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A B S T R A C T

Thermal conductivity is a fundamental property for describing the
non-equilibrium phenomenon of thermal transport. In solid insulators,
whether disordered or crystalline, heat is primarily carried by lattice vi-
brations, emphasizing the need to accurately understand and compute
the lattice thermal conductivity. This computation remains a central chal-
lenge in condensed matter physics, and lattice dynamical approaches
have long been favored for this purpose. Despite being limited to (quasi-)
harmonic dynamics, these methods can address key challenges in Molec-
ular Dynamics, such as incorporating nuclear quantum effects and avoid-
ing the sampling problems.

Historically, separate lattice dynamical approaches were applied to
glasses and crystals, creating a division in the field. However, recent ad-
vances, such as the development of unified frameworks like the Quasi-
Harmonic Green-Kubo theory, have revolutionized the study of lattice
thermal conductivity. This theory, derived by solving the Green-Kubo
expression in the quasi-harmonic regime, provides a common theoreti-
cal framework for modeling heat transport across both ordered and dis-
ordered systems. Nevertheless, simplifying assumptions and computa-
tional scaling issues have limited its broad application.

This thesis addresses these challenges through two main advancements.
First, the theory is extended beyond the single-mode relaxation time ap-
proximation, enabling the accurate modeling of the low-temperature ther-
mal conductivity of crystals. Second, the computational limitations, par-
ticularly relevant for glasses, are mitigated by combining hydrodynamic
insights with efficient algorithms to achieve the bulk limit. This investiga-
tion of the bulk limit not only provides a quantitative correction but also
reveals new insights into the behavior of glasses, highlighting the critical
role of anharmonicity. While the inclusion of anharmonicity hardly brings
significant changes to the thermal conductivity of typical glass samples
containing only a few thousand atoms, the harmonic model typically ex-
hibits a singular behavior in the bulk limit, which is then regularized by
anharmonic effects.

The ability to compute lattice thermal conductivity in large disordered
systems is essential for designing materials with impactful applications.
The theoretical and numerical tools developed here have been applied
to spatially correlated silicon-germanium alloys, studied from first prin-
ciples. These results suggest that correlated disorder may significantly
enhance thermoelectric efficiency compared to standard SiGe alloys, high-
lighting the potential of these materials for thermoelectric applications.
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a fourfold enhancement in the thermoelectric figure of merit com-
pared to alloys with uncorrelated disorder.
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If I have seen further it is by standing on the shoulders of Giants.

— Isaac Newton —

I N T R O D U C T I O N

Thermal transport is a non-equilibrium phenomenon, closely tied to
fundamental physical principles, such as the second law of thermo-

dynamics, and is essential in a wide range of technological applications.
Encompassing thermal insulation of habitations, thermal management of
electrochemical and electronic devices, and thermoelectric conversion for
powering space probes, the study of thermal transport is crucial across
various fields.

Thermal conductivity is the transport coefficient that relates, in the ab-
sence of convective processes, the system’s response to a weak thermal
inhomogeneity. Under these hypotheses, thermal transport is described
by Fourier’s law, which for an isotropic medium reads:

J = −κ∇T ,

where J is the heat current, ∇T is the temperature gradient, and κ is the
thermal conductivity.

In typical solid insulators and semiconductors, heat transport primar-
ily occurs via atomic vibrations near equilibrium positions. In these ma-
terials, the lattice thermal conductivity constitutes a significant, if not the
dominant, contribution to the overall thermal conductivity.

Far from melting, atomic displacements from equilibrium are much
smaller than interatomic distances, making their dynamics well-suited
for lattice dynamical approaches. These involve numerically solving
the equations of motion derived from a Taylor expansion of the Born-
Oppenheimer potential, assuming the dominance of the second-order
harmonic term. Despite atomic vibrations being present in both disor-
dered and ordered systems, lattice dynamical approaches have distin-
guished between these two classes of systems for a long time. Until re-
cent years, the two primary, yet distinct, lattice dynamics methods, lattice
dynamics methods to compute thermal conductivity were the linearized
Peierls-Boltzmann Transport Equation (BTE) and the Allen-Feldman (AF)
approach, respectively for crystals and disordered systems like glasses.
The former approach, commonly used also for charge transport, is a semi-
classical treatment that requires a quasi-particle framework for the heat
carriers. The periodicity of the crystal plays a fundamental role in its
applicability, as it allows one to associate a (crystal) momentum to the
eigenstates of the harmonic Hamiltonian, the phonons quasi-particles. On
the other hand, the latter method does not assume any periodicity for
the system. However, as a purely harmonic theory, it can yield a diverg-
ing thermal conductivity. This issue is particularly evident for crystals,

1



2 Introduction

where, in the absence of anharmonic scattering, phonons with non-zero
group velocity propagate ballistically. Even for glasses, a harmonic model
can prove inadequate. While it may produce finite results for finite sam-
ples, under general assumptions, a harmonic theory of heat transport in
glasses exhibits a singular behavior in the bulk limit.

In recent years, two unified approaches have been proposed: the Quasi-
Harmonic Green-Kubo (QHGK) method and the Wigner-Boltzmann Trans-
port Equation (WBTE), the former being the solution of the Green-Kubo
formula in the quasi-harmonic regime, while the latter being the gener-
alization through Wigner transformations of the BTE. Despite their differ-
ent origin, these two quantitatively equivalent approaches bridge and ex-
tend the two previously separated methods, developing a unified frame-
work for both disordered and ordered solids. The QHGK method plays
a fundamental role in this thesis, as the main focus of the author dur-
ing the Ph.D. course has been the theoretical and numerical development
of such method, although most of the results could be straightforwardly
extended to WBTE.

The thesis is organized as follows. Ch. 1 provides a brief summary of
the theory of transport processes, focusing on the Green-Kubo theory of
linear response for calculating transport coefficients and the recently for-
mulated invariance principles of these coefficients. Then, Ch. 2 revisits the
derivation of the QHGK formula in both its original and extended forms.
The extended version, which describes the dynamics of lattice vibrations
beyond the typical single-mode relaxation time approximation, is essen-
tial for capturing the properties of crystals at low temperatures and fur-
ther clarifies the interconnection between the Boltzmann and Green-Kubo
approaches, as exemplified by studying the antiperovskite Li3ClO.

Ch. 3 addresses the challenging problem of evaluating the bulk limit
of the thermal conductivity of glasses. This problem is approached by
leveraging hydrodynamic arguments along with efficient algorithms. This
chapter includes a critical analysis of the differences in the bulk limits of
the AF and QHGK thermal conductivities, with particular emphasis on the
often underestimated divergence of the Allen-Feldman method. Many of
the tools developed in Ch. 3 are applied in Ch. 4, where, in the pursuit
of devising enhanced thermoelectric devices, the thermal conductivity of
spatially correlated silicon-germanium alloys is studied from first princi-
ples. Finally, Ch. 5 presents the conclusions.



If someone points out to you that your pet theory of the universe is in
disagreement with Maxwell’s equations—then so much the worse for Maxwell’s

equations. If it is found to be contradicted by observation—well, these
experimentalists do bungle things sometimes. But if your theory is found to be

against the second law of thermodynamics I can give you no hope; there is
nothing for it but to collapse in deepest humiliation.

— Arthur Eddington, The Nature of

the Physical World (1928) —

1
L I N E A R - R E S P O N S E T H E O RY O F T R A N S P O RT
P R O C E S S E S

Transport theory describes the response of a macroscopic current to
a thermodynamic force, representing one of the most fundamental

mechanisms of entropy production and a key manifestation of the ar-
row of time: “Heat flows from a higher to a lower temperature as time
flows from the past to the future”. This chapter introduces the theoretical
framework for understanding transport phenomena in macroscopic sys-
tems. The Green-Kubo linear-response theory is detailed, covering both
classical and quantum regimes, and its application to thermal transport is
explored. Invariance principles for transport coefficients, including gauge
invariance and their application to multi-component systems, are thor-
oughly analyzed.

1.1 extensive variables and local thermal equilibrium

Transport phenomena involve conserved extensive variables {A} and their
conjugate intensive variables, defined through the microcanonical en-
tropy α = ∂S

∂A . For instance, if the set of extensive variables consists of
A = E,V ,Ni, representing energy, volume, and the number of molecules
of species i, respectively, then the corresponding intensive variables are
α =

{
1
T , p

T ,−µi

T

}
, where T is the temperature, p the pressure, and µi

the chemical potential of the i-th species. At thermodynamic equilibrium,
the intensive variables are spatially uniform. This can be demonstrated
by maximizing the entropy at equilibrium and using the additivity of
extensive variables. Consider an isolated system decomposed into two
arbitrary subsystems with volumes V1 and V2. Maximizing the total en-
tropy with respect to A1 under the constraint of A = A1 +A2 yields:

∂S

∂A1
=
∂S(A1,V1)

∂A1
+
∂S(A−A1,V2)

∂A1
= α1 −α2 = 0,

which implies that at equilibrium, α1 = α2 = α. Since the choice of
subsystem division is arbitrary, it follows that α must be homogeneous
throughout the system.

3



4 linear-response theory of transport processes

On the other hand, if the intensive variables are not homogeneous
there is a flow of the extensive quantities to restore the equilibrium. Let
us consider a partition of the system of volume V into n subvolumes
{V1, . . . ,Vn}. Then, the rate of entropy change is:

Ṡ(V , t) =
∑
i

∂S

Ai
Ȧi (1.1)

=
∑
i

αiȦi

⩾ 0

where the last line is a reminder of the second principle of thermodynam-
ics. Let us take the continuous limit. Due to their additivity, it is natural
to define the density of the extensive quantities:

A =

∫
V

dr a(r).

Moreover, in a framework of Local Thermal Equilibrium (LTE) where each
position r indicates a subsystem that locally satisfies an equation of state,
the local value of the intensive variable can be meaningfully defined: α(r).
Then, Eq. (1.1) in the continuous limit becomes:

Ṡ(V , t) =
∫
dr α(r, t)ȧ(r, t) (1.2)

Furthermore, if the extensive quantity is locally conserved, it means its
conserved density satisfies a continuity equation:

ȧ(r, t) +∇ · j(r, t) = 0 (1.3)

where ⟨·⟩ is the time derivative and j is the associated conserved current.
Substituting Eq. (1.3) into Eq. (1.2), yields to

Ṡ(V , t) = −

∫
dr α(r, t)∇ · j(r, t)

=

∫
dr ∇α(r, t)j(r, t)

where the integration by parts has been used. The above expression can
be further simplified in the linear response regime, where |∇α| is small
and weakly depends on space. Indeed, as explained in detail below, in
such conditions the following relation holds:

J = σF,

where σ defines a transport coefficient, and J = 1
V

∫
dr j(r) and F =

1
V

∫
dr ∇α(r) are respectively the conserved flux (macroscopic average of

the conserved current) and the thermodynamic force. It is worth noticing
that, if the process is irreversible and the production of entropy must be
positive, then σ > 0. Indeed, heat goes spontaneously from warm to cool.



1.2 hydrodynamic variables 5

1.2 hydrodynamic variables

To understand the linearity between conserved fluxes and thermody-
namic forces, and their decoupling from other local degrees of freedom,
the continuity equation plays a fundamental role.

The continuity equation shows that the time derivative of an extensive
variable is a surface term, which becomes negligible for a large enough
volume. Indeed, applying a spatial Fourier transform (FT), the continuity
equation yields

˙̃a(k, t) = −ik · j̃a(k, t), (1.4)

where the FT is defined as f̃(k) =
∫
dr f(r)e−ik·r, and k ∼ 2π

λ , λ are the
wavevector and wavelength, respectively. Eq. (1.4) shows that for suffi-
ciently large wavelengths, ˙̃a(k, t) approaches zero, assuming j̃a(k, t) is
bounded. Therefore, hydrodynamic variables (k → 0) are adiabatically de-
coupled from the dynamics of the (zillions of) fast atomic degrees of
freedom.

Let us consider a system with M conserved densities. For instance, in
a one-component fluid, the number of conserved quantities is 5: mass
(or particle number), energy, and the three components of momentum.
Without loss of generality, let us set to zero the equilibrium value of
the conserved densities, therefore ãj(k,ω) already indicates the devia-
tion from equilibrium. Due to the mentioned decoupling, it can be as-
sumed that, to first order, the time derivative of conserved densities in-
volves only deviations from the equilibrium of conserved densities. More-
over, in a macroscopically homogeneous material, different k components
are independent of each other. In the domain of a space and time FT

(f̃(k,ω) =
∫
dr f(r, t)ei(ωt−k·r)), this reads:

−iωãi(k,ω) =
∑
j

Λ̃ij(k,ω)ãj(k,ω),

where Λ̃ij(k,ω) are suitable defined coefficients. Combining this equa-
tion with the space-time FT of the continuity equation

−iωãi(k,ω) = −ik · j̃i(k,ω),

one finds the constitutive equations:

−ik · j̃i(k,ω) =
∑
j

Λ̃ij(k,ω)ãj(k,ω).

Assuming that the conserved currents are chosen irrotational, the follow-
ing equation holds:

j̃i(k,ω) =
ik
k2

∑
j

Λ̃ij(k,ω)ãj(k,ω)

In isotropic media, Λ̃ij are spherically symmetric functions of k, and
their k = (0, 0, 0) value is null because a non-vanishing value would im-
ply a non-physical long-range correlation between conserved densities,



6 linear-response theory of transport processes

which would contradict LTE assumptions. Therefore, its long-wavelength
limit is limk→0 Λ̃ij ∼ k2λij, where k is the modulus of the wavevector.
Thus, the macroscopic, k = (0, 0, 0), and stationery, ω = 0, components
of the conserved currents Ji = 1

V

∫
j(r) (the conserved fluxes) are related

to the density gradients Di =
1
V

∫
∇q(r) through the equation:

Ji =
∑
j

λijDj.

Finally, the gradients of the densities can be expressed as a linear com-
bination of local intensive variables through the macroscopic susceptibil-
ities χij = 1

V
∂Ai

∂αj
. Therefore:

Ji =
∑
j

LijFj, (1.5)

where Fj = 1
V

∫
∇αj(r) is the j-th thermodynamic force, and Lij =∑

l λilχlj are the Onsager’s coefficients. Notably, Lij is a symmetric
matrix, as demonstrated by Onsager’s celebrated reciprocity relations
Lij = Lji, which were proven under the hypothesis of microscopic re-
versibility [1–3].

1.3 green-kubo linear-response theory

The Onsager’s coefficients Lij can be evaluated at equilibrium using the
Green-Kubo (GK) linear-response theory [4–6]. In his seminal papers [5,
6], Kubo derives the linear-response theory for systems subject to external
perturbations. In Ref. [5], the author focuses on mechanical perturbations
and the corresponding conductivities, such as electrical and magnetic
conductivities. In Ref.[6], he extends this framework to derive analogous
formulas for the thermo-(electrical) case, where not all thermodynamic
forces are mechanical. In the following section, the GK theory is reviewed
for both classical and quantum regimes, beginning with the former.

1.3.1 Classical regime

Let us consider a system with N particles whose natural motion is de-
scribed by the Hamiltonian:

H(Γ) =
∑
i

P2
i

2Mi
+U({Ri})

where Pi, Ri are, respectively, the momentum and position of the i-th
atom, Mi its mass, U is a many-body potential and Γ is a point in phase
space. For each observable B(Γ), the average with respect to the instanta-
neous distribution function ρ(t) is defined as:

⟨B⟩ρ(t) =
∫
dΓρ(Γ , t)B(Γ),
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while for simplicity the average with respect to the equilibrium distribu-
tion is indicated with the short-hand ⟨·⟩ = ⟨·⟩ρeq

The time-dependence is due to the evolution of the ρ, whose equation
of motion is:

dρ

dt
= {H, ρ} (1.6)

= iLρ (1.7)

where L is the Liouvillian operator defined as iL· = {H, ·} and {, } indicates
the Poisson brackets

{A,B} =
∑
iα

∂A

∂Rαi

∂B

∂Pαi
−
∂B

∂Rαi

∂A

∂Pαi

and α indicates the Cartesian direction. At thermal equilibrium, the distri-
bution ρ = ρeq is stationary, i.e. {H, ρ} = 0, and no steady flow can arise.
Therefore, let us consider an external perturbation in the Hamiltonian
which drives the system out of equilibrium:

H′ = −AF(t)

where F(t) is an explicitly time-dependent force and A = A(Γ). Thus, the
equation of motion for ρ′(t) = ρ(t)−ρeq, at first order in the perturbation,
becomes:

dρ′

dt
= {H, ρ′}− F(t){H′, ρ}.

Assuming that the perturbation is switched one adiabatically in the in-
finite past, i.e. ρ′(t → −∞) = 0, the above equation is formally solved
as:

ρ′ = −

∫t
−∞ dt′eiL(t−t′)F(t){A, ρeq}. (1.8)

Therefore:

∆⟨B⟩ρ(t) = ⟨B⟩ρ(t) − ⟨B⟩

=

∫
dΓ0ρ

′(t, Γ0)B(Γ0)

= −

∫
dΓ0

∫t
−∞ dt′eiL(t−t′)F(t′){A, ρeq}(Γ0)B(Γ0)

= −

∫
dΓ0

∫t
−∞ dt′F(t′){A, ρeq}(Γ0)B(Γt−t′)

= −

∫
dΓ0

∫t
−∞ dt′F(t′){A, ρeq}(0)B(t− t′) (1.9)

where B(t− t′) = e−iL(t−t′)B(0) indicates the formal solution of the equa-
tion of motion for B, i.e. Ḃ = {B,H}, under the effect of the unperturbed
Hamiltonian. As somewhat pedantically remarked in Eq. (1.9), B depends
on time only through the dynamics of Γ .
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From Eq. (1.9) one obtains an expression for the response function
ϕAB(t). Indeed, by definition:

∆⟨B⟩ρ(t) =
∫t
−∞ dt′ϕAB(t− t

′)F(t′)

and by comparison with Eq. (1.9), one obtains that:

ϕAB(t) = −

∫
dΓ {A, ρeq}(0)B(t) (1.10)

Applying Eq. (1.9) for a perturbation F(t) = FΘ(−t) continuously applied
from the infinite past to t = 0 and then switched off, where Θ is the
Heaviside function, one obtains:

∆⟨B⟩ρ(0+) = F

∫∞
0

dt′ϕAB(t
′)

which coincides with the ω → 0 limit of the so-called admittance
χAB(ω) =

∫∞
0 e

iωtϕAB(t).
While the previous expressions are formally correct for any thermody-

namical ensemble, their computation is simplified in the canonical one,
where ρeq has a handy expression:

ρeq(Γ) =
e−βH(Γ)

Z

= e−β(H(Γ)−F),

where Z is the partition function, F = −kBT log(Z) is the free energy,
and kB is the Boltzmann’s constant. Moreover, the computation of ϕAB is
simplified by the identity:

{A, ρeq} = −βρeqȦ.

Thus,

ϕAB(t) = β

∫
dΓρeqȦ(0)B(t). (1.11)

A simple application of the formulas above is the computation of electri-
cal conductivity σ for a system of ions with charges Zi. Assuming as per-
turbation a (spatially) homogeneous electric field, H′ = −

∑
i ZiEriΘ(−t),

and as observable the conserved current J = 1
V

∑
i Ziṙi the resulting out

of equilibrium flux is:

⟨Jα⟩ρ(0+) =
∑
β

V

kBT

∫∞
0

dt⟨Jβ(t)Jα(0)⟩E

= σE

More generally, Onsager’s coefficients can be computed by considering
an external perturbation which is a linear combination of the conserved
densities:

H′ =
∑
i

∫
dr v(r, t)a(r).
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and v(r, t) = Θ(t)v(r). Combining this expression with Eq. (1.11) and the
continuity equation ,Eq. (1.3), yields to:

⟨Jαi ⟩ρ(0+) =
1

VkBT

∑
j

∫∞
0

dt′
∫
dr

∫
dr′⟨ȧj(r′, 0)jαi (r, t′)⟩v(r′)

= −
1

VkBT

∑
jβ

∫∞
0

dt′
∫
dr

∫
dr′⟨∂r′βj

β
j (r

′, 0)jαi (r, t′)⟩v(r′)

=
1

VkBT

∑
jβ

∫∞
0

dt′
∫
dr

∫
dr′⟨j̇βj (r

′, 0)jαi (r, t′)⟩∂r′βv(r
′)

where the second and third lines are connected by an integration by parts.
Assuming spatial homogeneity and that ∂rβv weakly depends on space,
one recovers Eq. (1.5) and therefore the expression [4–6] for Onsager’s
coefficients:

L
αβ
ij =

V

kBT

∑
jβ

∫∞
0

dt′⟨Jβj (0)J
α
i (t

′)⟩. (1.12)

It is worth noticing that here the volume V appears at the numerator and
not at the denominator, as in Ref. [5], because we are considering as J the
macroscopic average of the current, not its integral.

1.3.2 Quantum regime

The quantum formulation of Green-Kubo (GK) can be straightforwardly
obtained by the classical one with the following few rules of correspon-
dence. The classical observables A(Γ) are now substituted by operators
Â, indicated by a hat symbol ·̂, and their average is defined through the
density operator ρ̂:

⟨A⟩ρ = Tr(ρ̂Â)

The equations of motion become:

i h ˙̂ρ = [Ĥ, ρ̂]

i h ˙̂A = [Â, Ĥ]

where the  h is the Planck constant and the Poisson brackets have been
formally replaced by the commutation operation [Â, B̂] = ÂB̂− B̂Â (times
a factor 1

i h ). Then, Eq. (1.10) becomes:

ϕAB(t) =
1

i h
Tr([ρ̂, Â]B̂(t)). (1.13)
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As in the classical case, the response function computation is simplified
in the canonical ensemble. Indeed, using the following identity

[Â, exp
(
−βĤ

)
] = exp

(
−βĤ

) ∫β
0

dλ exp
(
λĤ
)
[Ĥ, Â] exp

(
−λĤ

)

= −i h exp
(
−βĤ

) ∫β
0

dλ exp
(
λĤ
) ˙̂A exp

(
−λĤ

)

= −i h exp
(
−βĤ

) ∫β
0

dλ ˙̂A(−i hλ)

where ˙̂A(−i hλ) = exp
(
λĤ
) ˙̂A exp

(
−λĤ

)
indicates the evolution in imagi-

nary time, Eq. (1.11) becomes:

ϕAB(t) =

∫β
0

dλ⟨ ˙̂A(−i hλ)B̂(t)⟩. (1.14)

Thus, the quantum GK formula for Onsager’scoefficients is:

L
αβ
ij = V

∫∞
0

dt′
∫1/kBT

0

dλ⟨Ĵβj (−i hλ)Ĵ
α
i (t

′)⟩ (1.15)

1.4 thermal transport

The GK formula of Eq. (1.15) is valid for any Onsager coefficient, despite
being proven, here, only for mechanical perturbations. For instance, for
thermal transport, the thermodynamic force depends on ∇(1/T(r)) which
is not trivially associated with a perturbation H′. An alternative proof to
Ref. [6] for thermal transport can be obtained by considering the distri-
bution at local equilibrium at t = 0 that relaxes towards global thermal
equilibrium driven by H. Since the proof is similar to the mechanical case,
only the classical case is reported here, as the quantum version can be ef-
fortlessly obtained as in the previous case.

Let us consider a canonical-like distribution with a local temperature
β(r) = 1/kBT(r) ≈ β−∇T(r) · r/kBT

2, where β, T without the position
label are, with a slight abuse of notation, the average values. Thus:

ρloc(Γ) =
1

Zloc
exp

{(
−βH(Γ) +

∇T
kBT2

·
∫
dr rε(r, Γ)

)}
where ε(r, Γ) is the energy density (one of the many equivalent possible
definitions, as explained below). At first order in the temperature gradi-
ent:

ρ′(Γ) = ρloc(Γ) − ρeq(Γ) (1.16)

= ρeq(Γ)

(
1+

∇T
kBT2

·
∫
dr rδε(r, Γ)

)
+ o(∇T2), (1.17)
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where δε indicates the deviation from equilibrium. Applying Eq. (1.8),
one obtains:

ρ′(t, Γ) = ρ′(t = 0, Γ) +
∫t
0

dt′ ∆ρ̇(t′, Γ)

= ρ′(t = 0, Γ) +
∫t
0

dt′ eiLt
′
∆ρ̇(0, Γ).

Since ∆ρ(t→ ∞) = 0, then:

ρ′(t = 0, Γ) = −

∫∞
0

dt′ eiLt
′
∆ρ̇(0, Γ)

= +V
∇T
kBT2

·
∫∞
0

dt′ JE(Γ−t′)ρeq(Γ)

= −V
∇T
kBT2

·
∫∞
0

dt′ JE(Γt′)ρeq(Γ)

(1.18)

where JE is the energy flux defined as [7]

JE(Γ) =
1

V

∫
dr rε̇(r, Γ)

=
1

V

∫
dr rδε̇(r, Γ),

(1.19)

where ε̇ = δε̇ since the equilibrium value is time-independent and the
third line of Eq. (1.18) is obtained by taking into account that JE is odd
under time reversal and, as an observable, it evolves according to e−iLt.
Finally, by computing the average current at t = 0+ one obtains:

⟨JαE⟩ρ(0+) =
V

kB

∑
β

∇β

(
1

T

) ∫∞
0

dt′⟨JβE(0)J
α
E(t

′)⟩

=
∑
β

L
αβ
EE∇β

(
1

T

)
.

Therefore, the classical GK formula for the energy-energy Onsager’s coef-
ficient is

L
αβ
EE =

V

kB

∫∞
0

dt′⟨JβE(0)J
α
E(t

′)⟩, (1.20)

which, in the quantum regime, becomes:

L
αβ
EE = VT

∫∞
0

dt′
∫1/kBT

0

dλ⟨ĴβE(−i hλ)Ĵ
α
E(t

′)⟩. (1.21)

This expression is consistent with Eq. (1.15) minus a prefactor T , which is
needed for dimensional reasons: ∼ T∇(1/T)

∫
dr rε(r) has the dimension

of a mechanical perturbation H′.
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1.5 invariance principles of transport coefficients

1.5.1 Thermal transport in multi-component systems

For an isotropic material, the thermal conductivity κ is the linear trans-
port coefficient that relates −∇T to the nonequilibrium steady-state heat
flux, in the absence of convection, i.e., when the nonequilibrium particle
fluxes are zero. This definition presents two challenges. First, for a sys-
tem with K components, the heat flux is defined as

JQ = JE −

K∑
s=1

hsJs,

where hs are the partial enthalpies [8], and Js are the particle fluxes. For
a monoatomic system, due to momentum conservation, the heat and en-
ergy fluxes coincide, and κ = LEE

T2 . However, in general, they differ. To cal-
culate the Onsager coefficients related to heat flux, the heat flux should
be used, but this requires the cumbersome computation of partial en-
thalpies [9–11]. Second, the zero net particle flux condition couples κ
with other Onsager coefficients beyond LEE or LQQ.

Both challenges can be addressed as follows. Consider a multicompo-
nent system with K components. Since total momentum is conserved,
there are generally K− 1 independent mass fluxes. Including the energy
flux, there are up to K independent conserved fluxes. For an isotropic
system, in the case where K = 2, the phenomenological equations are:

⟨JE⟩ρ(0+) = LEE∇(1/T) + LEM∇(µ/T),

⟨JM⟩ρ(0+) = LME∇(1/T) + LMM∇(µ/T),

where JE is the energy flux, JM is the mass flux of any of the two
species (J1 = −J2 due to the conservation of total momentum). The out-of-
equilibrium average is defined in the Green-Kubo theoretical framework.
Imposing the condition of zero convection gives:

⟨JE⟩ρ(0+) = (LEE − L2EM/LMM)∇(1/T)

= −
1

(L−1)EET2
∇T

= −κ∇T

(1.22)

where L−1 is the inverse of the Onsager matrix, and LME = LEM due to
Onsager’s reciprocity relation. It can be shown via linear algebra that the
relationship between κ and L−1 holds for any number of components [12].
Furthermore, the thermal conductivity computed from Eq. (1.22) is invari-
ant under the transformation JE → JE+

∑K−1
l clJl, where cl are arbitrary

coefficients. This property is known as the convective invariance of thermal
conductivity [12, 13]. One important consequence of convective invari-
ance is that the thermal conductivities computed from the heat flux and
energy flux are identical, thereby eliminating the need to compute partial
enthalpies.
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However, while the above discussion is general and fundamental in
computing the thermal conductivity of multi-component fluids [7, 12],
there are systems where the number of relevant fluxes is smaller than
the number of components. For instance, in a molecular fluid like water,
the hydrogen and oxygen mass fluxes strongly depend on each other due
to the molecular bond. Solids are generally characterized by the absence
of atomic diffusions of any species, therefore energy flux becomes the
only relevant conserved flux involving the atomic nuclei. Indeed, if there
is no atomic diffusion, the mass flux becomes the time derivative of a
bounded vector. For instance the mass flux of the first component would
be J1(t) ∝ d

dt
1
Vm1

∑
i(R

1
i (t) − R1

i (0)) = 1
V

∑
i P1

i , where the maximum
displacement per atom is bounded max(|Ri(t) − Ri(0)|) < ∞ since there
is no diffusion. As it is proved in the next section, such not-diffusive fluxes
can not give a significant contribution to the computation of transport
coefficients, Lij = 0 ∀(i, j) ̸= (E,E). As a consequence, the energy flux
is the only relevant flux for the computation of thermal conductivity of
solids.

1.5.2 Gauge invariance of transport coefficients

Green-Kubo formulas provide a formally simple relation between fluxes
and the corresponding transport coefficients. However, challenges in
uniquely defining conserved densities and associated fluxes have limited
their use in computer simulations. For example, the inherent indetermi-
nacy of quantum mechanical energy density prevented the evaluation
of thermal conductivity using ab initio molecular dynamics for a long
time [14]. This difficulty has been recently overcome [13, 15, 16] with the
realization that conserved fluxes and densities possess a certain degree
of arbitrariness, which does not affect the transport coefficients, as these
are gauge invariant.

From a macroscopic point of view, two conserved densities a(r) and
a′(r) should be considered equivalent if they have the same macroscopic
average 1

V

∫
dr a(r) in the bulk limit V → ∞. For instance, the two con-

served densities could differ for the divergence of a bounded vector field
p(r). Therefore, applying the continuity equation, both the conserved den-
sity and current would transform under the following gauge:

a′(r) = a(r) −∇ · p(r)
j′(r) = j(r) + ṗ(r)

While the macroscopic average of the two conserved densities have a van-
ishing difference in the infinite volume limit O(V−1/3), the macroscopic
flux changes by a total time derivative:

J′(t) = J(t) +
1

V

∫
dr ṗ(r, t)

= J(t) + Ṗ(t).
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The gauge can transform the macroscopic flux and its autocorrelation, as
it has been shown with Molecular Dynamics (MD) simulations [15]. How-
ever, the transport coefficients are invariant [13]. For diagonal Onsager’s
coefficients in the quantum case, the proof can be straightforwardly ob-
tained following Ref. [17]. By performing a spectral decomposition in the
basis of the (full) Hamiltonian eigenstates {|n⟩} of Ĥ|n⟩ = En|n⟩, Eq. (1.15)
becomes:

L = V
∑
nm

e−βEn

Z

∫β
0

dλ πδ((En − Em)/ h)eλ(En−Em)|⟨n|J|m⟩|2

= βVπ
∑
nm

e−βEn

Z
δ((En − Em)/ h)|⟨n|J|m⟩|2,

where the time integral has been extended to
∫∞
0 → 1

2

∫∞
−∞ due to time-

reversal symmetry. Since

⟨n| ˙̂P|m⟩ = 1

i h
⟨n|[P̂, Ĥ]|m⟩

=
Em − En
i h

⟨n|P̂|m⟩

and P̂ is bounded by hypothesis, the difference between the Onsager’s co-
efficient in the two gauges is proportional to terms like (En−Em)lδ(En−

Em) = 0, where l = 1, 2. Therefore,

L′ − L = V

∫∞
0

dt′
∫β
0

dλ⟨Ĵ(−i hλ) ˙̂P(t′) + ˙̂P(−i hλ)Ĵ(t′) + ˙̂P(−i hλ) ˙̂P(t′)⟩

= 0,
(1.23)

which concludes our proof.



2
T H E O RY O F L AT T I C E T H E R M A L C O N D U C T I V I T Y

Heat transport in solid insulators, both disordered and crystalline,
is dominated by the dynamics of lattice vibrations. This chapter

delves into the derivation and application of the unified QHGK approach
to lattice thermal conductivity. This approach bridges methodologies for
crystals and glasses, highlighting their conceptual differences. Addition-
ally, I present the generalization of the QHGK approach beyond the Single-
Mode (SM) and Relaxation Time Approximation (RTA) for the lattice vibra-
tions correlation functions [18]. The connection and differences between
the formulations of QHGK and the BTE approach are showcased using the
Li3ClO anti-perovskite as a case study.

2.1 lattice dynamical approaches for thermal conductiv-
ity

In solid insulators, in the absence of other significant transport mecha-
nisms such as atomic diffusion and electron transport, heat is primar-
ily carried by atomic vibrations around their equilibrium positions. Far
from melting, the atomic displacements from equilibrium positions are
much smaller than the interatomic distances, and their dynamics are
well described within a Quasi-Harmonic (QH) framework. This frame-
work involves a Taylor expansion of the Born-Oppenheimer (BO) poten-
tial around the equilibrium positions, where the harmonic term domi-
nates, and higher-order terms are treated perturbatively. Compared to MD

methods, whether in equilibrium or non-equilibrium forms [7, 19], lattice
dynamics approaches cannot fully account for the anharmonic potential.
However, while MD methods are inherently classical and affected by sam-
pling problems [20], lattice dynamics models can be solved numerically
and can effortlessly account for the quantum nature of nuclei vibrations.
Such quantum corrections are fundamental below the Debye temperature
when quantities like the specific heat significantly differ from their classi-
cal counterpart predicted by the equipartition law.

Until recent years, the two main, and separated, lattice dynamics meth-
ods to compute thermal conductivity were: the BTE [21, 22] and the AF

method [23, 24], for crystals and disordered systems like glasses, respec-
tively. The BTE approach, commonly used also for charge transport, is a
semiclassical treatment that requires a quasi-particle framework for the
carriers of heat or charge. The periodicity of the crystal plays a funda-
mental role in its applicability, as it allows one to associate a (crystal)
momentum to the eigenstates of the harmonic Hamiltonian, the phonon
quasi-particles. On the other hand, the AF method does not assume any
periodicity in the system. However, as a purely harmonic theory, its ap-

15
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plication to a typical crystal would result in a diverging thermal conduc-
tivity, and even for glasses, it can exhibit singular behavior in the bulk
limit [25].

Recently, the two approaches have been unified by two, quantitatively
equivalent [17, 18], methods: the QHGK approach [26] and the WBTE [27,
28]. The former is a implementation of GK formula under the hypothesis
of a quasi-harmonic system, while the latter is a generalization of the BTE

using Wigner transformations [28, 29]. By accounting for anharmonicity
perturbatively and going beyond the quasi-particle framework, these two
approaches bridge and extend the AF and BTE methods.

In principle, the evaluation of thermal conductivity through GK formu-
las can involve other fluxes apart from the energy one. Yet, in solid insu-
lators only the latter is relevant, due to the absence of atomic diffusion
and charge transport. Therefore, thermal conductivity can be computed
by GK theory as Lαβ

EE/T
2, as discussed in Sec.1.5.1. By using Eqs. (1.20)-

(1.21), one obtains, respectively the classical and quantum formula for
heat conductivity:

καβ =
V

kBT2

∫∞
0

dt′⟨Jβ(0)Jα(t′)⟩. (2.1)

and

καβ =
V

T

∫∞
0

dt′
∫1/kBT

0

dλ⟨ĴβE(−i hλ)Ĵ
α
E(t

′)⟩. (2.2)

where J is the energy flux in its classical and quantum version, the
latter indicated with the hat symbol ·̂.

2.2 harmonic energy flux

The energy flux in the GK formula is associated with the energy density
of the full, anharmonic, Hamiltonian. However, in the quasi-harmonic
regime, the leading contribution to thermal conductivity can be obtained
by considering only the harmonic part of the flux, while accounting for
anharmonicity in its time-evolution[18, 26].

2.2.1 Classical regime

Let us obtain an expression for the harmonic energy flux, starting from
the classical case. Following the derivation of Refs. [26, 30], let us consider
the harmonic Hamiltonian:

H◦ =
∑
iα

Mi(u̇
α
i )

2

2
+
1

2

∑
ijαβ

Φ
αβ
ij u

α
i u

β
j

=
∑
iα

(ṗαi )
2

2Mi
+
1

2

∑
ijαβ

Φ
αβ
ij u

α
i u

β
j , (2.3)
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where ui = Ri − R◦
i is the displacement of the i-th particle from its equi-

librium position, Mi its mass, and

Φ
αβ
ij =

∂2U

∂Rαi ∂R
β
j

are the second derivatives of the BO potential U computed at mechanical
equilibrium, i.e. R = R◦. Then, the local energy density can be defined as

ε(r) =
∑
i

δ(r − Ri)εi,

where εi are the local atomic energies

εi =
∑
α

Mi(u̇
α
i )

2

2
+
1

2

∑
ijαβ

Φ
αβ
ij u

α
i u

β
j .

Such definition immediately satisfies the condition H◦(Γ) =
∫
dr ε(r, Γ).

Taking into account that ui and pi = Miu̇i are phase-space elements
that evolve under the effect of H◦, the energy flux can be obtained by
Eq. (1.19):

J =
1

V

∑
i

∫
dr r

(
ε̇iδ(r − Ri) + εi

dRi

dt
· ∇Ri

δ(r − Ri)

)

=
1

V

∑
i

Riε̇i + εiu̇i

=
1

V

∑
i

R◦
i ε̇i +

d

dt
(uiεi) (2.4)

where the differentiation properties of the delta distribution have been
used, assuming that the surface integrals are negligible. In the last line,
it appears a total time derivative of a bounded vector, in the absence of
atomic diffusion. Thanks to the gauge invariance explained in Sec. 1.5.2,
such a term can be neglected in the computation of the transport coeffi-
cient. Thus, the expression for the harmonic energy flux reads [23, 24]:

Jα =
1

V

∑
iα

R◦,α
i ε̇i

=
1

2V

∑
ijβγ

Φ
βγ
ij (R◦

i − R◦
j )

αu
β
i u̇

γ
j ,

where the minimum-image convection is intended for the computation of
the interatomic distances, therefore obtaining a well-defined expression
in Periodic Boundary Conditions (PBCs).

For a harmonic system, it is convenient to move to the basis of the
normal coordinates ξ and momenta π. Indeed, it allows, among other
simplifications, to efficiently compute thermal averages using Wick (see
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for instance Ref. [31]) or Isserlis’s theorems, respectively for the quantum
and classical case. The normal variables are defined as:

ξµ =
∑
iα

eiαµ
√
Miu

α
i (2.5)

πµ =
∑
iα

eiαµ
√
Miu̇

α
i (2.6)

where eµ is the µ-th eigenvector of the dynamical matrix D
αβ
ij =

1√
MiMj

Φ
αβ
ij :

∑
jβ

D
αβ
ij e

jβ
µ = ω2

µe
iα
µ

and ωµ is the (positive) angular frequency associated with the normal
mode amplitude

aµ =

√
ωµ

2
ξµ + i

1√
2ωµ

πµ, (2.7)

whose equation of motion is:

ȧµ = {aµ,H◦}

= −iωµaµ

In this basis, the harmonic Hamiltonian and the energy flux become, re-
spectively,

H◦ =
∑
µ

1

2
ωµ(a

∗
µaµ + aµa

∗
µ)

and

Jα = JαR + JαA

= −
i

2V

∑
µµ′

vαµµ′

(
ωµ +ωµ′

2

)
(a∗µaµ′ − a∗µ′aµ)

+
i

2V

∑
µµ′

vαµµ′

(
ωµ −ωµ′

2

)
(a∗µa

∗
µ′ − aµ′aµ)

(2.8)

where vαµµ is a generalized velocity matrix

vαµµ′ =
1

2
√
ωµω′

µ

∑
ijβγ

Φ
βγ
ij (R◦

i − R◦
j )

α

√
MiMj

(eiβµ )∗ejγµ′ , (2.9)

which is anti-Hermitian and it becomes anti-symmetric if the eigenvec-
tors are chosen real. JR and JA are, respectively, the so-called resonant and
anti-resonant components of the energy flux. As shown in Refs. [17, 26],
the anti-resonant one in the quasi-harmonic approximation gives a negli-
gible contribution to the thermal conductivity. In a nutshell, the resonant
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and anti-resonant terms in QHGK would lead, respectively, to terms pro-
portional to ∼ δ(ωµ −ωµ′) and ∼ δ(ωµ +ω′

µ), in the limit of vanishing
linewidths. Since the angular frequencies are defined as positive, even
taking into account a small anharmonic smearing, the second condition
is far more restrictive than the first one.

A more straightforward justification for neglecting the anti-resonant
term in the quasi-harmonic approximation, without actually computing
its contribution, can be obtained by observing that

JαA =
1

2V

d

dt

∣∣∣∣∣
H=H◦

∑
µµ′

vαµµ′
ωµ −ωµ′

2(ωµ +ωµ′)
(a∗µa

∗
µ′ + aµ′aµ),

i.e. the antiresonant term is the total time derivative of a bounded vec-
tor, therefore the gauge invariance prevents it from affecting the thermal
conductivity. However, it must be stressed that such a term is a total
time derivative only if the Hamiltonian is purely harmonic, contrary to
the total time derivative of Eq. (2.4). Therefore, while its contribution
could be significant in strongly anharmonic solids, in the limit of small
anharmonicity the energy flux can be approximated with its resonant
part Jα → JαR .

2.2.2 Quantum regime

Finally, the quantum energy flux operator can be obtained analogously,
as shown by Refs. [17, 30]. The quantum version of the harmonic Hamil-
tonian and of the energy flux, already restricted to the resonant term,
read:

Ĥ◦ =
∑
µ

 hωµ

(
â†µâµ +

1

2

)

Ĵα = −
i h

2V

∑
µµ′

vαµµ′

(
ωµ +ωµ′

2

)
(â†µâµ′ − â†µ′âµ), (2.10)

where the normal mode amplitudes have been substituted by a →
√

 hâ,
â, â† being, respectively, the corresponding bosonic annihilation and
creation operators. The following equations summarize the main corre-
sponding rules between the classic and quantum regimes:


(classic)

ȧµ = {aµ,H◦}

⟨a∗µ′aµ⟩◦ = δµµ′
kBT

ωµ

⇐⇒



(quantum)

˙̂aµ =
1

i h
[âµ, Ĥ◦]

⟨â†µ′âµ⟩◦ = δµµ′nµ

[âµ, â†µ] = 1

where nµ = n(ωµ) = (e hωµ/kBT − 1)−1 is the Bose-Einstein distribution.
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2.2.3 Energy flux in the crystalline basis

Up to this point, no assumption of periodicity has been made. However,
when discussing crystals it is convenient to operate with the Bloch basis.
In such basis, each normal mode is labeled with µ = (q, s), where q
and s are, respectively, the wavevector in the Brillouin Zone (BZ) and
the band index. Due to the periodicity, both the dynamical matrix and
the generalized velocity matrix have a block structure, with the standard
phonon group velocity on the diagonal:

vqq′ss′ = −iδqq′vqss′

vqss = vqs = ∇qωqs,

where the −i factor has been used to recover the group velocity and there-
fore simplify the comparison with the BTE [21] and WBTE [17, 27, 28] ap-
proaches. vqss′ is not anti-Hermitian as vqq′ss′ , due to the imaginary mul-
tiplicative factor, but it has the following properties [17]: vqss′ = (vqs′s)

∗.
Moreover, for a lattice with inversion symmetry v−qss′ = −vqs′s.

Recently, Ref. [28] raised questions about which convention for the
Bloch basis should be used in thermal transport evaluations. The eigen-
vectors corresponding to different conventions are related by a unitary
transformation,

Ubb′(q) = δbb′eiq·φ(b),

where b denotes the index of the atom in the unit basis, and φ(b) is a
phase vector that defines the convention. For example, two commonly
used conventions are the "step-like" convention, where φ(b) = 0, and the
"smooth" convention, where φ(b) = rb, with rb representing the position
of the b-th atom in the unit basis. Surprisingly, Ref. [28] observed that the
WBTE generalized velocity matrix and, more importantly, their thermal
conductivity depend on the convention. In particular, the s ̸= s′ elements
of WBTE generalized velocity matrix are affected, since the diagonal ele-
ments (the group velocities) depend only on the eigenvalues. Despite the
similarity between the two theories, it is worth highlighting that the gen-
eralized velocity matrix in QHGK does not depend on this transformation.
For details on this invariance see Appendix A.1.

2.3 the quasi-harmonic green-kubo approach

Following Eq. 2.2, the thermal conductivity is computed by evaluating
the autocorrelation of the energy flux operator. To unclutter the notation
the Cartesian indices are omitted in the rest of the discussion. Unless
otherwise specified, we indicate as κ = 1

3

∑
α κ

αα, the isotropic average
of Eq. 2.2. Since the operator is quadratic in the creation/annihilation
operator, its autocorrelation requires the computation of 4−point corre-
lation functions, i.e. two-body Green’s functions in many-body parlance.
To compute this quantity, the QHGK theory relies on two, related, approx-
imations: the SM and the RTA.
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The former SM approximation amounts to factorizing four-point corre-
lation functions into linear combinations of products of two-point ones,
such as, e.g.,

⟨â†µ1
(t)âµ2

(t)â†µ3
âµ4

⟩ ≈ ⟨â†µ1
âµ1

⟩⟨âµ3
â†µ3

⟩δµ1µ2
δµ3µ4

+

⟨â†µ1
(t)âµ1

(0)⟩⟨âµ2
(t)â†µ2

(0)⟩δµ1µ4
δµ2µ3

, (2.11)

where ⟨·⟩ indicates the equilibrium average with respect to the full
(weakly) anharmonic Hamiltonian.

In the parlance of Many-Body Perturbation Theory (MBPT), this factor-
ization, which would be correct in the harmonic case, is described as the
neglect of vertex corrections to the correlation function and referred to
as the dressed-bubble approximation [17]. Physically, vertex corrections de-
scribe the decay channels of different normal modes, and their neglect
amounts to expressing the propagation and decay of each of them inde-
pendently from all the others, as if determined by the interaction with a
common, mean-field-like, heat bath.

The latter approximation, RTA, consists of assuming a weakly damped
exponential dependence on time as ansatz for the single-mode greater and
lesser Green’s functions,

g>µ (t) = −i⟨âµ(t)â†µ⟩

≈ −i(nµ + 1)e−iωµt−γµ|t|

g<µ (t) = i⟨â†µâµ(t)⟩

≈ inµe−iωµt−γµ|t| (2.12)

where, in the quasi-harmonic limit, γ/ω ≪ 1. Equivalently, it can be
said that the g≶µ spectral function (the imaginary part of its Laplace-
Fourier transform) is Lorentzian. In a MBPT framework, this roughly
corresponds to neglecting the frequency dependence of the phonon self-
energies. Physically, this second approximation assumes that the common
heat bath is essentially a white noise so that its interaction with the nor-
mal modes is Markovian, i.e. unaffected by any memory effects.

For each normal mode, the RTA’s ansatz introduces a characteristic life-
time, whose inverse is twice the anharmonic linewidth τ−1

µ = 2γµ. Its
computation depends on the different kinds of scattering sources consid-
ered and it is generally computed with Fermi’s Golden Rule (FGR).

Let us apply the first approximation. Since the equilibrium average
of the flux is null, only the second term of Eq. (2.11) contributes. Thus,
Eq. (2.2) becomes:

κ =
1

3VT

∑
µµ′

 h2(ωµ +ωµ′)2

4
|vµµ′ |2×

∫∞
0

dt′
∫1/kBT

0

dλg>µ (−t
′ − i hλ)g<µ′(t′ + i hλ).
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Then, by using the time inversion symmetry of the correlation function
and the convolution properties of the Fourier Transform, one obtains the
following expression [17, 32]:

κ =
1

3V

∑
µµ′

 h2(ωµ +ωµ′)2

4
|vµµ′ |2(Iµµ′ + Iµ′µ), (2.13)

where

Iµµ′ =
1

8πkBT2

∫
dωg̃>µ (ω)g̃<µ′(ω). (2.14)

Finally, plugging the RTA’s ansatz into Eq. (2.14) yields to:

κ =
1

3V

∑
µµ′

nµ(nµ′ + 1) +nµ′(nµ + 1)

2kBT2
(ωµ +ωµ′)2

4
|vµµ′ |2τµµ′ ,

(2.15)

where

τµµ′ =
γµ + γµ′

(ωµ −ωµ′)2 + (γµ + γµ′)2
, (2.16)

is the generalized lifetime matrix, whose diagonal µ = µ′ contains the
lifetimes of the normal modes.

Due to the Lorentzian definition of the generalized lifetime, only quasi-
degenerate pair of normal modes, i.e. |ωµ −ωµ′ | ≲ γµ + γµ′ , can con-
tribute to the thermal conductivity. This allows for further simplification,
defining the generalized modal specific heat as in Ref. [26]:

Cµµ′ =
 h2ωµωµ′

T

nµ −nµ′

 h(ωµ′ −ωµ)

≈
nµ(nµ′ + 1) +nµ′(nµ + 1)

2kBT2
(ωµ +ωµ′)2

4
,

which reduces to the modal contribution to the isochoric specific heat
Cµ =  hωµ

∂nµ

∂T when ωµ = ωµ′ . Finally, one obtains the QHGK formula
for lattice thermal conductivity:

κQHGK =
1

3V

∑
µµ′

Cµµ′ |vµµ′ |2τµµ′ . (2.17)

The QHGK formula simplifies in the case of crystals due to the afore-
mentioned block properties of vµµ′ . In the Bloch basis, it reads:

κQHGK =
1

3V


∑

qs

Cqs|vqs|
2τqs +

∑
qs̸=s′

Cqss′ |vqss′ |
2τqss′


 , (2.18)

where Cqs = Cqss is the mode specific heat. For a crystal, it is common
to separate the thermal conductivity into the two contributions expressed
above. While in the first sum, each phonon appears to contribute indepen-
dently, the second sum accounts for the contribution of a pair of phonons



2.4 bridging between glasses and crystals 23

with the same wavevector but different band index. The two contributions
are respectively dubbed intraband and interband [18, 26]. It is worth men-
tioning, that in the WBTE framework, borrowing the terminology from
quantum optics, they are called respectively population and coherence con-
tributions [27, 28].

Since Eqs.(2.17)-(2.18) involve either a sum over the modes or a sum
over quasi-degenerate pairs of modes, it is useful to resolve the modes’
contributions by frequency. Let us define for future discussions the
frequency-resolved differential thermal conductivity [26]:

dκ

dω
=
1

3V

∑
µµ′

Cµµ′ |vµµ′ |2τµµ′∆(ω−ωµ) (2.19)

where ∆(ω) is a suitable smearing function, e.g. a Gaussian.

2.4 bridging between glasses and crystals

The QHGK formula expressed by Eq. (2.17) bridges and generalize two
time-honored theories which have been used, respectively, for glasses
and crystals: the Allen-Feldman theory [23, 24] and the linearized Peierls-
Boltzmann Transport Equation in the Relaxation Time Approximation
(BTE-RTA).

2.4.1 Allen-Feldman approach

The Allen-Feldman approach is the purely harmonic solution of the
Green-Kubo equation. As such, it can be obtained as the QHGK limit for
vanishing anharmonic linewidths:

κAF =
1

3V

∑
µ

CµDµ, (2.20)

where Dµ is the mode diffusivity:

Dµ = π
∑
µ′

|vµµ′ |2δ(ωµ −ωµ′)

= lim
η→0

∑
µ′

|vµµ′ |2
η

(ωµ −ωµ′)2 + η2

where η is a positive smearing.

2.4.2 Peierls-Boltzmann transport equation

The Peierls-Boltzmann theory is only applied to crystals since it heavily
relies on the concept of quasi-particles, the phonons, and their crystal
momentum q. In the BTE framework [21, 33], the goal is to find the out-
of-equilibrium quasi-particle distribution at the linear order in ∇T

ñα
qs ≈ nqs +∇αTψ

α
qs
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and consequently, compute the out-of-equilibrium heat flux defined as in
a gas of (quasi-)particles:

JαBTE =
1

V

∑
qs

 hωqsv
α
qs(ñ

α
qs −nqs)

= −
∑
β

καβ∇βT .

The Boltzmann Transport Equation allows one to compute the nonequi-
librium statistics of the population numbers. At linear order in the per-
turbation, it reads [21]:

vαqs∇αT
∂nqs

∂T
=
∂nqs

∂t
|scatt.

= −∇αT
∑
q′s′

Sqsq′s′ψ
α
q′s′ ,

where Sqsq′s′ is the so-called scattering matrix. Combining the previ-
ous equations, one obtains the Full solution of the linearized Peierls-
Boltzmann Transport Equation (Full-BTE) [33, 34]:

κFull−BTE =
1

3V

∑
qs

Cqsvqsλqs

=
1

3V

∑
qsq′s′

Cqsvqsvq′s′S
−1
qsq′s′ (2.21)

where λqs is the mean free path of the associated phonon. If the scattering
matrix is assumed to be diagonal Sqsq′s′ = δqq′δss′2γqs, one obtains the
BTE-RTA:

κBTE−RTA =
1

3V

∑
qs

Cqs|vqs|
2τqs, (2.22)

and the mean free path is given by λqs = vqsτqs.
By direct comparison, it can be observed κBTE−RTA coincides with the

so-called intraband term in Eq. (2.18). Intuitively, the intraband term gives
the contribution of (quasi-)particles that propagate ballistically between
two consecutive scattering events.

Despite their outstanding success, these two approaches are limited to
glasses and crystals, respectively. Indeed, the AF theory, being purely har-
monic, would diverge when applied to a crystal with a sufficiently dense
mesh of wavevectors, also known as q-mesh. The anharmonicity is fun-
damental to scatter the quasi-particles which otherwise would be able to
propagate ballistically indefinitely. On the other hand, the interband term
missing from κBTE−RTA is fundamental when disorder breaks down the
quasi-particle picture. In particular, when BTE-RTA is applied on glasses,
which is commonly done by simulating a disordered supercell with PBCs

but including only the Γ point [35] (q = (0, 0, 0)), the group velocity is
null and consequently also κBTE−RTA = 0.
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The QHGK formula unifies both theories and it is valid for both glasses
and crystals. Moreover, the success and the limits of the two theories in
their respective fields can be understood in terms of the relative impor-
tance between the intraband and interband terms. For a simple crystal
with few phononic bands, whose separation is on average much greater
than the linewidths, the intraband term is dominant. On the other hand,
for crystals with a more complex band structure, which is generally associ-
ated with a large unit cell, the two contributions can be comparable. For
instance, this condition has been observed for many perovskites [28, 36].
Finally, in glasses, which can be thought of in principle as a crystal with
a diverging number of atoms in the unit cell, only the interband term
contributes.

The qualitative and quantitative differences between the AF, BTE, and
QHGK approaches are illustrated in Fig. 2.1, through the computation of
lattice thermal conductivity for two phases of silicon: amorphous (aSi)
and diamond-like (cSi). The atomic configurations and Interatomic Force
Constants (IFC) for aSi and cSi are generated following Ref. [26] and
Ref. [37], respectively. Specifically, the amorphous sample is prepared
using a melt-quench procedure with an empirical Tersoff potential [38],
while cSi is studied from first principles using Density Functional The-
ory (DFT). Additional computational details are provided in App. C.

The anharmonic linewidths γµ, used both in the QHGK and BTE formu-
las, are computed including anharmonicity ∆Ĥ = Ĥ− Ĥ◦ up to the third
order

∆Ĥ =
 h3/2

6

∑
µµ′µ′′

Kµµ′µ′′(â†µ + âµ)(â
†
µ′ + âµ′)(â†µ′′ + âµ′′)

=
 h3/2

6

∑
µµ′µ′′

∂3U

∂ξµ∂ξµ′∂ξµ′
ξ̂µξ̂µ′ ξ̂µ′′ (2.23)

and using FGR [39]:

γµ = π h
∑
µ′µ′′

|Kµµ′µ′′ |2
[1
2
(nµ′′ +nµ′ + 1)δ(ωµ −ωµ′′ −ωµ′)

+ (nµ′′ − nµ′)δ(ωµ +ωµ′ −ωµ′′)
]
, (2.24)

where Kµµ′µ′′ = 1√
8ωµωµ′ωµ′′

∂3U
∂ξµ∂ξµ′∂ξµ′ contains the third derivatives

of the potential computed at mechanical equilibrium along the normal
mode coordinates ξ.

Fig. 2.1 presents, in the top panel, a comparison between the QHGK

and AF approaches for aSi. Both the QHGK and AF results exhibit an in-
creasing trend in lattice thermal conductivity with temperature, which
saturates above room temperature. Such a trend is experimentally found
for most glasses [40–42], and it is reflected in the mathematical structure
of AF theory. Indeed, in Eq. (2.20) only the specific heat depends on the
temperature, and in the classical limit, kBT ≫  hω, it becomes constant
limT→∞Cµ → kB. The AF lattice thermal conductivity depends on the ar-
tificial smearing parameter η. Due to numerical reasons, if the smearing
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is much smaller than the spacing between frequencies, no pair of modes
satisfies the condition of the delta function in Eq. (2.20). However, this
parameter introduces an unwanted artificial bias in the computation. As
better discussed in the next chapters, the magnitude of this bias increases
for larger glasses, due to the singular behavior of the AF approach in the
bulk limit [37].

On the other hand, the lower panel shows the thermal conductivity
of cSi computed using both the QHGK and BTE-RTA approaches. For the
crystalline case, κ appears as a decreasing function of temperature, and
above 200K it agrees with the phenomenological "Eucken’s law" κ ∼ 1/T .
Indeed, Eucken’s law is the classical limit of BTE-RTA when computed
with third-order anharmonicity, Eq (2.24), since in the classical limit γµ ∝
T and Cµ ∼ kB.

Overall, for a simple crystal as cSi with few, well-separated, bands,
the two approaches are practically indistinguishable. The dominance of
the intraband term over the interband one for this and other commonly
studied crystals could explain the success and longevity of the BTE-RTA

approach.

2.5 beyond the single-mode relaxation time approxima-
tion

Despite its usefulness and success, there are known limits to the validity
of the SM and RTA hypotheses. For the former, it is well known [43] that
for some crystals, especially but not only in 2D materials, the BTE-RTA

underestimates the lattice thermal conductivity at low temperature with
respect to the full solution of BTE, Eq. (2.21), as hinted by the lower panel
of Fig. 2.1. Regarding the latter, it has been shown that using a better ap-
proximation for the greater/lesser Green’s function has a non-negligible
impact on the thermal conductivity of a ferroelectric material near the
critical temperature [32].

2.5.1 Green-Kubo-Mori-Zwanzig theory of lattice heat conductivity

The limitations of the SM-RTA can be overcome [18] by Mori-Zwanzig
memory-function (MZ) formalism [44, 45] to treat the anharmonic de-
cay of the vibrational normal modes. This approach is referred to as the
Green-Kubo Mori-Zwanzig (GKMZ) approach.

The following algebra is considerably simplified by introducing the
Kubo inner product [46, 47] between quantum mechanical operators, de-
fined as:

(
Â, B̂

) .
=

∫ 1
kBT

0

dλ ⟨Â†(−i hλ)B̂⟩− ⟨Â†(−i hλ)⟩⟨B̂⟩, (2.25)

where the second product can be dropped if the operators have zero aver-
age and the time evolution of operators in the Heisenberg representation
can be formally expressed in terms of the exponential of the Liouvillian
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Figure 2.1: Top panel: lattice thermal conductivity of a sample of aSi with
Natoms = 1728 as a function of temperature. The computation is per-
formed with both the QHGK and AF approaches, the latter repeated
for different values of the smearing parameter η in units of rad ps−1.
Bottom panel: lattice thermal conductivity of cSi as a function of tem-
perature, using both the QHGK, BTE-RTA and Full-BTE approaches with
a dense q-mesh.

super-operator [48], L, defined as Â(t) = eiĤt/ hÂe−iĤt/ h .
= eiLtÂ, and

LÂ
.
= [Ĥ, Â]/ h = −i ˙̂A. In terms of this scalar product, the quantum heat

conductivity, Eq. (2.2), simply reads

κ =
1

3VT

∫∞
0

dt
(
Ĵ(t), Ĵ(0)

)
,

in close formal analogy with its classical counterpart. Moreover, in Hamil-
tonians invariant under time reversal, it is both convenient and always
possible to choose a real basis for the eigenvectors. Indeed, the con-
sequent antisymmetry of the generalized velocity matrix makes the
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ordering of equal-time products of bosonic operators —such as, e.g.,
â
†
µ(t)âµ′(t)—irrelevant.
By applying the GK formula, Eq. (2.2), one obtains:

κ =
 h2

3VT

∑
IJ

vIvJωIωJGIJ(0), (2.26)

where the indices in capital font I = (µ1,µ2) and J = (µ3,µ4) label pairs
of normal modes, ωI = (ωµ1

+ωµ2
)/2, ÂI = â

†
µ1
âµ2

, and GIJ(0) is the
zero-frequency value of the Fourier-Laplace transform (FLT), indicated by
the · symbol, of the two-mode correlation function:

GIJ(z) =

∫∞
0

dt eiztGIJ(t), and

GIJ(t) =
(
ÂI(t), ÂJ

)
.

(2.27)

Within this framework, the hurdle of solving Eq. (2.2) is mapped into
finding an expression for GIJ(z), a task that can be effectively tackled by
leveraging the MZ memory-function formalism. Indeed, Mori showed in
his celebrated 1965 paper [45] that GIJ(z) can be formally expressed as:

GIJ(z) = i
∑
K

Λ
−1
IK (z)GKJ, where (2.28)

GIJ = GIJ(0), (2.29)

ΛIK(z) = zδIK −ΩIK + iΓ IK(z), (2.30)

ΩIJ = i
∑
K

( ˙̂AI, ÂK

)
G−1

KJ , (2.31)

Γ IJ(z) =
∑
K

(
˙̂AI,Q(z−QLQ)−1Q ˙̂AK

)
G−1

KJ , (2.32)

and Q is the projector over the operator manifold orthogonal to
span

(
{ÂI}

)
, defined by its action onto a generic operator, B̂, as:

QB̂ = B̂−
∑
IJ

ÂI

(
ÂJ, B̂

)
G−1

IJ . (2.33)

Intuitively, the MZ formalism separates the evolution of an operator
into two distinct parts: one part that preserves the operator’s direction
(up to a phase factor), and another part that projects the operator onto
an orthogonal space, responsible for the loss of correlation (or "decorre-
lation"). This concept is best understood by considering the time-domain
equivalent of Eq. (2.28) for a single operator [45] for t > 0:

∂tG(t) = iΩG(t) −

∫t
0

dt′ Γ(t− t′)G(t′),

where the memory function Γ(t− t′) accounts for the decay of correlation.
In the Markovian limit, where Γ(t) ∝ δ(t), this decay becomes exponen-
tial and resembles the RTA.
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2.5.1.1 The quasi-harmonic limit

To proceed further, it is necessary to evaluate GIJ(z), Eq. (2.28), in the
QH approximation, i.e. to leading order in the strength of the anharmonic
interactions ∆Ĥ.

Let us start with GIJ, Eq. (2.29), and ΩIJ, Eq. (2.31), whose leading
order in ∆Ĥ is O(1). In the harmonic approximation, one has:

G◦
IJ =

∫ 1
kBT

0

dλ⟨â†µ2
âµ4

⟩◦⟨âµ1
â†µ3

⟩◦e hλ(ωµ2
−ωµ1

)δµ2µ4
δµ1µ3

=
nµ1

−nµ2

 h(ωµ2
−ωµ1

)
δIJ,

(2.34)

and

Ω◦
IJ = (ωµ −ωµ′)δIJ, (2.35)

where ⟨·⟩◦ indicates a thermal average in the canonical ensemble of the
purely harmonic system. Analogously, (, )◦ defines the "harmonic" Kubo
inner product.

From Eq. (2.35) is clear that the harmonic Hamiltonian does not project
Â into the orthogonal space, therefore Q ˙̂A ∼ O(∆Ĥ) and the memory
matrix Γ ∼ O(∆Ĥ2). Consequently, the Λ matrix in Eq. (2.30) has a sin-
gularity for degenerate modes ∼ O((∆Ĥ)−2), which is consistent with
divergence of the bulk lattice thermal conductivity of harmonic crystals
and glasses [25].

To summarize, in the QH limit GIJ,ΩIJ are calculated in the purely
harmonic approximation, and the anharmonicity up to order O(∆H2) it
must be considered only for ΓIJ [49–52]. Since G◦

IJ is diagonal in the I, J
indices, Eq. (2.28) becomes

κ =
i h2

3VT

∑
IJ

vIvJωIωJΛ
−1
IJ (0)G◦

JJ

=
i

3V

∑
IJ

CJvIvJ
ωI

ωJ
Λ

−1
IJ (0), (2.36)

where CJ =  h2ω2
JG

◦
JJ/T reduces to the generalized modal specific heat in

the limit of quasi-degenerate pairs of normal modes.
While being completely general in the QH limit, Eq. (2.36) would re-

quire the computation and inversion of a matrix N2 ×N2, with N be-
ing the number of normal modes. Even for systems of moderate size,
such an operation would represent a challenging computational hurdle.
However, studying Eq. (2.36) in the following cases provides simplifica-
tions and valuable insight regarding the connection between the various
approaches to compute the lattice thermal conductivity: QHGK, BTE and
WBTE.

Until now, the kind of anharmonic potential has not yet been specified.
However, in order to quantitatively compare the different approaches,
an anharmonic potential truncated at the lowest order (the third one,
Eq. (2.23)), is assumed in the following sections.
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2.5.2 The single-mode approximation

The first case consists of decoupling the correlation functions for differ-
ent I, J, in the spirit of the SM approximation, by assuming a diagonal
structure for ΓIJ = ΓIδIJ. Thus, Eq. (2.36) becomes:

κ =
i

3V

∑
I

CI|vI|
2
(
ΛII(0)

)−1

=
1

3V

∑
µµ′

Cµµ′ |vµµ′ |2
i

(ωµ′ −ωµ) + iΓµµ′
.

The expression can be symmetrized with respect to µ ↔ µ′ exchange, by
observing that Gµµ′,µµ′ is Hermitian under this exchange. This property
is a direct consequence of Aµµ′ = A

†
µ′µ and the property of Kubo inner

product:
(
Â, B̂

)
=
(
Â†, B̂†)∗, which yields to:∫∞

0

(
Âµµ′(t), Âµµ′

)
=

(∫∞
0

(
Âµ′µ(t), Âµ′µ

))∗
.

Thus, by symmetrizing one obtains:

κ =
1

3V

∑
µµ′

Cµµ′ |vµµ′ |2
Γ

′

µµ′

(ωµ −ω′
µ − Γ

′′
µµ′)2 + (Γ

′
µµ′)2

, (2.37)

where Γ ′µµ′ = Re Γµµ′,µµ′(0) and Γ ′′µµ′ = Im Γµµ′,µµ′(0).
The above expression closely reminds to QHGK formula, Eq. (2.17). For

instance, in both formulas, only modes that are quasi-degenerate with
respect to some anharmonic smearing can contribute to thermal conduc-
tivity.

However, the similarity is not only formal. Indeed, by assuming a cubic
anharmonic potential and after some lengthy calculations ( for details see
Ref. [18] and App. A.3), one obtains:

Γ
′

µµ′(z = 0) = γ>
′

µ (ωµ′)dµµ′ + γ<
′

µ′ (ωµ)dµ′µ +O(N−1), (2.38)

where dµµ′ =
β h(ωµ−ωµ′)

e
β h(ωµ−ω

µ′ )−1
, and γ≶

µ(ω) are the FL transforms of the mem-

ory function of the one-body greater/lesser Green’s functions, whose ex-
pressions as obtained from Mori’s formalism [45, 47] are

g>µ (ω) = −⟨âµâ†µ⟩
1

(ωµ −ω) − iγ>µ (ω)
,

g<µ (ω) = ⟨â†µâµ⟩
1

(ωµ −ω) − iγ<µ (ω)
.

(2.39)

Neglecting corrections of order O(1/N) that vanish in the bulk limit, for

quasi-degenerate modes one obtains Γ
′

µµ′(z = 0) ≈ γ>
′

µ (ωµ′) + γ<
′

µ′ (ωµ).
It can be observed that solving Eq. (2.14) using Cauchy’ Residue theorem
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with poles around ∼ ωµ leads roughly to such result [18]. Therefore, it
can be concluded that assuming a diagonal memory matrix in the I, J
indices is equivalent to the SM approximation.

Now, let us include the RTA. The latter consists of assuming γ

frequency-independent, and therefore real due to Kramers-Kronig’s re-
lations. Then, one obtains that Γµµ′ = γµ + γµ′ , where γ>

′
µ (ωµ) = γµ,

and therefore the QHGK expression, Eq. (2.17).
It must be noted that the addition of the RTA hypothesis on top of the

SM approximation does not change significantly the results, as long as
γ≶
µ(ω) does not change significantly for ω between ωµ and ωµ′ . This is a

consequence of the quasi-harmonic approximation: whether is Lorentzian
or not, the spectrum of the greater/lesser Green’s function is still ex-
pected to peak around their harmonic frequency. For highly anharmonic
materials Green’s functions can wildly differ from the harmonic case [32,
53, 54], resulting in Eq. (2.14) being significantly different from its RTA

equivalent [32]. However, in the highly anharmonic case, anharmonic cor-
rections to the energy flux can not be excluded a priori and that is beyond
the scope of this work.

2.5.3 From Green-Kubo to the full Boltzmann transport equation

The previous section explains the SM-RTA in the framework of the MZ

formalism, showing an alternative derivation of the QHGK formula. Still,
as previously mentioned, the QHGK formula is not able to fully capture
some proprieties of the lattice thermal conductivity of crystals, which are
instead captured by the Full-BTE [34, 43]. In order to understand the origin
of this discrepancy, it is necessary to go beyond the diagonal case of the
memory matrix.

Firstly, let us re-write Eq. (2.36) for the crystalline case, taking into
account the aforementioned block structure of the generalized velocity
matrix:

κ =
i

3VT

∑
qkss′tt′

Cktt′vqss′vktt′
ωqss′

ωktt′
Λ

−1
qss′,ktt′(0), (2.40)

where s, t, s′, t′ are band indices. Eq. (2.40) has a more complex and gen-
eral structure compared to Eq. (2.21), due to the presence of interband
terms s ̸= s′, t ̸= t′. However, analogously with the QHGK case, the inter-
band terms can neglected in the case of well-separated bands. Intuitively,
as Ω◦ grows with the separation between bands, it dampens the corre-
sponding element of Λ−1. For a formal proof see App. A.2.

By neglecting the interband terms, Eq. (2.40) becomes:

κ =
1

3V

∑
qsq′s′

Cqsvqsvq′s′(S
MZ)−1

qsq′s′ , (2.41)

where

SMZ
qsq′s′ = Γq′s′qs

ωq′s′

ωqs
(2.42)
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is a scattering matrix. Indeed, when computed for a cubic anharmonic
potential, the scattering matrix just defined coincides [18] with the one in
the Full-BTE case [33, 34]. For details see App. A.3.

2.5.4 Comparison with the Wigner-Boltzmann transport equation

As in the SM-RTA case, the solution of the GK extends its BTE counter-
part by the presence of interband terms. Still, the computation on the
interband terms in Eq. (2.41) appears to be more challenging than in
Eq. (2.18). Such complication can be treated following the example of
WBTE. As explained in Ref. [55], leveraging a common approximation for
the Lindblad’s equation, the scattering of â†qsâqs′ pairs with s ̸= s′, called
coherences in the WBTE framework, can be treated at the SM-RTA level, even
if the populations â†qsâqs are treated taking full account of the scattering
matrix. By adopting this approximation, Eq. (2.40) becomes:

κI−QHGK = κFull−BTE +
1

3V

∑
qs̸=s′

Cqss′ |vqss′ |
2τqss′ , (2.43)

which is here labeled I-QHGK as it involves the inverse of the scattering
matrix. This formula is analogous to the WBTE expression [17, 27, 28]:

κWBTE = κFull−BTE+

1

3V

∑
qs̸=s′

ωqs′ +ωqs

4

(
Cqs

ωqs
+
Cqs′

ωqs′

)
|vqss′ |

2τqss′ , (2.44)

where vqss′ =
2
√

ωqsωqs′

ωqs+ωqs′
vqs′s, assuming that vqss′ is computed in the

"smooth convention" [28]. The two formulas differ in the interband term
by negligible corrections of order O(γ2/ω2), as it has been numerically
verified for a variety of systems [17]. This proves that, as long as the same
level of approximation is employed, the WBTE and QHGK are equivalent,
in line with Ref. [17] and previous work for the electrical conductivity as
reported, for instance, in the Mahan’s textbook [56].

2.5.5 Application to Li3ClO anti-perovskite

Finally, the proposed theory is tested on lithium-rich anti-perovskite
Li3ClO, a promising candidate for all-solid-state lithium-metal batteries,
whose transport properties have been recently investigated using state-of-
the-art techniques [57].

Fig. 2.2 displays the thermal conductivity of Li3ClO as a function of
temperature for the different approaches, with the lower panel highlight-
ing the relative variation to the BTE-RTA approach. Computational details
are available in App. C.

Two distinct regimes can be identified, depending on the tempera-
ture. At lower temperatures, the interband term is negligible, while fully
accounting for the scattering matrix significantly increases the thermal
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Figure 2.2: Top panel: Thermal conductivity of Li3ClO as a function of temper-
ature, computed using different approaches. Inset: Close-up of the
region around room temperature. Bottom panel: Ratio of thermal con-
ductivity computed with other methods to the BTE-RTA results, as a
function of temperature.

conductivity: κBTE−RTA, κQHGK and κFull−BTE, κI−QHGK coincide sep-
arately. However, at room temperature and above, the interband term
becomes significant while the SM-RTA does not influence the results.

The different and almost opposite temperature dependencies of the
SM-RTA violation and the interband term are due to their physical origins.
In brief, the former is generally attributed to normal three-phonon scat-
tering of acoustic phonons in the linear dispersion regime, i.e. as q → 0.
Normal scattering processes conserve crystal momentum among the
three involved phonons q ↔ q′ + q′′, whereas Umklapp ones conserve
crystal momentum modulo a reciprocal lattice vector G ̸= 0. Under
normal scattering, the energy flux carried by acoustic phonons, which
dominate at low temperatures, is effectively proportional to crystal
momentum and is thus conserved [34, 43], whereas a SM-RTA approach
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Figure 2.3: Phonon dispersion of Li3ClO along high-symmetry points, includ-
ing anharmonic broadening set to 3 times γqs. The anharmonic
linewidths are computed at T = 200, K (upper panel) and T = 400, K
(lower panel).

would still predict a decorrelation time of the order of the phonon
anharmonic lifetimes. On the other hand, the interband term requires the
interband spacing to become comparable to the anharmonic linewidths,
the latter being typically an increasing function of temperature. For
instance, in the classical regime of a cubic anharmonic potential, the
linewidth scales approximately as γ ∝ T . This is evident in Fig. 2.3, which
shows the anharmonic broadening of the band dispersion at T = 200 K
and T = 400 K. Furthermore, since γ must vanish for q → 0 faster than
the angular frequency for hydrodynamic reasons [58], the interband
contribution is typically confined to phonons in the optical frequency
range, whose population becomes significant at higher temperatures.

To summarize, using the MZ formalism allows for a deeper under-
standing and analysis of the approximations underlying the unified
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quasi-harmonic Green-Kubo approach to heat transport in both glasses
and crystals. Additionally, by going beyond the SM-RTA, it becomes
possible to bridge the QHGK approach with various formulations of the
BTE. This comparison emphasizes the absence of interband terms in the
quasi-particle framework of the BTE. Finally, the quantitative impact of
these different approaches and approximations is numerically assessed
across multiple systems, Figs. 2.1-2.2.





3
H Y D R O D Y N A M I C S O F G L A S S E S

Unified lattice dynamical theories of thermal transport, such as
QHGK [26] and WBTE [27], have brought considerable advancements

to the field. Despite these advances, the numerical simulation of heat
transport in glasses remains a formidable challenge. In this chapter, the
problem of reaching the bulk thermal conductivity of glasses is addressed
by leveraging hydrodynamic arguments [35] and efficient numerical
techniques [25]. Through numerical experiments and theoretical analysis,
I examine how anharmonicity regularizes the singularity observed in
harmonic models of heat transport in glasses. Finally, the application
of machine learning potentials to this field is briefly discussed. The
theoretical findings are supported by numerical experiments performed
for three paradigmatic classes of glass (amorphous silicon carbide, silica,
and silicon).

We underline that theories such as QHGK and WBTE apply only above
the so-called plateau in the thermal conductivity as a function of tempera-
ture, which is observed in many glassy materials. The temperature depen-
dence of κ in glasses features three universal characteristic trends [59]: at
very low temperatures, i.e. T ≲ 2K, the dominant scattering mechanism
is the quantum tunneling between different local minima in the glass en-
ergy landscape, and κ ∼ T2 [60–62]; then, up to ≈ 30K, the thermal con-
ductivity rises and saturates to a plateau value. Despite the absence of
an established theoretical agreement in the literature, this phenomenon
seems to be related to the crossover between the regime dominated by
quantum processes and one where propagating waves are scattered by
disorder [59, 61–63]. Above the plateau, the behavior of κ is dictated by
the third-order anharmonic decay of normal modes as prescribed by the
QHGK theory. Since we do not have access to the quantum-tunneling be-
tween quasi-degenerate minima that play a crucial role at low tempera-
tures, in this work we focus on the third regime.

3.1 striving for the bulk limit

Striving for an estimate of the bulk thermal conductivity, large finite mod-
els are used, comprising up to several thousand atoms [26, 64–66]. One
limiting factor in pursuing larger sizes is the diagonalization of the dy-
namical matrix and its poor (cubic) scaling with the number of atoms N.
While samples with several thousand atoms already constitute a consid-
erable computational effort, such a size is about one or even two orders of
magnitude smaller than the size of a typical simulation for a crystalline

37



38 hydrodynamics of glasses

material. In such cases, lattice periodicity and the Bloch theorem can be
exploited to map the simulation of a large model onto a number of inde-
pendent computations performed for the vibrations of definite wavevec-
tors in the BZ, q, of a unit cell comprising a much smaller number of
atoms. These wavevectors are usually arranged in a regular grid whose
number of nodes is the ratio between the total number of atoms in the
bulk model and the number of atoms in the unit cell. The effective model
that can thus be afforded has a linear dimension L ∼ 2π/qmin, with qmin

being the discretization step of the regular grid in the BZ.
Since glasses are also simulated with PBCs, like crystals, it could be

tempting to apply a similar strategy to glasses. However, simply repeat-
ing a disordered cell induces a spurious order on a scale larger than the
size of the original cell, leading to an overestimate of the lattice ther-
mal conductivity, both in MD simulations [67, 68] and lattice-dynamical
ones [35, 55].

To address these issues, a method has recently been developed [35]
that efficiently and accurately extrapolates the value of the thermal con-
ductivity of aperiodic solids, such as glasses, to infinite size, without ar-
tificially introducing nonphysical normal modes, which can grossly over-
estimate the final result. This method, the so-called hydrodynamic extrapo-
lation, leverages hydrodynamic arguments, which exploit the natural par-
titioning of glassy normal modes into categories based on their prop-
agating properties [69]: propagons, delocalized low-frequency vibrations
with wavelengths much larger than the interatomic distance, propagate
almost freely as plane (sound) waves; locons, high-frequency vibrations
localized in real space, barely contribute to thermal transport; and diffu-
sons, intermediate-energy vibrations, are spatially extended and spread
diffusively. The existence and properties of propagons can be interpreted
from a hydrodynamic perspective. In the long-wavelength limit, sound
propagation is described qualitatively in the same way between crystals
and glasses, i.e. through the hydrodynamic equations. In crystals, the
continuum picture is connected to the atomistic one through the acoustic
phonons. Analogously, in glasses, we expect sound waves to be decom-
posed into long-lived delocalized normal modes: the propagons.

Being long-wavelength vibrations, propagons are severely affected by
the finite size of the cell. In fact, similarly to the crystalline case, the size
of the system sets a lower bound to the minimum frequency accessible
to the calculation, which roughly goes as ∼ 1/L, where L is the side of
a cubic sample. Moreover, it determines the normal-mode spacing in the
low-frequency region, which is already undersampled with respect to
other portions of the spectrum, due to the vanishing of the Vibrational
Density of States (VDOS) in the zero-frequency limit [26, 33, 70]. The
undersampling is a relevant issue for both the AF and QHGK approaches,
where an insufficient spacing, compared with their respective smearing,
leads to an underestimate of the thermal conductivity [25].

The hydrodynamic extrapolation technique solves these problems with
two ingredients that can be computed inexpensively. The first is the
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QHGK contribution of diffusons and locons from samples of moderate
size. The second is a Debye-like model for the propagons contribution
in the bulk limit, whose parameters are obtained by the Vibrational Dy-
namical Structure Factor (VDSF) [35, 71], which can be affordably com-
puted using the Haydock’s algorithm [72, 73] even on very large models
(N ≳ 105). It is important to note that the hydrodynamic extrapolation
applies only above the previously mentioned plateau of thermal conduc-
tivity, at T ≳ 30K. This limitation arises because the hydrodynamic ex-
trapolation does not inherently account for quantum tunneling between
quasi-degenerate minima in the glass energy landscape, which is believed
to cause the plateau commonly observed at a few tens of kelvins in most
glasses [60, 74–78].

The ability to compute the bulk limit is not only beneficial on the quan-
titative side, but it has also qualitative and theoretical consequences. For
instance, it highlights the importance of the anharmonicity in glasses. In-
deed, under general assumptions [79, 80], the scattering due to harmonic
disorder in the vanishing frequency limit has a Reyleigh-like scaling ∼ ω4,
which alone is not sufficient to guarantee a finite bulk lattice thermal
conductivity [24, 25]. Consequently, the purely harmonic Allen-Feldman
approach typically shows an infrared singularity in the bulk limit.

On the theoretical side, this singularity was removed by assuming a
residual effect of the quantum tunneling even at higher temperatures
where typically quantum effects disappear [24]. Even admitting that
quantum effects could survive at hundreds of kelvins, this approach has
hardly been pursued in the literature on numerical applications of the AF

theory, where the singularity is customarily regularized without relying
on any such tunneling effects. However, it has been recently shown [25]
how perturbative anharmonic effects, as in the QHGK approach, are suffi-
cient to guarantee a finite bulk thermal conductivity at any finite tempera-
ture, without invoking quantum tunneling effects. On the computational
side, the effects of the singularity on the AF computations have been long
overlooked for different reasons. Firstly, the diverging infrared contribu-
tion of AF calculations, which is eliminated in small samples due to finite-
size effects, is often very small when perturbative anharmonic effects are
accounted for, although there are some notable exceptions. The second
reason is related to the comparison with thin-film experiments [42, 81–
84]. Indeed, the smearing in the AF formula, Eq. (2.20), can formally and
sometimes quantitatively reproduce the boundary scattering intrinsic to
thin-film experiments, therefore producing in some occasions a spurious
experimental validation.

3.1.1 The acoustic infrared cutoff

Accelerating the size-convergence of thermal conductivity in glasses re-
quires addressing the main limiting factors.

Excluding the three trivial translational modes at ω = 0, the first sig-
nificant factor is the presence of an acoustic infrared cutoff. This cutoff
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scales as ∼ 2πc/L, where L is the characteristic size of the system and c
is the sound speed, which differs between longitudinal and transverse
acoustic waves. In the long-wavelength limit, both types of materials
exhibit sound waves with linear dispersion, c|Q|, consistent with Gold-
stone’s theorem [70]. For glasses, this infrared cutoff reduces the contri-
bution to thermal conductivity, especially at lower temperatures, where
only modes with  hω ∼ kBT are significantly populated, following the
Bose-Einstein distribution. The impact of this cutoff is generally smaller
for crystals, as their periodicity allows for the simulation of much larger
systems compared to glasses, thereby mitigating the effects of the cutoff.

3.1.2 The smearing problem

The second factor is more subtle and primarily numerical in nature,
though its effect can be significant despite often being overlooked. This
issue, here termed the smearing problem, arises from the requirement in
both the QHGK and AF approaches for a "dense" vibrational density of
states (VDOS). The degree of this density depends on the smearing pa-
rameter, which is γµ for QHGK and η for AF. As a rule of thumb, one aims
to satisfy the condition

3Nρ(ω)∆ω ∼ 1,

where ρ(ω) represents the VDOS (normalized to the unity) and ∆ω de-
notes the smearing, whether for the AF or QHGK approach. This phe-
nomenon is visible in the AF data for a fixed size L, as shown in 3.7 (or
Fig. B.3 in App. B.2), where the thermal conductivity κAF(η,L) decreases
sharply when η falls below a critical value. In 3D materials with linear
mode dispersion, the VDOS scales quadratically with frequency at low
values, ρ(ω) ∼ ω2, consistent with the Debye model. As the frequency
approaches zero, the modes become increasingly sparse, making it diffi-
cult to satisfy the smearing requirement.

Let us now estimate the cutoff frequency resulting from this constraint.
For AF with a fixed η, assuming a quadratic VDOS, the smallest angular
frequency satisfying the smearing condition is given by:

ωAF
crit ∼

√
1

3Nη
∼

1

L3/2
.

Since the acoustic cutoff due to the system size scales as 1/L, the effective
minimum frequency contributing to thermal conductivity, defined as the
maximum of these two cutoffs, is typically determined by the former
one. However, this is not necessarily the case for QHGK. Suppose, for
example, that the anharmonic linewidths scale as γµ ∼ A(T)ω1+α

µ , where
α > 0 and A(T) is a temperature-dependent coefficient. In this scenario,
the critical frequency for QHGK becomes

ωQHGK
crit ∼

(
1

3NA(T)

)1/(3+α)

∼
1

L3/(3+α)
.



3.1 striving for the bulk limit 41

For sufficiently large QHGK simulations, the effective minimum frequency
ωcrit is determined by the smearing, rather than the system’s actual min-
imum frequency. Importantly, A(T) is typically an increasing function
of temperature. As a result, for fixed system size L, the infrared cutoff
due to acoustic phonons may dominate at higher temperatures, while the
smearing cutoff may become more significant at lower temperatures.

3.1.3 The pseudo-crystal approach

Both crystals and glasses are typically simulated in PBCs, thus one would
hope to tackle the size problem similarly. However, sampling a q-mesh in
glasses mimics an artificial order by adding long-lived modes below this
threshold, thus reflecting the spurious periodicity induced by PBCs and
determining an artificial increase of the thermal conductivity. Indeed, real
glasses below this threshold frequency feature propagating waves whose
wavelength is proportional to their inverse frequency, and whose decay
depends on disorder [69]. Strictly speaking, a replicated model glass can-
not be disordered on a spatial scale larger than the original simulation cell.
Thus, the spurious modes whose wavelength is larger than the simulation
cell are unaffected by disorder and would propagate for longer times than
the corresponding modes in an infinite, actually disordered, glass. In fact,
finite wavevectors other than high-symmetry points at the BZ boundary
have, in general, a finite group velocity, resulting in Eq. (2.18). The re-
sulting intraband/BTE-RTA contribution due to the finite group velocity
is crystalline-like and describes modes whose decay depends only on
anharmonicity. Unsurprising, this yields to an overestimate of the ther-
mal conductivity. This has been recently observed in Ref. [66], where a
3× 3× 3 q-mesh is shown to determine a low-temperature divergence of
the thermal conductivity of amorphous silica systems. The same does not
happen for a genuinely disordered system with an equivalent number of
atoms (i.e., 33 times the number of atoms of the small model) sampled
at the Γ point; for such a system the thermal conductivity is a monoton-
ically increasing function of temperature [66]. Similar results are shown
in Ref. [35] also for other glasses. The unphysical increase of thermal con-
ductivity due to this approach has also been observed in MD simulations
of glasses [67, 68].

3.1.3.1 An alternative pseudo-crystalline approach

A recently proposed method leverages the pseudo-crystalline approach to
glasses while avoiding the drawback of overestimating thermal conduc-
tivity by employing a so-called regularization procedure [66]. This overes-
timation, caused by the artificial crystalline order introduced by periodic
replicas of the fundamental simulation cell, is mitigated by convolving
the QHGK/WBTE Lorentzian lineshape of the unphysical low-frequency
modes with a smearing function. The width of this smearing function,
η, is carefully selected as described below. While choosing the smearing
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function to be Lorentzian would result in a Lorentzian smeared lineshape
whose width would be the sum of the original and smearing linewidths
γµ → γµ + η, it was found that using a Gaussian smearing function
would lead to slightly better numerical behavior of the procedure. Of
course, the heat conductivities computed with this method depend on the
smearing width, and they would in fact diverge, in the low-temperature
limit and even for finite samples, for vanishing smearing. In Ref. [66] the
choice of the smearing width was somewhat justified by the existence of
a plateau in the dependence of the heat conductivity on it. When such
a plateau exists, the width so chosen should be a compromise between
a large enough value allowing to encompass several normal modes and
small values necessary not to mimic spuriously large scattering sources.

In a nutshell, this protocol forces the QHGK (or, equivalently, WBTE)
method for a pseudo crystal—whose unit cell is the whole simulation rep-
resenting the glass model—to behave like the AF model for low-frequency
modes whose linewidths are smaller than the smearing width—i.e., the
modes responsible for the unphysical overestimate of κ—while doing al-
most nothing to modes with higher frequency/larger linewidth.

The regularization procedure has significant flaws, as reported in
Ref. [35]. For aSiO2 at room temperature, a plateau is observed in the
thermal conductivity as a function of the smearing parameter and it is
possible to obtain from a smaller sample results compatible with a gen-
uine larger glass. However, no such plateau is found for aSi and aSiC [35].
Moreover, at low temperatures, when γµ ≪ η, the technique reproduces
the AF results [66] with a fixed η. However, as explained later, this dif-
fers significantly from the genuine bulk limit of QHGK (or WBTE) at low
temperatures.

3.2 hydrodynamic finite-size scaling of the thermal con-
ductivity in glasses

In order to properly estimate the bulk limit of heat conductivity in glasses
without relying on pseudo-crystalline approaches, one must devise a suit-
able finite-scaling technique based on genuine glass samples simulated
with PBCs, but at the Gamma point, q = (0, 0, 0).

Naively, to deal with finite-size effects one should compute the ther-
mal conductivity for samples with increasing size, L, up to convergence
limL→∞ κ(L, T) = κ∞(T). The simplest way to extrapolate κ∞(T) from the
finite size samples would be to assume that for each temperature κ(L)
can be expanded in a power series of 1/L and then perform a linear fit in
L. However, there are different flaws in this procedure: firstly, the simula-
tion must be repeated for different sizes–at least three to meaningfully fit
a straight line; secondly, if 1/L is too small for the linear contribution to
be dominant, higher powers are needed, introducing further parameters,
thus increasing the number of data points required and the complexity
of the extrapolation. In the following, we present a physically motivated
technique to bypass these challenges.
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3.2.1 Propagons, diffusions, and locons

The hydrodynamic extrapolation method is physically grounded in the
natural partitioning of vibrational modes in glasses into propagons, dif-
fusons, and locons, as previously discussed [69, 71]. These features are
evident in the VDSF, which, for a harmonic system, is defined as [71]:

S◦b(ω, Q) =
∑
µ

δ(ω−ωµ)|⟨µ|Qb⟩|2, (3.1)

where |Qb⟩ is a plane-wave-like vibrational state, whose projection on the
displacement of the Ith atomic site in the α Cartesian direction is:

⟨Iα|Qb⟩ = 1√
N
εbα(Q)eiQ·RI , (3.2)

with Q = 2π
L (n,m, l), where n,m, l ∈ N denote a wavevector in a cubic

supercell of side L; RI represents the equilibrium position of the Ith atom;
and εb(Q) is a polarization (unit) vector. Consequently, the scalar product
with the eigenvector of the µth normal mode, eµ, is given by:

⟨µ|Qb⟩ = 1√
N

∑
Iα

εbα(Q)(eµIα)
∗eiQ·RI . (3.3)

The polarization of the plane-wave vector can be chosen to be either
parallel or perpendicular to Q and is labeled by b = L, T1, T2, correspond-
ing to the longitudinal (parallel to Q) and transverse (perpendicular to
Q) branches, respectively. . Glasses are typically isotropic, therefore the
transverse branches are degenerate, and T indicates the contributions of
both transverse branches.

The plane-wave vibrational states are not necessarily a basis for a dis-
ordered system, since

⟨bQ′|bQ⟩ = 1

N

∑
i

ei(Q−Q′)Ri

is not exactly δQQ′ if the positions Ri are not on a lattice . However, if both
Q,Q′ < Qmax such that 2π/|Qmax| is much bigger than the interatomic
distance, the medium appears to be homogenous and it has been numeri-
cally verified that these vectors, labeled acoustic plane waves, are effectively
orthonormal. For our purpose of describing the propagons contribution,
|Qb⟩ acts as a basis [85]. More details on App. B.1.

The VDSF can be interpreted as the spectral function of the retarded
Green’s function (see, for instance, Ref. [56] for details on Green’s func-
tions), S◦b(ω, Q) = 1

π Img◦,R
Qb(ω), which reads:

g◦,R
Qb(t) = −i(⟨âQb(t)â

†
Qb⟩− ⟨â†QbâQb(t)⟩)Θ(t)

=
∑
µ

−i|⟨µ|Qb⟩|2e−iωµtΘ(t), (3.4)
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where Θ(t) is the Heaviside function and

âQb =
∑
µ

⟨µ|Qb⟩âµ.

From Eq. (3.4), it is straightforward to account for weak anharmonic ef-
fects using the RTA, i.e. ⟨âµ(t)â†µ⟩ ∝ e−iωµt−γµ|t|. This yields to

Sb(ω, Q) =
∑
µ

1

π

γµ

γ2µ + (ω−ωµ)2
|⟨µ|Qb⟩|2, (3.5)

Fig. 3.1 shows the VDSF for different glasses, for both the transverse and
longitudinal polarization. The low-frequency, small-wavevector, portion
of each branch of the VDSF features an almost linear dispersion, ω ≃ cQ,
typical of acoustic phonons. In other words, Sb(Q,ω) is a peaked func-
tion centered at ωQ = cbQ, cT ,L being the transverse/longitudinal speed
of sound. For low-enough Q, the profile of Sb(ω, Q) can be fitted as a
function of the angular frequency with a Lorentzian profile,

Sb(ω, Q) ≈ Ab(Q)

π

Γb(Q)

(ω− cbQ)2 + Γb(Q)2
, (3.6)

where Ab(Q) is a normalization factor. This fit allows one to evaluate
the speed of sound as well as the wavevector dependence of the effective
width, the sound attenuation coefficient Γb(Q). Under the assumption of
isotropy, Sb(ω, Q) = Sb(ω,Q) and, consequently, Γb(Q) = Γb(Q). A sim-
ilar fit to S◦b(ω, Q) yields Γ◦(Q), representing the disorder contribution
to the sound attenuation coefficient within the harmonic approximation.
The Lorentzian shape of the VDSF for the propagons suggests they are
long-lived excitations, scattered by both harmonic disorder and anhar-
monicity, which are taken into account by Γb(Q).

Propagons are defined as those low-frequency, low-wavevector, normal
modes with linear dispersion that populate the first portion of the VDSF.
At sufficiently large frequencies, the broadening becomes comparable to
cbQ, marking a transition frequency between propagons and diffusons,
commonly known as the Ioffe-Regel limit [86]. Finally, since locons are
localized in real space, they are delocalized in reciprocal space. In the
limiting case of a mode |µ⟩ localized on a single atom

∑
b⟨µ|Qb⟩|2 = 1/N

∀Q.
Further insight into the properties of propagons can gained from a

hydrodynamic perspective. In the long-wavelength limit, the glass can be
expected to behave as a continuous, practically homogeneous, medium.
In this limit, if the hydrodynamics equations for energy, number, and
momentum density are expressed in terms of the displacements density
u(r, t) ∝

∑
i ui(t)δ(r − R◦

i ), one obtains [58]:

∂2tub(r, t) − c2b∇2ub(r, t) = Db∂t∇2ub(r, t),

where Db are polarization-dependent coefficients and for the longitudi-
nal case b = L the coupling with the energy density is omitted. The
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latter is a reasonable assumption if the thermal expansion is negligible,
as it happens for a harmonic crystal [58]. By solving these equations with
standard methods, one finds that in the hydrodynamic limit Sub

(Q,ω),
the space-time FT of ⟨u(r, t)u(0, 0)⟩, has the typical acoustic peaks at
ω = ±cbQ, with width ∼ DbQ

2. Given the straightforward connection
between Sub

and Sb, as outlined in App. B.1, one can theoretically moti-
vate the ansatz in Eq. (3.6) and expect limQ→0 Γ(Q) ∼ Q2. The acoustic
damping coefficients Γ(Q) can be measured with, for instance, inelastic
light scattering [87, 88], therefore allowing for experimental validation of
the VDSF.

3.2.2 Hydrodynamic extrapolation

The hydrodynamic extrapolation can be summarized as follows: firstly,
the glass samples of finite size are generated and their IFC computed.
Then, the propagon contribution κP is separated from the contribution
due to diffusons and locons, labeled diffusive contribution κD. While κD

is computed directly with QHGK on the samples, κP is computed with a
continuous Debye-like model whose parameters are obtained from the
VDSF. A graphical summary of the workflow is reported in Fig. 3.2.

The decomposition

κ = κP + κD.

is well-defined because, due to the nature of τµµ′ , Eq. (2.16), only
quasi-degenerate pairs of modes contribute: propagons only pairs with
propagons. Then, we want to rewrite the propagons contribution on the
basis of the acoustic plane waves, using our knowledge from the VDSF

to compute it efficiently. The main points of the derivation are exposed
below, while further details are in the App. B.1.

In the new basis, the propagon contribution to the energy flux, Eq. 2.10

becomes:

Ĵ =
1

V

∑
Qbb′∈P

Jbb
′

Q â
†
QbâQb′ , (3.7)

where P indicates that sum is restricted to the propagon region and Jbb
′

Q

is the matrix element of Ĵ in the plane-wave basis. Similarly to the QHGK

crystalline case, such matrix elements can be shown to have a block-
matrix structure in the wavevector indices

Jbb
′

QQ′ ≈ δQQ′Jbb
′

Q (3.8)

and the matrix between the two transverse polarizations, JT1T2

Q = 0, can
be assumed to be zero due to isotropy.

Another useful property is ⟨â†QLâQT ⟩ ≈ 0. This orthogonality is a con-
sequence of the energy separation of the L, T bands, i.e. |(cL − cT)Q|

≫ ΓL(Q) + ΓT(Q), and the VDSF, from which it can be inferred that
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Figure 3.1: Harmonic VDSF, Eq. (3.1), as a function of the angular frequency and
the modulus of the wavevectors. For each Q a Lorentzian fit is ap-
plied to S◦(Q,ω), whose centers and widths, ωQ and ΓQ, are indi-
cated on top of the VDSF. The green line is a linear fit of the first few
ωQ. Left to right: longitudinal and transverse polarization. Top to
bottom: aSi, aSiC and aSiO2. Smearing parameter η = 1 (rad ps−1)

⟨µ|Qb⟩ is significantly different from zero only if ωµ ≈ cb|Q|± ΓQb. The
reasons for the energy separation are two-fold: firstly, in 3D materials
cL >

√
4/3cT [89], and secondly propagons are, by definition, modes with

a sharp linear dispersion relation, i.e., cbQ ≫ Γb(Q). The sharpness in-
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Figure 3.2: Graphical summary of the workflow necessary to implement the hy-
drodynamic extrapolation of the heat conductivity. Picture drawn
from Ref. [35].

creases for smaller wavevectors as Γb(Q) must vanish faster than linearly
for Q→ 0 for hydrodynamic reasons [58, 90].

By combining these properties and Eq. (3.4)-(3.5), one obtains the
greater Green’s function of these acoustic modes:

g>Qbb′(t) = −i⟨âQb(t)â
†
Qb′⟩

≈ −iδbb′
1

2π

∫
dω e−iωt 1

π
ImgRQb(ω))(n(ω, T) + 1)

≈ −iδbb′
1

2π

∫
dω e−iωtSb(ω, Q)(n(ω, T) + 1)

≈ −iδbb′(n(cbQ, T) + 1)e−icbQt−Γb(Q)|t|. (3.9)

Then, mirroring the derivation of Eq. (2.17) , the propagon contribution
can be evaluated from Eq. (3.9), resulting in

κP =
1

3V

∑
Qb∈P

C(cbQ)c2bτQb. (3.10)

The last equation, reminiscent of the BTE-RTA model, defines the lifetimes
of acoustic excitations, τQb = 1

2Γb(Q) , and the frequency-dependent heat

capacity, C(ω) =  hω∂n(ω)
∂T . In principle, there would be interband terms

between the longitudinal and transverse polarization. However, this con-
tribution is negligible if the two bands are energetically well-separated, as
it happens for sufficiently small wavevectors due to the more-than-linear
scaling of Γb(Q).

The final step to evaluate the infinite-size limit of κ is to map Eq. (3.10)
onto the kinetic theory of gases. The sum over plane waves can be recast
as an integral over angular frequency in the L→ ∞ limit using the fact
that, for propagons, the linear dispersion relation, ω = cQ, is valid, and
introducing per-branch densities of states, ρb(ω) = 1

V

∑
Q δ(ω− cbQ).

This yields:
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κP =
∑

b=L,T

c2b
3

∫ωP

0

dω C(ω)ρb(ω)
1

2Γb(ω/cb)
. (3.11)

Acoustic excitations feature a density of states of the Debye form, i.e.,
ρT(ω) = ω2

π2c3
T

and ρL(ω) = ω2

2π2c3
L
. Once κP is available, one computes the

hydrodynamic extrapolation of the thermal conductivity as

κhydro = κP

+
1

3V

∑
µµ′

Θ(ωµ −ωP)Θ(ωµ′ −ωP)Cµµ′ |vµµ′ |2τµµ′ , (3.12)

where the second term comes from Eq. (2.17), and the Heaviside-theta
limits the sum to the nonpropagonic part of the spectrum. The method
can be straightforwardly adapted to the AF model with fixed smearing,
by mapping 2γµ → η.

For the model to be valid, ωP must be chosen in a (angular-) frequency
range accessible to the finite sample that satisfies certain requirements.
All the normal modes below ωP should be bona fide propagons for both
polarizations, so as to avoid a regime where transverse-diffusons and
longitudinal-propagons are mixed. Thus, between the transverse and lon-
gitudinal Ioffe-Regel angular frequencies, ωP should be the smaller one,
which is generally the transverse one. Slightly lower values may also be
preferred to guarantee that all the hypotheses regarding linear dispersion
are valid. Studying the dependence of κhydro on ωP constitutes a good
and inexpensive test to find an appropriate value of ωP and verify the
robustness of the procedure, since κhydro should be roughly independent
on the choice of ωP as long as it is placed in the mentioned frequency
range (see, for instance, the supplementary material of Refs. [35, 37]).

3.2.3 Low-frequency behavior of the sound attenuation coefficients

The hydrodynamic extrapolation of heat conductivity requires extrapolat-
ing the sound attenuation coefficients Γb(ω/cb) to vanishing frequencies,
far below the minimum frequency accessible in glass samples of moder-
ate size. Simply using Eq. (3.10) with lifetimes computed from Eq. (3.5)
would offer little advantage, as it would still require the diagonalization
of large dynamical matrices. However, there are two reasons that allow
the extrapolation. Firstly, the harmonic VDSF can be computed efficiently
with Haydock’s algorithm illustrated below, without ever needing to com-
pute the eigenvectors of the dynamical matrix. Moreover, by fitting the
anharmonic linewidths with respect to the frequency, γµ ≈ γ(ωµ), the
anharmonic effects can be effortlessly included. Secondly and most im-
portantly, leveraging theoretical arguments, one can obtain an ansatz for
Γb(ω/cb) for vanishing frequencies.
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Under general assumptions [79, 80], the low-frequency behavior of the
sound attenuation coefficients reads [35, 58, 90]:

Γb(ω/cb) ≈ Abω
2 +Bbω

4, (3.13)

where Ab,Bb > 0. A model of this form was also proposed in Ref. [84],
where the quadratic and quartic terms come, respectively, from the Umk-
lapp and isotopic scattering of long-wavelength phonons in crystalline
silicon. More generally, the Γ ∼ ω2 trend is required by hydrodynam-
ics [58, 91] and can be explained through the Akhiezer mechanism [92,
93]. On the other hand, the Γ ∼ ω4 behavior—also observed in experi-
ments [87, 88]—can be rationalized in the continuous limit through ran-
dom media theory [94, 95] or, for atomistic models, through harmonic
perturbation theory, as in the case of crystals with mass disorder [96, 97]
or random spring constants [79, 98]. The crossover between the ∼ ω2 and
∼ ω4 behaviors in the sound attenuation has also been observed in MD

simulations [99] and it has also been rationalized by analyzing nonaffine
displacements in amorphous solids [90].

While Eq. (3.13) should describe under very general hypothesis the
sound attenuation coefficients at very low frequencies [100], it is worth
mentioning that for 0 < ω < ωP a second crossover ω4 → ω2 can be
observed due to the harmonic disorder. This crossover is illustrated in
Fig. 3.5, which displays the computed harmonic sound attenuation coef-
ficients for the three glasses. While all three glasses tend to a Rayleigh
scattering for Γ◦ in the vanishing frequency limit, both aSiC and aSiO2

show a crossover ω4 → ω2 at a finite angular frequency. This second
crossover, observed experimentally for aSiO2 [87, 88], it can be described
by the phenomenological function proposed in Ref. [88]:

Γ◦b(ω) = Cbω
2[1+ (ωb

XO/ω)2δ]−1/δ, (3.14)

where Cb is a constant, ωb
XO is the polarization-dependent crossover an-

gular frequency, and δ = 1.5 determines the sharpness of the transition.
As the quartic frequency dependence of the sound attenuation coeffi-
cients in harmonic glasses can be understood perturbatively in terms of
the scattering of acoustic waves in a homogeneous medium with small,
random, independent local fluctuations of the elastic constants [98], the
ω4 → ω2 crossover can be explained with spatially correlated elastic de-
formation [94, 100]. In a nutshell, assuming a finite correlation length for
these fluctuations, vibrations with a wavelength larger than this length,
and therefore cbQ < ωb

XO, experience Rayleigh-like ω4 scattering, while
for higher frequencies/smaller wavelengths Γ◦ ∼ ω2.

To summarize, the typical behavior of Γb(ω/cb) can be described as
follows [87]. For 0 < ω < ωP, we find firstly a—temperature-dependent—
crossover at a very low frequency between an ω2 regime, determined by
anharmonic effects, and the ω4 regime where disorder dominates [100],
followed a by second—temperature-independent—crossover from ω4 to
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ω2, due to the spatially correlated elastic deformation at the mesoscale
mentioned above [94, 100].

3.2.3.1 Toy-model

The qualitative effect of these crossovers on the finite-size scaling of κP is
studied in Fig. 3.3 for a toy-model, using Eq. (3.11) with the addition of
an infrared cutoff:

κP(ωmin) =
∑

b=L,T

c2b
3

∫ωP

ωmin

dω C(ω)ρb(ω)
1

2Γb(ω/cb)
, (3.15)

and neglecting the differences between the contributions of the two po-
larizations. It can be observed how, for ωmin either lower than the first
crossover and higher than the second one, κP is linear in ∼ ωmin ∼ 1/L.
However, a linear size extrapolation κ(1/L) = κ(∞) − a/L from the sec-
ond region would lead to the wrong bulk limit, highlighting the risks of
the standard way of size extrapolating.

It is worth noting that as long the linewidth due to harmonic disorder
tends to Rayleigh’s scattering [79], ∼ ω4, as shown by Fig. 3.5, it implies
that a purely harmonic system would have Ab = 0. However, it can be
easily noted that from Eq. (3.11) that κP would diverge at any temper-
ature in such case, in agreement with the observations of Refs. [23, 42]
and Ref. [101], respectively for glasses and crystals. The effects of this sin-
gularity and the consequent bias that it introduces in the computational
community are discussed in detail later in the chapter.

3.2.4 The Haydock’s algorithm

The direct computation of the harmonic VDSF is unfeasible for systems
of tens of thousands of atoms because it requires the diagonalization of
the entire dynamical matrix, a procedure that scales as the cube of the
number of atoms. Haydock’s recursion method is an iterative procedure,
based on the Lanczos orthogonalization algorithm, that allows one to
estimate the VDSF as the imaginary part of a diagonal element of the
vibrational Green’s function of the system [72, 73]. Using this procedure,
it is possible to address several systems of tens of thousands of atoms,
where the quartic scaling of the harmonic linewidth is appreciable, as
reported in Fig. 3.5.

Our goal is to compute Eq. (3.1). To achieve this, we express S0b(ω, Q) in
terms of the diagonal matrix elements of the vibrational Green’s function:

lim
η→0

Im ⟨Qb|
(
(ω+ iη)2 − D

)−1
|Qb⟩ =

π

2|ω|

[
S0b(ω, Q) + S0b(−ω, Q)

]
, (3.16)
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Figure 3.3: Top panel: Qualitative analysis of the contribution of propagons to
thermal conductivity, given by Eq. (3.15), as a function of the mini-
mum frequency. The calculations are conducted at T = 300K using
Γ(ω) = aω2 + Γ◦(ω), with a = 10−4 rad−1 ps, and Γ◦ evaluated for
both the quartic case (orange line) and the crossover case, as depicted
in the lower panel. To construct a simple yet realistic model, the speed
of sound and the parameters for the crossover Γ◦ are derived from
the aSiC (transverse) VDSF data, shown in Figs. 3.1-3.5. The quartic
parameter is determined by matching the sound attenuation coeffi-
cients of the two cases at ωP/2π = 4THz. Gray dashed lines on the
top panel serve as a visual guide only. Note the logarithmic scale on
both axes of the lower panel.

where D is the dynamical matrix and |Qb⟩ are the 3N eigenvectors spec-
ified before. The harmonic VDSF, Eq. (3.1), is then computed by a contin-
ued fraction expansion:
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π

2|ω|

[
S0b(ω, Q) + S0b(−ω, Q)

]
=

lim
η→0

Im
1

(ω+ iη)2 − a0 −
b21

(ω+ iη)2 − a1 −
b22
. . .

, (3.17)

where the coefficients {a0,a1, . . . } and {b1,b2, . . . } are evaluated by the
recursion Lanczos chain:

|ϕ−1⟩ = |0⟩ ,

|ϕ0⟩ = |Qb⟩ ,

bn |ϕn⟩ = (D − an−1) |ϕn−1⟩− bn−1 |ϕn−2⟩ ,

an = ⟨ϕn|D |ϕn⟩ ,

bn = ⟨ϕn|D |ϕn−1⟩ .

(3.18)

This procedure drastically reduces the computational cost of the evalua-
tion of the harmonic VDSF, going from a O

(
(3N)3

)
scaling of the exact

diagonalization algorithm to the O(s(3N)2) scaling, where N is the num-
ber of atoms in the simulation cell and s is the number of steps of the
Lanczos chain. Moreover, if the matrix of the interatomic force constants
is sparse, as in the present case of short-range interactions, the numerical
burden of Haydock’s algorithm can be further reduced to a complexity
O(sN). The procedure proves to be numerically robust, in spite of the
well-known instabilities of the Lanczos tridiagonalization scheme [102],
and approximately 200 recursion steps are typically sufficient to estimate
the sound attenuation coefficients, which we increased up 600 steps to
carefully test the convergence. Moreover, since the coefficients {a0,a1, . . . }
and {b1,b2, . . . } do not depend on frequency, once they are obtained the
spectrum can be inexpensively recomputed for different frequencies and
for different smearing η. In particular, perturbative anharmonic effects
can be included, Eq. (3.5), by substituting the fixed smearing with a
frequency-dependent fit of the anharmonic linewidths, η → γ(ω). Fur-
ther details are given in App. B.3

The iterative algorithm is validated by a comparison between the value
of Γ◦ obtained from a direct computation of the VDSF, Eq. (3.1), and Hay-
dock’s method. As shown in Fig. 3.4 for a aSiC model of 13824 atoms,
there is excellent agreement between the two methods.

Both Haydock’s algorithm and the direct method are not immune
from their own smearing problem. However, under the assumption that
Sb(ω,Q) is a Lorentzian function the problem can be easily fixed [35].
Indeed, using a fixed smearing η is equivalent to convolute the real spec-
trum with another Lorentzian, as Lorentzian functions are a closed group
under convolution. Therefore, the constant smearing leads to another
Lorentzian spectrum with the same center and Γ → Γ + η, thus allow-
ing for a straightforward correction a posteriori. A range of values for the
smearing has been tested, leading to compatible results.
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It is worth mentioning that in the present work, and Ref. [25], the sound
attenuation coefficients Γ are first obtained for each glass sample and then
averaged over samples of the same size. It has been noted that inverting
the order as Ref. [35], first averaging the VDSFs and then fitting with a
Lorentzian, yields smoother spectra but it does introduce an additional
width due to the statistical noise of the peaks ∼ cQ positions. The addi-
tional width was comparable to the smallest Γ of aSi, which exhibits the
weakest scattering by disorder among the three materials, thereby impact-
ing the extrapolated thermal conductivity. This bias was eliminated using
Haydock’s algorithm.
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Figure 3.4: Harmonic sound attenuation coefficients Γ◦ aSiC obtained by fitting
the harmonic vibrational dynamical structure factor, Eq. (3.1), com-
puted via Haydock’s method (orange dots) and via direct diagonal-
ization (cyan crosses). Both results are averaged over 4 samples of
13, 824 atoms, and the error bars represent standard deviations. Up-
per panel, transverse modes; lower panel, longitudinal modes. Pic-
ture drawn from Ref. [25]

3.2.5 Numerical results

In the following sections, the hydrodynamic extrapolation technique is
applied to three paradigmatic glasses, chosen both for their extensive
investigation in the literature and for their representation of different
regimes regarding the role of propagating modes. Specifically, amor-
phous silica (aSiO2) is a material whose thermal transport properties are
primarily determined by diffusons, amorphous silicon (aSi) is dominated
by propagons, and amorphous silicon carbide (aSiC) represents an inter-
mediate case [103, 104].
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Figure 3.5: Sound attenuation coefficients in the harmonic approximation for
aSi, aSiC, and aSiO2. The estimate is obtained by fitting the har-
monic vibrational dynamical structure factor obtained through Hay-
dock’s method with its sound-wave form, Eq. (3.6), and expressing
the linewidth as a function of ω, as in Eq. (3.13). The sizes of the sam-
ples are respectively 13824, 97336, and 139968 atoms. The estimated
errors are smaller than the size of the symbols. The dashed and con-
tinuous gray lines indicate respectively the ω2 and ω4 scaling. Note
the logarithmic scale on both axes. Picture drawn from Ref. [25]

The samples are generated using a melt-and-quench procedure, as de-
tailed in Ref. [35]. Further details on the generation process and the com-
putation of the thermal conductivity and VDSF are provided in App. C.
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For all materials, the speed of sound and acoustic damping coefficients
Γ◦(Q) are obtained using Haydock’s algorithm. The cutoff angular fre-
quency for propagons is set to ωP/2π = 3.0, 3.0, 1.2 THz for aSi,aSiC,
and aSiO2, respectively. The harmonic sound attenuation coefficients are
fitted using a quartic power law for aSi, while the crossover function,
Eq. (3.14), is applied to both aSiC and aSiO2.

The extensive validation of the method is reported in App. B.2. For
all three glasses, and across a range of smearing parameters and sizes,
Eq. (3.10) is tested against the propagon contribution directly computed
using the AF/QHGK formulas. These tests demonstrate the method’s abil-
ity to reproduce the finite-size scaling κ(L) and its dependence on addi-
tional linewidths (e.g. η or γµ), while also investigating potential sources
of error.

3.2.5.1 Hydrodynamic extrapolation of amorphous silicon

After testing the technique on all three glasses, we focus on the notable
case of amorphous silicon. In the following section, we examine the finite-
size scaling of QHGK calculations performed on aSi at T = 400K, as
shown in Fig. 3.6. As suggested in the literature [68] and by the sharp
dispersion in Fig. 3.5, the propagon contribution plays a significant role
for aSi. Indeed, the bulk limit κhydro, is approximately 80% higher than
κQHGK for the largest affordable size of N = 13824 atoms, underscoring
the significance of finite-size effects. The remarkable finite-size effects are
mainly due to the propagon contribution since the diffusive one quickly
converges in size. It is worth noticing that the diffusive contribution could
appear erroneously as the dominant contribution in small samples, even
though in the bulk limit it accounts for only ≈ 30% of the total thermal
conductivity. Moreover, since the diffusive contribution is suppressed by
the specific heat at temperatures lower than kBT <  hωP (≈ 150K), the
relative importance of κP over κD is expected to further increase at lower
temperatures [35].

For convenience, the size-scaling data presented here are plotted
against the number of replicas of the fundamental simulation cell re-
peated along each Cartesian component, ℓ = L/L0, where L is the actual
linear size of the simulation cell and L0 is the size of the smallest cell used
for each material. For aSi, L0 corresponds to a cell containing 8 atoms.

The QHGK finite-size results are compared with Green-Kubo Molecular
Dynamics (GKMD) calculations, which are computed by averaging 10ns
trajectories from four different samples. As shown in the supplementary
material of Ref. [26], T = 400K is sufficiently high for aSi to neglect the
differences between the quantum Bose-Einstein occupation function and
the classical equipartition, while remaining far below the melting point.
Indeed, the GKMD results are compatible with the QHGK ones for common
system sizes and exhibit a similar finite-size scaling. Despite extending to
larger systems, up to N(ℓ = 20) = 64000 atoms, the GKMD results still do
not achieve size-convergence.
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To compare κhydro with a standard size extrapolation, the QHGK data
points are fitted using the following expression (blue continuous line):

κ(L, T) = −A arctan(B/L) + κ∞, (3.19)

where A and B are positive parameters. This ansatz can be derived from
Eq. (3.11) under the following assumptions: i) the classical limit is valid
[i.e., C(ω) = kB]; ii) the linewidth follows the form Γ(ω) = aω2 + bω4;
and iii) the only size effect arises from the minimum frequency available
at each size, ωmin = 2πc/L.

While, in principle, separate parameter sets would be needed for each
polarization, this would unnecessarily complicate the fitting procedure.
Using a single set of parameters, as in Eq. (3.19), effectively averages the
contributions from each polarization.

Under these simplifying assumptions, Eq. (3.11) becomes:

κ(L, T) =
kB

2π2c

∫ωP

2πc/L

ω2 1

2(aω2 + bω4)
dω+ κD

= κ∞ −
kB

4π2c
√
ab

arctan

(
2πc

L

√
b

a

)
.

(3.20)

Alternatively, another fitting approach can be suggested if the third as-
sumption is replaced with a sub-linear scaling for the effective minimum
frequency ωmin(L), influenced by smearing. To test this hypothesis, the
QHGK data is also fitted using the following function (gray dashed line):

κ(L, T) = −A arctan
(
B

L3/4

)
+ κ∞, (3.21)

where A and B are positive parameters, and the exponent 3/4 is moti-
vated by the analysis in Sec. 3.1.2.

Since only low-energy modes are involved, the classical approximation
for the modal-specific heat is further justified. These fitting functions suc-
cessfully capture the non-linearity (particularly the convexity) of both the
QHGK and GKMD data. The error bars for the fits are computed using
the standard method, based on the covariance matrix of the parameters
obtained after the least-squares minimization.

Both fitting functions are compatible with the two data sets, despite
being fitted exclusively to the QHGK data. Regarding the bulk thermal
conductivity, the result obtained from the hydrodynamic extrapolation,
κhydro, is in good agreement with the size extrapolation derived from
Eq. (3.21), although it lies slightly above the curve fitted using Eq. (3.19).
Despite underestimating κhydro, the latter fit still underscores the sig-
nificance of finite-size effects, predicting a ≈ 50% increase between the
largest available QHGK system size (ℓ = 12) and the bulk limit.
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Figure 3.6: Comparison of the size scaling of κ in aSi from QHGK calculations
and GKMD simulations at 400K. Even for ℓ = 20, i.e. for systems with
64000 atoms, the convergence in size is yet to be achieved. The solid
blue line and the dashed gray line are fitted on the QHGK data accord-
ing to, respectively, Eqs. (3.19)-(3.21). The bulk limit obtained with
the hydrodynamic extrapolation is indicated with a star. The QHGK

diffusive contribution is indicated by triangles. The shaded areas in-
dicate the error in the fit, obtained by propagating the covariance
matrix of the fitting parameters. The error bars of the GKMD data are
obtained through standard block-averaging of 10ns-long time series
of four different samples for each size; the error bars of the QHGK

data are standard deviations over ten different samples for each size.

3.3 anharmonic regularization of the thermal conduc-
tivity in glasses

3.3.1 Failure of the harmonic model of heat transport in glasses

Using the hydrodynamic extrapolation, it is possible to properly discuss
the bulk limit of the Allen-Feldman approach and highlight the impor-
tance of anharmonic effects. Indeed, Eq. (3.11) for the AF model becomes:

κP =
∑

b=L,T

c2b
3

∫ωP

ωb
min

dω C(ω)ρb(ω)
1

2Γ◦b(ω/cb) + η
(3.22)

where ωb
min = 2πcb

L . If the low-frequency limit follows Rayleigh’s scaling,
Γ◦ ∼ ω4, the bulk limit of the purely harmonic AF model, with ωb

min = 0

and η = 0, would diverge at any finite temperature.
In order to demonstrate how the ω4 dependence of the harmonic

sound attenuation coefficients affects the bulk limit of the AF heat con-
ductivity, we computed the propagon contribution to the AF conductivity
in aSi, aSiO2, and aSiC over a range of values of the smearing parameter,
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η, and for finite models of progressively larger sizes. We compared these
results with the analytical model provided by Eq. (3.22), κP(T ,η), Fig. 3.7.
As the size of the model increases, the AF data approach the analytical
benchmark, as is particularly evident for aSi (top panel). As expected, in
the η→ 0 limit, the analytical model diverges due to the Rayleigh (∝ ω4)
scattering term in the harmonic linewidth.

3.3.2 Allen-Feldman harmonic bulk thermal conductivity

Given the generality of the Rayleigh scattering and the consequent sin-
gularity of the AF model, which was actually pointed out by the same
authors [64], two questions naturally arise: why do practical calculations
using the AF model often overlook this infrared singularity, and more
importantly, why do they compare fairly well with experimental results?

Regarding the overlooking of Rayleigh scattering and the consequent
infrared singularity, it must be noted that, for typical glass model sizes,
the effects in AF calculations are not always easy to detect. A particularly
misleading scenario arises in glasses where the sound attenuation coeffi-
cients exhibit a second crossover fromω4 toω2 due to harmonic disorder,
as seen in materials like aSiC and aSiO2. When the infrared cutoff, ∼ c/L,
imposed by the sample size is larger than the crossover frequency ωXO,
the observable harmonic disorder scattering appears to follow a ∼ ω2

trend, seemingly sufficient for size convergence. As briefly discussed for
a toy-model glass in Fig. 3.3, as long as ωmin ∼ 1/L is beyond ωXO, the
finite-size scaling of the thermal conductivity can misleadingly suggest
a converging κ∞ − κ(L) ∝ 1

L trend. This issue is particularly relevant
for aSiO2, often depicted as a highly disordered material, whose ther-
mal conductivity is believed to exhibit very small finite-size effects and
to converge well using models with a few thousand atoms, even in the
harmonic approximation [103]. However, even for a highly disordered
system like aSiO2, harmonic disorder alone is insufficient to achieve
finite-size convergence. As observed in Fig. 3.5 for a very large sample
containing N ≈ 1.4 × 105 atoms, the scattering due to harmonic disor-
der still exhibits Rayleigh-like scaling at low enough frequencies. Since
the crossover frequency for aSiO2 is approximately ωXO ∼ 7.5 rad/ps
for both polarizations [88], properly evaluating the bulk thermal conduc-
tivity of this system would require samples whose linear size exceeds
the wavelength of the corresponding sound wave. The wavelength of the
longitudinal sound wave, λLXO, is approximately 2πcL

ωXO
∼ 60Å, while the

transverse sound wave’s wavelength, λTXO, is 2πcT

ωXO
∼ 35Å. Thus, the sam-

ple size must be greater than λLXO, requiring models containing at least
∼ 14000 atoms.

Regarding the second and most pressing question—the comparison of
actual AF calculations to experimental results—there are several factors to
consider. In summary, the "unreasonable" effectiveness of AF results com-
puted on finite samples can be explained by the fact that the infrared con-
tribution of modes below the minimum frequency, ω < ωmin(L), which
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Figure 3.7: Propagon AF thermal conductivity of aSi, aSiC, and aSiO2 samples
with different number of atoms (N), as a function of the AF linewidth,
η. Calculations are made at a temperature of 500K. The black, solid,
line is the infinite-size analytical result given by Eqs. (3.11)-(3.22). The
cutoff angular frequency for propagons is set to ωP/2π = 3THz,
ωP/2π = 3THz, and ωP/2π = 1.2THz, for the three materials, re-
spectively. Picture drawn from Ref. [35].

diverges in the harmonic approximation, is actually relatively small. This
reduction is typically due to additional scattering mechanisms, such as
anharmonicity or boundary scattering.
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Boundary scattering is particularly important in the comparison to thin-
film experiments. Indeed, the smearing parameter η introduced in finite-
size AF calculations effectively mimics the boundary scattering that af-
fects the thin-film experiments [84]. Roughly, boundary scattering adds
to the linewidth of each polarization a term equal to ηbBS = cb/d [42,
105], where d is the thickness of the sample, that typically range between
0.1− 100 µm. Still, even if η ≈ ηbBS the thin film has an infrared cutoff way
smaller than the simulated glass sample. However, for typical values of
ηbBS the propagon contribution is so dampened that the whole propagon
contribution is negligible when compared to the diffusive contribution,
thus making the differences in the infrared cutoff meaningless. In such a
situation, the effectiveness of the AF calculations is justified, as previously
mentioned. Indeed, if the infrared contribution is actually negligible, then
the result of a AF calculations on a finite sample, where the diverging AF

infrared contribution is removed by the infrared cutoff, can be in agree-
ment with the experiment.

The effect of the boundary scattering is exemplified in Fig. 3.8, where
the bulk thermal conductivity is studied both in the harmonic and weakly
anharmonic cases as a function of the film thickness. In the harmonic ap-
proximation, the thermal conductivity diverges as the film thickness in-
creases, as indicated by the solid lines. When anharmonicity is accounted
for, the thermal conductivity saturates for sufficiently large thicknesses
to its finite bulk value. The figure demonstrates that in materials such as
aSiO2 and aSiC, where propagons contribute marginally to heat trans-
port compared to diffusons, the bulk limit is reached at nanometer scales.
In our aSi model, where propagons play a more significant role, the bulk
limit is achieved at much larger sizes, around a hundred micrometers.

It is worth noting that, at the typical thin-film sizes used experimentally,
the harmonic value of κ is not significantly different from the anharmonic
one. This suggests that a harmonic model on a finite system can provide a
reasonable estimate of the thermal conductivity of a thin film even when
extrapolated toωmin → 0, as long as boundary scattering is appropriately
accounted for.

3.3.3 Beyond the harmonic approximation

Finally, the temperature dependence of κ for aSiO2 and aSi are illus-
trated in Fig. 3.9. The experimental measurements from the literature
are compared with our hydrodynamic QHGK results and AF calculations
conducted on finite samples. The anharmonic linewidths are computed
on a range of temperatures and extrapolated to get a continuous line,

as described in Refs. [84, 108]: γ(ω, T)/γ(ω, T0) = T
T0
e
−C( 1

T −
1
T0

), where
C is a positive parameter. These linewidths are then combined with the
total linewidth using the Matthiessen rule [105]. For aSiO2, the QHGK re-
sults match the bulk experimental measurement [81]. AF calculations, per-
formed on a sample comprising 3000 atoms, also show good agreement
with both bulk-QHGK results and experimental data. This indicates that,
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in the case of aSiO2, in the temperature range considered here diffusons
completely dominate the thermal conductivity. Therefore, similar results
are obtained neglecting contributions belowωmin (as done in finite AF cal-
culations) as well as considering the anharmonic damping of propagons
(as in bulk QHGK calculations). However, a direct extrapolation of the AF

results regularized with a finite η yields values of κ ranging from κD to
infinity, depending on the value of the smearing parameter.

In the case of aSi, where propagons are more important, the intriguing
effectiveness of AF calculations in matching experimental data is further
questioned. For instance, a calculation using 4096 atoms closely agrees
with measurements on a 0.52µm-thick film [82], seemingly validating the
entire procedure. Again, what is actually happening is that the (diverging)
contribution to κ from 0 to ωmin is being set to zero rather than to the
(finite and small) value it would have when accounting for anharmonicity.
For aSi, the missing contribution is not as negligible as it is for aSiO2,
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to Eq. (3.11), where ωmin = 0 and η ranges from 0.1 rad ps−1 (bottom-
most curve) to 10−9 rad ps−1 (top-most curve) on a logarithmic scale.

resulting in a pronounced difference between the QHGK results and the
AF calculation.

The temperature dependence of the QHGK heat conductivity results
from two competing contributions. The first one is due to diffusons,
which is exponentially suppressed at low temperatures—due to the Bose-
Einstein occupation function—and saturates to a constant at higher tem-
peratures. The second one is due to propagons, which diverges as T → 0

for essentially the same reasons why it does so in crystals [35]: first,
the propagation of sound waves with wavelengths much larger than the
atomic correlation length is relatively unaffected by disorder at leading
order in ω, and, second, the temperature dependence of Ab in Eq. (3.13)
causes the integral in Eq. (3.10) to diverge for vanishing temperatures [84,
108].

The differences in the concavity of the bulk κ(T) between aSi and
aSiO2, illustrated in Fig. 3.9, is thus determined by the relative mag-
nitudes of the two contributions [35]. In materials where propagons
contribute marginally to the heat conductivity (such as aSiO2, upper
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panel), the divergence of the bulk value of κP(T) becomes noticeable
primarily at very low temperatures. The change in concavity is thus
determined by the onset of diffusons. Conversely, when propagons
dominate the thermal conductivity, the concavity might be entirely
determined by κP, such as in the case of our model of aSi (purple curve
in the lower panel of Fig. 3.9). At low temperatures, in thin films the
divergence is suppressed by boundary scattering effects, as illustrated
in Fig. 3.9. In bulk systems, where no boundary scattering exists, the
low-temperature divergence is suppressed by the previously mentioned
quantum tunneling between quasi-degenerate minima in the glass energy
landscape. These quasi-degenerate minima, which are responsible for the
residual entropy in glasses [109–111], are believed to lead to the plateau
commonly observed at a few tens of kelvins in most glasses [60, 74–78].

To summarize, AF results on finite samples of glasses qualitatively
reproduce the thin-film experiments when either boundary scattering
or anharmonicity sufficiently dampens the otherwise diverging infrared
contribution. On the other hand, the bulk limit of QHGK is finite at
any finite temperature, but it would diverge for T → 0 in the same
way as it would in crystals. In practice, at extremely low temperatures,
this residual divergence is suppressed by quantum-tunneling between
quasi-degenerate low-energy minima [74].

As our treatment is limited to vibrational properties within a single
such energy minimum, it obviously fails to address the low-temperature
plateau. The description of these tunneling effects from first principles
remains a major challenge in the physics of glasses and is a subject to
be addressed in the future. It is noteworthy that in materials where the
dominant influence of propagons on heat transport persists at temper-
atures higher than those at which quantum tunneling suppresses them,
our analysis suggests that the bulk thermal conductivity should display
a maximum at low temperatures, which could potentially be detected
experimentally.

3.4 machine learning potentials applied to heat trans-
port in glasses

All calculations for the three glasses discussed above were performed
using empirical force fields. While first-principles methods to compute
the BO potential, such as DFT, have the advantage of being generally
more accurate and transferable, they would introduce significant com-
putational bottlenecks when estimating the bulk thermal conductivity of
glasses. Recently, materials science has been transformed by the develop-
ment of Machine Learning Potentials (MLPs), which potentially offer ab
initio accuracy at a classical force-field computational cost. Numerous ap-
plications of MLPs have emerged in studies of heat transport of glasses,
often in combination with MD methods [112, 113].
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However, despite the overall success of MLPs, a recent study has raised
questions about their ability to model heat transport in glasses [113].
Specifically, MLPs appear to reproduce harmonic quantities, such as the
VDOS, well but show discrepancies with the reference potential in calcu-
lating anharmonic linewidths.

Following Ref. [113], a proof-of-concept test was conducted on quan-
tities crucial to hydrodynamic extrapolation. This test involved using
a DeePMD (DP) deep neural network potential [114–116], smooth edi-
tion [117], and a Neuroevolution Potential (NEP) [118], both trained in
Ref. [113] on a comprehensive dataset of liquid and amorphous aSiO2

configurations. To directly assess the learning capability of the MLPs, the
reference potential used was a short-range Tersoff force field [119], cho-
sen for its relatively good accuracy in modeling the amorphous phase of
silica.

Fig. 3.10 shows the harmonic sound attenuation coefficients (top panel)
and the anharmonic linewidths (lower panel). While the harmonic contri-
butions are similar across the three potentials, significant differences are
observed for the anharmonic linewidths. Specifically, the DP potential
markedly overestimates γ. The NEP potential better reproduces Tersoff’s
anharmonic linewidths, except for the lowest non-zero frequency mode,
where γ is also overestimated.

Although the NEP demonstrates better overall performance, the in-
creased anharmonic linewidths at low frequencies complicate the extrap-
olation to the bulk limit. This issue is also observed for aSi with another
NEP, trained [118] for different crystalline and amorphous phases of sili-
con using the ab initio dataset from Ref. [120]. Since reference calculations
are computationally prohibitive in this case, the NEP potential is com-
pared with the Tersoff [121] force field, used in the rest of this chapter to
simulate aSi. Indeed, Fig. 3.11 shows a similar qualitative behavior for Γ◦

between the two potentials, although Γ◦NEP > Γ
◦
Tersoff for most data points.

Conversely, the anharmonic linewidths show qualitative differences, es-
pecially at low frequencies, where the Tersoff results approach a ∼ ω2

scaling, while the NEP linewidths appear not to vanish. It is possible
that the NEP linewidths reverse the trend and vanish at even lower fre-
quencies, which are not accessible for samples of this size, allowing the
existence of long-lived low-frequency vibrations. However, the previous
test on aSiO2 suggests that this anomalous behavior is at least partially
introduced by the use of MLPs.

In summary, this preliminary study suggests that MLPs could be used
to obtain harmonic VDSF of glasses with accuracy comparable to the ref-
erence potential (e.g., ab initio accuracy), but further investigation and
caution are necessary for anharmonic quantities. It is worth emphasizing
that this issue does not typically appear in crystals, where MLPs anhar-
monic linewidths are routinely benchmarked against ab initio results [36,
122], which are computationally feasible due to periodicity.
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4
S PAT I A L LY C O R R E L AT E D A L L O Y S

Understanding lattice thermal transport is essential for advancing
our ability to manage heat and convert wasted thermal energy into

useful electrical power, thereby facilitating the design of highly efficient
Thermoelectric (TE) devices. This chapter investigates the thermal conduc-
tivity of SiGe alloys, focusing on the impact of the spatially correlated (col-
ored) disorder on thermoelectric performance [37]. By integrating first-
principles calculations with hydrodynamic extrapolation [35], the study
reveals a significant reduction in the contribution of acoustic modes to
thermal transport. These findings underscore the potential of colored dis-
order to improve thermoelectric efficiency, offering valuable insights into
material design for energy applications.

4.1 the role of thermal transport in thermoelectric de-
vices

The efficiency of TE materials is quantified by the dimensionless figure of
merit:

ZT =
σS2T

κ
,

where σ is the electrical conductivity, S the Seebeck coefficient, T the tem-
perature, and κ = κel + κl encompasses the thermal conductivity, com-
puted as the sum of electronic (el) and lattice (l) contributions. While
maximizing the figure of merit by manipulating electronic properties
(σ,S, κel) is often complicated and limited by their interconnection, a suc-
cessful strategy involves reducing the lattice thermal conductivity with-
out significantly altering the other factors [123–125]. For silicon-based
TE devices, a viable way to achieve this goal is through alloying with
germanium [126, 127]. Indeed, through doping, silicon can become a TE

device with a high power factor (σS2 ∼ 22 µWcm−1K2 at room temper-
ature [128]), and σS2 has a weak dependence on alloying with Ge [126,
129]. However, its performance is hindered by a high lattice thermal con-
ductivity (≈ 148-156Wm−1K−1 at room temperature [130]). Through al-
loying with a chemically similar element such as germanium, the lat-
tice thermal conductivity of bulk pure silicon can be reduced by at least
an order of magnitude [96, 131–134] without altering significantly the
electronic transport coefficients [129, 135, 136]. SiGe alloys have been
used since the 1960s in the high-temperature regime for applications like
powering space probes with typical ZT ≈ 1 at the operating tempera-
ture of T ≈ 1100K [137]. Further development in the field would allow
Si1−xGex alloys to compete, at room temperature, with the class of TE

67
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devices presently employed, often composed of rare and/or toxic ma-
terials [138]. Such a goal has been pursued through the years through
alloying and structuring at the nano and mesoscale [137, 139–142]. Both
theoretical [143] and experimental [144] work have recently suggested
using spatially correlated disorder to strongly damp acoustic vibrations.

Following Ref. [37], I present a study of the lattice thermal conduc-
tivity of Si1−xGex alloys, both for the standard uncorrelated (white) and
spatially correlated (colored) compositional disorder. Aiming to a realistic
model, the state-of-the-art QHGK approach has been combined with the
hydrodynamic extrapolation technique, both powered by ab initio DFT cal-
culations. Our findings suggest that indeed colored disorder suppresses
thermal transport across the acoustic vibrational spectrum, leading to up
to a 4-fold enhancement in the intrinsic thermoelectric figure of merit.

The chapter is organized as follows: firstly, the Virtual Crystal Approx-
imation is discussed, which allows one to inexpensively obtain IFC from
first principles for systems with tens of thousands of atoms. Secondly,
the uncorrelated case is studied, validating our numerical results against
experimental ones of both thermal conductivity and Raman spectroscopy.
Then, the colored case is carefully discussed. Finally, the intrinsic figure of
merit in the different cases is estimated and compared to state-of-the-art
SiGe systems.

4.2 material characterization

4.2.1 Electronic and vibrational virtual crystal approximations for SiGe alloys

Lattice dynamical methods like QHGK require the knowledge of the
atomic masses and of the BO potential energy surface close to mechanical
equilibrium, which is entirely determined by the electronic ground state
at fixed atomic positions. Indeed, the dynamical matrix element between
two atoms I and J is defined as:

DIJ =
1√
MIMJ

∂2U

∂RI∂RJ

where U is the BO potential energy, and RI and MI are the equilibrium
position and mass of the Ith atom, respectively, and Cartesian indices
have been omitted for notational simplicity.

For an alloy, both the BO potential and the distribution of masses con-
tribute to the disorder. The two contributions are referred to as chemical
and mass disorder, respectively. However, for chemically similar atoms
like Si and Ge, it is known [135, 136] that the BO potential can be accu-
rately described by the electronic Virtual Crystal Approximation (eVCA).
In essence, for any given concentration of Si1−xGex, we consider the elec-
tronic properties of a “virtual” crystal where both atomic species are re-
placed by a fictitious one whose (pseudo)potential is the linear interpola-
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tion of the actual species’ potential. Under this assumption, the dynami-
cal matrix becomes:

D
e
IJ(x) =

1√
MIMJ

∂2Ux

∂RI∂RJ

where Ux is the (x-dependent) BO potential energy, while the masses are
still distributed at random (for details, see App. D.1). This case is referred
to as the mass-disordered alloy, where mass disorder is fully accounted
for, while chemical disorder is neglected. If also the mass disorder is
disregarded, then one obtains the vibrational Virtual Crystal Approxima-
tion (vVCA). In this case,

D
v
IJ(x) =

1

Mx

∂2Ux

∂RI∂RJ

where Mx = xMGe + (1− x)MSi. While being a much cruder approxima-
tion [135], the vVCA can still provide valuable insights into the vibrational
properties of the system in the acoustic region, where neighboring Si and
Ge atoms vibrate in phase, and it is often the starting point for perturba-
tive treatments of mass disorder [96, 129, 132].

The eVCA is assumed to be valid throughout this paper and it plays a
fundamental role in enabling the computation of second- and third-order
IFCs using ab initio methods such as Density Functional Perturbation The-
ory (DFPT) [145–147]. By neglecting chemical disorder, the IFC can be com-
puted efficiently for the virtual crystal, fully leveraging the benefits of
periodicity.

4.2.2 Raman spectroscopy

The reliability of the eVCA is tested by computing the nonresonant
Stokes Raman spectrum of Si1−xGex alloys using the Placzek approxi-
mation [149]. Raman spectroscopy is widely used to investigate the vi-
brational properties of materials, as the Raman shift between the inci-
dent and scattered light typically arises from the creation or annihilation
(Stokes and anti-Stokes Raman processes, respectively) of a vibrational
normal mode, coupled to the light via polarizability.

In harmonic solids, for given polarizations of the incident and scattered
light, ein and eout, respectively, the intensity of the peaks in the nonreso-
nant Stokes Raman spectrum is proportional to [150]:

IR(ω) ∝
∑
µ

δ(ω−ωµ)|⟨ϕ|µ⟩|2
n(ω, T) + 1

ω
,

where |µ⟩ denotes the eigenvector of the system’s dynamical matrix, com-
puted in the eVCA, and ϕ is a vector defined as:

ϕIλ =
1√
MI

∑
αβ

ein
αe

out
β χ′Iαβλ,
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Figure 4.1: Unpolarized Stokes Raman spectroscopy at room temperature for
different Germanium concentration x. Dashed lines: experimental
data from Ref. [148]. Continuous lines: numerical Raman spectrum
computed as explained in the main text with smearing equal to
the experimental resolution η = 5 cm−1. Vertical lines represent,
respectively, the experimental [148] pure Germanium and Silicon
bulk degenerate optic frequencies at q = (0, 0, 0), ωGe and ωSi.
To take into account the small discrepancies between the DFT fre-
quencies and the experimental ones (⩽ 2%) of the pure systems
∆Ge/Si = ω

exp
Ge/Si −ω

DFT
Ge/Si, the numerical spectra have been shifted

by ∆(ω) = ∆Si−∆Ge
ωSi−ωGe

(ω−ωGe) +∆Ge. Picture drawn from Ref. [37]

with I as the atomic index, α,β, λ indicating Cartesian indices, and
χ′Iαβλ = ∂χαβ

∂uIλ
representing the derivative of the polarizability tensor

χ with respect to atomic displacement, i.e., the tensor of Raman coeffi-
cients [73, 150].

The above summation can be rewritten in terms of the vibrational spec-
tral function of the ϕ vector:

IR(ω) ∝ n(ω, T) + 1
ω

S◦ϕ(ω),

which can be computed similarly to the VDSF, thereby leveraging Hay-
dock’s algorithm [72, 73].

Under the eVCA, the Raman tensor is periodic and can be easily com-
puted for the unit cell of the virtual crystal [73]. Finally, the unpolarized
Raman spectrum is obtained from the rotation invariants using the pow-
der formula [151], with a computational cost of a few polarized spectra.

To compare the experimental and numerical results, the spectrum is
computed with a smearing width of η = 5 cm−1, matching the experi-
mental resolution [148]. The smearing due to anharmonic linewidths at
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room temperature is neglected, as numerical verification has shown that
they are an order of magnitude smaller than the experimental resolution
in the selected frequency range [37]. Moreover, the line broadening is pre-
dominantly caused by mass disorder, which is explicitly accounted for in
the VDSF calculation.

The experimental phenomenology of Si1−xGex alloys has been exten-
sively studied [148, 152, 153]. The Raman spectra of pure Si and Ge sys-
tems exhibit peaks corresponding to the degenerate optical frequencies at
the Γ point of the BZ, located at 521 cm−1 and 300 cm−1, respectively. For
intermediate concentrations, three main peaks are observed at approx-
imately 500 cm−1, 400 cm−1, and 300 cm−1. These peaks are labeled as
Si− Si, Si−Ge, and Ge−Ge Raman peaks, as they correspond to those
found in bulk crystalline SiGe alloys with similar compositions [148]. Ad-
ditionally, minor peaks between 400 cm−1 and 500 cm−1 are commonly
observed in experiments.

It is worth noting that the vVCA approach would predict only a sin-
gle peak, corresponding to the optical frequency at the Γ point of the
concentration-dependent virtual crystal, thus failing to capture the sensi-
tivity of Raman spectroscopy to local atomic disorder [154]. In contrast,
the eVCA calculations are qualitatively superior, as they accurately predict
the positions of both the major and minor peaks observed experimentally.
However, the experimental Ge peak appears sharper than the simulated
one. This discrepancy could be attributed to several factors, including
possible frequency-dependent variations in experimental resolution [155,
156] and the chemical bonding differences between Si and Ge sites, which
are not accounted for under the eVCA assumptions.

4.2.3 Scattering by mass disorder

In order to rationalize the effect of disorder on the vibrational proper-
ties of the Si1−xGex alloy, it is crucial to understand how mass disorder
affects the normal modes in different frequency ranges.

Indeed, in the acoustic frequency range, there is a strong resemblance
between the normal modes of the virtual crystal and those of the (mass)
disordered alloy. However, the similarities disappear in the optic fre-
quency range, as hinted by the Raman calculations. To qualitatively char-
acterize this similarity, and its breakdown, Fig. 4.2 shows the spectral
function of the virtual crystal eigenvectors in the harmonic approxima-
tion and the Inverse Participation Ratio (IPR) [64], respectively in the right
and left panel. The former is defined as

S◦qs(ω) = lim
η→0

∑
µ

1

π

η

η2 + (ω−ωµ)2
|⟨µ|qs⟩|2, (4.1)

where ⟨µ|qs⟩ is the scalar product between a vVCA normal mode eigen-
vector and an eVCA one. This spectral function reduces to the VDSF when
the acoustic bands are b = L, T1, T2 are considered, with the difference
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Figure 4.2: Left panel: Inverse participation ratio of the normal modes of a disor-
dered Si-Ge alloy containing ≈ 12000 atoms at mixing ratio of x = 0.5.
Right panel: Spectral function S◦qs(ω) (Eq. 4.1) of the same system
shown as a colormap, along with the phonon band dispersion (blue)
of a virtual crystal of size equivalent to ≈ 45000 atoms at x = 0.5
overlaid. The spectral function is computed in the harmonic approx-
imation with an artificial smearing η = 0.5 rad ps−1 and its intensity
is expressed in arbitrary units. Spikes in 1/p are observed in the opti-
cal frequency range, corresponding to regions where the differences
between the vVCA dispersion and the VDSF are more pronounced. Fig-
ure drawn from Ref. [37].

that |qs⟩ are exactly orthonormal vectors, not only in the long-wavelength
limit as for glasses. The IPR is defined as [64]:

1

pµ
=

∑
I[
∑

α(e
µ
Iα)

2]2∑
Iα(e

µ
Iα)

2
(4.2)

where eµIα is the component of the µ-th vibrational eigenvector on the
I-th atom in Cartesian direction α. As observed in the spectral function,
the vVCA cannot predict the splitting of the optical bands into Si-Si, Si-
Ge, and Ge-Ge-related modes [154]. Moreover, a significative difference
between eVCA and vVCA is indicated by the IPR, which is a measure of
localization and ranges from 1/Natoms ≈ 0 (fully delocalized modes) to
1 (fully localized). The IPR shows that optical modes undergo substantial
localization that cannot be captured in the vVCA approach, in which the
normal modes are crystalline, hence fully delocalized.
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4.3 thermal conductivity of sige alloys

Given the similarity between the separation of glasses into propagating
and not-propagating modes, hydrodynamic extrapolation is also applied
to this case. For isotropic thermal conductivity, the hydrodynamic extrap-
olation is expressed as [35]:

κhydro = κP + κD (4.3)

κP =
1

3V

∑
qb

Cqb|vqb|
2 1

2Γqb
Θ(ωP −ωqb) (4.4)

κD =
1

3V

∑
µµ′

Θ(ωµ −ωP)Θ(ωµ′ −ωP)Cµµ′ |vµµ′ |2τµµ′ , (4.5)

where Γqb are extracted by the VDSF, computed with Haydock’s algo-
rithm [72, 73], and κP differs from Eq. (3.10) just for the use of the
vVCA crystalline group velocity for the acoustic bands. The acoustic at-
tenuation coefficients, Γqb, are computed using Matthiessen’s rule [105],
Γqb = Γ◦qb + γqb, where γqb accounts for third-order anharmonic scatter-
ing affecting the vVCA acoustic vibrations. The use of vVCA anharmonic
linewidths has been extended to the diffusive contribution, as numerical
verification has shown that the difference between vVCA and eVCA anhar-
monic linewidths has a negligible impact on the overall thermal conduc-
tivity [37]. The propagon contribution is then computed on a dense grid
of wavevectors in the BZ, commonly referred to as a q-mesh, and it can be
easily extrapolated to the bulk limit, resulting in the inclusion of a Debye-
like term in the thermal conductivity [25, 35], Eq. (3.11). The diffusive
thermal conductivity, κD, which has been tested to be to a large extent
size-insensitive (see Fig. D.3 in App. D.2), is computed using the normal
modes of a disordered sample of finite size.

For the uncorrelated case, this approach is tested against the standard
approach [96]. For the spatially correlated case, I rely only on the hy-
drodynamic extrapolation, since a perturbative treatment in the presence
of spatial correlations would require further theoretical and numerical
effort.

The standard approach for an uncorrelated alloy involves a perturba-
tive treatment of disorder [96], which has successfully reproduced exper-
imental measurements [96, 129, 132]. The phonon frequencies and veloci-
ties of the virtual crystal are used in the BTE-RTA:

κBTE-RTA =
1

3V

∑
qs

Cqsvqsvqsτqs, (4.6)

where the effect of disorder scattering is accounted for in the lifetimes
through Matthiessen’s rule [105]: τ−1

qs = (τanh
qs )−1 + (τiso

qs)
−1. The mass dis-

order linewidth Γ iso
qs can be computed perturbatively with FGR, yielding
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to Tamura’s formula for perturbative isotopic scattering [157], which for
a (virtual) crystal with only one chemical element reads:

1

τiso
qs

=
π

2
g2ω

2
qsρ(ωqs) (4.7)

= 2Γ iso
qs . (4.8)

Here, ρ is the vibrational density of states normalized to unity, and g2 is
a measure of mass variance, given by:

g2 =

ntypes∑
i

fi

(
1−

mi

m

)2
,

involving mass (mi) and concentration (fi) of the ith among ntypes species,
and their average mass, m.

4.3.1 White disorder

As previously mentioned, the bulk lattice thermal conductivity of the
uncorrelated alloys is computed using the hydrodynamic extrapolation
of QHGK and the standard perturbative approach, Fig. 4.3.

As observed in Ref. [132] and Fig. 4.3, even with a typically dense
q-mesh with a spacing between BZ points of 0.07 Å−1, i.e. a 30× 30× 30
mesh, finite-size effects can reduce the bulk thermal conductivity at room
temperature by up to 40%. While finite-size effects for the QHGK are
tackled by hydrodynamic extrapolation, also the BTE-RTA results must
be extrapolated to the infinite-size limit, in order to obtain a fair com-
parison. For the latter, the "hydrodynamic extrapolation" simply con-
sists of including the Debye contribution on top of the results obtained
with a dense q-mesh. To perform the extrapolation, in the limit of van-
ishing frequencies, we fit the anharmonic contribution to the sound at-
tenuation coefficient with a temperature-dependent quadratic term and
the disorder contribution with a quartic Rayleigh-like one, resulting in
Γ(ω) = a(T)ω2 + bω4 [35, 103]. In addition to the mass disorder due
to alloying, we include isotopic scattering computed due to the actual
isotopic composition of Si and Ge with Eq. 4.7 for both the QHGK and
BTE-RTA methods. Unsurprisingly, since the mass difference between Si
and Ge is much larger than the mass differences among their correspond-
ing isotopes, isotopic effects are impactful only for the pure systems,
while for the intermediate concentrations the linewidth due to alloying is
on average two to three orders of magnitudes larger.

The computed bulk thermal conductivity is shown in Fig. 4.3 as a func-
tion of the concentration of Ge (upper panel) and of the temperature
(lower panel). At fixed temperature, both methods exhibit a distinctive
U-shape, typical of both crystalline [96, 158] and amorphous [113, 159]
alloys, with a minimum around x ≈ 0.5. Notably, the results from both
methods are nearly equivalent, with a relative difference within 10%. Both
methods reproduce well the experimental data at room temperature [126].
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Figure 4.3: Upper panel: bulk thermal conductivity at room temperature as
a function of Germanium concentration, computed with both the
BTE-RTA and QHGK methods and compared to experimental re-
sults [126]. The BTE-RTA results are also shown for a dense q-mesh
[28, 28, 28] (dashed line) to stress the importance of finite-size effects.
Lower panel: bulk thermal conductivity as a function of temperature
and concentration. The continuous lines are QHGK results, while the
triangles of the same color are the corresponding BTE-RTA ones. Figure
drawn from Ref. [37].



76 spatially correlated alloys

However, there is significant variance in experimental results, e.g., for
T = 300K and x = 0.5, κ can vary between 6 and 11Wm−1K−1 [126, 127,
158]. This variance suggests some caution in the comparison with exper-
iments and underscores the importance of accurately characterizing the
disorder. In fact, according to Ref. [126], the process employed to grow the
alloy and the resulting disorder is the most likely cause of such variance.

The success of the perturbative approach in reproducing the QHGK re-
sult, despite overlooking the diffusive contribution and misrepresenting
the optical phonons dispersion, can be attributed to the dominant role
of acoustic phonons, for which a perturbative treatment is reasonable. In-
deed, according to Ref. [96], at room temperature and x = 0.5, phonons
with a frequency below 2THz contribute 88% of the total thermal conduc-
tivity. The lack of a diffusive interband contribution in the BTE-RTA would
seem to imply that this method poses a lower bound to the QHGK results
if harmonic scattering were exactly accounted for. Indeed, in the lower
panel of Fig. 4.8 it can be observed that BTE-RTA has a smaller contribu-
tion to thermal conductivity due to modes in the optic frequency range.
Instead, κQHGK < κBTE-RTA at low Ge concentrations, highlighting the im-
portance of a non-perturbative account of mass-disorder scattering. As
shown in Fig. 4.4, and in agreement with the molecular dynamics results
of Ref. [160], even for acoustic modes below 3THz, linewidths from ex-
act mass-disorder scattering can significantly differ, both positively and
negatively, from the perturbative treatment of Eq. 4.7 [157]. However, it is
somewhat surprising that such corrections to Tamura’s formula are more
pronounced for dilute concentrations (x = 0.1, 0.9) than for x = 0.5. A
rationale can be found in the prefactor −g3 = −

∑ntypes
i fi

(
1− mi

m

)3 in
the third order correction to Eq. 4.7 [157], where for x = 0.1, 0.5, 0.9, the
values for −g3 are approximately 0.2, 0,−0.02, respectively, which agree
with the observations in Fig. 4.4.

4.3.2 Colored disorder

In the pursuit of reducing the predominant contribution of acous-
tic modes and lowering κ in SiGe thermoelectrics, several approaches
have been proposed to enhance acoustic phonon scattering. From
concentration graded superlattices [141, 142] to nanopores [162] and
nanograins [107, 137, 139, 163–165], the overarching idea is to intro-
duce disorder-induced scattering of large-wavelength acoustic vibrations,
which would otherwise propagate almost as in a homogeneous medium.
Quantitatively, the main limitation in reducing the acoustic contribution
through harmonic disorder is represented by Rayleigh’s ω4 scattering.
Indeed, a Rayleigh-like scattering is not sufficient alone to guarantee a
finite bulk thermal conductivity in a glass, as mentioned in the previous
chapter [25], or even mass-disordered harmonic crystal [166].

Under very general assumptions, disorder scattering in harmonic
solids follows Rayleigh’s scaling in the hydrodynamic limit [79]. Yet,
the spatial correlations of elastic deformations can lead to nontrivial be-
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Figure 4.4: Ratio between the mass disorder linewidth computed from the non-
perturbative and perturbative approaches, respectively Eq. 3.1-4.7.
The error bars are the standard deviation over 4 samples of N ≈
45000 atoms. Figure drawn from Ref. [37].

Figure 4.5: Section of a Si0.5Ge0.5 alloy model with ≈ 65000 atoms with uncor-
related (left) and correlated (right) mass disorder. The red and blue
dots are respectively Si and Ge atoms. The correlated case is obtained
with a Gaussian spatial correlation with σ = 1 as explained in the
main text. Figure drawn from Ref. [37].

havior. Essentially, as long as their correlation length is finite, acoustic
vibrations with wavelengths larger than the correlation length scatter
like vibrational modes in a chain of equally spaced atoms connected
by springs with uncorrelated random spring constants, resulting in a
linewidth Γ ∝ ω4 [98]. At higher frequencies, random media theory pre-
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Figure 4.6: Top panel: partial radial distribution (rdf) for a sample of 43904 atoms
generated with Gaussian disorder σ = 1.25 (σl0 ≈ 4.36 Å) and x =

0.5. The Si − Si rdf is not shown since it is identical, within statistical
noise, to the Ge − Ge one. Rdfs are computed with the OVITO [161]
code. Bottom panel: comparison of the unpolarized Raman spectrum
at room temperature between the mentioned correlated alloy and an
uncorrelated one with the same size and %Ge concentration. The
same shifting procedure and smearing as in Fig. 4.1 were applied.

dicts a ω4 → ω2 crossover in the disorder scattering linewidths [80, 167].
This crossover is observed numerically for glasses as aSiC and aSiO2,
Fig. 3.5, and for aSiO2 it has also been observed experimentally [87, 88]. If
the correlation length increases, the crossover shifts to lower frequencies,
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enhancing the overall scattering strength due to harmonic disorder [143,
144]. Ideally, a system nanostructured in order to display a disorder with
an infinite correlation length could have ωXO ≈ 0 and therefore maintain
a quadratic disorder scattering rate in the ω→ 0 limit. It is worth noting
that such an ideal system would have a thermal conductivity less de-
pendent on the anharmonicity than the glasses previously studied, that,
under general assumptions [79], are characterized by Rayleigh-like har-
monic disorder scattering.

In the following section, two prototypical kinds of disorder are studied,
respectively with a finite and infinite correlation length. The type of mass
disorder is characterized by the mass correlation function:

C(r) ∝ 1

Natoms

Natoms∑
I,J=1

δM(RJ)δM(RI)δ(r − RIJ), (4.9)

where RIJ = (RI − RJ), δM(RI) is the deviation of the mass at site I
from the average mass and C(r) = C(r) since both correlation function
are chosen isotropic.

The first case involves a Gaussian correlation C(r) ∝ e−r2/(2σ2l20),
where σ is a dimensionless parameter and l0 is the cubic root of the unit-
cell volume, l0 = V

1/3
0 , while the second case involves an infinite-range

power-law correlation C(r) ∼ r−1. For each correlation function, multi-
ple mass configurations at x = 0.5 are generated using the algorithm
described in App. D.1. In Fig. 4.5 we display the effects of correlation
on the atomic distribution on a planar cross-section of the simulation
cell, observing a clustering effect as in Ref. [168]. Our procedure slightly
differs from the commonly used algorithm for generating spatially corre-
lated disorder [143, 169], aiming to reduce noise due to the discreteness
of mass values.

To further characterize the correlated systems, Fig. 4.6 shows the par-
tial radial distribution function and the unpolarized Raman spectrum.
The radial distribution function reveals that introducing Gaussian corre-
lation reduces the amount of heteroatomic Si-Ge bonds, which contrasts
with the uncorrelated system at x = 0.5, where Si-Ge bonds are statisti-
cally as likely as homoatomic bonds. Spatial correlations also affect the
Raman spectrum by inducing a blue shift in the most prominent peaks.
Moreover, compared to the uncorrelated case, the Si and Ge peaks in
the Raman spectrum are more intense, intuitively explained by the pres-
ence of larger clusters of pure silicon and pure germanium. These dif-
ferences suggest a viable experimental method to distinguish between
white and colored disorders. Although the presence of clusters might
resemble polycrystalline SiGe with nanograins, [137] it is important to
emphasize that, in these correlated alloys, there is no change in lattice
orientation at the interfaces between different regions. In this respect, the
system tends to resemble a bulk material with a disordered array of co-
herently embedded nanodots. From an electronic perspective, the differ-
ence between polycrystalline systems and the alloys studied here is even
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more pronounced. Apart from the presumably small effect of the chem-
ical difference between Si and Ge, which is neglected in the eVCA, the
electronic density of both uncorrelated and correlated alloys considered
here remains periodic. In contrast, even within the eVCA, a polycrystalline
system lacks a periodic electronic density due to changes in crystal orien-
tation at grain boundaries. This lack of periodicity can negatively impact
electronic transport, thereby degrading the thermoelectric figure of merit.

Indeed, it has been experimentally shown that, for certain grain sizes,
the reduction in thermal conductivity is accompanied by a decline in
electronic conductivity, ultimately limiting the thermoelectric figure of
merit [170].

Colored disorder significantly reduces the lattice thermal conductivity,
as shown in the upper panel of Fig. 4.7. The longer the correlation length,
the stronger the reduction. This reduction is due to the enhanced damp-
ing of acoustic modes (see the lower panel Fig. 4.7), which is not compen-
sated by the slight increase in the diffusive contribution shown in Fig. 4.8.
This enhanced damping not only bears substantial quantitative effects on
heat conductivity but also leads to significant qualitative consequences
in the harmonic approximation. In fact, below ≈ 2 THz one observes
a crossover from the ω4 dependence of sound-wave damping (due to
Rayleigh scattering) to a ω2 dependence. The crossover phenomenology
is analogous to the one observed for aSiC,aSiO2 in Fig. 3.5, and therefore
it is also quantitatively captured using Eq. (3.14).

Apparently, also the long-range case shows a crossover. However, the
crossover in this case appears to be due to finite-size effects. Indeed, it
has been numerically tested that the crossover frequency, which is size-
independent for the Gaussian case, reduces when the size of the sample
increases.

Ignoring this finite-size crossover, the harmonic scattering linewidths
have been extrapolated as ∼ ω2. It is worth emphasizing again that an
ideal system exhibiting ∼ ω2 harmonic scattering due to correlated disor-
der would have a finite Debye-like contribution even without anharmonic
scattering. This constitutes an exception to the conclusions of Ref. [25],
which are derived for amorphous systems under the general assumption
of Rayleigh scattering [79].

4.4 thermoelectric figure of merit

As previously mentioned, reducing the lattice thermal conductivity may
improve the SiGe TE figure of merit. While the lowest value of thermal
conductivity is reached for the 1/r correlation, the rest of our analysis is
focused on the Gaussian case, whose scattering can be captured without
finite-size effects and whose technological implementation would require
control only at the nanoscale, rather than at all the scales. Notably, a Gaus-
sian correlation with σ = 1.25 already reduces the thermal conductivity
to approximately 2.4Wm−1K−1 at room temperature, which is about 4.5
times smaller than the corresponding value for an uncorrelated alloy.
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Figure 4.7: Upper panel: lattice thermal conductivity for different kinds of col-
ored disorder, as a function of temperature. Stars and empty circles
indicate respectively a Gaussian and 1/r spatial correlation function.
σ is a dimensionless parameter proportional to the width of the
Gaussian, as specified in the text. Lower panel: corresponding mass
disorder linewidths of acoustic phonons as a function of frequency.
Dashed and continuous gray lines are guidelines for, respectively, a
ω4 and ω2 behavior. For comparison, we also show with red dots
the anharmonic contribution to linewidths at room temperature, and
with blue crosses the contribution from disorder scattering for a stan-
dard, spatially uncorrelated, alloy. All samples are at x = 0.5 concen-
tration. Figure drawn from Ref. [37].

Such a large thermal conductivity reduction from the correlated mass
disorder may extend the operational range of SiGe-based TE devices, so
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for different instances of disorder at T = 600K and x = 0.5. The
lower limit for the integral in the accumulation function is set to
ωa/2π = 7 THz, to neglect the significant differences in the acoustic
frequency range due to the different nature of the disorder. The con-
tinuous lines are QHGK calculations, while the dashed blue line is the
BTE-RTA result for the uncorrelated case. Figure drawn from Ref. [37].

far limited to high temperatures, T > 1000 K, mostly in radioisotope ther-
moelectric generators (RTGs) powering NASA space probes. RTGs consist
of both p- and n-doped polycrystalline SiGe with carriers concentration
n ∼ 1020 cm−3 and thermal conductivity lower than bulk crystalline SiGe
κ = 4.5-4.0Wm−1K−1 [137]. The ZT of state-of-the-art n-doped RTG is
shown in Fig. 4.9. We calculated ZT for Si0.5Ge0.5 with correlated dis-
order σ = 1.25, using σel and S for n-doped SiGe with n ∼ 1020 cm−3

from [129]. The intrinsic electronic transport coefficients of SiGe were
computed by DFT-eVCA and the semiclassical Boltzmann transport equa-
tion in Ref. [129] as a function of alloy composition, temperature, and
carrier concentration. κel is obtained by using the Wiedemann-Franz law
with an experimentally determined Lorenz number of 2.14× 10−8 V2K−2.

The impact of correlated disorder on the intrinsic ZT is substantial, as il-
lustrated in Fig. 4.9. This figure shows that ZT enhancements range from
a 4-fold increase at low temperatures to a 3-fold boost at high temper-
atures for single-crystal SiGe with uncorrelated (white) disorder, along
with a 1.5-fold improvement over the n-doped NASA RTG across all tem-
peratures.

By introducing a 1/r correlated mass disorder, the theoretical maxi-
mum ZT reaches 1.9 at T = 1200K. Moreover, ZT attains the techno-
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logically significant threshold of 1 at T = 700K, positioning SiGe as a
promising TE material for applications at moderate temperatures.





5
C O N C L U S I O N S

In this thesis, I have examined heat transport in both crystalline and
disordered systems, emphasizing the importance of anharmonic ef-

fects, particularly in glasses, where their crucial role is often overlooked.
In the first part of the thesis, I extended the Quasi-Harmonic Green-Kubo
approach beyond the single-mode relaxation time approximation. This
study highlights the interconnections between various formulations of
the Boltzmann Transport Equation, including its recent Wigner general-
ization, and Green-Kubo-based methods, such as the Quasi-Harmonic
Green-Kubo approach and its long-established precursor, the Allen-
Feldman model. The physical distinctions between these methods were
explored through their application to the antiperovskite Li3ClO.

The remainder of the thesis focuses on disordered systems, such as
glasses. On the nanoscale, the lack of periodicity clearly distinguishes
glasses from crystals. However, on sufficiently large scales, both systems
are expected to obey the same hydrodynamic equations. Computational
limitations can severely restrict the size of atomistic simulations, thereby
obscuring contributions from length scales where hydrodynamic behav-
ior emerges. Nevertheless, capturing these contributions is crucial for ob-
taining a robust and reliable description of thermal conductivity. The sig-
nificance of including these contributions is not only quantitative but also
qualitative. For instance, the purely harmonic Allen-Feldman model may
seem to yield reasonable results in finite-size samples, but its thermal
conductivity diverges in the bulk limit if harmonic disorder scattering fol-
lows Rayleigh-like scaling. This issue, recognized over 30 years ago [23,
42], but often overlooked in practical calculations, underscores the impor-
tance of incorporating anharmonic effects. Chapter 3 demonstrates how
third-order anharmonicity ensures a finite bulk thermal conductivity at
any finite temperature, while a residual divergence at T = 0K may re-
quire regularization by quantum tunneling scattering.

The tools developed to address the hydrodynamic contribution are not
limited to glasses but are readily applicable to solid solutions. Indeed,
they are valuable for designing more efficient thermoelectric devices, im-
proving our ability to manage heat and convert otherwise wasted thermal
energy into useful electrical power. For instance, they can be applied to
study disordered systems such as spatially correlated silicon-germanium
alloys. These tools are essential for capturing the effects of disorder at the
nanoscale and beyond and hold significant potential for studying a wide
range of nanostructured systems.
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A
D E TA I L S O N Q U A S I - H A R M O N I C G R E E N - K U B O
T H E O RY

a.1 geometric gauge invariance of the energy flux

In this section, the invariance of the generalized velocity matrix with re-
spect to the different conventions of the Bloch basis, here labeled geometric
gauge invariance, is discussed.

Let us consider a crystal with atomic positions Rl + rb, where Rl, rb
are respectively the Bravais lattice vector and basis vector. For simplicity
of notation, the cartesian indices are omitted. The Bloch eigenvectors are
defined as:

elbqs =
1√
Nq

ebqse
iq·(Rl+φ(b))

∑
b′
Dbb′(q)eb

′
s (q) = ω2

qse
b
qs

Dbb′(q) =
∑
l

Dbb′(Rl, 0)e−iq·(Rl+φ(b)−φ(b′)),

where Nq is the number of cells, Dbb′(Rl, 0) is the dynamical matrix
between a pair of atoms respectively in the l-th and 0-th unit cell, which is
invariant under the translation of a lattice vector, and φ is a 3D arbitrary
phase vector, which determines the convention adopted. For instance, the
two most common conventions are the "step-like " one, φ(b) = 0, and the
"smooth" one, φ(b) = rb (see for instance Ref. [22]). Let us consider the
unitary transformation between a generic convention and the "step-like"
one, indicating the latter with a bar (·̄):

Ubb′(q) = δbb′eiq·φ(b)

U(q)D(q)U†(q) = D̄(q)

U(q)eqs(q) = ēqs,

While ω̄qs = ωqs is guaranteed under any unitary transformation, the
invariance of the generalized velocity matrix can be proved by direct cal-
culation:

2
√
ωqsωqs′vqss′ =

∑
bb′

Vbb′(q)(ebqs)
∗eb

′
qs′

= ⟨eqs|V(q)|eqs′⟩
= ⟨ēs(q)|V̄(q)|ēs′(q)⟩
= 2
√
ωqsωqs′ v̄ss′(q)

where

Vbb′(q) = −i
∑
l

Dbb′(Rl, 0)(Rl + rb − rb′)e−iq·(Rl+φ(b)−φ(b′)),
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which transform as U(q)V(q)U†(q) = V̄(q). The key difference between
the convention-dependent generalized velocity matrix in Ref. [28] and
the present one mainly lies in the definition of the first moment of the
dynamical matrix Vbb′(q).

In Ref. [28], the generalized velocity matrix vss′(q), distinguished by
the QHGK one for the font, it is defined as [17]

vqss′ = ⟨eqs|∇q
√
D(q)|eqs′⟩

=
1

ωqs +ωqs′
⟨eqs|∇qD(q)|eqs′⟩,

where the first and second lines are connected by the definition of
the square root of a matrix Dbb′(q) =

∑
b′′
√
D(q)bb′′

√
D(q)b′′b′ ,√

D(q)bb′ =
∑

sωqse
b
qs(e

b′
qs)

∗. Indeed, it can be easily verified that such
a definition of vqss′ is not geometric invariant [28] for the s ̸= s′ elements.
More importantly, the geometric dependence of vqss′ affects the physical
observable, the thermal conductivity.

Since the "step-like" convention leads to size-inconsistent [28] results,
the only convention employed in WBTE implementations is the "smooth
one", which yields thermal conductivities quantitatively compatible with
the QHGK method [17] (implemented with any convention).

a.2 green-kubo mori-zwanzig thermal conductivity for

well-separated bands

The Full-BTE approach can be derived from GKMZ, Eq. (2.40), if the
Λ

−1
qss′,ktt′ elements can be neglected when s ̸= s′, t ̸= t′. In the follow-

ing section is proved that such approximation is reasonable under the
hypothesis of well-separated bands: |ωqs −ωqs′ | ≫ Γqss′,ktt′ ∀ (ktt′).

Let us decompose the Λ matrix into a diagonal part, DIJ = (−ΩII +

iΓ II)δIJ, and an off-diagonal part O = Λ−D and apply the identity:

Λ
−1

= (D+O)−1 = D−1 −D−1O(D+O)−1.

The last term can be rewritten as:
(
D−1O(D+O)−1)

)
IJ

=
∑
K

D−1
IK

(
O(D+O)−1

)
KJ

= D−1
II

(
O(D+O)−1

)
IJ

.

Since the O matrix does not diverge when |ωqs −ωqs′ | → ∞:

lim
|ωqs−ωqs′ |→∞

[ 1

ωqs′ −ωqs + iΓqss′,qss′
−

1

ωqs′ −ωqs + iΓqss′,qss′

(
O(D+O)−1

)
qss′,ktt′

]
= 0.

Therefore, only the s = s′ elements survive in this limit. Due to the re-
lation between ΛIJ and ΛJI, the argument can be repeated for the second
pair of band indices µ,µ′. Thus, for well-separated bands:

(Λ)−1
qss′,ktt′ ≈ δss′δtt′(Λ)

−1
qss,ktt. (A.1)
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Finally, since the inverse of a block matrix is still a block matrix:
Λqss,ktt ≈ Γqss,ktt, which concludes the derivation of Eq. (2.41).

a.3 computation of the memory matrix in the cubic approx-
imation

In this section, it is shown how to compute the memory matrix for a cubic
anharmonic potential, Eq. (2.23). Firstly, let us write Γ IJ matrix, Eq. (2.32),
as the FL transform of the time-correlation function of the projected time-
derivatives of the ÂI and ÂJ operators:

Γ IJ(0) =
1

G◦
JJ

∫∞
0

dt
(
Q ˙̂AI, e−iQLQtQ ˙̂AJ

)
,

where

Q ˙̂AI
.
=
1

i h
Q[â†µ1

âµ2
, Ĥ]

= +
i h1/2

2

∑
µ3µ4

Kµ1µ3µ4
X̂µ3

X̂µ4
âµ2

+

− â†µ1

i h1/2

2

∑
µ3µ4

Kµ2µ3µ4
X̂µ3

X̂µ4
, (A.2)

where X̂µ = â†µ + âµ is a "scaled" normal coordinate operator and Kµµ′µ′′

is invariant under exchange of the indices due to Schwarz’s theorem. As
explained in the main text, at our desired order of approximation, Γ ∼

O(K2), both the average and the Liouvillian operator can be evaluated in
the harmonic approximation:

Γ IJ(0) =
1

G◦
JJ

∫∞
0

dt
(
Q ˙̂AI, e−iLtQ ˙̂AJ

)◦
, (A.3)

and most importantly the memory matrix can be computed using the un-
projected Liouvillian operator [49–52]. In essence, the memory function
is expressed using the unprojected Liouvillian via a Dyson-like decompo-
sition [52]. As a consistency check, it can be observed that the orthogonal
part of the time derivative, Eq. (A.2), remains orthogonal to any ÂI dur-
ing its evolution through the harmonic Liouvillian. This property can be
directly verified by factoring out the time dependence and observing that
the harmonic average of an odd number of creation or annihilation oper-
ators is zero.

Regarding the FLT (f(ω)), it is computed through the FT (f̃(ω) ):

f(ω) =

∫∞
0

eiωtf(t)

=

∫∞
−∞ eiωtf(t)Θ(t)

=
1

2
f̃(ω) +

i

2π
P

∫∞
−∞ dω′ 1

ω−ω′ f̃(ω
′).
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where Θ(t) is the Heaviside’s function and P indicates Cauchy’s principal
value . Assuming f̃(ω) to be real, as it happens if f∗(t) = f(−t), the above
expression reduces to the Kramers-Kronig’s relations.

Combining Eq. (A.3) and Eq. (A.2), one obtains for the real part of Γ a
linear combination of terms like:

Γ
′
∼

∫∞
−∞ dt

∫β
0

dλ ×

Kµ1µ5µ6
Kµ3µ7µ8

〈
â†µ5

(τ)â†µ6
(τ)âµ2

(τ)â†µ4
âµ7

âµ8

〉◦

where τ = t − i hλ. Applying Wick’s theorem and reminding that
eβ hω−1

 hω δ(ω) = βδ(ω), the previous equation becomes:

2πβKµ1µ5µ6
Kµ3µ7µ8

nµ5
nµ6

(nµ2
+ 1)×

δ(ωµ5
+ωµ6

−ωµ2
)(δµ5µ7

δµ6µ8
δµ2µ4

+ δµ5µ8
δµ6µ7

δµ2µ4
).

a.3.1 Scattering matrix and single-body memory function

By applying repeatedly the procedure above, all elements of the memory
matrix can be computed. Among those, there are two cases particularly
relevant to the discussion in Ch. 2: the derivation of the Full-BTE and the
SM approximation.

For the former case, the intraband memory matrix is fundamental to
derive the Full-BTE from the GKMZ formalism. It reads:

Γqskt(z = 0) = 2γqsδqkδst + π h
∑
q′s′

|Kqsktq′s′ |
2nq′s′×

[
(nqs + 1)

nkt
δ(ωqs +ωkt −ωq′s′) −

nqs

nkt
δ(ωqs +ωq′s′ −ωkt)

−
nqs + 1

nkt + 1
δ(ωkt +ωq′s′ −ωqs)

]
,

where only triplets of phonons that conserve the crystal momentum are
considered since |Kqsktq′s′ |

2 ∝ δq−q′−k,G, where G is any reciprocal lattice
vector.

For the SM approximation, it is insightful to express the diagonal el-
ements of Γ II(0) through the memory function of the greater/lesser
Green’s function, Eq. (2.38). The latter can also be computed by apply-
ing the MZ procedure with a few minor changes. For instance, since the
goal is ⟨âµ(t)â†µ⟩ it is convenient to redefine the Kubo inner product
without the integration in the imaginary time i hλ, a possibility explored
in Ref. [47]. Then, one obtains:

γ̃<
′

µ1
(ω) =

π h

2nµ1

∑
µ2µ3

|Kµ1µ2µ3
|2
[
nµ2

nµ3
δ(ω−ωµ2

−ωµ3
)+

(nµ2
+ 1)nµ3

δ(ω+ωµ2
−ωµ3

) +nµ2
(nµ3

+ 1)δ(ω−ωµ2
+ωµ3

)+

(nµ2
+ 1)(nµ3

+ 1)δ(ω+ωµ2
+ωµ3

)
]
, (A.4)

where γ̃<
′

µ (ωµ) = γµ as computed from FGR, Eq. (2.24).
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D E TA I L S O N T H E H Y D R O D Y N A M I C E X T R A P O L AT I O N

b.1 acoustic plane waves basis

For a system of N atoms, |Qb⟩ is a 3N-dimensional vector whose projec-
tion on the Ith atomic site in the α direction is:

⟨Iα|Qb⟩ = 1√
N
εbα(Q)eiQ·RI , (B.1)

where εb(Q), with b = L, T1, T2, are three orthonormal polarization unit
vectors. The scalar product between two plane-wave states is:

⟨Qb|Kb′⟩ = 1

N

∑
α

εb∗α (Q)εb
′

α (K)
∑
I

ei(K−Q)·RI , (B.2)

where the last sum is proportional to the Fourier Transform of the atomic
number density, ρ(r) = 1

V

∑
I δ(r − RI), i.e.

ρ̃(k) =
1

V

∫
ρ(r)e−ik·rd3r

=
1

V

∑
I

∫
δ(r − RI)e

−ik·rd3r

=
1

V

∑
I

e−ik·RI .

(B.3)

Assuming that the material is homogeneous at length scales larger than
a certain wavelength, λ, implies that ρ̃(k < 2π/λ) tends to a Dirac-delta
function; consequently:

⟨Qb|Kb′⟩ =
∑
α

εb∗α (Q)εb
′

α δQK

= δbb′δQK.
(B.4)

Therefore, the subset of vectors |Qb⟩ with |Q| < 2π/λ is effectively or-
thonormal, as numerically observed in Fig. B.1. Regarding the complete-
ness problem, we are only interested in describing the propagons, not all
the normal modes, which on the other hand would require a basis of 3N
vectors. It can be argued that this set is sufficient for this purpose [85], as
it can also be qualitatively understood from the plot of the VDSF, where
low-frequency modes are decomposed in small-Q plane waves only.

It is now possible to write the propagon contribution to thermal con-
ductivity on the plane-wave basis. The first term in the right-hand side
of Eq. 3.12 in the main text couples only pairs of propagons. This is not
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Figure B.1: The orthonormality of acoustic plane-wave vectors is tested by eval-

uating V
N |ρ(Q − Q′)| = 1

N

∣∣∣
∑
ei(Q−Q′)

∣∣∣ ≈ δQQ′ . Tests are performed
on aSi,aSiC, and aSiO2 configurations with N = 13824, 13824, and
12288 atoms, respectively, drawn from Ref. [35]. Note the logarithmic
scale on the y-axis.

a property of the energy flux operator, which, in principle, has non-zero
components for all different pairs of normal modes, but it is a conse-
quence of the narrow Lorentzian functions appearing in the QHGK theory,
Eq. (2.17). Taking into account this separation in frequency thanks to the
Heaviside step function, let us consider the (resonant part of) energy flux
operator, Eq. (2.10), :

Ĵ =
−i h

V

∑
µµ′

ωµ +ωµ′

2
vµµ′â†µâµ′Θ(ωP −ωµ)Θ(ωP −ωµ′)

=
−i h

V

∑
µµ′∈P

ωµ +ωµ′

2
vµµ′â†µâµ′

(B.5)

where the P subscript means that only pairs of propagons are involved;
The generalized velocity matrix [26, 33] is defined as in Eq. (2.9).

In order to get to Jbb
′

Q , the normal modes eigenvectors are expanded in
plane waves

ϵ
µ
Iα =

1√
N

∑
Qb

⟨Qb|µ⟩eiQ·RIεbα(Q),

while observing that for propagons:
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P∑
µ

ωµ⟨µ|Qb⟩âµ ≈cbQ
P∑
µ

⟨µ|Qb⟩âµ

≈cbQâQb.

(B.6)

as a consequence of the observation of the sharp dispersion in the VDSF.
This translates into an orthogonality relation of normal modes whose
frequency is far from the dispersion line, i.e., |⟨Qb|µ⟩| ≈ 0 if |ωµ− cbQ| ≫
Γb(Q). Plugging the last equations into the energy flux operator of the
propagons yields:

Ĵ =
−i h

VN

∑
QKbb′

cbQ+ cb′K

4
√
cbcb′QK

â
†
QbâKb′εb∗α (Q)εb

′
β (K)

×
∑
IJ

(RI − RJ)D
Jβ
Iαe

−i(Q·RI−K·RJ).

The derivation is analogous to the crystalline case, Sec. A.1, under the
two following assumptions. Firstly, the assumption that the material is
practically homogeneous above the λ scale, the dynamical matrix can
only depend on RI − RJ. Secondly that |Qb⟩ are a linear combination
of almost degenerate eigenvectors with eigenvalue ≈ c2bQ

2, an assump-
tion motivated by the sharpness of the VDSF. Using the first one, with a
change of variables (RI, RJ) 7→ (RI + RJ, RI − RJ), one obtains

1

N

∑
RI+RJ

e−i(Q−K)·(RI+RJ)/2 = δQK

and therefore:

Ĵ =
 h

V

∑
Qbb′

cb + cb′

4
√
cbcb′

â
†
QbâQb′εb∗α (Q)εb

′
β (Q)∇QD

β
α(Q),

where the scalar product implies the sum over the cartesian indices
and

∇QD
β
α(Q) =∇Q

∑
RI−RJ

e−iQ·(RI−RJ)Dβ
α(RI − RJ)

=
∑

RI−RJ

−ie−iQ·(RI−RJ)(RI − RJ)D
β
α(RI − RJ).

(B.7)

For b = b′, if the acoustic waves were exactly eigenvectors one could
use the Hellmann-Feynman’s theorem. Thus, using the second assump-
tion, one obtains:

∑
α,β

εαb(Q)Dβ
b(Q)∇QΦ

β
α(Q) ≈ 2c2bQ.



96 details on the hydrodynamic extrapolation

Finally, the energy flux becomes

Ĵ =
 h

V

∑
Q,b

c2bâ
†
QbâQbQ + mixed-polarization terms, (B.8)

where the mixed-polarization terms do not contribute if the acoustic
bands are well-separated in frequency, and therefore they have not been
included in our calculations.

b.1.1 Displacement and normal mode evolution

While the VDSF is connected through Eq. (3.4) to the Green’s function of
the creation/annihilation operators, it is common in the literature and
in MD simulations to describe the lattice dynamics in the hydrodynamic
limit through the displacements or the velocities [58, 99, 171]. Therefore,
for the sake of clarity let us outline in the harmonic case the connection
between the VDSF and :

S◦ub
(Q,ω) =

∫
dω eiωt⟨ûQb(t)û−Qb⟩,

where

ûαQb =
1√
N

∑
i

εbα(Q)eiQ·RIûαi

=
1√
N

∑
iµ

εbα(Q)eiQ·RI
eiαµ√
Mi

ξ̂µ

=
1√
N

∑
iµ

εbα(Q)eiQ·RI
eiαµ√
Mi

1√
2ωµ

(â†µ + âµ)

and Eq. (2.5) is used between the last two lines. After some algebraic
manipulations, one obtains:

S◦ub
(Q,ω) =

∑
µ

|⟨Qb 1√
M

|µ⟩|2 1

2ωµ
×

[(n(ωµ) + 1)δ(ω−ωµ) + n(ωµ)δ(ω+ωµ)]

where the mass term indicates the application of the following diagonal
matrix

(
1√
M

)
ij
= δij

1√
Mi

. If the glass is monoatomic as aSi, then

S◦ub
(Q,ω) =

1

M

1

2|ω|
[(n(ω) + 1)S◦b(Q,ω) +n(−ω)S◦b(Q,−ω)].

However, for a multi-component glass as aSiO2 one could wonder if the
sound damping coefficients extracted from the two spectra are different.
Yet, in the hydrodynamic limit, one expects the mass density to be practi-
cally homogenous. Indeed, Fig. B.2 shows negligible differences between
the Γ◦ computed for aSiO2 using the two vectors, |Qb⟩ or |M−1/2Qb⟩,
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in Eq. (3.17). Assuming the anharmonic linewidth can be included with
Matthiessen’s rule [105], we expect experiments to roughly find the same
sound damping coefficients whether Sub

or Sb is actually probed. Analo-
gous considerations can be made for the velocities/momenta.

101

ω (rad/ps)

10−1

100

101

Γ
◦

(r
a
d
/
p
s)

T

|Qb〉
|M−1/2Qb〉

101

ω (rad/ps)

L

Figure B.2: Harmonic contribution to sound damping coefficients Γ◦ of aSiO2

using |Qb⟩ or |M−1/2Qb⟩ as initial vector of the Haydock’s algo-
rithm. Test performed on a aSiO2 configuration withN = 12288 from
Ref. [25].

b.2 hydrodynamic finite-size scaling

The following section compares, for different sizes and smearing pa-
rameters, the Allen-Feldman propagon contribution to thermal conduc-
tivity with the theoretical one computed using Eq. (3.10). The discrete
version has been preferred to Eq. (3.11), with proper infrared cutoffs
ωb

min = cb2π/L, since for smaller samples the number of Q ∈ P is insuffi-
cient to justify the continuous limit. For the largest size of each material,
no significant difference has been found. To represent the effect of the
Heaviside function of Eq. (3.12) in the numerical data, the contribution of
the acoustic sound waves nearest to the border of the propagon region,
cbQ = ωP, is halved. This contribution will be referred to as the border
contribution.

Firstly, the method is tested for a range of smearing parameters η, as
used in the AF approach, instead of employing γµ(T) as in the QHGK

method. This choice is motivated by the desire to avoid the QHGK smear-
ing problem, which could effectively alter the minimum angular fre-
quency. As long as γµ does not vary significantly for modes within the
frequency range between ωmin and ωP, which excludes the vanishing fre-
quency limit where γ approaches zero, the smearing parameter η can be
regarded as a rough representation of an average γµ.
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Fig. B.3 demonstrates good agreement between the AF propagon ther-
mal conductivity and Eq. (3.10), which implicitly depends on the system
size through the spacing of the wavevectors. Consistent with Fig. 3.5, the
propagon contribution is greatest for aSi, the material least scattered by
harmonic disorder, and progressively smaller for aSiC and aSiO2. The
slight shift between the numerical and theoretical data for aSiO2, even
for sufficiently large η, is discussed below.

However, the AF thermal conductivity drastically decreases below a cer-
tain value of η, inverting its previously monotonically decreasing trend
with the smearing parameter. While κP(η) being a decreasing function
can be physically rationalized—since η effectively increases the harmonic
sound damping coefficients, Γ◦ → Γ◦ + η—the abrupt inversion likely in-
dicates the smearing problem discussed earlier: η becomes much smaller
than the average spacing between modes.

After testing our theory for a range of different smearing parameters,
the model is further evaluated for varying system sizes using a relatively
large fixed η, selected from the results of the previous plot.

The border contribution mentioned earlier, which would be negligi-
ble as a surface term in the hydrodynamic limit, becomes significant for
smaller system sizes, particularly for the material with the largest Γ◦,
aSiO2. Specifically, since the normal modes "associated" with the acoustic
sound wave cbQ are theoretically distributed around the acoustic pole
with a broadening Γ◦, it is not straightforward to determine the exact
contribution of sound waves with cbQ ≈ ωP to the thermal conductivity.
This uncertainty is represented by the error bars in the theoretical data of
Fig. B.4, with their value set to half of the surface contribution.

While additional approximations in the derivation of Eq. 3.10—such as
the neglected interband contributions between polarizations—may con-
tribute to discrepancies, the surface error alone is sufficient to account for
most of the observed differences between the numerical and theoretical
data points.

b.3 interpolation scheme for the anharmonic linewidths

The computation of third-order anharmonic linewidths in glasses gener-
ally constitutes another bottleneck of QHGK calculations [33], as it scales
as N3. Thus, this computation by itself would severely limit our ability
to study size effects. It is thus customary to adopt some interpolation
scheme for obtaining the linewidths of a large model starting from a
smaller one [26, 33, 66]. First, in order to smoothen the data, we apply a
Gaussian filter to the computed anharmonic linewidths at each tempera-
ture, γµ(T):

γ(ω, T) =

∑
µ γµ(T)

1√
2πσ2

exp
[
(ω−ωµ)

2

2σ2

]

∑
µ

1√
2πσ2

exp
[
(ω−ωµ)2

2σ2

] . (B.9)
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Figure B.3: Allen-Feldman propagon contribution to thermal conductivity as a
function of the smearing parameter η for finite samples at T = 500K.
For each of the three glasses, the AF data (markers) is compared with
the theoretical results (solid lines) computed using Eq. (3.10).

Then, the smoothed function is spline-interpolated with the condition
limω→0 γ(ω, T) = 0 ∀T . The γ(ω, T) are averaged over disorder by com-
puting the mean of the interpolated linewidths over different same-size
samples of each material. The spline functions are finally evaluated on
the frequencies of larger samples in order to obtain their approximated
anharmonic linewidths.
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Figure B.4: Allen-Feldman propagon contribution to thermal conductivity for a
fixed smearing parameter η = 0.4 rad/ps at T = 500K, shown for
different system sizes. The size is indicated by ℓ = L/L0, represent-
ing the number of times the unit cubic cell is repeated, with each unit
cell containingNunit = 8, 8, 24 atoms for aSi,aSiC,aSiO2, respectively.
For each of the three glasses, the AF data (markers) is compared with
the theoretical results (solid lines) computed using Eq. (3.10). The er-
ror bars for the AF data represent the standard deviation across ten
samples of the same size, while the error bars for the theoretical re-
sults arise from the discretization of the wavevectors Q, as described
in the text.
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For all materials, the computation of the thermal conductivity is divided
into three parts: the generation of the atomic configuration in mechanical
equilibrium, the computation of the IFC, and finally the computation of
the lattice thermal conductivity. The first two steps involve different codes
depending on the material, while thermal conductivity calculations us-
ing lattice-dynamical methods are always performed through the κALDo
code [33]. The computation of the VDSF, needed by the hydrodynamic ex-
trapolation technique, is computed through the “hydro-glass” code avail-
able on GitHub [172].

c.1 crystals

The cSi calculations are performed from first principles using DFT, fol-
lowing Ref. [37]. Second- and third-order IFC are obtained from standard
[145–147] and third-order [173–175] Density Functional Perturbation The-
ory, using the pw.x/ph.x code in the Quantum ESPRESSO™ [176–178]
and D3Q [179] codes, respectively. In the computation of the lattice ther-
mal conductivity, a dense q-mesh of [24, 24, 24] is used. Due to its com-
putational cost, the inversion of the scattering matrix is performed using
the self-consistent algorithm provided by the κALDo code.

The Li3ClO compound is simulated in a cubic cell with edge a0 =

3.875Å, using the Buckingham potential [180], and the PPPM [181]
method to treat the Coulomb interaction. Second- and third-order in-
teratomic force constants were computed with LAMMPS using a finite-
difference method in a [5, 5, 5] supercell. Further details on Refs. [18, 57].

c.2 glasses

Amorphous samples are obtained through a melt-and-quench procedure
starting from a crystalline conventional cubic cell replicated ℓ times along
each Cartesian direction. The molecular dynamics simulations are car-
ried out using the Large-scale Atomic/Molecular Massively Parallel Sim-
ulator (LAMMPS [182]). The melt-and-quench procedures are performed
according to the following recipes:

aSiO2. The interatomic forces are described with the Vashishta force-
field [183]. Simulations are carried out with a timestep of 1 fs. Start-
ing from the β-cristobalite cubic conventional unit cell with a mass
density of 2.20, g cm−3, the crystal is melted at 7000K. The molten
sample is quenched from 7000K to 500K in 10ns [184, 185]. The
sample is then thermalized at 500K for 400ps, and finally equi-
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librated for 100ps in the NVE ensemble. For each size, we ran-
domized the seed of the thermostat to obtain ten different samples.
The average mass density of the amorphous samples is 2.43 g cm−3,
with a standard deviation across sizes of 0.01 g cm−3.

aSiC. The interatomic forces are described with the Vashishta force-
field [186, 187]. Simulations are carried out with a timestep of
1 fs. For each size, the starting configuration is a crystalline cubic
zinc-blend structure with a mass density of 3.22 g cm−3. Following
Ref. [186], the system is gradually heated from 300K to 4000K at
constant null pressure. The solid/liquid transition is characterized
by a sharp increase in the volume between 3000 and 3500K [186].
Ten different liquid configurations are extracted every 2ps from an
NVE trajectory. The molten configurations are then quenched to
1000K in 300ps, and thermalized for 80ps at constant pressure. The
system is further cooled down to 500K with the same procedure.
The average mass density of the amorphous samples is 2.98 g cm−3,
with a standard deviation across sizes of 0.01 g cm−3.

aSi. The interatomic forces are described with the Tersoff force-
field [121]. Simulations are carried out with a timestep of 0.5 fs. For
each size, the starting configuration is a crystalline diamond con-
ventional unit cell replicated ℓ times along each Cartesian direction.
Following Ref. [188], the crystal is melted at 6000K and brought
to 3000K in 2ns at fixed zero pressure. Then the system is equili-
brated at 3000K for another 2ns. The molten sample is successively
quenched from 3000K to 2000K in 10ns, and finally annealed from
2000K to 300K at fixed volume in another 10ns. Each glassy sample
is equilibrated at 300K for 10ns. For each size, ten different samples
are prepared according to this recipe beginning the quenching pro-
cedure from liquid configurations obtained initializing the atomic
velocities with different random seeds. The average mass density
of the amorphous samples is 2.275 g cm−3, with a standard devia-
tion across sizes of 0.003 g cm−3. For aSi, also GKMD calculations
are carried out, using the GPUMD code [189], where the energy flux
is properly implemented for the Tersoff force-field [190]. Each ther-
mal conductivity value is obtained through the Helfand-Einstein
integration [7, 13] of the energy flux autocorrelation function. The
flux is sampled every 2 fs from a canonical dynamics controlled by
the Bussi-Donadio-Parrinello thermostat [191].

c.3 sige alloys

The SiGe alloys are simulated from first principles, using the Quantum

ESPRESSO™ [176–178] and D3Q [179] codes as for the silicon crystal cSi.
Starting with norm-conserving pseudopotentials based on the approach
of von Barth and Car [192] for both silicon and germanium, the virtual
crystal pseudopotentials for intermediate concentrations are generated
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using a dedicated tool within the QE distribution [176]. For all concen-
trations, the self-consistent calculations on the relaxed virtual diamond
crystals are performed on a [6, 6, 6] Monkhorst-Pack [193] mesh, with an
energy cutoff of 24, Ry for the plane-wave expansion and a convergence
threshold of 10−12. The second- and third-order IFC are then computed
with a threshold of 10−16, using a [7, 7, 7] and [5, 5, 5] supercell, respec-
tively. The ab initio calculations are conducted for the following set of
concentrations: x = 0, 0.1, 0.3, 0.5, 0.7, 0.9, 1, while the lattice parameters
and IFC for any other concentration are obtained by linear interpolation
of the two nearest ab-initio concentrations.

We use these IFC for the vVCA calculations of anharmonic linewidths
and thermal conductivity, as well as for the generation of disordered
alloys in real space. For the crystalline case, we use a dense q-mesh
[28, 28, 28]. For the disordered alloys, both in the colored and white case,
the thermal conductivity and VDSF calculations are performed on sizes
corresponding to [18, 18, 18] and [28, 28, 28] supercells, respectively. To
take into account the stochastic noise of the generation of the disordered
alloys, for each size the results are averaged over 4 samples.





D
D E TA I L S O N S PAT I A L LY C O R R E L AT E D S I G E A L L O Y S

d.1 generation of correlated mass disorder

The generation of atomic configurations with correlated mass consists
of two steps: firstly, a spatially correlated mass distribution using the
standard algorithm from Ref. [143, 169]. The algorithm would suffice if
a continuous range of mass values were available, which is not the case
here. Therefore, a Monte Carlo minimization is employed to refine the
solution and reduce errors arising from the highly discrete set of masses:
mGe and mSi. The Germanium concentration is fixed at x = 0.5 for all
correlated configurations.

Given a desired correlation function C(r), the goal is to build a residual
mass distribution δM(r) =M(r) −N−1

atoms
∑

IMI according to Eq. 4.9.
This can be accomplished thanks to the convolution properties of the

FT, computed with the Fast Fourier Transform algorithm. In fact, the mass
distribution can be obtained by imposing the following condition:

δM̃(q) =
√

|C̃(q)|eiφ(q) (D.1)

where φ(q) is an arbitrary phase. Stochastically equivalent configurations
can be generated By extracting this arbitrary phase from a uniform dis-
tribution [0, 2π], with the additional requirement of φ(q) = −φ(−q) to
guarantee a real δM(r) for a crystal with inversion symmetry. Since we
are interested in correlation on scales larger than the bond length, ≈ 2Å,
δM(r) is computed on the lattice, and both atoms in the unit cell are
assumed to have the same mass.

Then, the δM(r) is retrieved, By Inverse FT, and discretized:

δMD(rI) ∝ sign(δM(r))

while conserving its variance and ensuring a zero average. AssigningmGe

for positive values and mSi for negative ones, or vice versa, would con-
clude the algorithm from Ref. [143]. Without a finer grid of mass values,
e.g. Ref. [143] used 5 values, the discretization introduces noise. In order
to find the optimal δMD, the following loss function is minimized by a
Monte Carlo algorithm:

L(t) =
∑
q̸=0

|C̃(q) − |δM̃D(q, t)|2|

where t indicates the Monte Carlo step. Each Monte Carlo move consists
of switching two elements i, j of MD(rI) ⇌ MD(rJ). q = (0, 0, 0) is ex-
cluded by the loss function since C(q = (0, 0, 0)) ∝

∑
ij δMIδMJ cannot
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be modified by the Monte Carlo move and it is determined by the aver-
age of δMD(r), initially imposed to zero. An example of the effect of this
Monte Carlo refining is shown in Fig. D.1.

The above algorithm has been applied with a short-ranged and a long-
ranged correlation function, respectively e−r2/(2σ2l20) and e−ϵr/r. Being
a the lattice parameter of the diamond crystal, the parameters indicate
respectively the cubic root of the unit-cell volume l0 = V

1/3
0 = (a3/4)1/3,

an adimensional parameter σ to determine the cutoff of the Gaussian,
and finally ϵ is a regularization parameter order of magnitudes smaller
than the inverse of our largest side L to avoid the non-analytical part of
the FT of 1/r without significantly altering the ∼ 1/r behavior for r < L.
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Figure D.1: Example of mass correlation distribution before and after the Monte
Carlo refining procedure. All the quantities are computed on a cubic
lattice with lattice parameter a = 1 and supercell [16, 16, 16] for a
desired correlation function C(r) ∝ e−ϵr

r , where ϵ = 10−4. Figure
drawn from Ref. [37].

d.2 details on the hydrodynamic extrapolation

As discussed in the previous chapter [35], ωP plays the role of frequency
separator between the acoustic crystalline-like contribution and the “dif-
fusive” contribution computed on the disordered system. While ωP re-
minds and is related to the crossover frequency between propagons and
diffusons, determined with the Ioffe-Regel criterion [86], it is usually
smaller and it allows more versatility of choice. The choice of ωP is
arbitrary as long as it is in a region where the real-space disordered
contribution is well-converged and the conditions for the acoustic basis
are satisfied, i.e., the VDSF shows well-separated longitudinal and trans-
verse acoustic bands. This is exemplified in Fig. D.2, where the thermal
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conductivity is reported as a function of ωP, relative to the result for
ωP/2π = 5 THz. Indeed, between 2 and 7THz, the relative variation for
three different concentrations is less than 1%.

Another key concept for the success of the hydrodynamic extrapolation
is the assumption that the diffusive part of thermal conductivity is hardly
affected by finite-size effects and therefore it can be computed from a
disordered system of moderate size. Such an assumption is empirically
verified, as shown in Fig. D.3, where κD is studied as a function of ℓ, the
number of times the 2-atoms unit cell has been repeated in each direction.
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Figure D.2: Bulk lattice thermal conductivity as a function of ωP divided by
its value for ωP/2π = 5THz, for different concentrations at room
temperature. Figure drawn from Ref. [37].
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