
Physics Area - PhD course in

Physics and Chemistry of Biological Systems

Learning to fly
exploiting

complex wind fields

Candidate:
Claudio Leone

Advisor:
Antonio Celani

Academic Year 2021-22

Contents

Introduction 5

1 Reinforcement Learning Control for Ship-towing in a Turbulent Envi-
ronment 11

1.1 Introduction . 11

1.2 The virtual environment . 12

1.2.1 Kite and vehicle dynamics . 13

1.2.2 The turbulent environment . 14

1.3 Learning to control the kite . 14

1.3.1 Reinforcement Learning . 15

1.3.2 Actions . 16

1.3.3 The choice of observables . 16

1.3.4 The reward structure . 17

1.4 Results . 18

1.4.1 Learning effective control strategies 18

1.5 Discussion . 20

2 Why is SARSA so effective? 21

2.1 Introduction . 21

2.2 Modeling . 23

2.3 The Reinforcement Learning framework 24

2.3.1 Tabular SARSA . 24

2.3.2 Deep Q-Learning . 25

2.3.3 An informed approach to deep-Reinforcement Learning 28

2.3.4 State and control variables . 28

2.3.5 Reward structure . 29

2.4 Simulations and results . 29

2.4.1 Results in a constant wind pattern 29

2.4.2 Results with a linear wind gradient 33

2.5 Conclusions and future perspectives . 34

3

4 CONTENTS

3 Spider Ballooning as a decision-making process 37
3.1 Introduction . 37
3.2 Model of the environment . 39

3.2.1 Physics of the ballooning spider . 39
3.2.2 The virtual wind environment . 41

3.3 The decision-making algorithm . 42
3.4 Conclusions and future perspectives . 45

Conclusions 47

Appendices 49

A Supplementary Information to Chapter 1 51
A.1 Detailed model dynamics . 51
A.2 Turbulent flow structure . 53
A.3 Simulation parameters . 55
A.4 Learning in simpler set-ups and with different reward distribution 58

B Supplementary Information to Chapter 2 65
B.1 Mathematical model . 65

B.1.1 Aerodynamic force . 66
B.1.2 Tension . 68

B.2 Attack and bank angles . 69
B.3 Model configuration . 71
B.4 Details on the simulations . 72

Introduction

The work of this thesis is focused on showing how Machine Learning proves effective in
predicting the behaviour of complex wind velocity fields. On a large scale the motion
of winds is the object of study of meteorology, as the precision of weather forecasting
depends on the ability to determine the evolution of the air currents conditioned by
the distribution of atmospheric pressure and temperature around the globe. If we move
from a global to a local perspective, aerodynamics studies the impact of the air flow on
structures like wings and sails and the forces that arise from this interaction. This leads
to the derivation of empirical laws describing how such forces depend on the shape and
velocity of the objects we are interested in. What is captivating for us is how to exploit
the power that can be extracted from the wind in order to use it for different tasks that
span from energy production to motion through the air velocity field.

As far as the former is concerned, the most common technology nowadays in use
to convert eolic energy into electricity contemplates the employment of wind towers,
conveniently placed in windswept regions in the land or off-shore. In fact, the first two
chapters of this thesis work regard a recent alternative to wind towers which goes under
the name of Airborne Wind Energy [1]: it consists in the extraction of usable power
from the wind using a flying object - like a kite or a glider - connected with a tether to
a station on the ground or on a vehicle.

Therefore, wind power is commonly used for many human chores that extend from
sailing and paragliding, where the work of the aerodynamic force is the primary source
of energy, to flying planes, where the lift acting on the wings is generated thanks to the
engine propulsion on the aircraft. The usage of Airborne Wind Energy to travel from
point A to point B in space pertains mainly to the first category, utilizing tethered kites
to carry a vehicle on the ground or on the sea, resembling the popular activity of kite
surfing (fig. 1a).

Moreover, many animal species are able to exploit the behaviour of air flows in order
to move efficiently from one place to another: this is especially known for migrating
birds, being capable of using thermals to reduce their energy expenditure during their
intercontinental movements [2], but it is quite common among spiders too, which, even
without any wing apparatus, take advantage of the drag force exerted on their silk lines
in order to get dispersed from their birthplace. The last chapter of this thesis is deputed
to investigate this phenomenon, called spider ballooning (fig. 1b).

In both cases the main question we pose is the following: which is the best strategy

5

6 CONTENTS

Figure 1: a) An example of application of Airborne Wind Energy technology for ship
transport by the French company SkySails. The kite uses the wind to reduce the fuel
consumption by the diesel engine, contributing to pull the ship across the sea. b) A spider
on the verge of taking off and perform ballooning: the air can drag the silk filament,
which works as sail and makes the spider become airborne.

in order to maximize the power extraction from the wind velocity field? This translates
into choosing the best time to take-off for the spider in order to fly as far as possible.
Similarly, for a kite-vehicle set-up, it means looking for the set of actions which allows
for the maximum displacement of the vehicle.

This question underlines the possibility to formulate both tasks as optimization pro-
cesses: they consist in the individuation of the decisions that maximize a target function,
such as harvested power.

The quest for optimality

Striving for optimality is the main drive in a large variety of contexts: it can be po-
tentially characterized as an organizing principle in biology as well as a design principle
for artificial forms of intelligent systems. Therefore, looking for optimality principles
is particularly appealing from the point of view of evolution, as it can be argued that
behaviour is shaped the way it is by natural selection.

Mathematical optimization has a long history that deeps its roots into the origins of
differential calculus with the work of Fermat and Lagrange. This subject found astonish-
ing development in the 20th century, stimulated by progress and increase in complexity
especially in the field of logistics: the theory of linear programming - meant to maximize
or minimize a linear function under a set of constraints - was independently formulated
by Dantzig and Kantorovich to solve planning and cost problems in the U.S. and Soviet
army respectively [3, 4]. However, numerous new branches of research proliferated as
the functions to be optimized not necessarily respected linearity requirements or they
contained randomness. More specifically, the work of pioneers Richard Bellman and Lev
Pontryagin [5] among others shed light on the branch of mathematical optimization that
deals with finding a control for a dynamical system over a period of time such that an

CONTENTS 7

objective function is optimized, going under the name of Optimal Control Theory ever
since.

Bellman specifically introduced dynamic programming as a method for simplifying
complex decision problems by decomposing them into smaller pieces in a recursive fashion
[6]. Dynamic programming is widely considered the only feasible way of solving general
stochastic optimal control problems. Such brilliant piece of research constitutes the basis
of other techniques to solve decision-making problems.

Among those, the late 1980s saw the birth of Reinforcement Learning. In the words
of its creators Richard Sutton and Andrew Barto [7], Reinforcement Learning was meant
to be the union of two threads: one descending directly from the lesson by Bellman and
can be conceived as a generalization of dynamic programming theory; the other draws
inspiration from behavioural psychology especially in the works of Skinner and Pavlov,
adding to the first one the possibility to learn from experience, which was absent in
Optimal Control Theory.

In fact Reinforcement Learning proves very useful in dealing with optimal control
tasks with the great advantage of not needing the knowledge of the dependence of the
objective function on the dynamical system in study, shifting instead its focus towards
data elaboration and analysis.

Reinforcement Learning as an optimization technique

Figure 2: Reinforcement Learning scheme. The core of the Reinforcement Learning
framework is reported in this scheme. The subject of the learning is called agent and it
interacts with the external environment via actions, which provide feedback in the form
of rewards and observation of the new state.

Reinforcement Learning is generally regarded as a branch of the wider field of Ma-
chine Learning. Its working cycle is very intuitive and it is reported in fig. 2. Differently
from Supervised and Unsupervised learning, it is best suited for contexts in which it is
necessary to interact with a dynamical environment which provides the algorithm with
a stream of data to be analyzed online. The subject of the learning, called agent, inter-
acts with the surrounding environment by performing actions which provide it with a
feedback in the form of a reward signal and of information about its condition. As the
terminology is evidently borrowed from neuro-psychology, the agent is pushed to learn

8 CONTENTS

in the same flavour of its human/animal counterpart, understanding which actions will
lead it to the highest future rewards, making this scheme particularly suitable to address
optimization problems.

The scope of Reinforcement Learning virtually encompasses all possible decision-
making problems, from those pertaining to the regime of the aforementioned optimal
control – where the agent is assumed to know everything about the state of the world –
to those in which partial information about the environment is accessible to the agent (fig.
3). Beyond providing solutions to decision-making problems, Reinforcement Learning –
as it might be obvious from the name – offers the algorithms for the learning process. Not
only, then, one might hope to draw conclusions about the optimality of the behaviours
that one observes but also about the computations required to learn from experience.

Figure 3: Reinforcement Learning areas of application. Reinforcement Learning
encompasses a wide range of decision-making problem, which can be characterized on the
basis of the knowledge of the laws governing the environment (which increases moving
along the x-axis) and on the amount of information available to the agent about the
state of the environment (y-axis). Optimal Control Theory corresponds to the special
case in which a model of the dynamics is assumed to be known by the agent as well as the
full configuration of the system. In this realm optimal solutions are calculated from the
prediction of future outcomes according to a known model of the dynamics. Whenever
the information coming from the environment is incomplete we move downwards on the
y-axis towards partial observability. Going towards the origin we move away from model-
based approaches - in that they require the complete knowledge of the laws of Nature -
to model-free learning. The work in this thesis will in fact focus on problems in which
there is no a priori knowledge of either the state of the environment nor the model of its
evolution, pertaining to the region labeled by the full Reinforcement Learning problem.

The independence of Reinforcement Learning from a priori knowledge about the
surrounding environment makes it particularly suitable for our purposes. The learning
algorithm and the dynamics of the system can be developed separately as the goodness

CONTENTS 9

of predictions made by the algorithm exclusively depends on data collected from the
environment and not on its inner laws. This accounts for major generality leaving space
for application to different architectures and in diverse conditions.

With the techniques derived from Reinforcement Learning and from Machine Learn-
ing widely speaking, we are given a powerful tool to exploit wind energy without the
need of recurring to over-simplified models of the wind flow. Our approach is two-fold:
if on one hand we naturally aim at performance, being capable of efficiently harvesting
complex velocity fields, on the other we plan to maintain a physicist’s perspective on
Machine Learning, asking ourselves what are the relevant features that lead to success
searching for motif behind good results.

Learning to fly using complex wind fields

As we anticipated at the beginning, the tasks that we want to tackle are related to the
exploitation of wind energy in order to move efficiently in the velocity field avoiding
crashing or delaying the landing as much as possible.

The control of Airborne Wind Energy systems is an open and challenging problem
and state-of-the-art research on this topic addresses it with a technique called Non-
Linear Model Predictive Control. This allows for optimizing the power functional within
a certain time horizon and being able to integrate new information while operating. In
light of what we argued before, we believe in the potential of a Reinforcement Learning-
driven approach to this matter.

As we will see, its model-free approach allows us to deal with a higher degree of
complexity in the environment without operating approximations, which are instead
inevitable in the standard control frame. One driving example is the presence of turbu-
lence, which is an essential and unavoidable feature of natural flow on one hand but on
the other it is intractable for traditional control methods since it would require a huge
number of degrees of freedom to model it, resulting in heavy computations with very
little predictive power.

Moreover, it is straight-forward to frame the structure of the Airborne Wind Energy
extraction problem in the scheme of fig. 2. The purpose is to keep the kite flying
as information from its status is continuously flowing in providing useful data to the
control algorithm. Reacting to these observations, the algorithm must take actions with
the purpose of maximizing the harvested energy in the long run. This task obviously
requires continuous interplay between the agent, which we can individuate with the
software deputed to the decision-making, and the environment surrounding the kite.

Regarding spider ballooning instead, the goal is the same but the available actions
are somewhat limited. In fact the spider has no way to control its flight after becoming
airborne. It follows that the decision lies in the choice of take-off time that leads to the
most profitable results in terms of traveled distance. Previous quantitative works on this
phenomenon are limited to modeling, as in our knowledge there are no past attempts of
understanding the optimization process underlined by the search for the best choice for
the spider to become airborne.

10 CONTENTS

This structure allows for a slightly simpler treatment, at least in terms of a prelimi-
nary analysis on which velocity time-series are more suited for a successful flight in the
future. This is why we initially turn to a logistic regression model in order to recognize
the features of profitable local wind histories starting from labeled data of past flights.

The thesis is divided into three chapters. In chapter 1 Airborne Wind Energy is
introduced, focusing on its employment in towing a ship across the sea. We highlight
the success of a simple Reinforcement Learning algorithm in navigating the ship-kite
system efficiently in a turbulent wind flow with a low-dimensional input. All simulations
are performed in a virtual environment and it is possible to come out with an effective set
of actions sufficient to reproduce the best strategy and understand its main aspects. The
relevant observables are selected resorting to expert domain knowledge on the system
we analyze and this choice gives fruitful results in terms of performance, with a limited
price in complexity and memory usage. The content of this chapter has been submitted
to arxiv.org.

Chapter 2 analyzes more deeply the reasons for the success of this choice. We study a
slightly more refined architecture for energy harvesting as a test bench for two different
algorithms: the tabular one employed in chapter 1, underlining the generality proper
of model-free learning among different structures, and a second one involving a simple
feed-forward deep-network. Even if more articulate, the second program does not over-
power the results of the first one, but provides a deeper insight on its strength, partially
answering to the reasons of its success.

Finally, chapter 3 faces the phenomenon of ballooning spiders. We develop a new
model for the dynamics of the airborne spider and we study the decision-making process
at the basis of its take-off action. In this case the optimization process in nature does not
happen on the time-scale of the individual, as the ability to respond to the local wind
conditions appears plugged in the genetics of the spider species that perform ballooning.
It is one example of how evolution can be framed in terms of optimization, developing
one trait that favours fast dispersion of spiderlings, in order to avoid starvation and
cannibalism.

Chapter 1

Reinforcement Learning Control
for Ship-towing in a Turbulent
Environment

Airborne Wind Energy is a lightweight technology that allows power extraction from the
wind using kites. At variance with standard wind turbines, the airfoil orientation can be
dynamically controlled in order to maximize performance. The dynamical complexity
of kite aerodynamics in the turbulent atmosphere makes this problem unapproachable
by conventional methods such as optimal control theory, which rely on an accurate
and tractable analytical model of the dynamical system. Here we propose to attack
this problem through Reinforcement Learning, a technique that – by repeated trial-and-
error interactions with the environment – learns to associate observations with profitable
actions without invoking prior knowledge of the system. We show that in a simulated
fully-turbulent atmosphere Reinforcement Learning finds an efficient way to tow a vehicle
for long distances by controlling a flying kite. The algorithm we use is based on a small
set of intuitive observations and its physically transparent interpretation allows us to
cast the approximately optimal strategy as a simple set of manoeuvring instructions.

1.1 Introduction

Airborne wind energy (AWE) is a technology aiming to obtain usable power by means
of flying devices [1] which has the potential of replacing the traditional towered wind
turbine architecture [8]. Airborne wind energy systems usually consist in an airfoil
providing traction power - generally a kite or a glider - which is either connected by a
tether to a ground station that converts power into electricity by a turbine, or used to
tow a vehicle [9, 10].

There are many advantages of AWE over standard wind turbines: reduced costs for
construction; lower environmental impact; saving in building materials; ease in displacing
the device [11, 12]. Here we focus on one distinguishing feature of AWE that is the

11

12 CHAPTER 1. RL CONTROL IN A TURBULENT ENVIRONMENT

possibility of adapting to the rapid and local changes in wind conditions by controlling
the orientation of the kite. This allows to maintain the kite airborne and effective under
varying wind and weather conditions [13].

The task of finding the best way of manoeuvring the kite in order to maximise
power production has been previously addressed by means of optimal control theory
[14, 15, 16], using methods from Non-linear Model Predictive Control [17]. These are
essentially planning algorithms that crucially rely on a dynamical model in order to pre-
dict the future evolution of the system. For AWE this requirement translates in finding
an accurate model of both the dynamics of the kite and of the turbulent wind. Such
model would involve a huge number of dynamical degrees of freedom and the result-
ing optimization problem would then become computationally intractable. Moreover,
even assuming that the previous difficulties could be overcome, turbulence is famously
characterized by its unpredictability, undercutting the power of predictive control. To
bypass these difficulties, the effect of wind turbulence is often ignored or too crudely
approximated, for instance by adding small uncorrelated fluctuations [18, 11, 19]. The
control strategies so obtained may however turn out to be severely suboptimal when put
to the test in a realistic turbulent environment.

Here, we propose to use Reinforcement Learning (RL) to find effective control strate-
gies for AWE in a realistic turbulent environment. The core idea of RL consists in
learning how to control a system in order to achieve a long-term goal without relying on
detailed a priori knowledge of its dynamics and therefore avoiding the shortcomings of
predictive control [7]. By repeatedly interacting with the environment that surrounds
it, the controller learns by trial and error to associate valuable actions to specific con-
texts [20]. RL has been shown to be competitive with Model Predictive Control even
in situations where an accurate model of the system is available [21]. The ability of RL
in finding effective control strategies in dynamic and unpredictable environment such as
the turbulent atmosphere has been recently showcased in complex tasks such as thermal
soaring and balloon navigation [22, 23].

In this chapter we provide a proof of concept that RL can be successfully used for
AWE. We consider a simulated environment that simulates the dynamics of a ship towed
by a kite that flies in the turbulent atmospheric boundary layer. A major difficulty of this
task is to find appropriate controllers that sense and exploit the variable wind strength
and at the same time avert disastrous crashes. We find that a compact RL algorithm
based on a small set of physically intuitive observations and controls is able to find
effective strategies to tow the vehicle for long distances, efficiently converting the energy
of the turbulent wind into directed motion.

1.2 The virtual environment

In this section we describe the virtual environment that simulates the kite dynamics in
a turbulent flow.

1.2. THE VIRTUAL ENVIRONMENT 13

Figure 1.1: a) Sketch of the kite-ship system. b) Snapshot of the horizontal wind velocity
in the turbulent flow on the x-z plane. c) The attack angle α is the angle between the
longitudinal axis of the kite and the relative velocity; its control allows the kite to sink
and rise. d) The bank angle ψ changes the direction of the lift force and its control
makes the airfoil turn left and right.

1.2.1 Kite and vehicle dynamics

We consider the system composed by a kite connected to a vehicle (e.g. a ship) through
an inextensible cable. The vehicle can move on the surface, while the kite is able to travel
on the whole space above it. Sagging of the rope is neglected as the cable is understood
to be always in tension.

The kite has mass m and is subject to the action of the wind, summarized by the
total aerodynamic force F aer, the gravitational force mg and the tether tension T . The
vehicle of mass M is subject to the gravitational force Mg, the same tension −T acting
on the other end of the rope, the sliding friction force F µ and the normal reaction of
the ground/sea surface N (see Fig. 1.1)

The positions of the kite xk and of the vehicle xv obey the Newton’s law{
mẍk = F aer +mg − T

M ẍv = F µ +N +Mg + T
(1.1)

subject to the constraints of fixed tether length |xk − xv| = R and that the vehicle
remains anchored to the ground zv = 0.

The friction force has amplitude Fµ = µN = µ(Mg − Tz) where Tz is the vertical
component of the tension applied to the vehicle. Its direction is opposed to the vehicle
velocity ẋv.

14 CHAPTER 1. RL CONTROL IN A TURBULENT ENVIRONMENT

The aerodynamic forces are customarily decomposed in lift and drag : F aer = L+D.
Both components depend on the relative velocity of the kite with respect to the wind
vrel = vk − u, where u is the wind velocity and vk = ẋk.

The amplitudes of lift and drag are L = 1
2ρACL(α)|vrel|

2 and D = 1
2ρACD(α)|vrel|

2

respectively, where ρ is the air density, A is the kite surface area and CL(α), CD(α)
are the lift and drag coefficients. The latter depend on the attack angle of the kite α
(fig. 1.1b), which is the angle between the longitudinal axis of the kite and the relative
velocity. By changing the attack angle the kite can rise or dive. The values of the
coefficients are measured empirically for different airfoils and here we used the ones
given in Ref. [24] for our simulation.

As for the direction, the drag is anti-parallel to the relative velocity whereas the lift
lies in the plane perpendicular to it. Its exact orientation depends on the bank angle ψ
(fig. 1.1c), which can be controlled and allows for the kite to make turns. Namely, if we
take er = (xk−xv)/R to be the unit vector which identifies the direction of the tether and
define the two unit vectors perpendicular to the relative velocity et = er×vrel/|er × vrel|
and en = vrel × et/|vrel × et| we have L = L (et sin(ψ) + en cos(ψ)) (see Ref. [16] and
Appendix A for more details on the dynamics).

We assume that the kite can be controlled by changing its attack and bank angles -
and consequently its orientation in space - by operating on the lines that are connected
to the sides of the airfoil.

1.2.2 The turbulent environment

We simulate the wind dynamics in the atmospheric boundary layer by solving the in-
compressible Navier-Stokes equations{

∂u
∂t + (u · ∇)u = −∇p+ ν∇2u

∇ · u = 0
(1.2)

in a cubic domain of side ≈ 100 m. No-slip boundary conditions are imposed at the
bottom and a fixed velocity UW = 30 m/s, directed along the streamwise direction x, is
imposed at the top. Periodic boundary conditions are applied in the stream-wise x and
span-wise y directions. This configuration is usually dubbed a turbulent Couette flow.
The Reynolds number Re = UW δ

2ν , where δ is the half-height of the channel and ν is the
kinematic viscosity, is Re = 16400 which indicates the presence of a turbulent flow. The
simulation uses a Spectral Element Method as implemented in the free CFD software
Nek5000 [25]. At the steady state, the statistical properties of the flow are consistent
with those observed in previous works [26] (see Appendix A for more details).

1.3 Learning to control the kite

As anticipated in the Introduction, we have approached the problem of maximising the
traction power of a kite in a turbulent flow by means of Reinforcement Learning. In this

1.3. LEARNING TO CONTROL THE KITE 15

Section we give a brief description of the algorithm that we have used and how it has
been implemented in the case at hand.

1.3.1 Reinforcement Learning

The objective of RL is to optimize the performance of a controller, or agent, in a generic
goal-directed task (see Ref. [7] for a comprehensive introduction to the subject). At
each time step, the controller receives an observation S that provides some information
about the current, possibly hidden, full state of the system X and takes an action A
according to a policy π, that is a probability distribution over actions which depends on
the history of previous observations. The system then evolves in a new state X ′ and the
process repeats itself until the end of an episode of duration T . At each time step, the
agent receives a reward, or reinforcement signal, R. The objective is to find a policy that
maximizes the expected sum of future rewards, known as the return Gt =

∑T
k=tRk.

Importantly, the agent has no a priori knowledge of the dynamics of the hidden
states X → X ′ and of the structure of the rewards. It has to learn how to associate past
observations with profitable actions just by interacting with the environment.

Finding a policy that depends on the full history of observations is computationally
very demanding. Here we will settle for the comparatively less ambitious goal of searching
for good reactive policies, that is strategies that choose to take an action a based only on
the last observation s according to a policy π(a|s). If the observations were the actual
Markov states for the system, i.e. S = X, then the knowledge of past observations
is superfluous and one can consider only reactive policies. However, this nearly never
happens in practice.

Approximately optimal reactive policies can be found with limited computational
effort when observations and actions can be represented by a finite discrete set. In
this case tabular time-difference learning algorithm such as SARSA (the acronym of
State-Action-Reward-State-Action) can find good strategies by interacting with the en-
vironment.

SARSA starts off with an estimate of the expected return that a policy can achieve
starting with an observation s and an action a: Q̂(s, a). Then, at each step the algorithm
improves the estimate and the policy as follows:

i) Derive a policy from the current estimate Q̂ with ϵ−greedy exploration: given
an observation S pick the action which has the largest estimated return A =
argmaxaQ̂(S, a) with probability 1−ϵ and any possible action at random otherwise;

ii) After having observed S′ and taken action A′ according to the same policy, update
the estimate as Q̂(S,A) ← Q̂(S,A) + η(R + Q̂(S′, A′) − Q̂(S,A)). All the other
entries of the matrix Q̂ are left unchanged.

This procedure is iterated until convergence is obtained.
In the expressions above, the learning rate η and the exploration probability ϵ can in

general depend on the current state-action pair as well as on the total number of itera-
tions. With a proper scheduling of these parameters, SARSA converges with probability

16 CHAPTER 1. RL CONTROL IN A TURBULENT ENVIRONMENT

one to the optimal control strategy if observations are Markov states for the system.
Otherwise, it converges to the best possible reactive strategy for the given choice of
observables.

In order to couch our AWE optimization problem in the language of reinforcement
learning we now turn to define the observables S, the actions A and rewards R for our
AWE system.

1.3.2 Actions

As discussed earlier, the kite can rise or dive by changing the angle of attack α and it
can turn by modifying the bank angle ψ. Therefore an intuitive and minimal way to
control the kite is to decrease, leave unchanged or increase both α and ψ by some fixed
amount:

α→ α+Aα∆α Aα ∈ {−1, 0, 1}
ψ → ψ +Aψ∆ψ Aψ ∈ {−1, 0, 1}

(1.3)

The total number of possible actions A = (Aα, Aψ) is 9 and the values of the increments
∆α and ∆ψ are chosen based on the aerodynamic characteristic of the kite (see Appendix
A).

1.3.3 The choice of observables

The actual state X of an AWE device immersed in a turbulent flow is an extremely
high-dimensional object as it includes all the degrees of freedom of the kite and the
vehicle, as well as the wind field at any point in space and time. A direct approach is
clearly unfeasible. It is therefore necessary to identify some relevant features, that is to
map the full state X into a smaller set of observables S, which can summarize the state
of the system without losing valuable information.

The selection of such observables could be in principle performed automatically.
However this procedure requires very large training datasets that are very expensive to
obtain. In addition, the selected features so obtained might be difficult to interpret in
physical terms. Here we take the opposite approach of choosing observations based on
some physical intuition about which variables matter the most in achieving good control
of the system. This approach requires expert domain knowledge and may fail if relevant
information is overlooked. However, in our experience so far, the benefits of a physics-
informed approach in terms of speed of learning, data parsimony and interpretability
largely outweigh the cost of reduced performance.

Following this idea, we expect that the aerodynamic forces are a determinant factor
for the ability of controlling the kite. As discussed in the previous section, lift and drag
depend on the angle of attack α, on the bank angle ψ, and on the relative velocity vrel
and it is therefore natural to consider them as relevant observables. In a further effort
to compress the input we will consider just the orientation of the relative velocity with
respect to the ground, given by the angle β = arcsin(vzrel/|vrel|). These variables are

1.3. LEARNING TO CONTROL THE KITE 17

then discretized to obtain a finite set of observables

Sα ∈ {αmin + i∆α ; i = 0, . . . , Nα}
Sψ ∈ {ψmin + j∆ψ ; j = 0, . . . , Nψ}
Sβ ∈ {βmin + k∆β ; k = 0, . . . , Nβ}

(1.4)

with a total number of observables S = (Sα, Sψ, Sβ) equal to (Nα + 1)(Nψ + 1)(Nβ + 1)
which in our learning experiments amounts to a few hundreds (see Appendix A).

In spite of the drastic reduction of dimensionality of the state space that is operated
by this choice of observations, we will see that this information is sufficient to learn a
very effective control strategy.

1.3.4 The reward structure

The last key ingredient is the reward, which is the numerical signal issued by the envi-
ronment that provides feedback about the consequences of the performed actions. As
the goal to be pursued is to maximise the traction power that we can extract from the
wind, we use as a reward a close proxy that is the distance travelled along the mean
wind in a time step |ẋv|∆t. In the Appendix A we explore different reward structures
not necessarily aligned with the main component of the wind. When the kite crashes to
the ground it receives a penalty, i.e. a negative reward, whose magnitude may depend
on the time elapsed from the start (for instance, early falls are penalized more than late
ones). In addition, to avoid situations in which the kite flies dangerously close to the
ground, we reduce the reward obtained whenever zk goes below a threshold height zlow.
The detailed parameters used in the simulations are given in the Appendix A.

Figure 1.2: Discovering effective control strategies with Reinforcement Learning. a)
Horizontal distance covered by the vehicle as learning progresses. The blue dots refer
to single episodes while the red line is a moving average over 500 episodes. Figure
b) represents a sample of learned motion in the turbulent Couette channel. The kite
displays a helical motion adapted to the fluctuations of the wind flow. Note that the
vehicle moves also in the y direction even if it is not directly rewarding since only the
distance covered along x is accounted for in the return.

18 CHAPTER 1. RL CONTROL IN A TURBULENT ENVIRONMENT

Figure 1.3: Dynamical behavior of the observables under the learned policy. Two stages
emerge: a very brief transient where the kite reacts to the initial conditions, and an
approximately periodic pattern where the attack angle remains close to its maximum
values whereas the bank angle and the relative wind velocity angle oscillate out of phase.

1.4 Results

In this section we present the results obtained by implementing the Reinforcement Learn-
ing algorithm that described above with special emphasis on the interpretation of the
learned strategy in terms of simple decision rules.

1.4.1 Learning effective control strategies

The training is divided into episodes that terminate either when the kite crashes or
after a sufficiently long time. At the beginning of each episode the vehicle is randomly
initialized in a different point on the ground and the kite is at a given relative position
from it. Random control angles are chosen in order to sample different flow conditions
and kite postures, in order to obtain robust strategies and avoid overfitting. The system
is motionless at time t = 0 for every episode, with fixed initial angles of the tether θ and
ϕ. Different take-off configurations can be considered depending on the specifics of the
system at hand.

The initial estimates of the return Q̂(s, a) for each state-action pair are chosen opti-
mistically in order to favor exploration of the state-action space [7].

The best results were obtained by scheduling the learning rate depending on the
number of visits of the current state-action pair. This ensures faster updates of state-
action values that have been visited less and vice versa (see Appendix A for details).

From Fig. A.4a we can see that after a few hundreds of thousands of episodes
the distance covered along the x-axis converges to a stable value and maintains this

1.4. RESULTS 19

performance for the remainder of the episodes. We have then evaluated the learned policy
on a sequence of test episodes that are different from the training ones and, importantly,
last longer. The fact that the performance is unaltered confirms that the learned strategy
is able to generalize to previously unseen wind configurations (see Appendix A).

As shown in Fig. A.4b the trajectory of the kite has an approximately helical shape
which changes over time depending on the local wind speed and direction. The towed
vehicle moves along an approximately straight path with a sideways component with
respect to the mean wind. We now turn our attention to the learned control strategy,
uncover its main properties and distil a simple control strategy that achieves comparable
performance.

Figure 1.4: A distilled control strategy. a) Number of visits in the βt−1, ψt space high-
lighting the anticorrelation between the relative wind velocity direction and the bank
angle. b) The distilled policy keeps the attack angle fixed and changes the bank angle as
shown. Right arrows, left arrows and circles correspond to increase, decrease or main-
tain the bank angle, respectively. c) The performance of the learned policy and of the
distilled one are compared, together with a mixed strategy that switches from the first
to the second after 100 s. Medians are in red, averages in dotted blue, the boxes are the
quartiles.

Inspecting the evolution of the system under the learned policy, it is possible to
identify two stages (Fig. A.11): a short transient that lasts from a few to some tens of
seconds where the kite reacts to the initial motionless condition of the system, followed by
a stable and approximately cyclic behavior in which bank angle ψ and β angles oscillate
out of phase whereas the attack angle is nearly constant and close to its maximum value.

This observation suggests that the basic control mechanism underlying the helical
motion of the kite can be actually explained in terms of simple control rules. A straight-
forward correlation analysis between βt−1 and ψt, gives a Pearson correlation coefficient
≃ −0.82. The time delay between βt−1 and ψt hints at the fact that the control reacts to
changes in the direction of relative wind velocity by adapting the bank angle accordingly.
The anticorrelation is also conspicuous when looking at the occurrence of visits in the
βt−1 and ψt space, shown in Fig. 1.4a. Building up on these considerations we defined
a distilled policy that keeps the attack angle fixed to the highest admissible value and
changes the bank angle in such a way to reproduce the same pattern of visits as the

20 CHAPTER 1. RL CONTROL IN A TURBULENT ENVIRONMENT

one of the learned policy. This distilled control strategy is displayed in Fig. 1.4b. This
simple policy turns out to guarantee a performance comparable to the learned one (Fig.
1.4c), The small reduction in distance traveled can be explained by the different ways
in which the learned and the distilled policy manage the initial transient phase. Indeed,
implementing an improved version in which the agent switches from the learned policy
to the distilled one after some time achieves a performance that is indistinguishable from
the fully learned one.

1.5 Discussion

We have shown how Reinforcement Learning can discover effective control strategies
to manoeuver a kite to the end of providing traction power. The kite-vehicle system
is immersed in a simulated environment that comprises the essential and unavoidable
effect of atmospheric turbulence.

Our results have been obtained by an algorithm which only takes into account the
control angles and the orientation of the relative wind velocity as observables. The
learned control can be interpreted in terms of simple rules:

i) keep the attack angle constant and as large as possible,

ii) given a certain measurement of the relative wind velocity angle β, increase or
decrease the bank angle ψ in order to reach a target value that depends on β in
an approximately linear way, with a negative proportionality coefficient (see Fig.
1.4b).

How this strategy generalizes to other simulated environments with different velocity
statistics remains an open question that we want to address in the near future.

In our approach we selected the relevant observables based on our physical intuition.
Another possibility would be to delegate the choice of the most appropriate features to
the algorithm itself, for instance approximating the return Q̂ by means of an artificial
neural network as in Deep Q-Learning [27]. The latter approach could in principle
discover more appropriate inputs and lead to even better performance. However, this
class of algorithms are infamously known to be very data thirsty. In addition, their
results are often hard to interpret in terms of human-readable rules. Here we deliberately
resolved the trade off in favor of rapid training and increased explainability rather than
performance. It would nonetheless be of great interest to explore alternate approaches.

The application of our method beyond the simulated environment is a tantalizing
perspective. However, several challenges lie ahead when training takes place in the real
physical world. Among those, a prominent necessity is finding algorithms that learn
faster. Encouraging results from robotics and unmanned aerial navigation, e.g. [22],
offer some hope that these challenges can be overcome and that Reinforcement Learning
can become an important algorithmic tool for AWE applications.

Chapter 2

Why is SARSA so effective?

After focusing on the employment of Airborne Wind Energy for ship-towing, in this
chapter we take under consideration the main usage of this technology, that is energy
production. This shift in architecture may serve as a proof for the generality of the
control algorithm that we deployed on one hand and it will be functional to discover
more details about its success on the other, providing fruitful insights in order to answer
the question about SARSA effectiveness reported in the title.

2.1 Introduction

As previously mentioned both in the introduction and in chapter 1, the term Airborne
Wind Energy usually refers to a heterogeneous set of technologies and devices which
share the capability of transforming the kinetic energy of wind into electrical energy
by means of a generator and a flying object (in most applications, a power kite). This
innovative machinery promises to address most of the issues of traditional wind turbines:
the smaller, lighter structures needed for AWE lead to much lower material costs and
environmental impact if compared to traditional wind energy generation and, apart from
the possibility of exploiting stronger winds at higher altitudes, AWE is more flexible with
respect to wind conditions, since the harvesting position can be adjusted continuously
to optimize energy extraction.

However, this technology is operationally more complex than traditional turbines
requiring a strong automatic control pretty much alike the case of ship-towing. In fact,
in the following we show how the same Reinforcement Learning algorithm implemented
in chapter 1 proves valuable in controlling this system as well. Therefore, we compare
its features and performance with a new algorithm that includes a deep network.

AWE systems can be classified as ground-gen systems or fly-gen systems [9], based
on where the generation step happens: in the case of ground-gen systems the ropes
connecting the flying device transmit mechanical energy and a generator placed on the
ground transforms it into electrical energy. On the contrary, in the case of fly-gen systems
the generator is placed directly on the flying object and the ropes (in this case, electric
wires) transmit electrical energy to the ground station.

21

22 CHAPTER 2. WHY IS SARSA SO EFFECTIVE?

bines. This is done by using tethered flying devices like power kites or small

gliders, which fly under the e↵ect of aerodynamic forces (drag and lift) and

convert wind energy to electrical energy by means of a generator.

Figure 1.1: Schematic representation of a AWE system

This kind of technology promises to address most of the issues of traditional

wind turbines [8]: the smaller, lighter structures needed for AWE lead to

much lower material costs and environmental impact if compared to tradi-

tional wind energy generation and, apart from the possibility of exploiting

stronger winds at higher altitudes, AWE is more flexible with respect to wind

conditions, since the harvesting altitude can be adjusted continuously to op-

timize energy extraction.

However, this technology is operationally more complex than traditional tur-

bines and it may face reliability issues in critical wind conditions. In most

implementations, it is not possible to immediately stop the flying devices in

unexpected wind conditions or in the event of system failures, resulting in

damage or total loss of the devices.

The actual consequences of operational anomalies depend on the technology

used for the flying device: flexible kites can generally be recovered after a

11

Figure 2.1: Schematic representation of an Airborne Wind Energy system.

In this work we concentrate on fixed-ground-station systems, which happen to be
the most studied implementations of AWE. The basic elements of these systems are
an electric machine, a kite (or another flying device) and a tether that links the two,
wound on a winch connected to the shaft of the electric machine (fig. 2.1). Energy is
produced by continuously performing a working cycle made of a traction phase and a
passive phase. In the traction phase, the kite flies and uses wind power to unroll the
lines, putting into rotation the shaft of the electric machine, which acts as a generator.
During the passive phase instead, the machine acts as a motor and spends energy to
rewind the tether, preparing the system for a new traction phase [11]. This architecture
is referred to as the yo-yo configuration [24].

The switch between the traction phase and the passive phase can happen at different
moments: the most obvious one is when the maximum tether length is reached, but in
principle one could dynamically decide to stop production and prepare for a new produc-
tive cycle if the wind is not sufficiently strong or if potentially dangerous wind conditions
arise. To make the whole cycle profitable in terms of power generation, the energy con-
sumed during the passive phase to rewind the lines must be significantly lower than the
energy produced during the traction phase. This objective can be pursued by designing
two controllers: one for the traction phase that has the objective of maximizing the
production of energy and one for the passive phase that has the objective of minimizing
the consumption of energy. The control system operates on the lines connecting the kite
and adjusts the trajectory by modifying the attack and bank angles of the kite, making
it soar and turn just like an airplane.

We test two Reinforcement Learning algorithms to control the traction phase, leaving
the passive one to future work. Both approaches work in a model-free setting, meaning

2.2. MODELING 23

that in principle they would not require any a priori knowledge of the system, building
empirical awareness from experience.

Nevertheless, like we did in paragraph 1.2.1 for the ship-towing case, we provide a
model (based on the one presented by [24]) for the yo-yo configuration AWE production
system. The reason is that, even if the control algorithm is designed using a model-free
technique, a model is necessary to simulate the system and to construct the observations
needed for the learning process. This step would not be needed if we had access to data
from a physical version of the system (i.e. a kite, a tether and an electric generator).

2.2 Modeling

The structure of the system is very resembling to the kite-vehicle system studied in
chapter 1, only this time the position of the ground station is fixed while the length
of the cable can grow (fig. 2.2). The dynamics of the system is analyzed in detail in
appendix B.

One thing to keep in mind is the different origin of power production with respect to
the ship-towing architecture: while in the previous case we were monitoring the entity
of the vehicle displacement as the measure of success of the control strategy, now we
focus directly on the tension exerted by the cable on the ground station. The resulting
instantaneous power will have the form P (t) = T (t)ṙ(t), where ṙ is the the unrolling
velocity of the tether.3.1 Mathematical model

Figure 3.2: Model diagram

Let us consider a cartesian coordinate system (x, y, z) centered in the electric

machine, with the x axis aligned with the wind speed. In this system, the

position of the kite can be expressed using spherical coordinates (✓, �, r),

with r being the distance from the origin (the length of the tether) and ✓

and � the two angles shown in figure 3.2.

Then, we can obtain a local coordinate system with unit vectors (e✓, e�, er),

centered in the position of the kite. These unit vectors can be expressed in

28

Figure 2.2: Model diagram.

Control angles are very close to the ones deployed for the ship-towing case since we

24 CHAPTER 2. WHY IS SARSA SO EFFECTIVE?

assume again to be able to change the attack and bank angle of the kite by adjusting
the length of the ropes connected to its sides. We maintain the same kite features,
translating into analogous lift and drag coefficients. As for the bank angles, we resort
to a smaller range of values (Nψ = 6) according to the different dynamics of the system
in study. The complete table regarding the attack angles and the values of the bank
angles can be found in appendix B, containing a higher number of possible attack angles
(Nα = 14) as reported in [24].

In this chapter we will deal with simpler flows, since we are not exclusively interested
in the performance of the algorithms. We test them in two different virtual environments,
such as the constant horizontal wind analyzed in Appendix A and a linearly increasing
flow, where the horizontal velocity grows with altitude. We show how especially in
these simplified contexts we can obtain useful information about which observables are
relevant for the learning process, thanks to the analysis of the neural network employed
by the deep-Reinforcement Learning algorithm we are going to introduce in the next
section.

2.3 The Reinforcement Learning framework

In the following we are going to introduce the two learning algorithms working on the
same task, which is the maximization of the traction power of the tether exploiting the
wind field. We will highlight their differences and common points, focusing on their
structure and their inputs.

The confrontation between the two algorithms is made fair by the fact that both
have access to the same information about the environment and can perform the same
actions described in chapter 1. Once again the states S used by the learning algorithms
do not coincide with the full state of the system X, marking the difference between this
approach and the optimal control framework, which is instead bound to the knowledge
of the variables of the model dynamics.

Moreover, in both Reinforcement Learning algorithms the found strategies are re-
stricted to the domain of reactive strategies, since they select actions only taking into
account the last made observation and not the entire history of the system, assuming
that

π(At|St) ≃ π(At|St, At−1, St−1, ..., A0, S0). (2.1)

What differs is how the estimate of the total extractable power is built up and how
the observations of the system are given as an input.

2.3.1 Tabular SARSA

The first algorithm is the SARSA algorithm described in chapter 1 and resumed in alg.
1: it consists in a tabular temporal-difference algorithm working on a discrete space
of states S which adjusts the prediction about the expected return according to the

2.3. THE REINFORCEMENT LEARNING FRAMEWORK 25

perceived reward. When we work with a limited set of states |S| and actions |A|, this
translates into approximating the entries

Q(S,A) = E[
T∑
k=t

Rk|St = S,At = A] (2.2)

of a table in which to each state-action pair corresponds an estimate of the future
obtainable return starting from a given state-action pair (S,A), with S ∈ S and A ∈ A.
Such estimate Q̂(S,A) is further refined with experience:

Q̂(S,A)← Q̂(S,A) + η(R+ Q̂(S′, A′)− Q̂(S,A)). (2.3)

At each decision step the current estimate is corrected by a factor called temporal
difference error δ = R + Q̂(S′, A′) − Q̂(S,A), where R is the reward perceived after
performing action A and Q̂(S′, A′) is the expected return in the new state-action pair
(S′, A′). This results in a bootstrapping technique where the target R+Q̂(S′, A′) towards
which the learning is moving consists in the combination of the witnessed reward and
the current estimate in the subsequent state-action pair.

The policy employed to select the action is the ϵ-greedy one introduced in 1.3.1,
which chooses the action a = argmaxb Q̂(S, b) almost always except for a portion ϵ of
times in which another random action in taken.

Algorithm 1 SARSA

Initialize Q̂(s, a) arbitrarily ∀s ∈ S, ∀a ∈ A
repeat(for each episode)

Initialize S
Choose A from S using ϵ-greedy policy derived from Q̂
repeat(for each step of episode):

Take action A, observe reward R and next state S′

Choose A′ from S′ using policy derived from Q
Q̂(S,A)← Q̂(S,A) + η[R+ γQ̂(S′, A′)− Q̂(S,A)]
S ← S′

A← A′

until S is terminal
until last episode is over

2.3.2 Deep Q-Learning

The second algorithm enforces the universal function approximator property of neural
networks and lets a feed-forward net estimate the expected return. It follows that Q̂ =
Q̂(S,A,w) will depend on the weights of the network w. Instead of acting directly on
Q̂, the focus shifts from learning the entries of a table of size |S| × |A| to learning a set
of weights of size d. The network will receive as an input the present state of the system

26 CHAPTER 2. WHY IS SARSA SO EFFECTIVE?

- not necessarily discretized this time - and will output the estimated values of Q̂ for
each action.

The standard approach to neural network training includes some variant of gradient-
based optimization of a properly defined loss function, which quantifies for a certain
input vector x the difference (according to a metric d) between a reference vector r and
the output y of the network:

L(w,x) = d(y(w,x), r(x)). (2.4)

This training technique relies on gradients and it is made possible by the introduction
of ways to quickly compute gradients such as the backpropagation algorithm [28].

The weights of the network are updated iteratively according to a rule that, in the
simplest case (plain gradient descent) runs as follows:

w ← w − η∇wL ∀w ∈ w. (2.5)

Once again, the hyperparameter η goes by the name of learning rate and it defines
the size of the step to be taken in the parameter space when updating the weights.

The algorithm that marked the success of Deep Learning approaches to RL is Deep
Q-Learning (DQL), presented in 2015 [29]. Q-Learning update rule slightly differs from
SARSA one and its flow is reported in alg. 2. Basically, the algorithm always selects the
action with the highest estimate maxa Q̂(S′, a) at the subsequent step, detaching from
the ϵ-greedy policy adopted to select actions in the present step.

DQL and its later variants allowed RL researchers to achieve outstanding success in
very demanding scenarios, such as complex board games or video games, that are now
played at human or super-human level. In particular, as one could expect, the neural
approach to RL is particularly effective when the state to elaborate is an image (or a
video), since neural architectures such as convolutional neural networks are extremely
effective at processing this kind of input.

Algorithm 2 Q-Learning

Initialize Q̂(s, a) arbitrarily ∀s ∈ S, ∀a ∈ A
repeat(for each episode):

Initialize S
repeat(for each step of episode):

Choose A from S using ϵ-greedy policy derived from Q̂
Take action A, observe reward R and next state S′

Q̂(S,A)← Q̂(S,A) + η[R+ γmaxa Q̂(S′, a)− Q̂(S,A)]
S ← S′

until S is terminal
until last episode is over

However, in this work we deal with a much simpler, numerical set of inputs, so we
can rely on a straightforward application of neural approximation to Q-Learning, by

2.3. THE REINFORCEMENT LEARNING FRAMEWORK 27

means of a standard feed-forward neural network.
To do so, one can notice that the update rule of Q-Learning is equivalent to:

w← argmin
w
L(Q̂(S,A,w), R+ γmax

a
Q̂(S′, a,w)). (2.6)

Then, it is sufficient to define a loss function that keeps into account the differ-
ence between the target R + γmaxa Q̂(S′, a,w) and the estimated Q-value Q̂(S,A,w)
and to minimize it with respect to the parameters w using gradient-based optimization
techniques.

The key element of DQL is a Q-Network, the neural network used to approximate
Q values. In common practice this network takes as input the state S and outputs a
vector of Q values, one for each action A in A.

At each step of the learning procedure, the parameters of the network are updated
according to equation 2.5. Assuming that the most common distance metric, the l2
distance, is used as a loss function, the loss at step t would be:

Lt = (R+ γmax
a

Q̂(S′, a,wt)− Q̂(S,A,wt))
2. (2.7)

The gradient descent step would then read:

wt = wt−1 − η∇wtLt ∀w ∈ w. (2.8)

Some alternative approaches have been proposed to improve the stability of the
training process, such as semi-gradient optimization and the use of a target network.

In a semi-gradient setting, the loss at step t becomes

Lt = (R+ γmax
a

Q̂(S′, a,wt−1)− Q̂(S,A,wt))
2, (2.9)

the only difference from 2.7 being that the target value is supposed to be constant with
respect to the parameters wt. In this case, the update step is usually written as

wt = wt−1 + ηδ∇wtQ̂(S,A,wt) ∀w ∈ w (2.10)

where δ is the temporal-difference error (R+ γmaxa Q̂(S′, a,wt−1)−Q(S,A,wt)).
Another approach which is gaining popularity in recent works is the one relying on

the use of a Double Deep Q-Network (DDQN) [30]. In this setting learning stability is
sought by resorting to a different Q-Network (called target network) for the computation
of the target (with the same architecture and different parameters). The parameters of
the main network are then copied into the target network at fixed intervals.

Last but not least, the experience replay technique presented in [29] also constitutes
an interesting upgrade in the context of Deep Reinforcement Learning, since it allows to
store in memory a buffer of past rewards and then use an averaged out batch of them to
upload the estimate Q̂, providing with better stability and preventing from the so-called
phenomenon of catastrophic forgetting.

However, on our specific control task we found the simplest choice to prevail on all
the others: in fact, true gradient descent approach showed to converge faster and to yield

28 CHAPTER 2. WHY IS SARSA SO EFFECTIVE?

better results in terms of cumulative returns with respect to semi-gradient optimization,
DDQN and experience replay as well.

2.3.3 An informed approach to deep-Reinforcement Learning

Feed-forward networks are usually employed with a black-box approach, favoring per-
formance and giving up the understanding about the configuration of the weights inside
the net. We instead resort to DQL as a tool to extract side information on the learning
success.

As it was briefly anticipated, one great advantage of approximating the expected
return with a neural network is the chance of feeding it with continuous inputs, which
is not possible using tabular SARSA. Moreover, the net can in principle deal with mul-
tidimensional inputs finding the features to better represent them on its own. On the
contrary tabular SARSA requires an a priori discretization of the input demanding for
an approximation whenever the observable is in fact continuous.

Basically, DQL is able to deal with a dense set of states by performing dimensionality
reduction towards the space of weights of dimension d, avoiding suffering of the curse of
dimensionality. The meaningful information on how this feature-extraction procedure is
performed lies in the weights themselves: the first layer of weights for example, connect-
ing the input neurons to the first hidden ones, might play the role of a filter, in the sense
that if one observable given as input is useless, then the weights associated to it could go
to zero. This is sufficient for the specific observable to be ignored by the decision-making
procedure, but it’s not always true that redundant input is eliminated by the first layer.

Another question that we pose is how information about the input is encoded in the
final hidden layer of neurons. This encoding is comparable to what in tabular SARSA
has to be done by hand, discretizing the state of the system before feeding it to the
algorithm. In fact, we will show in the following that from the analysis of the activations
of the last layer we can understand intuitively how the choices operated with SARSA
work out well for obtaining good results.

2.3.4 State and control variables

Since the observation S fed to the learning algorithm does not necessarily coincide with
the full state of the system, we have to select the observables that we want our algorithms
to monitor. Of course there is a trade-off between data abundance and fast convergence.

Both SARSA and DQL are shown to work fine even with a very narrow set of
observations, which are chosen to to coincide with the control variables α and ψ, namely
the attack angle and the bank angle. As in 1.3.2, we assume to be able to increase and
decrease by one level the two angles, by means of actuation on the lines connecting the
kite. This leaves us with 3 actions per control variable (increase, decrease, keep still)
and 9 (3× 3) total actions.

There is also a third observable that we monitor, which is the orientation β of the
relative velocity of the wind with respect to the kite. We will discuss in the following

2.4. SIMULATIONS AND RESULTS 29

how the presence of the angle β can be understood to be in fact superfluous in a constant
wind environment, simply by analyzing the way it is processed by the network.

Notably, while in tabular SARSA information about β has to be discretized, the
deep network can directly process continuous signals without the need for dividing it
into rigid sectors.

2.3.5 Reward structure

Reinforcement Learning is a goal-directed task and in Airborne Wind Energy systems
the objective is to maximise the power extraction from the wind. Consequently, it is
crucial to assign rewards proportionally to the success of the control strategy in wind
harvesting.

The parameter of this success was measured by the covered distance in the case of
ship-towing, while in this case we focus directly on traction power. Therefore, we chose
to assign to the agent a reward equal to the maximum extractable energy during the
next learning interval. This energy is approximated using the formula:

E(t) = T (t)ṙ(t)∆t = Rt. (2.11)

Therefore, in case of a critical failure, the agent is assigned a penalty instead of a
reward, regardless of what was the cause of failure (unexpected landing or numerical
error). Such penalty should have the same order of magnitude of the average obtained
return in order to clearly distinguish the scenario in which the kite crashes from the
desired one in which everything works smoothly. The controller will then accordingly
decrease the value of the state-action pair that led it to the failure, keeping memory of
the mistake in the following repetitions of the task.

2.4 Simulations and results

We now proceed with displaying the results of the simulations we ran using SARSA and
DQL. We start with the constant horizontal wind environment and then move to the
linear wind gradient. The learning is episodic, so at the beginning of each episode the
kite is initialized in a fixed position in mid-air in order to avoid dealing with the take-off
phase. The initial attack and bank angle are randomized instead.

Once the kite is released we consider the cable to fully extend along the episode,
assuming its length to be virtually infinite. Another solution consists in fixing the
maximum length of the tether instead of the duration of the episode and letting it finish
when the cable has reached full extension. We will employ this second option for the
linear wind gradient case.

2.4.1 Results in a constant wind pattern

We showcase the results obtained with a constant wind directed along x with speed
u = 10m/s in two trainings of 8000 episodes each.

30 CHAPTER 2. WHY IS SARSA SO EFFECTIVE?

Figure 2.3: Curves of the return for SARSA (left) and DQL (right). Each blue dot
correspond to the outcome of a single episode while the red line is a moving average
over 100 episodes. The units are in 0.1 kWh and the penalty is equal to 15, determining
the visible gap between successful flights and unfortunate ones, especially in the SARSA
learning.

Figure 2.4: A scheme of the Q-network employed for the learning.

Both the learning and exploration rate are scheduled towards zero along the training
and the corresponding thresholds and decays are listed in Appendix B. This guarantees
that the strategy converges to the best possible reactive strategy for the given choice of
observables.

As potraited in fig. 2.3, the performances of the two algorithms are quite similar as
they succeed in converging to the highest possible return. Notably, both SARSA and
DQL are able to achieve this result without the need of knowing the angle β and just
by keeping track of the control angles. This confirms the findings reported in Appendix
A for the ship-towing case, showing that – even with a different architecture providing
the data – information about the orientation of the relative velocity is in fact redundant
with a constant wind blowing.

However, it is remarkable to point out that if we indeed add β to the space of
observations S which the learning algorithms are able to witness, the performance of
SARSA and DQL diversifies, since SARSA has to deal with an augmented space S

2.4. SIMULATIONS AND RESULTS 31

Figure 2.5: Explained variance of the final layer for a 2-dimensional input consisting
only of the control angles. As expected, there are 2 relevant variables accounting for
almost all the variance.

leading to a number of entries of table Q that goes from (Nα+1)(Nψ+1) to (Nα+1)(Nψ+
1)(Nβ + 1). The time needed for the algorithm to converge has to scale consequently.
This does not happen when the deep network is involved, since the number of weights
remains almost constant with the addition of one input neuron.

We can look deeper into how the new input observation affects the learning process
inside the network. The net is composed by an input layer, with 2 or 3 neurons depending
whether β is there or not, two hidden layers respectively of 256 and 32 neurons and the
output one, with 9 exits corresponding to the 9 possible actions (fig. 2.4). The 32-neuron
layer goes under the name of final layer and plays the role of feeding to the output the
input processed by the neural architecture. In some sense it is analogous to the grid
which is used by SARSA to map states into actions, only this time the network is free
to re-elaborate the data by collecting it into clusters if needed, individuating the best
features to represent it independently.

If we analyze the activations of the neurons of the final layer we move in a 32-
dimension space which maps the information from the input layer which is at most
3-dimensional. In order to understand the intrinsic dimension of the data in input as it
appears to the network, we can perform Principal Component Analysis (PCA) on the
final layer, whose results are shown in fig. 2.5 for a 2-dimensional input.

As one could expect, the intrinsic dimension turns out to be 2 since the analysis
highlights 2 components accounting for 90% of the variance. It consequently appears
that both control angles are important for the decision-making problem we want to solve.

If we represent the space spanned by this two components fig. 2.6(left) we get a quite
regular grid that reproduces the spacing of the input points: with a 2-dimensional input
we get |S| = (Nα + 1)× (Nψ + 1) = 15× 7 = 105 points arranged on a rectangular grid
with no clustering.

32 CHAPTER 2. WHY IS SARSA SO EFFECTIVE?

Figure 2.6: Projection onto the space of the first 2 components of the PCA (left) and of
t-SNE analysis (right) performed on the final layer starting from a 2-dimensional input.

Another dimensionality-reduction method we can apply on the final layer is T-
distributed Stochastic Neighbor Embedding (t-SNE) [31] which is best suited to rep-
resent high-dimensional data on a 2-dimensional map. Also in this case the analysis
results with a fairly regular 15×7 grid (fig. 2.6 right) suggesting that there is no simpler
representation of the input data than the one provided to SARSA, therefore giving motif
to the success of the tabular algorithm in learning the most fruitful strategy in order to
maximise traction power.

When we add the angle β to the incoming observation, it is interesting to acknowledge
how this further information changes the scenario. If we look at fig. 2.7 we can see that
the intrinsic dimension retrieved in the final layer is again equal to 2, as the first two
components explain roughly 93% of the variance, seemingly regardless of the new variable
β, in line with the continuity in performance between the 2-dimension and 3-dimension
input.

Now, if we project again onto the space of the first two components (fig. 2.8) we
find again the same grid as before both with PCA and t-SNE, only this time we can
recognize clusters where previously we had single points: those clusters are given by the
little influence of the new variable β, which is fed into the network as a continuous value
and later discretized in 10 bins in order to perform the analysis.

This is an explainatory example of the potential represented by the deep network in
autonomously recognize which observations are meaningful, allowing us to work with the
lightest possible structure, polished from superfluous inputs. Moreover, it is useful to
stress how tabular SARSA is actually extremely efficient in performing this task, making
use of the smallest number of parameters and therefore even overcoming the speed of

2.4. SIMULATIONS AND RESULTS 33

Figure 2.7: Explained variance of the final layer for a 3-dimensional input consisting of
the control angles and relative velocity orientation. The relevant variables continue to
be 2, accounting for 93% of the variance.

DQL in learning the optimal strategy.
Both SARSA and DQL agree on which is the best strategy in order to pull the tether

in a constant wind environment and it is similar in essence to the one discovered for ship-
towing, which consists in flying crosswind performing helices (fig. 2.9). Differently from
the kite-vehicle system now the station on the ground is fixed and the tether elongates
along the duration of the whole episode, dealing with a slightly modified dynamics
which still leads to the same solution, in line with what studies on AWE predict about
the optimality of crosswind motion [32].

2.4.2 Results with a linear wind gradient

We briefly recap what happens when the horizontal wind increases with height, guaran-
teeing better results whenever the kite harvests higher altitude winds, in an environment
that recalls in a simplified way what happens in the boundary layer of the atmosphere.
We constrain the kite with a limitation on the length of the tether and show that SARSA
algorithm is able to learn to soar in order to exploit stronger winds, this time making
good use of the information on the relative velocity orientation. Fig. 2.10 shows suc-
cessful results over a longer strand of smaller episodes, which reach their end when the
tether reaches its maximum extension (fixed to 950m). Even in this shorter amount of
time, the kite is able to harvest more energy starting from the same conditions of the
constant wind set-up, since the velocity at the height at which the kite is initialized is
the same in both environments.

If we analyze the learned trajectory we indeed find out that the kite still moves
crosswind while climbing till it reaches the optimal height over which the wind would
become too violent to be advantageous (fig. 2.11).

The same performance cannot be easily obtained with DQL, which fails in finding an

34 CHAPTER 2. WHY IS SARSA SO EFFECTIVE?

Figure 2.8: Projection onto the space of the first 2 components of the PCA (left) and of
t-SNE analysis (right) performed on the final layer starting from a 3-dimensional input.

efficient strategy to solve this task, underlining once again the effectiveness of SARSA
in wind harvesting jobs.

2.5 Conclusions and future perspectives

In this chapter and in the previous one we showed that Reinforcement Learning is a
suitable alternative to optimal control for AWE systems, both in simple and complex
environments. Moreover, we showed that even simple, tabular algorithms like SARSA
can be very effective at addressing this problem, even in realistic and challenging condi-
tions like a Couette channel flow.

In this chapter we introduced Deep Reinforcement Learning as an alternative method
to control a kite in a windy environment, showing that it can provide valuable insights
about which observables can be relevant in the learning process.

However, when compared with SARSA and disposing of the same information, it
turns out DQL models are more difficult to train as the search for the correct hyper-
parameters can be lengthy and the time needed to reach convergence is longer as well
with respect to tabular algorithms working on a limited set of states such as the one
that we showed here. Also when combined with the experience replay technique we did
not witness improvement in terms of performance. Nevertheless, DQL remains always
a profitable choice whenever the amount of input data increases rapidly dismissing the
tabular alternative. Yet, it turns out that in this specific case the intuition about the
interest on the orientation of the relative velocity is enough to obtain solid results also
in complex wind conditions.

2.5. CONCLUSIONS AND FUTURE PERSPECTIVES 35

Figure 2.9: Sample trajectory of a kite connected to a generator on the ground pulling
a virtually infinite cable for 300 s in a constant wind environment.

Figure 2.10: Curve of the return for learning with a linear gradient wind in units of 0.1
kWh with a penalty equal to 15.

36 CHAPTER 2. WHY IS SARSA SO EFFECTIVE?

Figure 2.11: Sample trajectory of a kite connected to a generator on the ground pulling
a cable with maximum length equal to 950m in a linear gradient wind.

Of course there is still long way to go in terms of mastering the full control of AWE
systems: one direction we want to head towards is the optimization of the passive phase.
In this sense, we see two main approaches: one is the design of two separate control
algorithms, one for the traction phase (such as the ones proposed in this thesis) and
one for the passive phase, with a switch between the two happening at a fixed time or
by human intervention. Another possibility, more challenging but also more interesting
from our point of view, is the design of a single control algorithm, which automatically
decides when it is the right moment to stop energy production and to start rewinding
the lines.

This second approach would significantly increase the complexity of the problem
at study, but it enables a new degree of freedom to exploit in the optimization of the
system: it could be very profitable to have a system that is able to understand if at some
point the wind conditions make it preferable to stop production and rewind the lines,
preparing for a new traction phase.

Finally, we would like to test our approach in a fully realistic setting, using a physical
version of the AWE system that we modeled and simulated for this work. This step would
lead us to face the difficulties and the complexity of a real world scenario but it would
also make us fully exploit the power of a completely model-free approach to this problem.

Chapter 3

Spider Ballooning as a
decision-making process

This chapter is devoted to the study of a peculiar animal behaviour which goes under
the name of spider ballooning. Again we are looking at the phenomenon of taking flight
and becoming airborne, only this time the objects of our research are way smaller and
lighter than the kites used for energy harvesting. Yet the principle is the same and relies
in exploiting the wind to move fast away from the starting point. In fact, spiders are
able to enforce the wind drag acting on their silk lines and use them effectively as a
wing, allowing them to fly.

What results particularly interesting to us is the decision-making process that stands
behind this phenomenon: it turns out that spider species capable of ballooning first
inquire the environment that surrounds them for a few seconds and then understand if
the conditions are actually favourable for them to take flight or if it is better to weight
for another more suitable moment. This decision capability clearly hides an optimization
process which has taken place over course of evolution.

Even if spider ballooning remains a highly risky practice since there is no control
on the direction of motion once becoming airborne, there must be some recognizable
features of the local wind field which can discriminate between bad and good take-off
times. Along this chapter we address this problem, developing a novel model for the
dynamics of ballooning spiders and then testing it in a synthetic wind environment in
order to extract the most relevant characteristics of local wind sequences required to
maximise the probability of success.

3.1 Introduction

Dispersal is a crucial mechanism for survival in some animal species and consists in
moving away from the birth-place in order to avoid overpopulation and consequently
starvation [33]. Unlike migration, dispersal is usually a one-way trip to an unknown
destination. Dispersal traits and mechanisms are thus wide and varied across taxa, even
for organisms that disperse passively through air or water currents.

37

38 CHAPTER 3. SPIDER BALLOONING

Spiders represent one taxon that undergoes multiple dispersal pathways: aside from
walking from site to site, spiders can take advantage of their silk lines in different modes.
One method, bridging, is to cast a line into the breeze and to climb out on it when it
catches on a distant object [34]. Another one is to balloon: when the extruded thread
and the spider get enough buoyancy from updrafts (usually thermals or vertical wind-
velocity gradients), the spider will be lifted off the substrate and carried through the air
[35].

This behaviour is common across small species of spiders (< 5mg of body mass), but
it has been observed also in larger ones [36]. The spider generally climbs up to a high
point and showcases what is called tiptoe behaviour, straightening its legs, balancing on
the tips of its tarsi [37]. From that position it senses if the conditions allow for take-off,
occasionally also raising the two anterior legs to actively estimate wind velocity in the
place it is located [38]. If the outcome of this preliminary analysis comes out positive,
the spider raises its abdomen, releasing one or more silken draglines in the air. Wind
then allows for drag-induced lift of the whole body. Otherwise it gives up in order to
hide and wait for more suitable conditions.

Once airborne, individuals have little control over the direction and distance of dis-
placement [39]; rather, they join other floating life forms collectively known as aerial
plankton [40], which are subject to air currents.

While there have been attempts to observe ballooning distances visually, which sug-
gest that spiders move no more than a few hundred metres in any one attempt [41],
it also may be inferred from anecdotal evidence that spiders make journeys of several
hundred kilometres, reaching up to 5 km altitudes above the ground. Charles Darwin
for example noticed this phenomenon and wrote down on his Beagle Diary about some
spiders landing on the ship after a 60 mile journey off the coast of Buenos Aires.

The decision whether taking flight or not is fairly complex, as it is inevitably based
on partial observation of the surrounding environment: the spider looks out for clues
regarding the success of its flight collecting local information without knowing how the
conditions are going to evolve once it has become airborne. There is still open debate on
the individuation of the most relevant physical properties of the environment that favour
ballooning. Multiple field observations suggest that spiders balloon during daylight
hours, under sunny and clear skies, and at wind speeds less than 3m/s [42, 43]. In these
conditions the vertical movement of warmer air up and cooler air down results in static
instabilities in the atmosphere and leads to the formation of a vertical, turbulent layer
filled with vortices, called thermals, that can be used as a lifting force by ballooning
spiders. However, some researchers have conjectured that the negative surface charge
density of the Earth may play a role in spider ballooning, making electrostatic field is
a necessary condition for take-off [44], even though empirical findings have shown that
thermal currents could provide all the necessary lift for ballooning.

Again, we are faced with the problem of predicting the behaviour of the wind in
order to extract from it the power needed to move away from the original location. As
we pointed out at the beginning, this task can be phrased as an optimization process.
More specifically, we will show it is straight-forward to cast it as an instance of bandit

3.2. MODEL OF THE ENVIRONMENT 39

algorithms [45], which stand as a subclass of Reinforcement Learning problems. We
will draw our first conclusions by addressing it using basic statistical tools coming from
logistic regression.

The first issue that we encounter in our treatment is the need for data, whereas
spider ballooning is a rather difficult phenomenon to keep track of, since for example
radar technology fails to resolve ballooners [46]. In absence of experimental data to
examine, we start by developing a novel physical model of spider ballooning that draws
inspiration from the existing ones and takes under consideration more than one drag-
line. We proceed by testing it in a synthetic wind field, providing with the data to
later elaborate in the optimization framework. After that, we examine the preliminary
results of our prediction framework and set the stage for further data production and
more developed analysis.

3.2 Model of the environment

In this section we introduce our own physical model of a ballooning spider and then
describe the virtual wind environment that we present to the spider.

3.2.1 Physics of the ballooning spider

The first analytical model for spider ballooning dates back to 1987 was built by Humphrey
[47], who studied the phenomenon with a simple fluid mechanical model. In Humphrey’s
model, the spider is represented as a solid sphere. Attached to the solid sphere is a rigid,
inextensible, cylindrical rod that is used to approximate a silk dragline, thus produc-
ing a lollipop appearance. The rod is considered to be massless relative to the spider.
This crude approximation worked as conceptual foundation of the physical constraints
under which ballooning spiders must operate, obtaining some empirical confirmations
[48]. However, the physical properties and dimensions in Humphrey’s model were not
validated.

A major refinement to Humphrey’s model comes by the works of Reynolds’s group
in 2006/07 [49, 50]. Instead of the rigid rod, they modeled the silk dragline as a chain of
springs and spheres that resist stretching but not bending. This model leads to better
agreement with observations of ballooning behaviour, yet it showcases the problem of
silk entanglement, which is not actually reported to be an issue in nature.

A punctual review of state of the art quantitative modeling on spider ballooning up
to 2017 can be found at [51], including, together with the two that we mentioned, other
studies focused on diffusion and on electrostatics.

Our model for the mechanics of spider ballooning takes Reynolds scheme as a baseline
and introduces some new ingredients. The first one consists in allowing for more than
one dragline connected to a single spider. This results in multiple chains of springs
connected by beads departing from the spider’s body. Each bead is uniquely defined by
its position qi,j , where i is the bead number inside a specific chain while j is the index of
the chain. Since we neglect electrostatic interactions between chains, we let the j index

40 CHAPTER 3. SPIDER BALLOONING

fall in the following to deal with a lighter notation.
The force acting on each bead is the sum of 3 contributions, leading to the following

Newton equation:

q̈i =
1

mi
(F el

i + F aer
i + F rig

i) (3.1)

where mi is the mass of bead i and q̈i its acceleration. We proceed by analyzing the
forces in detail.

• F el
i is the elastic force acting on node i and standing for the resistance to stretching

of the chain. Elastic force is already present in Reynolds model and its energetic
contribution to the total energy of the chain reads:

Hel = 1

2
κ

N∑
i=1

(|qi − qi−1| − s0)2 (3.2)

where s0 is the resting length of the spring, which we consider to be the same for
all the springs as for the elastic constant κ. It follows that the force on the i-th
bead is

F el
i = −∇iHel = κ(si,i−1pi,i−1 + si,i+1pi,i+1) (3.3)

where si,i−1 = |qi−1 − qi|−s0 and pi,i−1 =
qi−1−qi
|qi−1−qi| and similarly for bond between

i and i+ 1.

• F aer
i is the i-th component of the aerodynamic force acting on the filament. It is

the contribution that determines the possibility to exploit the wind power in order
to take-off and remain airborne. In this matter we apply a refinement to Reynolds
model, taking into account the anisotropy of the silkline. We still consider the
aerodynamic force to scale linearly with the relative velocity of the bead with
respect to the fluid vrel = q̇i − ui, which is customary for objects moving at
relatively slow speeds in fluids with no turbulence. However, previously F aer

i was
taken to be anti-parallel to the relative velocity (as it was the case for the drag
in chapters 1 and 2, leading to a purely-drag motion), while now we decouple vrel
into 2 components: one parallel to the spring, therefore exerting lower resistance
to the fluid, and one perpendicular, responsible for higher force. Such difference
is not true for the spider’s body, which we model as a sphere and consequently
aerodynamics affects it isotropically.

• F rig
i is the second main update to the Reynolds model, introducing a rigidity force

that limits the unrealistic bending possibility of the dragline. Similarly to what is
done in [52], we consider an energy term HKP which resembles the Kratky-Porod
model in polymer physics [53], yielding

HKP = J

N−1∑
i=1

pi,i−1 · pi,i+1 (3.4)

3.2. MODEL OF THE ENVIRONMENT 41

resulting in a penalty whenever two adjacent springs are not parallel. The bending
resistance acting on node i is given by

F rig
i = −∇iHKP = −J∇i

∑
i

(qi−1 − qi) · (qi+1 − qi)

|qi−1 − qi| |qi+1 − qi|
(3.5)

depending on the position of the adjacent beads, yielding F rig
i = F rig

i (qi−1, qi, qi+1).

The same set of forces acts on the spider’s body as well, summed over all the silklines
attacked to it. The spider also perceives the action of gravity, whose effect is neglected
on the lighter filaments in line with previous models.

3.2.2 The virtual wind environment

We test this new mechanical model in a controlled environment and generate a first
database that works as a benchmark to understand the predictive power of optimization
algorithms regarding spider ballooning.

We define a synthetic wind field with a horizontal velocity component linearly in-
creasing with height combined with a stochastic component which acts primarily on the
vertical direction. This gives rise to the following velocity field:

ux = kz − f(t) µ(x)z
uy = 0

uz = f(t)µ′(x) z
2

2 .

(3.6)

Incompressibility of the flow is preserved as ∇ ·u = 0. µ′(x) is a spatial gate function
which localizes the effect of the stochastic component close to the starting point and µ(x)
is its primitive function. f(t) is the temporal function responsible for the randomness. It
consists of small Gaussian bumps acting on the vertical velocity mimicking the behaviour
of brief ascending or descending currents.

This simplified field is conceived in such a way that the outcome of the flights is
highly diversified, making it easier to distinguish between good and bad moments for
take-off.

We are now provided with all the ingredients to create a database of flown distances
and corresponding perceived wind sequences. Simulations of spider flight are organized
as follows:

• the spider is located on a starting point with little elevation with respect to the
ground;

• from there it witnesses a certain wind sequence for a limited amount of time, while
letting its draglines fly but remaining attached to the floor with its body;

• after that it takes flight and we simulate its dynamics until it touches the ground
at a certain distance from the starting point.

42 CHAPTER 3. SPIDER BALLOONING

Figure 3.1: Histogram of the flown distances of a batch of 10000 spiders corresponding
to 10000 different wind sequences.

A histogram of flown distances is reported in fig. 3.1. The peak is due to all those
sequences characterized by no bumps close to the take-off moment, resulting in an almost
deterministic fall.

We want to investigate the connection between the wind sequence witnessed by the
spider in its original location right before take-off and the corresponding flown distance:
is it possible to predict the outcome of the flight from the observations provided before
taking off? This will be the topic of the next section.

3.3 The decision-making algorithm

The presence (or absence) of a relation between the observations collected at the initial
point and the outcome of the flight makes the case for the possibility to decide if it
is convenient to take off or not. Of course if randomness prevailed, there would be no
room for prediction and ballooning would uniquely rely on probabilistic considerations,
as suggested by [39]. We will show in the following that this is not the case in the
stochastic virtual environment that we built up.

As in the previous chapters we face the problem of defining the relevant observables
to monitor in order to make well-informed decisions. In principle this can be a very
complicated question to answer, especially in a context in which even phenomenological
studies do not completely agree on the physical motivations of spider ballooning. In
practice in this analysis we restrict our field of investigation to wind velocities exclusively,
knowing that this could result insufficient when dealing with more complex flows or
experimental databases.

This task can be cast as a two-armed bandit problem. It is a simpler version of the

3.3. THE DECISION-MAKING ALGORITHM 43

Reinforcement Learning problem where the agent-environment loop is replaced with a
choice between two actions as in fig. 3.2. After sensing the wind velocity for a certain
time interval, the agent – the simulated spider – has to choose whether to take-off or to
give up. The first action leads to a stochastic reward which is proportional to the landing
distance, while the second one has the sure result of giving zero reward. The comparison
between the two possibilities changes according to where we decide to put the threshold
between what we judge as a successful attempt and an unsuccessful one. This threshold
can be considered as a compensation for the cost of performing ballooning, which means
an expenditure in terms of energy for the spider that is rewarding only if it actually
seizes a substantial displacement.

Figure 3.2: Spider ballooning as a two-armed bandit problem.

Once we have fixed the threshold distance d0, the goal reduces to predict whether the
traveled distance will be d > d0, making take-off more convenient, or d < d0, preferring
giving up. We assign outcome y = 1 to the former case and y = 0 to the latter and we
proceed by classifying wind sequences.

In this set-up we focus on the vertical velocity presented to the spider before taking
off, but in principle we could extend our analysis also to other wind properties over time.
We let the agent witness the development of vertical velocity uz(t) for a time interval
comparable to the duration of the tip-toeing behaviour of spiders in nature (we select
∆t = 10 s to be a reasonable waiting time with respect to the observational study [36]).
After that, we ask to predict the outcome of the flight. To do this, we train a simple
logistic regression model.

We sample the vertical velocity in N points every δt with ∆t = Nδt, then we feed it
as an input to the logistic function, reading

pβ(y = 1|uz(t1), ..., uz(tN)) =
1

1 + exp
[
β0 +

∑N
i=1 βiuz(ti)

] . (3.7)

This returns us the estimate of the probability of success by taking off as a function of
a vector of weights β = (β0, ..., βN). We can further refine this estimate by adjusting the
weights seeking to maximize the log-likelihood of the model, for example using gradient

44 CHAPTER 3. SPIDER BALLOONING

ascent.

This process leads to an approximation of the outcome which is far from being precise,
as it is portraited in fig. 3.3. It appears that the data is not linearly-separable, resulting
in low accuracy. However, it is still possible to draw useful conclusions on the features
of wind sequences that undergo the classification task.

Figure 3.3: Fit of the logistic function between the two outcomes given by the data.
The abscissa represents the values of the linear combination

∑N−1
i=0 wiuz(ti) + b while

the ordinate reports the probabilities and the outcomes 0 and 1. The resulting logistic
function is plotted in orange while the actual outcomes are in blue.

Let us choose d0 to be one standard deviation over the average value of the distribu-
tion of flown distances of fig. 3.1. If we look at the average of wind sequences weighted
by pβ(y = 1) and by pβ(y = 0) = 1− pβ(y = 1) respectively, we obtain the mean profiles
reported in 3.4a. As expected, the logistic regression model learns to associate with
successful outcomes wind sequences characterized by a positive vertical component close
to the moment of take-off. An ascending wind plume starting before the moment in
which the spider has to choose whether to take off is the best suited situation in order to
maximize the distance of dispersal. Very similar profiles can be obtained if we directly
average the data, manually dividing it according to their outcome (fig. 3.4b).

Finally, we look at the resulting weight distribution reported in fig. 3.5 withN = 100.
Again we face confirmation regarding the fact that the model learns to give higher
importance to information close to the end of the wind sequence, assigning bigger weights
to the velocity samples right before take-off. The relevance of information decays going
back with time.

The results of this preliminary analysis on a first database are promising and agree

3.4. CONCLUSIONS AND FUTURE PERSPECTIVES 45

Figure 3.4: a) Average value of the vertical velocity over time weighted by the probability
of success pβ(y = 1) (blue curve) vs. probability of failure pβ(y = 0) (orange curve). b)
Average value of the vertical velocity for sequences resulting in successful flights (blue
curve) and unsuccessful ones (orange curve).

with the expectations. This leaves room for further development both in data production
and in algorithmic refinement, as we are going to discuss in the next section.

3.4 Conclusions and future perspectives

In this chapter we showed how to frame the behaviour of ballooning spiders as a decision-
making process. The scheme reported in fig. 3.2 is quite general and remains true across
different environments and choices of observables.

We tackled this problem with simple tools coming from statistics, being able to
draw some preliminary conclusions on the predictive power of this analysis. From the
employment of logistic regression on this data-set, we can state that:

• at least in this simple wind environment, it is possible to extract the main features
of the wind velocity sequences that will lead to the goal, that is the maximisation
of the dispersion distance;

• those features are intuitive and understandable and confirm the reasonable expec-
tation of individuating wind sequences characterized by a positive vertical compo-
nent close to take-off time;

• the limits of regression are highlighted by the low accuracy in discriminating be-
tween good and bad outcomes, signaling the presence of non-linearity effects that
are not captured by this analysis.

This stands as a proof of concept of the validity of this approach. Further refine-
ment moves in two directions: on one hand there is the algorithmic development, that
necessarily moves from regression towards non-linear architectures and online analysis;
on the other we have the need for data coming from less controlled environments, where
fluctuations are not localized in space and more realistic flows are contemplated.

46 CHAPTER 3. SPIDER BALLOONING

Figure 3.5: Final weight values for 10 s sequences sampled every 0.1 s.

As far as the first is concerned, we did not actually employ Reinforcement Learning
techniques to solve the decision problem. In fact, the analysis that we perform works
on static data, pretty much as a supervised learning algorithm: we can visualize logistic
regression as learning with a perceptron with one output neuron reproducing the prob-
ability of success. The natural evolution of this task is the decision of the take-off time,
similarly to what happens in reality: as information from the environment flows in, the
agent waits for the best time to take flight and become airborne. The analysis on the
incoming signal can be performed for example using temporal logic features [54], which
are particularly suited for online data monitoring.

With the refinement of the learning algorithm designed to solve the decision prob-
lem in study, we can plan to address more complex environments inevitably producing
noisier data. We have at our disposal a mechanical model of a ballooning spider which
reproduces credible results in a linear gradient field and we can test it in more realistic
flows like the Couette channel flow employed in chapter 1. This would represent a chal-
lenge for the learning algorithm in order to understand how much its power of prediction
can be extended towards the real-world scenario.

Conclusions

Throughout the course of this thesis work we have inspected three instances of optimiza-
tion processes that involve the exploitation of wind power. We introduced the field of
Airborne Wind Energy, which represents an innovative and sustainable alternative for
the future of energy production and of shipping transport. The need for control of the
motion of the kite employed for energy harvesting constitutes a very interesting prob-
lem, which we addressed with techniques in the framework of Reinforcement Learning,
arguing that they can represent a valid alternative to the traditional control methods
that are currently employed on this task.

The results that we obtained by experimenting this novel approach to Airborne Wind
Energy are promising, as we have at our disposal one algorithm that showcased a solid
performance both when used to tow a vehicle and when applied to energy extraction.
The advantages of this solution lie in its model-free nature, allowing for plasticity and
possible application to different architectures. Its deployment on two different tasks like
we did in chapters 1 and 2 works as a proof for its versatility. This asset is particularly
valuable in a field of technology characterized by the development of many different
prototypes, each of them trying to tackle the challenge of power maximization while
limiting the risk of crashes.

Another strength of our method is its interpretability: it turns out that even in a
complex turbulent environment the learning process comes out with a strategy that can
be translated into a simple set of rules which are easily reproducible and can constitute a
proper benchmark for on-field testing. The main requisite for interpretability lies in the
limited need for data by this algorithm, which is able to reach a satisfying performance
having access to very few pieces of information regarding the underlying dynamics. This
keeps the learning extremely light and transparent at the same time.

We also tried a different approach employing a deep-Reinforcement Learning algo-
rithm to optimize Airborne Wind Energy extraction, in principle working at the opposite
side of the spectrum, providing with the possibility to deal with more articulate state
spaces. However, we encountered some difficulties in searching for hyper-parameters
values allowing to converge to the best strategy. Nonetheless, the analysis of the neural
network grants further depth to the choice of the relevant observables to be monitored
while controlling the kite.

We remain confident that this novel approach to Airborne Wind Energy could im-
prove the quality of the control currently exerted on these systems, possibly filling the

47

48 CHAPTER 3. CONCLUSIONS

gap that there still exists between the state of the art technology and its large-scale
commercialization.

Regarding the phenomenon of spider ballooning, we addressed a problem that shared
many similarities with AWE, starting from the essential feature of using wind as a source
of energy, in this case to favour the spider dispersal in space. Differently from the work
on AWE, where we adopted existing models to mimic the dynamics of the system, we
developed a new mechanical model of a ballooning spider. We tested it in a simplified
wind environment characterized by stochastic gusts on the vertical component of the
wind velocity, diversifying the outcome of the spider flight according to the moment
of take-off. By doing that we distilled an instance of the decision-making process that
spiders appear to undergo any time they feel the urge to perform ballooning.

By analyzing the data resulting from the simulated flights in this synthetic wind
field, we obtained a proof of concept regarding the validity of this approach, being able
to identify the main features to look for in order to guarantee a displacement farther
than a given distance.

Again this approach seems promising both in terms of explaining a peculiar instance
of animal behaviour and in drawing inspiration from it in order to optimize the feature
selection process that leads to the prediction of the motion of the air flow starting from
local and partial observation.

Appendices

49

Appendix A

Supplementary Information to
Chapter 1

A.1 Detailed model dynamics

In this section we provide all the calculations regarding the integration of the equations
of motion of the kite-vehicle system.

Starting from the equations of motion and the relative constraints as follows:
mẍk = F aer +mg − T

M ẍv = F µ +N +Mg + T

zv = 0

|r(t)| = R where r = xk − xv

(A.1)

where we explicit the fixed tether length and the position of the vehicle on the ground.
From the equilibrium of the forces on the z axis for the vehicle, the modulus of the

normal reaction of the ground on the vehicle can be written as:

N =Mg − Tz.
The friction force is exerted between the vehicle and the ground, and is proportional

to the sum of the forces acting on the vehicle on the vertical direction:

|F µ| = µN

= µ(Mg − Tz)

where µ is the friction coefficient.
To solve the system, let us compute the ratio of the first two equations of system A.1

by the respective masses and subtract the resulting equations:

r̈ =
F aer − T

m
− F µ +N + T

M
, (A.2)

51

52 APPENDIX A. SUPPLEMENTARY INFORMATION TO CHAPTER 1

Let’s now compute the derivative of |r(t)| with respect to time (the time dependence
in the following passages is suppressed for clarity):

1

2

d

dt
|r|2 = |r|er · ṙ = r · ṙ = 0,

where er is the unit vector directed along the cable, labeled by r. Deriving a second
time we end up with:

r̈ · r = −ṙ2

We can now equate −ṙ2 to the product of equation A.2 with r, inserting the con-
straint of fixed length of the tether indirectly in the system:

|T |R(m−1 +M−1)− F aer · r
m

+
(F µ +N)

M
· r = ṙ2,

This equation can be used to find out the modulus of tension force along the rope
direction, by writing explicitly both N and F µ as functions of |T |:

|T |R(m−1 +M−1) =
F aer · r
m

− (F µ +N)

M
· r + ṙ2

The form of the friction force depends on the status of motion of the vehicle. There
are three possible situations:

• The vehicle is moving. Then the friction force opposes the speed of the vehicle:

F µ = −µN vv
|vv|

= −µ N

|vv|
(vv,xx̂+ vv,yŷ).

The equation for the tension then becomes:

T =

Faer ·r
m + ṙ2 − g

[
zk − µ

|vv |(vv,xrx + vv,yry)

]
Rm+M

mM − cos(θ)
M

[
zk − µ

|vv |(vv,xrx + vv,yry)

] .
• The vehicle is still and |Txy| ≥

∣∣F µ
Max

∣∣. Then the friction force opposes the tether
tension on the xy plane:

F µ = −µN Txy
|Txy|

= −µ N

|Txy|
(Txx̂+ Tyŷ)

yielding

T =

Faer ·r
m + ṙ2 − g

[
zk − µ(cos(ϕ)rx + sin(ϕ)ry

]
Rm+M

mM − cos(θ)
M

[
zk − µ(cos(ϕ)rx + sin(ϕ)ry)

] ,

A.2. TURBULENT FLOW STRUCTURE 53

• The vehicle is still and |Txy| <
∣∣F µ

Max

∣∣. Then the friction force is equal and opposite
to the tether tension on the xy plane

F µ = −Txy

The modulus of the tension in this case becomes:

T =
Faer ·r
m + ṙ2 − gzk

Rm+M
mM − sin(θ)

M (cos(ϕ)rx + sin(ϕ)ry)− cos(θ)
M zk

Expressing the components for the accelerations of kite and vehicle in the three
dimensions, one can write: 

mẍk = F aerx − Tx
mÿk = F aery − Ty
mz̈k = F aerz − Tz −mg
Mẍv = Fµx + Tx

Mÿv = Fµy + Ty

Mz̈v = 0.

(A.3)

These equations are integrated using Euler method with integration step ∆t =
0.001 s. Since the constraint |r(t)| = R is inserted indirectly in the dynamics, the
distance between vehicle and kite varies after the integration. To avoid this, the kite
position is adjusted according to:

x′
k = xk +

xk − xv
|xk − xv|

R.

A.2 Turbulent flow structure

The turbulent Couette Channel flow is a shear-driven motion of an incompressible fluid
bounded by two parallel walls in relative motion. The governing equations of the velocity
field are the incompressible Navier-Stokes equations, that in dimensional form read{

∂tu+ u · ∇u = −1
ρ∇p+ ν∇ · (∇u)

∇ · u = 0,
(A.4)

where ρ is the fluid density and ν is the kinematic viscosity.

In order to deal with dimensionless equations we introduce the following variables:
x∗ = x

L ,u
∗ = u

U , t
∗ = t

L/U , p
∗ = p

ρU2 , where U and L are the characteristic velocity and
length of the problem in study. In our case we take the height 2δ of the channel to be the
characteristic length and the upper wall velocity UW as the characteristic speed. The
resulting dimensionless equations are

54 APPENDIX A. SUPPLEMENTARY INFORMATION TO CHAPTER 1

{
∂u∗

∂t∗ + u∗ · ∇u∗ = −∇p∗ + 1
Re∇ · (∇u∗)

∇ · u∗ = 0
(A.5)

where the Reynolds number Re = 2UW δ
ν remains the only defining parameter of the flow,

determining the ratio between the weight of the inertial force term and the one of the
viscous term. As the magnitude of the inertial term continues to increase and eventually
becomes much larger than the viscous term, there results a ”runaway” flow instability
whereby the damping effect is marginalized. Therefore, 3D instabilities form and become
rampant as Re continues to increase. From this critical point on (Re > 1500), the flow
starts to show the trademarks of turbulence.

The simulation is initially run in a small box with dimensions 2π × π × 2m3, re-
spectively corresponding to the length of the x, y and z axes. It follows that the char-
acteristic length for this system δ = 1m.The upper wall velocity in this configuration is
UW = 3m/s and the kinematic viscosity ν = 1/10935m2/s. This results in a Reynolds
number Re = 65610, giving rise to a highly turbulent flow.

Dimensions and wall velocity are later re-scaled in post-processing, resulting in the
32π × 32π × 100m3 channel that we use for running the learning simulation, together
with UW = 30m/s.

In fig. A.1 and A.2 we report the analysis we performed on the final flux, both along
time and on a single frame of the flow. Results are in line with those predicted in ref.
(3).

Figure A.1: Behaviour of the overall mean and standard deviation of the three com-
ponents of the velocity plotted with respect to time in seconds from 0 to the entire
duration of the flow, being 600s. The mean and the standard deviation are computed
by averaging over all the points of the grid at each time step. Each snapshot of the flow
is taken at a 0.2s distance from the previous one, resulting in 3000 total frames.

A.3. SIMULATION PARAMETERS 55

Figure A.2: Mean and fluctuations at t = 300s obtained by averaging over all the grid
points of each plane at a fixed channel height z. As expected the mean velocity scales
linearly with height in the viscous sub-layer and then logarithmically afterwards. We
portrait just half the channel height in the left plot and the entire spectrum in the right
one, in order to highlight the regularity in the mean fluctuations close to the lower and
upper walls.

A.3 Simulation parameters

Speaking about the values of the parameters employed to simulate the behaviour and the
learning of the kite-vehicle system, we first have to disclaim between the environmental
parameters, such as the physical characteristics of the kite, the duration of the episodes
and the magnitude of the penalty, and the learning parameters, regarding the magnitude
and the scheduling of learning and exploration rate, and the length of the training.

The former ones are resumed in table A.1 and are kept constant in all simulations.

Particular attention must be kept on the control angles α and ψ and the perceived
angle β. For every simulation we used the discretized attack angles listed in table
A.2 with the relative lift and drag coefficients. As for the bank angles we employed
ψ ∈ [−15◦, 15◦] and the spacing between adjacent banks is ∆ψ = 3◦. In the turbulent
simulation we account for the angle β between the relative velocity and the xy-plane
as well. The latter is binned uniformly between with β ∈ [−80◦, 80◦] with ∆β = 20◦.
This amounts to 8× 11× 9 total observables (which represent the states of the learning
process) in a turbulent flow, while it is limited to 8× 11 for simpler flows as we will see
later.

We now shed light on the values of the learning parameters we used for training.
Values and scheduling of learning rate and exploration rate are reported in table A.3
and are valid both for trainings through the turbulent channel and for simpler settings.
What can be changed is the total number of learning steps Nsteps, which is higher for
the turbulent trainings as the space of observables is larger and the learning is more

56 APPENDIX A. SUPPLEMENTARY INFORMATION TO CHAPTER 1

Parameter Symbol Value

Vehicle mass M 40 kg
Kite mass m 1 kg

Cable length R 50m
Friction coefficient µ 0.4

Kite area A 5m2

Integration time ∆t 0.001 s

Penalty value P 1000
Threshold time for P Tpen 200 s
Penalty threshold for z zlow 10m

Training ep. duration T 350 s
Evaluation ep. duration Teval 600 s

Decision time ∆tdecision 0.25 s

Table A.1: Values of the employed environmental parameters for the kite-vehicle system.

Attack angle α CL(α) CD(α)

6 0.65 0.05
8 0.75 0.07
10 0.82 0.09
12 0.9 0.1
14 1.0 0.13
16 1.08 0.18
18 1.1 0.18
20 1.05 0.21

Table A.2: Lift coefficient CL and drag coefficient CD as functions of the attack angle
α. The employed values listed in the table are taken from ref. [24].

difficult.

The scheduling used for the learning rate is

ηj(St, At) =
η0

1 +
(
nj(St,At)

N0

)γ
and is function of the number of visits nj(St, At) to each observation-action couple.

The exploration rate is instead function only of the training time j and has an initial
constant interval Nburn and then shows a power-law decay as follows

ϵj =
ϵ0ϵc

ϵc + (j −Nburn)δ
.

A graphic representation of these two power law decays can be found in fig. A.3 with
Nsteps = 6 · 108.

A.3. SIMULATION PARAMETERS 57

As far as the penalty for crashing is concerned, it does not remain the same along one
episode: crashing is penalized only during the first 200 s of each episode, with P = 1000
and then is not penalized anymore. The penalty for flying low instead remains the same
along the whole episode (and we select zlow = 10m as reported in table A.1). This hard
scheduling enhances the finding of a reliable policy to overcome the transient from the
initial conditions to the stable pattern.

All the values of the parameters of the simulation with turbulent wind are reported
in table A.3. Time values are expressed in terms of number of learning steps. One
learning step follows the other by 0.25 s.

Figure A.3: Graphical representation of the scheduling of η(St, At) and ϵt. On the
left the abscissa represents the number of visits to a certain observation-action couple
n(St, At) while on the right it is shown the dependence between the exploration rate and
the learning step. In this simulation we resort to 6 · 108 learning steps.

Parameter Value

η0 0.1
N0 10000
γ 0.6

ϵ0 0.01
ϵc Nsteps/150

Nburn Nsteps/3
δ 1

Table A.3: Values of the training parameters for any training. Nsteps refers to the
total number of learning steps of the training and is equal to 6 · 108 for the turbulent
simulations, while Nsteps = 107 for simpler set-ups.

58 APPENDIX A. SUPPLEMENTARY INFORMATION TO CHAPTER 1

A.4 Learning in simpler set-ups and with different reward
distribution

As anticipated in section A.3, we performed various simulations in a simpler environment
as well, both as a test bench for the more complex turbulent problem and also in order
to try out different reward structures. In this scheme we consider wind velocity to be
constant along the x-axis and uniform. This results in a shorter search for the best
strategy, as a much smaller Nsteps is needed with respect to the one employed for the
trainings in a turbulent environment.

We find out that the system is able to learn effectively (fig. A.4) only knowing the
value of the control angles. Therefore we can discard the information regarding the angle
β, whose knowledge does not improve the performance of the algorithm. This allows us
to work with an even more restricted observation-space.

The maximum witnessed return is comparable with the one we witness in the tur-
bulent flow but the parallel is not particularly meaningful either: we selected a constant
wind velocity similar to the average velocity measured in the turbulent flow over all the
channel, but it is also true that the fraction of the field witnessed by the kite has usually
smaller velocity values.

The resulting trajectory is a stable helix-like motion along the episode as portraited
in fig. A.7. Also in this case the strategy is stable enough to make the kite remain
airborne also for longer periods of time with respect to the ones it has been trained on.
As for the turbulent case, we train the kite on episodes of length T = 350 s and then test
the policy on longer episodes with Teval = 600 s (cf. table A.1 for all the time intervals
employed in the simulations).

Figure A.4: Curve of the return (left) for a training with Nsteps = 107 with constant
wind velocity equal to 15m/s along x, episodes of length T = 350s and corresponding
traveled distances (right), which differ from the return values by the falling penalty and
by smaller rewards for zk < zlow = 10m.

The first test that we perform is the analysis of the best strategy learned at the
end of the training. The policy is now easily representable and is reported on the left

A.4. LEARNING IN SIMPLER SET-UPS ANDWITH DIFFERENT REWARDDISTRIBUTION59

part fig. A.5, where each entry stands for an observation S and the corresponding
arrow is the performed action. Even if this scheme is pretty noisy, we can recognize two
stable points with α = 8◦ and ψ = ±12◦ respectively, which act as attractors of the
observation-action dynamics. This is made more evident by the right part of fig. A.5: if
we evaluate the learned strategy, we notice immediately that the two stable points are
visited exponentially more times than all the others, resulting in absorbing points of the
dynamics.

Figure A.5: A picture of the best policy learned at the end of the training (left) and the
corresponding observation occupation after 166 evaluation episodes (right). Arrows and
circles represent the best action to be taken according to the maximization of the learned
Q. The circle stands for keeping attack and bank angles fixed. This figure highlights the
presence of two grid-points being the attractors of the observation-action dynamics.

We can then resort to gather this information and build a simplified policy which
drives the dynamics directly towards these two absorbing points avoiding the more in-
tricate cycles portraited by fig. A.5 (left). The new policy that we design is represented
in fig. A.6.

If we proceed by testing this new policy we find out that the performance is the same
as the one obtained at the end of the training, suggesting that the relevant information
stands in locating the absorbing points and all the actions that do not point directly
there are just the result of noisy learning.

This conclusion is almost analogous to the one drawn in the chapter with respect
to the turbulent flow learning, where the performance of the distilled policy and of the
learned one are comparable, nonetheless in that case the transient is responsible for a
higher variance.

60 APPENDIX A. SUPPLEMENTARY INFORMATION TO CHAPTER 1

Figure A.6: On the left we have the resulting schematized policy obtained by combining
the information coming from fig. A.5. We drew the shorted path towards the attractors
and the performance of the policy is invariate: on the right there are the two plots of
the returns collected during the evaluation of the learned policy and of the distilled one
for episodes of length T = 600 s.

The other test that we ran in this simple environment is the study of the learning
in contexts where the reward structure is different from the original one. If in the main
work we award the vehicle for moving as far as possible in the x direction, here we tried
to enquire whether it is possible to make the system move also in other directions even
if the wind continues to remain directed along x.

The obtained results are summarized in fig. A.8 and show sensibly smaller returns
with respect to the one of fig. A.4. This happens since the vehicle is not able to learn
efficiently how to exploit the horizontal wind in order to move upwind: it comes out that
the followed strategy remains very similar to the original one, with one stable attractor
around α = 8◦ and ψ = 12◦ (fig. A.9). The negative absorbing state vanishes since we
privilege moving in the positive direction of the y-axis.

This suggests that the dynamics is not rich enough in order to allow the due plasticity
required to the policy in order to make the system move efficiently in a direction which
does not correspond to the one given by the wind.

A.4. LEARNING IN SIMPLER SET-UPS ANDWITH DIFFERENT REWARDDISTRIBUTION61

Figure A.7: An example of the initial trajectory of the kite-vehicle system evaluated
using the learned policy. The helix motion is much more regular than in the turbulent
case as the environment is completely predictable and fluctuations are absent.

Figure A.8: Return growth in a constant wind environment along the x-axis with a
reward that awards the space travelled along y (left) and the space along the bisectrix
of the xy-plane (right). In both cases the obtained return is sensibly smaller than in the
usual reward scheme.

62 APPENDIX A. SUPPLEMENTARY INFORMATION TO CHAPTER 1

Figure A.9: Learning state occupation after evaluation for the case with the reward
given along the y-axis (left) and the reward assigned for the space traveled along the
bisectrix of the xy-plane (right).

Figure A.10: Another example of learning state-action trajectory portraiting the begin-
ning of an evaluation episode: in this case the transient phase is much longer and lasts
around 20 s before moving to the stationary one.

A.4. LEARNING IN SIMPLER SET-UPS ANDWITH DIFFERENT REWARDDISTRIBUTION63

Figure A.11: Figure a) portraits the states visited during the first 40 seconds of flight
according to the learnt policy. It is possible to individuate two phases of behaviour: a
very brief transient one where the kite reacts to the initial conditions it happens to face,
and a stationary one where the attack angle remains close to its maximum values and the
bank angle reacts to changes in the angle β reaching its peaks right after wells in β. The
same action pattern is represented inside the state space in b); arrows represent actions
and their consequences on the environment in terms of β. The transient is mapped
into the initial motion towards the states where the stationary phase of the policy is
performed. A glance of the stationary behaviour is given in c), showing a complex
cycle taking place between α = 18◦ and α = 20◦ and that slightly changes according
to the fluctuations perceived in the environment. The darkness of the colour stands for
log[n(s, a) + 1], n(s, a) being the state-action occupation during the evaluation phase.

Appendix B

Supplementary Information to
Chapter 2

B.1 Mathematical model
3.1 Mathematical model

Figure 3.2: Model diagram

Let us consider a cartesian coordinate system (x, y, z) centered in the electric

machine, with the x axis aligned with the wind speed. In this system, the

position of the kite can be expressed using spherical coordinates (✓, �, r),

with r being the distance from the origin (the length of the tether) and ✓

and � the two angles shown in figure 3.2.

Then, we can obtain a local coordinate system with unit vectors (e✓, e�, er),

centered in the position of the kite. These unit vectors can be expressed in

28

Figure B.1: Model diagram

Let us consider a cartesian coordinate system (x, y, z) centered in the electric machine,
with the x axis aligned with the wind speed. In this system, the position of the kite
can be expressed using spherical coordinates (θ, ϕ, r), with r being the distance from the
origin (the length of the tether) and θ and ϕ the two angles shown in figure B.1.
Then, we can obtain a local coordinate system with unit vectors (eθ, eϕ, er), centered in

65

66 APPENDIX B. SUPPLEMENTARY INFORMATION TO CHAPTER 2

the position of the kite. These unit vectors can be expressed in the (x, y, z) system as:eθ
eϕ
er

 =

cos(θ) cos(ϕ) cos(θ) sin(ϕ) − sin(θ)
− sin(ϕ) cos(ϕ) 0

sin(θ) cos(ϕ) sin(θ) sin(ϕ) cos(θ)

 (B.1)

Applying Newton’s laws of motion we obtain the following equations:

θ̈ =
Fθ
mr

(B.2)

ϕ̈ =
Fϕ

mr sin(θ)
(B.3)

r̈ =
Fr
m

(B.4)

where m is the mass of the kite.
The total force F that acts on the kite is the sum of gravity force Fgrav, apparent force
Fapp, aerodynamic force Faer and line tension T (whose only nonzero component is
along negative r axis):

F = Fgrav + Fapp + Faer −T (B.5)

With the simplifying assumption of a massless tether, the gravity force can be simply
expressed as:

Fgrav =

F gravθ

F gravϕ

F gravr

 =

mg sin(θ)0
mg cos(θ)

 (B.6)

The apparent force that comes into play is the centrifugal force, computed as:

Fapp =

F appθ

F appϕ

F appr

 =

 m(ϕ̇2r sin(θ) cos(θ)− 2ṙθ̇)

m(−2ṙϕ̇ sin(θ)− 2ϕ̇θ̇r cos(θ))

m(rθ̇2 + rϕ̇2 sin2(θ))

 (B.7)

B.1.1 Aerodynamic force

The derivation of the equations for aerodynamic force requires some additional care.
This force depends on the relative wind speed, which is computed as:

Wr = Ww −Wk (B.8)

where Ww is the wind speed and Wk is the kite speed, both with respect to the ground.
In the local coordinate system (eθ, eϕ, er), Wk can be expressed as:

Wk =

 θ̇r

ϕ̇r sin(θ)
ṙ

 (B.9)

B.1. MATHEMATICAL MODEL 67

We define now a kite wind coordinate system with basis vectors (xw,yw, zw). xw is
aligned with Wr and points from the trailing edge to the leading edge of the kite, zw
is contained in the kite symmetry plane and points from the top surface to the bottom
surface of the kite, yw completes the right-handed system.
By its definition, xw can be simply computed as:

xw = −Wr

Wr
(B.10)

To obtain an equation for yw we first define one of our control inputs ψ, the bank angle
of the kite, which we suppose we can control directly by acting on the length of the lines
connecting the kite:

ψ = arcsin
∆l

d
(B.11)

Then, if we define:

ew =
Wr − er(er ·Wr)

|Wr − er(er ·Wr)|
(B.12)

and

η = arcsin

(
er ·Wr

|Wr − er(er ·Wr)|
tan(ψ)

)
(B.13)

We obtain:

yw = ew(− cos(ψ) sin(η)) + (er × ew)(cos(ψ) cos(η)) + er sin(ψ) (B.14)

Finally, the unit vector zw can be computed as:

zw = xw × yw (B.15)

The aerodynamic force is the sum of drag and lift, that can be computed as:

D = −1

2
CDAρW

2
r xw (B.16)

L = −1

2
CLAρW

2
r zw (B.17)

where ρ is the air density, A is the kite characteristic area and CD and CL are respectively
the drag and lift coefficients. These coefficients are nonlinear functions of the angle of
attack of the kite, which we take as a control input, and will be discussed in section B.2.
Finally, Faer is computed as:

Faer = D+ L (B.18)

68 APPENDIX B. SUPPLEMENTARY INFORMATION TO CHAPTER 2

B.1.2 Tension

In our system energy is produced by the unwinding of a tether wound on a winch, which
puts into rotation the drum of an electric generator. Then, since we do not make any
particular assumptions about the unwinding velocity (in [24] it is controlled to be around
a reference value), we have to integrate the physics of the drum into our model. To do
so, we perform a simplified analysis in which we consider the interaction between drum
and tether to happen on a plane orthogonal to the axis of rotation of the drum.

Figure 3.3: 2D diagram for tension computation

When the radius R of the generator drum is much smaller than the distance

r between generator and kite, the tension T is always directed along axis r

and points towards the generator. To compute its intensity T , we can apply

the rotational form of Newton’s laws on the shaft of the generator:

Td � Tr = I!̇ (3.19)

where ! is the angular velocity of the drum, Td is the driving torque due

to the tether tension, Tr is the resistance torque (that we approximate as a

viscous friction, proportional to !), and I is the moment of inertia of the

drum.

The angular velocity of the drum is connected to the linear expansion velocity

of the tether by the equation:

!R = ṙ (3.20)

where R is the radius of the drum.

Since the driving torque applied to the drum is due to the tension, Newton’s

32

Figure B.2: 2D diagram for tension computation.

When the radius R of the generator drum is much smaller than the distance r between
generator and kite, the tension T is always directed along axis r and points towards the
generator. To compute its intensity T , we can apply the rotational form of Newton’s
laws on the shaft of the generator:

Td − Tr = Iω̇ (B.19)

where ω is the angular velocity of the drum, Td is the driving torque due to the tether
tension, Tr is the resistance torque (that we approximate as a viscous friction, propor-
tional to ω), and I is the moment of inertia of the drum.
The angular velocity of the drum is connected to the linear expansion velocity of the
tether by the equation:

ωR = ṙ (B.20)

where R is the radius of the drum.
Since the driving torque applied to the drum is due to the tension, Newton’s equation
can be rewritten as:

TR− kω = Iω̇ (B.21)

B.2. ATTACK AND BANK ANGLES 69

and, substituting ω:

TR− k

R
ṙ =

I

R
r̈ (B.22)

However, we recall that:

r̈ =
Fr
m

(B.23)

where Fr is the sum of all forces acting on the kite along the radial axis. This net
force can be split into two terms: one is the tether tension T that we are computing
and the other is the net force F sumr resulting from gravity forces, apparent forces and
aerodynamic forces acting on axis r:

Fr = F sumr − T (B.24)

Then, we obtain:

TR− k

R
ṙ =

I

R
(F sumr − T) (B.25)

The moment of inertia of a drum can be written in terms of the mass M of the drum as:

I =
1

2
MR2 (B.26)

And, solving the equation for T , we obtain:

T =
MF sumr R+ 2m ṙ

Rk

2mR+MR
(B.27)

B.2 Attack and bank angles

We assume to be able to control the attack and bank angle of the kite by adjusting the
length of the ropes connecting the kite to the ground.
These angles allow us to control the trajectory of the kite during the traction phase
(and in the subsequent passive phase) in order to optimize energy extraction just like
the trajectory of an airplane can be adjusted by the pilot by operating on ailerons and
elevators. by operating on ailerons and elevators.

Figure 3.4: Attack angle Figure 3.5: Bank angle

The bank angle was introduced in section 3.1.1 and is depicted in figure 3.5.

By controlling this variable we can make the kite turn along its longitudinal

axis (the axis that connects the trailing edge to the leading edge).

The attack angle (shown in figure 3.4) is involved in making the kite soar

or glide and it appears in the computation of the aerodynamic forces (drag

and lift), since it is one of the main factors that influence the lift and drag

coe�cients CL, CD. To properly define this angle, we have to introduce

a kite body coordinate system (xb,yb, zb), centered in the center of mass

of the kite. The unit vector xb is contained in the kite symmetry plane

and points from the trailing edge to the leading edge, zb points down and

is perpendicular to the kite surface, while yb completes the right-handed

coordinate system.

Then, the attack angle ↵ can be defined as the angle between the vectors xw

and xb.

The dependence of lift and drag coe�cients on the attack angle is quite

complex and strongly influenced by the profile of the airfoil. We assume to

work with a Clark-Y kite: the values for lift and drag coe�cients for such a

profile have been estimated in [14] for 15 values of ↵ ranging from �8 to 20

34

Figure B.3: Attack angle and bank angle.

70 APPENDIX B. SUPPLEMENTARY INFORMATION TO CHAPTER 2

The bank angle was introduced in section B.1.1 and is depicted in figure B.3. By con-
trolling this variable we can make the kite turn along its longitudinal axis (the axis that
connects the trailing edge to the leading edge).
The attack angle (shown in figure B.3) is involved in making the kite soar or glide and it
appears in the computation of the aerodynamic forces (drag and lift), since it is one of
the main factors that influence the lift and drag coefficients CL, CD. To properly define
this angle, we have to introduce a kite body coordinate system (xb,yb, zb), centered in
the center of mass of the kite. The unit vector xb is contained in the kite symmetry
plane and points from the trailing edge to the leading edge, zb points down and is per-
pendicular to the kite surface, while yb completes the right-handed coordinate system.
Then, the attack angle α can be defined as the angle between the vectors xw and xb.
The dependence of lift and drag coefficients on the attack angle is quite complex and
strongly influenced by the profile of the airfoil. We assume to work with a Clark-Y kite:
the values for lift and drag coefficients for such a profile have been estimated in [24] for
15 values of α ranging from −8◦ to 20◦ and are reported in the following plot and table:

and are reported in the following plot and table:

Figure 3.6: Lift and drag coe�cients as functions of the attack angle

Attack angle ↵ (°) CD CL

-8 0.005 -0.15
-6 0.005 -0.05
-4 0.001 0.05
-2 0.005 0.2
0 0.01 0.35
2 0.02 0.45
4 0.03 0.55
6 0.05 0.65
8 0.07 0.75
10 0.09 0.82
12 0.1 0.9
14 0.13 1
16 0.18 1.08
18 0.18 1.1
20 0.21 1.05

35

Figure B.4: Lift and drag coefficients as functions of the attack angle.

B.3. MODEL CONFIGURATION 71

Attack angle α CD CL
-8 0.005 -0.15
-6 0.005 -0.05
-4 0.001 0.05
-2 0.005 0.2
0 0.01 0.35
2 0.02 0.45
4 0.03 0.55
6 0.05 0.65
8 0.07 0.75
10 0.09 0.82
12 0.1 0.9
14 0.13 1
16 0.18 1.08
18 0.18 1.1
20 0.21 1.05

Table B.1: Lift coefficient CL and drag coefficient CD as functions of the attack angle
α. The employed values listed in the table are integrally taken from ref. [24].

B.3 Model configuration

The physical model used throughout all our simulations is a ground-gen fixed-ground-
station AWE system in a yo-yo configuration, in which the tether is pulled by a kite
with a Clark-Y profile. We suppose the tether to be infinitely long. The parameters of
the kite and of the electric machine were kept fixed across all simulations and they are
reported in the following table:

Parameter Value

Kite mass m 1kg
Kite area A 10m2

Drum mass M 10kg
Drum radius R 20cm

Friction coefficient k 10 Nm
rad/s

Table B.2: Kite parameters.

72 APPENDIX B. SUPPLEMENTARY INFORMATION TO CHAPTER 2

B.4 Details on the simulations

As already explained in A.3, it is important to schedule towards 0 the learning rate
η. This can be done by keeping the learning rate constant until a certain time Tη and
then using a power law scheduling with respect to the absolute learning time step (i.e.
accumulating learning steps across distinct episodes), with an exponent eη:

η(t) =

{
η0 if t ≤ Tη

η0
(t−Tη)eη if t > Tη.

(B.28)

The same kind of scheduling, with a different threshold Tϵ and exponent eϵ is used
for the exploration rate ϵ, employed in the ϵ-greedy policy. In B.5 an example of power
law scheduling for η and ϵ is shown, with η0 = 0.02, ϵ0 = 0.01, Tη = 7000, Tϵ = 8000,
eη = 0.6, eϵ = 0.8.

Figure B.5: Example of power law scheduling for learning rate and exploration rate

Here we report in detail the parameters used for the constant wind pattern both for
SARSA and DQL:

SARSA DQL

Number of episodes 8000
Wind speed 10m/s

η0 = 0.01 η0 = 0.001
ϵ0 = 0.01 ϵ0 = 0.001
Tη = 8 · 106 Tη = 106

Tϵ = 6.4 · 106 Tϵ = 5 · 106
eη = 0.9 eη = 0.9
eϵ = 1.3 eϵ = 1.3

Bibliography

[1] Uwe Ahrens, Moritz Diehl, and Roland Schmehl. Airborne Wind Energy. Green
Energy and Technology. Springer, 2013.

[2] Clarence D. Cone. Thermal soaring by migrating starlings. The Auk, 85(1):19–23,
1968.

[3] G. B. Dantzig. Maximization of a linear function of variables subject to linear
inequalities. 1951.

[4] L. V. Kantorovich. Mathematical methods of organizing and planning production.
Management Science, 6:366–422, 1960.

[5] L. S. Pontryagin. The mathematical theory of optimal processes and differential
games, volume 169. 1985.

[6] Richard Bellman. Dynamic Programming. Princeton University Press, Princeton,
NJ, USA, 1 edition, 1957.

[7] Richard Sutton and Andrew Barto. Reinforcement Learning: An Introduction. MIT
Press, 1998.

[8] Philip Bechtle, Mark Schelbergen, Roland Schmehl, Udo Zillmann, and Simon Wat-
son. Airborne wind energy resource analysis. Renewable Energy, 141:1103–1116,
2019.

[9] Antonello Cherubini, Andrea Papini, Rocco Vertechy, and Marco Fontana. Airborne
wind energy systems: A review of the technologies. Renewable and Sustainable
Energy Reviews, 51:1461–1476, 2015.

[10] J.F. Wellicome. Some comments on the relative merits of various wind propulsion
devices. Journal of Wind Engineering and Industrial Aerodynamics, 20(1):111–142,
1985.

[11] Massimo Canale, Lorenzo Fagiano, Massimo Ippolito, and Mario Milanese. Control
of tethered airfoils for a new class of wind energy generator. pages 4020 – 4026, 01
2007.

73

74 BIBLIOGRAPHY

[12] Robert Haffner. Study on challenges in the commercialisation of airborne wind
energy systems. 11 2018.

[13] A. Ilzhöfer, B. Houska, and M. Diehl. Nonlinear mpc of kites under varying wind
conditions for a new class of large-scale wind power generators. International Jour-
nal of Robust and Nonlinear Control, 17(17):1590–1599, 2007.

[14] Massimo Canale, Lorenzo Fagiano, Massimo Ippolito, and Mario Milanese. Control
of tethered airfoils for a new class of wind energy generator. pages 4020 – 4026, 01
2007.

[15] Michael Erhard and Hans Strauch. Automatic Control of Pumping Cycles for the
SkySails Prototype in Airborne Wind Energy, pages 189–213. 04 2018.

[16] Paul Williams, Bas Lansdorp, and Wubbo Ockels. Optimal cross-wind towing and
power generation with tethered kites. Journal of Guidance Control and Dynamics
- J GUID CONTROL DYNAM, 31:81–93, 01 2008.

[17] S. Joe Qin and Thomas A. Badgwell. An overview of nonlinear model predictive
control applications. In Frank Allgöwer and Alex Zheng, editors, Nonlinear Model
Predictive Control, pages 369–392, Basel, 2000. Birkhäuser Basel.

[18] I. Argatov, P. Rautakorpi, and R. Silvennoinen. Estimation of the mechanical energy
output of the kite wind generator. Renewable Energy, 34(6):1525–1532, 2009.

[19] Boris Houska and Moritz Diehl. Optimal control for power generating kites. 2007
European Control Conference, ECC 2007, 01 2006.

[20] Michael L Littman. Reinforcement learning improves behaviour from evaluative
feedback. Nature, 521(7553):445–451, 2015.

[21] Damien Ernst, Mevludin Glavic, Florin Capitanescu, and Louis Wehenkel. Re-
inforcement learning versus model predictive control: A comparison on a power
system problem. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), 39(2):517–529, 2009.

[22] Gautam Reddy, Jerome Wong-Ng, Antonio Celani, Terrence J Sejnowski, and Mas-
simo Vergassola. Glider soaring via reinforcement learning in the field. Nature,
562(7726):236–239, 2018.

[23] Marc G Bellemare, Salvatore Candido, Pablo Samuel Castro, Jun Gong, Marlos C.
Machado, Subhodeep Moitra, Sameera S. Ponda, and Ziyu Wang. Autonomous
navigation of stratospheric balloons using reinforcement learning. Nature, 588:77–
82, 2020.

[24] Massimo Canale, Lorenzo Fagiano, and Mario Milanese. High altitude wind en-
ergy generation using controlled power kites. Control Systems Technology, IEEE
Transactions on, 18:279 – 293, 04 2010.

BIBLIOGRAPHY 75

[25] Anthony T Patera. A spectral element method for fluid dynamics: Laminar flow in
a channel expansion. Journal of Computational Physics, 54(3):468–488, 1984.

[26] V. Avsarkisov, S. Hoyas, M. Oberlack, and J. P. Garćıa-Galache. Turbulent plane
couette flow at moderately high reynolds number. Journal of Fluid Mechanics,
751:R1, 2014.

[27] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony
Bharath. Deep reinforcement learning: A brief survey. IEEE Signal Processing
Magazine, 34(6):26–38, 2017.

[28] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning repre-
sentations by back-propagating errors. Nature, 323:533–536, 1986.

[29] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg
Ostrovski, Stig Petersen, Charlie Beattie, Amir Sadik, Ioannis Antonoglou, He-
len King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis.
Human-level control through deep reinforcement learning. Nature, 518:529–533,
2015.

[30] H. van Hasselt, A. Guez, and D. Silver. ”Deep Reinforcement Learning with Double
Q-learning”. arXiv:1509.06461, 2015.

[31] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal
of Machine Learning Research, 9(86):2579–2605, 2008.

[32] Miles L. Loyd. Crosswind kite power. Journal of Energy, pages 106–111, 1980.

[33] Michael D. Breed and Janice Moore. Chapter 8 - movement: Search, navigation,
migration, and dispersal. In Michael D. Breed and Janice Moore, editors, Animal
Behavior, pages 219–252. Academic Press, San Diego, 2012.

[34] Matjaž Gregorič, Ingi Agnarsson, Todd A. Blackledge, and Matjaž Kuntner. How
did the spider cross the river? behavioral adaptations for river-bridging webs in
caerostris darwini (araneae: Araneidae). PLOS ONE, 6(10):1–6, 10 2011.

[35] Joh R. Henschel, Jutta Schneider, and Yael D. Lubin. Dispersal mechanisms of
stegodyphus (eresidae): Do they balloon? The Journal of Arachnology, 23(3):202–
204, 1995.

[36] Moonsung Cho, Peter Neubauer, Christoph Fahrenson, and Ingo Rechenberg. An
observational study of ballooning in large spiders: Nanoscale multifibers enable
large spiders’ soaring flight. PLOS Biology, 16(6):1–27, 06 2018.

[37] Dries Bonte, Isra Deblauwe, and J. P. Maelfait. Environmental and genetic back-
ground of tiptoe-initiating behaviour in the dwarfspider erigone atra. Animal Be-
haviour, 66:169–174, 2003.

76 BIBLIOGRAPHY

[38] Jan O. Washburn and Libe Washburn. Active aerial dispersal of minute wing-
less arthropods: Exploitation of boundary-layer velocity gradients. Science,
223(4640):1088–1089, 1984.

[39] Robert B. Suter. An aerial lottery: The physics of ballooning in a chaotic atmo-
sphere. The Journal of Arachnology, 27(1):281–293, 1999.

[40] P. A. Glick. The distribution of insects, spiders, and mites in the air. Technical
Bulletins 168268, United States Department of Agriculture, Economic Research
Service, 1939.

[41] Jutta Schneider and Roos Schneider. Dispersal of stegodyphus dumicola (araneae:
Eresidae): They do balloon after all! Journal of Arachnology, 29:114–116, 04 2001.

[42] Eric Duffey. Aerial dispersal in a known spider population. Journal of Animal
Ecology, 25(1):85–111, 1956.

[43] M H Greenstone. Meteorological determinants of spider ballooning: the roles of
thermals vs. the vertical windspeed gradient in becoming airborne. Oecologia,
84(2):164–168, September 1990.

[44] Peter Gorham. Ballooning spiders: The case for electrostatic flight. 09 2013.

[45] Tor Lattimore and Csaba Szepesvári. Bandit Algorithms. Cambridge University
Press, 2020.

[46] James R. Bell, David A. Bohan, Richard Le Fevre, and Gabriel S. Weyman.
CAN SIMPLE EXPERIMENTAL ELECTRONICS SIMULATE THE DISPERSAL
PHASE OF SPIDER BALLOONERS? The Journal of Arachnology, 33(2):523 –
532, 2005.

[47] J.A.C. Humphrey. Fluid mechanic constraints on spider. Oecologia, 73:469–477,
1987.

[48] Robert B. Suter. Ballooning in spiders: results of wind tunnel experiments. Ethology
Ecology & Evolution, 3(1):13–25, 1991.

[49] A M Reynolds, D A Bohan, and J R Bell. Ballooning dispersal in arthropod taxa
with convergent behaviours: dynamic properties of ballooning silk in turbulent
flows. Biol. Lett., 2(3):371–373, September 2006.

[50] Andy Reynolds, David Bohan, and James Bell. Ballooning dispersal in arthropod
taxa: Conditions at take-off. Biology letters, 3:237–40, 07 2007.

[51] Kimberly Sheldon, Longhua Zhao, Angela Chuang, Iordanka Panayotova, Laura
Miller, and Lydia Bourouiba. Revisiting the Physics of Spider Ballooning, pages
163–178. 08 2017.

BIBLIOGRAPHY 77

[52] Longhua Zhao, Iordanka Panayotova, Angela Chuang, Kimberly Sheldon, Lydia
Bourouiba, and Laura Miller. Flying Spiders: Simulating and Modeling the Dy-
namics of Ballooning, pages 179–210. 08 2017.

[53] O. Kratky and G. Porod. Röntgenuntersuchung gelöster fadenmoleküle. Recueil des
Travaux Chimiques des Pays-Bas, 68(12):1106–1122, 1949.

[54] Laura Nenzi, Simone Silvetti, Ezio Bartocci, and Luca Bortolussi. A robust genetic
algorithm for learning temporal specifications from data. 05 2018.

	Introduction
	Reinforcement Learning Control for Ship-towing in a Turbulent Environment
	Introduction
	The virtual environment
	Kite and vehicle dynamics
	The turbulent environment

	Learning to control the kite
	Reinforcement Learning
	Actions
	The choice of observables
	The reward structure

	Results
	Learning effective control strategies

	Discussion

	Why is SARSA so effective?
	Introduction
	Modeling
	The Reinforcement Learning framework
	Tabular SARSA
	Deep Q-Learning
	An informed approach to deep-Reinforcement Learning
	State and control variables
	Reward structure

	Simulations and results
	Results in a constant wind pattern
	Results with a linear wind gradient

	Conclusions and future perspectives

	Spider Ballooning as a decision-making process
	Introduction
	Model of the environment
	Physics of the ballooning spider
	The virtual wind environment

	The decision-making algorithm
	Conclusions and future perspectives

	Conclusions
	Appendices
	Supplementary Information to Chapter 1
	Detailed model dynamics
	Turbulent flow structure
	Simulation parameters
	Learning in simpler set-ups and with different reward distribution

	Supplementary Information to Chapter 2
	Mathematical model
	Aerodynamic force
	Tension

	Attack and bank angles
	Model configuration
	Details on the simulations

