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ABSTRACT

We propose a method for CMB component separation based on standard Bayesian parameter estimation tech-
niques. We assume a parametric spectral model for each signal component and fit the corresponding parameters
pixel by pixel in a two-stage process. First we fit for the full parameter set (e.g., component amplitudes and spectral
indices) in low-resolution and high signal-to-noise ratio maps using MCMC, obtaining both best-fit values for each
parameter and the associated uncertainty. The goodness of fit is approximated by a �2 statistic. Then we fix all
nonlinear parameters at their low-resolution best-fit values and solve analytically for high-resolution component
amplitude maps. This likelihood approach has many advantages: the fitted model may be chosen freely, and the
method is therefore completely general; all assumptions are transparent; no restrictions on spatial variations of
foreground properties are imposed; the results may be monitored by goodness-of-fit tests; and, most importantly,
we obtain reliable error estimates on all estimated quantities. We apply the method to simulated Planck satellite and
6 year WMAP data based on realistic models and show that separation at the microkelvin level is indeed possible in
these cases. We also outline how the foreground uncertainties may be rigorously propagated through to the CMB
power spectrum and cosmological parameters using a Gibbs sampling technique.

Subject headinggs: cosmic microwave background — cosmology: observations — methods: numerical

1. INTRODUCTION

As experimental techniques improve rapidly and new high-
sensitivity ground-based, balloon-borne, and satellite missions
are being planned and implemented, the main problem in cos-
mic microwave background (CMB) measurement has changed
from instrumental noise to separation of the cosmological CMB
signal from noncosmological foreground signals. This prob-
lem will become even more important as our focus shifts from
observations of temperature anisotropies to polarization aniso-
tropies; while a simple template-fitting approach proved ade-
quate for the first-year Wilkinson Microwave Anisotropy Probe
(WMAP) analysis (Bennett et al. 2003a, 2003b; Hinshaw et al.
2003), no such hopes can be held for future polarization
experiments.

While component separation is a difficult problem, it is not
intractable. Since the cosmological CMB radiation follows a vir-
tually perfect blackbody spectrum (Mather et al. 1999), whereas
all known noncosmological signals have nonthermal spectra, it
should be possible to disentangle the various contributions using
spectral information. This fact motivated multiple frequencies on
the Cosmic Background Explorer (COBE ) Differential Micro-
wave Radiometer (DMR) experiment (three bands between 31
and 90 GHz), the currentWMAP experiment (five bands between
23 and 94 GHz), and the future Planck satellite experiment (nine
bands between 30 and 857 GHz).

While the necessity of multifrequency observations has been
recognized in the cosmological community for a long time, there
has been uncertainty about how those observations should be used.
Many different methods have been proposed, including the max-
imum entropy method (Barreiro et al. 2004; Bennett et al. 2003b;
Hobson et al. 1998; Stolyarov et al. 2002, 2005), the internal linear
combination method (Bennett et al. 2003b; Tegmark et al. 2003;
Eriksen et al. 2004a), Wiener filtering (Bouchet & Gispert 1999;
Tegmark&Efstathiou 1996), and the independent component anal-
ysis method (Maino et al. 2002, 2003; Donzelli et al. 2005). Some
of these methods (e.g., Baccigalupi et al. 2004 and Stivoli et al.
2005) have been applied to polarization data. These methods all
have their origins in the field of computational image processing.

In this paper, we advocate a more direct approach to the com-
ponent separation problem, following in the footsteps of Brandt
et al. (1994).We choose a physicallymotivated parametricmodel
for each significant signal component and fit the free parameters
by means of well-established algorithms, such as Markov Chain
Monte Carlo (MCMC) and nonlinear searches. (For an alterna-
tive spectral matching algorithm, see Delabrouille et al. 2003.)
The advantages of this approach are many: no assumptions about
the spatial structure of the foreground properties are imposed; the
method scales proportionally to the number of pixels; the results
may be verified by means of goodness-of-fit tests; and, most
importantly, the method yields accurate uncertainties for all es-
timated quantities.
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We begin by developing a simple algorithm that is able to
analyze real-world data in the presence of realistic noise.Whereas
Brandt et al. (1994) relied exclusively on nonlinear fitting and
was therefore quite unstable with respect to noise, we take ad-
vantage of more recent developments (most importantly MCMC)
to make the algorithm both more robust and also to produce ac-
curate errors. We also suggest a procedure for propagating these
results into final data products, namely, the CMB power spec-
trum and cosmological parameters, by means of a Gibbs sam-
pling method.

After establishing the algorithm, we apply it to realistic sim-
ulations corresponding to the future Planck and 6 year WMAP
data, taking into account the predicted noise distributions of each
experiment. We attempt to model the foregrounds as accurately
as possible, given our current understanding of the involved
foregrounds.

2. FORMULATION OF THE COMPONENT
SEPARATION PROBLEM

Assume that the observed data take the form of a multifre-
quency set of sky maps, d� , each of which may be written in the
form

d� ¼ As� þ n�; ð1Þ

where � identifies frequency bands and skymaps 1 throughN , s�
is the true sky signal at the corresponding frequency band, n� is
instrumental noise, and A denotes convolution with the instru-
ment beam.

We assume the noise component n� to be Gaussian distributed
with vanishing mean and variance �2

� pð Þ, where p is the pixel
number. Thus, the noise is uncorrelated both between pixels and
between frequency channels, but spatial variations in the vari-
ance are allowed.

Note that there is no frequency index on the beam operator in
equation (1), indicating that all channels are assumed to have the
same beam response. For multiresolution experiments, this im-
plies that the sky maps must be smoothed to a common reso-
lution prior to analysis. Equation (1) is no longer strictly valid,
since the noise is then correlated; however, in practice it works
reasonably well to approximate the noise term as uncorrelated
between pixels, with rms levels determined by Monte Carlo sim-
ulations of processed noise.

The signal s� may be decomposed into a sum of components,
s� ¼

P
i s

i
� , in which the most important ones are the cosmo-

logical CMB signal and three galactic foregrounds: synchrotron,
free-free, and dust emission. Compact (unresolved) Galactic
and extragalactic sources could also be included in the list, but
these are more conveniently detected by other methods, such
as wavelets (e.g., Vielva et al. 2003). In this paper we consider
compact source removal as a part of the preprocessing stage
and assume that resolved sources are either masked, median
filtered, or fitted prior to analysis. Thus, we include only diffuse
foregrounds in the following, but note that more work is needed
on this issue.

Assume also that the frequency spectrumof each signal compo-
nent may be parameterized by a small number of free parameters,
for instance an amplitude and a spectral index S ¼ A �/�0ð Þ�.
Given a set of multifrequency CMB sky maps as described above
and a parametric signal model S� �ð Þ with free parameters �, we
now establish both a point estimate �̂ for the free parameters
and the corresponding uncertainties. To do so, we use standard
Bayesian parameter estimation methods.

Our goal is to establish the posterior distribution for the pa-
rameters given the data, P �jdð Þ. Using Bayes’s theorem, this
may be written as

P �jdð Þ / P dj�ð Þ P �ð Þ ¼ L �ð ÞP �ð Þ; ð2Þ

where L �ð Þ ¼ P dj�ð Þ is the likelihood and P �ð Þ is a prior. In
this paper, we adopt uniform priors between two (not neces-
sarily finite) limits for all parameters, although it is in general
straightforward to implement nonuniformpriors if desired. (How-
ever, the precise interpretation of the goodness-of-fit test will be
affected by doing so.) Specifically, we impose a positivity con-
straint on the foreground amplitudes (A > 0) and sufficiently
generous limits on the spectral indices to never exclude physically
realizable values (�4 < �s < �2:2 for synchrotron and 1 <
�d < 3 for thermal dust).
Since the noise is assumed to be Gaussian distributed and

uncorrelated between pixels, the likelihood reduces to the usual
�2, independent between pixels,11

lnL ¼ � 1

2

XN
�¼1

d� � S� �ð Þ
��

� �2
¼ � 1

2
�2: ð3Þ

The problem of component separation is thus reduced to mapping
out the posterior as given above by some numerical technique, for
instance grid computation, MCMC, or nonlinear searches.
We illustrate the procedure in Figure 1, in which the results

from an analysis of one arbitrarily chosen pixel are shown (see x 6
for details). The observed data points are marked by black circles,
and the fitted components are shown as smooth, colored curves.
The dashed black curve shows the sum of all components. Four
signal components are included in this model, CMB, synchrotron,
free-free, and thermal dust emission. The parametric models for
the foregrounds are perfect power laws for synchrotron and free-
free emission and a one-component model for dust (see eq. [14]).
Although we focus on temperature anisotropies in the present

paper, the method can handle polarization anisotropies equally
well. In that case, the �2 takes the form

�2 ¼
XN
�¼1

d̄� � S̄� �ð Þ
� �T

N�1� d̄� � S̄� �ð Þ
� �

; ð4Þ

where

d̄� ¼
dI�

dQ�

dU�

0
B@

1
CA; S̄� �ð Þ ¼

SI� �ð Þ
SQ� �ð Þ
SU� �ð Þ

0
B@

1
CA ð5Þ

are the Stoke’s I , Q, and U parameters for the data and model,
respectively, and N� is the 3 ; 3 I ; Q; Uð Þ noise correlation
matrix for the pixel. (We still assume uncorrelated noise be-
tween pixels and frequency bands but not between the three
Stoke’s parameters for each individual pixel.)

3. PARAMETRIC MODEL FITS

In this section we introduce the parametric model that we fit to
the data, starting with a review of the currently favored parametric

11 In practice this is not strictly correct, since the CMB and foreground
components are indeed correlated between pixels, and we will at some point
work with smoothed sky maps; nevertheless, it is a good approximation for
component separation purposes. Further, as described in x 5.6, at least spatial
CMB correlations may be taken into account by Gibbs sampling.
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signal models si� for each signal component. We emphasize that
the procedure as such is general, and any parametric model may
be included in the analysis. Then we discuss how to take into
account the effect of nonzero instrumental bandwidths and discuss
implementation details that lead to more transparent computer
code. Note that the parametric signal models we adopt for fitting
the various components may differ from the parametric models
that are used for modeling the components later in x 6.1, as will
certainly be the case in dealing with real data.

3.1. Signal Components

CMB anisotropies.—The cosmological background compo-
nent, due to its blackbody nature (Mather et al. 1999), is most
easily characterized by its thermodynamic temperature TCMB or,
equivalently, the anisotropy temperature �TCMB ¼ TCMB � T0,
where T0 ¼ 2:725 K (Fixsen & Mather 2002) is the average
CMB temperature. However, as discussed later, the foreground
components are more easily described in terms of antenna tem-
peratures, and therefore we choose to convert the CMB signal
accordingly. The CMB signal model then reads

sCMB �ð Þ ¼ �TCMB

x2ex

ex � 1ð Þ2
; ð6Þ

where x ¼ h�/kT0, and h is the Planck constant and k is
Boltzmann’s constant.

Synchrotron emission.—Synchrotron emission from the
Galaxy originates in relativistic cosmic-ray (CR) electrons spi-
raling in the Galactic magnetic field. The morphology of the
observed emission depends on the distribution of the relativistic
electrons in the Galaxy and the Galactic magnetic field structure.
In the Galactic plane, the latter exhibits a large-scale ordering
with the field parallel to the spiral arms (the regular component).
Superposed on this is real small-scale structure (the irregular
component) which shows variations between the arm and inter-
arm regions and with gas phase. The regular and irregular com-
ponents seem to be of comparable magnitude. At high latitudes,
there is a contribution from the Galactic halo and specific nearby
structures (e.g., the North Polar Spur). Variations in the frequency
spectral index of the synchrotron continuum emission arise from
variations in the CR electron energy spectrum, which has a range
of distributions depending on age and the environment of origin
(e.g., supernova explosions or diffuse shocks in the interstellar
medium).

The synchrotron emission may be accurately modeled by
means of a simple power law over a considerable range of fre-
quencies,

ss �ð Þ ¼ As

�

�0;s

� ��s

: ð7Þ

Here As is the synchrotron amplitude12 (measured in antenna
temperature �K) at some reference frequency �0;s, and �s is the
synchrotron spectral index. Since the spectral index varies with
both frequency and position on the sky, at least two free param-
eters are required to describe the synchrotron emission properly
in a given direction.

Lawson et al. (1987) studied the spectral index variation based
on low-frequency radio surveys and found that the brighter re-
gions away from the Galactic plane have typical values of � at
100 and 800 MHz of 2.55 and 2.8, respectively. Reich & Reich
(1988) used radio continuum surveys of the northern sky at 408
and 1420 MHz to demonstrate a range of spectral index values
between 2.3 and 3.0, with a typical dispersion�� ¼ �0:15. The
steepest spectra were observed toward the North Polar Spur, and
there was a flattening in spectral index toward higher latitudes in
the Galactic anticenter direction. Such behavior has been con-
firmed over the full sky by Reich et al. (2003), who find that
spectral flattening is particularly pronounced in the southern
hemisphere

At higher frequencies, the brightness temperature spectral in-
dex is expected to steepen by �0.5 due to electron energy losses
(Platania et al. 1998). Banday et al. (2003) derived amean spectral
index between 408 MHz and 19.2 GHz from the Cottingham
(1987) survey and between 31.5, 53, and 90 GHz from the COBE
DMR data. The steep spectral index of�3.1 for Galactic latitudes
jbj>15� is consistent with expectations. Bennett et al. (2003b)
claim that the spectral break occurs near the K band. Spectral
indices above 10 GHz are likely between 2.7 to 3.2.

Free-free emission.—Free-free emission is the bremsstrah-
lung radiation resulting from the Coulomb interaction between
free electrons and ions in the Galaxy. Free-free emission is
weaker than synchrotron emission at frequencies below�1 GHz
over most regions of the sky, with exceptions in the Galactic

12 Note that italic font A is used for component amplitudes, while bold fontA
is used for beam convolution.

Fig. 1.—Component separation using multifrequency measurements (left: linear units; right: logarithmic units). Most signal components has a well-defined
frequency spectrum that may be parameterized by one or a few parameters, and component separation may therefore be viewed as a standard parameter estimation
problem. The example shown here is based on one single pixel in a simulated data set corresponding to the 6 year WMAP and the Planck experiments, as discussed
in x 6. The error bars on the data points are multiplied by a factor of 50 in order to make them visible on this scale. (Due to modeling errors, this particular fit has a �2

of 44, and with 5 dof, it is rejected at the 99.9999% confidence level.)
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ridge and the brighter features of the local Gould Belt system
(Dickinson et al. 2003). Free-free almost never dominates at
high latitudes in any frequency band, and is therefore difficult
both to observe and to simulate.

Using the relations summarized in Dickinson et al. (2003), it
can be shown that the brightness temperature of the free-free
emission is described by the relation

TA;b / ��2T�0:5e ln 0:04995��1
� �

þ 1:5 ln Te
� �

ð8Þ

where Te is the electron temperature.
Shaver et al. (1983) used radio recombination lines to show

that the electron temperature of H ii regions at the Galactocentric
radius of the Sun (R0 ¼ 8:5 kpc) is 7200 � 1200 K. Paladini
et al. (2005) found similar results from a larger sample contain-
ing many weaker sources. At high Galactic latitudes, the ionized
hydrogen typically will be within�1 kpc of the Sun (Dickinson
et al. 2003), and we expect the electron temperature to be in the
range Te ¼ 7000–8000 K, although it is possible that the diffuse
emission at a given Galactocentric distance may differ from that
of the higher density H ii regions on the plane.

The frequency dependence is therefore well constrained, with
an effective spectral index of �A ¼ �2:14 at the frequencies of
interest, the range over 10–100GHz being of order�2.1 to�2.2
and steepening still further to �2.3 at hundreds of gigahertz.

Finkbeiner (2004) has analyzed the WMAP data and found a
significant component with a free-free–like spectrum within 30

�

of the Galactic center. The component is uncorrelated with H�
emission and may be indicative of hot (�106 K) gas. We do not
attempt to include such a component here.

In this paper, we model free-free emission as a simple power
law with a fixed spectral index,

sA �ð Þ ¼ AA
�

�0;A

� ��2:14
: ð9Þ

Thus, only one parameter is required for free-free emission.
Future experiments may need to estimate the electron tempera-
ture directly from the data. In that case equation (8) should be
used directly, at the cost of introducing one extra free parameter
into the fit.

Thermal dust emission.—The thermal dust emission that
contributes to the frequencies of interest for CMB analysis arises
from grains large enough to be in thermal equilibrium with the
interstellar radiation field, and it is known from analysis of the
IRAS and COBE DIRBE data to peak at a wavelength of ap-
proximately 140 �m. At higher frequencies, there is a contri-
bution from the optically active modes of PAH molecules, but
these are not of interest here.

Currently preferred dust emission models (Finkbeiner et al.
1999) extrapolate fromhigh-frequencyCOBEFIRASandDIRBE
observations to CMB frequencies using combinations ofmodified
blackbody fits and accounting for dust temperature variations.
Such fits approximate the integrated contributions to the emission
from multiple components of dust, i.e., with different grain prop-
erties (chemical composition and size) and equilibrium tempera-
tures. The best-fit model (model 8 of Finkbeiner et al. 1999)
assumes two main components:

sd �ð Þ ¼ F
�

�0;d

� ��d �ð Þ
: ð10Þ

Here F represents the combined COBE DIRBE and IRAS tem-
plate (Schlegel et al. 1998), �0;d ¼ 3000 GHz, and �d �ð Þ is de-
pendent on the frequency, as discussed above,

�d �ð Þ ¼
log d �ð Þ=d �0;d

� �� �
log �=�0;d
� � ; ð11Þ

d �ð Þ ¼ q1

q2
f1

�

�0;d

� �3þ�1 1

e h�=kT1ð Þ � 1
ð12Þ

þ f2
�

�0;d

� �3þ�2 1

e h�=kT2ð Þ � 1
; ð13Þ

with best-fit parameters f1¼ 0:0363, q1/q2 ¼ 13,�1 ¼ 1:67,�2 ¼
2:70, T1 ¼ 9:4 K, T2 ¼ 16:2 K, and f2 ¼ 1� f1 (Finkbeiner et al.
1999).

In principle, these equationsmay serve as our parametricmodel
for fitting the dust emission spectrum. However, few (current or
future) CMB experiments have sufficient power to constrain six
parameters for dust alone, and simplifications are therefore un-
avoidable. Rather than fitting the full form, as given above, we
therefore choose the simpler model 3 of Finkbeiner et al. (1999),
setting f1 ¼ 1 and T1 ¼ 18:1 K, but letting �1 vary freely. Equa-
tion (10) may then be simplified to

sd �ð Þ ¼ Ad

�

e h�=kT1ð Þ � 1

e h�d;0=kT1ð Þ � 1

�d;0

�

�d;0

� ��d

; ð14Þ

where Ad is the thermal dust amplitude at a reference frequency
�d;0 and �d is a free parameter. Thus, the fitted model is a power
law modulated by a slowly decreasing function of order unity
over the frequencies of interest.
Such a parameterization does not allow for the spectral break at

approximately 500 GHz in the COBE FIRAS, which may reflect
either the emissivity of different grain components, frequency
dependence of the emissivity of the dominant grain component,
or possibly a population of cold dust grains mixed with the
warmer dust (Reach et al. 1995). However, at 500GHz the signal
of dust anisotropies is so strong compared with CMB aniso-
tropies that it is useless for purposes of component separation.
Anomalous dust emission.—Cross-correlation of the COBE

DMR data with the DIRBE map of thermal dust emission at
140 �m in Kogut et al. (1996) revealed an anomalous component
with rising spectrum from 53 to 31.5 GHz. Banday et al. (2003),
again using the DMR data together with a survey at 19.2 GHz and
independently theWMAP team (Bennett et al. 2003b), suggested
that this component was well described by a power-law spectrum
with index �2.5 for frequencies in the range �20–60 GHz. The
latter proposed that the emission originates in star-forming re-
gions close to the Galactic plane. However, the favored model
to explain this anomalous dust-correlated component is in terms
of the rotational emission from very small grains.
Draine & Lazarian (1998) have developed a three-component

model of this ‘‘spinning dust,’’ which contains contributions
from the three phases of the interstellar medium—the cold neutral
medium, the warm neutral medium, and the warm ionized me-
dium. The characteristic spectral behavior of the model includes
a rising spectrum up to a turnover in the range 10–20GHz, then a
rapidly falling spectrum that can be characterized by an effective
spectral index in excess of 3 beyond 30 GHz.
Recent observations by Finkbeiner et al. (2004) of dust-

correlated emission outside of H ii regions between 8 and 14 GHz
shows a rising spectral slope and amplitude far exceeding that
associated with thermal dust emission. More importantly, Watson
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et al. (2005) show that observations of the Perseus molecular cloud
made between 11 and 17GHz and augmentedwith theWMAP data
can be adequately fitted by a spinning-dust model. Nevertheless,
although the case is compelling for describing the anomalous
emission by such models, the detailed morphology of the emis-
sion remains uncertain, and no unambiguous template to trace it
exists. It is also possible that the emission may be confined to
specific clouds at relatively low Galactic latitude, leading to a
more patchy distribution than for the diffuse thermal dust con-
tribution with some additional sensitivity to environment. Indeed,
Lagache (2003) presents evidence that the excess emission is
associated with small transiently heated dust particles, which
may be destroyed under certain physical conditions. Given these
uncertainties, we do not include this foreground component in
our simulations.

3.2. Nonzero Bandwidths

The previous sections describe the basic behavior of each signal
component as a function of well-defined frequencies. However,
real experiments integrate over a range of frequencies (a ‘‘fre-
quency band’’), typically with unequal weights, and the observed
signal strength does not equal that given by the central frequency
alone.

We take into account this effect through the concept of an
‘‘effective frequency’’ �eA, defined by

S �eAð Þ ¼
Z

f �ð ÞS� d�; ð15Þ

where S� is the frequency spectrum of the signal, and f �ð Þ is the
frequency response profile of the detector. Thus, the spectrum at
the effective frequency equals the average over the frequency
band. The advantage of doing this is simply that computationally
expensive integrals are replaced by single point computations.

In this paper we assume for simplicity that all frequency re-
sponse functions correspond to flat bandpass filters with sharp
frequency cutoffs at �a and �b. For simple power-law models,
such as those of synchrotron and free-free emission as described
above, the effective frequency of a signal component with
spectral index � is then given by

�eA ¼
1

� þ 1

��þ1b � ��þ1a

�b � �a

 !1=�

: ð16Þ

For more complicated spectra, equation (15) must be solved
numerically. Fortunately, it is straightforward to precompute a
grid of the effective frequencies prior to the full analysis, since
they only depend on the frequency scalings and not the compo-
nent amplitudes, and computational speed is not compromised.

3.3. Implementation Details

To simplify the computer code, it is convenient to introduce
some general notation. For instance, if we can write all signal
models in a common form, we do not have to consider a list of
special cases, but instead can handle all cases with the same code.

Indeed, all frequency spectra discussed above may be written
in a common form, namely, that of a power law modulated by an
arbitrary frequency-dependent function,

s� pð Þ ¼
XNcomp

i¼1
Ai pð Þci;�eA;i

�eA;i
�0;i

� ��i pð Þ
: ð17Þ

Here Ai pð Þ and �i pð Þ are the ‘‘free’’ amplitude and index param-
eters for component i in each pixel p, and ci; �eAi is an arbitrary
function only dependent on frequency.

Specifically, synchrotron and free-free emission are included
simply by setting ci; � ¼ 1, while the CMB component is defined
by �CMB � 0 and ccmb; � ¼ x2ex/ ex � 1ð Þ2, as discussed above.
For dust, cd;� is given by equation (14).

Even anomalous dust could be included within this notation.
One option is simply to tailor the correction factors ci;� tomatch the
predicted spinning-dust spectrum (Draine&Lazarian 1998), fix the
corresponding spectral index at zero, and then fit for the amplitude
only. Another is to merge the spectrumwith that of the thermal dust
emission and thereby enforce identical spatial templates.

4. SUMMARY OF PREVIOUS RESULTS

This paper may be seen as a natural continuation of the work
started by Brandt et al. (1994), who considered how well future
experiments could reconstruct the CMB signal in presence of
noise and foregrounds. Their approach, parameter estimation, was
the same as ours; however, they relied solely on maximum like-
lihood estimation (i.e., nonlinear fitting), and their results were
therefore less stable with respect to noise than the ones we present
here, as is shown below. Nevertheless, several of the conclusions
drawn by Brandt et al. (1994) are still valid for our work and are
well worth repeating:

1. The number of frequencies must equal or exceed the num-
ber of fitted parameters, or else the problem is mathematically
degenerate. This is obvious but not trivial: no experiment to date
has had the minimum number of frequencies required to separate
CMB, synchrotron, free-free, and dust fluctuations, even in their
simplest form.

2. One should attempt to reduce the number of free parame-
ters in the problem, as this gives greater stability with respect to
noise. Seemingly gross simplifications, such as approximating
both synchrotron and free-free emission by a single power law,
can often yield improvements in the reconstruction.

3. It is usually advantageous to fit spectral parameters to
reduced-resolution and low-noise data and then solve for the
amplitudes in the full-resolution data, fixing the indices at the
smoothed values.

4. Due to the similarity between the synchrotron and free-free
emission, better results are obtained whenever the latter is not
a significant contaminant. Thus, if the free-free contamination
could be constrained by radiation physics knowledge, it would
be well worth trying.

While working on the present analysis, we have reproduced
all of these conclusions, and most of them have been taken into
account when establishing the prescription described below.
However, we do not elaborate further on these issues here, but
rather refer the interested reader to Brandt et al. (1994) and come
back to the above points as they are needed in the analysis.

5. METHOD

In this section we propose an algorithm for solving the pa-
rameter estimation problem with sufficient speed and accuracy
to be useful for practical analysis of current and future data. Each
step of the algorithm consists of well-established methods, and
the approach should seem quite familiar.

5.1. Overview

The goal is to establish both a point estimate of all interesting
parameters and their uncertainties. Our prescription for doing so
is as follows:
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1. If required by noise levels or computational resources,
downgrade all sky maps both in pixel and beam resolution.

2. For each low-resolution pixel:
a) choose a parametric model,
b) solve for all parameters jointly by MCMC,
c) estimate nonlinear parameters and corresponding un-
certainties by marginalizing over all other parameters,
d) find the goodness of fit.

3. For each high-resolution pixel within a low-resolution pixel:
a) either (fast but approximate analytical approach)

i) fix the nonlinear parameters at the low-resolution
pixel values,
ii) find maximum-likelihood estimates for all linear
parameters (i.e., component amplitudes) by solving a
linear equation,
iii) find corresponding uncertainties by analytic error
propagation formula,
iv) estimate the goodness of fit.

b) or (exact but expensive Gibbs sampling approach)
i) use the low-resolution MCMC distributions to
sample nonlinear parameters numerically,
ii) given a set of nonlinear parameters, sample ampli-
tudes from their corresponding Gaussian distribution,
iii) given foregrounds, sample CMB sky map and
power spectrum.

The route outlined in step 3b holds the promise of a com-
plete solution to the foreground problem in a CMB context,
since, if successful, the foreground uncertainties are propagated
all the way from noisy observations to the CMB power spec-
trum and cosmological parameters. However, in this paper we
only present the basic ideas and leave the details for a future
more comprehensive study. All high-resolution results presented
in the following are thus based on the analytical approach de-
scribed in 3a.

5.2. Nonlinear Parameters and Large-Scale Smoothing

One of the main themes of Brandt et al. (1994) was the in-
stability of a nonlinear fit with respect to noise. This is not hard to
understand. In estimating multiple parameters from a limited
number of frequency bands, the maximum likelihood point may
easily slide along some degeneracy ridge on the likelihood sur-
face in the presence of realistic noise. For all currently planned
experiments, additional degree-scale smoothing is a requirement
in order to reach reconstruction errors at the microkelvin level.

Another and more practical issue stems from the fact that our
main algorithm relies on MCMC analysis of each individual
pixel. This takes on the order of 100 s per pixel. Even though
the algorithm parallelizes trivially because the pixels are ana-
lyzed individually, a complete analysis at full Planck resolution
(�50 million pixels) would be unfeasible.

It is important to realize, however, that a full MCMC analysis
is required only for estimating nonlinear parameters, such as
spectral indices or dust temperatures. If all parameters in the
problem are linear (i.e., component amplitudes), an analytical
computation is equally good. We therefore compute the com-
plete probability distributions from reduced-resolution maps, fix
the high-resolution nonlinear parameters at the corresponding
low-resolution values, and then solve for the high-resolution
component amplitudes with alternative methods, for instance
analytically or by Gibbs sampling.

When adequate data on foregrounds are in hand, the validity
of this smoothing can be tested. If preliminary indications turn
out to be true, and spectral indices vary more slowly on the sky

than amplitudes, the smoothing process will not lead to signif-
icant loss of information. In any case, the smoothing scale can be
optimized within the bounds of computational resources.

5.3. Model Selection

A second main theme of Brandt et al. (1994) was the impor-
tance of model selection. They clearly demonstrated that a large
number of parameters does not necessarily yield a better CMB
reconstruction. Quite the contrary, too many parameters often
yield unphysical results. In general, one should never fit more
parameters than required by the data.
In principle, it would be useful to have an automated pre-

scription to identify the optimal model for a given pixel. To some
extent, such a procedure is provided by means of the so-called
information criterion (IC), an idea that was introduced to CMB
analysis by Liddle (2004). The fundamental idea in this ap-
proach is not to maximize the likelihood alone, but rather to
minimize the IC, defined as follows:

IC ¼ �2 lnL þ �k: ð18Þ

Here k is the number of parameters in the fit and � is a penalty
factor. (Two useful choices for � are �A ¼ 2, the Akaike infor-
mation criterion, and �B ¼ lnN , the Bayesian information cri-
terion,N being the number of data points.)Within this framework,
a new parameter must prove its usefulness by returning a signif-
icant improvement in the �2 fit to be included in the model.
We implemented this approach in our codes and obtained

reasonable results. However, the model sky map had a clear
tendency to be patchy and not necessarily well correlated with
physical structures. In the current implementation, we therefore
only use the information criterion approach to inform our model
choices and tailor the model map manually according to known
structures. For instance, in the example given in x 6, we use a full
four-component model (CMB, synchrotron, free-free, and dust)
inside an expanded Kp0 Galactic cut (Bennett et al. 2003b), as
well as in a few selected patches (e.g., the LMC), but we ignore
free-free otherwise. However, we expect that the information
criterion approach may be developed further and should be a
valuable tool for future experiments.
Realistically, model selection is likely to be an iterative pro-

cess, as is demonstrated in the worked example of x 6. Typically,
one constructs an initial physically motivated model map and
performs the analysis with that model set. Based on the results,
one then evaluates the goodness of fit for each pixel and com-
pares the results with the appropriate distribution function. If
the agreement is poor, the model set can be modified, or the of-
fending pixels may be rejected from further analysis.
Formally speaking, evaluating the goodness of fit in a

Bayesian setting is a more delicate issue than in the frequentist
case, due to the presence of priors. The usual frequentist ap-
proach is simply to compute the �2 (as given by eq. [3]) and
compare this with a �2 distribution with the appropriate number
of degrees of freedom (dof; the number of frequencies minus the
number of free parameters). For nonuniform priors or nonlinear
parameters, this is not strictly correct in the Bayesian case, since
the reference distribution may be different from a �2 density.
However, for the purposes of this paper, such concerns are of

little importance. In practice, the preferred model map will be
established by means of a combination of external data (e.g.,
foreground templates) and some estimate of the goodness of fit
following the first analysis. However, themodel selection process
is not likely to be a search for 2.5–3 � outliers. Therefore, for our
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crude purposes, the naive�2 statistic as defined by equation (3) is
adequate.

In practice, model selection is likely to be a relatively
straightforward (although somewhat tedious) process for future
experiments. In the present paper we are satisfied with a very
simple choice of models, based on established sky masks.

5.4. Parameter Estimation by MCMC

By now, parameter estimation byMarkov ChainMonte Carlo is
a well established technique within the CMB community, with its
most visible application being estimation of cosmological param-
eters from the CMB power spectrum. To our knowledge, it has not
yet been applied to component separation, and we therefore briefly
describe the algorithm here. For more details, we refer the inter-
ested reader to, e.g., Lewis & Bridle (2002) or Verde et al. (2003).

5.4.1. Algorithm

Suppose we want to estimate a set of parameters and corre-
sponding uncertainties from a set of observed data and that we
know how to compute the likelihood given an arbitrary com-
bination of parameters. The MCMC algorithm is then given by
the following simple steps. (Note that because of the uniform
priors adopted in this paper, the posterior is numerically equal to
the likelihood.)

1. Choose any initial point in parameter space, �0, and
compute the corresponding likelihood, L0 ¼ L �0ð Þ.

2. Define a stochastic function f that, given parameters �i,
returns a new set of parameters �iþ1¼ f �ið Þ.

3. Compute �iþ1 given by f and the corresponding likeli-
hood, L iþ1¼ L �iþ1ð Þ.

4. Set �iþ1¼ �i ( i.e., reject the proposal) with probability
p ¼ 1�min L iþ1/L i; 1

� �
.

5. Go to step 3 and iterate as long as necessary.

This procedure returns a chain of parameter samples �i, i ¼
1; : : :; Nsamples, and their multidimensional histogram equals
the posterior in the limit of an infinite number of samples.

Some intuition for the process may be gained by noticing the
form of the ‘‘jump probability’’ given in step 4 of the algorithm:
If the likelihood of the proposed point is larger than that of the
old point, we never reject the proposed point; we always move
toward more likely solutions when proposed. However, if the
likelihood is smaller, we still accept the proposed point with
probability p ¼ L iþ1/L i. This guarantees that we spend most of
the time around the peak position but still explore less likely
points. Indeed, it may be proven that the time spent at a given
point in parameter space is proportional to the posterior itself.

5.4.2. Automated MCMC in Practice

In practice, there are several problems connected to MCMC
parameter estimation; usually, most of these may be identified
(and often solved) by simple visual inspection of the Markov
chains. However, since we want to analyze many thousands of
independent pixels, finding automated and yet robust solutions
to the same problems is of critical importance; a solution that
works in 99% of all cases is not good enough.

Burn-in.—Although it is true that the initial guess may be
chosen arbitrarily and that the chain eventually will burn in to the
right solution, it is difficult to construct a truly reliable automated
prescription for determining when burn-in has occurred. More-
over, since computational speed is of critical importance, it is not
acceptable to spend a long time in the burn-in phase. For both of
these reasons, we choose to initialize the chains at the maximum

likelihood point, which we find using a standard nonlinear fitting
algorithm. (We have found that a sequential quadratic program-
ming [SQP] method works very well for this task.)

Proposal function.—In step 2 of the algorithm, we must es-
tablish a proposal function f . A simple example of such a func-
tion would be � j

iþ1 ¼ � j
i þ �� j	 j, where j is a parameter index,

�� j is a predefined rms step size, and 	 j is a Gaussian stochastic
variate of zero mean and unit variance. However, since most
parameters of interest are usually strongly correlated, this choice
is quite inefficient.

Our current best solution is to run a preliminary chain (using the
univariate Gaussian proposal function described above, with
manually set step sizes) and compute the covariance matrix Cij ¼
�� i�� jh i of the resulting samples. We then Cholesky-decompose
this matrix,C ¼ LLt, and define our new proposal function to be
�iþ1¼ �i þ �Lh, where h now is a vector of Gaussian variates
and � is an overall scale factor, typically initialized at�0.3. This
ensures that the proposed samples have approximately the cor-
rect covariance structure, and the overall sampling efficiency is
thereby greatly improved.

To avoid too large or too small step sizes, we also impose the
requirements that the acceptance ratio (the ratio of accepted to
rejected proposals) must be higher than 5% and lower than 80%.
If one of these two criteria is violated, we divide or multiply� by
2 and restart the MCMC analysis.

Convergence.—Finally, wemust decidewhen a sufficient num-
ber of samples have been accumulated. No general solutions are
available. We have adapted a good working solution proposed by
Gelman & Rubin (1992), as follows. Runm independent MCMC
chains in parallel for the same pixel, each producing n samples.
Compute the following quantities,

W ¼ 1

m n� 1ð Þ
Xm
j¼1

Xn
i¼1

� j
i � �̂ j

i

� �2
; ð19Þ

B ¼ n

m� 1

Xm
j¼1

� j � �̂
� �2

; ð20Þ

V ¼ 1� 1

n

� �
W þ 1

n
B; ð21Þ

R ¼ V

W
; ð22Þ

where �̂ is the average overallm ; n samples, and �̂ j is the average
of the samples within chain number j. W estimates the variance
within each chain individually, while B estimates the variance
between the chains. When the chains have converged properly,
V and W should be identical, and R should be close to unity.

Gelman & Rubin (1992) make the general recommendations
that the initial points for the m chains should be overdispersed
relative to the true distribution and that the chains should be run
until R < 1:2. However, as discussed above, we initialize the
chains at themaximum likelihood value in order to avoid burn-in
problems, and thus the first point is certainly not fulfilled in our
approach. Consequently, the numerical value of the convergence
criterion they give does not apply to our prescription.

To remedy this situation, we impose two alternative criteria.
First, we require that the chains run for a minimum number of
samples (typically on the order of 107, but only storing every,
say, 500th sample, to reduce correlations). Second, we require
that the largest value of R, individually computed for all pa-
rameters included in the model, must be smaller than 1.01. In
most cases, we find that the latter criterion is fulfilled long before
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the former, indicating that the overall CPU time may be de-
creased somewhat. However, since we cannot inspect the chains
manually for more than a few pixels, we consider safety to be
more important than speed and adopt a very conservative ap-
proach.With the criteria discussed here, we have found excellent
convergence in all cases we have inspected, and theMonte Carlo
error (the error on the error due to a finite number of samples) is
typically less than 1%.

5.4.3. Point Estimators and Uncertainties

The MCMC algorithm provides us with a large number of
multivariate samples drawn from the posterior, and these may be
used to form a great variety of useful statistics. Here we focus on
the univariate distributions for each parameter, marginalizing over
all others. (Marginalization with MCMC samples is straightfor-
ward: simply disregard the ‘‘uninteresting’’ parameters and make
a histogram of the ‘‘interesting’’ parameter sample values.)

Our point estimate for each parameter value is then defined to
be the mean of the MCMC samples, with an uncertainty given by
variance of the samples. As shown below in practical examples,
this Gaussian approximation is quite good for both the CMB
temperature and the spectral indices, while the distributions for
the synchrotron and free-free amplitudes tend to be non-Gaussian
due to a combination of strong internal correlations and a posi-
tivity prior.

One of the most important differences between our approach
and that taken by Brandt et al. (1994) is that they chose the
maximum likelihood value as their point estimate, whereas we
choose the posterior mean. This makes our estimate consider-
ably more stable with respect to noise, since it takes more to shift
the entire likelihood volume than to change its shape. Therefore,
not only does our method yield accurate error bars on all relevant
quantities, but in addition the point estimates are more reliable.

5.5. Analytic Estimation of Linear Parameters

Due to computational and sensitivity limitations, the MCMC
analysis described in the previous section is only practical at rel-
atively low angular resolutions. In order to produce full-resolution
results, approximations are therefore unavoidable, and the ap-
proach we take in the present paper is to fix the spectral indices
at their low-resolution values and solve for only the (linear) com-
ponent amplitudes at high resolution.

As we discuss in the next section, a complete Bayesian so-
lution to this problem is available by means of a Gibbs sampling
algorithm. The implementation of this approach is left for a
future publication, and in the present work we instead adopt the
following simple analytic approximation.

Recall that our posterior distribution (assuming uniform pri-
ors) takes the form of a standard �2,

�2 ¼
XNband

k¼1

1

�2
k

dk �
XNcomp

i¼1
Aicik

�ik
�i0

� ��i
" #2

: ð23Þ

Since the only free parameters are now the component ampli-
tudes Ai and the noise is assumed to be Gaussian, this is simply a
multivariate Gaussian distribution. Therefore, the mean of the
distribution equals the maximum likelihood value and may be
determined simply by equating the derivatives of the �2 with
respect to the parameters to zero. In a matrix form, this reads

@�2

@a
¼ 0 j a ¼ M�1d; ð24Þ

where at ¼ A1; : : :; ANcomp

� �t
,

Mij ¼
XNband

k¼1

cikcjk

�2
k

�ik
�i0

� ��i �jk
�j0

� ��j

; ð25Þ

and

di ¼
XNband

k¼1

dkcik

�2
k

�ik
�i0

� ��i

: ð26Þ

While the above formulae yield excellent results for the high-
resolution parameter point estimates (as long as all amplitudes
are nonnegative), reliable error estimation within this framework
is complicated. One problem is that we need to propagate the
errors in the spectral indices into the final data products, taking
into account the strong correlations between the errors. A second
problem is introduced by the positivity prior on the foreground
amplitudes, which leads to strongly non-Gaussian distributions
when active. Nevertheless, for well-behaved pixels (i.e., those
with clear detection of all components individually) a rough
approximation may be established by means of the usual error
propagation formula.
Suppose we are interested in a quantity z ¼ f x; y; : : :ð Þ that

depends on a set of measured quantities x; y; : : :, each with
independent and Gaussian errors�x; �y; : : :. In this case, the
uncertainty �z may be approximated by

�z2 ¼ @f

@x

� �2

�x2 þ @f

@y

� �2

�y2 þ : : :: ð27Þ

This may be applied to our case bymaking the identification Ai ¼
f xð Þ ¼

PNcomp

j¼1 M�1ij dj. The uncertain quantities are both the ob-
served data and the nonlinear parameters, xT ¼ d�; �ð ÞT.
To compute the uncertainties, we need the partial derivatives,

which by equation (24) read

@a

@x
¼M�1

@M

@x
M�1d þM�1

@d

@x
: ð28Þ

The derivatives @M /@x and @d/@x are obtained from equations
(25) and (26).
Great care must be taken when applying this method to the

high-resolution data—it is only valid under the assumptions that
the uncertain quantities are both Gaussian distributed and in-
ternally independent, neither of which is true for our problem.
Nevertheless, while the formal requirements are not strictly ful-
filled, the approximation may still be useful for establishing the
order of magnitude of the uncertainties.

5.6. Propagation of Errors to the CMB Power Spectrum
and Cosmological Parameters

The analytical approach described in the previous section
yields good point estimates for the desired parameters, but only
approximate uncertainties. Furthermore, it is not straightforward
to propagate the errors further into higher level data products
such as the CMB power spectrum or cosmological parameters.
A much more powerful solution may be devised by com-

bining the methods described in the present paper with the Gibbs
sampling approach of Jewell et al. (2004), Wandelt et al. (2004),
and Eriksen et al. (2004b). Whereas most other techniques only
provide the user with a very simple description of the power
spectrum probability distribution (e.g., a maximum likelihood
estimate and a Fisher matrix), the Gibbs sampling approach
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yields the complete multivariate probability density P C‘jdð Þ, C‘

being the CMB power spectrum, and d the data. Furthermore, it
is straightforward to introduce new sources of uncertainty into
the framework, and such uncertainties are then seamlessly prop-
agated through to the final data products. We outline here how
foreground uncertainties may be propagated to the CMB power
spectrum and cosmological parameters, but leave the details for
a future publication.

The Gibbs sampling approach is similar in philosophy to the
MCMC method that is used extensively in this paper: the target
density is established by drawing samples from it. In our case, we
are interested in the joint probability distribution P C‘; sCMB;ð
ss; sA; sdjdÞ, where si are the four interesting signal components
discussed earlier, CMB, synchrotron, free-free, and thermal dust
emission. While it is difficult to sample from this distribution
directly, the Gibbs sampling algorithm provides a neat solution.
Supposewewant to draw samples from a joint distributionP x; yð Þ
but only know how to sample from the conditional densities
P xjyð Þ and P yjxð Þ. In that case, the theory of Gibbs sampling
says that samples x; yð Þ can be drawn by iterating the following
sampling equations:

xiþ1 P xjy i
� �

; ð29Þ
y iþ1  P yjx iþ1

� �
: ð30Þ

The arrow symbol indicates that a random number is drawn from
the distribution on the right-hand side. After some burn-in pe-
riod, the samples will converge to being drawn from the required
joint distribution.

Suppose now that we want to analyze a data set that, for
simplicity, only includes CMB and synchrotron emission, the
latter being parameterized by an amplitude As and a spectral
index �s for each pixel. Suppose further that we already have run
an MCMC analysis for each pixel as described earlier and have
access to the corresponding probability distributions. In that
case, the Gibbs sampling algorithm may be applied by means of
the following sampling chain:

�iþ1
s  P �sjCi

‘; Ai
s; siCMB; d

� �
; ð31Þ

Aiþ1
s  P AsjCi

‘; �iþ1
s ; siCMB; d

� �
; ð32Þ

siþ1CMB P sCMBjCi
‘; Aiþ1

s ; �iþ1
s ; d

� �
; ð33Þ

Ciþ1
‘  P C‘jsiþ1CMB

� �
: ð34Þ

(The CMBpower spectrumC‘ only depends on the CMB signal,
not the foregrounds, and therefore the other components are
omitted from the right-hand side in the last equation.) The first
two rows are to be performed for each pixel individually, while
the last two rows are performed in harmonic space, reflecting the
intuitively pleasing idea that foregrounds should be handled in
pixel space, while CMB fluctuations are better handled in har-
monic space.

To perform the analysis as described above, we have to be
able to sample from all involved conditional distributions.
Sampling the CMB signal and power spectrum parts is detailed
by, e.g., Eriksen et al. (2004b). Sampling the foreground am-
plitudes given the spectral indices is straightforward, since the
corresponding distributions are simple Gaussians.

However, sampling the spectral indices is a priori not trivial—
their distributions are highly non-Gaussian and no analytical ex-
pressions exist. However, given that we already have run an
MCMC analysis whose product is precisely the joint density
P sCMB; Ad; �sjdð Þ, the problem is mostly solved. We may sim-

ply generate a full multidimensional histogram from the MCMC
samples (for each pixel separately) and pick out the synchrotron
index column that corresponds to the other currently fixed pa-
rameter values. Given this one-dimensional distribution, we can
then sample numerically using standard techniques.

For completeness, we note that adding more than one fore-
ground component is a straightforward extension of this scheme.
Component amplitudes are added individually, while there is a
choice for spectral indices—one may either sample these indi-
vidually, as done above for the synchrotron index, or for greater
efficiency, one may also exploit the multivariate information
given by the MCMC analysis.

With the above prescription, it is finally possible to propagate
the foreground uncertainties rigorously all the way from the ob-
served data through to the CMB power spectrum and therefore
to the cosmological parameters. Furthermore, with this approach
one also obtains full-resolution sampled uncertainties of the com-
ponent amplitudes, as opposed to the analytical approximations
discussed in the previous section, and a complete probabilistic
description of the system is thereby established.

While Gibbs sampling as currently implemented by Jewell
et al. (2004), Wandelt et al. (2004), and Eriksen et al. (2004b) has
problemswith probing the low signal-to-noise ratio (S/N) regime
properly, it works very well for S/N’s larger than unity (Eriksen
et al. 2004b), and this is exactly where the foreground uncer-
tainties dominate. Therefore, it seems reasonable to use the ap-
proach presented here to analyze the high and intermediate S/N
regimes, propagating foreground uncertainties to the final prod-
ucts, and a standard MASTER-type analysis (Hivon et al. 2002)
for the low S/N regime, at the cost of reducing the reliability of
foreground uncertainty estimates at these angular scales.

6. EXAMPLE: APPLICATION TO PLANCK
AND 6 YEAR WMAP DATA

We now apply the MCMC component separation method de-
scribed in x 5 to simulations of experiments similar to the current
WMAP and the future Planck missions. We first give a detailed
presentation of the simulations and data. We then study the be-
havior of the algorithm for one arbitrarily chosen pixel, before
considering the full-sky map solutions.

We point out that our main goal in this paper is to study the
algorithm itself and not to simulate an actual data release. We
therefore choose examples both with and without modeling er-
rors, in order to illustrate problems that may be encountered in an
analysis of real data.

6.1. Simulations and Models

The simulations used in the following are constructed as a
sum of a cosmological CMB signal, three foreground compo-
nents (synchrotron, free-free, and thermal dust emission) and
instrumental noise. We include 5 bands (centered at 23, 33, 41,
61, and 94 GHz) from WMAP, 3 bands (30, 44, and 70 GHz)
from the Planck Low Frequency Instrument (LFI), and 3 bands
(100, 143, and 217 GHz) from the High Frequency Instrument
(HFI), for a total of 11 bands between 23 and 217 GHz13.
Specifications for each detector are given in Table 1.

CMB.—The CMB component is assumed to be Gaussian
distributed, with variances given by the best-fit WMAP power-
law power spectrum (Bennett et al. 2003a; Hinshaw et al. 2003;

13 The three highest HFI frequency bands are not included in the analysis
because they would introduce significant dust modeling errors; we simulate dust
with a two-component model, but fit for a one-component model.
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Spergel et al. 2003), including multipoles between ‘ ¼ 2 and
1024. The signal realization is filtered through the HEALPix
pixel window function and the instrument specific beam win-
dows. (Since all the Planck beam windows are not available, we
choose for simplicity to model even the WMAP beams as
Gaussians with appropriate FWHM’s.)

Noise.—The noise is assumed to be Gaussian and uncorre-
lated, but nonuniform according to the scanning strategy of each
detector. ForWMAP, we assume a 6 year mission and rescale the
published first-year sensitivity levels by 1/

ffiffiffi
6
p

. For Planck, we
adopt the requirement levels, which are a factor of 2 worse than
the goals, for the baseline 1 year mission.

Synchrotron emission.—The only all-sky map currently
available to provide a template of Galactic synchrotron emission
in HEALPix format is the 408 MHz survey by Haslam et al.
(1982). This has a resolution of only 510, and thus additional
power must be added on smaller angular scales for our purposes
in this paper. We adopt the model of Giardino et al. (2002), who
estimated the amplitude and slope of the synchrotron angular
power spectrum at lowGalactic latitudes for l � 150. AGaussian
realization was then generated from that power spectrum towhich
was applied a Galactic modulation, multiplying the signal in each
pixel by the ratio between the Haslam et al. (1982) template in
that pixel and the maximum. The final template is added to the
original Haslam et al. (1982) map. An all-sky template for the
synchrotron spectral index was estimated combining the all-sky
data from Haslam et al. (1982), with the northern sky observa-
tions of Reich & Reich (1986) at 1420 MHz and the southern
sky counterpart of Jonas et al. (1998) at 2300 MHz.14 This con-
stitutes our synchrotron model.

Free-free emission.—Current models of the free-free emis-
sion exploit the expected correlation with H� emission (see
Dickinson et al. 2003 and references therein) and predict free-
free emission (given in antenna temperature) as follows:

sA �ð Þ ¼ AH�ð Þ0:1366 ; 100:029 104 K=Teð ÞG ð35Þ

;
Te

104 K

� �0:517 �

�ref

� ��2
: ð36Þ

HereAH� is the H� amplitude,G ¼ 3:96T 0:21
e �/�0;A
� ��0:14

is the
Gaunt factor (Finkbeiner 2003), Te is the electron temperature,
and �0;A ¼ 40 GHz is a reference frequency.
A major uncertainty when using H� as a template is due to the

absorption of H� by foreground dust, but this can be estimated
using the 100 �m maps from Schlegel et al. (1998). The largest
uncertainty, however, is related to the fraction of dust ( fd) lying
in front of the H�-emitting region. Dickinson et al. (2003) show
that for regions 30� < l < 60� and 5� < jbj< 15�, fd � 0:3,
while for local high-latitude regions such as Orion and the Gum
Nebula, there is little or no absorption by dust ( fd � 0). The
latter is supported by the cross-correlation analysis of Banday
et al. (2003) of the H� data with COBE DMR, which contrasts
with the value of fd � 0:5 expected under the assumption that
the ionized gas and dust are coextensive along the line of sight
(i.e., uniformly mixed), as is assumed in theWMAP analysis of
Bennett et al. (2003b) and Finkbeiner (2004).
We correct for dust absorption, by assuming a single-component

dust model, with a temperature of 18.3 K, and an absorption frac-
tion of 0.33 up to a flux corresponding to 1 mag. We assume an
electron temperature of Te ¼ 7000 K and therefore an effective
frequency scaling close to ��2:14 over the range of frequencies
considered here. For the future, a more accurate model, account-
ing for the steepening spectral index, could be implemented as a
correction to the simple power-law model.
Thermal dust.—We adopt model 8 of Finkbeiner et al. (1999)

for thermal dust emission, with parameters f1 ¼ 0:0363, q1/q2 ¼
13, �0;d ¼ 3000 GHz, �1 ¼ 1:67, �2 ¼ 2:70, T1 ¼ 9:4 K, and
T2 ¼ 16:2 K (see eqs. [10]–[13]). However, this is too many
parameters to fit individually, and we therefore adopt a simpler
model for reconstruction (see eq. [14]). Modeling errors of the
sort to be expected with real data will result.
Data processing.—All simulations are initially made at a pixel

resolution of Nside ¼ 512, corresponding to a pixel size of 70.
However, since our method requires identical beam sizes for
all frequency bands, we downgrade each band separately to 1�

FWHM (determined by the 52A8 FWHM beam of the 23 GHz
WMAP band) and reduce the pixel resolution toNside ¼ 256 (by
deconvolving the original beam and pixel windows, and con-
volving the common 1

�
FWHM beam and lower resolution

pixel window).
By downgrading the data, the noise specifications are also

modified. To estimate the effective noise levels after degradation,

14 This hybrid spectral index model should ultimately be superseded by
the full-sky 1420 MHz survey described in Reich et al. (2003).

TABLE 1

Frequency Band Specifications

Experiment

Center Frequency

(GHz)

Bandwidth

(GHz)

Beam FWHM

(arcmin)

rms per 70 Pixel

(�K)

rms per 600 Beam

(�K)

WMAP .................................................................... 23 5 52.8 50 � 7 7.6 � 1.1

LFI.......................................................................... 30 6 33.0 33 � 7 3.0 � 0.6

WMAP .................................................................... 33 8 39.6 51 � 7 5.0 � 0.7

WMAP .................................................................... 41 11 30.6 49 � 8 4.3 � 0.7

LFI.......................................................................... 44 8 24.0 33 � 6 2.7 � 0.5

WMAP .................................................................... 61 16 21.0 60 � 9 4.8 � 0.7

LFI.......................................................................... 70 14 14.0 31 � 6 2.4 � 0.5

WMAP .................................................................... 94 24 13.2 73 � 11 5.6 � 0.8

HFI ......................................................................... 100 33 9.5 14 � 3 1.1 � 0.2

HFI ......................................................................... 143 48 7.1 8 � 1 0.6 � 0.1

HFI ......................................................................... 217 72 5.0 11 � 2 0.9 � 0.2

Notes.—Specifications for each frequency band used in the simulation. All beams are assumed to be Gaussian. The rms values for 70 pixels are computed taking
into account the scanning strategy of each detector, but neglecting noise correlations. The rms values per 600 beam are estimated from 1000 Monte Carlo simulations
by drawing Gaussian random numbers corresponding to the rms level of 70 pixels, deconvolving the instrument beam, and finally convolving with a 600 FWHM
Gaussian beam. The values also take into account reduced pixel resolution, from 70 to 140 pixels. The Planck rms values are requirement levels, not goals.
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we therefore generate 1000 noise realizations for each band and
downgrade these in the same manner as the actual data maps.
The effective noise levels of the downgraded maps are then es-
timated by taking the standard deviation of the 1000 realizations.

The data set described above constitutes our main simulation
and is referred to in the following as ‘‘high-resolution data.’’
Examples are shown in Figure 2. For the nonlinear parameter
estimation step using MCMC, the noise levels must be lower,
as discussed above. Therefore, we smooth all maps with an ad-
ditional 6

�
FWHM Gaussian beam and downgrade the pixel res-

olution to Nside ¼ 32. (This smoothing scale is not optimized,
but it is sufficient for the purposes of the present paper.) Again,
the effective noise levels are determined by Monte Carlo simu-
lations. This smoothed data set is referred to as ‘‘low-resolution
data.’’

Initial model map.—The initial model map is based on the
WMAP Kp0 mask (Bennett et al. 2003b). First the excluded
region of the original mask is expanded by 10� in all directions.
Then all accepted pixels (i.e., the high latitude region) are as-
signed the model that includes CMB, synchrotron, and dust

(both with free amplitude and spectral index), while the model
for the rejected pixels includes in addition a free-free amplitude.

6.2. Results

We now apply the method of x 5 to the simulated data set
described above.

6.2.1. Single-Pixel Results

We first examine the performance of the MCMC algorithm by
studying one single pixel in the low-resolution data set, namely,
pixel number 6100, which is located inside the Galactic plane at
l ¼ 58

�
, b ¼ 0

�
. The reasons for choosing this pixel (or one like

it) are twofold. First, the model for this pixel includes all three
foreground components and has thus a complicated probability
structure. Second, themodel is rejected by the goodness-of-fit test,
and this example therefore illustrates the modeling error problem.

As discussed above, the MCMC algorithm basically performs
a randomwalk on the likelihood surface, producing a set of sam-
ples fromwhich the likelihoodmay be estimated by constructing
single or multidimensional histograms. Examples of such histo-
grams are shown in Figures 3 and 4.

The first figure shows the probability distributions for each of
the six included parameters, marginalized over all other param-
eters. Comparing with the true input values (vertical lines), we
see that the algorithm reproduces the correct values and also
that the uncertainties are reasonable compared to the true errors.

In Figure 4 we show two-dimensional probability distributions
for the same parameters. The true values are marked by a box.
Several points are worth noticing in this figure. First, all param-
eters are clearly correlated and some specific pairs very tightly so.
Examples of the latter are dust amplitude versus dust spectral
index and synchrotron amplitude versus free-free amplitude.

Second, many of the distributions are clearly non-Gaussian,
and it is clear that a Gaussian approximation at this stage will not
yield reliable errors. Still, the structures appear to be reasonably
well behaved, and in principle it may be possible to find ana-
lytical parameter transformations that could ease the computa-
tional burden.

Third, while most of the true values lie inside the 3 � confi-
dence regions, in one case, namely, the synchrotron amplitude
versus synchrotron index, it lies far outside the acceptable re-
gion. Another perspective on this is provided by the �2, which
for this pixel is 44. With 5 dof (11 frequencies and 6 free pa-
rameters), this particular model is thus formally ruled out at the
99.9999% confidence level. This is because we fit for a simpler
model than the one used in the simulation: the data are smoothed
by a wide 6� beam, and the thermal dust is fitted with a one-
component model, whereas the simulation was based on a two-
component model. This may also be seen Figure 1, where the
fitted spectra for each component for this pixel are plotted. At
low frequencies, the data points lie systematically above the
fitted model, resulting in a clear rejection.

However, even though the model is strongly rejected by the
goodness-of-fit test, it is important to note all of the univariate
distributions are still reasonable, and the CMB reconstruction is
still useful. Therefore, a high �2 does not necessarily imply that
the pixel has to be discarded from further analysis, but rather that
extra care has to be taken. Preferentially, the extra information
indicated by the high �2 should be used to improve the model.

6.2.2. Low-Resolution Full-Sky Maps

We now consider the reconstructed full-sky maps, starting
with the low-resolution maps as computed by the MCMC
analysis. The individual component maps are shown in Figure 5,

Fig. 2.—‘‘High-resolution’’ simulations used in this paper. Shown are the
23 GHz channel from the WMAP experiment, the 70 GHz channel from the
LFI experiment, and the 217 GHz channel from the HFI experiment. All maps
are smoothed to a common resolution of 1� FWHM.
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Fig. 3.—Marginalized parameter probability distributions for an arbitrarily chosen pixel inside the Galactic plane, generated by MCMC as described in the text.
The vertical lines show the true input value for the pixel. (The true value is not well defined for the dust spectral index, since dust is modeled by a two-component
spectrum, while a one-component model is fitted. However, the stronger of the two dust components has an index parameter of �1 ¼ 1:67.)

Fig. 4.—Marginalized two-dimensional probability distributions for the same pixel as in Fig. 3, computed by MCMC. Boxes indicate the true input values, and
the contours mark the peak and the 68%, 95%, and 99.7% confidence levels.



with reconstructions given in the left column, differences be-
tween reconstructed and input maps in the middle column,
and estimated errors in the right column. In the left column of
Figure 6, we show the model map used in the analysis and the
resulting goodness-of-fit �2 distribution.

Starting with the goodness-of-fit map, we first note that we
should expect �2P 13 at 2 � confidence at high latitudes, since

the model has 6 dof in this region. This is indeed the case for two
wide bands on each side of the Galactic plane, and both the
model and the estimated parameters may therefore be accepted
as they stand. However, at very high latitudes and, less sur-
prisingly, at low latitudes, the goodness of fit is poor.

In the left column of Figure 5 we show the six reconstructed
parameter maps and in the middle column the actual output

Fig. 5.—Low-resolution parameter maps reconstructed by MCMC. The left column shows the parameter estimates, the middle column shows the difference
between reconstructed and input maps, and the right column shows the rms errors estimated by MCMC. Top to bottom: (1) the thermodynamic CMB temperature;
(2) the synchrotron emission amplitude relative to 23 GHz; (3) the synchrotron spectral index; (4) the free-free emission amplitude relative to 33 GHz; (5) the
thermal dust emission amplitude relative to 90 GHz; and (6) the thermal dust spectral index.
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versus input errors. Clearly, the method works very well, as the
CMB sky map is virtually free of artifacts, with residuals less
than 10% even in the inner Galactic plane. And with the ex-
ception of sharp boundaries in the foreground reconstruction,
due to different models used in different regions, the foreground
results also look encouraging.

However, as good as these results are, we warn the reader
against interpreting them as an expected performance level for
future missions. Even though our simulations are as realistic as
possible given our current understanding of foreground proper-
ties, they are certainly not as complicated as the real sky. Con-
siderable modeling errors must be expected for real data sets, and
sky cuts are very likely still required for future work.

One note about the sharp boundaries seen in the foreground
maps is in order. If the reconstructed maps are intended for fore-
ground studies, such features are clearly not acceptable. In such
cases, postprocessing may be required, for instance by smoothing
the boundary by a Gaussian beam. On the other hand, if the maps
are to be used for CMB power spectrum or cosmological param-
eter estimation, it is better to use themaps as they are and propagate
the pixel errors reliably; the boundaries are mainly due to different
noise properties in the various regions. However, we point out that
the distinct boundaries seen in Figure 5 are at least partially due to a
poorly chosen model map, constructed from a WMAP Galactic
mask, rather than the specific simulation under consideration;
manual tweaking would surely improve the results considerably.

Returning for a moment to the goodness-of-fit map shown in
Figure 6 and comparing with the rms maps shown in the right
column of Figure 5, we see that the very high latitude region with
high �2 corresponds directly to the thermal dust spectral index
map. Furthermore, we also see that the dust amplitude is very
low in the same region. The interpretation is clear: thermal dust is
not well constrained in these regions because of its low ampli-
tude, leading to poorly constrained spectral indices. This again
propagates into the CMB component, and the overall fit is un-
acceptable.

The solution to this problem seems obvious. Since the main
problem is unconstrained dust spectral indices, we should man-
ually fix them at some reasonable value. The potential bias in-
troduced in the CMB and other components by doing so is very
small because of the small dust amplitude found by the first
analysis. We implement this by assigning a new model that fixes
the dust spectral for all pixels with a dust spectral index rms larger
than 0.15 in the bottom right panel of Figure 5. The fixed spectral
index value is somewhat arbitrarily chosen to be 1.55. The
modified model map is shown in the top right panel of Figure 6.
We now repeat the analysis and obtain the goodness-of-fit

map shown in the bottom right panel of Figure 6. Clearly, in-
troducing a new model at high latitudes had a very beneficial
impact on the results. In principle, we could now proceed with
similar considerations at low latitudes and obtain reasonable fits
over the full sky. However, since our main purpose in this paper
is to illustrate the method, we are content with the slightly re-
vised model map shown in the top right panel of Figure 6, and
we use this map in the rest of the paper.
We now consider the error estimation accuracy of the MCMC

algorithm. In the left panel of Figure 7 we plot a histogram of
the relative CMB reconstruction error � ¼ �Test ��Tinð Þ/�est ,
where�Test is the estimated CMB temperature,�Tin is the true
value, and �est is the estimated error. If both the amplitude and
the error are perfectly estimated, the pixel histogram will match
a Gaussian distribution with vanishing mean and unit variance.
( In this plot, we include only pixels in the intermediate latitude
region with a goodness of fit �2 < 13.) Obviously, the algorithm
works very well, as the bias is very small indeed and the estimated
error is very close to the true error.
Finally, in Figure 8 we plot a histogram of the �2 values of the

same pixels and compare it to a �2
6 distribution. Clearly, there is

a small shift toward high values. This is likely due to a combi-
nation of two effects. On the one hand, poor fits tend to bias the
distribution to high values, and such an effect is therefore ex-
pected when considering the impact of modeling errors. On the

Fig. 6.—Example of iterative improvement of the model map. Two MCMC runs using the same data were made. The first run included CMB, synchrotron, and
dust ( both with free amplitude and spectral index) at high latitudes (green) and also free-free at low latitudes (red ). The second run fixed the dust index at 1.55 at
very high latitudes (blue). The bottom row shows the �2 distribution in the two cases; note the significant improvement at high latitudes resulting from removing a
(noncritical) parameter from the system. Similar improvements at low latitudes could be made by trial and error.
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other hand, we also know that the actual distribution may not be
a perfect �2 density, due to the presence of the nonlinear pa-
rameters and their uniform priors.

Nevertheless, taking into account all these issues, the main
conclusion to be drawn from this figure is that the distribution is
sufficiently close to the theoretical expectations for the goodness-
of-fit maps to be useful in the model selection process; a strong
outlier relative to the analytical distribution is also a strong out-
lier relative to the empirical distribution. (Note that for restric-
tive priors, this may no longer be true, but in such cases one is
well advised to thoroughly check the priors.) The minor observed
descrepancy is of no practical importance for the model definition
process.

We conclude this section by making a few comments on the
computational cost of the method. Running the MCMC analysis
for each pixel is by far the most expensive step of the algorithm.
For well-behaved pixels, we find that it takes on the order of 100

CPU seconds (divided over four processors per pixel) to reach
the convergence criteria described above. For anNside ¼ 32 map
with 12,288 pixels, it therefore takes about 350 CPU hours per
run. For clusters with of order 102 processors, this is not a major
problem. Further, since the algorithm scales with the number of
pixels and parallelizes trivially, it is not unreasonable to apply it
at higher resolutions, say, at Nside ¼ 128 for 6000 CPU hours.

6.2.3. High-Resolution Full-Sky Maps

Having estimated the nonlinear parameters by MCMC, the
next step is to estimate the component amplitudes from the full-
resolution sky maps. As discussed above, this can be done either
with a Gibbs sampling approach or with an analytic approach. In
this paper, we choose the latter route and leave the former to a
future publication.

The results from applying the method described in x 5.5 are
shown in Figure 9. Once again, we see that the reconstructed
parameter maps look visually compelling. There are few visible
signs of contamination in the CMB reconstruction, and, indeed,
even inside the central Galactic plane the errors are only a few
tens of microkelvins.

In the right panel of Figure 7 we plot the relative CMB re-
construction error for the high-resolution map, as we did for the
low-resolution map in the previous section. Two facts are clear
from this plot. First, the bias is small, indicating that the analytic
point estimator is quite accurate. Second, the histogram does not
match theGaussian distributionwell, but is rather focused around
smaller values. In other words, the errors are overestimated by
some small factor by the analytic error propagation formula. This
should not be surprising, given the assumptions that went into
those calculations. Nevertheless, the estimated errors are in fact
of the correct order of magnitude, and they can therefore be used
as a mental guide, although not for quantitative work.

In Figure 10 we plot the power spectrum of the reconstructed
high-resolution CMBmap, the true realization specific input spec-
trum, and the ensemble-averaged spectrum. The reconstructed
spectrum was computed by full-sky integrals without noise
weights. The results are therefore excellent—the reconstruction
is virtually perfect up to ‘ ¼ 200, after which a small noise term
starts to make an impact, before the 1

�
beam renders the re-

construction arbitrary at ‘ ¼ 300. From this plot it seems clear
that we were too conservative when choosing a 6� beam for the

Fig. 8.—Distribution of �2 from the low-resolution MCMC analysis,
shown for the intermediate-latitude region, with 6 dof. The dashed curve
shows the expected �2

6 distribution. Note the good agreement between the two
distributions—a strong outlier relative to the theoretical curve is also an outlier
by the empirical curve. For the crude purposes of the �2 statistic in this paper
(assisting in the model definition process), this goodness-of-fit statistic is quite
adequate.

Fig. 7.—CMB reconstruction accuracy shown as a histogram of � ¼ �Test ��Tinð Þ/�est for pixels in the intermediate-latitude region. Results from the low-
resolution MCMC analysis are shown in the left panel and from the high-resolution analytical analysis in the right column. For perfect reconstruction of both CMB
amplitude and error, both curves would match a Gaussian distribution with vanishing mean and unit variance (dashed curve).
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low-resolution analysis and that the combined Planck and
6 year WMAP data can easily handle higher resolutions.

7. OUTSTANDING PROBLEMS

As demonstrated in the previous section, the component
separation method presented in this paper works well on simu-
lated data. However, there are a few outstanding issues that we
have not taken into account but thatwill have to be addressed prior
to analysis of real data. The most important of these are gain and
zero-point calibration, dipole corrections, noise correlations, and
beam asymmetries.
First, our algorithm requires all sky maps to be properly cal-

ibrated with respect to gain and zero point. Usually, the gain is
calibrated using the CMB dipole, but this can be difficult for
channels that are highly foreground contaminated. Moreover,
zero-point calibration is never easy.
Closely related to these issues is dipole subtraction. The CMB

dipole itself is hard to observe because of the large Doppler
dipole induced by the motion of the solar system through space;
it is usually subtracted in the map-making process. Nevertheless,
residual dipoles may cause serious problems for our algorithm
unless accounted for.

Fig. 10.—Reconstructed (blue curve) and input (red curve) CMB power
spectra. The ensemble-averaged spectrum is shown as a black smooth curve.
The reconstructed spectrum was computed by full-sky integration without
noise weights or sky cut.

Fig. 9.—High-resolution parameter maps reconstructed by direct solution of linear systems, fixing spectral indices at low-resolution map values. The left column
shows the parameter estimates, the middle column shows the difference between output and input maps, and the right column shows the analytically estimated
errors. Top to bottom: (1) the thermodynamic CMB temperature; (2) the synchrotron emission relative to 23 GHz; (3) the free-free emission relative to 33 GHz; and
(4) the thermal dust emission relative to 90 GHz.
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Finding reliable calibration methods for each of the above
problems is clearly essential. Fortunately, the number of degrees
of freedom represented by these issues is quite small, and it may
be possible to include them in the analysis by replacing the
signal model S� in equation (3) with

S� pð Þ  g�S� pð Þþ
X1
‘¼0

X‘
m¼�‘

a‘m;�Y‘m pð Þ: ð37Þ

Following a rough calibration with external techniques, one
could then use methods similar to those described in this paper to
optimize the gains g� andmonopole and dipole coefficients a‘m;� .

From a conceptual point of view, correlated noise poses a
more serious problem. For Planck, for example, the main effect
will be to introduce stripes in the sky maps along the scanning
path of the detectors, and locally this has the same effect as an
overall offset. Properly speaking, correlated noise is a problem
for map making more than it is for component separation; how-
ever, residual effects can be expected. Only when actual data are
in hand will it be clear how serious a problem it is.

Finally, in this paper we have assumed that all detectors have
identical beam response functions. This obviously is not true for
any real system, and corresponding errors are unavoidable.
Fortunately, this is likely to have a negligible effect on the low-
resolution analysis, since we smooth with an additional degree-
scale beam, strongly suppressing small-scale asymmetries. Only
in the high-resolution analysis is this effect likely to be important.

8. DISCUSSION

In this paper, we approach the problem of component sepa-
ration with CMB data from the perspective of parameter esti-
mation. Our goal is to propagate foreground uncertainties all
the way from observed data through to the final products, most
importantly to the CMB power spectrum and cosmological pa-
rameters. This is more easily facilitated with standard parameter
techniques than with image processing techniques.

We proposed and implemented one particular algorithm for per-
forming this task, based on multifrequency parametric model
fits established by means of a hybrid of MCMC and analytic
methods. The method was then shown to work very well on sim-
ulated data, with properties corresponding to those of the future
Planck and 6 year WMAP experiments.

We also outlined how to propagate the foreground-induced
errors to the CMB power spectrum and cosmological parameter

errors, using the output from the MCMC analysis presented here
as the input in a Gibbs sampling algorithm. As always, only an
actual implementation will prove whether this method works or
not, but the theoretical groundwork appears to be sound, and no
insurmountable computational problems have been identified.
Therefore, if this approach proves successful, wewill have a com-
plete, mathematically consistent, end-to-end solution to the fore-
ground problem in CMB analysis.

While we only considered temperature anisotropy observa-
tions in the present paper, the method is completely general and
can equally well handle polarization measurements, as will be
demonstrated in a future study. We will also apply the method to
two specific problems. First, we will study the optimization of
frequency coverage and S/N in future polarization experiments.
Since our method provides error bars on all estimated quantities,
it is straightforward to compare different experiment designs.
Modeling errors will be an integral part of this work, since such
uncertainties have a direct impact on the optimal frequency range
to observe. Second, we will apply the method to the currently
available WMAP data.
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Vielva, P., Martı́nez-González, E., Gallegos, J. E., Toffolatti, L., & Sanz, J. L.
2003, MNRAS, 344, 89

Wandelt, B. D., Larson, D. L., & Lakshminarayanan, A. 2004, Phys. Rev. D,
70, 083511

Watson, R. A., et al. 2005, ApJ, 624, L89

ERIKSEN ET AL.682


