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Abstract

This thesis presents the study of the second-order elastic constants (ECs) of body centered
cubic (BCC) refractory metals tungsten and molybdenum, and of the hexagonal close-packed
(HCP) beryllium at extreme conditions (high temperature and high pressure), using density
functional perturbation theory (DFPT) within the quasi-harmonic approximation (QHA).
Some preliminary results are also presented for tantalum.

Moreover, we present the thermodynamic properties including the equation of states
(EOS), phonon dispersion, thermal expansion (TE), bulk modulus, heat capacity and average
Grüneisen parameter which are calculated by density functional theory (DFT) implemented
in Quantum ESPRESSO. We find a reasonable agreement with available experiments with
some exceptions discussed in the thesis. In general, the temperature dependent QHA ECs
show a better description compared with quasi static approximation (QSA) ECs. The latest
experimental sound velocity measurements on tungsten support our findings.

For beryllium, the accuracies of various approximations on crystal structure (zero static
internal stress approximation (ZSISA) and volume-constrained zero static internal stress
approximation (V-ZSISA)), or on elastic constants (QHA versus QSA) which are widely
applied in ab initio thermodynamic calculations are quantified in detail. A numerical ap-
proach is given to compute the ECs in presence of internal relaxations when the free energy
is minimized with respect to the strain.

An alternative GPU acceleration for plane waves pseudopotentials electronic structure
codes designed for systems that have small unit cells but require a large number of k points
to sample the Brillouin zone, such as metals, is presented.

All phonon calculations in the thesis have benefited from this implementation in thermo pw.
As a side product of this work, the PAW pseudo potentials of tungsten have been updated
in pslibrary.
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Chapter 1

Introduction

The theory for equilibrium thermodynamics of periodic crystals is an essential component of
condensed matter physics. The crystal is viewed as a collection of ions and electrons, which
is then studied via quantum mechanics and statistical mechanics to describe the observable
physical quantities. Elastic constants (ECs) are an important quantity among these.

The ECs are theoretically defined as multiple strain derivatives of the state functions,
and quantify the degree of deformation and stability of the crystal to an external stress.
In particular, second-order ECs Cijkl are a fourth-rank tensor which quantifies the stress-
strain relation as a linear response in an elastic medium. From ECs and mass density, the
velocity of sound waves is derived and widely used in seismology to detect the chemical
composition in the internal structures of the Earth. Furthermore, ECs are key physical
quantities for the design of any engineering application of materials. With the development
of modern technology in high pressure physics, for many common pure elements ECs have
been measured extensively at room temperature, for instance by ultrasound techniques. So
do the pressure-dependent ECs. However the experimental information is still scarce at both
high temperature and high pressure conditions.

In this thesis the ECs are calculated from the second derivatives of the energy with respect
to strain at T = 0 K or from the second derivatives of the free energy at finite temperature.
The Helmholtz free energy is expressed as F = U−TS, where U is the internal energy of the
system and S is the entropy. The Helmholtz free energy contains the contributions from the
vibrations of ions in solids. Therefore, lattice dynamics of strained crystal structures should
be considered carefully.

Lattice dynamical calculations in a periodic system, using density functional perturbation
theory (DFPT), within the quasi-harmonic approximation (QHA), are among the most pop-
ular choices to simulate thermodynamic properties of crystals.[12] In the temperature range
far from the melting point, the Helmholtz free energy is written as the sum of electronic
and vibrational terms within the adiabatic approximation. The electronic contributions at
T = 0 K is given by density functional theory (DFT) and electronic excitations can be com-
puted within the rigid bands approximation from the electronic density of states (DOS).
The vibrational energy can be derived from the phonon spectra. Two advantages of DFPT,
as compared to other nonperturbative methods for calculating the vibrational properties of
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crystalline solids (such as the frozen phonon method or molecular dynamics spectral analysis
method) are the responses to perturbations of different wavelengths are decoupled, and the
response to a phonon at any wavelength is calculated in an unperturbed cell. The drawback
of this method is that it only accounts partially for anharmonicity, but it is still a good
approximation at low temperature (T < TD, where TD is Debye temperature), where the
quantum effects appear.

On the other side, molecular dynamics (MD) provides an efficient and economical tool to
study the crystal structures and properties in the thermodynamic equilibrium at the atomic
scale. It can be applied to the system in which the nuclear motion is classical. One can easily
simulate the system at finite temperature and pressure with MD, but MD can not provide a
complete description of the thermodynamic functions at low temperature (T <TD) due to the
neglect of quantum effects. Hence the two above methodologies are naturally complementary
to each other.

Our QHA+DFPT approach are implemented in thermo pw, which is a driver of Quantum
ESPRESSO routines for the automatic computation of ab-initio material properties. In 2016
thermo pw successfully handled elastic constants at T = 0 K [39]. In the next few years, this
technique has been extended to QHA temperature dependent ECs (TDECs) calculations,
particularly applied to face centered cubic (FCC) system (Al, Cu, Ag, Au, Pd, Pt)[118, 119,
121, 120], silicon and BAs [122]. It was possible to calculate the ECs both within the quasi
static approximation (QSA) as the second derivatives of the total energy and within the
QHA as second derivatives of the free energy.

Despite the above developments on TDECs calculations, there were still several unsolved
challenges. Firstly, the investigation of pressure dependent ECs was missing. Secondly, a
roadmap for TDECs of anisotropic solids was unclear in thermo pw. For complex systems,
a method beyond zero static internal stress approximation (ZSISA) was needed to verify its
accuracy. In addition, the computation of TDECs for metals was computationally intensive
and required to exploit the power of graphical processing unit (GPU) accelerators.

We address these problems in this thesis. Ab initio calculations are carried out on both
temperature and pressure dependent ECs of the body centered cubic (BCC) metals tungsten
and molybdenum. Some preliminary results are presented also for tantalum. We compare our
results with experimental temperature and pressure dependent sound velocities and find a
good agreement between them. Another development presented in chapter 6 is dealing with
anisotropic solids: hexagonal close-packed (HCP) beryllium. HCP metal has two lattice
parameters and internal relaxations when strained. We numerically reexamine the TDECs
of beryllium focusing on the analysis of the effects of the common approximations made for
studying the ECs of anisotropic solids: ZSISA and the constant volume ZSISA (V-ZSISA)
approximation (also called the statically constrained quasi-harmonic approximation). The
accuracies of ZSISA and of V-ZSISA that are widely applied in ab initio thermodynamic
calculations are quantified. In particular, the effect of ZSISA on the calculation of C11 and
C12 is compared with a numerical approach beyond ZSISA that minimizes the free energy
with respect to the atomic positions at each strain. In beryllium, minor deviations are found
within ZSISA, which gives elastic constants (ECs) in good agreement with the full free energy
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minimization (FFEM). A substantial difference is found between the QHA and the QSA,
with the former closer to experiments.

In the chapter 7, we discuss the DFPT for calculations on metallic systems on (GPU). We
present an alternative GPU acceleration for plane waves pseudopotentials electronic structure
codes designed for systems that have small unit cells but require a large number of k points
to sample the Brillouin zone as happens, for instance, in metals. We discuss the diagonal-
ization of the Kohn and Sham equations and the solution of the linear system derived in
density functional perturbation theory. Both problems take advantage from a rewriting of
the routine that applies the Hamiltonian to the Bloch wave-functions to work simultaneously
(in parallel on the GPU threads) on the wave-functions with different wave-vectors k, as many
as allowed by the GPU memory. Our implementation is written in CUDA Fortran and makes
extensive use of GPU kernel functions. We compare our method with the CPUs only cal-
culation and with the approach currently implemented in Quantum ESPRESSO that uses GPU
accelerated libraries for the FFT and for the linear algebra tasks such as the matrix-matrix
multiplications as well as OpenACC directives for loop parallelization. We show in a realistic
example that our method can give a significant improvement in the cases for which it has
been designed.

‘
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Chapter 2

Theoretical approach

2.1 Dynamical theory of crystal lattices
In this section we briefly review lattice dynamics from the perspective of electronic structure
theory. Lattice dynamics studies the vibrations of atoms in a periodic crystal system. The
oscillations of atoms, also known as phonons, play an important role not only in the theory
of solids, but also in determining a large number of solid properties and corresponding appli-
cations, such as thermodynamic functions, thermal expansion, infrared absorption, thermal
conductivity, superconductivity, phase transitions and so on.

Electronic structure calculations provide the forces acting on atoms, which can be used
to calculate the dynamical matrix and obtain phonon dispersion relations. These relations
describe how phonon frequencies vary with the wavevector and are essential for understanding
thermodynamic properties.

The QHA is often used to study the temperature dependence of various material prop-
erties. QHA requires the calculation of phonon frequencies at different volumes. Thermal
expansion, heat capacities, and temperature-dependent elastic constants can be predicted
using this approach.

In summary, electronic structure theory provides a robust foundation for understanding
and predicting lattice dynamics. The interplay between electrons and phonons, described
through various theoretical and computational approaches, is key to unraveling the complex
behaviors of materials.

2.1.1 Atoms in crystal
In the example of a periodic crystal, the equilibrium positions of atoms are conventionally
expressed as:

RI =Rµ+ds (s= 1, . . . ,Nat) , (2.1)
where Rµ are the Bravais lattice vectors, and ds are the positions of the atoms in a unit
cell. Nat is the total number of atoms in a unit cell. N unit cells are taken into account with
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Born-von Karman periodic boundary conditions. Ω is the volume of one cell. Therefore:

V =NΩ (2.2)

is the total volume of the solid. Atom I is vibrating from its equilibrium position and uI(t)
represents the displacement of the atom I at a certain time t. The total energy of the electron
system calculated at fixed nuclei positions acts as the potential energy for the nuclei:

Etot (RI +uI) . (2.3)

The electrons are assumed to be in the ground state for each nuclear configuration. When
|uI | is small enough, Etot is expanded into a Taylor series with respect to uI assuming all
vibrations are simple harmonic oscillators:

Etot (RI +uI) = Etot (RI)+
∑
Iα

∂Etot
∂uIα

uIα+
1
2
∑
Iα,Jβ

∂2Etot
∂uIα∂uIβ

uIαuIβ+ . . . (2.4)

where the derivatives are calculated at equilibrium (uI = 0). α and β are Cartesian coordi-
nates in three-dimensional space.

2.1.2 Equations of motion
When atoms are at equilibrium positions ∂Etot

∂uIα
= 0, the Hamiltonian of this quantum system

becomes:
H =

∑
Iα

P2
Iα

2MI
+ 1

2
∑
Iα,Jβ

∂2Etot
∂uIα∂uJβ

uIαuJβ, (2.5)

where PI are the momenta of the nuclei and MI their masses. The classical motion of the
nuclei is given by the N ×3×Nat functions uIα(t). These functions are the solutions of the
Hamilton equations:

u̇Iα = ∂H

∂PIα
,

ṖIα =− ∂H

∂uIα
.

(2.6)

With our Hamiltonian:
u̇Iα = PIα

MI
,

ṖIα =−
∑
Jβ

∂2Etot
∂uIα∂uJβ

uJβ,
(2.7)

MI üIα =−
∑
Jβ

∂2Etot
∂uIα∂uJβ

uJβ. (2.8)
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2.1.3 The phonons
We can search the solution in the form of a phonon. Let’s introduce a vector q in the first
Brillouin zone. For each q we can write:

uµsα(t) =
A(q, t)√
Ms

ũsα(q)eiq·Rµ = usα(q)eiq·Rµ , (2.9)

where the amplitude A(q, t) of the displacement depends on time and the displacement of the
atoms in each cell identified by the Bravais latticeRµ can be obtained from the displacements
of the atoms in one unit cell, for instance the one that corresponds to Rµ = 0

(
A(q,t)√
Ms

ũsα(q)
)

multiplying by a phase factor.
A Γ-point phonon has the same displacements in all unit cells (q = 0). A zone border

phonon with qZB = G/2, where G is a reciprocal lattice vector, has displacements which
repeat periodically every two unit cells. A phonon with q = qZB/2 has displacements which
repeat every four unit cells. A phonon at a general wavevector q could be incommensurate
with the underlying lattice. Inserting this solution in the equations of motion and writing
I = (µ,s),J = (ν,s′) we obtain the following equations for the 3×Nat variables ũsα(q):

d2A(q, t)
dt2

ũsα(q) =−A(q, t)
∑
s′β

Dsαs′β(q)ũs′β(q), (2.10)

where:
Dsαs′β(q) =

1√
MsMs′

∑
ν

∂2Etot
∂uµsα∂uνs′β

eiq(Rν−Rµ), (2.11)

is the dynamical matrix of the solid. Diagonalizing the dynamical matrix:∑
s′β

Dsαs′β(q)eηs′β(q) = ω2
q,ηeηsα(q), (2.12)

we find the eigenvalues ω2
q,η and eigenvectors eηsα(q). Setting ũsα(q) = eηsα(q) the equations

of motion become:
d2Aη(q, t)

dt2
=−ω2

q,ηA
η(q, t), (2.13)

which are (for each q) the equations of 3×Nat decoupled harmonic oscillators whose solutions
are for instance:

Aη(q, t) = Aηq sin
(
ωq,ηt− δηq

)
, (2.14)

where Aηq and δηq depends on the initial conditions. The final solution of the problem is:

uµsα(t) =
∑
q,η

1√
Ms

Aηq sin
(
ωq,ηt− δηq

)
eηsα(q)eiq·Rµ . (2.15)
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2.2 Density functional pertubation theory (DFPT)

2.2.1 Adiabatic approximation
Adiabatic approximation, also known as the Born–Oppenheimer approximation, assumes
the decoupling of motions of nuclei and electrons in a quantum mechanical system, based on
the fact that the masses of nuclei are much heavier than the ones of electrons. Within the
Born-Oppenheimer adiabatic approximation the nuclei move in a potential energy given by
the total energy of the electron system calculated (for instance within DFT) at fixed nuclei.

2.2.2 Density functional theory (DFT)
Within DFT the ground state total energy of the solid, calculated at fixed nuclei, is:

Etot =
∑
i

〈
ψi

∣∣∣∣−1
2∇

2
∣∣∣∣ψi〉+∫ Vloc(r)ρ(r)d3r+EH [ρ]+Exc[ρ]+UII , (2.16)

where Vloc is the potential of the nuclei acting on the electrons. ρ(r) is the density of the
electron gas (2 sums over spins):

ρ(r) = 2
∑
i

|ψi(r)|2 , (2.17)

The sum over i is on the occupied states. |ψi⟩ are the wavefunctions. EH is the Hartree
energy:

EH = 1
2

∫
d3rd3r′

ρ(r)ρ(r′)
|r− r′|

. (2.18)

Exc is the exchange and correlation energy and UII is the ion-ion interaction.

2.2.3 Hellmann-Feynman theorem and second derivatives of the
energy

According to the Hellmann-Feynman theorem, the first order derivative of the ground state
energy with respect to an external parameter is:

∂Etot
∂λ

=
∫ ∂Vloc (r)

∂λ
ρ(r)d3r+ ∂UII

∂λ
. (2.19)

Deriving with respect to a second parameter µ, we get:

∂2Etot
∂µ∂λ

=
∫ ∂2Vloc (r)

∂µ∂λ
ρ(r)d3r+ ∂2Ull

∂µ∂λ

+
∫ ∂Vloc (r)

∂λ

∂ρ(r)
∂µ

d3r.

(2.20)
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So the new quantity that we need to calculate is the charge density induced, at first order,
by the perturbation:

∂ρ(r)
∂µ

= 2
∑
i

[
∂ψ∗

i (r)
∂µ

ψi(r)+ψ∗
i (r)

∂ψi(r)
∂µ

]
. (2.21)

To fix the ideas we can think that λ = uµsα and µ = uνs′β. The wavefunctions obey the
following equation: [

−1
2∇

2+VKS(r)
]
ψi(r) = εiψi(r), (2.22)

where VKS = Vloc (r)+VH(r)+VXC(r). VKS(r,µ) depends on µ so that also ψi(r,µ), and
εi(µ) depend on µ. We can expand these quantities in a Taylor series:

VKS(r,µ) = VKS(r,µ= 0)+ ∂VKS(r)
∂µ

µ+ . . . ,

ψi(r,µ) = ψi(r,µ= 0)+ ∂ψi(r)
∂µ

µ+ . . . ,

εi(µ) = εi(µ= 0)+ ∂εi
∂µ

µ+ . . . .

(2.23)

Inserting these equations and keeping only the terms of first order in µ we obtain the fol-
lowing: [

−1
2∇

2+VKS(r)− εi
]
∂ψi(r)
∂µ

=−∂VKS
∂µ

ψi(r)+
∂εi
∂µ

ψi(r), (2.24)

where ∂VKS
∂µ = ∂Vloc

∂µ + ∂VH
∂µ + ∂Vxc

∂µ and

∂VH
∂µ

=
∫ 1
|r− r′|

∂ρ(r′)
∂µ

d3r′,

∂Vxc
∂µ

= dVxc
dρ

∂ρ(r)
∂µ

,

(2.25)

depend self-consistently on the charge density induced by the perturbation. This is the case
for LDA. GGA is discussed in the Ref. [40]. The induced charge density depends only on
Pc

∂ψi
∂µ where Pc = 1−Pv is the projector on the conduction bands and Pv =

∑
i |ψi⟩⟨ψi| is

the projector on the valence bands. In fact:
∂ρ(r)
∂µ

= 2
∑
i

[(
Pc
∂ψi(r)
∂µ

)∗
ψi(r)+ψ∗

i (r)Pc
∂ψi(r)
∂µ

]

+2
∑
i

[(
Pv
∂ψi(r)
∂µ

)∗
ψi(r)+ψ∗

i (r)Pv
∂ψi(r)
∂µ

]
.

∂ρ(r)
∂µ

= 2
∑
i

[(
Pc
∂ψi(r)
∂µ

)∗
ψi(r)+ψ∗

i (r)Pc
∂ψi(r)
∂µ

]

+2
∑
ij

ψ∗
j (r)ψi(r)

(〈
∂ψi
∂µ

∣∣∣∣∣ ψj
〉
+
〈
ψi

∣∣∣∣∣ ∂ψj∂µ

〉)
,

(2.26)
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and the last term vanishes because the term inside parenthesis is d
dµ ⟨ψi|ψj ⟩= 0.

2.2.4 Self-consistent linear system
Now we can solve the self-consistent linear system:[

−1
2∇

2+VKS(r)− εi
]
Pc
∂ψi(r)
∂µ

=−Pc
∂VKS
∂µ

ψi(r), (2.27)

where
∂VKS
∂µ

= ∂Vloc
∂µ

+ ∂VH
∂µ

+ ∂Vxc
∂µ

, (2.28)

and
∂ρ(r)
∂µ

= 2
∑
i

[(
Pc
∂ψi(r)
∂µ

)∗
ψi(r)+ψ∗

i (r)Pc
∂ψi(r)
∂µ

]
. (2.29)

2.2.5 Dynamical matrix at finite q
The dynamical matrix is:

Dsαs′β(q) =
1√

MsMs′

∑
ν
e−iqRµ

∂2Etot
∂uµsα∂uνs′β

eiqRν . (2.30)

Inserting the expression of the second derivative of the total energy we have:

Dsαs′β(q) = 1√
MSMs′

[
1
N

∫
V d

3r
∑
µν

(
e−iqRµ ∂2Vloc(r)

∂uµsα∂uνs′β
eiqRν

)
ρ(r)

+ 1
N

∫
V d

3r
(∑

µ e
−iqRµ ∂Vloc(r)

∂uµsα

)(∑
ν
∂ρ(r)
∂uνs′β

eiqRν

)]
+DI,I

sαs′β(q).
(2.31)

We now show that these integrals can be done over Ω. Defining:

∂2Vloc(r)
∂u∗

sα(q)∂us′β(q)
=
∑
µν
e−iqRµ

∂2Vloc(r)
∂uµsα∂uνs′β

eiqRν , (2.32)

we can show (see below) that ∂2Vloc (r)
∂u∗

sα(q)∂us′β(q)
is a lattice-periodic function. Then we can

define
∂ρ(r)

∂us′β(q)
=
∑
ν

∂ρ(r)
∂uνs′β

eiqRν , (2.33)

and show that
∂ρ(r)

∂us′β(q)
= eiqr

∂ρ̃(r)
∂us′β(q)

, (2.34)

where ∂ρ̃(r)
∂us′β(q)

is a lattice-periodic function.
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By defining lattice-periodic function in the same way:

∂Vloc(r)
∂usα(q)

=
∑
µ

∂Vloc(r)
∂uµSα

eiqRµ , (2.35)

we can write the dynamical matrix at finite q as:

Dsαs′β(q) =
1√

MsMs′

[∫
Ω
d3r

∂2Vloc(r)
∂u∗

sα(q)∂us′β(q)
ρ(r)

+
∫
Ω
d3r

(
∂Ṽloc(r)
∂usα(q)

)∗
∂̃ρ(r)

∂us′β(q)

+DI,I
sαs′β(q).

(2.36)

We have:
∂2Vloc(r)

∂u∗
sα(q)∂us′β(q)

=
∑
µν
e−iqRµ

∂2Vloc(r)
∂uµsα∂uνs′β

eiqRν (2.37)

is a lattice-periodic function because the local potential can be written as

Vloc (r) =
∑
µ

∑
s
vsloc (r−Rµ−ds−uµs) , (2.38)

and ∂2Vloc(r)
∂uµsα∂uνs′β

vanishes if µ ̸= ν or s ̸= s′. Since µ= ν the two phase factors cancel, and we
remain with a lattice-periodic function:

∂2Vloc(r)
∂u∗

sα(q)∂us′β(q)
= δs,s′

∑
µ

∂2vsloc (r−Rµ−ds−uµs)
∂uµsα∂uµsβ

∣∣∣∣∣∣
u=0

. (2.39)

In order to show that:

∂ρ(r)
∂us′β(q)

=
∑
ν

∂ρ(r)
∂uνs′β

eiqRν = eiqr
∂ρ̃(r)

∂us′β(q)
, (2.40)

where ∂ρ̃(r)
∂us′β(q)

is a lattice-periodic function, we can calculate the Fourier transform of ∂ρ(r)
∂us′β(q)

and show that it is different from zero only at vectors q+G, where G is a reciprocal lattice
vector. We have

∂ρ

∂us′β(q)
(k) = 1

V

∫
V
d3re−ikr

∑
ν

∂ρ(r)
∂uνs′β

eiqRν . (2.41)

Due to the translational invariance of the solid, if we displace the atom s′ in the direction β
in the cell ν = 0 and probe the charge at the point r, or we displace in the same direction
the atom s′ in the cell ν and probe the charge at the point r+Rν , we should find the same
value. Therefore

∂ρ(r+Rν)
∂uνs′β

= ∂ρ(r)
∂u0s′β

, (2.42)
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or, taking r= r′−Rν , we have
∂ρ(r′)
∂uνs′β

= ∂ρ(r′−Rν)
∂u0s′β

, (2.43)

which can be inserted in the expression of the Fourier transform to give:
∂ρ

∂us′β(q)
(k) = 1

V

∫
V
d3re−ikr

∑
ν

∂ρ(r−Rν)
∂u0s′β

eiqRν . (2.44)

Changing variable in the integral setting r′ = r−Rν , we have
∂ρ

∂us′β(q)
(k) = 1

V

∫
V
d3r′e−ikr

′∑
ν

∂ρ(r′)
∂u0s′β

ei(q−k)Rν , (2.45)

The sum over ν: ∑ν e
i(q−k)Rν gives N if k = q+G and 0 otherwise. Hence ∂ρ

∂us′β(q)
(k) is

non-vanishing only at k = q+G. It follows that:
∂ρ(r)

∂us′β(q)
= eiqr

∑
G

∂ρ

∂us′β(q)
(q+G)eiGr, (2.46)

and the sum over G gives a lattice-periodic function.

2.2.6 Bloch theorem
According to the Bloch theorem, the solution of the Kohn and Sham equations in a periodic
potential VKS (r+Rµ) = VKS(r):[

−1
2∇

2+VKS(r)
]
ψkv(r) = ϵkvψkv(r), (2.47)

can be indexed by a k-vector in the first Brillouin zone and by a band index v, and:

ψkv (r+Rµ) = eikRµψkv(r),
ψkv(r) = eikrukv(r),

(2.48)

where ukv(r) is a lattice-periodic function. Periodic Boundary Conditions (PBCs) imply
that:

ψkv (r+Njaj) = ψkv(r). (1.59)
∴

eiNjk·aj = 1, (1.60)
hence, after introducing the vectors bj such that ai ·bj = 2πδij , the allowed wave vectors
are expressed as:

k = m1
N1

b1+
m2
N2

b2+
m3
N3

b3 (1.61)

where mj are integers such that 0≤mj <Nj . By time reversal symmetry, we also have:

ψ∗
−kv(r) = ψkv(r). (2.49)
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2.2.7 Charge density response at finite q
The lattice-periodic part of the induced charge density at finite q can be calculated as follows.
We have:

∂ρ(r)
∂us′β(q)

= 2
∑
kv

[(
Pc
∑
ν

∂ψkv(r)
∂uνs′β

e−iqRν

)∗
ψkv(r)

+ψ∗
kv(r)Pc

(∑
ν

∂ψkv(r)
∂uνs′β

eiqRν

)]
.

(2.50)

Changing k with −k in the first term, using time reversal symmetry ψ−kv(r) = ψ∗
kv(r), and

defining:
∂ψkv(r)
∂us′β(q)

=
∑
ν

∂ψkv(r)
∂uνs′β

eiqRν , (2.51)

we have:
∂ρ(r)

∂us′β(q)
= 4

∑
kv
ψ∗
kv(r)Pc

∂ψkv(r)
∂us′β(q)

(2.52)

We can now use the following identities to extract the periodic part of the induced charge
density:

∂ψkv(r)
∂us′β(q)

= eikr
∂ukv(r)
∂us′β(q)

= eikr
∑
ν

∂ukv(r)
∂uνs′β

eiqRν

= ei(k+q)r ∂ũkv(r)
∂us′β(q)

,

(2.53)

where ∂ũkv(r)
∂us′β(q)

is a lattice-periodic function. The projector in the conduction band Pc=1−Pv
is:

Pc =
∑
k′c

ψk′c(r)ψ∗
k′c

(
r′
)

=
∑
k′c

eik
′ruk′c(r)u∗k′c

(
r′
)
e−ik

′r′

=
∑
k′
eik

′rPk′
c e

−ik′r′ ,

(2.54)

but only the term k′ = k+q gives a non-zero contribution when applied to ∂ψkv(r)
∂us′β(q)

. We
have therefore:

∂ρ(r)
∂us′β(q)

= eiqr4
∑
kv
u∗kv(r)Pk+q

c
∂ũkv(r)
∂us′β(q)

, (2.55)

so the lattice-periodic part of the induced charge density, written in terms of lattice-periodic
functions is:

∂ρ̃(r)
∂us′β(q)

= 4
∑
kv
u∗kv(r)Pk+q

c
∂ũkv(r)
∂us′β(q)

. (2.56)
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2.2.8 First-order derivative of the wavefunctions
∂ũkv(r)
∂us′β(q)

is a lattice-periodic function which can be calculated with the following considera-
tions. From first order perturbation theory we get, for each displacement uνs′β, the equation:[

−1
2∇

2+VKS(r)− ϵkv
]
Pc
∂ψkv(r)
∂uνs′β

=−Pc
∂VKS(r)
∂uνs′β

ψkv(r). (2.57)

Multiplying every equation by eiqRν and summing on ν, we get:[
−1
2∇

2+VKS(r)− ϵkv
]
Pc

∂ψkv(r)
∂us′β(q)

=−Pc
∂VKS(r)
∂us′β(q)

ψkv(r).
(2.58)

Using the translational invariance of the solid we can write

∂VKS(r)
∂us′β(q)

=
∑
ν

∂VKS(r)
∂uνS′β

eiqRν = eiqr
∂ṼKS(r)
∂us′β(q)

, (2.59)

where ∂ṼKS(r)
∂us′β(q)

is a lattice-periodic function. The right-hand side of the linear system be-
comes:

−ei(k+q)rPk+q
c

∂ṼKS(r)
∂us′β(q)

ukv(r). (2.60)

In the left-hand side we have

Pc
∑
ν

∂ψkv(r)
∂uνs′β

eiqRν = ei(k+q)rPk+q
c

∂ũkv(r)
∂us′β(q)

, (2.61)

and defining:
Hk+q = e−i(k+q)r

[
−1
2∇

2+VKS(r)
]
ei(k+q)r, (2.62)

we obtain the linear system:
[
Hk+q− ϵkv

]
Pk+q
c

∂ũkv(r)
∂us′β(q)

=−Pk+q
c

∂ṼKS(r)
∂us′β(q)

ukv(r). (2.63)

2.2.9 Linear response
The lattice-periodic component of the induced self-consistent potential can be obtained with
the same techniques seen above. We have:

∂VKS(r)
∂uνs′β

= ∂Vloc(r)
∂uνs′β

+
∫
d3r′

1
|r− r′|

∂ρ(r′)
∂uνs′β

+ ∂Vxc
∂ρ

∂ρ(r)
∂uνs′β

.

(2.64)
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Multiplying by eiqRν and summing on ν, we obtain:

∂VKS(r)
∂us′β(q)

= ∂Vloc(r)
∂us′β(q)

+
∫
d3r′

1
|r− r′|

∂ρ(r′)
∂us′β(q)

+ ∂Vxc
∂ρ

∂ρ(r)
∂us′β(q)

.

(2.65)

Keeping only the lattice periodic parts gives:

eiqr
∂ṼKS(r)
∂us′β(q)

= eiqr
∂Ṽloc(r)
∂us′β(q)

+
∫
d3r′

1
|r− r′|

eiqr
′ ∂ρ̃(r′)
∂us′β(q)

+ ∂Vxc
∂ρ

eiqr
∂ρ̃(r)

∂us′β(q)
,

(2.66)

or equivalently:

∂VKS(r)
∂us′β(q)

= ∂Ṽloc(r)
∂us′β(q)

+
∫
d3r′

1
|r− r′|

eiq(r
′−r) ∂ρ̃(r′)

∂us′β(q)

+ ∂Vxc(r)
∂ρ

∂ρ̃(r)
∂us′β(q)

.

(2.67)

The above contents are summarized from the literature on DFPT. [13, 62, 68, 12, 33]
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2.3 Pseudopotentials
Modern pseudopotentials are constructed on isolated atoms. The radial Kohn and Sham
equations are initially solved for all the electrons, then the orbitals are divided into core and
valence parts. For the valence orbitals, a pseudopotential is calculated which reproduces the
all-electron results.

We formulated the theory with a local external potential in the previous section. However,
modern pseudopotentials (PPs) are non-local. These references [62, 34, 33] contains more
detailed descriptions of DFPT with modern PPs.

In this section we introduce the main forms of the available PPs in pslibrary. Modern
pseudopotentials are divided into three types:

• Norm-conserving pseudopotentials

• Ultrasoft pseudopotentials

• The projector augmented-wave data sets (PAW)

The basics of three atomic pseudopotentials are discussed in the following subsections.

2.3.1 Plane waves in periodic solids
In order to solve the KS equations, it is useful to expand the wave functions on a given
basis set. One of the most widely used is the Plane Waves (PWs) basis set: PWs are indeed
an orthogonal basis by construction and represent the most natural choice while dealing
with crystalline solids. The translational invariance of the Bravais lattice imposes further
constraints on the wave vectors that enter in the expansion of a lattice-periodic function in
the PWs basis set. Indeed, PWs eik·r are lattice-periodic only for a given set of wave vectors
G, called reciprocal lattice vectors and defined by the condition eiG·Rµ = 1. The G vectors
form a lattice in the reciprocal space, its primitive vectors being b1,b2, and b3 introduced
above. The Wigner-Seitz primitive cell of the reciprocal lattice is called Brillouin Zone (BZ):
all the wave vectors k allowed in PBCs can be refolded into it and, as a consequence, a band
index v needs to be introduced to label the wave functions, ψkv(r).

The periodic part of the wave function can be expanded in PWs, to get:

ψkv(r) =
1√
V

∑
G
ck+Gve

i(k+G)·r (2.68)

where V is the volume of the solid. If we substitute ψkv(r) given by Eq. 2.68 into Eq.
2.47, we obtain the following expression for the KS equations in reciprocal space for a local
potential: ∑

G′

[1
2 |k+G|2δGG′ +VKS

(
G−G′

)]
ck+G′v = ϵkvck+Gv (2.69)

where VKS (G−G′)(VKS = VH+Vxc+Vext) is the matrix elements of the KS potential be-
tween two PWs with wave vectors k+G and k+G′ ( For non local potential we can refer
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to Ref. [33]). Hence it corresponds to the G−G′ Fourier component of the KS potential
defined in real space:

VKS
(
G−G′

)
= 1

Ω

∫
Ω
d3re−i(G−G′)·rVKS(r) (2.70)

The charge density can be written in terms of the single-particle wave functions (Eq. 2.68)
and, following the expansion in PWs introduced above, it reads:

n(r) = 1
V

∑
kv

∑
GG′

fkvc
∗
k+G′vck+Gve

i(G−G′)·r (2.71)

or, equivalently:
n(r) =

∑
G
n(G)eiG·r (2.72)

The PWs expansion in Eq. (1.62) is formally exact, but it requires an infinite number of
PWs. Clearly, in order for such an approach to be computationally affordable, the number
of basis elements has to be finite: in electronic structure codes, this is usually achieved by
considering only the PWs with G vectors such that:

1
2 |k+G|2 <Ecut (2.73)

where Ecut is a kinetic energy cut-off that is chosen accordingly to the desired accuracy
on the wave functions, which naturally affects the accuracy of computed quantities such as,
e.g., the ground state energy and the forces. The representation of the wave functions with
a truncated basis set implies that also the charge density is computed with a limited number
of PWs. By comparing Eqs. 2.71 and 2.72 it follows that the kinetic energy cut-off for the
charge density is 4 times larger than the one for the wave functions, namely:

1
2 |G|

2 < 4Ecut (2.74)

2.3.2 Spherical symmetry
The Kohn and Sham (KS) equation is (in atomic units):[

−1
2∇

2+Vext(r)+VH(r)+Vxc(r)
]
ψi(r) = ϵiψi(r). (2.75)

For an atom Vext (r) =−Z/r, where Z is the nuclear charge and r = |r|. Assuming a spher-
ically symmetric charge density ρ(r) = ρ(r), one can show that the Hartree and exchange
and correlation potentials are spherically symmetric too. In this hypothesis, the solutions of
this equation have the form:

ψnℓm(r) =
ψnℓ(r)
r

Yℓm (Ωr) , (2.76)
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where (r,Ωr) are the spherical coordinates of r. Here n, the main quantum number, is a
positive integer, 0 ≤ ℓ ≤ n− 1 indicates the orbital angular momentum and −ℓ ≤m ≤ ℓ its
projection on a quantization axis. Yℓm (Ωr) are the spherical harmonics, eigenstates of L2

and Lz :
L2Yℓm = ℓ(ℓ+1)Yℓm,
LzYℓm =mYℓm.

(2.77)

Inserting this solution in the KS equation, we obtain, for each value of ℓ, an ordinary differ-
ential equation for ψnℓ(r) :[

−1
2
d2

dr2
+ ℓ(ℓ+1)

2r2 +VKS(r)
]
ψnℓ(r) = ϵnℓψnℓ(r), (2.78)

where VKS(r) = Vext (r) + VH(r) + Vxc(r). The charge density is determined by the total
number of electrons and by their distribution among the available orbitals defined by the
occupation numbers fnℓ. The maximum value of fnℓ is 2,6,10,14 for ℓ = 0,1,2,3 (s,p,d,f
states) respectively. Note that we assumed a spherically symmetric atom, so we cannot
specify the occupation of a state with a given m. For open-shell configurations, a uniform
distribution of electrons among the available orbitals is implicitly assumed. The charge
density is:

ρ̃(r) = 4πr2ρ(r) =
∑
nℓ

fnℓ |ψnℓ(r)|2 . (2.79)

The radial equation is solved by the Numerov’s method, discretizing the r coordinate by a
logarithmic radial grid from rmin to rmax. The grid is:

ri =
1
Z
exmine(i−1)dx, i= 1, · · · ,Np. (2.80)

From input, it is possible to change the default values of xmin, dx and rmax but, usually,
this is not needed. The output of the calculation are the eigenvalues ϵnℓ, the radial orbitals
ψnℓ(r), the charge density ρ̃(r), and the total energy.

2.3.3 Norm-conserving pseudopotentials
Let us now consider, for each orbital angular momentum ℓ, the equation:[

−1
2
d2

dr2
+ ℓ(ℓ+1)

2r2 +Vps,ℓ(r)
]
φℓ(r) = ϵℓφℓ(r), (2.81)

We would like to find an ℓ dependent pseudopotential Vps,ℓ(r) with the following properties:

• For each ℓ, the lowest eigenvalue ϵℓ coincides with the valence eigenvalue ϵnℓ in the
all-electron equation. n identifies the valence state.

• For each ℓ, it is possible to find a rc,ℓ such that φℓ(r) = ψnℓ(r) for r > rc,ℓ.
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The solution of the problem is not unique. There are several recipes to construct a pseudopo-
tential. First of all, it is convenient to note that at sufficiently large r,Vps,ℓ(r) coincides with
the all-electron potential because φℓ(r) = ψnℓ(r) for r > rc,ℓ and ϵℓ = ϵnℓ. We can therefore
choose a Veff (r) such that Veff (r) = VKS(r) for r > rloc and rewrite the radial equation in
the form: [

−1
2
d2

dr2
+ ℓ(ℓ+1)

2r2 +Veff (r)+∆Vps,ℓ(r)
]
φℓ(r) = ϵℓφℓ(r). (2.82)

Then suppose that we have a recipe to get a node-less φℓ(r) for r < rc,ℓ. Then:

∆Vps,ℓ(r) =
1

φℓ(r)

[
ϵℓ+

1
2
d2

dr2
− ℓ(ℓ+1)

2r2 −Veff (r)
]
.φℓ(r) (2.83)

There are some guidelines to follow in the choice of the form of φℓ(r) and one important
condition. First of all the function must be as smooth as possible, with continuity of a certain
number of derivatives at the matching point rc,ℓ. Then it is useful to search a function whose
Fourier transform decays as rapidly as possible. However, the most important constraint is
the norm-conserving condition [2] that is:∫ rc,ℓ

0
dr |φℓ(r)|2 =

∫ rc,ℓ

0
dr
∣∣∣ψn,ℓ(r)∣∣∣2 . (2.84)

2.3.4 The logarithmic derivative
In order to illustrate the importance of the norm-conserving condition, it is useful to define
the concept of logarithmic derivative. Let us consider the two equations:

[Tℓ+VKS(r)]ψϵ(r) = ϵψϵ(r),[
Tℓ+Veff (r)+∆Vps,ℓ(r)

]
φϵ(r) = ϵφϵ(r).

(2.85)

where we defined Tℓ = −1
2
d2

dr2
+ ℓ(ℓ+1)

2r2 . By construction, we know that at ϵ = ϵnℓ, the solu-
tion φϵ(r) coincides with the ψϵ(r) for r > rc,ℓ. But what about the other energies? The
transferability of the pseudopotential depends on the fact that φϵ(r) reproduces ψϵ(r) for a
certain range of energies about ϵnℓ. Since norm conservation implies that the derivative with
respect to energy of the logarithmic derivatives coincide, all-electron and pseudo logarithmic
derivatives usually coincide for a quite extended range of energies, of the order of a few
Rydberg making the pseudopotential concept quite useful in practice.

2.3.5 Pseudopotential in the solid
In order to use the pseudopotential in the solid we have to subtract from Veff (r) the Hartree
and exchange and correlation potentials.

Vloc (r) = Veff (r)−VH(r)−Vxc(r). (2.86)
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Usually only the valence atomic charge is used to calculate VH(r) and Vxc(r). This however
can introduce a significant error if there is a large overlap of the core and valence charge. In
this case it is also possible to use the total charge ρc(r)+ρv(r) in the calculation of Vxc(r).
The technique is known as nonlinear core correction. In order to improve the plane wave
convergence a pseudized version of ρc(r) is generally used for r ≤ rcore . Vloc (r) behaves as
−ZV /r for large r, while ∆Vps,l(r) is localized and goes to zero for r ≥ max

(
rloc, rc,ℓ

)
. In

order to apply the nonlocal part of the potential, that is different for different ℓ, we use
projectors into subspaces of well defined ℓ :

Pℓ =
m=ℓ∑
m=−ℓ

|Yℓm⟩⟨Yℓm| . (2.87)

Therefore the resulting potential is nonlocal (actually it is called semilocal because it is local
in the radial variable and nonlocal in the angular variables). We can write:

Vps
(
r,r′

)
=
∑
I

V I
loc (|r−RI |)δ

(
r− r′

)
+
∑
I

∑
lm

∆V I
ps,ℓ (|r−RI |)δ

(
|r−RI |−

∣∣∣r′−RI

∣∣∣)
×Yℓm

(
Ωr−RI

)
Y ∗
ℓm

(
Ωr′−RI

)
.

(2.88)

Note that Vloc (r) is applied to all angular momenta larger than ℓmax , the maximum angular
momentum included in the nonlocal part.

2.3.6 Transferability tests
The energy range in which the logarithmic derivatives coincide give an estimate of the pseu-
dopotential quality. However, the logarithmic derivative is calculated at fixed charge density.
Before using the pseudopotential in the solid, we can check its transferability on the atom
by predicting the eigenvalues and the total energy of atomic configurations different from
the reference one used for the generation. We can also check spin-polarized atomic config-
urations. An accuracy of a few mRy on the eigenvalues of atomic configurations that differ
in energy up to a few Ry from the reference configuration is within the possibilities of the
method.

2.3.7 Fully separable pseudopotentials
The semilocal form of the pseudopotential is not very efficient for practical calculations. It
requires to keep in memory the matrix ⟨k+G |Vps|k+G′⟩ that becomes rapidly big for large
systems and matrix-vector multiplications to apply it to the wavefunctions. It is convenient
to write the nonlocal part of the pseudopotential in the fully separable form [5]:

VNL
(
r,r′

)
=
∑
I

∑
ℓm

EIℓ
〈
r | βIℓ Y

I
ℓ,m

〉〈
βIℓ Y

I
ℓ,m | r

′
〉
. (2.89)
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In this way we can keep in memory only the vectors
〈
k+G | βIℓ Y

I
ℓ,m

〉
which are the Fourier

transform of
〈
r | βIℓ Y

I
ℓ,m

〉
and to apply the nonlocal pseudopotential by doing a few scalar

products with the vectors which represent the wavefunction.
In the atom, we can define βℓ(r) =∆Vps,ℓ(r)φℓ(r) and Eℓ =

[∫∞
0 drφℓ(r)∆Vps,ℓ(r)φℓ(r)

]−1

so that the fully separable potential:

VNL = Eℓ |βℓ⟩⟨βℓ| , (2.90)

has the following property:

⟨r |VNL|φℓ⟩=∆Vps,ℓ(r)φℓ(r). (2.91)

As a consequence, the equation

[Tℓ+Veff (r)]Φℓ(r)+ ⟨r |VNL|Φℓ⟩= ϵΦℓ(r). (2.92)

has ϵℓ as an eigenvalue and φℓ(r) as an eigenfunction.

2.3.8 Ultrasoft pseudopotentials
Fitting the pseudopotential at more than one energy for each ℓ, one can relax the norm-
conserving condition. The orbitals obey a generalized orthogonality constraint:〈

ψ̃i|S|ψ̃j
〉
= δij . (2.93)

The resulting Hamiltonian is the following:

H =−1
2∇

2+ Ṽeff (r)+
∑
I,mn

(∫
d3rṼeff (r)QImn(r)+D

(0)
I,mn

)∣∣∣βIm〉〈βIn∣∣∣ , (2.94)

and one solves a generalized eigenvalue equation:

H
∣∣∣ψ̃i〉= εiS

∣∣∣ψ̃i〉 . (2.95)

The augmentation functions:

QImn(r) = ψIAEm (r)ψIAEn (r)−φIPSm (r)φIPSn (r) (2.96)

are used to recover the correct charge density:

ρ(r) =
∑
i

∣∣∣ψ̃i(r)∣∣∣2+ ∑
I,mn

QImn(r)
〈
ψ̃i | βIm

〉〈
βIn | ψ̃i

〉
. (2.97)
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2.3.9 PAW mapping: from pseudo-wave-functions to all-electron
wave-functions

In the PAW scheme one starts from the following mapping between all-electron and pseudo
wavefunction:

|Ψi⟩=
∣∣∣Ψ̃i

〉
+
∑
I,m

[∣∣∣ψIAEm

〉
−
∣∣∣φIPSm

〉]〈
βIm | Ψ̃i

〉
. (2.98)

and obtains that the expectation values of all-electrons operators O can be computed as the
expectation values between pseudo wavefuctions of pseudo operators Õ according to the

⟨ψkv|O |ψkv⟩=
〈
ψ̃kv

∣∣∣Õ ∣∣∣ψ̃kv
〉
. (2.99)

Õ =O+
∑
Imn

|βIm⟩
(〈
ψIAEm

∣∣∣O ∣∣∣ψIAEn

〉
−
〈
ϕIPSm

∣∣∣O ∣∣∣ϕIPSn

〉)〈
βIn
∣∣∣ . (2.100)

When
O→ 1, (2.101)

we obtain the pseudo operator,

S = 1+
∑
Imn

qImn
∣∣∣βIm〉〈βIn∣∣∣ . (2.102)

When
O→ |r⟩⟨r| , (2.103)

we get
ρ= ρ̃+ρ(1)+ ρ̃(1). (2.104)

ρ=
∑
kv

∣∣∣ψ̃kv
∣∣∣2 . (2.105)

ρ(1) =
∑
Imn

ρImnψ
IAE
m (r)ψIAEn (r). (2.106)

ρ̃(1) =
∑
Imn

ρImnϕ
IPS
m (r)ϕIPSn (r). (2.107)

where
ρImn =

∑
kv

〈
ψ̃kv|βIm

〉〈
βIn|ψ̃kv

〉
. (2.108)

2.3.10 PAW Hamiltonian
In the PAW scheme one still solves a generalized eigenvalue equation (H− ϵiS)

∣∣∣Ψ̃i

〉
=0, with

the Hamiltonian

H =−1
2∇

2+ Ṽeff +
∑
I,mn

(∫
d3rṼeff (r)QImn(r)+D1

I,mn− D̃1
I,mn

)∣∣∣βIm〉〈βIn∣∣∣ , (2.109)
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where
D1
I,mn =

〈
ψI,AEm

∣∣∣∣∣p2

2 +V I
KS

∣∣∣∣∣ψI,AEn

〉
,

D̃1
I,mn =

〈
φI,PSm

∣∣∣∣∣p2

2 + Ṽ I
eff

∣∣∣∣∣φI,PSn

〉
+
∫
ΩI

d3rQ̂Imn(r)Ṽ I
eff(r).

(2.110)

Some contents in references [154, 76, 94, 98, 188, 17, 102, 186, 160] are included in this
section.
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2.4 Ab initio statistical thermodynamics
A crystal in thermal equilibrium at ambient conditions has the corresponding lattice structure
that minimizes the Gibbs free energy. We can calculate this energy starting from the DFT
energy, the phonon frequencies, and the band structure. In this section, we summarize the
main thermodynamic relations used in this thesis.

The Beckmann diagram in Fig. 2.1 below represents the coupled interrelationships be-
tween the mechanical, thermal, and electrical properties of a crystal. In this diagram:

• the variables on the outer triangle represents intensive variables;

• the variables on the inner triangle represents extensive variables;

• the round brackets ( ) represents the ranks of the tensors of variables;

• the square brakets [ ] represents the ranks of tensors of properties between variables;

In this thesis we focus on the properties allocated in the pink trapezoid at the bottom of
this triangle diagram, including thermal expansion β(T,p), bulk modulus B(T,p), isobaric
heat capacity Cp(T,p), elastic constants Cijkl(T,p) and so on.

2.4.1 The canonical partition function
Let us start from the canonical partition function of a solid. The vibrational energy of a
solid whose phonon modes have frequencies ωq,ν depends on the number of phonons nq,ν in
each mode:

Ei =
∑
q,ν

(
nq,ν +

1
2

)
h̄ωq,ν , (2.111)

where i indicates the set of integer numbers nq,ν . At a given temperature T the probability
that the solid has a certain energy Ei can be calculated by statistical methods and it is:

P (Ei) =
1
Z
e−βEi , (2.112)

where Z is the canonical partition function defined as

Z =
∑
i

e−βEi , (2.113)

the sum is over all the possible sets of integers nq,ν and β = 1/KBT (KB is the Boltzmann
constant). We can write

Z =
∑
i

e−βEi =
∏
q,ν

( ∞∑
n=0

e−(n+1/2)βh̄ωq,ν
)
. (2.114)
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Figure 2.1: Equilibrium properties in a crystal: Beckmann diagram. (Based on figures seen
in Ref.[144] and Ref.[104])

Making the sum over n and taking the logarithm gives:

lnZ =
∑
q,ν

ln
 e−

1
2βh̄ωq,ν

1− e−βh̄ωq,ν

=−∑
q,ν

ln
[
2sinh

(
βh̄ωq,ν

2

)]

=−β
∑
q,ν

h̄ωq,ν
2 −

∑
q,ν

ln
[
1− e−βh̄ωq,ν

]
.

(2.115)

2.4.2 The thermodynamic functions
Using the expression of lnZ in terms of the phonon frequencies, the vibrational energy per
cell becomes:

U = 1
N

∑
i

EiP (Ei) =−
1
N

∂ lnZ
∂β

= 1
N

∑
q,ν

h̄ωq,ν
2 + 1

N

∑
q,ν

h̄ωq,ν
eβh̄ωq,ν−1 , (2.116)
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while the Helmholtz free energy per cell becomes

F =− 1
N

lnZ
β

= 1
N

∑
q,ν

h̄ωq,ν
2 + 1

Nβ

∑
q,ν

ln
[
1− e−βh̄ωq,ν

]
, (2.117)

or
F = 1

Nβ

∑
q,ν

ln
[
2sinh

(
βh̄ωq,ν

2

)]
. (2.118)

The entropy per cell can be computed as:

S = 1
T
(U −F ), (2.119)

while the isochoric heat capacity is:

CV = ∂U

∂T
= 1
N

∑
q,ν
h̄ωq,ν

∂

∂T

[ 1
eβh̄ωq,ν −1

]

= KB

N

∑
q,ν

[
βh̄ωq,ν

2sinh(βh̄ωq,ν/2)

]2
.

(2.120)

Introducing the phonon density of states per cell:

g(ω) = 1
N

∑
q,ν

δ (ω−ωq,ν) (2.121)

we can write the thermodynamic fuctions as one dimensional integrals over the frequencies:

U =
∫ ∞

0
dωg(ω) h̄ω2 +

∫ ∞

0
dωg(ω) h̄ω

eβh̄ω−1 ,

F = 1
β

∫ ∞

0
dωg(ω) ln

[
2sinh

(
βh̄ω

2

)]
.

(2.122)

The isochoric heat capacity of one unit cell:

CV = ∂U

∂T

∣∣∣∣∣
V

=KB

∫ ∞

0
dωg(ω)

 βh̄ω/2
sinh

(
βh̄ω
2

)
2

=KB

∫ ∞

0
dωg(ω)eβh̄ω

[
βh̄ω

eβh̄ω−1

]2
.

(2.123)

All these functions are plotted by the thermo pw software after a phonon dispersion calcula-
tion. Some other codes that compute these quantities from the phonon density of states are
available inside the QE package or on the internet. Before computing these thermodynamic
properties for a solid, it is essential to check that there is no imaginary frequencies so that
the system is dynamically stable.
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2.4.3 Volume as a function of temperature
We consider a solid at temperature T and at pressure p. If the volume of the solid changes by
dΩ the solid does a work pdΩ against the pressure p. To keep the temperature constant the
solid absorbs some heat dQ. According to the second law of thermodynamic dQ= TdS where
S is the entropy. According to the first law of thermodynamic the change of the internal
energy is equal to the adsorbed heat minus the work done dU = TdS− pdΩ. Therefore, at
constant temperature:

p=−
(
dU

dΩ −T
dS

dΩ

)∣∣∣∣∣
T

=− ∂F (Ω,T )
∂Ω

∣∣∣∣∣
T

. (2.124)

At temperature T and zero pressure, the solid is in equilibrium at the volume Ω that mini-
mizes the free energy. The total free energy per unit cell of volume Ω is:

F (Ω,T ) = U0(Ω)+Fph(Ω,T )+Fel, (2.125)

where U0(Ω) is the DFT total energy, Fph(Ω,T ) is the vibrational free energy, and Fel is the
electron excitation energy, needed only for metals and computed from the electron density
of states.

Within the quasi-harmonic approximation the vibrational free energy depends on volume
since the phonon frequencies depend on volume.

Minimizing F (Ω,T ) at each T , we obtain the equilibrium volume as a function of tem-
perature, Ω0(T ).

2.4.4 Free energy minimization
Usually the minimization of the free energy is carried out by fitting it with an equation
of state (EOS). EOS depends on the bulk modulus an on its derivertives with respect to
pressure. The bulk modulus BT

0 is the inverse of the compressibility.
Calculated at constant temperature it is:

1
BT
0
=KT =− 1

Ω

(
∂Ω
∂p

)
T

. (2.126)

A widely used EOS is the Murnaghan equation:

F (Ω) = F (Ω0)+
B0Ω
B′
0

 1
B′
0−1

(
Ω0
Ω

)B′
0

+1
− B0Ω0

B′
0−1 , (2.127)

obtained assuming a constant derivative of the bulk modulus B′
0 with respect to pressure,

depends on Ω0,B0, and B′
0. For high pressure studies, we use forth-order Birch-Murnaghan

equation:
E = a0+a1f +a2f2+a3f3+a4f4+ . . . , (2.128)
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where f is Eulerian finite strain:

f =−εE2 =
1
2

(Ω0
Ω

) 2
3
−1

 . (2.129)

The state variables temperature, volume, and pressure are not independent quantities; they
are connected by an implicit function:

f(P,Ω,T ) = 0 (2.130)

At T = 0 K, pressure is the volume derivative of energy:

P =−
(
∂E

∂Ω

)
T=0

(2.131)

The bulk modulus and its derivatives are given by[93] [54]:

BT0 =−Ω
dP

dΩ , B′
T0 =

dBT0
dP

, B′′
T0 =

d2BT0
dP 2 , (2.132)

and we have:
a0 = a1 = 0, (2.133)

a2 =
9
2B0Ω0, (2.134)

a3 = a2(B′
0−4), (2.135)

a4 = a2(
9B′

0
2−63B′

0+9B0B′′
0 +143

12 ) (2.136)

By fitting and minimizing the free energy at each temperature we obtain Ω0(T ),BT
0 (T ),

B′T
0 (T ), and B′′T

0 (T ).

2.4.5 Volume thermal expansion
The volume thermal expansion is defined as:

β = 1
Ω0(T )

dΩ0(T )
dT

. (2.137)

It can be calculated by numerical differentition from Ω0(T ) deduced from the EOS or in
terms of Grüneisen parameters. The Grüneisen parameters are defined by:

γq,ν =−
Ω
ωq,ν

dωq,ν
dΩ . (2.138)
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Thermal expansion in terms of Grüneisen parameters is:

β = 1
Ω(T )

∂Ω(T )
∂T

∣∣∣∣∣
p

=− 1
Ω(T )

∂Ω(T )
∂p(T )

∣∣∣∣∣
T

∂p(T )
∂T

∣∣∣∣∣
Ω
=− 1

B0(T )
∂2F (Ω,T )
∂T∂Ω . (2.139)

Only the vibrational part of the free energy depends on T (the electronic excitations are
discussed below). So we get :

β = 1
B0(T )

∑
q,ν

cq,νγq,ν (2.140)

where cq,ν is given by:
cq,ν =

h̄ωq,ν
Ω

∂

∂T

[ 1
eβh̄ωq,ν −1

]
. (2.141)

It is also common to define the average Grüneisen parameter as:

γ =
∑

q,ν cq,νγq,ν∑
q,ν cq,ν

, (2.142)

or, in terms of macroscopic quantities,

γ = β(T )B0(T )Ω
CV (T )

. (2.143)

2.4.6 Isobaric heat capacity and isoentropic bulk modulus
From the definitions of Cp and Cv:

Cp−Cv =
dQ

dT

∣∣∣∣∣
P

− dQ

dT

∣∣∣∣∣
V

, (2.144)

Substitution of the definition of entropy gives the following:

Cp−Cv = T

[
∂S

∂T

∣∣∣∣∣
P

− ∂S

∂T

∣∣∣∣∣
V

]
. (2.145)

These partials are converted from the total differential obtained from S = f(T,V ):

dS = ∂S

∂T

∣∣∣∣∣
V

dT + ∂S

∂V

∣∣∣∣∣
T

dV, (2.146)

which when divided by dT at dP = 0, it becomes:

∂S

∂T

∣∣∣∣∣
P

− ∂S

∂T

∣∣∣∣∣
V

= ∂S

∂V

∣∣∣∣∣
T

∂V

∂T

∣∣∣∣∣
P

. (2.147)

Substituting 2.147 into 2.145 gives

Cp−Cv = T
∂S

∂V

∣∣∣∣∣
T

∂V

∂T

∣∣∣∣∣
P

. (2.148)
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The Maxwell Relationship ∂S
∂V

∣∣∣
T
= ∂P

∂T

∣∣∣
V
further transforms 2.148 to

Cp−Cv = T
∂P

∂T

∣∣∣∣∣
V

∂V

∂T

∣∣∣∣∣
P

. (2.149)

The total differential from P = (T,V ) at dP = 0 gives:

0 = ∂P

∂V

∣∣∣∣∣
T

∂V

∂T

∣∣∣∣∣
P

+ ∂P

∂T

∣∣∣∣∣
V

, (2.150)

and
∂P

∂T

∣∣∣∣∣
V

=− ∂P

∂V

∣∣∣∣∣
T

∂V

∂T

∣∣∣∣∣
P

=−
∂V
∂T

∣∣∣
P

∂V
∂P

∣∣∣
T

= βBT . (2.151)

Therefore, 2.149 can be written as

Cp−Cv = β2TV BT . (2.152)

Using p(V,T ), obtained by deriving the fitted free energy, we compute the isothermal bulk
modulus:

BT (V,T ) =−V
∂p(V,T )
∂V

∣∣∣∣∣∣
T

, (2.153)

the adiabatic bulk modulus:

BS(V,T ) =−V
∂p(V,T )
∂V

∣∣∣∣∣∣
S

, (2.154)

The relation between BT and BS is given by:

BS(p,T ) =BT (V,T )+
β(p,T )2BT (V,T )2V T

CV (V,T )
. (2.155)

The difference between the bulk modulus measured at constant entropy (without heat ex-
change) or at constant temperature can be obtained as:

1
BS
0
− 1
BT
0
=−TΩβ

2

CP
, (2.156)

Inserting in the second equation TΩβ2 from the 2.152, one finds:

BS
0

BT
0
= CP
CV

. (2.157)
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2.4.7 Thermal equation of state
From the free energy at each T we can obtain the following:

p(Ω,T ) =−∂F (Ω,T )
∂Ω (2.158)

which is the thermal equation of state. It is also possible to minimize (for each p ) the
auxiliary function:

Gp(Ω,T ) = F (Ω,T )+pΩ (2.159)
obtaining the function Ω(p,T ). This equation remains valid when F depends on several
crystal parameters in anisotropic solids and can be generalized for a generic strain.

The volume that minimizes Gp(V,T ) is the volume at pressure p and temperature T ,
written as V (p,T ). Using V (p,T ) we obtain the volume thermal expansion βV (p,T ) at
pressure p as:

βV (p,T ) =
1

V (p,T )
∂V (p,T )
∂T

∣∣∣∣∣∣
p

. (2.160)

2.4.8 Finite temperature electronic excitation energy
The electronic excitation energy due to the finite temperature Uel is negligible in semicon-
ductors and insulators. For metals it gives a finite contribution to the heat capacity that we
estimate by a model of independent electrons whose energy-wave vector dispersion is given
by the band structure. We assume Fermi-Dirac occupations of the available electronic levels:

f(E,T,µ) = θ̃
(
µ−E
kBT

)
, (2.161)

where µ is the chemical potential and the function θ̃(x) is

θ̃(x) = 1
1+ e−x . (2.162)

Given the density of electronic states N(E), we determine the chemical potential µ(T ) at
each temperature from the condition

Nel =
∫ ∞

−∞
N(E)f(E,T,µ)dE, (2.163)

where Nel is the number of electrons per unit cell. The electronic excitation energy Uel is
given by

Uel =
∫ ∞

−∞
EN(E)f(E,T,µ)dE−

∫ EF

−∞
EN(E)dE, (2.164)

where EF is the Fermi energy. The electronic entropy is given:

Sel =−kB
∫ ∞

−∞
[f(E,T,µ) lnf(E,T,µ)+(1−f(E,T,µ)) ln(1−f(E,T,µ))]N(E)dE. (2.165)
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The electron Helmholtz free-energy is calculated by Fel = Uel−TSel. Finally the constant
volume electronic specific heat capacity is estimated by:

CV,el =
∫ ∞

−∞
(E−µ)N(E)∂f(E,T,µ)

∂T
dE, (2.166)

where the partial derivative with respect to the temperature:
∂f(E,T,µ)

∂T
= E−µ
kBT 2 θ̃

′
(
µ−E
kBT

)
(2.167)

indicates that, in computing the derivative, we neglect the temperature dependence of the
chemical potential, and

θ̄′(x) = 1
1+ ex+ e−x . (2.168)

2.4.9 Strain and stress
For anisotropic solids the previous approach is still valid. However for a certain volume
there are several independent crystallographic parameters to be determined. For tetragonal,
hexagonal, and trigonal solids there are two parameters (a,c/a, or a,cosα). For orthorombic
solids we have three lattice parameters (a, b/a, and c/a). For monoclinic solids there are
four (a,b/a,c/a,cosγ), and for triclinic solids six parameters (a,b/a,c/a,cosα,cosβ,cosγ).

There are three approaches:
• Change only a and keep all angles and ratios constant. This is a simple but quite

approximated way.

• Optimize all the parameters at T = 0 K and fix the volume so that the stress is a
uniform pressure. This is the so-called V-ZSISA approximation (volume-constrained
zero static internal stress approximation), which is less approximated than the option
above.

• Compute the free energy as a function of all crystal parameters, and optimize them at
each T . This is called full free energy minimization (FFEM). This is an exact but heavy
approach which provides us the accurate numerical solution within the quasi-harmonic
approximation.

Instead of changing the volume, we change the size and the shape of the unit cell. The
strain applied to a solid is described by a symmetric 3×3 tensor ϵi,j . Calling a1,a2,a3 the
primitive vectors of the unperturbed solid, and a′1,a′2,a′3 those of the strained solid, we have:

a′j,i = aj,i+
3∑

k=1
ϵj,kak,i, (2.169)

Since ϵj,k is a symmetric tensor we can describe it with the Voigt notation where ϵ1= ϵ1,1, ϵ2=
ϵ2,2, ϵ3 = ϵ3,3, ϵ4 = 2ϵ2,3, ϵ5 = 2ϵ1,3, and ϵ6 = 2ϵ1,2.

We call stress σi,j the force (f) per unit area Aj (j indicates the perpendicular to the
surface) present in a solid. The work per cell made by a solid with a stress σi,j to change its
strain by dϵi,j is dW =−Ω∑i,j σi,jdϵi,j , where Ω is the unperturbed unit cell volume.
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Figure 2.2: The forces on the faces of a unit cube in a homogeneously stressed body. [1]

2.4.10 Uniform pressure
A uniform pressure corresponds to a diagonal stress (σi,j = 0 for i ̸= j ) with:

σi,i =−p; p=−1
3 tr(σi,j) =−

1
3

3∑
i=1

σi,i. (2.170)

The work made by the solid becomes:

dW =−Ω
∑
i,j

σi,jdϵi,j = Ωp
3∑
i=1

dϵi,i = pdΩ. (2.171)

2.4.11 Equation of state
When the strain of the solid changes of dϵi,j , at constant T and stress σi,j , the solid makes
some work and adsorb some heat to keep the temperature constant so the internal energy of
the solid changes as:

dU = TdS+Ω
∑
i,j

σi,jdϵi,j (2.172)

From this equation we obtain the equation of state (at constant temperature):

σi,j =
1
Ω

(
∂U

∂ϵi,j
−T ∂S

∂ϵi,j

)
T

= 1
Ω
∂F

∂ϵi,j

∣∣∣∣∣
T

. (2.173)

For a solid with no stress, the strain minimizes the Helmholtz free energy.
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2.4.12 Crystal parameters as functions of the temperature and
thermal expansion

Considering only strains that do not change the Bravais lattice, we fit the free energy with
a quadratic or quartic polynomial of the crystal parameters and minimize it. From the
minimum we obtain a(T ), b(T ), c(T ) etc. Thermal expansion measures the strain induced by
a change of temperature at constant stress:

αij =
∂ϵij
∂T

∣∣∣∣∣
σ

. (2.174)

In order to relate the thermal expansion tensor to the change of crystal parameters, we can
use the following considerations. If l⃗ is a vector in a given direction, the thermal expansion
in that direction is:

αl =
∑
ij

αijlilj (2.175)

Taking l⃗ perpendicular to a set of lattice planes whose distance is h, we also have:

αl =
1
h

dh

dT
. (2.176)

In a cubic solid taking l= (1,0,0) we have αl = α11 and h= a or h= a/2 so

α11 =
1

a(T )
da(T )
dT

. (2.177)

In a tetragonal, hexagonal or trigonal solid taking l= (1,0,0) or l= (0,0,1) we have:

α11 =
1

a(T )
da(T )
dT

, (2.178)

α33 =
1

c(T )
dc(T )
dT

. (2.179)

In an orthorombic solid taking l= (1,0,0), l= (0,1,0), or l= (0,0,1) we have:

α11 =
1

a(T )
da(T )
dT

, (2.180)

α22 =
1

b(T )
db(T )
dT

, (2.181)

α33 =
1

c(T )
dc(T )
dT

. (2.182)

From the thermal expansion tensor, we can derive the volume thermal expansion:

β = 1
Ω
∂Ω
∂T

∣∣∣∣∣
p

=
3∑
i=1

∂ϵi,i
∂T

∣∣∣∣∣∣
σ

=
3∑
i=1

αi,i = Tr(α). (2.183)
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2.4.13 Isothermal elastic constants and compliances
The concepts that generalize to anisotropic solids the bulk modulus and the compressibility
are the elastic constants and compliances. The elastic constants, at finite temperature, are
defined as the stress induced by a strain:

CTijkl =
∂σij
∂ϵk,l

∣∣∣∣∣
T

, (2.184)

The inverse of the elastic tensor are called elastic compliances that measure the strain induced
by a stress:

STijkl =
∂ϵij
∂σk,l

∣∣∣∣∣
T

, (2.185)

We compute the elastic constants from:

CTijkl =
∂2F

∂ϵij∂ϵkl

∣∣∣∣∣
T

, (2.186)

correcting for finite pressure effects to obtain the stress-strain ECs: [14]

CTijkl = C̃Tijkl+
p

2
(
2δi,jδk,l− δi,lδj,k− δi,kδj,l

)
. (2.187)

The second derivatives of the free energy are calculated as described in Ref. [119] taking a
subset of the volumes Vi as equilibrium configurations. The ECs at any other volume at
temperature T and pressure p are obtained by interpolation by a fourth-degree polynomial.

2.4.14 Thermal expansion from Grüneisen parameters
Using these quantities we can determine the thermal expansion from Grüneisen parameters.
Define the mode Grüneisen parameters as:

γij =− 1
ωqν

dωqν
dϵij

. (2.188)

So we have

αij =
dϵij
dT

∣∣∣∣∣
σ

=−
∑
kl

∂ϵij
∂σkl

∣∣∣∣∣∣
T

∂σkl
∂T

∣∣∣∣∣
ϵ

=− 1
Ω
∑
kl

STijkl
∂2F

∂ϵkl∂T
, (2.189)

therefore,

− 1
Ω

∂2F

∂ϵij∂T
=
∑
qv
Cqνγ

ij
qv, (2.190)

αij =
∑
kl

STijkl
∑
qν
Cqνγ

ij
qν . (2.191)
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2.4.15 Constant stress heat capacity
Then we use these quantities to derive the relationship between constant stress and constant
strain heat capacity. We have:

dS =
∑
ij

∂S

∂ϵij

∣∣∣∣∣∣
T

dϵij+
∂S

∂T

∣∣∣∣∣
ϵ

dT =
∑
ij

∂S

∂σij

∣∣∣∣∣∣
T

dσij+
∂S

∂T

∣∣∣∣∣
σ

dT (2.192)

Dividing both sides of equation by dT , assuming a constant stress condition, and multiplying
by T we have:

Cσ−Cϵ = T
∑
ij

∂S

∂ϵij

∣∣∣∣∣∣
T

∂ϵij
∂T

∣∣∣∣∣
σ

(2.193)

We know that dU = TdS +Ω∑ij σijdϵij and dF = −SdT +Ω∑ij σijdϵij and S = − ∂F
∂T

∣∣∣
ϵ
,

then
Cσ−Cϵ =−T

∑
ij

∂2F

∂ϵij∂T

∂ϵij
∂T

∣∣∣∣∣
σ

=−ΩT
∑
ij

dσij
∂T

∣∣∣∣∣
ϵ

∂ϵij
∂T

∣∣∣∣∣
σ

=−ΩT
∑
ijkl

∂σij
∂T

∣∣∣∣∣
ϵ

∂T

∂ϵkl

∣∣∣∣∣
σ

∂ϵij
∂T

∣∣∣∣∣
σ

ϵij
∂T

∣∣∣∣
σ

= ΩT
∑
ijkl

∂σij
∂ϵkl

∣∣∣∣∣
T

∂ϵkl
∂T

∣∣∣∣∣
σ

∂ϵij
∂T

∣∣∣∣∣
σ

,

(2.194)

therefore,
Cσ−Cϵ = ΩT

∑
ijkl

CTijkl
∂ϵij
∂T

∣∣∣∣∣
σ

∂ϵkl
∂T

∣∣∣∣∣
σ

= ΩT
∑
ijkl

αijC
T
ijklαkl.

(2.195)

2.4.16 Adiabatic elastic compliances
Express dϵij as a function of stress and entropy or of stress and temperature we get:

dϵij =
∑
kl

∂ϵij
dσkl

∣∣∣∣∣
T

dσkl+
∂ϵij
∂T

∣∣∣∣∣
σ

dT,

=
∑
kl

∂ϵij
∂σkl

∣∣∣∣∣
S

dσkl+
∂ϵij
∂S

∣∣∣∣∣
σ

dS.

(2.196)

By dividing for dσkl with constant entropy,

SSijkl−S
T
ijkl =

∂ϵij
∂T

∣∣∣∣∣
σ

∂T

∂σkl

∣∣∣∣∣
S

, (2.197)
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Introducing the enthalphy of the solid:

H = U −Ω
∑
ij

σijϵij (2.198)

we get:
dH = TdS+Ω

∑
ij

σijdϵij−Ω
∑
ij

σijdϵij−Ω
∑
ij

dσijϵij

= TdS−Ω
∑
ij

dσijϵij .
(2.199)

∴

SSijkl−S
T
ijkl = αij

∂2H

∂σkl∂S

=−αijΩ
∂ϵkl
∂S

∣∣∣∣∣
σ

∂S

∂T

∣∣∣∣∣
σ

1
∂S
∂T

∣∣∣
σ

= −αijΩ
∂ϵkl
∂T

∣∣∣∣∣
σ

T

Cσ
.

(2.200)

Finally, the difference between the isoentropic and isothermal elastic compliances is:

SSijkl−S
T
ijkl =−

TΩαijαkl
Cσ

(2.201)

2.4.17 Adiabatic elastic constants
Similarilly, isoentropic elastic constants can be calculated from the stress as function of strain
and entropy or of strain and temperature. Here we have:

dσij =
∑
kl

∂σij
∂ϵkl

∣∣∣∣∣
T

dϵkl+
∂σij
∂T

∣∣∣∣∣
ϵ

dT

=
∑
kl

∂σij
∂ϵkl

∣∣∣∣∣
S

dϵkl+
∂σij
∂S

∣∣∣∣∣
ϵ

dS.

(2.202)

Dividing both sides by dϵkl at constant entropy,

CSijkl−C
T
ijkl =

∂σij
∂T

∣∣∣∣∣
ϵ

∂T

∂ϵkl

∣∣∣∣∣
S

, (2.203)

∵
∂T

∂ϵkl

∣∣∣∣∣
S

= ∂2U

∂ϵkl∂S
= Ω ∂σkl

∂S

∣∣∣∣∣
ϵ

, (2.204)

∴

CSijkl−C
T
ijkl = bijΩ

∂σkl
∂S

∣∣∣∣∣
ϵ

∂S

∂T

∣∣∣∣∣
ϵ

1
∂S
∂T

∣∣∣
ϵ

, (2.205)
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The difference between the isoentropic and isothermal elastic constants is:

CSijkl−C
T
ijkl =

TΩbijbkl
Cϵ

, (2.206)

where bij is the thermal stress:

bij =
∂σij
∂T

∣∣∣∣∣
ϵ

=
∑
kl

∂σij
∂T

∣∣∣∣∣
ϵ

∂T

∂ϵkl

∣∣∣∣∣
σ

∂ϵkl
∂T

∣∣∣∣∣
σ

=−
∑
kl

CTijkl
∂ϵkl
∂T

∣∣∣∣∣
σ

=−
∑
kl

CTijklαkl.

(2.207)

2.4.18 Polycrystalline averages
From the elastic constants of a solid it is possible to estimate those of a polycrystalline solid
through the Voigt-Reuss-Hill method [135]. From the average elastic constants:

⟨C ′
11⟩=

3
15 (C11+C22+C33)+

2
15 (C12+C13+C23)+

4
15 (C44+C55+C66) , (2.208)

⟨C ′
12⟩=

1
15 (C11+C22+C33)+

4
15 (C12+C13+C23)−

2
15 (C44+C55+C66) , (2.209)

⟨C ′
44⟩=

1
15 (C11+C22+C33)−

1
15 (C12+C13+C23)+

3
15 (C44+C55+C66) , (2.210)

one obtains the Voigt approximations of the Bulk modulus (BV ), of the Young modulus
(EV ), of the shear modulus (GV ), and of the Poisson ratio (νV ) as:

BV = ⟨C
′
11⟩+2⟨C ′

12⟩
3 , (2.211)

EV = (⟨C ′
11⟩−⟨C ′

12⟩)(⟨C ′
11⟩+2⟨C ′

12⟩)
⟨C ′

11⟩+ ⟨C ′
12⟩

, (2.212)

GV = ⟨C ′
44⟩, (2.213)

νV = EV
2GV

−1. (2.214)

The Reuss approximation of these quantities is given in terms of the elastic compliances:

BR = 1
S11+S22+S33+2S12+2S13+2S23

, (2.215)
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ER = 15
3(S11+S22+S33)+2(S12+S13+S23)+(S44+S55+S66)

, (2.216)

GR = 15
4(S11+S22+S33)−4(S12+S13+S23)+3(S44+S55+S66)

, (2.217)

νR = ER
2GR

−1. (2.218)

Finally the Hill approximation is the average of the Voigt and Reuss estimates.

2.4.19 Sound velocities
From the Hill estimate of these quantities we obtain the average sound velocities:

VP =
BS+ 4GS

3
ρ

1/2 , (2.219)

VS =
[
GS
ρ

]1/2
, (2.220)

where VP and VS are the compressional and shear sound velocities and ρ is the density. We
compute the polycrystalline average of the bulk modulus BS , of the shear modulus GS , of
the Young’s modulus ES , and of the Poisson’s ratio νS with adiabatic ECs. Sometimes it is
useful to define the bulk sound velocity as:

VB =
[
BS
ρ

]1/2
. (2.221)

Using GS and BS , we calculate the Pugh ratio P = GS/BS that provides a criterium to
predict if a solid is ductile (P < 0.57) or brittle (P > 0.57). This section is learned from
[12, 143, 46, 191].
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Chapter 3

Tungsten

Tungsten, a body-centered-cubic (bcc) 5d-metal, finds various applications, both pure and
in alloys, due to its high melting point and corrosion resistance. It is expected to become a
plasma facing material in thermonuclear fusion reactors [153] and is used as a high-pressure
gauge in diamond anvil cells. [44] Its thermodynamic properties have been investigated by
experiment, [44, 136, 170, 131, 19, 123, 185, 194, 27, 11, 10, 132, 79, 157, 51, 50] model
theory, [48, 110, 158, 71] and ab-initio. [44, 43, 196, 74, 101]

The ECs and the bulk modulus of tungsten are known from ultrasonic experiments at
room pressure up to 2073 K [54, 115, 20] and have been calculated, at zero temperature,
for several pressures. [101] However information on high pressure and high temperature
thermoelastic properties of tungsten is still incomplete.

The pressure derivatives of the elastic constants at room temperature are known, [91] but
only recently density as well as compressional and shear sound velocities have been measured
by Qi et al. [158] in polycrystalline tungsten up to 1073 K and 105 kbar using ultrasonic
interferometry and X-ray diffraction. These measurements give experimental values of the
adiabatic bulk and shear moduli at high pressures and temperatures. So far these data
have not been compared with ab-initio calculations, but such comparison is timely both
to test the ab-initio methods at high pressure and to further support the experimental
measurement. Unfortunately, temperature dependent elastic constants (TDECs) within the
quasi-harmonic approximation are numerically heavy to compute and the examples in the
literature are focused mainly on materials of geophysical interest.[88, 89] To our knowledge,
no quasi-harmonic calculation of the TDECs of tungsten exists and theoretical results are
presently limited to molecular dynamics based on embedded atom method potentials at room
pressure. [126]
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Table 3.1: The equilibrium lattice constants (a0), the bulk moduli (BT ) and the pressure
derivatives of the bulk moduli (B′

T ) of tungsten calculated in this work compared with
selected previous calculations and with experiment.

T a0 BT B′
T

(K) (a.u.) (kbar)
This study LDA 0 5.930 3398 3.97

295 5.939 3330 4.02
PBEsol 0 5.965 3276 3.98

295 5.974 3210 4.01
PBE 0 6.021 3073 4.01

295 6.030 3008 4.05

Calc. [101] PBE 0 6.016 3290 3.89
Calc. [157] PBE 0 6.010 3068 4.10
Calc. [74] PBE 0 6.026 3010 4.04
Calc. [192]1 PBE 0 6.032
Calc. [166]1 LDA 0 5.959 3065
Calc. [196] LDA 0 5.936

PBE 0 6.030
Calc. [96] LDA 0 5.94 3370

PW91 0 6.02 3070
Calc. [75] LDA 0 5.939

PBEsol 0 5.975
PBE 0 6.030

Model [48] 300 5.981 3060 4.18
Model [110] 300 5.981 3080 4.20

Expt. [132] 300 5.984 3070 4.32
Expt. [44] 300 5.982 2960 4.30
Expt. [54] 0 3142
Expt. [92] 3084 4.5 2/3.9 3

1 These data are used to calculate the equations of state
reported in Fig. 3 of the supplementary material.

2 Ultrasonic experiment.
3 Shock wave experiment.

In this chapter we report an ab-initio investigation of the thermoelastic properties of
tungsten extending this computational scheme to high pressures. We compute the temper-
ature dependent isothermal ECs from the second strain derivatives of the Helmholtz free
energy, including both the quasi-harmonic (QHA) vibrational term and the contribution
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of electronic thermal excitations. These calculations, being carried out on several refer-
ence geometries at high and low pressures, can be used to interpolate the isothermal ECs
at an arbitrary volume and therefore to study their temperature and pressure dependence.
Adiabatic TDECs are calculated by thermodynamic relationships for comparison with ex-
periments. From these ECs we derive the elastic parameters of polycrystalline tungsten, and
compare with experiment.

Finally, from the density and the polycrystalline elastic parameters we determine the
compressional and shear sound velocities that are compared with the results of Qi et al.. [158]
We confirm some of the experimental results, but we also find some discrepancies that might
require further theoretical and/or experimental investigations.

3.1 Computational parameters
In this paper we use thermo pw [38] to calculate the thermodynamic properties.

Table 3.2: The 0 K elastic constants calculated with the different functionals compared
with experiment and selected previous calculations. B, E, G, and ν are the bulk modulus,
the Young’s modulus, the shear modulus, and the Poisson’s ratio, respectively.

T a0 C11 C12 C44 B E G ν
(K) (a.u.) (kbar) (kbar) (kbar) (kbar) (kbar) (kbar)

LDA 0 5.930 5682 2201 1520 3362 4154 1605 0.294
PBEsol 0 5.965 5476 2131 1519 3246 4076 1579 0.291
PBE 0 6.021 5140 1997 1444 3045 3852 1494 0.289
PBE [157] 0 6.010 5285 1934 1487 3051 3997 1559 0.282
PBE [101] 0 6.016 5130 1990 1400 3037 3788 1466 0.292
LDA [166] 0 5.981 5289 1953 1705 3065 4283 1690 0.267

expt.[115] 0 (extr.) 5.972 5321 2047 1638 3138 4184 1637 0.277
expt.[115] 273.15 5235 2045 1608 3108 4103 1603 0.280
expt.[54] 0 5.972 5326 2050 1631 3142 4178 1634 0.278

The calculations of the TDECs presented in this work were done by using DFT im-
plemented in Quantum ESPRESSO [60, 59] with the PBE [149] exchange and correlation
functional. In addition, we present also some results using the LDA [152] and PBEsol, [150]
a functional that, modifying the PBE exchange, gives a better description of solids [168] at
the expense of the accuracy in molecules. We employ the projector augmented wave (PAW)
method [17] and a plane-wave basis with pseudopotentials generated by us starting from those
available in pslibrary. [37, 35] We called these pseudopotentials W.pz-spn-kjpaw psl.1.0.1.UPF,
W.pbesol-spn-kjpaw psl.1.0.1.UPF, and W.pbe-spn-kjpaw psl.1.0.1.UPF for LDA, PBEsol,
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Figure 3.1: Upper: Pressure dependent PBEsol (dashed lines) and PBE (solid lines) density
calculated for several temperatures (red 298 K, green 473 K, blue 673 K, yellow 873 K, and
pink 1073 K) compared with the experimental data of Qi et al. [158]. Lower: The PBE
density is shown after a shift of ∆ρ = 0.475 g/cm3 (indicated by the red arrow on the line
at 298 K) to facilitate the comparison with experiment. The dashed lines are the PBEsol
curves after a shift of −0.06 g/cm3 also shown by a red arrow.

and PBE respectively and added them to pslibrary. They can be obtained from the web
page given in Ref. [35]. They have 5s, 5p, 5d, and 6s valence states, while the 4f states
are frozen in the core and accounted for by the nonlinear core correction. [114] For the wave
functions cut-offs, we use 70 Ry, 90 Ry, 90 Ry while for the charge density we use 280 Ry,
360 Ry, 360 Ry, for LDA, PBE, and PBEsol, respectively.

The Fermi surface has been dealt with by a smearing approach [128] with a smearing
parameter σ = 0.02 Ry. With this smearing, the Brillouin zone integrals converge with a
40×40×40 k-point mesh. Density functional perturbation theory (DFPT) [12, 34] is used
to calculate the dynamical matrices on a 8× 8× 8 q-point grid. These dynamical matrices
have been Fourier interpolated on a 200×200×200 q-point mesh to evaluate the free-energy
and thermodynamic quantities.

For quasi-harmonic calculations, the free energy was calculated in NV = 15 geometries
with lattice constants ranging from a0− 1.2 a.u. to a0+0.2 a.u. in steps of ∆a = 0.1 a.u.,
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Figure 3.2: Pressure dependent ECs calculated at 0 K obtained from the second derivatives
of the energy with respect to strain for the NV geometries used for the quasi-harmonic
approximation. ECs are calculated within LDA (red line), PBEsol (green line), and PBE
(blue line). The red circles are the PBE data of Ref.[101].

where a0 is the equilibrium 0 K lattice constant (see Table 3.1).
The ECs C11, C12, and C44 are calculated by using six strained configurations for each

type of strain (see Ref. [119]) with δε=0.005. Therefore, each reference configuration requires
the phonon dispersions and the electronic density of states for 18 geometries, 6 with a
body-center cubic lattice, 6 with centered tetragonal lattice, and 6 with a rhombohedral
lattice. Phonons are calculated on a 8×8×8 q-point grid, sampling the Brillouin zone by a
45×45×45 k-point mesh. Among the NV = 15 geometries used for anharmonic calculations,
we computed the QHA ECs for six reference geometries: 1, 5, 8, 12, 13, and 14. The phonon
frequencies of geometries 1, 5, 8, and 12 have been computed on Marconi100 at CINECA
with an accelerated GPU version of thermo pw optimized for calculations with a dense grid
of k-points. [66] The method is presented in chapter 7 of this thesis.

3.2 Results and discussion
We start in Table 3.1 by comparing the LDA, PBEsol, and PBE equilibrium lattice constants,
bulk moduli, and pressure derivatives of the bulk moduli obtained from the interpolation of
U(V ) with selected previous calculations and experiments. Using aexp = 5.972 a.u. as the
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Figure 3.3: PBEsol (green lines) and PBE (blue lines) temperature dependent isothermal
(dashed) and adiabatic (solid) elastic constants calculated within the quasi-harmonic approx-
imation at zero pressure. The gold and red circles indicate the adiabatic experimental data
of Ref.[20] and of Ref.[115], respectively. For C44 isothermal and adiabatic ECs coincide.

0 K experimental lattice constants obtained subtracting 0.009 a.u., the thermal expansion
contribution, to the reported 300 K value of Ref. [110], LDA underestimates the lattice
constant by 0.7% while PBE overestimates it by 0.8%. PBEsol is closer to the experiment
underestimating it by 0.1%. This agrees with the all-electron LAPW calculation of Ref. [75].
Using B = 3142 kbar as the 0 K experimental bulk modulus (the value given in Ref. [54]),
the LDA and PBEsol overestimations are about 8% and 4%, while PBE underestimation is
about 2%. The three functionals give similar values for the pressure derivative of the bulk
modulus which are in reasonable agreement with the experiment. In the appendix we show,
as a reference, the phonon dispersions, the thermal EOS, the volume thermal expansion, the
isobaric heat capacity, the bulk modulus, and the average Grüneisen parameter calculated
with LDA, PBEsol, and PBE and compare them with the available experiments and previous
calculations. We refer to these data when needed in the following.

The PBE and PBEsol thermal EOS in the range of pressures and for the temperatures
measured in the experiment of Qi et al. [158] (298 K, 473 K, 673 K, 873 K, and 1073 K) are
shown in the upper part of Fig. 3.1. Since the PBE functional overestimates the volume,
its predicted densities are all below experiment. The PBEsol densities are much closer to
the experimental data although slightly higher. In order to facilitate the comparison of
the temperature and pressure dependence of the theoretical densities and experiment we
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Figure 3.4: PBEsol (green lines) and PBE (blue lines) temperature dependent isothermal
(dashed) and adiabatic (solid) polycrystalline averages of the macroscopic elastic properties
(bulk modulus B, Young’s modulus E, and shear modulus G) calculated within the quasi-
harmonic approximation at zero pressure. The red circles are the adiabatic data of Ref.[115].
In the inset we compare the isothermal and adiabatic Poisson’s ratio with experiment.

superimpose the two sets of curves in the lower part of Fig. 3.1 making a upper shift of
∆ρ= 0.475 g/cm3 of all the PBE curves and of ∆ρ=−0.06 g/cm3 of all the PBEsol curves
so that the two curves at 298 K overlap with experiments at the point at 53 kbar. This
comparison shows that the slope of the lines and the distance between lines are very similar
to experiment for both functionals as expected from the bulk moduli and thermal expansion.
The pressure slope of the PBEsol density is slightly smaller than the PBE one (in agreement
with the different bulk moduli), but the difference is not significant in the comparison with
experiment in this range of pressures.

The LDA, PBEsol, and PBE ECs calculated at the 0 K equilibrium volume are reported in
Tab. 3.2 and compared with experiments and selected earlier calculations. The experimental
values of Lowrie and Gonas [115] refer to 273.15 K, but they can be extrapolated at 0 K
using our PBE differences between 0 K and 273 K. We obtain a good agreement with the
0 K values of Ref. [54] and take these extrapolated values as experimental reference. The
LDA errors are 361 kbar (7%), 154 kbar (8%), and −118 kbar (−7%) for C11, C12, and C44,
respectively. PBEsol errors are 155 kbar (3%), 84 kbar (4%), and −119 kbar (−7%) while
PBE errors are −181 kbar (−3%), −50 kbar (−2%), and −194 (−12%). In Tab. 3.2 we
also report the bulk, shear, and Young’s moduli of polycrystalline tungsten derived from the
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Figure 3.5: Temperature dependent longitudinal modulus calculated within the quasi-
harmonic approximation as a function of pressure for several temperatures (red 298 K, green
473 K, blue 673 K, yellow 873 K, and pink 1073 K). The circles (with the same color code) are
the data of Ref.[158], measured at the same temperatures and calculated as L=BS+4/3GS
from the BS and GS in their Table III. To facilitate the comparison with experiment, theo-
retical lines translated by 437 kbar, as indicated by the red arrows, are also shown. PBEsol
results are shown with dashed lines after a shift of 128 kbar.

ECs. The bulk moduli derived from the ECs are about 1% smaller than those reported in
Tab. 3.1 derived from the Birch-Murnaghan interpolation. This shows the accuracy of our
ECs calculations. The difference is within the numerical uncertainty of the Birch-Murnaghan
fitting.

Pressure dependent ECs calculated with the three functionals are reported in Fig. 3.2
and compared with the previous PBE calculation [101]. On the scale of this figure the three
functionals are almost equivalent and in good agreement with earlier results. The numerical
effort to calculate the temperature and pressure dependent ECs is large and we could afford
only two functionals, so we chose PBEsol and PBE which have smaller errors than LDA.
Presently, we do not include phonon-phonon anharmonic effects in the free energy, so our
results are expected to be reliable only up to 1500 K, a temperature for which, as shown in
the appendix, the quasi-harmonic approximation is sufficient to describe accurately the other
thermodynamic properties of this system. In Fig. 3.3 we report the temperature dependent
isothermal and adiabatic ECs as a function of temperature at room pressure. As is well
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Figure 3.6: Temperature dependent PBE shear modulus calculated within the quasi-
harmonic approximation as a function of pressure for several temperatures (red 298 K, green
473 K, blue 673 K, yellow 873 K, and pink 1073 K). The circles (with the same color code)
are the data of Ref.[158], measured at the same temperatures (from their Table III). To facil-
itate the comparison with experiment, theoretical lines translated by 204 kbar, as indicated
by the red arrows, are also shown. The PBEsol results are shown with dashed lines after a
shift of 122 kbar.

known from theory, in cubic systems adiabatic and isothermal elastic constants differ only
for C11 and C12 while they coincide for symmetry reasons for C44. Experimentally ECs
are derived from sound velocities and are adiabatic. We compare our data with Lowrie and
Gonas [115] which provided analytic fits of their experiments on single crystal tungsten. The
points shown in the figure have been obtained from these fits. The temperature dependence
of the ECs is well reproduced, theory and experiment differ only for a rigid shift. From 297
K to 2073 K the experimental values decrease by 993 kbar (19 %), −44 kbar (−2 %), and 250
kbar (15 %) for C11, C12, and C44 while the theoretical ones decrease by 953 kbar (18 %),
−12 kbar (−0.6 %) and 289 kbar (20 %) with PBEsol and by 874 kbar (17 %), 17 kbar (0.8
%), and 263 kbar (16 %) with PBE. The behavior of C12 is quite unusual. In experiment C12
is almost constant with a slight enhancement with temperature. We find an almost constant
curve, slightly increasing with PBEsol and slightly decreasing with PBE.

The bulk modulus, shear modulus, and Young’s modulus of polycrystalline tungsten
calculated by the Voigt-Reuss-Hill approximation are shown against temperature in Fig. 3.4
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Figure 3.7: Temperature dependent compressional sound velocity (VP ) calculated within the
quasi-harmonic approximation as a function of pressure for several temperatures (red 298
K, green 473 K, blue 673 K, yellow 873 K, and pink 1073 K). The circles (with the same
color code) are the data of Ref.[158], measured at the same temperatures. To facilitate the
comparison with experiment, theoretical lines translated by 146 m/s, as indicated by the red
arrows, are also shown. PBEsol results are shown by dashed lines after a shift of 65 m/s.

and compared with the analytic fits of the experimental data of Ref. [115]. Again except for
the absolute positions, the temperature dependence of B, E, and G is reproduced reasonably
well. From 297 K to 2073 K, these quantities decrease by 10%, 21%, and 23% both in
experiment and in our PBE calculation. With PBEsol these figures become 10%, 22%, and
24%, but the absolute position is closer to experiment. The same is found for the Poisson’s
ratio ν, shown in the inset where the increase is 10% in experiment and 9% (PBE) and 10
% (PBEsol) in theory. At 300 K and 0 kbar, the pressure derivative of the adiabatic bulk
modulus is dBS

dp = 4.2 (4.2), while the temperature derivative is dBS
dT =−0.15 kbar/K (−0.16

kbar/K) for PBE (PBEsol) (experimental dBS
dp = 4.45 and dBS

dT =−0.076 kbar/K [158]). For
the shear modulus the values become: dGS

dp = 1.5 (1.5) and dGS
dT = −0.18 kbar/K (−0.19

kbar/K) for PBE (PBEsol) (experimental dGS
dp = 1.8 and dGS

dT =−0.175 kbar/K).
In Fig. 3.5 we show the pressure dependent longitudinal modulus that derives from our

elastic constants. This modulus is computed as L = BS + 4
3GS . A similar calculation is

done also with the experimental data of Ref. [158]. Also in these curves it is easier to
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Figure 3.8: Temperature dependent shear sound velocity (VG) calculated within the quasi-
harmonic approximation as a function of pressure for several temperatures (red 298 K, green
473 K, blue 673 K, yellow 873 K, and pink 1073 K). The circles (with the same color code)
are the data of Ref.[158], measured at the same temperatures. To facilitate the comparison
with experiment, theoretical lines translated by 149 m/s, as indicated by the red arrows, are
also shown. PBEsol results are shown by dashed lines after a shift of 113 m/s.

compare the two functionals and experiment by doing a shift that removes the differences
due to the T = 0 K elastic constants. The figure with unshifted curves is presented in the
appendix. We make a shift of 437 kbar for PBE and of 128 kbar for PBEsol so that the 298
K curves and the experimental point at 53 kbar and 298 K coincide. The theoretical data
reproduce accurately the pressure dependence of the experimental data and both functionals
give curves with the same slope, however our calculation predicts a larger variation of L with
temperature than experiment. This difference is mainly due to the bulk modulus as can be
deduced by comparing the shear modulus (see Fig. 3.6). After a shift of 204 kbar for PBE
and of 122 kbar for PBEsol (again to make the curve at 298 K to pass through the point
at 53 kbar), the temperature and pressure dependence of the shear modulus follows with
experiment with the PBEsol shear modulus that decreases slightly faster than the PBE one
with temperature.

Finally, in Figs. 3.7 and 3.8 we present a comparison between the sound velocity data
and our results (Eqs. 2.219 and 2.220). We show our theoretical PBE results and the same
curves shifted by 146 m/s (Fig. 3.7) and 149 m/s (Fig. 3.8) so that the 298 K curves are
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above the experimental data at 53 kbar. In the same figures we show also the PBEsol data
shifted by 65 m/s (VP ) and 113 m/s (VG). As expected from previous analysis, we find
that the pressure dependence is well reproduced for both the compressional and the shear
sound velocities. The temperature dependence of the shear sound velocity is also very well
accounted for, while the distances between compressional velocities at different temperatures
agree with our curves at low temperatures, but the experimental points at 873 K and those
at 1073 K have higher values than our theoretical curves. These findings are due to the
values of dBS

dT and dGS
dT , the latter in quite good agreement with experiment, while the former

only in fair agreement.
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Chapter 4

Molybdenum

Molybdenum, as a refractory 4d transition metal in the same group of tungsten, finds several
applications, pure or in alloys with other metals, for its high melting point, mechanical
properties, and corrosion resistance. Its thermodynamic properties have been studied by
several authors, both experimentally and by theory. [132, 45, 201, 109, 82, 79, 136, 18, 198,
199, 200, 192, 25]

In molybdenum, the temperature dependent bulk modulus and ECs have been measured
by ultrasonic technique at room pressure. [54, 20, 47, 21] Data are available almost until melt-
ing (2898 K). [21] Pressure derivatives of the ECs are known at room temperature [91] and
compressional and shear sound velocities in polycrystalline molybdenum have been measured
up to 120 kbar at room temperature. [112] A simultaneous measurement of the density allow
to derive from these data the bulk and shear moduli at high pressure. However, information
on pressure dependent elasticity at high temperatures is still missing in the literature.

Theoretically temperature dependent ECs of molybdenum have been calculated within
the quasi-static approximation (QSA) at room pressure, [193] while the pressure dependent
ECs have been calculated by Koči et al. [101] at zero temperature. The measurements
on polycrystalline molybdenum have been modeled by ab-initio calculations [112] and the
ECs along the Hugoniot together with the corresponding compressional and shear sound
velocities have been calculated within the QSA. [199] Due to the time-consuming phonon
calculations for deformed configurations of metallic systems needed for the ab-initio quasi-
harmonic (QHA) ECs no paper has addressed these quantities for molybdenum so far.

In this chapter, we present a comparison of the temperature dependence of the QSA
and the QHA ECs and use the calculated QHA adiabatic ECs to predict the temperature
and pressure dependence of the bulk and shear moduli of polycrystalline molybdenum as
well as its compressional and shear sound velocities, providing a theoretical prediction that
could be useful in future investigations of the thermoelastic properties at high pressure and
temperature.
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4.1 Computational parameters
The temperature and pressure dependent thermodynamic properties and ECs are calcu-
lated by the open source software thermo pw, which has been discussed in previous publica-
tions. [39, 148, 118, 119, 120, 121, 65]

The calculations presented in this work are done by using DFT as implemented in the
Quantum ESPRESSO (QE) package. [60, 59] The exchange and correlation functionals are
the LDA [152] and the generalized gradient approximations PBEsol [150] and PBE. [149]

We employ the projector augmented wave (PAW) method [17] and a plane-wave ba-
sis with pseudopotentials from pslibrary. [35] We use Mo.pz-spn-kjpaw psl.1.0.0.UPF,
Mo.pbesol-spn-kjpaw psl.1.0.0.UPF, and Mo.pbe-spn-kjpaw psl.1.0.0.UPF for LDA,
PBEsol, and PBE, respectively. These pseudopotentials have the 4s, 4p, 4d, and 5s states in
the valence, while the other states are frozen in the core and accounted for by the nonlinear
core correction. [114] The lattice constants of 14 reference geometries from 4.784 a.u. to
6.084 a.u. with LDA, from 4.8162 a.u. to 6.1162 a.u. for PBEsol, and from 4.8922 a.u. to
6.1922 a.u. with PBE with an interval of 0.1 a.u. between geometries have been chosen to
calculate the free energies. For the wave functions cutoffs, we use 100 Ry, 90 Ry, 120 Ry
while for the charge density we use 400 Ry, 360 Ry, 480 Ry, for LDA, PBEsol, and PBE,
respectively. The Fermi surface has been dealt with by the smearing approach of Methfessel
and Paxton [128] with a smearing parameter σ = 0.02 Ry. With this smearing, the Brillouin
zone integrals converge with a 40×40×40 k-point mesh.

For 6 reference geometries (with i= 1, 4, 7, 11, 12, 13), temperature dependent ECs are
calculated by 3 strain types that lead to a body-center cubic, a centered tetragonal, and a
rhombohedral strained lattices. Each strain type is sampled by 6 strains, from ϵ = −0.15
to ϵ = 0.15 with stepsize δϵ = 0.05. A thicker k-point mesh of 45× 45× 45 is employed on
strained configurations. Each one of the 108 strained configurations requires calculations
of phonon frequencies and electronic density of states. Phonon frequencies are calculated
by density functional perturbation theory (DFPT) [12, 34] getting the dynamical matrices
on a 8× 8× 8 q-point grid. These dynamical matrices have been Fourier interpolated on a
200×200×200 q-point mesh to evaluate the free-energy and the thermodynamic quantities.
The calculations are all performed on the Leonardo supercomputer at CINECA with a GPU
version of thermo pw that optimizes some routines of QE for problems with dense k-points
sampling in metallic systems. [66] This alternative approach will be discussed in Chapter 7.
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Table 4.1: The equilibrium lattice constants (a0), the bulk moduli (BT ) and the pressure
derivatives of the bulk moduli (B′

T ) of molybdenum calculated in this work compared with
previous calculations and with experiment.

T a0 BT B′
T

(K) (a.u.) (kbar)
This study LDA 0 5.884 2949 4.00

295 5.894 2874 4.09
PBEsol 0 5.916 2826 4.02

295 5.926 2753 4.10
PBE 0 5.975 2617 4.08

295 5.986 2543 4.16

Calc. [198] PW91 0 5.988 2666 4.42
Calc. [199] PBE 0 5.996 2633 4.21
Calc. [101] PBE 0 6.001 2610 4.5
Calc. [192]1 PBE 0 5.992
Calc. [75] LDA 0 5.888

PBEsol 0 5.920
PBE 0 5.979

Calc. [45] LDA 0 5.880 3010 3.99
2982 5.891 2950 4.01

PBEsol 0 5.914 2870 4.02
2982 5.925 2800 4.05

PBE 0 5.981 2620 4.14
2982 5.993 2550 4.17

Model [109] 300 5.945 2600 4.21
Model [177] 300 5.944 2605 4.05

Expt. [45]1 300 5.944 2610 4.06
Expt. [132] 300 5.951 2608 4.46
Expt. [54] 0 2653
Expt. [92] 2610 4.653/3.954
1 These data are used to calculate the equations of state
which we report in Fig. S2 and Fig. S3 of the supple-
mentary material.

2 Values estimated using a Debye model.
3 Ultrasonic experiment.
4 Shock Wave experiment.
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Table 4.2: The 0 K elastic constants calculated with the different functionals compared
with experiment and one previous calculation. B, E, G, and ν are the bulk modulus, the
Young’s modulus, the shear modulus, and the Poisson’s ratio, respectively.

T a0 C11 C12 C44 B E G ν
(K) (a.u.) (kbar) (kbar) (kbar) (kbar) (kbar) (kbar)

LDA 0 5.884 5183 1815 1094 2938 3402 1301 0.307
PBEsol 0 5.916 4976 1727 1081 2810 3318 1273 0.303
PBE 0 5.974 4637 1589 1016 2605 3111 1196 0.301

PW91 [198] 0 5.988 4723 1604 1060 2644 3211 1237 0.297
Expt. [54] 0 4500.2 1729.2 1250.3 2653 3358 1303 0.289
Expt. [47] 273.15 4637 1578 1092 2598 3232 1250 0.293

Expt. [47] (Extrapolated) 0 4800 1558 1124 2639 3354 1302 0.288
Expt. [20] 300 4696 1676 1068 2683 3194 1227 0.302

Expt. [20] (Extrapolated) 0 4832 1656 1100 2715 3306 1275 0.297
Expt. [91] 300 4648 1616 1089 2627 3222 1244 0.296

Expt. [91] (Extrapolated) 0 4784 1596 1121 2659 3334 1291 0.291
Expt. [112] 300 2607 1251

4.2 Results and discussion
In Table 4.1, the equilibrium lattice constants, bulk moduli, and pressure derivatives of
the bulk moduli of molybdenum obtained as parameters of a fourth-order Birch-Murnaghan
interpolation of the static energy U(V ) are listed together with a few selected values from
previous calculations and experiment. Our PAW LDA, PBEsol, and PBE values of the
lattice constant differ by less than 0.1% from the all-electron values reported in Ref. [75].
With respect to experiment (a = 5.936 a.u. at 0 K) the LDA, PBEsol, and PBE errors are
−0.9%, −0.3% and 0.7%, with LDA and PBEsol below experiment and PBE above. For the
bulk modulus these errors become 10% (LDA), 7% (PBEsol), and −1% (PBE) with respect
to the 0 K value 2653 kbar. [54]

In Table 4.2, we report the values of the ECs C11, C12, and C44 calculated with the three
functionals together with the values of the bulk modulus, Young’s modulus, shear modulus,
and Poisson’s ratio of polycrystalline molybdenum calculated using the Voigt-Reuss-Hill
approximation. The temperature dependent ECs have been measured in Refs. [20, 54, 47, 21].
Although there is not perfect agreement among these data, the 0 K values of Ref.[47, 21, 91]
are quite close to each other. Taking as a reference the values of Ref. [91] extrapolated to 0
K, by adding the theoretical difference between 0 K and 300 K, we find that the LDA errors
for C11, C12, and C44 are 399 kbar (8 %), 219 kbar (14 %) and −27 kbar (−2 %) while the
PBE errors are −147 kbar (−3 %), −7 kbar (−0.4 %) and −105 kbar (−9 %). PBEsol has
errors 192 kbar (4 %), 131 kbar (8 %), and −40 kbar (−4 %) smaller than LDA, but bigger
than PBE. The PBE values of C11 and C12, and hence of its bulk modulus, are the closest
to experiment. Since the calculation of the TDEC is computationally heavy, we calculated
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Figure 4.1: Elastic constants as a function of pressure calculated within LDA (red lines),
PBEsol (green lines) and PBE (blue lines) compared with the PBE results of Ref. [101].

them using only this functional. Actually, as shown in Ref. [121] for several metals and as we
confirmed in a recent study of tungsten, [65] different functionals give different 0 K values
of the ECs but the temperature and pressure dependence is almost independent from the
functional.

In Fig. 4.1 we present the pressure dependent ECs at 0 K calculated with the three
functionals and compare them with the PBE results of Koči et al.. [101] There is a reasonable
agreement between the two calculations expecially at low pressure. At 3000 kbar our ECs
are smaller than those of Koči et al. but quite close to them. At zero pressure, the pressure
derivatives of the ECs are: dC11

dp = 5.8, dC12
dp = 3.3, dC44

dp = 1.3, for all three functionals to be
compared to the experimental values: [91] dC11

dp = 6.41, dC12
dp = 3.45, and dC44

dp = 1.396.
We show in Fig. 4.2 the QHA isothermal and adiabatic ECs compared with the adiabatic

experimental values. Keeping into account the zero point motion on both the lattice constant
and on the ECs themselves, we find C11 = 4564 kbar, C12 = 1589 kbar, and C44 = 996 kbar
at 4 K, while computing the ECs from the strain derivatives of the energies at the lattice
constant expanded by zero point motion effects within the QSA we get C11 = 4593 kbar,
C12 = 1565 kbar, and C44 = 996 kbar.

As can be seen from Fig. 4.2, there is a good agreement between our calculated tem-
perature dependence and the experimental data. From 24 K and 2022 K, the experimental
values [21] decrease of 1264 kbar (27 %), −63 kbar (−4 %), and 231 kbar (21 %) for C11,
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Figure 4.2: Quasi-harmonic isothermal (dashed lines) and adiabatic (solid line) elastic con-
stants C11, C12 and C44 as a function of temperature compared with experimental adiabatic
data from Ref. [54] (yellow circles), Ref. [47] (green circles), Ref.[20] (blue circles), and
Ref.[21] (red circles).

C12, and C44 respectively, while our values decrease by 1400 kbar (31 %), −141 kbar (−9
%), and 287 kbar (29 %). In particular the increase of C12 with temperature is found also
in our QHA calculation, slightly overestimated with respect to experiment.

For comparison we show in Fig. 4.3 the ECs calculated with the PBE functional within
the QSA which are in good agreement with those calculated in Ref. [193]. In this case, from
4 K to 2000 K, the decreases of C11, C12, and C44 are 380 kbar (8 %), 127 kbar (8 %), and
132 kbar (13 %). The decrease of C11, and C44 is much smaller than in experiments (and
within QHA) while C12 decreases with temperature instead of increasing as in experiment.
We can understand this behavior using the QHA ECs calculated at fixed volume that do not
contain any thermal expansion effect. For these ECs C11 and C44 decrease with temperature,
while C12 increases. Since QSA has only the effect of thermal espansion for C11 and C44 it
misses the QHA contribution that give a larger decrease, while for C12 it has no increasing
QHA term. The QHA predicts an almost constant C12 that is the results of the cancellation
between the decrease due to thermal expansion and the increase due to the use of the free
energy derivatives instead of the energy derivatives.

Using the QHA ECs we have calculated the properties of polycrystalline molybdenum.
In Fig. 4.4 we show the pressure dependence of the bulk modulus and of the shear modulus
in the range of pressures (up to 140 kbar) measured in Ref. [112]. In addition to the 300 K

75



Figure 4.3: Quasi-static isothermal (dashed lines) and adiabatic (solid line) elastic constants
C11, C12, and C44 as a function of temperature compared with adiabatic experimental data
from Ref. [54] (gold circles), Ref. [47] (green circles), Ref.[20] (blue circles), and Ref.[21] (red
circles).

calculation (green line), which can be compared with experiment, we show our predictions
for 4 K, 1000 K, 1500 K and 2000 K. We can see that the derivatives of the bulk and shear
modulus with respect to pressure are well followed by our curves. Our values at 300 K are
dBS
dp = 4.24 and dGS

dp = 1.33 against experimental values (obtained by a linear fit) dBS
dp = 4.54

and dGS
dp = 1.5, respectively. These data are in agreement with the experimental values

reported in Ref. [91]: dBS
dp = 4.44 and dGS

dp = 1.43 and with the 0 K PBE theoretical results
of Ref. [112] dBdp = 4.4 and dG

dp = 1.7. Regarding the temperature dependence of the adiabatic
bulk and shear modulus we find the following derivatives at 298 K: dBS

dT =−0.15 kbar/K and
dGS
dT =−0.22 kbar/K.

Finally using Eq. 2.219 and Eq. 2.220, we computed the compressional and shear sound
velocities as a function of pressure for the same set of temperatures used in the previous
picture. They are presented in Fig. 4.5. Even in this case the pressure dependence of the
sound velocity at 300 K is well reproduced by the calculation and the other curves are our
prediction.
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Figure 4.4: Adiabatic bulk and shear modulus of polycrystalline molybdenum against pres-
sure computed at 5 K (red line), 300 K (green line), 1000 K (blue line), 1500 K (yellow line),
and 2000 K (pink line), compared with room temperature experimental values of Ref. [112]
(red circles).
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Figure 4.5: Compressional and shear sound velocities of polycrystalline molybdenum against
pressure at 5 K (red line), 300 K (green line), 1000 K (blue line), 1500 K (yellow line), and
2000 K (pink line), compared with room temperature experimental values of Ref. [112] (red
circles).
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Chapter 5

Tantalum

Tantalum, as a member of the refractory metals family (melting temperature TM = 3269
K), is known for its high corrosion resistance and applications for electronics, environmental
chemical processing, and medicine. [23] Tantalum is also widely used component of metallic
alloys. Its thermodynamic properties have been studied in detail, both experimentally [9,
44, 32] and ab-initio [113, 55, 181, 15, 31].

Temperature dependent elastic constants (TDECs) of tantalum present characteristic
features such as a change of slope at high temperature [176, 189] that have been the subject
of extensive investigations. At room pressure, TDECs have been measured from 0 K to 300 K
in Refs. [54, 108, 6]. The range from 300 K to 725 K has been reported in Ref. [176] showing
a linear dependence on temperature but with a somewhat different slope with respect to the
values measured between 0 K and 300 K. This change of slope has been confirmed also in
Ref. [189] where the measurement has been extended from 300 K up to 3000 K. Pressure
dependent elastic constants have been measured at room temperature in Ref. [58, 90], but
no experimental information is available for the high-temperature, high-pressure regime.

Pressure dependent elastic constants at 0 K calculated ab-initio [99, 87, 159] are in
reasonable agreement among themselves and with the available experiments. TDECs have
been computed within the quasi static approximation (QSA) [193, 95] and there are claims
that the QSA ECs can explain the anomalous temperature behavior found in experiment [95],
in particular the minimum in the C44(T ) curve. TDECs of tantalum have been computed in
Ref. [146] by using the QHA but phonons obtained with a model generalized pseudopotential
theory (MGPT). In this case, reasonable agreement with experiment has been found. Finally,
QHA TDEC have been calculated within the PIC model [73], but these calculations cover a
too large range of temperatures and pressure to help the interpretation of the experimental
data at room pressure.

In this chapter we present a comparison of the QSA and QHA TDECs of tantalum
and use them to interpret the experimental data. Moreover we show our prediction for the
high temperature - high pressure regime. We include both the vibrational and the electronic
excitation contributions in the free energy and we find that, on a large scale the QSA TDECs
seem in better agreement with experiment than the QHA ones. On a closer examination,
however, the QHA predicts accurately the temperature variation of the elastic constants
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from 0 K until approximately 600 K, but then fail to predict the change of slope found in
experiments at higher temperatures. Our QHA ECs have a normal behavior: the elastic
constants decrease linearly with temperature and follow the slope they had until 600 K
also at higher temperatures. This results may point to the existence of relevant effects not
accounted for by the QHA, such as the anharmonic phonon-phonon interations.

For completeness, standard thermodynamic properties such has the thermal equation
of state, thermal expansion, isobaric heat capacity, adiabatic bulk modulus, and average
Grüneisen parameter, calculated by density functional theory using the local density ap-
proximation (LDA), the PBE, and the PBEsol generalized gradient approximations, are
presented in supplemental material.

5.1 Computational details
We employ the projector augmented wave (PAW) method [17] and a plane-wave basis
with pseudopotentials from pslibrary [35]. We use Ta.pz-spn-kjpaw psl.1.0.0.UPF,
Ta.pbesol-spn- kjpaw psl.1.0.0.UPF, and Ta.pbe-spn-kjpaw psl.1.0.0.UPF for LDA,
PBEsol, and PBE, respectively. These pseudopotentials have the 5s, 5p, 5d, and 6s states in
the valence, while the other states are frozen in the core and accounted for by the nonlinear
core correction. [114] For the wave functions cutoffs, we use 70 Ry, 80 Ry, 90 Ry while for the
charge density we use 280 Ry, 320 Ry, 360 Ry, for LDA, PBEsol, and PBE, respectively. The
Fermi surface has been dealt with by a smearing approach [128] with a smearing parameter
σ = 0.02 Ry. With this smearing, the Brillouin zone integrals converge with a 30× 30× 30
k-point mesh.

Density functional perturbation theory (DFPT) [12, 34] is used to calculate the dynam-
ical matrices on a 10× 10× 10 q-point grid. These dynamical matrices have been Fourier
interpolated on a 200×200×200 q-point mesh to evaluate the free-energy and the thermo-
dynamic quantities.

The harmonic and anharmonic thermodynamic quantities are calculated by the thermo pw
code. [38] For quasi-harmonic calculations the free energy, and therefore the electronic den-
sity of states and the phonon dispersions, are calculated in NV = 17 geometries with lattice
constants from a0− 0.7 a.u. to a0 +0.7 a.u. in steps of ∆a = 0.1 a.u., where a0 is the
equilibrium 0 K lattice constant (see Table 5.1).

QHA TDEC have been calculated on six geometries from Ni = 9 to Ni = 14. TDECs at
higher pressures could not be computed for the appearance of imaginary frequencies in some
distorted configurations. At geometry Ni = 9 the pressure is about 700 kbar, so QHA ECs
should be reliable in the range of pressures presented here.

All calculations have been performed on the Leonardo supercomputer at CINECA with
a GPU optimized version of thermo pw [66].
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Table 5.1: The equilibrium lattice constants (a0), the bulk moduli (BT ) and the pressure
derivatives of the bulk moduli (B′

T ) of tantalum calculated in this work compared with
previous calculations and with experiment (in experiment BS is measured at 300 K. At 0 K
BS and BT have the same value).

T a0 BT B′
T

(K) (a.u.) (kbar)
This study LDA 0 6.140 2165 3.51

295 6.152 2100 3.70
PBEsol 0 6.192 2072 3.47

295 6.205 2007 3.64
PBE 0 6.264 1948 3.53

295 6.277 1902 3.60

Calc. [75] LDA 0 6.155
PBEsol 0 6.208
PBE 0 6.280

Calc. [73] PBE 0 6.100

Calc. [113] PBE 0 6.293 1944 3.06

Expt. [32] 300 6.245 1947 3.4
Expt. [54] 0 1942

300 6.247 1919
Expt. [108] 0 1964

300 1939

5.2 Results and discussion
We report in Table 5.1 the equilibrium lattice constants, bulk moduli, and pressure deriva-
tives of the bulk moduli obtained as parameters of a fourth-order Birch-Murnaghan inter-
polation of the static energy and compare them with a few selected values from previous
calculations and experiment. Taking the all-electron calculation of the lattice constants of
Ref.[75] as reference, our PAW values are smaller than 0.2% with all functionals. With
respect to the experiment of Ref. [32] corrected for zero point and temperature effect by
subtracting 0.013 a.u. that gives 6.232 a.u. the errors of LDA, PBEsol, and PBE are −1.4%,
−0.6%, and 0.6%, respectively. Taking as experimental value of the bulk modulus 1942 kbar
reported by Ref. [54], the errors of LDA, PBEsol, and PBE are 11%, 6%, and 0.8%. All
functionals overestimate the bulk modulus, but PBE is quite close to experiment.

In Table 5.2 we report the calculated elastic constants at the equilibrium 0 K lattice
constant. Assuming as 0 K experimental values C11 = 2663 kbar, C12 = 1582 kbar, and
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Table 5.2: The 0 K elastic constants calculated with the different functionals compared
with experiment and one previous calculation. B, E, G, and ν are the bulk modulus, the
Young’s modulus, the shear modulus, and the Poisson’s ratio, respectively.

a0 C11 C12 C44 B E G ν
(K) (a.u.) (kbar) (kbar) (kbar) (kbar) (kbar) (kbar)

LDA 0 6.138 3021 1743 710 2169 1849 681 0.358
PBEsol 0 6.189 2862 1673 755 2069 1853 686 0.351
PBE 0 6.262 2647 1595 740 1946 1743 645 0.351

PBE [101] 0 2650 1590 740 1943 1748 647 0.350
Expt. [54] 0 2663 1582 874 1942 1924 721 0.335
Expt. [108] 0 2701 1595 873 1964 1941 727 0.335
Expt. [189] 0 2665 1582 873 1943 1924 721 0.335
Expt. [176] 300 2602 1544 826 1897 1848 691 0.338
Expt. [58] 300 2536 1627 719 1930 1627 598 0.359

C44 = 874 kbar of Ref. [54] the LDA errors are 358 kbar (13%), 161 kbar (10%), and 164
kbar (19%) the PBEsol errors are 199 kbar (7%), 91 kbar (6%), and 119 kbar (14%), while
the PBE one are −16 kbar (0.6%), 13 kbar (0.8%), and 134 kbar (15%). With the exception
of C44 for which the three functionals have similar errors, the PBE functional is the closest
to experiment. As we have shown in a previous paper [65] the temperature dependence of
the ECs is not strongly influenced by the functional that instead can change the 0 K values.
Therefore, in the following, we limit the calculations of the TDECs, which are numerically
quite heavy, to this functional.

In Fig. 5.1 we report the 0 K ECs calculated as a function of pressure. At room pressure
we find dC11

dp = 4.9, dC12
dp = 3.1 and dC44

dp = 1.0 to be compared with the experimental values
dC11
dp = 5.1, dC12

dp = 3.14 and dC44
dp = 0.995 from Ref. [91]. Our data are in good agreement

with Ref. [101]. C11 and C12 are also in good agreement with Ref. [159] while our C44 values
are slightly above those of this reference.

In Fig. 5.2 we compare the QSA adiabatic TDECs with experiment and with the previous
PBE calculation of Ref. [193]. The two calculations are in substantial agreement, with slightly
different values of the 0 K ECs. On the scale of this figure the QSA ECs follow well the
experimental results of Ref. [176] and of Ref. [189] since the QSA ECs have a slope that
agree with the high temperature slope of the tantalum ECs. Passing from 5 K to 2000 K the
decrease is ∆C11 = 298 kbar (11%), ∆C12 = 7 kbar (0.4%), and ∆C44 = 169 kbar (22%), to
be compared with the experimental values of Ref. [189] ∆C11 = 408 kbar (15%), ∆C12 = 102
kbar (6%), and ∆C44 = 188 kbar (22 %). For comparison we report also the calculated
isothermal ECs. They decrease more rapidly than the isoentropic ones since the anharmonic
correction in Eq. 2.206 is positive.

The QHA adiabatic ECs are shown in Fig. 5.3 and compared with the experimental
results. As can be seen from the figure the QHA ECs decrease with temperature more than
the QSA ones. Passing from 5 K to 2000 K we have ∆C11 = 595 kbar (22%), ∆C12 = 260
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Figure 5.1: T = 0 K elastic constants C11, C12 and C44 as a function of pressure calculated
within PBE compared with experiment [58] (orange squares). As a reference we report also
previous calculations the PBE results of Ref. [101] (blue diamond), Ref. [159] (red circles),
Ref. [87] (yellow triangles), Ref. [175] (cyan squares) .

kbar (16%), and ∆C44 = 423 kbar (58%). Therefore on this scale the QSA ECs are in better
agreement with experiment than the QHA ECs.

A direct comparison of the QSA and QHA TDECs is presented in Fig. 5.4. Note that in
this picture we have limited the scale of temperatures at 1200 K, a range where the QHA is
expected to be a good approximation. The difference among the two approximation is not
large, but still the QHA seem to worsen the agreement with experiment.

In order to better interpret the results, we present in Figs. 5.5, 5.6, and 5.7 the combina-
tion of elastic constants C = 1

2(C11+C12+2C44), C ′ = 1
2(C11−C12) and C44 to which their

value at 0 K has been subtracted. These combinations are measured directly in experiments.
In this enlarged scale we plot both the QSA and the QHA results. The QHA results for C
and C44 follow well the experimental data from 0 K to about 500 K, but then fail to predict
the change of slope measured in experiment. For C ′ instead the QHA slope is in better
agreement with experiment than the QSA.

Finally we present in Fig. 5.8 the adiabatic QHA elastic constants as a function of pressure
at different temperatures for 5 K to 1500 K.
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Figure 5.2: Comparison of the PBE adiabatic QSA elastic constants C11, C12, and C44
(continuous blue line) as a function of temperature with experiments from Ref. [54] (red
dots), Ref. [189] (yellow dots), Ref. [108] (light blue diamonds) and Ref. [176] (cyan dots).
Dashed lines indicate the isothermal elastic constants. Dotted red line is the PBE QSA
calculation of Ref. [193].

84



Figure 5.3: Comparison of the PBE adiabatic QHA elastic constants C11, C12, and C44
(continuous blue line) as a function of temperature with experiments from Ref. [54] (red
dots), Ref. [189] (yellow dots), Ref. [108] (light blue diamonds) and Ref. [176] (cyan dots).
Dashed lines indicate the isothermal elastic constants.

85



Figure 5.4: Comparison of the PBE QSA (dashed blue line) and QHA (solid blue line)
elastic constants C11, C12 and C44 as a function of temperature. The experiments are from
Ref. [54] (red dots), Ref. [189] (yellow dots), Ref. [108] (light blue diamonds) and Ref. [176]
(cyan dots). Green dots are the PBE results of Ref. [73]. The dashed orange line is the
calculation of Ref. [146].
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Figure 5.5: PBE adiabatic QSA (dashed line) and QHA (continuous line) combination of
elastic constants C = 0.5(C11+C12+2C44) as a function of temperature after subtracting
the T = 0 K value. The function is compared with experiments from Ref. [54] (red dots),
Ref. [189] (yellow dots), Ref. [108] (light blue diamonds) and Ref. [176] (cyan dots).
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Figure 5.6: PBE adiabatic QSA (dashed line) and QHA (continuous line) combination of
elastic constants C ′ =0.5(C11−C12) as a function of temperature after subtracting the T =0
K value. The function is compared with experiments from Ref. [54] (red dots), Ref. [189]
(yellow dots), Ref. [108] (light blue diamonds) and Ref. [176] (cyan dots). The QSA results
of Ref. [95] are also shown (green dots) .
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Figure 5.7: PBE adiabatic QSA (dashed line) and QHA (continuous line) C44 elastic constant
as a function of temperature after subtracting the T = 0 K value. Theory is compared
with experiments from Ref. [54] (red dots), Ref. [189] (yellow dots), Ref. [108] (light blue
diamonds) and Ref. [176] (cyan dots). The QSA results of Ref. [95] are also shown (green
dots). The orange dashed line show the results of Ref. [146].
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Figure 5.8: QHA adiabatic elastic constants C11, C12, and C44 as a function of pressure
calculated within PBE at 5 K (red line), 300 K (green line), 1000 K (blue line), and 1500 K
(yellow line).
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Chapter 6

Beryllium

Beryllium is a lightweight metal with a very low density, high elasticity and thermal con-
ductivity, extremely low Poisson ratio and several other noteworthy physical properties
that make it quite attractive for applications in aircrafts, satellites, and spacecraft. It
is also used in nuclear power industry as a neutron reflector and moderator. Its ther-
modynamic properties are well explored, experimentally [8, 18, 180, 106] and theoreti-
cally [116, 77, 103, 172, 161, 171, 195], but the knowledge of its elastic constants (ECs)
is still improvable.

Room temperature ECs, measured several times (see Ref. [129] for a recent account) have
been calculated at 0 K by many authors. As one of us discussed previously [39], the reported
results are not always in agreement among themselves, sometimes due to different numerical
techniques but sometimes also due to the different treatment of internal relaxations.

Pressure dependent ECs at 0 K have been calculated in Refs. [172, 77, 116] with the
first two papers in substantial agreement while the third that predicts a somewhat different
pressure dependence.

For the temperature dependent elastic constants (TDECs), two sets of experimental
data exist at room pressure. The first [173] covering the low temperature range from 0
K to 300 K and the second [165] the range from 298 K to 573 K. Ref. [165] reported a
quite strong decrease in ECs with temperature, a fact that motivated further theoretical
investigations [103, 161, 171] using the quasi-static approximation (QSA) in Ref. [103] and
the quasi-harmonic approximation (QHA) in Refs. [161, 171]. None of these studies could
obtain the rapid decrease of the ECs claimed by Ref. [165] and a reexamination of the
experimental data was suggested. Ref. [133] measured the compressional and shear sound
velocities of polycrystalline beryllium and derived the bulk and shear modulus from them.
Although the experimental errors are still quite large, the results are more in line with the
theoretical data than with Ref. [165].

At high pressure and high temperature the situation is even more obscure. We are not
aware of any experimental or theoretical paper available so far.

In this chapter we reexamine the TDECs of beryllium focusing on the analysis of the ef-
fects of the common approximations made for studying the ECs of anisotropic solids: the zero
static internal stress approximation (ZSISA) [4] and the constant volume (V-ZSISA) [124]
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approximation (also called the statically constrained quasi-harmonic approximation [24]).
Within ZSISA one avoids the calculation of the free energy as a function of the atomic po-
sitions in strains that decrease the symmetry enough to let the atoms free to move. For
each strain, the atomic positions are calculated at 0 K from energy minimization and the
free energy is computed at one atomic configuration. Using the V-ZSISA the equilibrium
configurations are obtained at 0 K by optimizing (using energy) the crystal parameters in
a set of volumes Vi (or pressure pi) and computing the free energy only on the optimized
geometries.

After the optimization of the crystal parameters and atomic positions, the ECs can be
calculated within the QSA (from the second strain derivatives of the energy) or within the
QHA (from the second strain derivatives of the free energy). We report both the QSA and
QHA TDECs calculated within V-ZSISA along the “stress-pressure” 0 K isotherm deter-
mined so that the stress is a uniform pressure along it. The effect of V-ZSISA is tested on
the QSA TDECs by identifying in the plane of parameters a and c/a the isotherm at 1500
K and interpolating the ECs along the “stress-pressure” isotherm at 0 K (within V-ZSISA)
or along the correct isobar at 0 kbar that joins the two isotherms.

In hexagonal close packed (hcp) crystals, relaxation of atomic positions affects only the
ECs C11 and C12. On these, we test the ZSISA, by comparing its predictions with the ECs
calculated with atomic positions that minimize the free energy. We find that both V-ZSISA
and ZSISA in beryllium are accurate and have only minor effects on the final QHA ECs.

As in other metals [119, 121, 65, 63], QHA gives results closer to experiment than the
QSA, but even if the QHA gives a faster decrease with temperature of C11, C33, and C44,
the derivatives with respect to temperature of these ECs are still lower than in experiment
and in substantial agreement with previous calculations.

Finally, we present the pressure-dependent QHA ECs at 4 K, 500 K, and at 1000 K, in
hopes that these theoretical data can help and stimulate the experimental measurement of
these quantities.

6.1 Thermodynamics and elastic constants
In this chapter, the thermo pw [38] software developed by ourselves is employed to calculate
all thermodynamic properties. The QHA, as implemented in thermo pw, has been discussed
in previous publications [39, 147, 148, 118, 119, 120, 121]. Here, we summarize the main
formulas and discuss the thermodynamic relationships needed for computing the ECs of hcp
solids. Except for a few relationships that are more easily written in Cartesian coordinates,
we will use the Voigt notation with indices going from 1 to 6.

Within QHA, the Helmholtz free energy F (ξ,T ) of a solid is a function of temperature
T and (unit cell) parameters ξ that in the hexagonal lattice are a and c/a. It can be written
as the sum of three contributions:

F (ξ,T ) = U(ξ)+Fph(ξ,T )+Fel(ξ,T ), (6.1)

where U(ξ) is the static energy, Fph(ξ,T ) is the vibrational free energy, and Fel(ξ,T ) is the
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Figure 6.1: Contours of constant total energy (red lines) plotted in the plane a and c/a. The
two blue dashed straight lines intersect at the position of the energy minimum. The orange
curve is the “stress-pressure” isotherm at 0 K. The light-blue curve is the “stress-pressure”
isotherm at 1500 K. The three green lines show the isobars at 0 kbar, 500 kbar, and 1000
kbar for temperatures going from 0 K to 1500 K. Points on the orange curve shows the values
of a and c/a in which we have computed the quasi-harmonic TDECs. The 0 K ECs as well
as the phonon dispersions have been calculated in these points and also in all the points of
the two dimensional grid shown with dotted lines.

electronic excitations contribution to the free energy. U(ξ) is computed via density functional
theory (DFT), Fph(ξ,T ) is written in terms of the phonon frequencies ωη(q, ξ):

Fvib(ξ,T ) = 1
2N

∑
qη
h̄ωη (q, ξ)

+ 1
Nβ

∑
qη

ln [1− exp(−βh̄ωη(q, ξ))] , (6.2)

and Fel(ξ,T ) can be computed within the rigid bands approximation from the electronic
density of states (see Ref. [121]). In beryllium we expect small effects of electronic excita-
tions [103] and in this chapter we do not consider them. In Eq. 6.2, h̄ is the reduced Planck’s
constant, β = 1

kBT
, where kB is the Boltzmann constant, q are the phonon wavevectors and

η indicates the different modes. N is the number of cells of the solid (equal also to the num-
ber of phonon wavevectors q). These free energies are computed for a grid of parameters
ξi = (ai, ci/ai), i = 1,Np. U(ξ) as well as the vibrational free energy are interpolated by a
fourth-degree polynomial.

Considering the stress tensor σ as a fixed set of parameters, and the strain as a function
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of the crystal parameters minimization of the functional:

Gσ(ξ,T ) = F (ξ,T )−V
∑
j

σjϵj (6.3)

with respect to the parameters ξ gives the EOS:

σj =
1
V

∂F (ξ,T )
∂ϵj

. (6.4)

Hence the crystal parameters that minimizes Gσ(ξ,T ) are those that give stress σ. Using for
the stress a uniform pressure we find the crystal parameters at any pressure and temperature
(ξp(T )). From the ξp(T ) we can compute also the volume as a function of p that is the
equation of state (EOS): V (p,T ) = V (ξp(T )).

Using V (p,T ) we obtain the volume thermal expansion β(p,T ) at pressure p as:

β(p,T ) = 1
V (p,T )

∂V (p,T )
∂T

∣∣∣∣∣∣
p

. (6.5)

For an hexagonal system, the thermal expansion tensor is diagonal and has two different
components. We get:

α1 = α2 =
1
a

da

dT
, (6.6)

α3 = 1
c

dc

dT
. (6.7)

The isothermal ECs are calculated from the second strain derivatives of the free energy.

C̃Tij =
1
V

∂2F

∂εi∂εj

∣∣∣∣∣∣
T

, (6.8)

Actually using the following five strain types: (ϵ,0,0,0,0,0), (0,0, ϵ,0,0,0), (ϵ,0, ϵ,0,0,0),
(ϵ, ϵ,0,0,0,0), and (0,0,0, ϵ,0,0), 1

V
∂2F
∂ϵ2

is equal to C̃11, C̃33, C̃11+ C̃33+2C̃13, 2C̃11+2C̃12,
and C̃44 respectively. When the equilibrium reference configuration has a non vanishing stress
σ
(0)
i (or σ(0)ij in cartesian notation), the stress-strain ECs CTij are obtained as (in cartesian

notation) [14]:

CTijkl = C̃Tijkl −
1
2

(
2σ(0)ij δkl−

1
2σ

(0)
ik δjl−

1
2σ

(0)
il δjk

− 1
2σ

(0)
jk δil−

1
2σ

(0)
jl δik

)
. (6.9)

An hexagonal lattice with an arbitrary a and c/a has a diagonal stress tensor with two
equal components σ(0)1 = σ

(0)
2 , while σ(0)3 can be different. From Eq. 6.9 we find CT11 = C̃T11,
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CT33 = C̃T33 while CT12 = C̃T12−σ
(0)
1 , CT21 = C̃T21−σ

(0)
1 , CT13 = C̃T13−σ

(0)
1 , CT31 = C̃T31−σ

(0)
3 , CT44 =

C̃T44+ 1
4(σ

(0)
1 +σ(0)3 ). Since C̃ij is symmetric in the exchange of the two indices, CTij is not. For

an hexagonal lattice we have CT12 = CT21, but CT31 ̸= CT13. Symmetry is recovered only along
the “stress-pressure” isotherm where σ(0)1 = σ

(0)
3 =−p. Along this curve Eq. 6.9 becomes (in

Cartesian notation):

CTijkl = C̃Tijkl+
p

2
(
2δi,jδk,l− δi,lδj,k− δi,kδj,l

)
. (6.10)

The second derivatives of the free energy are calculated as described in Ref. [39] taking as
equilibrium configuration a subset of parameters ξi along the “stress-pressure” 0 K isotherm.
The values of ξi along this curve are given in the appendix, together with the pressure
present in each configuration. The ECs at any other set of parameters ξp at temperature
T and pressure p are obtained by projection on the ‘stress-pressure” 0 K isotherm (a(T ) is
unchanged while c/a(T ) is substituted with c/a(a(T ))) and interpolation by a fourth-degree
polynomial.

Adiabatic ECs are calculated from the isothermal ones as:

CSij = CTij +
TV bibj
CV

, (6.11)

where bi are the thermal stresses:

bi =−
∑
j

CTijαj . (6.12)

6.1.1 HCP internal relaxations
The application of a strain (ϵ,0,0,0,0,0) to the hcp structure transforms the hexagonal lattice
into a base centered orthorhombic lattice and the positions of the two atoms in the unit cell
are no more constrained in the y direction. The energy can be written in the form

E(ϵ,y) = 1
2V C

(0)
11 ϵ

2+Λϵy+ 1
2µω

2y2+E(0,0), (6.13)

where C(0)
11 is the frozen ion ECs obtained by keeping the two atoms of the hcp unit cell in the

strained position. In this equation y is the deviation of the positions of the two atoms from
their strained position (that for the y coordinate coincides with the equilibrium position)
a 1
2
√
3 where a is the hexagonal unstrained lattice parameter (We refer to Fig.2 of Ref. [39]

for an illustration of the geometry). By minimizing the energy with respect to y we find:

y =− Λϵ
µω2 , (6.14)

that inserted in Eq. 6.13 gives the correction to the C(0)
11 EC.
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Figure 6.2: Stress-strain elastic constants of Be as a function of pressure at 0 K (continous
lines) compared with previous calculations of Ref. [172] (diamonds), Ref. [77] (circles), and
Ref. [116] (triangles). The dashed lines show C11 and C12 obtained by keeping the ions fixed
at the uniformly strained positions.

We find:
C11 = C

(0)
11 −

Λ2

V µω2 . (6.15)

Similarly, within the QHA approximation, we can use the free energy instead of the
energy and write:

F (ϵ,y,T ) = 1
2V C

F (0)
11 (T )ϵ2+ΛF (T )ϵy+

1
2µω

2
F (T )y2

+ F (0,0,T ), (6.16)

By minimizing the free energy at each temperature we find:

yF =−ΛF (T )ϵ
µω2

F (T )
, (6.17)

and we obtain the correction to the CF (0)
11 EC:

CF11(T ) = C
F (0)
11 (T )− Λ2

F (T )
V µω2

F (T )
. (6.18)

Using for y Eq. 6.14 instead of Eq. 6.17 is the ZSISA approximation.
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6.1.2 Elastic constants computation beyond ZSISA
The equations in the previous subsection provide a method to compute the ECs accounting
for internal relaxations without ZSISA. Similarly to what was done in Ref. [122], for each
strain, it is possible to calculate the free energy for a finite number of atomic positions.
The free energy as a function of strain and atomic coordinates is then interpolated at each
temperature with a polynomial as in Eq. 6.16. The mixed second derivatives ΛF (T ) and the
frequencies µω2

F (T ) are calculated from the interpolating polynomial and the correction to
the frozen ions ECs derived from Eq. 6.18.

In this chapter, we propose an alternative method to compute the ECs in presence of
internal relaxation that we call full free energy minimization (FFEM). For each strain, the
energy (or free energy) as a function of the internal position y is interpolated with a second
or fourth degree polynomial and the minimum is found. The value of the minimum (free-)
energy is assigned to the given strain and used to calculate the TDECs via Eq. 6.8. This
approach, which at 0 K is equivalent to the relaxed-ions calculation, has the advantage that
it can be carried out at any temperature and, at variance with the approach of Ref. [122],
does not require the knowledge of the form of the interpolating polynomial, that might be
structure dependent and has to be analyzed on a case by case basis. Therefore, using the
full free energy minimization (FFEM) we obtain the relaxations and ECs beyond the ZSISA
and compare them with the ZSISA ones. A similar method that goes beyond ZSISA has
been applied for the calculation of the internal thermal expansion of ZnO [111].

6.2 Computational details
The calculations presented in this work are done by using DFT as implemented in the
Quantum ESPRESSO (QE) package. [60, 59] The exchange and correlation functional is
the LDA. [152] We employ a plane-wave basis with the pseudopotential Be.pz-n-vbc.UPF
obtained from the QE website. This pseudopotential has the 2s states in valence, while the
1s electrons are frozen in the core and accounted for by the nonlinear core correction [114].
For the wave functions and charge density cutoffs, we use 35 Ry and 140 Ry respectively. The
Fermi surface has been dealt with by the smearing approach of Methfessel and Paxton [128]
with a smearing parameter σ = 0.02 Ry. With this smearing, the Brillouin zone integrals
give reasonable values of the ECs with a 64×64×40 k-point mesh.

We first determine the “stress-pressure” 0 K isotherm in the crystal parameters space
by computing the total energy in a mesh of 14× 7 grid of values of a and c/a covering a
pressure range from about −200 kbar to 1800 kbar. On this grid of geometries, we compute
also the phonon dispersions and the 0 K ECs. This give us the thermal expansion tensor
and the “stress-pressure” isotherm at any temperature, as well as the QSA ECs without the
V-ZSISA approximation.

Along the “stress-pressure” isotherm at 0 K, we choose 11 values of a and c/a as given
in Tab. I in the appendix. In these geometries we compute the phonon dispersions, the free
energy and the 0 K ECs. In 8 of these 11 geometries we also compute the QHA TDECs as
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second strain derivatives of the free energy. These ECs are then used to interpolate the ECs
for any other pressure and temperature within the V-ZSISA approximation. The 8 reference
geometries have i = 2, 4, 6, 7, 8, 9, 10, and 11 (where geometry 1 is the point at highest
pressure) and the QHA TDECs are calculated by 5 strain types that lead to base centered
orthorhombic (strain types 1 and 3), hexagonal (strain types 2 and 4) and monoclinic (strain
type 5) lattices. Each strain type is sampled by 6 strains, from ϵ=−0.0125 to ϵ=0.0125 with
a stepsize δϵ = 0.005. Each of the 30×8 = 240 strained configurations requires calculations
of the phonon frequencies by density functional perturbation theory (DFPT) [12, 34] to
obtain the dynamical matrices on a 6×6×6 q-point grid. This grid leads to 28 inequivalent
q-points in the hexagonal cell, 52 in the base centered orthorombic cell and to 68 in the
monoclinic cell.

To calculate FFEM ECs, for each equilibrium geometry, free energies are needed on 78
strained configurations. This number is determined by considering that for strain type 1 and
3, six values of strain ϵ are sampled and, in addition, we calculate 5 different values of y.
Therefore, the five strain types of hcp structure will require 30+6+30+6+6 = 78 phonon
dispersions.

The dynamical matrices calculated by DFPT are Fourier interpolated into a 200×200×
200 q-point mesh to evaluate the free energy and its strain derivatives. The calculations are
all performed on the Leonardo supercomputer at CINECA with a GPU version of thermo pw
that optimizes some routines of QE for problems with dense k-points sampling in metallic
systems [66]. Please refer to the appendix for a workflow of the present calculations.

Recently, some methods to calculate the dynamical matrices in strained configurations [124]
or to reduce the number of calculated phonon dispersions needed for QHA thermal expan-
sion [164] and for QHA TDECs [125, 52] have been proposed. It could also be useful to try
them in order to speed up the calculations in our problem.

Table 6.1: The 0 K elastic constants compared with experiment and previous calcula-
tions. B, E, G, and ν are the bulk modulus, the Young’s modulus, the shear modulus,
and the Poisson’s ratio, of polycrystalline beryllium calculated within the Voigt-Reuss-Hill
approximation, respectively.

T a0
a0
c0

C11 C12 C13 C33 C44 B E G ν

(K) (a.u.) (kbar) (kbar) (kbar) (kbar) (kbar) (kbar) (kbar) (kbar)
This study (LDA) 0 4.244 1.573 3074 280 163 3674 1639 1223 3259 1543 0.06

Ref. [172] 0 4.281 1.573 3008 141 71 3595 1602 1127 3182 1545 0.06
Ref. [77](LDA) 0 4.312 1.567 2150 610 -60 3500 1560 970 2532 1114 0.06
Ref. [116](LDA) 0 4.248 1.57 3109 195 191 3595 1621 1215 3267 1552 0.05
Ref. [103](PBE) 0 1.577 2882 254 0 3652 1567 1100 3080 1490 0.03
Ref. [161](PBE) 0 1.575 2965 194 83 3612 1632 1137 3177 1536 0.03
Ref. [171](LDA) 2966 403 209 3323 1798 1210 3214 1520 0.06
Ref. [129] (Expt.) 4.31911.5681 2936 268 140 3567 1622 1168 3152 1501 0.05
1 Ref. [117].
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6.3 Results and discussion

Figure 6.3: Adiabatic LDA elastic constants of Be as a function of temperature calculated
within the QSA (red lines) along the 0 kbar isobar (with ZSISA atomic positions). For com-
parison we have reported also the QSA elastic constants interpolated (within V-ZSISA) only
on the “stress-pressure” isotherm at 0 K (dashed blue lines). The dots are the experimental
points of Ref. [165] (yellow dots) and [173] (green dots). Diamond are the theoretical PBE
QSA calculation of Ref. [103].

The equilibrium crystal parameters at 0 K obtained from the total energy minimization
are reported in Tab. 6.1 together with our calculated ECs. For comparison, we also show the
ECs of selected references that are discussed below. A more complete account of the data
available in the literature and of the effects of parameters such as exchange and correlation
energy, the pseudopotentials, the k-point sampling, and the atomic relaxations method is
presented in Ref. [39]. When compared with the recent experiment of Ref. [129], our com-
puted ECs at 0 K match experiment with errors ∆C11 = 138 kbar (4%), ∆C12 = 12 kbar
(4%), ∆C13 = 23 kbar (16 %), ∆C33 = 107 kbar (3 %), and ∆C44 = 17 kbar (1 %). All errors
are within 10% with the exception of C13, whose value is, however, quite variable also among
different experimental reports [129].

The crystal parameters as a function of pressure a(p) and c
a(p) are calculated from the

minimization of the Gibbs energy (Eq. 6.3). The “stress-pressure” isotherm at 0 K is shown
in Fig. 6.1 (orange curve) together with the constant energy contours in the plane a, c/a
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Figure 6.4: Elastic constants C11 and C12 of Be as a function of temperature calculated as
second derivatives of the free energy (within the QHA) at fixed equilibrium geometry. We
compare the results obtained with the ZSISA (red lines) and within the FFEM (green lines),
a scheme in which the internal y parameter is relaxed at each strain and temperature by
minimizing the free energy.

and the position of the energy minimum. Pressure dependent ECs are calculated in a set of
points along this curve. The resulting equations of state (EOS) and c/a(p) are reported in
the supplementary material.

Fig. 6.2 shows the pressure dependent ECs at 0 K compared with those already published.
Our LDA data are in good agreement with the LDA results of Sin’ko et al. [172] available
until 1500 kbar, and with the PBE ones [149] of Hao et al. [77] at least until 2000 kbar.
At variance with Ref. [77] we find no strong deviation from linearity at higher pressures.
The LDA values of C33, C13, and C44 of Luo et al. [116] agree with ours while C11 and
C12 are different. For the latter, better agreement is found by computing the ECs with
the ions frozen in their strained positions. We mention also that the ECs given in Table II
of Ref. [112] are the second derivatives of the total energy with respect to the Lagrangian
strains (we call them

◦
Cijkl). In order to compare with our stress-strain results, we have used

the following expression [14]:

CTijkl =
◦
Cijkl+p(δijδkl− δikδjl− δilδjk). (6.19)

The data of Refs. [172, 77], instead, are the stress-strain ECs and no modification is done.

100



Figure 6.5: Adiabatic elastic constants of Be as a function of temperature (red lines) calcu-
lated within the QHA. Atomic relaxations have been dealt with the ZSISA approximation.
Calculations have been done only along the “stress-pressure” 0 K isotherm (V-ZSISA). The
dots are the experimental points of Ref. [165] (yellow dots) and [173] (green dots). The
diamond are the theoretical QHA results of Ref. [171] while the pink dots are the isothermal
QHA elastic constants calculated in Ref. [161]. The isothermal elastic constants are also
shown (blue dashed lines).

Ref. [77] uses the PBE functional, so some care should be used to compare with our results.
However, in other materials [65, 63], we found that on the scale of this figure the differences
among functionals are small, and the pressure derivative of the ECs are similar.

Computing the phonon dispersions on all the points of the two-dimensional grid shown
in Fig. 6.1, we obtain a set of Gibbs energies that can be interpolated with a fourth-degree
polynomial whose minimum gives a(T ) and c

a(T ) at any temperature and pressure. The
“stress-pressure” isotherm at 1500 K is shown in Fig. 6.1. In this parameter space, the
“stress-pressure” isotherms at 0 K and at 1500 K are close to each other. This fact is
exploited in the literature, where TDECs are calculated only in a few points along the
isotherm at 0 K. This is the so-called V-ZSISA approximation. We estimated the effect of
this approximation on the QSA adiabatic ECs.

Fig. 6.3 shows two sets of QSA TDECs. In the red curves, the 0 K ECs are calculated
at all points of the two-dimensional grid shown in Fig. 6.1 and interpolated at the crystal
parameters that minimize the Gibbs energy. At zero pressure, we interpolate along the green
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Figure 6.6: Temperature dependent elastic constants of Be as a function of temperature
calculated within the V-ZSISA QHA (red lines) are compared with the V-ZSISA QSA (blue
dashed lines). The dots are the experimental points of Ref. [165] (yellow dots) and [173]
(green dots).

isobar shown in Fig. 6.1 close to the energy minimum. Note that at 0 K this curve does not
start exactly on the energy minimum because of zero-point effects.

In V-ZSISA, instead, the ECs are calculated only in a few points on the “stress-pressure”
isotherm at 0 K and interpolated at a(T ) for each temperature. Along this line c/a is a
function of a. At each temperature we use a(T ), but c/a(T ) = c/a(a(T )). The change of
c/a that one would have moving from the “stress-pressure” isotherm at 0 K to the “stress-
pressure” isotherm at temperature T is neglected [103]. The results are shown with a blue
dashed line in Fig. 6.3. Differences with respect to the complete interpolation are quite small
and the temperature dependence is weakly influenced. The changes from 0 K to 1500 K are:
∆C11 = 391 kbar (13%), ∆C12 = 24 kbar (10%), ∆C13 = −26 kbar (−20 %), ∆C33 = 457
kbar (13 %), and ∆C44 = 159 kbar (10 %) with the interpolation on the two-dimensional grid
and ∆C11 = 336 kbar (11%), ∆C12 = 41 kbar (16%), ∆C13 =−29 kbar (−19 %), ∆C33 = 438
kbar (12 %), and ∆C44 = 160 kbar (10 %) within V-ZSISA. These data agree reasonably
well with the QSA calculation of Ref. [103] which finds, in the same temperature range,
∆C11 = 286 kbar (10%), ∆C12 = 101 kbar (40%), ∆C33 = 368 kbar (10 %), and ∆C44 = 115
kbar (7 %). In this reference C13 is almost zero and does not change with temperature.

The other approximation that we tested is the ZSISA. In Fig. 6.4 we show the ECs C11

102



Figure 6.7: Adiabatic pressure dependent elastic constants of Be calculated within the V-
ZSISA QHA at three temperatures: 4 K (red line), 500 K (green lines) 1000 K (blue lines).
Calculations have been done along the “stress-pressure” isotherm.

and C12 calculated within QHA with and without the ZSISA. These ECs are computed at
one reference geometry: the 0 K crystal parameters (Tab. 6.1). Hence these ECs have only
the contribution of the free energy to the temperature variation. As explained above, C11 is
calculated using the strain (ϵ,0,0,0,0,0) and is different from the frozen ion value because
there is a non-zero internal relaxation, while C12 is calculated only later from the strain
(ϵ, ϵ,0,0,0,0) that does not allow any internal relaxation. It is different from its frozen-ions
value because the second derivatives with respect to this strain provide 2C11+2C12 to which
C11 must be subtracted.

For the first (and the third) strain type, we calculate the phonon dispersion in five
different atomic positions. For each equilibrium geometry and strain type, the calculation of
these ECs requires the calculation of the phonon dispersion in 30 distorted geometries and is
therefore much heavier that the ZSISA calculation that requires only 6 distorted geometries
per strain type. The ZSISA C11 is slightly higher than the FFEM, less than 1 kbar at 4 K
while at 1500 K the difference are ∆C11 =−12 kbar (−0.4%), ∆C12 =12 kbar (2%, negligible
on the scale of the other figures).

Fig. 6.5 shows the adiabatic QHA TDECs calculated within ZSISA and V-ZSISA. In
the same picture, for reference, we show also the isothermal elastic constants. From 0 K to
1500 K we have the following decreases ∆C11 = 678 kbar (22%), ∆C12 =−145 kbar (−44%),
∆C13 = −146 kbar (−75 %), ∆C33 = 784 (22 %), and ∆C44 = 369 (23 %). Our data are

103



compared with the QHA results of Ref. [171] (up to 1000 K) and of Ref. [161] (until 600 K).
From 0 K to 600 K, the temperature dependence predicted by this latter reference agrees
very well with our result, although the values at 0 K of C12 and C13 are different from
ours. Comparing with Ref. [171] we have a similar temperature dependence for C11, C13
and C44, while we find a smaller temperature derivative for C33 and a C12 that increases
with temperature instead of decreasing. From 0 K to 1000 K Ref. [171] finds: ∆C11 = 464
kbar (16%), ∆C12 = 37 kbar (9%), ∆C13 = −145 kbar (−56 %), ∆C33 = 743 (22 %), and
∆C44 = 206 (12 %), to be compared with our adiabatic values: ∆C11 = 407 kbar (13%),
∆C12 =−92 kbar (−27%), ∆C13 =−91 kbar (−46 %), ∆C33 = 465 (13 %), and ∆C44 = 219
(13 %).

The comparison between the QHA and the QSA elastic constants is shown in Fig. 6.6.
The T = 0 K ECs increase with pressure, so we expect a decrease with temperature that in
beryllium expands the volume. Actually this is the picture that one finds in the quasi static
approximation (QSA) for the isothermal ECs. The QHA C11, C33, and C44 decrease faster
with temperature than the QSA ones. Actually, at fixed structure, QHA C11, C33, and C44
decrease with temperature, and this decrease adds to that due to thermal expansion, the
only effect present in the QSA calculation. Instead the QHA C12 and C13 both increases
with temperature. At fixed geometry, the QHA C12 increase and since the thermal expansion
causes a decrease as seen for the QSA C12, the temperature dependence of the QHA C12
is the result of the cancellation of two effects and therefore the sign might be difficult to
predict. Experimental there seem to be a decrease of C12 with temperature. The adiabatic
C13 increases both within QSA and also within QHA at fixed volume. In the first case this
is due to the adiabatic corrections that increase with temperature more than the decrease of
the isothermal C13. So the two increases add up and the QHA C13 increases more than the
QSA one.

Finally, in Fig. 6.7 we report the QHA ECs as a function of pressure at 4 K, 500 K, and
1000 K. In the pressure range from 0 kbar to 500 kbar, shown in the figure, the nonlinearities
are small. There is no previous information on these elastic constants and we hope that
the present calculation will stimulate their measurement at high temperature and pressure,
together with a reassessment of the zero pressure high temperature behavior.
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Chapter 7

An alternative GPU acceleration for a
pseudopotential plane-waves density
functional theory code with
applications to metallic systems

We present an alternative GPU acceleration for plane waves pseudopotentials electronic struc-
ture codes designed for systems that have small unit cells but require a large number of k
points to sample the Brillouin zone as happens, for instance, in metals. We discuss the di-
agonalization of the Kohn and Sham equations and the solution of the linear system derived
in density functional perturbation theory. Both problems take advantage from a rewriting
of the routine that applies the Hamiltonian to the Bloch wave-functions to work simultane-
ously (in parallel on the GPU threads) on the wave-functions with different wave-vectors k, as
many as allowed by the GPU memory. Our implementation is written in CUDA Fortran and
makes extensive use of kernel routines that run on the GPU (GLOBAL and DEVICE routines).
We compare our method with the CPUs only calculation and with the approach currently
implemented in Quantum ESPRESSO that uses GPU accelerated libraries for the FFT and for
the linear algebra tasks such as the matrix-matrix multiplications as well as OpenACC direc-
tives for loop parallelization. We show in a realistic example that our method can give a
significant improvement in the cases for which it has been designed.

Density functional theory [80] (DFT) and the availability of more and more powerful
computers has made the study of material properties from first-principles a well established
reality. Several tools have been refined over the years to solve the one electron Kohn and
Sham equations that derive from DFT, [100] the most widespread being based on a plane
waves basis and pseudopotentials. Well tested, freely available [60, 59, 67] or commercial [102,
30] packages implement the theory and allow the calculation of material properties.

In the last ten years, high performance computers aiming to reach the exaflops (1018
floating point operations per second) switched to a hybrid technology in which the graphic
processing units (GPUs) support the central processing units (CPUs) in the floating point
operations. In theory, the GPUs can deliver one or two orders of magnitude more flops
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than the CPUs themselves, and to harness this power many electronic structure groups are
modifying their codes to run on the GPUs. [190, 61, 174, 169, 3, 2]

Extensions of common programming languages such as C/C++ or Fortran have provided
commands to allocate data on the GPU, to move data from the CPU to the GPU and vice versa,
and to perform calculations on these data with the GPU. CUDA Fortran commands, [142] dec-
larations, and compiler directives and OpenACC compiler directives [145] are two of the most
commonly used Fortran extensions. Recently also applications based on openMP started to
appear in the literature. [41] Actually OpenACC and OpenMP have the additional benefit of
being transferable to GPUs architectures of different vendors such as NVIDIA and AMD and
sometimes are preferred to CUDA Fortran that is limited to NVIDIA GPUs.

So far, in several plane-waves pseudopotentials and quantum chemistry codes, the GPUs
have been exploited by allocating the variables on the GPU and by substituting the calls to
linear algebra and fast Fourier transform (FFTs) routines with calls to optimized library
routines (such as cuBlas, [139] cuSolver, [141] cuFFT, [140] and MAGMA [86]) developed by
the GPUs vendors and capable to run on the GPU. [84, 61, 41, 83, 53] Sometimes the routines
of these libraries have the same names and arguments of the corresponding CPU libraries and
it suffices to allocate the variables on the GPU to call the GPU routines with minimal changes
to the underlying codes and algorithms. Single loops using variables allocated on the GPUs
can also be accelerated by compiler directives.

In Quantum ESPRESSO [60, 59] work on this kind of acceleration started more than
ten years ago [179] and has been improved over the years [163] leading to a well tested
package (that in the following we call standard GPU implementation). [61] Accelerations
of 2X or higher with respect to the CPU are often found in pseudopotential plane waves
codes that adopt this approach. However, test systems are usually big supercells with many
atoms for which the time spent to make calculations on the GPU is larger than the time
needed to transfer data from the CPU to the GPU, while small size systems are left out
from these tests. For some applications, metallic systems with small unit cells need tens
or hundreds thousands k points to sample the Fermi surface. [128, 65, 63, 119, 121, 183,
184, 39, 64] The calculation of the phonon dispersions of these systems for many geometries
as required for thermodynamic calculations is a problem that could take advantage from
the new supercomputers, but for small systems we found that the use of the GPUs with the
present codes is not always convenient and sometimes it can also slow down the calculation
with respect to the CPUs alone. We have therefore tried to improve the situation and in
this chapter we present the solution that we have found: an alternative approach to the
acceleration of the pseudopotentials plane waves codes that is useful to deal with metallic
system when there are many k points. We load on the GPU many wave-functions (i.e. k
points), all the available ones if the GPU memory is large enough or as many as possible until
there is free GPU memory. Then we make the calculations simultaneously on all these data
(application of the Hamiltonian to the wave-functions) with each GPU thread working on a
single wave-function or on a part of it. To obtain the precise control of the GPU threads
that is needed we wrote a set of kernel functions (called GLOBAL in the CUDA language)
that implement the theory and run on the GPU. These kernel functions need to call linear
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algebra and FFT libraries from the GPU. Unfortunately, libraries such as cuFFT, cuSolver,
or MAGMA, which are called from the CPU and automatically control the number of threads,
are not suited for our algorithm. We need functions that can be called from the GPU threads
(DEVICE functions in the CUDA language). We only find the C++ library cuFFTDx [137] that
implements such functionalities, but it does not provide a FORTRAN interface so far. For the
moment, we transformed to the DEVICE form the FORTRAN sources of fftpack5.1 and of
selected LAPACK routines. Finally, we obtained a code significantly faster than the standard
one for small systems with many k points.

We start with a brief introduction of the main equations that are solved in a plane-
waves pseudopotential code. We stress in particular the algorithms that are relevant for the
following discussion, neglecting the parts that have not changed or that are still calculated
on the CPU. We then discuss how, in our method, the different parts of the code have been
accelerated on the GPU. Finally, we present a test of our implementation and compare the
times required by our approach with those taken by the CPUs only calculations and by the
previously available GPU implementation.

7.1 Theory
The solutions of the Kohn and Sham (KS) equations minimize the DFT total energy. These
equations are an eigenvalue problem for norm conserving pseudopotentials, [98] and a gener-
alized eigenvalue problem for ultrasoft [188] or projector-augmented wave (PAW) pseudopo-
tentials. [17, 102] For periodic solids they can be written as:

HKSψkν = εkνSψkν , (7.1)

where k is a wave vector and ν is a band index. HKS is the Kohn and Sham Hamiltonian
and S is the overlap matrix. We are interested in finding the lowest Nb (number of bands)
eigenvalues and eigenvectors of these equations. The Kohn and Sham Hamiltonian depends
itself from a potential that is calculated from the charge density (that also depends on
the wavefunctions). It is possible to solve this problem by a self-consistent procedure in
which the wavefunctions are first calculated with an approximate potential. Then these
wavefunctions are used to recompute the charge density and a new potential. The latter
is mixed with the potential of the previous iterations and the procedure is repeated until
one reaches self-consistency. At each step of the procedure however one has to diagonalize a
fixed Hamiltonian which is progressively improved.

In the standard algorithm the problem is solved sequentially for each k vector and the
charge density is computed at the end when all wave-functions are available.

7.1.1 Davidson algorithm
There are several algorithms currently implemented in electronic structure codes to find the
eigenvalues and eigenfunctions in Eq. 7.1, but here we limit the discussion to the David-
son algorithm. [42] In this algorithm an initial set of Nb functions |φ(n)i ⟩ are progressively
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improved by enlarging the set applying HKS − εiS and solving the generalized eigenvalue
problem H̃ij− εS̃ij on the basis formed by the original and the newly calculated vectors. A
standard software library for numerical linear algebra, such as LAPACK, [7] is employed for
the diagonalization. The algoritm is the following and has to be repeated for each k point:

• Given Nb trial eigenpairs:
{∣∣∣∣φ(n)i

〉
, ε

(n)
i

}
of the reduced Hamiltonian calculate:

H̃ij =
〈
φ
(n)
i |HKS |φ

(n)
j

〉
, S̃ij =

〈
φ
(n)
i |S|φ

(n)
j

〉
. (7.2)

• Build the correction vectors
∣∣∣∣φ̃(n)i

〉
:

∣∣∣∣φ̃(n)i

〉
=
(
Hdiag− ε

(n)
i Sdiag

)−1(
HKS− ε

(n)
i S

)∣∣∣∣φ(n)i

〉
, (7.3)

where Hdiag and Sdiag are the diagonal elements of HKS and S in the plane waves
representation.

• Normalize the correction vectors:

|φ̃(n)i ⟩=
|φ̃(n)i ⟩√
⟨φ̃(n)i |φ̃

(n)
i ⟩

. (7.4)

• Build an extended reduced Hamiltonian and overlap matrix:

H̃ij =
〈
φ
(n)
i /φ̃

(n)
i |HKS |φ

(n)
j /φ̃

(n)
j

〉
, S̃ij =

〈
φ
(n)
i /φ̃

(n)
i |S|φ

(n)
j /φ̃

(n)
j

〉
. (7.5)

• Set Nbase equal to the number of basis vector. Diagonalize the small Nbase×Nbase
reduced Hamiltonian to get the new estimate for the lowest Nb eigenpairs:

(H̃− εS̃)v = 0−→
{∣∣∣∣φ(n+1)

i

〉
, ε

(n+1)
i

}
. (7.6)

• Calculate |φ̃i
(n+1)⟩ for all i for which

∣∣∣∣ε(n+1)
i − ε(n)i

∣∣∣∣ > εth where εth is the accuracy
required for the eigenvalues and call Nnc the number of new vectors.

• If Nnc > 0 repeat with the basis |φ(n)i /φ̃i
(n)
/φ̃i

(n+1)⟩ of size Nbase +Nnc and con-
tinue with progressively larger basis. When the size of the basis becomes too large
for the allocated memory instead of adding

{∣∣∣∣φ̃i(n+1)
〉}

to the basis, restart with{∣∣∣∣φ(n+1)
i

〉
, ε

(n+1)
i

}
. If Nnc = 0 exit with eigenpairs

{∣∣∣∣φ(n+1)
i

〉
, ε

(n+1)
i

}
The most time consuming step of this algorithm is the application of the operators HKS

and S to the wave-functions as discussed in the next subsection.
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7.1.2 Application of Hamiltonian
The KS Hamiltonian can be written as: [154]

HKSψkν = −
1
2∇

2ψkν︸ ︷︷ ︸
kinetic energy

+ Veffψkν︸ ︷︷ ︸
local energy

+ VNLψkν︸ ︷︷ ︸
non−local energy

, (7.7)

where the effective potentials is the sum of the local, Hartree, and exchange and correlation
potentials:

Veff = Vloc+VH +VXC , (7.8)

while the nonlocal pseudopotential is defined in term of the projector functions
∣∣∣βIm〉 and

pseudopotential coefficients DI
mn: [98, 188]

VNL |ψkν⟩=
∑
Imn

DI
mn

∣∣∣βIm〉〈βIn∣∣∣ψkν
〉
. (7.9)

Here I indicates the different atoms in the solid and m and n run on all the βIm functions of
a given atom.

The overlap matrix can be calculated in a similar way: [188]

S |ψkν⟩= |ψkν⟩+
∑
mn

qImn
∣∣∣βIm〉〈βIn∣∣∣ψkν

〉
, (7.10)

where the coefficients qImn are defined together with the pseudopotential.

Kinetic energy

The kinetic energy is calculated in reciprocal space. Using the Bloch theorem we write the
Bloch wave-functions as:

ψkν(r) = eikrukν(r) =
1√
V

∑
G
Ck+Gνe

i(k+G)r, (7.11)

where ukν(r) is a lattice periodic function expanded in plane waves (here V is the volume of
the solid) and the sum is over the reciprocal lattice vectors contained into a sphere defined
by the relationship:

1
2 |k+G|2 <Ecut, (7.12)

where Ecut is the kinetic energy cut-off. Then we have:

−1
2∇

2ψkν(r) =
1√
V

∑
G
C ′
k+Gνe

i(k+G)r, (7.13)

where:
C ′
k+Gν =

1
2 |k+G|2Ck+Gν . (7.14)
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Local potential

The fast Fourier transform (FFT) transforms functions in real space into reciprocal space
and the inverse FFT makes the inverse transformation.
From the coefficients Ck+Gν , applying an inverse FFT we obtain the Bloch function in real
space (up to a factor 1/

√
V ):

Ck+Gν
FFT−1
−−−−−→ ukν(r) =

∑
G
Ck+Gνe

iGr. (7.15)

The effective potential is applied in real space as:

u′kν(r) = Veff (r)ukν(r), (7.16)

and a final FFT computes the plane wave expansion of u′kν(r):

u′kν(r)
FFT−−−→ C ′

k+Gν =
1
Nr

∑
r
u′kν(r)e−iGr, (7.17)

where Nr is the number of points of the FFT grid (see below).
The actual calculation of Veff requires the calculation of the charge density in terms of

the wave-functions ψkν . However since we have not modified this part of the calculation we
do not discuss it in detail. We assume only to have a function Veff defined in the points of
the FFT grid r.

Non local pseudopotential and overlap matrix

The application of the non local potential needs three matrix-matrix multiplications:

λInkν =
〈
βIn
∣∣∣ψkν

〉
=
∑
G
βIn(k+G)∗Ck+Gν , (7.18)

γImkν =
∑
n
DI
mnλ

I
nkν , (7.19)

VNL |ψkν⟩=
∑
Im

γImkν
∣∣∣βIm〉 . (7.20)

Similarly, the application of the S matrix is:

δImkν =
∑
n
qImnλ

I
nkν , (7.21)

S |ψkν⟩= |ψkν⟩+
∑
Im

δImkν
∣∣∣βIm〉 . (7.22)

where λInkν are those calculated in Eq. 7.18.
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7.1.3 Density functional perturbation theory
The phonon frequencies and displacement modes are obtained by diagonalization of the
dynamical matrix:

ω2
qusα(q) =

∑
s′β

Dsαs′β(q)us′β(q), (7.23)

where Dsαs′β(q) is the dynamical matrix:

Dsαs′β(q) =
1√

MsMs′

∑
ν

∂2Etot
∂uµsα∂uνs′β

eiq(Rν−Rµ), (7.24)

where Etot is the DFT total energy, q is a wave vector in the Brillouin zone (BZ), Rµ are the
Bravais lattice vectors, Ms are the atomic masses, and uµsα are the atomic displacements.

The second derivative of the DFT total energy can be written in terms of the change of
the wave-functions due to a phonon perturbation projected on the conduction band. These
functions are the solutions of a linear system: [12, 33]

[
Hk+q
KS +αQk+q− εkνS

]
Pk+q
c

∂ukν(r)
∂us′β(q)

=−Pk+q
c

[
∂VKS

∂us′β(q)
− εk,ν

∂S

∂us′β(q)

]
ukν(r),

(7.25)
where Pk+q

c is the projector in the conduction band and ∂VKS
∂us′β(q)

= ∂Vloc
∂us′β(q)

+ ∂VH
∂us′β(q)

+
∂Vxc

∂us′β(q)
+ ∂VNL
∂us′β(q)

. The change of the Hartree and exchange and correlation potential are:

∂VH
∂us′β(q)

=
∫ eiq(r

′−r)

|r− r′|
∂ρ(r′)
∂us′β(q)

d3r′,

∂Vxc
∂us′β(q)

= dVxc
dρ

∂ρ(r)
∂us′β(q)

,

(7.26)

and depend self-consistently on the charge density induced by the perturbation:

∂ρ(r)
∂us′β(q)

= 4
∑
kν

[
u∗kν(r)Pk+q

c
∂ukν(r)
∂us′β(q)

]
+∆us′β(q)(r), (7.27)

where the last term represents the change of the augmentation charge calculated in the
ultrasoft and PAW case but not accelerated in the present work. [33] Qk+q is a projection
in the valence manifold, [12] while the change of the nonlocal pseudopotential is described
in more detail in the given references (see for instance Ref. [33]).

αQk+q can be written in the form:

αQk+q = α
∑
µ
S|uk+qµ⟩⟨uk+qµ|S, (7.28)
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and its application to a set of wave functions |xk+qνj⟩ (here j indicates the different pertur-
bations s′β) can be calculated easily using the fact that S|xk+qνj⟩ is already known from
the routine that applies Hk+q

KS and S. We have a first matrix-matrix multiplication:

µk+qjµν = ⟨uk+qµ|S|xk+qνj⟩α, (7.29)

then a second one:
|yk+qνj⟩=

∑
µ
|uk+qµ⟩µk+qjµν , (7.30)

and finally we must apply S to the vectors |yk+qνj⟩ and we have:

αQk+q|xk+qνj⟩= S|yk+qνj⟩= |yk+qνj⟩+
∑
Imn

qImn|βIm⟩⟨βIn|yk+qνj⟩, (7.31)

and this requires other three matrix-matrix multiplications as illustrated above.
The self-consistent linear system (Eq. 7.25) is solved by iterations. From an initial guess

of the potentials, of ∂VH
∂us′β(q)

+ ∂Vxc
∂us′β(q)

, the linear system is solved and new induced charge
and potentials are obtained. Mixing the latter with the potentials used in the linear system
it is possible to reach a self-consistent solution.

The most time consuming step of this process is however the solution of the linear system
at fixed ∂VH

∂us′β(q)
+ ∂Vxc
∂us′β(q)

so we will focus on this step.

7.1.4 Preconditioned conjugate gradient
The algorithm used for the solution of Eq. 7.25 with a given right hand side is a precondi-
tioned conjugate-gradient iterative algorithm. [156, 78, 57] Given a starting guess x of the
solution of the problem Ax= b, we improve it with the following algorithm:

r ← Ax− b, (7.32)
d ← M−1r, (7.33)
ρ ← dT r, (7.34)
γ ← ρ

ρold
, (7.35)

d ← d+γdold, (7.36)
t ← Ad, (7.37)

λ ← −d
T r

dT t
, (7.38)

x ← x+λd, (7.39)
r ← r+λt, (7.40)

dold ← d, (7.41)
ρold ← ρ, (7.42)
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Figure 7.1: Algorithms used in the standard approach and in our optimized GPU approach
for the diagonalization of the Hamiltonian.
Algorithm 1 CPU and standard GPU diagonalization
for ik = 1,nks do ▷ nks = #k points per pool

build Hk
KS and Sk

compute εkν and ψkν by Davidson (Nb)
end for

Algorithm 2 Optimized GPU diagonalization
for ikb = 1,nkblock do ▷ nkblock = #k points blocks

build in parallel Hk
KS and Sk on GPU threads (Nk)

compute εkν and ψkν by Davidson on GPU threads (Nb×Nk)
end for

and iterate from Eq. 7.33 until the modulus of ρ is smaller than an input threshold. Here
the arrows indicate that the variables on the left are substituted with those on the right.
r is the negative of the residual vector while d contains minus the preconditioned residual
in Eqs. 7.33 to 7.36 and minus the search direction from Eq. 7.36. Eqs. 7.35 and 7.36 are
executed only from the second iteration onwards. The algorithm requires memory sufficient
to save the vectors r, d, t, dold of the same size of the input vector x. ρ and ρold, as well
as γ and λ, are instead scalars. Moreover, we need two external routines to apply A and
M−1. The most time consuming step is the application of the matrix A to d. In our case
A=Hk+q

KS +αQk+q−εkνS so again the acceleration rests on the routine that applies Hk+q
KS

and S described above. For the preconditioning the following matrix diagonal in reciprocal
spaceMG,G=MAX(1.0, |k+q+G|2

2⟨ψk+qν |− 1
2∇2|ψk+qν⟩

) is used and this vector is passed to the routine.
The conjugate gradient algorithm is applied to each k point and to each Npe perturbations.
The Nb bands of a given k point are optimized together but the different k points and
different perturbations are treated in sequence, one after the other. Only one q is calculated
in each run. This algorithm has been used in the last thirty years in Quantum ESPRESSO
to solve the linear system. Similar algorithms, with appropriate modifications, can be used
also to minimize the total energy and solve the Kohn and Sham equations. [182]

7.2 GPU optimization
Quantum ESPRESSO has several levels of parallelization on the CPU. It is possible to divide the
k-points in groups (called pools) and assign each group to a set of cores. These cores may be
further divided in groups, with each group dealing with a set of bands (bands parallelization)
and finally each group of cores dealing with a set of bands can further divide the reciprocal
lattice vectors (G) and work only on a subset of these (G vectors parallelization). It is
at this point that one can introduce the GPU acceleration. The standard method to use
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Figure 7.2: Flowchart of the routine that applies Hk
KS and Sk to the wavefunctions. Close

to each routine we write the number of threads that are used to run it on the GPU.
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the GPU consists into allocating variables on the device memory (the GPU) and to call from
HOST routines developed by NVidia that perform linear algebra (cuBLAS) operations or FFTs
(cuFFT) on the data allocated on the device. It is also possible to add compiler directives to
run loops in parallel on the GPU without changing the code.

The standard Davidson algorithm works sequentially on each k point of a pool and solves
for all the bands (calling the routines that apply HKS and S for a subset of bands, if bands
parallelization is used). Therefore the number of times in which the GPU memory is loaded
increases linearly with the number of k points. When the size of the problem is small, it
can happen that the library matrix-matrix multiplications and FFTs routines cannot exploit
all the capacity of the GPU because they have too few data to work on. As a result a GPU
calculation might become even slower than a CPUs only calculation. Parallelizing on the G
vectors just reduces further the size of the data allocated on the GPU for each k point and
does not help in this case. Moreover, presently the GPU acceleration does not work well if
many CPUs use the same GPU, so we use as many CPUs as GPUs.

Our strategy for accelerating the code on the GPU is illustrated schematically in Fig. 7.1.
We put on the GPU memory as many wave-functions (i.e. k points) as possible in a block
of Nk k points and run simultaneously on all these k points the operations of the Davidson
algorithm needed to diagonalize the Hamiltonian. Each pool of CPUs cores works on its
set of k points as assigned by the pool parallelization of Quantum ESPRESSO and only these
k points are divided in blocks for the GPU acceleration. Bands paralellization and G vector
parallelization presently are not supported by our approach. The main GPU optimization has
been performed on the routine that applies HKS and S to the wave-functions ψkν , but some
acceleration has been obtained also carrying out the operations of the Davidson algorithm
in parallel on many k points. In our approach, the routine that applies HKS and S is a HOST
routine (i.e. a routine running on the CPU) that receives as input Ck+Gν for Nk k points, and
gives as output the coefficients C ′

k+Gν and C ′′
k+Gν of the plane waves expansion of HKSψkν

and of Sψkν . This routine calls in sequence several GLOBAL routines (that is routines that
run on the GPU and for which we can specify how many threads run in parallel). The
sequence of routines and the formula that they implement is illustrated in Fig. 7.2. The
first computes the kinetic energy and runs Npw×Nk×Nb threads each one dealing with a
G vector of one k point and of one band (here Npw is the number of G vectors used to
expand the wave-functions). A second routine computes the scalar product in Eq. 7.18 and
runs Nkb×Nk×Nb threads, where Nkb is the total number of projectors |βIm⟩. The latter
are loaded on the GPU for all the Nk points before calling the Davidson algorithm. Another
GLOBAL routine computes Eqs. 7.19 and 7.21 and runs Nk×Nb threads, while the sum over
n is made inside the routine. A routine copies Ck+Gν in C ′′

k+Gν and this is made in parallel
running Npw×Nk×Nb threads. This is the first term of the application of S to the wave
functions. A routine sets to zero the FFT grid running Nr×Nk×Nb threads and another
one sets the non zero elements of this grid running Nk×Nb threads, each one dealing with
all the Nr grid points for one k point and one band. Then a set of three routines applies
an inverse FFT to the wave-functions as detailed below, and a routine applies Veff running
Nr×Nk×Nb threads. Another set of three routines applies the FFT to return to reciprocal
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Figure 7.3: Algorithms used in the standard phonon code and in our optimized GPU approach
for solving the linear system that gives the perturbed wavefunctions.

Algorithm 3 CPU and standard GPU phonon algorithm
for ik = 1,nks do

build Hk+q
KS and Sk+q

for ipert = 1,npe do ▷ npe = #perturbations
build Pk+q

c
∂VKS
∂usα(q)ukv (Nb)

compute ∂ukv
∂usα(q) by conjugate gradient (CG) (Nb)

end for
end for

Algorithm 4 Optimized GPU phonon algorithm
for ikb = 1,nkblock do ▷ Nk = #k points per block

build in parallel Hk+q
KS and Sk+q on GPU threads (Nk)

build in parallel Pk+q
c

∂VKS
∂usα(q)ukv on GPU threads (Nb×Nk×Npe)

compute ∂ukv
∂usα(q) by CG on GPU threads (Nb×Nk×Npe)

end for

space and a routine collects the results from the grid and adds them to C ′
k+Gν . This is made

in parallel on the GPU running Nk×Nb threads. Finally Eq. 7.20 is calculated by a routine
that runs Npw×Nk×Nb threads and adds the result to C ′

k+Gν . In the ultrasoft or PAW
PPs case, the same routine calculates also the second term in the right hand side of Eq. 7.22
and adds it to C ′′

k+Gν .
In this algorithm, Nk must be carefully chosen and depends on the amount of GPUmemory

and on the size of the FFT grid. Nk is mainly limited by the necessity to allocate on the
GPU Nk ×Nb FFT grids to apply, in parallel, the local potential to the Bloch functions.
The allocation of this memory is done by the HOST routine that implements the Davidson
algorithm.

We have also optimized some parts of the Davidson algorithm. The standard routine
has been generalized introducing several loops on the Nk k points and part of these loops
have been transformed into GLOBAL routines that perform the calculation in parallel using
Nk×Nb threads. We have accelerated only the loops that took a significant amount of time.
The other loops call the linear algebra cuBlas routines as in the standard approach.

The acceleration of the phonon code instead has been carried out essentially on the al-
gorithm that solves the linear system in Eq. 7.25. We proceed as in the Davidson algorithm
(see the scheme in Fig. 7.3). However, in the phonon case the calculation of the induced
charge density requires two FFT grids per band, one to contain u∗kν(r) and one to contain
Pk+q
c

∂ukν(r)
∂us′β(q)

so usually we use Nk smaller than in the Davidson algorithm. The GPU opti-
mization of the preconditioned conjugate gradient algorithm starts by allocating the COMPLEX
vectors g, d, dold, and t on the GPU. For each variable Nk×Nb×Npe arrays are allocated.
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This memory is much larger than the one of the standard algorithm that requires only Nb
copies of each variable, but this space is allocated only on the GPU. The algorithm is then
divided in loops over the Nk k points, the Npe perturbations, and the Nb bands. Loop
one executes Eqs. 7.33 and Eqs. 7.34, loop two executes Eq. 7.36, and loop three computes
dT r and dT t that appear in the numerator and denominator of Eq. 7.38. Finally loop four
computes Eqs. 7.39, 7.40, and 7.41. Each loop is transformed into routine with the GLOBAL
attribute that runs Nk×Nb×Npe threads, each one computing one perturbation to one band
of one k point. Since each thread executes only a scalar product or an operation of the type
x← x+λd we have programmed these routines in CUDA Fortran without calling any other
library routine. The array themselves instead are not split and each thread works on all the
G vectors of each wave-function. All the other steps of the algorithm involve only scalar
operations that are performed by the CPU.

Eq. 7.32 and Eq. 7.37 require an external routine to apply A to the vectors x (or d). For
this operator we use the same routine that applies HKS and S in the Davidson algorithm.
The routine works in general for an arbitrary number of wavefunctions so when called from
the conjugate gradient algorithm, in parallel on the GPU threads, it deals with the Nk ×
Npe set of wavefunctions, each one composed by Nb bands. We have then written a HOST
routine that receives as input the coefficients C ′

k+qνj and C ′′
k+qνj of the Fourier transform of

Hk+q
KS |xk+qνj⟩ and S|xk+qνj⟩ and gives as output the Fourier coefficients of A|xk+qνj⟩. This

routine calls a series of GLOBAL routines for which we can control the number GPU threads
that run in parallel. The first routine computes Eq. 7.29 and runsNk×Npe×Nb×Nb threads.
A second routine computes |ak+qνj⟩=Hk+q

KS |xk+qνj⟩−εkνS|xk+qνj⟩ and runs Nk×Npe×Nb
threads. To complete the operator A we have to calculate the operator αQk+q|xk+qνj⟩ and
we optimized also this part to run in many threads on the GPU in parallel on the k vectors,
the bands, and the perturbations. This is done by calling another set of GLOBAL routines.
The first computes Eq. 7.30 running on Nk×Npe×Nb threads, another one computes the
scalar products ⟨βIn|yk+qνj⟩ that appear in Eq. 7.31 and runs Nk×Npe×Nkb×Nb threads,
and a third routine calculates Eq. 7.21 using the scalar products just calculated and runs on
Nk×Npe×Nb threads. Finally a GLOBAL routine computes Eq. 7.31 and adds it to |ak+qνj⟩
running in Nk×Npe×Nb×Npw threads.

7.3 Fast Fourier transform
The application of Veff (r) to one Bloch wave-function requires two Fourier transforms. It is
convenient to introduce a mesh in reciprocal space:

Gm1,m2,m3 ≡m1b1+m2b2+m3b3, (7.43)

where b1, b2, and b3 are the principal reciprocal lattice vectors and m1, m2, and m3 are
integers, and a mesh in real space:

rl1,l2,l3 =
l1
N1

a1+
l2
N2

a2+
l3
N3

a3, (7.44)
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where a1, a2, and a3 are the direct lattice vectors, and l1, l2, and l3 are integers. The integers
N1, N2, and N3 define the size of the mesh in real space and, equivalently, the size of the
mesh in reciprocal space. They must be sufficiently large so that the vectors Gm1,m2,m3
contain all the vectors G−G′ defined by the basis set.

Given a function in reciprocal space, defined on theG vectors f̃(m1,m2,m3)≡ f(Gm1,m2,m3),
its real space form f(l1, l2, l3) = f(rl1,l2,l3) is given by:

f(l1, l2, l3) =
N1−1∑
m1=0

N2−1∑
m2=0

N3−1∑
m3=0

f̃(m1,m2,m3)ei2πl1m1/N1ei2πl2m2/N2ei2πl3m3/N3 . (7.45)

The transform is made in three steps. In the first step, we compute N1×N2 one dimen-
sional FFTs along z:

f̄(m1,m2, l3) =
N3−1∑
m3=0

f̃(m1,m2,m3)ei2πl3m3/N3 . (7.46)

We run N1×Nb×Nk threads on the GPU by calling a GLOBAL routine, and each thread
computes N2 FFTs. Each FFT (sum over m3) is carried out by calling an FFT library
routine (cfft1b from fftpack.5.1) which is declared as a DEVICE routine. In the second
step, we compute:

f̂(m1, l2, l3) =
N2−1∑
m2=0

f̄(m1,m2, l3)ei2πl2m2/N2 . (7.47)

In this case we run N1×Nb×Nk threads each one doing N3 FFTs. Each FFT (sum over
m2) is carried out by the DEVICE FFT library routine cfft1b. Finally, to complete the three
dimensional Fourier transform, in the third step we calculate:

f(l1, l2, l3) =
N1−1∑
m1=0

f̂(m1, l2, l3)ei2πl1m1/N1 . (7.48)

In this case we run Nk×Nb threads on the GPU each one computing N2×N3 FFTs. Each one
dimensional FFT (sum over m1) is carried out by the DEVICE FFT library routine cfft1b.
In a similar way one can make a three dimensional Fourier transform to obtain the reciprocal
space function from its real space form:

f̃(m1,m2,m3) =
1
Nr

N1−1∑
l1=0

N2−1∑
l2=0

N3−1∑
l3=0

f(l1, l2, l3)e−i2πl1m1/N1e−i2πl2m2/N2e−i2πl3m3/N3 , (7.49)

where Nr =N1N2N3. In this case we call the DEVICE function cfft1f to actually carry out
the one dimensional FFTs.

The product of Veff with the wave-function:
u′kν(l1, l2, l3) = Veff (l1, l2, l3)ukν(l1, l2, l3), (7.50)

is made by running Nr×Nk×Nb threads on the GPU, each thread computing one product.
After computing the product, an FFT as in Eq. 7.49 gives the Fourier components of the
product that can be added to those obtained by applying the kinetic energy. This FFT is
performed by three routines similar to those described for the inverse FFT.
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7.3.1 FFT on the device
Eqs. 7.46,7.47,7.48 cannot be implemented as written since they involve N2

i operations,
where Ni is N1, N2 or N3. These sums can be done more efficiently with an FFT algorithm
that requires Nilog(Ni) operations. [156] The FFTXlib of Quantum ESPRESSO contains both
the three dimensional FFT driver and a copy of an old FFTW library. [56] It also supports
the newer FFTW3 library, some vendor-specific FFT libraries, and it can call GPU routines
in cuFFT [61, 140]. Moreover, it can carry out the FFT in parallel when the FFT mesh
(and G vectors) are distributed among different MPI processes. However, these routines
are called from the CPU HOST with actual argument variables that are allocated on the GPU
and they take care of launching the threads on the GPU. In our approach, the FFT routines
are called from GLOBAL routines that already run on the GPU and therefore must have the
DEVICE attribute, hence FFTXlib cannot be used. The library that offers this functionality
cuFFTDx is written in C++ and it has not yet a FORTRAN interface. Therefore, we have taken
the fftpack5.1 [187] which is distributed under the GNU GPL licence together with its
Fortran source and we have modified each routine and function of this library by adding
the ATTRIBUTES(DEVICE). We have also constructed an interface for each routine so that
the routines that include the interface can know that the routines of fftpack are actually
DEVICE routines and accept variables allocated on the GPU. The modified library is distributed
together with the thermo pw package.

7.4 Matrix Diagonalization
The Davidson algorithm requires the solution of a generalized eigenvalue problem in a re-
duced basis:

Ax= λBx, (7.51)
where A and B are Hermitian matrices and λ and x are the eigenvalues and eigenvec-
tors. Usually, the CPU makes this calculation by calling LAPACK routines [7] such as ZHEGVX
that computes selected eigenvalues and, optionally, eigenvectors of a complex generalized
Hermitian-definite eigenproblem, or ZHEGV that computes all eigenvalues and eigenvectors of
the same matrices. It is also possible to call GPU routines of the cuSolver library. A HOST
driver that calls these routines is contained in the LAXlib library distributed with Quantum
ESPRESSO. We have tested this approach creating a loop over the Nk k points that calls
these routines, but found that it is possible to obtain a significant speed up by simultane-
ously diagonalizing the generalized eigenvalue problem for many k points. We run therefore
a GLOBAL routine with as many threads as possible (ideally Nk, but see below). In order
to solve the generalized eigenvalue problem inside a GLOBAL routine we cannot call HOST
routines such as those available in cuSolver or in MAGMA [86] what is needed is a library that
can be called from the GPU threads (with DEVICE routines). Since we are not aware of any
DEVICE implementation of LAPACK, we took the routines ZHEGVX and ZHEGV together with
those called by them, transformed them into DEVICE routines, and wrote the corresponding
Fortran interfaces. We found only one problem with this approach: The routine ZPOTRF2,

119



which performs the Cholesky factorization of a Hermitian positive definite matrix A, is re-
cursive. Since CUDA Fortran does not allow for recursive DEVICE routines or functions, we
rewrote it with a non recursive algorithm.

The number of k points that can be diagonalized simultaneously is usually lower than
Nk since the LAPACK DEVICE routines use a certain amount of GPU resources. So we divided
the Nk k points in blocks of maximum size determined empirically on the available machine.

7.5 Results

7.5.1 Benchmark Example
We have implemented our approach in the thermo pw code [38] which is a driver of Quantum
ESPRESSO routines to calculate materials properties. To activate the new approach, it suffices
to set the flag many k to .TRUE. and the input variable memgpu to the amount of GPU memory
(in GBytes). Both variables are written in the thermo control input file. The new routines
are in the directory qe of thermo pw, while the LAPACK and fftpack5.1 routines modified
with the ATTRIBUTES(DEVICE) together with their interfaces are distributed in separate
subdirectories of the thermo pw package. For further details please refer to the thermo pw
user’s guide.

Our benchmark is a part of the calculations carried out to compute the quasi-harmonic
temperature dependent elastic constants of tungsten. [65] Our system is body centered cubic
(bcc) tungsten simulated with the PBEsol exchange and correlation functional [150] at the
lattice constant a = 5.965 a.u.. Tungsten is described with a PAW pseudopotential that
has 14 valence electrons and we compute Nb = 11 bands. [35] We use cut-offs for the wave-
functions/charge density of 90/360 Ry, a k-point mesh of 45× 45× 45 and deal with the
Fermi surface with the smearing approach ([128]) with a smearing parameter σ = 0.02 Ry.
The FFT mesh has size 32×32×32 for a total of Nr = 32768 mesh points. We compute the
phonon frequencies for the point q = 2π

a (−1/8,−1/4,3/8). The small space group of this q
point has no rotational symmetry in it, so we need to use the complete mesh of 453 = 91125
k points when computing the perturbed wave-functions. Since we need also the eigenvalues
and eigenfunctions at k+q we compute the band structure of 182250 k points.

We report the time obtained with version 7.3 of Quantum ESPRESSO together with
thermo pw version 2.0.0. All tests have been performed on the Leonardo supercomputer
at CINECA. Each node of the machine has a CPU with 32 cores and 4 Ampère GPUs. In the
Leonardo manual, the theoretically declared peak performance of one node (32 cores) is
1680 Gflops while the four GPUs of one node can provide 75000 Gflops. There is therefore
a maximum theoretical acceleration of a factor of 45. We run on the GPUs using as many
CPU cores as GPUs and each CPU runs one MPI process. [127] MPI processes can communicate
among themselves with MPI library calls. Each MPI process communicates with one GPU,
multiple MPI processes using the same GPU are not allowed. Moreover we do not use direct
GPU-GPU communication. When several MPI processes run, the total number of k points is
divided in a number of pools equal to the number of MPI processes. The code is compiled

120



with the PGI Fortran compiler contained in the Nvidia SDK [138].

7.5.2 FFT

Table 7.1: Comparison of the time spent by computing the FFT and the inverse FFT when
applying the Hamiltonian operator in the Davidson algorithm and in the conjugate gradient
algorithm for the example described in the paper.

CPU GPU optimized GPU

#CPU 32 32 32 64 64 1 2 4 8 1 2 4 8
#GPU 0 0 0 0 0 1 2 4 8 1 2 4 8

#task(np) 32 32 32 64 64 1 2 4 8 1 2 4 8
#pool(nk) 8 16 32 32 64 1 2 4 8 1 2 4 8

time (s) 6771 6280 4539 3269 2213 13415 6866 3441 1744 7532 3574 2068 934

In Table 7.1, we report the time necessary to compute the FFTs to apply the local
potential. We consider three cases: CPUs only, standard GPU code that calls the cuFFT
library, and the optimized GPU code that uses the fftpack.5.1 routines declared as DEVICE
routines. In the GPUs runs, we consider 1, 2, 4 or 8 GPUs. For the CPUs only runs, we use
all the CPUs of one (32) or two nodes (64). Further, with 32 cores, the k points are divided
into 8, 16, or 32 pools, with 64 cores, into 32 or 64 pools. When comparing CPUs and GPUs,
we compare 4 or 8 GPUs with the best times obtained with 32 or 64 cores, respectively. We
start by discussing the CPUs only case. With both 32 or 64 cores, the minimum FFT time
is obtained when the number of pools is equal to the number of cores. This indicates that
in this system it is not useful to divide the G vectors among CPUs. The second observation
is that when we pass from one to two nodes the time halves, showing a good scaling with
the number of nodes. We call Tcpu the best time obtained with one or two nodes. Passing
now to the GPU times, we see that both with the standard algorithm and with the optimized
one the computational time is inversely proportional to the number of GPUs. Comparing
now the time taken by the standard GPU algorithm, we see that it is 0.76 Tcpu (4 GPUs),
0.79 Tcpu (8 GPUs). So, as far as the FFT is concerned, it is convenient to use the GPUs
The FFTXlib of Quantum ESPRESSO instead of the CPUs although the gain is not big. The
optimized GPU algorithm gives times that are 0.46 Tcpu (4 GPU), 0.42 Tcpu (8 GPUs). This is
much less than the theoretical capacity of the GPU, but still it makes convenient to use the
latter. When computing the FFT, the optimized GPU algorithm is 1.9 times faster (8 GPUs)
than the standard GPU version that calls the CuFFT routines in sequence on the k points.

7.5.3 Diagonalization
In Table 7.2, we report the time spent by the diagonalization of the reduced Hamiltonian
carried out by the LAPACK routines on the CPU, by the cuSolver library running on GPU
called by the LAXlib package, and by the optimized GPU version of the code in which the
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Table 7.2: Comparison of the time spent to diagonalize the reduced Hamiltonian using linear
algebra routines (within the Davidson algorithm).

CPU GPU optimized GPU

#CPU 32 32 32 64 64 1 2 4 8 1 2 4 8
#GPU 0 0 0 0 0 1 2 4 8 1 2 4 8

#task(np) 32 32 32 64 64 1 2 4 8 1 2 4 8
#pool(nk) 8 16 32 32 64 1 2 4 8 1 2 4 8

time (s) 81 44 20 21 10 1286 684 348 178 220 118 60 29

Hamiltonians of many k-vectors are diagonalized simultaneously by the LAPACK routines
declared as DEVICE routines. The effect of using pools and several CPUs is also illustrated.
The sizes of the matrices to be diagonalized vary, depending on the istantaneous size of the
basis set in the Davidson algorithm. The routine must find the lowests Nb = 11 eigenpairs in
a matrix that can have a maximum size equal to 4Nb = 44. This is repeated for all k points
for all Davidson iterations and all self-consistent iterations in addition to a band structure
calculation before the phonon calculation (in which there are about 2×105 k points). The
CPU diagonalization time scales linearly with the number of k points and therefore depends
only on the number of pools. Using 64 or 32 cores gives exactly the same time when we use
32 pools, but if we use a number of pools equal to the number of cores with two nodes we
halves the diagonalization time with respect to one node. A good scaling is also shown by the
GPU calculation. Increasing the number of GPUs increases the number of pools and therefore
decreases the number of k points per pool. With both the standard GPU algorithm and
with the optimized one we could not run faster than the CPU. With the standard algorithm
the size of the matrix to diagonalize is so small that the time to initialize the GPU greatly
exceeds the CPU diagonalization time. In this particular example, the time of the standard
GPU calculation is 18 Tcpu. With our optimization we could reduce this time to 3 Tcpu. In
our example however the total time for the diagonalization is small with respect to all other
times and we have not tried to further optimize this part.

7.5.4 Application of the Hamiltonian and of S

Table 7.3: Comparison of the total time spent to apply HKS and S to the wave-functions in
the Davidson algorithm and in the conjugate gradient algorithm.

CPU GPU optimized GPU

#CPU 32 32 32 64 64 1 2 4 8 1 2 4 8
#GPU 0 0 0 0 0 1 2 4 8 1 2 4 8

#task(np) 32 32 32 64 64 1 2 4 8 1 2 4 8
#pool(nk) 8 16 32 32 64 1 2 4 8 1 2 4 8

time (s) 7907 7319 5519 3780 2702 36157 18465 9263 4694 9138 4375 2472 1138
time -timeFFT (s) 1136 1039 980 511 489 22742 11599 5822 2950 1606 801 404 204
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In Table 7.3 we show the time required for the application of the Hamiltonian and of the
overlap matrix S to the wave-functions. This time comprises the time needed to apply the
FFT and inverse FFT to the wave-functions, the time needed to apply the kinetic energy
and the nonlocal pseudopotential as well as the time needed to apply the overlap matrix S.
In the same table we report also the difference between these times and the times needed to
carry out the FFT reported in Table 7.1. In the time reported in the table, we apply the
operator HKS and S about 8×107 times (as reported by the code when we do not use the
optimized algorithm and 7.3×104 when we use the optimized algorithm and many k-points
are calculated concurrently). This is reasonable since we have 1× 105 k points, about 16
self-consistent iterations and Npe = 3 modes. This gives an average of 16 conjugate gradient
steps per iteration. To count the number of operations is more difficult since the number
of bands is not always constant. If take as an average value Nb = 11 bands, the number of
plane waves Npw = 2093 and a number of projector functions Nkb = 18 we see that Eq. 7.38
is the multiplication of a matrix 18×2023 and a matrix 2023×11. We start by considering
the CPU times when FFT time is subtracted. These times depend on the number of cores,
but less on how these cores are distributed between G vectors and k-point pools. Still using
only k-point pools gives the shortest times but the differences are small. Comparing with
the standard GPU version, we see that the application of the nonlocal potential and of the
S matrix require too many small size matrix-matrix multiplications and this part of the
calculation is quite slow on the GPU. For this calculation the required time is 6 Tcpu. The
optimized GPU algorithm is much faster and needs about 0.42 Tcpu. Adding also the speedup
obtained with the FFT, the optimized GPU algorithm takes about 0.44 Tcpu. Comparing the
two GPU algorithms, the optimized one is 4 times faster in applying HKS and 14 times faster
in applying the nonlocal pseudopotential and the S matrix.

7.5.5 Total time

Table 7.4: Total time spent in the standard CPU calculations. The number of CPUs, GPUs,
tasks, and pools are also indicated. The number of core-hours is obtained multiplying the
total time by the number of cores.

CPU

#CPU 32 32 32 64 64 128 256
#GPU 0 0 0 0 0 0 0

#task(np) 32 32 32 64 64 128 256
#pool(nk) 8 16 32 32 64 128 256

time (s) 11400 10560 8040 5640 4500 2280 1182
time (m) 190 176 134 94 75 38 20
core-hours 101 94 71 100 80 81 85

In this section we present some benchmarks of the entire run, considering both the self
consistent and the phonon frequencies calculations. We report in Tables 7.4, 7.5, 7.6 the
total time. This time is approximately twice the time required by the application of HKS
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Table 7.5: Total time spent in the standard GPU calculations. This includes also the time
passed on the part of the code that are not GPU accelerated or are not GPU optimized.
The number of CPUs, GPUs, tasks, and pools are equal.

GPU

#CPU 1 2 4 8 16 32

time (s) 107640 54780 27720 14100 7500 3720
time (m) 1794 913 462 235 125 62
core-hours 239 243 246 250 267 265

Table 7.6: Total time spent in the optimized GPU calculations. This includes also the time
passed on the part of the code that are not GPU accelerated or are not GPU optimized.
The number of CPUs, GPUs, tasks, and pools are equal.

optimized GPU

#CPU 1 2 4 8 16 32

time (s) 16080 7860 4680 2153 1140 585
time (m) 268 131 78 36 19 10
core-hours 36 35 42 38 41 43

and S in the CPU and in the optimized GPU cases and three times in the standard GPU case.
Considering now the total Tcpu, we see that the faster time is obtained when the number
of pools is equal to the number of cores. The scaling with the number of nodes is good:
from 32 to 64 cores the code is 1.8 times faster. The standard GPU approach takes 3.4 Tcpu
(one node) or 3.1 Tcpu (two nodes), while the optimized GPU approach takes 0.58 Tcpu (one
node) and 0.48 Tcpu (two nodes). The difference between one and two nodes is due to the
different number of CPUs cores available in the two cases. The parts that are not accelerated
are calculated faster when more cores are available. Comparing now the two GPU algorithms
we see that the optimized one is about 6 times faster.

In the table we have indicated also the cost of each run in core-hours. This cost is
obtained by multiplying the total time by the number of core used (in the GPU case, each
GPU costs 8 cores). We have also added the time needed with 4 and 8 nodes (128 and 256
cores). We find that increasing the number of nodes the total cost tend to increase (even if
there are some fluctuations) since it is difficult to achieve an exact linear scaling with the
number of pools. In the optimized GPU case the optimum is obtained with 2 nodes. It
is therefore convenient to carry out this calculations with a small number of nodes per q
point and calculate in parallel on different nodes different q points and geometries. However,
even with an ideal scaling with the pools and a computer that can provide as many GPUs
as desired, it is still convenient to use pools that contain a number of k point sufficient to
occupy the GPU memory and use it (gaining about a factor 2X), than split the calculations
so that each pool has a single k point.
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Chapter 8

Conclusions

The DFPT + QHA methodology for ECs calculations in software thermo pw has been ex-
tended to high temperature and high pressure conditions. The ECs as a function of temper-
ature at finite pressure and as a function of pressure at finite temperature is available.

This new techniques have been illustrated in BCC solids W, Mo, and Ta. The first has
been chosen for its wide range of applications, in particular as a plasma-facing material
in fusion reactor. Mo is a metal in the same group of periodic table as W but no ECs
information was available under the high-pressure or high-temperature conditions. Ta is a
metal used for high-quality superconducting resonators in quantum processors, but also lack
of investigation. All these three metal elements are so-called “refractory metals” because of
the high melting point among all materials and extraordinarily resistant to wear.

The treatment of ECs to anisotropic solids has be expaned by adding the possibility of
calculating the ECs along the “stress-pressure” T = 0 K isotherm in the crystal parameter
(within V-ZSISA) space and made it possible to go beyond ZSISA for systems in which
atomic relaxations are one-dimensional. We have addressed Be as the simplest example of a
HCP solid to explore the practical approach to investigate the thermoelasticiy in anisotropic
solids. We also extended the code to run on architectures equipped with GPUs in order to
accelerate the time-cosuming phonon calculations. Now we draw the main conclusions for
each chapter in the following sections.

8.1 Tungsten
We presented the quasi-harmonic temperature and pressure dependent thermoelastic prop-
erties of tungsten calculated by thermo pw using PAW pseudopotentials. The temperature
dependent quasi-harmonic adiabatic ECs as well as the derived polycrystalline bulk, shear,
and Young’s moduli and Poisson’s ratio have been compared with experiment at ambient
pressure. The compressional and shear sound velocities, as well as the longitudinal and shear
moduli, have been calculated as a function of pressure at the temperatures measured in the
experiment of Qi et al. [158].

We find that the quasi-harmonic theory reproduces well the temperature dependent ECs
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of tungsten at room pressure. The PBE and the PBEsol functionals give similar temperature
dependences with PBEsol closer to experiment than PBE. Good agreement is also found for
the temperature dependence of the polycrystalline elastic moduli, again with PBEsol closer
to experiment than PBE.

The pressure and temperature dependence of the shear modulus of polycrystalline tung-
sten in the range of pressures measured in the experiment of Qi et al. [158] is reproduced very
well by both PBE and PBEsol that are practically indistinguishable when a shift is used to
facilitate the comparison with experiment. The pressure and temperature variations of the
longitudinal module are instead described less accurately and also after a shift PBEsol and
PBE predict a larger decrease with temperature than experiment. The PBEsol temperature
derivative of the longitudinal module is slightly larger than the PBE one. These discrep-
ancies are attributed to the temperature derivative of the adiabatic bulk modulus larger in
the calculation than in experiment. As a consequence, the pressure and temperature depen-
dences of the shear sound velocity are well reproduced by theory, while the compressional
sound velocity as a function of pressure is well reproduced at low temperatures, but larger
and larger differences are found at high temperatures. These conclusions hold for both PBE
or PBEsol. Different functionals change the position of the elastic moduli or sound velocity
curves, but not their slope nor their temperature variation. The reasons for the discrepancies
between theory and experiment are presently unclear and might require an improvement of
the theory or a revision of the experiment.

In this chapter we compared the elastic moduli and the sound velocities of polycrystalline
tungsten at high pressure and high temperature with experiment and we demonstrated that
these calculations are now routinely feasible in modern supercomputers. These parameters
which are quite critical for high pressure and high temperature applications of materials are
still missing from the literature for many metals. We hope that our efforts will stimulate
further measurements and theoretical calculations in this direction.

8.2 Molybdenum
We presented the temperature and pressure dependent thermoelastic properties of molyb-
denum calculated by the thermo pw software and PAW pseudopotentials. We find that the
QHA predicts the temperature dependence of the ECs in much better agreement with ex-
periments than the QSA. Furthermore we have used the QHA ECs to compute the pressure
dependent compressional and shear sound velocities in polycrystalline molybdenum (and the
corresponding bulk and shear moduli). In addition to the calculation at 300 K that is in
good agreement with the experimental results of Liu et al., [112] we have calculated the low
temperature (4 K) and the high temperature (1000 K, 1500 K, and 2000 K) pressure depen-
dent curves, hoping that these calculations will stimulate an experimental investigation of
these quantities.

For the sake of completeness, the phonon dispersions, the p-V equation of state at 300
K and 2000 K, the temperature dependent volume thermal expansion, the isobaric heat
capacity, the adiabatic bulk modulus, and the average Grüneisen parameter for 0 kbar,
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1000 kbar, 2000 kbar, and 3000 kbar have been calculated by the LDA, PBEsol, and PBE
functionals, but since they are already available in the literature, we have moved them to
the appendix.

8.3 Tantalum
We have presented the QHA TDECs of tantalum calculated within the PBE exchange and
correlation energy and we have compared them with the QSA TDECs. We found a better
agreement with experiment at low temperatures, up to 500 K, for the quantities C, C ′ and
C44 that are measured in experiment. At high temperatures, experiments show a change of
slope of the curves as a function of temperature that is not reproduced by our calculation.
Comparing C11 and C12 the situation is less clear at low temperature and on a large tem-
perature range from 0 K to 2000 K the QSA TDECs seem closer to experiment than the
QHA ones. None of the two approximation however predicts a change of slope.

We have calculated also the pressure dependent elastic constants both at low temperature
5 K and for 300 K, 1000 K, and 1500 K. Although these data might have errors similar to
those at 0 kbar, we hope that these data will stimulate a measurement of the tantalum EC
at high temperature and pressure an information which is still missing from the literature.

8.4 Beryllium
We presented the QHA TDECs of beryllium calculated (within the V-ZSISA) in eight ref-
erence geometries along the “stress-pressure” 0 K isotherm and interpolated at a(T ). For
C11 and C12, atomic relaxations have been dealt mainly within the ZSISA approximation.
We have verified using the QSA that the “stress-pressure” 0 K isotherm interpolation (V-
ZSISA) gives results close to the interpolation made along the 0 kbar isobar. Moreover, we
have compared the ZSISA approximation with the full free energy minimization (FFEM)
with respect to the atomic positions, finding that for the present case ZSISA is a very good
approximation. Comparison of our results with previous QSA and QHA calculations shows
substantial agreement especially with Ref. [103] for the QSA and Ref. [161] for the QHA.
Moreover, we provided the first estimate of the pressure dependent (up to 500 kbar) elastic
constants at temperature of 500 K and 1000 K. We hope that these calculations will stimu-
late and support an experimental investigation of these quantities that are still unknown in
beryllium.

The graphs of thermal expansion and isobaric heat capacity in the appendix (see also
references [69, 134, 178, 107, 162] therein) show that QHA might be a reasonable approxi-
mation until 800 K where the QHA is able to reproduce the experimental results. In general
QHA is expected to be accurate until 2/3 of the melting temperature so our data might
require corrections above 1000 K [5], even if we have plotted them until 1500 K.

The calculations performed here of the QHA TCECs, required the phonon dispersion
on 8×30 = 240 geometries ( 30 distorted configurations of 8 equilibrium geometries). With
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much more effort, slightly more accurate calculations could have been done by computing
the quasi-harmonic elastic constants taking as reference geometries all the two-dimensional
mesh of a and c/a parameters. This calculation would require the phonon dispersions in
14× 7× 30 = 2940 geometries (30 distorted configuration of a grid 14× 7 of equilibrium
geometries) and is presently beyond our computational resources, but it could become feasible
soon. Presently, beryllium does not seem to require such an effort, but we have presented
a workflow capable of going beyond both the V-ZSISA and ZSISA when necessary and it
might be interesting to see if the conclusions reached in beryllium remain valid also for the
other hcp metals. All methods used in this paper have been implemented in the thermo pw
software [38] and are publicly available.

8.5 GPU
We discussed a scheme to accelerate on the GPUs electronic structure codes based on plane
waves and pseudopotentials. We have shown in the example of bcc tungsten that our scheme
can be faster than the currently implemented GPU version when the system has small unit
cells but requires a thick mesh of k points. The main idea is to apply the Hamiltonian to
the wave-functions in parallel on many k points, one per GPU thread, so as to increase both
the size of the data on which the GPU works at any given time and to give to the GPU a
sufficient numerical workload to exploit all its SMs. Our method has been implemented in
CUDA Fortran by partially rewriting the code and by using GLOBAL and DEVICE routines to
parallelize the work of different GPU threads. We have discussed in detail the optimization
of the Davidson algorithm, the application of the Kohn and Sham Hamiltonian and of the
overlap matrix S to the wave-functions, and the preconditioned conjugate gradient algorithm
which is used to solve the linear system of DFPT. In our example the application of HKS and
S to the wave-functions accounts for about one half of the total time with CPUs and about
1/3 with the GPUs. For these operations our optimized GPU method is about 6 times faster
than the standard GPU approach, and about twice as fast than the CPUs only calculation.
The main limitation of the present implementation is that it does not support the reciprocal
lattice vectors distribution among CPUs. It is instead possible to divide the k points in pools
so that different GPUs acts on different pools. Finally, we underline the fact that when the
system (and the FFT mesh) becomes large enough the cuFFT library routines become more
efficient than our DEVICE routines and at that point the standard approach might become
more convenient.

Our approach required a precise control of the GPU threads and math libraries (with
DEVICE functions) that can be called from the GPU. Presently not many libraries offer this
functionality and we hope that, in future, optimized DEVICE versions of math libraries will
appear together with FORTRAN compatible interfaces. The substitution of our transformed
routines with better optimized ones could further improve the speed of our code. As a last
consideration we might ask if there are other ways to speed up the plane-waves pseudopo-
tential codes for metallic cases as those that we need for our research. There are several
option that one might explore from introducing a batched form of the FFT and of the linear
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algebra routines, to using new FFT GPU libraries such as heFFTe. [85]. If these options would
solve the problem pointed out in this paper within the standard GPU scheme remains to be
investigated.

The implemented software is distributed within the GPL licence within the thermo pw
package. [38]
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Appendix A

Tungsten

In the present appendix, in addition to βV (p,T ), we show Cp(p,T ), BS(p,T ), and γ(p,T ) for
several pressures p.

Figure A.1: Phonon dispersions interpolated at the 295 K lattice constant. The LDA (red
curves), PBEsol (green curve), and PBE (blue curve) results are compared with the experi-
mental inelastic neutron scattering data measured at 295 K (Refs. [105, 28, 29]).
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Figure A.2: V as a function of p at 300 K obtained by LDA (red), PBEsol (green), and
PBE (blue) is compared with experiments (orange circles, [44] green circles, [110] and yellow
triangles [51]) and previous calculations (blue diamonds (PBE) from Ref. [196], blue squares
(LDA) from Ref. [166], and red squares (PBE) from Ref. [192]). In the inset the same curves
at 3000 K are compared with the predictions of Refs. [48] (blue diamonds) and [110] (red
circles).

A.1 Phonon dispersions
In Fig. A.1, we compare the phonon dispersions, interpolated at the 295 K lattice constant
(reported in Table I of the paper), with inelastic neutron scattering data. [105, 28, 29]PBEsol
and LDA frequencies are similar and show a good agreement with experiments while PBE
gives frequencies lower than LDA (as found in other solids [36]), more distant from experi-
ments. This conclusion agrees with Ref. [22, 43].

A.2 Equation of state
In Fig. A.2, we show the 300 K EOS. At low pressure, the PBEsol curve is in very good
agreement with experiment, much more than PBE or LDA, as we have seen for the lattice
constant. At higher pressures, the experimental data of Ref. [44] are well fitted by both LDA
and PBEsol, while the recent measurements of Ref. [51] are closer to PBEsol. PBE is instead
slightly above experiment. These results are like those found by Dewaele et al. [45] in zinc,
molybdenum, and silver. Our PBE curve agrees with the linearized augmented plane wave
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Figure A.3: V/V0 as a function of p at 300 K obtained by LDA (red), PBEsol (green),
and PBE (blue) is compared with experiments (orange circles, [44] green circles, [110] and
yellow triangles [51]) and previous calculations (blue diamonds (PBE) from Ref. [196], and
blue squares (LDA) from Ref. [166], and red squares (PBE) from Ref. [192]). In the inset
the same curves at 3000 K are compared with the predictions of Refs. [48] (blue diamonds)
and [110] (red circles).

(LAPW) all-electrons PBE calculation of Ref. [192] and with Ref. [196]. The LDA curve is
instead slightly below the values of Ref. [166] especially at low pressure consistent with the
0.5% difference of the equilibrium lattice constants (see Table I of the paper).

To remove the effect of the different equilibrium volumes on the EOS, it is usual to
plot the ratio V/V0 (where V0 is the volume at 300 K) against pressure. In this case one
reaches different conclusions using the experimental data of Ref. [44] or those of Ref. [51]
(see Fig. A.3). In the first case PBE agrees with the experimental data while the LDA and
PBEsol EOS are above experiment. This is in agreement with Ref. [196] and at variance with
Ref. [166]. In the second case, the experimental data of Ref. [51] seems to follow well PBEsol
and LDA curves up to 2000 kbar. In the insets of Fig. A.2 and Fig. A.3 we compare the
3000 K EOS with the models of Refs. [48] and [110]. The two models agree with each other
and with the ab-initio results. Also at this temperature, when V (p,T ) is plotted (Fig. A.2)
PBEsol agrees with the models, while LDA is slightly below and PBE is slightly above.
Instead, when V/V0 is plotted (Fig. A.3) LDA remains higher than the other functionals and
of the models data which are between PBE and PBEsol.
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Figure A.4: Temperature dependent volumetric thermal expansion calculated by LDA (red
curve), PBEsol (green curve), and PBE (blue curve) compared with the experimental data
reported in Ref. [136] (red triangles), Ref. [170] (reversed yellow triangles), Ref. [131] (gold
circles), Ref. [19] (magenta circles), Ref. [123] (cyan squares), and Ref. [185] (blue diamond).
The thinner lines at the bottom indicate the differences between the thermal expansion
calculated including or neglecting the electronic excitations term in the free energy.

A.3 Thermal expansion
In Fig. A.4, we compare with experiment the volumetric thermal expansion at zero pres-
sure. PBEsol is in good agreement with LDA at all temperatures and both reproduce the
experiment up to 1500 K. PBE is slightly above the other two functionals similar to the
literature for other metals. [70] Comparing with literature, our LDA results agrees well with
Ref. [43], while our PBE data are above the calculation of Ref.[196]. After 1500 K other
effects, not included in our calculation, namely anharmonic phonon-phonon interactions and
finite electronic temperature effects on the phonon frequencies are known to play a role. [196]

In Fig.A.4, we show the electronic thermal excitations contribution, determined from the
difference between thermal expansions calculated including or neglecting the electronic free
energy in Eq. 2.125 of the paper. Also for this contribution, the LDA and PBEsol curves
coincide while PBE is slightly higher. There are not significant effects up to 1500 K, but at
3000 K the electronic contribution is about 1.6×10−6 (1/K) (LDA) and (PBEsol), 2.0×10−6

(1/K) (PBE).
In Fig. A.5, we show the thermal expansion at finite pressure. In this, as in the fol-
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Figure A.5: Temperature dependent volumetric thermal expansion computed within the
LDA (red line), PBEsol (green line), and PBE (blue line). The different curves (from top to
bottom) correspond to pressures from 0 kbar to 3000 kbar in steps ∆p= 1000 kbar. Theory
is compared with the models of Refs. [48] (blue diamonds) and [110] (red circles).

lowing pressure dependent plots, we add to the free energy the anharmonic phonon-phonon
contribution:

Fa = (a0+a1V )T 2, (A.1)
whose parameters a0 = 2.66×10−9 eV K−2 and a1 =−6.56×10−10 eV Å−3 K−2 have been
calculated in Ref. [196] with the PBE functional. We use the same parameters for all func-
tionals. The comparison of Fig. A.5 and Fig. A.4 shows the effect of Fa at 0 kbar. Using
PBEsol, it is 0.7×10−6 (1/K) at 1000 K and 3.0×10−6 (1/K) at 3000 K. The 0 kbar curves
shows some differences between PBEsol (like LDA) and PBE that gradually decrease and
vanish at high pressure. The values of the thermal expansion at finite pressures agree with
the PBE results of Ref. [74] (not shown here). In the figure we compare our results with
the models of Refs. [48] and [110]. The points of the model of Ref. [110] have been taken
from their Table V, while those of the model of Ref. [48] have been calculated by us with the
parameters given in their Table I. At zero pressure and up to 2000 K, LDA and PBEsol are
in good agreement with the model of Ref. [48] while PBE matches better with the points of
Ref. [110]. At finite pressure, our data become closer to those of Ref. [48] while the model
of Ref. [110] predicts a slower decrease of the thermal expansion with pressure.
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Figure A.6: LDA (red line), PBEsol (green line), and PBE (blue line) temperature dependent
isobaric heat capacity compared with experiment from Ref. [194] (red triangles), Ref. [10]
(gold circles), Ref. [27] (magenta circles), Ref. [11] (cyan diamonds). Thin lines at the bottom
(with the same color conventions) indicate the contribution of electronic excitations to the
heat capacity.

A.4 Isobaric heat capacity
In Fig. A.6, we compare the isobaric heat capacity with experiment. Here the differences
among functionals are small and all of them agree with experiment up to 700 K. At higher
temperatures the experimental data are consistently larger than theory. In the same figure,
we plot separately the electronic excitations contribution. At 3000 K, it is about 5 J/(K
· mol) with infinitesimal differences between functionals. At this temperature the quasi-
harmonic contribution (the second term in Eq. 2.152) is about 3 J/(K · mol), while the
difference between our calculation and experiment remains about 7 J/(K · mol). Adding
the anharmonic phonon-phonon term of Ref. [196] (Eq. A.1), at 3000 K, Cp increases by
about 5 J/(K · mol) (see Fig. A.7). Therefore, we agree with the conclusions of Grimvall et
al. [71] that the large value of Cp above the Dulong-Petit limit can be explained by including
electronic and anharmonic effects.

In Fig. A.7, we report the isobaric heat capacity at several pressures. With pressure
increasing, the value of Cp decreases but remains well above the Dulong-Petit limit. We also
show the electronic excitations contribution to CV . This contribution decreases slowly with
pressure: it is still 3.2 J/(K · mol) at 3000 K and 3000 kbar. Our results are compared with
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Figure A.7: LDA (red line), PBEsol (green line), and PBE (blue line) temperature dependent
isobaric heat capacity. From top to bottom the curves correspond to pressures from 0 kbar
to 3000 kbar in steps ∆p = 1000 kbar. DFT calculations are compared with the models of
Refs. [48] (blue diamonds) and [110] (red circles). The green lines at the bottom are the
PBEsol electronic contribution to CV at the four pressures (from top to bottom) shifted by
15 J/(K · mol).

the models of Ref. [48] and [110]. The two models, in agreement with each other, predict a
faster convergence of Cp to the Dulong-Petit limit than our data.

We believe that this behavior is due to the different equations used for the volume depen-
dence of the anharmonic phonon-phonon term in the models and in our pressure dependent
pictures. Neglecting Eq. A.1, Cp at 3000 kbar and 3000 K is below the points of Ref. [48].

A.5 Bulk modulus
In Fig. A.8, we compare the adiabatic bulk modulus with experiment. The isothermal bulk
modulus is plotted for reference. As discussed above, at 0 K, LDA overestimates while PBE
underestimates the bulk modulus. PBEsol corrects a part of the LDA error but is still higher
than experiment. Instead, the temperature dependence predicted by the three functionals is
similar and in reasonable agreement with experiment. From 265 K to 2063 K, the adiabatic
bulk modulus measured in Ref. [115] decreases by 305 kbar (9.8%) while the LDA, PBEsol,
and PBE values are 293 kbar (8.7%), 279 kbar (8.6%), and 276 kbar (9.1%), respectively.

In Fig. A.9, we report the adiabatic bulk modulus at several pressures. In absolute
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Figure A.8: Temperature dependent adiabatic and isothermal bulk moduli calculated within
LDA (red line), PBEsol (green line), and PBE (blue line) compared with the experimental
adiabatic data of Ref. [16] (filled cyan squares), Ref. [54] (empty gold triangles), and Ref. [115]
(empty magenta cycles). For each functional the higher curve is the adiabatic bulk modulus.

values, the differences between functionals remain almost constant with pressure, while they
decrease in percentage terms. For instance, at 0 K, the differences between LDA and PBEsol
go from ∆BS =121 kbar (3.5 %) at 0 kbar to ∆BS =159 kbar (1.2 %) at 3000 kbar, while the
differences between LDA and PBE go from ∆BS = 323 kbar (9.5 %) at 0 kbar to ∆BS = 398
kbar (3.0 %) at 3000 kbar. Comparing with the models of Refs. [48] and [110] that give
equivalent results, the agreement is good but the DFT bulk moduli increase slightly faster
than those of the models and at 3000 kbar also PBE is above the model points. With
temperature, the model points of Ref.[48] decrease faster than DFT and at 3000 K and 0
kbar PBE is above. For predicting the behaviour of the bulk modulus PBE seems the best
functional.

A.6 Gruneisen parameter
In Fig. A.10, we report the temperature dependent average Grüneisen parameter for sev-
eral pressures. LDA and PBEsol coincide at all pressures, while PBE is higher at 0 kbar.
The models of Ref. [48] and [110] have different pressure dependence mirroring the thermal
expansion. At zero pressure and room temperature the ab-initio average Grüneisen param-
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Figure A.9: Temperature dependent adiabatic bulk modulus calculated within the LDA
(red lines), PBEsol (green lines), and PBE (blue lines). From bottom to top the curves
correspond to pressures from 0 kbar to 3000 kbar in steps ∆p= 1000 kbar. DFT calculations
are compared with the model predictions of Ref. [110] (red circles) and of Ref. [48] (blue
diamonds).

eter is similar to Ref. [110] and higher than Ref. [48]. Since the DFT values decrease with
temperature while the model values increase, at high temperatures, our values are like those
of Ref. [48]. With pressure, the differences between our values and the model of Ref. [48]
decreases without vanishing completely.

A.7 Elastic moduli and sound velocities
The longitudinal and shear moduli calculated with PBEsol and PBE are shown in Figs. A.11
and A.12. The PBEsol curves are much closer to experiment than the PBE ones, but none
of them reproduce accurately the experiment on the scale of this figure. Here it is difficult
to compare the pressure and temperature dependence. In the main text, errors at 298 K are
removed by a rigid shift of all curves to facilitate the comparison. We note that the PBEsol
(PBE) shifts of about 128 kbar (437 kbar) and 122 kbar (204 kbar) for the longitudinal and
shear moduli correspond to 2 % (8 %) and 7 % (12 %), respectively.

The compressional and sound velocities calculated with PBEsol and PBE are shown in
Figs. A.13 and A.14. Here, with the exact density we would expect a percentage error equal
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Figure A.10: Temperature dependent average Grüneisen parameter calculated within the
LDA (red line below the green line), PBEsol (green line) and PBE (blue line). From top to
bottom the curves correspond to pressures from 0 kbar to 3000 kbar in steps ∆p=1000 kbar.
DFT calculations are compared with the model predictions of Refs. [48] (blue diamonds)
and [110] (red circles).

to half the error of the elastic moduli. The presence of the density in the expression of the
sound velocity slightly increases the PBEsol errors and decrease the PBE ones, since both
the longitudinal and shear moduli are lower than experiment and PBEsol overestimates the
density while PBE underestimates it. The PBEsol (PBE) shifts of the compressional sound
velocity are 65 m/s (146 m/s) corresponding to 1 % (3 %), while the shifts of the shear sound
velocity is 113 m/s (149 m/s) corresponding to 4 % (5 %).

140



Figure A.11: Temperature dependent PBEsol (dashed lines) and PBE (solid lines) longitu-
dinal modulus calculated within the quasi-harmonic approximation as a function of pressure
for several temperatures (red 298 K, green 473 K, blue 673 K, yellow 873 K, and pink 1073
K). The circles (with the same color code) are the data of Ref.[158], measured at the same
temperatures and calculated as L=BS+4/3GS from the BS and GS in their Table III.
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Figure A.12: Temperature dependent PBEsol (dashed lines) and PBE (solid lines) shear
modulus calculated within the quasi-harmonic approximation as a function of pressure for
several temperatures (red 298 K, green 473 K, blue 673 K, yellow 873 K, and pink 1073
K). The circles (with the same color code) are the data of Ref.[158], measured at the same
temperatures (from their Table III).
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Figure A.13: Temperature dependent PBEsol (dashed lines) and PBE (solid lines) compres-
sional sound velocity (VP ) calculated within the quasi-harmonic approximation as a function
of pressure for several temperatures (red 298 K, green 473 K, blue 673 K, yellow 873 K, and
pink 1073 K). The circles (with the same color code) are the data of Ref.[158], measured at
the same temperatures.

143



Figure A.14: Temperature dependent PBEsol (dashed lines) and PBE (solid lines) shear
sound velocity (VG) calculated within the quasi-harmonic approximation as a function of
pressure for several temperatures (red 298 K, green 473 K, blue 673 K, yellow 873 K, and
pink 1073 K). The circles (with the same color code) are the data of Ref.[158], measured at
the same temperatures.

144



Appendix B

Molybdenum

In the present appedix, in addition to βV (p,T ), we show Cp(p,T ), BS(p,T ), and γ(p,T ) for
several pressures p.

B.1 Phonon dispersion
In Fig. B.1, we compare the theoretical phonon dispersions, interpolated at the 295 K lattice
constant obtained accounting for zero point and thermal expansion effects (see the values in
Table 1 of the paper), with inelastic neutron scattering data. [155, 197] LDA and PBEsol
give similar frequencies in good agreement with experiment except at the H point where
we find a relatively large error. PBE gives frequencies lower than LDA (as found in other
solids [36, 65]), and hence more distant from experiment. As for gold, platinum and tungsten,
for molybdenum phonon dispersions, LDA or PBEsol are preferable to PBE. This conclusion
is in agreement with Ref. [167, 26]. Instead, Ref. [198] finds PBE phonon dispersions closer
to experiment than ours.

B.2 Thermal equation of state
In Fig. B.2, we show the 300 K equation of state. Our PBE curve agrees with the linearized
augmented plane wave (LAPW) all-electrons PBE calculation of Ref. [192] and with the
PW91 [151] results of Ref. [198]. The experimental results are all in good agreement among
themselves with the shock wave data arriving beyond 2000 kbar. At each pressure, the
PBE curve overestimates the volume, while LDA underestimate it as we have discussed for
zero pressure. The PBEsol volume is still slightly underestimated at zero pressure, but the
agreement with experiment increases with pressure. The same behaviour is found at 2000
K as we show in the inset. Here we compare our equation of state with the models of
Ref. [177, 49] and [109]. The two models agree with each other and with the ab-initio results
especially using PBE and PBEsol.

In Fig. B.3 we present the equation of state removing the error due to the equilibrium
volume by plotting V/V0 as a function of pressure (here V0 is the equilbrium volume at

145



Figure B.1: Phonon dispersions interpolated at the 295 K lattice constant. The LDA (red
curves), PBEsol (green curve), and PBE (blue curve) results are compared with the exper-
imental inelastic neutron scattering data measured at 295 K (Ref. [155] blue diamonds and
Ref.[197] green circles).

300 K, close to that reported in Table 1 of the paper). As in the case of tungsten, here
the picture changes, with PBE that follows the experimental data in all the pressure range.
Both LDA and PBEsol are in this case slightly above the experiment. In the inset we show
the equation of state at 2000 K and compare with the model data presented in the inset of
Fig. B.2. At this temperature the model points are equally close to PBE and PBEsol. At
zero pressure the theoretical data are slightly below the model point of Ref. [109] reflecting
the underestimation of the thermal expansion with respect to experiment (see below).

B.3 Thermal expansion
In Fig. B.4, we compare with experiment the thermal expansion at zero pressure. We have
reported only the commonly accepted data, as those of Refs. [136, 18, 97, 130] and not the
new measurements proposed by Ref. [201]. Our LDA and PBEsol data match the accepted
values up to 1000 K while PBE is slightly higher. The PW91 data of Ref. [198] (not reported
here) are more close to our LDA data, than to the PBE data and match the experimental
thermal expansion up to 1500 K. After these temperatures, anharmonic phonon-phonon
interaction effects are expected to become important and therefore our ab-initio data cannot
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Figure B.2: V as a function of p at 300 K obtained by LDA (red), PBEsol (green), and PBE
(blue) compared with experiment (blue circles [79], cyan circles, [109] red triangles, [201]
and green diamonds [45]) and previous calculations (red squares (PBE) from Ref. [192]). In
the inset the same curves at 2000 K compared with the predictions of Ref. [109] (red circles)
and of Ref. [49] (blue diamonds).

follow experiment. In the picture we show also the electronic excitation contribution to the
thermal expansion, calculated adding or neglecting the electronic term in the free energy.
As can be seen from the figure at 3000 K it is of the order of 510−6 (1/K), but at 1500 K
its contribution is negligible.

In Fig. B.5, we show the thermal expansion at 0 kbar, 1000 kbar, 2000 kbar, and 3000
kbar and compare our data with the models of Ref. [109] and of Ref. [177]. For the first we
use the data reported in their Tab. V, while for the latter we use the data reported in Tab. 7
for 0 kbar and 1000 kbar and data calculated by us with the parameters reported at pag.193
at 2000 kbar and 3000 kbar. In the same figure we report also the PW91 values of Ref. [198].
We find that the three functionals differ appreciably at 0 kbar, but the differences are smaller
at higher pressures. The pressure dependence of the thermal expansion agrees with the PW91
findings of Ref. [198]. The points of the two models differ at high pressure, with the model
of Ref. [109] that decreases more slowly with pressure. Our data agree very well with the
model of Ref. [177] until about 1000 K, but our curves are below the model points at higher
temperatures. This seems due to missing anharmonic phonon-phonon interaction terms in
our calculation.
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Figure B.3: V/V0 as a function of p at 300 K obtained by LDA (red), PBEsol (green), and
PBE (blue) compared with experiment (blue circles [79], cyan circles, [109] red triangles, [201]
and green diamonds [45]) and previous PBE calculations (red [192] squares). In the inset
the same curves at 2000 K compared with the predictions of Ref. [109] (red circles) and of
Ref. [49] (blue diamonds).

B.4 Heat capacity
In Fig. B.6, we compare the isobaric heat capacity with experiment. The three functionals
gives very similar values of this quantity and theory and experiment are in good agreement
until about 1000 K. As can be seen from the figure at 2500 K our value of 33.2 J/(K· mol) has
a contribution of electronic excitation of about 5.7 J/(K· mol), while the quasiharmonic term
contributes for other 2.5 J/(K· mol), while the experimental value is 44.1 J/(K· mol) so that
the anharmonic phonon-phonon interaction and possibly defects should give a contribution
of about 10.9 J/(K· mol).

In Fig. B.7, we report the isobaric heat capacity at several pressures. In the same figure
we show also the electronic contribution to which we added a fixed value of 15 J/(K · mol)
for picture clarity. At zero pressure both models gives very similar results which reproduce
well experiment, but the behaviour with pressure is different, with the model of Ref. [109]
which converges faster to the Dulong-Petit limit. We find that the electronic contribution
decrease slowly with pressure and added to the Dulong-Petit value gives a Cp higher than
the point of Ref. [109]. It seems therefore that this model somewhat underestimates the
electronic contribution to the specific heat at high pressures.
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Figure B.4: Temperature dependent thermal expansion calculated by LDA (red curve),
PBEsol (green curve), and PBE (blue curve) compared with the experimental data reported
in Ref. [136] (cyan triangles) Ref. [97] (green circles), Ref. [130] (blue diamonds), Ref. [18]
(red triangles). The thinner lines at the bottom indicate the differences between the thermal
expansion calculated including or neglecting the electronic excitations term in the free energy.
Pink dashed line on the PBE curve shows the result obtained with 8 geometries and ∆a=0.02
a.u.

.

B.5 Bulk modulus
In Fig. B.8, we compare the adiabatic bulk modulus with experiment. The isothermal bulk
modulus is plotted for reference. The PBE bulk modulus is in very good agreement with
experiment and also the temperature dependence seems to be well accounted for by theory.
LDA and PBEsol instead overestimate the bulk modulus. The decrease of the experimental
bulk modulus from 25 K to 2225 K is 410 kbar (16 %), while the LDA, PBEsol, and PBE
values are 432 (15 %), 407 kbar (15 %), and 405 kbar (16 %), respectively. In Fig. B.9, we
report the adiabatic bulk modulus at several pressures. Our data are compared with the
models of Ref. [109] and of Ref. [49] (only at 0 kbar and 1000 kbar). In all the range of
pressures the agreement between ab-initio values and model values is very good with PBE
which remain always quite close to the model points and PBEsol and PBE slightly above.
For this quantity the differences between functionals do not decrease with pressure.
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Figure B.5: Temperature dependent thermal expansion computed within the LDA (red
line), PBEsol (green line), and PBE (blue line). The different curves (from top to bottom)
correspond to pressures from 0 kbar to 3000 kbar in steps ∆p = 1000 kbar. Theory is
compared with the models of Ref. [109] (red circles) and of Ref. [177] (blue diamonds) and
with the ab-initio PBE calculations of Ref. [198] (green triangles).

B.6 Grüneisen parameter
In Fig. B.10, we report the average Grüneisen parameter as a function of temperature and
compare it with previous ab-initio calculation [198] an with the model data of Ref. [109]
and of Ref. [49] The agreement with the PW91 calculation is quite good expecially at high
pressure. The major difference is at 0 kbar and 300 K where the value of Ref. [198] is
closer to the model of Ref. [49] while our value is closer to the model Ref. [109]. With
temperature the model data and the ab-initio calculation increase faster than our values and
at 0 kbar and 2750 K our value coincide with previous ab-initio result, but remains lower
than both models. The model of Ref. [109] has average Grüneisen parameters decreasing
much slowly with pressure than both the ab-initio results and the model of Ref. [49]. The
ab-initio results however seems to remain more constant with temperature than the results
of Ref. [49]. This in part could be due to the missing anharmonic phonon-phonon terms in
the ab-initio calculation.
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Figure B.6: LDA (red line), PBEsol (green line), and PBE (blue line) temperature dependent
isobaric heat capacity compared with experiment from Ref. [97] (green circles), Ref. [72] (red
diamonds) and Ref. [18] (blue triangles). Thin lines at the bottom (with the same color
conventions) indicate the contribution of electronic themal excitations to the heat capacity.
Pink dashed line on the PBE curve shows the result obtained with 8 geometries and ∆a=0.02
a.u.

.

B.7 Numerical issues
The choice of the interval between strains used to sample the energy might affect the final
value of the elastic constants. We show in Fig. B.11 the dependence of the three elastic
constants on this parameter. As can be seen from the figure, when the strain interval is
small enough to avoid the high order terms in the energy versus strain curves that appear
at large ∆ε, the values of the elastic constants converge to a constant value. In principle, we
should compute the limit for ∆ε→ 0, but as can be seen in the curve for C11, if the value
of ∆ε is too small, the fit of the energy becomes also inaccurate. In the paper we used a
value ∆ε= 0.005, that gives values of elastic constants close to the limit of small ∆ε without
introducing significant errors. We note that in these figures we are using an enlarged scale,
but on the scale of elastic constants used in the paper, these curves appear almost flat.

We have also studied the dependence of our thermodynamic properties on the distance
∆a among the geometries used to compute phonons. The ∆a used in the paper is 0.1 a.u.,
but also a ∆a = 0.2 a.u. gives very similar results as we show for PBE in Fig. B.4 and in

151



Figure B.7: LDA (red line), PBEsol (green line), and PBE (blue line) temperature dependent
isobaric heat capacity. From top to bottom the curves correspond to pressures from 0 kbar
to 3000 kbar in steps ∆p = 1000 kbar. DFT calculations are compared with the model of
Ref. [109] (red circles) and of Ref. [49] (blue diamond). The green lines at the bottom are
the PBEsol electronic contribution to CV at the four pressures (from top to bottom) shifted
by 15 J/(K · mol).

Fig. B.6.
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Figure B.8: Temperature dependent adiabatic and isothermal bulk moduli calculated within
LDA (red line), PBEsol (green line), and PBE (blue line) compared with the experimental
adiabatic data of Ref. [47] (blue triangles), Ref. [20] (green circles) and Ref. [21] (red dia-
monds). For each functional the higher curve is the adiabatic bulk modulus.
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Figure B.9: Temperature dependent adiabatic bulk modulus calculated within the LDA
(red lines), PBEsol (green lines), and PBE (blue lines). From bottom to top the curves
correspond to pressures from 0 kbar to 3000 kbar in steps ∆p= 1000 kbar. DFT calculations
are compared with the model predictions of Ref. [109] (red circles) and of Ref. [177] (blue
diamond).
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Figure B.10: Temperature dependent average Grüneisen parameter calculated within the
LDA (red line below the green line), PBEsol (green line) and PBE (blue line). From top
to bottom the curves correspond to pressures from 0 kbar to 3000 kbar in steps ∆p = 1000
kbar. DFT calculations are compared with the model predictions of Ref. [109] (red circles)
and of Ref. [49] (blue diamond) and with the ab-initio PBE calculations of Ref. [198] (green
triangles).
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Figure B.11: Value of the T = 0 K elastic constants calculated with different values of the
strain interval for each strain type.
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Appendix C

Beryllium

This appendix presents some thermodynamic quantities calculated for beryllium: the equa-
tion of state, the thermal expansion, the isobaric heat capacity, and the adiabatic bulk
modulus as a function of temperature at room pressure. Some of the calculated proper-
ties, such as the thermal expansion, are useful in interpreting the temperature dependence
of the elastic constants, whereas others are presented for the sake of completeness. These
thermodynamic quantities are already present in the literature and selected results from ex-
periments and previous calculations are also marked in the figures for reference. The phonon
frequencies calculated with the present pseudopotentials have been shown in Ref. [107] and
are not reported here.

C.1 Thermodynamic properties
In Tab. C.1 we report, for each of the 11 geometries studied along the “stress-pressure” 0
K isotherm, the corresponding pressure, crystal parameters and volume. The geometries for
which we have computed the QHA elastic constants are also indicated.

In Fig. C.1 we show the LDA EOS at 0 K and at 1500 K calculated with the interpolation
of the free-energy on the two dimensional 14× 7 grid and compared with the experimental
data.

The c/a parameter along the “stress-pressure” isotherm at 0 K is shown in Fig. C.2
and compared with previous experimental measurements and previous calculation. Both
theory and experiment predict an increase of c/a with pressure. Quantitatively, there is
good agreement with the calculation of Ref. [162].

In Fig. C.3 we present the thermal expansion tensor and the volume thermal expansion.
The thermal expansion of beryllium is quite small compared to other metals [69] and is well
reproduced by our calculation at least until 1000 K. At higher temperatures, the experi-
mental α3 seems to increase slightly faster than our calculation, pointing to the presence of
anharmonic effects beyond the QHA not accounted for by our calculation. The thermal ex-
pansion tensor has been calculated from the free-energy interpolated on the two dimensional
grid of a, c/a. The volume thermal expansion is then compared with the curve obtained

157



Table C.1: The “stress-pressure” 0 K isotherm. In the configurations with ∗ we have
computed the QHA TDECs. For all other values of pressure we have interpolated them.

geometry pressure (kbar) a (a.u.) c/a V (a.u)3
1 1659 3.494 1.608 59.40
2 1259∗ 3.594 1.602 64.41
3 932 3.694 1.597 69.71
4 666∗ 3.794 1.593 75.34
5 452 3.894 1.589 81.25
6 282∗ 3.994 1.585 87.45
7 147∗ 4.094 1.580 93.89
8 43∗ 4.194 1.576 100.69
9 -39∗ 4.294 1.570 107.65
10 -101∗ 4.394 1.564 114.91
11 -150∗ 4.494 1.558 122.46

from the calculation of the free energy on the 11 geometries along the “stress-pressure” 0
K isotherm. The agreement of the two calculations is reasonably good. Similar thermal
expansions have also been shown by Shao et al. [171] and for the volume thermal expansion
by Luo et al. [116]. Both are in good agreement with our data.

The presence of anharmonic effects is confirmed also by the isobaric heat capacity (Fig. C.4)
which is reproduced accurately by the QHA calculation until 800 K. The isobaric heat ca-
pacity has been calculated both in the two-dimensional parameter grid and along the ‘stress-
pressure” curve. The two curves coincide so we show only one curve in Fig. C.4. The reported
experimental data are from Ref. [81] and from a critical assessment of many experimental
data. [18] The two sets of data are quite close to each other. A theoretical result similar to
our has been reported in Ref. [116].

The isothermal and the isoentropic bulk modulus calculated from the EOS applied to the
11 geometries along the “stress-pressure” 0 K isotherm is shown in Fig. C.5 and compared
with that derived from the QHA TDECs. As can be seen from the figure there is a very good
agreement if the elastic constants are interpolated using geometries 7−11 symmetric about
the minimum, but when we use all the 8 calculated elastic constants for the interpolation
some shift of the bulk modulus (of the order of 32 kbar (3%) at 0 K) is found. The bulk
modulus derived from EOS is instead stable passing from 5 to 11 geometries. Very small
or no difference is found instead on the figures in the paper if we use 5 or 8 sets of elastic
constants for the interpolation. For reference we report also the isothermal and adiabatic
bulk modulus calculated in Ref. [162] which is sligtly higher than ours but has a very similar
temperature dependence. Ref. [103] presents an adiabatic bulk modulus smaller than ours
at 0 K but with a similar temperature dependence. The experimental data of Ref. [165] have
instead a stronger decrease with temperature than the theoretical reports. Recent data on
polycrystalline beryllium reported in Ref. [133] have still high uncertainty. We show in the
figure the region in which their measurements are located.
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Figure C.1: Equation of state calculated with our parameters at 4 K (red line) and 1500
K (green line) compared with experimental data of Ref. [52] (red points), Ref. [134] (blue
diamond), and Ref. [106] (yellow triangles). The “stress-pressure” 0 K isotherm is shown
with a dashed orange line.

A flowchart in Fig. C.6 illustrates the calculations of various elastic constants for HCP
metals in the thermo pw software. Starting from the SCF calculations on each geometry
ξi in a two-dimensional grid of HCP lattice parameters and interpolating, a stress-pressure
curve is obtained by minimizing the Gibbs energy in Eq.(3) of the paper and obtaining
several equilibrium geometries along the curve. In these, we compute the temperature and
pressure dependent thermodynamic properties via SCF and phonon calculations. SCF and
phonon calculation has to be computed also on strained geometries in order to obtain the
ZSISA QHA ECs at fixed structures. In this step one can replace the ZSISA QHA ECs
with the FFEM QHA ECs by determining the atomic coordinates from the minimum of free
energy. With crystal parameters ξ(T,P ) and the thermal expansion α(T,P ) obtained from
the SCF+phonon calculations on the grid geometries, V-ZSISA QHA ECs are polynominally
interpolated. Using the relation between isothermal and adiabatic elastic constants (Eq.(11)
of the paper), we obtain the adiabatic ones that can be compared with experiments. In the
second column, the QSA elastic constants are derived from the energy calculations of strained
geometries of the grid unperturbed geometries. If the energy calculations are substituted by
free energy, we could also get QHA elastic constants without the V-ZSISA approximation
(not used in the thesis).
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Figure C.2: c/a ratio as a function of pressure at 0 K (red line) compared with experimental
data of Ref. [195] (red points) and of Ref. [134] (blue diamond) and with the theoretical
calculations of Ref. [162] (blue squares) and Ref.[178] (yellow triangles).
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Figure C.3: Thermal expansion tensor of beryllium (red αxx and green αzz lines) calculated
in the present work compared with the experimental data of Ref. [69]. The volume thermal
expansion β = 2αxx+αzz is also shown (blue line) and compared with the one calculated
using only the 11 geometries along the “stress-pressure” 0 K isotherm (dashed orange line).
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Figure C.4: Isobaric heat capacity per cell (green line) compared with the experimental
data in Ref. [81] (red diamond) and with the values recommended Ref. [18] from a critical
evaluation of the experimental data (yellow circles).
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Figure C.5: Isothermal (dashed lines) and adiabatic (continuos lines) bulk modulus as a
function of temperature calculated from the equation of state (red lines) by fitting the free
energy along the “stress-pressure” 0 K isotherm with a fourth-order Birch-Murnaghan equa-
tion. The green (blue) lines are the bulk modulus obtained from the interpolation of the
QHA elastic constants in 5 (8) geometries. The red squares (orange line) indicate the PBE
isothermal (adiabatic) bulk modulus predicted in Ref. [162] The green dots is the bulk mod-
ulus predicted by Ref. [103]. The green (yellow) diamonds are the experimental values of
Refs. [173] (Ref. [165]). The two dashed olive lines show the region where recent experimen-
tal values of the bulk modulus of polycristalline beryllium have been found. [133]
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Figure C.6: The flowchart of elastic constants calculations of hcp metals in thermo pw.
“SCF” and “Ph” on the left side of the bar represent doing a self-consistent field (SCF)
calculation of DFT energy and/or phonon calculations at the corresponding structures.
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Appendix D

GPU and CUDA Fortran

The CUDA architecture is built around a scalable array of multithreaded Streaming Multipro-
cessors (SMs). Each SM has a set of execution units and a set of registers and can operate
on variables contained in the GPU memory. CUDA Fortran allows the allocation of data on
the GPU (called DEVICE in this context), the transfer of data from and to the GPU and the
writing of routines that can run on the GPU (called GLOBAL or DEVICE), in many different
threads, each one working on different data. This is possible also with OpenACC and openMP
compiler directives we have opted for CUDA Fortran since in this moment there is a large
basis of installed supercomputers equipped with NVIDIA GPUs that can run code written in
CUDA Fortran and also the one available to us is in this category. The use of OpenACC and
openMP that could be required to make our code transferable to GPUs of other vendors might
be considered in the future if necessary.

In CUDA Fortran, to run on the GPU, one declares the routines with ATTRIBUTES(GLOBAL)
or ATTRIBUTES(DEVICE). Both run on the GPU, but the first can be called from the CPU host
with the triple chevron syntax (<<<,>>>) to specify the number of threads blocks and
threads per block that are employed. In general thread blocks can be arranged in a three
dimensional grid with variable size in each dimension. The second can be called from the
GLOBAL routines on the data already selected for the current thread. CUDA makes four pieces
of information available to each thread: the thread index (threadIdx), the block index
(blockIdx), the size and shape of a block (blockDim), and the size and shape of a grid
(gridDim). This information can be used to choose the variables the current thread will
work on.

To give an order of magnitude, the Volta (Ampère) GPU architecture has 84 (108) SMs
each capable of running up to 32 threads that is 32× 84 = 2688 (3456) threads can run
simultaneously on the GPU, however each thread block must run the same instructions on
different data, while different thread blocks can execute different instructions. The code is
independent from the GPU architecture on which it will run and can require even bigger grids
and block sizes whose threads are run in sequence on the available SMs.
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[61] P. Giannozzi, O. Baseggio, P. Bonfà, D. Brunato, R. Car, I. Carnimeo, C. Cavazzoni,
S. de Gironcoli, P. Delugas, F. Ferrari Ruffino, A. Ferretti, N. Marzari, I. Timrov,
A. Urru, and S. Baroni. Quantum ESPRESSO toward the exascale. The Journal of
Chemical Physics, 152(15):154105, 04 2020.

[62] P. Giannozzi, S. de Gironcoli, P. Pavone, and S. Baroni. Ab initio calculation of phonon
dispersions in semiconductors. Physical Review B, 43(9):7231–7242, Mar. 1991.

[63] X. Gong and A. Dal Corso. Ab initio quasi-harmonic thermoelasticity of molybdenum
at high temperature and pressure. The Journal of Chemical Physics, 160(24):244703,
June 2024.

[64] X. Gong and A. Dal Corso. High-temperature and high-pressure thermoelasticity of
hcp metals from ab initio quasiharmonic free energy calculations: The beryllium case.
Physical Review B, 110(9):094109, Sept. 2024.

[65] X. Gong and A. Dal Corso. Pressure and temperature dependent ab-initio quasi-
harmonic thermoelastic properties of tungsten. Journal of Physics: Condensed Matter,
36(28):285702, Apr. 2024.

[66] X. Gong and A. Dal Corso. An alternative GPU acceleration for a pseudopoten-
tial plane-waves density functional theory code with applications to metallic systems.
Computer Physics Communications, 308:109439, Mar. 2025.

[67] X. Gonze, B. Amadon, G. Antonius, F. Arnardi, L. Baguet, J.-M. Beuken, J. Bieder,
F. Bottin, J. Bouchet, E. Bousquet, N. Brouwer, F. Bruneval, G. Brunin, T. Cavignac,
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[103] K. Kádas, L. Vitos, R. Ahuja, B. Johansson, and J. Kollár. Temperature-
dependent elastic properties of α-beryllium from first principles. Physical Review B,
76(23):235109, 2007.

[104] S. B. Lang. Sourcebook of pyroelectricity, volume 2. CRC Press, 1974.

[105] A. Larose and B. N. Brockhouse. Lattice vibrations in tungsten at 22 °C studied by
neutron scattering. Canadian Journal of Physics, 54(17):1819–1823, 1976.

[106] A. Lazicki, A. Dewaele, P. Loubeyre, and M. Mezouar. High-pressure–temperature
phase diagram and the equation of state of beryllium. Physical Review B,
86(17):174118, 2012.

[107] M. Lazzeri and S. de Gironcoli. Ab-initio dynamical properties of the Be(0001) surface.
Surface Science, 402–404:715–718, May 1998.

[108] R. G. Leisure, D. K. Hsu, and B. A. Seiber. Elastic properties of tantalum over the
temperature range 4–300 K. Journal of Applied Physics, 44(8):3394–3397, Aug. 1973.

[109] K. D. Litasov, P. I. Dorogokupets, E. Ohtani, Y. Fei, A. Shatskiy, I. S. Sharygin, P. N.
Gavryushkin, S. V. Rashchenko, Y. V. Seryotkin, Y. Higo, K. Funakoshi, A. D. Chany-
shev, and S. S. Lobanov. Thermal equation of state and thermodynamic properties of
molybdenum at high pressures. Journal of Applied Physics, 113(9):093507, 2013.

[110] K. D. Litasov, P. N. Gavryushkin, P. I. Dorogokupets, I. S. Sharygin, A. Shatskiy,
Y. Fei, S. V. Rashchenko, Y. V. Seryotkin, Y. Higo, K. Funakoshi, and E. Ohtani.
Thermal equation of state to 33.5 GPa and 1673 K and thermodynamic properties of
tungsten. Journal of Applied Physics, 113(13):133505, Apr. 2013.

174



[111] J. Liu and P. B. Allen. Internal and external thermal expansions of wurtzite ZnO from
first principles. Computational Materials Science, 154:251–255, Nov. 2018.

[112] W. Liu, Q. Liu, M. L. Whitaker, Y. Zhao, and B. Li. Experimental and theoreti-
cal studies on the elasticity of molybdenum to 12 GPa. Journal of Applied Physics,
106(4):043506, 2009.

[113] Z.-L. Liu, L.-C. Cai, X.-R. Chen, Q. Wu, and F.-Q. Jing. Ab initio refinement of the
thermal equation of state for bcc tantalum: the effect of bonding on anharmonicity.
Journal of Physics: Condensed Matter, 21(9):095408, 2009.

[114] S. G. Louie, S. Froyen, and M. L. Cohen. Nonlinear ionic pseudopotentials in spin-
density-functional calculations. Phys. Rev. B, 26:1738–1742, Aug 1982.

[115] R. Lowrie and A. M. Gonas. Single-Crystal Elastic Properties of Tungsten from 24°
to 1800°C. Journal of Applied Physics, 38(11):4505–4509, Oct. 1967.

[116] F. Luo, L.-C. Cai, X.-R. Chen, F.-Q. Jing, and D. Alfè. Ab initio calculation of lattice
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