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Introduction

Dubrovin-Frobenius manifolds were invented by Boris Dubrovin to geometrize the study of
certain 2D Topological Field Theories ([11],[12]). The primary free energy F' of a family of
such theories satisfies the so called W DV'V equations. Given a quasi-homogeneous solution
to these equations one constructs a Dubrovin-Frobenius manifold structure on the domain
of definition M of the solution.

The first condition a Dubrovin-Frobenius manifold must satisfy is that the tangent
sheaf Tys carries Ops-bilinear multiplication o: Tyy X Ty — Tar, this multiplication is
required to be unital, associative and commutative. The multiplication is required to
satisfy an integrability condition (equation 1.1.1); a manifold satisfying this conditions is
called an F-manifold. This integrability condition ensures that, the decomposition of each
tangent space 1, M into irreducible subalgebras extends to a local decomposition of M into
irreducible F-manifolds. Next up in the definition comes the Euler vector field E, a global
vector field required to satisfy Lgo = o. Lastly one requires the existence of a flat metric
7 compatible with the multiplication in the sense that for any vector fields u, v, w one has
n(uov,w) = n(u,vow) and such that Lgn = (2 — d)n for some complex number d called
the charge of the Dubrovin-Frobenius manifold.

As vector spaces, each tangent space T),M of a manifold is isomorphic to C", on a
Dubrovin-Frobenius manifold each tangent space is a C-algebra and as such it is no longer
necessarily isomorphic to C". If as algebras T, M = C™ then the point p is called semisimple.
In this case there exists a neighborhood V' of p such that all points in V' are semisimple; in
V there exists n-linearly independent vector fields 7; such that m; om; = 6;;7;, these vectors
are called orthogonal idempotents. The points which are not semisimple form an hypersur-
face K (which can be empty) called the caustic. It is the purpose of this work to study
the structure of a Dubrovin-Frobenius manifold in a neighborhood of a non-semisimple
point p € K. In particular we are interested in the restriction to the caustic of a family of
differential equations associated to the Dubrovin-Frobenius manifold.

Let us briefly recall some sources of examples of Dubrovin-Frobenius manifolds. We
start by some Dubrovin-Frobenius manifolds coming from isolated hypersurface singulari-
ties. Historically these where of the first examples where the Dubrovin-Frobenius manifold
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8 INTRODUCTION

was found but was not yet called that way (see [17], [18] and [19]). In these manifolds the
multiplication is easy to define but the flat metric 5 is more involved. These examples are
also useful for this work because the caustic is always non-empty.

Let f: (C"*1,0) — (C,0) be the germ of a holomorphic function and suppose that df|o = 0.
Then the origin is said to be a singularity of f. If df|p # 0 then at least one of the partial
derivatives % does not vanish at x = 0 and as such, it is invertible in the local ring
C{xo,...,zn}. Hence the C-algebra C{xy,...,z,} modulo the ideal

g.— (9L  9f
P =\ Oz O

is the zero ring and as such has dimension zero. If the origin is a singularity of f then
this is no longer the case and the dimension p of the algebra Ag = C{x}/Js is called the
Milnor number of f. We can choose representatives a;(z) € C{z},i = 1,...,u of a basis
of Ay and construct a new function F: (C**! x C#,0) — (C,0) by setting

m

F(z,t) := f(z) + Zak(m)tk.

k=1

This function is called a “semiuniversal unfolding” of f and using it one can construct a
Dubrovin-Frobenius manifold structure on (M,0) = (C#,0). To define the multiplication
one considers first the critical space (C,0) of the semiuniversal unfolding F' which is defined
by
d oF ‘
(C,0) :={(x,t) € (C* x M,O)|£(ac,t) =0,i=1,...,d}.
(2

Using the projection m¢: C' — M one gets an isomorphism Ty = (7¢)«Ocp via u +—
@(F)|(co) where @ € Tcaypo is any lift of u € Tarp. This isomorphism induces an
associative, commutative and unital multiplication o on 7370 and the inverse image of
F |(C70) under this isomorphism turns out to be an Euler vector field E for the multipli-
cation. The above construction makes (M,o,e, E') into an F-manifold with Euler vector
field. To get the metric one looks for another sheaf F with a non-degenerate bilinear
form and an isomorphism 7y = F. It turns out that this sheaf F is the pushforward
by the projection 7: (C"*! x M,0) — M of the sheaf of relative differentials of the map
@: (C"*! x M,0) — (C x M,0). Indeed, this sheaf is equipped with the Grothendieck
residue pairing and is a locally free Ops-module of rank pu = dimM. It turns out that it
is also a free (7¢).O¢ = Ty module of rank one. The choice of a generator induces an
isomorphism T3; = F. But in order that the induced metric is flat one needs to choose
special generators, these are the so called primitive forms (see [19]).

Another source of examples comes from the quantum cohomology of certain symplectic
manifolds X with H?*T1(X;C) = 0. In these examples the flat structure is easy to define,
the metric is just the Poincaré pairing in the ordinary cohomology ring of X and as such it is
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trivially flat. The multiplication is much more involved and to obtain it one must consider
the Gromov-Witten invariants of X. Using the Gromov-Witten invariants it is possible
to deform the cup-product of H*(X;C) and obtain an associative, commutative and uni-
tal multiplication. The first Chern class of X is an Fuler vector field for this multiplication.

As mentioned before we are interested in a family of differential equations associated to
any Dubrovin-Frobenius manifolds. Let us explain how this family is constructed and why
the monodromy data of this family are so important for the Dubrovin-Frobenius manifold.
By definition, the Levi-Civita connection V of the metric 77 of a Dubrovin-Frobenius mani-
fold is flat. Flatness of V, the associativity and commutativity of the multiplication o and
a potentiality condition on o (see section 2.2) allows us to define a 1-parameter family of
flat connections

V2:=V+4+z0, zeC

on the tangent sheaf Tj;.

Furthermore, the conformal condition Lgn = (2 — d)n implies that the endomorphism

of Ty given by
2—d
= Tld —VE

is 1 antisymmetric. Let mp7: P! x M — M denote the projection. Using the endomorphism
1 and multiplication by the Euler vector field F, one can extend the 1-parameter family
of connections VZ# to a flat connection V on the vector bundle Ty T over P! x M. The
covariant derivatives in the direction of vectors tangent to M are the same as the covariant
derivatives of V*. If z is a global coordinate on C then the covariant derivative in the
direction of 9, is given by 5
_ v

Vo, v = 5

Once again the potentiality and the condition £zo = o ensures that V is a flat connection.

1
+ FEov— —puw.
z

When looking for flat sections of V we need to solve the overdetermined system of
partial differential equations
Vo = 0.

While doing this we can start by solving the differential equation on the z-variable. This
ordinary differential equation reads

% _ (i“ _ Eo) % (%)

In this way every Dubrovin-Frobenius manifold parametrizes a family of meromorphic or-
dinary differential equations on P'. All members of this family have a regular singularity
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at z = 0 and a Poincaré rank one singularity at z = oo.

Let us describe the monodromy data one associates to such differential equation. At
the regular singularity z = 0 one can find a local holomorphic Gauge transformation taking
the differential equation (x) to its “normal form” (see section 4.1). Then one is able to
write explicitly a fundamental matrix solution Y7, in Levelt form in a neighborhood of
z = 0. The monodromy transformation takes the form

Yiew(2) = Yiew(e¥™2) = Yiep(2)e?™He? ™R

and is completely determined by the matrices p and R. This two matrices are called the
monodromy data at z = 0.

In general, at the irregular singularity z = co one can only find a formal Gauge trans-
formation which takes the differential equation (%) to its “normal form” (see section 4.2).
Using this one can write a formal fundamental matrix solution Yz and as before compute
a formal monodromy

Yi(2) = Ye(e¥™2) = Yi(2)e? 5.

The matrix B is called the exponent of formal monodromy and is part of the monodromy
data at z = co.

Since the solutions obtained by the formal procedure are in general not convergent, one
can ask if they in some sense approximate actual holomorphic solutions. This is indeed the
case and using a result from Sibuya one can get holomorphic fundamental matrix solutions
Y,,v € Z such that the asymptotic expansion of Y, as z — oo in certain sectors S, is
precisely the formal fundamental matrix solution Y. As we leave the sector S, and enter
the next sector S,41, the asymptotic expansion of Y, will no longer be given by Yr. But
on the overlap S, N S, 11 the two solutions will be related by a Stokes matriz S, defined
by the relation:

Y1 = Y, S,
The Stokes matrices are also part of the monodromy data at z = oco.
Finally the solutions Y7, and Yy will be related by a central connection matrix
YLev = }/OC

The matrices u, R, B, .S,,C are called the monodromy data of the Dubrovin-Frobenius
manifold M. In the works [11] and [12] Dubrovin showed that on a sufficiently small neigh-
borhood W of a semisimple point p € M such that the eigenvalues of the endomorphism

Eyo: T,M — T,M
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are distinct; the monodromy data are constant and moreover, starting from the monodromy
data one can reconstruct the structure of a Dubrovin-Frobenius manifold on the neighbor-
hood W.

Recently on [7] Cotti, Dubrovin and Guzzetti extended this result to a small neighbor-
hood W of a semisimple point p but without any restrictions on the eigenvalues of the
endomorphism Ej,o. Their result is based on the extension of the theory of isomonodromy
deformations when the eigenvaluse at the irregular singularity coalesce [6], but the multi-
plication remains semisimple in a neighbourhood of the coalescence locus.

After the extension result by Cotti, Dubrovin and Guzzetti, two problems remained
open. The first one is to extend the isomonodromy deformation theory at a locus where
the eigenvalues of Fo coalesce and the multiplication is no longer semisimple. That is,
extend the theory of isomonodromic deformations to the caustic. The second problem,
which is even more difficult, is to describe in a neighbourhood of a point belonging to the
caustic the transition between semisimple points of this neigbourhood and points of the
caustic. In this thesis, we make use of the geometry of a Dubrovin-Frobenius manifold to
obtain insight and possible solutions to these problems.

Main results: The most important results of this work are theorem 4.3.2 and proposi-
tion 6.1.2. The first of these theorems says that under some assumptions, after restricting
the family (%) to certain submanifolds L C K of the caustic, one is able to find isomon-
odromic fundamental matrix solutions of equation (x). The reason why we restrict ourselves
to this submanifolds is because the Jordan form of the endomorphism FEo changes as we
approach the caustic. As a consequence, the fundamental matrix solutions computed out-
side the caustic become singular at the caustic. Proposition 6.1.2 says that after a suitable
renoramlization some of the columns of the formal fundamental matrix solution outside
the caustic have a well defined limit at the caustic and moreover, these columns coincide
with some of the columns of the formal fundamental matrix computed inside the caustic.

It is worth mentioning that while this work was under development, the theory of
isomondromic deformations of differential equations of the same type as (x) was stablished
independently by Guzzetti in [13]. Basicaly what it is shown in this work is that, under
some assumptions, by the restricting equation (%) to certain submanifolds of a Dubrovin-
Frobenius manifold, the hypothesis of [13] are realized.

The reason to start searching for isomonodromic fundamental matrix solutions of equa-
tion (%) restricted to certain submanifolds L C K is that, in a really over simplistic way,
one could say that the fact of the monodromy data are constant depends only on two facts

1. Being able to define a “normal form” near the singular points of the differential
equation (x) and compute the monodromy data of the corresponding solutions. In
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order to be able to compute the monodromy data for an open set W C M this
“normal” form should vary holomorphically as we move in W.

2. In order to get isomonodromic fundamental matrix solutions of differential equation
(%), one exploits the fact that our differential equation is part of an over determined
system of integrable partial differential equations.

More concretely, we will show that under some assumptions the restriction of the family
of differential equations (%) to certain submanifolds of the caustic is isomonodromic. For
our purpose, of the two steps mentioned above, only the first step represents a problem.
Indeed, flatness of the connection V doesn’t depend on a point p € M being semisimple
whereas the “normal form” of the differential equation (x) does depend on the point p
being semisimple or not. In our case the “normal form” will depend on the Jordan form
of the endomorphism FEo. Let us try to explain why the normal form will change at a
non-semisimple point.

On a neighborhood of a semisimple point there exists m-linearly independent vector

fields my,...,mn. We can write any other vector field as v = vimy + -+ + vy T,. Thus
we immediately obtain v o m; = v;m;. As such, all the operators vo are diagonalizable in a
neighborhood of a semisimple point.
The set of non-semisimple points, the caustic, is an hypersurface K or the empty set
(proposition 1.1.4). At a point p € K the endomorphism vyo might or might not be di-
agonalizable. In any case, since any neighborhood of p intersects the semisimple loci; the
basis that diagonalizes vo outside the caustic cannot be extended to the basis that puts vo
in Jordan form inside the caustic. Indeed, outside the caustic the idempotents are a basis
of eigenvectors and by definition this vectors no longer exist on the caustic.

To get around this problem first we describe some multiplication invariant submanifolds
L C K (proposition 1.2.1). Along this submanifolds it is easy to describe the vector fields
v such that vo is diagonalizable along L; the endomorphism vo will be diagonalizable along
L if and only if v is tangent to L (proposition 1.2.2). This brings us to the first assumption
we will use throughout this work.

Assumption 1: The Euler vector field is tangent to the multiplication invariant sub-
manifolds L described in proposition 1.2.1.

By restricting ourselves to the submanifolds L we will almost get our desired “nor-
mal form”. Note that on the semisimple case, thanks to the compatibility of the metric
and the multiplication, the idempotents are orthogonal. Since the endomorphism Fo is
n-symmetric and p is p-antisymmetric, a convenient basis for writing the differential equa-
tion (%) is the basis consisting of the normalized orthogonal idempotents. In our case we
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make the following assumption.

Assumption 2: The restriction of the metric  to the multiplication invariant sub-
manifolds is non-degenerate.

A word of comment is due; on the complex numbers any symmetric bilinear form 7
has null-vectors (i.e. vectors v such that n(v,v) = 0). Hence, even if n is non-degenerate,
the restriction of n to some subspaces might be degenerate and thus the reason for the
assumption we make. What we really want is that the normal space of the submanifolds
L is transversal to their tangent space.

With assumptions 1 and 2 one is able to get nice “normal forms” of the differential
equation (%) restricted to L and compute monodromy data for the corresponding funda-
mental matrix solutions. In order to get isomonodromic fundamental matrix solutions we
will need to make another assumption which is probably best to leave for later, let us
just mention that it is related with the exponent of formal monodromy B. We might just
add that, if at the caustic we only loose one idempotent then this third assumption is
not needed, it is always satisfied. The reason for this is that in this case the exponent of
formal monodromy totally determines the underlying F-manifold structure of M in a small
neighborhood of p € K, and vice versa.

Let us at least explain how does the structure of the underlying structure of F-manifold
appears in the exponent of formal monodromy B. We will use two deep results by Hertling
that can be found in [14]. First is the fact that (see [14] theorem 2.11 or theorem 1.1.1 of
this work) if at p € M the tangent space decomposes as

l

T,M = (T, M)
k=1

where each piece (1), M)y, is an irreducible C-algebra then the germ (M, p) of the F-manifold
M at p decomposes as
(Map) = Héc:l(Mkap)

where each (M, p) is an irreducible F-manifold.
If at the caustic K we only loose one idempotent then, since the only irreducible 2-
dimensional algebra is C[z]/2?, for p € K we will have

T,M = C[2]/(z*) @ C™ 2.
Correspondingly, the germ of M at p will decompose as

(M,p) =2 F? x I 2 A,
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where F? is the germ of a two-dimensional F-manifolds and A; is the only germ of a
one-dimensional F-manifold. In this case the caustic will be a multiplication invariant
submanifold and the multiplication will be generically semisimple, we will often refer to
this case as the semisimple caustic case. Now we use the second result by Hertling which is
a classification of the germs of two-dimensional F-manifolds ([14] theorem 4.7). Essentially
it says that they are classified by a natural number n € N9 (see example 1.1.5). In this
case, all the entries of the exponent of formal monodromy B will be zero except two of
them which will be (theorem 5.1.2)
n—2

—

+1

In the semisimple case all the entries of the exponent of formal monodromy are zero.
Correspondingly the two dimensional germ of F-manifold appearing in the decomposition
of M will be I5(2) which is isomorphic two A; x A;. Note that the above formula still
works in this case. Therefore, on the semisimple case and on the semisimple caustic case
the exponent of formal monodromy “knows” the underlying structure of F-manifold. We
expect that this is still true when we loose more idempotents when arriving at the caustic.
To study this it would be useful to have a classification of irreducible germs of F-manifolds,
but already on dimension 3 the classification is vast, recent and still incomplete (see [3]).

Let us describe the organization of this work. In chapter 1 we start studying F-
manifolds. The most important results are proposition 1.1.1 and theorem 1.1.1. The
proposition states that the product of two F-manifolds is again an F-manifold. The the-
orem says that the decomposition of T}, M into irreducible algebras gives a local decompo-
sition of M into a product irreducible F-manifolds. Both of these results aren’t new and
can be found on [14]. Of crucial importance for this work are propositions 1.2.1 and 1.2.2.
The first of these propositions describes certain multiplication invariant submanifolds L to
which we will restrict when studying the monodromy data of the differential equation (x).
Proposition 1.2.2 says that the endomorphism v,0: T,M — T,M for p € L is diagonaliz-
able if and only if v, € T,,L < T,,M. This proposition is the reason for assumption 1.

In chapter 2 we start studying Dubrovin-Frobenius manifolds. The definition we give
is not the original one but it is convenient for the purpose of this work. Here we also show
that under assumptions 1 and 2, the multiplication invariant submanifolds of proposition
1.2.1, with the induced structures, satisfy all the axioms of a Dubrovin-Frobenius manifold
except for the flatness of the metric. On a three-dimensional Dubrovin-Frobenius mani-
fold with a semisimple caustic, the caustic is always a Dubrovin-Frobenius manifold. This
results were previously noted by Strachan [21] but we provide different and coordinate
independent proofs.

Section 2.2 shows that the definition we use always gives a Dubrovin-Frobenius manifold
as were defined by Dubrovin. At the end of the chapter we introduce the most important
object of this work, the deformed connection V. It is also shown that this connection is
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flat. Nothing from this chapter is new and all of its contents can be found in [11],[12] and
[14].

In chapter 3 the real work of this thesis begins. Here, under assumptions 1 and 2, we
study the deformed connection when pulled back to the multiplication invariant submani-
folds L of proposition 1.2.1. To the best of our knowledge this was only done previously on
a neighborhood of a semisimple point. In this case assumptions 1 and 2 are always satis-
fied. Under assumptions 1 and 2 the connection V when restricted to L satisfies analogous
properties to that of V in the semisimple case (see equations (3.1.1), (3.1.2) and (3.2.2)).
In the semisimple case, using the endomorphism p one can recover the connection matrices
of the Levi-Civita connection of the metric n (equation (3.1.2)). On a point of the caustic
we cannot do this anymore because the kernel of adg, are no longer only the diagonal
matrices. In spite of this, the parts of the Levi-Civita connection that we cannot recover
from p give new flat connections 7 o V on certain subbundles over L which are determined
by the irreducible algebra decomposition of T, M with p € L. This facts are established in
propositions 3.2.1, 3.2.2 and theorem 3.2.1. Some other properties of the flat connections
m, o V, analogous to the properties of V, are summarized in propositions 3.2.3 and 3.2.4.
Finally on proposition 3.2.5 we use these new flat connections to get a basis from which
the desired “normal form” of the differential equation (x) will be computed.

Chapter 4 is a central one: we establish the isomonodromy deformation theory along
the multiplication invariant submanifolds L. We identify the relevant monodromy data,
the flat sections at infinity, and prove isomonodromy. We start by studying the monodromy
data at z = 0. It was previously known (see [11] and [12]) that these monodromy data
are constant in a neighborhood of any point p € M. For completeness we write a proof of
this fact (theorem 4.1.1). Then in section 4.2 we go on to study the monodromy data at
z = 0o. Here the results of the previous chapter become crucial. First we make our third
assumption, it concerns the diagonal blocks of the matrix V' of proposition 3.2.5.

Assumption 3: The eigenvalues by, of any diagonal block of the matrix V' of propo-
sition 3.2.5 don’t differ by a non-zero integer. That is by, — by, ¢ Z \ {0} for any
i,je{1,...,dim(T,M) }.

With this assumption we obtain a “normal form” for equation () from which we can
compute a formal solution Yr. Proposition 3.2.5 immediately implies that the exponent of
formal monodromy of this solution is constant. In theorems 4.2.2 and 4.3.1, assumption 3
will also allow us to show that the corresponding Stokes matrices and central connection
matrix are constant. Thus under assumptions 1,2 and 3 we get that the monodromy data
of the differential equation (x) are constant.

On chapter 5 we apply the previous results to the case of a semisimple caustic. In
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particular we show that assumption 3 is not needed in this case and we compute explicitly
the exponent of formal monodromy in terms of the irreducible F-manifold decomposition
(theorem 5.1.2). In section 5.2 we compute the monodromy data along the semisimple
caustic of a large class of three dimensional Dubrovin-Frobenius manifolds.

Having established the constancy of the monodromy data one natural question arises.

Question: How does the monodromy data for different multiplication invariant sub-
manifolds L, L are related? In particular, if L = L\ L is the (topological) boundary of L,
what can we say about solutions of equation (x) restricted to L as we approach L7

On chapter 6 we address this question and give a partial answer with proposition 6.1.2:
After an adequate Gauge transformation, the columns of the formal fundamental matrix
solution corresponding to blocks that don’t coalesce with other blocks as we move from L
to L remain holomorphic on L.



Chapter 1

F-Manifolds

In this chapter we start preparing for the definition of a Dubrovin-Frobenius manifold.
Every Dubrovin-Frobenius manifold underlies an F-manifold structure and this chapter is
dedicated to studying their basic properties. Much of this material can be found in [14].
The tangent sheaf T3 of any F-manifold carries a multiplication o. This multiplication
endows each tangent space T, M with the structure of a C-algebra. One of the most im-
portant results in F-manifold theory is that, the decomposition of T,,M into irreducible
algebras induces a local decomposition of M into “simpler” F-manifolds (theorem 1.1.1).
Most of the results known in Dubrovin Frobenius manifolds are done in neighborhoods
where the algebras T, M contain no nilpotents ([11],{12]). For points p in such neighbor-
hoods T,,M is a direct sum of 1-dimensional algebras and multiplication by any vector
vp o T, M — T,M is diagonalizable.

In this work we will assume that generically the multiplication has no nilpotents but,
we will mainly focus on neighborhoods of points p € M such that T}, M contains nilpotent
elements. In this case the set of nilpotent elements is an hypersurface K called the caustic
(proposition 1.1.4). Correspondingly, for a point p € K not all of the operators v,oT,M —
T,M will be diagonalizable.

On a neighborhood of a point p € K the Jordan form of the endomorphism vo: Tay — Tas
might change from diagonalizable to non-diagonalizable. Proposition 1.2.2 tells us which
endomorphisms vo remain diagonalizable when we arrive at the caustic.

But even if vo is still diagonalizable at p € K, the basis that diagonalizes it outside of K
cannot be extended to K. Hence the basis that diagonalizes vo outside of K is different from
the one that diagonalizes it inside K. For the purpose of the last chapter of this work, this
fact causes a lot of trouble and therefore we will restrict ourselves to certain multiplication
invariant submanifolds I. C K in which the basis that diagonalizes the operators vo does
not change as we move on L. This submanifolds are described in proposition 1.2.1.

17
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1.1 General Theory

Let M be a connected complex manifold of dimension m then, each point p of M has
a vector space associated to it, namely its tangent space 7, M. This collection of vector
spaces parametrized by the points of M varies holomorphically and; on any open set
U, multiplication by any local holomorphic function f € Oy (U) by a local vector field
v € Ty(U) :=T(U,TM) is Op(U)-bilinear. One of the crucial ingredients is that on an
F-manifold the tangent spaces carry a multiplication o: Ty x Tay — Tar (the notation
means that we have such a map for any open set U C M), this multiplication is required
to be commutative, associative, with unit and Ops-bilinear. As such, each tangent space
becomes a commutative, associative, unital finite-dimensional algebra over C.

Just for being a vector space over C each tangent space T,M is isomorphic to C"; as
C-algebras this is no longer the case.

Example 1.1.1. Consider C? with its canonical basis eq, e, the formulas e; o ej = djje;
define a structure of a commutative, associative algebra over C (the unit is e = e;+e3). This
algebra is the direct sum of two copies of the the only one-dimensional C-algebra. Note that
this algebra doesn’t posses nilpotent elements. The algebra C[z]/(2?) is two-dimensional
but z is a nilpotent element. Hence these two algebras cannot be isomorphic. It can be
shown that up to isomorphism this is the only irreducible two-dimensional C-algebra.

On a complex manifold any local chart induces a basis of T, M for any p € M, hence
we obtain a vector space isomorphism 7,M = C". On an F-manifold we wish that the
decomposition of T, M into irreducible C-algebras (an algebra is irreducible if it is not
isomorphic to a direct sum of other two algebras) extends to a decomposition of the germ
(M, p) of M around p into “irreducible” F-manifolds (see proposition 1.1.1 and definition
1.1.3). This will be achieved with the following definition.

Definition 1.1.1. Let M be a complex manifold. Let o: Tps xTar — T be a commutative,
associative, unital and Oj;-bilinear multiplication on 7js. Denote by e € Ty (M) the global
vector field corresponding to the unit of the multiplication o. The triple (M, o, e) is called
an F-manifold if for any local vector fields u,v € Tp;(U) we have that

Lyov(0) =uo (L,0) 4+ vo (Ly0). (1.1.1)

Remark 1.1.1. Note that the expression
Luov(0)(w,2) —uo Ly(o)(w,z) —vo Ly(o)(w,z) (1.1.1)
is Ops-bilinear in its four arguments and hence it defines a tensor. Condition (1.1.1) is

equivalent to the vanishing of the above tensor and by Oj-bilinearity this only has to be
checked on a basis of Tyy.
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Example 1.1.2. Consider C with a local coordinate t. Define a multiplication by f(t)0; o
g(t)0r := f(t)g(t)0:. Then o f(t)0; = f(t)0; and so Iy is a unit for o. Condition (1.1.1) is
immediately true and thus we have defined a one dimensional F-manifold. We will denote
this F-manifold as A;

Example 1.1.3. Consider C? with local coordinates (t1,t2) and let n € N>g. Define a
multiplication by 0;, = e, 0,00, = t§728t1 and then extend linearly. A simple computation
shows that Ly, o = 0. With this we get

‘Catl 00ty (o) = £8t2o =e€o (‘CatQ o) + 0, 0 (‘Catl o).
To show that the above define an F-manifold we just need to show that
Etgf23t1 (0) =201, 0 ('Cat2 0)-

But (£t3728t1 (O))(atzv atz) = _2[t372at1 ’ atz]oatzv where as (EatQ O)(atw 6752) = 2[81‘/2’ tELiQatl]'
The remaining equalities are satisfied trivially. This two dimensional F-manifolds are de-

noted by I3(n) and correspond to the orbit spaces of the finite Coxeter groups Iz2(n) (see
[10]).

Fix a point p € M. The family of operators X,o: T,M — T,M with X,, € T,M is
commutative. Hence there is a common eigenspace decomposition T, M = @Zzl(TpM )k-

Lemma 1.1.1. Let (A, o,€) be a commutative, associative, unital C-algebra and let A =
22:1 Ay be the common eigenspace decomposition of all operators ao,a € A. Then each
Ay is a irreducible commutative, associative, unital C-algebra.

Proof. Since Ajo A; C Aj and Ajo A; C A; then A;0A; =0for i # j and A; 0 A; C A;.
This shows that ®;crA; is an ideal for any I C {1,...,1}. Hence A; =2 A/ ®j—1 ;2 A; is
a commutative associative and unital C-algebra. Reducibility of any A; would give a finer
eigenspace decomposition. ]

Remark 1.1.2. The proposition implies that each irreducible algebra A; has an identity
m € A; and e = 22:1 m;. The vectors 7; will be called idempotents.

Now we define another global vector field which will be of crucial importance in the
future.

Definition 1.1.2. Let (M,o,e) be an F-manifold. A vector field E will be called Euler
vector field if one has
Lg(o) =o. (1.1.2)

Example 1.1.4. In the A; F-manifold the vector field F := t0; is an Euler vector field.
Indeed,
(ACEO)(at, Ot) = —2[t8t,8t] =0y = 0y 0 0.
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For the F-manifolds I3(n) an Euler vector field is
0 N 3 0
o m ot

We have [E,0;,] = =0, and [E,9,,] = —29,, so

E=t—

(EEO)(atza atZ) = [Ea t§72at2] - 2[E7 8t2] © atz

nf

4
= E(%Li?)ah + t72172[E7 atl] + EatQ ° atQ = (277’ —4-—n+ 4) atl
= tg 28t1 = 8t2 ] at2.
Equation (1.1.2) for the pairs (94,0, ) and (0, 0:,) are easy to check.

As we mentioned before, condition (1.1.1) will allow us to decompose an F-manifold
into simpler F-manifolds. First we show that the product of two F-manifolds with Euler
vector fields is again an F-manifold with an Euler vector field.

Proposition 1.1.1. Let (M, 01, e1) and (Ms, 09, e2) be two F-manifolds. Then (M,o,e) =
(My x Ms, 01 @ og,e1 + e2) is an F-manifold. Moreover, if E1 and Eo are Euler vector
fields on My and My then E1 + Es is an Fuler vector field on M.

Proof. The fact that o is commutative, associative, Ojs-bilinear and that e is a unit is
immediate. We only need to check that condition (1.1.1) holds and that the vector field E
satisfies (1.1.2). Let p;: M — M, denote the projections. Recall that

Tv = Om ®0,, Py Tar, © On QO Py T,
Condition (1.1.1) is equivalent to
Luoy(0)(z 0y) —uo Ly(o)(z,y) —vo Lu(o)(,y) = 0.

This expression is Ops-linear in all of its arguments and therefore we only need to verify
it for vectors in p; ' Tar, U py ' Tar,. Take a,b € py*7Tar, U py 'Tar, and write them as
a = a1 +ag and b = by + by with a;,b; € p;ITMi. Since [a1,b2] = [ag2,b2] = 0 we get
[a,b] = [a1,b1] + [ag, ba]. For u,v,z,y € py  Tar, Upy  Tar, we have

ﬁuou(o)(x, y) = [ul 01 V1,1 ©1 yl] - [Ul o1 ’01,331] oYy —To [Ul o1 v1,y1]
[U2 02 V2, T2 02 y2] - [Uz 09 V2, xz] °cYy—xo [UQ 02 U2ay2]
But [p; " Tar, p; *Tar,) € p; 1T, and p; ' Tag, opj_lTMj =0 for i # j so we can write
ﬁuou(o)(x, y) = [ul 01 V1,1 ©1 yl] - [ul o1 U1,1’1] 01Y1 —T19° [U1 01 V1, yl]

+ [u2 02 V2, X2 02 y2] - [uz 02 V2, 962] 02 Y2 — T2 02 [u2 02 V2, y2]
= ‘C’Ulolvl (01)(ZL‘1, yl) + £U20202 (02)(352’ 3/2)' (1'1'3)
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On the other hand

wo Ly(0)(x,y) = (w1 + u2)(Lyy (0)(2,y) + Lu, (0)(2,9))

but for ¢ # j one has
Ly, (0)(zi,y;) =0 Ly, (0)(zj,y;) =0

so that

uo Ly(0)(w,y) +vo Ly(o)(w,y) = u1 o1 Ly, (01)(x1,41) + uz 02 Ly, (02) (T2, y2)
+ vy 01 Ly, (01)(z1,y1) + v2 02 Ly, (02) (2, Y2)
- »Culovl (O]_)(l']_, yl) + £u20v2(02)(l‘27 y2)

Comparing this expression with (1.1.3) we get that o satisfies (1.1.1).
Now suppose the F-manifolds M; and M> have Euler vector fields Ey, Es. Condition (1.1.2)
is Ops-bilinear so again we only need to verify it for z,y € pflTMl Upy 1TM2. Me have

Lp(e)(@,y) = Lp (0)(,y) + L5, (0)(z,y)

But as before
Lp;(0)(x,y) = LE,(0:)(Ti, yi) = Ti 0 Yi
so that
Lp(o)(z,y) =r101y1 + 220292 =T 0Y.

Lp(e)(@,y) = Lp,(0)(x,y) + LE,(0)(x,y) = L, (01)(x1,91) + L, (02) (22, Y2)
=X101Y1 +T20Y2 =T 0Y.

O]

Definition 1.1.3. We will say that the F-manifold (M,o,e) is irreducible if it is not
isomorphic to a product of two F-manifolds of smaller dimension.

Example 1.1.5. The F-manifold I5(2) is reducible because it is isomorphic to the product
A1 x Aj. Using theorem 1.1.1 one can see that the germ of the F-manifold I2(n) is reducible
for any (t1,t2) with t2 # 0. On the other hand, when n > 2 the germ of Is(n) at points of
the form (t1,0) are irreducible. Indeed, on those points we have 0y, 0 0, = 0 so Ty, gyI2(n)
is isomorphic as an algebra to Cl[z]/ 2% if the germ were reducible we would get that an
isomorphism of algebras between C x C and C[z]/22. But this cannot happen because
C x C has no nilpotents.
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Take p € M. Let us exhibit some irreducible Oy -algebras that are induced by the de-
compostion of T;, M into irreducible C-algebras. In this work this algebras will be of the ut-
most importance. The C-algebra structure of 7, M comes from the Oy ,-algebra structure
of Tarp which in turn is obtained by the Oj-algebra structure of the tangent sheaf 7y;. The
kernel of the evaluation map at p, ev,: Tarp — T, M is the Oy p-submodule may , 7oy, of
vector fields vanishing at p € M. The Oy ,-linearity of the multiplication implies that the
kernel is also an ideal and this gives the natural algebra structure of T, M. The irreducible
C-algebra decomposition of T,M induces an irreducible O,z ,-algebra decomposition of
Tavp = @ézl(TM,p)i with (Tarp)i == ev, YT,M);. Therefore the irreducible C-algebra de-
composition of T}, M gives a irreducible Oy ,-algebra decomposition of Tas, = ©L_; (Tazp)i-
The integrability condition (1.1.1) gives nice properties of these subalgebras.

Lemma 1.1.2. Let (M, o,e) be an F-manifold and suppose that for p € M we have Ty p =
®L_ (Tarp)i with each (Tarp)i an irreducible Oy p-algebra with unit 7;. Then

1. Ly, (o) =0.
2. [mi,mj] = 0.

3. [7Ti, (TMJ;)j] - (TM’p)j.
4o ((Taap)is (Tarp)i] € (Tarp)i © (Tarp) -

Proof. Evaluating the integrability condition (1.1.1) on 7; we get
Lr,(0) =2m; 0 L, (o).

Multiplying by m; we get m; 0 L, (o) = 2m; 0 L, (o) so that L, (o) =2m;0 Ly,(0) =0 . For
2; we have
0= Ly, (0)(mj,mj) = Ly, (75) — 2mj 0 L, ;.

Again multiplying by 7; gives the result. For 3; fix ¢ and j and take v; € (Tarp);, we have
0= Em(o)(wj,vj) = ﬁm’l)j — Ty o) Em.’l)j.

Therefore Lr,v; = mj o Lr,v; € (Tarp);. For the last part take u € (Tarp): and v € (Tarp);
then if i # k # j
0 = Lyou(0)(mk, v)
= 7 o ([u, T, 0 v] — [u, T] 0 v — m; 0 [u, v])

= —7 o [u,v].

This means that the projection of [u,v] on (Tarp)i is zero unless k =i or k = j. O



1.1. GENERAL THEORY 23

Finally we have the desired decomposition theorem.

Theorem 1.1.1. Let (M, p) be the germ at p € M of an F-manifold (M,o,e). Then the
common eigenspace decomposition TpM = @2:1(TpM)k into irreducible algebras extends
to a decomposition

(M, p) = Ty (Mg, p) (1.1.4)

of the germ (M,p) into irreducible germs of F-manifolds (My,p). Moreover, an Euler
vector field E on M decomposes into a sum of Euler vector fields on the germs (Mg, p).

Proof. Consider the multiplication invariant subsheaves (Tasp)k, k = 1,...,1. By the last
item of the preceding lemma for any j we have that the subbundles

l

D(Tarp)
k=1
k#j

are integrable. Indeed,

l

l
@TMp Za@ TM,p =
k=1

MN
MN

[(Top)is (Taap)k]

i=1
i#£]

TR

.
S
S
Sl
S

~

l l

DD (Tara)i @ (Tuphk = €D (T

=1 k=1 i=1
i#j k#j Z#J

By the Frobenius integrability theorem we get a submersion f;: (M,p) — (CAm(TpM); ()
such that the fibers are the integral submanifolds of this subbundle. Since the image of a
direct sum of linear maps is the direct sum of the images of each map we get that the map
f= @ézlfj: (M, p) — (CHmM 0) is an isomorphism.

Consider the submanifolds

Mk7 . @fj 7

J#k

Since the kernel of a direct sum of linear maps is the intersection of the kernels of all
the maps we have Tar, p = t*(Tarp)r where v: (Mg, p) — (M, p) is the inclusion. Under
the isomorphism f the germ manifolds (Mg, p) get mapped to germs of transversal linear
subspaces of (C%mM 0) and thus we get (M,p) = I!_ (My,p). Let us show that the
manifolds (Mj,p) are F-manifolds. Consider the projections py: (M,p) — (My,p). The
projections are open maps so for any open set U C M we have p,;lTMk »(U) =T, p(0r(U));



24 CHAPTER 1. F-MANIFOLDS

therefore to define a multiplication on Ty, , it is enough to show that for u,v € pngMk,p
we have u o v € p, " T, p- We have

l l

Tup = @ Omp @O, » pllelep = @(TM,p)k-
k=1 k=1

Since the sheaves (T ) are multiplication invariant we have that uov € (Tasp)r Whenever
u,v € p "Tatyp- Now wowv € pp ' Thy, p if and only if for any j and any w € (Taryp); one
has [w,uov] € (Tarp);. Condition (1.1.1) gives

[w,uov] —[w,u] ov —uow,v] = L ow(0)(u,v)

mjo (lw,uov] — [w,u]l ov—wuo[w,v]).
But [w,u], [w,v] € (Ta,p); and therefore
[, uou] = 75 0 [w, uov] € (Thrp)s

Condition (1.1.1) holds for all vector fields on M and therefore it follows for vector fields
in pI;ITMImp'
Finally suppose that (M, o,e) has an Euler vector field F. We will show that m; o E €
Py ' Ta, p and that 7, o E satisfies (1.1.2) for all u,v € (Tarp)k. For any w € (Tarp) we
have
(1 0 E,w] = Ly op(0)(mj,w) + [m 0 E,mj] ow + mj o [m 0 E, w]
=mpomjow+ [mp o E,mj]ow + 7o [m 0 B, w]
=mjo(mpow+[my 0 E,mj] 0w+ [mg 0 B, w]) € (Thrp);

because w o m; = w. For the last part if u,v € (Tarp)r then
Lror(0)(u,v) =m0 Lr(o)(u,v) =T ouov =uowv.
O

Definition 1.1.4. A point p € M will be called semisimple if as algebras T}, M is isomorphic
to C™. An F-manifold (M, o,e) is called massive if it is generically semisimple. The set
of non-semisimple points is called the caustic and will be denoted by K.

Remark 1.1.3. If the point p € M is semisimple then by theorem 1.1.1 a small neighborhood
around p consist of semisimple points. The same does not hold true if the point p is not
semisimple. The decomposition (1.1.4) holds true in a neighborhood of p but for a point
q # p the decomposition of the germ (M, q) into irreducible F-manifolds may be finer.
For example on the Iz(n) F-manifolds the whole ¢ axis consists of non-semisimple points.
Hence any neighborhood of a non-semisimple point contains semisimple points. More
generally, if at p € M the tangent space T, M decomposes as a direct sum of [, irreducible
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algebras then, in a small neighborhood W of p, for all points ¢ € M we have that T, M
decomposes as a direct sum of [, algebras with [, > [,. Indeed, by theorem 1.1.1 for any
point ¢ € W we have that T, M is isomorphic to a direct sum of [, algebras. This algebras
may or may not be irreducible.

For the purpose of this work it will be important to recognize if a given point p € M is
semisimple or not. In this direction we have

Proposition 1.1.2. Let (M,o,e) be an F-manifold. Suppose that at a point p € M there
exists a vector v such that the operator vo has different eigenvalues. Then p is a semisimple
point

Proof. Let voe; = uje; then vo(ejoe;) = e;ovoe; = uje;oe; so that e;oe; is an eigenvector
of vo with eigenvalue u;. Since all eigenvalues are different we obtain e; o ¢; = )\;e; and
m = /% satisfies m; o m; = m;. Now u;(m;om;) = vo (momj) = uj(m om;) but since u; # uj
we obtain m; o 7; = 0. O

It may well happen that the operator v,o: T,M — T),M has repeated eigenvalues and
nevertheless the point p might still be semisimple. A trivial example of this is any scalar
multiple of the identity, multiplication by this element will have only one eigenvalue but it
will be diagonalizable for any point p € M. Later we will give less trivial examples of this
phenomena.

To identify a point in the caustic we use the following proposition.

Proposition 1.1.3. Let (M, e, o) be an F-manifold. If the point p € M is semisimple then
for all v € T,M the operator voT,M — T,M is diagonalizable.

Proof. Write v = vy + - - + v, then v om; = v;m; so the basis mq, ..., T, is a basis of
eigenvectors. O

Example 1.1.6. On the F-manifold I2(n) on the basis 9y, , 9;,, multiplication by the vector
ady, + b0y, has matrix

a bth?

b a )

n—2
The eigenvalues of this matrix are a + bt, ? so at the caustic { s = 0 }, multiplication by
vector fields with b # 0 will not be diagonalizable. Later we will be more precise about
the vector fields whose multiplication operator is diagonalizable at a point p € M (see
proposition 1.2.2)

We finish this section with a proposition about the non-semisimple points on a massive
F-manifold.

Proposition 1.1.4. Let (M, o,e) be a massive F-manifold. Then the caustic is either
empty or an hypersurface.
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Proof. First we show that the caustic is an analytic set so that its dimension is well defined.
Let W C M be an open set. For any vector field v € Ty (W) let pyo := det(v o —\) be the
characteristic polynomial of the endomorphism vo. This defines a function p,.: W — C™,
Now K, := {q € W |py,. has a repeated root } is the inverse image under p,, of the set of
polynomials with a repeated root and as such is an analytic set. Let us show that

KNnWw = OUETM(W)KU‘

If p € K then by propositionl.1.2 the operators v,o all have repeated eigenvalues so we get
the inclusion C. For the other inclusion note that at a semisimple point p there is always
a vector field v such that v,o has different eigenvalues so if v,0 has repeated a repeated
eigenvalue for all v € Ty (U) then p cannot be semisimple.

Now take a semisimple point p € M and consider the m = dimM idempotent vector
fields m1,...,my. Suppose that dimK < dimM — 2 then for a sufficiently small open
set W such that W N K # 0 the set W \ K is simply connected. Since M is massive
we can take a semisimple point p € W \ K and consider the m = dimM idempotent
vector fields 7y, ..., 7. The simply-connectedness of W\ K implies that the vector fields
m; have no monodromy and therefore they extend to the whole neighborhood W. Now
e—(m+-+mym) =0,mon; =0and mom —m = 0 all hold true on W \ K so
by continuity this relations hold in the whole neighborhood W. Therefore on the whole
neighborhood W we have m = dimM idempotents and hence K N W = (). O

1.2 The Caustic and its Multiplication Invariant Submani-
folds

Suppose that at a point p € M we have T,M = @._ (T,M); with each (T,M); an
irreducible algebra. By lemma 1.1.1 T, M has [ idempotent vectors 71, ...,m. Theorem
1.1.1 says that this vectors extend to idempotent vector fields 7 ..., 7 on a neighborhood
of p. Thanks to lemma 1.1.2 we get that [m;, 7;] = 0. Therefore there exists a submanifold
L C M such that p € L and the tangent space of L is generated by the idempotents
m1,...,m. We will refer to L as the integral submanifold of the idempotents mq,...,m
passing through p. In this section we will study some properties of these submanifolds.

Proposition 1.2.1. Let (M, o,e) be an F-manifold. Take p € M and suppose that T,M =
@®L_, (T,M)y, with each (T,M)x an irreducible algebra. Let L be the integral submanifold of
the idempotent vector fields w1, ..., m passing through p. Then, with the induced structures
(L,o,e) is a massive F-manifold.

Proof. We have m; o mj = 0;;m; € Tr,. This means that L is multiplication invariant. Since
e = m + ---m the unit e is tangent to L. The condition (1.1.1) holds for all vector fields
on M in particular it holds for the vector fields tangent to L. O
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Example 1.2.1. Take a semisimple point p € M then the integral submanifold is an open
set L C M. If the caustic is empty then L = M if it is non-empty then since M is connected
and K is an hypersurface L = M \ K.

Let p € K be a regular point (non-singular point) of the caustic and suppose that T, M
has m — 1 idempotents, then L is the regular part of an irreducible component K C K of
the caustic. Note that in this case the irreducible component of the caustic K is a massive
F-manifold. We will refer to this case as the semisimple caustic case. Later we will see
examples of F-manifolds such that the tangent spaces of one irreducible component of the
caustic have less than m — 1 idempotents (see example 2.2.3).

Suppose that (M, o, e) is a semisimple F-manifold (all points of M are semisimple) then

proposition 1.1.3 says the operator of multiplication by any vector field vo: Tar — Tas is
diagonalizable. Note that in this case any vector field is trivially tangent to the integral
submanifold through any point p € M. Now suppose that the caustic is non-empty. By
definition, the basis 71, . . ., 7, that diagonalizes the operator of multiplication of any vector
field v € Tys ceases to exist on the caustic. Nevertheless it might happen that vo Ty — Tas
is still diagonalizable for a point p € K.
To eliminate the complications arising from the fact that the basis diagonalizing vo outside
the caustic cannot be extended holomorphically to the caustic, we restrict ourselves to the
integral submanifold of the idempotents passing through p. This is achieved by pulling
back the tangent bundle Tj; via the inclusion map i: L — M. Recall that the fiber of
i*Tar at a point p is equal to the fiber of Tjs at the point i(p). As such the multiplication
o on Ty induces a multiplication on i*7js, by abuse of notation we will denote this two
multiplications with the same symbol o. Just as in the semisimple case, the next proposition
says that the vector fields v such that vo is diagonalizable along L are the ones that are
tangent to L.

Proposition 1.2.2. Suppose that (M, p) = 11} _, (M, p) with each My, irreducible. Let L be
the integral submanifold of the idempotents 7y, ...,m. Let i: L — M denote the inclusion.
Then for any v € i*Tys the operator of multiplication vo: i*Ty — i* Ty is diagonalizable
if and only if v € Tp.

Proof. If v € Ty, we can write v = vy7; +- - - +vym. Take w € (Tar)x then vow = vpw. This
means that on each irreducible algebra (7ar,); the operator vo acts by multiplication by
v and therefore is diagonalizable. Suppose now that vo: i*Ty; — "7y is diagonalizable.
Since the irreducible algebras (7 )% are multiplication invariant the operator vo ‘(TM,p) . 18
also diagonalizable. On each of this algebras vo can have only one eigenvalue (otherwise we
would have more than [ idempotents) say vy. This tells us that vo |(TM,p)k = VT O |(T]M,p)k
and therefore v = vymy +--- +ym € T O

We now obtain a special local coordinate system for the submanifolds I which will be
useful for later computations. Since the idempotent vector fields 71, ..., € 71, commute
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there exists a coordinate system u1,...,u; such that
0
= .
! 8uz

Definition 1.2.1. Let L C M be the integral submanifold of the idempotent vector fields
71,...,m. The local coordinates (uj ...,u;) on L such that 9,, = m; are called canonical
coordinates.

Proposition 1.2.3. Let L be the integral submanifold of the idempotents my,...,m and
let (u1,...,um) be canonical coordinates on L. Suppose that the Euler vector field E is

tangent to L. Then
l

E = Z(us + cs)Ts

s=1

for some constants cs. In particular, the eigenvalues of the endomorphism Eo: i*T, — i*7Ty,
are (us+cs) s=1...,1.

Proof. Write E = Zi:l E’m,. For i # j the integrability condition (1.1.1) gives
0= ([,EO)(Tri,ﬂ'j) = (ﬂ'iEj)ﬂ'j + (WjEi)m.

Hence E' = E'(u;). But ‘
m = (Lgo)(mi,m) = (mE*)m;

so that B = u; + ¢;. O



Chapter 2

Dubrovin Frobenius Manifolds

In this chapter we start by defining a Dubrovin-Frobenius manifold. This definition is
not the original one. In this work we want to study Dubrovin-Frobenius manifolds near
points that are not semisimple. Theorem 1.1.1 gives a good starting point for studying
non-semisimple points and that is why we choose this alternative definition. In section 2.2
we show that this definition is equivalent to the original definition by Dubrovin. In the
last section we introduce the most important object of this work, namely the deformed
connection V. This connection is constructed by first defining a 1-parameter family of
flat connections on a Dubrovin-Frobenius manifold M and then extending it to a flat
connection on a certain vector bundle over P! x M. The study of the deformed connection
on a neighborhood of a non-semisimple point is the topic of next chapter. The deformed
connection also induces a family of ordinary meromorphic differential equations on P!. The
monodromy data of this family is the topic of subsequent chapters of this work. All the
material of this chapter can be found in [14],[11] and [12].

2.1 General Theory

We start with the most important definition.

Definition 2.1.1. A Dubrovin-Frobenius manifold is a quintuple (M, o, e, E,n) where
(M,o,e, E) is an F-manifold with Euler vector field E and n € SmeTA’} is a metric such
that

1. For all vector fields u,v,w we have n(u o v,w) = n(u,v o w) (Compatibility of the
multiplication and the metric).

2. The Euler vector field satisfies Lgn = (2 — d)n for some d € C (Conformality).

3. The unit is e flat, namely Ve = 0 where V is the Levi-Civita connection of 7.

29
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4. The metric 7 is flat.

Example 2.1.1. On the F-manifold A; we can define a Dubrovin-Frobenius manifold
structure of charge d = 0 by setting 1(d;, 9¢) = 1. All the axioms of a Dubrovin-Frobenius
manifold are verified immediately.

Consider I5(n) F-manifold with the Euler vector field

E = tlatl + %tgatQ.

Define a metric n by 7(0,, 0, ) = 1(0k,, 0, ) = 0 and n(0;,, 0r,) = 1. For the compatibility
of the multiplication and the metric, the only non-trivial thing we need to check is

(0, © 01, 0p,) =0 = tgi277(6t1>8t1) =1(04,, 0, © Opy).-
To check conformality note that (Lgn)(0%,,0) = (LEN)(0t,, Or,) = 0 and
2
(EEn)(at17at2) = _n([E7at1]7 at2) - 77(87&17 [E78t2]) =1+ E
Thus we see that Lgn = (2 — d)n with d = 2. Since on the coordinate vector fields

O, , Or, the metric is constant we get that 7 is flat and 9;, = e is V-flat.
More generally, on C2 given d € C\ {1} we can define an associative multiplication by

atl =€
B, 0 Oy, = 29/

If we let E =104, + (1 — d)t20:, and n the same as before, then we get a two dimensional
Dubrovin-Frobenius manifold of charge d. Note that the multiplication is not defined on

{t2 =0} unless %dd € N in which case we recover the Dubrovin-Frobenius manifolds I2(n)

1
defined above. In other words, if % ¢ N then the caustic of the above Dubrovin-Frobenius
manifolds is empty.
The following lemma will be useful.

Lemma 2.1.1. Let M be a manifold with metric n and Levi-Civita connection V. A vector
field e is flat if and only if Lon = 0 and the 1-form n(e, —) is closed.

Proof. For any vector fields u, v we have
([’677) (U, /U) = 6(77(“7 ’U)) - 77([65 U], U) - 77(% [6, U])

By the compatibility of the metric Vi) = 0, we get e(n(u,v)) = n(Veu,v) + n(u, Vev) so
that
(Len) (u,v) = n(Veu, v) +n(u, Vev) = n(le, ul, v) —n(u, e, v]).
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Since the connection V is torsionless we get V. = Ve + [e, —] so
(Len) (u,v) = n(Vue,v) +1(u, Vye). (2.1.1)

We also have
d(Tl(‘% _))(u7 U) = U(ﬂ(ea 1))) - U(U(Ca u)) - 77(67 [’U,, U])?

again by the compatibility and torsionless of V we get

d(n(e, =))(u,v) = n(Vue,v) = n(u, Vyu). (2.1.2)

Now suppose Ve = 0, then equalities (2.1.1) and (2.1.2) imply L.n = 0 and d(n(e,—)) = 0.
Conversely adding up (2.1.1) and (2.1.2) we get n(Vye,v) = 0 for all vector fields u,v.
Since 7 is non-degenerate we conclude V,e = 0 for all vector fields u so that Ve = 0 and
e is flat. O

Proposition 1.2.1 says that the integral submanifolds of the idempotents are massive
F-manifolds. Note that if the Euler vector field E is tangent to L and the metric n
when restricted to L is non-degenerate, then (L, o,e, E,n|1) satisfies all the axioms of a
Dubrovin-Frobenius manifold but the last one.

Corollary 2.1.1. Let (M, o, e, E,n) be a Dubrovin-Frobenius manifold and suppose thatp €
M we have TyM = @®._, (T,M)y, where each (T,M)}, is an irreducible algebra. Let L be the
integral submanifold of the idempotents w1, ..., m passing through p. Then (L,o,e, E,n|L)
satisfies all the axioms of Dubrovin-Frobenius manifold except possibly for the flatness of
i*n. Moreover, if M is 3-dimensional and the caustic K is generically semisimple then
(K,o,e,E,n|Kk) is a Dubrovin-Frobenius manifold.

Proof. The only thing that needs to be proven is the statement about the 3-dimensional
Dubrovin-Frobenius manifold. Let g = n|x and let V denote the Levi-Civita connection
of g. Since Ve = 0 by the previous lemma we get L£.g = Veg = 0. Call 9; = e and
pick a vector field dy such that [01,02] = 0. Then L.g = 0 implies 01g;; = 0 so that the
components of the metric in this basis are constant in the direction of the unit vector field.
Since the Christoffel symbols are functions of the metric and its derivatives they are also

constant along the unit vector field. Now [Vp,, Va,] = 0 because V, = 0. Finally
[6617682] = 811—%281 + 81F§282 =0.
L]

Example 2.1.2. Let us consider the Dubrovin-Frobenius manifold M associated with the
singularity A,. This manifold consists of the polynomials of the form

F(a;2) = 2" 4 an 12"V + -+ a1z + ag
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where a = (ag,...,an,—1) € C". This manifold is an affine space modeleled on the vector
space of polynomials of degree at most n — 1. This means that we can identify the tangent
space to any point a € M with the space of polynomials of degree at most n — 1. Given
two polynomials f,g € T, M the multiplication is defined by

fog::fgmoda—F .
0z la

If we write %—f = (n+ 1)II?_,(z — o) then one can easily check that the polynomials

1 OF

z— o 0z

€; =

satisfy e; o ej = 0;;\;e; and therefore they are multiples of the orthogonal idempotents.
Therefore the caustic K consist of the points a such that the polynomial %—f has a double
root. The set of points where %—Z has only a double root and all other simple is an open
set inside the caustic. In this open set the polynomials e;, with «; a simple root, still are
multiples of orthogonal idempotents 7;; we have n — 2 of them, say ns,...,m,. But we
have another orthognal idempotent given by e — 3 — --- — m,. By proposition 7?7, the
caustic is a massive F-manifold. Note that we can apply the proposition again, indeed, the
caustic contains the locus of points K such that the polynomial %—f has a triple root and
all the other roots simple. The same argument as before shows that along K we have n — 2
orthogonal idempotents. Continuing in this way we arrive at a 2-dimensional F-manifold,
the locus of points where %—5 has a root of multiplicity n — 1 and a simple root. By the
corollary this surface is a Dubrovin-Frobenius manifold.

2.2 Potentiality and Dubrovin’s Definition

In this section we show that the definition of a Dubrovin-Frobenius manifold always gives
a Dubrovin-Frobenius manifold as Dubrovin defined them. The converse is also true (see
[14]).

Lemma 2.2.1. Let (M,o,e, E,n) be a Dubrovin-Frobenius manifold and consider the ten-
sor A(u,v,w) =n(uov,w). Then VA is symmetric in its four arguments.

Proof. Let us look back at condition (1.1.1)

Lyono =uo (Ly) o 4vo (Ly,0).
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Using the torsion freeness of the connection V we can write

(Luov0)(w, 2) = Lyop(w 0 2) — (Lyopyw) © 2 — w 0 (Lyoy2)
= Vuov(w o Z) - vzow(’u o ’U) — (VUOUw — Vypuo 1)) oz
= —wo (Vyowz — Vyuow)
= Vuov(w o 2) = (Vyopw) 0 2 — w o (Vyeyz)
— Viow(wov)+ (Vyuov)oz+wo (Vyuovw)
=Vo(uov,w,z) — Vyey(uov)+ (Vyuov)oz4+wo (Vyuow).

Similarly

(U © (EU))(w7 Z) =uo [Vv(w o Z) - Vwozv
— (Vyw =Vyv)oz—wo (Vyz—V,v)] (2.2.1)

(’U © (Eu))(wa Z) =vo [vu(w o Z) - vwozu
— (Vyw = Vyu)oz—wo (Vyz — Vyu)] (2.2.2)

Hence the torsion freeness of V allows us to write the integrability condition (1.1.1) as

0 = (Luon 0 —10 (£40) = 10 (£40))(w, 2) =
Vo (uov,w,z) —uoVo(v,w,z)—voVo (uw,z)
—Vo(woz,u,v)+woVo(z,u,v)+z0Vo (wu,uv). (2.2.3)

Compatibility of the metric gives

VA(u,v,w,z) =un(vow,z) —n(Vyvow,z) —n(voVyw,z) —n(vow,V,z)
=n(Vy(vow) — Vywvow —voVyw,z)=n(Vo (uv,w),z).

Using this and taking the inner product of (2.2.3) with the unit vector field e gives

0=VAuov,w,z,e)— VA(v,w,,zu) — VA(u,w, z,v)
VA(wo z,u,v,e) + VA(z,u,v,w) + VA(w,u,v,z). (2.2.4)

But compatibility of V and flatness of e give
VA(z,y,2,e) = 2n(y, 2) = n(Vzy, 2) = n(y, Vaz) = 0.
Therefore we conclude

VA(z,u,v,w) — VA(v,w, z,u) = VA(w,u,v, z) — VA(u, w, z,v).
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The tensor A is symmetric so that VA is symmetric in the last three entries. Hence the
left hand side is symmetric in v and w. On the other hand
VA(w,u,v,z) — VA(u,w, z,v) =n(Vo (w,u,z)— Vo (uuw,z),v)
=-—n(Vo(u,w,z)—Vo(wu,z)v)
—(VA(u,w,v, z) — VA(w, u, z,v)).
So that the left hand side is antisymmetric in u,w. Thus both sides must vanish and we

have
VA(u,w,v,z) = VA(w,u, z,v) = VA(w, u, v, z).

O]
Remark 2.2.1. Consider some flat coordinates (t',...,#™) on an open set u C M and let
04 00y =D 4 cZ-@tk and define ¢;jp, == > ¢;;msk. Then
ociji
VA(atl 5 3t¢, atj P atk) - atl .
By the symmetry of VA we get
dcije _ dciji _ Ocik
ot ot* ot
Moreover, if n®# denote the components of the inverse matrix of 77 we have c =) . Cij sn°F
but then
Z 80135 Sk 80113 nSk 865 .
atl ot < 0t oty
Now

Ui Bcw
V ( tl atz 8t] Z a 6
so we conclude that the tensor Vo is symmetric in its three arguments.

Lemma 2.2.2. Let (M,o,e, E,n) be a Dubrovin-Frobenius manifold of charge d. For any
vector fields u,v,w let A(u,v,w) = n(uov,w) then
LpA=(3—-d)A.
Proof. We have
(EEA)(U7 v, w) = En(u °v, w) - n([Ea u] o, w) - 77(“ 0 [E7 U]v ’UJ) - 77(“ °v, [E> w])

= (Len)(uov,w)+n([E,uocv] - [E,ulov—uol[E, v, w)

= (2 —d)n(uev,w) +n((Leo)(u,v),w) = (3 = d)n(uov,w)

= (3 —d)A(u,v,w).
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Proposition 2.2.1. Let (M,o,e, E,n) be a Dubrovin-Frobenius manifold then
VVE = 0.

Proof. On flat coordinates (t!,---,t™) the components 7;; of the metric are constant.
Writing E = ) E®0;s the conformal condition Lgn = (2 — d)n reads

(LEN) (04, 0p) = Z 0 Ensj + 0 E°nsi = (2 — d)mij.

s=1

Setting Eo := Y., E*nsa (so that B = Y FEn®® where 5" are the components of the
inverse matrix of ) and taking the derivative with respect to t* gives

atkatiEj — _6tkatjEi.
This equation holds for any indices 1, j, k, hence
8tk8tjEi — *atkatzE] — *8tzatkE] — atiatjEk; — atjatiEk — *atjatkEi.

Therefore 0,:9,; E; = 0 and since E' is a C-linear combination of the E; we get 9,49, E* = 0.
In flat coordinates we have

VVE =Y 0wdrE*dtP ® dt" ® O = 0.
p77‘78
O
Theorem 2.2.1. Let (M, o,e, E,n) be a Frobenius manifold of charge d and let (t,... t™)
be flat coordinates on a simply connected open set U C M with Oy = e. Let Oy 0 0y =

>k cfjatk and cijr, =Y, ciinsk- Then there exists a holomorphic function F': U — C such
that

. 9F
1. Cijk = proriom

2. Mij = C14j-
3. c,i-“j =3, Cijs775k where n°? are the components of the inverse matriz of 1.
4. E(F)—(3—d)F is a quadratic polynomial.

Proof. By the preceding remark

ociji _ Jciji _ ociiy;
ot! Otk oti’
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since U is simply connected there exists functions b;; such that

Obij _
ik = C
But
8bij . . . 6bjz'
Gk Gk = Gk = i
and hence we can choose functions b;; such that b;; = bj;. Now
ok Gk = b =

so we can find functions a; such that

8@1-
o~ i
By the above choice
aCLi 8aj
o~ 9 = b=
so we can find a function F' such that
or
o
By construction
63F 82ai (%,]

otiovott — ovotk otk (iR

This proves the first item. For the second one note that

atl o 8ti = Z C?jats - ati

s=1

and therefore cj; = 9;. Hence

m

— S . — ..

Clij = Z C13Msj = Mig-
s=1

For the third part we have

m m m
Z Cijs778k = Z Z cgjnrsn Z cwaf - c
s=1

s=1r=1
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For the last part write £ = ) E°0;s. In flat coordinates the condition VVE = 0 is simply
0,i0y E° = 0. Using this one gets

8ti8t]-8tkE(F) = Z Esatscijk + ((%-Es)cjks + <8tjE8)Cik5 + <8tkEs)Cijs.
s=1

Computing (LgA)(04i, s, O ) we get 040y O E(F) = (LpA)(Oyi, O, O ). We also have
A(04i, 04, Op) = ciji. Using lemma 2.2.2 we get

Therefore
0404 O (E(F) — (3—d)F) = 0.

The function F' will be called potential of the Dubrovin-Frobenius manifold.

Example 2.2.1. Let us write down the potential for the two-dimensional Dubrovin-
Frobenius manifolds of example 2.1.1 when d # —1,1,3. We have that

1 _ 1 1 _ ,2d/(1-d)
=1 ¢ =0 Cop =1y

2 2 2

ci1 =0 cia =1 ¢y = 0.

From the equality %],Fak = Cijk = ) g mscjk we get

PE 0 FPE
ot 0t 0t ot10t10ty
_OPF PP sya-g
Ot10t20ty Ot20t20ty 2 '
From the two equalities of the first line we get

OF

— =11f(t t

ot 1f(t2) + g(t2)

for some functions f,g. From the two equalities of the second line we get

OF (1—d)?

or 2/(1—d)
Ot 2(1+d) 2 + hity)-

2
Comparing the last two equations we conclude f(to) = to, h(t1) = %1 and we can put g = 0.
Putting this together we arrive at

1 1—d)* 3-d)/(1-d
Flt,ts) = =205 + 2(1(+d)(3)—d)t5 )/(1-d)

2
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In particular for the Iz(n) Dubrovin-Frobenius manifolds we get

1 1
F(ty, ty) = =t L
(f1:t2) 212—'—(714-1)71(71—1)2

When d = 3 an identical procedure yields

1 1
F(ty,t2) = Stita + - log(ta).

2 2
For d = —1 we obtain )
1 t
F(ty,tg) = it%tg - 52 log(ta) — t3,
but note that the functions ¢;;;, and therefore cfj don’t chance if we add a polynomial of
degree at most two. Hence, when d = —1 we can take

1 t3
F(ty,to) = §t§t2 + 52 log(t2)

as the potential. When d = 1 the potential
1
F(ty,ts) = it%tg + e’

defines a Dubrovin-Frobenius manifold. Indeed, the metric n is the same as before, the
multiplication is given by 9y, o 9y, = €'29;,. The Euler vector field must be of the form
E =t10,, + f(t1,t2)0:,. Imposing that E(F) — F must be a polynomial of degree at most
two we get f(t1,t2) = 2. With this one gets

(EEW)(atuatQ) = 77(875176t2) - (2 - 1)77(875178752)'

We now find a normal form for the potential F' similar to the one found in the previous
example. We suppose that the eigenvalues of the operator VE are simple.

Proposition 2.2.2. Let (M,o,e, E,n) be a Dubrovin-Frobenius manifold of charge d and
suppose that the eigenvalues of VE are simple. Then there is a flat coordinate system
(t1,...,tm) with e = Oy, such that the potential F is written

m—1

1 t
F = it%tm + 51 Z titmy1—k + f(t2, ... tm)
k=2
if d#0 orn(e,e) =0 and

c + m—1

1
F= gt:l)’ T3 Z thtma1—k + f(t2, .. tm)
k=2

if d=0 and n(e,e) = c # 0.



2.2. POTENTIALITY AND DUBROVIN’S DEFINITION 39

Proof. Since VVE = 0 the eigenvalues and eigenvectors of the endomorphism VE are
V-flat. For the eigenvalues this just mean that they are constant. Let 0y ,...,0, be a
basis of eigenvectors with VatiE = d;0;;. On this basis we must have

F = Z(diti + Ti)ati,

s=1

and [E, 0y,] = —d;0, . From conformality we obtain
(2 = d)nij = (Len)(9, 0;) = (di + dj)mij.

Therefore, if d; 4+ dj # n;; then 7;; = 0.

The metric 7 is non-degenerate so given an eigenvector J;, of VE there must exist at least
another eigenvector J¢; such that n;; # 0; since the eigenvalues of VE are simple there
exists at most one of them, namely the eigenvector with eigenvalue 2 — d — d;.

Since e = (Lgo)(e,e) = —[E, e] and V. E = [e, E] we get that the unit vector field is always
an eigenvector of VE. We set e = 0, .

Now suppose d # 0. Conformality gives

(2 —d)nle, e) = 2n(e, e)

and hence we conclude that 7(e, e) = 0. We can now order and normalize the eigenvectors
O, in such a way that the matrix of the metric n is antidiagonal (there exists at most one
eigenvector dy, such that n(9;,,0:,) # 0) i.e.

ﬂ(ati» atj) = 5i,m+1*j‘

We have that
1= Mm = 8t18t18mF

80 04,0y F' =ty + h(t1, ..., tm—1). For i # m we have
0= m: = at1at18tiF = @h

and hence h(ty,...,t,m—1) is a constant which we take to be zero. Thus, 0,0, F = t,, and
Oy F = titm + fi(ta, ..., tm). Now for all i > 1 we have

0 = 77jm = 8751 3tj8th1jm = 8tj atmfl.

Hence the function 9y, fi is a constant which we take to be zero and thus f1 = fi(t2, ..., tm—1)
and

Fi = t1t,, + fl(tg, - ,tm_g).

We now have
1= n2m—1 = atlatgatm_lF - atgatm_lfl
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S0 Opy f1 = tm—1 + fa(ta,...,t;m—2). But for 1 <i < m — 1 we have
0 =n2; = 0, 01,0y, = 01,0, f2

so O, f2 is a constant which we again take to be zero. Hence 0y, f1 = t;m—1, f1 = tatm—1 +
fg(tg, - ,tm_z) and 8t1F =ttty + totm_1 = f2(t3, - ,tm_l). For 2 < i we have

0 = Tim—1 = 8t18ti8tm_1F - atiatm_1f2
so just as before we can take fo = fa(ts,...,tm—2) and
O F = tity, +totym—1 + fo(t3, ..., tm—2).

Continuing in the same way we get

1 m—1
Fy = tity + 5 > trtmai—k
k=2
so that
1 t m—1
F = it%tm + 9 Z tetme1—k + f(t2, .- tm).
k=2

For the other case we would have ¢ = 0,0y, 0y, F so 0y, 01, F = ct1 + g(ta, ..., tm) but since
mi = 0 for i > 1 we get 0,0, F = %tf + fi(te,...,tm). Reasoning as before we get the
desired result. O

On dimension 3 and when the charge d # 0 the potential is

1 1
F = §t%t2 + §t1t§ + f(to, t3).

The multiplication table is given by

Op, 0 Oty = f2230;, + f22201, + Oy
Op, 0 Oty = f2330;, + [ 22301,
O, 0 Oy = f33301, + [f2330%,,
where f;;, denotes the third partial derivative of f with respect to the variables #;,;, .
For associativity to hold the equations
(8152 © 6152) 0 Oy = Oy © (6152 0 8153)
atz 0 8153 © 8153 = 8152 © ats o ats

must hold. Both of these equalities lead to the partial differential equation

<83f >2 ’fPf )

— ) = + ,
050,01, 01201,01y 01, 013015 01301501,
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Example 2.2.2. The potentials

1 1 1 1
Fam g2yt S 02,24 &5
AT QU EE ST = VA G ”

1 1 1 1 1
po_Lla2 1 o, 13 1os 1 7 22.5
B=oratgry ey it oyt oo (2.2.5)

1 1 1 1 1
Fo— — 2 1 9 132 1 o5 11
H= g0 2+ 5@+ 502+ 55V % T 39607
define massive Dubrovin-Frobenius manifolds. These Dubrovin-Frobenius manifolds come
from the orbit spaces of the Coxeter groups As, B3 and Hs (see [10]). The corresponding

Euler vector fields are

AT oz 4y8y 2 0z
0o 2 0 1 0
o 3 0 1 0
Ep=a—+Sy—+ 2

Ox 5y8y 570z
Later we will analyze the caustic of these Dubrovin-Frobenius manifolds.

Example 2.2.3. The following family of examples exhibit three-dimensional Dubrovin-
Frobenius manifolds such that at one irreducible component of the caustic K, the tangent
space consists of only one irreducible algebra. That is, along this component we loose two
idempotents and therefore the caustic is not semisimple. Instead the caustic is foliated
by the integral curves of the unit vector field e which is the only idempotent along this
component of the caustic. The potential is the function

1 1
Fla,y,2) = 3o + so + v £(2)
for some function f of one variable. The Euler vector field is
)
- oz 2y8y

The multiplication table is given by

Oy o0y = 1202 (2)0y + 24y f(2)0y + 0,

By 0 0, = 4y’ f"(2)0; + 1247 f'(2)

D, 00, =y f"(2)0, + 43 f"(2)
Notice that along y = 0 we have 0,00, = 0 so y = 0 is contained on the caustic. Along this
component F = xd, and so the Euler vector field is tangent to { y = 0}. The vector 9, is
also tangent to this component of the caustic and so this component is a globally nilpotennt
F-manifold. Note that the Euler vector field is tangent to the integral submanifolds of the

only idempotent m; = e. But since 7(e, e) = 0, the metric restricted to this submanifolds
is degenerate. More about this examples can be found on [11] appendix C or [4].
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Remark 2.2.2. The associativity of the multiplication o implies that the function F' must
satisfy a highly overdetermined system of partial differential equations known as the WDVV
equations (Witten-Dijkgraaf-Verlinde-Verinde). Indeed, for all vector fields u, v, w we must
have

n((uow)ow, =) =n(ue (vow),—).

In terms of the flat vector fields 0,i,7 = 1,...,m and the function F' the above equality

becomes
PF o, B
C otiotor drotor

O’F 3 »Pr ., OF
2 gridtkor arotior

2.3 The Deformed Connection

In this section we introduce one of the most important objects one can associate to a
Dubrovin-Frobenius manifold, the deformed connection. In this section we merely state
and proof its most important property, namely its flatness. In the next chapter we will
study in detail the consecuences of its flatness. This was already done by Dubrovin on the
semisimple loci, the novelty of the next chapter is that we drop the semisimple hypothesis.

Definition 2.3.1. Let (M,o,e, E,n) be a Dubrovin-Frobenius manifold of dimension m
and Levi-Civita connection V. We define a 1-parameter family of connections VZ in the
following way: for each z € C set and any vector fields u, v set

Viv:=Vyuw+z(uow). (2.3.1)
Proposition 2.3.1. For any z € C the connection VZ is flat.

Proof. Fix a coordinate system (z!,...,2™). The connection matrices of the deformed
connection are
w; = wj + 20,0

where the matrices w; are the connection matrices of the flat connection V. We have

Owi  Owi 0w Oy

oxd  Oxt  Oxd Ot

+z (8z3 (8zlo) - axl (axﬂo))
and
[vawﬂ = [wiij] + Z([wivaﬂo] + [azi’wj]) + ZQ[aa:ivamj]
= [wiij] + Z([wiaaﬂo] + [axiij])

because the multiplication o is associative and commutative. Since the connection V is
flat, flatness of the connection V# is equivalent to the equations (see appendix A):

81’j (8:L’io) - aac’ (8.7,‘3 O) = [wia a:vj O] + [aaﬂ’ wj] .
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On flat coordinates (t!,...,%") the connection matrices w; vanish and therefore we only

need to verify

045 (9yi0) — 94 (Opio) = 0.

We have
Byio = & dt® @ By and Do =, dt™ @ Oys
Be we just need to verify
861'611 _ 0cf-a _
ot ot
But as lemma 2.2.1 and remark 2.2.1 show, this is always true on a Dubrovin-Frobenius
manifold. O

We now extend the 1-parameter family of connections V# to a meromorphic flat con-
nection on a certain vector bundle over P! x M. We start by defining an endomorphism
w: Tar — Tar which will be of crucial importance.

Since the Euler vector field is conformal, Lgn = (2 — d)n, we get that the endomorphism

of the tangent sheaf

9 _
W= led —VE (2.3.2)

is m-antisymmetric. Indeed, compatibility and torsion freeness of V imply (see equation
(2.1.1))

(2 - d)ﬁ(“: U) = (£E77) (uv ’U) = n(qu7 U) + 77(“7 VUE)a

2—d 2—d
0277( 5 u—VuE—,v>+n<u, v—VUE)

hence

2
= n(pu, v) + n(u, ).
Proposition 2.2.1 says that VVE = 0 thus we get:

Proposition 2.3.2. The endomorphism p is flat i.e. Vi = 0.

Consider the projection 7yr: P! x M — M. The importance of the endomorphism p

is that it allows us to define a flat connection V on the bundle 7%, 7M — P! x M. This
connection extends the family of flat connections (2.3.1) on TM — M.
The multiplication o, the endomorphism g and the connection V induce the same kind
of objects on 7,7y which should be denoted by 73,0, 73,4 and 73,V. Abusing notation
we will denote them by o, u and V. Recall that Tp1 s = 75, Tpr @ 73, Tas and 73, Tas =
Op1 1 @0y, 7T]T417.M. Let z be a global coordinate on C.
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Definition 2.3.2. Let (M, o,e, E,n) be a Dubrovin-Frobenius manifold with Levi-Civita
connection V. The deformed connection is defined in the following way: for u € 73, Ty <
Tpix s and v € 74, Tas set

Vv = Vv + zuov.

The covariant derivative in the 0, direction is defined as
_ 1
Vo, v :=0v+ FEov— —p.
z
Proposition 2.3.3. The deformed connection ¥V on the vector bundle ma Tar over P! x M
1s flat.

Proof. Let (t!,...,t™) be flat coordinates on a neighborhood U C M. The connection
matrix @ of V is
m
0= Zwidt’ + @,dz,
i=1

where
w; = ZatiO
1
w, =FEo——pu.
z
Thanks to proposition 2.3.1 we only need to check that
ow; 0w, _
oz op  wiwsk

Proposition 2.3.2 says that on flat coordinates 9,y = 0 and since p = %I d— V E we need
to verify that
atio = ati (EO) + [ati, VE]

Evaluating Lo = o on 0y we get
OE”P OE~ OB~
. W B P
Ojio = E ( g Ea i oy ot Cerpp T CGa gy ) dtY @ -

We also have

ach 5 OB
Oy (Eo) = Z (Z B act: Cor ot > dt7 ® Oy

By \ o
OE“ 8E
[0yi0, VE] = Z ( CZ'BQW — ¢, 55 > dt’ ® pg.
Byy o

On flat coordinates we have 5
8c§7 _ acm
ott o™
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(see lemma 2.2.1 and remark 2.2.1). Using this and comparing the previous equations we
get the result. O

The flat connection V is of fundamental importance. As shown by Dubrovin, on a
small enough semisimple neighborhood W, the monodromy data (which will be defined in
chapter 4) of the connection V are constant and they determine the Dubrovin-Frobenius
manifold structure on W. In the next chapter we will study the restriction of V to the
submanifolds L described in proposition 1.2.1. Except for the semisimple case we won’t
be able to recover the Dubrovin-Frobenius manifold structure on L but we will show that
under some mild conditions the monodromy data are still constant.






Chapter 3

The Deformed Connection

In this chapter we describe some geometric properties of the deformed connection V when
restricted to the multiplication invariant submanifolds L of the caustic K (see proposition
1.2.1). We will always assume that the Euler vector field is tangent to this submanifolds
and that the metric n, when restricted to these submanifolds is non-degenerate. In this
case proposition 1.2.2 tells us that the endomorphism of multiplication by the Euler vector
field is diagonalizable along these submanifolds. To warm up we start with the semisimple
loci, this is the case that was originally studied by Dubrovin (see [11], [12]). Then we start
studying the deformed connection when restricted to the submanifolds . C K. Many of the
properties of V remain the same but now the deformed connection induces flat connections
on the irreducible algebras t*(7as,p)r. These flat connections will play an important role in
the next chapter.

3.1 The Semisimple locus

Suppose that the point p € M is semisimple. Since the caustic (the non-semisimple locus)
is an hypersurface (see proposition 1.1.4) there is an open neighborhood W C M which
consists only of semisimple points. Therefore, in W there exists 71, ...,m, vector fields
which satisfy

T3 © 7Tj = 5Z-j7ri.

Since the metric satisfies n(uov, w) = n(u, vow) we obtain that the idempotents 71, ..., m,
are orthogonal. We also have that the metric is non-degenerate so that |m;| = n(m;, m) # 0
and we can define the normalized orthogonal idempotents as

-
fz' = ! .
|3
Let (u1,...,un) be canonical coordinates around p € M so that d,, = m;. Using the basis
fi,--, fm of w4, Tar and the coordinate system (z, u1, . . ., uy,) of Pt x M, let us write down

47
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the equations of flatness of the deformed connection V. First we compute the connection

matrices,
m m

> (@)ifs =V fi =Vafi+amofi =Y (wi)ifs + 26 f;
s=1 s=1
and
S @) = Vouly = Eo f — ~uf;
s=1

We have that 7o f; = 6;; f; so that the matrix of 7;0 on the basis fi,..., fn is (EZ)CBy = 5?623.
The condition n(E o v,w) = n(v, E o w) says that the endomorphism Fo: Ty — Ty is 7-
symmetric and as we have seen the endomorphism p is n-antisymmetric. Therefore on the
basis fi ..., fi, the matrix U representing the endomorphism Fo is symmetric (the matrix
of FEo is actually diagonal U = diag(uy, . . . , us,) where u; are the canonical coordinates) and
the matrix V representing the endomorphism p is antisymmetric. Moreover, compatibility
of the Levi-Civita connection V of n says that in this basis the connection matrices w; of
V are antisymmetric. Hence we have

Wi = w; + 2E;

1
w,=U—-V.
z
The equations of flatness
ow; 8@]' [7 B }
_ = [, @;
Ouj auz ©
gives
[Ei,wj] = [Ej,wi] (3.1.1)

because the connection V is flat and [E;, E;] = 0. Since [E;, U] = 0 the equation

ow; 0w, _
0z Oup 03, ]
gives
ov
=V, E;
du; V- Ei (3.1.2)
[U, wi] = —[Ez‘, V]

In the next section we will see that on the non-semisimple loci we also have equalities
analogous to the ones above.
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3.2 The Caustic

For a point p € K on the caustic the algebra Ty, has less than m = dimM idempotents.
Correspondingly, the decomposition of T,M = @2:1(T »M )i, into irreducible algebras has
at least one algebra of dimension at least two. Let us introduce some notation that will be
useful in the following. First we order the algebras (7,,M); in some way. Then we define
numbers k; with k € {1,...,l} and i e {1,...,dim(T,M); } by

k—1
ki =Y dim(T,M); + .
j=1

We also define subsets (k) C {1,...,m} by

k—1 k
(k) ={ ki e N ‘ N dim(T,M); < ki <3 dim(T, M),
Jj=1 Jj=1
Let L be the integral submanifold of the idempotent vector fields my,...,m passing

through p and let t: L — M denote the inclusion. As proposition 1.2.1 shows this manifolds
are multiplication invariant. We will assume that the metric (*n|;, is non-degenerate.
This means that the normal bundle N}, of the submanifold L is transverse to 7; and
VTar = Tr ® Np. Since the bundles ¢*(7Tarp)r are orthogonal between each other we can
choose a unitary basis ny, of Nz, (i > 1) such that

ng, € L*(T]\/Lp)k NN

Introducing the normalized idempotents

Tk

£ k=1...1,

ml”
we obtain an orthonormal basis of t*7T,;. We order this orthonormal basis in the following
way:

fry = fx  fr, = ng, fori > 1.

For example, in this orthonormal basis multiplication by 7o has a matrix Fj which on
the diagonal block with indices belonging to (k) has an identity matrix of size #(k) =
dim(T, M) and all other entries are zero.

We will also assume that the Euler vector field F is tangent to the manifold L. In this
case proposition 1.2.2 guarantees that the endomorphism Fo: t*Ty; — *Tys is diagonaliz-
able. Let uj ...,u; be canonical coordinates of L around p. Then, after a translation (see
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proposition 1.2.3)
!
E = Zukwk.
k=1

We have that E on; = ugn;, so that the matrix U representing the endomorphism
FEo: *Ty — ¢*Tar on this orthonormal basis is diagonal.

By n-antisymmetry, the matrix V representing the endomorphism p: ¢* T — ¢*Tas is an-
tisymmetric.

Using the inclusion (id x ¢): P! x L — P! x M, we will now pullback the deformed
connection V on 73, Tas to (maro(idx ¢))*Tas. Since the connection V is flat the connection
(idx1)*V is also flat. The connection matrices in the orthonormal basis of (mpso(idx¢))* Tas
we just constructed and the local coordinates (z,u1,...,u;) of P! x L are

w; = w; + 2 E;

5= U lV (3.2.1)
z
Flatness of (id x ¢)*V gives
U,wi] = —[E;, V]
[Ei,wj] = [Ej, wi] (3.2.2)
Wil
Lemma 3.2.1. We have
(wi)gs =0 if (p) # (¢) and (p) # (i) # (q)
(u; — up)(wl-);;; = Vpig if (p) # (4) (3.2.3)
(wi)jy = —(w));-

Proof. The first two equations follow from the first equation of (3.2.2) and the last one
follows from the second one. O]

As we can see from equations (3.2.3) the flatness of the connection V does not give any
information about the diagonal blocks (wl)ﬁg of the connection matrices of the connection
V. In the following proposition we show that the partial differential equation satisfied
by the matrix V' consists of [ + 1 uncoupled systems of partial differential equations. Of
these [ + 1 systems, [ consists of the [ diagonal blocks of V' and the last one consists of the
off-diagonal entries of V. To write down the system of partial differential equations for the
off-diagonal blocks first we need to solve the diagonal blocks. Theorem 3.2.1 gives a more

geometrical interpretation of this fact.
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Proposition 3.2.1. For any i,k =1,...,l and any o, 8 = 1,...dim(T,M )i, we have

OV e
cx k's ka ks
(%: = D V() - )V (3.2.4)
ks€(k)
ks#ka kg

Let i,j,k € {1,...,1} withi # j # k # i. Then for any a € {1...,dim(T,M);} and
Be{l,....,dim(T,M); } we have

ovie
JB 7404 JS ia\/ls
Quy, Z Vit )y = Z Con)ic Vi
Js€(j) is€(1)
]S¢.]B is7éia
+ Y vV,
g;) Juj —w) =
. : 3.2.5)
ovie Ve v , (
I8 _ za is 4 JB la
ou; Z ( _uz’ (wi); )V Z < i35~ u; —Uz‘> Vi,
is€(1) Js€()
tsFla ]575],6‘
=
rguG) T
Proof. The last equation of (3.2.2) says
Ve m
B _ ka NS . kay/s
an - Z Vts (wl)kB (wz)s Vkﬁ'

s=1
Suppose (k) # (i), then we can split the sum in the indexes s € (k) and s ¢ (k). When
s ¢ (k) the first equation of (3.2.3) tell us that the functions (wi)zﬁ and (w;)ke are zero

unless s € (i). So when (k) # (i) then
ko
8Vk6 = Z Ve (wy)s (wi)lganB.
€(@U(k)
The second equation of (3.2.3) gives

Vi (wi)le, — (@) Vs = (g — w) (@) (i), + (s — w) (i)l (@i)fs, = 0
therefore only the summands with s € (k) survive. The restriction ks # kq, ks comes from
antisymmetry of the matrices V' and (w;). The other case i = k is similar.

For the second equation we have
ovie m
‘7 -Dt 'O{
L= Vi (wr)), — (@R Vi

s=1

8uk
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But s ¢ (j) U (k) implies (wk)jﬁ =0and s ¢ (i) U (k) gives (w)i =0 so

ovie

B _ Ta Za 1s Zoz Ta ks
S Vit - X V4 S Vi — eV
Js€(J) is€(i) ks€(k)
jS #]B is 75104

The first equation of (3.2.3) gives

V.ks V’La
ke Js » ks
(wr)j; = uj — Up (wr), =

and this implies

ia ks iat ks Ui — Uj it/ ks
Z Vs (wk)jﬁ (w )ksvm = Z (i — j Ve Vi

ke (Ui ug)(u; — ug)
Finally, for the last equation we have
o m
ke Zl Vi (wi)j, — (@i Vi

If s ¢ (i) U (j) then (w;)’ = 0 so we can write the previous equation as

Ve
T = XV X Vi~V
’ is€(i) €(5)
= 3 @)V,
rs¢(1)U(j)
But
(w )15 — V;BS (w )2,1 — ]ia
YIB uy — Vi g —
and ,
i Vie
(wi)rs Uy — U
so we get
oV ia Via N\ . Ve .
Jg ls N\l 1s NIs JB (2e
3 (i) v+ 5 (- )
is€(i) Js€(9)
isFla Js#ip
— Z Vil VJ};
Up — Uy
rs¢()U(J)
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Corollary 3.2.1. Suppose #(k) = 2. Then ka; = —V,flz is a constant.

If we have a two dimensional irreducible algebra ¢*(7asp)r in the decomposition of
t*Thrp then there is essentially one choice for the unitary normal ny, to L that lie on
Nz N (Tarp)k- Correspondingly there is not too many freedom on the constant Vklzl. On
theorem 5.1.2 (with a slight change of notation) we will compute explicitly this constant.
We now show that each diagonal block of the curvature form €2 of the connection V only
depends on the entries of the same diagonal block of the connection matrices w; of the
connection V.

Proposition 3.2.2. Let (ui,...,u;) be canonical coordinates around p € L and consider
the orthonormal basis fir, = fi, fx, = nk, of *Ty. Let Q be the curvature form of the
connection *V written down on these coordinates and this basis. Then for any i,j, k €
{L,...,l} and a,f € {1,...,dim(T,M )y } we have

8(“’2‘)% a(wj)ia
ko 8 B § : ka ks ko ks
(Qij)kﬁ = uj — " — (wi)ks (w]')kﬁ - (wj)ks (wi)kﬁ. (326)

kse(k)

Proof. The block diagonal entries of the curvature form §2 are

Owilke  Owppe &
B B ]Ca \S . ka S
8’&]' - Ou; - E (wi)s (wj)k[; - (w])s (wl)kﬁ'

s=1

Fo _
(Qig)i; =

Suppose (i) # (k) # (j) and divide the last sum in s € (k) and s ¢ (k). When s ¢ (k) and
(w;) e (wi)iﬂ # 0 then s € (i) # (j) but then (Wj)iﬁv (wj)ke = 0 and the result follows.
Now suppose (i) = (k) # (j), then
0 U S |
() = g~ g = Dol )y = () @0

s=1

In the last sum let us look at the indices s ¢ (7). Then (wj)fﬁ, (wj)ie = 0 unless s € (j).
But then the last equation of (3.2.3) gives

(wi)e ()5, — Wi)e (@i, = —(Wp)e (@p)f, + (W) (wy)f, = 0
so again the result follows. O

Equation (3.2.6) has an incredible geometric consequence. First note that the function
o Vi M (Taup)k — Q8 @0 (Tarp)k (here mpo: QF @ o (Tarp)k — Q3 @ *(Tarp)k is defined
as id ® o) define connections on the vector bundles ¢*(7arp)i. Indeed, for v € *(Tap)k
and f € O we have

(mp o V) fv=m o (df @ v+ fVv)
=df @mpov+ frmpoVu
=df v+ fmp o Vo
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because 1 o v = v for v € *(Tarp)k. Equation (3.2.6) says that these connections are flat.

Theorem 3.2.1. Let (M,o,e, E,n) be a Dubrovin-Frobenius manifold with Levi-Civita
connection V. Assume that at p € M we have T,M = &L _ (T,M); where each (T,M)y
1s an irreducible algebra. Let L be the integral submanifold of the idempotents wy,...,m
passing through p and denote v: L — M the inclusion. Suppose that

1. The Euler vector field E is tangent to L.
2. The inner product v*n|7, € Sym27z* is non-degenerate.
Then for each k = 1,...,1 the connections T, o V: t*(Tarp)k — QU @ *(Tarp)k are flat.

Proof. Consider the orthonormal basis fx, = %, fr., = nk,. We have

Vi = > (@i}, du; ® fs
s=1 i=1
so that l
T O kaa = Z(wl)zzdul & fks-
ks€(k) i=1

Let rw; be the connection matrices of 7, o V then the above computation gives

Let QF be the curvature form of 73,0V and € the one of V. Proposition (3.2.2) and flatness
of V give

Oewi)ie  Opwy)pe
<ﬂi%>£; = o - Em L) (sz')i‘:(kwj)ig —(kwj)ij(sz')ﬁ;
j i

- - Mo T bt -

O

Consider now the projection 77,: P! x L — L. We now define a 1-parameter family of flat
connections on the bundles ¢*(7arp), and flat connections on the bundles (¢omr)*(Tarp)k-
This connections are analogous to the connections V? and V defined on the previous
chapter.
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Proposition 3.2.3. For every z € C the connection (7o V)? := w0V + zo on the bundle
U(Tarp)k is flat.

Proof. First note that since the bundle ¢*(7as, ) is multiplication invariant, the expression
(mr o V)# does indeed define a connection. Let pw; denote the connection matrices of the
connection 7, o V. Then the connection matrices pw? of the connection (7 0 V)* are given

by
P kWs if ¢ 7'5 k
kWi = e
wwp +zId if i = k.
where Id is an dim(T,M) x dim(T,M);, identity matrix. Since the partial derivatives

of the identity matrix are zero and the identity commutes with any matrix, flatness of
(m o V)? follows from flatness of 7, o V. d

Definition 3.2.1. Let (M, o, e, E,n) be a Dubrovin-Frobenius manifold and suppose that
at p € M we have T,M = & _,(T,M);, with each (T,M)y an irreducible algebra. Let
7r: P! x L — L be the projection and let z be a global coordinate on C. We define a
connection 7 oV on (¢ o 7r)*(Tamp)k in the following way: for u € 777, < Tpiy and
v € (tomr) Tar set

T © Vv := (g 0 V) v + zuov.

The covariant derivative in the 0, direction is defined as
TR o Vy v i=0v — Eov— —m, 0.
z

Proposition 3.2.4. The connections w o V are flat.

Proof. Let ey,,i = 1,...,dim(T,M);, be a flat basis of the connection 7 o V and let

kwj,j =1...,l and @, denote the connection matrices of the connection m;, o V. We have
_ 0 if j#£k
kW5 = AP
zId if j=k

and since on (7)), multiplication by Fo is just scalar multiplication by uy,
_ 1
Wy = ukId — *Vk
z

where V}, is the k-th diagonal block of the matrix V. Since ey, is m, o V-flat the previous
proposition says that Vj is a constant matrix. Hence

Ow. O ifj#k
ouj  \Id ifj=k
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and

aku_.)j_ 0 ifj#k
0z  |Id if j=Fk.

In all cases we get
O B 8k@j
8Uj 0z

On the other hand since scalar multiplication commutes with all matrices

=0.

’U[ka)z,k @j] =0.
]

We finish this chapter with a proposition that will help us find “normal forms” for a cer-
tain family of differential equations associated to a Dubrovin-Frobenius manifold. Consider
a m, o V-flat basis ey, for each algebra (7asp)r. The metric L*n](TM’p)k is compatible with
the connection 7, 0V and therefore the components of the metric in this basis are constant.
Without loss of generality we can suppose that the basis e;, of ¢*Tjs is orthonormal. Since
Fo ’(TM,p) , 18 just multiplication by uy, the matrix of Fo in this basis is diagonal. The oper-
ators of multiplication by 7 have the same matrix Ej. Therefore equations (3.2.3) remain

valid. But now since 0 = (wz)],zg = (wz)’;‘; equation (3.2.4) says that for alli =1,...,1
ko
Oui e

Summarizing we have the following

Proposition 3.2.5. Let (M,o,e, E,n) be a Dubrovin-Frobenius manifold with Levi-Civita
connection V. Assume that at p € M we have TyM = @' _ (T,M);, where each (T,M )
1s an irreducible algebra. Let L be the integral submanifold of the idempotents mwy,...,m
passing through p and denote v: L — M the inclusion. Suppose that

1. The Euler vector field E is tangent to L.
2. The inner product *n|7, € Sym27z* is non-degenerate.
Then there exists a n-orthonormal frame ey, of 1Ty, such that
1. er, € U (Tarp)k-
2. The matriz U of the endomorphism Eo: *Tyr — * Ty is diagonal and Eoey, = uyey, .

3. The matriz V of the endomorphism p: o*Tar — ¥ T is antisymmetric and the block
diagonal entries Vk];‘l are constant.



Chapter 4

Isomonodromic Deformations
Inside the Caustic

In the previous chapters we saw that from any Dubrovin-Frobenius manifold (M, o, e, E,n)
we can construct a meromorphic flat connection V on the vector bundle Ty T over Pl x M
(mar: PLx M — M). Take a point p € M and consider the inclusion ¢,,: PLx{p} — P! x M.
Since the composition ¢, o m)s maps P! to the point p € M we get that the vector bundle
(tp o mar)*Tas is trivial. So by pulling back V via t, we obtain a trivial vector bundle
with flat meromorphic connection over P!. But this kind of object is nothing more than
a meromorphic differential equation on P! (see [8]). Indeed, for each point p € M the
corresponding differential equation reads

dy 1
E = <Z/,Lp — Ep0> Y. (401)

Hence, from any Dubrovin-Frobenius manifold we get a family of meromorphic ordinary
differential equations on P'. This family is parametrized by the points of the Dubrovin-
Frobenius manifold and reads

dY (z,p)

2 = (Lu) - B ) Y (1.0,

z
It has a Fuchsian singularity at z = 0 and a Poincaré rank 1 singularity at z = co. The
existence and unicity theorem for ordinary differential equations says that, on a neighbor-
hood of any non-singular point, the solution to equation (4.0.1) exists and once we fix an
initial condition it is unique. Moreover this theorem also asserts that if the differential
equation depends holomorphically on additional parameters, then the solutions will also
be holomorphic in these additional parameters.

In this chapter we study the monodromy data of this family. This monodromy data con-
sists of the exponents j, R of the monodromy transformation Y'(2) + Y (e?™2) at z = 0 of

o7
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a particular class of fundamental matrix solutions Y7.,, an exponent of formal monodromy
associated to the monodromy transformation at z = oo of a formal fundamental matrix so-
lution Yr near z = oo, Stokes matrices S, which codify how the asymptotics when z — oo
of certain fundamental matrix solutions Y,,, v € Z changes as we change certain sectors S,
and a central connection matrix C' relating the fundamental matrix solutions Y7, and Yj.

The principal part at z = 0 of equation (4.0.1) (the endomorphism p) is V-flat so that
its eigenvalues and Jordan form are constant along the Dubrovin-Frobenius manifold. This
no longer is true for the principal part at z = oo (the endomorphism Fo) so that the
Jordan form of Eo may change as we move on the Dubrovin-Frobenius manifold. This fact
makes it difficult to find formal solutions in neighborhoods W C M in which the Jordan
form of Fo changes. Therefore we will restrict ourselves to the integral submanifolds L of
the idempotents 71, ..., m passing through a point p € M (see proposition 1.2.1). We will
also suppose that the metric n when restricted to these submanifolds is non-degenerate
and that the Euler vector field is tangent to them. Proposition 1.2.2 says that the Euler
vector field F is tangent to L if and only if Fo is diagonalizable along L.

4.1 Monodromy Data at z =0

At z = 0 the differential equation (4.0.1) has a Fuchsian singularity. In this section we
study the monodromy transformation Y'(z,p) — Y (e?™z, p) on a neighborhood W of any
point p € M. We will show that we can find a solution Y'(z, p) such that the monodromy
transformation is independent of g € W.

Recall that on a Dubrovin-Frobenius manifold we have a 1-parameter family of flat
connections (proposition 2.3.1)

Vi=V+zo.

Note that this connection depends holomorphically on z and therefore the solutions will
also be holomorphic in z. By flatness, the space of V*-flat sections is m-dimensional.

Let (t',...,t™) be flat coordinates on a neighborhood W of p and choose any basis of
Tar(W) and let

m
O 1= Zazidtl
=1

be the connection matrix of V*. Let & = ®(z,t): C x W — GL(m,C) be a fundamental
matrix solution of Vv = 0. This means that the columns of ® are VZ*-flat sections of
Tamr (W) and as such, ® satisfies the partial differential equation

di® = -0, @
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where d; denotes the differential with respect the variables ¢*. Consider now the deformed
flat connection V on the vector bundle 73,7y;. Let z be a global coordinate on C; on the
chosen coordinates and basis for M and 7Tj; the connection matrix of V is

O =+ 2 Y(Ag + A12)dz =: @ + @.dz,

where Ag, Ay are the matrices representing —u and Eo in the chosen basis. Recall that V
is also flat (proposition 2.3.3) so that in particular we have
0w, ow;
ot 0z

— @y, ;] = (4.1.1)
which we can write compactly as
dio, = d,0p + [(.«_Jt,(z)z]. (411)

Proposition 4.1.1. Let (M,o,e, E,n) be Dubrovin-Frobenius manifold. Let ® be a funda-
mental matriz solution of VZ = 0. Then

di(® '@, ® + d71d,®) = 0. (4.1.2)

In particular, after the Gauge transformation Y = X we have d, X =0 and % does not
depend on the variables t*.

Proof. We have

dp(®7 10, @) =~ (— @) W,
+ & Nd@p + [0, @) P 4+ P 0, (—0u®) = 7 (dwp) .
and
dy (@1, @) = -0 H(—2;®)01d. D + O d,d P
= & H@pd, @ — (d.i0y)® — 0d, D)
= -0 Y(d.a)®.

Since ® = ®(z,t) is holomorphic on the variable z we can expand
o0
O(z,t) = Do+ »_ Bi(t)2".
k=1

Plugging this into V*® = 0 we get
Vd, = 0. (4.1.3)



60 CHAPTER 4. ISOMONODROMIC DEFORMATIONS INSIDE THE CAUSTIC

That is, the columns of ®g are V-flat vector fields for the Levi-Civita connection of 7.
Recall that Vi = 0 (proposition 2.3.2) so the basis that puts p in Jordan form consists
of V-flat vector fields. In particular we can choose the columns of ®¢ to be the basis that
puts g in its Jordan form which we will also denote by pu and by simplicity we will assume
that it is diagonal.

Let us now show that there is a fundamental matrix solution of VY (z,¢) = 0 such that
the monodromy transformation Y (z,t) — Y (e*™2,t) is constant.
By the last proposition after the Gauge transformation Y (z,t) = ®(z,t) X (z,t) we have

thZO
Y -

Since p+ > 50y A2 = d7 10, ® + & 1d,®, equality (4.1.2) says that the matrices A, are
constant. Given that the matrix valued function ®(z,t) is holomorphic on C x W it is a
univalued function of the variable z and as such ®(e?™z,t) = ®(z,t) so the monodromy
transformation of Y (z,t) = ®(z,t)X(z) can only come from the matrix X(z). But this
matrix does not depend on ¢ so its monodromy transformation is t-independent. Let us be
more explicit on this point.

We do a Gauge transformation
o0
X = (Id + ZTM) A
k=1

where the matrices T}, are to be found. We put
dz .

where the matrices Ry are also to be found. Substituting we get the recursive relations

k—1
(10, T},) — kT = Ry, + ZT,HRS — A1 Ty_1. (4.1.4)
s=1

We can solve the above equations by putting
e (ZI;;%(TI@‘*SRS);’ - Alkal) if o — pj #k

(Tk)i' — ) Hi—pi—
! 0 if if i — 5 = k
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and
; 0 if i —py #k
(Rk>] = = i k—1 . ! _
(A1Th-1) — doemy (Th—sRs)  if i — pj = k.

Since the matrix ® is holomorphic on z = 0 the series ), _; Aj2* is holomorphic at
z = 0, but the equation satisfied by X has a Fuchsian singularity at z = 0 and therefore the
Gauge transformation just found T' = Id+>",_, T},2* will be convergent on a neighborhood
of z =0 (see [5]). In the end we obtain a system

dz
a:z_l(,u—I—Rlz—l—---+szp)Z

where p is the maximum integer difference of the eigenvalues of u. In particular (Rk)§ may
not be zero only if p1; — p; = k. Let

R:=Ri+---+R, (4.1.5)

Theorem 4.1.1. Equation (4.0.1) has a holomorphic fundamental matriz solution Yr,e,
such that on any compact subset of C we have

Yie(z,t) = ®(2,0)T(2, 1) 2" 21 (4.1.6)
and the monodromy transformation of this solution is constant and equal to
YLeU(e%iz) = YLev(z)e%i“e%iR. (4.1.7)
Moreover if ® is V*-flat then Yie, is V-flat.
Proof. The only things we need to check is that

dztzB

= N+ Rz 4 -+ Rp2P) 2ttt

and that the monodromy transformation of z#zf is e?™#e?™R_We have that

dzt 2R
zdz e D N (TR PR P
z
Since p is diagonal we have that (2#Rz™H)3 = zHe™MoRG = 377 | 2Me"H8(Ry)3. But if
Rp)% # 0 then po — pg = k and therefore (zFRz7#)% = S P (Ry ak and MRz M =
B B B k=1 8

Riz+---+ RpzP. Now we compute the monodromy transformation. First we have that

p p
[6271*1'#’ R]g — Z(Rk)g(e%ri,ua - eZm’,uB) — Z(Rk)g(ewri(,uafug) - 1)627”'#3‘
k=1 k=1
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But again (Ry)§ # 0 gives po — pg = k € Z and therefore e2milha—rs) — 1. Hence
[e?™# R] = 0 and from this we immediately get [e?™#, zf{] = 0. Thus,

(627”2:)”(627”,2)1% — Z,u627m,uZRe27rzR _ Z“ZRGQWWGZMR.
O

The solution (4.1.6) of equation (4.0.1) is said to be in Levelt form. Its monodromy
transformation is e?™*e2™ . The matrices p and R are called monodromy data of equation
(4.0.1) at z = 0.

4.2 Monodromy Data at z = oo

We now study the monodromy data of equation (4.0.1) at z = co. This data consists of
Stokes matrices and an exponent of formal monodromy. Since the connection V# is not
holomorphic at z = co we cannot use it to argue as in the past section. Instead we will
start by finding formal solutions to equation (4.0.1). Then we will use a theorem from
Sibuya’s to get holomorphic solutions on certain sectors whose asymptotic expansions on
these sectors are the formal solutions that we found. There is some freedom on the formal
solutions that we will find and we will show that these formal solutions can be chosen in
such a way that they are V-flat. Finally, using V-flatness we will show that the Stokes
matrices are constant and, under some conditions the exponent of formal monodromy will
also be constant.

From now on we will use the notation for the indices k; that was established at the
beginning of chapter 3 section 3.2. Suppose that at p € M we have T,M = @2:1(TpM)k
where each (7),M ), is an irreducible algebra. Let L be the integral submanifold of the
idempotent vector fields passing through p, let ¢:: L — M denote the inclusion and let
uj ..., u; be canonical coordinates on L around p.

Suppose that the Euler vector field F is tangent to L, then (L,o,e, F) is an F-manifold
with Euler vector field and the endomorphism FEo is diagonalizable along E (see proposi-
tions 1.2.1 and 1.2.2).

If we further suppose that the restriction of the metric n to L is non-degenerate then
proposition 3.2.5 shows that we can find an orthonormal basis ex, of t*Tys such that the
matrix U representing Fo is diagonal with E o ey, = uyey,, the matrix V' representing p
is antisymmetric and the block-diagonal entries Vk;‘ are constant. We now write equation

(4.0.1) in this basis and start looking for a formal solution.

We start by doing a formal Gauge transformation

Y(z,u) = <Id+ in(u)zk> Y(z,u) = (i szk> Y. (4.2.1)
k=1 k=0
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where the matrices G, are to be determined. Setting

dy > o) o
—= (—U + kZlBk(u)z ’f) Y, (4.2.2)

where the matrices By are also to be determined, we get the recursive relations

k—1
—[U, Gl + (k = 1)Gp1 + VGr_1 — > Gp_sBs = By for k > 1. (4.2.3)
s=1
So if we already now G ...,Gg_1 and By, ..., Bix_1 we can try to solve the above equation

and obtain G, and By. We do this in the following way. For k = 1 we need to solve
—[U, Gl] +V = Bj.

Taking the entry on the i, row and the jg column of the above equation we get

—(ui — ) (Gl + (V)i = (B, (4.2.4)
So if i # j we can put ,
iw V5
(Gl)jﬁ = u — u]

If i = j then u; = u; so we can put (G1)§g = 0 but we are forced to put

In particular note that the matrix B is constant.
Analogously, for £ > 1 and 7 # j we can put

k—1 to
i 1
(Gr)j; = — ((k —1D)Gr1+ VG — z; Gk—sBs>
S= jﬁ

(Br)jz =0.

For i = 5 we put

0
' k—1 ta
(By)i~ = <(k — )G 1 +VGr1 — ZGksBs> .

s=1 ig
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By construction the matrices By are block diagonal i.e. (Bk);(; =0 when i # j.
We now do the Gauge transformation

Y =e Uy,
we get,
> . L dy
U BizF e Vsy =7V [ —UY + =— |.
( —i—; L2 )e e + e

But the matrices U and By, have the same block-diagonal structure and on each block e~V
acts by multiplication by e~ "#?. Therefore we get

dy > .
= (Z Bkz_k> Y. (4.2.5)
k=1

This equation is a direct sum of [ formal local Fuchsian systems of dimension dim(T,M ).
The matrices H that we will define in the following have the same block structure of this
direct sum. We now take Hy = Hy(u) a matrix diagonalizing the matrix

z

ko _ y/ka
(B = Vi
We will call the matrix
B := Hy'BiHy (4.2.6)

the exponent of formal monodromy. We will see that if we choose the k-th block of
Hy(u) consisting of flat sections of 7, o V then, a solution having a prescribed asymptotic
expansion, depending on Hy, will also be V-flat 4, e by solving recursively the equation for
the z-component we get a solution for the whole system. For k > 1 let

By = Hy ' BLHy. (4.2.7)
Then after the Gauge transformation Y = HoX we get
dX L= ) e

Remark 4.2.1. In the following we make the assumption that each of the blocks of the
matrix B are non-resonant. At present, except for the semisimple caustic case, when B is
always non-resonant (see section 5.1) , there is no geometrical or algebraic interpretation
for the block diagonal entries of V.

We can now find a formal Gauge transformation (it is formal because it depends on the

formal series of the Bk)

k=1
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The non-resonance condition implies that by solving recursively the equations (having
found Hy,...,Hx_1 and By,..., By)

k-1
1
H;, = —% <Bk+1 + ;Bk+1lHl> (428)

we can write a formal solution of equation (4.0.1) in the following form

oo o
Y = (Id +) sz—k> e Y#H,y (Id +) le—l> ZB.
k=1 =1
Since on each block of the Hj the matrix e U?

write the above as

is acts by scalar multiplication, we can

Yr = (Ho + (HoHy + G1Hp)z™t + O(272))e V725, (4.2.9)

We now discuss the sectors in which certain holomorphic solutions to equation (4.0.1) will
have the above formal series as asymptotic expansion.

The gauge transformation (4.2.1) is usually divergent, but there are certain sectors S, of
the z-plane in which this formal power series is the asymptotic expansion of a holomorphic
gauge transformation which takes equation (4.0.1) to the block diagonal equation (4.2.2).

Definition 4.2.1. A line ¢ through the origin of the z-plane is called admissible for the
system (4.0.1) if for all z € £\ {0} we have that Re(z(u; —u;)) # 0 whenever u; — u; # 0.
Let ¢ be the oriented angle between the positive real axis and an admissible line ¢. For €
sufficiently small, N sufficiently big and v € Z we define sectors S, of opening angle m + 2¢
by

So:={z€Clarg(z) e (p—m—¢€,0+¢€),|z| >N}

S, :=e""S,.
Note that the intersection of two subsequent sectors has opening angle 2e.

On the following u denotes a parameter on a small domain W C C!, for the applications
we have in mind u = (uq, - - ,u;) are the coordinates on a neighborhhod of the point p € L.

Theorem 4.2.1. (Sibuya [20])Let A(z,u) = > 50, Ax(u)z™F with Ay € Mat,(Og) be
holomorphic on {z > Ny > 0} x {|u| < €} such that Ao(u) = A(u) = A1 & - D Ay is
diagonal with | < n distinct eigenvalues where each matrix Lambday, is diagonal with only
one eigenvalue. Then, for any proper subsector S(c, ) of S, there exists positive numbers
N > Ny, e < ¢y and a matriz G(z,u) with the following properties:

1. G(z,u) is holomorphic in (z,u) for |z| > N, z € S(a, B) and |u| < e.
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2. G(z,u) has uniform asymptotic expansion for |u| < € with holomorphic coefficients

Gk (U),

G(z,u) ~ Id+ ZGk(u)z_k, 2z — 00,2 € S(a, B),
k=1
where the matrices Gy, are computed from (4.2.3)

3. The gauge transformation Y (z,u) = G(z,u)Y (z,u) reduces the system % = AY to
block diagonal form

— = B(z,u)Y, B(z,u) = Bi(z,u)®--- & Bs(z,u)

and B has uniform asymptotic expansion for |u| < e with holomorphic coefficients
By (u)

B(z,u) ~ A(u) + Y Bi(u)z™*, 2z — 00,2 € S(a, B).
k=1

Now we apply this theorem to the matrix A = —U+V 27! of system (4.0.1) restricted to
the submanifold L. We get that the formal gauge transformation of (4.2.1) is asymptotic,
in proper sectors Sy, to a holomorphic gauge transformation G, that takes system (4.0.1)
to the block diagonal form (4.2.2). Hence, on each sector there is a holomorphic matrix
G, and a fundamental matrix solution of system (4.0.1) of the form

Y, =G, He V28 =¥, VU2, (4.2.10)
with asymptotic expansion on the sector S,
Y, ~Yp.

Stokes matrices are defined in the usual way. On the overlap of two adjacent sectors
Sy, NSy41 we have that
Yit1(z3u) =Y, (z;u) S, (u).

The matrix S, is called Stokes matriz. Now we proceed to show that the matrices S, (u)
are independent of the parameter u. We need some preliminaries.

So far we have constructed solutions Y, (z,u) of equation (4.0.1) with some prescribed
asymptotic expansion on certain sectors S,. Now we come back to flat sections of the
connection V on the vector bundle (s o (id x ¢))*Tas over P! x L. If Y is a fundamental
matrix of V-flat sections then

dY = —@Y

where @ is the connection form of V. In particular the differential equation (4.0.1) is
satisfied for all p € W C L. Therefore there exist GL(n,C)-valued functions D, (u) such
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that Y(z,u) = Y,(z,u)D,(u). In the following two lemmas we show that if we choose
Hy(u) in an appropriate way we can make D, to be independent of u € W. Recall that
the connections 7, o V on ¢*(Tarp)x are flat so that the connection @gﬁzlﬂ'k oV on t*Typ
is flat. Let w® denote its connection matrix.

Lemma 4.2.1. There exists a matriz Hyo(u) whose columns are a basis for the @ZzlﬂkOV—
flat sections and such that H&lBng s the exponent of formal monodromy.

Proof. Let Hy be a matrix of @2:17% o V-flat sections of ¢*7Tas . Then

d(Hy'B1Ho) = —Hy ' (—w™)B1Hy + Hy 'dByHo + HoBy(—w™)Hy
= Hy ' (dBy + [w®, B1])Ho.

Now recall that By is block diagonal and (Bl)l]zg = (V)zg But by proposition 3.2.1

dB; = [By,w”]. Therefore the matrix H(;lBlHO is a constant matrix. Let C be a constant
matrix diagonalizing H !B Hy. Then HyC still consists of @2:17@ o V-flat sections and
B=C"'Hy'BiHyC. O

Lemma 4.2.2. Let Y(z,u) be a fundamental matriz of V-flat sections and let Y, (z,u) be
a solution of equation (4.0.1) with asymptotic behavior (4.2.9) on the sector S,. Then'Y,
is V-flat if and only if the blocks of Hy are mj, o V-flat.

Proof. Let d,, denote the differential with respect to the u; variables and let &, be the part
of the connection form of @ disregarding the dz-component (not that since the matrices
Gy.Hy and D, don’t depend on z we have d,Hy = dHy). First

dY - Y ' —d)Y, Y, ' =Y,dD, D'y, !

On the sector S, we have

d,Y, ~ (dHy + d(HoH; + GlHo)Z_l + 0(2_2 )G_UZZB
_ (HDdUZ + (H()Hl + Glﬂo)dU + O(z—l))e—UzZB

Vb~ 2 BeVE(HG — (HWHy  + Hy'Gh) 27t + 0(272)).

v

Using that the matrix dU which is diagonal with entries du; commutes with the matrices
H;, we have
dyY, - Y,V ~ —2dU + dHy - Hy'' + [dU,G1] + O(z71).

Since d,Y - Y1 = —, on the sector S, we have

~@y + 2dU — [dU,G4] — dHy - Hy' + O(2™ 1) ~ Y, (dD, - DY)y, .
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Let us now compute —w,, + 2dU — [dU, G1]. Recall that (see equation (3.2.1))

!
Wy =Y (wp + 2Ej)duy,
k=1
l
= 2dU + > widuy
k=1

where wy, are the connection matrices of ¢*V. The block diagonal entries of [dU, G;] are
zero. Writing dU = ), Ejduy, then from equation (4.2.4) we get

du
ko _ y/ka k
[EkdUk,Gl]jB = ‘/jﬁ T—u‘]
but from equation B
we obtain p
ka _ _y/ka_ Uk
(Wk)jﬁ duy, = —Vjﬂ wp —

For i # j # k # i we also have
(wk)ézduk = [Ekduk, Gﬂ;‘; = 0.

In the end we obtain that
—wy, + 2dU — [dU, G1]

is the connection matrix of @, o V. Hence, the blocks Hy are mio-flat if and only if on
the sector S,
Y,(dD, - D;YY, L ~ Oz

Let us write

(o]

Y,dD, - D, 'Y, ' ~ Y FpzF = F,.

k=1

Using (4.2.10) on S, we have

e"U2BaD, . D 2BV VIR Y, (4.2.11)

Note that since the matrix YV is holomorphic on z = oo, the term YV_IF,,YV vanishes as
2! when z — oo.
In the following let us denote by A[; j the block of the matrix A consisting of the entries
A;‘; with iy € (i) and jg € (j). The off-diagonal blocks of the left hand side of (4.2.11) are
of the form

i)z Bua(dD, - DY) 2P0
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Since the sector S, has opening angle bigger than 7 this sector intersects the line Re((u; —
uj)z) = 0. On one side of this line the function e(#i=4j)% diverges when z — co. But the
above expression must vanish as z~! when z — 0o so we conclude

The block diagonal entries of the left hand side of (4.2.11) are of the form
eV (D, - D).

For o = 8 we obtain that (dD, - D;l)ﬁz vanishes as z~! when z — oo and therefore (dD,, -
D_I)Z:Z = 0. When «a # 3 then since we supposed that the diagonal blocks of the matrix

v
B are non resonant, the above expression can be O(z71) if and only if (dD,, - D, 1);:; = 0.
Hence we conclude that Ehe blocks of Hy are 7 o V-flat if and only if dD, = 0 and this is
true if and only if Y}, is V-flat. O

Now we can prove

Theorem 4.2.2. There exists holomorphic solutions Y, (z,u) of equation (4.0.1) such that
Y, (z,u) ~ (Ho+ (HoHy + G1Hp)z ™t + O(272))e V%28 for 2 € S,,
and the corresponding Stokes matrices S, are u-independent.

Proof. By the last lemma we can choose Y, in such a way that
d.Y, Y, = —wy
for all v € Z. On the overlap S, N S,4+1 we have

—wy =dyYy1 - Y, =dY, Y, M+ Y,dS, - S,Y
= —w,+Y,dS, S, Y, L

4.3 The Central Connection Matrix

Up till now we have seen that on a neighborhood W of p € L, differential equation (4.0.1)
admits a solution Y7, that locally around zero is written as (4.1.6) and whose monodromy
data (u, R) don’t depend on u € W. We have also seen that there are certain solutions Y,
that on sectors S, near z = oo have asymptotic expansion (4.2.9) and whose Stokes matrices
and exponent of formal monodromy are constant. The last part of the monodromy data
that one associates to the meromorphic differential equation (4.0.1) is a central connection
matriz C defined by

Yiew(z,u) =: Yo(z,u)C(u). (4.3.1)
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Theorem 4.3.1. The central connection matriz is constant.

Proof. By theorem 4.1.1 and lemma 4.2.2 the fundamental matrix solutions Y7, and Yy of
equation (4.0.1) can be chosen to be V-flat. Hence

—w, =dYy, Y ' =dYy Yy '+ YodC - CTVYy T = —w, + YodC - CTY

Putting together theorems 4.1.1,4.2.2 and 4.3.1 we obtain

Theorem 4.3.2. Let (M,o,e, E,n) be a Dubrovin-Frobenius manifold and suppose that at
p € M we have T,M = @&._ (T,M); where each (T,M )y is an irreducible algebra. Let
L be the integral submanifold of the idempotents my,...,m passing through p and denote
t: L — M the inclusion. Suppose that:

1. The Euler vector field E is tangent to L.

2. The inner product *n|r, € Sym2’7'L* s non-degenerate.
Let ey, be the orthonormal basis of *Tys of proposition 3.2.5 and suppose further that:

3. The eigenvalues of any of the diagonal blocks of the matrix V representing the endo-
morphism p: *Tar — Tar on the basis ey, don’t differ by a non-zero integer.

Then there exists holomorphic fundamental matrixz solutions Yiey, Yy, v € Z and a formal
fundamental matriz solution Yr of equation 4.0.1 such that the corresponding monodromy
data are constant.

Let us now obtain a relation between all the monodromy data (u, R, Sp, S1,C). By con-
struction, whenever w € Sy the fundamental matrix solution Y5 has asymptotic expansion
Yr = (Ho + O(w™1))e V" w?B (see equation 4.2.9) so when z € Sy then

Ya(e?™2) ~ (Ho + O(z71))e Uz BemiB,

But then the fundamental matrix solutions Yp(2)e?™*® and Y5(e?™2) have the same asymp-
totic expansion on the sector Sy. Arguing as in lemma 4.2.2; since the sector Sy contains
a basic set of Stokes rays, we conclude

Ya(e2™2) = Yo(2)e?™B.
The definition of the Stokes matrices immediately gives
Ya(e2™2) = Yp(e2™2)S515s.
Using this last to equation we get
Yo(e*™2) = Yo(2)e?™B(515,) 7! (4.3.2)

The fact that Fo is n-symmetric and p is n-antisymmetric will give us a relation between
consecutive Stokes matrices. First we have
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Lemma 4.3.1. Let Y,(z,u) and Yg(z,u) be two solutions of equation (4.0.1). Then

d

%n (Ya(eimz), Yg(z)) =0

Proof. We have
(d:Yo(=2),Y5) = n(—(—E o -2 1)Ya(—2),Ys(2))
= n(Ya(=2),(Eo—z"'n)Yp).
and
U(Ya(_z)7 szﬁ(z)) =7 (Ya(_z)7 (_U + Z_llu')YB) .
O

Let us now apply this to the three consecutive solutions Yy, Y7 and Y5. By the previous
lemma, we have

n(Y1(—2),Y0) = P
n(Ya(=z),Y1) = P,
for some constant matrices P;. Using the defining relations of Stokes matrices we have
Py =n(Ya(—2),11)
= n(Y1(=2)51, Yo(2)S0)
= ST P,Sy.
So that
ST = PSytpy.

Let us now obtain a relation between the matrix Hy and the exponent of formal monodromy
B. If z € Sy then €™z € S; so that

Yo(2) ~ (Ho + O(z71))e™ V2"
Yi(e™z) ~ (Ho + O(z71))eV#2BemB,

Therefore ,
Py =n(Y1(e™2), Yo(2))

~ eﬂ—iBZBT](HO7HO)ZB +emBzBeUZO(z_1)e_UzzB.

In particular the term ~ e™528n(Hy, Hy)z® must be z independent so that taking its
derivative with respect to z we obtain

BHI'Hy+ HI HyB = 0.

We can summarize the above in the following propostion



72 CHAPTER 4. ISOMONODROMIC DEFORMATIONS INSIDE THE CAUSTIC

Proposition 4.3.1. Consider the holomorphic fundamental matriz solutions Yy, Y1 and
Y of equation (4.0.1) then
ST = RSy ' Py

where

and



Chapter 5

The Semisimple Caustic Case

5.1 The case of a semisimple Caustic

Let (M,o,e, E,n) be a Dubrovin-Frobenius manifold of dimension m. By definition the
caustic K C is the set of points p € M such that T,M has less than m idempotents.
Proposition 1.1.4 says that the caustic is an hypersurface which we will suppose non-empty.
We will assume that, generically, for p € K the algebra T, M has exactly m—1 idempotents.
In this case the integral submanifold L of the m — 1 idempotents passing through p will
be an irreducible component of the regular points of K. For any point p € L the germ of
the F-manifold M at p will decompose as a product of one 2-dimensional F-manifold and
m — 2 one-dimensional F-manifolds. Up to isomorphism there is only one 1-dimensional
germ of F-manifold which we denote by A;. Germs of 2-dimensional F-manifolds were
classified by Hertling. Up to isomorphism they are classified by a natural number n > 2
and the corresponding germ is denoted by I»(n). Let V be the matrix of the endomorphism
w restricted to L. In this section we will show that if at p € L we have

(M,p) = Ir(n) x T2 A
and (T,M); is the only two-dimensional irreducible subalgebra of T, M then
in—2
2 n

Correspondingly, the exponent of formal monodromy of Yy (see equation (4.2.9)) has all
diagonal blocks equal to zero except for the first one which is

n—2
0
311:<2n n)
[1,1] 0 -n2

This means that we can read of the structure of F-manifold of the germ (M, p) only from
the exponent of formal monodromy. To begin let us state the classification by Hertling of
germs of two-dimensional massive F-manifolds

Vi =-Vi=1

73
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Theorem 5.1.1. (Hertling [14] theorem 4.7) Up to isomorphism the only germs of two-
dimensional massive F-manifolds are the germs Iz(n) = ((C2,0),0,¢e) with n € N>o. On
some coordinates t,us the multiplication is given by

8UQ =€ at o 8t = t"’z&m.

An Euler vector field is
2
E=—t0; + uQBU2,
n

and the caustic has equation t = 0.

This theorem gives us a useful coordinate system on an open neighborhood W C M
around a point p € K. Indeed, the germ of M at p is a product of one I3(n) manifold and
m — 2 A; manifolds so around p we can use the functions (¢, us,...,u,) as a coordinate
system. In these coordinates the Euler vector field is

9 m
E=—to; + Z UG TG
k=2

T
Proposition 5.1.1. Let (M, ole,E) be an F-manifold with Euler vector field. Suppose

that an irreducible component K C KNOf the caustic is semisimple. Then the Fuler vector
field is tangent to the reqular part of K.

Proof. On the coordinates (¢, ua, ..., un) around a point p € K we have that K = {t =0}
and the tangent space to K is generated by the vector fields m; = 0y, ¢ = 2,...,m. But on

t = 0 we have
m
E = Zumz
k=2

O]

Since the Euler vector field is tangent to K, proposition 1.2.2 tells us that Fo is diag-
onalizable along K.
Now let us look at the form of the metric nn on the basis 0, 7,7 = 2,...,m. Since the
algebras (T, M ), are orthogonal between themselves and 1(d;, ;) = t"~2n(m2, m2) we have
that (here we assign the index 1 to the variable t)

t" 2y m2 0 ... 0
721 me 0 ... 0

0 0 733

0 0o ... Nimm,
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In the case we are dealing the component K of the caustic K has a well defined normal
direction, so after choosing one side and noting that at the caustic 1711 = 0 we get that a
unitary normal to the caustic is

N=—i¥P2p 4
M2 V1122

Now consider the orthonormal basis consisting of the normal vector N and the normalized
idempotents

9.

-
fir=—

_H.

Theorem 5.1.2. Let (M,o,e,E,n) be a Dubrovin-Frobenius manifold with non-empty
caustic K and suppose that for a point p € K the germ of M at p as an F-manifold is
isomorphic to Ia(n) x (A1)™ 2 with n > 3. Then the only non-zero entries of the exponent

1 n—2
of formal monodromy are £5%—=.

Proof. We need to compute

V2 =n(fo, uN) = —n(f2, VN E).

We have

2 - 2 =
VE = *dt®8t+ E dus®7rs+—tV8t+ E USVWS.
n n
s=2 s=2

Therefore using the Christoffel symbols Ffj of the basis Oy, m;,1 = 2...,m gives

2 2 - 2 m
VatE = (n + Etrh + ZUSF%S> O + <nﬂ:€1 + SZQUSF%S> Ty + -0,

s=2
2 i 2 i
Va, B = (ntl“§1 +> usrés) d, + (1 + H751“%1 + ZusFi) To 4.
s=2 s=2

With this we get

n—2 2 7 7
V2= + —t [ r 12 + 2 m22) — — It me + r? 122 }
1 n n 22 ( 21 21 ) Mo ( 11 11 )

+ ; Ug |:7722 (F%STHQ + F%anQ) - @ (F%s’th + F%S’I’I22):| .

Now using the form of the metric and the fact that, on the caustic {t = 0}, we have
n22,s = 0 for s > 2 (f s denotes the partial derivative of the function f with respect to the
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s-th coordinate) we get

i 17222
ol 112 _ Y722
oo ( 227112 227722) 2 1122

i i 1221

—— (Pigma2 + Tiyme) = —5 —,
o ( 127 127 ) 2 e
and for s > 3

{ { 7122, s
— (Tgma + D3ima) = 5 —>
oo ( 257 2471 ) 2 s

i 1 1M12,s

~ (! T2 o) = — o 123

712 (Framz + Tn22) 2 ma2

So on the caustic

—9
Vf:i[" +

| =

n

m
o <7722,2 _ "722,1) I Zus ("722,5 _ 7712,s>
722 M2 e 22 m2
(7 U u
22, 12, 2
<Z Us <S - s) + —(m22 — 7722,1))] .
; 1722 M2 M2

1=Ss

Il
.
—
S
|
\V]
+
[N

Along the caustic we have E = Y ", u;m; and the condition Lgn = (2 — d)n implies
E(n22) — dnz2 and E(mz2) = (—d + "72)7712. This gives

n

T (n—2 U9
Vi = 3 ( —t %(7712,2 — 772271)> .

On this coordinates we also have n(e, —) = madt + > .~ niidu; but by lemma 2.1.1 this
form is closed and therefore 7122 — 1221 = 0. L]

Remark 5.1.1. The germ of F-manifold I5(2) is isomorphic to A; x A; and as such is not
irreducible. If we suppose that at p the canonical coordinates u; and us are equal but p
is semisimple, an analogous computation would show that 7(fs, ,u%) = 0. On the work
[7] it is shown that under this conditions, one can extend the isomonodromic fundamental
matrix solutions of equation (4.0.1) on a semisimple point p such that E,o has different

eigenvalues, to semisimple points g such that E o has repeated eigenvalues.

Example 5.1.1. Let us compute the matrix Py of proposition 4.3.1. The matrix (Ho)(; 1
diagonalizing the block By j) is of the form

(Ho)y = (it"((l;)) ig@))
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0 2rs
HOTHO - (27“5 0 )

hence

This gives

n—2

0 2rse” 2

(P = em B 2B HOTHO'ZB[I’I] = n—2
2rse "' 2n 0

Let us use theorem 5.1.2 to compute the F-manifold decomposition for the three-
dimensional Dubrovin-Frobenius manifolds of example 2.2.2. We will do this explicitly for
the Fy potential, the others being analogous and simpler.
From the potential Fpr of example 2.2.2 we get that on the basis 0,9y, 0, the operator of
multiplication by the Fuler vector field has the form

v Hyz(2y+2%) 55 (12y°36y223 + 29)
y w4yt + i %yz(Qy + 23)
2? 3y x

ol

(S

Since the canonical coordinates are the eigenvalues of this matrix (proposition 1.2.3) the
caustic is contained in the locus where at least two of these canonical coordinates coincide.
This locus is described by the discriminant of the characteristic polynomial of this matrix
which in this case is a multiple of the polynomial

y2(y — 23)5(27y + 523)3.

We can divide the zeroes of this polynomial in two components: the semisimple coalescence
locus, where the multiplication remains semisimple and the caustic. To identify each of
these components we use propositions 1.1.2 and 1.1.3. For example, along the first com-
ponent of this surface y = 0 multiplication by 9, has three different eigenvalues and thus
y = 0 belongs to the semisimple coalescence locus. Along the components y = 23 and
Yy = —2%2:3 the operator of multiplication by @, is not diagonalizable and therefore the
caustic is the union of this two components.

The component y = 23 is parametrized by = r,y = s3, 2 = s and the tangent space
to this surface is generated by 9, = e and 95 = 3529, + 0. In this basis multiplication by

Js has matrix
0 %38
1 95t )
The eigenvectors of this matrix are eg = —%8481 + 3328y +0, and e3 = %54&6 + 3523y +0,.

Along the caustic the tangent space decomposes as the direct sum of a two-dimensional
and a one-dimensional algebra. To identify the unit in each of this algebras we use the
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Euler vector field. In our previous notation, the eigenvalue associated with w9 must have
multiplicity two and that of w3 has multiplicity one. Thus we obtain e = mo + 73 =
—@eg + @63 so the square norms of 7o and w3 are —@ and @ respectively. The
unitary normal is the vector N = —3s20, + 0y and therefore an orthonormal basis along

this component of the caustic consists of the vectors
N = —35%0, + 0,
fQ = 1'4827@
f3 = 4827'(’3.

On the basis d,, 9y, 0. the endomorphism x has matrix diag(—%, 0, %) and this gives

3
pi2 = (N, pf) =i—

10°
Therefore, along the component y = 23 we have
n =29.
We can parametrize the other component y = —2%23 by x =r,y = —2%33, z=s. An
identical procedure now gives
n=3.

The cases of Bs and A3 are analogous and simpler. On the B3 Dubrovin-Frobenius mani-
fold the matrix of the endomorphism g is diag(—%, 0, %) and the bifurcation diagram has
equation

y?(2y — 32242y + 22)3.

Again y = 0 corresponds to the semisimple coalescence locus and the other two components
conform the caustic. On the component {2y — 322 = 0} we have n = 4 and on the
component { 2y+ 22 = 0} we have n = 3. Finally the A3 manifold has bifurcation diagram

Y2 (27y% + 822)
Once again y = 0 is the semisimple coalescence locus and on the other component we have
n=3.
5.2 Three-dimensional Dubrovin-Frobenius manifolds

In this section we compute the exponent of formal monodromy, Stokes matrices and cen-
tral connection matrix of system (4.0.1) when restricted to a semisimple component of the
caustic K of a three-dimensional Dubrovin-Frobenius manifold M of charge d # 0.
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Let (M, o, e, E,n) be a three dimensional Dubrovin-Frobenius manifold of charge d # 0
and suppose that at p € M we have

(M,p) = IQ(TL) X Al.

Then p belongs to the caustic K. Let m2 € Tr,(n), m3 € Ta, be the unit vectors and sup-
pose that the metric 7 restricted to K is non-degenerate (for three-dimensional Dubrovin-
Frobenius manifolds of dimension 3 and charge d # 0 this is always true).

Proposition 5.2.1. Let (M, o, e, E,n) be a three dimensional Dubrovin-Frobenius manifold
of charge d # 0 with non-empty caustic K. Suppose that for a point p in the regular part
of an irreducible component of K we have

(M,p) = Ig(n) X Al.

Then on the basis

N fo= o fs = o
|2 | 3]
The matrix V' representing the endomorphism i is
V=|[i%2 0 i
—n=z id 0

Proof. Evaluating Lro = o on (e, e) we obtain [E, e] = —e. Evaluating Lgn = (2 — d)n on
(e,e) and since Ve = 0 we get (2 — d)n(e,e) = 2n(e, e). Since d # 0 we get n(e,e) = 0. At
the caustic we have e = m9 + 73 and therefore

3| = i|mal.
Hence we obtain e = |ma|ea + |m3les = |m2|(e2 + ie3). On the other hand we have pe =
Q;Qde — V.E = —ge so that the vector (0,1,7)7 is an eigenvector of the matrix V with
eigenvalue %. Thus we obtain
g (0 o V& v /o0
5 (1= -V¢ 0 Vi) |1
i e 7| i

From this we get the equations V31 = iVy and V32 = ig. But by theorem 5.1.2 we now that
the entry V! is —%t”T_nQ. O]

We now start the computation of the Stokes matrices and the central connection matrix.
Let a = i% and b = V3. The differential equation (4.0.1) is

—uz 0 0 1 0 b b
0 —-u, O |+-[-b 0 a Y. (5.2.1)

0 0 —us “\=ib —a 0

av _
dz
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Using the Gauge transformation Y = e*2?Y we get a new system

& 0 O 0 0 b b
Cfi—y = 0 0 0 + 1 b 0 al]Y.
z 0 0 w9 —usg “\=ib —a 0

Next we do the change of variables z = (ug — ug)w and obtain

000 0 b b
dy 1
= 00 O0]+=|-b 0 a Y. (5.2.2)
w 00 1 WAZib —a 0

. . . vy _
By doing the formal Gauge transformation (4.2.1) we get a block diagonal system 9~ =

(=U 4+ Biw™' + Byw 2 +---)Y with

0 b 0 —b% iab 0 1 0 0 b
Bi=|-b 0 0 By = | iab a? 0 G = 0 0 a
0 00 0 0 b —q? 27U\ 0 0

This matrices are obtained from the equations (4.2.3).We now do the usual transformation
Y = oY with Ag = diag(0,01) to cancel the matrix Ag. A matrix that diagonalizes the
matrix By is

1 1 0
Hy=1[7« —1 0
0 0 1

Then we perform the Gauge transformation ¥ = (Id + pa] ka_k)f/ to obtain the
system % = gff with B = diag(ib, —ib,0). We have

b2—a2 _Z(CL—b)2 0
2 4b—23
Hy = | ilatb)? b2—a? 0
4b+21 2
0 0 a’® —b?

and H; is computed from the equation (see equation (4.2.8))
[B,Hy|+ H; + B, =0.

Putting all together we obtain that a formal fundamental matrix solution of system (5.2.2)
is given by
Yr = (Ho + (HoHy + G1Ho)w ™! + O(w=2))eovw?

For the computation of the Stokes matrix we will need the first row of this matrix which
consists of the following series

Yii=w?4+0w™) Yo=w®+0w™) VYiz=ibew t+0w3?). (5.2.3)
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The differential system (5.2.2) consists of the equations

. Y2 +1y3
1 =b——
w
. by — a
o = —JL—9¥5 (5.2.4)
w
) 1by1 + ayo
Y3 =ys — —————.
w

To compute the Stokes matrix we will use the third order scalar ordinary differential equa-
tion satisfied by y;. One can check that this equation is

2—w. ala—1)—w., b2
( ) U1 — w—y:(). (5.2.5)

i+
w w?

The general solution to this equation is

s Fy ( —ib b 'w) + BeVw T Fy (_i(‘”b) i(b—a) 'w) +

1+ia —ia ? l1—ia —2ia ’

'ye_‘”rwl‘”“gFg (1+2iJ(rC;;b) 1;35;;;1)) ;w) = OdFl + 5F2 + ’}/Fg. (526)

The constants «, 5 and v are chosen according to the solutions provided by the first row
(5.2.3) of a formal solution of the system (5.2.2), we now give more details. First let us
write down the asymptotic expansion of the general solution (5.2.6), we have that on the
sector —(2+€)§ < arg(w) < (2—¢)7, with e£1, the function o F» has asymptotic expansion
(see [9])

(Bl
oI (%i %5 ]w) ~ M[ewwal+a2_ﬁl_ﬁz+

F(Oq)F(az - 041) emi,, \—a1
(81 — a1)l'(B200) (M)
F(OﬁQ)F(Oél — Ozg)
L(B1 — a2)l'(B2 — az)

(e™w)2)(1 4+ O(w™h)) (5.2.7)

which we will write as
o Fy (gi %; |w) -~ [Riewwal—i—az—ﬁl—ﬁz + Si(e“riw)_al +E(eewiw)—a2](1 + O(w_l))

The subindices of R;,S;,T; will correspond to the three solutions Fy, Fy, F3 of (5.2.6). In
this way we obtain that on the sector —(2+4¢€)§ < arg(w) < (2—¢)7 the functions F; have
asymptotic expansion

Fl ~ (Rlewwfl + Slefmbwib + Tleeﬂ'bwfib)(l + O(wil))
Fy ~ (Roe™ e w™ + SyelmImae=emby,ib o 1y p1=a)magenby,=iby (1 4 O(w™)) (5.2.8)

F3 ~ (Rge—mzeww—l - Sge(e—l)mze—ewbwib o Tge(e—l)ﬁaeewbw—ib)(l + O(w—l))
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With this, on the sectors —(2 + ¢€)§ < arg(w) < (2 — €)7, the general solution (5.2.6) of
equation (5.2.5) has asymptotic expansion

[(aRy + BR2e™ + yRze ™ )e“w ™'+
(aslefeﬂ'b + IBSQe(lfe)ﬂ'aeﬂTb o VSSe(efl)ﬂaefeﬂb)wib_i_
(aTlearb + ﬁTze(l—e)waeﬂrb - ,yTge(e—l)ﬂ'aeeﬁb) —zb](l + O( )) (529)

We now compute the Stokes matrix. According to Sibuya’s theorem on the sectors S(€) :=
{weP|-2+¢F <arg(w) < 2—e)F}N{w|R < |w|}, with e = £1 and R >> 0
there exists solutions y% ), yé ), y:(,) 9 of equation (5.2.5) which have the asymptotic expansion
Y11, Y12, Y13 of (5.2.3). To compute the Stokes matrix we need to write the solutions

yi(_l) as linear combinations of the solutions y( ). To do this we use the solutions E;

given by (5.2.6) of equation (5.2.5); we will write (F, Fy, F3) = (y§ ),yé ),ygl))P and
W) = (B B, F)@Q so that (387 08Dl = (0 08), 08 PQ and
the Stokes matrix is S = PQ.

In order to do this note that since the sectors S(® contain a complete collection of Stokes

rays, the solutions having a prescribed asymptotic expansion on each sector are unique.
Comparing (5.2.9) with (5.2.8) we get

1
F = Slefﬂbygl) + Tleﬂ'by(l) _ leyél)

b
— SQG b ( ) —I—T ewbyé ) %Rgewayél)
= S3e ™ (1) + T e’rby( ) %R e*mygl)
so the matrix P is
Sle_ﬂ-b SQB_Wb —Sge_ﬂ-b
Tie™  Tpe™ —Tze™ | (5.2.10)
—%Rl —%Rgeﬂ-a —%Rgefﬂ'a

To obtain the matrix @ we need to find the constants «, 3, such that (5.2.9) has the
asymptotic expansion of (5.2.3). That is we need to solve the following systems of linear
algebraic equations

Ry Roe™ Rgze™ ™ Q 0 0 b
Sl e7rb S2627rae7rb _536727me7rb B — 1 , 0 , 0
T1—7rb T2627ra6—7rb _T36—27ra6—7rb o 0 1 0

The solutions can be obtained with the help of a computer software. The matrix () has
as columns the solutions («, 3,7)” and again, using a computer software, and substituting
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the values of R;, S;, T; which can be obtained from (5.2.7) we get that the Stokes matrix
S = PQ is

1 0 2bm(24b)
NGNS
S=10 1 T'(1—)I'(1+i(a—b))I'(—i(a+d)) (5.2.11)
0 0 1

We now compute the central connection matrix relating the solutions Y, and Y. We
want to find solutions of system (5.2.2) around z = 0. First we diagonalize V' via the
transformation Y = TpY with

0 a 2ab
To= |1 b —i(a®+b?)
i b b2 — a2
We obtain a new system
df/ 1 wa 0 0 1 a25b2 zb(b22—a2) i(a2;b2)2 )
—=1—=10 0 0 |+ ib b2 b a2b e
dw W\o 0 —ia a _1 - e
2 P 3

()

For simplicity we now assume 2ia ¢ Z and therefore there exists a holomorphic Gauge
transformation Y = (Id+3.3° | Tpw® )Y which takes the previous equation to % = pz" Y.
The matrices T} can be computed from equation (4.1.4). In particular we have

a?—p2  b(b?—a?)  a24b?
1 2 2(a+1) 2(22a+2z‘)
=gl & v i
1 ib a?—b?
2(i—2a)  2(a—1i) 2

and the fundamental matrix solution in Levelt form of (5.2.2) is Y = To(Id+> 5, Tk2*)z".
In particular the first row of this matrix has expansion

b

- 14ia
N Ga—sy 1" "
v,
’ b(a® — b?
ygzw_za(2ab+Ww+-'-)

Now recall that the first component y; of the system (5.2.2) satisfies the third order dif-
ferential equation (5.2.5). A basis of the solutions consists of the functions Fi, Fy, F3 of
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(5.2.6). To compute the central connection matrix we follow the same procedure as for the
Stokes matrix: The matrix P of (5.2.10) expresses the solutions F; as a linear combina-
tion of the solutions yz(l) having asymptotic expansion (5.2.3) on the sector S M now we
compute a matrix D expressing the solutions y; of (5.2.12) as linear combinations of the
solutions F;. The connection matrix will be C = PD.

The hypergeometric function o F> appearing in the solutions F; is a holomorphic at z =0

so at this point this solutions have the expansion (see [9])

b2
Fi=w+ —w®
a(a — 1)
: il (5.2.13)
F, — % (1 2.
2 = e +Z(L(CL—H')UH— )
_ ‘ 1+ 2ia — (a® — b?)
Fa — am, 14+ia 1 co)l
s= et T e W)
Comparing with (5.2.12) we get
0 a 0
D= 0 0 2e %ab
aﬂ'b
a@a=3n=1 © 0

Again, with the help of a computer software we get that the central connection matrix C
is

i b 1,
2a2bel@=)7T(ia)0(2ia)D(2ib) 127 T3 Pae™ " /mwesch(am)T(54ib)  2abe—(¢+D)7D(1—ia)T(—2ia)D(2ib)

T (1+(ath))? (= i{a=b) (1 +i(atD)) T (=#(a—))2I (1)
2a2be @D (i) D(2ia)T(~2ib) 12 " act™ /resch(am)T (5 —ib)  2abe(~a DI (1 —ia)(—2ia)T(—2ib)
T T(A—b)(1tia—ib)? T(1+i(a—b))T(—i(atb)) T(1—ib)(—i(atb))2

2al’(14-ia)T'(2ia . 2a°T(—ia)T'(—2ia
_F(1+i(a£b))F)(1gri(c3+b)) a csch(am)sinh(br) _F(fi(a(fb))l)“(gi(aﬁb))




Chapter 6

Open Problem: Changing Strata

6.1 Changing Strata

Let p € M with T,M = @!_,(T,M); and let L C M be the integral manifold of the
idempotents 7y, ..., m passing through p. We have seen that the points of the Dubrovin-
Frobenius manifold parametrize a family of meromorphic ordinary differential equations on
P!. By restricting ourselves to a neighborhood W C L of p we have seen that it is possible
to construct solutions Y7, Y, such that the corresponding monodromy data (u, R, B, S, C)
are constant. The natural question now is how this monodromy data changes as we move
to further substrata.

For example, if the caustic is non-empty then the boundary of the semisimple locus is
the caustic. When writing the solutions of equation (4.0.1) outside the caustic, one uses
the basis of idempotents. At the caustic this basis no longer exists and as such, some of
these solutions will “diverge” as we approach the caustic. Nevertheless let us argue that
there should be a relation between the solutions outside and inside the caustic.

Take zp € C* and a point pg € K. Since the differential equation (4.0.1) is holomorphic in
a small neighborhood of (zg, pg), the existence theorem for ordinary differential equations
states that there exists a small neighborhood T'x W C P! x M such that equation (4.0.1) has
a fundamental matrix solution Yy g and moreover this solution depends holomorphically on
(z,p) € T x W. Since the caustic is an hypersurface and W C M is open then W\ K # 0.
Applying again the existence theorem to a point (zg,qo) with gg € W\ K we get a new
open set T'x W C P! x M and a new fundamental matrix solution Yg of equation (4.0.1).
Notice that (zp,qo) € (T x W) N (T x W). Since on the open (T x W) N (T x W) set Yig
and Y7, are both fundamental matrix solutions of equation (4.0.1), there exists a matrix C
such that

Ys = YnsC.

Note that this relation allows to extend the fundamental matrix solution Yg to points on
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the caustic. Indeed for (z,p) € (P! x K) N (T x W) we can set

Ys(z,p) = Yns(z,p)C.

We now give a partial answer to the problem of finding the matrix C. Let L := L \ L
be the topological boundary of L. First we have

Proposition 6.1.1. Suppose L # 0. If p € L with T,M = @;”Zl(TpM)k and q € L with
TyM = EBﬁle(Tq]\/.I’)/rf then ly < l,. That is, as we move to further substrata the dimensions
of the irreducible algebras in which the tangent space decomposes can only grow.

Proof. If at a point ¢ € M the tangent space T;M has [ idempotents then theorem 1.1.1
says that in a neighborhood of this point this [ we have at least [ idempotent vector fields.
Since every neighborhood of a point ¢ € L intersects L we get lq <1,. But equality would
imply ¢q € L. O

So as we pass from a point p € L to a point q € L the irreducible algebras in which Ty
is decomposed grow in dimension and as a consequence we loose some idempotents and
some canonical coordinates u; of L coalesce.

Let Y7, Y., SN/LGU, Y, be the isomonodromic solutions of family (4.0.1) restricted to L and
L respectively. The basis used to construct the solution Y7, of equation (4.0.1) doesn’t
depend on the multiplication structure and as such we have

YLev|i == YLev'

On the other hand, the basis used to construct the solutions Y, used the decomposition
of T, M into multiplication invariant subspaces. In particular the formal solution Yz (see
(4.2.9)) of equation (4.0.1) have terms of the form uiiuj and therefore the asymptotic

expansions cease to have meaning for points in L. In this section we show that, after
a proper Gauge transformation, the columns of Y corresponding to blocks whose corre-
sponding canonical coordinate u; does not collide with any other canonical coordinate,
coincide with some of the columns of the formal solution ffF.

Let ¢ € L and suppose that TyM = @ﬁf:l(T qM)), where each (T,M);, is an irreducible
algebra. By Hertling’s decomposition (1.1.1) we have that

~ 17l
(M7 q) = Hqul(Mk7 q)

Now take p € LN (M,q), by the above we have T,M = @L‘ZlepMk where each T, M}, is
an algebra but not necessarily irreducible. Suppose that out of these [, algebras n of them
are reduible. We order the algebras T, M}, in such a way that for £ < n the algebras T}, M;,
are reducible and for k > n they are irreducible.

The algebras T, M}, for £ < n decompose as a direct sum of the [} irreducible algebras
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(Tp,M)y,. For each of these irreducible algebras we have a canonical coordinate wuy, on the
manifold L. When we move to L the canonical coordinates uy, coalesce to a single function
@ which is a canonical coordinate on the manifold L. On the other hand, for k > n the
algebras T, M}, are irreducible and on the limit p — ¢ they remain irreducible. Correspond-
ingly the canonical coordinates u; don’t coalesce with any other canonical coordinate and
on the limit we have uy = 4 which again is a canonical coordinate on the manifold L.
This ordering induces a block decomposition on the matrices we are about to compute. In
the following we will use the partition of the set {1,...,m} by the sets (k) given by the
decomposition of 7 M into irreducible algebras. The symbol Af; ; will denote the block
consisting the entries with rows in the set () and columns in the set (7).

Take a point ¢ € L and let W C (M, q) be a sufficiently small open neighborhood of g.
Let €k, be the basis of *Tjs of proposition 3.2.5. Since the decomposition of (M, q) into
irreducible F-manifolds holds true in the open set W and the metric 7 is holomorphic, we
can extend this basis to an orthonormal basis of Tyy.

Since L is the (topological) boundary of L then W N L # (). Applying again proposition
3.2.5 we get an orthonormal basis ey, of ¢*7Tys. If the open set W is small enough then
we can extend the basis e, to an orthonormal basis of 7Tj;,\ ;. The reason why we cannot
extend the basis ey, to the whole neighborhood W is that some elements of the basis ey,
no longer exists on L. For example, according to our ordering on the first k& < n algebras
(Tamp)r with p € WN L, as we move to g € L the idempotents 7 € (Tasp)k no longer exist
at gq.

Now let Q be the matrix whose columns are the vectors €j, written as linear combinations
of the vectors ey, (i.e. [€1,...,6m] = [e1,...,6m]Q@). The matrix @ is holomorphic on
W\ L. By the compatibility of the metric and the multiplication @ is a block diagonal
matrix with blocks Q; := Qy; ; for ¢ < n and Q; = Id for i > n. We consider the familiy of
differential equations (4.0.1) restricted to L

dY 1

—=|-V-U|Y 6.1.1

dz <z ) ( )
and to L

dy 1~ =\ =~

— ==V - Y. 1.2

P <ZV U> (6.1.2)

The above change of basis induces a Gauge transformation ¥ = QX from which we obtain

Qz‘_lv[i,j]Qj ihj<n
o Qi Vi isn<j
fd] Vi1 Qj J<n<i
‘/[7,,]} 7’7.] >n,

(6.1.3)
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where the right hand side is evaluated at L. We also have

[ } [,5] ZU[ZS]TSJ zs}U[s 7]

1,

Z%ﬂbrwm%mz@—%mm

because the diagonal blocks U[,-’,»] have only one eigenvalue. On the other hand, since the
diagonal blocks of U may have more than one eigenvalue we only get

[0, TV ) = Ui Thi.g1 — L1 Ul

but when we evaluate at points of L the eigenvalues of Uj;,5) become equal and we recover
U Ty = (wi = ug)Thi gy = (@ — )T g)-

Recall the recursive equations (4.2.3) used to compute the formal solutions Yz and Y. We
can now show

Lemma 6.1.1. With the above notations, for all k we have

(Gr)ig) = Q5 (Gr)pig (Bk)fi) = (Br)pig) = 0

when 1 <n < j and

(Gr)iig) = (G (Br)(ig) = (Br)ji,j
when i,j > n and the right hand sides of the equalities is evaluated at L.

Proof. We proceed by induction, all the quantities without ~are evaluated at L. For k = 1
and ¢ < n < j we have

(@ — ) (G1)ig) = Vieg) = Qi ' Viig) = (i — 4)Q  (Gi)pig)-
and if 4,7 > n then
(@ — 45)(G1)pig) + By = Viig) = Viig = (i — i) (G1)jig + (Br)jig
so if ¢ = j then (Bl)[z,]} = (Bl)[l,j] = }/[173] and (Gl)[l,]} == (él)[l,]} =0. If 7 # j then
G

(B1)ji;) = (B1)p;; = 0 and (
that

1(ij] = (G1)}ij]- Now we make the induction step, we have

k—1
[07 ék] + By = (k — 1)ék—1 + VG — Z G—sBs
s=1
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Suppose 7 < n < j then we can write

lq
VGk:)[z,j] = Z ‘/[z,s](Gk) $,J
= Zv[zs] (GR)iog) + D Vil (G

s<n s>n
= Qi Vi QsQs  (Gr)isg + Y Q5 (Vi Gh) s
s<n s>n
= Qi (VG-
In the same way
lq
(Gr—sBs)jij) = Z(G D Br)ig) = O (Gro) i (Br)iu
t>n
_ZQ Gk s zt](Bk)[t]]
t>n
= Qi_l(Gk—sBs)-
Putting these last two equations we get
(i — 1) (G = (k= 1)Gro1 + VGiro1 = > GresBs)jig
s=1
k—1
= Qz_l((k — 1)Gk71 +VGr_1— Z kasBs)[i,j}
s=1
= (u - uJ)Q (Gk)[z,j]'
The induction step for the blocks i, j > n is done analogously. O

Observe that after applying the Gauge transformation G followed by e~U% we obtain
the block diagonal system (4.2.5). Since (By)j ;) = (Bk)yy) for 4,5 > n we get that
(Hi)iig) = (H, k)[i,j]- This observation and the previous lemma immediately imply

Proposition 6.1.2. Let (M,o,e, E,n) be a Dubrovin-Frobenius manifold. Suppose that at

p € M we have TyM = EBif (T, M)y, where each (TpM)k is an irreducible algebra. Let L be
the integral submamfold of the idempotents my,...,m passing through p and suppose that
L:=L\L#0. Let ¢ € L and suppose that as germ of F-manifolds

~ 17l
(M7 q) = Hqul(Mk7 Q)a
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with each (My,q) irreducible. Order the algebras T, My, in such a way that for k < n the
algebra T, M), is reducible and for k > n we have T,Mj, = (T,M)i. Let Q be the matriz
of change of basis on the open neighborhood W C (W, q) between the basis ey, and €y, of
proposition 3.2.5 applied to L and L respectively. Let Yr and Yy be the formal solutions
of equations (6.1.1) and (6.1.2) respectively.

Then the last m — Y _, dimT,Mj, columns of Yr are the last columns of Q_lYF|i



Conclusions

The most important result of this work is theorem 4.3.2. In a certain sense in it paves
the way for the study of non-generic isomonodromic deformations. To put this result in
context, let us briefly recall the history of isomonodromic deformations of meromorphic
ordinary differential equations over P!.

The study of isomonodromic deformations of meromorphic ordinary differential equa-
tion goes back to Riemann. In the case of regular singularities he already posed the problem
in its full generality: To construct a system of functions with regular singularities that has
the prescribed monodromy data. This problem, in the non-resonant case, was solved by
Schlesinger, Fuchs and Garnier and can be summarized in the Schlesinger equations. This
are a system of non-linear partial differential equations that the matrices defining the fam-
ily of ordinary differential equations must satisfy in order that the family has constant
monodromy data.

For a long time the interest in isomonodromic families of meromorphic ordinary dif-
ferential equations receded and it was until the work of Jimbo, Miwa and Ueno that the
study of isomonodromic deformations regained interest. In the seminal paper [15], Jimbo,
Miwa and Ueno studied monodromy deformations of “generic” families of meromorphic
ordinary differential equations. In particular they studied systems that not only had regu-
lar singularities. Part of the genericness assumption is that the eigenvalues of the leading
term at the poles of the differential equation have different eigenvalues. In the case of
Dubrovin-Frobenius manifolds this means that we should restrict ourselves to the subset
of semisimple loci such that the endomorphism of multiplication by the Euler vector fields
has different eigenvalues.

On recent years Cotti, Dubrovin and Guzzetti studied isomonodromic deformations of
meromorphic differential equations of the form

v _ <A(t) + Al(t)) Y (6.1.4)

dz 2

where A is a diagonal matrix. In [6] theorem 1.1 they showed that, if ¢ varies in an open
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domain W which contains a subset A where some of the eigenvalues of A coalesce and if
the entries of the matrix A; corresponding to the eigenvalues that coalesce at A vanish at
A (i.e. if Ai(t) — Xj(t)|]a = 0 then (A1);j|la = 0), then certain fundamental matrix solu-
tions (holomorphic and formal) of equation (6.1.4) defined outside the coalescence loci A
can be holomorphically continued in the parameter ¢ to the coalescence loci. Moreover, if
the fundamental matrix solutions were isomonodromic then their extension to A remains
isomonodromic. In particular this means that one can compute the monodromy data of
the family (6.1.4) on a point of the coalescence loci A.

As we have seen, on the caustic of a Dubrovin-Frobenius manifold the vanishing condi-
tion of theorem 1.1 of [6] is not necessarily satisfied. As a consequence one cannot extend
the isomonodromic fundamental matrix solutions outside the caustic to points inside the
caustic. Nevertheless if the coefficients of equation (6.1.4) are holomorphic on the coales-
cence loci A then the existence theorem for ordinary differential equations guarantees that
fundamental matrix solutions of equation (6.1.4) exist for points tA € A and they depend
holomorphically on a small open neighborhood W C W.

Basically our result says that, thanks to the geometric properties of a Dubrovin-
Frobenius manifold, the fundamental matrix solutions computed in the coalescence loci
(the multiplication invariant submanifolds L C K') can also be taken to be isomonodromic.
The obvious and really hard question is how these two sets of isomonodromic fundamental
matrix solutions (outside and inside the coalescence) are related.

Our second important result, proposition 6.1.2 gives a partial answer to this question,
namely, after a proper renormalization (the matrix @) some of the columns of the formal
fundamental matrix solutions outside the coalescence loci and in a neighborhood of z = oo,
have a well definde limit in the coalescence loci A and moreover, when evaluated at A they
are equal to some of the columns of the formal fundamental matrix solutions inside the
coalescence loci in a neighborhood of z = oc.

Notice that again we used the geometric properties of a Dubrovin-Frobenius manifold
to cook up the matrix ) which renormalizes some of the columns of the formal fundamental
matrix solution outside the coalescence loci. In a more general setting getting the correct
renormalization matrix may be much more harder.

Understanding completely (even in the examples provided by Dubrovin-Frobenius man-
ifolds) how the holomorphic fundamental matrices solutions are related remains an open
question which deserves further investigation.

Finally let us make some remarks about the flat connections 7 o V that played a
fundamental role in the construction of the isomonodromic fundamental matrix solutions
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inside the coalescence loci. In recent years interest has grown in studying weaker structures
than that of a Dubrovin-Frobenius manifold. In particular lots of interesting results have
been found on the so called flat F-manifolds (see [1] and [2]). A flat F-manifold is just
an F-manifold M with a flat and torsionless connection V on the tangent sheaf 7T;; such
that Ve = 0. Just as in the case of a Dubrovin-Frobenius manifold, one can construct a
1-parameter family of flat connections V* on Tjs. Although the bundles v* (7 ), over the
multiplication invariant submanifolds L are not the tangent bundle and the unit of these
algebras is not necessarily flat; they posses a multiplication and are also equipped with the
flat connection 7, o V and can be extended to a 1-parameter family of flat connections.
This connections were of fundamental importance for this work but their 1-parameter
extensions were nowhere used. Further study of these families of connections might give
more insight as to what parts of the Dubrovin-Frobenius manifold we can recover from
family of meromorphic differential equations associated to it.






Appendix A

Flat Connections

A.1 Flat Connections

Let M be a complex manifold of dimension m, let T3; be the sheaf of holomorphic vector
fields and let Q}w be the sheaf of holomorphic 1-forms. Consider a holomorphic vector
bundle 7: V' — M and denote its sheaf of holomorphic sections by V.

Definition A.1.1. A connection on the vector bundle n: V' — M is a C-linear map
V:V=Q,0V

which satisfies the Leibniz rule: For any open set U and any f € Oy (U),v € V(U) one
has
Vifv=df ® v+ fVu.

Let r be the rank of the vector bundle 7: V' — M and suppose that the local sections
e1,...,ep € V(U) are a local frame. We can write

r
— s
Vej = E Wy ® es
s=1

for some w? € Q},;(U). The matrix of 1-forms w = (wg) is called the connection matriz
associated to the frame e;.

If (z!,...,2™) is a local coordinate system on some open neighborhood U of M then we
can write
m
wf =D _(w)jde’
s=1
where (ws)5 € Oum(U). The matrices ws = (ws)3 are called the connection matrices

associated to the frame e; and the local coordinates x7.
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Example A.1.1. Suppose V is the tangent bundle and e; = 9; is the frame associated to
some local coordinates (z1,...,Z,). We have

Vo, 05 = ZFijas
s=1

where I'; ; are the Christoffel symbols associated to the frame 0;. Then
m n
Vo, =Y (Z I3, d:nk) ® Os.
s=1 \k=1

Therefore in this example we have

m
s __ s k
w; = g Iy dz”.
k=1

Any section s € V(U) can be written as a O/ (U)-linear combination of the sections e;,
by the Leibniz rule we obtain

Vs=V ijej :dej®ej+ijej
j=1

i=1

T n
3 [ e s ) e
s=1 j=1
We can write this conveniently as

f !

Vs=d +w

)\

Given a vector bundle with a connection one could ask about the flat sections Vg < V.
By definition this sections satisfy Vs = 0. If we are given a local frame e; with connec-
tion matrix w, finding a flat section amounts to solving the system of partial differential

equations

df = —wf (A.1.1)

where f = (f1,..., f")T. This is a system of n x (dimM) partial differential equations for
the n unknowns f, hence unless dimM = 1 we don’t expect this system to have a solution.
Suppose we can find n linearly independent flat sections s; = > fies and let F':= (f7) be
the matrix whose columns consist of these flat sections. Then from equation (A.1.1) we
get

0=ddF = —d(wF) = —(dw +w Aw)F,
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(here we used that for 1-forms n we have d(n A &) = dn A& —n AdE). Since the sections s;
are linearly independent the matrix F' is invertible and therefore

D =dv+wAw=0. (A.1.2)

It turns out that this condition is also sufficient for the existence of n linearly independent

flat sections of V' (see [16]). On a local system of coordinates (x1, ..., z,,) equation (A.1.2)
becomes

Gwi 80.)]‘

dx; Oz wis ]

The End(V)-valued two-form 2 is known as the curvature form or curvature tensor of the
connection V

A.2 Compatible metrics

Suppose that on our vector bundle we have a metric g € Sme(V*). Using the connection
we can define the total covariant derivative of ¢ in the usual way:

(Vg)(u,v) := d(g(u,v)) — g(Vu,v) = g(u, Vv).
We will say that g is compatible with V if Vg = 0.

Proposition A.2.1. Let w: V — M be a vector bundle with connection V. Suppose

that the metric g is compatible with V. Then for any local coordinate system (z*,...,z™)
on U C M and any orthonormal frame ey,...,e, € V(U), the corresponding connection
matrices are antisymmetric i.e, (wl)% = —(wi)g foranyi=1,....mand a,B=1,...,71.

Proof. By compatibility and orthonormality we have
0=g(Vea,ep) + g(eq, Veg).

Evaluating at 0., we get

T

0= g((w)aesses) + gleas (wi)3)
s=1

= (wi) + (wi)§-
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A.3 Pullback Connection

Let w: V' — M be a vector bundle with a connection V and let f: L — M be a holomorphic
function. Using the function f and the vector bundle m: V' — M we can construct the
pullback vector bundle 7: f*V — L. The sheave of sections of f*) can be described in the
following way. Given an open set U C M and a section s € V(U) by precomposing with f
we get a section f*s € f*V(f~1(U)); sections of f*V over f~1(U) are Op(f~1(U))-linear
combinations of sections of the form f*s with s € V(U). For general open set W C L, to
compute f*V(W) we first take the direct limit of the vector spaces V(U) where U C M is
open and W C f~1(U) (the direct limit is computed using the restriction maps) and then
take Op-linear combinations.

We can also pullback the connection V to f*V. For sections of the form f*s we set

(f*V)f*s == [*(Vs)
and for general sections we extend using the Leibniz rule.

Proposition A.3.1. Let m: V. — M be a vector bundle with flat connection V and let
f: L — M be a holomorphic function. Then the connection f*V on the vector bundle
7 f*V — s flat.

Proof. Note that both vector bundles have the same rank r. It V is flat then we can find
S1,...,8 € V linearly independent sections such that Vs; = 0. But then (f*V)f*s =
f*(Vs) = 0 so that f*V has r-linearly independent flat sections and therefore f*V is
flat. O
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