

SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI

SISSA Digital Library

Graphene Oxide Nanosheets Reshape Synaptic Function in Cultured Brain Networks

Original

Graphene Oxide Nanosheets Reshape Synaptic Function in Cultured Brain Networks / Rauti, Rossana; Lozano, N.; León, V.; Scaini, Denis; Musto, Mattia; Rago, I.; Ulloa Severino, Francesco Paolo; Fabbro, A.; Casalis, L.; Vázquez, E.; Kostarelos, K.; Prato, M.; Ballerini, Laura. - In: ACS NANO. - ISSN 1936-086X. -10:4(2016), pp. 4459-4471. [10.1021/acsnano.6b00130]

Availability:

This version is available at: 20.500.11767/14720 since:

Publisher:

Published DOI:10.1021/acsnano.6b00130

Terms of use:

Testo definito dall'ateneo relativo alle clausole di concessione d'uso

Publisher copyright

note finali coverpage

(Article begins on next page)

Graphene oxide nanosheets reshape synaptic function incultured brain networks

- 3
- 4 Rossana Rauti, Neus Lozano[§], Veronica León[‡], Denis Scaini[#], Mattia Musto^{θ}, Ilaria Rago[#],
- 5 Francesco P. Ulloa Severino^{\emptyset}, Alessandra Fabbro^{$\|}$, Loredana Casalis[#], Ester Vázquez^{\ddagger}, Kostas</sup>
- 6 Kostarelos[§], Maurizio Prato^{$\| \& v \|$} and Laura Ballerini^{$p \ * \ * \ * \ }$}
- 7
- 8
- 9 Life Science Department, University of Trieste, 34127 Trieste, Italy
- 10 [§]Nanomedicine Lab, School of Medicine and National Graphene Institute, Faculty of Medical
- 11 & Human Sciences, University of Manchester, M13 9PL Manchester, United Kingdom
- 12 [‡]Departamento de Química Orgánica, Facultad de Ciencias y Tecnologías Químicas-IRICA
- 13 Universidad de Castilla La-Mancha, 13071 Ciudad Real, Spain
- 14 [#]ELETTRA Synchrotron Light Source, 34149 Trieste, Italy
- 15 ^øInternational School for Advanced Studies (SISSA), 34136 Trieste, Italy
- 16 Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste,
- 17 Italy
- 18 [&]CIC BiomaGUNE, Parque Tecnológico de San Sebastián, Paseo Miramón, 182, 20009 San
- 19 Sebastián (Guipúzcoa), Spain
- 20 Basque Foundation for Science, Ikerbasque, Bilbao 48013, Spain
- 21
- 22 * Corresponding authors: Laura Ballerini International School for Advanced Studies (SISSA)
- via Bonomea 265 I-34136 Trieste laura.ballerini@sissa.it ; prato@units.it
- 24
- 25
- 26
- 20
- 28
- 29
- 30
- 31
- 32

1 Abstract

Graphene offers promising advantages for biomedical applications. However, adoption of
graphene technology in biomedicine also poses important challenges in terms of understanding
cell responses, cellular uptake or the intracellular fate of soluble graphene derivatives. In the
biological microenvironment graphene nanosheets might interact with exposed cellular and
subcellular structures resulting in unexpected regulation of sophisticated biological signaling.
More broadly, biomedical devices based on the design of these 2D planar nanostructures for

8 interventions in the central nervous system (CNS) requires an accurate understanding of their

9 interactions with the neuronal milieu. Here, we describe the previously unreported ability of

10 graphene oxide nanosheets to down-regulate neuronal signaling without affecting cell viability.

11

12 Keywords

13 Nanotechnology; graphene; patch-clamp; synaptic terminals; exocytosis; FMI-43;

14 microvesicles.

15

16 **Text**

17 Graphene is a 2D plate-like material consisting of sp²-hybridized carbon atoms organized 18 in a hexagonal lattice and characterized by, among other properties, high electrical conductivity 19 and mechanical flexibility¹³. In addition to the successful exploitation of graphene and 20 graphene-based materials in an increasing number of industrial products, current applications of 21 graphene hold the potential to revolutionize specific areas of medicine²⁴. Biomedical 22 developments in general, and in neurology in particular, are focusing on few-layer graphene 23 sheets to manufacture novel bio-devices, including biosensors, interfaces, tissue scaffolds, drug 24 delivery and gene therapy vector systems⁴. Successful design of multifunctional neuro-devices 25 based on graphene will expose brain cells and neuronal circuits directly to this material by 26 injection or implantation⁴⁷. In this context, the exploration of the interactions between graphene 27 nano- and micro-sheets with the sophisticated signaling machinery of nerve cells, with a 28 particular focus on potential graphene flake interactions with the hydrophobic membrane 29 domains, is of great importance¹⁸⁹. Such interactions may favor graphene translocation, or 30 adhesion to cell membranes^{8,10}, potentially interfering with exquisite membrane activities, such 31 as the exocytic and endocytic trafficking systems, crucial to physiological synaptic 32 transmission^{8,11}.

Here we explore for the first time by patch clamp and fluorescence imaging the ability of graphene (GR) and graphene oxide (GO) nanosheets to interfere with synaptic signaling once hippocampal cultured neurons are exposed for one week to a growth medium containing thin sheets of such materials at 1 or 10 μ g/mL (concentrations reported not to induce cell death¹²¹⁴).

- 1 We further investigated whether, in the absence of explicit cell toxicity, such materials affected
- 2 the ability of astrocytes to release synaptic-like microvesicles¹⁵ (MV) in pure glial cultures. Our
- 3 results describe the potential of GO nanosheets to alter different modes of inter-neuronal
- 4 communication systems in the CNS hinting at opportunities for novel neuromodulatory
- 5 applications or highlighting subtle, but potentially unwanted, subcellular interactions.
- 6

7 Results and Discussion

8 To address the issue of prolonged exposure of a functional brain network to graphene 9 sheets we used different materials. Graphene oxide sheets of large and small lateral dimensions 10 (I-GO and s-GO, respectively) were synthesized using a modified-Hummers method (see 11 Supporting Information). Following the reaction, the GO-gel like upper layer was extracted 12 carefully by using warm water, resulting in the large GO (1-GO). Final concentrations ranged 13 between 1 and 2mg/mL were obtained with a yield of ca. 10%. I-GO was freeze-dried, 14 reconstituted in water for injection, sonicated for 5 mins and centrifuged at room temperature to 15 generate the small GO (s-GO). The lateral dimension of GO sheets was controlled by drying and 16 sonicating the I-GO to obtain the s-GO sheets, that were always at least one order of magnitude 17 smaller, without introducing any significant changes among their surface properties (see Table 18 S1).

19 The GO dispersions in aqueous media were homogenous, of brownish color and stable at 20 room temperature for more than 6 months. The physicochemical characterization of the l-GO and 21 s-GO dispersions is shown in Figure 1 (a-f), and in the Supporting Information Figure S1 and S2. 22 Their structural properties (lateral dimension and thickness) were studied by optical microscopy, 23 transmission electron microscopy (TEM) and atomic force microscopy (AFM). Optical 24 properties were studied by UV-Vis and fluorescence spectroscopy. Raman spectroscopy and 25 laser Doppler electrophoresis (measuring ζ -potential) were used to assess the surface properties 26 of the GO materials. Their Raman spectrum showed D and G bands at 1319 cm⁻¹ and 1596 cm⁻¹, 27 respectively, characteristic of most poly-aromatic hydrocarbons. The D to G band intensity ratio 28 (ID/IG) was calculated at 1.3, corresponding to the metric of disorder in the graphitic structure. 29 The surface charge measured with a Zetasizer instrument showed an average ζ -potential of -50 30 mV, indicating flakes of high negative surface charge. To elucidate the degree of surface 31 functionalization, thermo-gravimetric analysis (TGA) and X-ray photoelectron spectroscopy 32 (XPS) survey spectra were performed to quantify the purity of the GO (> 99%) and the C:O ratio 33 XPS high resolution C1s spectra were recorded to elucidate the contribution of individual 34 functional groups such as carboxylic, carbonyl, epoxide and hydroxyl (Table S2b). All fittings 35 shown were performed using the CasaXPS software and the different regions were assigned 36 according to Nist XPs and lasurface databases. Deconvolution XPS spectra and assignment of

the functional groups indicated that hydroxyls were the least abundant species in the GO materialproduced (see also Supporting Information, Table S2a).

3 Aqueous dispersions of graphene (GR) flakes were prepared using ball-milling for the 4 exfoliation of graphite through interaction with melamine, as previously described^{16,17} (see 5 Supporting Information). Due to the GR preparation process, graphene dispersions can contain 6 traces of melamine. In order to determine the exact amount of these traces, final graphene 7 dispersions (0.09 mg/mL) were evaluated by elemental analysis indicating 0.9 ppm of melamine. 8 Experiments that involved incubation in neurons also included controls exposed to equal 9 amounts of melamine alone (see Supporting Information). The physicochemical characterization 10 of GR dispersions is shown in Figure S3. The lateral size, studied by TEM, was found to range 11 between 500nm-3µm (Figure S3a-b). Optical properties were studied by UV-Vis absorption 12 spectroscopy. Dispersions were diluted and their UV-Vis absorption spectra were recorded 13 (Figure S3). The spectra are featureless in the Vis–NIR region, as expected. The absorbance at 14 660 nm, divided by cell length, is plotted against the concentration exhibiting Lambert-Beer 15 behavior (Figure S3d). Raman spectroscopy revealed differences between the GO and GR. 16 Graphene exhibits G and 2D modes around 1573 and 2700 cm-1, that satisfy Raman selection 17 rules, while the D peak, around 1345 cm-1 requires a defect for its activation (Figure S3e). The 18 D to G band intensity ratio was calculated at different locations, giving a significant low value 19 (0.22) in comparison with GO. TGA was also used to quantify the functionalization degree of 20 GR. The low weight loss observed in GR (7%) corroborated the low quantity of oxygen groups 21 generated by the exfoliation process (Figure S3f). 22 We used hippocampal neurons isolated and cultured for 8-10 days in vitro (DIV). 23 Primary neuronal cultures were incubated at 2 DIV in the presence of GR or s-GO (at $1 \mu g/mL$ and 10 µg/mL; see Supporting Information) maintained for 6 to 8 days and afterwards visually 24 25 identified neurons were patch clamped under voltage clamp. Hippocampal neuron maturation 26 and viability were assessed using single-cell recordings (see Supporting Information) to measure 27 the cell passive membrane properties that are accepted indicators of neuronal health¹⁸⁻²⁰that 28 allowed comparison among the recorded cells. These parameters (membrane capacitance and 29 input resistance) displayed similar values in all treatment conditions (summarized in Table 1).

Table 1. Neuronal passive membrane properties upon GR and s-GO exposure $(1 \mu g/mL \text{ and } 10 \mu g/mL \text{ respectively})$.

	Capacitance (pF)	Input Resistance (MΩ)
Control, n=24	59 ± 4	976 ± 138

Melamine _{1 a-28}	46 ± 5	1036 ± 132
s-GO _{1 n-27}	62 ± 8	876 ± 145
GR _{1 a-30}	50 ± 5	1029 ± 161
	57 ± 7	744 ± 82
Melamine _{10 B-25}	72 ± 16	717 ± 106
S-GO _{10 n-18}	67 ± 6	997 ± 156
GR _{10 n=25}	59 ± 18	1223 ± 501

1

2 To investigate synapse formation and activity after *in vitro* growth of neurons, we

3 monitored the occurrence of spontaneous postsynaptic currents (PSCs). The appearance of PSCs

4 provided clear evidence of functional synapse formation and it is a widely accepted index of

5 network efficacy^{21,22}.

Figure 1. Characterization of small graphene oxide (s-GO) of biological-grade; graphene oxide exposure at high concentration influences synaptic function. In (a-f) physicochemical characterization of s-GO: (a) TEM micrograph (scale bar 1 μ m). (b) AFM height image (scale bar 1 μ m), (c) lateral dimension distribution and (d) thickness distribution analysis. (e) Normalized Raman spectrum. (f) TGA analysis. In (g) graphene oxide exposure at high concentration influences synaptic function. Spontaneous synaptic activity recorded from hippocampal cultures in control, melamine, s-GO and GR-treated cultures at 1 μ g/mL (top traces) and 10 μ g/mL (bottom traces) grown for 8 to 10 DIV. PSCs were detected at -56 mV holding potential. Bottom plots represent pooled data and summarize average PSCs amplitude and frequency: note the reduction in s-GO-treatment (10 μ g/mL, final concentration) of PSCs frequency (*** = P < 0.001 Student's test, data are mean ± SEM).

Figure 1g, shows representative current tracings of the recorded electrical activity. In neurons exposed to low $(1 \mu g/mL)$ s-GO and GR, spontaneous synaptic activity was not

- 1 affected. In fact, measured PSC amplitude and frequency in s-GO and GR (79 \pm 7 pA and 2.5 \pm
- 2 0.4 Hz n=27 and 77 \pm 8 pA and 3 \pm 0.5 Hz, n= 30, respectively) were comparable to the
- 3 corresponding control and control-melamine values (87 ± 8 pA and 2.3 ± 0.3 Hz, control, n=24;
- 4 80 ± 15 pA and 2.3 ± 0.5 Hz melamine n= 28; plots in Figure 1 (g)). In all tests, cell parameters
- 5 measured in melamine were comparable to those expressed by control neurons (Figure 1 (g)
- 6 bottom plots), thus the impact on cells of such a contaminant at the estimated concentration is
- 7 negligible.
- 8 When investigating the impact of higher graphene doses $(10 \,\mu g/mL)$ we detected a
- 9 significant difference (P < 0.001; Student's t-test) in PSC frequency when comparing control
- 10 neurons $(2.0 \pm 0.1 \text{ Hz control}, n= 20)$ with s-GO treated ones $(0.6 \pm 0.1 \text{ Hz}, n= 18)$, while in
- 11 melamine and GR, PSC frequency values remained unchanged $(2.5 \pm 0.7 \text{ Hz melamine}, n=25)$
- 12 and 2.8 ± 1.1 Hz GR; n= 25). In all treatments studied, the amplitude values of the PSCs were
- 13 never affected (data are summarized in Figure 1 (g) plots). We further tested synaptic responses
- 14 when neurons were treated (1 and 10μ g/mL) with a commercially available GO provided by an
- 15 industrial partner (A-GO; Supporting Information and Figures S4). Similar reduction in PSC
- 16 frequency (Figure S5) was detected that validated the observation that GO nanosheets,
- 17 differently to GR flakes, specifically interfered with synapses in cultured neurons, regardless of
- 18 the starting material.

19

Figure 2. *s-GO exposure at high concentration impaired network activity without changing network size.* In (a) immunofluorescence images are shown to visualize neurons and glial cells in the 4 different conditions (anti β -tubulin III, in red, left panels; anti-GFAP, in green, right panels, in all nuclei are visualized by DAPI in blue) (samples are for the 10 µg/mL protocol; scale bar 50 µm). The plots summarize neuronal (left) and glial (right) densities in all conditions. In (b) repetitive Ca^a-oscillations spontaneously (left panel) or bicuculline-induced (right panel) recorded in hippocampal cultures at 8 to 10 DIV (from each field sample recordings of 2 cells were selected). Histograms summarize the percentage of spontaneous active cells (middle) and the average values of the inter-event-interval (IEI; right) in standard saline (Krebs) and in the presence of bicuculline (*** = P < 0.001 Student's-t-test, data are mean ± SEM).

13 The impact of $10 \mu g/mL$ s-GO on synaptic activity was not related to a decreased 14 number of surviving neurons in the presence of s-GO. In fact, we determined the cellular 15 composition of control and s-GO treated hippocampal cultures using immunofluorescence 16 markers³⁵ for astrocytes (GFAP) and neurons (β -tubulin III). We observed both β -tubulin III and 17 GFAP immunoreactive cells in all growing conditions (Figure 2 (a)) and both cell groups were 18 represented in a comparable proportion in all treatment groups (quantified by measuring the cell density in Figure 2 (a), (n=13 visual field per condition, 3 different culture series). Thus s-GO at
 higher concentrations specifically altered synapse formation and/or function without affecting
 cell survival or the global network size.

4 To gain more insight into such processes we further investigated s-GO-treated (10 5 μ g/mL) cultures. We specifically addressed the distribution of neuronal excitation by measuring 6 the activity of small clusters of neurons with fluorescence calcium imaging²³³. On average 7 ± 2 7 fluorescent neurons (n=26 fields), stained with the membrane permeable Ca²⁺ dye Fura-2-AM 8 (see Supporting Information), were simultaneously visualized in the recorded field (120 x 160 9 μ m²). We compared and characterized the cell ability to generate repetitive Ca²⁺ oscillations^{22,25}. In 10 control conditions all recorded fields (n=8) displayed active cells, while in s-GO treated cells 11 56% (n=10 out of 18) of the recorded fields did not display detectable cell activity. However, in 12 the remaining s-GO fields (n=8), we found an amount of neurons that were spontaneously 13 generating repetitive Ca²⁺ oscillations comparable to that measured in controls (Figure 2 (b), 36% 14 in control, 20 out of 56 neurons, n=8 active fields and 30% in s-GO-treated, 18 out of 60 15 neurons, n=8 active fields).

16 Figure 2 (b) traces represent fluorescence recordings from active fields in control and s-17 GO-treated cultures (2 sampled cells in each field). Episodes usually comprised spontaneous 18 bursts of activity, fully blocked by tetrodotoxin (TTX,, a blocker of voltage-gated, fast Na-19 channels) applications (1 μ M; n= 8 fields, control and s-GO-treated; not shown). Control Ca²⁺ 20 oscillations displayed an inter-event interval (IEI) of 36 ± 2 s (n=20 cells) that was significantly 21 lower (P < 0.001; Student's t-test) than that measured in s-GO-treated networks (110 ± 6 s, n=18 22 cells, right plot in Figure 2 (b)). When GABA, receptors were pharmacologically blocked by 23 bicuculline (20 μ M; 20 min), an antagonist of inhibitory connections known to potentiate 24 rhythmic activity patterns^{23,26,27}, the control IEI average value was still significantly lower (P < 25 0.001; Student's t-test) than that measured in s-GO neurons in the presence of the GABA_A 26 receptor antagonist (18 \pm 1 s, n = 20 control cells, vs 92 \pm 10 s, n = 18 s-GO cells; plot in Figure 27 2 (b), right). This indicated a direct reduction in the excitatory activity due to s-GO exposure. 28 Next we recorded single cell synaptic activity in the presence of TTX (1 μ M, Figure 3 29 (a)). Under these experimental conditions synaptic currents, termed miniature PSCs (mPSCs), 30 do not depend on action potential generation. mPSCs are due to the stochastic fusion of 31 neurotransmitter vesicles at the presynaptic membrane and their frequency is proportional to the 32 number of synaptic contacts^a. Despite the fact that in the recorded hippocampal neurons 33 spontaneous synaptic activity was manifested as inward currents (in our recording conditions, 34 see Supporting Information^a) made up by a mixed population of inhibitory (GABA, receptor-35 mediated) and excitatory (AMPA glutamate receptor-mediated) PSCs, virtually all mPSCs, as 36 previously reported²², were identified as excitatory by their fast kinetics (decay time constant τ =

- 1 4 ± 0.3 ms, see Supporting Information²). Notably, s-GO significantly decreased (P < 0.001,
- 2 Student's t-test; see plots in Figure 3 (a)) the frequency of mPSCs without affecting their
- 3 amplitude (0.06 ± 0.02 Hz and 30 ± 0.7 pA, control, n = 15; 0.02 ± 0.001 Hz and 26 ± 0.7 pA, s-
- 4 GO-treated n= 9; summarized in Figure 3 (a)). To ascertain whether the s-GO interference with
- 5 synaptic activity was selective on glutamate-mediated fast synaptic transmission, we tested the
- 6 occurrence of evoked inhibitory PSCs by pair recordings of mono-synaptically coupled neurons²²
- 7 (Supplementary Information and Figure S6a) and we observed that s-GO apparently did not
- 8 impair GABA_A mediated connections.
- 9 To determine whether changes in excitatory synaptic density may account for the
- 10 reduction in fast- mPSC frequency detected in s-GO treated cultures, neurons were co-
- 11 immunostained for β -tubulin III and the vesicular glutamate transporter (VGLUT1), a
- 12 transmembrane protein localized at the glutamatergic presynaptic terminals²⁰. Antibody to
- 13 VGLUT1 labeled presynaptic boutons under both conditions (Figure 3b). Using β -tubulin III
- 14 labeling to identify neuronal bodies and dendrites, we quantified VGLUT1-positive puncta,
- 15 detecting a significant (P < 0.001; Student's t-test) reduction in their density in s-GO treated
- 16 samples (control 1.4 x $10^3 \pm 0.045$ x 10^3 n= 6 fields and s-GO 0.28 x $10^3 \pm 0.11$ x 10^3 n= 6
- 17 fields, plot in Figure 3 (b)). Parallel experiments were performed to quantify GABAergic
- 18 synapses, by similar co-staining but for the vesicular GABA transporter (VGAT) to localize
- 19 presynaptic GABAergic terminals^{22,30}. These studies indicated that s-GO incubation did not alter
- 20 the inhibitory connection density (Supporting Information and Figure S6b).

Figure 3. *s*-GO exposure at high concentration impaired excitatory synapses. In (a) sample tracings of mPSCs recorded in control and s-GO-treated cultures (left panel). Right panel: plots reporting mPSC amplitude and frequency values. s-GO-treatment significantly decreased the frequency of mPSCs (*** = P < 0.001 Student's-t-test). In (b) confocal reconstruction of control and s-GO treated neurons immunolabeled for the vesicular glutamate transporter 1 (VGLUT1; green) and counterstained for cytoskeletal component β -tubulin III (red; nuclei are visualized by DAPI in blue; scale bar 10 µm). The plot shows the significant decrease of VGLUT1-positive puncta in s-GO-treated cultures (*** = P < 0.001 Student's-t-test). In (c) top, fluorescence images following staining with FM1-43, control and s-GO-treated. Scale bar 50 µm. The areas in the boxes are higher magnifications to highlight the difference in vesicular staining between the two conditions (scale bar 100 µm). The plot (top right) reproduces the representative (control and s-GO) traces of FM1-43 de-staining (please note that each trace has been normalized to the maximum fluorescence detected). Bottom: the left plot summarizes the initial raw fluorescent intensities of hippocampal terminals from control and s-GO-treated cultures (** = P < 0.01 Mann-Whitney test); the right plot summarizes the decay time constant τ of FM1-43 de-staining in the two conditions (*** = P < 0.001, Mann-Whitney test).

1 In the next set of experiments we measured the kinetics of synaptic vesicle release by 2 real-time imaging of vesicles labeled with FM dye to monitor the rate of presynaptic vesicle 3 recycling from hippocampal neurons treated or untreated with s-GO. After staining with the 4 lipophilic dye FM1-43³¹⁻³³ clusters of presynaptic terminals were visible as bright fluorescence 5 spots (Figure 3 (c)). The fluorescence intensity measured on FM-positive puncta following high 6 KCl (50 mM;³⁴) depolarization is proportional to the number of vesicles endocytosed during 7 synaptic vesicle recycling, and thus, allows to estimate the size of the recycling vesicle pool⁴⁴. In 8 s-GO treated cells, upon high-K-loading protocol, we detected a significant (P < 0.01; Mann-9 Whitney test) reduction in the raw fluorescence intensity of FM1-43-positive hippocampal terminals (control 11876 \pm 1100 arbitrary units –a.u.-, n= 7 fields; s-GO-treated 7400 \pm 1057 10 11 a.u., n= 6 fields; 3 different culture series; Figure 3 (c)), suggesting that chronic incubation with 12 s-GO decreased the recycling vesicle pool. When analyzing the decay time constant (τ) of the 13 FM1-43 fluorescence de-staining profiles during vesicle exocytosis, we observed a significant 14 (P < 0.001; Mann-Whitney test) difference in the kinetics displayed by control (τ = 5.7 ± 0.5 s, n 15 = 205 terminals) and s-GO (τ = 18 ± 2 s, n = 85 terminals) treated cells, as summarized in Figure 16 3 (c). In reference experiments, image series captured on FM1-43 stained cells but without the 17 high-K[·] de-staining stimulus, produced a baseline reference plot (not shown). Taken together, 18 these results support the specific ability of chronic exposure to s-GO flakes to reduce the amount 19 of excitatory synaptic contacts and to interfere with presynaptic vesicle recycling. 20 To test the ability of s-GO to impair cell membrane dynamics in general, we investigated 21 whether s-GO (10 μ g/mL) was also reducing exocytosis and recycling of synaptic-like 22 microvesicles (MVs¹⁵) from cultured primary glial cells (see Supplementary Information). MVs 23 are released into the extracellular space by direct budding from the plasma membrane of 24 astrocytes, and have been shown to contribute to intercellular communication^{15,35,46}. We treated 25 pure glial cell cultures with s-GO ($10 \mu g/mL$) for 6-8 days. In Figure 4 (a) immunofluorescence 26 staining of control and s-GO treated GFAP-positive cells are shown. s-GO incubation did not 27 affect astrocyte density (Figure 4 (a) right histograms; n= 20 fields for both conditions) 28 excluding any cytotoxic effect. In glial cultures MVs release was induced by bzATP incubation 29 $(100\mu$ M, 30 min, n= 3 different series of cultures^{37.39}), and MVs release was detected and 30 quantified by immunoblot analysis of the collected supernatant. In control, bzATP stimulation 31 induced the appearance of the band corresponding to flotillin-1 (Figure 4 (c), bottom blot), a 32 signature of MVs release⁴⁰⁴². Surprisingly, in s-GO treated astrocytes, the bzATP stimulation 33 induced a marked increase in the size of the flotillin-1 band. This band was also detected in the 34 absence of stimulation (Figure 4 (c) bottom blot) suggesting that s-GO per se induced MVs 35 constitutive release.

- 1 AFM micrographs, show in Figure 4 (b) (left panel) the presence of vesicles in the
- 2 stimulated control supernatant appearing as circular spots protruding from the ultra-flat mica
- 3 surface. For each of them, width and height were independently measured from particle crossing
- 4 height profiles and the resulting distributions were plotted (Figure 4 (b) right panel).
- 5 Intriguingly, similar experiments with GR (10 μ g/mL) did not induce shedding of MVs in glial
- 6 cell cultures (Supplementary Information and Figure S7).
- 7 We also attempted to investigate the effect of increased lateral size of GO (l-GO, with a
- 8 lateral dimension in the few μ m range; 10 μ g/mL final concentration) on cultured hippocampal
- 9 cells. However, after 6-8 days of incubation, we measured a significant (P < 0.001; Student's t-
- 10 test; Figure 4 (d)) reduction in both neuron and glial cell densities (control 160 ± 10
- 11 neurons/mm² and 96 \pm 10 astrocytes/mm²; 1-GO-treated 96 \pm 10 neurons/mm² and 40 \pm 7
- 12 astrocytes/mm²; n=10 visual fields each, 3 series of cultures; Figure 4 (d)) indicating cell toxicity

13

- 13 that prevented any further functional measurements. We believe further investigations are
- 14 warranted to explore such lateral size-dependent cytotoxic responses.

15 16

 $\begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \end{array}$

Figure 4. *s-GO exposure and microvesicles release in glial cells.* In (a) immunolabeling of primary rat astrocytes (3 weeks) in control and s-GO treated cells (10 μ g/mL 6-8 days). Both cultures were immune-stained for GFAP (green) and nuclei visualized by DAPI (blue; scale bar: 100 μ m). No statistical significance was found between the two conditions (top right). In (b) AFM image of fixed MVs where the differences in color are representative of height differences (brighter means higher). A representative height profile crossing 3 MVs is reported. The scatter plot (right) shows MVs width versus height distribution and is fitted with a regression line represented by the equation y = 0.046x + 0.218. A frequency histogram, built upon experimental measurements of both width and height, was plotted over each axis of the scatter graph, and fitted with Gaussian distributions. The frequency histograms revealed the highest number of occurrences to be about 490 nm and 24 nm for width and height, respectively. In (c) Western blotting of the pellets (bottom row) and cell lysates (top row) for the MVs marker flotillin-1. Pellets were obtained from the medium of glial cultures treated or un-treated with s-GO, under 2 different conditions: stimulated and not stimulated (Krebs) by 100 μ M BzATP. Note the marked increase of the band for flotilin-1 in s-GO treated cells. In (d) plots summarizing the decreased density of hippocampal cells when treated with L-GO (~ 10 μ m lateral size; 10 μ g/mL final concentration).

1 We report here the ability of s-GO nanosheets to interfere specifically with neuronal 2 synapses, without affecting cell viability. In particular, in cultured neuronal networks, upon 3 chronic s-GO exposure, glutamatergic release sites were sized down. This was shown by: i) the reduction in frequency of spontaneous synaptic activity (PSCs and mPSCs) together with the 4 marked reduction in VGLUT1-positive labeling⁴³, ii) the reduced probability of finding active 5 neurons when network were explored by Ca^{++} -imaging^{23,44} and iii) the decreased recycle vesicle 6 7 pool quantified by FM1-43 measures together with the altered kinetic of vesicle recycling 34 . 8 This down-regulation of glutamate-mediated synapses was apparently not due to a general cell-9 membrane disruption or to neuronal cell loss. In fact, we never detected alterations in basic electrophysiological parameters, reflecting neuronal health and membrane integrity¹⁸⁻²⁰. 10

11 In addition, cell densities in treated cultures were comparable to control ones. The 12 survival of GFAP-positive glial cells was also not affected by s-GO exposure, both in mixed neuronal and in pure neuroglial cultures. In the latter condition, MVs release was indirectly 13 monitored by the blot analysis of flotillin-1 protein^{40,41}, and MVs presence confirmed by direct 14 15 AFM measures. In these cultures, exposure to s-GO stimulated the basal release of shed vesicles and augmented the bzATP-induced one³⁷⁻³⁹. s-GO increase in MVs release from neuroglia cells 16 might be related to a general cell-stress condition¹⁵ ultimately due to s-GO glial-membrane 17 18 interactions or even internalization, depending on the flakes' shape, lateral dimension and oxidization degree¹⁰ as well as the degree of protein adsorption from the culturing milieu⁴⁵. 19

20 Based on our experimental evidence we cannot rule out that treatment with s-GO down 21 regulated the synaptic function (in particular presynaptic release) via MVs released in mixed 22 neuronal-glial cultures, thus excluding a direct, membrane interference of s-GO nanosheets at 23 the pre-synaptic glutamatergic terminals. MVs have long been reported as active messengers of intercellular communication, rather than mere inert debris³⁷, however, to our knowledge, there 24 25 are no reports of astrocyte shed-MVs acting as regulators of synaptic activity. On the contrary, 26 MVs released by microglia have been reported to affect synaptic activity, mainly acting at the presynaptic site of the excitatory synapses, but increasing synaptic activity and release in 27 primary cultures³⁷. Against this neuroglial-cell mediated response to s-GO is also the fact that 28 29 astrocyte density in mixed cultures is artificially kept at a low level by the culturing procedure in itself, while the surviving microglia are even fewer⁴⁶. 30

In contrast to s-GO, the inert nature of GR flakes regarding synaptic activity and MVs release by glia is also of interest. This could be due to differences in shape and lateral size affecting flake-membrane interactions¹⁰. It is also interesting to consider that GR have a much less hydrophilic surface character and overall poorer dispersibility in cell culture media⁴⁵ that may lead to the formation of aggregates potentially unable to interact with sub-microscopic structures (such as the synaptic clefts).

7 The apparent selectivity in terms of the presynaptic terminals targeted by s-GO was also 8 notable, with the inhibitory, GABAergic ones that remained unaffected, as evidenced by pair recordings and the VGAT labeling²². Given the ability of graphene flakes to undergo motion and 9 vibration that can lead to interaction with and possible piercing of lipid bilavers⁸, we propose an 10 alternative mechanistic interpretation of our synaptic results. s-GO flakes may prevent the 11 12 synaptic vesicle endocytotic cycle because their dimensions allow them to interact with the 13 presynaptic cell membrane at the periphery of the synaptic cleft and then be up-taken by 14 vesicles. In this process, the flakes may transiently trap vesicles in an open mode and prevent 15 their closing and the subsequent endocytosis. This could affect synaptic release in the short term 16 inducing, in the long term, a down regulation of glutamatergic release sites and synapses. To 17 note, glutamatergic synaptic activity is specifically affected also when neurons are transiently 18 exposed to s-GO, with a short-term up-regulation of release, turned into a down regulation 19 within the first 3 days of chronic exposure (Figure S8 in Supplementary Information). The 20 mechanism of such interaction among s-GO flakes and vesicles could be similar to what has been previously described for dispersed single walled carbon nanotubes⁴⁷. In this context, the 21 22 unlikeliness of affecting GABAergic terminals may reside in the different dimensions of the excitatory (16 nm) and inhibitory (10 nm) synaptic clefts⁴⁸. The latter reported to be even 23 24 narrowed to 6 nm at the periphery of the clefts due to transcleft elements while docked vesicles are concentrated at the central cleft domain⁴⁸. On the contrary, docked vesicles in excitatory 25 synapses are distributed evenly over the synaptic cleft⁴⁸. It is tempting to speculate that these 26 27 synaptic ultra-structural differences might explain why glutamatergic terminals became ideal 28 targets to s-GO interactions. This selectivity is supported by the notion that, even when 29 transiently exposed to s-GO via pressure ejected brief pulses, GABAergic synapses are 30 unaffected (see Supplementary Information).

1 Regardless of the mechanisms involved, the ability of s-GO to alter synapses and induce 2 glial cell reaction has not been previously documented. This might compromise neuronal 3 signaling and CNS functions and seems crucially dependent on the GO sheet dimensions, since 4 larger flakes were found unequivocally cytotoxic. In our experiments 6 days exposure of cultures 5 to equal amounts of dispersed 1-GO induced unequivocal hippocampal cell loss, both neuroglia 6 and neurons, thus hampering any further evaluation of membrane/flakes interactions. 7 These observations deserve further studies, in fact, altering synapses and inducing glia reactivity may raise concerns from the safety and nanotoxicity point of view⁴⁹. 8

9 Beyond the safe design of nanomaterials, such a subtle interference affecting exquisite CNS signaling may offer possibilities in neuropharmacology, when specific targeting of 10 excitatory synapses is desired $^{50-52}$. The use of nanoparticles as therapeutics is in fact fueled by 11 their ability to circumvent biological barriers⁵³ and targeting of synapses has created the basis for 12 theranostics applications⁵⁴. Our observations with thin s-GO flakes illustrate the potential of 2D 13 14 nanosheet physical properties to engineer novel and specific glutamate-transmission modulators. 15 It is also relevant to note that synapse formation and function in neuronal networks, when interfaced to planar graphene-based materials, are not affected⁵⁵. This strengthens the notion that 16 17 when exploring the application of graphene in biology, studies should be performed with well-18 characterized types of materials, since the materials' physical-chemical features, including geometry, are governing the potential interactions with specific biological components². 19

20

21 Methods

22 Materials and Methods are described in the Associated Content and Figures

23

24 ASSOCIATED CONTENT

25 Supporting Information: Materials and Methods, Supporting Results, Figure S1- S8 and

- Tables S1-S2.
- 27

28 AUTHOR INFORMATION

29 Corresponding Author

- 30 * Laura Ballerini International School for Advanced Studies (SISSA) via Bonomea 265 I-34136
- 31 Trieste phone +39 0403787779, LB <u>laura.ballerini@sissa.it</u>
- 32

1 Author Contributions

- 2 R.R. and A.F. performed cell biology, electrophysiology and immunofluorescence experiments
- 3 and analysis; R.R. and F.P.U.S. design and performed imaging and real-time imaging
- 4 experiments and analysis; N.L. and K.K. contributed to the synthesis and characterization of
- 5 thin graphene oxide (I-GO and s-GO) of biological-grade; V.L. and E.V. contributed to the
- 6 synthesis and characterization of pristine graphene (GR); M.M. performed glial cell
- 7 experiments, immunofluorescence and western blot; D.S., I.R. and L.C. designed and
- 8 performed the AFM experiments; L.B. and M.P. conceived the study; L.B. conceived the
- 9 experimental design and contributed to the analysis of data; L.B. wrote the manuscript. All
- 10 authors have given approval to the final version of the manuscript.
- 11

12 Funding Sources

- 13 We acknowledge financial support from the EU FP7-ICT-2013-FET-F GRAPHENE Flagship
- 14 project (no. 604391), from the NEUROSCAFFOLDS-FP7-NMP-604263 and PRIN-MIUR n.
- 15 2012MYESZW.
- 16

17 Notes

- 18 The authors declare no competing financial interest.
- 19

20 ACKNOWLEDGMENTS

21 We are especially grateful to Micaela Grandolfo, Jessica Franzot and Beatrice Pastore for supervising

- 22 the synaptic immune staining and quantification, the glial cell culturing and western blot experiments.
- 23 IOM-TASC national laboratory (Trieste) is also gratefully acknowledged for AFM assistance. N.L.
- 24 acknowledges Leon Newman for assistance with the TEM and Raman instrumentation. X-ray
- 25 photoelectron spectra were performed at the National EPSRC XPS User's Service (NEXUS) at
- 26 Newcastle University, an EPSRC Mid-Range Facility. N.L. acknowledges Mr. Leon Newman for
- assistance with the TEM and Raman instrumentation and Dr Nigel Hodson of the University of
- 28 Manchester BioAFM Facility for his expert advice. The Antolin Group is also acknowledged for the
- 29 provision of the commercial material. We acknowledge financial support from the EU FP7-ICT-2013-
- 30 FET-F GRAPHENE Flagship project (no. 604391), from the NEUROSCAFFOLDS-FP7-NMP-604263
- 31 and PRIN-MIUR n. 2012MYESZW.
- 32

33 **REFERENCES**

- 34 1. Sanchez, V.C.; Jachak, A.; Hurt, R.H.; Kane, A.B. *Chem Res Toxicol.* **2012**, 25, 15-34.
- 35 2. Kostarelos, K; Novoselov, K.S. *Science* **2014**, 344, 261-263.
- 36 3. Mao, H.Y.; Laurent, S.; Chen, W.; Akhavan, O.; Imani, M.; Ashkarran, A.A.; Mahmoudi,
- 37 M. Chem Rev. **2013**, 113, 3407-3424.

- Bitounis, D.; Ali-Boucetta, H.; Hong, B.H.; Min, D.H.; Kostarelos, K. Adv Mater. 2013,
 25, 2258-2268.
 Krishna, K.V.; Ménard-Moyon, C.; Verma, S.; Bianco, A. Nanomedicine (Lond) 2013, 8,
- 4 1669-1688.
- 5 6. Wang, Y.; Li, Z.; Wang, J.; Li, J.; Lin, Y. *Trends Biotechnol.* **2011**, 29, 205-212.
- Kuzum, D.; Takano, H.; Shim, E.; Reed, J.C.; Juul, H.; Richardson, A.G.; de Vries, J.; Bink,
 H.; Dichter, M.A.; Lucas, T.H.; Coulter, D.A.; Litt Li, B. *Nat Commun.* 2015, 5, 52595263.
- Li, Y.; Yuan, H.; von dem Bussche, A.; Creighton, M.; Hurt, R.H.; Kane, A.B.; Gao, H.
 Proc Natl Acad Sci U S A. 2013, 110, 12295-12300.
- Tu, Y.; Lv, M.; Xiu, P.; Huynh, T.; Zhang, M.; Castelli, M.; Liu, Z.; Huang, Q.; Fan, C.;
 Fang, H.; Zhou, R. *Nat Nanotechnol.* 2013, 8, 594-601.
- 13 10. Mao, J.; Guo, R.; Yan, L. *Biomaterials* **2014**, 35, 6069-6077.
- 14 11. Rizzoli, S.O. *EMBO J.* **2014**, 33, 788-822.
- 15 12. Bianco, A. Angew Chem Int Ed Engl. **2013**, 52, 4986-4997.
- 16 13. Yang, D.; Li, T.; Xu, M.; Gao, F.; Yang, J.; Yang, Z.; Le, W. *Nanomedicine* (Lond) 2014,
 9, 2445-2455.
- 14. Zhang, Y.; Ali, S.F.; Dervishi, E.; Xu, Y.; Li, Z.; Casciano, D.; Biris, A.S. ACS Nano
 2010, 4, 3181-3186.
- 20 15. Falchi, A.M.; Sogos, V.; Saba, F.; Piras, M.; Congiu, T.; Piludu, M. *Histochem Cell Biol.* 2013, 139, 221-231.
- 16. León, V.; Quintana, M.; Herrero, M.A.; Fierro, J.L.; de la Hoz, A.; Prato, M.; Vázquez, E.
 ChemCommun (Camb). 2011, 47, 10936-10938
- 24 17. León, V.; Rodriguez, A.M.; Prieto, P.; Prato, M.; Vázquez, E. ACS Nano 2014, 8, 563-571
- 25 18. Carp, J.S. *J Neurophysiol*. **1992**, 68, 1121-1132.
- 26 19. Gao, Y.; Liu, L.; Li, Q.; Wang, Y. *NeurosciLett.* **2015**, 591, 138-143.
- 20. Djuric, U.; Cheung, A.Y.; Zhang, W.; Mok, R.S.; Lai, W.; Piekna, A.; Hendry, J.A.; Ross,
 P.J.; Pasceri, P.; Kim, D.S.; Salter, M.W.; Ellis, J. *Neurobiol Dis.* 2015, 76, 37-45.
- 21. Lovat, V.; Pantarotto, D.; Lagostena, L.; Cacciari, B.; Grandolfo, M.; Righi, M.; Spalluto,
 G.; Prato, M.; Ballerini, L. Nano Lett. 2005, 5, 1107-1110.
- 22. Cellot, G.; Toma, F.M.; Varley, Z.K.; Laishram, J.; Villari, A.; Quintana, M.; Cipollone, S.;
 Prato, M.; Ballerini, L. J Neurosci. 2011, 31, 12945-12953.
- 33 23. Bosi, S.; Rauti, R.; Laishram, J.; Turco, A.; Lonardoni, D.; Nieus, T.; Prato, M.; Scaini, D.;
- 34 Ballerini, L. *Sci Rep.* **2015**, *5*, 9562.
- 35 24. Stetter, O.; Battaglia, D.; Soriano, J.; Geisel, T. *PLoSComput Biol.* 2012, 8.
- 36 25. Fabbro, A.; Pastore, B.; Nistri, A.; Ballerini, L. *Cell Calcium*. **2007**, 41, 317-329.

- 1 26. Tibau, E.; Valencia, M.; Soriano, J. Front Neural Circuits 2013, 7, 199.
- 2 27. Sokal, D.M.; Mason, R.; Parker, T.L. *Neuropharmacology* **2000**, 39, 2408-2417.
- 3 28. Raastad, M.; Storm, J.F.; Andersen, P. Eur J Neurosci. 1992, 4, 113-117
- 4 29. Bellocchio, E.E.; Reimer, R.J.; Fremeau, R.T., Jr; Edwards, R.H. *Science* 2000, 289, 8705 876.
- 6 30. Moulder, K.L.; Jiang, X.; Taylor, A.A.; Shin, W.; Gillis, K.D.; Mennerick S. *J Neurosci*.
 2007, 27, 9846-9854.
- 8 31. Betz, W.J.; Bewick, G.S. Science 1982, 255, 200-203
- 9 32. Ryan, T.A.; Reuter, H.; Wendland, B.; Schweizer, F.E.; Tsien, R.W.; Smith, S.J. *Neuron*.
 10 1993, 11, 713-724.
- 11 33. Betz, W.; Mao, F.; Smith, C. *Curr Opin Neurobiol.* **1996**, 6, 365-371.
- 12 34. Ryan, T.A. *Curr Opin Neurobiol*. **2001**, 11, 544-549.
- 13 35. Turola, E.; Furlan, R.; Bianco, F.; Matteoli, M.; Verderio, C. *Front Physiol.* **2012**, 3:149.
- 36. Frühbeis, C.; Fröhlich, D.; Kuo, W.P.; Krämer-Albers, E.M. *Front Cell Neurosci.* 2013, 7,
 182.
- 37. Antonucci, F.; Turola, E.; Riganti, L.; Caleo, M.; Gabrielli, M.; Perrotta, C.; Novellino, L.;
 Clementi, E.; Giussani, P.; Viani, P.; Matteoli, M.; Verderio, C. *EMBO J.* 2012, 31, 12311240.
- 38. Bianco, F.; Pravettoni, E.; Colombo, A.; Schenk, U.; Möller, T.; Matteoli, M.; Verderio, C.
 J Immunol. 2005, 174, 7268-7277.
- 39. Bianco, F.; Perrotta, C.; Novellino, L.; Francolini, M.; Riganti, L.; Menna, E.; Saglietti, L.;
 Schuchman, E.H.; Furlan, R; Clementi, E.; Matteoli, M.; Verderio C. *EMBO J.* 2009, 28, 1043-1054
- 40. Del Conde, I.; Shrimpton, C.N.; Thiagarajan, P.; López, J.A. *Blood* **2005**, 106, 1604-1611.
- 41. Al-Nedawi, K.; Meehan, B.; Micallef, J.; Lhotak, V.; May, L.; Guha, A.; Rak, J.; *Nat Cell Biol.* 2008, 10, 619-624.
- 42. Antonyak, M.A.; Cerione, R.A. *Methods Mol Biol.* **2014**, 1165,147-173.
- 43. Toyoshima, D.; Mandai, K.; Maruo, T.; Supriyanto, I.; Togashi, H.; Inoue, T.; Mori, M.;
 Takai, Y. *PLoS One.* 2014, 27, 9-e89763.
- 30 44. Aguado, F.; Carmona, M.A.; Pozas, E.; Aguiló, A.; Martínez-Guijarro, F.J.; Alcantara, S.;
- 31 Borrell, V.; Yuste, R.; Ibañez, C.F.; Soriano, E. *Development* **2003**, 130, 1267-1280.
- 45. Chong, Y.; Ge, C.; Yang, Z.; Garate, J.A.; Gu, Z.; Weber, J.K.; Liu, J.; Zhou, R. *ACS Nano*.
 2015, 9, 5713-5724.

- 46. Fabbro, A.; Sucapane, A.; Toma, F.M.; Calura, E.; Rizzetto, L.; Carrieri, C.; Roncaglia, P.;
 Martinelli, V.; Scaini, D.; Masten, L.; Turco, A.; Gustincich, S.; Prato, M.; Ballerini, L.
 PLoS One. 2013, 8(8):e73621.
- 4 47. Malarkey, E.B.; Reyes, R.C.; Zhao, B.; Haddon, R.C.; Parpura, V. *Nano Lett.* 2008, 8,
 5 3538-3542.
- 6 48. High, B.; Cole, A.A.; Chen, X.; Reese, T.S. Front Synaptic Neurosci. 2015, 7, 9.
- 7 49. Fedorovich, S.V.; Alekseenko, A.V.; Waseem, T.V. *Biochem Soc Trans.* 2010, 38, 536538.
- 9 50. Grados, M.A.; Atkins, E.B.; Kovacikova, G.I.; McVicar, E. *Psychology Res and Behavior* 10 *Management PRBM* 2015, 8, 115-131.
- 11 51. Gardoni, F.; Di Luca, M. Curr Opin in Pharmacology 2015 20, 24-28.
- 12 52. Stone, J.M., *Ther Adv Psychopharmacol.* **2011**, 1, 5–18.
- 13 53. Meyer, R.A.; Sunshine, J.C.; Green, J.J. *Trends Biotechnol.* 2015, 33, 514-524.
- 14 54. Borisova, T.; Nazarova, A.; Dekaliuk, M.; Krisanova, N.; Pozdnyakova, N.; Borysov, A.;
- 15 Sivko, R.; Demchenko, A.P. Int J Biochem Cell Biol. 2015, 59, 203-215.
- 16 55. Fabbro A.; Scaini D.; León V.; Vázquez E.; Cellot G.; Privitera G.; Lombardi L.;
- 17 Torrisi F.; Tomarchio F.; Bonaccorso F.; Bosi S.; Ferrari A.C.; Ballerini L.; Prato M. ACS
- 18 *Nano.* **2016**, 10, 615-23.
- 19