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A B S T R A C T

The measurement of the large-scale distribution of neutral hydrogen in the late
Universe, obtained with radio telescopes through the hydrogen 21cm line emis-
sion, has the potential to become a pivotal cosmological probe in the upcoming
years. This thesis presents a comprehensive analysis focused on forecasting
the constraining power of 21cm intensity mapping observations, exploring a
wide set of cosmological models, from standard ΛCDM to modified gravity,
dark energy, and massive neutrinos. We developed a pipeline to construct
mock data sets for a variety of present and future 21cm observations, with an
emphasis on the SKA Observatory and its precursor MeerKAT planned and
ongoing surveys. We investigated the interplay between intensity mapping and
other cosmological probes, such as the cosmic microwave background, galaxy
clustering, and gravitational waves, providing valuable insights into the poten-
tial synergies between these different observables. To assess the constraining
power of such observations we conducted a Bayesian analysis implementing a
likelihood code to work with different 21cm probes and exploring the posterior
with Monte Carlo Markov Chain methods. The numerical tools we develop
are integrated with widely used codes and prepared to be exploited for up-
coming observations and their cosmological analyses. As a proof of concept,
the analysis pipeline is validated with the recent MeerKAT intensity mapping
measurements in cross-correlation with galaxy clustering data, yielding en-
couraging results consistent with forecasted outcomes. The main findings of
this thesis suggest a promising constraining power of 21cm observations when
considered both alone and combined with other probes. The joint analysis with
cosmic microwave background observations significantly narrows the parame-
ter constraints, leading to precise estimates of pivotal cosmological parameters
like Ωch2 and H0. The tomographic nature of 21cm intensity mapping measure-
ments further improves the estimated errors, potentially offering a powerful
new probe to constrain beyond-ΛCDM scenarios. In conclusion, this thesis
extensively tests the value of 21cm intensity mapping as a cosmological probe
in the standard model scenario and beyond. It delivers tools for the preparation
and analysis of current and future cosmological observations, taking part in
the scientific community’s effort to pave the way for future groundbreaking
observations in cosmology that will potentially provide a deeper understanding
of the fundamental properties of our Universe.
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L I S T O F S Y M B O L S

symbol description

a Expansion scale factor in FLRW metric

η Conformal time

z Cosmological redshift

H Hubble parameter

H0 Hubble constant

h Reduced Hubble constant

H Hubble parameter in conformal time

Ωi Density parameter relative to the species i

τ Optical depth at reionization

Λ Cosmological Constant

δr Density contrast of the species r

Ωr Today’s density parameter of the species r

As Curvature perturbation amplitude

ns Spectral index

As Amplitude of scalar perturbations

w Equation of state parameter

w0 Dark Energy equation of state parameter

Σνmν Total neutrino mass

P(k) Matter power Spectrum

CTT
ℓ Temperature Power Spectrum

ΩEFT First order in perturbation EFT function
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A C R O N Y M S

CDM Cold Dark Matter

DM Dark Matter

GR General Relativity

EFT Effective Field Theory

MG Modified Gravity

CMB Cosmic Microwave Background

DE Dark Energy

BAO Baryonic Acoustic Oscillations

LSS Large Scale Structure

MCMC Monte Carlo Markov Chain

CAMB Code for Anisotropies in the Microwave Background

EFTCAMB Effective Field Theory - CAMB

CosmoMC Cosmological Monte Carlo

EFTCosmoMC Effective Field Theory - CosmoMC

CL Confidence Level

LIM Line Intensity mapping

IM Intensity mapping

HI Neutral Hydrogen

SKAO SKA Observatory

AP Alcock-Paczyński
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I N T R O D U C T I O N

T he Λcdm model stands as the cornerstone of modern cosmology, pro- The standard
cosmological modelviding a robust framework to describe the evolution and the large-scale

structure (LSS) of the expanding Universe. It is founded on the prin-
ciples of general relativity (GR) and requires the existence of puzzling dark
constituents: dark matter (DM) and dark energy (DE). The latter, which is re-
sponsible for the late-time cosmic acceleration [1, 2], constitutes almost 70% of
the total content of the Universe today and it can be modeled as a cosmological
constant (Λ) term in the Einstein’s equations (see, e.g., [3]).

The standard model has been extensively tested against a plethora of cosmo-
logical observations, ranging from the cosmic microwave background (CMB), to
supernovae observations and measurements from the large-scale structure [4–
7]. It has, up to now, demonstrated to be in remarkable agreement with obser-
vational data, although it leaves fundamental open questions and challenges.
The nature of dark energy and cold dark matter remains unknown and tensions
persist on the values of key cosmological parameters measured by different
observations [8–11]. This motivated an extensive theoretical effort to provide
extensions to the standard ΛCDM scenario, in the quest for new physics.

Alternative beyond-ΛCDM models include, among others, non-standard DE The beyond-ΛCDM
Universeequations of state, modifications to gravity to model the cosmic acceleration,

and non-standard massive neutrinos cosmologies. As for cosmic acceleration
and DE, in the last decades, several alternative models have been proposed and
studied [12–14], ranging from dynamical DE to modified gravity (MG). In the
former, an additional field, typically a scalar, is added to the matter content.
In the latter, the gravity sector of the action is modified, normally resulting in
additional gravitational degrees of freedom. In practice, the distinction between
DE and MG models is not always a strict one. Rather, one can focus on the
additional propagating degrees of freedom and employ a unifying framework
to study deviations from ΛCDM. One such framework is offered by the phe-
nomenological parametrizations of gravity, in which all the modifications are
cast into the evolution of two additional functions of time and scale [15–19].
Another alternative is the effective field theory (EFT) of DE [20, 21], which
allows surveying large samples of DE-MG models for optimal exploitation of
the wealth of upcoming high-precision data.

Future cosmological observations hold great promise in advancing the un- New frontiers of
cosmological
observations

derstanding of the Universe. The first detection of a binary black hole merger
by the LIGO/Virgo scientific collaboration [22, 23], and the plethora of new
detections [24, 25] that came after that, led to the birth of the so-called gravi-
tational waves (GWs) astronomy. With forthcoming experiments, such as the
Einstein Telescope (ET) [26], Cosmic Explorer [27], LISA [28], KAGRA [29], and
LIGO-India [30]), investigation of the Universe through GWs will soon play a
major role in the investigation of the Universe. Moreover, the latest generation
of galaxy surveys, like the Dark Energy Spectroscopic Instrument (DESI) [31,
32] and the Euclid mission [33, 34], will help to shed light on DE through
high-precision measurements of baryon acoustic oscillations (BAO), galaxy

xv



xvi introduction

clustering, growth of structures, and weak lensing. Along with cutting-edge
observations, new probes are currently being pursued. A promising new probe
is 21cm intensity mapping, one of the main cosmological probes studied in this
thesis.

Neutral hydrogen (HI) is a fundamental element in the Universe and its late-Neutral hydrogen
as a cosmological

probe
time distribution traces the underlying matter field, making it an innovative key
probe of the large-scale structure (LSS) [35–37]. The measurement of the large-
scale distribution of HI and its evolution with time can thus play an important
role in the upcoming years, providing a complementary probe to traditional
galaxy surveys [38]. The 21cm signal, originating from the spin-flip transition in
the hyperfine structure of the hydrogen ground state (see e.g. [39]), is redshifted
by the expansion of the Universe, and, thus, it is detectable on Earth at radio
frequencies. Several planned and ongoing experiments, either purpose-built
compact interferometers such as CHIME [40, 41], CHORD or HIRAX [42], or single-
dish telescopes such as GBT [43, 44] or FAST [45] aim to measure it with line
intensity mapping (LIM or IM) techniques [46–52]. At the state of the art, only a
few detections of the HI signal were achieved in cross-correlation with galaxy
surveys [43, 44, 53–56].

Radio cosmology is also one of the main scientific goals of the SKA Observa-Planned SKAO
21cm IM surveys tory (SKAO), which will be composed by the SKA-Low and SKA-Mid telescopes

located in Australia and South Africa, respectively. Using the SKA-Mid tele-
scope array as a collection of single-dishes [e.g. 37, 57] it will be possible to
perform 21cm IM observations at the large scales relevant for cosmology up
to redshift 3. The SKAO is currently under construction, and MeerKAT, the
SKA-Mid precursor, has been conducting an IM survey for cosmology (MeerK-

LASS, [58]). Preliminary data analysis has provided promising results [59, 60]
and a first detection of the HI signal in cross-correlation with the WiggleZ galax-
ies [61]. However, the level of foreground residuals is still preventing a direct
detection and this issue has triggered extensive simulation work on foreground
cleaning performances [62–71]. In parallel with the effort in improving the data
analysis and the foreground separation, it is of key importance to refine the
forecast for the constraining power of the 21cm IM alone and in combination
with other probes in order to make a better case for radio cosmology with the
SKAO or optimize the survey design.

The different experiments, targeting different observables, are and are ex-Synergies with
complementary

probes
pected to produce a large amount of data, which will significantly grow in the
relatively near future. Given this variety, it is reasonable to explore the scien-
tific opportunities that arise from combining together different data sets, thus
studying the cross-correlation of different tracers of the LSS. Indeed, in several
published works cross-correlations between the LSS and the CMB (e.g. [72–81]),
neutrinos (e.g. [82]), different LSS tracers (e.g. [83–86]), IM (e.g. [63, 87–97]) or
GWs (e.g. [98–114]) have been studied.

In this thesis, we aim at studying the impact of future 21cm IM observationsThis thesis

on cosmological parameter constraints, exploring both the ΛCDM Universe and
beyond. The discussion, based on the works listed in Publications, is organized
in three parts, as follows.

part i The main aim of this opening part is to provide the theoretical and
observational framework of this thesis. The discussion is to be intended as a
handbook and a reference pointer to make this thesis accessible to not experts
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and students. The author assumes that the expert reader could safely fast-
forward to the subsequent part, using this first mainly as a convention and
formalism reference.

The standard cosmological model is described in Chapter 1. We review
the main features of the expanding Universe, recalling the basic principles of
Einstein’s general relativity and listing the known matter energy components.
After presenting the perturbed Universe, we introduce the concept of power
spectra and illustrate theoretical predictions for the matter one. A description
of the parameters describing ΛCDM and its simplest extensions, with current
constraints, concludes this chapter.

State-of-the-art techniques to probe the Universe are presented in Chapter 2.
We gather here the cosmological observables and observations relevant to this
thesis work, providing the theoretical modeling of the cosmological probes and
the context in which experiments are inserted. We conclude by delineating the
numerical tools we adopt to conduct our analysis.

Chapter 3, based on [14], issues a review on the most popular modifications
to gravity and dark energy models. In this section, we give an overview of the
parametrized frameworks of gravity, listing the latest constraints and forecasts
in the literature from cosmological observations considered in this work.

part ii In this second part, the original work that constitutes this thesis is
presented. We forecast 21cm observations and test its potential constraining
power on the full set of ΛCDM cosmological parameters in combination with
other cosmological probes.

In Chapter 4 we describe the modeling of the 21cm signal power spectrum
multipoles and present the results of the forecast MCMC analysis we conduct
for the SKAO. We construct mock observations within multiple bins in the
redshift range z = 0 − 3 and investigate the effects of combining forecasted
21cm observations with the latest Planck CMB data. This chapter is based on
[115].

The interplay between neutral hydrogen intensity mapping and galaxy
clustering is explored in Chapter 5. We focus on the data sets that will be
provided by the SKAO for the 21cm signal, while we consider DESI and Euclid
for galaxy clustering. As a proof-of-concept, we test the full pipeline on the real
data provided by the MeerKAT collaboration [55] presenting first constraints
on cosmological parameters. This chapter is based on a publication prepared
for submission [116].

part iii Having investigated the constraining power of 21cm probes on the
ΛCDM Universe, we explore the impact of neutral hydrogen observations on a
variety of beyond ΛCDM scenarios.

We explore constraints on dark energy and modified gravity with forecasted
21cm intensity mapping measurements using the effective field theory approach
in Chapter 6. We construct a realistic mock data set of a low redshift, single-bin
21cm signal power spectrum measurement from the MeerKAT radio telescope.
We compute constraints on cosmological and model parameters through, test-
ing both the constraining power of 21cm observations alone and its effect when
combined with the latest CMB data. We complement our analysis by testing
the effects of tomography from a MeerKAT mock data set of observations in
multiple redshift bins. This chapter is based on [117].
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In Chapter 7 we present a forecast study that constrains the phenomeno-
logical MG function evolution. We consider cross-correlation of resolved GW
events, from compact objects mergers detected by the Einstein Telescope, either
assuming or excluding the detection of an electromagnetic counterpart, and
electromagnetic signals, coming both from the IM of the neutral hydrogen
distribution and resolved galaxies from the SKAO, considering weak lensing,
the angular clustering and their cross term as observable probes. This chapter
is based on [118].

Lastly, in Chapter 8 we present preliminary results on the neutrino mass
constraints with the SKAO. This chapter is part of an ongoing project [119].

We summarize the main findings of this thesis and define the roadmap for
future developments in the Conclusions.



Part I

A C H A RT T H R O U G H M O D E R N C O S M O L O G Y T O
N AV I G AT E T H I S T H E S I S





1A S TA N D A R D M O D E L T O R U L E T H E M A L L ( O U T )

W ith the birth of modern cosmology, marked by first measurements
of the cosmic microwave background (CMB) and the large-scale
structure (LSS), a widely accepted cosmological paradigm took hold.

Today, it converged to the standard model of cosmology.
At the very beginning, the Universe, which is 13.7 Gyr old, goes through a

phase of accelerated expansion called inflation. At the end of inflation, the initial
perturbations that will evolve to form all the structures already exist. When the
Universe is only 3 minutes old, the first light element nuclei are formed and, at
this stage, it is dominated by radiation, mainly in the form of photons. As the
temperature falls off due to the expansion, the radiation-to-matter transition
occurs and non-relativistic components become more relevant. The Universe
now, at approximately 40 000 yr of age, consists of cold dark matter (CDM) and
a hot plasma of photons, protons, neutrons, electrons, light elements nuclei,
and a small relic of neutrinos. At 380 000 yr old, recombination occurs and
atomic hydrogen is formed for the first time. Radiation is now free to propagate
and the Universe becomes transparent. The relic radiation from recombination
is observable today as the CMB. From now on, matter perturbations can grow
due to gravitational instability to form the rich large-scale structure observed
today. As expansion continues, matter density is increasingly diluted until
the equivalence between matter and dark energy (DE) occurs, 10 Gyr after
the beginning. This relatively recent event marks the beginning of the DE

era, a phase of accelerated expansion. According to general relativity (GR),
dark energy can be modeled as a cosmological constant (Λ) term in Einstein’s
equations.

The standard model of cosmology, i.e. the ΛCDM model, has been extensively
tested in the last decades and it proved to be in exquisite agreement with a
variety of observations. However, given its phenomenological nature, it does not
explain crucial fundamental physics open questions, such as what is the nature
of the dark components. Nevertheless, although a plethora of beyond-ΛCDM

scenarios was explored, ΛCDM is the most favored model by state-of-the-art
measurements.

This chapter is an overview of the main elements that constitute the standard
model of cosmology, mainly based on [120]. We present the expanding Universe
in Section 1.1, describe the LSS of the Universe in Section 1.2, and summarize the
ΛCDM model in Section 1.3. Being exhaustive is beyond the scope of this thesis,
and for a detailed discussion, we refer the reader to the extensive literature on
the subject [120–124].

1.1 the expanding universe

Modern cosmology assumes that the Universe is homogeneous, isotropic, and
perpetually expanding. Cosmic homogeneity and isotropy were assumed by
the cosmological principle way before observational evidence. As a matter

3



4 a standard model to rule them all (out)

of fact, the cosmological principle can be thought of as a generalization of
the prior Copernican principle: our location in the Universe is not peculiar,
preferred, or fundamental. Indeed, the visible Universe appears to be the same
everywhere. More precisely, at sufficiently large scales observations confirm
that it is in good approximation spatially homogeneous and isotropic. The
expansion of the Universe is a well-tested phenomenon too. First observational
evidence date back to the renowned Hubble discovery [125]. Having defined
the fundamental properties of the observed Universe, in the following we
introduce the mathematical formulation adopted to model it.

Gravity is the most relevant force in cosmology. According to the theory of
general relativity, gravitation can be described by a metric tensor. The following
four-dimensional spacetime metric gµν is the well-known Friedmann-Lemaître-
Robertson-Walker (FLRW) metric:

ds2 ≡ gµν dxµdxν

= −dt2 + a(t)2
[︃

dr2

1 − Kr2 + r2
(︂

dθ2 + sin2 θdϕ2
)︂]︃

,
(1.1)

where r, θ, and ϕ are the spherical tridimensional coordinates. The FLRW metric
describes an expanding, homogeneous, and isotropic Universe. Here and in the
following, we adopt a system of units in which c = 1. Moreover, xµ represents
the four spacetime coordinates: x0 stands for the cosmic time t, while xi are
three-dimensional spherical coordinates. The function a(t), the scale factor, is
a time-dependent parameter that characterizes the expansion. K is a constant
that defines the spatial curvature. Up to r-rescaling, it is non-restrictive to only
consider three values of K: K = 0 for a flat geometry of the spatial section,
K = 1 for a closed geometry, and K = −1 for an open one. Current observations
point toward a flat Universe [126, 127], so it is reasonable to assume K = 0.

For a spatially flat geometry, the FLRW metric is reduced to

ds2 = −dt2 + a(t)2
[︂
dr2 + r2

(︂
dθ2 + sin2 θdϕ2

)︂]︂
. (1.2)

Defining the conformal time η

η(t) ≡
∫︂ t

0

dt̃
a(t̃)

, (1.3)

one can also rewrite the metric as

ds2 = a(t)2
[︂
−dη2 + dr2 + r2

(︂
dθ2 + sin2 θdϕ2

)︂]︂
. (1.4)

To avoid confusion, we will address the total derivative with respect to the
cosmic time t with the prime symbol ′ ≡ d

dt . Instead, for the total derivative
with respect to the conformal time η we will use the dot symbol ̇ ≡ d

dη .
To quantify how rapidly the scale factor changes in time, we introduce the

Hubble parameter

H(t) =
1
a

da
dt

. (1.5)

The Hubble parameter today, i. e. the Hubble constant H0, is a fundamental
parameter of the standard model of cosmology. The value of H0 is currently the
topic of heated discussions among the scientific community. Constraints on the



1.1 the expanding universe 5

value of H0 from different observations are not compatible and it is not clear
if these tensions hide new physics or unresolved systematics (see e.g. [11]).
According to the latest constraints from the CMB [4], the Hubble constant value
is

H0 = 67.32 ± 0.42 km s−1 Mpc−1. (1.6)

It is common practice to rewrite H0 as

H0 = 100 h km s−1 Mpc−1 (1.7)

and expressing all the physical quantities that depend on the Hubble constant
in terms of h.

The expansion of the Universe also affects light that travels through space.
The wavelength of a light ray emitted by an object that is receding from
the observer is stretched in the travel between the source and the observer.
Therefore, observed wavelengths will be larger than the emitted ones due
to cosmological expansion. We can have a measure of the stretching factor
through the cosmological redshift, defined as

1 + z =
λobs
λem

=
aobs
aem

, (1.8)

or simply

1 + z =
a0
a

, a0 = a(t0), (1.9)

if we consider the present time t0 as the observer’s time.
Cosmological redshift is a powerful tool to measure distances on cosmologi-

cal scales. Let us picture the spatial part of the coordinate system defined above
as a grid of points fixed in time. We define the comoving distance dC as the
constant distance between two points on the grid. For the flat FLRW metric (see
Equation 1.2) the comoving distance is simply

dC(r) = r. (1.10)

The actual physical distance between the same two points on the grid, the
proper distance dP, depends on the expansion and is a function of time. For a
spatially flat geometry, the proper distance at time t is simply the comoving
distance stretched or shortened by the scale factor at that time

dP(t) = a(t) dC. (1.11)

As customary, we fix a0 = 1 and thus we consider dC = dP(t0). I.e., we choose
the comoving distances to be the proper distances measured today.

Unfortunately, proper and comoving distances are not accessible with cos-
mological observations. Let us consider, instead, an observer at a fixed point
in the tridimensional spherical coordinate system. An object with extension D
that appears to the observer subtended by an angle θ is away from the observer
by a distance

dA =
D
θ

, (1.12)

where dA is a radial distance, i. e. along the line-of-sight. For standard rulers,
which are objects whose physical size D is known, e.g. as the baryon acoustic
oscillations (BAO), dA can be computed by measuring the angle θ. In an ex-
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panding Universe, we can express D as a proper distance from the line element
a rdθ in the FLRW metric. For a flat geometry, this implies that

dA = a dC =
dC

1 + z
. (1.13)

Another observable quantity is the luminosity distance dL. Let us recall that
in a laboratory environment, the measured flux F from a luminous object at
distance d is

F =
L

4πd2 , (1.14)

where L is the luminosity of the object, i. e. the energy per unit of time emitted
by the source. As before, expansion modifies this definition. The rate and the
energy of emitted photons will be reduced due to expansion. It can be shown
that for a flat geometry

F =
L a2

4πd2
C

, (1.15)

and thus

dL =
dC
a

= (1 + z) dC = (1 + z)2 dA. (1.16)

We can calculate dL by measuring F, once the luminosity is given. Objects
with a known luminosity are called standard candles. A notable example of a
standard candle is a supernova.

1.1.1 The Friedmann equations

The matter-energy content of the Universe can be described as a barotropic
fluid, i. e. its density is a function of its pressure only. Therefore, energy and
matter obey an equation of state

p = w ρ, (1.17)

where p is the pressure, ρ the density, and w is the equation of state parameter.
The stress-energy tensor of such a fluid is

Tµν = (ρ + p)UµUν + p gµν , (1.18)

where Uµ is the fluid four-velocity.
GR couples the spacetime geometry to the matter and energy content of the

Universe. Given a metric and a stress-energy tensor Tµν, Einstein’s equation
describes how geometry, i.e. the Einstein’s tensor Gµν = Rµν − 1

2 gµνR, is related
to the matter and energy content

Gµν = 8πG Tµν , (1.19)

where Rµν is the Ricci tensor and R its trace. Einstein’s equation can be derived
from a least action principle, as understood in Chapter 3.
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Once FLRW metric is assumed as an ansatz, Equation 1.19 can be solved to
find ρ(t) and a(t). With the chosen metric, Einstein’s equation results in the
well-known Friedmann equations

1
a

d2a
d t2 = −4πG

3
(ρ + 3p), (1.20)(︃

1
a

da
dt

)︃2
= H2(t) =

8πG
3

ρ. (1.21)

The two Friedmann equations Equation 1.20 and Equation 1.21 are consistent
with the the energy-momentum conservation

dρ

dt
= −3

da
dt

(ρ + p), (1.22)

i.e. the continuity equation.
It is sometimes useful to rewrite Friedmann equations in conformal time

(Equation 1.3)

Ḣ (η) = −4πG
3

a2 ρ, (1.23)

H2(η) =
8πG

3
a2 ρ, (1.24)

where H = aH is the conformal Hubble parameter.

1.1.2 Cosmic inventory

The complete cosmic inventory includes different species. We can classify them
and predict their evolution according to the equation of state (Equation 1.17)
they satisfy. Radiation and relativistic matter are described by an equation of
state with a constant w = 1

3 . Using the continuity equation (Equation 1.22), the
time-dependent dilution of the radiation density can be computed to be

pr =
1
3

ρr ⇒ ρr(t) = ρr,0 a(t)−4, (1.25)

where the subscript 0 labels the present time value. Non-relativistic matter,
instead, obeys a pressureless equation of state, i.e. w = 0. Thus, matter density
decreases with the expansion as

pm = 0 ⇒ ρm(t) = ρm,0 a(0)−3. (1.26)

Besides ordinary matter, radiation, and particles described by the standard
model of particle physics [128], current cosmological observations agree with
the presence of two other different constituents: cold dark matter (CDM), a
non-baryonic,1 pressureless fluid that interacts only through gravitation, and
dark energy (DE). How to model DE is one of the subjects of this thesis and it
will be discussed later in Chapter 3.

1In cosmology it is customary to address as baryonic all the known standard model matter.
Usually, in the early Universe context baryonic matter stands for protons, neutrons, and electrons.
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It is useful to define a dimensionless parameter to compare the amount of
different constituents. From Equation 1.21, we can define the critical density as

ρcr(t) =
3H(t)2

8πG
, (1.27)

which depends on time and discriminates between spatial geometries. For a
flat Universe ρ(t) = ρcr(t). From the critical density, we can define the density
parameter of the species s as

Ωs(t) =
ρs(t)
ρcr(t)

. (1.28)

Different conventions are used in the literature and sometimes it is not clear if
Ωs is actually Ωs(t) or Ωs(t = t0). In this work, we adopt the latter convention
unless explicitly stated. Notice that Ω = 1 for zero curvature. In the following
table we concisely summarize the constituents of the Universe and the notation
we use for each of them:

radiation Ωr Ωγ photons

Ωr = Ωγ + Ων Ων neutrinos

matter Ωm Ωb baryons

Ωm = Ωb + Ωc Ωc cold dark matter

dark energy ΩDE or ΩΛ ΩDE generic dark energy

ΩΛ cosmological constant

curvature ΩK (= 0 for K = 0)

ΩK = 1 − Ωr − Ωm − ΩDE

T O TA L Ω

Ω = Ωr + Ωm + ΩDE + ΩK

Given the definition of critical density in Equation 1.27 and the lack of knowl-
edge on H0 parametrized through h,2 a measure of Ωs really constraints the
quantity ωs ≡ Ωsh2, that is commonly used in the literature. A picture of
the matter-energy budget distribution according to the standard model of
cosmology and current constraints is presented in Figure 1.1.

1.2 the large-scale structure of the universe

At sufficiently large scales, the background Universe appears to be homoge-
neous and isotropic, as discussed above. However, the measured distribution
of galaxies clearly shows that this is not the case at all cosmological scales.
At scales larger than galaxies, inhomogeneities in the distribution of matter,
or structures, are organized in identifiable patterns that form the LSS of the
Universe (Figure 1.2).

In the current picture, structures formed from small initial density perturba-
tions that developed at early times. A measure of the initial instabilities can
be found in today’s observations of the CMB (Figure 1.3), where relative fluctu-
ations of the order of 10−5 are detected. One can introduce inhomogeneities

2This little-h matter is known for causing headaches to the unexperienced cosmologist (and
sometimes to the seasoned one too).
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Figure 1.1: A schematic representation of the matter-energy content of the Universe.
Credit: European Space Agency (https:/www.esa.int/ESA_Multimedia/
Images/2018/06/The_cosmic_budget_of_ordinary_matter).

perturbing the metric, the densities, and temperatures, splitting the background
from the evolution of structures, and studying them separately.

In what follows, we review basic concepts of perturbation theory and the
summary statistics used to describe LSS.

1.2.1 The perturbed Universe

Let us consider perturbations on a spatially flat background spacetime. The
flat FLRW metric gµν in conformal time is

ds2 = gµν dxµdxν

= a2(η)
[︂
−dη2 + δij dxidxj

]︂
,

(1.29)

where δij is the usual Kronecker delta. If we wish to describe a spacetime that
is not perfectly homogeneous and isotropic, we can perturb the metric and
consider up to the first order in the perturbations. The perturbed metric gµν is
written as

gµν = gµν + δgµν , (1.30)

where gµν is the flat FLRW background and δgµν are the perturbations around
this background. All δgµν components have to be small with respect to the
background ones. Here and in the following we mark with an over-bar symbol
“ ” all background quantities.

In addition to metric perturbations, we also define the perturbed density of
each matter-energy component

δ(η, x) ≡ ρ(η, x)− ρ(η)

ρ(η)
, (1.31)

https:/www.esa.int/ESA_Multimedia/Images/2018/06/The_cosmic_budget_of_ordinary_matter
https:/www.esa.int/ESA_Multimedia/Images/2018/06/The_cosmic_budget_of_ordinary_matter
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Figure 1.2: Measured (left panel) and simulated (right panel) large scale structure of
the Universe, from SDSS observations (https://classic.sdss.org/home.php)
and the Millennium simulation [129] respectively.

where δ(η, x) is called density contrast. In this way, we define perturbations
as the difference between quantities in the physical spacetime and quantities
of the background. As it is well-known, in GR field equations are invariant
under a general coordinate transformation, and are, thus, left unchanged by
the perturbation expansion.

The choice of the splitting between background and perturbations is not
unique, i. e. there exists a gauge freedom. Perturbations in different gauges can
be quite dissimilar, although all gauges are physically equivalent, i.e. observable
quantities computed in different gauges are equivalent. In the literature, several
gauge choices are studied. For instance, in the Newtonian or longitudinal
gauge we consider an observer attached to the flat background. Following sign
conventions of [120], the metric tensor in Newtonian gauge is

ds2 = a2(η)
[︂
−(1 + 2Ψ)dη2 + (1 + 2Φ)δij dxidxj

]︂
, (1.32)

where Ψ and Φ are two scalar functions, the gravitational potentials. Connection
to the Newtonian limit is straightforward in this gauge. In the following, we
will work in the Newtonian gauge, the most intuitive and simple, and consider
only scalar perturbations at the linear level.

The interaction between matter-energy components and spacetime properties
is described by Einstein’s equation. As for the metric, one can relate the
perturbed Einstein’s tensor to the perturbed energy-momentum tensor. At
the linear level, perturbation evolution does not influence the background
dynamics. Therefore, background and perturbations will follow the system of
equations

Gµν = 8πG Tµν ,

δGµν = 8πG δTµν.
(1.33)

https://classic.sdss.org/home.php
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Figure 1.3: CMB temperature anisotropies map from Planck 2018 [4] observations.

Using the metric in Equation 1.32 and working in the Fourier space, from
different components the following system can be derived from Equation 1.33

(00) k2Φ + 3H
(︁
Φ̇ −H Ψ

)︁
= −4πG a2 δT0

0, (1.34)

(0 j) k2 (︁Φ̇ −H Ψ
)︁
= −4πG ik j δT0

j , (1.35)

(i i) Φ̈ +H
(︁
2Φ̇ − Ψ̇

)︁
−
(︂

2Ḣ+H2
)︂

Ψ − k2

3
(Φ + Ψ) = − 4πG

3
a2 δTi

i , (1.36)

(i j) k2 (Φ + Ψ) = 8πG a2 δTi
j. (1.37)

Notice that these four equations are not independent: the stress-energy ten-
sor perturbations are strictly bounded to the evolution of the gravitational
potentials.

To fully describe our Universe we have to take into account the coupled
evolution of all matter-energy components, i. e. baryons, radiation, CDM and
DE. Matter constituents can be described as a perfect fluid. The equations that
govern evolution are thus the Euler, continuity, and Poisson equations. The
perturbed stress-energy tensor for a single perfect fluid, neglecting anisotropic
stress, is

δT0
0 = −ρ δ,

δT0
j = (ρ + p)vj ,

δTi
j = δp δi

j ,

(1.38)

where δ is the density contrast previously defined, and vj is the j component
of the fluid velocity. With this stress-energy tensor definition, Equation 1.34

and Equation 1.35 can be combined to give the Poisson equation. From the
perturbed stress-energy tensor conservation law one can derive the evolution
equations for δ and v in Fourier space. It can be shown that, in the linear
regime, these are

δ̇ = −(1 + w)(ikv + 3Φ′)− 3H
(︂

c2
s − w

)︂
δ, (1.39)

v̇ = −H(1 + 3w)v − w′

1 + w
v − c2

s
1 + w

ik δ − ikΨ, (1.40)

where w is the equation of state parameter, and c2
s = δp/δρ is the adiabatic

sound speed. These equations can then be solved together with the set of per-
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turbed Einstein equations to find the complete evolution. The system reduces
to a second-order differential equation for the density contrast δ. The solutions
to this equation describe the growth of matter structures (see Chapter 8 in
[120]).

To describe photons or neutrinos we must know the evolution of the distri-
bution function in conformal time f (x, p, η), where p is the momentum. The
distribution function evolves according to the Boltzmann equation

d f
dη

=
∂ f
∂η

+
dxi

dη

∂ f
∂xi +

dp
dη

∂ f
∂p

+
dp̂i

dη

∂ f
∂ p̂i = C[ f ], (1.41)

where C[ f ] is called the collisional term and it takes into account variations of f
due to collisions and interactions. For relativistic particles, f is the Fermi-Dirac
distribution function for fermions or the Bose-Einstein one for bosons. In both
cases, f is a function of the temperature T, which is a perturbed quantity. We
can define the perturbed temperature Θ as

Θ(x, p̂, η) ≡ T(x, p̂, η)− T(η)
T(η)

. (1.42)

In Fourier space, Θ(x, p̂, η) becomes Θ(k, µ, η), where µ ≡ k̂ · p̂. By perturbing
the Boltzmann equation (Equation 1.41) one finds the evolution equation for Θ,
once the distribution function is given. Again, the equation for Θ can then be
solved coupled to the perturbed Einstein equations (see Chapter 6 in [120]).

The Boltzmann formalism can be used to describe also the evolution of
perturbations of different interacting species, and all non-gravitational inter-
actions can be included in the collisional term. This leads to a set of coupled
Boltzmann equations that describe the evolution of perturbation of each species
involved. For instance, the photon-baryon plasma before recombination can be
described by the Boltzmann equation. Here, Thomson scattering interactions
source the collisional term. Let us define the optical depth τ via its conformal
time derivative

τ̇ ≡ −neσT a, (1.43)

where ne is the electron number density and σT is the Thomson cross section.
The optical depth evaluates the tightness of the Thomson coupling. In the limit
τ → 0, photons and baryons are completely decoupled. When electron density
is instead high enough, baryons and photons will be tightly coupled and τ ≫ 1.
The complete set of equations for the perturbation of a photon-baryon fluid at
the linear level in the Fourier space can be computed to be

Θ̇ = −Φ̇ − ikµ(Θ + Ψ)− τ̇(Θ0 − Θ + µvb), (1.44)

δ̇b = −ikvb − 3Φ̇, (1.45)

v̇b = −Hvb − ikΨ +
τ̇

R
(vb + 3iΘ1) , (1.46)

where R ≡ 3ρb/4ργ is the baryon to photon density ratio. Θ0 and Θ1 are,
respectively, the monopole and the dipole term of the Legendre polynomials
expansion of Θ. In a more realistic model, one should consider also effects due
to the small fraction of neutrinos and non-electromagnetically interacting CDM
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and DE components. Equations for neutrinos temperature perturbations, N ,
and for CDM density perturbations are:

Ṅ = −Φ̇ − ikµ(N + Ψ), (1.47)

δ̇ c = −ikvc − 3Φ̇, (1.48)

v̇ c = −Hvc − ikΨ , (1.49)

where we highlight that Equation 1.48, Equation 1.49 are nothing but Equa-
tion 1.39, Equation 1.40 for a pressureless fluid (w = 0 and c2

s = 0). We discuss
DE influence on perturbations in Chapter 3.

Once the initial conditions are given, it is possible to solve the system of
coupled Boltzmann and Einstein equations in order to find the linear time
evolution of the perturbations. According to the ΛCDM paradigm, perturbations
arise during the inflationary period. Therefore, initial conditions must be set at
very early times in the radiation-dominated era.

1.2.2 Two point statistics and power spectra

Cosmological observations are very different from experimental measures in
other fields of physics. Due to the fact that we can access only one Universe,
we cannot really make experiments. We cannot reproduce in our laboratories
the feature of the Universe. We can try to test our theoretical model only
via observations of what already exists. Let us consider the density contrast,
predicting the value that δ(η, x) will assume at each point x is challenging.
However, statistics offers us a more feasible alternative. The Universe is actu-
ally only one particular realization among the ensamble of all random possible
outcomes of evolution. In this sense, we can only predict and compare average
statistical properties. Due to homogeneity and isotropy, the cosmological prin-
ciple implies that independent regions of the Universe, i. e. widely separated,
must have the same average properties. Therefore, averaging over the ensamble
realizations is equivalent to averaging over a large enough volume of our
unique observable realization. Consequently, the portion of the Universe that
we observe is a statistically fair representative sample. In conclusion, we can
test theoretical predictions through the statistical properties of the observables.
In particular, we consider random fields, i. e.fields that assume random values
at each point according to a probability distribution function.

In general, a random field ϕ(x) is fully described by all its correlation
functions ⟨ϕ(x1) . . . ϕ(xN)⟩, i. e. the n-point statistics, where we average over
volume. Due to homogeneity, we will usually consider ⟨ϕ(x)⟩ = 0. Of particular
interest is the two-point correlation function ξ(x)

ξ(x) ≡ ⟨ϕ(x1)ϕ(x2)⟩, with x = |x1 − x2| . (1.50)

Notice that ξ is a function only of the separation x due to isotropy. We can then
derive the variance of the field as

σ2 = ξ(0) = ⟨ϕ2(x)⟩. (1.51)
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It is often useful to go to Fourier Space. In general ϕk, the Fourier transform of
ϕ(x), will be a complex number. Then we can define the power spectrum P(k)
as

⟨ϕ∗
kϕk′ ⟩ = (2π)3P(k) δ(k − k′), (1.52)

where δ(. . . ) is the Dirac delta function. The power spectrum is related to the
two-point correlation function through

ξ(x) =
1

(2π)3

∫︂
d3k P(k) ei k·x. (1.53)

Thus, they are the Fourier transform one of the other. P(k) and ξ(x) carry
the same amount of information and are used in the study of random fields.
They quantify how the given field is distributed in the tridimensional space.
E. g., if the random field is the density contrast, the power spectrum or the
two-point correlation function describes how matter structures are organized
in the Universe.

We call a Gaussian random field a field whose probability distribution is
Gaussian. Gaussian random fields are of particular interest in cosmology. We
consider to good approximation all perturbation fields as Gaussian. As a matter
of fact, Gaussian fields are easy to handle analytically and they are fully de-
scribed by the two-point correlation function or the power spectrum. Moreover,
in Fourier space, different modes are mutually independent. For Gaussian
fields, phases of different modes follow a random distribution. Therefore, at
the linear level, Gaussian fields remain Gaussian during evolution. Inflationary
models usually predict Gaussian or almost Gaussian initial fluctuations [130],
although non-gaussianities and higher point statistics are currently objects of
study [131, 132].

1.2.3 The linear matter power spectrum

The LSS of the Universe at a given redshift is well described by the matter power
spectrum. Perturbations are not always allowed to grow freely and they are
subjected to very different phenomena during Universe evolution. To predict
the form of the matter power spectrum today, one needs to know the effect
on perturbations of all the processes that took place from the early Universe
until today. In the following, we are going to give a qualitative picture of how
today’s matter power spectrum is computed.

According to the current paradigm, initial perturbations originate from
inflation. Fluctuations of the gravitational potential at the end of inflation are
nowadays parametrized by means of the power spectrum of the curvature
perturbations R, a gauge invariant quantity. This can be computed to be

PR(k) = 2π2 Ask−3
(︃

k
kp

)︃ns−1
. (1.54)

As is the variance of curvature perturbations at the given pivot scale kp.3 The
parameter ns is the scalar spectral index. The spectrum is said scale-invariant

3Note that the value of kp is arbitrary and it is usually taken to be the scale at which a given
experiment is most sensitive.
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if ns = 1. Nearly scale-invariant spectra are usually predicted by inflationary
models.

During inflation, perturbations at different scales exit the Hubble horizon
due to the accelerated expansion. When decelerated expansion begins, all per-
turbations slowly enter back inside the horizon during the radiation-dominated
era or later during the matter-dominated one. A perturbation is defined to be
inside (outside) the horizon if its mode k is k ≥ 1/dH (k ≤ 1/dH). Therefore,
we can identify two regimes:

(i) perturbations that entered the horizon in the radiation-dominated era and
thus have k ≫ keq, where keq is the wavelength that corresponds to the
size of the horizon at the equality between matter and radiation;

(ii) perturbations that entered the horizon after equality and thus have k ≪
keq.

In order to compute the matter power spectrum at the present time, one has to
find the evolution of the gravitational potential Φ from the radiation-dominated
era until today. All changes in Φ are embedded in the transfer function T(k),
defined as

T(k) ≡ Φ(k, aT)

ΦLS(k, aT)
, (1.55)

where the large-scale potential is

ΦLS(k, aT) =
9

10
Φ(k, ai). (1.56)

The value of aT is usually taken to be aT ∼ 0.03 and marks the epoch after
which Φ stops to be dependent on k. Here, ai is the initial time, at the end of
inflation. The exact dependence of T on k during the Universe evolution results
from the perturbation equations (see Section 1.2.1). It is possible to see that

(i) for k ≫ keq , T(k) ∝
ln k
k2 , (1.57)

(ii) for k ≪ keq , T(k) ≃ 1, (1.58)

i. e., perturbations are free to grow on large scales while they are suppressed
on small scales inside the horizon. For a ≥ aT the gravitational potential Φ is
constant in k, but when cosmic acceleration begins Φ may vary again. To take
this effect into account, the growth factor function D(a) is introduced as

Φ(a)
Φ(aT)

=
D(a)

a
with a ≥ aT . (1.59)

The exact form of D(a) depends on the expansion model considered.
Finally, all these factors sum up to give

Φ(k, a0) =
9
10

Φ(k, ai)T(k)D(a0). (1.60)

Since matter perturbations are related to the gravitational potential through

δm(k, a0) ∝ k2Φ(k, a0), (1.61)



16 a standard model to rule them all (out)

Figure 1.4: The theoretical and measured linear matter power spectrum. Plot reproduced
from[133].

the linear matter power spectrum Pm(k) calculated at the present time is

Pm(k) = ⟨|δm(k, a0)|2⟩
∝ Askns T2(k)D2(a0).

(1.62)

It is possible to see that

(i) for k ≫ keq , Pm(k) ∝ kns−4(ln k)2, (1.63)

(ii) for k ≪ keq , Pm(k) ∝ kns . (1.64)

Thus, the linear matter power spectrum increases at large scales and decreases
at small ones. The maximum of Pm(k) will depend on keq, on the matter-energy
content of the Universe, and on the expansion history. The theoretical and
measured linear matter power spectrum is shown in Figure 1.4.

1.3 Λcdm six parameters to describe the universe

The accepted concordance model of cosmology is the ΛCDM model. Indeed,
cosmological observations point to a flat Universe dominated today by dark
constituents. The standard model of cosmology relies on:

• the existence of a CDM component (w = 0), that must drive the growth of
baryonic perturbations after recombination;
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• the existence of a DE component, responsible for today’s accelerated
expansion compatible with the effects of a cosmological constant Λ
(w = −1);

• an inflation paradigm, i. e. a mechanism that generates the primordial
perturbations, that will later grow into the late-time LSS.

The ΛCDM model is in agreement with a variety of observations, such as CMB,
supernovae, and geometrical and dynamical measurements from the LSS [4–7].
In the following, we describe the technical aspects of the ΛCDM model, useful
to understand the results presented in this work.

When talking about ΛCDM, what the cosmologist has in mind, besides the
paradigm presented above, is the set of values assumed by six fundamental
parameters. These six are the least number of cosmological parameters needed
to describe the shape of the matter and CMB power spectrum, the expansion,
and the matter-energy content of the Universe. Cosmological observations aim
at getting better and better constraints on these parameters. At the state of the
art, Planck 2018 [4] and LSS (see e.g. [134]) observations are usually recognized as
the standard reference for a ΛCDM cosmology. Here is a list of the parameters,
their meaning, and their assumed value (according to [4]).

parameter value description

Ωb and Ωc are dimensionless quantities that describe the
fractional content of baryonic and cold matter today, defined
in Equation 1.28. Here, it is understood that ΩTOT = ΩΛ+

+Ωb + Ωc + Ων = 1, where Ων is fixed and encompass the
contribution from one massive neutrino. Given that we deal
with real observations, the actual measured quantities are

Ωbh2 and Ωch2. A Planck 2018 cosmology (h = 67.32), implies
that Ωb = 0.049 and Ωc = 0.265, i.e. 5% and 26% of the total
matter-energy budget respectively, as depicted in Figure 1.1.

Ωb h2 0.022383

Ωc h2 0.12011

θMC is a numerical approximation of the angular size of the
sound horizon, based on [135]. It is implemented in a widely
used code: CosmoMC [136] (and from here the subscript MC).
If θMC is fixed among the other parameters, then H0 can be
derived and, thus, one can equivalently choose to use either
θMC or H0. However, when dealing with CMB observations
the size of the sound horizon is a more natural choice, given
that the position of the peaks is a direct measure of θMC.
Furthermore, variations in θMC prompt milder modifications
to the observables with respect to H0. It is, thus, easier to
handle θMC from a numerical point of view. For these reasons,
θMC is used in seminal papers in literature (e.g. [137]) and in
this thesis too.

100θMC 1.040909

τ is the optical depth defined in Equation 1.43 due to
reionization, i.e. integrated from now to the end of the
epoch of reionization. It can provide constraints on the
redshift at which reionization occurs besides on galaxy
evolution models. The parameter is sometimes dubbed as
τreio, to avoid confusion.

τ 0.0543
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As and ns are the amplitude of the primordial curvature
perturbations and the scalar spectral index as defined in

Equation 1.54, at the pivot scale kp = 0.05 Mpc−1. They set the
features of the initial conditions. The effects of varying them
can be seen in later time probes too, e.g. in the matter power
spectrum. The measured spectral index point towards an
almost scale-invariant primordial power spectrum (i.e. ns ∼ 1).

ln(1010 As) 3.0448

ns 0.96605

From these six cosmological parameters, several others can be derived. Here,
we gather the most used ones and relevant for this work:

parameter value description

The current value of the expansion rate, i.e. the
Hubble constant (Equation 1.6). The measured
value of H0 is a hot topic in today’s cosmology
circles. Indeed, the value presented here is the
CMB measurement, however, some later times
probes prefer higher values of H0, greater than

70 km s−1 Mpc−1. If this discrepancy hides
new physics is still to be understood
(see e.g. [11]).

H0 67.32 km s−1 Mpc−1

Today’s matter density parameter,
comprehensive of massive neutrinos. The
measured value implies that ΩΛ = 0.6842 for a
flat cosmology.

Ωm 0.3158

Today’s matter power spectrum normalization
at linear scales, including baryons, CDM

and massive neutrinos. This parameter is an
alternative to the power spectrum amplitude As

and it is mostly used in LSS studies. It is
defined as the root mean square of the matter
fluctuations field δ, filtered at the scale
R = 8 h−1Mpc, the approximate scale at which
growth of structure becomes non-linear. Lower
values of σ8 imply smoother matter distribution.
The value of σ8 inferred by Early Universe probes
differs from the one from LSS. This results in a
second milder tension, that could lead to new
physics [138].

σ8 0.8120

Despite the indisputable success of the standard cosmological model, some
major questions still remain unanswered. From the theory side, the unknown
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nature of dark matter and dark energy required an intense effort to propose
alternative models [13, 139]. Discrepancies in different cosmological observa-
tions, seen in the tensions on the H0 and σ8 − Ωm constraints, also motivated
an extensive quest for new physics [8–11]. However, although an impressive
number of alternative models has been tested, at the state-of-the-art the ob-
servational data seem to have no clear preference for a specific beyond ΛCDM

model.
In the final analysis, the standard model of cosmology withstands and it

is still the theory most supported by observations. Upcoming observations,
such as the Euclid mission [34] and the SKAO4, will allow unprecedented high-
precision tests of gravity on large cosmological scales, allowing for yet a new
trial for the ΛCDM model.

1.3.1 Going beyond ΛCDM

When going beyond the standard model of cosmology, one can study the
effect of adding some additional parameters that govern beyond ΛCDM effects.
The most common modifications involve the following parameters, where we
indicate the fiducial value they assume in a ΛCDM cosmology.

parameter ΛCDM value description

The w parameter, or sometimes w0, is the equation of
state parameter that relate DE pressure to density. In a
ΛCDM scenario it is fixed to the negative value of −1.
However, several alternatives have been proposed and
studied. The simplest DE modification is changing w
to a non-standard value. This scenario is usually
referred to as the wCDM model. Among other more
complex and time-dependent modifications, we mention
the Chevallier-Polarski-Linder (CPL) parametrization.
Here, w is a linear function of the scale factor a [140]
w = w0 + (1 − a)wa .

w or w0 −1

wa 0

Although it is not a physical extension of ΛCDM,
the AL issue puzzles cosmologists since first CMB

detections [141]. AL is an overall factor that rescales the
lensing potential CMB power spectrum as CΦΦ → ALCΦΦ .
It affects the temperature power spectrum by smoothing
the peaks. It does not carry any physical meaning and it
was introduced to assess deviations of the measured
power spectra to theoretical predictions. The GR predicted
value is AL = 1, however, CMB data show a mild
preference for AL > 1, with a significance of ∼ 2σ [4].
It remains unclear if AL = 1 hides not understood
systematic or new physics. Although it is the mildest
among the three cosmological tensions, it has been seen
that AL is strictly intertwined with H0 and σ8. The
current challenge is to propose a model that reconciles
all the tensions at the same time [138].

AL 1

4See https://www.skao.int/.

https://www.skao.int/
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Figure 1.5: Modifications induced by massive neutrinos on the matter power spectrum.
Defining the density fraction as fν = Ων/Ωm, the figure shows the ratio
between the matter power spectrum with fν between 0.01 and 0.1 and the
matter power spectrum for massless neutrinos. Image reproduced from [142].

Varying the fiducial ΛCDM value of these parameters is already considered
an alternative theory. If one wants to study more specific models beyond ΛCDM,
e.g. alternative theories of DE, additional parameters describing the modified
model must be considered, as discussed in Chapter 3.

1.3.1.1 Massive neutrinos

Cosmological observations can probe fundamental physics. A distinguished
example is the constraints cosmology can provide on the neutrino mass. In the
following, we review key concepts in the theory of cosmological neutrinos. For
a complete review, we refer to [142].

Neutrinos can modify cosmological observables mainly due to the total mass.
Indeed, the neutrino mass affects the evolution of the total energy density. At
higher energies, neutrinos are relativistic and follow radiation evolution. When
they become non-relativistic their velocity decays and they contribute to the
matter density. This in turn modifies the expansion through the Friedmann
equations.

Neutrino perturbations are, instead, affected by the neutrino mass through
the neutrino free-streaming. Due to their high velocities, neutrinos stream
out of higher-density regions towards lower-density ones. This results in a
damping of the structures smaller than the neutrino mean free path, i.e. the
free-streaming length. The minimum free-streaming scale is computed to be

k f s ≃ 0.018
√︃

Ωm
m

1 eV
h Mpc−1, (1.65)

where m is the mass of the involved neutrinos. Scales larger than k f s (k < k f s)
are not affected by free streaming.

Through measurements of the CMB and matter power spectra it is possible
to infer bounds on the neutrino mass. The CMB temperature power spectrum
is affected by the neutrino mass mainly through the neutrino density Ων. The
effect on the matter power spectrum is ascribable to the free-streaming. Higher
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neutrino masses would result in a stronger suppression of the small-scale
power, as shown in Figure 1.5.

Some of the relevant parameters that describe cosmological neutrinos are the
following:

parameter ΛCDM value description

It is the total neutrino mass, summed over the three
neutrino species. It can be linked to the neutrino

density parameter as Ωνh2 = Σmν/94 eV. Current
constraints from particle physics are Σmν ≥ 0.06 eV
[143] and Σmν < 0.8 eV [144].

Σmν 0.06 eV

Effective number of neutrino species. It includes the
three neutrino species and the contribution from
relativistic neutrino relics. Ne f f enters in the total

radiation density as ρr = (1 + 7
8

(︁ 4
11

)︁4/3 Ne f f )ργ .
Detecting any variation from this value would be
proof of non-standard neutrino physics.

Ne f f 3.046

In this work, we focus on the effect of massive neutrinos, i.e. of constraining
Σmν that we discuss in Chapter 8.





2P R O B I N G T H E U N I V E R S E

I n Chapter 1, we summarized the main features of an expanding Universe
from a theoretical point of view. Here, we focus on the matter of con-
straining the cosmological parameters that describe the ΛCDM model and

beyond.
We introduce the cosmological observables relevant to this thesis in Sec-

tion 2.1. An overview of the state-of-the-art of cosmological surveys is given
in Section 2.2. We conclude by presenting the statistical analysis techniques
that we use in Section 2.3. The content of this chapter is mainly based on [14,
120].

2.1 cosmological observables

We review the cosmological observables considered in this thesis: the cosmic
microwave background, which probes the Universe at recombination, galaxy
clustering, and line intensity mapping, which allows probing large volumes of
the late-time Universe.

2.1.1 Cosmic microwave background anisotropies

The cosmic microwave background (CMB) is the relic radiation from recombi-
nation, which occurred almost 380 000 years after the Universe’s birth, corre-
sponding to the redshift z ≃ 1100. Before recombination, the Universe consists
of a hot plasma of baryonic matter and radiation tightly coupled by Thom-
son scattering processes. When radiation decouples from baryonic matter, the
Universe becomes transparent and photons are free to stream. During the
decoupling process photons are scattered by electrons for the last time. This
takes place in an interval ∆z ≃ 100 at the so-called last scattering surface.
Electrons are now free to combine with protons and neutrons to form atomic
neutral hydrogen for the first time. Photons from the last scattering surface are
what we observe as the CMB radiation today. First discovered in 1963 [145], the
CMB is a microwave radiation uniform in all directions of the sky. It presents an
almost perfect black body spectrum centered on the temperature T̄ = 2.725 K
[146].

Although the CMB temperature distribution is close to homogeneous, COBE

[147] experiment first, WMAP [148] and Planck [137] later, detected fluctuations
in the temperature distribution. The most updated temperature map shows
relative anisotropies of the order of 10−5 (see Figure 1.3). Properties of tem-
perature inhomogeneities can be derived by perturbation theory, making the
statistics of CMB anisotropies today an important probe to test cosmological
models.

We call anisotropies the fluctuations that we observe today, due to the fact that
CMB temperature varies among the direction of observation. At recombination,

23
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temperature fluctuations were actually isotropic, but not homogeneous. Inho-
mogeneities at recombination are seen as anisotropies today. Let us consider
temperature fluctuations Θ as defined in Equation 1.42. We fix the observer
on Earth at the present time, thus Θ will be a function only of the direction
of observation in the sky n̂. It is useful to expand fluctuations in spherical
harmonics

Θ(n̂) = ∑
ℓm

ΘℓmYℓm(n̂). (2.1)

The temperature power spectrum1 Cℓ is defined by the spherical harmonics
coefficients as

⟨Θ∗
ℓmΘℓ′m′ ⟩ = δℓℓ′δmm′Cℓ. (2.2)

It is possible to see that the spatial temperature power spectrum PT(k) of
inhomogeneities is related to the angular power spectrum Cℓ of anisotropies
via

ℓ(ℓ+ 1)
2π

Cℓ ≃
k3

2π
PT(k). (2.3)

It is then custom to study the quantity ℓ(ℓ+1)
2π Cℓ ≡ Dℓ instead of Cℓ only.

The CMB temperature (TT) power spectrum has a well-understood and rich
structure (see e.g. [149]). It presents a fixed number of peaks, i.e. the acoustic
peaks, and troughs, each of them resulting from all the physical processes that
take place at recombination. Variations in the cosmological parameters affect
the structure of the power spectrum. Although the intricate relations between
the numerous cosmological parameters make it sometimes difficult to detangle
each separate effect, we summarize the impact of each parameter presented
in Section 1.3 as follows:

• changing the matter content, i.e. Ωbh2 and Ωch2, affect both the relative
position and the amplitude of the peaks. Indeed, Ωbh2 modifies the struc-
ture of the peaks due to its relation to the sound horizon. Ωch2, instead,
drives the BAO (see Section 2.1.2 below). Current CMB observational errors
allow for a precise measure of both Ωbh2 and Ωch2;

• varying the initial conditions, i.e. As and ns change the temperature
angular power spectrum in a more obvious way. As affects the overall
amplitude, while a shift ns → ns + α induce a (ℓ/ℓp)α scaling at small
scales, with ℓp being the scale corresponding to the pivot one;

• the effects of reionization on the CMB is modulated by τ. Higher values
of τ suppress anisotropies at small scales. It is more difficult to measure
As and ns and τ with the CMB due to the fact that changing τ can mimic
the effect of varying As and ns, introducing a correlation between these
parameters and, thus, higher uncertainties;2

• DE influences the position of the peaks in the power spectrum, leaving
unchanged the global structure and the number of peaks. However, the
main effect of DE is on the behavior of Cℓ at very large scales, through the
Integrated Sachs-Wolfe (ISW) effect (see e.g. [151]). The best constraints

1We highlight that although Cℓ is dimensionless it is usually shown in plots with (µK)2 units,
where Cℓ is implicitly multiplied by T̄2.

2As it is well-known, polarization measurements can break this degeneracy, improving the
constraints [150].
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on DE, whose strongest effects appear at late times, are obtained by
combining CMB observations to other LSS probes.

Although photons at decoupling are initially not polarized, inhomogeneities
can lead to linearly polarized relic radiation. In analogy to electromagnetism,
it is possible to parametrize polarization through E-modes and B-modes. E-
modes arise naturally from Thomson scattering occurring through the last
scattering surface. B-modes, instead, are connected to the gravitational waves
relic predicted by inflation. Detection of B-modes is still an open challenge.
The polarization field can then be treated similarly to the temperature field.
Therefore, polarization power spectra are defined as

⟨E∗
ℓmEℓm⟩ = δℓℓ′δmm′CEE

l

⟨B∗
ℓmBℓm⟩ = δℓℓ′δmm′CBB

l ,
(2.4)

where Eℓm and Bℓm are the coefficients of the spherical harmonics decomposi-
tion of the polarization field.

Besides the polarization power spectra Equation 2.4, it is possible to study
also the lensing potential power spectrum Cϕϕ

ℓ [152].

2.1.2 Galaxy clustering

The matter power spectrum introduced in Equation 1.62 has a rich structure
that carries key cosmological information. Unfortunately, there is no direct
probe of the matter field, making a direct measure of Pm impossible. However,
through measurements of baryonic matter tracers, such as the distribution of
galaxies, properties of the matter power spectrum can be inferred indirectly.

Observing the tri-dimensional distribution of galaxies (see Figure 1.2) allows
for a measure of the galaxy power spectrum Pg. The dependence of Pg on Pm
can be exploited by taking into account two main effects. Galaxies are only a
fraction of the matter content of the Universe and, thus, their distribution does
not follow precisely the full matter distribution. One can correct this effect by
introducing a scale-independent bias factor bg

Pg(k, z) = bg(z)2Pm(k, z) (2.5)

at linear order. On top of that, galaxies usually have peculiar velocities which
can induce distortions in the observed power spectrum and redshift. In the
redshift space, at large scales, these distortions can be cast in an additional
term according to the Kaiser effect [153]. The power spectrum can thus be
modeled as

Pg(k, z, µ) = [bg(z) + f (z)µ2]2Pm(k, z), (2.6)

where f ≡ d ln D(a)/d ln a is the growth rate3 and µ = ẑ · k̂ is the cosine
between the line of sight and the wavevector k. The distortion term models the
effect of peculiar velocities in two ways: given that f µ2 is a positive quantity
it enhances apparent overdensities with respect to the real space ones; the
maximum enhancement appears only along the line of sight, i.e. for wavevectors
parallel to the line of sight (and with µ = 1), while the Kaiser effect is not
present for perturbations along the transverse direction (µ = 0).

3For a ΛCDM cosmology it can be computed that f (a) ∼ Ωm(a)0.55.
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Assuming a Poissonian sampling of the galaxy distribution, it is possible to
associate a white noise, called shot noise, with the measured power spectrum.
It can be seen that

PSN =
1

n̄g
, (2.7)

where n̄g is the mean number density of galaxies, which in general would
depend on the considered redshift. The full expression of the galaxy power
spectrum is then

Pg(k, z, µ) = [bg(z) + f µ2]2Pm(k, z) + PSN(z). (2.8)

This model can be extended to include more complex LSS features such as the
finger of God effect (see e.g. [154]).

Varying the cosmological parameters modifies Pg(k, z, µ) mainly through
its dependence on the matter power spectrum. Measuring Pg(k, z, µ) cannot
provide direct measurements of the cosmological parameters. However, it can
provide constraints on the combination of parameters bgσ8 and f σ8, where σ8 is
defined in Section 1.3. This latter is a valuable probe, in particular, to constrain
DE theories.

As discussed earlier, soon before recombination the Universe consists mainly
of a baryon-photon plasma. DM is already decoupled, while photons and
baryons are tightly coupled to each other via Thomson scattering interactions.
Perturbations already formed, but only DM ones are free to grow. Instead,
baryon and photon perturbations are forced to evolve together as a single
two-component fluid. Due to the large number of photons, the high pressure of
the fluid acts against the gravitational collapse of baryons, causing the baryon-
photon fluid to escape the over-density regions. In this way, spherical sound
waves are created. This process will result in oscillations in the baryon-photon
plasma, namely baryon acoustic oscillations (BAO). Sound waves are free to
travel through the plasma with a speed equal to a significant fraction of the
speed of light. As baryons and photons start to decouple, the sound waves
progressively slow down until they stop at recombination. After recombination,
photons and baryonic matter evolve separately: photons stream freely, while
baryons perturbations grow via gravitational instability. Yet acoustic oscillations
leave a trace in both photon’s and baryons’ subsequent evolution. Therefore,
we can observe the BAO imprints in the power spectrum and in today’s galaxy
distribution.

Acoustic oscillations follow theoretically from perturbation theory (see Equa-
tion 1.44-Equation 1.46 and Equation 1.34-Equation 1.37). In the tight coupling
approximation, perturbations are described by a second-order differential equa-
tion, that has an oscillating solution with a period that depends on the baryon
density. A fundamental parameter is the sound horizon rs

rs(η) ≡
∫︂ η

0
dη̃ cs(η̃), (2.9)

where cs(η) is the adiabatic sound speed of the coupled photon-baryon fluid.
The sound horizon estimates the distance traveled by a sound wave until time η.
The size of the sound horizon at recombination r∗s = rs(ηrec) is a fundamental
scale that can be used as a standard ruler. The sound horizon at recombination
sets the location of the first peak in the CMB power spectrum. The BAO feature
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appears in the large-scale structure as an enhancement in the two-point galaxy
correlation function. The BAO imprint in the galaxy distribution was first
measured at a scale of around 150 Mpc [155]. The value of r∗s strongly depends
on the DE amount. Therefore, the measure of the BAO scale is a fundamental
probe to test expansion history and DE theories.

2.1.3 Line intensity mapping

Line intensity mapping (LIM or IM) [52] has recently become a promising
cosmological probe. It has the potential to fill the gap between the epoch of
recombination, probed by the CMB, and late-time Universe properties, seen
through galaxy clustering observations. LIM measures the integrated emission
of the spectral line of interest from multiple galaxies and the intergalactic
medium. It samples the sky with low angular resolution, allowing for fast
surveys of exceptionally large 3D volumes. Given that the emission frequency
of the targeted line is usually well-known, with LIM it is possible to precisely
estimate the redshift of the source and construct tomographic, i.e. within
multiple bins, observations. Therefore, LIM surveys may be able to explore the
Universe at unprecedented redshifts hardly accessible by other LSS probes.

The post-reionization LIM signal is a biased tracer of the underlying matter
distribution at different redshifts. The observable is the power spectrum of
the brightness temperature (Tb) perturbations and it can be modeled similarly
to the galaxy power spectrum (Equation 2.8). At a given redshift, the power
spectrum for a given line L can be expressed as

PL(k, z, µ) = T̄2
b(z)[bL(z) + f µ2]2Pm(k, z) + PSN(z), (2.10)

where T̄b is the mean brightness temperature of the line [39], bL is the bias of
the considered probe, Pm and PSN are the matter and shot noise power spectra
respectively. Both the bias and the shot-noise term are dependent on the line
luminosity function. In literature, both the angular power spectrum and the
power spectrum multipoles are widely used. We refer to [156] for a review on
how to model the LIM signal.

One of the most studied lines is the 21cm signal arising from the spin-flip
transition in the neutral hydrogen HI ground state [35, 36, 39, 157, 158]. Studying
the 21cm cosmology offers a possibility of probing MG effects at high redshifts
[159, 160]. At lower redshifts, neutral hydrogen HI-dominated galaxies also
emit 21cm [161], providing a key cosmological probe of LSS properties.

Rotational lines of carbon monoxide (CO) [162–164], fine structure line of
ionized carbon (CII) [165, 166], as well as Lyman-α, Hα, and Hβ lines [167–170]
are also interesting spectral features that complement the 21cm line.

Overall, LIM is suited to probe gravity and LSS in a wide redshift range. It
additionally allows to constrain the BAO features evolution and, thus, constrains
the background evolution [52].

2.1.4 Numerical predictions of cosmological observables

Analytic solutions to the coupled Einstein and Boltzmann equations cannot
always be easily found. However, numerical techniques can be used to find the
full solutions. An Einstein-Boltzmann solver is a numerical code that solves the
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linearized set of all the coupled Einstein and Boltzmann equations introduced
before. Einstein-Boltzmann solvers appeared first in the eighties in the seminal
works [171] and [172]. Computations are in general numerically expensive and
a turning point was the CMBFAST code, which with the line-of-sight integration
techniques reduced the calculation time by orders of magnitude. This led to
the birth of modern Einstein-Boltzmann solvers, such as the most widely used
CAMB [173] and CLASS [174], or DASh [175] and CMBEASY [176]. In this thesis, we
mainly use the code CAMB, Code for Anisotropies in the Microwave Background,4

and its extensions. Given a specific cosmological model, CAMB numerically
solves the coupled Einstein-Boltzmann equations during the evolution. The
outcome of CAMB consists mainly of the CMB and matter power spectra. Im-
plementing in CAMB the computation of the late-time 21cm intensity mapping
power spectrum is an integral part of this thesis.

Numerically computed observables can be then compared with experimen-
tal data to constrain the cosmological parameters. We are going to review
observations and analysis techniques in the next sections.

2.2 cosmological observations

In the era of precision Cosmology, a variety of observational campaignes hasThis section is
partially based on

the review
«Cosmological

Probes of Structure
Growth and Tests

of Gravity.», by
J. Hou, J. Bautista,

M. Berti,
C. Cuesta-Lazaro,

C. Hernández-
Aguayo, T. Tröster,

and J. Zheng, in
Universe 9.7
(2023) [14].

been carried out. Moreover, ongoing and planned cosmological surveys are
expected to change or confirm the current standard model with unprecedented
sensitivity.

2.2.1 CMB surveys

CMB experiments measure the temperature and polarization fluctuations of
photons emitted from the last scattering surface. The main parameters defining
a CMB survey are the sky area, the angular resolution set by the telescope
beam, the frequency coverage and resolution, the sensitivity to the fluctuations,
and the noise level at different frequency channels. CMB experiments provide
insights into the early Universe and complement LSS probes.

The first main CMB experiment was the Cosmic Background Explorer (COBE)
[177] satellite, which conducted a full sky survey with an angular resolution of
7◦. Its two full-sky successors were the Wilkinson Microwave Anisotropy Probe
(WMAP) [178], with a resolution of 0.3◦, and the Planck satellite [137], with a
resolution of 10 arcmin. Ground-based surveys include the Atacama Cosmology
Telescope (ACT) [179, 180], which covers area of 1 000 deg2 with resolution
of ∼ 1 arcmin, the South Pole Telescope (SPT) [181, 182], which covers 500

deg2 with resolution ∼1 arcmin, BICEP/Keck [183], and the Cosmology Large
Angular Scale Surveyor (CLASS) [184]. In the future, the Stage 4 CMB observatory
CMB-S4 [185] will cover 8 000 deg2 and achieve a resolution < 3 arcmin, while
the Simons Observatory [186] will cover 15 000 deg2 with a resolution of
∼1.5 arcmin.

In this thesis, we constrain cosmological parameters using the following data
sets from the most updated Planck 2018 results [4]. The CMB likelihood includes
the high-ℓ TT, TE, EE lite likelihood in the interval of multipoles 30 ≤ ℓ ≤ 2508
for TT and 30 ≤ ℓ ≤ 19696 for TE, EE. Lite likelihoods are calculated with the

4See https://camb.info/.

https://camb.info/
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Plik lite likelihood [187]. Instead, for the low-ℓ TT power spectrum, we use data
from the Commander component-separation algorithm in the range 2 ≤ ℓ ≤ 29.
We adopt also the Planck CMB lensing likelihood and the low EE polarization
power spectrum, referred to as lowE, in the range 2 ≤ ℓ ≤ 29, calculated from
the likelihood code SimAll [188].

2.2.2 Galaxy surveys

Another powerful cosmological probe is galaxy clustering. Galaxy surveys
divide into photometric and spectroscopic and allow the sampling of the three-
dimensional galaxy distribution to measure galaxy clustering, which we focus
on in this thesis, BAO, and weak lensing. Photometric surveys are the traditional
method to observe the 3D LSS systematically and provide valuable insights into
the intrinsic physical properties of galaxies and their evolutionary processes.
They are also commonly used for the purpose of identifying objects of interest
that warrant further spectroscopic investigation (see e.g. [189]). Additionally,
these surveys contribute to constraining cosmological models via e.g. weak
gravitational lensing measurements. The study of large-scale structures with
galaxies can be done with the angular information provided by the galaxy
positions, while radial information is limited due to the number of available
photometric bands. Photometric redshift estimates have uncertainties of the
order of a few percent, typically∼ 0.05. Upcoming photometric surveys are
expected to have a better redshift uncertainty of ≤ 0.01. Among the numerous
ongoing and planned photometric surveys we mention the Euclid satellite
mission [190], which will conduct a photometric survey covering 15 000 deg2

with 109 galaxies in the redshift range 0 < z < 2.
Contrary to photometric, spectroscopic surveys allow us to map the distribu-

tion of galaxies in three dimensions, since the radial information is coming from
precise redshift measurements. A spectroscopic survey is usually equipped
with a spectrometer, decomposing the light of objects into thin wavelength
bands. Target lists for such spectroscopic surveys are defined based on the
angular positions, fluxes, and colors, which are processed to obtain the spec-
tra. Emission and/or absorption features are easily seen in observed spectra
and they are used to obtain precise redshift estimates. Spectroscopic surveys
typically have redshift uncertainties of ∼ 10−3. A large variety of cosmological
spectroscopic surveys have been and will be explored, including deep sur-
veys on small areas, interesting for galaxy population studies, to shallower
surveys on large areas, ideal for statistical measurements of the density field of
tracers. Pioneer galaxy spectroscopic surveys include the 2dF Galaxy Survey
(2dFGS) [191], 6dF Galaxy Survey (6dFGS) [192], WiggleZ Dark Energy Sur-
vey (WiggleZ) [193]. Cosmological programs with Sloan Digital Sky Surveys
(SDSS) [194, 195], the Baryon Oscillation Spectroscopic Survey (BOSS) [196] and
the extended BOSS (eBOSS) [197] have provided the largest 3D map up to date.
BOSS covered 10 000 deg2 with ∼ 1.5 × 106 objects within 0 < z < 0.7, and
eBOSS covered the 7 500 deg2 with ∼106 objects for an extended redshift range
0.6 < z < 3.5 and more types of tracers. The Dark Energy Spectroscopic Survey
(DESI) [198] is a currently ongoing 5-year survey. By the end of the survey it
will deliver ∼30 × 106 spectra and cover 14 000 deg2 area. In the near future,
both Euclid and Roman satellite experiments will deliver spectroscopic data in
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Figure 2.1: Landscape of past (black) and current/future galaxy surveys (red) for galaxy
number density per area as a function of the survey area. Photometric surveys
are represented with a cross and spectroscopic surveys are with open circles.
Grey dotted lines corresponds to 104, 106, 108, and 1010 galaxies. Overall,
current/future surveys cover a larger area and with a higher number density
per area. Image taken from [14].

addition to imaging data. Euclid will provide ∼5× 107 spectra at 0.7 < z < 1.8
and Roman will provide ∼2 × 107 spectra at 1 < z < 3.

Figure 2.1 shows the landscape of the galaxies surveys with photometric
redshifts (cross) and spectroscopic surveys (circle) for galaxy number density
per area as a function of the survey area. Overall, the future surveys (red)
occupy the upper right corner, which covers a larger survey area with higher
galaxy number density per area relative to the past surveys (black).

In this thesis, we use several galaxy clustering observations. We constrain
cosmological parameters from both the BAO signal and galaxy clustering in
cross-correlation with 21cm signal measurements.

2.2.3 Cosmological surveys in the radio band

Radio surveys, in particular radio continuum and HI intensity mapping, are a
promising tool to test the Universe at unexplored redshifts. A radio continuum
survey provides a high angular resolution of radio galaxies but a low resolution
in redshifts. As discussed in Section 2.1.3, the HI intensity mapping offers,
instead, a high radial resolution but a low resolution in the angular direction.
Radio continuum and intensity mapping are, thus, commensal surveys, i.e.
they will provide complementary information from the same cosmological
probe. In addition, the HI galaxy redshift surveys in the local Universe, up to
z ∼ 0.4, are similar to what we can obtain from an optical spectroscopic survey
where galaxy 3D coordinates can be provided.
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Figure 2.2: A summary of radio surveys. The warm red colors denote the radio contin-
uum maps while the cold blue colors represent the 21cm intensity mapping.
The error bars show the frequency ranges for each of the instruments or
surveys. While the advantage of radio surveys is their high angular resolu-
tions, the surveys that measure the 21cm signal are good at their high radial
resolution, i.e the frequency and its corresponding redshifts (dashed blue
vertical lines). We mark the two kinds of resolutions as different gradients of
colors. Image reproduced from [14].

The main parameters defining a radio survey are the frequency range and
resolution, which translates into the accessible volume and redshift binning.
We can further categorize them mainly by covered area, angular resolution,
and observational technique, e.g. interferometry [52] or single-dish [51]. There
will be a large amount of radio data available in the following decades. Several
instruments are either currently taking data, under construction, or being
planned. Indeed, a plethora of experiments targeting IM is currently running,
under construction, or being proposed. We summarize the main surveys in
radio continuum and HI intensity mapping in Figure 2.2.

For 21cm IM, the main instruments are CHIME [40, 41], HIRAX [42], LOFAR [199],
GBT [43, 44], FAST [45], BINGO [200, 201], CHORD [202], TIANLAI [203, 204]. For
a review of the state of the art of the ongoing and proposed IM surveys, we
refer to [52]. A first detection of the HI signal has been achieved around 10

years ago [53] in cross-correlation with galaxy surveys. Few other studies
have claimed detection of the signal, always in cross-correlation with galaxy
clustering[43, 44, 54]. Preliminary auto power spectrum detections are, instead,
available only at small scales [56]. Indeed, observationally IM suffers from
strong continuum foreground contamination, including diffuse galactic syn-
chrotron emission, bright point sources, and atmospheric turbulence, which
can potentially degrade the predicted constraining power. Several foreground
removal techniques are currently being proposed and tested [62–71, 205, 206].

In this thesis, we focus on modeling forecasted observations for the SKA Ob-
servatory (SKAO) [57] and its precursor MeerKAT [58, 59, 61]. Radio cosmology
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is indeed one of the main key science projects of the SKAO, which will be com-
posed of the SKA-Low and SKA-Mid telescopes, in Australia and South Africa
respectively. Using the SKA-Mid telescope array as a collection of single-dishes
(see e.g. [37, 57]) it will be possible to perform 21cm IM observations at the large
scales relevant for cosmology up to redshift z = 3. The SKAO is currently under
construction, and MeerKAT, the SKA-Mid precursor, has been conducting a IM

survey for cosmology [58]. Preliminary data analysis has provided promising
results [59, 60] and a first detection of the HI signal in cross-correlation with
the WiggleZ galaxies [61]. However, the level of foreground residuals is still a
non-negligible issue.

Parallel to the effort in improving the data analysis and the foreground
separation, it is of key importance to refine the forecast for the constraining
power of the 21cm IM alone and in combination with other probes in order to
make a better case for radio cosmology with the SKAO and optimize the survey
design. This thesis contributed in this regard by forecasting mock observations
for both MeerKAT [117] and the SKAO [115] (see Chapter 6 and Chapter 4

respectively).

2.3 constraining the cosmological parameters

In the last few decades, the intensely improved quality of observations and
data allowed for better and better measurements of cosmological observables.
At the same time, a plethora of models beyond ΛCDM (see Chapter 3 below),
described by an increasing number of parameters, required to be tested against
experimental evidence. To address these needs, statistics became a central tool
in cosmology to constrain the parameters, discriminate among models, and
deal with the increasing amount of data. Following [120, 207, 208], here we
review the basic concepts of statistics for cosmology, necessary for the analysis
that we perform in this thesis.

2.3.1 Bayesian analysis for cosmology

Being x a real and continuous random variable, the probability density P(x) is
the function that describes the expectation of the occurrence of x. From P(x)
we can calculate the probability P of x to assume a value in the interval (a, b)
as

P (x ∈ (a, b)) =
∫︂ b

a
dx P(x), (2.11)

where P(x) is a non-negative normalized function. As common use in literature,
we refer to P(x) as probability density, probability distribution or simply
distribution.

In general, a data analysis procedure must provide: the best-fit values for
the set of parameters describing the model; the confidence levels or limits,
i. e. the error estimates on the best-fit values; a statistical way to measure the
goodness of the fit. A classical procedure to estimate these quantities is to
use the chi-square statistic. Minimizing the chi-square χ2 one can obtain the
best-fit value of the parameters and the uncertainties on them. An estimate of
the goodness of fit, instead, can be obtained through the χ2 hypothesis test,
related to the χ2 distribution.
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Historically, cosmologists usually adopt, instead, a Bayesian approach to
statistics. In general, if H is a hypothesis, in our case a theory, and D is an
event, a measured set of data, the conditional probability distribution P(H|D)
of H being true given the event D occurred, i.e. the data were measured, is
defined via the Bayes theorem

P(H|D) =
P(D|H)P(H)

P(D)
. (2.12)

We define:

- P(H|D) is the posterior distribution, that describes the probability that
the model H, described by a specific set of parameters, is true given the
observed data D. From the posterior distribution parameter constraints
can be computed, and, thus, estimating the posterior is the goal of the
analysis;

- P(D|H) is the likelihood, i. e. the probability distribution to have mea-
sured a specific set of data D, given the model H;

- P(H) is called the prior distribution, or simply prior, on the considered
model, in which prior knowledge on the theory is cast.

Through the Bayes theorem, we can infer the most likely posterior distribution
for the studied theory by knowing or guessing the prior distribution and
calculating or sampling the likelihood.

Let us consider a model described by a set α of m parameters αi, where
α = (α1, . . . , αm) is a vector in an m-dimensional parameter space. If the set
D1, . . . , Dn is the outcome of an observation and yα

1 , . . . , yα
n are the values

expected from the theory, the likelihood function is usually well approximated
by a multivariate Gaussian distribution

L(D|α) = 1√︁
(2π)n |det(C)|

exp

⎡⎣−1
2 ∑

i,j
(Di − yα

i )C−1
ij (Dj − yα

j )

⎤⎦ , (2.13)

where Cij = ⟨(Di − yα
i )(Dj − yα

j )⟩ is the covariance matrix of the data set. In a
Bayesian approach, we find the posterior distribution to be

P(α|D) ∝ L(D|α)P(α). (2.14)

Thus, P(α|D) can be computed from the likelihood function, and the best-fit
values of the set α are the ones that maximize the likelihood function.

Usually, in cosmology one has to deal with a rather large number of pa-
rameters. Therefore, as we further discuss in the following, one deals with
two-dimensional, or higher-dimensional, confidence regions, in addition to
confidence levels. The Bayesian method is particularly suited to easily calcu-
late confidence regions from the posterior distribution. In fact, as in equation
Equation 2.11 we can calculate probability via the multidimensional integral∫︁

dαP(α|D) in the parameter space. However, we would like to obtain con-
fidence levels for each of the parameters αi. This can be simply achieved by
computing the marginalized posterior distribution, which we obtain by in-
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tegrating the full posterior distribution over the unwanted parameters, i. e.
with

P(αj|D) =
∫︂

dα1 . . . dαj−1dαj+1 . . . dαmP(α|D) (2.15)

one computes the confidence levels on the parameter αj. In this way, we
can either calculate single confidence levels for each of them or obtain the
joint constraints, i. e. the two-dimensional confidence regions, for a subset of
parameters. In this thesis, we will show 1D and 2D marginalized posterior
distributions.

As we will see below, the Bayesian likelihood method is extensively employed
in numerical data analysis for cosmology.

2.3.2 The Monte Carlo Markov Chain method

Cosmological theories are described by several parameters, e. g. as discussed
above the standard ΛCDM model needs from six to eleven or more parameters.
For each set of parameters, observables can take a relatively long time to be
numerically computed, e.g. up to the order of a few minutes in the worst-case
scenario with the standard Einstein-Boltzmann codes. To fully explore the
parameter space in order to compute the likelihood and to perform Bayesian
integrations would require a prohibitive amount of computational time. To
avoid this difficulty, Monte Carlo Markov Chain (MCMC) methods [209, 210]
are regularly employed.

A Markov chain is a randomized walk in which each further step depends
only on the current state of the system and not on the previous history. The
basic idea of MCMC numerical techniques is to explore the parameter space
via Markov chains that move towards the highest probability region. In the
Bayesian approach, this allows us to sample properly the posterior distribution
function. MCMC methods have been widely studied and state-of-the-art codes
offer an extremely high level of accuracy and sophistication. In order to picture
a general idea rather than to be exhaustive, here we consider only the most
renowned technique, that is the Metropolis-Hastings algorithm [211].

Let us consider a target distribution function P(α), which is proportional to
a known function L(α). Assuming to work in the Bayes theorem framework,
these could be the posterior distribution and the likelihood respectively. Having
chosen a starting point α0, we sample the parameter space with a Markov chain
that moves towards the maximum of L(α). The Metropolis-Hastings algorithm
establishes the rule according to which we decide whether to accept or not the
next step αn+1 at each point αn. The procedure is the following:

- first, a proposal density q(αn , αn+1) is chosen, usually a Gaussian that
proposes the subsequent point in the parameter space αn+1;

- then the acceptance ratio

α = L(αn+1)/L(αn) = P(αn+1)/P(αn) (2.16)

is computed for the proposed new point;

- a random number x ∈ [0, 1] from a uniform distribution is drawn and
if α ≥ x the proposed step αn+1 is accepted, otherwise it is rejected and
αn+1 = αn is set.
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In other words, if the subsequent step brings the chain to a higher probability
region (α > 1 ⇔ P(αn+1) > P(αn)) it is always accepted. If not, steps for
which P(αn+1) is slightly greater than P(αn) are more likely to be accepted, in
order not to escape towards lower probabilities domains. After a first burn-in
phase in which the walk still depends on the initial position, the chain then
provides a fair sample of the target distribution in a reasonable amount of
computational time. Once we have the sampling of P(α), we can compute
all the relevant quantities that we are interested in, such as the marginalized
distributions and the confidence levels. We are going to illustrate how a MCMC

run works in practice for cosmology in the next section.

2.3.2.1 MCMC samplers for cosmology

At the state of the art, several codes to conduct MCMC analysis for cosmology
are available. The basic idea of their working principle is the following:

1. the model to be studied, the set of cosmological parameters α to constrain,
and the data sets to be used are defined;

2. the MCMC routine begins with choosing an almost random starting point
α0, according to the prior distribution, for the chain in the multidimen-
sional parameter space;

3. the sampler calls an Einstein-Boltzmann solver and computes at the point
α0 the theoretical predictions on the observables, such as the CMB power
spectra CXY

ℓ |α0 , the matter power spectrum P(k)|α0 and so on;

4. with the computed theoretical observables the code calculates the likeli-
hood function L(CXY

ℓ |obs, P(k)|obs, . . . | CXY
ℓ |α0 , P(k)|α0 , . . . ) using the selected

observational data sets;

5. once the likelihood is computed, a new point α1 is proposed and the
MCMC routine considers whether or not to accept it, either way, the chain
goes one step further;

6. the points from 3 to 5 are repeated recursively for each new step of the
chain until a certain convergence criterion is satisfied (see Section 2.3.3.1).

In the Bayesian approach, the output is then a sampling of the total posterior
distribution function. Notice that different choices are available for the MCMC

routine, e. g. one can use a generalized version of the Metropolis-Hastings
algorithm or a fast algorithm optimized for Planck data sets [212].

CosmoMC is a parallelized Monte Carlo code that samples high dimensional
parameter spaces. For technical details, we refer to the CosmoMC website5 and
the GitHub repository.6 The CosmoMC code can be used both for constraining
cosmological parameters and also as a generic MCMC sampler. In this work, we
extend the CosmoMC code by implementing the likelihood for 21cm intensity
mapping observations.

In conclusion, the MCMC method allows for efficient numerical sampling of
the likelihood function, which results in cosmological parameter constraints in
the Bayesian approach. Despite the undisputed potential of these techniques, a

5Seehttps://cosmologist.info/cosmomc/.
6See https://github.com/cmbant/CosmoMC.

https://cosmologist.info/cosmomc/
https://github.com/cmbant/CosmoMC
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few issues must be treated with care. Among all, how to choose the prior and
how this choice influences the results is a central problem (see e.g. [207].

2.3.3 Posterior distribution and parameter constraints

In this section, we describe which is the output of a MCMC run and the tools to
analyze it. First, let us clarify what we are looking to compute from the output
of a MCMC simulation:

- constraints on every parameter that describes the studied model, i. e.
we need the best-fit values and confidence levels (CL); we will usually
compute the 68% or sometimes 95% CL, which correspond to constraints
within one and two σ respectively;

- the full form of the marginalized posterior distribution for each parame-
ter;

- joint marginalized constraints on couples, sometimes triplets, of relevant
parameters, i. e. 2D or 3D contour plots.

All these quantities can be calculated from the MCMC sampling of the global
posterior distribution.

Notice that one usually identifies different types of parameters: cosmological,
that are the ΛCDM parameter plus the ones specific for the beyond ΛCDM model
considered; nuisance, parameters relative to the likelihood implementation that
are forced to vary for each specifically used data set; derived, parameters that
do not vary but that are computed from actually varying parameters.

The strength of the MCMC approach is that the full posterior is proportional to
the number density of points in the parameter space. Marginalized distributions
are simply the histograms of the MCMC sampled points, projected onto sub-
spaces of the complete parameter space. With MCMC simulations, no further
computationally expansive integration is needed to compute marginalized
quantities. To perform this analysis, CosmoMC is already provided with the tool
GetDist,7 a Python package optimized for the CosmoMC output. In this thesis,
we use GetDist to compute confidence levels, plot the marginalized posterior
distributions, and get the contour plots. We refer to the online documentation
and to the GetDist notes8 for technical details and tutorials. However, in the
following, we focus only on one of the analysis tools that GetDist offers.

2.3.3.1 Convergence tests

In order to get accurate and correct constraints, it is necessary to check somehow
if the MCMC chains properly sampled the parameter space, i. e. if they are long
enough to produce statistically good results. Therefore, it is necessary to
perform on the output a convergence analysis. GetDist provides several different
criteria to check the convergence status. Here we focus on the Gelman-Rubin
method [213], also called the R-diagnostic. Let us consider m different chains,
each formed by n elements, where we already discarded the burn-in phase.
Elements in the chains are vectors in the parameter space, but we restrict
ourselves to only one parameter αi,j in all chains, where the index i = 1, . . . , m

7See https://getdist.readthedocs.io/en/latest/index.html.
8See https://cosmologist.info/notes/GetDist.pdf.

https://getdist.readthedocs.io/en/latest/index.html
https://cosmologist.info/notes/GetDist.pdf
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runs over different chains and j = 1, . . . , n over elements in a single chain.
Following [207], the mean value of the chosen parameter within the chain is

ᾱi =
1
n

n

∑
j=1

αi,j , (2.17)

while the associated variance is

σ2
i =

1
n − 1

n

∑
j=1

(︂
αi,j − ᾱi

)︂2
. (2.18)

From σi we can define W to be the mean value of the variances over chains

W =
1
m

m

∑
i=1

σ2
i =

1
m(n − 1)

m,n

∑
i,j=1

(︂
αi,j − ᾱi

)︂2
. (2.19)

The average between chains, i. e. the average of averages, is instead

ᾱ =
1
m

m

∑
i=1

ᾱi =
1

m · n

m,n

∑
i,j=1

αi,j (2.20)

with variance

B =
1

m − 1

m

∑
i=1

(ᾱi − ᾱ)2 , (2.21)

that we label as B in order to be consistent with the notation in the literature.
Finally, from W and B we can define the parameter R as

R =

(︂
1 − 1

n

)︂
W +

(︂
1 + 1

m

)︂
B

W
, (2.22)

that depends on the ratio B/W of the variance between chains and within
chains. In the limit in which all chains have more or less the same mean value
ᾱi, we have that W ∼ B and, thus, we expect that R →

(︂
1 + 1

m

)︂
≃ 1 for n → ∞.

Therefore, we consider the chains converged for the given parameter if the
quantity R − 1 is sufficiently small. This computation has to be done for each
varying parameter. For an estimate of the global convergence on the MCMC run
we consider the worst R value, i. e. the highest, among all the parameters.

In this thesis, we consider a convergence threshold of R − 1 < 0.02.
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I n this chapter, we briefly overview the most popular modified gravity This chapter is
based on the review
«Cosmological
Probes of Structure
Growth and Tests
of Gravity.», by
J. Hou, J. Bautista,
M. Berti,
C. Cuesta-Lazaro,
C. Hernández-
Aguayo, T. Tröster,
and J. Zheng, in
Universe 9.7
(2023) [14].

(MG) and dark energy (DE) models. Although the cosmological constant
provides an excellent explanation for the accelerated cosmic expansion,

more natural choices can be classified into two categories: 1) modifications of
the stress-energy tensor on the right-hand side of the Einstein’s field equation,
which leads to DE models; 2) modifications of e.g. the Einstein-Hilbert action on
the left-hand side of the field equation, which leads to MG models. In practice,
there are no clear boundaries between DE or MG models (for a review see
e.g. [214]). Nevertheless, it is possible to make certain distinctions based on
the strong equivalence principle and observe whether ordinary matter experi-
ences additional forces beyond gravity. E.g., Figure 3.1 presents a flowchart in
distinguishing MG vs DE following [214].

As discussed in Section 1.2.1, in the conformal Newtonian gauge, the line
element is given by Equation 1.32, where the gauge invariant Newtonian
potential Ψ and curvature potential Φ appear. In the case of GR, the difference
between the two potentials is negligible, and the 00 component of the Einstein
equation on sub-horizon scales leads to the Poisson equation

∇2Ψ = 4πGa2δρm, (3.1)

where δρm ≡ ρm − ρ̄m is the fluctuation of the matter density. In the presence
of a fifth force, Equation 3.1 is modified and structure formation deviates from
the one predicted by GR. There are different ways to “modify gravity”, among
which scalar-tensor theories (e.g. [215]) are probably the most well-studied
models. One of the most general scalar-tensor theories with second-order field
equations in four dimensions is the Horndeski theory [216], whose action is
constructed as

S =
∫︂

d4x
√︁
−g

{︄
5

∑
i=2

Li
[︁
ϕ, gµν

]︁
+ Lm(gµν , ψ)

}︄
. (3.2)

Each of the four Lagrangian densities in the summation is a function of four pa-
rameters {L2[K],L3[G3],L4[G4],L5[G5]}, where {K, G3, G4, G5} are arbitrary
functions of (ϕ, X), with ϕ a scalar field and X ≡ −∇νϕ∇νϕ/2. Lm is the
matter Lagrangian density, with ψ the matter field.

In Section 3.1, we will review two MG models, the f (R) model and the
braneworld model, which can be linked to Horndeski theory by properly
choosing the four Horndeski functions. These two models are the most repre-
sentative and have been widely tested using different astrophysical probes and
implemented in cosmological simulations (see e.g. the discussion in [14]). We
then present several parametrized, model-independent frameworks of gravity
in Section 3.2, and review the state-of-the-art constraints on DE relevant for this
thesis in Section 3.3.

39
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Figure 3.1: A flowchart for distinguishing DE model and modified gravity models (based
on Joyce, Lombriser, and Schmidt [214]). The weak equivalence principle
(WEP) states that there exists a Jordan frame metric to which matter species
are minimally coupled, independent of their composition or structure. Taking
scalar-tensor theory as an example, all matter species couple universally to
the metric in the presence of a scalar field. The strong equivalence principle
(SEP) further restricts the WEP such that the equivalence principle also applies
to objects that exert a self-gravitational force. If the coupling between matter
fields and the metric does not involve any scalar fields, it’s a DE model.
Whereas if the matter fields couple to the metric non-trivially via the scalar
field, it is a MG model to be considered in this paper. Image reproduced from
[14].

3.1 examples of alternative models

3.1.1 Conformal coupling models: f (R) gravity

f (R) gravity [217, 218] is a very popular class of modified gravity models,
which can be described by the following gravitational action

S =
1

16πG

∫︂
d4x

√︁
−g [R + f (R)] + Sm[gµν , ψ], (3.3)

where the cosmological constant Λ is replaced by an algebraic function of the
Ricci scalar, f (R), and Sm is the action for the matter field ψ. Various functional
forms for f (R) were proposed in early works to explain the cosmic accelera-
tion [219–221]. However, they do not pass Solar System tests of gravity [222,
223]. The work in [224] suggested a functional form of f (R) compatible with
local gravity test

f (R) = −m2
c1

(︂
R

m2

)︂n

c2

(︂
R

m2

)︂n
+ 1

≈ ρΛ,eff + fR0

(︃
R
R̄0

)︃−n
, (3.4)

where R̄0 is the background Ricci scalar today. This functional form is chosen
such that in the small curvature limit at high redshifts we recover ΛCDM and
in the large curvature limit at low redshifts it mimics cosmic acceleration.
To satisfy cosmological and local observations, the condition R/m2 ≪ 1 is
required, with m being a free parameter representing a mass scale. The two free
parameters c1 and c2 are adjusted accordingly such that the effective DE density
ρΛ,e f f gives rise to a cosmological constant that matches observation. fR0 ≡
fR(z = 0) is the present-day value of the background field, with the scalar field
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being fR ≡ d f (R)/dR. This scalar field fR is of particular importance, and
the impact of f (R) gravity can be viewed in terms of the dynamics of fR. The
larger the amplitude of the scalar field | fR|, the stronger the deviation from GR.

Varying the action in Equation 3.3 with respect to the metric we can derive
the modified Einstein equations, whose trace can be interpreted as the equation
of motion for fR

□ fR =
∂Ve f f

∂ fR
, Veff( fR) = V( fR) + A( fR)ρ̄m, (3.5)

where □ ≡ ∇µ∇µ is the d’Alembert operator. The effective potential Ve f f
consists of two parts: one is a bare function that depends on the scalar field
itself; the other one also knows about the external matter field density ρ̄m (see
equation 20 in [224] for the exact form of Ve f f ). The density-dependent term
of the effective potential in Equation 3.5 explains why this functional form
of f (R) can pass the local gravity tests as its dynamics associate high-density
regions with high curvature of spacetime.

The interaction range of the scalar field is determined by the Compton
wavelength λc

λc ≡ m−1
fR

with m2
fR

≡ ∂2Veff

∂ f 2
R

. (3.6)

The more massive the scalar field, the shorter the Compton wavelength, and the
shorter range the fifth force can mediate its interaction. The presence of the fifth
force leads to a different structure formation history, embodied in the modified
Poisson equation. Under the quasi-static1 and weak field2 approximations, the
Poisson equation takes the following modified form

∇2Ψ ≈ 16πG
3

a2δρm − 1
6

a2δR

= 4πGa2δρm − 1
2
∇2 fR , (3.7)

where the first term is the standard Poisson equation, and the second term
represents the fifth force, F5th ∝ ∇ fR, generated by the scalar field fR. Under
the static limit, Equation 3.5 can be rewritten as

∇2 fR = − a2

3
[δR − 8πGδρm] , (3.8)

where δR = R( fR)− R̄.
The f (R) model can be shown to be equivalent to a scalar-tensor theory in

which the scalar field has a universal coupling to different matter species by a
conformal transformation [222, 225]. At the same time, the connection between
the f (R) gravity and Horndeski can be seen by setting [226]

G4 = ϕ = fR , K = f (R)− R fR , G3 = 0. (3.9)

1The quasi-static limit assumes that the time derivative of the scalar field perturbation is negligible
compared to the spatial gradient of the scalar field.

2Weak field approximation assumes that the amplitudes of the scalar field perturbations and
gravitational potentials are much smaller than the speed of light squared.
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3.1.2 Derivative coupling models: DGP gravity

In the DGP model [227], the Universe is a four-dimensional brane embedded in
a five-dimensional spacetime or bulk. The total action of the model is

S =
∫︂

brane
d4x

√︁
−g

R
16πG

+
∫︂

d5x
√︂
−g(5)

R(5)

16πG(5)
+ Sm(gµν , ψi), (3.10)

where gµν, g, R, and G are the metric tensor, the determinant of the metric, the
Ricci scalar and the gravitational constant in the 4-D brane respectively, and
g(5), R(5) and G(5) are their equivalents in the 5-D bulk. Sm is the action of the
matter fields ψi which are assumed to be confined on the brane. The transition
from 4D to 5D is governed by the crossover scale rc ≡ G(5)/(2G).

There are two branches of solutions for the DGP model. The self-accelerating
branch [228] can lead to cosmic acceleration purely gravitationally, without
introducing a cosmological constant. However, this branch of the solution is
theoretically unstable [229] and the observed expansion history does not seem
to align with the predictions of the self-accelerating DGP model [230]. The
normal branch is theoretically stable, but it cannot lead to an accelerated Hubble
expansion. A most trivial negative pressure energy stress component [231]
or extra DE component must be added to match observational data [232].
Nevertheless, DGP models remain attractive as benchmark models and in the
following, we will only discuss the normal branch of the DGP model (nDGP).

The structure formation in the nDGP model is governed by the modified
Poisson and scalar equations in the quasi-static and weak field limits [233]

∇2Ψ = 4πGa2δρm +
1
2
∇2ϕ , (3.11)

∇2ϕ +
r2

c
3βdgpa2c2

[︃
(∇2ϕ)2 −

(︂
∇i∇jϕ

)︂2
]︃
=

8π G a2

3βdgp
δρm , (3.12)

where ϕ is a scalar degree of freedom related to the bending modes of the
brane, i.e. it describes the position of the brane in the fifth dimension. The
total modified gravitational potential Ψ is given by Ψ = ΨN + ϕ/2, with ΨN
being the standard Newtonian potential. Again, the fifth force is proportional
to the field’s gradient and is given by F5th = ∇ϕ/2. The parameter βdgp(a) is a
time-dependent function that depends on the crossover scale rc (see equation
2.25 in [233]).

The DGP model gives rise to a cubic interaction ∼ (∂ϕ)2□ϕ in its four-
dimensional effective theory [229], with ϕ being the Galileon [234]. The Galileon
is a scalar field with a shift symmetry (in analogy to Galilei transformation
in classical mechanics). The generalized Galileon [235] can be mapped to
the Horndeski theory [236]. The cubic Galileon model can be reduced to a
Horndeski model with the mapping

G4 = 1, K = −c2X, G3 = c3X/M3, (3.13)

where c3 and M are free parameters in the Galileon model. Note that it is
common to fix c2 = −1.
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3.2 parameterised frameworks of gravity

Above, we gave two examples of specific models of DE/MG. When approaching
cosmological observations, it might be useful first to assess in which direction
the data constrain gravity by adopting a phenomenological approach. Indeed,
working with parameterized frameworks of gravity is a powerful and efficient
way to test general relativity with no preference for a given model. In the
following, we present the most popular parameterized frameworks.

While the parametrization approach allows one to assess more general classes
of models, connections back to physics models can become ambiguous as the
phenomenological behavior of the models can be non-unique. This approach
can nevertheless provide a null test of the standard model of cosmology and a
general test of gravity.

An interesting alternative model-independent approach that does not rely on
fixing a parametrization is gravity reconstruction [237–241]. Latest results [242]
show how it is possible to restrict the theory space directly from cosmological
observations, reconstructing the redshift evolution of the MG functions via
numerical interpolation. In [242] the authors develop a sophisticated machinery,
prompt to be used with future high-precision observations.

3.2.1 MG phenomenological functions

Let us consider a Universe described by the metric of Equation 1.32, where
perturbations are determined by the potentials Ψ and Φ. A straightforward
approach to MG-DE theories is to cast all the modifications to the perturbation
evolution into two parameterized functions. One can refer to these as modified
growth or MG phenomenological parameters. Usually, one describes how the
coupling between gravity and matter density is modified, i.e. how changes the
Poisson equation. The other accounts for the variation among Ψ and Φ. In the
past decade, various choices of parametrization have been explored. We review
some of the most popular ones.

Following the notation of [243], possible MG parameters can be introduced
by modifying the standard equations in the sub-horizon quasi-static approxi-
mation

(i) Q(a, k) : −k2Φ ≡ 4πGa2Q(a, k)ρ∆, (3.14)

(ii) µ(a, k) : −k2Ψ ≡ 4πGa2µ(a, k)ρ∆, (3.15)

(iii) Σ(a, k) : −k2(Φ + Ψ) ≡ 8πGa2Σ(a, k), (3.16)

(iv) η(a, k) : η(a, k) ≡ Φ/Ψ, (3.17)

with ∆ ≡ δ + 3aHv/k being the Gauge-invariant comoving density perturba-
tion, ρ the energy density, and v the irrotational component of the peculiar
velocity. Q and µ modify the Poisson equation for Φ and Ψ, respectively. Σ
parametrizes the change in the lensing response to the massless particle to a
given matter field, and η, the so-called gravitational slip parameter, reflects the
non-zero anisotropic tensor. It is sufficient to choose two from the equations
(i − iv) given that they are obviously not independent. For Q = µ = Σ = η = 1
we recover the GR limit. For clustering DE models (e.g. k-essence [244, 245]),
there is no gravitational slip, but the Poisson equations can be modified (see
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Table 3.1: Connection between well-known models of DE-MG and the EFT formalism
(from Bloomfield et al. [21] and Frusciante and Perenon [250]). Here, 0 means
that the EFT function is identically equal to 0, ✓ indicates that the function is
present, – indicates that the function is not present, while ⋆ indicates that the
function is related to other EFT functions.

EFT functions Ω Λ c M4
2 M̄3

1 M̄2
2 M̄2

3 M̂2 m2
2

ΛCDM 0 ✓ – – – – – – –

f (R) ✓ ✓ – – – – – – –

Brans-Dicke ✓ ✓ ✓ – – – – – –

Quintessence 0 ✓ ✓ – – – – – –

k-essence 0 ✓ ✓ ✓ – – – – –

DGP ✓ ✓ ✓ ✓⋆ ✓ – – – –

Horndeski ✓ ✓ ✓ ✓ ✓ ✓ ✓⋆ ✓⋆ –

e.g. the review [13]).3 In general, modified gravity models can introduce mod-
ifications to the Poisson equation and incorporate anisotropic stress terms
with slip parameters that deviate from unity (e.g. Brans-Dicke, f (R), and DGP

theories). However, it is important to note that there can be exceptions within
specific subclasses of models, such as the generalized cubic covariant Galileon
model, which exhibits an equal potential Ψ = Φ [248]. Nevertheless, it is worth
mentioning that opposite signs of µ − 1 and Σ − 1 would tend to disfavor all
Horndeski models [249]. Moving forward, our focus will center on (µ, Σ) due
to their observational significance. Specifically, µ holds a connection to the
Newtonian potential and can be constrained through galaxy clustering via
redshift space distortions. On the other hand, Σ is linked to the Weyl potential
and can be probed by the lensing and ISW effects. While the slip parameter
η often possesses a simple functional form in many models, it tends to have
weaker constraints from data [18].

3.2.2 Effective field theory of dark energy

Effective field theory (EFT) is a general theoretical technique, which was first
employed in a cosmological scenario to the describe inflation [251–253]. It was
later applied to describe DE by means of a unifying and model-independent
framework [20, 21]. Indeed, the idea behind EFT of DE is to construct the most
general, single scalar field action to be effective, i.e. to be easily interfaced with
observations, and unifying, in the sense that it aims to include the highest
possible number of DE-MG models as special cases.

The recipe to construct the EFT action can be summarized as follows:

1. Usually, the validity of the weak equivalence principle is assumed a priori.
This makes the Jordan frame, where the metric is universally coupled to
the matter fields, the best-suited framework. We refer to [20] for details
on the Jordan frame and the alternative formulation in the Einstein frame;

3Strictly speaking, Ψ − Φ can be sourced by an anisotropic pressure and a short-wave correction
term. [246, 247] in the k-essence model. However, the absolute difference in the two potentials is
shown to be small and can be safely neglected [247].
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2. The action is constructed within the unitary gauge [251, 252]. In practice,
this means that the perturbation of the extra scalar degree of freedom
ϕ representing the DE-MG framework is vanishing. This corresponds
to foliate the 4-dimensional spacetime in 3-dimensional hypersurfaces
by breaking the time-translation symmetry and fixing a preferred time
slicing;

3. The chosen foliation is characterised through the unit vector nµ perpen-
dicular to the time slicing

nµ ≡ − ∂µϕ√︂
−ĝµν∂µϕ∂νϕ

= −
δ0

µ√︂
−ĝ00

, (3.18)

where ĝµν is the Jordan frame metric. From the unit vector, we can define
the extrinsic curvature Kµν as Kµ

ν = ∇µnν;

4. We construct the action from all the perturbed operators invariant under
the residual symmetry of spatial diffeomorphisms, such as the upper
time-time component of the metric δĝ00, the Riemann tensor δRµναβ, the
Ricci tensor δRµν and scalar δR, the extrinsic curvature δKµ

ν and its trace
δK;

5. Due to the broken time-translation symmetry, the coefficients of the
operators in the action are allowed to be time-dependent functions. We
call these parameters EFT functions.

The resulting EFT of DE action in conformal time up to the second order in
perturbations is

SEFT =
∫︂

d4x
√︁
−g

{︄
M2

Pl
2

[1 + Ω(τ)] R + Λ(τ)− c(τ)a2δg00

+
M4

2(τ)

2

(︂
a2δg00

)︂2
− M̄3

1(τ)

2
a2δg00δK − M̄2

2(τ)

2
(δK)2

− M̄2
3(τ)

2
δKµ

ν δKν
µ +

M̂2
(τ)

2
a2δg00δR(3)

+ m2
2(τ)(gµν + nµnν)∂µ

(︂
a2g00

)︂
∂ν

(︂
a2g00

)︂
+ . . .

}︄
+ Sm

[︁
ψm , gµν

]︁
,

(3.19)

where Sm is the matter action. There are nine time-dependent EFT functions:
{Ω, Λ, c} that multiply first-order operators and affect both the background
and the perturbation evolution, and {M4

2 , M̄3
1, M̄2

2, M̄2
3, M̂2, m2

2} for second
order operators that enter only in the evolution of the perturbations. We recover
the GR limit when all the EFT functions vanish, with the exception of Λ, and
the EFT action reduces to the standard Einstein-Hilbert one.

The EFT of DE framework allows for exploring a wide range of models. Within
the so-called pure EFT approach, one can test the bare effect of each operator
in the action, by parameterizing the evolution of the EFT function. Otherwise,
one can link the EFT parameters to well-known DE-MG models, i.e. mapping
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approach. For example, f (R) theories of gravity are simply connected to the
EFT formalism as follows [20]

Ω = fR , Λ =
M2

Pl
2

( f − R fR), c = 0, (3.20)

with M4
2 = M̄3

1 = M̄2
2 = M̄2

3 = M̂2
= m2

2 = 0. The corresponding relations can
be found also for the other models considered in this paper. In Table 3.1 we
gather a summary of how the EFT formalism is linked to specific models of DE.

The EFT formalism offers a powerful parameterized framework derived from
solid theoretical assumptions. It is widely used in literature and numerical
tools to work within the EFT frameworks are the Einstein-Boltzmann solver
EFTCAMB [254] and the MCMC sampler EFTCosmoMC4 [255]. For a complete
review of EFT of DE and a summary of the most recent constraints, we refer the
interested reader to [250].

3.2.3 The α-basis parameterisation

Although the EFT of DE framework allows to explore a very wide parameter
space, it is not always straightforward how to connect each EFT function to
a specific physical interpretation. An alternative parameterization that offers
a clearer physical meaning is the α-basis. First introduced by [256], with the
α-basis all the modifications of gravity described by Horndeski theories are
cast into four independent functions of time: αK(t), αB(t), αM(t) and αT(t). In
the following, we summarize the physical meaning attached to each of these
functions [256]:

• αK , dubbed as kineticity, is connected to the kinetic energy term in the
Horndeski lagrangian (see Equation 3.2) and depends on the functions K,
G3, G4 and G5;

• αB quantifies the braiding, i.e. the mixing between the kinetic terms of the
scalar field and the metric. It depends on the G3, G4 and G5 functions;

• αM describes the running of the effective Planck mass and can be easily
expressed in terms of Horndeski functions as

HM2
PlαM ≡ dMPl

dt
, (3.21)

with H being the Hubble parameter and M2
Pl ≡ 2

(︂
G4 − 2XG4,X +XG5,ϕ−

−ϕ̇HXG5,X

)︂
;

• αT is the tensor speed excess, that quantifies the excess of speed of grav-
itational waves with respect to the speed of light. It depends on the
Horndeski functions as

αT ≡ 2X
M2

Pl

[︁
2G4,X − 2G5,ϕ − (ϕ̈ − ϕ̇H)G5,X

]︁
. (3.22)

4See http://eftcamb.org/

http://eftcamb.org/
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The α-basis parametrization is widely used and it is implemented in the public-
available Einstein-Boltzmann solver hi-class5 [257, 258]. For further discussion
on this parametrization, including its connection to the EFT formalism, we refer
to [250, 256].

3.3 overview of recent constraints on de-mg models

We may now ask ourselves this question: why would we further study f (R) and
DGP gravity models given that we still need a cosmological constant Λ or DE component
to explain the cosmic acceleration? One of the motivations for studying the MG

theories was to explain accelerated expansion by replacing the cosmological
constant with a more natural model. Now that a large class of self-accelerated
models is being ruled out by constraints from large-scale structure and gravita-
tional waves [259, 260], MG theories result less attractive from a cosmological
perspective. These two benchmark models remain nevertheless meaningful in
certain ways. First, they are the few survivors from various tests at different as-
trophysical scales. At small scales, they can successfully incorporate screening
mechanisms to recover Newtonian gravity; at large scales, the enhancement
in structure growth they predict can be allowed by astrophysical probes when
choosing corresponding parameters properly. Second, we need to bridge obser-
vations and theory. These two models, with well-developed simulations and
analytic templates, are illustrative examples of what MG signals could possibly
look like for a given observable, especially when MG-induced features are
dominated by systematics of instrumental and astrophysical origin. Finally, the
cosmological constant is a phenomenological model that empirically describes
cosmic acceleration. It is not surprising that there is room to introduce further
parameters in this model and in the meantime, keep this model valid, while
numerous attempts in the MG models teach us what is the room left.

As an alternative to the model-specific approach, the parametrization frame-
work is another way of searching for deviations from GR and is highly com-
plementary, especially given that there are many MG models and it is hard to
study all models exhaustively.

3.3.1 Survivors from gravitational wave detections

In GR, the gravitational waves (GW) travel at the speed of light. Many modified
gravity models alter this prediction. Therefore, GW can put constraints on the
modified gravity models. A simple model-independent parametrization of the
speed of the gravitational wave is

c2
T = c2 (1 + αT(t)) , (3.23)

where c2
T is the speed of tensor modes, t is the physical time, αT is given

in Equation 3.22. The difference in the arrival time of the photons and the grav-
itational waves results in a bound of the property function αT(t). The property
function αT can be related to G4 and G5 functions defined in Equation 3.2 [236,
256]. Applying the condition αT = 0 we have the speed of GW being the speed
of light cT = c, and at the same time, eliminating part of L4 and the entire
L5 in the Horndeski Lagrangian given by Equation 3.2. Hence, models that

5See http://miguelzuma.github.io/hi_class_public/

http://miguelzuma.github.io/hi_class_public/
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involve quartic and quintic galileons are ruled out as they invoke the full L4
and L5, while the cubic galileons can still survive.

In the same way, we can ask ourselves which EFT functions do survive the
GW170817 event [261]. Being careful with the adopted notation and formalism,
it is possible to map αT into EFT functions. In the formalism of this paper this
relation would be [21, 250, 256]

αT = − M̄2
2/M2

Pl

1 + Ω + M̄2
2/M2

Pl

. (3.24)

If αT is suppressed by the GW detection, this implies that the M̄2 function is
vanishing.6 This rather simple condition on the EFT theories allows for a better
understanding of the implications of GW detection on the surviving theories. In
the f (R) case, M̄2 is zero (see Equation 3.20), therefore, GW does not constrain
f (R) model.

Another impact of modified gravity is through the running Planck mass αM,
linked to the Ω parameter in the EFT formalism. In the tensor sector, it acts
as a friction term in the equation of motion of GW. A running Planck mass
can thus change the GW amplitude and lead to a difference in the luminosity
distance by GW and its electromagnetic counterpart [262]; at the same time, it
can also move around the amplitude of the primordial peak of the B-mode
spectrum [263]. As the tensor-to-scalar ratio r also shifts the peak amplitude,
there is a degeneracy between the r and αM. This degeneracy can be lifted by
combining with probes sensitive to the scalar sector since a running Planck mass
can affect background evolution and structure growth [263]. [264] studied the
GW luminosity distance in f (R) gravity with simulated mock data for Einstein
telescope (ET) [26]. They found that the ET-like data in the first running decade
could only provide constraints for | fR0| < 10−2 and not be very helpful in
constraining the f (R) gravity. In the case of DGP models, the GW amplitude
could “leak” into higher dimensions. The leakage can cause additional GW

damping during its propagation. Therefore constraints can also be obtained by
comparing GW and electromagnetic luminosity distances. [265] performed the
study on the DGP model and found that the model is very poorly constrained
by GW170817 event, where only wavelengths comparable to the cosmic horizon
(very low frequency) can leak into extra dimensions.

3.3.2 Constraints from galaxy surveys and CMB

Since modified gravity can affect the growth of cosmic structure, the combi-
nation f (z)σ8(z), inferred from the anisotropic clustering of the galaxy auto-
correlation (see Section 2.1.2), can be used test for potential deviation from GR

(see e.g. the parametrization of f σ8 employed in [266]). Figure 16 in [14], shows
compiled measurements from past galaxy spectroscopic surveys, compared to
the ΛCDM cosmology using the best fitting value from Planck data [150] with a
5% errorbar. The precision on current constraints of growth rate in terms of
f σ8(z) is up to 8%. Future surveys with increased volume and the number of
galaxies will largely improve upon the statistical precision.

6Of course one could try to force αT = 0 also with very large Ω. However, this would lead to
exotic theories incompatible with the Universe we observe.
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Figure 3.2: Constraints (black) and forecasts (orange) for µ0 = µ|z=0 and Σ0 = Σ|z=0.
Plot reproduced from [14].

While the constraints on the product of f (z) and σ8(z) are consistent with the
standard GR scenario, there is a potential tension in σ8(z) [5, 8], in particular on
the derived parameter S8 ≡ σ8 (Ωm/0.3)0.5, as breafly discussed in Chapter 1.
Extensive research has been conducted on systematics related to various probes,
aiming to understand the possible systematics-induced tensions between the
early-time and multiple late-time measurements (see e.g. [138]). For example,
the CMB estimates are reliant on models via parameters related to amplitude,
such as the sum of neutrino mass and the optical depth. They can impact the
derived value of S8 [267]. Additionally, there is also an anomaly in Planck
lensing amplitude AL [182, 267–270]. The presence of an intriguing ∼ 2σ

tension between CMB measurements and several late-time measurements could
potentially indicate deviations from the standard ΛCDM model, provided that
systematic errors can be entirely ruled out. Tentative candidates are: axion
monodromy inflation [271–273], sterile neutrinos [274, 275], alternative DE

models [276–279], and modified gravity models [243, 280–282]. However, if this
discrepancy is attributed to exotic physics, the proposed model must reconcile
the effects at both early and late times and successfully pass the scrutiny from
cosmological probes.

Figure 3.2 shows the constraints from the current survey (black) and the
forecast (brown) on the µ0 = µ|z=0 and Σ0 = Σ0|z=0 functions (see Equa-
tion 3.16 and Equation 3.17). In the case of GR, we expect µ0 − 1 = 0 and
Σ0 − 1 = 0. The current constraints [4, 5, 283, 284] are all consistent with GR.
Future surveys on galaxy clustering, weak lensing, line intensity mapping,
cosmic microwave background, and gravitational wave will greatly improve
upon the constraints [118, 239, 285, 286].

Finally, we summarize the current constraints on the f (R) gravity parameter
as a function of scale for different probes. While the current surveys can
only establish a lower limit for the present-day value of fR0 at approximately
10−4, future galaxy surveys and CMB experiments (Section 2.2) hold promising
potential for enhancing the constraints. Moreover, probes such as 21cm (see
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next section) and underdense regions [287] can be harnessed to offer further
promising avenues.

3.3.3 Constraints from line intensity mapping

Studies in the literature mostly focused on forecasting the constraining power
of future observations since there have been no LIM auto power spectrum detec-
tion yet, as discussed in Section 2.2.3. For 21cm intensity mapping a variety of
scenarios were taken into account. Some of them focused on the EoR epoch [49,
289–291]. For the late-time Universe, 21cm IM is expected to improve the con-
straints on the background evolution [292–294], but also the perturbations [295].
Several models were studied, from phenomenological parametrizations to spe-
cific theories. Some studies tried to forecast the constraints on the µ, Σ and
η MG functions, e.g. [285], while other focused on EFT of DE [117]. Specific
studied models are f (R) [159, 160], generalised scalar-tensor theories [296],
early DE [297, 298], interacting DE [299, 300], and others [91, 301]. Recently, sev-
eral studies focused on the cross-correlation between IM and other LSS probes,
such as weak lensing, gravitational waves, and galaxy clustering [118, 286,
302, 303]. The constraining power on DE of other lines, instead, is still mostly
uncharted [304, 305].

The main take-home message of this intense work carried out by the com-
munity is that LIM observations are expected to improve significantly the
constraining power on beyond-ΛCDM models, due to their ability to sample
wide ranges of redshift, i.e. its tomographic nature. To support this statement
we refer again to Figure 3.2.

This work contributed to the scientific discussion by studying the constrain-
ing power of 21cm observations on EFT models of DE [117] and forecasting
cross-correlation observations between 21cm IM and GW [118]. We refer to Chap-
ter 6 and Chapter 7 respectively for a detailed discussion.

6Ref. [288] found the fR0 is unconstrained in the cosmic shear analysis after marginalizing over
nuisance or cosmological parameters.
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T he 21cm signal measurements, obtained with radio telescopes through This chapter is
based on
the publication
«Multipole
expansion for
21cm intensity
mapping power
spectrum: Fore-
casted cosmological
parameters
estimation for the
SKA Observatory.»,
by M. Berti,
M. Spinelli, and
M. Viel, in Mon.
Not. Roy. Astron.
Soc. 521.3
(2023) [115].

the 21cm signal emission, have the potential to become a key cosmo-
logical probe in the upcoming years, as discussed in Section 2.1. In

this chapter, we explore the constraining power of 21cm intensity mapping
observations on the full set of cosmological parameters that describe the ΛCDM

model. We focus on the first two detectable multipoles of the 21cm power
spectrum.

We find that 21cm multipole observations alone are enough to obtain con-
straints on the cosmological parameters comparable with other probes. Combin-
ing the 21cm data set with CMB observations significantly reduces the estimated
errors. The strongest effect is on Ωch2 and H0, for which the error is reduced by
almost a factor of four. We conclude that 21cm SKAO observations will provide
a competitive cosmological probe, complementary to CMB and, thus, pivotal
for gaining statistical significance on the cosmological parameters constraints,
allowing a stress test for the current cosmological model.

The discussion is organized as follows. The modeling of the 21cm power
spectrum and power spectrum multipoles is discussed in Section 4.1, while
Section 4.2 is devoted to the construction of the mock data set and the likelihood
implementation. Results are presented in Section 4.3. The constraining power
of the mock 21cm power spectrum multipoles is evaluated in Section 4.3.1.
We investigate how 21cm observations affect the constraining power of other
probes, i.e. CMB measurements, in Section 4.3.2. A discussion on the impact of
opening the parameter space to the brightness temperature, the HI bias, and
the growth rate is given in Section 4.3.3. We also investigate the impact of
extending our mock data set to non-linear scales in Section 4.3.4. A summary
of the results and our conclusions are outlined in Section 4.4.

Through all this work we assume a Universe described by a Planck 2018 [4]
fiducial cosmology (see Section 1.3).

4.1 modelling the 21cm signal

In this section, we outline the formalism used throughout this work. We
describe the theoretical 21cm linear power spectrum in Section 4.1.1, how the
telescope effects impact the theoretical model in Section 4.1.2, and define the
final observables in Section 4.1.3.

4.1.1 The theoretical 21cm signal linear power spectrum

The 21cm power spectrum conveys rich cosmological information: it is a biased,
redshift-dependent tracer of the matter distribution and thus an interesting
probe of the three-dimensional LSS of the Universe.

53
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As discussed in Section 2.1, we model the 21cm linear power spectrum as [57,
153, 158]

P21(z, k, µ) = T̄2
b(z)

[︂
bHI(z) + f (z) µ2

]︂2
Pm(z, k), (4.1)

where T̄b is the HI mean brightness temperature, bHI is the HI bias, f is the
growth rate, µ = k̂ · ẑ is the cosine of the angle between the wave number and
the line-of-sight, and Pm(z, k) is the linear matter power spectrum. We neglect
in Equation 4.1 the shot noise term, which is believed to be negligible at linear
scales [93, 158, 306, 307]. We refer to section Section 4.3.4 for a discussion on
non-linear scales and the shot noise term.

We use the parametrization of the brightness temperature from [51]

T̄b(z) = 180 ΩHI(z)
h H0
H(z)

(1 + z)2mK, (4.2)

where we consider the HI density parameter to evolve mildly in redshift as
ΩHI(z) = 4.× 10−4(1+ z)0.6(see [308]). Given that we lack an analytical model,
bHI(z) at fixed redshift is computed by interpolating numerical results from
hydro-dynamical simulations [158, 309].

The growth rate f (z) and the linear matter power spectrum Pm(z, k) are,
instead, computed numerically by means of the Einstein-Boltzmann solver
CAMB1 [173].

4.1.2 The effect of the telescope on the theoretical 21cm signal power spectrum

One of the main instrumental effects on the theoretical 21cm power spectrum is
the telescope response that we model as a Gaussian beam which suppresses the
power spectrum on scales smaller than the beam’s full width at half maximum
[51, 55, 68, 310, 311].

This effect can be written in terms of Rbeam, the beam physical dimension

Rbeam(z) = σθr(z)

=
θFWHM

2
√

2 ln 2
r(z),

(4.3)

where r(z) is the comoving distance, θFWHM = 1.22λ21
Ddish

(1 + z) is the full width
at half maximum, and Ddish is the diameter of the dish.

The beam damping factor in Fourier space B̃(z, k, µ) can thus be written as

B̃(z, k, µ) = exp

[︄
−k2R2

beam(z)(1 − µ2)

2

]︄
. (4.4)

Note that the factor (1 − µ) model the smoothing only along the transverse
direction since the damping along the radial direction is negligible due to the
high-frequency resolution of 21cm observation [310].

The observed, i.e. beam convolved, 21cm power spectrum is then

P̂21(z, k, µ) = B̃2
(z, k, µ)P21(z, k, µ), (4.5)

where P21(z, k, µ) is defined in Equation 4.1.

1See https://camb.info/.

https://camb.info/
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4.1.3 Multipole expansion

The non-isotropic redshift space 21cm power spectrum can be decomposed
using Legendre polynomials Lℓ(µ) as

P̂21(z, k, µ) = ∑
ℓ

P̂ℓ(z, k)Lℓ(µ). (4.6)

The first Legendre polynomials are the following functions of µ

L0(µ) = 1, L2(µ) =
3µ2

2
− 1

2
. (4.7)

The coefficients of the expansion, i.e. the multipoles of the 21cm power spectrum,
are then given by

P̂ℓ(z, k) =
(2ℓ+ 1)

2

∫︂ 1

−1
dµLℓ(µ)P̂21(z, k, µ), (4.8)

where the expression for P̂21(z, k, µ) can be found in Equation 4.5.
In our analysis, we construct mock observations for the monopole P̂0(z, k)

and the quadrupole P̂2(z, k), i.e. ℓ = 0 and ℓ = 2 respectively. We refer to
Appendix a for the explicit analytical expression of these quantities.

4.2 forecasting the skao constraining power

In this section we focus on the SKA-Mid telescope and its proposed cosmologi-
cal surveys describing our methodology to obtain realistic forecasts on their
constraining power on the cosmological parameters. In Section 4.2.1 and Sec-
tion 4.2.2 we construct the mock tomographic data set of SKA-Mid observations.
The description of the likelihood function and the parameter estimation method
are reported in Section 4.2.3.

4.2.1 SKA-Mid telescope specifications

We construct mock single-dish 21cm power spectrum observations of the SKA-
Mid telescope, modeling the 21cm IM survey as in [57]. The telescope specifica-
tions relevant to our work are reported in Table 4.1.

We assume a combination of two surveys: a Medium-Deep Band 2 survey
that covers a sky area of 5,000 deg2 in the frequency range 0.95 − 1.75 GHz
(i.e. the redshift range 0 − 0.5); a Wide Band 1 survey that covers a sky area
of 20,000 deg2 in the frequency range 0.35 − 1.05 GHz (i.e. the redshift range
0.35− 3). We forecast observations for six equi-spaced, non-overlapping redshift
bins, in the range z = 0 − 3 with ∆z = 0.5. The six bins are centered at
redshifts zc = {0.25, 0.75, 1.25, 1.75, 2.25, 2.75}. We assume the Band 2 survey
specification for the mock 21cm power spectrum at redshift 0.25 and the Band 1

survey specification for all the others. Note that in our analysis each bin is
regarded as independent.

The survey sky coverage and the redshift range define the volume for the
mock observations thus fixing the range of accessible scales for our analysis. In
Fourier space, the largest scale available at each central redshift is kmin(zc) =
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Table 4.1: Assumed specifications for SKA-Mid survey [57].

Parameter Value

Ddish [m] SKAO dish diameter 15

Ndish SKAO dishes 133

tobs [h] observing time 10000

Tsys [K] system temperature 25

δν [MHz] frequency resolution 1

∆z width of the redshift bins 0.5

Medium-Deep Band 2

band frequency range 0.95 - 1.75 GHz

corresponding redshift range 0 - 0.5

A2 [deg2] survey area 5000

Ωsur,2 [sr] survey area 1.5

fsky,2 covered sky area 0.12

Wide Band 1

band frequency range 0.35 - 1.05 GHz

corresponding redshift range 0.35 - 3

A1 [deg2] survey area 20000

Ωsur,1 [sr] survey area 6.1

fsky,1 covered sky area 0.48

2π/ 3
√︁

Vbin(zc), where Vbin(zc) is the volume of each redshift bin, defined in
Equation 4.10 in Section 4.2.2.1.

The smallest scale is, instead, imposed by the size of the telescope beam
and it can be estimated as kmax(zc) = 2π/Rbeam(zc). At scales smaller than
kmax, the signal is dominated by the beam providing no relevant information
on cosmology. Although we do not show results here, we tested pushing the
kmax limit beyond the beam scale. We found no significant impact on the
cosmological parameters constraints. If not already provided by the cut-off
given by the size of the telescope beam, we impose a kmax = 0.2 hMpc−1 to
avoid entering the non-linear regime for the power spectrum.

Finally, we choose a fixed k-bin width as a function of redshift ∆k(zc) in order
to be large enough for modes to be independent, assuming ∆k(zc) ∼ 2kmin(zc).

4.2.2 Mock data set

In the following, we discuss the sources of errors considered in this work and
present the final mock data set used to forecast the constraining power of the
21cm observations.
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Table 4.2: Computed values of redshift dependent quantities at each central redshift zc.
For the first redshift bin (z = 0.25) we assume SKA-Mid Band 2 specifications,
while we use SKA-Mid Band 1 parameters for the other five bins. We refer to
Table 4.1 for a list of used SKA-Mid specifications.
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4.2.2.1 Instrumental noise

For a single-dish intensity mapping SKAO-like experiment, the noise power
spectrum can be modeled as [37, 156]

PN(z) =
T2

sys4π fsky

Ndishtobsδν

Vbin(z)
Ωsur

. (4.9)

Here, given a redshift bin centered at z and of width ∆z, the volume of the
redshift bin Vbin(z) can be computed as

Vbin(z) = Ωsur

∫︂ z+∆z/2

z−∆z/2
dz′

dV
dz′dΩ

= Ωsur

∫︂ z+∆z/2

z−∆z/2
dz′

cr(z′)2

H(z′)
.

(4.10)

with r(z) being the comoving distance. A description of all the other parameters
that appear in Equation 4.9 and their assumed values can be found in Table 4.1.

4.2.2.2 Variance

To construct mock observations we need an estimate of the errors on the power
spectrum. Following e.g. [156] we write the variance per k and µ bin σ(z, k, µ)
as

σ2(z, k, µ) =

(︂
P̂21(z, k, µ) + PN(z)

)︂2

Nmodes(z, k, µ)
, (4.11)

where P̂21(z, k, µ) is the 21cm signal power spectrum, defined in Equation 4.5,
and PN(z) is the noise power spectrum of Equation 4.9. Nmodes(z, k, µ) is the
number of modes per k and µ bins in the observed sky volume. We can compute
it as

Nmodes(z, k, µ) =
k2∆k(z)∆µ(z)

8π2 Vbin(z). (4.12)

Here, Vbin(z) is the volume of the redshift bin centered at z, while ∆k(z) and
∆µ(z) are the k and µ bin width respectively. In our analysis, however, we
integrate over all the possible values of µ in the interval µ ∈ (−1, 1), as we will
discuss in more detail in the next section. Thus, computing the number of µ

modes, Equation 4.12 reduces to

Nmodes(z, k) =
k2∆k(z)

4π2 Vbin(z). (4.13)

4.2.2.3 Multiple covariance

Another source of error is the covariance between different multipoles. We
define the covariance between the multipoles ℓ and ℓ′ as a function of k and z
[see 50, 51, 312–314]

Cℓℓ′ (z, k) =
(2ℓ+ 1)(2ℓ′ + 1)

2

∫︂ 1

−1
dµLℓ(µ)Lℓ′ (µ) σ2(z, k, µ), (4.14)

where we neglect mode coupling. Here, σ2(z, k, µ) is the variance per k and µ

bin at redshift z, as defined in Equation 4.11. In our analysis we focus on the
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monopole P̂0 and the quadrupole P̂2 and assume a set of N measurements of
the 21cm multipoles at scales {k1, . . . , kN}

The multipole covariance defined in Equation 4.14 allows us to estimate
both the covariance for a given multipole and between different multipoles.
Thus, the most general covariance matrix for P̂0 and P̂2 combined is a 2N × 2N
symmetric block matrix. At fixed redshift, it is constructed as

C(z) =

(︄
C00(z) C02(z)

C02(z) C22(z)

)︄
. (4.15)

Each block Cℓℓ′ is a diagonal matrix of dimensions N × N, defined as Cℓℓ′ (z) =
diag(Cℓℓ′ (z, k1), . . . , Cℓℓ′ (z, kN)), where the elements Cℓℓ′ (z, ki) are computed
as in Equation 4.14 at each {k1, . . . , kN}.

The blocks along the diagonal, i.e. C00(z) and C22(z), are the covariance
matrices for the monopole and the quadrupole alone. The off-diagonal block
C02(z), instead, describes the covariance between P̂0 and P̂2.

In the simplified case where the monopole P̂0 and the quadrupole P̂2 are
uncorrelated, we can neglect the off-diagonal terms in C(z) and assume the
block-diagonal covariance matrix

Cdiag(z) =

(︄
C00(z) 0

0 C22(z)

)︄
. (4.16)

In our work, we compute the covariance matrices C00(z), C02(z), C22(z),
Cdiag(z), and C(z) numerically, from the analytical expression for the monopole
and the quadrupole (see Appendix a).

4.2.2.4 Mock data set errors

Taking into account the sources of errors described above, we can compute the
errors on our mock data points assuming the SKA-Mid observations.

Assuming a set of N measurements of the 21cm multipole P̂ℓ at scales
{k1, . . . , kN}, the computed error on each point of the data set is

σP̂ℓ
(z, ki) =

√︂
Cℓℓ(z, ki)

=

√︄
(2ℓ+ 1)2

2

∫︂ 1

−1
dµL2

ℓ(µ) σ2(z, ki , µ),
(4.17)

for each ki in {k1, . . . , kN}.
At each central redshift zc and data point k we compute the monopole

P̂0(zc , k), the quadrupole P̂2(zc , k) and the errors, as discussed above. In ta-
ble Table 4.2, we gather some of the used redshift-dependent quantities for the
interested reader. The resulting forecasted data sets for the monopole and the
quadrupole are shown in Figure 4.1.

4.2.3 Constraining the cosmological parameters

In order to exploit the constraining power of the mock data set presented
in Section 4.2.2, we define a likelihood function (Section 4.2.3.1) and then
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Figure 4.1: Tomographic mock data set for 21cm linear power spectrum monopole (upper
panel) and quadrupole (lower panel) observations. The considered six redshift
bins are centered at redshifts {0.25, 0.75, 1.25, 1.75, 2.25, 2.75}. For the first
redshift bin (black dashed line) we assume a SKA-Mid Band 2 survey. The
data sets for the other five bins, instead, assume a SKA-Mid Band 1 survey
(see Table 4.1). We refer to Section 4.2.2 for further details on how the signal
and the errors are computed.

set up the framework to constrain the cosmological parameters adopting a
Bayesian approach (Section 4.2.3.2). Given a set of observations and a theory
that depends on that set of parameters, the Bayes theorem links the posterior
distribution to the likelihood function. The high-dimensional posterior can
then be sampled using MCMC methods (see Section 2.1).

4.2.3.1 Likelihood function and signal-to-noise

Given a set of measurements at scales {k1, . . . , kN} and redshift zc, to compute
the likelihood function we define the vector

Θ(zc) =
(︂

P̂0(zc), P̂2(zc)
)︂

, (4.18)
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Figure 4.2: Signal-to-noise ratio as a function of k (see Equation 4.20). In the upper
panel, we show the signal-to-noise at given redshift z = 0.75, for different
combinations of multipoles: the monopole alone (blue dashed-dotted line),
the quadrupole alone (pink dotted line), the two combined (green dashed line)
and the two combined considering the full non-diagonal covariance matrix
(yellow solid line). In the lower panel, we show the signal-to-noise redshift
dependence for the monopole and the quadrupole combined, considering
a diagonal covariance matrix (dashed lines) and the full non-diagonal one
(solid lines).

with P̂ℓ(zc) = (P̂ℓ(zc , k1), . . . , P̂ℓ(zc , kN)). When we use both the monopole
and the quadrupole, the logarithmic likelihood is computed as

− ln
[︁
L
]︁
= ∑

zc

1
2

∆Θ(zc)
T C−1(zc)∆Θ(zc), (4.19)

where we define ∆Θ(zc) = Θth(zc)− Θobs(zc), the difference between the val-
ues of Θ(zc) predicted from theory and observed. Here, C(zc) is the covariance
matrix defined in Equation 4.15, which becomes Cdiag(zc), i.e. Equation 4.16,
when we neglect multipole covariance. We consider independent redshift bins,
i.e. we simply sum over the contribution from each central redshift. When
studying P̂0 and P̂2 separately we use only the relevant blocks of the covari-
ance matrix C(zc), thus using a simplified version of Equation 4.19.
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Using a similar formalism, we can compute the signal-to-noise at a specific k
for each central redshift as

[S/N]2(zc , k) = Θk(zc)
T C−1

k (zc)Θk(zc) (4.20)

where Θk(zc) = (P̂0(zc , k), P̂2(zc , k)) and Ck(zc) is a matrix defined as

Ck(zc) =

(︄
C00(zc , k) C02(zc , k)

C02(zc , k) C22(zc , k)

)︄
. (4.21)

The expression of the signal-to-noise when we neglect the multipole covariance
or when we use only P̂0 or P̂2 is modified accordingly, as described for the
likelihood function above.

The resulting signal-to-noise as a function of k is shown in Figure 4.2. We
recall that the maximum scale explored is the minimum scale between the
maximum scale imposed by the beam width and the linear regime cut-off of
kmax = 0.2 hMpc−1 (see Section 4.2.2.4).

At fixed redshift (upper panel of Figure 4.2), we observe that, when the
monopole and the quadrupole are used together (ℓ = 0, 2), we get a higher
signal-to-noise with respect to the monopole (ℓ = 0) and the quadrupole (ℓ = 2)
alone. For the ℓ = 0, 2 case, we observe that when we consider multipole
covariance (yellow solid line) we get an enhancement of the signal-to-noise at
higher scales and a suppression at lower ones. As discussed in [68], this effect
is caused by the beam smoothing factor in the model for P̂21 (see Section 4.1.2).
We examine the implications of using different combinations of multipoles on
the parameters constraints in Section 4.3.1.

We show how the signal-to-noise decreases as a function of redshift in
the lower panel of Figure 4.2. Its shape is consistent at all redshifts (the full
signal-to-noise for the mock measurements in Band 2 (z = 0.25), can be found
in Figure 4.8). In our analysis, we will always consider the cumulative contri-
bution from all the redshift bins.

4.2.3.2 Numerical analysis

To perform the MCMC analysis we use an expanded version of the MCMC

sampler CosmoMC2 [136, 212]. We modify it in order to include the computation
of the theoretical expectations for the monopole and the quadrupole (see
Appendix a) and of the likelihood function defined above (see Equation 4.19).

The analysis of the MCMC samples to compute the marginalized constraints
is performed with the Python package GetDist3 [315].

We conduct an MCMC analysis varying the six parameters describing the
ΛCDM model, i.e. we vary {Ωbh2, Ωch2, ns , ln(1010 As), τ, 100θMC}. Results on
other parameters, such as H0 and σ8, are derived from results on this set. We
list the fiducial values and the flat prior we use in Table 4.3.

2See https://cosmologist.info/cosmomc.
3See https://getdist.readthedocs.io.

https://cosmologist.info/cosmomc
https://getdist.readthedocs.io
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Table 4.3: Assumed fiducial cosmology [4] and used flat priors.

Parameter Fiducial value Prior

Ωbh2
0.022383 [0.005, 0.1]

Ωch2
0.12011 [0.001, 0.99]

ns 0.96605 [0.8, 1.2]

ln(1010 As) 3.0448 [1.61, 3.91]

τ 0.0543 [0.01, 0.8]

100θMC 1.040909 [0.5, 10]

4.3 results

We present in this section the results of our analysis. We first explore the
constraining power of the mock 21cm data set, using different combinations of
multipoles (Section 4.3.1); we then combine the mock data set with Planck CMB

data (Section 4.3.2); we study the effect of nuisance parameters describing the
neutral hydrogen astrophysics in Section 4.3.3; finally, we discuss the impact of
non-linear scales in Section 4.3.4.

We show the marginalized 1D and 2D posteriors for the studied set of param-
eters. Note that 68% confidence level constraints are presented as percentages
with respect to the marginalized mean value. We recall that with the label
"Planck 2018" we refer to the combination TT, TE, EE + low-ℓ + lowE + lensing
(see Section 2.2.1).

4.3.1 Probing the constraining power of 21cm signal observations

In Figure 4.3 and Table 4.4, we show the marginalized contours and constraints4

that we obtain using our SKA-Mid tomographic data set, i.e. with observations
at different redshifts, for different combinations of multipoles. Note that we
show only some of the model parameters for brevity.

As one could expect from the signal-to-noise predictions of Figure 4.2, using
only the quadrupole leads to the broadest constraints, while the most con-
straining results are obtained for the monopole and the quadrupole combined.
The off-diagonal terms of the multipole covariance do not affect much the con-
straints. The marginalized percentage constraints for the baseline case (P̂0 + P̂2
considering the full covariance) for the complete set of cosmological parameters
can be found in Figure 4.6 and Table 4.6.

Our results show, as expected, that the constraining power on the cosmo-
logical parameters of the SKA-Mid mock data set is greater than what one
could obtain with MeerKAT alone [117]. The data set we constructed is enough
to constrain five out of six of the cosmological parameters. This is because
21cm observations are not sensitive to variations on τ, which remains uncon-
strained. The marginalized confidence levels are broad with respect to Planck
constraints [4], but comparable with other probes. E.g., with tomographic ob-

4We specify that, when dealing with asymmetrical posterior distributions, we estimate the
percentage constraint using the mean value between the left and right marginalized error. Given that
this is a forecasts analysis, this approximation is enough for the purpose of this work.
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Figure 4.3: Joint constraints (68% and 95% confidence regions) and marginalized poste-
rior distributions on a subset of the cosmological parameters. We show the
constraints obtained using the mock tomographic data set for the monopole
only ("P̂0"), the quadrupole only ("P̂2"), the two combined with ("P̂0 + P̂2 full
covariance") and without ("P̂0 + P̂2 diagonal") considering multipole covari-
ance. The relative constraints are listed in Table 4.4.

servations of the monopole and the quadrupole combined, we constrain H0
with a relative error of σH0 = 7.4%,

H0 = 71.6+3.8
−6.8 km s−1Mpc−1

(68%, P̂0+P̂2 - full covariance). (4.22)

We stress that when we state a constraint on a single parameter obtained using
our mock 21cm data set, the central value does not have any physical meaning
and it is driven by the input fiducial cosmology value.

Although not competitive with Planck, our tomographic measurements
with six redshift bins and at linear scales provide an estimate of H0 with an
uncertainty comparable with others late Universe measurements [11], and, as
we further discuss in Section 4.3.4, constraints on H0 are improved if we extend
our data set to non-linear scales. SKA-Mid 21cm observations will have thus the
potential to provide new information for the discussion on the H0 value [316].

Looking at the 2D contours, we observe that there is a marked degeneracy
between the cosmological parameters. As already found for mock MeerKAT

observations, 21cm measurements show a strong degeneracy in the H0 - Ωch2

plane [117]. This feature is ascribable to the dependence on the matter power
spectrum. At the considered scales the shape of Pm(k) is found to be dependent
on the combination of parameters Ωmh [317]. A measure of the 21cm multipoles
would fix up to some degree of confidence the shape of the matter power spec-
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Table 4.4: Marginalized percentage constraints on cosmological parameters at the 68%
confidence level. We show the results obtained using the mock tomographic
data set for the monopole only ("P̂0"), the quadrupole only ("P̂2"), the two
combined with ("P̂0 + P̂2 full covariance") and without ("P̂0 + P̂2 diagonal")
considering multipole covariance. Confidence regions for the same set of results
are shown in Figure 4.3.

Parameter P̂0 P̂0
P̂2 + P̂2 P̂0 + P̂2

diagonal full covariance

Ωch2
16.71% 21.57% 12.71% 13.36%

ns 4.59% 5.59% 3.55% 3.44%

ln(1010 As) 10.94% 15.26% 8.26% 8.83%

H0 9.09% 12.01% 6.91% 7.39%

σ8 9.56% 11.92% 7.11% 7.64%

trum and, in turn, the value of Ωmh. This implies that Ωmh2, and consequently
Ωch2, is correlated with h and H0. This correlation is pivotal when combining
intensity mapping data with CMB measurements, as we discuss in the following
section.

4.3.2 21cm signal observations combined with CMB data

In the above section, we studied the constraining power of the 21cm multipoles.
Here, we combine our baseline data set (the monopole P̂0 plus the quadrupole
P̂2 considering the full covariance) with Planck CMB measurements. The ratio-
nale behind this is to investigate if and how 21cm observations can complement
the detailed information on the cosmological parameters carried by the CMB.

We refer to Section 2.2.1 for a description of the used Planck 2018 [4] data
sets and likelihoods. For consistency, we first run the Planck likelihood in
our framework and reproduce constraints in agreement with the Planck 2018

results ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ωch2 = 0.1201 ± 0.0012

H0 = 67.32 ± 0.53 km s−1Mpc−1

ln(1010 As) = 3.045 ± 0.014

σ8 = 0.8115 ± 0.0060

(68%, Planck 2018). (4.23)

Our results for the combination of the CMB data and our mock 21cm obser-
vation are presented in Table 4.5 and in Figure 4.4. Adding the 21cm power
spectrum multipoles to the CMB significantly improves the constraining power
on the majority of the cosmological parameters. The effect is particularly pro-
nounced on Ωch2 and H0, for which the error is reduced by approximately a
fourth. This gain in constraining power is due to the combination of opposite
degeneracy directions between the CMB and the 21cm power spectrum on these
cosmological parameters. This effect is particularly strong in the H0 - Ωch2

plane, where the degeneracy is completely removed. In the As - σ8 plane, the
effect is milder but still significant.
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Figure 4.4: Joint constraints (68% and 95% confidence regions) and marginalized posterior
distributions on cosmological parameters. The label "Planck 2018" stands
for TT, TE, EE + lowE + lensing, while the label "P̂0 + P̂2" stands for the
baseline tomographic data set for the monopole and the quadrupole combined
and with multipole covariance taken into account. The label "nuisances"
(dashed line) indicates that we vary the nuisances parameters along with the
cosmological ones. The relative constraints are listed in Table 4.5.

In more detail, we find⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ωch2 = 0.12014 ± 0.00030

H0 = 67.28 ± 0.11 km s−1Mpc−1

ln(1010 As) = 3.0463 ± 0.0052

σ8 = 0.8125 ± 0.0021

(68%, Planck 2018+P̂0+P̂2). (4.24)

We recall that the central value of the obtained constraints does not have a
physical meaning and it is driven by the input fiducial cosmology we use for
our mock 21cm observations. However, these values are useful to properly
visualize the constraining power of our mock observations.

More important from a quantitative point of view is, instead, the relative
error. We find σΩch2 = 0.25% and σH0 = 0.16%, to be compared with the Planck
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Table 4.5: Marginalized percentage constraints on cosmological parameters at the 68%
confidence level. Here, the label "Planck 2018" stands for TT, TE, EE + lowE +
lensing, while the label "P̂0 + P̂2" stands for the baseline tomographic data set
for the monopole and the quadrupole combined and with multipole covariance
taken into account. The label "nuisances" indicates that we vary the nuisance
parameters along with the cosmological ones. The label "single bin" indicates
that use the mock observation of the 21cm multipoles in a single redshift bin
centered at z = 0.82. Confidence regions for the same set of results are shown
in Figure 4.4.

Parameter Planck 2018 +P̂0 + P̂2 + nuisances single bin

Ωbh2
0.64% 0.49% 0.49% 0.73%

Ωch2
0.99% 0.25% 0.27% 0.39%

ns 0.42% 0.27% 0.31% 0.32%

ln(1010 As) 0.46% 0.17% 0.45% 0.26%

τ 13.44% 6.09% 12.19% 7.69%

100θMC 0.03% 0.03% 0.03% 0.04%

H0 0.79% 0.16% 0.20% 0.25%

σ8 0.73% 0.26% 0.70% 0.45%

only estimates of σΩch2 = 0.99% and σH0 = 0.79%. The estimate of the error
on H0 we obtain combining 21cm power spectrum multipoles with CMB is
competitive with other LSS probes, e.g. with Euclid5 forecasts [34]. The errors
on As and σ8 are significantly reduced too, by more than a factor two: the
relative errors are σln(1010 As) = 0.17% and σσ8 = 0.26% to be compared with
σln(1010 As) = 0.46% and σσ8 = 0.73% of the Planck only result. Moreover, it is
interesting to see how the improvement on the other cosmological parameters
induces a better estimate of τ, although the 21cm observable alone has not a
significant constraining power on it.

From our analysis, it is clear that combining the CMB, an early Universe probe,
with late-time LSS measures strengthens our knowledge of the ΛCDM model.
The strong improvement obtained on Ωch2 and H0 is due to the dependence on
the matter power spectrum of the 21cm multipoles, which fixes the product Ωmh
as discussed above. CMB observations fix a different combination of parameters,
i.e. Ωmh3 [318], resulting in Ωch2 and H0 to be anti-correlated [137]. Providing
an independent measurement of Ωmh, e.g. with 21cm observations, removes
the degeneracy and improves the constraints on Ωmh2 and h, which impacts
directly on Ωch2 and H0. This is a well-known effect, found also in [38]. Our
analysis improves on previous works by using the latest available CMB data,
the SKAO survey specifications, and full MCMC computations.

The advantage of 21cm observations over galaxy clustering surveys lies in its
tomographic nature. Measuring the 21cm signal within the full frequency range
that will be accessible with SKAO will provide a view of the late-time Universe
with exquisite redshift resolution up to redshift 3. This will complement the
cosmological information carried by the CMB, which is a two-dimensional probe
of the early Universe. To prove the importance of observations within multiple
redshift bins, we compare in Figure 4.5 our tomographic results with a single

5https://sci.esa.int/web/euclid

https://sci.esa.int/web/euclid
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Figure 4.5: Joint constraints (68% and 95% confidence regions) and marginalized posterior
distributions on cosmological parameters. The label "Planck 2018" stands for
TT, TE, EE + lowE + lensing, while the label "P̂0 + P̂2" stands for the baseline
tomographic data set for the monopole and the quadrupole combined and
with multipole covariance taken into account. The label "single bin" indicates
that use the mock observation of the 21cm multipoles in a single redshift bin
centered at z = 0.82. The relative constraints are listed in Table 4.5.

bin observation at redshift z = 0.82, that mimics the analysis carried out in
[68], when both are combined with Planck data. We find that using multiple
bins observations significantly improves the constraints, especially for Ωch2

and H0. The error on H0 shrinks from 0.25%, in the single bin case, to 0.16%,
in the tomographic one, as shown in Table 4.5.

We conclude that tomographic 21cm observations provide complementary
information to the CMB, allowing for a significantly improved estimation of the
cosmological parameters.

Note that the improvement is stronger than the effect of adding BAO mea-
surements to the CMB [4]. Although we do not show results here, we tested
also the effect of using BAO [266, 319, 320] along with the multipoles and the
CMB, finding no significant repercussion on the constraints.

4.3.3 Introducing astrophysical uncertainties

In the analysis discussed above, we assumed perfect knowledge of the astro-
physics involved in the estimate of 21cm signal observations. In particular, we
assumed to know the total HI density ΩHI (that enters in Equation 4.2) and
the HI bias bHI as a function of redshift. However, these quantities depend on
the detailed baryon physics at play and their connection with dark matter is
not completely understood [e.g. 158, 307, 321, 322]. To take into account our
ignorance on these parameters in our analysis, we follow [156] and rewrite the
power spectrum of Equation 4.5 as

P̂21(z, k, µ) = B̃2
(z, k, µ)

[︂
T̄b(z)bHI(z)σ8(z)+

+ T̄b(z) f (z)σ8(z) µ2
]︂2 Pm(z, k)

σ8(z)
.

(4.25)
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Table 4.6: Marginalized percentage constraints on cosmological parameters at the 68%
confidence level. Here, the label "P̂0 + P̂2" stands for the baseline tomographic
data set for the monopole and the quadrupole combined and with multipole

covariance taken into account. The label "P̂NL
0 + P̂NL

2 " indicates that the full
non-linear data set has been used. The label "nuis." indicates that we vary the
nuisance parameters along with the cosmological ones. The symbol "—" stands
for unconstrained. Confidence regions for the same set of results are shown in
Figure 4.6.

Parameter P̂0 + P̂2 + nuis. P̂NL
0 + P̂NL

2 + nuis. (P̂SN)

Ωbh2
21.04% 22.81% 3.02% 17.30%

Ωch2
13.36% 14.66% 1.16% 12.27%

ns 3.44% 3.94% 0.95% 4.45%

ln(1010 As) 8.83% — 0.49% 3.00%

100θMC 1.53% 1.62% 0.18% 1.61%

H0 7.39% 8.10% 0.49% 5.90%

σ8 7.64% — 0.37% 2.41%

The redshift dependent combinations of functions T̄bbHIσ8(z) and T̄b f σ8(z)
can be added to the set of estimated parameters as nuisances. The most general
parametrization for these nuisance parameters does not impose any specific
redshift evolution. Given that we have six redshift bins, we need twelve new
parameters: six [T̄bbHIσ8]i and six [T̄b f σ8]i, one for each redshift, with i being
i = {1, . . . , 6}. However, the high dimensionality of this configuration impact
significantly the required computational time for the convergence of the MCMC

procedure for the exploration of the posterior.
Alternatively, one can lower the number of nuisance parameters by assuming

a parametrization for the redshift evolution of T̄bbHIσ8(z) and T̄b f σ8(z) in
agreement with their theoretical prediction. We use a 3rd-degree polynomial
model

T̄bbHIσ8(z), T̄b f σ8(z) = az3 + bz2 + cz + d, (4.26)

and reduce the nuisances from twelve to eight: four coefficients [T̄b f σ8]q, with
q = {a, b, c, d}, and other four [T̄b f σ8]q. We find that assuming this redshift
evolution gives the same results with respect to the twelve nuisances case while
we achieve a better and faster convergence. Thus, we choose to work with this
latter parametrization of the nuisances.

In Figure 4.7 we show the theoretical redshift evolution (under the assump-
tion discussed in Section 4.1.1) and the fitted one for T̄bbHIσ8 and T̄b f σ8. In the
following, we show the results we obtain varying the eight nuisance parameters.
Note that we assume a very wide flat prior, centered at the theoretical expected
value for each nuisance parameter.

We present the results for the multipoles alone in Table 4.6 and Figure 4.6.
When opening the parameter space to the nuisances, we see a complete loss

of constraining power on As. This is expected, due to the fact that by varying
the nuisances we lose information on the amplitude of the power spectrum.
The deterioration of the constraint on As translates in a weakening of the
constraining power on σ8. This, in turn, widens the errors also on τ.
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Figure 4.6: Joint constraints (68% and 95% confidence regions) and marginalized pos-
terior distributions on cosmological parameters. Here, the label "P̂0 + P̂2"
stands for the baseline tomographic data set for the monopole and the
quadrupole combined and with multipole covariance taken into account.

The label "P̂NL
0 + P̂NL

2 " indicates that the full non-linear data set has been
used. The label "nuisances" (dashed lines) indicates that we vary the nuisance
parameters along with the cosmological ones. The relative constraints are
listed in Table 4.6.

Nevertheless, the impact of nuisance parameters is limited to these two
parameters. The constraints on the other cosmological parameters remain
unaffected showing the power of tomography: using the six redshift bins
allows to include the evolution of the 21cm power spectrum multipoles and,
thus, preserves their constraining power in particular on Ωch2 and H0.

The same discussion applies when we combine the multipoles with CMB, as
in Section 4.3.2 but also varying the nuisance parameters. Results are shown in
Figure 4.4 and Table 4.5 from which it can be seen that the constraints on Ωch2

and H0 remain essentially unvaried. Note, however, that the constrain on As
and τ and, consequently, on σ8 are driven just by the Planck data.

For completeness, 2D contours and the marginalized posteriors for the
nuisance parameters themselves are shown in Figure b.2 and discussed in
Appendix b.
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Figure 4.7: Redshift evolution for the nuisance parameters Tb̄bHIσ8(z) and Tb̄ f σ8(z). We
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and squares) and the best-fit redshift evolution (solid lines) modeled as a
3rd-degree polynomial (see Equation 4.26).

4.3.4 Extending to non-linear scales

Up to now, we investigated the constraining power on the cosmological param-
eters of 21cm observations at linear scales, which are the ones best sampled by
the large beam of the single-dish intensity mapping. At the linear scales, it is
also possible to explore beyond ΛCDM models [117], for which we often lack
non-linear scale predictions. In a ΛCDM scenario and for the low-z bins, we
can, however, push our analysis to larger k and study their constraining power.

For all redshift bins but the first two, the kmax cut-off due to the frequency-
dependent beam (see Section 4.2.2.4) is much stronger than the linear-scale
cut-off k = 0.2 h Mpc−1. The two lowest redshift bins (z = 0.25 and z = 0.75)
can instead be extended to larger k if we relax the linear-scale cut-off. We
acquire 15 and 67 new points and we are able to reach k ∼ 0.27 h Mpc−1 and
k ∼ 1 h Mpc−1 at redshifts z = 0.75 and z = 0.25, respectively. In this new
k-range, the shot noise is non-negligible and it needs to be considered in the
modeling.

We create the new mock non-linear data set as

P̂NL
21 (z, k, µ) = B̃2

(z, k, µ)
[︁
PNL

21 (z, k) + PSN(z)
]︁
, (4.27)

where PSN is the shot noise level estimated at different redshift interpolating
results from hydro-dynamical simulations [158]. The non-linear 21cm power
spectrum PNL

21 (z, k) is obtained as in Equation 4.1, but substituting the linear
matter power spectrum with the non-linear one, computed numerically with
CAMB6. The expressions for the 21cm multipoles are changed accordingly.

In Figure 4.8, we show the signal-to-noise for the new non-linear tomographic
data set obtained with the model of Equation 4.27. For the scales larger than
k = 0.2 h Mpc−1, the results for the various redshifts are analogous to the ones
of Figure 4.2.

With this non-linear data set, we perform an analysis similar to the one
discussed in the previous sections. We study the constraining power of non-

6We use the HALOFIT [323] version from [324].
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Table 4.7: Shot noise values used in the computation of the non-linear 21cm power
spectrum, at each central redshift zc. For the first redshift bin (z = 0.25)
we assume SKA-Mid Band 2 specifications, while we use SKA-Mid Band 1

parameters for the other bin. We refer to Table 4.1 for more instrumental details.

zc central redshift 0.25 0.75

PSN shot noise 0.72 2.4 [mK2 h−3Mpc3]

N number of data points 83 58
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Figure 4.8: Computed signal-to-noise ratio as a function of k (see Equation 4.20). We show
the signal-to-noise computed for the six redshift bins and for the monopole
and the quadrupole combined, considering a diagonal covariance matrix
(dashed lines) or the full non-diagonal one (solid lines). The shaded area
highlights the new scales acquired extending the mock 21cm power spectrum
to non-linear scales.

linear 21cm observations alone and combined with CMB. We first assume perfect
knowledge of the quantities ΩHI and bHI linked to baryon physics. Note that,
for this ideal case without any nuisance parameters, we assume also that the
level of the shot noise is known.

Results are presented in Table 4.4 and Figure 4.6.
Even if only the first two bins are concerned, the extension of the data set

to non-linear scales significantly improves on the constraining power of 21cm
observations. We find

H0 = 67.28 ± 0.33 km s−1Mpc−1
(68%, P̂NL

0 +P̂NL
2 ), (4.28)

thus a relative error of σH0 = 0.49%, competitive with the one from Planck 2018

data alone (i.e. σH0 = 0.79%).
We then test the more realistic case where we vary the nuisance parameters.

Along with the eight nuisances for the redshift evolution of T̄bbHIσ8(z) and
T̄b f σ8(z) (see Section 4.3.3), we include six additional parameters PSN,i, with
i = {1, . . . , 6}, to model the shot noise in each redshift bin.

We get

H0 = 68.3+3.4
−4.7 km s−1Mpc−1

(68%, P̂NL
0 +P̂NL

2 + nuis. (PSN)). (4.29)
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The relative error is σH0 = 5.9%, better than the corresponding result for the
linear-scale case discussed in Section 4.3.3 (i.e. σH0 = 7.4%). When we open to
nuisances with the non-linear data set, the presence of the shot noise terms
helps to fix the height of the power spectrum and we do not lose all the
constraining power on As and σ8. We can thus constrain all the cosmological
parameters, with the exception of τ. The posteriors for the shot noise parameters
PSN,i and the other nuisances are shown in Figure b.3 and commented in
Appendix b.

In summary, extending the data set to non-linear has an essential role in
increasing the constraining power of the 21cm multipoles alone. Our results
suggest that competitive constraints independent from other probes could be
obtained with 21cm intensity mapping observations at lower redshifts and
non-linear scales.

When combining the non-linear data set P̂NL
0 + P̂NL

2 + nuisances with Planck
data, instead, we do not observe substantial changes in the constraints with
respect to the Planck + P̂0 + P̂2 + nuisances case (shown in Figure 4.4). As
discussed in Section 4.3.2, the improvement in combining the two probes
mainly comes from the interaction of opposite degeneracy direction for some
of the cosmological parameters between the CMB and the 21cm power spectrum.
These are unaffected by the extension to non-linear scales and thus when
combined with the Planck data, this extended mock data set does not add
much information with respect to the linear one.

4.4 conclusions

In this work, we forecast the constraints on the ΛCDM cosmological parameters
for a neutral hydrogen intensity mapping survey with the SKAO telescope,
assuming the measurement of the first multipoles of the redshift-space 21cm
power spectrum. We construct and analyze this mock data set as an alternative
large-scale structure probe alone and in combination with Planck CMB data. We
model monopole and quadrupole signal of the 21cm power spectrum at linear
scales as in [68, 311, 314] and we include in our analysis the full non-diagonal
covariance matrix between the multipoles.

We follow the SKAO Red Book [57] proposal and simulate single-dish observa-
tions with the SKA-Mid telescope both in Band 2 (frequency range 0.95 − 1.75
GHz) and in Band 1 (frequency range 0.35− 1.05 GHz). Assuming a Planck 2018

fiducial cosmology, we construct a tomographic data set of observations within
six different redshift bins. To test the constraining power on the cosmological
parameters of the constructed data set, we implement the computation of the
likelihood function for the monopole and the quadrupole, fully integrated with
the MCMC sampler CosmoMC. We include a discussion on the impact of our lack
of knowledge on the baryonic physics involved in the computation of the 21cm
power spectrum, as nuisance parameters in the analysis.

We first focus on the 21cm power spectrum measurements at linear scales,
which are the preferred target of single-dish intensity mapping observations
with SKA-Mid, due to the large beam on the sky. However, for the lowest
redshifts, the telescope beam is small enough to allow to probe also the non-
linear scales. We thus extend our mock data set to non-linearities and we add
the shot noise contribution to check if this could improve on the constraining
power. The results of our analysis can be summarized as follows.
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We find that the mock SKA-Mid 21cm observations have good constraining
power on the cosmological parameters. The constraints we obtain are compara-
ble with other probes. E.g., with the 21cm monopole and quadrupole combined,
both H0 and σ8 are constrained at the ∼ 7% level. The 2D contours present
very marked degeneracies between the parameters, especially in the Ωch2 - H0
and ln(1010 As) - σ8 planes.

Adding the mock 21cm observations to Planck 2018 CMB data, it is possible
to significantly narrow the constraints, with respect to Planck alone. Although
the effect is observable on all the parameters, we get the most significant
improvement on Ωch2 and H0, for which the errors are lessened by a fourth.
With 21cm multipoles + Planck, we estimate Ωch2 and H0 at the 0.25% and
0.16% levels respectively, to be compared with 0.99% and 0.79%, obtained
with Planck alone. For ln(1010 As) and σ8 the errors are reduced by more
than a factor two. We constrain ln(1010 As) at the 0.17% and σ8 at the 0.26%
level, to be compared with the 0.46% and 0.73% Planck estimates, respectively.
Furthermore, we observe that combining the tomographic 21cm data set with
CMB alleviates some of the degeneracies between the parameters, resulting in
improved constraints. The strongest effect is visible in the Ωch2 - H0 plane.
Although 21cm observations are not sensitive to τ, we find that with Planck
the improvement on the other parameters is reflected also on τ, reducing the
error by a factor of two.

To take into account the lack of knowledge on the brightness temperature Tb
(that depends on the total HI density ΩHI) and the HI bias bHI, we repeat our
analysis including nuisance parameters. In particular, we consider the combi-
nations T̄bbHIσ8 and T̄b f σ8, where f is the growth factor. We find that, when
we open the parameter space to these nuisances, the constraining power of
21cm multipoles on As, and consequently on σ8, is crucially reduced. However,
the results obtained for Ωch2 and H0 remain unaffected, for both the 21cm
data set alone and combined with Planck. This result confirms the strength
of 21cm tomographic measurements and motivates, even more, the current
observational effort in this field.

When we extend the 21cm data set to non-linear scales we find a tightening
in the constraints. The most noteworthy result is that the constraining power of
21cm multipole observations on As and σ8 is remarkably improved, even when
we open up the parameter space to the nuisance parameters. This is due to
the fact the information at lower scales helps to fix the amplitude of the power
spectrum.

We conclude that 21cm SKAO observations will provide a competitive cosmo-
logical probe, complementary to CMB and, thus, pivotal for gaining statistical
significance on the cosmological parameters constraints.

The formalism presented in this work and the mock data set we construct
can be straightforwardly adapted to forecast constraints on the neutrino mass
and beyond ΛCDM models, as discussed in Chapter 8. Note that our modeling
does not include possible residual foreground contamination. A discussion on
how the constraints on the cosmological parameters could be biased by this
systematic is left for future work.
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I n Chapter 4, we investigated the impact of future 21cm power spectrum This chapter is
based on «21cm In-
tensity Mapping
cross-correlation
with galaxy sur-
veys: current cos-
mological parame-
ters estimation for
MeerKAT and
forecasts for the
SKA Observatory.»,
by M. Berti,
M. Spinelli, and
M. Viel, prepared
for submission to
Mon. Not. Roy.
Astron. Soc. [116].

multipole measurements, planned for the SKAO cosmological surveys, on
our knowledge of the standard cosmological model. Intensity mapping is

however a relatively young technique and, at the state of the art, the considered
21cm auto power spectrum detections are limited by systematics both due to
residual foreground emission and calibration challenges. The cross-correlation
of 21cm observations with galaxy clustering measurements is, instead, less
prone to these systematics since they are uncorrelated with the ones from galaxy
surveys and thus heavily reduced. As discussed in Chapter 2, cross-correlation
detections have been available since 2010. It is, thus, of great importance to
refine the cross-correlation forecasts for the 21cm and galaxy clustering, in
order to optimize the IM survey design and maximally exploit the synergy with
the upcoming cutting-edge galaxy surveys.

We focus, as before, on the planned SKAO surveys with SKA-Mid, for the
21cm intensity mapping, while for galaxy surveys we consider the pivotal
clustering measurements that will be provided by key instruments in the next
few years, i.e. the Dark Energy Spectroscopic Instrument (DESI) and the Euclid
mission. We expand the formalism of Chapter 4 by implementing the cross-
correlation power spectrum in the redshift range of overlap of the two types of
probes.

The constraints that we forecast for the parameters of theΛCDM model are
promising. The predicted signal-to-noise ratio for the cross-correlation can
reach ∼ 50 for z ∼ 1 and k ∼ 0.1h Mpc−1. When the cross-correlation signal
is combined with current CMB data from Planck, the error on Ωc h2 and H0 is
reduced by a factor of 3 and 6, respectively, compared to CMB only data, due to
the independent measurements of matter clustering provided by 21cm IM and
galaxy clustering. The cross-correlation signal has a constraining power that is
comparable to the auto-correlation one, presented in Chapter 4, and combining
all the clustering measurements a sub-percent error of 0.33% on H0 can be
achieved, which is about a factor of 2 better than CMB only measurement. As a
proof-of-concept, we test the full pipeline on the intensity mapping MeerKAT
data published by the MeerKLASS collaboration and present some preliminary
constraints on the cosmological parameters.

The structure of the chapter is as follows. The methodology is reviewed in
Section 5.1. The building of the mock observations is detailed in Section 5.2.
Results are summarized in Section 5.3 with the presentation of the constrained
obtained. A summary of the results and our conclusions are outlined in Sec-
tion 5.4.
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5.1 modeling the cross-correlation signal

The analysis presented here for the 21cm × galaxy clustering power spectrum
is an extension of the one discussed in Chapter 4. Since we adopt analogous
formalism and framework of the previous study, in the following, we review
only the essential information while we refer the reader to Chapter 4 for more
details. To be exhaustive, we discuss also the 21cm auto-power spectrum and
the galaxy power spectra in Section 5.1.1 and Section 5.1.2, which enter the error
estimation. The model for the cross-correlation power spectrum is presented in
Section 5.1.3.

5.1.1 Model for the observed 21cm signal power spectrum

As seen in Equation 4.27, the 21cm non-linear power spectrum can be modeled
as [57, 153, 158]

P21(z, k, µ) = T̄2
b(z)

[︃(︂
bHI(z) + f (z) µ2

)︂2
Pm(z, k) + PSN

]︃
, (5.1)

where T̄b is the HI mean brightness temperature, bHI is the HI bias, f is the
growth rate, µ = k̂ · ẑ is the cosine of the angle between the wave number and
the line-of-sight, Pm(z, k) is the non-linear matter power spectrum and PSN is
the shot noise term.

For the evolution in redshift of the brightness temperature, we use the
parametrization defined in Equation 4.2. Given that we lack an analytical
model, bHI(z) and PSN(z) at a given redshift are computed by interpolating
numerical results from hydro-dynamical simulations [158, 309]. The growth rate
f (z) and the non-linear matter power spectrum Pm(z, k) are, instead, computed
numerically by means of the Einstein-Boltzmann solver CAMB1 [173].

To mimic a realistic observation, we introduce the effect of a Gaussian tele-
scope beam, as a suppression of the power spectrum on scales smaller than
the beam’s full width at half maximum [51, 55, 68, 310, 311]. The correspond-
ing dumping factor B̃(z, k, µ) can be written in terms of the beam’s physical
dimension Rbeam, as in Equation 4.4.

Moreover, in a real-world scenario, one must consider the possibility of
having chosen the wrong fiducial cosmology. This can be taken into account
with the Alcock–Paczynski (AP) modifications [325]. Anisotropies along the
radial and transverse direction can be modeled as2

α⊥(z) =
DA(z)
Dfid

A (z)
and α∥(z) =

Hfid(z)
H(z)

. (5.2)

Here, Dfid
A (z) and Hfid(z) are the values of the angular diameter distance and

the Hubble parameter at redshift z predicted by the fiducial cosmology. The
AP parameters α⊥ and α∥ modify the overall amplitude of the power spectrum

1See https://CAMB.info/. Note that non-linear corrections to the matter power spectrum are
computed with the HALOFIT [323] version from [324].

2In literature, several definitions of α⊥ and α∥ have been proposed, e.g. [134, 326, 327]. We follow
the one of e.g. [34, 68].

https://CAMB.info/
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and the wave vectors. The wave vector components along and transverse to the
line of sight are then distorted as

q =
k

α⊥

⌜⃓⃓⎷1 + µ2

(︄
α2
⊥

α2
∥
− 1

)︄
(5.3)

and
ν =

α⊥µ

α∥

√︄
1 + µ2

(︃
α2
⊥

α2
∥
− 1
)︃ , (5.4)

where k and µ are the assumed fiducial values of the wave vectors.
The observed 21cm power spectrum, marked with the symbol ,̂ including the

beam smoothing and the AP effects, is then

P̂21(z, k, µ) =
1

α2
⊥α∥

B̃2
(z, q, ν)P21(z, q, ν), (5.5)

where P21(z, q, ν) is defined in Equation 5.1, but computed on the new variables
q and ν.

We note that, in this chapter, we expand the modeling of Chapter 4, where
we neglected the AP contribution in first approximation. A discussion on the
effect of the inclusion of the AP distortions on the cosmological parameter
constraints is presented in Appendix c.

5.1.2 Model for the galaxy power spectrum

The simplest parametrization of the galaxy power spectrum at a given redshift
can be written as

Pg(z, k, µ) =
(︂

bg(z) + f (z) µ2
)︂2

Pm(z, k) +
1

n̄g(z)
, (5.6)

where bg is the galaxy bias and n̄g is the galaxy number density. The term
1/n̄g is the shot noise term for the galaxy power spectrum. In this work, we
use values of bg and n̄g in agreement with the official expected values for the
planned galaxy surveys, as discussed in Section 5.2.2.

Note that for the galaxy power spectrum, due to the different observing
techniques, there is no need to take into account the beam correction. The
AP distortions, instead, are the ones described in the previous section for P21.
Therefore, the observed galaxy power spectrum we consider is

P̂g(z, k, µ) =
1

α2
⊥α∥

Pg(z, q, ν). (5.7)

5.1.3 The cross-correlation signal power spectrum

To predict the cross-correlation power spectrum between the 21cm signal and
galaxy clustering, we use the following model (see e.g. [61, 286])

P21,g(z, k, µ) = T̄b

(︂
bHI + f µ2

)︂ (︂
bg + f µ2

)︂
Pm(z, k, µ), (5.8)
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where all the quantities appearing here are defined in the previous sections. In
the expression above we do not make explicit the redshift dependence of the
brightness temperature, the bias, and the growth rate for the sake of notation
easiness. Moreover, it can be shown that the shot noise contribution for the
cross-correlation power spectrum is negligible [158, 328].

Taking into account the intensity mapping beam effect and the AP distortions,
the observed cross-correlation signal becomes

P̂21,g(z, k, µ) =
1

α2
⊥α∥

rB̃⊥(z, q, ν)P21,g(z, q, ν), (5.9)

with r being a cross-correlation coefficient.3

5.1.4 Multipole expansion

As discussed in Section 4.1.3, the non-isotropic power spectrum can be decom-
posed using Legendre polynomials Lℓ(µ). The coefficients of the expansion,
i.e. the multipoles of the power spectrum, are given by

P̂X,ℓ(z, k) =
(2ℓ+ 1)

2

∫︂ 1

−1
dµLℓ(µ)P̂X(z, k, µ), (5.10)

for X being either the 21cm intensity mapping (X = 21), the galaxy clustering
(X = g) or their cross-term (X = 21, g). In this work, we use the auto power
spectrum and cross-correlation monopoles, for which ℓ = 0 and L0(µ) = 1.
In particular, we focus on forecasting the cross-correlation power spectrum
monopole P̂21,g,0(z, k). In the following, for clarity of notation, we drop the
subscript 0 and simply refer to the monopoles as P̂21,g(z, k), P̂g(z, k) and
P̂21(z, k).

5.2 constructing the mock cross-correlation data

The goal of this work is to forecast the constraining power of the cross-
correlation between 21cm and galaxy clustering. To this end, we construct
mock data sets of cross-correlation measurements from future surveys. In
this section, we describe our methodology to obtain realistic forecasts of the
cosmological parameter constraints. The 21cm and galaxy surveys we take
into account are presented in Section 5.2.1. Details on the construction of the
synthetic data set and the analysis framework are given in Section 5.2.2 and
Section 5.2.3.

5.2.1 Survey specifications

5.2.1.1 21cm intensity mapping

The main focus of our analysis is the 21cm intensity mapping signal that can
be measured with the SKAO telescope. We consider, in particular, a cosmolog-
ical survey with the SKA-Mid telescope in single-dish mode, following SKA

3The definition of r is not unique (see e.g. the discussion in [61]). In this work, we consider it an
overall constant for simplicity, given that r is considered as a nuisance parameter (Section 5.2.3.2).
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Table 5.1: Assumed specifications for SKA-Mid Wide band 1 [57], DESI ELG [32, 286],
and Euclid-like surveys [34]. For simplicity, we refer to SKA-Mid as SKAO, to
DESI ELG as DESI, and to Euclid-like as Euclid. We collect the used effective
redshifts z and bin widths ∆z, the galaxy biases bg and number densities n̄g,
that we express in units of [10−4h3 Mpc−3], the 21cm intensity mapping bias
bHI, and the 21cm power spectrum shot noise PSN, in units of [(h−1 Mpc)3].

SKAO

Band frequency range 0.35 - 1.05 [GHz]
Corresponding redshift range 0.35 - 3

Dish diameter Ddish 15 [m]

SKAO × Euclid

Observed redshift range 0.9 - 1.8
Overlapping survey area 10 000 [deg2]
Corresponding Ωsur 3.0 [sr]

z 1. 1.2 1.4 1.65

∆z 0.2 0.2 0.2 0.3
bg 1.46 1.61 1.75 1.9
n̄g 6.86 5.58 4.21 2.61

bHI 1.49 1.60 1.71 1.84

PSN 124 114 101 85.0

SKAO × DESI

Observed redshift range 0.7 - 1.7
Overlapping survey area 5 000 [deg2]
Corresponding Ωsur 1.5 [sr]

z 0.75 0.85 0.95 1.05 1.15 1.25 1.35 1.45 1.55 1.65

∆z 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
bg 1.05 1.08 1.11 1.14 1.18 1.21 1.25 1.28 1.32 1.36

n̄g 11.2 8.32 8.16 5.14 4.49 4.19 1.57 1.35 0.921 0.344

bHI 1.35 1.40 1.46 1.52 1.57 1.63 1.68 1.73 1.78 1.84

PSN 132 130 126 122 116 111 105 98 91 85

Cosmology SWG [57]. We assume a Wide Band 1 survey that covers a sky area
of 20 000 deg2 in the frequency range 0.35 − 1.05 GHz (i.e. the redshift range
0.35 − 3).

5.2.1.2 Galaxy surveys

We assume a Euclid-like spectroscopic galaxy survey, following what has been
proposed in [34]. We consider observations within four different redshift bins
in the range of 0.9 - 1.8. The assumed values of the galaxy bias and number
density computed at each effective redshift are presented in Table 5.1.

To obtain a cross-correlation signal, one must take into account observations
of the same portion of the sky. An indicative map of the planned sky coverage
is shown in Figure 5.1. In agreement with other studies in literature, we assume
a 10 000 deg2 overlapping patch of the sky observed by the SKAO and a Euclid-
like survey.
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MeerKLASS

MeerKLASS
DESI

DESI

Euclid
Euclid

Euclid

Euclid

10 70Figure 5.1: Estimaded sky coverage of future galaxy and intensity mapping surveys.

Hereafter, we simply refer to the Euclid survey, where is understood that a
Euclid-like survey as the one described above is intended.

To construct cross-correlation measurements between the SKAO and DESI, we
follow [286]. We focus on the DESI Emission Line Galaxies (ELG), as they probe
a redshift range similar to the one covered by Euclid, i.e. 0.7 - 1.7, making
easier a direct comparison between the two experiments. In Table 5.1, we report
the assumed values of the galaxy bias and number density at each effective
redshift and we consider an overlapping area between DESI ELG and SKAO of
5 000 deg2. The smaller area overlap with respect to a Euclid-like survey is
forced by the different hemisphere locations of the two telescopes and can be
roughly visualized in Figure 5.1.

5.2.2 Mock data sets

We construct two different mock data sets for the 21cm and galaxy clustering
cross-correlation power spectrum. One mimics SKAO × Euclid analysis and
the other the SKAO×DESI one, for the redshift bins and survey specifications
described in Section 5.2.1 and Table 5.1.

As discussed in Section 4.1.3, the scales that are accessible with the obser-
vations are fixed by the volume probed with the surveys in a given redshift
bin. In Fourier space, the largest scale available at each effective redshift is
kmin(z) = 2π/ 3

√︁
Vbin(z), where Vbin(z) is the volume of each redshift bin,

which we compute as

Vbin(z) = Ωsur

∫︂ z+∆z/2

z−∆z/2
dz′

dV
dz′dΩ

= Ωsur

∫︂ z+∆z/2

z−∆z/2
dz′

cr(z′)2

H(z′)
.

(5.11)

with r(z) being the comoving distance and Ωsur the survey are in steradians
(see Table 5.1). The smallest scale is, instead, imposed by the size of the SKAO

telescope beam, due to the damping effect introduced in Equation 4.4. It can be
estimated as kmax(z) = 2π/Rbeam(z). At scales smaller than kmax, the signal
is dominated by the beam providing no relevant information on cosmology.
Finally, we choose a fixed k-bin width as a function of redshift ∆k(z) in order
to be large enough for modes to be independent, i.e. ∆k(z) ∼ 2kmin(z).
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Figure 5.2: Mock data set for SKAO×Euclid (upper panel) and SKAO×DESI (lower
panel) observations. The considered redshift bins are different for the two
galaxy surveys. We refer to Section 5.2 for the extended discussion on how
the signal and the errors are computed.

Assuming a set of N measurements at redshift z of the cross-correlation
power spectrum P̂21,g(k) at scales {k1, . . . , kN}, we estimate the error on at
each point as (see e.g. [61, 329])

σ̂21,g(k) =
1√︁

2Nmodes(k)

√︂
P̂2

21,g(k) + P̂21(k)P̂g(k), (5.12)

where P̂21,g is the cross-correlation power spectrum defined in Equation 5.9, P̂21

and P̂g are the 21cm and the galaxy power spectrum introduced in Equation 6.1
and Equation 5.7 respectively. Here, Nmodes is the number of modes per k and
µ bin, computed as

Nmodes(z, k) =
k2∆k(z)

4π2 Vbin(z). (5.13)
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At each central redshift z and data point k we compute the cross-correlation

power spectrum for SKAO×Euclid observations, labeled as P̂Euclid
21,g (z, k), the

one for SKAO×DESI, P̂DESI
21,g (z, k), and the corresponding errors, as discussed

above. In table Table 5.1, we gather some of the used redshift-dependent
quantities. The resulting mock data sets are shown in Figure 5.2.

5.2.3 Numerical analysis

In order to exploit the constraining power of the mock data set presented in
Section 5.2.2, we define a likelihood function and then set up the framework to
constrain the cosmological parameters by adopting a Bayesian approach. Given
a set of observations and a theory that depends on a set of parameters, the
Bayes theorem links the posterior distribution to the likelihood function. The
high-dimensional posterior can then be sampled using MCMC methods (see
Section 2.1).

5.2.3.1 Likelihood function for the 21cm multipoles

Given a set of measurements at scales {k1, . . . , kN} and redshift z, to compute

the likelihood function we define the vector Θ(z) =
(︂

P̂21,g(z, k1), . . . , P̂21,g(z, kN)
)︂

.
The logarithmic likelihood is computed as

− ln
[︁
L
]︁
= ∑

z

1
2

∆Θ(z)T C−1(z)∆Θ(z), (5.14)

where ∆Θ(z) = Θth(z)− Θobs(z), the difference between the values of Θ(z)
predicted from theory and observed. Here, C(z) is the covariance matrix com-
puted as C(z) = diag(σ̂2

21,g(z, k1), . . . , σ̂2
21,g(z, kN)). We consider independent

redshift bins, i.e. we simply sum over the contribution from each central red-
shift.

Figure 5.3 shows the signal-to-noise ratios as a function of k in each redshift
bin for both the constructed mock data sets. We observe that the signal-to-noise
decreases at higher redshifts. The behavior and orders of magnitude found
here are compatible with the results for the 21cm power spectrum multipoles
in [68, 115].

We conduct an MCMC analysis varying the six parameters describing the
ΛCDM model, i.e. we vary {Ωbh2, Ωch2, ns , ln(1010 As), τ, 100θMC, Σmν , PSN,i}
assuming wide flat priors on each of the parameters. Results on other param-
eters, such as H0 and σ8, are derived from results on this set. The assumed
fiducial cosmology is Planck 2018 [4] (see Section 1.3). To perform the study, we
develop a likelihood code integrated with the MCMC sampler CosmoMC4 [136,
212]. We further expand on the code we implemented and used in Chapter 4

including the computation of the theoretical expectations for the 21cm and
galaxy clustering cross-correlation power spectrum and the relative likelihood
function at different redshift. We recall that each redshift bin is considered in-
dependent, thus we consider a diagonal covariance matrix constructed with the

4See https://cosmologist.info/cosmomc.

https://cosmologist.info/cosmomc
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Figure 5.3: Predicted signal-to-noise ratio as a function of k for SKAO×Euclid (upper
panel) and SKAO×DESI (lower panel) mock observations.

forecasted errors. The analysis of the MCMC samples to compute the marginal-
ized constraints is performed with the Python package GetDist5 [315].

5.2.3.2 Nuisance parameters

As discussed in Chapter 4, along with the cosmological parameters we im-
plement different nuisances. Indeed, the access to the matter clustering is not
direct as it appears in Equation 5.9 in combination with the brightness tem-
perature and the HI bias and the galaxy bias. These quantities, although the
scientific community hopes to obtain external measurements (e.g. the total neu-
tral hydrogen density as a function of redshift, key unknown for the brightness
temperature, is one of the scientific goals of the MeerKAT survey Laduma),
may need to be treated as unconstrained quantities in a pessimistic scenario.

5See https://getdist.readthedocs.io.

https://getdist.readthedocs.io
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To take into account this lack of knowledge, we allow for combinations of these
parameters to vary in the MCMC run, thus leaving free the overall amplitude of
the power spectrum. The contribution from the nuisances is then marginalized
out in the final analysis.

To be completely agnostic, for the cross-correlation power spectrum we
include in the nuisances also the correlation coefficient r and the galaxy bias.
Thus, we consider the following three combinations of parameters

√︁
rT̄bbHIσ8,√︁

rT̄bbgσ8, and
√︁

rT̄b f σ8, where we re-normalized the matter power spectrum
as Pm/σ2

8 .
Given that all the parameters are redshift-dependent quantities, the ac-

tual number of nuisances is three times the number of redshift bins. This
translates into 4 × 3 nuisance parameters for SKAO×Euclid and 10 × 3

for SKAO×DESI. Especially in the latter case, the high number of param-
eters to vary can impact the numerical efficiency of the MCMC computa-
tions. Following what is already done in Chapter 4, for SKAO×DESI only
we reduce the number of nuisances by constraining their redshift evolution
through a polynomial parametrization. Rewriting N(z) = az3 + bz2 + cz + d
for N(z) =

√︁
rT̄bbHIσ8,

√︁
rT̄bbgσ8,

√︁
rT̄b f σ8, we implement as nuisances the

coefficient of the polynomial a, b, c, and d, reducing the number of nuisance
parameters from 30 to 12.

In the following, with the label "nuisances" or "nuis." we refer to the parame-
ters described above. For each nuisance, we assume a wide flat prior.

5.3 results

We present in this section the results of our analysis. We first explore the
constraining power of the mock cross-correlation data, with and without
nuisances (Section 5.3.1). We then combine the mock data sets with Planck CMB

data (Section 5.3.2). Finally, in section Section 5.3.3 we present the constraints
we obtain on the cosmological parameters for the published measurement of
the MeerKAT×WiggleZ cross-correlation power spectrum presented in [61].

Throughout this analysis, we compare results from the cross-correlation
forecast with the best result obtained with the 21cm multipoles, i.e. the fully
non-linear monopole and quadrupole data set that we label as "P̂0 + P̂2". Note
that we expand on the results of Chapter 4 by introducing the AP, in order to
be consistent with the modeling of the cross-correlation used in this chapter.
Thus, "P̂0 + P̂2" here include AP effects. For a discussion on the impact of AP

distortions, we refer to Appendix c.
We show the marginalized 1D and 2D posteriors for the studied set of param-

eters. Note that 68% confidence level constraints are presented as percentages
with respect to the marginalized mean value. We recall that with the label
"Planck 2018" we refer to the combination TT, TE, EE + low-ℓ + lowE + lensing
(see Section 2.2.1).

5.3.1 Probing the constraining power of future 21cm × galaxy clustering data

In Figure 5.4 and Figure 5.5 we present the forecasted posterior distributions
we obtain for the SKAO×DESI and SKAO×Euclid mock data sets we construct
in this work. We show only some of the model parameters for brevity.



5.3 results 85

Table 5.2: Marginalized percentage constraints on cosmological parameters at the 68%
confidence level. We show the results obtained using different combinations of
forecasted data sets. The label "P̂0 + P̂2" stands for the forecasted 21cm power

spectrum monopole and quadrupole observations (see Chapter 4). "P̂Euclid
21,g "

and "P̂DESI
21,g " refer to the mock cross-correlation power spectrum data sets con-

structed above. The label "nuis." indicates that we vary the nuisance parameters
along with the cosmological ones.

par . P̂0 + P̂2 P̂DESI
21,g P̂Euclid

21,g

P̂0 + P̂2

P̂DESI
21,g P̂Euclid

21,g P̂DESI
21,g + P̂Euclid

21,g + P̂DESI
21,g +P̂Euclid

21,g

+ nuis. + nuis. + nuis. + nuis.

Ωbh2
2.59% 6.43% 23.11% 5.78% 16.99% 12.52% 3.89%

Ωch2
0.99% 3.81% 16.63% 3.75% 11.87% 8.59% 2.67%

ns 1.19% 2.43% 6.79% 1.82% 4.59% 3.56% 1.08%

ln(1010 As) 0.37% 0.78% 8.08% 0.54% 7.62% 4.73% 0.81%

100θMC 0.17% 0.39% 0.75% 0.30% 0.62% 0.54% 0.21%

H0 0.25% 0.69% 1.96% 0.49% 1.07% 0.87% 0.33%

σ8 0.29% 0.40% 9.41% 0.58% 10.03% 6.37% 1.11%

We obtain comparable results for both the SKAO×Euclid and the SKAO×DESI
analysis. Looking at the 2D contours, we observe that the correlations between
the cosmological parameters are similar and in line with the results obtained
with the 21cm multipoles. The marked degeneracy in the H0 − Ωch2 plane,
found in previous work [115, 117], is present also for the cross-correlation
power spectrum case. As discussed in [317], measuring cosmological observ-
ables that strongly depend on the matter power spectrum, as P̂21,g does, fixes
the shape of Pm. This translates into fixing the quantity Ωmh, which, in turn,
induces the strong correlation Ωch2 ∝ H0. This feature is particularly relevant
when combining 21cm observations with CMB data, as discussed in the next
section.

As expected from the signal-to-noise estimates of Figure 5.3, better constraints
are obtained for the SKAO×Euclid data set (Table 5.2). Although DESI probes
the same redshift range of Euclid and even with a higher number of redshift
bins, Euclid will have a larger sky area of overlap with SKAO, suggesting
that a larger sky coverage increases the constraining power more than the
number of redshift bins. As expected, the best constraints are the ones obtained
with the 21cm multiples, in particular for Ωch2 and H0. Indeed, the P̂0 + P̂2
is constructed to sample a wider redshift (z = 0 − 3) and scales range (up to
k ∼ 1 h/ Mpc at low redshifts). It is interesting, however, to see that, despite
these differences, cross-correlation results are still able to deliver competitive
constraints. This makes a strong case for cross-correlation studies, especially
in light of the reduced challenges in terms of residual systematics from the
21cm intensity mapping observations. Adding the nuisance parameters, i.e.
assuming no prior knowledge of the astrophysics at play, has the effect of
varying the overall amplitude of the cross-correlation power spectrum. This
translates into a broadening of the constraints, in particular on As. Moreover,
the 2D contours are generally broader and show less clear correlations, except
for the H0 − Ωch2 and H0 − Ωbh2 planes. Although the shape is stretched, the
H0 − Ωch2 degeneracy is still marked.
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Table 5.3: Marginalized percentage constraints on cosmological parameters at the 68%
confidence level. We show the results obtained using different combinations of
forecasted data sets. The label "Planck 2018" stands for TT, TE, EE + lowE +
lensing, while the label "P̂0 + P̂2" refers to the forecasted 21cm power spectrum

monopole and quadrupole observations (see Chapter 4). "P̂Euclid
21,g " and "P̂DESI

21,g "
refer to the mock cross-correlation power spectrum data set constructed above.
The label "nuis." indicates that we vary the nuisance parameters along with
the cosmological ones.
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Figure 5.4: Result for SKAO×DESI cross-correlation. Joint constraints (68% and 95%
confidence regions) and marginalized posterior distributions on a subset of
the cosmological parameters. The label "P̂0 + P̂2" (dashed lines) stands for
the forecasted 21cm power spectrum monopole and quadrupole observations

(see Chapter 4). "P̂DESI
21,g " refers to the mock cross-correlation power spectrum

data set constructed above. The label "nuis." (dashed-dotted lines) indicates
that we vary the nuisance parameters along with the cosmological ones. The
corresponding constraints are listed in Table 5.2.

In Figure 5.6 we show the results on the full set of cosmological parameters
for the combination of the two cross-correlation data sets and the 21cm mul-
tipoles one. Note that we do not report the constraints on τ, due to the fact
that the considered probes are not sensitive to this parameter. We compare

the results with the ones for the 21cm multipoles and the P̂DESI
21,g data set as a

reference. In order to explore a more realistic scenario, we include the nuisance
parameters. We observe that combining SKAO×DESI and SKAO×Euclid im-
proves the constraints obtained with the two data sets separately. Including
also the 21cm multipoles lead to the best result. With observations from 21cm
probes only in the pessimistic case of including the nuisances, we are able to
achieve constraints on the cosmological parameters comparable with Planck
CMB observations.

We conclude that 21cm IM observations in cross-correlation with galaxy
clustering seem to have a reduced constraining power with respect to 21cm
auto-power spectrum measurements. However, when combined with the latter,
they improve the constraints, showing that the cross-correlation signal carries
complementary cosmological information.
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Figure 5.5: Results for SKAO×Euclid cross-correlation. Joint constraints (68% and 95%
confidence regions) and marginalized posterior distributions on a subset of
the cosmological parameters. The label "P̂0 + P̂2" (dashed lines) stands for
the forecasted 21cm power spectrum monopole and quadrupole observations

(see Chapter 4). "P̂Euclid
21,g " refers to the mock cross-correlation power spectrum

data set constructed above. The label "nuis." (dashed-dotted lines) indicates
that we vary the nuisance parameters along with the cosmological ones. The
corresponding constraints are listed in Table 5.2.

5.3.2 Combining 21cm × galaxy clustering with CMB observations

Most recent forecast analyses find 21cm IM future observations to be a pivotal
cosmological probe, highly complementary to CMB observations [57]. Indeed,
in Chapter 4 we found that observations of the 21cm power spectrum multi-
poles contribute significantly to improving the constraints and reducing the
degeneracies on the cosmological parameters. In this section, we investigate
the effects of combining 21cm and galaxy clustering cross-correlations with
CMB measurements.

For consistency, we first run the Planck likelihood in our framework and
reproduce constraints in agreement with the Planck 2018 results. We then study

the effect of adding the P̂Euclid
21,g and P̂DESI

21,g data sets and the two combined. As
in Section 5.3.1, we compare the results we obtain with the constraints from
the 21cm power spectrum multiples (see Chapter 4).

Table 5.3 shows the percentage constraints for this analysis. We observe that

adding P̂Euclid
21,g or P̂DESI

21,g to Planck 2018 data reduces the estimated constraints
with respect to the Planck alone results. The effect is prominent for Ωch2 and
H0, for which the error is reduced by a factor of ∼ 3, and As, with a factor of
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Figure 5.6: Joint constraints (68% and 95% confidence regions) and marginalized posterior
distributions on a subset of the cosmological parameters. The label "P̂0 + P̂2"
(dashed lines) stands for the forecasted 21cm power spectrum monopole

and quadrupole observations (see Chapter 4). "P̂Euclid
21,g " and "P̂DESI

21,g " refer
to the mock cross-correlation power spectrum data sets constructed above.
The label "nuis." (dashed-dotted lines) indicates that we vary the nuisance
parameters along with the cosmological ones. The relative constraints are
listed in Table 5.2.
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Figure 5.7: Joint constraints (68% and 95% confidence regions) and marginalized posterior
distributions on a subset of the cosmological parameters. The label "Planck
2018" stands for TT, TE, EE + lowE + lensing, while the label "P̂0 + P̂2"
(dashed lines) stands for the forecasted 21cm power spectrum monopole and

quadrupole observations (see Chapter 4). "P̂Euclid
21,g " and "P̂DESI

21,g " refer to the
mock cross-correlation power spectrum data sets constructed above. The label
"nuis." (dashed-dotted lines) indicates that we vary the nuisance parameters
along with the cosmological ones. The corresponding constraints are listed in
Table 5.3.
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∼ 4 decrease. As one can see from Figure 5.7, in the H0 − Ωch2 plane the effect
is ascribable to the correlation directions. Indeed, with Planck observations H0
and Ωch2 are anti-correlated, while they are positively correlated with P̂21,g.
Combining the two removes the degeneracy and reduces errors. The effect is
also particularly evident for As since the CMB probes the quantity As exp(−2τ)
and the matter power spectrum, which is constrained by 21cm data is sensitive
to S8, which is in turn degenerate with the optical depth to reionization as
measured from the CMB. Thereby adding 21cm data effectively removes the
degeneracies.

When nuisance parameters are taken into account, as expected the improve-
ment on the constraints is softened. In particular for As, and consequently
σ8, the constraining power is lost when the parameter space is open to the
nuisances. Varying the nuisances corresponds to effectively changing the am-
plitude of the power spectrum and, thus, it results in worsened constraints on
As.

The effects observed for the cross-correlation data sets combined with CMB

are qualitatively comparable to the results obtained for the 21cm power spec-
trum multipoles. This confirms that when combining different kinds of 21cm
observations with CMB data the improvement in the constraints is always driven
mainly by the breaking of the degeneracy in the Ωch2 − H0 plane. Indeed, our
analysis reveals that even a less constraining measurement, such as the 21cm
and galaxy cross-correlation, is effective in improving the errors on Ωch2 and
H0 if it presents a sufficiently marked correlation among these parameters.

To better prove this point, in Figure 5.7 we compare the effect of combin-

ing Planck data with the 21cm multipoles, P̂DESI
21,g and P̂Euclid

21,g , and the three

combined. We find that even with the nuisances, results from P̂DESI
21,g +P̂Euclid

21,g
(orange contours) are similar to the constraints from the multiples, for which,
instead, the nuisances are kept fixed as a best-result reference (pink contours).
The main difference resides in the loss of constraining power on As and the re-
lated parameters, which is however ascribable to the inclusion of the nuisances.

Further adding the 21cm multiples to P̂DESI
21,g +P̂Euclid

21,g (green contours),6 does not
impact the constraining power or the shape of the correlations. This confirms
that the 21cm probe is pivotal in breaking the CMB degeneracy in the Ωch2 − H0
plane and the effect is relevant already at the level of cross-correlation or with
SKAO precursor power spectrum measurements, as we will show in Chapter 6.

We conclude that cross-correlations measurements of 21cm IM and galaxy
clustering are a key cosmological probe complementary to CMB observations
and, in combination with Planck, their forecasted constraining power is com-
patible with the one from 21cm power spectrum multipole measurements with
the SKAO.

5.3.3 State-of-the-art cosmological parameters constraints from the MeerKAT ×
WiggleZ detection

Cosmological 21cm observations with the SKAO will be possible in about 5

years when the Observatory will be fully operational. However, the SKA-Mid
pathfinder, MeerKAT is already taking data and its first cosmological surveys
are promising. Recently, a power spectrum detection with the MeerKLSS survey,

6Note that in this case also the 21cm power spectrum nuisances are varied as in Chapter 4.
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Figure 5.8: Joint constraints (68% and 95% confidence regions) and marginalized posterior

distributions on a subset of the cosmological parameters. The labels "P̂Euclid
21,g "

and "P̂DESI
21,g " refer to the mock cross-correlation power spectrum data sets

constructed above. "P̂MeerKAT×WiggleZ
21,g " refers to the cross-correlation power

spectrum detection. The label "nuis." (dashed-dotted lines) indicates that we
vary the nuisance parameters along with the cosmological ones. The relative
constraints are listed in Table 5.4.

the intensity mapping survey with MeerKAT, in cross-correlation with galaxy
clustering data has been made at the 7.7σ level [61]. The analysis pipeline we
develop in this work is constructed to be ready to use with real cross-correlation
power spectrum measurements. Therefore, we decide to test our methodology
on the published results available for MeerKLASS. In the following, we present
the result we obtain on the cosmological parameters constraints. We refer the
interested reader to Appendix d for the technical consistency checks we run on
the adopted power spectrum model and the predicted signal-to-noise ratio.

We tune the parameters of the likelihood function to match the settings of
the observed data. Instead of the SKAO specifications, we use the MeerKLASS
survey parameters, i.e. we consider a 200 dg2 survey area and dishes of a
diameter of Ddish = 13.5 m. The observed effective redshift is z = 0.43 with a
bin width of ∆z = 0.059. The signal is observed in cross-correlation with the
WiggleZ 11h galaxy survey [193, 330]. When we do not include the nuisance
parameters, we use the measured galaxy bias value bg = 0.911 [331] and cross-
correlation factor r = 0.9 [332]. Other parameters and theoretical predictions
are left unchanged.

We present the cosmological parameters constraints resulting from our
MCMC analysis in Figure 5.8 and Table 5.4. We observe that the state-of-the-
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Table 5.4: Marginalized percentage constraints on cosmological parameters at the 68%
confidence level. We show the constraints on the cosmological parameters
obtained with the MeerKAT×WiggleZ cross-correlation power spectrum detec-
tion. The label "nuis." indicates that we vary the nuisance parameters along
with the cosmological ones. The symbol "—" stands for unconstrained, while
"/" indicate that the parameter is not present.

Parameter P̂MeerKAT×WiggleZ
21,g P̂MeerKAT×WiggleZ

21,g + nuis.

Ωbh2 — —

Ωch2 0.314+0.079
−0.18 0.48+0.19

−0.27

100θMC 1.090+0.061
−0.083 1.051+0.085

−0.070

ns — —

ln(1010 As) — —

τ — —

H0 84+10
−7 57+8

−6

σ8 0.974+0.068
−0.092 1.04+0.30

−0.49

art constraining power is limited with respect to the results forecasted for
SKAO×Euclid and SKAO×DESI, as expected due to the wider redshift ranges,
probed scales, and survey area. Single bin MeerKAT observations are not yet
able to constrain the complete set of cosmological parameters. However, the
degeneracies between the parameters match the ones expected from our fore-
casts. In particular, the H0 − Ωch2 correlation is clearly visible, although much
less prominent. From these real measurements, we can infer new information
on the marginalized mean value of the cosmological parameters. We find that
all the constraints are compatible with the Planck results.

The most constrained parameters are Ωch2 and H0, proving that 21cm obser-
vations will be most useful to constrain them and their derived parameters.
When fixing the nuisances, we find a high central value for H0, although with
a large error. We believe that this is not a physical effect, but is rather coming
from a mismatch between the assumed brightness temperature value in our
analysis and the one that seems to describe the observed data (see Appendix d
for a more in-depth discussion). The conservative result is then the one in
which nuisances are taken into account. In this case, we find that MeerKAT ×
WiggleZ data prefer a lower value of H0, although the significance is not high
enough to draw firm conclusions.

From the constraints on the nuisances, one could estimate the value of ΩHI.
With our analysis we find the constraints on the nuisance parameters from real
data to be too wide to infer a meaningful result.

Lastly, although we do not show here the results, we test the effect of com-
bining MeerKAT × WiggleZ data with Planck 2018 observations. We find that
the measured cross-correlation power spectrum does not increase significantly
the constraining power of CMB observations, leaving the constraints and the
2D contours mostly unchanged.

Although the constraining power of real detection is not yet competitive
with other probes, the quality of the current 21cm IM observations in cross-
correlation with galaxy clustering will improve sharply in the upcoming years
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and will soon become a useful independent cosmological probe. Moreover, the
forecasted results for future surveys are very promising.

5.4 conclusions

In this work, we forecast the constraints on the ΛCDM cosmological parame-
ters for power spectrum measurements of 21cm intensity mapping in cross-
correlation with galaxy clustering. Modeling the cross-power spectrum as in
[61], we forecast mock observations of the SKAO cross-correlated with DESI and
Euclid-like surveys. We test the constraining power of such probes alone and
combined with the latest Planck CMB observations. Note that our modeling
does not include possible residual foreground and systematics contamination.

We follow the SKAO Red Book [57] proposal and simulate single-dish obser-
vations with the SKA-Mid telescope in Band 1 (frequency range 0.35 − 1.05
GHz). We cross-correlate this signal with a Euclid-like spectroscopic survey [34]
and the DESI Emission Line Galaxies one [286, 333] in the redshift range 0.7 -
1.7. Assuming a Planck 2018 fiducial cosmology, we construct two data sets
of observations within multipole redshift bins. To test the constraining power
on the cosmological parameters of our mock observations, we implement a
likelihood function for the cross-correlation power spectrum, fully integrated
with the MCMC sampler CosmoMC. We include a discussion on the impact of
our lack of knowledge on the baryonic physics involved in the computation of
the 21cm power spectrum, as nuisance parameters in the analysis.

We first focus on assessing the constraining power of cross-correlation ob-
servations alone, compared to the results we obtain for the 21cm multipoles
in Chapter 4. We, then, combine the two to investigate if they carry com-
plementary information. The results of our analysis can be summarized as
follows.

We find that SKAO power spectrum measurements in cross-correlation with
galaxy clustering have a constraining power comparable to the 21cm auto-
power spectrum, discussed in Chapter 4. The SKAO×DESI and SKAO×Euclid
data sets we construct are able to constrain the cosmological parameters up to
the sub-percent level. They seem to be particularly effective on H0, on which
we obtain constraints between the 0.49% and the 1.96% from 21cm and galaxy
clustering cross-correlation alone. The tightest constraints are achieved when
we combine 21cm power spectrum multipoles with the cross-correlation mock
observations, for which we obtain a 0.33% constraint on H0, a value that is
competitive with Planck.

When combining the cross-correlation mock measurements with CMB data,
we find that they are pivotal to reduce the errors on the cosmological parame-
ters. The effect is particularly prominent for Ωch2 and H0, for which the errors
are reduced by a factor between 2.5 - 1.8 and 3.8 - 2 respectively. Again, the
best result is obtained by combining all the 21cm probes together. In this case,
the error with respect to Planck alone results is reduced by a factor of 3.2 for
Ωch2 and 5.6 for H0, with the nuisance parameters taken into account.

Lastly, we test our analysis pipeline on the recent data for the cross-power
spectrum between MeerKAT, the SKA-Mid pathfinder, and WiggleZ galaxy
clustering [61]. We find that state-of-the-art observations have limited constrain-
ing power on the complete set of cosmological parameters. However, the main
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features of the marginalized constraints are compatible with the forecasted
results of this work.

We conclude that 21cm SKAO observations in cross-correlation with galaxy
clustering will provide a competitive cosmological probe, complementary to
CMB and, thus, extremely important for gaining statistical significance on the
cosmological parameters constraints. The working pipeline presented in this
work is found to be compatible and easily employable with real observations.
The analysis we carry out can be straightforwardly adapted to forecast con-
straints on the neutrino mass and beyond ΛCDM models. These extensions are
currently under study.
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6A M E E R K AT F O R E C A S T O N E F T O F D A R K E N E R G Y
M O D E L S

T he MeerKAT telescope, the SKAO precursor in South Africa, can be This chapter is
based on
the publication
«Constraining
beyond ΛCDM
models with 21cm
intensity mapping
forecasted
observations
combined with
latest CMB data.»,
by M. Berti,
M. Spinelli,
B.S. Haridasu,
M. Viel, and
A. Silvestri, in
JCAP 01.01
(2022) [117].

successfully exploited for 21cm intensity mapping. It is currently op-
erational and has already attained encouraging results, as discussed

in Chapter 2 and Chapter 5. In this work, we produce constraints on model
parameters from forecasted 21cm power spectrum MeerKAT measurements.
The analysis in this chapter differs from the one of Chapter 4 in the following
aspects. While in Chapter 4 we rigorously construct a tomographic data set to
test the ΛCDM model, in this work, we focus on single-bin observations and
explore both a ΛCDM scenario and several DE-MG models within the effective
field theory (EFT) framework (see Chapter 3). We build a realistic, single-bin
mock data set for the 21cm power spectrum at the effective redshift currently
being observed by MeerKAT, i.e. z = 0.39. To prove the importance of tomo-
graphic measurements on beyond-ΛCDM theories, we further extend the data
set to mimic more ideal measurements within multiple redshift bins.

In agreement with results in Chapter 4, in this work we find that adding the
21cm likelihood to CMB data provides significantly tighter constraints on Ωch2

and H0, with a reduction of the error with respect to Planck results at the level
of more than 60%. For the parameters describing beyond-ΛCDM theories, we
observe a milder reduction in the errors with respect to the Planck constraints
at the level of ≤ 10%. The improvement increases up to ∼ 35% when we
constrain the parameters using tomographic mock observations. We conclude
that the power spectrum of the 21cm signal is sensitive to variations of the
parameters describing the examined beyond-ΛCDM models. The improvement
in the constraining power induced by tomographic observations first motivated
the analysis of Chapter 4.

The structure of this paper is the following. In Section 6.1, we delineate our
methodology, describe the modeling of the 21cm signal power spectrum, and
outline the theoretical framework. In Section 6.2 we discuss the results we
obtain. Constraints on ΛCDM are presented Section 6.2.1. In Section 6.2.2, we
discuss results for the considered EFT models. We investigate the effect of im-
plementing the HI bias and the brightness temperature as nuisance parameters
in Section 6.2.3. Results for a wCDM background are shown in Section 6.2.4. We
explore the impact of more ideal tomographic observations in Section 6.2.5. We
conclude by outlining the main results of this work in section Section 6.3.

6.1 methods

In Section 6.1.1 we describe the model for the 21cm power spectrum, while
in Section 6.1.2 we provide details on the likelihood implementation. In Sec-
tion 6.1.3, instead, we summarize the main aspects of EFT for cosmic accel-
eration, outline the theoretical models that we test, and list the most recent
constraints available in the literature.
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We adopt the Planck 2018 best-fit results [4] (see Section 1.3).

6.1.1 Model for the 21cm signal as observed by MeerKAT

As in Chapter 4, we consider the following model for the 21cm signal linear
power spectrum [57, 153, 158]

P21(z, k, µ) = T̄2
b(z)

[︂
(bHI(z) + f (z) µ)2Pm(z, k) + PSN

]︂
, (6.1)

where T̄b(z) is the mean brightness temperature, bHI(z) is the HI linear bias,
f (z) is the linear growth rate, µ = k̂ · ẑ, Pm(z, k) is the total matter power
spectrum and PSN is the HI shot noise. For the time being, we restrict ourselves
to the case µ = 1 and neglect the effect of the shot noise term [93, 158], leaving
the study of different values of µ and the introduction of the shot noise for
future work. I.e., we use

P21(z, k) = T̄2
b(z)(bHI(z) + f (z))2Pm(z, k). (6.2)

For the mean brightness temperature, we rely on the following parametriza-
tion from [39]

Tb(z) = 23.88
(︃

Ωbh2

0.02

)︃√︄
0.15

Ωmh2
(1 + z)

10
xHI mK, (6.3)

where Ωb and Ωm are the baryon and total matter density parameters today
and xHI =

ΩHI
ΩH

is the fraction of neutral atomic hydrogen. Following results
in literature we assume the hydrogen fraction to be ΩH = 0.74Ωb [307] and
consider a constant value of ΩHI ∼ 10−3. This choice of ΩHI is justified by
observations [308] and has been already adopted in other works [57, 158].

We model the linear bias bHI(z) from numerical simulation results. In [158]
bHI is estimated for a discrete set of redshifts z = 0, 1, 2, 3, 4, 5 in a ΛCDM

framework. We interpolate linearly these points to estimate bHI(z) also at
intermediate redshift values. Notice that, at the scales we operate, we can safely
consider the bias to be scale-independent.

The linear growth rate is computed as f (z) = f σ8(z)/σ8(z), where f σ8(z)
is numerically computed from the density-velocity correlation, i.e. f σ8(z) =
σ
(vd)
8 (z)2/σ

(dd)
8 (z), as defined in [150]. This way of obtaining the growth rate

is model dependent and allows us to estimate it also for models beyond ΛCDM,
where the f (z) behavior may not be trivial. This method, on the other hand,
cannot account for any possible scale dependence of the growth rate, a known
feature of several MG models. However, the growth rate for the subset of models
we study results to be scale-independent in the range of scales we investigate
and, thus, we are allowed to use this method.

Finally, as well as f σ8(z) and σ8(z), the matter power spectrum Pm(z, k) is
computed with the Eistein-Boltzmann solvers CAMB [173] and EFTCAMB [254,
334], the CAMB extension to test MG-DE models in an Effective Field Theory
approach.1 We highlight that in our construction of P21(z, k) model dependent
quantities are the matter power spectrum Pm(z, k) and the growth rate f , which
we are able to compute for ΛCDM and beyond ΛCDM models. The other factors

1See https://camb.info/ and http://eftcamb.org/.

https://camb.info/
http://eftcamb.org/
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Figure 6.1: Linear power spectra for the 21cm signal at different redshifts. Results are
computed with the model in Equation 6.2 for the ΛCDM fiducial cosmology,
i.e. Planck 2018 best-fit results [4]. We show both the full power spectrum
P21(k) (left) and the adimensional one ∆21(k) ≡ k3 P21(k)/2π2 (right).

in Equation 6.2, i.e. the brightness temperature Tb and the bias bHI, are fixed for
different models. This is because it is not clear how to compute these quantities
for models beyond ΛCDM. We further discuss this topic in Section 6.2.3. The
theoretical predictions of P21(z, k) in the fiducial ΛCDM cosmology at different
redshifts are shown in Figure 6.1.

6.1.2 21cm signal likelihood implementation

Given a set of observed P21(z, k) values, Pobs
21 , at a fixed redshift, we compute

theoretical predictions of the 21cm signal, i.e. Pth
21, at the same redshift and k. As

described in Section 6.1.1, Pth
21(z, k) is derived from the brightness temperature,

the HI bias, the growth rate, and the matter power spectrum, as in Equation 6.2.
At each MCMC step values of Pm(k) and f are provided by CAMB/EFTCAMB,
whereas Tb and bHI are kept fixed to their values from the fiducial cosmology.

Thus, the P21(k) logarithmic likelihood function L is computed as

− ln
[︂
L
(︂

Pobs
21 |Pth

21

)︂]︂
=

1
2
(Pth

21 − Pobs
21 )T C−1 (Pth

21 − Pobs
21 ), (6.4)

where C is the covariance matrix, with dimensions n × n, being n the number
of data points. We assume C to be diagonal, given that we rely only on linear
scales, and compute it from the observational errors σ⃗P21 as

Cij = σ2
P21 ,i δij , (6.5)

with δij being the usual Kronecker delta and i, j = 1, . . . , n.
We consider also the possibility to compute the likelihood from different

redshift bins. If that is the case, observations at each redshift are assumed
independent. Each contribution to the logarithmic likelihood is calculated
separately and then added together. Moreover, it is also possible to choose
an alternative parametrization for the brightness temperature Tb. From the
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Figure 6.2: Mock data set observations and theory prediction at z = 0.39 for the 21cm
signal power spectrum. Error bars are generated considering a realistic inten-
sity mapping survey with the MeerKAT telescope. Central values are instead
obtained from points predicted by the theory for ΛCDM and the fiducial cos-
mology we assume. Each point from the theory is then displaced randomly
according to a Gaussian distribution with a fifth of the error on that point as
standard deviation.

definition in Equation 6.3 we can extrapolate the redshift dependence and
rewrite Tb in a more general way

Tb = aTb

√
1 + z, (6.6)

where in this case all the contributions from cosmological parameters and ΩHI
absorbed in the value of the amplitude aTb .

It is then possible to treat aTb , along with the bias bHI , as nuisance parameters
of the P21(k) likelihood function, as we discuss in Section 6.2.3. We assume
this to take into account the effect of possible variations in the brightness
temperature and the bias, for which we lack a theoretical model, in particular
for beyond ΛCDM theories.

We numerically compute the constraints by means of the latest publicly
available version of the MCMC codes CosmoMC [136] and EFTCosmoMC [255],
the CosmoMC extension for studying MG-DE models in an EFT framework.2

CosmoMC/EFTCosmoMC allows the exploration of the parameter space by com-
puting the likelihood from several different observational data. We expand
this set by implementing the computation of the likelihood for P21(k) from
upcoming intensity mapping observations as described above.3

6.1.2.1 A realistic mock data set

A central ingredient for the likelihood of Equation 6.4 is the measured 21cm
power spectrum Pobs

21 and its observational error σ2
P21

as a function of the k in
each of the ith available bin. With the aim of obtaining realistic constraints
for both the standard and non-standard models explored in this work, we
adopt the following approach to generate mock data. We assume we are using

2See also https://cosmologist.info/cosmomc/.
3To this end we write a new module, twentyonepk.f90, to be added to the Fortran version of

CosmoMC/EFTCosmoMC .

https://cosmologist.info/cosmomc/
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the MeerKAT telescope as a collection of 64 single 13.5 m dishes, as it is the
preferred practice in intensity mapping analysis [37, 58, 59], scanning a total sky
area of 2 000 deg2. We consider L-band observations and thus a central redshift
of z = 0.39. We assume for the signal the same modeling as for Section 6.1.1 and
consider the effect of both the instrumental noise and the telescope beam. We
consider a thermal noise level given by the radiometry equation with a system
temperature taken directly from MeerKAT technical available documentation,
a frequency resolution of 1 MHz, and 2 400 h of total observing time. The beam
is assumed to be Gaussian and to scale proportionally to λ/Deff, where λ is
the observed frequency and Deff is the effective dish size. We then compute the
error as

σ2
P21 ,i =

(2π)3

Vsur

1
4πk2

i ∆k
(P21(ki) + Pnoise) , (6.7)

where Vsur is the survey total volume, ∆k = 2π/V1/3
sur is the k−bin width, and

Pnoise encodes both the effect of the beam and the thermal noise. Note that we
create our mock data only once, assuming a standard ΛCDM cosmology for
P21(k). Given the fiducial cosmology and the errors of Equation 6.7 the final
data set is constructed generating, for each k−bin, a new data point Gaussian
distributed around the theory with a standard deviation of σ2

P21 ,i, as depicted
in Figure 6.2. Intensity mapping experiments have yet to completely solve
additional challenges, such as the cleaning of the foreground emissions, e.g.
see [335], beam modeling uncertainties [65, 336], and possible residual artifacts
in the data [337, 338]. In this work, we do not model these and leave them to
further studies.

6.1.2.2 Additional external intensity mapping forecasts on background quantities

We also test the efficacy of the P21(k) likelihood combined with additional
intensity mapping information on background and growth of structure quanti-
ties provided by other experiments at higher redshift. As described in [339],
21cm intensity mapping observations in the redshift range 2.5 < z < 5 are
expected to provide powerful constraints on cosmological parameters. In [339],
constraints on the quantities f σ8(z), the angular diameter distance DA(z), and
the Hubble parameter H(z) are computed for a hypothetical observation of
the telescope HIRAX [42] in this redshift range. Our aim is to equip the P21(k)
likelihood with additional information on the background evolution, coming
from external 21cm intensity mapping observations. To do so we construct an
additional likelihood and mock data sets for f σ8(z), DA(z), and H(z). In the
following, we refer to this likelihood as the background likelihood.

The mock data set build for f σ8(z), DA(z) and H(z) at redshift z = 0.39, is
shown in Table 6.1. To construct it, we start from the forecast relative errors on
these quantities at redshift z = 2.5 [339]. Following the trend found in [339],
we assume the relative errors on f σ8, DA and H to be increasing with the
redshift. Then, in order to be conservative, we set the relative error at z = 0.39
to the upper limit given by the relative errors at z = 2.5. We compute absolute
errors and central points from theoretical estimates of f σ8(z), DA(z), and H(z),
as explained in Table 6.1.



104 a meerkat forecast on eft of dark energy models

σx/x(z = 2.5) x(z = 0.39) σx(z = 0.39)

f σ8 0.075 0.478 0.036

H [km s−1 Mpc−1] 0.014 83.3 1.2

DA [Mpc] 0.053 1130 60

Table 6.1: Data points and errors on f σ8, the angular diameter distance DA and the
Hubble parameter H at redshift z = 0.39. In the first column, we show the
forecast relative errors on these quantities at z = 2.5 computed in [339]. In the
second column, we show theoretical expectations for f σ8, DA, and H obtained
with CAMB for our fiducial cosmology at redshift z = 0.39. In the third column,
there are the absolute errors on each quantity, which we derived from the
relative errors at redshift z = 2.5 as σx(z = 0.39) = σx/x(z = 2.5) · x(z = 0.39).
I.e., we set σx/x(z = 0.39) = σx/x(z = 2.5).

From this mock data set, we implement an additional likelihood term for
each x = f σ8, H, DA at z = 0.39:

− ln
[︂
L
(︂

xobs|xth
)︂]︂

=
1
2
(xth − xobs)

1
σ2

x
(xth − xobs) .

We then sum each piece to the P21(k) likelihood, defined in Equation 6.4. We
stress that the 21cm power spectrum data and the background data obtained
from 21cm measurements are considered to be independent. This is of course
an assumption that deserves to be investigated with dedicated mock data sets.

6.1.3 Theoretical framework

In this section, we review general aspects of the beyond ΛCDM models that we
consider for our analysis. As anticipated, we work within the Effective field
theory (EFT) framework. In the following, we first review the basic aspects
of EFT of DE. Then, we describe in more detail the set of EFT models that we
consider, and, finally, we briefly summarize the latest available constraints. We
stress that in our work we follow mainly the notation of [254, 334].

6.1.3.1 Effective field theory formalism

Upcoming, high-precision cosmological observations are expected to shed
light on the nature of gravity on large scales and the physics of DE. Given the
plethora of candidates for DE/MG, it is important to adopt a unifying frame-
work that allows for an efficient comparison with data. To this extent, the EFT

approach is a powerful tool that provides us with a general, unified description
of the late-time DE/MG at the level of the action, as discussed in Chapter 3. The
EFT framework has been originally introduced in Cosmology in the context
of inflation [251–253]. Subsequently, it was applied to quintessence [340] and
eventually to scalar-tensor models of DE/MG [20, 21]. The EFT of DE is formu-
lated in terms of a unifying action that allows for efficient and broad sampling
of the theory space under general conditions of stability. It can be used in an
agnostic way, with a set of free functions of time parametrizing theoretically
allowed deviations from ΛCDM; or in a model-specific way, where the func-
tions are customized to specific models through a mapping procedure. For a
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detailed description of this, as well as a complete review of the state-of-the-art
constraints on EFT models we refer the reader to [250].

The EFT formalism allows sampling a large number of different theoreti-
cal scenarios, of increasing complexity. For a first thorough forecast of 21cm
intensity mapping constraints on DE/MG, we start from the subset represent-
ing Generalized Brans Dicke (GBD) theories, which includes f (R) and, more
generally, chameleon-type theories. In the EFT language, this class of theories
can be explored simply by varying two functions of time, which determine
both background and dynamics of linear perturbations. In our analysis, we
opt for the Hubble parameter, H(a) and the conformal coupling Ω(a) (see
[341] for further details on the mapping of these theories into EFT of DE and
EFTCAMB.). Hereafter, we will use ΩEFT(a) to indicate this function, in order
to avoid confusion with matter parameters that we vary in our analysis. This
corresponds to assuming a designer approach, in which we fix the expansion
history and explore the space of non-minimally coupled DE/MG models re-
producing it by means of varying the coupling ΩEFT(a)4. Let us recall that a
non-zero conformal coupling implies a running of the Planck mass which can
be alternatively explored with the function αM ≡ H−1d ln M2

P/dt. Within the
context of GBD , we simply have αM = H−1d ln (1 + ΩEFT)/dt. We will present
constraints on both ΩEFT and αM.

GBD models represent a large set of DE/MG models that survive the latest con-
straints from the direct detection of gravitational waves, while still displaying
an interesting phenomenology at the level of large-scale structure [342]. While
being relatively simple, they are still subject to the so-called stability constraints,
which ensure that the theory is free from pathologies, such as ghost and gradi-
ent instabilities [18, 343, 344]. Imposing such viability conditions correctly is of
crucial importance when studying EFT models in an MCMC framework, in order
to select the correct parameter space volume. In the EFTCAMB/EFTCosmoMC

codes routines to check the stability of a model are already implemented. In
the following, we refer to these as viability conditions [254, 334].

6.1.3.2 Selected models and their latest constraints

Let us outline the models that we consider for our analysis with the P21(k)
likelihood while reviewing the most recent constraints on them. Our results
relative to each scenario are discussed in Section 6.2.

We start by analyzing the ΛCDM case, for which theoretical predictions of
the 21cm power spectrum at different redshifts are shown in Figure 6.1. We
also consider the wCDM model, one of the simplest extensions to ΛCDM, where
the DE equation of state parameter w is constant but different from −1, as it is
the case for ΛCDM. No conformal coupling in this case. These two cosmologies
are our starting point, on top of which we then turn on the conformal coupling,
exploring different choices. Since we work in the designer approach, where we
have fixed H(a), we can focus on the effects of the coupling on perturbations.

We explore different choices for ΩEFT(a), adopting parametrizations that
have been already explored in the context of different observables. This allows

4In the sub-case of f (R) gravity, ΩEFT = d f /dR in our convention.
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Figure 6.3: Upper panels: linear power spectra for the 21cm signal for ΛCDM and
several pure EFT models, described by different values of the parameter ΩEFT

0 .
Lower panels: percentage deviations from ΛCDM predictions, computed as
(PEFT

21 − PΛCDM
21 )× 100/PΛCDM

21 . We show theoretical predictions at redshift
z = 0.39 for a pure linear EFT model (left panel) and an exponential one
with fixed β = 1 (right panel). For the linear case we consider ΩEFT

0 =

0.01, 0.1, 0.5, 1, while for the exponential ΩEFT
0 = ±0.01, ±0.1, ±0.5, ±1. The

other cosmological parameters are set to the assumed fiducial cosmology
values.

us to draw a more meaningful comparison of the constraining power of P21(k)
with other probes. We start with the linear case, for which ΩEFT(a) is

ΩEFT(a) = ΩEFT
0 a, (6.8)

where ΩEFT
0 is a constant and all other second-order EFT functions are set to

zero. As it was shown in [255], the viability conditions require a non-negative
ΩEFT

0 , i.e. ΩEFT
0 ≥ 0, both in the case of a ΛCDM and wCDM background. We

recover the ΛCDM limit when ΩEFT
0 → 0. We refer to this model as pure linear

EFT. The parameter ΩEFT
0 has been constrained to be ΩEFT

0 < 0.043 (95% CL)
on a ΛCDM background, from Planck 2015 TT, TE, EE power spectra combined
with BAO, Supernovae and H0 priors data sets [243]. On a wCDM background,
instead, the constraint ΩEFT

0 < 0.058 (95% CL) was found from Planck 2013

TT power spectrum and lensing data combined with BAO observations [255].
Both the matter power spectrum and the growth rate depend on ΩEFT

0 , thus
the 21cm power spectrum is expected to be sensitive to this parameter as well.

Another interesting parametrization is the exponential one, i.e

ΩEFT(a) = exp(ΩEFT
0 aβ)− 1 . (6.9)

It is possible to see that this model has a simple mapping into the alternative
parametrization referred to as the α-basis [256], of which we discussed the first
function, αM. Namely, it corresponds to a non-minimally coupled model in
which the kinetic braiding and conformal coupling are related in a simple way,
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Figure 6.4: Linear power spectra for the 21cm signal for ΛCDM and several pure EFT
models, described by different values of the parameter ΩEFT

0 . We show the-
oretical predictions at redshift z = 0.39 for a pure linear EFT model (left
panel) and an exponential one with fixed β = 1 (right panel). For the
linear case we consider ΩEFT

0 = 0.01, 0.1, 0.5, 1, while for the exponential
ΩEFT

0 = ±0.01, ±0.1, ±0.5, ±1. The other cosmological parameters are set to
the assumed fiducial cosmology values. Black points with errorbars are the
mock data set we construct in this work, as described in Section 6.1.2.1.

i.e. αB = −αM, and αK is determined by the background, i.e. it is a function of
H and αM [243]. The function αM evolves as

αM = α0
Maβ , (6.10)

where we identify α0
M = ΩEFT

0 β. We refer to this model as pure exponential EFT.

The latest, most stringent constraints on the exponential model are α0
M <

0.062 (95% CL), and β = 0.92+0.53
−0.24 (68% CL), from Planck 2015 data combined

with BAO and Supernovae datasets on a ΛCDM background [243]. From Planck
2018 data, instead, a mild (1.6 σ) preference for a negative running of the Planck
mass has been observed [4].5 Constraints computed from Planck 2018 TT, TE, EE
power spectra, lensing, and low polarization CMB data are ΩEFT

0 = −0.049+0.037
−0.024

(68% CL), α0
M = −0.040+0.041

−0.016 (68% CL), β = 0.72+0.38
−0.14 (68% CL).

Our predictions of P21(k) for a wide range of ΩEFT
0 values are shown in

Figure 6.3, where we observe that the 21cm power spectrum is sensitive to
variations in the EFT parameters. At small scales and redshift z = 0.39, the
amplitude of P21(k) is rescaled for different values of ΩEFT

0 . This is the range of
scales we investigate, as described in Section 6.1.2.1. Variations in this regime
are at the level of 1− 40% (continuous lines), up to more than 100% for negative
values of ΩEFT

0 (dashed lines). At large scales, instead, we observe a transfer
of power, but it is not possible to probe this regime with current experiments.
The behavior of P21(k) for EFT models is induced mainly by the matter power
spectrum Pm(z, k). In the P21(k) model of Equation 6.2, the only quantities
sensitive to EFT modifications are Pm(z, k) and f (z), which origins an overall
rescaling. Thus, if we have a good estimate for the astrophysical quantities that

5This preference is reduced to < 1 σ, with the inclusion of the BAO and weak lensing datasets.
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Figure 6.5: Theoretical predictions for the quantity f σ8. We show the redshift evolution
of f σ8 for different models, i.e. ΛCDM, a pure linear EFT model described
by ΩEFT

0 = 0.01, 0.1, 0.5, 1 (solid lines), a pure exponential EFT model with
ΩEFT

0 = −0.01, −0.1, −0.5, −1 and β = 1. The black data point with error
bars at z = 0.39 is the one given in Table 6.1. The other cosmological parame-
ters are set to the assumed fiducial cosmology values.

Param. Prior Param. Prior Param. Prior

Ωbh2 . . [5 × 10−3 , 0.1] τ . . . . . [0.01, 0.8] w0 . . . . [−1.5, 0]
Ωch2 . . [0.1 × 10−3 , 0.99] ln(As) [1.61, 3.91] ΩEFT

0 . [−1, 1]
100θMC [0.5, 100] ns . . . . [0.8, 1.2] β . . . . . [0, 3]

Table 6.2: Adopted flat priors on cosmological and pure EFT parameters.

enter in the P21(k) model, e.g. the brightness temperature, we expect that the
P21(k) may be useful to constrain these kinds of EFT models.

In figures Figure 6.4 and Figure 6.5, we compare EFT modifications to P21(k)
and f σ8 with the mock data sets we construct in sections Section 6.1.2.1 and Sec-
tion 6.1.2.2 respectively. With the errorbars shown we expect the P21(k) likeli-
hood to be sensitive to EFT modifications. We stress that the current constraints
from CMB data on EFT parameters limit ΩEFT

0 to be ΩEFT
0 ≤ 0.1 (green lines).

EFT modifications for ΩEFT
0 ≤ 0.1 fall within the errorbars of the mock data. We

discuss the implications of this feature in Section 6.2.2.
When performing MCMC analyses for the models outlined above, we vary

the six cosmological parameters {Ωbh2, Ωch2, 100θMC, τ, As, ns} and the EFT

parameters describing each EFT models. Results for all other quantities, such as
H0 and σ8, are derived from constraints on the free parameters. If not explicitly
stated, we consider the flat priors listed in Table 6.2.

6.2 results

In this section, we illustrate the results obtained for the models outlined in
Section 6.1.3.2. We present constraints on cosmological and EFT parameters
from several different data sets. On the one hand, we test the effect of 21cm data
alone. On the other, we analyze the impact of adding P21(k) to CMB observations.
We refer to [117] for tables showing the full results of our analyses, i.e. the
complete sets of constraints on all the model parameters.
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Figure 6.6: Joint constraints (68% and 95% confidence regions) and marginalized pos-
terior distributions on cosmological parameters for a ΛCDM model. Here
the label P21(z = 0.39) stands for the 21cm power spectrum likelihood at
redshift z = 0.39, while f σ8 + H + DA represents the additional background
likelihood described in Section 6.1.2.2 and computed at the same redshift
z = 0.39. We consider the parameter τ fixed to the fiducial cosmology value,
i.e. τ = 0.0543.

We recall that with the label "Planck 2018" we refer to the combination TT,
TE, EE + low-ℓ + lowE + lensing (see Section 2.2.1).

6.2.1 ΛCDM reference results

We begin by testing the constraining power of the mock data set we constructed.
We constrain cosmological parameters for ΛCDM using the P21(k) likelihood
alone and combined with the background likelihood (see Section 6.1.2.2). Results
of this first analysis are shown in Figure 6.6 and Table 6.3. As one could expect,
P21(k) alone is not able to constrain all the six cosmological parameters at once
and some of them remain completely unconstrained. However, fixing τ to its
fiducial cosmology value, resulted to be enough to reach numerical convergence
and obtain broad constraints. Looking at the 2D contour in Figure 6.6, we can
observe a clear positive correlation between Ωch2 and H0. We anticipate that
this feature will be pivotal when combining P21(k) with CMB data.

This correlation is almost completely removed when we combine P21(k) with
the background likelihood, i.e. including the three more data points on f σ8, H,
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Figure 6.7: Joint constraints (68% and 95% confidence regions) and marginalized pos-
terior distributions on cosmological parameters for a ΛCDM model. Here
the label Planck 2018 stands for TT, TE, EE + lowE + lensing while the label
P21(z = 0.39) stands for the 21cm power spectrum likelihood at redshift
z = 0.39.

and DA. In this case, we obtain significantly tighter and smoother posterior
distributions, as shown in Figure 6.6 and we obtain a competitive error on the
estimate of H0, i.e.

H0 = 67.1 ± 1.3 km s−1Mpc−1. (6.11)

Thus, we observe that 21cm observables alone can constrain H0 with an error
comparable to measurements obtained from other probes [11]. E.g. early time
probes constrain H0 with an error of ∼ 1.2 km s−1Mpc−1, from the Dark
Energy Survey observations combined with BAO and BBN data [5]. Once the
impact of P21(k) alone is established, we turn to combine P21(k) with Planck
2018 CMB data. Marginalized posterior distributions are shown in Figure 6.7,
while constraints are listed in Table 6.3. We find that adding P21(k) significantly
improves on the constraints produced by Planck data alone, reducing the error
on cosmological parameters by at least ∼ 10% to ∼ 70%. The maximum effect
is obtained for Ωch2 and H0. With Planck data we obtain σΩch2 = 1.2 × 10−3,
and σH0 = 0.53, while adding the P21(k) likelihood the errors reduce to σΩch2 =

4.6× 10−4 and σH0 = 0.16. The percentage reduction is of the 61% and the 69%,
respectively.
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Par. Planck 2018 Planck 2018 + P21 P21 P21 + bg

Ωbh2 0.02237 ± 0.00014 0.02236 ± 0.00011 (−24%) 0.038 ± 0.015 0.0226 ± 0.0035

Ωch2 0.1201 ± 0.0012 0.12004 ± 0.00046 (−61%) 0.162+0.050
−0.033 0.1227 ± 0.0081

ns 0.9650 ± 0.0041 0.9651 ± 0.0031 (−25%) < 1.10† 0.951+0.072
−0.085

H0 67.32 ± 0.53 67.32 ± 0.16 (−69%) > 57.8† 67.1 ± 1.3

Table 6.3: Marginalized constraints on cosmological parameters at the 68% confidence
level for a ΛCDM model. 95% confidence levels are marked with †. Deviations
in the error with respect to Planck 2018 results are shown in brackets. Here
the label Planck 2018 stands for TT, TE, EE + lowE + lensing, while the label
P21(z = 0.39) stands for the 21cm power spectrum likelihood at redshift
z = 0.39. The label bg represents the additional background likelihood described
in Section 6.1.2.2.

Comparing the 2D contour plots of figures Figure 6.6 and Figure 6.7, we
observe that Ωch2 and H0 are correlated both using P21(k) or Planck data
alone. Nevertheless, the correlation appears to develop along two orthogonal
directions for the two data sets. When using the data sets combined, the
contour reduces to the intersection of these two regions, thus producing very
tight constraints on Ωch2 and H0. Therefore, the P21(k) likelihood performs
as expected, i.e. it provides complementary correlations to that of CMB and
remarkably improves on the constraints.

Although we do not show results here, we note that the effect of adding BAO

data has also been tested. We observe no significant impact when we combine
BAO both with P21(k) data alone and with Planck + P21(k).

6.2.2 Pure EFT models on a ΛCDM background

After having established the constraining power of the 21cm signal, we study its
impact on beyond ΛCDM theories. We consider the pure EFT models on a ΛCDM

background, which are described in Section 6.1.3.2. We test three different
scenarios: i) the pure linear EFT model, ii) the pure exponential EFT model, iii)
a pure exponential EFT model for which we allow a negative running of the
Planck mass. Results are shown in figures Figure 6.8, Figure 6.9 and Table 6.4.

As a first check, we compute constraints from P21(k) alone. As before, in
this analysis, τ is kept fixed to its fiducial cosmology value. We observe that
the state-of-the-art mock uncertainties still provide a weak constraining power
for these models and the EFT parameters appear to be loosely constrained. As
displayed in Table 6.4, for both the pure linear and exponential EFT models we
find ΩEFT

0 to be unconstrained. The best result is achieved on the parameter β

describing the exponential EFT models. P21(k) alone is able to constrain β with
a slightly broader error with respect to the one we obtain from Planck data.
Moreover, we observe that adding the background data slightly improves the
results on the EFT parameters, although with no significant impact. This is con-
sistent with the fact that we assume a designer approach, where we parametrize
independently the background and the EFT functions. Consequently, adding
information on the background does not have a direct impact on EFT parameter
constraints. We conclude that the mock data set we constructed for the redshift
bin z = 0.39 exhibits a limited constraining power on the EFT parameters. How-
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Figure 6.8: Joint constraints (68% and 95% confidence regions) on cosmological and
EFT parameters for a pure linear EFT model on a ΛCDM background. Here
the label Planck 2018 stands for TT, TE, EE + lowE + lensing while the label
P21(z = 0.39) stands for the 21cm power spectrum likelihood at redshift
z = 0.39.

ever, we anticipate that future tomographic observations at multiple redshifts
could significantly help to increase the constraining power of this observable
alone on EFT parameters. We further discuss this claim in Section 6.2.5.

We proceed by combining P21(k) with the latest Planck 2018 CMB observa-
tions. Overall, we observe that constraints on cosmological parameters remain
unaffected compared to the ΛCDM case. Furthermore, adding P21(k) produces
an improvement in the EFT parameters at the level of 1 − 18%. In the following,
we discuss results for each pure EFT model individually.

First, for the linear model from Planck data alone, we constrain ΩEFT
0 to be

ΩEFT
0 < 0.035 (95% CL), (6.12)

as we can see in Table 6.4. This upper limit improves on previous results in the
literature (ΩEFT

0 < 0.043), which were produced using Planck 2015 data sets
and an older version of the code EFTCAMB (see Section 6.1.3.2). When we add
the P21(k) likelihood, we get

ΩEFT
0 < 0.031 (95% CL), (6.13)

which improves the constraint from Planck alone at the level of 11%. Contour
plots are shown in Figure 6.8. We can observe that adding P21(k) has a mild
effect on removing the correlation between ΩEFT

0 and some of the cosmological
parameters, e.g. Ωch2.

Second, as shown in Table 6.4 for the pure exponential EFT model we obtain
constraints from Planck 2018 data alone which are compatible with previous
results in the literature, produced with Planck 2015 data as before (see Sec-
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Par. Planck 2018 Planck 2018 + P21 P21 P21 + bg

Linear EFT

ΩEFT
0 < 0.035† < 0.031† (−11%) — —

H0 67.21 ± 0.55 67.33 ± 0.17 (−70%) > 57.7† 67.0 ± 1.3

Exponential EFT

ΩEFT
0 < 0.036† < 0.034† (−5%) — —

β 0.96+0.54
−0.19 0.97+0.53

−0.19 (−1%) 1.30 ± 0.57 1.20+0.58
−0.47

α0
M < 0.045† < 0.044† (−3%) < 1.89† < 1.72†

H0 67.20 ± 0.55 67.34 ± 0.17 (−69%) > 64.3† 66.9 ± 1.3

Exponential EFT

negative running
ΩEFT

0 −0.094+0.071
−0.042 −0.075+0.063

−0.042 (−7%) — 0.19+0.69
−0.34

β 1.28+0.56
−0.21 1.41+0.48

−0.15 (−18%) 1.21+0.57
−0.70 1.38 ± 0.55

α0
M −0.133+0.13

−0.048 −0.117+0.12
−0.052 (−3%) 0.31+0.84

−0.70 0.36 ± 0.80

H0 68.03 ± 0.66 67.36 ± 0.18 (−73%) > 56.3† 67.0 ± 1.3

Table 6.4: Marginalized constraints on cosmological parameters at the 68% confidence
level for pure EFT models on a ΛCDM background. 95% confidence levels are
marked with †, while the symbol — means that we do not find any constraint.
Deviations in the error with respect to Planck 2018 results are shown in
brackets. Here the label Planck 2018 stands for TT, TE, EE + lowE + lensing
while the label P21 stands for the 21cm power spectrum likelihood at redshift
z = 0.39. The label bg represents the additional background likelihood described
in Section 6.1.2.2.

tion 6.1.3.2). Adding P21(k) provides similar effects as for the linear model.
With P21(k) + Planck we obtain:

ΩEFT
0 < 0.034 (95% CL),

β = 0.97+0.53
−0.19 (68% CL),

α0
M < 0.044 (95% CL),

(6.14)

Note a 5% reduction of the upper limit on ΩEFT
0 , and consequently on α0

M, with
respect to Planck data alone. Instead, constraints on the parameter β appear to
be unaffected when we add P21(k)6. Contour plots are shown in Figure 6.9 (left
panel). As for the linear case, we notice a small reduction of the correlation
between ΩEFT

0 and H0. The characteristic shape of the β − α0
M contour is mainly

set by viability requirements, which sharply cut the samples at β ∼ 1.6. For
lower values of β, the MCMC samples converge towards ΩEFT

0 = 0, resulting in
an elongated shape of the contour. This is an attribute of the functional form of
the EFT function ΩEFT(a). According to Equation 6.9, when ΩEFT

0 = 0, i.e. in the
ΛCDM limit, also ΩEFT(a) = 0 for any value of β. Thus, near the ΛCDM limit,
β is unconstrained and the MCMC samples populate all the values allowed
by viability conditions. We can observe this property for all the exponential
models, i.e. in both the left and the right panels of Figure 6.9.

6Notice that the posterior distribution of the parameter β is asymmetrical resulting in different
confidence levels above and below the mean value. When we compute percentage deviations between
different results, we compare the mean of the upper and lower errors. We do so for all asymmetrical
constraints.
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Lastly, we tested the case of a pure exponential EFT model where we allow
negative values of the function ΩEFT. This scenario corresponds to a negative
running of the Planck mass. From Planck 2018 data we find

ΩEFT
0 = −0.094+0.071

−0.042 (68% CL),

α0
M = −0.133+0.13

−0.048 (68% CL),

β = 1.28+0.56
−0.21 (68% CL).

(6.15)

Compared with state-of-the-art constraints for the same data sets reported in
Section 6.1.3.2, our results present slightly different features, although we check
that they carry the same statistical significance. χ2 deviations with respect to
the ΛCDM constraints are comparable. We find ∆χ2 = χ2

ΛCDM − χ2
EFT = −4.4

to be compared with ∆χ2 = −4.3 found in [4]. Moreover, the significance of
the deviation from ΩEFT

0 = 0, being 1.3σ, is the same for our results and results
in the literature. The disparities that we find could be caused by a different
choice of viability conditions. E.g., for ΩEFT

0 it may be that we allow to sample
a larger portion of the parameter space resulting in different but statistically
equivalent constraints.

As presented in Table 6.4, when we add P21(k) we find

ΩEFT
0 = −0.075+0.063

−0.042 (68% CL),

α0
M = −0.117+0.12

−0.052 (68% CL),

β = 1.41+0.48
−0.15 (68% CL),

(6.16)

with a reduction on the errors at the level of 7% on ΩEFT
0 and 18% on β. In

the contour plots of Figure 6.9 (right panel), we observe the full shape of the
β − α0

M confidence region.
Compared with the results in the left panel, the sharp cut-off at β ∼ 1.6 here

disappears, given that we relax some of the viability conditions. This allows us
to reconstruct the full shape of the posterior distribution for higher values of β.
For lower values of β, instead, we observe the clustering of the samples along
the ΩEFT

0 = 0 axis, as for the case with stronger viability conditions shown in
the left panel. This feature impairs the contour on ΩEFT

0 , pushing it towards the
ΛCDM limit. Knowing or fine-tuning β a priori would remove these artificial
effects, and it could significantly help in better constraining ΩEFT

0 . We highlight
that for the time being we do not introduce weak lensing data, which should
move the constraints to the ΛCDM limit, as one can observe in [4].

The significance of the deviation from zero for the data sets Planck 2018 +
P21(k) is 1.2σ, slightly lower than the value obtained with Planck data alone.
From this, we may infer that the 21cm signal seems to bring back ΩEFT

0 to its
ΛCDM limit. However, this feature is caused by the choice we made for the
central points of the mock data set for P21(k), which we generate assuming a
ΛCDM cosmology.

In order to test this statement, we conduct a further consistency check for our
mock data set for the pure exponential EFT model with negative values of ΩEFT

0 .
We consider a new mock data set with the same errors, but different central
points. To generate such points we use the predicted P21(k) power spectrum for
an exponential EFT model described by the parameter ΩEFT

0 = −0.178, which
is 2σ away from the mean value of the Planck constraint, taken from Table 6.4.
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Figure 6.9: Joint constraints (68% and 95% confidence regions) and marginalized poste-
rior distributions on cosmological and EFT parameters for a pure exponential
EFT model on a ΛCDM background (left panel). We show also results for the
same model for a negative running of the Planck mass (right panel). Here
the label Planck 2018 stands for TT, TE, EE + lowE + lensing while the label
P21(z = 0.39) stands for the 21cm power spectrum likelihood at redshift
z = 0.39. ΩEFT

0 − 2σ mark the constraints obtained from a new mock data
set constructed setting ΩEFT

0 2σ away from the Planck estimate. I.e., we set
ΩEFT

0 = −0.178, 2σ away from the Planck constraints, and β = 1.28, its Planck
constraint. These values are marked with gray lines in the right panel plots.
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We set β and all the other cosmological parameters to their Planck constraint.
Results are shown in the right panel of Figure 6.9. For Planck 2018 + P21(k)
likelihood computed on this new data set, we find ΩEFT

0 constrained to be

ΩEFT
0 = −0.109+0.071

−0.041 (68% CL). (6.17)

While the error on ΩEFT
0 remains unchanged, this estimate appears to be away

from 0 at the level of 1.5σ, to be compared with the previous 1.3σ from Planck
2018 data. The contour in the β − α0

M confidence region (Figure 6.9, right
panel, cyan contour) is significantly reduced with respect to the previous case
(blue contour). Assuming that one could place a prior or fix β and remove
the artificial clustering around the ΩEFT

0 = 0 axis, the significance of the
deviation from the ΛCDM limit would increase remarkably. Thus, if P21(k) data
would prefer an EFT Universe, we should be able to detect and distinguish it
from ΛCDM. The constraints on the EFT parameters (ΩEFT

0 , β) appropriately
decrease when using the EFT mock dataset, while the cosmological parameters
(Ωch2, H0) show only mild improvement, remaining equivalent to that of
Planck constraints. Essentially, the P21(k) mock modeled around ΛCDM, aids to
bring the constraints closer to Planck constraints for all the parameters. While
the P21(k) modeled around the EFT, as expected, provides better agreement
with the Planck constraints on the cosmological parameters and additionally
shows improvement for the EFT parameters.

In conclusion, we notice that the conformal coupling characteristic of GBD

models, explored here with the pure EFT approach, is sensitive to 21cm signal
observations. However, the constraining power of a realistic mock data set is
still limited by the capability of state-of-the-art instruments. When used with-
out other probes like the CMB, the P21(k) likelihood shows a mild constraining
power. When combined with CMB measurements, results are dominated by the
more comprehensive Planck 2018 data sets. In this framework, the realistic,
MeerKAT-like, single bin P21(k) likelihood improves the constraints on EFT

parameters at the level of ∼ 10%. We expect that adding tomographic obser-
vations of P21(k) for multiple redshift bins would improve the constraining
power of this new observable, as we examine in Section 6.2.5.

6.2.3 Adding likelihood nuisance parameters

When modeling P21(k) we keep both the bias bHI and the amplitude of the
brightness temperature aTb fixed to their ΛCDM limit, lacking a theoretical pre-
diction of how these two quantities might change for beyond ΛCDM scenarios.
See [160] for this type of computation. This assumption is accurate enough for
our purposes since we expect to detect small variations from ΛCDM.

In this section, we relax this assumption and implement the bias and the
brightness temperature as nuisance likelihood parameters and test their effects
on the parameter constraints. Note that varying these two quantities correspond
to altering the amplitude of the power spectrum. We compare four different
case studies, where: i) we keep fixed both aTb and bHI, ii) we vary only bHI,
iii) we vary only aTb , iv)we vary both aTb and bHI. Confidence regions and
marginalized posteriors are shown in Figure 6.10. We start studying the effect
of nuisance parameters using Planck 2018 data + P21(k) assuming a ΛCDM

universe.



6.2 results 117

0.23
0.24

aTb

66

67

68

69

H
0

0.04

0.06

τ

0.04
0.06

τ

66 68

H0

Planck 2018
Planck 2018 + P21

Planck 2018 + P21 - varying aTb

Planck 2018 + P21 - varying aTb , bHI

1.15
1.20

bHI

66

67

68

69

H
0

0.04

0.06

τ

0.04
0.06

τ

66 68

H0

Planck 2018
Planck 2018 + P21

Planck 2018 + P21 - varying bHI

Planck 2018 + P21 - varying aTb , bHI

Figure 6.10: Joint constraints (68% and 95% confidence regions) and marginalized poste-
rior distributions on cosmological parameters for a ΛCDM model. We open
the parameter space to the two nuisance parameters aTb and bHI , i.e. the
amplitude of the brightness temperature and the HI bias. We study different
configurations: both the parameters are fixed, one is free the other is fixed,
they are both free. Here the label Planck 2018 stands for TT, TE, EE + lowE +
lensing while the label P21 stands for the 21cm power spectrum likelihood
at redshift z = 0.39.

We observe that adding separately bHI or aTb (case ii) and iii)) produces
comparable results. Red contours in Figure 6.10 represent this scenario. We
notice that, as expected, the addition of one nuisance parameter reduces the
constraining power of P21(k). With respect to Planck constraints, we observe a
reduction of the error at the level of ∼ 15%, to be compared with the ∼ 65%
that we found with fixed aTb and bHI.

When two nuisance parameters are varied (case iv)), we obtain a similar
effect on cosmological parameters, while losing constraining power on aTb and
bHI. In Figure 6.10 (orange contours), we see that the brightness temperature
aTb is loosely constrained while the bias bHI remains completely unconstrained.
In conclusion, although bHI and aTb are two very different physical quantities,
they have similar effects on the parameter constraints. In the following, we fix
the bias bHI and leave the brightness temperature aTb as a nuisance parameter.

We have tested the effect of varying aTb on EFT parameter constraints. We
find that, as expected, adding a nuisance parameter reduces the constraining
power on model parameters. When varying aTb , we observe it to be mildly
correlated with EFT parameters.

6.2.4 Results for a wCDM background

We now turn our attention to EFT models on a wCDM background. We would
like to test the impact of the P21(k) likelihood in a more complex framework, in
which we open the parameter space to the DE equation of state parameter w0.
We highlight that throughout this analysis we always vary aTb , the amplitude
of the brightness temperature along with the other cosmological parameters, as
discussed in Section 6.2.3. Using P21(k) alone and with background data we find
broad constraints, comparable with the ones described above in Section 6.2.2.
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Figure 6.11: Joint constraints (68% and 95% confidence regions) and marginalized pos-
terior distributions on cosmological parameters for a wCDM model. Here
the label Planck 2018 stands for TT, TE, EE + lowE + lensing while the label
P21(z = 0.39) stands for the 21cm power spectrum likelihood at redshift
z = 0.39. We vary the nuisance parameter aTb , i.e. the amplitude of the
brightness temperature, keeping fixed the HI bias bHI .

In the following, we focus on constraints obtained by combining the P21(k)
likelihood with CMB.

First, we test the effect of P21(k) for a simple wCDM model, i.e. we only add
a constant w0 to the parameter space. As shown in Figure 6.11 and Table 6.5,
P21(k) data significantly reduces the error on w0 and consequently on H0 and
σ8. E.g., on w0 we obtain an improvement of 53% on the upper limit found
from Planck data alone. Given that w0 is degenerate with both H0 and σ8,
this translates into a reduction in the errors on these parameters at the level
of 50% and 40% respectively. Adding P21(k) reduces the degeneracy between
w0 and the other parameters. Notice that, the improvement on cosmological
parameter errors is compatible with the results we obtained for ΛCDM with aTb

as a nuisance.
We show results for EFT models in Figure 6.12 and Table 6.5. We test the

linear and the pure exponential EFT models. Overall, the improvement brought
by P21(k) on w0 and derived parameters is compatible with the results for the
vanilla wCDM case. For the linear model, we obtain the upper limit:

ΩEFT
0 < 0.034 (95% CL), (6.18)
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Figure 6.12: Joint constraints (68% and 95% confidence regions) and marginalized pos-
terior distributions on cosmological and EFT parameters for a pure linear
EFT model on a wCDM background (left panel). We show also results for a
pure exponential EFT model (right panel). Here the label Planck 2018 stands
for TT, TE, EE + lowE + lensing, while the label P21(z = 0.39) stands for
the 21cm power spectrum likelihood at redshift z = 0.39. f σ8 + H + DA
represents the additional background likelihood described in Section 6.1.2.2
and computed at the same redshift z = 0.39. We vary the nuisance parameter
aTb , i.e. the amplitude of the brightness temperature, keeping fixed the HI
bias bHI .
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Par. Planck 2018 Planck 2018 + P21

wCDM
w0 < −0.76† < −0.89† (−53%)

H0 64.6+2.7
−1.1 66.1+1.2

−0.69 (−50%)

σ8 0.787+0.025
−0.011 0.799+0.013

−0.0085 (−40%)

Linear EFT

w0 −0.925+0.020
−0.079 −0.960+0.015

−0.043 (−41%)

ΩEFT
0 < 0.034† < 0.034†

H0 64.9+2.4
−0.97 66.1+1.2

−0.70 (−44%)

Exponential EFT

w0 −0.911+0.028
−0.084 −0.953+0.018

−0.041 (−47%)

ΩEFT
0 < 0.051† < 0.047† (−7%)

β — 1.79+1.1
−0.47 (−5%)

H0 64.6+2.5
−1.1 66.0+1.1

−0.73 (−49%)

Table 6.5: Marginalized constraints on cosmological parameters at the 68% confidence
level for pure EFT models on a wCDM background. For wCDM the equation of
state parameter is w0 > −1. 95% confidence levels are marked with †, while
the symbol — means that we do not find any constraint. Deviations in the
error with respect to Planck 2018 results are shown in brackets. Here the label
Planck 2018 stands for TT, TE, EE + lowE + lensing while the label P21 stands
for the P21 likelihood at redshift z = 0.39.

from both Planck 2018 data with or without the addition of P21(k) Note that this
constraint significantly improves over previous results in the literature(ΩEFT

0 <
0.058), computed from Planck 2013 [137] and WMAP [345] data sets and without
polarization data (see Section 6.1.3.2). Although adding P21(k) does not impact
the upper limit on ΩEFT

0 , in the contours (left panel of Figure 6.12) we observe
that it reduces the correlation between ΩEFT

0 and other parameters. For the
exponential model, instead, adding P21(k) reduces the errors on EFT parameters
at the level of 5 − 7%, as presented in Table 6.5. For Planck 2018 + P21(k) we
find:

ΩEFT
0 < 0.047 (95% CL),

β = 1.79+1.1
−0.47 (68% CL).

(6.19)

In the 2D contours (right panel of Figure 6.12) again we notice that P21(k) helps
remove the correlation between EFT and cosmological parameters. We highlight
that the confidence regions in the plane ΩEFT

0 − β here do not show the cut-off
for β ∼ 1.6, which we found for the same model on a ΛCDM background. This
means that when we add w0 to the parameter space, a wider region is allowed
by viability conditions and we are able to reconstruct the contour for higher
values of β. Note that viability conditions are responsible also for the skewed
elongated posteriors that we observe in Figure 6.12. As before (see Figure 6.9),
the samples are clustered along the ΩEFT

0 = 0, due to the modeling we consider.
On a wCDM background evolution, the major impact of the P21(k) likeli-

hood is to reduce the estimate on the equation of state parameter w0, and
consequently on H0 and σ8. For EFT models, P21(k) produces results similar
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Planck 2018 Planck 2018 Planck 2018

Par. + PEFT
21 (z = 0.39) + PEFT

21 (bins) + PEFT
21 (bins) - halved errors

Ωch2 0.1194 ± 0.0011 (−22%) 0.12042 ± 0.00080 (−43%) 0.12046 ± 0.00055 (−61%)

ΩEFT
0 −0.086+0.064

−0.038 (−10%) −0.079+0.047
−0.036 (−26%) −0.103+0.042

−0.032 (−35%)

β 1.28+0.58
−0.22 (+4%) 1.08+0.42

−0.25 (−13%) 1.06+0.30
−0.19 (−36%)

H0 67.63 ± 0.50(−24%) 67.15 ± 0.36 (−46%) 67.13 ± 0.24 (−65%)

Planck 2018 Planck 2018 Planck 2018

Par. + PΛCDM
21 (z = 0.39) + PΛCDM

21 (bins) + PΛCDM
21 (bins)- halved errors

Ωch2 0.1194 ± 0.0011 (−22%) 0.11957 ± 0.00082 (−41%) 0.11997 ± 0.00055 (−61%)

ΩEFT
0 −0.086+0.068

−0.039 (−10%) −0.066+0.055
−0.031 (−24%) −0.047+0.047

−0.027 (−35%)

β 1.28+0.58
−0.22 (+4%) 1.18+0.57

−0.26(−8%) 1.26+0.55
−0.18 (−5%)

H0 67.63 ± 0.51 (−23%) 67.54 ± 0.37 (−44%) 67.36 ± 0.24 (−65%)

Par. PΛCDM
21 (bins) PEFT

21 (bins) PEFT
21 (bins) - halved errors

ΩEFT
0 0.053+0.075

−0.17 −0.14+0.13
−0.10 −0.131+0.074

−0.045

β 1.26+0.55
−0.30 1.10+0.49

−0.29 0.94+0.48
−0.32

H0 74.1+8.1
−11 70 ± 9 67.32+0.77

−1.6

Table 6.6: Marginalized constraints on cosmological parameters at the 68% confidence
level. We test a pure exponential EFT model on a ΛCDM background, with
negative running of the Planck mass. We test the effects of tomography by
means of two new 21cm power spectrum mock data sets: PEFT

21 , constructed
around an EFT theory described by ΩEFT

0 = −0.178 and β = 1.28, and PΛCDM
21 ,

constructed around our fiducial cosmology. We compare the constraining
power of a single bin (z = 0.39) with the five bins at z = 0, 0.39, 0.53, 0.67, 2.5
combined (bins) and this same set with halved error bars. We use the 21cm
power spectrum likelihood combined with Planck observations. The label
Planck 2018 stands for TT, TE, EE + lowE + lensing. Deviations in the error
with respect to Planck 2018 results are shown in brackets.

to what we found for the ΛCDM background. I.e., the P21(k) likelihood has
mild constraining power on the EFT parameters and it helps in reducing the
degeneracy with the other model parameters.

6.2.5 Tomography

In the results above we explored the constraining power of a realistic P21(k)
mock data set at the redshift z = 0.39, with conservative error bars. In this
section, instead, we would like to test a more ideal case, by exploiting the
tomographic nature of 21cm intensity mapping observations. To this end, we
construct new mock data sets with multiple redshifts and we investigate how
this improves on the constraints for beyond ΛCDM models.

We add to the mock data at z = 0.39 four new mock P21(k) measurements
at redshifts z = 0, 0.53, 0.67, 2.5, that we add to the one at z = 0.39 in the
likelihood. We consider observations in different redshift bins to be indepen-
dent. The errors for the bins z = 0, z = 0.53, and z = 0.67 forecast plausible
MeerKAT-like observations and they are constructed with the same technique
of Section 6.1.2.1. For the bin at z = 2.5, we assume to have an observation
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Figure 6.13: Joint constraints (68% and 95% confidence regions) and marginalized pos-
terior distributions on cosmological and EFT parameters. We investigate a
pure exponential EFT model on a ΛCDM background, with a negative run-
ning of the Planck mass. We test the effects of tomography by means of
two new 21cm power spectrum mock data sets: PEFT

21 , constructed around
an EFT theory described by ΩEFT

0 = −0.178 and β = 1.28 (left panel), and
PΛCDM

21 , constructed around our fiducial cosmology (right panel). We com-
pare the constraining power of a single bin (z = 0.39) with the five bins at
z = 0, 0.39, 0.53, 0.67, 2.5 combined (all bins) and this same set with halved
error bars. The label f σ8 + H + DA represents the additional background
likelihood described in Section 6.1.2.2. We vary the nuisance parameter aTb ,
i.e. the amplitude of the brightness temperature, keeping fixed the HI bias
bHI .

of P21(k) from the extended HIRAX experiment, as in [339]. For this bin, we
use the errorbars adopted for the data set at redshift z = 0.67. For all bins, we
consider also a more optimistic case, i.e. we halve the errors on each point.

Central points in the data sets are generated from theory predictions and
then randomly displaced, as we did for the data set at z = 0.39 in Section 6.1.2.1.
For all the five bins, we construct two data sets: PΛCDM

21 and PEFT
21 . For PΛCDM

21 ,
the theory we use to generate central points is our ΛCDM fiducial cosmology.
For PEFT

21 , instead, we consider an exponential pure EFT model, in which ΩEFT
0

is 2σ away form the Planck constraints, as in Section 6.2.2 and Figure 6.9. I.e.,
we fix the EFT parameters to β = 1.28 and ΩEFT

0 = −0.178, while we leave the
cosmological parameters to their fiducial value.

We compute constraints from both the PΛCDM
21 and the PEFT

21 likelihood,
which we use alone and combined with Planck 2018 data. We compare results
from the realistic single bin at z = 0.39 with an ideal tomographic data set
constructed with all five bins combined and with halved errors. We test a
pure exponential EFT model with the negative running of the Planck mass.
The analysis conducted here is similar to the one of Section 6.2.2 and Fig-
ure 6.9. However, here we vary the amplitude of the brightness temperature
aTb as a nuisance, while in Figure 6.9 aTb is kept fixed. Results are shown in
figures Figure 6.13, Figure 6.15, Figure 6.14 and Table 6.6.

Most of the constraining power comes from the redshift bins at z = 0, 0.39, 2.5.
This is because the mock data at the intermediate redshifts are constructed
assuming a MeerKAT-like single dish experiment with large error bars due
to the λ/D scaling of the primary beam. In Figure 6.13, the constraints from
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Figure 6.14: Marginalized posterior distributions for the EFT parameter ΩEFT
0 , describing

a pure exponential EFT model on a ΛCDM background, with a negative
running of the Planck mass. We test the effect of adding a stronger hard
prior on the parameter β, which we choose to be β ∈ [1.2, 1.4]. We consider
tomographic data set with five bins and half errors and compare results from
PEFT

21 , constructed around an EFT theory described by ΩEFT
0 = −0.178 and

β = 1.28 (blue line), and PΛCDM
21 , constructed around our fiducial cosmology

(green line). We add also the result for the single bin with no nuisance
parameters. The gray dashed line mark the ΛCDM limit for ΩEFT

0 , while
the shaded regions correspond to the 1σ confidence limit. We use the 21cm
power spectrum likelihood combined with Planck observations. The label
Planck 2018 stands for TT, TE, EE + lowE + lensing.

the P21(k) likelihood alone are shown for both PEFT
21 (left panel) and PΛCDM

21
(right panel). We observe that the largest improvement in the EFT constraints
for the P21(k) likelihood is coming from tomography alone, while the inclusion
of the background (orange dotted lines) has no significant impact on the EFT

parameters posteriors. Compared with the very loose constraint from the single
bin (gray dashed lines), with tomography, the ΩEFT

0 and β parameters are
found to be more tightly constrained. The effect is more significant for ΩEFT

0
and it is maximized when we halve the error bars. Observe that tomography
influences also cosmological parameters. E.g., estimates of H0 and Ωch2 from
all bins with halved errors are of the same order as the results found above for
the single bin combined with Planck.

In Figure 6.15 constraints from tomographic measures of P21(k) combined
with Planck are presented. As above, compared with the single bin, tomography
significantly reduces the errors on both EFT and cosmological parameters (see
Table 6.6). With tomography, deviations in the errors from Planck alone results
for ΩEFT

0 and β increase up to the level of −35%, to be compared with the
less than −10% found with the single bin only. The effect is even stronger
for cosmological parameters. For H0 and Ωch2 from Planck combined with
tomography with halved error bars, we observe a reduction of the error with
respect to Planck at the level of ∼ 65%. These improvements are comparable
with the results from the analysis of sections Section 6.2.1 and Section 6.2.2,
with no nuisance parameters, that, instead, are varied here. Looking at the
2D contours of Figure 6.15, we recognize the characteristic elongated shape in
the plane β − ΩEFT

0 , that we discussed in Section 6.2.2. Here, we find a much
broader confidence region, due to the fact that we vary the nuisance parameter
aTb . Adding tomography further reduces the correlation between H0 and Ωch2,
resulting in the tight constraints described above.
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Figure 6.15: Joint constraints (68% and 95% confidence regions) and marginalized pos-
terior distributions on cosmological and EFT parameters. We investigate a
pure exponential EFT model on a ΛCDM background, with a negative run-
ning of the Planck mass. We test the effects of tomography by means of
two new 21cm power spectrum mock data sets: PEFT

21 , constructed around
an EFT theory described by ΩEFT

0 = −0.178 and β = 1.28 (left panel), and
PΛCDM

21 , constructed around our fiducial cosmology (right panel). We com-
pare the constraining power of a single bin (z = 0.39) with the five bins at
z = 0, 0.39, 0.53, 0.67, 2.5 combined (all bins) and this same set with halved
error bars. We use the 21cm power spectrum likelihood combined with
Planck observations. The label Planck 2018 stands for TT, TE, EE + lowE
+ lensing. We vary the nuisance parameter aTb , i.e. the amplitude of the
brightness temperature, keeping fixed the HI bias bHI .
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Lastly, we observe that constraints from PEFT
21 (left panels) and PΛCDM

21 (right
panels) are consistent. The two mock data sets produce similar errors with
different mean values, as one would expect. By comparing results from the PEFT

21
and PΛCDM

21 data sets, we assess if with the P21(k) likelihood an EFT universe
would be distinguishable from a ΛCDM one. We recall that the ΛCDM limit for
the considered EFT model is ΩEFT

0 = 0, while β is allowed to assume any value.
This gives rise to the clustering of the samples along ΩEFT

0 = 0 in the ΩEFT
0 − β

confidence regions, which, in turn, drives all the contours to be compatible.
However, we expect that placing a stronger prior on β could remove this effect,
as discussed in Section 6.2.2. We test this hypothesis by placing a narrow hard
prior on β, i.e. β ∈ [1.2, 1.4], and looking at the modifications in the ΩEFT

0
marginalized posterior. Results are shown in Figure 6.14. The significance of
the deviation from the ΛCDM limit (gray dashed line), is 1.4σ for PΛCDM

21 (green
line) while it is 3.8σ for PEFT

21 (cyan line), where we considered the tomographic
data sets with halved errors. The error on ΩEFT

0 is now the same for both the
data sets and the two posteriors are 2.4σ away from each other. For the single
bin PEFT

21 (z = 0.39) with no nuisance parameter (red dashed line), that we
presented in Figure 6.9, the deviation from ΩEFT

0 = 0 is even more significant,
being 4.5σ. This implies that the constraints on the EFT models obtained using
realistic P21(k) data could greatly benefit from knowing the amplitude of
the brightness temperature a priori, even in comparison to a more optimistic
(halved errors) tomographic data set. This, in turn, reasserts the utility of the
future, tomographic P21(k) data in detecting beyond ΛCDM models.

6.3 conclusions

In this work, we construct a new likelihood function to compute constraints
from observations of the 21cm signal power spectrum, measured through
intensity mapping techniques. We extend the public available codes EFTCAMB

and EFTCosmoMC [254, 255, 334] by implementing a new likelihood module
fully integrated with the original codes.

As described in sections Section 6.1.1 and Section 6.1.2, we model the power
spectrum of the 21cm signal P21(z, k) as in [57, 153, 158]. Then, we build a
realistic mock data set of forecasted P21(z, k) measures at redshift z = 0.39. We
model such data set mimicking the MeerKAT [37, 58, 59] telescope observations,
for which real data will be available in the near future.

We complement our mock P21(k) with an additional likelihood function to
include external 21cm intensity mapping forecasts on background quantities.
We use results in [339], where forecasts on f σ8, H, and DA are given for a
hypothetical HIRAX measure in the redshift range 2.5 < z < 5, as outlined
in section Section 6.1.2.2. We refer to this likelihood as background likelihood.
We further expand the P21(k) likelihood to include observations in multiple
redshift bins.

We test the effect of the P21(k) likelihood first in a ΛCDM framework, then
on several beyond ΛCDM models that we study within the EFT formalism. Ex-
ploiting the strength of EFTCAMB/EFTCosmoMC, we analyze pure EFT models on
a ΛCDM and a wCDM background. We consider two different parametrizations
of the ΩEFT(a) function, i.e. a linear and an exponential evolution in time.

We conduct an MCMC statistical analysis to obtain marginalized confidence
levels and regions on cosmological and EFT parameters. Constraints are com-
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puted from both P21(k) data set alone and combined with Planck 2018 CMB

observations [4]. We test also the effect of adding to P21(k) alone the background
likelihood.

Our main goal is to forecast the state-of-the-art constraining power of the
P21(k) observable on beyond ΛCDM theories. This is why we mainly focus
on the results obtained with the realistic mock data set at redshift z = 0.39.
However, we believe that the tomographic nature of 21cm signal intensity
mapping could be pivotal to constrain DE. Thus, to verify this claim, we
complete our analysis by testing the effects of tomography and constructing an
ideal mock data set of observations at five different redshift bins.

As discussed in section Section 6.2, we find that:

• the mock data set P21(k) at z = 0.39 alone displays a mild constraining
power on the cosmological parameters, which is remarkably improved
when we add the background data set, by forecast intensity mapping
observations at intermediate redshift;

• in a ΛCDM scenario adding P21(k) to Planck 2018 CMB data significantly
improve the constraints on Ωch2 and H0, at the level of 61% and 69%
respectively, for fixed nuisance parameters;

• for pure EFT models we observe a mild reduction in the constraints when
combining CMB data with P21(k), in the range of 1 − 18%;

• state-of-the-art forecast data for P21(k) alone are still not able to signif-
icantly constrain pure EFT models. Forecasts in other redshift bins are
expected to improve on the constraining power of P21(k) on such models;

• for the pure linear EFT model on a ΛCDM background we find ΩEFT
0

constrained to be ΩEFT
0 < 0.031 (95% CL) for Planck 2018 + P21(k) data.

This constraint improves on previous results in literature [243, 255];

• for the pure exponential EFT model on a ΛCDM background for Planck
2018 + P21(k) we obtain ΩEFT

0 < 0.034 (95% CL), β = 0.97+0.53
−0.19 and

α0
M < 0.044 (95% CL). As above, we improve on previous results in [243];

• for the pure exponential EFT model on a ΛCDM background with a nega-
tive running of the Planck mass we obtain from Planck 2018 + P21(k) the
constraints ΩEFT

0 = 0.075+0.063
−0.042, β = 1.41+0.48

−0.15 and α0
M = 0.117+0.12

−0.052;

• adding one nuisance parameter to the P21(k) likelihood, e.g. the ampli-
tude of the brightness temperature aTb , reduces the constraining power
compared with the case with no nuisances. Deviations with respect to
Planck 2018 results for Ωch2 and H0 are at the level of ∼ 15%, to be
compared with the ∼ 65% found with no nuisances;

• repeating the analysis on a wCDM background and with a nuisance
parameter produces comparable results. The major effect is obtained
on w0, H0, and σ8 when P21(k) data are combined with Planck. We
obtain an improvement on the errors of these parameters at the level of
40 − 50%. For the EFT models, we find that the P21(k) likelihood has mild
constraining power on the EFT parameters when used both alone and
combined with CMB data;
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• tomography significantly improves the constraining power of the P21(k)
likelihood on pure EFT models. With five bins combined in the redshift
range from z = 0 to z = 2.5, we are able to constrain EFT parameters for
a pure exponential EFT model with negative running of the Planck mass
by means of the P21(k) likelihood alone;

• for the same model, when we combine the tomographic data sets with
Planck 2018 CMB data, we find an improvement in the constraints on
ΩEFT

0 and β with respect to Planck results at the level of the ∼ 25% and
∼ 10%, respectively. In the ideal case of halved errors, these values both
go up to the ∼ 35%, to be compared with the less than 10% found with
only one redshift bin.

Overall, in our study, we find that, at the current state of observations,
the 21cm signal power spectrum, measured at one redshift, shows a mild
constraining power on the EFT functions that we tested. We expect, and we
verified, that P21(k) is sensitive to EFT parameters. Nevertheless, the one realistic
mock data set at redshift z = 0.39 is still too retained to be able to constrain
EFT theories alone. When combined with CMB data, constraints provided by
CMB on EFT parameters are too stringent and current P21(k) mock data do not
have a substantial impact. On cosmological parameters, instead, the P21(k)
likelihood proves to be effective in reducing the correlation between Ωch2 and
H0 when combined with CMB, thus significantly improving the constraints on
cosmological parameters.

We find that the constraining power of P21(k) on the considered EFT functions
is significantly improved by tomography. With five redshift bins, we are able to
constrain the EFT functions, with P21(k) alone, and to improve Planck results,
with P21(k) and CMB together. For tomographic observations of the 21cm signal,
such as those that are modeled here, real observations will hopefully be avail-
able in the future. However, our test, although preliminary, seems to confirm
that tomographic 21cm signal detections will help to expand our knowledge of
DE.

In this work, we test simple EFT scenarios and validate the new P21(k) likeli-
hood code. This analysis could be the starting point to study the constraining
power of 21cm signal observations on more complex MG-DE models.
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I n a general relativistic framework, gravitational waves (GW or GWs) This chapter is
based on
the publication
«Testing gravity
with gravitational
waves × electro-
magnetic probes
cross-
correlations.», by
G. Scelfo,
M. Berti,
A. Silvestri, and
M. Viel, in JCAP
02 (2023) [108].

and electromagnetic (EM) waves are expected to propagate in the same
way to the effects of matter perturbations between the emitter and the

observer. A different behavior might be a signature of alternative theories of
gravity. In this work, we study the cross-correlation of resolved GW events
and EM signals, considering weak lensing, angular clustering, and their cross-
correlation as observable probes. We perform a Fisher matrix analysis to
forecast the constraining power of future observations of the SKAO, for radio
galaxy clustering and intensity mapping, and the Einstein telescope (ET), for
GWs, on MG phenomenological functions {µ0, η0, Σ0}, either opening to or
keeping fixed the background parameters {w0, wa}.

We find that, although lensing-only forecasts provide significantly uncon-
strained results, the combination with angular clustering and the combination
of all three considered tracers, i.e. GW, 21cm IM, and resolved galaxies, leads to
interesting and competitive constraints. This offers a novel and alternative path
to multi-tracing opportunities for cosmology and the MG sector.

This chapter is structured as follows: in Section 7.1 we describe our method-
ology, presenting the treated probes (weak lensing, angular clustering, and
their cross-term) in Section 7.1.1 and the adopted Fisher analysis formalism
in Section 7.1.2; in Section 7.2 we introduce and characterize the considered
tracers (GWs, IM and resolved galaxies); in Section 7.3 we introduce the tested
MG parametrization; in Section 7.4 we present our forecasts on the relevant MG

parameters and in Section 7.5 we draw our conclusions.

7.1 methodology

In this section, we describe the observables considered and the adopted method-
ology. In Section 7.1.1 we characterize our observables: the angular power spec-
tra for weak lensing, angular clustering, and their cross term. In Section 7.1.2
we describe the Fisher formalism on which we rely.

7.1.1 Observables: angular power spectra

The observables we consider are the angular power spectra Cℓs for two different
probes: weak lensing (denoted as L) and angular clustering (denoted as C), with
the addition of the cross-term (L × C). Given two tracers {X,Y} (e.g. GW events,
galaxies, IM) associated with two different redshift bins {zi , zj}, we define

the power spectra of their cross-correlation as CXi ,Yj

ΓΘ (ℓ), with Γ, Θ indicating
the considered probe (e.g. L or C). We make use of the flat-sky and Limber
approximations, which are accurate at 10% for ℓ = 4, 1% for ℓ = 14, and less
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than 0.1% for ℓ > 45 [346]. In the following, we characterize the power spectra
for the considered probes.

• Weak lensing (L). The characterization and physical meaning of this
observable depends on the tracer that we take into account. For what
concerns resolved galaxies, it describes the physical effect of distortion
of their shape due to the inhomogeneous distribution of matter between
the objects and the observer. It is often referred to as cosmic shear (see
e.g. [347, 348]). It is given by the sum of three different terms: the proper
cosmological signal (γγ term) and the two intrinsic alignment (IA) terms
(γI and II terms). The latters consider that observed galaxies are usually
already characterized by an intrinsic ellipticity, which should be taken
into account when estimating the shear due to weak lensing only. The
three terms can be written as (see e.g. [349]):

CXiYj
γγ (ℓ) =

∫︂ ∞

0

dz c
H(z)

WXi
γ (z) WYj

γ (z)
χ2(z)

Pmm

(︃
ℓ

χ(z)
, z
)︃

(7.1)

CXiYj
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∫︂ ∞
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WXi
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IA(z) + WXi
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γ (z)
χ2(z)

×

× FIA(z) Pmm

(︃
ℓ

χ(z)
, z
)︃

(7.2)

CXiYj

II (ℓ) =
∫︂ ∞

0

dz c
H(z)

WXi
IA(z) WYj

IA(z)
χ2(z)

F2
IA(z)Pmm

(︃
ℓ

χ(z)
, z
)︃

,(7.3)

where c is the speed of light, H(z) is the Hubble parameter, χ(z) is the
comoving distance, Pm is the matter power spectrum, and the window
functions are given by:

WXi
γ (z) =

3
2

Ωm
H2

0
c2 χ(z)(1 + z)

∫︂ ∞

z
dx nXi (x)

χ(x)− χ(z)
χ(x)

(7.4)

WXi
IA(z) = nXi (z)

H(z)
c

, (7.5)

where nXi is the redshift distribution of the considered tracer and the
intrinsic alignment kernel FIA is modeled through the extended non-
linear alignment model:

FIA(z) = − AIAC1Ωm

D1(z)
(1 + z)ηIA

(︃ ⟨L⟩(z)
L∗(z)

)︃βIA

, (7.6)

with C1 = 0.0134, D1(z) is the linear growth factor and the intrinsic align-
ment parameters have fiducial values {AIA, ηIA, βIA} = {1.72,−0.41, 2.17}.
Finally, ⟨L⟩(z)

L∗(z)
is the mean luminosity of the sample in units of the typical

luminosity at a given redshift. Here, we use the same specification used
for Euclid [34], both for ease of comparison with similar studies and also
under the assumption that the galaxies observed by SKAO will display
a similar redshift evolution of their luminosity. However, we note that
this assumption must be explicitly checked, by performing an analysis
on actual observations, as in reference [350].
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Equations Equation 7.1 - Equation 7.3 can be summed up to give the
lensing power spectrum

CXiYj

LL (ℓ) =
∫︂ ∞

0

dz c
H(z)

WXi
L (z) WYj

L (z)
χ2(z)

Pmm

(︃
ℓ

χ(z)
, z
)︃

, (7.7)

where
WXi

L (z) = WXi
γ (z) +FIA(z) WXi

IA(k, z). (7.8)

In the case of GW events we do not have an intrinsic shape that undergoes
cosmic shear, so the intrinsic alignment term is not present. Indeed, in
this case, the propagation of the gravitational wave in the presence of a
matter distribution leads to magnification in the strain signal h ( f ):

h ( f ) = Q(α)

√︃
5
24

G5/6M2 ( fM)−7/6

c3/2π2/3dL
eiϕ , (7.9)

where f is the frequency, Q(α) is a function of the angles describing
the position and orientation of the binary, M is the chirp mass of the
binary system, dL is the luminosity distance of the source and G is the
gravitational constant. What one can measure is an alteration in the
measured GW strain h̃ (r̂, f ) = h ( f ) [1 + κ(r̂)], where r̂ describes the
position of the source and κ(r̂) is the lensing convergence, related to
the angular power spectra as CLL(ℓ) = ⟨κℓmκℓ′m′ ⟩δℓℓ′δmm′ . We refer the
interested reader to e.g. references [81, 106, 109, 351–356] for further
details.

Finally, although IM (by definition) is a probe that does not provide
resolved galaxies, we can still describe the effects of weak lensing as a
magnification received by the observer (see e.g. references [357, 358] for
additional details). As one would expect, also in this case the IA term is
not present (F IM

IA (z) = 0).

• Angular clustering (C). Our tracers can also be used to estimate the
clustering as a function of the separation angle (or equivalently the
multipoles):

CXiYj

CC (ℓ) =
∫︂ ∞

0

dz c
H(z)

WXi
C

(︂
ℓ

χ(z) , z
)︂

WYj

C

(︂
ℓ

χ(z) , z
)︂

χ2(z)
Pmm

(︃
ℓ

χ(z)
, z
)︃

,

(7.10)

where the window function for clustering is given by

WXi
C (k, z) = bX(k, z) nXi (z)

H(z)
c

(7.11)

and bX(k, z) is the bias parameter for tracer X, describing the relation
between the tracer and the underlying matter distribution (see e.g. [317,
359–365]). We apply this formalism to all tracers considered in this work.
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• Lensing × Clustering (L × C). Finally, the cross-correlation L × C be-
tween weak lensing and angular clustering of two tracers can be ex-
pressed as

CXiYj

CL (ℓ) =
∫︂ ∞

0

dz c
H(z)

WXi
C

(︂
ℓ

χ(z) , z
)︂

WYj

L (z)

χ2(z)
Pmm

(︃
ℓ

χ(z)
, z
)︃

. (7.12)

Essentially, it is given by the combination of a Lensing window function
with a Clustering one.

7.1.2 Fisher analysis

In this work, we make use of the Fisher matrix analysis, which we briefly sketch
in this section. Assuming again two tracers {X,Y} (e.g. GW events, galaxies, IM),
we divide the total redshift interval surveyed in NX

bins bins, with amplitude
∆zX for tracer X, and in NY

bins redshift bins with amplitude ∆zY for tracer Y.
Considering the observed power spectra C̃ℓs for a specific probe (L only, C

only or L × C, which we do not make explicit throughout this section) and
a generic set of parameters {θn} for the Fisher analysis, we can organize our
data in the (symmetric) matrix Cℓ as

Cℓ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cℓ
˜ X X

(zX
1 , zX

1 ) ... Cℓ
˜ X X

(zX
1 , zX

N) Cℓ
˜ X Y

(zX
1 , zY

1 ) ... Cℓ
˜ X Y

(zX
1 , zY

N)

... Cℓ
˜ X X

(zX
2 , zX

N) Cℓ
˜ X Y

(zX
2 , zY

1 ) ... Cℓ
˜ X Y

(zX
2 , zY

N)

...
...

... ...
...

Cℓ
˜ X X

(zX
N , zX

N) Cℓ
˜ X Y

(zX
N , zY

1 ) ... Cℓ
˜ X Y

(zX
N , zY

N)

Cℓ
˜ Y Y

(zY
1 , zY

1 ) ... Cℓ
˜ Y Y

(zY
1 , zY

N)

...
...

Cℓ
˜ Y Y

(zY
N , zY

N)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (7.13)

The matrix Cℓ has dimensions of (NX
bins + NY

bins)× (NX
bins + NY

bins). Note that
in general zX

i ̸= zY
i , since the two tracers may be distributed among different

bins. We stress again that the tilde symbol stands for observed Cℓs. It is trivial
to expand the above matrix to the case in which a third tracer Z is considered
at the same time. In this case, the matrix would be accordingly expanded
with all XZ, YZ, and ZZ correlations and would have dimensions of (NX

bins +

NY
bins + NZ

bins)× (NX
bins + NY

bins + NZ
bins). The three tracers case is also explored

in this work (see sections Section 7.2 and Section 7.4). Equation 7.13 refers
to the case in which just one probe is taken into account (L only, C only, or
L × C). When all three probes are considered simultaneously for a forecast,
the global Cℓ matrix will be made of 4 different sub-matrices like the one in
Equation 7.13: one for L only, one for C only, and two for L × C. We provide
in Figure 7.1 a sketch of the global Cℓ matrix in the case of all probes and
three tracers (GW, IM, gal as described in Section 7.2). Its dimensions are
2(NIM

bins + NGW
bins + Ngal

bins)× 2(NIM
bins + NGW

bins + Ngal
bins).

The Cℓ matrix is then used to compute the Fisher matrix elements as

Fαβ = fsky ∑
ℓ

2ℓ+ 1
2

Tr
[︂
C−1
ℓ (∂αCℓ)C−1

ℓ (∂βCℓ)
]︂

, (7.14)
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Figure 7.1: Sketch for the Cℓ matrix in the case of all probes (L only, C only, and L × C)
and three tracers (GW, IM, gal) considered simultaneously.

where ∂α indicates the partial derivative with respect to the parameter θα and
fsky is the fraction of the sky covered by the intersection of the considered
surveys. The Fisher-estimated marginal error on the parameter θα is given by√︁
(F−1)αα. According to the Cramér-Rao bound, the quantity

√︁
(F−1)αα pro-

vides the smallest expectable error for a “real-life” experiment, setting a lower
bound to its estimate (and having the equality only in the case of gaussian
likelihood and errors). Fisher’s approach may not always be the most accurate
method to adopt since instrumental/observational systematic errors and/or the
parameter posterior may not be Gaussian distributed. Still, it remains a simple
and fast method to yield forecasts for designed experiments, providing reason-
able results, especially for a first estimate. The novelty of this work allows us to
adopt a Fisher formalism while considering its estimates informative enough
to bring meaningful and reliable conclusions, although different techniques
(such as MCMC, see Section 4.2.3) may be suggested for further investigation.
We refer the interested reader to references [366, 367] for further discussion
about Fisher analysis and the impact of several approximations therein and in
the observables considered.

7.2 tracers

In this section, we characterize the considered tracers. In Table 7.1 we summa-
rize their redshift-dependent specifics, such as binning, redshift range, and os
on.
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Tracer GWbright (ET) GWdark (ET) & gal (SKAO) IM (SKAO)

z range [0.5-2.5] [0.5-3.5] [0.5-3.5]

Nbins 8 3 30

∆z 0.25 1.0 0.1

Table 7.1: Specifics for the considered tracers: redshift range, number of redshift bins
Nbins and bin width ∆z.

7.2.1 Gravitational Waves

We consider GW events from compact objects resolved mergers (BHBH, BHNS,
and NSNS) detected by the Einstein telescope (ET) experiment, as planned
in [26]. We treat two categories of GW events, depending on whether they can
be associated with an EM counterpart:

• Dark sirens: they are not accompanied by an EM follow-up. We treat
BHBH and BHNS mergers as dark sirens and consider NGWdark

bins = 3 redshift

bins with width ∆zGWdark
= 1.0 in the redshift range [0.5− 3.5]. We choose

large redshift bins to take into account the poor redshift localization of
these kinds of sources. Given the lack of an EM counterpart, their angular
resolution is limited by the capabilities of the considered GW instrument,
which we set to ℓmax = 100 [26].

• Bright sirens: the GW emission is associated with an EM counterpart.
This helps not only in improving the angular localization of the emitting
source but provides also extra information in the MG context, due to the
fact that GWs and EM waves might behave differently depending on the
MG model under consideration (see Section 7.3 for further details). We
treat NSNS mergers as bright sirens and consider NGWbright

bins = 8 redshift

bins with width ∆zGWbright
= 0.25 in the redshift range [0.5 − 2.5]. This

is motivated by the z-uncertainty behavior for NSNS binaries δz/z ≈
0.1 z [368], making our choice quite conservative at lower redshifts. Since
the detection of an EM follow-up can help in significantly improving the
angular localization of the sources, it allows us to push our analysis to
a higher ℓmax. We set ℓmax = 300 for bright sirens, which appears to
be a conservative estimate for these types of experiments (see e.g. [81,
109, 369]), furthermore allowing us to avoid non-linearities in the power
spectra modeling. We comment on the impact of the choice of ℓmax in
Section 7.4.

Prescriptions to describe the redshift evolution of the GW tracers and their bias
parameter are taken from references [101, 370] and provided in Figure 7.2. These
specifics predict a detection of ∼ 2.2 · 104 BHBH+BHNS mergers and ∼ 1.4 · 104

NSNS mergers in the corresponding redshift intervals (for TGW
obs = 1yr and

fsky = 0.5). The GW events bias is evaluated through an abundance matching
technique (see e.g. [371]), linking the luminosity/SFR of each host galaxy to
the mass of the hosting dark matter halo, eventually matching the bias of the
associated halo to a galaxy with given SFR. Lastly, characterizing COs mergers
with the same bias of their host galaxies, the final bias expression is estimated
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Figure 7.2: Specifics for the considered tracers: HI (green), resolved SKAO galaxies (blue),
detected GW events from ET for dark sirens (orange), bright sirens (yellow),
and both combined (dark red). Left panel: normalized redshift distributions
(number counts for GWs and resolved galaxies, mean brightness temperature
Tb(z) for HI). Right panel: biases.

by taking into account which galaxy types give the biggest contribution to
the observed merger rate proportionally. For further details on the GW bias
estimate procedure, we refer the interested reader to [101, 370] and references
therein.

Given a theoretical predicted value for the Cℓs under study (computed
with COLIBRI1, which we modified to extend it to the multi-tracing case), the
observed power spectra C̃ℓs are characterized by the presence of extra noise
terms: C̃GW,X

ℓ (zi , zj) = CGW,X
ℓ (zi , zj) + CN,GW

ℓ (zi). In the case of GWs-related
power spectra, following e.g. [109], we assume that:

CN,GW
ℓ (zi) =

1
nGW

e2
dL

exp
ℓ2θ2

min
8 ln 2

, (7.15)

where nGW is the number density of sources in the considered redshift bin
zi, θmin is the sky localization area of the gravitational wave sources, and
edL ∼ 3/SNR is the relative error on the luminosity distance estimation (see
e.g. [105, 372]), where the average value of the Signal-to-Noise ratio (SNR )
estimate for detected GWs events is derived by results from reference [101] and
takes the values of SNR =8.4 (15.4) for bright (dark) sirens. We assume that this
shot-noise/beam noise term affects all the probes considered in this work (i.e.
L, C, L×C).

7.2.2 Neutral hydrogen intensity mapping

We consider the forecasted HI distribution given by the SKA-Mid intensity
mapping survey [57, 373, 374] in the redshift range [0.5 − 3.5], divided in bins
of width ∆zIM = 0.1, for a total of NIM

bins = 30 redshift bins. This is expected
to be around the optimal redshift range for the SKA-Mid survey [57]. The HI

mean brightness temperature redshift evolution and the bias are taken from
references [51, 307] and provided in Figure 7.2. The HI bias prescription derives
from the outputs of a semi-analytical model for galaxy formation explicitly

1See https://github.com/GabrieleParimbelli/COLIBRI.

https://github.com/GabrieleParimbelli/COLIBRI
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incorporating a treatment of neutral hydrogen and is in agreement with results
of [158] based on Illustris TNG hydro-dynamical simulations.

Noise sources for IM are the result of contributions from different elements,
described as follows:

• Beam effects: the relation between theoretical CXY
ℓ and the observed

C̃XY
ℓ is:

C̃IM,IM
ℓ (zi , zj) = B(zi)B(zj)C

IM,IM
ℓ (zi , zj) + CN,IM

ℓ (7.16)

and
C̃IM,X
ℓ (zi , zj) = B(zi)C

IM,X
ℓ (zi , zj) (7.17)

where the BX(zi) describes the suppression of the signal at scales smaller
than the FWHM of the beam θB. In single-dish configuration θB ∼ 1.22λ/Dd,
implying a stronger suppression of the signal at lower frequencies:

B(zi) = exp[−ℓ(ℓ+ 1)(θB(zi)/
√

16 ln 2)2]. (7.18)

The beam term affects all probes considered (L, C, L×C).

• Foreground noise: IM data analysis has to deal with the delicate cleaning
procedure of the signal from the bright foreground emission (see e.g. ref-
erences [44, 64, 65, 67, 335, 375, 376]). Although modeling the foregrounds
is beyond the scope of this work, we need to take into account the resid-
ual error that could be expected after a foreground removal procedure.
Following reference [108], we model the foreground-cleaning-related
noise term as

Cfg
ℓ = Kfg · F(ℓ), (7.19)

where Kfg is an overall normalization constant determining the overall
amplitude of the residual foregrounds-related errors and is given by an
average value of all the CIM,IM

ℓ (zi , zj) components:

Kfg =
⟨︂

CIM,IM
ℓ (zi , zj)

⟩︂
. (7.20)

The function F(ℓ) encodes the scale-dependence, described by

F(ℓ) =
1

fsky
Aebℓc

, (7.21)

with a stronger error at larger scales. With the chosen numerical values
(A ∼ 0.129, b ∼ −0.081, c ∼ 0.581) the error is around 12% at ℓ ∼ 2 and
4% at ℓ ∼ 100 (for fsky = 1.0). This term affects all probes (L, C, L×C),
but only IM × IM terms (for all redshift bins combinations).

• Instrumental noise: the noise angular power spectrum for the experiment
setup under study (single dish mode [57, 58] with an ensemble of Nd
dishes) writes as (see e.g. [58, 157, 377]):

Cinstr
ℓ (zi) = σ2

Tθ2
B ≈

(︄
Tsys

Tb(zi)
√︂

npolBtobsNd

√︄
Sarea

θ2
B

1
Tb(zi)

)︄2

θ2
B , (7.22)
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where the single-dish root mean square noise temperature σT is given by

σT ≈ Tsys√︂
npolBtobs

λ2

θ2
B Ae

√︂
Sarea/θ2

B

√︄
1

Nd
(7.23)

and the other parameters involved are (according to SKA-Mid prescrip-
tions): Tsys = 28 K for the system temperature, B = 20 · 106 Hz for the
bandwidth, t0 = 5000 h = 1.8 · 107 s for the observation time, Nd = 254
for the total number of dishes, Sarea = 20000deg2 for the total surveyed
area, Ae = 140 m2, Dd = 15 m and Sarea = 20000 deg2 ∼ fsky = 0.5
for the reference sky coverage [377]. Tb(zi) is the mean brightness tem-
perature at the center of the redshift bin and it acts as a normalization
factor to retrieve a dimensionless Cℓ. This noise component affects all the
probes considered in this work (L, C, L×C) but it is de-correlated among
different bins, affecting only IM auto-correlations.

• Lensing reconstruction error: references such as [357, 358] model an
extra scale independent noise contribution, due to inaccuracies in the
reconstruction of the signal. Since it should affect scales smaller than our
ℓ = O(100) cut-off, we opt for not taking it into account. For the sake
of completeness, we checked that artificially introducing a noise term
overcoming the observed signal at around 2/3 of the explored angular
range, would worsen our forecasts by ∼ 15 − 20% or less. Still, let us
stress again that the actual scales at which this noise is supposed to
dominate start from around ℓ ∼ O(100), safely allowing us to neglect
this term.

7.2.3 Galaxies

We consider SKAO radio-galaxies distributed following the T-RECS catalog [378]
for SKAO (radio continuum survey with z < 5). We consider Ng

bins = 3 redshift
bins with width ∆zg = 1.0 in the redshift range [0.5 − 3.5]. Their redshift
distribution and bias are provided in Figure 7.2 (see e.g. reference [100] for
further details). The galaxy bias formulation relies on outputs from the S3

simulation [379]. We model noise sources for SKAO radio galaxies as follows:

• Shot noise: the shot noise term affects only the Clustering probe and
reads as

CN,g
ℓ = Cshot,g

ℓ =
1

ng
, (7.24)

where ng is the source number density in the considered redshift bin.
This term affects only g(zi)× g(zi) terms (same tracer and same z bin).

• Shape noise: this term affects only the Lensing probe and it encodes
the intrinsic ellipticity of observed galaxies, which may bias results if not
taken into account. It reads as

CN,g
ℓ = Cshape,g

ℓ =
γ2

ng
(7.25)

where γ = 0.3 is the intrinsic shear term [380]. This term affects only
g(zi)× g(zi) terms (same tracer and same z bin).
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Parameter ln 1010 As ns w0 wa E11 E22

Fiducial value 3.098 0.9619 −1.00 0.00 0.18 0.80

Table 7.2: Assumed fiducial cosmology [4]. MG parameters are from Planck 2018 TT, TE,
EE + lowE. Fiducial values for the Eii parameters lead to fiducial values on
{µ0, η0 , Σ0} = {1.12, 1.55, 1.43}.

• Shot × shape noise: being the L×C probe term made of the contribution
of both Lensing and Clustering, we model its noise contribution as a
mixture of the shot and shape noises affecting Clustering and Lensing
respectively. It reads as

CN,g
ℓ =

√︂(︁
Cshot,g
ℓ

)︁2
+
(︁
Cshape,g
ℓ

)︁2
=

√︁
1 + γ2

ng
. (7.26)

7.3 tested models

Future GWs observations are expected to contribute significantly to probing
gravity [381]. Forecasts on the cross-correlation of the GWs signal with other
probes suggest that the multi-messenger approach could be a powerful tool to
exploit GWs observations to constrain models beyond ΛCDM [81, 109, 369]. The
GWs luminosity distance, for bright events, could provide a new probe to test
gravity. In this work, we discuss if future GWs observations combined with LSS

probes could add new information on MG theories. We parametrize the effects
of MG in a phenomenological way by adopting a general prescription suited to
probe small departures from GR. In this section, we give a brief overview of the
formalism we adopt and the models we investigate.

7.3.1 Phenomenological parametrizations

As discussed in Chapter 3, starting from the LSS sector, we focus on scalar
perturbations to the metric in the conformal Newtonian gauges, with the line
element given by

ds2 = a2
[︂
−(1 + 2Ψ)dτ2 + (1 − 2Φ)dx2

]︂
, (7.27)

where a is the scale factor, τ is the conformal time, and the time and scale-
dependent functions Ψ and Φ describe the scalar perturbations of the metric:
the Newtonian potential and spatial curvature inhomogeneities, respectively.
Modifications of gravity impact the growth of structure and the evolution of
the gravitational potentials, see e.g. [382, 383]. Interestingly, these effects, on
linear scales, can be fully captured by two functions of time and scale (see
e.g. [15–19] and Section 3.2.1)

k2Ψ ≡ −4πGa2µ(k, z)ρ∆ , (7.28)

and
Φ/Ψ ≡ η(k, z) , (7.29)
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Figure 7.3: Upper panels: predicted matter power spectrum for different values of the
MG parameters at redshifts z = {0.5, 1.5, 2.5, 3.5}. We show Pm(k, z) for the
assumed fiducial cosmology (solid black lines, see table Table 7.2) and for
variations of µ0 (dashed light blue lines), η0 (dashed-dotted pink lines) and
Σ0 (dotted green lines). When varying Σ0, we keep µ0 fixed. Lower panels:
percentage variations with respect to the fiducial cosmology.
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where ρ∆ = ρm∆m + ρr∆r, i.e. the sum of the matter (m) and radiation (r) contri-
butions. One can also define the function Σ(k, z), that quantifies modifications
to the lensing potential, as

k2(Φ + Ψ) ≡ −8πGa2Σ(k, z)ρ∆. (7.30)

The three phenomenological functions µ(k, z), η(k, z) and Σ(k, z) are not inde-
pendent. One should consider two of them at the time, e.g. the pair (µ, η) or
(µ, Σ). It is possible to express Σ(k, z) as a function of µ(k, z) and η(k, z) as

Σ(k, z) =
µ(k, z)

2
(1 + η(k, z)). (7.31)

Deviations from ΛCDM are encoded in (µ(k, z), η(k, z)) or (µ(k, z), Σ(k, z)),
with the ΛCDM case corresponding to µ(k, z) = 1, η(k, z) = 1, Σ(k, z) = 1. To
give a more intuitive interpretation of the physical meaning of the involved
quantities, let us specify that the Σ function acts on relativistic particles, af-
fecting mainly the lensing observable, whereas µ controls gravity effects on
massive particles, controlling the growth of matter perturbations and affecting
clustering. Finally, η, usually referred to as the gravitational slip parameter,
cannot be directly connected to a constraining observable as the previous
two functions. However, given that it quantifies differences between the two
gravitational potentials, its behavior may be indicative of a breaking of the
equivalence principle.

Several parametrizations of the phenomenological functions have been ex-
plored and constrained, see e.g. [13] for a review on recent results. In this
work, we follow the approach of the Planck 2015 paper on dark energy and
modified gravity [243]. We choose a time-dependent only parametrization for
the evolution of µ(k, z) and η(k, z), the so-called late-time parametrization

µ(z) = 1 + E11ΩDE(z)

η(z) = 1 + E22ΩDE(z).
(7.32)

The evolution is set by the value of the parameters E11 and E22, while the
background is kept fixed. This choice of parametrization simplifies the analysis
and allows a direct comparison with the results of [243]. But there are also
good reasons for not expecting any scale dependence of the model to show
up within the range of scales covered by the data that we consider. In fact, in
order to satisfy local tests of gravity, these theories need to have a working
screening mechanism, which suppresses any deviation from GR through envi-
ronmental effects. Well-known examples are the Chameleon and Vainshtein
mechanism, see e.g. [384]. In both cases, the requirements for a successful
screening effectively push the characteristic length scale of the model either
into the small, non-linear scales (Chameleon case) or to very large, horizon-size
scales (Vainshtein case). Let us point out that even while not working with a
specific model, there are some assumptions that we make beyond the basis of
our choice of parametrization. One such assumption is that modifications of
gravity are relevant at late times; in this sense, we are linking them possibly
to the source of cosmic acceleration, but more broadly to tests of gravity with
large-scale structures. Or, said in other words, we aim for this parametrization
to broadly represent Horndeski’s models of gravity with a luminal speed of
sound, which is the theoretical framework on which our analysis is built.
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We consider both the (µ(z), η(z)) and the (µ(z), Σ(z)) pair. In the latter case,
Σ(z) as a function of E11 and E22 is computed using equation Equation 7.31.
When performing the Fisher analysis, we vary E11 and E22 and derive the
predicted constraints on the parameters (µ0, η0) and (µ0, Σ0), where µ0 ≡
µ(z = 0), η0 ≡ η(z = 0), Σ0 ≡ Σ(z = 0).

We compute the theoretical matter power spectrum with the code MG-

CAMB2 [18, 238, 385], the modified version of the Einstein-Boltzmann solver
CAMB3 [173], extended to study modified gravity models within the phe-
nomenological parametrization framework. In figure Figure 7.3, we show the
linear matter spectrum for the assumed fiducial cosmology (see table Table 7.2)
and for different values of the MG parameters (µ0, η0) and (µ0, Σ0). This is
the power spectrum used to compute the Cℓs introduced in Section 7.1.1. We
observe that the most significant modifications occur at large scales. Varying
the parameters η0 or Σ0 affects only the larger scales, while µ0 has an impact
on smaller scales too. The modifications become milder at higher redshifts,
according to how the parametrization we chose performs.

The late-time parametrization has been studied in the literature in several
contexts [4, 5, 239, 243, 386, 387] and current data sets do not show a significant
preference for models beyond ΛCDM. Recently, a non-parametric Bayesian
reconstruction of µ, Σ, along with the dark energy density, from all available
LSS and CMB data was performed in [241, 242]; while the outcome is consistent
with ΛCDM within 2σ, some interesting features in Σ were identified as an
imprint of cosmological tensions.

The phenomenological functions µ, Σ and η parametrize modifications of
the dynamics of perturbations within the scalar sector. When including GWs,
one should consider that tensor perturbations are generally also affected by
modifications of gravity. For the observables of interest in this work, the effects
of modified gravity on GWs propagating on the FLRW background can be
encoded in the difference between the electromagnetic luminosity distance
dEM

L (z) and the GW one dGW
L (z). The phenomenological function Ξ(z), defined

as

Ξ(z) ≡ dGW
L (z)

dEM
L (z)

, (7.33)

quantifies the effect of bright sirens. The EM luminosity distance can be
expressed as dEM

L (z) =
√

L/4πS, where L and S are the bolometric lumi-
nosity and the bolometric flux for the observed object, respectively. This
quantity can also be expressed as a function of the comoving distance χ

as (for Ωk = 0): dEM
L (z) = (1 + z)χ = (1 + z)dH

∫︁ z
0 dz′/E(z′), with E(z) =√︁

Ωm(1 + z)3 + Ωk(1 + z)2 + ΩΛ and dH = c/H0. The GW luminosity dis-
tance dGW

L (z) is estimated in a way not dependent on a distance ladder, and
relies on the extraction of information enclosed in the GW waveform such as
the strain and the frequency. A univocal analytic expression for the dGW

L (z)
is nontrivial to obtain, as it is also highly dependent on the assumed gravity
model. In [381], the authors performed an extensive study of Ξ both in terms
of parametrizations and of the specific form it takes in given models of MG. In
the latter case, Ξ is in general related to operators of the Lagrangian that affect
also scalar perturbations; for instance, in Horndeski gravity it is a function

2See https://github.com/sfu-cosmo/MGCAMB.
3See https://camb.info/.

https://github.com/sfu-cosmo/MGCAMB
https://camb.info/
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of the non-minimal coupling, which is a key contributor to µ and Σ as well.
Therefore, in a theoretical embedding, Ξ is not completely independent of µ

and Σ.
The expressions we used for GW lensing in the auto- and cross-correlation

rely on calculations of the relativistic corrections to the luminosity distance of
GW in Horndeski and DHOST theories with the speed of sound c2

T = 1 [388].
In this case, it is not straightforward to find an explicit expression for Ξ(z)
in terms of µ, Σ and/or η which is valid on all linear scales. For c2

T = 1, in
the quasi-static regime and on scales above the mass scale of the model, the
running of the Planck mass is the main contributor to both µ, implying that
the relation between Ξ and µ tends towards the simple form

Ξ(z) =

√︄
1 +

1
µ(z)

. (7.34)

However, on smaller scales, the relation becomes more complicated, as dis-
cussed in [249], and the expression for Ξ would acquire another term, depen-
dent on the other MG functions at play. For the parametrization of µ and η that
we employ in this work, based on [243], the exact form of this additional term,
which should depend on η, is complex to work out without losing generality.
For this reason, we decide to parametrize the Ξ function as follows

Ξ(z) =

√︄
1 +

1
µ(z)

+
a1

η(z)a2
, (7.35)

where a1 and a2 are varied along with the other parameters in the Fisher
analysis and regarded as nuisances. With this parametrization of Ξ, we can
reproduce the main features of the results found for several models [381]. We
fix the fiducial values of a1 and a2 in order to obtain a variation of Ξ in redshift
comparable to the results for DHOST models in [381].

Let us stress that our method for GW lensing builds on the expressions for
the luminosity distance of GWs and its relativistic corrections; the latter are
explicitly known only for the class of Horndeski models with a luminal speed of
tensors. This is therefore the context in which we perform our analysis. In this
framework, the Ξ function is not independent of the µ, η or µ, Σ functions. In
other words, they all depend, solely or partially, on the non-minimal coupling
of the theory. A more general framework may not encode this dependence;
forecasts in such cases would be expected to be less constraining. In order to
correctly quantify the degrading, we would need to go beyond the theoretical
framework on which we have built our analysis; this is certainly an interesting
direction for future work.

In the following section, we discuss how the observables that we consider in
this work are modified in light of the MG phenomenological functions.

7.3.2 Modified angular power spectra and MG parameters

Above, we commented on how the MG parameters affect the linear matter power
spectrum (see figure Figure 7.3). In this section, we outline their impact on the
observables that we consider in this work, presented in section Section 7.1.1.
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On the one hand, all the angular power spectra are computed with the
linear matter power spectrum Pm(k, z). In our analysis the modified Pm(k, z) is
computed numerically by means of the code MGCAMB, as discussed above. As
can be noticed in Figure 7.3, the MG functions affect the matter power spectrum
Pm(k). The effect of µ is quite direct and the most notable, given that µ changes
the rate of clustering of matter. The functions η and Σ have a less direct impact
on Pm(k), but still affect it. In particular, Σ impacts the C spectrum via the
magnification bias. On the other hand, the MG models we consider modify the
lensing potential. In the scalar sector, modifications to the lensing potential are
encoded by the MG function Σ(z), through equation Equation 7.30. This means
that an extra factor Σ(z) appears each time the term (Φ + Ψ) appears. Thus,
the lensing angular power spectra of equation Equation 7.7 become [239]

CXiYj

LL (ℓ) =
∫︂ ∞

0

dz c
H(z)

WXi
L (z) WYj

L (z)
χ2(z)

Σ2(z) Pmm

(︃
ℓ

χ(z)
, z
)︃

, (7.36)

while the cross-correlation spectra between lensing and clustering will be

CXiYj

CL (ℓ) =
∫︂ ∞

0

dz c
H(z)

WXi
C

(︂
ℓ

χ(z) , z
)︂

WYj

L (z)

χ2(z)
Σ(z)Pmm

(︃
ℓ

χ(z)
, z
)︃

. (7.37)

Following [369], the Ξ(z) function is going to appear in the Lensing observables
related to bright GW sirens. This is because for bright sirens the estimator of
the convergence depends on the ratio dGW

L /dEM
L . Explicitly, this results into

C
GWbright

i GWbright
j

LL (ℓ) ≃ Ξ2(z)
∫︂ ∞

0

dz′ c
H(z′)

WXi
L (z′) W

Yj
L (z′)

χ2(z′)
Σ2(z′) Pmm

(︃
ℓ

χ(z′)
, z′
)︃

, (7.38)

while the cross-correlation spectra between lensing and clustering will be

C
GWbright

i Yj
LΘ (ℓ) ≃ Ξ(z)

∫︂ ∞

0

dz′ c
H(z′)

W
GW

bright
i Yj

L

(︂
ℓ

χ(z′) , z′
)︂

W
Yj
L (z′)

χ2(z′)
Σ(z′)Pmm

(︃
ℓ

χ(z′)
, z′
)︃

.

(7.39)
Following reference [369], it is worth clarifying that the approximately equal

symbol in the above two equations is due to the linearization at first order of
the convergence estimator, in the parameters describing it which are introduced
in equation (3.8) of [369]. We refer the interested reader to reference [369] for
further details.

7.4 forecasts

In accordance to what described in Section 7.1.2, we perform a Fisher analysis
on the following parameters: {E11, E22, w0, wa , ln 1010 As , ns , Kfg, a1, a2} (for a
total of 9 parameters). The fiducial values we use in this pipeline (mainly
taken from Planck results [4]) are summarized in table Table 7.2.4 Where
explicitly stated, the {w0, wa} parameters are kept fixed instead. Given errors

4The fiducial value of Kfg depends on the case considered (z binning and probe): we adopt
Kfg = 5.72 · 10−8 (9.64 · 10−6) for the redshift binning chosen in the dark sirens case for the Lensing
(Clustering) probe and Kfg = 4.49 · 10−8 (1.05 · 10−5) for the redshift binning chosen in the bright
sirens case for the Lensing (Clustering) probe. The fiducial values for {a1 , a2} are respectively -0.95

and 0.14. We omit these values from table Table 7.2 for the sake of simplicity.
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probe
σµ0 ση0 σΣ0 σw0 σwa σµ0 ση0 σΣ0 σw0 σwa

darkGW×IM brightGW×IM

Lensing 15.62 38.92 2.09 2.78 8.66 24.45 61.86 3.73 4.59 16.18

C 1.20 1.84 0.99 0.53 1.43 1.12 1.84 1.00 0.47 1.34

L + C 0.10 0.24 0.04 0.11 0.23 0.08 0.20 0.06 0.05 0.15

darkGW×IM×gal brightGW×IM×gal

Lensing 1.96 4.48 0.09 0.45 1.41 2.78 6.66 0.24 0.96 3.62

Clustering 0.80 1.39 0.82 0.32 0.92 0.30 1.25 0.68 0.12 0.35

L + C 0.05 0.11 0.01 0.04 0.08 0.06 0.10 0.02 0.03 0.09

Table 7.3: Fisher estimated errors on the µ0, η0, Σ0, w0 , wa parameters for different tracers
and probes combinations.

probe
σµ0 ση0 σΣ0 σµ0 ση0 σΣ0

darkGW×IM brightGW×IM

Lensing 10.46 25.46 1.06 16.38 40.61 2.06

Clustering 0.18 1.10 0.62 0.19 1.23 0.68

L + C 0.09 0.20 0.02 0.03 0.09 0.03

darkGW×IM×gal brightGW×IM×gal

Lensing 1.13 2.60 0.06 1.63 3.93 0.14

Clustering 0.17 1.08 0.61 0.09 0.50 0.29

L + C 0.08 0.17 0.02 0.03 0.06 0.01

Table 7.4: Fisher estimated errors on the µ0 , η0 , Σ0 parameters for different tracers and
probes combinations. The parameters w0 , wa are kept fixed.

on {E11, E22}, we derive constraints on the {µ0, η0, Σ0} parameters. We perform
Fisher analysis for the following different cases:

• Different probes: L only, C only, and L + C;

• Different tracers combinations: GW × IM and GW × IM × gal;

• GW are either treated as dark (BHBH and BHNS mergers) or bright (NSNS)
sirens.

The next section provides results on {µ0, Σ0} for all the cases listed above.

7.4.1 Results

We provide Fisher estimated constraints on the {µ0, η0, Σ0} parameters (and
w0, wa where relevant) in Table 7.3 and Table 7.4. All results refer to fsky = 0.5
and TGW

obs = 15yr. In Figure 7.4, Figure 7.5 we provide 1 − 2σ contour ellipses
on the {µ0, Σ0} parameters (for fsky = 0.5 and TGW

obs = 15yr). In Figure 7.7,
Figure 7.8 we provide forecasts on {µ0, Σ0} for different values of fsky, fixing
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Figure 7.4: Contours for {µ0 , Σ0} in the GW×IM (solid line) and GW×IM×gal (dashed
line) cases, all probes considered (colors according to legend). The left panels
refer to dark sirens (BHBH+BHNS), right panels refer to bright sirens (NSNS).
w0 , wa are among the Fisher parameters considered. TGW

obs =15 yr and fsky =
0.5.
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Figure 7.5: Contours for {µ0 , Σ0} in the GW×IM (solid line) and GW×IM×gal (dashed
line) cases, all probes considered (colors according to legend). The left panels
refer to dark sirens (BHBH+BHNS), right panels refer to bright sirens (NSNS).
w0 , wa are fixed to fiducial values. TGW

obs =15 yr and fsky = 0.5.
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Figure 7.6: Contours for {µ0, η0} and (µ0 , Σ0) in the GW×IM (solid line) and
GW×IM×gal (dashed line) cases, for the only-L case. Comparison between
forecasts fixing or opening the {a1, a2} parameters describing the Ξ function
according to Equation 7.35. w0 , wa are fixed to fiducial values. TGW

obs =15 yr and
fsky = 0.5.

w0, wa. The same plots for the {µ0, η0} parameters are provided in the appendix
of [118]. In light of these results, we can express the following statements.

Lensing-only case

Focusing on the Lensing-only case, we find that both bright and dark sirens
cases are not good at constraining the parameters of interest, although some dif-
ferences in the constraining power between the two cases can be found. Indeed,
considering bright sources brings both advantages and disadvantages, with the
resulting outcome depending on which of the two dominates. Specifically, the
advantage of having an EM counterpart is enclosed in the presence of the MG

function Ξ defined in Section 7.3 (not present for dark sirens), which introduces
a severely stronger dependence of the Cℓs on the µ0, η0, Σ0 parameters. On
the other side, detectable bright sources cover a lower redshift range (since
NSNS binaries are less massive than BHBH or BHNS they can be detected up to
lower redshifts). This might give a disadvantage, both concerning the number
of detected sources (i.e. worse shot noise) and the possibility to perform a less
deep tomography (fewer redshift bins available, i.e. less information). Overall,
bright sirens may give better/worse results with respect to the dark case de-
pending on the balance between these two effects and on which probe we are
considering.

Generally, in the L-only case, the advantages of considering bright sirens
are not able to dominate on the downsides (or at least significantly), with
constraints comparable between the two cases (see e.g. Table 7.3 and Table 7.4).
This is even more evident in e.g. Figure 7.4, Figure 7.5: the L-only contour
ellipses (in yellow) show an extremely wide extension in all dark sirens panels
(left side), leaving especially µ0 and η0 barely constrained. Unfortunately, a
similar trend can be found for bright sirens L-only ellipses (right panels of both
figures). The same insight can be drawn from Figure 7.7, Figure 7.8.
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Figure 7.7: Contours for {µ0, Σ0} parameters for the GW×IM case, all probes considered
(only Lensing: left panels; only Clustering: center panels; Lensing + Clustering:
right panels), for dark (top panels) and bright (bottom panels) sirens and for
different values of fsky (color-coded according to legend). w0 , wa are fixed to
fiducial values. TGW

obs =15 yr.
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Figure 7.8: Contours for {µ0 , Σ0} parameters for the GW×IM×gal case, all probes con-
sidered (only Lensing: left panels; only Clustering: center panels; Lensing
+ Clustering: right panels), for dark (top panels) and bright (bottom pan-
els) sirens and for different values of fsky (color-coded according to legend).
w0 , wa are fixed to fiducial values. TGW

obs =15 yr.
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Figure 7.9: Contours for the most stringent constraints we find on {µ0 , Σ0}: GW×IM×gal,
Lensing + Clustering case, for dark (left) and bright (right) sirens and for
different values of fsky (color-coded according to legend). w0 , wa are fixed
to fiducial values. TGW

obs =15 yr. The gray area shows 1σ = 68% confidence
regions from Planck TT,TE,EE+lowE without CMB lensing (see table 7 of [4]).

Furthermore, we can see that adding galaxies in addition to the GW × IM
cross-correlation significantly improves the results, especially in the dark sirens
case: dashed lines (GW×IM×gal) in Figure 7.4 and Figure 7.5 tend to mark
tighter ellipses than solid lines (GW×IM).

Overall, Lensing-only forecasts are non-competitive with Planck constraints [4],
showing nonetheless the advantage of taking into account the information com-
ing from a higher number of tracers (GW×IM×gal vs. GW×IM).

L+C case

Adding the angular Clustering probe to Lensing data (L+C case) significantly
improves the results in any case considered (bright/dark sirens, with/without
adding resolved galaxies), providing constraints tighter up to two orders of
magnitude (see e.g. Table 7.4). This shows that not only cross-correlating differ-
ent tracers but especially combining together different probes is a remarkably
powerful tool to exploit, that provides significant extra information. This is
especially evident in Figure 7.4: the C-only (in blue) and especially the L+C (in
red) contours are firmly more constraining than the (yellow) L-only ones, often
breaking down degeneracies between parameters.

The best results we obtain in the L+C case are very competitive with Planck
results [4], highlighting the power of cross-combining observables of different
tracers and probes. Results concerning the Σ0 parameter are especially promis-
ing. This is reasonable since Σ0 is the parameter describing deviations from GR

for Lensing effects, as explained in Section 7.3. To highlight the competitiveness
of our best constraints with those from Planck, in Figure 7.9 we compare our
L+C forecasts (GW×IM×gal case) with the 68% confidence regions from Planck
TT,TE,EE+lowE (without CMB lensing, see table 7 of [127]). Planck results are
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compatible with ΛCDM and Planck data alone do not show a significant prefer-
ence for beyond ΛCDM values of µ0, η0 and Σ0: indeed, their results are less
than 1σ away from the ΛCDM limit for µ0 and η0, and ∼ 2σ for Σ0. Our best
results are highly competitive and severely reduce Planck errors: assuming a
Planck best fit as fiducial value our measurements show a mild preference for
non-ΛCDM values of µ0 and η0 (respectively ∼ 4σ and ∼ 9σ), and a clearly
stronger preference for Σ0 (at more than 20σ) since our lensing observable
is strongly affected by it. This means that if experimental data will confirm
beyond ΛCDM central values, we would be able to confirm a preference for MG

models with a high confidence level.
Comparing the bright/dark sirens cases, we see no univocal pattern among

the two (see e.g. red L+C contours in Figure 7.4 and Figure 7.5). This can be
motivated by the explanation laid in the previous point: taking bright sirens
has both pros (extra information contained in the Ξ parameter for Lensing) and
cons (shallower tomography in both L and C). Given the addition of Clustering,
which is independent of Ξ, we can not naturally expect a striking difference
as for the L-only case, but a competition between these two opposite effects,
with not clearly predictable outcomes. We also note that generally adding
galaxies improves the constraining power, which is an expected outcome as
more information is being fed to the pipeline (as for the L-only case).

Fixing {a1, a2} parameters

In Section 7.3 we have introduced the Ξ(z) function, which is parametrized
by {a1, a2} according to Equation 7.35. In order to take into account possible
uncertainties to the modeling of this function, we opted to allow {a1, a2} to vary,
introducing them among the Fisher parameters considered in the analysis (as
described in Section 7.3). Nonetheless, this inevitably introduces an extra source
of uncertainty, disadvantaging predictions for the bright sources case and
leading to forecasts in the Lensing-only case for bright sirens usually no better
than those for dark sirens, as highlighted in the “Lensing-only case” subsection
above. Nonetheless, one may wonder what the advantage of considering bright
sources would be if the behavior of Ξ(z) was assumed fixed, getting rid of this
extra source of uncertainty. Figure 7.6 provides constraints on µ0, η0, Σ0 (for
fsky = 0.5 and TGW

obs = 15yr) for the Lensing-only case, comparing the cases
of {a1, a2} open and {a1, a2} fixed to fiducial values (with w0, wa fixed). It
shows a significant improvement in the constraining power of the experiments,
with contour ellipses covering more reasonable ranges, highlighting a severe
degradation in the constraining power due to the uncertainty on the modeling
of the parameters describing Ξ(z).

Indeed, Fisher estimated errors on {µ0, η0, Σ0} when keeping {a1, a2} fixed
are the following: {1.32, 3.29, 0.70} for the GW × IM case and {0.75, 1.80, 0.08}
when adding galaxies. When comparing these numerical values to those in the
“LENSING” rows of Table 7.4, we can see an improvement of up to one order
of magnitude (for the GW × IM case).

These results show that if the behavior of Ξ(z) was to be known, being able
to detect an EM counterpart would be of crucial importance for experiments
based only on the Weak Lensing observable, allowing to constrain {µ0, η0, Σ0}
with good accuracy, and significantly better than a case in which only dark
sirens would be available. Nonetheless, an approach taking into account the
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uncertainty on the modeling of Ξ(z) is safer and more realistic, although
provides more pessimistic forecasts.

{w0, wa} effects

Since we are studying theories with fixed background, it is natural to wonder
about the impact of keeping the {w0, wa} parameters fixed (results provided
in Table 7.4 and Figure 7.5) or open, as extra Fisher parameters (Table 7.3 and
Figure 7.4). When fixing w0, wa at their fiducial values results are in general
either comparable or significantly more optimistic (up to a few factors unity),
with smaller contour ellipses. As one would expect, the higher number of free
parameters usually leads to less tight constraints.

fsky effects

Improving the surveyed area of the sky logically improves the constraining
power, sometimes significantly. It can be seen in Figure 7.7, Figure 7.8, that the
contours related to higher values of fsky (in magenta) are tighter than those for
low fsky = 0.1 values (in green), sometimes reducing parameters degeneracies.
This is valid for all considered probes: L, C, and L+C (left, middle and right
panels). We also report, not shown explicitly, a very mild dependence on the
values of TGW

obs , showing that in this framework the GW shot noise does not
provide the bulk of the weight to the error budget.

Role of the EM counterpart for bright sirens

As described over the course of this manuscript, the bright sirens case relies on
the assumption that NSNS mergers are associated with an EM counterpart. This
is an optimistic starting point, which is why we accompany these results to the
BHBH+BHNS dark case. For completeness (although not explicitly reported here
for the sake of brevity) we have also computed forecasts labeling all GW sources
(BHBH, BHNS, and NSNS mergers) as dark sirens. We found that results are
generally comparable to the BHBH+BHNS dark case up to a few percentages. For
this reason, results in this latter case can also be seen as a proxy for forecasts
in a scenario characterized by a complete lack of EM counterparts.

Impact of ℓmax for bright sirens

Throughout this section, we have provided results with a choice of ℓmax = 300
for detected bright sirens. As described in Section 7.2.1, we are allowed to
push our angular resolution limit beyond the intrinsic instrument limitation
thanks to the detectability of EM counterparts. Nonetheless, we explored a
set-up with an ℓmax = 100 even for bright sirens. This way, we are testing the
extreme case in which EM counterparts would not be exploited for improving
the angular resolution. Forecasts obtained this way are less optimistic than the
ℓmax = 300 ones, with relative differences from just a few percentages (mainly
for the Lensing-only case) up to a factor ∼ 5 for the Clustering-only and L+C
cases. Nonetheless, we note that this would not lead to orders of magnitude of
difference among the forecasts, providing us fairly robust results to the specific
ℓmax choice.
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7.5 conclusions

Cross-correlations between different tracers of the LSS and different observable
probes can richly enhance the amount of physical information that can be
extracted by present and forthcoming experiments. In this work we considered
three different tracers: 1) resolved GW signals from compact object mergers
as observed by ET, both assuming the detection of EM counterparts (for NSNS,
bright sirens) or not (for BHBH and BHNS, dark sirens); 2) the Intensity Mapping
of the neutral hydrogen distribution as observed by the SKA-Mid survey; 3)
resolved radio-galaxies as mapped by SKAO. This allows us to correlate and
compare both GW and EM signals, testing the possible imprints of beyond-GR

behaviors, as these two observables are supposed to respond in the same way
to matter perturbations effects such as lensing. For this reason, the primary
observational probe we took into account is the weak lensing power spectrum,
both in auto and cross-tracers correlation. In order to gauge the effects of
combining together different probes, we also introduced the angular clustering
power spectra and their L×C cross-term. We performed a Fisher matrix analysis
in order to test a late-time parametrization scenario, forecasting the constraining
power on the MG parameters {µ0, η0, Σ0}.

Our findings show that combining together different observational probes
has a strikingly positive effect on the constraining power, with an improve-
ment of up to an order of magnitude and results which are even competitive
with constraints from Planck. We also find that, generally, cross-correlating
together more tracers provides better constraints, as the combination of more
information from different sources is more powerful than auto-correlation-only
experiments.

In addition, we also show that when considering probes that describe physi-
cal effects that would be different between GW and EM sources (i.e. Lensing), the
detection of an EM counterpart might be of crucial importance, allowing us to
actively test the presence of different behaviors between these two observables
and confirm or rule out GR alternatives to the description of gravity.

This work extends the efforts of the scientific community in the field of
multi-tracing and multi-probes astrophysics and cosmology, showing that in
an era rich in surveys and data (both from the present time and near-future
experiments) the interconnection of different sources is able to yield results
and constraints which are significantly more powerful than auto-correlation or
single-probe results.





8W E I G H I N G N E U T R I N O S W I T H 2 1 C M I N T E N S I T Y
M A P P I N G

F uture 21cm intensity mapping observations, tracing the large-scale dis- This chapter is
based on «Latest
perspectives on
weighing the
neutrinos with the
SKAO 21cm
Intensity
Mapping.», by
M. Berti,
M. Spinelli,
B.S. Haridasu, and
M. Viel, in
preparation [119].

tribution of matter in the Universe, are expected to be an important
cosmological probe to investigate the effect of massive neutrinos on

the evolution of structures. The large volumes probed with IM will allow to
sample the neutrino free-streaming over a wide range of scales. In this work,
we make use of the pipeline developed in Chapter 4 and Chapter 5 to test the
constraining power of future SKAO observations on the total neutrino mass.

We find an upper limit on the total neutrino mass of 0.478 eV (95% confidence
level) from 21cm multipole observations alone. When combined with CMB

observations, intensity mapping data reduces the upper limit to 0.129 eV. The
results from our analysis are consistent with other works in the literature
further validating the validity of our pipeline. In this chapter, we give an
overview of preliminary results that we plan to expand in the future.

We summarize the modifications to the mock datasets and the likelihood we
implement for massive neutrinos in Section 8.1. The results we obtain for the
21cm multipoles alone and combined with CMB and BAO data are discussed in
Section 8.2. A summary of our conclusions can be found in Section 8.3.

8.1 methods

To forecast the constraining power of 21cm observations on the neutrino mass
we make use of the formalism and technical tools developed in Chapter 4 and
Chapter 5. In the following, we discuss how the theoretical predictions for the
power spectrum are modified for massive neutrinos (Section 8.1.1) and present
the constructed mock data set of SKAOobservations (Section 8.1.2).

8.1.1 The 21cm power spectrum model for massive neutrinos

The 21cm power spectrum is a biased tracer of the cold and baryonic matter
distribution. When dealing with massive neutrinos one has to modify the 21cm
power spectrum, in order to consider properly the neutrino contributions. The
current picture shows that, although a fraction of massive neutrinos clusters
inside the halos, they do not contribute significantly to CDM halo mass (see
e.g. [389, 390]). Therefore, following e.g. [339], we redefine the non-linear 21cm
power spectrum for massive neutrinos as

P21(z, k, µ) = T̄2
b(z)

[︂
bHI(z) + fCDM+b(z) µ2

]︂2
PCDM+b(z, k) + PSN, (8.1)

where both the matter power spectrum and the growth rate are computed with
the Einstein-Boltzmann solver CAMB1 [173] for the CDM and baryon matter only.

1See https://camb.info/.
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Figure 8.1: Tomographic mock data set for 21cm linear power spectrum monopole
(upper panel) and quadrupole (lower panel) observations with massive
neutrinos. The considered six redshift bins are centered at redshifts
{0.25, 0.75, 1.25, 1.75, 2.25, 2.75}. For the first redshift bin (black dashed line)
we assume a SKA-Mid Band 2 survey. The data sets for the other five bins,
instead, assume a SKA-Mid Band 1 survey (see Table 4.1). Shaded areas show
how theoretical predictions for the multiples are modified for different values
of the total neutrino mass.

The other quantities appearing in Equation 8.1 are defined in Chapter 4. Non-
linear corrections to the power spectrum are obtained with the latest version
of the HMcode2020 [391], which include accurate computations for massive
neutrinos that were found to be in agreement with a variety of theoretical
tools [392].

Taking into account the AP distortions (see Equation 5.2-Equation 5.5) and
the telescope beam effects, the observed non-linear 21cm power spectrum is

P̂21(z, k, µ) =
1

α2
⊥α∥

B̃2
(z, q, ν)P21(z, q, ν). (8.2)

Expanding in Legendre’s polynomials, we compute the power spectrum multi-
poles as

P̂ℓ(z, k) =
(2ℓ+ 1)

2

∫︂ 1

−1
dµLℓ(µ)P̂21(z, k, µ). (8.3)

In the following, we consider measurements of the 21cm power spectrum
monopole (ℓ = 0) and quadrupole (ℓ = 2).

Modifications to the 21cm) power spectrum induced by the neutrino free-
streaming are clearly visible as the shaded areas in Figure 8.1. This is the effect
we aim at constraining in the following analysis.

8.1.2 Forecasted SKAO observations and analysis settings

We construct mock observations of the 21cm power spectrum multipoles
consistently with the planned cosmological surveys of the SKAO [57]. We
forecast observations for six equi-spaced, non-overlapping redshift bins, in
the range z = 0 − 3 with ∆z = 0.5. The six bins are centered at redshifts
z = {0.25, 0.75, 1.25, 1.75, 2.25, 2.75}. For a comprehensive discussion on the
assumed telescope specifications and the modeling of the errors we refer to
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Chapter 4.2 Figure 8.1 shows the mock data set we construct for the monopole
and the quadrupole. We observe that increasing the total neutrino mass sup-
presses the power at small scales, as expected from the neutrino free-streaming
effect.

To perform the MCMC analysis we use an expanded version of the sampler
CosmoMC3 [136, 212], modified in order to include the computation of the
theoretical expectations for the power spectrum multipoles and of the likelihood
function. We vary the complete set of cosmological parameters along with the
total neutrino mass Σmν and the nuisance parameters, including the shot noise.
The assumed fiducial cosmology is Planck 2018 [4], with Σmν = 0.06 eV. On
each parameter, we assume a flat prior. For the neutrino mass, we consider
Σmν ∈ [0.06, 1] eV, as suggested by the state-of-the-art constraints from particle
physics.

8.1.2.1 BAO data sets

Measurements of the BAO scale at different redshifts provide an important
geometrical test for cosmology, independent from CMB observations. Due
to the fact that BAO observations are a probe for the expansion, they are
particularly useful to constrain the background evolution. In this work, we
analyze the complementarity of the constraining power of 21cm intensity
mapping with CMB and BAO data. With the label "BAO" we refer to the set of
following observations: the Sloan Digital Sky Survey (SDSS)4 six-degree-Field
Galaxy Survey (6dFGS) at an effective redshift ze f f = 0.106 [319]; the SDSS

Main Galaxy Sample (MGS) at ze f f = 0.15 [320]; the SDSS Baryon Oscillation
Spectroscopic Survey (BOSS); we use data sets from both the 11th and 12th data
release, in particular from DR11 we adopt the LOWZ sample at ze f f = 0.32
and CMASS sample at ze f f = 0.57 [393]; from DR12 we adopt measurements at
ze f f = 0.38, 0.51, 0.61 [266].

8.2 results

We present here the result of our forecast analysis. First, we assess the constrain-
ing power of 21cm observations alone and with BAO data (Section 8.2.1). Then
we investigate how future 21cm multiples measurements impact the results on
the cosmological parameters from Planck alone (Section 8.2.2). We show the
marginalized 1D and 2D contours for the studied set of parameters and the
95% confidence levels. We recall that with the label "Planck 2018" we refer to
the combination TT, TE, EE + low-ℓ + lowE + lensing (see Section 2.2.1).

8.2.1 Forecasted constraints on the neutrino mass from the SKAO

As shown in Figure 8.2, SKAO observations are expected to have good constrain-
ing power on the neutrino mass (see also [309, 339, 380, 394–396]). From 21cm
multipoles alone we find a constraint on the total neutrino mass comparable

2The analysis in this chapter differs from the one of Chapter 4 in the addition of the AP effects,
as modeled in Chapter 5, and the assumption of the dependence on the CDM and baryon power
spectrum in order the correctly model massive neutrinos.

3See https://cosmologist.info/cosmomc.
4https://www.sdss.org/

https://cosmologist.info/cosmomc
https://www.sdss.org/
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Likelihoods Σmfid
ν = 0.1

P̂0 + P̂2 < 0.216 < 0.227

+ nuisance < 0.478 < 0.535

P̂0 + P̂2 + BAO < 0.227

+ nuisance < 0.413

Planck 2018 < 0.259

+ P̂0 + P̂2 < 0.101 < 0.117

+ nuisance < 0.129 < 0.127

Planck 2018 + BAO < 0.149

+ P̂0 + P̂2 < 0.101

+ nuisance < 0.130

Table 8.1: Marginalized constraints on cosmological parameters at the 95% confidence
level. Here, the label "P̂0 + P̂2" stands for the baseline tomographic data set for
the monopole and the quadrupole combined and with multipole covariance
taken into account. The label "nuisance" indicates that we vary the nuisance
parameters along with the cosmological ones.

with the one from Planck, as displayed in Table 8.1. In a more realistic scenario,
in which we take into account the astrophysical nuisances, we observe that the
constraining power on Σmν as well as on the other cosmological parameters
is reduced. In addition, Figure 8.2 shows how the correlations among the
parameters are modified with the addition of the nuisances. We note that the
widened constraint on Σmν obtained for P̂0 + P̂2 + nuisances is compatible
with other forecast analysis for the SKAO in the literature (see e.g. [309, 339]).

Combining the forecasted 21cm multipole data sets with BAO observations
do not improve significantly on the constraints from 21cm observations alone.
Indeed, as discussed below, our analysis seems to indicate that BAO and 21cm
intensity mapping data carry comparable information on the neutrino mass.
This is expected due to the fact that full-shape analysis, such as the one we
conduct here, provide more rich, scale-dependent information with respect to
the BAO alone.

In order to explore how different scenarios could induce variations in the
21cm intensity mapping constraining power, we mimic recent constraints that
favor higher neutrino masses (see e.g. [397]) and we construct an additional
mock data set with a different fiducial for the total neutrino mass, i.e. we
consider Σmfid

ν = 0.1 eV. The results, that we show in Table 8.1, consistently
provide higher upper limits on the neutrino mass.

8.2.2 Improvement from combining CMB observations with 21cm intensity mapping

In Figure 8.3 we present the results we obtain by combining Planck 2018 data
with the forecasted 21cm multipole data sets. We observe that the constraints
on the neutrino mass are significantly improved by the addition of the 21cm
likelihood. The improvement is stronger than what is found with Planck 2018

+ BAO, for fixed nuisances, or comparable, for varying nuisances. As noted
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Figure 8.2: Joint constraints (68% and 95% confidence regions) and marginalized poste-
rior distributions on cosmological parameters. The label "P̂0 + P̂2" stands for
the baseline tomographic data set for the monopole and the quadrupole com-
bined and with multipole covariance taken into account. The label "nuisance"
indicates that we vary the nuisances parameters along with the cosmological
ones.

before, BAO measurements do not add information to the Planck 2018 + P̂0 + P̂2
combination, as can be seen in Table 8.1.

8.3 conclusions

In this work, we present preliminary results on the neutrino mass constraints
produced by adapting the pipeline we develop in Chapter 4 and Chapter 5. We
forecast the constraining power on Σmν of 21cm monopole and quadrupole
mock SKAO observations alone and combined with BAO and CMB data.

We find upper limits consistent with other results in the literature. This
further validates our modeling of the 21cm power spectrum signal and our
likelihood implementation. In particular, we find a constraint of Σmν < 0.478
eV (95% confidence level) from 21cm observations alone. Combining this probe
with CMB observations provide significantly tighter constraints with respect to
Planck alone results, i.e. Σmν < 0.129 eV. Additional BAO likelihoods do not
carry information complementary to the 21cm power spectrum multipoles.

We plan on finalizing the work presented in this chapter as follows. The num-
ber of effective neutrinos Ne f f and the AL parameter are strictly intertwined
with Σmν. Opening the parameter space to Ne f f and the AL could provide
interesting results for 21cm observations, offering a natural extension of this
work.
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with multipole covariance taken into account. The label "nuisance" indicates
that we vary the nuisances parameters along with the cosmological ones.

Insights on cosmological neutrinos can come also from the interplay between
21cm intensity mapping and other cosmological probes. The likelihood we
implement in Chapter 5 to test cross-correlations between 21cm observations
and galaxy clustering could be straightforwardly applied to neutrino mass
testing. This would provide a forecast on Σmν from the cross-correlations
between the SKAO and Euclid or DESI. We further discuss these extensions in
the section Overview of ongoing and future projects.
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C O M P E N D I U M O F T H I S T H E S I S

C osmology is entering an exciting new phase, where upcoming high- Rationale

precision observations hold the promise of shedding light on the dark
Universe and beyond. At this pivotal moment, it is essential to prepare

for the vast wealth of upcoming data.
The goal of this thesis has been to actively contribute to the scientific commu-

nity’s efforts in this regard. Grounded on a theoretical background, this work
lies at the intersection between theory and observations. Indeed, the focus of
this study was twofold: 1) by building on noteworthy results in the literature,
we developed and made use of advanced statistical and numerical tools to
assess the constraining power of ongoing and future cosmological observations,
including innovative probes such as the neutral hydrogen intensity mapping
(IM); 2) we explored and studied a broad set of cosmological models, with a
particular emphasis on dark energy (DE) and modified gravity (MG) alternative
theories. In the following, we give an overview of the analysis performed in
this thesis and summarize the most remarkable results.

Although we explored synergies between a variety of cosmological probes, Forecasts for 21cm
intensity mappingthe core of this thesis has been to generate mock data sets of the large-scale

distribution of neutral hydrogen in the post-reionization Universe, as they will
be measured by cutting-edge experiments targeting the 21cm line. To this end,
we defined a procedure to construct mock data sets mimicking measurements
from several planned surveys of the SKA Observatory (SKAO) and its precursor
MeerKAT, already in operation. We then developed a likelihood code to conduct
Bayesian analyses with different 21cm probes. This resulted in a versatile
pipeline, that can be easily interfaced with both forecasted IM measurements
and available data.

We modeled and forecasted several 21cm observables: the auto power spec-
trum signal, its first two detectable multipoles, i.e. the monopole and the
quadrupole, and the 21cm and galaxy clustering cross-correlation power spec-
trum. In order to assess the constraining power of near-future, realistic obser-
vations, we forecasted single-bin MeerKAT measurements of the auto power
spectrum, at the effective redshift z = 0.39, which is currently being targeted
by MeerKAT observations. To exploit the tomographic nature of future SKAO

surveys, such as the planned SKA-Mid survey, we considered 21cm power
spectrum monopole and quadrupole observations within 6 redshift bins in
the range z = 0 − 3. For this mock data set, we also explored the effects of
extending the forecasted detections to smaller, fully non-linear scales. To study
the interplay between 21cm intensity mapping and galaxy clustering, we built
mock data sets for the cross-correlation power spectrum monopole, choosing
to focus on the SKAO for IM and the planned DESI and Euclid galaxy surveys.
We considered measurements at multiple bins in the redshift ranges probed by
DESI and Euclid, i.e. z = 0.7 − 1.8.

A part of this thesis was also devoted to forecasting the constraining power
of 21cm observations in cross-correlation with gravitational waves (GWs). In
this case, we considered resolved GW signals from compact object mergers as
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observed by the Einstein telescope (ET), with and without the assumption of
detecting electromagnetic counterparts, combined with the SKAO 21cm intensity
mapping and resolved radio-galaxies.

The theoretical focus of this thesis has been to study the impact of future keyTesting the ΛCDM
Universe and

beyond
cosmological observations on a variety of cosmological models. We explored the
ΛCDM model along with a subset of MG-DE alternative theories and neutrino
extensions.

We investigated several models within the MG-DE scenario. We chose to work
with a model-independent approach and focused on parametrized frameworks
of gravity, both in the EFT and phenomenological formulation. The EFT of cosmic
acceleration is a versatile formalism that allows sampling a large number of
different theoretical scenarios of increasing complexity. For a first thorough
forecast of 21cm intensity mapping constraints on MG-DE, we started from the
subset representing Generalized Brans Dicke theories, which includes f (R)
and, more generally, chameleon type theories. In the designer approach, this
class of theories can be easily explored by varying two functions of time, which
determine both the background and linear perturbation dynamics. We chose the
Hubble parameter, H(a), and the conformal coupling ΩEFT(a), which implies
a running of the Planck mass corresponding to αM = H−1d ln (1 + ΩEFT)/dt.
In our analysis, we fixed the background evolution to ΛCDM or wCDM and
studied the effects on the observables of different parametrizations of the
ΩEFT(a) function.

In the phenomenological approach, the impact of modifications of gravity on
the growth of structures and the evolution of the gravitational potentials can
be cast into two functions of time and scale. Following analogous studies in
the literature, we provide constraints on widely used parameterizations of the
µ(z) and Σ(z) functions, which capture modifications to the Poisson equation
and gravitational lensing, respectively. In the context of GW observables, an
additional function must be introduced. The parameter Ξ(z) quantifies dif-
ferences in the electromagnetic and GW luminosity distance and it modifies
the lensing for bright sirens. From the µ(z) and Σ(z) evolution, we derived a
parametrization for Ξ(z) to correctly model the lensing observables.

Lastly, we conducted a preliminary analysis to weigh neutrinos with 21cm
probes. We considered the extension to ΛCDM in which we allowed for dif-
ferent values of the total neutrino mass Σmν, within the range left available
from particle physics detections. When varying Σmν, we took into account
modification to the modeling of the 21cm power spectra.

In our analysis we constrained the full set of cosmological parameters fromNumerical
analysis tools forecasted measurements of the 21cm probes alone and in combination with

state-of-the-art cosmological observations, such as the cosmic microwave back-
ground (CMB) and baryon acoustic oscillations (BAO) measurements. To describe
a ΛCDM cosmology, we considered the following six independent parameters:
Ωbh2 and Ωch2, the density of the baryonic and cold dark matter, respectively,
the scalar spectral index ns, the normalization of the primordial power spec-
trum As, the Thomson scattering optical depth due to reionization τ, and θMC,
a measure of the angular scale of the sound horizon at decoupling. Constraints
on other key parameters, such as H0 and σ8, were derived from this set. Along
with the standard cosmology parameters, we also constrained specific parame-
ters describing alternative theories and the nuisances relative to the selected
cosmological probe.
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To explore such a high-dimensional parameter space, we performed a
Bayesian analysis sampling the posterior distribution through Monte Carlo
Markov chain (MCMC) techniques. We developed original numerical tools to
work with a variety of 21cm probes. We expanded the CAMB/CosmoMC suite,
including the extensions EFTCAMB/EFTCosmoMC, by implementing the numer-
ical computation of the forecasted 21cm power spectra and likelihoods. The
Bayesian analysis and marginalization have been performed with the GetDist

code. The likelihood function we developed is operational and ready to be
used to test a variety of theoretical models with future real 21cm observations.
Indeed, in light of the recent measurements of the MeerKAT power spectrum
in cross-correlation with WiggleZ galaxy clustering [61], we tested our analysis
pipeline on measured data providing interesting preliminary results.

We found promising results confirming the value of 21cm intensity mapping Results

observations as a key cosmological probe. In what follows, we summarize the
main outcomes of this thesis.

· The forecasted SKAO constraining power on ΛCDM and the impact of combin-
ing 21cm observations with CMB. Our analysis revealed that mock SKAO

21cm multipole observations exhibit a good constraining power on the
cosmological parameters, comparable to other probes. For instance, com-
bining the 21cm monopole and quadrupole measurements resulted in
both H0 and σ8 being constrained at approximately the 7% level. Notably,
the 2D contours showed pronounced degeneracies between parameters,
particularly in the Ωch2 - H0 and ln(1010 As) - σ8 planes. Combining
21cm observations with Planck 2018 CMB data significantly narrowed the
parameter constraints compared to the Planck results alone. The most sub-
stantial improvements have been observed for Ωch2 and H0, with errors
reduced by a factor of four. The joint analysis yielded precise estimates
of Ωch2 and H0, which we constrained at the 0.25% and 0.16% level, to
be compared with Planck estimates of 0.99% and 0.79%, respectively. The
errors for ln(1010 As) and σ8 were reduced by more than a factor of two,
leading to 0.17% and 0.26% constraints respectively, in light of Planck
estimates of 0.46% and 0.73%. Expanding the 21cm data set to non-linear
scales led to increased constraining power. The most significant outcome
has been the improvement in the constraints of As and σ8. This is ascrib-
able to the information acquired from lower scales, that facilitate a more
accurate determination of the power spectrum amplitude. We concluded
that 21cm SKAO observations will provide a competitive cosmological
probe, complementary to CMB and, thus, pivotal for gaining statistical
significance on the cosmological parameters constraints.

· The impact of adding astrophysical nuisances. In our analysis, we accounted
for the uncertainty regarding the brightness temperature Tb, which relies
on the total HI density ΩHI, and the HI bias bHI. To address this, we intro-
duced nuisance parameters into our study. Specifically, we considered the
combinations T̄bbHIσ8 and T̄b f σ8. With the inclusion of these nuisance
parameters, the constraining power of 21cm multipoles on As and, con-
sequently, on σ8, is significantly reduced. However, this did not extend
to the results obtained for Ωch2 and H0, both for the 21cm data set alone
and when combined with Planck data, possibly due to the tomographic
nature of the observations that help fix the expansion. This confirmed the
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strength of 21cm tomographic measurements, further endorsing ongoing
observational efforts in the field.

· Improvements on ΛCDM from 21cm cross-correlations with galaxy clustering.
We found that, although less constraining, forecasted SKAO power spec-
trum measurements in cross-correlation with galaxy clustering showed
a constraining power compatible with the 21cm auto-power spectrum
one. The constructed SKAO×DESI and SKAO×Euclid data sets con-
strained the cosmological parameters at the sub-percent level. As for
the auto-power spectrum, the strongest result has been on H0, with
constraints from 21cm and galaxy clustering cross-correlation alone rang-
ing from 0.49% to 1.96%. The tightest error on H0 was achieved when
combining 21cm power spectrum multipoles with cross-correlation mock
observations, reaching a value of 0.33%, competitive with Planck results.
Combining the forecasted cross-correlation measurements with CMB data
proved to be instrumental in reducing errors on cosmological parameters.
For Ωch2 and H0, these were reduced by factors ranging from 2.5 to
1.8 and 3.8 to 2, respectively. The best results were obtained by combin-
ing all 21cm probes, leading to a reduction by factors of 3.2 for Ωch2

and 5.6 for H0, even accounting for nuisance parameters. We concluded
that 21cm SKAO observations in cross-correlation with galaxy clustering
will provide a competitive cosmological probe, less constraining that
21cm auto-power spectrum measurements, but equally complementary to
CMB and, therefore, extremely important in strengthening the statistical
significance of the constraints on cosmological parameters.

· State-of-the-art cosmological parameters constraints from the MeerKAT detection
in cross-correlation with WiggleZ. We validated our analysis pipeline by
testing it on the recent MeerKAT measurements of the power spectrum in
cross-correlation with WiggleZ galaxy clustering, published in [61]. The
procedure we used to construct mock data yields observations that align
with measured data. While state-of-the-art observations may have limited
constraining power on the complete set of cosmological parameters, the
results we found are in line with the forecasted analysis outcome. Thus,
the working pipeline presented in this work was found to be compatible
and ready to deal with measured data sets.

· A realistic MeerKAT forecast on EFT models of DE. The constructed MeerKAT
single-bin, auto-power spectrum mock data set revealed a mild constrain-
ing power on the considered EFT models of DE. When combining the
21cm power spectrum with CMB data, we observed a reduction in the
EFT parameters constraints, in the range of 1 − 18%. Nevertheless, our
results improved upon previous findings in the literature, enabling us to
establish a stringent upper limit of ΩEFT

0 ≤ 0.035, at the 95% confidence
level. Allowing for a negative running of the Planck mass, we found
instead the constraint ΩEFT

0 = 0.075+0.063
−0.042. As for ΛCDM, the inclusion

of nuisance parameters resulted in a decrease in constraining power.
However, the use of tomography significantly enhanced the constrain-
ing power of the 21cm likelihood on EFT models. Combining a 21cm
five bin power spectrum data sets with Planck 2018 CMB data, led to a
constraint on ΩEFT

0 reduced by the 25% compared to Planck results, i.e.
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ΩEFT
0 = −0.066+0.055

−0.031. Changing the background evolution from ΛCDM

to wCDM yielded equivalent results.

· Testing the MG-DE phenomenological functions with cross-correlations between
21cm intensity mapping and GWs. We observed that the combination of
observational probes of distinct nature has a remarkably positive impact
on the MG phenomenological functions µ(z) and Σ(z). We observed that
cross-correlating multiple tracers generally leads to stronger constraints,
as the synergy of diverse information from various sources enhances the
overall statistical power compared to relying solely on auto-correlation
experiments. Moreover, considering probes that exhibit distinct physical
effects between GW and electromagnetic sources, such as lensing, makes
the detection of an electromagnetic counterpart crucial. This enabled us
to actively examine potential deviations between these observables and
test for alternative theories of gravity. Combining 21cm intensity mapping
with GWs provided an improvement of up to an order of magnitude and
results that rival the constraints obtained from Planck data alone. The
tightest errors on the MG parameters we have found are 0.03 on µ(z) and
0.01 on Σ(z).

· Constraints on the total neutrino mass as measured by the SKAO. Using the
pipeline developed to forecast the SKAO power spectrum multipole con-
straining power, we have provided an upper limit on the total neutrino
mass. We have found a constraint of Σmν < 0.478 eV (95% confidence
level) from 21cm observations alone. Combining this probe with CMB

observations provides significantly tighter constraints with respect to
Planck alone results, i.e. Σmν < 0.129 eV. We have observed that 21cm
power spectrum multipoles carry information comparable to widely
tested probes, such as the BAO data.

This thesis encompassed a comprehensive analysis spanning a wide range Final remarks

of topics in cosmology, enabling the author to deepen their understanding of
theoretical aspects and parameter constraining and forecast analysis techniques.
Noteworthy novelty aspects with respect to other works in the literature include
the use of MCMC and Bayesian analysis techniques, taking into account the full
set of cosmological parameters, the joint analysis between 21cm intensity map-
ping and CMB observation, and a discussion on the effects of the astrophysical
nuisances.

The results of this thesis are in broad agreement with similar works in the
literature and confirm the key role of future late-time 21cm intensity mapping
observations. In particular, combining 21cm power spectrum measurement to
CMB leads to a substantial improvement of the constraints on Ωch2 and H0,
offering a potential new element in the H0 value discussion. Although present-
day surveys have a mild constraining power over beyond ΛCDM extensions,
our study suggests that more ideal tomographic 21cm signal observations
could potentially improve the knowledge of DE-MG theories. We conclude that
21cm intensity mapping measurements provide a new interesting cosmological
probe, that carries rich information complementary to other high-precision
measurements.
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The work presented in this thesis is suitable for further extensions. In the
following, we outline some of the projects we have planned or that are currently
underway.



O V E RV I E W O F O N G O I N G A N D F U T U R E P R O J E C T S

I n this thesis, we explored the constraining power of several 21cm signal
probes. Although our analysis encompassed various theoretical and ob-
servational scenarios, we are actively planning or have already initiated

extensions of this work with the pursuit of the following projects.

Forecasted constraints on the neutrino mass with the SKAO. The results on the
neutrino mass constraints presented in Chapter 8 are currently under further
study. Our focus involves an evaluation of the impact of cross-correlation
between 21cm intensity mapping and galaxy clustering, using the mock data
sets discussed in Chapter 5. In the analysis of Chapter 8, we found that BAO

and 21 cm probes carried comparable information. However, this could not be
the case for full-shape analyses of the galaxy clustering power spectrum, that
provide 3D measurements form an independent tracer. We aim to expand the
analysis by adding measurements of the galaxy power spectrum multipoles
(see e.g. [398]). In addition, we plan on exploring the effect of combining 21cm
observations with the newest CMB data from the Atacama Cosmology Telescope
(ACT)5 and the South Pole Telescope (SPT),6 and on opening the parameter
space to parameters that were proved to be strictly intertwined with Σmν, such
as AL. A paper to report our findings is currently in preparation [119]. This
work is being carried out in collaboration with Dr S.B. Haridasu (SISSA).

Testing EFT of DE with SKAO intensity mapping. The analysis for the MeerKAT
telescope of Chapter 6, suggests that the tomographic nature of 21cm observa-
tions could be pivotal to constrain DE. It is thus interesting to confirm these
results by exploiting the full SKAO potential. We plan to use the formalism
from Chapter 4 and Chapter 5 to forecast constraints on a broad class of EFT

models. Preliminary tests seem to show that 21cm observations may have a
good constraining power on more complex EFT models, involving EFT functions
beyond first order. Indeed, current observations leave unconstrained the γ1
parameter [399].

Easing the AL tension with EFT models. It is well-known in the literature that
MG-DE model can help easing the AL tension [400]. In [401], we study the
interplay between the EFT models considered in Chapter 6 and AL. Figure 8.4
shows how EFT models can mimic the global rescaling of the lensing potential
angular power spectrum introduced by AL. By constraining the cosmological
parameters using Planck CMB data, we observe a strong correlation between
the parameters {S8, ΩEFT

0 , AL}. From Figure 8.5, it is clear that while lower
negative values of ΩEFT

0 allow for reduced lensing amplitudes, this also implies
an increase in the S8 values, mediated via the larger gravitational constant.
Although we tested several models with a variety of cosmological observations,
such as DES-Y1 [5] weak lensing data, we are now interested in the role played
by newer CMB and weak lensing measurements such as ACT and DES-Y3 [387].
We are currently working in this regard. This work is being carried out in

5See https://act.princeton.edu/.
6See https://pole.uchicago.edu/public/Home.html.
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collaboration with Dr S.B. Haridasu (SISSA).

Reconstructing gravity. An interesting alternative to the parametrized frame-
works of gravity, is gravity reconstruction [241, 242]. The fundamental idea is to
follow a maximal model-independent approach, allowing the data to lead the
reconstruction of MG-DE functions evolution. Via a parametrized redshift bin-
ning, one can perform complex MCMC analysis, whose outcome is to constrain
the value of the MG-DE functions at each redshift bin. Our goal is to expand on
the results in the literature, which focus on the µ(z) and Σ(z) reconstruction
relying on the EFT formalism, to reconstruct more complex functions of time
and scale. I.e., we aim to explore current data constraints on the Horndeski
functions in the α-basis [256]. At the moment, we are finalizing technical aspects
to develop the necessary numerical tools and reproduce results in the literature.
This study is being carried out in collaboration with Dr E. Bellini (INFN).

The quest for new physics beyond ΛCDM is an exciting research path that
should be tackled by using different methodologies and data. In this context,
21cm observations present a unique and pivotal opportunity to constrain cos-
mological scales and redshifts that remain poorly probed by other observables.
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a
A N A LY T I C A L C O M P U TAT I O N O F T H E M O N O P O L E A N D
T H E Q UA D R U P O L E

As part of the work in Chapter 4, following other results in the literature (see
e.g. [402]) we analytically compute the first two coefficients of the Legendre
polynomial expansion of P21(k). We start from Equation 4.8, i.e.

P̂ℓ(z, k) =
(2ℓ+ 1)

2

∫︂ 1

−1
dµLℓ(µ)P̂21(z, k, µ) (a.1)

that, substituting Equation 6.1, becomes

P̂ℓ(z, k) =
(2ℓ+ 1)

2
T̄2

b(z)Pm(z, k)
∫︂ 1

−1
dµLℓ(µ)B̃2

(z, k, µ)·

·
[︂
bHI(z) + f (z) µ2

]︂2

=
(2ℓ+ 1)

2
T̄2

b Pm

∫︂ 1

−1
dµLℓ(µ) e−k2R2

beam(1−µ2)·

·
[︂
bHI + f µ2

]︂2

=
(2ℓ+ 1)

2
T̄2

b Pm e−A
∫︂ 1

−1
dµLℓ(µ) eAµ2

[︂
bHI + f µ2

]︂2

(a.2)

where we defined A = k2R2
beam and dropped the explicit dependencies on z

and k for the sake of notation easiness.

Computing the monopole P̂0

Using L0(µ) = 1 we obtain

P̂0 =
T̄2

b Pm

2
e−A

∫︂ 1

−1
dµ eAµ2

(︂
b2

HI + 2bHI f µ2 + f 2µ4
)︂

. (a.3)

The computation reduces to the following integrals

∫︂ 1

−1
dµ eAµ2

=

√
π erfi(

√
A)√

A
,

∫︂ 1

−1
dµ eAµ2

µ2 =
eA

A
−

√
π erfi(

√
A)

2A3/2 ,

∫︂ 1

−1
dµ eAµ2

µ4 =
3
√

π erfi(
√

A)

4A5/2 +
eA(2A − 3)

2A2 ,

(a.4)
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where erfi(x) is the imaginary error function. Thus, we get the following final
expression for P̂0

P̂0 =
T̄2

b Pm

2
e−A

[︄
b2

HI

√
π erfi(

√
A)√

A
+ 2bHI f

(︄
eA

A
−

√
π erfi(

√
A)

2A3/2

)︄
+

+ f 2

(︄
3
√

π erfi(
√

A)

4A5/2 +
eA(2A − 3)

2A2

)︄]︄
.

(a.5)

Computing the quadrupole P̂2

Using L2(µ) =
3µ2

2 − 1
2 we obtain

P̂2 =
5
2

T̄2
b Pm e−A

∫︂ 1

−1
dµ

(︃
3µ2

2
− 1

2

)︃
eAµ2

[︂
bHI + f µ2

]︂2

=
5
2

T̄2
b Pm e−A

∫︂ 1

−1
dµ

3µ2

2
eAµ2

[︂
bHI + f µ2

]︂2
− 5

2
P̂0.

(a.6)

Adding to the set of Equation a.4 the integral

∫︂ 1

−1
dµ eAµ2

µ6 = −15
√

π erfi(
√

A)

8A7/2 +
eA(15 − 10A + 4A2)

4A3 , (a.7)

we can compute the final expression

P̂2 =
15T̄2

b Pm

4
e−A

[︄
b2

HI

(︄
eA

A
−

√
π erfi(

√
A)

2A3/2

)︄
+ 2bHI f ·

·
(︄

3
√

π erfi(
√

A)

4A5/2 +
eA(2A − 3)

2A2

)︄
+ f 2

(︄
− 15

√
π erfi(

√
A)

8A7/2 +

+
eA(15 − 10A + 4A2)

4A3

)︄]︄
− 5

2
P̂0.

(a.8)

The analytical expressions computed above are used in this thesis to com-
pute numerical expectations for the 21cm power spectrum monopole and
quadrupole in the codes CAMB/CosmoMC.



bC O N S T R A I N T S O N T H E N U I S A N C E PA R A M E T E R S

In this appendix we present and comment on the constraints for the nuisance
parameters, discussed in Chapter 4 and Chapter 6, where we investigated
different implementations.

In Figure b.1 we test the effects of varying the nuisance parameter aTb , i.e.
the amplitude of the brightness temperature, keeping fixed the HI bias bHI. We
observe that aTb is mildly correlated with the EFT parameters.

Figure b.2 shows the 1D and 2D marginalized posterior distributions of the
nuisance parameters [T̄bbHIσ8]i and [T̄b f σ8]i (i = {a, b, c, d}), which describe
the redshift evolution of T̄bbHIσ8(z) and T̄b f σ8(z). We consider P̂21 multipoles
observations alone and combined with CMB. We find that the nuisances are
constrained. The 2D contours show a clear degeneracy with the cosmological
parameters, which is eased when we open the parameter space to the shot
noise. As discussed above, adding the nuisance parameters we lose all the
constraining power on As, but we recover it when we extend the data set to
non-linear scales.

Figure b.3, instead, shows the marginalized posteriors for the shot noise
value PSN,i at each redshift bin i = {1, . . . , 6}. We obtain good constraints at
low redshift (i = {1, 2}), where we have more data points, while in the highest
bins (i = {3, 4, 5}), the shot noise results are unconstrained. PSN,1 and PSN,2
present a very mild degeneracy with the cosmological parameters. The shot
noise and the other nuisances T̄bbHIσ8 and T̄b f σ8 are, instead, uncorrelated.
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Figure b.1: Joint constraints (68% and 95% confidence regions) on EFT and nuisance
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exponential with negative running of the Planck mass (third row) EFT model,
on a ΛCDM background. Here the label Planck 2018 stands for TT, TE, EE
+ lowE + lensing while the label P21(z = 0.39) stands for the 21cm power
spectrum likelihood at redshift z = 0.39. Results relative to the analysis in
Chapter 6.
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O N T H E I M PA C T O F I N C L U D I N G T H E
A L C O C K - PA C Z Y N S K I E F F E C T S

With respect to the analysis in Chapter 4, in Chapter 5 we extended our likeli-
hood code to include the Alcock-Paczynski distortions, which are used in other
works (e.g. [68, 156, 286]). We neglected AP effects in the first approximation
because we assumed to know the true cosmology, given that it is the one we
input when constructing the mock data set. In this section, we give an overview
of how the cosmological parameter constraints are affected by the addition of
AP effects.

Contrary to what we naively expected, implementing the AP modifications
significantly improves the constraints. In the upper panel of Figure c.1, we
compare the effects of different mock data sets. Our reference (orange lines
and contours) is the 21cm power spectrum monopole (P̂0) and quadrupole
(P̂2) mock data set that we construct in Chapter 4. This data set forecasts
SKAO observations in multipole redshift bins in the range 0 - 3, i.e. for six bins
centered at {0.25, 0.75, 1.25, 1.75, 2.25, 2.75} and with a width of ∆z = 0.5.
The nuisances parameters for this data set are T̄bbHIσ8, T̄b f σ8, and the HI shot
noise, for the non-linear 21cm power spectrum.

Using the exact same framework, but implementing also the AP distortions
of the amplitude and of the wave vectors as described in Section 5.1.1 (light
blue contours), we find a crucially improved constraining power. E.g., for
Ωch2 with only 21cm observations, we recover the Planck constraint (dashed
green lines and contours). On H0, instead, we find even better constraints
than Planck. When adding the nuisances (pink contours), the improvement is
reduced, although still significantly better than the no AP case. We believe that
the extra dependence on H(z) that is introduced in the observable with the AP

modifications is the cause of the improved constraining power.
Dealing with mock observations fabricated by ourselves, we have the ad-

vantage of knowing the true cosmology. We, thus, further test the impact of
AP by creating a data set with a different value of Ωch2 = 0.13. We, however,
do not change the fiducial cosmology, for which Ωch2 = 0.12011. Running
the MCMC analysis on this data set we find consistent results. The Ωch2 con-
straint is pushed towards the true value, resulting in a constraint in between
the true value and the assumed fiducial one. The errors, instead, are left un-
changed, although the 2D contours are rigidly shifted. Thus, it seems that
assuming the wrong cosmology impacts only the mean marginalized values of
the parameters.

However, the smoking gun of having assumed the wrong cosmology is the
probability distribution of the AP parameters themselves. Although we do
not show the results here, we implemented the time-dependent α⊥ and α∥ as
derived parameters and computed the marginalized constraints. We find that
when the true cosmology matches the fiducial one, the α⊥, and α∥ marginalized
posteriors are centered around one. When, instead, the true cosmology is not
the assumed one, although still compatible with one the constraints, both 1D
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and 2D, are clearly shifted. Thus, one can test their assumptions by looking at
the AP parameters constraints.

The lower panel of Figure c.1 shows the results for the same exercise, but
combining 21cm observations with Planck data.

We conclude that even when the whole set of cosmological parameters is
used, the AP distortions are crucial not only to take into account our lack of
knowledge of the true underlying cosmology but also to increase the con-
straining power on the cosmological parameters in matter power spectrum
dependent probes as the 21cm IM one.





dT E S T S O N T H E M O C K D ATA C O N S T R U C T I O N P R O C E D U R E

To test the procedure we follow to construct the mock data sets in Chapter 4

and Chapter 5, we compare our predictions to the measured cross-correlation
data published in [61].

As in Section 5.3.3, we adjust the parameters of our formalism to mimic
MeerKAT observations in the redshift bin centered at z = 0.43 and with
∆z = 0.059. We find that with our pipeline we predict fewer k-bin in a wider
scale range and a slightly different value for the brightness temperature, due
to different ΩHI. Correcting for the brightness temperature results in cross-
correlation power spectrum values more in agreement with observations (Fig-
ure d.1). However, this is not enough to reproduce the observed signal-to-noise
ratio. Indeed, we find that varying the brightness temperature changes the
power spectrum and the errors consistently, not impacting the signal-to-noise.
Instead, adjusting the k-bin width to match the one in [61] is enough to better
reproduce the observed signal-to-noise ratio, as shown in Figure d.2.

We conclude that, compared to the state of the art, the pipeline we adopt
in this work is consistent with real observational data. We are, however, more
optimistic about the accessible scales and bin widths. Differences in the pre-
dicted power spectrum amplitude, i.e. the brightness temperature, are taken
into account when opening the parameter space to the nuisance parameters.
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Figure d.1: Observed and predicted 21cm MeerKAT observations in cross-correlation
with WiggleZ galaxy clustering.
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Figure d.2: Signal-to-noise ratio as a function of k. We compare real data observations
("Cunnington et al. (2022)"), with the signal-to-noise predicted by the formal-
ism adopted in this work. The gray shaded area shows the 2σ region for the
observed signal-to-noise.
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