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A spin liquid is a novel quantum state of matter with no conventional order parameter where a finite charge
gap exists even though the band theory would predict metallic behavior. Finding a stable spin liquid in two
or higher spatial dimensions is one of the most challenging and debated issues in condensed matter physics.
Very recently, it has been reported that a model of graphene, i.e., the Hubbard model on the honeycomb
lattice, can show a spin liquid ground state in a wide region of the phase diagram, between a semi-metal (SM)
and an antiferromagnetic insulator (AFMI). Here, by performing numerically exact quantum Monte Carlo
simulations, we extend the previous study to much larger clusters (containing up to 2592 sites), and find, if
any, a very weak evidence of this spin liquid region. Instead, our calculations strongly indicate a direct and
continuous quantum phase transition between SM and AFMI.

spin liquid can be considered as a Mott insulator that is not adiabatically connected to any band insulator
and does not break any symmetry even at zero temperature. Recently, much attention has been focused on
a possible spin liquid in two or three spatial dimensions'. On one hand, it has been suggested experi-
mentally that several organic materials represent good candidates for spin liquids®®. On the other hand, the
existence of a spin liquid has so far been demonstrated only in very few and particularly simplified models™’.
In order to understand this issue, let us consider a model Hamiltonian on a lattice describing the insulating state
of electrons at half-filling, i.e., one electron per lattice site. Since the charge gap is assumed, only spin degrees of
freedom remain and can be described by the spin-1/2 Heisenberg model. Since any spin-1/2 model corresponds to
awell defined interacting hard core boson model, the crucial question is to understand how - at zero temperature
— these bosonic degrees of freedom can avoid Bose-Einstein condensation and/or crystallization, necessary
conditions for a stable spin liquid with no long-range order of any kind.
In this report, we study the ground state of the half-filled Hubbard model on the honeycomb lattice (see Fig. 1)
defined by the following Hamiltonian,

ﬂz—tz (cjgcj,,—l-c};c,-a)—|—UZn,¢n,-l, (1)
(i), i

where CL (¢is) is a creation (annihilation) operator of spin up/down (¢ =T,]) electrons on lattice site i, n;, = c;cia,
and t (U) denotes the nearest-neighbor hopping (on-site repulsion). This is known to be a model Hamiltonian for
graphene with U/t = 3. More importantly, it is not geometrically frustrated, namely, as seen in Fig. 1, the
neighboring sites of any site on A sublattice belong to B sublattice (and vice versa). Indeed, it is well known that the
ground state becomes an antiferromagnetic insulator (AFMI), i.e,, classically Néel ordered, from a semi-metal
(SM) with increasing U/t".

Very recently, Meng et al.” has reexamined the ground state phase diagram of this model and found a possible
spin liquid phase in the range 3.4 < U/t < 4.3 between SM and AFML. Their finding is rather surprising because
it is widely believed that a stable spin liquid occurs most likely in frustrated quantum systems where strong
quantum fluctuations destroy the long-range magnetic order even at zero temperature'. Their study was par-
ticularly successful because, with the auxiliary field technique', there is no sign problem in the corresponding
quantum Monte Carlo simulations, and an accurate finite size scaling was possible by using numerically exact
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Figure 1| The honeycomb lattice. Primitive lattice vectors 7; and 7, are
denoted by red arrows. As an example, the honeycomb lattice with L = 3 is
indicated by dashed blue lines. Solid and open circles indicate sites on A
and B sublattices, respectively.

results for clusters containing up to 648 sites. So far, their results
represent the most important numerical evidence for a possible
spin liquid ground state in a “realistic” electronic model in two
dimensions (2D), because, to our knowledge, only a particularly
simplified quantum dimer model on the triangular lattice’ and the
Kitaev model', built ad hoc to have an exact solution, allow a spin
liquid ground state in 2D. Furthermore, their results were con-
sidered to be a clear violation of the “Murphy’s Law™: in a too
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simple model, not vexed by the “fermion sign problem”, nothing
interesting can occur®.

Here, by performing simulations for much larger clusters contain-
ing up to 2592 sites, we show that antiferromagnetic order conco-
mitantly occurs once the insulating behavior sets in, supporting the
more conventional Hartree-Fock (HF) transition from SM to
AFMI". Although our results agree with the previous study for the
same clusters up to 648 sites, we have reached a quite different
conclusion, as the possible spin liquid region reduces substantially
to asmall interval 3.8¢ = U/t = 3.9¢, if it ever exists. This reminds us
similar claims on spin liquid behaviors in different systems in 2D**'%,
which have been corrected later on by much larger cluster simula-
tions, showing instead antiferromagnetic long-range order's"’.

Results

We use finite size clusters of N = 2L” sites (thus containing L X L unit
cells) with periodic boundary conditions (see Fig. 1), which satisfy all
symmetries of the infinite lattice'® (also see Supplementary informa-
tion). Here L is the linear dimension of the cluster and we take L up to
36. We use the well established auxiliary field Monte Carlo tech-
nique’’, which allows the statistical evaluation of the following
quantity,

<WL‘€7?{©€7%IA{ ‘//R>
(Wrle ™ |yg)

where O is a physical operator, [ig) (|/,)) is the right (left) trial wave
function (not orthogonal to the exact ground state), and 7 is the
projection time. The exact ground state expectation value (O) of

O(r)= ; (2)
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Figure 2 | Finite size scaling of spin-spin correlation functions for the Hubbard model on the honeycomb lattice at half-filling. Spin structure factor,
Sar> and spin-spin correlations at the maximum distance, Cy(Ly,y), are denoted by triangles and circles, respectively. Here, L is the linear size of clusters
containing N = 27 sites. Antiferromagnetic order parameter squared, msz, is estimated by finite size extrapolating Sar and Cy(Lyay) to L — %, namely,
ms2 =1limp 00 Sar/N =limy_, o Cs(Limax)- Solid curves are fit of the data by cubic polynomials in 1/L. It is clearly seen that a consistent extrapolated value mf
is obtained for both quantities Sar and Cy(Ly,ax), indicated respectively by triangles and circles at 1/L = 0. Error bars of the extrapolated values are
computed with a resampling technique described in Methods. Insets show the expanded plots for large L. The fits are stable upon removal of the data for
the largest (i.e., L = 36) or the smallest (i.e., L = 6) size, and the extrapolated value of Cy(Ly,.x) is always consistent with S,r/N within two standard
deviations. Including the largest size calculations in the fits increases the extrapolated values slightly and at the same time gives more consistent values of
CyLinay) and Sq/Nin L — o, thus clearly indicating that our present estimate provides an accurate lower bound for the AF order parameter m,. All data
presented in this figure refers to Att = 0.1, because the Trotter At error is essentially negligible (see Fig. 3). More details are found in Supplementary

information.
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Figure 3 | The ground state phase diagram for the half-filled Hubbard
model on the honeycomb lattice. Antiferromagnetic order parameter
(open squares) as a function of U/t. The error, due to the finite At in the
evaluation of S4p, is removed by quadratic extrapolations for Att = 0.1,
Att=0.2,and Att = 0.4 (see Supplementary information for details). The
antiferromagnetic order parameter 1 is obtained by finite-size
extrapolating the square root of Sy/N, m; =lim_, o, \/Sar/N, as shown in
Fig. 2. For comparison, m;estimated by finite-size extrapolating S, for Att
= 0.1 without the At correction is also plotted (solid circles). SM and
AFMI stand for semi-metal and antiferromagnetic insulator, respectively.
Solid lines are fit of m; with the critical behavior m; = (U, — U)”, for
selected critical exponents f3. § = 1 for the HF theory'?, § = 0.3362 for the
classical critical theory of quantum magnets'’, and f = 0.80 = 0.04 is the
best fit of our data. In any case, the critical U, ranges from U/t = 3.8 (f =
1) to U/t = 3.9 (f = 0.3362). Our best estimate is U/t = 3.869 = 0.013.

4.5

the operator O is then obtained by adopting the limit of t— % and At
— 0 for O(t), where At is the short time discretization of 7. This
approximation - the so called Trotter approximation - is necessary
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to introduce the auxiliary fields'’ and implies a systematic error,
negligible for small At (see Supplementary information).

1
First, we study both the spin structure factor Syp = N < [Z (Sra

- S,,B)]Z) and the spin-spin correlations C(R) = (S, o* S;+r a) at the
maximum distance |R| = L, of each cluster for U/t = 4, where the
strongest evidence of a spin liquid behavior was found in Ref. 2. Here
S:.a (SpB) is the spin operator at unit cell r on A (B) sublattice. As
shown in Fig. 2b, our results show consistently a finite value of the
antiferromagnetic order parameter m? =Sag/N = C(Lyax) for L —
%, in sharp contrast to the existence of a spin liquid, i.e., spin dis-
ordered, ground state reported in Ref. 2.

By doing similar calculations for several U/t values (see Fig. 2 and
Supplementary information), we find in Fig. 3 that m, approximately
scales linearly with respect to U/t, i.e., m; x |U—U,J#, with a critical
exponent f~0.8, which is similar to the critical behavior (f = 1)
predicted by the HF theory'>. Although corrections to this almost
linear critical behavior are obviously expected, they do not change
much the critical value U, at which the antiferromagnetic order
melts, as clearly shown in Fig. 3. Our best estimate of the critical
value is U/t = 3.869=* 0.013, which is much smaller than the one (=
4.3) reported in Ref. 2. Note, however, that the critical exponent f§
may be different from the present estimate if the critical region is very
close to U,. In such case the accurate determination of § obviously
requires much larger clusters which are not feasible at present.

Let us now evaluate the spin gap A,. In order to avoid possible
errors in extrapolating the imaginary time displaced spin-spin cor-
relation functions, here we calculate directly the total energies in the
singlet and the triplet sectors, with improved estimators, which dra-
matically reduce their statistical errors® (also see Supplementary
information). We can see clearly in Fig. 4a that the extrapolated spin
gaps for different U/t values are always zero within statistical errors
(e.g., the statistical error as small as 0.004¢ for U/t = 4).

Next, we investigate whether the system is metallic or insulating,
namely, whether there exists a zero or a finite charge gap. For this
purpose, it is enough to simply study the long distance behavior of
charge-charge correlations, p(R) = (noafr+ra) — MraXfrrra)-
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Figure 4 | Finite size scaling of spin gap and charge-charge correlation functions for the Hubbard model on the honeycomb lattice at half-filling.
(a) Spin gap A, = E(S = 1) — E(S = 0) for various U/t, where E(S) is the lowest energy for a given spin S. Solid curves are fits of data by quadratic
polynomials in 1/L. The extrapolated values are also indicated at 1/L = 0. Error bars of the extrapolated values are computed with the resampling
technique. In the semi-metallic region, the spin gap scales to zero with increasing the resolution in momentum space, namely as 1/L. In the
antiferromagnetic region, the spin gap should instead vanish as 1/L* This explains why for U/t = 4.3 the gap extrapolates to negative values, as we are well
inside the antiferromagnetic phase (see Fig. 3). In any case, a sizable spin gap is not found for any value of U/t. (b) Charge-charge correlation function
P(R) = (1, sty ra) — {Ma)N+r ) at the maximum distance |R| = Ly, for several values of U/t. In the semi-metallic phase, p(R) ~ 1/R*and L*p(Lypax)
should converge to a finite value for L — . Instead, when a charge gap opens, the charge-charge correlations should decay exponentially and L*p(L,.y)
converges to zero in this limit. Indeed, a quadratic extrapolation to L — % of this quantity, which is clearly appropriate in the semi-metallic phase, appears
to vanish in the interval between U/t = 3.8 and U/t = 3.9, in remarkable agreement with the critical value U, = 3.869 * 0.013 estimated for the
antiferromagnetic transition (see Fig. 3). Obviously, a polynomial fit is not consistent in the insulating region and this explains why the extrapolated value
to 1/L = 0 seems slightly positive in this case. For the spin gap and the charge-charge correlation functions, the Trotter At error is negligible, and all data

shown here refers to Att = 0.14 and 0.1, respectively.

| 2:992 | DOI: 10.1038/5rep00992



Here n, 4 is the density operator at unit cell r on A sublattice (see
Fig 1). They should change from power law to exponential behavior
ata critical U where the charge gap opens up. This change of behavior
is evident in Fig. 4b and appears consistently around the onset of the
antiferromagnetic transition (U,), within a remarkably small uncer-
tainty < 0.1 on the value of U. Our results therefore strongly support
the more conventional scenario of a direct and continuous quantum
phase transition between SM and AFMI".

Discussion

Let us now discuss here why we have not found any evidence of a spin
liquid phase. As shown in Ref. 21, by applying one of the theorems by
Lieb*, it is easily proved that the exact ground state of this model for
U # 0 satisfies the Marshall sign rule* in the sector of no doubly
occupied sites, accounting for low energy spin excitations. Indeed,
the phases coincide with those of the simple antiferromagnetic Néel
state ordered along the x-spin quantization axis, RI;IA (IMzr—1r) 1%;[3

(IMYr+11)g)> where |1)gand | |)g are spin configurations (along the
z-spin quantization axis) at site R. The expansion of this state in
terms of |T)g and || ) yields the simple Marshall sign, namely, it is
negative if the number of spin down in the A sublattice is odd. Thus,
the phases of the ground state are trivial in the bosonic spin 1/2
sector. Therefore, Bose-Einstein condensation can hardly be avoided
and a magnetic long-range order occurs once the charge gap becomes
finite.

At this point, one could be tempted to assume the general validity
of the above observation for generic S=1/2 model Hamiltonians with
SU(2) invariance and use this criteria based on the phases of the
ground state wave function as a powerful guideline in the search of
spin liquids for model systems as well as for real materials. Indeed, in
all unfrustrated spin-1/2 Heisenberg and Hubbard models in the
sector of no doubly occupied sites, the phases of the ground state
wave function are not at all entangled in real space as they factorize
into independent contributions relative to each site. Instead, the
phases of the ground state wave functions are highly non trivial in
well established spin liquid models such as, for instance, the Kitaev’s
model'’, and the celebrated quantum dimer model on the triangular
lattice’, because they are described by paired wave functions, which
couple in a non trivial way the phases of nearest neighbor spins®.

Therefore, we conclude that in a true spin liquid in 2D, the phases
of the ground state wave function should be highly non trivial and
entangled, otherwise any seed of spin liquid behavior would be most
likely destabilized. To our best knowledge, the above observation is
valid so far for all spin-1/2 models with SU(2) invariance. Notice that
the restriction to SU(2) invariant models appears to be important
because the spin-1/2 easy-axis Heisenberg model on the Kagome
lattice most likely display spin liquid behavior*’. Here, however,
the calculations have not been confirmed on fairly low temperatures
yet. Therefore, further numerical study is required for understanding
what are the key ingredients that stabilize a spin liquid phase in
“realistic” electronic models.

Methods

Here we employ the standard auxiliary field Monte Carlo algorithm" with a more
efficient implementation® by using different left and right trial functions |/;) and
[/r) in equation (2). We include also in the trial wave function a Gutzwiller type
projection, exp(—gX; n;;n;)), where g is the Gutzwiller variational parameter, to
optimize the efficiency. As reported in Ref. 20, the statistical error in evaluating the
energy E(S) for a given spin S is dramatically reduced for appropriate values of g. Thus
we can evaluate the spin gap Ag = E(S = 1) — E(S = 0) with high accuracy, without
facing the negative sign problem, by directly simulating the singlet S = 0 and the
triplet S = 1 sectors separately (see Supplementary information).

In order to accelerate the convergence to the ground state, we use for ) a Slater
determinant with a definite spin S, by breaking only spatial symmetries to remove the
degeneracy at momenta K and K’ for the clusters chosen (a similar strategy was
adopted in Ref. 2). Conversely, we use for [;) a rotational and translationally
invariant Slater determinant obtained by diagonalizing a mean field Hamiltonian,
containing an explicit antiferromagnetic order parameter directed along the x-spin
quantization axis. In this way, the left and the right trial wave functions break different

symmetries (spin and spatial ones, respectively), and for any symmetric operator O
the convergence to the ground state is expected to be much faster because it is
dominated by the singlet gap in the symmetric sector Ay, that is clearly much larger
than, e.g., the lowest triplet excitation in the magnetic phase. Since Ag,,, is expected to
scale to zero (if indeed zero) at most as ~ 1 /L, we use a projection time © = (L + 4)/t,
which we have tested carefully to be large enough for well converged results (see
Supplementary information). We have also checked that the systematic error due to
discretizing 7 is basically negligible with Att = 0.14 for the spin gap calculations and
with Att = 0.1 for the correlation functions (see Fig. 3 and Supplementary
information).

In order to evaluate the statistical errors of the finite size extrapolations, we use a
straightforward resampling technique. This resampling technique is used, for
example, when values of S4r calculated for finite sizes are extrapolated to L —  to
estimate 1, in Fig. 3. Let us denote in general the calculated Monte Carlo data f{L) and
the corresponding statistical error f(L) obtained for a cluster of size L. The main goal
of this resampling technique is to estimate the finite-size extrapolated value ¢, and its
statistical error dco when the Monte Carlo data are fitted by, e.g., cubic polynomials,

e,
fm=>"% (3)
n=0

In this resampling technique, we first generate for each L a “fictitious sample” which is
normally distributed around f(L) with its standard deviation Jf(L), which is also an
output of the quantum Monte Carlo simulation. Then, we fit these “fictitious” data to
equation (3), by using the weighted (with 1/(Jf(L))*) least square fit, and estimate c.
We repeat this M, times so that we have now M, samples for c, i.e.,
{cgl),c((]z), .. ,c(()M")} distributed according to a probability distribution consistent
with the Monte Carlo simulations. Finally, we simply average {cé’>} (i=12,...,My)

for {(co) = Llim‘ f(L), and the standard deviation of {céi)} gives an estimate of the

statistical error d¢, of the extrapolated value {cy). We take M,; = 200. We have
checked that the resultant {c,) and dc, are not dependent on M, as long as M, is large
enough.

1. Balents, L. Spin liquids in frustrated magnets. Nature 464, 199-208 (2010).

2. Meng, Z.Y., Lang, T. C.,, Wessel, S., Assaad, F. F. & Muramatsu, A. quantum spin
liquid emerging in two-dimensional correlated Dirac fermions. Nature 464,
847-851 (2010).

3. Yan,S., Huse, D. A. & White, S. R. Spin-liquid ground state of the S = 1/2 Kagome
Heisenberg antiferromagnet. Science 332, 1173-1176 (2011).

4. Jiang, H.-C,, Yao, H. & Balents, L. Spin liquid ground state of the spin-1/2 square
J1—J» Heisenberg model. Phys. Rev. B 86, 024424 (2012).

5. Kivelson, S. A. Spin liquid ground states? http://www.condmatjournalclub.org/
?p=1251 (2011).

6. Shimizu, Y., Miyagawa, K., Kanoda, K., Maesato, M. & Saito, G. Spin liquid state in
an organic Mott insulator with a triagngular lattice. Phys. Rev. Lett. 91, 107001
(2003).

7. Kurosaki, Y., Shimizu, Y., Miyagawa, K., Kanoda, K. & Saito, G. Mott transition
from s spin liquid to a Fermi liquid in the spin-frustrated organic conductor
Kk-(ET),Cuy(CN)s. Phys. Rev. Lett. 95, 177001 (2005).

8. Itou, T., Oyamada, A., Maegawa, S., Tamura, M. & Kato, R. Quantum spin liquid
in the spin-1/2 triangular antiferromagnet EtMe;Sb[Pd(dmit),],. Phys. Rev. B77,
104413 (2008).

9. Fendley, P., Moessner, R. & Sondhi, S. L. Classical dimers on the triangular lattice.
Phys. Rev. B 66, 214513 (2002).

10. Kitaev, A. Anyons in an exactly solved model and beyond. Annals of Physics 321,

2-111 (2006).

. Castro Neto, A. H., Guinea, F., Peres, N. M. R,, Novoselov, K. S. & Geim, A. K. The

electronic properties of graphene. Rev. Mod. Phys. 81, 109-162 (2009).

Sorella, S. & Tosatti, E. Semimetal-insulator transition of the Hubbard model in

the honeycomb lattice. Europhys. Lett. 19, 699-704 (1992).

. Hirsch, J. E. Two dimensional Hubbard model: numerical simulation study. Phys.

Rev. B 31, 4403-4419 (1985).

14. Santoro, G., Sorella, S., Guidoni, L., Parola, A. & Tosatti, E. Spin-liquid ground
state in a two-dimensional nonfrustrated spin model. Phys. Rev. Lett. 83,
3065-3068 (1999).

15. Parola, A., Sorella, S. & Zhong, Q. F. Realization of a spin liquid in a two
dimensional quantum antiferromagnet. Phys. Rev. Lett. 71, 4393-4396 (1993).

16. Harada, K., Kawashima, N. & Troyer, M. Néel and spin-Peierls ground states of

two-dimensional SU(N) quantum antiferromagnets. Phys. Rev. Lett. 90, 117203

(2003).

Sandvik, A. W. Multichain mean-field theory of quasi-one-dimensional quantum

spin systems. Phys. Rev. Lett. 83, 3069-3072 (1999).

18. Bernu, B., Lecheminant, P., Lhuillier, C. & Pierre, L. Exact spectra, spin
susceptibilities, and order parameter of the quantum Heisenberg antiferromagnet
on the triangular lattice. Phys. Rev. B 50, 10048-10062 (1994).

19. Guida, R. & Zinn-Justin, J. Critical exponents of the N-vector model. J. Phys. A 31,
8103-8121 (1998).

20. Hlubina, R,, Sorella, S. & Guinea, F. Ferromagnetism in the two dimensional t-t
Hubbard model at the Van Hove density. Phys. Rev. Lett. 78, 1343-1346 (1997).

1

—

1

1

1

W

1

N

| 2:992 | DOI: 10.1038/5rep00992

4


http://www.condmatjournalclub.org/?
http://www.condmatjournalclub.org/?

21. Li, T. Absence of topological degeneracy in the Hubbard model on honeycomb
lattice. Europhys. Lett. 93, 37007 (2011).

22. Lieb, E. H. Two theorems on the Hubbard model. Phys. Rev. Lett. 62, 1201-1204
(1989).

23. Marshall, W. Antiferromagnetism. Proc. R. Soc. London Ser. A 232, 48-68 (1955).

24. Yunoki, S. & Sorella, S. Two spin liquid phases in the spatially anisotropic
triangular Heisenberg model. Phys. Rev. B 74, 014408 (2006).

25. Balents, L., Fisher, M. P. A. & Girvin, S. M. Fractionalization in an easy-axis
Kagome antiferromagnet. Phys. Rev. B 65, 224412 (2002).

26. Isakov, S. V., Hastings, M. B. & Melko, R. G. Topological entanglement entropy of
a Bose-Hubbard spin liquid. Nature Physics 7, 772-775 (2011).

27.Isakov, S. V., Melko, R. G. & Hastings, M. B. Universal signatures of fractionalized
quantum critical points. Science 13, 193-195 (2012).

Acknowledgments

We acknowledge E. Tosatti, F. Becca, and T. Li for useful discussions. We are also grateful to
A. Muramatsu and F. F. Assaad for valuable comments and providing us some of their
numerical data reported in Ref. 2. This work is supported by a PRACE grant 2010PA0447

and by MIUR-COFIN2012. Part of the results is obtained by the K computer at RIKEN
Advanced Institute for Computational Science.

Author contributions
S.S. developed the numerical codes; all authors performed the numerical simulations,
analyzed the numerical data, and wrote the manuscript.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/
scientificreports

Competing financial interests: The authors declare no competing financial interests.
License: This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

How to cite this article: Sorella, S., Otsuka, Y. & Yunoki, S. Absence of a Spin Liquid Phase

in the Hubbard Model on the Honeycomb Lattice. Sci. Rep. 2, 992; DOI:10.1038/srep00992
(2012).

| 2:992 | DOI: 10.1038/5rep00992


http://www.nature.com/scientificreports
http://www.nature.com/scientificreports
http://creativecommons.org/licenses/by-nc-nd/3.0

	Title
	Figure 1 The honeycomb lattice.
	Figure 2 Finite size scaling of spin-spin correlation functions for the Hubbard model on the honeycomb lattice at half-filling.
	Figure 3 The ground state phase diagram for the half-filled Hubbard model on the honeycomb lattice.
	Figure 4 Finite size scaling of spin gap and charge-charge correlation functions for the Hubbard model on the honeycomb lattice at half-filling.
	References

