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Abstract. We consider continuous solutions u to the balance equation

∂tu(t, x) + ∂x [f(u(t, x))] = g(t, x) f ∈ C2(R), g ∈ L∞(R)

for a bounded source term g. Continuity improves to Hölder continuity
when f is uniformly convex, but it is not more regular in general. We
discuss the reduction to ODEs on characteristics, mainly based on the
joint works [5, 1]. We provide here local regularity results holding in
the region where f ′(u)f ′′(u) 6= 0 and only in the simpler case of au-
tonomous sources g = g(x), but for solutions u(t, x) which may depend
on time. This corresponds to a local regularity result, in that region, for
the system of ODEs {

γ̇(t) = f ′(u(t, γ(t)))
d
dt
u(t, γ(t)) = g(t, γ(t)).

1. Introduction. In the context of classical solutions, the balance law

∂tu(t, x) + ∂x [f(u(t, x))] = g(t, x), f ∈ C2(R), (1.1)

can be reduced to ordinary differential equations along characteristic curves,
defined as those curves t 7→ (t, γ(t)) satisfying γ̇(t) = f ′(u(t, γ(t))). Indeed,

g(t, γ(t)) = ∂tu(t, γ(t)) + ∂x [f(u(t, γ(t)))]

= ∂tu(t, γ(t)) + f ′(u(t, γ(t)))∂xu(t, γ(t))

= ∂tu(t, γ(t)) + γ̇(t)∂xu(t, γ(t)) =
d

dt
u(t, γ(t)).
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This more generally allows a parallel between the Cauchy problem for a
scalar quasi-linear first order PDE and for a system of ODEs, which is
known as the method of characteristics (see for instance [10], where it is
also provided an application to determine local existence).

If one interprets of f ′(u) as a velocity, this is just the change of variable
from the Eulerian (PDE) to the Lagrangian (ODEs) formulation.

We discuss here what remains of this equivalence when u is just continuous
and g is bounded. We prove then in Section 2 that when g depends only
on x, but not on the time t, then u(t, x) is locally Lipschitz continuous on
the open set where f ′(u)f ′′(u) is nonvanishing. This is sensibly better than
the general case, where u is only Hölder continuous. It is based on proving
the corresponding result for the system of ODEs. As we are discussing local
issues, we will fix for simplicity the domain R2 and we will assume u bounded.

1.1. A motivation for a different setting. The development of Geomet-
ric Measure Theory in the context of the sub-Riemannian Heisenberg group
Hn brought the attention to continuous solutions to the equation

∂tu(t, x) + ∂x

[
u2(t, x))

2

]
= g(t, x). (1.2)

Continuity is natural from the fact that u parametrizes a surface. As one
studies surfaces that have differentiability properties in the intrinsic struc-
ture of the Heisenberg group, but not in the Euclidean structure, then it is
not natural assuming more regularity of u than continuity [13], which for
bounded sources improves to 1/2-Hölder continuity [4, 5]. Notice that with
u continuous the second term of the equation cannot even be rewritten as
u∂xu, because ∂xu is only a distribution and u is not a suitable test function.

The PDE arises if one wants to show the equivalence between a point-
wise, metric notion of differentiability and a distributional one: for n = 1
the distributional definition is precisely (1.2), while for n > 1 it is a re-
lated multi-D system of PDEs. The correspondence was introduced first
in [3, 4] for intrinsic regular hypersurfaces, which are the analogue of what
are C1-hypersurfaces in the Euclidean setting. It was extended in [5, 7] when
considering intrinsic Lipschitz hypersurfaces, analogue of Lipschitz hypersur-
feces in the Euclidean setting. The source term g, in H1, turns out to be
what is called the intrinsic gradient of u, which is the counterpart of the
gradient in Euclidean geometry; in Hn it is one if its components: u locally
parametrizes an intrinsic regular hypersurface if and only if (1.2) holds lo-
cally with g continuous; it parametrizes an intrinsic regular hypersurface if
and only if (1.2) holds locally with g bounded. As the notion of differentia-
bility they provide in the intrinsic structure of Hn is closer to the Lagrangian
formulation, the equivalence between Lagrangian and Eulerian formulation
arises as intermediate step of this characterization.

When considering intrinsic Lipschitz hypersurfaces the fact that g is only
bounded gives rise to new subtleties. In particular, one already knows by an
intrinsic Rademacher theorem [11] that the intrinsic differential exists and it
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is unique L2-a.e. However, for the ODE formulation this is not enough: as
one needs to restrict this L∞ function on curves, a precise representative is
needed also at points where u is not intrinsically differentiable. Viceversa, if
one chooses badly the representative of the source of the ODE formulation a
priori it differs on a positive measure set from the source of the ODE. There
is however a canonical choice for defining the two sources, which makes the
formulations equivalent when the inflection points of f are negligible.

1.2. Summary of the equivalence. When u is Lipschitz, the ODEs{
χ̇(t, x) = f ′(u(t, χ(t, x)))

χ(0, x) = x
x ∈ R, f ∈ C2

provides a local diffeomorphism by the classical theory on ODE. If u is
instead continuous, Peano’s theorem ensures local existence of solutions, but
more characteristics may start at one point and characteristics from different
points may collapse (see in [5] the classical example of the square-root). This
makes clearly impossible to have a local diffeomorphism, or even having a
Lagrangian flow in the sense by Ambrosio-DiPerna-Lions [9, 2]. A recent
result about this can be obtained for u not depending on time [6], but it is
clearly not our assumption. Dropping out injectivity, it is however possible
to construct a continuous change of variables with bounded variation.

Let u be a continuous, bounded function.

Lemma 1.1. There exists a continuous function χ : R× R→ R such that

• τ 7→ χ(t, τ) is nondecreasing for every t and surjective;
• ∂tχ(t, τ) = f ′(u(t, τ)).

We call it Lagrangian parameterization. This function is not unique.

See [1, 5] for the proof. See also [12] for a similar change of variable, for
a 1D-system. In general one cannot have that χ is SBV [1].

Consider now u continuous distributional solution to (1.1) with g bounded.

Lemma 1.2. Assume that L1(clos({Inflection points of f})) = 0. Then u
is Lipschitz continuous along every characteristic curve.

The proof follows a computation by Dafermos [8]. For general fluxes,
there are cases when u is not Lipschitz along some Lagrangian parameteri-
zation [1]. The counterexample holds also for continuous autonomous sources
g(t, x) = g0(x). What we find more striking is the following equivalence.

Theorem 1.3. Assume that L1(clos({Inflection points of f})) = 0. Then
there exists a pointwise defined function ĝ(t, x) a.e. equal to g such that

d

dt
u(t, γ(t)) = ĝ(t, γ(t)) in D′(R) for every characteristic curve γ.

The proof is based on a selection theorem as a technical device, but ĝ is
essentially uniquely defined as the derivative of u along some characteristic.
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Remark 1.4. There is a substantial difference between the uniformly convex
case and the case of negligible inflection points: in the former at almost
every (t, x) there exists a unique value for d

dtu(t, γ(t)), γ(t) = x, and it does
not depend on which characteristic γ(s) one has chosen (for quadratic flux,
this is Rademacher theorem in [11]). That value is the most natural choice
of g at those points. For non convex fluxes, instead, there may be a set of
positive L2-measure made of points where d

dtu(t, γ(t)) does not exist at the
point, independently of which characteristic γ one choses through the point.

The converse also holds. We give here a weaker statement without the
negligibility condition on the inflection points. Identifying sources is delicate.

Theorem 1.5. Assume that a continuous function u has a Lagrangian pa-
rameterization χ for which there exists a bounded function g̃ s.t. it satisfies

d

dt
u(t, χ(t, τ)) = g̃(t, χ(t, τ)) in D′(R) for every τ ∈ R. (1.3)

Then this same relation is satisfied for a function g(t, x) s.t. (1.1) holds.
Viceversa, if (1.1) holds then there exists a Lagrangian parameterization

χ and function g̃ s.t. (1.3) holds.

We are not stating the compatibility of the two sources g, g̃, which at least
under the negligibility condition on inflection points of Theorem 1.3 holds.
We finally mention that continuous distributional solutions to this simple
equation do not dissipate entropy.

Theorem 1.6. Let u be a continuous distributional solution to (1.1) with
bounded source g. Then for every smooth function η and q satisfying q′ = η′f ′

∂t [η(u(t, x))] + ∂x [q(u(t, x))] = η′(u(t, x))g(t, x).

2. Some Local Regularity with Autonomous Sources. We mention a
local regularity result holding in the case of autonomous sources: the con-
tinuous function u(t, x) is locally Lipschitz continuous in the (open) comple-
mentary of the 0-level set of the product f ′(u)f ′′(u). For f(u) = u2/2, this
means u 6= 0. When the source is not autonomous, then this fails to be true,
indeed characteristics may bifurcate also at points where u is not vanishing.

We remind [1] that when f has inflection points of positive measure, then a
priori u may not be Lipschitz along some characteristics, even with g = g(x).

Lemma 2.1. There may be locally multiple solutions to the ordinary differ-
ential equation{

γ̇(t) = u(t, γ(t))

γ̈(t) = g(γ(t))
γ(t̄) = x̄ u(t, x) continuous, g(x) bounded

only if u(t̄, x̄) = 0 but it does not identically vanish in a whole neighborhood.

Remark 2.2. We are not stating existence. The lemma is however still not
obvious because we do not have differentiability properties of u, which follow
a posteriori by the next corollary in the region where u does not vanish. As
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a consequence, we do not have now the differentiability of the map γ(t)
w.r.t. the initial data of the ODE. The lemma asserts indeed the continuity
in this variable in that region, provided it exists. We remind that when g
depends on t bifurcations may easily occur also if u 6= 0.

In particular, if u is not locally Lipschitz where nonvanishing the above
system cannot have solutions through each point of the plane.

Proof. We just prove that if u does not vanish at some point (t̄, x̄), at that
point there is at most one solution of the ODE, as an effect of the autonomous
source. The reason is that if u(t̄, x̄) does not vanish, then any Lipschitz char-
acteristic x = γ(t), with x̄ = γ(t̄), is a diffeomorphism in some neighborhood
of (t̄, x̄), and we can invert it. This allows to have the space variable as a
parameter: the characteristic can be expressed as t = θ(x). However, the
second order relation γ̈(t) = g(γ(t)), once expressed in the x variable, can
be integrated determining the function θ.

By elementary arguments, it suffices to show that there exists (locally)
only one characteristic passing through (t̄, x̄) = (0, 0) with slope u(0, 0) = 1.
Focus the attention on a neighborhood of the origin where u is bigger than
some ε > 0.

Let x = γ(t) be any Lipschitz continuous solution of the ODE. Since
γ̇(0) = u(0, 0) > 0, by the inverse function theorem there exists δ > 0 and a
function

θ : (γ(−δ), γ(δ))→ (−δ, δ) : θ(γ(t)) = t, γ(θ(x)) = x.

Moreover, it is continuously differentiable with derivative

θ̇(x) =
1

γ̇(θ(x))
=

1

u(θ(x), x)
∈
[

1

max |u|
,
1

ε

]
. (2.1)

From the Lipschitz continuity of u(t, γ(t)) and the fact that γ is a local dif-
feomorphism with inverse θ we deduce that the composite function u(θ(x), x)
is Lipschitz continuous. At points of differentiability by the classical chain
rule

lim
h↓0

γ̇(θ(x+ h))− γ̇(θ(x))

h

=
γ̇(θ(x+ h))− γ̇(θ(x))

θ(x+ h)− θ(x)

θ(x+ h)− θ(x)

h
= γ̈(θ(x))θ̇(x)

and (2.1) we have that θ̇ is differentiable at x ∈ X with derivative

θ̈(x) = − γ̈(θ(x))θ̇(x)

[γ̇(θ(x))]2
= − g(θ(x))

u3(θ(x), x)
⇔ − θ̈(x)

[θ̇(x)]3
= g(x).

For those x ∈ X, the differential equation may be rewritten as

d

dx

[
1

2[θ̇(x)]2

]
= g(x) ⇔ d

dx

u2(θ(x), x)

2
= g(x).
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The explicit ODE for θ(x), with initial data θ(0) = 0, [θ̇(0)]−1 = u(0, 0) = 1
is easily solved locally by

u2(θ(x), x) =
1

θ̇2(x)
= 1 + 2

∫ x

0
g(z)dz. (2.2)

This shows that the slope of every characteristic through the origin, which is
a local diffeomophism, is fixed at each x independently of the characteristic
we have chosen: therefore there can be only one characteristic, precisely (in
the space parameterization)

θ(x; t̄, x̄) = t̄+

∫ x

x̄

1√
u2(t̄, x̄) + 2

∫ w
x̄ g(z)dz

dw. (2.3)

Notice finally that if u vanishes in a neighborhood, being γ̇(t) ≡ 0 there
characteristics must be vertical (in that region of the (x, t)-plane).

Lemma 2.3. Under the hypothesis of Lemma 2.1, if g(x) is continuous it
should also vanish at points where there are more characteristics, but it must
not identically vanish in a neighborhood.

Proof. We show that not only u, but also g must vanish. The argument shows
that when two characteristics meet and have both second derivative with the
same value, this value must be 0. For simplifying notations, consider two
characteristics γ1(t) ≤ γ2(t) for arbitrarily small t > 0 with γ1(0) = γ2(0) =
0. If γ1(tk)γ2(tk) ≤ 0 for tk ↓ 0, then

0 ≤ γ̈2(0) = g(0) = γ̈1(0) ≤ 0,

thus g vanishes. If instead e.g. g > 0 near the origin, having excluded the
above case there exists δ > 0 such that 0 ≤ γ1(t) ≤ γ2(t) for t ∈ [0, δ].
Then (2.2) implies that the two curves coincide: for small x > 0 necessarily
γ̇1(t) > 0, γ̇2(t) > 0, otherwise we would have a sequence xk ↓ 0 where g
vanishes, and therefore

u2(γ−1
1 (x), x) + 2

∫ 0

x
g(z)dz = γ̇2

1(0)

= 0 = γ̇2
2(0) = u2(γ−1

2 (x), x) + 2

∫ 0

x
g(z)dz,

showing that γ̇1(t) ≡ γ̇2(t) for small times. This implies that the two curves
coincide.

Finally, suppose g vanishes in a neighborhood. Then, as γ̈(t) = 0 in that
neighborhood, characteristics are straight lines. As by the continuity of u
characteristics may only intersect with the same derivative, they must be
parallel lines and therefore bifurcation of characteristics does not occur.

We now show that in case u does not vanish, in the above lemma much
more regularity holds.

Lemma 2.4. In the setting of Lemma 2.1, u(t, x) is locally Lipschitz in the
open set

{
(t, x) : u(t, x) 6= 0

}
.
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Proof. By Lemma 2.1 there is a unique characteristic starting at each point
(t̄, x̄) ∈ Ω =

{
(t, x) : u(t, x) 6= 0

}
, which is given by (2.3). We start compar-

ing the value of u at two points (0, 0), (−t, 0), t > 0, in a ball B compactly
contained in Ω. In particular, there exists δ(B) s.t. the two characteristics
starting from the points we have chosen do not intersect if 0 < x < δ(B), as
there u does not vanish. For such small x one has∫ x

0

1√
λ2

1 + 2
∫ w

0 g(z)dz
dw > −t+

∫ x

0

1√
λ2

2 + 2
∫ w

0 g(z)dz
dw, (2.4)

where we defined λ1 = u(0, 0) and λ2 = u(−t, 0). Equivalently

t >

∫ x

0

 1√
λ2

2 + 2
∫ w

0 g(z)dz
− 1√

λ2
1 + 2

∫ w
0 g(z)dz

 dw.

Suppose λ1 > λ2. By convexity of the graph of r 7→ 1√
r
, the RHS is more

than ∫ x

0

d

dr

{
1√
r

} ∣∣∣
r=λ21+2

∫ w
0 g(z)dz

(λ2
2 − λ2

1)dw

=

{
λ2 + λ1

−2

∫ x

0

1

(λ2
1 + 2

∫ w
0 g(z)dz)3/2

dw

}
(λ2 − λ1)

≥
{

λ2 + λ1

2(λ2
1 + 2Gx)3/2

x

}
(λ1 − λ2)

The argument in the last brackets is uniformly continuous and as t ↓ 0 it is
more than x/λ2

1. As the inequalities hold for every positive t, x < δ = δ(B),
the non-intersecting condition (2.4) implies

u(0, 0)− u(t, 0) = λ1 − λ2 ≤
(
λ2

1

δ
+ ε

)
t,

which is half the Lipschitz inequality at the points (0, 0), (−t, 0). The other
half, for λ1 < λ2 is similarly obtained considering small negative x.

For comparing two generic close points (t, x) and (0, 0), by the finite speed
of propagation one can combine the Lipschitz regularity along characteristics
and the Lipschitz regularity along vertical lines.

Corollary 2.5. Let u(t, x) be a continuous solution to the balance equation

∂tu(t, x) + ∂x [f(u(t, x))] = g(x), g ∈ L∞(R).

The function u(t, x) is locally Lipschitz in the open set{
(t, x) : f ′(u(t, x)) · f ′′(u(t, x)) 6= 0

}
.

Proof. We first consider the case of quadratic flux f(u) = u2/2. By Theo-
rem 1.3, there exists a function ĝ(t, x) such that we can apply Lemma 2.1,
which gives the thesis. If g ∈ L∞ they may a priori differ on an L2-negligible
set, but one can prove that ĝ(t, x) = ĝ(x).
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Being u an entropy solution by Theorem 1.6, f ′(u) solves the equation[
f ′(u)

]
t
+

[
f ′(u)2

2

]
x

= f ′′(u)g.

By the previous case then f ′(u) is Lipschitz in the open set where it does
not vanish. If moreover f ′′(u) does not vanish, then the regularity of u can
be proved just by inverting f ′.
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