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“What I cannot create, I do not understand"

Richard Feynman
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Abstract

New demands in artificial intelligence, the increase of data available, and the forecasts of

reaching Moore’s law ceiling push algorithms towards the edge for low latency, low power, and

highly intelligent devices. Neuromorphic systems mimic brain-like computations to capture the

efficiency and adaptive behaviour exhibited in biological systems being promising candidates to

lead the new generation of artificial systems. Sensory information is encoded with precise

spatio-temporal patterns in the nervous system. Similarly, neuromorphic computation utilises

event-based representations in its computational systems, inspiring its use for building artificial

cognitive systems. In this work, we build Spiking Neural Networks (SNNs) in the tactile and

auditory sensory modalities for classification tasks in the context of full event-based sensory

systems. Compared with standard machine learning implementations in GPU, SNNs

implemented in neuromorphic hardware output close to 500 times less energy consumption

highlighting the strengths of the new hardware paradigm. Also, we explore how to encode

spatio-temporal features from sensing devices emphasising the benefits of using full

neuromorphic event-based sensors and systems. We further explore improvements in spiking

networks based on the Leaky-Integrate-and-Fire (LIF) models. The proposed network’s

architecture implements Time Difference Encoders (TDEs), a cell model based on brain-inspired

computations. We find promising results with a 92% reduction of synaptic operations and highly

interpretable network results against typical current-based recurrent LIF networks. The results of

this work contribute towards building neuromorphic sensing systems from sensor devices,

algorithms and circuit design to quantify the strengths of the new computational paradigm with

promising capabilities for intelligent machines on edge inspired by their biological counterparts.
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Introduction

1 Preface

Biological systems such as humans, mammals or insects exploit their environment through

sensory systems. Natural signals are inherently perceived as spatio-temporal through our senses.

In the spatial dimension, given the distributed, parallel processing of the sensory receptors and in

the time domain, sensory information fluctuates in time at a highly variable pace. This

spatio-temporal signal from nature is transduced into precise spatio-temporal patterns of spikes in

the nervous system. Once transmitted, the brain can combine, compute, and transform this

spatio-temporal code into the sensory percept, which is ultimately read out and utilised for a

perceptual task. While biological systems are seamlessly exploiting the natural environment with

their sensory systems, in the artificial domain, even the most powerful algorithms and systems are

only able to display a subset of their capabilities, with a higher order of magnitude in terms of

energy consumption. Capabilities such as navigation in uncontrolled environments,

self-organising collective behaviours, generalisation of previous knowledge for problem-solving,

or spatial and body awareness are only a few examples of the potential that brain-inspired

algorithms can bring to the artificial domain [1–3].

The neuromorphic field aims to harness the robust, distributed, asynchronous, and adaptive nature

of biological intelligence into in-silico systems by building circuits that emulate the biological

counterparts and simulates neural processing. The biological process has been extensively studied

and has inspired a generation of artificial systems that aims to distil the brain’s capabilities to

exploit complex spatio-temporal patterns and apply this knowledge to neuromorphic circuits [3, 4].

Two fundamental needs in intelligent systems point to the neuromorphic field as a promising

1
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1. PREFACE

candidate to power the new generation of algorithms and devices: (i) The increasing requirement

of data processing capabilities for highly complex artificial intelligence models is moving the

computation to the device’s edge; (ii) the computational cost, in term of energy expenditure, that

requires the training and usage of models bonded to traditional Von Neumann architectures [5–8].

Neuromorphic technologies encompass a wide range of scientific areas such as neuroscience,

computer science, artificial intelligence, materials, electronics, robotics and bioengineering in a

multidisciplinary collaborative effort for its development. Each of the neuromorphic engineering

areas have shown individually very promising results: new neuromorphic platforms with digital

and mixed-signal digital-analog circuits [9], sensor devices that exploit event-based

representations at circuit level [2, 10], and learning algorithms based on gradient descend

methods [11, 12]. In order to push event-based systems of Spiking Neural Networks (SNNs) to

achieve the high-performant applicability reached by Artificial Neural Network (ANN), the

neuromorphic community needs to find applications, standardised benchmarks, and build

use-cases. This requires a multidisciplinary effort in which the neuromorphic community

combines technologies and systems to solve problems unsolved to date [3, 13].

This thesis aims to provide light on how all these pieces fit in a full-scale sensory system,

understanding the problem from the application point of view to evaluate the true potential of

SNNs as a system. In this work, we focus on identifying how we can build artificial systems that

better exploit the spatio-temporal structure of sensory information with SNNs. In particular, our

effort focuses on providing tools for benchmarking spiking neural networks and finding use-cases

in the sensory categorisation tasks where the actual developments in the field can improve the

existing system’s implementations: (i) finding the gaps in the field to build full-scale sensing

systems that utilise event-based representations, (ii) analysing the conditions in which

neuromorphic systems can excel, (iii) and providing new ideas that utilise the brain-like

computations of neuromorphic systems.

Artificial systems that exploit sensory information are designed similarly to their biological

nervous system counterparts. We transduce the natural signals in space and time with highly

precise spatio-temporal code that conveys the information needed for perceptual discrimination

tasks. We can utilise the high parallelism of event-based computations in a similar way that

2
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neural population codes compute stimulus information for perceptual discrimination tasks.

Therefore we hypothesise that sensory signal processing may be an excellent candidate to harness

the advantages of the event-based representations of neuromorphic algorithms and systems. In

terms of sensory modalities, visual and auditory signals have a large number of studies in terms

of applications in the neuromorphic field [14]. More work needs to be done in the tactile domain;

since this modality is one of the largest spatially distributed in the biological body, generating an

immense amount of information and being crucial in many challenges we are still not able to

resolve (e.g. active exploration, object placing, human interaction) [15, 16]. We understand that

the tactile modality will be one of the modalities most highly impacted by the development of

neuromorphic systems that provide highly scalable, highly parallel processing capabilities. To

build perceptual systems that mimic not only the capabilities of humans but can also deal with

artificial skin with a similar number of receptors and heterogeneity of responses of the human

counterpart [17–19]. In the second part of this thesis, we focus our efforts on the auditory

domain, a modality with many studies in sensory devices and systems [20]. Choosing the

auditory domain aims to evaluate and benchmark the typical models of Spiking Neural Networks

with recent brain-inspired neuron models. We are deepening the knowledge constructed in the

first work about spiking neural network algorithms to understand how to increase the sensing

capabilities to implement autonomous agents on-device.

1.1 Neuromorphic systems

Algorithms and networks based on the ANN have increased their popularity with the appearance

of deep learning systems [21]. This type of network, and other standard artificial intelligence

algorithms, are associated with the Von Neumann computer architecture characterised by the

separation of computation and memory. This architecture heavily depends on the memory

bandwidth bottleneck that delays the processing time in case big amounts of data are exchanged

between the computing and the memory units. Furthermore, this exchange process is also

responsible for the system’s most considerable energy consumption. Industry trends demand new

computational paradigms to satisfy the requirements towards low-power computation at the edge

devices. We need machines that interact with their environment, adapt on the go, and build their

own models as they experience the world [3, 6]. In order to build more general adaptive

3
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algorithms with the standard approaches and computation paradigms, it is required to increase the

complexity of the model and training data over a different range of conditions to generalise. This

effect, consequently, leads to a significant increase in the power consumption and latency of the

system [7, 22].

Neuromorphic cognitive systems are a promising candidate to represent the new frontier in

artificial systems by mimicking the capabilities of biological systems, intending to capture the

adaptive, highly efficient nature of biological intelligence. The neuromorphic term was first

coined by Carver Mead in the late 80s, referring to mixed analog-digital signal artificial circuits

that reflect the neurobiology in the brain [23, 24]. Nowadays, the term encompasses a wide range

of technologies, from spike-based processing systems that emulates biophysical models of neural

circuits to the design of electronic circuits from neural architectures that resemble, in some

degree, brain-inspired computations [3]. The field has already demonstrated promising results in

finding new computational paradigms out of the Von Neumann architecture. Some of the

neuromorphic hardware examples include Truenorth from IBM [25], Loihi from Intel [26], the

SpiNNaker chip from the University of Manchester [27], and the neuromorphic chip developed in

the ETH of Zurich [28] between others.

New brain-inspired hardware architectures should be accompanied by brain-inspired sensors and

algorithms to embrace the strengths of natural systems fully. In analogy to the sensory-motor

control loop of cortical circuits, robotic actuators can sense the world and adapt their motor

behaviour through their sensors. Neuromorphic systems provide the most suitable solution to

develop sensory systems with highly cognitive capabilities [1, 2, 4]. From the acquisition of

sensory information with event-based sensors to compute event-based spatio-temporal patterns

with Spiking Neural Networks (SNNs) and motor-control representations [4, 29]. Relevant

examples exploiting a wide range of sensory modalities include neuromorphic retinas [30–33],

cochleas [34–36], artificial olfaction [37], and somatosensory systems [38].

1.2 Lessons from neuroscience

Neuromorphic engineering also aims to extract principles from biological circuits and brain

computations, to design artificial circuits and systems. In the implementation of SNNs into

4
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neuromorphic chips, neurons are modelled into parallel processes that perform their own

computations, are assigned their own memory, and asynchronously communicate with each other

through events (Address-Event Representation (AER) protocol) [39]. Similar to the biological

brain, we can also model synapses and implement neuron models of synaptic computation into

full-scale networks. We can even build decoders from brain signals when we adapt the timescale

of the artificial neurons to the biological neurons’ signals [40, 41]. In a complementary manner,

we can also extract lessons from neural populations to build neuromorphic systems that exploit

spike-based computations.

In the nervous system, in vivo, information is encoded and transmitted at the level of populations

of neurons [42–46]. From the point of view of information encoding, it is becoming clear that

information is distributed in the brain across large populations of neurons with remarkably fine

spatio-temporal resolution. In particular, population information is encoded with single-neuron

and individual action potential resolution (spatial domain). The timing and not only the presence of

individual action potentials seem to carry behaviourally relevant information (temporal domain).

Finally, several studies suggest that how neural activity is organized across time and neurons

influences not only the encoding of information but also how efficiently the information is read-out

by other neural circuits and ultimately informs behaviour [46–48]. While there are several studies

about the properties of the neural code, little work has been done to transfer this knowledge into

artificial systems.

The brain encodes, transmits, and reads-out spatio-temporal information from spike trains.

Understanding how the brain performs these capabilities have a direct implication in the design

of artificial systems that exploit natural signals from the world into event-based data. But it also

benefits new approaches to decode and communicate with signals within the brain itself. In this

direction, we reviewed and studied how the main features of the population code (sparseness,

heterogeneity, activity correlations, timescales of information encoding and timescale of

information consistency) have a direct impact on the design of neuromorphic circuits for

communication with the brain (Brain Machine Interface (BMI)) [49]. In the cited manuscript, we

review the properties of the neural codes, and we link with methods applied to the design of

neuromorphic circuits, how to align the means of communication between brain-machine to the

specific cortical region and functionality (read/write/closed-loop).
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2 Research goals

The main research topic of this thesis explores how to exploit spatio-temporal information with

full sensory neuromorphic systems. With that in scope, we defined two research questions that will

be explored in the following chapters of this thesis. The following questions, research approach,

and contributions are summarised in Figure 1. In combination, this work proves the strengths and

capabilities of Spiking Neural Networks (SNNs) for exploiting spatio-temporal information in the

context of neuromorphic sensing systems and circuits.

Research question. What are the strengths and weaknesses of event-based neuromorphic systems

versus traditional spatio-temporal classifiers, and how can we leverage these strengths to design

more effective systems?

The first contribution refers to the tactile domain with data obtained from a robotic fingertip

sliding over braille letters, imitating a human braille reader. In this work, we established a

benchmark for algorithms using spatio-temporal information from tactile sensors. We compare

event-based neuromorphic systems with standard classifiers in event-based and time-based data

(also called frame-based in reference to vision cameras). We explore different encoding schemes

of the delta coding and analyse the trade-offs between encoding parameters from the frame-based

and event-based data. Then, we implement the networks in hardware and compare the

performance and energy consumption of the most high-performing machine learning classifiers

in GPU-based architectures against event-based SNNs implemented in neuromorphic chips.

We analyse the information encoded in the time domain in the generated datasets in order to

motivate the use of SNNs and understand how efficient they are at exploiting the spatio-temporal

structure. We generate a novel dataset for the community to benchmark spatio-temporal

event-based classifiers in the tactile domain that supports the use of tactile sensory information

and the development of neuromorphic algorithms. We reveal the trade-offs in encoding

event-based signals from time-based sequences, highlighting the importance of neuromorphic

event-based sensors for full event-based computation systems. We display a performance

comparative between machine learning training systems and event-based computation with

SNNs. We remark on the high energy efficiency capabilities of event-based computations with

6
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SNNs implemented in neuromorphic hardware, against traditional computational and hardware

architectures. The capabilities found demonstrate the fitness of neuromorphic systems for

spatio-temporal pattern recognition in the tactile domain, matching the performance for

event-based information. This performance comparison does not consider the loss of information

for the sensory device and the transformation of the information to event-based data. Whose

effects, per se, motivate the use of event-based sensory systems from the source.

Research question. How to use insights from neuroscience and neuromorphic engineering to

design event-based neuromorphic models of neurons that most efficiently utilise the capabilities

of brain-inspired computations in neuromorphic chips?

In the second contribution of this thesis, we explore the use of Temporal Difference

Encoder (TDE) as a bio-inspired cell model, building SNNs that exploits spatio-temporal

information from speech signals. We compare the TDE cell, which derives from the LIF model,

with typical LIF architectures. LIF models are typically used in SNNs, and they have proven to

be models successfully emulated with neuromorphic circuits. We analyse the contributions of the

TDE model in SNNs in terms of inference efficiency, scalability, and interpretability of the

results, in the context of spatio-temporal pattern classification with spoken digits.

In the contributions of this work, we open new perspectives for building SNNs with cell models

inspired by brain-like computations. We prove the importance of the temporal domain in the

encoded features of the speech signals and quantify the information about time and space in the

patterns. We classify with high performance the encoded spatio-temporal patterns showing

evidence that the TDE model can improve the performance of SNNs in terms of energy

efficiency, scalability, and interpretability of the results. The results of the implementation of the

TDE model support the design of neuromorphic analog-digital mixed signal circuits since the

increase in complexity of the model can be emulated without real computational cost. However,

the TDE model exploits the spatio-temporal structure of the data without network recurrence.

The outcomes obtained show promising results in building highly efficient computation,

low-power, and low-latency sensory systems.

7
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Approach Contribution

* Setup a robotized finger for experiments with tactile 
features

* Encoding information for time-based to event-based

* Train SNNs and typical machine learning approaches for 
spatio-temporal classification

* Implement SNNs and typical classifiers in neuromorphic 
and GPU based hardware architectures

* Dataset of tactile spatio-temporal patterns for 
benchmarking neuromorphic algorithms

* Evidence of tactile features encoded in the time domain

* Understanding the trade-off performance/event-sparsity 
in time-to-event encoding and motivation for the use of 
event-based sensors and circuits

* Outstanding high energy efficiency capability of event-
based computations with neuromorphic hardware against
 typical GPU based machine learning approaches

What are the strengths and weaknesses of event-based neuromorphic systems versus 
traditional spatio-temporal classifiers, and how can we leverage these strengths to design more 
effective systems?

Braille letter reading: A benchmark for spatio-temporal pattern recognition on 
neuromorphic hardware

* Encoding of spatio-temporal features to event-based data 
from audio speech 

* Simulation of bio-inspired cell model in SNNs that exploit 
time difference between sensory inputs (TDE)

* Training of SNNs for classification of audio speech with 
typical cell models against TDE cell

* Analysis in terms of efficiency, performance, and 
interpretability

How can we use insights from neuroscience and neuromorphic engineering to design event-
based neuromorphic models that most efficiently utilises the capabilities of brain-inspired 
computations in neuromorphic chips?

* Insights for the design and testing of bio-inspired models 
based on neural circuits for building SNNs  

* Evidence for high efficiency gain in the number of 
computations, improved interpretability, and better scaling 
in the use of the TDE cell model for event-driven 
processing of spatio-temporal features

* Motivation for the design of full sensory systems with 
mixed analog/digital circuits

Towards efficient keyword spotting with temporal difference encoders

Approach Contribution

Exploiting spatio-temporal patterns in neuromorphic systems

Fig. 1: Research questions and contributions of this work.
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3 Neutouch (ITN)

The research presented in this manuscript was performed within the Innovative Training Network

(ITN) of NeuTouch, a project supported by the European Union’s Horizon 2020 Marie

Skłodowska-Curie Actions (grant agreement 813713). 15 Early Stage Researchers (ESR) and 16

principal investigators build NeuTouch, including 9 different institutions, such as universities,

research institutes, and industrial companies.

The Neutouch project aims to improve artificial touch perception and hand prostheses by

designing systems with bioinspired electronic circuits, known as neuromorphic computing. In

some cases, artificial systems have reached even better results than structures that evolution has

been shaping for millions of years. However, we know that one of the optimisations that

evolution performs is energy consumption which leads to system efficiency. If we want to

produce systems that work well and with low energy consumption, looking at biological systems

is the most straightforward way to reach such an objective. Following this insight, we may be

able to create not only robots that achieve more human behaviour but also prostheses exhibiting a

better human-machine integration providing then the user with a more realistic and intuitive

experience (e.g. in terms of perception or feedback), which could be crucial to improve the user’s

abilities and precision.

With this aim, Neutouch was organised as a multidisciplinary project divided into three different

overlapping topics that give rise to three different working packages. The Technologies for Touch

working package aims to develop novelty materials and neuromorphic sensors that mimic the

transduction capabilities of the peripheral nervous system. The Touch for Robotics working

package aims to investigate sensorimotor control strategies from event-based sensors and to

develop behavioural policies that enhance the extraction of tactile features for tactile

classification purposes. The third working package, Touch for Prosthetics, aims to restore

sensitivity in missing human limbs through artificial limbs surgically connected to the peripheral

nervous systems, understanding of the neural code and the strategies of neuromorphic circuits to

adapt the artificial code to interface with the nervous system. The main contributions of this work

to the working packages are highlighted in the Venn diagram of Figure 2.

9
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Neutouch was also an environment providing ESRs with several training opportunities and

resources. During the project’s development, three international summer schools were organised,

and soft-skills courses addressing transversal needs for science were provided to the PhD

students. Additionally, we were involved in organising events for the Horizon project and

contributed to deliverables and contingency plans as part of the ITN responsibilities. Those

opportunities provided the students not only with theoretical soft-skills knowledge but also with

experience to improve their professional careers in industry and academia.

For further information about the Neutouch project and programmed activities, visit the EU project

website.

4 COVID-19 statement

The PhD project in this manuscript started in 2020 when the Covid-19 pandemic outbreak

occurred. The measurements taken to stop Covid-19 affected the organization of the Neutouch

network, including this project.

Neutouch launched a contingency plan to facilitate the PIs and students in developing their work,

minimizing the impact and avoiding significant delays due to travel restrictions, supply delays,

and restrictions for physical experimentation. To do so, online meetings and training events were

organized to embrace the collaborations between different partners and facilitate the discussion of

the main topics that Neutouch was focused on.

Concerning this project, the pandemic impacted the number of home office hours out of contact in

real life with members of the same lab in the initial period of the project. Additionally, it has been

impacted by a need for more networking and idea exchange opportunities with other researchers in

the field that in-person conferences provide. During the first year of the pandemic, the percentage

of home office work days may have reached 40% of the total working hours.

10
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Technologies for touch

Neural coding representation of 
behaviorally relevant tactile features

Learning to find and operate 
switches

Grasping and manipulation

Memory-based tactile 
perception and task-relevant 

action selection in robots

Active touch  
and behavior

Spiking neural networks 
for information 

representation and 
decoding

Neuromorphic embedded 
processing for touch

Neural nanowire  
based tactile skin

Mutli-transduction 
neuromorphic skin

A spiking model of realistic 
human tactile interaction

Sensory feedback 
for prosthetic devices 

Soft electrodes 
for tactile feedback

Optimization and integration 
of spiking tactile sensors on 

prosthetic devices
Characterization of spiking 
activity of tactile afferents

Active sensing strategies and 
perceptual coding

Touch for prosthetics

Touch for robotics

Fig. 2: Neutouch organization in working packages including the contributions of the researchers.

11



i
i

“output” — 2023/5/14 — 17:46 — page 12 — #30 i
i

i
i

i
i

REFERENCES

References

[1] S. C. Liu and T. Delbruck, “Neuromorphic sensory systems,” Current Opinion in Neurobiology,

vol. 20, no. 3, pp. 288–295, 2010. [Online]. Available: http://dx.doi.org/10.1016/j.conb.2010.03.007

[2] E. Chicca, F. Stefanini, C. Bartolozzi, and G. Indiveri, “Neuromorphic electronic circuits for building

autonomous cognitive systems,” Proceedings of the IEEE, vol. 102, no. 9, pp. 1367–1388, 2014.

[3] D. V. Christensen, R. Dittmann, B. Linares-Barranco, A. Sebastian, M. Le Gallo, A. Redaelli,

S. Slesazeck, T. Mikolajick, S. Spiga, S. Menzel et al., “2022 roadmap on neuromorphic computing

and engineering,” Neuromorphic Computing and Engineering, vol. 2, no. 2, p. 022501, 2022.

[4] S. Sheik, M. Pfeiffer, F. Stefanini, and G. Indiveri, “Spatio-temporal spike pattern classification in

neuromorphic systems,” Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8064 LNAI, pp. 262–273, 2013.

[5] C. Toumey, “Less is moore,” Nature nanotechnology, vol. 11, no. 1, pp. 2–3, 2016.

[6] Y. LeCun, “1.1 deep learning hardware: past, present, and future,” in 2019 IEEE International Solid-

State Circuits Conference-(ISSCC). IEEE, 2019, pp. 12–19.

[7] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy considerations for modern deep

learning research,” AAAI 2020 - 34th AAAI Conference on Artificial Intelligence, pp. 1393–13 696,

2020.

[8] N. C. Thompson, K. Greenewald, K. Lee, and G. F. Manso, “The computational limits of deep

learning,” arXiv preprint arXiv:2007.05558, 2020.

[9] D. Ivanov, A. Chezhegov, M. Kiselev, A. Grunin, and D. Larionov, “Neuromorphic artificial

intelligence systems,” Frontiers in Neuroscience, vol. 16, 2022.

[10] G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. van Schaik, R. Etienne-Cummings, T. Delbruck,

S. C. Liu, P. Dudek, P. Häfliger, S. Renaud, J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna,

F. Folowosele, S. Saighi, T. Serrano-Gotarredona, J. Wijekoon, Y. Wang, and K. Boahen,

“Neuromorphic silicon neuron circuits,” Frontiers in Neuroscience, vol. 5, no. MAY, pp. 1–23, 2011.

[11] F. Zenke and S. Ganguli, “Superspike: Supervised learning in multilayer spiking neural networks,”

Neural computation, vol. 30, no. 6, pp. 1514–1541, 2018.

[12] E. O. Neftci, H. Mostafa, and F. Zenke, “Surrogate gradient learning in spiking neural networks:

Bringing the power of gradient-based optimization to spiking neural networks,” IEEE Signal

Processing Magazine, vol. 36, no. 6, pp. 51–63, 2019.

12

http://dx.doi.org/10.1016/j.conb.2010.03.007


i
i

“output” — 2023/5/14 — 17:46 — page 13 — #31 i
i

i
i

i
i

REFERENCES

[13] M. Davies, “Benchmarks for progress in neuromorphic computing,” Nature Machine Intelligence,

vol. 1, no. 9, pp. 386–388, 2019. [Online]. Available: http://dx.doi.org/10.1038/s42256-019-0097-1

[14] A. Vanarse, A. Osseiran, and A. Rassau, “A review of current neuromorphic approaches for vision,

auditory, and olfactory sensors,” Frontiers in Neuroscience, vol. 10, no. MAR, pp. 1–6, 2016.

[15] C. Bartolozzi, L. Natale, F. Nori, and G. Metta, “Robots with a sense of touch,” Nature materials,

vol. 15, no. 9, pp. 921–925, 2016.

[16] S. Sundaram, “How to improve robotic touch,” Science, vol. 370, no. 6518, pp. 768–769, 2020.

[17] H. P. Saal, B. P. Delhaye, B. C. Rayhaun, and S. J. Bensmaia, “Simulating tactile signals from the

whole hand with millisecond precision,” Proceedings of the National Academy of Sciences, vol. 114,

no. 28, pp. E5693–E5702, 2017.

[18] M. M. Iskarous and N. V. Thakor, “E-Skins: Biomimetic Sensing and Encoding for Upper Limb

Prostheses,” Proceedings of the IEEE, vol. 107, no. 10, pp. 2052–2064, 2019.

[19] G. Corniani and H. P. Saal, “Tactile innervation densities across the whole body,” Journal of

Neurophysiology, vol. 124, no. 4, pp. 1229–1240, 2020.

[20] M. H. Tayarani-Najaran and M. Schmuker, “Event-Based Sensing and Signal Processing in the Visual,

Auditory, and Olfactory Domain: A Review,” Frontiers in Neural Circuits, vol. 15, no. May, pp. 1–31,

2021.

[21] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, pp. 436–444, 2015.

[22] N. Kasabov, N. M. Scott, E. Tu, S. Marks, N. Sengupta, E. Capecci, M. Othman, M. G. Doborjeh,

N. Murli, R. Hartono, J. I. Espinosa-Ramos, L. Zhou, F. B. Alvi, G. Wang, D. Taylor, V. Feigin,

S. Gulyaev, M. Mahmoud, Z. G. Hou, and J. Yang, “Evolving spatio-temporal data machines based

on the NeuCube neuromorphic framework: Design methodology and selected applications,” Neural

Networks, vol. 78, pp. 1–14, 2016.

[23] C. Mead and M. Ismail, Analog VLSI implementation of neural systems. Springer Science & Business

Media, 1989, vol. 80.

[24] C. Mead, “Neuromorphic electronic systems,” Proceedings of the IEEE, vol. 78, no. 10, pp. 1629–

1636, 1990.

[25] D. S. M. Paul A. Merolla, John V. Arthur, Rodrigo Alvarez-Icaza, Andrew S. Cassidy, Jun Sawada,

Filipp Akopyan, Bryan L. Jackson, Nabil Imam, Chen Guo, Yutaka Nakamura, Bernard Brezzo,

Ivan Vo, Steven K. Esser, Rathinakumar Appuswa, “Amillion spiking-neuron integrated circuit with a

scalable communication network and interface,” Science, vol. 345, no. 7812, pp. 668–673, 2014.

13

http://dx.doi.org/10.1038/s42256-019-0097-1


i
i

“output” — 2023/5/14 — 17:46 — page 14 — #32 i
i

i
i

i
i

REFERENCES

[26] M. Davies, T.-h. Lin, C.-k. Lin, S. Mccoy, Y.-h. Weng, A. Wild, and H. Wang, “Loihi : A

Neuromorphic Manycore Processor with On-Chip Learning,” no. February, 2018.

[27] S. B. Furber, D. R. Lester, L. A. Plana, J. D. Garside, E. Painkras, S. Temple, and A. D. Brown,

“Overview of the spinnaker system architecture,” IEEE transactions on computers, vol. 62, no. 12,

pp. 2454–2467, 2012.

[28] S. Moradi and G. Indiveri, “An event-based neural network architecture with an asynchronous

programmable synaptic memory,” IEEE Transactions on Biomedical Circuits and Systems, vol. 8,

no. 1, pp. 98–107, 2014.

[29] T. Delbruck and P. Lichtsteiner, “Fast sensory motor control based on event-based hybrid

neuromorphic-procedural system,” in 2007 IEEE international symposium on circuits and systems.

IEEE, 2007, pp. 845–848.

[30] M. Mahowald and C. Mead, “The silicon retina,” An Analog VLSI System for Stereoscopic Vision, pp.

4–65, 1994.

[31] P. Lichtsteiner and T. Delbruck, “A 64x64 aer logarithmic temporal derivative silicon retina,” in

Research in Microelectronics and Electronics, 2005 PhD, vol. 2. IEEE, 2005, pp. 202–205.

[32] K. A. Zaghloul and K. Boahen, “A silicon retina that reproduces signals in the optic nerve,” Journal

of neural engineering, vol. 3, no. 4, p. 257, 2006.

[33] J. Costas-Santos, T. Serrano-Gotarredona, R. Serrano-Gotarredona, and B. Linares-Barranco, “A

spatial contrast retina with on-chip calibration for neuromorphic spike-based aer vision systems,”

IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 54, no. 7, pp. 1444–1458, 2007.

[34] V. Chan, S.-C. Liu, and A. van Schaik, “Aer ear: A matched silicon cochlea pair with address event

representation interface,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 54, no. 1,

pp. 48–59, 2007.

[35] B. Wen and K. Boahen, “A silicon cochlea with active coupling,” IEEE transactions on biomedical

circuits and systems, vol. 3, no. 6, pp. 444–455, 2009.

[36] S. Mandal, S. M. Zhak, and R. Sarpeshkar, “A bio-inspired active radio-frequency silicon cochlea,”

IEEE Journal of Solid-State Circuits, vol. 44, no. 6, pp. 1814–1828, 2009.

[37] T. Wan, S. Ma, F. Liao, L. Fan, and Y. Chai, “Neuromorphic sensory computing,” Science China

Information Sciences, vol. 65, no. 4, pp. 1–14, 2022.

14



i
i

“output” — 2023/5/14 — 17:46 — page 15 — #33 i
i

i
i

i
i

REFERENCES

[38] F. Sun, Q. Lu, M. Hao, Y. Wu, Y. Li, L. Liu, L. Li, Y. Wang, and T. Zhang, “An artificial neuromorphic

somatosensory system with spatio-temporal tactile perception and feedback functions,” npj Flexible

Electronics, vol. 6, no. 1, 2022.

[39] C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell, M. E. Dean, G. S. Rose, and J. S.

Plank, “A survey of neuromorphic computing and neural networks in hardware,” arXiv preprint

arXiv:1705.06963, 2017.

[40] N. Kasabov, K. Dhoble, N. Nuntalid, and G. Indiveri, “Dynamic evolving spiking neural networks

for on-line spatio- and spectro-temporal pattern recognition,” Neural Networks, vol. 41, no. 1995, pp.

188–201, 2013. [Online]. Available: http://dx.doi.org/10.1016/j.neunet.2012.11.014

[41] N. K. Kasabov, “NeuCube: A spiking neural network architecture for mapping, learning and

understanding of spatio-temporal brain data,” Neural Networks, vol. 52, pp. 62–76, 2014. [Online].

Available: http://dx.doi.org/10.1016/j.neunet.2014.01.006

[42] R. C. Decharms and A. Zador, “Neural representation and the cortical code,” Annual review of

neuroscience, vol. 23, no. 1, pp. 613–647, 2000.

[43] R. Quian Quiroga and S. Panzeri, “Extracting information from neuronal populations: information

theory and decoding approaches,” Nat. Rev. Neurosci., vol. 10, no. 3, pp. 173–185, Mar. 2009.

[44] S. Panzeri, J. H. Macke, J. Gross, and C. Kayser, “Neural population coding: Combining insights

from microscopic and mass signals,” Trends in Cognitive Sciences, vol. 19, no. 3, pp. 162–172, 2015.

[Online]. Available: http://dx.doi.org/10.1016/j.tics.2015.01.002

[45] S. Nigam, S. Pojoga, and V. Dragoi, “Synergistic Coding of Visual Information in Columnar

Networks,” Neuron, vol. 104, no. 2, pp. 402–411.e4, 2019. [Online]. Available: https:

//doi.org/10.1016/j.neuron.2019.07.006

[46] N. Shahidi, A. R. Andrei, M. Hu, and V. Dragoi, “High-order coordination of cortical spiking activity

modulates perceptual accuracy,” Nature Neuroscience, vol. 22, no. 7, pp. 1148–1158, 2019.

[47] L. Carrillo-Reid, S. Han, W. Yang, A. Akrouh, and R. Yuste, “Controlling Visually Guided Behavior

by Holographic Recalling of Cortical Ensembles,” Cell, vol. 178, no. 2, pp. 447–457.e5, 2019.

[Online]. Available: https://doi.org/10.1016/j.cell.2019.05.045

[48] O. I. Rumyantsev, J. A. Lecoq, O. Hernandez, Y. Zhang, J. Savall, R. Chrapkiewicz,

J. Li, H. Zeng, S. Ganguli, and M. J. Schnitzer, “Fundamental bounds on the fidelity of

sensory cortical coding,” Nature, vol. 580, no. 7801, pp. 100–105, 2020. [Online]. Available:

http://dx.doi.org/10.1038/s41586-020-2130-2

15

http://dx.doi.org/10.1016/j.neunet.2012.11.014
http://dx.doi.org/10.1016/j.neunet.2014.01.006
http://dx.doi.org/10.1016/j.tics.2015.01.002
https://doi.org/10.1016/j.neuron.2019.07.006
https://doi.org/10.1016/j.neuron.2019.07.006
https://doi.org/10.1016/j.cell.2019.05.045
http://dx.doi.org/10.1038/s41586-020-2130-2


i
i

“output” — 2023/5/14 — 17:46 — page 16 — #34 i
i

i
i

i
i

REFERENCES

[49] S. Panzeri, E. Janotte, A. Pequeño-Zurro, J. Bonato, and C. Bartolozzi, “Constraints on

the design of neuromorphic circuits set by the properties of neural population codes,”

Neuromorphic Computing and Engineering, vol. 3, no. 1, p. 012001, jan 2023. [Online]. Available:

https://dx.doi.org/10.1088/2634-4386/acaf9c

16

https://dx.doi.org/10.1088/2634-4386/acaf9c


i
i

“output” — 2023/5/14 — 17:46 — page 16 — #35 i
i

i
i

i
i



i
i

“output” — 2023/5/14 — 17:46 — page 17 — #36 i
i

i
i

i
i

Braille Letter Reading: A Benchmark

for Spatio-Temporal Pattern

Recognition on Neuromorphic

Hardware

Müller-Cleve SF, Fra V, Khacef L, Pequeño-Zurro A, Klepatsch D, Forno E, Ivanovich DG,

Rastogi S, Urgese G, Zenke F and Bartolozzi C (2022) Braille letter reading: A benchmark for

spatio-temporal pattern recognition on neuromorphic hardware. Front. Neurosci. 16:951164.

https://doi.org/10.3389/fnins.2022.951164

Keywords: spatio-temporal pattern recognition, braille reading, tactile sensing, event-based

encoding, neuromorphic hardware, spiking neural networks, benchmarking.

17

https://doi.org/10.3389/fnins.2022.951164


i
i

“output” — 2023/5/14 — 17:46 — page 18 — #37 i
i

i
i

i
i

Braille Letter Reading: A Benchmark for Spatio-Temporal Pattern Recognition

Candidate’s contribution to the paper

SM-C had the initial idea and recorded the dataset. AP-Z and SM-C performed the frame-to-

event conversion. VF, EF, and DK performed the NNI implementation. VF, DK, and AP-Z ran the

optimization. VF and SM-C implemented the performance evaluation. AP-Z, DK, SM-C, VF, and

DI investigated standard classifiers and carried out the encoding analysis. AP-Z, SM-C, and SR

investigated linear SVM and obtained PCA plots. DK acquired GPU measurements. LK deployed

the SNNs on Loihi and acquired the measurements. LK, GU, FZ, and CB supervised the work.

All authors contributed to the manuscript writing and approved the submitted version.

18



i
i

“output” — 2023/5/14 — 17:46 — page 19 — #38 i
i

i
i

i
i

Braille Letter Reading: A Benchmark for Spatio-Temporal Pattern Recognition

Abstract

Spatio-temporal pattern recognition is a fundamental ability of the brain which is required for

numerous real-world activities. Recent deep learning approaches have reached outstanding

accuracies in such tasks, but their implementation on conventional embedded solutions is still

very computationally and energy expensive. Tactile sensing in robotic applications is a

representative example where real-time processing and energy efficiency are required. Following

a brain-inspired computing approach, we propose a new benchmark for spatio-temporal tactile

pattern recognition at the edge through Braille letter reading. We recorded a new Braille letters

dataset based on the capacitive tactile sensors of the iCub robot’s fingertip. We then investigated

the importance of spatial and temporal information as well as the impact of event-based

encoding on spike-based computation. Afterward, we trained and compared feedforward and

recurrent Spiking Neural Networks (SNNs) offline using Backpropagation Through Time (BPTT)

with surrogate gradients, then we deployed them on the Intel Loihi neuromorphic chip for fast

and efficient inference. We compared our approach to standard classifiers, in particular to the

Long Short-Term Memory (LSTM) deployed on the embedded NVIDIA Jetson GPU, in terms of

classification accuracy, power, and energy consumption together with computational delay. Our

results show that the LSTM reaches ⇠97% of accuracy, outperforming the recurrent SNN by

⇠17% when using continuous frame-based data instead of event-based inputs. However, the

recurrent SNN on Loihi with event-based inputs is ⇠500 times more energy-efficient than the

LSTM on Jetson, requiring a total power of only ⇠30 mW. This work proposes a new benchmark

for tactile sensing and highlights the challenges and opportunities of event-based encoding,

neuromorphic hardware, and spike-based computing for spatio-temporal pattern recognition at

the edge.

Keywords: spatio-temporal pattern recognition, Braille reading, tactile sensing, event-based

encoding, neuromorphic hardware, spiking neural networks, benchmarking.
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1. INTRODUCTION

1 Introduction

Touch, or tactile perception, is a critical component of sensorimotor activity [50]. Uniquely among

the senses, in many situations deliberate action by the subject is required to experience tactile

feedback: this is known as active touch [51]. Active use of touch is important for blind or visually

impaired subjects, as visual perception may need to be aided or replaced by tactile and auditory

information [52]. One example of active touch is the reading of Braille letters, where fingers slide

over lines of characters that are typeset into surfaces as a set of 1-6 embossed dots arranged in a

2⇥3 matrix. In Braille reading, characters are read sequentially, unlike print reading, where entire

words or groups of words can be perceived simultaneously by the eye. However, expert users can

significantly speed up their Braille reading as they learn to identify various lexical, perceptual, and

contextual clues [53], achieving optimal reading speeds of at most 80-120 words per minute [54],

which is about half the average silent reading rate for adults in English [55].

The sequential and time-dependent nature of Braille reading makes it an excellent benchmark for

machine learning applications involving time-varying signals since Braille text can be

represented by sequential data acquired by moving tactile sensors. Optical classification

applications for Braille have been developed both in machine learning [56, 57] and deep

learning [58, 59]. However, the image-based approach for Braille recognition requires good

quality Braille samples and accurate preprocessing. Braille documents are characterized by the

lack of any contrast in color between the text and the background and may require specific

lighting and camera settings to produce accurate results [60]. On the other hand, automatic

Braille reading relying on tactile sensors requires adding tactile sensors to robots that can slide

their sensors over surfaces. The high number of sensors necessary to obtain acceptable

performance adds a high overhead in terms of area, power consumption, and communication

latency.

A possible solution to these problems is the inherent data encoding capabilities and sparse

transmission of neuromorphic event-driven sensing [61]. Event-driven sensors only transmit

signals when a change has been detected in their sensory space, reducing communication and

processing costs [62]. The event-driven domain [63] features binary, time-discrete events,

avoiding the continuous polling of sensor readouts. This is especially desirable in the domain of
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1. INTRODUCTION

touch, because tactile perception is naturally sparse from a temporal and spatial perspective, with

only local correlation, e.g. multiple local neighbors of receptors, or sensors, are activated by the

same event. Tactile events are perceived for a limited time, as long as the stimulus is applied, and

in a localized part, or patch, of the sensor. When no stimulus is present, the tactile system can be

considered at rest.

While other event-driven neuromorphic sensors such as the Dynamic Vision Sensor (DVS) [64]

and the silicon cochlea [65] have attracted much interest from researchers, leading to specialized

data pipelines and standardized benchmarks such as the DVS gesture recognition dataset and

TIDigits [66] dataset, there have been comparatively few such developments in the field of touch.

Among the scarce number of examples of tactile classifiers exploiting tactile neuromorphic

sensors [67, 68], See et al. proposed the Spiking Tactile MNIST (ST-MNIST) dataset of

handwritten digits [69] obtained by writing on a neuromorphic tactile sensor array. Consequently,

the information in the spike patterns is mostly spatial, and a feedforward Convolutional Neural

Network (CNN) reaches the best accuracy when summing up all the spikes to get a "tactile

image". Bologna et al. proposed a neuroengineering framework for robotic applications,

including spatio-temporal event coding, probabilistic decoding, and closed-loop motion policy

adaptation for active touch. The system was benchmarked on Braille, proving effective

modulation of fingertip kinematics depending on character complexity. Classification of the

signals recorded by a fingertip sensor mounted on a robotic arm was performed using a subset of

7 Braille characters, achieving a recognition rate of (89 ± 5.3) % [70, 71].

In this paper, we propose a development path applicable to neuromorphic tasks in the tactile

domain. The proposed method, while developed and tested on tactile output obtained from

capacitive sensors, can be generalized to a whole class of time-dependent data such as audio

streams, inertial sensor outputs, and temperature or voltage monitoring, to name just a few. Given

the inherently time-dependent nature of its information content, we selected the Braille reading

problem as a benchmark, for which we designed an end-to-end event-based neuromorphic

classification procedure. We acquired a reliable dataset, applied a widely adopted and well know

encoding technique such as the one provided by a sigma-delta modulator, and finally performed

classification relying on a neuro-inspired approach, using Feed-Forward SNN (FFSNN) and

Recurrent Spiking Neural Network (RSNN) models, both of them implemented in software and

21
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2. METHODS

Fig. 3: The workflow is summarized in five steps. Dataset acquisition and signal encoding (a) with analysis of
information content and reconstruction loss (b). Different non-spiking classifiers are identified and employed to
produce references for the proposed RSNN (c), with the latter undergoing a hyperparameter optimization (d). Finally,
performances are evaluated, accounting for different metrics and hardware implementations.

hardware. For the hardware implementation, we selected the NVIDIA Jetson, a modular

embedded GPU platform, and the Intel Loihi, a dedicated neuromorphic chip, and benchmarked

them against standard classifiers in terms of classification accuracy, average power usage, energy

consumption, and computation delay during inference.

Using a comprehensive analysis accounting for multiple aspects such as the information loss

introduced by the encoding technique, the accuracy of the classifiers, and the power consumption

on different hardware with different models, we demonstrate that Braille reading can be

performed in a highly energy-efficient way by using event-based data and deploying SNN on

dedicated neuromorphic hardware.

2 Methods

22
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2. METHODS

Fig. 4: The inner part of the fingertip is composed of 12 capacitance plates shown in (a), wrapped by a three-layer
fabric and slid over the Braille letters with a constant sliding distance and velocity (b). The start position was varied
following a Gaussian distribution (c).

2.1 The dataset

The Omega.3 robot was used to slide a sensorized fingertip [72] over 3D printed Braille letters

from ‘A’ to ‘Z’ as well as ‘space’ at a controlled speed and position 1.

The size of the Braille letter was chosen to match the spatial distribution of the fingertip so that

the full letter can be detected by a single sliding movement. The sliding distance (15.5 mm), the

sliding velocity (20 mm/s), and the distance to the flat surface of the plate were held constant.

The start position varied following a Gaussian distribution to include spatial-temporal variability

between each repetition, illustrated in Fig. 4c. Each letter was recorded 200 times with a sampling

frequency of 40 Hz. The capacitance value is encoded in 8-bit, leading to a range from 255-0
1The robot is controlled and the sensor response is stored using YARP on a DELL XPS 15 laptop running Ubuntu

20.04 LTS.
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2. METHODS

with a minimal change of 1, with 255 being in rest and 0 for maximum load. For convenience,

the encoding was inverted in software being 0 the resting state, and 255 the maximum load of the

sensor capacity.

2.1.1 Event-based encoding

The objective of this work is to explore the potential of an end-to-end neuromorphic system for

tactile perception with event-based communication (sensor level), asynchronous processing

(hardware level) and spike-based computing (algorithmic level). However, there is to the best of

our knowledge no available event-based tactile sensor today. Therefore, we emulate the output of

such a sensor by encoding the frame-based data into temporally sparse streams of events (i.e.

spikes) using a sigma-delta modulator (⌃� modulator) [73]. At threshold (#) crossings, ON or

OFF digital events are generated for increase or decrease of pressure, respectively [62], as

indicated in Fig. 5a. Each original stream of frames is converted in an offline preprocessing step

from a 12-taxel time sequence to 24 binary event-based channels, emulating an event-based

tactile sensor.

The maximum re-sampling frequency is given by the precision of the stored 64-bit float variable.

Given the sensor encoding regime and the sampling frequency, the precision of the conversion

is enough to encode the data with a minimum change in the sensor value of # = 1.02E � 11

without losing information from the frame-based data. A threshold value # = 1 corresponds

to the highest implemented precision and no information loss. Increasing values correspond to

increasing sparsity, lower data rate, and improved efficiency at the cost of lower accuracy and

information loss, as shown in Fig. 5b.

2.2 Standard classifiers

Non-event-driven approaches such as linear classifiers (e.g. Support-Vector Machine (SVM)),

time-series classifiers, and Long Short-Term Memory (LSTM) were used on frame-based signals

available in the dataset as baselines for more traditional strategies independent of neuromorphic,

event-based approach. Additionally, LSTM was used for event-based data as a benchmark for

SNN, too.
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2. METHODS

Fig. 5: Event-based encoding and reconstruction of a sample: (a) Sensor reading sequence of a sample letter along with
spikes generated using sigma-delta modulation. The upper part represents 600 ms of a sequence of sensor readings of
a single taxel during sliding. The bottom part shows the generated events for the ON (green color) and OFF (red color)
channels for increasing threshold values, leading to decreasing numbers of events. (b) Reconstructed sequence from
event-based data compared with the original sequence for a full letter sequence. Each plot represents the reconstruction
with a different threshold of the same frame-based sequence. Increasing thresholds increase the compression, but also
increase the reconstruction error.

2.2.1 Time-series classifiers for frame-based data

We used standard time-series classifiers proven to work with time-variant datasets: Fully

Convolutional Network (FCN) [74], Residual Neural Network (ResNet) [74, 75], Encoder [76],

Time-CNN (TCNN) [77], and Inception [78], available as implementation on GitHub [78, 79].

Please find more detailed information in the Supplementary Material 1.1

While these networks were specifically designed for time series, they are still based on standard

feedforward structures (e.g. fully-connected layers, convolutional layers). Their lack of internal

memory and recurrence requires that a whole time series is presented to the network all at once,

instead of only the data from one timestep. Consequently, during inference, a buffer with the

length of a time-series needs to be filled to perform classification. In case of multiple overlapping

time windows, even more, buffers are required. This leads to memory overhead and classification

delay compared to networks with a recurrent structure.

2.2.2 Long short-term memory

Given the time-dependent characteristic of the dataset, we implemented a recurrent neural

network. This type of network, in contrast to feedforward networks, incorporates an internal loop
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2. METHODS

that allows temporal information to persist, and therefore is the natural choice for sequential data,

but suffers from vanishing gradients for sequences characterized by long-term dependencies.

Such problem is avoided by using LSTM architectures [80], where the cell state Ct holds

long-term information. Additionally, LSTM can add or remove information from the cell state by

gates.

The architecture chosen for the Braille dataset consists of a single layer LSTM with 228 hidden

nodes, followed by a regular fully-connected layer of 228⇥27 output neurons that performs the

classification, giving a total number of 225,975 trainable parameters. The choice was made to

have a number of trainable parameters as close as possible to that of the best performing RSNN,

obtained through a two-step Hyperparameters Optimization (HPO) procedure as described in the

following, for a fair comparison. The method for calculating the number of trainable parameters

is reported in Supplementary Material 1.2, Equ. S.1.

2.3 Spiking neural networks for event-based data

We designed a two-layer RSNN adopted from [81] and [82] to perform classification on the dataset

encoded as an event-stream with four different thresholds, to achieve a quantitative comparison of

the different possible strategies suitable to effectively deal with time-based Braille reading signals.

We used the current-based (CUBA) Leaky Integrate and Firing Neuron Model (LIF) neuron model

written in continuous form as

⌧mem
dU (l)

i

dt
= �(U (l)

i � Urest) +RI
(l)
i (1)

with Ui being the membrane potential of neuron i (hidden state) in layer l, Urest being the resting

potential, ⌧mem the membrane time constant, R the input resistance, and Ii being the input current

defined as

dIi
dt

=
iI(t)

⌧syn
+
X

j

WijS
(0)
j (t) +

X

j

VijS
(1)
j (t) (2)

with ⌧syn being the synapse decay time constants, Sj(l) the spike train of the jth neuron at the lth

layer, Wij being the forward, and Vij the recurrent connection’s weights.
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I
(l)
i (t) = ↵I

(l)
i (t� 1) +

X

j

Wij · Sj(t) (3)

U
(l)
i (t) = (�U (l)

i (t� 1) + I
(l)
i (t)) · (1.0� Ureset) (4)

with � = exp(�T ime_bin_size
⌧mem

) being the voltage decay constant, ↵ = exp(�T ime_bin_size
⌧syn

) the

current decay constant, and I
(l)
i the synaptic input current from neuron i in layer l multiplied by

the input resistance R = 1⌦ for convenience and Ureset the reset after eliciting an event.

The error is propagated throughout the entire network, unrolled in time, using Backpropagation

Through Time (BPTT). To perform supervised learning the feedforward and recurrent weight

matrices Wij and Vij change following a given loss L

Wij  Wij � ⌘
@L
@Wij

and Vij  Vij � ⌘
@L
@Vij

(5)

with the learning rate ⌘. To use a binary step function ⇥(x) in the forward pass (inference), whose

derivative is zero everywhere except the zero crossing where it becomes infinite, we use the partial

derivative (the gradient) of a fast sigmoid function �(x)

�(U (l)
i ) =

u
(l)
I

1 + �|U (l)
i |

(6)

in the backward pass (training), the surrogate gradient, and prevent vanishing issues. Whereas

⇥(x) is invariant to multiplicative re-scaling, �(x) needs the introduction of the scale parameter

� being part of the hyperparameter optimization.

To compute the gradients we are using the capabilities to over-loading the derivative of spiking

nonlinearity with a differential function in custom PyTorch [82, 83].

For the loss, we apply the cross entropy to the active readout layer l = L. For data with Nbatch

samples and Nclass classes it is formalized as
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L = � 1

Nbatch

NbatchX

s=1

1(i = y2) · log

8
>><

>>:

exp

✓PT
n=1 S

(l)
i [n]

◆

PNclass
i=1 exp

✓PT
n=1 S

(l)
i [n]

◆

9
>>=

>>;
(7)

whereas n stands for the time step. At last we have to define the L1 and L2 regularization loss

function.

L1 =
SL

Nbatch +N

NbatchX

s=1

NX

i=1

max

⇢
0,

1

T

TX

n=1

S
(l)
i [n]� ✓l

�
(8)

representing a per neuron lower threshold spike count regularization with strength sl and threshold

✓l, and

L2 =
SU

Nbatch

NbatchX

s=1


max

⇢
0,

1

N

NX

i=1

TX

n=1

S
(l)
i [n]� ✓u

��2
(9)

being an upper threshold mean population spike count regularization with strength su and

threshold ✓u. Finally, the total loss is summarized by

Ltot = L+ µ1L1 + µ2L2 (10)

with µ as a scaling factor and minimized using the Adamax optimizer [84].

To implement and simulate SNN based on this model in PyTorch, we need to account for a time

binning step for the input event stream. Although aiming to work with asynchronous and sparse

event-based data, fixed frame lengths had to be defined to properly simulate algorithmic time

steps in the domain of clock-driven, conventional hardware like CPUs and GPUs. Time binning

was performed by subdividing the time extracted from the signal recordings (Trec) into T chunks,

with T defined as T = int(Trec/time_bin_size) and the quantity time_bin_size introduced

as an additional hyperparameter of the HPO. Then, by iterating over the encoded signal with a

stride equal to time_bin_size, a value of 1 was assigned whenever at least one spike was found,

otherwise a 0. The winning neuron in the output layer is the one with the highest spike count.
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2.4 Hyperparameter optimization

For each event stream produced from the original frame-based signal by applying a specific

threshold value, a tailored RSNN was obtained by adapting the parameter optimization procedure

introduced in [85]. The HPO was performed by means of the Anneal algorithm in the Neural

Network Intelligence (NNI) toolkit, using the parameters listed in Tab. 1, over 600 trials. To

partially mitigate the impact of local minima [86], two evenly spaced random reinitializations of

the tuner were performed during each experiment. An 80/20 train-test split was used and all trials

were composed of 300 training epochs with intermediate results, for both training and test, at the

end of each epoch. Test accuracy was defined as the optimization objective of the HPO

experiments, and its highest value was extracted at the end of each trial. The choice of selecting

test accuracy as a reference value to be optimized was taken to account for possible overfitting.

Following the annealing-based procedure, we performed a further exploration of a portion of the

initial search space through a grid search on the two most relevant hyperparameters from the

energy consumption perspective, namely time_bin_size and nb_input_copies since they

determine the number of operations that need to be computed per inference.

As the outcome of such a two-step HPO procedure, an optimized network for each threshold value

used in the sigma-delta encoding was obtained. All of these RSNNs were composed of a recurrent,

fully connected hidden layer containing 450 LIF neurons and an output layer composed of 28 LIF

neurons. The number of output neurons was defined to account for an extra class, in addition to the

27 defined by the letters, suitable to identify, given future possible online implementations, edge

cases such as missing contact between the fingertip and the letters. The input layer was instead part

of the optimization, with its number of input neurons defined as 2 · n_taxels · nb_input_copies

where 2 covers the event polarity, n_taxels was given by the 12 sensors in the robotic fingertip,

and nb_input_copies was to be optimized. A batch size of 128 and a learning rate ⌘ = 0.0015

were adopted for all the networks.

2.5 Hardware implementation

Beyond the algorithmic evaluation, we determined key performance metrics that are relevant to

real-world deployment by implementing the networks on different hardware platforms. These
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Table 1: Description of the hyperparameters included in the search space for the HPO procedure.

Hyperparameter Description
scale, � Steepness of surrogate gradient

time_bin_size Time binning of the encoded input

nb_input_copies Copies of the encoded signals provided to the input layer

tau_mem, ⌧mem Decay time constant of the membrane

tau_ratio Ratio between the membrane and the synapse (⌧syn) decay time
constants

fwd_weight_scale Scaling factor for weight initialization of the forward connections
(Wij )

weight_scale_factor Scaling factor for weight initialization of the recurrent connections
(Vij )

reg_neurons, µ1
Scaling factor for the regularization on the number of spikes per

neuron

reg_spikes, µ2 Scaling factor for the regularization on the total number of spikes

metrics covered power usage, energy consumption, and computational delay, which allowed us

to conclude the deployment feasibility in real-world scenarios. Considering the platform-related

factors of high integration and availability, and our ultimate goal of deploying the algorithms in

a real-world environment on robots, we targeted the NVIDIA Jetson Xavier NX, a commercially

off-the-shelf available computing platform equipped with a System-on-Chip (SoC) that integrates

a CPU and GPU, and the Intel Loihi, a neuromorphic processor dedicated to accelerating SNN.

2.5.1 NVIDIA Jetson Xavier NX

The NVIDIA Jetson is a product family of compact and embedded computation platforms mainly

targeted toward edge AI. The Xavier NX is the most powerful model among its compact 260-pin

SO-DIMM modules. Despite being a general-purpose platform, it is similar to common machine

learning workstations in terms of architecture and software. We used it to run all algorithms and

compare the different standard time-series classifiers, as well as evaluate the differences between

conventional algorithms and event-based algorithms on off-the-shelf hardware. Furthermore, the

inference metrics give an outlook on what performance can be expected during deployment with

the same hardware.

Execution time was measured by using the native functionality offered by the Linux Operating

System (OS). Power usage was measured by utilizing the module’s onboard INA3221 power

monitor, polling the system’s main power rail with a fixed interval of 50 ms. The power monitor
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also measures a CPU/GPU and a SoC power rail. But due to the lack of public information on

what components exactly these rails supply, and also due to a productive application requiring a

full system instead of just single core components, the main power rail was chosen for comparison.

The general procedure for measuring the performance metrics was performed as follows: initially,

the whole dataset was loaded into memory, followed by the loading of the model and its trained

weights. Next, a warmup of the system was performed by letting the model predict the whole

dataset in batches of 64 for six times. Its purpose was to fill the caches and to avoid additional

library load times during the actual inference. Afterward, the recordings of the execution time and

power values were started, which was immediately followed by the inference. Like in the warmup,

the whole dataset was predicted six times, but with the difference that a batch size of 1 was used to

simulate how the system would behave in a real-world scenario where single samples are predicted

consecutively. For our SNN the number of samples during warmup and inference was reduced to

750 each due to timing constraints. Finally, after the inference was done, the recordings were

stopped and the following metrics were evaluated:

• Inference time (i.e. computational delay) per sample, which is the total inference time

divided by the number of samples processed.

• Minimum, Maximum, and Average power usage over total inference time as well as per

sample.

• Total and per sample energy consumption. The total energy is calculated by multiplying and

accumulating each power measurement with a polling interval of 50 ms. Energy per sample

is given by dividing the total energy by the number of samples processed.

Furthermore, to get more significant results, the above procedure was repeated three times per

network to eliminate possible outliers and also performed for each available power mode on the

Jetson, whereas the results reported are from power mode 4.

2.5.2 Intel Loihi

Intel’s Loihi [87] is a fully digital neuromorphic research processor. Each Loihi chip hosts 128

neuron cores, where every neural core can run up to 1,024 CUBA LIF neurons by
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time-multiplexing. The Loihi neuron’s equations for the current and voltage compartments are

Ii(t) = Ii(t� 1) · (212 � �
I
i ) · 2�12 + 26 ·

X

j

wij · sj(t) (11)

Ui(t) = Ui(t� 1) · (212 � �
U
i ) · 2�12 + Ii(t) (12)

where t is the algorithmic time step, Ii(t) and Ui(t) are the current and voltage of neuron i, �Ii and

�
U
i are the current and voltage decay constants, wij is the synaptic weight from neuron j to i and

sj(t) is the spike state (0 or 1) of neuron j.

Each Loihi neuron core supports arbitrary connection topologies as long as the capacities of the

in-core memories for storing axons and synapses are not exceeded. The neuron cores are parallel

and distributed with local on-chip SRAMs to store the network state and configurations. The

neuron cores are fully asynchronous, performing synaptic accumulation only when there is an

input event, which highly benefits from the spatio-temporal sparsity of event-based sensors and

encoding. The algorithmic time step in the entire Loihi system is maintained by a distributed

handshaking mechanism called barrier synchronization. In addition, each Loihi chip has 3

synchronous embedded x86 cores also taking part in the barrier synchronization. The x86 cores

run C code and are used to monitor and interact with the SNN running on the neuron cores,

handling data IO between the on-chip asynchronous neuron cores and off-chip devices, and

optionally synchronizing the algorithmic time steps duration (in physical time) to integrate the

chip with a sensor.

We developed a solution to deploy the trained networks from our PyTorch implementation to

Loihi (PyTorch2Loihi). First, we export the neurons’ hyper-parameters and the trained synaptic

weights from PyTorch in an HDF5 file by taking into account the Loihi hardware specifications

and constraints as follows:

• Current and voltage decays constants: we calculate the Loihi decay constants �I and �
U

from the PyTorch time constants ⌧syn and ⌧mem respectively, with
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� = int
⇣
2�12 � 2�12 · e

�Time_bin_size
⌧

⌘
(13)

• Synaptic weights and neuron threshold: Loihi supports up to 8-bit fixed point weights.

To minimize the effect of quantization, we quantize the weights from PyTorch training into

256 states and adjust the weight scaling factor and threshold scaling factor to have the same

overall effect of an input spike. The weight scaling factor wscale and the weight quantization

scheme is described by

wscale = int
⇣

256
max |w|

⌘
(14)

wLoihi = quantize (w, step = 2) · wscale (15)

✓Loihi = 26 · ✓ · wscale (16)

After the network is deployed, we run the inference with the event-based tactile data and first

quantify the classification accuracy, then, measure the energy consumption and computation

delay. The test inference was made by injecting the input events of all samples of the test set in a

continuous flow, where samples are separated by a blank time of 100 algorithmic time steps

where the neurons’ currents and voltages decay to zero. The output spikes are gathered

throughout the duration of the inference, and then the classification accuracy is calculated offline.

Loihi system boards include voltage regulators and power telemetry which can be used to

measure the total power consumption of the Loihi chip while a model is running. The power

measurements can be combined with timing information recorded by the on-chip x86 cores

during model operation to estimate energy consumption. NxSDK exposes a high-level user

interface for measuring power, energy, and timing when a workload is running. We used the

interface to benchmark the performance of our SNN models on Loihi.
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3 Results

3.1 Encoding analysis

To characterize the event-based datasets, we reconstructed the temporal sequences out of the event

streams and compared the results with the original frame-based signal. Additionally, we performed

the same analysis by taking into account the time binning step used to prepare the data for clock-

driven computation as described in 2.3. Results are summarized in Tab. 2, where the mean number

of events, the compression ratio � with respect to the encoded data at # = 1 and the reconstruction

Mean Squared Error (MSE) values " are reported both, before and after the binning step for each

threshold.

3.1.1 Signal reconstruction before time binning

From the event stream, the signal was reconstructed, starting from zero, by increasing or

decreasing, for every event, according to the polarity ON or OFF, by an amount equal to the

threshold used in the encoding. Fig. 5b shows the reconstruction values for one sample and taxel

at different threshold values. The compression ratio � is defined as the number of events at # = 1

divided by the number of events at each threshold value. The reconstruction error " is the MSE

between the original sequence and the reconstructed frame-based sequence for each of the

event-based datasets.

The analysis of the reconstructed frame-based signal revealed that with increasing thresholds the

number of events dramatically decreases, increasing the reconstruction error. However, the

compression ratio � increases with a higher rate than the reconstruction error ", showing a

sparsity gain of the event-based dataset at the cost of information content.

3.1.2 Signal reconstruction after time binning

Running SNN in PyTorch requires the introduction of time bins. To quantify the impact of the

time binning on the different encoded datasets, we counted the total number of events given in

each dataset after the time binning. The total number of events for a given encoding threshold

is always higher than the total number of events for a given lower encoding threshold, regardless
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Fig. 6: Spike encoding: (a) Total number of events counted in the whole dataset in dependence of the selected threshold
and time_bin_size is shown in the top panel, while the relative amount of events found in the dataset relative to
time_bin_size = 1 is reported in the bottom one. Increasing the encoding threshold reduces the number of events
significantly, whereas encoding with lower thresholds is much more affected by increasing time_bin_size. The amount
of events lost is 50.37 % for # = 1, 34.25 % for # = 2, 13.17 % for # = 5, and only 2.92 % for # = 10. (b) MSE
values of signal reconstruction after time binning as a function of the time_bin_size for each encoding threshold. The
time_bin_size resulting from the HPO and grid search used to preprocess the event stream are highlighted by the
markers. (c) Shows the reconstruction of the frame-based signal from the event stream for all given thresholds after
time binning with a bin size of 5 ms. (d) Number of events as a function of the Inter-Spike Interval (ISI) with fixed
time_bin_size as reported in Tab. 2, with the same colour coding as in (a) and (b). The insets show the detail at ISI
values equal to the time_bin_size used in this work, highlighting the minimum temporal resolution of 1 ms with the
vertical dashed line. Spikes below 1 ms in percentage of total number of spikes: 8.22 % for # = 1, 0.45 % for # = 2,
0 % for # = 5 and # = 10.
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Table 2: Characterisation of event-based encoding for each of the generated datasets at different threshold values.
Compression ratio � is defined as the number of events at perfect encoding (# = 1) divided by the number of events at
each higher threshold value. Values of the reconstruction error " are calculated per reconstructed frame by MSE. Mean
events are calculated per sample. All time_bin_size, introduced to prepare the data for clock-driven computation,
follow the results reported in 3.4 from the two-step HPO procedure.

Before time binning After time binning

Threshold
(#)

Events Comp. ratio
(�)

MSE
(")

Bin size
(ms)

Events Comp. ratio
(�)

MSE
(")

1 87.6 1 0 5 58.1 1.5 39.5

2 38.0 2.3 0.4 3 35.5 2.5 12.5

5 10.5 8.3 3.7 3 10.5 8.3 4.1

10 3.4 25.7 12.3 5 3.4 25.7 12.3

of the time binning, as shown in the top panel of Fig. 6a. The higher the encoding threshold,

the lower the impact of the time binning. For the encoding threshold # = 1, the total number

of events counted in the dataset for a time_bin_size equal to 1 ms is halved with increasing

time_bin_size. For the encoding threshold # = 2, we still have a loss of 35 %, whereas for

higher encoding thresholds # � 5 the impact of the time binning decreases close to or below 10 %

and most of the events are perceived, as shown in the bottom panel of Fig. 6a.

The same reconstruction of the frame-based signal from the event stream as described in 3.1.1

was performed for every possible time_bin_size, included in our HPO and grid search, of the

event stream for each threshold value. The reconstruction error " depends, on the one hand, as

discussed above, on the encoding threshold, and on the other hand on the introduced time

binning. Results are shown in Fig. 6b with markers at the time_bin_size selected after the HPO

and grid search to run the SNN for each encoding threshold. The smallest reported reconstruction

error " is 0.55 for threshold # = 2 and 1 ms time_bin_size. We see a great increase in the

reconstruction error " with increasing time_bin_size. That increase is even more drastic for

threshold # = 1 starting at a higher reconstruction error " of 4.82. The higher reconstruction error

" can be explained by the loss of events when multiple of them fall into a single time bin, leading

to an increase in the reconstruction error by introducing an accumulating offset, as shown in

Fig. 6c. Additionally, the discriminative power of amplitudes is lost, leading to similar amplitude

for small and high changes after the reconstruction. A further analysis unveiled, that 8.22 % of

the ISI for threshold # = 1 are below 1 ms which is the smallest time_bin_size used, whereas
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for # = 2 only 0.45 % are below 1 ms, as summarized in Fig. 6d. For all higher thresholds

(# > 2) no ISI are below 1 ms. The higher the threshold, the higher the majority of ISI due to the

increasing sparseness. The impact of time binning has decreasing impact, but the error introduced

by the higher encoding thresholds is becoming more relevant. Overall, the higher thresholds are

more resilient to the impact of time_bin_size, but less able to reflect the temporal dynamics.

3.2 Standard classifiers for frame-based data

3.2.1 Linear classifier

The recorded dataset encodes information in spatio-temporal patterns. Before this dataset is used

for pattern recognition, it is important to know whether only spatial information or both spatial

and temporal information in this dataset needs to be considered for character recognition. To

investigate the significance of spatial and temporal information for the Braille letter classification

task, we applied SVM with a linear kernel. To eliminate only the temporal information from the

data by keeping the spatial information intact, we computed the mean of all frames with respect

to time for each channel. In this way, we got one data point for each channel which is time

independent and each channel represents the spatial location of each sensor, referred to as ‘time

collapsed data’. Data keeping both, spatial and temporal information intact, is referred to as ‘raw

data’. We applied a one-vs-rest multiclass classifier on the raw and the time-collapsed data for

five cross-validated splits. We achieved (86.7 ± 0.77) % and (72.3 ± 1) % accuracy for raw

and time-collapsed data respectively. To further investigate the temporal nature of the data we

iteratively increased the number of frames taken into account from the first to the total number

of frames in the frame-based data, in every iteration the data has been reduced to the first 12

principle components found by Principal Component Analysis (PCA) to always consider the same

dimensionality of the predictors in the classifier.

In Fig. 7a the results of this procedure are shown, with a clear increase in the accuracy with three

significant phases at 0.5 s and 0.8 s before it finally saturates after 1s at (86.7 ± 0.77) %. We can

identify the three phases in the sliding procedure, namely: the first contact with the dot pattern

between 0.1 s and 0.5 s, the first contact with the second row of the pattern between 0.5 s and
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Fig. 7: (a) Dependency of SVM performance in regard to the first 12 principle components extracted using PCA
provided with an increasing number of frames. An increase in the number of frames results in an increase in the
performance close to saturation in 1s at (86.7 ± 0.77) %. (b) Dimensionality reduction (PCA) with 2 components
applied to the spatio-temporal sequences of the frame-based dataset. Each of the colors in the visualization represents
a category (letter) in the dataset.

0.8 s, and the end of the pattern after 1 s, by comparing Fig. 4c and Fig. 7a.

Similarly, for the event-based dataset, we investigated the discrimination power of the spatial

components by removing the temporal dimension of the dataset. In this case, we built the classifier

with predictors as the summation of all the events for each taxel and channel (ON/OFF) resulting

in 24 predictors per letter in the dataset. Fig. 7b shows the first two principal components after

applying PCA to the spatial predictors displaying an overlapping in data categories. The result

of the trained classifier drops from (58.94±1.15) % for the event-based data with all time bins as

predictors to (47.7±1.48) % for the predictors that only account for the sum of spatial information.

This analysis confirms the intuition that the temporal information of the signal is important for the

character discrimination tasks.

3.2.2 Time-series classifier and LSTM

We trained the time-series classifiers and the LSTM network with an 80/20 train-test split for 300

epochs and averaged the results over three runs per network. The resulting test accuracy as well

as the network’s respective number of trainable parameters are shown in Fig. 8.

ResNet, Inception and FCN performed at comparable level. They all achieved 100 % in training

accuracy and reached comparable test accuracy of (98.2 ± 0.2) %, (97.8 ± 0.2) % and
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Fig. 8: Test accuracy and number of trainable parameters of standard classifiers after training for 300 epochs and
averaging over three runs. eLSTM refers to LSTM with event-based input.

(97.7 ± 0.3) %, respectively. Similarly, their number of parameters turns out to be comparable

too, with ResNet (516k) and Inception (452k) close to each other and FCN (280k) slightly

smaller but in the same order of magnitude.

The Encoder architecture reached a training accuracy of (99.8 ± 0.1) % but the drop in test

accuracy was greater, resulting in (93.9 ± 0.2) %. This deviation is an indication of overfitting

and can possibly be explained by the fact that the network’s number of parameters is one order of

magnitude higher than the one of the former mentioned networks. This high amount of parameters

can lead to a training outcome where the network memorizes the training data and conversely

generalizes worse than it would with fewer parameters.

LSTM is the only recurrent architecture in our selection. It performs sequential processing from a

streaming input without buffering the data. This reduces the delay and memory footprint which is

important for embedded systems. Compared to the previous networks, it achieved again a training

accuracy of 100 % and the test accuracy did not drop as significantly as for the Encoder and

resulted in (96.9 ± 0.3) %, suggesting less overfitting.

TCNN performed worst among all selected networks and only achieved (88.5 ± 0.8) % and

(83.4 ± 1.3) % for training and test accuracy, respectively. However, it uses a greatly reduced

number of parameters, containing only 2,673, which is two orders of magnitude lower than
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ResNet, Inception, FCN and LSTM, and even three orders of magnitude lower than the Encoder

network.

3.3 LSTM with event-based input (eLSTM)

As a benchmark for the results provided by the optimized RSNN, LSTM was adopted for

event-based data, using the same architecture as described in Section 2.2.2, the same train-test

split as described in 3.2.2 and the same data preprocessing as for the RSNN, meaning sigma-delta

encoding and time binning. Results are reported in Fig. 8. A clear impact of the encoding

threshold on the eLSTM can be observed, with # = 1 providing the best accuracy values.

Compared to the optimized RSNN, while similar results are found when using # = 1,

significantly lower performances are achieved with # = 2 and # = 5, which also show a

drastically increasing standard deviation. For # = 10, results are again similar to those reported

for the RSNN, but a higher standard deviation is observed in this case as well. A similar

behaviour across the different threshold values can be observed in Fig. 10 as well, where # = 2

and # = 5 show worse performances, in terms of inference time, compared to # = 1 and # = 10.

One possible explanation is the same time_bin_size for # = 1 and # = 10 with 5 ms, compared

to 3 ms for the other encoding thresholds. This leads to 3/5 the number of time steps to compute,

which the LSTM seems to benefit from.

3.4 Spiking neural networks

During the two-step HPO procedure, the main objective for the optimization was the classification

accuracy, but we also monitored the Time-to-Classify (TTC) and the power consumption, with

the latter separately reported in Section 3.5. In the perspective of an online implementation of

the proposed RSNN, an informative figure of merit to be accounted for is the minimum temporal

length of the input needed for successful classification. To this aim, we defined TTC as the portion

of the signal needed for successful classification with respect to the full acquisition time of the

Braille letter, which was fixed to 1.35 s, due to the fixed sliding speed. Additionally, in order to

account for possible corner cases in the online implementation, like ‘no contact’ situations, we

included one extra class leading to 28 classes in total.
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Table 3: Optimized values of the hyperparameters, for each encoding threshold, following grid search.

Threshold (#)

1 2 5 10
scale 5 15 10 10

time_bin_size (ms) 5 3 3 5

nb_input_copies 2 8 4 2

tau_mem (ms) 60 50 70 70

tau_ratio 10 10 10 10

fwd_weight_scale 1 1 1.5 4

weight_scale_factor 1e-2 2e-2 3.5e-2 1.5e-2

reg_spikes 4e-3 1.5e-3 1e-3 1.5e-3

reg_neurons 1e-6 0 0 0

The parameter space after the NNI optimization, as well as after the grid search, for each

threshold, shows no significant trends. The complex interaction of different parameters leads to a

variety of local optima resulting in comparable test accuracy. Looking only at the trials with the

best classification accuracy for different encoding thresholds, reported in Tab. 3, gives the same

picture. Only the forward weight scale, fwd_weight_scale, seems to be constantly increasing

with increasing thresholds. The membrane potential time constant ⌧mem has only slight

variations, again with no clear trend, and the tau_ratio, describing the relation of ⌧mem and ⌧syn,

is constant. Seeing similar membrane time constants indicates their dependencies on the

spatial-temporal properties of the data despite the encoding threshold. A constant

membrane-to-synapse time constant ratio in contrast shows to be an optimal relation between

neuron and synapse dynamics for this task.

Fig. 9 shows a summary of the RSNN classification accuracy after grid search optimization,

while in Supplementary Material Fig. S2 the hyperparameters exploration during the first step of

the HPO procedure is reported. From all the explored combinations of time_bin_size and

nb_input_copies for all the encoding thresholds employed, the best configuration in terms of

accuracy turned out to be the one adopting an encoding threshold of # = 5, a time_bin_size of

3 ms and 4 input copies. Nevertheless, such RSNN configuration did not provide the strongest

reliability in terms of repeatability. As shown in Fig. 9b, the standard deviation of the provided

results is larger than the one observed for other configurations. Fig. 9b shows that the best

configuration found for an encoding threshold # = 2 resulted in a mean accuracy as high as the
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one for an encoding threshold # = 5 but with a significantly reduced standard deviation:

(80.9 ± 0.3) % test accuracy compared to (80.9 ± 1.9) %.

Looking at the accuracy performances from this twofold perspective, it is hence possible to

identify as the best configuration the one employing the encoding threshold # = 2 with a

time_bin_size of 3 ms and a number of copies equal to 8. The overall performance of the

highest threshold (# = 10) is the worst. The analysis of accuracy results provided an additional

insight also, reported in both Fig. 9a and Fig. 9b, highlighting that the encoding threshold and

time_bin_size can have a significant impact. Particularly, they induce a similar behavior of test

accuracy: after an initial growth leading to a maximum, a further increase of one of them

produces a deterioration of the classification performance. In contrast to the findings regarding

the preservation of events concerning the time_bin_size for different thresholds discussed in

3.1, the accuracy for higher encoding thresholds decreases most for higher time_bin_size.

Comparing the network performance of the RSNN and the FFSNN, shown in Fig. 9b, we observe

a constant decrease for the FFSNN with increasing thresholds, but an almost constant

performance for the RSNN up to # = 10, where it initially starts to drop off.

Targeting an online hardware implementation, next to classification performance, the energy

efficiency needs to be considered too. From this point of view, the encoding threshold of 1 is the

most promising candidate using a small number of input copies and a greater time_bin_size,

leading to a significantly lower energy footprint at comparable performance. Regardless of the

hyperparameters, the TTC is equal throughout all conditions and the whole time series is needed

for the best classification performance, similar to the findings using the linear SVM, reported

in 3.2.1. To validate the use of the extra class, we also compared these results with an

implementation based on 27 classes only. Such analysis revealed that similar results are achieved

in both cases, thus showing that the additional 28th class does not have a detrimental impact on

the classification performances.

3.5 Hardware implementation
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Fig. 9: Summary of the accuracy performances of RSNN and FFSNN resulting from the grid search exploration
in the two-step HPO procedure. (a) Best test accuracy results achieved with the RSNN for all the combinations of
time_bin_size and nb_input_copies. (b) Mean and standard deviation of the accuracy results of both the FFSNN
and the RSNN with the best parameters for each encoding threshold.

3.5.1 NVIDIA Jetson embedded GPU

The energy consumption, average power usage, and inference time of the standard classifiers

running on the NVIDIA Jetson2 are shown in Fig. 10. We consider energy consumption the main

metric as it includes both power usage and inference time per sample. Average power usage gives

insight into what power budget would be required to achieve certain inference times. While

energy and power consumption are important metrics for battery-powered applications, inference

time is crucial in applications with real-time constraints.

When comparing these results with the parameter counts in Fig. 8, some similarities can be found.

ResNet, Inception, and FCN, which are comparable in terms of accuracy and parameter count, had

nearly the same average power usage during inference. This means that their energy consumption

is directly proportional to their inference time. In the case of Inception and its parameter count,

we expected the energy consumption to lie between ResNet and FCN, but it exceeded both. While

parameter count is not directly related to computational complexity, another explanation for this

observation could be that Inception uses operations that are less optimized or not accelerated by

the GPU. The similarities continue with the Encoder, where average power usage jumped and the

parameter count increased by one order of magnitude, compared to the former three networks.

Judging only by the parameter count, we expected energy consumption to be even higher. The
2Energy and timing measurements for the Jetson were obtained on an NVIDIA Jetson Xavier NX Developer Kit

running the NVIDIA JetPack 4.6.1 SDK, containing Ubuntu 18.04.6 LTS, L4T 32.7.1, TensorRT 8.2.1, and CUDA 10.2
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Fig. 10: Comparison of inference metrics from the standard classifiers for frame-based data in terms of energy
consumption and average power usage as measured on an NVIDIA Jetson Xavier NX. eLSTM refers to LSTM with
event-based input. The label on top of each bar shows the inference time per sample on the corresponding network.

difference, especially compared to Inception, is not as great as expected, though. Considering

the higher average power usage, it had better GPU utilization and therefore could benefit from an

overall higher acceleration. Inference time also supports this assumption, as it was lower on the

Encoder than on Inception.

Amongst all standard classifiers, the results for the LSTM with frame-based input are the most

notable. Despite being a sequential network, which we expected to be slower compared to the

standard classifiers due to its iterative and recurrent nature, it achieved the fastest inference time

and lowest energy consumption. But this came at the cost of the second highest power

consumption. Similar to the Encoder, this suggests that the network can benefit from a high GPU

utilization or general acceleration of internal operations.

For the LSTM with the event-based input, further referred to as eLSTM, we found that the energy

per sample and the inference time reflect the number of time steps processed with a ratio of 5 to 3

which is given by the time binning applied for each encoding threshold. Similar time_bin_size

for # = 1 and # = 10 with 5 ms resulting in 270 time steps and for # = 2 and # = 5 with 3 ms

resulting in 450 time steps have been used. Interestingly this ratio does not hold when compared

to the frame-based signal with 54 timesteps. The reason for that might be the nature of the data
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with float numbers for the frame-based data and integer numbers for the event stream. The power

consumption for all eLSTMs is nearly the same.

Lastly, the TCNN performed poorly when putting it alongside the other networks. It had, on

average, a similar energy consumption but a high inference time, despite having by far the least

amount of parameters of the shown networks. In general, it seems that this specific architecture is

not very well suited for solving the problem at hand.

For the SNN and RSNN, we expected results on the NVIDIA Jetson to be solely proportional to

the parameters time_bin_size and nb_input_copies, and whether the feedforward or recurrent

architecture was used. These three factors mainly define the number of operations to be calculated

during inference. Conversely, we assumed that the threshold does not affect performance as the

implementation on general-purpose computers does not take advantage of the temporal sparsity

in the data. Our measurements generally support these assumptions and are shown in Fig. 11.

The average power usage of the feedforward and recurrent architectures across their thresholds

were very close, deviating less than 0.7 % for the former, and less than 0.2 % for the latter from

their respective means. This implies a constant utilization of computational resources as well as

the energy consumption being directly proportional to the inference time for each architecture.

Thresholds # = 1 and # = 10 as well as thresholds # = 2 and # = 5 consumed roughly

the same amount of energy per inference. Tab. 3 shows that both threshold pairs presumably

depend on time_bin_size and nb_input_copies. The only exception is nb_input_copies for

threshold # = 2 and # = 5, which is 8 and 4, respectively. This brings us to the conclusion that

nb_input_copies does not have a meaningful impact on energy consumption and inference time

in real-life scenarios, whereas time_bin_size and the type of architecture are the main factors

for the computational load. A comparison between the SNN and the eLSTMs shows an increased

inference time of 20⇥, even though both compute the same number of time steps, indicating the

lack of computational optimization for the SNN computation. The energy per sample is 10⇥

higher and the average power consumption 1.5⇥.

In general, when comparing the absolute numbers of Fig. 11 with the standard classifiers in

Fig. 10, our implementations of the FFSNN and RSNN have a clear disadvantage at energy

consumption and inference time when being run on a GPU accelerated device. The most efficient
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Fig. 11: Comparison of inference metrics for all spiking neural networks in terms of energy consumption and average
power usage as measured on an NVIDIA Jetson Xavier NX. The label on top of each bar shows the inference time per
sample on the corresponding network.

SNN consumed ⇠88 % more energy than the least efficient standard classifier, and the fastest

spiking network took 16.8⇥ longer for one inference than the slowest standard classifier. These

numbers clearly show the need for dedicated neuromorphic hardware to implement event-based

algorithms.

3.5.2 Intel Loihi neuromorphic chip

The overall trend of accuracy in Loihi for the SNN, shown in Fig. 12 follows the trend of accuracy

on the PyTorch simulations and Jetson inference shown in Fig. 9b. Nevertheless, there is a loss in

accuracy of a few percent (e.g. -1.58 % for the RSNN with encoding threshold # = 1, which is

due to the PyTorch training procedure without accounting for the Loihi hardware constraints, in

particular, the 8-bit fixed point weights implementation. The loss varies depending on the PyTorch

weights distribution.

Then, we compared the hardware efficiency of the recurrent and FFSNN in terms of delay (i.e.

execution time), power and energy consumption. Before discussing the results, it is important to

specify the neural cores mapping we have used which does not affect the accuracy but does affect

the hardware efficiency. Loihi offers flexibility in how to map the network neurons into the neural
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Fig. 12: Comparison of the accuracy results for FFSNN and RSNN on Loihi with the best parameters found by the
two-stage HPO for each encoding threshold.

Fig. 13: Comparison of inference metrics for all trained spiking neural networks in terms of energy consumption and
average power usage as measured on Loihi. The label on top of each bar shows the inference time per sample on the
corresponding network.
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cores, constrained by the number of cores in a chip as well as the number of input axons, synapses,

neurons, and output axons in a neural core. The goal is then to find a good trade-off between

parallelism (i.e. using more neural cores with fewer neurons per core) and time-multiplexing (i.e.

using fewer neural cores with more neurons per core), to balance the neural core’s power, the

mesh routing power and algorithmic time step duration to get an optimal configuration for the

application requirements. We found, that for the specific typologies, the more cores we use the

more power and energy we consume without a significant impact on the delay. We, therefore, used

the minimum number of cores considering all the hardware constraints which are 8 cores for all

the trained networks.

The delay, power and energy consumption of the different deployed SNN on Loihi3 are shown in

Fig. 13. For the sake of simplicity, we refer to energy consumption as the main metric, as it

includes both power and delay. As expected, FFSNN consumes less energy than RSNN, for the

same thresholds. This is due to the overhead of memory and computation from the recurrent

synaptic connections. FFSNN and RSNN follow a similar trend for the different thresholds:

networks with thresholds # = 2 and # = 5 consume more energy because they have smaller bin

sizes and therefore more time bins (i.e. algorithmic time steps) per sample (450) compared to

networks with thresholds # = 1 and # = 10 (270), and they have more input copies as shown in

Tab. 3. Networks with threshold # = 2 consume more than networks with threshold # = 5,

mainly because they have more input copies (8 vs. 5). Nevertheless, the FFSNN with threshold

# = 1 consumes more than the FFSNN with threshold # = 10, while the RSNN with threshold

# = 1 consumes less than the RSNN with threshold # = 10. Even though in both cases the

networks with threshold # = 1 have more events in the input and fewer events in the hidden layer

than the networks with threshold # = 10, shown in the Supplementary Material Tab. S2, the

impact of the hidden layer events is different, because every event in the FFSNN hidden layers

gets transmitted to the 28 output neurons while every event in the RSNN hidden layers gets

transmitted to both the 28 output neurons and the 450 hidden neurons. Therefore, the gain

obtained in the input layer for the RSNN with threshold # = 10 is lost with the recurrent

topology which increases the number of synaptic operations. Finally, while the Jetson GPU is
3Energy and timing measurements were obtained on Nahuku 32 board ncl-ext-ghrd-01 with an Intel(R) Xeon(R)

CPU E5-2650 0 @ 2.00 GHz and 4GB RAM running Ubuntu 20.04.4 LTS and NxSDK v1.0.0
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Table 4: Results summary from RSNN on Loihi and RSNN, eLSTM and LSTM on Jetson for accuracy, total power,
energy per sample, delay and energy-delay product. The number of trainable parameter (i.e. synaptic weights) are
similar between the RSNN (236,700), the LSTM (225,975) and the eLSTM (236,919). Event-based inputs are encoded
with threshold # = 1. Comparisons with respect to RSNN on Loihi are evaluated as differences for the accuracy and
as ratios for all the other quantities.

Results summary Comparison with RSNN on Loihi

Network RSNN RSNN eLSTM LSTM RSNN eLSTM LSTM
Hardware Loihi Jetson Jetson Jetson Jetson Jetson Jetson
Input Events Events Events Frames Events Events Frames

Accuracy
(%) 78.32 79.90 82.31 96.92 +1.58 +3.99 +18.60

Total power (mW) 31 3,851 7,642 5,385 124⇥ 247⇥ 174⇥

Total energy
per sample (µJ) 71 1,108,695 96,000 35,212 15,615⇥ 1,352⇥ 496⇥

Delay per sample
(ms) 2.3 295.3 12.9 6.7 172⇥ 5.6⇥ 2.9⇥

Energy-delay
product (µJ·s) 0.16 327,398 1,238 236 2,046,237⇥ 7,738⇥ 1,475⇥

mostly sensitive to the number of bins as shown in Fig. 11, Loihi is also sensitive to the number

of input copies and the spatio-temporal sparsity of the spikes and synaptic operations in the

network.

After the comparison of the different deployed SNN on Loihi, taking into account the accuracy,

power, energy, and delay, we conclude that the RSNN with encoding threshold # = 1 is the best

option. For simplicity, we will refer to it as the RSNN for the rest of this section.

Tab. 4 compares RSNN in Loihi, the RSNN on Jetson, the LSTM and the eLSTM on Jetson.

The RSNN on Loihi loses 1.58 % in accuracy compared to the RSNN on Jetson, mainly due

to the quantization that was done after training. It further loses 17 % compared to the LSTM

on Jetson, but only 3 % compared to the eLSTM. A specific LSTM architecture with the same

number of parameters as in the RSNN has been used and trained for 300 epochs. However, the

RSNN on Loihi show several orders of magnitude gains in hardware efficiency. First, compared

to the RSNN on Jetson, it is 124⇥ more power-efficient and 172⇥ faster, which makes it four

orders of magnitude (15,615⇥) more energy-efficient. It clearly shows that SNN are particularly

inefficient when implemented on standard GPU hardware. It should nevertheless be highlighted

that the delay or execution time of the RSNN on Jetson still satisfies the real-time constraint

imposed by the sensor which has a sampling frequency of 40 Hz (i.e. a maximum algorithmic
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time step duration of 25 ms). Even though the average execution time of the RSNN on Jetson is

relatively long (295.38 ms), it is still lower than the total duration of each sample (1,350 ms). It is

to note that this delay can increase in the real-world setting when adding off-chip communication

with the robot. Second, compared to the LSTM on Jetson, the RSNN on Loihi is more than 170⇥

more power-efficient and exhibits a 2.9⇥ longer average execution time, which makes it three

orders of magnitude (1,475⇥) more energy-efficient.

Finally, compared to the standard eLSTM classifier on the Jetson GPU using the same event data,

the neuromorphic approach with the Loihi chip and RSNN is about 4 % less accurate but two

orders of magnitude (247⇥) more power-efficient, reducing the total power from 7.642 W to

about 31 mW. Furthermore, as a consequence of the reduced execution time, from 12.9 ms down

to 2.3 ms, the neuromorphic approach introduces a gain in energy efficiency of 1,352⇥ and a gain

in energy-delay product of 7,738⇥. This goes in line with recent results of SNN on Loihi

compared to standard algorithms and hardware, where the best performing workloads on Loihi

make use of highly recurrent networks [88]. Furthermore, we can expect an even higher gain in

energy efficiency when using the RSNN on Loihi in the real-world environment, because it

exploits the spatio-temporal sparsity of the event-driven encoding. Therefore, if the robot is not

moving its finger, no event is transmitted to the Loihi chip, drastically reducing the dynamic

power that represents about 20 mW out of the total 31 mW. Instead, the Jetson GPU would

always process the redundant frames coming from the sensor. Our study shows how event-driven

encoding, neuromorphic hardware, and SNN are put together to improve the overall efficiency of

tactile pattern recognition, emphasizing the importance of the neuromorphic approach for

embedded applications with a continuous stream of data.

4 Conclusions

The initial analysis of the frame-based data using a linear classifier demonstrates that the

information in our dataset is encoded in both the spatial and the temporal domains. The results

show a decrease in the accuracy of linear classifiers when no time dimension is accounted for in

both frame- and event-based data, thus motivating the use of architectures that are capable to

learn spatio-temporal patterns from the data. Although linear classifiers provide a high accuracy
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when all time bins are taken into account as predictors, it is not the desired approach to learning

spatio-temporal patterns since they cannot be applied online where data needs to be gathered in

real-time instead of being already available. This is in contrast with the sequential learning

approaches and spike-based algorithms explored in this manuscript.

The data encoding analysis presents the trade-off between information content from the original

frame-based data and the sparsity of the event stream. The original frame-based data is inherently

redundant since the information content decreases slower than the compression ratio of events

revealed by comparing the datasets at different threshold levels. Next to the impact of the

encoding threshold, the analysis has shown that time binning needs to be considered as an

important influencing factor. Due to the need to create vectors with sparse event representation to

run on GPUs, the smallest time_bin_size creates the lowest boundary in which the temporal

dynamics of the event stream can be correctly represented. If ISI fall below the time_bin_size

information content and temporal dynamics suffer and information is lost. Based on the

implementation results, the network may not reflect the sparsity in the input event stream at every

network layer. An optimized network for task performance showed an increase in the number of

events and quantity of energy consumption of the total architecture although the dataset presented

to the input layer has a compression ratio bigger than 1 in terms of events. It is true, that the

number of time bins has a significant impact on the power consumption, but comparing threshold

# = 1 with # = 10 as well as # = 2 with # = 5 for the RSNN, which have the same

time_bin_size of 5 ms and 3 ms respectively, the higher threshold has in both cases a higher

power consumption as highlighted in our hardware implementation on Loihi shown in Fig. 13,

which can only be explained by a higher number of spikes transmitted in the network as reported

in the Supplementary Material Tab. S2. Therefore, encoding schemes that minimize the number

of events in the input may result in higher energy consumption in the system as a whole.

We further found that the spiking neuron current and voltage time constants that were optimized

independently for each encoding threshold are similar because they are correlated to the inherent

temporal dynamics of the input event stream rather than the encoding threshold or binning time

window. The HPO did not settle at a global optimum for any of the encoding thresholds, which

underlines the highly complex interaction of the included parameters, leading to many locally

optimal solutions. Looking at the results of the follow-up grid search reveals, that all
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time_bin_size greater than 2 ms lead to a similar trend showing a slight decrease in

classification accuracies for increasing time_bin_size. Relating the moderate decrease of

accuracy with the increase in energy and power saving makes the selection of higher

time_bin_size for further robotic implementation preferable.

Our findings regarding the implementation of the SNN on the NVIDIA Jetson show that it is

capable of fulfilling the constraints of real-time performance, which is defined here as the inference

time of any network is lower than the recording time of one sample. The increase of the inference

time between non-spiking and spiking architectures is substantial, though. It ranges from ⇠ 16⇥

(Inception vs. FFSNN with threshold # = 1) to ⇠ 91⇥ (FCN vs. RSNN with threshold # = 2).

As a consequence, the energy consumption also rose by a significant margin which ranges from

⇠ 2⇥ (Encoder vs. FFSNN with threshold # = 1) to ⇠ 40⇥ (LSTM vs. RSNN with threshold

# = 2). These numbers show the clear drawback of our implementation on conventional hardware.

For a meaningful deployment, it would either need a more optimized implementation that is better

accelerated by GPUs, or dedicated hardware that can take advantage of the characteristics of the

spiking domain, like temporal sparsity.

We have been able to demonstrate the possibility of efficiently performing time series

classification by exclusively using event-based encoding and asynchronous event-based

computation on neuromorphic hardware. Our deployed RSNN can discriminate between 27

classes of Braille letters with 78.32 % accuracy, using only 450 recurrently connected hidden

units and consuming a total amount of 31 mW on the Intel Loihi neuromorphic chip. This is yet

not sufficient to report a competitive classification performance compared to standard classifiers

or other results achieved with SNN on different tasks. The encoding analysis revealed that too

much information is lost using sigma-delta encoding and that hinders the network from further

performance improvements. Nevertheless, comparing these findings to a LSTM on the NVIDIA

Jetson embedded GPU yields a gain in power-efficiency of 250⇥ for the RSNN with threshold

# = 2 on Loihi. On the one hand, these results show the challenges of spike-based computing

compared to standard algorithms in terms of accuracy; on the other hand, they highlight the

opportunities of the neuromorphic approach with event-based communication and asynchronous

processing in terms of power/energy efficiency and delay, especially for mobile robots or highly

energy-constrained fields of applications. In addition to the neuromorphic computation while
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performing the task, event-based encoding is important in this context. Event-based systems can

be considered at rest while no significant change occurs and with that, the power consumption

during that time is extremely low. Nevertheless, the system can react to changes immediately, due

to its asynchronous nature.

The LSTM with the frame-based data-stream outperforms the RSNN in accuracy by 17 %,

whereas the eLSTM achieves comparable performance to the the RSNN, highlighting the need

for better event-based encoding techniques. For example, graded spikes supported by Loihi

2 [89] could reduce the information loss by adding the magnitude of change to the event (when it

exceeds a threshold), keeping both event-based communication and precise information.

Furthermore, models mimicking the biological skin with its wide range of neuronal responses

like the slow and fast adaptive receptors [90] can be beneficial in terms of information extracted

from the stimuli using multiple parallel pathways. Regarding the SNN, several mechanisms can

be explored to improve the pattern recognition performance of the RSNN. First, by only applying

a single recurrent hidden layer, we limited the trainable parameters in our network and with that,

its learning capabilities. Future investigations might use multiple hidden layers to increase the

spatio-temporal encoding power. Second, at the neuron level, we used homogeneous time

constants for all neurons. Learning the time constants along with the synaptic weights to adapt

the different neurons’ temporal dynamics has been shown to be beneficial for the classification

performance [91]. Third, recent works suggest the need for more powerful recurrent units for

spiking neurons to bridge the gap with LSTM and other formal (i.e. non-spiking) recurrent

neuron models [92, 93]. Finally, on another note, in contrast to this offline benchmarking

methodology, an online classification could be performed by implementing a winner-take-all

network [94] as the output layer or by using the recent attentive RSNN with a decision-making

circuit [95], enabling the network’s prediction readout at each time step.

Overall, we presented a tactile spatio-temporal dataset suitable for benchmarking event-based

encoding schemes and neuromorphic algorithms. We compared an event-based encoding and

spike-based learning algorithm with standard machine learning approaches and implemented a

classification system into different hardware platforms showing the advantages of the end-to-end

neuromorphic approach for tactile pattern recognition. Nevertheless, our findings are not limited

to tactile data, because spatio-temporal information is present in all sensory modalities when
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processed in a streaming fashion at the edge, and our approach can be applied to these types of

workloads. Building full neuromorphic systems that inherently sense, process and communicate

their output in an event-based manner provide great potential in terms of energy efficiency and

scalability for embedded and embodied sensory-motor systems that interact in real-time with the

real-world environment. Despite the energy benefits of neuromorphic hardware, neuromorphic

algorithmic space is still being explored, therefore, not as mature as standard ANN methods. We

envision that this problem and the performance metrics we used will serve as a benchmark to

drive progress in the field.

Data Availability Statement

The code for encoding, training, inference, and exporting the HDF5 file from PyTorch is open

source and available in a GitHub repository. The code for importing the HDF5 into Loihi is

shared within the Intel Neuromorphic Research Community (INRC). The dataset is open access

and uploaded in Zenodo under the DOI 10.5281/zenodo.7050094 [96].
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5 Supplementary material

Energy consumption approximation from SNN simulation

While the energy consumption from the hardware implementations can be directly measured, in

simulation it can be approximated by determining the number of spikes in each layer of the

network. In Tab. 5 we show the total number of spikes normalized per letter in the dataset. The

spikes have been calculated in simulation with the parameters and weights pre-trained according

to the Tab. 3. Similar to the profile of energy consumption, as seen in the hardware

implementation results, an increase in the threshold of the dataset transformation, that initially

decreases the number of spikes in the input layer, does not correspond with a decrease in the

number of spikes in the total network.

Table 5: Number of spikes in each of the layers of the network trained with parameters obtained from the optimization.
Spikes calculated as the inference of the whole dataset. Percentages as ratio of spikes with the equivalent in threshold
1 as reference.

Delta coding threshold
Recurrent 1 2 5 10
IN layer 698 426 (61%) 126 (18%) 41 (6%)

MID Layer 1230 2165 (176%) 2775 (225%) 2591 (210%)
OUT LAYER 371 301 (81%) 508 (137%) 257 (69%)

Total 2298 2892 (126%) 3409 (148%) 2889 (126%)

Feedforward 1 2 5 10
IN layer 698 426 (61%) 126 (18%) 41 (6%)

MID layer 1029 4881 (474%) 4917 (478%) 2817 (274%)
OUT layer 496 507 (102%) 833 (168%) 235 (47%)

Total 2223 5815 (262%) 5876 (264%) 3092 (139%)

Support-Vector Machine

We applied a SVM with a linear kernel. The SVM was provided with raw sensor readings in

the first place. In a pre-processing step, we first subtracted the sensor recordings from 255 to

invert its range and make an increasing value represent increasing pressure on the sensor. We then

normalised the resulting values by the maximum value out of all sensors and all trials. As last

step, the sample-based values for all 12 sensors were concatenated and split in a training and test

dataset, using 80% and 20% of the samples respectively. To validate the impact of the temporal

nature, the SVM was evaluated with a continuously increasing number of samples, starting with
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1 sample. Each iteration included 1 more sample until all samples were included. Each iteration

was trained and tested 50 times.

Time-Series Classification

More details regarding the architectures used for time-series classification:

FCN: Mainly a CNN but without local pooling layers, which keeps the length of the time series

unchanged. The last Fully-Connected (FC) layer is replaced by a Global Average Pooling (GAP)

layer, helping to identify which of the time series contributed the most to the classification and

reducing the number of parameters. The network contains 3 convolutional blocks with a stride

of 1, each performing three operations: 1) convolution, 2) batch normalization, and 3) ReLU

activation function. The result of the third convolutional block is averaged over the whole time

dimension. The first convolution contains 128 filters with a filter length of 8, the second contains

256 filters with a filter length of 5, and the last contains 128 filters with a filter length of 3.

ResNet: The network is composed of 11 layers where the first 9 are convolutional layers, of which

every 3 layers are forming a residual block. Short-cuts between these residual blocks are the main

characteristic and difference to FCN. These blocks are followed by a GAP layer, averaging the

time series across the time dimension, and a final softmax layer, containing neurons equal to the

number of classes in the dataset. The convolutions in the residual blocks have a filter length fixed

to 64 with batch normalization followed by ReLU as activation function. The filter length in the

residual blocks is 8, 5, 3 respectively.

Encoder: A hybrid deep CNN inspired by FCN, whereas the GAP layer is replaced by an attention

layer. The first three layers are convolutional layers. The first has 128 filters with a length of

5, the second 256 filters with a length of 11, and the third 512 filters with a length of 21. Each

convolution is followed by an instance normalization operation and fed to a Parametric Rectified

Linear Unit (PReLU). The output of the PReLU is followed by a dropout operation with a rate of

0.2 and a final max pooling of length 2. Finally, after the attention layer, a softmax classifier with

the number of neurons equal to the classes in the dataset is used.

TCNN: The TCNN differs in 3 main points from the previously described networks. First, instead

of using the cross-entropy loss function, MSE is used, leading to a FC final layer with sigmoid

56



i
i

“output” — 2023/5/14 — 17:46 — page 57 — #76 i
i

i
i

i
i

5. SUPPLEMENTARY MATERIAL

as activation function. Second, local average pooling instead of local max pooling is used and

one convolution is applied to each dimension of the Multivariante Time Series (MTS). Third,

the final classifier is FC directly to the second convolution. Two convolutional layers with filter

lengths 6 and 12 are followed by a local average pooling operation with a length of 3 and sigmoid

as activation function. The convolutions are applied on all dimensions. The final FC layer has

neurons equal to the number of classes in the dataset and sigmoid as activation function. Further,

the output of the second convolution is directly fed as input to the FC layer.

Inception: The network is composed of two residual blocks, each containing three inception

modules. Each inception module contains three main parts. The first part is a bottleneck layer,

which performs convolution to represent the input according to the user defined size, the default

value is 32, to reduce the input dimensionality. The second part are three parallel sliding filters

with increasing length of 10, 20 and 40, which are applied to the output of the previous

bottleneck layer. The third part is a max pooling layer, performed on the input of the inception

module, which is followed by a bottleneck layer. The output of the three filters together with the

this bottleneck layer are concatenated and form the output of a module. The two residual blocks

are followed by a GAP layer and a final FC layer with neurons equal to the number of classes in

the dataset.

Parameter counting (LSTM)

The calculation of the number of parameters in the RSNN was made according to

nb_parameters = nb_channel⇥nb_input_copies⇥nb_hidden+nb_hidden2+nb_hidden⇥nb_output

with nb_channel = 12, nb_input_copies = 2, nb_hidden = 450, and nb_output = 27.

The LSTM recurrent neural network is comprised of four basic gates that take as input the

concatenation of the input feature vector x(t�n) and the previous hidden state, and can be

conceptually summarized as

1. Input gate: it decides which new values are going to be incorporated to the cell.

2. Forget gate: it takes the input xt, and the previous hidden state ht�1 and delivers a number
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Fig. 14: Implemented single layer LSTM with a fully connected of size h ⇥ 27. The green line represents the
concatenation operation, the red blocks represent weighted operations followed by the activation indicated in each
label, the yellow are element-wise operations, and the blue are tanh activation functions.

between 0 and 1 for each cell state Ct�1 indicating how much past information should be

remembered.

3. Estimated cell state: New candidate vector created also from the input xt and previous

hidden state ht�1, that is combined with the information coming from the input gate, to

produce the new cell state Ct.

4. Output gate: it filters the new cell state and combines it with a filtered version of the input

and last hidden state ht�1 to produce the new hidden state ht.

Each gate has the same number of trainable parameters in the form of weight W and bias b, and

can be calculated by hand as

parameters per gate = hsize ⇥ (hsize + xsize)| {z }
number of Wi

+ hsize|{z}
number of bi

where (hsize + xsize) is the resulting dimension of the concatenation between the input feature

xt and previous hidden state ht�1. The input feature xt results from replicating icopies times the

values of the 12 taxels in each time step, resulting in a total parameter count of

total number of parameters = 4 [hsize ⇥ (12⇥ nb_input_copies+ hsize) + hsize]+nb_output⇥hsize

In this case, we aim to have the same number of parameters as the best performing RSNN for
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Table 6: LSTM Parameter counting. threshold 1

Threshold # = 1

scale
time
bin
size

nb
input
copies

tau
mem
(ms)

tau
ratio

fwd
weight
scale

weight
scale
factor

reg
spikes

reg
neurons

accuracy
(%)

5 8 4 0.06 10 1 0.01 0.004 1E-06 79.61
5 5 1 0.08 10 1 0.04 0.0025 4E-06 78.20
5 5 4 0.08 10 1 0.04 0.003 4E-06 78.09
40 7 8 0.08 10 1 0.035 0.003 0.0 77.70
5 5 4 0.08 10 1 0.04 0.0025 4E-06 77.69
5 5 4 0.08 10 1 0.04 0.0025 3E-06 77.42
5 5 4 0.08 10 1 0.045 0.0025 3E-06 77.30
35 7 8 0.09 10 1 0.035 0.0025 0 77.22
5 8 2 0.1 10 1 0.045 0.003 6E-06 77.16
40 7 2 0.08 10 1 0.045 0.003 0 77.11

Table 7: LSTM Parameter counting. threshold 2

Threshold # = 2

scale
time
bin
size

nb
input
copies

tau
mem
(ms)

tau
ratio

fwd
weight
scale

weight
scale
factor

reg
spikes

reg
neurons

accuracy
(%)

15 8 8 0.05 10 1 0.02 0.0015 0 81.37
15 8 4 0.06 10 1 0.025 0.001 0 81.05
25 5 1 0.08 10 1.5 0.025 0 0 81.03
10 9 8 0.05 10 1 0.02 0.0015 0 80.59
5 7 2 0.05 10 2 0.025 0.0015 1E-06 79.92
5 10 2 0.04 2 2.5 0.03 0.001 0 79.64
30 5 4 0.08 10 1.5 0.02 0.001 0 79.59
30 5 4 0.08 10 1.5 0.02 0.0005 0 79.40
15 9 8 0.05 10 1.5 0.02 0.002 0 79.35
15 3 1 0.05 10 1 0.015 0.003 1E-06 79.34

comparison purposes, leading to 236,892 parameters in total with 228 hidden units.
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Table 8: LSTM Parameter counting. threshold 5

Threshold # = 5

scale
time
bin
size

nb
input
copies

tau
mem
(ms)

tau
ratio

fwd
weight
scale

weight
scale
factor

reg
spikes

reg
neurons

accuracy
(%)

10 3 1 0.07 10 1.5 0.035 0.001 0 85.62
10 4 2 0.07 10 1 0.04 0.002 0 85.40
10 3 2 0.07 10 1.5 0.035 0.001 0 84.64
10 3 4 0.07 10 1.5 0.035 0.001 0 84.61
10 4 2 0.06 5 1.5 0.04 0.0015 0 84.49
10 3 2 0.07 10 1.5 0.035 0.0015 0 84.46
10 4 2 0.08 10 1.5 0.04 0.0025 0 84.29
10 4 2 0.07 10 1.5 0.035 0.0005 0 84.21
10 3 1 0.07 10 1.5 0.035 0.0015 0 84.02
10 4 2 0.08 10 1.5 0.04 0.002 0 83.94

Table 9: LSTM Parameter counting. threshold 10

Threshold # = 10

scale
time
bin
size

nb
input
copies

tau
mem
(ms)

tau
ratio

fwd
weight
scale

weight
scale
factor

reg
spikes

reg
neurons

accuracy
(%)

10 6 1 0.07 10 4 0.015 0.0015 0 75.30
35 7 8 0.06 2 2 0.03 0.001 0 73.60
10 5 2 0.06 10 3.5 0.045 0.0025 0 73.23
10 5 4 0.05 2 3.5 0.045 0.0035 0 72.83
10 5 4 0.06 10 3.5 0.045 0.0025 0 72.56
10 5 1 0.06 10 3.5 0.05 0.0025 0 72.43
10 5 1 0.05 10 3.5 0.05 0.003 0 72.43
10 5 1 0.06 10 3.5 0.045 0.002 0 72.33
10 8 2 0.07 2 1 0.015 0.0025 1E-06 72.32
10 5 1 0.05 2 3.5 0.045 0.0035 0 72.23
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Towards efficient keyword spotting using spike-based time difference encoders

Abstract

Keyword spotting in edge devices is becoming increasingly crucial as voice-activated assistants

are widely used. However, its deployment is often limited by the extremely low-power constraints

of the target embedded systems. Here we explore the performance in keyword spotting of the Time

Difference Encoder (TDE), a recent model of Current-Based Leaky Integrate-and-Fire (CuBa-

LIF) neurons with rich temporal dynamics, in order to perform efficient keyword spotting with

neuromorphic processors. The TDE has two inputs and three leaky compartments, and its output

encodes the time difference between its two inputs’ spikes in a given order. We use the TIdigits

dataset of spoken digits with a formant decomposition and rate-based encoding into spikes and

compare three architectures of spiking neural networks (SNNs) to learn and classify the spatio-

temporal signals. The SNNs are made of three layers with the same input and output layers

and a hidden layer composed of either (1) feedforward TDEs, (2) feedforward CuBa-LIFs or (3)

recurrent CuBa-LIFs. We first show that the spike patterns of the spoken digits have a large

amount of information in the temporal domain, reinforcing the importance of better exploiting

time for such a task. We then train the three SNNs with the same number of synaptic weights to

quantify and compare their performance based on the classification accuracy and the number of

synaptic operations. Our results show that the accuracy of the feedforward TDE network (89%)

is higher than the feedforward CuBa-LIF network (71%) and close to the recurrent CuBa-LIF

network (91%). However, although they have the same number of synapses, the feedforward TDE-

based network performs 92% less synaptic operations than the recurrent CuBa-LIF network. In

addition, the training of the TDE network is highly interpretable in terms of the frequency and

timescale features of the spoken keywords in the dataset. Our findings support the claim that the

TDE is a promising spiking neuron model to implement in neuromorphic hardware for scalable

event-driven processing of spatio-temporal patterns.

Keywords: neuromorphic computing, spiking neural networks, time difference encoder, spatio-

temporal pattern recognition, energy-efficiency, keyword spotting.
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1. INTRODUCTION

1 Introduction

Keyword spotting is a representative task of the always-on, real-time computation at the device’s

edge. Edge devices such as smart home solutions, smartphones and other wearables are becoming

ubiquitous in our daily lives. This trend pushes intelligence into tiny embedded systems that are

highly constrained in energy consumption and need to interact in real-time with their-environment

[97, 98]. This combination of low-power and low-latency requirements limits the deployment of

keyword spotting systems on conventional hardware, such as CPU and GPU architectures. More

generally, AI progress with current algorithms and hardware limitations is predicted to become

technically unsustainable [99, 100], in particular, when targetting constrained embedded systems

[101]. Neuromorphic hardware and systems present an alternative to traditional silicon circuits by

harnessing the efficiency and computational power of the brain.

Spiking neural network(SNN) models implemented in neuromorphic hardware present an

efficient alternative to building AI systems [102–104]. SNNs are considered the third generation

of neural networks [105] characterized by two main properties: (1) asynchronous computing,

which exploits the sparsity of event-driven sensors, and (2) stateful compartments which may

have inherent temporal dynamics in the form of leakage. Hence, compared with conventional

Artificial Neural Networks (ANNs), SNNs exploit more efficiently the temporal information of

the data [106]. Applied to cortical signals, especially auditory stimuli, this property of SNN

models is particularly promising given the evident importance of spike timing in neural codes for

encoding and behavioural discrimination [107–109]. SNNs have gotten traction in the last five

years with the emergence of neuromorphic hardware platforms such as IBM TrueNorth [110] and

Intel Loihi [111], effectively demonstrating the low-latency and low-power potential in several

applications such as multimodal visual-EMG hand gesture recognition [112], tactile

sensing [113] and keyword spotting [114].

In the context of audio signal processing, formant frequencies have been historically important

for determining the phonetic content of speech sounds [115]. Authors typically have used Hidden

Markov Model (HMM) with a preprocessing of the Mel Frequency Cepstrum

Coefficients (MFCCs) for speech recognition systems [116–118]. However, several authors have

proved that using formants as initial preprocessing of the audio signal improves the performance
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of speech recognition algorithms [119–122]. We propose using novel SNN models as a more

efficient and scalable system implementation for classifying the spatio-temporal patterns found in

spoken words.

Regarding sensory neurons in the brain, several works highlight the importance of spike timing in

the neural code and the use of time-related computations for sensory discrimination tasks. Neural

populations encode information in the temporal codes within the time pattern, latency, interspike

intervals, or phase of firing [123]. While there is still unknown how the cortical circuits exploit this

information at the computational level, these codes require a reference signal to decode the time

difference whether it is aligned to a mechanical onset (latency code to stimulus onset), a different

spike train from a population of neurons (stereotyped neurons), or network oscillations [124]. This

type of encoding mechanism has been found across the main sensory modalities (visual, auditory,

somatosensory).

The proposed TDE model [125, 126] is a particular Current-Based Leaky

Integrate-and-Fire (CUBA-LIF) neuron with an extra synaptic compartment and fixed input

directional connectivity. The spiking rate of the cell’s output is proportional to the time difference

of the input’s spike trains. The output is therefore maximised with highly correlated spike trains

in its input. The neuron dynamics and the cell’s spatial selectivity make it especially suitable to

exploit the spatio-temporal structure of the data. Therefore, it makes it suitable for processing

spatio-temporal features from all sensory modalities such as vision [125–127],

audition [121, 128], touch [129], and olfaction. Related cortical circuits that inspire this type of

implementation can be found in animals that range from insects to mammals, e.g. visual optic

flow circuits [130–132] and the auditory thalamocortical processing [133, 134].

The contributions of this work are outlined here. We apply the TDE neuron previously introduced

in the visual sensory domain into speech recognition. The initial analysis of the dataset shows

a non-negligible amount of information in the time pattern of the encoded spikes. We train our

SNNs using supervised learning methods and compare the performance of our three architectures

with TDE neurons against CUBA-LIF neuron models. Next, we present our results where we

show a similar performance between TDE neuron models and recurrent network of CUBA-LIF

cells whose number of neurons is balanced based on the synaptic weights. While the performance
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2. MATERIALS AND METHODS

is similar in pattern recognition, there are several advantages found when using the TDE network

architecture in comparison with the recurrent CUBA-LIF. We present the advantages found in

terms of efficiency with 92% reduction of synaptic operations, scalability with highly sparse signal

representations and high interpretability of the results, and investigate these claims in the context

of classifying spatio-temporal patterns in neuromorphic systems.

2 Materials and methods

The pipeline of the proposed SNN architecture is represented in Figure 15. Spoken digits are

preprocessed through a formant decomposition method to extract the evolution in time of the

frequencies with the highest energy of the signal, which corresponds with the resonance

frequencies of the vocal tract. The frequency space is represented in the spatial dimension of the

network’s input, and the amplitude of the formants represents the evolution in time of the energy

per frequency. The spatio-temporal features are then encoded and processed in a three-layer SNN

for spoken keyword classification. The layers consist of a first encoding layer (L0) that encodes

the amplitude of the formants into spike trains, a hidden layer (L1), and an output layer (L2) in

which every neuron output represents a keyword class. The keyword class is decoded from the

most active neuron in layer L2. We use a spoken digits dataset, apply speech decomposition tools

to extract the formants and compare network performance with different neuron models in the

hidden layer L1. All the networks are trained to maximize the accuracy in the classification task

according to supervised learning methods applied to SNNs. In the following sections, we dissect

the dataset, network architecture comparison, and training methods for classifying spoken digits

with SNNs.
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Fig. 15: System pipeline. From speech generation, we extract offline formant decomposition in frequency, and the
amplitude of the three formants with the biggest energy. Frequency is then represented as spatial information in the
number of input neurons and amplitude of the formants is encoded in L0 into spikes. The network’s parameters are
optimised for performance in the classification task.

2.1 Dataset and spike-based encoding

To test the performance of the SSN in keyword spotting, we use a popular speech recognition

dataset, TIdigits [135], that consists of speech utterances from 225 adult subjects from 11 classes

(10 digits plus ’oh’ the alternative utterance for 0). The dataset has been sampled at 20 Khz for a

total of 450 repetitions per class. The spatio-temporal sequences of words last approximately

400ms and are presented at random initialisation times. We built the dataset with a fixed duration

of 1500ms keeping this random vocalisation in place. Each of the keywords has been

preprocessed into the main formants of the words as keyword features for the classification. The

formants are defined in speech science as the acoustic resonances of the vocal tract and

correspond with the main frequency components of the signal. Previous works used these

features for word discrimination and speech recognition, where it is estimated that three formants

are sufficient to discriminate vocal and semi-vocal sounds [115, 122]. In this work, we use the

sinewave speech analysis toolbox in Matlab [136] to extract the main three formants for each

keyword. The formant frequencies have associated amplitudes that determine the energy of each

formant. The sequence in time of the formant frequency and amplitude are the spatio-temporal

patterns that characterise each keyword class. For our application, we quantify the frequency

spectrum into 32 equally spaced frequency bands mapping the typical frequency range in human

speech(0-4 Khz) into channels with a width of 125Hz. Each of these channels codifies the
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maximum amplitude of the three main formants into a temporal sequence of frequency

amplitudes. Since the frequency channels have a bandwidth, there is the possibility of a

coincidence of 2 formants within the same input channel.

The first layer of the classification network L0, composed of CUBA-LIF neurons, converts the

input sequence of amplitudes into spikes through the current of the neurons. Each of the 32

channels is connected to a single neuron for the spike conversion. Therefore, every cell in L0

represents a frequency band in the formant space of the keywords, creating a spatio-temporal

spike code in which space represents the frequency domain and time the evolution of the formants

for each of the keywords. Figure 16 illustrates this conversion for 2 sample keywords of the words

"oh" and "three". The left side of the figure represents the evolution in time of the frequency

channels and their respective associated amplitude. Once the sequence of frequency amplitudes

passes through the encoding layer of the network L0, the formants are transformed into spikes, as

seen on the right side of the figure. This conversion is homogeneous for all frequencies with the

same parameters for the neurons representing the frequency bands. This encoding layer, as well as

the decoding layer L2, consists of the same type, number and cell parameters for all the networks

compared in this work. The use of formant frequencies reduces the amount of information in

the frequency domain that receives the encoding layer to the most relevant features in speech

recognition aiming for a more sparse representation in the encoding layer of our network.
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Fig. 16: Example of formants transformed into spikes for 2 sample keywords. Spoken keywords are decomposed in
formant frequency bands and transformed into spikes in the encoding layer of the networks. Left side, sequence in time
of frequency amplitude. Right side, the transformation of amplitude into spikes through the current of the CUBA-LIF
neuron.

2.2 Networks architectures

We built different SNNs based on the TDE neuron model and the CUBA-LIF neuron model, as

seen in Figure17. While network layers L0 and L2 are formed with CUBA-LIF neurons for all

the architectures, our work shows how different models in the hidden layer L1 affect the

performance, efficiency and interpretability of the classification. We can conceptualize layer L0

as an encoding layer since the formant’s amplitude from the speech preprocessing is converted

into a train of spikes assigning each of the neurons in L0 a frequency band. On the other end of

the network, every neuron in layer L2 represents one keyword class in the classification problem.

The class is selected based on the neuron with higher activity at its output. For all the networks in

this comparative study, layer L1 is fully connected to layer L2, and the weight parameter (W2)

represents the matrix of connectivity between cells in L1 and output classes in L2. This

parameter is also trained for all the networks in this work. The network types benchmarked are

defined in the text as the TDE network whose L1 layers are made of TDE neurons, the Leaky
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Integrat-and-Fire with recurrency (LIFrec) network with CUBA-LIF recurrent cells in the L1

layer, and the LIF network that is composed of CUBA-LIF cells in the hidden layer L1.

Fig. 17: Network architectures are compared in the manuscript. Networks present the same number of neurons and the
same type of model in layers L0 and L2. They also have the same number of synapses and a similar number of trained
parameters for comparison.

2.2.1 Current-Based Leaky Integrate-and-Fire (CuBa-LIF)

The CUBA-LIF model is adopted from previous work ( [113, 137, 138]). This model, core of the

comparative study, is described based on its membrane potential of the neuron i in the layer l with

U
(l)
i as,

⌧mem
dU (l)

i

dt
= �(U (l)

i � Urest) +RI
(l)
i (17)

with Urest as membrane potential, ⌧mem as the membrane time constant that defines the time

dynamics of the cell, R as resistance, and I
(l)
i the input current of the cell. Similarly, the I

(l)
i is

described as the combination of inputs from the previous layer l�1 accounting for the weights as:

⌧syn
dIi
dt

= �Ii(t) +
X

j

WijS
(l�1)
j (t) +

X

j

VijS
(l)
j (t) (18)

with ⌧syn the synaptic time decay of the input,
P

j WijS
(l�1)
j (t) describes the combination of

the input contributions Sj of the jth presynaptic neuron combined with the correspondent weight

Wij . Moreover, the contribution
P

j VijS
(l)
j (t) only applies when we use recurrency in our neuron

model as what we described in the text as recurrent LIF architecture or the abbreviation LIFrec.

Discretizing the previous equations for the modelling into:

I
(l)
i (t) = ↵I

(l)
i (t� 1) +

X

j

Wij · Sl�1
j (t) (19)
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U
(l)
i (t) = (�U (l)

i (t� 1) + I
(l)
i (t)) · (1.0� Ureset) (20)

with � = exp( �dt
⌧mem

) as the voltage decay constant of the membrane, ↵ = exp( �dt
⌧syn

) the current

decay constant at synaptic state. We use for convenience an input resistance R = 1⌦ and Ureset

the voltage to reset the membrane after evoking a spike event.

2.2.2 Time Difference Encoder (TDE)

The TDE is a processing cell model bio-inspired from the optical flow neural circuitry in biological

organisms and used previously as a spiking Elementary Motion Detector (sEMD) [125]. This

model has been applied in the spiking domain for visual motion detection and obstacle avoidance

[126, 127].

The TDE model consists of a pre-synaptic compartment with two inputs connected to a LIF

neuron, as seen in Figure 18. The spike rate in the output of the neuron is inversely proportional

to the time difference between the two inputs of the cell in a directional matter. A spike in the

facilitatory input (red trace) elicits a trace in the Gain compartment characterised by the time

constant ⌧g. When a spike arrives at the trigger input (blue trace), the Excitatory PostSynaptic

Current (EPSC) of the cell is increased by the value of the gain at that time. The resulting EPSC

presents the same dynamics of the CUBA-LIF neuron model in which a cell membrane integrates

the current of the EPSC trace to generate spikes in its output. The resulting equations are as

follows:

⌧syn
dIi
dt

= �Ii(t) +
X

j

Gi(t)Sj,ithrig(t) (21)

⌧gain
dGi

dt
= �Gi(t) +

X

j

Wj,iSj,ifac(t) (22)

where compared with the CUBA-LIF model, the current Ii(t) has a time dependency in the

weight Gi(t) that multiplies the thrigger connection. This synaptic compartment, defined as gain

computes the spikes in the facilitatory connection with a leak governed by the time constant ⌧g.

Similar to the previous discretization, the resulting equations are as follows:
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Ii(t) = ↵Ii(t� 1) +
X

j

Gi(t) · Sj,thrig(t) (23)

Gi(t) = �Gi(t� 1) +
X

j

Wi,j · Sj,fac(t) (24)

where � represents the exponential decay � = exp(�dt
⌧g

) with ⌧g as an extra parameter of the cell

which modulates the time effect of the correlation between the two inputs. Wi,j represents an

additional weight assigned to the facilitatory spike that we will keep at 1 in all cells for

simplification. Therefore, the TDE aggregates a pre-synaptic compartment in which the gain of

the trigger connection is modulated by the temporal trace of the facilitatory input, as represented

in the figure. ⌧g governs the leakage of the gain compartment assigned to the facilitatory input. It

is a key parameter of the cell since it controls the effect of the gain and the effective time distance

between the spike trains between facilitatory and triggering inputs. This will be trained for each

of the cells in the TDE layer since every cell has a different pair of connections from the encoding

layer L0. A low value of the time constant ⌧g filters long-time differences between spikes in the

cell’s input. While in a cell with a high value of ⌧g, a long time distance between spikes at its

input elicits neural response in the synaptic trace. Training this parameter, we are selecting the

time difference dynamic per pair of frequencies that maximises network performance.
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Fig. 18: Time Difference Encoder (TDE) in the presence of input spikes. ⌧g parameter governs the effect of the distance
between facilitatory and trigger spikes.

2.3 Offline training with back-propagation through time

We use SNNs for keyword classification and optimize the network parameters with supervised

learning methods. We use BPTT with surrogate gradient descent that uses a surrogate function in

the backwards propagation of the network loss L, bypassing the spike discontinuity that represents

an issue with applying the derivative of the signal. This method has been proven to be highly

effective in training SNNs [138–140]. Following previous works, we exploit the differentiation

capabilities by overloading the derivative of the spiking nonlinearity with a differentiable fast

sigmoid function with � as the scale parameter of the slope:

�(U (l)
i ) =

U
(l)
i

1 + �|U (l)
i |

(25)

In order to apply the backpropagation method to the train of spikes, we first use the cross entropy

loss function over the active number of spikes in the output layer (L2 in the network architecture),

whose each individual cell represents a keyword class. Formalizing the function for a given batch

number(Nb) and number of classes(Nc) for the loss function as:
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L = � 1

Nb

NbX

s=1

1(i = ys) · log

8
>><

>>:

exp

✓PT
n=1 S

(l)
i [n]

◆

PNc
i=1 exp

✓PT
n=1 S

(l)
i [n]

◆

9
>>=

>>;
(26)

then we propagate the loss function to the parameters of the network as:

Wij  Wij � ⌘
@L
@Wij

, ⌧g  ⌧g � ⇢
@L
@⌧g

(27)

where Wij describes the training of the weights and the ⌧g the parameter of the TDE cells for the

TDE network as described in Section 2.2.2. The parameters ⌘ and ⇢ define the learning rate.

Then, we used an ADAptive Moment estimation (ADAM) optimizer algorithm to update the

parameters based on the gradient functions with dropout and weight decay. These two methods

are typically used in neural networks to improve the speed in the generalization of the training

and avoid overfitting. For the rest of the hyperparameters of the network, we empirically select,

based on performance, a range of values based on previously reported network hyperparameters

shown in Table 10. Using typical machine learning methods, we report here the accuracy in the

decoding of the testing dataset after training.

Table 10: Description of the hyperparameters used in the supervised learning procedure. Hyperparameters tuned from
exploration based on previous works in training SNNs from spatio-temporal patterns with biological constraints [113].

Hyperparameter Description Value
scale, � Steepness of surrogate gradient 5

time_bin_size Time binning of the encoded input 0.015 [s]

sim_step_size, dt Time between steps of the simulation 0.015 [s]

tau_mem, ⌧mem Decay time constant of the membrane 0.002 [s]

tau_syn, ⌧syn Decay time constant of the synapse 0.008 [s]

learning_rate, µ, ⇢ learning rate 0.0015

weight_dec weight decay of the optimizer in every step 0.0001

p_drop Probability of training dropout 0.1

2.4 Comparison of the performance of different network models

We train three different networks to compare the results’ performance, efficiency and

interpretability. The networks are represented in Figure 17 as TDE, LIFrec and LIF networks. All

networks explored consist of three layers. Input layer L0 is defined as the encoding layer since it
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converts the energy of the formant frequencies into spikes and consists of 32 input neurons as

described in Section 2.1. The hidden layer L1 consists of different neuron models based on the

description in Section 2.2. The output layer L2 is a fully connected layer with a parameter to

optimise defined as W2. The keyword class is decoded as the cell with higher spike activity in

L2, which is formed by 11 cells, one cell for each of the classes in the dataset.

With the aim of comparing the networks, we first balance the number of cells in the hidden layer

L1 based on the total number of connections. Accounting with the fixed number of cells in L0

and L2 for all networks (NL0 as 32 frequency bands, NL2 as 11 keyword classes), the number of

connections is described in function of the number of cells in L1 (NL1) as:

TDE Conn = NL1 · 2 +NL1 ·NL2

LIFrec Conn = NL1 ·NL0 +NL1 ·NL1 +NL1 ·NL2

LIF Conn = NL1 ·NL0 +NL1 ·NL2

(28)

Then, we adjust the number of cells (NL1) based on the same number of connections for the

three networks. The same number of connections means that the three networks have the same

synaptic weight capacity, which serves as a proxy of the memory footprint used by a hardware

implementation. The number of connections is defined by the selected number of cells in the TDE

network that leads the comparative study.

We compare the networks in terms of keyword classification performance, energy efficiency

measured as the number of synaptic operations per decoded keyword, and interpretability of the

computations. When comparing performance in keyword spotting, we train each network type

according to its defined parameters time constant ⌧g, weight per layer W1,W2 and recurrent

weight W11. In the TDE network the parameters are ⌧g and W2, in LIFrec W1,W11,W2, and in

LIF W1,W2. For the training procedure, we randomly divided the dataset between train and test,

keeping the same number of samples per class. For each epoch, the training loop iterates through

all the training datasets, optimizing the parameters to minimize the loss function and calculating

the classification accuracy of the non-trained test dataset over a fixed number of epochs. The

reported performance in the accuracy comparison results from averaging the 25 best testing

accuracy results across the training epochs. This method reduces the random variability of the
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testing accuracy.

In terms of efficiency, the energy expenditure is typically approximated by the sparsity level in

the decoding of all the spatio-temporal sequences. Targetting a neuromorphic implementation of

SNNs, we propose to consider two event-driven asynchronous computations at the level of the

neuron cell that increases the dynamic energy consumption of the system: (1) the operation of

integrating an input spike (i.e. add to the membrane potential), and (2) the operation of firing

an output spike (i.e. reset of the membrane potential). Therefore, we calculate the number of

Synaptic Operations (SynOps) per layer as described in Equation 29:

SynOps =
X

j

Sin,j +
X

j

Sout,j (29)

Regarding the interpretability of the results, the optimization method is finding the optimal weight

values of W2, which maximizes the classification. Interpreting the obtained results in W2, we

quantify the contribution of the cells in L1 to each of the keyword classes in L2. This analysis is

simplified in the TDE network, given its cell connectivity.

3 Results

3.1 Time pattern versus rate

The resulting spiking data from the conversion of formants into spikes present a question about

how we can exploit this information for the classification task. Several works in the audio

modality have already highlighted that speech, by its nature, conveys a large amount of

information in the time domain. Since SNNs have been known to exploit the information about

time more efficiently, we investigate these findings in our dataset. For that purpose, we use

information theory to quantify the information about rate, removing the time information out of

the signal, and about time, measuring the time precision of the elicited spike patterns after

encoding. This methodology has been previously used to calculate the precision of the spike

trains [141]. These measures are termed Irate and Ipattern respectively and are described in the

left panel of Figure 19 along with the results of the metric applied to the dataset. In the figure, we
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combine as mean and standard deviation the measurements about Irate and Ipattern from each of

the 32 neurons that encodes the information in all the frequency band of the formants. In the

figure, �t represents the time bin which defines the precision of the time pattern code. An

increase in the time bin reduces the length of the pattern for a fixed time of 400ms from the first

spike (only applies to this metric). The results in the right side of Figure 19 show that the

information about spike timing is even bigger than about the rate when we use a big time

window, and it is equivalent in the range of 15 to 20ms. Hence, demonstrating here that the

information found about time is relevant to the classification task.

Fig. 19: Information about the spike pattern and spike rate of the encoded spikes in the dataset. The left figure represents
the methodology for the calculation of I_pattern versus I_rate from the spike trains. The right figure shows the amount
of information about the rate against the pattern of spikes in the encoded dataset. The mean and standard deviation for
each of the individual frequency channels that serve as input in the networks.

3.2 Data-driven TDE-based network architecture search

From the cell point of view, TDE neurons present a directionality in its input as expressed in

Section 2.2.2. In the proposed network composed of TDE cells, every cell is connected to two

different frequency bands where the formants are combined. Following an analysis of the relevant

features of the dataset, we can resize the network and guide the initialisation of the cell parameters

for the training. In comparison, typical LIF and recurrent LIF architectures seen in the literature

present the same connectivity and initialisation with a selection of the cell number as the degree

of freedom for the designer. Building TDE networks, we can adapt the network to the dataset

presented, building a minimal implementation that maximises energy efficiency and removes extra

complexity in the system.
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Taking a data-driven approach, we measure the unbiased cross-correlation values to every

frequency pair in the spike encoding of the formant amplitudes in L0. With this process, we are

able to identify the highest correlated pairs of frequencies connected to the cells in our network.

Since the TDE cell behaviour maximises its output as a coincidence detector, we rank the TDE

cells according to their cross-correlation values to the expected spike trains. Figure 20 presents

the results of this analysis. In the left column, the top heatmap represents the average within the

word class and the maximum across classes of the cross-correlation value. The bottom heatmap

shows the average of the lags as they correspond to the maximum cross-correlation value

expressed in the top figure. This lag value will serve as an initialisation of the time constant ⌧g

that defines the pre-synaptic connection of each TDE cell.

Given the cross-correlation value, we rank the TDE cells in L1 and redimension the network

prioritising the TDE cells with higher cross-correlation values. In the right column of Figure 20,

we dimension the network pruning at different levels of cross-correlation values as expressed in

the red lines in the top histogram of the figure. We train each of the networks at these levels with

the corresponding number of cells and measure the corresponding test accuracy expressed in the

bottom figure. It is visually compared the informed pruning of the network with a random pruning

that outputs worse performance at all levels. A more compact view of the properties of these

networks (number of cells, connections, and accuracy) can be seen in Table 11. From the results,

this initial analysis of the dataset leads to reduce 45.5% in the number of neurons and connections

with only a penalty performance of 1.22% for the network with 540 TDE cells, as seen in the

mentioned table. Given its efficiency, we will use this network in the following sections for a more

detailed comparison between network types.

83



i
i

“output” — 2023/5/14 — 17:46 — page 84 — #104 i
i

i
i

i
i

3. RESULTS

Fig. 20: Cross-Correlation values of pairs of frequencies and TDE cell selection with accuracy results. Top-left:
unbiased cross-correlation values for each frequency pair in the dataset calculated as the mean within class and
maximum value across class. Bottom-left: average lag between classes which outputs the maximum value of cross-
correlation. Top-right: histogram of all possible combinations of TDE cells and associated cross-correlation values of
spike input. Red lines defined the pruning levels selected. Bottom-right: accuracies associated with the training of
networks at specified pruning levels and correspondent number of TDE cells. Comparative figure between the data-
driven informed pruning against a random pruning.

3.3 Classification accuracy and inference efficiency

For the following comparative study, we choose different sizes of TDE networks based on cross-

correlation encoded spike trains in L0 from the data as described in Section 3.2. We select three

different network sizes in the TDE architecture (992, 540, and 186 cells) and balance the number

of neurons of LIFrec and LIF based on the number of connections of the network as explained in

Section 2.4.

Balancing the total number of connections instead of comparing the networks based on a number

of cells allows us to better approximate the amount of resources that these networks allocate in an
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Table 11: Table of cross-correlations, an equivalent number of cells, and comparison between cross-correlation
informed and random pruning in terms of network performance for the TDE network. Data-driven pruning of the
TDE cells allows us to explore the trade-off between network complexity and performance needed in a hardware
implementation. The accuracy values are calculated as the mean and standard deviation of 3 independent learning
iterations. The calculated test accuracy is the resultant of the average of the top 25 best test accuracies after 3000
epochs using Backpropagation Through Time (BPTT).

Cross-Corr # TDE cells TDE Accs (std)
xcorr

TDE Accs (std)
random

all 992 89.08 (1.25) 89.08 (1.25)
0.004 676 87.49 (0.47) 86.64 (0.97)
0.005 650 87.86 (0.88) 86.64 (0.27)
0.007 540 87.86 (1.12) 85.83 (0.46)
0.009 378 86.58 (1.22) 83.95 (0.92)
0.011 186 83.7 (1.55) 79.53 (1.77)
0.0145 68 68.36 (0.54) 61.77 (0.63)
0.02 23 49.35 (0.98) 38.47 (6.30)

implementation. Furthermore, it also approximates the complexity between architectures in terms

of the number of synaptic weights and trainable parameters. The difference is given due to the fact

we trained the ⌧g of the TDE cells instead of the connected input weight. The comparison in terms

of accuracy for all networks is shown in Table 13. From all the results, the recurrent LIF (LIFrec)

network presents the highest accuracy value with 91% in comparison with the 89% of the TDE

architecture. These values correspond to the bigger number of cells of the networks tested that

correspond to all the frequency pair combinations in the dataset. While all the networks decrease

the accuracy when reducing the number of cells, the LIF architecture seems to reach its maximum

capability in the range of 160 neurons in L1.

We perform further comparisons with the first level of the network pruning since this network

corresponds to a smaller size without a significant decrease in performance. In Figure 21 and

Table 12 are presented the comparative results between the three networks in terms of test

accuracy, the total number of elicited spikes of all cells of the trained network, and the number of

synaptic operations. All the metrics are presented per keyword in an average of the total number

of spikes decoding the full dataset. Synaptic operations are calculated as the total operations

computed in the cells; we considered the computational events in asynchronous implementations

as the ones elicited by a spike in the input of a cell and the elicited spike in their output. This

metric combines the sparsity of the network with the connectivity between layers as a single
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metric of the computational cost in the network.

We found that, although the TDE network is, on average, 2% lower in accuracy, the number

of spikes and the total synaptic operations in the networks are considerably lower for the TDE

architecture. In comparison, the TDE network generates 53% fewer spikes and computes 92%

less synaptic operations along the network against the LIFrec network. This result is of paramount

importance because of the direct impact of the synaptic operations on the energy consumption of

the neuromorphic computing system. When comparing different layers of the Synaptic operations,

we observe how the considerable number of spikes in the L1 of the LIFrec architecture not only

elicit an increase in the number of synaptic operations in L1 (the layer where recurrent cells are)

but also in the following layer L2 which is formed by the same number of LIF cells in all three

architectures.
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Fig. 21: Comparison of spikes per layer and synaptic operations in decoding the full dataset. Spikes at each layer are
calculated as the total number of evoked spikes at each layer for the whole dataset. Spikes in the middle subfigure are
defined as the number of spikes in the output of all cells in their respective layer. Synaptic operations account for the
connectivity of each of the layers, and every spike evokes an operation in the event-based computation architectures.
For instance, spikes in the output of L0 are computed in every single neuron of L1 for the LIF network since it is fully
connected, but only a fraction of that is computed in a single cell of L1 for the TDE network.

TDE LIFrec LIF

Accuracy (std) 87.86 (1.12) 90.04 (0.8) 71.59 (2.72)

# cells L1 540 65 163

Synaptic connections 7020 7020 7009

Trained parameters 6480 7020 7009

Spikes # Diff # # Diff

Layer L0 77 0.00% 77 77 0.00%

L1 975 -55.95% 2213 757 -65.78%

L2 43 -12.37% 49 63 29.52%

Total 1095 -53.19% 2339 898 -61.62%

Synaptic Operations # Diff # # Diff

Layer L0 77 0.00% 77 77 0.00%

L1 3572 -97.64% 151076 13299 -91.20%

L2 10768 -55.86% 24395 8394 -65.59%

Total 14417 -91.79% 175548 21771 -87.60%

Table 12: Comparative table of spikes and synaptic operations per keyword averaged over the whole dataset for the
tested architectures after training in the decoding of the whole dataset. Diff column describes the percentual difference
against LIFrec networ
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Table 13: Comparative table of cross-correlations and equivalent network architectures. While the number of cells
in the TDE network is fixed ( based on the preliminary analysis of the data at different levels, see cross-correlation
figure for explanation) the number of cells for LIFrec and LIF is calculated to have the same number of connections.
The accuracy values are calculated as the mean and standard deviation of 3 independant learning iterations randonmly
initialized. The calculated test accuracy is the resultant of the average of the top 25 best test accuracies after 3000
epochs using Backpropagation Through Time (BPTT) to learn the trainable parameters (which are different for each
architecture weights and tau time constant of the TDE cell).

Cross-Corr
>=

# TDE
cells Connections TDE

Accs (std) # LIFrec LIFrec
Accs (std) # LIF LIF

Accs (std)
all 992 12896 89.08 (1.25) 94 91.11 (1.07) 300 71.46 (0.44)
0.007 540 7020 87.86 (1.12) 65 90.04 (0.80) 163 71.59 (2.72)
0.011 186 2418 83.70 (1.55) 32 83.03 (5.14) 56 68.73 (0.34)

3.4 Training data efficiency

It is known that the performance of neural networks (ANN and SNN) trained with ground truth (i.e.

supervised learning) using backpropagation is highly sensitive to the size of the dataset [142, 143].

The size of the training dataset is an important factor, hence the use of techniques to artificially

generate bigger datasets injecting noise to improve training performance in what is termed as data

augmentation. But it is not always possible to have big datasets, and the computational effort of

the training is also a significant factor. Given the dataset presented here, we compare the training

efficiency of TDE and recurrent LIF (LIFrec) cells since these two are the ones that present the

highest performance in the previous experiments. For that purpose, we reduce the size of the

training dataset keeping the test dataset at the same size to examine the inference power of the

network against a smaller number of samples per class. The comparative results are shown in

Figure 22. From the figure, we appreciate a bigger decreasing slope for the LIFrec than for the

TDE architecture, thus expressing a higher sensitivity to the decrease in the training size. The

TDE architecture shows no statistical significant change in the performance with a reduction of the

training dataset from the 100% available to the 75% while LIFrec shows a statistically significant

decrease. The decrease in performance is, in general, bigger in size for the LIFrec architecture

showing that TDE architecture, in comparison, is more robust and efficient in the presence of

smaller datasets.
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Fig. 22: Comparison TDE versus LIF recurrent in terms of training efficiency. All figures are plotted against a reduction
in the training dataset in size percentage. 100% represents the full training dataset available. The left figure compares
the decrease in accuracy for both of the models with the highest accuracy with the decrease in the training dataset. The
right figure shows the difference in accuracy against the reduction. TDE architecture is more robust to a reduction in
the training dataset.

3.5 Interpretation of network parameters

Given the pre-synaptic compartmentalisation of the TDE cells, every cell has distinct connectivity.

This connectivity of the TDE cell allows us to further interpret the network trained parameters.

We can further analyse the features of the dataset that classify each of the keywords based on the

trained parameters of the network. Every cell of the output layer (L2) corresponds to a different

class; the trained weights that connect the output of L1 with L2 also define their relation with

specific TDE cells. Furthermore, every cell is defined by its frequency pair and time constant

⌧g. Hence, linking each keyword class of the dataset with the most relevant frequency pairs at a

determined time constant.

Figure 23 it is represented the TDE cells, associated with its frequency pair, for each class

selecting the highest weight values of this class in the L2 and the corresponding distribution of

time dynamics for each class expressed as the TDE ⌧g value. In the left figure, we observe that

although all values are concentrated in the first half (frequencies 0 to 1500Hz from the total

3000Hz), there is a small overlap between classes. This fact shows that the trained procedure has

found distinct features for each class, creating a local code based on the frequency pair. The right

side of the figure represents the distribution of the ⌧g time constant of these TDE cells. Following

the boxplot figures, we can characterise further the time dynamics in which the frequency pairs

features of the keyword maximise its output. Representing here the time lag between spikes in

the frequency channels. For instance, a longer time constant here defines, on average, a longer

characteristic peak of energy between 2 frequencies, as seen in the word "oh" against a sorter
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timescale, as we can observe in the word "seven" in the right figure results.

The bottom-left figure and bottom-right associated table in Figure 23 compares the trained results

with the initial data-driven analysis of the system. We compare the pairs of frequencies in the top

TDE cells represented in the top-left figure from the training procedure with the most highly

cross-correlated pairs of frequencies per class. We sort them based on the proximity between

pairs, and we calculate the distance between the individual frequency channels. The results show

a small number of coincidences between these values. Therefore, while the input analysis could

discriminate between the most highly correlated pairs of frequencies, these highly correlated

values are not all necessary. This is more clearly shown in the bottom-left figure that compares

the average distance between frequency pairs calculated in different trained networks against a

higher average distance displayed by the frequencies trained against the input data analysis.
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Fig. 23: Frequency pairs and time constant (⌧g) are relevant for the classification. Training of output weights and
taus in the TDE architecture with all frequency pairs. Representation of the top 25 biggest weights in absolute value
after training the network. In the top-left figure, each TDE cell in the network is represented by a dot in the grid
describing its connectivity in the input frequency. Keyword classes with minimum frequency pair overlap. The top-
right figure represents the distribution of trained taus per class of the top 25 highest weights in the output layer. We are
characterising the temporal dynamics of each keyword in the frequency pair. Bottom-left figure analysis of frequency
pair distance between network solution(blue) and network solutions against initial cross-correlation frequency pairs.
Bottom-right table of average distance and coincidental frequency pairs between cross-correlation inputs and TDE cells
with the top 25 values ranked by weight size and cross-correlation value.

4 Conclusions

In this work, we trained SNNs using supervised learning methods to maximize classification

performance with three different architectures. The dataset contains significant information in the

temporal pattern of spikes encoding the energy of the main frequencies in the shape of the speech

formants. The results show high performance when training TDE and recurrent LIF networks

with 89% and 91% accuracy, respectively, highlighting the importance of the temporal
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information in this task. In our experiments, the use of CUBA-LIF cells for the feedforward

network (i.e. without recurrency) is not performing as well in comparison with the other

networks. Indeed, recurrency in LIF networks has been shown to improve performance when

datasets contain significant information in the time domain [113, 144, 145]. While the aim of this

work focuses on the comparison between neural models for SNN implementations, the

hyperparameters have been obtained by exploring a range of values guided by previous insights

in [113]. Future work will explore with procedural tuning the most optimized hyperparameters

for each of the networks. In the same manner, following the analysis of the amount of

information in the time pattern versus the rate, we will explore binning and simulation times in

order to exploit the maximal information in the time pattern. These results suggest decreasing the

time precision in the binning of the dataset to maximize the time information of the pattern.

Typical sparsity measurements defined the Synaptic Operations (SynOps) as the total number of

spikes, using this measurement as a proxy for energy consumption [146, 147]. We calculated the

number of synaptic operations considering the number of spikes at the cell’s input (accounting

for connectivity) plus the elicited spikes. In the comparison, we found this measurement more

informative about the energy efficiency properties of the network, independent of its hardware

implementation. In our experiments, the networks differ in the hidden layer L1, but the results in

terms of SynOps in the L2 (with all CUBA-LIF cells) show, in comparison, an increase in

computations in the LIFrec network. Further notice this effect in terms of scalability since

increasing the depth of the LIFrec network, or the number of cells, would result in further energy

consumption due to increased computations deep down in the network hierarchy. In terms of total

efficiency, the TDE cell has an extra synaptic compartment in comparison with LIF cells, which

computes an extra synaptic trace (referred to as the Gain in Figure 18), and gives the TDE a

richer temporal dynamics which is useful for temporal pattern recognition. However, it has far

simpler connectivity with two inputs only. Hence, overall, the TDE has about 92% less synaptic

operations than the CUBA-LIF recurrent network. Neuromorphic implementations exploit this

gain by using event-driven asynchronous processing in which synaptic operations are only

processed in the presence of an event or spike, thus highly reducing the total energy consumption.

Nevertheless, our metric is an analytical approximation of the real energy consumption which

depends on other operations depending on the particular neuromorphic implementation. In digital
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neuromorphic processors, the state of every leaky compartment should be updated at each

algorithmic time step, which can induce a significant constant energy consumption [148]. It is

possible to optimize the architecture so that the states are only updated in the presence of an input

spike. Considering mixed-signal analog-digital neuromorphic circuits as a candidate for the

system implementation, there is no algorithmic time step and the leakage in each compartment of

the cell is emulated with the physical properties of the devices (e.g. capacitors) [149, 150],

resulting in a higher energy-efficiency [151]. The neuromorphic community is pushing the

boundary towards that direction with the design of mixed-signal chips such as Dynaps [152]. In

these analog-digital neuromorphic circuits, the cost of the complexity of the TDE cell is

insignificant in comparison with the efficiency presented in this work, with a 92% reduction in

the synaptic operations. Future works will further validate the energy consumption gains of the

TDE with the implementation of the networks in neuromorphic hardware platforms. Paving the

way forward, the TDE neuron model has already been implemented in Intel’s Loihi

neuromorphic processor 4.

We also presented other advantages of using TDE neuron cells in an SNN architecture aside from

the energy efficiency, i.e. data-driven scaling of the network, training data efficiency, and

interpretability of the results. First, we analyse a methodology to prune our network based on the

cross-correlation of our dataset input frequencies. The TDE neuron model transforms into a burst

of spikes, the time difference between its input. In certain conditions, its behaviour presents a

maximum spiking rate as a coincidence detector when two trains of spikes are highly correlated.

By design, we built a layer of TDE cells that cover the range of frequency pairs in the input

space. Analysing the cross-correlation of the input pairs allows us to identify higher correlated

inputs, which will maximise the behaviour of the TDE cell. Starting with the less correlated

pairs, we were able to prune almost half of the network cell’s very small penalty in the

performance of our network (1.22%). This data-driven methodology has proved to be informative

in adapting the size of the network. Neuromorphic engineers can resize the network based on the

available resources and the interplay between the performance and efficiency of the system.

Second, we explore the training efficiency, and the results show a non-statistically decrease in
4A. Renner and L. Khacef, "Neuromorphic implementation of TDE in Loihi," https://github.com/intel-nrc-

ecosystem/models, 2022.
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performance, reducing the training dataset to 75% of its size when using TDE neurons. In

comparison with the recurrent LIF, the TDE network has similar optimisation parameters as we

calculate the number of cells in L1 of each network to balance the synaptic connectivity of the

network that also approximates the number of trainable parameters. While the Gain parameter in

the TDE cell can also be trained, we found it more relevant and sufficient to optimise ⌧g. This

parameter also describes the time distance between input spikes that is encoded in its output. The

results in training efficiency show the TDE network is more robust to changes in the dataset and

generalises faster to optimal solutions.

Finally, the TDE model contributes to increasing the interpretability of the results in our networks

which is a common issue in the training of general Neural Networks [153]. The use of TDE cells

and their distinctive connectivity allow us to apply direct correspondence between the trained

parameters of the network and the key features of the dataset. Every TDE in our network is

associated with a pair of frequencies through the input connectivity and with a specific time

constant ⌧g. The results from the trained weights in the output layer (L2) present a distinctive

code of TDE cells (L1) that contributes to each keyword class discrimination. In the same way,

we linked the trained ⌧g for each TDE to the most representative timescale for the coincidence of

amplitude peaks in the frequency spectrum of formants. Therefore, we characterise the features

of the dataset in the spatial dimension as a set of frequency pairs for each keyword. Furthermore,

the time dimension is the associated timescale of the temporal dynamic of the TDE cells that

contribute the most to the classification of each keyword. These distinctive features for

classification cannot be obtained with an analysis of the data as the one used for the pruning of

the network in light of the comparative results. The features obtained for the classification are, on

average, very distant in space to the most highly correlated frequencies of the initial analysis.

Although the analysis of the dataset seems insightful to the pruning method, the most informative

frequencies of the classification do not correlate with the most cross-correlated input frequencies

of the dataset. Cross-correlation of input spike train pairs is informative for network initialisation

and performance. However, a maximal coincidence between these trains of spikes is not

extracting the most relevant features for the classification task.

The promising results found in this work point towards the computational efficiency of the TDE

neuron model for exploiting spatio-temporal patterns of information that are present in all
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sensory systems. The future prospect in the neuromorphic field of highly efficient digital chips

and mixed-signal analog-digital circuits indicates a new generation of energy-efficient hardware.

The combination of network architectures that exploit sensory information with highly efficient

hardware has the potential to power a new generation of low-power, low-latency devices with

computations at the edge for full event-driven systems.
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Conclusion

Different perspectives have been considered to build full event-based computational systems with

neuromorphic technologies, from the sensory acquisition in robotic actuators to circuit design of

neuron models in-silico. Over the studies of this work, we explore neuromorphic systems that

exploit spatio-temporal patterns from sensory data, building classification systems with spiking

neural networks. Our first work explores different schemes to encode time-based to event-based

patterns in the tactile domain over a braille classification task. We compare Spiking Neural

Networks (SNNs) with the Leaky Integrate-and-Fire (LIF) cell model with standard classifiers in

terms of performance and energy consumption implementing the algorithms in Von Neumann

and neuromorphic hardware systems. The second main contribution of this thesis explores a

classification task of spoken keywords in the auditory domain. In this work, we explore the TDE

model cell and benchmark networks built with this type of model against typical LIF model

architectures, comparing their results in terms of performance, efficiency and interpretability of

the results.

Sensory information is inherently spatio-temporal. In both of our explored tasks in the auditory

and tactile domains, we found that the information that belongs to the time dimension in the

sequence of encoded values is relevant for task performance. These results overlap with the

findings in the encoding of sensory stimuli in the nervous system. The stimulus encoded in the

neural population code presents high spatial and time resolution [154]. Most importantly,

neuroscience findings correlate the nature of the stimulus with the resolution of the neural

population code [155–157]. Therefore, artificial systems should be able to exploit both the spatial

and temporal dimensions of the code. In our first study, comparing the performance with standard

classifiers after removing the temporal domain, the performance is significantly lower.
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Concerning the auditory task, we calculated the amount of information and precision of the

temporal and spatial pattern of events resulting in a significant amount of information in the

temporal domain. Although spiking neural networks are known to be efficient algorithms to

exploit the temporal information of the code, in both sensory-perceptual tasks explored, we

clearly show the need for recurrent connectivity to maximise task performance. In both works,

the lack of recurrence in the network with LIF neurons outputs less than ten perceptual points

difference in classification performance for all datasets. Even the methodological exploration of

hyperparameters related to the time dynamics of the cell performed in the tactile work has not

closed the gap between these two architectures. We may further explore in future work the cell’s

time constant value, hypothesising that the values explored in the Hyperparameter Optimization

(HPO) procedure did not reach the sufficient range to capture the temporal dynamics of the

pattern in the data. In the auditory work, we further explore this outcome with the TDE

architecture. The performance of the TDE network is comparable to the recurrent LIF network

and significantly better than the non-recurrent LIF network. However, the TDE model does not

need recurrent connectivity, which is known to generate less sparse representations, given the

constant closed-loop feedback of the recurrent connection. Why is the TDE model capable of

exploiting the spatio-temporal information from the temporal sequences more efficiently? The

TDE is a cell model that presents an extra synaptic compartment compared to the typical LIF

model. Besides the TDE cell being computationally different from the LIF cell, in the TDE

network, we train the time constants of the cells individually, associating a different time

dynamic to each cell of the network. This result aligns with the works about the positive effect of

heterogeneity parameters of cells in the network [158, 159]. Future work will explore further

insights into the role of heterogeneous temporal constants in typical LIF models and the TDE

computational mechanism that make it more efficient. Therefore, Spiking Neural Networks,

especially implementing the TDE cell model, can effectively exploit the task’s spatio-temporal

information. This capability is particularly relevant for sensory-perceptual discrimination tasks

that inherently encode information in the spatio-temporal domain.

A relevant topic for full-scale neuromorphic systems is the encoding of sensory information with

sensor devices. Event-based sensors are the most suitable devices to exploit the full capabilities of

artificial sensing systems. In this work, we utilise SNNs to exploit the spatio-temporal information
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from event-based patterns. Regarding the tactile task, the sensory information is extracted from

a sensorized fingertip. The fingertip encodes information in a frame-based manner, sampling

at a constant frequency rate of 40 Hz. In our work, we explore different regimes of the delta-

coding scheme to transform frame-based information into event-based information via software.

In comparison, the event-based sensing approach on the device is entirely asynchronous and data-

driven, which leads to highly sparse and higher temporal resolution, desirable capabilities for

always-on, edge intelligent devices and sensory systems [160] (e.g., spike-based vision, auditory

and olfactory [161–163]). In the auditory work, we proved that the temporal precision of the

code carries significant information about the task. In the tactile task, we measure the effect of

this conversion with a standard classifier with the LSTM model in both datasets: the frame-based

time sequence and the reconstructed sequence of values after the event-based conversion. The

results show that LSTM classifiers decreased their performance by measuring the information loss

in 15 percent points in terms of accuracy performance (from 97 to 82 per cent). Additionally,

to the information lost, we are losing information about the dynamic signal range and temporal

resolution of the system without the use of event-sensing devices. In the visual domain, where

event-based sensing has yielded more technologies and devices, event-based sensing has achieved

up to 1000EPS (events-per-second) per pixel, matching the resolution of the human eye [164, 165].

This increase of information from the stimulus directly impacts the potential of sensory systems

that utilise neuromorphic technology. The Spiking Neural Networks in the tactile task output a

performance similar to the LSTM models with event-based information, but compared to the latest,

they inherently compute event-based information, being more suitable to process information from

this type of sensors [166]. Several advantages have been shown in the use of full event-based

architectures from sensors to actuators [167, 168], from the amount generated to the data computed

in parallel with neuromorphic SNNs. Event-based sensors are low-power, low-latency systems

that output sparse data with highly scalable capabilities. These properties seem especially suitable

in the tactile domain mimicking the large number of mechanoreceptors in the natural skin with

event-based devices. Spiking neural networks, as seen in this work, are adequate to compute the

amount of information generated by this data increase. On the contrary, standard classifiers have a

current limit on the amount of information to be processed. The current trend with deep learning

increases the complexity of their models exponentially with the dimensionality of the input [169].
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Future work will explore this capability with fully event-based data acquisition to compare the

amount of information, the information gained in the temporal domain, and how spiking neural

networks can exploit that information for an increase in performance power.

From an engineering perspective, we are interested in classifying sensory information with the

highest possible accuracy and a similar performance to the current standard approaches, given the

multiple advantages found in other aspects. In our first work, we stressed the comparison

between standard classifiers and spiking neural networks with the LIF based cell model.

Although the maximum performance achieved is smaller for the SNN algorithmic approach,

there are several advantages that we show concerning the data’s sparsity and the system’s

potential scalability. Furthermore, we need to contextualise the results with the data conversion

from frame-based to event-based information. An approach with event-based sensors will prove

the full capabilities in terms of performance for a complete comparison. Summarising here the

performance power with SNNs from this work, we classify 27 classes of braille letters with an

event-based sequence of events from 24 channels sampled with a sensorized fingertip with a

80% performance accuracy. These results have been obtained with a 3-layer Spiking Neural

Network with 450 neurons in the hidden layer. In the auditory domain, we classified 11 classes of

spoken words with a 3-layer SNN using different cell models in the hidden layer (ranging from

65 to 540 cells) with a maximum performance of 91% of accuracy based on the formant

frequency decomposition of the keywords. While the first work aims to compare the

classification power with standard approaches, in the second work, we further investigate the

capabilities of SNN algorithms in terms of efficiency, interpretability of the results, and the

possibility of further implementation of neural models inspired by cortical processing. Several

steps are considered from here for future work. First, to explore the inclusion of the TDE model

in the somatosensory task, further validating the capabilities of the model to exploit the

spatio-temporal structure of the data in the tactile domain. Additionally, the auditory task has yet

to be explored methodologically with the HPO approach that it has output high-performance

results exploring the high dimensionality of the hyperparameter space in the tactile task’s

networks. This methodology would give us a closer view of the real potential of the TDE and the

network architecture’s performance power.

A strong motivation for using SNN architectures is the energy efficiency capabilities. In our
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work, we were able to quantify a comparison between standard algorithms running in Von

Neumann architectures against neuromorphic hardware implementing SNN. We demonstrate the

energy-efficient capabilities of the neuromorphic hardware systems in combination with SNN

algorithms. Running an SNN with Loihi neuromorphic chip is 500 times more energy efficient

than running an LSTM model with typical GPU acceleration hardware. The total energy power

required for the neuromorphic implementation of the braille classification tasks is closed to

30mW. This result is relevant for implementing fully autonomous robotic systems and intelligent

devices in which energy expenditure is a vital requirement. Applying this type of implementation

may result in a highly significant increase in the device’s autonomy. SNNs can further harness

improvements by implementing brain-inspired computational models, as we have proved in our

second work in the auditory domain. By incorporating the TDE model, we calculated an increase

in the energy efficiency capabilities of the system. The number of synaptic operations in the TDE

cell is 92% smaller than the typical LIF neuron model with recurrence. Further noting, that this

kind of architecture has served as a benchmark in the comparison for the braille task.

Implementing this model, we forecast an even further improvement in energy consumption of the

entire system. In the keyword spotting task, we measure the amount of synaptic operations as a

proxy for the system’s energy consumption [170]. Future work in this direction will implement

the TDE networks with neuromorphic hardware to further quantify the impact in terms of energy

efficiency, similar to the comparative measurements shown in the braille task comparing the

results with the measurement based on synaptic operations.

In addition to the energy consumption advantage of neuromorphic architectures, SNN algorithms

present further benefits in terms of training efficiency, interpretability, and scalability of the

networks. In both of the sensory tasks explored in the thesis, we use shallow network

architectures of 3 layers. The most highly performing Artificial Neural Networks (ANNs) in the

literature seem to require multiple hidden layers (e.g. Deep Neural Networks) or highly complex

neural models that complicate the interpretability of the training results. This effect is visible in

the standard networks implemented in the tactile tasks. The LSTM neural model consists of four

operations in cascade, including non-linearities; Convolutional Neural Networks (CNN),

typically used for image classification, require several layers with multiple functions, including

convolution in the space domain, multiplication, and dimensionality reduction at different layers
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of the architecture. In comparison, the shallowness and homogeneity of neuron models across

layers increase the interpretability of the training results, even though the training procedures

used in this work are adapted from typical supervised learning methods applied in ANNs. In that

regard, in the auditory task, we explore further the impact of building shallow network

architectures with the TDE providing insights into the classification task and the nature of the

sensory data. The proposed TDE cell model further improves the interpretability of the results

after training due to the nature of its fixed connectivity, which allows us to relate the input layer

of the network with the output class of each cell. This effect has proved to have two advantages

in the auditory classification task. First, with this methodology, we can select the trade-off of

accuracy and resources available in our application. In the manuscript, we prove how to

redimension our network with an informed pruning of the number of cells in the hiden layer

based on the input correlation of its input. The results of this method inform about the less

correlated pairs of input frequencies and, therefore, able to remove up to 50% of cells with a 1%

decrease in performance. Following this methodology, we can adapt our network requirements to

the dataset building a minimal implementation if necessary. On the second interpretability effect,

the training results also inform about the most relevant frequency pairs for classifying each

auditory keyword class. After the training, we obtain a series of results that allow us to

understand the features of our dataset further, interpreting the features trained in our network.

This impacts how to adapt to modifications in the dataset, reduction of keyword classes, and

integration of new ones since we can characterise the output class from the input space based on

the most relevant cells in the output layer for each class. We prove in the manuscript how stable

the results are after training and how we can interpret the frequency space of the input for each

classification class. It is a desirable effect since one of the biggest detriments of the use of Deep

Neural networks is the lack of interpretability and the specific results of the training which leads

to retrain the network when the dataset slightly changes. In terms of scalability, given the

shallowness of the networks tested, we can further increase the complexity of the networks

expecting an increase in performance. Furthermore, as seen in the auditory tasks, the

improvements in cell models in terms of energy and sparsity of the network will be more

noticeable as the spikes transmit along multiple layers in the architecture. Future work may

explore the increase in the number of layers of the network for the highest possible performance
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in neuromorphic datasets and its effect on the system’s energy consumption.

In order to build an efficient and optimal neuromorphic system, we discussed the implications of

even-based sensors and event-based algorithms. Another relevant aspect is the implementation of

the algorithms in neuromorphic hardware and the design of custom neuromorphic hardware

circuits. In our first comparison, we implemented the tactile classification algorithms in a digital

neuromorphic chip with programmable capabilities (Loihi). This type of hardware provides

reprogrammable flexibility, encapsulating multiple cores in the chip (128 in the example) with

the power of simulating several hundreds of neurons per core. In this type of implementation, we

strongly contributed to proving the high energy efficiency of neuromorphic implementations

against typical classifiers built-in standard hardware architectures (GPU acceleration on Jetson).

The design of neuromorphic circuits also compromises analog-digital mixed signal circuits for a

candidate to further harness energy efficiency to build minimal edge computation devices [171].

In the auditory classification task, we highlighted a strong motivation for using these circuits in

neuromorphic applications. The TDE neuron model exploits the input’s spatio-temporal

structure, showing better efficiency capabilities than typical LIF neuron models. However, we

may argue that there is a cost to increasing the computational complexity. In neuromorphic

digital hardware, the time step of the neural computations is simulated, resulting in a cost by

increasing the computational complexity as predicted. However, in mixed-signal analog-digital

circuits, these computations are emulated by physical devices. In this case, the rise in complexity

of the TDE is negligent compared with the high energy efficiency shown, supporting the use of

this type of neuromorphic circuits. We reinforce the current trend to design mixed-signal

analog-digital circuits that harness further capabilities of brain-inspired computational models

while providing a highly efficient implementation for artificial systems. Future work may explore

the implementation of TDE networks in circuits [172], building comparisons not only with

traditional systems but also with different neuromorphic architectures in order to explore the

effect of increasing computational complexity in terms of energy consumption and latency of the

system.

This work has explored the capabilities of SNNs in the context of sensing neuromorphic systems.

For that purpose, we utilised supervised learning methods with backpropagation of error signals,

which was already proven as a successful methodology for classification tasks. However,
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learning algorithms for training SNNs is a very active topic in the neuromorphic field. While

exploring learning algorithms is outside of the scope of this work, future work will explore the

use of different learning algorithms with a focus on building online learning adaptive systems.

Our contribution in this work highlights the promising results of neuromorphic systems from the

side of spike-based algorithms and especially to build full neuromorphic systems that sense and

process information—showing the energy efficiency and scalability required to drive the new

generation of intelligent systems that can interact and adapt in real-time their models with the

real-world around them.
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