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ON THE CONCENTRATION OF ENTROPY FOR SCALAR

CONSERVATION LAWS

Abstract. We prove that the entropy for an L∞-solution to a scalar con-

servation laws with continuous initial data is concentrated on a countably 1-

rectifiable set. To prove this result we introduce the notion of Lagrangian
representation of the solution and give regularity estimates on the solution.
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1. Introduction. Let us consider the nonlinear first order PDE

ut + f(u)x = 0, u : R+ × R→ R, (1.1)

where f : R→ R is a smooth flux function. It is a textbook example to prove that if
f is nonlinear then the solution u develops discontinuities, so that the natural setting
where to study existence is using the notion of weak solutions. More precisely,
taking advantage of the divergence form of (1.1), a weak solution is a function
u ∈ L1

loc(R+×R) such that f(u) ∈ L1
loc(R+×R) and such that for all φ ∈ C1

c (R+×R)
it holds ∫∫ (

uφt + f(u)φx
)
dxdt = 0.

The initial data can be naturally inserted in the weak formulation through the
notion of weak trace on {t = 0}.
Another well known fact is that the weak solutions are not unique. This means
that the conservation of u is not a sufficiently strict requirement to select a unique
solution.
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2 STEFANO BIANCHINI AND ELIO MARCONI

The theory then proceeds by requiring that u is an entropic weak solution. The
idea comes from physics, where the time evolution of a thermodynamic system in-
creases the thermodynamics entropy. From a mathematical point of view, a smooth
convex function η : R→ R is an entropy of (1.1) with corresponding flux q if

q′(u) = f ′(u)η′(u). (1.2)

The above relation is due to the fact that for smooth solutions u, the PDE (1.1) is
equivalent to

ut + f ′(u)ux = 0,

and multiplying by η′(u) we obtain the conservation of entropy

η(u)t + q(u)x = 0.

For nonsmooth functions the chain rule f(u)x = f ′(u)ux is in general meaning-
less, so that we define u solution to (1.1) entropic if for all convex entropies η it
holds

ηt + qx ≤ 0 (1.3)

in the sense of distributions. A simple way of getting this inequality is to assume
that u is the limit of the vanishing viscosity approximations

uεt + f(uε)x = εuεxx. (1.4)

This is a natural assumption, based on the idea that the equation (1.1) is the limit
of a more complicated physical system with dissipation, dispersions, etc.: from this
point of view the solution u of the hyperbolic PDE tries to capture the macroscopic
behavior of the system (i.e. large spatial and temporal scales).
Multiplying (1.4) by η′(uε) and using the definition of entropy flux q we obtain

η(uε)t + q(uε)x = ε(η(uε))xx − εη′′(uε)(uεx)2 ≤ ε(η(uε))xx.

Passing to the limit for ε→ 0, one formally gets (1.3). The fact that

t 7→
∫
R
η(u(t))dx

is decreasing is because in mathematics one considers convex entropies, while the
usual thermodynamic entropy is concave.

Since for scalar equations every convex function is an entropy ((1.2) is always
solvable by integration), it follows that there are enough entropies to select a unique
entropy solution. This result is the celebrated Kruzkhov theorem of uniqueness of
L∞ weak solutions, which is also valid in several space variables. Thus the theory
of Cauchy problems in L∞ is completely settled.

A natural development of the theory is the study of the structure of the solution:
the question is whether u satisfies additional regularity of being just L∞, as u solves
(1.1).

For solution of bounded variation, the results proved in [7], [8], [4], [5] and [1]
provide a satisfactory answer, showing that the solution enjoys additional regularity
of just being BV, because of the rigidity requirement of being a solution to (1.1).

The analysis of the structure of L∞ solutions with general flux functions is def-
initely much more complicated. The best known results indeed rely on some non-
linear assumption on the flux f , and prove that u has approximate jumps on a
rectifiable set J , but little is said on the complement R+ × R \ J , see [11].
Another result in the literature concerns the structure of the dissipation measure
µ := ηt + qx (µ ∈ M(R+ × R), being a distribution with sign). In [12] it is shown
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that if f has only finitely many inflection points, then µ is concentrated on the jump
set J .

The more than 10 years-old conjecture we are concerned in this work is the
following one:

If u ∈ L∞ is an entropy solution to (1.1) and η is a convex entropy, then the
measure µ = ηt + qx is concentrated on a countably H1-rectifiable set.

From the above discussion, it is clear that this conjecture has a strong mathemat-
ical interest, because it requires to introduce new techniques in order to analyze
L∞ functions which satisfy a nonlinear constraint. Note that for BV solutions,
by Volpert rule, the dissipation of entropy is concentrated on the countably H1-
rectifiable jump set of u.

It is surprising that the same conjecture arises from a completely different con-
text, namely the speed of convergence of discrete stochastic approximations to the
continuum conservation equation. In [3] an old conjecture of Varadhan on the speed
of convergence is related to the distance of a solution u from being entropic. Suppose
that u ∈ L∞ is a non necessarily entropic solution to

ut + [u(1− u)]x = 0, u ∈ (0, 1).

Consider the entropy η(u) = u lnu+ (1− u) ln(1− u) and the corresponding flux q
satisfying q′(u) = (1− 2u)η′(u). If

ηt + qx = µ ∈M(R+ × R),

then the probability of u being the limit of the stochastic system is exponentially
small with coefficient µ+(R+ × R), i.e. the positive part of the dissipation. The
fundamental assumption of [3] on the structure of u is that µ is countably H1-
rectifiable.

We are now ready to state our main result.

Main Theorem. Assume that u is an entropy solution to (1.1) with continuous
initial datum.

Then there exists a countably 1-rectifiable set J such that u is continuous outside
J and H1-almost every point of J is an approximate jump point. Denote with
(u−(y), u+(y), n(y)) the left, right limits and the normal to J in H1-a.e. point
y ∈ J .

If η is an entropy with flux q, then µ = ηt + qx is concentrated on J . More
precisely

µ =

∫
J

〈(
η(u+(y))− η(u−(y)), q(u+(y))− q(u−(y))

)
, n(y)

〉
H1(dy).

Some comments are in order.
First, the technique we use is completely different from previous approaches. It

is in fact based on the so called Lagrangian representation of an entropy solution u.

Definition. A Lagrangian representation of u is a pair of functions

X : R+ × R→ R, u : R→ R,

such that r 7→ X(t, r) is increasing for all t, t 7→ X(t, r) is Lipschitz for all r, and for
all t ≥ 0, ϕ ∈ C1

c (R) it holds∫
R
u(t, x)Dxϕ(x) dx =

∫
R
u(r)Dr(ϕ ◦ X(t, r))(dr).
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The characteristics equation, satisfied by X, is the following:

DtX(t, s) = λ̃(t, X(t, s)),

where λ̃ = λ̃(t, x) is given by

λ̃(t, x) =

f
′(u(t, x)) if u(t) is continuous at x,
f(u+)− f(u−)

u+ − u−
if u(t) has a jump at x.

The fundamental part of the definition is that the initial data u is transported by
the flow X, and the equation is hidden in the fact that t 7→ X(t, r) is a characteristic.

We observe that for L∞ solutions the definition of the characteristic speed λ̃ is a
consequence of the representation: the representation yields enough regularity in
order to give a meaning to the characteristic equation. A fundamental observation
here is that X enjoys a natural compactness, independent on the BV regularity of
the solution. This hidden compactness of u (through X) has never been exploited
in the literature.

Secondly, the regularity results on the structure of u of the above theorem are
new to the literature, and are interesting by themselves. We remark that they
are immediately deduced from the Lagrangian representation. Here we want to
underline the fact that proving results on the structure of the entropy dissipation is
intrinsically tied to proving regularity results for the solution: indeed, in order to
give a meaning to the jump set and an explicit formula for the dissipation, one has
to prove sufficient regularity for u allowing the computation of the left/right limits.

Finally, as we said, the proof uses a completely new approach. Indeed, since no
bounds on u are a priori known (but of being L∞), the convergence of the dissipation
for approximations un to the dissipation of u is only weak in general, so that it is
almost hopeless to pass to the limit any structure of the dissipations µn of un to
the dissipation µ of u.
Our approach is first to consider the subclass of entropies ηk = (u−k)+, from which
we can recover all the others by superposition: more precisely

η(u) = η(a) + η′(a)(u− a) +

∫ b

a

η′′(k)(u− k)+ dk.

Then, using again the structure of u of the first part of the theorem, we study the
boundary problem for conservation laws in {u > 0}. These domains, while open as
a consequence of the structure proved in the Main Theorem, are much less regular
than the standard boundary problems for conservation laws: usually the boundary
data are given on one or two disjoint Lipschitz curves. We thus have to extend the
boundary problem theory to this case. Some simplifications occur, because we only
work with positive solutions and null boundary conditions.
The fact that we are able to solve the boundary problem gives us the possibility to
construct an increasing sequence of positive BV solutions uj in the domain {u > 0},
with approximate BV initial datum u0

j such that 0 ≤ u0
j ≤ u(0) ∨ 0. Since BV

functions satisfy a chain rule, we are able to compute the dissipation µj of these
approximations uj , proving that it is a negative measure concentrated on J and
bounded by the dissipation of u. The key step here is that no Cantor part appears
in µj .
The conclusion is then to prove that uj ↗ u+: this is done by comparison of the
dissipations µj and µ, and provides a sort of uniqueness of solutions in Ω which we
do not completely exploit here. Using the explicit expression of the dissipation of
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uj and of µxJ , one concludes that the limit u+ dissipates only on J and the formula
of the theorem holds.

The results of this paper are contained in the Master Thesis in Mathematics of the
second author, at the University of Trieste (July 2014).

1.1. Structure of the paper. The paper is organized as follows.
In Section 2 we recall the fundamental properties of solutions to (1.1) for x ∈ R

and in the presence of boundaries. Our aim is to obtain the tools which we need in
the next sections in order to prove the regularity of solutions and the concentration
of entropy: in particular the uniform BV bounds, the maximum principle and a
superposition formula for entropies.

In Section 3 we present the first new results of this paper. On one hand we
obtain the Lagrangian representation of the solution u (Proposition 3.4): this can
be thought as the nonlinear counterpart of the Lagrangian representation of solu-
tions to linear transport equations. An immediate corollary is the regularity of the
solution u itself: in Theorem 3.5 we show that its structure is completely similar to
a BV function of 1 space variable, in particular it has a countably 1-rectifiable set
of approximate jump J . This proves the first part of the Main Theorem.

In the last section (Section 4) we prove the second part of the Main Theorem,
namely the entropy concentration. The proof is done for the entropy η+

0 (u) =
(u)+ =: ǔ, the positive part of u.
The first step is to construct a positive BV solution uj in the open set {u > 0}
(Sections 4.1 and 4.2): here the regularity obtained in the previous section plays a
major role.
Next, being BV, one can compute explicitly its dissipation µj , and prove that it is
concentrated on the set of approximate jump J of the original u (Proposition 4.8
of Section 4.3). Proposition 4.9 of Section 4.4 gives the explicit expression of the
dissipation µj .
Finally, showing on one hand the uniform estimate µ ≤ µj ≤ 0, µ being the dissi-
pation of ǔ, (Lemma 4.11), and that uj ↗ u (Proposition 4.13), one concludes the
proof of the second part of the Main Theorem (Theorem 4.15).

2. Entropy solutions to scalar conservation laws with boundary. We recall
the essential concepts in the mathematical theory of scalar conservation laws. We
give the well-posedness theorem for the Cauchy problem

ut + f(u)x = 0, u : R+ × R→ R. (2.1)

We will also consider the same equation in the presence of boundary. In the last
part of this section we present a superposition argument for entropies.

All this material is very classical, see [7, 9, 14].

2.1. Existence and uniqueness of solutions. The following theorem is well
known [10]: it gives the well posedness of the Cauchy problem (2.2){

ut + f(u)x = 0,

u(0, ·) = u0,
(2.2)

in the L∞-class, as well as the maximum principle property.
In order to establish it, we recall the fundamental notion of entropy solution.
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Definition 2.1. A continuously differentiable convex function η : R→ R is called
entropy for the equation (2.1), with entropy flux q : R→ R, if

η′(u)f ′(u) = q′(u) for all u ∈ R. (2.3)

We refer to (η, q) as entropy-entropy flux pair.
We say that a weak solution u of (2.1) is entropy admissible if

η(u)t + q(u)x ≤ 0,

in the distributional sense, for every entropy-entropy flux (η, q).

The key point in the selection of the ”right” solutions is the fact that we require
u(t) = Stu0 to be entropic.

Theorem 2.2. Let f : R→ R be locally Lipschitz continuous. Then there exists a
continuous semigroup S : [0,∞)× L1 → L1 with the following properties.

(i) S0(ū) = ū, Ss(Stū) = Ss+tū.
(ii) ‖Stū− Stv̄‖1 ≤ ‖ū− v̄‖1.

(iii) For each u0 ∈ L1 ∩ L∞, the trajectory t 7→ Stu0 yields the unique, bounded,
entropy solution of the corresponding Cauchy problem (2.2).

(iv) If u0(x) ≤ v0(x) for all x ∈ R, then St(u0)(x) ≤ St(v0)(x) for every x ∈ R,
t ≥ 0.

In the definition of entropy functions, one can more generally consider locally
Lipschitz-continuous maps η, q that satisfy (2.3) almost everywhere. If we work
with bounded solutions, for a proof it is sufficient to approximate η uniformly by
smooth convex functions. In the same way we prove Rankine-Hugoniot conditions,
we get that at approximate jump points of an entropy admissible solution u it holds

λ[η(u+)− η(u−)] ≥ q(u+)− q(u−).

In particular we will consider entropy-entropy flux pairs (ηk, qk) defined by

ηk(u) = |u− k|, qk(u) = sign(u− k)
(
f(u)− f(k)

)
, k ∈ R,

and η±k = (u− k)± with relative fluxes q+
k , q

−
k :

q+
k (u) = χ[k,+∞)(u)[f(u)− f(k)], q−k (u) = χ(−∞,k](u)[f(k)− f(u)]. (2.4)

It is fairly easy to see that we can rewrite a generic convex function η ∈ C2(R)
in terms of ηk. Suppose in fact that a < 0 sufficiently small and b > 0 sufficiently
large,

a ≤ ess inf u0 ≤ ess supu0 ≤ b.
For every u ∈ (a, b), elementary computations shows that

η(u) = η(a) + η′(a)(u− a) +

∫ b

a

η′′(w)(u− w)+ dw,

q(u) = q(a) + η′(a)[f(u)− f(a)] +

∫ b

a

η′′(w)χ(−∞,u](w)(f(u)− f(w)) dw.

Let now µk be the dissipation of the entropies ηk:

∂tηk + ∂xqk = µk.

Then a simple superposition argument yields that if µ is the dissipation of η, then

µ =

∫ +∞

−∞
η′′(w)µw dw. (2.5)

In the following we will work mainly with the entropies ηk.
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2.2. Boundaries. The conservation law (2.1) has been also studied in the presence
of boundaries ([2, 6, 13] and the references therein). We will present only the results
which are needed for our purposes.

Let Ω be a domain of this form:

Ω =
{

(t, x) ∈ R+ × R : x ∈ (γ1(t), γ2(t))
}
, (2.6)

where γi : R+ → R are Lipschitz functions and γ1 ≤ γ2. We consider the problem
ut + f(u)x = 0 in Ω,

u(0, x) = uν0(x) x ∈ (γ−(0), γ+(0)),

u(t, γ−(t)) = u−b (t) t > 0,

u(t, γ+(t)) = u+
b (t) t > 0,

(2.7)

where u0 ∈ L∞(γ−(0), γ+(0)) and u−b , u
+
b ∈ L∞(0,+∞).

Definition 2.3. We say that u ∈ L∞(Ω) ∩C([0,∞);L1(R)) is an entropy solution
of (2.7) if

1. u satisfies the equation in the sense of distributions and it is entropic in Ω;
2. u satisfies the initial condition;
3. u has a strong trace u+ at the boundary such that for almost every t ∈ R+

and for all k ∈ R

−γ̇(η̃k(u+(t))− η̃k(ub(t))) + q̃k(u+(t))− q̃k(ub(t)) ≤ 0,

where

η̃k(u) =

{
(u− k)+ if u+ ≥ ub,
(u− k)− if u+ < ub,

and q̃k denotes his flux (2.4).

The strong trace assumption is clearly satisfied for BV functions, but not for L∞

solutions in general: however in the class of solutions we are considering Point (3)
above holds.

With no additional difficulties with respect to the more classical single-curve
boundary case, one can prove the following results (see the references above for a
proof).

Theorem 2.4. Let u0 ∈ BV(R) and ub,1, ub,2 ∈ BV(R+). Then there exists a
unique entropy solution to (2.7) which satisfies the following:

(i) for all t ≥ 0,

Tot.Var.{u(t);R} ≤ Tot.Var.{u0;R}
+ Tot.Var.{ub,1; [0,∞)}+ Tot.Var.{ub,2; [0,∞)}
+ |ub,1(0)− u0(γ−(0))|+ |ub,2(0)− u0(γ+(0))|;

(ii) there exists a positive constant C such that

‖u(t)− v(t)‖L1 ≤ ‖u0 − v0‖L1 + C
(
‖u+

b − v
+
b ‖L1 + ‖u−b − v

−
b ‖L1

)
;

(iii) if u0 ≤ v0 and u±b ≤ v
±
b , then u ≤ v.
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3. Lagrangian representation. The main goal of this section is to show that
the solution to scalar conservation laws with continuous initial data enjoys a rep-
resentation which is some sense is the continuous version of the classical wavefront
tracking construction. This is the Lagrangian representation of the solution u.

We first start with the BV case.

Definition 3.1. A Lagrangian representation of u is a pair of functions

X : R+ × (0,Tot.Var.{u0}]→ R, the position of the wave s,

u : (0,Tot.Var.{u0}]→ R, the value of the wave s,

such that s 7→ X(t, s) is increasing for all t, t 7→ X(t, s) is Lipschitz for all s, and for
all t ≥ 0, ϕ ∈ C1

c (R) it holds

Dxu(t) = X(t)]
(
Dsu(t, s)L1

)
.

This last equation can be written shortly as

−
∫
R
u(t, x)Dxϕ(x) dx =

∫
(0,Tot.Var.{u0}]

ϕ(X(t, s))Dsu(s) ds. (3.1)

Remark 3.2. Observe that u is defined up to additive constants. We uniquely
determine u by requiring u(Tot.Var.{u}) = u(+∞).

The fact that this representation deserves the Lagrangian attribute is to the
following fact: for all s ∈ (0,Tot.Var.{u0}] the map t 7→ X(t, s) are characteristic
curves of

Dtu+Dxf(u) = 0.

Since we are considering BV solutions, we can rewrite the above PDE in the sense
of measures:

Dtu+ λ̃Dxu = 0, (3.2)

where

λ̃(t, x) =

f
′(u(t, x)) if u(t) is continuous at x,
f(u+)− f(u−)

u+ − u−
if u(t) has a jump at x.

By (3.2) we can deduce the representation formula for Dtu:

Dtu = −λ̃Dxu = −λ̃L1 ⊗Dxu(t) = L1 ⊗ [−λ̃(t)Dxu(t)].

By (3.1), we deduce

Dtu(t) = −λ̃X(t)][DsuL1xJ ] = X(t)][−λ̂DsuL1xJ ], (3.3)

where λ̂(t, s) = λ̃(t, X(t, s)).
A non difficult analysis shows that on the other hand

Dtu(t) = X(t)]
[
− ∂tX(t, s)λ̂DsuL1xJ

]
,

and since the monotonicity of s 7→ X(t, s) implies that for a.e. t ∈ R+ the time
derivative ∂tX(t, s) is constant on the intervals where s 7→ X(t, s) is constant, we
obtain the following proposition.

Proposition 3.3. The following holds:

DtX(t, s) = λ̃(t, X(t, s)).
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In order to pass the Lagrangian representation for BV solutions to L∞-solutions
with continuous initial data, first observe that we can rewrite (3.3) as∫

R
u(t, x)Dxϕ(x) dx =

∫
(0,Tot.Var.{u0}]

Dsϕ(X(t, s))u(s) ds. (3.4)

This equation is meaningful even if u is only continuous, and is invariant w.r.t.
reparameterizations of s.

Considering thus a sequence of BV initial data un0 converging uniformly to u0

(here the assumption of continuity plays a major role) and passing to the limit of
(3.4) (using suitable reparameterizations of the variable s), then L1-stability of the
entropy solutions gives the following result.

Proposition 3.4. For all t ≥ 0 and ϕ ∈ C1
c (R), it holds∫

R
u(t, x)Dxϕ(x) dx =

∫
R
u(r)Dr(ϕ ◦ X(t))(dr),

where u is the entropy solution with initial data u0 and u is determined by u(s) =
u0(X(0, s)).

The formula above implies that

u(t, x) = u(X(t)−1(x))

for every x such that X(t)−1(x) is single valued. In particular, the fact that u is
continuous and X(t) is monotone, implies that the only discontinuities of u(t) are
in the points where X−1(t) has jumps, which correspond to the intervals where X(t)
is constant. The fact that t 7→ X(t, s) is Lipschitz gives that continuity points of
u(t) are actually continuity points of u with respect to both variables and that
discontinuity points lie on a countably 1-rectifiable set J .

We collect these regularity results here.

Theorem 3.5. Let u be the unique entropic solution of (2.2) with continuous initial
data. Then there exist a representative ũ and J ⊂ R+ × R such that:

(a) J is contained in the union of countably many curves t 7→ (t, αi(t)) with αi
uniformly Lipschitz;

(b) ũ is continuous outside J ;
(c) H1-almost every point in J is an approximate jump point of u;
(d) for every t ≥ 0 and for every x ∈ Jt = {x ∈ R : (t, x) ∈ J}, ũ admits left and

right limits at x.

In particular ũ is uniquely determined by requiring that for all t ≥ 0, ũ(t) is right
continuous.

4. Concentration of entropy. Our goal is to prove that, given u solution of (2.2)
with continuous initial data u0, for any entropy-entropy flux pair (η, q) the measure

µ = η(u)t + q(u)x

is concentrated on J , the set of jump points of u: it is sufficient to prove it for
entropies (η+

k )k∈R.

The strategy is the following: for any entropy η+
k we construct a sequence of BV

functions uj such that µj is concentrated on J and converges monotonically to µ.
This is not enough because the set J is not closed: indeed we need also to prove
that the measures µj are controlled by µxJ .



10 STEFANO BIANCHINI AND ELIO MARCONI

Without loss of generality we give the proof for k = 0 and in what follows ǔ will
denote positive part of u:

ǔ(t, x) = η+
0 (u(t, x)) = (u(t, x))+.

Denote also by (In)n∈N the connected components of {u0 > 0}. Since u0 is contin-
uous, In are open intervals. Let γ−n = X(·, inf In), γ+

n = X(·, sup In) and

tN1 = min
{
t : ∃ l,m ≤ N, l 6= m, γ+

l (t) = γ−m(t)
}
.

Define

ΩN ∩ {(t, x) : t ∈ (0, tN1 ]} =

N⋃
n=1

{
(t, x) : t ∈ (0, tN1 ], γ−n (t) < x < γ+

n (t)
}
.

We describe the restarting procedure which allows the construction of the open set
Ωn after each collision time: our aim is to obtain Proposition 4.2 below.

Suppose to have

γ+
l1

(tN1 ) = γ−l2 (tN1 ) = γ+
l2

(tN1 ) = . . . = γ−lk(tN1 ) 6= γ±m(tN1 ),

for m /∈ {l1, . . . , lk}.
If there are several collision points at tN1 , we repeat the following construction at

each of them.
We prolong the definition of ΩN until a time tN2 which is defined as the minimum

time greater than tN1 such that one of the following happens:

• there exist l,m /∈ {l1, . . . , lk} different such that γ+
l (t) = γ−m(t);

• there exists l /∈ {l1, . . . , lk} such that γ+
l (t) = γ−l1 (t);

• there exists l /∈ {l1, . . . , lk} such that γ−l (t) = γ+
lk

(t).

So we define

ΩN ∩ {(t, x) : t ∈ (tN1 , t
N
2 ]} =

⋃
n/∈{l1,...,lk}

{
(t, x) : t ∈ (tN1 , t

N
2 ], γ−n (t) < x < γ+

n (t)
}

∪
{

(t, x) : t ∈ (tN1 , t
N
2 ], γ−l1 (t) < x < γ+

lk
(t)
}
.

Observe that each time section of ΩN has at most N connected components and
for t > tNi they are up to N − i. In particular the procedure has at most N − 1
restarts.
(The case γ−l (t) = γ+

l (t) is treated by removing the couple (γ−l , γ
+
l ), because by

maximum principle the solution will remain ≤ 0 in the interval (γ−l , γ
+
l ) from that

time on.)
In the following we collect some properties of ΩN .

Definition 4.1. Let B ⊂ R2. We say that B enjoys the positive triangle property
if there exists L ∈ R such that the following holds: suppose(

t̄, (1− θ)a+ θb
)
∈ B for all θ ∈ [0, 1];

then(
t̄+ t, (a+ Lt)(1− θ) + θ(b− Lt)

)
∈ B for all θ ∈ [0, 1], t ∈

[
0,
b− a
2L

]
.

Proposition 4.2. The following hold:

1. ΩN is open;
2. ΩN ⊂ ΩN+1;
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x

t
γ−i γ+

i γ−j γ+
j

ΩN

Figure 1. Positive triangle property.

3. ΩN and ΩN enjoy the positive triangle property.
4. ΩN ⊂ {u ≥ 0}.

4.1. Initial-boundary value problem on ΩN . Consider the problem
ut + f(u)x = 0 in ΩN ,

u = ub on ∂ΩN ,

u(0, ·) = u0,

(4.1)

where u0 ∈ L∞(R) and ub ∈ L∞(∂ΩN ) are given.
One can assign boundary condition with functions (u±b,i)

N
i=1 ∈ L∞(0,+∞) and

require that for all i from 1 to N , u has internal traces along γ±i ∩ ∂ΩN and they
satisfy the boundary condition in the sense of Definition 2.3.

Definition 4.3. We say that u ∈ L∞(R+ × R) ∩ C([0,+∞);L1(R)) is a solution
of (4.1) if it satisfies the equation in the sense of distributions in ΩN , the initial
condition is assumed and u has internal traces on γ±i ∩ ∂ΩN which satisfy the
boundary conditions u±b,i in the sense of Definition 2.3.

We see that we can construct a solution for BV data using solution on domain
of the form (2.6) as building block. In fact, by construction, ΩN is composed by
finitely many of such domains.

Up to tN1 solution is obtained solving separately problems of type (2.6). At tN1 we
join intervals that meet as in construction of ΩN , we obtain finitely many domains
of type (2.6) and we solve the problem with initial data u(tN1 ) on that interval. The
procedure can restart because u(tN1 ) is BV: indeed applying Theorem 2.4 on each
subdomain bounded by two Lipschitz curves, it follows that

Tot.Var.{u(tN1 )} ≤ Tot.Var.{u0,R}+

N∑
i=1

Tot.Var.{u±b,i; (0, tN1 ]}

+

N∑
i=1

|u±b,i(0)− u0(γ±i (0))|.
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The contractivity property and comparison principle follow from the previous
case because it is easy to see that they hold after a restart. Let us state them in
this context too.

Proposition 4.4. Let u, v be solutions of (4.1) in the sense of Definition 4.3 with
initial data u0, v0 and boundary data ub, vb respectively. Then there exists a positive
constant C such that

‖u(t)− v(t)‖L1 ≤ ‖u0 − v0‖L1 + C

N∑
i=1

‖ub,i − vb,i‖L1 ,

In particular we obtained well-posedness of problem (4.1) endowed with BV
initial and boundary data.

Proposition 4.5. Let u, v be solutions of (4.1) in the sense of Definition 4.3 with
initial data u0, v0 and boundary data ub, vb respectively. Suppose u0 ≤ v0 and ub ≤
vb. Then u ≤ v.

4.2. BV approximations. Let (u0,j)j∈N be an increasing sequence of non negative
BV functions such that 0 ≤ u0,j ↗ (u0)+ in L1. Define uj,N as the unique solution
of problem (4.1) with initial data u0,j and zero boundary conditions.

The following lemma can be proved using the monotonicity of the semigroup,
Proposition 4.5.

Lemma 4.6. For all j,N ∈ N,

1. 0 ≤ uj,N ≤ ǔ;
2. uj,N ≤ uj,N+1;
3. uj,N ≤ uj+1,N .

By points (1) and (2) in Lemma 4.6 we obtain that (uj,N )N converges in L1 to
some function uj ≤ ǔ. Passing to the limit inequality (3) in Lemma 4.6 we get that
the sequence uj is increasing so it converges to some function ū ≤ ǔ. We will prove
that actually ū = ǔ.

In what follows we will consider the precise representative of BV functions.

4.3. Concentration of µj. The idea here is that the jump part of the derivative
of a BV function is 0 on the set of continuity. We define

Ω =

∞⋃
N=1

ΩN , A =

∞⋃
N=1

ΩN .

Since uj ≤ ǔ, then the Lagrangian representation gives the following.

Lemma 4.7. Let (t̄, x̄) ∈ Ac, then uj(t̄, x̄) = 0 and uj is continuous in (t̄, x̄).

We introduce the set

Γ =

∞⋃
n=1

{(t, γ±n (t))}.

We will prove that dissipation is concentrated on Γ.
The first step is that, by the previous lemma, we can easily deduce that µ is

concentrated on A, and since uj is a solution in the set Ω, it follows that

Proposition 4.8. The dissipation

(uj)t + f(uj)x =: µj

is concentrated on Γ.
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Observe that in the divergence computation of the above proposition the function
uj is considered in R+ ×R (by extending it to 0 outside Ω): this would correspond
in some sense to the dissipation of η+

0 (uj).

4.4. Formula for µj. In this section we give an explicit formula for µj .
We observe that the function uj belongs to BVloc(R+×R): indeed, uj is obtained

as limit of uj,N . By Theorem 2.4 (extended to Ω in a natural way), for all N ∈ N

Tot.Var.{uj,N (t),R} ≤ Tot.Var.{uj(0);R},

and since total variation is lower semicontinuous,

Tot.Var.{uj(t);R} ≤ Tot.Var.{uj(0);R}.

In particular uj ∈ BVloc(R+×R), hence the right (left) trace u+
j,Γ (u−j,Γ) of uj on Γ

is well defined.
The fact that Γ is countably 1-rectifiable and uj BV gives

Proposition 4.9. It holds

µj = µjxΓ =
[
− λ(u+

j,Γ − u
−
j,Γ) + f(u+

j,Γ)− f(u−j,Γ)
] 1√

1 + λ2
H1xΓ. (4.2)

4.5. Comparison with µ. The aim of this section is to prove that µ ≤ µj ≤ 0 for
all j ∈ N. We reach our goal proving two inequalities.

By Lagrangian representation there exist traces of u on Γ. In particular ǔ+
Γ and

ǔ−Γ , traces of ǔ, are well defined.

Lemma 4.10. The following inequality holds:

µ ≤
[
− λ(ǔ+

Γ − ǔ
−
Γ ) + f(ǔ+

Γ )− f(ǔ−Γ )
] 1√

1 + λ2
H1xΓ. (4.3)

In fact, the expression (4.3) is the ”jump part” of the measure µ. Since uj ≤ ǔ,
we can now prove that the measures µj are uniformly bounded.

Lemma 4.11. The following inequality holds:[
− λ(ǔ+

Γ − ǔ
−
Γ ) + f(ǔ+

Γ )− f(ǔ−Γ )
] 1√

1 + λ2
H1xΓ ≤ µj . (4.4)

Proof. By formula (4.2), it suffices to show that for H1-almost every point in Γ

−λ(ǔ+
Γ − ǔ

−
Γ ) + f(ǔ+

Γ )− f(ǔ−Γ ) ≤ −λ(u+
j,Γ − u

−
j,Γ) + f(u+

j,Γ)− f(u−j,Γ).

By Theorem 3.5, we can consider left and right limits u− and u+ of u(t) in (t, γn(t)).
We need to distinguish three cases:

Case 1: u− ≤ 0 and u+ ≤ 0. Since 0 ≤ uj ≤ ǔ,

−λ(ǔ+ − ǔ−) + f(ǔ+)− f(ǔ−) = −λ(u+
j − u

−
j ) + f(u+

j )− f(u−j ) = 0

because all terms vanish.
Case 2: u− ≤ 0 and u+ > 0. Since u is entropic we have λ = f(u+)−f(u−)

u+−u−

and for all k ∈ (u−, u+), it holds f(k) ≥ f(u+) − λ(u+ − k). In particular, since
u+
j ≤ ǔ+ = u+ and u−j = ǔ− = 0,

−λu+ + f(u+)− f(0) ≤ −λu+
j + f(u+

j )− f(0).

The case where u− > 0 and u+ ≤ 0 is analogous.
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Case 3: u− > 0 and u+ > 0. We show that such points, except for countably
many, are internal to Ω and therefore both quantities vanish thanks to Rankine-
Hugoniot conditions. It suffices to prove our claim for a single curve γn.

Take a point (t̄, γn(t̄)) with both positive limits and consider ε < u− ∧u+. Since
u is uniformly continuous there exist finitely many k such that max[γ−

k ,γ
+
k ] u > ε.

Let N be bigger of all these k. We prove that t̄ has a right neighborhood of times
t′ such that (t′, γn(t′)) ∈ ΩN . Being ε < u− ∧u+, the set ΩN (t̄) = ΩN ∩{t = t̄} has
density 1 at x̄. Since ΩN (t) is made of finitely many open intervals Ii two situations
can occur:

• there exists i such that x̄ ∈ Ii;
• there exist i, j such that inf Ii < sup Ii = x̄ = inf Ij < sup Ij .

In the first case the claim follows from the positive triangle property of ΩN . One
gets the result in the second case using the positive triangle property of ΩN .

By previous lemmas we get µ ≤ µj .

Remark 4.12. A completely similar proof shows that for any j ∈ N,

µj+1 ≤ µj .

4.6. Convergence of uj. Now we can prove that ū = ǔ. The idea is that the
initial “mass” is the same and ū dissipates less than ǔ, but at every time ū ≤ ǔ.
The only possibility is that they are equal.

Proposition 4.13. The sequence of BV approximations uj converges to ǔ.

Proof. Consider the map Φ : [0,+∞)→ R defined by

Φ(t) =

∫
R

(ū(t)− ǔ(t)) dx.

This map is continuous, non-positive and Φ(0) = 0. We prove that its distributional
derivative is non negative so that it is constant equal to zero. The monotone con-
vergence of uj and the bound obtained in previous section imply the convergence
of dissipations:

Dtuj +Dxf(uj) = µj → µ̄ = Dtū+Dxf(ū)

in the sense of Radon measures. In particular it holds∫∫
{ūDtϕ+ f(ū)Dxϕ}dxdt ≤

∫∫
{ǔDtϕ+ f(ǔ)Dxϕ}dxdt

for all ϕ ∈ C∞c (R2) non negative.
We consider test functions of the form ϕ(t, x) = ϕ̃(t)ψ(x), where ϕ̃ ∈ C∞c (R)

and ψ ∈ C∞c (R) with ψ ≡ 1 on a sufficiently large interval. Then we have

0 ≥
∫∫
{(ū− ǔ)Dtϕ+ (f(ū)− f(ǔ))Dxϕ} dxdt

=

∫∫
(ū− ǔ)Dtϕ̃ dxdt+

∫∫
(f(ū)− f(ǔ))Dxϕdxdt

=

∫
Dtϕ̃(t)

∫
(ū(t)− ǔ(t)) dxdt+

∫
ϕ̃(t)

∫
(f(ū)− f(ǔ))Dxψ(x) dxdt

= − Φ′(ϕ̃).

Then Φ′ ≤ 0 in the sense of distributions and the claim follows.
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4.7. Formula for µ. In the following proposition we present the explicit formula
for the dissipation µ.

Proposition 4.14. The dissipation µ is given by the following formula:

µ =
[
− λ(ǔ+

Γ − ǔ
−
Γ ) + f(ǔ+

Γ )− f(ǔ−Γ )
] 1√

1 + λ2
H1xΓ. (4.5)

In particular, we obtain that µ is concentrated on the set J of the jumps of u .

Proof. By equations (4.2), (4.3) and (4.4) we get

µj =
[
− λ(u+

j,Γ − u
−
j,Γ) + f(u+

j,Γ)− f(u−j,Γ)
] 1√

1 + λ2
H1xΓ

≥
[
− λ(ǔ+

Γ − ǔ
−
Γ ) + f(ǔ+

Γ )− f(ǔ−Γ )
] 1√

1 + λ2
H1xΓ

≥ µ.

By Proposition 4.13, we get

µ = lim
j

[
− λ(u+

j,Γ − u
−
j,Γ) + f(u+

j,Γ)− f(u−j,Γ)
] 1√

1 + λ2
H1xΓ

≥
[
− λ(ǔ+

Γ − ǔ
−
Γ ) + f(ǔ+

Γ )− f(ǔ−Γ )
] 1√

1 + λ2
H1xΓ

≥ µ

(4.6)

hence we can conclude that all inequalities in (4.6) are in fact equalities and formula
4.5 holds. From that formula we can deduce that µ is concentrated on the set of
jumps of ǔ, which is contained in J .

4.8. Conclusion. By the superposition formula (2.5), we finally get the following
result for entropy solution u of (2.2) with continuous initial data.

Theorem 4.15. There exists a countably H1-rectifiable set J such that u is con-
tinuous outside J and H1-almost every point of J is an approximate jump point.
Denote with (u−(y), u+(y), n(y)) the left, right limits and the normal to J in H1-a.e.
point y ∈ J . If η is an entropy with flux q, then

ηt + qx =

∫
J

(
η(u+(y))− η(u−(y)), q(u+(y))− q(u−(y))

)
· n(y)H1(dy).

This result, together with Theorem 3.5 gives the Main Theorem stated in the
introduction, page 3.
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