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Abstract

During my PhD I investigated how shape and motion information are processed by the
rat visual system, so as to establish how advanced is the representation of higher-order visual
information in this species and, ultimately, to understand to what extent rats can present a
valuable alternative to monkeys, as experimental models, in vision studies. Specifically, in my
thesis work, I have investigated:

1) The possible visual strategies underlying shape recognition.
2) The ability of rat visual cortical areas to represent motion and shape information.

My work contemplated two different, but complementary experimental approaches:
psychophysical measurements of the rat’s recognition ability and strategy, and in vivo
extracellular recordings in anaesthetized animals passively exposed to various (static and
moving) visual stimulation.

The first approach implied training the rats to an invariant object recognition task, i.e. to
tolerate different ranges of transformations in the object’s appearance, and the application of
an mage classification technique known as The Bubbles to reveal the visual strategy the
animals were able, under different conditions of stimulus discriminability, to adopt in order to
perform the task.

The second approach involved electrophysiological exploration of different visual areas
in the rat’s cortex, in order to investigate putative functional hierarchies (or streams of
processing) in the computation of motion and shape information.

Results show, on one hand, that rats are able, under conditions of highly stimulus
discriminability, to adopt a shape-based, view-invariant, multi-featural recognition strategy;
on the other hand, the functional properties of neurons recorded from different visual areas
suggest the presence of a putative shape-based, ventral-like stream of processing in the rat’s
visual cortex.

The general purpose of my work is and has been the unveiling the neural mechanisms
that make object recognition happen, with the goal of eventually 1) be able to relate my
findings on rats to those on more visually-advanced species, such as human and non-human
primates; and 2) collect enough biological data to support the artificial simulation of visual

recognition processes, which still presents an important scientific challenge.

xi






Chapter I | Introduction

Each environment-exploring living system must answer accurately to one, perhaps the
biologically relevant question: ‘what is that, and where is it going?’.

In other words, survival-driven behavior implies the unambiguous assignment of values
of identity, velocity and direction to objects in the world.

The issues concerning ‘what” and ‘where’ are solved with apparent simplicity by our
visual system; research has shown that human and non-human primates are able to
effortlessly identify static and moving objects from among a huge number of alternatives and
within fractions of seconds (Thorpe et al., 1996; Fabre-Thorpe et al., 1998; Intraub, 1980;
Keysers et al., 2001; Rousselet et al., 2002).

But in spite of the apparent effortlessness with which the brain performs it, the
astonishing computational complexity of visual object recognition strikes when we consider
that its achievement is by nature underconstrained: we cannot access the physical world
directly, but only by means of retinal patterns. Hence, the sole source of input our neural
system affords is inherently ambiguous, since any individual object can produce an infinite set
of different images on the retina (reviewed by Logothetis and Sheinberg, 1996; Purves et al.,
2011).

When getting acquainted to the theory behind the study of object and motion processing,
we find ourselves facing two orders of problems: the Invariance Problem and the Aperture
Problem (explained below).

Again, the purpose of visual percepts is to generate successful behavior based on the
information conveyed by retinal stimuli. In order to support recognition, visual object
representations must be endowed with the property of invariance, i.e. they must tolerate the
changes produced, at the level of the retinal image, by the many transformations each object
may undergo (e.g., position, scale, pose and illumination conditions, and the presence of
visual clutter/background). At the same time, visual object representation must meet the
requirement of selectivity, i.e. they must support the ability to uniquely identify individual
objects.

In other words, the visual system must produce representations that selectively allow

1



Chapter I | Introduction

identification of visual objects in a manner that is largely tolerant to variations in their
appearance.

Researchers have named this issue the ‘Invariance Problem’, which anatomically
appears to find a particularly effective solution in the inferotemporal (IT) cortex of humans
and monkeys. In fact, IT is the latest stage of the ventral visual stream, the neural pathway
devoted to the processing of visual information supporting complex object identification (for
a review, see: Logothetis and Sheinberg, 1996; Rolls, 2000; Tanaka, 1996).

On the other hand, a critical step in the interpretation of the visual world is the
integration of the various local motion signals generated by moving objects. This process is
complicated by the fact that local velocity measurements can differ depending on contour
orientation and spatial position. Specifically, when an object larger than its receptive field
moves across the visual field, any local motion detector can only measure the component of
motion perpendicular to a contour that extends beyond its field of view. This ‘Aperture
Problem’ (reviewed by Chagas et al., 1986) is particularly relevant to direction-selective
neurons early in the visual pathways, where small receptive fields allow only a limited view
of a moving object. Neurons in the middle temporal visual area (known as MT or V5), which
marks the next-to-last stage of the dorsal visual stream (the neural pathway devoted to the
processing of visual motion information, further projecting to the parietal lobe), appear to
offer a dynamic solution to this problem, by integrating information from upstream units and
producing a ‘global’ motion percept (Chagas et al., 1986; Hildreth and Koch, 1987; Rust et al.,
2006). However, recent research has shown that such problem might be already solved at the
first stages of motion detection by particular groups of neurons in the primary visual cortex,
known as ‘end-stopped cells’ (Pack and Born, 2001; Pack et al., 2003; Tinsley et al., 2003;
van Wezel and van der Smagt, 2003). End-stopped cells were firstly described by Hubel and
Wiesel (1968), who referred to them as ‘hyper-complex cells’.

In sum, areas IT and MT appear to perform a fast and thorough integration of inputs
coming from the early visual stages, leading to accurate and coherent representations of the
external world; nevertheless, understanding nature of the visual input at each step of the
processing stream, i.e. the kind of information that is conveyed from one stage to the next and
the way such information is parametrized, still remains a major challenge for the vision

science community.



1 | The Ventral and Dorsal Streams of Processing
1. The Ventral and Dorsal Streams of Processing

Anatomical and physiological studies have identified over 50 distinct visual processing
areas in the primate cortex (Felleman and Van Essen, 1991). About thirty years ago, Mishkin
and Ungerleider (reviewed by Mishkin and Ungerleider, 1983) proposed that these multiple
areas are organized into two major processing streams, known as the ventral (or temporal)

pathway and the dorsal (or parietal) pathway, both originating in the primary visual cortex

(Fig. 1).

A)

Figure 1. The ventral and dorsal streams of processing in the monkey brain.

A) Cortical localization of the pathways. B) Cortical areas subdivision. Both streams originate in
V1; the parietal stream projects to the parietal areas VIP (ventral intraparietal sulcus), LIP (lateral
intraparietal sulcus) and 7a, including areas V5 or MT (middle-temporal cortex) and MST (medial
superior temporal cortex). The temporal streams projects to the temporal areas PIT (posterior
inferotemporal cortex, aka TEO), CIT (central inferotemporal cortex) and AIT (anterior
inferotemporal cortex, aka TE), including areas V2 and V4.

Adapted from Mishkin and Ungerleider, 1983.

The ventral stream, or pathway, travels into the temporal lobe, including cortical areas
V2, V4, and the IT (Inferotemporal) cortex, and is thought to be crucial for the visual
recognition of objects (also known as the “what” stream). The dorsal stream, or pathway,
projects to the posterior parietal cortex, and includes areas V2, the MT (middle-temporal)
cortex, and the MST (medial superior temporal) cortex, and is thought to be crucial for

motion integration, for encoding spatial relationships between objects and for visual guidance
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toward objects (also known as the “where” stream) (Baizer et al., 1991; Mishkin et al., 1983;
Morel and Bullier, 1990).

For almost three decades, this theory has been established as one of the most dominant
theories of primate visual system organization.

As a matter of fact, single-unit recording studies are consistent with the two streams
hypothesis. For example, neurons in the ventral stream show selectivity for orientation, shape
and texture while those in the dorsal stream show selectivity for the direction and speed of
visual motion (Maunsell and Newsome, 1987; Ungerleider and Pasternak, 2004).

Hence, motion processing would involve first computation by direction-selective sensors
in V1, followed by integration up to MT to solve the aperture problem; form processing
would involve filtering by orientation-selective units in V1, up to size-selective and other
features-selective units, followed by integration up to IT to encode object shape and solve the
invariance problem.

Modularity in the processing of different visual attributes has the advantage of allowing
each stream to optimize its computations for the relevant visual attribute, ensuring that
limitations or errors in processing output remain confined, rather than be propagated across
attributes.

However, recent works have started to question the established principle of parallel,
modular processing streams, being more in favor of a constant and active interplay at different
stages between form and motion processing systems.

Such interplay is already evident when analyzing the properties of neurons in the early
stages of processing: the apparent direction of a moving line depends on how the local
orientation and direction of motion combine to match the receptive field properties of motion-
selective neurons in the early visual areas. Since the pioneering works by Hubel and Wiesel
(1968), there has been extensive physiological evidence that the receptive fields of direction
selective neurons in V1 extract the motion component orthogonal to local orientation, so their
directional response is ambiguous (the ‘aperture problem’). Such ambiguity is thought to be
solved, as already mentioned and as we will see later in detail, by area MT, which appears to
integrate the responses of different V1 cells (Simoncelli and Heeger, 1998), though it might
be solved already at earlier stages of processing by the so-called end-stopped cells (Pack and
Born, 2001; Pack et al., 2003; Tinsley et al., 2003; van Wezel and van der Smagt, 2003).
However, although such cells in V1 respond to the motion of line-terminators independently
of line orientation, the orthogonal motion component has been shown to affect the response of

motion-selective neurons at later stages in MT (Pack and Born, 2001). The interaction
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1 | The Ventral and Dorsal Streams of Processing

between orientation and motion direction at the very early levels of cortical analysis show that
processing of these two attributes is inextricably linked (reviewed by Mather et al., 2013).

Moreover, behavioral studies have shown that motion information per se is also
important for object recognition. Intuitively, motion provides visual cues for object
boundaries, local part structures and view-specific features. For example, the direction of
rotation in depth, which preserves 3D shape and view information, affects observers'
performance across a range of stimuli and recognition tasks. Several studies have shown that
reversing learned motion patterns impairs recognition performance (Vuong and Tarr, 2004;
Wallis and Biilthoff, 2001), and that such ‘motion reversal effect’ can be influenced by
similarities in the 3D structure of objects (Vuong and Tarr, 2006).

Interestingly, several human fMRI studies investigating structure-from-motion (SFM)
processing have identified multiple sites along the ventral and dorsal pathways that are
concurrently involved in deriving 3D shape from the motion of random-dots displays.

Deliver an invisible form composed of randomly arranged dots against a dotted
background. As soon as the form moves, it becomes visible, by virtue of what the Gestalt
psychologists have named ‘the common fate’ of its components, which all move together with
a common speed and direction (Ledgeway and Hess, 2002; Uttal et al., 2000). This
phenomenon clearly shows that form perception can emerge from motion processing, in the
absence of any other cue, suggesting that motion information represented in the dorsal stream
can feed object recognition performed in the ventral stream.

Kriegeskorte et al. (2003) investigated the motion flowfield component of object
recognition with functional magnetic resonance imaging. SFM stimuli consisted of face
surfaces, random three-dimensional shapes with matched curvature properties. Control stimuli
consisted of static and moving random dots patterns. The dots in the moving conditions were
SFM-matched. The authors showed that face surfaces elicited a stronger response in the
whole ventral stream, particularly the fusiform face area (FFA) as compared to random shapes.
Interestingly, the human motion complex (+hMT, homologue of primate MT/MST) increased
its activity in response to the random moving dot stimuli, but also to motion-defined object
(shape or face), showing to play a central role in SFM object recognition.

Finally, a couple of other fMRI study have reported object-selective responses in
motion-associated areas (Kourtzi and Kanwisher, 2000; Kourtzi et al., 2002). Object-selective
responses were observed in +hMT for moving objects as well as for static objects implying
motion (e.g., a still photograph displaying a motion scene), but not for static 2D objects. Also,

+hMT displayed higher responses for intact than for scrambled images of objects.
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Evidently, the influence of form signals on motion processing, and vice-versa, is more
extensive than previously thought.

For the sake of simplicity, I will first describe separately the two ‘relay stations’ of
object and motion neural processing, IT cortex and MT cortex. Similarly, I will separately
explore the functional mechanisms of object recognition and motion processing in each

section.

1.1. IT Cortex and Object Recognition

Our capacity to identify visual objects relies on a large neural network, from the retina to
the prefrontal cortex, which includes the so-called ‘ventral pathway’, a set of posterior
cortical areas extending from the primary visual cortex (V1) to the infero-temporal (IT) cortex.
The inferotemporal cortex (IT) of the monkey brain has been divided into subregions in
several different manners. Posterior IT corresponds to TEO, and anterior IT to TE.

IT projects to various brain sites outside the visual cortex, including the perirhinal cortex
(areas 35 and 36), the prefrontal cortex, the amygdala, and the striatum of the basal ganglia.
The IT cortex, is homologue of human LOC (Lateral Occipital Cortex), whose role in object
recognition has been well established (Grill-Spector et al., 1999; James et al., 2003; Kim et al.,
2009).

1.1.1. Functional Properties of IT Neurons

The whole ventral pathway can be characterized by a hierarchical architecture in which
neurons in higher areas code for progressively more complex representations by pooling
information from lower areas (reviewed by Rolls, 2012; Tanaka, 1996).

In other words, the fundamental object processing steps appear to be reflected in the
functional architecture, meaning that the complexity of the critical features and the receptive
field sizes increase in a bottom-up fashion through the stream. Cells in IT respond to complex
stimulus features, dealing mostly with object’s attributes like shape, texture and color (Gross,
1992; Kobatake and Tanaka, 1994; Tanaka, 1996).

Particularly, these neurons are activated by moderately complex combinations of visual
features (Brincat and Connor, 2004; Kobatake and Tanaka, 1994; Rust and Dicarlo, 2010;
Yamane et al., 2006) and they are often able to maintain object selectivity over changes in

object position and size (Ito et al., 1995; Li et al., 2009; Rust and Dicarlo, 2010; Tovee et al.,
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1994), pose (Logothetis et al., 1994), illumination (Vogels and Biederman, 2002) and clutter
(Li et al., 2009; Missal et al., 1999; Zoccolan et al., 2005).

Thus, even though IT cells are just “a few synaptic connections away” from primary
visual cortex, the receptive field size and the complexity of the critical stimuli (i.e. the stimuli
that elicit optimal responses by the neuron) substantially increase from V1 to IT. In primate
V1, neurons have small RFs and thus provide precise information about the position of the
stimulus in the visual field. However, because TE neurons receive massive convergent inputs
from lower areas, they integrate information from larger areas of the visual field and
consequently have large RFs. Hence the capability of these cells to respond to complex
stimulation and a more structured visual information, as compared to the earlier visual stages,
and their ability to convey information about their preferred shapes in spite of variation in 2D
retinal position, 2D rotation in the image plane, 3D rotation in depth, illumination, and so
forth (Fig. 2). Amongst these multiple degrees of freedom, different subspaces of parameters

represent the effective stimuli of IT cells.

B)
Complexity Latency RF size
TE 80-100 ms 2.5°-70°
TEO 70-90 ms 2°-25°
V4 60-80 ms 1°-20°
\'/ 50-70 ms 0.5°—-4°
vi 40-60 ms 0.5°-1.5°

Figure 2. A Schematic representation of the ventral visual pathway.

A) Through a hierarchy of cortical areas, complex object representations are progressively built by
integrating convergent inputs from lower levels. Examples of elements for which neurons respond
selectively are represented inside receptive fields (RFs; represented by circles) of different sizes.
B) Schematics of the progressive increase in the ‘complexity’ of the neuronal representations from
V1 through temporal-occipital cortex (TEO/LIP) to temporal cortex (TE/AIP). The rightmost

column displays estimates of the smallest and largest RF sizes reported in the literature. As RF
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size increases (presumably to allow translation and size invariance), neurons at higher levels
typically receive inputs from more than one object at a time during natural scene perception. The
central column displays an estimate of the minimum and the average response latencies reported in
the literature.

Adapted from Rousselet et al., 2004.

Single-cell and optical imaging recordings have shown that IT cells responsive to similar
object features cluster into vertical columns across the cortical layers (Fujita et al., 1992;
Tsunoda et al., 2001; Wang et al., 1998). Moreover, specialized “modules” in human and
monkey IT cortex have been described, in which specific regions (e.g., the fusiform face area
(FFA) and the parahippocampal place area (PPA)) are selectively activated by discrete object
categories (i.e., faces and places, respectively) (Desimone, 1991; Desimone and Gross, 1979;
Epstein et al., 1999, 2003; Grill-Spector et al., 2004; Kanwisher et al., 1997; Zangenehpour
and Chaudhuri, 2005).

Although early studies have described RFs in area TE as being large, it is only recently
that a fully systematic study has been performed, by Op De Beeck and Vogels (2000). This
study found a high degree of variability in RF size, where some are actually rather small (~
3°). Also, the authors found a positive effect of stimulus size on the size of the RFs.

This would seem to go against the classic description of TE neurons as being insensitive
to changes in stimulus size. However, although true for many neurons, some actually
modulate their response as a function of object size and others respond selectively to a
stimulus at a particular size (Lueschow et al., 1994), suggesting a task-related adjustment of

RF size.
1.1.2. How Does IT Provide a Solution to the Invariance Problem?

The study of object recognition must provide an account of how observers compensate
for a wide variety of changes in the object’s appearance.

As we mentioned in the beginning, object recognition is computationally difficult for
many reasons, but the most fundamental is that any individual object can produce an infinite
set of different images on the retina, due to variation in object position, scale, pose and
illumination, and the presence of visual clutter.

The primate ventral stream produces a particularly effective solution to such ‘Invariane
problem’ in the inferotemporal (IT) cortex.

As we have seen, IT cortex represents an important step in the transformation from low-
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level shape signals to complex object representation, by producing an integration of
elementary information processed by upstream areas, through both linear and non-linear
mechanisms (Brincat and Connor, 2004; DiCarlo and Cox, 2007; DiCarlo et al., 2012; Wallis
and Rolls, 1997).

Along the stream neurons process features that are more and more complex, until IT
where the objects seem to be processed in a complex and complete way. But how is the flow
of information processed and conveyed at each step along the stream?

In this regard, representational geometry has proven to allow an effective formalization,
and a possible solution, to the invariance problem, as to many other issues concerning sensory
processing.

We can think of a sensory representation in a certain brain region in terms of a
multidimensional space. The dimensions of the space correspond to the neuronal responses,
and a point corresponds to an activity pattern (i.e., each neuron’s activity provides the
coordinate value for one of the dimensions). A visually perceived object, for example, will
correspond to a point in the representational space of a given visual area. The set of all
possible objects corresponds to a vast set of points in the space. It is the geometry of these
points that defines the nature of the representation (reviewed by Kriegeskorte and Kievit,

2013; Fig. 3).
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Figure 3. Illustration of ten hypothetical representational geometries for ten different brain
regions.

Each dot corresponds to the representation of a particular piece of content (e.g., a visual object).
The space in which the dots are placed is the space of representational patterns (illustrated as two-
dimensional, but high-dimensional in reality). The halo regions around the dots indicate the
margin of error; dots with overlapping error halos are indistinguishable. The items fall into two
categories (dark or light), or in the case of geometry 10, on a continuous manifold (shades of gray).

A) No item is distinct from any other item.



Chapter I | Introduction

B) Most items are distinctly represented but the categories cannot be separated by any simple
boundary.

C) Only the light items are distinctly represented and they are separable from the dark items by a
quadratic boundary.

D) Dark and light items are linearly separable and arranged along parallel lines with pairs of dark
and light dots matched up across the boundary.

E) The items form a single cluster but the categories are linearly separable.

F) The items form two category clusters that are linearly separable and within which all items are
distinct.

G) Like the previous case, but the items in the dark category are indistinguishable. H) Like the
previous case, but only the category distinction is represented; items within each category are
indistinguishable from each other.

I) The dark items are indistinguishable and located among the distinctly represented light items on
a circle.

J) Items fall on two manifolds that closely follow each other, with pairs of items matched up
across them.

Adapted from Kriegeskorte and Kievit, 2013.

A particularly effective geometrical description of the invariance problem draws from
the notion that the ventral visual pathway would gradually ‘untangle’ information about
object identity (DiCarlo and Cox, 2007; DiCarlo et al., 2012; Fig. 4).

When an object undergoes a transformation, such as a shift in position or a change in
pose, it produces a different pattern of population activity, which corresponds to a different
response vector. The ensemble of response vectors corresponding to all possible identity
preserving transformations defines a low-dimensional surface in this high-dimensional space:
an object manifold. For neurons with small RFs that are activated by simple light patterns,
such as retinal ganglion cells or simple cells in V1 cortex, each object manifold will be highly
curved, and the manifolds corresponding to different objects will be entangled. At higher
stages of visual processing, neurons tend to maintain their selectivity for objects across
changes in view; this translates to discrete and more flat object manifolds.

Thus, object manifolds are thought to be gradually untangled through selectivity and

invariance computations applied at each stage of the ventral pathway.
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Figure 4. A geometrical description of the invariance problem.

A) The response pattern of a population of visual neurons to each image (three images shown) is a
point in a high-dimensional space where each axis is the response level of each neuron.

B) All possible transformations of an object will form a low-dimensional manifold of points in the
population vector space, i.e., a continuous surface (represented here, for simplicity, as a one-
dimensional trajectory; see red and blue lines). Neuronal populations in early visual areas (V1)
contain object identity manifolds that are highly curved and tangled together (see red and blue
manifolds in left panel). The solution to the recognition problem is conceptualized as a series of
successive re-representations along the ventral stream (black arrow) to a new population
representation (IT) that allows easy separation of one object’s manifold (e.g., a car; see red
manifold) from all other object identity manifolds (of which the blue manifold is just one example).
Geometrically, this amounts to remapping the visual images so that the resulting object manifolds
can be separated by a simple weighted summation rule (i.e., a hyperplane, see black dashed line).

Adapted from Di Carlo et al., 2012.

In short, object recognition is the ability to segregate images that contain one particular
object from images that do not. In this geometrical perspective, this means the setting of a
decision boundary, like a hyperplane, to separate all the views of one object from all the
views of the other objects.

In principle, one can think of such a decision boundary as approximating a higher-order

neuron, or a population of them, pooling from upstream neurons and computing object

11



Chapter I | Introduction

identity via a simple weighted sum of each neuron’s responses. Such operation would be
impossible in the early stages of shape processing: only at later stages, manifolds discretize,
and a simple hyperplane would be sufficient to separate them.

Another way to see this phenomenon is considering the properties of selectivity for the
object identity and tolerance for its identity-preserving transformations as signals that
propagate through the ventral visual stream. As already mentioned, object recognition
requires both selectivity among different objects and tolerance to vastly different retinal
images of the same object, resulting from natural variation in its appearance. Thus, identifying
neuronal responses that have object selectivity and tolerance to identity-preserving
transformations is fundamental to understanding object recognition.

Zoccolan et al. (2007) showed that IT neurons that attained the highest object selectivity
were, on average, the least tolerant to identity-preserving image transformations and vice
versa. That is, selectivity and tolerance trade off within IT.

On the other hand, Rust and Dicarlo (2010) found that neurons at lower levels of visual
processing encode more local structure whereas neurons at higher stages of the visual system
become more sensitive to specific conjunctions of those local features, affording the
possibility of complex object selectivity.

Moreover, IT’s encoding strategy is more tolerant (more invariant) to identity-preserving
object transformations than the V4 population. From a geometrical point of view, in IT the
population activity tends to cluster in the same manifolds, in spite the transformations it may
undergo. The parallel increase in selectivity and tolerance of IT cells can be seen as the

gradual increase of the ability to untangle the object manifolds along the ventral stream.

1.2. MT Cortex and Motion Processing

The middle temporal area (MT or V5) receives direct and primary input from layer 4B
of V1, which represents 90% of the total input of MT (Born and Bradley, 2005), and provides
a major output to the dorsal stream of processing, particularly to MST and VIP (ventral
intraparietal) cortices. As we have seen, the dorsal stream represents the neural network
traditionally associated with the processing of motion information. In humans, brain imaging
studies have revealed a network of brain areas responsive to motion; among these is the
hMT+ complex, which is a homologue of macaque MT, MST and VIP (Tootell et al., 1995;
Zeki et al., 1991).

12
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1.2.1. Motion Sensitivity in V1 and MT Neurons

In primates, the first place in which we can find motion-sensitive neurons is the primary
visual cortex (V1), where about 25% of the neurons display direction selectivity (Hubel and
Wiesel, 1968), meaning, they respond to one direction of motion and show little or no
responses to the opposite direction.

In primary visual cortex (V1) of macaque monkeys, direction selectivity appears first in
layer 4Ca (Gur and Snodderly, 2007; Hawken et al., 1988; Snodderly and Gur, 1995), and it
initiates motion selectivity in the dorsal cortical stream through its projections to layer 4B and
layer 6, both of which have many direction selective cells (Gur and Snodderly, 2007; Hawken
et al., 1988; Livingstone and Hubel, 1984; Orban et al., 1986). Layers 4B and 6 project
monosynaptically to MT (Movshon and Newsome, 1996; Nassi and Callaway, 2009), where
almost all cells are direction selective.

Directionality in MT is organized in a columnar pattern, such that neurons across the
cortical layers within a column prefer the same direction of motion while direction preference
systematically changes across columns. These changes can either be gradual or abrupt with
preferred direction changing by 180 degrees (Albright, 1984; Dubner and Zeki, 1971;
Geesaman et al., 1997).

A columnar organization is also present in terms of binocular disparity tuning
(DeAngelis and Newsome, 1999) and speed preference (Liu and Newsome, 2003).

The fairly ordered structure of MT can be also appreciated by its complete retinotopic
representation of the contralateral visual hemifield. Finally, neurons in MT are heavily
myelinated, and display a latency of 50-60 milliseconds (Van Essen et al., 1981; Maunsell
and Van Essen, 1987). Area MT is also known to be involved in pursuit eye movements
(Diirsteler et al., 1987; Movshon et al., 1990; Newsome et al., 1985).

Since sensitivity to motion stimuli is already present at the very early stages of the dorsal
stream, one might question in what guise, i.e. by which functional properties, V1 neurons are
to be considered different from MT neurons.

A number of studies in the macaque have specifically tackled the issue by investigating
the response of areas MT and V1 to a set of moving and static stimuli.

One of the first of these studies was conducted by Albright (1984), who found, as
mentioned before, a dramatically higher neural population in MT selective for motion,
measured as the response to random dot fields, a moving spot and moving slits, as compared

to V1: approximately 1/3rd of V1 cells are directionally-selective; this is true for ~90% of MT
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cells.

Also, the direction tuning bandwidth for moving stimuli is slightly broader for MT
neurons as compared to V1 neurons. Orientation tuning bandwidth, measured as the response
to stationary slits, is slightly narrower than direction tuning bandwidth, but still broader than
the one of V1 cells.

Finally, the response magnitude (spikes/s) of MT neurons is higher when processing
moving stimuli as compared to stationary ones, while V1 cells display responses of equal
magnitude to moving stimuli and stationary stimuli.

Noticeably, in area MST which adjoins the inner border of MT, neurons selective for
spiral and contraction/expansion motion, as tested by means of moving dot patterns, have
been reported (Graziano et al., 1994; Tanaka and Saito, 1989).

Importantly, Albright was one the first to report two sub-populations of MT cells: one
(~60%) which displays an orientation preference nearly perpendicular to the direction of
motion (as V1 cells), another showing an orientation bias nearly parallel to the preferred
direction, suggesting specific neural mechanisms underlying pattern-motion sensitivity in area
MT (see 1.2.2. Pattern and component responses in MT neurons).

Another important difference between these two populations concerns the size and
properties of the receptive fields (RFs). Mikami et al. (1986) have shown that MT cells detect
directional differences of moving spots, presented in both stroboscopic and smooth motion,
over spatial intervals that are three times larger than those detected by V1 cells. This
capability is related to RF size, which is one order of magnitude larger that V1 cells at
equivalent eccentricities (Albright and Desimone, 1987; Maunsell and Van Essen, 1987).

In contrast, no significant difference in the maximal temporal interval for direction
selectivity was found. According to the authors, these findings might imply that the role of
MT is to extend direction selectivity at higher stimulus speeds by increasing the spatial width
of the RF subunits that detect directional differences, rather than increasing the temporal
properties.

A more recent work by Snowden et al. (1992) characterized the tuning properties of V1
and MT neurons in response to random dot patterns stimulation. Although nearly all V1 cells
tested were driven by the random dot patterns, many cells did not respond in a uniform
manner during the stimulus presentation time. Instead these cells tended to fire at a certain
time (and not at other times) during stimulus presentation. Other V1 cells gave responses
which were much more consistent over the time course of the stimulus. Noticeably, nearly all

MT cells gave responses that were similar to this continuous, uniform response.
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In other words, according to the authors, MT cells exhibit a uniform (or ‘field’, in the
terminology of Gulyas et al., 1987, who had reported the same property in cat's V1) response,
while V1 cells show a not uniform (‘grainy’, Gulyas et al., 1987) response, and dot density
cannot be accounted for this effect. This would suggest that V1 cells fire to a specific feature
or phase relationship within the dot pattern, rather than its motion properties.

Hence, MT appears to add some relevant value in the kind of information the early
stages of the dorsal stream would be able to process alone. One question that arises at this
point is: what is the nature of such added value? As a corollary, does the properties of MT
neurons simply produce an integration of the properties of its inputs from V1, or additional

processing are needed to occur to significantly modify their responses?
1.2.2. Patterns, Components and the Aperture Problem

As we have seen for object recognition, motion processing also requires characteristics
of invariance and selectivity.

For MT neurons to support motion perception their direction tuning properties must be
invariant with respect to the details of the stimulus. Moreover, the process of integration of
local information about the stimulus must be selective, meaning it must unambiguously
convey information about the direction of motion.

The mechanisms of integration and the possible strategies by which selectivity is
obtained is typically addressed by the use of a particular type of visual stimulation, the so-
called ‘plaid patterns’, formed by the superimposition of two or more drifting gratings
(Adelson and Movshon, 1982; Chagas et al., 1986; Jazayeri et al., 2012; Rust et al., 2006;
Tinsley et al., 2003; Fig. 5).

Such a kind of stimulation was first used by Movshon and colleagues (in Chagas et al.,
1986). The authors proposed a model according to which motion processing is performed
through different steps, initiating with a mere analysis of local orientation and culminating in
the integration of low-level features to produce a ‘global’ motion percept. The authors
hypothesized a ‘component’ and a “pattern’ response to be found at the different levels of the
process: the first step units, or 1D analyzers, would respond to the direction of motion of their
components, and not to the resulting moving direction of the combination of the two; 2D
analyzers, would, instead respond to this latter parameter.

Clearly, this kind of stimulation happens to be particularly suitable when addressing

what we have mentioned before as ‘The Aperture Problem’: a critical step in the interpretation
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of the visual world is the integration of the various local motion signals generated by moving
objects. Local measurements are a prerogative of V1, where neurons selective for orientation
and direction first compute the motion of oriented edges in visual scenes, by filtering the
image in both space and time. Neurons in this area typically have small RF sizes; therefore,
the object’s contours will extend beyond the neuron’s region of excitability, making a
‘partition’ of the motion information necessary. However, the motion of a single contour does
not allow by itself to determine the motion of the surface containing that contour.
This would be solved by postulating a hierarchical model in the visual cortex in which a
velocity value could be unambiguously assigned to a 2D pattern, given knowledge of the
motion of its 1D components. The speed and direction of motion of a plaid pattern can be
calculated from the motion of its components using the ‘intersection of constraints’ (I0C)
computation (Adelson and Movshon, 1982): if each component’s motion is represented as a
vector, the only velocity vector that is compatible with both component velocities is the one

that ends at the intersection of the constraint lines of the two components (Fig. 5).

A) B)

component 1 component 2

O) D)

plaid 10C

Figure 5. Plaid pattern, its constituent gratings and intersection of constraints (I0C)
computation.

Gratings in A) and B) add together to form the plaid in C). Each grating has direction and speed of
motion indicated by white arrows. The plaid has direction and speed of motion that can be
calculated from intersection of constraints (I0C)(D).

Adapted from Tinsley et al., 2003.
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Consistent with the results of Albright (1984), the majority of cells in V1 displayed a
‘component direction selectivity’, since their tuning curves revealed exclusive preferences for
the components’ direction of motion. On the other hand, MT neural population displayed both
component direction selectivity (about 40% of the recorded cells), and pattern direction
selectivity (25%), as measured to their response to the plaid motion direction.

Such findings led to the suggestion that the intersection of constraints is calculated in
area MT, and naturally suggest that direction-selective neurons in V1 and MT are the neural
correlates of the hypothesized first and second stages of motion processing. The issue is: in
what way are V1 neurons that project to MT different from other randomly sampled V1
neurons?

Movshon and Newsome (1996) addressed the question by asking, i) whether the
projection neurons are directionally selective at all; and ii1) whether the projection neurons
respond to plaid patterns in a manner characteristic of the first (‘component’) or second
(“pattern’) stage of motion processing.

To answer the questions, the authors analyzed a population of V1 neurons that were
antidromically activated by electrical stimulation of MT. The large majority of these neurons
were strongly directional and responded selectively to the motion of the component gratings
of plaid patterns. The MT projection neurons were typically responding to a broad range of
spatial and temporal frequencies (namely ‘special complex’, aka end-stopped, aka
hypercomplex cells). The projection neurons thus comprise a homogeneous and highly
specialized subset of V1 neurons, consistent with the notion that V1 performs the basic visual
measurements, and then properly distributes information to higher cortical areas for
specialized analysis.

It would seem that the aperture problem is handled by the latest stages of the processing
stream, in area MT, which would perform a dynamic integration of downstream local
information, and such integration appears to be prerogative of specialized pattern-selective
neurons.

At this point one could question: what is the influence of shape, or ‘component’
information, as conveyed by V1 neurons in motion processing? In other words, how do
pattern-selective neurons integrate information from component-selective neurons?

According to Pack and Born (2001), the temporal tuning dynamics of MT neurons in

response to plaids show that their motion sensitivity is largely independent by stimulus
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orientation, but such independence takes some time to become fully developed, with a
stereotyped time-course. The authors reported 60 MT cells in the macaque brain displaying an
initial orientation-dependent motion sensitivity, which started decreasing during the course of
prolonged stimulation, after about 60ms. Within 150ms after the onset of stimulus motion,
MT cells primarily encoded the actual stimulus direction, irrespective of orientation.

This would suggest that MT cells need some time to get independent from stimulus
shape, and that the primate visual system derives an initial estimate of motion direction by
integrating local motion and refines this estimate over time. The authors report a behavioral
correlate of these neural responses: the initial velocity of pursuit eye movements deviates in a
direction which is perpendicular to local contour orientation, indicating the influence of the
earliest neural computations on the oculomotor reaction.

Priebe et al. (2003) investigated whether speed in MT is coded in a way that is invariant
to the shape of the moving stimulus, and if so, how. The authors pointed out that the idea of
investigating motion by characterizing the visual scene according to its spatial and temporal
sine-wave components (in Fourier space) might be misleading. For example, sine-wave
gratings are characterized by a spatial frequency, defined in cycles per degree as the inverse
of the width of a single cycle of the grating, and a temporal frequency, defined in cycles per
second as the inverse of the time required for the intensity of a single pixel to go through a
full cycle of sinusoidal modulation. The speed of a moving grating is the ratio of the temporal
frequency and the spatial frequency. Although sine-wave gratings are commonly used in the
laboratory setting to assess the response properties of neurons, moving real-world objects
contain multiple spatial and temporal frequencies. Therefore, motion processing of natural
objects might be quite different from what happens in laboratory conditions, and whatever
model for motion tuning must take this into account.

When tested with single sine-wave gratings of different spatial and temporal frequencies,
MT neurons show a continuum in the degree to which preferred speed depends on spatial
frequency: 75% of MT neurons displayed dependence, while the other 25% maintain speed
tuning despite changes in spatial frequency. However, when tested with stimuli constructed
by adding two superimposed sine-wave gratings, the preferred speed of MT neurons became
less dependent on spatial frequency. Analysis of these responses revealed a speed-tuning
nonlinearity that selectively enhances the responses of the neuron when multiple spatial
frequencies are present and moving at the same speed. Consistent with the presence of the
nonlinearity, MT neurons show speed tuning that is close to be form-invariant when the

moving stimuli comprise square-wave gratings, which contain multiple spatial frequencies
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moving at the same speed. The authors conclude that MT neurons derive form-invariant speed
tuning in a way that takes advantage of the multiple spatial frequencies that comprise moving
objects in natural scenes.

In line with this report, Jazayeri et al. (2012) show that pattern-selective neurons
integrate component information non-linearly, i.e. they do not respond to the entire pattern as
it would to the individual components. The authors addressed the issue of invariance in MT
neurons by measuring their response to a particular type of dynamic stimulus, namely a
‘triplaid’, which contains 3 component and 3 pattern motions simultaneously.

The actual visual stimulation consisted of 3 successive epochs going from a single
grating, to a plaid, to a triplaid. The authors used the responses during the first 2 epochs to
characterize cells as ‘component-direction selective’ (CDS) or ‘patter-direction selective’
(PDS), and then used responses during the triplaid epoch to assess whether these
characterizations were robust when the stimulus contained other competing motion signals.
The direction tuning of the CDS cells during the triplaid epoch had 3 peaks that corresponded
to the 3 constituent gratings, compatible with the behavior of an ideal CDS cell that maintains
its selectivity for component motion even in the presence of other motion signals. However,
the triplaid tuning function for PDS cells did not have clear peaks for the 3 pattern motions;
instead, tuning functions became nearly flat with no strong preference for either the
component or pattern motion signals. These findings indicate that pattern selectivity, unlike
component selectivity, pattern selectivity is highly susceptible to the presence of other
competing motion signals.

The authors explained this reduced selectivity by an MT model that explains pattern
direction selectivity as gained by pooling V1 afferents with broad excitation and strong
opponent inhibition (Rust et al., 2006): the reason why PDS cells do not respond to the
preferred plaid in the triplaid stimulus might be due to the activation of this opponent

mechanism by the third grating that moves opposite to the preferred plaid.
1.2.3. An Early Solution to the Aperture Problem: V1 End-Stopped Cells

Interestingly, some of the properties of MT neurons, such as independence from
stimulus shape features such as orientation and time-dependent learning dynamics can already
be found in a particular sub-population of V1 neurons, the so-called ‘end-stopped’ (or hyper-
complex) cells.

V1 ‘simple’ cells respond to lines and edges at a very specific orientation, and at a very
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specific position within the field of view; V1 ‘complex’ cells fire, like simple cells, to lines
with a specific orientation, but the position of the line within the field of view is not critical.
Thus, the essential difference between the two types consists in, for a simple cell, the
importantly narrow range of positions over which an optimally oriented line evokes a
response; for a complex cell, the responses to a properly oriented line irrespective of where it
is placed in the receptive field. This behavior is related to the explicit on and off regions of a
simple cell, and to the lack of such regions in a complex cell.

A sub-type of the complex cells (hyper-complex cells) responds well to short contours or
endings of contours, but the response is suppressed by longer contours. This characteristic of
these neurons is referred to as ‘end-stopping’, since these cells respond best to oriented edges
which are ‘stopped’, i.e., their end does not extend beyond a specific part of their receptive
field.

In fact, an ordinary simple or complex cell usually shows length summation: the longer
the stimulus line, the better is the response, as far as the line is as long as the receptive field;
making the line still longer has no effect. For an end-stopped cell, lengthening the line
improves the response up to some limit, but exceeding that limit in one or both directions
results in a weakening or suppression of the response (Hubel, 1995; Hubel and Wiesel, 1968).

A number of recent studies have suggested that neurons with end-stopping behavior are
optimally suited to solving the aperture problem.

For instance, an end-stopped neuron responds to the contour-ending of the wing of a
plane in accordance with the perceived motion direction (Fig. 6). Non-end-stopped cells,

however, respond to the long contour of the wing but signal the wrong direction.

/ End-stopped cell

P

Non-endstopped cell

Figure 6. The aperture problem of motion vision could be solved by end-stopped cells.
A non-end-stopped V1 neuron can signal an incorrect motion direction of a contour of a moving

object. Through an aperture the contour seems to move perpendicular to the orientation of the
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contour, and this does not always coincide with the direction of the whole object. An end-stopped
neuron signals the correct motion direction for a contour end.

Adapted from van Wezel and van der Smagt, 2003.

In contrast to these considerations, neurophysiological evidence has tended, as we have
seen, to support the idea that the aperture problem is solved at a later stage of motion
processing, where information from V1 neurons is combined. The work by Pack et al. (2003)
seems to refute this generally accepted hierarchical model, showing that this subtype of V1
cells responds to the overall direction of motion, and not to the components that create it.

The authors trained macaque monkeys to maintain visual fixation while a stimulus of
white and black bars, moving in different directions in combination with different orientations,
was presented on a grey background at the receptive field location of a recorded cell. End-
stopped cells responded best when the bar endpoints were in the receptive field, and poorly
when the bar was centered on, and extended beyond, the receptive field, and displayed a
preferred motion direction which was independent of the bar’s orientation. It is this
independence of stimulus orientation that makes these cells suitable candidates for solving the
aperture problem, without the need for further integration in area MT.

To sum up, end-stopped cells are strongly direction-selective, and such selectivity is
held consistent throughout different stimulus orientations: rotations of the bar stimulus of 45°
clockwise and counter-clockwise led to similar profiles of response. As for the time course of
the response, the authors found that, just like pattern-selective responses in MT, end-stopping
features develop with a slight delay: the end-stopped response profile takes 20-30
milliseconds to show up.

We have seen that another well-established view holds that gratings are processed in V1,
and that those signals are combined in a subsequent stage of visual motion processing.
Evidence for this integration stage has been found in area MT, which contains neurons
responding specifically to moving plaids.

However, Tinsley et al. (2003) have shown that the response strength to patterns or
components is significantly correlated with the interrelated properties of direction tuning
width, and receptive-field subunit aspect ratio of neurons: neurons with broad direction tuning
and short, wide receptive-field subunits gave their greatest response when the plaid moved in
their preferred direction. Conversely, neurons with narrow direction tuning and long, narrow
receptive-field subunits gave their greatest responses when the plaid moved in a direction

such that one of its components moved in the preferred direction.
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The authors explain such finding by referring to a previous work by (Derrington and
Badcock, 1992), who had suggested that cells which are sensitive to the motion of local
elements in the plaid, such as edges (i.e. already in V1), could also contribute to extract
pattern-motion signals without any 10C.

Taken together, these findings point out that although MT can be accounted as a motion-
specialized area, V1 contains already a fair extent of correct and detailed information on
motion patterns.

In the light of such tight interplay between MT and the early stages, and such possible
independency of the early stages in motion processing, it would be interesting to investigate
how fundamental is one area as compared to the other at the purpose of the creation of motion
representations, particularly in a neural system where no functional subdivision has been

reported yet.

2. Using Rats in Vision Research

One important question in the study of object recognition concerns the scarce
experimental manageability of its optimal test cases: the primates. To date, nonhuman
primates have been the model-of-choice in the study of the mechanisms underlying object
vision, since their visual system mirrors the human one. However, experiments with monkeys
are typically slow and labor-intensive, generally affording only a limited number of subjects
per study; needless to say, genetic, molecular, and highly invasive manipulations are often
unpractical. Hence, an increasing number of visual neuroscientists has recently started to look
into rodents as potential models of visual functions, implying both behavioral (Brooks et al.,
2013; Douglas et al., 2006; Forwood et al., 2007; Hupfeld and Hoffmann, 2006; Minini and
Jeffery, 2006; Petruno et al., 2013; Tafazoli et al., 2012; Zoccolan et al., 2009) developmental
(Sia and Bourne, 2008; Sun et al., 2009) and electrophysiological/ imaging approaches
(Andermann et al., 2011; Girman et al., 1999; Greenberg et al., 2008; Marshel et al., 2011;
Niell and Stryker, 2008).

Although many rodent species (like rats, as we will see) display a fully functioning
visual neural machinery, their ability to engage in high-level visual processing has been long
underestimated. Such underestimation is based, in part, on the observation that rodents have,
as we will see in details in the following sections, a poor visual acuity (approximately one

cycle/degree in pigmented rats). Furthermore, it is commonly accepted that these animals
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make extensive and preferential use of their whiskers (Diamond et al., 2008; von Heimendahl
et al., 2007) and sense of smell (Rubin and Katz, 2001; Uchida and Mainen, 2003) when
exploring their environment.

The following sections will explore the rat’s visual machinery and behavioral potential,

introducing this animal as a possible advantageous model for vision research.

2.1. The Rat’s Visual System

2.1.1. The Rat’s Eye

The rat has a rather sophisticated and effectively functioning visual system (reviewed by
Sefton et al., 2004). Its laterally placed eyes provide it with a panoramic view but there is a
binocular overlap, estimated to be 40—60 degrees in front of the animal. The visual field of the
rat spans from -40° to more than 60° with respect to the horizontal plane of the animal if the
pupil is pointing 20° in the elevation plane, and can reach more than 100° temporally (Adams
and Forrester, 1968; Fig. 8A).

The rat’s lens cannot perform accommodation, preventing light from being focused on a
discrete point on the retina. However, with its pupil constricted the rat’s eye shows a
considerable depth of focus, and its lens power appears to increase with beams of light
entering the eye obliquely with respect of the optic axis, displaying a point of least negative
aberration (Hughes, 1977, 1979).

Being non-diurnal animals, rods are the predominant photoreceptors; however cones,
though relatively rare (about 0.85% of photoreceptors), are also present and the retina is
therefore capable of functioning in both scotopic and photopic conditions (Cicerone, 1976;
Green and Powers, 1982; Jacobs et al., 2001; Muntz, 1967; Sz¢l and Rohlich, 1992).

Of the two types of cones identified, the majority (93%) contain a photopigment with a
peak sensitivity at about 500-520 nm (Deegan and Jacobs, 1993). The second, albeit rare,
cone type (7% of cones, i.e., about 0.05% of all photoreceptors; Sz¢él and Rdéhlich, 1992)
contains a photopigment with a peak sensitivity at about 370 nm, in the ultraviolet range
(Akula et al., 2003; Deegan and Jacobs, 1993, 1993; Sz¢él and Rohlich, 1992).

The rat’s eye is capable of optically resolving 12 min of visual angle (Hughes and
Wissle, 1979). The maximal spatial resolution of dark- and light-adapted retinal ganglion
cells recorded from optic tract of the hooded rat is, however, only about 1.2 cycles/degree or

about 25 min of visual angle (Friedman and Green, 1982). Similarly, visual acuity estimated
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on the basis of the sampling theorem from the peak density of ganglion cells is about 1.3
cycles/degree (Pettigrew et al., 1988).

Consistent with this, the upper limit of spatial resolution of single neurons recorded from
the primary visual cortices of Lister hooded rats is 1.2 cycles/degree (Girman et al., 1999).
Behaviorally measured visual acuity or acuity extrapolated on the basis of evoked potentials
in the visual cortex of awake rats is also about 1.2 cycles per degree (Birch and Jacobs, 1979;
Prusky et al., 2000a, 2002; Seymoure and Juraska, 1997). Interestingly, it has recently been
shown that visual acuity of hooded rats is prone to experience-dependent plasticity during the
critical period (Prusky et al., 2000b).

As we said, rat acuity can also be measured by examining the density of ganglion cells
in the retina. Ganglion cells are relatively evenly distributed across the rat retina, with the
variation from the highest to the lowest density being 5:1 (from 3000 to 600 cells per square
millimeters). Dendritic trees and therefore the sizes of the receptive field centers of ganglion
cells located in the area of highest density (area centralis) are not significantly different from
their counterparts located peripherally, in the areas of lowest density (Huxlin and Goodchild,
1997; Perry and Cowey, 1979). Therefore, exploratory fixation (i.e. eye movement bringing
the image of an object of interest to a region of high resolution) is not likely to occur.

However, studies on the dynamics of the rat eye movements report the presence of
stereotypic, spontaneous saccades, directed primarily along the horizontal axis, with small
vertical components (Chelazzi et al., 1989, 1990; Zoccolan et al., 2010).

It is worth mentioning a recent report by (Wallace et al., 2013), which has shown that
rats move their eyes according to the precise head movement they need to perform while
exploring the environment: when the head points downward, the eyes move back, away from
the tip of the nose. When the head is lifted, the eyes look forward and the visual fields cross.
If the animal puts its head on one side, the eye on the lower side moves up and the other eye
moves down. This implies that line of vision varies by as much as 40 degrees in the horizontal
plane and up to 60 degrees in the vertical plane. This would allow the rat to gain maximum

surveillance of the environment, but at the expenses of a fine and detailed binocular vision.

2.1.2. The Rat’s Visual Cortex: V1

In a series of electrophysiological studies, Montero and co-workers (reviewed in
Montero, 1981) distinguished seven visuotopically organized areas in the occipital cortex of

the rat. The largest of these areas is area 17 (V1, the striate area) distinguished by Krieg
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(19464, 1946b) on the basis of qualitative cytoarchitectonic criteria.

Primary visual cortex of rat occupies the most posterior surface of both hemispheres.
Anteroposteriorly (AP) it spans an area of about Smm (from bregma -4.4 mm to -9.36 mm, i.e.
4.4 mm and 9.36 mm posterior from bregma). Mediolaterally (ML) it reaches its maximal
width around bregma -7.92 mm, where the most medial side is ~1.4 mm far from the central
suture and the most lateral ~5.8 mm (Fig. 7B). At bregma -4.44 mm, only its monocular part
(V1m) is visible, and its width is less than 1 mm and its location is ~4 mm far from the central
suture (Fig. 7A). At bregma -9.36 mm it becomes small again and is located between ~2 mm

and ~4.4 mm far from the central suture (Fig. 7C) (Paxinos and Watson, 2005).
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Figure 7. The rat’s primary visual cortex at three different bregmas.

The visual cortex is highlighted by red patches, and its margins marked by black dashed lines.
A) At bregma -4.4 VIM is less than 1 mm wide.

B) At bregma -7.92, the whole V1 (binocular and monocular) has its maximum width.

C) At bregma -9.32, V1im and V1b cover less than 2 mm.

Adapted from Paxinos and Watson, 2005.
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V1 neurons can be clustered into two different populations according to whether they
integrate visual inputs coming from only one eye (monocular neurons) or both eyes (binocular
neurons). These two populations of cells are organized into two topographic distinct cortical
areas: one more medial (monocular V1, VIM) and one more lateral (binocular V1, V1B). The
percentage of binocular cells in the rat primary visual cortex is about 80% (Sefton et al, 2004).
When the pupil of the animal is pointing 65° with respect to the sagittal plane passing through
the nose of the animal, the ipsilateral binocular hemifield occupies 40° starting from the
vertical meridian (Fig. 8A, green angle). Panel B of Figure 8 shows the primary visual cortex
of the animal. The green surface in the figure represents the population of neurons which

collects the information from the binocular part of the visual field.
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Figure 8. Cortical projections of the rat’s visual field.

A) The presumed fields of view of the rat's eyes in the horizontal plane. ML is the meridian which
lies in the sagittal plane of the rat. The red angle represents the angle between the sagittal plane of
the animal and the fixation point of the pupil of the right eye P. The green angle represent the
binocular region of the visual field of the right eye. The left primary visual cortex of the animal is
shown.

B) The projection of the visual field on the left primary visual cortex. Abbreviations: HOR: the
horizon; U20: a parallel 20° above the horizon; D20: a parallel 200°below the horizon; white
circle: position of the optic disc (which is not itself represented). The binocular area, to which the
left eye projects as well as the right, is green.

Adapted from Adams and Forrester, 1968.

Monocular and binocular V1 have a retinotopic organization (Fig. 9). RF size decreases
at the border of the vertical meridian (lower than 3°). In the periphery, it can reach 20°. The

mean RF size in V1 has been reported to be about 13° (Espinoza and Thomas, 1983; Girman
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et al., 1999).

As documented in other mammals, rat V1 neurons are tuned by a set of properties of
visual stimuli like spatial frequency, temporal frequency, velocity, contrast, orientation,
direction and so forth (Girman et al., 1999).

The authors document that about half of the population of cells responds well to flashing
uniform stationary on—off stimuli. The other half responds best to optimally oriented moving
gratings of an appropriate spatial frequency. The spatial frequency tuning covers a range of 0—
1.2 cycle/degree, peaking at 0.08 cycle/degree. Around 75-80% of cells in the primary visual
cortex are orientation selective, although no evidence of iso-orientation columns has been
reported (Ohki et al., 2005).

Almost 63% of the orientation-selective cells display an orientation tuning width at half-
height of 60° or less. Furthermore, an additional 16% of cortical neurons are orientation
biased. Thus almost 95% of cells in the primary visual cortex appear to exhibit some
orientation selectivity.

About 35% of orientation selective or orientation biased cells show preference for bars
and/or gratings oriented horizontally. Cells in layers II and III tend to exhibit little
background activity, tend to be sharply orientation selective, and respond to stimuli of
relatively low temporal frequencies (low velocities) and relatively high spatial frequencies.
Cells in layer IV tend to exhibit high temporal resolution and respond well to relatively high
stimulus velocities (over 500%s).

Analysis of the response modulation of V1 cells in the rat evidences a bimodal
distribution consistent with the simple/complex distinction: simple cells are characterized by
spatially separate ON and OFF region in the RF, summation within region, antagonism
between ON and OFF subregion, linear behavior and relative modulation of response to
gratings major than 1.0; complex cells are characterized by superimposed ON-OFF region,
highly non-linear behavior and relative modulation minor than 1.0.

Parnavelas et al. (1981) documented a similar simple/complex segregation in rat’s V1.

The receptive field properties of neurons were examined in the visual cortex, area 17, of
Long-Evans pigmented rats. Visually responsive cells comprised 90% of cells recorded in
area 17. Cells were classified as 1) simple (27% of the population), displaying small RFs, low
baseline rate, preference to slowly moving stimuli, and strong orientation selectivity; ii)
complex (44%), displaying stronger baseline firing, preferring fast movements and being
direction selective; iii) hypercomplex (13%), which, as mentioned before, are selective for

edges ending in their RF; iv) non-oriented (16%), which responded to motion regardless of
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the orientation of the stimulus.

According to Girman et al. (1999), almost 60% of visual cortical cells recorded in rats
exhibit either clear directional selectivity or directional bias. For many cortical neurons the
magnitude of responses is reduced substantially when stimuli extend beyond the RF. In some
cases, the reduction in the magnitude of responses is independent of the orientation of the
stimuli. In most cases, however, the level of suppression of the responses is dependent on the
orientation of the stimuli outside the receptive field. Only pyramidal cells have complex or
end-stopped RFs, with complex cells being located in layers 2 to 4 and end-stopped cells in
layers 2, 3, and 5. In contrast, simple cells may have either pyramidal or nonpyramidal
morphology and are found in layers 2, 3, and 4. Of those cells that do not exhibit orientation
selectivity, some have on- or off-discharge centers with antagonistic surrounds, whereas
others have on- or off-discharge centers with silent suppressive surrounds; some do not
respond to stationary flashing stimuli, although their responses to moving stimuli are quite

vigorous.

2.1.3. The Rat’s Visual Cortex: Extrastriate Areas

Rat V1 is surrounded by a number of satellite areas whose functions are almost
unknown.

Electrophysiological and anatomical reports individuated a number (743) areas around
V1 (Coogan and Burkhalter, 1993; Espinoza and Thomas, 1983; Montero, 1993; Sanderson et
al., 1991). I will, in the following, adopt Espinoza and Thomas (1983) classification, who
individuated 7 visual areas by means of electrophysiological assessment. Two of them are
located medial to V1, anteromedial (AM) and posteromedial (PM) and the others are located
laterally, lateromedial (LM), anterolateral (AL), laterointermediate (LI), laterolateral (LL).

These areas are retinotopically organized, displaying RF reversal at each border, and
each of these areas encode a complete representation of the visual field (Fig. 9).

In LM, the upper VF is represented caudally and the nasal VF medially, being thus a
mirror image of V1. In AL (third visual area) the upper VF is represented rostrally and the
nasal VF, medially, being thus a mirror image of LM. In LI, the upper VF is medial and the
nasal VF, lateral, being thus a mirror image of LM, or a reduced copy of V1. More medially,
there are two representations of the temporal VF, labeled anteromedial (AM) and
posteromedial (PM). In AM, the upper temporal VF is medial and the lower temporal VF is

lateral, the extreme temporal field being rostral. The 30° azimuth provides the boundary
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between AM and PM. Thus, AM is organized as a counter-clockwise rotation by 90° of the
V1 representation. In PM, the upper lower VF topography is like in AM, but the extreme
temporal VF is caudal, being thus a mirror image of AM.

The analysis of the cortico-cortical connections, mainly by means of tracer injections,
between these satellite areas (Montero, 1993; Sanderson et al., 1991) revealed that each of
them receives direct connections from the V1, and in turn, each area sends feedback
connections to the striate cortex. Moreover, Coogan and Burkhalter (1993) identified
asymmetrical connectivity patterns between reciprocally connected areas, a marker of
hierarchical ranking (Van Essen et al., 1986), and concluded that V1 is at the first level in the
hierarchy, LM ranks higher and is likely at the second level, AL ranks above LM, and AM is
at a still higher level.

lateral

Figure 9. Retinotopic organization in rat’s striate and extrastriate areas.

A) dorsal view of the left posterior cortex , illustrating the recording sites (numbered from right to
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left and from top to bottom) and the locations of the areas containing representations of the right
eye visual field; Bregma taken as zero for the reference axes; scale in ram. Receptive fields
identically numbered and corresponding to the recording sites in V1, AL and LM are plotted in the
perimeter charts. VM and indicate vertical and horizontal (equator) meridians, respectively;
asterisk represents the projection of the optic disk; each scale subdivision represents 20 °.

B) Receptive field organization of LL, LI, AM and PM (same conventions as in (A)).

C) Relationship between the retinotopic map and the cytoarchitectonic subdivisions. A schematics
of the retinotopic map of visual cortex and of the left cerebral hemisphere and of the right eye
visual field is shown. Abbreviations: u. upper , l. lower, n. nasal, t. temporal .

Adapted from Espinoza and Thomas 1983.

2.2. Is There a Ventral/Dorsal Stream in Rats?

The studies on the cortico-cortical connections we just reviewed suggest the presence of
a hierarchical organization in the visual cortex of the rat. Such suggestion is made stronger by
the observation that the more one moves away from V1, the bigger the RF sizes get. As
shown by Espinoza and Thomas (1983), the RF size gets particularly wide in extra-striate
areas LM, LL, LI and AL (see Fig. 9). The increase in RF size is one hallmark of
progressively higher-level neural representations, the ones found travelling upstream in both
ventral and dorsal pathways in the primate and human brain. It is then reasonable to wonder:
is there an IT and MT counterparts in the rat’s brain?

Recent studies approached the question in mice (Andermann et al., 2011; Marshel et al.,
2011; Wang et al., 2011). Interestingly, all these studies identified a putative subdivision
between ventral and dorsal streams of processing in the mouse brain (reviewed by Niell,
2011; Fig.10). Importantly, although maybe not surprisingly, the rat and mouse visual system
are extremely similar, in terms of anatomical structure, receptive field organization and area
subdivision (and nomenclature).

Andermann et al. (2011) largely concentrated on two areas: AL, which was proposed to
be the ‘gateway’ into the dorsal stream (Wang et al., 2011), and PM, which also receives a
strong direct input from V1 and was also a candidate dorsal region, although this assignment
is less clear. Similarly to Marshel et al. (2011), the authors made use of drifting sinusoidal
gratings, they found a striking dichotomy between these two areas: AL was responsive to low
spatial frequencies and high temporal frequencies (large features moving fast) while PM was

responsive to high spatial frequencies and low temporal frequencies (fine detail moving
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slowly). The first property is suggestive of optic flow, the movement of objects and
landmarks across the visual field as one moves through the environment, and the authors note
that the very high speeds these neurons responded to could correspond to the stimuli seen by a
running mouse. The responses of the second area, PM, are more indicative of an object
recognition area, except that their analysis revealed a further specialization for motion
processing: as spatial frequency was varied, the preferred temporal frequency changed in a
manner to keep the preferred speed constant. This form of speed tuning was relatively
uncommon in V1, suggesting that it is a new feature being computed in PM, perhaps
specifically for tracking objects in motion. Results on putative ventral stream areas were less
conclusive.

Both Marshel and Andermann’s groups studied LM, the proposed gateway to the ventral
stream (Wang et al., 2011): LM-projecting V1 neurons are specialized for the processing of
high spatial frequency/ high contrast information, whereas AL-projecting V1 neurons are
optimally tuned to low spatial frequency/low contrast stimuli.

However, they either found it similar to V1 or more like the dorsal areas. The other
putative ventral region studied by Marshel et al., LI, showed high spatial frequency preference,
but no other specialization for processing shape or form. It is clear that further studies of these
areas will be needed to make any definitive statement about their homology to the primate

ventral areas.

Tmm

Figure 10. Putative ventral and dorsal pathways in the mouse visual cortex.

Map of the visual areas in mouse cortex, showing nine extrastriate areas circumscribing primary
visual cortex (V1). Proposed dorsal stream ventral stream areas are shown in red and blue,
respectively, with emphasis on putative gateway areas LM and AL.

Adapted from Niell, 2011.

Inconclusive evidence has been reported for a rat’s dorsal stream; a couple of studies
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have reported impairment of visuospatial perception after lesioning the posterior parietal
cortex (Kolb and Walkey, 1987; Kolb et al., 1982). Interestingly, a developmental study (Sun
et al., 2009), investigated cortical changes in response to the vision of moving stimuli in dark-
reared P9 rats. When exposed to visual stimulation consisting in moving images, the animals
displayed substantial conformational changes (in terms of spine density) in area V2M
(corresponding to areas AM/PM), suggesting a role of dorsal areas in the processing of
motion information.

On the other hand, damaging temporal and perirhinal cortex, downstream of the main
outflow of LM, disrupted object recognition but spared spatial memory (Aggleton et al.,
2010; Bussey et al., 1999; Davies et al., 2007; Prusky et al., 2004).

In conclusion, the presence of a ventral or dorsal stream of processing in the rat brain
has not been reported yet.

Importantly, the few studies which have proposed a ventral/dorsal subdivision in the
mouse or in the rat’s brain do so, at best, by quantifying the categories ‘shape’ and ‘motion’
in terms of spatial and temporal frequency processing and integration. This can only give a
small hint on the nature of the problem, since a primal and robust way to investigate the
presence (or lack thereof) a function requires properly-designed experiments (and close-to-

natural visual stimulation) for the behavioral assessment of that particular function.

2.3. Behavioral Studies: Object Recognition in Rats

Are rats able of solving object recognition tasks?

An interesting study, reporting that rats could distinguish amongst different images and
remember them, is the one by Forwood et al. (2007). The authors found that rats could
discriminate and keep in memory pictures of objects. Importantly, exploration of 3D objects
and images yielded comparable performances. Also, when rats are placed in front of 3 images,
2 of which are identical, the animals display an exploratory tendency towards the odd image,
demonstrating that they recognize it as different.

Recently, Meier et al. (2011) reported that rats can be easily trained to perform visual
tasks that involve distracters, and that their vision is sensitive to the spatial arrangement of
features: rats were trained to detect an oriented visual target grating located between two
flanking stimuli (“flankers”). Flankers varied in contrast, orientation, angular position, and

sign. Results show that rats are impaired at detecting visual targets with collinear flankers,
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compared to configurations where flankers differ from the target in orientation or angular
position. In particular, rats are more likely to miss the target when flankers are collinear. The
same impairment is found even when the flanker luminance was sign-reversed relative to the
target. These findings suggest that contour alignment alters visual processing in rats, despite
their lack of orientation columns in the visual cortex. This was the first report that the
arrangement of visual features relative to each other affects visual behavior in rats.

More recently, Brooks et al. (2013) trained eight rats on two visual categorization tasks
using photographs of eight objects from each of four basic-level categories: chairs, flowers,
cars, and humans. In Experiment 1, rats learned to categorize chairs versus flowers; in
Experiment 2, rats learned to categorize cars versus humans. After rats learned each
categorization, they were tested with eight novel pictures from each of the categories. The rats
performed at reliably above-chance levels during these generalization tests. To determine
which dimension(s) of the stimuli controlled the rats’ behavior, the authors conducted
regression analyses using several image dimensions. The chair versus flower discrimination
was mainly controlled by the convexity of the stimuli, whereas the car versus human
discrimination was mainly controlled by the aspect ratio of the stimuli. These results
demonstrate that rats can categorize complex visual objects using shape-based properties, or
features.

Are rats capable of invariant object recognition tasks, i.e. adopt a strategy that is both
object-selective and transformation-tolerant?

A study by Minini and Jeffery (2006) reports evidence against this hypothesis: the
performance of the animals at a two geometrical shapes discrimination task dropped at chance
level when the stimuli underwent changes in appearance. The authors conclude that rats lack
advanced shape-processing abilities and rely, instead, on low-level image cues, i.e. overall
brightness, as local discriminant features. By contrast, two recent studies have shown that rats
can recognize objects despite remarkable variation in their appearance (e.g., changes in size,
position, lighting, in-depth and in-plane rotation), thus arguing in favor of a sophisticated
recognition strategy in this species (Zoccolan et al., 2009; Tafazoli et al., 2012).

Interestingly, a lesion study conducted by Tees (1999) investigated the functional
consequences of posterior temporal cortical lesions in rats (what we would call areas LI/LL)
using behavioral paradigms. Lesioned animals did not recognize changes in the visual
characteristics of the objects, suggesting a role for this area for visual object recognition
process.

Taken together, these studies add to the growing list of visual tasks demonstrated in rats;
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however, giving the both in favor and contrary evidence, it is not clear if rats can be a suitable

model for the investigation of high-level functions.

2.4. Behavioral Studies: Motion Processing in Rats

With the purpose of finding the most suitable animal model for the study of motion
processing, Douglas et al. (2006) compared the thresholds of visual motion coherence in rats
and mice. The authors used a water-maze-like task to induce the animals to discriminate
different levels of coherence of a moving dot pattern. They found a comparable threshold of
25% of coherence needed by the animals to perform the task with confidence. However, rats
and mice were not so similar in practice: rats displayed, as compared to mice, faster learning,
higher behavioral flexibility and lesser adjustments in the experimental parameters, proving to
be better suited for motion studies with respect to mice.

Hupfeld and Hoffmann (2006) investigated which strain of rats had better motion
discrimination performance, comparing albino Wistar and pigmented Long-Evans rats. First,
it has to be known that albino rats suffer from a defective development of the retina: they
show “a reduced number and a reduced peak density of rods, a reduced ipsilateral projection
of ganglion cell axons, as well as physiological deficits in cortical visual centers” (Hupfeld
and Hoffmann (2006)). This generates lower visual acuity, depth perception and a reduced
monocular visual field. These parameters per se suggest that albino rats are not suited to study
vision. However, the authors found that all rats could discriminate between a noise pattern
stimulus (0% coherence) and a blank screen, and between a 0% coherence and a 100%
coherence dot pattern. Investigating the coherence thresholds, they found that pigmented
Long-Evans rats had a significantly lower coherence threshold with respect to albinos. Long-
Evans, in fact, could discriminate a pattern of dots with about 12% coherence from a noise
pattern; albino Wistar, on the other hand, reach their threshold at 30% coherence. A quick
analysis of other species’ threshold revealed that Long-Evans rats have a lower coherence
threshold with respect to cats, ferrets and pigeons; only primates show even lower motion
coherence thresholds. This study suggests, then, that Long-Evans rats are a good strain to
investigate motion perception.

It is interesting to mention a lesion study by Petruno et al. (2013), which investigated
separately the contribution of V1 and of extrastriate areas to this skill. The authors compared

a direction of motion recognition task (discriminate moving dots) with an orientation
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recognition task (discriminate oriented gratings) and a shape recognition task. Lesioning V1
irreversibly impaired the performance at all three tasks. Lesions in extrastriate areas
(V2ML/AM and V2MM/PM), instead, did not affect the performance. This study then
concluded that V1 is fundamental for both stimulus orientation, shape encoding and direction
of motion processing.

All in all, it is quite obvious that rats can perform visual recognition tasks. One could
question, at this point, what is the nature of the information the rat must process in order to
detect motion, and how shape and motion processing interact (or interfere) to produce
successful behavior according to task demands. The issue will be addressed in the following

sections (see Chapter 2).
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1. Abstract

As discussed in the previous sections, the ability to recognize objects despite substantial
variation in their appearance is such a formidable computational feat that it is commonly
assumed to be unique of primates. Such an assumption has restricted the investigation of its
neuronal substrates to primate studies, which allow only a limited range of experimental
approaches. In recent years, the powerful array of optical and molecular tools that has become
available in rodents has spurred a renewed interest for rodent models of visual functions.
However, evidence of high-level visual object processing in rodents is still limited and
controversial.

In this chapter, I report the results of a study comparing what strategies underlie rat
discrimination of two different pairs of visual objects. The first pair consisted of objects made
of highly distinctive features, therefore affording high discriminability. The objects in the
second pair were made of less distinctive features and were designed to challenge the rat
recognition with less discriminable stimuli. Two different groups of rats were tested, each
with one object pair. For both groups, rat visual strategy was uncovered by applying an image
masking method that revealed the features used by two groups of animals to discriminate two
sets of objects across a range of sizes, positions, in-depth, and in-plane rotations.

Noticeably, when the task involved the first pair of objects (Stimulus Set 1 hereinafter),
rat recognition relied on a combination of 2 to 3 multiple features that were mostly preserved
across the transformations the objects underwent, and largely overlapped with the features
that a simulated ideal observer deemed optimal to accomplish the discrimination task. Group
analysis on the features used by each rat in each condition revealed that the same features
tended to be used across rats.

In the case of the second pair of objects (Stimulus Set 2 hereinafter), the features the rats
used in the recognition process were smaller, more numerous and only partially preserved
across objects’ transformations. Group analysis on the features showed a higher inter-

individual variability in the rat choice of distinctive features, suggesting the use of different
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strategies across all dimensions (subject-wise, stimulus-wise and transformation-wise) to
solve the recognition task.

These results indicate that, in the presence of objects with very distinctive overall
structure and local features, rats are able to process and efficiently use shape information, in a
way that is largely tolerant to variation in object appearance. Such strategy is overall
consistent with what is known in the vision science community as ‘viewpoint-invariant’
object recognition. In case the objects’ shapes are less easily discriminable between one
another, rats still maintain a ‘feature-tracking’ strategy, but do so on a less systematic basis,

more consistent with a so-called ‘viewpoint-dependent’ strategy.

2. Introduction

One way to study object recognition from a behavioral point of view implies
understanding how the diagnostic information afforded by different visual objects, within the
context of a given discrimination task, is exploited by the subjects. Various kinds of image
classification approaches (reviewed by Murray, 2011) can be applied to uncover the set of
diagnostic, or critical, visual features (i.e., parts of the objects), whose correct detection and
extraction is crucial for the recognition process to succeed.

When it comes to invariant recognition, some information that is irrelevant for the task
must be discarded, while, at the same time, other relevant information must be preserved and
processed. This raises the question of the existence of general priors a system would adopt to
decide which part of the input signal must be honored, and which one disregarded. Such
priors will determine the structure of an object representation in memory. Therefore, a theory
of object recognition must specify not only the nature of the visual input, but also how
perceptual representations of objects are encoded, processed and stored starting from that
input. Within this domain, two main theories have emerged over the past couple of decades.

One class of theories, the so-called ‘viewpoint-invariant’ theories, assumes that the
identity of an object can be recovered under almost all viewing conditions, thanks to specific
view-invariant features, or ‘object-centered’ cues. Such theories assume either a complete
three-dimensional description of an object (Ullman, 1989), or a structural description of the
image that specifies the relationships among viewpoint-invariant volumetric primitives
(Biederman, 1987; Marr, 1982).

In contrast, ‘viewpoint-dependent’ theories argue that no such general invariants exist
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and that object features are represented much as they appeared when originally viewed,
thereby relying on ‘viewer-centered’ representations. Such theories assume that the features
visible in the input image are compared to the features of the object representations stored in
memory, either by normalizing the input image to approximately the same viewing position as
represented in visual memory (Edelman and Biilthoff, 1992; Tarr, 1995) or by computing a
statistical estimate of the quality of match between the input image and the candidate
representations (Perrett and Oram, 1998; Riesenhuber and Poggio, 1999).

The comparison between viewpoint-invariant and viewpoint-dependent approaches is
important to our purposes, because each approach makes different predictions about how
invariance is achieved (reviewed by Tarr and Vuong, in Pashler, 2002).

Viewpoint-invariant theories propose that recognition is itself invariant across
transformations: as long as the critical features remain accessible, the response of the system
remains constant. On the other hand, viewpoint-dependent theories state that recognition
depends on the viewing parameters, which may produce changes in recognition performance,
since objects are represented according to how they appeared when learned.

Humans display viewpoint-invariant recognition of familiar objects, but a viewpoint-
dependent performance in recognition tasks with novel objects (Edelman and Biilthoff, 1992).
However, viewpoint-dependent representations are often considered computationally
implausible, since they would require a vast amount of memory to store all possible object
views needed to achieve viewpoint invariance.

Nonetheless, it has been proposed that recognition performance ranges from viewpoint-
invariant to viewpoint-dependent according to how easy it is to discriminate between the
objects of reference (Hayward and Williams, 2000; Newell, 1998; Vuong and Tarr, 2006).

Also, as observed in Nielsen et al. (2008), under certain conditions, the effects of
viewpoint on performance disappear, and even novel objects are recognized in a view-
invariant manner: this seems to happen when objects can be identified by a number of very
distinctive features, which remain ‘diagnostic’ of the stimulus identity despite changes in
object rotation (Lawson, 1999; Tarr et al., 1997; Wilson and Farah, 2003).

The question of what object features are selected to recognize an object, and whether the
same feature are ‘tracked’ as preferential markers of the object’s identity has been addressed
with the use of an algorithm for the masking of the visual stimulus, namely the Bubbles
Method (Gosselin and Schyns, 2001).

The Bubbles Method involves the repeated presentation of stimuli occluded by an

opaque mask punctured by Gaussian transparent windows, in such a way that only discrete
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stimulus parts remain visible.

This method has been used with humans (Gosselin and Schyns, 2001; Nielsen et al.,
2006, 2008), monkeys (Nielsen et al., 2006, 2008), pigeons (Gibson et al., 2005) and rats
(Vermaercke and Op de Beeck, 2012).

In a couple of studies, the Bubbles Method was used to directly determine whether
observers showing view-invariant performance use the same feature to identify an object,
irrespective of its orientation. Monkeys usually show viewpoint-dependent behavior for
rotated objects (Logothetis et al., 1994); however, it has been shown that training with
multiple views can turn a viewpoint-dependent behavior into a viewpoint-invariant one
(Wang et al., 2005). Nonetheless, although both humans and monkeys adopted view-invariant
performance with objects rotated in the picture plane, they displayed different discrimination
strategies: in the case of having to discriminate natural image sets, while humans tend to
cover bigger portion of the image, monkeys select a few, confined image patches for correct
identification (Nielsen et al., 2006). Moreover, in the case of having to discriminate
artificially generated silhouettes of objects, humans tend to use the same features independent
of shape orientation, monkeys use unique features for each orientation (Nielsen et al., 2008).
Humans are able to generalize to a greater degree across orientation changes than rhesus
monkey observers, who tend to re-learn separate problems at each object orientation, rather
than flexibly apply previously learned knowledge to novel problems.

Therefore, the behavior of the human subjects is consistent with the viewpoint-invariant
models, since subjects always used the same feature to identify an object, while monkeys’
strategies can be better described by the viewpoint-dependent model, as it seems that the
monkeys use different templates to identify the same shape at different rotation angles.

In order to assess whether an observer adopts a viewpoint-invariant vs viewpoint-
dependent behavior, a critical aspect involves the intelligent choice of the visual stimuli. An
object, in order to be correctly recognized, must contain sufficient structural, three-
dimensional information to specify its structure. The use of objects such as two-dimensional
geometrical shapes (Minini and Jeffery, 2006; Vermaercke and Op de Beeck, 2012) or real
objects templates or silhouettes (Nielsen et al., 2008) can be misleading, since comparisons
between similarity or distinctiveness of each object’s features can be performed only on low-
level criteria, based on luminance, contrast or contour information, hence speaking little, if at
all, to the mechanisms of object recognition as it is accomplished in natural conditions.

In this chapter, I will describe a study aimed at addressing the issue of whether an object

recognition strategy is more consistent with a view-invariant or a view-dependent processing
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of the visual input, using rats as experimental subjects. This raises the question of the
suitability of rats as models of high-level visual processing. Recently, a number of recent
works have explicitly addressed the issue, reaching opposite conclusions.

Minini and Jeffery (2006) concluded that rats lack advanced shape processing and
invariant recognition abilities and rely, instead, on low-level image cues to discriminate
shapes (e.g., luminance in the lower half of the stimulus display). By contrast, two recent
studies (Tafazoli et al., 2012; Zoccolan et al., 2009) have shown that rats can recognize
objects despite remarkable variation in their appearance (e.g., changes in size, position, pose
and lighting), thus arguing in favor of a sophisticated visual recognition strategy in this
species. However, studies based on pure assessment of recognition performance cannot reveal
the complexity of rat recognition strategy, i.e., they cannot tell: 1) whether shape features are
truly extracted from the input image; 2) what these features are and how many; 3) what role
they play in determining rat behavioral responses; and 4) whether they remain stable across
the object transformations the animals face. In spite of a recent attempt at addressing these
issues by Vermaercke and Op de Beeck (2012), who used a version of the same image
classification technique (the Bubbles) we have applied in our study (described below), these
questions remain largely unanswered. In fact, the authors’ conclusion that rats are capable of
using a flexible mid-level recognition strategy is affected by various limitations of their
experimental design: the choice of the target shapes (a square and a triangle, which, again,
lacks the structural complexity of three-dimensional objects made of multiple parts/features);
the limited shape transformations tested (only position changes); and, more critically, the
choice of the visual task (a two-alternative forced-choice procedure, with both target shapes
equally shifted and simultaneously presented to the animals, which, de facto, prevented a true
assessment of shape-based, position-invariant recognition).

In our work we applied the Bubbles Method on two sets of 3-dimensional rendered
objects tested across a range of sizes, positions, in-depth rotations and in-plane rotations. The
Bubbles allowed the identification of the ‘salient’ and ‘anti-salient” image features underlying
rat recognition strategy of the target objects (i.e., the features leading, respectively, to correct
identification or misidentification of the target objects). Our results show that, when objects
are easily identifiable, because of unique and distinctive (object-specific) structural properties,
rats rely on largely viewpoint-invariant, multi-featural recognition strategy. On the other hand,
when presented with structurally similar objects, which are harder to discriminate, rats rely on
a viewpoint-dependent recognition strategy, with specific visual features used to recognize

each view of an object.
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3. Materials and Methods

3.1. Subjects

Twelve adult male Long Evans rats (Charles River Laboratories), split into two groups
of six rats each, were used for behavioral testing. Animals were 8 weeks old at their arrival,
weighted approximately 250 g at the onset of training and grew to over 600 g. Rats had free
access to food but were water-deprived throughout the experiments, i.e. they were given with
1 hour of water pro die after each experimental session, and received an amount of 4-8 ml of
pear juice as reward during the training. All animal procedures were conducted in accordance
with the National Institutes of Health, International, and Institutional Standards for the Care

and Use of Animals in Research and after consulting with a veterinarian.

3.2. Experimental Rig

The training apparatus consisted of six operant boxes. Each box hosted one rat, so that
each group of six rats could be trained simultaneously, every day, for up to two hours. Each
box was equipped with: 1) a 21.5” LCD monitor (Samsung 2243SN) for presentation of
visual stimuli, with a mean luminance of 43 c¢d/mm® and an approximately linear luminance
response curve; 2) an array of three stainless steel feeding needles (Cadence Science) ~10 mm
apart from each other, connected to three capacitive touch sensors (Phidgets 1110) for
initiation of behavioral trials and collection of responses; and 3) two computer-controlled
syringe pumps (New Era Pump Systems NE-500), connected to the left-side and right-side
feeding needles, for automatic liquid reward delivery.

A 4 cm diameter viewing hole in the front wall of each box allowed each tested animal
to extend its head out of the box, so to frontally face the monitor (placed at ~30 cm in front of
the rat’s eyes) and interact with the sensors array (located at 3 cm from the opening). The
location and size of the hole was such that the animal had to reproducibly place its head in the
same position with respect to the monitor to trigger stimulus presentation. As a result, head
position was remarkably reproducible across behavioral trials and very stable during stimulus
presentation. Video recordings obtained for one example rat showed that the standard
deviation of head position, measured at the onset of stimulus presentation across 50

consecutive trials, was £3.6 mm and +2.3 mm along the dimensions that were, respectively,
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parallel (x axis) and orthogonal (y axis) to the stimulus display (with the former corresponding
to a jitter of stimulus position on the display of £0.69° of visual angle). For the same example
rat, the average variation over 500 ms of stimulus exposure was Ax = 2.5+0.5 mm and Ay=
1.0+£0.2 mm (n = 50 trials), with the former corresponding to a jitter of stimulus position on
the display of ~0.48° of visual angle. Therefore, the stability of rat head during stimulus
presentation was close to what achieved in head-fixed animals. This guaranteed a very precise
control over stimulus retinal size and prevented head movements from substantially altering
stimulus retinal position (see Results and Discussion for further comments about stability of

stimulus retinal position).

3.3. Visual Stimuli

Two groups of rats, group 1 and group 2 in the following, were trained on different
stimulus sets, Stimulus Set 1 (containing Object 1 and 2) and Stimulus Set 2 (containing
Object 3 and 4). For both sets, the objects were renderings of three-dimensional models that
were built using the ray tracer POV-Ray (http://www.povray.org/). All objects were
illuminated from the same light source location and, when rendered at the same in-depth
rotation, their views were approximately equal in height, width and area (see Fig. 11A).
Objects were rendered in a white, bright (see below for a quantification), opaque hue against a
black background. Each object’s default size was 35° of visual angle, and their default
position was the center of the monitor (their default view was the one shown in Fig. 11A). As
explained below, during the course of the experiment, transformed views of the objects were
also shown to the animals (i.e., scaled, shifted, in-plane and in-depth rotated object views; see
Figs. 11C-D).

Visual similarity or discriminability between the two objects in each given Stimulus Set

(matching views) was measured in terms of pixel-wise Euclidean Distance (see Results).

3.4. Experimental Design

3.4.1. Phase I: Critical Features Underlying Recognition of the Default Object

Views

Each group of rats was initially trained to discriminate the two default views of the
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target objects (Fig. 11A). Animals initiated each behavioral trial by inserting their heads
through the viewing hole in the front wall of the training box and licking the central sensor.
This prompted presentation of one of the target objects on the monitor placed in front of the

box. Rats learned to associate each object identity with a specific reward port (see Fig. 11B).
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Figure 11. Visual stimuli and behavioral task.

A) Default views (0° in-depth and in-plane rotation) of the four objects that rats were trained to
discriminate during Phase I of the study (each object default size was 35° of visual angle). Upper
row: Stimulus Set 1; lower row, Stimulus Set 2.

B) Schematic of the object discrimination task. Rats were trained in an operant box that was
equipped with an LCD monitor for stimulus presentation and an array of three sensors. The
animals learned to trigger stimulus presentation by licking the central sensor, and to associate each
object identity to a specific reward port/sensor (right port for Object 1/3 and left port for Object
2/4).

C) and D) Some of the transformed views of the two objects that rats were required to recognize
during Phase II of the study. Left columns, Stimulus Set 1; right column, Stimulus Set 2.
Transformations included: 1) size changes; 2) azimuth in-depth rotations; 3) horizontal position
shifts; and 4) in-plane rotations. Azimuth rotated and horizontally shifted objects were also scaled
down to a size of 30° of visual angle; in-plane rotated objects were scaled down to a size of 32.5°
of visual angle and shifted downward of 3.5°. Note that each variation axis was sampled more
densely than shown in the figure — sizes were sampled in 2.5° steps; azimuth rotations in 5° steps;

position shifts in 4.5° steps; and in-plane rotations in 9° steps. The red frames highlight the subsets
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of object views that were tested in bubbles trials.

In case of correct response, reward was delivered through the port and a reinforcement
tone was played. An incorrect choice yielded no reward and a 1-3 s time out (during which a
failure tone sounded and the monitor flickered from black to middle gray at a rate of 15 Hz).
The default stimulus presentation time (in the event that the animal made no response after
initiating a trial) was 2.5 s. However, if the animal responded correctly before the 2.5 s period
expired, the stimulus was kept on the monitor for an additional 4 s from the time of the
response (i.e., during the time the animal collected his reward). In the event of an incorrect
response, the stimulus was removed immediately and the time-out sequence started. If the
animal did not make any response during the default presentation time of 2.5 s, it still had 1 s,
after the offset of the stimulus presentation and before the end of the trial, to make a response.

The rats were trained daily, and allowed us collect a number of 300 to 400 trials per
session. Once a rat achieved >70% correct discrimination of the default object views (set as
criterion performance, which typically required 3-12 weeks of training), an image masking
method, known as the Bubbles (Gosselin and Schyns, 2001), was applied to identify the
visual features the animal relied upon to successfully accomplish the task. This method
consists in superimposing on a visual stimulus an opaque mask punctured by a number of
circular, semi-transparent windows (or bubbles; Fig. 12A). When one of such masks is
applied to a visual stimulus, only those parts of the stimulus that are revealed through the
bubbles are visible. Hence, this method allows isolating the image patches that determine the
behavioral outcome, for whether a subject (e.g., a rat) can identify the stimulus depends on
whether the uncovered portions of the image are critical for the accomplishment of the
recognition task.

In our implementation of the Bubbles method, any given bubble was defined by shaping
the transparency (or alpha) channel profile of the image according to a circularly symmetrical,
two-dimensional Gaussian (with the peak of the Gaussian corresponding to full transparency).
Multiple such Gaussian bubbles were randomly located over the image plane. Overlapping of
two or more Gaussians produced summation of the corresponding transparency profiles, up to
the maximal level corresponding to full transparency. The size of the bubbles (i.e., the
standard deviation of the Gaussian-shaped transparency profiles) was fixed to 2° of visual
angle, while the number of bubbles was chosen so to bring each rat’s performance to be ~10%
lower than in unmasked trials. In the case of Stimulus Set 1, this typically brought the
performance down from ~70-80% correct obtained in unmasked trials to 60-70% correct

obtained in bubbles masked trials; for Stimulus Set 2, the performance was typically lower in
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Bubbles trials, around 55-60% (see performance figures). Given the lower discriminability of
the objects in Stimulus Set 2, this comes as no surprise; also, it must be pointed out that only
3 out of 6 rats in group 2 reached a suitable performance criterion, yielding data that was
considered robust enough to be included in all analyses performed (again, because of the
lower discriminability of the objects they had to distinguish).

The number of bubbles was randomly chosen, in each trial, among a fixed set of values
that was set specific for each rat. These values ranged between 10 and 50 (in steps of 20) for
top (i.e., displaying a stable 75-80% performance) performing rats, and between 50 and 90
(again, in steps of 20) for average (i.e., displaying a stable 70% performance) performing rats.
Examples of objects occluded by masks with a different number of bubbles are shown in Fig.
12B. The latter range represented the typical range used for rats in group 2 (tested with
Stimulus Set 2).

Trials in which the default object views were shown unmasked (named ‘Regular Trials’
in the following) were randomly interleaved to trials in which they were masked (named
‘Bubbles Trials’ in the following). The fraction of bubbles trials presented to a rat in any
given daily session varied between 0.4 and 0.75. In order to obtain enough statistical power to
extract the critical features underlying rat recognition, at least 3,000 bubbles trials for each
object at each condition were collected over the course of 16.3 + 4.4 sessions for group 1 (rat

group average = SD, n = 6), 20.0 = 4.6 for group 2 (n = 3).

10 30

Figure 12. The Bubbles Method.

A) Illustration of the Bubbles method, which consists in generating an opaque mask (fully black
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area) punctured by a number of randomly located transparent windows (i.e., the bubbles; shown as
white, circular clouds) and then overlapping the mask to the image of a visual object, so that only
parts of the object remain visible.

B) Examples, from Stimulus Set 1, of the different degrees of occlusion of the default object views

that were produced by varying the number of bubbles in the masks.

3.4.2. Phase II: Critical Features Underlying Recognition of the Transformed
Object Views

After having collected sufficient data to infer the critical features used by rats to
discriminate the default object views, the animals were trained to tolerate variation in the
appearance of the target objects along a variety of transformation axes. The goal of this
training was to engage those high-level visual processing mechanisms that, at least in
primates, allow preserving the selectivity for visual objects in the face of identity-preserving
object transformations (DiCarlo et al., 2012; Li et al., 2009; Rust and Dicarlo, 2010; Zoccolan
et al., 2005, 2007). Four different transformations were tested (see Fig. 11C), for each
stimulus set, in the following order: 1) size variations, ranging from 35° to 15° visual angle;
2) azimuth rotations (i.e., in-depth rotations about the objects’ vertical axis), ranging from -
60° to 60°; 3) horizontal position changes, ranging from -18° to +18° visual angle; and 4) in-
plane rotations, ranging from -45° to +45°.

Size transformations were the first to be applied, using an adaptive staircase procedure
that, based on the animal performance, updated the lower bound of the range from which the
object size was sampled (the upper bound was fixed to the default value of 35° visual angle).
Once the sizes’ lower bound reached a stable (asymptotic) value across consecutive training
sessions (i.e., 15° of visual angle), a specific size (i.e., 20° of visual angle; see red frame in the
top row of Fig. 11C-D) was chosen so that: 1) its value was different (lower) enough from the
default one; and 2) most rats achieved about 65-70% correct recognition for that value. Rats
were then presented with randomly interleaved regular trials (in which unmasked objects
could be shown across the full 15°-35° size range) and bubbles trials (in which bubble masks
were superimposed to the 20° scaled objects).

This same procedure was repeated for each of the other tested object transformations,
which were included sequentially in the experimental design. For instance, after having
trained size variations and having applied the Bubbles method to the 20° size-scaled objects, a
staircase procedure was used to train the rats to tolerate the azimuth rotations. After reaching

asymptotic azimuth values (i.e., +60°), two azimuth rotations were chosen (using the same
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criteria outlined above) for application of the Bubbles method: -40° and +20° (see red frames
in the second row of Fig. 11C-D). Again, regular trials (in which unmasked objects could be
shown across the full 15°-35° size range and the full -60°/+60° azimuth range) were then
presented interleaved with bubbles trials (in which bubble masks were superimposed to either
the -40° or the +20° azimuth rotated objects).

After the azimuth rotations, position changes were trained (with bubble masks applied to
objects that were horizontally translated of +18° of visual angle; see red frames in the third
row of Fig. 11C-D) and then in-plane rotations (with bubble masks applied to objects that
were rotated of *45° see red frames in the forth row of Fig. 11C-D). Note that, as explained
above, while a new transformation was introduced, the full range of variation of the
previously trained transformations was still shown to the animal, with the result that the task
became increasingly demanding in terms of tolerance to variation in object appearance.

The staircase training along each transformation axis typically progressed very rapidly.
On average, rats reached, for group 1: 1) the asymptotic size value in 1.2 * 0.4 sessions (mean
+ SD; n = 6); 2) the asymptotic azimuth rotation values in 5.5 = 1.0 sessions (n = 6); 3) the
asymptotic position values in 2.8 = 1.9 sessions (n = 5); and 4) the asymptotic in-plane
rotation values in 2.0 + 0.0 sessions (1 = 2).

Rats in group 2 required, on average, a slightly higher number of sessions: 1) asymptotic
size value in 6.3 + 2.0 sessions (n = 3); 2) asymptotic azimuth rotation values in 4.3 = 0.6
sessions (n = 3); 3) the asymptotic position values in 5.0 = 1.0 sessions (n = 3); 4) asymptotic
in-plane rotation values in 6.3 + 4.0 sessions (n = 3).

As for the default object views, transformed views also required a minimum of 3,000
bubbles trials to be collected for each of the transformed views that was tested with the
Bubbles method.

In general, for each rat, bubbles trials could be collected only for a fraction of the seven
transformed views we planned to test (see red frames in Fig. 11C-D).

This was because the overall duration of Experimental Phase II varied substantially
among rats, depending on: 1) how many trials each animal performed per session (this
number roughly varied between 250 and 500); 2) what fraction of trials were bubble trials
(this number, which ranged between 0.4 to 0.75, had to be adjusted in a rat-dependent way, so
to avoid the performance in bubbles trials to drop below ~10% less of the performance in
regular trials); and 3) the longevity of each animal (some rats fell ill during the course of the

experiment and had to be euthanized before being able to complete the whole experimental
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phase).
All experimental protocols (from presentation of visual stimuli to collection of
behavioral responses) were implemented using the freeware, open-source software package

MWorks (http://mworks-project.org/). An ad-hoc plugin was developed in C++ to allow

MWorks building bubbles masks and presenting them superimposed on the images of the

visual objects.

3.5. Data Analysis

3.5.1. Computation of the saliency maps

The critical visual features underlying rat recognition of a given object view were
extracted by properly sorting all the correct and incorrect bubbles trials obtained for that view.
More specifically, saliency maps were obtained that measured the correlation between the
transparency values of each pixel in the bubbles masks and the behavioral responses. That is,

saliency map values ¢' for each pixel i were defined as:

. x'-B
cl = (1)
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where X' is a vector containing the transparency values of pixel i across all collected bubble
trials for a given object view; B is a binary vector coding the behavioral outcomes on such
trials (i.e., a vector with elements equal to either 1 or 0, depending on whether the object view

was correctly identified or not); and ||xi ||L1 is the L; norm of X, i.e.:
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where N is the total number of collected bubbles trials. In the following, saliency maps are
shown as grayscale masks superimposed to the images of the corresponding object views,
with bright/dark pixels indicating regions that are salient/anti-salient, i.e., likely/unlikely to
lead to correct identification of an object view when visible through the bubbles masks. For
the sake of providing a clearer visualization, the saliency values in each map are normalized
by subtracting their minimum value and dividing by their maximum value, so that all saliency
values are bounded between zero and one.

To show which pixels, in the image of a given object view, had a statistically significant
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correlation with the behavior, the following permutation test was performed. All the bubble
trials that had been collected for that object view were divided in subsets, according to the
number of bubbles that were used in a trial (e.g., 10, 30 or 50 for a top performing rat; see
previous section). Within each subset of trials with the same number of bubbles, the
behavioral outcomes (i.e., the elements of vector B) were randomly shuffled. Chance saliency
map values ¢' were then computed according to eq. 1, but using the shuffled vector B. Among
all the chance saliency values, only those corresponding to pixels within the image of the
object view were considered (i.e., those corresponding to background pixels were discarded).
This yielded an average of 28,605 chance saliency values per object view. This procedure was
repeated 10 times, so to obtain a null distribution of saliency values for each object view.

Based on this null distribution, a one-tailed statistical test was carried out to find what
values, in each saliency map, were significantly higher than what obtained by chance (p <
0.05), and, therefore, what pixels, in the image, could be considered as significantly salient.
Similarly, significant anti-salient pixels were found by looking for corresponding saliency
values that were significantly lower than what expected by chance (p < 0.05). Significantly
salient regions of an object view will be shown in red, whereas anti-salient regions will be
shown in cyan (e.g., see Figs. 13 and 14).

Group average saliency maps and significant salient and anti-salient regions were
obtained, for Stimulus Set 1, using the same approach described above, but after pooling the

bubble trials obtained for a given object view across all available rats (see Fig. 26B).
3.5.2. Ideal observer analysis

Rats’ average saliency maps for Stimulus Set 1 were compared to the saliency maps
obtained by simulating a linear ideal observer (Gibson et al., 2005; Gosselin and Schyns,
2001; Vermaercke and Op de Beeck, 2012). Given a bubble-masked input image, the
simulated observer classified it as being either Object 1 or 2, based on which of the eight
views of each object, to which the mask could have been applied (shown by red frames in Fig.
11C), matched more closely (i.e., was more similar to) the input image. In other words, the
simulated ideal observer performed a template matching operation between each bubble-
masked input image and the 16 templates (i.e., eight views for each object) it had stored in
memory. The ideal observer was linear in that the template matching operation consisted in
computing a normalized dot product between each input image and each template. For better

consistency with the experiment, we chose as input images the bubbles trials presented to the
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rat that could be tested with all the eight object views (i.e., rat 3; see Fig. 16B). Also, to better
match the actual retinal input to the rats, each input image was low pass-filtered so that its
spatial frequency content did not exceed 1 cycles per degree, i.e., the maximal retinal
resolution of Long-Evans rats (Keller et al., 2000; Prusky et al., 2002).

Finally, to lower the performance of the ideal observer and bring it close to the
performance of the rats, Gaussian noise (std = 0.5 of the image grayscale) was independently
added to each pixel of the input images. This assured that potential differences between rats’
and ideal observer’s saliency maps were not merely due to performance differences. Crucially,
this constraint did not force the recognition strategy of the ideal observer to be similar to the
one used by rats (the ideal observer had no knowledge of how rats responded to the bubble-
masked input images). This was empirically assessed by running the ideal observer analysis
with different levels of noise added to the input images, and verifying that the resulting
saliency maps did not substantially change as a function of noise level (i.e., as a function of
the ideal observer’s performance). Saliency maps and significant salient and anti-salient
regions for the ideal observer were obtained as described above for the rats.

Each rat group average saliency map was compared to the corresponding map obtained
for the ideal observer by computing their Pearson correlation coefficient. The significance of
the correlation was assessed by running a permutation test, in which the behavioral outcomes
of the bubble trials were randomly shuffled 100 times for both the average rat and the ideal
observer, yielding 100 pairs of random rat-ideal saliency maps. Computation of the Pearson
correlation coefficient between each pair of random maps yielded a null distribution of 100
correlation values, against which the statistical test was carried out with p = 0.05.

All data analyses were performed in MATLAB (http://www.mathworks.com).

4. Results

The goal of this study was to understand the visual processing strategy underlying rat
ability to recognize visual objects in spite of substantial variation in their appearance (e.g., see
Tafazoli et al., 2012; Zoccolan et al., 2009), and to assess to what extent rat recognition
strategy was viewpoint-dependent or viewpoint-invariant, depending on the visual/structural
similarity of the objects the animals had to discriminate. To this aim, 2 groups of rats were
trained in an object recognition task that required them to discriminate two visual objects

under a variety of viewing conditions. One group of rats was trained with structurally/visually
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dissimilar objects (i.e., Object 1 and 2 shown in Fig. 11A, top row and Fig. 11C), while
another group of rats was trained with a pair of objects that were structurally/visually more
dissimilar (i.e., Object 3 and 4 shown in Fig. 11A, bottom row, and Fig. 11D). An image
masking method, known as the Bubbles (Gosselin and Schyns, 2001) was then applied to a
subset of the trained object views to infer what object features rats relied upon to successfully
recognize these views. This approach not only revealed the complexity of rat recognition
strategy, but also allowed tracking if and how such a strategy varied across the different

viewing conditions the animals were exposed to.

4.1. Critical Features Underlying Recognition of the Default Object Views

During the initial experimental phase, two groups of Long-Evans rats (6 rats per group)
were trained to discriminate the default views (or appearances) of two pairs of visual objects
(shown in Fig. 11A): Object 1 vs. Object 2 (group 1) and Object 3 vs. Object 4 (group2). The
animals were trained for 3-12 weeks until they achieved >70% correct discrimination
performance. In group 1, all six animals reached this criterion performance. In group 2, only
half of the animals reached the criterion and were able to maintain it in the subsequent tests of
invariant recognition. Once the criterion was reached, regular trials (i.e., trials in which the
default object views were shown unoccluded) started to be randomly interleaved with bubble
trials (i.e., trials in which the default object views were partially occluded by opaque masks
punctured by a number of circular, randomly located, semi-transparent windows; see Material
and Methods and Fig. 12). The rationale behind the application of the Bubbles masks was to
make it harder for the rats to correctly identify an object, by revealing only parts of it.
Obviously, the effectiveness of a Bubbles mask at impairing recognition of an object
depended on the position of the semi-transparent bubbles (thus revealing what object features
a rat relied upon to successfully recognize the object), but also on their size and number.
Following previous applications of the Bubbles method (Gibson et al., 2005; Gosselin and
Schyns, 2001), in our experiments the bubbles’ size was kept fixed (i.e., set to 2° of visual
angle), while their number was adjusted so to bring each rat’s performance in bubble trials to
be, in the best cases, ~10% lower than in regular trials. For Stimulus Set 1, when the default
object views were tested, rat average recognition performance dropped from ~75% correct in
regular trials to ~65% correct in bubble trials (Fig. 13A). For Stimulus Set 2, rat average

recognition on default views dropped from ~70% performance in regular trials to ~55%
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correct in bubbles trials (Fig. 14A). This indicates that, as expected because of our stimulus
design, objects in Stimulus Set 1 were easier to discriminate than object in Stimulus set 2
(especially when occluded by the bubble masks).

The critical visual features underlying rat recognition of the default object views were
extracted by computing saliency maps that measured the correlation between bubbles masks’
transparency values and rat behavioral responses. For each rat, the resulting saliency maps are
shown as grayscale masks superimposed on the images of the corresponding object views
(with the brightness of each pixel indicating the likelihood, for an object view, to be correctly
identified when that pixel was visible through the bubbles masks). Whether a saliency map
value was significantly higher or lower than expected by chance was assessed through a
permutation test at p < 0.05 (see Materials and Methods). This led to the identification of
significantly salient and anti-salient regions in the images of the default object views (shown,
respectively, as red and cyan patches). These regions correspond to those objects’ parts that,
when visible through the masks, likely led, respectively, to correct identification and

misidentification of the object views.
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Figure 13. Critical features underlying recognition of the default views of Stimulus Set 1.

A) Group 1 average performance at discriminating the default object views was significantly lower
in bubbles trials (light gray bar) than in regular trials (dark gray bar; p < 0.001; one-tailed, paired
t-test). Both performances were significantly higher than chance (****p < 0.0001; one-tailed,
unpaired t-test). Error bars are SEM.

B) For each rat, the saliency maps resulting from processing the bubbles trials collected for the
default object views are shown as grayscale masks superimposed on the images of the objects. The
brightness of each pixel indicates the likelihood, for an object view, to be correctly identified when
that pixel was visible through the bubbles masks. Significantly salient and anti-salient object
regions (i.e., regions that were significantly positively or negatively correlated with correct

identification of an object; p < 0.05; permutation test) are shown, respectively, in red and cyan.

Visual inspection of the patterns of salient and anti-salient regions obtained for the two

object pairs in the default condition revealed several key aspects of rat object recognition
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strategy.

In Stimulus Set 1 (Fig. 13), in the case of Object 1, salient and anti-salient regions were
systematically located within the same structural parts of the object (Fig. 13B, top row).
Namely, for all rats, salient regions were contained within the larger, top lobe, while anti-
salient-regions lay within the smaller, bottom lobes. Therefore, in spite of some variability in
the size and compactness of the salient and anti-salient regions (e.g., compare the large, single
salient region found for rats 2 and 5 with the smaller, scattered salient patches observed for
rats 3 and 4.), the perceptual strategy underlying recognition of Object 1 was highly preserved
across subjects.

In contrast, a substantial inter-subject variability was observed in the saliency patterns
obtained for Object 2 (Fig. 13B, bottom row). Although the central part of the object (at the
intersection of the three lobes) tended to be consistently anti-salient across rats, and the salient
regions were always located within the peripheral part (the tip) of one or more lobes, the
combination and the number of salient lobes varied considerably from rat to rat. For instance,
rats 2 and 3 relied on a single lobe (the upper-left one), while rats 1, 4 and 6 relied on the
combination of the upper-left and bottom lobes, and rat 5 relied on all three lobes. Moreover,
some lobes (e.g., the bottom one) could be salient for some animal, but fully (rat 2) or
partially (rat 4) anti-salient for some other.

The larger inter-subject diversity in the pattern of salient and anti-salient features that
was found for Object 2, as compared to Object 1, is not surprising, given the different
structural complexity of the two objects. In fact, Object 2 is made of three fully visible,
clearly distinct and roughly equally sized lobes, while the three lobes of Object 1 are highly
varied in size, with the smaller, bottom lobes that are partially overlapping and, therefore,
harder to distinguish. As a consequence, Object 2 affords a larger number of distinct structural
parts, as compared to Object 1, hence a larger number of “perceptual alternatives” to be used
for its correct identification. As such, the saliency patterns obtained for Object 2 are more
revealing of the complexity and diversity of rat recognition strategies.

As for Stimulus Set 2, the pattern of salient and anti-salient features displayed, in

general, a higher variability between subjects (Fig. 14).
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Figure 14. Critical features underlying recognition of the default views of Stimulus Set 2.
A) Group 2 average performance at default object views is shown for Regular trials and Bubbles

trials (see Fig.13 for details).

B) Saliency maps for the three rats tested with Stimulus Set 2 (see Fig. 13 for details).

The upper lobes of Object 3 tended to be systematically selected as salient features by all
three rats, whether it was both (rat 7 and 9) or only one (rat 8). For rat 8, one of the features,
the rightmost one, did not cover the upper right lobe, rather was located slightly below it,
reaching the central part of the object, which is broadly significant for rat 9. Rat 7 displayed,
instead, an anti-salient region covering the central part of Object 3, while, for the other two
rats, anti-salient regions were located along the lower/right margin. The central/top part of
Object 4 was salient for two rats, in the guise of seven small, scattered patches for rat 7, and
one single spot for rat 8. On the other hand, for rat 9, this same central/top part was anti-
salient, along with the upper-right lobe. Similarly, the upper-right lobe was anti-salient for rat
7, and somewhat for rat 8 as well. The latter showed additional spots of anti-saliency towards
the right and the left margins of the objects.

Hence, when it comes to Stimulus Set 2, where the two objects are structurally much
more similar than in the case of Stimulus Set 1, a substantial inter-subject diversity was
observed not only in terms of the number of salient features found in one object (as in the case
of Object 2, in Stimulus Set 1), but also in terms of location, number and size of the salient
and anti-salient regions. This is indicative of a larger variety of perceptual strategies used by
the rats tested with Stimulus Set 2, as compared to Stimulus Set 1 (see next sections for a

quantitative analysis).
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4.2. Critical Features Underlying Recognition of the Transformed Object

Views

After the critical features underlying recognition of the default object views were
uncovered, each rat was further trained to recognize the target objects in spite of substantial
variation in their appearance. Namely, objects were transformed along four different variation
axes: size, in-depth azimuth rotation, horizontal position and in-plane rotation (the trained
ranges of variation are shown in Fig. 11C-D). These transformations were introduced
sequentially (i.e., size variation was trained first, followed by azimuth, then by position and
finally by in-plane variation) and each of them was trained gradually, using a staircase
procedure (see Materials and Methods). Once the animals reached a stable, asymptotic value
along a given transformation axis, one or two pairs of transformed object views along that
axis were chosen for further testing with the bubbles masks (these pairs are marked by red
frames in Fig. 11C-D). Such views were chosen so to be different enough from the objects’
default views, yet still recognized with a performance larger than chance by most animals.
Rats were then presented with randomly interleaved bubbles trials (in which these
transformed views were shown with superimposed bubble masks) and regular trials (in which
unmasked objects were randomly sampled across all the variation axes tested up to that point).
A total of seven different pairs of transformed object views were chosen for testing with
bubbles masks, although, due to across-rat variation in longevity and fluency in the invariant
recognition task (see Materials and Methods for details), not all animals undergo testing at all

conditions.
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Figure 15. Group 1 average recognition performance over the four variation axes along
which the objects were transformed.

Gray and black symbols show performances in, respectively, regular and bubbles trials that were
collected over the course of the same testing sessions of Experimental Phase II (see Materials and
Methods). Solid and open symbols indicate performances that were, respectively, significantly and
non-significantly higher than chance (»p < 0.0001 in A, B and C; p < 0.05 in D; one-tailed,
unpaired t-test). Error bars are SEM.

For group 1, rat average recognition performance was significantly higher than chance
for almost all tested object transformations, typically ranging from ~70% to >80% correct,
and dropping below 70% correct only for some extreme transformations (Fig. 15, gray lines).
This confirmed that rat recognition is remarkably robust against variation in object
appearance, as recently reported by two studies (Tafazoli et al., 2012; Zoccolan et al., 2009).

As previously observed in the case of the default views (see Fig. 13A), rat performance
at recognizing the transformed object views was generally 5-10% lower in bubbles trials than

in regular trials (see black diamonds in Fig. 15).
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Figure 16. Critical features underlying recognition of the transformed object views for
Stimulus Set 1.

For each rat, the saliency maps (with highlighted significantly salient and anti-salient regions;
same color code as in Fig. 13B-14B) that were obtained for each transformed object view are
shown. Maps obtained for different rats are grouped in different panels according to their stability
across the tested views. A) For rats 5 and 6, the same pattern of salient features (i.e., lobes’ tips)
underlay recognition of all the views of Object 2 (see yellow arrows). B) For rat 3, one salient

feature (i.e., the tip of the upper-left lobe) was preserved across all tested views of Object 2 (see
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yellow arrows), while a second feature (i.c., the tip of the bottom lobe) became salient after the
animal started facing variation in object appearance (see white arrows). C) For rats 1, 2 and 4,
features that underlay recognition of Object 2’s default view became no longer salient for some of

the transformed views (see yellow circles) and were replaced by other salient features.

The critical features underlying rat recognition of a transformed view were extracted by
properly processing all the correct and incorrect bubbles trials obtained for that view (see
previous section and Materials and Methods). This yielded saliency maps with highlighted
significantly salient and anti-salient regions that revealed if and how each animal recognition
strategy varied across the different viewing conditions he was exposed to. The saliency maps
for group 1 of rats are shown in Fig. 16.

As previously reported for the default object views (see Fig. 13), a larger inter-subject
variability was observed in the patterns of critical features obtained for Object 2, as compared
to Object 1. Namely, while for most rats a single and compact salient region was consistently
found in the larger, top lobe of Object 1, regardless of the transformation the object
underwent (see Figs. 16A-C, odd rows), in the case of Object 2 not only different rats relied
on different combinations of salient lobes, but, for some rats, such combinations varied across
the transformed object views (see Figs. 16A-C, even rows). Therefore, the saliency patterns
obtained for Object 2 were more revealing of the diversity and stability of rat recognition
strategies in the face of variation in object appearance.

For some rats, all the lobes used to discriminate the default view of Object 2 remained
salient across the whole set of transformations the object underwent (see yellow arrows in Fig.
16A). This was particularly striking in the case of rat 5, which consistently relied on all three
lobes of Object 2 as salient features across all tested transformations. Rat 6 showed a similarly
consistent recognition strategy, although he relied only on two salient lobes (the upper-left
and bottom ones). Also in the case of rat 3, the single salient lobe that was used for
recognition of the default object view (the upper-left one) remained salient for all the
subsequently tested transformed views (see yellow arrows in Fig. 16B). In this case, however,
the bottom lobe, which only contained a pointlike hint of a salient patch in the default view,
emerged as a prominent salient feature when the animal had to face size variations, and
remained consistently salient for all the ensuing transformations (see white arrows in Fig.
16B). In still other cases, lobes that were originally used by a rat to discriminate Object 2’s
default view became no longer salient for some of the transformed views (see yellow circles

in Fig. 16C) and were replaced by other salient lobes.
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In the case of Stimulus Set 2, generally lower performances were observed, compared to

Stimulus Set 2, in both regular and bubble trials (compare Figs. 15 and 17).
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Figure 17. Group 2 average recognition performance over the four variation axes along
which the objects were transformed.

See Figure 15 for details.

Still, even for Stimulus Set 2, rat average recognition performance was significantly
higher than chance at almost all tested object transformations, mostly ranging from ~70% to
>80% correct, although it decayed more sharply for small sizes (see Fig. 17A), compared to
what observed for Stimulus Set 1 (see Fig. 15A). Moreover, rat performance at recognizing
the bubbles-masked object views dropped much more dramatically than in the case of
Stimulus Set 1 (compare black diamonds in Figs. 15 and 17), ranging between 55 and 60%
correct, significantly below the performance on regular trials, although significantly above
chance at 4 out of 7 conditions tested. Overall, this pattern of performance confirms that the
object pair in Stimulus Set 2 was harder to discriminate than the object pair in Stimulus Set 1,
especially when shape information was degraded by reducing the size of the objects or adding
the bubbles masks.

In Fig. 18 the salient and anti-salient features for each object transformation of Stimulus
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Set 2 are reported.
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Figure 18. Critical features underlying recognition of the transformed object views for
Stimulus Set 2.

For each rat, the saliency maps (with highlighted significantly salient and anti-salient regions;
same color code as in Fig. 13B-14B) that were obtained for each transformed object view are
shown. The green and ocher squares in A), B) and C) refer to object regions which were
systematically selected across objects’ view. The orange and yellow arrows in C) mark the

selection, or tracking, of discrete objects’ features, respectively.

Both Object 3 and 4 in Stimulus Set 2, just like Object 1 and 2 in Stimulus Set 1, are
made of ‘lobes’. However, such lobes are less protruded, hence less distinctive of the stimulus
identity (quantitative cross-comparison between the two object pairs, in terms of analysis of
size and number of salient features, is reported in the following sections). Consistent with this

observation, we found a general tendency, for the diagnostic features of Object 3 and 4,
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towards being distributed (often in a quite scattered way) over a region of the objects (i.e., top
or bottom half) encompassing multiple lobes, rather than being precisely (and reproducibly)
located in specific lobes (as found, for instance, in the case of Object 2; see Fig. 16).

For rat 7 (Fig. 18, upper rows), the salient features were located in the upper region of
Object 3 throughout all conditions (green squares), although, in the case of the default view,
were mixed with anti-salient spots (ocher squares), which only remained, as smaller points, in
the azimuth-rotated views. The anti-salient regions covered preferentially the central and
lower parts. A somewhat reversed pattern was observed for Object 4: the central/bottom part
was largely salient across all tested views, starting with a combination of small patches in the
default view, which reduced to a couple of small spots in the size-transformed condition, and
finally merged into a big salient region for most of the remaining transformations.

Similarly, rat 8 (Fig. 18, central rows) displayed a preference for the upper region of
Object 3 in most of the tested cases, with tiny patches of saliency appearing in two conditions
(size transformed and horizontally shifted views). The anti-salient features generally covered
the lower lobe, but extended to the central part of the object in three conditions (size
transformed and horizontally shifted views) and to the upper-right lobe in one condition
(horizontally shifted to the left). The salient features merged for the last condition tested
(horizontally shifted to the right). It was again the central part of Object 4 its most salient
region, but the salient patches remained small, few and scattered, and always mixed with anti-
salient spots.

Rat 9 (Fig. 18, lower rows) displayed, in the beginning, i.e., for the default views, a
more feature-selective preference for the upper lobes of Object 3, rather than the whole upper
region (yellow arrows). The central region of Object 3 was selected as salient too, and
remained salient for the following condition tested (size-transformed view). The upper lobes
remained salient as well, but only as very small spots, to become prominent again in the
azimuth left view. Then the lobe-located features scattered for the next tested views, to appear
again in the last two conditions. In the case of Object 4, a highly variegate combination of
salient features (and mixed with anti-salient spots) was found across the tested views,
although discrete lobes were selected in two conditions (azimuth left, the central lobe or

‘nose’; in-plane left, the left lobe; orange arrows).
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4.3. A Qualitative Comparison of Rat Recognition Strategies

As shown in Fig. 18, when facing objects that are hard to discriminate (as in the case of
Stimulus Set 2), rats rely on a recognition strategy that is only partially preserved across the
objects’ transformations. Such a “preservation” appears certainly to be the case for rat 7,
whose selection of the salient features of the Objects generally involved the upper lobes for
Object 3, and the central part of Object 4, although the size and number of features largely
varied across conditions (a reverse, similarly preserved strategy was observed for the pattern
of anti-salient features). A similar trend was observed also for rat 8, although with smaller and
more scattered salient and anti-salient regions. In the case of rat 9, some lobe-located salient
features were ‘tracked’ across some views of Object 3. In general, however, all the rats tested
with Stimulus Set 2, did not show a transformation-invariant, clear preference for well-
defined structural parts of the objects (e.g., lobes).

On the contrary, half of the rats tested with Stimulus Set 1 showed a remarkably stable
recognition strategy (Figs 16A, B) in the face of variation in object appearance, with the same
combination of salient object parts (i.e., lobes) being relied upon across all (Fig. 16A) or most
(Fig. 16B) object views. The other half of the rats showed a more variable recognition
strategy, based on view-specific salient features’ patterns (Fig. 16C), although less variable
than found in the case of Stimulus Set 2.

Crucially, regardless of its stability across transformations, rat recognition strategy relied
on a combination of at least two different salient features for most tested views of Object 2
(i.e., in 26 out of 34 cases). Since these features are located in structurally distinct parts of the
object (i.e., distinct lobes), and, in all cases, in both its lower and upper half, this strongly
suggests that rats are able to process global shape information and extract multiple structural
features that are diagnostic of object identity.

The selection of both upper and lower object parts holds, to some extend, also for
Stimulus Set 2, mainly for Object 4 (11 out of 20 cases), and less for Object 3 (5 out of 20
cases).

Such a shape-based, multi-featural processing strategy not only rules out a previously
proposed low-level account of rat visual recognition in terms of luminance detection in the
lower half of the stimulus display (Minini and Jeffery, 2006), but also suggests that rats are
able to integrate shape information over much larger portions of visual objects (virtually, over
a whole object) than reported by a recent study (Vermaercke and Op de Beeck, 2012).

However, having assessed that rats are able to process global shape information does not
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imply, per se, that they are also capable of an advanced transformation-tolerant (or invariant)
recognition strategy. In fact, having excluded one very low-level account of rat object vision
(Minini and Jeffery, 2006) does not automatically rule out that some other low-level
recognition strategies may be at work when rats have to cope with variation in object
appearance. For instance, rats could rely on detection of some object feature(s) that is (are)
largely preserved (in terms of position, size and orientation) across the tested object
transformations. This would result in higher-than-chance recognition of the transformed
object views, without the need, for rats, to form and rely upon higher-level, transformation-
tolerant object features’ representations. This is not a remote possibility, since recent
computational work has shown that even large databases of pictures of natural objects
(commonly used by vision and computer vision scientists to probe invariant recognition)
often do not contain enough variation in each object appearance to require engagement of
higher-level, truly invariant recognition mechanisms (Pinto et al., 2008).

Our study was designed to specifically tackle this issue, thus going beyond previous,
purely performance-based accounts of rat invariant recognition abilities (Tafazoli et al., 2012;
Zoccolan et al., 2009).

In fact, the existence of transformation-preserved features that are diagnostic of object
identity would result in a large, systematic overlap between the significantly salient regions
obtained for different object views. The fact that, in the case of Stimulus Set 1, the salient
features underlying recognition of a given object “tracked” the object’s transformations (i.e.,
changed in position, size, and orientation, as the object translated, shrunk and rotated in the
animals’ visual field) makes the existence of such a systematic overlap unlikely (see Fig. 16).

This was quantitatively confirmed by the overlap analysis described in the following section.

4.4. Object-Centered or Image-Centered Strategy?

To further assess whether rat recognition strategy was more consistent with a high-level,
transformation-tolerant (object-centered) representation of diagnostic features or, rather, with
low-level detection of some transformation-preserved image patches (i.e., an image-centered
strategy), and as a way to inspect if any diagnostic object feature existed that was consistently
preserved across the tested object transformations, the saliency maps obtained for different
pairs of object views were superimposed and the overlap between pairs of significantly salient

regions assessed.
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The overlap between the salient features obtained for all possible pairs of object views
produced by affine transformations (i.e., all tested object views with the exclusion of in-depth
azimuth rotations) was measured. The overlap was computed for both: 1) raw salient features’
patterns, in which the image planes containing the salient features of the views to compare
were simply superimposed (see second row of Figs. 19A, left plot); and 2) aligned salient
features’ patterns, in which the transformations that produced the two object views were
“undone” (or reversed), so to perfectly align one view on top of the other (e.g., in the case of
the comparison between the default and the horizontally translated views shown in Fig. 19A,
the latter was shifted back to the center of the screen and scaled back to 35° so to perfectly
overlap with the default view; see second row of Fig. 19A, right plot). The overlap was
quantified as the ratio between overlapping area and overall area of the significantly salient
regions of the two object views (Nielsen et al., 2006) (e.g., as the ratio between the orange
area and the sum of the red, yellow and orange areas in Fig. 19A, second row).
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Figure 19. Raw vs. aligned features’ overlap for all pairs of object views of Stimulus Set 1.
A) Ilustration of the procedure to compute the raw and aligned overlap between the salient

features’ patterns obtained for two different views of an object. The default and the leftward
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horizontally shifted views of Object 1 are used as examples (first row). To compute the raw
features’ overlap, these two object views (and the corresponding features’ patterns) were simply
superimposed (second row, left plot), as previously done in Figure 7. To compute the aligned
features’ overlap, the transformation that produced the leftward horizontally shifted view was
reversed. That is, the object was shifted to the right of 18° and scaled back to 35° so to perfectly
overlap with the default view of the object itself (second row, right plot). In both cases, the overlap
was computed as the ratio between the orange area and the sum of the red, yellow and orange
areas. The significance of the overlap was assessed by randomly shifting the salient regions of
each object view within the minimum bounding box enclosing each view (see Results for details).
Such bounding boxes are shown as white frames in the third row of the figure, for both the raw
and aligned views. B) The raw features’ overlap is plotted against the aligned features’ overlap for
each pair of views of Object 1 (circles) and Object 2 (diamonds) resulting from affine
transformations (i.e., position/size changes and in-plane rotations). The shades of gray indicate
whether the raw or/and the aligned overlap values were significantly larger than expected by

chance (p < 0.05; see caption).

The resulting pairs of raw and aligned overlap values obtained for all tested
combinations of object views of Stimulus Set 1 are shown in Figure 19B (circles and
diamonds refer, respectively, to pairs of views of Object 1 and 2). Similarly to what has been
done by (Nielsen et al., 2006), the significance of each individual raw and aligned overlap
was assessed through a permutation test, in which the salient regions of each object view in a
pair were randomly shifted within the minimum bounding box enclosing each view. As
illustrated by the example shown in Figure 19A, in the case of the raw overlap, the bounding
boxes enclosing the two views partially overlapped (compare the white frames in the third
row of Fig. 19A, left plot), while, in the case of the aligned overlap, by construction, the
bounding boxes enclosing the two views were coincident (see the single white frame in the
third row of Fig. 19A, right plot). Null distributions of raw and aligned overlap values were
obtained by running 1,000 permutation loops, and the significance of the measured raw and
aligned overlaps was assessed at p = 0.05 (significance is coded by the shades of gray filling
the symbols in Fig. 19B; see caption).

In the case of Stimulus Set 1, for most pairs of object views (71 out of 76), the overlap
between salient features was higher in the aligned than in the raw case (Fig. 19B). Namely,
the average overlap between aligned views was 0.30 = 0.01 (mean + SEM), while the average
overlap between raw views was 0.07 = 0.01, with the former being significantly higher than

the latter (p < 0.0001; significance was assessed through a paired permutation test, in which
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the sign of the difference between aligned and raw overlap for each pair of views was

randomly assigned in 10,000 permutation loops).

The larger overlap found for aligned vs. raw views was particularly striking in the case
of Object 2, with most raw overlap values being zero, and the average overlap being one order
of magnitude larger for aligned than raw views (i.e., 0.30 = 0.02 vs. 0.01 = 0.00; such a
difference was statistically significant at p < 0.0001, according to the paired permutation test).
Moreover, in the large majority of cases (30/38), the aligned overlap was significantly higher
than expected by chance (see black and dark gray diamonds in Fig. 19B), while the raw
overlap was significantly higher than chance only for a few pairs of object views (2/38; see
black and light grey diamonds in Fig. 19B). This confirmed that the transformations Object 2
underwent were large enough to displace its diagnostic features in non-overlapping regions of
the stimulus display (hence, the zero or close-to-zero salient features’ overlap observed for the
raw views), thus preventing rats from relying on any transformation-preserved feature to
succeed in the invariant recognition task. At the same time, the large and significant salient
features’ overlap found for the aligned views of Object 2 indicates that the same structural
parts were deemed salient for most of the object’s views the rats had to face, thus suggesting
that rats truly had to rely on some transformation-tolerant representation of these diagnostic

structural features.

In the case of Object 1, in agreement with the examples shown in Figure 7, the overlap
between raw views was considerably larger, as compared to what obtained for Object 2
(compare circles and diamonds in Fig. 19B). However, in most cases, the overlap between
aligned views was higher than the corresponding overlap between raw views (i.e., 33 out of
the 38 circles are in the lower quadrant in Fig. 19B) and, in several cases, the raw overlap was
zero or close-to-zero. As a result, the average overlap was significantly larger for aligned than
raw views (i.e., 0.30 = 0.02 vs. 0.13 = 0.02; p < 0.0001, paired permutation test). This
suggests that, although a salient feature existed that was partially preserved across many
tested views, rat strategy was nevertheless more consistent with “tracking” that feature (i.e.,
its position, size, orientation) across the transformations Object 1 underwent, rather than
merely relying on the portion of that feature that remained unchanged across such
transformations. This observation, together with the fact that the same feature was relied upon
also when shifted in non-overlapping locations of the stimulus display (as in the case of the
horizontally translated views), indicates that also recognition of Object 1 was more consistent

with a high-level, transformation-tolerant representation of diagnostic features, rather than
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with low-level detection of some transformation-preserved luminance patch. Finally, the
fraction of overlap values that were significantly higher than expected by chance was
similarly small for both the raw (8/38) and the aligned (9/38) views of Object 1 (see light gray,
dark gray and black circles in Fig. 19B). This reflects the fact that relatively large overlaps
were produced by chance in the permutation test (given the large area occupied by Object 1’s
salient regions), thus making the threshold to reach significance higher than in the case of
Object 2. This confirms that the saliency regions/maps obtained for Object 2 were, in general,
more powerful to understand the complexity of rat recognition strategy, as compared to the
ones obtained for Object 1.

In the case of Stimulus Set 2, lower overlap values were found, in both aligned and raw
case (Fig. 20). However, 37 pairs out of 60 displayed a higher overlap in the aligned as
compared to the raw case, with the average aligned overlap being 0.08 + 0.09 (mean + SEM),
and the average overlap between raw views being 0.03 = 0.07 (such a difference was
significant; p < 0.01; same test as for Stimulus Set 1). In 10 out of 60 cases zero overlap was

found for both the raw and aligned cases.

A B
) Default Horizontally ) 0.65 P
view shifted 7’
view P s
e
0.48 . s
d
Q. O 7
o 7/
[} e
\ 3 0.32- ’,
d
. 5 o -
Raw Aligned 14 o ,
overla overlap L7
0.16 O , 'S
4
O L4 °
o (9 7 '3 L 4
ol & Qﬁo e@e @
r T T T 1
0 0.16 0.32 0.48 0.65
Aligned overlap
Bounding boxes for the
permutation test
Object 3 Object 4
v |
Neither raw nor aligned overlaps are significant O <>
Only raw overlap is significant O <>
View 1 . Only aligned overlap is significant . ‘
View 2
Overlap . Both raw and aligned overlaps are significant . ‘

Figure 20. Raw vs. aligned features’ overlap for all pairs of object views of Stimulus Set 2.

See Figure 19 for details.
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Taken individually, Object 3 and 4 displayed similar (not significantly different) values
for both raw and aligned overlap in all cases. For Object 3, raw and aligned overlap values
were significantly higher than chance in 5/30 cases and 9/30 cases, respectively. As for Object
4, the number of cases was 7/30 for the raw overlap and 11/30 for the aligned overlap.
Nonetheless, for both Objects, the aligned overlap values were significantly higher than the
raw values (Object 3: aligned, 0.08 = 0.1 vs. raw, 0.04 = 0.08. p < 0.05; Object 4: aligned,
0.07 = 0.09 vs. raw, 0.03 = 0.06. p < 0.01). However, only in less than the half of the cases
(20/60), the aligned overlap was significantly higher than expected by chance (see black and
dark gray diamonds in Fig. 20B), while the raw overlap was significantly higher than chance
for 12/60 cases (see black and light grey diamonds in Fig. 20B).

Overall, the overlap analyses of Stimulus Set 1 shown in Figures 19 indicate that rat
invariant recognition of visual objects does not trivially rely on detection of some
transformation-preserved object features that are diagnostic of object identity across multiple
object views. This can be stated, to some extent, also for Stimulus Set 2 (see Fig. 19).
Although both raw and aligned overlap values were dramatically lower for Stimulus Set 2,
still rat recognition strategy was more consistent with an object-based tracking of broadly-
defined object saliency regions than an image-based detection of transformation-preserved,

diagnostic image spots.

4.5. The Impact of Stimulus Discriminability on Rat Recognition Strategy

As mentioned in the introduction to this chapter, invariant recognition can be achieved
through either a view-independent or a view-dependent strategy (i.e., by either relying on the
same features, or by using newly learned features for different views of an object). In general,
whether a subject will adopt one recognition strategy or the other will strictly depend on
whether the objects to discriminate display the features that are critical for their identification
at each tested appearance (although transformed). If this requirement is met, it has been
shown that humans will tend to rely on a view-invariant strategy, but it is not obvious that
other species will also do so. For instance, as it has been shown by Nielsen et al. (2008) using
the 2D silhouette of a hand as a target shape, while humans tended to rely on the same
features independent of shape orientation in the image plane (view-invariant behavior),
monkeys used unique features for each orientation (view-dependent behavior). This, in spite

of the fact that the object’s critical features were visible at any moment, i.e. at any rotation
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tested.

When it comes to our groups of rats, in case of Stimulus Set 1, the results are more
consistent with the hypothesis that the animals relied on a view-invariant recognition strategy,
i.e., they consistently used the same structural parts of the objects, across different views, as
diagnostic features of object identity. On the other hand, the results obtained for Stimulus Set
2 are more consistent with a view-dependent strategy. Both a qualitative inspection of the
saliency maps (see Fig. 18) and the lower values of the aligned overlap (see Fig. 20), as
compared to Stimulus Set 1 (see Fig. 19) indicate an ad-hoc processing of the objects’ identity
at each tested view.

To check whether this difference between the strategies used by the two groups of rats
depended on the different similarity of the pairs of objects the rats had to discriminate, we
computed the pixel-wise Euclidean distance between matching views of each object pair. For
a better comparison between Stimulus 1 and 2, the relative Euclidean distance (normalized to
the square root of the number of pixels; i.e., the maximal possible distance between two
points in our image space) was calculated on low pass-filtered versions of the object images
(the same images used for Ideal Observer analysis, see next section), so that the spatial
frequency content values did not exceed the maximal retinal resolution of Long-Evans rats.
The relative Euclidean distance was quantified for all matching views of the two objects in
one Set, but considering only the conditions on which the Bubbles Mask was applied, i.e.
Default view (35°), size transformed view (20°), azimuth rotated to the left (-40°) and to the
right (20°), in-plane rotated views (+45°) and position shifted views (+18°). The values for
Stimulus Set 1 and 2 are reported in Table 1 and 2, respectively.

As expected, a significantly higher discriminability was quantified in the case of the
objects in Stimulus Set 1 as compared to the objects in Stimulus Set 2 (paired t-test, p<0.001).

Having quantified the different discriminability of the object pairs, we further assessed
how such a difference affected the recognition strategy of the two groups of rats by
computing the average number (Fig. 21-22) and the average absolute and relative size (Fig.

23-24) of the salient features (across views) found for each object.

‘ Default ‘ Size ‘ Azimuth left ‘ A21'muth ‘ Positions In-pl-ane
right rotations
Object 1 and 2 ‘ 0.13 ‘ 0.07 ‘ 0.09 ‘ 0.10 ‘ 0.11 ‘ 0.12

Table 1. Relative Euclidean distance between objects of Stimulus Set 1.

Pixel-wise Euclidean distance between Object 1 and 2 was calculated for matching views of the
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conditions tested with Bubbles.

‘ Default ‘ Size ‘ Azimuth left ‘ A21'muth ‘ Positions In-pl-ane
right rotations
Object 3 and 4 ‘ 0.08 ‘ 0.04 ‘ 0.06 ‘ 0.07 ‘ 0.07 ‘ 0.07

Table 2. Relative Euclidean distance between objects of Stimulus Set 2.
Pixel-wise Euclidean distance between Object 3 and 4 was calculated for matching views of the

conditions tested with Bubbles.

The number of features was calculated, for all four Objects in the two stimulus sets and
considering all views tested, as a function of feature size: the absolute size of the features
ranged from a few pixels to possibly hundreds, when the features spanned over large fractions
of the object (Fig. 21). The smallest features were considered a source of noise in the
determination of the significant number of features and the determination of their average
absolute and relative size. In order to have a control on this source of noise we considered a
succession of thresholds on the minimum absolute size ranging from 1 to 100 pixels in steps
of 1 pixel and computed the average number of salient features as a function of the these

thresholds.
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Figure 21. Average number of features for Stimulus Sets.
The average number of features is depicted, as group average for Stimulus Set 1 and 2 (see legends

for color code), as a function of a threshold set on the features’ size. Significance is plotted in inset
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as dashed lines: black, no significance; red, significance at p<0.05. The higher the threshold on

size considered, the smaller the average number of features, and the difference between them.

Shaded regions: SEM.

We then considered, for each Stimulus Set first (Fig. 21), and then for each of the six

possible pairs of objects (Fig. 22), the statistical significance (two-sample t-test at p<0.05) of

the differences in the average number of features at each threshold (in Fig. 21-22, the red

traces show the comparisons yielding a significant difference).
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A) Object 1 vs Object 2: no significant difference.

B) Object 1 vs Object 3: significant difference up to ~45-50 pixel size values.
C) Object 1 vs Object 4: significant difference up to ~45-50 pixel size values.

D) Object 2 vs Object 3: significant difference in the ranges between ~8-10 pixel size values and

~20-25 pixel size values.
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E) Object 2 vs Object 4: significant difference up to ~25 pixel size values.
F) Object 3 vs Object 4: no significant difference.

We found that the average number of salient features for Stimulus Set 2 was higher (Fig.
21, pink line), as compared to Stimulus Set 1 (Fig. 21, purple line) and this difference was
significant over a large range of threshold values on the features’ size (from 1 to about 55
pixels; see red dots in the inset of Fig. 21). Only asymptotically (for very large features’ sizes),
the difference between the numbers of features found for the two stimulus sets became not
significant (see inset in Fig. 21: the red dots become black). This is expected, given that, by
construction, only a few large features covering big portions of the objects are considered,
regardless of the stimulus set, when the threshold is very large.

Focusing on individual objects (Fig. 22), i.e. considering all possible pairs of the four
objects, we found that the average number of salient features for Object 1 was significantly
smaller than the one for Object 3 and 4 (Fig. 22, B and C), as long as the features’ size did not
cross the 45-50 pixel value (see dotted lines in insets), while it was never significantly
different from the number of features of Object 2 (Fig. 22, A). Object 2, on the other hand,
displayed a smaller difference, in terms of number of features, when compared to object 4
(significant up to ~20 pixels features’ size, Fig. 22, E), and even smaller as compared to
Object 3 (significant in the ranges between ~8 and ~10 and ~20-25 pixels, Fig. 22, D). No
significant difference was found comparing Object 3 and 4 (Fig. 22, F).
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Figure 23. Average features’ relative and absolute size for Stimulus Sets.

The average features’ size is depicted, as group average for Stimulus Set 1 and 2 (see legends for
color code), as a function of a threshold set on the features’ size. A) Relative size; B) Absolute size.
Significance in the difference is plotted in inset as dashed lines: black, no significance; red,

significance at p<0.05. The difference is significant at all threshold values. Shaded regions: SEM.

72



4 | Results

Next, we compared the size of the salient features obtained for each pair of the four

tested objects (both absolute and relative size were computed, with the latter computed

relatively to the object’s size in pixels). As shown in Fig. 23, a comparison between the two

Stimulus Sets reveals that the two groups of rats tended, on average, to select bigger features

for Stimulus Set 1, in terms of both absolute and relative size (the difference in the average

feature’s size between the two sets was significant at all threshold values; two-sample t-test at

p<0.05; see red dots).

However, if we consider the differences between individual objects, in terms of their

features’ relative size (Fig. 24), we note that the only significant difference is between Object

1 of Stimulus Set 1 and all the other objects (Fig. 24, A, B, C). A certain degree of

significance appears also, if we consider absolute size values (Fig. 25), for Object 2 with

respect to Object 3 (Fig. 25, D).
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The mean features’ relative sizes and the difference between them is depicted, for all possible

objects’ couples (A-F, same convention as in Fig. 22), as a function of a threshold set on the

features’ size. As in the insets of figure 22, significance in the difference is plotted as dashed line.

The difference between Object 1 and all other objects is significant at all thresholds considered.

This finding, together with the analysis on the number of features, indicates that 1)

Stimulus Set 2 displays a higher number of salient features as compared to Stimulus Set 1; ii)
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the relative size of the features tends to be smaller for Stimulus Set 1, but is not significantly

different as compared to the one displayed by Object 2 in Stimulus Set 1.

Overall, the analyses presented in Figs. 21-25, along with the feature overlap analysis

presented in Figs. 19-20, indicate that Objects 1 and 2 (in Stimulus Set 1) were discriminated

using a smaller number of larger salient features that were more consistently relied upon

across multiple views, compared to Objects 3 and 4 (in Stimulus Set 2). In other words,

discrimination of Objects 1 and 2 is more consistent with a view-invariant strategy, while

discrimination of Objects 3 and 4 is more consistent with a view-dependent strategy. These

strategies, in turn, appear to depend on the visual and structural similarity of the objects to

discriminate (much higher in the case of Stimulus Set 2; see Table 2).

2

2.000

2.000 e

|

difference
2
8
8

0

B Object 1
Object 2

1.000] B Object 1
0 — Object 3

difference

3000  “-1.000
0 20 40 60 80 100
size threshold

absolute feature size
- - N N
o w o w
(=] (=] o o
o o o (=]

1.000!
3000 0 20 40 60 80 100
size threshold

absolute feature size
- - N N
(=] w o w
(=] o o o
o o o o

500 o = 500 =
0 ol
0 20 40 60 80 100 0 20 40 60 80 100
size threshold size threshold
D) 81000 gznon
gxnon ——— Object 2 gxuou — Object 2
R ——— Object 3 E o Object 4
3000 [ 2000 3000 | *-1.000
° 020 a0 60 80 100 ° TR TR T
g size threshold 5 size threshold
P 2500 a 2500 +
e e
3 3
® 2000 % 2000
& e
£1500 £1500
] ©
21000 21000
© ©
L 500 [ ——
ol . . . . . B
0 20 40 60 80 100 0 20 40 60 80 100

size threshold

size threshold

Figure 25. Average features’ absolute size for individual objects.
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The mean features’ absolute sizes and the difference between them is depicted, for all possible

objects’ couples (A-F, same convention as in Fig. 22-23), as a function of a threshold set on the

features’ size. As figure 23, significance of the difference is plotted as dashed line.

The difference between Object 1 and all other objects is significant at all thresholds considered.

Also, the difference between Object 2 and Object 3 is significant up to a size threshold of ~60

pixels.

Objects that look different are recognized by a lower number of features, which follow

the objects’ distinctive structural parts across a variety of transformation axes and magnitudes
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(view-invariant strategy). Objects that look similar are recognized through a more variable,
more scattered and more numerous set of features (implicating that learning at each tested

view is needed; viewpoint-dependent strategy).

4.6. Comparison Between the Average Rat and a Simulated Ideal Observer

Having found the possibility that rats are capable of an advanced, shape-based and
transformation-tolerant recognition strategy raises the question of just how optimal such
strategy is, given the amount of discriminatory information a pair of visual objects (each
presented under many different viewing conditions) affords. To address this issue, we built a
linear ideal observer and we extracted the critical features underlying its recognition of the
same bubble-masked images that had been presented to one of the rats.

The simulated observer was ideal, in that it had stored in memory, as templates, the
eight views each object could take (i.e., those marked by red frames in Fig. 11C), and was
linear, since it classified each bubble-masked input image as being either one object or the
other, based on which of these templates had the highest correlation with the image itself (see
Materials and Methods for details). Given its full access to all possible appearances the
objects could take, the ideal observer, by construction, was able to perform optimally in the
invariant recognition task and, as such, its recognition strategy represents an upper, optimal
bound.

We decided to compare the saliency maps obtained for the ideal observer with rat group
average saliency maps, i.e., the maps obtained by pooling the bubble trials collected for a
given object view across all available rats. The reason is that such group average maps
summarizes rat invariant recognition strategy in a way that is more robust to noise (given the
larger number of trials they were based on) and more suitable for comparison with the ideal
observer, since idiosyncratic aspects of individual rat strategies get averaged out, while the
features that are more consistently relied upon across subjects emerged more clearly.

Before preforming this analysis, we checked the across-rats consistency of performance
for both groups of rats, by quantifying the overlap values for salient and anti-salient features
in matching conditions (see section 4.3. for details). In other words, the pattern of salient and
anti-salient features from one rat at one condition, e.g. default view, was compared to the
pattern of features of another rat at the same condition. We did so for all the possible pairs of

rats in one group. The distributions of overlap values for salient and anti-salient features of
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both Stimulus Sets are depicted in Fig. 26.
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Figure 26. Distribution of overlap value for salient and anti-salient features in matching

views.

The distribution of overlap values of salient and anti-salient features across rats and in matching

views was computed separately for each of the four objects (see legend for color code).

A) Overlaps between salient features of the four tested Objects.

B) Overlaps between anti-salient features of the four tested Objects.

n=6 for Object 1 and 2 (Stimulus Set 1); n=3 for Object 3 and 4 (Stimulus Set 2).

Not surprisingly, the overlap values for both salient and anti-salient features were higher

for group 1 (Stimulus Set 1) as compared to group 2 (Stimulus Set 2) (p<0.001, two-sample

K-S Test). This indicates a higher between-subject reproducibility of the recognition strategy

in the case of group 1. Given this, we deemed as meaningful to compute rat group average

saliency maps only for Stimulus Set 1 and, as a consequence, the comparison between rat

“average” recognition strategy and the ideal observer strategy was carried out only for

Stimulus Set 1 (depicted in Fig. 27).
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Figure 27. Critical features’ patterns obtained for the average rat and a simulated ideal
observer.

Rat group average saliency maps, with highlighted significantly salient (red) and anti-salient
(cyan) features (top rows in A and B), are compared to the saliency maps obtained for a linear
ideal observer (bottom rows in A and B). For each object view, the Pearson correlation coefficient
between the saliency maps obtained for the average rat and the ideal observer is reported below the

corresponding maps (* indicates a significant correlation at p < 0.05; permutation test).

The patterns of critical features extracted from the average saliency maps (see red and
cyan patches in Figs. 27A, B, top rows) were a cleaner version of what observed at the level
of individual rats (see Fig. 16). For Object 1, a large salient region (covering most of the
upper lobe) and a smaller anti-salient region (covering the bottom part of the lower lobes)
were found (Fig. 27A, top row). For Object 2, different combinations of salient features
(located at the tips of the lobes) and a large anti-salient area (located at the lobes’ intersection)
were found (Fig. 27B, top row).

These patterns of critical features bore many similarities, but also some key differences,
with those obtained for the ideal observer (Figs. 27A and B, bottom rows). The structural
parts in which the salient and anti-salient features were located were largely the same for the
rats and the ideal observer. However, in the case of Object 1, the salient region in the upper
lobe was fragmented and smaller for the ideal observer, as compared to the average rat, while
the anti-salient region was larger, extending from the bottom lobes to the upper one, and
branching in two arms that resembled an outline of Object 2 (compare top and bottom rows in

Fig. 27A). In the case of Object 2, the location and size of the salient features found for the
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ideal observer and the average rat closely matched, although the salient region in the bottom
lobe was larger for the ideal observer and typically extended over the lobes’ intersection, at
the expenses of the central anti-salient region, which was smaller and restricted to the base of
the upper lobes (compare top and bottom rows in Fig. 27B). For any given object view, the
similarity between the saliency maps obtained for the average rat and the ideal observer was
quantified by computing the Pearson correlation coefficient (» values are reported under each
pair of saliency maps in Fig. 27). Such a correlation was significantly higher than expected by
chance for four out of eight views of Object 1 and for all the views of Object 2 (p < 0.05;
permutation test; see Materials and Methods).

Overall, this comparison shows that rat recognition strategy was highly consistent with
that of the ideal observer and, as such, relied on close-to-ideal use of the discriminatory
information afforded by the two objects across their various appearances. At the same time, it
is interesting to note that where rat strategy departed from the ideal one was mainly because it
better parsed the structure of the objects. That is, objects’ structural parts, such as the upper
lobe of Object 1, were considered salient as a whole by rats, while the ideal observer carved
the negative image of Object 2 out of Object 1, even if this operation resulted in a critical
features’ pattern that did not match the natural boundary of Object 1’s upper lobe (see

Discussion for possible implications).

Default Siz Azimuth | Azimuth | Position | Position | In-plane | In-plane
elau ¢ left right left right left right
favte”‘ge -0.80% | -0.66% | -082% | -090* | -076* | -0.67*% | -076% | -0.75%*
Ideal 043% | -0.61% | -0.63% | -0.60% | -0.68% | -076% | -077% | -0.78*
observer

Table 3. Phase opponency of the saliency maps obtained for matching views of Object 1 and
Object 2.

Pearson correlation coefficients between the saliency maps obtained for matching views of Object
1 and 2 (i.e., the same maps shown in Figure 10). For both the average rat (top row) and the ideal
observer (bottom row), the correlation coefficients were all negative and significantly lower than

expected by chance (* p < 0.05, permutation test).

In general, the pattern of critical features found for the view of a given object closely
resembled the negative image of the pattern of visual features found for the matching view of
the other object. This was more apparent for the ideal observer (because of the above-

mentioned carving of the silhouette of Object 2 out of Object 1) but it was true also in the
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case of rat recognition strategy. In fact, all the saliency maps obtained for matching views of
the two objects in Figures 27 show a clear phase opponency. This was quantified, in the case
of the ideal observer and the average rat, by computing the Pearson correlation coefficient
between saliency maps of matching object views. Most correlation coefficients ranged
between -0.6 and -0.8 (see Table 3) and were all significantly lower than expected by chance
(p < 0.05; permutation test; see Materials and Methods), thus showing that the saliency maps
of matching object views were strongly anticorrelated, for both the average rat and the ideal
observer. Although the average correlation coefficient was larger for the average rat than for
the ideal observer (-0.76 = 0.03 vs. -0.66 = 0.04), such a difference was not significantly
larger than expected by chance (p = 0.5, paired permutation test). Overall, this suggests that
the phase opponency of the saliency maps obtained for matching views of the two objects is a
property of rat recognition strategy that is fully consistent with optimal extraction of

discriminatory information afforded by the tested objects’ views.

5. Discussion

The goal of this study was to uncover the perceptual strategy underlying rat invariant
recognition of visual objects. By exploiting an image masking technique that has been
previously applied to human (Gosselin and Schyns, 2001; Nielsen et al., 2008), monkey
(Nielsen et al., 2008), pigeon (Gibson et al., 2005) and, very recently, rat vision studies
(Vermaercke and Op de Beeck, 2012) we have extracted the patterns of critical features rats
rely upon when faced with the challenge of discriminating two visual objects in spite of both
affine (i.e., size/position changes and in-plane rotations) and non-affine transformations (i.e.,
azimuth in-depth rotations). Two different object pairs were used, one containing objects that
were structurally/visually different (Stimulus Set 1) and another one containing objects that

were structurally/visually similar (Stimulus Set 2).

This approach uncovered several key aspects of rat recognition strategy.

5.1. Summary and Implications of our Findings

Our first major finding is that, when it comes to discriminate objects with prominent,
easily distinguishable structural parts (as in the case of Stimulus Set 1), rats are able to rely on
most of such distinct structural parts (see Fig. 16). This implies that, contrary to what
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previously proposed (Minini and Jeffery, 2006; Vermaercke and Op de Beeck, 2012), rats do
process global shape information and make full use of the array of diagnostic elements an
object is made of. On the other hand, for rats that faced a harder discrimination task (Stimulus
Set 2), the diagnostic features were more scattered and more distributed over the whole
surface of the objects, often without a clearing match with the objects’ structural parts (i.e.,
lobes; see Fig. 18).

Our second major finding is that, for many rats tested with Stimulus Set 1, the
recognition strategy was remarkably stable in the face of variation in object appearance. That
is, in many cases, the combination of diagnostic structural parts a rat relied upon was the same
across all or most of the object views the animal faced (Fig. 16 A, B). Moreover, the stability
of rat recognition could not be accounted by trivial low-level strategies (e.g., relying on
transformation-preserved diagnostic features; see Fig. 19). On the other hand, rats tested with
Stimulus Set 2 showed a more variable pattern of diagnostic features across objects views,
thus showing a more view-dependent recognition strategy (see Figs. 18 and 20).

Performance-wise, rat recognition was typically larger than chance over large extents of
the tested transformation axes (see Fig. 15-17, grey diamonds), although not fully invariant,
since a drop of performance was observed for extreme transformation values, especially in the
case of Stimulus Set 2 (Fig. 17). As previously mentioned, viewpoint-invariant theories
propose that, across changes in object view, there is no change in recognition performance: as
long as the critical features remain accessible, the response of the system remains constant. In
comparison, viewpoint-dependent theories hypothesize that changes in the object view
reduces recognition performance, since objects are represented according to how they
appeared when originally learned. Since both groups of rats displayed a modulation of
recognition performance, one could argue that rats, in general, rely on a view-dependent
recognition strategy. However, as shown in many human studies, perfectly invariant
recognition performance is virtually never achieved. Moreover, our bubbles experiments
allow going beyond what could simply be inferred based on performances. When the patterns
of diagnostic obtained for the two groups of rats are analyzed, in many cases, for group 1, the
combination of diagnostic structural parts a rat relied upon was the same across all or most the
object views the animal faced (see Figs. 16A,B). Rats are therefore able of actively detect and
extract discrete object features, which are relied upon irrespective of the transformations the
objects may undergo. However, the crucial requirement for this ability to emerge appears to
be related to the distinctiveness of the objects, in terms of their structural similarity and the

presence of ‘well affordable’ object-specific features. This stability in the rat recognition
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strategy is consistent with the existence of higher-level neuronal representations of visual
objects that can tolerate substantial variation in the position, size and orientation of the objects’
diagnostic features. This suggests that rats can make use of a view-invariant strategy to
recognize objects, similarly to what has been reported for primates and humans, when
engaged in the discrimination of familiar and easily discriminable objects (see Introduction
fro references). Conversely, the greater across-view variability of the critical features’
patterns found for some rats of group 1 (see Fig. 16C) and for virtually all the rats of group 2
(see Fig.18), suggests that such patterns may have been learned and stored in a view-
dependent way, which is consistent with viewpoint-dependent accounts of transformation-
tolerant recognition in primates (see Introduction fro references). In particular, the scattered
nature of the salient features found for both objects of Stimulus Set 2 suggests the tendency to
adopt of a novel strategy for each object view; such a strategy appears to typically make use
of the objects’ structure as a whole, rather than ‘looking for’ specific features, extracted in the
previous phases of the learning process.

In summary, taking into account the larger stability of both the recognition performance
and the recognition strategy observed for Stimulus Set 1, as compared to Stimulus Set 2, we
can conclude that rat recognition relies on a combination of view-invariant and view-
dependent strategies, with the former being prominent in the case of discrimination of
structurally dissimilar objects. This is in agreement with a recent report (Tafazoli et al., 2012),
demonstrating how rats can spontaneously generalize their recognition to novel object views,
without the need of any training (viewpoint-invariant strategy), although the accuracy of the

discrimination improves when training is provided (viewpoint-dependent strategy).

Our third major finding is that the critical features’ patterns underlying rat recognition
strategy at its best (group 1, Stimulus Set 1) closely (although not fully) matched those
obtained for a simulated ideal observer engaged in the same invariant recognition task (see
Fig. 27). This implies that rats are capable of extracting object discriminatory information,
across the various object views they encounter, in a way that is close to ideal. This finding is
in disagreement with the study of Vermaercke and Op de Beeck (2012), in which only a small,
non-significant overlap between the diagnostic stimulus regions used by rats and by a
simulated ideal observer was found (but see further discussion below). Finally, our finding
that the salient diagnostic features were confined within the boundaries of the object structural
parts (i.e., the objects’ lobes) for the rats, but not for the ideal observer, suggests that rat

recognition naturally tends to parse visual objects into their more prominent structural
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elements, and to process such elements as a whole (although this may lead to a slightly sub-
optimal use of the pixel-level object discriminatory information). This further argues for the
existence of transformation-tolerant representations of diagnostic object features, which, for
most three-dimensional objects, will naturally correspond to the objects’ more prominent

structural parts.

5.2. Validity and Limitations of our Findings

As mentioned before, one limitation of our study is that we did not probe pure
generalization of rat recognition to novel object views. This would require presenting the
transformed object views (in both regular and bubbles trials) without giving feedback (e.g.,
reward) to the rats about the correctness of their responses, so to avoid any potential learning
of the new views. This was not possible in our study, since the recognition task the rats
performed was already exceptionally demanding (given the presence of the occluding masks),
and we could not avoid giving reward on bubbles trials, since these trials typically represented
more than half of the total in each session (see Materials and Methods). However, we have
solid reasons to believe that rat recognition of the transformed object views mainly resulted
from generalizing rather than learning/memorizing each individual view. This speculation is
based on three arguments. First, two previous studies (Tafazoli et al., 2012; Zoccolan et al.,
2009) have rigorously established that rats do spontaneously generalize their recognition to
novel appearances of visual objects across many different transformations axes and ranges
(including those tested in this study). Second, rat progression along each transformation axis
during the staircase training was very quick (see Materials and Methods). For instance, for
some rats, it took a single session to reach the asymptotic value along the size axis (i.e., to
achieve >70% correct discrimination at size 15° of visual angle). Third, although only 8 image
pairs were tested with bubbles, bubbles trials were randomly interleaved with regular trials, in
which objects could be presented in any of the transformations that a rat had faced up to that
point. For instance, when bubbles were applied to in-plane rotations, rats could be presented,
in each regular trial, with unmasked objects sampled from the size, position, in-depth rotation
and in-plane rotation axes. This amounts to 78 different object views for each Stimulus Set,
which makes highly unlikely that rats would memorize each of them. In addition, the bubbles
masks themselves produced large changes in the objects’ appearance. Crucially, masks varied

randomly from trial to trial, thus making even more unlikely (if not impossible) for a rat to
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rely on a recognition strategy based on memorizing each object appearance.

Another potential limitation of our study is that rats were not head-fixed and their gaze
was not monitored through an eye-tracker. Importantly, however, we designed our study so
that the lack of precise eye control did not affect our conclusions. First, rat recognition
strategy was recovered by relying on a method that, by its very nature, is alternative to eye-
tracking in obtaining saliency maps. As a matter of fact, with the exception of a few monkey
studies (Nielsen et al., 2006, 2008), none of the studies that have previously applied the
bubbles method (in humans, avian, and rodents) has made use of eye-tracking or other ways
of controlling eye position, not even fixation dots (e.g., see Gibson et al., 2005; Gosselin and
Schyns, 2001; Vermaercke and Op de Beeck, 2012). Second, most of the transformations the
objects underwent in our study were such that rats could not undo them through compensatory
eye movements. In fact, by construction, saccades cannot possibly nullify size variations, in-
plane rotations and azimuth rotations. In fact, by construction, saccades cannot possibly
nullify size variations, in-plane rotations and azimuth rotations, although the former two could,
in principle, be compensated by head movements (i.e., retractions/protractions and rotations
of the head). Importantly, the head of the rats (albeit not rigidly fixed) was restrained during
stimulus presentation. As a consequence, head position was highly reproducible across trial
onsets and very stable during exposure to the visual objects (see Materials and Methods for a
quantification). This guaranteed full control over stimulus size and in-plane rotation. In-depth
azimuth rotation was equally well controlled, given that view-point changes were virtual, i.e.,
resulted from rendering different views of 3D object models on a 2D stimulus display.
Therefore, the only object transformations that rats could, in principle, compensate through
eye movements were the horizontal position shifts. This would be possible only if the animals
made target-oriented saccades to bring the horizontally shifted stimuli always in the same
retinal position. However, this is a very remote possibility, since rats do not have a fovea
(George Paxinos, 2004), saccade much less frequently than primates do (Chelazzi et al., 1989;
Zoccolan et al., 2010) when they are not moving to explore an environment (Wallace et al.,
2013), and no evidence of target-oriented saccades has even been reported in rodents. In
summary, our experimental design allowed obtaining reliable saliency maps for the various

object transformations we tested, without the need of monitoring rat gaze direction.
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6. Conclusions

Over the past five years, a new tide of studies, encompassing behavior (Busse et al.,
2011; Histed et al., 2012; Meier et al., 2011; Tafazoli et al., 2012; Vermaercke and Op de
Beeck, 2012; Zoccolan et al., 2009), imaging (Andermann et al., 2011; Bonin et al., 2011;
Greenberg et al.,, 2008; Marshel et al, 2011; Sawinski et al., 2009) and
electrophysiology/anatomy (Gao et al., 2010; Van Hooser and Nelson, 2006; Kerr and
Nimmerjahn, 2012; Niell and Stryker, 2008; Wang et al., 2011) has reignited the interest for
the use of rodent models in vision research. Taken together, these studies show that both mice

and rats possess more advanced visual processing abilities than previously appreciated.

In spite of these major advances in our understanding of visual processing in rodents, it
remains unclear to what extent rodent higher-level, shape-coding areas are comparable to
those found in the primate ventral stream, in terms of their power to represent complex
combinations of visual shape features in a way that is tolerant to changes in position, size,
orientation, etc. To our knowledge, our study is the first to provide an answer to this question,
by uncovering the patterns of diagnostic features underlying rat recognition of structurally
complex visual objects that were presented under a variety of viewing conditions. Our results
strongly suggest that rats are capable, under conditions of high object discriminability, to
process visual objects through rather sophisticated, shape-based, transformation-tolerant
mechanisms. As such, given the powerful array of experimental approaches that are available
in rats, this model system will likely become a valuable tool in the invasive study of the
neuronal mechanisms underlying object vision and, possibly, other higher-level visual

functions.
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1. Abstract

In the recent years, researchers have shed light on the rodents’ suitability as a useful
animal model for the study of middle/high-level cognitive functions. For instance, it has been
shown that rats can adopt quite sophisticated strategies in performing highly demanding tasks,
as in the case of having to recognize different complex objects under challenging viewing
conditions.

While several recent studies have explored cortical visual processing in mice, with the
goal of discovering the possible rodent homologues of the primate ventral and dorsal visual
streams, we addressed the issue in rats.

First, we run a behavioral study to investigate rat ability to extract motion vs shape
information from identical stimuli (i.e., moving shapes). These experiments were meant to
provide behavioral support to the physiology study described next. Our results show that rats
can extract different types of visual information from the same input, and generate behaviors
accordingly. This suggests the presence of distinct cortical representations for the same visual
input, one conveying information about shape, the other one conveying information about
motion.

Then, we carried out extracellular electrophysiological recordings from 5 distinct visual
areas of the rat cortex, including V1. Receptive field and tuning profiles were characterized
using a variety of visual stimuli (objects, gratings, bars and random dots), presented either as
static patterns or in motion at different velocities and directions.

Both approaches are part of a still ongoing study, whose preliminary results are the
following:

1) Consistent with the presence of a functional hierarchy, RF size and latency of
neuronal response increases along an occipital-temporal pathway starting in V1 and ending in
the deeper visual stages of temporal cortex.

2) Tolerance to stimulus transformations and object selectivity increase in the same

fashion.
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3) Consistent with previous reports, RF size negatively correlates with latency to
stimulus onset.

4) Orientation tuning is stronger in the most temporal areas, as compared to the early
stages.

6) As shape selectivity increases, responsiveness to motion decreases in the same
bottom-up fashion.

7) Direction tuning, computed using moving patterns of random dots, decreases from V1
to the most temporal areas.

8) Consistent with previous reports, RF size positively correlates with motion
responsiveness.

Taken together, these findings argue in favor of a bottom-up tuning for visual stimulus

complexity in the rat’s visual cortex.

2. Introduction

The question of the presence, or lack thereof, a discrete streams of processing in the rat’s
brain, where functionally specialized modules contribute to the processing of shape and
motion information, is scientifically interesting, and challenging, for different reasons.

As previously mentioned, both the ventral and dorsal streams exhibit, in humans and
primates, a hierarchical organization, where the structural and functional properties of
neurons become more and more complex, so as to allow the visual system to eventually solve
higher-order, computationally hard problems, such as the Invariance and the Aperture
problems (see Introduction, 1. The Ventral and Dorsal streams of processing). Most of the
attempts at modeling the accomplishment of high-level shape and motion processing have
taken into account such a hierarchy (see sections 1.1.2 and 1.2.3). Taking into account a
hierarchy in the accomplishment of a function implies questioning the position that a visual
area holds, i.e. its role, the type of information it conveys to and gathers from the other stages.

As previously discussed, many reports (Pack and Born, 2001; Pack et al., 2003; Tinsley
et al., 2003) have proposed an independence of V1 from the other stages in the dorsal stream
for the solution of the Aperture Problem (thanks to its ‘end-stopped’ cells, see section 1.2.4).
A lesion study has proposed, on the other hand, a fundamental role of rat V1 in both motion
processing and orientation discrimination (Petruno et al., 2013, see section 2.4). However, a

number of reports have reported specialized (though inconclusive) roles of discrete
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extrastriate areas in the mouse brain, which closely mimics the ones found in the rat, for both
anatomical and retinotopic organization, in both shape and motion information processing
(reviewed by Niell, 2011; see Introduction, 2.2. Is there a ventral/dorsal stream in rats?).
However, as stated before, investigating motion processing, or shape processing, by
characterizing neuronal responses according to their tuning for spatial and temporal
frequencies can be misleading, since real-world objects contain multiple spatial and temporal
frequencies. As a consequence, processing of motion and shape information for natural
objects might be quite different from what tested in laboratory conditions. Indeed, the
response of cortical neurons can be dramatically dependent on the stimulus structure, i.e., the
neuron’s response to a complex stimulus can be different from what would be predicted by
looking at the response to the spatial (or temporal) frequencies of which it is composed (see,
for V1: Carandini and Heeger, 1994; Dean and Tolhurst, 1986; Dean et al., 1982; Movshon et
al., 1978; Reid et al., 1987; for V1 and V2: Orban et al., 1986; for MT: Jazayeri et al., 2012;
Priebe et al., 2003; for IT: Brincat and Connor, 2004; DiCarlo and Cox, 2007; Logothetis and
Sheinberg, 1996; Tanaka, 1996).

Optimal choice of visual stimulation aside, although it is well established that rats are
able to solve both invariant shape recognition (Tafazoli et al., 2012; Zoccolan et al., 2009; see
Introduction, 2.3 and Chapter 2.Advanced Shape Processing in rats) and motion tasks
(Douglas et al., 2006; Hupfeld and Hoffmann, 2006; Petruno et al., 2013, see Introduction,
2.4.), and that their visual machinery displays all the fundamental functions of other visual
mammals (see Introduction, 2.1. The rat’s visual system), the ability of these animals to
extract shape and motion information from the same stimulus set, and the possible differential
role of rat striate and extrastriate areas in the processing of these two types of information,
remains, to date, unexplored. In fact, although we know that rats can learn to recognize
complex objects in spite of substantial variation in their appearance, (see Chapter 2 and
Tafazoli et al., 2012; Zoccolan et al., 2009), no attempt at investigating object recognition
with moving objects has ever been made. Moreover, if rats can segregate between motion and
shape information from the same visual input, the implications are quite interesting: such
ability possibly points at the presence of discrete neural processing mechanisms for shape and
motion in the rat’s brain, whose action can be either enhanced or suppressed according to task
demands.

In this chapter, I will describe the results of a neurophysiology investigation of visual
motion and shape processing in rat visual cortex, with a preliminary behavioral experiment,

designed as a sort of introductory ‘proof of concept’ to the electrophysiological study.
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3. Materials and Methods

3.1. Behavioral Task: Animal Training

Our behavioral paradigm was designed to assess rat ability to: 1) discriminate the
identity of two visual objects, when presented either as static images (transformed along a
variety of axes, as done in Chapter 1) or moving shapes; and 2) discriminate the direction of
motion of two moving objects (same as in the shape discrimination task) and of various
patterns of moving dots. Note that the moving object conditions were the same in both tasks,
but, in one case, rats had to respond to the shape of the object, while in the other case they had
to respond to the direction of motion. Two different groups of rats were used, each tested with

one of the two tasks.
3.1.1. Visual Stimulation and Experimental Design

Six Long-Evans Rats were placed into six operant boxes in front of a monitor. The box
carried a hole to allow the rat to stick out his head, face the monitor and interact with three
feeding needles (also acting as touch sensors); a central one for the triggering of the stimulus
presentation and two lateral ones for the behavioral outcome and reward collection (same as
described in Chapter 1. Materials and Methods for details).

Visual stimulation consisted in:

1) Two complex shapes, or objects (same used as Stimulus Set 1 for the Bubbles study,
see Fig. 11A, top row), which could be presented as static or moving conditions. Static
conditions consisted of interleaved transformed views of the two objects (see Fig. 11C) , i.e.,
size changes (3 different sizes: 15°, 25° and 35°, the default), position shifts (6 different
positions: -18, -12, -6, 6, 12, 18), in-plane rotations (6 different values: -45, -30, -15, 15, 30,
45) and in-depth azimuth rotations (6 different values: -60, -40, -20, 20, 40, 60). An overall of
21 views of each object were used.

2) Three patterns of 400 moving random dots. Each pattern consisted of white bright and
opaque dots on a black background. Each dot was 2° wide. The dot patterns were moving
either to the left or to the right with a 100% coherence and a velocity of 40°/s. To create a
moving pattern, a static image of a dots pattern was shifted along the screen in steps of 0.65°
per frame. The initial and final positions of the dot pattern were -15°/15° for a right moving

pattern, and 15°/-15° for a left moving pattern. Overall the stimulus presentation time was
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~800 ms. All patterns were presented full-screen. Velocity, position and presentation time
values were the same applied to objects in moving conditions.

Two experimental designs were used for 2 groups of 3 rats each:

1) Group I (Shape Discrimination).

Rats had to learn to discriminate two objects presented in both default (35° size, 0.0°
position, 0° azimuth angle; see Fig. 11A, top row) and transformed conditions in interleaved
trials.

After the rats had reached a stable (i.e., a performance they could keep over 2-3 days of
training) 65-70% performance, the objects were presented in motion, i.e. moving either to the
left or to the right. The moving objects were presented in the default view (full contrast, 0° in-
depth rotation, 35° visual angle) and shifted from -15° to 15° or 15° to -15° along the
horizontal axis.

2) Group 2 (Motion Detection),

Rats had to learn to discriminate the direction of motion of 3 random dot patterns shifted
from -15° to 15° (rightward) or 15° to -15° (leftward) along the horizontal axis.

After the rats had reached a stable 65-70% performance, the moving shapes were added
in interleaved trials, and rats had to perform the same kind of judgment (on the direction of
motion).

In other words, the same two default objects were used. Only, in Group 1, a correct
response is associated with the object’s shape: right, for Object 1, left for Object 2. In Group
2, a correct response is associated with the object’s motion direction: right, if the object is
moving from left to right, or /eft, if the object is moving from right to left.

This design allowed us to assess whether two groups of rats are able to extract different

kinds of information out of structurally identical visual stimulation.

3.2. Physiology: Animal Preparation and Surgical Procedures

All animal procedures were conducted in accordance with the National Institutes of
Health, international and institutional standards for the care and use of animals in research,
and after consulting with a veterinarian. Naive Long-Evans male rats (from Charles River
Laboratories or in-house born rats) were used for extracellular recordings in different visual
cortical areas. All the recordings were performed after the complete development of the rat

visual system (Berardi et al., 2000). Animals weight ranged from 300 to 700 grams. Rats were
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anesthetized with an intraperitoneal injection of a 0.3 g/kg of Fentanyl (Fentanest®, Pfizer,
0.1 mg/2 ml) and 0.3 g/kg Medetomidin (Domitor®, Orion Pharma, 1 mg/ml) solution. The
level of anesthesia was monitored by checking the absence of tail, ear and paw reflex. As
soon as the paw reflex started to show up again, the maintenance anesthesia was administered
(0.1 g/kg/h Fentanyl and 0.1 g/kg/h Medetomidin solution) and kept throughout the whole
recording session. Body temperature was maintained at 37°C with a thermostatically
controlled heating pad to avoid anesthesia-induced hypothermia. Heart rate and oxygen level
were monitored through a pulse oximeter, and a constant flow of oxygen was delivered to the
rat in order to avoid hypoxia. After the first shot of anesthesia produced its effect, rats were
positioned on the stereotaxic apparatus to measure the exact location of the craniotomy and
the penetration site. During surgical procedures, the rat's eyes were protected from direct light
and kept in wet conditions using ophthalmic solution Epigel (Ceva Vetem).

Once the necessary measurements were taken with the stereotaxic arm, the craniotomy

was performed and the dura mater was removed from the exposed brain.

3.3. Recording Procedure

Recordings were performed targeting 5 visual cortical areas (V1, AL, LM, LI and LL),
through a single shank, 32 channels Michigan probe (NeuroNexus Technologies, Ann Arbor,
MI, USA) with two typical configurations: 1) a 5 mm shank with densely packed recording
area (775 p) and 25 pm distance between recording sites for tight recording of one area (Fig.
29A); 2) a 6 mm shank with a recording area spanning 1.5 mm and 50 pm distance between
recording sites, for recording of more than one area (Fig. 29B).

The craniotomy was made over left hemisphere at different coordinates according to the
targeted areas. When targeting V1/AL, the coordinates of penetration were ML (i.e. in the
medio-lateral axis) ~4.4-4.6, AP ~6 (i.e., in the anterio-posterior axis, or 6 mm posterior from
bregma; Fig. 29C, black squares over red squares in D); when targeting LM/LI/LL, the
coordinates were ML ~4.6-5, AP ~7.5 (Fig. 29E, black squares over red squares in F). The
craniotomy consisted in a small square of 2x2 mm around the coordinates of penetration (Fig.
29, red squares in D and F).

Before penetration, the rat was placed on a 21 cm-high base, in order to place the
horizontal plane of the rat's eye at the center of the medial horizontal axis of the monitor, at a

distance of 30 cm from it (see Fig. 28). The base was placed on a rotating platform, which
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allowed us to optimize the position of the rat eye, relative to the monitor, once the probe was
already inserted in the brain, avoiding mechanical damage. The left eye was covered with a
black tape and the right eye (contralateral to the hemisphere from which we recorded) was
immobilized using an eye-ring anchored to the stereotaxic apparatus. The elevation of the
pupil was then adjusted around 0° on the vertical meridian and rotated to 60° azimuth. The
stereotaxic apparatus was at this point rotated 45° toward the left, causing the pupil to point 0°
on the vertical meridian and 15° azimuth, leading the center of the right eye binocular visual

field to be aligned with the center of the monitor.

Figure 28. The recording setup.

The rat was placed on a 21 cm-high base, in order to place the horizontal plane of the rat's eye at
the center of the medial horizontal axis of the monitor, with a distance of 30 cm from it. The left
eye was covered with black tape while the right eye (contralateral to the hemisphere from which
we recorded) was immobilized using an eye-ring anchored to the stereotaxic apparatus. The
elevation of the pupil was then adjusted around 0° on the vertical meridian and rotated to 60°
azimuth. The stereotax apparatus was at this point rotated 45° toward the left, causing the pupil to
point 0° on the vertical meridian and 15° azimuth, leading the center of the right eye binocular
visual field to be aligned with the center of the monitor. On the screen, a frame of the RF mapping

protocol is shown (10° moving bar, see 3.2).

The probe was coated with Vybrant® Dil cell-labeling solution (Invitrogen, Oregon,
USA), a lipophilic membrane stain that diffuses laterally to stain the cells, weakly fluorescent

until incorporated into membranes. This orange-red fluorescent dye is often used as a long-
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term tracer for neuronal and other cells, to eventually recover the shank position through
histological procedures (Blanche et al., 2005; DiCarlo et al., 1996).

After grounding (by wiring the probe to the animal’s head skin), the electrode was
manually moved using a microdrive (allowing a speed of insertion of ~10 um/s) into the
cortical tissue according to the chosen coordinates, and moved until the chosen depth was
reached. For each recording session two or more depths were typically chosen, i.e. two or
more areas to gather data from in one session.

The eye and cortex were periodically irrigated using saline solution throughout the
whole procedure.

At the end of the experiment, animals were transcardially perfused with phosphate-
buffered saline (PBS) 0,1 M followed by 4% paraformaldehyde. The brain was then removed
from the skull and kept in 4% paraformaldehyde for 24 h at 4°C, followed by immersion in
cryoprotective solution (15% w/v sucrose in PBS 0,1 M, then 30% w/v sucrose in PBS 0,1 M)
for at least 48 h each at 4 °C.

Finally, the brain was sectioned in 20 or 25 pum thick coronal slices by a microtome
(Leica SM2000R, Nussloch, Germany). The slices were photographed visualizing both the
Dil fluorescence left from the electrode and the bright field image, with a digital camera
adapted to a Leica microscope (Leica DM6000B-CTR6000 Dil filter, Nussloch, Germany).

The sections that presented the electrode fluorescent track were Nissl stained using
Cresyl Violet Acetate solution; this allowed us to reconstruct the electrode position during the

recording session.

3.4. Visual Stimulation

Each recording session lasted between 6 and 8 hours, and was divided in multiple blocks
of 2 hours and 15 minutes. Stimuli were displayed on a 47 inch LCD monitor (SHARP PN-
E471R, 1920X1080 pixel resolution; 60 Hz refresh rate; 9 ms response time; 700 cd/m?
maximal brightness; 1.200:1 contrast ratio), positioned at a distance of 30 cm from the right
eye, spanning a visual field of 120° azimuth and 90° elevation. Recordings were performed
with a Tucker-Davies Technologies (TDT) 32 channels amplification/acquisition system. The
signal was recorded at a 25 kHz and 1.5 kHz sampling rate for the spiking activity and local
field potential respectively, and filtered at a 300 to 3000 Hz bandwidth (10 to 300 for LFPs).

Rats were exposed to passive viewing of a battery of objects against a black background.
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Figure 29. The coordinates of penetration.

A) The typical probe model used for tight recordings from a single area was a 5-mm long
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Michigan probe with densely packed recording area spanning the 775 um end of the shank tip and
25 um spacing between recording sites.

B) The typical probe model used for smooth recordings from different cortical areas was a 6-mm
long Michigan probe with the recording area spanning the 1.500 pm end of the shank tip and 50
um spacing between recording sites.

C) Typical coordinates for targeting V1 and AL in one sessions (two depth of penetration are
depicted (DV coordinates)). The corresponding craniotomy coordinates are shown in D) (red
squares). The black squares mark the point of penetration.

E) Typical coordinates for targeting LM, LI and LL in one sessions (two depth of penetration are
depicted (DV coordinates), the last one crossing the two temporal-most areas). The corresponding
craniotomy coordinates are shown in F) (red squares). The black squares mark the point of

penetration.

A typical experimental session consisted into two main protocols; before running the
actual experimental protocol, receptive field (RF) position and size was mapped (see Fig. 34
for details). To this aim, 10° wide moving bars at various orientations and 66 different
positions on the monitor were shown (6 rows spanning vertically from -20° to +30°, 11
columns spanning horizontally from -50° to +50°) for 15 minutes, so that a total of ~10 trials
per condition could be collected.

For this protocol, a tangent screen approximation was implemented to avoid distortions
in the stimulus size at each retinal position (i.e., the bars were shown as if they were painted
on flat, planar surfaces tangent to a sphere with radius equal to the distance of the eye from
the position on the monitor in front of the eye itself — 30 cm). Each bar was displayed for 300
ms and followed by a 250 ms blank ISI.

The actual motion and shape protocol was run right after the RF mapping, and lasted for
a period of around 2 hours, so that a total of ~20 trials per condition could be collected.

The visual stimulation that was subsequently used for all data analysis other than RF
mapping consisted of 3 main categories: static, fast moving and slow moving conditions.
Additionally, two types of blank stimulation were used: i) a black frame (‘black blank’) and
i1) a white frame (‘white blank’). They were both presented full screen, and their time could
be 250 ms, 800 ms or 1 second to match the other visual conditions (see next sections).

Each condition was presented in random order, with an ISI of 250 ms (see Fig. 33).

3.4.1. Static conditions

The static conditions were presented as static frames of 250 ms, and consisted in 3
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groups of stimuli.

1) Four 3D artificial objects, chosen on the basis of the rat’s ability to discriminate
between them, as previously reported (see Chapter 1 and Tafazoli et al., 2012; Zoccolan et al.,
2009). The 4 objects were presented at different viewing conditions, i.e. changing size (Fig.
30B), in-plane orientation (Fig. 30C), azimuth rotation (Fig. 30D) and position (Fig. 30E).
Changes in size, orientation and rotation were always presented at the center of the screen
(position 0.0), while for the position changes the objects were presented at a default size (35°

visual angle) and default orientation and azimuth rotation (0°).

A) Object 1 Object 2 Object 3 Object 4

B E2

B) Size Values
ENENEN KN KN
15° 25° 35° 45° 55°
C) In-Plane Rotation Values
-40° -20° 0’ 20° a0°

D) Azimuth Rotation Values

N EN KN KN 8
-60° -40° 0° 40° 60°
E) Position Values
10.6, 10.6°

Figure 30. Static conditions: Objects.

A) The four objects used in static (and moving, see Fig. 32) conditions. The cyan square frames an
object presented in equal (default) conditions (35 ° visual angle, orientation 0°, azimuth rotation 0°,
position 0.0°).

B) Size values for the possible views of one exemplar object.

C) Orientation values for the possible views of one exemplar object.

D) Azimuth values for the possible views of one exemplar object.

E) Positions an exemplar object could assume on the screen.
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2) 35° wide oriented bars (Fig. 31), also subjected to changes in size (Fig. 31A), in-plane
orientation (Fig. 31B), and position (Fig. 31C and see Fig. 32 for the axes convention).
Changes in size and orientation were always presented at the center of the screen (position
0.0), while for the position changes the objects were presented at a default size (35° visual
angle) and a range of different orientations (0:45:90) according to the position (see Fig. 31 D)
to match the corresponding moving condition (see Fig. 32D).

3) Gratings at 4 different spatial frequencies (SF, 0.03, 0.05, 0.1, 0.4), presented at 4
different orientation values (0, +45, 90). SF values were chosen according to both

electrophysiological (Girman et al., 1999) and behavioral (Meier et al., 2011) reports.
3.4.2. Fast and slow moving conditions.

The same stimuli presented in static conditions were presented as movies (Fig. 32).
These movies could be fast (45°/s) or slow (15°/s) and followed 8 different directions of
motion (conventionally referred to as 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°, see Fig. 32B).
Moreover, we added to the moving stimuli a battery of two different patterns of random dot
kinematograms at 100% coherence. Each dot subtended 2° of visual angle, and each frame
contained a total of 800 dots at random positions (Fig. 32B). Both gratings (in both static and

moving conditions) and random dot patterns were presented as full screen stimulation.
A) Size Values
15° 25° 35° a5° 55°
B) In-Plane Rotation Values
!
-45° -40° -20° 0° 20° 40° 45° 90°

C) Position Values

)
-10.6,10.6° . 15° 10.6, 10.6°]

!
-10.3,-10.3 , - 10.6,-10.6

Figure 31. Static conditions: Bars.

See Fig. 30 for details. Colored squares frame bars presented in equal conditions: cyan, size 35°,
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orientation 0°; red, size 35°, orientation 90°; ocher, size 35°, orientation +45°.

A) Motion in Motion in Motionin Motion in

the X axis the DL axis the DR axis the Y axis

lHHl NN 2%

Gratings

Dots

Objects

'l
'0

Figure 32. Moving Conditions.
A) The column title report the conventional labels used for different direction of motion. Rows
depict the four groups of stimuli used in our protocol.

B) Conventional values for motion direction.

-\\\----

2000ms 250ms 250ms 250ms 800ms 250ms 250 ms

Time

Figure 33. Timeline of the recording session.
All visual conditions were presented randomly interleaved. Different presentation times refer to

different conditions (250 ms=static, 800 ms=fast moving, 1 s=slow moving). ISI=250 ms.

3.5. Data Analysis

All experimental protocols for visual stimuli presentation were implemented using the

freeware, open-source software package MWorks (http://mworks-project.org/).

The four objects were renderings of three-dimensional models that were built using the

ray tracer POV-Ray (http://www.povray.org/).

Azimuth rotation renderings, gratings and random dot patterns were generated in
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MATLAB (http://www.mathworks.com), where also all data analyses were performed.

3.5.1. Spike Sorting

It is important to highlight that our data are collected by means of extracellular
recording; i.e., we are capturing action potentials of neurons nearby each of the 32 channels of
our probes. The raw data consists in the extracellular potential measured in the surroundings
of the channel. Extracellular voltage is influenced by many neurons, therefore one single
channel could be recording the activity of more than one cell at the same time.

In line with a previous report by Vaiceliunaite et al. (2013), since only sub-optimal
spike-sorting strategies are currently available for high-density multielectrode arrays, we did
not attempt to perform systematic spike sorting; hence, it is very plausible that in certain cases
(e.g. when detecting a firing rate crossing the threshold of 100 spikes/s) what we name ‘unit’
is actually a ‘multiunit’, hence we are considering multi-unit activity as support for our results.

We chose Waveclus (Quiroga et al., 2004) as a spike sorter algorithm, a method which
combines the wavelet transform, which localizes distinctive spike features, with
superparamagnetic clustering, which allows automatic classification of the data without
assumptions such as low variance or gaussian distributions. In other words, the algorithm
takes a selection of wavelet coefficients to define the clusters of different spikes, and then
applies superparamagnetic clustering to group the activity of the recorded neurons in the
feature space. The end result of the algorithm is the sequence of spike times, the cluster

membership and the spike shapes (Quiroga, 2012).
3.5.2. Receptive field size and position

As mentioned before, receptive field size for each neuron was calculated from its firing
rate in response to 10° wide drifting bars, in four different orientations at 66 different
positions on the screen, spanning horizontally from -50° to +50°, vertically from -20° to 30°
(see Fig. 34A).

The response for each orientation was gathered at each position on the screen, and was
then used to build firing rates as a function of bar position. The firing rate at each position
was fitted with a two-dimensional Gaussian (with independent x and y axis) (see Fig. 34B).
The RF size was calculated as the double of the mean between the width of the Gaussian in
the x and y axes expressed in degrees. The position of the RF was defined as the center of the

fitting. The goodness of fit was taken as a quality measure of the RF observables.
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The process was repeated for all the directions and averaged across all conditions. The
RF mapping was used as principal marker to identify the different visual areas, by looking at

the RF track direction reversals (see next section).

B)

solmle

Figure 34. Receptive Field mapping.

Receptive field size for each neuron was calculated from its firing rate in response to drifting bars,
in four different orientations at 66 different positions on the screen.

A) The grid marks the part of the screen that was used for RF mapping. Each square represents 10°.
The cyan square marks position 0.0, and points at the possible orientations the bar could assume in
that position.

B) The mean firing response to each moving bar at each position and orientation was then fitted
with a two-dimensional Gaussian (left panel) and revealed RF size and position in the visual field
(right panel). The firing rate in response to the drifting bar at each quadrant is color coded (see

colorbar).

3.5.3. Identification of distinct visual areas by RF reversal

As previously described by Espinoza and Thomas (1983), the rat’s visual cortex is
composed of seven retinotopically organized visual areas with the cortical topography that is
mirrored moving from one area to the next (see Fig. 35F and G). For instance, in LM and LL
the retinotopy is the mirror of the one found in V1, with the medial border of each area
representing the nasal portion of the visual field, and the lateral border representing its
temporal portion. On the other hand, the topography in LI is the same as in V1: nasal to
temporal RF positions correspond to lateral to medial recording sites. Crucially, this precise
pattern of transitions from one retinotopic map to the next, while crossing multiple visual
cortical areas, can be used to identify the area from which each neuron was recorded.

As we have seen in the previous sections (see Materials and Methods, Fig. 29), two main
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points of penetrations were used in our recordings: one more anterior in the AP axis, targeting
V1 and AL, another more posterior in the AP axis, targeting LM, LI and LL.

When targeting LM, LI and LL, the typical scenario in the reconstruction of the RF
location was consistent with 3 (or 4) ‘traces’ with specific directions and positions in the
visual field. An example of one of these cases is depicted in Fig. 35.

The recording session consisted in 2 consecutive blocks of recordings, preceded by RF
mapping protocols of 15 minutes each (see section 3.4). Two depths were chosen (marked by
green and ocher probe schematics, respectively, in Fig. 35A): one for Block 1, targeting areas
LM and LI (DV 2.4 mm), and the other one for Block 2, targeting areas LI and LL (DV 3.6
mm). After RF mapping, the RF track was reconstructed by plotting the position on the screen
of the neuronal RFs that had the best fitting (Fig. 35B and D).

The RF track outlined in Block 1 revealed a RF reversal around 110° in the azimuth axis
(Fig. 35B), consistent with a scenario in which the most superficial recording sites (down to
channel no. 9, see white numbers next to the green dots) were located in an area in which the
direction of the RF positions was rightward, typical of V1 bordering areas, such as LM and
AL (see red arrows Fig. 35F and G). On the other hand, the tip of the probe (from channel no.
9 on) was recording from an area in which the direction of the RF positions was leftward,
typical of V1 (see cyan arrow in Fig. 35F) and LI (see cyan arrow Fig. 35G). When going
deeper during Block 2, at least one more area was found, indicated by the fact that RF
reversed again around -10/-20 in the azimuth axis (Fig. 35D). From this point on (channel 12),
the RFs started moving rightwards: we were deep into area LL (see Fig. 35G). As sometimes
happens when reaching such cortical depths, another area was found, starting at the reversal
around 110° in the azimuth axis (see magenta spots in Fig. 35D). We named this area LLb,
since the presence of another visual area beyond LL has no reports in literature.

Although very few units were recorded from this area, since it is very hard to target, and
although their RF position was rarely at the center of the screen (see Fig. 38F), some of their
RF sizes was big enough to encompass part of the objects presented in the central position;
therefore, these neurons are included in the following analyses, but the properties they show

must not be considered as conclusive.
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Figure 96
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Figure 35. Retinotopic map reverse marks the spanning of at least 3 different visual areas.

RF track was used as marker of the area we were recording from.

A) An example of the coordinates of penetration for one session. The session consisted of 2 main
blocks at two different depths (marked by green and ocher lines, representing the probe).

B) RF Track for Block 1 for the best fitted RFs. The depth of penetration and the RF direction of
reversals were consisted with the targeting of areas LM and LI. White numbers mark the number
of recording channels.

C) Schematic reconstruction, with the real RF fittings, of the reversals for Block 1.

D) RF Track for Block 2 for the best fitted RFs. The depth of penetration and the RF direction of
reversals were consisted with the targeting of one more area, namely LL, plus another one, LLb
(marked by magenta dots).

E) Schematic reconstruction, with the real RF fittings, of the reversals for Block 2.

F) and G) Representation of RF position, size and direction of reversal of V1 and the extrastriate
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temporal areas. The arrows have the same color code as the arrows in C) and E). Adapted from

Espinoza and Thomas, 1983.

3.5.4. Spike counting window and latencies of response onsets.

In order to measure the neuronal response we computed the optimal spike counting
window (SCW) for each neuron following the procedure described in Zoccolan et al. (2007).
In order to apply this method, the true epoch of the entering of a stimulus into the RF is
required. Since for moving conditions this epoch cannot be determined (response onset can
vary widely, depending on the relative position between RF and starting point of the moving
object), we had to modify substantially the approach in order to cover these cases. We
describe the original approach and its adaptation to the motion case in the following.

1) Static conditions. For each neuron and each condition the responses were first
computed over a common spike counting window of 0-250 ms, where the zero represent the
time of stimulus onset. For each neuron and each condition we first computed the average
firing rate FR_obj(t) across the trials. The number of trials was always in the range [18-20]
depending on the condition. The FR were computed in overlapping time bins of 25 ms shifted
in time steps of 1 ms. Then for each neuron we ranked all the conditions depending on the
spikes count in the fixed common window (computed between 0 and 250 ms after stimulus
onset). We selected the 10 best conditions (i.e. the 10 conditions that displayed the highest
peak in the evoked response) for each neuron and averaged the FR obj(t), obtaining
<FR_obj(t)> obj = FR(t). Over these conditions we averaged the response in the time
window [-50,0] ms in order to obtain the background rate FR bkg(t) of the neuron (we
observed that other choices for this time window, such as [0,50] ms are not safe because for
V1b and other areas the onset times can be smaller). We subsequently defined the stimulus-
averaged driven firing rate (SADFR) profile as the difference between the firing rate averaged
over the best conditions and the corresponding background: SADFR(t)=FR(t)-FR bkg(t).
From this profile we could extract the region corresponding to the spike counting window
with a procedure that we will call in the following ‘invasion’. We selected as a ‘pivot’ point
the peak of SADFR(t) in the window 0-250 ms, and set the onset and offset of the spike
counting window as centred on the peak. Then we considered as a threshold value the 20% of
the peak amplitude. We then moved right the offset until the SADFR(t) passed through the
threshold. Then we moved the onset to the left in an analogous way. The points of threshold

crossing defined the extremes of a connected component containing the peak where the
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SADFR(t) was consistently larger than the threshold (i.e., > 20% of the peak). If other
components where SADFR was larger than the threshold were found at a distance smaller
than 25 ms, the components were merged together and the extremes of the merged component
were taken as the onset and offset of the spike counting window (see Fig. 36A). Other
information, such as the amplitude of the peaks, their time location, the length of the windows,
and the areas of the neurons where stored for further statistical analysis.

2) Motion conditions. The fast and slow motion conditions were treated on the same
footing, the only difference between the two being the preliminary spike counting window in
which we measured the responses, in order to rank all the conditions. These windows were
respectively [0-800] ms and [0-2000] ms for the fast and slow motion conditions. In order to
determine the optimal spike counting window for each neuron we proceeded as follows. The
FR_obj(t) profiles and the rankings were computed in exactly the same way as for the static
conditions in their respective windows. Then, for each neuron we selected the 10 best
conditions and computed a condition-dependent spike counting window with the invasion
algorithm applied to the single FR _obj(t).

With this procedure we obtained a condition-dependent set of onsets and offsets for the
spike-counting window, and in order to reduce the uncertainty of this estimate, we decided to
determine the offsets as the sum of the onsets plus a duration which was set common for all
conditions. The procedure by which we selected a common duration implied the selection of
the 10 best conditions as in the static case and we aligned their profiles FR_obj(t) based on
their onsets (see Fig. 36B). We then averaged these profiles and subtracted the background
computed in the same way as in the static case, obtaining the analogue of the SADFR(t) in the
motion case (see Fig. 36C). We than applied the ‘invasion’ algorithm on this SADFR(t) in
order to compute the duration of the response. Then we went back to the FR_obj(t) and for
each profile we could finally compute the offset adding to the onset the duration of the
response obtained.

Alternative and interesting methods for a precise computation of latencies were
developed in DiCarlo and Maunsell (2005), but we could not apply directly these methods

here due to the different spatiotemporal nature and complexity of the stimuli.
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Figure 36. Selection of the spike counting window for static and moving conditions.

A) Spike counting windows for static conditions. The neuron’s background rate was computed
over the 50 ms before stimulus onset, and it is marked by the green line. The 10 best conditions
were selected for each neuron, averaged and the background subtracted, thereby obtaining the
neuron’s stimulus-averaged driven firing rate (SADFR, blue trace). The spike counting window
was centered around the peak, considering as a threshold value the 20 % of the peak amplitude.
The window is highlighted by a yellow patch. Onset and offset values are reported in red; the time
window duration is reported in black.

B-D) Spike counting windows for moving conditions. Three exemplar traces with different onset
values were aligned in the time axis and averaged (C), and a fixed duration of the window chosen.
The window is highlighted by a yellow patch, with initial onset and offset values reported in red.
We then went back to the original traces, and the offset was defined as the original onset plus the

duration time (D). Onset and offset values are reported in black.

3.5.5. Selectivity and tolerance indexes

Object selectivity and tolerance to object transformations were calculated on static
conditions.

A tolerance indexe measures how invariant is the response of a neuron to
transformations of a given stimulus. Indexes for Position Tolerance (PTI), Size Tolerance
(STI), Azimuth Rotation Tolerance (ATI), and Orientation Tolerance (OTI) were measured

with the same method for each neuron as we describe in the following for the case of Position
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Tolerance (PTI). Given a tuning curve for a generic transformation (for example the size) we
first normalized the corresponding tuning curve TC dividing by its maximal value. Then we
defined the tolerance for the transformation as the average over all the values that were less
than 1: Tol = (TC)* (we denote the averaging procedure with the angular brackets and the
star). The tolerance index ranges from zero to 1 by construction, these two values
corresponding to the extreme situations in which the neuron is extremely tuned or perfectly
tolerant to the transformation. For the case of position tolerance we defined first a global
tuning curve for position transformations concatenating the four tuning curves corresponding
to the four axes of position transformations.

A selectivity index measures the preference of a neuron for a particular stimulus with
respect to other stimuli. A typical measure of selectivity is sparseness (Olshausen and Field,
2004), which has proven to be useful when the number of stimuli is large (Zoccolan et al.,
2007), but has the limitation of being based only on average firing rates, without taking into
account the variability of the responses and, therefore, the actual discriminability of the
stimuli. In our case, to overcome these limitations (also given the small number of stimuli in
our object set), we decided to use a measure of selectivity based on the d' index. We recall

that the d’ index between two normally distributed random variables X and Y is defined as

Ux—Hy

1, 2 2
1/E(Ux'+' gy )

other words the d’ index between two random variables is the difference in their expectation

where i, (i, are the means and oy, g, the standard deviations respectively. In

values normalised by the square root of their average variance. This measure is preferable to
sparseness in that it accounts explicitly for the statistical fluctuations in firing rates: the
difference of the means being equal, the discriminability of two signals is higher when they
have a low variance and this is captured by the d’ index. We computed the selectivity for each
neuron as follows. For each pair of objects we computed the maximal d” over all the tested 17
positions and we repeated the computation for all the six pairs of objects. We then defined the

selectivity of a neuron as the maximal value obtained among the six couples.
3.5.6. Orientation and direction selectivity indexes

The Orientation selectivity index (OSI) was defined as (Rprer = Rortho)/(Rprer + Roritho)s
where Rp.r is the mean response in the preferred orientation. Rown, was defined as the
response evoked by the orthogonal orientation. With this index, perfect orientation selectivity

would give OSI = 1; an equal response to all orientations would have OSI = 0, and 3:1
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selectivity corresponds to OSI = 0.5. Similarly, the Direction selectivity index (DSI) was
considered as a marker of motion selectivity for an area, and calculated separately for fast and
slow moving conditions. The DSI was defined as (Rprer—Ropp)/(RprertRopp), Where Ropp 1s the
response in the direction opposite to the preferred direction. With this index, perfect direction
selectivity would give DSI=1; an equal response to all directions would have DSI=0, and 3:1
selectivity corresponds to DSI=0.5. Highly and poorly tuned neurons were defined as neurons
with an OSI/DSI>0.5 and OSI/DSI<0.5, respectively.

In order to avoid the confound of artifacts due to RF position (see section 4.5), OSI sand

DSIs were quantified for full-field conditions only.

4. Results

4.1. Rats Can Segregate Shape and Motion Information

The performance in the behavioral task described in Materials and Methods, showed that
rats are able not only to discriminate static visual shapes (Fig. 37A; blue bar) and motion
direction (Fig. 37B; green bars), as previously reported (see Douglas et al., 2006; Petruno et
al., 2013; Tafazoli et al., 2012; Zoccolan et al., 2009), but also to correctly discriminate either
the identity (Fig. 37A; red bars) or the motion direction (Fig. 37B; red bars) of moving
shapes. Being able to extract different kinds of visual information, related to either shape or
motion, from the same visual input, and generate behaviors accordingly, points at rat’s ability
to tell motion from shape, and shape from motion. This suggests the presence of distinct
cortical representations for the same visual input, one that must convey its shape features, and

another one that must convey its motion features.
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Figure 37. Performances of the two best rats.

A) Performance of the best rat of group 1 (shape task). The performance was around ~70% of
correct trials at each condition. Number of sessions=106.

B) Performance of the best rat of group 2 (motion task). The performance was around ~70% of
correct trials at the moving shapes trials, with a slight bias to the right at the moving dots
conditions. Number of sessions=113.

*#%=p<0.001, right-tailed T test.

4.2. RF Size Increases towards the Most Temporal Areas

The mean RF size per area was quantified after filtering out the worst units, by setting a
threshold on the quality and position of each RF in each area. In other words, RFs that had a
bad Gaussian fitting (i.e. yielded a coefficient of determination lower than 0.5), or were
located off the visual field, were removed from this analysis, and all the analyses which
explicitly required the RF quantitative features. Note that, for neurons belonging to area LLb,
only a threshold on goodness of fit on the RF was applied as a criterion of selection, since the
center of their RFs was typically off the the screen (see Fig. 38F). These neurons were
nevertheless considered in the following analyses, because, having very large RFs, they
afforded the possibility to catch some of their tuning properties from the stimulus conditions
falling into the lower/lower right quadrant of the screen (occasionally, since their RF size was
very wide, sometimes even the conditions falling in the center of the screen could be
encompassed). As mentioned before, this area yielded very few units; applying a threshold on
the RF positions as well would prevent us from having enough data to, albeit weakly,
characterize it.

The RF centers and sizes found in each area (before thresholding) are depicted in Fig. 38

(blue circles and red dots, respectively). The white circle represents the typical area that a
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default object (35° size, position 0.0°) covered in the visual field.

Figure 38. RF sizes and positions for each area.
RF size (blue circles) and positions (red dots) are depicted for each area, from V1 (A) to LLb (F).

The red dots located on the edges in F) represent off-screen RFs.

Consistently with Espinoza and Thomas (1983), we found an increase in the RF size

going from V1, to AL/LM, to LI/LL (and LLb) (Fig. 39).
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Figure 39. Mean RF size per area.
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RF size increases as a function of area, from the smaller ones in V1 to the bigger ones.
A) RF size distribution of each area. Red lines: mean value.
B) Average RF size for each area. The number of units of each area is reported as x labels.

Errorbars: SEM. *=p<0.05, one-way ANOVA.

The statistical difference between one area and the next was computed by running a one-
way ANOVA (Tukey post-hoc test, p<0.05) on each population. V1 population turned out to
be significantly different from all the other areas. The other significant difference where

between LM and LI, LL and LLb; LLb and AL and LI.

4.3. Spontaneous and Luminance Driven Firing Rate Profiles

Firing rate profiles were calculated as previously described (see Materials and Methods,
section 3.5.3.). Spontaneous activity was quantified considering the neurons’ response to
black blank conditions (blank screen) (Fig. 40). We also considered the white blank
conditions as a measure of the average area response to luminance (Fig. 41). For both blanks,
all the three stimulus presentation times used for these conditions (250ms, 800 ms and 1
second) were considered and averaged. When tested with full field white blank stimulation, a
decreasing tendency to fire appeared across the occipital-temporal axis: higher firing rate
profiles were observed for LM and V1 (LM firing was significantly higher than all other
areas), followed by AL and LI. LL and LLb appeared to be the areas with the least sensitivity

to full luminance stimulation.
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Figure 40. Spontaneous firing rates per area.

109



Chapter III | Motion and Shape Processing in Rat Visual Cortex

A) Spontaneous firing rate values distribution of each area. Red lines: mean value.
B) Average spontaneous firing rates for each area. The number of units of each area is reported as

x labels. Errorbars: SEM. *=p<0.05, one-way ANOVA.
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Figure 41. Average firing rate profile in response to white blanks.
A) Evoked firing rate values distribution of each area in response to full-field white blanks. Red

lines: mean value.

B) Average firing rates for each area. The number of units of each area is reported as x labels.

Errorbars: SEM. *=p<0.05, one-way ANOVA.

4.4. Shape Tuning

Shape tuning was quantified for each area as the response of its neurons to static
conditions. Tuning curves were quantified as the average response of neurons to different
transformation values of size, position, azimuth rotation and orientation.

A variety of tuning profiles was found for each area. Focusing only on areas V1 (Fig. 42
and 43) and LL (Fig. 44 and 45), and taking as examples units displaying small and big RF
sizes, we can make some general considerations on how tuning might change from the first to
the last stage of processing. We see that: i) independently of RF size, LL units are more tuned
for smaller objects as compared to V1 (compare panels E in Fig. 42-43 and 44-45); ii)
consistently with Fig. 41, V1 is more sensitive to luminance full-field stimuli (compare light
grey lines in panels E-J in Fig.42-43 and Fig. 44-45); iii) when neurons with similar RF sizes
in V1 and LL are compared, the responses of V1 and LL neurons to their most effective (or

preferred) objects are similarly tolerant to position changes (compare Fig. 42C to Fig. 44C),
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but LL neurons show a stronger power to discriminate the preferred from the non preferred
object across the visual field (compare Figs. 44C and D), as compared to V1 neurons

(compare Figs. 42C and D), thus suggesting a lower object selectivity for the latter area.
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Figure 42. A V1 neuron with wide RF.

A) Mean PSTH computed considering the neuron’s mean response to the 10 best conditions. The
two red lines outline the spike counting window. The green line marks the onset threshold. The
black line marks the average background activity.

B) The neuron’s RF. Size=26.67".

C) Position tuning of the best object. The dots mark the different positions a stimulus can assume
on the screen. Brighter dots mark spots of higher sensitivity to that position. The bigger the RF,
the broader the part of screen covered (the higher the number of bright dots).

D) Position tuning of the worst object. Same convention as in C.
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E-G) Tuning curves to objects undergoing size, orientation and azimuth rotation transformations.
Green line=object 1; cyan line=object 2; blue line=object 3; magenta line=object 4. The neuron
shows tuning for bigger object areas. No important tuning for orientation or rotation in the azimuth
plane. Error bars indicate SEM.

H-I) Tuning curves to bars undergoing size and orientation transformations. Consistently with
object tuning, the neuron shows tuning for bigger bar areas. A tuning for -45° and 90° orientations
appears.

J) Tuning curves to oriented gratings of different spatial frequencies. Green line=0.03; cyan
line=0.05; blue line=0.1; magenta line=0.4. No significant tuning appears, except for SF 0.03
(green line), which matches the bars tuning.

In all tuning curves plots, the dark grey and light grey shaded lines refer to black and white blank
mean response, respectively. The response to full field white blank condition is high, typical of V1

neurons (see Fig. 41).
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Figure 43. A V1 neuron with small RF.

A) Mean PSTH computed considering the neuron’s mean response to the 10 best conditions. The
two red lines outline the spike counting window. The green line marks the onset threshold. The
black line marks the average background activity.

B) The neuron’s RF. Size=15".

C) Position tuning of the best object. Brighter dots mark spots of higher sensitivity towards the
central/left side of the screen, consistently with RF position.

D) Position tuning of the worst object. Same convention as in C.

E-G) Tuning curves to objects undergoing size, orientation and azimuth rotation transformations.
Green line=object 1; cyan line=object 2; blue line=object 3; magenta line=object 4. The neuron
shows tuning for bigger object areas, and a preference for Object 1 and 2 is shown, which reflects
in the tuning at 0° orientation and at the more positive values in the azimuth tuning. Error bars

indicate SEM.
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H-I) Tuning curves to bars undergoing size and orientation transformations. Consistently with
object tuning, the neuron shows tuning for bigger bar areas. A slight tuning for -45°, -20° and 90°
orientations appears.

J) Tuning curves to oriented gratings of different spatial frequencies. Green line=0.03; cyan
line=0.05; blue line=0.1; magenta line=0.4. A slight tuning for 90° orientation is shown.

In all tuning curves plots, the dark grey and light grey shaded lines refer to black and white blank
mean response, respectively. The response to full field white blank condition is high, typical of V1

neurons (see Fig. 41).
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Figure 44. A LL neuron with wide RF.
A) Mean PSTH computed considering the neuron’s mean response to the 10 best conditions. The

two red lines outline the spike counting window. The green line marks the onset threshold. The
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black line marks the average background activity.

B) The neuron’s RF. Size=53.52°.

C) Position tuning of the best object. Brighter dots mark spots of higher sensitivity at all positions.
D) Position tuning of the worst object. Same convention as in C.

E-G) Tuning curves to objects undergoing size, orientation and azimuth rotation transformations.
Green line=object 1; cyan line=object 2; blue line=object 3; magenta line=object 4. The neuron
shows tuning for smaller object areas, typical of temporalmost areas. No important orientation
tuning. A slight tuning to 40° azimuth rotation for Object 2 is shown. Error bars indicate SEM.
H-I) Tuning curves to bars undergoing size and orientation transformations. Consistently with
object tuning, the neuron shows tuning for smaller bar areas. No significant orientation tuning
appears.

J) Tuning curves to oriented gratings of different spatial frequencies. Green line=0.03; cyan
line=0.05; blue line=0.1; magenta line=0.4. No significant tuning appears.

In all tuning curves plots, the dark grey and light grey shaded lines refer to black and white blank
mean response, respectively. The response to full field white blank condition is low, typical of the

most temporal areas (see Fig. 41).
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Figure 45. A LL neuron with small RF.

A) Mean PSTH computed considering the neuron’s mean response to the 10 best conditions. The
two red lines outline the spike counting window. The green line marks the onset threshold. The
black line marks the average background activity.

B) The neuron’s RF. Size=17.23".

C) Position tuning of the best object. Brighter dots mark spots of higher sensitivity towards the
central/left part of the screen, consistent with RF position.

D) Position tuning of the worst object. Same convention as in C.

E-G) Tuning curves to objects undergoing size, orientation and azimuth rotation transformations.
Green line=object 1; cyan line=object 2; blue line=object 3; magenta line=object 4. The neuron
shows tuning for smaller object areas, typical of temporalmost areas. No significant orientation or
azimuth rotation tuning. Error bars indicate SEM.

H-I) Tuning curves to bars undergoing size and orientation transformations. Consistently with
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object tuning, the neuron shows tuning for smaller bar areas. An orientation tuning for -45°
appears, probably due to the falling of the uppermost part of the bar into the RF.

J) Tuning curves to oriented gratings of different spatial frequencies. Green line=0.03; cyan
line=0.05; blue line=0.1; magenta line=0.4. Slight tuning to 45° orientation appears for 3 different
SF.

In all tuning curves plots, the dark grey and light grey shaded lines refer to black and white blank
mean response, respectively. The response to full field white blank condition is low, typical of the

most temporal areas (see Fig. 41).

4.4.1. Latency Profiles

Latencies per area were computed considering static conditions only (see Materials and
Methods). Stimulus onset latencies increased along the visual hierarchy, from a mean of ~55

ms in V1 to a mean of ~80 ms in area LL and ~100 ms in area LLb (Fig. 46).
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Figure 46. Latencies to stimulus onset per area.
A) Latencies distribution of each area. Red lines: mean value.
B) Average latency value for each area. The number of units of each area is reported as x labels.

Errorbars: SEM. *=p<0.05, one-way ANOVA.

A correlation between RF size and latency was calculated for each area (Fig. 47). For
each area we fitted a linear model and estimated the parameters of the fit by a leave-one-out
bootstrap (red lines in Fig. 47). RF size and latency to stimulus onset negatively correlate at

all instances but LM and AL, significantly in V1 and LI (Fig. 47B and C).
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The correlation between RF size and latency to stimulus onset is depicted for each area, from V1

to LLb (A-F). Red lines represent the linear fit, whose parameters’ variability was estimated by

leave-one-out bootstrap. RF size and latency significantly trade off in V1 and LI. The correlation

coefficients (r) for each area are reported.

sk = p<0.0001.

4.4.2. Firing Rate Profiles in Response Static Stimulation

Evoked firing rates were computed in response to all static stimuli presented as static

conditions. Specifically, for each neuron, the peak of the mean responses to the 10 best static

conditions was selected. We observed that area AL fired lower than all other areas, while all

other areas appear to fire at equal magnitude to static stimulation (Fig. 48).
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Figure 48. Average firing rate profiles evoked by static stimulation.

A) Evoked firing rate values distribution of each area in response to static stimulation. Red lines:
mean value.

B) Average evoked firing rates for each area. The number of units of each area is reported as x

labels. Errorbars: SEM. *=p<0.05, one-way ANOVA.

4.4.3. Shape Selectivity and Tolerance to Stimulus Transformations Increase

along a Medial-Lateral Axis

Tolerance to various transformations in object appearance were calculated as described
in Materials and Methods. Tolerance metrics were computed as a measure of how stable was
the response of a neuron to its preferred object over size (size tolerance index, STI), in-plane
rotation (OTI), azimuth rotation (ATI) and position (PTT) changes (Fig. 51-52). A mean index
of tolerance, considering all object transformations together, was also computed (Fig. 49-50).

In general we found that tolerance increased significantly from the earlier stages of the
putative rat ventral pathway (i.e., VI/LM/AL) to its later stages (i.e., LI, LL and LLb). This
was observed for each of the tested transformation axes (see Fig. 51) and when all
transformations were considered at once (see Fig. 49). Note that the analysis on position
tuning yielded overall lower values as compared to the other indexes. This because position
tuning indexes were computed by means of a concatenation of the four position axes, thereby
averaging across a higher number of points as compared to the other tolerance metrics (see
Material and Methods).

This analysis was also repeated after imposing a constraint on the maximal distance

between the center of a RF and the center of the stimulus display. That is, only neurons with a

119



Chapter III | Motion and Shape Processing in Rat Visual Cortex

RF within 20° from the center of the stimulus display were considered. This was done to
restrict the computation of the tolerance metrics only to neurons with a RF covering most of
the tested object conditions, discarding those neurons with very peripheral RFs. This allowed
comparing neuronal populations in different visual areas on a more equal basis, since only
populations with similar coverage of the stimulus conditions were included. This minimized
the possible impact of across-areas variations in the distributions of the RF centers (see Fig.
38) on the computation of the tolerance metrics. Note that, in the case of LLb, being the
number of units much lower as compared to the other areas, and all the RF very large but very
peripheral, a filter on the RF size was applied instead, to ensure that only RFs covering the
stimulus conditions were included (only neurons with RF size larger than 30° were included).
As shown by comparing Figure 48 to Figure 49 and Figure 51 to Figure 50, the increase of
tolerance observed for the most temporal/lateral areas, compared to the more medial, was still
observed (with the exception of position tolerance, which contemplated the use of RF
spanning the whole visual field by construction; see Materials and Methods), when the
neuronal populations were subsampled according to the criteria outlined above.

Not surprisingly, this increase in the tolerance of neuronal responses to variation in the
size, location, etc. of their preferred objects correlated positively with the size of the neuronal
RFs (Fig. 53). That is, on average, neurons with larger RFs tended to be more tolerant to

variation in object appearance across a variety of transformation axes.
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Figure 49. Mean tolerance by area with no filter on RF positions.
A) Distributions of mean tolerance indexes for each area. Red lines: mean value.
B) Mean tolerance for each area. The number of units of each area is reported as x labels.

Errorbars: SEM. *=p<0.05, one-way ANOVA.
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Figure 50. Mean tolerance by area with filter on RF positions.

See Fig. 49 for details.
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Figure 51. Tolerances by area with no filter on RF positions.

A, C, E, G) Distributions of indexes of tolerance to size, orientation, position and azimuth rotation
for each area. Red lines: mean value.

B, D, F, H) Mean tolerance indexes for each transformation and each area. The number of units of

each area is reported as x labels. Errorbars: SEM. *=p<0.05, one-way ANOVA.
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Figure 52. Tolerances by area with filter on RF positions.

See Fig. 51 for details.
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Figure 53. Correlation between RF sizes and tolerance indexes.
The correlation between RF size and position (A), azimuth rotation (B), orientation (C) and size

(D) tolerance is depicted for all areas (see Fig. 52 for color code). Red lines represent the linear fit,
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whose parameters’ variability was estimated by leave-one-out bootstrap. A positive correlation
between RF size and tolerance to all transformations tested is shown. The correlation coefficients
(r) for each area are reported.

sk = p<0.001.

In addition to tolerance, we also compared how selectivity for visual objects changed
across rat visual areas. Object selectivity was computed as described in the Materials and
Methods, i.e., by measuring the d’ for all object pairs at each tested position and taking the
maximum. This provides an estimate of the maximal discriminability power of each neuron
under the tested shape/position conditions. As in the case of tolerance, we also observed a

significant V1-to-LL gain in selectivity (Fig. 54).
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Figure 54. Object selectivity by area.
A) Distributions of selectivity indexes for each area. Red lines: mean value.
B) Mean selectivity for each area. The number of units of each area is reported as x labels.

Errorbars: SEM. *=p<0.05, one-way ANOVA.

Finally, we checked if the observed increase in shape/object selectivity could be
accounted by a parallel increase in orientation tuning. The response to static gratings of 4
different orientations were used to compute the orientation tuning indexes (OSI) for each area.
Results show a V1-to-LL increase in orientation selectivity, with LL being significantly more
selective as compared to V1 and LM (Fig. 55).

In summary, the analysis of the static object conditions revealed a concomitant increase

of both selectivity for visual objects/shapes and tolerance to variation in their appearance,
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which is consistent with the possible role of LI, LL and LLb as terminal stages of a rat shape

processing pathway.
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Figure 55. Orientation tuning by area.
A) Distributions of orientation indexes for each area. Red lines: mean value.
B) Mean OTI for each area. The number of units of each area is reported as x labels. Errorbars:

SEM. *=p<0.05, one-way ANOVA.

4.5. Motion Tuning

As mentioned before, a variety of moving stimuli were used to estimate the tuning
properties of neurons recorded across rat visual areas for motion direction and velocity. These
stimuli (see Fig. 32A) included both full-field patterns (such as gratings and random dot
fields) and localized shapes (i.e., object sand bars). When it comes to the latter, it is important
to point out a potentially dangerous confound in quantifying a neuron’s direction tuning: the
position of its RF (see Fig. 56L). This is illustrated in Fig. 56, for an example V1 neuron with
a very peripheral RF. Since, in our experiments, many neurons were simultaneously recorded,
it was not possible to “center” the motion, as well as the static, stimulus conditions on the RF
center of each neuron. Rather, all stimulus conditions were displayed in the same (absolute)
visual field locations for each neuron (i.e., relative to the center of the stimulus display). This
means that a neuron with a very peripheral RF would be unable to respond to many directions
of motion (when tested with localized stimuli such as object and bars), simply because a
stimulus moving along these directions would not enter its RF (see Fig. 55L). This would

result in an apparent sharp tuning for motion direction, when tested with object and bars (see
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Figs. 55B-E), even if the neuron is not at all tuned for motion direction, as revealed by the full

field grating conditions (see Figs. 55F-G).
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Figure 56. A V1 neuron with ‘fake’ direction tuning.
A) Conventional values for the 8 directions of motion used (marked in red).
B, C) Direction tuning for Objects moving at fast and slow motion, respectively. All objects

appear tuned for direction towards 90°, but not the orthogonal one (270°), suggesting direction
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tuning.

D, E) Moving bars tuning in fast and slow motion, respectively. The tuning reflects Object tuning.
F, G) Flat motion tuning curves for gratings moving at slow and fast motion, respectively.

H, I) Flat motion tuning curves for random dots moving at slow and fast motion, respectively. The
two line colors refer to the two patterns used.

K) The neuron’s RF is 19.28° wide and covers the lower-left part of the screen.

L) The objects’ left border touches the RF at its starting and finishing position, but the neuron fires
only at the objects’ starting position.

As indicated by the light grey line in B-I, the response to white full-field blank is high, typical of
V1 (see Fig. 41). Together with the observation on the starting position on the moving object, this
suggest that the neuron might respond to abrupt changes in contrast falling into the whole RF or
part of it.

All tuning curves are displayed as both carthesian axes and polar plots.

Such an apparent motion tuning would be exacerbated by the fact that most neurons
respond much more strongly to abrupt changes in luminosity (i.e., when a stimulus suddenly
appears within a neuron’s RF) than to gradual changes (e.g., when a stimulus moves into a
neuron’s RF), likely because of some adaptation mechanisms. Therefore a neuron would
typically fire more strongly for a stimulus departing from a position close to the center of its
RF than for a stimulus approaching that position. This would result in an apparently large
difference in the response of the neuron to orthogonal motion directions (compare the peaks
with opposite directions in Fig.56B-E). In order to avoid such artifacts in the analysis of
motion tuning, we restricted the computation of direction selectivity to full-field conditions

only (i.e. gratings and dots; see Figs. S6F-I).
4.5.1. Firing Rate in Response to Moving Stimuli

Similarly to what we did for firing rates evoked by static stimulation, we selected the
peak of the response of each neuron to the 10 best stimuli presented as fast and slow moving
conditions.

Neuronal firing rates in response to the fast moving conditions decreased in the most
temporal areas (i.e., LI, LL), as compared to the more medial areas (i.e., V1, and LM; see Fig.
57). This marks a very different pattern, compared to what observed for firing rates in
response to static conditions (shown in Fig. 48 and also reported, for better comparison, in the
inset of Fig. 57), where no significant difference between LI/LL and V1/LM was found. With

slow moving stimuli, the evoked firing activity in area LI was similar to the one observed for

126



4 | Results

VI1/LM (and similar to what found for static conditions), while the activity in area LL was
still significantly lower than what observed in the more medial areas (i.e., V1, LM and LI)

and a similar trend was found for LLb (see Fig. 58, and compare it to the inset).
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Figure 57. Average firing rate profiles evoked by fast moving stimulation.

A) Evoked firing rate values distribution of each area in response to fast moving stimulation. Red
lines: mean value. The evoked firing rate distribution for static stimulation is shown in inset.

B) Mean firing rates for each area. The areas which display a decrease in their firing as compared
to static stimulation are marked in red frames, and the mean firing rate distribution for static
stimulation is shown in inset.

The number of units of each area is reported as x labels. Errorbars: SEM. *=p<0.05, one-way
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Figure 58. Average firing rate profiles evoked by slow moving stimulation.

A) Evoked firing rate values distribution of each area in response to slow moving stimulation. Red
lines: mean value. The evoked firing rate distribution for static stimulation is shown in inset.

B) Mean firing rates for each area. The areas which sensibly decreases their firing as compared to

static stimulation are marked in red frames, and the mean firing rate distribution for static
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stimulation is shown in inset.
The number of units of each area is reported as x labels. Errorbars: SEM. *=p<0.05, one-way

ANOVA.

When restricting the analysis to drifting gratings only, the same tendency was observed
(see Fig. 59): the magnitude of the response evoked by drifting gratings was lower in areas LI
and LL, again as compared to V1/LM and as compared to areas LI and LL themselves when

tested with static stimuli (compare to the insets).
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Figure 59. Average firing rate profiles evoked by fast and slow drifting gratings.
A, C) Evoked firing rate values distribution of each area in response to fast and slow drifting,

respectively. Red lines: mean value. The evoked firing rate distribution for static stimulation is
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shown in inset.

B, D) Mean firing rates for each area in response to fast and slow drifting gratings, respectively.
The areas which sensibly decrease their firing as compared to static stimulation are marked in red
frames. The mean firing rate distribution for static stimulation is shown in inset for comparison.
The number of units of each area is reported as x labels. Errorbars: SEM. *=p<0.05, one-way

ANOVA.

When restricting the analysis to moving dots only (see Fig. 60), the evoked response
magnitude of all areas was lower, as compared to what observed with gratings (see Fig. 59)
and static stimulation (see insets in Fig. 60). Also, area LI was slightly more responsive to

moving dots as compared to other areas in slow conditions (Fig. 60C and D).
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Figure 60. Average firing rate profiles evoked by fast and slow moving random dots.

A, C) Evoked firing rate values distribution of each area in response to fast and slow moving dots,
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magnitude to moving random dot fields, as it has been reported for motion-driven areas like
MT (see for example Mikami et al., 1986). Indeed, we found positive correlations, in both fast
(Fig. 61) and slow (Fig. 62) conditions for all areas. The same correlation was found in the
case of drifting gratings, but significant only in V1 (r=0.30, p<0.001) for fast conditions, and
in V1 and LI (r=0.32, p<0.001; r=0.20, p<0.05, respectively) for slow conditions (data not

Thus, we checked for a possible correlation between RF size and evoked response

Chapter III | Motion and Shape Processing in Rat Visual Cortex

respectively. Red lines: mean value. The evoked firing rate distribution for static stimulation is
shown in inset.

B, D) Mean firing rates for each area in response to fast and slow moving dots, respectively. The
areas which display a decrease in their firing as compared to static stimulation are marked in red
frames. The mean firing rate distribution for static stimulation is shown in inset for comparison.
The number of units of each area is reported as x labels. Errorbars: SEM. *=p<0.05, one-way

ANOVA.

shown).
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Figure 61. Correlation between RF size and responsiveness to fast moving dots.

The correlation between RF size and responsiveness to fast moving dots is depicted for each area,
from V1 to LLb (A-F). Red lines represent the linear fit, whose parameters’ variability was
estimated by leave-one-out bootstrap. The correlation coefficients (r) for each area are reported.
Selectivity and tolerance significantly correlate in all areas, but trade off in area LI.

w8k = n<().0001, *** = p<0.001, ** = p<0.01, * = p<0.05
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Figure 62. Correlation between RF size and responsiveness to slow moving dots.

See Fig. 61 for details.

4.5.2. Direction Tuning

Direction selectivity was computed as described in Materials and Methods for each
tested visual area. First, in order to investigate the areas’ responsiveness to motion, limiting
the influence of shape information to the responsiveness, we focused on pure motion stimuli,
i.e. moving dot fields. Since this kind of stimulation produced a generally lower firing rate in
all areas (see Fig. 60), we considered only units displaying a minimum firing rate of 10
spikes/s. As shown in Fig. 63, the distribution of the Direction Selectivity Index (DSI)
showed a decreasing trend towards the most temporal areas, in both fast and slow conditions,

suggesting a V1-to-LL/LLD loss of direction selectivity.
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Figure 63. Direction tuning indexes in different visual areas calculated with moving dots.

A, C) DSI distribution of each area as calculated for fast and slow moving dots, respectively. Red

lines: mean value.

B, D) Mean DSI for each area as calculated with fast and slow moving dots, respectively.

The number of units of each area is reported as x labels. Errorbars: SEM. *=p<0.05, one-way

ANOVA.

When analyzing direction tuning profiles using drifting grating stimulation, a different
trend appeared: temporal areas like LI and LL showed a higher direction selectivity than more
medial, although this difference was significant only for the slow conditions (Fig. 64), with

the exception of LLb, for which direction tuning was larger with fast than slow moving

gratings.
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Figure 64. Direction tuning indexes in different visual areas calculated with drifting gratings.

A, C) DSI distribution of each area as calculated for fast and slow drifting gratings, respectively.

Red lines: mean value.
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5. Discussion

Behavioral investigation of rats’ ability to process shape and motion information in
independent ways yielded positive results, suggesting the presence of discrete visual networks
for the segregate processing of motion and shape information. Further investigation of such
ability might take into account previously documented task-switching capacity of these
animals (see for example Floresco et al., 2008) in order to shed light on the possible
mechanisms of task-dependent attentional modulation of the same visual input, as it has been
shown in the monkey’s area V4 (see for example Mirabella et al., 2007).

In line with previous reports (Girman et al., 1999) we found retinotopically organized
areas in the rat visual cortex, consistent with the presence of a hierarchy, which is not only
anatomical (Coogan and Burkhalter, 1993) but also functional.

It is important to note that, due to our method of probe insertion (i.e. oblique
penetrations spanning different areas), different layers from different areas were likely being
recorded from. This might lead to confounding effects in all functional properties tested under
this design. Fine-scale histology methods must, and will be applied in order to reconstruct the
exact location of each recording site, thereby allowing a more robust across-areas comparison
between neuronal properties belonging to the same cortical layer.

The observation of an increase in response latency, together with a V1-to-LL/LLb gain
in tolerance (invariance) to object transformations and object selectivity, suggest a putative
homology of the areas investigated with the primate ventral stream of processing (see for
example Rousselet et al., 2004). Tolerance gain appears to be accounted for by an increase in
RF size (which positively correlates with all tolerance metrics tested), affording a decrease in
the sensitivity to object transformations.

The picture emerging from the analysis on motion is harder to interpret.

Areas that appear to be more object selective appear to be the least responsive to motion,
as demonstrated by both the decrease in the firing rate in response to moving stimulation and
the narrowing of the direction tuning indexes as calculated with random dots. Moreover,
consistently with previous reports (Albright and Desimone, 1987; Maunsell and Van Essen,
1987; Mikami et al., 1986), RF size correlates positively with motion responsiveness,
suggesting that motion information is processed by neurons with big RF size.

However, the DSIs calculated with random dots stimulation do not match with the ones
calculated with drifting gratings: in the latter case, for slow moving conditions, an increasing

trend is shown from V1 to the most temporal areas. As a speculation, this could be due to an
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interference of shape information into the processing of motion. More generally, differences
between direction tuning values observed for gratings and dots could be due to the relatively
small number of tested directions/orientations in our study. An enrichment/adjustment of the
stimulus set will likely be necessary for future recordings, in order to fine-tune the full-field
conditions for an optimal quantification of direction tuning.

Further investigation of the response properties to dynamic stimuli needs to be
performed for a thorough characterization of a cortical hierarchy in motion processing, e.g., in
terms of: 1) integration of different stimulus velocities (for which mammalian V1 displays
‘paradoxical’ features of non-linearity, see for example Dean et al., 1982; Orban et al., 1986);
i1) end-stopped properties in rat’s V1 (see, for example, Pack and Born, 2001); iii) higher-
level integration of motion patterns in areas AM and PM (proposed as the putative ‘gateways’

for a dorsal stream in the mouse brain by Marshel et al., 2011; Wang et al., 2011).

6. Conclusions

RF mapping of 6 cortical areas in the rat occipital and temporal cortex confirmed their
previously demonstrated retinotopic organization. The increase in RF size and latency from
one area to the next supports the hypothesis of a hierarchical organization of rat visual cortex,
which functionally culminates in higher tolerance and selectivity properties in LI, LL and LLb.

The late stages of such hierarchy decrease their firing when facing moving stimulation,
suggesting a more shape-based processing strategy as compared to the previous stages, and a
possible role of these areas as late integration steps in a ventral-like visual stream.

Analysis with moving stimuli did not reveal a similar progress in the integration of
motion information, suggesting a more parallel, widespread network as compared to the one
found for shape processing.

Future perspectives will involve analysis of so far unexplored areas, i.e. the medial ones
(AM and PM) to investigate a possible role of these sites in motion processing, as it has been
suggested by some reports in mice.

Also, we plan to use different methods for robust assessing of the presence of a split
visual network, from immunohistochemistry techniques to chronic recordings in awake and
trained rats, implanted in different areas. This will also allow us to assess the weight of
experience and awakeness on the quality of electrophysiological data.

Thus far, our results support the use of the rat as a good model to study invariant object
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recognition, and strengthens the hypothesis of an homology between the area investigated in

the rat and primates ventral visual stream.
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‘We have to remember that what we observe
is not nature herself, but nature
exposed to our method of questioning.’

W. K. Heisenberg

We have demonstrated that rats hold a finely functioning visual system, allowing these
animals to successfully perform highly engaging visual tasks, from invariantly recognizing
objects to tell shape from motion information and vice versa.

We must remember that rats do not preferentially explore the environment using the
visual modality (Cox, 2014). However, their potential as exploiters of visual information
comes to light when tested under highly motivating (reward-related) conditions. Rats that are
exposed to visual information, and are ‘forced’ to represent such information in order to
generate successful behavior, will reveal such a potential. Also, the more the visual inputs can
be segregated in the phenomenological space, the stronger such a potential will be expressed.

Our study over the neural underpinnings for such abilities reveals, for the areas
investigated, the presence of a functional hierarchical organization in the rat visual cortex,
consistent with the possibility of shape information processing at different integration stages,
where the properties of object selectivity and tolerance to object transformations become
more and more prominent up in the stream. These properties suggest the presence of a neural
homologues of the primate ventral-like stream in the rat cortex (see for example Rousselet et
al., 2004).

The analysis of moving patterns yielded results which are harder to interpret: the
inherent limitations of our approach made it difficult to coherently extract the fine tuning of
neurons in response to motion. However, the analysis on random dots shows that those areas
that are more responsive to shape are the least responsive to pure motion, and the correlation
found between RF size and motion responsiveness is in line with previous reports on the
primate dorsal stream (Albright and Desimone, 1987; Maunsell and Van Essen, 1987; Mikami
et al., 1986).

We must consider that when investigating the neural substrates of visual abilities in rats,

through extracellular recordings techniques, the scenario we are facing is dramatically
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different from a behavioral approach.

First, the method we are using, i.e. extracellular electrophysiological recordings, is
inherently underconstrained: we collected the activity of many different neurons at one time,
from different areas which have not been properly characterized in the rat (V1 aside, see
Girman et al., 1999). We are basically moving over an unexplored territory, where most likely
the only map we can follow is retinotopic organization (Bonin et al., 2011).

Second, it is not trained rats we are dealing with, but naive subjects. Naive rats, meaning
rats that didn’t undergo a visual training, likely have a lower experience with visual statistics.
Before considering this fact as a limitation, recordings on trained (either awake or
anaesthetized) rats should be performed and used as supporting argument.

However, it is not illogical to believe that fundamental experience/plasticity-driven
differences might arise between the two cases. It has been shown, for example, that even
visual acuity, which we could refer to as a ‘hard-wired’ function, is subjected to the
mechanisms of experience-dependent visual plasticity (Prusky et al., 2000b).

Also, it wouldn’t be implausible to find differences between the optimal stimulus
parameters for behavioral and electrophysiological testing (e.g. rats best discrimination of
spatial frequencies peaks at 0.22 behaviorally (Meier et al., 2011), and at 0.08 from
electrophysiological investigation of V1 (Girman et al., 1999)).

All in all, given the increasing consensus over the suitability of rats to serve as robust
experimental models in vision research, the number of methods to be exploited is high, and so

are the cognitive and neural mechanisms still to be explored.
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