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Abstract

Heat transport is a topic that is fundamental in many fields, from materials engineering
to planetary models. The calculation of the thermal transport coefficient with the Green-
Kubo theory in multicomponent fluids, especially in ab-initio simulations, had a severe
data analysis issue that this work solved. In this thesis, we derive the entire theory
and data analysis framework for the multicomponent Green-Kubo. Then we show the
computer codes we developed, allowing the user to apply the approach previously derived.
We believe that in science, replicability and reproducibility are essential requirements.
Every new technique must come with an open-source and reliable implementation.

In the end, we demonstrate a significant application to superionic ammonia, fun-
damental to understanding the behavior of icy giant planets like Uranus and Neptune,
providing an estimate for the thermal transport coefficient.
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Introduction

I often find myself staring at the surface of a hot cup of tea, where lots of dancing figures
appear, and the energy flows away from the tea to the air, an irreversible process like
the flow of time. And then, I start thinking of the incredible complexity of the cup of
tea system at the atomic level. Many different molecules, different water phases, a vast
number of degrees of freedom, and the complexity of quantum interactions. How can we go
from a microscopic description of the atoms in a cup of tea to the irreversible macroscopic
phenomena of heat dissipation that we experience every day? Diffusion of energy emerges
somehow from the statistic of an uncountable number of atoms interacting together. But
to predict the evolution of the macroscopic system, knowing how the atoms move is
not necessary. For example, Fourier’s work on heat transport, culminating in the book
Théorie analytique de la chaleur and the equation J = —kVT, was published in 1827,
well before any quantum mechanical theory was able to predict properties of materials. It
says that the heat flow is a vector proportional to the temperature gradient and goes from
hot to cold places. The fact that all the incredible complexity of heat transport at the
microscopic scale is hidden inside a simple law and the difference between each material
is described by a single number, x, is something miraculous. x can be measured, most of
the time, with simple experiments where a difference of temperature is forced and heat
flow or relaxation time are measured. But if we know the laws of the microscopic atomic
interaction, why should we not be able to compute all macroscopic properties of my cup
of tea starting from scratch, with only a computer and all the theory of condensed matter
that is known up today?

The ability to build a functioning thermal model of a system of interest without
needing to perform experiments can be used in many different fields with a broad range
of applications, like planetary modeling and materials engineering. And in a few cases
performing a laboratory experiment is unfeasible. When this happens, a framework for
computing the thermal transport coeflicient entirely ab-initio is strictly necessary, other-
wise one cannot get any meaningful number to build any model and cannot advance with
new knowledge in the field.

In this work, we’ll focus on computing the thermal conductivity coefficient x in systems
with a band gap using a computer and the Green-Kubo theory of linear response, which
can be roughly summarized in the expression

K o /OOO<J(t)-J(O)>dt, (1)

where J is the heat current, and the brackets indicate equilibrium ensemble averages
which are accessible to molecular dynamics simulations.

Despite the familiarity and the simple phenomenological equations that describe heat
flow, the microscopic definition of J (something that can be used in a computer experi-
ment) is somewhat blurred since atomic energy — the microscopic thing most similar to
heat — is a quantity that is not unique. Let’s make a macroscopic example. Suppose we
have two boys who stretch the same giant elastic. If we pretend to divide the energy of
the system (the work that the boys did to stretch the elastic) into "boys’ energy", we don’t
have any unique way of doing this. We can say that all the energy stays within a boy or
the other boy. No physical principle tells us how to divide energy. If we write the system’s
equation of motion with all those different definitions, it makes no difference. The energy
is somehow hidden inside the elastic, inside the interaction between the different parts of
the system. The number of ways in which the interaction energy between any group of

iv
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atoms can be divided is infinite: the only constraint is that the sum of all atomic energies
(arbitrarily defined) is equal to the system’s total energy. But then, how is it possible that
we experience the locality of the heat and energy at our macroscopic level? For example,
we can tell how much heat is transferred inside the cup of tea by using a calorimeter.
This happens because, at some point, when we move far enough from the microscopic
interacting structure — farther than the length of the biggest elastic — we can group local
energies of a big enough region of space. If we sum them all up, the choice of how we
decided to divide the energy of the interacting boundaries of the region counts less and
less, leading to a well-defined number for each region of space. And we can measure the
differences between those numbers in the form of transferred heat. But let’s take a step
back to our microscopic world, the one we can afford with a computer.

What guarantees us that it is possible to compute a meaningful number with arbitrary
quantities? A milestone in this field was the work of Marcolongo, Umari, and Baroni[50]
in 2016 that shows the possibility of computing a well-defined thermal conductivity ab-
initio, even though the local microscopic energy density is not unique. Note that in
first principle simulations, the situation is complicated because the theory does not use
anything similar to an elastic to describe interactions, but it uses a function defined in all
points of the space that the system occupies. This work allowed our group to compute
thermal conductivity in all systems with a band gap where there is only one type of
molecule, for example, water or in a solid. Still, the theory was not yet ready for a
multicomponent fluid system like molten salt. A considerable data analysis effort was
made to solve many issues that a Green-Kubo theory with a density functional theory
energy current has. The very big amount of energy that the pseudopotential (an arbitrary
artifact) carries with it puts a lot of noise in the calculation. Still, it does not contribute
to thermal conductivity. The generalization of the framework to multicomponent fluids
was not clear at that time. This is the point where the work of the author starts.

The first part of the research concerned the derivation of the multicomponent gen-
eralization of all parts of the theory and the data analysis framework[7, 5]. We found
a theory that is both mathematically beautiful and useful, also for the cases that were
already covered by the previous theory, making the data analysis much simpler.

The second important part of the work involved computer codes. Good open-source
codes (with tests and documentation) are needed so the community can use all the wisdom
generated by years of experience in the field with few clicks or commands. The code for
computing the DFT energy flux with QuANTUM ESPRESSO was renovated entirely, a
fact that allowed us to merge it into the QUANTUM ESPRESSO Suite[48]. The code for
the data analysis was updated with the new progress made by the author in the theory
and was made user-friendly, with a graphical user interface and an easy-to-use command
line tool[18]. We built a code to efficiently analyze the biggest trajectories. Then we
built an interesting code for a semi-automatic AiiDA [35, 71] workflow to get easily Car-
Parrinello trajectories with minimal effort. A significant amount of time was also spent on
implementing features, fixing bugs, and porting part of QUANTUM ESPRESSO’s cp.x
code to a GPU architecture.

The last part of the work was an application of all the tools developed by the author
to investigate the properties of superionic ammonia. This investigation has important
applications in planetary science. In this field, we have very few alternatives to doing
computer experiments to know the properties of very high-pressure and temperature
systems.



Theory of thermal transport in
insulators

In this chapter, we’ll review the basics of linear response theory in molecular dynamics and
the Green-Kubo expressions for the thermal transport coefficient x in a multicomponent
fluid. We’ll focus on the one obtained when the mass currents J* are zero, at the steady
state of the experiment. This expression has some invariances that allow great flexibility
in the currents that we can use.

1.1 Green-Kubo theory

1.1.1 Hydrodynamics variables

Let’s take a macroscopic system at thermodynamical equilibrium. When a little per-
turbation is applied fluxes appear, moving atoms and energy from regions of space to
other contiguous regions, trying to approach a new equilibrium state without violating
conservation rules. For example, if a temperature difference is present in a solid, energy
will start to flow from the hottest to the coldest part, trying to reach a new equilibrium
temperature common to all parts of the system. In this case, we don’t have any flow of
mass, but heat flows by conduction. We can have the same situation in a fluid, bringing
also a mass flow into the play. A theory that describes transport phenomena must con-
tain densities, thermodynamic forces that can create gradients of densities, and currents.
It is natural to use conserved quantities, which allows us to define local densities, local
currents, and continuity equations. Then constitutive and thermodynamics relations are
needed to close the equations and be able to fully describe the system and predict its
behavior.

An isolated system has the following conserved quantities that we can use: total
energy, total momentum, and total mass. We can write for each of those the continuity
equation:

da’(r,t)

ot
where a’ is the density of the conserved quantity i and is valued over all points of space
and time, and j°(r,t) is a vector field that is the current of the conserved quantity. The

= -V ji(r,1), (1.1)
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integral of each density a’ on the system volume is an extensive conserved quantity A%:

A = /Q aé (r)dr, (1.2)

where we integrated over all the system volume 2.

Inside the system, many different phenomena occur on very different timescales and
different scales of length. For example, the mass density at the microscopic atomic scale
has many fast and big fluctuations with peaks on atomic nuclei positions, but we are not
interested in these fluctuations when looking at the system on the scale of a planet. Nor
these fast fluctuations do influence the dynamics of the system at a bigger scale, in the
sense that if a single atom moves in a different direction, given that all the atoms always
follow the same statistics brings no change on the bigger time and space scale. So we can
rethink the (1.1) in the reciprocal space, where we can easily separate the fast and the
slow degrees of freedom:

a(k,t) = —ik - j(k, 1), (1.3)

For small k£ the time derivative of the density will be smaller and smaller, and for k = 0 it
will be zero since a is the density of a conserved quantity in an isolated system. The long
wavelength components of conserved densities are what we call hydrodynamic variables.
They are adiabatically decoupled from all the other fast degrees of freedom of the system.
Suppose that we want to study the evolution of the system with these variables.
Then we need more expressions to link the densities to the currents, and parameters
to characterize the system’s properties. If the system is not far from its equilibrium
configuration, we can assume a relation like the following for the time derivative of a’:

@et) = / dr’ / AT (r — vt —)ad (1) (1.4)

that becomes, in the frequency domain:

—iwi'(k,w) = Z A (k, w)ad! (k,w) (1.5)
j

Now we can ask ourselves what happens to A when k — 0 by doing a multivariate
expansion in k. For the reasoning let’s take the case where a/ are constants. If there is a
constant term in A not depending on k, we would have a paradoxical case where A, the
integral of a’ over the volume, depends linearly on the constant value of a’, leading to
nonsense predictions. This excludes the constant term. Then, if the system responds in
the same way to perturbation in opposite direction ( k — —k ), we must put to zero also
the term proportional to k in the multivariate expansion of A% . So the first term that is
not zero is the one quadratic in k. So in general we can write

A% (k) = kTDDAY(0)k + ... higher order terms (1.6)

where DDA (0) is the hessian of A¥ evaluated in k = 0. Assuming also that the system
is isotropic the expansion becomes easier and we get, in the limit of small k

A (k) = k2N (1.7)
Using this we can write (1.5) as:

—iwa (k,w) = Z E2 A9 (k, w) (1.8)
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thus we get, using the continuity equation, for the slow and decoupled hydrodynamic
variables the following constitutive equation:

7' (k,w) =ik > Aal (k,w). (1.9)
j

Here the A\Ys completely describe the behavior of the hydrodynamic variables of the
system. We can now write an equation for the long wavelength and stationery (w = 0)
limit. In this limit, we have the quantities J* = é [ 3%(r)dr, the macroscopic current, and
Di = % [ Vai(r)dr, the macroscopic gradient, related through the equations:

J=> 2D/ (1.10)
J
In the following, the macroscopic component of a current will be indicated as a flux.

Now we insert thermodynamics into our framework. First of all, by macroscopic we

mean a property of a region of time and space that is in thermodynamical equilibrium. In
oS

this region, we can define thermodynamic variables. Let 2! = 547 be the intensive vari-
able conjugate to A%, where S is the system’s entropy, and Y% = é% the corresponding

susceptibility. For instance, when A’ is the energy of the system, the corresponding conju-
gate variable is the inverse temperature, 2 = 1/T, while, when A° represents the number
of particles of a given species, one has 2! = —u?/T, i’ being the corresponding chemical
potential. The hypothesis of local thermodynamic equilibrium allows defining local values
of the intensive variables, and we define thermodynamic forces as their average gradients:
Fi = é [ Vai(r)dr. The average density gradients are related to the thermodynamic
forces through the susceptibility defined above:

D' =) x"F/. (1.11)
J

By inserting this relation into Eq. (1.10), one gets:

J'=> LF, (1.12)
j

where LU = 3, XFy% . Eq. (1.12) expresses the linear relation between fluxes, the
J’s, and thermodynamic affinities, the F’s, for which Onsager derived his celebrated
reciprocity relations (L7* = L¥) from microscopic reversibility [57, 58, 13]. In the following
section, we will link this macroscopic theory to what happens on a microscopic scale, in
order to evaluate Onsager’s coefficients with atomistic simulations.

1.1.2 Linear-response theory

In order to evaluate the LY phenomenological coefficients appearing in Eq. (1.12), we
consider a classical system of IV interacting atoms described by the Hamiltonian

(1) = 3 5 (Pu)* + V(Ri, oy Roy) (1.13)

n

where M,,, R,, and P, are the masses, coordinates, and momenta of the n-th particle,
I' = {R,,P,} indicates the phase-space coordinates of the entire system, and V is a
generic many-body potential. Let us now suppose that the system is subject to an external
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perturbation that can be described as a linear combination of the conserved densities,

{a’(r;T)}, as:
Vi =3 / v (r, t)a (r; T)dr, (1.14)

where a(r;T") is a phase-space function whose ensemble average is the conserved density,

a(r) = (a(r;T))
_/ ) PP(1) T (1.15)

_H°(D)
P°(T) oc e *8T is the equilibrium distribution, kp the Boltzmann constant, and {v*(r, )}
are time-dependent fields that couple to the conserved densities and vanish at ¢ = —oo,

when the system is assumed to be in thermal equilibrium at some temperature 7. Of
course, conserved currents are also expected values of some phase-space functions, j(r) =
(4 (r;T)). The phase-space functions whose expected values are conserved densities/cur-
rents will be referred to as phase-space samples of the currents/densities. In the following,
when the phase-space dependence of a conserved density/current is explicitly indicated,
we will mean a phase-space sample; when it is not a phase-space average will be implied.
When a phase-space sample is evaluated along a dynamical trajectory, I';, the sample
function will depend on time and on the initial conditions of the trajectory. Averaging
with respect to the initial conditions will result in a time-dependent expected value for
the conserved densities (or currents):

a(r,t) = (a(r;TH))o

(1.16)

_ / a(x; T))P°(To)dTy.
In Eq. (1.16) the notation I', denotes somewhat pedantically that the time evolution in
phase space is driven by the perturbed Hamiltonian, H® + V'. If it were driven by H°,
evidently the value of a would be time-independent. In the following, the notation I'y
will indicate an unperturbed time evolution. As an example, the phase-space sample of
the particle density can be assumed to be n(r;I') = Y, é(r — R,,), the corresponding
current is j(r,I') = >, d(r — R,,)P,,/M,, and a local external potential is described
by: V/(T',t) = >, v(Rp,t) = [v'(r,t)n(r;T)dr. Note that sample functions are not
necessarily univocally defined. Different functions whose phase-space averages coincide in
the long-wavelength limit sample the same hydrodynamical variable.

According to [28], [42], and [43], the linear response of the i-th conserved current to
the perturbation is:

Jalx k‘BTZ/ dt//dr (5,0 (', Ty)) o/ (¢, 1) (1.17)
= kpT Z/ dt’ /dr (r,I¢) 5’gjﬂ(r Ft/)> v (1, 1) (1.18)

= TZ/ dt/dr L TG D)) OI (). (119)
B

The second line follows from the first through the continuity equation, Eq. (1.1), while

the third line follows after integrating by parts with respect to r’. The notation 623 = 8(2’

B

has been used.
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By integrating Eq. (1.19) all over the space, and assuming space-time homogeneity as
well as isotropy, one recovers Eq. (1.12) with:

Ji(T) = é / ji(r,T)dr, (1.20)
Fi(T) = QlT/aaui(r,r)dr, (1.21)
L, = ISB /OOO <Jg(rt)Jg(r0)>0dt. (1.22)

This completes the derivation of the Green-Kubo formula for transport coefficients, Eq. (1),
from classical linear-response theory. Onsager’s reciprocity relations, L% :ALJ’Z‘ [57
58], follow from Eq. (1.22) leveraging time-translational invariance, (J3(T't)J3(To)) =

<Jg([r]0)Jg(r_t)>, and micro-reversibility, (.Ji,(I't).J5(To)) = (J&(I'~¢).J3(To)).

Einstein-Helfand expression for transport coefficients and the Wiener-Khintchine
theorem

The celebrated Einstein’s relation between the mean-square displacement of a diffusing
particle and its velocity auto-correlation function is easily generalized to an arbitrary
stochastic process and has in fact been utilized by [32] to provide an “Einstein-like”
expression for transport coefficients.

Let X; be a stationary stochastic process. One has:

T el
— Xedt
T /o !
In the large-7 limit, the second term on the right-hand side of Eq. (1.23) can be neglected.
When the stochastic process is the velocity of a Brownian particle, Eq. (1.23) allows
one to establish a relation between the diffusion constant of the particle, temperature,
and the auto-correlation time of the velocity. When X, is the heat flux of a macroscopic
body, Eq. (1.23) allows one to estimate the thermal conductivity, as given by Eq. (1),

from the asymptotic behavior of the “energy displacement” D(7) = [ J(I'y)dt.
Eq. (1.23) can be easily generalized to the finite-frequency regime, to get:

v/ T L
Sr(w) == < Xe™tdt >
T /0 (1.24)

T )
— 2%e / (X, Xo) etdt + O(T).
0

> _ 2/0T (X, X0) dt — ;/OT (X, X0) ¢ dt. (1.23)

This equation expresses the Wiener-Khintchine theorem [76, 37], which states that the
expectation of the squared modulus of the Fourier transform of a stationary process is
the Fourier transform of its time correlation function, which is usually referred to as the
process power spectral density,

S(w) = /_ Z(XtX()) et (1.25)

aka the power spectrum. In the following the suffix 7 will be neglected for simplicity and
its value assumed to be sufficiently large as to be considered infinite. More generally, when
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several conserved currents interact with each other, one can define the cross-spectrum of
the conserved fluxes as the Fourier transform of the cross time-correlation functions:

SM(w) = / (XFXE) ™ dt

—00

T (1.26)
= %e / XFe ™tdt x / Xle™tdt )y + O(Th).
0 0

Egs. (1.23) and (1.24) indicate that the transport coefficients we are after essentially are
the zero-frequency value of the (cross-) power spectrum of the corresponding current(s),
a fact that will be instrumental in our approach to data analysis, as explained in Sec. 2.
Therefore, Eq. (1.22) can be cast into the form:

Q
LM = %Skl(u} =0), (1.27)

where the Cartesian indices have been omitted for clarity.

1.1.3 Heat transport

The above treatment allows one to compute the linear response of a system at thermal
equilibrium to a generic mechanical perturbation. Heat transport is determined by tem-
perature gradients that cannot be described by any mechanical perturbation. The concept
of temperature distribution implies that the system is locally at thermal equilibrium over
lengths and times large with respect to atomic distances and relaxation times. Tem-
perature affects the physical properties of a system through the Boltzmann distribution
function. When the temperature is not constant, T'(r) = T + AT'(r) (|AT| < T), the
effects of this inhomogeneity can be formally described by the distribution function:

_ e(r;T)
PT) x e Fpre® (1.28)
_H°(M)+V/(D)
e T (1.29)

where e(r; ') is an energy (Hamiltonian) density, such that [ e(r;I")dr = H°(T"). Eq. (1.14)
becomes: )
V() = / AT(r)e(r; T)dr + O(AT?). (1.30)

Eq. (1.30) shows that the effects of temperature inhomogeneities can be mimicked by a
mechanical perturbation coupled to the temperature distribution. From Eqgs. (1.12) and
(1.20-1.22) we conclude that in a system where the only not trivial conserved quantity
is the energy, the heat (energy) flow is coupled to temperature gradients through the
constitutive equation:

J¥ = —kVT, (1.31)

where the thermal conductivity kag = Lgj /T? (see Eq. (1.12)) can be expressed by a
Green-Kubo relation in terms of the fluctuations of the energy flux as:

ot = o [ (FETIET)), at (132
and
JE(T) = % / 7 (x;T)dr. (1.33)

6
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In order to obtain an explicit expression for the energy flux from a microscopic expression
for the energy density, we multiply the continuity equation, Eq. (1.1), by r and integrate
by parts, to obtain:

JE(Ty) = é/é(r;f‘t)rdr (1.34)

:512/ [zn: (W-VWFW.FO%@ (1.35)

where F,, is the force acting on the n-th atom, and V,, = ]1\';,—7; its velocity.

The manipulations leading from the continuity equation, Eq. (1.1), to Eq. (1.35)
deserve some further comments, as they imply neglecting a boundary term, Jgq =
& Joq (4(r) - D) rdr (where O is the boundary of the integration volume and f the nor-
mal to it), which in general does not vanish in the thermodynamic limit and is ill-defined
in periodic boundary conditions (PBC). The correct way of addressing this problem is to
work with the Taylor expansion of the space Fourier transform of the continuity equation,
Eq. (1.3), and to perform the thermodynamic limit at finite wavelength. The leading
non-vanishing term in the Taylor expansion yields Eq. (1.34) without any boundary term
in the way.

Energy flux from classical force fields

When atoms interact through a classical force field, V(R, Ra, - Ry), an energy density
can be defined in terms of local atomic energies as:

e(r,I) => 6(r — Ry)en(D), (1.36)
2
eall) = 2 1 (RY), (1.37

where the v,,’s are a set of atomic potential energies whose sum is the total potential
energy of the system, ), v, = V, with a short-range dependence on the coordinates
of the other atoms. In the presence of long-range forces, this condition is effectively
guaranteed by local charge neutrality, which we will assume throughout. By inserting
Eq. (1.36) into Eq. (1.35), the energy flux can be cast into the form:

By _ L . . Ovn.
J (r)_Q lzn:vnen—i-En:Rn (Fn Vn+%:Vm 8Rm>]

where F,,,, = —gﬁ’z is the contribution of the m-th atom to the force acting on the

n-th atom, >, Fpny = Fy, and Fy,,, = —F,,,,. When the interaction amongst atoms
can be expressed in terms of two-body potentials, one has: v, = % >, v(Ry, —Ry,) and
F.n = —%VRRU(RR — R,,). Here we implicitly assumed that the interaction energy is
equally partitioned between atoms m and n. In Sec. 1.2 we shall see this is not the only
possible choice, with far-reaching consequences on the theory of heat transport.

The first term on the right-hand side of Eq. (1.38) is often called convective and
the second wirial. We feel that the wording “convective” is somewhat misleading in this
context, as the convective current, as well as its contribution to heat conductivity, may
not vanish even in the absence of convection.
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E(Ql U QQ) = E(Ql) + E(Qg) + Wia
E(h) + €()

O

[~

Figure 1.1: The energy of an isolated system is the sum of the energies of its subsystems
(as defined when they are isolated as well) plus the interaction among them, Wiy, whose
magnitude scales as the area of the interface, depicted in red. When defining the energies
of individual subsystems, £, W12 has to be arbitrarily partitioned among them.

1.2 Gauge invariance of heat transport coefficients

It is often implicitly assumed that the well-definiteness of thermal transport coefficients
would stem from the uniqueness of the decomposition of the system’s total energy into
localized, atomic, contributions. This assumption is manifestly incorrect, as any decom-
position leading to the same value for the total energy as Eq. (1.37) should be considered
as legitimate. The difficulty of partitioning a system’s energy into subsystems’ contri-
butions is illustrated in Fig. 1.1, which depicts a system made of two interacting sub-
systems. When defining the energy of each of the two subsystems, an arbitrary decision
has to be made as to how the interaction energy is partitioned. In the case depicted
in Fig. 1.1, for instance, the energy of each of the two subsystems can be defined as
E() = E(Q) + 2(1 £ A\)Wia, where E(£;) are the energies of the two isolated subsys-
tems, Wio their interaction energy, and A an arbitrary constant. In the thermodynamic
limit, when all the subsystems’ energies are much larger than the interaction between
any pairs of them, the value of the A constant is irrelevant. When it comes to defining
energy densities (i.e. energies of infinitesimal portions of a system) or atomic energies,
instead, the magnitude of the interaction between different subsystems is comparable to
their energies, which become therefore intrinsically ill-defined.

The very possibility of defining an energy current density stems from energy extensiv-
ity. The considerations illustrated in Fig. 1.1 indicate that any two densities, €/(r,t) and
e(r,t), whose integrals over a macroscopic volume differ by a quantity that scales as the
volume boundary, should be considered as equivalent. This equivalence can be expressed
by the condition that two equivalent densities differ by the divergence of a (bounded)
vector field:

e (r,t) =e(r,t) — V- p(r,t). (1.39)

In a sense, two equivalent energy densities can be thought of as different gauges of the
same scalar field. Energy is also conserved: because of this, for any given gauge of the
energy density, e(r,t), an energy current density can be defined, j(r,t), so as to satisfy
the continuity equation, Eq. (1.1). By combining Egs. (1.39) and (1.1) we see that energy
current densities and macroscopic fluxes transform under a gauge transformation as:

3'(r,t) = j(r,t) + p(r,t), (1.40)

J(t) =J(t) +P(t), (1.41)

where P(t) = & [p(r,t)dr. We conclude that the macroscopic energy fluxes in two

different energy gauges differ by the total time derivative of a bounded phase-space vector
function.
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We now show that the energy fluxes of the same system in two different energy gauges,
e and €, differing by a bounded total time derivative, as in Eq. (1.41), result in the same
heat conductivity, as given by the Green-Kubo formula, Eq. (1.32). More generally, the
Onsager coefficients coupling two fluxes, J' and J?, do not depend on the gauge of either
one of them. In fact, let (Jl)/ = J' + P; one has:

;o oo . :
(1) = %B/_oé (rosre)-(Foeeo)e
T [<P(t> 2O) 7+ 2(P@) - 310)|

—0o0

The expectation of the time-lagged products in Eq. (1.42) is equal to the products of
two expectations at a large time lag. As the equilibrium expectations of both a total time
derivative and a current vanish, we conclude that (L'')" = L. A slight generalization
of this argument, also using microscopic reversibility as in [57, 58], allows us to conclude
that (L12)/ = L'? and that, in general, &' = k.

1.3 Theory of heat transport in multicomponent systems

[7]
Let us consider a homogeneous system with M components. One can be tempted to
simply apply the formula that is valid in the one component case, that is

K= k:bQT2 /OOO<JE(75) - JE(0))o dt (1.43)

but this is meaningless in the multicomponent case if one uses the energy current. The
fact that this expression does not represent anything physical can be seen very simply.
The energy current in general has a part that depends on how is defined the zero of the
potential, proportional to the atomic velocity. In the classical case we have:

JE(t) = Z Vpen + other terms (1.44)

where v,, is the atomic velocity of atom n and e, is its potential energy, which depends
on the positions of all other atoms. If we change the zero of the potential energy of each
component s of ef, the potential energy transforms as e, (I') — e, (I') + eg(n) (being s(n)
the component index of atom n), and the energy current transform as

JE() = IP () + I (1.45)

where, given the set I(s) of atomic indexes of component s, J* =37, /() vn. The issue

is that because each component is diffusive, in general, [T°(J*(t) - J¥(0))o dt # 0, so &
would transform with a clear dependence on e, that is an arbitrary parameter. And since
different ejj bring the same equations of motion (the description of the system is exactly
the same), we conclude that if we use the one component formula in the multicomponent
case, we end up with an arbitrary number. In the formula we need, somehow, to include
only energy differences.

It is possible to define many slightly different heat conduction coefficients, and many
definitions of heat flux are possible[29, Cap.III, §3]. One can decide to calculate the
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coefficient when all the gradients of the concentrations V¢! are zero or when the mass
currents J? are zero. The first case is typical of the beginning of experiments, while the
last one happens at the end when the steady state is reached [29, eq.(241) and (242), p.
280]. The first path needs the additional calculation of partial enthalpies[16, 65], and after
that, the method is essentially the same as the one component case. Only a single L@<
Onsager coeflicient is needed, calculated with a newly defined heat current, that does not
depend on the arbitrary zero of the potential energy. This is the path that a big part of
the literature follows, often introducing approximation for the calculation of the partial
enthalpies. But since we are interested in the steady state, we investigate the latter.

We have in total M + 1 scalar conserved quantities: the total energy and the mass (or
the particle number) for each fluid. But since the mass currents are momentum densities,
in the center of mass frame the total momentum density is zero. So we have one less
independent mass current, giving to us M — 1 independent mass densities and currents.
This gives M independent conserved quantities. The Onsager relations will look like this:

JE LEE ‘ LEl .”LEM—l XE
Jl LlE Xl
= . y . (1.46)
: : {Lv} :
JM—I LM—lE XM—l
(1.47)

or, by grouping together the block matrices:

(7)-(e5) (%) s

Thermal conduction happens when all the mass fluxes vanish (convection is not present).
We want to extract an expression with only X% present. So the first step is to invert
the expression by multiplying on the left with the L~ matrix to have in the right side of
the first equation X only. Then by setting all the mass currents J* to zero we can get
an equation with J¥ and X¥ only. The coefficient in front of J¥ is the inverse of the
thermal conductivity we are looking for. This coefficient can be written using the Shur
complement to invert the matrix block by block:

() () -(7) e

So we have that the thermal conductivity is

1

K= (T)EE = A—BD™'C = LFF — [Py 1YWLiF (1.50)
where the implicit summation is over the mass block indexes, (1,...,M — 1) and L, is
the submatrix of the mass block only.

20, 5]

1.3.1 Convective invariance

Let us make the convention that Latin indexes refer to the mass indexes (1,...,M — 1),
and index E refers to the first one. Consider a transformation of the energy current

JP = JE 4T (1.51)

10
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where to lighten the notation, repeated indexes are implicitly summed. This transforma-
tion results, for example, when the zero of the potential energy per species is shifted by a
constant or when one uses the heat current with the partial enthalpies terms in place of
the energy current. In general, one cannot assume that mass currents are non-diffusing,
so if one adds a constant to the atomic energy of an atomic specie, the L¥¥ term of the
matrix L* changes. Applying the transformation (1.51) to Eq.(1.50) one gets:

LEE —  LFE L JLE L AP I (1.52)
LF -  LE 4L (1.53)
L N ik (1.54)
LY - LY (1.55)

Therefore the Schur complement, the thermal conductivity k, transforms as:
LEE _ [iE([-Yi[Ei
= LPP 4 L + LP 4 I LT — (LF + FLF) (L)L + L)
= LPE | J[iB 4 A1Bi { Gi[ii _ [iB(p-L)i B _ Ck5kjLEj _ Ck(;ijlLlj — LiPsd
— [PE _ [iE([ )i P
(1.56)

We note that these transformations are also valid for L*(T') = fOT JH(0) - J¥(t) dt and for
a frequency dependent L*”(w) that can be defined via the Wiener—Khinchin theorem.

Therefore, two different definitions of J¥, differing by a linear combination of the
mass currents, lead to the same thermal conductivity k, and to the same k(T) and k(w).

This extends the previous gauge invariance principle for the single-component sys-
tem. The multicomponent expression also makes useless the computation of the partial
enthalpies, as they enter the heat current definition proportionally to the mass fluxes.

Also, a simpler invariance is present. We can apply the transformation on the mass
fluxes only J® — A®'J! where A is any invertible matrix. Then, since A~! cancels out
trivially with A in any place where it appears in the Shur complement, x does not change.
This allows us to completely forget about any factor or units in front of the mass fluxes if
we are interested in k only. Any non-singular linear combination of the mass fluxes can
be used.

11



Data analysis

If we apply the knowledge of the previous chapter 1, as-is, to a real-world case, we can
produce a number difficult to interpret. Since it is not always possible to perform arbi-
trary long computer simulations to estimate errors with a block analysis, a more profound
understanding of the statistical properties and an advanced noise filtering technique are
needed. In the literature, we can find many different methods to solve the issue of con-
vergence of the GK integrals, like a fitting of the correlation function, a rule to truncate
the integral or a rule to subtract non-diffusing currents from the energy one. This sec-
tion describes techniques that solve most issues without introducing ad-hoc prescriptions
and using sound mathematical derivations. The final result will be an elegant framework
to compute k and its statistical error with optimally short simulations using a tech-
nique called cepstral analysis, that comes from the field of audio data filtering [10]. The
most important feature of this technique is that we don’t need to split the trajectory
into blocks to obtain the statistical error. The new multicomponent ideas developed by
the author in the present chapter were used in many computational works, for example,
[59, 27, 70, 60, 26, 69].

2.1 On the statistical distribution of x’s estimators

At this point of the work, we have derived a set of expressions, like (1.22) and (1.27), that
together with the explicit expression of the energy current (1.35) and its specialization
for classical force field (1.38) allows us to evaluate the Onsager matrix L with an equi-
librium molecular dynamics simulation, and the heat transport coefficient (1.50). But to
perform efficient data analysis, we first need to understand the statistical properties of
the estimators we defined.

A multi-current time series can be viewed as a realization of a multivariate statistical
process. The space autocorrelation functions of conserved currents are usually short-
ranged because far-away atoms do not interact that much. Therefore, in the thermo-
dynamic limit, the corresponding fluxes can be seen as sums of independent identically
distributed stochastic (iid) random variables. According to the central limit theorem,
their equilibrium distribution must be Gaussian. So the time series of all the indepen-
dent fluxes of the system is a multivariate stochastic variable that tends to a multivariate
normal distribution.

12
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We saw in the previous chapters two different estimators for x in the multicompo-
nent framework. The most straightforward way is to evaluate all the integrals of (1.22)
truncated at timestep ¢t and then to project over the energy current subspace with (1.50).
That means:

« sample M scalar random variables (J¥, J', ... JM~1) from ¢ independent gaussian
processes. M is the number of independent currents, and £ can be, for example, the
number of spatial dimensions of the system or the number of different simulations.
The process is repeated N times, being N the number of timesteps. We name ¢ the
index of the discrete timestep of the simulation

e compute all the L*” GK integral up to timestep t and evaluate x for that fixed value
of t.

M (t Z JH(s)J (s + 1), (2.1)

LM (t Z cW (2.2)

t'<t

where we performed an average over N/ timesteps, assuming the ergodicity of the molec-
ular dynamics simulation. Given that the average covers enough uncorrelated timesteps,
M (') will be a normal random variable for each t’. When estimating ¢*¥(¢) in a finite-size
system, it never goes to 0. From the ¢’ where the actual expectation value (¢*”(t")) is zero,
the sampled value ¢ (¢') will start to fluctuate randomly around zero, being nothing but
the noise coming from thermal fluctuations of the finite-size system. So starting from
this ¢’ on, we can safely assume that we are integrating random numbers with a gaussian
distribution and zero average. Thus L*¥(t) will behave like a random walk, eventually
reaching every possible value given a big enough ¢. While this behavior can be acceptable
in the one-component case, where inverting a matrix is unnecessary, this can be prob-
lematic in the multicomponent case. Take as an example the two-component case. The
expression is )
pE (L7'(1))

k(t) = L¥5(t) — L) (2.3)
If there is an insufficient statistic, the denominator L'!(t) can cross zero for a specific
upper time integral value. In the general case, the L matrix can cross a singular region
at any time with non-zero probability, becoming non-invertible. We can have anything
from random divergences to systematic errors that depend on the variance of the random
walks. But the more critical fact is that a well-defined probability density does not exist
for this estimator in the multicomponent case, since the hypothetical probability density
does not integrate to a finite number. From a mathematically rigorous point of view, one
should never use the GK time integral to estimate the thermal transport coefficient using
the multicomponent framework, while in practice, if the statistic is big enough, it can be
acceptable.

An example of this bad behavior is presented in figure 2.1. One simple solution is to
run longer molecular dynamics simulations, but this could not be possible if, for example,
we have to deal with costly ab-initio molecular dynamics simulations. The only way
to estimate the error using the GK integral technique is to perform a block analysis.
The Einstein-Helfand expression (1.23) behaves better, having at the denominator a non-
negative quantity.

13
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0.6

W/(mK)

00 n n 1
0
T (ps)

Figure 2.1: Figure taken from [7]. Bad behavior is presented, caused by a not sufficient
amount of statistics. The data comes from a classical 100ps simulation of a liquid mixture
of water and ethanol flexible molecules. The convergence of k(t) is never achieved with
the GK formula, but random divergences appear (green line). The smoother orange line
is calculated with the Einstein-Helfand formula, which can improve the plain GK integral
result and has better statistical properties.

The next easier estimator that one could compute is the one derived from the Wiener-
Khinchin theorem, discretizing Eq.(1.26). We do a discrete Fourier transform ' and we
evaluate everything in the frequency domain. We look for the result at w = 0 (w and ¢
are discrete indexes from the integration timestep in molecular dynamics). So we define,
given the number of steps N and the timestep size e:

\/> Z e N T (L) (2.4)

S (w) = J*( )J”(W) (2.5)

to have LM = S"(w = 0). The \/€/N factor is needed to make the 1/7 (with 7 = Ne)
and the dt (that now is called €) factors of (1.26). In the frequency domain, the matrix
is well-behaved. Take, for example, the same two-component case of before with ¢, the
number of independent time series, being 3:

r(w) oc | TP (w)

R "

1)

In this case, we still have the random variable at the denominator, but the denominator
never becomes zero.

A little note: when everything is relatively simple, as it is up to now, it makes no
sense to complicate the notation to distinguish between estimators of a quantity and the
quantity itself, its theoretical value. But now, as we’ll see, with complex matrix distribu-
tion the distinction between the estimator and its theoretical value becomes fundamental,
as many factors that depend on the particular distribution enters the estimator but of
course not its theoretical value. Failing to distinguish the two would bring wrong results.
For this reason, now we will label all the estimators with * (a little hat).

We do this because we have been taught since our childhood that when we don’t know what to do,
we have to do a Fourier transform.

14
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We can start with the estimator for S*”(w) — w being a discrete index. We have ¢
independent processes (for example, one for each spatial dimension) and M independent
fluxes that enter the Onsager relations. So the estimator is

1 l
ZM v 1/*
(M) Gn ( =3 }_: Jh(w) JE (2.7)

where we performed an average over the independent process. We will need the labels
¢ (number of processes) and M (number of independent fluxes and size of the matrix)
later.

We see that S'W(w) is an unbiased estimator of the cross-spectrum. Its average is

the theoretical value: <(ZM )S’ij> = S"(w) for each frequency. In the large-N limit, the

real and imaginary parts of J(w) are normal deviates that are uncorrelated for w # w'.
We conclude that the cross-periodogram is a random matrix distributed as a complex
Wishart deviate [25, 24]:

EM)S(w) ~ CWar (S(w), ). (2.8)

The notation CW M (S ¢) in Eq. (2.8) indicates the distribution of the M x M Hermitian
matrix (M)Gii = Z X; XIJ)*, where {Xé} (p=1,---4,i=1,--- M) are ¢ samples of
an M —dlmensmnal zero-mean normal variate whose covariance is S% = (X" X7*).

Similarly to the real case, a Bartlett decomposition [41][9, Proposition 7.9] holds for
complex Wishart matrices [52], reading:

~ 1
(MG — zSRRTST, (2.9)
where “T” and “1” indicate the transpose and the adjoint of a real and complex matrix,
respectively; S is the lower triangular Cholesky factor of the covariance matrix, S = SST,
and R is a real M x M lower triangular random matrix of the form

(&1 0 0 0

no1 C2 0 0
R=|na nz2 ¢ - 0 [ (2.10)

Nyl NMy2 My3 0 Cu

where ¢? ~ X%(Zﬂ'ﬂ) (a x? distribution with 2(¢ — i + 1) degrees of freedom) and
nij ~ N(0,1) (the normal distribution). We stress that R is independent of the spe-
cific covariance matrix and only depends upon ¢ and M. In particular, it is independent
of the ordering of the fluxes J?. This distribution is valid for w # 0 A w # N/2 since
here the matrix is real. For the real case 012 ~ X%ﬂ' 1 without the factor 2. To know the
distribution of k£ we must compute the distribution of the inverse, that is

Mg — g SH=" (R 'R7IS7, (2.11)

Note that the product of lower (upper) triangular matrices is lower (upper) triangular,
and the inverse of a lower (upper) triangular matrix is lower (upper) triangular. The
determinant is equal to the product of the diagonal terms.

By expressing the M, M matrix element (where the matrix product is very easy to
compute) of the inverse of ‘M) S in Eq. (2.9) as the ratio between the corresponding minor

15
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and the full determinant, and using some obvious properties of the determinants and of
triangular matrices, we find that:
oM E—1\ MM _\MM 1
(“08=1) " =e(s7) o (2.12)
M
We are interested in the inverse of the right hand side without the ¢ factor:
L 1 9

((EM)Sv_1(w))MM - (S—L(w))"™ Curs (2.13)

As the ordering of the fluxes is arbitrary, a similar relation holds for all the diagonal
elements of the inverse of the cross-periodogram. Note that the expectation value of c?\/[
is the number of degrees of freedom of the x? distribution. So, to get as an expectation
value a pure S~! matrix element without other factors we have to divide the previous
expression by that number. We conclude that the generic estimator for x(w) = W

is:
L 1 1

)= TS @)

{3y (@) (€n5-1(w))
where {(w) are independent random (with respect to w) random variables, with expecta-
tion value 1, distributed as

i §(W) = R(w)(w), (2.14)

7T XE-r1 forw € {0, 57},
{(w) ~ (2.15)
2@_7}\“1) X%(g_MH) otherwise.
and
06— M+1 for w € {0, 5},
(chr(w)) = (2.16)
20— M +1) otherwise.

where in the case w = 0, % we have half the degrees of freedom because of the reality of
the Fourier transforms. Note the extra factor that is needed to get a correct result, which
depends on the input statistics. A real-world example of #(w) is provided in fig. 2.2.

We conclude this section by remarking, once again, that the most straightforward
method, calculating first the averaged time integrals of all the autocorrelation functions
and then inverting the matrix has the issue of random walks. On the contrary, the
frequency domain approach has the advantage to have well-defined statistics, but we
have two issues that prevent us to use this result "as is", without doing block averages.
Each discrete w is statistically independent of the nearby w 4+ 1, and the estimator is not
consistent (its variance does not vanish in the large N limit). One can take advantage of
the fact that we know the exact statistical properties in the frequency domain to build
an ad-hoc filter that analytically estimates the result’s variance, assuming the continuity
of the expectation value k(w). This is the goal of cepstral analysis.

2.2 Cepstral analysis

[19, 7] We start from the form of the estimator:

Aw) = K(w)(w) (2.17)
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Figure 2.2: The grey discontinuous line is an example of #(w) values for the liquid water-
ethanol mixture, each discrete w value is uncorrelated from the next one. The continuous
line is a running average for guiding the eye. The higher red line is the one obtained with
the J¥ flux only, and the lower blue line is obtained with the correct multicomponent
expression.

as in (2.14) and (2.15). The simpler idea that we can try to filter out the multiplicative
noise is to perform a moving average over w, averaging all neighbor frequencies up to a
small enough range. This approach has many issues. The first one is that we are interested
in the limit w — 0 in the low-frequency region, and here we have fewer available points
to perform the average (the spectrum is an even function). Then the finite size of the
averaging window adds a systematic error since x(w) is not constant there. Nevertheless,
the moving average can be used for visualization purposes of the spectrum, as a guide for
the eye.

But looking carefully at #(w), one can think to take the logarithm to transform the
multiplicative noise into an additive one, that can be filtered out easily. Then we can take
a new discrete Fourier transform, and in the new "frequency-frequency" space filter out
the noise that is present at high "frequency-frequency" (labeled with ¢), where the value
of the signal that we want to get is zero. Filtering, in this case, is equivalent to deciding a
cutoff, putting to zero everything after the cutoff, and back transforming to the frequency
space. By doing the logarithm we get:

log(A(w)) = log(k(w)) + log(&(w)) (2.18)
By performing the discrete Fourier transform we get the so-called cepstrum:

N-1

O(f) = 1 Y- (og(s(w)) + log(6(w))) e "% (219)
w=0
_ 1 N Wi
=0+ > log(&(w))e >~ (2.20)
w=0

=

1 = N2 wt
= o+ L loa(€(0)) + (1 log(E(N/2) 12 3 log(€(w)) cos (%N)],

w=1

(2.21)

where C(t) = &% SN log(ls(w))eﬂ”wﬁt, the cepstrum of the true quantity. It is a real
even function because &(w) is real and even. The explicit symmetry is written in (2.21)

17
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for an even number of points IV, which is necessary when computing statistical properties.
Otherwise, one can fail to consider a random variable and its symmetrical, entirely depen-
dent, copy as the same random variable. According to a generalized central-limit theorem
for the Fourier transform of independent and identically distributed (iid) stochastic vari-
ables [4, 62], for N — oo the cepstral coefficients, C’(f), are iid normal variates whose
expectation value is

A 1 N-1 i
(CE) =CH) + 5 D (log(§(w)))e ¥
w=0
N-1 . 2.22
=C(t) + i Z Lo(w)e 2™~ (2.22)
N w=0
= C(t) + Lody + O(1/N),
where we defined the expectation value of log(£(w)) as
PO (0= M+1)/2) —log(({ — M +1)/2) forw € {0, 4},
Lo(w) = (2.23)
Lo=v¢( — M +1) —log(f — M +1) otherwise.

and ¥ is the digamma function. > We can make the £ = 0 and ¢ = N/2 values of the
sum in the (2.22) expression almost equal to Lo with an error of order 1/N ignoring the
w =0 and w = N/2 differences. We can do the same for the other values of ¢, obtaining
zero with an error of order 1/N. Since N, the number of samples, is huge, this is a safe
approximation. Similarly, we can compute the variance. Here it is crucial to carefully
take care of the symmetry of {(w) and the fact that £(w) = {(IN —w) (they are the same,
not independent, random variable), as it is written in (2.21). The variance of a single

log(&(w)) is:

PW((0—M+1)/2) for w € {0, 5},
03 (w) = var(log(€(w))) = (2.24)
oa='(0—M+1) otherwise,

Where ¢! () is also called the trigamma function. As before, we can approximate 3 (0)
and 03(N/2) to 63 making an error O(1/N) in the computation of the variance, so we
get:

=2 _
2%0 for t € {0, % ,
var(C(1)) = (2.25)
=2
UWO otherwise,

Unfortunately, the expectation value of the inverse Fourier transform of C(t) does not
represent log(k(w)) because of the additional Ly factor:

N-voo N1
<Z C’(t)e2mN> = Lo+ Z C(t)e®™ N .
t=0 t=0

2The polygamma functions are defined as ¢™ = ;;%logf(z) where T'(z) =

fooo t*~le7t dt, R(z) > 0 is the gamma function.
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Figure 2.3: Example filtered multicomponent spectrum with a variable number of cepstral
coefficients for the water-ethanol system. When the coefficients are not enough (P* = 3),
the filtering procedure can produce systematic errors. When the number of coefficients is
too high (P* = 100), noise is present inside the filtered spectrum.

so the estimator whose expectation value is log(k(w)) is
Lw)=—Lo+ ¥ G F (2.26)

The assumption that k(w) is a smooth function implies that the number of significant
cepstral coefficients C(t) in the cepstral expansion of Eq. (2.19) is hopefully small, allowing
us to implement here a low-pass filter. We thus indicate by P* a small integer such that

C(H)~0 for P*<t<N-P" (2.27)
Since we are interested in the w = 0 component of (2.26) and Eq. (2.27), we must consider
the stochastic variable

pPr—1
L(0)=—-Lo+C(0)+2 > C(), (2.28)
t=1

whose expectation value and variance are

(L(w)) = log (r(w)) (2.29)
var (ﬁ(w)) — ZIPT_2U(2] .

where the variance is computed by summing all independent gaussian random variables
C(0) and C(#) whose variance is written in Eq.(2.25). £(w) is thus an unbiased estimator
for log(k(w)), and hence, of the log of thermal conductivity, we are after. At fixed P*,
the variance of ﬁ(w) vanishes in the N — oo limit, thus making the estimator consistent.
Of course, any finite choice of P* introduces a bias, which is a decreasing function of P*,
while the statistical error is an increasing function of it. Its optimal value is the one that
makes the bias of the order of the statistical error. By adopting this value in the N — oo
limit both the bias and the statistical error can be made arbitrarily small.

In figure 2.3, we can see how the filter behaves with a variable number of cepstral
coefficients. An estimate of the “optimal” value for P* can be obtained with any of
the many model selection techniques available in the statistics literature [15]; in our
applications, we choose to adopt the Akaike information criterion (AIC) [1, 2, 19], even
if other more sophisticated, and possibly more efficient, methods could be devised.
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2.3 Non-diffusing currents decorrelation

The cepstral filtering procedure is more efficient if x(w) is smoother because the descrip-
tion of the function requires fewer cepstral coefficients causing the variance to be lower.
But often happens that due to the arbitrary choice of the atomic potential energy, x(w)
has a huge magnitude on most of the frequency and has a big fall near w = 0, creating
an almost intractable function in the region where the physical meaning of x(w) resides.
We can see examples of this behavior in [50, 49], where the fall sometimes amounts to
3 orders of magnitude. Here Marcolongo et al. showed that some parts of the energy
current are not necessary to perform the calculation but are very high in power. Since
it is always possible to add a flux J? ;¢ that does not diffuse (that means that it sat-
isfy [5(JE qig ()T 43z (1)) dt = 0) in the energy current definition without changing ,
the first obvious approach was to try to remove them. Our work improved the original
procedure, making it more straightforward, and it is immediately generalized to multi-
component fluids. By adding many independent J¢ ;¢ to the list of fluxes (and thus
increasing M), we do not change the physical value of k at w = 0. Still, we change all
the other values at finite w, lowering them because of the projector-like properties of the
multicomponent formula. This algebraically removes all the contributions by the J? .«
currents. It is possible to use this technique also in the time domain. The result is that the
oscillatory behavior of k(t) (where t is the upper time limit of all Green-Kubo integrals)
is reduced, improving convergence properties.
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Computer codes

In this chapter, we will review all the codes produced by the author to create a framework
that can calculate real-world numbers. We start from QEHeat, a code to calculate the DFT
energy flux, then we go to SporTran, to apply cepstral analysis on the data produced by
QEHeat, and then a code that uses AiiDA to perform reproducible Car-Parrinello simula-
tion in a semi-automatic way. All the codes are released to the open-source domain, and
all good programming practices are implemented (documentation, test, well-commented
code). The codes developed by the author and described in the chapter were used, par-
ticularly SporTran, in the works [59, 27, 70, 60, 26, 61, 69, 46].

3.1 QEHeat, an energy current code for DFT

48]

The original expression of the adiabatic DFT energy flux, from [47, 50], was for a long
time implemented only in a private branch of the QUANTUM ESPRESSO code. The code
was highly experimental, and a significant amount of bash scripting was present to glue
many parts of the calculation together. The code had the issue of the unnecessary utiliza-
tion of a massive amount of disk I/O to transfer data from one piece of the calculation to
the other, which causes multiple issues in highly parallel file system architecture with a
very heavy utilization typical of HPC centers. So during the first pandemic lockdown, the
author performed a massive rewriting of the code, creating a compact and easy-to-use tool
in the QuaNTUM ESPRESSO suite of computer codes that avoids all the unnecessary
utilization of the file system.

QEHeat can be easily interfaced to read a dynamical trajectory generated with a
code of choice and compute the MUB flux for the corresponding steps. QEHeat is al-
ready delivered with a user-friendly interface for the cp.x program of the QUANTUM
ESPRESSO[22, 21, 23]. The combination of QEHeat, cp.x and the post-processing tool
SporTran[18], designed to perform the statistical analysis needed to evaluate transport
coefficients, provides a convenient framework to compute the heat conductivity of ex-
tended insulating systems—Dbe they crystalline, amorphous, or liquid—entirely from first
principles. We warn that the MUB flux is an adiabatic energy flux. This refers to the fact
that electrons are supposed to populate the ground state during time evolution, which is
the case for insulators with a finite band gap.
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We note that other computational efforts have been proposed to evaluate microscopic
expressions for the energy flux based on DFT. For example, Kang et. al [36] evaluate an
atomic decomposition of the total energy and then use a two-step procedure to take into
account periodic boundary conditions when evaluating the energy flux. Carbogno et. al
[12] neglect the convective contribution to the energy flux and use a DFT-based expression
for the virial component. This approach is developed as an approximation suited to the
description of thermal transport in solids. The open-source distribution of QEHeat will
make it easier to compare the computational advantages of the various expressions which,
after the assessment of the principle of gauge invariance, are being developed by the
community. Finally, the evaluation of the energy flux provided by QEHeat involves a finite
difference evaluation of electronic properties, e.g. electronic densities or potentials, which
are performed entirely in-memory, storing the results of different total energy calculations
into ad-hoc data structures. Therefore, QEHeat provides as well to developers a modular
and easily extendable framework to evaluate time derivatives of electronic properties via
a finite difference approach.

3.1.1 Overview

QEHeat serves the purpose of evaluating the energy flux J at the DFT level of theory.
A formal expression can be obtained by integrating by parts the continuity equation

=

é=—-V-jas[5:
J:/eré(r)r, (3.1)

where €(r) is the energy density of the system, whose integral is its total energy. Strictly
speaking, Eq. (3.1) is ill-defined in periodic boundary conditions (PBC), which are com-
monly adopted in molecular simulations. In order to compute it explicitly within PBC,
one has to first recast it in a boundary-insensitive form, and {2 can then be replaced with
the volume of the simulation cell in Eqgs. (1-3.1). Once this is done, the DFT energy
flux can be cast into the MUB form, called here JMUB and discussed in detail in later
sections.

QEHeat computes the MUB energy flux as a function of the atomic positions, {Rs}
and velocities, {V5}, i.e. for any selected snapshot of an ab-initio molecular dynamics
(AIMD) trajectory. Despite the complexity of the resulting formula for the energy current,
from a practical point of view the use of QEHeat relies on a limited number of additional
input parameters with respect to a standard QuANTUM ESPRESSO DFT computation.
These are reported in the energy_current input namelist, which is shown in figure 3.1.
The meaning of all the keywords is explained in more detail in section 3.1.4. The only ad-
ditional parameters are eta and n_max, controlling the Ewald summations, which appear
only in classical contributions to the energy current, and delta_t, a time-discretization
parameter, used to perform numerical derivatives. The default values should work for
most systems.

3.1.2 DFT energy flux

In this section we recall the expression of MUB energy flux [50] and some of the notation
used. For a more extensive and detailed study of the implementations of the many

components of the MUB current the reader is referred to [48, Appendix B]. JMUB ig
expressed as a sum of five components:
JMUE — 85 1 30+ g+ g 4 J¥¢, (3.2)
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&energy_current

delta_t = 1.000,
file_output = 'current_hz',
eta = 0.100,

n_max = 5,

trajdir = 'traj/cp',
first_step = 1,
vel_input_units = 'CP'

Figure 3.1: Example of the energy current namelist. delta_t is the time used for nu-
merical derivatives. eta and n_max are the parameters used to converge Ewald sums.
trajdir is the prefix of the trajectory files. In this example, the program reads the files
"traj/cp.pos" and "traj/cp.vel". first_step tell the program the first step id to compute.
The step ids are part of the trajectory file format. After this namelist the full pw.x input
is required. A full example of the input and the documentation of the keywords can be
found at https://gitlab.com/QEF/q-e/-/tree/master/QEHeat/Doc.

where

TS = 37 ({eulPB 5160 + eulullien)) (3.3)

v

JO:;XU:@v
JN=2

(7= R, — L) (Vs - Vard®)| 0 ). (3.4)

Vel + 3 S (R — Ry — L) (Vi Vigws) — > L(V - Vipws) | (3.5)

E t#s L L#0
1

R o
0 (LDA)

JXe (3.7)

- / n(r)i(r) @A (r)dr  (GGA).

In the following, these components are referred to as the Kohn-Sham, Zero, lonic, Hartree
and Fxzchange-Correlation fluxes, respectively. For the insulating systems of interest in
this work, the ionic degrees of freedom completely define the state of the system and
the electrons populate the ground state, according to the adiabatic approximation. Each
time derivative, indicated with the usual dot operator, has then to be understood from
the implicit dependence on the atomic positions. We note that a complete understand-
ing of the different components of the MUB energy flux is not needed to perform, as a
user, a thermal-conductivity calculation. Here and in the following, we indicate with L
the lattice vector. We stress that periodic boundary conditions (PBC) are assumed here
over the unit (simulation) cell. This implies that Kohn-Sham orbitals and energies are
sampled at the I' point of the Brillouin cell. The notation Vg, is a shorthand for the
gradient with respect to displacement of the atom at location Rs + L. A summation
over s runs over all atoms belonging to the simulation cell. Unless otherwise specified,
carets indicate quantum-mechanical operators, as in HES or #. Following is a brief report
of the definition of the most important terms according to their physical meaning. The

23


https://gitlab.com/QEF/q-e/-/tree/master/QEHeat/Doc
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ionic energy € is the sum of the kinetic energy, %M sV2, and w; the classical electrostatic

interaction between the s-atom and all other atoms in the system. The electronic degrees
of freedom are instead described by the instantaneous Kohn-Sham Hamiltonian, HES,
and its eigenvalues and eigenvectors, the Kohn-Sham energies, ¢,, and orbitals, ¢,. A
summation over v runs over all occupied orbitals. Several quantities, like the electronic
number-density distribution, n(r), and Hartree potential, v (r), are implicit functions of
the wave-functions. ©° is the total external atomic pseudo-potential, describing the inter-
action between electrons and nuclei. For a more detailed analysis see [48, Appendix B.2].
The symbol €5¢4 stands for the generalized gradient approximation (GGA) exchange-
correlation local energy per particle and its derivative with respect to density gradients is
indicated with 8e““4, which is a vector whose component along direction i € {x,y, 2z} is
given by 9e¢“%4(n, Vn)/d(V;n). In the present version of QEHeat only the local density
approximation (LDA) and the generalized gradient approximation given by the PBE [63]
functional are implemented.

The formulas reported are compatible with PBC. Thus, they can be implemented for
periodic systems, where some of the summations need to be extended to all the periodic
replicas of the atoms. Nevertheless, the computation of the various contributions to the
energy current, Egs. (3.3-3.7), is plagued by the occurrence of several divergences, arising
from the long range character of the Coulomb interaction. As it is the case for the
total energies, atomic forces, and stress, the individual electronic, ionic, and electron-ion
contributions diverge and it is only their sum that is regular in the thermodynamic limit.
In order to regularize the individual components of the MUB flux, we compute all the
relevant terms by screening the Coulomb interaction with a Yukawa cutoff, % — % In
[48, Appendix B|, we check explicitly that the singular contributions to the various terms
cancel each other in the y — 0 limit, so that they can be consistently and safely neglected
and do not appear in the final formulas reported in [48, Appendix B].

3.1.3 Code structure

We start by describing the strategy implemented to compute numerical derivatives of
quantities appearing in Eqs. (3.3), (3.6), and (3.7), like 7 and 9, since they require
special treatment. Quite generally, one needs to evaluate terms of the type f {Rs(t)}),
where the function f can be a scalar function, which depends on time only through the set
of the instantaneous ionic positions { Rs(t)}, evolving according to Hamilton’s equations
of motion. QEHeat implements a finite-difference scheme, using by default a symmetric
numerical differentiation formula:

: f(Rs + Vidt/2}) — f({Rs — Vidt/2})
f({R)) ~ -

The small parameter dt is an input of the computation. In such a scheme quantities that
are not differentiated are evaluated at time ¢, so three wave-functions are required to be
kept in memory at the same time. QEHeat performs therefore for each step two additional
self-consistent-field (SCF) DFT calculations, using the same DFT solver of the QUAN-
TuM ESPRESSO distribution, at slightly displaced positions, i.e. {Rs; — Vidt/2} and
{Rs + Vsdt/2} along the AIMD trajectory. The wave-functions of the previous calcula-
tion are used as a starting point for the next one, which requires much fewer iterations to
converge. We note that QEHeat gives the user also the possibility to use a non-symmetric
differentiation scheme, which is shown in [48, Appendix E]. This scheme is computa-
tionally cheaper. Nevertheless, for differentiable functions, the order of convergence of

(3.8)

24



3. COMPUTER CODES

the symmetric scheme is quadratic in dt, whereas the non-symmetric one is linear. Ac-
cordingly, the stability is improved with the default symmetric scheme. We recommend
therefore the latter and use it for all calculations here presented.

The trajectory data is managed by the Fortran derived data type cpv_trajectory
defined in the file cpv_traj.£90, while the orbitals and the associated atomic position are
managed by the derived type scf_result, implemented in scf_result.f90. The most
relevant subroutine that acts on this object is scf_result_set_from_global_variable,
which copies the eigenfunctions, the eigenvalues, the potential, and the atomic positions
from the QuANTUM ESPRESSO’s global variables to the instance of scf_result. The
results for each of the three (or two) wave-functions that are required by the computation
routines are stored in the variable scf_all, defined in the main program routine. Global
variables are avoided as much as possible.

The code starts by reading the input “namelists”: first the energy_current namelist,
then all the pw.x namelists. Then it calls all the pw.x-related initialization routines. After
eventually reading the previously generated output file that allows the program to set the
correct starting timestep, it enters the main loop over the input trajectory timesteps. The
trajectory files have the same format of QuaNnTUM ESPRESSO’s cp.x code output files.

The most important routines where the above-mentioned data structures are used are
the following:

o SUBROUTINE current_zero (module zero_mod)
Carries out the computation of 3.4. This routine is called in the middle of the
computation using the same timestep ¢ of the positions stored in the input trajectory,
so that the result does not depend on dt.

e SUBROUTINE current_ionic (module ionic_mod)
Computes all parts of 3.5, and it is called as current_zero at the same timestep of
the input trajectory

e SUBROUTINE current_hartree_xc (module hartree_xc_mod)
Computes (3.6) and (3.7). Since a numerical derivative is needed, this routine reads
the wave-functions from the global type scf_all and it is run at the end of all
necessary run_pwsct calls.

o SUBROUTINE current_kohn_sham (module kohn_sham_mod)
Computes (3.3). As current_hartree_xc, it needs all the wave-functions calculated
by the DFT solver for this step.

e SUBROUTINE run_pwsct
Uses QuanTUM ESPRESSO’s routines to solve the DFT problem for the atomic
positions stored in the global array tau. Equivalent (but the starting wave-function
and potential, that can be the last computed one) to a standard call to the pw.x
program with the input stripped of the ENERGY_CURRENT namelist. The result is
stored in the QuANTUM ESPRESSO’s global arrays (evc)

e SUBROUTINE prepare_next_step
This routine is used to change the global array tau to tau + vel-dt-ipm, where ipm
is the argument of the subroutine that can be -1,0,1. After doing that it calls the
necessary routines to prepare the potential for run_pwsct.
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The 4 modules, one for each part of the MUB current, are completely independent of one
another. The structure of the main loop over the trajectory’s time steps is summarized
in algorithm 1.

Algorithm 1 Workflow of all_currents.f90.

1: QuaNTUuM ESPRESSO initialization (plane waves, pseudo-potentials,...)
2: Reading of Restart

3: for each snapshot do

4: call run_pwscf with positions displaced at ¢t — dt/2

call run_pwscf with non-displaced positions at ¢

call current_zero, evaluate currents derived from the pseudo-potential
call current_ionic, evaluate the electrostatic and kinetic Ionic current
call run_pwscf with positions displaced at ¢ + dt/2

call current_hartree_xc, evaluate Excange and Hartree currents

10: call current_kohn_sham, evaluate Kohn-Sham current

Steps 6 and 7 do not require any finite differences, while steps 9 and 10 do. Step 10 is the most

expensive.

As with every big computational code, an extended test suite is needed to safeguard
the correctness of the calculation after every source code modification. We implemented
small tests that are able to run on a single core of a cheap laptop that check against
changes in the numerical output of many parts of the code, using the standard QUANTUM
ESPRESSO’s test suite framework.

To conclude the section we want to do some remarks on the code and its interactivity
with other typical ab-initio simulations tools. In principle the wave-functions computed
on-the-fly by cp.x during the AIMD run could be used, but we preferred to implement a
workflow where the computation of the currents is completely decoupled from the AIMD
engine, thus the wave-functions are always recomputed by pw.x. The chosen approach
allows the user to run the calculation in post-processing mode, thus using the preferred
code to generate the dynamics, not to be limited to those in the QE packages. This way
it allows, also, a trivial and powerful per-snapshot parallelization.

3.1.4 Code usage

Input description

The input is organized in a traditional FORTRAN namelist input file, similar to the
input files of many QuanTUM ESPRESSO’s programs, and an optional trajectory file
(that is a file for the atomic velocities and a file for atomic positions) if the user wants to
compute the energy current for more than one snapshot with a single run. A full example
of the input can be found at https://gitlab.com/QEF/q-e/-/tree/master/(QEHeat/
examples. Before running QEHeat it is necessary to obtain velocities and positions from a
different code. If the QUANTUM ESPRESSO’s cp.x program is used for this purpose, its
output trajectory files can be recycled as input trajectory files without any modification.
The program’s mandatory input is organized into an ENERGY_CURRENT namelist and all
the usual pw.x namelists. We remind the user that, up to the present version, only norm-
conserving pseudopotentials and the PBE exchange-correlation functional are supported.
At the end of the input file the ATOMIC_VELOCITIES card is required. In the IONS namelists
the value ion_velocities = 'from_input' is required, since the program must read the
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atomic velocities to compute the energy current. An extensive input description can be
found in the file INPUT_ALL_CURRENTS.html in the Doc folder of the code repository. Here
we remark on the most important parameters of the ENERGY_CURRENT namelist:

e delta_t : time in PW’s atomic unit used to compute all the numerical derivatives
like the one in Eq. (3.8);

e trajdir : prefix of the cp-formatted trajectory. Optional: if not set, only the
positions and the velocities of the input file are read;

e n_max : the number of periodic images along the directions of each basis cell vector
to converge Ewald sums. This fixes the range of L in Eq. (3.5) ;

e eta : convergence parameter of the Ewald sums needed in the computation of J",
for more details see [48, Appendix B.3]

An example of the namelist is provided in fig. 3.1. An additional output file is written and
updated at the end of each step in the folder where the program is run. All the currents
are printed in a column format, ready to be analyzed by an external post-processing tool.

CONTROL’s conv_thr and ENERGY_CURRENT’s delta_t have a profound link and influ-
ence heavily each other, and despite we think the default value of delta_t=1.0 is safe
enough, they must be carefully tested, verifying that the standard deviation of the result
is low enough.

The standard deviation of the output energy current can be estimated by repeating
the same calculation for every step, many different times, setting for each repetition
a random starting potential and a random starting wave-function. The input options
re_init_wfc_1 = .true. together with n_repeat_every_step = 20, for example, do
20 repetitions of every timestep, resetting the starting wave-functions/potential before the
first SCF calculation. The pw.x’s input option startingwfc = 'random' is suggested,
to obtain a faithful error estimation. If more reinitializations are desired, the options
re_init_wfc_2 and re_init_wfc_3 can control the randomness of the starting WFC
and potential of every of the 3 (or 2) wave-functions needed to perform the numerical
derivatives, as explained in section 3.1.3. Note that when the wave-function is reinitialized
from scratch, the computation time raises since more SCF cycles are required to reach
the target convergence threshold. When n_repeat_every_step is greater than 1, an
additional column formatted output file with the averages and the standard deviations is
produced.

3.1.5 Implementation checks: Finite systems translating at constant
speed

The Green-Kubo current associated with a localized energy density €(r,t) rigidly trans-
lating with constant velocity v, is equal to B! x v. One possible way to show this is
to consider e(r,t) = e(r — vt,0) = (r — vt),thus J, = [éredr = —vy [(Op®)rodr =
Vg [ ddr = E'!y,. Note that we used the fact that € can be taken identically equal to
zero at the boundary of the integration volume, to remove boundary contributions from
the integration by parts. The identity requires therefore the energy density to be local-
ized and this condition can be mimicked in PBC considering a large enough supercell. We
used this property to check the correctness of our implementation for each individual cur-
rent in 3.2. We simulate a single Argon atom and a water molecule at equilibrium, both
translating at a constant speed. We then compare JMUB output from QEHeat and E'°v,
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parameter units
dt Ta.u.

INPUT ota /ag .
velocities a0/ Tan. (CP units can be specified)
positions ag

energy current Ry - ao/Ta.u.
OUTPUT | electronic density current ao/Ta.u.
center of mass currents ao/Ta..

Table 3.1: Units used for the input and the output, where Ry = 2.1799 - 10718J =
13.606eV, ag = 5.2918-10""'m, 71,. = 4.8378- 10~175 are the Rydberg units of energy,
the Bohr radius and the time unit in Rydberg atomic units. The program assumes the
input velocities to be in Rydberg atomic units, the standard for pw.x, unless specified
otherwise with vel_input_ units="CP’ in the energy_ current namelist. In that case, it
assumes Hartree atomic units, the standard for cp.x. cp.x’s unit of time is 2.4189-10717s.

where E'! is evaluated using an independent computation from the QE code. TheAs
discussed, the resulting currents need to be equal only in the limit of large cells, where
boundary effects can be neglected, i.e. the energy density is truly localized, and under
tight convergence criteria. In Fig. 3.2, we report the ratio between the computed and
theoretical values as a function of the cell parameter, showing that the correct limit be-
havior is recovered. For this calculation, we used a cutoff of 120Ry and econv = 10714 Ry.
Additionally, in Appendix C we perform the same test using a large cell parameter but re-
moving individual current components (i.e. the {XC,JONIC,ZERO,KOHN} components)
from the total energy flux. Since removing each component changes the difference with
respect to the limiting theoretical value, this proves the correct implementation of each
individual current.

In the same figure, using the same approach, we tested the electronic density current
as well. In the infinite cell limit the electron density current of a system translating at a
constant speed v is J¢ = N,v where N, is the number of electrons. It is possible to see
in figure 3.2 that the correct limit is obtained, validating the implementation of the code.

3.2 SporTran, a data analysis code for Green-Kubo trans-
port coefficients

18]

SporTran is designed to perform a complete cepstral analysis of a possibly multivariate
current time series generated by EMD, without the need of implementing, or even fully
mastering, all the details of the protocol. Moreover, an easy-to-use and multi-platform
Graphical User Interface (GUI) is provided, allowing the inexperienced user to input all
the needed parameters and visualize all the intermediate results in an interactive and easy-
to-understand way. In addition, the package is equipped with a command-line interface,
permitting one to run the program on headless computers or easily embed it in scripts.
Finally, a flexible Python API is provided, giving more advanced users complete control
over all the parameters and intermediate steps of the protocol.

The SporTran package requires at least Python 3 and the numerical library numpy
[31] for its core functionalities. In addition to this, the complete package requires scipy,
matplotlib, markdown2 and pillow. It can be installed by cloning the GitHub repository
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Figure 3.2: Proof that the behavior of the code is correct for systems translating at
equilibrium and constant velocity. In this setting, the output of QEHeat can be exactly
compared with the known theoretical value, indicated with Jipeory, in the large cell limit.
Indeed the plot shows that the ratio J/Jipeory g0es to one increasing the simulation cell.
This test can be performed for J equal to the electronic density current (dotted), which
is used to calculate a part of the energy current, and for the energy current itself (not
dotted). Tests are performed for a single relaxed water molecule (H20) and a single argon

atom (Ar). The electronic current should be, in the infinite cell limit, Jfﬁeory = Ny X v,
where Ng; is the number of electrons and the energy flux should be, in the infinite cell
limit, equal to ff?eewy = E' x v, B! being the total energy.
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Figure 3.3: Selection of the Nyqvist frequency, f*. The figure shows the power spectrum
of the energy current of a silica glass sample provided in the examples.

[17] or by using the pip utility (pip install sportran).

3.2.1 Graphical User Interface

The GUI is designed to smoothly drive the user from the raw data to the final result. The
input can be a simple column-formatted text file, with a text header for every column, or
a NumPy /pickle binary file containing a dictionary. The user selects the file format and
is then guided through a few simple steps to load the file, select the desired currents, set
the physical constants, and determine the value of the Nyqvist frequency, f*, as well as
the optimal number of cepstral coefficients, P*. The latter step is actually performed au-
tomatically through the Akaike information criterion [1, 2], whose suggestion can however
be manually adjusted by the user. In Fig. 3.3 we display a screenshot of the selection of
the Nyqvist frequency.

3.2.2 Command-Line Interface

The command-line interface is designed to easily embed the complete analysis in scripts.
All the parameters have to be specified as command line arguments (see Tab. 3.2). The
program outputs a PDF file with several plots, and textual or binary files containing the
raw results of the calculation. Those files can be easily used for further analysis.

3.2.3 Python API description

Here we provide an example of the usage of the code as a Python library. In this example,
which is also provided in the git repository [17] and documentation, we perform the
analysis of the energy current time series of a molten salt, sodium chloride. We stress
that the procedure is the same for any type of transport coefficient calculation. The data
is contained in a plain text file that was extracted from the output of a LAMMPS [64]
simulation, formatted as follows:
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—--input-format {table,dict,lammps}
-k MAINFLUXKEY

-j ADD_CURRENTS

-C {electric,heat,stress}
-u {real,metal,qepw,GPa...}
-t TIMESTEP

--VOLUME VOLUME
—--TEMPERATURE TEMPERATURE
-r

—--FSTAR FSTAR

-w PSD_FILTERW

input format

the header of the Jy flux column
header of additional current (optional)
the type of current

units

timestep in fs

volume of the system in A°

temperature of the system in K

resample the time series with the specified FSTAR

maximum frequency to analyse in THz

size of the moving average filter used in the plots,
for visualization purposes (THz)

—--help show the complete help
--list-currents list all the currents and units implemented in the code
INPUTFILE input file
Table 3.2: List of important command line parameters.
Temp c_flux[1] c_flux[2] c_flux[3] c_vem[1][1] c_vem[1][2] c_vem[1] [3]

1442.7319 250.86549 20.619423 200.115 -0.15991832 -0.071370426 0.020687917
1440.8060 196.22265 82.667342 284.3325 -0.13755206 -0.071002931 -0.011279876

Note the first line and the LAMMPS-like notation to define vector components. Besides
the fluxes, there can be additional columns with scalar data, e.g. the temperature. In
this particular case, the first vector quantity, named c_flux, is the energy current, while
the second vector quantity, named c_vcm[1], is the velocity of the center of mass of the
sodium atoms. This file contains time series that can be generated by any MD code. The
API provides a generic module to read this kind of data file:

import sportran as st
jfile = st.i_o.TableFile('./examples/data/NaCl.dat', group_vectors=True)
jfile.read_datalines(

start_step=0, NSTEPS=0, select_ckeys=['Temp', 'flux', 'vem[1]'])

The select_ckeys argument must be set with the names of the desired columns. The
code will automatically read them as Cartesian components of a vector-valued process.
Please refer to the documentation for additional input formats.

We are now ready to initialize a Current-type object. Current is an abstract class that
serves as a template for different types of currents. The GenericCurrent class, derived
from Current, defines a generic current time series: in order to estimate the transport
coefficient, only the time step and the kKgcae factor must be defined. To streamline the
user workflow, a few other specialized subclasses are available: HeatCurrent (thermal
conductivity), ElectrictCurrent (electrical conductivity), StressCurrent (viscosity),
each corresponding to different types of transport processes. For each current type several
units are available,' that simply define the kgale factor. In the case of this example:

DT_FS = 5.0 # time step [fs]
TEMPERATURE = np.mean(jfile.datal'Temp'])
VOLUME = 40.21%%3 # volume [A~3]

# mean temperature [K]

1A list of units for each current subclass can be

print(sp.current.HeatCurrent.get_units_list()).

printed: e.g.
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Figure 3.4: Plot  of 5’8 and logS’,g generated using the class method
HeatCurrent.plot_periodogram().

j = st.HeatCurrent([jfile.data['flux'], jfile.datal['vem[1]']],
UNITS='metal', DT_FS=DT_FS, TEMPERATURE=TEMPERATURE, VOLUME=VOLUME)

metal are the units used to compute the heat flux (as defined in LAMMPS [64]). The input
parameters needed to define each Current subclass are listed in the code documentation.

We are now in the position to compute the sample 5’2. Remember again that in the
univariate case this is simply the periodogram of the original time series. In order to plot
5’,8 and its logarithm we can use the following function:

ax = j.plot_periodogram(PSD_FILTER_W=0.4, kappa_units=True,
label=r'$\bar{\mathcal{S}}"0_k$')

PSD_FILTER_W defines the width in THz of a moving average filter used for visualization
purposes. The result is shown in Fig. 3.4. Since we are interested in the zero-frequency
value of 5,8, we resample the time series in order to decrease the Nyqvist frequency to f*
and focus on the lower part of the spectrum. We do this as follows:

FSTAR_THZ = 14.0
jf, ax = j.resample(fstar_THz=FSTAR_THZ, plot=True, freq_units='thz')
ax.set_x1im([0, 20])

The resulting plot is shown in Fig. 3.5. We are now ready to perform the cepstral analysis.
This is as simple as calling the function:

jf.cepstral_analysis()
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Figure 3.5: Resampled time series. The blue and orange lines represent 32 of the original
and the resampled time series, respectively.

The result provided is the following:

AIC Kmin = 3 (P*x = 4, corr_factor = 1.000000)

L_Ox = 15.168757 +/-  0.056227
S_0x = 6824108.702608 +/- 383697.095268
kappa* = 0498310 +/=  0.028018 W/mK

For additional details please refer to the Jupyter notebook examples provided with the
source code, or to the documentation.

All the steps and plots of this workflow are implemented in the command line tool
and in the graphical user interface, which streamlines the execution for the end user.

Extending SporTran and code details

We remark again that the core part of the code is process-agnostic, i.e. it does not depend
on the type of transport coefficient and can be seen as a way to compute any Green-Kubo
integral from a flux time series. However, when performing an actual calculation, the
ability to set the physical units can be very practical. For this reason, SporTran is
designed in a way that makes it easy to add new custom units and transport coefficients
that can be expressed as in Eq. (1.50), where physical coefficients such as temperature
and volume are multiplied. This enables the user to input all the required parameters
in a simple and friendly manner through all the available interfaces, and to get back the
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result in the preferred units. If the following procedure is used, all the built-in interfaces
(GUI and CLI) will detect the new parameters and request them when needed, thanks to
the introspection features of the Python language.

Adding a new unit is very easy: it is sufficient to go to the folder sportran/current/units,
open the module corresponding to the desired current type (heat, electric, stress, ...) and
add a function named kappa_scale_mynewunitname, similarly to the other functions
found therein. The code will list this new unit called mynewunitname in every user inter-
face and in the help function.

In order to define a new type of current and set its units, the following operations are
required. First, in the folder sportran/current add a new module (e.g. mycurrent.py),
in which a subclass of sportran.current.Current (e.g. MyCurrent) is defined. Then:

¢ Define the following class attributes:

— _current_type: the name of the current. This will be used by the user
interfaces to look for the available units corresponding to this current (e.g.
mycurrent).

— _input_parameters: a set of parameters that this class needs, e.g.
{'DT_FS', 'UNITS', 'TEMPERATURE', 'VOLUME'}.

— _KAPPA_SI_UNITS: a string describing the units of the transport coefficient,
e.g. W/m/K.

e Define a _builder method (property). This is a method returning a dictionary of
all the parameters needed to rebuild an identical current object.

e Define the units: create a new module in the folder sportran/current/units and
name it after _current_type (e.g. mycurrent.py). Add here all the desired units
as functions called kappa_scale_myunit, as previously explained. The input pa-
rameters of these functions must be the same listed in the _input_parameters class
attribute.

The code has extensive documentation written with Sphinx available at https://
sportran.readthedocs.io and a complete test suite that the user is strongly advised
to run before using the code on a new machine, or after modifying the code. Examples
are included in the package, both for the single-component and the multi-component
case in the form of Jupyter notebooks and command-line scripts. Any issue reports or
contributions to this code are encouraged and can be submitted to the GitHub page [17].

3.3 Automatic workflows with cp.x and AiiDA

[35, 71]

During computational work usually the simulations depend on each other. It is pos-
sible to produce a reproducible and verifiable result by hand only when the number of
simulations is small, and this task requires a big amount of tedious work. AiiDA purpose
is to manage all the data produced by a simulation and all the inputs of a simulation on
a remote machine and keep track of all the dependencies for you. The full data prove-
nance graph is stored in a relational database, so it is easy to retrieve any old simulation
simply by querying the database. Then it is possible to take advantage of these facilities
to code automatic workflows, that manage many simulations automatically, performing
all of them using the same methodology and getting all the results in your data analysis
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submit-verlet-62. job
400K/ submit-nose-63. job
61/ MEMENTO
62/
63/ .
in.61 500K/
in.62
in.63
submit-cg-61.job
resubmit-61. job

Figure 3.6: Example messy folder structure, that we try to avoid with AiiDA . Recon-
structing the exact sequence of commands and getting the same result can be hard or
impossible. For example the user can modify some input file and use it again, and no
trace of the old file is left. Looking for a particular calculation can be difficult as well.

framework. This is an important step towards coding our knowledge in computer codes,
especially in a field where doing a simulation is a sort of cooking recipe, with some fixed
guidelines but no unique way of getting a correct result.

3.3.1 AiiDA overview

AiiDA has 3 principal components: a code that is called verdi that runs in the background
of the user’s computer interacting with the remote machines, a relational database where
all the graph of all the computation is stored, and a repository of files where the outputs
and inputs that are too big for the database are kept. The AiiDA ’s python library
manages all operations. The user needs to interact only with verdi, and with the built-
in python object-relational mapping (ORM) interface to the database. All the system
is built around the idea of the Node object, that is a node in the provenance graph of
a computation. A Node has inputs and outputs links that point to other Nodes. It
is possible to attach to a Node extra data, such as reference to the big files repository
or extra comments. In the python library, the generic Node object is specialized, for
example, to an input parameter, a trajectory, a computation, or a remote computer code.
A Node can be sealed (for example, after a computation is finished). After this event,
the node’s inputs, outputs, and contents cannot change, but only new extra comments
can be attached. When a graph is built with the AiiDA interface, nodes not waiting for
something to finish will be automatically sealed. Thus any provenance graph built with
AiiDA will represent a completely reproducible calculation, given that the executable
codes on the remote computing resource are kept there.

To interact with the external computing resources, a specific code Node is needed for
each different computer, and for each different code. Calculations Nodes are created by
plugins provided by the AiiDA developers. Usually, they are organized in a part that
validates the inputs and prepares the input files, consuming input nodes, and a part that
parses the output generating new AiiDA output Nodes.

The author contributed actively to the AiiDA QUANTUM ESPRESSO plugin?, im-
plementing the support for the newer versions of the cp.x code, new parsing features, a

2See https://github.com/aiidateam/aiida-quantumespresso and the pull request https://github.
com/aiidateam/aiida-quantumespresso/pull/455
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Figure 3.7: Example AiiDA graph of a reproducible computation. The complexity is very
high, and keeping track of the dependencies without an automated tool is impossible.

refactoring of many parts that allowed the code to enhance its flexibility (needed for the
new features), and many new tests to the test suite. This work resulted in the modification
of 17 source files and roughly a thousand lines of code.

All the operations on the remote filesystem and all communications with the queue
manager of the high-performance computing resources are handled transparently by the
AiiDA library. The remote computers and the remote codes need to be configured only
once when they are used for the first time.

With all this machinery, it is possible to write a code that manages the sequence of
computation of other codes, called workflow. All the processes of performing a complicated
calculation become (semi-) automatic. An important feature is that the workflow code
does not need to know anything about folders, databases, remote filesystems, lowest level
details of how to build the input of a managed code, but it will interact only with the
code plugin and the AiiDA interface to the database and repository, implementing only
the highest level logic of the computation.

user’s computer

User’s
analysis code

‘ HPC resource ‘

verdi daemon

J AiiDA library H HPC resource ‘

User’s
workflow code

AiiDA database
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3.3.2 Small review of first principle molecular dynamics

[11, 51] Here we’ll review the basic theory of Born-Oppenheimer (BO) and Car-Parrinello
(CP) first principle molecular dynamics to understand what the semi-automatic CP code
does.

In the BO method, we assume that nuclei are classical particles and that the evolution
of the electrons is adiabatic. This means that the forces on the nuclei depend only on
the atomic positions and not on the time derivative of the electronic wavefunctions. So a
basic algorithm is to solve the following equations of motion:

MRy = -V I{ziolfl(lbolffe|¢0> (3.9)

Eopo = Hetpo (3.10)

where H, is the Kohn-Sham hamiltonian and the electronic state g is found by solving
the Kohn-Sham equations at every time. To do a molecular dynamics simulation the
equations are integrated over discrete time steps with the Verlet algorithm. Forces are
calculated with the Hellmann-Feynman theorem after a complete minimization of the
DFT energy, done at each integration time step. This can be applied for each case where
the adiabatic approximation is valid, but it may not the be most efficient one. The biggest
issue is the difficulties to perform a well-converged diagonalization of the hamiltonian, so
that good forces are obtained and the constant of motion of the system (kinetic energy of
the nuclei plus DFT energy) is conserved. This is not always easy to obtain since small
non-convergence errors tend to generate drifts in the K + V time series.

The Car-Parrinello (CP) method tries to overcome these difficulties and can be a good
choice in some cases. The basic idea is to treat the electron wave function as a classical
field that moves in the DFT potential. If the field starts near the energy minimum
of the potential and its temperature is low enough, applying Newton’s equation to it
will let it evolve following the minimum of the DFT potential, resulting in a dynamical
minimization procedure that does not need to diagonalize the KS hamiltonian at each
step of the dynamic. The famous CP lagrangian:

1 . 1.
L= Zv: 5#/96137"|¢v|2 + ZI: §M1R§ — Eppr[{tpv}, {R1}] + %:Aij (/Q dPripiap; — 5@-)

(3.11)
where we have a fictitious electronic classical kinetic energy, a fictitious electronic mass
i, and lagrangian multipliers A;; used to keep the wavefunctions orthogonal during the
dynamics. It can be shown that in the limit of small y, solving the equation of motion of
this lagrangian is equivalent to doing BO dynamics on the ions. The equations of motion
for the system are:

i) = =5 8) 4 3 B (312)
v J

MR; = —Vg,Eppr (3.13)
The idea is that the equations should remain decoupled: the fastest modes w)'** of the
second equation should be slower than the slowest w™" of the first, so that there is no
energy transfer and the electronic wavefunctions can stay near the ground state, oscillating

fast around it, for all the simulation. This decoupling can be controlled by the parameter
p thanks to the relation [51]:

X[ —— . (3.14)
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Since Fyqp, the energy difference between the lowest unoccupied and the highest occupied
state, depends on the physics of the system, the only parameter that we can tune is pu.
The lower the u the higher the electronic frequencies, and the better the decoupling. But
you will have to use a smaller timestep to integrate the equations of motion. Doing a
good simulation that conserves well enough the physical energy of the system and the
constant of motion of the CP lagrangian is a matter of finding a good balance between a
not-too-small integration timestep and a not-too-big p, in systems where Eyq, > 0.

The fact that we assign an arbitrary mass to the electronic wavefunctions, with the
only purpose of letting them move with newton equations following the minimum of the
DFT functional, also has consequences on the system’s inertia. If, in a classical system,
one adds something with a mass bounded to something else with a potential, one cannot
expect that this blob with a higher mass moves with the same inertia as before. The
practical effect of this on the simulation is that, on average, the forces calculated on the
ions will be systematically lower by a factor with respect to the forces calculated with
the Hellmann-Feynman theorem and a full minimization of the DFT functional, because,
intuitively, part of the missing force is needed to accelerate the electrons. It is important
to check for this error and try to correct it when we calculate quantities that depend on
the mass of the ions, such as diffusion coefficients. At the same time, static properties
like the pair correlation function should not depend on the mass of the electrons in a well-
formed simulation. The effect on the forces is investigated in deeper detail in [68, 67]. The
leading order additional ionic mass term in systems where electrons are localized around
ions, with no distortions to the charge of the ions as they move in the field of the other
ions, can be estimated with the following[68]:

_ 2me I h2 2 T
AM[—BW;H<¢]"2WV]"¢]'> (3.15)

where the sum is performed over the orbitals of the ion I, and the terms in the sum are
the quantum kinetic energy term of the wavefunction. This correction can be understood
as additional inertia due to ions carrying around a rigid cloud of massive electrons. This
term vanishes in the limit y — 0.

Parallel transport gauge wavefunction derivative

In general, this would be a way of computing wavefunction derivative by fixing the
gauge[3]. In our case, it will be used just to conveniently initialize the velocities of the
electrons since the CP dynamic of the electrons is completely fictitious. In practice it is
a good choice: the fictitious kinetic energy of the electrons keeps oscillating around the
value that we compute with this derivative for an equilibrated system.

Let

P(t) = [tu(t)) (%(t)] (3.16)

be the projector over the occupied electronic states at time t, v = 1,..., N, where N, is
the number of bands. Then we can write a generic occupied state as
6(2)) = P(t) (1)) (3.17)
deriving the expression we have:
d dP(t) d
— lo(t)) = — |o(t P(t)— |o(t 3.18
S100) = 2 16(0) + P(0) 10(0) (315)
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The parallel transport gauge is the one where we put P(t)< [¢(t)) = 0 (the derivative has
no components over the occupied manifold), so we define the wavefunction derivative to

be
dP(t)

d
o) = S22 10(0) (319)

This has many technical advantages in the numerical computation of the wavefunction
derivative. It is not possible to numerically differentiate the wavefunction computed with
two independent minimizations of the ground state because in general, the phase choice
of the DFT solver is arbitrary. Therefore initializing a CP simulation with a <Z> computed
in this way is not possible, we would get nothing but random numbers. On the contrary,
the projector P(t) does not depend on the gauge, so it can be differentiated numerically
without any particular issue other than choosing a good time interval for computing
the difference. The alternative to using this method can be to initialize the electronic
velocities to zero, but this will result in a larger kink to the wavefunction, ending up with
more kinetic energy after the system equilibrates.

3.3.3 cp.x code

The work on the cp.x code was focused on the code paths used for this study, mainly
in the initialization part of the simulation. The biggest work was done on the conjugate
gradient minimization routine.

The conjugate gradient routine, located in the CPV/src/cg_sub.£90 file of the official
QuanTuM ESPRESSO distribution, has the main purpose of initializing the CP sim-
ulation, and it is able to compute the wavefunction derivative in the parallel transport
gauge. The parallel transport derivative routine is common with the code QEHeat, and is

in the module Modules/wave_gauge.£90. Numerically, dl;gt) |p(t)) becomes

dP(0)
dt

) ~ = 3 (160) 0]~ 197) (671) o) (3.20)

In the code, this is equivalent to the computation of two matrices filled with scalar prod-
ucts of wavefunctions calculated at three different timesteps. If needed, also two timesteps
can be used. The gauge of the resulting wavefunction will be the one of |¢°).

The wavefunction derivative is computed every time the CG routine is called and
dynamics is running. At the moment this is the only way to initialize wavefunction
velocities to a reasonable value different from zero.

The possibility to call the routine in the middle of a Verlet run was implemented
using cp.x’s autopilot module. Following the documentation, now it is possible to run
a full electronic minimization, with a wavefunction velocity calculation, on the fly when
the code is running by simply writing a file called pilot.mb inside the simulation’s folder
with the following content:

PILOT

NOW : electron_dynamics = 'cg'

NOW + 1 : electron_dynamics = 'verlet'
ENDRULES

Then we ported all the relevant code paths for norm-conserving pseudopotentials of
the CG algorithm to the GPU architecture using OpenACC, and we fixed the following
small issues:
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o wavefunction velocities were not updated correctly when changing the timestep

o initialization of the velocities of the ions from a Boltzmann distribution was not
working

e missing tests in the test suite for the CG algorithm
e missing documentation of the output files, small documentation updates

[22, 21, 23]

3.3.4 Car-Parrinello AiiDA workflow

The workflow has a big variety of inputs listed in table 3.3. A part is related to the choice
of the code and the parameters for the resource manager of the HPC system. Then there
are the parameters of the DFT functional: wavefunction cutoff, pseudopotential, and
others depending on the calculation one wants. Then the workflow is structured so that
the choice of the Car-Parrinello simulation parameters (electronic mass and timestep)
does not need to be made explicitly. You provide a reasonable range of timesteps and
masses, and an acceptable Car-Parrinello/Hellmann-Feynman force ratio. The code will
try to find an efficient choice of the simulation parameter by doing some guesses and by
seeing how the simulation behaves. In the inputs, you provide the initial condition of the
system and the points in the T-P diagram that you want to simulate. Then the code
performs all the steps that would be made by hand and are usually boring. The user is
left only with the task of inspecting the products of the simulations. The code performs
the following automatically.

Initialization and choice of the parameters

This code does not assume that the initial configuration is equilibrated. For example,
the initial state can come from a force field simulation, or an arbitrary randomized set
of positions and velocities. So the first thing that the code does is a few steps of Born-
Oppenheimer dynamics, so if the initial state is far from equilibrium configuration the
simulation can warm up a little bit, allowing faster atomic movements without failing at
the very beginning. If we used the CP dynamics in those very early steps, we easily got
very high electronic temperatures from the beginning. Those steps are performed with a
direct conjugate gradient minimization of the electronic state. At the end of those steps,
the wavefunction velocity is computed within the parallel transport gauge.

We start the CP dynamics with a very small timestep, to allow further (preliminary)
equilibration, and a very small electronic mass, that should work for every system. Now
the task is to find a reasonable value for the fake electronic mass and the timestep to
perform a more efficient simulation. The code generates a variety of trajectories with
different electronic masses and the same low timestep value, and then, if some of them
succeed, starting from the last point of each of them, a range of trajectories with differ-
ent timestep values, chosen from the input parameters. After all those simulations are
finished, we pick the ones that are successfully finished and we run on many snapshots
the PW.x code, computing the forces. The last step is to pick all the PW runs that are
successful and compute the CP/Hellmann-Feynman force ratio with the corresponding
frame of the CP trajectory. We get histograms like the one of figure 3.8. By looking at
the statistics of the data, we can decide if the simulation fits the required accuracy, does
not fit it, or is simply garbage (that is the case if the distribution spreads too much). If

40



3. COMPUTER CODES

cp_code

pw_code

structure

ecutwfc

pseudo_family
target_force_ratio
additional_parameters_cp

emass_list

max_slope_min_emass
dt_start_stop_step

number_of_pw_per_trajectory

nve_required_picoseconds

nstep_initial_cg

thermobarostat_points

temperature_tolerance

pressure_tolerance

node with the CP code to use

node with the PW code to use

initial structure, or trajectory to start from
cutoff for the DFT energy functional
pseudopotentials

the code will choose the fictitious electronic mass
to have a CP/Hellmann-Feynman force ratio
close to this parameter

additional parameters to pass to all CP calcula-
tions

list of fictitious mass to try at the beginning of
the parameter finding algorithm

minimum acceptable fictitious mass

range of timesteps to try at the beginning of the
parameter finding algorithm

number of frames that will be used to compute
the forces that will be compared to the CP ones
in the parameter finding

number of picoseconds of the final NVE trajec-
tory, after all the equilibration

number of Born-Oppenheimer steps to do at the
very beginning of the simulation, starting from
the initial structure

list of dictionaries with the following format:

{"temperature_K": 2800,

— "pressure_KBar": 1000,

— "equilibration_time_ps": 1.0,
"thermostat_time_ps": 1.0},

The simulation will loop over those T,P points
and try to equilibrate

if the difference between the average temperature
in the NVE equilibration and the asked temper-
ature is more than that, repeat the procedure for
this point

if the difference between the average pressure in
the NVE equilibration and the asked pressure is
more than that, repeat the procedure for this
point

Table 3.3: List of the input parameters of the CP workchain
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1e3 emass=20, dt=1.7, PK={227413}
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Figure 3.8: Example histogram of the ratio between the Car-Parrinello forces and the
forces computed with a standard self-consistent DFT calculation. Atomic units.

no simulation fits the requirement, the electronic fictitious electronic mass is lowered by
a factor, then everything is repeated. At some point, this loop terminates, and the code
chooses the higher electronic mass between all the simulations that are accurate enough.
This is our best guess when the trajectory is a few timesteps long.

Now the code picks the last frame of the chosen trajectory and, if asked to, runs
many benchmark trajectories of a few hundred molecular dynamics steps to select the
most efficient available parallelization options for the cp.x code. This works by trying a
few values of band groups and task groups and seeing how much time is spent on one
molecular dynamic step. The ionic mass optionally is adjusted using the average force
ratio (thus estimating empirically the correction of eq 3.15, to correct the leading term of
the finite fictitious electron mass effect. Now we are ready to start the simulation.

Thermobarostatation of the trajectory

At this point, we enter the workflow loop over the number of P-T points. First, the
thermobarostat is run. The code cp.x is repeatedly run till the length of the trajectory
specified in the input is reached. After this, a CG minimization of the electronic ground
state and a wave function velocity computation is performed. Then a small NVE simula-
tion is run, as required in the input. After this, the code checks the last NVE trajectory
and computes the slope of the electron’s kinetic energy and the constant of motion. The
electronic fictitious mass and the timestep are lowered if they are not within the limits.
The ratio of the forces between the is computed again and if asked the ionic mass is ad-
justed again with the new factor. Then a new CG is made, and everything loops over all
the P-T points requested in the input. In the end, a longer NVE trajectory is computed
optionally.
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‘ Run thermobarostat ‘

‘ wavefunctions minimization ‘

NVE run

check slope of electronic kinetic energy
and constant of motion

check temperature and pressure,
eventually repeat

set next T, P point
or finish the loop
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3.4 Code for efficient data analysis of huge trajectories

[6] Analisi is a multi-platform tool written in C++ and python for computing averages
on molecular dynamics trajectory. The tool was written to analyze the biggest trajectory,
so many levels of parallelization are implemented. The structure is such that adding new
computation is simple, and every calculation added can use very easily the MPI frame-
work to compute block averages without writing a single line of MPI code since each block
is independent. The tool comes with a command line interface and a python interface
and has an extensive test suite that is continuously run on Linux, Mac, and Windows
operative systems. The test suite includes unit tests, tests of the command line interface
functionality, tests of the conversion tools between different molecular dynamic trajectory
formats, and tests of the python interface inside jupyter notebooks. A binary package on
https://anaconda.org/conda-forge/analisi is also available on every supported op-
erative system, for x86, arm, and power9 processor architectures. Some of the calculations
implemented are:

e Van Hove correlation functions[72] and its particular case, the pair distribution
function g(r)

o angular density expanded in spherical harmonics correlation function

o Steinhardt (averaged) descriptors|44]

e SANN first neighbor algorithm[73]

e mean square displacement

o multi-component Green-Kubo / Einstein-Helfand time domain integrals
o vibrational spectrum

e atomic density calculation

3.4.1 Structure overview

The high-level structure is shown in figure 3.9. The final user can interact with the tools
from a simple command line interface that takes a binary LAMMPS trajectory file for
input, or from python using the code as a library. In the latter case, the library can take
advantage of the ubiquitous NumPy array format, using them directly as inputs. The
python library approach can better integrate the tool, for example, in an AiiDA framework
or beautiful jupyter notebooks. The command line interface on the other side can be used
very easily on supercomputers to deal with the heaviest trajectory analysis or to get a
fast plot of the requested calculation with Gnuplot.

Some parts of the code are common to all calculation types like MPI communications
for doing block averages, multithreading boilerplate code, and the interaction with the
binary trajectory file. These part are interfaced with an abstraction layer that allows
changing their implementation completely, keeping the interface fixed, without touching
the other parts of the code. In the code, there is heavy use of the template feature of the
C++ programming language, and we completely avoid the virtual class approach, where
the code decides at runtime which particular implementation of the abstraction to choose.

Each calculation that the tool can do is mapped to a C++ class. This layer is found
after the two parallelization levels of figure 3.9. The class has to implement a specific
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Figure 3.9: High-level organization of the code of the Analisi toolbox. To implement a
new calculation the advanced user must write the related class and write some boilerplate
code in the command line interface and in the python interface to expose the code to the
outside world, touching the parts marked with the dashed box in the diagram.

interface so it can be used correctly from the upper layers, specifically from the classes
BlockAverage and CalculateMultiThread. It must implement the following functions:

e void calculate(int) the function that is called to compute the quantity in a
block, with the timestep index as the only argument

e int nExtraTimesteps(int) used to know how much timestep does the class need
to access after the end of the block, with the number of the block as argument

e reset(int) called before calculate with the size of the block as argument

o algebraic operations on the data, that can be borrowed from the class Vector0Op if
the new calculation is derived from there

e optionally, the class can derive from CalculateMultiThread and implement the
function calc_single_th(...) with a range of arguments that depends on the
strategy of parallelization. Many strategies are implemented. In this case, calculate(int)
is implemented by CalculateMultiThread.

e to interact with the python interface, the class can implement some function to
describe the shape of the data array

The calculation class can use the provided trajectory reading abstraction layer to use,
without any additional effort, both the Lammps binary and the python interface. The
trajectory reading layer interacts with the higher level block average layer to load the
data before each call to calculate(int). The advanced user therefore can use only the
following functions to access the trajectory data:

e positions_data() returns a pointer to the beginning of the contiguous position
array, where the memory is arranged putting side by side the 3d vectors coordinate
like x1 y1 z1 x2 y2 z2 ... . Note that the address may change after a new reading of
the trajectory if a size change is necessary. Only the trajectory data of the current
block is loaded into the memory.
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e get_natoms() returns the number of atoms

e get_nloaded_timesteps() return the number of timesteps loaded into the posi-
tions and velocity arrays (equals to the block size plus the extra timesteps wanted
by the calculation returned by the function nExtraTimesteps)

e velocity_data() returns a pointer to the beginning of velocities data, in the same
format as the position one.

e positions(int iatom, int itimestep) return a pointer to the position of iatom
at timestep itimestep. Note that timestep indexes are absolute, 0 is the first timestep
of the whole trajectory.

e velocity(int iatom, int itimestep) return a pointer to the velocity of iatom
at timestep itimestep.

e d2_minImage(int i, int j, int itimestep, int jtimestep) minimum image
convention of the square distance between specified pair of atoms at the specified
timestep. The cell vectors at timestep i are used for applying the PBC.

Many other functions can be used, and they can be directly read from the code in the file
lib/include/basetrajectory.h.
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Application to high PT phases of
ammonia

In the nearer future, before potential space missions, some progress is envisioned in the
following fonts. Further improvements in EOS calculations and experiments of volatile
materials such as water, ammonia and methane, their mixtures, as well as their miz-
tures with rock or with hydrogen (and helium), are essential. Quote from The interiors
of Uranus and Neptune: current understanding and open questions Ravit Helled and
Jonathan J. Fortney [33]

4.1 Superionic Ammonia

Ammonia is a candidate material for the inner layers of planets like Uranus and Neptune,
and its properties at high pressure and temperature (hundreds of gigapascals and thou-
sands of kelvins) are yet not fully understood. Understanding the high-pressure phase
diagram is fundamental to excluding certain materials or better understanding the plan-
ets’ possible dynamics.[34, 33]

In this chapter, we investigate the thermal properties of the superionic phase of ammo-
nia. Since its structure is not yet established, it is necessary to understand its most stable
atomic configurations before computing transport properties. Our results add some new
understanding of its structure but also leave some questions unanswered. Nevertheless,
we provide an estimate for the thermal conductivity coefficient.

Ammonia has a very rich high-pressure phase diagram, presenting two solid phases
that are well known experimentally, a plastic phase and superionic phases whose structure
is less clear, in a region of the PT space approximately between 10-100GPa and 400-3000
K. The density of the material here is around 2g/cm? and is compatible with the esti-
mation of the radial density profile of gas giant planets, estimated from the gravitational
field moments.

We are interested in its thermal properties because it is possible to measure experi-
mentally the energy dissipated by the planet by looking at its internal luminosity and the
surface temperature. Knowing how much energy is dissipated makes it possible to build
a model for the thermal history of the planet[66]. A crucial ingredient for those models
is how energy flows from the innermost layers of the planet to the outer surface.

47



4. APPLICATION TO HIGH PT PHASES OF AMMONIA

Experimental work on high-pressure materials is available. They are usually performed
with a diamond anvil cell (DAC) and high-power lasers. The experimental setup allows
a sample size of the order of 0.lmm, introducing strong thermal gradients. Measuring
thermal properties in high-temperature experiments can be as hard as impossible.

Experiments performed in [38] point out the possibility, in the 100GPa region, that
two superionic phases may be present, according to a detected discontinuity in the sound
velocity measurements. One of those two phases may behave like a liquid, possibly gen-
erating convective phenomena inside the planetary layer and generating a completely
different outcome in the planetary model.

The experimentally well-established phases in this pressure range are two solid phases
named IV and V with an HCP-like structure and a plastic phase named III[45, 53]. In
those experiments, the « superionic phase can have both HCP-like and FCC-like struc-
tures [54, 55].

4.2 Simulations overview

Many series of simulations were done with 108- and 144-molecule systems in HCP- and
FCC-like lattices for the nitrogen atoms. The pressure, the temperature, and the density
of all of them are shown in figure 4.1. In each series, we used the CP workflow described
in section 3.3.4. With this procedure, we explored the system till 3000K and 100GPa,
where the decoupling between electronic and ionic degrees of freedom becomes difficult.
We used an integration timestep in the range of 3.0-1.5 atomic units depending on the
temperature. We took advantage of all the GPU acceleration work that was done on the
cp.x code. This gives a performance of roughly between 1 and 3 picoseconds of trajectory
per day on 2 nodes in the Marconi 100 cluster (8 GPUs in total).

We started with solid phase I in a 108-molecule supercell. After that, we explored the
plastic FCC phase III in a cubic supercell with 108 ammonia molecules, which becomes
a superionic FCC phase when temperature and pressure are increased. After this, we did
a completely new series of simulations starting directly from a superionic FCC or HCP
phase at 100GPa with a 144-molecule supercell that was cut along the 111 direction of
the conventional FCC cubic cell. With this system, we explored the behavior of strained
cells. In the following sections, I will show the behavior of the plastic phase III and the
superionic phase, more interesting from a planetary point of view.

4.3 Plastic phase III - FCC

We reached the plastic phase at around 500-600K, 30GPa, starting from a high-pressure
phase I configuration. Nitrogen atoms have fixed positions on a conventional FCC 3x3x3
supercell. As it is possible to see from figure 4.2, the hydrogen atoms during the dynamics
are rotating around their nitrogen site in a hopping-like way, visiting on average some
preferred points on the sphere with radius 1A. The shape of the molecule remains similar
to the original ammonia molecule. This can be seen by visual inspection and is confirmed
by the fact that the peak of the H-H plot in figure 4.3 is at 1.62A, a distance consistent
with a tetrahedral geometry where the nitrogen is in the center and the angle between
the N-H bonds is 109°. In the ammonia molecule, the angle is 107°. The mean square
displacement of the rotating molecule can be roughly estimated with a very simple model
where each hydrogen has an equal probability to fill all 4 sites placed at the vertex of a
tetrahedron inscribed in a sphere of radius 1A centered on the nitrogen atom. Inserting
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Figure 4.1: Explored PT space for superionic ammonia. The data is extracted from the
AiiDA database and shows the equation of state.

@

<
Figure 4.2: Atomic density in the plastic phase at 800K, 30GPa. The molecule has some

preferred orientations around the nitrogen sites, but always maintains the structure of an
ammonia molecule, and no hopping between sites is present.
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Figure 4.3: ¢(r) and MSD of the plastic phase. The numbers inside the plot are the
position and the width of the peak at the nearby horizontal segment.
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Figure 4.4: Pair correlation function at 2200K, 100GPa.

the H-H distance of the peak and assuming a fixed geometry one gets roughly, for the
average square distance, 1.62A2.3 /4 = 1.97A2, not too far from the actual value extracted
from the trajectory. If one uses a cuboctahedron, with 12 equivalent vertexes, one gets
given a radius of 1A, a sharp 2A2 as the limit value for the MSD. The preferred orientation
of the molecule is with a hydrogen atom pointing to the nitrogen of a nearby molecule,
oriented oppositely.

4.4 Superionic phase

4.4.1 108-molecule system

In the first series of simulations, we arrived at the superionic phase from an FCC-like
plastic phase. After the transition, that is at about 750K 70GPa, nitrogen atoms are
bound to an FCC lattice, while hydrogen atoms stay most of the time around some
preferred sites, roughly with the same tetrahedral structure of the plastic phase, as shown
in figure 4.6 but with increased mobility, as we can see also from the g(r) plot of figure 4.4.
There are in total 12 favorite sites for the hydrogen, one in the direction of each neighbor
nitrogen, showing that free sites of nitrogen neighbors are attractive for H. The sites are
located on the vertex of a cuboctahedron, as in figure 4.5, with a similar structure for the
HCP case, where a triangular face of the cuboctahedron is rotated of 60°.

There is no possible subset of the vertex of the polyhedron that is able to produce the
quasi-tetrahedral structure that the ammonia molecule would like to have, causing the
system to be always in an unstable state, being hydrogens attracted both by the molecular
tetrahedral sites and the free cuboctahedron sites of the nearest nitrogens. Probably this
is also what causes the rotation in the plastic phase too. But here, with bigger thermal
fluctuations, the oscillations of the N-H distance cause some H atoms to hop to a neighbor
ammonia molecule, which becomes for a short time an NHI molecule, and then the extra
hydrogen is expelled again. All this process happens while the hydrogen atoms rotate
randomly around their nitrogen site. A time series of the radial distance of the nearest
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Figure 4.5: Cuboctahedron. It is a polyhedron with 12 vertexes, and each edge has the
same length. The distance between the center of the solid and each vertex is equal to
the edge length. If we put nitrogen in the center, each vertex is occupied by the nearest
neighbor nitrogen. The highlighted planes are the ones taken to build the simulation. This
particular example will build an FCC structure. To get the HCP structure is necessary
to rotate a triangular face of the cuboctahedron to get an ABA stacking.

«

@
2 . -
Figure 4.6: Possible configurations of hydrogen atoms in SI phase. The darker sphere has
a radius of 0.8A, while the lighter one has a radius of 1.5AIn the first plot the structure
is similar to the one of the ammonia molecule, and it is the most stable. In the second
particular snapshot, the hydrogen atoms are temporally on the vertex of a tetrahedron.
This latter structure is stable on a timescale of 50 femtoseconds at 2800K. The preferred

sites are positioned in the direction of the nearest nitrogen atoms on the lattice, at the
distance of 1A

neighbor of an N atom during hopping is shown in figure 4.7.

Cell fluctuations

The FCC simulation cell during the NPT equilibration runs at 100GPa was allowed to
tilt and relax in any direction. To better study the behavior of the cell we rotated the
cell vectors using a QR matrix decomposition constraining the first cell vector to point
in the x direction, and the second vector to lay in the XY plane. In this way, we can
read the size of the cell in the diagonal elements of the cell matrix and we can read
the tilt factors in the 3 off-diagonal elements. At lower temperatures, till 2000K, the
cell vectors oscillate around the high-close-packed equilibrium value, but at 2200K we
can see a different behavior. In figure 4.8 some small oscillations around some different
equilibrium values appear. Raising the temperature the cell vectors completely change
their equilibrium (if any) value, and the cell tilts away from its initial shape, as shown
in the time series of the cell parameters of figure 4.9. The situation repeats at higher
temperatures, changing on a 5-10 picoseconds timescale the equilibrium value of the cell
vectors, till the point at 2800K where on the accessible timescale it is not clear if an
equilibrium cell vector exists, as shown in figures 4.10 and 4.11. On the other side, all
the simulations where the cell was constrained to be orthorhombic, did not show any
unexpected behavior.
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Figure 4.7: Mechanism of diffusion of H atoms in the superionic phase at a temperature
of 2000K on the left and 2800K on the right. Example of two small parts of the trajectory
80fs long, where an NHZr ion is formed, for around 50fs. On the top panel, the trajectory
of the H on the sphere of radius 1A is shown. Below is the corresponding radial distance
from the central nitrogen. A short period of time after the ion is formed, a hydrogen atom

hops away. Most of the time, in other parts of the trajectory, the number of hydrogen
atoms around nitrogen is 3.
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Figure 4.8: 108-molecule system at 2200K, 100GPa. The cell is oscillating around the
cubic shape
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Figure 4.9: 108-molecule system at 2400K, 100GPa. The cell changes its shape at constant
volume
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Figure 4.10: 108-molecule system at 2800K, 100GPa. Typical behavior in this regime.
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Figure 4.11: 108-molecule system at 2800K 100GPa, a different set of simulations that
shows a new change of shape.

Looking at the cell vectors or at the atomic position and trying to understand if there
was some repeated pattern in the changing order of the nitrogen sites was not practical
with this kind of behavior and this FCC cubic cell cut. This is why now we introduced
the use of a local order parameter, that spreads some light on what is happening there.

4.4.2 Steinhardt descriptors

This local parameter is both simple and useful in the description of our system. It is
implemented in the open-source C++4 library described in section 3.4. It is an atomic
quantity defined for the atom 7 as

!

q(i) = \l ;j:l m;l |qum (i) (4.1)
. 1 Ny (4)

Qm (i) = V() ]Z:; Yim (rij) (4.2)

where Np(i) is the number of neighbour of atom ¢ and the sum in g, is over those
neighbours. Y}, are the spherical harmonics and rj; is the vector pointing at atom j
starting from atom ¢. An issue with the Steinhardt descriptors, particularly relevant
for our system, is that it is not able to distinguish the local BCC and HCP structures
when computing the (gg(7), g4(7)) histogram. This issue is solved by the averaged order
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Figure 4.12: (g4, @s) histogram for the superionic system with 108 molecules at the tem-
perature, ordered by row: 1200K, 1500K, 2200K, 2400K, 2800K, 3000K. Each plot shows
the quantity only for N-N pairs.

parameter[44], a slightly different version that is defined as:

I
q(i) = \l2l+ 1 Z:_ (4.3)

Ny (4)
q1m Z QZm (44)
k=0

(4.5)

where the last sum is performed on all the first neighbors plus the atom i itself, and
k(k) is a mapping from the neighbor index k to the atomic index k. To find the nearest
neighbors we used the SANN][73] algorithm. In figure 4.12 you can find the histogram
produced by computing for all atoms the 2-dimensional quantity (gs(7), q4(2)) for the 108-
molecule simulations. We can see in this plot that by raising the temperature two small
peaks in the N-N histogram changes intensity. The higher one can be produced by atoms
arranged in an HCP lattice, while the lower one is produced by an FCC lattice, as shown
in figure 2 (b) of ref. [44]. In some frames, the BCC lattice peak appears. This behavior
suggests that the nitrogen lattice subsystem tries to move away from a pure FCC lattice,
mixing FCC, HCP, and maybe some BCC configurations. This was not reported in any
known work up to now.

4.4.3 144-molecule system

Both FCC and HCP are close packing structures. If we cut the FCC conventional cell
along 111 planes, we get planes of atoms arranged on an equilateral triangle lattice and
stacked with an ABCABC scheme. On the other side, the HCP structure is made of
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Figure 4.13: Average atomic density at 2800K, 104GPa. On the left, we show the HPC
structure, and on the right the FCC one. Only a section of the 144 molecules cell is shown.
Top: plane section. Bottom: side section where it is possible to see the ABABAB and
ABCABC packing. The N atoms produce the density points on the HCP/FCC lattice
only.

planes of equilateral triangles stacked with an ABABAB scheme. It is possible to build a
supercell with 6 planes capable of easily transforming in both HCP and FCC structures
with a cell deformation. The properties of the FCC and HCP structures are almost
equivalent, see for example the vibrational spectrum of figure 4.14, but some measurable
differences exist.

We built a new simulation cell with 144 ammonia molecules arranged in 6 planes. We
arbitrarily choose the orientation of the ammonia molecules in the initial configuration, as
shown in figure 4.15, and we initialized the velocities randomly from a Maxwell-Boltzmann
distribution. A first NPT run of an FCC system at 100GPa, 2800K showed at the
beginning a movement of the cell vector of exactly one atomic site on the upper plane,
making a step toward the HCP phase. On the other hand, at the same thermodynamical
conditions, an initially HCP stacked system showed displacement of the planes, making
some local FCC structure, after a few picoseconds. The fixed cell NVT simulations did
not show any movement of planes in this configuration. In figure 4.18 it is possible to see
that the evolution of tilt factors can be fully explained with a plane shift mechanism, and
the shrinking of the cell is due to a temporary transition to a BCC lattice.

The constant volume simulations are stable. The density plot of the preferred sites
of the hydrogen for two 20ps long NVE simulations at 2800K, calculated by performing
the histogram of all the atomic positions is shown in figure 4.13. By looking carefully at
the figure, the in-plane structure of the FCC system, which one expects exactly identical
to the FCC one, shows some differences in the H density. The shape of the H voids is
different for FCC and HCP planes, where the latter case has a lower symmetry.

The cell tilt mechanism that we observe in the NPT simulations is the most efficient
that this system can choose to make their planes slide, but it cannot be a physical one. The
energy needed to translate a plane is infinite in the thermodynamic limit, thus forbidden
in any real system. In our small system, the energy needed to form the plane defects is
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Figure 4.14: Vibrational spectrum of superionic ammonia at 2800K, 104GPa, in units of
the diffusion coefficient. FCC and HCP structures are plotted, and they are exactly the
same within statistical error. In the inset, it is possible to inspect the plot near the zero
frequency, showing that the self-diffusion coefficient for the H atoms is exactly the same
for the two structures. Nitrogen atoms do not show diffusion.

Figure 4.15: Initial structure for the SI simulation at 2000K. This is an arbitrary arrange-

ment of ammonia molecules on an HCP lattice. The rotation of the molecules is chosen
so hydrogen atoms are not too near each other.
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Figure 4.16: The dotted line indicates the location of the energy barrier that the system
need to cross to transform a plane B into a plane C. One of the 3 possible directions of the
plane translation is indicated by the arrow. When a tilt is applied to the cell, it happens,
for example, that the B plane is forced to stay nearer to the energy barrier because of
geometrical constraints.

pretty high, requiring the crossing of very high free-energy hills. To visualize better the
energy barrier see figure 4.16, where we can see its geometrical origin. If we tilt the system
in any of the 3 directions perpendicular to the 3 directions of the in-plane N lattice, we
push some plane to move to the next free site on the triangular lattice. To say if the
system is solid-like or liquid-like is important to understand how the system reacts under
such applied strain.

4.4.4 Shear modulus

We evaluated the shear modulus o
p=—= (4.6)

where o is the stress tensor and € is the strain tensor. We used a deformation of 0.22A in
the y direction of the top face on the highest z coordinate. The cell is 12.84A tall in the z
direction, giving a €,, = 0.017. At a fixed cell, that has a volume of 1831A3, we performed
many NVT simulations from 1000K to 2700K, obtaining the results of figure 4.19. The
result of roughly 50GPa shows that the system that we simulated behaves like a solid.

We used those lightly deformed simulation cells to estimate also the specific heat, that
is 6310J/(kg K) at a density of 2219 kg/m? at temperatures between 1000 and 2700 K.
The internal energy of the system as a function of the temperature in the same series of
simulations is shown in figure 4.20.

4.5 A plane sliding path between HCP and FCC SI phases

To investigate all possible plane configurations, we defined a continuous one-parameter
function able to construct both the FCC and HCP lattices. The transformation is based
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Figure 4.17: Cell vectors time series in the long NPT simulation. Tilt factors are plotted
in the inset. The solid horizontal lines are the average values with their statistical error,
calculated with a block analysis. The dotted horizontal lines are the value of a cell with
exactly a high-close-packed structure with the same volume. In the first plot the difference
is more than the statistical error, but of the order of 0.05A
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Figure 4.18: Tilt factors time series in spherical coordinates for the long NPT simulation.
This plot shows that the movements of the tilt factors are consistent with a plane sliding
mechanism as described in the text. A sliding average with a window of size 1000 timesteps
is applied to smooth the time series. For low values of the radial distance, the angles are
not plotted, since the coordinates system becomes nearly singular. The dotted horizontal
lines are the angles allowed by the plane tilt mechanism on the xy plane, which corresponds
to angles of the (xz, yz) tilt factors. The solid horizontal lines are the displacement
allowed by the plane tilt mechanism. The xy tilt factor always oscillates around zero, and
we choose the coordinate system of those plots such that when the 6 angle is zero the tilt

factors stay on the (xz, yz) plane.
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Figure 4.19: Shear modulus p at fixed volume. It is almost constant but significantly
different from zero meaning that the system, without taking into account plastic defor-
mations that occurs on a planetary scale, behaves like a solid.
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Figure 4.20: Internal energy as a function of the temperature for the simulations series
used for the computation of the shear modulus. There was a deformation of 1.7%. The
corresponding specific heat at constant volume is ¢, = 6310 J/(kg K) at the simulation
density of p = 2219 kg/m?>.
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Figure 4.21: Thermodynamic integration path. In the four panels you can find figures
of the orthogonal projections of the initial state of each simulation on the yz, xy, xy
planes for the simulations with index idx = 0, 6, 13 and 20, with A = idx/20. Simulation
with index 0 (A = 0) is an HCP stack, while index 20 (A = 1) is FCC. The path is
obtained by translating the top face of the simulation box along the y-axis, and at the
same time translating pair of planes as shown. During the dynamics, atomic planes move
and arrange themselves in their preferred configuration. The energy barrier for plane
shifts is very high for simulations near A = 0 and A = 1, while it is low for simulations
near A = 0.5

on a mixture of cell strain and plane shift. It is shown in figure 4.21. By running a
simulation for each initial configuration, it is also possible in principle to compute a free
energy difference by performing a thermodynamic integration and possibly point out the

most stable configuration:
L/7dU(N)
AA = ——= ) dX\ 4.7
/0 < dA >,\ (4.7

where A is the parameter that we use to move from one state to the other and U is the
potential energy of the system. The state for A = 0 is an orthorhombic system of 6 HCP
stacked (ABABAB) planes, each one containing 6 rows of 4 ammonia molecules with a
total of 144 molecules. The state with A = 1 is a system with 6 FCC stacked (ABCABC)
planes, with the cell tilted in the zy component by 2av/3/2 where a is the first neighbor
distance of the nitrogen atoms. Those numbers are better understood by drawing triangles
on figure 4.21, the last panel. The in-plane structure does not change. Doing a simple
rescaling of all the positions according to the cell tilt was not the best option to get a
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Figure 4.22: Initial condition and yz stress time series in the simulations where it is
difficult to calculate averages: randomly there are plane shifts that change the sign of the
stress on timescales of few ps. The simulation time accessible with this method is of the

order of tens of picoseconds.

stable enough initial configuration. So the following scheme of translating the atomic
planes was chosen. First, we divide the planes into three pairs A, B, and C. Then the first
group A is kept fixed for all A. The planes in B are rigidly translated in the y direction
with ¥/ = y+\-2/3-av/3/2. The planes in C are translated with i/ =y +X-4/3-a/3/2.
Pairs of translating planes were observed also in the NPT simulation series.
We can have ergodicity problems in the simulations, as shown in figure 4.22.
each simulation with a given strain can happen that for the given temperature, two
different planes configuration are accessible by the simulation. However, the transition
shows up rarely within the accessible computational time because the energy barrier
can still be pretty high. This complicates the calculation of averages (without using
metadynamics) and suggests that the energy differences may not be trusted because the
ensemble averages on which they are based have insufficient statistics. The energy values
of this thermodynamic integration should be taken cum grano salis. First, because the
plane shift mechanism is not physical (so we can guess only which configuration is most
stable, but not by how much energy), and second because the calculated averages may
be wrong. But it provides additional useful insight into the dynamics of the system.
In figure 4.23 you can see the results for three temperatures at constant volume. The
evolution of the Steinhardt histogram with the strain is shown in figure 4.24, showing the

expected peaks when different plane configurations are present.

In
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I I I
Figure 4.24: Histograms of the quantity (g4, qs) for each simulation from the thermody-

namic integration path at 2800K, 104GPa. The first simulation is HCP, the last one is
FCC. Note the movements of the peaks with the strain.

III

At this point of our work, with the experience maturated with those simulations, it
is possible to speculate that may exist a transition temperature, much lower than 2800K,
and probably around 2000K, where the close-packed structures are not stable, and the
real system becomes disordered in the alternation of ABC planes, with local domains with
many different configurations.

There is a work in progress to scale up the simulation size using neural network
potentials, to be able to detect in a much bigger system the birth of defects and possibly
run long metadynamics simulations.

An interesting feature of those simulations, seen in the path between HCP and FCC
phases, is the fact that pure HCP and FCC phases show a small anisotropy in the
stress, meaning that those structures are not stable in that fixed cell configuration. The
anisotropy is not noticeable by simply looking at the stress tensor. It is much smaller
than the thermal fluctuations. This small anisotropy, expected experimentally, can also
be seen in our NPT simulations of figure 4.17 and 4.18. Here the deviation from the
cell vectors of a pure high-close-packed structure is of the order of 0.05A for the x and y
direction, and 0.01A for the z one.

4.6 Thermal conductivity

To perform the thermal conductivity calculation we choose to use the 144 molecules
system with the pure HCP structure. The production run in the NVE ensemble was 20ps
long. We expect to get a very similar result for the FCC structure. For example, the two
vibrational spectra of figure 4.14 are indistinguishable. Preliminary investigation with the
neural network potential also showed little dependence on temperature. The adiabaticity
of the CP simulation is acceptable. The time series of the instantaneous temperature is
plotted in figure 4.25. A small decrease in temperature is due to a flow of energy from the
ionic system to the electronic one, which heated up to the equivalent of 50K of the ionic
system. With respect to the temperature of the system, we think this is an acceptable
amount since our biggest error is the statistical uncertainty of the final result.

The energy current flux was calculated with the QEHeat code. Since the numerical
precision depends on the convergence parameter conv_thr and the numerical differentia-
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Figure 4.25: Instantaneous temperature time series for the 144 molecule HCP simulation
at 104GPa. Some energy is transferred to the electronic system, causing a very low
negative slope that is possible to see in the plot.

tion timestep delta_t, we used the feature of QEHeat that allows us to easily repeat the
calculation for a single timestep with a different random initialization of the self-consistent
cycle, as explained in 3.1.4. We end up using a differentiation timestep of 0.5 and a con-
vergence threshold of le-11, both in atomic units. We evaluated the energy current once
every 0.658 fs, obtaining a time series like the one of figure 4.26. This sampling timestep
allowed the power spectrum of the energy current to safely go to zero before the Nyquist
frequency is reached, as shown in figure 4.27.

To perform the cepstral analysis we used the multicomponent technique with the
energy current, the mass current of the hydrogen (or equivalently the nitrogen one),
and the electronic current. The last one is particularly important only from a data
analysis point of view, since it removes from the energy flux very big contributions at finite
frequency, without changing the value at w = 0 but enhancing the performance of the
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Figure 4.26: Energy current time series of the HCP SI ammonia system
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Figure 4.27: Reduced spectrum of the HCP SI ammonia system

cepstral filter as it is possible to see in figure 4.29. The calculation of the electronic current
comes with a little overhead from the QEHeat code, in the same run that calculated
the energy current. We used a resampling frequency of 100THz, and only 3 cepstral
coefficients since the reduced spectrum was very smooth thanks to our analysis techniques.
The use of the 3 component analysis allows us to obtain a small statistical error. The
result is 6.5 + 0.5 W/(m K). The convergence of  is shown in figure 4.28.

4.7 Convergence tests and computational details

We checked the convergence of the energy, forces, and stress at the beginning of the sim-
ulations. We confirmed that the choice was correct by performing the same convergence
test again with the superionic system at 2800K. In figure 4.30 it is possible to see that
the diagonal elements of the stress are indeed well converged at a wavefunction cutoff of
90Ry. The off-diagonal elements converge faster, as expected.

We also checked that the band gap of the same simulation was big enough. As shown
in figure 4.31, the band gap never closes and has an average value of 1.89¢V, always much
higher than kT that is about 0.24eV.

We used for the production CP simulations a fictitious electronic mass of 20 a.u and
a emass_cutoff of 2.5 Ry. The integration timestep for the production run was of 1.7
atomic units (0.041fs), which ensures a well enough conservation of the CP constant of
motion. The 144-molecule system had 1152 electrons. We used pseudopotential from
PseudoDojo[74] generated with the ONCVPSP code[30]. All the computations but the
energy flux one were performed on the MARCONI100 Cluster, equipped with 980 compute
nodes with two 16-core IBM POWER9 AC922 at 3.1GHz, 4 NVIDIA Volta V100 GPUs
16GB, and 256GB of system RAM. For the CP verlet integration, we used four nodes
and the average time per molecular dynamics step was around 2.0s. A histogram of the
performance of each run is shown in figure 4.32.

The computation of the energy flux was done on the GALILEO100 Cluster, equipped
with 554 compute nodes with two 24-core Intel CascadeLake 8260 at 2.4GHz and 384GB
of system RAM, because the code was not yet fully ported to the GPU architecture. The
wall clock time needed to evaluate the energy current for one timestep was, on average,
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Figure 4.28: Convergence of x for the HCP SI ammonia system.
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Figure 4.29: Comparison of 2 and 3 component analysis. It is seen that using the addi-
tional electronic current a lot of non-diffusing contributions are removed from the reduced
periodogram. This allows one to take 3 cepstral coefficients instead of 20, resulting in a
lower error despite the higher error at the same P* that we have in the 3 component case
due to the different statistics of the estimator.
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Figure 4.30: Convergence of the DFT stress on a snapshot from a superionic HCP config-

uration at 2800K, varying the wavefunction cutoff. We plotted the value of stress minus
the value of stress at the cutoff of 130Ry so that the last point is zero by definition.
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Figure 4.31: Time series of the band gap of a segment of a simulation of the superionic
HCP system at 2800K. The dotted horizontal line is the value of k3T in electronvolt at
that temperature
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Figure 4.32: Average time per molecular dynamic step for the last 144-molecule system
simulation on 4 GPU nodes of Marconil00.
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Figure 4.33: Average time per step in the QEHeat energy flux calculation, for many
chunks of trajectory, for a single CPU node of Galileo100.

646s on a single node of GALILEO100. A histogram for the average time per chunk is
shown in figure 4.33. We evaluated in total 22500 timesteps, consuming in total roughly
194000 Galileo100 CPU hours. This is a very big number that pushed us to develop a
neural network potential, following [70, 77, 75, 78], for this system. The magnitude of
hours needed to train a well-behaving neural network, with all the necessary tests and
trial and error, is similar in magnitude to the one of this work. Still, in the end, one can
get trajectories that cost many orders of magnitude less than the ones that we computed.
Our computation of the energy flux presented two groups of 3-4 neighbor points that were
not able to converge without the introduction of smearing in the SCF calculation. Those
points were substituted with a set of points obtained by drawing a line between the good
points at the boundary of the small interval.
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Figure 4.34: Scheme of a section of a diamond anvil cell (DAC). The scale of the sample,
at the center between the two diamonds, is of the order of 100-140um. The sample is
kept in place by a gasket, and the diamonds are pushed against each other by two pieces
of metal at each side. By applying a moderate force (for example with some screws), it is
possible to obtain huge static pressures of the order of 100GPa on the very small surface
area of the diamond tips.

| NN\ _|

4.8 Comparison with other works

Cavazzoni, Chiarotti, Scandolo, Tosatti, Bernasconi, Parrinello

[14] This work first predicted that superionic phases of water and ammonia exist at
high pressure and temperatures. They performed NPT simulations on supercells with 64
ammonia molecules in a range of 30-300GPa and 300-7000K. The simulation length was
limited from 1ps to 3ps. In this work, an HCP SI cell was found since they come from
phase IV that has an HCP-like structure.

Diamond anvil cell (DAC) experiments

DAC is made of two diamonds with two flat tips pushed against each other, as schematized
in figure 4.34. It is possible to statically reach pressures of many hundreds of GPa. The
experiments can be performed also in a high-temperature regime, where usually the cell is
cooled with some liquids and the heating is performed by an external laser. The diamonds
need to be very pure, so Rahman and Brillouin scattering experiments can be performed.
To measure the pressure inside the very small cell usually a small sample of a material
whose equation of state is known is inserted inside the cell next to the sample, and it is
measured independently to obtain the pressure. The temperature can be estimated by
measuring the black body radiation. Possible issues of a high-temperature experiment are
the extreme gradient of temperatures that are found and unexpected chemical reactions
between various parts of the cell, which can lead to issues as can be the case in [56].

Ninet, Datchi, and Saitta

[55] In this work, the phase space of ammonia was explored up to 100GPa and 1000K
with a DAC. They found experimentally that the superionic transition exists, and that
depending on the path done to arrive at the superionic phase, it is possible to have both
HCP and FCC structures for the nitrogen lattice. They also investigated with ab initio
molecular dynamics the transition between phase III, phase IV, and superionic phase with
great detail, stating that in the transition at the beginning the hydrogen atoms hop only
on the planes, then, when the transition is completed, between the planes. The molecular
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dynamics simulations were done with the QuaANTUM ESPRESSO package and ultrasoft
pseudopotential, with supercells of 32 ammonia molecules (2x2x2) or 64 molecules (4x2x2)
and a cutoff of 32Ry. On the experimental side, the transition between solid phase IV
and SI has a tiny change in a lattice parameter along the between-planes direction, which
changes from 4.355A to 5.365A at 70GPa, with no discontinuities of the in-plane lattice
parameters.

Bethkenhagen, French, and Redmer

[8] They performed ab-initio molecular dynamics with Vienna Ab Initio Simulation Pack-
age (VASP 4.6)[39, 40] with a 32-molecule system, a cutoff of 73Ry, and NVT dynamics.
They state explicitly the fact that the nitrogen lattice structure is not known: Moreover,
we find an FCC nitrogen lattice in the superionic phase instead of the HPC structure
predicted by Cavazzoni et al. This is in concordance with the fcc lattice we find in the
neighboring rotationally disordered solid, which is also in very good agreement with the
experimental and simulation data by Ninet et al. as shown in Fig. 2. However, this does
not necessarily prove that the fcc nitrogen lattice is the thermodynamically favored lattice
type in the superionic phase.

Kimura and Murakami

[38] This DAC experiment explored ammonia up to 3000K and 65GPa. They propose that
the SI phase behaves like a liquid over a certain temperature. This affirmation is based
on a detected discontinuous decrease of the sound velocity while in the SI phase before
the melting temperature of the sample. At the moment, our results do not agree with this
affirmation. But a better investigation of the plane shift (that may be the manifestation
of a phase transition) is necessary. This could provide a drop in the sound velocity.
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Conclusions and future perspectives

The multicomponent theory of Green-Kubo thermal transport and the code that we de-
veloped were shown to have a very broad range of applications. They were used in many
different works. The availability of all our codes provides a very solid and accessible
starting point for any future work on thermal transport from equilibrium molecular dy-
namics. We think that the simplicity of the user interfaces developed in the SporTran
tool allows the future researcher not to waste time implementing again the data analysis
workflow that is full of complicated little details but to move the research to a higher level
of complexity.

The application of our theory to superionic ammonia is an example of that. Without
the work on multicomponent theory, we would have two issues. The issue of convergence
of the GK integrals and the problem of decorrelating the energy current from the high-
power components that do not contribute to thermal conductivity. Those are entirely
removed. The multicomponent formula, implemented in the code, can remove any non-
diffusing current. The data analysis is as simple as running the code with the flux time
series as inputs. The same approach was used to develop automated tools for running
the simulations. This allows us to forget many low-level details like the repetitive work of
copying files around, preparing inputs, checking for convergence, etc., which we automated
using the AiiDA python library.

The system that we studied, on the other hand, showed many unexpected challenges.
We think that to understand how this material behaves under high PT conditions, and
in particular if the plane shifts that we saw happen in the natural system, it is necessary
to study cells at least one order of magnitude bigger. The neural network potential
approach is the solution to the performance issue of the ab-initio simulations we used. We
are now developing a neural network that successfully predicts the transport properties,
compatible with our ab-initio simulations. The data in the AiiDA database produced in
this thesis will be used to validate the neural network with very high confidence.

Despite all the problems, we provided our best estimate of the ab-initio thermal con-
ductivity coefficient for superionic ammonia with the structure that we think is the most
significant.
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