
minimal p-weak upper gradient under Doubling & Poincaré. This is well known [64] but, given
the importance of this result in this work, we provide the reader with a proof for completeness.

Theorem 1.3.8. Let (X, d,m) be a doubling metric measure space supporting a weak local (1, 1)-
Poincaré inequality. Then for every p1, p2 ∈ (1,∞) and f ∈W 1,p1(X) ∩W 1,p2(X), we have

|Df |p1
= |Df |p2

m-a.e..

Proof. We claim that

|Df |p = ap-lip f, m-a.e., ∀f ∈W 1,p(X), p ∈ (1,∞).

As the right hand side is independent on p, this concludes the proof. To see the claim start recalling
that any f ∈W 1,p(X) has the Lusin-Lipschitz property by Theorem 1.3.7. Let Kn ⊂ X a sequence
of increasing compact sets so that f |Kn ∈ Lip(Kn), f |Kn = f m-a.e.. and m(X \ ∪nKn) → 0.

Then, call fn a Lipschitz extension of f |Kn to all X with bounded support, for instance using the

McShane extension theorem and a cut-off argument. We then have fn ∈ Lipbs(X) for every n and
by locality of minimal p-weak upper gradients

|Df |p = |Dfn|p
(1.3.4)

= lip fn, m-a.e. on Kn,

Recalling (1.3.2) and (1.3.3) we deduce that

|Df |p = ap-lip f, m-a.e. on Kn

and since the Kn’s cover all X up to m-negligible sets, we conclude.

In light of the above theorem, we make the following clarification.

Notation. When the conclusion of Theorem 1.3.8 holds on a metric measure space,
we omit without notice the p-subscript in minimal p-weak upper gradients and simply
write |Df | for every f ∈ Sp(X) and p ∈ (1,∞) as no confusion may arise.
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1.4 Infinitesimal Hilbertianity

As we have already observed, the space W 1,p(X) need not to be reflexive. If on one hand, a
doubling condition as shown in [12] (see Theorem 1.3.5) ensures such result, it is in general false
that the particular choice p = 2 leads to a Hilbert space. Following [95], we have the following
definition.

Definition 1.4.1. We say that a metric measure space (X, d,m) is infinitesimal Hilbertian if
W 1,2(X) is Hilbert.

Moreover, we say that a complete metric space (X, d) is universally infinitesimal Hilbertian,
provided it is infinitesimal Hilbertian when equipped with any nonnegative and boundedly finite
Borel Radon measure µ.

1.4.1 Equivalent definitions

We summarize in the next Proposition (some of the) equivalent definitions of infinitesimal Hilber-
tianity [95] (see also [97, 104]).

Proposition 1.4.2. Let (X, d,m) be a metric measure space. The following are equivalent:

i) (X, d,m) is infinitesimal Hilbertian;

ii) For every f, g ∈W 1,2(X) , it holds

2|Df |22 + 2|Dg|22 = |D(f + g)|22 + |D(f − g)|22, m-a.e.; (1.4.1)

iii) L0
2(T ∗X) and L0

2(TX) are Hilbert modules;

iv) For every f, g ∈ W 1,2(X), there exists the limit in L1(m) of limε→0
|D(f+εg)|22−|Df |

2
2

ε and it
is a L0(m)-bilinear map on f, g.

Moreover, if any of the above holds, the pointwise scalar product
〈
∇f,∇g

〉
(defined via polarization

(1.1.13)) satisfies 〈
∇f,∇g

〉
= lim
ε→0

|D(f + εg)|22 − |Df |22
ε

, m-a.e., (1.4.2)

for every f, g ∈W 1,2(X).

Given Ω ⊂ X an open subset of an infinitesimal Hilbertian metric measure space, we would
like to compute the pointwise scalar product

〈
∇g,∇g

〉
∈ L1(Ω) between f, g ∈ W 1,2(Ω). To do

so, we can formally define for every η ∈ Lipbs(X) with supp(η) ⊂ Ω, te coupling〈
∇f,∇g

〉
:=
〈
∇f,∇(ηg)

〉
, m-a.e. on {η = 1}, (1.4.3)

for every f ∈ Lipbs(Ω), g ∈ W 1,2(Ω). Thanks to Definition 1.2.13 (and the choice of f), observe
that the right-hand side is perfectly defined as both f, ηg ∈ W 1,2(X). This especially grants that
the object is local.

Remark 1.4.3. Suppose we are given an infinitesimal Hilbertian metric measure space (X, d,m)
and a universally infinitesimal Hilbertian complete metric space (Y, dY). Then, for every u ∈
W 1,2(X,Y), it is possible to speak about the Hilbert-Schmidt pointwise norm of the differential
d2u as follows: by assumptions, (Y, dY, µ2 := u](|Du|22m)) is infinitesimal Hilbertian, then recall
that d2u is a L0(m)-continuous and linear operator between L0

2(TX) and Ext
(
(u∗L0

2(T ∗Y))∗
)

that

are Hilbert modules. Since L0
2(T ∗Y) is a L0(µ2)-normed Hilbert modules, then Ext

(
(u∗L0

2(T ∗Y))∗
)

is a L0(m)-normed Hilbert module. Therefore, by appealing to the construction of tensor products
between L0(m)-normed modules [97], d2u can be equivalently thought as an element of L0

2(T ∗X)⊗
Ext

(
(u∗L0

2(T ∗Y))∗
)

that, being a tensor product of Hilbert module, is again a Hilbert module.
We call |d2u|HS ∈ L2(m) the pointwise norm of this object seen in such product.
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For the case of a map u ∈ W 1,2(Ω,Y) defined on an open subset Ω of X, we sketch the
construction of the ‘formal’ object |d2u|HS ∈ L2(m|Ω): for every C ⊂ Ω closed with d(C,Ω) > 0,

we can suitably define a Sobolev map uC with a cut-off argument which is global on X, takes
values in the copy of Y inside a Banach space (e.g. via the Kuratowski embedding) and is ‘zero’
outside Ω. With this procedure (see, e.g., [108, Proposition 5.6] for the details) and for what has
been said above, imposing

|d2u|HS := |d2uC |HS, m-a.e. on C,

turns out to be a well defined object by locality and arbitrariness of C. Moreover, by construction
(that independent on the embedding chosen) it vanishes outside Ω and thus, up to passing to a
m|Ω-a.e. equality, we have |d2u|HS ∈ L2(m|Ω). �

1.4.2 Linear Laplacian

Here we recall the notion of measure-valued Laplacian as introduced in [95].

Definition 1.4.4. Let (X, d,m) be an infinitesimal Hilbertian metric measure space.

We say that f ∈ W 1,2(X) has a measure valued Laplacian and write f ∈ D(∆), provided there is
a Radon measure µ such that�

g dµ = −
� 〈
∇f,∇g

〉
dm, ∀g ∈ Lipbs(X).

Assume that X is also proper and Ω ⊂ X is open and bounded. We say that f ∈ W 1,2(Ω) has a
measure valued Laplacian in Ω, and write f ∈ D(∆,Ω), provided there is a Borel measure µ on Ω
such that �

Ω

g dµ = −
�

Ω

〈
∇f,∇g

〉
dm ∀g ∈ Lipc(Ω).

These unique measures will be denoted by ∆f and ∆f |Ω, respectively.

Differently from [95], here the presentation of Laplacian in Ω greatly simplifies by the assump-
tion of proper and/or infinitesimal Hilbertian metric measure spaces. We shall never need to work
in full generality. It is also clear that this definition is well posed and, thanks to the infinitesimal
Hilbertianity assumption, we see also that the assignments f 7→∆f,∆f |Ω are linear.

Finally, we shall need the following criterium from [95] to check whether f ∈ D(∆,Ω): for
f ∈W 1,2(Ω) and h ∈ L1(m|Ω) we have

−
�

Ω

〈
∇f,∇g

〉
dm ≥

�
Ω

ghdm ∀g ∈ Lipc(Ω)+ ⇒ f ∈ D(∆,Ω) and ∆f |Ω ≥ hm, (1.4.4)

having used the formal definition (1.4.3) of the pointwise scalar product in the left hand most
integral.

1.4.3 Linear Heat flow

In this section we recall basic facts on the Heat flow of the Cheeger energy on infinitesimal
Hilbertian metric measure spaces. This detour will be a guidline for the presentation in Chaper
3.

Let (X, d,m) be a metric measure space and we start recalling that the 2-Cheeger energy is a
convex and lower semicontinuous functional on the Hilbert space L2(m) with domain of finiteness
D(Ch2) := W 1,2(X), by definition. Hence, standard gradient flow theory (see, e.g., [19]) applies
ensuring for every f ∈ L2(m) the existence of a gradient flow trajectory [0,∞) 3 t 7→ ft ∈ L2(m),
i.e. a locally absolutely continuous satisfying

ḟt ∈ −∂−Ch2(ft) ∀t > 0,

f = lim
t→0

ft in L2(m),
(1.4.5)
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where

∂−Ch2(f) :=
{
v ∈ L2(m) : Ch2(f) +

�
v(g − f) dm ≤ Chp(g) for all g ∈ L2(m)

}
is the subdifferential set of Ch2 at f , and ḟt := limh→0

ft+h−ft
h is the velocity of a Hilbert-valued

absolutely continuous map (see, e.g., [104]). Here, ḟt exists a priori only for a.e. t but, in light of
the regularization property of the gradient flows, it turns out that it exists for every t > 0.

Remark 1.4.5. We point out that, the existence of a gradient flow trajectory t 7→ ft satisfying
(1.4.6) immediately implies that (ft) is an EVI gradient flow, as defined in Definition 1.1.9. This
follows directly from the definition of the subdifferential and the fact that a Hilbert norm is
differentiable, namely that, for every g ∈ L2(m), we have

d

dt

1

2
‖g − ft‖2L2(m) = −

�
ḟt(g − ft) dm, a.e..

�

Until now, the above discussion did never assume the metric measure space to be infinitesimal
Hilbertian. This assumption will be now employed to link (1.4.5) with a suitably stated heat
equation (thus, justifying the name heat flow) thanks to the following results [95](see also [104]).

Proposition 1.4.6. Let (X, d,m) be a infinitesimal Hilbertian metric measure space and let f ∈
L2(m). The following are equivalent:

i) f ∈ D(∆) with ∆f � m and ∆f := d∆f
dm ∈ L

2(m)

ii) fh−f
h admits a strong limit g ∈ L2(m) as h goes to zero.

If any of the two holds true, we have ∆f = g.

As a corollary, we see that, since the heat flow in (1.4.5) is regularizing, meaning that at each

time t > 0, there exists the strong limit ḟt := limh→0
ft+h−ft

h in L2(m), the above proposition
ensures that ft ∈ D(∆) and consequently (1.4.5) becomes

ḟt = ∆ft ∀t > 0,

f = lim
t→0

ft in L2(m),
(1.4.6)

recalling that ∆ft = ∆ftm by definition for every t > 0. From this discussion, it is also evident
that (1.4.5) grants that ∆ft ∈ −∂−Ch2(ft). This means that, the analytical Laplacian defined
via integration by parts in Definition 1.4.4 turns out to lies in the ‘minus subdifferential set’
−∂−Ch2(ft) along the flow (actually, it is the minimal normed element of the subdifferential and
it is selected from the gradient flow trajectory).

To conclude, we mention that in Chapter 3, we will follow this approach, but reversed. Namely,
in a genuinely setting of metric valued Sobolev maps, where the absence of linearity in the target
makes impossible to formulate properly an integration by parts formula, we will derive a differential
notion of ‘harmonic map heat flow’ by means of a subdifferential inclusion in the spirit of (1.4.5).
This will make possible to speak of a Laplacian of a sufficiently regular Sobolev map satisfying in
turn a basic integration by parts formula/inequality.
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In this part, we present the main definitions and features of synthetic curvature bounds in a
metric or metric measure setting. The words synthetic refers to the principle that the main object
of this chapter, i.e. curvature, is going to be treated via an ‘implicit’ approach, rather than an
‘explicit’ one that builds upon the smoothness of Riemannian manifolds.

Let us start with a simple, yet well known, example to explain the principle behind the synthetic
approach. The prototype of synthetic definition is convexity : given f : Rn → R smooth and
x, y ∈ Rn arbitrary, it holds

Hessf � 0 if and only if f
(
(1− t)x+ ty

)
≤ (1− t)f(x) + tf(y), ∀t ∈ [0, 1].

This is a remarkable instance of the fact that convexity is a condition that can be fully captured
by a zeroth-order implicit condition, i.e. no regularity requirements. Nevertheless, for smooth
f and Euclidean underlying space, this property can be equivalently (and explicitely, involving
second-order derivatives) expressed in terms of a sign constraints on the spectrum of the Hessian
matrix.

Passing to curvature bounds but keeping in mind the same philosophy, any reasonable synthetic
definition must asks suitable conditions to the metric and measure structure of the underlying
space. Moreover, when looking back to the smooth category, these requirements must meet with
the classical definition. In the sequel, we will be focusing with upper bounds on the sectional
curvature and lower bounds on the Ricci curvature to give rise to effective singular classes.

2.1 The CAT-condition

The study of synthetic bounds on the sectional curvature goes back to the fundamental works of
A. D. Alexandrov started in 1941 with the work [8]. Here, the celebrated Alexandrov’s embedding
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theorem and the Gluing theorem were established. Then, a systematic investigation started later
(see, e.g. [5, 52]) leading to what are nowadays called Alexandrov spaces, i.e. metric spaces
satisfying sectional curvature bounds either from above or below.

For the purposes of this work, it will be sufficient to recall only spaces with upper bounds on the
sectional curvature, but we refer to [47, 51, 113, 39, 6, 7] for a full picture on Alexandrov geometry.
Also, we recommend the references therein for a complete overview of the deep contributions made
by many authors to the theory.

Let us begin from the very basics in Riemannian geometry, so to fix some notation. Recall that
Riemannian manifolds with constant curvature are completely characterized. Given κ ∈ R, we call
Mκ, the model space of curvature κ, i.e. the simply connected, complete 2-dimensional manifold
with constant curvature κ, and dκ the distance induced by the metric tensor. This restricts
(Mκ, dκ) to only three possibilities: the hyperbolic space H2

κ of constant sectional curvature κ, if
κ < 0, the plane R2 with usual Euclidean metric, if κ = 0, and the sphere S2

κ of constant sectional
curvature κ, if κ > 0. Also, set Dκ := diam(Mκ), i.e.

Dκ =

{
∞ is κ ≤ 0,
π√
κ

if κ > 0.

We refer to [47, Chapter I.2] for a detailed study of the model spaces Mκ.

In order to speak of a CAT(κ) condition (recall that the letters in the acronym CAT refer to E.
Cartan, A. Topogonov and A.D. Alexandrov), i.e. κ-upper bound of the sectional curvature in a
geodesic metric space (Y, dY), we shall enforce a metric comparison property to geodesic triangles
of Y, the intuition being that they are ‘thinner’ than in Mκ. To define them we start by recalling
that if a, b, c ∈ Y is a triple of points satisfying dY(a, b) +dY(b, c) +dY(c, a) < 2Dκ, then there are
points, unique up to isometries of the ambient space and called comparison points, ā, b̄, c̄ ∈ Mκ

such that

dκ(ā, b̄) = dY(a, b), dκ(b̄, c̄) = dY(b, c), dκ(c̄, ā) = dY(c, a).

In the case where Y is geodesics (and this will be always assumed), we refer to 4(a, b, c) as
the geodesic triangle in Y consisting in three points a, b, c, the vertices, and a choice of three
corresponding geodesics, the edges, linking pairwise the points. By 4κ(ā, b̄, c̄) we denote the so
built geodesic triangle in Mκ, which from now on we call comparison triangle. A point d ∈ Y is
said to be intermediate between b, c ∈ Y provided dY(b, d) + dY(d, c) = dY(b, c) (this means that
d lies on a geodesic joining b and c). The comparison point of d is the (unique, once we fix the
comparison triangle) point d̄ ∈Mκ, such that

dκ(d̄, b̄) = dY(d, b), dκ(d̄, c̄) = dY(d, c).

Definition 2.1.1 (CAT(κ)-spaces). A metric space (Y, dY) is called a CAT(κ)-space if it is com-
plete, geodesic and satisfies the following triangle comparison principle: for any a, b, c ∈ Y satis-
fying dY(a, b) + dY(b, c) + dY(c, a) < 2Dκ and any intermediate point d between b, c, denoting by
4κ(ā, b̄, c̄) the comparison triangle and by d̄ ∈ Mκ the corresponding comparison point (as said,
ā, b̄, c̄, d̄ are unique up isometries of Mκ), it holds

dY(a, d) ≤ dκ(ā, d̄). (2.1.1)

A metric space (Y, dY) is said to be locally CAT(κ) if it is complete, geodesic and every point in
Y has a neighbourhood which is a CAT(κ)-space with the inherited metric.

Let us first discuss the situation when Y is actually a Riemannian manifold. The next theorem
(due to [5] but the proof can be found e.g. in [47, Theorem 1A.6]) shows that the above definition
is consistent with the classical setting.
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Theorem 2.1.2. Let M be a smooth Riemannian manifold. Then M is locally CAT(κ) if and
only if it satisfies Sect ≤ κ.

Notice that balls of radius < Dκ/2 in the model space Mκ are convex, i.e. meaning that
geodesics with endpoint lies entirely inside them. Hence the comparison property (2.1.1) grants
that the same is true on CAT(κ)-spaces (see [47, Proposition II.1.4.(3)] for the rigorous proof of
this fact). It is then easy to see that, for the same reasons, (Y, dY) is locally CAT(κ) provided
every point has a neighbourhood U where the comparison inequality (2.1.1) holds for every triple
of points a, b, c ∈ U , where the geodesics connecting the points (and thus the intermediate points)
are allowed to exit the neighbourhood U .

Let us fix the following notation: if (Y, dY) is a local CAT(κ)-space, for every y ∈ Y we set

ry := sup
{
r ≤ Dκ/2 : B̄r(y) is a CAT(κ)-space

}
.

Notice that in particular Bry (y) is a CAT(κ)-space. The definition trivially grants that ry ≥
rz − d(y, z) and thus in particular y 7→ ry is continuous.

Next, we remark the important fact which will be exploited in the sequel

On CAT(κ)-spaces, geodesics with endpoint at distance < Dκ are unique (up to
reparametrization) and vary continuously with respect to the endpoints.

For a quantitative version of this fact, see [79, Lemma 2.2]. Finally, it will be important to examine
the case of global CAT(0)-spaces, as they naturally arise as tangent structures of CAT(κ)-spaces
(see Theorem 2.1.4 below) and also because we are going to examine CAT(0)-valued maps in
Section 3.3. Since M0 is the Euclidean plane R2 equipped with the Euclidean norm, for Y CAT(0)
and a, b, c ∈ Y as in Definition 2.1.1, the defining inequality (2.1.1) reads

dY(γt, a) ≤ ‖(1− t)b̄+ tc̄− ā‖,

for every t ∈ [0, 1], where γt is the constant speed geodesic connecting b to c and ā, b̄, c̄ ∈ R2 are
comparison points. By squaring and expanding the right hand side, we easily obtain the condition

d2
Y(γt, a) ≤ (1− t)d2

Y(γ0, a) + td2
Y(γ1, a)− t(1− t)d2

Y(γ0, γ1), (2.1.2)

for every t ∈ [0, 1]. Inequality (2.1.2) (which can be equivalently used to define CAT(0)-spaces) is
to be understood as a synthetic deficit of the curvature of Y, with respect to the Euclidean plane
R2 (where it holds with equality). In other words, it quantifies how much the triangle 4(a, b, c)
is ‘thin’ compared to 40(ā, b̄, c̄) in the Euclidean plane. The advantage of (2.1.2) is to be more
practical to work with in convex analysis and optimization. We conclude recalling that locally
CAT(κ)-spaces are universally infinitesimal Hilbertian (recall Definition 1.4.1).

Theorem 2.1.3 ([79]). Let Y be a locally CAT(κ)-space, then it is universally infinitesimal Hilber-
tian.

2.1.1 Metric calculus on tangent cones

We recall here the notion of tangent structures on a CAT(κ)-space, referring to the above-mentioned
bibliography for a much more complete discussion. We consider here tangent cones as defined in
Definition 1.1.6 and see how this construction will benefit from the local CAT(κ)-condition making
a suitable calculus possible. Recall that tangent cones (TyY, dy) are obtained by completions
starting from the (suitably quotiented) space of directions GeoyY.

Let Y be a local CAT(κ) space and notice that, for every y ∈ Y, γ, η ∈ GeoyY, the limsup in
(1.1.5) is actually a limit and it will be also useful to notice that

if Y is CAT(0), t 7→ dY(γt, ηt)

t
is non-decreasing ∀γ, η ∈ GeoyY, (2.1.3)

a property which is directly implied by (2.1.2). A well known (see e.g. [47, Theorem II-3.19]) and
useful fact is that tangent cones at local CAT(κ) spaces are CAT(0) spaces:
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Theorem 2.1.4. Let Y be locally CAT(κ). Then, for every y ∈ Y, the tangent cone (TyY, dy) is
a CAT(0)-space.

We now build a calculus on the tangent cone that resembles the one of Hilbert spaces.

� Multiplication by a positive scalar. Let λ ≥ 0. Then the map sending t 7→ γt to t 7→ γλt
is easily seen to pass to the quotient in GeoyY/ ∼ and to be λ-Lipschitz. Hence it can be
extended by continuity to a map defined on TyY, called multiplication by λ.

� Norm. |v|y := dy(v, 0).

� Scalar product.
〈
v, w

〉
y

:= 1
2

[
|v|2y + |w|2y − d2

y(v, w)
]
.

� Sum. v⊕w := 2m, where m is the midpoint of v, w (well-defined because TyY is a CAT(0)-
space).

We next report the following fact (see, e.g., [79, Theorem 2.9] for the proof):

for D dense in Bry (y) we have that {α(Gwy )′0 : α ∈ Q+, w ∈ D} is dense in TyY. (2.1.4)

Moreover, we recall the following proposition:

Proposition 2.1.5 (Basic calculus on the tangent cone). Let Y be locally CAT(κ) and y ∈ Y.
Then, the four operations defined above are continuous in their variables. The ‘sum’ and the
‘scalar product’ are also symmetric. Moreover:

dy(λv, λw) = λdy(v, w), (2.1.5a)〈
λv,w

〉
y

=
〈
v, λw

〉
y

= λ
〈
v, w

〉
y
, (2.1.5b)

|
〈
v, w

〉
y
| ≤ |v|y|w|y, (2.1.5c)〈

v, w
〉
y

= |v|y|w|y if and only if |w|yv = |v|yw, (2.1.5d)

d2
y(v, w) + |v ⊕ w|2y ≤ 2(|v|2y + |w|2y), (2.1.5e)〈

v1 ⊕ v2, w
〉
y
≥
〈
v1, w

〉
y

+
〈
v2, w

〉
y

(2.1.5f)

for any v, v1, v2, w ∈ TyY and λ ≥ 0.

Proof. The continuity of ‘norm’, ‘scalar product’ and ‘multiplication by a scalar’ are obvious by
definition, the one of ‘sum’ then follows from the continuity of the midpoint of a geodesic as a
function of the extremal points.

Points (2.1.5a), (2.1.5b), (2.1.5c), (2.1.5d), (2.1.5e) are well known and recalled, e.g., in [79,
Proposition 2.11]. The concavity property (2.1.5f) is also well known. A way to prove it is to
notice that from (2.1.5b) and letting m be the midpoint of v1, v2 we get that〈

v1 ⊕ v2, w
〉
y

= 2ε−1
〈
εm,w

〉
y

= ε−1
(
ε2|m|2y + |w|2y − d2

y(εm,w)
)

∀ε > 0.

From the fact that TyY is CAT(0) and the fact that εm is the midpoint of εv1, εv2 (consequence
of (2.1.5a)) we get that d2

y(εm,w) ≤ 1
2d

2
y(εv1, w) + 1

2d
2
y(εv2, w) and plugging this in the above we

get 〈
v1 ⊕ v2, w

〉
y
≥ ε−1

(
1
2

(
|w|2y − d2

y(εv1, w)
)

+ 1
2

(
|w|2y − d2

y(εv2, w)
))

=
〈
v1, w

〉
y

+
〈
v2, w

〉
y
− ε

2 (|v1|2y + |v2|2y) ∀ε > 0

and the conclusion follows letting ε ↓ 0.
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It will also be useful to know that

α(Gzy)′0 ⊕ β(Gwy )′0 = lim
t↓0

2

ε
(Gmty )′0, (2.1.6)

for z, w ∈ Bry (y) \ {y}, where mt is the midpoint of (Gzy)αt and (Gzy)βt, see for instance [47,
II-Theorem 3.19] for the simple proof.

We conclude recalling that on CAT(κ)-spaces not only a notion of metric derivative is in place
for absolutely continuous curves, but it is possible to speak about right (or left) derivatives in the
following sense, as proved in [145]:

Proposition 2.1.6 (Right derivatives). Let Y be locally CAT(κ) and (yt) an absolutely continuous
curve. Then, for a.e. t, the tangent vectors 1

h (G
yt+h
yt )′0 ∈ TγtY have a limit y′+t in TγtY as h ↓ 0.

For us such concept will be useful in particular in connection with the well known first-order
variation of the squared distance:

Proposition 2.1.7. Let Y be a CAT(κ)-space, (yt) an absolutely continuous curve and z ∈ Y.
Then:

d

dt
1
2d

2
Y(yt, z) = −

〈
y′+t , (G

z
yt)
′
0

〉
yt

a.e. t.

To prove the above proposition, see e.g. [79, Propositions 2.17 and 2.20], one needs to introduce
the notion of angle between geodesics and study its monotonicity properties, its behaviour along
absolutely continuous curve and finally its connection with the inner product we introduced.
Nevertheless, even if we omit the proof, in the sequel we shall use the following fact (see [79,
Lemma 2.19]): let Y be CAT(κ), (yt) be an absolutely continuous curve and z ∈ Y. Then, for the
time t s.t. |γ̇t| exists and it is positive, we have

−
〈

1
h (Gyt+hyt )′0, (G

z
yt)
′
0

〉
yt
≤ −dY(yt, z)

dY(yt+h, yt)

h
cos(∠κyt(yt+h, z)), ∀h > 0 s.t. yt+h ∈ Bryt

(yt)

lim
h↓0
− cos(∠κyt(yt+h, z)) = lim

h↓0

dY(yt+h, z)− dY(yt, z)

h|γ̇t|
,

(2.1.7)

where ∠κyt(yt+h, z) is the angle at ȳ in Mk of the comparison triangle 4κ(ȳ, ȳh, z̄). The first
of these is an obvious consequence of the definition of ∠κy(z1, z2) together with the fact that
κ 7→ ∠κy(z1, z2), and thus κ 7→ − cos(∠κy(z1, z2)), is increasing, while the second one follows from
the Taylor expansion of cos(∠κy(z1, z2)) for dY(y, z1) small (notice that the explicit formula for
cos(∠κy(z1, z2)) in terms of dY(y, z1), dY(y, z2), dY(z1, z2) can be obtained by the cosine rule).

2.1.2 Weak convergence

In this section, we recall following [38] the concept of weak convergence in a CAT(0)-space, high-
lighting the similarities with weak convergence on a Hilbert setting.

Still, it is important to underline that although a well-behaved notion of ‘weakly converging
sequence’ exists, in [38] it is stressed that the existence of a well-behaved weak topology inducing
such convergence is an open challenge. Recently, a definition has been proposed in [147] but for
our goals we shall only recall the operative definition of weak convergence of sequences within its
properties.

Notice that, if Y is CAT(0) and E : Y → R+ ∪ {+∞} is 2-convex and lower semicontinuous,
then it admits a unique minimizer. To see this, we argue as for Proposition 3.2.4 and prove that
any minimizing sequence (yn) ⊂ Y is Cauchy: let I := inf E ≥ 0, yn,m the midpoint of yn, ym and
notice that

I ≤ E(yn,m) ≤ 1

2

(
E(yn) + E(ym)

)
− 1

4
d2

Y(yn, ym) ∀n,m ∈ N,
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so that rearranging and passing to the limit we get

1

4
lim

n,m→∞
d2

Y(yn, ym) ≤ lim
n,m→∞

1

2

(
E(yn) + E(ym)

)
− I = 0,

giving the claim. The first example of 2-convex functional we have encountered is the squared
distance from a point in a CAT(0)-space, as a consequence of inequality (2.1.2). Hence, for (yn) ⊂ Y
be a bounded sequence, we can consider the mapping

Y 3 y 7→ ω(y; (yn)) := lim
n

d2
Y(y, yn).

and notice that, as a limsup of a sequence of 2-convex and locally equiLipschitz functions, it is
still 2-convex and locally Lipschitz. By the above remark, it has a unique minimizer.

Definition 2.1.8 (Asymptotic center and weak convergence). Let Y be CAT(0)-space and (yn) be
a bounded sequence. We call the minimizer of ω(·, (yn)) the asymptotic center of (yn).

We say that a sequence (yn) ⊂ Y weakly converges to y, and write yn ⇀ y, if y is the
asymptotic center of every subsequence (ynk) of (yn).

In analogy with the Hilbert setting, we shall sometimes say that (yn) converges strongly to y if
dY(yn, y)→ 0. The main properties of weak convergence are collected in the following statement:

Proposition 2.1.9. Let Y be a CAT(0)-space. Then, the following holds:

i) If (yn) converges to y strongly, then it converges weakly.

ii) yn → y if and only if yn ⇀ y and for some z ∈ Y we have dY(yn, z)→ dY(y, z).

iii) Any bounded sequence admits a weakly converging subsequence.

iv) If C ⊂ Y is convex and closed, then it is sequentially weakly closed.

v) If E : Y → R ∪ {+∞} is a convex and lower semicontinuous function, then it is sequentially
weakly lower semicontinuous.

Moreover, at the tangent cone TyY at y ∈ Y (which is also a CAT(0)-space by Theorem 2.1.4) we
also have

vi) Let (vn), (wn) ⊂ TyY be such that vn → v and wn ⇀ w for some v, w ∈ TyY. Then
limn→∞

〈
vn, wn

〉
y
≤
〈
v, w

〉
y
.

Proof. i) is obvious, as a strong limit is trivially the asymptotic center of the full sequence. For
ii),iii),iv) see [39, Proposition 3.1.6], [39, Proposition 3.1.2] and [39, Proposition 3.2.1] respectively.
v) follows trivially from iv) by considering the strongly closed and convex sublevels of E. Finally,
for vi) we let C := supn |wn|y <∞ and notice that for every ε > 0 it holds

2ε
〈
vn, wn

〉
y

=
〈
vn, 2εwn

〉
y
≤ |vn|2y + |2εw|2y − d2

y(v, 2εwn) +
(
d2
y(v, 2εwn)− d2

y(vn, 2εwn)
)

+ 4ε2C2

≤ |vn|2y + |2εw|2y − d2
y(v, 2εwn) + 4εCdy(v, vn)(|v|y + |vn|y) + 4ε2C2

and that εwn ⇀ εw (by (2.1.5a)). Sending n→∞ and using the sequential weak lower semicon-
tinuity of d2

y(v, ·) (consequence of v) ) we obtain that

2ε lim
n→∞

〈
vn, wn

〉
y
≤ |v|2y + |2εw|2y − d2

y(v, 2εw) + 4ε2C2 = 2ε
〈
v, w

〉
y

+ 4ε2C2

and the claim follows dividing by ε > 0 and letting ε ↓ 0.
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2.1.3 Geometric tangent bundle

In this section we briefly recall some concepts from [79] about the construction of the Geometric
Tangent Bundle TGY of a given separable local CAT(κ)-space Y. From now on, B(Y) is the Borel
σ-algebra on Y. As a set, the space TGY is defined as

TGY :=
{

(y, v) : y ∈ Y, v ∈ TyY
}
.

Such set is equipped with a σ-algebra B(TGY), called Borel σ-algebra (with a slight abuse of
terminology, because there is no topology inducing it), defined as the smallest σ-algebra such that
the following maps are measurable:

i) the canonical projection πY : TGY → Y

ii) the maps π−1
Y (Brȳ ȳ) 3 (y, v) 7→

〈
v, (Gzy)′0

〉
y
∈ R for every ȳ ∈ Y, z ∈ Brȳ (ȳ).

It turns out that B(TGY) is countably generated and that, rather than asking ii) for every z ∈ Y,
one can require it only for a dense set of points (notice that in the axiomatization chosen in [79] one
speaks about the differential of the distance function rather than of scalar product with vectors
of the form (Gzy)′0, but the two approaches are actually trivially equivalent thanks to the explicit
expression of the differential of the distance in terms of such scalar product which is hidden in
Proposition 2.1.7). We also recall that

the map TGY 3 (y, v) 7→ |v|y ∈ R is Borel. (2.1.8)

A section of TGY is a map s : Y → TGY such that sy ∈ TyY for every Y. A section is
said Borel if it is measurable with respect to B(Y) and B(TGY). Among the various sections,
simple ones play a special role, similar to the one played by finite-ranged functions in the theory
of Bochner integration: s is a simple section provided there are (yn) ⊂ Y, (αn) ⊂ R+ and (En)
Borel partition of Y such that yn ∈ Bry (y) for every y ∈ En and s|En = αn(Gyn· )′0. If this is the

case we write s =
∑
n
χEnαn(Gyn· )′0, although the ‘sum’ here is purely formal. The following basic

result - obtained in [79] - will be useful, we report the proof for completeness:

Proposition 2.1.10. Let Y be separable and locally CAT(κ). Then, simple sections of TGY as
defined above are Borel.

Proof. It is sufficient to prove that for any given ȳ ∈ Y, z ∈ Brȳ (ȳ) and α ∈ R+ the assignment
Brȳ (ȳ) 3 y 7→ sy := α(Gzy)′0 is Borel and to this aim, by the very definition of B(TGY), it is
sufficient to check that πY ◦ s : Y → Y is Borel - which it is, being this map the identity on Y
- and, for any w ∈ Brȳ (ȳ), the map Brȳ (ȳ) 3 y 7→

〈
sy, (G

w
y )′0
〉
y

is Borel. Thus fix w and notice

that thanks to (2.1.8) and to the definition of scalar product on TyY to conclude it is sufficient
to check that y 7→ dy(sy, (G

w
y )′0) is Borel. We have

dy(sy, (G
w
y )′0) = dy(α(Gzy)′0, (G

w
y )′0) = lim

t↓0

dY

(
(Gzy)αt, (G

w
y )t
)

t
.

From the continuous dependence of geodesics on their endpoints we deduce that y 7→ dY

(
(Gzy)αt, (G

w
y )t
)

is a continuous function for every t ∈ (0, 1 ∧ α−1). The conclusion then follows from the fact that
a pointwise limit of continuous functions is Borel.

It has been proved in [79] that simple sections are dense among Borel ones (see also Lemma
3.3.6 below in the case X = Y and u = Identity). Moreover, the operations on a single tangent
space TyY induce in a natural way operations on the space of Borel sections of TGY: these are
Borel regular, as recalled in the next statement (see [79, Proposition 3.6] for the proof).

Proposition 2.1.11. Let Y be separable and locally CAT(κ), s, t Borel sections of TGY and
f : Y → R+ Borel. Then, the maps from Y to R sending y to |sy|y, dy(sy, ty),

〈
sy, ty

〉
y

are Borel

and the sections y 7→ f(y)sy, sy ⊕ ty are Borel as well.
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2.2 The CD-condition

Synthetic treatments of Ricci lower bounds have been initiated with the independent seminal works
by K.-T. Sturm [180, 181] and J. Lott and C. Villani [143] where the authors give birth to the
celebrated curvature dimension condition. Before giving more details, we remark that, differently
from the Alexandrov setting, a bound on the Ricci tensor must be formulated in the abstract
framework of metric measure spaces. This fact was firstly noticed in 1991 by Gromov, who wrote
in [112] that a synthetic theory of Ricci lowerbound needed to be still achieved at the time and
it must be formulated in the context of metric measure spaces, rather than simply metric spaces.
The intuition is that, as reflected by the main properties of this framework (see (2.2.5) and (2.2.8)
below), volumes naturally enters into play in the theory.

As a motivation for what comes next, we report a necessary and sufficient condition for a
Riemannian manifold to satisfy Ricci lowerbounds. Before giving the actual statement, we denote
by Vol the volume measure and by Ric the Ricci tensor of a manifold and we consider the Shannon
relative entropy on a Riemannian manifold M as the functional

Ent(µ) :=

�
ρ log ρdVol, (2.2.1)

if µ = ρVol + µs with µs ⊥ Vol. Then, as shown in [71, Theorem 6.2] and [188, Theorem 0.1], we
have the equivalence:

Theorem 2.2.1. For any smooth connected Riemannian manifold M and K ∈ R, the following
are equivalent

i) it holds Ric ≥ K;

ii) for every (µt) ⊂P2(M) that is a W2-geodesic between µ0, µ1 � Vol, it holds

Ent(µt) ≤ (1− t)Ent(µ0) + tEnt(µ1)−K t(1− t)
2

W2(µ0, µ1), ∀t ∈ [0, 1].

In the above theorem, the dimension of M is not encoded in condition ii). Therefore, we will
see how turning ii) into a definition will yield a definition of curvature dimension condition that is
dimension-free. Since in this Thesis we shall work both in finite and infinite dimensional setting,
we start now recalling the main objects.

For µ ∈P(X) and N ∈ [1,∞), we define the N -Rényi relative entropy with respect to m by

UN (µ|m) := −
�
ρ1− 1

N dm, if µ = ρm + µs, µs ⊥ m,

and the Shannon entropy (the analogous of (2.2.1) on metric measure spaces) by

Entm(µ) :=

�
ρ log ρdm, ifµ = ρm, ∞ otherwise.

The distorsion coefficients are, for every K ∈ R, N ∈ [0,∞), t ∈ [0, 1], defined as

σ
(t)
K,N (θ) :=



+∞, if Kθ2 ≥ Nπ2,
sin(tθ

√
K/N)

sin(θ
√
K/N)

, if 0 < Kθ2 < Nπ2,

t, if Kθ2 < 0 and N = 0 or if Kθ2 = 0,
sinh(tθ

√
−K/N)

sinh(θ
√
−K/N)

, if Kθ2 ≤ 0 and N > 0.

Set also, for N ≥ 1, τ
(t)
K,N (θ) := t

1
N σ

(t)
K,N−1(θ)1− 1

N while τ
(t)
K,1(θ) = t if K ≤ 0 and τ

(t)
K,1(θ) = ∞ if

K > 0.
Next, we provide a synthetic definition of spaces with Ricci curvature bounded from below

and dimension bounded from above given independently by [143] and [180, 181]. It was given for
the exponent q = 2, but requiring the analogous convexity properties of the so-defined entropy
functionals along Wq-geodesics we can define:
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Definition 2.2.2 (CDq-spaces). Let q ∈ (1,∞), K ∈ R and N ∈ [1,∞]. We say that a met-
ric measure space (X, d,m) satisfies the curvature dimension condition CDq(K,N) if, for every
µ0, µ1 ∈Pq(X) absolutely continuous , there exists π ∈ OptGeoq(µ0, µ1) so that µt := (et)]π � m
and

B if N <∞, for every t ∈ [0, 1] and N ′ ≥ N

UN ′(µt|m) ≤ −
� (

τ
(1−t)
K,N ′ (d(γ1, γ0))ρ0(γ0)−

1
N + τ

(t)
K,N ′(d(γ1, γ0))ρ1(γ1))−

1
N

)
dπ(γ), (2.2.2)

having denoted ρi = dµi
dm for i = 0, 1;

B if N =∞, for every t ∈ [0, 1]

Entm(µt) ≤ (1− t)Entm(µ0) + tEntm(µ1)− K

2
t(1− t)W 2

q (µ0, µ1). (2.2.3)

In the sequel of this Thesis, to avoid a heavy notation in most of its part, we adopt the following
convention.

Notation. In concordance with standard notation in the literature, we shall stick to
the convention

CD(K,N) := CD2(K,N).

For arbitrary q, the class of CDq-spaces was investigated e.g. in [127, 128]:. We also recall the
following important result, which was proved in [1, Theorem 1.1]. It states that on non-branching
spaces (whose reference measure is finite), the CDq(K,N) condition is in fact independent of q.

Theorem 2.2.3 (Equivalence of CDq on q > 1). Let (X, d,m) be a non-branching CD(K,N)
space, for some K ∈ R and N ∈ (1,∞). Suppose that the measure m is finite. Then (X, d,m) is a
CDq(K,N) space for every q ∈ (1,∞).

The above results in fact hold under a weaker assumption, called q-essential non-branching;
see [175] for the definition of such condition. We shall never need the extremal case q = 1, but an
analogous theorem has been shown in the setting of CD1-spaces in [54].

We recall the notion of one-dimensional model space for the CD(N − 1, N) condition:

Definition 2.2.4 (One dimensional model space). For every N > 1 we define IN := ([0, π], |.|,mN ),
where |.| is the Euclidean distance restricted on [0, π] and

mN := 1
cN

sinN−1 L 1
|[0,π]

,

with cN :=
�

[0,π]
sin(t)N−1 dt.

In the sequel, we shall consider Sobolev spaces on weighted Euclidean intervals (or half lines).
It is worth to remark on the consistency of the metric and classical definition of Sobolev spaces
in this case. Consider (X, d,m) = ([a, b], |.|, hL 1), for a, b ∈ R with a < b where h ∈ L1([a, b]) is
so that for every ε > 0 there exists cε > 0 so that h ≥ cε L 1-a.e. in [a + ε, b − ε]. Let us write
W 1,p([a, b], |.|, hL 1) for the p-Sobolev space over the weighted interval according to the metric
definition given above, while simply write W 1,p

loc (a, b) for the classical definition via integration by
parts of locally Sobolev functions in the standard sense. Then, using the definition via test plan,
it can be shown that

f ∈W 1,p([a, b], |.|, hL 1) ⇐⇒ f ∈W 1,1
loc (a, b) with f, f ′ ∈ Lp(hL 1) (2.2.4)

and, in this case, it holds that |Df |p = |f ′| at L 1-a.e. point. We omit the details.
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2.2.1 Geometric inequalities

On CD(K,N) spaces the Bishop-Gromov inequality holds (see [181]):

m(BR(x))

vK,N (R)
≤ m(Br(x))

vK,N (r)
, for any 0 < r < R ≤ π

√
N − 1

K+
and any x ∈ X, (2.2.5)

where the quantities vK,N (r), N ∈ [1,∞) K ∈ R are defined as

vK,N (r) := σN−1

� r

0

|sK,N (t)|N−1 dt,

and sK,N (t) is defined as sin
(
t
√

K
N−1

)
, if K > 0, sinh

(
t
√
|K|
N−1

)
, if K < 0 and t if K = 0.

In particular we have (see for the proof, e.g., [180, 181]):

CD(K,N)-spaces are doubling ∀K ∈ R, N ∈ [1,∞). (2.2.6)

As a direct consequence of (2.2.6), it is easy to see that when N < ∞ they are also proper, i.e.
closed and bounded sets are compact.

We also note that in the case K = 0 this implies that the limit

AVR(X) := lim
r→+∞

m(Br(x))

ωNrN

exists finite and does not depend on the point x ∈ X. We call the quantity AVR(X) asymptotic
volume ratio of X and if AVR(X) > 0 we say that X has Euclidean-volume growth. A key-role in
the note will be played by the following quantities:

θN,r(x) :=
m(Br(x))

ωNrN
, θN (x) := lim

r→0+
θN,r(x), ∀ r > 0, x ∈ X.

Observe that the above limit exists thanks to the Bishop-Gromov inequality and the fact that

limr→0+
ωNr

N

vK,N (r) = 1 for every K ∈ R, N ∈ [1,∞), which in particular grants that

θN (x) = lim
r→0

m(Br(x))

vK,N (r)
= sup

r>0

m(Br(x))

vK,N (r)
. (2.2.7)

This and the fact that m(∂Br(x)) = 0 for every r > 0 and x ∈ X (which follows from the Bishop-
Gromov inequality), implies that θN (x) is a lower-semicontinuous function of x. Therefore, when
X is compact, there exists minx∈X θN (x).

Next we recall the Brunn-Minkowski inequality.

Theorem 2.2.5 ([181]). Let (X, d,m) be a CD(K,N) space with N ∈ [1,∞), K ∈ R. For any
couple of Borel sets A0, A1 ⊂ X it holds that

m(At)
1
N ≥ σ(1−t)

K,N (θ)m(A0)
1
N + σ

(t)
K,N (θ)m(A1)

1
N , ∀t ∈ [0, 1], (2.2.8)

where At := {γt : γ geodesic such that γ0 ∈ A0, γ1 ∈ A1} and

θ :=

{
inf(x0,x1)∈A0×A1

d(x0, x1), if K ≥ 0,

sup(x0,x1)∈A0×A1
d(x0, x1), if K < 0,

We remark that (2.2.8) is actually weaker than the statement appearing in [181] and it holds
for the (a-priori) larger class of CD∗(K,N) spaces (see [33]).

We report the Bonnet-Myers diameter-comparison theorem for CD-spaces from [181]:

(X, d,m) is a CD(K,N) space
for some K > 0, N ∈ (1,∞)

⇒ diam(X) ≤ π
√

N−1
K . (2.2.9)

40



2.2.2 Functional inequalities

Spectral gap

The Lichnerowitz 2-spectral gap inequality is valid also in the CD-setting. To state it we recall
the notion of first non-trivial Neumann eigenvalue of the Laplacian (or 2-spectral gap) in metric
measure spaces.

Definition 2.2.6. Let (X, d,m) be a metric measure space with finite measure. We define the first
non trivial 2-eigenvalue λ1,2(X) as the non-negative number given by

λ1,2(X) := inf

{�
|Df |22 dm�
|f |2 dm

: f ∈ Lip(X) ∩ L2(m), f 6= 0,

�
f dm = 0

}
. (2.2.10)

Clearly, in light of [20], in the above definition one can equivalently take the infimum among
all f ∈W 1,2(X). In the sequel will use this fact without further notice.

Then the spectral-gap inequality as proven in [143] (see also [123]) says that:

λ1,2(X) ≥ N, for every CD(N − 1, N)-space X,

with N ranging in (1,∞).

Sobolev-Poincaré inequality

From [174], we report the following well known fact

CD(K,N) spaces support a
weak local (1, 1)-Poincaré inequality

∀K ∈ R, N ∈ [1,∞]. (2.2.11)

Then, a well-established fact which goes back to the seminal work [114], is that a (1, p)-Poincaré
inequality on a doubling metric measure space, improves to a (q, p)-Poincaré inequality with q > 1.
On CD(K,N) spaces this translates in the following result.

Theorem 2.2.7 ((p∗, p)-Poincaré inequality). Let (X, d,m) be a CD(K,N) space for some N ∈
(1,∞), K ∈ R. Fix also p ∈ (1, N) and r0 > 0. Then, for every Br(x) ⊂ X with r ≤ r0 it holds( 

Br(x)

|u− uBr(x)|p
∗

dm
) 1
p∗ ≤ C(K,N, p, r0)r

( 
B2r(x)

|Du|p dm
) 1
p

, ∀u ∈ Lip(X), (2.2.12)

where p∗ := pN/(N − p) and uBr(x) :=
�
Br(x)

udm.

Proof. From (2.2.11), we know that X also supports a strong (1, p)-Poincaré inequality for every
p ∈ [1,∞), by Hölder inequality. Moreover, for every x0 ∈ X, r ≤ r0 and x ∈ Br0(x0), from the
Bishop-Gromov inequality (2.2.5) it holds that

m(Br(x))

m(Br0(x0))
≥ C(K,N, r0)

( r
r0

)N
.

Then (2.2.12) follows from [114, Theorem 5.1] (see also [43, Theorem 4.21]).

We end this part recalling the sharp Sobolev-inequality on the N model space IN (see Def.
2.2.4) for N ∈ (2,∞) (see e.g. [138]):

‖u‖2Lq(mN ) ≤
q − 2

N
‖|Du|‖2L2(mN ) + ‖u‖2L2(mN ), ∀u ∈W 1,2([0, π], |.|,mN ), (2.2.13)

for every q ∈ (2, 2∗], with 2∗ = 2N/(N − 2).

41



Polya-Szego inequality

The Polya-Szego inequality, namely the fact that the Dirichlet energy decreases under decreasing
rearrangements, dates back to Faber and Krahn and was successively formalized in [172]. Later,
in [41], this collection of ideas was brought to the context of manifolds with Ricci lower bounds to
achieve applications concerning the rigidity of the 2-spectral gap.

In this part we recall the Polya-Szego inequality for essentially non branching CD(K,N) spaces
proven in [159]. We will also collect some additional technical results and definitions from [159]
that will be used in Section 6.3.1 to prove an Euclidean-variant of this inequality.

Let (X, d,m) be a metric measure space, Ω ⊂ X open with m(Ω) < ∞. Given u : Ω → [0,∞)
Borel and non-negative and denoting µ its distribution function (see 1.1.2), we let u# be the
generalized inverse of µ, defined by

u#(s) :=

{
ess supu if s = 0,

inf {t : µ(t) < s} if s > 0.

It can be checked that u# is non-increasing and left-continuous.
Then, we define the monotone rearrangement into IN = ([0, π], |.|,mN ) (see Definition 2.2.4

for the N -model interval) as follows: first, we consider r > 0 so that m(Ω) = mN ([0, r]) and define
Ω∗ := [0, r], then we define the monotone rearrangement function u∗N : Ω∗ → R+ as

u∗N (x) := u#(mN ([0, x])), ∀x ∈ [0, r].

In the sequel, whenever u and Ω are fixed, Ω∗ and u∗N will be implicitly defined as above.

Theorem 2.2.8 (Polya-Szego inequality, [159]). Let (X, d,m) be an essentially non braching
CD(N − 1, N) space for some N ∈ (1,∞) and Ω ⊆ X be open. Then, for every p ∈ (1,∞), the
monotone rearrangement in IN maps Lp(Ω) (resp. W 1,p

0 (Ω)) into Lp(Ω∗) (resp. W 1,p(Ω∗, |.|,mN ))
and satisfies:

‖u‖Lp(Ω) = ‖u∗N‖Lp(Ω∗), ∀u ∈ Lp(Ω) (2.2.14)
�

Ω

|Du|p dm ≥
�

Ω∗
|Du∗N |p dmN , ∀u ∈W 1,p

0 (Ω). (2.2.15)

2.2.3 Wasserstein interpolation with bounded compression

On CD(K,∞)-spaces, a deep analysis conducted in [174] showed that it is possible under the cur-
vature dimension condition to interpolate between bounded and boundedly supported probability
densities via an optimal geodesic plan that is also a test plan. We give here the precise statement.

Theorem 2.2.9. Let (X, d,m) be a CD(K,∞)-space for some K ∈ R. For any D > 0 and
ρ0, ρ1 ∈ L∞(m) probability densities with diam(supp(ρ0) ∪ supp(ρ1)) < D, there exists π ∈
OptGeo2(ρ0m, ρ1m) satisfying µt := (et)]π � m. Moreover, writing µt := ρtm, we have

‖ρt‖L∞(m) ≤ eK
−D2/12‖ρ0‖L∞(m) ∨ ‖ρ1‖L∞(m), ∀t ∈ [0, 1].

We will see the proof in Appendix A, where we will also extend this Theorem to all exponent
q 6= 2 for CDq-spaces. All the arguments from [174] are easily seen to be transported, the main
step being the concept of spreading of mass under the curvature dimension condition.

2.3 The RCD-condition

If on one hand, the CD-theory encodes many remarkable properties valid in the smooth category
of Riemannian manifolds, on the other it allows the presence of other geometries. A basic example
of CD-space (that is evidently not a Riemannian manifold) is infact the standard Euclidean space
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equipped with a norm not arising from a scalar product and the standard Lebesgue measure. In
particular, it is not even a Ricci limit space as guaranteed by the ‘almost splitting’ result of [65].

Consequently, progress have been put to formulate a Riemannian synthetic theory of Ricci
lowerbounds to rule out Finsler geometries. In this work, a motivation to discuss this different
class of spaces is that they are more suitable to derive the rigidty results typical of Riemannian
manifolds.

The Riemannian curvature dimension condition, called shortly RCD-condition, appeared for
the first time in [22] in the infinite dimensional case, giving thus birth to the notion of RCD(K,∞)-
spaces. This has been essentially achieved by adding the linearity of the heat flow to the CD-
theory. In the finite dimensional case, the RCD(K,N) condition was instead proposed in [95] in
combination with the investigation of Infinitesimal Hilbertianity.

We mention additional important contributions [33, 23, 18, 26, 87, 56] that lead to the devel-
opments to the theory as it is nowadays presented. Here, we shall not discuss other equivalent
formulations and, for brevity reason, we stick to the following definition.

Definition 2.3.1 (RCD-spaces). A metric measure space (X, d,m) satisfies the RCD(K,N) con-
dition for some K ∈ R and N ∈ [1,∞], provided it is an infinitesimal Hilbertian CD(K,N) metric
measure space.

Remark 2.3.2. For a reason that we now make clear, we avoided introducing the exponent’s
subscript in the definition of RCD-space (i.e. a RCDq-condition), even though the two requirements
characterizing the above definition are strictly related to the exponent q = 2. Indeed, the first
motivation is that, recently in [77], it has been proven that

RCD(K,N) spaces with N <∞ are non branching. (2.3.1)

Therefore, by recalling Theorem 2.2.3, it is clear that a posteriori in Definition 2.3.1 the choice
q = 2 is irrelevant at least for finite reference measure). While, the second motivation is that in
the work [99] it has been already shown that RCD(K,∞)-spaces posse p-independent weak upper
gradients (see Theorem 2.3.6). Again, this implies a posteriori that one can equivalently require
the defining parallelogram rule (1.4.1) with arbitrary minimal p-weak upper gradients. �

In the sequel, structural properties of RCD-spaces will play a minor role as we will focus
mostly on characterization of Sobolev functions/maps and rigidity results attached to functional
inequalities in this setting. However, here we just mention that RCD-spaces have been proved in
[50] to have constant dimension. This is a deep result in the literature that, for convenience of
this work, we shall just mention in the following form due to [50, Corollary 3.10].

Theorem 2.3.3 (Essential dimension of RCD(K,N)-spaces). Let (X, d,m) be a RCD(K,N)-space
for some N ∈ [1,∞) and K ∈ R. Then, there is d ≤ N called essential dimension of X so that

L0
2(T ∗X), L0

2(TX) are Hilbert modules of dimension d,

namely they admit d-dimensional orthonormal generating basis.

2.3.1 Sobolev maps: Korevaar-Schoen revisited

When considering maps defined defined on a RCD-space X and valued in CAT(0)-space (Y, dY),
we have the following characterization (obtained in [109], see [133] for the original definition of
‘Korevaar-Schoen’ space).

Theorem 2.3.4 (The Korevaar-Schoen space and energy). Let (X, d,m) be a RCD(K,N) space
for some K ∈ R, N ∈ [1,∞), (Y, dY, ȳ) a pointed CAT(0)-space, Ω ⊂ X open and u ∈ L2(Ω,Yȳ).
Then the following are equivalent:
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i) u ∈ KS1,2(Ω,Yȳ), namely defining ks2,r[u,Ω]: Ω→ R+ by

ks2,r[u,Ω](x) :=


∣∣∣ �Br(x)

d2
Y(u(x),u(x̃))

r2 dm(x̃)
∣∣∣1/2 if Br(x) ⊂ Ω,

0 otherwise.

and defining the energy EKS(u) by

EKS(u) := lim
r↓0

1

2

�
Ω

ks22,r[u,Ω] dm, (2.3.2)

we have EKS(u) <∞;

ii) u ∈W 1,2(Ω,Yȳ), as defined in Definition 1.2.16.

If any of these hold, the ‘energies at scale r’ ks2,r[u,Ω] converge to (d + 2)−
1
2 |d2u|HS in L2(m|Ω)

as r ↓ 0, where d is the essential dimension of X. In particular, the lim in (2.3.2) is actually a
limit and the energy admits the representation

EKS(u) =
1

2(d+ 2)

�
Ω

|d2u|2HS dm.

Finally, the functional EKS : L2(Ω,Yȳ)→ [0,+∞] is convex and lower semicontinuous.

Remark 2.3.5. Let us give few remarks related to the above Theorem.

B The notion of the ‘Korevaar-Schoen’ space KS1,p(Ω,Yȳ) ⊂ Lp(Ω,Yȳ) (with straightforward
definition when p 6= 2) was derived (with a lim in (2.3.2)) in [133] for maps defined on (open
subset of) smooth manifolds and valued to arbitrary complete metric space Y. Nevertheless,
this notion can be given for arbitrary metric measure spaces but, in general, KS1,p(Ω,Yȳ) 6=
W 1,p(Ω,Yȳ). In [109], the authors revisited [133] (see also [108]) proving in the above
theorem that these two notions are actually equivalent for RCD-domains (indeed, under the
weaker hypothesis of m-strong rectifiability and Doubling & Poincaré).

B Since Y is a CAT(0)-space, it is universally infinitesimal Hilbertian by Theorem 2.1.3. Then,
recalling Remark 1.4.3, the differential d2u belongs to a suitable Hilbert module and the
object |d2u|HS ∈ L2(m|Ω) is well defined.

B It should be noticed that the minimal 2-weak upper gradient |Du|2 is not the Hilbert-
Schmidt norm |d2u|HS of the differential d2u, but rather the (pointwise) operator norm of
d2u. The two quantities are nevertheless comparable [109], i.e. one controls the other up to
multiplication with a dimensional constant. This especially grants that L2(Ω,Yȳ) 3 u 7→
EKS(u) is lower semicontinuous in light of (1.2.13).

B The CAT(0) condition (2.1.2) ensures the convexity of the assignment u 7→ EKS(u) along
L2-geodesic interpolation of maps (see (2.3.4) below).

�

In the sequel, we shall also consider the notion of Korevaar-Schoen map with prescribed
boundary values. To this aim, we recall from [109] that for u, v ∈ KS1,2(Ω,Yȳ) we always have
dY(u, v) ∈W 1,2(Ω). Therefore it makes sense to ask whether u, v attain the same boundary value
by checking whether or not we have dY(u, v) ∈W 1,2

0 (Ω).
Then given ū ∈ KS1,2(Ω,Yȳ) the ‘energy EKS

ū : L2(Ω,Y)→ [0,∞] with ū as prescribed boundary
value’ can be defined as

EKS
ū (u) :=

{
EKS(u) if u ∈ KS1,2(Ω,Yȳ) and dY(u, ū) ∈W 1,2

0 (Ω),
+∞ otherwise.
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We shall denote the domain of EKS
ū by KS1,2

ū (Ω,Yȳ) ⊂ L2(Ω,Yȳ) and recall [109] that

EKS
ū : L2(Ω,Yȳ)→ [0,+∞] is convex and lower semicontinuous, (2.3.3)

moreover it admits a unique minimizer, called harmonic map with ū as boundary value.
For later use we recall that the convexity of both EKS and EKS

ū can be improved to the following
inequality:

EKS((Gvu)t) + t(1− t)EKS(d) ≤ (1− t)EKS(u) + tEKS(v) ∀t ∈ [0, 1], (2.3.4)

where d(x) := d(u(x), v(x)). Such inequality has been proved for the case t = 1
2 in [109] (imitating

the arguments in [133]), the general case follows along the same arguments. It is worth to underline
that in the above the maps u, v, (Gvu)t are Y-valued, while d is real valued. In this sense the energy
of EKS(d) of d has a different meaning w.r.t. the energy of the other maps. Still, we recall (see [109]
and [133]) that for a constant c(d) depending only on the essential dimension d ≤ N of X (recall
Theorem 2.3.3) we have EKS(f) = c(d)Ch2(f) for any f ∈ L2(m|Ω), where Ch2 is the standard

2-Cheeger energy on X.

2.3.2 Independence of weak upper gradients

We recall that in general, minimal p-weak upper gradients may depend on p on a arbitrary metric
measure space (X, d,m). Moreover, in Remark 1.2.9 we saw the kind of link should always be
expected between p-minimal weak upper gradients with respect to different p’s. Moreover, at least
when N <∞, thanks to (2.2.6) and (2.2.11) we know that RCD(K,N) are doubling and supports
a weak local (1, 1)-Poincaré inequality hence, Proposition 1.3.8 certainly applies.

Nevertheless, the analysis conducted in [99] showed that this kind of independence should be
expected to hold also in the infinite dimensional setting and to be stronger (as will be axiomatizated
later Chapter 4.

Theorem 2.3.6 ([99]). Let (X, d,m) be a RCD(K,∞)-space for some K ∈ R. For any p1, p2 ∈
(1,∞), if f ∈ Sp1(X) is so that |Df |p1

∈ Lp2(m), then

f ∈ Sp2(X) and |Df |p2
= |Df |p1

m-a.e..

As previously stated, from now on we will omit the p-subscript, p ∈ (1,∞), and simply write
|Df | without further notice on proper RCD(K,∞)-spaces. Let us comment the above theorem in
relation to this Thesis work.

Remark 2.3.7. The proof of the above theorem relies on heat-flow regularization techniques
(which are well understood and at hand in this class, see e.g. [21]). One of the key ingredients is a
Bakry-Émery contraction rate for Lipschitz functions and local Lipschitz constants, as proved in
[176]. This makes it possible to show that weak upper gradients do not depends on p in the class
of Lipschitz functions. Then, given that the Lipschitz class is large enough in the RCD-setting
in every Sobolev space W 1,p(X), the conclusion comes appealing to the lower semicontinuity of
minimal weak upper gradients (Proposition 1.2.7).

The arguments do not carry to the setting of CD-spaces, as the lack of infinitesimal Hilbertianity
and Bakry-Émery contration rates makes impossible to follow the very same line of the proof. In
Chapter 4, we will see how a completely different proof, via Optimal Transportation, yields the
very same statement of Theorem 2.3.6 on CD-spaces. �

A second deep result following from the analysis of [99], is the resolution to the problem of
independence of the minimal weak upper gradient also in the extreme case p = 1. Recall that
in Proposition 1.2.25, we showed that Sobolev functions are of bounded variation. Nevertheless,
given f ∈ Sp(m), it is by no means true that |Df | = |Df |pm and we shall only expect in general
the inequality (1.2.19). In the RCD-setting, this is actually true as shown in [99, Remark 3.5]
under an additional properness assumption.
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Theorem 2.3.8. Let (X, d,m) be a proper RCD(K,∞)-space for some K ∈ R. Let f ∈ BV (X)

and assume that, for some p ∈ (1,∞), it holds |Df | � m and d|Df |
dm ∈ Lp(m). Then,

f ∈ Sp(X) and
d|Df |

dm
= |Df |p, m-a.e..

Next, we finish by stating a well-known key implication of the above result. In the setting of
proper RCD(K,∞) spaces, the Coarea formula of Theorem 1.2.21 yields

�
lip f dm = |Df |(X) =

� ∞
0

Per({f > t}) dt,

for every positive f ∈ Lipbs(X).

2.3.3 Some rigidity theorems

We conclude this part recalling some rigidity and stability statements for RCD(K,N) spaces and
to this aim we need to define the notion of spherical suspension over a metric measure space. For
any N ∈ [1,∞) the N -spherical suspension over a metric measure space (Z,mZ, dZ) is defined to
be the space ([0, π] ×Nsin Z) := Z × [0, π] /(Z × {0, π}) endowed with the following distance and
measure

d((t, z), (s, z′)) := cos−1
(

cos(s) cos(t) + sin(s) sin(t) cos (dZ(z, z′) ∧ π)
)
,

m := sinN−1(t)dt ⊗ mZ.

It turns out that the RCD condition is stable under the action of taking spherical suspensions,
more precisely it has been proven in [132] that

[0, π]×Nsin Z is RCD(N − 1, N)
for some N ≥ 2

⇐⇒ Z is RCD(N − 2, N − 1) with
diam(Z) ≤ π. (2.3.5)

We can now recall the two main rigidity statements that we will use in the note: the maximal
diameter theorem and the Obata theorem for RCD(K,N) spaces:

Theorem 2.3.9 ([131]). Let (X, d,m) be an RCD(N−1, N) space with and N ∈ [2,∞) and suppose
that diam(X) = π. Then (X, d,m) is isomorphic to a spherical suspension, i.e. there exists an
RCD(N − 2, N − 1) space (Z, dZ,mZ) with diam(Z) ≤ π satisfying X ' [0, π]×Nsin Z.

Theorem 2.3.10 ([132]). Let (X, d,m) be an RCD(N − 1, N) space with and N ∈ [2,∞) and
suppose that λ1,2(X) = N . Then (X, d,m) is isomorphic to a spherical suspension, i.e. there exists
an RCD(N − 2, N − 1) space (Z, dZ,mZ) with diam(Z) ≤ π satisfying X ' [0, π]×Nsin Z.

We will also need the following rigidity of the Polya-Szego inequality proven in [159, Theorem
5.4].

Theorem 2.3.11. Let (X, d,m) be an RCD(N − 1, N) space for some N ∈ [2,∞) with m(X) = 1
and p ∈ (1,∞). Let Ω ⊂ X be an open set and assume that there exists a non-negative and
non-constant function u ∈W 1,p

0 (Ω) achieving equality in the Polya-Szego inequality (2.2.15).
Then (X, d,m) is isomorphic to a spherical suspension, i.e. there exists an RCD(N − 2, N − 1)

space (Z, dZ,mZ) with mZ(Z) = 1 so that X ' [0, π]×Nsin Z.

Remark 2.3.12. Observe that in Theorem 2.3.11 we did not assume that m(Ω) < 1, assumption
that is actually present in Theorem 5.4 of [159]. This is intentional, since we will need to apply
Theorem 2.3.11 precisely in the case Ω = X. This is possible since the arguments in [159] work
also in the case Ω = X without modification. The only part where the argument does not cover
explicitly the case Ω = X is the proof of the approximation Lemma 3.6 in [159], which however
can be easily adapted (see Lemma 2.3.13 below). �
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Recall for the next lemma, the notation |Dacf | := d|Df |
dm for every f ∈ BV (X) with |Df | � m.

Lemma 2.3.13 (Approximation with non-vanishing gradients). Let (X, d,m) be a CD(K,N) met-
ric measure space with N < +∞, and let Ω ⊂ X be open with m(Ω) < +∞. Then for any non-
negative u ∈ Lipc(Ω) there exists a sequence of non-negative un ∈ Lipc(Ω) satisfying |Dacun| 6= 0
m-a.e. in {un > 0} and such that un → u in W 1,p(X).

Proof. The case Ω 6= X has been proven in [159, Lemma 3.6 and Corollary 3.7]. The proof
presented there, as it is written, does not cover the case Ω = X with X compact and supp(u) =
X. However, the argument can be easily adapted by considering a sequence εn → 0 such that
m({lip(un) = εn}) = 0 and taking

un := u+ εnv,

with v(x) := d(x0, x), for an arbitrary fixed point x0 ∈ X. Since v ∈ Lip(X) and lip(v) = 1 m-a.e.
in X, arguing exactly as in [159, Lemma 3.6] we get that un → u in W 1,p(X) and lip(un) 6= 0
m-a.e. in {un > 0}. To get the claimed non-vanishing of |Dacun|, as in [159, Corollary 3.7] we use
the existence of a constant c > 0 such that

|Dacu| ≥ c lip(u), m-a.e.,

for every u ∈ Liploc(X), which holds from the results in [27] and the fact that CD(K,N) spaces
are locally doubling and supports a local-Poincaré inequality.

The above lemma will be also used in Section 6.3.1.

2.4 Convergence and compactness under mGH-convergence

In this part we report some properties concerning sequences of pointed metric measure spaces
satisfying synthetic lower Ricci bounds. We will follow the characterization of Definition 1.1.11
that it is not the classical one (see e.g. [51, 113]), but it is equivalent in the case of a sequence of
uniformly locally doubling metric measure spaces, thanks to the results in [100].

We start recalling the notation of extended natural numbers N̄ := N ∪ {∞} and that of a
pointed metric measure space, namely a quadruple (X, d,m, x) consisting of a metric measure
space (X, d,m) and a point x ∈ X. In the case of a sequence of uniformly locally doubling spaces
(as in the case of CD(K,N)-spaces for fixed K ∈ R,N <∞) we can also take (Z, dZ) in Definition
1.1.11 to be proper. Moreover, again for a class of uniformly locally doubling spaces, in [100] it is
proven that the pmGH-convergence is metrizable with a distance which we call dpmGH .

It will be also convenient to adopt, thanks to Definition 1.1.11, the so-called extrinsic approach,
where the spaces Xn are identified as subsets of a common proper metric space (Z, dZ), Xn ⊂ Z,
supp(mn) = Xn, dZ|Xn×Xn

= dn for all n ∈ N̄, and dZ(xn, x∞) → 0, mn ⇀ m∞ in duality with

Cbs(Z). Any such space (Z, dZ) (together with an the identification of Xn ⊂ Z) is called realization
of the convergence and (in the case of geodesic uniformly locally doubling spaces) can be taken
so that dZ

H(BXn
R (xn), BX∞

R (x∞)) → 0 for every R > 0, where dZ
H is the Hausdorff distance in Z.

To avoid confusion when dealing with this identification, we shall sometimes write BXn
r (x) with

x ∈ Xn, r > 0, to denote the set BZ
r (x) ∩Xn.

After the above clarification, we shall now state a crucial precompactness theorem: after the
works in [180, 181, 143, 91, 22, 100] and thanks to the Gromov’s precompactness theorem [113] it
holds:

Theorem 2.4.1. Let (Xn, dn,mn, xn) be a sequence of pointed CD(Kn, Nn) (resp. RCD(Kn, Nn))
spaces, n ∈ N̄, with m(B1(xn)) ∈ [v−1, v], for v > 1 and Kn → K ∈ R, Nn → N ∈ [1,∞). Then,
there exists a subsequence (nk) and a pointed CD(K,N) (resp. RCD(K,N)) space (X∞, d∞,m∞, x∞)
satisfying

lim
k→∞

dpmGH
(
(Xnk , dnk ,mnk , xnk), (X∞, d∞,m∞, x∞)

)
= 0.
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We will be frequently consider the case of compact (with uniformly bounded diameter) metric
measure spaces which is the natural setting for the Sobolev embedding of this note, for which
we can reduce the above convergence to the so-called measure Gromov Hausdorff convergence,
mGH-convergence for short, where we simply ignore the convergence of the base points. Also in
this case, on every class of uniformly doubling metric measure spaces with uniformly bounded
diameter, the mGH-convergence can be metrized by a distance that we denote by dmGH . The
extrinsic approach applies verbatim as well, with the exception that the common ambient space
Z can be also taken to be compact.

We now recall some stability and convergence results of functions along pmGH-convergence.
For additional details and analogous results we refer to [120, 100, 24]. For brevity reasons in what
follows we consider fixed a sequence of pointed CD(K,N) spaces (Xn, dn,mn, xn), for n ∈ N̄, so

that Xn
pmGH→ X∞.

Definition 2.4.2. Let p ∈ (1,∞), we say that

i) fn ∈ Lp(mn) converges Lp-weak to f∞ ∈ Lp(m∞), provided supn∈N ‖fn‖Lp(mn) < ∞ and
fnmn ⇀ f∞m∞ in duality with Cbs(Z),

ii) fn ∈ Lp(mn) converges Lp-strong to f∞ ∈ Lp(m∞), provided it converges Lp-weak and
limn ‖fn‖Lp(mn) ≤ ‖f∞‖Lp(m∞),

iii) fn ∈ W 1,2(Xn) converges W 1,2-weak to f∞ ∈ W 1,2(X) provided it converges L2-weak and
supn∈N ‖|Dfn|‖L2(mn) <∞,

iv) fn ∈W 1,2(Xn) converges W 1,2-strong to f∞ ∈W 1,2(X) provided it converges L2-strong and
‖|Dfn|‖L2(mn) → ‖|Df∞|‖L2(m∞).

Moreover, we say that fn is uniformly bounded in Lp if supn ‖fn‖Lp(mn) <∞. In the following
statement we collect a list of useful properties of Lp-convergence.

Proposition 2.4.3 (Properties of Lp-convergence). For all p ∈ (1,∞), it holds

i) If fn converges Lp-strong to f∞, then φ(fn) converges Lp-strong to φ(f∞) for every φ ∈
Lip(R) with φ(0) = 0,

ii) If fn (resp. gn) converges Lp-strong to f∞ (resp. g∞), then fn + gn converges Lp-strong to
f∞ + g∞,

iii) if fn converges Lp-weak to f , then ‖f∞‖Lp(m∞) ≤ limn ‖fn‖Lp(mn),

iv) suppose that supn ‖fn‖Lp(mn) < +∞, then up to a subsequence fn converges Lp-weak to some
f∞ ∈ Lp(m∞),

v) If fn converges Lp-strong (resp. Lp-weak) to f∞, then φfn converges Lp-strong (resp. Lp-
weak) to φf∞, for all φ ∈ Cb(Z),

vi) for every f ∈ Lp(m∞) there exists a sequence fn ∈ Lp(mn) converging Lp-strong to f ,

vii) if fn are non-negative and converge in Lp-strong to f , then for every q ∈ (1,∞), f
p/q
n

converge Lq-strong to fp/q,

viii) Fix p, q ∈ (1,∞] so that p < q. If the sequence (fn) is uniformly bounded in Lq and converges
Lp-strong to f∞, then it converges also Lr-strong to f∞ for every r ∈ [p, q),

Proof. For the proof of the items i) up to v) we refer to [24, Prop. 3.3]. vi) can instead be
found in [100] (see also [120]). vii) follows immediately from the characterization of Lp-strong
convergence via convergence of graph (see e.g. [24, Remark 3.2]). For viii) , the case q =∞ follows
immediately from item i) (see also [24, e) of Prop. 3.3 ]), hence we can assume q < +∞. Fix
r ∈ [p, q). Clearly from the Hölder inequality fn is uniformly bounded in Lr, hence by definition
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fn converges Lr-weakly to f∞. Moreover from item iii) we known that f∞ ∈ Lr(m∞), therefore
by truncation and diagonalization we can suppose that f ∈ L∞(m∞). From vi) then there exists
a sequence gn ∈ Lr(mn) converging to f∞ in Lr-strong and by item i) we can also assume that gn
are uniformly bounded in L∞. Then, from viii) in the case q =∞ we have that gn converge also
in Lp-strong to f∞. Then by ii) we have that gn−fn converges to 0 in Lp-strong and in particular
‖fn − gn‖Lp(mn) → 0. Finally by the Hölder inequality (since fn, gn are both uniformly bounded
in Lq) we have that ‖fn − gn‖Lr(mn) → 0. In particular limn ‖fn‖Lr(mn) = limn ‖gn‖Lr(mn) =
‖f∞‖Lr(m∞), which concludes the proof.

We now pass to some convergence and stability results related to Sobolev spaces. We start with
the following generalized version of the compact embedding of W 1,2 ↪→ L2 (reported here specif-
ically for compact metric measure spaces, but works e.g. on sequences of congerging uniformly
bounded CD(K,∞) spaces):

Proposition 2.4.4 ([100]). Suppose that Xn, n ∈ N̄ are compact and assume that (fn) ∈W 1,2(Xn)
are uniformly bounded in W 1,2, i.e. supn ‖fn‖W 1,2(Xn) < +∞. Then (fn) has a L2-strongly
convergent subsequence.

Next, we recall the Γ-convergences result of the 2-Cheeger energies proven in [100]:

◦ Γ-lim: for every fn ∈ L2(mn) L2-strong converging to f∞ ∈ L2(m∞), it holds

�
|Df∞|2 dm∞ ≤ lim

n→∞

�
|Dfn|2 dmn; (2.4.1)

◦ Γ-lim: for every f∞ ∈ L2(m∞), there exists a sequence fn ∈ L2(mn) converging L2-strong
to f∞ so that

lim
n→∞

�
|Dfn|2 dmn ≤

�
|Df∞|2 dm∞. (2.4.2)

We will also need the Γ-lim inequality also for the p-Cheeger energies as proved in [24, Theorem
8.1]: for every p ∈ (1,∞) and every f∞ ∈ Lp(m∞), there exists fn ∈ Lp(mn) converging Lp-strong
to f∞ so that

lim
n→∞

�
|Dfn|p dmn ≤

�
|Df∞|p dm∞.

The above is stated in [24] only for a sequence of RCD(K,∞) spaces, but it easily seen that the
proof works without modification also in the case of CD(K,∞) spaces.

We end this part recalling a well known continuity result of the spectral gap (see [100] and
[25]): if Xn, n ∈ N̄, are all compact it holds

λ1,2(X∞) = lim
n→∞

λ1,2(Xn). (2.4.3)

We mention that the continuity of the spectral gap was previously obtained in the setting of
Ricci-limit spaces by Cheeger and Colding [66].

2.5 The MCP-condition

Here, we report the definition of the measure contraction property introduced independently in
[164] and [181]. The two definitions are slighty different on arbitrary metric measure space, however
they coincides under the non branching assumption (actually, under the weaker 2-essentially non
branching assumption, a technical property investigated in [175] that we shall never employ in
this note).
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Definition 2.5.1 (MCP spaces). We say that a metric measure space (X, d,m) satisfies the mea-
sure contraction property MCP(K,N) for some K ∈ R, N ∈ [1,∞) if for any o ∈ supp(m) and
µ0 ∈ P2(X) with µ := m(A)−1m|A for some Borel set A ⊂ X (or A ⊂ B

π
√

(N−1)/K
(o) if K > 0)

with m(A) ∈ (0,∞), there exists π ∈ OptGeo2(µ, δo) so that

(et)](τ
(1−t)
K,N (d(γ0, o))

Nπ) ≤ m

m(A)
, ∀t ∈ [0, 1].

The reason why, in this note, we will couple the MCP-class with the non branching assumption
is that they enjoys good properties of Wasserstein geodesics that in turns implies deep analytical
consequences. A non branching MCP(K,N) metric measure space (X, d,m) is locally uniformly
doubling and supports a weak local (1, 1)-Poincaré inequality [164, 187]. In particular, we know
that it is also proper.

Remark 2.5.2. Notice that Definition 2.5.1 is independent on the particular choice q = 2 (and
this explains also the reason why we did not define a MCPq-condition).

The first observation is that, if o ∈ X, the set OptGeoq(µ0, δo) is independent on q when
µ0 = ρ0m with ρ0 ∈ L∞(m) and of bounded support. Indeed, in this case

µ0 ∈Pq(X) and W q
q (µ0, δo) =

�
dq(x, o) dµ0(x), ∀q ∈ (1,∞).

The verification being that the plan µ0 ⊗ δ0 is the only admissible coupling between the two
marginal, and therefore it must be optimal for any q. Then, it is straightforward to see that if
π ∈ OptGeo2(µ0, δ0), then (e1)]π = δo and therefore π ∈ OptGeoq(µ0, δ0) for all q ∈ (1,∞). This
discussion automatically shows that the choice of q = 2 in Definition 2.5.1 is irrelevant.

�

When N <∞,K ∈ R it is also known that the

A non branching CDq(K,N) space satisfies the MCP(K,N) condition (2.5.1)

The proof of this fact is due to [56, Lemma 6.11] for q = 2, but it is remarked in [1] that the proof
works for any q ∈ (1,∞).

2.5.1 Wasserstein interpolation with degenerating compression

We take from [57] (see also [128]) a key property that is similar in spirit (and in the proof) to
Theorem 2.2.9.

Theorem 2.5.3. Let (X, d,m) be a non branching MCP(K,N)-space for some K ∈ R, N ∈ [1,∞).
Then, for every D > 0 and µ0, µ1 ∈ P2(X) with µ0 = ρ0m, ρ0 ∈ L∞(m), and diam(supp(µ0) ∪
supp(µ1)) < D, there exists π ∈ OptGeo2(µ0, µ1) with µt := (et)]π � m and

‖ρt‖L∞(m) ≤
1

(1− t)N
eDt
√

(N−1)K−‖ρ0‖L∞(m), ∀t ∈ [0, 1), (2.5.2)

having set ρt := dµt
dm for t < 1.

We will provide a proof in Appendix A, where we will also extend this Theorem to all exponent
q 6= 2.
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Part II

Main contributions
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3 | Gradient flows on CAT-spaces: dif-

ferential viewpoint and applications
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3.1 Introduction

The geometry of the metric space and the convexity properties of the functional under consider-
ation greatly affect the kind of results one can obtain for gradient flows. For the purpose of this
Chapter, the works [153], [124] are particularly relevant: it is showed that the classical Crandall-
Liggett generation theorem can be generalized to the metric setting of CAT(0) spaces to produce
a satisfactory theory of gradient flows for semi-convex and lower semicontinuous functionals.

If the metric space one is working on admits some nicely-behaved tangent spaces/cones, one
might hope to give a meaning to the classical defining formula

x′t ∈ −∂−E(xt) a.e. t

or to its more precise variant

x′+t = the element of minimal norm in − ∂−E(xt) ∀t > 0. (3.1.1)

This has been done in [146], where previous approaches in [170] have been generalized. Here,
notably, the basic assumptions on the metric space are of first order in nature (and refer precisely
to the structure of tangent cones) and the energy functional is assumed to be semiconvex and
locally Lipschitz. While the convexity assumption is very natural when studying gradient flows
(all in all, even in the Hilbert setting many fundamental results rely on such hypothesis), asking
for Lipschitz continuity is a bit less so: it certainly covers many concrete examples, for instance of
functionals built upon distance functions on spaces satisfying some one-sided curvature bound, but
from the analytic perspective it may be not satisfying: already the Dirichlet energy as a functional
on L2 is not Lipschitz, and the same holds for the Korevaar-Schoen energy we aim to study here.

Our motivation to study this topic comes from the desire of providing a notion of Laplacian
for CAT(0)-valued Sobolev maps defined on a RCD-space, where here ‘Sobolev’ is intended in the
sense of Korevaar-Schoen [133] (recall the caracterization of Theorem 2.3.4 obtained in [109] and
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the associated definition of Korevaar-Schoen energy EKS). Imitating one of the various equivalent
definitions for the Laplacian in the classical smooth and linear setting, one is lead to define the
Laplacian of u as the element of minimal norm in −∂−EKS(u). This approach of course carries
at least two tasks: to define what −∂−E is and to show that it is not empty for a generic convex
and lower semicontinuous functional E. Providing a reasonable definition for −∂−E is not that
hard (see Definition 3.2.5), but is less obvious to show that this object is not-empty (in particular,

minimizing E(·) + d2(·,x)
2τ is of no help here, see the discussion in Remark 3.2.6). It is here that the

theory of gradient flows comes to help:

our main result is that, for semiconvex and lower semicontinuous functions on a CAT(κ)
space, the analogue of (3.1.1) holds, see Theorem 3.2.9.

As a byproduct, we deduce that the domain of −∂−E is dense in the one of E. A result similar
to ours has been obtained in [62] under some additional geometric assumptions on the base space,
which in some sense tell that there is the opposite of any tangent vector.

As said, we then apply this result to study the Laplacian of CAT(0)-valued Sobolev maps. Let
us remark that in this case the relevant metric space L2(Ω,Yȳ) is that of L2 maps from some open
subset Ω of a metric measure space X to a pointed CAT(0) space (Y, ȳ) and the energy functional
is the Korevaar-Schoen energy EKS: it is well known that L2(Ω,Yȳ) is a CAT(0) space and that
EKS is convex and lower semicontinuous, but certainly not Lipschitz, whence the need to generalize
Lytchak results to cover also this case.

Once we have a notion for −∂−EKS we enrich the analysis with:

i) the actual definition of Laplacian ∆u of a CAT(0)-valued map u (Definition 3.3.9), which pays
particular attention to the link between the tangent cones in L2(Ω,Yȳ), where −∂−EKS lives,
and the tangent cones in Y, where we think ‘variations’ of u should live, see in particular
Propositions 3.3.5 and 3.3.8,

ii) a basic, weak, integration by parts formula, see Proposition 3.3.10, which is sufficient to
show that our approach is compatible with the classical one valid in the smooth category,

iii) a presentation of a simple and concrete example (Example 3.3.17) showing why ∆u seems
to be very much linked to the geometry of Y, but less so to Sobolev calculus on it.

Structure of the Chapter. This Chapter is organized as follows:

In Section 3.2, we recall the equivalent definitions of gradient flows on locally CAT(κ) spaces
and list the main available structural properties. Then, we move to the study of subdifferential
sets by exloiting a well established concrete first order calculus of CAT-spaces. Then, we move
to the well-posedness of a subdifferential definition of gradient flows in this setting and prove the
equivalence with previously available notions.

Finally, in Section 3.3, we consider applying the previous theory to define a notion of Laplacian
of a Sobolev map with RCD domain and CAT(0) target. We start by building the right framework
for the Laplacian defining the space of integrable section of the pullback geometric tangent bundle
of a CAT(0) space via a map u. Then, we set naturally the sought Laplacian in the subdifferential
of the energy functional and establish basic calculus rule and integration by-parts type of formula.

3.2 Gradient flows on CAT(κ)-spaces

3.2.1 Metric approach and structural properties

We start facing various equivalent definitions of gradient flows on locally CAT(κ)-spaces. The
equivalence between the first two notions below is due to the convexity assumption, while the
equivalence of these with the EVI is due to the geometric properties of CAT(κ)-spaces, and in
particular their Hilbert-like structure at small scales.
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Theorem 3.2.1 (Gradient flows on locally CAT(κ)-spaces: equivalent definitions). Let Y be a
locally CAT(κ)-space, E : Y → R∪ {+∞} a λ-convex and lower semicontinuous functional, λ ∈ R,
y ∈ Y and (0,∞) 3 t 7→ yt ∈ Y a locally absolutely continuous curve such that yt → y as t ↓ 0.
Then, the following are equivalent:

i) Energy Dissipation Inequality We have

−∂tE(yt) ≥
1

2
|ẏt|2 +

1

2
|∂−E|2(yt)

where the derivative in the left hand side is intended in the sense of distributions.

ii) Sharp dissipation rate t 7→ E(yt) is locally absolutely continuous and

lim
h↓0

E(yt)− E(yt+h)

h
= |ẏ+

t |2 = |∂−E|2(yt) for every t > 0, (3.2.1)

where |ẏ+
t | := limh↓0

dY(yt+h,yt)
h is the right metric speed, which in this case exists for every

t > 0.

iii) Evolution Variational Inequality (yt) is a EVI gradient flow (in the sense of Defini-
tion 1.1.9, i.e. for every z ∈ Y we have

d

dt

d2
Y(yt, z)

2
+ E(yt) +

λ

2
d2

Y(yt, z) ≤ E(z) a.e. t > 0. (3.2.2)

Proof. The fact that ii) implies i) is obvious. The converse implication has been proved in [19] as a
consequence of the so called strong upper gradient property of the slope. The implication iii)→ ii)
is proved in [161] (the argument in [161] has been also reported in [92]). The fact that on locally
CAT(κ)-spaces ii) implies iii) has also been proved in [161] (see in particular Theorems 4.2 and
3.14 there). More precisely, in [161] only the ‘global’ case of CAT(κ)-spaces has been considered,
but the arguments there can be quickly adapted to cover our case by noticing that:

- arguing as for the proof of (3.2.6) below, we see that (3.2.2) holds at some t if and only if it
holds at t for z varying only in a neighbourhood of yt,

- property (3.2.1) is local by nature,

- if B ⊂ Y is closed, convex and CAT(κ), then a curve I 3 t 7→ yt ∈ B satisfies ii) (resp. iii))
in B if and only if it satisfies ii) (resp. iii)) in Y.

A curve satisfying any of the equivalent conditions in this last theorem will be called gradient
flow trajectory. Moreover, we define the gradient flow map GFE : (0,∞)×Y → Y via GFE

t (y) := yt
for every t ∈ (0,∞), y ∈ Y, where, evidently, yt is the gradient flow trajectory starting at y and
associated to the functional E evaluated at time t. Some of their main properties are collected in
the following statement:

Theorem 3.2.2 (Gradient flows on locally CAT(κ)-spaces: some basic properties). Let Y be a
locally CAT(κ)-space, E : Y → R ∪ {+∞} a λ-convex and lower semicontinuous functional. Then,
the following holds:

B Existence

For every y ∈ D(E) there exists a gradient flow trajectory for E starting from y.

B Uniqueness and λ-contraction
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For any two gradient flow trajectories (yt), (zt) starting from y, z respectively we have

dY(yt, zt) ≤ e−λ(t−s)dY(ys, zs) ∀t ≥ s > 0 (3.2.3)

B Monotonicity properties For (yt) gradient flow trajectory for E starting from y we have
that

t 7→ yt is locally Lipschitz in (0,+∞) with values in D(|∂−E|) ⊂ D(E),

t 7→ E(yt) is nonincreasing in [0,+∞),

t 7→ eλt|∂−E|(yt) is nonincreasing in [0,+∞). (3.2.4)

Proof. In the CAT(0) case, existence of a limit of the so-called minimizing movements scheme in
this setting has been proved in [153] and [124]. The fact that the limit curve obtained in this way
satisfies the EVI condition has been proved in [19]. The contractivity property, also at the level
of the discrete scheme, has been proved in [153] and [124] (at least in the case λ = 0, the general
case can be found e.g. in [19] as a consequence of the EVI condition). Then, uniqueness is directly
implied by (3.2.3) and the last claims are a consequence of (3.2.1) and the contraction property.

The CAT(κ) case has been treated in [166], at least under some compactness assumptions on
the sublevels of the functional. Such compactness assumption has been removed in [161]. Finally,
the case of locally CAT(κ) spaces can be dealt with as in the proof of Theorem 3.2.1 above.

Finally, we conclude the section with an a priori estimate, a variant of the ones investigated
in [161], concerning contraction properties along the gradient flow trajectories at different times.
The proof is inspired by the one of [171, Lemma 2.1.4] in the context of CBB-spaces.

Lemma 3.2.3 (A priori estimates). Let Y be locally CAT(κ) and E : Y → [0,∞] be a λ-convex and
lower semicontinuous functional, λ ∈ R. Let y, z ∈ Y and consider the gradient flow trajectories
(yt), (zt) associated with E.

Then, for any t ≥ s > 0, it holds

d2
Y(yt, zs) ≤ e−2λs

(
d2

Y(y, z)+2(t− s)(E(z)− E(y))

+ 2|∂−E|2(y)

� t−s

0

θλ(r) dr − λ
� t−s

0

d2
Y(yr, z) dr

)
,

(3.2.5)

where θλ(t) :=
� t

0
e−2λr dr.

Proof. We start fixing t > 0. First, we notice that, in light of ii) of Theorem 3.2.1 and the basic
properties in Theorem 3.2.2, we have for any r > 0 (and not a.e. r),

−E(yr) + E(y) =

� r

0

e−2λqe+2λq|∂−E|2(yq) dq ≤ |∂−E|2(y)θλ(r).

Thus, we can integrate from 0 to t the EVI condition (3.2.2) to get

1

2
(d2

Y(yt, z)− d2
Y(y, z)) ≤

� t

0

E(z)− E(yr)−
λ

2
d2

Y(yr, z) dr

≤ t(E(z)− E(y)) + |∂−E|2(y)

� t

0

θλ(r) dr − λ

2

� t

0

d2
Y(yr, z) dr.

Finally, for general t ≥ s > 0, we can reduce to above case by appealing to property (3.2.3).

56



3.2.2 The object −∂−E(y)
In this section we introduce the key object −∂−E(y) of this Chapter associated to a semiconvex
and lower semicontinuous functional E over a local CAT(κ) space. As the notation suggests,
and as will be clear from Definition 3.2.5, for functionals on Hilbert spaces this corresponds to
{−v : v ∈ ∂−E(y)}.

We start recalling the following well known fact:

Proposition 3.2.4 (Metric projection). Let Y be a CAT(0)-space and C ⊂ Y be a closed convex
subset. Then, for every y ∈ Y, there is a unique PrC(y) ∈ C, called metric projection of y onto
C, such that dY(y,PrC(y)) = infC dY(y, ·).

Proof. Since the function to be minimized is continuous and C closed, it is sufficient to prove that
any minimizing sequence (cn) for I := infc∈C d2

Y(c, y) (which is equivalent to be minimizing for
infC dY(y, ·)) is Cauchy. Fix such sequence and, for every n,m ∈ N, let cm,n be the mid-point
between cn and cm. Observe that since C is convex, cn,m belongs to C and thus is a competitor
for the minimization problem. Condition (2.1.2) therefore implies

I ≤ d2
Y(cn,m, y) ≤ 1

2
d2

Y(cn, y) +
1

2
d2

Y(cm, y)− 1

4
d2

Y(cn, cm),

for every n,m ∈ N. Rearranging terms, and taking the limsup as n,m go to infinity we observe

lim
n,m→+∞

1

4
d2

Y(cn, cm) ≤ lim
n,m→+∞

1

2
d2

Y(cn, y) +
1

2
d2

Y(cm, y)− I = 0,

i.e. (cn) is Cauchy, as desired.

We remark that the metric projection can be also shown to be 1-Lipschitz and to satisfy a
‘Pythagoras’ inequality’ (see [39, Theorem 2.1.12]), but we will not make use of this fact. Finally,
we are ready to give an effective definition of (opposite of the) subdifferential of E as a subset of
the tangent cone.

Definition 3.2.5 (Minus-subdifferential). Let Y be locally CAT(κ), E : Y → R ∪ {+∞} be a
λ-convex and lower semicontinuous functional, λ ∈ R, and y ∈ D(E). We define the minus-
subdifferential of E at y, denoted by −∂−E(y), as the collection of v ∈ TyY satisfying the subdif-
ferential inequality

E(y)−
〈
v, γ′0

〉
y

+
λ

2
d2

Y(y, z) ≤ E(z),

for every z ∈ Y, and some geodesic γ from y to z. Moreover, by D(−∂−E), we denote the collection
of y ∈ Y for which −∂−E(y) 6= ∅.

Notice that v ∈ −∂−E(y) if and only if

−
〈
v, γ′0

〉
y
≤ lim

t↓0

E(γt)− E(y)

t
∀z ∈ Y, for some geodesic γ from y to z. (3.2.6)

so that in particular the definition of −∂−E(y) does not depend on λ. Indeed the ‘if’ is obvious
by λ-convexity while for the ‘only if’ we apply the defining inequality with zt := γt in place of z
and, for t small enough, rearrange to get

−
〈
v, (Gzty )′0

〉
y

+
λ

2
d2

Y(y, zt) ≤ E(zt)− E(y)

so that the conclusion follows noticing that d2
Y(y, zt) = t2d2

Y(y, z), (Gzty )′0 = tγ′0 (because for t� 1
the geodesic from y to zt in unique), then dividing by t and letting t ↓ 0. The same arguments
also show that both in Definition 3.2.5 and in (3.2.6) we can take γ to be any geodesic from y to
z.

57



It is also worth to point out that

For E convex and lower semicontinuous we have that:

x is a minimum point for E if and only if 0 ∈ −∂−E(x).
(3.2.7)

The proof of this fact being obvious.

Remark 3.2.6. It would certainly be possible to define the analogous notion of subdifferential
∂−E by replacing −

〈
v, γ′0

〉
y

with
〈
v, γ′0

〉
y

in the defining formula, however, since the tangent cone

is only a cone and not a space, there is no obvious relation between the two definitions.

For our purposes, −∂−E is the correct object to work with because, as discussed in the intro-
duction, we aim at showing the existence of the Laplacian of a CAT(0)-valued Sobolev map by
looking at the gradient flow of the Korevaar-Schoen energy EKS. Thus, we notice on one hand
that, by definition and imitating what happens in the smooth category, the Laplacian of u has to
be introduced as (the element of minimal norm in) −∂−EKS(u), and on the other hand that in the
gradient flow equation (3.1.1) it is −∂−E who appears.

In this direction, it is interesting to point out that the classical procedure of minimizing

y 7→ E(y) +
d2

Y(y, ȳ)

2τ
,

which is the cornerstone of most existence results about gradient flows in the metric setting (see e.g.
[19]), produces a (unique, if τ > 0 is small enough) point yτ for which we have 1

τ (Gȳyτ )′0 ∈ ∂−E(yτ ).
In particular it gives no informations about whether −∂−E(yτ ) is not empty. In our approach this
latter fact, and the related one that the slope at y coincides with the norm of the element of
least norm in −∂−E(y), will be a consequence of the fact that gradient flow trajectories satisfy an
analogue of (3.1.1), see Theorem 3.2.9. �

It will be important to know that in −∂−E(y) there is always an element of minimal norm:

Proposition 3.2.7. Let Y be a locally CAT(κ)-space, E : Y → R∪{+∞} be a λ-convex and lower
semicontinuous functional, λ ∈ R, and y ∈ Y. Then, −∂−E(y) is a closed and convex subset of
TyY. In particular, if this set is not empty, the optimization problem

inf
v∈−∂−E(y)

|v|y

admits a unique minimiser.

Proof. Recalling that TyY is CAT(0), by Proposition 3.2.4 the existence of a unique minimizer in
−∂−E(y) for the norm, i.e. of a unique metric projection of 0y onto −∂−E(y), will follow once we
show that −∂−E(y) is closed and convex.

The fact that it is closed follows from the definition and the consideration already stated in
Proposition 2.1.5 that the scalar product

〈
·, ·
〉
y

is continuous on TyY. The convexity follows from

the inequality

−
〈
(Gv2
v1

)t, w
〉
y
≤ −(1− t)

〈
v1, w

〉
y
− t
〈
v2, w

〉
y

∀v1, v2, w ∈ TyY, t ∈ [0, 1],

which is a direct consequence of (2.1.5b) and (2.1.5f).

3.2.3 Subdifferential approach and equivalence

Here we prove the main results of this note, namely Theorem 3.2.9 and Corollary 3.2.10 below.
We shall use the following preliminary result (notice that the fact that equality holds in (3.2.8)
will be obtained in (3.2.9)):
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Proposition 3.2.8. Let Y be locally CAT(κ) and E : Y → R ∪ {+∞} be a λ-convex and lower
semicontinuous functional, λ ∈ R. Then, for every y ∈ D(−∂−E), we have

|∂−E|(y) ≤ inf
v∈−∂E(y)

|v|y. (3.2.8)

In particular, D(−∂−E) ⊂ D(|∂−E|).

Proof. Let v ∈ −∂−E(y) and notice that

E(y)− E(z) +
λ

2
d2

Y(y, z) ≤ |
〈
v, (Gzy)′0

〉
y
|

(2.1.5c)

≤ |v|ydY(y, z), ∀z ∈ Y

which in turns implies(
E(y)− E(z)

dY(y, z)
+
λ

2
dY(y, z)

)+

≤ |v|y ∀z ∈ Y, z 6= y.

Taking the supremum over z 6= y and recalling Lemma 1.1.8 we conclude.

We now come to the main result of this Chapter, namely the existence of right incremental
ratios of the flow for all time.

Theorem 3.2.9 (Right derivatives of the flow). Let Y be locally CAT(κ) and E : Y → R ∪ {+∞}
be a λ-convex and lower semicontinuous functional, λ ∈ R. Let y ∈ D(E), and (yt) be the gradient
flow trajectory starting from y (recall Theorem 3.2.2).

Then, for every t > 0, the right ‘difference quotient’ 1
h (G

yt+h
yt )′0 strongly converges to the

element of minimal norm in −∂−E(yt) ⊂ TytY (i.e. to Pr−∂−E(yt)(0yt)) as h goes to 0+. The
same holds for t = 0 if (and only if) we have y ∈ D(|∂−E|).

Moreover, D(−∂−E) = D(|∂−E|) and the identity

|∂−E|(y) = min
v∈−∂−E(y)

|v|y ∀y ∈ Y (3.2.9)

holds, where as customary the minimum of the empty set is declared to be +∞. In particular,
D(−∂−E) is dense in D(E).

Proof. By the semigroup property ensured by the uniqueness of gradient flow trajectories and
taking into account that yt ∈ D(|∂−E|) for every t > 0 (recall (3.2.2)), it suffices to show the
claim for t = 0 under the assumption y ∈ D(|∂−E|). Suppose y is not a minimum point for E,
otherwise there is nothing to prove. In particular, ii) of Theorem 3.2.1 ensures that |ẏ0| exists and
it is positive. Also, notice that the continuity at time t = 0 of the gradient flow trajectory ensures
that for ε > 0 sufficiently small we have yh ∈ Bry (y) for every h ∈ (0, ε). In particular for such h
the tangent vector vh := 1

h (Gyhy )′0 ∈ TyY is well defined and the statement makes sense. Fix such
ε > 0.
Step 1. For every h ∈ (0, ε) we have

|vh|y =
dY(yh, y)

h
≤
 h

0

|ẏt|dt
(3.2.1)

=

 h

0

|∂−E|(yt) dt
(3.2.4)

≤ |∂−E|(y)

 h

0

e−λt dt. (3.2.10)

Hence suph∈(0,ε) |vh|y <∞, therefore point (iii) of Proposition 2.1.9 gives that for every sequence
hn ↓ 0 there is a subsequence, not relabelled, such that vhn ⇀ v for some v ∈ TyY.

Fix such sequence and such weak limit v. To conclude it is sufficient to prove that the conver-
gence is strong and that v is the element of minimal norm in −∂−E(y), as this in particular grants
that the limit is independent on the particular subsequence chosen.
Step 2. We claim that v ∈ −∂−E(y). To see this, integrate (3.2.2) from 0 to h and divide by h
to obtain

d2
Y(yh, z)− d2

Y(y, z)

2h
+

 h

0

E(yt) +
λ

2
d2

Y(yt, z) dt ≤ E(z) ∀z ∈ Y, h ∈ (0, ε).

59



Letting h = hn ↓ 0 and recalling that E is lower semicontinuous we deduce that

lim
n→∞

d2
Y(yhn , z)− d2

Y(y, z)

2hn
+ E(y) +

λ

2
d2

Y(y, z) ≤ E(z) ∀z ∈ Y. (3.2.11)

Next, fix z ∈ Y, let γ ∈ GeoyY with γ1 = z, denote zs := γs and notice that, for s sufficiently
small, zs, yhn ∈ Bry (y). Now (2.1.7) yields

lim
n→∞

−
〈
vhn , (G

zs
y )′0

〉
y
≤ dY(y, z) lim

n→∞

d(yhn , y)

hn

dY(yhn , zs)− dY(y, zs)

|ẏ0|hn

= lim
n→∞

d2
Y(yhn , zs)− d2

Y(y, zs)

2hn
,

having used the fact that limn anbn = a limn bn if limn an = a > 0 and (an), (bn) ⊂ R are bounded,
and a chain rule argument in the last equality. Thus, recalling the weak upper semicontinuity of
the scalar product proved in point (vi) of Proposition 2.1.9 we get

lim
n→∞

d2
Y(yhn , zs)− d2

Y(y, zs)

2hn
≥ −

〈
v, (Gzsy )′0

〉
y
.

Now, combine with (3.2.11) to get

E(y)−
〈
v, (Gzsy )′0

〉
y

+
λ

2
d2

Y(zs, y) ≤ E(zs) ≤ (1− s)E(y) + sE(z)− λ

2
s(1− s)d2

Y(z, y).

Finally, using that (Gzsy )′0 = sγ′0, d2
Y(zs, y) = s2d2

Y(y, z) and (2.1.5b), we can rearrange terms and
take the limit as s ↓ 0 to get

E(y)−
〈
v, γ′0

〉
y

+
λ

2
d2

Y(z, y) ≤ E(z) for every γ geodesic from y to z.

Given that z was arbitrary, we conclude.
Step 3. Since | · |2y : TyY → R is convex and continuous, by point (v) of Proposition 2.1.9 we get

|v|2y ≤ lim
n→∞

|vhn |2y ≤ lim
n→∞

|vhn |2y
(3.2.10)

≤ |∂−E|2(y)
(3.2.8)

≤ inf
w∈−∂−E(y)

|w|2y ≤ |v|2y,

and thus all the inequalities must be equalities. This proves at once the strong convergence of
(vhn) to v (by the convergence of norms and point ii) of Proposition 2.1.9) and that v is the
element of minimal norm in −∂−E(y).

The argument also proves that if y ∈ D(|∂−E|), then y ∈ D(−∂−E) and in this case the equality
in (3.2.9) holds. Taking into account Proposition 3.2.8 we conclude that D(|∂−E|) = D(−∂−E)
that (3.2.9) holds for every y ∈ Y, as desired.

The last claim then follows from the existence of gradient flow trajectories starting from points
in D(E) (Theorem 3.2.2) and (3.2.1).

As a direct consequence of the above result, we see that we can characterize gradient flow
trajectories by means of the classical differential inclusion x′t ∈ −∂−E(xt) which can be used to
define such evolution in the Hilbert setting:

Corollary 3.2.10. Let Y be locally CAT(κ) and E : Y → R ∪ {+∞} be a λ-convex and lower
semicontinuous functional, λ ∈ R. Let y ∈ D(E), and (0,∞) 3 t 7→ yt ∈ D(E) be a locally
absolutely continuous curve. Then, the following are equivalent:

i) (yt) is a gradient flow trajectory for E starting from y, i.e. satisfies any of the three equivalent
conditions in Theorem 3.2.1.
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ii) The right derivative y′+t exists for every t > 0 and{
y′+t ∈ −∂−E(yt) ∀t > 0 and is the element of minimal norm,
lim
t↓0

yt = y.

If y ∈ D(|∂−E|) = D(−∂−E) then the above holds also at t = 0.

iii) It holds {
y′+t ∈ −∂−E(yt) a.e. t > 0,
lim
t↓0

yt = y.

Proof. The implication i) ⇒ ii) is proved in Theorem 3.2.9 above and the one ii)) ⇒ iii) is
obvious. The fact that iii) implies i) (in the form of the Evolution Variation Inequality) is a direct
consequence of Proposition 2.1.7 (applied in a CAT(κ) neighbourhood of yt in combination with
arguments similar to those outlined in the proof of Theorem 3.2.1 to cover the case of a local
CAT(κ) space) and the definition of −∂−E.

Remark 3.2.11. In the setting of Alexandrov geometry it is more customary to study the gradient
flow of semiconcave functions F, thus studying (a properly interpreted version of) y′t ∈ ∂+F. Let
E be semiconvex on a CAT(κ)-space Y and put F := −E. Then it is clear that the slope |∂−E|
as we defined it coincides with the absolute gradient |∇F| as defined in [146, Definition 4.1],
therefore, taking into account the characterization (3.2.1), we see that up to a different choice
of parametrization, our notion of gradient flow trajectory coincides with the one of gradient-like
curve studied in [146, Definition 6.1].

The property d
dt+F(yt) = − d

dt+E(yt) = |∂−E|2(yt) = |vt|2yt , where vt ∈ −∂−E(yt) is the element
of minimal norm, together with the existence of the right derivative of yt and the characterization
(3.2.6) show that the element of minimal norm in −∂−E(y) coincides with ∇F(y) as defined in [6,
Definition 11.4.1] on spaces with curvature bounded from below. This shows that our ‘differential’
perspective on gradient flows is compatible with the one studied in [6] on CBB spaces. �

3.3 Application: Laplacian of CAT(0)-valued maps

3.3.1 Pullback geometric tangent bundle

In this part, we perform a pullback metric construction related to concept of Borel section of the
Geometric tangent bundle TGY over a locally CAT(κ) space Y as defined in Section 2.1.3. This
can be seen as the pullback related to space L2(TGY;µ) of L2(µ) Borel section of TGY as defined
in [79], when µ is an arbitrary positive Borel and boundedly finite measure on Y. Nevertheless,
the author dealt only with separable CAT(κ) spaces, hence our work refinds and extends these
results simply when considering the trivial operation of pullback via the identity map.

We distinguish two situations: Y separable or not.

The general non-separable case

Let us fix a pointed CAT(0) space (Y, dY, ȳ), a metric measure space (X, d,m) and an open subset
Ω ⊂ X. For u, v ∈ L2(Ω,Yȳ) a direct computation shows that t 7→ (Gvu)t ∈ L2(Ω,Yȳ), where

(Gvu)t(x) := (G
v(x)
u(x))t, is a geodesic from u to v (the fact that (Gvu)t : Ω → Y is Borel follows

from the continuous dependence of the - unique - geodesics on Y w.r.t. the endpoints). Also, by
appealing to the equivalent characterization (2.1.2) of CAT(0)-spaces, the computation

d2
L2((Gvu)t, w) =

�
d2

Y((G
v(x)
u(x))t, w(x)) dm(x)

(2.1.2)

≤
�

(1− t)d2
Y(u(x), w(x)) + td2

Y(v(x), w(x))− t(1− t)d2
Y(u(x), v(x)) dm(x)

= (1− t)d2
L2(u,w) + td2

L2(v, w)− t(1− t)d2
L2(u, v)
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valid for any w ∈ L2(Ω,Yȳ) and every t ∈ [0, 1], reveals that L2(Ω,Yȳ) is a CAT(0)-space as well
and thus Gvu is the only geodesic from u to v.

In particular, given u ∈ L2(Ω,Yȳ) we have a well defined tangent cone TuL
2(Ω,Yȳ) containing

what we may think of as the set of ‘infinitesimal variations’ of u. Intuitively, these variations
should correspond to a collection, for m-a.e. x ∈ Ω, of a variation of u(x) ∈ Y, i.e. to a collection
of elements of Tu(x)Y.

We now want to make this intuition rigorous and, due to the fact that CAT(0)-spaces are
typically studied in non separable environments, we first discuss this case, postponing to the next
sections the separable case and its relations with the Borel structure on TGY seen in Section 2.1.3.
Fix u ∈ L2(Ω,Yȳ) and a Borel representative of it, which by abuse of notation we shall continue
to denote by u. By u∗TGY we intend the set

u∗TGY :=
{

(x, y, v) : x ∈ Ω, y = u(x), v ∈ TyY
}
⊂ X× TGY

A section of u∗TGY is a map S : Ω→ u∗TGY such that πX(S(x)) = x, where πX : u∗TGY → X is

u(x)

Y

u

X

TGY
u∗TGY

x

Figure 3.1: Pullback geometric tangent bundle u∗TGY via u : X→ Y.

the canonical projection. Given such a section S we write S(x) = (x, u(x),Sx) for any x ∈ Ω. We
shall denote by 0 the zero section defined by 0x := 0u(x) ∈ Tu(x)Y.

Then given another v ∈ L2(Ω,Yȳ) and a Borel representative of it, still denoted by v, and

α ≥ 0, we can consider the section S of u∗TGY given by x 7→ (x, u(x), α(G
v(x)
u(x))

′
0). We then have

the following simple and useful lemma.

Lemma 3.3.1. Let (Y, dY, ȳ) be a pointed CAT(0)-space, (X, d,m) a metric measure space, Ω ⊂ X
an open subset, u, v1, v2 : Ω→ Y Borel representatives of maps in L2(Ω,Yȳ). Also, let α1, α2 ∈ R+

and consider the sections Si of u∗TGY given by Six := αi(G
vi(x)
u(x) )′0, i = 1, 2.

Then the maps Ω 3 x 7→ |S1
x|u(x), du(x)(S

1
x,S

2
x),
〈
S1
x,S

2
x

〉
u(x)

are Borel.

Proof. It is sufficient to prove that Ω 3 x 7→ du(x)(S
1
x,S

2
x) ∈ R is Borel, as then the other Borel

regularities will follow. We have already noticed that the maps x 7→ (Gv
i

u )αit(x) ∈ Y, i = 1, 2, are
Borel, hence so is the map

x 7→
dY

(
(Gv

1

u )α1t(x), (Gv
2

u )α2t(x)
)

t

for any 0 < t � 1. Since these maps pointwise converge to x 7→ du(x)(S
1
x,S

2
x) as t ↓ 0, the claim

follows.

In particular, for S1,S2 as in the above statement, the quantity

dL2

(
S1,S2

)
:=

√�
Ω

d2
u(x)(S

1
x,S

2
x) dm(x), (3.3.1)

is well defined. Standard arguments then show that dL2 is symmetric, satisfies the triangle in-
equality and dL2(S,S) = 0 (but it might happen that dL2(S1,S2) = 0 for S1 6= S2 and that
dL2(S1,S2) = +∞).

We then give the following definitions:
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Definition 3.3.2 (L2 sections of u∗TGY). Let (Y, dY, ȳ) be a pointed CAT(0)-space, (X, d,m) a
metric measure space, Ω ⊂ X an open subset and u a Borel representative of a map in L2(Ω,Yȳ).
Then, L2(u∗TGY,m|Ω) is the collection of sections S of u∗TGY such that:

i) For any α ∈ R+ and v : Ω → Y Borel and essentially separably valued we have that x 7→
du(x)(Sx, α(G

v(x)
u(x))

′
0) is a Borel function.

ii) There is a sequence (αn) ⊂ R+ and maps vn : Ω→ Y Borel and essentially separably valued

such that for the sections Sn given by Snx := αn(G
vn(x)
u(x) )′0 we have

sup
n∈N

dL2(Sn, 0) <∞,

lim
n→∞

du(x)(S
n
x ,Sx) = 0 ∀x ∈ Ω.

(3.3.2)

It is clear from the definitions that for S1,S2 ∈ L2(u∗TGY,m|Ω) the map x 7→ du(x)(S
1
x,S

2
x) is

Borel and L2(m|Ω)-integrable, therefore dL2(S1,S2) is well defined by (3.3.1) and finite.

Definition 3.3.3 (L2 sections of u∗TGY). Let (Y, dY, ȳ) be a pointed CAT(0)-space, (X, d,m) a
metric measure space, Ω ⊂ X an open subset and u a Borel representative of a map in L2(Ω,Yȳ).
We define L2(u∗TGY,m|Ω) as the quotient of L2(u∗TGY,m|Ω) with respect to the relation S1 ∼ S2

if dL2(S1,S2) = 0.

It is obvious that the relation indicated in the previous definition is an equivalence relation,
so that L2(u∗TGY,m|Ω) is well defined. Also, the quantity dL2 passes to the quotient and defines

a distance, still denoted by dL2 , on L2(u∗TGY,m|Ω) and standard considerations show that the

resulting object is a complete metric space.
Now let ũ : Ω→ Y be Borel and m-a.e. equal to u and consider the identification I : L2(u∗TGY,m|Ω)→

L2(ũ∗TGY,m|Ω) sending S to the section I(S) defined by

I(S)x :=

{
Sx, if u(x) = ũ(x),
0ũ(x), if u(x) 6= ũ(x).

It is clear that this map passes to the quotients and thus induces a map, still denoted by I, from
L2(u∗TGY,m|Ω) to L2(ũ∗TGY,m|Ω). Also, the fact that u = ũ m-a.e. trivially implies that such

I is an isometry.
Thanks to these considerations, it makes sense to consider the space L2(u∗TGY,m|Ω) for

u ∈ L2(Ω,Yȳ), i.e. even when u is only given up to m-a.e. equality: it is just sufficient to pick any
Borel representative of u, consider the corresponding space of L2-sections up to m-a.e. equality
and notice that such space does not depend on the representative of u chosen.

The basic properties of the space L2(u∗TGY,m|Ω) are collected in the following statement.

Proposition 3.3.4 (Properties of L2(u∗TGY,m|Ω)). Let (Y, dY, ȳ) be a pointed CAT(0)-space,

(X, d,m) a metric measure space, Ω ⊂ X an open subset and u ∈ L2(Ω,Yȳ).
Then:

i) For every S1,S2 ∈ L2(u∗TGY,m|Ω) the functions Ω 3 x 7→ du(x)(S
1
x,S

2
x), |S1

x|u(x),
〈
S1
x,S

2
x

〉
u(x)

are (equivalence classes up to m-a.e. equality of) Borel functions.

ii) For every S1,S2 ∈ L2(u∗TGY,m|Ω) the section S1⊕S2 given by the (equivalence class of the)

map x 7→ (x, u(x),S1
x ⊕ S2

x) belongs to L2(u∗TGY,m|Ω).

(iii) For every S ∈ L2(u∗TGY,m|Ω) and f ∈ L∞(m|Ω) the section fS given by the (equivalence

class of the) map x 7→ (x, u(x), f(x)S1
x) belongs to L2(u∗TGY,m|Ω).
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Proof. The Borel regularity of x 7→ du(x)(S
1
x,S

2
x) has already been noticed. Then the one of

|S1
x|u(x) follows from the fact that the zero section 0 belongs to L2(u∗TGY,m|Ω) and thus the one

of
〈
S1
x,S

2
x

〉
u(x)

follows by the definition of scalar product.

We pass to ii) and first consider the case of S1,S2 ∈ L2(u∗TGY,m|Ω) of the form S1
x = α(G

v(x)
u(x))

′
0

and S2
x = β(G

w(x)
u(x) )′0 for v, w : Ω → Y Borel and essentially separably valued and α, β ≥ 0. Put

T := min{α−1, β−1} ∈ (0,∞] and for t ∈ (0, T ) put vt := (Gvu)αt, wt := (Gwu )βt and let mt(x)
be the midpoint of vt(x), wt(x) for every x ∈ Ω. From the continuity of the ‘midpoint’ operation
and the triangle inequality it easily follows that x 7→ mt(x) is Borel, essentially separably valued

and in L2(Ω,Yȳ). Then, define the section Mt as Mt,x := 1
t (G

mt(x)
u(x) )′0 and recall (2.1.6) to see that

Mt,x → 1
2 (S1 ⊕ S2)x in Tu(x)Y as t ↓ 0 for every x ∈ Ω: this proves that 1

2 (S1 ⊕ S2) satisfies the
requirement i) in Definition 3.3.2. The same convergence together with the bound

|Mt,·|u(·) ≤ 1
t dY(u,mt) ≤ 2

t

(
dY(u, vt) + dY(u,wt)

)
≤ 2
(
αdY(u, v) + βdY(u,w)

)
on Ω

valid for every t ∈ (0, T ) shows that 1
2 (S1⊕S2) satisfies also the requirement ii) in Definition 3.3.2.

Now the fact that 1
2 (S1⊕S2) ∈ L2(u∗TGY,m|Ω) for generic S1,S2 ∈ L2(u∗TGY,m|Ω) follows by

approximation (recall point ii) in Definition 3.3.2) and the continuity of the ‘sum’ operation noticed
in Proposition 2.1.5, then the analogous properties for elements of L2(u∗TGY,m|Ω) trivially follow.

Finally, the fact that 1
2 (S1⊕S2) ∈ L2(u∗TGY,m|Ω) implies S1⊕S2 ∈ L2(u∗TGY,m|Ω) is trivial

from the definitions (see also the arguments below).
For (iii) we notice that it is sufficient to prove that fS is in L2(u∗TGY,m|Ω) whenever f : Ω→

R is Borel and bounded and S ∈ L2(u∗TGY,m|Ω). In this case the fact that fS satisfies the

requirement i) in Definition 3.3.2 is obvious. For ii) we consider sections Snx = αn(G
vn(x)
u(x) )′0 for

which (3.3.2) hold and put S̃nx := αn‖f‖L∞(G
wn(x)
u(x) )′0, where wn(x) := (G

vn(x)
u(x) )f(x)/‖f‖L∞ . The

fact that the wn’s are Borel representatives of maps in L2(Ω,Yȳ) can be easily checked from the

definition while the fact that (3.3.2) holds for fS and (S̃n) is obvious.

Let us now come back to the initial discussion and, for given u ∈ L2(Ω,Yȳ), let us define the
map ι : GeouL

2(Ω,Yȳ) → L2(u∗TGY,m|Ω) as follows. For v ∈ L2(Ω,Yȳ) and α ≥ 0 we send the

geodesic t 7→ (Gvu)αt to the (equivalence class of the) section given by x 7→ α(G
v(x)
u(x))

′
0. The relation

between TuL
2(Ω,Yȳ) and L2(u∗TGY,m|Ω) is then described by the following result:

Proposition 3.3.5 (L2(u∗TGY,m|Ω) and TuL
2(Ω,Yȳ)). Let (Y, dY, ȳ) be a pointed CAT(0)-space,

(X, d,m) a metric measure space, Ω ⊂ X an open subset and u ∈ L2(Ω,Yȳ).
Then, the map ι : GeouL

2(Ω,Yȳ) → L2(u∗TGY,m|Ω) passes to the quotient and induces a

map, still denoted ι, from GeouL
2(Ω,Yȳ)/ ∼ to L2(u∗TGY,m|Ω) that can be uniquely extended by

continuity to a bijective isometry, again denoted ι, from TuL
2(Ω,Yȳ) to L2(u∗TGY,m|Ω).

Moreover, the so defined isometry ι respects the operations on the tangent cones, i.e.

|v|2u =

�
Ω

|ι(v)x|2u(x) dm(x), (3.3.3a)〈
v1, v2

〉
u

=

�
Ω

〈
ι(v1)x, ι(v2)x

〉
u(x)

dm(x), (3.3.3b)

d2
u(v1, v2) =

�
Ω

d2
u(x)(ι(v1)x, ι(v2)x) dm(x), (3.3.3c)

ι(λv) = λι(v), (3.3.3d)

ι(v1 ⊕ v2) = ι(v1)⊕ ι(v2), (3.3.3e)

for any v, v1, v2 ∈ TuL
2(Ω,Yȳ) and λ ∈ R+.
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Proof. Let v1, v2 ∈ L2(Ω,Yȳ), α1, α2 ≥ 0, consider the sections S1,S2 ∈ L2(u∗TGY,m|Ω) given by

Si := ι(αi(G
vi

u )′0). Notice that

d2
u

(
α1(Gv1

u )′0, α2(Gv2
u )′0

)
= lim

t↓0

d2
L2

(
(Gv1
u )α1t, (G

v2
u )α2t

)
t2

= lim
t↓0

�
Ω

d2
Y

(
(G
v1(x)
u(x) )α1t, (G

v2(x)
u(x) )α2t

)
t2

dm(x)

=

�
Ω

lim
t↓0

d2
Y

(
(G
v1(x)
u(x) )α1t, (G

v2(x)
u(x) )α2t

)
t2

dm(x)

=

�
Ω

d2
u(x)

(
S1
x,S

2
x

)
dm(x),

where, in passing the limit inside the integral, we used the dominate convergence theorem and
the fact that the integrand is non-negative and non-decreasing in t (recall (2.1.3)). This proves at
once that ι passes to the quotient to a map on GeouL

2(Ω,Yȳ)/ ∼ and that the so induced map
is an isometry which therefore can be extended to a map from TuL

2(Ω,Yȳ) to L2(u∗TGY,m|Ω).

The fact that such extension is surjective follows from an approximation argument based on the
requirement ii) in Definition 3.3.2.

Now observe that (3.3.3c) has already been proved by the fact that ι is an isometry. Then
(3.3.3a) and (3.3.3b) follow as well. Also, (3.3.3d) is obvious by definition and then (3.3.3e) follows
from (3.3.3c), (3.3.3d) and the metric characterization of the midpoints of x, y as the point m such
that d2(x,m) + d2(m, y) = d2(x, y)/2.

The separable setting

In this section we assume instead that Y is a separable and locally CAT(κ)-space and we study the
Borel structure of the pullback u∗TGY of the geometric tangent bundle of Y. We shall then see
in the space case of Y being separable and CAT(0) how such Borel structure relates to the space
L2(u∗TGY,m|Ω) studied in the previous section.

Thus let Y be separable and locally CAT(κ), (X, d) be a complete and separable metric space
and Ω ⊂ X be open.

As before, for a given Borel map u : Ω→ Y, the pullback geometric tangent bundle u∗TGY is
defined as

u∗TGY :=
{

(x, y, v) : x ∈ Ω, y = u(x), v ∈ TyY
}
⊂ X× TGY

and a section of u∗TGY is a map S : Ω→ u∗TGY such that Sx ∈ Tu(x)Y for every x ∈ Ω.
Now equip u∗TGY ⊂ X×TGY with the restriction of the product σ-algebra B(X)⊗B(TGY),

which, with abuse of terminology, we shall call Borel σ-algebra on u∗TGY and denote B(u∗TGY).
In particular, we shall say that a section is Borel if it is measurable w.r.t. B(X) and B(u∗TGY).

A section is simple provided there are a Borel partition (En) of Ω, (αn) ⊂ R+ and points
(yn) ⊂ Y s.t. yn ∈ Bru(x)

(u(x)), for every x ∈ En and S|En = αn(Gynu(·))
′
0. We shall formally

denote such section by
∑
n
χEnαnu

∗(Gyn· )′0. Notice that the restriction of such section to En
coincides with the (graph of) the composition of u with the simple section of TGY given by
y 7→ (y, αn(Gyny )′0). In particular, recalling Proposition 2.1.10 we see that simple sections of
u∗TGY are Borel.

Moreover, they are dense in the space of Borel sections:

Lemma 3.3.6 (Density of simple sections). Let (X, d) be a metric space, (Y, dY) be separable and
locally CAT(κ)-space, Ω ⊂ X an open subset and u : Ω→ Y Borel. Let S : Ω→ u∗TGY be a Borel
section of u∗TGY and ε > 0.

Then, there is a simple section T such that du(x)(Sx,Tx) < ε for every x ∈ Ω.

Proof. We can reduce the proof to the case of Y being CAT(κ) by using the Lindelöf property of
Y and the coverings made by Bry/2(y). Doing so, we achieve uniqueness of geodesics between any
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couple of points. Let D ⊂ Y be countable and dense (yn, αn) be an enumeration of D×Q+. Then
for every n ∈ N consider the function Fn : TGY → R given by

Fn(y, v) := dy(v, αn(Gyny )′0) =
√
|v|2y + |αn|2d2(y, yn)− 2

〈
v, αn(Gyny )′0

〉
y
.

The defining requirements of B(TGY) and the property (2.1.8) ensure that Fn is Borel. Hence so is
the map F̃n : u∗TGY → R defined as F̃n := Fn ◦ πTGY, where πTGY : u∗TGY ⊂ X×TGY → TGY
is the canonical projection.

Hence given a Borel section S of u∗TGY the map F̃n ◦ S : X → R is Borel and thus, for given
ε > 0, so is the set Ẽn := (F̃n ◦ S)−1([0, ε)). We then put En := Ẽn \ ∪i<nẼi and notice that the
property (2.1.4) ensures that the En’s form a partition of X, thus giving the conclusion.

Thanks to such density result we can show that the operations on the tangent cones preserve
Borel regularity. The statement below is similar in spirit to (part of) the statement of Proposition
3.3.4, but here no measure is fixed on Ω and that the sections are defined for every x ∈ Ω, not for
m-a.e. x.

Proposition 3.3.7. Let (X, d) be a metric space, (Y, dY) be separable and locally CAT(κ), Ω ⊂ X
an open subset and u : Ω→ Y a Borel map. Let S1,S2 be Borel sections of u∗TGY and f : X→ R+

be a Borel map.
Then the functions sending x ∈ X to |S2

x|u(x),
〈
S1
x,S

2
x

〉
u(x)

, du(x)(S
1
x,S

2
x) are Borel and the

sections x 7→ f(x)S1
x,S

1
x ⊕ S2

x are Borel as well.

Proof. Let S1,S2 be simple of the form: S1 = χE1αu
∗(Gy1
· )′0 and S2 = χE2β u

∗(Gy2
· )′0, with

Ei := u−1(Ai) and Ai ∈ B(Y) such that yi ∈ Bry (y) for every y ∈ Ai, i = 1, 2. Then they are
the (graph of the) composition of u with the simple sections of TGY given by χA1

α (Gy1
· )′0 and

χA2
β (Gy2

· )′0 respectively, hence in this case the conclusion comes from Proposition 2.1.11.
Then the conclusion comes from the ‘fiberwise’ continuity of all the expressions considered

(granted by Proposition 2.1.5) and the density of simple sections established in Lemma 3.3.6
above.

We now come to the relation between the space of (equivalence classes up to m-a.e. equality
of) Borel sections of u∗TGY and the space L2(u∗TGY,m|Ω) in the case where Y is separable and

CAT(0). As expected, these spaces coincide when the right integrability of the first ones is in place:

Proposition 3.3.8. Let (X, d,m) be a metric measure space, (Y, dY, ȳ) be a pointed separable
CAT(0)-space, Ω ⊂ X an open subset and u : Ω→ Y be a Borel map.

Then, S ∈ L2(u∗TGY,m|Ω) if and only if it is the equivalence class up to m-a.e. equality of a

Borel section T of u∗TGY with
�

Ω
|T|2u(x) dm(x) <∞.

Proof. Assume at first that S ∈ L2(u∗TGY,m|Ω). Then the fact that
�

Ω
|Sx|2u(x) dm(x) < ∞ is a

direct consequence of the definition and of Proposition 3.3.5 above, thus we only need to prove
that S is the equivalence class up to m-a.e. equality of a Borel section of u∗TGY. To see this
we need to prove that, letting πX, πTGY be the projections of u∗TGY ⊂ X × TGY to X,TGY
respectively, the maps πX ◦ S and πTGY ◦ S are equivalence classes up to m-a.e. equality of Borel
maps. For the first one this is obvious, because it is the identity on X. For the second one we
recall the definition of B(TGY) to see that we need to prove that πY ◦ πTGY ◦ S is Borel (which
it is, because it coincides with u) and that x 7→

〈
Sx, (G

z
u(x))

′
0

〉
is Borel for every z ∈ Y (which is

easily seen to be the case from the requirement i) in Definition 3.3.2).
We pass to the converse implication and start observing that Lemma 3.3.1 and the definition

of B(TGY) just recalled ensure that for any v ∈ L2(Ω,Yȳ) the section given by (G
v(x)
u(x))

′
0 is the

equivalence class up to m-a.e. equality of a Borel section. It follows that if T is a Borel section as in
the statement, then it satisfies the requirement i) in Definition 3.3.2. We now claim that if T is also
simple, then it also satisfies the requirement ii). To see this write T =

∑
n
χEnαn u

∗(Gyn· )′0 and
put Ti :=

∑
n≤i χEnαn u

∗(Gyn· )′0 where it is intended that for x /∈ ∪n≤iEn we have Tix = 0u(x) ∈
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Tu(x)Y. Then putting βi := maxn≤i αn, yn,i := (Gynu(x))αn/βi and defining vi ∈ L2(Ω,Yȳ) as

vi|En := yn,i for n ≤ i and vi|Ω\∪n≤iEn ≡ u we see that Ti = ι(βi(G
vi

u )′0), so that (the equivalence

class up to m-a.e. equality of) Ti belongs to L2(u∗TGY,m|Ω). It is then clear that dL2(Ti,T)→ 0,

proving that the equivalence class of T belongs to L2(u∗TGY,m|Ω).

Then the conclusion for a generic section T as in the statement can be easily obtained by an
approximation argument starting from the density result in Lemma 3.3.6.

3.3.2 The Laplacian of a CAT(0)-valued map

Let us start by giving the general definition of Laplacian of a CAT(0)-valued Sobolev map:

Definition 3.3.9 (Tension field/Laplacian). Let (X, d,m) be a RCD(K,N) space, Ω ⊂ X an open
subset, (Y, dY, ȳ) a pointed CAT(0)-space and ū ∈ KS1,2(Ω,Yȳ).

Then the domain of the Laplacian D(∆ū) ⊂ KS1,2
ū (Ω,Yȳ) is defined as D(∆ū) := D(|∂−EKS

ū |)
and for u ∈ D(∆ū) we put

∆ūu := ι(v) ∈ L2(u∗TGY,m|Ω), where v is the element of minimal norm in −∂−EKS
ū (u).

Similarly, for maps u from X to Y we say that u is in the domain of the Laplacian D(∆) if
|∂−EKS|(u) < ∞ and in this case ∆u := ι(v), where ι(v) is the element of minimal norm in
−∂−EKS(u).

Proposition 3.3.10 (Laplacian and variation of the energy). Let (X, d,m) be a RCD(K,N) space,
Ω ⊂ X an open subset, (Y, dY, ȳ) a pointed CAT(0)-space and ū ∈ KS1,2(Ω,Yȳ). Also, let u ∈
D(∆ū). Then, for every v ∈ L2(Ω,Yȳ), we have

−
�

Ω

〈
∆ūu(x),

(
G
v(x)
u(x)

)′
0

〉
u(x)

dm(x) ≤ lim
t↓0

EKS
ū ((Gvu)t)− EKS

ū (u)

t
. (3.3.4)

Moreover, u is harmonic with ū as boundary value if and only if u ∈ D(∆ū) with ∆ūu = 0.

Proof. Inequality (3.3.4) follows applying (3.2.6), the definition of ∆ūu and recalling Proposition
3.3.5. The second claim is a restatement of (3.2.7) in this setting.

Remark 3.3.11. This last proposition shows that our definition is compatible with the classical
one valid in the smooth category. Indeed, if X,Y are smooth Riemannian manifold, ū, u : Ω̄ ⊂
X → Y are smooth maps with the same boundary values, v is a smooth section of u∗TY (in the
smooth setting TGY is canonically equivalent to the standard tangent bundle TY) which is 0 on
∂Ω, then we can produce a smooth perturbation of u by putting ut(x) := expu(x)(tvx). A direct
computation then shows that

d

dt |t=0
EKS
ū (ut) = −

�
Ω

〈
τ(u)x, vx

〉
u(x)

dm(x),

where τ(u) is the tension field of u, see for instance [125, Section 9.2]. This formula is the smooth
version of (3.3.4). Notice indeed that ut = (Gu1

u )t for t ∈ [0, 1] (and similarly ut = (G
u−1
u )−t for

t ∈ [−1, 0]) and that if everything is smooth, then t 7→ EKS
ū (ut) is C1, hence differentiable in 0, so

that the one-sided bound in (3.3.4) becomes an equality in the smooth case.
It is worth to underline that in our framework the lack of equality in (3.3.4) is not only related

to the lack of smoothness of t 7→ EKS
ū (ut), which a priori could produce different left and right

derivatives in 0, but also to the fact that tangent cones are not really tangent spaces: the opposite
of a vector field does not necessarily exist and thus we are forced to take one-sided perturbations
only. �

A direct consequence of Proposition 3.3.10 above is the following:
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Corollary 3.3.12. With the same assumptions and notation as in Proposition 3.3.10 we have

EKS
ū (u)−

�
X

〈
∆ūu(x),

(
G
v(x)
u(x)

)′
0

〉
u(x)

dm(x) + EKS(d) ≤ EKS
ū (v),

where d := d(u, v).

Proof. Couple (3.3.4) with (2.3.4).

In the next discussion, we are interested in properties of the composition f ◦ u, whenever u is
a harmonic map and f is λ-convex functional. Observe that, in a smooth framework, the chain
rule ∆(f ◦ u) = Hessf(∇u,∇u) + df(∆u) immediately implies that

∆(f ◦ u) ≥ λ|du|2HS if f is λ-convex and u is harmonic. (3.3.5)

A nonsmooth version of (3.3.5) has already been addressed in [148] (see Theorem 1.2 there) for
maps with Euclidean source domain and CAT(0)-target. Nevertheless, as we are going to show
in Theorem 3.3.15, the discussion generalizes to our framework: the main stumbling block to
overcome being the absence of Lipschitz vector field on a RCD-space. In the next, we shall need
the following property of Sobolev functions and, specifically, of their directional derivatives (for
the definition of test vector field see [97] and for the concept of Regular Lagrangian Flow see [28]):

Proposition 3.3.13. Let (X, d,m) be a RCD(K,N) space, (Y, dY, ȳ) a pointed complete metric
space, Ω ⊂ X open, v ∈ L2(TX) a test vector field and (FIvs) the associated Regular Lagrangian
Flow. Also, let u ∈ KS1,2(Ω,Yȳ).

Then, for every K ⊂ Ω compact, we have that

lim
s→0

dY(u ◦ FIvs , u)

s
= |d2u(v)| in L2(K). (3.3.6)

(notice that for |s| small the map u ◦ FIvs is well defined from K to Y).
Similarly, for a real valued Sobolev function g ∈W 1,2(Ω) we have

lim
s→0

g ◦ FIvs − g
s

= dg(v) in L2(K). (3.3.7)

Proof. Property (3.3.7) is (an equivalent version of) the definition of Regular Lagrangian Flow, see
for instance [107, Proposition 2.7]. For (3.3.6) recall first [109, Remark 4.15] to get that functions
in KS1,2(Ω,Yȳ) also belong to the ‘direction’ Korevaar-Schoen space as defined in [108], then recall
[108, Theorem 4.5].

The next Lemma deals with variations of a map u, suitably obtained through gradient flows
trajectories in the target space, and the rate of change at the level of Korevaar-Schoen energy (see
(3.3.8)-(3.3.9) below). In the following statement, notice that f ◦u belongs to W 1,2(Ω) - and thus
d(f ◦ u) is well defined - because f is Lipschitz, Ω has finite measure and by ii) in Theorem 2.3.4.
Also, for the very same reason, we shall drop the subscript ȳ from Y when Ω is bounded as the
L2-integrability depends no more on the particular chosen point ȳ ∈ Y. Compare the proof with
[148, Lemma 3.1].

Lemma 3.3.14. Let (X, d,m) be a RCD(K,N) space, Y CAT(0)-space and Ω ⊂ X open and
bounded. Also, let f ∈ Lip(Y) be λ-convex, λ ∈ R, and u ∈ KS1,2(Ω,Y). For g ∈ Lipbs(X)+,
define the (equivalence class of the) variation map

ut(x) = GFftg(x)(u(x)) ∀t > 0, x ∈ Ω.

Then, ut ∈ KS1,2(Ω,Y) for every t > 0 and there is a constant C > 0 depending on f, g such
that

|dut|2HS ≤ e−2λtg
(
|du|2HS − 2t

〈
dg,d(f ◦ u)

〉
+ Ct2

)
m-a.e. in Ω, (3.3.8)

holds for every t ∈ [0, 1]. In particular

lim
t↓0

EKS(ut)− EKS(u)

t
≤ −

�
Ω

λ

d+ 2
g|du|2HS +

〈
d(f ◦ u),dg

〉
dm. (3.3.9)
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Proof. The map x 7→ (tg(x), u(x)) is Borel and essentially separably valued and the map (t, y) 7→
GFft (y) is continuous, hence x 7→ ut(x) is Borel and essentially separably valued. Also, the identity

(3.2.1) and the trivial estimate |∂−f | ≤ Lip(f) show that t 7→ GFft (y) is Lip(f)-Lipschitz for every
y ∈ Y, thus dY(ut(x), ȳ) ≤ t sup(g)Lip(f)+dY(u(x), ȳ), for every ȳ ∈ Y, from which it easy follows
that ut ∈ L2(Ω,Y). Taking also into account the contraction property (3.2.3) we obtain that

dY(ut(x), ut(y)) ≤ eλ
−t(g(x)+g(y))dY

(
u(x),GFft|g(y)−g(x)|(u(y))

)
≤ e2λ−t sup g

(
dY(u(x), u(y)) + tLip(g)Lip(f)d(x, y)

)
and thus

ks22,r[ut,Ω](x) ≤ 2e4λ−t sup g
(
ks22,r[u,Ω](x) + t2Lip2(g)Lip2(f)

)
.

Integrating and using the fact that m(Ω) <∞ we conclude that ut ∈ KS1,2(Ω,Y).
In order to obtain (3.3.8) we need to be more careful in our estimates and to this aim we shall

use Lemma 3.2.3 and Proposition 3.3.13 above. Let γ : [0, S] → Ω be a Lipschitz curve: for any
s ∈ [0, S] the bound (3.2.5) gives (here we are fixing a Borel representative of u and thus of ut,
but notice that the estimate (3.3.12) does not depend on such choice):

d2
Y(ut(γ0), ut(γs))

≤e−2λt(g(γ0)±|g(γ0)−g(γs)|)
(
d2

Y(u(γ0), u(γs)) + 2t(g(γs)− g(γ0))(f(u(γ0))− f(u(γs)))

+

� |t(g(γ0)−g(γs))|

0

2Lip2(f)θλ(r) + λ−
(
d2

Y(GFfr (u(γ0)), u(γs)) + d2
Y(GFfr (u(γs)), u(γ0))

)
dr
)
,

where the sign in ±|g(γ0) − g(γs)| depends on the sign of λ. Now use again the fact that r 7→
GFfr (u(γ0)) is Lip(f)-Lipschitz to get that

d2
Y(GFfr (u(γ0)), u(γs)) ≤ 2r2Lip2(f) + 2d2

Y(u(γ0), u(γs)),

notice that the same bounds holds for d2
Y(GFfr (u(γs)), u(γ0)), that

|t(g(γ0)− g(γs))| ≤ tsLip(g)Lip(γ)

and that θλ(t) ≤ te2λ−t to conclude that, for some constant C depending only on f, g,Lip(γ), T
and every t ∈ [0, T ], we have

d2
Y(ut(γ0), ut(γs)) ≤ e−2λtg(γ0)+Cs

(
d2

Y(u(γ0), u(γs))

+ 2t(g(γs)− g(γ0))(f(u(γ0))− f(u(γs))) + Ct2s2 + Ctsd2
Y(u(γ0), u(γs))

)
.

(3.3.10)

Now let v be a test vector field on X and FIvs its Regular Lagrangian Flow and recall that since
g, f ◦ u ∈W 1,2(Ω), by (3.3.7) we know that for any K ⊂ Ω compact we have

g ◦ FIvs − g
s

→ dg(v) and
f ◦ u ◦ FIvs − f ◦ u

s
→ d(f ◦ u)(v) (3.3.11)

in L2(K) as s ↓ 0. Thus writing (3.3.10) for γs := FIvs(x) for m-a.e. x ∈ Ω, dividing by s2, letting
s ↓ 0 and recalling (3.3.6) and (3.3.11) we conclude that

|dut(v)|2 ≤ e−2λtg
(
|du(v)|2 − 2tdg(v) d(f ◦ u)(v) + Ct2

)
m-a.e. in Ω, (3.3.12)

having also used the arbitrariness of K ⊂ Ω compact and the fact that the Lipschitz constant of
t 7→ FIvs(x) is bounded by ‖v‖L∞ . We have established (3.3.12) for v regular, but both sides of
the inequality are continuous w.r.t. L0-convergence of uniformly bounded vectors v with values
in L0

2(TX), thus by density we deduce that (3.3.12) is valid for any v ∈ L∞(TX). Hence writing
(3.3.12) for v varying in a local Hilbert base of L2(TX) (recall Theorem 2.3.3) and adding up we
deduce (3.3.8). Then (3.3.9) also follows.
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In order to state the analogue of (3.3.5), we consider the notion of measured value Laplacian
as defined in Section 1.4.2.

Theorem 3.3.15. Let (X, d,m) be a RCD(K,N) space, Y be CAT(0) and Ω ⊂ X open and bounded.
Also, let f ∈ Lip(Y) be λ-convex, λ ∈ R and u ∈ KS1,2(Ω,Y) be harmonic.

Then, f ◦ u ∈ D(∆,Ω) and ∆(f ◦ u)|Ω is a Radon measure satisfying

∆(f ◦ u)|Ω ≥
λ

d+ 2
|du|2HSm. (3.3.13)

Proof. As noticed before Lemma 3.3.14, under the stated assumptions we have f ◦ u ∈ W 1,2(Ω).
Now let g ∈ Lipc(Ω)+ be arbitrary and apply Lemma 3.3.14 with these functions f, g, u and define
ut ∈ KS1,2

ū (Ω,Y) accordingly. Notice that since supp(g) ⊂ Ω, we have that ut and u agree on a
neighbourhood of ∂Ω and thus have the same boundary value.

Therefore from the fact that u is harmonic and (3.3.9) we deduce

−
�

Ω

〈
d(f ◦ u),dg

〉
dm ≥ λ

d+ 2

�
Ω

g|du|2HS dm ∀g ∈ Lipc(Ω)+

and the conclusion comes from (1.4.4).

Corollary 3.3.16. Let Ω ⊂ X be open and bounded, Y be CAT(0), ū ∈ KS1,2(Ω,Y), u harmonic
map with ū as boundary values and f ∈ Lip(Y) be 2-convex. If f ◦ u is constant then u itself is
constant map.

Proof. Apply Theorem 3.3.15, then |du|HS vanishes and conclude.

Let us now discuss a simple and explicit example of Laplacian of a map.

Example 3.3.17. Let Y := R2, X := R/Z equipped with the standard distances and measure, and
Ω = X. Then a direct application of the definitions in Theorem 2.3.4 show that u = (u1, u2) : X→
Y is in KS1,2(X,Y) if and only if u1 ◦ p, u2 ◦ p: R→ R are in W 1,2

loc (R), where p: R→ R/Z = X is
the natural projection, with

EKS(u) = c
2

( �
X

|u′1|2(θ) + |u′2|2(θ) dθ
)
,

for some universal constant c > 0. Then it is clear that u ∈ D(∆) if and only if (u1◦p)′′, (u2◦p)′′ ∈
L2
loc(R) and that in this case

∆u = c(u′′1 , u
′′
2).

Now let u(θ) := (cos(2πθ), sin(2πθ)) be the canonical embedding of X in Y. Then ∆u = −u and
in particular for any θ ∈ X we have that ∆u(θ) ∈ Tu(θ)R2 ∼ R2 is orthogonal to the tangent space
of X seen as a subset of R2 = Y.

This is interesting because one can define the differential du of u, even in very abstract sit-
uations [106], by means related to Sobolev calculus on the metric measure space (Y, dY, µ :=
u](|du|2HSm)) and tangent vector fields in this metric measure space only see directions which are
tangent to the graph of u (this is rather obvious in this example, but see for instance [81] for a
discussion of this phenomenon in more general cases). This means that, curiously, ∆u cannot be
computed starting from du and using Sobolev calculus in the spirit developed in [97], [96], simply
because ∆u does not belong to the tangent module L2

µ(TY) �

We conclude pointing out that while in the Definition 3.3.9 of Laplacian of a map we called
into play the space L2(u∗TGY,m|Ω) as introduced in Definition 3.3.3, in some circumstances it

might be useful to deal with a notion of Laplacian related to the Borel σ-algebra B(u∗TGY) -
and thus to the characterization given in Proposition 3.3.8 -, which however is only available for
separable spaces Y.
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In this direction it is worth to underline that one can always reduce to such case thanks to the
following two simple results: the first says that given u ∈ L2(Ω,Yȳ) we can always find a separable

CAT(0) subspace Ỹ of Y containing the gradient flow trajectory of EKS
ū starting from u, the second

ensures that this restriction does not affect the notion of minus-subdifferential.

Proposition 3.3.18. Let (X, d,m) be a RCD(K,N) space, (Y, dY, ȳ) a pointed CAT(0)-space,
Ω ⊂ X open, ū ∈ KS1,2(Ω,Yȳ) and u ∈ L2(Ω,Yȳ). Also, let (ut) be the gradient flow trajectory
for EKS

ū starting from u.
Then, there exists a separable CAT(0) subspace Ỹ ⊂ Y such that m(u−1

t (Y \ Ỹ)) = 0 for every
t ≥ 0. Similarly for the functional EKS.

Proof. From the fact that geodesics on Y are unique and vary continuously with the endpoint it
is easy to see that the closed convex hull of a separable set (i.e. the smallest closed and convex
set containing the given set) is also separable. Use this and the fact that maps in L2(Ω,Yȳ) are

by definition essentially separably valued to find Ỹ ⊂ Y which is CAT(0) with the induced metric
and such that m(u−1

t (Y \ Ỹ)) = 0 for every t ∈ Q+. We claim that Ỹ satisfies the conclusion.
To see this, pick t ≥ 0, let (tn) ⊂ Q+ be converging to t and up to pass to a non-relabeled
subsequence assume that

∑
n dL2(utn+1

, utn) < ∞. Then from the triangle inequality in L2(m|Ω)

and the monotone convergence we see that ‖
∑
n dY(utn+1

, utn)‖L2 ≤
∑
n dL2(utn+1

, utn) < ∞ so
that in particular for m-a.e. x ∈ Ω we have

∑
n dY(utn+1

, utn)(x) <∞ which in turn implies that

(utn(x)) ⊂ Ỹ is a Cauchy sequence, so that its limit v(x) also belongs to Ỹ. The same kind of
argument also shows that (utn) converges to v in L2(Ω,Yȳ) and since we know, by the continuity
of (ut) as L2(Ω,Yȳ)-valued curve, that utn → ut in L2(Ω,Yȳ) we conclude that ut = v, which
proves our claim.

To present our final result we need a bit of notation. Let Y be a CAT(0)-space and Ỹ a subspace
which is also CAT(0) with the induced metric. Call IY

Ỹ
: Ỹ → Y the inclusion map. Then for every

y ∈ Ỹ the tangent space TyỸ embeds isometrically into TyY via the continuous extension of the

map which sends α(Gzy)′0 ∈ TyỸ to α(IY
Ỹ

(Gzy))′0 ∈ TyY. In other words, we can regard a geodesic

in Ỹ also as a geodesic in Y and this provides a canonical immersion of TyỸ in TyY which for
trivial reasons is an isometry. Abusing a bit the notation we shall denote such isometry by IY

Ỹ
.

Proposition 3.3.19. Let Y be a CAT(0)-space, E : Y → R ∪ {+∞} a λ-convex and lower semi-
continuous functional, (yt) a gradient flow trajectory for E starting from y0 ∈ Y and Ỹ ⊂ Y a
subset which is also a CAT(0)-space with the induced metric and such that (yt) ⊂ Ỹ. Denote by Ẽ
the restriction of E to Ỹ

Then, −∂−E(y0) 6= ∅ if and only if −∂−Ẽ(y0) 6= ∅ and letting v, ṽ be the respective elements of
minimal norm we have IY

Ỹ
(ṽ) = v. Moreover, (yt) is also a gradient flow trajectory for Ẽ.

Proof. Assume that −∂−Ẽ(y0) 6= ∅. Then we know from Theorem 3.2.9 that 1
h (Gyhy0

)′0 → ṽ as

h ↓ 0. Then clearly IY
Ỹ

( 1
h (Gyhy0

)′0) → IY
Ỹ

(ṽ) and thus by Theorem 3.2.9 to conclude it is sufficient

to prove that |∂−E|(y0) < ∞, because in that case we have that IY
Ỹ

( 1
h (Gyhy0

)′0) converges to the

element of minimal norm in −∂−E(y0) 6= ∅ (which in particular is not empty) as h ↓ 0.

Since 1
h (Gyhy0

)′0 → ṽ we have in particular that dY(y0,yh)
h = | 1h (Gyhy0

)′0|y0
→ |v|y0

and thus

S := suph∈(0,1)
dY(y0,yh)

h <∞. By the contractivity property (3.2.3) we deduce that

sup
t,h∈(0,1)

dY(yt, yt+h)

h
< (eλ ∨ 1)S =: S′

and thus letting h ↓ 0 we deduce that |ẏ+
t | ≤ S′ for every t ∈ (0, 1). Taking into account (3.2.1)

and the lower semicontinuity of the slope recalled in Lemma 1.1.8 we conclude.
Viceversa, assume that −∂−E(y0) 6= ∅. Then by Theorem 3.2.9 we know that |∂−E|(y0) < ∞

and since trivially we have |∂−Ẽ| ≤ |∂−E||Ỹ we also have |∂−Ẽ|(y0) <∞. Hence by Theorem 3.2.9

we deduce −∂−Ẽ(y0) 6= ∅ and the first part of the proof applies.
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The last statement is a consequence of the first applied to yt for every t > 0 and of Corollary
3.2.10.
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4 | Progress on the independence on p
of weak gradients: a first order reg-
ularity condition
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4.1 Introduction

There are two different reasons for which p-minimal weak upper gradients might depend on p:

i) in [82], a detailed study on weighted Euclidean spaces has been performed to build a family
of metric measure spaces for which |Df |p1 < |Df |p2 may occur for p1 6= p2;

ii) in [20], an example due to P. Koskela has been reported showing that we may have:

f ∈W 1,p1(X), f, |Df |p1
∈ Lp2(m) ⇒ f /∈W 1,p2(X), ∀p2 > p1.

On the other hand, we saw in Theorem 4.2.2 that Doubling & Poincaré ensures that i) never occurs
but still, it is not clear if ii) may still happen under this circumstances. However, this it not the
case on RCD(K,∞) spaces as proved in Theorem 2.3.6, especially suggesting that two different
kinds of independence are achievable.

In this Chapter, we pursue these two goals:

a) to propose an axiomatization of spaces having p-independent weak upper gradients in Defi-
nition 4.2.1, especially distinguishing between a weak and strong kind of independence;
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b) to single out a regularity property at first order shared by a large class of spaces (X, d,m)
yielding p-independent weak upper gradients in a strong sense.

More in details, we are going to address b) by proposing a condition that we call Bounded Inter-
polation Property (BIP). Roughly, we require the space (X, d,m) to have the following first-order
constraint on Wasserstein geodesics: given a diameter D > 0, there exists a positive constant
C(D) > 0 such that for any two probability measures ρ0m, ρ1m whose supports are enclosed in a
ball of diameter D and whose densitities are bounded, there exists a Wasserstein geodesic t 7→ µt
interpolating between the two, that is absolutely continuous with respect to m and whose density
is bounded at any time t in terms of C(D), ‖ρ1‖L∞ , ‖ρ0‖L∞ (see Definition 4.2.3 below for the
precise formulation). By means of a well known superposition principle in Optimal Transport,
there are dynamical plans π ∈P(C([0, 1],X)) concentrated on geodesics of the space representing
these interpolants. What is special about the class of plans given by the (BIP) is that they are
test plans able to detect the Sobolev space: by this we mean that, to prove that a function f
belong to W 1,p(X), it suffices to check the Sobolev property only against this special collection of
plans (for the precise statement see Proposition 4.3.4). Once we have this tool at hand, it can be
easily seen that the strong independence on p of p-weak upper gradients will follow easily out of
this analysis (see Theorem 4.3.5 below). The reason is that we have reduced significantly -to only
geodesics- the number of curves entering into play in the definition of the object |Df |p.

Finally, we enrich this analysis with:

i) the unification, under the (BIP), of the nonsmooth p-differential structure in the language of
L0(m)-normed module in Theorem 4.4.1. We provide a construction of an universal cotangent
module, together with a universal differential, that are independent on p;

ii) the proof in Theorem 4.3.8 that the (BIP) is stable under pmGH-convergence;

iii) the proof that a single plan can detect the Sobolev property. Indeed, we push the recent
technique developed in [169] to produce a single plan πq, called master q-test plan, which is
able to detect both the Sobolev space W 1,p(X) and the minimal p-weak upper gradient (see
Theorem 4.6.2). This provides a resolution of [169, Problem 2.7]. On BIP-spaces, this plan
can be also taken independent on q and concentrated on geodesics (see Theorem 4.6.4);

iv) the proof in Section 4.5 of some spaces satisfying the (BIP). Among them, we can find a broad
class of spaces satisfying synthetic curvature dimension conditions. We do this by reviewing
in Appendix A the interpolation estimates of [174, 57] obtained in the 2-Wasserstein space,
to arbitrary exponent q ∈ (1,∞) in the context of the CD and MCP spaces.

Structure of the Chapter. This Chapter is organized as follows:

In Section 4.2, we propose the main definitions of this Chapter, namely the axiomatization of
weak and strong p-independent weak upper gradients with respect to p and a definition of a first
order regularity condition of a metric measure space that we call Bounded Interpolation Property
(BIP).

In Section 4.3, we then start our analysis concerning the (BIP) and prove that the stronger kind
of independence is assured by this property. Finally, we conclude by showing that this condition
is stable with respect to the pointed measure Gromov Hausdorff convergence.

In Section 4.4, we show that the p-differential calculus (in the language of normed modules
[97]) in independent on p under the (BIP). In particular, we prove here that there is a unique
notion of L0(m) cotangent module where differential of Sobolev function lives independently of
their integrability exponent.

In Section 4.5, we prove the sort of ‘known spaces’ verifying different kind of curvature dimen-
sion condition verify the (BIP).

We end this Chapter, in Section 4.6, with the construction of a master test plan for the Sobolev
space, first on arbitrary metric measure space and then specifically under the (BIP).
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4.2 Main definitions

In this Chapter, we will deal frequently with the Hölder duality between integrable exponent as
they naturally enters into play when working with the definition of p-Sobolev functions and q-test
plan. Hence, to lighten the presentation, we make once and for all the following clarification.

Notation. Throughout this Chapter, it comes without saying that, whenever we fix
p ∈ [1,∞), the letter q, even if not introduced, is automatically defined as the conjugate
exponent by the relation

1
p + 1

q = 1

and thus ranging in (1,∞] (with the usual extreme case p = 1 and q = ∞). The
converse convention is also kept, i.e. if we start fixing a number q, then automatically
p is defined as above. Typical recurrent exponents will be p1, p2, p̄, thus giving rise to
the conjugate numbers q1, q2, q̄.

4.2.1 Weak and strong p-independent weak upper gradients

As already highlighted in (1.2.9), we shall only expect one inequality between minimal weak upper
gradients with different p’s. In light of the two different pathological situations described in the
Introduction, we give the following definition.

Definition 4.2.1 (p-independent weak upper gradients). Let (X, d,m) be a metric measure space.
We say that it has p-independent weak upper gradients in the weak sense, provided for any p1, p2 ∈
(1,∞):

a) W 1,p1(X) ∩W 1,p2(X) is dense in both W 1,p1(X) and W 1,p2(X);

b) for any f ∈W 1,p1(X) ∩W 1,p2(X) it holds |Df |p1
= |Df |p2

m-a.e.;

Moreover, we say that X has p-independent weak upper gradients in the strong sense if we require
a)-b) and

c) any f ∈W 1,p1(X) with f, |Df |p1 ∈ Lp2(m) belongs to W 1,p2(X).

A remarkable example of space with p-independent weak upper gradients in the weak sense
has been already faced during this Thesis.

Theorem 4.2.2. Let (X, d,m) be a doubling metric measure space supporting a weak local (1, 1)-
Poincaré inequality. Then it has p-independent weak upper gradients in the weak sense.

Proof. This is just a reformulation of Proposition 1.3.8 according the above axiomatization.

4.2.2 The Bounded Interpolation Property

Here we present our first order regularity constraint over a metric measure space within its im-
plication concerning Sobolev spaces. This will be done by imposing a special behavior of the
spreading of mass along the geodesic of the space according to the next definition.

Definition 4.2.3 (Bounded interpolation property). We say that a complete and separable metric
measure space (X, d,m) has the bounded interpolation property, provided:

for every q ∈ (1,∞) there exists a profile function R+ 3 D 7→ Cq(D) ∈ [1,∞) so that for every
µ0, µ1 ∈P(X) absolutely continuous with bounded densities and diam(supp(µ0)∪supp(µ1)) < D,
there exists π ∈ OptGeoq(µ0, µ1) satisfying

(et)]π = ρtm, ‖ρt‖L∞ ≤ Cq(D)‖ρ0‖L∞(m) ∨ ‖ρ1‖L∞(m), ∀t ∈ [0, 1], (BIP)

where ρi := dµi
dm .

When this holds, we say for brevity that (X, d,m) is a BIP-space, or that it has the (BIP) with
profile function D 7→ Cq(D).
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This axiomatization is inspired by the results of [174], where the very same special behavior
of mass transportation has been investigated under synthetic lower Ricci bounds. Such analysis
was carried for the exponent q = 2, but we will see in Appendix A that it can be actually be
performed for all q ∈ (1,∞). In this direction, [174, Theorem 4.1] ensures that the (BIP) yields
the following:

A BIP-space supports a weak local (1, 1)-Poincaré inequality.

Thus we already know from Theorem 4.2.2 that if a BIP space is also doubling, then it has p-
independent weak upper gradients in the weak sense. Our goal in this section is to show that,
regardless of the doubling assumption, a BIP space has p-independent weak upper gradients in the
strong sense. We then postpone to Section 4.5 the study of which sort of ‘known’ spaces satisfy
(BIP).

Notice that, for every q, it is not restrictive to suppose the profile function D 7→ Cq(D) to be
nondecreasing and continuous, thus we shall implicitly use these facts sometime. Moreover, when
the profile function is independent on q, as it will be in all the cases faced in Section 4.5, we shall
omit the subscript and simply write D 7→ C(D).

4.3 Independence of |Df |p under the (BIP)

For the sake of conciseness, we collect, for every q ∈ (1,∞) all the relevant interpolants in the
class

Geodq(X) :=

π ∈ OptGeoq(ρ0m, ρ1m) :
D > 0, ρ0, ρ1 ∈ L∞(m) probabilities
diam(supp(ρ0)∪supp(ρ1)) ≤ D
(et)]π ≤ Cq(D)‖ρ0‖L∞(m) ∨ ‖ρ1‖L∞(m)m

 , (4.3.1)

Notice the important fact that, no matter of the fixed exponent q, the defining property of this
class ensures that

any π ∈ Geodq(X) is an ∞-test plan, and thus also a q′-test plan for any q′ ∈ (1,∞). (4.3.2)

Indeed, every plan is concentrated on geodesics of the space whose lengths are controlled by above
by some diameter. We shall also work with the ‘polygonal’ version PolGeoq(X) of the above, defined
as the set of plans π ∈ P(C([0, 1],X)) for which there are a finite Borel partition (Ai)i=1,...,N of
C([0, 1],X) with αi := π(Ai) > 0 and, for every j = 0, . . . ,m−1,m ∈ N and i = 1, . . . , N , we have

α−1
i (Restr

j+1
m
j
m

)](π|Ai) ∈ Geodq(X).

Lemma 4.3.1 (Approximation with polygonal plans). Let (X, d,m) be a BIP-space, q ∈ (1,∞)
and π a q-test plan. Then there are (πn) ⊂ P(C([0, 1],X)) and (πn,m) ⊂ PolGeoq(X), n,m ∈ N,
such that:

i) for every n ∈ N, we have

a) πn,m ⇀ πn as m→∞;

b) limm→∞Keq(πn,m) ≤ Keq(πn);

c) for some C(q, n) > 0 we have (et)]πn,m ≤ C(q, n)m for every m ∈ N, and t ∈ [0, 1];

ii) and moreover

a) πn ⇀ π as n→∞;

b) limn→∞Keq(πn) ≤ Keq(π);

c) for some C(q) > 0 we have (et)]πn ≤ C(q)m for every n ∈ N, and t ∈ [0, 1].
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Proof. Let us set for brevity Y := C([0, 1],X) and assume at first that π has compact support so
that its trace (recall (1.2.1)) [π] = {γt : γ ∈ supp(π), t ∈ [0, 1]} ⊂ X is also compact. We put D :=
diam([π]) <∞.
Case i). Let m,n ∈ N be fixed. Using the compactness of the support of π, find a finite
Borel partition (Ai)i=1,...,Nn of its support made of sets with positive π-measure and diameter
≤ 1

n . For i ∈ {1, . . . , Nn} put αi := π(Ai)
−1π|Ai and then for j ∈ {0, . . . ,m − 1} let βi,j ∈

OptGeoq((e j
m

)]α
i, (e j+1

m
)]α

i)∩Geodq(X) given by the (BIP). With a gluing argument we can then

find a plan βi such that (Restr
j+1
m
j
m

)]β
i = βi,j for every j ∈ {0, . . . ,m − 1}. We put πn,m :=∑Nn

i=1 π(Ai)β
i and we notice that the construction and the BIP assumption easily grant that

property (i-c) holds. Moreover, we claim

Keq(πn,m) ≤ Keq(π) (4.3.3)

and to this aim we notice that

� 1

0

|γ̇t|q dtdβi =

m−1∑
j=0

� j+1
m

j
m

|γ̇t|q dtdβi

(Restr
j+1
m
j
m

)]β
i = βi,j =

m−1∑
j=0

� 1

0

mq−1|γ̇t|q dtdβi,j

(1.1.11a) =

m−1∑
j=0

mq−1W q
q

(
(e j

m
)]α

i, (e j+1
m

)]α
i
)

≤
m−1∑
j=0

mq−1

�
dq(γ j

m
, γ j+1

m
) dαi

≤
m−1∑
j=0

mq−1

� ( � j+1
m

j
m

|γ̇t|dt
)q

dαi

Jensen ≤
m−1∑
j=0

mq−1− qp
� j+1

m

j
m

|γ̇t|q dtdαi =

� 1

0

|γ̇t|q dtdαi,

for all i = 0, ..., Nn. This in particular grants that (πn,m)m is a sequence of q-test plans with
uniformly bounded q-kinetic energy and compression. We are going now to produce a weak limit
πn, arguing by tightness.

Fix t, let j := j(t,m) so that t ∈ [j/m, (j + 1)/m] and, using that πn,m ∈ PolGeoq(X), we
estimate

Wq((et)]πn,m, (et)]π) ≤Wq((et)]πn,m, (e j
m

)]πn,m) +Wq((e j
m

)]π, (et)]π)

≤
(�

dq(γ j
m
, γt) dπn,m

)1/q

+

(�
dq(γ j

m
, γt) dπ

)1/q

ACq-supported ≤
( � ( � t

j
m

|γ̇t|dt
)q

dπn,m

)1/q

+
( � (� t

j
m

|γ̇t|dt
)q

dπ
)1/q

Hölder and (4.3.3) ≤ 2m
1
pq Ke1/q

q (π).

(4.3.4)

Taking into account that {(et)]π : t ∈ [0, 1]} is Wq-compact (because π has finite q-energy and
thus t 7→ (et)]π ∈ (Pq(X),Wq) is continuous), this last estimate ensures that {(et)]πn,m : t ∈
[0, 1],m ∈ N} is Wq-precompact for every n ∈ N. In particular such set is tight, and thus by
Prokhorov’s Theorem 1.1.1 there exists a function ψ : X→ R with compact sublevels such that

sup
t∈[0,1],m∈N

�
ψ d(et)]πn,m <∞. (4.3.5)
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Now, consider the functional Ψ : C([0, 1],X)→ X defined by

Ψ(γ) :=

� 1

0

ψ(γt) + |γ̇t|q dt, if γ ∈ ACq([0, 1],X), +∞ otherwise

and notice that it has compact sublevels as well thanks to 1.1.4. By construction we have

sup
m

�
Ψ dπn,m ≤ sup

t∈[0,1],m∈N

( �
ψ d(et)]πn,m + Keq(πn,m)

) (4.3.3),(4.3.5)
< ∞.

Again, by Prokhrov’s Theorem, we conclude that (πn,m)m is tight family and, up to a not relabeled
subsequences, we get the existence of a weak limit πn as m goes to infinity. We thus obtained
(i-a). Also, from (4.3.4) we get

(et)]πn = (et)]π, t ∈ [0, 1]. (4.3.6)

Now notice that (4.3.6) ensures a posteriori (πn,m)m to be also a polygonal interpolation of πn
(recall that πn,m was built freezing marginals of (et)]π on a uniform time grid) whence (4.3.3)
here reads Keq(πn,m) ≤ Keq(πn) for every m ∈ N. Taking now the limsup yields (i-b).
Case ii). We immediately notice that (4.3.6) ensures (ii-c) with C = Comp(π). Next, we show

(ii-a) and, to this aim, we remark that ∆n :=
∑Nn
i=0 πn|Ai ⊗ π|Ai ∈ Adm(πn, π) by construction.

Then, we can estimate

Wq
q(π

n, π) ≤
�

Y×Y

dqsup(γ, θ) d∆n(γ, θ) =

Nn∑
i=0

�
Ai×Ai

dqsup(γ, θ) dπn(γ)π(θ) ≤ 1
nq ,

where, evidently, we used that for πn ⊗ π-a.e. (γ, θ) ∈ Ai × Ai we have dsup(γ, θ) ≤ 1
n due to the

uniform bound of the diameter of Ai. This clearly implies (ii-a). But now, arguing again by weak
lower semicontinuity (1.2.2), we conclude recalling (i-b) and (4.3.3) that

lim
n→∞

Keq(πn) ≤ lim
n→∞

lim
m→∞

Keq(πn,m) ≤ Keq(π),

that is (ii-b).
Reduction step. In this final step, we relieve the proof of the Lemma of assumption π supported
on a compact set. Being π a probability measure on the complete and separable space Y, it is
concentrated on a sigma-compact set. Let then Γk ⊂ Y be compact so that π(∪kΓk) = 1, and
consider, for every k ∈ N, the plans πk := π(∪i≤kΓi)

−1π|∪i≤kΓi
. They are clearly of compact

support, so that we can apply i)-ii) to produce the sequences πkn,m and πkn satisfying all the listed
properties. Now, a diagonalization argument in k and n gives the conclusion.

Before passing to the next Lemma, let us comment the strategy behind the above proof. The
idea of approximation via a polygonal argument is due to [142]. However, differently from there,
on BIP-spaces the tightness step, i.e. sending n to infinity, is not a delicate issue here thanks to
the defining compression properties of the plans Geodq(X).

Lemma 4.3.2. Let (X, d,m) be a metric measure space, q ∈ (1,∞) and (πn) ⊂ P(C([0, 1],X))
be a sequence such that πn ⇀ π as n goes to infinity for some q-test plan π ∈ P(C([0, 1],X)).
Assume that

(et)]πn ≤ Cm, ∀n ∈ N, t ∈ [0, 1], (4.3.7)

and that
lim
n→∞

Keq(πn) ≤ Keq(π). (4.3.8)

Then for every G ∈ Lp(m) we have

lim
n→∞

� 1

0

G(γt)|γ̇t|dtdπn =

� 1

0

G(γt)|γ̇t|dtdπ. (4.3.9)
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Proof. Let d′ := dsup∨1 and Wq be the q-Wasserstein distance induced by d′. Thus Wq(π, πn)→ 0
as n goes to infinity because d′ is a bounded distance equivalnt to the original one.

We write again for brevity Y := C([0, 1],X) and consider, for every n ∈ N, first the plans
βn ∈ Optq(π, πn) and then, using repeatedly a gluing argument, the plan βn ∈PY ×Yn so that

(P 0,n)]β
n = βn and (P 0,1,...,n−1)]β

n = βn−1.

Kolmogorov’s Theorem ensures the existence of β ∈P(Y×YN) so that (P 0,1,...,n)]β = βn for all
n ∈ N. Thanks to the assumptions, we can write

0 = lim
n→∞

Wq
q(π, πn) = lim

n

�
Y×Y

(d′)q(γ0, γn) dβn(γ0, γn) = lim
n

�
Y×YN

(d′)q(P 0(γ), Pn(γ)) dβ(γ).

Therefore, one gets that, up to a not relabeled subsequence, Pn(γ)→ P 0(γ) uniformly for β-a.e.

γ. Now let fn(γ, t) := |γ̇nt | and gn(γ) :=
� 1

0
fqn(γ, t) dt = Keq(γ

n) and similarly f, g. Notice that

(4.3.8) reads as lim
�
gn dβ ≤

�
g dβ and the lower semicontinuity of the q-kinetic energy ensures

that lim gn(γ) ≥ g(γ) for β-a.e. γ. Hence the simple Lemma 4.3.3 below ensures that gn → g in
L1(β) and thus, up to a non-relabeled subsequence, also β-a.e.. Thus by Lemma 1.1.3 we deduce
that for β-a.e. γ we have fn(γ, ·) → f(γ, ·) in Lq(0, 1) and thus also in measure. By Fubini’s
theorem we then see that fn → f in measure (w.r.t. β ×L 1|[0,1]

). Now observe that (4.3.8) (and

the identity ‖fn‖Lq = Keq(πn)) grants that (fn) is bounded in Lq(β ×L 1|[0,1]
) and what we just

proved shows that any weak limit must coincide a.e. with f , i.e. fn ⇀ f in Lq(β×L 1|[0,1]
). Using

again (4.3.8) and the uniform convexity of Lq we conclude that

fn → f in Lq(β ×L 1
|[0,1]

). (4.3.10)

Putting Ĝn(γ, t) := G(γnt ) and analogously Ĝ(γ, t) := G(γt), we then see that to conclude it is
sufficient to show that Ĝn → Ĝ in Lp(β ×L 1|[0,1]

). This is obvious by dominated convergence

if G ∈ Cb(X), thus the conclusion will follow if we show that the linear maps Lp(X,m) 3 G 7→
Ĝn, Ĝ ∈ Lp(β ×L 1|[0,1]

) are uniformly continuous. This follows from (4.3.7), which give

� 1

0

|Ĝn|p dtdβ =

� 1

0

�
|G|p(·, t) dπn dt =

� 1

0

�
|G|p d(et)]πn dt ≤ C

�
|G|p dm,

and the analogous estimates for π.

Lemma 4.3.3. Let µ be a Borel probability measure on a Polish space Y, and fn, f : Y → [0,∞],
n ∈ N, Borel such that

f(y) ≤ lim
n→∞

fn(y), and lim
n→∞

�
fn dµ ≤

�
f dµ <∞.

Then fn → f in L1(µ).

Proof. Let g := limn→∞ fn and gn := infk≥n fk, so that the monotone convergence theorem and
the assumptions give ‖gn − g‖L1(µ) → 0. Also, we have

lim
n→∞

‖fn − gn‖L1(µ) = lim
n→∞

�
fn − gn dµ ≤

�
f − g dµ ≤ 0,

forcing in particular f = g µ-a.e.. The conclusion follows.

Thanks to these approximation result we get the following:

Proposition 4.3.4. Let (X, d,m) be a BIP-space, p ∈ (1,∞), f : X → R Borel and G ∈ Lp(X)
positive. Then, the following are equivalent:
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i) f ∈ Sp(X) and G is a p-weak upper gradient;

ii) the inequality �
|f(γ1)− f(γ0)|dπ ≤

� 1

0

G(γt)|γ̇t|dtdπ (4.3.11)

holds for any π ∈ Geodq(X).

Proof. The implication i) ⇒ ii) is obvious, so we are left to show the converse. We start notic-
ing that (4.3.11) holds for any π ∈ PolGeoq(X). Indeed, for Ai, αi, N,m as in the definition of
PolGeoq(X) we have

�
|f(γ1)− f(γ0)|dπ ≤

N∑
i=1

m−1∑
j=0

�
|f(γ j+1

m
)− f(γ j

m
)|dπ|Ai

=

N∑
i=1

m−1∑
j=0

αi

�
|f(γ1)− f(γ0)|d

(
α−1
i (Restr

j+1
m
j
m

)](π|Ai)
)

∗
≤

N∑
i=1

m−1∑
j=0

αi

� 1

0

G(γt)|γ̇t|dtd
(
α−1
i (Restr

j+1
m
j
m

)](π|Ai)
)

=

� 1

0

G(γt)|γ̇t|dtdπ

having used the fact that α−1
i (Restr

j+1
m
j
m

)](π|Ai) is in Geodq(X) and the assumption ii) in the starred

inequality.
The conclusion now comes by approximation. Let π be an arbitrary q-test plan and assume for

the moment that f(γ1)− f(γ0) has the same sign for π-a.e. γ, say non-negative (otherwise replace
π with (Restr01)]π and notice that (4.3.11) is unaffected). Let (πn,m), (πn) be given by Lemma
4.3.1, put fk := (−k)∨ f ∧ k for k ∈ N and notice that fk(γ1)− fk(γ0) ≥ 0 for π-a.e. γ. The fact
that fk ∈ L∞(m) and the compression bounds given by Lemma 4.3.1 give that

lim
n→∞

lim
m→∞

�
fk d(et)]πn,m = lim

n→∞

�
fk d(et)]πn =

�
fk d(et)]π, ∀t ∈ [0, 1],

therefore by monotone convergence we get

�
|f(γ1)− f(γ0)|dπ = lim

k→∞

�
|fk(γ1)− fk(γ0)|dπ

= lim
k→∞

�
fk(γ1)− fk(γ0) dπ

= lim
k→∞

(�
fk d(e1)]π −

�
fk d(e0)]π

)
= lim
k→∞

lim
n→∞

lim
m→∞

(�
fk d(e1)]πn,m −

�
fk d(e0)]πn,m

)
≤ lim
k→∞

lim
n→∞

lim
m→∞

�
|fk(γ1)− fk(γ0)|dπn,m

≤ lim
n→∞

lim
m→∞

�
|f(γ1)− f(γ0)|dπn,m

≤ lim
n→∞

lim
m→∞

� 1

0

G(γt)|γ̇t|dtdπn,m,

where in the last step we used the fact that πn,m ∈ PolGeoq(X) and what previously proved. To
conclude we apply Lemma 4.3.2 first as m→∞ and then as n→∞.
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If both A+ := {γ : f(γ1) − f(γ0) ≥ 0} and A− := {γ : f(γ1) − f(γ0) < 0} have positive
π-measure, we apply the above to the q-test plans π± := π(A±)−1π|A± observing that

�
|f(γ1)− f(γ0)|dπ = π(A+)

�
|f(γ1)− f(γ0)|dπ+ + π(A−)

�
|f(γ1)− f(γ0)|dπ−.

The conclusion follows.

We now come to the main result of the section, which is also the main reason behind the
definition of BIP spaces:

Theorem 4.3.5. Let (X, d,m) be a BIP-space and let p1, p2 ∈ (1,∞). Suppose f ∈ Sp1

loc(X) is
such that |Df |p1 ∈ L

p2

loc(m).
Then, f ∈ Sp2

loc(X) and
|Df |p1

= |Df |p2
, m-a.e..

Proof. Assume for a moment that f ∈ Sp1(X) and |Df |p1
∈ Lp2(m). Then we know that (4.3.11)

holds for every q1-test plan with G := |Df |p1
, and thus, recalling (4.3.2), also for every plan in

Geodq2(X). Hence Proposition 4.3.4 tells that f ∈ Sp2(X) with |Df |p2
≤ |Df |p1

m-a.e..
In the general case we pick k ∈ N and η ∈ Lipbs(X), define the truncated function fk :=

(−k) ∨ f ∧ k and then consider ηfk. The Leibniz rule (1.2.10) (which is trivially valid also for
locally Sobolev functions) gives

|D(ηfk)|p1
≤ |η||Df |p1

+ |Dη|k ∈ Lp1 ∩ Lp2(m). (4.3.12)

Thus ηfk ∈ Sp1(X) with |D(ηfk)|p1 ∈ Lp2(m) and the previous argument applies to conclude that
ηfk ∈ Sp2(X) with |D(ηfk)|p2 bounded by the right hand side of (4.3.12). By the very Definition
1.2.12 this means that f ∈ Sp2

loc(X) with |Df |p2
≤ |Df |p1

m-a.e..
Now we can swap p1 and p2 to get that equality, and thus the conclusion, holds.

As a direct implication of the above, we can treat analogously the case of minimal weak upper
gradient for Sobolev maps.

Proposition 4.3.6. Let (X, d,m) be a BIP-space, (Y, dY) be a complete metric space and let
p1, p2 ∈ (1,∞). Then, for every u ∈ Sp1(X,Y) with |Du|p1

∈ Lp2(m), we have

u ∈ Sp2(X,Y) and |Du|p1 = |Du|p2 m-a.e..

Proof. Simply notice that, the assumption and Theorem 4.3.5 yields that for every φ ∈ Lip(Y),
ϕ ◦ u ∈ Sp2(X) and |D(ϕ ◦ u)|p1

= |D(ϕ ◦ u)|p2
m-a.e.. Finally,

|Du|p1

(1.2.13)
= ess sup|D(ϕ ◦ u)|p1

= ess sup|D(ϕ ◦ u)|p1

(1.2.13)
= |Du|p1

, m-a.e.

as ϕ varies in Lip(Y) with Lip(ϕ) ≤ 1, and this concludes the proof.

4.3.1 Stability of (BIP)

We aim at proving the stability of the (BIP) under pointed measured Gromov Hausdorff conver-
gence as defined in Definition 1.1.11

The stability of the (BIP) is a consequence of the following simple compactness property of
dynamical optimal test plans under pmGH-convergence:

Lemma 4.3.7. Let Xn
pmGH→ X∞ as in Definition 1.1.11, R > 0 and q ∈ (1,∞). For every n ∈ N,

and i = 0, 1, let µni ∈ Pq(Xn) be with supp(µni ) ⊆ BR(xn) and πn ∈ OptGeoq(µ
n
0 , µ

n
1 ). Assume

that limn→∞Comp(πn) <∞.
Then (πn) ⊂P(C([0, 1],Z)) is tight and for any weak limit π along some subsequence nk ↑ +∞

we have

81



i) µnki ⇀ µi, i = 0, 1, for some µi ∈P(X∞) ⊂P(Z) with support contained in B̄R(x∞),

ii) π ∈ OptGeoq(µ0, µ1) and limn→∞Keq(π
n) = Keq(π);

iii) Comp(π) ≤ limn→∞Comp(πn).

Proof. From (1.1.11a) and the fact that the measures µni have uniformly bounded supports in
P(Z) and arguing as in the proof of Lemma 4.3.1 we see that tightness will follow if we show
that {(et)]πn : t ∈ [0, 1], n ∈ N} is tight. To see this, let η : Z→ [0, 1] be Lipschitz with bounded
support and identically 1 on BR+1(x∞) ⊂ Z. Since xn → x∞ we see that

�
η dmn > 0 for every n

sufficiently big, hence the definition

m̃n := 1
zn
ηmn ∈P(Z), zn :=

�
η dmn,

is well posed for every n ∈ N sufficiently big and we have m̃n ⇀ m̃∞ in duality with Cb(Z).
In particular, (m̃n) is a tight sequence. Now fix ε > 0 and find K ⊂ Z compact such that
limn m̃n(Z \K) < ε. Then observe that for every n ∈ N big enough we have supp((et)]π

n) ⊂ {η =
1} and thus

(et)]π
n ≤ Comp(πn)m̃n, for every t ∈ [0, 1] and n big enough. (4.3.13)

Hence for any S > limn Comp(πn) we have

lim
n→∞

sup
t∈[0,1]

(et)]π
n(Z \K) ≤ lim

n→∞
Comp(πn)m̃n(Z \K) ≤ Sε,

proving the desired tightness.
Now say that πnk ⇀ π ∈ P(C([0, 1],Z)). Then (et)]π

n ⇀ (et)]π for every t ∈ [0, 1] (in
particular i) holds), thus passing to the limit in (4.3.13) we obtain

(et)]π ≤ Sm̃∞ ≤ Sm∞, ∀t ∈ [0, 1] and S > lim
n

Comp(πn),

thus iii) holds. To see ii) notice that since the measures µni have uniformly bounded support,
the weak convergence µnki ⇀ (ei)]π implies Wq-convergence, thus recalling the characterization
(1.1.11a) of optimal geodesic plans we have

Keq(π) ≤ lim
k→∞

Keq(π
nk) = lim

k→∞
W q
q (µnk0 , µnk1 ) = W q

q (µ0, µ1)

and the conclusion follows.

We come to the actual stability result:

Theorem 4.3.8 (pmGH-stability of (BIP)). Let (Xn, dn,mn, xn), n ∈ N̄, be a sequence of pointed

metric measure spaces with (Xn, dn,mn, xn)
pmGH→ (X∞, d∞,m∞, x∞). Suppose (Xn, dn,mn) sat-

isfies the (BIP) with profile function D 7→ Cnq (D) for all n ∈ N and there exist non increasing

assignments D 7→ Cq(D) so that limn C
n
q (D) ≤ Cq(D) <∞ for every D > 0, q ∈ (1,∞).

Then (X∞, d∞,m∞) has the (BIP) with profile function D 7→ Cq(D).

Proof. We subdivide the proof in two steps.
Step 1. Let q ∈ (1,∞), µ∞ = ρ∞m∞ ∈ P(X∞) ⊂ P(Z) be with bounded support and A ⊂ Z
open bounded with d(supp(µ∞),Z \A) > 0. We claim that there is a sequence n 7→ µn = ρnmn ∈
P(Xn) ⊂P(Z) Wq-converging to µ∞ with

lim
n
‖ρn‖L∞(mn) ≤ ‖ρ∞‖L∞(m∞) (4.3.14)

such that supp(µn) ⊂ A for every n sufficiently big.
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To see this, let η : Z→ [0, 1] be continuous, identically 1 on supp(µ) and with support contained
in A. Put

m̃n :=
1

zn
ηmn, where zn :=

�
η dµn

and similarly m∞. Notice that the assumptions on µ∞ ensure that z∞ > 0, so that m̃∞ is well
defined, and thus the pmGH-convergence grants that zn > 0 for every n sufficiently big, so that
for these n’s the probability measures m̃n ∈ P(Z) are well defined and weakly converge to m̃∞
in duality with Cb(Z). In the forthcoming discussion we will neglect the small n’s and think the
m̃n’s to be defined for every n ∈ N.

By construction supp(m̃n) ⊂ A for every n ∈ N and since A is bounded we deduce that
Wq(m̃n, m̃∞)→ 0 as n→∞. Let αn ∈ Optq(m̃∞, m̃n), and define

µn := P 2
] β

n, where dβn(x, y) :=
dµ∞
dm̃∞

(x) dαn(x, y) ∈P(Z× Z).

Notice that P 1
] β

n = µ∞, and thus βn ∈ Adm(µ̃∞, µ̃n). Also, from dµ∞
dm̃∞

= z∞
dµ∞
dm∞

= z∞ρ∞ we
get βn ≤ z∞‖ρ∞‖L∞(m∞)α

n and thus

µn ≤ z∞‖ρ∞‖L∞(m∞)P
2
] α

n = z∞‖ρ∞‖L∞(m∞)m̃n ≤
z∞
zn
‖ρ∞‖L∞(m∞)mn.

Since clearly zn → z∞, (4.3.14) holds. Moreover, we have

W q
q (µ∞, µn) ≤

�
dq(x, y) dβn(y1, y2)

≤ z∞‖ρ∞‖L∞(m∞)

�
dq(x, y) dαn(y1, y2) ≤ z∞‖ρ∞‖L∞(m∞)W

q
q (m̃∞, m̃n)→ 0,

(4.3.15)

and the claim is proved.
Step 2. Let D > 0, µ0, µ1 ∈ P(X∞) be absolutely continuous with bounded densities and
diam(supp(µ0) ∪ supp(µ1)) < D. Let A ⊂ Z be open with diam(A) < D and d((supp(µ0) ∪
supp(µ1)),Z\A) > 0: apply the previous step with A and the measures µ0, µ1 to find corresponding
sequences (µni ) as above. Since Xn is a BIP space we can find πn ∈ OptGeoq(µ

n
0 , µ

n
1 ) with

Comp(πn) ≤ Cnq (D)
(
‖ρn0‖L∞(mn) ∨ ‖ρn1‖L∞(mn)

)
, (4.3.16)

where ρni :=
dµni
dm . By Lemma 4.3.7 above, the sequence (πn) has a subsequence weakly converging

to some π ∈ OptGeoq(µ0, µ1), so that taking into account iii) of Lemma 4.3.7 and the previous

step, by taking the lim in (4.3.16) we conclude that

Comp(π) ≤ lim
n→∞

Cnq (D)
(
‖ρ0‖L∞(m∞) ∨ ‖ρ1‖L∞(m∞)

)
and the conclusion follows.

4.4 p-independent differential calculus

4.4.1 Unification of p-differential calculus

In this section we study the effect of p-independence of weak upper gradients in terms of differential
calculus. Informally, the idea is that on this sort of spaces we should have a concept of differential
(and thus of cotangent module) which is independent on the chosen Sobolev exponent p.

Theorem 4.4.1 (Universal cotangent module - weak version). Let (X, d,m) be a metric measure
space with p-independent weak upper gradients in weak sense.

Then there is a unique couple (L0(T ∗X),d) where L0(T ∗X) is a L0(m)-normed module and
d: ∪p∈(1,∞) S

p
loc(X)→ L0(T ∗X) is such that for any p ∈ (1,∞) it holds
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i) The restriction of d on Sploc(X) is linear;

ii) For any f ∈ Sploc(X), it holds |Df |p = |df | m-a.e.;

iii) The space {df : f ∈W 1,p(X)} generates L0(T ∗X) as a module.

Here, uniqueness is intended up to unique isomorphism, i.e. if (M , L) is another couple with the
same properties, there there is a unique module isomorphism Φ: M → L0(T ∗X) so that Φ◦L = d.

Moreover, the identification Ip : L0
p(T
∗X) → L0(T ∗X) sending dpf 7→ df induces the module

isomorphism Jq : L0
q(TX)→ (L0(TX))∗ for any p, q ∈ (1,∞) conjugate exponents.

Proof.
Uniqueness. For any p ∈ (1,∞), the couple (L0(T ∗X),d|Sploc

) satisfies the same properties of

(L0
p(T
∗X),dp) in Theorem 1.2.27. Therefore, uniqueness is a direct consequence of the uniqueness

part such Theorem.
Existence. Fix p1, p2 ∈ (1,∞), f, g ∈ W 1,p1(X) ∩W 1,p2(X) and E ⊂ X Borel. We observe that
locality of differentials together with the assumption on the metric measure space yield

dp1
f = dp1

g m-a.e. on E ⇔ dp2
f = dp2

g m-a.e. on E (4.4.1)

Indeed,
dp1f = dp1g m-a.e. on E ⇔ |dp1(f − g)| = 0 m-a.e. on E

⇔ |D(f − g)|p1 = 0 m-a.e. on E

⇔ |D(f − g)|p2 = 0 m-a.e. on E

⇔ |dp2(f − g)| = 0 m-a.e. on E

⇔ dp2f = dp2g m-a.e. on E

Building up on property (4.4.1) we are going to construct an isomorphism Ip2
p1

: L0
p1

(T ∗X) →
L0
p2

(T ∗X) sending dp1
f to dp2

f . We start by defining its action on simple 1-forms. Denote by
Vpj ⊂ L0

pj (T
∗X), j = 1, 2, the space of covector fields of type

∑n
i=1

χEidpjfi, where (Ei) is a finite

Borel partition of X, and (fi) ⊂W 1,p1(X)∩W 1,p2(X). Then define Ip2
p1

: Vp1
→ Vp2

by the formula

Ip2
p1

( n∑
i=1

χEidp1
fi

)
:=

n∑
i=1

χEidp2
fi.

It can be readily checked that (4.4.1) ensures the well posedness of such map. Moreover, Ip2
p1

is
linear and, due to the independence of weak upper gradients, it is a pointwise isometry, since∣∣∣Ip2

p1

( n∑
i=1

χEidp1
fi

)∣∣∣ =

n∑
i=1

χEi |dp2
fi| =

n∑
i=1

χEi |dp1
fi| =

∣∣∣( n∑
i=1

χEidp1
fi

)∣∣∣ m-a.e.

Therefore, it is continuous and, with a little abuse of notation, it uniquely extend to a pointwise
isometry from the closure of Vp1

with values in L0
p2

(T ∗X). It is clear that, thanks to a) of Definition
4.2.1 and ii) of Theorem 1.2.27, the closure of Vpj coincides with L0

pj (T
∗X) itself, j = 1, 2. We

thus built a module isomorphism Ip2
p1

such that

Ip2
p1

(dp1
f) = dp2

f, (4.4.2)

holds for every f ∈ W 1,p1(X) ∩W 1,p2(X) and it is then clear from definition of S
pj
loc(X) and the

locality of the differential that (4.4.2) holds for any f ∈ Sp1

loc(X) ∩ Sp2

loc(X).
To conclude, fix p̄ ∈ (1,∞), set Ip := I p̄p , define the module L0(T ∗X) := L0

p̄(T
∗X), and the

differential d as d|Sploc(X)
:= Ip ◦ dp. Notice that (4.4.2) ensures that the definition of d is well

posed.
Then property i) follows from the linearity of dp and I p̄p . Property ii) follows from the fact

that for every p ∈ (1,∞), Ip is a pointwise isometry, as |df | = |Ip(dpf)| = |dpf | = |Df |p, m-a.e..
Finally, we know that {dpf : f ∈W 1,p(X)} generates L0

p(T
∗X), thus iii) follows from the fact that

Ip is an isomorphism. Finally, it is standard to define Jq as the dual isomorphism of dpf 7→ df ,
for every p, q conjugate exponents.
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Definition 4.4.2 (Universal differential structures). Let (X, d,m) be a metric measure space with
p-independent weak upper gradients in weak sense. We call the universal cotangent module the
module L0(T ∗X) and d the associated universal differential given by Theorem 1.2.27. Moreover,
we call the universal tangent module, and denote it by L0(TX), the dual module (L0(T ∗X)∗.

In spaces with p-independent weak gradients in the strong sense, the following stronger result
holds. Basically, it says that in this case the situation is closer to the standard Euclidean one,
where one first has a distributional differential and then, by investigating its integrability, deduces
whether the function is Sobolev:

Theorem 4.4.3 (Universal cotangent module - strong version). Let (X, d,m) be a metric measure
space with p-independent weak upper gradients in strong sense.

Then in addition to the results in Theorem 4.4.1, the following holds. Let f ∈ ∪p∈(1,∞)S
p
loc(X)

be such that for some p̄ ∈ (1,∞) we have |df | ∈ Lp̄loc(m).
Then f ∈ Sp̄loc(X).

Proof. By assumption we know that for some p ∈ (1,∞) we have f ∈ Sploc(X). For k,R > 0 let
fk := (−k) ∨ f ∧ k, ηR : X→ [0, 1] given by ηR := (1− d(·, BR(x̄)))+, where x̄ ∈ X is some fixed
chosen point, and fkR := ηRf

k. Then fkR is bounded with bounded support, hence it belongs to
Lp ∩ Lp̄(m). Moreover, we have

|DfkR|p ≤ ηR|Df |p1
+ χsupp(ηR)k = ηR|df |+ χsupp(ηR)k

and the assumption |df | ∈ Lp̄loc(m) gives that the rightmost side in the above is in Lp̄(m). Then
the fact that X has p-independent weak gradients in the strong sense implies that fkR ∈ W 1,p̄(X)
with |DfkR|p̄ ≤ |df |+χsupp(ηR)k. By the very definition of Sp̄loc(X) we just proved that f ∈ Sp̄loc(X),
which is the conclusion.

4.4.2 Infinitesimal Hilbertianity and universal gradient

Intuitively, when a metric measure is infinitesimal Hilbertian, there is a hidden scalar product
between tangent directions at small scales. Such geometric concept has in principle nothing to do
with the particular choice of the exponent p = 2. Nevertheless, due to the dependence of weak
upper gradients on p, this hidden geometry remains unseen by all other W 1,p(X).

In this section we investigate some consequences of having both infinitesimal Hilbertianity
and p-independent weak upper gradients. We start with the following proposition, whose proof
essentially boils down into verifying that the classical Clarkson inequalities are valid also for
elements of a generic Hilbert module:

Proposition 4.4.4. Let (X, d,m) be an infinitesimal Hilbertian metric measure space with p-
independent gradients in weak sense. Then, Lp(T ∗X) and W 1,p(X) are uniformly convex and
consequently also reflexive for every p ∈ (1,∞).

Proof. Reflexivity is a consequence of uniform convexity, so we focus on this latter property. Also,
the map

W 1,p(X) 3 f 7→ (f, df) ∈ Lp(X)×p Lp(T ∗X)

is an isometry and since Lp(X) is uniformly convex and so is the Lp-norm on R2 used to define the
product norm, the uniform convexity of W 1,p(X) will follow if we show the one of Lp(T ∗X). We
thus concentrate on this latter space and observe that it is sufficient to show that the Clarkson
inequalities hold:

p ∈ [2,∞) ⇒
∥∥∥ω + η

2

∥∥∥p
Lp(T∗X)

+
∥∥∥ω − η

2

∥∥∥p
Lp(T∗X)

≤ 1
2‖η‖

p
Lp(T∗X) + 1

2‖ω‖
p
Lp(T∗X),

p ∈ (1, 2] ⇒
∥∥∥ω + η

2

∥∥∥q
Lp(T∗X)

+
∥∥∥ω − η

2

∥∥∥q
Lp(T∗X)

≤
(

1
2‖ω‖

p
Lp(T∗X) + 1

2‖η‖
p
Lp(T∗X)

) q
p

,

(4.4.3)
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where q ∈ (1,∞) is the conjugate exponent of p and ω, η are arbitrary elements in L0(T ∗X).
To see these, we start noticing that the assumption of infinitesimal Hilbertianity (and Theorem

4.4.1 and its proof) gives that

2|η|2 + 2|ω|2 = |η + ω|2 + |η − ω|2, m-a.e., ∀η, ω ∈ L0(T ∗X). (4.4.4)

Case p ≥ 2. From the inequality ‖x‖p ≤ ‖x‖2 valid for any x ∈ R2 we see that for any η, ω ∈
L0(T ∗X) we have∣∣∣ω + η

2

∣∣∣p +
∣∣∣ω − η

2

∣∣∣p ≤ (∣∣∣ω + η

2

∣∣∣2 +
∣∣∣ω − η

2

∣∣∣2)p/2 (4.4.4)
=

( |η|2
2

+
|ω|2

2

)p/2
≤ |ω

n|p

2
+
|ηn|p

2
, (4.4.5)

having used the fact that R+ 3 t 7→ t
p
2 is convex in the last step. Integrating we deduce the first

in (4.4.3).
Case p ∈ (1, 2]. Obviously p ≤ 2 ≤ q and thus for any η, ω ∈ L0(T ∗X) we have∣∣∣ω + η

2

∣∣∣q +
∣∣∣ω − η

2

∣∣∣q (4.4.5)

≤
( |η|2

2
+
|ω|2

2

)q/2 ∗
≤
( |η|p

2
+
|ω|p

2

)q/p
, (4.4.6)

where in the starred inequality we used the fact that ‖x‖2 ≤ ‖x‖p for any x ∈ R2.
Now suppose we already know the reverse triangle inequality in Lr(m) spaces for r ∈ (0, 1),

i.e. that for f, g Borel non-negative it holds( �
fr dm

) 1
r

+
(�

gr dm
) 1
r ≤

(�
(f + g)r dm

) 1
r

(4.4.7)

and apply it with r := p
q , f := 1

2 |ω + η|p and g := 1
2 |ω + η|p to obtain(∥∥∥ω + η

2

∥∥∥q
Lp(T∗X)

+
∥∥∥ω − η

2

∥∥∥q
Lp(T∗X)

)p/q
≤
� (∣∣∣ω + η

2

∣∣∣q +
∣∣∣ω − η

2

∣∣∣q)p/q dm.

This and (4.4.6) give the second in (4.4.3), thus it remains to prove (4.4.7). Putting ϕ(x) :=

(fr(x), gr(x)) and Ψ(a, b) := (a
1
r + b

1
r )r, (4.4.7) takes the form

Ψ
( �

ϕdm
)
≤
�

Ψ ◦ ϕdm.

Now observe that since Ψ : R2 → R is convex and positively 1-homogeneous we have

Ψ = sup
`≤Ψ, ` linear

`,

therefore

Ψ
(�

ϕdm
)

= sup
`
`
(�

ϕdm
)

= sup
`

�
` ◦ ϕdm ≤

�
Ψ ◦ ϕdm

and the conclusion follows.

In presence of infinitesimal Hilbertianity and independence of p-upper gradients in the weak
sense, we can naturally define a linear notion of gradient:

Theorem 4.4.5 (Universal gradient). Let (X, d,m) be a infinitesimal Hilbertian metric mea-
sure space with p-independent weak upper gradients in weak sense. Then there is a unique map
∇ : ∪p∈(1,∞) S

p
loc(X)→ L0(TX), called universal gradient, such that for any p ∈ (1,∞) it holds

i) The restriction of ∇ on Sploc(X) is linear;

ii) For any f ∈ Sploc(X), it holds df(∇f) = |∇f |2∗ = |df |2 m-a.e.;

iii) The space {∇f : f ∈W 1,p(X)} generates L0(TX) as a module.

Proof. The assumption of infinitesimal Hilbertianity (together with Theorem 4.4.1 and its proof)
ensures that L0(T ∗X) is a Hilbert module: let R : L0(T ∗X)→ L0(TX) be the Riesz isomorphism.

Then from Theorem 4.4.1 above it is clear that ∇f := R(df) satisfies the requirements.
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4.5 Spaces with the (BIP) and consequences

In this section we list some spaces and conditions that we can relate to the bounded interpolation
property and we analyze the consequences.

4.5.1 Finite dimensional spaces with Ricci lowerbounds

We begin with measure contraction property.

Theorem 4.5.1. Let (X, d,m) be a non branching MCP(K,N)-space for some K ∈ R, N ∈ [1,∞).

Then, it is a BIP-space with profile function D 7→ 2NeD
√

(N−1)K− and consequently:

i) (X, d,m) has p-independent weak upper gradients in the strong sense;

ii) there exists a unique couple (L0(T ∗X),d) of universal cotangent module and differential;

iii) there exists an ∞-plan πmaster concentrated on geodesics so that:

for every p ∈ (1,∞), f Borel and G ∈ Lp(m) with G ≥ 0, the following are equivalent

◦ f ∈ Sp(X) and G is a p-weak upper gradient;

◦ it holds

|f(γ1)− f(γ0)| ≤
� 1

0

G(γt)|γ̇t|dt, πmaster-a.e. γ.

Proof. We subdivide the proof in two steps.
Step 1. Let q ∈ (1,∞), D > 0 and µ0, µ1 ∈ Pq(X) as in the definition of the (BIP). Then,
Theorem A.1.1 ensures that we can find π+ ∈ OptGeoq(µ0, µ1) so that

‖ρ+
t ‖L∞(m) ≤ 2NeD

√
(N−1)K−‖ρ0‖L∞(m), ∀t ∈ [0, 1

2 ],

and π− ∈ OptGeoq(µ1, µ0) so that

‖ρ−t ‖L∞(m) ≤ 2NeD
√

(N−1)K−‖ρ1‖L∞(m), ∀t ∈ [0, 1
2 ],

having denoted ρ±t :=
d(et)]π

±

dm for every t ∈ [0, 1
2 ]. Hence, by non branching, the set OptGeoq(µ0, µ1)

is a singleton (1.1.12) and therefore we can glue the forward and backward estimates to verify the
(BIP).
Step 2. Finally, recalling that MCP-spaces are doubling, we have thanks to Theorem 1.3.5
that W 1,p(X) is reflexive and therefore Lipbs(X) is dense in every W 1,p(X) (see Corollary 1.3.6).
Consequently, (X, d,m) have p-independent weak upper gradient in the strong sense by appealing
to Theorem 4.3.5. The existence of a universal cotangent module L0(T ∗X) is granted by Theorem
4.4.1. Finally, iii) is the content of Theorem 4.6.4.

As the reader may have noticed, the fact that MCP(K,N)-spaces have p-independent weak
upper gradients in weak sense directly follows by the deep results contained in [64] (see the proof
of Proposition 4.2.2, recalling that MCP spaces are doubling and supports a Poincaré inequal-
ity). Nevertheless, the novelties that follows from our investigation, is their independence in the
stronger sense of Definition 4.2.1 as well as properties ii)-iii).

Finally, as noticed in (2.5.1), since non branching CDq spaces are MCP spaces, we have the
simple corollary.

Corollary 4.5.2. Let (X, d,m) be a non branching CD(K,N) space for some K ∈ R, N ∈ [1,∞).
Then, it is a BIP-space and the results of Theorem 4.5.1 hold.
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4.5.2 Infinite dimensional spaces with Ricci lowerbounds

In Appendix A, we prove in Theorem A.2.1 that the interpolation estimates of [174] stated in
Theorem 2.2.9 extend to all exponent q 6= 2. This will be achieved also in the infinite dimensional
setting of CDq(K,∞) spaces, hence the (BIP) and its consequences have the rights to hold also in
this framework. Unfortunately, the CDq(K,∞)-class is not known at present to be independent
on q as this class is not covered by the analysis of [1]. A simple hypothesis then ensures:

Theorem 4.5.3. Let K ∈ R and suppose that (X, d,m) is a CDq(K,∞)-space for every q ∈ (1,∞).

Then, it has the (BIP) with profile function D 7→ eK
−D2/12 and, consequently, Theorem 4.3.5 holds

true.

However, when restricting the attention to RCD(K,∞)-spaces, we have the stronger result.

Proposition 4.5.4. Let (X, d,m) be a RCD(K,∞)-space for some K ∈ R, N ∈ [1,∞]. Then,
(X, d,m) has p-independent weak upper gradient in the strong sense. Moreover, there are unique
couples (L0(T ∗X), d) and (L0(TX),∇) of universal cotangent and tangent module, with associated
linear universal differential and gradient, respectively.

Proof. From [99] we know that RCD(K,∞)-spaces do satisfy b) and c) of Definition 4.2.1. It

remains to show a). Call now B := Lipbs(X)
W 1,p

and observe that, since Lipbs(X) ⊂ W 1,p(X) ∩
W 1,2(X) and

2|Df |2p + 2|Dg|2p = |D(f + g)|2p + |D(f − g)|2p, m-a.e.,∀f, g ∈ Lipbs(X),

one can argue as in Proposition 4.4.4 in order to show that B is uniformly convex. Then, for every
f ∈ W 1,p(X), we consider thanks to [20] and a truncation argument, a sequence (fn) ⊂ Lipbs(X)
so that

fn → f, |Dfn|p → |Df |p, in Lp(m). (4.5.1)

Then, for any G weak limit of
|D(fn+fm)|p

2 , by lower semicontinuity of the W 1,p-norm, we have

lim
n,m

∥∥∥fn + fm
2

∥∥∥
W 1,p(X)

≥
(
‖f‖pLp(m) + ‖G‖pLp(m)

)1/p ≥ ‖f‖W 1,p(X).

Suppose, by contradiction, that (fn) is not Cauchy. Then, ∃ε > 0 so that ‖fn − fm‖ ≥ ε for
countably many n,m. Observe that, uniform convexity of B ensures that ∃δ > 0 such that

‖f‖W 1,p(X) − δ ≥
∥∥∥fn + fm

2

∥∥∥
W 1,p(X)

,

for countably many n,m, which clearly is absurd in light of (4.5.1). Therefore, (fn) is Cauchy and,
its B-limit must be f . In other words, we showed that Lipbs(X) is a dense collection in W 1,p(X)
for every p ∈ (1,∞), which is a stronger statement implying a). Finally, for the last claim, simply
invoke Theorem 4.4.5 and Theorem 4.4.1.

Remark 4.5.5. The reason for which the arguments in [99], contrary to the present note, does
not involve other exponents than p = 2 is that, using heat-flow regularization techniques (which
are well understood and at hand in this class, see e.g. [21]), the problem of independence is
reduced to the Lipschitz class which is large enough in the RCD-setting in every Sobolev space
W 1,p(X) and capable to lead to the conclusion of p-independent weak upper gradient even in the
infinite-dimensional setting of RCD(K,∞)-spaces. �

4.5.3 Curvature dimension condition with negative dimension

In this section, we consider a notion of the curvature dimension condition for metric measure
spaces with generalized negative dimension N < 0. This was first introduced in [165] and recently
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studied in [150, 149] where the authors considered a larger class of metric measure spaces equipped
with a quasi Radon reference measures. In the present note we are not interested in working in
full generality and recall the definition of this CD-class sticking to our notion of (X, d,m). Our
goal is to show that very naturally, the results of [174] and Appendix A extends also to this class.

First, we need to modify the distortion coefficient for the case N ∈ (−∞, 0) and K ∈ R, t ∈
[0, 1]:

−σ
(t)
K,N (θ) :=



+∞, if Kθ2 ≤ Nπ2,
sin(tθ

√
K/N)

sin(θ
√
K/N)

, if Nπ2 < Kθ2 < 0,

t, if Kθ2 = 0,
sinh(tθ

√
−K/N)

sinh(θ
√
−K/N)

, if 0 < Kθ2.

Set also −τ
(t)
K,N (θ) := t

1
N σ

(t)
K,N−1(θ)1− 1

N . Finally, for µ ∈ P(X), we define the N -Rényi relative
entropy with respect to m with Negative N by

−UN (µ|m) :=

�
X

ρ1− 1
N dm, if µ = ρm, ∞ otherwise.

Definition 4.5.6 (CDq(K,N) with N < 0). Let q ∈ (1,∞), K ∈ R and N < 0. We say that a
metric measure space (X, d,m) satisfies the curvature dimension condition CDq(K,N) if any pair
of probabilities µ0 = ρ0m, µ1 = ρ1m ∈Pq(X) admits a plan π ∈ OptGeoq(ρ0m, ρ1m) so that

−UN ′(µt|m) ≤
�
−τ

(1−t)
K,N ′ (d(γ1, γ0))ρ0(γ0)−

1
N +− τ

(t)
K,N ′(d(γ1, γ0))ρ1(γ1))−

1
N dπ(γ), (4.5.2)

for every t ∈ [0, 1], N ′ ∈ [N, 0) and having denoted µt := (et)]π.

It is rather obvious, see e.g. [150, Proposition 2.6] for q = 2, that, if (X, d,m) satisfies the
CDq(K,N)-condition K ∈ R, N < 0, then it satisfies the CDq(K

′, N ′)-condition for every K ′ ≤
K,N ′ ∈ [N, 0).

Remark 4.5.7. In order to avoid confusion with the standard definition, we considered writing
−σ,− τ,− U intentionally to distinguish the notation when N < 0. Moreover, we point out that
it is natural to consider defining the entropy as

�
X
ρ1− 1

N dm without a minus sign in front of the

integral, as h(s) := s1− 1
N is a convex function for N < 0.

�

Following [174] and Appendix A, we show that also in this case, the curvature dimension
condition spreads the support of the measure.

Lemma 4.5.8. Let (X, d,m) be a metric measure space that is a CDq(K,N)-space for some
K ∈ R, N < 0 and q ∈ (1,∞). Then, for any ρ0, ρ1 ∈ L∞(m) probability densities with D :=
diam(supp(ρ0) ∪ supp(ρ1))) <∞ , we have:

i) If K ≥ 0, there exists π ∈ OptGeoq(ρ0m, ρ1m) so that

m({ρ 1
2
> 0}) ≥ 1

‖ρ0‖L∞ ∨ ‖ρ1‖L∞
e−

1
2

√
(1−N)KD;

ii) If K < 0 and D < π
√

N−1
K , there exists π ∈ OptGeoq(ρ0m, ρ1m) so that

m({ρ 1
2
> 0}) ≥ 1

‖ρ0‖L∞ ∨ ‖ρ1‖L∞
cos1−N ( 1

2D
√
K/N − 1);

where (e 1
2
)]π = ρ 1

2
m + µs1

2

with µs1
2

⊥ m.
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Proof. Fix π ∈ OpGeo(ρ0m, ρ1m) satisfying (4.5.2), denote E := {ρ 1
2
> 0} and notice that

d(γ0, γ1) < D π-a.e. γ.
Suppose first that K ≥ 0 and estimate

−σ
( 1

2 )

K,N (d(γ0, γ1)) =
1

e−
1
2

√
−K/Nd(γ0,γ1) + e

1
2

√
−K/Nd(γ0,γ1)

≤ 1

2
e

1
2

√
−K/ND.

so that −τ
( 1

2 )

K,N (d(γ0, γ1)) ≤ 1
2

(
e

1
2

√
(1−N)KD

)− 1
N π-a.e. γ and lastly

UN (µ 1
2
|m) ≤ (‖ρ0‖L∞ ∨ ‖ρ1‖L∞)−

1
N

(
e

1
2

√
K(1−N)D

)− 1
N . (4.5.3)

Moreover, begin 1 − 1/N ≥ 1, an application of Jensen inequality yields the following estimate
from below

UN (µ 1
2
|m) = m(E)

 
E

ρ
1− 1

N
1
2

dm ≥ m(E)
( 1

m(E)

)1− 1
N = m(E)

1
N . (4.5.4)

We can now combine (4.5.4) with (4.5.3), raise to the −N power and rearrange to conclude in the
case K ≥ 0.

Suppose now insteadK < 0 andD < π
√
N − 1/K. Then, π-a.e. γ we have that 1

2d(γ0, γ1)
√
K/N − 1) <

π/2 and, since the cosine is monotone decreasing and strictly positive on [0, π/2), we estimate

−τ
( 1

2 )

K,N (d(γ0, γ1)) =
1

2

( 1

cos( 1
2d(γ0, γ1)

√
K/N − 1)

)1− 1
N ≤ 1

2

( 1

cos( 1
2D
√
K/N − 1)

)1− 1
N

.

Then, combining with (4.5.4), we achieve

m(E)
1
N ≤ (‖ρ0‖L∞ ∨ ‖ρ1‖L∞)−

1
N

(
cos( 1

2D
√
K/N − 1)

) 1−N
N ,

that easily implies the conclusion.

From this, it follows:

Theorem 4.5.9. Let (X, d,m) be a metric measure space that is a CDq(K,N)-space for some
K ∈ R, N ∈ (−∞, 0), and q ∈ (1,∞). Then, for any D > 0 and ρ0, ρ1 ∈ L∞(m) probability
densities with diam(supp(ρ0) ∪ supp(ρ1)) < D, it holds

i) if K ≥ 0, there exists π ∈ OptGeoq(ρ0m, ρ1m) with µt := (et)]π � m and

‖ρt‖L∞(m) ≤ ‖ρ0‖L∞(m) ∨ ‖ρ1‖L∞(m);

ii) If K < 0 and D ≤ diam(X) < π
√

N−1
K , there exists π ∈ OptGeoq(ρ0m, ρ1m) with µt :=

(et)] � m and

‖ρt‖L∞(m) ≤

(
D
4

√
K
N−1

)1−N
sin1−N (D

4

√
K
N−1

)‖ρ0‖L∞(m) ∨ ‖ρ1‖L∞(m);

for all t ∈ [0, 1] and having set ρt := dµt
dm .

Proof. The proof follows directly from the proof of Theorem A.2.1 in Appendix A, by replacing
Step 1 there with Lemma 4.5.8 and repeating verbatim Step 2 - Step 3 - Step 4. For the case
i), we simplified the estimate directly working in the larger CDq(0, N)-class. For the case ii), when
K < 0, we shall also make use (to get the L∞-bound by completion and induction) of the identity:

lim
n→∞

n∏
i=1

cos(θ2−i) =
sin(θ)

θ
, for θ = D

4

√
K
N−1 ,

proven in Lemma 4.5.12 below.
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We finish this section by proving two straightforward corollaries.

Corollary 4.5.10. Let (X, d,m) be a metric measure space that is a CDq(K,N)-space for every

q ∈ (1,∞) and for some K ∈ R, N ∈ (−∞, 0). If K ≥ 0 or K < 0 and diam(X) < π
√

N−1
K , then

(X, d,m) is a BIP-space and, consequently, Theorem 4.3.5 holds true.

Proof. Observe that the hypotheses with Theorem 4.5.9 gives the conclusion.

Corollary 4.5.11. Let (X, d,m) be a metric measure space that is a CD(K,N)-space for some

N ∈ (−∞, 0) and K ∈ R. Then, if K ≥ 0 or K < 0 and diam(X) < π
√

N−1
K , (X, d,m) supports

a weak local (1, 1)-Poincaré inequality.

Proof. This is a direct consequence of [174, Theorem 4.1] recalling Theorem 4.5.9.

Lemma 4.5.12. It holds

lim
n→∞

n∏
i=1

cos(2−iθ) =
sin(θ)

θ
, pointwise.

Proof. Recalling the identity cos(2−iθ) = 1
2 sin(2f−i+ 1θ) sin−1(2−iθ), we have for every n ∈ N:

n∏
i=1

cos(2−nθ) =
1

2n

n∏
i=1

sin(2−i+1θ)

sin(2−1θ)
=

2−nθ

θ

sin(θ)

sin(2−nθ)
.

The claim follows simply by taking the limit as n goes to infinity.

4.6 Master test plan for the Sobolev space

This section is devoted to the study of master test plans on metric measure spaces, i.e. test plans
that are capable to detect the Sobolev space and weak upper gradients. This notion has been
the main object of the study in [169], where the author asked whether this special object exists
in [169, Problem 2.7]. We will conduct this analysis first on arbitrary metric measure spaces to
provide a positive answer to this problem and then move to BIP-spaces where we can actually
achieve a more sophisticated result.

4.6.1 Master test plans on arbitrary metric measure spaces

Let us start by defining the main object of this part.

Definition 4.6.1 (Master q-test plan). Let (X, d,m) be a metric measure space and q ∈ (1,∞).
A master q-test plan πq is a q-test plan so that:

if f : X→ R Borel and G ∈ Lp(m) with G ≥ 0 are so that

|f(γ1)− f(γ0)| ≤
� 1

0

G(γt)|γ̇t|dt, πq-a.e. γ,

then f ∈ Sp(X) and G is a p-weak upper gradient.

We point out that the definition is given differently from the original one in [169, Definition
2.5] where the function f is assumed to be Sobolev. The main reason is that, differently from
there, we are going to prove that master test plans are also able to detect the full Sobolev space
and not only the minimal weak upper gradients.

We now come to the first main result of this part giving a positive answer to [169, Problem
2.7].
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Theorem 4.6.2. Let (X, d,m) be a metric measure space. Then, for every q ∈ (1,∞), there exists
a master q-test plan πq.

Proof. We fix an arbitrary q ∈ (1,∞) and subdivide the proof in different steps.
Step 1. Let us start defining for every α, β > 0 the set

Πα,β := {π ∈P(C([0, 1],X)): Comp(π) ≤ α,Keq(π) ≤ β}.

Recalling that C([0, 1],X) with dsup is a complete and separable metric space, we have that
P(C([0, 1],X)) is weakly separable. Therefore, we can consider for every α, β ∈ Q countable
and dense sets Dα,β ⊂ Πα,β and finally set

D :=
⋃

α,β∈Q
Dα,β .

By construction, D is countable.
Step 2. Let us then fix arbitrary f Borel and G ∈ Lp(m) with G ≥ 0. We claim that f ∈ Sp(X)
and G is a p-weak upper gradient if and only if

�
|f(γ0)− f(γ1)|dπ ≤

� 1

0

G(γt)|γ̇t|dtdπ, ∀π ∈ D. (4.6.1)

Obviously, we shall only prove the if-implication, as the converse is straightforward. To this aim,
we fix an arbitrary q-test plan π and consider sequences (αn), (βn) ⊂ Q so that αn ↓ Comp(π)
and βn ↓ Keq(π) as n goes to infinity. Being π ∈ Παn,βn for all n ∈ N, thanks to a diagonalization
argument, we can find a sequence πn ∈ D so that

πn ⇀ π, and
limn→∞Keq(πn) ≤ Keq(π),

limn→∞Comp(πn) ≤ Comp(π).

We observe that, passing the limit in (4.6.1) with π = πn would give, given the arbitrariness of
π, that f ∈ Sp(X) and G is a p-weak upper gradient. To this aim, we invoke Lemma 4.3.2 to get
that

lim
n→∞

� 1

0

G(γt)|γ̇t|dtdπn =

� 1

0

G(γt)|γ̇t|dtdπ.

Now, arguing as in the proof of Proposition 4.3.4, it suffices to take to the limit the term
�
f(γ1)−

f(γ0)|dπn without the absolute value inside to conclude. This can be done as the uniformly
bounded compression of (πn) ensures that

�
f(γt) dπn →

�
f(γt) dπ as n goes to infinity for every

t ∈ [0, 1] when f is bounded. For the general case, we argue with a truncation argument, again as
in the proof of Proposition 4.3.4.
Step 3. We now follows closely the strategy of [169] to reduce the countable collection D to a
single plan. We include all the details for completeness. Let then (πk)k∈N be an enumeration of
D and set

η :=
∑
k∈N

πk
2k max{Comp(πk),Keq(πk), 1}

, πq :=
η

η(C([0, 1],X)
.

The definition is well posed as η(C([0, 1],X)) ≤
∑
n,l,i 2−k = 1. We claim that the so-defined

plan is q-test plan. Indeed, it is by definition a probability measure on C([0, 1],X) and, given any
t ∈ [0, 1], the estimate

(et)]η ≤
∑
k∈N

(et)]π
k

2kComp(πk)
≤
∑
n∈N

2−km = m,

ensures that πq has bounded compression. Moreover, we can estimate

� 1

0

|γ̇t|q dtdη ≤
∑
k∈N

1

2kKeq(πk)

� 1

0

|γ̇t|q dtdπk =
∑
k∈N

2−k = 1,
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to show that Keq(π) <∞ and consequently that πq is a q-test plan.
Step 4. We conclude the proof by proving that πq is a master q-test plan. By construction, for

every f Borel and G ∈ Lp(m) with G ≥ 0 we have that |f(γ1) − f(γ0)| ≤
� 1

0
G(γt)|γ̇t|dt holds

πq-a.e. if and only if it holds π-a.e. for every π ∈ D. Integrating then yields (4.6.1) which in turn
implies that f ∈ Sp(X) and G is a p-weak upper gradient. The proof is now concluded.

4.6.2 Master test plan on BIP-spaces

Here, we specialize the previous analysis to the context of BIP-spaces. In this case, we will also
achieve that there exists a unique master test plan independent on q that is also concentrated on
geodesics.

A special role here will be played by the set

Geod(1,∞)(X) := ∪q∈(1,∞)Geodq(X)

which, recalling (4.3.1), is a set of ∞-test plans thanks to the (BIP). Our first task is to reduce
the class Geod(1,∞)(X) given by the (BIP) to a countable number of plans, yet taking care that
they are still capable of detecting the Sobolev space as in Proposition 4.3.4.

Proposition 4.6.3. Let (X, d,m) be a BIP-space. Then, there exists a countable family D ⊂
Geod(1,∞)(X) of ∞-test plans concentrated on geodesics such that:

for every p ∈ (1,∞) and f : X → R Borel and G ∈ Lp(X) with G ≥ 0, the following are
equivalent

i) f ∈ Sp(X) and G is a p-weak upper gradient;

ii) it holds �
|f(γ1)− f(γ0)|dπ ≤

� 1

0

G(γt)|γ̇t|dtdπ, ∀π ∈ D.

Proof. We subdivide the proof in a reduction step and afterwards, we prove the equivalence.
Reduction. Let x̄ ∈ X be a point and consider, for every k ∈ N, the set of plans

Πk :=
{
π ∈ Geod(1,∞)(X): Comp(π) ≤ k, supp((ei)]π) ⊆ Bk(x̄), i = 0, 1

}
.

Fix k ∈ N, any π ∈ Πk is concentrated on geodesics lying in Bk(x̄) and (et)]π ≤ km|Bk(x̄)
for every

t ∈ [0, 1]. Hence, the family {(et)]π : t ∈ [0, 1], π ∈ Πk} is tight and, by Prokhorov’s Theorem
1.1.1, there exists a functional ψ : X→ R with compact sublevels so that

sup
π∈Πk,t∈[0,1]

�
ψ d(et)]π <∞.

Then, by Lemma 1.1.4 and recalling that only geodesics with uniformly bounded length are to be
considered, we can consider lifting ψ to the functional Ψ: C([0, 1],X) → R, defined via Ψ(γ) :=�
ψ(γt) dt+ d(γ0, γ1) if γ ∈ Geo(X) and +∞ otherwise, that has compact sublevels and satisfies

sup
π∈Πk

�
Ψ(γ) dπ <∞.

Using again Prokhorov’s Theorem 1.1.1, we get that Πk is relative compact in the weak topology
of P(C([0, 1],X)). Now, for every k ∈ N, consider a countable and dense collection Dk ⊂ Πk and
lastly define

D :=
⋃
k∈N

Dk ⊆ Geod(1,∞)(X). (4.6.2)

It is then obvious by construction that the class D is a countable collection of ∞-test plans
concentrated on geodesics.
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Equivalence. The implication (i)⇒ (ii) is obvious. For the converse (ii)⇒ (i), we remark that
it is sufficient to show

�
f(γ1)− f(γ0) dπ ≤

� 1

0

G(γt)|γ̇t|dtdπ, ∀π ∈ Geod(1,∞)(X), (4.6.3)

as the conclusion will then follows invoking Proposition 4.3.4 and arguing as in the proof of
Proposition 4.3.4 to improve from the above inequality to the one having

�
|f(γ1) − f(γ0)|dπ

at the left hand side. Then, we pick π ∈ Geod(1,∞)(X) and observe that there exists k ∈ N so
that π ∈ Πk. Then, consider a sequence (πn) ⊆ D so that πn ⇀ π as n goes to infinity and, by
construction, we can take in Dk for a suitable k). Then, the hypotheses ensures that

�
f(γ1)− f(γ0) dπn(γ) ≤

� 1

0

G(γt)|γ̇t|dtdπn(γ) =

� 1

0

G(γt)d(γ0, γ1) dtdπn(γ), ∀n ∈ N,

(4.6.4)
having used the fact that πn is concentrated on geodesics in the last step. Since the function
γ 7→ d(γ0, γ1) is continuous and bounded on bounded sets, the plans (d(γ0, γ1) dπn(γ)) weakly
converge to d(γ0, γ1) dπ(γ). Since clearly they have uniformly bounded compression, by arguing
as in the proof of Proposition 4.3.4 we see that

� 1

0

G(γt)d(γ0, γ1) dtdπn(γ) →
� 1

0

G(γt)d(γ0, γ1) dtdπ(γ)

To pass to the limit in the left hand side of (4.6.4) we can argue e.g. as in the proof of Proposition
4.3.4, again using the assumption of uniformly bounded compression. Finally, we achieved (4.6.3)
and the conclusion.

Mimicking an argument in [169], we can pass from a countable collection of plans detecting
the minimal p-weak upper gradient to just one.

Theorem 4.6.4. Let (X, d,m) be a BIP-space. Then, there exists a ∞-test plan πmaster concen-
trated on geodesics so that

πmaster is a master q-test plan, ∀q ∈ (1,∞).

Proof. Let D be given by Proposition 4.6.3 and (πn) an enumeration of the countable collection

C :=
{(

Restr
i
k
i−1
k

)
]
π : k ≥ ‖Lip(γ)‖L∞(π), k ∈ N, i = 1, ..., k, π ∈ D

}
⊂P(C([0, 1],X))

and define

η :=
∑
n∈N

πn

2n max{Comp(πn), 1}
, πmaster :=

η

η(C([0, 1],X)
.

The definition is well posed as η(C([0, 1],X)) ≤
∑
n 2n <∞. We claim that πmaster ∈P(C([0, 1],X))

satisfies the requirements and we start checking that it is a ∞-test plan.
For t ∈ [0, 1] we have

(et)]π ≤
1

η(C([0, 1],X)

∑
n∈N

(et)]π
n

2nComp(πn)
≤ 1

η(C([0, 1],X)

∑
n∈N

m

2n
=

m

η(C([0, 1],X)
,

and thus πmaster has bounded compression. Also, since every element πn of C is such that
‖Lip(γ)‖L∞(πn) ≤ 2, we have that ‖Lip(γ)‖L∞(πmaster) ≤ 2 as well. We thus proved that πmaster is
a ∞-test plan.

Now let p ∈ (1,∞),f Borel and G ∈ Lp(m) with G ≥ 0, be such that

|f(γ1)− f(γ0)| ≤
� 1

0

G(γt)|γ̇t|dt, πmaster-a.e. γ,
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and notice that since by construction πmaster-negligible sets are also π-negligible for any π ∈ C, we
have �

|f(γ1)− f(γ0)|dπ(γ) ≤
� 1

0

G(γt)|γ̇t|dtdπ(γ)

for every π ∈ C. By definition of C and a simple gluing argument it is then clear that this last
inequality holds for any π ∈ D, hence the conclusion follows from Proposition 4.6.3.

Remark 4.6.5. We point out a key remark from [169] which is worth to notice also in this
note. The results contained in Theorem 4.6.2 and Theorem 4.6.4 are not just technical. Indeed,
the existence of master test plans as in Definition 4.6.1 make it possible to identify which are
the exceptional curves for which the weak upper gradient inequality (0.0.1) fails. This could be
previously done by appealing to the notion of q-Modulus from [134] and further employed in [178]
for a systematic definition of Sobolev space. The key difference is that the q-Modulus is only an
outer measure, while master q-test plans πq (or, on BIP-spaces, the more powerful πmaster plan)
are Borel probability measures.

�

95





5 | Master test plans for the space of

BV functions

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
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5.2.1 Auxiliary BV spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2.2 Semicontinuity and compactness results of ∞-test plans . . . . . . . . . 100
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5.3.1 Master geodesic plans on non-branching CD spaces . . . . . . . . . . . . 102

5.3.2 Master sequences of test plans on metric measure spaces . . . . . . . . . 107

5.4 Curvewise BV space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.4.1 Definition of BV cw(X) and its main properties . . . . . . . . . . . . . . 108

5.4.2 A master curvewise test plan for BV . . . . . . . . . . . . . . . . . . . . 111

5.5 Master test plan for W 1,1 on RCD spaces . . . . . . . . . . . . . . . . 113

5.1 Introduction

In this Chapter, we push the ideas of the previous analysis developed in Chapter 4 to cover
the case of the BV space. Recalling the characterizations of the space BV (X) found in [13] and
collected in Theorem 1.2.23, we can consider a (sub)collection of∞-test plans (cf. Definition 1.2.1)
and consider the (possibly larger) collection of functions of bounded Π-variations: f ∈ BV ∗Π(X)
provided f ∈ L1(m) and there exists a constant CΠ > 0 so that

�
f(γ1)− f(γ0) dπ ≤ Comp(π)Lip(π)CΠ, for all ∞-test plan π. (5.1.1)

This choice of terminology supports the goal of this Chapter: roughly speaking, we aim at
reducing the number of ∞-test plans needed in (5.1.1) to detect both a BV function. More
specifically, our two main results are the following ones:

i) On any metric measure space, there exists a master family, i.e. a countable family D of ∞-
test plans such that BV ∗D(X) = BV (X) and that is capable of detecting the total variation
|Df | of any f ∈ BV (X).

ii) On CD(K,N) metric measure spaces (whose reference measure has finite mass) that are
also non-branching, the family of those ∞-test plans that are concentrated on geodesics
constitutes a master family for BV (X).

As in Chapter 4, we shall work with a suitable polygonal interpolation of ∞-test plans mainly
working with the condition expressed by the BV ∗Π(X) space. The first main difference with respect
to the Sobolev case, is that the BV ∗ condition is ‘integrated’ and presents a ‘lack of linearity’ in
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the right hand side of (5.1.1) that needs to be dealt with. However, this is not an issue as the
main ideas carry to this settings with minor modifications. The second main difference is that a
master family is required to detect also the measure |Df |. To this aim, we can suitable localize
(5.1.1) on open sets Ω ⊂ X and define

|Df |∗Π(Ω) := sup

�
f(γ1)− f(γ0) dπ

Comp(π)Lip(π)
,

the sup taken over π ∈ Π concentrated on curves living on a compactly supported subset of Ω.
Here, we are not claiming that |Df |∗Π is the restriction to open set of a Borel measure but, when Π
it the totality of the ∞-test plan, this is actually the case as proved in [78] and agrees with |Df |.
Directly from the definition (recall the chacarterization a) of the BV space in Theorem 1.2.23)
we have |Df |∗Π(Ω) ≤ |Df |(Ω) for all Ω ⊂ X open hence, to detect |Df | is sufficient to exhibit a
countable collection Π of ∞-test plans so that

|Df |∗Π(X) = |Df |(X).

Finally, recalling that the underlying goal is also to produce a single plan out of a countable
master family, we mention other two achievements:

iii) We introduce yet another notion of BV space, which we call the curvewise BV space. We
prove that (on arbitrary metric measure spaces) this new notion is equivalent to the others,
and i) yields existence of a single master test plan in the curvewise sense.

iv) In the setting of RCD(K,N) metric measure spaces, building upon the results of [99], we
construct a unique test plan concentrated on geodesics that is able to detect the W 1,1 space.

Structure of the Chapter. This Chapter is organized as follows:

In Section 5.2 we face the main definitions of this chapter, namely two auxiliary notions of
BV space defined in duality with an arbitrary collection of plans. Then, we move to important
semicontinuity and compactness property of the collection of ∞-test plans.

In Section 5.3, we achieve a countable collection of ∞-test plan, called master family, that are
able to detect the BV space. We settle this investigation first in the class of non branching CD
space and then on arbitrary metric measure space.

In Section 5.4, we address the problem of reducing a master family to a single plan, called
master test plan, detecting the BV space. To this aim, we consider a define a further notion of
BV cw space in the curvewise sense and prove its equivalence with the other notions of BV space.
We prove that a master test plan in the curvewise sense is achievable.

Finally, in Section 5.5, we restrict the attention to the RCD class and combine the previous
analysis to detect W 1,1 functions.

5.2 Main definitions and properties

5.2.1 Auxiliary BV spaces

Recalling Theorem 1.2.23, we can define two auxiliary (and possibly larger) set of functions. Recall
(1.2.1) for the definition of [π] ⊂ X the trace of a plan.

Definition 5.2.1. We say that f ∈ BV ∗Π(X), if f ∈ L1(m) and there exists CΠ > 0 so that�
f(γ1)− f(γ0) dπ ≤ Comp(π)Lip(π)CΠ, ∀π ∈ Π.

We denote |Df |∗Π(X) the least constant satisfying the above and, for every Ω ⊂ X open, we define
also

|Df |∗Π(Ω) := sup
π∈Π(Ω)

�
f(γ1)− f(γ0) dπ

Comp(π)Lip(π)
,

where Π(Ω) := {π ∈ Π: [π] ⊂ Ω with d([π],X \ Ω) > 0}.
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It can be certainly possible to extend |Df |∗Π via a Charathéodory construction (with common
abuse of notation)

|Df |∗Π(B) := inf{|Df |∗Π(Ω): B ⊂ Ω open}, ∀B ⊂ X Borel.

Here, we are not claiming that the above is a finite Borel measure and, for this reason, we shall
also need the second auxiliary definition.

Definition 5.2.2. Let (X, d,m) be a metric measure space and Π 6= ∅ be a collection of ∞-test
plans. We say that f ∈ L1(m) is a function of bounded Π-variation, and we write f ∈ BVΠ(X),
provided

i) the composition f ◦ γ ∈ BV (0, 1) π-a.e. γ, for every π ∈ Π;

ii) there exists a finite Borel measure µ ≥ 0 so that

�
γ]|D(f ◦ γ)|(B) dπ ≤ Comp(π)Lip(π)µ(B), ∀B ∈ B(X), π ∈ Π.

We denote |Df |Π the least µ satisfying the above.

This one, differently from the first, gives us in turn a measure |Df |Π which has the right to
be called Π-total variation measure. We start with few remarks on the above sets.

Remark 5.2.3. Let us start observing that the definition of the space BVΠ(X) is well posed by
the very same considerations of Remark 1.2.24. While, for the space BV ∗Π(X), well posedness
is obvious since we are not claiming that the set value map |Df |∗Π(Ω) defined on open set is a
(restriction of a Borel) measure. However, when Π is the totality of ∞-test plans, this is infact
true (see [78, Section 4.4.4], where the associated space is called Beppo-Levi space and denoted
BVBL(X)).

Finally, we point out the following inclusions: since Π is in general smaller (or equal) to the
totality of ∞-plans, we should always expect that

BV (X) ⊂ BVΠ(X) ⊂ BV ∗Π(X),

and consequently, for all Ω ⊂ X open, that

|Df |∗Π(Ω) ≤ |Df |Π(Ω) ≤ |Df |(Ω).

�

It is worth to clarify the link with the previously defined BV space:

Notation. When Π is the totality of the ∞-test plans, we shall stick to the notation

BV (X) := BVΠ(X)
|Df | := |Df |Π

and
BV (X) := BV ∗Π(X)
|Df |∗Π := |Df |

as, in light of Theorem 1.2.23 and the above Remark, the associated notions coincides
with the space BV (X).

In light of this, we can finally give one of the main definition of this Chapter.

Definition 5.2.4 (Master family for BV)). Let (X, d,m) be a metric measure space. Then a given
family Π of ∞-test plans on (X, d,m) is said to be a master family for BV (X) provided

BVΠ(X) = BV (X), |Df |Π = |Df | for every f ∈ BV (X).
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It is worth pointing out that that the totality ∞-test plans on (X, d,m) is, by definition, a
master family for BV (X). However, it is not clear a priori whether any strictly smaller family of
∞-test plans can be a master family for BV and, as said before, this will be the main investigation
of this Chapter. Finally, let us explain the importance of the above auxiliary definitions. Even if
Definition 5.2.2 gives automatically a Borel measure associated to f ∈ BVΠ(X) so that a (direct
and not intricate) definition of a master family is possible, we will see that from an operative
point of view, it is not the suitable one for our purposes. Indeed, we shall work in the sequel with
polygonal approximations of ∞-test plans and Definition 5.2.1 is much more easier to handle in
this situation.

5.2.2 Semicontinuity and compactness results of ∞-test plans

The underlying motivation of this part is that, under appropriate condition fulfilled by the metric
measure space, we would like to prove the existence of W∞ geodesics by approximation with Wq-
geodesics. This will be later done on CD spaces thanks to the investigation of this Section about
general semicontinuity and compactness results for ∞-test plan.

We start by referring to the definitions of the functionals Keq,Lip: P(C([0, 1],X)→ [0,∞] in
Section 1.2.1 and we derive the following Mosco-type convergence result that provides a precise
relation between the concept of Kinetic and Lipschitz energy of a plan.

Proposition 5.2.5. Let (X, d,m) be a metric measure space. Let (qn)n∈N ⊆ (1,∞) be any sequence
satisfying qn ↑ ∞ as n→∞. Then the following properties are verified:

i) If (πn)n∈N∪{∞} ⊆P
(
C([0, 1],X)

)
and πn ⇀ π∞ as n→∞, then

Lip(π∞) ≤ lim
n→∞

Ke1/qn
qn (πn). (5.2.1)

In particular, it holds that Lip: P
(
C([0, 1],X)

)
→ [0,+∞] is lower semicontinuous.

ii) Given any π ∈P
(
C([0, 1],X)

)
, it holds that

Lip(π) ≥ lim
n→∞

Ke1/qn
qn (π).

In particular, it holds that Ke1/qn
qn (π)→ Lip(π) as n→∞.

Proof. By applying (1.1.3) with µ := π and f := ms, we get Lip(π) = limn→∞Ke1/qn
qn (π) for

every π ∈P
(
C([0, 1],X)

)
, thus proving ii). To prove i), fix (πn)n∈N∪{∞} ⊆P

(
C([0, 1],X)

)
such

that πn ⇀ π∞ as n → ∞. Given any k, n ∈ N with n ≥ k, we have that qn ≥ qk and thus
Ke1/qk

qk
(πn) ≤ Ke1/qn

qn (πn) by Hölder inequality. Therefore, the lower semicontinuity (5.2.1) of each

Ke1/qk
qk

gives

Lip(π∞) = lim
k→∞

Ke1/qk
qk

(π∞) ≤ lim
k→∞

lim
n→∞

Ke1/qk
qk

(πn) ≤ lim
n→∞

Ke1/qn
qn (πn),

which proves i).

Next we consider the following compactness result for collection of ∞-test plans.

Proposition 5.2.6 (Compactness result for ∞-test plans). Let (X, d,m) be a metric measure
space. Let (πn)n∈N be a sequence of ∞-test plans on (X, d,m) such that

⋃
n∈N supp

(
(e0)]πn

)
is

bounded, supn∈N Lip(πn) < +∞, and supn∈N Comp(πn) < +∞. Then there exist a subsequence
(πni)i∈N of (πn)n∈N and a ∞-test plan π on (X, d,m) such that πni ⇀ π as i→∞.

Proof. Setting S :=
⋃
n∈N supp

(
(e0)]πn

)
and L := supn∈N Lip(πn), we have that the closed L-

neighbourhood B of S is a bounded set containing
⋃
n∈N supp(πn). Indeed, for every n ∈ N and

πn-a.e. γ we have that γ0 ∈ S and d(γt, γ0) ≤ Lip(πn) ≤ L hold for all t ∈ [0, 1]. Recall that m(B)
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is finite and thus the measure m|B is tight. Since (et)]πn ≤ Cm|B for every n ∈ N and t ∈ [0, 1],

where we set C := supn∈N Comp(πn), we deduce that the family{
(et)]πn : n ∈ N, t ∈ [0, 1]

}
⊆P(X) is tight.

Therefore, by Prokhorov’s theorem, there exists a function ψ : X → [0,+∞] having compact
sublevels such that

sup

{�
ψ d(et)]πn : n ∈ N, t ∈ [0, 1]

}
< +∞. (5.2.2)

Now let us define Ψ: C([0, 1],X) → [0,+∞] as Ψ(γ) :=
� 1

0
ψ(γt) dt + Lip(γ) if γ ∈ Lip([0, 1],X)

and Ψ(γ) := +∞ otherwise. We claim that Ψ has compact sublevels. To prove it amounts to
showing that the set Kλ :=

{
γ ∈ C([0, 1],X) : Ψ(γ) ≤ λ

}
is compact for any given λ > 0. First,

Kλ is closed: if (γn)n∈N ⊆ Kλ and γ ∈ C([0, 1],X) satisfy limn→∞ dsup(γn, γ) = 0, then

Ψ(γ) ≤
� 1

0

lim
n→∞

ψ(γnt ) dt+ lim
n→∞

Lip(γn) ≤ lim
n→∞

� 1

0

ψ(γnt ) dt+ lim
n→∞

Lip(γn)

≤ lim
n→∞

Ψ(γn) ≤ λ,

where we used the lower semicontinuity of ψ and Fatou’s lemma. This shows that γ ∈ Kλ and
thus Kλ is closed. In order to prove that Kλ is compact, we want to use Theorem 1.1.5. The set
Kλ verifies item i) of Theorem 1.1.5, since Lip(γ) ≤ λ for all γ ∈ Kλ. About item ii), fix ε > 0
and pick the compact set Kλ,ε :=

{
x ∈ X : ψ(x) ≤ λ/ε

}
. For any γ ∈ Kλ, one has

L 1
({
t ∈ [0, 1] : γt /∈ Kλ,ε

})
= L 1

({
t ∈ [0, 1] : ψ(γt) > λ/ε

})
≤ ε

λ

� 1

0

ψ(γt) dt ≤ ε,

where we used Chebyshev’s inequality. This shows that Kλ verifies item ii) of Theorem 1.1.5 and
thus it is compact. All in all, we proved that Ψ has compact sublevels. Finally, note that

sup
n∈N

�
Ψ dπn ≤ sup

n∈N

�� 1

0

ψ(γt) dtdπn + sup
n∈N

�
Lip(γ) dπn(γ)

≤ sup
n∈N

� 1

0

�
ψ d(et)]πn dt+ sup

n∈N
Lip(πn)

≤ sup
n∈N,
t∈[0,1]

�
ψ d(et)]πn + L

(5.2.2)
< +∞.

Therefore, a second application of Prokhorov’s theorem yields the statement.

Finally, we can combine the two above statements to produce a toolbox capable to show in the
sequel the existence of ∞-optimal geodesic plans.

Proposition 5.2.7. Let (X, d,m) be a metric measure space. Let qn ↗ ∞ be a given se-
quence. Fix any µ0, µ1 ∈ P∞(X) and suppose there exists a sequence (πn)n∈N of ∞-test plans
πn ∈ OptGeoqn(µ0, µ1) such that supn∈N Comp(πn) < +∞. Then there exists a ∞-test plan
π ∈ OptGeo∞(µ0, µ1) such that πni ⇀ π as i→∞ for some subsequence (πni)i∈N.

Proof. First, notice that supp(µ0) =
⋃
n∈N supp

(
(e0)]πn

)
is bounded. Moreover, calling D the

diameter of supp(µ0) ∪ supp(µ1), we claim that supn∈N Lip(πn) ≤ D. Indeed, given any n ∈ N,
we know that πn-a.e. curve γ is a geodesic satisfying γ0 ∈ supp(µ0) and γ1 ∈ supp(µ1), so that
accordingly Lip(γ) = d(γ0, γ1) ≤ D. Therefore, since supn∈N Comp(πn) < +∞ by assumption,
we are in a position to apply Proposition 5.2.6, thus obtaining that there exists a ∞-test plan
π on (X, d,m) such that πn ⇀ π, up to a not relabelled subsequence in n. By weak continuity
(see Remark 1.2.3), we see that (e0)]π = µ0 and (e1)]π = µ1. Being Geo(X) a closed subset of
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C([0, 1],X), one has π(Geo(X)c) ≤ limn πn(Geo(X)c) = 0, which shows that π is concentrated
on geodesics. In order to prove that π ∈ OptGeo∞(µ0, µ1), it only remains to show that α :=
(e0, e1)]π ∈ Opt∞(µ0, µ1). This readily follows from the estimates

ess sup
α-a.e. (x,y)

d(x, y) = ess sup
π-a.e. γ

d(γ0, γ1) = Lip(π)
(5.2.1)

≤ lim
n→∞

Ke1/qn
qn (πn)

(1.1.11a)
= lim

n→∞
Wqn(µ0, µ1)

(1.1.9)
= W∞(µ0, µ1).

Therefore, the statement is achieved.

5.3 Existence of master families of test plans

5.3.1 Master geodesic plans on non-branching CD spaces

Here we prove that on non-branching CD(K,N) spaces (with finite reference measure) the ∞-test
plans concentrated on geodesics form a master family for BV ; in fact, we prove a stronger result,
namely that those ∞-test plans which are ∞-optimal dynamical plans between their marginals
form a master family for BV . As described in the Introduction, the first step is to prove existence
of interpolating ∞-optimal geodesic plans having ‘well-behaved’ compression constants.

Theorem 5.3.1 (Existence of ‘good’∞-optimal dynamical plans). Let (X, d,m) be a non-branching
CD(K,N) space, with K ∈ R and N < ∞. Suppose the measure m is finite. Then there
exists a nondecreasing function C∞ : (0,+∞) → (0,+∞), depending on K,N and called the
profile function of (X, d,m), such that C∞(L) → 1 as L → 0 and with the following prop-
erty: given any ∞-test plan η with bounded support, there exists a ∞-optimal dynamical plan
π ∈ OptGeo∞

(
(e0)]η, (e1)]η

)
such that

Comp(π) ≤ C∞
(
Lip(η)

)
Comp(η). (5.3.1)

Moreover, in the case K ≥ 0, the profile function can be additionally required to satisfy C ≤ 1 on
a right neighbourhood of 0.

Proof. Fix any boundedly-supported ∞-test plan η on (X, d,m). Call µ0 = ρ0m := (e0)]η and
µ1 = ρ1m := (e1)]η. We know from Theorem 2.2.3 that (X, d,m) is a (non-branching) CDq(K,N)
space for every q ∈ (1,∞), thus by [181, Proposition 4.2 iv] (see also [185, Theorem 30.32], in both
cases the arguments extends for q 6= 2) ensures that for any n ∈ N the unique (by non branching
(1.1.12)) element πn of OptGeon(µ0, µ1) satisfies

ρnt (γt)
− 1
N ≥ ρ0(γ0)−

1
N τ

(1−t)
K,N

(
d(γ0, γ1)

)
+ ρ1(γ1)−

1
N τ

(t)
K,N

(
d(γ0, γ1)

)
, (5.3.2)

for πn-a.e. γ and every t ∈ [0, 1], where we write (et)]πn = ρnt m. Observe that

lim
θ↘0

τ
(t)
K,N (θ)

t
= 1, uniformly in t ∈ (0, 1).

In particular, the non-decreasing, continuous function C∞ : (0,+∞)→ (0,+∞), given by

C∞(L) :=

(
sup

θ∈(0,L]

sup
t∈(0,1)

t

τ
(t)
K,N (θ)

)N
, for every L > 0,

converges to 1 as L→ 0. Notice that if K ≥ 0, then C∞ ≤ 1 on a right neighbourhood of 0. Now
define εn := Lip(η)( n

√
n− 1) for every n ∈ N and observe that εn → 0 as n→∞. Denote

Γn :=

{
γ ∈ Lip([0, 1],X) :

� 1

0

|γ̇t|n dt ≤
(
Lip(η) + εn

)n}
.
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Standard verifications show that Γn is a Borel subset of C([0, 1],X). Given that

Ken(πn)
(1.1.11a)

= Wn
n (µ0, µ1) ≤

�
dn(x, y) d(e0, e1)]η(x, y) =

�
dn(γ0, γ1) dη(γ)

≤
� ( � 1

0

|γ̇t|dt
)n

dη(γ) ≤
�� 1

0

|γ̇t|n dtdη(γ) = Ken(η) ≤ Lip(η)n,

an application of Chebyshev’s inequality yields

πn(Γcn) ≤ 1

(Lip(η) + εn)n

�� 1

0

|γ̇t|n dtdπn(γ) =
Ken(πn)

(Lip(η) + εn)n
≤
(

Lip(η)

Lip(η) + εn

)n
=

1

n
,

so that πn(Γn) → 1 as n → ∞. Calling M := max
{
‖ρ0‖L∞(m), ‖ρ1‖L∞(m)

}
≤ Comp(η), we

deduce from (5.3.2) that

ρnt (γt)
1
N ≤

(
ρ0(γ0)−

1
N (1− t)C∞

(
d(γ0, γ1)

)− 1
N + ρ1(γ1)−

1
N t C∞

(
d(γ0, γ1)

)− 1
N

)−1

≤ C∞
(
d(γ0, γ1)

) 1
NM

1
N , for πn-a.e. γ and for every t ∈ [0, 1].

(5.3.3)

If we denote by D the diameter of supp(µ0) ∪ supp(µ1), then πn-a.e. γ satisfies Lip(γ) ≤ D.
Indeed, πn-a.e. γ is a geodesic joining γ0 ∈ supp(µ0) to γ1 ∈ supp(µ1), so Lip(γ) = d(γ0, γ1) ≤ D.
In particular, (5.3.3) implies that (πn) is a sequence of ∞-test plan with supn∈N Comp(πn) ≤
C∞(D)M . Hence, an application of Proposition 5.2.7 yields the existence of a ∞-test plan π ∈
OptGeo∞(µ0, µ1) such that πn ⇀ π as n → ∞, up to a not relabelled subsequence. Now let us
define the sequence

π̃n :=
πn|Γn
πn(Γn)

, for every n ∈ N.

Observe that π̃n ⇀ π as n → ∞ and that, writing (et)]π̃n = ρ̃nt m, it holds ρ̃nt ≤ ρnt /πn(Γn). For

π̃n-a.e. γ one has d(γ0, γ1) ≤
� 1

0
|γ̇t|dt ≤

( � 1

0
|γ̇t|n dt

)1/n ≤ Lip(η) + εn, so (5.3.3) yields

ρ̃nt (γt) ≤
C∞
(
Lip(η) + εn

)
M

πn(Γn)
, for π̃n-a.e. γ and for every t ∈ [0, 1].

This implies that Comp(π̃n) ≤ C∞
(
Lip(η)+εn

)
M/πn(Γn), thus it follows from Remark 1.2.3 that

Comp(π) ≤ C∞
(
Lip(η)

)
M , as desired. Therefore, the statement is achieved.

Remark 5.3.2 (Sobolev vs BV ). In Chapter 4, we defined a condition that we called Bounded
Interpolation Property and it certainly applies to the context of non branching CD spaces (recall
Corollary 4.5.2). However, there are two fundamental differences between the above result and a
BIP-space that it is worth to notice now before going further.

B Given the profile function D 7→ Cq(D) of a BIP-space, we did not require Cq(D) → 1 as
D ↓ 0, assumption that is actually present in Theorem 5.3.1. Avoiding this assumption let
us work in Chapter 4 with possibly σ-finite reference measure on non branching CD space.
Here instead, finiteness of m is a technical yet crucial assumption as we heavily rely on the
independence of the CDq-condition on q [1] (see Theorem 2.2.3).

B The profile functions D 7→ Cq(D) for q <∞ given by the BIP-condition are morally different
from the above profiles L 7→ C∞(L). Indeed, the parameter D is a rough uniform estimate
of the mutual distances d(x, y) ≤ D for (x, y) ∈ supp((e0)]π) × supp((e1)]π) while, L is a
more precise uniform estimate of the quantity Lip(γ), for γ ∈ supp(π) and π a given plan.

The above discussion point towards the following unifying definition: (X, d,m) is a BIP-space,
provided there are profile functions t 7→ Cq(t) with Cq(t) ↓ 0 a t ↓ 0 for every q ∈ (1,∞] so
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that: for every η ∈ P([0, 1],X) with bounded support and bounded compression, and for every
q ∈ (1,∞], there exists π ∈ OptGeoq((e0)]η, (e1)]η) so that

Comp(π) ≤ Cq(diam([η]))Comp(η), if η is a q-test plan and q <∞,
Comp(π) ≤ C∞(Lip(η))Comp(η), if η is a ∞-test plan.

Finally, given that the results of [1] do not currently extend to arbitrary reference measure, we do
not pursue in this Chapter the BIP-axiomatization. �

Next we introduce and study the concept of a polygonal interpolation of a given test plan by
piecewise ∞-optimal dynamical plans.

Definition 5.3.3. Let (X, d,m) be a metric measure space. Then we define

Πbs(X) :=
{
π ∞-test plan : supp(π) is bounded

}
,

Geod∞(X) :=
{
π ∈ Πbs(X) : π ∈ OptGeo∞

(
(e0)]π, (e1)]π

)}
.

Moreover, we define PolGeod∞(X) as the family of all those ∞-test plans π on (X, d,m) for which
there exist 0 = t0 < t1 < . . . < tn = 1 such that (Restrtiti−1

)]π ∈ Geod∞(X) for every i = 1, . . . , n.
Finally, recall that for an open subset Ω ⊂ X, the objects Πbs(Ω),Geod∞(Ω) and PolGeo∞(Ω)

are defined as the respectively subcollection of plans supported in curves compactly supported in Ω
(recall in Definition 5.2.1.

We will say that π ∈ PolGeo∞(X) is a polygonal interpolation of a given η ∈ Πbs(X) provided
(eti)]π = (eti)]η for every i = 1, . . . , n, where t0, . . . , tn are chosen as in Definition 5.3.3.

Remark 5.3.4. We claim that

Lip(π) ≤ Lip(η), whenever π ∈ PolGeo∞(X) is a polygonal interpolation of η ∈ Πbs(X).

To prove it, call πi := (Restrtiti−1
)]π and ηi := (Restrtiti−1

)]η for every i = 1, . . . , n, where t0, . . . , tn
are as in Definition 5.3.3. Since (e0, e1)]ηi ∈ Adm

(
(e0)]πi, (e1)]πi

)
, one has that

Lip(πi) = W∞
(
(e0)]πi, (e1)]πi

)
≤ ess sup
ηi-a.e. γ

d(γ0, γ1) ≤ ess sup
ηi-a.e. γ

Lip(γ) = Lip(ηi)

≤ (ti − ti−1)Lip(η).

Hence, we conclude that Lip(π) = maxi=1,...,n Lip(πi)/(ti − ti−1) ≤ Lip(η), as claimed. �

Lemma 5.3.5. Let (X, d,m) be a non-branching CD(K,N) space, with K ∈ R, N ∈ (1,∞), and
m(X) < +∞. Let η ∈ Πbs(X) be given. Then there exists a sequence (πn)n∈N ⊆ PolGeo∞(X) of
polygonal interpolations of η such that

Lip(πn) ≤ Lip(η), Comp(πn) ≤ C∞
(
Lip(η)/n

)
Comp(η), for every n ∈ N,

where L 7→ C∞(L) stands for the profile function of (X, d,m). Moreover, we can additionally

require that each trace [πn] is contained in the closed Lip(η)
n -neighbourhood of [η].

Proof. Let n ∈ N be fixed. Given any i = 1, . . . , n, choose any test plan πin ∈ Geod(X) such that
(e0)]π

i
n = (e(i−1)/n)]η, (e1)]π

i
n = (ei/n)]η, and

Comp(πin) ≤ C∞
(
Lip(η)/n

)
Comp(η), (5.3.4)

whose existence is guaranteed by Theorem 5.3.1. Thanks to a glueing argument, we find a plan

πn ∈ PolGeo∞(X) such that (Restr
i/n
(i−1)/n)]πn = πin for every i = 1, . . . , n. Note that (5.3.4) yields

Comp(πn) ≤ C∞
(
Lip(η)/n

)
Comp(η). Also, πn is a polygonal interpolation of η by construction,

thus Lip(πn) ≤ Lip(η) by Remark 5.3.4. Finally, since each ∞-test plan πin satisfies Lip(πin) ≤
Lip(η)/n, we deduce that [πin] lies inside the closed Lip(η)

n -neighbourhood of supp
(
(ei/n)]η

)
, and

thus accordingly [πn] lies in the Lip(η)
n -neighbourhood of [η].
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Finally, recalling the notation and definitions of the auxiliary space in Section 5.2 we can prove:

Theorem 5.3.6 (Master geodesic plans on non-branching CD spaces). Let (X, d,m) be a non-
branching CD(K,N) space, for some K ∈ R and N ∈ (1,∞). Suppose the measure m is finite.
Then Geod := Geod∞(X) is a master family for BV (X). More generally, BV (X) = BV ?Geod(X)
and

|Df |(B) = |Df |?Geod(B), for every f ∈ BV (X) and B ⊆ X Borel.

Proof. For the sake of brevity, we will write Π∞ for the collection of all ∞ test plans and again
Geod in place of Geod∞(X). It follows from the very definitions of the involved objects that
BV ?Π∞(X) = BV (X) ⊆ BVGeod(X) ⊆ BV ?Geod(X) and

|Df |?Geod(B) ≤ |Df |Geod(B) ≤ |Df |(B) = |Df |?Π∞(B), for all f ∈ BV (X) and B ⊆ X Borel.

Hence, in order to achieve the statement it suffices to prove that BV ?Geod(X) ⊆ BV ?Π∞(X) and

|Df |?Π∞(Ω) ≤ |Df |?Geod(Ω) for every f ∈ BV ?Geod(X) and Ω ⊆ X open. (5.3.5)

Step 1. Let Ω ⊆ X be a given open set. Calling PolGeo := PolGeo∞(X) for brevity, we claim that

BV ?Geod(X) ⊆ BV ?PolGeo(X), |Df |?PolGeo(Ω) ≤ |Df |?Geod(Ω) for every f ∈ BV ?Geod(X). (5.3.6)

In order to prove it, fix f ∈ BV ?Geod(X) and π ∈ PolGeo(Ω). Choose 0 = t0 < t1 < . . . < tn = 1
such that πi := (Restrtiti−1

)]π ∈ Geod(Ω) for all i = 1, . . . , n. Since Lip(πi) ≤ (ti − ti−1)Lip(π) and
Comp(πi) ≤ Comp(π) for every i = 1, . . . , n, we may estimate

�
f(γ1)− f(γ0) dπ(γ)e

n∑
i=1

�
f(γti)− f(γti−1

) dπ(γ) =

n∑
i=1

�
f(γ1)− f(γ0) dπi(γ)

≤
n∑
i=1

Comp(πi)Lip(πi)|Df |?Geod(Ω) ≤ Comp(π)Lip(π)|Df |?Geod(Ω),

whence (5.3.6) follows thanks to the arbitrariness of π ∈ PolGeo(Ω).
Step 2. Next we claim that, calling Πbs := Πbs(X) for brevity, it holds that

BV ?PolGeo(X) ⊆ BV ?Πbs(X), |Df |?Πbs(Ω) ≤ |Df |?PolGeo(Ω) for every f ∈ BV ?PolGeo(X). (5.3.7)

In order to prove it, fix f ∈ BV ?PolGeo(X) and π ∈ Πbs(Ω). Suppose that f(γ1) − f(γ0) does
not change sign and it is positive for π-a.e. γ. Lemma 5.3.5 yields the existence of polygonal
interpolations (πn)n∈N ⊆ PolGeo of π with Comp(πn) ≤ C∞

(
Lip(π)/n

)
Comp(π) and Lip(πn) ≤

Lip(π) for every n ∈ N, and such that [πn] lies in the closed Lip(π)
n -neighbourhood of [π]. Chosen

n̄ ∈ N so that Lip(π)/n̄ < d
(
[π],X \Ω

)
, we thus have that πn ∈ PolGeo(Ω) for every n ≥ n̄. Given

that C(L)→ 1 as L→ 0, by letting n→∞ in�
f(γ1)− f(γ0) dπ(γ) =

�
f d(e1)]π −

�
f d(e0)]π =

�
f d(e1)]πn −

�
f d(e0)]πn

=

�
f(γ1)− f(γ0) dπn(γ) ≤ Comp(πn)Lip(πn)|Df |?PolGeo(Ω)

≤ C∞
(
Lip(π)/n

)
Comp(π)Lip(π)|Df |?PolGeo(Ω)

we conclude that
�
f(γ1)− f(γ0) dπ(γ) ≤ Comp(π)Lip(π)|Df |?PolGeo(Ω) obtaining (5.3.7).

Step 3. Finally, we claim that

BV ?Πbs(X) ⊆ BV ?Π∞(X), |Df |?Π∞(Ω) ≤ |Df |?Πbs(Ω) for every f ∈ BV ?Πbs(X). (5.3.8)

In order to prove it, fix any f ∈ BV ?Πbs(X) and a∞-test plan π ∈ Π∞(Ω) on (X, d,m). Fix a curve

γ̄ ∈ supp(π) and define Γn :=
{
γ ∈ C([0, 1],X) : dsup(γ, γ̄) ≤ n

}
for every n ∈ N. Define

πn :=
π|Γn
π(Γn)

∈ Πbs(Ω), for every n ∈ N.
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Observe that Comp(πn) ≤ Comp(π)/π(Γn) and Lip(πn) ≤ Lip(π) for every n ∈ N. Also, it holds
π(Γn)↗ 1 as n→∞. Therefore, by using the dominated convergence theorem we get

�
f(γ1)− f(γ0) dπ(γ) = lim

n→∞

�
f(γ1)− f(γ0) dπn(γ)

≤ lim
n→∞

Comp(πn)Lip(πn)|Df |?Πbs(Ω)

≤ Comp(π)Lip(π)|Df |?Πbs(Ω) lim
n→∞

1

π(Γn)

= Comp(π)Lip(π)|Df |?Πbs(Ω),

thus proving (5.3.8). By combining (5.3.6), (5.3.7), and (5.3.8), we eventually obtain (5.3.5).

Remark 5.3.7. We point out that if (X, d,m) is a non-branching CD(K,N) space with K ≥ 0,
then the proof of Theorem 5.3.6 can be significantly simplified. Indeed, in this case one can
prove that BV ?Geod(X) ⊆ BV ?Πbs(X) and |Df |?Πbs(X) ≤ |Df |?ΠG

(X) for every f ∈ BV ?Geod(X) in
the following way. Given any f ∈ BV ?Geod(X) and η ∈ Πbs, let us just take the ∞-test plan
π ∈ OptGeo∞

(
(e0)]η, (e1)]η

)
satisfying both Comp(π) ≤ Comp(η) and Lip(π) ≤ Lip(η), whose

existence is granted by Theorem 5.3.1. Then,

�
f(γ1)− f(γ0) dη(γ) =

�
f(γ1)− f(γ0) dπ(γ) ≤ Comp(π)Lip(π)|Df |?Geod(X)

≤ Comp(η)Lip(η)|Df |?Geod(X).

thus proving that f ∈ BV ?Πbs(X) and |Df |?Πbs(X) ≤ |Df |?Geod(X). �

In the more general setting of non-branching MCP spaces, we can prove a weaker statement:

Remark 5.3.8 (A weaker form of master geodesic plans on MCP spaces). Let (X, d,m) be a non-
branching MCP(K,N) metric measure space with N <∞ (but without finiteness assumptions on
m) and recall that it is weaker than CDq(K,N) for any q ∈ (1,∞). By adapting our previous
arguments, we can get BVGeod(X) = BV (X) and

|Df |Geod(B) ≤ |Df |(B) ≤ 2N |Df |Geod(B), for every f ∈ BV (X) and B ⊆ X Borel. (5.3.9)

The first inequality is always verified. Below we sketch the proof of the second inequality.
Fix a boundedly-supported ∞-test plan η and q ∈ (1,∞). Call µi := (ei)]η for i = 0, 1. We

know from [56, Proposition 9.1] that the unique element πq of OptGeoq(µ0, µ1) satisfies

ρqt (γt)
− 1
N ≥ ρ0(γ0)−

1
N τ

(1−t)
K,N

(
d(γ0, γ1)

)
, for πq-a.e. γ and every t ∈ [0, 1), (5.3.10)

where we set ρqtm := (et)]πq. We point out that [56, Proposition 9.1] concerns the case q = 2,
but the proof argument works for q ∈ (1,∞) arbitrary recalling that the MCP condition is by
definition independent of q (see Remark 2.5.2). By applying (5.3.10) to the ‘reversed-in-time’ plan
(Restr01)]πq, which is the unique element of OptGeoq(µ1, µ0), we obtain the symmetric estimate

ρqt (γt)
− 1
N ≥ ρ1(γ1)−

1
N τ

(t)
K,N

(
d(γ0, γ1)

)
, for πq-a.e. γ and every t ∈ (0, 1]. (5.3.11)

Define the function C∞ : (0,+∞)→ (0,+∞) as in the proof of Theorem 5.3.1. Then we have

ρqt (γt)
1
N

(5.3.10)

≤ 1

1− t
C∞
(
d(γ0, γ1)

) 1
N ρ0(γ0)

1
N ≤ 2C∞

(
d(γ0, γ1)

) 1
N Comp(η)

1
N ,

for πq-a.e. γ and every t ∈ [0, 1/2]. Similarly, we get ρqt (γt)
1
N ≤ 2C∞

(
d(γ0, γ1)

) 1
N Comp(η)

1
N for

πq-a.e. γ and every t ∈ [1/2, 1] by using (5.3.11) in place of (5.3.10). By arguing as in the last part
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of the proof of Theorem 5.3.1 (letting q → ∞ and using the compactness result in Proposition
5.2.6), we thus obtain a plan π ∈ OptGeo∞(µ0, µ1) such that

Comp(π) ≤ 2NC∞
(
Lip(η)

)
Comp(η). (5.3.12)

Finally, by arguing as in the proof of Theorem 5.3.6, but using (5.3.12) in place of (5.3.1), we
conclude that |Df |(Ω) = |Df |?Π∞(Ω) ≤ 2N |Df |?Geod(Ω) ≤ 2N |Df |Geod(Ω) holds for every choice
of f ∈ BVGeod(X) and Ω ⊆ X open, whence (5.3.9) follows by outer regularity. �

5.3.2 Master sequences of test plans on metric measure spaces

Aim of this section is to prove that on any metric measure space one can find a countable master
family for BV. On non-branching CD spaces, the master sequence can be required to consist of
geodesic plans.

Theorem 5.3.9. Let (X, d,m) be a metric measure space. Then there exists an (at most) countable
family D of ∞-test plans on (X, d,m) that is a master family for BV (X).

If (X, d,m) is a non-branching CD(K,N) space with K ∈ R, N ∈ (1,∞), and m(X) < +∞,
then we can additionally require that D ⊆ Geod∞(X).

Proof. First, fix any master family Π for BV (X). In particular, one can take Π the totality of
∞-test plans or, in setting of non-branching CD(K,N) spaces with N,m finite, we know from
Theorem 5.3.6 that also the choice Π = Geod∞(X) is allowed. Now define

Πα,β :=
{
π ∈ Π : Comp(π) ≤ α, Lip(π) ≤ β

}
, for every α, β ∈ Q+.

Note that Π =
⋃
α,β∈Q+ Πα,β . Given any α, β ∈ Q+, we select a countable set Dα,β ⊆ Πα,β that

is dense in Πα,β with respect to the weak topology. Consider the countable family

D :=
⋃

α,β∈Q+

Dα,β ⊆ Π.

We aim to show that D fulfills the requirements. Given that BV ?Π(X) = BV (X) ⊆ BVD(X)
and |Df |D ≤ |Df | for every f ∈ BV (X), it is sufficient to prove that BVD(X) ⊆ BV ?Π(X) and
|Df |?Π(X) ≤ |Df |D(X) for every f ∈ BVD(X), which amounts to showing that

�
f(γ1)− f(γ0) dπ(γ) ≤ Comp(π)Lip(π)|Df |D(X), for every f ∈ BVD(X) and π ∈ Π.

(5.3.13)
To this aim, let f ∈ BVD(X) and π ∈ Π be fixed. Pick two sequences (αn)n∈N, (βn)n∈N ⊆ Q+

satisfying αn ↘ Comp(π) and βn ↘ Lip(π). For any n ∈ N we have that π ∈ Παn,βn , so that
we can find a plan πn ∈ Dαn,βn ⊆ D such that dP(πn, π) ≤ 1/n. This means that πn ⇀ π as
n → ∞, so that in particular (e0)]πn ⇀ (e0)]π and (e1)]πn ⇀ (e1)]π by Remark 1.2.3. Given
any ε > 0, we can find a function fε ∈ Cbs(X) such that ‖f − fε‖L1(m) ≤ ε. Using the fact that
supn∈N Comp(πn) ≤ α1, we can thus estimate∣∣∣∣ � f(γ1)− f(γ0) dπ(γ)−

�
f(γ1)− f(γ0) dπn(γ)

∣∣∣∣
≤
∣∣∣∣ � fε(γ1)− fε(γ0) dπ(γ)−

�
fε(γ1)− fε(γ0) dπn(γ)

∣∣∣∣+ 4α1ε

≤
∣∣∣∣ � fε d(e1)]π −

�
fε d(e1)]πn

∣∣∣∣+

∣∣∣∣ � fε d(e0)]π −
�
fε d(e0)]πn

∣∣∣∣+ 4α1ε.

By first letting n→∞ and then ε↘ 0, we deduce that
�
f(γ1)− f(γ0) dπn(γ)→

�
|f(γ1)− f(γ0)|dπ(γ), as n→∞.
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Therefore, we can eventually conclude that
�
f(γ1)− f(γ0) dπ(γ) = lim

n→∞

�
f(γ1)− f(γ0) dπn(γ)

≤ lim
n→∞

�
|D(f ◦ γ)|([0, 1]) dπn(γ)

= lim
n→∞

�
γ]|D(f ◦ γ)|(X) dπn(γ)

≤ lim
n→∞

Comp(πn)Lip(πn)|Df |D(X)

≤ lim
n→∞

αnβn|Df |D(X)

= Comp(π)Lip(π)|Df |D(X).

This gives the desired inequality in (5.3.13), thus yielding the sought conclusion.

Remark 5.3.10. Actually, the proof of Theorem 5.3.9 shows also the following statement: from
any master family Π for BV (X), one can extract a countable subfamily Π̃ ⊆ Π that is still a
master family for BV (X). �

We expect that, since the defining properties in Definition (5.2.2) and Definition 5.2.1 of
BVΠ(X) space is in ‘integral form’, it is not suitable to improve Theorem 5.3.9 and obtain a single
master plan for BV (X), i.e., a master family that is a singleton. However, in Section 5.4 we
will deal with a ‘curvewise’ definition of BV (X), which will allow us to build a single test plan
(concentrated on geodesics in the non-branching CD case) that is a master plan for BV (X) in the
curvewise sense.

5.4 Curvewise BV space

As we already saw during this chapter, a smorgasbord of different (and mostly equivalent) notions
of BV space over metric measure spaces have been thoroughly studied in the literature. In this
section we propose yet another definition of BV space, which we will refer to as the curvewise BV
space. In Subsection 5.4.1 we introduce it and prove its equivalence with BV (X). In Subsection
5.4.2 we show that Theorem 5.3.9 implies the existence of a single ∞-test plan which is a master
test plan in the curvewise BV sense.

5.4.1 Definition of BV cw(X) and its main properties

Here we introduce a new notion of function of bounded variation on a metric measure space: the
curvewise BV space, which we shall denote by BV cw(X). Our definition is heavily inspired by
the so-called AM-BV space, which we are going to recall briefly. The potential-theoretic notion
of approximation modulus, AM-modulus for short, has been recently introduced by O. Martio in
[151]. By building on top of it, he constructed in [152] a ‘Newtonian-type’ version of BV space,
denoted by BVAM (X).

Much like an Lp-function belongs to the Newtonian–Sobolev space N1,p(X) provided it satisfies
the weak upper gradient inequality along Modp-a.e. path (where Modp stands for the p-modulus),
an L1-function is declared to be in BVAM (X) provided it satisfies the BVAM upper bound in-
equality (cf. [152, Eq. (2.6)]) along AM -a.e. path. Our strategy is the following: to replace the
quantification ‘along AM -a.e. path’ by ‘along π-a.e. curve, for every ∞-test plan π’. Technically
speaking, to do so we first need to slightly adapt the concept of BVAM upper bound, thus in-
troducing that of curvewise bound, see Definition 5.4.1. The resulting function space BV cw(X)
(cf. Definition 5.4.2) is a priori larger than BVAM (X), the reason being that AM -null sets are
π-null for every ∞-test plan π. We will prove in Theorem 5.4.3 (see also Corollary 5.4.4) that
BV cw(X) = BV (X) on every metric measure space. In this Thesis, we shall not provide the proof
that that BVAM (X) = BV (X), and thus BVAM (X) = BV cw(X), are verified on every metric
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measure space since it is outside of our main goals. However, these claims are true as verified in
[162].

Definition 5.4.1 (Curvewise Π-bound). Let (X, d,m) be a metric measure space. Fix f ∈ L1(m)
and a family Π of ∞-test plans on (X, d,m). Let Ω ⊆ X be an open set. Then a given sequence
(gn)n∈N ⊆ L1(m|Ω) of non-negative functions is said to be a curvewise Π-bound for f on Ω provided

for any π ∈ Π the following property is verified: for π-a.e. curve γ, it holds that

|D(f ◦ γ)|((a, b)) ≤ lim
n→∞

� b

a

gn(γt)|γ̇t|dt, for every 0 < a < b < 1 with γ((a, b)) ⊆ Ω. (5.4.1)

When Π is the totality of ∞-test plans on (X, d,m), we just speak about curvewise bounds.

The bounded compressibility assumption on the plans π ensures that (5.4.1) is well-posed,
since it is independent of the chosen Borel representatives of f and (gn)n∈N. By building on top
of the above notion of curvewise Π-bound, we propose a new space of functions having bounded
Π-variation, which we call the curvewise BVΠ space and we denote it by BV cw

Π (X).

Definition 5.4.2 (Curvewise Π-BV space). Let (X, d,m) be a metric measure space. Let Π be a
family of ∞-test plans on (X, d,m). Then we denote by BV cw

Π (X) the space of all those functions
f ∈ L1(m) which admit a curvewise Π-bound (gn)n on X with supn ‖gn‖L1(m) < ∞. Given any
f ∈ BV cw

Π (X) and Ω ⊆ X open, we define

|Df |cwΠ (Ω) := inf
(gn)n

lim
n→∞

�
Ω

gn dm, (5.4.2)

where the infimum is taken among all curvewise Π-bounds (gn)n for f on Ω. When Π is the
totality of ∞-test plans on (X, d,m), we use the shorthand notation BV cw(X) and |Df |cw. When
Π = {π} is a singleton, we use the shorthand notation BV cw

π (X) and |Df |cwπ .

Observe that BV cw
Π (X) can be equivalently characterised as the set of all f ∈ L1(m) for

which the quantity in the right-hand side of (5.4.2) (with Ω = X) is finite. Moreover, given any
f ∈ BV cw

Π (X), we can extend the function Ω 7→ |Df |cwΠ (Ω) introduced in (5.4.2) to a set-function
defined on all Borel sets via Carathéodory construction, in the following way:

|Df |cwΠ (B) := inf
{
|Df |cwΠ (Ω) : Ω ⊆ X open, B ⊆ Ω

}
, for every B ⊆ X Borel. (5.4.3)

We will not check whether the set-function |Df |cwΠ in (5.4.3) actually defines a Borel measure on
(X, d) when Π is an arbitrary family of ∞-test plans. However, this is the case in the specific
situation where Π is a master family for BV (X), as granted by the following result.

Theorem 5.4.3. Let (X, d,m) be a metric measure space. Let Π be a family of ∞-test plans on
(X, d,m). Then BV (X) ⊆ BV cw

Π (X) ⊆ BVΠ(X) and

|Df |Π(Ω) ≤ |Df |cwΠ (Ω) ≤ |Df |(Ω), for every f ∈ BV (X) and Ω ⊆ X open. (5.4.4)

Moreover, if Π is a master family for BV (X), then BV cw
Π (X) = BV (X) and |Df |cwΠ = |Df | holds

for every f ∈ BV (X), thus in particular |Df |cwΠ is a finite Borel measure on (X, d).

Proof.
Step 1. First of all, we aim to show that BV (X) ⊆ BV cw

Π (X) and

|Df |cwΠ (Ω) ≤ |Df |(Ω), for every f ∈ BV (X) and Ω ⊆ X open. (5.4.5)

To prove it, pick any sequence (fn)n∈N ⊆ Liploc(Ω) ∩ L1(m|Ω) such that fn → f in L1(m|Ω) and�
Ω

lip fn dm → |Df |(Ω), whose existence is granted by (1.2.14). Fix any π ∈ Π. Choose Borel
functions f̄ : X → R and f̄n : X → R, n ∈ N, having the following properties: f̄ = f holds m-a.e.

109



on Ω, f̄n = fn on Ω for every n ∈ N, f̄n = f̄ on X \Ω for every n ∈ N, and
�

X\Ω |f̄ |dm < +∞. In

particular, it holds that f̄n → f̄ in L1(m). Now observe that

f̄n ◦ γ → f̄ ◦ γ in L1(0, 1), for π-a.e. γ, (5.4.6)

possibly after passing to a (not relabelled) subsequence in n. Indeed, we can estimate

� 1

0

∣∣(f̄n ◦ γ)(t)− (f̄ ◦ γ)(t)
∣∣ dtdπ(γ) =

� 1

0

|f̄n − f̄ | ◦ et dtdπ

≤ Comp(π)

�
|f̄n − f̄ |dm→ 0, as n→∞,

thus up to a not relabelled subsequence we have that
� 1

0

∣∣(f̄n ◦ γ)(t)− (f̄ ◦ γ)(t)
∣∣dt→ 0 as n→∞

for π-a.e. γ, so that accordingly the claimed property (5.4.6) is proven.

Now pick a π-null Borel set N of curves where the property in (5.4.6) fails. Fix any γ /∈ N and
0 < a < b < 1 such that γ((a, b)) ⊆ Ω. Thanks to the lower semicontinuity and the locality of the
total variation measures, we obtain that

|D(f ◦ γ)|((a, b)) = |D(f̄ ◦ γ)|((a, b)) ≤ lim
n→∞

|D(f̄n ◦ γ)|((a, b)) = lim
n→∞

� b

a

|(f̄n ◦ γ)′t|dt

≤ lim
n→∞

� b

a

(lip f̄n)(γt)|γ̇t|dt ≤ lim
n→∞

� b

a

(
χΩ lip fn

)
(γt)|γ̇t|dt.

This shows that
(
χΩ lip fn

)
n

is a curvewise Π-bound for f on Ω. When considering Ω = X, we
get that f ∈ BV cw

Π (X). The same estimates also give

|Df |cwΠ (Ω) ≤ lim
n→∞

�
χΩ lip fn dm = |Df |(Ω),

whence (5.4.5) follows.
Step 2. Next we claim that BV cw

Π (X) ⊆ BVΠ(X) and

|Df |Π(Ω) ≤ |Df |cwΠ (Ω), for every f ∈ BV cw
Π (X) and Ω ⊆ X open. (5.4.7)

In order to prove it, let π ∈ Π and ε > 0 be fixed. We can find a curvewise Π-bound (gn)n for
f on Ω satisfying limn

�
Ω
gn dm ≤ |Df |cwΠ (Ω) + ε. Thanks to Lemma 1.2.26, there exists a π-null

Borel set N of curves such that f ◦ γ ∈ BV (0, 1) and |D(f ◦ γ)|({0, 1}) = 0 for all γ /∈ N . Given
any γ /∈ N , we can find Nγ ∈ N ∪ {∞} and {aγi }i<Nγ , {b

γ
i }i<Nγ ⊆ [0, 1] such that

aγi < bγi < aγi+1 < bγi+1, γ−1(Ω) ∩ (0, 1) =
⋃
i<Nγ

(aγi , b
γ
i ). (5.4.8)

Therefore, for any γ /∈ N we may estimate

γ]|D(f ◦ γ)|(Ω) = |D(f ◦ γ)|
(
γ−1(Ω) ∩ (0, 1)

) (5.4.8)
=

∑
i<Nγ

|D(f ◦ γ)|((aγi , b
γ
i ))

≤
∑
i<Nγ

lim
n→∞

� bγi

aγi

gn(γt)|γ̇t|dt
?
≤ lim
n→∞

∑
i<Nγ

� bγi

aγi

gn(γt)|γ̇t|dt

= lim
n→∞

�
γ−1(Ω)

gn(γt)|γ̇t|dt,
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where the starred inequality is granted by Fatou’s lemma. By integrating over π, we obtain�
γ]|D(f ◦ γ)|(Ω) dπ(γ) ≤

�
lim
n→∞

�
γ−1(Ω)

gn(γt)|γ̇t|dtdπ(γ)

?
≤ lim
n→∞

�
γ−1(Ω)

gn(γt)|γ̇t|dtdπ(γ)

≤ Lip(π) lim
n→∞

�
(χΩ gn) ◦ et dtdπ

≤ Comp(π)Lip(π) lim
n→∞

�
Ω

gn dm

≤ Comp(π)Lip(π)
(
|Df |cwΠ (Ω) + ε

)
,

where the starred inequality is a consequence of Fatou’s lemma. By letting ε↘ 0, and exploiting
the arbitrariness of π ∈ Π and the open set Ω, we conclude that f ∈ BVΠ(X) and that |Df |Π(Ω) ≤
|Df |cwΠ (Ω) for every Ω ⊆ X open, thus proving the claimed property (5.4.7).
Step 3. What is left to prove is only the last part of the statement. If Π is a master family for
BV (X), then (5.4.4) forces the identities BV cw

Π (X) = BV (X), and |Df |cwΠ (Ω) = |Df |(Ω) for every
f ∈ BV (X) and Ω ⊆ X open. By virtue of the definition (5.4.3) and the outer regularity of the
measure |Df |, we deduce that |Df |cwΠ (B) = |Df |(B) holds for every Borel set B ⊆ X, thus in
particular |Df |cwΠ is a finite Borel measure as well. The statement is achieved.

For the sake of clarity, we report the following immediate consequence of Theorem 5.4.3.

Corollary 5.4.4. Let (X, d,m) be a metric measure space. Then BV cw(X) = BV (X) and

|Df |cw = |Df |, for every f ∈ BV (X).

Proof. Since the totality of ∞-test plans on (X, d,m) is a master family for BV (X), the claim
directly follows from the last part of the statement of Theorem 5.4.3.

5.4.2 A master curvewise test plan for BV

Aim of this section is to build a ∞-test plan πm (concentrated on geodesics when the underlying
space is non-branching CD) such that

BV cw
πm

(X) = BV (X).

The test plan πm will be obtained by suitably combining the elements that constitute the master
sequence for BV (X) provided by Theorem 5.3.9. Before passing to the construction of the plan
πm in Theorem 5.4.6, we need to prove the following technical lemma, concerning the behaviour
of BV cw

Π (X) under different manipulations of the family Π of ∞-test plans.

Lemma 5.4.5. Let (X, d,m) be a metric measure space. Then the following properties hold:

i) Let (πn)n∈N be a given sequence of ∞-test plans. Let (αn)n∈N ⊆ (0, 1) be a sequence with∑∞
n=1 αn = 1. Suppose supn Lip(πn) < +∞ and

∑∞
n=1 αnComp(πn) < +∞. Then π :=∑∞

n=1 αnπn is a ∞-test plan satisfying BV cw
π (X) = BV cw

{πn}n(X) and

|Df |cwπ = |Df |cw{πn}n , for every f ∈ BV cw
{πn}n(X).

ii) Let Π = {πλ}λ∈Λ be an arbitrary family of ∞-test plans. For any λ ∈ Λ, fix a number

k(λ) ∈ N and a subdivision 0 = t0λ < t1λ . . . < t
k(λ)
λ = 1 of [0, 1]. Define the ∞-test plans

πiλ :=
(
Restr

tiλ
ti−1
λ

)
]
πλ, for every λ ∈ Λ and i = 1, . . . , k(λ).

Then the family Π̂ :=
{
πiλ : λ ∈ Λ, 1 ≤ i ≤ k(λ)

}
satisfies BV cw

Π̂
(X) = BV cw

Π (X) and

|Df |cw
Π̂

= |Df |cwΠ , for every f ∈ BV cw
Π (X).
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Proof.
i) Observe that a Borel set N ⊆ C([0, 1],X) is π-null if and only if it is πn-null for all n ∈ N. This
implies that curvewise π-bounds and curvewise {πn}n-bounds coincide, yielding i).
ii) Fix any f ∈ L1(m) and an open set Ω ⊆ X. It is then sufficient to show that a given sequence
(gn)n∈N ⊆ L1(m|Ω) is a curvewise Π-bound for f on Ω if and only if it is a curvewise Π̂-bound for f

on Ω. Suppose the former holds. Fix any λ ∈ Λ and i = 1, . . . , k(λ). Let N be a πλ-null Borel set
of curves such that the property in (5.4.1) holds for every fixed γ /∈ N ; here and in the rest of the

proof, we are assuming to have fixed a Borel representative of f . In particular, σ := Restr
tiλ
ti−1
λ

(γ)

has this property: if 0 < a < b < 1 and σ((a, b)) ⊆ Ω, then

|D(f ◦ σ)|((a, b)) = |D(f ◦ γ)|((a′, b′)) ≤ lim
n→∞

� b′

a′
gn(γt)|γ̇t|dt = lim

n→∞

� b

a

gn(σt)|σ̇t|dt,

where we set a′ := (1− a)ti−1
λ + a tiλ and b′ := (1− b)ti−1

λ + b tiλ. Hence, given that the set of such

curves σ’s is πiλ-null, we have proved that (gn)n is a curvewise Π̂-bound for f on Ω.

Conversely, suppose (gn)n is a curvewise Π̂-bound for f on Ω. Fix any λ ∈ Λ. Given any index
i = 1, . . . , k(λ), we can find a πiλ-null Borel set Ni of curves such that (5.4.1) holds for all σ /∈ Ni.
Thanks to Lemma 1.2.26, we can find a πλ-null Borel set Ñ of curves such that

|D(f ◦ γ)|
(
{t1λ, . . . , t

k(λ)−1
λ }

)
= 0, for every γ /∈ Ñ . (5.4.9)

Now let us consider the πλ-null set N of curves, which is defined as

N := Ñ ∪
k(λ)⋃
i=1

(
Restr

tiλ
ti−1
λ

)−1
(Ni).

Fix γ /∈ N and 0 < a < b < 1 with γ((a, b)) ⊆ Ω. For any i = 1, . . . , k(λ), we denote by Ii the

open interval (a, b) ∩ (ti−1
λ , tiλ). Given that σi := Restr

tiλ
ti−1
λ

(γ) /∈ Ni, we may estimate

|D(f ◦ γ)|((a, b)) (5.4.9)
=

k(λ)∑
i=1

|D(f ◦ γ)|(Ii) =

k(λ)∑
i=1

|D(f ◦ σi)|(I ′i) ≤
k(λ)∑
i=1

lim
n→∞

�
I′i

gn(σit)|σ̇it|dt

≤ lim
n→∞

k(λ)∑
i=1

�
I′i

gn(σit)|σ̇it|dt = lim
n→∞

� b

a

gn(γt)|γ̇t|dt,

where we set I ′i := Restr
tiλ
ti−1
λ

(Ii). This shows that (gn)n is a curvewise Π-bound for f on Ω.

We are now in a position to build the master curvewise plan πm for BV.

Theorem 5.4.6 (Master curvewise plan for BV). Let (X, d,m) be a metric measure space. Then
there exists a ∞-test plan πm on (X, d,m) such that BV cw

πm
(X) = BV (X) and

|Df |cwπm
= |Df |, for every f ∈ BV (X).

Moreover, if (X, d,m) is a non-branching CD(K,N) space for some K ∈ R, N ∈ (1,∞), and the
measure m is finite, then we can additionally require that πm is concentrated on geodesics.

Proof. First, let D = {πi}i∈N be a master family for BV (X), whose existence is granted by
Theorem 5.3.9; the same result ensures that, in the non-branching CD(K,N) case, each πi can
be additionally chosen to be concentrated on geodesics. Given any i ∈ N, pick ni ∈ N such that
Lip(πi) ≤ ni and define the ∞-test plans (πji )

ni
j=1 as

πji :=
(
Restr

j/ni
(j−1)/ni

)
]
πi, for every j = 1, . . . , ni.
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Notice that Lip(πji ) ≤ 1. Now define D̂ :=
{
πji : i ∈ N, j = 1, . . . , ni

}
. Theorem 5.4.3 and item ii)

of Lemma 5.4.5 ensure that BV (X) = BV cw
D̂

(X) and |Df | = |Df |cw
D̂

for all f ∈ BV (X). Moreover,

let us relabel D̂ as {πn}n∈N. For any n ∈ N, we define αn ∈ (0, 1) as

αn :=
1

2nαmax{Comp(πn), 1}
, where α :=

∑
m∈N

1

2m max{Comp(πm), 1}
.

Finally, we define the ∞-test plan πm as πm :=
∑
n∈N αnπ

n. Observe that in the non-branching
CD(K,N) case we have that πm is concentrated on geodesics. What previously proved and item
i) of Lemma 5.4.5 imply that BV (X) = BV cw

πm
(X) and that |Df | = |Df |cwπm

for every f ∈ BV (X),
thus yielding the statement.

5.5 Master test plan for W 1,1 on RCD spaces

While the BV-theory on metric measure spaces is well-established by now, the W 1,1-theory seems
to be much more complex to deal with. In [13, 78] several definitions of W 1,1(X) are proposed, but
it is shown that some of them are not equivalent. In particular, in the CD-setting, the available
identifications [27] are mainly based on Doubling & Poincaré rather than on the curvature hy-
pothesis. However, the situation greatly improves in the RCD setting and we restrict the attention
here to this latter class.

We start considering a notion of space W 1,1(X) defined in duality with ∞-test plans (which,
in [78], is denoted by w −W 1,1(X)).

Definition 5.5.1 (The space W 1,1(X)). Let (X, d,m) be a metric measure space. We say that
f ∈ W 1,1(X), provided f ∈ L1(m) and there exists G ∈ L1(m) non-negative, called 1-weak upper
gradient of f , so that

|f(γ1)− f(γ0)| ≤
�
G(γt)|γ̇t|dt, π-a.e. γ,

for every ∞-test plan π.
The m-a.e. minimal G satisfying the above, denoted |Df |1, is called minimal 1-weak upper

gradient.

Notice that the well-posedness of the above definition follows from standard considerations
as in Remark 1.2.24. We claim now that W 1,1(X) ⊆ BV (X). Fix any f ∈ W 1,1(X). Given an
arbitrary ∞-test plan π, it is standard to see that for π-a.e. γ we have f ◦ γ ∈ W 1,1(0, 1) and
(f ◦ γ)′t ≤ |Df |1(γt)|γ̇t| for a.e. t ∈ [0, 1] (note, e.g., in [78, Section 4.6] the inclusion with the
Beppo-Levi space W 1,1

BL). Moreover, for every B ⊆ X Borel and every ∞-test plan π, we can
therefore estimate

�
γ]|D(f ◦ γ)|(B) dπ =

� 1

0

χγ−1(B)(t)(f ◦ γ)′(t) dtdπ

≤ Lip(π)

� 1

0

(χB |Df |1) ◦ et dtdπ

≤ Lip(π)

�
B

|Df |1 dm.

All in all, the above shows at the same time that f ∈ BV (X) and |Df | ≤ |Df |1m.
Unfortunately, it is not always true that, if f ∈ BV (X) with |Df | � m, then f belongs to

W 1,1(X) and |Dacf | := d|Df |
dm is a 1-weak upper gradient. The reason being (see the discussion at

the beginning of Section 4.6 and Example 4.5.4 in [78]), that the BV -condition requires f ◦ γ to
be only BV (0, 1) along a.e. curve, while the W 1,1-condition requires the composition f ◦ γ to be
absolutely continuous. This discrepancy allows in general for the existence of counterexamples.
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Nevertheless, as proven in [99, Remark 3.5], this is not the case in the RCD(K,N) setting where
it holds

f ∈ BV (X) with |Df | � m if and only if f ∈W 1,1(X). (5.5.1)

Moreover, in this case, |Df |1 = |Dacf | at m-a.e. point. Therefore, building on top of [77],[1] and
our Theorem 5.3.9, we are then able to prove:

Theorem 5.5.2. Let (X, d,m) be a RCD(K,N) space with N < ∞ and m finite. Then, there
exists a ∞-test plan, denoted by πm and concentrated on geodesics, so that:

If f,G ∈ L1(m) are so that f ◦ γ ∈W 1,1(0, 1) for πm-a.e. γ ∈ AC([0, 1],X) and∣∣∣ d

dt
f(γt)

∣∣∣ ≤ G(γt)|γ̇t| (π1 ⊗L 1)-a.e. (γ, t), (5.5.2)

then f ∈W 1,1(X) and G is a 1-weak upper gradient.

Proof. Since RCD(K,N) spaces are non-branching [77, Theorem 1.3], we can consider from Theo-
rem 5.3.9 a countable master family D and from Theorem 5.4.6 a master curvewise plan πm (both
concentrated on geodesics) for the space BV (X) with the key property:

Γ is π1-negligible ⇐⇒ Γ is π-negligible ∀π ∈ D,

for every Borel Γ ⊆ C([0, 1],X). Finally, f,G ∈ L1(m) satisfy (5.5.2) if and only if∣∣∣ d

dt
f(γt)

∣∣∣ ≤ G(γt)|γ̇t| (π ⊗L 1)-a.e. (γ, t), ∀π ∈ D.

This implies that for π-a.e. γ, it holds f ◦ γ ∈ BV (0, 1) (in fact, it is absolutely continuous) with
|D(f ◦ γ)|(I) ≤

�
I
G(γt)|γ̇t|dt, for every I ⊆ [0, 1] Borel and π ∈ D. Thus, we reach

�
γ]|D(f ◦ γ)|(B) dπ(γ) ≤

� 1

0

χγ−1(B)(t)G(γt)|γ̇t|dtdπ(γ)

≤ Lip(π)

� 1

0

(χBG) ◦ et dtdπ

≤ Comp(π)Lip(π)

�
B

Gdm,

for every B ⊆ X Borel and π ∈ D. This means that f ∈ BVD(X) and |Df |D ≤ Gm. Finally, since
D is a master family by Theorem 5.3.9, this immediately implies that f ∈ BV (X) with |Df | ≤ Gm
and, appealing to (5.5.1), the conclusion.
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6 | Rigidity and almost rigidity of Sobolev
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6.1 Introduction for smooth manifolds

The standard Sobolev inequality in sharp form reads as

‖u‖Lp∗ (Rn) ≤ Eucl(n, p)‖∇u‖Lp(Rn), ∀u ∈W 1,p(Rn), (6.1.1)

where p ∈ (1, n), p∗ := pn
n−p is the Sobolev conjugate exponent and Eucl(n, p) is the smallest

positive constants for which the inequality (6.1.1) is valid. Its precise value (see (6.2.2) below)
was computed independently by Aubin [31] and Talenti [182] (see also [72]).

115



In the setting of compact Riemannian manifolds, the presence of constant functions in the
Sobolev space immediately shows that an inequality of the kind of (6.1.1) must fail. Yet, Sobolev
embeddings are certainly valid also in this context and they can be expressed by calling into play
the full Sobolev norm:

‖u‖p
Lp∗ (M)

≤ A‖∇u‖pLp(M) +B‖u‖pLp(M), ∀u ∈W 1,p(M), (?)

where M is a compact n-dimensional Riemannian manifold and A,B > 0. From the presence of
the two parameters A,B, it is not straightforward which is the notion of best constants in this
case. The issue of defining and determining the best constants in (?) has been the central role of
the celebrated AB-program, we refer to [115] for a thorough presentation of this topic (see also
[85]). The starting point of this program is the definition of the following two different notions of
‘best Sobolev constants’:

αp(M) := inf{A : (?) holds for some B}, βp(M) := inf{B : (?) holds for some A}.

Then the first natural problem is to determine the value of αp(M) and βp(M). It is rather easy
to see that

βp(M) = Vol(M)p/p
∗−1,

indeed constant functions give automatically βp(M) ≥ Vol(M)p/p
∗−1, while the other inequality

follows from the Sobolev-Poincaré inequality (see, e.g. [115, Sec 4.1]). It is instead more subtle to
determine whether βp(M) is attained, in the sense that the infimum in its definition is actually a
minimum. This is true for p = 2 and due to Bakry [34] (see also Proposition 6.5.1), but actually
false for p > 2 (see e.g. [115, Prop. 4.1]).

Concerning instead the value of αp(M), it turns out to be precisely the sharp constant in the
Euclidean Sobolev inequality (6.1.1). More precisely Aubin in [31] (see also [115]) showed that on
any compact n-dimensional Riemannian manifolds M with n ≥ 2, we have

αp(M) = Eucl(n, p)p ∀p ∈ (1, n). (6.1.2)

We point out that it is hard task to show that αp(M) is attained, namely that there exists some
B > 0 for which (?) holds with A = αp(M) and B. This has been verified for p = 2 in [116],
answering affirmatively to a conjecture of Aubin.

On the other hand, knowing the value of βp(M) (and that is attained for p = 2), we can define
a further notion of optimal-constant A, ‘relative” to B = β2(M). More precisely we define

Aopt
2∗ (M) := Vol(M)1−2/2∗ · inf{A : (?) for p = 2 holds with A and B = Vol(M)2/2∗−1}.

For the sake of generality will actually consider Aopt also in the so-called subcritical case,
meaning that we enlarge the class of Sobolev inequalities and consider for every q ∈ (2, 2∗]

‖u‖2Lq(M) ≤ A‖∇u‖
2
L2(M) + Vol(M)2/q−1‖u‖2L2(M), ∀u ∈W 1,2(M), (??)

for some constant A ≥ 0. Then we define

Aopt
q (M) := Vol(M)1−2/q · inf{A : (??) holds}.

Note that the infimum above is always a minimum and that Vol(M)2/q−1 is the ‘minimal B’ that
we can take in (??).

Remark 6.1.1. We bring to the attention of the reader the renormalization factor Vol(M)1−2/q in
the definition of Aopt

q (M). This is usually not present in the literature concerning the AB-program
(see e.g. [115]), however this choice will allow us to to have cleaner inequalities. This also makes
Aopt
q invariant under rescalings of the volume measure of M. �
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One of the main questions that we will investigate Chapter concerns the value of Aopt
q (M). So

far Aopt
q (M) is known explicitly only in the case of Sn and was firstly computed by Aubin in [30]

in the case of q = 2∗ and by Beckner in [40] for a general q:

Aopt
q (Sn) =

q − 2

n
, ∀n ≥ 3. (6.1.3)

Aubin also exhibited a family of non-constant functions that achieve equality in (??) with A =
Aopt

2∗ (Sn). For a general manifold M instead it can be proved that

Aopt
q (M) ≤ C(K,D,N), (6.1.4)

where K ∈ R is a lower bound on the Ricci curvature of M , N is an upper bound on the dimension
and D ∈ R+ an upper bound on its diameter. This follows from the Sobolev-Poincaré inequality
combined with an inequality by Bakry (see e.g. [85, Theorem 4.4] and also Section 6.5.1). On
the other hand, for positive Ricci curvature we have the following celebrated comparison result
originally proven in [122] (see also [138, 35] for the case of a general q):

Theorem 6.1.2. Let M be an n-dimensional Riemannian manifold, n ≥ 3, with Ric ≥ n − 1.
Then, for every q ∈ (2, 2∗], it holds

Aopt
q (M) ≤ Aopt

q (Sn). (6.1.5)

One of the main consequence of the results in this Chapter is the characterization of the equality
in (6.1.5), in particular we show:

Theorem 6.1.3. Equality in (6.1.5) holds for some q ∈ (2, 2∗] if and only if M is isometric to
Sn.

It is important to point out that the novelty of the above result is that it covers the case
q = 2∗. Indeed, for q < 2∗, Theorem 6.1.3 was already established (see e.g. [35, Remark 6.8.5])
and follows from an improvement (only for q < 2∗) of (6.1.5) due to [90] involving the spectral
gap (see Remark 6.6.9 for more details). On the other hand, up to our knowledge, this is the first
time that it appears in the critical case q = 2∗.

Structure of the Chapter. This Chapter is organized as follows:
In Section 6.2, we set the AB-program on general CD-spaces to define the constants αp and

Aopt
q . We then state the main results of this Chapter and also provide the reader with a sketch of

proof for the rigidity in Theorem 6.1.3.
Section 6.3 is devoted to show the upper bound of αp in nonsmooth setting generalizing (6.1.2).

This upper bound will be obtained by the combination of local isoperimetric inequalities and a
novel concept of Polya-Szego rearrangements of Euclidean type on CD-spaces in the spirit of [159].

Section 6.4 is devoted to achieve the lower bound of αp generalizing thus the formula (6.1.2) in
nonsmooth setting. Here we also derive, as an application, sharp Sobolev inequalities on CD(0, N)
spaces (Section 6.4.2).

In Section 6.5, we consider the constant Aopt
q in nonsmooth setting and face two different

geometric bounds in terms of the Ricci curvature bounds (Section 6.5.1) and in terms on the first
eigenvalue (Section 6.5.2).

In Section 6.6, we prove our main rigidity result on Aopt
q on RCD-spaces. To this aim we develop

a concentration compactness dichotomy principle under mGH-convergence (Theorem 6.6.1) and a
quantitative linearization lemma for the Sobolev inequality in Section 6.6.2.

In Section 6.7, we prove the main almost-rigidity result, namely the characterization of almost
equality in Theorem 6.1.3 on compact RCD-space. The main ingredient we develop is the continuity
of the constant Aopt

q under mGH-convergence (Section 6.7.2).
Finally, in Section 6.8 we conclude this Chapter by studying the so-called generalize Yamabe

equation on RCD(K,N) spaces. We will prove a classical existence result in Section 6.8.1 while in
Section 6.8.2 we will show a continuity result for the generalized Yamabe constant under mGH-
convergence.
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6.2 Main definitions and statements of the main results

Before starting, let us collect once and for all the key constants appearing in this Chapter.

Basic notations. For all N ∈ [1,∞), p ∈ (1, N), we define the generalized1 unit ball
and unit sphere volumes by

ωN :=
πN/2

Γ (N/2 + 1)
, σN−1 := NωN , (6.2.1)

where Γ is the Gamma-function, and the sharp Euclidean Sobolev constant by

Eucl(N, p) :=
1

N

(N(p− 1)

N − p

) p−1
p
( Γ(N + 1)

NωNΓ(N/p)Γ(N + 1−N/p)

) 1
N

. (6.2.2)

For N > 2 and p = 2, the above reduces to

Eucl(N, 2) =
( 4

N(N − 2)σ
2/N
N

) 1
2

. (6.2.3)

We will sometimes need also the following identity:

� π

0

sinN−1(t) dt =
σN
σN−1

, ∀N > 1. (6.2.4)

6.2.1 Main rigidity and almost rigidity theorems

We will prove Theorem 6.1.3 in the context of RCD metric measure spaces with synthetic Ricci
curvature bounds. To this aim, we will consider the AB-program instead in the context of CD-
spaces and face classical but also new questions. One of the main reasons to approach these
problems in this more general setting is that it will allow us to characterize also the ‘almost-
equality’ in (6.1.5) (see Theorem 6.2.3 below). Indeed, as we will see, in this case we need to
compare the manifold M to a class of singular spaces, rather than to the round sphere.

To state our main results for metric measure spaces we need to define first the notion of optimal
constant in the Sobolev inequality in the non-smooth setting. Given a (compact) RCD(K,N)
space (or more generally a CD(K,N) space) (X, d,m), for some K ∈ R, N ∈ (2,∞), we set
2∗ := 2N/(N − 2) and consider the analogous of (??):

‖u‖2Lq(m) ≤ A‖|Du|‖
2
L2(m) + m(X)2/q−1‖u‖2L2(m), ∀u ∈W 1,2(X), (6.2.5)

for q ∈ (2, 2∗] and a constant A ≥ 0. Then we define

Aopt
q (X) := m(X)1−2/q · inf{A : (6.2.5) holds},

with the convention that Aopt
q (X) = ∞ when no A exists. Note that Aopt

q (X), when is finite, is
actually a minimum. Observe also that, as in the smooth case, there is a renormalization factor
m(X)1−2/q in the definition. However, being not restrictive, we will mainly work asking m(X) = 1
so that the value of Aopt

q (X) is equivalent to the non-renormalized one.
Remarkably in this more general framework, a comparison analogous to (6.1.5) holds.

Theorem 6.2.1 ([59]). Let (X, d,m) be an essentially non-branching CD(N − 1, N) space, N ∈
(2,∞). Then, for every q ∈ (2, 2∗]

Aopt
q (X) ≤ q − 2

N
. (6.2.6)

1For an integer N , ωN is the volume of the unit ball in RN and σN is the volume of the N -sphere SN .
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See [175] for the definition of the essentially nonbranching condition and the proof that holds
in the RCD(K,N)-class. We also mention that Theorem 6.2.1 in the RCD case was previously
obtained in [173]. Observe also that, whenever N is an integer and thanks to (6.1.3), for a
N -dimensional Riemannian manifolds (6.2.6) is exactly (6.1.5) and in particular Theorem 6.2.1
generalizes Theorem 6.1.2.

We can now state and our main rigidity result in the setting of metric measure spaces.

Theorem 6.2.2 (Rigidity of Aopt
q ). Let (X, d,m) be an RCD(N − 1, N) space for some N ∈

(2,∞) and let q ∈ (2, 2∗]. Then, equality holds in (6.2.6) if and only if (X, d,m) is isomorphic
to a spherical suspension, i.e. there exists an RCD(N − 2, N − 1) space (Z, dZ,mZ) such that
(X, d,m) ' [0, π]×N−1

sin Z.

Let us compare the above result with the rigidity result in [137] for the Sobolev inequality
on manifolds with non-negative Ricci curvature (and later improved in [190], see also [37] in the
nonsmooth setting). In [137] it is proved that if (6.1.1) is valid on a non-compact manifold with
non-negative Ricci curvature, then the manifold must be the Euclidean space. Here instead we
consider compact manifolds and the rigidity is obtained in comparison with the Sobolev inequality
on the sphere. For this reason our arguments will also be substantially different than the ones in
[137, 190]. Moreover, differently from the smooth case, in the more abstract setting of RCD spaces
the above result is instead new for all q.

As anticipated above, we can also prove an ‘almost-rigidity’ statement linked to the almost-
equality case in (6.2.6) (see Section 1.1.6 for the notion of measure-Gromov-Hausdorff convergence
and distance dmGH .).

Theorem 6.2.3 (Almost-rigidity of Aopt
q ). For every N ∈ (2,∞), q ∈ (2, 2∗] and every ε > 0,

there exists δ := δ(N, ε, q) > 0 such that the following holds. Let (X, d,m) be an RCD(N − 1, N)
space with m(X) = 1 and suppose that

Aopt
q (X) ≥ (q − 2)

N
− δ,

Then, there exists a spherical suspension (Y, dY,mY) (i.e. there exists an RCD(N−2, N−1) space
(Z, dZ,mZ) so that Y is isomorphic as a metric measure space to [0, π]×N−1

sin Z) such that

dmGH((X, d,m), (Y, dY,mY)) < ε.

Remark 6.2.4. We briefly point out two important facts concerning the two above statements.

B In the smooth setting, for q < 2∗, the almost rigidity follows ‘directly’ from the sharper
version of (6.1.5) cited above (see Remark 6.6.9 for the explicit statement) and using the
almost-rigidity of the 2-spectral gap [59, 61]. Nevertheless, we are not aware of any such
statement in the literature and anyhow, our proof does not rely on any improved version of
(6.1.5).

B The key feature of Theorem 6.2.2 and Theorem 6.2.3 is that they include the ‘critical’
exponent. Indeed, the difference between the ‘subcritical’ case q < 2∗ and q = 2∗ is not only
technical but a major issue linked to the lack of compactness in the Sobolev embedding.
As it will be clear in the sequel, the proof of the critical case requires several additional
arguments that constitute the heart of our analysis. �

The almost-rigidity result contained in Theorem 6.2.3 will be actually a consequence of a
stronger statement, that is the continuity of Aopt

q under measure Gromov-Hausdorff convergence.
More precisely we will prove the following:

Theorem 6.2.5 (Continuity of Aopt
q under mGH-convergence). Let (Xn, dn,mn), n ∈ N̄ := N ∪

{∞}, be a sequence of compact RCD(K,N)-spaces with mn(Xn) = 1 and for some K ∈ R, N ∈
(2,∞) so that Xn

mGH→ X∞. Then, Aopt
q (X∞) = limnA

opt
q (Xn), for every q ∈ (2, 2∗].
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6.2.2 Best constant in the Sobolev inequality on compact CD spaces

The proof of the rigidity (and almost rigidity) of Aopt
q in the case q = 2∗, will force us to study

also the value of αp in the context of CD-spaces. The connection of this with the proof of Theorem
6.2.2 will be explained towards the end of Section 6.2.4, where we provide a sketch of the proof
yielding the main rigidity theorem.

Let then (X, d,m) be a CD(K,N) space with N ∈ (1,∞). For any p ∈ (1, N) set p∗ := Np
N−p

and, in the same fashion of (?), we consider:

‖u‖p
Lp∗ (m)

≤ A‖|Du|‖pLp(m) +B‖u‖pLp(m), ∀u ∈W 1,p(X). (6.2.7)

We are then interested in the minimal A for which (6.2.7) holds. In other words we set (with the
usual convention that the inf is ∞ when no A exists):

αp(X) := inf{A : (6.2.7) holds for some B}. (6.2.8)

We will be able to compute the value of αp(X) for every compact CD(K,N) space X, extending
the result of Aubin for Riemannian manifolds (see (6.1.2) above). Before passing to the actual
statement, it is useful to explain first the intuition behind it and the geometrical meaning of the
constant αp(X). The rough idea is that its value is tightly linked to the local structure of the space.
Indeed, the key observation is that αp(X) is invariant under rescaling of the form (X, d/r,m/rN ).
For example, since manifolds are locally Euclidean, it is not surprising that in (6.1.2) the optimal
Euclidean-Sobolev constant appears. On the other hand, CD(K,N) spaces have a more singular
local behavior and additional parameters must be taken into account. In particular the value of
αp(X) turns out to be related to the Bishop-Gromov density:

(0,+∞] 3 θN (x) := lim
r→0+

m(Br(x))

ωNrN
, x ∈ X,

where ωN is the volume of the Euclidean unit ball (see (6.2.1) for non integer N). Our result is
then the following:

Theorem 6.2.6. Let (X, d,m) be a compact CD(K,N) space for some K ∈ R and N ∈ (1,∞).
Then for every p ∈ (1, N)

αp(X) =

(
Eucl(N, p)

minx∈X θN (x)
1
N

)p
. (6.2.9)

We point out that, since X is compact, minx∈X θN (x) always exists because θN is lower semi-
continuous.

Remark 6.2.7. Note that if X is a n-dimensional Riemannian manifold, θn(x) = 1 for every
x ∈ X, hence in this case (6.2.9) (with N = n) is exactly Aubin’s result in (6.1.2). Recall also that
here N needs not to be an integer and thus Eucl(N, p) has to be defined for arbitrary N ∈ (1,∞)
(see (6.2.2)). �

Remark 6.2.8. We are not assuming (X, d,m) to be renormalized. In particular observe that if we
rescale the reference measure m as c ·m, then αp gets multiplied by c−p/N , which is in accordance
with the scaling in (6.2.9). �

Remark 6.2.9. Theorem 6.2.6 gives non-trivial information even in the ‘collapsed’ case, i.e.
when θN = +∞ in a set of positive (or even full) measure (see [98] for the notion of collapsed/non-
collapsed RCD spaces). Indeed, to have αp(X) > 0 it is sufficient that θN (x) < +∞ at a single point
x ∈ X. As an example, consider the model space ([0, π], |.|, sinN−1 L 1) which is RCD(N − 1, N)
with θN (x) < +∞ only for x ∈ {0, π}. �

Theorem 6.2.6 will be proved in two steps, by the combination of an upper bound (Theorem
6.3.12), obtained via local Sobolev inequalities (Theorem 6.3.8), and a lower bound (Theorem
6.4.4) derived with a blow-up analysis.
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6.2.3 Additional results and application to the Yamabe equation

Euclidean-type Polya-Szego inequality on CD(K,N) spaces.

We will develop a Polya-Szego inequality (see Section 6.3.1), which is roughly an Euclidean-variant
of the Polya-Szego inequality for CD(K,N) spaces, K > 0, derived in [159]. The main feature of
this inequality is that it holds on arbitrary CD(K,N) spaces, K ∈ R, but assumes the validity of
an isoperimetric inequality of the type

Per(E) ≥ CIsopm(E)
N−1
N , ∀E ⊂ Ω Borel,

for some Ω ⊂ X open and where CIsop is a positive constant independent of E. For our purposes
this Polya-Szego inequality will be used to derive local Sobolev inequalities of Euclidean-type (see
Theorem 6.3.8), however it allows us to obtain also sharp Sobolev inequalities under Euclidean-
volume growth assumption.

Sharp and rigid Sobolev inequalities under Euclidean-volume growth.

As a by-product of our analysis, we achieve sharp Sobolev inequalities on CD(0, N) spaces with
Euclidean-volume growth. We recall that a CD(0, N) space (X, d,m) has Euclidean-volume growth
if

AVR(X) := lim
R→+∞

m(BR(x0))

ωNRN
> 0,

for some (and thus any) x0 ∈ X. We will prove the following.

Theorem 6.2.10. Let (X, d,m) be a CD(0, N) space for some N ∈ (1,∞) and with Euclidean
volume growth. Then, for every p ∈ (1, N), it holds

‖u‖Lp∗ (m) ≤ Eucl(N, p)AVR(X)
− 1
N ‖|Du|‖Lp(m), ∀u ∈ Lipc(X). (6.2.10)

Moreover (6.2.10) is sharp.

This extends a result recently derived in [37] in the case of Riemannian manifolds and answer
positively to a question posed in [37, Sec. 5.2].

Concentration compactness and mGH-convergence.

As often happens for almost-rigidity results in RCD spaces, Theorem 6.2.3 will be proved by
compactness. However, in the case q = 2∗ we have a strong lack of compactness, hence for the
proof we will need an additional tool, which is a concentration compactness result under mGH-
convergence of compact RCD-spaces. In particular, we will prove a concentration-compactness
dichotomy principle (see Lemma 6.6.6 and Theorem 6.6.1 below) in the spirit of [141] (see also
the monograph [179]), but under varying underlying measure. As far as we know, this is the first
result of this type dealing with varying spaces and we believe it to be interesting on its own.

Existence for the Yamabe equation and mGH-continuity of Yamabe constant on RCD
spaces

As an application of Theorem 6.2.6 we show that on a compact RCD(K,N) space a (non-negative
and non-zero) solution to the so-called Yamabe equation

−∆u+ Su = λu2∗−1, for λ ∈ R, S ∈ Lp(m), p > N/2, (6.2.11)

exists provided

λS(X) := inf
u∈W 1,2(X)\{0}

�
|Du|2 + S|u|2 dVol

‖u‖2
L2∗ (M)

<
min θ

N/2
N

Eucl(N, 2)2
,
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where λS is called generalized Yamabe constant (see Theorem 6.8.2). This extends a classical
result on smooth Riemannian manifolds (see Section 6.8 for more details and references).

We also show the continuity of the generalized Yamabe constant under measure Gromov-
Hausdorff convergence. More precisely for a sequence Xn of compact RCD(K,N) spaces such that

Xn
mGH→ X∞ with X∞ a compact RCD(K,N) space, we show that

lim
n
λSn(Xn) = λS(X∞),

where Sn converges Lp-weak to S for some p > N/2. See Theorem 6.8.6 for a precise statement and
Section 2.4 for the definition of Lp-weak convergence with varying spaces. This result extends and
sharpens an analogous statement proved for Ricci-limits in [121], where an additional boundedness
assumption on the sequence λSn(Xn) is required.

6.2.4 Proof-outline of the rigidity

Here we explain the scheme of the proof of rigidity result in Theorem 6.2.2.
We consider only the case q = 2∗, since it is the most interesting one and we also restrict to

the case of manifolds, which already contains all the main ideas. Suppose that M is a compact n-
dimensional manifolds M , with Ric ≥ n− 1 and Aopt

2∗ (M) = Aopt
2∗ (Sn), n ≥ 3. The latter condition

is equivalent to the existence of a sequence (ui) ⊂W 1,2(M) of non-constant functions satisfying

Q(ui) :=
‖ui‖2L2∗ −Vol(M)−2/n‖ui‖2L2

Vol(M)−2/n‖∇ui‖2L2

→ Aopt
2∗ (Sn). (6.2.12)

Observe also that, by homogeneity, we can and will assume that ‖ui‖2L2∗ (m)
= 1. In a nutshell, the

strategy of the proof consists in a fine investigation of these sequences.
To clarify the picture, it is effective to look first at the trivial case of M = Sn. In this setting,

we can produce three different type of extremal sequences as in (6.2.12):
Case 1. The first is straightforward. Indeed from [30] we know that a family of extremal functions
exists. In other words, we have that the functions uβ,p :=

(
β− cos(dp))

1−n2 p ∈ Sn, β > 1, (where
dp is the distance from p) satisfy

Q(uβ,x0) ≡ Aopt
2∗ (Sn).

Then we can simply take ui to be constantly equal to a fixed uβ,p.
Case 2. For the second method we need to recall that the spectral gap of Sn is n, i.e. that there
exists u ∈W 1,2(Sn) with zero mean and such that

‖∇u‖2L2

‖u‖2L2

= n.

(or equivalently that ∆u = −nu). We define ui := 1 + εiu for a fixed sequence εi ↓ 0. Then a
standard linearization shows that

Q(ui)→
(2∗ − 2)‖u‖2L2

‖∇u‖2L2

=
2∗ − 2

n
= Aopt

2∗ (Sn), (6.2.13)

Case 3. The third way is of local nature and we will only sketch it. It is based on the observation
that

Eucl(n, 2)2 = Aopt
2∗ (Sn)Vol(Sn)−2/n, (6.2.14)

which comes from the explicit expression of Eucl(n, 2) (see (6.2.2)). Since Sn is locally Euclidean,
if we zoom enough around a point the metric becomes almost flat. In particular for a fixed point
p ∈ Sn and ε > 0 there exists small enough radius r > 0 and a function u ∈ Lipc(Br(p)) such that

‖u‖L2∗ ≥ (Eucl(n, 2)− ε)‖∇u‖L2 ,
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(see, for example, [115, pag. 94] or [85, pag. 14] for details). Then we can take a sequence εi → 0
and functions ui ∈ Lipc(Bri(p))) as above with ri → 0 and renormalized so that ‖ui‖L2∗ = 1.
Observe that by the Hölder inequality we must have that ‖ui‖L2 → 0. Therefore from (6.2.14)

Q(ui)→ Eucl(n, 2)2Vol(M)2/n = Aopt
2∗ (Sn).

Important point. Remarkably, it turns out (Theorem 6.6.1) that the three cases above
already describe all the possible behavior of an extremal sequence ui in (6.2.12) also on a general
manifold. Indeed, we will prove that are only three scenarios:
Case 1. Up to a subsequence, ui converges in L2∗ to a non constant extremal function u such
that Q(u) = Aopt

2∗ (M) = Aopt
2∗ (Sn). This is the simplest case and the rigidity follows from the

Polya-Szego inequality. Indeed, the identity Q(u) = Aopt
2∗ (Sn) forces the monotone rearrangement

u∗ : Sn → R (as defined in Section 2.2.2) to achieve equality in the Polya-Szego inequality. This
and the fact that u is not constant is enough to deduce that M = Sn, by the rigidity case of the
Polya-Szego inequality (see Theorem 2.3.11).
Case 2. The second situation is when (up to a subsequence) ui still converges in L2∗ , but to a
constant function u ≡ c. Up to renormalization (of the volume measure), it can be assumed that�
ui = 1 and u ≡ 1. In this case we mimic the case ii) for Sn described above and write ui = 1+vi,

where vi := ui − 1 has zero mean. Then, even if vi is not of the form εiv, it turns out that the
linearization in (6.2.13) can still be performed to achieve:

2∗ − 2

n
= Aopt

2∗ (Sn) = lim
i→∞

Q(ui) = lim
i→∞

(2∗ − 2)‖vi‖2L2

‖∇vi‖2L2

≤ 2∗ − 2

λ1(M)
,

where λ1(M) is the first non-trivial eigenvalue of M . This however forces λ1(M) = n, which by
classical Obata’s theorem implies that M = Sn.
Case 3. In the third and more delicate case we have that the sequence ui vanishes, i.e. ‖ui‖L2 → 0
(in fact the following concentration happens: |ui|2

∗
⇀ δp for some point p ∈ M). Here is where

the constant α2(M) defined in Section 6.2.2 enters into play. Indeed, by definition of α2(M), for
every ε > 0 there exists Bε such that

1 = ‖ui‖2L2∗ ≤ (α2(M) + ε)‖∇ui‖2Lp +Bε‖ui‖2L2 , ∀ i ∈ N.

Moreover, from ‖ui‖L2 → 0 we must have limi ‖∇ui‖2Lp > 0. Combining these two observation we
obtain that

lim
i

‖ui‖2L2∗

‖∇ui‖2Lp
≤ (α2(M) + ε).

By assumption Q(ui)→ Aopt
2∗ (Sn), which implies

lim
i

‖ui‖2L2∗

‖∇ui‖2Lp(M)

≥ Vol(M)−2/nAopt
2∗ (Sn).

Therefore α2(M) ≥ Vol(M)−2/nAopt
2∗ (Sn).However combining (6.1.2) with (6.2.14) we have α2(M) =

Aopt
2∗ (Sn)Vol(Sn)−2/n, that coupled with the previous observation yields

Vol(M) ≥ Vol(Sn).

This and the Bishop-Gromov volume ratio implies that Vol(M) = Vol(Sn), which forces diam(M) =
π and the required rigidity follows from Cheng’s diameter rigidity theorem.

6.3 The constant αp: upper bound

To prove an upper bound of αp we will need to derive a Sobolev inequality of the type (6.2.7) for
some explicit A. This will be achieved by proving first a class of local Sobolev-inequalities (see
Theorem 6.3.8) and then ‘patch’ them together (see Theorem 6.2.1) to obtain the desired global
inequality. The local-Sobolev inequalities will be achieved through an Euclidean Polya-Szego
simmetrization inequality (Theorem 6.3.6).
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6.3.1 Polya-Szego inequality of Euclidean-type

The goal of this section is to prove an Euclidean-variant of the Polya-Szego inequality for CD(K,N)
spaces derived in [159] (under essentially nonbranching assumption, see also Section 2.2.2). The
main difference is that our inequality holds for arbitrary K ∈ R and assumes the a-priori validity
of an Euclidean-type isoperimetric inequality, while the one in [159] requires K > 0 and it is
based on the Lévy-Gromov isoperimetric inequality for the CD(K,N) condition. As opposed to
Section 2.2.2, where the symmetrization has as target the model space for the CD(K,N) con-
dition with K > 0, we will use a notion of symmetrization that lives in the weighted half line
([0,∞), |.|, tN−1L 1). It should be remarked that, in general, there is not a natural curvature
model space to symmetrize functions defined on an arbitrary CD(K,N)-space with K ≤ 0. This
is because there is not a unique model-space for the Lévy-Gromov isoperimetric inequality in the
case K ≤ 0 (see [155]). Therefore, it is unclear in this high-generality where the rearrangements
should live. For this reason we will equip the metric measure spaces under consideration with a
(possibly local) isoperimetric inequality of Euclidean-type:

Per(E) ≥ Cm(E)
N−1
N ,

for N > 1 and C a non-negative constant.
We start with the definition of Euclidean model space (I0,N , |.|,m0,N ), N ∈ (1,∞):

I0,N := [0,∞), m0,N := σN−1t
N−1L 1,

where |.|,L 1 are the Euclidean distance and Lebesgue measure, respectively. Next, we define the
Euclidean monotone rearrangement.

Definition 6.3.1 (Euclidean monotone rearrangement). Let (X, d,m) be a metric measure space
and Ω ⊂ X be open with m(Ω) < +∞. For any Borel function u : Ω→ R+, we define Ω∗ := [0, r]
with m0,N ([0, r]) = m(Ω) (i.e. rN = ω−1

N m(Ω)) and the monotone rearrangement u∗0,N : Ω∗ → R+

by
u∗0,N (x) := u#(m0,N ([0, x])) = u#(ωNx

N ), ∀x ∈ Ω∗,

where u# is the generalized inverse of the distribution function of u, as defined in Section 2.2.2.

In the sequel, whenever we fix Ω and u : Ω → [0,∞), the set Ω∗ and the rearrangement u∗0,N
are automatically defined as above.

Proposition 6.3.2. Let (X, d,m) be a metric measure space and Ω ⊂ X be open and bounded
with m(Ω) < +∞. Let u : Ω → [0,+∞) be Borel and let u∗0,N : Ω∗ → [0,+∞) be its monotone
rearrangement.
Then, u and u∗0,N have the same distribution function. Moreover

‖u‖Lp(Ω) = ‖u∗0,N‖Lp(Ω∗), ∀ 1 ≤ p < +∞, (6.3.1)

and the radial decreasing rearrangement operator Lp(Ω) 3 u 7→ u∗0,N ∈ Lp(Ω∗) is continuous.

The proof of the above proposition is classical, following e.g. [130], with straightforward
modification for the metric measure setting (see also [159]). Observe also that, given u ∈ Lp(Ω),
its monotone rearrangement must be defined by fixing a Borel representative of u. However, this
choice does not affect the outcome object u∗0,N , as clearly the distribution function µ(t) of u is
independent of the representative.

We now introduce the additional assumption that will make this section meaningful. For
some open set Ω ⊂ X and a number N ∈ (1,∞), we require the validity of the following local
Euclidean-isoperimetric inequality

Per(E) ≥ CIsopm(E)
N−1
N , ∀E ⊂ Ω Borel. (6.3.2)

where CIsop is a positive constant independent of E.
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Remark 6.3.3. There is a rich literature about Euclidean-type isoperimetric inequalities in metric
measure spaces. Inequalities as in (6.3.2) have been proven to hold, at least on balls, in the general
setting of locally doubling metric measure spaces satisfying a weak local (1, 1)-Poincaré inequality
(see, e.g., [9, 156]). In the context of CD(K,N) spaces, local almost-Euclidean isoperimetric
inequalities have been derived in [60], while in the recent [37], a global version of (6.3.2) is proven
to hold in CD(0, N) spaces with Euclidean-volume growth. In our specific case the validity of
(6.3.2) will come from Theorem 6.3.9. �

Proposition 6.3.4 (Lipschitz to Lipschitz property of the rearrangement). Let (X, d,m) be a
metric measure space and let Ω ⊂ X be open with m(Ω) < +∞. Assume furthermore that, for
some N ∈ (1,∞) and CIsop > 0, the isoperimetric inequality in (6.3.2) holds in Ω. Finally, let
u ∈ Lipc(Ω) be non-negative with Lipschitz constant L ≥ 0 and such that |Dacu|(x) 6= 0 for m-a.e.

x ∈ {u > 0}. Then u∗0,N ∈ Lip(Ω∗) with Lip(u∗0,N ) ≤ Nω
1
N

N L/CIsop.

Proof. We closely follow [159]. Let µ be the distribution function associated to u and denote by
M := supu < +∞. The assumptions grant that µ is continuous and strictly decreasing. Therefore
for any s, k ≥ 0 such that s+ k ≤ m(supp(u)) we can find 0 ≤ t− h ≤ t ≤M in such a way that
µ(t − h) = s + k and µ(t) = s. Then from the coarea formula (1.2.17) and the L-Lipschitzianity
of u we get

� t

t−h
Per({u > r}, ·) dr =

�
{t−h<u≤t}

|Du|1 dm ≤ L(µ(t− h)− µ(t)) = kL. (6.3.3)

Observe that {u > r} ⊂ Ω for every r > 0, therefore we can apply the isoperimetric inequality
(6.3.2) and obtain that

Per({u > r}) ≥ CIsopµ(r)
N−1
N , ∀r > 0.

Therefore from (6.3.3) and the monotonicity of µ we obtain

kL ≥ CIsop

� t

t−h
µ(r)

N−1
N dr ≥ CIsophµ(t)

N−1
N ,

from which, observing that in this case u# is the inverse of µ, we reach

u#(s)− u#(s+ k) ≤ s−1+1/NC−1
IsopkL.

In particular u# is Lipschitz in (ε, supp(u)] (and thus in (ε,m(Ω)]) for every ε > 0 and at every
one of its differentiability points s ∈ (0,m(Ω)) it holds that

− d

ds
u#(s) ≤ s1−1/NC−1

IsopL.

Fix now two arbitrary and distinct points x, y ∈ Ω∗ and assume without loss of generality that
y > x. Recalling the definition of u∗0,N we have that u∗0,N (x) ≥ u∗0,N (y) and

u∗0,N (x)− u∗0,N (y) = u#(ωNx
N )− u#(ωNy

N ) =

� ωNy
N

ωNxN
− d

ds
u#(s) ds

≤
� ωNy

N

ωNxN

s−1+1/N

CIsop
Lds = ω

1
N

N

NL

CIsop
|x− y|,

which proves that u∗0,N : Ω∗ → [0,∞) is Nω
1
N

N L/CIsop-Lipschitz.

The proof of the following result is exactly the same as in Lemma 3.11 of [159], since the only
relevant fact for the proof is that m0,N = hNL 1 with a weight hN which is bounded away from
zero out of the origin (recall also (2.2.4)).
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Lemma 6.3.5. Let p ∈ (1,∞). Let u ∈W 1,p([0, r], |.|,m0,N ), with r ∈ (0,∞), be monotone. Then

u ∈W 1,1
loc (0, r) and it holds that

|Dacu|(t) = |u′|(t) = |Du|(t), for a.e. t ∈ [0, r].

Theorem 6.3.6 (Euclidean Polya-Szego inequality). Let (X, d,m) be a CD(K,N ′) space, K ∈ R
N ′ ∈ (1,∞) and let Ω ⊂ X be open with m(Ω) < +∞. Assume furthermore that, for some
N ∈ (1,∞) and CIsop > 0, the isoperimetric inequality in (6.3.2) holds in Ω. Then the Euclidean-

rearrangement maps W 1,p
0 (Ω) to W 1,p(Ω∗, |.|,m0,N ) for any 1 < p < +∞. Moreover for any

u ∈W 1,p
0 (Ω) it holds �

Ω

|Du|pdm ≥
(

CIsop

Nω
1/N
N

)p �
Ω∗
|Du∗0,N |pdm0,N . (6.3.4)

Proof. The proof is a minor modification of the arguments in [159], we will however include most
of the details. We first prove the result assuming that u ∈ Lipc(Ω) and |Dacu|(x) 6= 0 for m-a.e.
x ∈ {u > 0}, then the general case will follow by approximation. Set M := supu and define the
functions φ, ψ : [0,M ]→ R+ as follows

φ(t) :=

�
{u>t}

|Dacu|p dm, ψ(t) :=

�
{u>t}

|Dacu|dm.

An application of the coarea formula (1.2.17) gives at once that both φ and ψ are absolutely
continuous with

φ′(t) = −
�
|Dacu|p−1 dPer({u > t}, ·), ψ′(t) = −Per({u < t}), for a.e. t ∈ [0,M ],

for any Borel representative of |Dacu|, which we assume to be fixed from now until the end of the
proof. From the Hölder inequality we have

ψ(t− h)− ψ(t) ≤ (φ(t− h)− φ(t))1/p(µ(t− h)− µ(t))(p−1)/p, 0 ≤ t− h ≤ t < M,

where µ denotes the distribution function of u. From Lemma 1.2.22, we know that also µ is abso-
lutely continuous, in particular we have that a.e. t ∈ [0,M ] is at the same time a differentiability
point for φ, ψ and µ. Choosing one of such t’s in the above inequality, dividing by h > 0 and
passing to the limit as h→ 0+ we obtain

−ψ′(t) ≤ (−φ′(t))1/p(−µ′(t))(p−1)/p, for a.e. t ∈ [0,M ].

Moreover, by the validity of (6.3.2), we have that Per({u > t}) ≥ CIsopµ(t)(N−1)/N . Therefore

−φ′(t) ≥
CpIsopµ(t)

(N−1)p
N

(−µ′(t))p−1
, for a.e. t ∈ [0,M ].

and integrating we reach

�
Ω

|Dacu|p dm =

� M

0

−φ′(t) dt ≥
� M

0

CpIsopµ(t)
(N−1)p
N

(−µ′(t))p−1
dt. (6.3.5)

Recall now from Proposition 6.3.2 that µ(t) = m({u∗0,N > t}), where u∗0,N : Ω∗ → R+ is the Eu-
clidean monotone rearrangement. Moreover, thanks to the non-vanishing assumptions on |Dacu|,
we have from Proposition 6.3.4 that u∗0,N ∈ Lip(Ω∗). Additionally u∗0,N is strictly decreasing
in (0,m(supp(u))) and in particular {u∗0,N > t} = [0, rt) (and {u∗0,N = t} = {rt}) for some

rt ∈ [0,m(Ω)], for every t ∈ (0,M). Note that rt can be computed explicitly as rt = (ω−1
N µ(t))1/N ,

which also shows that t 7→ rt is a locally absolutely continuous map. Combining these observations
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with Lemma 1.2.22 and recalling also Lemma 6.3.5 we have following expression for the derivative
of µ:

−µ′(t) =

�
{u∗0,N=t}

|Dacu∗0,N |−1dPer({u∗0,N > t}, ·) =
Per({u∗0,N > t})
|(u∗0,N )′|(rt)

for a.e. t ∈ (0,M),

where rt is as above. It is clear that Per([0, r)) = σN−1r
N−1 for every r ∈ (0,∞) (where the

perimeter is computed in the space (I0,N , |.|,m0,N ), therefore

µ(t)
N−1
N =

(σN−1

N

)N−1
N rN−1

t =
Per({u∗0,N > t})

Nω
1
N

N

, (6.3.6)

and thus we can finally obtain that

−µ′(t) = Nω
1
N

N

µ(t)
N−1
N

|(u∗0,N )′|(rt)
for a.e. t ∈ [0,M ].

Plugging this identity in (6.3.5) and using again (6.3.6) (recalling also Lemma 6.3.5)

�
Ω

|Dacu|p dm ≥ CpIsop(Nω
1/N
N )1−p

� M

0

(|(u∗0,N )′|(rt))p−1µ(t)
(N−1)
N dt

=
( CIsop

Nω
1/N
N

)p � M

0

(|(u∗0,N )′|(rt))p−1Per({u∗0,N > t}, ·) dt

=
( CIsop

Nω
1/N
N

)p � M

0

�
(|(u∗0,N )′|(rt))p−1dPer({u∗0,N > t}, ·) dt =

( CIsop

Nω
1/N
N

)p �
Ω∗
|Du∗0,N |p dm.

Recalling (see (1.2.15)) that |Dacu| ≤ lip u m-a.e. for every u ∈ Lipbs(X), we obtain (6.3.4). In
the case of a general u ∈ W 1,p

0 (Ω) the result follows via approximation exploiting Lemma 2.3.13
exactly as in the proof of Theorem 1.4 in [159].

Remark 6.3.7. It follows from its proof, that Theorem 6.3.6 holds with the weaker assumption
that (X, d,m) is uniformly locally doubling and supports a weak local (1, 1)-Poincaré inequality.
Recall also from Remark 6.3.3 that under these assumptions an isoperimetric inequality as in
(6.3.2) is available. �

6.3.2 Local Sobolev inequality

The main goal of this section is to prove the following local Sobolev inequality of Euclidean-type.

Theorem 6.3.8 (Local Euclidean-Sobolev inequality). For every ε > 0, N ∈ (1,∞) and D > 0
there exists δ = δ(ε,D,N) > 0 such that the following holds. Let (X, d,m) be a CD(K,N) space,
K ∈ R. Let r,R ∈ (0, 1

2

√
N/K−) and x ∈ X be such that r < δR, R < δ

√
N/K− (with√

N/K− := +∞ if K ≥ 0) and m(Br(x))
m(BR(x)) ≤ D(r/R)N . Then

‖u‖Lp∗ (m) ≤ (1 + ε)Eucl(N, p)

(
m(BR(x))

RNωN

)− 1
N

‖|Du|‖Lp(m), ∀u ∈ Lipc(Br(x)). (6.3.7)

We mention that local ‘almost-Euclidean” Sobolev inequalities as in the above result are well
known on Riemannian manifolds, however they usually depend on double sided bounds on the
sectional curvature or on Ricci lower bounds coupled with a lower bound on the injectivity radius
(see e.g. [32, Lemma 2.24] and [115, Lemma 7.1, Sec. 7.1]). Instead in our case we only need
a lower bound on the Ricci curvature and bounds on the measure of small balls, for this reason
Theorem 6.3.8 appears interesting also in the smooth setting.
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We face now face a necessary step for the proof of Theorem 6.3.8 starting with the following local
isoperimetric inequality of Euclidean type to be used in conjunction with Polya-Szego inequality
developed in the previous section. The proof relies on the Brunn-Minkowski inequality and it is
mainly inspired by [37], where sharp global isoperimetric inequalities for CD(0, N) spaces have been
proved (see also [29] for a refinement and the previous [45] and [89] for the smooth case). It is worth
to mention that a class of ‘almost-Euclidean’ isoperimetric inequalities in essentially nonbranching
CD-spaces, similar to the following ones, were proved in [60] via localization-technique. However,
the results in [60] present a set of assumptions that are not suitable for our purposes. Moreover
our arguments are different and do not assume the space to be essentially non-branching.

Theorem 6.3.9 (Almost-Euclidean isoperimetric inequality). Let (X, d,m) be a CD(K,N) space
for some N ∈ (1,∞),K ∈ R. Then for every 0 < r < R < 1

2

√
N/K− (where

√
N/K− = +∞ for

K ≥ 0) and x ∈ X we have

Per(E) ≥ m(E)
N−1
N Nω

1
N

N θ
1
N

N,R(x)(1− (2C
1/N
r,R + 1)δ − 2η), ∀E ⊂ Br(x), (6.3.8)

where δ := r
R , η := R

√
K−/N and Cr,R := θN,r(x)/θN,R(x).

Proof. It is sufficient to prove (6.3.8) with the Minkowski content m(E)+ instead of the perimeter.
Indeed we could then apply the approximation result in Proposition 1.2.20 to deduce that for every
r′ ∈ (r,R), (6.3.8) holds with r = r′ (this time with Per(E)). Noticing that θN,r′(x)→ θN,r(x) as
r′ ↓ r, sending r′ → r would give the conclusion.

Let r,R ∈ R+ with r < R and fix E ⊂ Br(x0) with m(E) > 0. We aim to apply the Brunn-
Minkowski inequality to the sets A0 := E, A1 := BR(x0). The triangle inequality easily yields that
At ⊂ Et(r+R) for every t ∈ (0, 1) (recall that Eε is the ε-enlargement of the set E, while At is the
set of t-midpoint between A0, A1). We consider first the case K ≥ 0. From the Brunn-Minkowski
applied with K = 0 we obtain

m+(E) = lim
ε→0+

m(Eε)−m(E)

ε
= lim
t→0+

m(Et(r+R))−m(E)

t(r +R)

(2.2.8)

≥ lim
t→0+

(
tm(BR(x0))1/N + (1− t)m(E)1/N

)N −m(E)

t(r +R)

= Nm(E)
N−1
N

m(BR(x0))1/N −m(E)1/N

r +R

≥ Nm(E)
N−1
N

m(BR(x0))1/N −m(Br(x0))1/N

r +R
,

where we have used that E ⊂ Br(x0). If instead K < 0, arguing analogously we obtain

m+(E) ≥ Nm(E)
N−1
N

r +R

( θ
√
−K/N

sinh(θ
√
−K/N)

m(BR(x0))
1
N −

θ
√
−K/N cosh(θ

√
−K/N)

sinh(θ
√
−K/N)

m(Br(x0))
1
N

)
,

where θ denotes the maximal length of geodesics from A0 to A1. It is clear that θ ≤ r + R.
Moreover for t ≤ 1 we both have 1 − t ≤ t/ sinh(t) ≤ 1 and cosh(t) ≤ 1 + t. In particular if
R ≤ 1

2

√
−N/K we obtain that

m+(E) ≥ Nm(E)
N−1
N

(1−
√
−K/N(r +R))m(BR(x0))1/N − (1 +

√
−K/N(r +R))m(Br(x0))1/N

r +R
.

Going back to the case of a general K ∈ R, combining the above estimates and rearranging the
terms we reach

m+(E) ≥
m(E)

N−1
N Nω

1
N

N θN,R(x)
1
N

1 + r/R

(
(1−

√
K−

N (r +R))− (1 +

√
K−

N (r +R))
r

R

( θN,r(x)

θN,R(x)

) 1
N
)
,
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provided R ≤ 1
2

√
N/K−. Setting δ := r

R , η := R
√
K−/N and C := θN,r(x)/θN,R(x), the above

gives

m+(E) ≥ m(E)
N−1
N Nω

1
N

N θN,R(x)
1
N

1

1 + δ

(
(1− 2η)− (1 + 2η)δC

1
N

)
that easily implies the conclusion.

Next, we recall the following classical one-dimensional inequality by Bliss [44] (see also [32,
182]).

Lemma 6.3.10 (Bliss inequality). Let u : [0,∞) → R be locally absolutely continuous. Then for
any 1 < p < N it holds(

σN−1

� ∞
0

|u|p
∗
tN−1 dt

) 1
p∗ ≤ Eucl(N, p)

(
σN−1

� ∞
0

|u′|p tN−1 dt
) 1
p

, (6.3.9)

whenever one side is finite and where p∗ := pN/(N − p). Moreover the functions vb(r) := (1 +

br
p
p−1 )

p−N
p , b > 0, satisfy (6.3.9) with equality.

With the above local isoperimetric inequality and the Euclidean Polya-Szego inequality, the
strategy is now to symmetrize functions on the space and exploit the Bliss inequality to deduce
the desired local-Sobolev inequalities.

Proof of Theorem 6.3.8. We start observing that it is enough to prove (6.3.7) for non-negative
functions. Fix u ∈ Lipc(Br(x)) non-negative and consider u∗0,N : Br(x)∗ → [0,∞) be the
Euclidean-rearrangement of u as in Definition 6.3.1, where Br(x)∗ = [0, t] for some t > 0. The
local Euclidean-isoperimetric inequality given by Theorem 6.3.9 implies that the hypothesis of
Proposition 6.3.4 and Theorem 6.3.6 are fulfilled with Ω = Br(x) and CIsop = (1− (2D1/N + 1)δ′−
2η)Nω

1
N

N θN,R(x)
1
N , with δ′ := r

R , η := R
√
K−/N and D := θN,r(x)/θN,R(x). In particular it

holds that u∗0,N ∈ W 1,p([0, t], |.|,m0,N ), which implies (recall (2.2.4)) that u∗0,N ∈ W
1,1
loc (0, t) with

(u∗0,N )′ ∈ Lp(m0,N ) and |Du∗0,N | = |(u∗0,N )′| a.e.. Moreover, since m0,N is bounded away from

0 far from the origin, u∗0,N ∈ W 1,1(ε, t] for every ε > 0 and by definition u∗0,N (t) = 0. There-
fore u∗0,N (extended by 0 in (t,∞)) satisfies the assumptions for the Bliss inequality. Recall also
from Proposition 6.3.2 that ‖u∗0,N‖Lp(m0,N ) = ‖u‖Lp(m) for every p ∈ [1,∞). Therefore we are in
position to apply the Euclidean Polya-Szego inequality given by (6.3.4), that combined with the
Bliss-inequality (6.3.9) gives

‖u‖Lp∗ (m) = ‖u∗0,N‖Lp∗ (m0,N )

(6.3.9)

≤ Eucl(N, p)‖|Du∗0,N |‖Lp(m0,N )

(6.3.4)

≤ Eucl(N, p)θN,R(x)−
1
N

(1− (2D1/N + 1)δ′ − 2η)
‖|Du|‖Lp(m).

Finally from the above and observing that m(Br(x))
m(BR(x)) = D(r/R)N , we immediately see that there

exists δ := δ(ε,D,N) so that, provided δ′, η < δ, (6.3.7) holds.

We end this section with another simpler variant of local Sobolev inequality. It will be needed
to deal with cases where θN (x) = +∞, where Theorem 6.3.8 does not give the right information.

Proposition 6.3.11 (Local Sobolev embedding). Let (X, d,m) be a CD(K,N) space for some
N ∈ (1,∞), K ∈ R. Then, for every p ∈ (1, N) and every Br(x) ⊂ X with r ≤ 1, it holds( �

Br(x)

|u|p
∗

dm
) p
p∗ ≤

(Cm(Br(x))

rN

)− p
N

�
B2r(x)

|Du|p dm + 2pm(Br(x))−
p
N

�
Br(x)

|u|p dm,

(6.3.10)
for every u ∈ Lip(X), where p∗ = pN/(N − p) and C = C(K,N, p).
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Proof. Applying (2.2.12) and the Bishop-Gromov inequality

(�
Br(x)

|u|p
∗

dm
) 1
p∗ ≤ C1r

m(Br(x))1/p∗

m(B2r(x))1/p

( �
B2r(x)

|Du|p
) 1
p

+ m(Br(x))1/p∗ |uBr(x)|

≤ C2r
m(Br(x))1/p∗

m(Br(x))1/p

( �
B2r(x)

|Du|p
) 1
p

+ m(Br(x))
1
p∗−

1
p

(�
Br(x)

|u|p dm
) 1
p

,

for suitable positive constants C1, C2 depending only on K,N, p. The desired conclusion follows
raising to the p in the above inequality.

6.3.3 Proof of the upper bound

The strategy of the proof of the following result is by-now classical and combines local-Sobolev
inequalities with a partition of unity argument (see [31],[32, Chp. 2 Sec. 7], [115, Theorem 4.5]
and also [3, Prop. 3.3]).

Theorem 6.3.12 (Upper bound on αp). Let (X, d,m) be a compact CD(K,N) space, for some
N ∈ (1,∞), K ∈ R. Then, for every ε > 0 and every p ∈ (1, N), there exists a constant
B = B(ε, p,X) > 0 such that

‖u‖p
Lp∗ (m)

≤
( Eucl(N, p)p

minX θN (x)p/N
+ ε
)
‖|Du|‖pLp(m) +B‖u‖pLp(m), ∀u ∈ Lip(X). (6.3.11)

Proof. We start claiming that the following local version of (6.3.11) holds: for any x ∈ X and
every ε > 0 there exists r = r(ε, x) > 0 and C = C(ε, p, x) < +∞ such that

‖u‖p
Lp∗ (m)

≤
( Eucl(N, p)p

miny∈X θN (y)p/N
+ ε
)
‖|Du|‖pLp(m) + C‖u‖pLp(m), ∀u ∈ Lipc(Br(x)). (6.3.12)

To show the above we observe first that in the case that θN (x) = +∞, (6.3.12) follows immediately
from (6.3.10) for r small enough. We are left with the case 0 < θN (x) < +∞. We start by fixing
ε ∈ (0, 1/2). From the definition of θN (x), there exists r′ = r′(x, ε) so that for every r ∈ (0, r′)

it holds θN,r(x) ∈ ((1 − ε)θN (x), (1 + ε)θN (x)). In particular we have that
θN,r(x)
θN,R(x) ≤ 4 for every

r,R ∈ (0, r′). We are therefore in position to apply Theorem 6.3.8 and deduce that there exists
δ = δ(ε,N) so that for every r,R ∈ (0, r′∧ δ

√
N/K−), with r < δR, the following inequality holds

for every u ∈ Lipc(Br(x))

‖u‖p
Lp∗ (m)

(6.3.7)

≤ (1 + ε)p
Eucl(N, p)p

θN,R(x)p/N
‖|Du|‖pLp(m) ≤

(1 + ε)p

(1− ε)p/N
Eucl(N, p)p

minX θN (x)p/N
‖|Du|‖pLp(m),

where in the second inequality we have used θN,R(x) ≥ (1 − ε)θN (x). Therefore (6.3.12) (with
C = 0) follows from the above provided we choose ε small enough.

Since X is compact we can extract a finite covering of balls {Bi}Mi=1 from the covering ∪x∈XBr(ε,x)/2(x).
We also set C := maxi Ci and

A :=
Eucl(N, p)p

minX θN (x)p/N
+ ε.

We claim that there exists a partition of unity made of functions {φi}Mi=1 such that φi ∈ Lipc(2Bi),

0 ≤ φi ≤ 1 and φ
1/p
i ∈ Lipc(2Bi) for all i, having denoted 2Bi, the ball of twice the radius. To

build such partition of unity we can argue as follows: start considering functions ψi ∈ Lipc(2Bi),
such that 0 ≤ ψi ≤ 1 and ψi ≥ 1 in Bi. Then we fix β > p and take

φi :=
ψβi∑M
j=1 ψ

β
j

.
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Since by construction
∑M
j=1 ψ

β
j ≥ 1 everywhere on X, we have that φ

1/p
i ∈ Lipc(2Bi). Finally it

is clear that
∑M
i=1 φi = 1.

We are now ready to prove (6.3.11). Fix u ∈ Lip(X) and observe that

‖u‖p
Lp∗ (m)

=
∥∥∥∑

i

φi|u|p
∥∥∥
Lp∗/p(m)

≤
∑
i

‖φi|u|p‖Lp∗/p(m) =
∑
i

∥∥φ1/p
i |u|

∥∥p
Lp∗ (m)

. (6.3.13)

Since φ
1/p
i |u| ∈ Lipc(2Bi) we can apply (6.3.12) to obtain

‖u‖p
Lp∗ (m)

≤
M∑
i=1

A

� (
|Dφ1/p

i ||u|+ |Du|φ
1/p
i

)p
dm + C

�
φi|u|p dm

≤
M∑
i=1

A

�
φi|Du|p + c1|Du|p−1φ

p−1
p

i |Dφ1/p
i ||u|+ c2|Dφ1/p

i |
p|u|p dm + C

�
φi|u|p dm,

where c1, c2 ≥ 0 are such that (1 + t)p ≤ 1 + c1t+ c2t
p for all t ≥ 0. Recalling that the functions

0 ≤ φ1/p
i ≤ 1 are Lipschitz we obtain

‖u‖p
Lp∗ (m)

≤ A
�
|Du|p dm + C̃

�
|Du|p−1|u|dm + C̃

�
|u|p dm,

where C̃ = C̃(p,M,L), L begin the maximum of the Lipschitz constants of the functions φ
1/p
i .

Finally from the Young inequality we have for every δ > 0
�
|Du|p−1|u|dm ≤ pδ

p
p−1

p− 1

�
|Du|p dm +

1

pδp

�
|u|p dm, ∀δ > 0

and plugging this estimate above, choosing δ small enough (but independent of u), we obtain that

‖u‖p
Lp∗ (m)

≤ (A+ ε)

�
|Du|p dm + C ′

�
|u|p dm,

for some C ′ = C ′(ε, L,M, p). Since ε > 0 and u ∈ Lip(X) were arbitrary, this concludes the
proof.

6.4 Lower bound on αp

To rough idea of the lower bound on αp is that, when θN (x) < +∞ the space near x has a
conical structure, hence the constant in the Sobolev inequality cannot be better than the one of
the tangent structures of the underlying space. This will be formalized with a blow-up argument
combined with a stability result for the Sobolev constants.

6.4.1 Blow-up analysis of Sobolev constants

For convenience, we introduce the following notation: whenever in a metric measure space (X, d,m)
it holds that

‖u‖pLq(m) ≤ A‖|Du|p‖
p
Lp(m) +B‖u‖pLp(m), ∀u ∈W 1,p(X).

for some constants A,B > 0 and exponents 1 < p < q, we will say that X supports a (q, p)-
Sobolev inequality with constants A,B. This convention will be used often here, and some-
times in the subsequent sections, without further notice.

We make precise the scaling enjoyed by the Sobolev inequalities under consideration. It is
immediate to check that if a space (X, d,m) supports a (p∗, p)-Sobolev for p ∈ (1, N) and p∗ := pN

N−p
with constants A,B, then for every r > 0 we have

(X, d/r,m/rN ) supports a (p∗, p)-Sobolev with constants A,Brp. (6.4.1)

We pass to the stability of Sobolev embeddings under pmGH-convergence (see also [121, Thm.
3.1] for a similar result for Ricci-limits).
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Lemma 6.4.1 (pmGH-Stability of Sobolev constants). Let (Xn, dn,mn, xn), n ∈ N̄, be a sequence

of CD(K,N) spaces for some K ∈ R, N ∈ (1,∞) with Xn
pmGH→ X∞. Suppose Xn support a (q, p)-

Sobolev inequality for 1 < p < q with constants A,B. Then also X∞ supports a (q, p)-Sobolev
inequality with the same constants A,B.

Proof. Fix u ∈ Lipc(X∞), from the Γ-lim inequality of the Chp energy, there exists a sequence
un ∈ W 1,p(X∞) such that un converges in Lp-strong to u and limn

�
|Du|p dmn ≤

�
|Du|p dm∞.

In particular

lim
n
‖un‖pLq(mn) ≤ lim

n→∞
A‖|Dun|‖pLp(mn) +B‖un‖pLp(mn)

≤ A‖|Du|‖pLp(m∞) +B‖u‖pLp(m∞) < +∞.

Therefore un converge also Lq-weak to u. From the lower semicontinuity of the Lq-norm with
respect to Lq-weak convergence and the arbitrariness of u ∈ Lipc(X∞) the conclusion follows.

The following result is a consequence of the existence of the disintegration and can be found
for example in [75, Corollary 3.8].

Lemma 6.4.2. Let (X, d,m) be a CD(0, N) space with N ∈ [1,∞). Suppose that for some x0 ∈ X

it holds that m(Br(x0))
ωNrN

= 1 for every r ∈ (0,∞), then

�
φ(d(x0, x)) dm = σN−1

� ∞
0

φ(r)rN−1 dr, ∀φ ∈ Cc([0,∞]).

Lemma 6.4.3. Let (X, d,m) be a CD(0, N) space, N ∈ (1,∞), p ∈ (1, N) and set p∗ := pN
N−p .

Suppose that for some x0 ∈ X it holds that m(Br(x0))
ωNrN

= 1 for every r ∈ (0,∞). Then there exists

a sequence of non-constant functions un ∈ Lipc(X) satisfying

lim
n

‖un‖Lp∗ (m)

‖|Dun|‖Lp(m)
≥ Eucl(N, p).

Proof. Let v : [0,∞) → [0,∞), v ∈ C∞(0,∞), be an extremal function for the Bliss inequality
(6.3.9) as given by Lemma 6.3.10. It can be easily shown that we can approximate v with functions
vn ∈ Lipc([0,∞)) so that ‖vn‖Lp∗ (hNL 1) → ‖v‖Lp∗ (hNnL 1) and ‖v′n‖Lp(hNL 1) → ‖v′‖Lp(hNL 1),

where hN L 1 = σN−1t
N−1 L 1. For example we can take vn := φn(ub) with φn ∈ Lip[0,∞),

φn ≥ 0, φn(t) ≤ |t|, Lip(φn) ≤ 2, φn(t) = t in [2/n,∞) and supp(φn) ⊂ [1/n,∞). The claimed
approximation of the norms then follows immediately from the fact that v is decreasing and
vanishing at infinity. Therefore we have

lim
n

‖vn‖Lp∗ (hnL 1)

‖v′n‖Lp(hnL 1)
= Eucl(N, p). (6.4.2)

We can now define un := vn ◦ dx0
, where dx0

(·) := d(x0, ·). We clearly have that un ∈ Lipc(X)
and from the chain rule also that |Dun| = |v′n|◦dx0

|Ddx0
| ≤ |v′n|◦dx0

m-a.e., since dx0
is 1-Lipschitz.

Hence applying Lemma 6.4.2 we obtain ‖un‖Lp∗ (m) = ‖vn‖Lp∗ (hNL 1) and ‖|Dun|‖Lp(m) ≤ ‖v′n‖Lp(hNL 1).
This combined with (6.4.2) (up to passing to a subsequence) gives the conclusion.

Theorem 6.4.4 (Lower bound on the Sobolev constant). Let (X, d,m) be a CD(K,N) space,
K ∈ R, N ∈ (1,∞) that supports a (p∗, p)-Sobolev inequality for p ∈ (1, N) with constants A,B,
where p∗ = pN/(N − p). Then

A ≥ Eucl(N, p)p

θN (x)
p
N

, ∀x ∈ X. (6.4.3)
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Proof. If θN (x) = ∞, there is nothing to prove. Hence we can assume that θN (x) < +∞. From
the compactness and stability of the CD(K,N) condition, there exists a sequence ri → 0 such that
Xi := (X, d/ri,m/ri

N , x) pmGH-converge to a CD(0, N) space (Y, dY,mY,oY). Moreover, from
(6.4.1) we have that Xi supports a (p∗, p)-Sobolev inequality with constants A, rpiB. This combined
with Lemma 6.4.1 shows that (Y, dY,mY) supports a (p∗, p)-Sobolev inequality with constants A, 0.

However we clearly have that mY satisfies mY(Br(oY))
ωNrN

= θN (x) for every r > 0. Therefore Lemma

6.4.3, after a rescaling, ensures that A ≥ Eucl(N,p)p

θN (x)
p
N

, which is what we wanted.

The above, together with Theorem 6.3.12, proves our main result Theorem 6.2.6 concerning
αp(X).

6.4.2 Sharp and rigid Sobolev inequalities under Euclidean volume growth

Here we prove the sharp Sobolev inequalities on CD(0, N) spaces contained Theorem 6.2.10. The
validity of the inequality (6.2.10) will be derived as a consequence of the local-Sobolev inequalities
in Theorem 6.3.8. The sharpness instead follows from a well known principle for which the validity
of an Euclidean-Sobolev inequality implies certain growth on the measure of balls. In particular
we have the following result:

Theorem 6.4.5. Let (X, d,m) be an CD(0, N), N ∈ (1,∞) such that for some p ∈ (1, N) and
A > 0

‖u‖Lp∗ (m) ≤ A‖|Du|‖Lp(m), ∀u ∈ Lipc(X), (6.4.4)

where p∗ := pN
N−p . Then X has Euclidean volume-growth and

AVR(X) ≥
(Eucl(N, p)

A

)N
. (6.4.5)

On the general setting of CD spaces Theorem 6.4.5 is proved in [135] (see also [136] for the case
p = 2), extending to non-smooth setting the same results for Riemannian manifolds due to Ledoux
[137] and improved by Xia [190]. We mention also [83] and [191] for analogous statements related
to different class of inequalities. In all the cited works the arguments depend on rather intricate
ODE-comparison (originated in [137] and inspired by the previous [36]) and heavily rely on the
explicit knowledge of the extremal functions for the inequalities. However, using the results in
Section 6.4 we are able to give a short proof of Theorem 6.4.5, which uses a more direct blow-down
procedure, that we believe being interesting on its own. The main advantage of this approach is
that we will never need, as opposed to the ODE-comparison approach, the explicit expression of
extremals functions in the Euclidean Sobolev inequality (6.1.1).

Proof of Theorem 6.4.5. The fact that m(X) = +∞ can be immediately seen by plugging in the
Sobolev inequality functions uR ∈ Lipc(X) so that uR = 1 in BR(x0) supp(uR) ⊂ B2R(x0) and
Lip(uR) ≤ 1/R and sending R → +∞. The fact that X has Euclidean volume growth follows by
considering instead functions uR(·) := (R− dx0

(·))+ as R→ +∞ with fixed x0 ∈ X and using the
Bishop-Gromov inequality.

It remains to prove (6.4.5). We argue via blow-down. Let Ri → +∞. From the Eu-
clidean volume-growth property, up to passing to a non relabeled subsequence, the rescaled spaces
(X, d/Ri,m/R

N
i , x0), x0 ∈ X, pmGH-converge to an CD(0, N) space (Y, dY,mY,oY) satisfying

m(BR(oY))
ωNrN

= AVR(X). Moreover combining (6.4.4) with Lemma 6.4.1 proves that Y satisfy a

(p∗, p)-Sobolev inequality with constants A, 0. Then (6.4.5) follows from Lemma 6.4.3.

We can now move to the proof of the sharp Sobolev inequalities under the Euclidean volume
growth assumption.

Proof of Theorem 6.2.10. Fix x ∈ X. From the definition of AVR(X), for every r big enough
θN,r(x) ≤ 2AVR(X). Fix one of such r > 0. From the Bishop-Gromov inequality we also have that
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θN,R(x) ≥ AVR(X) for every R > 0. In particular θN,r(x)/θN,R(x) ≤ 2 for every R > 0. Hence
by Theorem 6.3.8 (for K = 0) we have that for every ε > 0, there exists δ = δ(ε) > 0 so that for
every R > r/δ the following local Euclidean Sobolev inequality holds:

‖u‖Lp∗ (m) ≤ (1 + ε)Eucl(N, p)θN,R(x)−
1
N ||Du|‖Lp(m), ∀u ∈ Lipc(Br(x)).

Taking R→∞ we achieve

‖u‖Lp∗ (m) ≤ (1 + ε)Eucl(N, p)AVR(X)−
1
N ||Du|‖Lp(m), ∀u ∈ Lipc(Br(x)).

Since ε was chosen arbitrarily and independent of r > 0, we can first send ε → 0+ and then
r → +∞ to achieve the first part of the statement.

The sharpness of (6.2.10) instead follows immediately from Theorem 6.4.5.

6.5 The constant Aopt
q in metric measure spaces

In this section we will prove some upper and lower bounds on Aopt
q in the case of metric measure

spaces. Let us also remark that the results of this part are valid for a general lower bound K ∈ R.
We start recalling the definition of Aopt

q . In this section we assume that (X, d,m) is a metric
measure space with m(X) = 1. For every q ∈ (2,+∞) we define Aopt

q (X) ∈ [0,+∞] as the minimal
constant satisfying

‖u‖2Lq(m) ≤ A
opt
q (X) ‖|Du|2‖2L2(m) + ‖u‖2L2(m), ∀u ∈W 1,2(X), (6.5.1)

with the convention that A := +∞ if no such A exists. Note that, since m(X) = 1, this is the same
definition given right after (6.2.5). In the following sections we will prove two type of bounds on
Aopt
q (X): an upper bound in the case of synthetic Ricci curvature and dimension bounds and a

lower bound in terms of the first non-trivial eigenvalue.

6.5.1 Upper bound on Aopt
q in terms of Ricci bounds

Here we prove a generalization to the non-smooth setting of a well known estimate on Aopt
q valid

on manifolds (recall (6.1.4)). The two key ingredients for the proof are the Sobolev-Poincaré
inequality and an inequality due to Bakry:

Proposition 6.5.1. For every K ∈ R, N ∈ (2,∞) and D > 0 there exists a constant A =
A(K,N,D) > 0 such that the following holds. Let (X, d,m) be a compact CD(K,N) space with
N ∈ (1,∞), K ∈ R, m(X) = 1 and diam(X) ≤ D. Then for every q ∈ (2, 2∗] we have

‖u‖2Lq(m) ≤ A‖|Du|‖
2
L2(m) + ‖u‖2L2(m), ∀u ∈W 1,2(X) (6.5.2)

and in particular Aopt
q (X) ≤ A(K,N,D).

Proof. The proof is based on the following inequality: for every q ∈ (2,∞)( �
|u|q dm

)2/q

≤ (uX)2 + (q − 1)
( �
|u− uX|q dm

)2/q

∀u ∈ Lq(m), (6.5.3)

where uX =
�
udm. See ([34] or [35, Prop. 6.2.2] ) for a proof of this fact. Then (6.5.2) follows

combining (6.5.3) with (2.2.12) and the Jensen inequality.

Recall that for K > 0 an explicit and sharp upper bound on Aopt
q exists and has been proven

in [59] (see Theorem 6.2.1). The argument in [59] relies on the powerful localization technique.
However, it is worth to point out that Theorem 6.2.1 can also be deduced from the Polya-Szego
inequality proved in [159] (see Theorem 2.2.8) and the Sobolev inequality on the model space
(2.2.13).
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6.5.2 Lower bound on Aopt
q in terms of the first eigenvalue

It is well known that a ‘tight-Sobolev inequality” as in (6.5.1) (i.e. with a constant 1 in front of
‖u‖L2 when X is normalized with unit volume) implies a Poincaré-inequality (see e.g. [35, Prop.
6.2.2]). This can be rephrased as a lower bound on Aopt

q in terms of the first non-trivial eigenvalue:

Proposition 6.5.2. Let (X, d,m) be a metric measure space with m(X) = 1. Then for every
q ∈ (2,+∞) it holds

Aopt
q (X) ≥ q − 2

λ1,2(X)
, (6.5.4)

(meaning that if λ1,2(X) = 0, then Aopt
q (X) = +∞).

We will give a detailed proof of this result, which amounts to a linearization procedure. Indeed
a refinement of the same argument will also play a key role on the rigidity and almost-rigidity
results in the sequel (see Section 6.6.2).

We start with an elementary linearization-Lemma.

Lemma 6.5.3. Let (X, d,m) be a metric measure space with m(X) = 1 and fix q ∈ (2,∞). Let
f ∈ L2 ∩ Lq(m) with

�
fdm = 0. Then∣∣∣(� |1 + f |q dm

)2/q

−
�

(1 + f)2 dm− (q − 2)

�
|f |2 dm

∣∣∣
≤ Cq

( �
|f |3∧q + |f |q dm +

(�
|f |q dm

)2

+
(�
|f |2 dm

)2)
,

(6.5.5)

where Cq is a constant depending only on q.

Proof. We start defining I :=
�
|1 + f |q dm− 1 and observe that∣∣∣(� |1 + f |q dm

)2/q

− 1− 2

q
I
∣∣∣ ≤ cq|I|2, (6.5.6)

which follows from the inequality ||1 + t|2/q − 1− 2t/q| ≤ cqt2, t ≥ 0. It remains to investigate the
behavior of I. Exploiting the inequality ||1 + t|q − 1− qt| ≤ c̃q(|t|2 + |t|q), t ≥ 0, and the fact that
f has zero mean we have the following simple bound

|I| ≤ c̃q
�
|f |2 + |f |q dm. (6.5.7)

We will also need a more precise estimate of I, which will follow from the following inequality∣∣∣|1 + t|q − 1− qt− q(q − 1)

2
t2
∣∣∣ ≤ Cq(|t|3∧q + |t|q), ∀t ∈ R, (6.5.8)

that can be seen using Taylor expansion when |t| ≤ 1/2 and elementary estimates in the case
|t| ≥ 1/2. Using (6.5.8) we obtain that∣∣∣I − �

qf +
q(q − 1)

2
|f |2 dm

∣∣∣ ≤ Cq � |f |3∧q + |f |q dm

and since we are assuming that f has zero mean, we deduce∣∣∣I − q(q − 1)

2

�
|f |2 dm

∣∣∣ ≤ Cq � |f |3∧q + |f |q dm. (6.5.9)

Combining (6.5.6), (6.5.7) and (6.5.9), noting that
�

(1 + f)2 dm = 1 +
�
f2 dm, we deduce (6.5.5).
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Exploiting the above linearization, we can now prove the lower bound on Aopt
q in terms of the

first eigenvalue.

Proof of Proposition 6.5.2. If Aopt
q (X) = +∞ there is nothing to prove, hence we assume that

Aopt
q (X) < +∞. Let f ∈ Lip(X) ∩ L2(m) with

�
f dm = 0 and ‖f‖L2(m) = 1. Observe also that,

since Aopt
q (X) < +∞, f ∈ Lq(X). Therefore applying (6.5.5) we obtain(�

|1 + εf |q dm
)2/q

−
�

(1 + εf)2 dm− (q − 2)

�
|εf |2 dm = o(ε2),

which combined with (6.5.1) gives

Aopt
q (X)ε2

�
|Df |22 dm− (q − 2)

�
|εf |2 dm ≥ o(ε2).

Dividing by ε2 and sending ε→ 0 gives that λ1,2(X) ≥ q−2

Aopt
q (X)

, which concludes the proof.

6.6 Rigidity of Aopt
q

6.6.1 Concentration Compactness

In this section we assume that (Xn, dn,mn) is a sequence of compact RCD(K,N) spaces, for some
fixed K ∈ R, N ∈ (2,∞), which converges in mGH-topology to a compact RCD(K,N) space
(X∞, d∞,m∞). We will also adopt the extrinsic approach [100] identifying Xn,X∞ as subset of
a common compact metric space (Z, dZ), with supp(mn) = Xn, supp(m∞) = X∞, mn ⇀ m∞ in
duality with Cb(Z) and Xn → X∞ in the Hausdorff topology of Z. To lighten the discussion, we
shall not recall in the following statements these facts and assume (Xn, dn,mn), n ∈ N̄ = N∪{∞}
and (Z, d) to be fixed as just explained. Also, we will set 2∗ := 2N/(N − 2) without recalling its
expression in the statements.

Our main goal then is to prove the following dichotomy for the behavior of extremizing sequence
for the Sobolev inequalities, on varying metric measure spaces.

Theorem 6.6.1 (Concentration-compactness for Sobolev-extremals). Suppose that mn(Xn), m∞(X∞) =
1 and that Xn supports a (2∗, 2)-Sobolev inequality

‖u‖2L2∗ (mn) ≤ A‖|Du|‖
2
L2(mn) +B‖u‖2L2(mn), ∀u ∈W 1,2(Xn),

for some constants A,B > 0. Suppose that un ∈ W 1,2(Xn) is a sequence of non-zero functions
satisfying

‖un‖2L2∗ (mn) ≥ An‖|Dun|‖
2
L2(mn) +Bn‖un‖2L2(mn),

for some sequences An → A, Bn → B.
Then, setting ũn := un‖un‖−1

L2∗ (mn)
, there exists a non relabeled subsequence such that only one

of the following holds:

I) ũn converges L2∗-strong to u∞ ∈W 1,2(X∞);

II) ‖ũn‖L2(mn) → 0 and there exists x0 ∈ X∞ so that |un|2
∗
mn ⇀ δx0 in duality with Cb(Z).

The principle behind the concentration compactness technique is very general and was origi-
nated in [141, 140]. In our case, since we will work in a compact setting, the lack of compactness is
formally due to dilations or rescalings (and not to translations) and the fact that we deal with the
critical exponent in the Sobolev embedding. The main idea behind the principle is first to prove
that in general the failure of compactness can only be realized by concentration on a countable
number of points. The second step is then exploit a strict sub-additivity property of the mini-
mization problem to show that either we have full concentration at a single point or we do not
have concentration at all and thus compactness.

We start by proving necessary results towards the proof of Theorem 6.6.1and we begin with a
variant of [120, Prop. 3.27]. For the sake of completeness, we provide here a complete proof.
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Proposition 6.6.2. Let p, q ∈ (1,∞) with 1
p + 1

q = 1. Suppose that un converges Lq-strong to u∞
and that vn converges Lp-weak to v∞, then

lim
n→∞

�
unvn dmn =

�
u∞v∞ dm∞.

Proof. It is sufficient to consider the case un ≥ 0, u∞ ≥ 0, then the conclusion will follow recalling
that u+

n → u+
∞, u−n → u−∞ strongly in Lq.

The argument is similar to the one for the case p = 2 (see, e.g., in [24]), except that we need

to consider the functions u
q/p
n + tvn, t ∈ R. Observe first that u

p/q
n → u

q/p
∞ strongly in Lp (by (vii)

of Prop. 2.4.3). In particular u
q/p
n + tvn converges to u

q/p
∞ + tv∞ weakly in Lp and in particular

from iii) of Prop. 2.4.3 we have

‖uq/p∞ + tv∞‖Lp(m∞) ≤ lim
n
‖uq/pn + tvn‖Lp(mn). (6.6.1)

The second ingredient is the following inequality∣∣|a+ |b||p − |b|p − pa|b|p−1
∣∣ ≤ Cp(|a|p∧2|b|p−p∧2 + |a|p), ∀a, b ∈ R, (6.6.2)

which is easily derived from
∣∣|1 + t|p − 1− pt

∣∣ ≤ Cp(|t|p∧2 + |t|p), ∀t ∈ R. Combining (6.6.2) and
(6.6.1) we have

�
|u∞|q dm∞ + pt

�
u∞v∞ dm∞ − Cptp∧2

�
|v∞|p∧2|uq/p∞ |p−p∧2 dm∞ − Cptp

�
|v∞|p dm∞

≤ ‖uq/p∞ + tv∞‖pLp(m∞) ≤ lim
n
‖uq/pn + tvn‖Lp(mn)

≤ lim
n

�
|un|q dmn + pt

�
unvn dmn + Cpt

p∧2

�
|vn|p∧2|uq/pn |p−p∧2 dmn + Cpt

p

�
|vn|p dmn

Observe that in the case p < 2 we have

lim
n

�
|vn|p∧2|uq/pn |p−p∧2 = lim

n

�
|vn|p dmn < +∞,

while for p ≥ 2 using the Hölder inequality

lim
n

�
|vn|p∧2|uq/pn |p−p∧2 ≤ lim

n
‖vn‖2Lp(mn)‖un‖

q(p−2)/p
Lq(mn) < +∞.

In particular, recalling that
�
|un|qdmn →

�
|u∞|qdm∞ and choosing first t ↓ 0 and then t ↑ 0

above we obtain the desired conclusion.

The following is a version for varying-measure of the famous Brezis-Lieb Lemma [46]. The key
difference with the classical version of this result, is that in our setting it does not makes sense to
write ‘|u∞ − un|’, since u∞ and un will be integrated with respect to different measures. Hence
we need to replace this term in (6.6.3) with |vn − un|, where vn is sequence approximating u∞ in
a strong sense.

Lemma 6.6.3 (Brezis-Lieb type Lemma). Suppose that mn(Xn),m∞(X∞) = 1, let q ∈ [2,∞) and
q′ ∈ (1, q). Suppose that un ∈ Lq(mn) satisfy supn ‖un‖Lq(mn) < +∞ and that un converges to

u∞ strongly in Lq
′

to some u∞ ∈ Lq
′ ∩ Lq(m∞). Then for any sequence vn ∈ Lq(mn) such that

vn → u∞ strongly both in Lq
′

and Lq, it holds

lim
n→∞

�
|un|q dmn −

�
|un − vn|q dmn =

�
|u∞|q dm∞. (6.6.3)
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Proof. The proof is based on the following inequality:∣∣|a+ b|q − |b|q − |a|q
∣∣ ≤ Cp(|a|q|b|q−1 + |a|q−1|b|q), ∀a, b ∈ R. (6.6.4)

Indeed, if a = vn − un and b = vn, we get from the above

� ∣∣|un|q − |vn − un|q − |vn|q∣∣dmn ≤ Cq � |vn − un||vn|q−1 + |vn − un|q−1|vn|dmn. (6.6.5)

Since
�
|vn|q dmn →

�
|u∞|q dm∞, to conclude it is sufficient to show that the right hand side of

(6.6.5) vanishes as n→ +∞. We wish to apply Proposition 6.6.2. It follows from our assumptions
that |vn| → |v∞| strongly in Lq and |vn|q−1 → |v∞|q−1 strongly in Lp, with p := q/(q − 1) (recall
Prop. 2.4.3). Hence it remains only to show that |vn − un|, |vn − un|q−1 converges to 0 weakly
in Lq and weakly in Lp respectively. We have that supn ‖un − vn‖Lq(mn) < +∞, hence by iv) in
Prop. 2.4.3 up to a subsequence |un−vn| converge weakly in Lq to a function w ∈ Lq(m). However
by assumption the sequences (vn), (un) both converge strongly in Lq

′
to u, hence vn − un → 0

strongly in Lq
′

(recall ii) in Prop. 2.4.3) and in particular by from i) of Prop. 2.4.3 we have that
|vn − un| → 0 strongly in Lq

′
, which implies that w = 0. Analogously we also get that up to a

subsequence |un − vn|q−1 converge weakly in Lp to a non-negative function w′ ∈ Lp(m). Suppose
first that q′ ≤ q − 1. taking t ∈ [0, 1] such that q − 1 = tq′ + (1− t)q we have

�
w′ dm∞ = lim

n

�
|un − vn|q−1 dmn ≤ ‖vn − un‖tq

′

Lq′ (mn)
‖vn − un‖(1−t)qLq(mn) → 0,

where we have used again that un−vn → 0 strongly in Lq
′

and that un−vn is uniformly bounded
in Lq. If instead q′ ≥ q − 1 by Hölder inequality we have

�
w′ dm∞ = lim

n

�
|un − vn|q−1 dmn ≤

(�
|un − vn|q

′
dmn

)(q−1)/q′

→ 0.

In both cases we deduce that w′ = 0, which concludes the proof.

Lemma 6.6.4. Let q ∈ [2,∞) and let u∞ ∈ W 1,2(X∞) ∩ Lq(m∞). Then, there exists a sequence
un ∈W 1,2(Xn) ∩ Lq(Xn) that converges both Lq-strong and W 1,2-strong to u∞.

Proof. By truncation and a diagonal argument we can assume that u∞ ∈ L∞(m∞). By the Γ-lim
inequality of the Ch2 energy there exists a sequence vn ∈W 1,2(Xn) converging strongly in W 1,2 to
u∞. Defining un := (vn∧C)∨−C, with C ≥ ‖u∞‖L∞(m∞), we have by i) of Proposition 2.4.3 that

un converges in L2-strong to u∞. Moreover |Dun| ≤ |Dvn| mn-a.e., therefore limn

�
|Dun|2 dmn ≤

limn

�
|Dvn|2 =

�
|Du∞|2 dm, which grants that un converges also W 1,2-strongly to u∞. Finally,

the sequence un is uniformly bounded in L∞ and converges to u∞ in L2-strong, hence by (viii)
of Proposition 2.4.3. we have that that un is also Lq-strongly convergent to u∞.

The following statement is the analogous in metric measure spaces of [141, Lemma I.1]. We
shall omit its proof since the arguments presented there in Rn extend to this setting with obvious
modifications (see also Remark I.5 in [141]).

Lemma 6.6.5. Let (X, d,m) be a metric measure space and µ, ν ∈M +
b (X). Suppose that(�

|ϕ|q dν

)1/q

≤ C
(�
|ϕ|p dµ

)1/p

, ∀ϕ ∈ Lipb(X),

for some 1 ≤ p < q < +∞ and C ≥ 0. Then there exists a countable set of indices J , points
(xj)j∈J ⊂ X and positive weights (νj)j∈J ⊂ R+ so that

ν =
∑
j∈J

νjδxj , µ ≥ C−p
∑
j∈J

ν
p/q
j δxj . (6.6.6)
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Next, we present a generalized Concentration-Compactness principle, with underlying varying
ambient space. For the sake of generality and for an application to the Yamabe equation in Section
6.8, we will be working with a slightly more general Sobolev inequality containing an arbitrary
Lq-norm (apart from Section 6.8, we will use this statement only with q = 2).

Lemma 6.6.6 (Concentration-Compactness Lemma). Suppose that mn(Xn),m∞(X∞) = 1 and
that for some fixed q ∈ (1,∞) the spaces Xn satisfy the following Sobolev-type inequalities

‖u‖2L2∗ (mn) ≤ An‖|Du|‖
2
L2(mn) +Bn‖u‖2Lq(mn), ∀u ∈W 1,2(Xn), (6.6.7)

with uniformly bounded positive constants An, Bn. Let also un ∈ W 1,2(Xn) be W 1,2-weak and
both L2-strong and Lq-strong converging to u∞ ∈ W 1,2(X∞) and suppose that |Dun|2mn ⇀ µ,
|un|2

∗
mn ⇀ ν in duality with Cb(Z) for two given measures µ, ν ∈M +

b (Z).
Then,

i) there exists a countable set of indices J , points (xj)j∈J ⊂ X∞ and positive weights (νj)j∈J ⊂
R+ so that

ν = |u∞|2
∗
m∞ +

∑
j∈J

νjδxj ;

ii) there exist (µj)j∈J ⊂ R+ satisfying ν
2/2∗

j ≤ (limnAn)µj and such that

µ ≥ |Du∞|2m∞ +
∑
j∈J

µjδxj .

In particular, we have
∑
j ν

2/2∗

j <∞.

Proof. We subdivide the proof in two steps.
Step 1. We assume that u∞ = 0. Let ϕ ∈ Lipb(Z) and consider the sequence (ϕun) ∈ W 1,2(Xn)
which plugged in the Sobolev inequality for each Xn gives(�

|ϕ|2
∗
|un|2

∗
dmn

)1/2∗

≤
(
An

�
|D(ϕun)|2 dmn +Bn

(�
|ϕ|quqn dmn

)2/q
)1/2

, ∀n ∈ N.

It is clear that, by weak convergence, the left hand side of the inequality tends to (
�
|ϕ|2∗ dν)1/2∗ .

While for the right hand side we discuss the two terms separately. First, by Lq-strong conver-
gence, we have

�
ϕquqn dmn → 0, while an an application of the Leibniz rule gives

�
|D(ϕun)|dmn ≤�

|Dϕ||un| + |φ||Dun|dmn. Moreover again by strong convergence
�
|Dϕ|2|un|2dmn → 0. Com-

bining these observations we reach(�
|ϕ|2

∗
dν

)1/2∗

≤
(

lim
n
An
)1/2(� |ϕ|2 dµ

)1/2

, ∀ϕ ∈ Lipb(Z).

Thus, Lemma 6.6.5 (applied in the space (Z, dZ)) gives i)-ii), for the case u∞ = 0, except for the
fact that we currently do no know whether the points (xj)j∈J are in X∞. This last simple fact
can be seen as follows. Fix j ∈ J . From the weak convergence |un|2

∗
mn ⇀ ν, there must be a

sequence yn ∈ supp(mn) = Xn such that dZ(yn, xj)→ 0. Then the GH-convergence of Xn to X∞
ensures that xj ∈ X∞, which is what we wanted.
Step 2. We now consider the case of a general u∞. Observe that from Lemma 6.4.1 X∞ supports
a (2∗, 2)-Sobolev inequality hence, u∞ ∈ L2∗(m∞). From Lemma 6.6.4 there exists a sequence
ũn ∈W 1,2(Xn) such that ũn converges to u∞ both strongly in W 1,2 and strongly in L2∗ . Consider
now the sequence vn := un − ũn. Clearly vn converges to zero both in L2-strong and in W 1,2-
weak. Moreover the measures |vn|2

∗
mn and |Dvn|2mn have uniformly bounded mass. Since (Z, d)

is compact, passing to a non-relabeled subsequence we have |vn|2
∗
mn ⇀ ν̄ and |Dvn|2mn ⇀ µ̄ in

duality with Cb(Z) for some ν̄, µ̄ ∈M +
b (Z). Therefore we can apply Step 1 to the sequence vn to

get ν̄ =
∑
j∈J νjδxj , µ̄ ≥

∑
j∈J µjδxj for a suitable countable family J , (xj) ⊂ X∞ and weights
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(νj), (µj) satisfying ν
2/2∗

j ≤ (limnAn)µj . To carry the properties of vn to the sequence un we
invoke Lemma 6.6.3 (with q′ = 2 and q = 2∗) to deduce that

lim
n→∞

�
|ϕ|2

∗
|un|2

∗
dmn −

�
|ϕ|2

∗
|vn|2

∗
dmn =

�
|ϕ|2

∗
|u∞|2

∗
dm∞, (6.6.8)

and, taking into account the weak convergence, this implies that

�
ϕ2∗ dν −

�
ϕ2∗ dν̄ =

�
|u∞|2

∗
ϕ2∗ dm∞,

for every non-negative ϕ ∈ Cb(Z). In particular, this is equivalent to say that ν = |u∞|2
∗
m∞+ ν̄ =

|u∞|2
∗
m∞ +

∑
j∈J νjδxj , which proves i). Next, we claim that µ ≥

∑
j∈J µjδxj and, to do so, we

consider for each j ∈ J and ε > 0, χε ∈ Lipb(Z), 0 ≤ χε ≤ 1, χε(xj) = 1 and supported in Bε(xj).
The key ingredient is the following estimate∣∣∣ � χε|Dun|2 dmn −

�
χε|Dvn|2 dmn

∣∣∣ ≤ �
χε
∣∣|Dun| − |Dvn|∣∣(|Dun|+ |Dvn|) dmn

≤
�
χε|Dũn|

(
|Dun|+ |Dvn|

)
dmn

≤
(�

χ2
ε|Dũn|2 dmn

)1/2(
‖|Dun|‖L2(mn) + ‖|Dvn|‖L2(mn)

)
.

Observe now that from [24, Theorem 5.7] |Dũn| → |Du∞| strongly in L2 and in particular�
χ2
ε|Dũn|2 dmn →

�
χ2
ε|Du∞|2 dm∞. Moreover

�
χ2
ε|Du∞|2 dm∞ → 0 as ε → 0+ and un, vn

are uniformly bounded in W 1,2(Xn). Therefore taking in the above inequality first n→ +∞ and
afterwards ε→ 0+ we ultimately deduce that

µ({xi}) = µ̄({xi}) ≥ µj , ∀ j ∈ J.

In particular, since µ is non-negative, µ ≥
∑
j∈J µjδxj , as claimed. Finally, by the weak lower

semicontinuity result in [24, Lemma 5.8], we have

�
φ|Du∞|2 dm∞ ≤ lim

n

�
φ|Dun|2 dmn =

�
φdµ

for every φ ∈ Cb(Z). Therefore, we get µ ≥ |Du∞|2m∞ and, by mutual singularity of the two
lower bounds, we have ii) and the proof is now concluded.

We are finally ready to prove the main result of this section.

Proof of Theorem 6.6.1. Set ũn := un‖un‖−1
Lq(mn). By assumption

1 ≥ An‖|Dũn|‖2L2(mn) +Bn‖ũn‖2L2(mn), ∀n ∈ N. (6.6.9)

Moreover again by hypothesis An → A > 0, Bn → B > 0, therefore the sequences An, Bn are
bounded away from zero and thus supn ‖ũn‖W 1,2(Xn) <∞. Hence, up to passing to a non relabeled
subsequence, Proposition 2.4.4 grants that ũn converges L2-strongly to a function u∞ ∈W 1,2(X∞).
Moreover, the measures |Dũn|2mn, |ũn|2

∗
mn have uniformly bounded mass. In particular up to

a further not relabeled subsequence, there exists µ, ν ∈ M +
b (Z) so that |Dũn|2mn ⇀ µ and

|ũn|2
∗
mn ⇀ ν in duality with Cb(Z). We are in position to apply Lemma 6.6.5 to get the existence

of at most countably many points (xj)j∈J and weights (νj)j∈J , so that ν = |u∞|2
∗
m∞+

∑
j∈J νjδxj

and µ ≥ |Du∞|2m∞ +
∑
j∈J µjδxj , with Aµj ≥ ν

2/2∗

j and in particular
∑
j ν

2/2∗

j < ∞. Finally
from Lemma 6.4.1 we have that X∞ supports a (2∗, 2)-Sobolev inequality with constants A,B.
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Therefore we can perform the following estimates

1 = lim
n
‖ũn‖2L2∗ (mn) ≥ lim

n
An‖|Dũn|‖2L2(mn) +B‖ũn‖2L2(mn)

= Aµ(X∞) +B

�
|u∞|2 dm∞

≥ A
�
|Du∞|2 dm∞ +B

�
|u∞|2 dm∞ +

∑
j∈J

ν
2/2∗

j

≥
(�
|u∞|2

∗
dm∞

)2/2∗

+
∑
j∈J

ν
2/2∗

j

≥
(�
|u∞|2

∗
dm∞ +

∑
j∈J

νj

)2/2∗

= ν(X∞)2/2∗ = 1,

where in the last inequality we have used the concavity of the function t2/2
∗
. In particular all

the inequalities must be equalities and, since t2/2
∗

is strictly concave, we infer that every term

in the sum
�
|u∞|2

∗
dm∞ +

∑
j∈J ν

2/2∗

j must vanish except for one that must be equal to 1. If�
|u∞|2

∗
dm∞ = 1 then I) must hold. If instead νj = 1 for some j ∈ J , then u∞ = 0 and by

definition of ν, |ũn|2
∗
mn ⇀ δxj , which is exactly II).

6.6.2 Quantitative linearization

A key point in our argument for the rigidity, and especially for the almost-rigidity, of Aopt
q will be

a more ‘quantitative’ version of the elementary linearization of the Sobolev inequality contained
in Lemma 6.5.3. To state our result, given q ∈ (2,∞) and u ∈W 1,2(X) with

�
|Du|22 dm > 0, it is

convenient to define the Sobolev ratio associated to u as the quantity

QX
q (u) :=

‖u‖2Lq(m) − ‖u‖
2
L2(m)

‖|Du|2‖2L2(m)

. (6.6.10)

Observe that, if λ1,2(X) > 0,
�
|Du|22dm > 0 as soon as u is not (m-a.e. equal to a) constant.

Lemma 6.6.7 (Quantitative linearization). For all numbers A,B ≥ 0, q > 2 and λ > 0 there
exists a constant C = C(q, A,B, λ) such that the following holds. Let (X, d,m) be a metric measure
space with m(X) = 1, λ1,2(X) ≥ λ and supporting a (q, 2)-Sobolev inequality with constants A,B.
Then, for every non-constant f ∈W 1,2(X) satisfying ‖f‖L2(X) ≤ 1/2, it holds

∣∣∣QX
q (1 + f)−

(q − 2)
� (
f −

�
fdm

)2
dm�

|Df |22 dm

∣∣∣ ≤ C(‖f‖3∧q−2
W 1,2(X) + ‖f‖q−2

W 1,2(X) + ‖f‖2q−2
W 1,2(X)

)
. (6.6.11)

Proof. We claim that it is enough to prove the statement for functions f ∈ W 1,2(X) with zero
mean (and arbitrary L2-norm). Indeed for a generic f ∈ W 1,2(X) satisfying ‖f‖L2(X) ≤ 1/2, we

can take f̃ :=
f−

�
f dm

1+
�
f dm

, which clearly has zero mean. Then the conclusion would follow observing

that the left hand side of (6.6.11) computed at f̃ coincides with the left hand side of (6.6.11)
computed at f and from the fact that

‖f̃‖W 1,2(X) ≤ ‖f‖W 1,2(X)

(
1 +

�
f dm

)−1

≤ ‖f‖W 1,2(X)(1− ‖f‖L2(X))
−1 ≤ 2‖f‖W 1,2(X).

Therefore we can now fix f ∈W 1,2(X) with
�
f dm = 0. We start with a basic estimate of the Lr

norm of f for r ∈ [1, q]. Combining the Hölder and the (q, 2)-Sobolev inequalities we have

�
|f |r dm ≤

(�
|f |q dm

) r
q ≤ (Ar/2 +Br/2)‖f‖rW 1,2(X) (6.6.12)
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In the case r ∈ (2, q] the following refined estimate holds:

�
|f |r dm�
|Df |22 dm

≤ CqAr/2
(�
|Df |22 dm

) r
2−1

+ CqB
r/2
(�
|f |2 dm

) r
2−1

�
|f |2 dm�
|Df |22 dm

≤ Cq(Ar/2 +Br/2λ−1)‖f‖r−2
W 1,2(X). (6.6.13)

We now apply (6.5.3) to f , which we rewrite here for the convenience of the reader:∣∣∣(� |1 + f |q dm
)2/q

−
�

(1 + f)2 dm− (q − 2)

�
|f |2 dm

∣∣∣
≤ C̃q

( �
|f |3∧q + |f |q dm +

(�
|f |q dm

)2

+
(�
|f |2 dm

)2)
,

where C̃q is a constant depending only on q. Dividing by
�
|Df |22 dm the above inequality and

rearranging terms, using the definition of λ1,2(X) and the estimates (6.6.12), (6.6.13) we obtain
(6.6.11).

6.6.3 Proof of the rigidity

Here we prove Theorem 6.2.2. This result will follow from the following theorem, which character-
izes the behavior of extremal sequences for the Sobolev inequality and which combines the tools
of concentration compactness and linearization, developed in the previous sections. This result
can be summarized as: either there exist non-constant extremals, or we have information on the
first eigenvalue λ1,2(X), or we have information on the density θN .

Theorem 6.6.8 (The Sobolev-alternative). Let (X, d,m) be a compact RCD(K,N) space for some
K ∈ R, N ∈ (2,∞) and with m(X) = 1. Let q ∈ (2, 2∗], with 2∗ := 2N/(N − 2). Then at least one
of the following holds:

i) there exists a non-constant function u ∈W 1,2(X) satisfying

‖u‖2L2∗ (m) = Aopt
q (X)‖|Du|‖2L2(m) + ‖u‖2L2(m), (6.6.14)

ii) Aopt
q (X) = q−2

λ1,2(X) ,

iii) q = 2∗ and Aopt
2∗ (X) = α2(X) = Eucl(N,2)2

min θ
2/N
N

(see the introduction and (6.2.2) for the definition

of α2(X) and Eucl(N, 2)).

Proof. By definition of Aopt
q (X) there exists a sequence of non-constant functions un ∈ Lip(X)

such that QX
q (un)→ Aopt

q (X) (recall (6.6.10)). By scaling we can suppose that ‖un‖L2∗ (m) ≡ 1. In

particular (un) is bounded in W 1,2(X). We distinguish two cases.
Subcritical: q < 2∗. By compactness (see Proposition 2.4.4), up to passing to a subsequence,
un → u strongly in Lq to some function u ∈ W 1,2(X) such that, from the lower semicontinuity
of the Cheeger energy, QX

q (u) = Aopt
q (X). If u is non-constant i) holds and we are done, so

suppose that u is constant. Then from the renormalization we must have u ≡ 1. Moreover, since
‖un‖Lq(m), ‖un‖L2(m) → 1 and QX

q (un) → Aopt
q (X), we deduce that ‖|Du|‖2L2(m) → 0. Consider

now the functions fn := un − 1 ∈ Lip(X), which are non-constant and such that fn → 0 in
W 1,2(X). We are therefore in position to apply Lemma 6.6.7 and deduce that

Aopt
q (X) = lim

n→∞
QX
q (un) = lim

n

(q − 2)
� (
fn −

�
fndm

)2
dm�

|Dfn|2 dm
≤ q − 2

λ1,2(X)
.

Combining this with (6.5.4), we get that Aopt
q (X) = q−2

λ1,2(X) , i.e. ii) is true and we conclude the

proof in this case.
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Critical: q = 2∗. We apply the concentration-compactness result in Theorem 6.6.1 and deduce
that up to a subsequence: either un → u in L2∗(m) to some u ∈ W 1,2(X) or ‖un‖L2(m) → 0. In
the first case we argue exactly as above using Lemma 6.6.7 and deduce that either i) or ii) holds.
Hence we are left to deal with the case ‖un‖L2(m) → 0. From the definition of α2(X), for every ε
there exits Bε so that a (2∗, 2)-Sobolev inequality with constants α2(X)+ε and Bε is valid. Hence
we have

QX
2∗(un)‖|Dun|‖2L2(m) + ‖un‖2L2(m) = ‖un‖L2∗ (m) ≤ (α2(X) + ε)‖|Dun|‖2L2(m) +Bε‖un‖2L2(m),

which gives

QX
2∗(un) ≤ (α2(X) + ε) +Bε‖un‖2L2(m)(‖|Dun|‖

2
L2(m))

−1.

Observing that limn ‖|Dun|‖2L2(m) > 0 (which follows from the Sobolev inequality, ‖un‖2L2(m) → 0

and ‖un‖L2∗ (m) = 1) and letting n → +∞ we arrive at Aopt
2∗ (X) ≤ (α2(X) + ε). From the

arbitrariness ε we deduce that Aopt
2∗ (X) ≤ α2(X) and the proof is concluded (indeed by definition

α2(X) ≥ Aopt
2∗ (X) is always true).

We can finally come to the proof of the principal result of this Chapter.

Proof of Theorem 6.2.2. The ‘if” implication is direct as any N -spherical suspension, X is so that
Aopt
q (X) = q−2

N . This can be seen from the lower bound in Proposition 6.5.2 (recall also Theorem
2.3.9) and the upper bound given in Theorem 6.2.1.

For the ‘only if’ implication, the result will follow from three different rigidity results, one for
each of the alternatives in Theorem 6.6.8. Up to scaling the reference measures, we can suppose
m(X) = 1.

Case 1: i) in Theorem 6.6.8 holds. Let u be the non-constant function satisfying (6.6.14). Observe
that we can assume that u is non-negative. We aim to apply the Polya-Szego inequality with the
model space IN as in Section 2.2.2. Let u∗N : IN → [0,∞] be the monotone-rearrangement
of u. From the Polya-Szego inequality in Theorem 2.2.8 we have that u∗N ∈ W 1,2(IN , |.|,mN ),
‖u‖Lp(m) = ‖u∗N‖Lp(mN ) for both p ∈ {q, 2} and that ‖|Du∗N |‖L2(mN ) ≤ ‖|Du|‖L2(m). Combining
this with (2.2.13) we have

‖u‖2Lq(m) = ‖u∗N‖2Lq(mN ) ≤
q−2
N ‖|Du

∗
N |‖2L2(mN ) + ‖u∗N‖2L2(mN )

≤ q−2
N ‖|Du|‖

2
L2(m) + ‖u‖2L2(m) = ‖u‖2Lq(m).

Therefore ‖|Du∗N |‖L2(mN ) = ‖|Du|‖L2(m) and, since u is non-constant, we are in position to apply
the rigidity of the Polya-Szego inequality of Theorem 2.3.11 and conclude the proof in this case.

Case 2: ii) in Theorem 6.6.8 holds. We immediately deduce that λ1,2(X) = N and the conclusion
follows from the Obata’s rigidity (Theorem 2.3.9).

Case 3: iii) in Theorem 6.6.8 holds. From Theorem 6.3.12 and the explicit expression for
Eucl(N, 2) (see (6.2.3)) we have that

2∗ − 2

N
= Aopt

2∗ (X) = α2(X) =
Eucl(N, 2)2

minx∈X θN (x)2/N
=

2∗ − 2

Nσ
2/N
N minx∈X θN (x)2/N

,

therefore minx∈X θN = σ−1
N . On the other hand by the Bishop-Gromov inequality and identity

(2.2.7)

1

σN
= inf

X
θN (x) ≥ m(X)

vN−1,N (diam(X))
=

1

vN−1,N (diam(X))
,

which, from the definition of vN−1,N and (6.2.4) forces diam(X) = π. The conclusion then follows
by the rigidity of the maximal diameter (Theorem 2.3.10).
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Remark 6.6.9. The rigidity result for Aopt
q (M) in the subcritical range q < 2∗ was already

observed in [138] as a consequence of the following sharper estimate due to [90]: for any n-
dimensional Riemannian manifolds M , n ≥ 3, with Ric ≥ n− 1 it holds

Aopt
q (M) ≤ (q − 2)

κ(θ)
, ∀q ∈ (2, 2∗), (6.6.15)

where κ(θ) := θn+ (1− θ)λ1,2(M), λ1,2(M) being the first non trivial eigenvalue and θ = θ(q) ∈
[0, 1] is a suitable interpolation parameter. The spectral gap inequality λ1,2(M) ≥ n grants that
the bound (6.6.15) improves the one of (6.1.5). For every q ∈ (2, 2∗), the condition Aopt

q (M) =
Aopt
q (Sn)(= (q − 2)/n) forces κ(θ) = n which in turn implies λ1,2(M) = n. By appealing to

the classical Obata’s Theorem, this argument covers the rigidity of Theorem 6.1.3 for q < 2∗.
Nevertheless, this does not extend to the critical exponent: more precisely θ(q) → 1 as q → 2∗,
hence the quantity κ(θ) carries no information on the spectral gap in this case. �

6.7 Almost rigidity of Aopt

6.7.1 Behavior at concentration points

The following technical result will be needed for the almost-rigidity result and has the role of
replacing in the varying-space case, the Sobolev inequality with constants α2(X) + ε,Bε which
we used in the fixed-space case of the rigidity (see the proof of Theorem 6.6.8). Indeed it is not
clear how to control the constant Bε in a sequence of mGH-converging spaces. Therefore we need
a more precise local analysis which fully exploits the local Sobolev inequalities in Theorem 6.3.8
and Proposition 6.3.11.

Lemma 6.7.1 (Behavior at concentration points). Let (Xn, dn,mn, xn), n ∈ N̄, be a sequence of

RCD(K,N) spaces K ∈ R, N ∈ (1,∞), so that Xn
pmGH→ X∞. Fix p ∈ (1, N), set p∗ := pN/(N−p)

and assume that un ∈ Lipc(Xn) is a sequence satisfying

‖un‖pLp∗ (mn)
≥ An‖|Dun|‖pLp(mn) −Bn‖un‖

p
Ls(mn), (6.7.1)

for some constants An, Bn ≥ 0 uniformly bounded and s > 0 so that s ∈ [p, p∗). Assume further-
more that un → 0 strongly in Lp, ‖un‖Lp∗ (mn) = 1 and that |un|p

∗
mn ⇀ δy0 for some y0 ∈ X∞

in duality with Cbs(Z) (where (Z, dZ) is a proper space realizing the convergence in the extrinsic
approach). Then

θN (y0) ≤ Eucl(N, p)N (lim
n
An)−N/p, (6.7.2)

meaning that if θN (y0) = +∞, then limnAn = 0.

Proof. We subdivide the proof in two cases.
Case 1: θN (y0) < +∞.

Fix ε < θN (y0)/4 arbitrary. Since θN,r(y0)→ θN (y0) as r → 0+ there exists r̄ = r̄(ε) such that

|θN,r(y0)− θN (y0)| ≤ ε, ∀r < r̄. (6.7.3)

Let δ := δ(2ε,D,N), with D = 4, be the constant given by Theorem 6.3.8 and fix two radii
r,R ∈ (0, r̄) such that R < δ

√
N/K− and r < δR. Consider now a sequence yn ∈ Xn such that

yn → y0. From the convergence of the measures mn to m∞ we have that θN,r(yn)→ θN,r(y0) and
θN,R(yn)→ θN,R(y0). In particular by (6.7.3) there exists n̄ = n̄(r,R, ε) such that

|θN,R(yn)− θN (y0)|, |θN,r(yn)− θN (y0)| ≤ 2ε, ∀n ≥ n̄. (6.7.4)

From the initial choice of ε this also implies that θN,r(yn)/θN,R(yn) ≤ 4 for every n ≥ n̄. We are
in position to apply Theorem 6.3.8 and get that for every n ≥ n̄

‖f‖Lp∗ (mn) ≤
(1 + 2ε)Eucl(N, p)

(θN (y0)− 2ε)
1
N

‖|Df |‖Lp(mn), ∀f ∈ Lipc(Br(yn)). (6.7.5)
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Choose φ ∈ Lip(Z) such that φ = 1 in BZ
r/8(y0), supp(φ) ⊂ BZ

r/4(y0) and 0 ≤ φ ≤ 1. From

the assumptions, we have that
�
φ|un|p

∗
dmn → 1, in particular up to increasing n̄ it holds that�

φ|un|p
∗
dmn ≥ 1− ε for all n ≥ n̄. Moreover, again up to increasing n̄, we have that dZ(yn, y0) ≤

r/4 for all n ≥ n̄, therefore

1− ε ≤
�
Br/2(yn)

|un|p
∗
dmn, ∀n ≥ n̄. (6.7.6)

For every n we choose a cut-off function φn ∈ Lip(Xn) such that φn = 1 in Br/2(yn), 0 ≤ φn ≤ 1,
supp(φn) ⊂ Lipc(Br(yn)) and Lip(φn) ≤ 2/r. Plugging the function unφn ∈ Lipc(Br(yn)) in
(6.7.5) and using (6.7.6) we obtain

(1− ε)
1
p∗ ≤ ‖unφn‖Lp∗ (mn) ≤

(1 + 2ε)Eucl(N, p)

(θN (y0)− 2ε)
1
N

(
‖|Dun|‖Lp(mn) + 2

r‖un‖Lp(mn)

)
. (6.7.7)

Moreover recalling that ‖un‖Lp∗ (mn) = 1 and the assumption (6.7.1), from (6.7.7) we reach

(1−ε)
1
p∗
(
A1/p
n ‖|Dun|‖Lp(mn)−Bn‖un‖pLs(mn)

)
≤ (1 + 2ε)Eucl(N, p)

(θN (y0)− 2ε)
1
N

(
‖|Dun|‖Lp(mn)+

2
r‖un‖Lp(mn)

)
.

We also observe that from the assumption ‖un‖Lp(mn) → 0 and the fact that ‖un‖Lp∗ (mn) = 1, we
have by (viii) in Proposition 2.4.3 that ‖un‖Ls(mn) → 0. Finally by (6.7.7) and the assumption
‖un‖Lp(mn) → 0 it holds that limn ‖|Dun|‖Lp(mn) > 0. In particular for n big enough we can divide
by ‖|Dun|‖Lp(mn) the above inequality and letting n→ +∞ we get

lim
n
A1/p
n ≤ (1 + 2ε)Eucl(N, p)

(1− ε)1/p∗(θN (y0)− 2ε)
1
N

.

From the arbitrariness of ε, the conclusions follows.
Case 2: θN (y0) =∞.

The argument is similar to Case 1, but we will use Proposition 6.3.11 instead of Theorem 6.3.8.
Let M > 0 be arbitrary. There exists r ≤ 1 such that θN,r(y0) ≥ 2M . As above we choose a
sequence yn → y0. For n big enough we have that

θN,r(yn) ≥M. (6.7.8)

Applying Proposition 6.3.11, from (6.7.8) we get that for every n big enough

‖f‖p
Lp∗ (Br(yn))

≤ CK,N,p

M
p
N

‖|Df |‖pLp(Br(yn)) +
Cp,N‖f‖pLp(Br(yn))

rp/NM
p
N

, ∀f ∈ Lip(Xn). (6.7.9)

Observing that (6.7.6) is still satisfied with ε = 1/M and n big enough, we can repeat the above
argument, using (6.7.1) and plugging φnun in (6.7.9), where φn is as above. This leads us to

lim
n
A1/p
n ≤ CK,N,p

(1− 1/M)1/p∗M
1
N

,

which from the arbitrariness M implies the conclusion.

6.7.2 Continuity of Aopt under mGH-convergence

In Lemma 6.4.1, we proved that Sobolev embedding are stable with respect to pmGH-convergence.
A much more involved task it to prove that optimal constants are also continuous: indeed, if

Xn
mGH→ X∞, in general Lemma 6.4.1 ensures only that Aopt

q (X∞) ≤ limnA
opt
q (Xn). With the

concentration compactness tools developed in Section 6.6.1, the ‘quantitative-linearization’ result
in Lemma 6.6.7 and the technical tool developed in the previous section we can now prove the
mGH-continuity of Aopt

q (Xn) as stated in Theorem 6.2.5, that we restate here for convenience of
the reader.
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Theorem 6.7.2 (Continuity of Aopt
q under mGH-convergence). Let (Xn, dn,mn) be a sequence,

n ∈ N ∪ {∞}, of compact RCD(K,N)-spaces with mn(Xn) = 1 and for some K ∈ R, N ∈ (2,∞)

so that Xn
mGH→ X∞. Then, Aopt

q (X∞) = limnA
opt
q (Xn), for every q ∈ (2, 2∗].

Proof. By definition of Aopt
q (Xn), there exists sequence of non-negative and non-constant functions

un ∈ Lip(Xn) satisfying

‖un‖2Lq(mn) ≥ An‖|Dun|‖
2
L2(mn) + ‖un‖2L2(mn), (6.7.10)

having set An := Aopt
q (Xn)− 1

n . By scaling invariance, it is not restrictive to suppose ‖un‖Lq(mn) =
1 for every n ∈ N. Observe that thanks to Lemma 6.4.1 we already have that 0 < Aopt

q (X∞) ≤
limnA

opt
q (Xn), hence we only need to show that Aopt

q (X) ≥ limnA
opt
q (Xn). To this aim, we

distinguish two cases.
Subcritical: q < 2∗. It is clear that An is uniformly bounded from below whence the sequence
un has uniformly bounded W 1,2 norms. Then, by Proposition 2.4.4 and the Γ-lim inequality
of the Ch2 energy, there exists a (not relabeled) subsequence L2-strongly converging to some
u∞ ∈ W 1,2(X∞). Moreover, since un are bounded in L2∗ , they also converge to u∞ in Lq-strong
and in particular ‖u∞‖2Lq(m∞) = 1. Suppose first that the function u∞ is not constant, then we
get

1 = ‖u∞‖2Lq(m∞) ≥ lim
n→∞

An‖|Dun|‖2L2(mn) + ‖un‖2L2(mn)

(2.4.1) + L2-strong ≥ lim
n→∞

Aopt
q (Xn)‖|Du∞|‖2L2(m∞) + ‖u∞‖2L2(m∞).

Since u∞ is not constant this in turn yields limnA
opt
q (Xn) ≤ Aopt

q (X∞) which is what we wanted.
Suppose now that u∞ is constant. Then, necessarily u∞ = 1. Define now fn := 1 − un

and observe that ‖fn‖W 1,2(Xn) → 0, which follows from (6.7.10) and the fact that ‖un‖L2(mn) →
1. Moreover from (2.4.3) we have that λ1,2(Xn) are uniformly bounded below away from zero.
Therefore we can apply Lemma 6.6.7 to deduce (recall (6.6.10) for the def. of QX

q )

lim
n→∞

Aopt
q (Xn) = lim

n→∞
QXn
q (un) = lim

n→∞

(q − 2)
� ∣∣fn − �

fn dmn
∣∣2 dmn�

|Dfn|2 dmn
≤ lim
n→∞

(q − 2)

λ1,2(Xn)
=

(q − 2)

λ1,2(X∞)
,

having used, in the last inequality, the continuity of the 2-spectral gap (2.4.3). This combined
with (6.5.4) gives that limnA

opt
q (Xn) ≤ Aopt

q (X∞).
Critical exponent: q = 2∗. Observe that we are now in position to invoke Theorem 6.6.1 and,
up to a further not relabeled subsequence, we just need to handle one of the two different situations
I),II) occurring in Theorem 6.6.1. If the case I) occurs, we argue exactly as in the Subcritical:
q < 2∗ case, to conclude that limnA

opt
q (Xn) ≤ Aopt

q (X∞). Hence we are left with situation II),
where the sequence un develops a concentration point y0 ∈ X∞. Recalling Lemma 6.7.1, either
θN (y0) = ∞ and limnA

opt
2∗ (Xn) = 0 or θN (y0) < ∞. The first situation cannot happen, since

Aopt
2∗ (X∞) > 0. In the second one rearranging in (6.7.2) we have

lim
n→∞

Aopt
2∗ (Xn)

(6.7.2)

≤ Eucl(N, 2)2

θN (y0)2/N

(6.2.8)

≤ α2(X∞) ≤ Aopt
2∗ (X∞).

6.7.3 Proof of the almost-rigidity

Combining the rigidity result for Aopt
q with the continuity result proved in the previous part we

can now prove the almost-rigidity result for Aopt
q .

Proof of Theorem 6.2.3. We argue by contradiction, and suppose that there exists ε > 0, q ∈
(2, 2∗] and a sequence (Xn, dn,mn) of RCD(N − 1, N)-spaces with mn(Xn) = 1 so that

dmGH((Xn, dn,mn), (Y, dY,mY)) > ε, (6.7.11)
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for every spherical suspension (Y, dY,mY) and limnA
opt
q (Xn) = q−2

N . Theorem 2.4.1 (recall that

mn(Xn) = 1) ensures that up to passing to a non-relabeled subsequence we have Xn
mGH→ X∞, for

some RCD(N − 1, N)-space (X∞, d∞,m∞) with m∞(X∞) = 1. Hence (6.7.11) implies

dmGH((X∞, d∞,m∞), (Y, dY,mY)) ≥ ε, (6.7.12)

for every spherical suspension (Y, dY,mY). Finally, by Theorem 6.2.5 we deduce

Aopt
q (X∞) = lim

n
Aopt
q (Xn) =

q − 2

N
.

Therefore, by invoking the rigidity Theorem 6.2.2, we get that (X∞, d∞,m∞) is isomorphic to a
spherical suspension. This contradicts (6.7.12) and concludes the proof.

Remark 6.7.3. The results of Theorem 6.2.3 (and therefore of Theorem 6.2.2) extend directly
to the class of RCD(K,N) spaces for some K > 0 and N ≥ 2 with normalized volume. Consider

an RCD(K,N) space (X, d,m) and define (X′, d′,m′) := (X,
√

K
N−1d,m) which is RCD(N − 1, N).

Then, since Aopt
q (X′) = K

N−1A
opt
q (X), it is straightforward to set δ = δ(K,N, ε, q) := N−1

K δ(N, ε, q)
and extend the aforementioned results also for arbitrary K > 0. �

6.8 Application: the Yamabe equation on RCD spaces

In this section we apply Theorem 6.2.6 and the concentration compactness results of Section 6.6.1
to study the Yamabe equation to the RCD(K,N) setting. In particular we prove an existence
result for the Yamabe equation and continuity of the generalized Yamabe constants under mGH-
convergence, extending and improving some of the results proved in [121] in the case of Ricci limits.
For results concerning the Yamabe problem and the Yamabe constant in non-smooth spaces see
also [3, 2, 4, 157].

We recall that the Yamabe problem [192] asks if a compact Riemannian manifolds admits a
conformal metric with constant scalar curvature. This has been completely solved and shown to
be true after the works of Trudinger, Aubin and Schoen [183, 30, 177]. We also refer to [139] for
an introduction to this problem and a complete and self-contained proof of this result.

The Yamabe problem turns out to be linked to the so-called Yamabe equation:

−∆u+ Su = λu2∗−1, λ ∈ R, S ∈ L∞(M), (6.8.1)

where 2∗ = 2n
n−2 . Indeed solving the Yamabe problem is equivalent to find a non-negative and

non-zero solution to (6.8.1) for some λ ∈ R and with S = Scal, the scalar curvature of M . In this
direction, it is relevant to see that the Yamabe equation is the Euler-Lagrange equation of the
following functional:

Q(u) :=

�
|Du|2 + S|u|2 dVol

‖u‖2
L2∗

, u ∈W 1,2(M) \ {0},

where Vol is the volume measure of M . One then defines the Yamabe constant as the infimum of
the above functional:

λS(M) := inf
u∈W 1,2(M)\{0}

Q(u).

A crucial step in the solution of the Yamabe problem is:

Theorem 6.8.1 ([183, 30, 192]). Let M be a compact n-dimensional Riemannian manifold satis-
fying λS(M) < Eucl(n, 2)−2. Then there is a non-zero solution to (6.8.1) with λ = λS(M).

Recall that Eucl(n, 2) denotes the optimal constant in the sharp Euclidean Sobolev inequality
(6.1.1). It has also been proven by Aubin [31] (see also [139]) that

λS(M) ≤ Eucl(n, 2)−2 (6.8.2)
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always holds.
The relevant point for our discussion is that Theorem 6.8.1 turns out to be linked to the

notion of optimal Sobolev constant α2(M), in particular it is actually a corollary of the fact that
α2(M) = Eucl(n, 2)2 (recall (6.1.2)). Since we generalized this last result to setting of compact
RCD(K,N)-spaces (see Theorem 6.2.6), it is natural to ask if an analogue of Theorem 6.8.1 holds
also in this singular framework. We will positively address this in this part of the note.

6.8.1 Existence of solutions to the Yamabe equation

We start by clarifying in which sense (6.8.1) is intended and, to this aim, we fix (X, d,m) a compact
RCD(K,N) space for some K ∈ R, N ∈ (2,∞) with m(X) = 1. We will also denote by 2∗ the
Sobolev-exponent defined as 2∗ := 2N/(N − 2). In the sequel, we fix

S = gm for some g ∈ Lp(m), p > N/2, (6.8.3)

The reason for this more general choice of S is the fact that on RCD(K,N) spaces a ‘scalar
curvature’ that is bounded is not natural (recall that to solve the Yamabe problem one would like
to take S = Scal ∈ L∞). Indeed, requiring only a synthetic lower bound on the Ricci curvature, it
is more desirable to work only with integrability requirements.

The goal is then to discuss positive solutions u ∈ D(∆) ∩ L2(|S|) of

−∆u = λu2∗−1m− uS, λ ∈ R. (6.8.4)

Observe that if u ∈ D(∆) ⊂ W 1,2(X), by the Sobolev embedding we have that u ∈ L2∗(m) and
thus, the right hand side of (6.8.4) is a well defined Radon measure on X. A solution for this
equation will be deduced with a variational approach as described above. More precisely we define
the functional QS : W 1,2(X) \ {0} → R defined as

u 7→ QS(u) :=

�
|Du|2 dm +

�
|u|2 dS

‖u‖2
L2∗ (m)

.

Observe that since S = gm, with g ∈ Lp(m), p > N/2, the integral
�
|u|2 dS exists, i.e. its value is

well defined. We then define

λS(X) := inf{QS(u) : u ∈W 1,2(X) \ {0}}
= inf{QS(u) : u ∈W 1,2(X), ‖u‖L2∗ (m) = 1},

(6.8.5)

and claim that
λS(X) ∈ (−∞,+∞). (6.8.6)

Indeed, λS(X) < +∞ as can be seen considering constant functions. On the other hand for every
u ∈W 1,2(X) with ‖u‖L2∗ (m) = 1, Hölder inequality yields

QS(u) ≥ −‖g‖Lp(m)‖u‖L2∗ (m) = −‖g‖Lp(m).

The ultimate goal of this section is to prove the following:

Theorem 6.8.2. Let (X, d,m) be a compact RCD(K,N) space for some K ∈ R, N ∈ (2,∞) with
m(X) = 1 and let S as in (6.8.3). If

λS(X) <
minX θ

2/N
N

Eucl(N, 2)2
, (6.8.7)

then there exists a non-negative and non-zero u ∈ D(∆)∩L2(|S|) which is a minimum for (6.8.5)
and satisfies (6.8.4).

We start by showing that (6.8.4) is the Euler-Lagrange equation for the minimization problem
(6.8.5).
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Proposition 6.8.3. Let (X, d,m) be a compact RCD(K,N)-space for some K ∈ R, N ∈ (2,∞)
with m(X) = 1 and let S be as in (6.8.3). Suppose u ∈W 1,2(X)∩L2(|S|) is a minimizer for (6.8.5)
satisfying ‖u‖L2∗ (m) = 1. Then

� 〈
∇u,∇v

〉
dm = −

�
uv dS + λS(X)

�
u2∗−1v dm, ∀v ∈ Lip(X). (6.8.8)

Proof. We consider for every ε ∈ (−1, 1) and v ∈ Lip(X), the function uε := ‖u+εv‖−1
L2∗ (m)

(u+εv),

whenever ‖u + εv‖L2∗ (m) is not zero. It can be seen that for a fixed v then uε is well defined at

least for ε close to zero. Indeed, the fact that
�
|u|2∗ ,dm = 1 grants that ‖u + εv‖L2∗ (m) → 1

as ε → 0 (see below) and in particular ‖u + εv‖L2∗ (m) does not vanish for |ε| small enough. By
minimality we have (recall also (1.4.2))

0 ≤ lim
ε↓0

QS(uε)−QS(u)

ε
= lim

ε↓0

1

ε

(
1

I2
ε

− 1

)
λS(X) +

2

I2
ε

� 〈
∇u,∇v

〉
dm +

�
uv dS,

where Iε := ‖u+εv‖L2∗ (m). Furthermore, from the elementary estimate ||a+εb|q−|a|q| ≤ q|εb|
∣∣|a+

εb|q−1 + |a|q−1
∣∣, with q = 2∗, and the fact that u, v ∈ L2∗(m), we have that

�
|u + εv|q m → 1 as

ε→ 0. Thanks to the same estimates, the dominated convergence theorem grants that

lim
ε↓0

1− I2
ε

ε
=

2

2∗
lim
ε↓0

�
|u|2∗ − |u+ εv|2∗

ε
dm = −2

�
u2∗−1v dm.

Arguing analogously considering ε ↑ 0 gives (6.8.8).

We can now prove Theorem 6.8.2 which, thanks to the previous proposition, amounts to the
existence of a minimizer for (6.8.5). We will do so using the concentration-compactness tools
developed in Section 6.6.1, here employed with a fixed space X.

Proof of Theorem 6.8.2. Let un ∈ W 1,2(X) be such that QS(un) → λS(X) and ‖un‖L2∗ (m) = 1.

We claim that un are uniformly bounded in W 1,2(X). Indeed, this can be seen from the estimate

�
|Dun|2+|un|2 dm ≤

�
|Dun|2 dm+

�
|un|2 dS+(1+‖g‖Lp(m))‖un‖L2∗ (m) = 1+QS(un)+‖g‖Lp(m),

obtained combining the Hölder inequality with (6.8.3). Hence, by compactness (see Proposition
2.4.4), up to a not relabeled subsequence, we have un → u in L2(m) for some u ∈ W 1,2(X). We
claim that u ∈ L2(|S|) and �

u2 dS ≤ lim
n

�
u2
n dS. (6.8.9)

Indeed, an application of Hölder inequality (recall that, by Sobolev embedding, u2 ∈ Lp′(m) with
p′ being the conjugate exponent of p) reveals that u2 ∈ L2(|sca|) and actually continuity occurs
in (6.8.9). We now distinguish two cases:
Case 1. λS(X) < 0. By lower semicontinuity of the Cheeger-energy and (6.8.9) we have

0 > λS(X) = lim
n
QS(un) ≥

�
|Du|2 dm +

�
u2dS.

In particular u is not identically zero and by the lower semicontinuity of the L2∗(m)-norm we have
0 < ‖u‖L2∗ (m) ≤ 1. Moreover, from the above we have that

�
|Du|2 dm+

�
u2dS is negative, hence

λS(X) ≥ ‖u‖−2
L2∗ (m)

(�
|Du|2 dm +

�
u2dS

)
= QS(‖u‖−1

L2∗ (m)
u).

Therefore ‖u‖−1
L2∗ (m)

u is a minimizer for QS(u).
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Case 2. λS(X) ≥ 0. Recall that the sequence (un) is uniformly bounded both in L2∗(m) and in
W 1,2(X). Therefore since X is compact, again up to a subsequence, |Dun|2m⇀ µ and |un|2

∗
⇀ ν

for some µ ∈M +
b (X) and ν ∈P(X) in duality with C(X). By assumption there exists ε > 0 such

that λS(X) <
minX θ

2/N
N

Eucl(N,2)2+ε =: λε. We fix one of such ε > 0 and define Aε = λ−1
ε . From Theorem

6.2.6 there exists a constant Bε > 0 so that

‖u‖2L2∗ (m) ≤ Aε‖|Du|‖
2
L2(m) +Bε‖u‖2L2(m), ∀u ∈W 1,2(X).

Hence we are in position to apply Lemma 6.6.6 (with fixed space X) to deduce that there exists
a countable set of indices J , points (xj)j∈J ⊂ X and weights (µj) ⊂ R+, (νj) ⊂ R+ such that

µj ≥ λεν2/2∗

j for every j ∈ J and

ν = |u|2
∗
m +

∑
j∈J

νjδxj , µ ≥ |Du|2m +
∑
j∈J

µjδxj .

We now observe that �
|Du|2 dm +

�
u2 dS ≥ ‖u‖2L2∗ (m)λS(X). (6.8.10)

Indeed, this is obvious if u = 0 m-a.e., hence we assume that u 6= 0 m-a.e.. In this case, (6.8.10)
follows noticing that λS(X) ≤ QS(u‖u‖−1

L2∗ (m)
) = ‖u‖−2

L2∗ (m)

(�
|Du|2dm +

�
u2 dS

)
. Therefore

using again (6.8.9) we have

λS(X) = lim
n
QS(un) ≥ µ(X) +

�
u2 dS ≥

�
|Du|2dm + λε

∑
j∈J

ν
2/2∗

j +

�
u2 dS

(6.8.10)

≥ ‖u‖2L2∗ (m)λS(X) + λε
∑
j∈J

ν
2/2∗

j ≥ λS(X)(‖u‖2L2∗ (m) +
∑
j∈J

ν
2/2∗

j )

≥ λS(X)
(�
|u|2

∗
dm +

∑
j∈J

νj

)2/2∗

= λS(X)ν(X) = λS(X),

where in the last line, we used the concavity of the function t2/2
∗
, the fact that ν ∈ P(X) and

finally that λS(X) ≥ 0. Hence all the inequalities are equalities and in particular from the strict
concavity of t2/2

∗
we deduce that either

�
|u|2∗dm = 1 or u = 0 (and the numbers νj are all

zero except one that is equal to one). In the second case, plugging u = 0 in the above chain of
inequalities, we infer that λε = λS(X) which is a contradiction. Hence, we must have ‖u‖L2∗ (m) = 1

and un → u strongly in L2∗(m) and in particular u is a minimizer for (6.8.5). This together with
Proposition 6.8.3 concludes the proof.

We conclude by extending the classical upper bound (6.8.2) to the setting of RCD(K,N) spaces.
This in particular shows that (6.8.7) is a reasonable assumption.

Proposition 6.8.4. Let (X, d,m) be a compact RCD(K,N) space for some K ∈ R, N ∈ (2,∞)
and let S as in (6.8.3). Then

λS(X) ≤
minX θ

2/N
N

Eucl(N, 2)2
.

Proof. The argument is almost the same as for Theorem 6.4.4. We start noticing that in the
case minX θN = +∞, evidently there is nothing to prove. We are left then to deal with the case
0 < minX θN < +∞. Let x ∈ X such that θN (x) = minX θN . Then there exists a sequence
ri → 0 such that the sequence of metric measure spaces (Xi, di,mi, xi) := (X, d/ri,m/r

N
i , x)

pmGH-converges to an RCD(0, N) space (Y, dY,mY,oY) satisfying mY(Br(oY)) = ωNθN (x)rN

for every r > 0 (this space is actually a cone by [98]). In particular from Lemma 6.4.3 for every

ε > 0 there exists a non-zero u ∈ Lipc(Y) such that
‖u‖2

L2∗ (mY)

‖|Du|‖2
L2(mY)

≥ Eucl(N,2)2−ε
θN (x)2/N . Then by the
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Γ-convergences of the 2-Cheeger energies there exists a sequence ui ∈W 1,2(Xi) such that ui → u
strongly in W 1,2. Moreover, since ui are uniformly bounded in W 1,2 (meaning in W 1,2(Xi)), by
the Sobolev embedding (recall also the scaling property in (6.4.1)) we have supi ‖ui‖L2∗ (mi) < +∞.

In particular from the lower semicontinuity of the L2∗ -norm we get

lim
i

‖ui‖2L2∗ (m)

‖|Dui|‖2L2(m)

= lim
i

‖ui‖2L2∗ (mi)

‖|Dui|i‖2L2(mi)

≥
‖u‖2

L2∗ (mY)

‖|Du|‖2L2(mY)

≥ Eucl(N, 2)2 − ε
minX θ

2/N
N

, (6.8.11)

where |Dui|i denotes the weak upper gradient computed in the space Xi.
Denote by p′ := p/(p−1) the conjugate exponent of p and observe that by hypothesis 2p′ < 2∗.

This and the fact that ui are bounded in L2∗ , by Proposition 2.4.3 (viii) imply that ui converges
in L2p′ -strong to u. Finally using the Hölder inequality we can write

lim
i
QS(ui) ≤ lim

i

�
|Dui|2 dm

‖ui‖2L2∗ (m)

+ lim
i

�
S|ui|2 dm

‖ui‖2L2∗ (m)

(6.8.11)

≤
minX θ

2/N
N

Eucl(N, 2)2 − ε
+ lim

i
‖S‖Lp(m)

( �
|ui|2p

′
dm
)1/p′

‖ui‖2L2∗ (m)

,

=
minX θ

2/N
N

Eucl(N, 2)2 − ε
+ lim

i
‖S‖Lp(m)r

N
(

1
p′−

2
2∗

)
i

‖ui‖2L2p′ (mi)

‖ui‖2L2∗ (mi)

=
minX θ

2/N
N

Eucl(N, 2)2 − ε
.

where we have used that 1/p′ < 2/2∗, that limi ‖ui‖L2∗ (mi) ≥ ‖u‖L2∗ (mY) > 0 and as observed
above ‖ui‖L2p′ (mi)

→ ‖u‖L2p′ (mY). From the arbitrariness of ε > 0 the proof is now concluded.

6.8.2 Continuity of λS under mGH-convergence

In [121] it has been proven in the setting of Ricci-limits a result about mGH-continuity of the
generalized Yamabe constant, under some additional boundedness assumption on the sequence.
In the following result we extend this fact in the setting of RCD-spaces and we remove such extra
assumption.

We start proving that λS is upper semicontinuous under mGH-convergence.

Lemma 6.8.5. Let (Xn, dn,mn) be a sequence of compact RCD(K,N)-spaces with m(Xn) = 1,

n ∈ N̄, for some K ∈ R, N ∈ (2,∞) and satisfying Xn
mGH→ X∞. Let also Sn ∈ Lp(mn) be Lp-weak

convergent to S, for some p > N/2. Then,

lim
n→∞

λSn(Xn) ≤ λS(X∞). (6.8.12)

Proof. Fix a non-zero u ∈ W 1,2(X∞). By the Sobolev embedding on X∞ we know that u ∈
L2∗(m∞), therefore by Lemma 6.6.4 there exists a sequence un ∈ W 1,2(Xn) that converge W 1,2-
strong and L2∗ -strong to u. By definition of λSn(Xn), we have

‖un‖2L2∗ (mn)λSn(Xn) ≤
�
|Dun|2 dmn +

�
Sn|un|2 dmn, ∀n ∈ N.

From the assumption that p > N/2, we have that its conjugate exponent p′ satisfies 2p′ < 2∗,
therefore from (vii), (viii) in Proposition 2.4.3 we have that |un|2 Lp

′
-strongly converges to u2.

Recalling Proposition 6.6.2, we get that all the above quantities pass to the limit and thus we
reach

‖u‖2L2∗ (m∞) lim
n→∞

λSn(Xn) ≤
�
|Du|2 dm∞ +

�
S|u|2 dm∞.

By arbitrariness of u, we conclude.

We shall now come to the main continuity result.
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Theorem 6.8.6 (mGH-continuity of λS). Let (Xn, dn,mn) be a sequence of compact RCD(K,N)-

spaces with m(Xn) = 1, n ∈ N̄, for some K ∈ R, N ∈ (2,∞) satisfying Xn
mGH→ X∞. Let also

Sn ∈ Lp(mn) be Lp-weak convergent to S ∈ Lp(m∞), for a given for p > N/2. Then,

lim
n→∞

λSn(Xn) = λS(X∞).

Proof. In light of Lemma 6.8.5, we only have to prove that

lim
n→∞

λSn(Xn) ≥ λS(X∞).

It is not restrictive to assume that the lim is actually a limit. For every n ∈ N, we take un ∈
W 1,2(Xn) non-zero so that QSn(un)− λSn(Xn) ≤ n−1. In other words

‖un‖2L2∗ (mn)

(
λSn(Xn) + 1

n

)
≥
�
|Dun|2 dmn +

�
Sn|un|2 dmn. (6.8.13)

It is also clearly not restrictive to suppose that un ∈ Lipc(Xn) are non-negative and such that
‖un‖L2∗ (mn) ≡ 1. Hence, arguing as in the proof of Theorem 6.8.2 (using also (6.8.12)), we

get that un is uniformly bounded in W 1,2. Then, by compactness (see Proposition 2.4.4), up
to a not relabeled subsequence, we have that un converge L2-strong and W 1,2-weak to some
u∞ ∈ W 1,2(X∞). From ‖un‖L2∗ (mn) ≡ 1 and the assumption p > N/2, Proposition 2.4.3 implies

that u2
n converges Lp/(p−1)-strongly to u2

∞ and that un converges L2p/(p−1)-strongly to u∞. From
this point we subdivide the proof in three cases to be handled separately.
Case 1: limn λSn(Xn) < 0. In this case, by (6.8.13) we know by lower semicontinuity of the
2-Cheeger energy and Proposition 6.6.2, we have that

0 > lim
n
λSn(Xn) ≥

�
|Du∞|2 dm∞ +

�
Su2
∞ dm∞.

In particular, u∞ is not m∞-a.e. equal to zero and by weak-lower semicontinuity, we have that
0 < ‖u∞‖L2∗ (m∞) ≤ 1. Therefore

‖u∞‖L2∗ (m∞) lim
n
λSn(Xn) ≥ lim

n
λSn(Xn) ≥

�
|Du∞|2 dm∞+

�
Su2
∞ dm∞ ≥ λS(X∞)‖u∞‖L2∗ (m∞),

which concludes the proof in this case.
Case 2: limn λSn(Xn) > 0. Before starting, notice that by using the Hölder inequality, for any
n ∈ N and any u ∈W 1,2(Xn) we have by the definition of λSn(Xn) that

‖u‖2L2∗ (mn) ≤ λSn(Xn)−1

�
|Du|2 dmn + λSn(Xn)−1‖Sn‖Lp(mn)‖u‖2L2p/p−1(mn). (6.8.14)

Moreover, since all Xn are compact and renormalized, there are µ ∈ M +
b (Z), ν ∈ P(Z) so that,

up to a not relabeled subsequence, |Dun|2mn ⇀ µ and |un|2
∗
mn ⇀ ν in duality with C(Z) as

n goes to infinity, where (Z, dZ) is a (compact) space realizing the convergences via extrinsic
approach. Since we are assuming that limn λSn(Xn) > 0, the constant in (6.8.14) are uniformly
bounded (for n big enough) and we are in position to apply Lemma 6.6.6. In particular we get
the existence of an at most countable set J , points (xj)j∈ J ⊂ X∞ and weights (µj), (νj) ⊂ R+,

so that µj ≥ limn λSn(Xn)ν
2/2∗

j with j ∈ J and

ν = |u∞|2
∗
m +

∑
j∈J

νjδxj , µ ≥ |Du∞|2m +
∑
j∈J

µjδxj .

Moreover, recalling Proposition 6.6.2 we have

µ(X) +

�
Su2
∞ dm∞ = lim

n→∞
QSn(un)

(6.8.13)

≤ lim
n→∞

λSn(Xn), (6.8.15)
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and, arguing as in the proof of (6.8.10), u∞ is so that ‖u∞‖L2∗ (m∞)λS(X∞) ≤
�
|Du∞|2 dm∞ +�

S|u∞|2 dm∞. Finally, we can perform the chain of estimates

lim
n→∞

λSn(Xn)
(6.8.15)

≥ µ(X) +

�
Su2
∞ dm∞ ≥

�
|Du∞|2dm∞ + lim

n→∞
λSn(Xn)

∑
j∈J

ν
2/2∗

j +

�
Su2
∞ dm∞

≥ λS(X∞)‖u∞‖2L2∗ (m∞) + lim
n→∞

λSn(Xn)
∑
j∈J

ν
2/2∗

j

(6.8.12)

≥ lim
n→∞

λSn(Xn)
(
‖u∞‖2L2∗ (m∞) +

∑
j∈J

ν
2/2∗

j

)
≥ lim
n→∞

λSn(Xn)
(�
|u∞|2

∗
dm∞ +

∑
j∈J

νj

)2/2∗

≥ lim
n→∞

λSn(Xn),

where in the last line, we used the concavity of t2/2
∗

and the fact that ν ∈ P(X). In particular,
all inequalities must be equalities and by the strict concavity of t2/2

∗
either ‖u∞‖L2∗ (m∞) = 1 and

all νj = 0, or u∞ = 0 m∞-a.e. and all the weights are zero except one νj = 1. The first situation
is the easiest one, as in this case the above inequalities which are actually equalities imply that
λS(X∞) = limn λSn(Xn), which is what we wanted. Therefore we suppose that we are in the
second case, i.e. that there exists a point y0 ∈ X∞ so that |un|2

∗
mn ⇀ δy0

in duality with C(Z)
and that un converges in L2-strong to zero. Moreover, from (6.8.13) and Hölder inequality we get

‖un‖2L2∗ (mn) ≥
(
λSn(Xn) + 1

n

)−1
(�
|Dun|2 dmn − ‖Sn‖Lp(mn)‖un‖2L2p/(p−1)(mn)

)
, ∀n ∈ N.

We can therefore apply Lemma 6.7.1 to get that θN (y0) ≤ Eucl(N, 2)N limn λSn(Xn)N/2. Finally,
we can rearrange and invoke Proposition 6.8.4 to get

lim
n
λSn(Xn) ≥ θN (y0)2/N

Eucl(N, 2)2
≥ λS(X∞).

Case 3: limn λSn(Xn) = 0. The argument is the same as in the previous case, only that we
replace (6.8.14) with the Sobolev inequality given in Proposition 6.5.1:

‖u‖2Lq(m) ≤ A(K,N,D)‖|Du|‖2L2(m) + ‖u‖2L2(mn), ∀u ∈W 1,2(Xn), (6.8.16)

where D > 0 is constant such that diam(Xn) ≤ D. Then we can apply exactly as in the previous

case Lemma 6.6.6, except that in this case we obtain µj ≥ A(K,N,D)−1ν
2/2∗

j for every j ∈ J .
Then the above chain of estimates becomes

0 = lim
n→∞

λSn(Xn)
(6.8.15)

≥ µ(X) +

�
Su2
∞ dm∞

≥
�
|Du∞|2dm∞ +A(K,N,D)−1

∑
j∈J

ν
2/2∗

j +

�
Su2
∞ dm∞

≥ λS(X∞)‖u∞‖2L2∗ (m∞) +A(K,N,D)−1
∑
j∈J

ν
2/2∗

j

(6.8.12)

≥ lim
n→∞

λSn(Xn)‖u∞‖2L2∗ (m∞) +A(K,N,D)−1
∑
j∈J

ν
2/2∗

j ≥ 0.

Therefore we must have that νj = 0 for every j ∈ J . This forces ‖u∞‖2L2∗ (m∞)
= 1 giving in turn

that λS(X∞) = 0. Having examined all the three cases, the proof is now concluded.
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A | Interpolation density estimates in

the q-Wasserstein space

The aim of this appendix is to revisit the 2-Wasserstein interpolation L∞(m)-estimates of [174] on
CD spaces and [57] on MCP spaces for arbitrary q 6= 2.

A.1 The case of MCP spaces

Recall that, if (X, d,m) is a MCP(K,N)-space for some K ∈ R, N ∈ [1,∞) as defined in Definition
2.5.1, we can interpolate between an absolutely continuous measure and a Dirac mass with a plan
and 2-optimal dynamical plan π satisfying

(et)]π ≤ C(t)m, t ∈ [0, 1),

for a suitable profile function that depends on µ0 and K,N . This has been stated in Theorem
2.5.3 and is due to [57]. We extend now this result for arbitrary q ∈ (1,∞).

Theorem A.1.1. Let (X, d,m) be a non branching MCP(K,N)-space for some K ∈ R, N ∈ [1,∞).
Then, for every q ∈ (1,∞), D > 0 and µ0, µ1 ∈ Pq(X) with µ0 = ρ0m, ρ0 ∈ L∞(m), and
diam(supp(µ0) ∪ supp(µ1)) < D, there exists π ∈ OptGeoq(µ0, µ1) with µt := (et)]π � m and

‖ρt‖L∞(m) ≤
1

(1− t)N
eDt
√

(N−1)K−‖ρ0‖L∞(m), ∀t ∈ [0, 1), (A.1.1)

having set ρt := dµt
dm for t < 1.

Proof. For q = 2, the statement is proved in [57, Theorem 1.1]. Here, we give some details to
handle the general case.
Step 1. We begin by showing that any (X, d,m) as in the hypothesis is ‘qualitatively non degen-
erate’ according to the axiomatization given in [55, Assumption 1] (actually, under non branching
it is equivalent [128, Corollary 5.17]). Indeed, let K ⊂ X be compact, A ⊂ K non negligible and
x ∈ K. Then, denoting by At,x ⊂ C([0, 1],X) the subset of geodesics linking A to x, we denote
µ0 = m(A)−1m|A and appeal to [57, Theorem 1.1] to get that there exists π ∈ OptGeo2(µ0, δx) so

that

1 = µt(At,x) ≤ 1

(1− t)N
eDt
√

(N−1)K−m(At,x)

m(A)
, ∀t ∈ [0, 1),

where D := diam (K) < ∞, having used that µt is a probability measure concentrated on At,x.
In particular, this shows that there exists a profile function f : [0, 1] → (0, 1] (depending on the
compact set K) and a positive δ < 1 so that

m(At,x) ≥ f(t)m(A), ∀t ∈ [0, δ].

That is, (X, d,m) verifies Assumption 1 in [55].
Step 2. Suppose now µ1 = δx, for x ∈ supp(m). Then, from [57], we know that there exists π ∈
OptGeo2(µ0, δx) satisfying (A.1) hence, by Remark 2.5.2, we have also that π ∈ OptGeoq(µ0, δx).
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Step 3. Let here n ∈ N and suppose µ1 is a finite convex combination of Dirac masses, namely
µ1 :=

∑n
j=1 λjδxj for (xj) ⊂ X with xi 6= xi for i 6= j and (λj) ⊂ [0, 1] with

∑n
j=1 λj = 1. Then,

by appealing to Step 1, we are in position to apply [55, Theorem 2.1] (recall X is proper) to
deduce that there exists a unique optimal coupling between µ0 and µ1 and it is induced by a Borel
map T : X→ X, i.e.

W q
q (µ0, µ1) =

�
dq(x, T (x)) dµ0(x).

Take this map T and define µj0 := µ0|T−1(xj)
for every j = 1, ..., n. By Step 2, we know that

there are πj ∈ OptGeoq(λ
−1
j µj0, δxj ) verifying

‖ρjt‖L∞(m) ≤
1

(1− t)N
eDt
√

(N−1)K−‖ρj0‖L∞(m), ∀t ∈ [0, 1), j = 1, ..., n,

having set ρjt :=
dµjt
dm and µjt := (et)]π

j for t < 1.
We now define π :=

∑n
j=1 λjπ

j so that, by construction, we have that (e0, e1)]π ∈ Adm(µ0, µ1)

and µt := (et)]π � m for every t < 1 with ρt := dµt
dm =

∑n
j=1 λjρ

j
t . We now claim that ρt satisfies

(A.1). To this aim, we instead check that

m({ρit > 0} ∩ {ρjt > 0})) = 0, ∀t ∈ (0, 1), j 6= i,

as the latter property implies the claim by construction of µt. Suppose the above is not true,
namely there exists τ ∈ (0, 1) so that m({ρiτ > 0} ∩ {ρjτ > 0})) > 0 for some j 6= i. Then
there would exists an optimal coupling between the (renormalized) measures m|{ρiτ>0}∩{ρjτ>0}

and

δxj + δxi that is not induced by a map. This finds a contradiction for what we have previously
proved and concludes the step.
Step 4. Since (X, d) is separable, given any µ1 as in the hypothesis, we can find a sequence of
points (xj)j∈N ⊂ supp(µ1) and weights (λn,j)j∈N ⊂ [0, 1] so that

n∑
j=1

λn,jδxj =: µn1 → µ1 in Wq,

as n goes to infinity, recalling that the support of µ1 is bounded and consequently (1.1.10). By
Step 3, we known that there exists a sequence πn ∈ OptGeoq(µ0, µ

n
1 ) verifying µn := ρnt m and

(A.1) for every t < 1, n ∈ N. Finally, arguing as in [57, Lemma 4.4] (the proof is written for
q = 2 but works for arbitrary q, see also Lemma 4.3.7) we get the existence of a weak limit
π ∈ OptGeoq(µ0, µ1) of πn verifying all the required properties.

A.2 The case of CDq spaces

Aim of this section is to generalize to arbitrary q 6= 2 the interpolation estimates of [174]. We stated
them in Theorem 2.2.9 that, recall, ensure that on a CD2(K,N) space for some K ∈ R, N ∈ (1,∞],
we can interpolate between two absolutely continuous measures bounded with bounded supports
with a 2-optimal dynamical plan π satisfying

(et)]π ≤ Cm, t ∈ [0, 1),

for a suitable profile function that depends on µ0, µ1 and K,N . More precisely, defining

C(D,K,N) :=

{
e
√

(N−1)K−D, if 1 ≤ N <∞
eK
−D2/12, if N =∞,

we are going to prove the following:
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Theorem A.2.1. Let (X, d,m) be a CDq(K,N)-space for some K ∈ R, N ∈ [1,∞] and q ∈ (1,∞).
For any D > 0 and ρ0, ρ1 ∈ L∞(m) probability densities with diam(supp(ρ0) ∪ supp(ρ1)) < D,
there exists π ∈ OptGeoq(ρ0m, ρ1m) satisfying µt := (et)]π � m. Moreover, writing µt := ρtm,
we have the following upper bound for the density

‖ρt‖L∞(m) ≤ C(D,K,N)‖ρ0‖L∞(m) ∨ ‖ρ1‖L∞(m), ∀t ∈ [0, 1].

We postpone its proof at the end of this part and start building up all the necessarily material.
Since the above result is probably expected to hold by experts of the field, we shall adopt a concise
(but complete) style of presentation.

Preparatory Lemmas

Consider for any q ∈ (1.∞) two measures µ0, µ1 ∈Pq(X) with Wq(µ0, µ1) <∞ and denote by

I
q
t (µ0, µ1) := {µ ∈Pq(X): Wq(µ0, µ) = tWq(µ0, µ1), Wq(µ, µ1) = (1− t)Wq(µ0, µ1)},

the set of t-intermediate measures between µ0, µ1 where t ∈ (0, 1).

Lemma A.2.2. Let (X, d) be a metric space, q ∈ (1,∞) and assume µ0, µ1 ∈Pq(X) have bounded
supports. Then, for every t ∈ (0, 1), the set I

q
t (µ0, µ1) is closed in (Pq(X),Wq).

Proof. For any νn ⊆ I
q
t (µ0, µ1) with νn → ν in Wq, the triangular inequality gives

max
i=0,1

|Wq(µi, ν)−Wq(µi, νn)| ≤Wq(νn, ν),

from which the conclusion follows.

We now face convexity properties of the set of t-intermediate measures. This statement should
be interpreted as a way to redistribute mass on intermediate points of Wasserstein geodesics.

Lemma A.2.3. Let (X, d,m) be a metric measure space which is also geodesic and q ∈ (1,∞). Sup-
pose µ0, µ1 ∈P(X) with Wq(µ0, µ1) <∞. Then, for any π ∈ OptGeoq(µ0, µ1) and f : Geo(X)→
[0, 1] s.t. c = (fπ)(Geo(X)) ∈ (0, 1), we have

(et)]((1− f)π) + cµ ∈ I
q
t (µ0, µ1),

for every µ ∈ I
q
t (

1
c (e0)](fπ), 1

c (e1)](fπ), t ∈ (0, 1).

Proof. We omit the details and refer to [174, Lemma 3.5] for the proof which reads identical for
arbitrary q.

We consider the excess mass functional

FC(η) := ‖(ρ− C)+‖L1(m) + ηs(X),

and observe that, when it vanishes on a probability measure, it automatically detect both abso-
lutely continuity with respect to the reference measure with corresponding density L∞-bounded
from the constant C. We prove first that it is lower semicontinuous.

Lemma A.2.4. Let (X, d) be a bounded metric space equipped with a finite Borel measure m and
q ∈ (1,∞). Then, for any C ≥ 0, the functional FC is lower semicontinuous on (Pq(X),Wq).

Proof. The proof consists in showing that

FC(µ) = sup
{ �

g dµ− C
�
g dm : g ∈ C(X), 0 ≤ g ≤ 1

}
,

for every µ ∈ Pq(X). It is proven in [174]) that it is lower semicontinuous in P2(X). Then,
recalling (1.1.10) and the present hypothesis, FC is equivalently lower semicontinuous in the space
(Pq(X),Wq) independently on q ∈ (1,∞).
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Proof of Theorem A.2.1

Proof. We subdivide the proof into several steps. Write for simplicity µi := ρim for i = 0, 1. First
observe that, for every K, we can alternatively prove the statement in the larger (or equal) class
of CDq(−K−, N)-spaces. Hence, for simplicity, we shall consider only K < 0 in the proof.
Step 1. From the CDq(K,N) condition, there exits π ∈ OptGeoq(µ0, µ1) which is concentrated
on geodesics with length at most D. Also, wee denote for simplicity E := {ρ 1

2
> 0}. We first

analyze the case N <∞: an application of Jensen’s inequality yields

UN (µ 1
2
|m) = −m(E)

 
E

ρ
1− 1

N
1
2

dm ≥ −m(E)
( 1

m(E)

)1− 1
N

= −m(E)
1
N

On the other hand, we estimate in (2.2.2) as

UN (µ 1
2
|m) ≤ −

( 1

‖ρ0‖L∞(m) ∨ ‖ρ1‖L∞(m)

) 1
N

�
2τ

( 1
2 )

K,N (d(γ0, γ1)) dπ.

Because of K < 0 and recalling that θ := d(γ0, γ1) < D π-a.e. γ, we can also estimate the
distortion coefficients as

τ
( 1

2 )

K,N (θ) =
1

2

1
N
( 1

e
√
−K/(N−1) θ2 + e−

√
−K/(N−1) θ2

)1− 1
N ≥ 1

2

(
e
√
−K(N−1)D2

)− 1
N .

While, for the case N = ∞, we observe firstly that Jensen inequality with the convexity of
u(x) = x log x grant

Entm(µ 1
2
) =

�
E

ρ 1
2

log ρ 1
2

dm ≥ log
( 1

m(E)

)
,

and secondly that

Entm(µ 1
2
) ≤ 1

2
Entm(µ0) +

1

2
Entm(µ1) +

−K
8
W 2
q (µ0, µ1)

≤ log
(
‖ρ0‖L∞(m) ∨ ‖ρ1‖L∞(m)

)
+
−KD2

8
.

We can thus combine in both case the two inequalities to get the following spreading of mass under
curvature dimension condition principle:

m({ρ 1
2
> 0}) ≥ 1

P (D,K,N)‖ρ0‖L∞(m) ∨ ‖ρ1‖L∞(m)
, (A.2.1)

where P (D,K,N) = e
√

(N−1)K−D/2 if 1 ≤ N <∞ and eK
−D2/8 if N =∞, for every K ∈ R. For

simplicity, we write from now on M := P (D,K,N)‖ρ0‖L∞(m) ∨ ‖ρ1‖L∞(m).
Step 2. We now show that for any C > M , there exists a minimizer of FC(·) in I

q
1
2

(µ0, µ1). There

is a standard way to achieve minimizers of the functional FC even when I
q
t (µ0, µ1) need not to

be compact1. This has been shown in [174] building exactly upon (A.2.1), Lemma A.2.2, Lemma
A.2.3 and Lemma A.2.4 for the particular case q = 2. Being these results valid also for general
q ∈ (1,∞) we omit the details of the strategy ensuring that

∀C > M, ∃µ ∈ I
q
1
2

(µ0, µ1) so that FC(µ) = inf
η∈Iq1

2

(µ0,µ1)
FC(η). (A.2.2)

Step 3. For any C > M , we claim that

inf
η∈Iq1

2

(µ0,µ1)
FC(η) = 0.

1This typically occurs on proper spaces making possible a ‘direct method’ argument. As we consider also N =∞,
a different argument is needed.
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Denote I
q
min ⊂ I

q
1
2

(µ0, µ1) the set of minimizers of FC (which is always nonempty (A.2.2)) and let

µ ∈ I
q
min be such that

m(ρµ > C) ≥
(M
C

) 1
4

sup
η∈Iq1

2

(µ0,µ1)

m({ρη > C}), (A.2.3)

where µ := ρµm+µs with µs ⊥ m and η := ρηm+µs with ηs ⊥ m. We argue now by contradiction
and suppose FC(µ) > 0 whence. If A := {ρµ > 0}, then this means necessarily that m(A) > 0 and
µ2(X) > 0. In the first case, find a δ > 0 so that, denoting A′ := {ρµ > C + δ}, we have

m(A′) ≥
(M
C

) 1
2

m(A).

Let α ∈ Optq(µ0, µ), β ∈ Optq(µ, µ1) and consider

π̃ ∈ OptGeoq

(
(P 0)]

α|X×A′
µ(A′)

, (P 1)]
β|A′×X

µ(A′)

)
,

given by Step 1. Denote Γt := (et)]π̃ the correspondingWq-geodesic and consider its decomposition
Γ 1

2
= ρΓm + Γs. Then, from (A.2.1), it follows that

m({ρΓ > 0} ≥ µ(A′)

M
≥ C

M
m(A′) ≥

( C
M

) 1
2

m(A). (A.2.4)

Now consider redistributing the mass of the measure µ via

µ̃ := µ|X\A′ +
C

C + δ
µ|A′ +

δ

C + δ
µ(A′)Γ 1

2
.

Arguing then as in [174, Lemma 3.5], the Lemma A.2.3 directly yields µ̃ ∈ I
q
1
2

(µ0, µ1). Also,

setting µ̃ = ρµ̃m + µ̃s with µ̃s ⊥ m, a standard calculation shows that the excess functional
decreases computed at µ̃. We omit here the details to get

FC(µ)− FC(µ̃) =

�
{ρµ<C}

min
{
C − ρµ,

δ

C + δ
µ(A′)ρΓ

}
dm.

Notice that, being µ a minimizer, the right hand most side of the above equation is nonpositive
whence, necessarily the integral must vanish giving in turn

µ̃ ∈ I
q
min(µ0, µ1), m({ρµ < C} ∩ {ρΓ > 0}) = 0.

Moreover, ρµ̃ > C m-a.e. on the set {ρµ ≥ C} ∩ {ρΓ > 0} , hence

m({ρµ̃ > C}) ≥ m({ρΓ > 0})
(A.2.4)

≥
( C
M

) 1
2

m({ρµ > C})
(A.2.3)

≥
( C
M

) 1
4

sup
η∈Iq1

2

(µ0,µ1)

m({ρη > C}),

yielding a contradiction, since µ̃ ∈ I
q
1
2

(µ0, µ1) and C > M . Therefore, A is negligible and the first

situation does not occur: necessarily µ is purely singular, otherwise there is nothing to prove. But
then a similar redistribution of mass for the singular part applies giving a contradiction. Wrapping
up, we showed

∀C > M ∃ min
η∈Iq1

2

(µ0,µ1)
FC(η) = 0.

The extreme case C = M can be obtained with an easy argument as in [174, Corollary 3.12]: being
µ0, µ1 supported on bounded sets, we can find a bounded set B ⊂ X so that every η ∈ I

q
1
2

(µ0, µ1)

is supported in B, and hence

min
η∈Iq1

2

(µ0,µ1)
FM (η) ≤ min

η∈Iq1
2

(µ0,µ1)
FC(η) + |C −M |m(B) = |C −M |m(B),
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for every C > M . Thus, the conclusion follows also for C = M by approximation C ↓M .
Step 4. The conclusion of the theorem will be achieved by iterating the above construction from
midpoint to a general dyadic partition of [0, 1]. Fix n ∈ N, we now show how to produce from the
measures (ρk2−n+1) for k = 0, ..., 2−n+1 the successive sequence (ρk2−kn). Consider, for k odd, the
midpoints µk2−n ∈ I

q
1
2

(ρk2−n+1m, ρ(k+1)2−n+1m) satisfying

µk2−n � m, µk2−n := ρk2−nm

‖ρk2−n‖L∞(m) ≤ P (K,N, 2−n+1D)‖ρ(k−1)2−n‖L∞(m) ∨ ‖ρ(k+1)2−n‖L∞(m),

since diam(supp(ρ(k−1)2−n)∪supp(ρ(k+1)2−n)) < 2−n+1D and Step 1-2-3 apply. By induction, it
holds that

‖ρk2−n‖L∞(m) ≤
n∏
i=1

P (K,N, 2−i+1D)‖ρ0‖L∞(m) ∨ ‖ρ0‖L∞(m), ∀n ∈ N,

which, under the assumption D <∞, can be coupled with the fact

lim
n→∞

n∏
i=1

P (K,N, 2−i+1D) = C(D,K,N),

giving in turn that a geodesic curve µt in OptGeoq(µ0, µ1) is well defined by completion. Finally,
the sought L∞-estimate on ρt holds by lower semicontinuity of the functional FM .
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[42] A. Björn and J. Björn, Approximations by regular sets and Wiener solutions in metric
spaces, Comment. Math. Univ. Carolin., 48 (2007), pp. 343–355.

[43] , Nonlinear potential theory on metric spaces, vol. 17 of EMS Tracts in Mathematics,
European Mathematical Society (EMS), Zürich, 2011.
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[172] G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics. (AM-27),
Princeton University Press, 1951.

[173] A. Profeta, The sharp Sobolev inequality on metric measure spaces with lower Ricci cur-
vature bounds, Potential Anal., 43 (2015), pp. 513–529.

[174] T. Rajala, Interpolated measures with bounded density in metric spaces satisfying the
curvature-dimension conditions of Sturm, J. Funct. Anal., 263 (2012), pp. 896–924.

[175] T. Rajala and K.-T. Sturm, Non-branching geodesics and optimal maps in strong
CD(K,∞)-spaces, Calc. Var. Partial Differential Equations, 50 (2014), pp. 831–846.
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