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Introduction

The problem of determining the maximal arithmetic genus G(d,t) over all integral
curves in P? having degree d and not contained in a surface of degree t —1 > 0 was first
considered by Halphen [11]. He solved it in the case t = 2, and Castelnuovo [2] proved the
same result for any integral curve C' C P™ with n > 3. A complete answer in the general
case was given by Gruson and Peskine [9] when d > #? — 2t + 2. They introduced the
numerical character, which is a suitable sequence of integers associated with the general
plane section I' of a curve C, to lower the Hilbert function of I, and hence to bound the
genus of €. Another tool used in their proof is the Generalized Trisecant Lemma [16, 10]:
any integral curve C of degree d > t* + 1 and such that s(C) > t has the property that
o(C) > t, where s(C) denotes the minimum of the degrees of all surfaces containing C,
and o(C) is the minimum of the degrees of all plane curves passing through I'. Afterwards
several authors treated the case d < t* — 2t + 2 (see, among others, [12, 10, 14, 5, 8]), but
a complete answer is still missing.

In this paper we consider the same problem in the more general setting of locally
Cohen-Macaulay curves in P2, i.e., equidimensional curves without embedded points. More
precisely, our aim is to compute the maximal arithmetic genus P,(d,t) over all loc.CM
curves having degree d and such that s(C) > t. It is known (see, for instance, [13]) that
the arithmetic genus p,(C) of an arbitrary curve C of degree d is bounded from above by
3(d = 1)(d — 2), and the equality holds if and only if C is a plane curve. The formula for
P,(d,2) was found by Hartshorne [13], who proved that all curves of maximal genus lie on
a quadric surface. Here we compute P,(d,3) and P,(d,4). We point out that P,(d,t) is
defined for any d > t, since a loc.CM curve of degree d is always contained in a surface of
degree d and there exist curves C' such that s(C) = d (Lemmas 2.1 and 2.2). This differs
from the integral case, where G(d,t) is defined for d > (¢? 4 4t + 6)/6 [12]. We note also
that the Generalized Trisecant Lemma does not necessarily hold for loc.CM curves C with
5(C) = 3,4 (Lemmas 4.1 and 4.3). As a consequence, it can not be used to distinguish
any ranges for the degree d in terms of ¢(C) like in the integral case (ranges A, B and C).
Moreover, for the curves we consider, the use of the numerical character does not give a
sharp bound on the genus. However, it allows to deduce that the curves of sufficientely
large degree are the schematic union of two subcurves modulo a finite number of isolated
points. The idea is then to bound the arithmetic genus of the two subcurves. The answer

to the problem of determining P,(d,t) for ¢ < 4 can be summarized as follows:

Theorem The mazimal arithmetic genus of loc.CM curves C C P® of degree d not con-
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tained in a surface of degree t with 1 <t < 4 is given by the following formulas

Pu(d,1) = %(d ~1)(d - 2);

-1 ifd=2,
Po(d,2) = ;d_mw_3)ﬁd23;

2d — 9 if3<d<s,
Po(d,3) = { %(d_g)(d_@ if d > 6;

3d—19 ifa<d<s,
Po(d,4) = { %(d—4)(d—5)~1 ifd>9.

It turns out that the genus P,(d,3) and P,(d,4) are attained by curves C having
s(C) = 3,4 and o(C) = 2,3 for any d, and this situation is different from the integral
maximal genus curves in range C, which have ¢(C) = s(C) = t. The curves found suggest
a method for constructing curves of high genus which allows to determine the following
lower bound for P,(d,t) with t > 5 and d > 2¢ — 1:

Pu(d,1) > (d—t)(d—t—-1) =1 - 2)(t—3).
2 2

The outline of the paper is the following. In Section 1 we recall some results on
the numerical character (Propositions 1.1 and 1.5), and we study the geometry of the
curves ¢ having ¢(C) < s(C) (Corollary 1.3 and Lemma 1.7). In Section 2 we prove
the existence of curves of arbitrary degree d > s on a surface of degree s (Lemma 2.2),
and we characterize all curves having d = s (Lemma 2.3). In Section 3 we describe three
methods for bounding the genus of a curve (Propositions 3.1, 3.3 and 3.4). Section 4 is
devoted to the characterization of all curves with s(C) > ¢(C) = 2,3 and d sufficientely
large (Lemmas 4.1 and 4.3). In Section 5 we compute P,(d,3) and P,(d,4) (Propositions
5.3 and 5.4), and we prove the existence of curves C of degree d and genus p for any
d>t=3,4and any p < P,(d,t), such that ¢(C) =t —1 and 5(C) = t.
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1. Notations and preliminary results

Let K be an algebraically closed field of characteristic zero. We denote by R the

polynomial ring K[zy,z1,z,]. By a curve C C P*® we mean a locally Cohen-Macaulay
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(loc.CM for short) equidimensional subscheme of dimension one of the projective 3-space

P? over K. We indicate by p,(C) the arithmetic genus of a curve C, by T the general

plane section of €', and by I(T') = @, H"(Zr(k)) the saturated homogeneous ideal of T'.
Finally we set

s(C) = min{k € Z : h°(Tc(k)) # 0}, o(C) = min{k € Z : h(T- (k)) = 0}.

Sometimes, in the sequel, we shall write s and o instead of s(C) and o(C), respectively.

We associate with I' the sequence x(I') = (no,...,ns-1), where ng,...,n,_1 € N, ng >
ni 2 ... 2 Ng—1 > 0, which is called the numerical character of I [9, Def. 2.4]. If
o > 2, a numerical character (ng,...,ns—1) is said connected if n; < n;o; + 1 for every

t=0,...,0 —2. The genus g(x(I')) of x(I') is defined as g(x(T')) = >, 5, A (Zr (n)).
In this Section we will recall some known results on x(I') and we will use them to relate

the numerical character to the geometry of a curve.

1.1 Proposition Let C C P® be a curve, let T be its general plane section and let
x(I') = (ny,...,no—1). Then
(1) the degree d of C is given by

o—1

d= Z(nl —1);

=0
(i) the Hilbert function hr of ' is determined by the formula

o—1

hr(n)=> [(n—i+1)4y — (n—n;+1);], for neN,

i=0

where, for k € Z, we set ki = maz{0,k};
(iii) the following equality holds:

o—1

R (Zr(n) =) [(ni—n—1)y —(-n-1)4], for neZ;

=0
(iv) if T is a plane curve of degree o containing T, then the minimum of the degrees of all
curves passing through I' and not containing T is equal to ny_;.

Proof. Assertions (4), (i1) and (449) are proved in [9]. Assertion (iv) follows from the

definition of x(I'). [



The following is a powerful algebraic result by Strano, which will be used to study
curves with o < s.

1.2 Theorem Let C C P® be a curve and let m € N. If
TOI‘I}(I(F),K)}L =0 for every 0<h<m+2,

then the restriction map pm, : H(Zc(m)) — H°(Ir(m)) is surjective.

Proof. [17, Teorema 4]. []

1.3 Corollary Let C C P3? be a curve with s > ¢. Then n,_; € {o,0 +1}.

Proof. The assumption s > o implies that the restriction map p, is not surjective. By
Theorem 1.2 there exists a syzygy in degree h < ¢ + 2 between the generators of I(T').
Since the syzygies always occur in degree m > o + 1, if F is a degree o generator, there
exists at least one generator G of degree o or ¢ + 1 which is not a multiple of F, and, by

(4v) of Proposition 1.1, we have ny_; < o + 1. [J

Gruson and Peskine [9] showed that the numerical character of an integral curve is
connected. However, this result is not necessarily true in the more general case of loc.CM
curves. Indeed, a non connected numerical character x is the character of a reducible curve,
as we shall see in Lemma 1.6. We will use a result by Ellia and Peskine (see Proposition
1.5) to prove that such a x is the character associated with two groups of points in the

plane, and we will show that they can be lifted to two curves using a result by Strano [18].
We first recall a definition.

1.4 Definition [15] Let X be a subscheme of P™ and let F' be a hypersurface in the same
space, which is defined by the equation F of degree f. The residual scheme Z = Resr X
to X with respect to F'is the subscheme defined by the ideal sheaf

Iz = F ker[Ixpr — IxnEFl,
and we have the exact sequence

0— 0z(—f) = Ox - Oxnr — 0.

1.5 Proposition Let I' C P? be a group of points with x(T') = (ng,...,ne_1).
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(1) Assume that ni—1 > ny for some 1 <t < oc—1 and that all the curves of degree ny_1 —1
containing ' have a greatest common divisor T of degree t. Then I' = T NT is a
subgroup of points of I' such that x(I') = (no,...,n¢—1). Moreover, if I = RestT,
one has x(I'") = (ny — t,...,np—1 — ).

(2) If ng—1 > ny + 1 for some 1 <t <o —1, then I' verifies the assumptions in (1).

Proof. [4, 7]. [

1.6 Lemma Let C C P? be a curve such that T' verifies the assumptions of (1) in
Proposition 1.5. Then C contains a loc. CM curve C' which lies on a surface S of degree t
having the following properties:

(a) SNC = C’ modulo a finite number of zero- dimensional components;

(b) let I be the general plane section of C'; then x(I') = (no, ..., ne—1);

(c) if C" = RessC, the numerical character of the general plane section of C" is given

by (nt —t,...,np—1 — t).

Proof. By Proposition 1.5, I' contains two subgroups I' and I such that x(I') =
(ng,...,n4—1) and x(I'"") = (ny — t,...,ng—1 — t). By [18, Lemma 2], I is the general
plane section of a loc.CM curve C' C C and ¢(C’) = t. We observe that a curve T of
degree t containing I can be lifted to a surface S of the same degree containing C’'. Indeed,
ni—1 >ny+1>0c+1>t+2and, by (1v) of 1.1, T is the only curve of degree less or equal
to t+ 1 containing I. As a consequence there is no syzygy in degree h < ¢+ 2 between the
generators of I(I'") and the claim follows applying Theorem 1.2. These arguments prove
(a) and (b).

To prove (c) it is enough to observe that the general plane section of C" is T'"'. [J

1.7 Lemma Let C C P? be a curve of degree d with ¢ > 2 and s > o. Assume that
Ng—1 =0 +1 and n,_» > o + 2. Then C verifies the assumptions (1) of Lemma 1.5 with
t =0 —1, and hence there exists a curve C' C C with deg(C') =d—2 and s(C') =0 — 1,
and the curve C" = RessC, where S O C' is a surface of degree o—1, is a non planar curve
of degree two, i.e. it consists of two skew lines or it is a double line with p,(C") < —1. In

particular, s = o + 1.

Proof. Let us prove that all curves of degree ¢ + 1 containing I' have a greatest common
divisor od degree ¢ — 1. The hypothesis n,—; = ¢ + 1 implies h’(Zr(c)) = 1 by (iv) of
Proposition 1.1. Moreover, if we compute hr(c + 1) both using (:7) of 1.1 and writing
hr(oc + 1) = dimRy41 — A°(Zr (o + 1)), we get R°(Zr(oc + 1)) = 4. Since s > o, by
Theorem 1.2 there exists a syzygy of the form G2 F, + LF,1 = 0 where F, € H°(Ir (7)),
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Fyi1 € H'(Ir(o + 1)) and F,4; is not a multiple of F,,, G, is a homogeneous quadratic
polynomial and L is a homogeneous linear polynomial. Thisimplies that the two generators
have a common component P of degree o — 1, and we can apply Lemma 1.6. We note that
the subgroup I'' = PNT consists of d— 2 points of I by the unicity of F,. Therefore, using
the notations of Lemma 1.6, we have deg(C') = d — 2 and deg(C") = 2. We claim that
s(C") = 2. Indeed, suppose C" is planar and let S O C’ be a degree ¢ — 1 surface. Then
C is generically contained in the union S of § with the plane of C”. Since C is loc.CM, we
have C C § and this is a contradiction as deg(5) = . It follows s(C") = 2 since a degree

two curve is always contained in a quadric surface (see Lemma 2.1 in next Section). L]

1.8 Lemma Let C C P? be a curve with o > 2. Assume thatny_1 = 0 and ny—s > o+ 2.

Then s = o.

Proof. Since x(I') is not connected, we can apply Lemma 1.6 with ¢ = ¢ — 1. We obtain
that C contains a curve C' on a surface S with deg(S) = 0 — 1 and RessC is a line L.
Hence C is generically contained in the union of S with a plane H containing L. Since C

is loc.CM, it is globally contained in the same union, and we have s = ¢. [J

2. Relations between d and s

It is well known that an integral curve C of degree d is contained in a cone over C
with vertex not on C, so that s < d. A similar construction (see for example [3]) can be
done for loc.CM curves, and hence the inequality s < d still holds. In this Section we will

prove that there exist loc.CM curves with s = d, and we will characterize them.

2.1 Lemma Let C C P? be a curve of degree d. Then C is contained in a surface of
degree d.

Proof. [3, Lemma 2.6]. []

2.2 Lemma Let s > 1 be an integer. For every d > s there ezists a degree d curve C with

s(C) =s.

Proof. For s = 1 the assertion of the Lemma is obvious. Hence we shall assume s > 2.
Let L be a line and S be a general surface of degree s containing L. Consider the divisor
C =dL on § and let H be a general plane. Let us prove that A%(Z¢ s(s — 1)) = 0, which
is equivalent to showing that the divisor —dL + (s — 1)H is not effective. Assume by
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contradiction it is effective. We note that the linear system |H — L| contains a smooth
irreducible curve and that (H — L)* = 0. So we can apply [1, Rem. IIL.5], and say that
(—dL+(s—1)H)-(H—L) > 0. But the direct computation gives (—dL+(s—1)H)-(H—L) =
(s—1)(s—d—1) which is strictly negative, since s > 2 and d > s, and this is a contradicticn.

The exactness of the sequence
0—-Zs »ZIc —=1Ic,s — 0

and h’(Z¢c s(s—1)) = 0 imply that R?(Zc(s—1)) = 0 and therefore s(C) = s. To conclude
we note that deg(C)=dL-H =d. [

2.3 Lemma Let C be a degree d curve with s = d. Then Cr.q consists of disjoint lines.

Proof. Assume first that C is irreducible. If deg(Cr.q) = n > 2, the cone over C .4 with
vertex at a closed point of C ¢4 is a degree m < n — 1 surface containing C 4. lf e > 1 is
the multiplicity of C at a general closed point, then en = d and the surface eS contains
C [3, Lemma 2.6]. We have deg(eS) = em < e(n —1) = d — e < d which contradicts the
assumption s = d. It follows that deg(Creq) = 1.

If C is reducible, it is sufficient to repeat the above arguments for the irreducible compo-

nents of C and to observe that their supports are disjoint because of the assumption s = d.

0

3. Bounds on the genus

In this Section we will describe three methods for bounding the arithmetic genus of
a curve. The first method consists in computing the genus of x(I'), since we always have
2a(C) < g(x(T")) (Lemma 3.1). We will show that any curve with genus equal to g(x(T')) is
such that s = o (Corollary 3.2). The second method is based on the classical Castelnuovo’s
technique (Proposition 3.3) of estimating the Hilbert function of I' to lower "(O¢(n)) for
n sufficientely large. The third method (Lemma 3.4) applies to curves with x(T') such that

all the integers n; are small enough with respect to s.

3.1 Lemma Let C C P? be a curve. Then po(C) < g(x(T)) and equality holds if and
only if h°(O¢) =1 and h*(Zc(n)) = 0 for every n > 0.

Proof. The proof is similar to [9, Lemma 3.5].
For any n € Z, let A, be the kernel of the surjective map

H'(Oc(n —1)) » H'(Oc(n))
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and let d, be its dimension. It is immediate to verify that h'(Oc¢) = 3. ., d.. The
commutative diagram

H°(Oc(n)) — H(Or(n)) — AHn - 0
!
HY(Ir(n)) — A, — 0

l
0

implies that A*(Zr(n)) > d,. Therefore we have

(3.1) g(x(T) > > dn =k (Oc) > pa(C).

n>1

Assume now g(x(T')) = pa(C). Since po(C) = 1 — h°(O¢) + R (O¢), it follows that
R'(O¢) = 1 and that h'(Zr(n)) = d, for every n > 1. This implies h!(Zc(n)) <
h'(Zc(n — 1)) for n > 1. On the other hand, A°(O¢) = 1 implies h}(Zc) = 0 and
therefore h'(Z¢(n)) = 0 for any n > 0.

For the converse, we note that the assumption h°(O¢) = 1 implies p,(C) = h'(Oc¢).
Furthermore, since h'(Zc(n)) = 0 for any n > 0, we also have g(x(I')) = >,

d, =
>17n
h'(Oc¢), and this concludes the proof. []

3.2 Corollary If p,(C) = g(x(T)), then s = 0.

Proof. By Lemma 3.1, h*(Z¢(o — 1)) = 0, and thus the restriction map p, : H*(Zc (o)) —
H"(Ir(o)) is surjective. []

3.3 Proposition Let C be a curve and assume that o > 7 for some integer 7 > 1. Then

(32)  palC) << <d—Z(T—+E—1> (d—u—z) Slrzrlrel)

-2 2 2 3

Moreover, if equality holds in (3.2), then o =s =7+ 1 and

(3.3) x(T) = (d— i’%iﬁ,g,...,a).

Proof. For any k € Z we have the exact sequence 0 — O¢(k —1) — Oc(k) — Or(k) — 0
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and the commutative diagram

0

!
HO(Z: (k)
!
0 — H°Opas(k-1)) — HO((’)‘pa(k)) — HO(?pz(k)) — 0

0 — H'(Oc(k—1) — HOc(k) % H(Or(k)

from which we obtain h?(Oc(k)) — R°(Oc(k — 1)) = dim Impy, and Imay C Impy. By the
definition of Hilbert function we have dimImay = hr(k), hence

(3.4) R(Oc(k)) - B(Oc(k - 1)) > hr(k).

Let us estimate hr(k). Recall that Ar is strictly increasing till it reaches the value d =
deg(C), and then it is constant and equal to d. Since o > 7 by assumption, letting
a= %(7'2 + 7+ 2), we have

hr(k) = (*17), if0<k<m
hr(k) > min{k +a,d}, fk>7+1,

since it is k + a = h’(Op2(7)) + (k — 7). Summing (3.4) over k we get h°(Oc(n)) >
> r_y hr(k) for any n > 0. On the other hand

n

ihr(k) z}i (k'z”) + > min{l +a,d}
k=0 k=0

l=7+1

for any n > 7 + 1. Therefore, for n > d — a, we get

d—a—1 n

hO(@C(n))Z%;;(kH)(kHH > (+a)+ d

[=7+1 j=d—ua

I
I
|~
+

3 1
)+Z,—(,—+1)+(r+1)+§d(d—1)

T+a+l)(t+a+2)+(n—d+a+1)d

nd— S(d—a)(d—a—1)— (s = 7).

(3.5) .

I
=t

Finally, for n sufficentely large, h"(Oc(n)) is given by the Hilbert polynomial of C and
thus we have

(3.6) R'(Oc(n)) =nd +1 — pa(C).
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From (3.5) and (3.6) we immediately deduce (3.2). .

To prove (3.3), assume that the equality holds in (3.2). In this case all the inequalities
above become equalities, and we have hp(7+1) = min{3 (72 + 37 +4),d} < (72 +37 +4).
We also have

T

R(Oc(r+1)) = (’“ *2) +hr(r +1),

, 2
k=0

which gives h?(Oc(7 + 1)) < £(r® + 977 4+ 207 + 18). The defining exact sequence yields
h(Ze(m +1)) 2 A% (Opa(r +1)) = B(Oc(r +1)) > 7 + 1,

and by the restriction exact sequence it is also AY(Zp(7 + 1)) > 7 + 1. Hence ¢ = 7 + 1.

It remains to compute x(I'). Note that since o > 7, we have d > (72 + 37 + 2). Assume
d > 3(7% + 37+ 4). Then hr(r + 1) = 1(v? + 37 + 4) and, taking into account (i1) of
Proposition 1.1, we get Z;:Ol(o'—}— 1—mn;)y+ =0 —1. Sincen; > o forevery 1 = 0,...,0 — 1
we have n; = ... = n,_1 = ¢ and ng can be expressed in terms of d and o using (z) of
Proposition 1.1. In the case d = (7% + 37 +2) we get >.0_ (0 +1 —n;)+ = ¢ which

implies n; = o for every i = 0,...,0 — 1. []

?

3.3.1 Remarks:
o(oc—1)

1. The numerical character @, , := (d — 25—, 0,...,0) is the maximal character for the

lexicographic order over all characters of degree d and length o.

2. Substituting 7 with ¢ — 1 in the formula (3.2) we get

9(000) =2 <d~M—1> (d-@_2>+0(0—1§(0—2)

2 2 2

and one can show that this is the maximal genus of the characters of degree d and
length o.

3. The character ©g4; is attained by a curve C with h’(Z¢(¢ — 1)) = 0. Indeed, if OFF
is connected, this follows from the results in [9]. If @4 is not connected, and this
means that d > #(¢41)/2, we can consider the union of a plane curve P C H of degree
d —1(t —1)/2 with a projectively normal curve C' with x(I') = (¢t — 1,...,¢t — 1) such
that C' N H C P. Then one can check that p,(C) = 9(04+). As a consequence we
get a lower bound for the maximal arithmetic genus P,(d,t) of curves of degree d and

not contained in a surface of degree ¢t — 1

(37) Pa(d7t) > g(®d,t)'

10



3.4 Lemma Let C C P? be a curve and let x(T') = (no, ...,ng—1). Assume that, for some
b>1, we have s 2 b, 0 <b+2 and n; < b+ 1 for every 0 <i< o —1. Then
b+ 2
p(C)<(b—1)d+ 1~ ( Jg >
Proof. Since n; < b+ 1 forevery 1 =0,...,0 — 1 and ¢ < b+ 2, using (zi7) of Proposition
1.1 we have h'(Zr(n))) = 0 for any n > b. Moreover, from the restriction exact sequence

we get h?(Zc(n)) = 0 for any n > b — 1. Therefore, as we have the exact sequence
0—>Zc(b—1) > Ops(b—1) - Oc(b—1) — 0,
it follows that h'(Oc(b—1)) = h*(Zc(b—1)) = 0 and hence x(Oc(b—1)) = h*(Oc(b—1)).

As s > b—1, C is not contained in a surface of degree b — 1 and
b+2

RY(Oc(b—1) > R’ (Ops(b—1)) = ( _;; )

We conclude recalling that x(Oc(b—1)) is equal to the Hilbert polynomial of C and thus

X(Oc(b—1)) =d(b—1)—pa(C)+ 1. The assertion of the Lemma immediately follows. []

4. Curves with low ¢ and s > o

It is well known that if a loc.CM curve has ¢ = 1 and degree d > 3, then s = 1 (see
for. ex. [6]), while if o = 2,3 there exist curves of any degree having s = 3,4. In this

Section we will characterize curves of sufficientely large degree with ¢ = 2,3 and s > &.

4.1 Lemma Let C C P be a curve of degree d > 6 with o = 2. Then s > 3 if and only
if C contains a loc. CM plane curve C' of degree d — 2 and the curve ResgyC where H is

the plane of C' is a non planar curve of degree two. In particular, s = 3.

Proof. Assume first h"(Ir(2)) = 1. Since s > o, we have n; = 3 by (iv) of Proposition
1.1 and Corollary 1.3. Moreover, property (z) of Proposition 1.1 and the assumption on d
imply ny > 4. Hence we can apply Lemma 1.7 and we get the assertion.

We conclude the proof noting that the case h°(Zr(2)) > 2 can not occur, since it implies
s = 2 by Lemma 4.2 below. []

4.2 Lemma Let C C P? be a curve of degree d > 5 with o = 2. Assume that RY(Ir(2)) >

2. Then C is contained in a reducible quadric surface, and hence s = 2.

Proof. The assumption h’(Zr(2)) > 2 implies ny = 2 by (iv) of Proposition 1.1. By (i) of

1.1 and by the hypothesis on d we have ng > 4. Applying Lemma 1.8 we get the assertion.
l
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4.3 Lemma Let C C P? be a curve of degree d > 11 with o = 3. Then s > 4 if and only

if one of the following properties holds:

(1) there ezists a loc.CM curve C' C C such that deg(C') = d — 2, s(C') = 2, and
deg(ResgC) =2, s(ResC) = 2, where Q is a quadric surface such that C' C Q;

(2) there exists a loc.CM curve C' C C such that deg(C') = d — q with 3 < g < 5,
s5(C") = 1, and deg(ResyC) = gq, s(ResqC) > 3, where H is a plane such that
C'CH.

Proof. Taking into account Corollary 1.3 and Lemma 1.8, we have the following possibilities
for x(T') = (no,n1,mn2): a) (d—3,3,3),b) (d—4,4,3),¢c) (d—5,4,4),d) (d —n; — 1,n;,4)
with n; > 5. Since d > 11 by assumption, the characters a), b), c) are all non connected
and we can apply Lemma 1.6 to get assertion (2). Assertion (1) can be obtained appling
Lemma 1.7 to the character d).

For the converse, note that the curves described in (1) and (2) have s > 4 by construction.

0

5. Computation of P,(d,3) and P,(d,4)

5.1 Definition We set P,(d,t) to be the maximal arithmetic genus of locally Cohen-

Macaulay curves of degree d in P> not contained in a surface of degree t — 1.

This Section is devoted to the computation of P,(d,t) for t = 2,3,4. Note that P,{d, 1)
is defined for any d > ¢ by Lemma 2.2.
The following result has been proven by Hartshorne in [13], and it holds over a field

of any characteristic. For completeness we give a proof in characteristic zero.

5.2 Proposition The mazimal genus of curves of degree d with s > 2 is

-1, if d=2;
Py(d,2) = { 3(d=2)(d-3), ifd>3

and for any (d,p) € N x Z with d > 2 and p < P,(d,2), there ezists a curve of degree d
and genus p such that s = 2.

Proof. If ¢ =1, then C is either a plane curve or a degree two curve of arithmetic genus
pa(C) < —1 [6]. Using the Ferrand construction one can show that there exist double
structures on a line of any genus p < —1. Hence, if d > 3, as it is 5 > 2, we have ¢ > 2.
Proposition 3.3 with 7 = 1 yields the bound of the thesis. It remains to prove that there
exist curves of genus p and degree d for any p = P,(d,2) —7r with » > 0 and any d > 3, and
such that s = 2. We can take the union of a plane curve C' C H of degree d — 2 with a
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double line L of arithmetic genus —r such that supp(L) C H but L € H, and L intersects
C' in d — 2 points transversally. []

5.3 Proposition The mazimal genus of curves of degree d with s > 3 is

2d — 9, f3<d<5;
Py(d,3) = { H(d—3)(d—4), ifd>6

and for any (d,p) € N x Z with d > 3 and p < P,(d,3), there ezists a curve of degree d
and genus p such that o =2 and s = 3.

Proof. For 3 < d < 5, we can apply Lemma 3.4 as x(I') verifies the required conditions
with b = 3, and we get the bound of the statement of the Proposition. If d > 6, we have
to distinguish the cases 0 = 2 and ¢ > 3. If ¢ = 2, then

(5.1) Pa(C) <

Do |

(d - 3)(d — 4).

Indeed, for a curve with d > 6, 0 = 2 and s > 3, we have x(I') = (d — 2,3) by Lemma 4.1,
and g(x(T")) = 3(d — 3)(d — 4) + 1. Since 5 > o, p,(C) < g(x(T')) — 1 by Lemma 3.1 and
Corollary 3.2, and this gives (5.1). If o > 3, then Proposition 3.3 with 7 = 2 yields

(5.2) Pa(C) <

The highest bound is (5.1). Let us show that the bounds found are sharp. Consider the
case 3 < d < 5 and fix an integer p = 2d — 9 — r with » > 0. For d = 3, p is the genus of
the disjoint union of a double structure Z on a line with p,(Z) = —2 — r, with a line L
not contained in any of the quadrics @ 2 Z, which form a two-dimensional linear system,
consisting of couples of planes containing Supp(Z). For d = 4, we can take the union of a
degree two plane curve C' C H with Z as above, Z not supported in H and intersecting C'
in a point with multiplicity two. For d = 5, we consider the union of a smooth elliptic cubic
with a double line of arithmetic genus —1 — r which intersect in a point with multiplicity
two. Finally, if d > 6, we set p’' = %(d —3)(d—4) —r with » > 0. Let C' C H be a plane
curve of degree d — 2 and C" a double line with p,(C") = —1 — r, which is not supported
in H and such that C" intersects C' in a point with multiplicity two. Then the schematic
union of C' and C'" has the required invariants. [

5.3.1 Remark Let C be a curve of degree d > 6 with s > 3, and let p € Z be such that
2(d—4)(d-5)+3<p< 2(d — 3)(d — 4). Then C has genus p if and only if ¢ = 2, i.e.
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pa(C) = pif and only if there exists a plane H and a curve C' C CNH with deg(C') = d—2,
and ResyC is a non planar curve of degree two, by Lemma 4.1.

5.4 Proposition The mazimal genus of curves of degree d with s > 4 is
3d — 19, ifa<d<s;
Po(d,4) = {%(4—4)((1—5)—-1, ifd>9
and for any (d,p) € N x Z with d > 4 and p < P,(d,4), there ezists a curve of degree d
and genus p such that o =3 and s = 4.

Proof. If d = 4,5, then ¢ = 2, and if d > 6, we have ¢ > 3 by Proposition 4.1. One can
check that for 4 < d < 8, x(I') verifies the assumptions of Lemma 3.4 with b = 4, which

gives the bound
(5.3) pa(C) < 3d —19.

If d > 11, then we have to distinguish the cases ¢ = 3 and ¢ > 4. If ¢ = 3, then the

statement of Lemma 4.3 holds and one of the following sequences is exact:
(5_4) O — Ocu(-—-2) —_— OC - OCﬂQ — 07

where () is a quadric surface, C N @ contains a curve C' of degree d — 2 and C"" = ResgC
has deg(C") =2, s(C") = 2 and p,(C") < -1, or

(5.5) 0— Ogu(-1) = Oc — Ocrmg — 0,

where H is a plane, C N H contains a curve C' of degree d — ¢ with 3 < ¢ < 5 and
C" = ResyC has deg(C") = g, s(C") > 3 and, by Proposition 5.3, pa(C") < 29 — 9.
The sequence (5.4) yields p,(C) = po(C N Q) — x(Ocn(—2)). We observe that p,(C N
Q) < pa(C'), since zero-dimensional components, which may be embedded, do not effect
h*(Ocr), so we shall bound p,(C'). If x(I') = (ng,n1,n2) and I is the general plane
section of ', then x(I') = (no,n1) with n; > 5 by Lemmas 1.6 and 1.7. Using (11) of
Proposition 1.1 we can compute hr/(k) for k¥ < 4, and for £ > 5 we can estimate the
value of hrs in a similar way as in Proposition 3.3. We find p,(C’) < %(d —T7)(d—8)+6.
Moreover x(Ocn(—2)) is equal to the value of the Hilbert polynomial of C” in —2, and
therefore x(Ocn(—2)) > —2. Hence

(5.6) Pa(C) <

[NCRE=

(d—7)(d—8)+8.

The sequence (5.5) yields po(C) = po(C N H) — x(Ogu(—1)). Again, we can lower
x(Ogin(—1)) computing the Hilbert polynomial of C", and we get the following inequalities

(5.7 pa(C) < .

S(@d—6)(d=7)+5, if g=5,
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(5.8) p(C)< =(d—5)(d—6)+2, if g¢=4,

no|

(5.9) pa(C) < 2(d—4)(d—5)—1, if gq=3.

N | e

Since d > 11, the highest bound is (5.9). ,

Consider now the range 9 < d < 10 and assume o = 3. For d = 9, we have the following
possibilities for x(I'): (4,4,4), (5,4,3) and (6,3,3). In the first two cases we can apply
Lemma 3.4 to bound the genus. In the last case the sequence (5.5) is exact with ¢ = 3.
If d =10, the possibilities for x(I') are: (5,4,4), (6,4,3) and (7,3,3). In the first case we
apply Lemma 3.4, and in the other two cases the sequence (5.5) is exact with ¢ = 3 and
g = 4 respectively; hence (5.8) and (5.9), respectively, hold. One can check that (5.9) is
the highest bound in both cases of d =9 and d = 10.

It remains to consider the case o > 4, which implies d > 10. Applying Proposition 3.3
with 7 = 3, we get

(5.10) p.(C') <

DN |

(d—7)(d—8)+8,

which is lower than (5.9).

Let us show that the bounds (5.3) and (5.9) are sharp. Fix r > 0. For the case d = 4,
consider the disjoint union of two double lines L', L" with p,(L') = —3 and p,(L") =
—3 — r. The curve obtained is not contained in a cubic surface and its genus is equal
to =7 —r = P,(4,4) — r. To prove the claim for d = 5, take the disjoint union of a
line L with a double line Z of genus —2 — r; then fix a plane H such that H 2 L and
H 2 supp(Z), and fix a conic curve P on H which does not intersect L nor Z. Then the
curve C = LU Z U P has deg(C) =5, s(C) =4 and p,(C) = —4 —r = P,(5,4) — 7. As to
the case d = 6, consider a line L and a double line ¥ with p,(}) = —3 — r not intersecting
each other. Fix a plane H' which is transversal to L UY'; then, by counting dimensions,
one checks that it is possible to find an elliptic cubic curve X on H' such that X intersects
both L and Y with maximal multiplicity and such that X is not contained in any of the
cubic surfaces containing LUY. The curve C = LUY U X has deg(C) = 6, s(C) = 4 and
pa(C) = —1—r = P,(6,4)—r. Finally, we consider the case d > 7. Let C’ be a plane curve
of degree d — 3 and let C" be a degree three curve such that s(C") =3, p,(C") = -3 —r
and assume that C" intersects C’ with multiplicity three. Then the union of C' with C"

has the required invariants. This concludes the proof. []

9.4.1 Remark Let C be a curve of degree d > 11 with s > 4, and let p € Z be such that
5(d—5)(d—6)+3 <p< i(d—4)(d~-5)—1. Then C has genus p if and only if & = 3,
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s =4 and x(T') = (d - 3,3,3), i.e. po(C) = p if and only if there exists a plane H and
a curve C' € O N H with deg(C') = d — 3 and ResyC is a degree three curve not on a
quadric surface, by Lemma 4.3.

5.4.2 Remark We note that the genus P,(5,3), P,(7,4) and P,(8,4) are attained by smooth

connected curves.

5.4.3 Remark The examples of maximal genus curves seen in Propositions 5.2, 5.3, 5.4
suggest a method for constructing curves of high genus, in general. The idea is to consider
a plane curve P C H of high degree and a suitable curve C' not on a surface of degree
t — 2, which intersects P in deg(C') points, and such that the union of P with C’ is not
contained in a surface of degree ¢ — 1. For instance, let L be a line and § O L a general
surface; then the divisor C' = (¢t — 1)L is such that A°(Z¢:(t — 2)) = 0, by Lemma 2.2. Fix
an integer d > 2t — 2, and consider the degree ¢t — 1 plane curve P’ = H N S and a curve
P" on H of degree d — 2t 4+ 2 which is not contained in P’. The schematic union of P’,

P" and C'is a curve C of degree d with h°(Z¢(t — 1)) = 0. By Mayer-Vietoris sequence
we have

() = (A==t 1)

The genus p,(C') can be computed using adjunction formula which gives

+pa(C) +(t 1) - 1.

pa(C') = —(t = 1)(¢* — 2t +2).
Therefore, if d > 2t — 1, we have

(d—t)(d—t—1) (t—1)(t—2)(t—3)
(5.11) Pa(d,t) > . - > .

For d > 0 this bound improves (3.7). Finally, we point out that the equality holds in
(5.11) for t < 3 by Propositions 5.2 and 5.3, while we have a strict inequality for ¢t = 4 by
Proposition 5.4.
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