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Abstract

This dissertation intends to construct hybrid reduced-order models (ROMs) for
segregated Fluid-structure interactions solvers in a Arbitrary Lagrangian-Eulerian
(ALE) framework both in laminar and turbulent regime. The ROMmethodology de-
veloped is based on full order solvers which make use of the Finite Volume Discretiza-
tion method. The hybrid ROMs are built by combining data-driven techniques and
classic model reduction approaches, such as proper orthogonal decomposition com-
bined with Galerkin projection. This combination seems like a natural evolutionary
process for engineering applications. The resulting hybrid ROMs, allow for both scal-
ability and physics-based modelling. In this hybrid model, Proper Orthogonal De-
composition (POD) primarily calculates low-dimensional projections/features that
can be evolved over time through the simultaneous use of classical Galerkin projec-
tion, neural networks/ recurrent neural networks, or radial basis functions. In this
recipe, the Partial Differential Equations (PDEs) associated to mass and momentum
balance are treated using a standard POD-Galerkin projection approach, while Ra-
dial Basis Functions (RBF) networks are used for the grid motion interpolation and
Neural Networks (NNs) are employed for the approximation of the eddy viscosity
field. Incorporating data-driven techniques, the reduced-order models are able to
achieve higher accuracy, efficiency and flexibility of use, making them powerful tools
for simulating complex Fluid-structure interactions problems which could be useful
in industrial applications and in the development of digital twins.

In this work, we tested the hybrid ROMs on two different test cases. The first
test is that of the flow around an oscillating cylinder in laminar regime (Re = 200)
and the second test case on the Flow Induced Vibration (FIV) of a pitch-plunge
airfoil at a high Reynolds number (Re = 107). The results confirm that in each test
case the ROM methodology developed is able to reproduce the wake dynamics of
the flow around the moving body and all the response characteristics of the system
such as the lift and drag forces, amplitude/ frequency/phase of the displacement,
and the features of the original dynamical system. The results show good conver-
gence properties without any necessity of additional stabilization for what concerns
pressure solutions. This is due to the fact that, even at the reduced order level, we
use a segregated scheme which reproduces the full order model algorithm used to
deal with the saddle-point structure of the Navier–Stokes equations.

Finally, to circumvent the expensive computational cost associated with the
Galerkin projection methods, we introduce an additional hyper-reduction method-
ology based on Empiral Lagrangian Interpolation Method (ELIM) leveraging on the
identification of some points at optimal locations in the domain of interest. Prelim-
inary results on the reconstruction part of the algorithm are presented for the test
case of Burger’s equation over a backward facing step.
Keywords: Fluid-structure interaction, reduced-order model, Finite Volume Method,
Proper orthogonal decomposition, Galerkin projection, radial basis network, mesh
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motion, turbulence, long-short term memory, neural networks, flow-induced vibra-
tion, vortex-induced vibration, Empirical Lagrangian interpolation, time series, and
machine learning.
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Chapter 1

Introduction

This chapter is intended to provide some motivation on the development of ROMs
for FSI problems and the need to develop reduced-order models (ROMs). Section 1.1
discusses the motivation behind the importance of the study of FSI problems. Next,
in Section 1.2 some literature review is presented. First, SubSection 1.2.1 discusses
projection-based ROMs, and second, some related works in SubSection 1.2.2 are
mentioned. After, that, in SubSection 1.2.3, the literature on Machine Learning
(ML) for CFD is presented. In the last two sections, namely Section 1.3 and Sec-
tion 1.4, we talk about the thesis’s contributions and structure.

1.1 Motivation

Fluid–structure interaction (FSI) problems arise in the design of many important
systems and artifacts in mechanical, aerospace and civil engineering. More specifi-
cally, FSI is particularly important in applications such as automotive, aircraft and
spacecraft design, engines performance prediction, bridges and building construction
and even the study of blood flow in the human body. As such, the understanding
of FSI problems is of paramount importance.

Clearly, FSI couples different phenomena that are related both to fluid dynamics
and solid mechanics. These phenomena can then combine in different possible ways
and result in extremely rich physical problems. In automotive and civil engineering,
the flow past bluff body geometries (cylinders, prisms, cubes, etc.) is the one most
often encountered. In such cases, periodic forces generated by vortex shedding can
cause structural vibrations with a phenomenon called Vortex Induced Vibrations
(VIV). A classical VIV example is represented by vibrations induced on a cylindrical
structure exposed to wind. In aerospace engineering applications instead, the flow
is typically attached to lift-generating bodies (such as wings, propeller and turbine
blades, sails), and vibrations can be induced by different mechanisms such as flutter.

FSI problems in most cases are too complex to be solved analytically. Then, to
properly model these problems, most researchers have resorted to the experimental
method, and in particular made use of wind tunnels. However, there are several
problems that can limit experiments feasibility and effectiveness. On one hand,
wind tunnels are small, resulting in scalability problems for the experimental results.
In the case of big structures such as bridges, this can lead to inaccurate results.
In addition, in the experiments, it is quite difficult to get simultaneous velocity
and pressure measurements. On the other hand, wind tunnel testing is associated

1



2 CHAPTER 1. INTRODUCTION

to high and sometimes prohibitive costs. Among these, the most relevant costs
are associated to the production of accurately crafted testing models, and to the
energy required to the operation of the wind tunnel. Thanks to the advancements of
computer hardware and numerical algorithms, over the last decades it became more
and more convenient to carry out numerical simulations to complement experiments
towards a successful design of buildings, cars, aircraft.

At the numerical level, FSI problems are very difficult problems to solve, as they
require coupling between different algorithms designed to solve problems of fluid
dynamics and structural mechanics. Interfacing Finite Element Analysis (FEA)
algorithms for structural mechanics to Computational Fluid Dynamics (CFD) solver
can result in fact in quite complex numerical FSI problems. There are, however,
several software tools or libraries that can be used to successfully solve FSI problems.
We mention some popular solvers such as ANSYS Fluent and ANSYS Mechanical,
OpenFOAM [76], STAR-CCM+, COMSOL Multiphysics [71], and ADINA to name
a few. In the present context, we will refer to simulations carried out with these
instruments as Full-order Models (FOM) or High-Fidelity Models (HFM). Although
the results are accurate, the simulations are — even when carried out on advanced
platforms — computationally demanding, not only in terms of computational time,
but also in terms of data storage and handling. The complexity is further increased
when dealing with FSI problems in turbulent regime, which require fine temporal
and spatial resolution to capture the intricate dynamics accurately.

Given such a difficulty, there is a pressing need for building reduced-order models
(ROMs) that can approximate the essential features of Fluid-structure interactions
(FSI) problems with significantly less computational effort [58]. A reduced-order
model is in fact a numerical model of the physical system of interest which is derived
from the FOM system, but is characterized by significantly fewer degrees of freedom.
As such, it can result in relatively inexpensive simulations. In most cases, reduced-
order models (ROMs) leverage on data obtained by multiple resolution of the FOM
systems to obtain the desired computational cost reduction. Reduced-order models
have then been developed and used to obtain more efficient and computationally
economical ways of investigating complex problems. The use of ROMs is primarily
motivated by the desire to have detailed knowledge of the physics of the problem
being investigated, together with an efficient and reliable prediction tool [105]. In
the following section, we review some literature of projection-based ROMs, related
work, and machine learning in Computational Fluid Dynamics (CFD).

1.2 Literature review

In this part of the dissertation, three subsections will be presented. SubSection 1.2.1
will introduce the concept of projection-based ROMs for CFD. In SubSection 1.2.2,
will give a short literature review on ROMs developed for FSI problems in the
direction of this work. Finally, SubSection 1.2.3 will focus on the literature on
machine learning for CFD is given.

1.2.1 Projection-based ROMs

Various methods of building reduced-order models are available in the literature.
However, the common underlying theme is to extract the key features in the flow



1.2. LITERATURE REVIEW 3

field, preferably from a high-fidelity experimental or computational data source. The
extracted features are carefully chosen to represent dominant spatial and temporal
dynamics as computed using the Navier-Stokes Equations (NSEs).

Projection-based reduced-order models provide an efficient and accurate way to
simulate high-dimensional systems by leveraging low-dimensional representations.
Techniques like Proper Orthogonal Decomposition (POD) enable the conversion of
complex Partial Differential Equations (PDEs) into simpler Ordinary Differential
Equations (ODEs), allowing for a reduction of the number of system degrees of free-
dom and consequently facilitating faster computations while maintaining precision.
Extensive research and applications across various domains underscore the impor-
tance and utility of projection-based ROMs [27]. As for the projection techniques
which can be employed, Galerkin projection [4, 8, 10, 13] and Petrov-Galerkin pro-
jection are considered the most used ones because they have succeeded in various
research areas [7] and has been used in numerous CFD applications. Although the
projection-based approaches are proven to be computationally efficient, they do not
account for spatial variations in the flow and are known to become unstable under
different conditions even for canonical cases. They are also intrusive in nature, which
requires extensive modifications to the current state-of-the-art of CFD codes, so as
to obtain a suitable implementation. For such reasons, several researchers have also
explored non-intrusive approaches based on data-driven techniques. Among others,
Eigensystem realization algorithm (ERA) is one such method which is purely data-
driven and is used primarily for the stability analysis of dynamical systems [137,181].

Projection-based methodologies for reduced-order modelling involve projecting
the high-dimensional system’s governing equations onto a lower-dimensional sub-
space spanned by the reduced basis obtained from Proper Orthogonal Decompo-
sition (POD) or other techniques. POD is one of the most widely used tech-
niques to find lower dimensional linear subspace for reduced-order modelling of fluid
flows [15, 59, 85, 97, 98]. The reason for this, is that the linear low order representa-
tions obtained by POD are mathematically optimal for any given dataset. However,
within the ROM community, other reduction methodologies are also available in the
literature such as the greedy algorithm [128, 134, 168], Proper Generalized Decom-
position (PGD) [36, 117], Dynamic Mode Decomposition (DMD) [83, 133, 146]. For
more details in the comparisons of these methodologies, the interested reader can
refer to [14,65]. In this dissertation, the POD technique is chosen for the generation
of the reduced-order space and a Galerkin projection is applied for the construction
of the projection-based ROM.

1.2.2 Related work

In the literature, several scholars have widely studied the application of ROMs for
Fluid-structure interactions (FSI), and state-of-the-art counts already a lot of scien-
tific contributions. An example can be found in [152] in which the full-order model
of an F16 fighter-aircraft, with over 2.1 million degrees of freedom, was reduced to a
model of just 90 degrees of freedom. In [116], the authors presented an overview of
the combination of the reduced basis method (RBM) with two different approaches
for FSI problems, namely, a monolithic and a partitioned approach. They have pro-
vided a detailed implementation of two reduction procedures and then applied them
to the Turek-Hron benchmark test case within a fluid at Reynolds number Re = 100.
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Also, researchers in [180] have made some improvements to extend the application
of POD-Galerkin projection to a domain with moving solid boundaries. Researchers
in [150] proposed a decoupled modelling of the FSI problems; they modelled the fluid
and structure domains separately. They constructed a POD-ROM global basis func-
tion for the structure using the Singular Value Decomposition (SVD). A Galerkin-
free ROM approach based on POD has been applied to FSI problems with large
mesh deformations in [151]. The authors used a two-dimensional VIV on a cylinder
and a three-dimensional shock wave boundary layer-induced panel flutter to demon-
strate their methodology. However, due to numerical issues associated with Galerkin
ROM and the difficulty of constructing a ROM for FSI problem with the moving
mesh, the authors used two separate ROM for the fluid and structure domain. The
study conducted in [178] discussed a non-intrusive reduced-order model (NIROM)
for FSI. The authors based their methodology on POD and Radial Basis Functions
(RBF) interpolation methods for unstructured meshes in the Finite Element Method
(FEM). They validated their methodology on a one-way (flow past a cylinder) and
two-way coupling (a free-falling cylinder in water), and Vortex Induced Vibrations
(VIV) of an elastic beam. Moreover, the work of Liberge and Hamdouni [92], has
been extended from their previous work on the 1-D Burgers equation [91], they de-
fined global POD modes from a global fluid-solid velocity field, and successfully built
a ROM for a flow passing a spring-attached cylinder oscillating at a small amplitude.
In [55,93], the authors chose to apply the immersed interface method with POD on a
flow passing an oscillatory cylinder. They simulated the interaction between a fluid
and a rigid body with imposed rotation velocity. In the case of a rigid body motion
as considered in this thesis, an interesting manner to avoid issues associated to mesh
deformation was presented by Lewin et al. [90] and Placzek [131]. They performed
the projection of the governing equations in a non-inertial reference frame to pre-
serve the POD formulation’s consistency. However, in their case, stability problems
appear when considering highly non-linear flows. Troshin et al. [165] outlined an
alternative POD methodology for a flow field in a domain with moving boundaries.
The moving domain is mapped to a stationary domain by combining a transfinite
interpolation and an algorithm for volume adjustment. Liberge et al. [93] imple-
mented a multiphase method that allows the performance of the POD on a moving
domain using characteristic functions to follow the fluid-structure interface. Falaize
et al. [55] extended such formulation for flows induced by rigid bodies in forced ro-
tation. Also, they included parametric changes in the proposed model. Longatte et
al. [96] explored the behaviour of POD-multiphase ROM presented in [93] when the
parameter values are different from those used to build the POD basis. Stankiewicz
et al. [159,160] deepen the study of Anttonen et al. [7] with test cases of increasing
complexity also considering parametric changes. Moreover, in numerical examples
involving a moving airfoil, Freno et al. [56] showed that when an index-based do-
main is used to build the ROM, similar to the one considered by Anttonen et al. [7],
numerical simulations do not suffer from the mesh deformation limitation discussed
above. Also, authors in [89] have presented a ROMs for simulating the flow around
a heaving wing using POD.

Furthermore, although the concept of ML is not new, in the past years, the
fluid dynamics and fluid-structure interaction communities have witnessed enough
applications in machine learning (ML) thanks to the advances in algorithms, com-
puting power, affordable memory, and abundance of data. In the literature, several
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approaches for applying ML to FSI have been explored in [63, 107, 108, 127, 174].
In [174], scholars have applied ML to circumvent potential stability issues associ-
ated with Galerkin projection to build a novel hydro-elastic reduced-order model
with applications to design optimization. Moreover, scholars in [126], have explored
a ML based framework for the reduced-order modelling (ROM) of high-speed fluid-
structure interaction. Here, Convolution Neural Networks(CNNs) were used to re-
construct the flow, leading to a more general formulation for predicting the temporal
coefficients of the POD reduced basis. Other researchers have modelled most prac-
tical FSI problems in a highly unstructured and conformal body mesh.

The majority of the methodologies reported above, has been used the Finite
Element Method (FEM) as full-order model for data collection. Although some
works have been done in the framework of reduced-order models with the FVM,
such as [28, 42, 42, 66, 73, 142, 156, 158, 161, 183]. However, none of these works have
studied FSI problems in the FVM. To the best of our knowledge, only the follow-
ing works [42, 44, 111] have considered the fluid-structure interactions problems in
FVM. The work presented in [42] proposed a ROM approach for transient mod-
elling accounting for the presence of multiple objects in nonlinear cross-flows. The
authors employed a technique based on the moving domain and immersed bound-
ary method to overcome the challenge of handling moving boundaries due to the
movements of multiple objects. In [111], a fully coupled partitioned fluid–structure
interaction methodology has been developed for transonic aeroelastic structures un-
dergoing nonlinear displacements. The Euler equations, written in an arbitrary
Lagrangian–Eulerian coordinate frame are solved in the fluid domain, whereas the
structure is represented by a quadratic modal reduced-order model. In [44], a con-
tribution to the development of model order reduction techniques to reduce the
computational complexity of high-dimensional aeroelastic models has been carried
out also for fluid-structure interaction taking into account moving and/or deforming
meshes.

1.2.3 Machine learning for CFD

The ubiquity of Machine Learning (ML) techniques motivated several researchers in
the fluid mechanics community to implement and adapt them for several Computa-
tional Fluid Dynamics (CFD) applications [50,170]. As a subset of ML, deep learning
consists in the use of highly multilayered neural networks in order to obtain complex
maps from large and rich datasets to selected quantities of interest. The tremendous
success of deep learning [87] in various other fields such as imaging, finance, robotics
prompted their potential applications to fluid mechanics problems [109, 172]. More
recently, [141], two new non-linear manifold hyper-reduced methods with reduced
over-collocation and teacher–student training of a compressed decoder based on
least-squares Petrov-Galerkin have been developed. The capabilities of the method-
ologies were tested on a 2D non-linear conservation law and a 2D shallow water
models, and the results obtained were compared with a purely data-driven method
in which the dynamics is evolved in time with a LSTM network. Also, in [140],
a new intrusive and explicable methodology for reduced-order modelling that em-
ploys neural networks for solution manifold approximation, without discarding the
physical and numerical models underneath during the predictive/online stage was
presented. The authors focused on the use of auto-encoders to compress further
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the dimensionality of linear approximants of solution manifolds, achieving in the
end a nonlinear dimension reduction. After having obtained an accurate nonlinear
approximant, they sought for the solutions on the latent manifold with the residual-
based nonlinear least-squares Petrov-Galerkin method, opportunely hyper-reduced
in order to be independent of the number of degrees of freedom. Along with the
above technique, new adaptive hyper-reduction strategies were developed together
with the employment of local nonlinear approximants. They tested the effectiveness
of their methodology on two nonlinear time-dependent parametric benchmarks, in-
volving a supersonic flow past a NACA airfoil with varying Mach number and an
incompressible turbulent flow around the Ahmed body with changing slant angle.
Not long ago, convolutional neural networks (CNNs) [112] are used to develop a novel
nonlinear modal decomposition method which performed superior to the traditional
POD. Turbulence modelling has received great attention from the data-driven prac-
titioners of fluid mechanics community and has lead to excellent works for which
a detailed review is available in [49]. An attempt to construct the high-resolution
flow field from relatively under-resolved turbulent flow field data is described in [57].
Maulik et al. [102] used neural networks to propose a data-driven turbulence clo-
sure framework, which is used for the sub-grid modelling of kraichnan turbulence.
Radial basis feed forward neural networks have been used in modelling the tur-
bulence of subsonic flows around NACA0012 airfoils [184]. The perturbations in
eigenvectors of RANS model are represented via machine learning based methods
in [177]. Recurrent Neural Networks (RNNs) [17] have been used in devising a
novel modal predictive control framework which exploits low-rank features inherent
in a fluid flow problem and predict the quantities relevant to the control of flow.
Deep neural network architectures are widely used among the computer graphics
community for flow field simulations. [84] described one of the initial attempts to
integrate the traditional fluid solvers with machine learning techniques. Random
forests were employed to approximate the governing equations of fluid flow with La-
grangian description to predict positions and velocities of the particles. The problem
of liquid splash modelling and prediction is solved by using neural networks to learn
the regression of splash formation [167]. A data-driven method based on LSTM
networks is proposed to infer the temporal evolution of pressure fields coming from
the Navier-Stokes solvers in [175]. [179] proposed a generative adversarial networks
(GANs) for the problem of reconstructing super resolution smoke flows. Another
applications of GANs were presented in [41, 77], where the authors [77] developed
a novel generative model to synthesize fluid flows from a set of reduced parameters
and authors in [41] presented ”GAROM”, a new approach for reduced-order mod-
elling based on GANs. The complex behaviour of liquids over a parameter range
is mapped onto a reduced representation based on space-time deformations in [19].
The above is achieved via Generative Neural Networks (GNNs) with the introduc-
tion of a novel deformation-aware loss function. The accuracy of deep learning
model for the inference of Reynolds Averaged Navier-Stokes (RANS) solutions is
investigated via state-of-the-art U-net architecture with numerous trained network
architectures [162]. Bhatnagar et al. [16] used convolutional neural networks to pre-
dict the velocity and pressure field in unseen flow conditions and geometries for a
given pixelated shape of the object. Physics Informed Neural Networks (PINNs)
were developed in [136] by considering the residual of the NSEs as the loss function
in the training procedure. An attempt to develop hybrid models combining the
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capabilities of POD with deep learning models is described in [172]. Carlberg et
al. [29] used Auto-Encoders (AEs) for reconstructing the missing CFD data from
the data saved at few time instances of high-fidelity simulations. As it is a common
knowledge now that Convolutional Neural Networks (CNNs) are very good at ex-
tracting features, in the work of Miyanawala et al. [106], the authors showcased the
advantages of CNNs for the data-driven ROM of unsteady wake flows in terms of
feature extraction. In the quest for more accurate reduced-order modelling, the con-
cept of AEs has attained great success in image tracking, scene labelling is explored
in a series of papers by fluid mechanics community [54,88]. A more complex variant
of AEs is the convolutional recurrent auto-encoder networks, which are obtained by
the integration of CNN’s with RNN’s. Recently, such models have been applied for
benchmark fluid flow problem of lid-driven cavity [60].

In addition to applications specific to fluid mechanics, the research community
has explored the more general area of reduced-order modelling of nonlinear dynamics
via data-driven methods such as ERA (eigensystem realization algorithm), Dynamic
Mode Decomposition (DMD) and pure machine learning approaches. In that regard,
Koopman theory has gained a lot of traction among the fluid mechanics community.
It has been used for linear control [80, 129] and modal decomposition [94, 104]. An
excellent analogy between the Singular Value Decomposition (SVD) with Koopman
theory is presented in [81]. Marko et al. [24] presented a detailed review on the
applications of Koopman theory for nonlinear dynamical systems. Building on the
mathematical framework of Koopman theory, several attempts have been made to
develop deep learning models for nonlinear dynamical systems [120, 121, 182]. The
work presented in [119] and [99] have provided further evidence to the strong cor-
relation between Koopman theory and ML based nonlinear model order reduction.
Brunton et al. [22] have provided an excellent review on the applications of machine
learning for CFD problems. However, in many situations, we may not have the
knowledge to understand the underlying physical laws which govern a process. In
that regard, there have been several instances where machine learning was applied
to learn the hidden governing equations of fluid flow [23, 30, 39, 95, 120, 135, 143].
A completely new alternative to the traditional, Neural Networks (NNs) where the
derivative of the hidden state is parametrized via a neural network instead of spec-
ifying a discrete sequence of hidden layers, was studied in [33]. This new family
of deep neural network has been quickly adopted by the research community as a
whole and also employed in applications specific in [101,144].

1.3 Thesis Contributions

This thesis aims to construct a hybrid reduced-order model (ROM) for segregated
fluid-structure interaction solvers in an Arbitrary Lagrangian-Eulerian (ALE) ap-
proach for incompressible flows both in laminar and turbulence regime. The prereq-
uisites for achieving this goal are the following

• Firstly, the design and implementation of an algorithm based on Proper Or-
thogonal Decomposition (POD) that combines the classical Galerkin projec-
tion and radial basis networks. Benchmarking results in Section 4.2 show
the stability and accuracy of the proposed method with respect to the high-
dimensional model by capturing transient flow fields, more importantly, the
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forces acting on the moving object, and also the structure displacement.

• Secondly, the attention is shifted to the treatment of turbulent flows. We
expand upon the prior algorithm to construct an additional algorithm that
combines the above standard Galerkin projection and two data-driven meth-
ods, namely the radial basis networks, and neural networks/ long short term
memory. Simulation results on the pitch-plunge airfoil at a high Reynolds
number (Re = 107) in Section 4.3 demonstrate the ROM’s ability to accu-
rately capture the physics of fluid-structure interaction phenomena.

• Thirdly, we propose a hyper-reduction algorithm to further reduce the expen-
sive computational cost associated with the Galerkin projection method. We
introduce a ROM based on Empiral Lagrangian Interpolation Method (ELIM)
for selecting some optimal locations in the domain of interest. The preliminary
results in Section 4.4 are tested on the reconstruction of the solution of the
Burger’s equation over a backward facing step.

The novelty of the proposed reduced-order models (ROMs) is in its generality and
versatility. It is designed to operate with Finite Volume Method (FVM) and can
be extended to compressible flows and other Full-order Models (FOM) regardless
of the mesh motion approaches and turbulence closure models used at the offline
stage. In contrast, of most reduced-order models (ROMs) in the literature, this
ROM has introduced a reduced-order approximation of the velocity u, pressure p,
eddy viscosity νt, and grid motion. The motivation behind having a reduced-order
version of the pressure, the eddy viscosity, and grid node displacement fields can be
summarized by the following items

• Having an accurate prediction of the pressure field at the reduced-order level
is vital. This is because of the need to recover certain performance indicators,
which highly depend on the pressure field. An example of such performance
indicators is the fluid dynamics forces (lift, and drag) acting on the surface of
bodies immersed in the flow.

• The predicted eddy viscosity and grid node displacement are essential for hav-
ing a full reduced model for fluid-structure interaction problems.

The hybrid ROM proposed in this thesis assumes that each of the fluid dynamics
variables of velocity u, pressure p, eddy viscosity νt, and grid node displacement
have a different set of reduced degrees of an analogous projection process should
ideally be used for the particular turbulence model equations. But this would need
the development of a turbulent ROM for every unique turbulence model. With so
many turbulence models at our disposal, the final choice would be difficult. This is
due to the consequences of the quantity of distinct ROMs that must be created and
concurrently tracked for prospective updates. Thus, in contrast to the velocity and
pressure example, the data-driven approaches approximate the eddy viscosity and
the grid mesh motion in the hybrid reduced-order model suggested here.

1.4 Thesis Structure

This thesis comprises fourth chapters which are organized as it follows
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• Chapter 1 addresses some motivations on the study of FSI and contents of
this thesis. It also gives an idea of why it is relevant to develop reduced-order
models for FSI problems in CFD using a Finite Volume Method (FVM). Ad-
ditionally, it provides a discussion on projection-based ROMs, a literature on
some related works on ROMs for FSI problems, and also in Machine Learning
(ML) for Computational Fluid Dynamics (CFD).

• Chapter 2 deals with the problem of interest at the full-order level, which
are the incompressible Navier–Stokes equations in 2D. It explains how the
Finite Volume discretization of this problem is done, and then it lays out the
algorithms employed for solving the governing equations. In the same chapter,
the governing equations of a rigid structure are discussed in both 1D and 2D
problems. As this thesis discussed FSI, the coupling conditions at the interface
and mesh motion techniques are also considered.

• Chapter 3 proposes the Proper Orthogonal Decomposition (POD) method-
ology for the generation of reduced-order spaces. After that, the reduced
algorithm based on the PIMPLE algorithm is discussed in SubSection 3.3.2.
Afterwards, in the same chapter, several ROMs based on the POD are pre-
sented. The POD is combined with radial basis functions for the mesh motion
prediction and with machine learning algorithms for the prediction of the eddy
viscosity. These ROMs are used for the reduction of the full-order models used
in this thesis. Later, a mathematical theory of an efficient projection for prob-
lems in moving domains is discussed. The chapter is closed with empirical
Lagrangian interpolation (ELI) method in multi-dimension in Section 3.6.

• Chapter 4 presents the results of the ROMs developed in this thesis. The
results are for benchmark cases in CFD. The main benchmarks include the
flow passing an oscillation cylinder, flow passing a translational and rotational
airfoil. Both test cases are studied for fluid-structure interaction problems.
Lastly, 2D Burger’s equation on a backward-facing step is used for testing as
the preliminary results obtained for the hyper-reduction in SubSection 4.4.
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2.1 Introduction

Full-order simulation refers to the range of methods based on the high-dimensional
discretization of Partial Differential Equations (PDEs). Well known discretization
techniques are Finite Element Method (FEM), Finite Difference Method (FDM),
and Finite Volume Method (FVM) to mention a few. In this dissertation, FVM
has been used as a discretization technique. Such a numerical discretization, widely
used in industrial applications [75,147], exploits the fact that FVM locally enforces
the balance of mass, momentum, and energy (in compressible flows). This chapter
briefly recalls the mathematical models behind the incompressible Navier-Stokes

11
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Equations (NSEs) in Section 2.2. In SubSection 2.2.1, the incompressible case is
formulated in the ALE framework, as this case takes into account the mesh motion.
Later on, an overview of the FVM is discussed in Section 2.3. In Section 2.4, a
segregated pressure-based solver is discussed. After that, the notion of coupling
conditions at the interface of the fluid-structure and mesh motion techniques are
discussed in Section 2.6, and Section 2.7 respectively.

2.2 Fluid’s Governing Equations

The equations that govern the fluid flow are based on the conservation laws of a
fluid’s physical properties. This section presents the systems of governing equa-
tions addressed in this thesis, the incompressible, Navier-Stokes Equations (NSEs)
formulated in the ALE framework.

2.2.1 The incompressible Navier-Stokes Equations

In this Subsection, we will discuss fluid flow problems characterized by a low velocity,
constant density, and a motion where viscous forces overwhelm inertia forces. We
suppose to have the Mach number (Ma) below 0.3. The Ma is the ratio between
the magnitude of the free-stream velocity of the fluid and the speed of sound c.
The unsteady incompressible NSEs in the ALE framework for a Newtonian fluid are
written as follows

∇ · u = 0 (2.1)

δu

δt
+∇ · [u⊗ (u− ug)]− ν∇2u = −1

ρ
∇p. (2.2)

∂Ω(t)

∂t
+∇ · ug = 0 (2.3)

Eq. (2.1) is the continuity equation, Eq. (2.2) is the NSEs (momentum equation),
and Eq. (2.3) is the Geometrical Conservation Law (GCL). In addition to Eqs. (2.1)–
(2.3), initial and boundary conditions are incorporated for a well-defined problem.

Also, Ω(t) is the deformed domain at the time t, u is the velocity field, p is
the pressure field, ν is the kinematic viscosity, and ug is the velocity of the cell
displacement. The time derivative in the ALE framework is given by the following
relationship

δ

δt
=

∂

∂t
+ ug∇. (2.4)

The grid which moves in space must also obey the conservation law [166], which is
stated as ”the change in volume/ area of each control volume between time tn and
tn+1 must equal the volume/ area swept by the cell’s boundary during ∆t = tn+1−tn”
as expressed in Eq. (2.3).
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2.2.2 Reynolds Average Navier-Stokes

The exact unsteady Reynolds Averaged Navier-Stokes (RANS) Equations based on
Reynolds decomposition, as shown in Eq. (2.7) are given as follows

∇ · ū = 0, (2.5)

δū

δt
+∇ · (ū⊗ (ū− ug)) = −1

ρ
∇p̄+ ν∇2ū− 1

ρ
∇ · (ρu′u′), (2.6)

u(x, t) = u′(x, t) +
1

T

ˆ T

0

u(x, t)dt︸ ︷︷ ︸
ū(x)

, (2.7)

where ν∇2ū being the viscous stress, u′ is the velocity fluctuations due to turbulence,
and 1

ρ
∇ · (ρu′u′) is the Reynolds stress. For a detailed derivation of the RANS, the

interested reader can refer to [38,138].

2.2.2.1 Boussinesq assumption

Solving Eqs. (2.5)–(2.7) involves modelling the Reynolds stress. One of the method-
ologies used to model the Reynolds stresses is the Boussinesq assumption, which is
expressed as follows,

−ρu′
iu

′
j = 2νtSij −

2

3
ρkδij. (2.8)

where

Sij =
1

2

(
∂ūi

∂xj

+
∂ūj

∂xi

)
. (2.9)

and k = 1
2
u′2
i . Hence, with this assumption, it is necessary to define or compute the

turbulent viscosity scalar quantity νt in all the flow domains to close the system of
equations. The final set of equations is given by

∇ · ū = 0. (2.10)

δū

δt
+∇ · (ū⊗ (ū− ug)) = ∇ ·

[
1

ρ
(ν + νt)∇ū)

]
− 1

ρ

(
∇p̄+ 2

3
ρ∇k

)
. (2.11)

∂Ω(t)

∂t
+∇ · ug = 0. (2.12)

2
3
ρ∇k being the normal stresses arising from the Boussinesq hypothesis, νt is the

so-called turbulent viscosity, νeff = ν + νt is called the effective viscosity, and k
is the turbulent kinetic energy. The quantity νt is suitably a viscosity only from
the dimensional point of view, and it is called viscosity considering the analogy of
the Boussinesq approximation and with the shear stress relations in a Newtonian
fluid. The real viscosity is a property of the fluid and not its motion. A variety of
methodologies are available in the literature to calculate the eddy viscosity.
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The final equation to be solved is given as follows

∇ · ū = 0, (2.13)

δū

δt
+∇ · (ū⊗ (ū− ug)) =

1

ρ
∇ · [(ν + νt)∇ū)]−

1

ρ
∇p̄, (2.14)

∂Ω(t)

∂t
+∇ · ug = 0. (2.15)

ū is the average velocity field, and p̄ the average pressure field. A variety of method-
ologies are available in the literature to calculate the eddy viscosity. This work uses
the k − ω SST (shear stress transport) introduced in [103].

2.2.2.2 Modelling turbulent viscosity

The SST k − ω turbulence model is a two-equation eddy-viscosity model that has
become very popular. It is based on k − ϵ and k − ω models to get the best of
both. It uses the k − ω model in the boundary layer (BL) and the k − ϵ model in
free stream [122]. A full description of the two aforementioned turbulence models
can be found in [169, 176]. The relation between the dissipation rate ϵ and specific
dissipation rate ω is given by

ϵ = Cµkω with Cµ = 0.09. (2.16)

k[m
2

s2
] being turbulent kinetic and ϵ ≡ −dk

dt
[m

2

s3
] the energy dissipation rate. With

these two quantities, it is possible to form a length scale L = k
3
2 ϵ (being the size of

large energy-containing eddies in a turbulent flow), a timescale τ = k
ϵ
, and conse-

quently the turbulent viscosity:

νt = Cµ
k2

ϵ
in the k − ϵ model. (2.17)

or

νt = ρ
k

ω
in the k − ω model. (2.18)

The SST k−ω model does produce a bit too large turbulence levels in regions with
large normal strain, like stagnation regions and regions with strong acceleration.
This tendency is much less pronounced than with a normal k − ϵ model, though.
The connection of the apparent viscosity to the mean flow variables, in the SST
k − ω model, is done as follows

νt =
a1k

max(a1ω, SF2)
(2.19)

■ To summarize, the model equations of the k − ω SST model are:

D̄k

D̄t
=

∂

∂xj

[(
νt
σk

+ ν

)
∂k

∂xj

]
+ P̃k − ωkβ∗. (2.20)

D̄ω

D̄t
=

∂

∂xj

[(
νt
σω

+ ν

)
∂ω

∂xj

]
+ Pω − Cω2ω

2 + 2(1− F1)
σω2

ω

∂ω

∂xj

∂k

∂xj

. (2.21)
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Where,

P̃k = min(Pk, 10β
∗kω) with Pk = νt

(
∂ūi

∂xj

+
∂ūj

∂xi

)
∂ūi

∂xj

(2.22)

Pω = Cω1S
2 with S =

√
2sijsij (2.23)

a1 =
5

9
(2.24)

β∗ =
9

100
, Cω1 = 0.44, Cω2 = 0.0828, σω = 0.5, σω2 = 0.0856 (2.25)

F2 = tanh

[max

( √
k

ωβ∗y
,
500ν

y2ω

)]2 (2.26)

F1 = tanh

[min

(
max

(
2
√
k

ωβ∗y
,
500ν

y2ω

)
,
4Cω2k

CDkωy2

)]4 (2.27)

CDkω = max

(
2
σω2

ω

∂ω

∂xj

∂k

∂xj

, 10−10

)
(2.28)

In the incoming section, we discuss the FV discretization technique.

2.3 Finite Volume Method

In this section, the FVM for the incompressible NSEs is presented. The standard
FVM aims to discretize the system of PDEs written in integral form following [110].
The present uses a 2-dimensional tessellation. Nh will represent the dimension of the
Full-order Models (FOM) which is the number of control volumes in the discretized
problem. The following addresses the discretization methodology of the momentum
and continuity equations. In particular, a segregated approach is used to solve the
momentum and continuity equations inspired by Rhie-Chow interpolation [139].

The first step towards FVM is to divide the domain Ω into a tessellation T

composed by a certain number Nh of cells Ωi, so that: T = {Ωi(·)}Nh
i=1 and

Nh⋃
i=1

Ωi(·) =

Ω and Ωi ∩ Ωj = ∅ ∀i ̸= j so that every cell Ωi is a non-convex polyhedron. In
the following, to simplify the notation, Ωi(·) = Ωi and Si = ∂Ωi. Si being the
total surface related to cell Ωi. One can see in Figure 2.1 a visualization between
two neighbour cells of the mesh. The unsteady momentum equation written in its
integral form for every cell of the tessellation reads as follows,

ˆ
Ωi

δū

δt
dΩi +

ˆ
Ωi

∇ · [ū⊗ (ū− ug)]dΩi −
ˆ
Ωi

νeff∇2ūdΩi +

ˆ
Ωi

∇p̄dΩi = 0. (2.29)

νeff = ν+ νt being the effective viscosity and the sum of the ν (molecular viscosity)
and turbulent viscosity. In the sequel, the FOM is analysed term by term.
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Figure 2.1: Relation between two neighbour cells Ωi and Ωj of the tessellation T for
a given variable ū.

2.3.1 The pressure gradient term

The pressure gradient term is discretized using Gauss’s theorem.

ˆ
Ωi

∇p̄dΩi =

ˆ
Si

p̄dS ≈
∑
j

Sij p̄ij, (2.30)

where Sij is the oriented surface dividing the two neighbour cells Ωi and Ωj. p̄ij is
the pressure evaluated at the centre of the face Sij.

2.3.2 Geometric Conservation Law

The GCL can also be written in integral form.

δ

δt

ˆ
Ωi

dΩi +

ˆ
Si

ug · ndSi = 0 (2.31)

n being the outward unit normal vector on the boundary surface. By multiplying
Eq. (2.31) by ρ and using the incompressibility constraint, we obtain the following
relationship

ˆ
∂Ωi

ug · ndSi = 0. (2.32)

This means there is no need to consider the grid velocity in the continuity Eq. (2.1).
Eq. (2.31) can be rewritten in its discrete form as follows

δΩi

δt
= −

∑
j∈Si

ug · Sij. (2.33)
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2.3.3 The Convective Term

The convective term can be discretized as follows, using Gauss’s theorem.

ˆ
Ωi

∇ · [u⊗ (u− ug)]dΩi =

ˆ
Ωi

∇ · (u⊗ u)dΩi −
ˆ
Ωi

∇ · (u⊗ ug)dΩi (2.34)

=

ˆ
Si

dSi · (u⊗ u)−
ˆ
Si

dSi · (u⊗ ug) (2.35)

=
∑
j∈Si

uijFij −
∑
j∈Si

uij(u
g
ij · Sij). (2.36)

Here, ūij is the velocity evaluated at the centre of the face Sij, and Fij = ūij · Sij

is the flux of the velocity through the face Sij. This procedure underlines two
considerations. The first one is that ūij is not straightly available, in the sense that
all the variables of the problem are evaluated at the centre of the cells. At the same
time, the velocity is evaluated at the centre of the face. Many different techniques
are available to obtain it. However, the basic idea behind them all is that the face
value is obtained by interpolating the values at the centre of the cells. The second
clarification is about fluxes: during an iterative process for the resolution of the
equations, they are calculated using the velocity obtained at the previous step so
that the non-linearity is easily resolved.

2.3.4 The Diffusion Term

The diffusion term is discretized as follows,

ˆ
Ωi

νeff∇2ūdΩi = (νeff )i

ˆ
Si

dS · (∇ū) dΩi ≈
∑
j

(νeff )ijSij · (∇ū)ij, (2.37)

where (νeff )i is the effective viscosity of the i − th cell, (νeff )ij is the effective
viscosity evaluated at the centre of the face Sij, and (∇ū)ij is the gradient of ūij

evaluated at the centre of the face Sij. As for the evaluation of the term Sij ·(∇ū)ij in
Eq. (2.37), its value depends on whether the mesh is orthogonal or non-orthogonal.
Notice that the gradient of the velocity is not known at the face of the cell. The
mesh is orthogonal if the line that connects two cell centres is orthogonal to the
face that divides these two cells. For orthogonal meshes, the term Sij · (∇ū)ij is
evaluated as follows,

Sij · (∇ū)ij ≈ ∥Sij∥
ūi − ūj

∥dij∥
, (2.38)

where dij represents the vector connecting the centres of cells of index i and j. For
visualization, see Figure 2.1. If the mesh is non-orthogonal, then a correction term
has to be added to Eq. (2.38). In that case, one has to consider computing a non-
orthogonal term to account for the non-orthogonality of the mesh, as given by the
following relation [74]

Sij · (∇ū)ij = ∥πij∥
ūi − ūj

∥dij∥
+ kij · (∇ū)ij. (2.39)
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Herein, Sij = πij+kij and πij is chosen to be parallel to Sij and kij to be orthogonal
to dij. The term (∇ū)ij is obtained through interpolation of the values of the
gradient at the cell centres (∇ūi) and (∇ūj). The discretized forms of Eqs. (2.1)–
(2.3) are written in a compact as follows:[

Au Bp

∇(·) 0

] [
ūh

p̄h

]
= 0. (2.40)

The above system matrix has a saddle point structure which is usually difficult to
solve using a coupled approach. For this reason, a segregated approach is used in
this dissertation, where the momentum equation is solved with a tentative pressure
and later corrected by exploiting the divergence-free constraint.

2.4 Segregated Pressure-Based Solvers

After having introduced the discretization of the different terms in the NSEs, we
proceed by addressing the algorithms used to solve the discretized system. This
dissertation uses a segregated approach based on the PIMPLE algorithm. This
means that the equations for each variable characterizing the system (the velocity,
the pressure, and the variables characterizing turbulence) are solved sequentially
and the solution of the previous equations is inserted into the subsequent equation.
This aspect has to be kept in mind for the finite volume discretization strategy.
A main advantage of a segregated algorithm is the memory-efficiency, since the
discretized equations need only to be stored in memory one at a time. However, a
shortcoming of the segregated approach is the slow convergence of the solution as
the equations are solved in a decoupled manner. Also, with the usage of segregated
approaches, the saddle-point formulation is somehow circumvented in the sense that
the Ladyzhenskaya–Babushka–Bezzi condition [18, 46] is not strictly required any
more since no coupled problems are here to be solved. This aspect is strongly
relevant especially for the reduced-order part since no stabilization is needed. For
more details and understanding, the interested reader can refer to the following
studies [158] and [9].

2.4.1 Pressure-equation for incompressible flows

In this paragraph, we discuss the main idea of the PIMPLE algorithm. The PIMPLE
algorithm is a mix of SIMPLE [125], and PISO [72] algorithms. This algorithm is
mostly used for unsteady problems requiring a high Courant number or a dynamic
mesh such as the one considered in this study. To better understand the procedure
of the PIMPLE algorithm, some crucial points about both algorithms are reported
in the following, as they will be useful for building the reduced-PIMPLE algorithm.

2.4.1.1 The SIMPLE algorithm

Starting with the SIMPLE algorithm, the first step is to solve the discretized mo-
mentum equation considering the pressure field of the previous iterations. The
momentum matrix is divided into diagonal and extra-diagonal parts so that the
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following holds:
Auu

n∗
h = Aun∗

h −H(un∗
h ), (2.41)

with n being an index to identify a generic iteration and Au satisfying the following
relation:

Auu
n∗
h = −Bpp

n−1
h . (2.42)

The momentum equation can be rewritten as follows:

Aun∗
h = H(un∗

h )−Bpp
n∗
h ⇒un∗

h = A−1H(un∗
h )−A−1Bpp

n−1
h . (2.43)

In an iterative algorithm, the next step is introducing a small correction to the
velocity and pressure field inside the inner loop. Then, one can define the following
relations:

un
h = un∗

h + u′, pnh = pn−1
h + p′. (2.44)

where un∗
h does not satisfy the continuity equation, and un

h does. □′ are the correc-
tions for both terms. By inserting Eq. (2.44) in Eq. (2.43), and rearranging terms
give:

un
h − u′ = A−1[H(un

h)−H(u′)−Bpp
n
h +Bpp

′]. (2.45)

From Eq. (2.45), one deduces a relation between u′ and p′:

u′ = ũ′ −A−1Bpp
′, (2.46)

with
ũ′ = A−1H(u′). (2.47)

The following relation holds thanks to Eq. (2.42) :

un
h = A−1[H(un

h)−Bpp
n
h]. (2.48)

With the use of Eq. (2.46) and the divergence operator ∇(·) applied to un
h in

Eq. (2.44) knowing u′ from Eq. (2.46), one obtain an equation that directly relates
p′ and un∗

h :
[∇(·)]

(
A−1Bpp

′) = [∇(·)]un∗
h + [∇(·)]ũ′. (2.49)

Which is basically the discretized Poisson Equation for Pressure (PPE) expressed
in terms of the velocity and pressure corrections. In the SIMPLE algorithm, the
velocity correction ũ′ is unknown as H(u′), hence neglected, implying the following
relation:

[∇(·)]
(
A−1Bpp

′) = [∇(·)]un∗
h . (2.50)

Therefore, p′ is expressed as the only function of un∗
h in Eq. (2.50). Then the

corrected pressure is entered again in Eq. (2.43) in order to obtain a new velocity
field un∗

h and repeat the procedure until the pressure correction falls below a given
tolerance and the velocity satisfy both the continuity and momentum equation.

As the ũ′ is neglected, the SIMPLE algorithm converges slowly and is used
mainly for steady-state simulations. Furthermore, to avoid instabilities, relaxation
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factor αp and αu are introduced in the computation of pnh and un∗
h as follows:

pnh = pn−1
h + αpp

′, (2.51)

un∗
h = A−1H(un∗

h )− αuA
−1Bpp

n−1
h . (2.52)

The main steps of the SIMPLE algorithm are reported in Algorithm 1.

Algorithm 1: SIMPLE algorithm for compressible flows

Input : un∗
h , and pn−1

h ;
1 while n ≤ NoIs do
2 Assemble momentum equation, relax it employing αu;
3 Solve Auu

n∗
h = −Bpp

n−1
h ▷ Momentum predictor Eq. (2.42) to obtain

un∗
h ;

4 Assemble Eq. (2.50) ▷ Pressure correction step ;
5 Solve [∇(·)] (A−1Bpp

′) = [∇(·)]un∗
h ▷ PPE to obtain p′;

6 pnh ← p′ ;
7 Relax pnh employing αp ;
8 un

h ← A−1H(un∗
h )−A−1Bpp

n
h: ▷ Momentum corrector ;

9 n← n+ 1 ▷ n is the current iteration ;

Output: un
h, and p

n
h;

2.4.1.2 The PISO algorithm

The PISO algorithm comes to play to speed up the convergence after neglecting ũ′

and computing the pressure correction p′ using Eq. (2.46). u′ is computed as follows:

u′ = −A−1Bpp
′. (2.53)

Allowing the computation of ũ′ using Eq. (2.47). One defines a second velocity
correction equation mirroring Eq. (2.46) as follows:

u′′ = ũ′ −A−1Bpp
′′. (2.54)

As u′′ in Eq. (2.54) satisfy the continuity equation, one define also a second pressure
correction equation as:

[∇(·)]
(
A−1Bpp

′′) = [∇(·)]ũ′. (2.55)

To sum up, what the PISO algorithm does more than the SIMPLE algorithm is to
add a second inner loop to correct pressure and velocity. This speeds up the conver-
gence, allowing this algorithm to be used in a transient simulation. Following the
procedure described by Eqs. (2.53)–(2.55) further corrections, steps can be added,
increasing both the algorithm’s convergence and computational cost.

The essential steps of the PIMPLE algorithm involving mesh motion is reported
in Algorithm 2. In Algorithm 2, the iterations within one time-steps are called outer
iterations, they are performed in an outer loop in which the coefficients and the
source matrix of the discretized equations are updated. The operations performed
on linear systems with fixed coefficients are called instead inner iterations, and they
occur in the so-called inner loop.
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Algorithm 2: PIMPLE algorithm with dynamic mesh.

Input : Initial fields un∗
h , pn−1

h , ν0
t , and δ

0 ▷ δ0 initial displacement;
1 while n ≤ nMax do
2 while No. outer corrections ≥ 2 and Tol ≥ maxTol do
3 Compute the forces; ▷ Using un∗

h , pn−1
h ;

4 Solve the rigid body problem Eqs. (2.57) and (2.58);
5 Solve the mesh motion problem ▷ To obtain δn see Section 2.7;
6 Auu

n∗
h = −Bpp

n−1
h ▷ Assembling the momentum equation Eq. (2.50);

7 Solve Auu
n∗
h = −Bpp

n−1
h ▷ Momentum predictor Eq. (2.42) to obtain

un∗
h ;

8 [∇(·)] (A−1Bpp
′
h) = [∇(·)]un∗

h ▷ Assembling the matrix of PPE
Eq. (2.42);

9 Solve [∇(·)] (A−1Bpp
′
h) = [∇(·)]un∗

h ▷ PPE to obtain p′ ;
10 u′

h ← −A−1Bpp
′
h ▷ Momentum corrector Eq. (2.53) ;

11 while No. inner corrections do
12 [∇(·)] (A−1Bpp

′′
h) = [∇(·)]ũ′ ▷ Assembling the matrix for PPE

Eq. (2.55);
13 Solve [∇(·)] (A−1Bpp

′′
h) = [∇(·)]ũ′ ▷ Recursively to obtain p′′h;

14 u′′
h ← A−1H(un∗

h )−A−1Bpp
′′
h ▷ Momentum corrector Eq. (2.54);

15 Solve turbulence and other transport quantities to obtain νn
t ;

16 un
h ← u′′

h ;
17 pnh ← p′h ;

18 Update tolerance;
19 n← n+ 1 ▷ n here is the current time step;

Output: un
h, p

n
h, ν

n
t , and δ

n;
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2.5 Structure’s governing equations

In this section, the two motions structure addressed in this thesis are presented.
The first one is a translational motion. The second one is a two-degree of freedom
problem which take into account the rotational motion in addition to the translation
one.

2.5.1 Translation motion

The one-dimensional equation of motion for a general rigid-body system can usually
be written in the following form

ÿ + 2ζωnẏ + ω2
ny =

Fy

m
. (2.56)

Where ωn =
√

k/m = 2πfn is the natural pulsation of the system, k is the spring’s

stiffness, m is the mass of the rigid body, ζ =
c

2mωn

is the fraction of structural

damping c with respect to critical or simply damping ratio, y is the displacement of
the structure’s in the transverse direction, and Fy is the lift force in the free-stream
transverse direction. The fluid force Fy per unit length of the structure drives the
motion of the structure.

2.5.2 Translation and rotational motion

In this dissertation, the aeroelastic structural model as depicted in Figure 4.13 is
governed by a two-degree freedom pitch and plunge system. The equations of the
structure’s motion are

mḧ+ chḣ+ khh−mbθ̈ cos θ +mbθ̇2 sin θ = Fh(t). (2.57)

Iθθ̈ + cθθ̇ + kθθ −mbḧ cos θ =Mθ(t). (2.58)

m being the mass of the airfoil per unit span, Fh(t) the sectional lift per unit span,
Iθ the sectional moment of inertia of the airfoil,Mθ(t) is the pitching moment, θ(t)
the pitch rotation, h(t) the plunge displacement, b the distance between the pivot
location and the center of mass. The structural stiffness of the plunge and pitch
is designated by kh and kθ; the related damping coefficients are ch and cθ. The
structural frequencies are fθ = (2π)−1ωθ, and fh = (2π)−1ωh with ωθ =

√
kθ/Izz

and ωh =
√

kh/m. Izz being the moment of inertia Iθ in the z-direction. For a
thorough introduction to structural dynamics and aero-elasticity refer to [68].

2.6 Coupling conditions

The coupling conditions of the fluid-structure is achieved at the boundary conditions
on the common interface Γ(t) = ∂Ω(t) which all stem from simple physical principles
namely the kinematic condition (the fluid velocity, grid velocity, and structure’s
velocity are continuous at the interface), dynamic condition (the normal stresses of
the fluid and structure are continuous on the interface), and the geometric condition
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Figure 2.2: Flow chart of fluid-body motion

(the fluid and structure domain should always match. The following equations
summarize the above conditions.

u · ey = ug · ey = ẏ and

ˆ
Γ(t)

(σ(x, t) · n) · nydΓ + Fy = 0, (2.59)

with σ(x, t) = −p(x, t)I+2µD as, it is assumed that the fluid is Newtonian. Here, I
is the identity tensor, andD = 1

2

(
∇ · u(x, t) + (∇ · u(x, t)T

)
. Next, the Section 2.7

discuss the mesh motion strategy.

2.7 Mesh motion techniques

Translation and/or rotational motion of the centre of gravity (COG) are accounted
by solving Newton’s second law Eqs. (2.57) and (2.58) or Eq. (2.56) in the global
inertial reference frame. After the linear and angular accelerations have been com-
puted using in the case of 1D or 2D motion, translation and/or rotational kinematics
are used to update the body linear and angular velocities. After calculating the mo-
tion of the rigid body, it is necessary to move the boundary as well as the mesh
surrounding the body in order to maintain a good quality mesh. In this work, the
mesh deformation technique used is the so-called Slerp (Spherical Linear Interpola-
tion) as it is better at handling translation and rotational (of a solid body in the
three arises XYZ) mesh deformation when it comes to cell shearing [76] and has
great applications in computer vision.
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2.8 Summary

In this chapter, we have traversed through five critical sections, each contributing
to a comprehensive understanding of our core subject. Beginning with an in-depth
analysis of foundational concepts, we laid the groundwork necessary to appreciate
the subsequent intricate discussions. Section 2.2 provided a theoretical framework
of the governing equations driving the fluid flows, the incompressible NSEs. The
governing equations in the incompressible flows were presented in the ALE form.
In Section 2.3, we delved into the Finite Volume discretization technique, and we
discussed the segregated algorithms that we use in this thesis, mainly the SIMPLE,
PISO, and PIMPLE algorithms. In Section 2.5, two cases of the structure’s govern-
ing equations are presented. The first one considered a translation motion in the
transverse direction and the second one take in addition to translation also rota-
tional motion, leading to a two-degree motion problem of a pitching and plunging
motion. In Section 2.6 the coupling conditions at the interface of the interaction
between the fluid and structure is presented in the nutshell. Finally, in Section 2.7
the mesh motion techniques used in this thesis are addressed and some references
for other mesh strategies for the interested reader are pointed out.

In conclusion, this chapter has provided a thorough exploration of the basic re-
quirements, from foundational theories, of the FOM. Each section has contributed
uniquely, building a layered understanding that is both deep and broad. As we
move forward, the insights gained here will serve as a valuable guide, informing our
ongoing inquiry and application in the dynamic landscape of our field. However,
standard high-fidelity simulations are quite expensive both in time and computa-
tionally resources. In the following chapter, reduced-order models can be used to
reduce computational resources, obfuscate proprietary models and speed up devel-
opment cycles.
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3.1 Introduction

Reduced-order models (ROMs) can be broadly categorized into linear and non-
linear reduction techniques. Both approaches aim to simplify complex systems
while retaining essential dynamics, but they handle the system’s behaviour dif-
ferently. ROMs are simplifications of high-fidelity, complex models. They capture
the behaviour of these source models so that engineers can quickly study a sys-
tem’s dominant effects using minimal computational resources. ROMs have become
popular in the product development industry because engineers are facing market
demands for shorter design cycles that produce higher-quality products. In this
dissertation, linear reduction technique based on Proper Orthogonal Decomposition
(POD) ( [59, 85, 97, 98]) has been used to compute the subspace for the approx-
imated solution. However, among POD other methodologies are available in the
literature such as: the greedy algorithm [128,134,168], Proper Generalized Decom-

25
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Figure 3.1: Machine Learning Algorithms [2].

position [36, 117], Dynamic Mode Decomposition [83, 133, 146]. For more details in
the comparisons of these methodologies, the interested reader can refer to [14,65].

The choice behind POD is motivated by its optimality, efficiency, and robust
mathematical foundation. Additionally, its ability to significantly reduce computa-
tional complexity while maintaining high accuracy makes it an attractive option for
a wide range of engineering applications. However, some limitations related to the
POD should not be neglected. For example, the energy truncation of the POD basis
still remains arbitrary and there is not yet a guarantee about a fixed value of the
rate of “energy” captured by the first m modes which can absolutely ensure a good
representation of the relevant scales of the system and therefore a good accuracy
of the ROM. Finally, POD basis functions are closely related to the reference data
from which they have been derived rather than to the operators of the governing
dynamical system. In the following, POD details are recalled, together with the
concept of POD-Galerkin projection, POD-Interpolation (POD-RBF) using Radial
Basis Functions (RBF), and POD-ML.

3.2 The Proper Orthogonal Decomposition

The POD method [97,98], also known as the Principal Component Analysis (PCA)
method in machine learning, is a well-established algorithm. It is part of most
machine learning toolkits and can be used for various applications such as data
visualization or, for our purposes, dimensionality reduction. Figure 3.1 outlines
the concept of dimensionality reduction as an algorithm of machine learning. The
Auto-Encoders (AEs) can be interpreted as a flexible and nonlinear generalization
of POD [26]. In [53], Baldi and Hornik showed that an AE network with one hidden
layer and linear activation functions could closely resemble the standard POD/PCA.

In this thesis, POD is used to construct the low-dimensional space. POD is a
compression technique where a set of numerical realizations (in time or parameter



3.2. THE PROPER ORTHOGONAL DECOMPOSITION 27

space) is reduced into a number of orthogonal basis (spatial modes) that capture the
essential information suitably combined from previously acquired system data [6].
We apply POD to a group of realizations called snapshots. It consists of computing
a certain number of full-order solutions si = s(ti) where ti ∈ T for i = 1, · · · , N . T
being the training collection of a certain number N of the time values, to obtain a
maximum amount of information from this costly stage to be employed later on for
a cheaper resolution of the problem. Those snapshots can be resumed at the end of
the resolution all together into a matrix S ∈ RNh×N

S = [s(x, t1), . . . , s(x, tN)] , (3.1)

when dealing with time-dependent problem or

S = [s(x, µ1), . . . , s(x, µN)] , (3.2)

in the case of parameter dependency. The idea is to compute a ROM solution that
can minimize the error between the obtained realization of the problem and its high-
fidelity counterpart, see Eq. (3.6). In the POD-Galerkin scheme, the reduced-order
solution is expressed as follows

s(x, t) ≈ sROM(x, t) =
Nr∑
i=1

ai(t)ϕi(x) (3.3)

or

s(x, π) ≈ sROM(x, π) =
Nr∑
i=1

ai(π)ϕi(x). (3.4)

Where Nr ≪ Nh (Nh is the number of cells in the computational domain) is a
predefined number, ϕi is a generic pre-calculated orthonormal basis depending only
on the space while ai(t) is the temporal modal coefficients satisfying the following
conditions

aj(t) = (ϕj, s(x, t))L2(Ω) , ϕiVhϕ
T
j = δij. (3.5)

Vh being the mass matrix defined by the chosen inner product. In the case of L2

norm and FVM, Vh is a diagonal matrix containing the cell volumes. The best
performing functions, ϕi in this case, are the ones minimizing the L2 norm error
Eq. (3.6) between all the reduced solutions sROM

i ∀ i = 1, · · · , N and their high
fidelity counterparts,

E =
N∑
i=1

∥sROM
i − si∥L2(Ω) =

N∑
i=1

∥si −
Nr∑
i=1

(si,ϕi)L2(Ω)ϕi∥L2(Ω(t0)). (3.6)

Ω(t0) being the reference configuration of the computational domain. Note that
the projection is performed with respect to, L2(Ω(t)) while POD is computed with
respect to L2(Ω(t0)). It can be shown that solving the minimization problem based



28 CHAPTER 3. REDUCED-ORDER MODELS

on Eq. (3.6) is equivalent to solving the following eigenvalue problem [82]

CV = Vλ. (3.7)

C = SST ∈ RN×N being the correlation matrix between all the different training
solutions of the snapshot matrix S, V ∈ RN×N is the matrix whose columns are
the eigenvectors, and λ ∈ RN×N is a diagonal matrix whose diagonal entries are the
eigenvalues. The entries of the correlation matrix are defined as follows

Cij = s
T
i Vhsj. (3.8)

The solution of the eigenvalue problem Eq. (3.7) is equivalent to the computation
of an Eq. (3.9) of the matrix S, so that

S = UΣW T . (3.9)

Where Σ is a diagonal matrix which contains the singular values of S, listed in
order of decreasing magnitude. U , andW are orthonormal matrices. Indeed, given
Eq. (3.9), the correlation matrix can be given as follows

C = UΣ2UT . (3.10)

When using a POD strategy, the required basis functions are obtained through the
resolution of the eigenproblem mentioned in Eq. (3.7), obtained with the method
of snapshots by solving Eq. (3.6). One can compute the required basis functions as
follows

ϕi =
(
N
√
λi

)−1
N∑
j=1

sjVji ∀i = 1, · · · , N. (3.11)

All the basis functions can be collected into a single matrix

Φ = [ϕ1, · · · ,ϕNr ] ∈ RNh×Nr , (3.12)

which will be used to project the high-fidelity problem onto the reduced subspace
so that the final system’s dimension is Nr. This procedure leads to a problem
requiring a computational cost that could be much lower than the original problem.
The Algorithm 3 summarizes the main steps for computing the POD basis matrix.

Algorithm 3: POD algorithm

Input : Snapshot matrix S ∈ RdNh×Nt ;
1 Construct the correlation matrix for S ;
2 Solve the eigen problem Eq. (3.7);
3 construct the modal basis functions Eq. (3.11);
4 extract the first r basis functions as columns of the functions matrix Φ;
Output: Basis functions matrix Φ containing the modes basis ϕi(x).

The next section discusses the reduced approaches, which include Galerkin pro-
jections and the data-driven techniques employed in this thesis.
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3.3 The segregated reduced approaches

In fluid dynamics simulations, particularly, when dealing with incompressible flows,
pressure-velocity coupling algorithms are essential for solving the Navier-Stokes
Equations (NSEs). The most widely used algorithms for this purpose are the Semi-
Implicit Method for Pressure Linked Equations (SIMPLE), Pressure Implicit with
Splitting of Operators (PISO), and the Pressure-Implicit with Splitting of Opera-
tors (PIMPLE). When implementing ROMs, these algorithms can also be adapted
to maintain efficiency and accuracy. This current section discusses the Galerkin pro-
jection and reduced algorithm based on the PIMPLE summarized in Algorithm 2
discussed above, exploring their adaptations and benefits in the context of ROMs.

3.3.1 Galerkin projection

In this section, a Galerkin projection is constructed for velocity, and pressure for in-
compressible flows. In the following, it is assumed that the momentum, and Poisson
Equation for Pressure (PPE) are discretized and written in the following form

Auuh = bu, Bpph = bp, (3.13)

where

Au ∈ RdNh×dNh , and Bp ∈ RNh×Nh , (3.14)

indicate the matrices containing the terms related to velocity, and pressure for the
in their discretized forms respectively.

bu ∈ RdNh , and bp ∈ RNh , (3.15)

are the related source terms. In addition, uh and ph are the vectors where all the
ūi, and p̄i variables are collected. d = 2 is the space dimension, and Nh being the
number of control volumes (cells) in the mesh. In the sequel, Galerkin projection
(on the fully discrete equations) is used for the construction of the reduced systems.
We assume the following decomposition’s introduced in Section 3.2

uh ≃
Nu∑
i=1

ai(·)ϕi(x) = Φa, (3.16)

or,

ph ≃
Np∑
i=1

bi(·)ξi(x) = Ξb. (3.17)

Where, ai(·) and bi(·) are modal coefficients which can time-dependent, parameter-
dependent or both. ϕi, and ξi are the basis functions corresponding to the POD
modes of the velocity, and pressure fields stored respectively in

Φ ∈ RdNh×Nu , (3.18)
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and

Ξ ∈ RNh×Np . (3.19)

In addition, Nu, and Np being the numbers of basis functions selected for the pre-
dicted velocity, and pressure solutions respectively. a ∈ RNu , and b ∈ RNp are the
vectors containing the coefficients for the velocity expansion, while the same reads
for the pressure.
The linear systems in Eq. (3.13) are projected using the respective basis functions
defined in Eq. (3.16) leading to

Ar
ua = bru, Ar

pb = b
r
p, (3.20)

Where Ar
u = ΦTAuΦ ∈ RNu×Nu , and Ar

p = ΞTApΞ ∈ RNp×Np . The resulting
reduced linear systems in Eq. (3.20) can be solved using any method for dense ma-
trices. For example, the Householder rank-revealing QR decomposition of a matrix
with full pivoting is used, and it is available in the Eigen library [62].

3.3.2 Reduced-PIMPLE for incompressible flows

In this subsection, the reduced algorithm is based on the PIMPLE algorithm as
described in Algorithm 2. As the main idea here is to rely on a method capable
of being as coherent as possible concerning the high-fidelity problem (Algorithm 2),
in the following the main steps for the reduced algorithm related to incompressible
turbulent flows with moving mesh are reported in Algorithm 4.

3.3.3 Hyper-Reduced-PIMPLE for incompressible flows

In this subsection, we propose a hyper-reduced algorithm, mimicking the reduced-
PIMPLE algorithm, as described in Algorithm 4. The main idea is to rely on
a method capable of being as consistent as possible with respect to the reduced-
PIMPLE (Algorithm 4). In the present section, we assume that the interpolation
points of the Empirical Interpolation Method (EIM) method of choice [31, 32, 34,
35,45,114] are already available. Thus, the following paragraph focuses on how the
problem is hyper-reduced. Details on how the interpolation points are obtained is
discussed in SubSection 3.6.2.

From the reduced systems (3.20), one can observe that the orthogonal projection
matrices Φ, and Ξ depend on the number of the degree of freedom of the full-order
model system Nh as indicated in Eq. (3.18), and Eq. (3.19). Let J = {j1, · · · , jM} ⊂
{1, 2, · · · , Nh}, we define the selector operator Ph,M = [ej1, · · · , ejM ] ∈ RNh×M :
RNh → RM as that which projects any vector zh ∈ RNh on M of its Nh coordinates,
so that

zh,M = Ph,Mzh. (3.21)

ejl being the canonical vector with 1 being placed at jl position, and M is a given
number of optimal location on a given domain denoted in the literature as ”best
points” in [114], ”magic points” in [100], or ”interpolation points” in interpolation
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Algorithm 4: Reduced-PIMPLE algorithm with dynamic mesh

Input : un∗
h , pn−1

h , ν0
t , δ

0
h, Φ, Ψ, and Ξ;

1 while t ≤ tend do
2 while No. outer corrections ≥ 2 and Tol ≥ maxTol do
3 Compute the forces; ▷ Using un∗

h , pn−1
h ;

4 Solve the rigid body problem Eqs. (2.57) and (2.58) ▷ To obtain the
new COG yCnew;

5 Compute c = RBF (yCnew) Eq. (3.34);
6 Reconstruct δn = Ψc Eq. (3.35);
7 Auu

n∗
h = bu ▷ Assembling the momentum matrix Eq. (2.41);

8 Solve ΦTAuΦa
∗ = ΦTbu ▷ To obtain a∗ with bu = −Bpp

n−1
h ;

9 Reconstruct un∗
h ▷ Using a∗;

10 [∇(·)] (A−1Bpp
′
h) = [∇(·)]un∗

h ▷ Assembling the matrix of PPE
Eq. (2.50);

11 Solve ΞTApΞb
′ = ΞTbp ▷ To obtain b′;

12 Reconstruct p′h ▷ Using b′;
13 u′

h ← −A−1Bpp
′
h ▷ Momentum corrector Eq. (2.53) ;

14 while No. inner corrections do
15 [∇(·)] (A−1Bpp

′′
h) = [∇(·)]ũ′ ▷ Assembling the matrix for PPE

Eq. (2.55);
16 Solve ΞTApΞb

′′ = ΞTbp ▷ Recursively to obtain b′′ where
bp = [∇(·)]ũ′;

17 Reconstruct p′′h ▷ Using b′′;
18 u′′

h ← ũ′ −A−1Bpp
′′
h: ▷ Momentum corrector Eq. (2.54) ;

19 Evaluate the networks using NNs or LSTM ;
20 Reconstruct the new turbulent viscosity νn

t ;
21 un∗

h ← u′′
h ;

22 pn−1
h ← pn−1

h + p′h ;

Output: un
h, p

n
h, ν

n
t , and δ

n
h ;
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theory to be more general. For example, let’s reconsider Eq. (3.16) given by,

uh ≃
Nu∑
i=1

ai(·)ϕi(x) = Φa. (3.22)

If we apply the selector operator Ph,M on Eq. (3.16) the following holds

uh,M ≃
Nu∑
i=1

ai(·)PT
h,Mϕi(x) = PT

h,MΦâ = Qâ. (3.23)

With Q ∈ RM×Nu being a sub matrix of the matrix Φ which does not depend on
Nh. We can obtain the following subsystem when considering the momentum matrix

QT [PT
h,MAuPh,M ]Qâ = QT [PT

h,Mbu]. (3.24)

The above subsystem (3.24) can be written as follows

QTAM
u Qâ = QTbM

u . (3.25)

With,

QT = ΦTPh,M , AM
u = PT

h,MAuPh,M , bM
u = PT

h,Mbu. (3.26)

One can notice that the hyper-reduced subsystem (3.25) has the same structure as
the reduced systems (3.20) but now the matrices, thanks to the selection operator,
end up being assembled on a space with smaller degree of freedom (as many as the
magic points).

The system Eq. (3.24), can be easily derive as follows

Auuh = bu ⇐⇒ ΦTAuΦa = ΦTbu

⇐⇒ ΦTPh,M [PT
h,MAuPh,M ]PT

h,MΦâ = ΦTPh,M [PT
h,Mbu]. (3.27)

The above derivation can be also obtained for the PPE. It is worth mentioning
that the selector operator PT

h,M should take also into account the neighbour cells
required to complete the stencils. In the following, the main steps for the hyper-
reduced algorithm related to incompressible turbulent flows with moving mesh are
reported in Algorithm 5. It is worth mentioning that, the selector operator can be
applied to Eq. (3.48) as another technique to further reduce the computational cost.

3.3.4 POD with interpolation for mesh motion prediction

This section presents a method to further reduce the computational cost associated
with the mesh motion part in the system. Along with reducing the number of degrees
of freedom within the system, the advantage of this methodology is that it does not
require dependence on the mesh motion technique used at the full-order level in order
to calculate mesh deformation. As will be discussed, the methodology combines
proper orthogonal decomposition with radial basis functions (RBF) networks applied
to the grid node’s displacement field.
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Algorithm 5: Hyper-Reduced-PIMPLE algorithm with dynamic mesh

Input : un∗
h , pn−1

h , ν0
t , δ

0
h, Φ, Ξ, Ψ, Pu, and Pp;

1 while t ≤ tend do
2 while No. outer corrections ≥ 2 and Tol ≥ maxTol do
3 Compute the forces; ▷ Using un∗

h , pn−1
h ;

4 Solve the rigid body problem Eqs. (2.57) and (2.58) ▷ To obtain the
new COG yCnew;

5 Compute c = RBF (yCnew) Eq. (3.34);
6 Reconstruct δn = ΨcT Eq. (3.35);
7 Auu

n∗
h = bu ▷ Assembling the momentum matrix Eq. (2.41);

8 Solve QT
u [PT

uAuPu]Qua
∗ = QT

u [PT
ubu] ▷ Qu = PT

uΦ ;
9 un∗

h,M = Qua
∗ ▷ Reconstruct on the M Lagrangian points;

10 Interpolate un∗
h ▷ Using un∗

h,M and Eq. (3.54) ;

11 [∇(·)] (A−1Bpp
′) = [∇(·)]un∗

h ▷ Assembling the matrix of PPE
Eq. (2.50);

12 Solve QT
p [PT

pApPp]Q
T
p b

′ = QT
p [PT

p bp] ▷ Qp = PT
pΞ ;

13 p′h,M = Qpb
′ ▷ Reconstruct on the M Lagrangian points;

14 Interpolate p′h ▷ Using p′h,M and Eq. (3.54) ;

15 u′
h ← −A−1Bpp

′
h ▷ Momentum corrector Eq. (2.53) ;

16 while No. inner corrections do
17 [∇(·)] (A−1Bpp

′′
h) = [∇(·)]ũ′ ▷ Assembling the matrix for PPE

Eq. (2.55);

18 Solve QT
p [PT

pApPp]Q
T
p b

′′ = QT
p [PT

p bp] ▷ Qp = PT
pΞ ;

19 p′′h,M = Qpb
′′ ▷ Reconstruct on the M Lagrangian points;

20 Interpolate p′′h ▷ Using p′′h,M and Eq. (3.54) ;

21 u′′
h ← ũ′ −A−1Bpp

′′
h: ▷ Momentum corrector Eq. (2.54) ;

22 Evaluate the networks using NNs or LSTM ;
23 Reconstruct the new turbulent viscosity νn

t ;
24 un∗

h ← u′′
h ;

25 pn−1
h ← pn−1

h + p′h ;

Output: un
h, p

n
h, ν

n
t , and δ

n
h ;



34 CHAPTER 3. REDUCED-ORDER MODELS

So, the first step of the mesh deformation reduction strategy is that of computing
the POD modes of the grid nodes displacement field. To this end, we assemble a
snapshot matrix with the grid nodes displacements obtained at different time steps

Sg = [dg(x, t1), . . . ,d
g(x, tN)] . (3.28)

As in the case of pressure and velocity unknowns, the matrix Sg is then processed to
obtain a correlation matrix using Eq. (3.8) and, from the solution of an eigenvalue
problem as in Eq. (3.7), a set of POD modes. The reduced-order solution for the
grid displacement field is then represented as,

δh(x, t) ≈
Nd

r∑
i=1

ci(t)ψi(x), (3.29)

where Nd
r is the amount of modes considered for the grid displacement field. Along

with the modal functions χi(x), the solution of eigenvalue Eq. (3.7) provides the
values of the modal coefficients in correspondence with each time step included
in the snapshot matrix. For such a reason, a natural choice for computing the
grid deformation at time instants not included in the snapshots would be that of
interpolating the modal coefficients based on the time variable. However, given the
fact that the grid nodes displacement is induced by the — rigid — translation of
the cylinder boundary yC , a more meaningful way to obtain the modal coefficients
at each time step is to consider that

ci(t) = ĉi(y
C(t)) i = 1, . . . , Nd

r , (3.30)

and interpolate the ci values based on the cylinder vertical displacement variable
— as obtained at each of the time steps at which the solution snapshots have been
collected.

In this work, the interpolation step of the data driven POD strategy used for
the reduction of the grid nodes displacement field is carried out by means of the
Radial Basis Function [86] method. In the present framework, modal coefficient ci
at a generic value yC is obtained evaluating the expression

ci(y
C) =

N∑
k=1

wkρ(||yC − yCk ||), (3.31)

in which ρ : R→ R is in the so-called radial basis. ρ is a function of the Euclidean
distance. In the present case it is a one dimensional function, but in more general
cases it maps the m dimensional parameter space in R. The weights wk appearing
in Eq. (3.31) are determined imposing the interpolation condition at the snapshots,
in which the modal coefficients are known from Eq. (3.7). The conditions used are
then

(ci)j = ci(y
C
j ) =

N∑
k=1

wkρ(||yCj − yCk ||) j = 1, . . . , N (3.32)
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resulting in the system

c = GwT , (3.33)

in which G = (gkj) = ρ(||yCj − yCk ||) is the Gram matrix. So, once the weights have
been computed solving system (3.33) in the offline phase, in the online computations
the modal coefficients are obtained evaluating Eq. (3.31).

We point out that, despite in the present case the ci coefficients only depend on
a scalar variable, in the case of multidimensional dependence, RBF interpolation
can be used with no algorithmic modifications. Thus, more complex cases in which
the cylinder exhibits rigid motions with more translational and rotational degrees
of freedoms, could still be treated with the methodology described. Even in the
case in which the FSI problem involves a deformable body which alters the shape of
one or more boundaries of the fluid domain, RBF could be still used to interpolate
the fluid mesh nodal displacements based on the structural displacements reduced
coefficients.

The new coefficient at the online stage is computed by

c(yCnew) =
N∑
j=k

wkρ(||yCnew − yCk ||). (3.34)

The new point displacement is predicted as follows

dg(x, tnew) =
N∑
i=1

c(yCnew)ψi(x) = Ψc. (3.35)

Finally, we remark that the RBF interpolation can also be interpreted as a
network in which N is the number of neurons in the hidden layer, yCk is the centre
vector for neuron k, wk being the weight of neuron k in the linear output neuron.
Given this analogy, we point out that different and more efficient networks can
substitute RBF — which has a O(N2) computational cost — in future works.

3.4 Machine learning for eddy viscosity predic-

tion

In this part, a deep neural network is used for the prediction of the eddy viscosity,
mimicking the works done in [43, 66, 183]. In [66] radial basis functions has been
used to predict the temporal coefficients of the eddy viscosity based on the temporal
coefficients of the velocity. The study carried out in [183] used a fully connected
neural network to predict the parameterized coefficients of the eddy viscosity in a
steady simulation. Scholars in [43] studied the effects of the effective viscosity in
projection-based ROM simulations and employed a simple spline interpolation for
the prediction of the first dominant mode of the temporal coefficient of the eddy
viscosity from known values.

In the same spirit, a fully connected neural network and a recurrent neural
network based on the LSTM are presented here to predict temporal coefficients of
the eddy viscosity. The choice of the aforementioned methodologies relies on the
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idea of building a reduced problem independent of the turbulent technique (k − ϵ,
k−ω, etc.) that might be used at the offline stage to evaluate the eddy viscosity. The
first method uses the physical relation between the velocity field and eddy viscosity,
thanks to the Boussinesq hypothesis in Eq. (2.8). The second method assumes
a one-to-one dynamical mapping between the low-dimensional states ni and ni−1

defined in Eq. (3.36). The POD is applied to the snapshot matrix Sνt ∈ RNh×Ns and
the low-dimensional eddy viscosity is approximated using the POD as described in
Section 3.2.

νt(x, ·) ≈
Nνt∑
i=0

ni(·)ψi(x) = ΨnT . (3.36)

ψi(x) and ni(·) are the POD spatial and temporal coefficients modes for the eddy
viscosity, respectively. Nνt ≪ Ns denotes the selected number of modes to predict
the eddy viscosity. In contrast to the temporal coefficients modes of the velocity, and
pressure obtained by projecting the FOM onto the respective POD spatial modes
and subsequently solving the reduced problem as it is done in SubSection 3.3.1,
the predicted temporal coefficients modes for the eddy viscosity are modelled via
machine learning technique such as a multi-layer feed-forward neural network or
recurrent network.

3.4.1 POD-NNs

Within this method, the neural network is fed with temporal coefficients of the
velocity field a and mapped to the predicted temporal coefficient of the turbulent
viscosity, denoted ñ. For a comprehensive description on the theory behind the
Neural Networks (NNs), the reader is redirected to Goodfellow et al. [64]. In a
feed-forward neural network, the output of a single layer of a given input A ∈ RN is
given by Y = f(WA + b). W ∈ RM×N being the weight matrix, b ∈ RM is a bias
term, and f (.) is a nonlinear function that acts element-wise on its inputs.

The Multi-layer neural networks are generated by feeding the output hl =
fl+1(WlAl + bl) of a layer l as the input of the next layer. The general steps
of a multi-layer neural network are summarized in Algorithm 6. The vector hl is
often referred to as the hidden state or feature vector at the l− th layer. Generally,
training a network involves finding the parameters θ = {Wl,bl}l=L−1

l=0 such that the

expected loss L(Ŷ,Y) between the output Y and the target value Ŷ is minimized,
i.e.

θ∗ = argmin
θ

[L(Ŷ,Y)], (3.37)

where L(Ŷ,Y) is some measure of discrepancy between the predicted and target
outputs given in some cases by,

L(Ŷ,Y) =

[
1

n− 1

n∑
i=1

||Yi − g(Yi−1;θ)||22
||Yi||22

]
, (3.38)

for example in the case of RNNs. With g a one-to-one mapping given by Ŷi =
g(Yi−1;θ). Figure 3.2 depicts the schematic of simple feed forward neural network
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Figure 3.2: Schematic of a multi-layer neural network

with multiple layers. Such architectures are typically used in classification problems.
In the following SubSection 3.4.2, we will discuss POD-RNNs based on the Long
Short-Term Memory (LSTM).

Algorithm 6: Compute MLP output.

Input : χ;
1 set ζ0 ← χ ;
2 for i← 1 to l+1 do
3 hi ←Wiζi−1 + bi ;
4 ζi ← gi(hi);

5 return ζ ← ζl+1;
Output: ζ = f(χ);

3.4.2 POD-RNNs

This methodology assumes the following relationships

ñi+1 = g(ñi). (3.39)

g being an unknown mapping between the flow fields of adjacent time steps. The
goal consists of learning a dynamical operator g by finding the parameters θ (weights
and biases) that allow to recurrently predict finite time series of the low-dimensional
states. Recurrent Neural Networks (RNNs) are designed specifically to deal with
sequential data. Data coming from transient CFD simulations or any nonlinear dy-
namical system are a set of time series that is sequential. This makes the application
of RNNs to non-linear dynamical systems quite relevant [25].

RNNs differ from the traditional feed-forward neural network with the presence
of a recurrent connection. This particular recurrent connection is responsible for
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Figure 3.3: Schematic of recurrent neural network

storing the history of previous inputsXi via hidden states. The basic mathematical
structure of a simple RNNs cell for an input Ai ∈ RN and output Yi ∈ RM given
as follows

Xi = f(WxXi−1 +WaAi + b) and Yi = g(WyXi). (3.40)

Wx ∈ RNx×Nx , Wa ∈ Nx × N , and Wy ∈ RNx×M being the hidden, input and
output weight matrices respectively. b ∈ RM represents the bias term, and Xi−1

the cell state at time i−1. The general steps of a RNN are summarized in Algorithm
7.

Figure 3.3 depicts the schematic of simple recurrent neural network. They differ
from the traditional feed-forward neural network with the presence of a recurrent
connection. This particular recurrent connection is responsible for the storing the
history of previous inputs via hidden states. This work considers RNNs equipped
with LSTM units [145] where the main steps are described in Algorithm 8. The
straightforward prediction of ν̃t at the online level is given using Eq. (3.36) i.e.

ν̃t = ΨñT . (3.41)

Algorithm 7: Compute the output sequence of an RNN

Input : Sequence x1, · · · , xp;
1 h0 ← 0 ;
2 for t← 1 to p do
3 ht ← gh(WhXXt +Whhht−1 + bh);
4 ζt ← gζ(Wζhht + bζ);

Output: Sequence ζ1, · · · , ζp
The RNNs are typically trained using stochastic gradient descent (SGD), or

some variant, but the gradients are calculated using the backpropagation through
time (BPTT) algorithm [173]. For a detailed discussion on BPTT the reader might
refer to [12]. In BPTT, the RNN is first unrolled in time, stacking one copy of the
RNN per time step. Training RNNs has long been considered to be challenging [12],
especially when learning sequences with long-term dependencies as the gradients
either vanish or explode. The vanishing or exploding gradient problem is typically
addressed by using gated RNNs, including LSTM networks [145]. and networks
based on the gated recurrent unit (GRU) [37]. These networks have additional
paths through which gradients neither vanish nor explode, allowing gradients of the
loss function to back-propagate across multiple time steps and thereby making the
appropriate parameter updates.
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Algorithm 8: General scheme of the LSTM algorithm

Input : Sequence x1, · · · , xp;
1 h0 ← 0 ;
2 C0 ← 0 ;
3 for t← 1 to p do
4 ft ← σ(Wf [xt, ζt−1] + bf ) ;
5 it ← σ(Wi[xt, ζt−1] + bi) ;

6 C̃t ← tanh(Wf [xt, ζt−1] + bf ) ;

7 Ct ← ft ⊗Ct−1 + it ⊗ C̃t ot ← σ(Wo[xt, ζt−1] + bo) ;
8 ζt ← ot ⊗ tanh(Ct−1) ;

Output: Sequence ζ1, · · · , ζp

3.5 Efficient projection in moving domains prob-

lems

Following the derivation of [47], when considering an entrained and/or deformable
computational domain Ω(t), of boundary ∂Ω(t) with the unit external normal n(t)
and velocity ug respective to an absolute reference domain frame, the following ALE
integral form for the Navier-Stokes equations can be written as follows

δ

δt

ˆ
Ωi

udΩi = −
∑
j∈Si

[Fc(u,ug) + Fd(u)] · ndSj −∇p. (3.42)

where ∂Ωi = Si represents the i− th face of the cell Ωi considered in the mesh. Fc

and Fd are the convective and diffusive fluxes. Then, the average of the conservative
variables u in the cell Ωi can be defined as

u =
1

V(Ωi(t))

ˆ
Ωi(t)

u(x, t)dΩi (3.43)

Where V(Ωi(t)) is the time-dependent volume of the related cell. By substituting
Eq. (3.43) in Eq. (3.42), the following relation holds

δV(Ωi(t))u

δt
= f(u, t). (3.44)

Finally, we obtain

V(Ωi(t))
δu

δt
= f(u, t)− uδV(Ωi(t))

δt
. (3.45)

An additional source term is present in the right-hand side of the FOM Eq. (3.45)
to take into account the variation of the cell volumes. For a preliminary study, this
last source term can be neglected so that the following formulation is obtained

δu

δt
=
f(u, t)

V(Ωi(t))
. (3.46)
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The previous equation takes into account the time dependence of the mesh metric
for the calculation of the flow balance. The projection in L2 sense of Eq. (3.46) is
given as follows, (

ΦT ,
δu

δt

)
L2(Ωi(t)

=

(
ΦT ,

f(u, t)

V(Ωi(t))

)
L2(Ωi(t)

. (3.47)

This leads to

ΦTV(Ωi(t))ȧ = ΦTf(u, t). (3.48)

This form will have a practical advantage when constructing a surrogate model
with hyper-reduction for future research. In Section 3.6, to construct an efficient
hyper-reduction model Eq. (3.48) will be considered.

3.6 Hyper-Reduction: From projection to inter-

polation

The Empirical Lagrangian Interpolation Method (ELIM) was proposed in 2004 [11]
as a way of identifying a good set of interpolation nodes on multidimensional un-
structured meshes and has found numerous applications. For a very short list, the
interested reader can refer to [1, 11, 31, 32, 51, 158, 164]. Recently, the concept of
neural empirical interpolation method (NEIM) has been introduced in [67]. NEIM
is a greedy algorithm which accomplishes the reduction by approximating an affine
decomposition of the nonlinear term of the ROM, where the vector terms of the
expansion are given by neural networks depending on the ROM solution, and the
coefficients are given by an interpolation of some ”optimal” coefficients. In the
following, we discuss the concept of ”projection to interpolation”, and the ELIM
algorithm.

3.6.1 From projection to interpolation

In Section 3.2, we discussed that the optimal linear representation in any weighted L2

norm, given a basis (assuming for simplicity and conditioning that it is orthonormal)
of cardinality, n is through an expression of the form

u(x, t) ≈ Pn[u] =
n∑

i=1

ai(t)ϕi(x) (3.49)

where ai and ϕi satisfy Eq. (3.5) and properties mentioned in Section 3.2.
The approximation through projection onto a reduced basis, Eq. (3.49), is re-

placed by interpolation (in the physical dimension(s), x) as follows. First, a basis
is chosen, for example through a POD or greedy approach. The interpolant then is
sought to have the form:

In[u](x, t) =
n∑

i=1

αi(t)ϕi(x) (3.50)
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where αi are defined to be solutions of the interpolation problem; namely that the
interpolant exactly agrees with the function at the Lagrangian nodes (the construc-
tion of which we discuss below) as follows

In[u](Xi, t) = u(Xi, t), ∀ i = 1, · · · , n. (3.51)

For the moment, we shall assume that the Lagrangian nodes Xi are known and
proceed to describe how to use them to find the Lagrangian interpolant. This can be
somewhat misleading, since it is not the way it works in practice, which is: the first
Lagrangian node is found, its associated interpolant built, the second Lagrangian
node is found, the interpolant enriched to take it into account, and so on. They
are not disjoint processes, unlike standard spectral methods, where all the Gaussian
nodes are found and afterwards the interpolant built. This is not only a procedural
difference, but highlights a big difference of the Empiral Lagrangian Interpolation
Method (ELIM): namely that the approach (nodes and interpolant) is hierarchical.
Hopefully this gradual presentation is intuitive and pedagogical, later in this section
we will present the full, coupled algorithm together with its numerical intricacies.

Solving Eq. (3.51) is equivalent to solving the n-by-n system:

n∑
i=1

Vjiαi(t) = u(Xj, t), (3.52)

where the interpolation matrix Vji = {ϕi(Xj)} is a generalization of the Vander-
monde matrix. It is worth mentioning that when polynomial basis is used, the
Vandermonde matrix can easily be very ill-conditioned if the nodes are chosen, for
example, equally spaced, not to mention if they are scattered. So one can anticipate
that the solution to the problem Eq. (3.50) is already non-trivial and one of the goals
of the ELIM is to make sure that it does not lead to an ill conditioned problem, as
well as providing a high accuracy interpolant.

The choice of empirical nodes given by the ELIM together with the linear inde-
pendence of the reduced basis ensures that V is invertible, so that:

αi =
n∑

j=1

V −1
ij u(Xj, t). (3.53)

is the unique solution to Eq. (3.52). It then follows upon substituting Eq. (3.53)
into Eq. (3.50) that the empirical interpolant is

In[u](x, t) =
n∑

j=1

Bj(x)u(Xj, t). (3.54)

where

Bj(x) =
n∑

j=1

ϕj(x)V
−1
ij (3.55)

is independent of t. Note that the coefficients {Bj}nj=1 satisfy Bj(Xi) = δij and are
built directly from the reduced basis. Next we present the general algorithm how to
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compute the ELI nodes in a rather qualitative way.

3.6.2 Empirical Lagrangian Interpolation algorithm

We present the Empirical Lagrangian Interpolation (ELI) algorithm as introduced
in [100]. The ELI algorithm is remarkably simple. It relies on a greedy selection
process, both in the choice of basis functions and interpolation points. In a greedy
algorithm, the next step is determined by some local optimality criterion based on
the current situation. This may in some cases lead to a globally optimal algorithm,
but in most cases, as for the ELI method, this is not generally true. For a more
thorough explanation of the concept of greedy algorithms, see e.g. [40]. We now
present the ELI algorithm, given as Algorithm 9.

Algorithm 9: Empirical Lagrangian Interpolation Method

Input : Basis or set U = {uj}nj=1;

1 u1 = argmax
u∈U
||u(.)||L∞(Ω) ;

2 x1 = argmax
x∈Ω̄
|u1(·)| ;

3 q1 = u1(·)/u1(x1);
4 B1

11 = q1(X1);
5 for M ← 2 to Mmax do

6

M−1∑
j=1

qj(xi)αM−1,j[u] = u(xi), i = 1, · · · ,M − 1 ▷ Solve the

interpolation problem;

7 Compute the interpolant IM−1[u(·)] =
M−1∑
j=1

αM−1,j[u]qj(·) ;

8 ϵM−1(u) = ||u− IM−1[u]||L∞(Ω) ;
9 uM = argmax

u∈U
||ϵM−1(u)||L∞(Ω) ;

10 xM = argmax
x∈Ω̄
|uM(x)− IM−1[uM ](x)| ;

11 rM(·) = uM(·)− IM−1[uM ](·) ;
12 qM(·) = rM(·)/rM(xM);
13 BM

ij = qj(xi), 1 ≤ i, j ≤M ;

Output: ELI nodes {xj}Mj=1 and the interpolant IM

Note that if for some reason, the set of functions U were to be given, all linearly
independent, then the procedure of finding the interpolation points through the
above process is also well-defined and leads to a set of interpolation points that have
similar properties as above. It is worth mentioning that, instead of choosing the
interpolation node as is done in step 10 in Algorithm 9, it is possible to choose the
interpolation node that fully minimize the condition number of the interpolation-
matrix and/ or Lebesgue constant of the interpolant. For more details, the reader
can refer to [163].

The rationale for the greedy approach is that it allows us to get a better sense
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of the interpolation properties since

||u− In[u]||L∞(Ω) ≤ ||un+1 − In[un+1]||L∞(Ω) = ϵn(Xn+1). (3.56)

and this last quantity is one of the outputs of the construction process. How we
may limit the required number of interpolation nodes through the use of a posteriori
error estimates is discussed in SubSection 3.6.3.

3.6.3 Error analysis

In this section, we make use of the Lebesgue constant, defined as

Λn = sup
x∈Ω

n∑
j=1

|Lj(x)|. (3.57)

For the Empirical Lagrangian Interpolation (ELI) method, an upper bound for Λn is
given by 2n−1 [11]. This is however a very pessimistic estimate, and in practice the
observed behaviour is usually far better. A classical result in approximation theory,
also known as Lebesgue’s lemma [11], gives the following bound for the interpolation
error.

Lemma 3.6.1. Assume X is a Banach space, and Xn ⊂ X, dim(Xn) = n. For any
u ∈ X the interpolation error satisfies:

||u− In[u]||X ≤ (1 + Λn)||u− Pn[u]||X . (3.58)

Here, the projection error ||u − Pn[u]||X is the best possible approximation of
u in the approximation space Xn. For the ELI method, Lemma 3.6.1 can be made
considerably more precise if a few conditions are fulfilled. It can in fact be shown
that the upper bound for the interpolation error from the greedy algorithm is given
by

Theorem 3.6.1. Assume U ⊂ X ⊂ L∞(Ω) and the existence of a (possibly un-
known) sequence of finite dimensional spaces

Z1 ⊂ Z2 ⊂ · · · ⊂ Zn ⊂ span(U) dim(Xn) = n, (3.59)

such that there exists c > 0 and α > log(4) with,

∀u ∈ U , ||u− Pn[u]||X ≤ ce−αn. (3.60)

Then

||u− In[u]||L∞(Ω) ≤ ce−(α−log(4))n. (3.61)

Proof. see [100].

This theorem has some immediate implications. First, if there exists a finite
dimensional space allowing for an exponential approximation, the ELI method will



44 CHAPTER 3. REDUCED-ORDER MODELS

achieve an exponential rate of convergence. Also, if the spaces Zi are not prede-
termined, the greedy algorithm provides us with such a sequence through the ELI
space Xn. A third and final advantage of the greedy algorithm is that it allows easy
access to an a posteriori error estimate, as we know that the argmax definition ϵn+1

in Algorithm 9 ensures that

||u− In[u]||L∞(Ω) ≤ ||un+1 − In[un+1]||L∞(Ω) = ϵn(Xn+1). (3.62)

This implies that we always know the maximum error for the previous interpo-
lation space. This can be used to end Algorithm 9 at a predefined tolerance level
and thus avoid computing all nmax stages.

3.7 Summary

This chapter gave a general tool for model-order reduction used in this thesis. Here,
six sections have been discussed. Each contributing to a comprehensive understand-
ing of the core of this thesis, which was to build a surrogate model based on the POD
for segregated solvers with moving domains. In Section 3.2, the POD is presented
for time-dependent problems for moving domains for incompressible flows. How-
ever, it is worth mentioning that ROM can be suitable also compressible flows with
moving domains or boundaries. Moving forward, Section 3.3 addressed the reduced
algorithm based on the PIMPLE algorithm, which combined the projection-based
on the governing equations and data-driven techniques. After that, in Section 3.3.4
and Section 3.4 the POD has been combined with radial basis functions and machine
learning algorithms respectively to predict the grid displacement and eddy viscos-
ity field at the online stage. In Section 3.5, efficient projection in moving domains
problems is presented to circumvent the expensive projection on the linear systems
coming from the discretized governing equations. Lastly, in Section 3.6, hyper-
reduction is introduced. The hyper-reduction is based on the ELIM for choosing the
interpolation nodes in the mesh domain.
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4.1 Physical problems of interest

There are numerous physical problems in an engineering system. Common physical
problems solved using the standard FVM include: heat transfer, acoustics, fluid me-
chanics. In this section, we will present most applications on fluid mechanics, espe-
cially in fluid dynamics. The first physical problem of interest is the two-dimensional
flow passing a translating circular cylinder in a laminar regime. As in industrial and

45
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real-world applications, many fluid dynamics problems involve turbulent flows inter-
acting with moving boundaries, the second problem of interest is a two-dimensional
problem of the flow passing an airfoil section which is able to rotate and trans-
late in the turbulence regime. The second test case is a classical benchmark in the
field of aerospace engineering. Lastly, the third case is a 2D Burger’s equation on
a backward-facing step. The 2D Burgers’ equation on a backward-facing step is a
significant test case for validating hyper-reduction techniques. By efficiently solving
this problem, one can gain insights into more complex fluid-structure interaction
problems. The hyper-reduction methods ensure that the essential dynamics of the
flow are captured with reduced computational effort, making it feasible to solve
large-scale problems in practical engineering applications.

4.2 Unsteady Laminar Case

This result section, in full, is a reprint of: A reduced-order model for segregated fluid-
structure interaction solvers based on an ALE approach. In revision : submitted
2023.

4.2.1 Description of the configuration and boundary condi-
tions

The benchmark considered is an elastically mounted cylinder restrained to move
transversely as shown in Figure 4.1.

Figure 4.1: Cross flow vortex-induced vibrations

4.2.2 Description of the configuration and boundary condi-
tions

The computational domain has a length of 34 D and a width of 10D, where
D = 1.0m is the cylinder diameter. The cylinder is located at a 5D distance from
the inlet. Figure 4.2 presents a view of the two-dimensional computational grid,

https://export.arxiv.org/abs/2305.13613v1
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Inlet Sides Outlet Cylinder
u u = (1, 0) u · n = 0 ∇u · n = 0 u = (0, ẏC)∗

p ∇p · n = 0 ∇p · n = 0 p = 0 p = 0
dg dg = 0 dg = 0 dg = 0 dg = (0, yC)∗

Table 4.1: A summary of the boundary conditions imposed in the ALE fluid dynamic
problem. Note that the ∗ subscript indicates quantities that are computed by the
rigid body structural solver.

(a) (b)

Figure 4.2: The mesh used in the simulations: (a) the initial mesh, (b) the deformed
mesh in correspondence with a cylinder displacement of approximately 40% of the
diameter.

both in its reference/initial configuration, and in a deformed state caused by the
0.4D vertical displacement of the cylinder. The grid features 11 644 cells (control
volumes) and 24 440 points. The flow velocity at the inlet is U∞ = (Uin, 0) with
Uin = 1.0m s−1, and the physical viscosity ν = 0.005 kg/ms. This corresponds to a
Reynolds number of 200. Although the transition to turbulent flow occurs between
150 and 200, so we use a laminar solver anyway. As summarized in Table 4.1, at
the inlet boundary non-homogeneous Dirichlet and zero gradient conditions are pre-
scribed for the velocity and the pressure fields respectively. At the outlet boundary,
zero gradient and homogeneous Dirichlet conditions are prescribed for velocity, and
pressure respectively. On the sides (top and bottom) zero gradient conditions are
prescribed for both velocity and pressure respectively. On the cylinder, we apply
the structural solver interface coupling conditions described in Section 2.6.

4.2.2.1 Linear solvers for the fluid

The simulations are carried out using the PIMPLE Algorithm 2. The PIMPLE
algorithm has the capacity to adapt the time steps in a way that assures the maxi-
mum Courant–Friedrichs–Lewy (CFL) does not exceed a prescribed value of 0.5 in
this simulation. The implicit Euler scheme is used for the computation of the time
derivative of the velocity field. For the spatial gradients, a Gauss linear scheme
has been employed. The convective term has been approximated with the Upwind
scheme. Gauss linear scheme is used to approximate the diffusive term. The values
of the relaxation factors αu, and αp have been fixed at 0.7 and 0.3, respectively. One
non-orthogonal corrector iteration is used to deal with the mesh’s non-orthogonality.
In addition, one pressure corrector and two momentum correctors are used in the
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Re fn [Hz] c [kg/s] k[N/m] m [kg]
200 0.185 0.01 6.76e-2 0.05

Table 4.2: Simulation parameters

simulations. As for the linear solvers, a smoother Gauss-Seidel has been used for
solving the momentum equation, and GAMG (geometric-algebraic multi-grid) for
solving the pressure equation.

4.2.2.2 Structural solver

As mentioned, the structural model is represented by the second-order differential
Eq. (2.56) for rigid-body motion, here solved using the Symplectic 2nd-order explicit
time-integrator. The mass of the cylinder considered in the numerical tests is m =
0.05 kg, the spring stiffness is m = 6.76 × 10−2Nm−1, which results in the natural
frequency fn = 0.185Hz. The cylinder to ground connection damping coefficient is
c = 0.01 kg s−1. The flow and structure parameters are summarized in Table 4.2.

4.2.3 Results and discussion

The main objective of the present numerical test is that of evaluating the reduced-
order model (ROM) ability to predict the flow fields corresponding to the final
periodic regime solution. The full-order model solver used in this simulation cam-
paign to collect snapshots is the Finite Volume Method (FVM) C++ open source
library OpenFOAM [76]. At the reduced-order level, modal reduction, as well as
the assembling and resolution of the reduced-order systems are carried out using
the C++-based open source library ITHACA-FV (In real Time Highly Advanced
Computational Applications for Finite Volumes) [155, 157]. ITHACA-FV has been
developed to be interfaced to the Finite Volume solvers featured in OpenFOAM. The
latter FVM library is in fact widely used in industrial applications. For such a rea-
son, interfacing the present ROM implementation with OpenFOAM data structures
makes the methods developed readily applicable for real world problems. Finally,
we point out that the C++ library SPLINTER [61] has been used in this work to
build the RBF networks.

In the framework of the current cross flow cylinder test case, the full-order model
(FOM) simulation was run for enough time to reach a periodic regime solution. After
this, it was relaunched for 30 additional seconds with a constant simulation time
step of 0.001 s exporting the solution fields every 0.1 s.

4.2.3.1 Computational cost

Table 4.6 reports a comparison analysis of the full-order and reduced-order models
execution times as the number of modes for the prediction of velocity, pressure, and
grid nodes displacement fields are varied. This allows for evaluating the effect of the
number of modes variation on the computational cost of the online phase.

The offline stage comprises four steps: the computation of the snapshot (com-
puted by a numerical approximation of the original high-dimensional system), com-
putation of the POD basis, projection of the dynamics on the low-rank subspace, and
the radial basis networks evaluation. But only the computational cost of the first
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Stages # of modes Time [s]
Offline PDE solu-
tion

- 4.0567e+03

Online PDE solution
Nu = Np = 30, NpD = 1 4.211267616e+03
Nu = Np = 20,NpD = 1 3.39621e+03
Nu = 15, Np = 10, NpD = 1 2.90248e+03
Nu = 20, Np = 10, NpD = 1 3.28614e+03

Table 4.3: Offline and Online times comparison varying the number of modes

step is reported in Table 4.3 as it is the most expensive one. The online cost is the
computational time needed to compute the solutions of the surrogate model. The
computational times in Table 4.3, suggest that the ROM solution only allows for a
modest speed-up with respect to the FOM solver. Moreover, the speed-up obtained
by the online solution of the reduced system is not proportional to the reduction of
the unknowns obtained at the reduced-order level. This is because, in the presence of
a deforming domain such as the one characterizing our FSI simulations, the entries
of the matrices of the ROM system must be computed at each time step through
integrals on the updated full-order grid. This at the moment represents a major bot-
tleneck towards a ROM that grants significant computational cost reduction with
respect to its FOM counterpart, and work is being carried out — implementing
hyper-reduction techniques — towards lowering the computational cost associated
with the reduced model assembling. Nonetheless, the main goal of the present work
is that of assessing the accuracy of the ROM approach taken. In particular, it is
important to establish whether the interaction between the physics-based reduction
of the fluid dynamic balance equations, and the data-driven reduction of the fluid
dynamic fields and grid displacement motion, results in an accurate solver.

4.2.3.2 Reconstruction error

Fig. 4.14 shows both the decay of the cumulative eigenvalues and the Relative
Information Content (RIC) corresponding to the three correlation matrices of the
fields of interest — u, p,dg. The RIC is a simple quantitative metric to understand
the Kolmogorov width of a given system [3]. The Kolmogorov width provides a
measure of the system’s reducibility. In the POD context, it can be considered
a measure of how well a linear superposition of POD modes might represent the
underlying dynamics. The following RIC formula by Eq. (4.1) is used to compute
the percentage’s modal energy:

RIC(M) =

(
M∑
i=1

λi/
Ns∑
i=1

λi

)
× 100, (4.1)

where M is the number of POD modes used, and Ns is the total number of modes
computed. RIC can then be seen as the amount of the overall system energy retained
by the first M POD modes.

Fig. 4.3 displays an extremely fast decay of the grid node displacement (dg)
eigenvalues. This fast decay shows that for dg most of the energy is concentrated
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Figure 4.3: From left to right, the eigenvalues decay and cumulative eigenvalues
of the POD modes. Blue lines indicate velocity eigenvalues, green lines indicate
pressure eigenvalues, and red lines indicate point displacement eigenvalues

in the first POD mode. This observation implies that the ALE field can be reduced
with just M = 1 POD mode. Thus, for such a variable the original FOM field,
which featured 24 440 grid nodes, is approximated with only one degree of freedom.
A similar observation was also reported in [63]. One possible reason for this very
favourable DOF ratio between ROM and FOM is that making use of Slerp, most
of the node’s displacement dg is occurring in a region concentrated around the
moving interface, and the node’s motion propagates linearly towards the far-field
boundaries. Of course, this situation is quite suitable for a linear approximation such
as the one provided by POD. Conversely, the eigenvalues of pressure and velocity
show a significantly slower decay, with respect to the one observed for dg. This
slow decay phenomenon implies that more spatial modes have to be used at the
reduced order level to capture the system dynamics of the original system. As
pointed out in [5], such a slow eigenvalue decay is likely due to the presence of grid
deformation in the problem considered. In the same paper, the authors suggest
that steeper eigenvalues decay can be obtained equipping the POD modal matrix
with a domain filter. Alternatively, it is possible to treat grid deformation using
Hadamard formulation for domain deformation, as suggested in [21], to carry out
all simulations in a reference domain.

4.2.3.3 ROM solution error

Once the reconstruction error has been characterized, we aim to analyse the quality
of the online problem solution. Thus, to evaluate how close the predicted ROM
solutions are with respect to the FOM ones, Figure 4.4 illustrates a qualitative
comparison between the solution fields contour plots corresponding to time t = 20 s
obtained with both the FOM and ROM solvers. The plots confirm that, to the
eyeball test, the ROM solutions obtained using the mixed POD-Galerkin projection
(for the fluid dynamic variables) and POD-RBF (for the grid displacement field)
appear similar to the high-fidelity ones. It is also worth pointing out that the top
plots in Fig. 4.4 confirm the ROM is able to reproduce the 2S mode of the classical
Von Kármán vortex street as observed in the FOM solution.

A more quantitative assessment of the ROM accuracy is presented in Figure 4.5,
and, Figure 4.6 which depict the time evolution of the ROM’s L2 absolute error
of the velocity and pressure fields, respectively. In the diagrams, each curve is
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(a) (b)

Figure 4.4: FOM and ROM solutions comparison at t = 20 s from left to right: col-
umn (a) FOM solutions and column (b) predicted solutions. The first row represents
the velocity fields, second-row pressure fields, and third-row grid nodes displacement
fields of both FOM and ROM. The reduced solution used POD 20 modes for both
velocity and pressure, and 1 mode for grid nodes displacement.
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Figure 4.5: Velocity field Absolute ROM error in the L2 norm as a function of time.
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Figure 4.6: Pressure field Absolute ROM error in the L2 norm as a function of time.

obtained with different combination of modal truncation orders. The L2 absolute
error reported in the plots is computed, for a given quantity q, as

ϵq = ||qFOM − qROM ||L2(Ω). (4.2)

The plots in Figure 4.5, and Figure 4.6 indicate that selecting different numbers of
modes has the expected impact on the ROM prediction, as the error values drop as
the number of modes used in the online stage is increased. The absolute value of
the ROM solution error for the velocity field shown in Figure 4.5 can be related to
the average velocity error dividing it ϵu by the overall domain area AΩ = 339.21m2.
In our case, even using as low as Nu = 5, Np = 5, the average velocity error in
the domain is approximately 5.9× 10−4ms−1. The corresponding average error for
the pressure field obtained with Nu = 5, Np = 5 is 1.8 × 10−3 Pa. Not only both
values appear quite acceptable, compared to the peak velocity and pressure values
— shown for instance in Figure 4.4 — but significantly lower values are obtained
making use of more modes. This confirms that the methodology proposed for the
online resolution of the ROM system is able to accurately approximate the FOM
solution.

However, a low overall or average error in the pressure and velocity fields might
still be in principle associated with high local error in small regions, for instance sur-
rounding the cylinder. One of the main goals for researchers and engineers studying
fluid dynamic problems such as the cross-flow cylinder here considered is often the
evaluation of the forces acting on a body or a boundary surface in general. Such
forces depend on the local values of the pressure and velocity fields around the body
of interest. The global error evaluators shown so far in Figures 4.5 and 4.6 might
not be good indicators if the aim is the assessment of how well the ROM solvers are
able to predict the fluid dynamic forces acting on a body. The plots in Figures 4.5
and 4.6 provide in fact little information on the local distribution of such errors,
which might have a relevant impact on the body forces of our FSI simulations. In
such a case, both the fluid dynamic forces and the cylinder displacement might be
computed with low accuracy. So, a further step in the ROM results analysis is
represented by the evaluation of the fluid dynamic forces and cylinder displacement
accuracy.

Fig. 4.7 depicts the time history of the lift force exerted by the fluid on the cylinder.
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Figure 4.7: Time series comparison between the reference curve of the lift force
acting on the cylinder in Newton unit with predicted curves .
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Figure 4.8: Time evolution of the absolute errors of the pressure reduced approxi-
mation. The error values in both graphs are in percentages.

In the plot, the FOM solution is compared to the ones obtained with ROMs making
use of different number of pressure and velocity modes. The plot clearly shows that
the ROM lift force values converge to the FOM ones as the number of modes used
in the online stage is increased. The plot also suggests that the ROM methodology
proposed can obtain a qualitatively good approximation of the lift force through-
out the time integration window considered when as many as 21 modes are used
for both velocity and pressure fields. Further confirmation of this is given by the
corresponding absolute error plots presented in Figure 4.8, in which it is possible to
observe that in the combinations of pressure and velocity modes using more than
20 modes each, the error is around the 1% value.

Similar plots relative to the drag are presented in Figure 4.9 and Figure 4.10.
Also in this case, the diagram presents a comparison between the FOM drag curve
and the corresponding curves obtained with ROM models making use of different
modal truncation orders. These plots suggest that the qualitative behaviour of the
cylinder resistance is well captured across all time steps of the flow simulation with a
higher number of modes, and that higher absolute error appears when the number of
modes decreases. Thus, it can be said that the accuracy shown by these plots is quite
satisfactory when a number of both pressure and velocity modes higher than 20 is
used. Additional confirmation to complement ROM accuracy is shown by comparing
the power spectral density curves as depicted in Figure 6.2. The time histories of
the cylinder displacement are also interesting data because the motion is not known



54 CHAPTER 4. APPLICATIONS AND NUMERICAL RESULTS

0 5 10 15 20 25 30
Time [s]

0.015

0.020

0.025

D
ra
g

[N
]

FOM Nu = Np = 30 Nu = Np = 21 Nu = 16, Np = 21 Nu = Np = 11 Nu = Np = 5

Figure 4.9: Time series comparison between the reference curve of the drag force
acting on the cylinder in Newton unit with predicted curves.
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Figure 4.10: Time series of the absolute error analysis of the drag force (original
and predicted signals) from Figure 4.9
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Figure 4.11: Time series evolution of the centre of mass.
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Figure 4.12: Time series evolution of the centre of mass absolute error.

as a priori, as is the case with forced vibrations. So, as a final confirmation of the
proposed ROM results quality, it is also important to consider the time history of
the displacement of centre of the cylinder computed during the simulations. Fig.
4.11 presents the comparison of the original curve of the displacement of the centre
of the mass and the corresponding curves obtained with ROM models making use of
different modal truncation orders. Also in this case, the accurately of the ROM to
reproduce the time history of the cylinder motion depends on the number of modes
used. This is because the displacement of the centre of the mass depend on the lift
force as one can see in Eq. (2.56) and the lift force are computed using velocity and
pressure fields. The ROM solution obtained making use of Nu = 5 velocity modes
and Np = 5 pressure modes (blue line) visually appears less accurate with respect
to the full-order one, and to the other ROM solutions. All the curves corresponding
to other modal truncation orders appear considerably more accurate, as confirmed
by the error plots in Figure 4.12, in which the cylinder centre of gravity error for
such ROMs fall below the 2% threshold throughout the entire time series.

Lastly, in implementing the POD for low-dimensional modelling, we project the
infinite dimensional evolution equation such as the Navier-Stokes equations, onto a
finite-dimensional empirical subspace, of possibly quite low dimension. One natural
question that arises is how well do the truncation and projection approximate the
attractor present in the original dynamical system [69]. Additional plots, not re-
ported here, give an answer to this question where the ROM accurately reproduces
all the limit cycles present in the original system.



56 CHAPTER 4. APPLICATIONS AND NUMERICAL RESULTS

4.3 Unsteady Turbulent Case

This result section, in full, is a reprint of: A hybrid reduced-order model for segregated
fluid-structure interaction solvers in an ALE approach at high Reynolds number.
Submitted, 2024.

4.3.1 Definition of test case, simulation results, and discus-
sion

This section shows the results obtained for our reference test case which represents
two-dimensional turbulent flow past a plunging and pitching airfoil. The simulation
is carried out for a total time of 500 flow through times (FTTs). In the present

case, such time unit is defined as the time FTT =
L

||U∞||
= 0.01 required by a fluid

particle to travel a distance equivalent to the airfoil chord L at the speed of the
undisturbed stream ||U∞|| [79].

The 500 FTTs duration choice allows for the flow to fully develop also in the
wake region. The test case of the study is the analysis of a two-degree freedom
flutter as shown in Figure 4.13.

(a)

(b) (c)

Figure 4.13: (a) Schematic of the fluid-structure system considered: a foil allowed
to undergo 2 degrees of freedom fully passive plunging and pitching motion with
spring constraints [171], (b) a picture of the zoomed mesh with 12 556 cells (control
volumes) and 26 316 node points near an airfoil of chord length 1.0m, (c) picture
showing the position of the foil in the computational domain

4.3.1.1 Definition of the test case

Fig. 4.13 (c) shows the 2D computational domain used in this work. The grid
features 12 556 cells (control volumes) and 26 316 node points. It also features
an extrusion layer around the airfoil to better capture the physical boundary layer.

https://arxiv.org/abs/2406.12701
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The molecular viscosity ν = 10−5m2/s ≈ νair. The boundary conditions prescribed
for the velocity field at the inflow boundary are non-homogeneous Dirichlet. The
velocity value imposed is that of a uniform and constant horizontal velocity U∞ =
(Uin, 0) with Uin = 102ms−1. Given the airfoil’s chord length L = 1.0m, the
resulting Reynolds number is 107. On the — moving — airfoil boundary a Dirichlet
boundary condition is applied, imposing that the fluid’s velocity is equal to the
airfoil surface one. On the top and bottom boundaries, we made use of symmetry
boundary conditions, while, zero pressure value and zero normal velocity gradient
are prescribed at the outflow boundary. The full-order simulations are carried out
using the PIMPLE algorithm, as described in Algorithm 2. The PIMPLE algorithm
can adapt the time step in a way that assures the maximum Courant number does
not exceed a prescribed value which in this case, has been set to 0.5. As Reynolds
average Navier-Stokes (RANS) is used in this work, the time step ∆t is chosen based
on the following rule of thumb [79]: ∆t ≈ 100∆tDNS.

with ∆tDNS ≈
Co× η

Uin

and η ≡ L×Re−
3
4 , (4.3)

where L is the size of the largest eddies (in this work, L = 1m), η is the Kolmogorov
length scale and it is the smallest hydrodynamic scale in turbulent flows. The
turbulence model used in this test is the k − ω SST model, which in several works
(see for instance [130]) proved capable of simulating turbulent flows associated with
vortex induced vibrations.

The Implicit Euler scheme is used for time discretization, and for the spatial gra-
dients, a Gauss linear scheme is employed. The convective and diffusive terms have
been approximated with the first-order Upwind scheme [153] for more stability. The
reason is that, in the transport-dominated turbulent regime here under study, the lo-
cal Peclet number can reach peak values greater than 2. The values of the relaxation
factors αu, and αp are fixed at 0.7 and 0.3 respectively. One non-orthogonal correc-
tion at each PIMPLE iteration is used to deal with the mesh’s non-orthogonality. In
addition, one pressure correction (inner correctors) and two momentum corrections
(outer correctors) are used in the simulations. The linear solver selected combines
a smoother Gauss-Seidel solver used for the pressure equation, and a symmetric
Gauss-Seidel solver for the momentum equation. The structural motion is com-
puted by means of the sixDoFRigidBodyMotionSolver OpenFOAM solver. Given
the external fluid dynamic forces acting on a rigid body, such a solver is able to com-
pute the linear and angular displacements in three dimensions. However, the airfoil
here considered is only free to translate along the vertical direction (plunge dis-
placement) and rotate along the axis perpendicular to the planar domain Ω (pitch
displacement). The resulting system of two second-order differential Eqs. (2.57)
and (2.58) is solved using the Symplectic second-order explicit time-integrator for
solid-body motion [48]. The Arbitrary Lagrangian-Eulerian (ALE) method deals
with the motion of the grid nodes resulting from the fluid-structure coupling. In
particular, the plunging displacement h, and the pitching displacement θ of the air-
foil are used to deform the mesh (in the transverse and rotational directions), as
described in SubSection 3.3.4. Table 4.4 reports a comprehensive summary of all
the modelling and numerical parameter values used for the simulation setup.
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4.3.1.2 Simulation results

This section presents the results obtained with the reduced model developed on the
airfoil test case described earlier. As mentioned, the ROM is based on the POD-
Galerkin approach for the momentum and continuity equations (velocity and pres-
sure fields), on POD-LSTM or POD-NNs for the online eddy viscosity computation,
and POD-RBF for the mesh displacement update.

Table 4.4: Summary of simulation settings of the flow passing pitch-plunge airfoil

Flow settings Structure settings
Re 107 fsh = fh = fθ 20Hz
Time scheme Implicit Euler Time scheme Sympletic
Gradient scheme cellLimited Gauss

linear 1
m 22.9 g

Convective
scheme

Gauss upwind gz −9.81m/s2

Laplacian scheme Gauss linear lim-
ited 0.5

Lz -2

St =
fshc sinα

U∞
0.2 kh 3.6262×105Nm−1

Uin 102ms−1 kθ 3.25× 104Nm−1

Co 0.5 ch 2Nm−1

∆tDNS
C0×Re−

3
4

Uin
cθ 5× 10−1Nm−1

Turbulence model k − ω SST Izz 2.057121362

In Table 4.4, St is the Strouhal number, fsh the frequency of the vortex shedding.
Lz is the angular momentum in Z-direction, and gz the gravity in the Z-direction.
The following quantities: m, fh, fθ, kh, cθ, kθ, ch, and Izz are defined in Section 2.5.2
Note that the FVM C++ library OpenFOAM version 2106 [76] has been used for
data collection at the full-order model level. Such a numerical solver, widely used
in industrial applications [75, 147] exploits the fact that FVM locally respects the
balance of momentum and mass. At the reduced level, the reduction and resolution
of the reduced system are carried out using the C++-based library ITHACA-FV (In
real Time Highly Advanced Computational Applications for Finite Volumes) [155,
157]. ITHACA-FV is designed to carry out Galerkin projection of PDE problems
that, at the full-order level, are solved making use of FV discretization based on
OpenFOAM. The interpolation using RBF in this work has been carried out using
the C++ library SPLINTER [61]. The radial basis used for interpolation is the thin
plate spline with the radial basis’s radius set to 1. Finally, the RNNs/ NNs are
built using the PyTorch library [123]. The next Subsection assesses the qualitative
prediction of the reduced model.

4.3.1.3 Prediction quality

The point of this Subsection is that of establishing the accuracy of the modal decom-
position upon which the reduced model is based. Table 4.5 presents the eigenvalues
associated with the first five dominant modes of all the fields of interest. The values
reported also suggest that for the grid nodes motion (pointDisplacement field), one
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single mode could be enough to predict the mesh motion with acceptable accuracy.
Hence, in this study, 1 mode will be used to predict the airfoil motion. A more
comprehensive view of the modes eigenvalues magnitude is presented in Figure 4.14.

#
Modes

Eigenvalues U Eigenvalues p Eigenvalues νt Eigenvalues
pointDisplace-
ment

1 1 1 1 1
2 0.001480623 0.07835354 0.007290981 0.027573111
3 0.001133095 0.008968419 0.001695786 0.00201184
4 0.000992664 0.001758634 0.000879206 0.000000351
5 0.000356768 0.000941899 0.000580963 0.00000000018

Table 4.5: Normalized eigenvalues of the POD modes of the fields of interest
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Figure 4.14: The decay of the POD modes eigenvalues for velocity, pressure, point-
Displacement, and Eddy viscosity fields. Color code: blue – velocity, green –pressure,
red – pointDisplacement, magenta – eddy viscosity

4.3.1.4 Machine learning of the temporal eddy viscosity coefficients

For all the training runs in this work, a variant of the stochastic gradient descent
algorithm called adaptive moment estimation ADAM [78] is used as an optimizer.
ADAM has an adaptive learning rate method which is commonly used to train deep
networks. The optimization is based on a scaled version of the modal coefficients,
given by

âj(t) =
aj(t)− ⟨aj(t)⟩

σ[aj(t)]
, (4.4)

where ⟨aj(t)⟩ is the mean value of the modal coefficient time series considered and
σ[aj(t)] is the corresponding variance. The dataset scaling is necessary to avoid
that the gradients that enter the computations of the cost function are too small. In
such a case, it would be impossible to generate significant updates of the parameters
of the network [20]. The model parameters (weights and bias) are trained with the
PyTorch library [124] and later imported in the C++ solver to generate the transient
predicted solution for the eddy viscosity during the online computations. The full
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details on training, validation, and testing are reported in 6.1. The accuracy of the
resulting feed-forward NN and LSTM-RNNs model results are illustrated in Fig. 6.1.
The four diagrams represent the time series of the modal coefficients corresponding
to the four energetically dominant modes of the full-order model eddy viscosity, as
well as their data driven approximations. In the diagrams, the two dashed vertical
lines divide the time axis into the training window, on the left, the validation window,
located between the red and blue dashed lines, and the testing window, on the right.
The picture confirms that both models are able to capture the overall trend of the
reference FOM solution, not only in the training time window, but also in the and
validation and testing ones. By a quantitative perspective, both data driven models
appear accurate in the reproduction of frequency, amplitude and phase of the first
three modal coefficients of the eddy viscosity field. The plot corresponding to the
fourth modal coefficient shows instead a drop of the accuracy of the feed-forward NN
prediction, while, on the other hand, the LSTM-RNN prediction remains as accurate
as for the previous modes. Thus, this preliminary analysis suggests that both feed-
forward NN and LSTM-RNN data driven algorithms used are in principle capable
of approximating with good accuracy the eddy viscosity modal coefficients. This is
of course crucial for a correct closure of the turbulent problem at the reduced level.
The next sections will then assess if the quality of the eddy viscosity approximation
— which appears high except for higher order modal coefficients obtained with feed-
forward NN — will translate into accurate ROM results.

4.3.1.5 ROM online resolution time

The data were generated by transient simulations running for one second and saving
snapshots of the flow field every 0.0005 seconds for a total of 2001 snapshots. All
simulations were run on an HP Pavilion laptop with AMD Ryzen 7 5700u with
Radeon graphics ×16, 16GB RAM, AMD Renoir graphics card, and Ubuntu 20.04
operating system. Table 4.6 reports a comparison analysis of the full-order and
reduced-order models execution times as the number of modes for the prediction of
velocity, pressure, pointDisplacement, and eddy viscosity is varied. This allows for
evaluating the effect of the number of modes variation on the computational cost of
the online phase.

The offline stage comprises four steps: the computation of the snapshot (com-
puted by a numerical approximation of the original high-dimensional system), com-
putation of the POD basis, projection of the dynamics on the low-rank subspace,
and the Machine Learning training of the neural networks (including for the radial
basis networks). But only the computational coast of the first step is reported in
Table 4.6 as it is the most expensive one. The online coast is the computational
time needed to compute the solutions of the surrogate model. In Table 4.6, one can
observe a small speed-up, as this work does not employ hyper-reduction technique.

However, the results in Table 4.6 suggest that the speed-up obtained by the
online solution of the reduced system is not proportional to the reduction of the
unknowns obtained at the reduced-order level. This is due to the fact that in the
presence of a deforming domain such as the one characterizing our FSI simulations,
the entries of the matrices of the ROM system must be computed at each time step
through integrals on the updated full-order grid. Clearly, this is at the moment
representing a major bottleneck towards a ROM which grants significant computa-
tional cost reduction with respect to its FOM counterpart, and work is being carried
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Stages # of modes Time [s]
Offline - 3.441516e+4

POD-NNs
Nu = Np = 5, Nnut = 3,
NpD = 1

1.770725259e+4

Nu = Np = 10,Nnut =
5,NpD = 1

1.957406359e+4

Nu = 15, Np = 5, Nnut = 2,
NpD = 3

2.159144848e+4

Nu = 10, Np = 5, Nnut = 3,
and NpD = 1

1.942751287e+4

POD-LSTM Nu = Np = Nnut = 5 and
NpD = 3

1.766056714e+4

Nu = 15, Np = 5, Nnut = 3
and NpD = 3

2.136608204e+4

Table 4.6: Offline and Online times comparison varying the number of modes

out towards lowering the computational cost associated with the reduced model as-
sembling. Nonetheless, the main goal of the present work is that of assessing the
accuracy of the ROM approach taken. In particular, it is important establishing
whether the interaction between the physics based reduction of the fluid dynamic
balance equations, and the data driven reduction of the turbulence and grid dis-
placement equations, results in an accurate solver.

4.3.1.6 ROM online resolution quality

The present Subsection aims to analyse how close the predicted ROM solutions are
to the FOM ones. To this end, Figures 4.15 and 4.16 shows a qualitative comparison
between the solution fields contour plots corresponding to time t = 0.1 s obtained
with both the FOM and ROM solvers. The plots in the figure confirm that, to the
eyeball test, the ROM solutions obtained using both POD-NNs and POD-LSTM
appear by all means similar to the high-fidelity ones.

More quantitative considerations can be driven from Figure 4.17, Figure 4.18,
and Figure 4.19 which depict the time evolution of the ROM L2 error of the ve-
locity, pressure, and eddy viscosity obtained with different combinations of modal
truncation orders for the velocity field. Note that the L2 relative error for a given
quantity q is computed as follows:

ϵq =
||qFOM − qROM ||L2(Ω(t))

||qFOM ||L2(Ω(t))

× 100%. (4.5)

The results in Figure 4.17 confirm the qualitative impression of accuracy given by
Figures 4.15 and 4.16, as the velocity field errors plotted remain well below the 1%
threshold for the entire simulation. The plot also clearly indicates that the velocity
field accuracy obtained making use of POD-NN is higher than that obtained with the
POD-LSTM approach. This is further confirmed by Figure 4.18, in which the error
associated with POD-LSTM is approximately as high as 1%, while the POD-NN
approach results in appreciably lower error levels. The satisfactory results shown in
these plots depend on the NN/ LSTM algorithm effectiveness in the calculation of
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(a) (b) (c)

Figure 4.15: Comparison of the velocity and pressure fields. First row velocities
comparison and second row pressure comparison. Column (a) FOM fields, column
(b) reduced solution with POD-NNs and column (c) reduced solution with POD-
LSTM. The snapshots are captured in the second period i.e. t = T = 0.1 s

(a) (b) (c)

Figure 4.16: Comparison of the eddy viscosity and grid node displacement fields.
First row eddy viscosity comparison and second row grid node displacement com-
parison. Column (a) FOM fields, column (b) reduced solution with POD-NNs and
column (c) reduced solution with POD-LSTM. The snapshots are captured in the
second period i.e. t = T = 0.1 s.
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Figure 4.17: Sensitivity study of the error (log-scale) in the L2-norm versus the time
evolution of the velocity field. The red line shows the results obtained inside and
outside the time window
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Figure 4.18: Sensitivity study of the error (log-scale) in the L2-norm versus the time
evolution of the pressure field. The red line shows the results obtained inside and
outside the time window
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Figure 4.19: Sensitivity study of the error in the L2 norm in log-scale versus the
time evolution of the eddy viscosity field. The red line shows the results obtained
inside and outside the time window
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the eddy viscosity field POD coefficients time evolution. In this regard, it is worth
pointing out that the Figure 4.19 error magnitude suggests that a 1-2% error level
for the eddy viscosity field approximation, leads to consistently lower error values
on the velocity and pressure fields. These observations seem to further validate the
data driven approach taken for the eddy viscosity field, as it appears to lead to small
errors of pressure and velocity fields, which are the main fields of interest for our
simulations. Fig. 4.19 also shows that the error associated with the POD-LSTM
approach presents a pattern characterized high frequency oscillations, which might
be the culprit for the higher error levels observed in the velocity and pressure fields.
This is consistent with what other researchers have observed in [20, 52, 154] in the
prediction of the velocity field in a channel flow. In their study, they reported that
the phenomenon was due to an insufficient number of snapshots of the training
dataset or when the number of cells in the hidden layer was not enough. In addition
to that, the lifetime of a transient turbulent state is highly sensitive to the initial
conditions and if only one component of the initial conditions differs by 10−12, the
resulting trajectory will diverge from the truth one. It is also possible that the
memory in the sequence can affect the LSTM accuracy as reported in [109] because
signals originating from chaotic dynamic systems are known to have quite short
correlated events and memory does not typically persist over long periods. In this
case, the Hurst exponent is a prominent solution [70] for further investigations.
However, the mentioned suggestions were not the emphasis of this paper. Instead,
the emphasis was concentrated on the design of the overall solver to generate a
reduced model for segregated FSI solvers for turbulent regime in the FV context.

The plots in Figure 4.17, Figure 4.18, and Figure 4.19 also visualize the effect
of the number of velocity modes on the accuracy of the ROM solutions. In general,
increasing the number of velocity modes considered at the online level increases the
accuracy, especially in the initial transient part of the time integration. However,
an increase to values higher than 10 modes does not appear to result in significant
gains. It is finally important to point out that the snapshots for the POD have been
collected only in a training window corresponding to the first half of the time history
plotted — the one on the left of the red dashed vertical line in each plot. So, the
plots also indicate that, in the case of a periodic problem as the one analyzed, the
ROM errors are not significantly growing if time extrapolation is carried out.

A further step in the ROM results analysis is represented by the evaluation of
the fluid dynamic forces and airfoil displacement accuracy. In fact, the L2 errors
discussed in the previous plots provide information on the average discrepancy of the
most relevant fluid dynamic quantities in the fluid domain. However, the previous
plots provide little information on the local distribution of such errors, which might
have relevant impact on our FSI simulations. In fact, a low overall error in the
pressure and velocity fields might still be in principle associated with high local
error in small regions, for instance surrounding the airfoil. In such a case, both
the fluid dynamic forces and the airfoil displacement might be computed with low
accuracy.

Fig. 4.20 depicts the time history of the lift force exerted by the fluid on the
airfoil. In the plot, the FOM solution is compared to the ones obtained with ROMs
making use of different number of pressure and velocity modes. The plot suggests
that both the ROM methodologies proposed are able to obtain qualitatively good
approximation of the lift force throughout the time integration window considered,
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Figure 4.20: Time series comparison between the reference signal of the lift force
acting on the foil in Newton unit with predicted signals. The vertical line in red
divides the signal in two: left prediction in the time window and right prediction
outside the time window (extrapolation).
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Figure 4.21: Time series of the error analysis of the lift force (original and predicted
signals) from Figure 4.20. The vertical line in red divides the error plots in two.
Left: interpolation error and right: extrapolation error.

even including the initial transient. Also in this case, the plot indicates with a red
dashed vertical line the separation between the training window, on the left, and
the time window, on the right, in which the solution is extrapolating over the time
variable. An inspection of the lift curves suggests that, when POD-NN is considered,
no significant error increase is associated to time extrapolation. As for POD-LSTM,
a slight degradation of the prediction quality is observed in the extrapolation region.
Further confirmation of this is given by the corresponding error plots presented in
Figure 4.21, in which it is possible to observe that for all the combination of pressure
and velocity modes considered, the error remains below the 1% threshold, except
for the initial transient, in which the Nu = Np = 5 solution for both POD-NN and
POD-LSTM presents a slightly higher error.

Similar plots relative to the airfoil drag are presented in Figure 4.22 and Fig-
ure 4.23. Also in this case, the figure presents a comparison between the FOM drag
curve and the corresponding curves obtained with ROM models making use of dif-
ferent modal truncation orders. The plot suggests that the qualitative behaviour of
the airfoil resistance is well captured across all time steps of the flow simulation,
including the extrapolation time window. The value of the drag error obtained
with POD-NN is again lower than 1% for the most part of the overall time history,
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Figure 4.22: Time series comparison between the reference signal of the drag force
acting on the foil in Newton unit with predicted signals. The vertical line in red
divides the signal in two: left prediction in the time window and right prediction
outside the time window (extrapolation).
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Figure 4.23: Time series of the error analysis of the drag force (original and predicted
signals) from Figure 4.22. The vertical line in red divides the error plots in two.
Left: interpolation error and right: extrapolation error.

although non-negligible portions of the error curve pass such a threshold. Such a
higher relative error is just a product of the lower absolute value of the drag force
with respect to the lift values. Thus, it can be said that the accuracy shown by the
plots is quite remarkable, and is not degrading in the time extrapolation window.
On the other hand, the error obtained with POD-LSTM appears to settle for higher
values, although it remains below 5% for the time window analysed, including the
extrapolation region. Also, in this case, the increased error scale with respect to
the lift should be associated with the smaller magnitude of the drag force absolute
value and amplitude.

As a final confirmation of the proposed ROM results quality, it is important
to also consider the time history of the airfoil displacements computed during the
simulations. Fig. 4.24 depicts the airfoil centre of gravity position, as computed at
each time step by the FOM and by the ROM models proposed. The plot clearly
indicates that all the reduced-order model solutions closely track the full-order one.
For the most part of the time window — which as usual is divided into a training
part and an extrapolation part by the red dashed line in the plot — the plunge
coordinates curves obtained with all the POD-NN models considered appear in
fact overlapped to the FOM one. The POD-LSTM results obtained making use of
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Figure 4.24: Time series comparison between the reference signal of the plunge with
different predicted signals. The vertical line divides the signal in two: left prediction
in the time window and right prediction outside the time window (extrapolation).
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Figure 4.25: Plunge’s error analysis versus time.

Nu = 15 velocity modes and Np = 5 pressure modes have accuracy comparable
with the POD-NN ones. Instead, the POD-LSTM curve associated with Nu =
Np = 5 visually appears less accurate, especially in the extrapolation region. The
corresponding error plot is presented in Figure 4.25. The values reported in the
diagram substantially confirm that the POD-NN error obtained with all the modal
truncation combination considered, is in average as low as 0.1%, and always below
the 1% threshold. Again, it has to be remarked that this satisfactory result does not
appear to be negatively affected by time extrapolation, as the values in the second
half of the plot remain generally low.

Fig. 4.26 shows the time history of the airfoil pitch angle, as simulated with
the FOM solver, and with ROM solvers making use of different eddy viscosity ap-
proximation strategies and different modal truncation orders. Here, all the ROM
solvers tested — even the ones with lower truncation orders — lead to airfoil pitch
curve approximation that are barely distinguishable from the FOM one. This is
suggesting that not only the aerodynamic force, but also its point of application
are reproduced with accuracy at the reduced order level. As a consequence, the
pitch angle percentage error plot, presented in Figure 4.27 displays errors that are
consistently below the 0.1% value throughout the entire simulation, for all the ROM
models considered.
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Figure 4.26: Time series comparison between the reference signal of the pitch (angle
of attack) with different predicted signals. The vertical line in red divides the signal
in two: left prediction in the time window and right prediction outside the time
window (extrapolation).
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Figure 4.27: Pitch’s error analysis versus time.
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4.4 Empirical Lagrangian Interpolation

In this paragraph, as a preliminary result on hyper-reduction, we consider the Burg-
ers’ equation, the simplest well-known non-linear time-dependent partial differential
equation. The equation has found applications in fields as diverse as number theory,
gas and fluid dynamic, heat conduction, elasticity, viscous fluid, free turbulence,
and continuous stochastic processes. Besides, this equation is often used to test and
compare numerical techniques [148]. Burgers’ equation, being a non-linear PDE,
represents various physical problems arising in engineering, which are inherently
difficult to solve [149].

The Burgers’ equation is similar to the Navier-Stokes Equations (NSEs) with-
out the pressure term. In this application, we consider the following 2D Burgers’
equation,

∂u

∂t
+ (u · ∇)u− ν∆u = 0, (x, t) ∈ Ω× [0, T ] (4.6)

u(x, 0) = u0(x), x ∈ Ω (4.7)

u(x, t)|∂Ω = 0 t ∈ [0, T ]. (4.8)

Where Ω ⊂ R2 is a bounded domain with boundary ∂Ω. u being the velocity,
ν the viscosity. In this application, the viscosity ν = 0.0001. The time step is
set to ∆t = 0.005s, but a snapshot is collected every 20 time steps. We solve
the 2D non-linear conservation law with OpenFOAM [118]. Thus, we employ the
FVM in a structured orthogonal grid of 12 225 cells. At the inlet boundary, non-
homogeneous Dirichlet and zero gradient are prescribed for the velocity field. At the
outlet boundary, zero gradient is prescribed for the velocity. On the upper and lower
walls (top and bottom) no slip boundary conditions are prescribed for the velocity. In
the full order simulations, Gauss linear scheme was selected for the approximation of
the gradients and Gauss linear scheme with non-orthogonal correction was selected
to approximate the Laplacian term. A Gauss upwind scheme was instead used
for the approximation of the convective term. The FOM numerical scheme is the
SIMPLE algorithm. The time discretization is performed with the semi-implicit
Euler method. The linear solver used for the velocity equation is based on the
GAMG with Gauss Seidel smoother until a tolerance of 1e-08 on the FVM residual
is reached.

Figure 4.28: The 50 Lagrangian points are represented in red, the stencils of the
cells and associated degrees of freedom needed for the evaluation of the discrete
differential operators are in light-green. The discarded nodes in the evolution of the
dynamics are in blue. The stencil is made by 1 layer of cells.

In Figure 4.28, the first 50 empirical Lagrangian interpolation points are dis-
played. In this case, the estimation problem consists of reconstructing the remain-
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ing Nh −M components of u from the available M measurements, where M is the
number of Lagrangian points, and Nh = 12225 is the number of cells in the domain.

(a) (b) (c)

Figure 4.29: Comparison of the velocity field. First row original solutions, second
row reconstructed solutions using 50 Lagrangian points, and third row the recon-
structed errors. Snapshots are given at t = 0.1 s, t = 0.22 s, and t = 3 s.

A close inspection to Figure 4.28, and Figure 4.29 one can notice that the La-
grangian points are located where the solution has the highest value according to
the colour bar indicator.

4.5 Summary

In this chapter, we have presented the results of the application of various reduced-
order models (ROMs) on different CFD problems. These ROMs have been developed
in this thesis for the goal of reducing problems discretized by the FVM. In addi-
tion, a number of these ROMs were specifically constructed for the reduction of FSI
problems in both laminar and turbulent regime for incompressible flows. The results
shown in this chapter had been presented in the following works [113,115]. Eventu-
ally, the main goal of this chapter was to evaluate the performance of the efficiency
of the reduced models developed in this dissertation. In Section 4.2, we first tested
the reduced model on the flow passing a translation cylinder in the laminar regime.
Next, in Section 4.3, we considered a different test case on a flow passing a trans-
lation and rotational airfoil at high Reynolds number and the last application in
Section 4.4 was applied on the backward step case on a Burgers’s equation. The last
test case was presented as a preliminary results on the hyper-reduction technique to
circumvent the expensive cost of the Galerkin projection.



Chapter 5

Conclusions and Outlooks

This chapter firstly presents the conclusions which are drawn from the results of the
work done in this thesis. Secondly, it also gives an idea of possible future extensions
which could enhance or complete the work presented in this dissertation.

5.1 Conclusions

This thesis makes a substantial contribution to the field of reduced-order model
for fluid-structure interaction for segregated solvers in FV settings by developing
enhanced models, novel techniques, integrated framework, and improved computa-
tional methods, all validated through real-world applications. These advancements
might not only push the boundaries of academic knowledge but also offer practical
solutions for engineering challenges, paving the way for future research and innova-
tion in this dynamic field. The main goals presented in this thesis were the following

• The development of ROMs techniques specifically tailored for finite volumes
discretization schemes for segregated solvers for moving boundaries problems
such as FSI. This is particularly relevant since the FVM is mostly use in
industries to simulate real-life problems.

• The implementation of ROMs designed for the reduction of both laminar and
turbulent flows problems. As these types of flows are ubiquitous in real-world
applications, there is in fact an increasing demand to simulate them efficiently,
accurately, and inexpensively.

The following items summarize the methodologies used in this dissertation

• The Chapter 2 first presented the strong form of the governing equations of
the problem of interest, which is the incompressible Navier-Stokes Equations
(NSEs). Next, it addressed as well the discretization technique employed at the
full-order level, which is the Finite Volume Method. After that, the numerical
algorithms used by the full-order solver are also explained.

• In Chapter 3, the attention shifted to the reduction methodologies used in this
thesis. At first, the POD as a method for generating reduced-order spaces is
addressed. After that, both projection-based method and hybrid techniques
are presented. The first hybrid technique combines the POD and interpolation
using RBF to approximate the grid mesh motion, and the second mixes the

71
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POD and machine learning algorithms to approximate the eddy viscosity at
the online level. The chapter also dealt with a mathematical derivation for an
efficient projection technique and hyper-reduction to circumvent the expensive
projection-based method. In nutshell, the main objective of this chapter was
to provide a general reduction methodology for FSI problems with moving
boundaries for laminar, and turbulent flows when the Full-order Models (FOM)
is based on the Reynolds Averaged Navier-Stokes (RANS) equations. This goal
has been accomplished thanks to incorporating two data-driven techniques in
the ROM formulation.

After having summarized the methodologies followed in this thesis, we proceed to the
conclusions which can be drawn from the numerical tests conducted in Chapter 4.
The summary of the numerical tests and the conclusions are reported in the following
points

• The first one proposed in Section 4.2 is on the well-known flow passing an
oscillating cylinder. The results confirm that the ROM is able to reproduce all
response characteristics of the original system with acceptable accuracy, even
with high cylinder displacement.

• In Section 4.3, we consider a flow passing a translation and rotational airfoil
at a Reynolds number (Re = 107). The results confirm that the ROM is
able to reproduce the wake dynamics of the flow passing a moving body and
all the response characteristics of the system such as the lift and drag forces,
amplitude/ frequency of the displacement, and the limit cycle of the non-linear
dynamical system. The results show good convergence properties without any
necessity of additional stabilization for what concerns pressure solutions. This
is due to the fact that we used a segregated scheme, which tries to circumvent
the saddle-point stability issue.

• In Section 4.4, a first step on the construction of hyper-reduction technique for
segregated FSI problems addressed in this dissertation in order to hyper-reduce
the expensive projection strategy firstly introduced. Also, results show that by
selecting some optimal locations in the discretized domain, one can reconstruct
the field of interest with good accuracy. In this case, for what regards the
construction of the basis functions for the solution manifold covering, a greedy
algorithm has been selected in place of the POD we selected for the two first
test cases.

5.2 Outlooks and Perspectives

Finally, we suggest some possible future extensions of the work carried out in this
thesis.

• The first perspective would be to implement the Algorithm 5 of the surrogate
model with hyper-reduction technique.

• The second perspective would be to consider compressible flows with shocks
and see if the reduced-order models (ROMs) will also capture the shocks
present in the high fidelity problem;
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• Another natural direction for future work will be that of adding an atten-
tion layer in the LSTM encoder-decoder model, to keep track of coefficient
relationships within the inputs and output coefficients.

• Also an additional extension of this work will be the concept to divide and
conquer by applying the reduced algorithm on the splitting domains as shown
in Figure 6.5. This idea was already introduced in [6];

• The intersection of geometrical parametrization and fluid-structure interac-
tions is a critical focus in computational engineering and design. By incorpo-
rating parametric models, we can achieve a more precise definition, analysis,
and optimization of structures subjected to fluid forces. This approach not
only enhances the accuracy of simulations but also enables the fine-tuning of
designs for maximum efficiency and robustness. Such advancements are vi-
tal across various fields, from aerospace to biomedical engineering, where the
ability to accurately simulate and optimize fluid-structure interactions leads
to more innovative, effective, and resilient designs. One could consider this as
a direction of research.





Chapter 6

Appendices

6.1 Machine learning of the temporal eddy vis-

cosity coefficients

The main building blocks of the feed-forward NNs contain four layers: an input
layer which is the temporal vector coefficients of the velocity, two hidden layers of 10
units each followed by an ELU (exponential linear unit) activation function, and the
output layer which is the temporal vector coefficients of the eddy viscosity. The first
50% of the data in the time series is used for training (30%) and validation (20%)
and the remaining for testing. The model is trained over 500 epochs.

For LSTM-RNNs, an LSTM Encoder-Decoder model is used for training, valida-
tion, and test on the data set. The architecture of such a LSTM-Encoder-Decoder
model has one LSTM layer in the encoder part and another LSTM layer — in addi-
tion to one hidden layer of 5 units — in the decoder part. The reason for the choice
is that this model has been used extensively for sequence-to-sequence prediction in
the literature for NLP (natural language processing). The setup parameters of the
LSTM are reported in Table 6.1.

6.2 Cylinder additional results

In this section, we provide additional results for the flow around the moving cylinder
and some ideas for extension.

6.2.1 Synchronization analysis

The periodic state reached is characterized by the oscillation of the drag coefficient
at twice (fdrag ≈ 2fsh) the lifting frequency [132] as one can see in the right plot

ParametersHidden
size

learning
rate

optimizer LSTM
lay-
ers

Batch
size

Epochs input
dim

output
dim

Value 1 1e-4 ADAM 1 5 500 5 5

Table 6.1: LSTM hyper-parameters
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Figure 6.1: Training, validation, and test of the first four POD temporal coefficients
of the eddy viscosity at the offline level using LSTM and NNs. The first half of the
datasets (scaled between -1 and 1) is divided in two parts (30% for training and
20% for validation) for training and validation on both models. The remaining half
is used for testing on both architectures.

of Figure 6.2. One of the most exciting characteristics of the fluid body interac-
tion is that of synchronization, or ”lock-in,” between the vortex shedding and the
cylinder vibration frequencies. When the wake is synchronized, the vortex-shedding
frequency diverges from that corresponding to a fixed cylinder. It becomes equal to
the frequency of the cylinder oscillation which is 0.185, as shown in Figure 6.2. So,
our surrogate model is capable of reproducing the lock-in phenomenon.

6.2.2 Temporal coefficients analysis

In this subsection, we provide additional analysis of the efficiency of the predicted
temporal coefficients. Figure 6.3 and Figure 6.4 provide a comparison between the
predicted and reference coefficients.

6.2.3 Domain Filtering

In building ROMs or POD, the most accurate solution is typically generated by
the most independent modes. For a large region of nearly constant flow where
the perturbation solution tends to zero, large numbers of independent modes can
generate numerical errors when trying to create a nearly freestream condition. An
approach to dealing with this numerical error is to subdivide the computational
domain. For the regions of highest interest (near field), more modes will be retained
as depicted in Figure 6.5. Fewer modes will be required for intermediate field areas,
which are of lower interest. In area of little change from the freestream (far field),
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Figure 6.2: First row, from left to right: the time histories of the lift and drag
forces. The solid black lines are the FOM curves, and the dashed green lines are the
ROM curves obtained with 16 modes for the velocity and 21 modes for the pressure.
Second row, from left to right: Power spectra density comparison of the lift and
drag coefficients.
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Figure 6.3: First six temporal coefficients of the velocity: black original signals and
red predicted signals.
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Figure 6.4: First six temporal coefficients of the pressure: black original signals and
blue predicted signals

only two or three modes will be necessary. To implement this, a domain-based
filtering of the POD modal matrix, Φ has to be performed. For the grid-point
locations to be filtered, the value of Φ corresponding to the appropriate modes was
set to zero. Thus, the number of modes used in various regions was truncated. In
the near field, the number of modes varied depending on the complexity of the fluid
flow. For both the intermediate and far fields, an adequate number of modes can
be determined through trial and error. This domain filtering technique differs from
the domain decomposition technique. The interested reader should refer to [6] for
more insights.

(a) (b) (c)

Figure 6.5: Domain filtering: first row initial mesh, second row: (a) region of highest
interest (near mesh ), (b) region of lower interest (intermediate and (c) region not
affected by the mesh motion (far field).
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