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Abstract

We explore several aspects of algebraic noncommutative spaces described explicitly. In
particular, we examine the construction of noncommutative Euclidean spaces by Dubois-
Violette and Landi, and reinterpret it as a deformation via cocycle twists of a Hopf algebra
action. We endow this class of algebras with the structure of a monoidal category to
perform an explicit Tannaka-Krein reconstruction of the Hopf algebra of symmetries that
is to be deformed. Next we explore products of real division algebras with a commutator
determined by multiplication operators on these division algebras. We extend the theory to
the case of the octonions in two different ways, and explicitly compute the symmetries of
these specific families of noncommutative spheres and tori. Lastly, we will present some
attempts at formalising the noncommutative octonionic Hopf fibration of S15 over S8. We
show that an ansatz given by a family of differential operators discovered by Klim and
Majid fails by exactly one associator, and we briefly describe some attempts to formalise
the nonassociative Hopf-Galois extension corresponding to this fibration.
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Chapter 1

Introduction

Mathematics is often about duality: the interplay between the abstract and the concrete,
between the analytic and synthetic. There is a very deep duality between two main areas
of mathematics as well, between geometry and algebras. Starting with a space I can
form an algebra by looking at the functions taking arguments in that space, and many
algebras are in turn algebras of functions on a space that is sometimes hidden. Usually
we consider these functions to take a point of our space and return a number. This creates
a condition that these functions have to obey, as the values of these functions and hence
the functions themselves commute. This means that their product does not depend on the
order. Many interesting algebras, however, do not have this property. Physicists often
model real processes via algebras, and in the real world the order in which one does things
matters. Noncommutative geometry is based on the idea of taking this duality between
algebras and spaces to its limit, to try to study any algebra as if it consists of functions on
a (noncommutative) space.

There are many ways to translate classical results to noncommutative equivalents,
and this is a field of active research. However, oftentimes this correspondence is not
unique, as statements that are equivalent in the commutative setting become different when
generalised. In order to find the "correct" generalisation, it is useful to check some simple
examples. It is trivial to come up with examples of noncommutative spaces: take any
noncommutative algebra, and consider it from a geometer’s point of view. It is however
quite a bit less trivial to come up with good examples: examples that preserve enough
of a classical geometric flavour to see the remnants of geometric shapes and properties in
the noncommutative algebra. This thesis attempts to construct and analyse some of these
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CHAPTER 1. INTRODUCTION

noncommutative spaces that are in some sense well-behaved. We construct these spaces
out of three main ingredients: Simple classical spaces, their symmetries and the guidance
of number systems.

That last component works as follows: We have all grown up with the number line,
which happens to be both a space and an algebra. There is also the complex plane, which
again happens to be a space made of numbers. This duality bestows them with many nice
properties on the interplay of algebra and geometry. There are exactly two more spaces that
behave somewhat like numbers; together these four are called the real division algebras.
The remaining two are the quaternions and the octonions, and they are 4 and 8 dimensional
respectively. The special properties of these spaces, their symmetries and their issues will
be central in what follows.

This thesis is divided into four parts, the latter three of which are mostly individually
readable. The first is a revision of the theory we will need for our constructions. This
theory consists of the three ingredients mentioned before. First we very briefly review the
classical spaces we will transform. Secondly we review a theory of symmetry; the theory of
Hopf algebras. Hopf algebras are the perfect tool for us as they revolve around duality; they
encapsulate both the duality between algebra and geometry as well as between abstraction
and the concrete. We will use this in many ways, to start with abstract symmetries and
end with concrete examples, to start with concrete examples and return with abstract
symmetries. This deep connection between symmetries and objects bearing that symmetry
gives us a powerful tool: when one deforms a Hopf algebra, so too will every space that
has that symmetry be deformed. This is what we will use to create our noncommutative
spaces. To round off the introduction we will revise the theory of real division algebras,
interpreting also these as examples of very simple spaces with very special deformations
along a symmetry.

The second part is about noncommutative products of flat spaces. The idea here is to
confine the noncommutativity to the fault line between two normal spaces, with the goal of
creating a minimally noncommutative space. We exhibit a new way of interpreting these
noncommutative spaces via monoidal categories, which is a tool that is among other things
capable of separating an algebra into an “external” and and “internal” part. This captures
an essential point of this particular class of examples, where all the noncommutativity
is caught in the interaction between the internal and the external. We reformulate the
construction in this language, use a reconstruction theorem to reconstruct a Hopf algebra
of symmetries, and indicate some ways of extending the theory to non-free algebras. After
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CHAPTER 1. INTRODUCTION

this reformulation, we have a short investigation of a very explicit nature as we try to
formulate a way to exactly find how to deform the symmetries of a product of Euclidean
spaces in order to end up at this noncommutative product.

The third part is very specifically about the case where the flat spaces are the gener-
alised number lines mentioned before, the real division algebras. These spaces and their
deformations give some concrete examples of the theory in the previous section. Further-
more, the numbers give us two properties that are very useful. The first is the existence
of a multiplicative norm. By requiring that norm to be invariant we can pass from flat
spaces to spheres and products of spheres, and thereby look at noncommutative variants of
these. The second property is the homogeneity: every point on the number line looks the
same. This results in particularly symmetric spaces, whose symmetries we will classify by
explicitly using the symmetries of the division algebras.

The last part takes a closer look at these spheres. The existence of a multiplication on the
spheres is a peculiarity that only exists for the four real division algebras, and they bestow
the spheres with structures called Hopf fibrations. These geometric ways to make spheres
out of spheres are very fruitful locations to insert Hopf algebraic deformations because of all
the symmetry involved. There is however one case that is not particularly well understood:
the case of the 15-sphere. This fibration is constructed using the octonions, which are
non-associative, a property much more difficult to deal with than mere noncommutativity.
One way to get around this classically is by looking at things locally. Things require more
care in the dual function algebra setting, however. We use this as a testing ground for some
ways to deal with nonassociativity in a noncommutative context, showing in particular that
a method that seemed to circumvent the locality that is used classically by means of using
differential operators turns out to be off by exactly one application of the associative law.
After that, we talk about a proposed way to use the local approach and discuss an approach
to gluing to serve as a starting point for further investigations.
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Chapter 2

Preliminaries

In this work we touch on many different aspects of quantum groups, noncommutative
geometry and the theory of real division algebras, so in this section I hope to contain much
of the background necessary for the entire work. None of the material in this chapter is
original, we repeat it for both completeness as well as to fix notation and conventions.

2.1 Algebraic Noncommutative Geometry
Usually noncommutative geometry à la Connes works with C∗-algebras of operators

[Con94]. We keep the functional analysis to a minimum and work with algebras1, mostly
polynomial rather than analytic, always over a field K = R or C. We will stick to the
notations of Sn for spheres and Tn(k) for tori. The algebra of polynomial functions on a
space X is usually denoted by A(X).

As an incredibly brief review on how to look at these algebras: The classical spaces
we look at are all affine varieties. This means they are of a kind that can be seen as
embedded in Rn, for some sufficiently large n, and then determined as the zero set of some
polynomial(s) P : Rn → C. Consider polynomial functions on Rn, that is, polynomials
in n variables {xi}, where each xi is the function taking a point in Rn and sending it to
the value of its i’th coordinate. We obtain the functions on our spaces by quotienting out
by the polynomial(s) P , as P ought to be zero by definition when evaluated on our space.

1Fittingly, one cannot commute the words "Algebraic" and "Noncommutative" in the title, as there is an
approach to noncommutative geometry interpreting noncommutative spaces as categories of quasicoherent
sheaves that goes by that name, recently championed by Kontsevich [KR00].
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2.2. HOPF ALGEBRAS CHAPTER 2. PRELIMINARIES

This notion of coordinate functions often leads to an abuse of notation where one states to
be “multiplying coordinates", dropping the “functions", coordinates and functions actually
being dual to one another. The point of view of noncommutative geometry is that this
duality extends to noncommutative algebras: dual to many noncommutative algebras there
exists a “noncommutative manifold” X . The algebra of “coordinate functions on X" no
longer consists of functions taking actual values on points lying in this space, but rather
abstract generators of a “function algebra". We will frequently still refer to these generators
as coordinate functions. In this tract, algebras are presumed associative and unital unless
mentioned, but never presumed commutative.

Quite often we have the extra data of a real or ∗-structure on our algebra. This structure
consists of a K-antilinear operator ∗ with the following properties:

(2.1) (xy)∗ = y∗x∗, (λx)∗ = λ̄x∗

where λ ∈ k and the bar is complex conjugation. We will sometimes use the bar also
for the star structure in the algebra if the number of indices is too large. Note how
every commutative algebra has a trivial ∗-structure, but this is no longer true in the
noncommutative case.

There are some methods of passing back to the C∗-algebraic realm, see for example
[Rie93], or for quantum groups one can find some in any book on compact quantum groups
like [Tim08]. We will refrain from doing so in this work.

2.2 Hopf algebras
Much in this thesis is written in the language of Hopf algebras, as they form the language of
symmetry in noncommutative geometry. We will briefly review the parts of the theory that
are important for following the arguments in this thesis. For a more complete overview,
there are many books written on Hopf algebras and quantum groups, see for a reference
[Kas95][CP95][Mon93][KS97]. We will for this short recap and notation mostly stick to
[Maj95]. One important thing to mention is that in this area, not even the title quantum
group is uniquely defined. The originator of the field, Drinfeld2, in the founding paper
[Dri86], defines it to be the Spec of a Hopf algebra, i.e. any Hopf algebra from a

2Drinfeld’s name often gets transliterated in a non-unique manner too, as Drinfel’d. We will stick to the
spelling without apostrophe, as does he when writing his own name in the Latin alphabet.
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CHAPTER 2. PRELIMINARIES 2.2. HOPF ALGEBRAS

geometric viewpoint, and so the terms Hopf algebra and quantum group are often used
interchangeably. All of the references above use subtly different definitions. I myself
will reserve the use of the term "quantum group" for Hopf algebras with a quasitriangular
structure, to be defined in section 2.2.5.

2.2.1 Hopf algebras
There are many intuitions for what a Hopf algebra is, to give two: A Hopf algebra is an
algebra with a good notion of a representation, and a Hopf algebra is an algebra whose
structures are self-dual. As we will be dealing with symmetries of objects that are defined
via duality, this language will be invaluable to us. Let us first begin with the axioms.

Definition 2.2.1. A unital associative algebra is a vector space over k = R or C equipped
with two linear maps, m : A⊗A → A and 1 : k → A such that the following commute:

A⊗A⊗A A⊗A

A⊗A A

id⊗m

m⊗id m

m

k ⊗A A⊗A

A

1⊗ id

∼= m

The diagrams are called associativity and unitarity. In the spirit of duality, one can ask
what kind of algebraic structures one gets if one were to reverse all the arrows. The result
is what is called a coalgebra:

Definition 2.2.2. A (counital coassociative) coalgebra is a vector space over k = R or C
equipped with two linear maps, ∆ : C → C⊗C and ε : C → k such that the following
commute:

C C ⊗ C

C ⊗ C C ⊗ C ⊗ C

∆

∆ id⊗∆

∆⊗id

C C ⊗ C

k ⊗ C

∆

∼=
ε⊗id

These relations are called coassociativity and counitarity, respectively. The intuition is
quite frequently that a coproduct is a rule for "fair distribution". The counitarity relation
means one does not lose information, when "subdividing" both halves remember in some
sense what used to be the whole thing. The coassociativity means that after a subdivision
one can further distribute starting from either half and end up with the same outcome. We
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2.2. HOPF ALGEBRAS CHAPTER 2. PRELIMINARIES

will commonly use a piece of notation called Sweedler notation. In general, the coproduct
of an element c ∈ C is given by ∆c =

∑
i c(1);i⊗c(2);i, some finite linear combination of

elements c(k);i ∈ C. Sweedler notation leaves this summation implicit, hence this sum will
be written as:

(2.2) ∆c := c(1)⊗c(2)

Coassociativity implies that c(1)(1)⊗c(1)(2)⊗c(2) = c(1)⊗c(2)(1)⊗c(2)(2) , and hence either of
these can be written as:

(2.3) (∆⊗ id)∆c := c(1)⊗c(2)⊗c(3)

While this notation allows for quite brief formulas in contexts that often become mired in
notation, one should not forget that one is not dealing with simple tensors. To that end we
will sometimes reintroduce an indexless summation sign as a reminder. If for all c we have
c(1)⊗c(2) = c(2)⊗c(1) the coalgebra is called cocommutative. The notion of a coalgebra
itself is overshadowed by its dual, for a reference in the theory of coalgebras themselves
see [Mic03]. We will unfortunately contribute to this neglect and only use the coalgebra
structure in combination with the algebra structure to form a bialgebra.

Definition 2.2.3. A bialgebra is an algebra (B,m,1) that is also a coalgebra (B,∆, ε)
such that the structures commute in the following way:

B ⊗ B B B ⊗ B

B ⊗ B ⊗ B ⊗ B B ⊗ B ⊗ B ⊗ B

m

∆⊗∆

∆

id⊗τ⊗id

m⊗m

B ⊗ B B

k

m

ε⊗ε
ε

B ⊗ B B

k

∆

1
1⊗1

Where τ : B⊗B → B⊗B is the transposition map flipping the two components. In
words, the diagrams say, respectively, that the coproduct is an algebra map, the counit
is a character, and the unit is what is called grouplike. This last notion is the following
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CHAPTER 2. PRELIMINARIES 2.2. HOPF ALGEBRAS

frequently useful3 property. A grouplike element g of a coalgebra obeys:

(2.4) ∆(g) = g ⊗ g ; ε(g) = 1

Similarly there is a second notion of a primitive element. A primitive element g of a
bialgebra obeys:

(2.5) ∆g = 1⊗ g+ g⊗ 1

Many naturally occurring bialgebras can in a unique way be equipped with the structure of
a Hopf algebra, which has the additional datum of an antipode map S:

Definition 2.2.4. A Hopf algebra H is a bialgebra equipped with a map S : H → H such
that the following diagram commutes:

H k H

H⊗H H⊗H

∆

ε 1

S⊗id

m

This diagram says that S is an inverse to the identity map in the convolution algebra.
The simplest intuition is to think of it as a linearised inverse, but one needs to take care
as S2 ̸= id necessarily. This statement has as a consequence that S is an algebra anti-
homomorphism as well as a coalgebra anti-homomorphism.

2.2.2 Hopf algebra examples

To round off the basic definitions I will briefly define three basic classes of Hopf algebras
that will make their appearance:

Universal enveloping algebras

Given a Lie algebra g, one can form its Universal Enveloping algebra UEA(g) as the
universal associative algebra in which g embeds, with the Lie bracket as commutator in
the algebra. For technical constructions any textbook on Lie algebras will do, e.g. [Jac79].

3Being grouplike is a dual notion to being a function that is also an algebra homomorphism, which is of
course a special yet useful class of functions.
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2.2. HOPF ALGEBRAS CHAPTER 2. PRELIMINARIES

Such an algebra is generated by polynomials in elements of g (by the Poincaré-Birkhoff-
Witt theorem), and hence by linearity of all structures involved and the fact that ∆, S and
ε are (anti-)algebra maps, it is enough to specify the Hopf algebra structure on a basis of
g. The following are the structure maps:

∆(x) = x⊗ 1 + 1⊗ x

ε(x) = 0

S(x) = −x(2.6)

for x ∈ UEA(g). This means all elements of the Lie algebra as it is embedded in UEA(g)

are primitive, giving us some intuition for the choice of that name.4

The group algebra k[G]

For a finite group G, using the group elements as a basis for an algebra over K gives an
associative multiplication and an identity element. It forms a Hopf algebra if we in addition
equip it with the following structure:

∆(g) = g⊗g
ε(g) = 1

S(g) = g−1(2.7)

This means the basis elements of the group in a group algebra are distinguished by being
grouplike, explaining that name.5 The counit is given by the trivial character on the group.

As a remark, these two examples are in some sense principal: there are theorems by
Cartier-Gabriel-Milnor-Moore-Quillen-Sweedler[Krä19] that show that any cocommuta-
tive Hopf algebra H over C is in fact isomorphic to UEA(P (H))⋊ k[G(H)], for P (H) the
primitive elements and G(H) the grouplike elements of H .

4As an example of the usefulness of Hopf algebra theory, the easiest proof of the existence of a Baker-
Campbell-Hausdorff type formula goes via showing that all primitive elements lie in the Lie algebra.

5One does need to specify an embedding of the base group: k[D8] and k[Q8] are isomorphic as algebras
but not as groups. Given the coproduct, one can recover the original non-linearised group by looking at the
grouplike elements.
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Functions on a group G

The last example of this section is dual to the previous example: functionsO(G) ∋ f : G→ k.
On finite groups we will look at polynomial functions, on infinite groups we will mostly
restrict ourselves to matrix groups, which means we can take as functions polynomials in
the projections onto any of the matrix components. In these cases, there is an isomor-
phism[Kas95]: O(G) ⊗ O(G) ∼= O(G × G), which allows us to define for a function
f :

∆(f)(g, h) = f(gh)

ε(f) = f(e)

(S(f))(g) = f(g−1)(2.8)

Where e, g, h ∈ G and e is the identity. The first line is often a problem when defining
duality; in general a function in O(G)⊗O(G) is not uniquely defined by its values on
G⊗G. Since these rules define the structure rather implicitly, let us state them explicitly
as well for the basis δg on a finite group G for completeness:

∆(δg) =
∑
h,k∈G

δh⊗δh−1g

ε(δg) =

{
1 if g = e

0 otherwise

S(δg) = δg−1(2.9)

2.2.3 Pairing
Given that the structures of a Hopf algebra are defined in a symmetric manner, it is to be
expected that the dual to a Hopf algebra is itself also a Hopf algebra. However, as we
remarked in the last section, this duality is not always that simple, as many Hopf algebras
are infinite dimensional as vector spaces. There are a couple of notions of duality that are
useful, for example see [Mon09]. The main notion we use is defined via pairing in [Maj95,
p. 10]:
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Definition 2.2.5. Two Hopf algebras A,H are paired if there is a bilinear map ⟨ , ⟩ :

A⊗H → k such that for all ψ, ϕ ∈ A and h, g ∈ H:

⟨ϕψ, h⟩ = ⟨ϕ⊗ψ,∆h⟩, ⟨1A, h⟩ = εH(h),

⟨∆ϕ, h⊗g⟩ = ⟨ϕ, hg⟩, εA(ϕ) = ⟨ϕ,1H⟩
⟨S(ϕ), g⟩ = ⟨ϕ, S(g)⟩(2.10)

Like with any infinite-dimensional vector spaces it is not necessary that if (A,H) is a
pairing, then so is (H,A). A pairing is non-degenerate if there are no nonzero elements
in A and H that pair to zero with all elements of the other algebra. As a final remark, we
may refer to the notion of convolution algebra of functions on a bialgebra H. This is given
by (f ⋆ g)(h) := (f⊗g)(∆h).

2.2.4 Modules

The fact that our main examples are groups and Lie algebras reflects that a strong feature
of Hopf algebras is their representation theory. In this chapter we introduce the notion of a
(co)module and of a (co)module-(co)algebra. We will talk about the monoidal categories
they form later in chapter 2.4, for a much more complete introduction to representation
theory we refer to [Böh18] [Mon93] [Maj95]. Let us however begin by defining a module:

Definition 2.2.6. An H-module (V, ▷) is a pair consisting of a vector space V and a map
▷ : H⊗V → V such that the following commutes:

H⊗H⊗ V H⊗ V

H⊗ V V

m⊗id

id⊗▷

▷

▷

Modules appear all over mathematics, for example, representations of finite groups are
modules over the group algebra and representations of a Lie algebra are modules over its
universal enveloping algebra. The representation theoretic way of looking at the coalgebra
structure is that given any two modules (V, ▷), (W, ▷′), we get a new module:

(2.11) (V⊗W, (▷⊗▷′) ◦∆)
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by using the coproduct, and we get a module structure on K via ε. The set of all modules,
together with maps f : (V, ▷) → (W, ▷′) that obey the intertwining law:

(2.12) f(h ▷ v) = h ▷′ f(v)

for all h ∈ H forms a category which we will denote by HM.
By duality, where there is a module there is a comodule. We will define it in the by

now hopefully familiar way of reversing arrows:

Definition 2.2.7. An H-comodule (V, δ) is a pair consisting of a vector space V and a
map δ : V → V⊗H such that the following commutes:

V V ⊗H

V ⊗H V ⊗H⊗H

∇

∇ ∇⊗id

id⊗∆

Also for coactions we will adopt a Sweedler-style notation:

(2.13) δv =
∑
i

vi ⊗ hi := v(0) ⊗ h(1)

The convention is that the index (0) is reserved for elements of the comodule, whereas the
positively numbered indices are for elements of the Hopf algebra. The set of comodules
(V, δ), (W, δ′), together with the intertwining maps f : V → W that satisfy:

(2.14) (f⊗ id)δv = δ′f(v)

forms a category, which we denote MH.

Similarly to how a coproduct gives a module structure to V⊗W for V,W ∈ HM, we
find that the product gives a comodule structure:

(2.15) δ(v⊗w) = v(0)⊗w(0)⊗(v(1) · w(1))

2.2.5 Quasitriangular structure
A quasitriangular structure gives some structure to a Hopf algebra that is slightly weaker
than it being cocommutative. From a representation theoretic point of view, the coproduct
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gives a way to divide an action ▷ over 2 different modules. Cocommutativity in that
case implies that the coaction on V⊗W and W⊗V is the same. For many physical
applications there could be more complicated statistics on a product of representations.
The simplest possible requirement that is less restrictive than being cocommutative is to be
cocommutative up to a conjugation by a symmetry. That is what a quasitriangular structure
does. It is for this physical intuition that often the name quantum group is reserved to Hopf
algebras with this structure. We will follow [Maj95] closely for this part.

Definition 2.2.8. A quasitriangular structure R :=
∑

R1⊗R2 on a Hopf algebra H is an
element in H⊗H that is invertible, such that:

(2.16) τ ◦∆h = R(∆h)R−1

together with:

(2.17) (∆⊗ id)R = R13R23; (id⊗∆)R = R13R12

Where in this case R12 means that R is acting on the first 2 slots of a tensor in
H⊗H⊗H, and similar for the others. Together the two equations imply that R obeys the
abstract Quantum Yang Baxter equation:

(2.18) R12R13R23 = R23R13R12

This equation occurs frequently and is in fact one of the original reasons for developing
quantum groups. Given such an R we get a solution in a vector space for every repre-
sentation, and hence such an element R is often referred to as a universal R-matrix. The
categorical interpretation of this equation is elucidating:

=
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That is, the diagram corresponds to a variant of the third Reidemeister move for knots to be
valid in Hopf algebraic string diagrams, making sure that the category of representations
is what is called a braided monoidal category. We will briefly review these objects later in
chapter 2.4.2.

Partially because it is somewhat accepted in the literature, partially because they occur
a lot and the terms "quasitriangular Hopf algebra" and "qha" are unwieldy I will refer to a
pair (H,R) as a quantum group. Of course there exists also a dual notion, called a dual
quasitriangular structure. As we will not use this and the definition needs some care I will
refer the interested reader to [Maj95, ch.2.2.].

2.2.6 Drinfeld Twists

One of the main tools we will use in this thesis to deform algebras is the notion of a
Drinfeld twist. The idea is to make a new quantum group from an old one by introducing
a conjugation around the coproduct. The equations we require for the new coproduct to
be well-defined and coassociative turn out be strongly linked to cohomology of groups in
the commutative examples mentioned before. Indeed, we can use this as an inspiration
for a Hopf cohomology, however we will not talk about the coboundary maps. Although
a definition exists and can be found in e.g. [Maj95], as mentioned there we do not in
general have ∂∂ = 1 in degree > 2 for noncommutative Hopf algebras. One unfortunate
further complication is that Majid refers to this theory as "cocycles" and the dual theory
as "dual cocycles", whereas later literature such as [Asc+17] often refers to the dual
theory as "cocycles" and the theory below as twists. As overused as the term "twist" is in
noncommuative geometry, I will follow this use.

Definition 2.2.9. A Drinfeld twist on a Hopf algebra H is an invertible element χ ∈ H⊗H
such that:

(2.19) (1⊗χ)(id⊗∆)χ = (χ⊗1)(∆⊗ id)χ

It is counital if (ε⊗ id)χ = 1.

We will presume all twists to be counital. The equation above will be referred to as
the twist condition. Given a twist χ in a quantum group (H,R), the new, twisted quantum
group is given by (Hχ,Rχ), where Hχ has the same algebra and counit structures, and the
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following coproduct, antipode and quasitriangular element:

(2.20) ∆χh = χ(∆h)χ−1, Rχ = τ(χ)Rχ−1, Sχh = ((id⊗S)χ)(Sh)((id⊗S)χ)−1

Many twists yield isomorphic Hopf algebras. This often occurs when two twists are
cohomologous, as defined below.

Definition 2.2.10. Two twists χ, ϕ are cohomologous if χ = (σ⊗σ)ϕ(∆σ−1) for some
invertible element σ ∈ H.

There are some special cases of note: A twist cohomologous to the identity equals
χ = ∆σ(σ⊗σ)−1. The quasitriangular element R for an algebra that was formerly
cocommutative is given by Rχ = τ(χ)χ−1.

The dual idea to a twist has a similar intuition. Since I have not talked much about
coquasitriangular structures I will refrain from going into too much detail, but the dual
picture for the twist itself is quite natural. Dual to a choice of an element, which can be
written as a map k → H⊗H, we have a map γ : H⊗H → k.

Definition 2.2.11. A 2-cocycle γ : H⊗H → k on a Hopf algebra H is a convolution-
invertible function such that:

(2.21)
∑

γ(h(1)⊗k(1))γ(l⊗k(2)h(2)) =
∑

γ(l(1)⊗h(1))γ(l(2)h(2)⊗k)

for all h, k, l ∈ H. It is unital if γ(h, 1) = γ(1, h) = ε(h) ∀h ∈ H

The twisted product becomes:

(2.22) h ·γ k =
∑

χ(h(1)⊗k(1))χ−1(h(3)⊗k(3))h(2)k(2)

A remark here is that for grouplike elements the cocycle-deformed product is equal to the
old product up to a scalar. We will see this later, where we will deform a group algebra.

2.2.7 (co)Module algebras
Quantum groups are made to (co-)act. The set of all objects with a particular quantum
symmetry forms a world in itself, a category. Inside of this category one can define (co-)
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algebras just the same. One reason to consider this is that a twist on a quantum group
translates to a twist on all the objects that have this symmetry, including the algebras
of functions of spaces with that symmetry, which is how we will form noncommutative
spaces. An algebra with a quantum group action should have its own structures compatible
with the Hopf algebra (co-)action. Let us begin there:

Definition 2.2.12. An algebra and (left) H-module A is a (left) H-module algebra if the
following diagram commutes6:

H⊗A⊗A H⊗A A

H⊗H⊗A⊗A H⊗A⊗H⊗A A⊗A

∆⊗ id⊗ id

id⊗mA ▷

id⊗τ⊗ id ▷⊗▷

mA

The explanation for this diagram is that the bottom route is the action of H on A⊗A
as defined by the coproduct, and so effectively we want the map mA : A⊗A → A to
commute with the action of H. If H is quasitriangular there is an element R generating
a map between V⊗W and W⊗V in HM, even when V = W = A. This means that we
have an inherent way to link x · y and y · x for x, y ∈ A. More importantly, we have a new
way to construct such noncommutative algebras, by means of twisting.

Theorem 2.2.13. Let A be an associative H-module algebra with multiplication m, and
χ a twist on H. Then Aχ is an associative Hχ-module algebra with multiplication:

(2.23) mχ = m ◦ (χ−1 ▷⊗▷)

We will often use the fact that H is itself a H-module algebra by associativity to deform
it. When viewingH as a module rather than an algebra we will underline it. This is of some
importance, since when twisted as a H-module algebra Hχ is no longer a Hopf algebra
in general. This construction is very important for this thesis, almost all noncommutative
spaces we will consider are made by variations on this theme.

Of course of all the above there exists a dualisation. In fact, there exist notions of
comodule algebras, module coalgebras and comodule coalgebras. As we want to know

6The flip map in the bottom line is tricky. In the case where we move everything internal to the world of
modules of another Hopf algebra, this flip map has to be the braiding in the appropriate category. As long as
the Hopf algebra itself is not living in such an environment we stick to the regular flip.
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about deformed geometric spaces, we will focus on algebras. All Hopf algebras we talk
about can by some nondegenerate pairing be dualised to a Hopf algebraH◦, which sends the
actions to coactions and vice versa. Because of this, in theory the following is redundant.
In practice however, it is useful to have a grasp on both sides of the duality as separate
authors prefer different sides. Additionally, though often there is a good choice for the
pairing this choice is in principle not unique. So let us define a comodule algebra:

Definition 2.2.14. An algebra and (right) H-comodule A is a (right) H-comodule algebra
if the following diagram commutes:

A⊗A A

A⊗H⊗A⊗H A⊗A⊗H⊗H A⊗H

δ⊗δ

mA

δ

id⊗τ⊗ id mA⊗m

Note that this diagram is not a strict dualisation of the previous one, as there is no
coproduct on A. We do however have a similar theorem to before:

Theorem 2.2.15. Let A be an associative H-comodule algebra with multiplicationm, and
γ a 2-cocycle on H. Then Aγ is an associative Hγ-comodule algebra with multiplication:

(2.24) mγ = (m⊗γ−1) ◦ (δ⊗δ)

2.2.8 Quasi-Hopf algebras

In both theorems of the previous section as well as the section on twisting it was noted that
the cocycle and twist conditions need to be obeyed in order to arrive at a (co)associative
algebra. If we however do not impose this requirement on ourselves and accept that
the algebras involved may become non-(co)associative, we can in fact use any invertible
χ ∈ H⊗H as a twist. This will require much more structure on the noncoassociative Hopf
algebra, which is called a quasitriangular quasi-Hopf algebra. This notion is invented by
Drinfeld [Dri89] and explained in [Maj95], and has several examples explained in [DAn15].

Definition 2.2.16. A quasitriangular quasi-Hopf algebra is given by the decuplet:

(2.25) (H,∆, ε,m,1,R, ϕ, S, α, β)
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The elementsα, β ∈ H are only used to adapt the antipode to the nonassociative setting,
which we will not go in to. The element ϕ ∈ H⊗H⊗H is the universal associator, whose
purpose is given by:

(2.26) (id⊗∆) ◦∆ = ϕ((∆⊗ id) ◦∆)ϕ−1

All the coherence conditions between R and ϕ, and especially S will be left to the
references. The main idea with regards to R is that the category of representations, in
which R represents the braiding, is no longer a strict monoidal category and therefore has
to obey pentagon and hexagon relations, which we leave in the appendix. This amount of
nonassociativity is very mild, since one can in principle rebracket, it just comes with a cost
of a multiplication.

We will use this theory mainly for the definition of the octonions by using a cocycle that
does not obey the cocycle condition. This lies in the dual theory of a quasi-Hopf algebra,
which we will not look at. The formula for the associator from using a noncocyclic
invertible element F : H⊗H → k is given by:

(2.27) ϕ(k, l,m) =
F (k, l)F (k · l,m)

F (k, l ·m)F (l,m)
= F (k, l)F (k · l,m)F (k, l ·m)F (l,m)

2.3 Hopf-Galois extensions
One of the fundamental building blocks of geometry is the notion of a principal bundle.
The previous section was about one of the ways to dualise a group. If we want to study
geometry in a dual setting, it is therefore a good idea to study the way Hopf algebras act on
algebras and what conditions are necessary to get the dual of the notions of a free, transitive
and locally trivial action. Very elegantly, this turns out to be a condition that is strongly
related to the Galois condition of field extensions. We will look only at the Hopf-algebraic
side, following in this section [Mon09], [Mon93], [BJM08] and [Asc+17]. For interest in
the Galois theory side we refer to [BJ01] and [PG87].

We want to dualise the notion of a principal G-bundle P → GM with total space P ,
structure group G and base space M . We have 2 maps that are necessary to define this:
the action ρ : P × G → P , and the projection π : P → M . Dualising, we obtain an
algebra A for the ‘total space’, a Hopf algebra H for the ‘structure group’ and an algebra
B for the base space. We get a coaction δ : A → A⊗H, and an injection i : B → A. The
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condition that the group acts fibrewise is on the geometric side equivalent to the request
that the following commutes:

P ×G P

P M

π1

ρ π

π

Where π1 projects away the group. We can interpret that as similar to the action of a counit
ε⊗1 on the group algebra, so reversing all the arrows we arrive at:

B A

A A⊗H

i

i id⊗1

∇

That is to say, the coaction on B is trivial, or B is coinvariant. The fact that
the group action has no fixed points dualises to the requirement that B = AcoH, i.e.
B = {a ∈ A : δa = a⊗1}. Note that the set of coinvariants is always a subalgebra.

The remaining requirements are all captured in the canonical map given by:

can = (mA⊗ id)(id⊗δ) : A⊗BA → A⊗H
can(a⊗a′) = (a · a′(0))⊗ a(1)(2.28)

The bijectivity of this map is equivalent in the commutative case to stating that A is a
principal H bundle with base space B. If this is the case, we say that A is an H-Hopf
Galois extension over the algebra of coinvariants B.

Some remarks: the map can is not in general an algebra map; indeed there is no
algebraic structure defined in general for A⊗BA if B is not central in A. Unlike for
principal bundles, a Hopf-Galois extension over the ground field is not necessarily trivial,
these objects are called Galois objects. Often it is required that A is faithfully flat as a
B-module, we do not use this requirement.
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2.4 Monoidal categories

2.4.1 Introduction
The studies of Hopf algebras and monoidal categories are deeply linked. As briefly
mentioned before, the set of (co-)modules of Hopf algebras has the structure of a monoidal
category. The reverse is also true to some extent: if one has a monoidal category, then in
some sense the maximal symmetry that all objects have in common forms a Hopf algebra,
defining the symmetry via a relational complex rather than intrinsically. One great power
of category theory is that it captures both the properties of large sets of objects, as well as
describe some single objects themselves. We will later make use of both facets. Let us first
define the necessary structures. We will follow [Eti+16], occasionally looking at [Maj95,
ch.9], [MRV18], [Müg06] and [Böh18]. We will only use strict monoidal categories for
this text. Let us first revise the definitions necessary:

Definition 2.4.1. A category C consists of a collection of objects Ob(C) and morphisms
(or arrows) homC(X, Y ) for all X, Y ∈ Ob(C) such that for every object X there exists
an identity morphism id : X → X , and for every pair of morphisms f : X → Y and
g : Y → Z there exists a composite g◦f : X → Z such that the composition is associative,
with f ◦ id = id ◦f = f .

We will quite often use the abuse of notation X ∈ C to mean that X is an object in
C. All categories we look at will be essentially small, so the hom-sets are sets and the
collection of objects can be assumed to be a set as well. We will presume some knowledge
of functors and natural transformations, a standard reference is [Mac13].

Definition 2.4.2. A strict monoidal category (C,⊗) is a category equipped with a product
⊗ which is a bifunctor ⊗ : C × C → C such that (X⊗Y )⊗Z = X⊗(Y⊗Z) and a unit
object 1 ∈ C such that 1⊗X = X = X⊗1

There is some notational confusion between the object X⊗Y ∈ C and the object
X × Y ∈ C × C to be wary of. As ⊗ is a bifunctor, it assigns product morphisms
to pairs of morphisms. To pass to non-strict monoidal categories, every equality in the
above definition is replaced by an isomorphism; for us this will become necessary when we
consider modules over nonassociative algebras7. The extra axioms can be found in appendix

7In principle there exists Mac Lane’s coherence theorem that claims that all monoidal categories are
equivalent to strict categories, however some extra structure like a fiber functor does not follow along. One
example is given in [EG01].
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A.1. Let us give two quick examples of monoidal categories. Firstly, consider the category
HM of H-modules. We defined this category in 2.2.4, but to revise: the monoidal product
is given by the tensor product of vector spaces, the module structure on the product of two
modules V⊗W is given by the coproduct via g ▷ (V⊗W ) = (g(1) ▷ V )⊗(g(2) ▷W ) and the
unit object is guaranteed by the existence of a counit. The second example is on a much
smaller scale: any algebra can itself be seen as a monoidal category, where every object
is an element of the algebra and the category has only identity morphisms. The monoidal
product is then equal to the algebra product.

2.4.2 Further structures

There are many other structures one would like to impose on a monoidal category. We will
quickly revise some important ones.

Firstly, the existence of a fibre functor F : C → Vect. This is an exact, faithful, functor
C → KVect such that there exist isomorphisms JX,Y : F (X⊗CY ) → F (X)⊗VectF (Y )

that obey an associativity requirement, see [Eti+16, ch. 5.1]. In the case we observe, all
JX,Y are equalities and the associativity is trivial. One can interpret this as embedding
the monoidal category into the category of K-vector spaces. Quite often the functor is
forgetful as the embedding is already implicitly there.

The second structure we would like to look into is the structure of a braiding. A
braiding is a natural isomorphism BX,Y : X⊗Y → Y⊗X . In a strict monoidal category
it has to obey:

X⊗Y⊗Z Y⊗X⊗Z

Y⊗Z⊗X

BX,Y ⊗ id

BX,Y ⊗Z

id⊗BX,Z

X⊗Y⊗Z X⊗Z⊗Y

Z⊗X⊗Y

id⊗BY,Z

BX⊗Y,Z

BX,Z⊗ id

which are the equivalents to the Yang-Baxter equation for the quasitriangular element. In
the strict case one needs to include the appropriate associators.

The third structure we can equip our categories with are left and right duals, also called
a rigid structure. An object V has a left dual V ∗ if there exists an evaluation morphism
ev : V ∗⊗V → 1 and dually a coevaluation morphism coev : 1 → V⊗V ∗ such that the
following commute:
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V V⊗V ∗⊗V V
∗

V
∗⊗V⊗V ∗

V V
∗

coev⊗ id

id
id⊗ev

id⊗coev

id
ev⊗1

The last structure we would like to mention is the structure of a bar category defined in
[BM09]. We will not use this explicitly, although the omnipresence of complex structures
in this work probably implies that this is a current shortcoming.

2.4.3 Tannaka-Krein reconstruction

For all the above structures we can find some intuition or analogue for their meaning in
the context of the monoidal category of modules of a Hopf algebra. Indeed, the fibre
functor corresponds to a linear structure, the braiding to a quasitriangular element, the
rigid structure to the antipode and the bar to a star structure. This intuitive correspondence
is more than just an intuition, and in fact it should come as a justification for the correctness
of the choice of axioms of a Hopf algebra that the set of symmetries of a braided rigid
monoidal category with fiber functor to Vect always has the structure of a quantum group.
There are many ways to find this Hopf algebra, ranging from technical coend constructions
to a much more hands-on approach. Surprisingly, there are very few explicit examples
in the literature of such a construction. As we will follow a very explicit example later,
we will not repeat too much of the general theory here. We will instead provide a quick
dictionary of terms, as many of the above structures have a direct connected structure in
the reconstructed Hopf algebra:

Monoidal category Hopf algebra
⊗ ∆

1 ε

Rigid structure S

Braiding R
Bar structure ∗-structure

Non-strict associator Coassociator
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2.4.4 String diagrams

A convenient way to interpret all the operations in a Hopf algebra in a categorical manner is
via the pictorial language of string diagrams. The original reference here is [JS86], though
most books above will discuss it at least somewhat.

The idea is as follows: we mentioned before that the Yang-Baxter equations are equiv-
alent to the third Reidemeister move for knots, which indicates that we can do calculations
using diagrams, by moving the lines defining operations around. The diagrams are sup-
posed to be read from top to bottom, and contain the following components:

H H H

H H H

∆ m

H

ε

H

S

H

H

1

HH

H Hcoev

ev

Any Hopf algebra property such as coassociativity or multiplicativity of the coproduct
can be translated to a property of string diagrams rather than commutative diagrams as
we did before. We will refrain from doing so right here, as we do not use many of these
properties and the ones we do use are for quasi-Hopf algebras, which lack coassociativity.
We will state any properties do use in situ.

Crossings are treacherous: they usually indicate a flip in the category one is working
in. This means that to interpret them one needs to be aware if they are doing a calculation
in a Hopf algebra, which usually lives in a category with the regular flip map τ , or if one
is living in the category of representations of a Hopf algebra, where the flip map is given
by the braiding R.

The main point for which we will use these diagrams later is to aid in a computation,
where otherwise the indices of the coproducts become unwieldy and unclear. One property
of string diagrams that is of great help, which we will claim here without further proof,
is the following: Any map between H⊗n and H⊗m defined by string diagrams has a dual
map from A⊗m to A⊗n if there is a nondegenerate pairing between H and A.
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2.5 Real division algebras

2.5.1 Introduction

We will frequently run into the 4 real division algebras: the real numbers R, the complex
numbers C, the quaternions or Hamilton numbers H and the octonions or Cayley numbers
O. The first two are often fields of choice, whereas the latter two are less regularly used.
Our reason to use them is to study spheres: the existence of a norm allows us to easily
define a sphere of elements of constant norm, and the multiplicativity of the norm means
the algebra structures descend down to this geometry. It is a well known theorem due
to Hurwitz (proved in [Hur23], with a proof using string diagrams in [Str18]) that these
four are the only real normed division algebras. General references on the subject are
[Dix13][CS03][DM15][Bae02]. There are two different ways to define them, both of
which will see use in this thesis.

2.5.2 Cayley-Dickson construction

The Cayley-Dickson construction works as follows: given any (not necessarily associative)
algebra A with a ∗-structure, we can put a ∗-algebra structure on A⊕A as follows:

(a, b) · (c, d) = (ac− d∗b, da+ bc∗)

(a, b)∗ = (a∗,−b)(2.29)

The principle behind this construction is explained in [Bae02] to be the following: the
second copy of your algebra gets an extra copy of a square root of −1: (0, 1) := inew.
This new complex unit implements the ∗-structure on A by means of conjugation, i.e.
inew · ((a, 0) · inew) = (a∗, 0). The above construction is exactly what is necessary to
establish this.

It is well-known that this doubling comes with a drawback: starting with R, you lose
self-adjointness on your way to C, commutativity at H and associativity at O. After the
octonions, applying another iteration of the Cayley-Dickson construction lands you outside
the realm of the real division algebras in an algebra we call the sedenions8 S . This algebra

8Unfortunately we already use the symbol S for spheres, though there is something poetic in the fact that
the sedenions had to hand in their symbol along with their claim to being a number system.
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contains nonzero numbers9 a, b such that a · b = 0, which means that inverting can no
longer work. This is a natural endpoint for many uses, as the norm ||x|| =

√
x∗x is no

longer multiplicative, and hence the algebraic structure does no longer filter down to the
unit ball of elements of norm one.

2.5.3 Twisted quasialgebra construction

The second way of constructing these algebras that we will look at is the one explored in
[AM99] and its abridged version [AM19]. There, the authors use the Hopf algebra theory
mentioned in chapter 2.2.6 to Drinfeld twist the algebra RZ n

2 . By this notation we mean
the Hopf algebra ofR-linear multiples of (Z2)

n; we chose to avoid including brackets in the
notation to avoid confusion with the group algebra k[Z2]. The basis of this algebra is given
by elements ek which have the product ek · el = ek⊕l. We choose to take ⊕ the operation
in the group (Z2)

n, and to move the group operation to the index to have a multiplicative
notation in the group algebra. Since this is confusing in words, let us do a quick example.
For n = 3 we could for example write:

e( 1
0
0

) · e( 1
1
1

) = e( 1
0
0

)
⊕
(
1
1
1

) = e( 0
1
1

)
Since this notation gets rather cumbersome, we will rather write the above as e100 · e111 =
e011, or, interpreting these numbers as binary, as e4 · e7 = e4⊕7 = e3. Whatever way we
notate this, the basis elements are presumed grouplike in the Hopf algebra structure, i.e.
∆ek = ek⊗ek, the unit is e0 and the counit is given by ϵ(ek) = 1.

Let us use this as an example of how a Drinfeld twist procedure works, using a
cocycle rather than a twist in this case. We equip the algebra RZ n

2 with a cocycle
F : RZ n

2 ⊗RZ n
2 → R with the following properties:

F (ek, el)
2 = 1

F (e0, el) = F (ek, e0) = 1(2.30)

For all k, l ∈ Zn
2 . This cocycle deforms the algebra structure on RZ n

2 into an isomorphic
algebra. Indeed, the convolution inverse of F is F and the basis on the algebra is grouplike,

9In fact, in [Mor98] it is claimed that the set of pairs in S × S that multiply to zero form a subspace
isomorphic to the exceptional Lie algebra G2 = Aut(O). A clearer explanation can be found in [BDI08].
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so the deformed product on a basis is given by ek ·F el = F (ek, el)ek⊕lF (ek, el) = ek · el.
The real deformation however can be found in a comodule algebra of the above algebra.
Consider the canonical coaction δ of RZ n

2 on itself, given by the coproduct. This turns
RZ n

2 into a RZ n
2 -comodule algebra, as δ(ek · el) = (ek · el)⊗(ek · el) = δ(ek) · δ(el). The

twist F on RZ n
2 , which effectively did nothing, now translates to a new product on the

comodule algebra defined by ek ·F el = F (ek, el)ek⊕l. It is this product which we are after.
Define the shorthand F (k, l) := F (ek, el). We recall from sections 2.2.6 and 2.2.8 the
definitions of the multiplicative commutator and associator respectively by

R(k, l) : = F (k, l)F (l, k)

ϕ(k, l,m) : =
F (k, l)F (k⊕l,m)

F (k, l⊕m)F (l,m)
= F (k, l)F (k⊕l,m)F (k, l⊕m)F (l,m)(2.31)

where the last equality holds in our case where F 2 = 1. In the paper [AM19], Albuquerque
and Majid show that we can view the entire Cayley-Dickson construction on an algebra
A in this language. For the Cayley-Dickson construction the notion of a ∗-structure was
central, and here we are given a distinguished grouplike basis, so we define the 1-cocycle
s : A → R by s(ek)ek = e∗k. In our example s(ek) = F (k, k). Then we have the following
rules to establish a quasi-algebra structure F̂ on A⊗Z2 with basis {ek, îel} := {k, î⊕l}:

F̂ (k, l) = F (k, l); F̂ (k, î⊕l) = s(k)F (k, l);

F̂ (̂i⊕k, l) = F (l, k); F̂ (̂i⊕k, î⊕l) = −s(k)F (l, k)
ŝ(k) = s(k); ŝ(̂i⊕k) = −1(2.32)

Using these rules we can define the real division algebras iteratively. Let us talk in
some more detail about the specifics.

2.5.4 Quaternions

The structure of the quaternions is defined as the numbersH ∋ q := ae0+be1+ce2+de3 =

a+ bi + cj + dij with multiplication as famously carved in Broom Bridge (paraphrased):

(2.33) i2 = j2 = ij2 = ijij = −1
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As we will define the octonions later, which have an extra algebra generator, I prefer not
to use k for the quaternions10. Taking the viewpoint of the quaternions as being a twisted
copy of RZ 2

2 , we can define the algebra by specifying just the table of minus signs:

F e00 e01 = i e10 = j e11 = ij

e00 1 1 1 1

e01 1 −1 1 −1

e10 1 −1 −1 1

e11 1 1 −1 −1

As an example: i ·F j = F (e01, e10)e01e10 = 1 · e11 = ij. From here on out we will drop
the subscript F as we presume the multiplication to be quaternionic.

To reiterate some basic facts: the quaternions admit a ∗-structure: for q = a+bi+cj+dij,
we have q∗ = a− bi− cj− dij. A routine computation shows that qq∗ = q∗q ∈ R≥0, with
qq∗ = 0 if and only if q = 0, so we define ||q|| =

√
q∗q. The quaternions form a division

algebra, where q−1 = q∗

||q||2 . This norm is multiplicative, ||q · p|| = ||q|| · ||p||, and hence
the sphere S3 of quaternions of norm 1 is closed under multiplication and forms a group,
isomorphic to SU(2). One can define many functions over the quaternions as one would
with matrices, via power series; the existence of a multiplicative norm means convergence
is defined as usual. As a final remark, the quaternions orthogonal to the identity are all
purely imaginary, that is to say q∗ = −q. There is no a priori distinguished basis in the
quaternions, any imaginary quaternion q will by itself generate a copy of C, and adjoining
any quaternion p with an imaginary component orthogonal to q will generate the entirety
of H algebraically [CS03].

In the rest of the text we will quite often use the left and right quaternion multiplication
operators, acting on R4, which is isomorphic to H as a vector space. These operators will
be called E+

k for left multiplication and E−
k for right, following [DL18a] and [DL18a]. In

fact, we almost exclusively use the slight alteration J±
k := ±E±

k , so for convenience and
reference let us print these:

10We instead opt to (sparingly) use the Dutch digraph ij; the combination of the letters i and j occurs often
enough in that language for this combination to be regarded as one symbol.
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(2.34)

J+
1 =


0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0

 , J+
2 =


0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0

 , J+
3 =


0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0


(2.35)

J−
1 =


0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0

 , J−
2 =


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

 , J−
3 =


0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

 .

These operators can also be interpreted as twists of group actions via (J+
k )

µ
ν =

F (k, ν)π(ek)
µ
ν , where π is the left regular representation of Z 2

2 . Let us remark a cou-
ple more things about these sets of operators. Firstly, one can notice that each set forms
a linearisation of the action of H on the sphere at the identity, and hence a basis for the
Lie algebra su(2). Secondly, from the associativity of H we get that the left and right
multiplications commute, so any J+ commutes with all J− and vice versa. Furthermore,
associativity gives:
(2.36)
J+
k J

+
l em = F (k, l⊕m)F (l,m)ek⊕l⊕m = F (k⊕l,m)F (k, l)ek⊕l⊕m = F (k, l)J+

k⊕lem

and similarly for the J−.

2.5.5 Octonions
The Octonions are an 8-dimensional algebra generated by 3 algebraic generators, i, j, k.
As this algebra is no longer associative, while it is often convenient to consider the other
vector space basis elements to be ij, ik, jk, i(jk) we will prefer to just refer to them by the
basis vectors ek. Unlike the quaternions, whose multiplication table differs by at most a
transpose, the octonions have 480 choices of F that yield isomorphic algebras. As a result
there are different choices in the literature, in fact, many authors like the authoritative
[Bae02] choose to work with a different basis in which the numbering is different. We
choose to work with the numbering that is derived from RZ 3

2 as before. Our choice of
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multiplication table is the following, derived from the Cayley-Dickson procedure:

F e000 e001 e010 e011 e100 e101 e110 e111

e000 1 1 1 1 1 1 1 1

e001 1 −1 1 −1 1 −1 −1 1

e010 1 −1 −1 1 1 1 −1 −1

e011 1 1 −1 −1 1 −1 1 −1

e100 1 −1 −1 −1 −1 1 1 1

e101 1 1 −1 1 −1 −1 −1 1

e110 1 1 1 −1 −1 1 −1 −1

e111 1 −1 1 1 −1 −1 1 −1

There is a mnemnonic for this table, given by the following diagram of the Fano plane:

e111

e010

e101

e100

e001

e011

e110

This is to be interpreted as F (a, b) = 1 if the arrow goes from a to b. This encoding is a
result of the interpretation of the Fano plane as nonidentity elements of Z 3

2 . Indeed, there
is a variant of the same idea for the sedenions in [SHP15].11

The octonion twist and hence the octonions obey a few properties. Most importantly,
it is the largest normed division algebra. It has a star structure where e∗k = −ek for k > 0,
and a multiplicative norm given algebraically by ||a|| =

√
a∗a. The unit octonions form

11The nice cyclic structure of the arrows is equivalent to a structure of a cyclic triple system, which
is equivalent to the algebra being a semisymmetric quasigroup. There is a rather sizeable amount of
combinatorics done with this diagram which we shall not delve in to.
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the 7-sphere S7, and the multiplicativity of the norm gives the structure of a Moufang
algebraic quasigroup [KM10]. One important property which we cite from [AM99] is
the fact that the multiplicative associator ϕ(x, y, z) is 1 if and only if x, y, z are linearly
dependant over Z2, and −1 otherwise. This implies alternativity, which is the property
that ϕ is symmetric in its arguments. It is related to the property of the octonions that
they are, like the quaternions, homogeneous: any two imaginary orthogonal unit octonions
generate a quaternion algebra, and any imaginary unit octonion orthogonal to that copy of
the quaternions can be adjoined to generate the full octonion algebra.

The homogeneity of the octonions is reflected in its symmetry algebra G2. This is a
14-dimensional Lie group that acts on the set of generating orthogonal unit triples, sending
any such triple to any other such triple. A simple count: given any triple, the first coordinate
has S6 many options, the second is restrained to S5 and the last one to S3, yielding 14

dimensions in total.
We can use this property of ϕ also for a quick lemma about F we will use several times

that holds for all real division algebras:

Lemma 2.5.1. ForF the octonion twist and i, k ∈ Z 3
2 , k ̸= 0we haveF (i, k)F (i⊕k, k) = −1.

Proof. The proof is a simple one-line statement:

F (i, k)F (i⊕k, k) = ϕ(i, k, k)F (i, 0)F (k, k) = −1

For the computations later we will introduce operators J±
k,O that are similar to the oper-

ators we defined on the quaternions, again given by the formulas (J+
k )

µ
ν = F (k, ν)π(ek)

µ
ν

and (J−
k )

µ
ν = −F (ν.k)π(ek)µν for π the left regular representation of Z 3

2 . Since the oc-
tonions are not commutative, we notice that J+ no longer commutes with J−, and that
there is in general no relation between the J+

k for different k, unlike the multiplicative
relationship for the quaternions. The J−-matrices used will be printed in the appendix for
reference.

2.5.6 Beyond
Unfortunately, many things get lost after the doubling the octonions. The most important
new failure in the sedenions is the fact that one gets zero divisors. This means that the
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algebra can no longer be multiplicatively normed, as the norm of a zero-divisor would have
to be zero. Furthermore, a lesser-known problem is that the homogeneity we mentioned
at the quaternions and octonions gets broken: the presence of zero divisors means that by
rescaling there are such pairs of zero divisors on the unit ball. It is easily spotted that the
elements of these pairs are orthogonal to one another, and they do not generate a quaternion
algebra for the obvious reason that their product is zero. Similarly, not all elements of S are
part of zero-divisor pairs. This all means that the automorphism group of the sedenions is
nontrivial12, and we can no longer rely on simplistic arguments to reduce a generic element
to a special case. Lastly, we mentioned before that the octonions have the property of
alternativity, implied by the special property of the associator to be −1 if and only if the
entries are linearly independent. Both properties are lost here, leaving us with very little
to hold on to.

12There is a series of idiosyncratic, unpublished arXiv preprints by R.P.C. de Marrais claiming some
results in this direction.
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Chapter 3

Noncommutative Products of Euclidean
Spaces

3.1 Introduction

In this section we revise some of the results from the papers [DL18a] and [DL18b], which
were the direct precursors to much of this thesis. In there, the authors define a class
of noncommutative spaces, the noncommutative Euclidean spaces, via the very hands-on
method of taking the algebras corresponding to two spaces and declaring the mixed products
to be noncommutative. This has the very clear benefit of having the noncommutativity in
some sense concentrated on the fault line between the component spaces. In this section
we will do two things. To begin, we give a reinterpretation of these algebras as examples
of categorical entities we call categorified algebras and show some ways to manipulate
this class of objects. Afterwards, we return to the specifics and show some efforts in
trying to understand the original construction in terms of twist deformations, and in finding
nontrivial twists.

First, to recap the previous results. Dubois-Violette and Landi define noncommutative
products of Euclidean spaces as the spaces dual to the following algebra:

A(RN1 ×R RN2) :=R⟨xµ, yα⟩⧸I
I =⟨xµxν − xνxµ, yαyβ − yβyα, xλyα −Rλα

βµy
βxµ, yαxλ − (Rλα

βµ)
−1xµyβ⟩(3.1)

For some matrix R governing the commutativity. In their papers, the authors establish
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many properties of these algebras, such as the fact that the matrix R obeys the Yang
Baxter-equations if it is of the following form [DL18b, Prop. 5.3]:

Proposition 3.1.1. Let A and C be the two commuting real N1 × N1 matrices with A
symmetric and C antisymmetric and letB andD be two commuting realN2×N2 matrices
with B symmetric and D antisymmetric:

(3.2) [A,C] = 0 = [B,D],

tA = A = A, tB = B = B, − tC = C = C, − tD = D = D,(3.3)

Assume in addition that

A2 ⊗B2 + C2 ⊗D2 = IN1 ⊗ IN2 .(3.4)

Then the matrix Rλα
βµ of the form

(3.5) Rλα
βµ = Aλ

µB
α
β + iCλ

µ D
α
β

Satisfies the Yang Baxter equations, and products in the algebra preserve the central
element

∑
a,b ∥xa∥

2 + ∥yb∥2.

The presence of the Yang-Baxter equation in this context, as well as the focus on
braidings is very reminiscent of the cocycle twist of a module as defined in theorem 2.2.13.
This is part of the motivation of this section: to understand the connection between the two
languages.

3.2 Categorified algebras
In this section we will look at a particular way to look at these algebras that is specifically
fit for these products of the algebras corresponding to Euclidean spaces. We will categorify
the polynomial algebra to a monoidal category. There are two reasons for this approach
which we outline below.

Firstly, if we believe that the above algebras are created by a twist deformation, then
there ought to be a Hopf algebra behind it all. It is not difficult to find a Hopf algebra acting
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on the above by ansatz. However, this construction shows it to be in some sense universal.
The R-matrix above is acting on a finite-dimensional space, so it is natural to think this
is some representation of a universal R-element in the Hopf algebra. One intuition for
what we do is to take this single representation, generate a monoidal category almost as
freely as possible, and use the powerful Tannaka-Krein reconstruction theorem to recover
all the data from the single representation. This (re)construction is something we will
demonstrate in detail as we believe there are very few explicit examples of a reconstruction
of an algebra that is not clearly already an algebra of H-modules in the literature1.

The second reason for the categorification is one based in intuition: the idea of this ap-
proach is to split up the noncommutative algebra in a commutative main part, together with
a noncommutative “internal” part. The theory of noncommutative products of Euclidean
spaces is a perfect example: the two algebras commute up to an internal symmetry in each
of the individual algebras. Inspired by the theory of algebraic stacks and representations
of finite groups, we will relegate this internal part to data inside the target of a fibre functor
to separate the internal twist from the external algebra.

3.2.1 Defining the category

Let us begin by describing this category which we simply call C in terms of objects and
morphisms. Let B be an algebra of the form A(Rn ×R Rm). To construct a monoidal
category corresponding to B, we begin with the objects. Consider the set of objects of
C(A) to be the monomials Xa

Y
b. We will later equip this with a fibre functor to Vect, so

the objects themselves can be thought of as vector spaces.
The difficult part is defining the morphisms. We want to define them keeping the

Tannaka reconstruction in mind. For that reconstruction, one finds all the natural trans-
formations of the fibre functor to itself. In concrete terms that comes down to all linear
transformations that commute with the morphisms that we choose to put in. This is a deli-
cate balance: In [MRV18] is described a version of this procedure to generate a universal
Hopf algebra corresponding to a representation. To this end he defines a version of a free
monoidal category, only putting in the morphisms strictly necessary to satisfy the axioms.
This Hopf algebra is incredibly large and difficult to analyse, and for this reason we will
require a few more morphisms.

Let us however first write down the morphisms necessary for the braided monoidal

1The book [MRV18] is the exception, though we will end up with quite different algebras.
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structure. Our category will have the monoidal product:

⊗ : C(A)× C(A) → C(A)

XaY b⊗XcY d → Xa+cY b+d(3.6)

As mentioned before: all the nonassociative data lies inside the vector space and is therefore
invisible on the categorical level. We are going to assume that the category structure is
strict, so we need no associator or unitor maps. The only morphisms necessary are the
braidings:

(3.7) RXaY b,XcY d : XaY b⊗XcY d → XcY d⊗XaY b

that obey the hexagon equations, which in a strict context is equal to:

(3.8) RXaY b,XeY f ◦ RXaY b,XcY d = RXaY b,XcY d⊗XeY f

Together with the mirror image:

(3.9) RXaY b,XeY f ◦ RXcY d,XeY f = RXaY b⊗XcY d,XeY f

By this equation and the lack of associators, the only data that is necessary is the braiding
on X2, Y 2 and XY .

We diverge from [MRV18] by requiring inclusion morphisms iX,XaY b : X → X⊗Xa−1Y b

and iY,XaY b : Y → X
a
Y

b⊗Y for Y , given by the composition of the inclusion of C into
C × C composed with the tensor product back to C. The reason for this extra requirement
is that this forces a coordinate change on X or Y to automatically affect any product of
objects X and Y via a pushforward. It is this addition over Manin’s approach that keeps
the Hopf algebra one reconstructs small, as all the endomorphisms that will constitute the
algebra have to arise from endomorphisms of the two simple objects.

We do want to check all the morphisms that this additional criterion generates to ensure
consistency. The monoidal composition rule implies that:
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X

X⊗P

X

X⊗Q

⊗

X⊗X

X⊗P⊗X⊗Q

For every P,Q ∈ C(A). By similar diagrams, using the braiding to reshuffle and
induction, we get a morphism between every Xα

Y
β and Xa

Y
b if α < a, β < b. Now we

require the following square to commute:

XαY β⊗XγY δ XγY δ⊗XαY β

X
a
Y

b⊗Xc
Y

d
X

c
Y

d⊗Xa
Y

b

R

i i

R

For α < a, β < b, γ < c and δ < d. This abstract equality is becoming hard to
visualise, so let us pass to the concrete by defining the fibre functor. The fibre functor
F : C(A) → Vect sends X to Rn, Y to Rm, such that F (P⊗Q) = F (P )⊗F (Q) for
the standard vector space tensor product. This map sends RX,Y to R, the concrete linear
map, and the inclusion functors into the standard inclusions of vector spaces. For this
functor to be a fibre functor, we need exactness and faithfulness. The latter just requires
that morphisms that are different in C(A) map to different linear maps, which is a sensible
requirement. Exactness requires us to talk about the abelian structure of C(A), which
we have not defined yet. This requirement is stated in the book [Eti+16], however, in
[Maj95] for example the abelian structure is not used for the reconstruction theorem. It is
a possible further direction to see if the structure of monoidal category can be upgraded to
the structure of a tensor category.

Having defined the category, there is a natural question if this formulation is equivalent.
The answer is yes in this case, as can easily be seen by finding the generating objects X
and Y , passing to the vector spaces F (X) and F (Y ), and letting these vectors generate the
algebra via products generated by the monoidal product. Another way of looking at it is
by considering the direct sum of all the vector spaces F (P ), quotiented by all the relations
obtained from the embeddings.
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3.2.2 Tannaka-Krein

After all this setup, it is time to reconstruct the Hopf algebra of symmetries of A. For now
we skip the antipode, so we will keep it to a bialgebra. We will follow the guidance of
[Maj95, ch.9].

First of all, to reconstruct the algebra itself, which is given by Nat(F, F ). An element
ν in Nat(F, F ) is given by a matrix νF (P ) on each object F (P ), for P ∈ C(A). These
matrices need to obey:

F (X) F (P )

F (X) F (P )

i

νF (X) νF (P )

F (i)

Any object can be decomposed as follows:

F (XnY m) = F (X⊗ · · ·⊗X︸ ︷︷ ︸
n times

⊗Y⊗ · · ·⊗Y︸ ︷︷ ︸
m times

)

= F (X)⊗ · · ·⊗F (X)︸ ︷︷ ︸
n times

⊗F (Y )⊗ · · ·⊗F (Y )︸ ︷︷ ︸
m times

(3.10)

Hence any νF (P ) is completely determined by νX and νY . Note that the composition is
well-defined: By diagrams like this we can see that ν ◦ ν ′ is still determined by νXν ′X and
νY ν

′
Y , even though these matrices might not commute, as they are forced to act on different

tensor factors and hence commute. There is one other naturality square:

F (X⊗Y ) F (Y⊗X)

F (X⊗Y ) F (Y⊗X)

R

νF (XY ) νF (XY )

R

The meaning of this diagram becomes clearer if we put it into matrices. The tensor product
maps X⊗Y → XY and Y⊗X → XY are linked by some linear map R := F (R) on
F (XY ). On elements:

(3.11) xi⊗yj = (xy)ij, yj⊗xi = Rij
ab(xy)

ab
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This naturality square then says that for A = νX and B = νY , that:

(3.12) (A⊗B)αβij R
ij
ab(xy)

ab = Rαβ
ij (A⊗B)jiab(xy)

ab

Note that there is a transpose in the secondA⊗B. The algebra of functionsH := Nat(F, F )

acting on the algebra A is isomorphic to the set of all the invertible matrices of the form
A⊗B such that A⊗B commutes withR in this way. We will try to compute these algebras
concretely in some special cases in the next chapter.

One may notice that these matrices are not a linear space. Indeed, the linear structure
on this group is trivial, one can see it as a group algebra of finite linear combinations of
group elements. This will be confirmed once we see the coalgebra structure.

The coproduct structure on H can be defined following [Maj95] by:

(3.13) ∆(hP,Q) = hP⊗Q

For a natural transformation h ∈ H. This equation requires some interpreting, as we like
to think of H as an algebra without keeping track of all the objects it acts on. Luckily,
the interpretation is quite clear: the coproduct ∆(h) shows how h would act on a tensor
product of representations. In our case, given a matrix A acting on X , we know exactly
how it would act on X2, namely via A⊗A. This means that every matrix A is grouplike.
As this is true regardless of any of the scalar norms of the matrix, we find that the K-linear
structure of the Hopf algebra is different from the naive addition of matrices. We can see
this happening as well with the counit, for which we can verify that the following square
must commute:

F (1)⊗F (X) F (X)

F (1)⊗F (x) F (X)

∼=

ν1⊗νX νX

∼=

This implies that for every element we must have ν1 = 1. For a Lie group, this means
that the Hopf algebra is uncountably infinitely dimensional as a vector space. We might
want to remedy this by taking a double dual via pairing, using the fact that an infinite-
dimensional pairing does not need to preserve the cardinality of the basis to send the Lie
group to its Lie algebra. Before we take this double dual, we finish the reconstruction
by reconstructing the quasitriangular element R as simply noticing that RX,Y definitely
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commutes with itself and is a finite linear combination of matrices A⊗B, hence it can be
found in H.

There are many ways to define a pairing between this algebra and some choice of
dual. Since it is fundamentally generated by the grouplike elements, which are themselves
classified by matrices A,B, we will consider the algebra H◦ to consist of the restriction of
C∞(SL(n)× SL(m)), linearised as follows:

(3.14) f

(∑
i

Ai⊗Bi

)
=
∑
i

f(Ai⊗Bi)

This algebra has a clear product, and a coproduct defined by:

(3.15) ∆(f)

(∑
i,j

(Ai⊗Bi)⊗(Aj⊗Bj)

)
= f

(∑
i,j

(AiAj)⊗(BiBj)

)

Noticing that (i, j) run over finitely many indices, the latter is a finite linear combination
of elements of C∞(SL(n)× SL(m))⊗C∞(SL(n)× SL(m)) and so lies in H◦⊗H◦. The
fact that the product on the algebra is dual to the grouplike coproduct is easy to verify. As
a result these two algebras are paired with a pairing ⟨ , ⟩ : H◦⊗H → k, such that:

(3.16) ⟨f, x⟩ = f(x)

The reason we chose smooth functions is to pair it a second time, this time with the
enveloping algebra UEA(sl(n)⊕ sl(m)) = g, to finally arrive at the formalism of universal
enveloping algebras. This way, we can follow the pairings to truly derive the action and
the universal quasitriangular element R in that algebra from the representation.

Define this second pairing by ⟨ , ⟩g : g⊗H◦ → k, with the pairing:

(3.17) ⟨h, f⟩g = h(f)|1

We need to verify that this is a pairing. The equations

(3.18) ⟨∆(h), f⊗g⟩g = h(f)|1g|1 + f |1h(g)|1 = h(fg)|1 = ⟨h, fg⟩g
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and

(3.19) ⟨h⊗k,∆(f)⟩g = lim
ε,δ→0

f(1+ εh+ δg)− f(1)

εδ
= ⟨hk, f⟩g

together with the quick (co)unit check establish a pairing. We can take a quotient by any
Lie algebra element that pairs to 0 with all functions to end up with the correct Lie algebra
of the symmetry.

Given a pairing ⟨ , ⟩ : H◦⊗H → k and a quasitriangular element R ∈ H⊗H a
coquasitriangular structure (as defined in chapter 2.2.5) Ψ : H◦⊗H◦ → k is given by:

(3.20) Ψ(f, g) = ⟨f⊗g,R⟩

The dual is slightly harder to define, as the pairing does not necessarily define such an
element, and the element need not be unique. Indeed, we will see later that the most
common twists we consider are of the form exp(ℏh⊗k), which do not actually lie in
the universal enveloping algebra. The natural thing to consider here is ⟨Rg,−⟩g = Ψ,
i.e. Rg(f⊗g)|1⊗1 = (f⊗g)|R for all f, g. Finally to put it all together: Let R =

AR⊗BR + iCR⊗DR, we lift it to a R that is given by the natural transformation generated
by the same object as an algebra element, and we find the "differential operator" that on
every smooth function implements the evaluation on this algebra element. That last part can
be reformulated as finding the infinitesimal differential operator that translates the function
by the group element. The way to implement a translation by only using infinitesimal Lie
algebra elements is exactly the exponential map, so the cocycle twist on the reconstructed
Lie algebra will be given by an exponential of Lie algebra elements. We will look into this
in the more concrete setting later.

3.2.3 Tori
Having defined these structures on products of Euclidean algebras, we will have a quick
detour to show how this formalism deals with quotients. It turns out products of spheres
have a very natural embedding, which we will demonstrate as follows.

So far, the object we chose have all been formally real, as the algebra generators are
presumed Hermitean, and we have not dealt with the reconstruction of the antipode of the
Hopf algebra. The antipode is related to the existence of dual objects in the category of
representations of a Hopf algebra, and given that we work in Euclidean spaces we have
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access to an inner product via the norm. This intuitively means that we should be able to
define the dual structure on some elements via looking at the adjoint maps of the inner
product. The dual of some object X , X∗ is then entirely defined by the evaluation map
evX : X∗⊗X → 1. Supposing we have a Euclidean norm, it might be interesting to check
also the dual map, the coevaluation coevX : 1 → X⊗X∗. Linearising, the coevaluation
map sends a number to the tensor product of all elements that inner product to that number.
Choosing a basis and a natural dual basis, this means

(3.21) coevX(c) = c
∑
k∈I

(ek⊗ek)

If we choose X to be self-dual, this means that the coevaluation of 1 is equal to the sum
of squares of the basis elements of X , which we used to generate the algebra. If we
include this morphism in our construction of the category, we find for example that the
reconstructed quasitriangular element R has to respect this bilinear form. Furthermore,
we can localise at this element by declaring this morphism to be invertible, transporting us
to the realm of spheres. In this formalism, we keep carrying the data of an isomorphism
around, rather than viewing the objects as truly equal.

There are two interesting observations to make. Firstly, there is a slight extension
one could easily consider: taking any other inner product passes from a noncommutative
product of Euclidean spaces to a noncommutative product of Clifford algebras. This is still
work in progress, but as is shown in [AM02] many of the constructions we will do later by
considering the base algebra to be a copy of the octonions may have equivalents analysable
by similar methods by considering the base algebra to be a Clifford algebra with the similar
quasialgebra structure.

The second observation is that while it is no effort to take quotients internal to the fiber,
taking quotients across objects is more tricky. Similar constructions have been studied
before, as in [Day73], but we have yet to apply it to this setting.

3.3 Twist deformations of Euclidean algebras

In this section we take a quick look at the concrete way of framing the R-matrix as a Hopf
algebraic twist. There has been quite some recent work in this direction from the viewpoint
of deformation quantisation and star products, see for example the recent thesis [Web20].
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We will be very brief on this subject, as we found few good results in this direction.
The approach is as follows. We consider a Hopf algebra of universal enveloping algebra

type H = UEA(g), acting on our polynomial algebra A = A(Rn ×Rm) corresponding to
a product of Euclidean spaces. If g acts by derivations, this is easily seen to be a module
algebra, so we can deform the algebra A by considering a twist on H. Let us begin there.

The twist condition is given by equation 2.19, to wit:

(3.22) (1⊗χ)(id⊗∆)χ = (χ⊗1)(∆⊗ id)χ

Finding nontrivial twists is a difficult task, even if you know they exist, see for example
[DNS96]. We will therefore first begin with two examples that are almost trivial.

The first example is that of a coboundary, which as we mentioned is given by χ =

∆σ(σ⊗σ)−1 for some invertible σ ∈ H. It is a simple check that this obeys the twist
condition by virtue of (co)associativity.

The second example is much more central to the thesis, which is given by exp(ℏh⊗k),
for two primitive commuting elements h and k of H. One might object to this twist,
as a twist is supposed to be an element of H⊗H, yet there is no way to implement the
exponential map in the polynomially generated universal enveloping algebra. It is a quick
check to show that if we do not go beyond this barrier, there are in fact no nontrivial twists.
Let us take this quick diversion.

By the Poincaré-Birkhoff-Witt theorem there is a grading on elements of the universal
enveloping algebra. Consider a generating basis hj of this algebra. The coproduct is an
algebra morphism, and on a primitive element in this basis it acts as∆(hj) = 1⊗hj+hj⊗1,
which means that any monomial

∏
jk∈I hjk has as a coproduct

∏
jk∈I(1⊗hjk + hjk⊗1).

Expanding this product, we see that in terms of grading this coproduct is given by a sum
of terms in all the degrees between |I|⊗0 and 0⊗|I|, for I the index set of the monomial,
with as total degree the constant |I|. Looking at the twist condition from the lens of this
grading, we can consider the components of χ of maximal total degree N . Then the two
sides of the equation of the twist condition will have terms of maximal total degree 2N as
the product in the universal enveloping algebra is filtered, where the terms of this maximal
total degree are subdivided as follows:

Deg((1⊗χ)(id⊗∆)χ) = (N1,M1 +N21 ,M1 +N21)

Deg((χ⊗1)(∆⊗ id)χ) = (M1 +N11 ,M2 +N12 , N2)(3.23)
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for some N1 + N2 = M1 + M2 = N and all N11 , N12 that sum to N1. Consider the
monomial in χ with maximal N1. Then as N11⊗N12 has a component that is identical
to N1⊗1, this means that there is a nontrivial element on the right hand side of degree
(M1 +N1,M2, N2), whereas this is not possible to reach on the left-hand side. Therefore,
no such twist can exist2.

One solution to this conundrum is by considering the twist to lie in some wider algebra
H[[ℏ]]. This comes with another caveat, however, which is that it is too easy to find twists
here, as there are no restrictions on convergence. Indeed, while in the old algebra there
are no nontrivial invertible elements, in this algebra any element with nonzero constant
part is invertible, as one can Taylor-expand

1

c0 + ℏα>0

for any α ∈ H. Indeed, one can
imagine solving the twist condition with a very cumbersome interminable process of adding
infinite higher-degree terms to cancel any anomalies. Ultimately, we are interested in the
deformation down in the representation. This can push us down the path of requiring the
matrix norm of the twist to exist when in this representation, which is a more analytical
direction. We decided to take the simpler way first, and consider twists of exponential
type, that is, χ = exp(

∑
α⊗β), for α, β ∈ H, as motivated by the earlier results in the

reconstruction of the Hopf algebra from the monoidal category.
Plugging this ansatz into the twist condition, we find:

(3.24) exp(1⊗α⊗β) exp(α⊗∆(β)) = exp(α⊗β⊗1) exp(∆α⊗β)

where we once again used that∆ is an algebra map to take it inside the exponential. Suppose
that α, β and both components of ∆(α) and ∆(β) all commuted among each other. In that
case we can merge the exponentials without incurring any Baker-Campbell-Hausdorff type
terms, and end up with the equation:

(3.25) 1⊗α⊗β + α⊗∆(β) = α⊗β⊗1+∆α⊗β

There are two things to notice: First of all, this is linear, which greatly simplifies things.
Secondly, by another degree argument, we can see that there are no nontrivial solutions
with bounded degree > 1. For example if |α| = A > 1 and |β| = B > 1 and the left hand
side will contain a component in degree (A, 1, B − 1), which is impossible to create on

2This argument is possibly more convoluted than an argument that there are no invertible elements
whatsoever, which is another requirement for the twist to exist. As we have other degree arguments later we
use this as a warmup.
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the right hand side by the same monomial. By linearity, without loss of generality there
is only one monomial in each degree. Therefore any such term will need to be cancelled
off by a second term inside of the cocycle with the same total degree. The only way one
could end up with another element in (A, 1, B) is by having α′ of degree A + 1 and β′ of
degree B− 1. This argument can then be repeated to see that all the cancellations together
imply that every element in the cocycle with total degree A+B can have its tensor factors
multiplied together to exactly a constant element. Since this one element determines the
entire twist in this degree, and we know that there exists a coboundary determined by any
γ, we can identify them as the same. This argument does not hold in degree 1, as there
the degrees in the equation are (1, 1, 0), (1, 0, 1), (0, 1, 1) on both sides, and therefore they
cancel perfectly fine and do in fact do so for every primitive commuting α and β.

This means that the only way to have a nontrivial twist is to have either α not commute
with β, or to have α(1) not commute with α, or both. The case of α(1) not commuting
with α is more common than it seems at first hand, as the simple example of ∆(h1h2) =

1⊗h1h2+ h1⊗h2+ h2⊗h1+ h1h2⊗1 demonstrates3. There is no a priori reason for h1⊗h2
to commute with h1h2⊗1. We spent some time investigating this class of degree-type
arguments, complicated by the existence of Baker-Campbell-Hausdorff-type extra terms.
If α and β do not commute but both do commute with their own coproducts, then the
BCH terms in the exponential are constrained to only the middle tensor factor, which gives
some hope of an argument of this type working. If α does not commute with its own
coproduct, all bets are off as there are no degrees necessarily preserved. We have not
found any bounded twists of the above type; the fact that the extra degrees of freedom are
constrained to the middle tensor factor in the first case of α and β commuting with their
coproducts leads us to conjecture that this setting is too constrained for nontrivial twists to
exist, whereas we do not feel so confident in the other setting.

We end up equipped only with twists of the form exp(iℏh⊗k). In the setting we are
interested in, there is a very fruitful way to guarantee that h and k commute: consider a Lie
algebra g that decomposes as g1⊕g2, each half acting on a different tensor factor. Picking
h ∈ g1 and k ∈ g2, h and k are sure to commute. The factor of i in the exponent is necessary
for the unitarity, to work with the ∗-structure. Given such a twist, as mentioned in section

3Interestingly, this particular type of noncommutation is also the reason why this cocycle condition for
Hopf algebras in degrees higher than 2 does not necessarily annihilate coboundaries.
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2.2.6, the universal quasitriangular element R in the twisted Hopf algebra is given by:

(3.26) Rχ = τ(χ)χ−1 = exp(iℏ(h⊗k− k⊗h))

Acting with this element on a module algebra is completely determined by its action
on basis elements, which by invertibility is necessarily of a form given by an invertible
matrix. Given any pair of Lie algebra elements, one can represent them by a matrix, take
the matrix exponential, and end up with an R-matrix. Given an R-matrix, one needs to
find the corresponding Lie algebra elements, which are likely not unique by virtue of the
periodicity of the exponential map. Locally, one can take a matrix logarithm.

There are two last things to comment on: One is that in the next chapter we will be
looking at a class of twist which would correspond to a case in which the two factors g1
and g2 are almost but not entirely independent, as we will find more interesting examples
when these two are in fact connected in some sense. The idea there is that we do not want
to have complete freedom in being able to without loss of generality pick a pure tensor
product of operators. The only way to describe this lack of freedom in this context is by
considering the Hopf algebra itself to not entirely factorise in two parts, each acting on
different algebras, as the two components would be independent. Instead, one needs to
have a split action of a single component across the two factors. In this case, finding a
nontrivial twist is profoundly more difficult, as for the case of sl(2) already we do not have
two independent commuting elements to create a twist of the form exp(ℏh⊗k).

The second comment is that we looked for a while into what it would even mean to be a
nontrivial twist, as there are a number of nontrivial twists known. For example, there exist
twists like the Jordanian twist, and also there are unconstructed twists connecting the slq(2)
algebras, whose existence is proved nonconstructively. We did not find what this would
look like in the representation, but it is hard to imagine it looking particularly different
from a commutation given by an arbitrary matrix acting on the generators, as demonstrated
by the reconstruction procedure. The construction of the noncommutative algebra as a
twisted module algebra means that the twist has to act via the generators, which limits the
options quite severely.
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3.4 Further directions
The approach of categorifying a noncommutative algebra has a number of parallels. For
this part, the lack of quotients in our algebra worked very nicely in the construction for
the monoidal category, more care would need to be taken to extend it to a more general
noncommutative variety. There are parallels we would like to draw to finite group theory:
In a noncommutative group the category of representations has a reconstruction theorem
using the same Tannaka-Krein theorem. There, there is a correspondence between the
noncommutative algebra CG and the set of conjugacy classes in the group. One could
think of each conjugacy class as a point with an internal structure, as the commutative
limit is equal to requiring that the conjugacy classes are exactly normal points. Doing so
we see that there is a correspondence between noncommutative algebras, points with an
internal symmetry and categories of representations of these algebras. Unlike this intuition
from finite groups however, in our work above we ran into infinities due to the fact that
the algebra is not finite-dimensional. We would like to continue the investigation into
different algebras interpreted as monoidal categories, extend the formalism to finite groups
and other affine varieties than tori.

As for the explicit reconstruction of the cocycle, there are many interesting directions
being researched at this moment. The most relevant open question to the rest of this paper
that we already touched upon would be to understand better how to deform a diagonal
action of a single algebra, to better mimic the case we will look at later where we do not
want to be able to lose all information without loss of generality.
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Chapter 4

Noncommutative Products of Normed
Division Algebras and their Symmetries

4.1 Introduction

This chapter is based on [LW22], in preparation as of writing. In this chapter, we will
look at a different direction to extend the work in [DL18a] and [DL18b]. This direction is
the special case where the R-matrix and the Euclidean spaces it acts on are given by real
normed division algebras {R,C,H,O}. The reason for this interest is twofold. Firstly,
deforming the normed division algebras by means of an action generated by these algebras
themselves will also deform the sphere of unit elements in these algebras. As a result,
the deformation passes from a product of Euclidean flat spaces to the spheres, giving us
a construction of noncommutative spheres. Furthermore, by passing to the unit sphere
in both Euclidean algebras we end up getting a noncommutative product of spheres, or a
generalised noncommutative torus.

Secondly, this case turned out to be of particular interest when in [DL18a] it was
found that the set of parameters u for the deformation was shown to have the particularly
nice structure of P1(V(n)) for the cases of V(n) ∈ {R,C}. Furthermore, in [DL18a] it was
remarked that the quaternionic case admitted a particularly nice symmetry by exploiting the
fact that right and left multiplication commute in this case. In what follows we investigate
the extent to which both of these properties generalise to the further Cayley-Dickson
algebras.

There turn out to be two approaches to this theory in higher dimensions. One is to keep
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things real and close to a Hopf-algebraic nature, which is useful when dealing with the
matter abstractly. We will be only living in the representations, but sticking to the theme
of the previous chapter many intuitions and notations do come from the Hopf algebraic
world. The second way is to embrace the explicit nature and rewrite the equations in a form
using complex variables that gives a greatly simplified explicit matrix for the commutation.
This form is elegant but has some issues when trying to recover the abstract form. We
will split this chapter principally in two parts corresponding to these two approaches, and
secondarily into parts corresponding to the degree of the algebras. Before we split off, let
us first take a look at the base cases of R and C.

4.1.1 Products of R

Noncommutative products of two copies of R are given by by what is called the quantum
plane[Kas95][KS97][Maj95]1 and serve as a base case of our interests:

Definition 4.1.1. The quantum plane A(R2
q) is given by the algebra freely generated by

two hermitian coordinate functions x, y subject to the commutation relation:

(4.1) xy = q yx

for some nonzero q ∈ R.

This quantum plane has been studied extensively, as in the above references. We will
however look at some different aspects, inspired by the idea to extend to further normed
division algebras. Without the requirement to preserve the norm, it is a simple exercise in
linear algebra to show that no coordinate transformation can reduce the parameter space
of q any more than an isomorphism between A(R2

q) and A(R2
q−1). We specify to a choice

of q that preserves the norm, that is to say, that keeps the element x∗x + y
∗
y = x

2 + y
2

central2 In order to accomplish this, we need that form to commute with x and y; taking a
commutator with x reveals that in order to keep the norm central we in fact need q2 = 1.
Imposing this, the commutator with y is similarly satisfied. The parameter space of choices

1Be warned, different sources place the q on different sides of the equals sign. Both Kassel and Majid
use the other convention, we stick to the one consistent with Dubois-Violette and Landi.

2This terminology is unfortunately a bit confusing, as the norm is an element of our algebra, not an
operation on the elements. The elements x and y are classically coordinate functions, so the function x2+y2

is in fact the Euclidean norm function on the underlying space.
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of q that preserve the norm is Z2. The quotient space setting the central element x2 + y2 to
1 in the case of q = +1 is of course A(S1). For q = −1, one ends up with quite a different
space: a noncommutative algebra A(S1

−1), some sort of fermionic circle. As a circle is
1-dimensional, and a single generator is hard to make commute with itself, this object is
a bit of an aberration, but as we have not seen any mention of it in the references we will
make a quick few observations before moving on to the complex setting.

For both S1 and S1
−1 we have an exact sequence:

(4.2) 0 → R[x] → A(S1
∗) → RZ2 → 0

This point of view is taking the algebraR[x, y]⧸⟨x2 + y2 − 1⟩, reducing away all the factors

of y2 into polynomials in x, and interpreting the resulting algebra as R[x]⊕yR[x] with a
product y2 ≡ 1 mod R[x]. The difference of the two algebras is the action that Z2 has
on R[x]. For the classical circle the action is trivial, for the fermionic one this action is
sending xn to (−1)nxn.

This way of looking at the circle is not a very fruitful one classically: projecting out
the y’s is akin to looking at the circle as a Z2-bundle over a line with a singular action
at the endpoints. The better way to look at the circle algebra is by factorising x2 + y

2

into z = x + iy and w = x − iy, having zw = 1 =⇒ w = z
−1, and noticing that

the remaining algebra is R[x, x−1]. For the noncommutative algebra this substitution does
not immediately yield recognisable results. We first resolve the algebra by considering it
matrix-valued. Writing the generators as:

(4.3) x =

(
u 0

0 −u

)
y =

(
0 v

−v 0

)

we notice that all the noncommutativity is captured by the matrix part, and the components
themselves lie in commutative algebras. It is straightforward to check that the matrix splits
as:

(4.4)

(
A B

B
α

A
α

)

where α denotes the action sending each un to (−u)n, and A lies in the algebra defined by
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R[u, v2]⧸⟨u2 + v
2 − 1⟩, B lies in vR[u, v

2]⧸⟨u2 + v
2 − 1⟩. To wrap this cursory analysis

up, the algebra R[u, v2]⧸⟨u2 + v
2 − 1⟩ admits the coordinate substitution we used for the

circle, being equivalent to u = cos θ and v = sin θ. The absence of the odd terms in v is
then equivalent to the algebra being the algebra of invariants under the action θ → −θ. This
is a GIT quotient, again sending the circle to a piece of line with two singular endpoints.
One is not to expect a more circularly symmetric interpretation, given that the choice of x
and y is integral to the definition of this space.

4.1.2 Products of C

Passing to the complex case we end up with a one-parameter family R4
u, which was

introduced in [CL01]. We will describe it first by passing to real generators, using an
isomorphism C2

u ≃ R4
u. Let the latter be generated by Hermitian coordinate functions

(x0, x1) and (y0, y1). We generate the algebra A(R4
u) by imposing the following algebra

relations:

x0x1 = x1x0, y0y1 = y1y0, xλyα = Rλα
βµ y

βxµ, yαxλ = (Rλα
βµ)

−1xµyβ(4.5)

where all indices lie in {1, 2}, with matrix Rλµ
νρ given explicitly by

(4.6) Rλα
βρ = u0 δλρ ⊗ δαβ + iu1 Jλ

ρ ⊗ Jα
β and J =

(
0 −1

1 0

)

The tensor products are mostly for clarity, as one can see which components are acted
on by the indices. We will need a couple of remarks. Firstly, let us clarify why we are
interested in this particular form of the R-matrix. We take the symmetric part to be in
some sense undeformed, and the antisymmetric part of R to be a tensor product of Lie
algebra elements corresponding to the action of U(1) ⊂ C∗ on C by left multiplication,
the corresponding real Lie algebra being proportional to an action by multiplication by i,
which is implemented by the matrix J .

Secondly, we will take a look at the ∗-structure of R, as later we will see that this
becomes less clear. The fundamental thing we would like is that our algebra itself has a
good ∗-structure. This means that the following diagram has to commute:
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(xλyα)∗ (Rλα
βµ y

βxµ)∗

y
α
x
λ

R
λα

βµx
µ
y
β

That is, the star of R is its complex conjugate, taking care to have it act on the correct
indices. We did not have to transpose the matrix.

As a related remark, the coordinate functions are taken to be Hermitian. This means
that it is natural to take the coefficients of the algebra in R. One might however quickly
spot that theR-matrix has a factor of i present. This factor is necessary for the matrix to be
unitary. It does however mean that the values this algebra takes are necessarily complex.
Later we will try to view this factor of i as really changing our coefficients to a complex
algebra. For now we will consider this complexity to be constrained to the deformation
parameter and we will carry on working over the real numbers.

The relations (4.5) can be combined into the block matrix:

(4.7)


x
λ
x
α

x
λ
y
α

y
λ
x
α

yλyα

 = R


x
β
x
µ

x
β
y
µ

y
β
x
µ

yβyµ

 :=


12 0 0 0

0 0 R
λα
βµ 0

0 R
λα

βµ 0 0

0 0 0 12



x
β
x
µ

x
β
y
µ

y
β
x
µ

yβyµ


Lastly, the parameter u should be investigated. To conform with the ∗-structure we

would like u0 and u1 to be real. Further restrictions on u come once again from the require-
ment that the algebra preserves the norm ∥x∥2 = (x0)2 + (x1)2 and ∥y∥2 = (y0)2 + (y1)2.
To generalise this easily later, let us compute the commutator of xn with

∑
k(y

k)2. Using
summation convention for only indices appearing both higher and lower, we get for each
fixed k:

xn(yk)2 = Rnk
lm y

lxmyk

= Rnk
lmR

mk
pq y

lypxq

= (u0 δnm δ
k
l + iu1Jn

m J
k
l )(u

0 δmq δ
k
p + iu1Jm

q Jk
p )y

lypxq

= (u0)2 (yk)2 xn + 2iu0u1(ykJk
q y

qJn
p x

p) + (u1)2 (Jk
q y

q)2 xn(4.8)

Finally summing over k we find that the antisymmetry of Jk
q implies that the second term

in the final equation always appears in cancelling pairs, whereas the final term is just
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a permutation because of the square. Hence, for the norm to be central all we require
is (u0)2 + (u1)2 = 1. Combined with the reality condition, that forces u0 = cos θ and
u
1 = sin θ. There is one more symmetry of the parameter sending θ to −θ, showing that

the moduli space of parameters is S
1

⧸Z2
∼= P1(R).

Using the centrality of the two norms, we can quotient the deformed algebras R4
θ by

⟨∥x∥2 + ∥y∥2 − 1⟩ to obtain the noncommutative sphere S3
θ, or quotient it even further by

⟨∥x∥2 − 1, ∥y∥2 − 1⟩ to arrive at the celebrated noncommutative torus T2
θ. These algebras

have been studied extensively elsewhere.
Moving on, we will investigate what happens if we take this i present to be the seed

for a complexification of the algebra. This process is not in general possible, as one can
see from the following argument. We act on each 2-dimensional real vector space with a
2× 2-dimensional real matrix J . We want to translate this to an action on a 1-dimensional
complex vector space by a 1× 1 complex matrix. The former has four degrees of freedom,
where we are left with only two at the end. Therefore this complexification, if it is possible,
loses a hidden redundancy, but it is only possible if the matrix has this redundancy to begin
with. Reasoning from the other side, we find that the eigenvalues of a complex number z
acting by multiplication as a matrix on a real 2-dimensional vector space come in complex
conjugate pairs, and by a diagonalisation argument we find that the converse holds as well,
making this the requirement for a real matrix to be translated into a complex matrix.

In this particular case it turns out to be quite simple: Consider the complex algebra
generators z1 = x

0 + ix1, z2 = y
0 + iy1. On these generators, the relations 4.5 read:

[z1, z
∗
1 ] = 0 = [z2, z

∗
2 ]

z1z2 = e−iθz2z1, z1z
∗
2 = eiθz∗2z1

z∗1z2 = eiθz2z
∗
1 , z∗1z

∗
2 = e−iθz∗2z

∗
1(4.9)

Where the last two equations are made redundant by the star structure. In this form, there
is another symmetry that becomes quite clear: rescaling the zi by a complex number does
not change the commutation relations. Consequently, there is a T2 = C∗ × C∗ action on
the algebra which factors down to S3

θ and T2
θ.

There is one pitfall when working with the algebra in this complex form: it requires
care to turn back. We have introduced an element i in the coordinates to work well with
the pre-existing factor of i in the matrix. However, this means that when taking a real or
imaginary part one would simply erase that unmissable factor of i. Let us demonstrate
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what happens when we add and expand the second line in equation 4.9:

(z1z2 + z1z
∗
2)/2 = x0y0 + ix1y0 = cos θ y0x0 + sin θ y1x0 + i

(
cos θ y0x1 + sin θ y1x1

)
(z1z

∗
2 − z1z2)/2 = x1y1 − ix0y1 = cos θ y1x1 − sin θ y0x1 + i

(
− cos θ y1x0 + sin θ y0x0

)
Taking the real and imaginary parts of this equation gives us different commutation relations
from the original 4.5, and these different relations do not yield a consistent ∗-algebra.
However, if one splits this equation in the following way:

x0y0 = cos θ y0x0 + i sin θ y1x1

x1y1 = cos θ y1x1 + i sin θ y0x0

x0y1 = −i sin θ y0x1 + cos θ y1x0

x1y0 = −i sin θ y1x0 + cos θ y0x1

one gets back the relations in (4.5), (4.6).
We will conclude this section by expanding the tensor product in (4.5) to collect all the

deformation in a single matrix, which we will use as a reference for generalisations later:

(4.10)


x
0
y
0

x1 y1

x0 y1

x
1
y
0

 =


t iu 0 0

iu t 0 0

0 0 t −iu

0 0 −iu t



y
0
x
0

y1 x1

y1 x0

y
0
x
1


with t = cos θ, u = sin θ. We will later also expand these parameters, viewing them as
lying in a matrix:

(4.11) t2 + u2 = 1 = det

(
t iu

iu t

)
= det

(
t −iu

−iu t

)
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4.2 Abstract form: Quaternions

4.2.1 Spaces

Let us begin with the first analogue of the R-matrix given in 4.6:

(4.12) Rλα
βρ = u0 δλρ ⊗ δαβ + i

∑
k,l

vk(J−
k )

λ
ρ ⊗ ul(J−

l )
α
β

The analogue of the matrixJ in the complex case is now a linear combination of the matrices
J
−
k defined back in 2.35. The choice for J− rather than J+ is arbitrary, made for consistency

with [DL18a]. As in that paper, we will reduce the degrees of freedom significantly, by
noticing that the homogeneity of the quaternions allows us without loss of generality take
the first J− to be proportional to J−

1 . This does not exhaust the symmetry: as mentioned in
chapter 2.5.4 one can generate the quaternion algebra with any two orthogonal imaginary
quaternions. Hence we can use the further symmetry to reduce

∑
l ulJ

−
l to u1J−

1 + u
2
J
−
2 .

We can once again check that the quadratic norms are central; this time we will do it in a
more abstract setting to immediately also prove it for the octonions. Starting off with 4.8,
we will suppress most indices for clarity, replacing their role of keeping track on what we
act with tensor products, and replace deltas with 1. Since we expect it to be true for any
value of u, we expect the commutator to be 0 for each ukJ−

k individually. We will however
interpret ukJ−

k as a summation in order to be sure that there are no interactions between
the different terms, and to make it generalisable for the cases later where there are more
J-matrices.

Theorem 4.2.1. For n = 0, 1, 2, 3, the norms
∑

a(x
a)2 and

∑
a(y

a)2 are central in
A(R2n ×R R2n) if

∑
k(u

k)2 = 1.

Proof. The action of J−
k on xn is given as in 2.5.5 by J−

k x
n = −F (n, k)xn⊕k. Using this,
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let us commute xa with a term (yb)2:

xaybyb =m(m⊗1)(1⊗τ)(1⊗R)(τ⊗1)(R⊗1)xa⊗yb⊗yb

=m(m⊗1)(1⊗τ)(u01⊗1⊗1+ i1⊗J−
1 ⊗(ulJ−

l ))

· (τ⊗1)(u01⊗1⊗1+ i J−
1 ⊗(ukJ−

k )⊗1)x
a⊗yb⊗yb

=m(m⊗1)(1⊗τ)(u01⊗1⊗1+ i1⊗J−
1 ⊗(ulJ−

l ))

· (u0yb⊗xa⊗yb + ukF (b, k)F (a, 1)yb⊕k⊗xa⊕1⊗yb)
=(u0)2ybybxa + u0ukF (b, k)F (a, 1)yb⊕kybxa⊕1

+ u0ulF (b, l)F (a, 1)ybyb⊕lxa⊕1 + ukulF (b, k)F (a, 1)F (a⊕1, 1)F (b, l)yb⊕kyb⊕lxa

This last line gets summed over all values for a and b. Using lemma 2.5.1 we find that
F (a, 1)F (a⊕1, 1) = −1. Using the same lemma, we have:

(4.13)
∑
b

F (b, k)yb⊕kyb =
∑

b′=b⊕k

F (b′⊕k, k)yb′yb′⊕k = −
∑
b′

F (b′, k)yb
′⊕kyb

′
= 0

Where we can use the lemma as k ̸= 0. The only remaining piece is:

(4.14)
∑
b

ukulF (b, k)F (b, l)yb⊕kyb⊕lxa

For k = l this is clearly equal to (uk)2
∑

b(y
b)2xa, which would show what we want.

For k ̸= l, we want to show that there is a cancellation between the b-term and the
b⊕l⊕k-term as only they carry the same polynomial. This is equivalent to saying that
F (b, k)F (b⊕k⊕l, k)F (b, l)F (b⊕k⊕l, k) = −1 for all b and k, l ̸= 0. Using lemma 2.5.1
to send F (b⊕k⊕l, k) to −F (b⊕l, k) we arrive at (−1)2F (b, l)F (b⊕k, l)F (b, k)F (b+ l, k).
Here we can use the definition of ϕ twice to end up at:

F (b, k)F (b⊕k, l)F (b, l)F (b⊕l, k) = ϕ(b, k, l)F (b, k⊕l)F (k, l)ϕ(b, l, k)F (b, l⊕k)F (l, k)
= F (k, l)F (l, k) = −1(4.15)

Which proves the claim.

As a tangential remark, the very last computation of equation 4.14 has an interesting
corollary: setting q and y equal to 1 we find that

∑
F (b, k)F (b, l) ∝ δ

k
l . This is an
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algebraic way to show that the matrices F are Hadamard, that is, matrices whose only
entries are ±1 with orthogonal rows and columns. These matrices have a lot of uses in
information theory and have already been investigated in this context in [AM99].

To return to the matter at hand, we find that the real parameters u = (u0, u1, u2) need
to obey (u0)2 + (u1)2 + (u2)2 = 1, placing u in S2 = P1(C). Using this we can define a
quaternionic noncommutative torus TH

u as before, by duality:

(4.16) A(TH
u) =

A(R4 ×u R4)⧸⟨∥x∥2 − 1, ∥y∥2 − 1⟩

and similarly for a noncommutative 7-sphere S7
u ≃ (H2

1)u

(4.17) A(TH
u) =

A(R4 ×u R4)⧸⟨∥x∥2 + ∥y∥2 − 1⟩

As for the algebras defined by the complex numbers, much has been written about the
quaternionic sphere and torus, which we shall not seek to repeat.

4.2.2 Symmetries

In [DL18a], the authors find a useful source of symmetry of the algebrasA(R4×uR4). The
idea is that the quaternions by virtue of their associativity have commuting left and right
multiplication operators. As we only use the right multiplication to define our R-matrix,
we find that using the J+ gives a source of maps on x and y preserving the commutation
relations.

It follows that the multiplicative group H∗×H∗ acts by automorphisms of the ∗-algebra
Au. This induces an action of U1(H)×U1(H) on Au by restriction to U1(H). This action
passes to the quotients and hence defines an action of the classical quaternionic torus
T2

H = U1(H) × U1(H) on the noncommutative quaternionic torus (T2
H)u. This situation

is of course parallel to the complex case we studied before, which lead to an action of the
classical torus T2 on the noncommutative torus T2

θ.

We will further investigate the set of symmetries of these algebras to see if there are
any others. In fact, there is a single further continuous symmetry, which we will find by
looking at an infinitesimal deformation of the coordinates.
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Consider the equivalent of equation (4.7), written as a tensor product:

(4.18)


x
· ⊗ x

·

x· ⊗ y·

y· ⊗ x·

y
· ⊗ y

·

 =


14⊗4 0 0 0

0 0 R 0

0 R 0 0

0 0 0 14⊗4



x
· ⊗ x

·

x· ⊗ y·

y· ⊗ x·

y
· ⊗ y

·


Where we suppressed the indices, but keep a dot to remind ourselves that we are dealing
with vectors of variables. We are interested in symmetries of this algebra that respect
the splitting between the algebras generated by the x and y, so consider the deformation
x
· → x

· + Mx
· and y

· → y
· + Ny

·. Using the fact that the linearised inverse of the
deformation 14 +M is given by 14 −M , we find that the first-order terms reduce to:

(4.19) R(1⊗M) +R(N ⊗ 1)− (M ⊗ 1)R− (1⊗N)R = 0

The equation for R reduces to the same as M,N are real. Using our explicit form for R,
we derive:

(4.20) (J−
1 N−MJ−

1 )⊗(u1J−
1 +u

2J−
2 )+J

−
1 ⊗(M(u1J−

1 +u
2J−

2 )−(u1J−
1 +u

2J−
2 )N) = 0

Two simple tensor products are equal if and only if the components are proportional, so for
some constant κ:

(J−
1 N −MJ−

1 ) = κJ−
1(4.21)

M(u1J−
1 + u2J−

2 )− (u1J−
1 + u2J−

2 )N = κ(u1J−
1 + u2J−

2 )(4.22)

We can rescale M ′ = M + κ1 to get rid of the right hand side. In fact, in order for the
symmetry to descend to the sphere we would needM ∈ so(4), so without loss of generality
κ = 0.
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Solving for N in the two equations we find:

N =− J−
1 M

′J−
1

=− 1

|u|2
(u1J−

1 + u2J−
2 )M

′(u1J−
1 + u2J−

2 )

=
1

|u|2
(u1J−

1 + u2J−
2 )J

−
1 NJ

−
1 (u

1J−
1 + u2J−

2 )

=
1

|u|2
((u1)2N − (u2)2J−

3 NJ
−
3 )

Where we used the fact that J−
1 J

−
2 = J

−
3 , which, as we remarked in chapter 2.5.4, fails

a priori for the octonions. Here we get that the infinitesimal symmetries are classified by
exactly the matrices N that commute with J−

3 . This includes the aforementioned copy of
SU(2) acting "on the right" via J+

i , and J−
3 itself as a basis of antisymmetric operators.

For the case of symmetries that do not descend down to the sphere, the above argument
still holds, however there are other matrices that commute with J−

3 . The simplest way
to find them is to pass to a complex basis in which J−

3 is diagonal, and notice that it is
diagonalisable with eigenvalues {i, i,−i,−i}. The commutant therefore consists of exactly
2 copies of SU(2) and one identity scaling matrix for each. The remaining generators can
be found to be:

(4.23)


0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0

 and


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


To find the symmetries of this deformation in the end we need to exponentiate the Lie
algebra generators. As the generators all square to a scalar, this exponential is easy to take.
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4.3 Abstract form: Octonions

4.3.1 Spaces

We once again start off by looking at the general form as in 4.6 and 4.12:

(4.24) Rλα
βρ = u0 δλρ ⊗ δαβ + i

∑
k,l

vk (J−
k,O)

λ
ρ ⊗ ul (J−

l,O)
α
β

Where this time the sum runs from 1 to 7. One remark to begin with is that this algebra
is itself associative even though the octonions are involved: the only thing we change
is a commutator. As with the quaternions, the octonions have a homogeneity: their
automorphism group G2 is given by any map that sends three orthogonal generators to
three orthogonal generators. In this case, we can again without loss of generality take
v
k = δ

k
1 . On the right hand side, we have the freedom of a rotation by G2 keeping the

vector e1 fixed3. This rotation can be shown to in the most general case reduce the operator
R to:

(4.25) Rλα
βµ = t δλµδ

α
β + i (J−

1,O)
λ
µ (u

1J−
1,O + u2J−

2,O + u3J−
3,O + u4J−

4,O)
α
β

The JO matrices used can be found in the appendix. The matrices represent a multiplication
operation that is not associative, yet they are still associative themselves. For the centrality
of the norm, we would like to refer back to theorem 4.2.1. In this last case, we find that the
parameter space is equal to S4 = P1(H), following the pattern that the parameter spaces
are given by projective spaces. Using these invariant norms we once again obtain two sets
of noncommutative spaces: the noncommutative octonionic torus with coordinate algebra:

(4.26) A(TO
u) =

A(C4 ×u C4)⧸⟨∥x∥2 − 1, ∥y∥2 − 1⟩

And noncommutative 15-dimensional spheres defined by

(4.27) A(S15
u ) = A(C4 ×u C4)⧸⟨∥x∥2 + ∥y∥2 − 1⟩

3Technically one would change a basis in the algebra to show that the algebras are isomorphic. Using the
fact that G2 is an algebra automorphism one can see that a change of basis by some automorphism ϕ has the
same effect as an automorphism ϕ−1 acting on the operator R.
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4.3.2 Symmetries

In the octonionic case the symmetries are perhaps of greater interest, as we can no longer
write down a simple ansatz as we did for the quaternions. The previous ansatz of right mul-
tiplication operators no longer works, as due to the nonassociativity the left multiplication
operators no longer commute with the right multiplication operators. We can however do
the same computation of infinitesimal symmetries as for the quaternionic case. In this case
the computations are mostly the same, except for some points which we noticed before.
Let us pick up there.

The equivalents of (4.21) for the octonions are as follows:

M ′J−
1,O − J−

1,ON = 0(4.28)

M ′(u1J−
1,O + u2J−

2,O + u3J−
3,O + u4J−

4,O)− (u1J−
1,O + u2J−

2,O + u3J−
3,O + u4J−

4,O)N = 0

(4.29)

from which it can readily be derived that any infinitesimal symmetry N of the coordinate
algebra of the octonions obeys the following relation for u ̸= 0:
(4.30)
((u2)2+(u3)2+(u4)2)N = J−

1,O(u
2J−

2,O+u
3J−

3,O+u
4J−

4,O)N(u2J−
2,O+u

3J−
3,O+u

4J−
4,O)J

−
1,O

For the octonions this product does not simplify appreciably, as the nonassociativity of
the algebra means that the left multiplication operators do not form a closed set under
composition. We will split up the symmetries in two cases.

Firstly we have a look at the symmetries that are independent of u. In this case,
we require N to commute with both J−

1,OJ
−
2,O, J−

1,OJ
−
3,O and J−

1,OJ
−
4,O independently. We

checked the possible N by computer calculation, which yielded an 8-dimensional algebra.
This is to be expected, as can be seen by naively diagonalising. The matrix has a +i and a
−i eigenspace which are respected by the J-matrices, and every independent commutator
imposes a simple equality among pairs of diagonal elements. The algebra consists of
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matrices of the form:

(4.31)



a −b −c −d −e −f −g −h
b a d −c −f e h −g
c −d a b −g −h e f

d c −b a −h g −f e

−e f g h a b c d

f e h −g −b a d −c
g −h e f −c −d a b

h g −f e −d c −b a


Where one can see explicitly that the symmetry generators also carry the structure of

group multiplication matrices together with a set of signs. To make the algebra respect
the Euclidean structure and able to be passed down to the sphere, we require the algebra
generators to be antisymmetric matrices, as then the Lie algebra elements lie in the Lie
algebra o(8). One can see from the explicit form above that all but two of the generators
are antisymmetric4.

We can use the formalism of quasialgebras and cocycles to construct these symmetries
by hand as well. Let gk be the shift operator on (Z2)

3, sending el to ek⊕l. We can write N
as a sum of operators of the following form:

(4.32) N =:
∑
k

Nk : el → f(k, l)ek⊕l = f(k, l)gkel

where f takes values in C. This is possible as operators of this type form a highly
degenerate basis of the space of matrices. In this peculiar basis, we notice that the
commutation relations fix every gn-component. Indeed, the operators with whichN ought
to commute act via g3 and g5 respectively, and as the gn form an abelian group of shifts
we see that commutation only changes minus signs, not group elements. Hence we can
ignore the summation and look to any specific choice of k. Acting on a basis octonion el
and remembering that J−

k,O acts by sending it to J−
k,Oel = −F (l, k)el⊕k, we get that (4.30)

becomes:

(4.33) F (l ⊕ k ⊕ 1, 1)F (l ⊕ k ⊕ 3, 2)fa(k, l ⊕ 3)F (l ⊕ 1, 2)F (l, 1) = fa(k, l)

4Indeed, the one symmetric off-diagonal generator looks quite out of place, and deserves a better expla-
nation than we have currently available.
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Similarly for the components corresponding to J−
3,O and J−

4,O respectively:

(4.34) F (l ⊕ k ⊕ 1, 1)F (l ⊕ k ⊕ 2, 3)fa(k, l ⊕ 2)F (l ⊕ 1, 3)F (l, 1) = fa(k, l)

(4.35) F (l ⊕ k ⊕ 1, 1)F (l ⊕ k ⊕ 5, 4)fa(k, l ⊕ 5)F (l ⊕ 1, 4)F (l, 1) = fa(k, l)

Together with the requirement that f(k, 0) = 1. If we make the ansatz that fa(x, y) =
F (x, y)p(x, y) for some fudge factor p, we can use the associativity condition to simplify.
The choice F (x, y) instead of F (y, x) ∝ J

−
x,O will become useful later. It can be justified

a priori by the fact that the symmetry in the quaternionic case is given by the opposite, i.e.
left quaternion multiplication, where the matrices J−

x,O act from the right. Using cocycle
gymnastics, we find for 4.33:

p(k, l) =F (l ⊕ k ⊕ 1, 1)F (l ⊕ k ⊕ 3, 2)F (k, l ⊕ 3)F (l ⊕ 1, 2)F (l, 1)F (k, l)p(k, l ⊕ 3)

(4.36)

⇓ F (l ⊕ 1, 2)F (l, 1) = ϕ(l, 1, 2)F (1, 2)F (l, 1⊕ 2)

=F (l ⊕ k ⊕ 1, 1)F (l ⊕ k ⊕ 3, 2)F (k, l ⊕ 3)F (l, 3)F (1, 2)ϕ(l, 1, 2)F (k, l)p(k, l ⊕ 3)

⇓ F (k, l ⊕ 3)F (l, 3)F (k, l) = ϕ(k, l, 3)F (l⊕k, 3)

=F (l ⊕ k ⊕ 1, 1)F (l ⊕ k ⊕ 3, 2)F (l ⊕ k, 3)F (1, 2)ϕ(k, l, 3)ϕ(l, 1, 2)p(k, l ⊕ 3)

⇓ F (l ⊕ k ⊕ 3, 2)F (l ⊕ k, 3) = ϕ(l ⊕ k, 3, 2)F (3, 2)F (l ⊕ k, 1)

=F (l ⊕ k ⊕ 1, 1)F (l ⊕ k, 1)F (3, 2)F (1, 2)ϕ(l ⊕ k, 3, 2)ϕ(k, l, 3)ϕ(l, 1, 2)p(k, l ⊕ 3)

⇓ F (l ⊕ k ⊕ 1, 1)F (l ⊕ k, 1) = ϕ(l ⊕ k, 1, 1)F (1, 1)F (l ⊕ k, 0) = −1

=− F (3, 2)F (1, 2)ϕ(l ⊕ k, 3, 2)ϕ(k, l, 3)ϕ(l, 1, 2)p(k, l ⊕ 3)

⇓ F (3, 2)F (1, 2) = −1

=ϕ(l ⊕ k, 3, 2)ϕ(k, l, 3)ϕ(l, 1, 2)p(k, l ⊕ 3)

Similarly for the J−
3,O and J−

4,O-components:
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(4.37) p(k, l) = ϕ(l ⊕ k, 2, 3)ϕ(k, l, 2)ϕ(l, 1, 3)p(k, l ⊕ 2)

(4.38) p(k, l) = ϕ(l ⊕ k, 5, 4)ϕ(k, l, 5)ϕ(l, 1, 4)p(k, l ⊕ 5)

These equations imply that the only obstructions to a constant p and hence a symmetry
given by right octonion multiplication are exactly the associator products above.

To ensure that we do in fact get a symmetry we require for example the following
commutativity conditions on the associators:

p(k, l ⊕ 1) = p(k, (l ⊕ 3)⊕ 2)

= p(k, (l ⊕ 2)⊕ 3)

Which is equivalent to:

ϕ(2, 3, l ⊕ k ⊕ 3)ϕ(2, l ⊕ 3, k)ϕ(3, 1, l ⊕ 3)ϕ(2, 3, l ⊕ k)ϕ(3, l, k)ϕ(2, 1, l)

=ϕ(2, 3, l ⊕ k)ϕ(2, l, k)ϕ(3, 1, l)ϕ(2, 3, l ⊕ k ⊕ 2)ϕ(3, l ⊕ 2, k)ϕ(2, 1, l ⊕ 2)(4.39)

With similar equations holding for all the other values, as 2, 3, 5 span Z 3
2 . Using the

property that ϕ only depends on the span of the numbers it operates on, this particular
equation like some others simplifies to:

(4.40) ϕ(2, l + 1, k)ϕ(3, l + 1, k)ϕ(2, l, k)ϕ(3, l, k) = 1

More generally, the following was found to be true in the octonions:

(4.41) ϕ(a, l, k)ϕ(a+ b, l, k)ϕ(a, l + b, k)ϕ(a+ b, l + b, k) = 1

The remaining equations that do not simplify were checked to hold by computer for all l, k,
although a more concrete explanation remains elusive.

Using these equations we can consider a symmetry of the whole algebra; that is, one
not necessarily descending to the sphere. A priori this is 64-dimensional since this relies
only on a choice of p(k, l). The coefficients p(k, l) needs to satisfy 3 equations, and by the
above computations these equations are independent, which means that given p(k, l) we
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have p(k, l + a) for any a. This leaves an 8-dimensional algebra of options.
In order to descend to a symmetry on the sphere one needs to obey the further condition

f(k, l) = −f(l, k), as the Lie algebra element N is antisymmetric in that case. This
means that for k nonzero we require p(k, l) = p(l, k). This gives us in principle further
commutativity conditions on the associators to verify.

For this 6-dimensional algebra we computed the Cartan matrix to see if the complexified
Lie algebra decomposed into anything known, and it does: the complexified algebra is
isomorphic to su(2,C)⊗ su(2,C).

Lastly, it is worth checking if there are more symmetries if we allow the symmetries to
depend on u. In that case we can notice by octonion homogeneity that u2J−

2,O + u
3
J
−
3,O +

u
4
J
−
4,O for generic u behaves like a generic unit octonion orthogonal to J−

1,O, and so, for the
purposes of this calculation, can be rotated to any basis element. This rotation matrix will
depend on u, but once that is finished, we end up in the same case as previously analysed,
but with only one equation on the p(k, l) instead of 3. As a result, for a fixed u the number
of dimensions of our space of symmetries goes up to 32.

4.4 Beyond

Given this setup and the fact that there are no a priori uses of the existence of inverses, it is
quite tempting to see how much of this theory extends beyond the octonions. Unfortunately
it is not to be. The most important two failures that mark this as an endpoint for us are
the following. The lack of homogeneity, as mentioned in chapter 2.5.6, means we can no
longer reduce the parameter space of deformations to a simple enough form to be analysed.
Even if one were to just postulate an R-matrix of a similar form as in equation 4.24, in
order to pass to noncommutative tori or spheres we require that the norm is central. We ran
computer-based calculations to check if x1 commutes with

∑15
0 (yk)2 in the algebra with

R-matrix:

(4.42) Rλα
βµ = i (J−

1,S)
λ
µ (J

−
8,S)

α
β

Where J−
8,S is once again defined by J−

8,S y
n = −F (n, 8)yn⊕8. This specificR-matrix gives

a perfect failure on lemma 2.5.1, which we use to prove that the terms not proportional to
xa disappear, and the computer verifies that these terms do not disappear. The matrix still
obeys the Hadamard property, and the tests we ran seem to indicate that equation 4.14 is
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still satisfied for the sedenions, although we have not attempted to prove this.

4.5 Concrete form

In this section, we will go back to the explicit (complex) matrix form of the equations.
This section is split off for a reason, namely that this method invites a different way to
generalise, which turns out to not be equivalent. We have not been able as of yet to find a
satisfying unification. For this reason, the two approaches are split off to avoid confusing
results of one with the other. This explicit method also fixes the norm and can therefore
generate all the corresponding spaces, we will not repeat these constructions. The most
explicit difference however will be visible in the parameter space classifying the tori and
spheres.

We start as with the complex equations 4.9 and the matrix 4.10, of which we will repeat
the reduced form:

(4.43) Rλα
βρ = u0 δλρ ⊗ δαβ + i(J−

1 )
λ
ρ ⊗ (u1J

−
1 + u2J

−
2 )

α
β

The idea of using complex coordinates to simplify the complex action seems natural
enough, so the most inviting next step is to try quaternionic combinations of the coordinate
functions. However, there are pitfalls. Our matrix R is acting on the algebra generators.
If our algebra of generators becomes H-valued, then even if the deformation parameter is
0 the generated algebra will be noncommutative and looking at it naively we generate a
fundamentally different algebra. Indeed, we already need to take a lot of care to ensure
we preserve the ∗-structure when we pass to the complex case, as we mentioned before in
section 4.1.2. We choose at this point to not consider taking H-linear combinations.

Instead, we will stick to complex coordinates, absorbing the naturally occurring param-
eter i into the complexified algebra. Let us begin with the quaternions. The commutation
relations 4.5 and 4.12 can be written by acting on the explicit complex generators:

(4.44) z0 = x0 + ix3, z1 = x1 + ix2 and w0 = y0 + iy3, w1 = y1 + iy2

As mentioned in section 4.1.2, it is not trivial to be able to reduce a real matrix to a complex
matrix of lower dimension; the pairs of variables chosen is one of the choices that allows
for this decomposition. As an example of how to derive the matrix, the explicit action of
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J−
2 on w0 is given by:

(4.45) J−
2 w

0 = J−
2 y

0 + iJ−
2 y

3 = −y2 + iy1 = iw1

Combining all the terms like this, and including the factor of i in R in the w-term we end
up at:

(4.46) zλwα = t wαzλ +

(
0 u

ū 0

)α

β

wβ

(
0 1

−1 0

)λ

µ

zµ

together with

(4.47) z∗λwα = t wαz∗λ +

(
0 u

ū 0

)α

β

wβ

(
0 1

−1 0

)λ

µ

z∗µ

These two equations have the same form, and indeed it is a quick check that J−
1 acts on

z0 and z1 in a way that is agnostic about the minus sign within the definition of z. It is
possible to derive the other two equations from this by enforcing the ∗-structure, again
taking care that the conjugate transpose of the matrix is not the correct ∗-structure in this
case. Rather, the ∗-structure is defined by requiring that the resulting polynomial algebra
itself is a ∗-algebra, i.e. by inverting the relations for specific values of λ and α to obtain
R̄, for example:

z0w0 = tw0z0 + uw1z1 → w∗0z∗0 = tz∗0w∗0 + ūz∗1w∗,1

z1w1 = tw1z1 − ūw0z0 → w∗1z∗1 = tz∗1w∗1 − uz∗0w∗,0(4.48)

And inverting this together with the w∗0z∗1 systems of equations yields:

(4.49) z∗λw∗α = t w∗αz∗λ −

(
0 ū

u 0

)α

β

w∗β

(
0 1

−1 0

)λ

µ

z∗µ
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And similarly:

(4.50) zλw∗α = t w∗αzλ −

(
0 ū

u 0

)α

β

w∗β

(
0 1

−1 0

)λ

µ

zµ

or equivalently one can derive these equations in a similar way as the first two.

In this case, as mentioned before, the parameters t and u obey t2 + ∥u∥2 = 1. We can
arrange them in a matrix:

(4.51) U =

(
t u

−ū t

)

which is unitary with unit determinant.

Passing on to the octonions, we will rather than start from 4.25 work by analogy, using
the doubling to our advantage. Let i, j, ij be the quaternion units once again. Then we will
define the complex coordinate functions to be:

z0 = x0 + x3ij, z3 = x1 + x2ij, z1 = x4 + x7ij, z2 = x5 + x6ij

w0 = y0 + y3ij, w3 = y1 + y2ij, w1 = y4 + y7ij, w2 = y5 + y6ij(4.52)

and their conjugates. We upgrade the R- matrix to:

zλwα = t wαzλ +


0 u

0 0 0

ū
0 0 0 0

0 0 0 u0

0 0 ū0 0


α

β

wβ


0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0


λ

µ

zµ

+


0 0 ū1 0

0 0 0 ū
1

u
1 0 0 0

0 u1 0 0


α

β

wβ


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0


λ

µ

zµ,(4.53)

This choice of R can be motivated by noticing that we need an extra matrix as in the
abstract case, where we upgraded the J−

1 -matrices to J−
1,O as well as requiring a second

term with J−
2,O. As before, the relations for z∗ and w∗ can be found in similar manners; the
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simplest way to find them is to show what transformations the parameters u undergo when
performing a conjugation on a single element. We can then test explicitly by hand and
computer that this R-matrix is unitary and preserves the norm. The matrix of parameters
also doubles to a matrix:

(4.54) U = t I4 +


0 u

0
ū
1 0

−ū0 0 0 ū
1

−u1 0 0 −u0

0 −u1 ū
0 0


Which is again unitary and has unit determinant, implying t2 + ∥x∥2 = 1.

We can compute the commutant of this R-matrix quite easily if we care about the
symmetries independant of the parameter u, as that involves computing the matrices that
commute with both parts of the sum simultaneously. The symmetries that may depend on
the parameter u are a lot more difficult to find; in this form it is not clear that a symmetry
argument holds and the two components might have cancellations. The parallel to equation
4.30 is:
(4.55)

N =


0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0




0 u0 0 0

ū
0 0 0 0

0 0 0 u
0

0 0 ū0 0

N


0 u0 0 0

ū
0 0 0 0

0 0 0 u
0

0 0 ū0 0




0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0


and
(4.56)

N =


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0




0 0 ū
1 0

0 0 0 ū
1

u
1 0 0 0

0 u1 0 0

N


0 0 ū

1 0

0 0 0 ū
1

u
1 0 0 0

0 u1 0 0




0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0


Where because of the independence of the parameter we can split the complex u matrices
into their real and imaginary parts, andN will have to commute with both. All the matrices
involved turn out to be diagonal, so their commutant is easily seen to be complex diagonal
matrices.

The exact connection with the abstract case remains under investigation.
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4.6 Further outlook
There are a few points which we view as potential continuations. Firstly, the 6-dimensional
symmetry of the octonion algebra is not necessarily small, but has little octonionic flavour
to it. We believe this is natural, as any algebra generated by two elements and their
commutation relations cannot be nonassociative. As a result, we would be interested in
finding if there is any clear way to go with triple products of the form:

R8

R8

R8×R

×S ×T

where we expect there to be three sets of commutation relations that obey some compati-
bility, and perhaps one needs to even consider an additional associator on products of three
elements. This data allows for too much freedom, so for the problem to be tractable we
will need a natural structure to present itself. Luckily there are some candidates; there
exists a triality on three 8-dimensional representations of Spin(8) which has strong con-
nections to the octonions [DM15][CS03]. We hope that this trio of representations could
somehow serve as a good model for the three copies of R8. There is another well-known
algebra that is strongly linked to a trio of octonion algebras: the off-diagonal elements of
the exceptional Jordan algebra. As of yet we do not have any idea on how to construct
the natural representations necessary to form the R-matrices, though it might be worth
investigating. Lastly, we would like to check any further connections with the monoidal
categorical setting discussed in the previous chapter.

Secondly, there are a few unfinished pieces that are worth considering further. For one,
I would like to extend the octonion cocycle calculus. It feels slightly redundant, as any
computer can easily prove large numbers of identities this particular 8 by 8 matrix obeys.
However, we believe that there is some merit in developing this calculus further anyway,
precisely because a priori there is a large redundancy of identities. By developing a calculus
one can make clear which properties are “essential” and which ones are “accidental”. Take
for example the computed Lie algebra of symmetries. There are many ways of interpreting
exactly what the meaning is of the sequences of ±1’s that make up the nontrivial parts,
but ultimately there are only 28/2 = 128 of these sequences up to sign. Having an explicit
formula in terms of associators would not necessarily speed up computations, but it would
provide a reason for why the symmetries are what they are.
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Another unfinished thread is the relation between the abstract and concrete forms. We
believe the abstract form to be in some sense more fundamental, but there is something to
be said for the simplicity of doubling that brings one to the concrete forms. Exploring the
relation between the two would be a natural task to finish.

Lastly, there is the obvious matter of wanting to learn more about the noncommutative
spaces involved. The concreteness of this formalism means the created spaces are in theory
good examples to test noncommutative geometric notions on. In particular, more than most
other spaces this way of creating spaces has a connection with quaternionic and complex
elements. Multiplication by complex or quaternionic scalars is a good way to construct
classical Hopf fibrations, so it is a natural thing to attempt similar constructions in this
setting. We will in fact look more at Hopf fibrations in specific in the next chapter.
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Chapter 5

Noncommutative Octonionic Hopf
Fibration

5.1 Introduction
The Hopf fibration1 has been a very early example of a nontrivial source of principal
bundles, and has been studied extensively for its role in homotopy among many other
things. For a good exploration of interpretations in low dimensions we refer to [Lyo03].

As principal bundles are a good source of noncommutative manifolds via twist deforma-
tion, this has been a rich source of noncommutative spheres, for an example see [BDZ04].
However, the octonionic Hopf fibration seems to resist: in the non-dual setting one has to
choose charts. In this section we record some attempts at dualising this construction.

Let us first record some basics: I will follow [DM15, ch.12] here. The Hopf fibrations
are the following fibrations:

S1 S3 S7 S15

S1 S2 S4 S8

S0 S1 S3 S7

Where the first three are principal with groups S0 ∼= Z2, S1 ∼= U(1), S3 ∼= SU(2) and the

1It seems to be either a coincidence or a matter of large numbers that Heinz Hopf has the algebra, the
algebraic extension and fibration named after him, and that they come together in this way. It does not seem
he ever thought of Hopf algebras as objects of symmetries.
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last one is in fact not a group as it is isomorphic to the unit octonions, which are of course
non-associative.

One way to describe the fibration is as follows. Consider an element

(5.1) v =

(
x

y

)
∈ K2

for K a real division algebra. We can see v as a vector of spherical coordinates if we require
that the norm v

∗
v = ∥x∥2 + ∥y∥2 = 1. We can also look at the opposite product given by:

(5.2) vv∗ =

(
∥x∥2 xy

∗

yx∗ ∥y∥2

)

This matrix is Hermitian by definition, and has trace is given by t = ∥x∥2 + ∥y∥2, which
is equal to 1 by assumption. The reduced diagonal u = 1

2
∥x∥2 − ∥y∥2 together with the

hypercomplex coordinate z = xy
∗ ∈ K together obey

(5.3) |z|2 + u2 = ∥x∥2∥y∥2 + 1

4
(∥x∥4 − 2∥x∥2∥y∥2 + ∥y∥4) = 1

and therefore form a parametrisation of Sn+1. Now, the information lost is clear: vv∗ is
invariant if we change v by a phase to vq, for q ∈ K, ∥q∥ = 1. However, there is one
problem with this statement: we need to be able to rebracket (vq)(q∗v∗). The trick is to use
the octonionic homogeneity. For any v, there is a unique z containing all the octonionic
information. Any algebra generated by two octonions is at most quaternionic, and therefore
has no issues with associativity. Therefore we can pick a “square root” of z, called w, such
that w is a complex vector embedded in O2, and we find ww∗ = vv

∗. Then the argument
goes by transitivity: as any v can be reached in this way we can do the computation in the
associative realm. The explicit choice of w is given by:

(5.4) w =

(
xy∗

∥y∥
∥y∥

)

unless y = 0. This is where a deviation from the quaternions lies: the fact that this
computation depends on the choice of a chart.

We will try to dualise this setup. The natural language to work in is the language of
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Hopf-Galois extensions, although there is one natural problem: there is no Hopf algebra
structure on S7. We will next repeat some of the results in [KM10], where they define a
Hopf quasigroup and a Hopf coquasigroup to deal with this specific case.

Definition 5.1.1. A Hopf quasigroup is a (possibly nonassociative) unital algebra H
equipped with algebra homomorphisms ∆ : H → H⊗H, ϵ : H → k forming a coassocia-
tive coalgebra and a map S : H → H such that

(5.5) m(id⊗m)(S⊗ id⊗ id)(∆⊗ id) = ϵ⊗ id = m(id⊗m)(id⊗S⊗ id)(∆⊗ id)

(5.6) m(m⊗ id)(id⊗S⊗ id)(id⊗∆) = id⊗ϵ = m(m⊗ id)(id⊗ id⊗S)(id⊗∆)

Definition 5.1.2. A Hopf coquasigroup is a unital associative algebra H equipped with
counital algebra homomorphisms∆ : H → H⊗H, ϵ : k → H, and linear mapS : H → H
such that

(5.7) (m⊗ id)(S⊗ id⊗ id)(id⊗∆)∆ = 1⊗ id = (m⊗ id)(id⊗S⊗ id)(id⊗∆)∆

(5.8) (id⊗m)(id⊗S⊗ id)(∆⊗ id)∆ = id⊗1 = (id⊗m)(id⊗ id⊗S)(∆⊗ id)∆

The intuition here is as follows: In the quasigroup case, we yield associativity, except
in the special case where we need a term of the form x

−1(xy), in which case it is permitted
to “let x in”. Without that permission the notion of inverse becomes murky, so this is
necessary, and it captures the most powerful aspect of the octonions. For the coquasigroup
definition all we do here is reverse the arrows. We would like to remind the reader that
Sweedler notation becomes tricky in non-coassociative settings, as there is no way in
general to simplify subscripts of subscripts. The point of these definitions comes from
[KM10, Prop 5.7], where they show that k[S2n−1] is a Hopf coquasigroup for all n, and
dually S7 is a quasigroup, CS7 is a Hopf quasigroup.

5.2 Vector fields on S7

The first attempt to establish a Hopf-Galois extension on S15 was done by instead consid-
ering the associative algebra of vector fields defined in [KM10, ch 6.1]. The vector fields
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are defined by

(5.9) ∂i =
∑
a

F (a, i)xa+i
∂

∂xa

Here we take both a and i to lie in (Z2)
3, and i is nonzero.

We will take these vector fields to be acting diagonally on S15 parametrised by xa, ya,
again with a in (Z2)

3, such that of course
∑

a x
2
a + y2a = 1. This means that we effectively

double the vector fields to:

(5.10)
∑
a

F (a, i)(xa+i
∂

∂xa
+ ya+i

∂

∂ya
)

We are interested in the invariant polynomials under this action, hoping that they square
to 1, forming another sphere. It is easy to verify that

∑
a x

2
a − y2a is in fact invariant under

all vector fields. The only way for this set of polynomials to square to 1 is to use the
one relation we have, which is

∑
a x

2
a + y

2
a = 1. The first possible solution is to find

polynomials pa such that:

(5.11) (
∑
a

x2a − y2a)
2 +

∑
b

p2b = (
∑
a

x2a + y2a)
2 = 1

From this we can deduce that our polynomials are all quadratic, and by the difference of
squares we get that

∑
b p

2
b = 4(

∑
a x

2
a)(
∑

b y
2
b ). This relation is the Degen eight-square

identity. Hence we would like to see if we can get invariant polynomials that solve this
equation.

By Hurwitz’s theorem there is no 16-square identity for polynomials2, which tells us
that if there is a way to find these invariant polynomials, it must break down after the
octonions.

The Degen polynomials, when the variables are indexed by (Z2)
3 rather than {0...7},

have the property that the indices of the terms of a given pb all add up to the same element.
The reason for this is their connection to the octonions: the polynomials are given by a
twisted coproduct on the basis elements of CZ 3

2 , which will become relevant later. It is

2As mentioned in chapter 2.5.6, there are identities for rational functions. I have not been able to find a
use for them here.
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possible to write all the polynomials as follows:

(5.12) pb =
∑

α+β=b

F (bα, bβ) xbαybβ =
∑

F (b(1), b(2))xb(1) ⊗ xb(2)

The property of being like a coproduct turns out to be necessary for canceling out under
the action by the vector fields as we see later. The fact that the coefficients are the same F
as the cocycle for octonions is important for the sum squaring to one.

Each individual term in the derivations has the effect of sending xa to xa+i, effectively
performing a translation on the index. Therefore when we act with ∂i on a term xayb, the
result will be sent to xa+iyb ± xayb+i, up to a sign. We want ∂ipc to be zero for all i, so
we need our terms to cancel. The preimage of xa+iyb under ∂i is given by xayb as well as
xa+iyb+i, as we live in (Z2)

3 where the characteristic is 2 so i+ i = 0. The same preimages
also occur for xayb+i. This means that in order for any polynomial containing the term
xayb to be sent to zero, that polynomial must contain xa+iyb+i for all i. This is a complete
closed orbit. Note that a + i + b + i = a + b for all i, which means that the sum of the
indices must be constant in each polynomial, which forces the coproduct-like behaviour
noted above.

For cancellation to actually happen, we need the following:

(5.13) ∂iσ(a, b)xayb = −∂iσ(a+ i, b+ i)xa+ixb+i

Where σ(a, b) is the coefficient of the term xayb in the polynomial. We make the following
ansatz:

(5.14) σ(a, b) = F (a, b)θ(a, b)

In the quaternionic case the polynomials have coefficients almost proportional to F , so that
is what the ansatz is based on. Note also the parallel with section 4.3.2. The quaternion
case shows one problem, which is that F is not totally antisymmetric off the diagonal
whereas the polynomials are, as F (0, i) = F (i, 0) = 1. The solution there turns out to
have θ(a, 0) = −1, θ(a, i) = 1.
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Plugging the ansatz into the cancellation equation we get:

F (a, i)F (a, b)θ(a, b)xa+iyb = −F (b+ i, i)F (a+ i, b+ i)θ(a+ i, b+ i)xa+iyb

F (b, i)F (a, b)θ(a, b)xayb+i = −F (a+ i, i)F (a+ i, b+ i)θ(a+ i, b+ i)xayb+i(5.15)

Using the fact that F 2 = 1, we can rearrange the F ’s in order to get an associativity
equation in both cases. Remember that the associator is defined by:

(5.16) ϕ(x, y, z) =
F (x, y)F (x+ y, z)

F (x, y + z)F (y, z)

Rearranging:

F (a, i)F (a+ i, b+ i)θ(a, b) = −F (b+ i, i)F (a, b)θ(a+ i, b+ i)(5.17)

ϕ(a, i, b+ i)
F (i, b+ i)

F (b+ i, i)
= −θ(a+ i, b+ i)

θ(a, b)
(5.18)

Similarly for the other equation:

F (b, i)F (a+ i, b+ i)θ(a, b) = −F (a+ i, i)F (a, b)θ(a+ i, b+ i)

ϕ(a+ i, i, b)
F (b, i)

F (i, b)
= − θ(a, b)

θ(a+ i, b+ i)
(5.19)

F is almost antisymmetric. A little care needs to be taken with F (a, a) = F (a, a) and
F (a, 0) = F (0, a) = 1. Also for the octonions, setting θ̂(a, 0) = −1, θ̂(a, i) = 1 solves
this problem. The special cases are b = 0 and b = i, as i = 0 is not allowed by assumption.
If b = 0, then:

(5.20)
θ̂(a+ i, b+ i)

θ̂(a, b)
=

1

−1

And if b = i:

(5.21)
θ̂(a+ i, b+ i)

θ̂(a, b)
=

−1

1

The converse is also true, if θ̂ = −1 then b = 0 or b = i. Hence if we make the new ansatz
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θ(a, b) = χ(a, b)θ̂(a, b), then the equations above simplify to:

ϕ(a, i, b+ i) =
χ(a+ i, b+ i)

χ(a, b)

ϕ(a+ i, i, b) =
χ(a, b)

χ(a+ i, b+ i)
(5.22)

As mentioned in chapter 2.5.5 the octonion associator ϕ(x, y, z) is 1 if x, y, z are linearly
dependent, and −1 otherwise. Hence here both associators are actually equal to ϕ(a, i, b).

To finish off the impossibility of the existence of quadratic polynomials annihilated by
this set of vector fields, we just need to show that:

(5.23) ϕ(a, i, b) ̸= χ(a, b)

χ(a+ i, b+ i)

for some χ. Consider the case a = i. Then the LHS is 1, so χ(i, b) = χ(0, i + b) for all
b, i, so χ only depends on the sum of its arguments. If χ only depends on the sum of its
arguments, then χ(a, b) = χ(a+i, b+i) and the associator ϕmust be trivial. Contradiction
follows if ϕ is nontrivial, and hence for the octonions this vector field does not annihilate
a polynomial algebra of spheres.

5.3 Quasi-Hopf-Galois extensions on tori

The next approach is by attempting to work with a weak notion of action. There exists a
notion of Hopf quasimodule, defined in [BJ12], where they only require an associativity
with the inverse element. In our case, the octonions are power-associative so this should
not be a problem and the requirement is very lenient. The ultimate goal is to find a notion
of Hopf-Galois extension for this context that is strong enough to work for the purposes of
[Asc+17], so we can define noncommutative spheres by putting a cocycle on A(S7). The
outline of how to do this is as follows: we view S15 in the context of the Hopf construction.
We will detail this more later, but the gist is that we decompose the sphere S15 into an
interval of higher tori S7 × [0, 1]× S7, and quotient this at the endpoints. The first step is
then to understand this quasi-action on the tori, and later we can patch it up.

For our algebra, we would like to act on O⊕O, which creates the problem that a priori,
by acting with g on v = (x, y) as (gx, gy), there are two different associators involved
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when checking the action condition g ▷ (h ▷ (x, y)) ∼= (gh) ▷ (x, y). This is what prevented
us from showing (vv∗) was invariant. The idea to fix this is to use the division algebra
structure of O and rewrite this action in a way that is equivalent for all algebras that are not
O, namely as:

(5.24) g ▷ (x, y) = (gx, (gx)(x−1y))

This way of defining the action yields the same associator on both elements when repeated,
and hence intuitively it should cancel out when squaring. There is one downside to this
approach: it is not defined at x = 0. Let us first work in a chart where x ̸= 0, and address
that possibility later when we return to the Hopf construction. To aid us in dualising things
later and to remove any dependency on Sweedler notation in noncoassociative contexts, we
will convert this calculation into the language of string diagrams, as we defined in 2.4.4.

To draw the string diagram, we need to have a way of splitting x into three parts, as the
same x appears three times in the equation. This is naturally done with a coproduct, but
we have no natural coproduct on a general nonzero octonion; we have an already defined
coproduct on S7 via the quasigroup structure. We will therefore proceed as follows: we
formulate the action of S7 on S7 × S7, and later glue all these copies of S7 × S7 together
with a technique called the Hopf construction. First, let us write equation 5.24 as a string
diagram:

S7 × S7

gx (gx)(x−1
y)

∆

m

g
S7

m

∆

x
S7

m

y
S7

S

× ×

Where we used that the comultiplication is grouplike. We would like to adjoin the
diagram:
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S7

x
−1
y

m

x y
S

S7 S7×

If we call the former diagram ▷ and the latter ϕ, then the composition of the diagrams
is given by the following diagram:

S7 × S7 × S7 S7 × S7 S7▷

ε⊗ id⊗ id

ϕ

If this diagram is a coequaliser, that is, the universal diagram such that all paths
commute, then S7 is the quotient of S7 × S7. Hence we would like to show using string
diagram methods that this holds. We need to use the first of the Hopf quasigroup axioms
in equation 5.5, which in diagrammatic form reads:

m

m

S

∆

= ε
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Combining the three diagrams into one calculation, we get:

∆

m

m

∆

m
S

m
S

=

m
S
m

ε

∆

= ε

S
m

For the last equality we used that ε is an algebra morphism. This establishes the fact
that this “action” has a candidate coequaliser map ϕ going to S7, and hence these maps
give a fibration. To show that this map truly defines the coequaliser one needs to show it is
universal. The naturality of its definition gives an indication of this. We will omit a proof
as in the dual setting this requirement is implied by the Hopf-Galois condition, which we
will talk about later.

The reason why we went through the effort of phrasing these maps into all in these
diagrams is because if we want to do the same in the dual setting of algebras, we can
now just invert all the diagrams. As everything is defined dually, these computations look
exactly the same. The same maps define a quasicoaction by the Hopf coquasigroup k[S7],
the coaction composed with antipode on k[S7] defines the candidate equaliser of this map.
This explains why in the previous section the invariant polynomials looked like a coproduct:
the algebra of coproducts is coinvariant under this quasicoaction. The dual diagrams are
given by:
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A(S7)⊗A(S7)

qp

m

∆

p(2)(2)q(2)

A(S7)

∆

m

S(p(1)(2))p(2)(1)q(1)

A(S7)

∆

p(1)(1)

A(S7)

S

⊗⊗

and for the candidate equaliser:

A(S7)

p

∆

S(p(1))p(2)

S

A(S7)A(S7) ⊗

Here we explicitly see a reason for the existence of Degen polynomials solving the eight-
square identity: the coinvariants of the coaction given by this slightly more complicated co-
multiplication are given exactly by the polynomials generated by

∑
k F (j, j)F (k⊕j, j)xk⊕jxj ,

which are the polynomials that appear in that identity.
We want to establish a notion of Hopf-Galoisness, to show that this construction is

equivalent to some notion of principal bundle for quasigroups. Ultimately, the goal is
to lift this to the entire sphere using a Hopf construction, and then to use the results of
[Asc+17] to establish that any deformation of the Hopf quasigroup A(S7) can be used
to obtain deformed noncommutative 15-spheres. We are going to start by requiring the
standard condition for Hopf-Galoisness, requiring the canonical map to be bijective. The
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canonical map is still well-defined in the Hopf quasigroup case, and so the question of
whether it is bijective is well-posed. Let us recall that the canonical map is given by:

can = (mA(S7⊗S7)⊗ id)(id⊗δ) : A(S7⊗S7) ⊗
A(S7)

A(S7⊗S7) → A(S7⊗S7)⊗A(S7)

(5.25)

can(a⊗a′) = (a · a′(0))⊗ a(1)

Where the underline once again indicates that the algebra is thought of as a module rather
than a Hopf algebra. The tensor over A(S7) means that the specific embedding of A(S7)

given by the equaliser in both algebra halves can be mapped over the tensor product; that is,
for a polynomial of the form

∑
p⊗q ⊗

A(S7)
r⊗s, any factor of

∑
p⊗q that contains a Degen

polynomial can be transferred over the tensor product to multiply r⊗s instead.
Let us fill our choice of coaction into this equation. Diagrammatically, the canonical

map is given by the following:

A(S7) A(S7) A(S7) A(S7)
p q r s

pr11 qS(r12)r21s1 r22s2

S

A(S7) A(S7) A(S7)

Where we left out the symbols indicating multiplication and comultiplication as they
are clear. We need to show that this map is in fact bijective, reminding ourselves that this
map is not necessarily an algebra map, which means we have to check on any polynomial
rather than just generators. As a quick remark, notice how we are working in a polynomial
algebra and hence our multiplication is commutative and associative for now.

The proof of Hopf-Galoisness is unfortunately not quite complete with all the details,
so we will provide just a sketch below.
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We notice that by acting with the counit on any pair of the generators, we can recover
the third: this way we obtain the products pr, qS(r1)r2s = qs and rs. For surjectivity, we
want to show that one can invert this map to obtain any individual p, q, r, s up to factors
of a1⊗S(a2) which may be transferred between p⊗q and r⊗s. Intuitively, this is correct:
in the pairs pr, qs and rs we see that if we can scale p by a factor a, q by a−1, r by a−1

and s by a, then these products are invariant, and this is exactly the porting around of a
factor of a⊗a−1, and additionally, it should be clear that this is the only degree of freedom
available as providing for example p/r fixes everything else. However, there is a caveat:
we need to have access to any a to port around, and it is not true that all these polynomials
a can be written as a component b1 of a coproduct of some polynomial b. Take for a
counterexample the polynomial x; there is no way to multiply it to a multiple of x2 + y

2.
The idea to establish surjectivity is then as follows: If we could factor polynomials, we
are done, as we can find the greatest common divisor between any two products and so
retrieve the polynomials. In other words, the obstruction to our factorisation comes from
these invertible polynomial tensor products. Hence the only thing left to prove is that a
tensor product of polynomials multiplies to one if and only if it appears in a coproduct of
the Degen kind. The if is clear, the only if not so much.

As for injectivity, for Hopf-Galois extensions it was shown in [Sch90] that it is enough
to show that A(S7 × S7) is an injective A(S7)-module to establish that it is Hopf-Galois.
Now, we need to add the word ‘quasi’ to Hopf-Galois, which makes it a little less obvious,
and this is another gap we need to fill in.

5.4 Hopf construction

The remaining piece before we can claim we have fixed the Hopf fibration on S15 is to
assemble this fibration of products of spheres S7 × S7 into the 15-sphere. There is a
topological construction, named the Hopf construction that classically does this. This
construction says that given a map from topological spaces:

(5.26) f : X × Y → Z

there exists a lift to

(5.27) f̂ : X ∗ Y → ΣZ
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where A ∗B is the join, given by:

(5.28) X ∗ Y = (X × I × Y )⧸∼

where I is the unit interval [0, 1] and ∼ is an equivalence relation given by:

(5.29) (x, 0, y1) ∼ (x, 0, y2) , (x1, 1, y) ∼ (x2, 1, y)

Signifying a contraction of the spheres at the respective endpoints. The suspension ΣZ is
similarly given by a quotient:

(5.30) ΣZ = (Z × I)⧸∼ for (x1, 0) ∼ (x2, 0) , (x1, 1) ∼ (x2, 1)

Similarly pinching at the endpoints. The reason we are interested in this construction is
because we have the exact case of f : S7 × S7 → S7, and we would like to lift it to the
sphere. We also have the problem of only being defined at one of the endpoints, which this
construction singles out for us. We can define similar diagrams for the action defined by:

(5.31) g ▷′ (x, y) = (((x∗)(y∗)−1)((y∗)g∗), y∗g∗)∗ = ((gy)(y−1x), gy)

Then in order to do the Hopf construction, one needs to glue these two functions together
into one function defined everywhere. This gluing procedure is well-defined classically,
but to write it down in a way that is dualisable is not trivial. This is the current state
of affairs. There is a paper [DHH14] in which the authors detail a noncommutative join
construction. This is done in the C∗-algebraic realm, and it is not trivial to find a good
algebraic equivalent toC∞([0, 1]). Similarly, the classical join construction is usually done
in the category of topological spaces, not the category of algebraic varieties. There are
methods we are considering, like using functions that pinch away the endpoints in a similar
way to how one can define a circle by the algebra:

(5.32) ⟨Xn, Y : Y 2 = 1−X2⟩

Viewing the X-coordinate as the important one and the Y -coordinate as order 2 with an
extra cocycle.

The most natural attempt is by using the extra variable as a parameter rather than a
coordinate function. We include the parameter t as parametrising the radius squared of the
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sphereX and 1−t for Y , and this stays that way when dualising. While this creates a rather
natural-looking construction, the break between coordinate functions and parameters for
the dual of t is a bit troubling. One could replace t by ∥X∥2 − ∥Y ∥2, but then the matter
returns of how to use this element to parametrise the coinvariants.
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Appendices

A.1 Non-strict monoidal category relations
The pentagon and hexagon relations for monoidal categories with associator ϕ and braiding
R are given by the following diagrams:

(a⊗b)⊗(c⊗d)

((a⊗b)⊗c)⊗d a⊗(b⊗(c⊗d))

(a⊗(b⊗c))⊗d a⊗((b⊗c)⊗d)

ϕa,b,c⊗dϕa⊗b,c,d

ϕa,b,c⊗ idd

ϕa,b⊗c,d

ida ⊗ϕb,c,d

(x⊗y)⊗z x⊗(y⊗z) (y⊗z)⊗x

(y⊗x)⊗z y⊗(x⊗z) y⊗(z⊗x)

Rx,y⊗ id

ϕx,y,z Rx,y⊗z

ϕy,z,x

ϕy,x,z id⊗Rx,z
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A.2 Explicit matrices

The octonionic J-matrices used explicitly are given by:

J−
1,O =



0 1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 −1

0 0 0 0 0 0 1 0



J−
2,O =



0 0 1 0 0 0 0 0

0 0 0 −1 0 0 0 0

−1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 −1 0 0 0

0 0 0 0 0 −1 0 0



J−
3,O =



0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 −1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 −1 0

0 0 0 0 0 1 0 0

0 0 0 0 −1 0 0 0


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J−
4,O =



0 0 0 0 1 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 −1

−1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0


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