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The ability to recall discrete memories is thought to depend on the formation of attractor 

states in recurrent neural networks1-4. In such networks, representations can be reactivated 

reliably from subsets of the cues that were present when the memory was encoded, at the 

same time as interference from competing representations is minimized. Theoretical studies 

have pointed to the recurrent CA3 system of the hippocampus as a possible attractor 

network3,4. Consistent with predictions from these studies, experiments have shown that 

place representations in CA3 and downstream CA1 tolerate small changes in the 

configuration of the environment but switch to uncorrelated representations when 

dissimilarities become larger5-9. The kinetics supporting such network transitions, at the 

subsecond time scale, is poorly understood, however. Here we show that instantaneous 

transformation of the spatial context (‘teleportation’) does not change the hippocampal 

representation all at once but is followed by temporary bistability in the discharge activity of 

CA3 ensembles. Rather than sliding through a continuum of intermediate activity states, the 

CA3 network undergoes a short period of competitive flickering between pre-formed 

representations for past and present environment, before settling on the latter. Network 

flickers are extremely fast, often with complete replacement of the active ensemble from one 

theta cycle to the next. Within individual cycles, segregation is stronger towards the end, 

when firing starts to decline, pointing to the theta cycle as a temporal unit for expression of 

attractor states in the hippocampus. Repetition of pattern-completion processes across 

successive theta cycles may facilitate error correction and enhance discriminative power in 

the presence of weak and ambiguous input cues.  

 

The place cell population of the hippocampus is thought to create a neural representation of the 

spatial environment10. Accumulating evidence suggests that environments are generally 

represented in hippocampal cells by a manifold of discrete maps, each corresponding to a distinct 

environment or a unique experience within the environment5,9,11-13. Which map is active at any 

given time depends on external sensory inputs as well as recent history7,14. Incongruity between 

map and sensory inputs may lead to partial or complete replacement of the active 

representation15,16. The kinetics of map substitutions has however remained elusive due to a 

shortage of experimental and analytic tools for subsecond-timescale neural population analyses.  
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In the present study, we developed tools to determine how local network activity evolves in the 

hippocampus in response to sudden changes in the cues that define the spatial context. Rats with 

tetrodes in CA3 (Supplementary Fig. 1) were first trained on separate trials in two boxes with 

different sets of light cues in a dark room (Boxes A and B). The procedure favours the 

development of uncorrelated place representations in A and B5,9 (Supplementary Fig. 2). After 

several days of training in each box, the rats were started in one of the environments; then, after 

40-60 s, the cues were switched instantaneously to those of the other environment, effectively 

‘teleporting’ the rat from A to B or vice versa. A total of 169 teleportation trials were performed, 

with an average of 33 ± 3 active cells per day (mean ± S.E.M.; total of 358 active cells; 11 days; 6 

rats).  

 

To examine the evolution of network activity after the cue change, we first established expected 

firing patterns for all locations in each environment. Firing rates were determined for each cell in 

each spatial bin of each box on separate reference trials (30×30 bins; Fig. 1a). As expected for 

CA3 place cells17, the subsets of active cells in the two boxes overlapped minimally: cells with 

activity in both A and B generally fired at unrelated positions (spatial correlation: 0.112 ± 0.019). 

The nearly orthogonal nature of the baseline representations made it possible, in principle, to infer, 

from any subsequent cell sample, which of the two environments was represented in the 

hippocampal network at the time of recording. Thus, in the next step, we compared the evolution 

of activity over successive theta cycles in the teleportation test with activity at corresponding 

locations in the reference environments. The theta phase with the lowest overall firing rate was 

used to segment the recording from each teleportation trial into individual theta cycles (Fig. 1bc; 

Supplementary Fig. 3). A population vector was then constructed for each theta cycle, consisting 

of the number of spikes of each of the C simultaneously recorded cells (Fig. 1c). For each theta 
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cycle, the population vector was correlated with vectors of average firing rates (in Hz) for the 

same location in each reference recording. We first used a simple linear measure of correlation, 

the un-normalized dot product (DP), between the test population vector r and each of the two 

reference vectors, rA and rB. If rA and rB were strictly orthogonal and after teleportation test 

vectors were to be linear combinations r ≈ cArA + cBrB, the DP measure would allow a direct 

estimate of the coefficients cA(t) and cB (t), i.e., of the strength with which the two representations 

are relayed to downstream neurons2,4. Only trials with continuous theta activity were analyzed 

(149 out of 169 teleportation trials).  

 

Teleportation was followed by a characteristic pattern of network activity (Fig. 2). Before the 

transformation, most theta cycles correlated strongly with reference vectors for the first 

environment (denoted as I, whether A or B) but not for the second (II), as expected (Fig. 1d and 

2ab). After teleportation, most theta cycles correlated with the reference vectors for II but the 

magnitude of the dot product was variable and the network occasionally ‘flickered’ back to strong 

correlations with I. To investigate the statistics of this flickering, we plotted, for each theta cycle, 

the correlation of the momentary population vector with the reference vectors from the same 

environment (x-axis) and the alternative environment (y-axis) (Fig. 2c). The analysis confirmed 

that teleportation increased the proportion of cycles correlated with the alternative environment 

but also identified a subset of cycles that correlated modestly with both environments at the same 

time. This led us to ask if the instantaneous activity during the transition reflected a simple linear 

combination of fragments of the A and B representations, as would be expected in the absence of 

population coherence. We consequently determined whether, in the pooled data, the proportion of 

theta cycles correlating with both environments at the same time (r · rA>C, r · rB>C, referred to as 

‘mixed theta cycles’) was lower than expected if each single unit expressed either one or the other 

representation independently of the other units. A total of 1.25% of the theta cycles in the recorded 
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data were mixed. This number was lower than in 970 out of 1,000 randomly recombined 

(shuffled) population vectors (i.e. P<0.03; Fig. 2d). The separation between the A and B-

correlated representations was strongest when the cycles were chunked at the point of the lowest 

average firing rate in the population (Fig. 1bce; Supplementary Fig. 3). Thus, mixed 

representations existed but were rare. Transitions between orthogonal maps tend to occur in an all-

or-none manner, with the entire network flickering coherently at time scales of approximately a 

tenth of a second.  

 

We subsequently examined the evolution of network activity within the theta cycle. Each cycle 

was divided into two halves, and mixed states were defined as those half-cycles for which r · 

rA>C/2, r · rB>C/2. Mixed population vectors were less abundant than expected from shuffled data 

during both half-cycles; however, in the shuffled data, the frequency of recombinations with more 

mixed population vectors than in the observed data increased from 958/1000 during the first half 

(P < 0.05) to 1000/1000 during the second (P < 0.001) (Fig. 2d). The low incidence of mixed 

population vectors at the end of the theta cycle suggests that representations evolve from partially-

segregated to fully-segregated within each activity period.  

 

We then asked how A-correlated and B-correlated theta cycles were organized in time. Because 

dot products can vary from 0 to indefinitely large, we switched to Pearson product-moment 

correlations, which by normalizing the correlations to within a fixed [-1,+1] range allow 

successive theta cycles to be compared more directly (Fig. 3a-c; Supplementary Fig. 4-6). 

Individual theta cycles were now only considered if at least two cells were active (for higher 

thresholds, see Supplementary Fig. 7). As observed with the dot products, the momentary 

population vectors correlated strongly with either A or B but rarely with both. Before 

teleportation, theta cycles were nearly exclusively correlated with reference vectors for the initial 
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environment (I). After the teleportation, the network switched almost instantaneously to high 

correlation with reference vectors for II but then relapsed to I several times during the subsequent 

seconds (Fig. 3ab; Supplementary Fig. 5 and 6) and occasionally tens of seconds after the 

teleportation (Fig. 3c). These relapses, or flickers, were confined to discrete periods of one or 

several theta cycles. When the population vector was correlated with reference vectors from other 

locations in the represented environment, the correlation generally decreased with distance from 

the animal (Fig. 3d; Supplementary Fig. 8). 

 

To quantify the frequency, timing and duration of flicker events, we defined individual theta cycles 

as A-correlated if the correlation with reference environment A was above the 95th percentile for 

B×A correlations in the reference sessions (i.e. more similar to A than 95% of theta cycles in B) and 

if the correlation with reference environment B was simultaneously below the 5th percentile for 

B×B (i.e. different from most theta cycles in B) (Supplementary Fig. 9 and 10). The analysis 

showed a clear increase in the frequency of network flickers during the first seconds after 

teleportation from I to II, after the network had switched to the II representation for the first time 

(generally 0-1 s after the cue change; Supplementary Fig. 11; Supplementary Table 1). The fraction 

of theta cycles participating in flicker episodes, estimated with Pearson correlations, increased from 

a stable baseline of 1-3% before teleportation to a level of 10-15% during the first 5 s after the first 

network switch (Fig. 3e; Supplementary Fig. 12), confirming the tendency revealed by the dot-

product analyses (Fig. 2c). The interquartile range of flicker durations increased from 1�1 theta 

cycles before teleportation to 1�4 during the first 10 s after teleportation (Wilcoxon rank-sum test: 

Z = 2.27, P < 0.03; Supplementary Fig. 11b; Supplementary Table 1). Flicker events were 

distributed across the entire recording box (Supplementary Fig.13) and showed no preference for 

running or heading direction (Supplementary Fig.14). Flickering was apparent also in CA1 but 
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discrete relapses were clearly less frequent, possibly due to the less reverberating architecture of 

this subfield (Supplementary Fig. 15). 

 

Transitions between representations occurred within less than a single theta cycle. After the last 

cycle in a series of non-flicker theta cycles, the alternative representation was fully expressed 

already in the subsequent theta period in 30.8% of the flicker events (Fig. 3f). The corresponding 

percentage of single-cycle returns to the ’correct’ representation was 32.0%. In an additional 

57.0% of transitions from ‘correct’ to ‘incorrect’ reference frame and 62.2% of transitions back 

from ‘incorrect’ to ‘correct’, the time course remained undetermined because the intervening theta 

cycle contained fewer than two spikes. In each instance of an immediate transition, the network 

representation was fully developed from the outset, i.e. the correlation with the new environment 

did not increase further within the flicker period (r = –0.06 ± 0.11). 

 

To further determine if the flicker episodes were patterned by the theta oscillation, we finally 

compared the transition dynamics of our theta-based segmentation procedure with segmentations 

based on fixed time bins of different width (range 44-500 ms; Supplementary Fig. 3). Among the 

fixed bins, direct transitions were most abundant when the bins matched the average duration of 

theta cycles (125 vs. 120.4 ms, respectively).  The abundance of sharp transitions increased further 

when the trial was segmented by actual rather than fixed theta periods, with cycles split at the 

phase with the minimum firing rate (Fig. 1bce; Supplementary Fig. 3). Collectively, these 

observations suggest strongly that the transitions were paced by the theta rhythm.   

 

Our study provides evidence for competitive interaction between hippocampal representations during 

changes in spatial reference frame. Although a small subset of the population vectors correlated with 

both reference environments after the cue change, the number of such mixed states was lower than 
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expected from a sample of independent single units, especially during the second half of each theta 

cycle. In most cases, the network either switched all-at-once or flickered between mutually exclusive 

representations until, after a few seconds, it settled in one of the alternatives. The sustained 

separation of the neural activity pattern is consistent with the notion that spatial environments, as a 

whole, are stored as discrete attractors in neural networks of the hippocampus or associated areas 

such as entorhinal cortex1-4,8,9. These discontinuities differ from the continuous or quasi-continuous 

nature of spatial maps for individual environments12,18-20, where sweeps can follow unbroken 

trajectories, even when retrieval occurs in the absence of actual movement21. Changes in attention or 

experience are likely to generate continuous transitions of the latter type more or less constantly in all 

environments7,22-26. The low frequency of flickering in the baseline state of the teleportation task 

suggests, however, that switches to uncorrelated attractor maps are rare and occur primarily when 

cues are ambiguous or in conflict across sensory modalities.  

 

The time course of flickering episodes has implications for the mechanisms of ensemble 

activation. It took often only a single theta cycle to fully reactivate a pre-established 

representation during a flicker event, consistent with models of theta phase precession in which 

ensembles are activated by propagation through recurrent collaterals after afferent input to a 

subset of cells early in the theta cycle27. The idea that sensory influences can override attractors 

at the beginning of the theta cycle, whereas subsequent activity is determined more exclusively 

by propagation through associative connections, receives further support from the fact that the 

small number of mixed population vectors occurred primarily during the first half of the theta 

cycle. The recreation of spatial representations on successive theta cycles in the hippocampus is 

fundamentally different from the pattern-completion dynamics observed, for example, in the 

inferior temporal cortex, where the activation may proceed only once per stimulus presentation, 

at a time scale short enough to facilitate perception but with little opportunity for error 
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correction28. In the hippocampus, repeated convergence to an attractor state might allow the 

system to self-correct and thereby enhance its discriminative power under conditions where input 

cues are weak and ambiguous. The present data point to theta cycles as organizational units for 

this repetitive process but do not preclude additional structure at faster time scales, for example 

with gamma cycles as units for cell assembly sequences within the theta cycle29,30. 

 

Methods summary 

Neuronal ensemble activity was recorded from ensembles of CA3 cells while rats foraged in either of 

two distinct enclosures in a dark room. The enclosures were identical except for internal lights. Testing 

began by placing the rat in one of the two boxes. After 40-60 s, the light cues were switched, 

effectively ‘teleporting’ the animal to the other environment. To examine the evolution of network 

activity, population vectors were defined from the firing rates of all simultaneously recorded cells for 

every theta cycle before and after the teleportation. Each population vector was correlated with 

reference vectors defined from the activity of the same cells at the same spatial location in each box on 

separate baseline trials. 
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Figure 1.Procedures for analyzing hippocampal transition dynamics. a. Stack of firing-rate 

maps in Box A (white floor lights; left) and Box B (green wall lights; right) for an example 

set of 32 simultaneously recorded hippocampal CA3 units. Each map shows a colour-

coded distribution of firing rates across the square test box (blue, silent; red, maximum). 

Red line, one of 30×30 population vectors (PV) constructed from the activity of the entire 

cell ensemble in a given 2×2-cm position bin. Note strong difference in population vectors 

for A and B. b. Theta phase modulation for all pyramidal cells on a representative trial. 

Spike number is shown as a function of theta phase (bin size 10 deg). Stippled green line, 

phase with lowest firing rate, used to define boundary between cycles. c. Representative 

spike distribution across theta cycles in the stable state. Rasters of red dots show spike 

times of individual cells in relation to 6-11 Hz filtered local EEG (blue). Green lines indicate 

theta-cycle boundaries (b). The ensemble distribution of activity during one cycle 

represents the momentary population vector. d. Dot-product correlation between 

momentary population vector and reference vectors at the corresponding position in A 

(red) and B (blue) during a baseline trial in A. e. Cumulative product between correlations 

with each of the reference environments as a function of the phase for segmentation of 

theta cycles (0, phase of minimum activity).  

 

Figure 2. Theta cycles correlate with either of the reference environments but rarely with 

both simultaneously. a. Top: Local hippocampal EEG during teleportation from A to B 

(filtered at 6-11 Hz). Bottom: Dot-product correlation between momentary population 

vectors and reference vectors from A (red) and B (blue) for successive theta cycles before 

and after teleportation. Dot products are un-normalized (just divided by the number C of 

recorded cells). All correlations are positive but, for clarity, A and B correlations are plotted 

in opposite directions. Green line indicates light switch. EEG and ensemble activity were 

sampled simultaneously. Note that ensemble activity flickered back to the A representation 

several times after teleportation. Note also the variation in the dot product. b. Another 

example. c. Matrices reporting the number of cycles falling in each 0.2 × 0.2 bin of the dot-

product correlations r · rA,B/C between momentary population vectors and reference 

vectors for the present environment (x-axis) or the alternative environment (y-axis). Left: 

pre-teleportation. Right: post-teleportation (starting from first cycle correlated with new 

environment). Note that mixed cycles, defined as cycles with both r · rA and r · rB exceeding 
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C(x>1, y> 1; indicated by red lines), were rare. d. Histograms showing that the number of 

mixed states after teleportation (red line)  is lower than expected from shuffled versions of 

the same data (n=1000; grey histogram). Note that mixed states became less frequent 

during the second half of the theta cycle. 

 

Figure 3. Temporal dynamics of network flickering. a-c, Pearson product-moment 

correlations showing evolution of population vector correlations after teleportation from 

Box I to II in three cases (red, correlation with I; blue, with II). Note frequent flickers to the 

original representation after the teleportation. c shows spontaneous flickering between 

teleportations. Frames: sequences detailed in d and Supplementary Fig. 8. d. Spatial 

distribution of correlations between momentary population vectors and reference vectors in 

the framed area in a. Each row shows correlation matrices for 16 consecutive theta cycles. 

Top, correlation with I; bottom, with II. Correlation is colour-coded (scale bar). +, rat 

position. e. Percentage of flickers to the alternative representation as a function of time 

before and after teleportation.   f. Distribution plots showing the time for the network to 

switch from present (‘correct’) to past (‘incorrect’) representation, or vice versa, in number 

of theta cycles. One cycle means that cycles with alternative representations were 

consecutive. Note the predominance of immediate transitions. 
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Methods (for the online version) 

 
Subjects 

Six male Long Evans rats (400 - 500 g at implantation) were housed individually in transparent 

Plexiglass cages (45 cm x 30 cm x 35 cm). The animals were kept at ~90% of their initial free-

feeding body weight and maintained on a 12-h light/ 12-h dark schedule. All testing occurred in the 

dark phase. The experiments were performed in accordance with the Norwegian Animal Welfare 

Act and the European Convention for the Protection of Vertebrate Animals used for Experimental 

and Other Scientific Purposes. 

 
 
Electrode preparation and surgery 

Neuronal ensemble activity was recorded from ensembles of CA3 or CA1 cells in rats implanted with 

a ‘hyperdrive’ containing 14 independently movable tetrodes assembled in a circular bundle. Tetrodes 

were twisted from four 17 μm polyimide-coated platinum-iridium wires (90% - 10%; California Fine 

Wire Company). Electrode tips were plated with platinum to reduce electrode impedances to 120-200 

kΩ at 1 kHz.  

 

The animals were food-deprived 12 h before surgery started. In four animals, anesthesia was induced 

by first placing the animal in a closed glass box filled with isoflurane vapor and then giving the animal 

an i.p. injection of Equithesin (pentobarbital and chloral hydrate; 1.0 mL/ 250 g body weight). Two 

animals (15272 and 15273) were anesthetized with isoflurane (induction chamber level of 4.0% while 

the rats were secured in the stereotaxic apparatus, with an air flow at 1400 ml/min; isoflurane was then 

gradually reduced to 1-2% during the course of the surgery). Supplementary anesthesia was given 

when breathing and reflexes changed. Local anesthetic (Xylocain) was applied on the skin before 

making the incision. The hyperdrive was then implanted. The tetrodes were inserted above CA3 of the 
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right hippocampus, with the centre of the bundle at AP 3.8 mm and ML 3.0 mm relative to bregma. 

Jewellers’ screws and dental cement were used to secure the hyperdrive to the skull. Two screws were 

connected to hyperdrive ground. All tetrodes were turned after the surgery to be sure they were in the 

brain. 

 

Tetrode positions 

Over the course of ~3-4 weeks, the majority of the tetrodes were lowered towards CA3 in steps of 50 

µm or less while the rat rested on a towel in a large flower pot on a pedestal. Turning was slowed 

down when large-amplitude theta-modulated complex-spike activity appeared in CA3 at depths of 

approximately 3.0 mm. The tetrode depths were tweeked to get the maximal number of simultaneously 

recorded CA3 cells at the start of teleportation. To maintain stable recordings, the electrodes were not 

moved at all on the day of recording. A few tetrodes were left in CA1; data from these tetrodes were 

analysed separately. Two of the tetrodes were used, respectively, to record a reference signal from the 

corpus callosum and an EEG signal from the stratum lacunosum-moleculare.  

 

Behavioural training procedures 

The rats were trained to collect food morsels in either of two distinct 60 cm × 60 cm enclosures with 

40-cm walls located in a dark curtained environment (Supplementary Fig. 2). The boxes rested on a 

plexiglass plate fixed 10 cm above the floor of the room. The boxes were identical except for the 

arrangement of a number of internal lights. Beneath the plexiglass plate of Box A there was a panel of 

8 light-emitting white diodes (LEDs) organized into a circle (50 cm in diameter) and placed centrally 

under the plexiglass plate to be visible through the floor. The box was polarized by another LED at the 

upper edge of one of the walls. Box B was illuminated by a 60-cm long array of green LEDs lining 40 

cm of the upper edge of the wall opposite to the directional LED in A  and 20 cm of one of the 

adjacent walls (Supplementary Figure 13a). The LEDs were the only light source in the room. 
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Training occurred in four stages. During Stage 1, the boxes were located next to each other, connected 

by a 20 × 20 cm (width × length) passageway that allowed the rat to shuttle between the boxes in order 

to associate each box with a different set of path integrator coordinates9. The rat was permitted to 

travel freely between the boxes for 20 min on at least three trials. Trials were separated by 20 min 

intervals, during which the animal rested on a towel in a pedestal outside of the curtains. At Stage 2, 

the corridor was removed and the animal explored the boxes individually on alternating trials (3 trials 

in each). At Stage 3, the boxes were replaced by a single box made of the same material and equipped 

with both sets of lights. The box was placed on alternating trials at the two original locations. When 

presented at the original position of Box A, the set of LEDs defining A was switched on; when in the 

place of Box B , the respective lights of B were active instead. Again, the rat was tested 3 times in each 

environment on alternating occasions. Finally, at Stage 4, the box was moved to a central location 

between the two original box locations. The animal received alternating trials with each set of lights (2 

consecutive days, each day 3 pairs of trials). During all stages, at the start of each trial, the rat was 

taken from the flower pot on the pedestal outside of the curtains and placed, without disorientation, 

into the environment with the eyes gently covered by experimenter's palm. Between trials, the rat 

rested for 20 min in the flower pot. During this period, the boxes were thoroughly washed with a wet 

tissue and dried. 

 

On the test day, the rat started with a 20 min rest trial in the flower pot. The animal was then tested for 

10 min in each box configuration (A and B, respectively). Then, during the third trial, after 40-60 s of 

baseline recording in one of the configurations (e.g. A), the lights were switched instantaneously to the 

other configuration (e.g. B). Additional ‘teleportations’ were performed every subsequent 40-60 s until 

10 min had passed. A resting trial in the flower pot was recorded at the end. The electrodes were then 
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lowered deeper into the CA3 and the experiment was repeated on the subsequent day in those cases 

where spikes with sufficient amplitudes from new cells could be recorded.  

 

Running was motivated by small crumbles of cookies thrown into the box at 10-20 s intervals.  

Three types of cookies were used: vanilla, chocolate and unflavored. Vanilla and unflavoured 

were given in configuration A, chocolate and unflavoured in configuration B. The proportion 

between flavored and unflavored cookies was approximately 1:1 during Stage 1 and 1:4 during the 

following stages. During teleportation trials, only unflavored crumbles were offered. 

 

Population vector analyses  

Theta waves were identified from filtered local EEG traces as described in the Supplementary 

Methods. The evolution of unit activity over successive theta cycles before and after teleportation 

was estimated by defining a population vector for each theta cycle, consisting of the number of 

spikes fired by each cell in the array, and comparing it to a population vector for the same cells at 

the corresponding location in each of the reference environments (Fig. 1ac). Boundaries between 

theta cycles were determined by plotting, for all cells on the entire teleportation session, the 

number of spikes as a function of theta phase (Fig. 1b). The boundary between successive theta 

cycles was then defined by the theta phase with the lowest overall firing rate (bins of 10 deg; Fig. 

1bc). For each theta cycle, the momentary population vector was correlated with reference 

population vectors for the same cell sample at the same location in each of the reference 

environments. The reference vector (expressed in Hz rather than as a spike count, normalized by 

the time spent at each location) was based on activity across the entire reference trial for each of 

the environments on the test day. In a subset of the analyses, the momentary population vector was 

compared with all reference population vectors in the two boxes, i.e. not only those corresponding 

to the animal’s current location. Correlations between momentary population vectors and 



K. Jezek et al. 
 

19 

reference vectors were quantified by dot products as well as Pearson product-moment correlations. 

Dot products were calculated for all theta cycles, including those with no activity, where the dot 

product is zero. Pearson correlations, which cannot be defined for theta cycles with no spikes, 

were calculated by excluding also theta cycles with a single unit active, i.e. these correlations were 

based on the subset of theta cycles that included at least two active cells. In a subset of the 

analyses, also cycles with only two active units were excluded, and in a further control, also those 

with only three active units were discarded (Supplementary Fig. 7). 

 

To determine if the similarity between momentary population vectors during teleportation and 

population vectors in the reference environment was larger than expected by chance, we correlated 

population vectors from successive theta cycles in reference recordings from A and B with mean 

population vectors generated from activity in the same position across the entire session in the 

same environment or the alternative environment. When referenced to the same environment 

(A×A or B×B), the distribution of correlations was centered at high correlation values with a long 

tail of low values (Supplementary Fig. 9, top row). When referenced to the alternative 

environment (A×B or B×A), the distributions were centered at slightly negative values with a long 

tail towards infrequent high positive values (Supplementary Fig. 9, bottom row). We then 

determined 5th and 95th percentile values for each distribution and used these as criteria to identify 

flickers to the alternative representation. Individual theta cycles were defined as A-correlated if 

the correlation with reference environment A was above the 95th percentile for B×A (i.e. more 

similar to A than 95% of the theta cycles in B) and if the correlation with reference environment B 

was below the 5th percentile for B×B (i.e. more different from the reference in B than most theta 

cycles in B). Conversely, theta cycles were defined as B-correlated if the correlation with 

reference environment B exceeded the 95th percentile for A×B and if the correlation with reference 

environment A was lower than the 5th percentile for A×A. In separate analyses, the momentary 
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population vectors were compared not only with reference vectors at the same location but at all 

900 bin locations in the box (Supplementary Fig. 8). 

 
The abundance of theta cycles that correlate with both reference environments (‘mixed’ theta 

cycles) was determined by comparing the data with spike patterns obtained by ‘shuffling’ the 

activity of individual units. For each theta cycle during the 10 s preceding and succeeding the 

teleportation, the number of spikes produced by each unit recorded during the teleportation event 

was drawn at random from among all theta cycles recorded in the same physical location in the 

same environment during the corresponding period (most of these theta cycles were correlated with 

the current envionment, some with the alternative one). The analysis was limited to theta cycles for 

which a minimum of 3 theta cycles had been recorded in that particular location in the relevant 

period, with “same” location defined as the same 6 cm × 6 cm spatial bin of the same recording 

box. The shuffled population vectors can be conceived as approximating the linear combination rS ≈ 

A·rA + B·rB where A and B=1-A are random binary vectors (e.g., (0,1,0,0,1,0,1,1,…)) indicating 

whether each unit was drawn from the A or B representation of that location. If the current 

environment is A, a particular theta cycle in the original data can express activity close to the 

reference vector A in that location, or to the reference vector B (e.g. during a flicker event) or to a 

mixture of the two, or just noise or, rather frequently, no activity at all. The abundance of mixed 

theta cycles was determined by the un-normalized dot product DP of the population vector in each 

theta cycle with the reference vectors in A and B, DPA = r · rA /C and DPB = r · rB /C (just divided by 

the number C of simultaneously recorded units). DP values range from 0 to about 10 (note that they 

are expressed in Hz, since the momentary population vector includes spike counts, while the 

reference vector indicates firing rates), and very rarely beyond, but are mostly clustered close to 

zero, because of the presence of theta cycles with no spikes, or with e.g. a single spike from a unit 
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that emits on average less than 1 spike in that physical location in both reference vectors. We 

arbitrarly set DP > 1 as the criterion for substantial correlation, and DP > ½ for half-cycles. 

 

The speed of instantaneous transitions from one representation (e.g., A) to the other (e.g., B) was 

estimated by cross-correlating the sequence of correlations with reference environment A and the 

sequence of correlations with B one time bin later, excluding, in this analysis, units with 

overlapping fields in the two environments and trials with less than 20 non overlapping units (2 

out of 11; Supplementary Fig. 3). Bin widths were then varied from 44 ms to 500 ms to determine 

the transition time that gave the largest cross-correlation. Bins were also defined by actual theta 

cycles, with separations at the point of minimum spike activity in the population (Fig. 1bc) and at 

other phases 10 deg apart (Supplementary Fig. 3). Cross-correlation values were corrected for 

overlap between A and B representations by subtracting the cross-correlation at zero time lag.  

 

Other 

Recording procedures, criteria for spike sorting, construction of rate maps, analysis of theta 

rhythm, and histological procedures are described in Supplementary Materials and Methods. 

 

 

 
 



Figure_1

a b

c

d

C
el

l n
um

be
r

N
um

be
r o

f s
pi

ke
s

e
C

um
ul

at
iv

e 
cr

os
sc

or
re

la
tio

n

Phase shift from minimum activity (deg)

Time (s)

Phase (deg)

0 180-180 360-360

10

20

30

1

0 180 360 540 720
0

200

400

600

0.2 0.4 0.6 0.8 10

0

10

20

30

0

2

4

6

0.2 0.4 0.6 0.8 10
D

ot
 p

ro
du

ct

ce
ll 

no
.

5

10

15

20

25

30

32

1

BA

0.1

PV PV

0



Figure_2

8
6
4
2
0
2
4

a

b

c

Rat # 12045

Rat # 12339

136 138 140 142 144 146 148 150

D
ot

 p
ro

du
ct

D
ot

 p
ro

du
ct

 

Time (s)

5

10

15

20

Post-teleportation

Dot-Product data x correct template
0 2 4 6 8 10

0

2

4

6

8

10

D
ot

-P
ro

du
ct

 d
at

a 
x 

in
co

rr
ec

t t
em

pl
at

e

4 6 8 102

5

10

15

20

Pre-teleportation

0

2

4

6

8

10

D
ot

-P
ro

du
ct

 d
at

a 
x 

in
co

rr
ec

t t
em

pl
at

e

Dot-Product data x correct template
0

10

5

0

5

10

186 188 190 192 194 196 198 200

d

C
ou

nt

Number of mixed cycles Number of mixed cycles Number of mixed cycles

First half Second halfEntire theta cycle

140 160 180 200 220
0

100

200

300

160 180 200 220 240 260
0

100

200

300

220120 140 160 180 200
0

100

200

300

������
1 s

da
ta

po
in

t d
en

si
ty

da
ta

po
in

t d
en

si
ty

LF
P 

(6
-1

2 
H

z)

25+

0

25+

0



Figure_3

0

1

0

1

Time (s)

0

1

C
or

re
la

tio
na

b

c

C
or

re
la

tio
n

C
or

re
la

tio
n

0-5 5 10

464 474469 479

0-5 5 10

fe

N
um

be
r o

f f
lic

ke
rs

 (%
)

N
um

be
r o

f f
lic

ke
rs

 (%
)

N
um

be
r o

f f
lic

ke
rs

 (%
)

Time before/after teleportation (s)

0

8

12

16

4

0 5 10-5
Duration of transition (number of theta cycles)

4 6 8 10 12 142 16 18 20 more
0

20

30

10

4 6 8 10 12 142 16 18 20
0

20

30

10

-10

d

1 theta cycle
0

1
0

1

From correct to incorrect From incorrect to correct


	Article File
	Figure 1
	Figure 2
	Figure 3

