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Abstract

Just as string T-duality originates from transforming field equations into Bianchi identities on the string 
worldsheet, so it has been suggested that M-theory U-dualities originate from transforming field equations 
into Bianchi identities on the membrane worldvolume. However, this encounters a problem unless the tar-
get space has dimension D = p + 1. We identify the problem to be the nonintegrability of the U-duality 
transformation assigned to the pull-back map. Just as a double geometry renders manifest the O(D, D)

string T-duality, here we show in the case of the M2-brane in D = 3 that a generalized geometry renders 
manifest the SL(3) ×SL(2) U-duality. In the case of M2-brane in D = 4, with and without extra target space 
coordinates, we show that only the GL(4, R) �R4 subgroup of the expected SL(5, R) U-duality symmetry 
is realized.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction

1.1. The story so far

1.1.1. Strings, T-duality and double geometry
Some time ago [1], it was pointed out that strings moving in a D-dimensional space MD

with coordinates Xμ(τ, σ), background metric gμν(X) and 2-form Bμν(X) could usefully be 
described by a doubled geometry with 2D-dimensional coordinates

ZM = (Xμ,Yσ ) (1.1)

and doubled metric1

GMN =
(

gμν − Bμρ gρσ Bσν Bμρ gρσ

−gμσ Bσν gμν

)
. (1.2)

The motivation was twofold; worldsheet and spacetime:

1. Worldsheet
In the case when MD is the D-torus T D , this renders manifest the O(D, D) T-duality by 
combining worldsheet field equations and Bianchi identities via the constraint

�MNεij ∂jZ
N = GMN

√−γ γ ij ∂jZ
N , (1.3)

where

�MN =
(

0 δμ
β

δα
ν 0

)
, (1.4)

and γij is the worldsheet metric.
2. Spacetime

In the case when MD is a generic manifold, the 2D-dimensional diffeomorphisms with 
parameter ξM = (ξμ, λα) suggest a way of unifying2 D-dimensional diffeomorphisms

δgμν = −∂μξρgρν − ∂νξ
ρgμρ − ∂ρgμνξ

ρ , (1.5)

and 2-form gauge invariance

δBμν = ∂μλν − ∂νλμ . (1.6)

After all, GMN is just the Kaluza–Klein metric with spacetime metric gμν , gauge field Aμ
a

and internal metric gab

GMN =
(

gμν + Aμ
agabAν

b Aμ
agab

gabAν
b gab

)
, (1.7)

where the “gauge field” is Bμα and the “internal” metric is gαβ . If this programme were 
successful one would expect the SL(D)/SO(D) coset of general relativity to be promoted to 
an O(D, D)/(SO(D) × SO(D)), as conjectured in [3,5].

1 GMN had previously appeared in [2] with a different physical interpretation as a metric on phase space.
2 An earlier alternative suggestion [3] was to use the non-symmetric metric gμν +bμν . The two alternatives are related 

by the two-vielbein approach [4].
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In summary, the worldsheet goal of rendering manifest the string T-duality O(D, D) by 
doubling the coordinates was achieved successfully in [1] and a T-dual worldsheet action 
using the doubled coordinates was then constructed in [6]. However, there were missing 
ingredients in the spacetime approach: the generalized diffeomorphisms were subsequently 
supplied in [4,7]

δGMN = ξP ∂P GMN + (∂MξP − ∂P ξM)GPN + (∂NξP − ∂P ξN)GMP , (1.8)

and the section condition subsequently supplied in [7]

�MN∂M∂N = 0 . (1.9)

(The need for the section condition has, however, been called into question [8,9].) Once these 
ingredients were included, it was possible also to build a generalized spacetime action for 
GMN . This activity came to be known as “Double Field Theory.”

For further developments and variations on this doubled geometry theme, in addition to those 
already cited, including “Generalized geometry” and the E11 approach see, for example, [8,
10–42].

1.1.2. Branes, U-duality and M-theory
Following [1], it was pointed out [43–45] that membranes moving in a (D ≤ 4)-dimensional 

space MD with coordinates Xμ(τ, σ, ρ), background metric gμν(X) and 3-form Bμνρ(X) could 
usefully be described by a geometry with [D + D(D − 1)/2]-dimensional coordinates

ZM = (Xμ,Yρσ ) (1.10)

and generalized metric

GMN =
(

gμν + Bμρσ gρσλτBλτν Bμρσ gρσλτ

gμνρσ Bρσν gμνρσ

)
, (1.11)

where

gαβγ δ = 1

2
(gαγ gβδ − gαδgβγ ) . (1.12)

Once again, the motivation was twofold; worldvolume and spacetime:

1. Worldvolume
In the case when MD is the D-torus T D , the hope was to render manifest the M-theory 
U-dualities (using modern parlance) by combining worldvolume field equations and Bianchi 
identities. For example, the U-duality would be SL(5, R) in the case D = 4. The restriction 
to D ≤ 4 arises because, just as the usual coordinates Xμ correspond to momentum in the 
supersymmetry algebra, so the extra coordinates Yμν correspond to the M2 central charge. 
But for D ≥ 5, this is not enough, as shown in Table 2 in [43]. There is also the M5 central 
charge with corresponding coordinates Yμνρστ , which first appears in D = 5. In Appendix A, 
we illustrate the emergence of extra coordinates from central charges in the M-theory algebra 
for general D. For example, in the D = 7 case Xμ, Yμν , Ỹ μν ∼ εμνρστλκYρστλκ and X̃μ

form a 56 of the U-duality symmetry E7(7).
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2. Spacetime
If this programme were successful, one would expect the SL(D)/SO(D) of general relativity 
to be promoted not merely to O(D, D)/(SO(D) × SO(D)) but to E8/SO(16), with possible 
infinite-dimensional extensions involving E9, E10 and E11 as conjectured in [5,14,46]. Once 
again, however, the generalized diffeomorphisms, section conditions and U-invariant actions 
came later. This activity has become known as “Exceptional Field Theory”. For subsequent 
developments and variations on generalized geometry in M-theory and U-duality see, for 
example, [17,22–24,26,28–30,47–59], where the 5-brane and other extended objects were 
incorporated, as required for D > 4. The E11 approach [14] goes further with infinitely many 
coordinates of which those associated with the M-theory central charges are but a subset.
In summary, in contrast with strings where both the worldsheet and spacetime approaches 
have been successful, the brane worldvolume approach seems problematical and, with the 
exception of [22,29], recent developments have tended to focus on the spacetime approach 
where the extra coordinates (1.10) and generalized metric (1.11) have proved valuable. In 
fact, the worldvolume approach has been questioned by Percacci and Sezgin [60], by Sen 
[61], and by Lukas and Ovrut [62]. They suggest that it works only for target space di-
mensions D = p + 1. In this case, the D!/((D − p)!p!) wrapping modes on a D-torus 
(D ≥ p + 1) and the D Kaluza–Klein modes are equal in number as in the case of a string. 
Sen argues that this equality is a requirement. If so, the D = 3 U-duality SL(3) ×SL(2) might 
be expected, but the D = 4 U-duality SL(5), would not.
In any event, the need to include coordinates corresponding to central charges in the 
M-theory algebra exposes a major difference between U-duality in M-theory and T-duality in 
string theory. In string theory, T-duality takes strings into strings, but in M-theory U-duality 
mixes up p-branes with different p. It seems unlikely, therefore, that the M2-brane world-
volume alone is sufficient. Somehow the totality of p-brane worldvolumes must conspire to 
give the full U-duality. This remains an unsolved problem.
Finally we note that the purpose of extra coordinates in both string and M-theory is to render 
the T and U dualities manifest. If one is content with non-manifest T-duality, one may invoke 
the Gaillard–Zumino (GZ) approach [63], as was done in [64]. The GZ approach to U duality 
is discussed below.

1.2. This paper

This paper is devoted purely to the worldvolume approach. We shall show:

• There is a problem with SL(5, R), which manifests itself both in the GZ approach (which 
doesn’t introduce extra coordinates), as well as in approaches in which extra coordinates are 
introduced [43,65]. In the GZ approach, as well as the approach of [43], we shall show that 
the obstacle to the realization of SL(5, R) symmetry is the nonintegrability of the transfor-
mation rule for the pull-back map. In the approach of [65], we shall show that the proposed 
manifestly SL(5, R)-invariant equation for a membrane in a target based on generalized ge-
ometry does not support linearized fluctuations about a Poincaré invariant vacuum solution.

• In the case of topological membranes, the SL(2, R) symmetry is known but we shall formu-
late it in a double geometry setting.

• We shall rederive the result that the membrane in d + 3 dimensions has a Heisenberg sub-
group of the SL(2, R) symmetry [60], by making use of simple integrability considerations.
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2. Topological membranes

Although p-branes in p + 1 dimensions carry no dynamical degrees of freedom [66], they 
are nevertheless of considerable interest. In the present context, they provide us with a setting 
in which we can get a handle on duality symmetries that transform field equations and Bianchi 
identities into each other. Everything we will do here applies to topological p-branes for gen-
eral p, but for simplicity in notation as well as our special interest in M2-branes, we shall focus 
on topological membranes.

The standard action for the closed membrane is

I =
∫

d3σ
[
− 1

2

√−γ γ ij ∂iX
μ∂jX

ν gμν + 1
6εijk ∂iX

μ ∂jX
ν ∂kX

ρ Bμνρ + 1
2

√−γ
]

, (2.1)

where in our conventions ε012 = +1. For the topological membrane we take μ = 0, 1, 2.3 The 
SL(3) is manifest. For simplicity, we shall take the metric tensor gμν and 3-form potential Bμνρ

in the 3-dimensional target space to be constant.4

In this case, using the algebraic field equation γij = ∂iX
μ∂jX

ν gμν , we have the identity
√−γ γ ij gμν∂jX

ν = − 1
2

√−gεμνρεijk∂jX
ν∂kX

ρ . (2.2)

Therefore, letting Bμνρ = √−gεμνρB , the action can be written as

I = 1

3!
∫

d3σ
√−g (1 + B)εijk ∂iX

μ ∂jX
ν ∂kX

ρ εμνρ . (2.3)

We shall, however, use the form (2.1) of the action below, motivated by the fact that this form 
will make it easier to compare with what happens in the case of the non-topological membrane. 
The resulting equations are

∂iP
i
μ = 0 , γij = ∂iX

μ ∂jX
ν gμν , (2.4)

where

P i
μ ≡ −√−γ γ ij ∂jX

νgμν + 1
2εijk ∂jX

ν∂kX
ρ Bμνρ . (2.5)

There is also a conserved topological current:

∂iJ
iμν = 0 , J iμν = εijk ∂jX

μ ∂kX
ν . (2.6)

Because we are considering a target space that is three dimensional, we can make the definitions

J i
μ = 1

2εμνρ J iνρ , Bμνρ = B |g|1/2 εμνρ . (2.7)

3 This form of the action is in accordance with the terminology of ‘topological membrane’ we are using here. It should 
be noted, however, that the characterization of membranes as ‘topological’ also arises in the context of membranes that 
propagate in dimensions higher than three but with action that consists of Wess–Zumino term and no kinetic term. See, 
for example [67]. In general, branes with pure Wess–Zumino terms exhibit a huge symmetry enhancement; see, for 
example [68].

4 This is an important assumption. Otherwise the modification in equation (2.4) will obstruct the sought after duality 
symmetry. The spacetime background here can be viewed as being a subsector a time-like dimensional reduction of the 
bosonic sector of D = 11 supergravity down to 8 dimensions, where only the fields (gμν , Bμνρ) are kept, and the 8 
dimensional Euclidean coordinates are taken to be constants. In a spacelike dimensional reduction, the signature of the 
metric gμν would be Euclidean, and we would take the 8 dimensional spacetime coordinates to be constant. All of our 
considerations apply for this case as well.
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Noting that εijkεμνρ∂jX
ν∂kX

ρ = −2(det ∂X)γ ij gμν∂jX
ν and that det∂X = |γ |1/2|g|−1/2, we 

can write P i
μ and J i

μ as follows

P i
μ = −√−γ γ ij gμν(1 + B)∂jX

ν , J i
μ = √−γ γ ij gμν |g|−1/2 ∂jX

ν . (2.8)

From these equations we find

P i
μ = −(1 + B) |g|1/2 J i

μ . (2.9)

Note that this equation readily follows from the form of the action given in (2.3). We may now 
consider linear GL(2, R) = SL(2, R) × R transformations of the form5

δ

(
P i

μ

J i
μ

)
=

(
a b

c −a

)(
P i

μ

J i
μ

)
+ λ

(
P i

μ

J i
μ

)
. (2.10)

We see that (2.9) is left invariant provided that |g| and B transform such that

C ≡ −(1 + B) |g|1/2 (2.11)

transforms as

δC = b + 2aC − cC2 . (2.12)

This can be seen from (2.9), noting that it implies C1 = PJ−1. It represents the infinitesimal 
form of a fractional linear transformation of the real variable C, and gives a representation of 
the algebra SL(2, R) × R. The fact that this symmetry acts on a combination of g and B is a 
consequence of the fact that the target spacetime is Lorentzian, as noted in [60].

To make the SL(2, R) symmetry manifest, we introduce a doubled system of coordinates Zaμ, 
with a = 1, 2, such that Xμ = −Z1μ and

P i
μ = √−γ γ ij |g|−1/2 gμν ∂jZ

2ν , J i
μ = −√−γ γ ij |g|−1/2 gμν ∂jZ

1ν . (2.13)

This doubling of coordinates is in accordance with the generalized target space geometry recently 
studied in [69] for maximal supergravity in eight dimensions. Using these definitions, it follows 
that (2.9) can be written as

∂iZ
aμ = Gabεbc ∂iZ

cμ , (2.14)

where

Gab =
( |g|−1/2 B

B |g|1/2 (B2 − 1)

)
, (2.15)

transforming by conjugation under SL(2, R). Note that detGab = −1, such that the product 
(detGab)(detgμν) = 1. Denoting the inverse of this metric by Gab, it transforms under infinites-
imal SL(2, R) transformations as δGab = �a

cGcb + �b
cGac , with � as given in (2.10). Written 

out, this gives

δg1/2 = 2c |g|B − 2d |g|1/2 , δB = −b |g|−1/2 − c |g|1/2(B2 − 1) . (2.16)

5 It is understood that there also exists the trivial SL(3, R) × R3 symmetry realized as δP i
μ = (

Rμ
ν + S(μ)δν

μ

)
P i

ν

and δJ i
μ = (

Rμ
ν + S(μ)δν

μ

)
J i

ν , where Rμ
ν are real traceless matrices and S(μ) are the real scaling parameters.
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Using these rules, the transformation of −|g|1/2(1 + B) indeed gives the result (2.12). Demand-
ing manifest SL(2, R) invariance thus fixes the separate variation of g and B under SL(2, R), not 
just its combination (2.11).

It is important to note that the SL(2, R) transformation under which (∂iZ1μ, ∂iZ2μ) forms a 
doublet is embedded into (2.10) with a field-dependent scale transformation with parameter

λ = −a + 1

3
c(3 + B) , (2.17)

as can be determined from (2.13).
Turning to the key equation (2.14), it can be written as Pab∂iZ

bμ = 0, where Pab =
1
2 (Gab − εab) is a projector, and it amounts to

∂iZ
2μ = |g|1/2(1 + B)∂iZ

1μ . (2.18)

Acting with ∇i does not yield the field equation ∂i

(√−γ γ ij gμν∂jX
ν
) = 0. However, the latter 

is identically satisfied for the topological membrane, since

∂i

(√−γ γ ij gμν∂jX
ν
)

≡ − 1
2∂i

(√−gεμνρεijk∂jX
ν∂kX

ρ
)

= 0 , (2.19)

recalling that the target space metric is constant.
It is instructive to perform a double dimensional reduction [70] of (2.14). To this end, we let

ĝμ̂ν̂ =
(

φ gμν 0
0 φ−2

)
, B̂μν2 = |g|1/2εμν B , (2.20)

where gμν, φ and B are constants. Note that 
√−ĝ = √−g. Choosing the gauge X2 = σ 2 and 

letting ∂2Z
aμ = 0 gives

γ̂
îĵ

=
(

γij 0
0 φ−2

)
, ∂iX

μ∂jX
νgμν − 1

2
γij γ

k�∂kX
μ∂�X

νgμν = 0 . (2.21)

It follows that (2.14), or equivalently (2.18), holds for the topological string, where the indices 
now run over two values, namely, i = 0, 1 and μ = 0, 1. Setting î = 2 and μ̂ = 2 in (2.18) fixes 
Z22, giving it a linear dependence on the coordinate σ 2. Comparing (2.14) for the topological 
string with (1.3), they are in fact, contrary to appearance, the same equation, with the identifica-
tion xμ = −Z1μ and yμ = −εμνZ

2ν . This can be seen by writing (1.3) as

Gabεbcεμνε
ij ∂jZ

cν = ḡμν

√−γ γ ij ∂jZ
aν , (2.22)

where ḡμν = |g|−1/2gμν . Thus

G1bεbcεμνε
ij ∂jZ

cν = ḡμν

√−γ γ ij ∂jZ
1ν = −εij εμν∂jZ

1ν , (2.23)

where we have used the formula for the determinant of ∂jZ
1ν in the second equation. From this 

we conclude

G1bεbc∂jZ
cν = −∂jZ

1ν , (2.24)

showing the equivalence of (2.14) and (1.3), up to a relative sign which can be attributed to 
convention choices.
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3. Membrane in D = 8

The M2-brane action in D = 8 can be obtained from the M2-brane action in D = 11 by 
dimensional reduction on 3-torus. The bosonic sector of such a reduction has been studied in [62]
where SL(3, R) × SL(2, R) symmetry could not be established. In a different approach aiming at 
a direct construction of an M2-brane action in D = 8 which couples to all the bosonic fields of the 
maximal supergravity theory in which the SL(3, R) × SL(2, R) symmetry is built in manifestly 
has been proposed [71]. However, the condition of SL(2, R) symmetry puts nonlinear constraints 
on the field which have been solved only in a fashion that exhibits a two parameter subgroup of 
SL(2, R) as a symmetry. More specifically, the bosonic sector of maximal D = 8 supergravity 
has the fields

(gμν,Bμνρ,Cμνm,Amr
μ ,7φ) , m = 1,2,3, r = 1,2 (3.1)

where the seven scalars parametrize the coset (SL(3, R)/SO(3)) × (SL(2, R)/SO(2)), the vector 
fields transform as (3, 2) of SL(3, R) × SL(2, R). The field strength of the 3-form field is com-
bined with the dual field strength for a doublet of SL(2, R). The gauge invariance of the pullbacks 
of the field strengths of the 1, 2, 3-form potentials requires the introduction of worldvolume fun-
damental potentials, resulting in the field strengths hr = dbr − Br + · · · , gm = dcm − Cm + · · ·
and f mr = dφmr − Amr , where the underlined fields are the pullback of the target space forms. 
The action proposed in [71] then takes the form I = ∫ √−γ λ(1 + �(f, g) + �hr � hsGrs)

where λ is a Lagrangian multiplier field, Grs is SL(2, R) matrix parametrized in terms of the 
SL(2, R)/SO(2) coset scalars and � is a function of the field strengths (f mr, gm). Duality rela-
tions for these field strengths are imposed by hand in addition to the field equations that follow 
from the action to ensure the correct number of propagation degrees of freedom, namely the 5 
scalars coming from Xμ and 3 scalars φm1. The resulting field equations have not lent them-
selves to a solution in general, however, and a special solution discussed in [71] breaks SL(2, R)

symmetry.
Our approach here is instead to consider a membrane propagating in D = 8 dimensions and 

coupled to the target space metric and 3-form potential only, and to study the duality symmetry 
of the standard membrane action. The background can be viewed as the truncated version of the 
maximal supergravity. In fact, all considerations below apply equally well to p-branes in d + p

dimensions propagating in the background of a metric and p + 1 potential. We thus consider an 
8 + 3 dimensional spacetime with coordinates

Xμ̂ = (xμ, yα) , μ = 0, . . . ,7 , α = 1,2,3 , (3.2)

with x0 being in the time direction. We take the background geometry to have the form

gμ̂ν̂ =
(

gμν(x) 0
0 gαβ(x)

)
=

(
gκ

(3) ḡμν 0

0 g
1/3
(3)

ḡαβ

)
, (3.3)

where g(3) ≡ detgαβ and ḡμν , ḡαβ are assumed to be SL(2, R) invariant, and κ is an exponent to 
be determined. We take the only nonvanishing component of the 3-form to be Bαβγ , and assume 
that all the target space background fields to depend on xμ only. Thus, the action is

I =
∫

d3σ
[
−1

2

√−γ γ ij
(
∂ix

μ∂jx
νgμν(x) + ∂iy

α∂j y
βgαβ(x)

) + 1

2

√−γ

+ 1
εijk∂iy

α∂j y
β∂ky

γ Bαβγ (x)
]

. (3.4)

3!
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In maximal supergravity theory in D = 8, the fields (gαβ, Bαβγ ) contain five scalars that 
parametrize the coset SL(3, R)/SO(3) and two scalar parameterizing the coset SL(2, R)/SO(2). 
In addition to these fields and the metric gμν there are two triplet of vectors, gμα and Bμαβ , 
that transform as (3, 2) under three 2-forms Bμνα that transform as (3, 1) under the U-duality 
group SL(3, R) × SL(2, R). We are neglecting the latter fields below, with the expectation that 
they would not effect the realization of SL(3, R) × SL(2, R) U-duality symmetry at the level of 
duality rotations on the worldvolume of the membrane in D = 8, should such symmetry exist at 
all.6

Turning the action (3.4), it implies that the induced worldvolume metric is given by

γij = gκ
(3) ḡμν ∂ix

μ∂jx
ν + g

1/3
(3) ḡαβ ∂iy

α∂j y
β , (3.5)

and the field equations are

∂iP
i
μ = Sμ , ∂iP

i
α = 0 , (3.6)

where

P i
α ≡ −√−γ γ ij ∂j y

βgαβ + 1
2εijk ∂j y

β∂ky
γ Bαβγ ,

P i
μ ≡ −√−γ γ ij ∂j x

νgμν ,

Sμ ≡ −1

2

√−γ γ ij ∂ix
ν∂j x

ρ∂μgνρ − 1

6
εijk∂iy

α∂j y
β∂ky

γ ∂μBαβγ . (3.7)

There is also a conserved topological current:

∂iJ
iαβ = 0 , J iαβ ≡ εijk ∂j y

α ∂ky
β , (3.8)

such that, defining

Bαβγ (x) = εαβγ g
1/2
(3) B , (3.9)

we have

P i
α = −

(√−γ γ ij + √
V V ij B

)
gαβ ∂j y

β ,

J i
α ≡ 1

2
εαβγ J iβγ = √

V V ij g
−1/2
(3)

gαβ∂j y
β , (3.10)

where V ij is the inverse of

Vij ≡ ∂iy
α∂j y

β gαβ . (3.11)

We can combine these equations as

P i
α = −|g|1/2(δi

j + BXi
j )J

j
α , (3.12)

where

Xi
j = (γ −1 V )ij√−det(γ −1 V )

. (3.13)

6 All fields have been kept in [62] where SL(3, R) × SL(2, R) duality as duality rotation symmetry on the membrane 
worldvolume is sought but not found.
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In [60], the self-consistency of (3.12) was studied in detail, and it was shown that a two-
parameter subgroup of SL(2, R) can be realized. In doing so, the complicated transformation 
rule for the induced metric, which is no longer a scaling transformation we saw in the case of 
topological membrane, was taken into account in [60].7

Here, we shall avoid this complication and show that this same result can be derived more sim-
ply from the integrability of the transformation rule for ∂iy

α . Assuming that P i
α and J i

α transform 
as in (2.10), we can compute the transformation of ∂iy

α by using (3.8) and (2.10), finding

δ∂iy
α =

[(
−a + c(1 + 1

3
B + 1

2
trX)

)
δ
j
i − cXj

i

]
∂j y

α . (3.14)

As discussed above, the integrability of this variation is in general not guaranteed, even on-
shell. Clearly the a transformation is always integrable, and so the remaining question is whether 
the c transformation in (3.14) is integrable. In order to test this on-shell, it will suffice to consider 
a particular membrane solution [72], for which gμ̂ν̂ = ημ̂ν̂ and we take

x0 = σ 0 , xμ = constant for 1 ≤ μ ≤ 7 ,

y1 = α σ1 cos(ωσ 0) , y2 = α σ1 sin(ωσ 0) , y3 = β σ2 . (3.15)

Thus we have the induced metric

γij = ∂iy
α ∂j y

β δαβ + ∂ix
μ ∂j x

ν ημν , (3.16)

giving

γ00 = −1 + α2ω2σ 2
1 , γ11 = α2 , γ22 = β2 . (3.17)

It is straightforward to verify that this is a solution of the equations of motion. We see that in this 
background

X − 1
2 trX = diag (f,h,h) ,

f = − 1
2αωσ1 (1 − α2ω2σ 2

1 )−1/2 − (αωσ1)
−1 (1 − α2ω2σ 2

1 )1/2 ,

h = 1
2αωσ1 (1 − α2ω2σ 2

1 )−1/2 . (3.18)

Let us consider the transformations δ∂1y
2 and δ∂2y

2 under c, which from (3.15), (3.14) and 
(3.18) will therefore give

δ∂1y
2 = 0 , δ∂2y

2 = cβ h . (3.19)

Checking the integrability, we see from the first equation that ∂2δ∂1y
2 = 0, whereas from the 

second equation ∂1δ∂2y
2 = cβ ∂h

∂σ1
	= 0. This example is therefore sufficient to show that the 

proposed transformation for δ∂iy
α under the c transformation, subject only to the use of the 

membrane equations of motion, is not integrable.
Choosing κ = − 1

6 , equations (3.12) transform properly under the remaining SL(2, R) trans-
formations(

a b

0 −a

)
, (3.20)

7 In [43] only the second term is kept, and therefore it effectively deals with membrane in D dimensional target where 
α = 1, . . .D.
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provided the background parameters g and B transform according to (2.16). As a consequence, 
the transformation of the induced metric takes the form

δγij = −2a

3
γij , δVij = −2a

3
Vij (3.21)

Equations (2.9) can be combined as

Xj
i ∂jZ

aα = Gabεbc∂iZ
cα . (3.22)

The presence of the matrix Xi
j shows that the duality symmetry of this equation is the Heisen-

berg group with the underlying algebra parametrized as in (3.20).

4. Membrane in D = 4

In this section we shall study the action (2.1) for D = 4 target spacetime with Lorentzian 
signature. In this action (2.1), the target space fields can be interpreted as the bosonic sector of 
N = 1, D = 4 supergravity in which the cosmological constant is dualized to a 3-form potential 
[73–75]. Supermembrane action in this setting exists [76,77] and it has been studied in detail in 
[75]. The spacetime background can also be viewed as being a subsector a time-like dimensional 
reduction of the bosonic sector of D = 11 supergravity down to 7 dimensions, where only the 
fields (gμν, Bμνρ) are kept, and the 7 dimensional Euclidean coordinates are taken to be con-
stants. In a spacelike dimensional reduction, the signature of the metric gμν would be Euclidean, 
and again, we would take the 7 dimensional spacetime coordinates to be constant. Our consider-
ations apply to this case as well but we shall adhere to the Lorentzian signature for concreteness.

We shall consider two approaches to the problem of duality rotations in this theory. In the first 
approach, due to Gaillard and Zumino [63], there is no need to introduce any extra coordinates. 
Rather, one examines the consistency of the duality rotations, since the definition of the con-
jugate momentum field associated with the worldvolume scalar fields involves the topological 
current whose conservation is the Bianchi identity. In a second approach considered in [43–45], 
one introduces extra coordinates in order to try to achieve a manifest realization of the duality 
symmetry.

4.1. Gaillard–Zumino approach

The equations of motion for a membrane in a four-dimensional target space with coordinates 
Xμ (μ = 0, . . . , 3) can be written as

∂iP
i
μ = 0 , γij = ∂iX

μ ∂jX
ν gμν , (4.1)

where

P i
μ ≡ −gμνF iν + 1

2BμνρJ iνρ (4.2)

and

F iμ ≡ √−γ γ ij ∂jX
μ J iμν ≡ εijk∂jX

μ∂kX
ν . (4.3)

It is important to note that (4.3) implies the relation8

J iμν = γ i�ε�jkF jμFkν . (4.4)

8 We use the convention ε012 = −ε012 = 1.
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It will also be useful to note the relation

−γ γ ij =F iμF jν gμν . (4.5)

The question then is what is the largest set of transformations that transforms P i
μ and J iμν into 

each other in a consistent manner, such that the system of field equations ∂iP
i
μ = 0 and the 

Bianchi identity ∂iJ
iμν = 0 remain invariant.

Our task is to check whether the equations of motion are invariant under SL(5, R) transfor-
mations which can be parametrized as

�M
N =

(
aμ

ν + 1
4a δ

μ
ν − 1

6εμνρσ bνρσ

1
6ενμρσ cμρσ −a

)
, (4.6)

where aμ
ν is traceless. It acts on a 5-plet of SL(5, R) as δVM = −�P

M VP . Thus, defining 
the components of a triplet of second-rank antisymmetric tensor of Ki

MN as Ki
μ5 := P i

μ and 

Ki
μν := 1

2εμνρσ J iρσ , it follows from δKi
MN = 2�P [M Ki

N ]P that

δ

(
P i

μ

J i μν

)
=

( −aρ
μ + 3

4aδ
ρ
μ

1
2bμρσ

cμνρ 2a[μ[ρδ
ν]
σ ] − 1

2aδ
μν
ρσ

) (
P i

ρ

J i ρσ

)
(4.7)

where δμν
ρσ = 1

2

(
δ
μ
ρ δν

σ − δν
ρδ

μ
σ

)
. Next, assembling (gμν, Bμνρ) into a symmetric SL(5, R) matrix 

GMN , where M, N = 1, . . . , 5, with identifications

Gμν = g−2/5gμν , Gμ5 = G5μ = 1

3!g
−2/5gμαεαβγ δBβγ δ ,

G55 = g3/5
(

1 + 1

3!B
2
)

, B2 ≡ BμνρBμνρ , (4.8)

it follows from δGMN = −2�P
(M GN)P that

δgμν = −2aσ
(μ gν)σ + 5

6

(
a + 2

15
c · B

)
gμν − cαβ

(μBν)αβ , (4.9)

δBμνρ = −3aσ [μ Bνρ]σ + 5

4

(
a − 2

15
c · B

)
Bμνρ + bμνρ + cμνρ , (4.10)

where indices are lowered on the parameters cμνρ using the metric gμν , and we have defined 
c · B ≡ cαβγ Bαβγ . Next, the variation of F iμ can be found from (4.2) by using the variations 
(4.7), (4.9) and (4.10). The result is

δF iμ = aμ
νF iν − 1

12

(
a + 4

3
c · B

)
F iμ + 1

2
cμ

νρJ iνρ + 1

2
cμνρBνρσF iσ . (4.11)

In deriving this variation, one makes use of the identity Bλ
αβcαβσ Bσνρ = 1

3c ·BBλ
νρ , which can 

be proven by writing cμνρ and Bμνρ in terms of dual vector fields. Finally, from the variations 
above, one can also determine the variation of γij by using (4.5), finding

δγij = 1

3

(
a − 1

3!c · B + 1

2
ε

)
γij , (4.12)

where

ε ≡ 1√ εijk∂iX
μ∂jX

ν∂kX
ρ cμνρ . (4.13)
−γ
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Now we turn to a key test for the above transformation rules, which is the requirement that 
the transformations of J i μν , F i μ, and γij , must be compatible with equation (4.4). The question 
of whether this nontrivial condition holds was raised in [60]. In fact, as we shall show here, it 
does actually hold. Firstly, the invariance of (4.4) under the a- and b-dependent transformations 
is manifest. The nontrivial check is the invariance under the c-dependent transformations, which 
requires that

0 =
(

J
σ [μ
i cν]αβ + 1

2
J

αβ
i cμνσ + 1

6
J

μν
i cαβσ

)
Bαβσ

− εijkJ
jαβFk[μcν]

αβ + 1

6
εJ

μν
i − cμν

σFσ
i . (4.14)

The first three terms sum up to zero since J [σμ
i cναβ] = 0 identically. The remaining three terms 

also sum up to zero, upon using the fact that γ ij ∂iX
μ∂jX

ν = gμν − nμnν , where nμ is normal 
to the brane in the target space, i.e. ∂iX

μ gμν nν = 0. There remains, however, the condition that 
the variation of ∂iX

μ, which follows from the first equation in (4.3), must be curl-free. Using 
(4.11) and (4.12) in the first equation in (4.3) we find that

δ∂iX
μ =

[
aμ

σ − 1

4

(
a + 1

3
c · B + 1

3
ε

)
δμ
σ + 1

2
cμαβBαβσ

]
∂iX

σ + 1

2
cμ

νρ

γij J
jνρ

√−γ
.

(4.15)

Thus the integrability condition amounts to

0 = εijk ∂j δ∂kX
μ = − 1

12εijk∂j ε ∂kX
μ + 1

2εijkcμ
ρσ ∂j

(γk� J �ρσ

√−γ

)
. (4.16)

Using the field equation ∇i∂
iXμ = 0, this equation can be simplified to read

0 = V
ρσ
k

(
γ kigμν + 2γ k[mγ i]n∂mXμ∂nX

ν
)

cνρσ , (4.17)

where we have defined

V
μν
i ≡ ∇i∂

jX[μ∂jX
ν] . (4.18)

As we did earlier, we can most conveniently check this equation by considering a particular 
membrane solution [72], namely

Xμ = (σ 0, ασ1 cos(ωσ 0), ασ1 sin(ωσ 0), βσ2) , (4.19)

which solves the equations of motion (4.1). If suffices to consider the integrability condition 
(4.16) for i = 0 and μ = 0. It is then immediately evident that the first term on the right-hand side 
of (4.16) gives zero, whereas the second term gives a non-vanishing result that is proportional to 
the parameter c0

12. Thus the integrability condition is not satisfied, and so the proposed SL(5, R)

transformation of ∂iX
μ is not valid.

The subgroup that is consistent with the curl-free condition is therefore the semi-direct product 
GL(4, R) �R4, generated by a, aμ

ρ , and bμνρ .



14 M.J. Duff et al. / Nuclear Physics B 901 (2015) 1–21
4.2. Introduction of extra coordinates

In seeking a manifestly realized SL(5, R) symmetry, six extra coordinates were introduced 
in [43], such that together with the four coordinates Xμ of spacetime they form a 10-plet of 
SL(5, R). The extra coordinates are antisymmetric tensorial, and are denoted by Yμν . The field 
equations and Bianchi identities of the membrane were cast into a manifestly SL(5, R)-covariant 
form. However, the equations satisfied by the extended system are problematic, and this can be 
seen as follows. Setting Bμνρ = 0 and taking gμν = ημν for simplicity, these equations take the 
form [43]

√−γ γ ij ∂jX
μ = 2εijk∂jY

μν∂kXν ,√−γ γ ij ∂jY
μν = εijk∂jX

μ∂kX
ν . (4.20)

Taking the curl of the second equation gives the integrability condition

V
μν
i = 0 , (4.21)

where we have used the field equation ∇i∂
iXμ = 0 to simplify the result. This integrability 

condition, which implies second-order differential constraints over and above the field equations, 
therefore poses a problem with the desired SL(5, R) duality-symmetric system of membrane 
equations. Note also in the GZ approach as well as the approach in which extra coordinates 
are introduced, the obstacle to the sought-after SL(5, R) symmetry is the nonvanishing of the 
expression V μν

i defined in (4.18).
A different proposal has been made in [65], where the original coordinates are embedded into 

an SL(5, R) 10-plet ZMN via

Zμ5 ≡ Xμ , Zμν ≡ Yμν . (4.22)

The following SL(5) covariant equation was proposed in [65]:
√−��ij ∂jZ

MN = c εijk ∂jZ
MP ∂kZ

NQGPQ . (4.23)

Here c is an arbitrary constant, and the induced SL(5)-invariant metric is given by

�ij = −1

2
∂iZ

MN∂jZMN , (4.24)

where SL(5, R) indices are raised and lowered with the metric GMN . Note the scale invariance 
of the equation (4.23) under the rescaling Z −→ λZ . The duality equation (4.23) induces the 
equations of motion

∇ i∂iZ
MN = 0 , (4.25)

which resemble the original membrane equations of motion, except that the worldvolume met-
ric γij is now replaced by the SL(5)-invariant metric �ij . The curl of (4.23) also implies the 
integrability equation

∇i∂
jZP [M∂jZ

N ]Q GPQ = 0 . (4.26)

Unlike the previous proposal discussed above, this does not yield an immediate contradiction, 
since it involves the original Xμ as well as the new Yμν coordinates. Indeed, taking Bμνρ = 0
and gμν = ημν , we see that the equation (4.23) gives
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√−��ij ∂jX
μ = −c εijk∂jY

μν∂kXν , (4.27)√−��ij ∂jY
μν = c εijk∂jX

μ∂kX
ν + c εijk∂jY

μσ ∂kY
ν
σ . (4.28)

Apart from the fact that the induced worldvolume metrics are different, we see that the second 
equation above contains an extra term, in comparison to that given in (4.20). Consequently, its 
integrability condition will indeed mix Xμ and Yμν , thereby avoiding an immediate conflict. 
However, to test whether the system described by (4.23) makes sense, we should also examine the 
spectrum of small fluctuations around a vacuum solution that respects the worldvolume Poincaré 
symmetry.

Such a background can be taken to be given by

GMN = ηMN , ∂iZ
MN = λσi

MN , (4.29)

where λ is an arbitrary constant, ηMN is the SO(p, q) ⊂ SL(5, R) invariant tensor, and σi
MN

specifies the embedding of SO(2, 1) into SO(p, q) ⊂ SL(5, R), for which we choose the canoni-
cal normalization

[σi, σj ] = εijk σ k . (4.30)

Owing to the scale invariance of (4.23), the parameter λ drops out, and for convenience we 
choose it so that we may identify the worldvolume metric (4.24) with ηij = diag(−, +, +):

�ij = 1

2
λ2 Tr (σiσj ) = ηij . (4.31)

Equation (4.23) then yields

[σi, σj ] = 1

λc
εijk σ k =⇒ cλ = 1 . (4.32)

Denoting the spin of the representation σi by j (assuming the representation carries a single 
spin), we have the relation

Tr (σiσj ) = 1

3
j (j + 1)(2j + 1) ηij , (4.33)

which together with (4.31) determines

c2 = 1

6
j (j + 1)(2j + 1) . (4.34)

Defining the fluctuations around this background as

ZMN = ZMN + φMN , (4.35)

we fix the gauge freedom of worldvolume diffeomorphisms by imposing

σi
MN φMN = 0 . (4.36)

The expansion of equation (4.23) to linear order in the fluctuations then gives

ηij ∂jφMN + εijk
(
σj M

P ∂kφPN − σj N
P ∂kφPM

)
= 0 . (4.37)

The final analysis depends on the particular choice of generators σi embedding SO(2, 1) into 
SL(5, R). Three inequivalent choices correspond to the decompositions9

9 We do not consider the decompositions 5 → 2 +3 and 5 → 1 +4 because they do not allow for a symmetric invariant 
ηMN .
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A) : 5 → 5 ,

B) : 5 → 3 + 1 + 1 ,

C) : 5 → 2 + 2 + 1 . (4.38)

For case A), using an explicit spin-2 representation for the generators σi implies that the 
invariant tensor ηMN is of signature (2, 3), and one may verify that equation (4.23) reduces to

∂(iφjkl) = 0 , (4.39)

for the components φijk ≡ (σ(iσjσk))
MNφMN surviving the gauge condition (4.36). This shows 

that around this background the fluctuations do not admit any non-trivial dynamics.
Similarly, in case B) equations (4.23) restrict the fluctuations to

∂(iφj)4 = 0 , ∂(iφj)5 = 0 , ∂iφ45 = 0 , (4.40)

which again kills all dynamics for the fluctuation components surviving the gauge condi-
tion (4.36).

Finally, in case C) the background is most conveniently given in terms of the ’t Hooft symbols

(σi)M
N = −1

2
δm
MηnNεimn + 1

2
ηiMδN

4 − 1

2
δN
i ηM4 (4.41)

(with η44 = −1). In this case, the degeneracy of the spin 1/2 representations introduces an addi-
tional factor of 2 into (4.34), such that c = 1√

2
. The fluctuation equations from (4.23), together 

with the gauge condition (4.36), imply that

∂iφ45 = −1

2
εi

jk ∂jφk , ∂(iφj) = 0 , (4.42)

which again kills all dynamics for the fluctuation components surviving the gauge condition.

5. Conclusions

Using the p-brane worldvolume approach to U-dualities, we have confirmed that there is a 
problem when D 	= p + 1, focusing on p = 2 in D = 4 where the expected SL(5, R) fails to 
materialize, and p = 2 in D = 3, which we refer to as the topological membrane, where the 
expected SL(3) × SL(2) does arise. In the case of the topological membrane, we have introduced 
extra coordinates to make the U-duality symmetry manifest. The features we have found for 
D = 4 are the same whether we use the approach where extra coordinates are introduced in order 
to make U-dualities manifest [43,65], or in the Gaillard–Zumino approach where the symmetries 
are not manifest. In the latter approach, as well as that of [43], we have shown that the SL(5, R)

U-duality fails due to the nonintegrability of the transformation rule of the pull-back map. In the 
approach of [65] where a manifestly SL(5, R)-invariant equation is proposed for a membrane 
in a target based on generalized geometry, we have shown that these equations do not support 
linearized fluctuations about a Poincaré invariant vacuum solution.

These problems extend to the worldvolume treatment of Berman and Perry [22], and also to 
the approach in Hatsuda et al. [29], which reformulates the diffeomorphism constraints for an 
M2-brane coupled to a supergravity background in D = 4 in an SL(5, R)-covariant form. In both 
cases the problem is that they use transformation rules that are not integrable, for the reasons 
we have explained above More specifically, in [29], the SL(5, R) transformations of the time 
components J 0 and P 0 are used to assert the SL(5, R) invariance of the Hamiltonian constraint, 
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which is a quadratic form in these variables. By worldvolume Lorentz symmetry, however, also 
the space components must transform in the same way, which is equivalent to our (4.7). Then, our 
discussion leading to the nonintegrability of the resulting transformation rule for ∂iX

μ continues 
to be an obstacle for SL(5, R) invariance. We expect this will also appear in the case of SO(5, 5)

symmetry of M5 branes that has been proposed in [30].
Going beyond D = 5 only exacerbates the problem, since the U-duality multiplets involve the 

M5-brane charges as well the M2-brane charges and the momentum, as shown in Appendix A. 
One possible approach to this problem may be along the lines studied in [71] for the case of 
M2-brane in D = 8. In this approach, firstly one keeps all the target space fields arising in the 
dimensional reduction of D = 11 supergravity down to d dimensions. Next, one ensures the 
gauge invariance of the pull-backs of all the target space form fields by introducing appropri-
ate worldvolume potentials, in the same way the worldvolume vector fields are introduced in 
D-brane actions. Then, one imposes suitable duality equations that exhibit the expected U-duality 
symmetry group manifestly, while maintaining the correct number of degrees of freedom. The 
challenge in this approach is to resolve the resulting highly nonlinear constraint equations in a 
way that maintains the U-duality symmetry. So far, these equations have been solved for a re-
stricted class of supergravity background such that only the two parameter Heisenberg subgroup 
of SL(2, R) we encountered in our treatment of membrane in D = 8 has been realized [71].

The En(n) symmetry of D = 11 supergravity compactified on the torus T n also arises if 
ten-dimensional type IIA or IIB supergravity is compactified on the torus T n−1. An alterna-
tive approach to finding a worldvolume realization of these U-duality symmetries could be to 
look at string theories in (n − 1) dimensions rather than the membrane in n dimensions. Ideas 
along these lines have been pursued in [78–81].
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Appendix A. Supergravity compactifications

Recall that the 11 = dimensional M-theory superalgebra is given by [82] :

{Qα,Qβ} = (
�MC

)
αβ

PM

(
�MNC

)
αβ

ZMN + (
�MNPQRC

)
αβ

ZMNPQR, (A.1)

where Qα transforms as 32 of SO(10, 1). The total number of components of all charges on the 
RHS is

11 + 55 + 462 = 528, (A.2)

which is, algebraically, the maximum possible number since the LHS is a symmetric 32 × 32
matrix. The spatial components of the momentum P1 and the central charges Z2, Z5 are associ-
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ated with the plane wave W1, the 2-brane M2 and the 5-brane M5; the temporal components are 
associated with their duals, the KK-monopole K6, and objects we can call K9 and W10.

After dimensional reduction to n dimensions, the 528 charges will form representations of 
SO(n − 1, 1) × SO(D) as in (A.3).

p 0 1 2 3 4 5
n = 11 − D

11 11 55 462
10 1 10 + 10 45 210 252
9 (1,3) (9,3) (36,1) (84,1) (126,3)

8 (1,6) (8,4) (28,2) (56,4) (70,3)

7 (1,10) (7,6) (21,6) (35,10)

6 (1,16) (6,12) (15,16) (20,10)

5 (1,28) (5,28) (10,36)

4 (1,56) (4,64) (6,36)

3 (1,120) (3,136)

2 (1,256) (2,136)

1 528

(A.3)

However, the charges carried by the waves, branes and monopoles do not fall into repre-
sentations of SO(n − 1, 1) × SO(D) because they discriminate between the temporal and spa-
tial components. For example, writing M = (0, I ) with I = 1, 2, . . . , 10, the 45 SO(10) M5 
charges are given by ZIJ and the 10 K9 charges by Z0J or equivalently Z̃IJKLMNOPQ. These 
SO(n − 1) × SO(D) reps are given in (A.4).

p 0 1 2 3 4 5 6 7 8 9 10
n = 11 − D

11 10 45 252 210 10 1
10 1 9 + 9 36 126 126 + 126 84 9 1 + 1
9 (1,3) (8,3) (28,1) (56,1) (70,3) (56,3) (28,1) (8,1) (1,3)

8 (1,6) (7,4) (21,2) (35,4) (35,6) (21,4) (7,2) (1,4)

7 (1,10) (6,6) (15,6) (20,10) (15,10) (6,6) (1,6)

6 (1,16) (5,12) (10,16) (10,20) (5,16) (1,12)

5 (1,28) (4,28) (6,36) (4,36) (1,28)

4 (1,56) (3,64) (3,72) (1,64)

3 (1,120) (2,136) (1,136)

2 (1,256) (1,272)

1 (1,528)

(A.4)

Note that only the 0-brane charges can be assigned to a representation (fundamental) of the 
non-compact U-duality as opposed to its maximal compact subgroup. In D = 3, for example, we 
have the (3, 2) of SL(3) × SL(2) with generalized coordinates

ZM = (Xμ,Yρσ ) μ = 1,2,3 (A.5)

In D = 4 we have the 10 of SL(5) with generalized coordinates

ZM = (Xμ,Yρσ ) μ = 1,2,3,4 (A.6)

In D = 7 we have the 56 of E7(7) with generalized coordinates

ZM = (Xμ,Yρσ , Ỹλτ , X̃
ν) μ = 1,2,3,4,5,6,7 (A.7)
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