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Abstract

The last few years witnessed some major breakthroughs in the field of fundamental particle
physics, which had a big impact in our understanding of Nature at a microscopic level.

On March 30th, 2010, the first proton-proton collisions took place at the Large Hadron Col-
lider (LHC), marking the beginning of a new era in particle physics. The excellent performance
of the machine and the detectors, due to the fantastic work of all the researchers involved in
the experiments, lead, in only two years, to the announcement of the discovery of the Higgs
boson on July 4th, 2012. This event could be considered as the peak of success for the Standard
Model (SM) of elementary particles, which predicted the existence of this particle — as well as
all its properties — since more than forty years before. In the following two years the ATLAS
and CMS experiments at the LHC measured the properties of the Higgs particle with a good
accuracy, showing no significant deviation from the SM. In the meanwhile, also the numerous
direct searches for other new particles turned out to give only negative results, against all ex-
pectations from the theory community, pushing the scale of new physics to higher and higher
values. Also, while the cosmological evidence for Dark Matter (DM) is now stronger than ever,
so far all direct and indirect searches provided negative results (albeit with some isolated excep-
tions which, however, are still much debated in the literature and seem to be incompatible with
other negative results) and the bounds on weakly interacting massive particle DM are extremely
strong.

In neutrino physics an important event took place in June 2011, when the Tokay-to-Kamioka
(T2K) collaboration reported an evidence for a non-zero, and sizable, value of the reactor neutrino
mixing angle, 613. This was confirmed in March 2012 by the Daya Bay collaboration, which
measured this mixing angle with a very high precision, confirming that its value lies on the
high-end of previous upper bounds. Since many popular and well motivated models of neutrino
mixing predicted a zero, or very small, value of the reactor angle, this result was very important
and offered a new insight in the quest for understanding the origin of flavor in the lepton sector.
Also, since CP violation in the lepton sector effects vanish in the 613 — 0 limit, the fact that
this angle is sizable opens up many interesting possibilities for measuring CP violation in the
neutrino sector.

The work presented in this thesis was largely stimulated by these two major breakthroughs
in particle physics.

On the one hand the Higgs discovery and the measurement of its properties, in particular
its mass, lead us to study the consequences of these measurements for a specific class of models
beyond the SM: composite Higgs models [1,2] (and also in supersymmetric versions of these
models [3]). In particular, we found that a very definite (and testable) prediction for the spectrum

of new physics can be obtained [1]: fermionic top partners are expected to be near the ~ 1TeV



scale. Also, the measurements of the Higgs couplings and the fact that the bounds for the new
physics scale are often much higher than the electroweak scale, open up the possibility of studying
possible deformations from the SM in an effective field theory framework. In this context we
studied the possibility of linking the properties of the Higgs with other electroweak observables,
very well constrained by LEP, via renormalization group effects, finding that they already allow
to derive constraining, and independent, bounds on some Higgs properties [4]. In the future,
when some deviation from the SM will be — hopefully — observed, these effects could provide a
new window on the new physics sector. Some results regarding expectations from possible future
colliders have been presented in ref. [5].

On the other hand, we studied how the measured value of #13 can be accommodated in some
motivated models of neutrino mixing by exploiting corrections due to the mixing among the
charged leptons [6,7]. Such corrections are expected, for example, in Grand Unified Theories,
which allow to link the charged lepton sector with the quark sector, and therefore the neutrino
mixing matrix with the quark mixing one. This analysis allowed us to obtain a precise prediction
for the value of the Dirac CP violating phase in neutrino mixing, testable by future neutrino

experiments.
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CHAPTER 1

The Standard Model

Of course our model has too many
arbitrary features for these predictions
to be taken very seriously

Steven Weinberg (8]

The discovery of the Higgs boson at the Large Hadron Collider (LHC) in Geneva, by the AT-
LAS and CMS experiments on July 4th, 2012, [9, 10], was a milestone in the progress of the
understanding of fundamental particle physics. This particle, predicted fifty years ago [11-13]
as a consequence of a mechanism able to provide a mass to spin-1 gauge bosons, and included
as the cornerstone of the electroweak (EW) sector of the Standard Model (SM) [8, 14, 15], was
the last missing piece of this extraordinary theory. The incredible success of the SM to correctly
describe, and predict, a great variety of physical phenomena, ranging several orders of magni-
tude in energy scale, sometimes with a very high precision, is unattained in any other field of
human knowledge. Furthermore, since G. t'Hooft [16] proved that the SM is a renormalizable
theory, it can also be seen as a theoretically consistent theory up to extremely high energies.
There are, however, both experimental observations — such as the presence of gravity, neutrino
oscillations, dark matter and the baryonic asymmetry in the Universe — and theoretical issues —
as the naturalness problems for the cosmological constant, the Higgs mass and the QCD 6 angle
— which make us expect that this should not be the case, i.e. that the SM should be extended in
order to provide an explanation to these issues. In particular, the naturalness problem for the
Higgs mass points to a scale of new physics (NP) near the TeV, that is in the range of energies
currently probed at the LHC. In this chapter we review some basic concepts regarding the SM

and present some of the experimental and theoretical problems of the SM mentioned above.



1 The SM action |

1.1 The SM action

The SM [8,14,15] is a renormalizable quantum field theory based on the local non-abelian gauge

group
QSM = SU(3)C X SU(?)L X U(l)y , (1.1)

where the first factor is the quantum chromodynamics (QCD) gauge symmetry while the other

two represent the electroweak symmetry group Ggw. It can be described by the Lagrangian
£SM — [gauge +£mat + £Higgs + EYuk , (12)

where the addends on the r.h.s. are, respectively, the gauge-invariant kinetic terms of the gauge
bosons and of the fermion matter fields, the gauge-invariant kinetic and potential terms of the
Higgs scalar and finally the Yukawa interaction between the Higgs and the SM fermions. Let us

now briefly discuss each term separately.

Gauge Term

The Yang-Mills Lagrangian for the SM gauge fields Gﬁ, Wy and By, with A =1,...,8 and
a=1,2,3,is
LIV9E = —iGﬁVGAW — iWﬁVW“W — iBwB’W , (1.3)
where the field strength are defined as VJV = 9,V} — auvg +igy fijkV,f VE and fi7* represent
the structure constants of the non-abelian gauge groups.! In order to quantize the theory, to
eq. (1.3) one should add also the gauge fixing terms for the three SM gauge factors and the
Lagrangian for the ghost fields. For simplicity we omit these terms here, the relevant ones will
be specified in the text whenever necessary.
The field content of the SM is such that the QCD coupling constant g; has a negative (-
function, meaning that its value decreases when increasing the energy of the process, a behavior
called asymptotic freedom. This also implies that upon reducing the energy of a process gs

increases, eventually becoming non-perturbative at a scale

1
260g2(A)

where A is either the UV cutoff of the theory or any other matching scale from which the running

Aqcp ~ Aexp ( ) ~ 1GeV , (1.4)

starts. The dynamical generation of an energy scale from the renormalization group flow of an
adimensional coupling is called dimensional transmutation [17]. Below this QCD scale, all degrees

of freedom charged under the QCD gauge group condense and become confined in color-neutral

'Here and in the following, otherwise explicitly stated, repeated indices imply a sum.
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1 The SM action |

composite states, the hadrons. In general, at the renormalizable level, another operator could
be added to the QCD Lagrangian:

g2
[/ . A ~A
AL” = —ifgcp 59 2G/WG e (1.5)
where G GWPUG P?. Even though this term can be written as a total derivative, using the

Bardeen 1dent1ty, the non-trivial topology at infinity of the SU(3). gauge group makes it physical.
This CP-odd operator, in fact, reflects non-perturbative topological properties of the QCD gauge
group and in general one would expect fgcp ~ O(1). Assuming non-vanishing quark masses, a
non-zero value of 0gcp would generate, for example, an electric dipole moment for the neutron

2 The experimental upper bound dy < 107*ccm

dn ~ |Ogeplem?2/m3 ~ 1071010 e cm.
implies |§gcp| < 107%. This big hierarchy between the expected value and the measured upper
bound, and the fine-tuning this implies, is known as the strong CP problem.

The EW gauge group is spontaneously broken to the electromagnetic subgroup U(1)e,, via
the Higgs mechanism, described in the following, providing a mass for three linear combinations
of the four gauge bosons of Ggw: the W+ and Z bosons. The remaining combination is massless

and is identified with the photon.

Matter

The matter content of the SM consists of three copies (generations) of a set of chiral fermions
transforming under fundamental representations of Gg\p as

R

SU3). | 3 3 3 1 1

su@,| 2 1 1 2 1

Y [1/6 2/3 -1/3 -1/2 -1

7

where Y is the hypercharge of U(1)y, the components of the doublets are q% = (ui, d%), EJL =
(l/i,e%) and j = 1,2,3 is the generation index. The second term in eq. (1.2) contains the

gauge-invariant kinetic terms for all the SM fermions, schematically
£t =3 fiiDufl+ Y Trin'Duff (1.6)
=43 f=u.d.e;j
where D,, = 0, — igSGl‘jt? — igWﬁT“ ig'B,Y and t T“ are the generators of the SU(3). and
SU(2)1, groups in the representation of the fermion f (for doublets of SU(2)y, the T* are given

by the Pauli matrices, ¢ /2, and for triplets of QCD the t4 are given by the Gell-Mann matrices
A /2).

2This expression holds in a particular phase convention for the quarks. In general physical observables depend

on an phase parametrization-invariant combination of the QCD 6 angle and the quark phases.

3



1 The SM action |

Higgs Lagrangian

The SM Higgs boson is a complex scalar, singlet under the color group, doublet of SU(2);, and
with hypercharge Y = 1/2: H = (1,2,1/2). It is the only elementary scalar of the SM. Its
Lagrangian is

cHi9gs — D, H|* — V(H), (1.7)

where D, H = 0,H — ngﬁ%aH —ig'3 B, H and the potential V(H) can be parametrized as

1
V(H) = —5miy [H[* + AH|" | (1)

with )\,m%{ > 0. This potential has an obvious minimum away from the origin, therefore the
Higgs takes a vacuum expectation value (VEV) at (|H|?) = v2/2 = m2;/(4)\), where we introduced
the VEV parameter v = (vV2G ) /2 ~ 246GeV. In this class of minima the EW symmetry
is spontaneously broken to a U(1) subgroup, which we identify with the electromagnetic gauge
group. As a consequence of this spontaneous symmetry breaking, three Nambu-Goldstone bosons

(NGB) are present in the theory. An efficient way to parametrize the physics around one of these

H(z) = Z(x)\}i ( ) :;L(x) ) , (1.9)

where h(z) is the physical Higgs boson and () is a matrix containing the three NGBs x*(x):

S(x) = exp (zaaxa(x)> , (1.10)

vacua is to define

v

which satisfies ¥Xt = 15, where 15 is the 2 x 2 identity matrix. In this parametrization the

kinetic term of the Higgs can be written as

. 1 2 R\ 2
cHiggs _ 5(8ﬂh)2 + %Tr [(DMZ)TDME} <1 + U) : (1.11)
where DX = 8“2—i%WﬁaaE+i%/EU3. The gauge choice in which ¥ = 1 is called unitary gauge
and makes explicit the fact that the fields Wiﬁ = (WJ¢ZW3 )/V2 and Z,, = cos GWW3 —sin 0w B,
become massive with

mw
cos Oy

= % ~ 80.4GeV myg =

mw ~ 91.2GeV , (1.12)

where the Weinberg angle is given by tanfy = ¢'/g. In this gauge, the three NGB modes
have become the longitudinal polarization of the massive W and Z bosons. The orthogonal
combination to Z,, A, = cosbfy B, + sin QWWg, remains massless and is the photon. The
electric charge is defined as Q =Y + TJ‘?L and the fine structure constant is given by a = €2 /4,

where electric coupling is e = g sin Oy .

4



1 The SM action |

In this parametrization it is also manifest that the potential depends only on the physical

field h. Expanding in powers of this field one gets the physical tree-level Higgs mass [18, 19]
M% =m% = 2 0% ~ (125 GeV)? . (1.13)

Given the knowledge of v from muon decay, in the SM the measurement of the Higgs mass at

the LHC corresponds to an indirect measurement of the self coupling A ~ 0.13.

Yukawa Lagrangian

The EW gauge symmetry forbids a mass term between the left-handed and the right-handed
fermions. Yukawa interactions with the Higgs, therefore, are needed in order to provide masses

to SM fermions. The last term in eq. (1.2) is:
£V = il Hty — T e + e (0

where H¢ = io? H* and y,, yq, Ye are 3x 3 complex matrices. In the unitary gauge this Lagrangian
provides mass terms for the SM quarks and charged leptons, my 4. = Yu,d,cv/ V2, as well as inter-
actions with the Higgs. These mass matrices can be diagonalized by biunitary transformations

acting on the three generations of fermions
di
mu’d’e = UuL7dL76LmutZ,g€(UuR7dR7eR)T ° (1'15)
Since uy, and dy, are part of the same SU(2)1, doublet, in general it is not possible to diagonalize
both the up and down quark matrices while at the same time respecting the gauge invariance. For
example, one can choose to diagonalize the down-quark mass matrix, obtaining from eq. (1.14),
in the unitary gauge,

, . o o h
[:YUk = — (mu]ﬂlL(VCKM)UUJR + mdldlLd%’d + meiélLeﬁ% + h.c. > <1 + U> ) (1'16)

where Moy dje; AT€ (real and positive) the singular values of the three mass matrices and Voxn =
(Ug,)'U,, is the Cabibbo-Kobayashi-Maskawa (CKM) matrix which contains the 3 physical
quark mixing angles and the only physical CP violating phase. Note that the three neutrinos v/}
remain massless at this level. A Dirac neutrino mass term is forbidden since the SM does not
contain their right-handed counterpart. Also, even though in principle a Majorana mass term
could be allowed, since neutrinos are neutral, gauge invariance forbids this at the renormalizable
level. As we explain in more detail in section 5.1, this offers a simple and elegant explanation to

why neutrinos are much lighter than all the other fermions.

5



1 The SM action |

1.1.1 Global symmetries of the SM

The SM Lagrangian presented above, eq. (1.2), enjoys many accidental, exact or approximate,
global symmetries. These symmetries have an important role in shaping the phenomenology of

the theory. Let us introduce here the most relevant ones.

Custodial symmetry

Let us rewrite the Higgs doublet in 2 x 2 matrix notation as ®(x) = h;(z)o* + ha(z)12, and the
Lagrangian in eq. (1.7) as

LHiggs — iTr [D@TD%} .\ (iTr [qﬁb} - ”22)2 , (1.17)

where D, ® = 9,0 —i§Wio"® + i%/B/[I)a?’. In the limit in which ¢’ = 0, this Lagrangian enjoys
a global SU(2)z x SU(2) g symmetry, acting on the Higgs field as & — U ® U};. This symmetry is
broken, other than the hypercharge (which, in this formalism, corresponds to the gauging of only
the third generator of SU(2)g), also by the difference of the Yukawa couplings between the up-
type and down-type quarks. The Higgs VEV breaks spontaneously this SU(2);, x SU(2)r ~ SO(4)
symmetry to the diagonal subgroup SU(2)c ~ SO(3)¢, called custodial symmetry group. The
three NGBs arising from this symmetry breaking pattern are exactly the NGBs of the electroweak
symmetry breaking, eaten by the massive W and Z bosons.
In the SM, the gauge bosons masses and couplings satisfy the tree level relation [20]
miy

— =1 1.18
m? cos? Oy (1.18)

p

This tree-level relation is a consequence of the custodial symmetry, which also protects the p
parameter from receiving big quantum corrections [21,22]. In fact, in the SM these corrections
vanish in the limit of zero hypercharge and equal up and down quark masses.

In general, new physics model, as well as higher dimension effective operators, violate this
symmetry at tree-level and predict sizable corrections to p. Experimentally, LEP [23] put very
strong bounds on the deviations from the SM prediction, which put very strong constraints on

the NP sector.

Flavor symmetries

Let us now discuss the global symmetries of the matter sector of the SM. The kinetic Lagrangian

of the SM fermions, eq. (1.6), is symmetric under the global flavor group

U(3)g x U(3)y x U(3)g x U(3), x U(3) , (1.19)

6



1 Naturalness problem |

under which the generation-index of each type of fermion transforms in the fundamental repre-
sentation. This big symmetry group is explicitly broken by the Yukawa Lagrangian, eq. (1.14).
The bigger the Yukawa coupling, the stronger the breaking.

The only exact global symmetries left are the baryon number and the lepton numbers.

e The baryon number is the conserved charge of the U(1)p global symmetry under which
all quarks change phase: ¢ — e'®q. Since baryons carry a non-zero net baryon number,
the proton — which is the lightest baryon — is predicted to be stable. Higher dimension
effective operators, in general, violate this symmetry and therefore can mediate proton
decay. Experimental constraints on the proton lifetime pushed the scale of baryon number

violation to ~ 1015GeV.

e The electron, muon and tau lepton numbers are conserved charges corresponding to three
independent U(1) phase redefinitions of each lepton generation. These independent quan-
tum numbers are slightly violated by non-vanishing neutrino masses, the most important
effect being neutrino oscillation. If neutrinos are Dirac particles then a global U(1)y, is left,
like the baryon number, where L = L. + L, + L;; if instead the neutrinos are Majorana
particles, then also this symmetry is violated. The nature of neutrinos is currently tested

for, experimentally, by searching for neutrino-less double- decays.

e At the quantum level, due to the matter content of the SM, the L and B global symme-
tries are anomalous and are broken, in particular, by instanton effects. Only the linear
combination B — L remains unbroken, unless neutrinos have a non-vanishing Majorana

mass.

1.2 Naturalness problem

Big and small numbers found in Nature have always puzzled physicists trying to unveil the
laws of the Universe.® Dirac’s “Large Number Hypothesis” [25,26] was an attempt to explain
the smallness of the proton mass with respect to the Planck mass, or why the gravitational

interaction in an atom is so much weaker than the electromagnetic one:

62

- =285 x 10%. 1.20
Gymemy, x ( )

Now we know that the generation of the QCD scale is due to the quantum nature of the theory
and, in particular, to dimensional transmutation which suppresses exponentially the QCD scale

with respect to the Planck scale, see eq. (1.4).

3For a review on naturalness problems in physics see ref. [24].

7



1 Naturalness problem | 8

Figure 1.1: Diagrams contributing at one-loop to the Higgs mass in the SM.

Other examples of a very small (or big) numbers in the SM are the value of the QCD CP-
violating angle fgcp < 1072 (see eq. (1.5)) and the ratio of the strength of the weak and

gravitational forces,
Grh?
Gnc?

In terms of energy scales, this translates in the question of why the electroweak scale v is much

= 1.738 59(15) x 10 . (1.21)

smaller than the Planck mass Mp;. The rest of this section is devoted to discuss the problems
associated with this hierarchy and to show that this is not only an aesthetical and philosophical

issue, but a deep problem related to fundamental properties of quantum field theories.

1.2.1 Understanding the problem

Since the electroweak scale can be traded for the Higgs mass parameter my which enters in the
potential in our parametrization, let us discuss the problem associated to the value of the Higgs
mass.

To appreciate the problem it is necessary to consider the quantum nature of the theory.
Interactions of the Higgs with virtual particles in the quantum vacuum produce corrections to
the Higgs mass of the order of the largest energy scale available to these virtual particles, i.e.
the maximum energy up to which the theory is valid. At the technical level this reflects in
quadratic divergencies in the computation of quantum corrections to m%{ as in fig. 1.1 which,
barring cancellations, can be estimated to be
) A

1672’

omi ~g (1.22)

where A is the cutoff of the computation. If the SM was valid up to the Planck mass M p;, this
would mean that the ratio of eq. (1.21) would be expected to be of order 1 (or only slightly
bigger due to the loop factor).

An important assumption we took in the previous argument was the introduction of a physical
energy scale much bigger than the Higgs mass. This is crucial, in fact the SM is a renormalizable

theory, which means that all divergencies can be reabsorbed by unphysical counter-terms, in this
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case the bare Higgs mass itself. After this process the only remnant of the divergence is the

renormalization group (RG) flow of the Higgs mass parameter:

2
dm3;

2
B2 fg , (1.23)

/2
= ~ — — )\
5= dlog (3% LB +g%) +6 >

8w

where we neglected higher order corrections and contributions from fermions lighter than the
top (see e.g. ref. [27] for the complete RG equations in the SM up to three loops). We see
that, as expected, any dependence on the cutoff has disappeared, in fact if we would have
used dimensional regularization for the computation, we would not have found any quadratic
divergence to begin with. Eq. (1.23) also shows that the RG of the Higgs mass is proportional
to the mass itself. This means that if the SM would be the complete theory of Nature and no
other energy threshold would be present at high scales, then any value of the electroweak scale
would be equally natural at the technical level.

The problem hinted by eq. (1.22) arises if the SM has to be completed by some other dynamics
at a scale A2 > m%{ The motivations for such a new dynamics are manifold, here we will only list
some of them briefly: the quantization of gravity most probably involves some new effects at (or
before) the Planck scale; reproducing the dark matter abundance of the Universe requires some
degree of freedom beyond the SM, even though the scale is almost arbitrary; Majorana neutrino
masses (assuming O(1) Yukawa couplings) and unification of the gauge couplings both point to
some new dynamics at the 10~16GeV scale; many models explaining baryogenesis and inflation
also hint to some new physics at a very high energy scale. Moreover, even neglecting altogether
gravity or these other new physics phenomena, the SM itself presents a new scale at energies of
~ 10*'GeV, where the hypercharge (and the Higgs quartic coupling) become non-perturbative.

As a simple example to understand what could such a heavy new dynamics lead to, let us
consider a new complex scalar field ¢ with mass M > My, coupled to the Higgs via a portal
interaction V O Ay |H|?|¢|*>. Above the scale M, where the scalar is present in the theory, this

interaction generates an additive contribution to the Higgs mass 8 function given by

dm%{ Abp_ 32 _

0
Pty = d logpu 1672

(1.24)

This RG effect from a scale M, > M down to M (below which the scalar has to be integrated
out and one recovers the SM), gives a contribution to the Higgs mass much bigger (in absolute
value) than the physical Higgs mass:

om?, = .
H T T 62 B

(1.25)

As can be seen from the blue line in fig. 1.2, immediately above M the (running) Higgs mass
saturates near the value of eq. (1.25). This means that a big tuning between the boundary

condition at the UV scale M, and this RG contribution is therefore needed in order to keep the

9
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Figure 1.2: Running of the Higgs mass parameter in the SM plus a heavy complex scalar at M =
10'5GeV, where we fixed the portal coupling Ay = 0.2. The blue line is obtained by fixing the boundary
condition m?%,(My) = M% ~ (125GeV)?, this provides a (tuned) UV value at M, = 107GeV for m% (M..).
By changing this UV condition by 1% and running back down we get the red line, and a value of the
Higgs mass m% (Mpy) ~ —(4 x 10'?GeV)?2, showing that a small change in the UV condition destabilizes
the physical Higgs mass.

physical Higgs light. To see this, for the red line of fig. 1.2 we changed the UV boundary condition
at M, by 1% and then followed the RG back into the IR to obtain the physical Higgs mass,
obtaining a much bigger value M ~ —(4x10*2GeV)2. We see that the mass scale M destabilizes
the Higgs mass and brings its value close to that scale. The same phenomenon would appear for
any kind of new heavy dynamics coupled to the Higgs boson. For example, in supersymmetric
models with large stop masses, the one-loop correction to m%{ grows quadratically with the stop
mass m7. This quadratic sensitivity of the Higgs mass to any heavy mass scale was first pointed
out in 1976 by Gildener [28] and then by Weinberg [29] and Susskind [30] in the context of grand
unified theories (GUT).

By the end of the 70s it became clear that the naturalness problem is indeed fundamentally
connected with two of the most important concepts in physics: effective field theories (EFT)
and symmetries. If the NP scale is higher than the EW one, at low energy the physics can be
described by an EFT approach. This consists in adding to the SM action non-renormalizable

operators with dimension bigger than 4. In general an effective Lagrangian has a form
LEFT = 33" atdo, (1.26)
>0 i

where d indicates the classical scaling-dimension of the operators, ¢ = 1,2, ... counts the operators
with same dimension and the ¢; are adimensional Wilson coefficients expected to be of O(1),

unless they are protected by some symmetry. A physical, and intuitive, explanation for the
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naturalness problem, due to Wilson, is based on the observation that operators with scaling
dimension equal to 2 have a coefficient which is naturally of the order A2, unless it breaks some
symmetry [31]. The Higgs mass term in the potential, eq. (1.8), is the only such operator in the
SM. Therefore, one would expect its natural value to be m%l ~ A?: either A is not far from the
EW scale or the theory has a certain amount of tuning needed to keep the Higgs mass much
smaller than its natural value.

Finally, the naturalness criterion proposed by 't Hooft [32] states that a parameter of the
theory is allowed to be much smaller than unity* only if the theory acquires a new symmetry when
such a parameter is set to zero. In fact, when a parameter breaks some symmetry all quantum
its corrections are necessarily proportional to the breaking of the symmetry, therefore to the
parameter itself, which ensures that a small breaking parameter remains small also after quantum
corrections. Following this criterion, small fermion masses — or small Yukawa interactions — are
naturale since the theory gains a chiral symmetry when putting them to zero. Analogously,
light spin-1 particles are always natural because when their mass is set to zero the theory gains
gauge invariance. An example of an unnaturally small parameter is the QCD angle 6gcp. This
parameter breaks the CP symmetry, however the same symmetry is also broken by the CP
violating phase in the CKM matrix, J, so no new symmetry is obtained when 6gcp = 0. Even
if no quadratic divergence is present in its quantum corrections, these will tend to bring it near
the value of ¢, which implies that one would expect 6gcp ~ O(1), making the observed value
0ocp < 1079 very unnatural.

In the same category falls also the Higgs mass. In fact, setting m%{ to zero does not enhance
the symmetries of the SM, therefore quantum corrections tend to push this parameter to the
highest mass scale available in the theory. This property is typical of any scalar particle, unless
its mass is protected by some symmetry. The difference of this behavior between scalars and spin-
1 or spin-1/2 particles can also be understood in terms of degrees of freedom (d.o.f.). Massless
fermions and vectors have 2 physical d.o.f. while massive ones have four and three, respectively:
there is a discrete difference between the massless and massive case, which reflects the change in
the symmetries of the theory. A massive scalar particle, on the other hand, has the same number
of d.o.f. as a massless one.

In order to obtain a light Higgs, a delicate fine tuning between the values of the high scale
parameters entering in the quantum correction to the Higgs mass is necessary. If the only UV
scale is the Planck one, the amount of tuning is approximately given by eq. (1.21), which means
that the value UV boundary condition and the RG contribution to the Higgs mass squared
should cancel almost exactly, with a precision in the 33rd decimal place. An efficient analogy by

Giudice [24] can help us get a feeling of the amount of this tuning: balancing a pen with length

4Mass parameters should be measured in units of the cutoff of the theory A

11
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R and a tip with a surface of radius r is a challenge of tuning the position of the center of mass
to be exactly over the surface of the tip. The amount of tuning needed is of order of one part in
R?/r?. The tuning needed to keep the electroweak scale so small compared to the Planck scale
is the same as the necessary one to balance a pen as long as the solar system on a millimeter
wide tip. Does Nature present such a behavior just by accident or is there a mechanism which

can explain this?

1.2.2 Many solutions but no experimental evidence

From the previous discussion it is clear that there are, at least, two ways to solve the naturalness
problem associated with light elementary scalars: either its mass breaks some symmetry, and
therefore is protected from big additive quantum corrections, or such a particle does not exist.

Supersymmetry [33] (SUSY), as a way to solve the naturalness problem |34, 35|, introduces
a new symmetry which connects bosons with fermions. In this setup, the Higgs mass arises only
when supersymmetry is broken. Quantum corrections to m%,, therefore, are proportional to the
SUSY breaking soft terms m?2. If this scale is small enough, SUSY provides an elegant solution
to the problem?®.

A solution of the second kind (of the two listed above) was proposed in 1979 by Susskind [30]
and is known as Technicolor. In this setup there is no Higgs particle and EW symmetry breaking
(EWSB) is due to the condensate of a new strongly coupled sector, at a scale of a few TeV, in
a similar way as the QCD condensate breaks the chiral symmetry SU(2);, x SU(2)r — SU(2)p
(as well as the EW symmetry, albeit at the low scale fr ~ 10? MeV). In Technicolor, the
hierarchy between the Planck mass and the EW scale is explained by dimensional transmutation,
as in QCD, where this big mass hierarchy is completely natural. By now this proposal has
been excluded experimentally by the discovery of a scalar particle which shows characteristics
(production and decay rates) very similar to those of the SM Higgs boson. However, even before
LHC, already LEP put these models in strong tension due to the very precise measurements
performed at the Z pole which showed none of the deviations from the SM predictions expected
in Technicolor models.

Finally, many solutions which interpolate between these two concepts, and include the Higgs
in the spectrum, have been proposed. The naturalness problem is solved by either assuming that
the Higgs is a composite state of a new strong dynamics [37, 38|, in which case the hierarchy
between the weak and Planck scale is explained by dimensional transmutation, or assuming the
existence of some compactified warped extra dimension [39], in which case the suppression of the

EW scale is due to the exponential warping factor of the Anti-de-Sitter (AdS) metric in the fifth

°In this setup, the soft terms scale is assumed to arise dynamically [36], and many models which realize this

mechanism have been proposed,
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dimension. The AdS/CFT correspondence [40], suggests that these two approaches could be
related to each other and can describe the same low-energy physics [41,42]. The most successful
holographic composite Higgs models predict that the Higgs is a pseudo-Nambu-Goldstone boson
(pNGB) of some spontaneously broken approximate global symmetry at a scale f ~ 1TeV [43],
which explain naturally how the Higgs can be lighter than the strongly coupled scale, in the
same way as pions are lighter than the QCD scale.

In the last two decades, all these frameworks started to be in more and more tension with
the experimental results coming from LEP and, now, from the LHC. The most natural versions
of the minimal supersymmetric SM (MSSM) predicted a spectrum of SUSY partners near the
~ 100GeV scale, as well as a light value of the Higgs mass which, at tree level, is expected to
be lighter than the Z boson. Already LEP showed that this was not the case and that the SM
is a valid description of Nature at the electroweak scale. The LEP bound on the Higgs mass,
mpg 2 114 GeV, suggested that the scale of the superpartners could be higher than expected and,
therefore, some amount of tuning in the Higgs mass was necessary. Analogously, also composite
Higgs models were being pushed by LEP to regions with some ~ 10% tuning. In other words,
the scale of NP was pushed by LEP to ~ TeV, introducing what has been called small hierarchy
problem. The measured value of the Higgs mass at the LHC [18,19] at mpy ~ 125GeV pushed the
MSSM to even more uncomfortable regions, where the necessary size of the one-loop correction
to m%{ has to be of the same order as the tree-level contribution. Moreover, the bounds on
superpartners from direct searches pushed most of the MSSM parameter space to percent tuned
regions, or worse. The strongest bounds on Composite Higgs models, on the other hand, are still
coming from LEP, even though LHC constraints on the Higgs couplings and resonances masses
are reaching the same level, and will be the dominant ones in the near future. While the Higgs
mass is lower than what could be expected for this class of models, it has been noted recently
that it offers a quite clear prediction for the spectrum of resonances, which can be tested by
LHC [1,44-47].

On the one hand, as we showed, the naturalness problem is definitely a deep issue in our
understanding of fundamental particle physics. However, even though theorists have produced a
huge variety of results and models able to solve it (often times these models are able to solve, at
the same time, also other open problems in particle physics and cosmology in a unified setup),
so far all hopes of finding new physics crushed against the reality of experimental data, which
do not show any deviation from the SM. On the other hand, the naturalness approach seems to
have failed at least in one instance: the cosmological constant Acsm,. The measurement of the
accelerated expansion of the Universe [48,49] is explained, in the cosmological standard model,
by a small value of the cosmological constant, Acosm ~ 10747 GeV?4. This parameter, in QFT,

receives contributions proportional to the cutoff to the fourth power. Assuming the cutoff of the
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theory to be the Planck scale, this would imply that a tuning of one part in ~ 1022 would be
necessary to keep Acosm to the observed value. In 1987, before Acpsm was measured, Weinberg [50]
suggested an upper bound for the cosmological constant based on the anthropic principle, which
turned out to be very close to the observed value. Very briefly, his observation was based on
the fact that a too big value of Agpsm, would imply a too fast expansion of the Universe, which
would not allow structures to form and, therefore, life to develop. Since this is obviously not the
case, the cosmological constant can not be too big in our Universe. A similar argument can be
done also for the EW scale since a much bigger value would not allow the complex chemistry,
needed for complex organisms — and life — to develop [51]. This anthropic reasoning, however,
needs a mechanism in which all the possible values for the relevant parameter are populated in
some region of the Universe, so that we happen to live in the one which allows the development
of life. Such a mechanism could be provided by the string landscape and eternal inflation. For
the moment, however, it is not clear if it could ever be tested experimentally.

What is the maximal amount of tuning one can accept? At which point will we be forced to
abandon the naturalness guideline and start focusing on alternatives? Today the conscience of
many particle physicists is struggled by these philosophical questions, to which of course there
is no objective answer until experimental results will push us towards one side or the other.

Our approach for the rest of this thesis is a pragmatic one: the naturalness problem offers
a deep guideline to our understanding of electroweak symmetry breaking. Let us follow this
line to its consequences and study what predictions it allows us to make. From the bottom up,
the naturalness argument predicts some NP at the TeV scale. If this is the case, oservables at
lower energies can be successfully described by an effective field theory (EFT) framework. Some
work in this setup is described in chapter 2. Another approach is to assume one of the explicit
frameworks described above, study what predictions can be obtained and confront them with
experimental data. This is described for composite Higgs models in chapter 3, while in chapter 4
we study a composite Higgs model which offers also a dark matter candidate and confront this

with experimental constraints from both astrophysical and collider data.
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CHAPTER 2

SM as an Effective Theory and RG-induced

Bounds

The idea that the dynamics of a complex system with some typical scale L can be studied
without the necessity of describing each of the microscopic constituents at smaller scales ¢ < L
is at the foundation of the scientific progress. In the context of quantum field theories, this idea
has been rigorously formulated by Wilson [52] in the early 70s and is now one of the pillars
of our understanding of Nature at the quantum level. Wilson’s idea is that, after mediating
over the dynamics of the modes shorter than some cutoff scale A~!, the resulting non-local
effective action can be expanded in a series of local operators with increasing scaling dimension,
suppressed by powers of A, with a procedure known as operator product expansion. In general,
the number of effective operators one obtains is infinite. However, when studying processes at
energies much smaller than the cutoff and given a certain precision desired for the computation,
only operators with dimension lower than a certain value will matter, allowing to reduce the
parameters to a finite number. While before this approach had been established the requirement
of renormalizability of a quantum field theory was a necessary condition for having a consistent
picture, almost all modern particle physics models are regarded as some effective field theories
(EFTs) of some more fundamental theory and the non-renormalizable operators play a major
role.

In particle phenomenology, studying effective operators can often offer important insights
into the nature of the UV theory above the cutoff A. For example, the study of weak decays and
neutrino scattering in terms of effective Fermi operators allowed to understand the nature of the
electroweak theory and develop the SM much earlier than the direct discovery of the Z and W
bosouns.

Since, as we discussed in the previous chapter, the naturalness problem is a serious hint for

some new physics lying not too far from the EW scale, and since so far all evidence suggest that
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2 Dimension-6 operators in the SM |

this dynamics should be somewhat heavy, i.e. near the TeV scale, studying the effective theory of
the SM could be a powerful tool in the understanding of the NP sector in a model-independent
way.

While these higher dimensional operators are generated at the new physics scale A, their
effects are measured at the lower scale of the experiments. In order to compare the predictions
for the coefficients of some NP model with the experimental results it is necessary to follow
the renormalization group (RG) flow of the effective theory between the two scales. Due to
this scaling, the Wilson coefficients run and mix as we go down from A to the experimental
scale ~ myy. The coeflicients at the two scales are related to each other via the so-called
anomalous dimension matrix. This operator mixing opens also the possibility of linking different
kinds of deformations of the SM which are otherwise unrelated. Assuming that the different RG
contributions to low-energy observables are not tuned against each other (i.e. that no correlations
from the UV theory are present), and exploiting the wide range of experimental precision in the
determination of some EW and Higgs observables, we are able to cast RG-induced bounds on
some of these observables which are already stronger, or of the same order, than the direct
experimental constraints.

In section 2.1 we introduce the dimension-6 operators in the SM and define the operator
basis which is used in the rest of the chapter. In particular, here we concentrate on a subset of
13 operators made of gauge bosons and Higgs which give the most important contributions to
the EW and Higgs observables we consider. In section 2.2 we present our computation of the
anomalous dimension matrix of this subset of operators while the EW and Higgs observables we
study are presented in section 2.3. The RG-induced bounds, as well as the tuning assumptions,
are described in section 2.4. Finally, in section 2.5 we study prospects for these RG effects for
high luminosity LHC and at future possible lepton colliders. This chapter is mainly based on

the work done in refs. [4,5] and in previous literature on the subject.

2.1 Dimension-6 operators in the SM

Let us assume that the new physics sector at the scale A, which should cure the SM naturalness
problem, does not contain any light (i.e. near the EW scale) degree of freedom. We also assume
that the observed scalar at 125 GeV is indeed the SM Higgs boson, i.e. part of the same SU(2)y,
doublet as the Nambu-Goldstone bosons of EWSB. This is strongly suggested by the fact that
the observed couplings of this particle with SM fermions and gauge bosons are in good agreement

with the SM prediction, in particular they are proportional to the mass as can be seen from the

16



2 Dimension-6 operators in the SM |
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Figure 2.1: CMS summary of the fits for the Higgs couplings expressed as a function of the particle

mass. No extra contributions to the couplings with v+ and gg are introduced in the fit.

plot in fig. 2.1.1 In this case small deformations from the SM in experiments performed at the
EW scale can be described by an effective Lagrangian containing non-renormalizable operators,

invariant under the SM gauge group of eq. (1.1), written in an expansion in powers of 1/A [55]:

(2.1)

d
EFT _ G (d) _ 1 1
e D) D e LIS Vo
d i

The operators in Ly, with dimension d < 4 define the SM action as described in the first
chapter: the SM is the most general renormalizable theory compatible with the given gauge
symmetries and field content. In this framework, all other global symmetries of the SM discussed
in section 1.1.1, like baryon and lepton number conservation, are just accidental and not imposed
by hand. The fact that the baryon number B and each lepton number L; are good quantum
numbers implies that the non-renormalizable operators which violate these symmetries should
be suppressed by a very high scale Ap r,. Here we will assume that these scales are much higher
than A, which suppresses the operators which violate B and L; and allows as to discard those
operators when studying processes at the EW scale.

The only gauge-invariant operator at dimension 5 present in Ls is the Weinberg operator for
Majorana neutrino masses [56|, discussed in section 5.1. However, since this operator violates
Lepton number its scale is constrained to be very high, therefore we will neglect it in the following.

Let us then focus on the dimension 6 operators in Lg. Since here we will not discuss flavor

LAn alternative analysis can be performed in a more generic framework, in which the EW symmetry is non-
linearly realized and the observed scalar is introduced as a generic singlet under the custodial symmetry. In this
case O(1) deviations can be expected, which are however constrained by experimental data, albeit not for all

observables, see e.g. refs. [53,54]. We do not discuss further this approach in this thesis.
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observables and constraints, we will assume flavor universality in L4, which amounts to reducing
the study of the operators for only one generation of the SM fermions. The classification of all
SM dim-6 operators was first attempted in ref. [55], while the complete basis of independent
operators was obtained in ref. [57], where the authors found that, for one generation of fermions,
it contains 59 independent operators. In order to find the complete set, relations among operators
can be found by using Fierz identities, integration by part and, most importantly, by performing
small field redefinitions, which corresponds to applying the equations of motion (EoM) obtained
from the renormalizable Lagrangian L. Let us briefly prove this point. Consider an EFT

L Lo(6, 0,0) + O(AY) | (2.2)

Lrrr = Lo(9, 0u0) + 2

where ¢ is some generic field with given quantum numbers, and consider the field redefinition

060, (2.3)

¢/:¢+p

where « is an order 1 coefficient and d¢ is some generic current of dimension [0¢] = 2 + [¢] and

with the same quantum numbers as ¢ 2. Under eq. (2.3) the Lagrangian becomes

1 oL oL
Lo, 0,6) = £0(6.0,0) + 5 ( £6(0.0,0) + G200+ 2200,0) + O ) =
(2.4)
L[ 8L 5£0> »
— Lorr(00040) — 5 (8,250 950N 544 oasy

where we neglected contributions suppressed by more powers of A. The last term in the sec-
ond line is an operator of dimension 6 which vanishes upon the EoM. Since physics has to be
independent of any such field redefinition, they, or equivalently EoM, can be used to obtain
relations between different dim-6 operators. Something to be noticed is that operators generated
by such field redefinitions are necessarily constructed as a product of two separate currents, each
with spin < 1 (since we do not consider fields with spin greater than 1). We call this class as
(current) x (current) (CC) operators. It is useful to notice here that field redefinitions always
take CC operators into operators in this same class. More details on the field redefinitions and

their effects on SM dim-6 operators are reported in appendix A.2.

2.1.1 Our choice of basis

While in principle any basis is equally viable for the study of the phenomenology of dim-6
operators, some basis are better suited than others for studying some particular processes, or

as low-energy description of given UV theories. From the UV point of view one could require

2Here by current we do not mean only some spin-1 operator, but any operator with the same quantum numbers
as ¢. In particular, if ¢ is a spin-1 field then the current will be a vector, if ¢ is a scalar then d¢ is a scalar and,

analogously, d¢ is a fermonic current if ¢ is a spin-1/2 field.
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that the operators have a clear connection with the UV dynamics. For example, it could be
convenient to work in a basis in which operators generated when integrating out at tree-level the
heavy degrees of freedom in a large class of theories (minimally coupled, renormalizable, weakly-
interacting) are kept distinct from operators generated only at loop level, which are expected to
have suppressed Wilson coefficients. An example of such basis is the one used in ref. [58|, where
the authors focus on the low-energy description of a wide class of strongly interacting light Higgs
(SILH) models (containing also composite Higgs models), while the one used in ref. [57] does not
classify operators into tree-level and loop ones.

From the phenomenological point of view, a good feature of the basis is to be able to describe
as much clearly and univocally as possible some particular set of observables, for example dividing
operators which are strongly constrained from weakly constrained ones, or at least by reducing
as much as possible the strong correlations among coefficients. Since it is impossible to find a
single basis which satisfies all these properties for any UV theory and any observable, a choice
has to be made depending on the problem at hand.

Our choice of basis is motivated by the observables we are interested in, and the subset of
operators we consider is defined by those which (in our basis) give a tree-level contribution to
our set of observables. In this work, we shall be interested in EW observables, Higgs couplings
to gauge bosons and QCD observables involving gluons only and the relations among each other
as imposed from the running between the scale of new physics to the weak scale. These include
the four electroweak oblique pseudo-observables S , T , W and Y [59,60], the three triple gauge
coupling observables glz .k and Ay, the Higgs couplings to vector bosons, a shift on the Higgs
width, the gluon oblique parameter Z [60] and the anomalous triple gluon coupling parameter
¢3g. We describe these observables in more detail in section 2.3. For ealier systematic studies
of the effects of higher-dimensional operators on these observables, see refs. [61,62]. We have
not included the Higgs decays to fermions in our list of observables. The only dim-6 operators
contributing to these observables are Oy, , O,, and O, (see definition in table 2.3)? and their RG
effects have already been studied in ref. [65]. These are weakly constrained operators and new
RG-induced constraints can be derived only if they contribute to the running of more strongly
constrained operators. In ref. [65] it has been shown that there is no such contribution and
therefore we do not include these operators in our analysis.

Our basis is also well suited to study universal new physics scenarios, that is models (e.g.

composite Higgs models) in which the most important effects induce universal couplings of the

3The flat direction [63] between the operators O,,,,Opp and Ogg from the measurements of Higgs couplings
to photons and gluons is lifted by considering the (still loose) upper limit on the cross section production of a
Higgs boson in association with a pair of top-antitop quarks [64]. Stronger bounds on the Wilson coefficients of
Opp and Ogg can be obtained by imposing some theoretical priors on the value of the Wilson coefficient of O,,,

but we did not consider these stronger bounds here and we can safely ignore the operator Oy, in our analysis.
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fermions to the SM gauge fields, like in the SILH case [58]|. A first phenomenological study of
some EW observables in the context of dim-6 operators, assuming universal new physics, was
performed in refs. [66,67].

In this context, NP effects can be described by the subset of 14 operators made of SM
bosons listed in table 2.1, which we will denote in the following as bosonic operators. These
operators can also efficiently parametrize dim-6 contributions to the observables specified above
and therefore we include them in the basis. The basis therefore contains a total of 14 CP-even
bosonic operators, notice however that Og does not contribute to any of the observables we are
interested in, neither at tree-level nor by RG running [65]; it contributes instead to the Higgs
self-coupling which however is still not directly measured. For this reason we did not include
this observable in our list and did not compute its RG scaling. The operators in table 2.1 have
been grouped in two different categories, corresponding to operators of the CC form (left box)
and operators which are not products of SM currents (right box). As discussed above, the CC
operators can be related to each other and to other fermionic CC operators using the SM EoM or,
equivalently, by performing field redefinitions. This means that one has to be careful in choosing
the other operators in the basis to ensure that there are no redundancies. These relationships
provide an important consistency check on the anomalous dimension matrix, which is discussed
in ref. [4].

To this set of operators we add the 6 CP-odd counterparts of the bosonic operators, as listed
in table 2.2. The rest of the basis is a small variation of the one adopted in ref. [65] where, from
the ones in table 2 therein, using field redefinitions we trade the four-fermions operators of the
first family {Og};ldl, O(L3L)ll,(9gR} for {Oasq, Oaw, O2p} and the Higgs-lepton operators of the
first family {O(L3)ll, O3 } in favor of the ones in table 2.1. The remaining operators of our basis
are listed in table 2.3. The conventions in tables 2.1, 2.2, 2.3 and in the rest of the text are as
follows: D,Wg, = 8,Wy, + ge®™WIW, and HTELH = H'D,H — (D,H)'H, where D, H is
defined below eq. (1.7).

Let us comment on other bases of common use in the literature. The set of operators
{Ow, OB, Oww,Owp,Opp} (2.5)
is in one-to-one correspondence with the operators used in ref. [67]
{Onw,Onp, Oww,Ows, Opp} , (2.6)

where Oy = ig(D*H) o®(DY HYW?,

oy Onp = ig'(D*H)T(D"H)B,,, and with the ones used
in ref. [58]

{Ow,08,08w,Onp,OpB} . (2.7)

20



2 Dimension-6 operators in the SM |
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Table 2.1: The 14 CP-even operators made of SM bosons. The operators have been grouped in two
different categories corresponding to (current) x (current) ones (left box) and operators which are not

products of SM currents (right box).

Opp = 9°|H* By B
Owps = 99 Hf o®HW?, B
Oy = o*|HPW, Wer
Og = 92| H[2G1L,GAm
Oy = gi9€as Wit "W, Wern

Oua = 519sfaBcGh ' GE,GEPr

Table 2.2: The 6 CP-odd operators made of SM bosons.

The relations between these operators are simply obtained from integration by parts and read

Ow = Onw + i((’)ww +Ows) ,
1 (2.8)

Op =0Onp + Z(OWB + OBB) -

From this relation it is clear that the two particular linear combinations of not-CC operators
in the r.h.s. reconstruct two CC operators, even if no operator of this kind is present in the
subset, as in the case of eq. (2.6) [67]. Since in a wide class of NP models CC operators can arise
at tree-level while the not-CC ones can only be generated at loop level, it might be desirable
to work in a basis which keeps this separation explicit, as in our basis, eq. (2.5), or the SILH
one, eq.(2.7). Our basis has a further advantage that the anomalous dimension matrix of the
sector {Op, Ow} x {Osp, Own, Oww} is block diagonal [68|. As the SILH basis [58|, our basis
also separates the operators generated at tree-level from the ones obtained at the radiative level
only, when the new physics degrees of freedom, assumed to be weakly coupled, are integrated

out [68]. When the Higgs emerges as pseudo Nambu-Goldstone boson, the SILH basis further
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Oyu = yu‘HPQLlEIUR
Oy, = y€|H\2ELHeR
,,,,,,,,,,, ]
0} = (iH'D,H)(QL"QL)
<~ _
O = (iH'0" D, H)(Qry"0° Q1)
Axd _
O} = (iH'D,H)(Ly"Lp)

Oy, = ya|H?QrHdg

O} p = (Qry"Qr) (UrVuuR) 04 p = (QrY" QL) (drVudr)
OB = (QurTAQp) (g T ur)  OF) = (QuA"TAQL) (dryuTAdr)
0%, = (drpy"dR)(drVudR)

O p = (Ly"Li)(Ervuer)

0% = (Apy"ur) (TR yuur)
0%, = (Qu1"Q1)(Qr7Qr)
OB — (QLAPTAQL) QL TAQL)

0f', = (Quy*Qu)(LryuLr) Ot = (apyPur)(dryudr)
08)" = (Qur"0"QL) (L0 L) O, = (ary"ur)(ERueR)
O1% = (Quy"Qr)(€rVuer) O, = (dry"dR)(ERVueR)
Ot = ey Lo)@rur) O = (L Lu)(drypdr) |
Oyya = yuya(Qpur)ers(Q3dr)  Ofiys = yuya(Qy T ur)ers (Q5 T dR)
Oyuye = Yule(Qrur)ers(LeR) O, e = Yule Q7 eR)ers (L5 us)

Oyeyy = yeyL(I_/LeR)(JRQL)

0% = yuQro*ur ffg'B,w

0% 5 = yaQro*’dr Hg' B,

O%p = yeLro"er Hg' B,
O = yuQro" T4 up Hg, G,

Y = YuQrotug o HgWe,
Ohy = yaQro" dr o HgW§,
Ohw = yeELa“”eR U“HgWﬁl,

Ohe = yaQro" TAdg Hg G5,

Table 2.3: 39 operators made of one-family of SM fermions. The upper box contains operators in the

CC class while the lower one does not. Dashed lines separate operators of different structure.
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makes the distinction between a loop involving new-physics interactions and a loop involving SM
interactions only.

In this study we limit ourselves to the set, By, of 13 operators appearing in table 2.1 (omitting
Og that does not contribute directly to the 13 physical observables we are studying). We compute
the running of By into B;. If the remaining set of independent operators, needed to complete
the basis specified above, is denoted by Bs, there could also be i) a running of By into By, i) a
running of By into Be and of course 4ii) a running of By into itself. The first effect would reflect
itself in new RG contributions to our list of low-energy observables; under our hypothesis of
no-tuning (or no correlations) among the different RG contributions these effects do not change
our RG-induced bounds on the operators in B;. In principle new RG-induced bounds on some
operators in By could be obtained, however we already commented on the fact that this is not the

case for Og and O The second effect could, in principle, allow us to obtain new RG-induced

Yu,dye
bound on the operators in B; via the mixing to some tightly constrained operators in Bs, for
example via the mixing to Op and (9}&, as we mentioned above. The study of these effects
would be an interesting generalization of our ideas but would require the computation of the full
anomalous dimension matrix and a complete phenomenological analysis of all the observables

relevant to the dimension-6 operators, which is beyond the purpose of this work.

2.2 Scaling of the Wilson coefficients

In general, quantum effects mix all the operators among themselves when going from the scale of
new physics down to the scale at which the experimental measurements are performed. However,
the 3 operators with gluons, Ogg, O2¢ and Oz, constitute a separate sector that does not mix
with the other 11 bosonic operators at one-loop.* So, even if Ogqg affects Higgs physics by
controlling the dominant production mode of the Higgs boson at the LHC, it can be treated
separately from the 3 other Higgs observables we are interested in here. Furthermore, since
the Higgs self-interactions have not been measured yet, and since Og does not enter into the
anomalous dimensions of any dim-6 operator other than itself, it can also be omitted from our
analysis. For the Higgs and EW sector RG study, we can thus restrict to the following set of 10

dim-6 operators and compute the corresponding anomalous dimension matrix

{On,07,0B,O0w, Oz, O2w, Og, Oww, Ows, Osw} . (2.9)

We include all the one-loop contributions proportional to ¢; and depending on

{d: 9,95\ wi}, (2.10)

4The only exception is a contribution from O2p to the RG of Oz, see table 2.7. This mixing, however, is
phenomenologically not very relevant since the Wilson coefficient of Ozp is strongly constrained, as we show in

section 2.4.1.
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2 Electroweak, Higgs and gluon observables |

where 3, is the Yukawa coupling of the top quark, i.e. we neglect the contributions proportional
to the Yukawas of the light fermions (yp/y: ~ 0.02, y; is the bottom quark Yukawa) and the
other SM couplings are normalised as in chapter 1 (egs. (1.3,1.6,1.7,1.8,1.14)).

We regularized the loop integrals using dimensional regularisation and used MS subtraction
scheme. We performed the computation in the unbroken phase of the SM and in the background

field gauge, with the gauge fixing term

1
L9 = — ——(D{MsA)? 2.11
where 64 = {0B,6W,0G} is the quantum field with respect to which the dim > 4 SM ac-

tion is path-integrated and DLA) is the covariant derivative with respect to the corresponding

background field A = {B, W, G}.
In table 2.4, we give the one-loop anomalous dimensions of the operators of eq. (2.9), in the
basis defined in section 2.1.1. We have defined

dCi
dlogp

Ve, = 167 (2.12)

A common effect encountered while computing the RG scaling of the above operators is the
appearance of counter-terms which correspond to dim-6 operators that are not in our basis [65].
These radiatively-generated redundant operators need to be redefined into operators present in
our basis. Upon redefinition, these redundant operators contribute to the anomalous dimensions
of the operators in our basis at the same order as other direct contributions coming from one-
particle-irreducible graphs. For details on the radiatively generated operators and how we deal
with the redundant ones see appendix A.2. Notice that the matrices of table 2.4 already contain
these indirect effects. This ensures that the result is gauge invariant and indeed we checked that
the result is independent of the gauge fixing parameters {4 of eq. (2.11).

Some parts of the anomalous dimension matrix presented here have been calculated in pre-
vious literature [65-76]. In some cases these previous computations use methods different from
ours, but we find complete agreement in the final results. A detailed comparison with previous

literature, including a discussion about the difference in the methods is presented in ref. [4].

2.3 Electroweak, Higgs and gluon observables

Let us now apply the general formulas of the previous section to the electroweak, Higgs and
gluon observables we want to constrain. In section 2.1.1 we have considered 10 EW and Higgs
operators

Ow, Or, Ow, Op, Oy, O, Oww, Ows, Og, Osw, (2.13)

®The self-renormalization of ¢z has been extracted from the computation of refs. [69,70], where the authors

calculated the one of c3¢.
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CH cr
Yerr —992 — 3¢ + 24X + 12y —9g% + 3g'* + 12X
Yer 397 59° +12)+ 12¢7
Tep _% _g
Yew _% _%
other ~¢,’s 0 or O(y;) 0 or O(y;)
cB cw C2B Cow
v |~ 39797 —29%) —6Ag"? §9%(297 — ¢?) —36Xg>  —IGfg" +3¢97N  Lgt+ Hg7g? +18)g?
Yer 7%9/292 _ 6/\5]'2 7%5]’292 3g'4 + 29/292 + 3/\9/2 29’292
Yep 2 4 67 z T9” —2
New % 1742 4 6yt2 (%Q _ 52;;5) g7 78992 + 2499/2
Yea —39" 0 59? 0
Yeaw 0 —5¢° (8- %) o" AR
- 0 0 0 0
0 0 0 0
Yeww
Yew s 0 0 0 0
Yesw 0 0 0 0
CBB CWW CW B 3w
Yer 0 0 0 0
Yer 0 0 0 0
Yep 0 0 0 0
Yew 0 0 0 0
Yeon 0 0 0 0
Yeau 0 0 0 0
Yenn | G — 2 4 6y2 + 122 0 3¢ 0
. 0 —39% _ 59" L 6y2 4122 g2 542
Yew s 292 2g? e Y Y -2
Yesw 0 0 0 g2

Table 2.4: Anomalous dimension matrix for the Wilson coefficients of the dim-6 bosonic operators, in

the basis defined in section 2.1.
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and three more operators involving gluons, Osg, Osg, Ogg, to parametrize BSM corrections
to the SM Lagrangian. The set of pseudo-observables, briefly mentioned in section 2.1.1, that
constrain all these operators include the four electroweak oblique parameters S , T , Y and W
[59, 60], constrained by LEP 1 and LEP 2, the four anomalous triple gauge coupling (TGC)
glz , Ky, Ay and é3q, the oblique gluon Z parameter [60] and four observables related to Higgs
physics: the gluon-gluon production rate, the decays to vy and vZ and a universal rescaling of
all the branching ratios [58].

In general, these observables receive contributions from a particular linear combination of

the dim-6 operator’s Wilson coefficients, suitably multiplied by the SM couplings:
(ObS)Z’ = K; + WijCj = Ky + éz — 5(obs)z = él s (214)

where x; is the SM contribution, the ¢;’s are the Wilson coefficients and w;; is a matrix con-
taining the SM couplings and ratios of scales (w ~ O(m%,/A?%)). We defined ¢; as the linear
combinations of the Wilson coefficients which contribute directly to each observable (obs); and
we shall refer to them in the following as observable couplings, with a slight abuse of language.
If the new combinations ¢; are independent, this corresponds to a change of basis such that
to each operator corresponds an observable; we shall call this the observable basis. To derive
the RG-induced constraints on these observables we therefore first need to relate them to the
operators in eq. (2.13), that is define the transformation matrix, w;;, from the basis in eq. (2.13)
to the observable basis. Another possible basis strictly related to the observables which provide
the strongest constraints on dim-6 operators has recently been introduced in ref. |77].

As an example, consider the process h — Z which receives a contribution from the SM (in
this case at one loop) as well as a direct contribution from a linear combination of the dim-6
operators. We parametrize this contribution with the observable coupling ¢,z, to be defined in
eq. (2.27), which is related to the Wilson coefficients of our basis as (cg,, and sy, are respectively

the sinus and cosinus of the weak mixing angle 6y )

2
R m
Cyz = A—I;V (QngcWW — 283WCBB - (ng - Sgw)CWB) . (2-15)

The above relation defines the coefficients w., 7 ; for this particular observable. Let us now describe
in detail all the observables mentioned above, and the relations with the Wilson coefficients of

the dim-6 operators.

2.3.1 EW oblique parameters

We begin with the electroweak precision observables constrained by measurements at LEP1,
LEP2 and Tevatron. The first step of the analysis is to fix the SM parameters g, ¢’ and v
by the three most precise measurements: the Fermi constant G from muon decay, the fine-

structure constant ., and the Z-boson mass mz. With the input parameters fixed, the SM gives
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2 Electroweak, Higgs and gluon observables |

predictions for observables such as Z-pole measurements at LEP 1, the Tevatron measurement
of the W-mass and LEP 2 measurements of the ete™ — fTf~ cross-sections. New physics can
affect this analysis by either changing the relationship between the input parameters g, ¢’ and v
to the measurement of Gg, e, and my or by directly contributing to the other measurements
(see e.g. ref. [64]).

In universal theories some of the most important deviations from the SM reside in the vacuum
polarization amplitudes ITy;, (¢?) of the SM gauge bosons (ViVa = {W*W~ W3W3, W3B, BB}),

v V=il (@0 + (gh” terms) , (2.16)
_— —_—
q q
which can also be read from the effective Lagrangian in momentum space
Nz
Lepp= 1 (2Myyrsyy- WEW, + Myysys WEWS + 210y W32 B, + lppBuBy) + (¢q” terms)

(2.17)
Assuming a heavy new-physics scale we can expand these amplitudes for small momentum ¢ <

A?V p» obtaining

4
q
HV1V2 (q2) = HV1V2 (0) + QQH/V1V2 (O) + EHI‘I/IVZ (0) T (2'18)

where II{, . (0) = dIly;v;(¢)/dg?| 2o and so forth. At these order in the expansion in ¢* there
are 12 coefficients. Of these, three enter in the definition of the EW gauge couplings and the

Higgs VEV ,
/ / U292
1=~y y-(0) 1 =—IIpp(0) , 1 = Lw+w-(0), (2.19)
and two more relations come from the QED Ward identity:
Myys(0) =1Ipp(0) =0 . (2.20)
This leaves 7 free parameters S,7,U,V, X, Y, W [60], defined as ¢
~ 1 ~ g
T = ——5 (Iysws(0) — My+w-(0)) S =—=1sp(0)
myy g
m? m?
Y = —TW /1/33(0) W= —TWH%,;an(O)
2 (2.22)
. m
0 = (Wyoyal0) ~ Wy ©) X = "1t (o)
2
m
V m (01 (0) - T (0)

For convenience, we report here the relation between the S, 7", U [60] and the Peskin-Takeuchi S, T, U [59)]

parameters:
A p v=-1p (2.21)
9" Sow g

S==—"3, T =
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2 Electroweak, Higgs and gluon observables |

T is also related to the p parameter introduced in eq. (1.18) by p = (1—=T)~' ~ 14T In the EFT
approach, only the four S , T, W and Y parameters are generated by dim-6 operators, while the
remaining ones are generated by dimension-8 (or higher) terms. In terms of a phenomenological

effective Lagrangian these four can be described by

.2 S gg'v? w Y
AL =-T-Z27, 70— W3 BMY — — (9PW3 )2 — 0"B,,)%. (2.23
EWPT 9 K 4m12/V 2 ( ju% ) Qm%/[/( ,uz/) 2m12/V( ,u) ( )

The contribution of the Wilson coefficients of the operator set in eq. (2.13) to the above observ-

ables is
. v? A m#,
T'=er(mw) = gmer(mw) , 5= és(mw) = 5~ [ew (mw) + ep(mw) + dew s (mw)]
R m%,[, R m%v
Y =¢éy(mw) = FCQB(TI’LW) , W =céw(mw) = FCQW('I’TLW) ) (2.24)

The above oblique parameters have been measured very precisely and are constrained at the

per-mil level. We present the 95 % CL bounds on these parameters in table 2.5.

2.3.2 Anomalous triple gauge couplings

A second set of independent measurements that constrain the operator set in eq. (2.13) are the
TGC that were measured in the ete™ — WTW ™ process at LEP2. The standard phenomeno-
logical Lagrangian used to describe deviations in the TGC observables, from their SM values,
is [78,79]

ALsy = iggZey, 2" (W*”W/;, - W*”ij) +ig (KZCQW 1 4 ki se,, AW) Ww,
+ 5 (Moo 2+ Mysa A ) W W, (2.25)
w

where V;w = 90,V, — 0,V,, the photon field A, = cq,, B, + S@WWS has field-strength AW,
while Z,, = cqy, Wﬁ’ — 5S¢y, By has field-strength ZHV and we use sp,, = sinfw = ¢'/\/9> + 9’2,

coy, = cosby = g/\/92+—g’2 and e = gsg,,. Note that the above Lagrangian has only three
independent parameters at the dim-6 level taken to be g7, k~ and A, here; the other two can be
expressed as: Az = Ay and Kz = g? —tgw k~. These relations are a consequence of the accidental
custodial symmetry that is preserved by the dim-6 operators entering in the TGC [80]. The SM
contribution is given by (97)sm = (ky)sm = 1 and (Az)sy = 0. The corrections induced by

the dim-6 operators in our basis are given by:
2 2
. my, 1 . m
og? = Coz(mw) = —A—I;VCTCW(mW) , Oky = Cuy(mw) = A—‘;VZLCWB(mW) ,
Ow (2.26)
. myy
Az = ey (mw) = A2 caw (mw) ,
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where §g{ = g7 — (97)sm and 6k = Ky — (ky)sm. The constraints on these TGC observables
are at the percent level (see table 2.5) and thus at least an order of magnitude weaker than the
constraints on the electroweak parameters in eq. (2.24). Note that, for this reason, in eq. (2.26)

we have ignored contributions to the e"e™ — WTIW ™ process from the couplings in eq. (2.23).

2.3.3 Higgs couplings

Higgs physics provides the three remaining observables for our observable basis. Indeed, operators
in which the Higgs enters with the |H ]2 combination, like O, Oww and Opp (also Oga, Op
and the Oy, ones) can only give a physical effect, at tree level, in processes involving the Higgs
boson, since otherwise they only provide an unphysical redefinition of the SM couplings [64]. We
consider the branching ratios h — ~7/Z~ and the correction to the Higgs kinetic term,

Eyye? Z €g
AL Hioos 5 & Ouh % vhA,, A" + & vhA,, Z". 2.27
Higg ( ) mW " mIZ/VC9W ( )

The above coefficients, in terms of the dim-6 operator’s Wilson coefficients are given by

’1)2
cu(mu) = jgcn(mu),
2
Cyy(mpy) = TXQ (eBB(my) + cww(mpy) — ews(mu)), (2.28)
2

Cyz(mm) = — 5 5 (263, eww (mu) — 23, cpp(mu) — (5, — 53, )ewn(mm)) .

We present the constraints on these three observables in table 2.5. The coupling ¢, is constrained
at the per mille level although the constraint on the SM diphoton width has been measured only
with O(1) precision. This is because the SM width I'(h — ~) is already one-loop suppressed
and thus the current O(1) precision of the measurement corresponds to éy, & 1073, On the other
hand, the correction to the Higgs kinetic term ¢p is still poorly constrained. This is because
¢pr causes a universal shift in all the Higgs couplings and thus drops out from the branching
ratios. Moreover, if only gluon fusion production channels are considered, the coupling cqa
mimics the effect of ¢gr. Therefore, to disentangle the effect of cqgg and constrain ép, Higgs
production cross-sections in different channels have to be compared; in particular the weakly

sensitive vector-boson fusion (VBF') channels have to be considered.

2.3.4 Gluon observables

Let us now consider the observables sensitive to the bosonic operators that contain gluons, as
defined in table 2.1:

{02, Oca, Oscl (2.29)
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A first observable is the parameter Z, introduced in ref. [60] from the two point function of the

gluon (analogous to the EW W and Y oblique parameters) as

m%/V "
where the constant term of the expansion in ¢ for the gluon polarization amplitude is zero
by gauge invariance (as for the photon) and the first-derivative term fixes the strong coupling

constant. The Wilson coefficient co can be put in one-to-one relation with Z,

m2

Z = A—VQVCQG (2.31)

A strong bound on this parameter has been obtained by an analysis of dijets events at LHC [81]:

—9x 1071 < Z2<3x 107 (2.32)

A bound on cgg can be obtained from the analysis of the Higgs production cross section at LHC.

The relevant phenomenological Lagrangian is

h
Lh D baa—ygg2Gh, G A, (2.33)
myy
where we defined
. _omi,

The most recent bound, obtained in ref. [64] after marginalizing over the other deviations from
the SM, reads
éaa € [—0.8,0.8) x 1073, (2.35)

The coefficient ¢3¢, analogous to the SU(2); counterpart cspy, contributes to the anomalous
triple gluon couplings. This effect can be measured at LEP, Tevatron and LHC, for example via
top-quark pair production, see for example ref. [82] where it is estimated that LHC should be
able to put a bound |é3¢| = |esq| mé, /A% < 0.1

2.3.5 Present constraints

Based on their precision of measurement, the Higgs and EW observables (we neglect the gluon-
related observables in the following) can be divided into at least two groups. In the first group,
containing highly constrained operators, we have the four electroweak parameters and the Higgs
diphoton coupling,

{és, ér, éw, ¢y, ¢y}, (2.36)
which have been measured at the per mille level. In the second group we have the hyZ coupling,

the couplings related to the three TGC observables &, glz, Ay and ¢y,

{6727 én'ya é927 é)\'wCH} ) (2'37)
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2 RG-induced bounds and tuning

Coupling | Direct Constraint RG-induced
Constraint

és(my) [—1,2] x 1073 [83] -
ér(my) [—1,2] x 1073 [83] -
¢y (my) [—3,3] x 1073 [60] -
Ew (my) [-2,2] x 1073 [60] -
Cyy () [—1,2] x 1072 [64] -
éyz(my) | [0.6,1] x 1072 [64] [—2,6] x 1072
iy (M) [—10,7] x 1072 [23] [—5,2] x 1072
Cgz(me) | [4,2] x 1072 [23] [-3,1] x 1072
Exy(me) [—6,2] x 1072 [23] [—2,8] x 1072
ér(my) [—6,5] x 1071 [64] [-2,0.5] x 107!

Table 2.5: In this table we present the 95 % CL direct constraints on the coefficients in the observable
basis (second column). The constraints on S and 7' presented here are the ones obtained after marginaliz-
ing on the other parameters in the fit of ref. [83]. In the analysis we use the S, T-ellipse from ref. [83] with
U = 0. Simultaneous constraints on all three of the TGC observables do not exist in the literature, so we
have provided the individual constraints on the three couplings without taking into account correlations
between them [23]. In the third column we show the RG-induced constraint we are able to obtain under

the assumption of no fine-tuning in eq. (2.48), for A = 2 TeV.

which are much more weakly constrained. One can, in fact, further split the above set into cy
which is constrained only at the O(1) level and the other couplings that are constrained at the

few percent level. The present experimental constraints are reported in table 2.5.

2.4 RG-induced bounds and tuning

As we saw, the observables we consider have lower and upper bounds from experimental mea-

surements, which constrain possible deviations from the SM:

5(0bs)i‘mH = éz(mH) = wij(mH)cj(mH) S [eéow GUP] . (2.38)

)

The observable coupling ¢;(mg) (constrained at low energy) is related, through the running, to
the high-scale value of the Wilson coefficients ¢;(A), which are not directly known since they are
determined by the BSM degrees of freedom that have been integrated out. The matrix w;;(mg)
also runs with the scale (in the example of eq. (2.15) this would be the running of g, ¢’ and v
inside my, and 6y ), however we are not interested in such a running because w;; is determined

by measurements performed at the EW scale and because, for the purpose of this work, we are
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not interested in the UV value of the SM couplings. This is the reason why we have not taken
care of the contributions of the dim-6 operators to the SM couplings, parametrized by k; in
eq. (2.14), which would only be necessary if we wanted to relate w;;(mp) to w;;(A) at the order
we are working.

This discussion leads us to define the scale-dependent observable couplings as

&i(p) = wij(mp)e;(p) (2.39)
obtaining
R . | A
3(0bS)i|my = €i(mu) = é&(A) — 162 Jij¢;(A) log (mH) , (2.40)
where
Fij = wik(m) a wy; (m) (2.41)

and 7y is the matrix computed in sec. 2.2. Our interest in eq. (2.40) is twofold: we want to find
instances where a less constrained operator can mix with a more constrained one by appearing
in its RGE’s and secondly (but closely related), to learn about the new degrees of freedom at the
matching scale. In the following we shall work at leading-log order, which is fine if the hierarchy
between the new physics scale A and the EW scale is not too big.

The fundamental assumption we make in order to obtain an indirect constrain on the ¢;(mg)
through the RG is that we require each term in the sum on the r.h.s. of eq. (2.40), proportional
to some coefficient ¢;, to be contained in the experimental bounds associated to the observable

3(0bs)i|my,:

(1—6)e(A) € [, et (2.42)
1 A y
- hatasmmton () e dm o

where we defined &; = 4;;/(1672) log(A/my) and in the last line the index j is not summed over.’

We have also used the fact that substituting ¢;(A) for éj(mpy) in the 4;;¢; term of eq. (2.40)
amounts to corrections O ((4m)~*log?(A/mp)) that are beyond our precision (the same is true
for the evaluation of v;;). Notice that this assumption is not only a requirement of the absence of
fine-tuning but also an hypothesis on the UV physics, since particular relations, due to symmetry
or dynamical accidents, between those combinations could be generically found when considering
a BSM theory. From our bottom-up approach we parametrize also this absence of correlations
as an absence of tuning. From eq. (2.42) we can put bounds on the matching-scale Wilson

coefficients ¢;(A):

Cj(A) € Z(l _ -1, 71 low Z 1 _ -1, 71 UP , (244)

i

"In the rest of this chapter we shall denote with a hat all repeated indices which are not summed over.
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notice that, as expected, they grow quadratically weaker with the increase of the UV scale A since
w™l ~ A%?/m%,. Using eq. (2.43), instead, we can put an RG-induced bound on the observable

|6(0bS) j|myy < eﬁG using the direct constraints on §(obs);|m, €q. (2.38):

1671'2 ~ \—1 up low
€ m(%ﬂ [—¢", —a™],
c 1672

log (A/mp)

if 435, >0: 0(0bs)jlmy
(2.45)
if 435, <0: 6(0bs)jlmy (%j)_l[eéow,egp] :

The indirect bounds in eq. (2.45) grow logarithmically stronger with the increase of the UV
scale A. However, since the expected effects from new physics decrease quadratically with A,
assuming order one coefficients ¢;, even if the RG-induced bounds on the observables become
slightly stronger, their power in investigating the UV degrees of freedom becomes much weaker
for higher values of A, as is clear from eq. (2.44). It might seem that these bounds are not
significant because of the loop factor in the above equation; the ¢;’s are, however, not of the

same order and if ’€§0w7up| < ‘eéow,Up|’

the bound in the above equation can be stronger than
the direct bound on 6(0bs);|m,, in spite of the loop factor. The RG-induced bounds are, thus,
significant only when a weakly constrained coupling appears in the RGE of a strongly coupled
one.

Once new physics effects will be, hopefully, observed and the constraints of eq. (2.38) will not
include the zero value in the allowed interval (0 < € < |§(0bs);|m, < €;*), another interesting
information that could be extracted from RG effects is a quantification of how much tuned,
among themselves, are the electroweak and Higgs observables. First of all, let us define the
fine-tuning in an observable as [84]

Ai = Max; 0log (5(0]08),'\1%}[
dlog ¢j(A)

M ] NG og (A/mr) Maxzi [ig] 0(0bs);lmy
- |6(0bS)ilmy 1672 |6(0bS)ilm ’
(2.46)

where in the second step we separated the diagonal contribution from the off-diagonal ones and,
for the diagonal term, we neglected the loop contribution since ¢;(A) enters already at tree level
and this would be its leading contribution to the tuning. Looking at the off-diagonal terms, the

fine-tuning A; satisfies,

A log (A/mp) Max;; [ij |0(0b8);my - log (A /mr) Max;z; |4i5] €lov i #zeéﬁ
= 1672 |(5(0b5)i|mH 1672 eiup i eﬁ%G’
(2.47)

and one might be able to conclude that a certain degree of fine-tuning among the contributions

to the RG flow of some operator is necessary.
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2 RG-induced bounds and tuning |

Cc2G [“ele C3G C2B Cow
Yeso | 5005 0 0 ¢?(A(Y2+YP)+12YYa) O
Yego | 0 =3¢ —2¢°+12X+6y; O 0 0
Yese | O 0 2242 0 0

Table 2.7: Anomalous dimension matrix for the Wilson coefficients of the dim-6 bosonic operators with
gluons, in the basis defined in section 2.1. The contributions to and from the other coefficients of the

operators in eq. (2.9), not reported here, are zero.

2.4.1 RG-induced bounds on our set of observables

Let us now apply the general formulas of the previous section to the electroweak and Higgs
observables we want to constrain.

We are interested in finding instances where the couplings from the second group in eq. (2.37)
appear in the RGE’s of the first group of couplings in eq. (2.36). To check this we rotate
the anomalous dimension matrix to the observable basis defined by eq. (2.24), eq. (2.26), and
eq. (2.28). We present the anomalous dimension matrix in the observable basis in table 2.6.

Using this, and fixing A = 2 TeV, we write numerically eq. (2.40) as

(657 éT7 éy, éw, é’y'ya é’yZ7 é/f'yv égz; é)\77 éH)t (mt) = (248)

0.9 0.003 —0.03 —-0.08 —-0.02 —-0.02 —0.04 0.05 —0.01 0.001 és(A)
0.03 0.8 —0.02 —0.009 0 0 —0.03 0.01 0 —0.003 ér(A)
0.001 0 0.9 0 0 0 —0.001 0.001 0 0 ¢y (A)
0 0 —0.001 0.8 0 0 0 —0.003 0 0 éw (A)

0 0 0 0 0.9 0 0.006 0 0.02 0 Cyy (A)

0 0 0 0 0 0.9 0.007 0 0.03 0 éyz(A)

0 0 0 0 —-0.02 —-0.02 0.9 0 —0.01 0 Cry(A)
0.0004 —0.0007 —0.0004 0.1 0 0 —0.0004 0.9 0 —0.0007 Cgz(A)
0 0 0 0 0 0 0 0 0.9 0 éxy(A)
—0.02 0.03 0.01 —-0.4 0 0 0.02 —0.3 0 0.8 ¢ (A)

We can now derive the RG-induced constraints by using eq. (2.45) assuming no fine-tuning among
the different terms in the RGE’s.

The strongest RG-induced constraints come from the direct bounds on the S ,T , W and Y
parameters, i.e. the first four lines in eq. (2.48). We require that each observable coupling indi-
vidually satisfies the four RG-induced constraints from these electroweak precision parameters
simultaneously. It is very important to take into account the experimental correlations between

S , T , W and Y while imposing these bounds [85-87|. Note that the RG-mixing contributions to
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Figure 2.2: The ellipses represent 95% CL bounds on S and 7' as obtained in the fit of ref. [83] with
U = 0 (blue), expected from the ILC (purple) and TLEP (orange). The straight lines represent the
RG-induced contribution to the oblique parameters from the weakly constrained observable couplings of
eq. (2.37), divided in Higgs couplings (a) and TGC couplings (b), using the first two lines of eq. (2.48),
for A =2 TeV. The length of the lines corresponds to their present 95% CL direct bounds, see table 2.5;

the line is green (red) for positive (negative) values of the parameters.

¢w and ¢y, from the couplings in the weakly constrained group in eq. (2.37), is either absent or
accidentally much smaller than the ones to ¢g and ér (see the RG contributions to ¢y and éy
in the third and fourth row of eq. (2.48)). We, therefore, look at the constraints on the S — T
plane taking W =Y = 0. We use the S—T ellipse in ref. [83], which assumes W =Y =U =0,
to derive our constraints. We present these RG-induced bounds and compare them with the
direct bounds in table 2.5 and in figure 2.2. We find that for each of the couplings in the second
group we can derive a RG-induced constraint stronger than, or of the same order of, the direct
tree-level constraint. We also obtain RG-induced bounds from the direct constraint on ¢, using
the fifth line in eq. (2.48) and eq. (2.45),

Gy € [0.2,0.3]
éxy € [0.05,0.10] ,

(2.49)

but at present these bounds are weaker than those from the direct bounds on electroweak pa-
rameters.

Let us briefly comment on alternate choices for our observable basis. In general, a change of
observable basis modifies the anomalous dimension matrix of table 2.6, also for the observables
which were maintained in the basis. Thus, the RG-induced constraints we have derived, are

applicable only to our particular choice of observables, and for an alternate choice the analysis
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2 Future prospects |

must be repeated.® For instance, the Higgs decay observables related to h — W+W =, ZZ decays
could have been alternatively chosen as part of our observable basis instead of two of the TGC
observables (ky and gz) but we have kept the TGC in our basis as they are measured more
precisely than these Higgs decay observables. This situation is likely to continue in the future.
Although, observables like the relative deviation of h — WTW~, ZZ with respect to the SM
would be strongly constrained at the 5 %(3 %) level at the LHC with 300fb~! ( 3000fb~1)
data [88], the bounds on TGC are also expected to become stronger by an order of magnitude
at the LHC [88] so that the TGC would still be more precisely measured than these Higgs
observables. At linear colliders the Higgs h — WTW ~, ZZ is expected to be measured at the
level of 0.5 % [88] and the TGC observables at the 10™* level [89]; again the TGC observables
would be more constrained.

As can be seen in table 2.7, no mixing to (or from) these gluon operators is present among
the operators we considered in table 2.1, the only exception being a contribution from cop to
co¢ which, however, is not very interesting since cop is already very well directly constrained by
the oblique Y parameter. For this reason, we are not able to cast any indirect constraint using

these gluon operators.

2.5 Future prospects

Let us now discuss the future prospects for the RG-induced bounds, given the expected sensitiv-
ities on the observable couplings introduced above for 300 fb~! and 3000 fb~! [90] of luminosity
at the LHC and for the ILC [89] and TLEP [91] projects, as collected in table 2.8.

The precision on the oblique parameters could reach the 10~% level at ILC [92] and the 1075
level at a TLEP collider [93]. This would allow to improve sensibly the RG-induced bounds on
our set of observable couplings, as can be seen in figure 2.2 and in table 2.9

The measurement of the Higgs couplings, in particular the one to two photons ¢, will
improve substantially in the future: by one order of magnitude at 14TeV LHC with 300 fb~! of
integrated luminosity and at the ILC, and almost two orders of magnitude at a high-luminosity
LHC phase and at a TLEP collider [88]. The prospects for RG-induced bounds on the observable
coefficients which mix to ¢,,, that is the TGC ¢, and ¢, are reported in table 2.10.

If a deviation from the SM will be observed (i.e. one observable coefficient will have a direct
bound 0 < €l < |&j(mw)| < €;”), then by comparing the lower bound € with the RG-

J J
induced bound on é; (|¢;] < eﬁG) obtained considering its RG mixing to a strongly constrained

8Note that for our choice of observable basis, h — vy does not receive a contribution from the S parameter
even though there is a dependance on cwp in the anomalous dimension but cw g is actually reconstructing the

0Kk~ parameter.
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38

Obs. Now LHC (300 fb~!) | HL-LHC (3 ab™1) ILC TLEP

és [—1,2] x 1073 [83] - - 1.4 x 107* [92] 5 x 1072 [93]
ér [—1,2] x 1073 [83] - - 1.6 x 1074 [92] | 3.1 x 107° [93]
boz | [-4,2] x 1072 (23] | 3 x 1073 [90] 2 x 1073 [90] 1.8 x 1074 [89) n.a.

ey | [-10,7] x 1072 23] | 3 x 1072 [90] 1x 1072 [90] 1.9 x 1074 [89] n.a.

Cry [—6,2] x 1072 [23] 9 x 107* [90] 4 x 107* [90] 2.6 x 107* [89] n.a.

ey | [-1,2] x 1073 [64] 1x 1074 [88] 4 x 1077 [88] 7.6 x 107° [88] | 2.9 x 107° [88,91]
eyz | [—6,10] x 1073 [64] | 9 x 107 [88] 2 x 1074 [38] n.a. n.a.

én [—6,5] x 10~ [64] 1x 1071 [88] 5x 1072 [88] 5x 1072 [88] | 1x 1072 [88,91]

Table 2.8: Future prospects in the direct determination of the observable couplings discussed here from
the LHC, a high-luminosity LHC, the ILC at 800GeV and from TLEP after a first phase at 240GeV and
a second one at 350GeV. The precision in S , T will not improve sensibly at the LHC or HL-LHC and the

other missing elements have not yet been studied in the literature.

mix. to (S,7T) Now ILC TLEP
éyz [-2,6] x 1072 | 2x 1072 | 5x 1073
éH [—2,0.5] x 107! | 7x 1072 | 2x 1072
oz [-3,1] x1072 [ 8x 1073 | 3x 1073
Chiry [-5,2] x 1072 | 9x 1073 | 3 x 1073
Cry [-2,8] x 1072 | 2x 1072 | 7x 1073

Table 2.9: Present status and future prospects for the RG-induced bounds, for A = 2 TeV, from the
mixing to (S 7T), given the predicted sensitivity in this observables at ILC and TLEP, as shown in
table 2.8.

observable ¢ (like S and T) we can determine the necessary amount of tuning in eq.(2.40). By
taking the logarithmic derivative of eq.(2.40) with respect to the UV coefficient ¢;(A) one gets
that the tuning is [4] A;; > eé."“’ / eﬁc. Therefore, if 62"“’ > eﬁG a definite amount of tuning (or
of correlation) in the UV dynamics would be necessary. This could provide a new window on
the UV physics.

For example, if ¢z should be measured to be ~ 0.2 (0.1) while no deviation in (5,7’ should
be observed after TLEP, the RG-induced bound ]égG’TLEP] < 2 x 1072 would imply a tuning
Ap, s,y > 10 (5). Similarly, should one measure ¢, ~ 5 X 1072, the RG-induced bound from
(S,T) at TLEP, |655’TLEP| < 3 x 1073, would imply a tuning Ay, (s) > 17.
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mix. toé,, | Now | LHC |HL-LHC | ILC | TLEP
Chry [-0.2,0.3] | 2x1072 | 7x 1073 | 1x1072 | 5x 1073
Coy [0.05,0.10] | 5x 1073 | 2x 1073 | 4x 1073 | 1 x 1073

Table 2.10: Present status and future prospects for the RG-induced bounds, for A = 2 TeV, on two
anomalous TGC from the mixing to ¢,,, given the predicted sensitivity in this observable as shown in
table 2.8.

2.6 Summary

We computed the scaling and mixing of 13 dim-6 deformations of the SM affecting EW precision
observables (4), anomalous EW triple gauge boson couplings (3), QCD observables (2) and Higgs
production and decays (4). This computation has important phenomenological implications.
Particularly interesting is the RG-mixing induced among 10 of these observables (the 2 two
QCD observables and one Higgs observable, namely I'(h — gg), constitute a separate sector that
does not mix in a relevant way with the severely constrained EW observables.).

These 10 different observables are constrained at very different levels of precision. For ex-
ample, whereas the electroweak precision observables and the operator coefficient related to the
h — ~7v partial width are constrained at the per mille level, the TGC and the 2 other Higgs
observables are constrained at the percent level at most. As we run down from the new physics
scale to the lower scale of experiments, quantum effects mix the observables and the most severely
constrained ones receive a contribution from the ones allowed to deviate the most from the SM
predictions. These RG-contributions could in principle be of the same size or even larger than the
direct experimental bounds, in other words, the difference in the experimental sensitivities can
compensate for the RG-loop factor. Requiring that these RG-contributions do obey individually
the direct bounds, i.e. dismissing any possible tuning/correlation among the various RG-terms,
we can derive some indirect RG-induced bounds on the weakly constrained observables from the
direct measurement of the severely constrained ones. This analysis is particularly relevant for
the TGC and the universal shift of the Higgs couplings, as reported in figure 2.2 and table 2.5.

We also looked at the future prospects of these RG-induced effects. If a deviation from the SM
is observed in some of the observables we considered, in the absence of tuning one would expect
a deviation, due to these RG effects, to appear also in other seemingly unrelated observables. If,
instead, these RG-induced deviations are not observed, it would mean that some tuning is needed,
or it would indicate some correlation among the higher dimensional operators pointing towards
a particular structure of the new physics that has been integrated out. We have presented the

projected future experimental sensitivity to these RG effects in tables 2.8,2.9,2.10.
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CHAPTER 3

Composite Higgs Models

A way to obtain a large hierarchy between two scales in a natural way is by means of dimensional
transmutations. In nature this mechanism is realized in the SM itself, where the QCD scale
Agcp is naturally much smaller than the UV cutoff because of an exponential suppression due
to the RG flow of the QCD strong coupling from the UV down to the scale Agcp at which
it becomes non-perturbative, eq. (1.4). It is therefore possible that an analogous mechanism
is at work in explaining the large hierarchy between the EW and the Planck scales, in which
case we expect the presence of a strongly coupled sector at a scale A ~ TeV. The earliest
setup realizing this mechanism is Technicolor models, which — in the simplest realizations —
resemble just scaled-up versions of QCD and therefore do not predict any light Higgs boson in
the spectrum. Obviously, such models have been now definitely excluded by the LHC. However,
even after LEP they suffered from severe bounds from EW precision measurements and flavor
physics, which disfavored this class of models. A more realistic possibility is that the Higgs boson
itself is a composite state of the strongly coupled sector, in which case the UV sensitivity to its
mass would be cutoff above the scale A by its finite dimension. If, furthermore, the Higgs arises
as a pseudo-Nambu-Goldstone boson (pNGB) of the strongly coupled sector (such as pions in
QCD), then its mass would be naturally smaller than the typical scale of the other composite
resonances, helping to evade the tight phenomenological constraints on these states. The pNGB
nature of the Higgs, moreover, allows to construct low-energy effective chiral Lagrangians which
are able to capture the low-energy phenomenology of these composite Higgs (CH) models in
terms of a few parameters without the need of specifying the fundamental description of the
strongly coupled theory, in the same way as the pion dynamics is well described by the effective
QCD chiral Lagrangian.

In this chapter we review the most important features of these class of models, focusing on
the minimal realistic scenarios, and we explore the phenomenological predictions these models

offer.!

'For excellent reviews on composite Higgs models we refer to ref. [94] and to the more recent ref. [95].
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3 Strong dynamics behind the EWSB |

3.1 Strong dynamics behind the EWSB

The idea that the electroweak scale could arise as a condensate of some strong dynamics with the
typical scale at the TeV, thereby solving the naturalness problem by dimensional transmutation —
as in QCD — has its origin in Technicolor models [30]. In this class of models there is no physical
Higgs scalar but the EW symmetry is spontaneously broken by the condensate of some composite
operator. In many explicit models the constituents of the strong sector are fermions called techni-
quarks which interact strongly via a Technicolor gauge group and form a condensate at the EW
scale v. From the expression of the SM Higgs Lagrangian in the chiral formalism, eq. (1.11), it
is evident that the SM is just the simplest linear-o model for the custodial symmetry breaking
pattern SU(2)z x SU(2)r — SU(2)y able to provide a UV completion for the EWSB dynamics.
In Technicolor models the Higgs is not present and therefore, of the terms in eq. (1.11), only the
kinetic term for the NGB in X survives. It can then be seen as the leading term of an effective
chiral Lagrangian, valid for energies lower than the strong dynamics scale A7, in an expansion

of derivatives over the cutoff Ape:
, 2
fehiral — %Tr [(DME)TDME} +O(DY/AZ,) . (3.1)

A mass for the SM fermions can be described by the effective Lagrangian

L= - N Qs < Yigh ) +he. (3.2)
V2 ij yfjdg%

In QCD, the low energy dynamics of the pions, NGBs of the spontaneous breaking of the
chiral symmetry SU(2); xSU(2)g — SU(2)7, can be described by an analogous chiral Lagrangian
(3.1) with the substitution v — fr. Therefore QCD itself breaks the electroweak symmetry to
the electromagnetic subgroup, providing a mass to the W boson mngD = gfr/2 ~ 29MeV.
The simplest Technicolor models can thus be seen as scaled-up versions of QCD in which case
the physical W mass is given by m¥, = ¢*(v3 + f2)/4 = g*v?/4, where vy is the Technicolor
condensate, given by v3 = v? — f2 ~ v%. In the following we will neglect the small effect due to
fr and identify vy with v.

One consequence of the absence of a physical Higgs scalar is that the scattering of W and Z
bosons loses perturbative unitarity at an energy E ~ 4nv ~ 3TeV ~ Apc, which suggests that
before this energy scale the strong dynamics should intervene and restore unitarity, possibly in
the form of some composite resonances as in QCD. The Equivalence Theorem (ET) [96-98] states
that for high energies E > myy, myz, the scattering amplitudes involving longitudinally polarized
massive gauge bosons in the external states can be studied by substituting those states with the

corresponding NGBs (see ref. [99] for a more recent take on the ET). Expanding eq. (3.1) in the
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Wi Wi owl W3 W} W3 % X

W wi o W} wi Wi W3 X X

Figure 3.1: Diagrams contributing to elastic scattering of longitudinally polarized W bosons. In the
first line (a) only the gauge contribution and the simplification due to the equivalence theorem are shown,

in the second line (b) we show the contribution from a Higgs scalar.

fields x* and computing, for example, the scattering amplitude x'x' — x3x® , one finds (see
diagrams in fig. 3.1(a))
AGMX = X7 ~ % : (3.3)
This tree-level elastic amplitude grows quadratically with the energy. In order to satisfy the
unitarity bound, the imaginary contribution to the same amplitude due to loop corrections has
to increase. At energies /s ~ Apc ~ 4w the tree-level and the loop contribution become
of the same order, which implies that the theory is no more in a perturbative regime. This
problem of perturbative unitarity requires some new dynamics before that scale. In the SM this
new dynamics is the physical Higgs, which contributes to the same scattering amplitude exactly
cancelling this quadratic growth with the energy when s > m%{, as can be easily obtained by
computing the diagram in fig. 3.1(b) using the Lagrangian in eq. (1.11):
ACM K = ) sm = <1 - 82) . (3.4)
v 5 —my
In Technicolor, instead, no Higgs is present and the NGB scattering is cured by the strong
dynamics, possibly in form of exchange of some composite resonances, as in QCD the pion
scattering is unitarized by the exchange of resonances like the spin-1 p meson.
From an early age, these Technicolor models suffered from severe experimental constraints,

both from electroweak and flavor physics. On the EW side, Naive Dimensional Analysis (NDA)

42



3 Strong dynamics behind the EWSB |

estimates show that generically these models predict sizable corrections to EW gauge bosons two
point functions, which reflects — for example — in too big values for the EW oblique parameter
S. The main reason for this is that the scale of the strong dynamics Apc — for example the
masses of the first composite resonances — is fixed to be not far from EW scale and therefore its
effect are not suppressed enough. On the flavor side, as we explain in more detail in sec. 3.2,
constraints on flavor changing neutral currents (FCNC) and CP violation put very strong limits
on the sector responsible for generating SM fermion masses via SM fermion bilinears coupled to
some operator of the strong dynamics.

Models where the Higgs arises as a composite pNGB of a strong dynamics and in which
the elementary SM fermions mix linearly with fermonic operators of the strong sector (partial
compositeness) offer a solution to both problems. The idea of a composite Higgs as a way to
be able to interpolate continuously between the SM and Technicolor models was proposed in a
series of seminal papers by Georgi, Kaplan and other collaborators in the early 80s [37, 38|, see
also refs. [100,101]. In this class of models the strong sector enjoys a bigger global symmetry
group, spontaneously broken at some scale f > v. The NGBs of this breaking pattern include the
complete Higgs doublet. Contrary to Technicolor, the condensate of the strong sector responsible
for this symmetry breaking is aligned — at tree-level — with the EW gauge group and thus preserves
it. A potential for the Higgs is then generated at the quantum level by interactions which break
explicitly the global symmetry of the strong sector. Different contributions to the potential have
to be tuned so that the mass term for the Higgs doublet becomes negative and of the order of
the EW scale, thus inducing a non-zero VEV for the Higgs and a misalignment of the vacuum
with respect to the EW symmetry preserving direction, thereby breaking the EW symmetry
and generating a mass for the W and Z gauge bosons. It was soon realized [102,103| that a
strong constraint on the global symmetry breaking pattern was given by the EW p parameter,
see eq. (1.18). In order to avoid big tree-level corrections to the SM value, the unbroken global
symmetry group should contain the custodial symmetry as a subgroup.

In these models the Higgs Lagrangian after EWSB can be parametrized as [104]

LHiogs — %(aﬂhﬁ + fTr {(D“Z)TD“E} (1 + 2a% + sz ¥ ) —V(h), (3.5)
where a and b are generic coefficients and the dots represent interactions with higher powers of
the Higgs. V(h) represents the potential for the physical Higgs particle. The effective Yukawa

Lagrangian, for example for the quarks, is
ek — Y NT iy [ YutR (1 +e—+.. ) + h.c. 3.6
A B v 0

In this parametrization, the SM is a particular point in which @ = b = ¢ = 1 and all higher

order terms vanish. In composite Higgs models, instead, these parameters deviate from the SM
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value by O(v?/f?). As we will shortly see, in the minimal composite Higgs model (MCHM)
these parameters are given by a = /1 —&, b = 1 — 2¢, while the precise expression for c is
model-dependent, where we defined the ratio of scales ¢ = v2/f2. The limit f — oo (i.e. £ — 0)
describes the SM case, in which all NP effects decouple, while the opposite limit f — v is
a Technicolor-like case, albeit with a composite scalar in the spectrum. Given the modified
couplings of the Higgs with the SM gauge bosons, the elastic WW scattering amplitude for

E > myy becomes

A = 33 ~ S (1t Vs 3.7
OCX = XX )menm = 5 as_m%{ 3 7 (3.7)

We see that the presence of a physical Higgs in the spectrum postpones the loss of perturbative
unitarity in WW scattering to a scale Acy ~ 4 f = 4wv/+/€, and therefore increases the scale
at which the contribution from composite resonances to the scattering is expected.? Having the
scale f somewhat higher than the EW scale (by increasing the fine-tuning) allows these models
to evade the bounds from the S parameter. Present bounds from S and from the measurement

of the Higgs couplings require £ < 0.1, which corresponds to f 2 3v.

3.1.1 Brief historical overview

After the first proposal of the composite Higgs setup by Georgi and Kaplan, the idea revived
in the context of warped extra dimensional models at the end of the 90’s, stimulated by the
proposal of the Randall-Sundrum (RS) model [39] (also [106-108]). In these models the SM
fields live on a 4-dimensional brane embedded in a 5d space-time, in which the fifth dimension
has a warped geometry. This warping allows to obtain an exponential suppression of the EW
scale with respect to the Planck scale. The AdS/CFT correspondence [40] allows to interpret
these setups in terms of some strongly coupled conformal field theories (CFT), where the SM
gauge and matter fields are external to the conformal sector [106].

The idea of dimensional deconstruction [109,110] allowed to construct purely 4d theories with
analogous properties as 5d models. Little Higgs models [111,112] were among the first concrete
4d realizations which employed deconstructions to build models in which a light Higgs arises
naturally as a pNGB of a spontaneously broken global symmetry.

Somewhat in parallel, another class of 5d models, known as gauge-Higgs unification models,
was devised [113], in which the pNGB Higgs arises as the fifth component of the SM gauge fields
living in the bulk of the extra dimension [114-117]. In this case, the finiteness of the Higgs

potential is assured by the 5d gauge invariance, i.e. by the fact that the potential can only arise

2In this setup also the scattering involving the Higgs loses perturbative unitarity at the same scale, for example
Ax'x' = hh)vcam Vi (b—a*)s/v? = 2 For a phenomenological study of this process in composite Higgs
models see refs. [87,104,105].
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from non-local Wilson lines wrapping the compactified 5th dimension. This eventually lead to
the construction of the holographic composite Higgs models [41,42] and the Minimal Composite
Higgs Model with the custodially-preserving SO(5) — SO(4) symmetry breaking pattern [43].

The low-energy features of these models, including also the phenomenology of the first reso-
nances, can be efficiently described by effective 4d theories [58,73,118|. In this case, a finite —
and calculable — Higgs potential can be obtained by using the deconstruction idea and building
multi-sites models as in ref. [119,120] or by imposing some generalized Weinberg sum rules [1,46].

Another class of possible UV completions of composite Higgs models is in the context of
supersymmetric theories [3,121,122]. In these models the UV sensitivity of the effective Higgs
potential is protected both by the pNGB nature and by supersymmetry (SUSY) [123-125].
SUSY can also offer tools to keep under some control the strongly coupled dynamics using
Seiberg dualities [126]. This also allows to describe in a natural way the appearance of light
top-partners [121].

In the rest of this thesis we concentrate on the low-energy effective 4d description of composite
Higgs models. The strong connection of our approach to deconstructed models is described in

appendix E.

3.2 A flavor paradigm: partial compositeness

Let us now review how the SM fermions can get a mass in this class of models. We follow closely
the discussion presented in ref. [94]. The SM fermions are assumed to be elementary fields, not
part of the new strongly coupled sector. However, since they need to feel EWSB, which takes
place inside the strongly coupled sector, in order to get a mass, a mechanism which connects the
elementary fermions with this sector is necessary.

In the simplest Technicolor models, SM fermion masses are generated through effective op-
erators operators with a bilinear of SM fermions coupled to some composite scalar operator of
the strong sector Or¢, with the same quantum numbers of the Higgs field,

Lo i’ch (frfr)Orc . (3.8)
ETC

In the UV theory this operator is made of a bilinear of techniquarks, Or¢ = (Yroxrc) and
the term in eq. (3.8) is assumed to be generated at a higher scale Agpro > Apc where some
bigger extended Technicolor gauge group — containing both the full SM and the Technicolor
gauge groups — is spontaneously broken. At lower energies the techniquarks condensate and
the operator Op¢ interpolates the Higgs field, breaking the EW symmetry and providing a mass
term for the SM fermions m¢ ~ gprc A /A% 1, as shown schematically in fig. 3.2(a). Since the
operator in eq. (3.8) arises from gauge interactions, in order to explain the observed hierarchies

in SM fermion masses it is necessary to embed the three families in the same ETC multiplet
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Figure 3.2: Technicolor (a) and partial compositeness (b) mechanisms for generating SM fermion masses.

and to arrange a complicated cascade of symmetry breakings at different scales. Requiring a
perturbative gprc coupling, these breaking scales Ach are bounded for each fermion mass:
AgTC’ < (A3 /my)1/2. For example this scale is O(10TeV) for the strange quark.

Such a low scale for this flavor mechanism poses a serious phenomenological problem. In fact,
the same mechanism which generates the four-fermion operator discussed above, also generates
four-fermion operators of SM fermions, £ O ggrc/A4re(fLfr)(f1fR). These operators induce

> 103 — 10°TeV,

~

flavor changing neutral currents and are very strongly constrained: Agrc
depending on the particular operator and its properties. This problem can be somewhat al-
leviated in walking Technicolor models, where one assumes that the coupling grc reaches a
non-perturbative infrared fixed point when running from Agprc down to Apc, making the the-
ory nearly conformal in this window. In this case the anomalous dimension « of the opera-
tor O can become important, modifying the expression for the SM fermion masses to m; ~
Arc(Arc/AeTc)?T?, allowing to increase the value of Aprc if ¥ < 0. There are however many
arguments which indicate that the anomalous dimension should be bounded v > —1, which
indicate that the flavor problem can only be somewhat alleviated but not completely solved. For
a review see ref. [94] and references therein.

This kind of mechanism for generating quark masses was used in the first composite Higgs
models, where Apc — A ~ 4 f. In this case the flavor model can be solved by increasing both
scales A and Agrc, albeit at the price of increasing the fine-tuning. By increasing A to very
high scales one eventually recovers the SM, along with the original naturalness problem we set

out to solve.

An alternative mechanism to provide masses to SM fermions was proposed by Kaplan in
'91 [127] and then revived in extra-dimensional holographic Higgs models [128-130]. The idea

consists in coupling linearly a single SM fermion to a fermonic operator of the strongly coupled
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sector:
LD )\LfLOIf% + )\RJFRO{, + h.c. (3.9)

where A7, r are adimensional couplings. The fermonic operators need to have the same quantum
numbers as the SM fermions they couple to, therefore for this mechanism to work it is necessary
to have at least one fermonic operator for each SM fermion. These operators are assumed to be
generated at some scale Ayy > A. When flowing down to A, the strong dynamics confines and
@{Oé interpolates the Higgs field, so that the terms in eq. (3.9) generate a Yukawa interaction
for the SM fermion f and the composite Higgs, as depicted schematically in the right panel of
fig. 3.2. Expanding for a large number of ‘colors’ N of the strongly coupled sector, a rough

estimate for the fermion mass is
vIN
myg ~ UT)\L(A))\R(A) s (3.10)
T

where the mixing parameters Az, r should be evaluated at the scale A where the strong sector
condenses and generates the Yukawa term. The couplings at this scale are related to the ones at

the higher scale Ayy by the RG equation

N
16W2A3+... , (3.11)

where v = [O] — 5/2 is the anomalous dimension of the fermonic operator O and c is an O(1)
coefficient. If A is perturbative we can neglect higher order terms. Let us then assume that A is
perturbative at the high scale Ayy and study its evolution when flowing towards A. If v > 0, A
decreases upon decreasing the scale, therefore the second term in eq. (3.11) is negligible and one
gets A(A) = MApv)(A/Ayy)?. If v < 0 then X increases when flowing towards A. In this case,
if ¢ < 0 then A becomes non-perturbative. Instead, if ¢ is positive then at a certain point the two
terms in eq. (3.11) cancel and the flow reaches a fixed point near A ~ A, ~ \/T/célﬂ/\/ﬁ,
which is perturbative at large V.

Let us consider the case where both 77 and yg are positive. In this case, using eq. (3.10)
we get my ~ vg(A/ Ayy)7ETIE. In contrast with the Technicolor case studied before, now
the exponent of the suppression factor can be very close to zero without introducing new UV
instabilities. This allows to increase arbitrarily the scale Ay, even up to the Planck scale, while
keeping A fixed. In this way all flavor violating operators generated by this UV flavor dynamics
are strongly suppressed and thus can be safely neglected. Moreover, a large hierarchy between A
and Ayy implies that O(1) differences in the anomalous dimensions vy, g generate big hierarchies
in SM fermion masses. In this way it is possible to explain naturally the big hierarchy in quark
and lepton masses. The case with negative anomalous dimension, instead, can be used to explain
the big value of the top mass, in fact if v, g < 0 then m; ~ U%\/’W'

In this context the most important source of flavor-violating processes comes instead from

the lower scale A, via the exchange of composite resonances coupled to the SM fermions via the
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linear mixing terms of eq. (3.9). Eq. (3.10), however, suggests that light fermions — such as those
of the first two generations — have small mixing couplings Az, g with the composite sector. This
implies that flavor changing processes involving light fermions, which are the most constraining
processes, are automatically suppressed in this framework by the smallness of their mixing with
the composite sector. However, sizable flavor-violating effects can still arise via the big mixing
of the third family with the strong sector. This implies that a realistic scenario of flavor in
the partial compositeness framework needs some flavor symmetry which protects against such

processes [131].

3.2.1 Partial compositeness in CH models

The most important phenomenological consequence of the linear couplings in eq. (3.9) is the fact
that the elementary SM fermions mix with composite fermion resonances in the strong sector.
The composite operators OF can excite from the vacuum a tower of heavy fermonic resonances
with the same quantum numbers as the SM fermion f they couple to. Since these states are
charged and massive even before EWSB, they are necessarily Dirac (i.e. vector-like) fermions.
Assuming that the first few states of this tower of resonances are somewhat below the strong
coupling scale A ~ 4xf, it is possible to write a perturbative Lagrangian for the system with
the mixing in eq. (3.9). For example, consider an elementary chiral field f; and the respective

massive fermion resonance W:

Eferm = fTLafL + \I/((? - m)\Ij + (ﬁfL\IIR + h.C.) ’ (3'12)

where € is a mixing parameter with dimension of mass estimated to be of the order e ~ Af.

Given the above Lagrangian, the elementary fermion f; mixes with ¥y by an angle
€
tanfy = — | (3.13)
m

and the two eigenstates f; and ¥’ have masses
M\p/ = m2 + 62 s Mf/ = 0. (314)

Since here we did not include any elementary right-handed fermion, f’ is still massless but now it
is a mixture of the elementary and the composite states, hence it is a partially composite fermion.
From eq. (3.13) we see that the bigger the mixing ¢, the higher is the degree of compositeness.
Therefore, since the mixing is big for heavy SM fermions, we expect those to be the ones with
the higher degree of compositeness.

In the following sections we will show how complete models can be built following this princi-
ples, how they generate Yukawa interactions between the SM fermions and the composite Higgs

and, finally, how these terms generate an effective potential for the Higgs.
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Elementary sector Composite sector

Figure 3.3: Schematic representation of the structure of composite Higgs models.

3.3 The minimal composite Higgs model

Let us assume the existence of an unspecified strongly interacting sector, symmetric under global
transformations of some group G, spontaneously broken to a subgroup H by the condensate of
the strong dynamics at a scale f > v.> The Higgs is assumed to be a composite pNGB of the
spontaneous symmetry breaking pattern of the composite sector, together with the longitudinal
polarizations of the W and Z bosons and the other heavy resonances. The elementary sector,
instead, contains the transverse polarizations of the SM gauge bosons and the SM fermions. The
global symmetry is also explicitly broken by gauging a subgroup SU(2);, x U(1l)y C H and by
Yukawa terms in the fermion sector. This explicit breaking terms are assumed to be the only ones
which allow the elementary and composite sector to communicate, as depicted in fig. 3.3, and
they generate, at one loop, a potential for the NGBs such that the Higgs takes a non-vanishing
VEV and breaks the EW symmetry.

In order to avoid big tree-level corrections to the p parameter, eq. (1.18), the unbroken
subgroup H should contain the custodial symmetry of the SM SU(2); x SU(2)r ~ SO(4).
Moreover, since we aim to construct a model in which the complete Higgs doublet arises as
NGB of the spontaneous symmetry breaking G — H, the G/H coset should contain at least
four broken generators. The minimal symmetry breaking pattern satisfying these requirements
is SO(5) — SO(4), which is at the basis of the minimal composite Higgs model [41,43|. From
this symmetry breaking four NGBs arise, which transform in the fundamental of SO(4), i.e. as a
bidoublet SU(2)z, x SU(2)g, and can be identified with the components of the Higgs doublet. By
enlarging the symmetry groups more NGBs arise. The next-to-minimal case is SO(6) — SO(5),
where the NGBs are the Higgs doublet and a real singlet, which in some cases can be a stable
particle and thus a potential dark matter candidate. In this thesis we concentrate on these two
scenarios, a description of other non-minimal cases can be found in refs. [132,133]

Let us now study in more detail the minimal scenario, postponing the discussion of the

next-to-minimal model to chapter 4. We assume that the strong sector is invariant under the

3The strongly interacting sector should also be gauge-invariant under the SU(3). symmetry associated to color,

but this is irrelevant for our considerations and will not be considered in what follows.

49



3 The minimal composite Higgs model |

group G = SO(5) x U(1)x, spontaneously broken to the subgroup H = SO(4) x U(1l)x ~
SU(2), ® SU(2)g ® U(1)x * at some scale f > v. The SM EW gauge symmetry is identified as
the subgroup Gpw = SU(2)r, ® U(1)y C SU(2)r ® SU(2)gr ® U(1)x, where the hypercharge is
defined as

Y =T34+ X . (3.15)

3.3.1 Basic construction and s-model

For energies lower than the strong coupling scale A ~ 47 f, the dynamics of the NGBs can
be described by an effective chiral Lagrangian. Callan, Coleman, Wess and Zumino [134, 135]
(CCWZ) showed how to construct such Lagrangians for a generic coset, the main results are
reviewed in appendix B.

The four NGBs h% which arise from the SO(5) — SO(4) symmetry breaking pattern can be

described by means of the matrix
2 . .
U =exp (i\ffhaTa> , (3.16)

which transforms under SO(5) as U — gUk'(g, h%(z)), where k is a SO(4) transformation de-
pending on g and on the space-time position through the NGB dependence. The SO(5) generators
T4 are normalized so that in the fundamental representation Tr[TATB | = 548 where A = a, 4,
and a, a denote the unbroken and broken generators (a = 1,...,6, @ = 1,...,4) respectively.
Considering SU(2)r x SU(2)g ~ SO(4), the unbroken generators can be further classified in
those corresponding to the left and right subgroups: a = (ar,ar), with ar, = a,agr = a + 3 and
a = 1,2,3. In the unitary gauge the NGBs can be taken in the form h% = (0,0,k,0) and the

matrix U reduces to

1 00 0 0
010 0 0
U= 0 01 0 0 . (3.17)
0 0 O cos % —sin %
0 0 0 sin% cos%

The gauged CCWZ structures d, and E,, introduced in appendix B are given by
iU'D,U = diT + ELT® (3.18)

where D, = 0, — i(goWi T + ghB,T3R). Expanding in the number of fields, their first terms

4The U(1)x factor is only needed to correctly reproduce the SM fermion hypercharges and does not play any

role in the o-model description.
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are
di = goAL — Y2(D,R)" + ...
S , (3.19)
E; = ggAZ—i—ﬁ(hDuh)“—i—...
where the SM gauging corresponds to
/
G g
AC=0, Apr=wg o AR=2pB,. (3.20)

90
At the leading order in the chiral expansion, the Lagrangian describing the dynamics of the EW
gauge fields and the NGBs is

f2

1 1
Laon = =Wk W = 2B, BY + 2-Tr (d,d”) . (3.21)

The explicit breaking of SO(5) due to the fact that only a subgroup of SO(5) is gauged by
the EW gauge fields and the Yukawa terms for the fermions generates a potential for the Higgs
through loop corrections. This potential features a non-vanishing vacuum expectation value
for h which triggers the spontaneous breaking of the EW symmetry and gives mass to the SM
fermions and gauge fields. With a little algebra, the last term in eq. (3.21) can be translated in
the formalism of eq. (3.5), obtaining

rHiggs _ 1(3 h)Q + f—zTr [(D E)TD”E} sin? ﬁ (3.22)
o \On 4 # f '

Expanding this Lagrangian in the physical Higgs h — (h) 4+ h and defining

v? . o (h)
£= 7 = 57 = sin? o (3.23)
we get the expression for the SM W, Z boson masses,
/
= gm;?sin? = % , my = C:)Z‘g/w (Where tan Oy = ZS) , (3.24)
and for the a, b coefficients,
a=+/1-¢&, b=1-2¢. (3.25)

3.3.2 Partial compositeness and fermion embedding

In order to give mass to the SM fermions we adopt the partial compositeness scenario: the
SM fields mix linearly with some fermonic operators of the composite dynamics with same
quantum numbers. As described in sec. 3.2, we assume that such mixing terms arise from
some flavor dynamics at a scale Ayy much higher than the spontaneous symmetry breaking
scale f. It is thus reasonable to assume that the fermonic composite operators @/ belong to
some linear representation rg of the global symmetry group G, therefore it transforms linearly

under g € G: O — gOf. Since the SM fields are not in complete representations of G, such
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mixings will necessarily break explicitly the global symmetry. In order to write the mixing terms
it is however convenient to embed the SM fields in the same representation of O@f. At lower
energies, where the symmetry is spontaneously broken, we render explicit the NGB dependence
of these terms as O/ = U(x) ¥(z) (see app. B), where U(z) is the NGB matrix (3.17) and ¥(z)
is a composite fermion beloning to some irreducible representation 4 of the unbroken subgroup
‘H. Any representation ry can be “dressed" with the matrices U to get representations of G. The
choice of the representation rg, in which to embed the SM fields, and the representation of the
composite fermions ry is a source of model dependence, in particular the choice of the embedding
of the elementary fields fixes the functional dependence of the effective Yukawa couplings of the
Higgs with the SM fermions, hence the functional dependence in the effective potential and the
deviation in the Higgs couplings.

We will not perform a systematic study of all possible rg’s here, but focus on the simplest
case where r¢g is the fundamental, 5, of SO(5). The SM fields are then conveniently written in
terms of spurion five-component fermions &7, and &g, formally transforming in the fundamental
of SO(5). The embedding of the SM quark doublets has to be different for the mixing terms

responsible for the up-type or down-type quark masses:

by, 0 tr 0
1 —ibp, 0 . ity 0
u = " , u 0 ’ d _ b ’ d _ 0 ,
35 NG L 95 37 NG L 197
it 0 by, 0
0 2/3 tr 2/3 0 ~1/3 B/ 3
(3.26)

where the subscripts indicate the U(1)x charge needed to reproduce the correct hypercharge,
eq. (3.15). With the above choice of fermion quantum numbers for the up-type embedding, by,
mixes with the bi-doublet component of the fermion resonance with T5r = T31, and potentially
large contributions to dg, vanish [136].7

In order to obtain the possible structures of the low energy effective Lagrangian, when all the
resonances have been integrated out, it is possible to write all the G-invariants with the above
spurions, the NGB matrix U and the projectors on the SO(4) irreducible representations, Py =
diag(1,1,1,1,0) (fundamental), Ps = diag(0,0,0,0,1) (singlet). Recalling the transformation
rule of U, U — gUkT(g, h%(z)), where g € SO(5) and k € SO(4), we can write the following

5Such sizable corrections are instead present in the, even more minimal, case in which the elementary fermions

are embedded in the spinorial representation 4 of SO(5). For this reason we do not consider this case.
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SO(5) x U(1)x invariants:
_ _ 1.\
EFUPQUIAHEY = bry™by, + <1 - 28%> teyttr
_ 1.,
EUPUIyHE} = 53%%7”% :
_ 1 _ _
ELUPQU Ty ed = <1 — 28%> bry'or +tryi'tr
_ 1 .-
ELUPSUTY€L = Sstbrybr (8.27)
ERUPQUIVEY = sjtpytr |
ERUPsUTEL = (1 — sp)try'tr
ERUPQU !¢, = sibry"br |
ERUPsUT#¢h = (1 — s3)bry"br

_ i B
§UPLUTEY, = ﬁchshtLtR ;

_ 7 _
§UPsUTEY = ~penslLin
. (3.28)
_ 1 —
ngPQUTﬁ% = —chsthbR N
V2

_ 7 _
§UPsUTEE = —ﬁchsthbR :

where we evaluated U in the unitary gauge and omitted the trivial diagonal ones such as £ xy*&x.
In general, all these operators are generated when the heavy fermions are integrated out, pro-
viding an effective Lagrangian for the SM fermions with a specific functional dependence on the
Higgs field dictated by eqs. (3.27,3.28) (see egs. (3.88,3.90)). Each of the above operators will be
generated by the relevant mixing terms related to the specific spurion field, in particular the op-
erators involving the £ spurions will be generated by the top mixing while the ones involving {_U)l(
will be generated by the much smaller bottom quark mixing. The operators in eq. (3.27) provide
a wave function normalization factor while those in eq. (3.28) generate the Yukawa interactions
and — when the Higgs takes a VEV — a mass term for the SM fermions. In fact, from eq. (3.28)
we can obtain the correction of the Higgs couplings to fermions by expanding the Higgs field
around its vev h — farcsin(v/f) + h:°

1-2(h
VI=¢wv

The first, constant, term in eq. (3.29) provides the mass for the SM fermion, while the second

cnsn = VE = &) (1 + — 2522 + (’)(h3)> : (3.29)

one is the single Higgs coupling to fermions. Comparing with eq. (3.6) we get
1-2
e= 122 (3.30)
1-¢

5We neglect here small wave function normalization corrections.
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We see that, differently from the SM, the pNGB nature of the Higgs implies the presence of

interactions with more than one Higgs external leg, with a coupling suppressed by &.

3.4 Composite resonances

Generically, in strongly coupled theories conserved currents Jj are expected to excite from
the vacuum composite spin-1 resonances. This indeed happens in QCD, where the current
corresponding to the unbroken SU(2); isospin symmetry excites the p, meson while the broken
generators of the SU(2), x SU(2)r/SU(2); coset excite the axial vector a,. Therefore, we expect
that also composite Higgs models present spin-1 composite resonances corresponding to the
unbroken and broken generators of the G — H symmetry breaking pattern. These states are also
important in restoring unitarity in the elastic NGB scattering before the cutoff scale A ~ 4xf.
Moreover, as we discussed before, the partial compositeness mechanism predicts the presence of
fermion resonances mixing linearly with the SM fermions.

According to the CCWZ formalism, the most general Lagrangian invariant under a non-
linearly realized group G, spontaneously broken to a linearly realized subgroup H, should be
written using the structures d,, and the covariant derivative V,, = 0,, — iF,, introduced before,
that act on matter fields in representations of H. Therefore, we expect the Lagrangian of the
composite resonances to be just H-invariant.

In this section we present how to construct generic Lagrangians for these composite resonances

and show how they mix with the SM gauge bosons and fermions.

3.4.1 Spin-1 resonances

We assume that below the cut-off of the theory at A ~ 47 f, the theory contains spin-1 resonances
parametrized by a mass m, ~ g,f and a coupling 1 < g, < 47. The coupling g, controls both
the interactions among the resonances and the resonance-NGB interactions.

There are several ways to add vector resonances in a chiral Lagrangian. They have been
shown to be all equivalent, once field redefinitions and the addition of local counterterms is taken
into account [137]. Given our assumptions, the most useful set-up is a generalization of the so-
called “hidden local symmetry" approach, where the resonances pﬁ and pff, in representations
(3,1) @ (1,3) of SU(2)r, x SU(2)Rr respectively, transform non-linearly, while the resonances a,,
forming (2,2) representations of SU(2); x SU(2)pg, transform homogeneously. With an abuse
of language, for simplicity we will denote in the following the pﬁ’R’s and the a, as “vector" and

“axial" resonances, respectively, although not all pﬁ’R and not all a, actually transform under
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parity as vector and axial gauge fields. Under a transformation g € SO(5), we have

L _ aLalL L L ) L
P =PIt py = hpgh 4 S (hduh)E,
ol =P plt = holfhT o+ G (hORT)E, (3:31)
a, = CLZTd , o ay — hauhT,

where h = h(g,h%). At leading order in derivatives, the most general Lagrangian allowed by
eq.(3.31) for N,, multiplets in the (3,1), N,, in the (1,3) and N, axial vectors in the (2, 2) is

Lg =L+ LOF 4+ L7 (3.32)
where
oL 2 2
1 S I A 2 Fis,, , SN2

LVL = Z < — ZTI' (pZL,pupzuu) + %TI’ (gpinZL,M - Eﬁ) + Z 42 2Ty (gpzplL,u — gﬂip]L»H) >’

=1 j<i
LR = [ with L — R,

N T . 2

Lo = Z ( — ZT1r (aiwauw) + 2&2 Tr (gaiail — Aidu) ) (3.33)
i=1 i

In eq.(3.33), Eﬁ  are the SU(2) L,r components of E,. The field strengths and covariant deriva-

tives are defined as
piL,uu = a,upiL,V - 8l/pZ‘L,p, - ngZL [pi,/u pi,y]a Auy = V,LLaV - vvaua V=0-ikE. (334)

Note that for the axial vectors there is no need to add mass mixing terms, since one can always
diagonalize the quadratic terms and bring the Lagrangian in the form above. It is useful to define

the mass parameters

2 2
2 2 2 2 2 2 2 a;9a;
iy = o G Mg = fhe g5 g, AT (3.35)

keeping of course in mind that the actual masses for the p’s in presence of mixing have to be
obtained via a diagonalization of the quadratic terms. The mass terms in eq.(3.33) induce mixing
terms between the vector resonances p’? u (p%’ M) and the SM gauge fields W (B), as expected by
the partial compositeness scenario [118], generalized to more resonances. For N,, = N,, = 1, the
actual mass eigenstates before EWSB are found by simple SO(2) rotations: W, — W, cos 0+
parsinéy, B — Bcos 9;, + p3rsinfy (and similar transformations for p,r and p3g), where
tanfy = go/gp, . tanby = gy/9,,- Alternatively, for sufficiently heavy resonances, one can keep
the original W and B fields and integrate out the resonances. The two descriptions are obviously
equivalent, but depending on the problem at hand, one can be more convenient than the other.

We assume that the coefficients of higher dimensional operators are dictated by NDA, where

g, is treated as a “weak" coupling. This should in principle be contrasted to the recent partial UV
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completion (PUVC) hypothesis, introduced in [105], according to which the couplings of higher
dimensional operators should not exceed the o model coupling, g. = A/f, at the cutoff scale
A. In particular, the NDA hypothesis puts more severe bounds on the values of the coefficients
of the higher dimensional operators. For instance, let us consider as an illustration the O(p*)
operators Q1 and Q2 (in the notation of [105]), Q1 = Tr (p*ild,,d,]), Q2 = Tr (p" f;f,). The
NDA and PUVC estimates of their couplings o1 and «g are

(NDA) 9p (puve) o 1

T e B (3.36)
(NDA) . 99p (PUVO) 4 '
I 17 A =

We see that the two estimates are consistent with each other, but the PUVC hypothesis allows
for larger coefficients.

Demanding a partial unitarization of A(mm — 77m) by the vector resonances allows to select a
definite range in the values of f, and f,. For example, for one vector resonance p,, in the adjoint
of SO(4), assuming left-right (LR) Z3 symmetry, from the Lagrangian in eq.(3.33) and eq.(3.21)
one can obtain its contribution to the w7 scattering amplitude [105]. Neglecting the finite width

of the resonance, one has

Ao’ = mer?) = A(s, t,u)6%0% + A(t, 5,u)09°6% + A(u, t, s)0%6%,
sy B\ @mElsou st (3.37)
_f2 a N

2p
where a, = f,/f and s,t,u are the usual Mandelstam variables. From this formula one can
check that p, unitarizes the scattering for a, = 1/2/3. Assuming PUVC one obtains the bounds
ap~1land fo/f =a, S

e

Als tu) t—m2  u—m?2
p p

1, which we will typically assume in the following.

~

3.4.2 Spin-1/2 resonances

Let us now describe the composite fermion resonances responsible for providing a mass to the
SM fermions. In the following we focus only on the top quark because it has the highest amount
of mixing with the composite fermions, since its mass is — by far — the biggest among the SM
fermions. As described in sec. 3.3.2, we need to embed the composite fermions in irreducible
representations, ry of H. For simplicity we consider only the singlet and the fundamental
4 ~ (2,2). Let us consider Ng and N singlets and bi-doublets spin 1/2 resonances S; and Q)
(t=1,...,Ng, j=1,...,Ng), with U(1)x charge ¢x = +2/3. The two doublets contained in
each @); have hypercharge 1/6 and 7/6 respectively, the first one therefore is the partner of the
top doublet while the latter is an exotic fermion doublet which contains a fermion with electric

charge Q = 5/3. From these fields, we can construct fermions transforming in the fundamental
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of G as follows:

4
Z UnaQayj, UasSi, A=1,...,5, (3.38)
a=1

where we have explicitly reported the SO(5) group indices. Each of the above two operators
(3.38) can couple to the SM fermion fields, included in the spurions &7, g of eq. (3.26).

As described in appendix B, the Lagrangian for non-linearly realized symmetries should
include all local H-invariant terms. The leading order Lagrangian for the SM and composite

fermions is easily constructed:

Ns Ng

Lro= quilqr +TriPte + Y Si(Y —mig)Si+ Y Q;(i¥ — mig)Qj+
i=1 =1

. (3.39)

> (f/ngPLUS + EqstPRUS) + Z ( ERPLUQ; + € QéLPRUQ’) +hee,
im1

where a /2 factor in the definition of etS 0 has been introduced for later convenience and
V,=08,—1iE, —iqxg,By. (3.40)

There are in general 3Ng + 3Ng complex phases appearing in eq.(3.39), 2Ng + 2Ng + 1 of
which can be reabsorbed by appropriate phase redefinitions of the fermion fields, for a total of
Nqg + Ng — 1 physical phases. Therefore, without any loss of generality, we can take the vector
masses m;s and m;g to be real and positive. Along the lines of [119], it will be useful to rewrite
the last row in (3.39) as

Ng Ng

S (EREZSPLUSi + qLE;SPRUSi) +3 (EREfQPLUQl + qLEI PRUQ; ) Yhe o (341)
i=1 j=1

where the E’s are spurion mixing terms, transforming as follows under the enlarged group
SU(2)% x U(1)% x U(1)% x SO(5) x U(1)x, eventually broken to Ggas by the spurion VEV’s:

tS7Ej (17072/3757_2/3)7 E(ZJS7E;Q ~ (27_1/272/3757_2/3) (342)

Couplings between spin 1/2 and spin 1 resonances and additional couplings to the o-model
fields d,, and E, are easily constructed by recalling that g,p, — E,, a, and d,, under SO(5),
homogeneously transform according to local SO(4) transformations. The most general leading

order couplings are the following (assuming LR symmetry):

L= ( n Qi (90l — Ep) PyQr + KR Qi" (9,40 — 9,000, Py @;

=R (3.43)

+ klk}nsl’yugakalljanj + Z k‘lgjngfyudﬂanj + h.c.>,

1,

"We drop the u,d index since, unless explicitly stated, we assume always the embeddings for the up-type

quarks.
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where P, are chiral projectors. The last term in eq. (3.43), in particular, can play an important
role in the phenomenology of single production processes of top partners [138,139] and in the
fermion contributions to EW precision tests [86]. However, since they do not influence the scalar
potential at one-loop, we neglect the terms in eq. (3.43) in the following.

The total fermion Lagrangian is obtained by summing eq. (3.39) with eq. (3.43):
Ly=2Lso~+ Lyint- (3.44)

The fermion Lagrangian (3.44) is easily generalized to include the couplings to other SM fermions.
For instance, the bottom quark sector can be obtained by adding the bg field and additional
fermion singlet and bi-doublet resonances SZ-(d) and Qg-d), with ¢x = —1/3. The latter mix to bg
and by, by means of operators of the form BL/RUSi(z:);/L and BL/RUQ%){/L- These mixing affect
the top sector, but they are safely negligible, given the smallness of the bottom mass. They
also induce a non vanishing tree-level d¢g;, which is however usually sub-dominant with respect
to one-loop corrections coming from fermion mixing in the charge 2/3 (top) sector. It is then
consistent to consider the Lagrangian (3.44), neglecting altogether the fermion resonances S,L»(d)
and di).

It is useful to discuss in some more detail the simple case Ng = Ng = 1. For simplicity let
us take real mixing terms €, 4/ 5. We see from eq. (3.39) that before EWSB the LH top mixes
with @) through the parameter ;o and the RH top mixes with S through €5, The degree of

compositeness of the top quark can be measured by the angles 0y, r [118] defined as:

€40 lecs|
tanfy = —=, tanfgr = . 3.45
mQ V2mg (3.45)
The larger tan 6y, g is, the more ¢,/ is composite. For s, < 1, the top mass is given by
sin 0, sinOr | €45 €Q
My 2 —————|—"mg — —<mg|sp - 3.46
op \/5 €40 Q €18 ( )

The physical masses of the fermion resonances, before EWSB, are the following:

mg m
My = , My =
cosbp

3 Mo e = 4
cosfy’ 7/6 = MQ ; (3.47)

where the subscripts 0, 1/6 and 7/6 denote the hypercharges of the singlet and of the two SU(2),
doublets forming the bi-doublet Q.

The case in which tg is fully composite can be studied by assuming that ¢ is a chiral massless
fermion bound state coming from the compositTevatrone sector and directly identifying it as the
RH component of the singlet fermion resonance Sg in eq.(3.39). In this way, tgr and Sr, and
hence the parameters mg, €5 and €, should be removed from eq.(3.39). We will come back to
this particularly simple model in section 3.8.

The total Lagrangian of the model is finally given by

Lrot = Loy +Lg+ Ly (3.48)
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3.5 Phenomenology of composite Higgs models

As we saw in the previous sections, composite Higgs models offer a rich phenomenology at
colliders. The pNGB nature of the Higgs at a scale f not too far from the EW scale implies a
definite pattern of deviations in the Higgs couplings to SM gauge bosons and fermions, which is
largely independent on the details of the spectrum of the model.

For what regards searches of new particles, a rich spectrum of new states is predicted. On
the one hand the presence of a strongly coupled sector at the few-TeV scale, the necessity of
regularizing the SM gauge contribution to the Higgs potential and of curing the UV behavior
of the NGB scattering amplitudes strongly suggests the presence of spin-1 resonances charged
under the EW gauge group and mixing with the elementary SM gauge bosons at a scale of a few
TeV. On the other hand, the partial compositeness mechanism predicts the presence of fermion
top partners which, as we will show in section 3.7, are expected to be very near the ~ 1TeV mass
range.

Both the deviations in the Higgs couplings and the presence of these resonances produce
also deviations in electroweak pseudo-observables such as the S and T oblique parameters and
deviations in the Z boson couplings to the physical b quark. All these observables have been
strongly constrained by LEP and impose strong indirect bounds on the new physics spectrum,
albeit these constraints are more model-dependent.

In this section we discuss these phenomenological aspects of composite Higgs models in more

detail, reviewing the constraints they offer on the models.

3.5.1 Higgs couplings deviations

As we saw, composite Higgs models predict O(&) deviations of the tree level Higgs couplings to
gauge bosons and fermions w.r.t. their SM values, which implies deviations in the Higgs decay
rates. In particular, in both minimal and next-to-minimal composite Higgs models with SM
fermions embedded in the fundamental of G one has (see egs. (3.25,3.30) for SO(5)/SO(4) and
table F.1 for the SO(6)/SO(5) case)

Lyy 2 Lyr o (1-2¢)?

par o =1-60 G =l = 213640, (3.49)

Vv ff

with V' = W, Z. It should be noted here that the {-dependence in the modified coupling of

the Higgs with EW gauge bosons is model-independent,® whereas the coupling with fermions

is modified according to the representation of G in which the SM fermions are embedded, as

8In general the couplings depend on the chosen parametrization of the coset, only when computing physical
observables this parametrization-dependence is removed. See appendix F for a detailed discussion of this issue in
the context of the next-to-minimal SO(6)/SO(5) model.
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discussed in section 3.4.2. As in the previous construction of the models, we assume here that
SM fermions are embedded in the fundamental 5 (or a symmetric 10) of SO(5).” Loop-induced
couplings — i.e. Higgs to gluons, photons and Z~ — are also modified as an indirect consequence

of the deviations in the tree-level Higgs couplings (see e.g. [141]):

Yoo o 0678 11.28¢; — (0.07 — 0.1i)cp|* = (-2 ~1-3¢&40(%) (3.50)

A 1-¢ |

Ty 1.73|0.97a — 0.21¢,)* = 1.73 (0 97y/1 — ¢ 0211_%)2 1-0.45 &+ 0O(£%)
~ 1. . —0.21¢|” = 1. . —&—0. ~1—-0. ,

i VI-¢

Lz, 0.51]1.49a — 0.09¢;|? 051(149 1—¢ 0091_25>2 1—0.87 &£+ 0O(£%)
~ 0. 49a — 0.09¢;|” = 0. . —&—0. ~1—-0. ,

oM VI=¢

where we specified the SM fermion included in the loop by the suffix ¢,b. For instance the
Higgs coupling to gluons, whose value sets the Higgs production cross-section via gluon fusion,
is dominated by the top triangle loop while the Higgs decays to vy and to vZ is given by an
interference of the top and the W contributions.

The proprieties of the Higgs boson, and in particular its couplings to each of the SM gauge
bosons and fermions, are currently under investigation at the LHC. The couplings are measured
by the ATLAS [142] and CMS [143] experiments considering the channels h — vy, h — ZZ*
(with ZZ* — 41,212v,212q, 2127), h — WW* (with WW* — lvlv,lvqq), h — bb and h — 7F7~
(with both leptonic and hadronic 7-decays). Since we aim to use this analysis also for the
SO(6)/SO(5) model presented in chapter 4, in which the extra singlet NGB is a stable dark
matter candidate, we study here also the possibility of a non-zero invisible decay branching ratio,
BRinv, of the Higgs boson. This is strongly constrained by the fact that the rates associated to
the channels listed above are compatible with the predictions of the SM [144,145]. In our analysis
we perform a combined fit of all the data related to the Higgs searches under investigation at the
LHC and the Tevatron taking into account both the modified Higgs couplings in eq. (3.49) and
the invisible decay width. We perform a y-square fit following ref. [141] (see also refs. [146-151]
for similar analysis) and we present our results in figure 3.4. In the upper plot of figure 3.4 we
show the result of a two-dimensional fit considering as free parameters both BRi,, and & [2].
Notice that larger values of BRy,, are allowed only if combined with small values of £&. The
reason is that a high value of £ suppresses the Higgs production cross-section via gluon fusion,
as immediately follows from the modified coupling gpgg previously discussed. This suppression,
in turn, gives a tighter bound on the invisible branching fraction since, intuitively, less Higgses
than expected are produced [141]. In the lower panel of figure 3.4 we restrict our analysis to a

one-dimensional fit obtained fixing either BRj,, or £ to some given value. In the lower-left plot

9See ref. [140] for a special case, based on the non-compact global symmetry SO(4,1), in which ghyy =

ngLl\\//[v v1+¢.
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Figure 3.4: Results of the x-square fit obtained considering all the Higgs searches under in-
vestigation at the LHC and the Tevatron (see ref. [141] for details).In the upper row we show
the 1o, 20 and 30 confidence regions obtained considering a two-dimensional fit of the data as
a function of the invisible branching ratio and the parameter £. In the lower row we show the
Ax? = x?—x2,, distribution together with the corresponding 1o, 20 and 3¢ confidence contours
as a function of £ (left panel) and the invisible branching ratio for a fixed value of £ (right panel).
The X2, is 51 in the lower left plot, and 52 (51) for £ = 0.1 (0.05) in the lower right plot.
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we fix BRipy = 0, which is the case of the minimal composite Higgs model presented in this
chapter, and find that a value of £ > 0.226 is excluded at the 3o level. In the lower-right plot,
instead, we consider as free parameter only the invisible branching ratio, while we fix £ to two
benchmark values £ = 0.1 and £ = 0.05. For £ = 0.1 (§ = 0.05) we find that BRy,, > 0.24
(BRiny > 0.275) is excluded at 30 level.

3.5.2 Direct searches of composite resonances

Let us now focus on constraints from the LHC on the composite resonances present in our
models, discussed in sections 3.4.1, 3.4.2. It is already well established that, in the context
of composite pseudo-Nambu Goldstone Higgs models with partial compositeness, the measured
values of the Higgs and top masses require the presence of top-partners with a mass below the
TeV scale |1,44-46]. The parameter scans we performed for our models (which are presented in
the following sections, as well as for those in appendix D and for the next-to-minimal composite
Higgs models discussed in chapter 4) confirm this fact, as can be seen from figures 3.8, 3.7, D.1,
D.2, D4, 4.3, 4.4. Moreover, in some interesting models, the spin-1 resonances are expected to
be near (or even below) the ~ 2 TeV scale, see eqgs. (3.104), (4.32) and figures D.1(b,d), D.2(a).

The present experimental bounds on spin-1 resonances and, more importantly, on spin-1/2

top partners are already able to rule out a relevant part of the parameter space of our models.

Vector resonances

Ref. [152] recently studied the bounds from direct searches at the LHC of spin-1 resonances
introducing a simplified model with a triplet of SU(2);, and presenting the bound in the (g,,m,)
plane. Our model presents a more complicated spectrum of vector resonances: the adjoint of
SO(4) (pf,), with masses of the order m,, contains a (3,1) @ (1,3) of SU(2), ® SU(2)g and
the fundamental of SO(4) (a%), with mass m, transforms as a bidoublet (2,2). In order to

m
obtain experimental bounds on these states it would be necessary to perform a complete collider
study of the model, including also possible chain decays involving composite fermions through
the interactions of eq. (3.43), see ref. [153] for a recent phenomenological analysis of this issue.
Since this is well beyond the purpose of this thesis we take at face value, as an approximate
reference value of the experimental bound on these states, the result of ref. [152]|. Fixing the two
benchmark values of £ = 0.1, 0.05 and taking for simplicity f, = f, so that m, ~ g,f = gp%,

we get that the allowed region is approximately
mp, 2 1.8 (2.2) TeV  for £ =0.1(0.05) . (3.51)

This is comparable with the bound one can extract from the tree-level contribution of the spin-1

resonances to the S parameter [59,60] in eq. (3.85), assuming no correlation with other contri-
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butions. In fact, from the constraint S < 2 x 1073 [83] one obtains a bound of m, > 1.8 (2.4)

TeV for f, = f/v2 (= 2f).

Top partners

Both ATLAS and CMS collaborations are providing bounds on pair produced top partners,
studying different decay modes. The relevant searches for our models are those for colored vector-
like fermions, X, with electric charge Q = 5/3 decaying in W't with BR(X — W*t) = 100%
[154, 155] and for vector-like top partners T' with @Q = 2/3 decaying into bW, tZ and th
[156-158]. The @ = 5/3 fermion decays with unity probability to tW™ when it is the lightest
and masses Mx < 800 GeV are excluded at 95% C.L. by CMS [154]. The branching ratios of
the 7" in the three channels listed before are instead model-dependent and the 95% C.L. bound
given in ref. [156] varies from ~ 680 GeV up to ~ 780 GeV. Applying the Equivalence Theorem
gives a reference value, for the singlet branching ratios, of BR(T" — W'b) ~ 2BR(T" — Zt) ~
2BR(T" — ht) ~ 50% [138], in which case the bound is ~ 700 GeV. These analysis are always
performed under the assumption that only one new state is present at low energy while the
others are much heavier. This assumption is very strong and seldom realized in concrete models,
including our case. For these reasons a complete analysis of the experimental results in order
to adapt them to the realistic case would be needed, but is beyond the purpose of the present
thesis.

In models which include more than one copy of resonances in the bidoublet or singlet rep-
resentation of SO(4), we assume that the first copy is lighter than the others. This situation is
often realized in realistic points in the parameter space. We then classify the parameter space
of our models in three broad regions depending on the mass of the doublet which includes the
exotic Q) = 5/3 fermion, My /g, and the mass of the lightest SO(4) singlet, Ms,. The first region
is defined as Mg, < My g (light singlet) in which case we expect that the bound on the singlet 7"
to be approximately valid since all other states are heavier. In the opposite case, M7, < Mg,
the Y = 7/6 doublet is the lightest. Since the experimental bound on this state is the strongest,
we still expect that it will put the strongest constraint on this region. Even though the precise
value of the bound may differ from the one in the simplified model with only one resonance, for
our purposes we take that as a reference value. The same argument applies also in the region

where My /g ~ Mg,. Therefore, as a first approximation we adopt the following constraints:
Mz /6 2 800 GeV Mg, 2 700 GeV . (3.52)

Comparing these bounds with the spectrum obtained by our parameter scans, reported in figures
3.7, 3.8, D.1, D.2, D4, 4.3, 4.4, we see that the models with lower tuning, £ = 0.1, are already
on the verge to be excluded by direct searches and also for £ = 0.05 the bounds cut a sizable

part of the parameter space of the models.
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3.5.3 Electroweak precision tests

Electroweak precision tests (EWPT) put strong indirect constrains on new physics beyond the
SM. In the context of composite Higgs models, the most relevant constraints come from the
oblique Sand T parameters, bounded by LEP1 at the per-mil level (see sec. 2.3.1 for a presenta-
tion of the EW oblique parameters). Constraints coming from the W and Y parameters [60] can
be neglected in composite Higgs models because they are parametrically suppressed with respect
to S by a factor (9/95)? 58], where by g, here we indicate a generic coupling from the strong
sector. A non-universal important bound comes from dgp, the deviation of the by, Zby, coupling
from its SM value. Imposing a custodial symmetry and a proper mixing of by, with the fermion
resonances allow to suppress the tree-level values of T and dgp [136]. More precisely, in the
(oblique) basis where the contributions to dg, coming from vector resonance mixing (universal
for any SM fermion) vanish, T exactly vanishes.

As we will show in the following, however, in our effective setup the contributions to these
observables are not predictable with a sufficient degree of accuracy. Moreover, estimates suggest
that the indirect bounds obtainable from EWPT are now of the same order as those which can

be derived from Higgs couplings and from direct searches of heavy resonances.

Sand T parameters

Let us now analyze in some detail the different contributions of this class of models to the
electroweak S and T parameters. In general it is possible to disentangle an IR, calculable part,
from the uncalculable part and use NDA and a spurionic analysis to estimate the size of the
latter. More details on how to make such estimates can be found, e.g., in refs. [86,119].

The IR contribution to the oblique EW oblique parameters arises from the modified couplings
of the Higgs with the SM gauge bosons, due to the non-linearity of the pNGB dynamics [73].
This modification depends only on the symmetry breaking pattern. This can be computed by
introducing running S and T parameters from the compositeness scale A, where the effect is
generated, down to the Z boson mass scale, where the parameters are measured. In this way, for
A > pu ~ myz, one obtains the “leading log” deviations to S and T due to a pNGB composite
Higgs: " /2
—éﬂgflognfz, Sp(my) = 1?3772% ogn/l\Z. (3.53)

In the language of effective operators introduced in chapter 2, this corresponds to the RG con-

TH(mz) =

tribution of the operator O (see table 2.1), generated at the scale A by the pNGB nature of
the Higgs with a coefficient 1/f2 (i.e. éy = £) [38], to the S and T parameters, as reported
in table 2.6 and figure 2.2(a). This IR contribution is also represented in fig. 3.5 (taken from
ref. [86]) for different values of &.
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Figure 3.5: Constraints on the S and 7' parameters as taken from ref. [86]. The grey ellipses represent
the 68%, 95% and 99% CL contours from ref. [83]. In this plot we can recognize the IR contribution
due to the deviations in the Higgs couplings as described in eq. (3.53), a UV contribution, such as the

tree-level one from spin-1 resonances, and the fermion contribution.

Let us consider now the calculable and incalculable UV contributions, starting with S. A
tree level contribution to S is due to the exchange of heavy spin-1 resonances which mix with the

SM electroweak gauge bosons. In our models this is given by (see sec. 3.6.2 for the derivation)

Ny 2 Nq 2

2
At ~ mW p] a;
ASTTee ~ 92 f2 E m2. - E s (354)

j=1"""p7 =1 "%

The UV uncalculable gauge contribution to S is easily estimated by using NDA:
ASINDA) i@. (3.55)
An2 f2
As expected, this is the value one gets from eq.(3.54) (modulo accidental cancellations or en-
hancements), when the vector and axial couplings approach 47. Fermion resonances contribute
to S at the loop level. A finite contribution, due to the mixing with the SM fermions, can be

estimated as

A N, \2m? N, m?, €2
ASy ~ —€ W ¢ W~ 3.56
I~ 1672 m? 1672 f2 mfc (356)

For 6, r ~ O(1) this is roughly of the same size of eq.(3.55). The authors of ref. [86] pointed
out the presence of a logarithmically-divergent contribution due to derivative interactions be-
tween composite fermions and the Higgs, in particular those proportional to the k% couplings in

eq. (3.43) and the interactions with E, in the covariant derivative in eq. (3.39). This correction
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can easily be the dominant one. While the k¢ couplings could in principle be computed in explicit
UV models, in our effective framework they do not contribute to the Higgs potential at one loop
and therefore are arbitrary. This strongly limits our capability of computing contributions to
the EW parameters.

The T parameter is a measure of breaking of the custodial symmetry. Since this is an exact
symmetry of the strong sector, the only contribution to T will come from the mixing with the
elementary sector and will be proportional either to the hypercharge coupling ¢’ or to the fermion
mixing. The NDA estimate for the uncalculable contribution to T coming exclusively from the

gauge sector is

2
ATNDA) 8:'3;2 tan 63 . (3.57)

Eq.(3.57) also coincides with the NDA estimate for the contribution of the vector and axial res-

onances, because their couplings g,, g, < 47 and their masses m, ~ g,f, mq ~ gof, precisely
compensate in the contribution to AT to reproduce eq.(3.57). The uncalculable fermion contri-
bution is easily shown to be sub-leading, in the limit of small mixing ¢, and can be neglected.
The calculable contribution to 7" due to the fermion resonances is given by (see e.g. the appendix
of [159] for some explicit expressions of fermion contributions to 7))

N, M f2S%L
812 m?

ATy ~ , (3.58)

where X is the Yukawa coupling between the top and a fermion resonance, A ~ ¢/f, and my is

its vector-like mass. We get

ATy Ne et Ne )
— ¢ O ——— ~ —% O\ 3.59
ﬁTg(NDA) T o f?m? T 0 top” (3:59)

where in the last equality we have used eq.(3.46). The calculable fermion contribution is hence
the dominant contribution to AT. A schematic representation of the possible contribution to
S and 7' from composite Higgs models is showed in fig. 3.5, from ref. [86]. Since, as we saw,
not all of these contributions are completely under control we do not present a fit of electroweak

precision data for our models.

Deviation in the Zbb coupling

Let us now consider Adg,. We define by Adg, the non-universal gauge coupling deviation due

only to new physics, with the SM contribution (from loops) subtracted:

Adgy = 69 — 0gb,5M » (3.60)

where

Com, r(r? —7r 46+ (24 3r)logr)
167 sin? Oy (r—1)2 ’

11
ghsm = —= + =sin 03, Sgpsm = (3.61)

2 3
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2

M
and r = —22
m

72, where My, is the pole top mass, M;,, = 173.1 GeV, not to be confused with M;,,
w
at the high scale, always taken around 150 GeV in this work. The calculable contribution we

have computed arises from loops where a SM W is exchanged, 5gZV, that can be estimated as

W A lel'sp

~ ~ . 3.62
16w2m? — 1672 f2m? (362)

dg

In addition to that, we also have a calculable contribution where a vector resonance is exchanged
in the loop, and the usual uncalculable contribution. The latter is estimated by NDA. It arises
when the spurions (3.42) are inserted in the fermion bilinears. There are several local operators

one can construct. For example, one contributing to dgp is the following:

Cg
fA(16m2)>

3 4.2
_ 1 t ot o cyleqltsi g
<qLEqQ7“EquL> N (SENS)(EGD,.E) = G oo oafa (363)

a=1

with ¢, an O(1) coefficient and « the SU(2)? index (see [119] for details), leading to

4
o4y g™ o

dg, ~ {6r2)2fich (3.64)
which is sub-leading with respect to eq.(3.62). The one-loop deviations where a vector and a
fermion resonance are exchanged in the loop are induced by the couplings in eq. (3.43). They

are estimated to be
RGPPSR et

5gf ~ ~ ,
o 1672m37m32 1672 f2m?2

(3.65)

where k generically represents the O(1) k coefficients in eq.(3.43). In general dg), ~ 6 g};V and both
should be taken into account. However, 5g{; depends on the couplings (3.43) that are otherwise
irrelevant in our analysis.

The only tree-level correction to dgp is due to the bottom quark mixing, and therefore is
suppressed due to the smallness of the bottom mass with respect to the top one. Since we did
not include these mixing terms in our computation of the potential, this contribution is arbitrary
in our setup. However, we have checked for NV éu’d) = Ncgu’d) = 1 that this tree-level correction is

typically 2-3 times smaller than 5gXV .

3.6 The Higgs potential

In the previous sections we described in detail the tree-level effective Lagrangian of the composite
Higgs model we study. We saw that the global symmetry G of the strong sector is explicitly broken
in two sectors, in both cases due to mixing with the elementary SM fields. On the one hand the
fact that only a subgroup of G is gauged by the EW gauge bosons selects a preferred direction in

G, which can also be seen as the fact that only some components of the spin-1 resonances mix with
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the elementary SM gauge bosons. On the other hand the mixing terms between the elementary
SM fermions and the composite fermion resonances breaks the global symmetry because the
SM fermions are not in complete representations of G. When a spontaneously broken global
symmetry is explicitly broken by some small terms, the would-be NGBs acquire a non-vanishing
potential, hence a mass term. Consider for example QCD with two flavors (up and down quarks
only): the explicit breaking of the chiral symmetry SU(2)z x SU(2)g due to the quark masses
generates a mass term for the Nambu-Goldstone bosons, i.e. the pions. In this case the breaking
involves only the strongly coupled sector and therefore, in the language of chiral Lagrangians,
the mass term for the pions is generated at tree-level by a chiral symmetry breaking operator.

In QCD, however, there is also another explicit breaking at play, due to the mixing with an
elementary field: the photon. In fact, much like in the model we described in section 3.4.1, it is
possible to write a Lagrangian for the spin-1 p, meson, which transforms in the adjoint of the
unbroken SU(2); of isospin, very similar to the one of eq. (3.33). The photon gauges a U(1)em
subgroup of the unbroken SU(2); and mixes linearly with the neutral p° meson. This linear
mixing generates, at one loop, a potential for the charged pion, contributing to its mass and
describing why the charged pion is slightly heavier than the neutral one (see e.g. ref. [94]).

In our models we assume that the strong sector is exactly symmetric under G, therefore no
tree-level potential term is present for the Higgs. However, the explicit breaking of the global
symmetry due to the linear mixing between the elementary SM gauge bosons and fermions with
the composite resonances induces, at one loop, an effective potential. Since all terms in the
Lagrangian respect the EW gauge invariance, this potential affects only the physical Higgs h
(and the scalar n in the SO(6)/SO(5) case).

When computing the one loop effective potential, since both the spin-1 and spin-1/2 lines
are necessarily closed inside the loop, the contributions from the two breaking terms — gauge
couplings ¢, ¢’ and fermion mixings € — act separately. For this reason we can consider separately
the spin-1 and the spin-1/2 contributions to the potential.

The pNGB nature of the Higgs implies that its potential V' (h) depends on s only. Due to
the contribution of particles whose masses vanish in the s, — 0 limit (such as the top, W and
Z), the one-loop Higgs potential contains non-analytic terms of the form s% log s, that do not
admit a Taylor expansion around s; = 0. In the phenomenological regions of interest, these
terms do not lead to new features and are qualitatively but not quantitatively negligible [3].
However, they make an analytic study of the potential slightly more difficult. For this reason, we
neglect them altogether in what follows and refer to the appendix C for a more refined analysis
of the Higgs potential where they are included. For s, < 1, we can therefore expand V' (h) up

to quartic order and obtain

V(h) ~ —ysi + Bsh +0(s8) . (3.66)
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The coefficients v and 8 are induced by the explicit breaking of the shift symmetry: the gauge
couplings g and ¢’ in the gauge sector, the mixing terms ¢ in the fermion sector and possibly
other terms coming from higher dimensional operators, not appearing in the Lagrangian (3.48).

The Higgs potential in our model is, strictly speaking, not calculable. There are generically
two different contributions to « and  that, with an abuse of language, we denote by IR and
UV contributions. The IR contribution is the one coming from the leading operators defining
our model (3.48), the UV contribution is the one coming from higher dimensional operators and
physics at the cut-off scale. The explicit form of v and 8 can be deduced, in the limit of small
breaking terms, by a simple spurion analysis [119]. As expected from NDA| the IR contribution
to v and S shows generically quadratic and logarithmic divergencies, respectively. Instead of
introducing as usual counterterms for such divergencies, leading to a loss of predictability in the
Higgs sector, we can demand that the one-loop form factors defining the IR part of v and g,
that should be integrated over all energies scales, are peaked around the resonance masses and
go to zero sufficiently fast at infinity. This is done by fulfilling some generalized Weinberg sum
rules [1,46]. In this way, the one-loop IR contribution to V'(h) can be made finite.

On the other hand, possible local operators contributing to the UV part of v and [, coming

purely from the gauge sector or the fermion sector, are for example!’

3
3
egf' Y BT gTo% = Segg® fisf = NPV,

aLfl
772 £ Zl ST gTo0s)? — 252 gt st = B .
ap=
f PE,s D) (S Elg) = Slegs s} =20Vt
&((Eqsz)(ztE;S))Q _ @kqs 484 _ ,B(NDA 4
where ¢, 5 and dg ; are estimated by NDA to be coefficients of O(1). By comparing fyéNDA) and

BgNDA with the typical values one gets from the IR contribution, once made calculable (such as

egs.(3.84) and (3.99) below), we see that ’y;]\}DA) > 7, ¢ and 5;]\;[)’4) ~ 3, 5 so that calculability
is still lost. In order to circumvent this problem, we assume here that the underlying UV

(NDA) and B(NDA)

theory is such that ~ are sub-leading with respect to the IR part of v and

B, so that the Higgs potential is calculable and dominated at one-loop level by the fields in our

9The leading fermion local operators above were not considered in [119]. This is probably due to the fact that
the free fermion composite Lagrangian has an obvious linearly realized SO(5) symmetry when m;q = m;s. In
addition, when the mixing terms are taken to be equal, ;5 = €;o and €,g = €. (as in [119]), the whole Higgs field
can be removed from the quadratic fermion Lagrangian by a field redefinition and hence vector mass insertions
are needed to get a non-trivial one-loop potential. This is however an accident of the one-loop result and fermion

operators like the ones in eq.(3.67) will be anyway generated at higher loop level.
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model. The logic underlying the above assumption (that might seem too radical and strong) is
that any theory where a symmetry mechanism is at work (not only collective breaking or extra
space-time dimensions) to actually predict a calculable Higgs potential would automatically
satisfy the above requirements and fall into our class of models, which can then be seen as a
general parametrization of composite Higgs models. We denote the above assumption as the
Minimal Higgs Potential (MHP) hypothesis. We have explicitly checked that deconstructed
models present in the literature [119,120] can be translated in our framework and it turns out
that in this case the Weinberg sum rules are indeed satisfied due to the symmetries of the models.
A dictionary between these models and our setup is presented in appendix E.

Having explained the philosophy of our perspective, we turn to the computation of the IR
contribution of the one-loop Higgs potential, from now on simply denoted by the Higgs potential.
First, we shift the NGBs, in this case the Higgs, with a constant background field h and a quantum
field 6h: h — h+0dh. Since, by assumption, the strong sector is exactly G invariant, loops of only
the Higgs do not contain any explicit symmetry breaking term and therefore do not generate
any contribution to the potential. We present in the following two different ways to compute the

contribution to the potential due to the spin-1 and spin-1/2 fields.

3.6.1 Potential in dimensional regularization

Let us now show how the incalculability of the potential manifests itself when one uses di-
mensional regularization to regularize the quadratic and logarithmic divergencies, and how the
Weinberg sum rules arise in this framework. The one loop Coleman-Weinberg potential can be
easily obtained from the mass matrix in each sector (gauge and fermionic), keeping s;, as back-
ground fields. Let us parametrize the field-dependent mass terms for the spin-1 and spin-1/2
fields as

L7 = VM5 ()V — (8, Mgy + he.) (3.68)

where 4,7 run over all the fields in each sector and M‘Z/ is a real symmetric matrix while Mg
is a generic complex matrix. From these matrices one can obtain the singular values with a sy,
background: m,,(s;)? > 0, where n runs over all the states with a spin s,, = 1, % These singular
values can finally be used to obtain the one-loop effective potential. Regularizing the integral

with dimensional regularization one has

—1)%sn (25 mp(sy)?
V) = 1oy 3 S o)t (1o ™2 )

_ %Tr [Mé(sh) <log My (sn) k1>] (3.69)
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where () is the sliding scale and ks, are numerical factors which depend on the subtraction scheme
used. We see that, in general, the potential is scale-dependent as well as scheme-dependent, which
would imply the necessity to fix some boundary conditions at some scale, for example by matching
with the measured Higgs mass and vacuum expectation value. This, however, would imply our
impossibility to predict those values from our explicit models. To avoid this, we impose a set of

generalized Weinberg sum rules by asking that Tr[M{}] and Tr[(M}M r)?] are independent on h
2
WSR:  Tr [My(sp)] =const and Tr [(M}(sh)MF(sh)) ] = const . (3.70)

Requiring this for both the s% and the s% dependences is equivalent to requiring the absence of
UV divergencies in the computation of the v and g coeflicients.

While this method is very efficient for numerical computations, for analytic studies it is
troublesome because of the difficulty of obtaining analytic field-dependent eigenvalues for the

mass matrices, when the number of fields involved becomes high.

3.6.2 Form Factors analysis

The computation of the one-loop Coleman-Weinberg potential consists essentially in integrating
out all fields at quadratic level, in the background of the scalar field of which we want to compute
the potential. This process can be performed either in one single step, as presented above, or in
two separate steps. One can first integrate out at tree-level the quadratic Lagrangian of the heavy
spin 1 and 1/2 resonances, with no need to go to a mass basis, keeping the whole momentum
dependence by introducing some form factors for the light fields, and then integrate at one-loop
the remaining light degrees of freedom with the momentum-dependent form factors, usually with
a cutoff regularization. This is a useful way to proceed because the pseudo-Goldstone nature of
the Higgs field and the SO(5) x U(1)x symmetries allow to fix in terms of a few form factors the
form of the effective Lagrangian for the light states and encode there all the information of the

heavy resonances, making it easier to perform approximations to obtain analytic results.

Gauge Contribution

In momentum space, the effective Lagrangian of the SM gauge fields up to quadratic order in
the gauge fields and to any order in the Higgs field can be written in terms of some scalar form
factors, functions of the momentum p?, which correspond to the vacuum polarization amplitudes

introduced in section 2.3.1:

P
- <2HW+W7 WEW, + T, WoW3 + Tpp BB, + 2HW3BW§’BV>, (3.71)

where P} = n¥ — pFp¥ /p? is the projector on the transverse field configurations and the II’s are

form factors that also depend on the Higgs field. In particular, since we assume that the strong
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sector — which we integrate out at tree level to obtain the IT’s — is invariant under the custodial
symmetry, the form factors will satisfy the relation Iy, +y - = Ily,w,, which implies T =0 at
tree level (2.22). The one-loop Higgs potential is easily computed from the above expression by
taking the Landau gauge 0" B, = O*W i = 0. In this gauge the longitudinal components of the
gauge fields, as well as the ghosts, decouple and can be neglected. Integrating out the gauge

fields and going to Euclidean momenta, one gets:

4
Vh) = 5 [ Gt (2 Yow T (=p) +1og (Mo (—b) iy (<7) ~ T (—5) )
(3.72)
To have an analytic understanding of the possible functional dependence on the Higgs field of
the effective potential, it is useful to introduce spurionic gauge fields such that the whole SO(5) x
U(1)x group becomes gauged: A, = AZT& + Al‘jLT“L + AZRT“R. The most general SO(5) x
U(1)x-invariant Lagrangian depending on the gauge fields and the NGB'’s, at the quadratic order

in the gauge fields and in momentum space, is

P
£ = L (T () X, Xy + To(pH) Tr[A,A,)] + T (p?) S A, A S+ 373
IR (p?) (Tr[(UTAMU)L(UTA,,U)L] - Tr[(UTAMU)R(UTAVU)R])) :
where (...)"® implies the projection on the (3,1) and (1,3) irreducible representations inside

the adjoint of SO(4).!! Switching off the spurionic fields, that is keeping only the components

AZL — W;Z’ AZR = CXB/L and Xlu, == SXBM7 Where

!
cngiX:@, SX:L’ (3.74)
Vi+ak V98 + 9%

we obtain the most general effective Lagrangian for the gauge bosons in SO(5)/SO(4) with the
explicit dependence on the Higgs field:

P ;
reff — tT (nowgwg + Hl%h (WaWy + WIW?2) +
S% 96 3 96 3
+ 1B, B, + le %Bu - W %B” -+ (8.75)

12
+ cpllp R (W:LLWS’ - ggOQB,uBu) )a
0

“The term in the second line of (3.73) could be generated, for example, by the operator O; =
(Tx[Eg, EY#] — Tr[E[L E®#]) [105], or directly in a model with vector resonances pj;, p,i without invariance

under L <> R, see section 3.6.2.
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where I = (s% 11§ + ¢4 1lp), ci, = cos(h)/f, and g = gocx. From this Lagrangian one obtains

2

s
Iy +w- = HUwywy = 1o + Zhﬂl + cepllpr,
2
s
IIgg =1l + C%(Zhﬂl — c%(ChHLRp (3'76)
i
HW3B = — CXZH1 .

The form factor Ilyy, g is related to the oblique g—parameter, see eq. (2.22),
2
S = —in’WBB(o) ~ <1h>11’1(0) , (3.77)
where the prime indicates a derivative with respect to p? and in the second step we approxi-
mated g ~ go and ¢’ ~ g{. It is well known that the bound on S provides one of the main
phenomenological electroweak constraints on composite Higgs models, that requires si < 1. As
we will show below, a necessary condition to kill the quadratic divergence in the potential is to
demand limy,, ;oo IIL g = 0. In order to ensure this condition and to keep the model simple, in the
following we impose a LR symmetry in the strong sector, that automatically implies Iy = 0.
The explicit expression of the form factors is obtained by integrating out the heavy vector
resonances at tree-level and quadratic order (the one relevant at one-loop level). This is not
straightforward to do for an arbitrary number of vector resonances, due to the last term in £%Z,
eq.(3.33). Let us then set fmix = 0 in the following (in ref. [1] we studied the effect of this term

in the two vector case). In this simple case, we get

Ng 2 Np 2
. J
(") = 960° +2050° | D ey ~ 2 )
i—1 \P @i j=1 P P
(3.78)
N, 2
J
HO(pQ) = —p2 + g%pQ E ﬁ, Hé((pQ) = —p2.
j:]_ p o mpj)

The physical SM gauge couplings are modified by the contribution of the resonances and given
by (2.19):

2 gt 5 A g2\ 2 9% 2 A g\ 1
P=— 1+ 8), 2= g (1+3 %) (3.79)
I15(0) 2 IT,,(0) 2

where Il = dIl/dp?. It is straightforward to get from the above relations the form of the gauge
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contribution to v, and 84 to the Higgs potential:'?
3 00 3 62
g 8(47r)2/0 PEPE <H T, )t

3 > 2 IR
- d 2 2 = o X HZ.

For large Euclidean momenta, the form factors Ily o Hé? x pZE, while II; x pOE, indicating that

(3.80)

all higher terms in the s;, expansion are UV finite. On the other hand, v, and 3, are respectively
quadratically and logarithmically divergent in the UV, in general. Their UV properties are fixed
by the single form factor II;. Without imposing any condition, the form factor II; goes to
a constant at high energy and the potential diverges quadratically. However, the form-factor
I1; (p?) is an order parameter of the spontaneous symmetry breaking (being proportional to the
difference of the form factors of gauge fields along the unbroken and broken generators [43]), so
for energies much higher than the symmetry breaking scale f, it should go to zero, assuring that
the potential should diverge only logarithmically. Imposing this condition, we obtain the first
Weinberg sum rule [160]:

Ng Np
Jim gy (—ph) = f2+2) f2 -2 f5=0. (I) (3.81)
PE— i=1 j=1

Demanding that IT; goes to zero faster than p% (finite potential) for large Euclidean momenta

gives the second Weinberg sum rule:

Ng NP
hm 90 2p2 1011 (—p%) = 2Zf2 - 22 zjmij =0. (II) (3.82)
PE i=1 j=1

Notice that the first sum rule requires the presence of at least one vector resonance p,, while
the second sum rule requires at least one axial resonance a,. There is a qualitative difference
between the Weinberg sum rules (I) and (II). While the former must be unavoidably imposed (at
high energies the global symmetry is by assumption restored), the latter can be relaxed, leaving

a mild logarithmic UV-sensitivity of the Higgs potential.!* From eqs.(3.77) and (3.78), we get

12We have inserted the IR cut-off p, ~ mw to regulate a logarithmic divergence appearing in 8,. This is a
spurious divergence arising from a non-analytic term in the potential in the s, — 0 limit and does not play an
important role in what follows. We have checked that our results do not sensitively depend on the choice of fig.

For a discussion on this non-analytic term see app. C.
13The sum rules (3.81) and (3.82) are also valid for the general case fmix 7 0 when N, = 2.
The second sum rule was originally derived by assuming that the broken and unbroken currents behave as

free fields in the UV [160]. This assumption holds for asymptotically-free gauge theories but can break down
if, say, the UV theory is a strongly interacting CFT. In particular, it has been pointed out in [161], where an
approach similar to ours has been advocated in Higgsless models, that the second Weinberg sum rule does not

hold in conformal Technicolor.
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the tree-level contribution to the S—parameter:

2 NP 2 Ng 2

& oy P’ a;
AS =25 P2 el B il I (3.83)

j=1""p7 =1 "%

The explicit form of v, and f, is readily computed for N, = N, = 1. Setting for simplicity
¢ =0, a, =1 and expanding at leading order in (g/g,)? (and in pg(= mw)/m, in By), we get

972¢°m21og 2 g f4 44 2
,yg:_fg—/)g’ ggﬂ< +1 mVV)' (3.84)
6472 102472 32m/2)
For N, = N, = 1, when both egs.(3.81) and (3.82) are imposed, AS can be rewritten as
2 2
AS = 20w <1 - fQ) (3.85)
mp 4f5

and, as eq.(3.81) imposes f, > f/V/2, it is manifestly positive definite. As expected, for s;, = 1,
eq.(3.85) agrees with the vector dominance estimate in Technicolor theories derived in [162]. In
holographic 5d models, AS is positive as well. For N, or N, > 1, on the other hand, AS can in
principle have any sign. Since as far as we know there is no general proof about the positivity
of AS (neither in Higgsless Technicolor theories nor in Composite Higgs Models) we will also
consider, in the following, one model (with N, = 1, N, = 2) in the “exotic" region where AS
can be negative.

A possible constrain on the form factor II; comes from the results of [163]. A straightforward
generalization of the proof given there implies that any composite Higgs model, UV-completed
by vector-like gauge theories, cannot give rise to EWSB without additional contributions to
the Higgs potential (such as those given by fermion resonances). In other words, for s, < 1,
v in eq.(3.80) should be negative definite. This condition (always satisfied in 5d models) is
automatically satisfied when both (I) and (II) hold for N, = N, = 1 (see eq.(3.84)).1° On the
other hand, when N, or N, > 1, 74 can be positive and induce EWSB by itself (although these

regions are never found in our numerical scans).

Left-Right Asymmetric Case

Let us study in this section what are the consequences of having a LR asymmetric model. We

consider the simplest example, with N,, = N,. = 1, which already shows all the important

'50n the contrary, if one imposes only the sum rule (I), even for N, = N, = 1, v, (and AS) can have any sign.
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aspects. From eq.(3.33) and eq.(3.76) we get:

R S Y
2(p* —my)  2(p* —myz)’

PR

95 12, v N 9512

Io(p®) = —p* +

Ip(p®) = —p* +

2(p* —mp) 20 —my2)
5 o 5 o (3.86)
p oD
Hl(p2)298<f2 QiL - 2 )7
pr—mp  pP-my
GBolol®  Gfap”

O r(p%) = .
RlP) = 50 ) T 2R —mg)

The form factor II; gz goes to a constant for large Euclidean momenta, and it induces a quadratic
divergence in the Higgs potential. Since the functional dependence related to this form factor is
ch, see eq.(3.75), this divergence is present at any order in the expansion for small s%. Similarly
to IIy, Il g is an order parameter for the symmetry breaking and should hence go to zero at
high energies. From the expression above we get

2 2
. 2y 9 2 2 90 2 2 2 2 -4
5dp]£1_n,100 HLr(—pE) = Eo ( pL PR) o @ ( oMo PRmPR) + O(pE ) - (3.87)

Cancelling the quadratic and logarithmic divergence requires f,, = f,, and m,, = m,,, respec-
tively, which is equivalent in this case to impose a complete LR symmetry, for which IIpyg = 0
identically. Note that by adding more copies of vector resonances, however, one might be able

to have a finite potential even without imposing a LR symmetry.

Fermion Contribution

Following a very similar approach to the one described for the gauge contribution to the potential,
let us now consider the contribution due to SM fermions. In particular we focus on the top quark
since its mixing with the strong sector is expected to be the dominant source of breaking of the
global symmetry. The top quark effective Lagrangian up to quadratic order in the fermions and

to any order in the Higgs field can be written, in momentum space, as
pr HtLtL + ER? HthR — (ELHtLthR + h.C.) , (3.88)

resulting in the following contribution to the Higgs potential:

4
Vi) = =2 [ LB ok (phIh, (b0 (<5h) + (M (oB)) - (3:59)

Integrating out the fermion resonances S; and @Q);, we get the following expression for the form
factors (see egs. (3.27,3.28)):

I, =g +sillig, I, =1g+sils, Ty, =ispcnllos, (3.90)
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where
HQ(p2) = 1- qugy HlQ(FQ) = —< qig - qg) ;
= P T 2 zlp_ms jlp —M5q
Ng ;12 Ng i 2 Nq Jjo2
leis oy _ 1 lets| ]
Ig(p?) = 1-— s, is(p?) = 5 - 9 — - 95 |>
; 2(p? — my5) 2 Z; p? = mig ; PP —mjg
N,
Hos?) = = ie SR, . (3.91)
Qs\p = 95 £ tS qu2 _m?s = tQ quz — m?Q : :

The top mass can be obtained either as the lightest singular value of the mass matrix of the

Q = 2/3 fields in eq. (3.39), or from eq. (3.88) by finding the pole of the propagator:

‘HtLtR (Mt20p>‘2

M2, —
o
P HtL (Mtop)HtR (Mtop)

=0, (3.92)
h=v,n=0

which, if the top is much lighter than the top partners, can be approximated as

II 0

top = | tLtR( )| (3.93)
T, O, ),
Similarly to the gauge case, for s;, < 1, we can expand Vy up to quartic order:
Vi(h) ~ —vssi + Brsh, (3.94)
with
P2 I n s n HQQS
B )
Ilg IIs  pypllglls

(3.95)

2
Iy s The , s\  2(pmholhs — )
2 ELE pEHQHS My s P2IIls '

For large Euclidean momenta Ilg g oc pOE, IMig1s o pEQ, Ilgs pEz. It then follows that the
terms involving Ilgg in eq.(3.95) are all finite. The factor py is an IR-cutoff curing a spurious
logarithmic divergence arising from the non-analytic term in the potential. We fix it to be
around the top mass (see footnote 12). All higher terms in the s, expansion are UV finite. We
can impose the fermion analogue of the Weinberg sum rules, demanding that the divergencies in

v and By above cancel. The cancellation of the logarithmic divergence in 3; requires

H NS NQ

. 15 ; j

Jim (—Q)PQETS = Z l&sl? — Z HQ\Q =
=1 =1

(111) (3.96)

85T9) Ak gy

: 2 _ i 2 i

pzhﬁloo 2Pk o, Z [€gs Z el =
[z =1 -
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When eq.(3.96) is satisfied, the quadratic divergence in 7y is automatically cancelled. Imposing
the cancellation of the logarithmic divergence in 7 requires the second condition

2
pE%OO i=1

Ng Ng
. s  1I; . . . .
lim 217%(119‘*'1-[5) = E mgs(\és’?_’d;sp) —E :m?QOEgQF—‘ﬁijF) =0 (Iv). (3.97)
j=1

It is useful to consider in some detail the case Ng = Ng = 1, taking all the mixing parameters

to be real, for simplicity. Assuming mg # mg, a solution to egs.(3.96) and (3.97) is

€15 = €1Q = €qS5 = —€qQ = €. (3.98)

Other solutions with different sign choices can also be considered. We take €4 of opposite sign
with respect to the other €’s so that the top mass is maximized, see eq.(3.46). The coefficients
and 3y are now easily computed in analytic form, but the resulting expressions are too lengthy
to be reported. For illustration, we just show here their approximate form in the limit of small

mixing, 07 p < 1. At leading order we get!®

Nl %+ (m2 + 2z + 2) log x2

mQ
W 32m2 22— 1 T T s (3.99)
_ Nee* (14 ) log z?
br= 3272 -1 '

Notice that the €* behaviour of ¢ is an accident of the Ng = Ng = 1 case, the typical scaling
being o< €.

The generalized Weinberg sum rules (I-IV) must be satisfied by any composite Higgs model
where a symmetry mechanism is at work to realize the MHP hypothesis. They are clearly also
satisfied in the notable case of five-dimensional theories, where locality in the extra dimension
forbids any local Higgs potential to all orders in perturbation theory (thus implementing in full
the MHP hypothesis). However, when one has to sum over an infinite set of fields, with increasing
mass, such as in the 5d models, the sum rules written as in (I-IV) are not very useful. It is more
convenient to first sum over the infinite set of fields and then take the limit of large euclidean
momenta.'” In doing that, one finds that the form factors such as Iy, Il;g, II;¢ and Ilgg
introduced before, all go to zero exponentially for pg — co. For instance, in the simplest set-up

of a 5d theory on a flat interval of length L, one gets II1(pg) x pr/sinh(2Lpg) (see e.g. [164]

for an introduction and further examples).

'SContrary to the expansion in g/g, in the gauge contribution (3.84), that is always a sufficiently accurate
approximation, the explicit forms (3.99) are not always useful. When t1 and/or tg significantly mix with the

composite sector, different limits should be considered.
"The higher-dimensional symmetries demand that one has to sum over the whole infinite tower of states,

despite the limited regime of validity of the 5d effective theory.
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3.7 Light top partners for a light composite Higgs

Let us now analyze in detail the Higgs potential obtained in our framework and study what are
the consequences, on the new physics spectrum, of imposing a successful electroweak symmetry
breaking and the correct values of the top and Higgs masses.

The total Higgs potential up to O(s}) is given by
V(h) = Vy(h) + V§(h) = —vs} + Bsph , (3.100)
where we have denoted v = v, + 77 and 8 = B4+ ¢. For v > 0 and 0 < 5 > /2, the potential

has three extrema: s, = 0 (no EWSB), s, =1 (maximal EWSB) and

_ 7
=55

The one at £ = 1 should be discarded because it is outside the regime of validity of eq.(3.100)

s2=¢ (3.101)

(and leads anyway to massless SM fermions, II;, ¢, = 0 in eq.(3.90)). The extremum (3.101) is
a local minimum of the potential when v > 0 and, at the same time, v < 28. Demanding a
sufficiently small value of £, as suggested by the EWPT| requires to tune v < 8. The Higgs mass

at the non trivial minimum (3.101) equals

8p
m3 = Fg (1-¢). (3.102)
It is very useful to parametrically understand what are (if any) the generic relations among the
Higgs mass and the masses of the vector and fermion resonances.

From eq.(3.84), we see that the following parametric expressions for v, and 3, approximately

hold:

9> f*m3 g, ~ I
1672 "7 1672

For £ < 1, using eqgs.(3.101) and (3.102) we have

g 2
Tg ™~ ~ |l (;) < gl - (3.103)

p

m2 42
—L %@ (3.104)
miyr g

Given the bounds coming from the S parameter and from direct searches (eq. (3.51)), we para-
metrically require 7 < |v4|, as well as v < . This implies a fine-tuning at work, so that v is
small because the fermion and the gauge contribution compensate with each other, vy ~ —,.
As we will shortly see, |v¢| =~ |8¢|, while B3 ~ v4(9/9,)?, implying that generally 3, < (5 and
can be neglected.

The fermion sector, with more different mass scales, is more involved. Before going into the
details of the models, let us present some general — and rough — estimates. From eq. (3.102)

we see that for a given £ the Higgs mass depends only on the § parameter. This means that
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the Higgs mass value at fixed £ will depend largely only on the fermion sector. In the case of

elementary t;, and tr, which we are considering, the top mass goes like

€LER
Mtop ~ sth 5 (3105)
where €7, r are the mixing parameters for the t7, r quarks and My represents the mass of the light-
est fermion resonances that couple to t7, and tg. A simple NDA estimate of the top contribution
to v and [ then gives

Nc 2212 Nc 4
W ez Mi P g (3.106)

Using egs. (3.105), (3.106) and (3.102) we obtain [3]
Ne* N, o, M;

my

This shows that the Higgs mass grows linearly with the top partners mass scale, in particular for
a given £ (i.e. f) we expect that the measured value of the Higgs mass should point to a specific

range of masses for the top partners. In the rest of the chapter we focus on this prediction.

3.7.1 Estimates for the minimal model

For simplicity, we first consider the set-up where N, = N, = Ng = Ng = 1, taking a, = 1 and
¢ = 0. When the Weinberg sum rules (I-II) in the gauge sector are imposed, the axial mass
and decay constant are completely determined in terms of the vector mass m,, which is the only
mass scale in the spin 1 sector, see eq. (3.84).

We choose to solve the sum rules (III-IV) as in eq.(3.98), so that the fermion sector is
characterized by three mass scales: the mixing parameter € and the vector masses mg and mg.
It is useful to parametrize the system in terms of w; = tanf; and wgr = tanfpg, introduced in
eq.(3.45), and one mass scale. We can split the fermion parameter space in 3 x 3 = 9 regions,
wr, < 1 (elementary tr), wr ~ 1 (semi-composite t1), and wy, > 1 (fully composite t7) and
similarly for wr. We always take wy and wp to scale in a similar fashion, so that wy ~ wp
for (wyp, < L,wg < 1) and (wr > l,wg > 1), and wrwr ~ 1 for (wy, < 1,wr > 1) and

(wr > 1,wr < 1).'% In each region we choose as mass scale the physical mass of the Lightest

181t is important to keep in mind that physically there is actually no way to take the formal parametric limit
wr,r — 0 or wr,,g — 00, because, at fixed top mass, some fermion resonance mass becomes infinitely massive.
The maximal value of a fermion mass in the effective theory should be less than A = 47 f, above which we should
integrate out the heavy field. In light of that, the actual allowed range for wr, r is

1
= Swr,r S4m. (3.108)
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o Wh <1 ~1 > 1
<1 (M, w*, wh, w) (Mp,1,1,1) (Mo, 1,1,1)
~1 (My/6,1,1,1) (M,1,1,1) (M,1,1,1)
> 1 (Mg, w3, wi,wi) | (Mg, wi,wi,wi) | (Mqsg,1,w3,w})

Table 3.1: Values of mp, k, k, and kg (in order) for the parametric limits of elementary, semi-
composite and fully composite ¢1, tg. For simplicity, we have omitted the subscripts 0,7/6 on

M, and L, R on w, when not necessary.

Fermion Resonance (LFR), denoted by my, as given by eq.(3.47). This is always either My or
M7 /6. We then define the parameters

Ncm‘i . Ncm%
1672 -

br = 1672

V=

MZ, = ki(wr,wr)m7E, ky(wr,wr) ks(wr,wr) - (3.109)

We report in table 1 the parametric dependence of k¢, k, and kg on wz, and wg, as well as mp,, in
each region. Notice that the table is not symmetric under the exchange wy, <+ wgr and mg < mg,
because of the presence of the bi-doublet with Y = 7/6, whose mass is My/s = mg, independently
of wy, and wgr. Given the mixing parameters and &, everything else is parametrically determined,

namely m,, my and my. In particular, we have

N.M?2 k N.M? K M?
i M,y M, mi = e (3.110)
My, R My, Ry t
my 2 hy o my  NeMigpky o omiy 972N0Mt2°pki§ (3.111)
m%  g*¢ kg’ m3 — 4Amd, ke’ om3 T 8wPmi, ko ’

In all regions, except (w, < l,wr < 1) and (wg, > 1,wg > 1), kg/k? ~ 1 and the Higgs
is parametrically determined in terms of M;,, to be quite light (below the LEP bound, taking
eq.(3.110) literally).!” In all these regions, for reasonably natural values of ¢ (say, £ ~ 1/10), the
LFR (singlet 7" or the exotic fermion X contained in the Y = 7/6 doublet, depending on the
region) is always light, of order 1/4/€ times the top mass, or even too light, of order 1/(wr/€),
with wy, > 1. For (wp > 1,wr > 1) the Higgs is heavier and yet the fermion resonance Q7 is
light. Finally, when (w;, < 1,wr < 1), both the Higgs and the resonance masses (vector and
fermion) increase as 1/w?. In all regions, kg =k, implying that m,/mpy is independent of the
fermion sector and determined, at fixed . Finally, since kg, > k; in all regions, we can conclude

that a light Higgs implies light fermion and vector resonances. The latter are always heavier than

19Needless to say, the considerations above are quite schematic and are only valid parametrically. They are not

accurate enough for a more quantitative description.
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the former, as can be seen from eq.(3.111) that, taken literally, predict vector masses roughly
twice heavier than fermion masses. The converse is not always true. In particular, for a strongly

composite top, we can have light fermion resonances and an heavy Higgs.?"

3.7.2 Generalizing to non-minimal scenarios

Let us now consider the generalizations to models with multi vector and fermion resonances.
When more spin 1 resonances are considered, a too large S parameter can be circumvented
by either some tuning between the axial and vector resonances or by an increase in the vector
resonance mass. For illustration, let us consider how the latter situation can be realized with 2
vectors and 1 axial resonance (see section 3.7.3 and appendix D for a discussion of a model based
on this gauge sector). For simplicity, we take f, = f = f and fyi; = 0. Imposing the sum

rules (I) and (II) allows to determine m, and f, as a function of f and of the two vector masses

m, and m2. A simple calculation gives as leading expression in an expansion in (g/ gp)2
9f2¢°m? 2

where m, = m,1 and x = m2 / myi. For an appropriate range in x, the coefficient multiplying

P
fzgzmz in eq.(3.112) can be significantly smaller than the one in eq.(3.84). At fixed ~;, this
implies the possibility of increasing m, and hence decreasing the value of AS within the allowed
range. One can also check that in the case of 2 axials and 1 vector resonance, AS can be made
small when one of the two axial resonances is quite light (see eq.(D.4)).

When more fermion resonances are involved, Ng and/or Ng greater than one, the analysis is
greatly complicated by the large number of parameters involved. The main qualitative feature,
as already mentioned, comes from 7, that for small mixing terms scales as €2. This implies that
parametrically v¢ > By, in tension with eq.(3.101), that would favour regions where v < 5. On
the other hand, a larger 7y is welcome, because it implies a larger v, (in order to tune v+, to
be small) and hence spin one resonance masses heavy enough to keep AS under control, although
at the expense of a higher fine-tuning. We still expect the Higgs to be light when the LH and RH
top are substantially composite (¢; = m;) and at least one fermion resonance, barring accidental
cancellations, to be light and parametrically related to the top mass by m% ~ Mfop /€. On the
other hand, when we approach the region of an elementary top, both the Higgs mass and the
fermion resonances related to the top become heavy. We then expect that the implication light

Higgs — light fermion resonances continue to apply. These arguments are also supported by the

20 The direct link between m g and m, can be problematic for these minimal models with just one resonance. In
fact, a more detailed analysis reveals that m,, is always below 2 TeV for a 125 GeV Higgs mass (see egs.(D.1)-(D.3)
and fig. D.1 (b,d) in appendix E), leading generally to a too large S parameter and to a tension with the bound

from direct searches reported in eq. (3.51).
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Figure 3.6:  Values of v;/(—7,4) versus 7v;/(28), that is the value of £ one would get by neglecting

the gauge contribution to the Higgs potential. The points are obtained by a numerical scan, requir-
ing my € [100,150] GeV. (a) The range of the parameters is taken as follows: m;g,mis € [0,8f],
040,0:q,04s,0ts € 10,27, a, € [1/v/2,2]. €, as defined in eq.(D.5), has been obtained by fixing Mo,
while m, by fixing £. The green line represents £ = 0.1. In most of the points 7, >~ —vf and it is
never possible to go in the region where vy > —v,. (b) The range of the parameters is taken, in the
notation of [119], as follows: g.,J. € [0,8], Mg, Ms,m,A € [0,8f], yr/(v/2yr) € [0.3,0.6] and yr, has
been obtained fixing M;,,, cutting for £ € [0.05,0.15]. The green band represents the actual values
of £ € [0.05,0.15]. In most of the points still v, ~ —~;, but now there is a region where the gauge

contribution is negligible.

estimate in eq. (3.107). We will provide more accurate estimates of the relation among Higgs
and fermion resonance masses in the next section, where we consider in more detail some specific
classes of models.

Non-minimal models with more vectors and fermions allow the possibility to tune £ < 1
in a different way. Since with more vectors, as we have just seen, the estimate (3.103) does
not necessarily hold, there is the possibility to have v¢ > |y4| (and yet heavy enough vector
resonances), so that the whole gauge contribution to the Higgs potential is sub-leading with
respect to the fermion one. All the tuning is at work in the fermion sector to get vy ~ 2§58y < f3.
This is possible, in the region of small mixing, if both the coefficients of the leading quadratic
and next-to-leading quartic terms in the mixing in 7, are tuned to be small, so that v; < 3.
In such regions a double tuning is at work, needed to get a small hierarchy between v and f.
See fig. 3.6 for a comparison between the multi-fermion and multi-gauge model (e.g. the 3-sites
theory of [119]), where this kind of tuning can occur, and the multi fermion (but minimal-gauge)

model.
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3.7.3 Three Examples of Selected Models

The framework introduced in the previous sections opens up a huge set of possibilities for model
building. In fact, not only the number of spin 1 and spin 1/2 resonances to be introduced be-
low the cutoff is free, but also the Weinberg sum rules have often physically different possible
solutions. Studying in detail each of these models is well beyond the scope of this work and, as
the simplest cases are already able to produce working models which display all the interesting
aspects, we focus in the following on the case where Ng, Ng, N,, N, < 2. A schematic presenta-
tion of the results for all the different cases will be presented in the appendix D. The simplest
realization of our framework, that is the model with N, = N, = Ng = Ng = 1 described in
section 3.7 and in appendix D, does not grossly pass the EWPT for my € [100, 150], GeV be-
cause of a too large tree-level S parameter, induced by (relatively) too light vector resonances,
my S 2 TeV, as can be seen in fig. D.1 (b,d). This is a direct consequence of the first relation in
eq.(3.111) and of the fact that k, ~ kg in this model.

A straightforward way to circumvent this problem is to add more freedom either in the gauge
sector or in the fermionic sector. In the rest of this section we consider three models. The first
two, in our opinion, offer the best compromise between simplicity and viability, that is N, = 2,
Ny, = Ng = Ng =1and Ng =2, Ng = N, = N, = 1. The third one is actually the simplest
possible model, with N, = Ng = 1 and N, = Ng = 0. Here the composite sector is assumed
to contain a massless chiral bound state, identified with the RH top quark. As we will see, this
model is not realistic because it predicts a too light Higgs, but it is a counterexample to the
statement that a light Higgs predicts light fermion resonances.

For the first two models presented here and those in the appendix D we have performed a
scan of the parameters imposing the generalized Weinberg sum rules, setting the ratio v?/f? =
¢ =0.1,0.2 and requiring a light Higgs boson, mg € [100, 150] GeV. In all our scans we set the
top mass (roughly at the TeV scale) to be My, (TeV) =~ 150 GeV 2L,

Direct search bounds on the fermion resonance masses should be taken into account. The
present available experimental constraints are discussed in section 3.5.2. The plots presented
in this chapter, however, use only an older (and weaker) bound on the exotic fermion X with
electric charge @ = 5/3 coming from the CMS bound on double production of B’ resonances
(Q = —1/3) decaying to W~t, mp > 611 GeV [165], which also applies to the X search (the
signature of the final state is two pairs of same-sign di-leptons in both cases, also the efficiency

of the cuts is approximately the same):

M6 > 611 GeV . (3.113)

21This value is obtained by considering the running of the top Yukawa coupling in the SM from the top mass

energy scale, where it is measured, to the scale of the top partners ~ TeV, where it is generated.
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Figure 3.7: Mass of the LFR (in GeV), before EWSB, as a function of the Higgs mass (in GeV). The
green circles represent the points where the LFR is the singlet 77 while if it is the exotic X with charge
5/3 then they are represented by purple triangles. The masses mg, m,, and m,, are taken in the range
[0,8f], ap,,ap, € [1/2,2] and amix € [0, 5]; € and mg have been obtained by fixing M;,, and &.

In appendix D we also comment on the models where the generalized second Weinberg sum

rules are relaxed and the Higgs potential is logarithmically divergent.

Two-vector model

The models with N, = 2, N, = Ng = Ng = 1, are the simplest models passing the EWPT within
our set-up. A similar model with NV, = Ng = Ng = 1 and N, = 2, considered in the appendix D,
also pass the EWPT, but it is theoretically less motivated than the N, = 2, N, = 1 case. Indeed,
while the gauge sector of the latter can be realized, for instance, in a deconstructed model (such
as the 3-sites model of [119]), the former appears to be more exotic and unconventional. For this
reason, we have decided to focus on the N, = 2, N, = 1 model in the following. We assume
invariance under LR symmetry, so that II; g in the last row of eq.(3.75) vanishes. In the fermion
sector we take eq.(3.98) to satisfy the two sum rules (3.96) and (3.97), and keep mg # m¢. This
solution allows us to explore both the regions of parameter space where the LFR is a T" or X.
As explained in section 3.7, adding a second vector resonance allows for a higher overall mass
scale for the vectors, keeping v, fixed, and alleviate the constraints coming from the S parameter.
This can be explicitly seen in the approximation funix = 0 and f,, = f,, = f, where we obtain
the expression (3.112) for 74, which is negative in the range 0.4 < = = m,/m, S 2.5 and
positive otherwise. It is therefore possible to tune x ~ 2.5 (or x ~ 0.4) and at the same time
increase m1 to keep 7, fixed. A posteriori, the numerical scan shows that amix = fmix/f < 0.3,

so that the approximation used above is valid.
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The fermion sector of this model is simple enough that it is not hard to write simple analytic
formulas for the top and Higgs mass, that go beyond the parametric estimate given in section 4.
In particular, this allows us to explicitly check that a light Higgs requires light fermion resonances.
Let us first consider the elementary ¢; g region, with wz g < 1. In this region, at leading order

in wy, ~ wg, we have

1 1 4(mg +mg)?

Using eq.(3.102) for £ < 1 and expanding ; at leading order in wr, g, we immediately get

2.9 2
2 ~ NC méw%(wL + \/in)le 2(.&)%{ _ NC QOS 1 mQ M2 (3 115)
mpg = 72 f2 22 — W2 B\ 2 )~ 722 m2, — m2 8\ 2 top :
R L L Q s 5

where in the last relation we have used eqs.(3.45) and (3.114). It is straightforward to derive
from eq.(3.115) an upper bound for the LFR mass mp:

nf mpyg 0.1\ /2
< ~12— TeV . 3.116
= VN: Myop < § ) c ( )

Let us now consider the region wy, < 1, wr ~ 1 (elementary ¢y, semi-composite tg, often found

in the numerical scan). In this region the LFR is necessarily 7", with m; = My ~ V2mg.

Expanding in wy, < 1, we have

2
m
Mtzop = TL§7
N . (3.117)
m3; ~ @m%(logﬁfl + 8log (mg) + log4 — 1)Mt20p,
and gives the upper bound
2v2

V2] Moy g £=0.1. (3.118)

myp <
V/Ner/log €1 Migp

We performed the parameter scan for a light Higgs, both for £ = 0.1 and £ = 0.2. We show in
fig. 3.7 the relation between the LFR mass, my, and the Higgs mass, my, in the light Higgs
region, obtained by a numerical scan over the parameter space. The bounds in eq. (3.52) rule
out most of the region with a light X. As explained above, the vector masses can be arbitrarily
heavy, so passing the constraints on the S parameter is not an issue for this model. Also in this
case, the tuning to get a successful EWSB is between the gauge and the fermion contribution to

the Higgs potential, v, and ;.

Two-singlet model

Adding a second composite fermion, singlet of SO(4), is the minimal choice to go beyond the
simplest setup in the fermionic sector. This is already enough to increase vy and therefore to

obtain heavier vector resonances and smaller tree-level contribution to the S parameter.
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Figure 3.8: Mass of the LFR (in GeV), before EWSB, as a function of the Higgs mass (in GeV). The
green circles represent the singlet 77 while the purple triangles represent the fermion X. All the fermion
masses are taken in the range [0, 6 f], the angles 64,6, € [0,27] and a, € [1/v/2,2]. The mixing €, and the

mass m, have been obtained by fixing M;,, and £ respectively.

The fermionic Lagrangian we start with is the one of eq.(3.39) with Ng = 1, Ng = 2. The
most general solution to the first fermionic sum rule, eq.(3.96), is given in terms of two angles
and two mixings:
€0 = € €qs = (€gco8 0y, €4s8n6,),
qQ q q q 7 €q q (3.119)
€tQ = €t g;gs = (Et COS gt, €t sin 9,5)

We can solve eq.(3.97) for one of the remaining parameters, say €,, in terms of the remaining

ones, obtaining

2 _ 2 20, _ 12 ain2
mg — mijg Cos 0 — m5g sin® 0;

€ = € (3.120)

2 .2 20 _ 2 2p "
mg — mijg Cos 04 mig sin 04

Once we impose this relation, for small mixing ¢ we have v €2 and B ox e}, in contrast to

the 1-singlet case where 7y, 87 o ¢*. In particular, we get
Vf X 6§(m2Q - m%s)(m% —mig)(mig — mig)(cos 20, — cos20;). (3.121)

This implies that v; can be enhanced with respect to the estimate in eq.(3.99). However ~,
cannot increase too much, leading otherwise to too heavy vector resonances, and hence the
enhancement of v, should be kept small. This is confirmed by the numerical scan where we get
small deviations from the exact cancellation. In this simple, yet fundamental, observation lies
the reason why this model, like all the ones with more fermionic resonances, is able to pass the
EWPT.
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Let us consider a specific region in parameter space selected by EWSB, where ¢, ~ ¢ ~ ¢,
mqg ~ mas ~ M, 0, ~ 7 and 6; ~ 0, with both m;5 and € much smaller than M. In this region

the coefficient of the €? term in s is suppressed. We get

N, M Ne
= et <log 1> 467,

3272 m? )" 322"
N, M2 m? N, 4
~ log =5 + —— (log £ —1] | = b 3.122
1= gppa¢ (Ogm%+8m§ %2 32m2° % (3:122)
¢ ¢
M2 o~ 2 —
T 4m2

where ps is the IR regulator of the spurious IR divergence arising from Sf (see eq.(3.95) and
footnote 12) and my, denotes the mass of the LFR, that is clearly the singlet Sy in this region:

mr, > /m?ql + €2/2. From these relations we obtain the estimate

f T My
mrp >~ —_— .
L bs Myp

(3.123)

Since bg > log %—; 2 2 for at least M > 3my, the singlet has an upper bound of my < 800 GeV
for £ = 0.1. We therefore obtain that also in this case a light Higgs boson implies light fermionic
resonances. For both £ = 0.1 and 0.2 we find that the singlet is the LFR, with a mass in the
range ~ 300 —800 GeV, see fig.3.8. A sizable portion of this region is now excluded by the bound
in eq. (3.52) from direct searches of double production of 7" resonances, in particular the model
for £ = 0.2 is now completely excluded. Even though the bulk of the points show a vector mass
in the same range as in the minimal model, there are nevertheless points with bigger values of

m,, so that the model can pass the EWPT

3.8 A Counter-Example: a Light Higgs and Heavy Resonances

Let us now consider a qualitatively different setup. We modify the picture presented in sec. 3.3 by
assuming that the right-handed top quark is part of the composite sector. Such a choice, which
differentiates the third family with respect to the first two, could be justified by the fact that the
top is much heavier than the other SM fermions. Since composite states should be in complete
representations of SO(4), if we assumed that the doublet g7, was part of the composite sector,
then we should have added other light states in order to complete a representation of SO(4) (in
particular another doublet), which is not observed. Moreover, bounds from the measurement
of the Zbb coupling do not allow to assume a composite RH bottom quark. The only available
possibility is then to consider a composite RH top quark in a (chiral) singlet representation of
SO(4). As in the previous sections we embed the LH top doublet in a 5 of SO(5), &1, with
X =2/3.
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Figure 3.9: Higgs mass (in GeV) as a function of the Y = 1/6 doublet mass (in TeV) in the composite
tr model, for £ = 0.1. The blue points are obtained by a numerical scan, while the thin red line represents
the analytic estimate eq.(3.127). The two results are compatible, up to a ~ 5% error, due to the expansion
for small € in eq.(3.127). In the numerical scan, the mass m¢g has been taken in the range [0,10f], while

the mixing parameter € has been obtained by fixing My,p,.

In order to provide a mass to the top the mixing term e £,Utr would be sufficient since
it would give My,, ~ e€sy, however the Higgs potential in this model would be quadratically
divergent and therefore we would not be able to compute the Higgs mass. To cure this issue let
us add some composite top partners and estimate the expected values of the Higgs mass in this
class of models [3]. We can easily estimate 3 ~ 12% ¢* and therefore the Higgs mass

4 2
2 NCE N Mtop

i opapat = gpaMion 2

~ (36GeV)2. (3.124)

We see that, at this level of approximation, the Higgs mass is independent of the details of the
models and too light.

Let us now construct an explicit model in order to confirm this estimate. In order to cure the
quadratic divergence in the Higgs potential it is sufficient to add one composite fermion in the
bidoublet representation, ), while no singlet fields S are needed, Ng = 0. The leading fermion

Lagrangian is??

Lo =qrilyr +triVir + QUY —mq)Q + €uséLUtr + €,0¢LUQR + h.c.. (3.125)

The Weinberg sum rules (III) and (IV) obtained in section 3 do not apply in this case with

*20ne might think that the Lagrangian (3.125) can be obtained from eq.(3.39) with Ng = Ng = 1, in the limit
€t5,tQ — 00, in which case the singlet becomes ultra-heavy and can be integrated out. This is however not the

case, because the Weinberg sum rule (III) would imply €g5,40 — 00, and hence a ultra-heavy doublet as well.
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Ng = 0, but the expressions for the form factors and the 1-loop Higgs potential are particularly
simple. Demanding the cancellation of the quadratic divergence in the fermion sector requires
leq@| = |€gs| = €. Requiring also the cancellation of the logarithmic divergence in v would imply
€ = 0, which of course is not a viable possibility. This is not an issue because we are interested
mostly in computing the Higgs mass, which is finite in this case. Keeping the logarithmic
divergence, as we explained in section 3.6.1, means that ~y is scale-dependent and therefore one
has to fix £ via some observation, rendering it not calculable. We then proceed by assuming a
given value for { and computing only 3. Since 8, < B, we can completely neglect the gauge
sector.?® In this approximation, and at first order in &, we obtain the expression for the Higgs

and top masses:

N, €'ml m g 2m2
MZ~ 2 Q¢ —1),  ME ~_——“¢, 3.126
H = 8p2 me‘ll/(). < ,u?c top 2mf/6 ( )

where m% /6= m2Q + €2 is the physical mass of the composite Y = 1/6 doublet before EWSB.

From these expressions we get the estimate for the Higgs mass as

N M2 m2 m2
My ~ | —5 tp og 12/6 —1~36,|log 12/6 —1GeV, (3.127)
2me v 1 I

which is in very good agreement with eq. (3.124). As can be noticed immediately, the Higgs is
always too light (Mpy ~ 90 GeV for m, s ~ 6 TeV). This conclusion has also been checked by
a numerical scan of the model, which gives results in agreement with the estimate above, see
fig. 3.9. In this model the LFR is x, with a mass (before EWSB) My /s = mg. It is interesting to
notice that a light Higgs does not imply a light fermionic resonance, at least for models with a
chiral composite sector. In this class of models a heavier value for the Higgs mass can of course
be obtained by adding to the model other sources of explicit breaking of the global symmetry.
For example this is the case of the SUSY pNGB Higgs model with a composite tg studied in
ref. [121], where the extra symmetry breaking terms are required by anomaly cancellation and

for the absence of unwanted massless non-SM states.

3.9 Summary

In this chapter we constructed an effective theory in which the Higgs arises as a composite pseudo-
NGB of a spontaneously broken global symmetry of a strongly coupled sector at the ~few TeV
scale and in which the SM fermions (the top quark in particular) get a mass via the partial

compositeness mechanism. Assuming that some vector and fermion resonances are somewhat

ZSince € is not calculable, we can also relax the Weinberg sum rule (II) in the gauge sector, in which case we

can assume that no axial resonance is present at all.
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lighter than the typical strong coupling scale A, we included those states in the effective theory
and computed their contribution to the Higgs potential, which allowed us to link the Higgs mass
with the properties — the mass in particular — of these states. In order to have a calculable
potential in our effective approach, we introduce the Minimal Higgs Potential hypothesis. That
is, we require that the contribution to the potential from dynamics at the cutoff is subleading
and we regulate the quadratic and logarithmic divergencies of the calculable contribution by
imposing suitable generalized Weinberg sum rules.

After constructing various realizations of the models with different content of composite
resonances, sec. 3.4, we were able to show that in such composite Higgs models, the measured
value of the Higgs mass implies the presence of light (sub-TeV) fermion top partners, sec. 3.7.
The LHC constraints on these states, described in section 3.5.2, are already able to exclude a big
part of the parameter space of the models. We expect that the next run of the LHC at 14TeV

will be able to cover completely all the parameter space of these natural models.
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CHAPTER 4

A Composite Dark Matter Model

As already mentioned in the previous chapter, the next-to-minimal symmetry breaking pattern
for composite Higgs models is SO(6) — SO(5), which includes five NGBs in the spectrum. Under
the custodial subgroup SU(2);, x SU(2)r they transform as a bidoublet, (2,2), plus a singlet
(1,1), which are identified respectively with the Higgs doublet H and a real singlet 7. This
scalar singlet can be made stable by introducing a symmetry under a parity P,.

This opens up the possibility for this new particle to be a dark matter (DM) candidate. In
this chapter we study this issue. We construct the models following very closely the approach
described in the previous chapter, i.e. we introduce spin-1 and spin-1/2 resonances which mix
linearly with the SM fields, and then we compute the effective potential for the Higgs and the DM
candidate by assuming the MHP hypothesis and curing the UV sensitivity by suitable generalized
Weinberg sum rules. In this way we are be able to link the properties of the DM candidate (mass
and couplings), relevant to the astrophysical constraints, to the resonance spectrum, and study
how the LHC bounds on these resonances and the Higgs couplings affect the DM properties.
This chapter is based on the work done in ref. [2], where we extended the results of ref. [166].

4.1 A composite Dark Matter model

In this section we present a Composite DM model in which both the Higgs doublet H and the
scalar singlet DM particle 7 arise as composite pNGBs, characterized by the NGB decay constant
f, from a spontaneous symmetry breaking due to the dynamics of a new strongly coupled sector,
lying at a high scale A ~ 4xwf. The scenario considered here is based on the SO(6) — SO(5)
symmetry breaking pattern. The singlet 7 is stable thanks to a parity P, under which

n——-n. (4.1)

The main difference between this case and models in which 7 is an elementary scalar (see,
e.g., refs. [167-169]) comes from derivative interactions between n and H. The universality of

the leading-order chiral Lagrangian implies that these interactions depend only on the symmetry
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breaking pattern and on the scale f. As showed in the previous chapter, fit of the Higgs couplings,
EW precision observables and bounds from direct searches of composite resonances constrain the
scale f to be somewhat higher than the EW scale, v2/f? < 0.2. We can therefore expand the
chiral Lagrangian for the NGBs in powers of (|H|?,1?)/f?; up to dimension-6 terms one has [166]

. 1 1 1 2
LM ~ D, H|? + 5(a,m)2 t o <8M]H]2 + 2a,m2> . (4.2)

As for the MCHM, in order to provide a mass to SM fermions we assume the partial com-
positeness mechanism. Upon integrating out the heavy fermions, the SM Yukawa interactions
are generated, along with higher order interaction terms. Considering, for example, the bottom

quark, up to dimension-6 terms the effective Yukawa Lagrangian can be written as

H|? 1n?
ﬁYuk,b ~ _yquHbR <1 — ’ihb|f2| - ﬁnbi% +.. > + h.c. s (43)

and similarly for the other SM fermions. In our explicit model all the coefficients kjy = Kyr = 1,
where in general they depend on the choice of embedding of the SM fermions in (incomplete)
SO(6) representations and on the parametrization of the SO(6)/SO(5) coset, as discussed in
detail in appendix F.

As we saw in section 3.6, the mixing term between elementary and composite fields generate
an effective potential for the pNGBs at the quantum level. Assuming invariance under the parity
in eq. (4.1), the most general scalar potential, up to dimension 4 terms, is

2

W A
V(H,n)esr = pj| HI? + 5"772 + M H* + Z"n“ + A\H[*n*, (4.4)

where A is often dubbed Higgs portal coupling [170]. Assuming that 0 < —pu? < Apf? and

2
u% — )\’;—Z > 0, this potential has a minimum for

t
(H) = (0, \%) , (n) =0, where v*= —‘;’21 = £f? ~ (246 GeV)? . (4.5)
h

The masses of the physical fields h and n, being h the Higgs boson, are given by
m3 = 2203 (1 =€), m,27 = u,27 + M? | (4.6)

where the (1 — &) factor in the Higgs mass is a correction due to a wave function normalization
effect, see eq. (4.12) in the next subsection.

Following the discussion of chapter 3 we render the scalar potential calculable by assuming the
Minimal Higgs Potential hypothesis and we impose generalized Weinberg sum rules in order to
remove the quadratic and logarithmic sensitivity to the cutoff. At one loop, the only composite
states which contribute to the scalar potential are those that mix with the elementary SM

particles, breaking the global SO(6) symmetry with such mixings. Such states are the spin-1/2
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top partners and composite spin-1 resonances, with masses of the order mf) < A?, which mix
with the SM EW gauge bosons.

The main aim of the rest of this section is to build explicit models in order to study the
allowed range of the DM mass and Higgs portal coupling in realistic cases which, in particular,
correctly describe both the top and Higgs mass and which still evade the bounds from direct
searches of top partners at the LHC.

4.1.1 Structure and symmetries of the SO(6)/SO(5) coset

Let us review here the basic structure of next-to-minimal Composite Higgs models where the
strong sector enjoys a global symmetry SO(6) ® U(1)x! spontaneously broken to the subgroup
SO(5) ® U(1)x at a scale f [45,132,166]. Due to this spontaneous symmetry breaking, the low
energy theory has 5 NGBs, which transform in the fundamental, 5, of SO(5). The custodial
symmetry group is contained in the unbroken group, SO(4) ~ SU(2); ® SU(2)r C SO(5), and
the NGBs transform as a4®1 ~ (2,2) @ (1, 1) of the custodial group. Here and in the following
we describe the five broken SO(6)/SO(5) generators as T%, with @ = 1,...,5. The 10 unbroken
generators of SO(5), T%, can be divided in the 6 generators of the SO(4) custodial subgroup,
TeLR with ar, g = 1,2, 3, and the 4 generators of the SO(5)/SO(4) coset, T* with o = 1,...,4
(see eq. (F.1) in appendix F for the explicit definition of the generators). The SM EW gauge
symmetry is identified as the subgroup Gepw = SU(2); ® U(1)y C SU(2)r ® SU(2)r ® U(1)x,
where the hypercharge is defined as Y = 7538 + X.
The NGBs can be described by the ¥ field

1
= ? (h17h27h37h4777; V f2 - h2 - 772) ) (47)

where h? = E?:l h? and where h; and 7 live in the region \/m < f.? The usual Higgs
doublet can can be constructed as H = %(m +ihg, hy + ihy)t. In the unitary gauge hi(z) =
ho(z) = ha(x) = 0 and h(x) = hz(x). See Appendix F for more details.

The chiral Lagrangian can be written in an expansion in derivatives over the cutoff. The
leading term, with two derivatives, can be written as
#2

Lkin — ?(DuE)tD”E : (4.8)

where D, = 0, — (gng‘jLTaL + géBuY) and f > v is the symmetry breaking scale, that is the
only parameter of the leading order chiral Lagrangian. To eq. (4.8) one should add the kinetic

'The U(1)x factor is needed in order to correctly reproduce the SM fermion hypercharges.
2The effect of this constraint is negligible at any order in perturbation theory and therefore does not have any

effect in any of the computation we perform in this work. In appendix F we will explicitly show the relations to

other parametrizations used in the literature.
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term for the elementary SM EW gauge bosons (we neglect QCD here since it does not play an

important role in our discussion)?

1 1
[gauge _ngywaMV _ EB;WBMV , (49)

In the unitary gauge, the chiral Lagrangian in eq. (4.8) reads

f? 1 (hduh +nd,n)?
E(Duz)tmz =3 (8uh)% + (9,m)* + f;‘_ 3 _“772
4.10)
h? (
+ o { B (VD2 + (W22 + (6B - a2
The SM gauge boson masses are given by
2 2, 2
g 95+ 9
miy =Bz oy = DI (411)

This fixes the EW scale v = (h) = f1/€ ~ 246 GeV. Given that in the vacuum (n) = 0, it is

immediate to see that the canonically normalized fields, in this parametrization, are

h— v+ 1= hphys , 1 = Nphys - (4.12)

The parity n — —n, which keeps this scalar stable, corresponds to the operator
P, = diag(1,1,1,1,-1,1) € O(6) , (4.13)

and is an accidental symmetry of the leading order chiral Lagrangian, eq. (4.10). Higher derivative
terms (such as the Wess-Zumino-Witten term) in general break this symmetry. As we want this
scalar to be a viable DM candidate, we assume that this is a symmetry of the whole strong
sector, that is we take the symmetry breaking pattern to be O(6) — O(5) [166].

Another symmetry of eq. (4.10), very relevant for the n phenomenology, is a SO(2), ~ U(1),
generated by T® which rotates the fifth and sixth components of ¥ and under which 7 shifts. If
the fermion mixings also respect this symmetry then 7 remains an exact NGB, thus its mass and

couplings from the potential vanish.

4.1.2 Composite resonances Lagrangian

The Lagrangian of the spin-1 and spin-1/2 resonances which mix with the SM gauge bosons
and fermions is completely analogous to the one for the MCHM described in section 3.4. Let us
briefly review it adapting it to the SO(6)/SO(5) coset.

30ur convention for the field strength is Wy, = 0, W, — 0, W,, —igo[W,, W,] and By, = 8, B, — 8, By, where
W, = WitTeL.
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Vector Lagrangian

Let us consider spin-1 fields in the adjoint, p, = p;T® € 10, and in the fundamental, a;, =
aZT& € 5 of SO(5). For simplicity we limit ourself to one copy only of each resonance. At
leading order in the number of derivatives, the Lagrangian for these fields, assumed to be lighter

than the cutoff, is

2
L=l = —lTr[ ] N [( ~-E )2} Iy [a2,] + Jo
= 4 p,uz/ 2 9pPu H 4 o 2A2

Let us also define the masses m, = f,g,, mqs = fa%. As we see, this Lagrangian is formally

identical to the one in eq (3.33), but it should be kept in mind that the field content is different.

Tv [(gaau—Adu)z . (4.14)

Fermion Lagrangian

In order to give mass to the SM fermions we adopt the partial compositeness scenario. The choice
of the representation of SO(6) in which to embed the SM fields is a source of model dependence,
in particular the characteristics of the scalar one-loop potential and the preservation of P, and
of U(1),, depend on the choice of the embedding of the third generation of quarks. It has been
shown in ref. [166] that, since [Pn,TB] # 0, the only way in which both symmetries can be
respected by the mixing terms is if the SM fermions are embedded in representations of SO(6)
with vanishing U(1),, charge.

In the following we focus on the embedding of the SM doublets qr,, £7, in the bi-doublet inside
the 6, with P, = 41 and which preserves U(1),, and the right-handed fermions ur, dr, er in the
parity even singlet inside the 6, that is its sixth component with non-zero U(1), charge. The
charge under U(1)x is fixed by requiring the correct hypercharge. The embedding of the SM

doublets has to be different for the mixing terms responsible for the up-type or down-type quark

masses:

by, 0 tr, 0
—iby, 0 ity 0
1 tr 0 a1 ]| —bo d 0

gu = = ’ gu = ) 5 = = ) § = ’
LRVCR T R 0 VR b R 0
0 0 0 0

0 2/3 tr 2/3 0 ~1/3 br ~1/3

(4.15)
where the subscript indicate the X charge. We embed the SM lepton doublets and singlets in
the same way as £¢ and f}é but with U(1)x charges X,, = X, = —1.

4In section 4.4.2 the couplings between DM and the first two generations of quarks will be extremely important
for our phenomenological analysis in the context of DM direct detection. In order to be as general as possible,

therefore, we will consider also different embedding w.r.t. eq. (4.15).
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Let us briefly comment on the case in which the right handed top quark is embedded in a 15
of SO(6), in order to preserve the U(1), symmetry. In this case the breaking of this symmetry,
and therefore the contribution to the 1 potential, comes only from the bottom quark, assuming
its right chirality is embedded in the 6. Since the bottom mixings to the composite sector are
much smaller than those of the top, we expect that in this case the singlet is much lighter,
my S O(10) GeV. From the expression of the DM mass in eq. (4.6), assuming /1727 > 0, this
implies that also the coupling \ is generically small: A < 1073, In this case the bound from the
Higgs invisible width is able to exclude such a framework for any value of £ = 0.05. For this
reason, we will not further consider this possibility in the rest of this paper.

Let us now focus on the fermion partners responsible to give mass to the top quark, since
the mixing terms with these fermions provide the leading contributions to the effective potential.
We assume that the right-handed top is an elementary state, as all the other SM fermions. We
introduce Np vector-like composite fermions in the fundamental, F € 5 with X = % (each
contains two doublets F 5 € (2, 3, Fr6 € (2, £) and one singlet F5 € (1, 2) under SU(2),, x
U(1l)y), and Ng vector-like singlets, S € 1, of SO(5), with X =Y = % We embed the
SM fermions in the 6 of SO(6). The leading Lagrangian for the top sector, relevant for the

computation of the one-loop effective potential, is given by

NS NF
Ef = (jLiquL + LTR’LJDtR + Z SZ(ZW —m;s)S; + Z FJ(ZW — ij)Fj (4.16)
i=1 j=1
+ > (sErPLUS: + €hs€LPRUS) + > (dp€rPLUF; + €hpf PRUF ) + huc. |
i=1 j=1

where Pp, g = # are chirality projectors and
V,=08,—1iE, —iqxg,By - (4.17)

In general at the same order in the expansion in derivatives it is possible to write other
invariants which do not involve the elementary fields, analogous to those of eq. (3.43). Even if
they can be phenomenologically important, since they do not contribute to the pNGB potential

at one-loop we neglect them in the following.

4.2 Analysis of the potential and parameter scans

In this section we present the main results of this approach, focusing the discussion on the
analysis of the one-loop effective potential for the h and 7 scalars. All the details of the compu-
tation, including the explicit formulae for the form factors, are the same as in the minimal case

presented in section 3.6, therefore we will be very brief here presenting only the most relevant
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results. Analytical approximations and full numerical results are explicitly computed using two
benchmark values for the parameter & = v2/f?, namely ¢ = 0.1, corresponding to f ~ 800 GeV,
and £ = 0.05, corresponding to f ~ 1.1 TeV.

4.2.1 Vector contribution

The gauge sector, described by the Lagrangian of eq. (4.14), contributes to the potential only
via the h? dependence, therefore only to the 7 and A, coefficients of eq. (4.4). In general, this
contribution is quadratically divergent. We require the cancellation of this quadratic divergence
by imposing the sum rule

2
(WSR Dgauge © =+ 12— f2=0, (1.18)

while the logarithmic divergence is removed requiring
(WSR 2)gauge : 2m2 = 2m? . (4.19)

We use these two sum rules to express f, and m, in terms of the other parameters; note that
this fixes all the parameters of the a, fields relevant for the effective potential, since only the
combination g2/A enters in the potential. The sum rule of eq. (4.18) requires a bound f, > f/V2,
that is compatible with the partial UV completion (PUVC) criterion introduced in ref. [105] which
predicts f, ~ f.

In order to obtain a simple analytic expression for the gauge contribution to the potential let

us take ¢’ = 0, f, = f and expand for g> < 1. We obtain

9g2f2m2 gg4f4 39m2
(13)9 ~ W?p log2,  (W)? = 5o | log m%VP -5] . (4.20)

4.2.2 Fermion contribution

In general, the fermion sector contributes to all the coefficients of the potential in eq. (4.4). To

cure the quadratic divergence we impose the sum rules
Np Ns
Z Jo2_ Z i |2

|€qF‘ - ’€qS| )
j:l =1
Np Ng

J 2 _ i 12

E leipl” = E :’ftS’ .
j=1 i=1

(WSR 1) (4.21)

ferm :
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In order to cancel the residual logarithmic divergence we further require

Np Ns

2 1J 2 2 i 2
ijFH,F‘ :Zmis|625| )
j=1 i=1

(WSR 2)
Np ' Ng )

Z m?F‘eiF‘Q = Z m?s|€is|2 .
j=1 i=1

(4.22)

ferm :

The rest of the section is devoted to analyze in more detail two specific models. First we
consider the minimal scenario which allows to enforce both sum rules and to reproduce the top
mass, that is with only one fundamental F' and one singlet S. Then we study the next-to-
minimal scenario, in which we add a second singlet, since it allows more freedom in exploring

the parameter space of these composite Higgs models.

Minimal case: Np = Ng=1

In this minimal model it is straightforward to obtain the mass spectrum of the top partners
before EWSB from the Lagrangian of eq. (3.39). The SM top is massless at this level, the singlet
S gets a mass Mg = m% + |es|?, the doublet Fy /s has a mass Mf/fj = m% + |e,r|* while the
other doublet, F7 /s, and the other singlet, F5, are degenerate with a mass M7, = Mp, = mp.
After EWSB the fermions with same electric charge mix and these masses shift by an amount of

the order O(ve/m). From eq. (3.93) we obtain the top mass, at leading order for small &, [1]

[ EtF €qS
My, ~ —aFCs| |, GF L, S| g 123
0 Ay Mg | s €qF Ve (4.23)

In this minimal setup, the first sum rule is solved by imposing
legr|? = |egs|® = 62Q and leir|? = |es|® = 5 . (4.24)
The second sum rule further fixes
mp=mg=m, (4.25)

where we used the field basis where the masses are real and positive. Assuming for simplicity
that the mixing parameters are real, the only solution (up to field redefinition) for which the

potential does not vanish is
€qF = €45 = €Q , €ELF = €15 = €T . (4.26)

In this case, it turns out that

2\ f
(ﬁ;;;z) “M=0, M=a= _(l}?z?)f _ (4.27)
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Since u% does not receive any contribution neither from the gauge sector nor from the fermion
sector, it vanishes and therefore the singlet will be light (its mass is £-suppressed, as the Higgs
mass, eq. (4.6)).

In this simple model it is straightforward to obtain exact analytic formulae for these coef-
ficients, however in order to get an understanding of the behavior of this model it is useful to
make some approximations. For example assuming big mixings, that is m? < Mf/ﬁ, M 5%, we get
M2~ 2m2¢ and

top —
2 2 2
Nood = )T 1y NeMi, My log Mio (4.28)
froT 2T Art? MY - ME) T MG

which is evidently always positive. The top mass fixes m = My /s ~ 350 GeV which, as we showed
in section 3.5.2, is experimentally excluded, therefore this region is strongly disfavored. In the
opposite limit, that is 622, 6% < m?, we obtain MtQOp ~ 256%6% /m? and

(Ni%)f VN NcMEOP m’

T2 T 2Th T g2 p2
In this case, the scale of the top partner masses m has to be smaller than ~ 1.5f ~ 1.2 (1.6) TeV

A=\ =

(4.29)

for £ = 0.1 (0.05), in order to reproduce the correct Higgs mass. We have checked numerically
that, indeed, the relation \/ ~ %)\{L holds, up to O(20%) corrections, in all the parameter space.
This fact, using eq. (4.6) and the fact that the gauge contribution to A is always negligible,
allows us to conclude that in this model, for a given &, the Higgs mass fixes both the DM mass

and portal coupling

1 m2  1m?
my = Smy =~ 63 GeV, and )= 72" ~ 175 ~ 0.065 . (4.30)

Let us finally discuss how £ can be tuned to realistic values, in particular our benchmark

values £ = 0.1,0.05. From the relation —(“]?Lz)f ~ %)\i and eq. (4.6) we get
1 u2)9
§ g - (m’;) 2 (4.31)
H

where we neglected the gauge contribution to Ay since it is always negligible with respect to
the fermionic one. The gauge contribution to u% is therefore necessary in order to reduce &.
Eq. (4.20) allows to fix the composite vector mass as a function of the Higgs mass (for a given

value of f,/f, which has been set to 1 in this example)

2 mwmyg v
~ ———~2T f =0.1). 4.32
mp 1/10g23mW\/€ eV (for £ =0.1) (4.32)

From eq. (4.31) we see that, in absence of the gauge contribution, the natural value of £ would

be ~ 0.5. Therefore, we can estimate the amount of tuning needed to get a smaller value with

the simple relation

A~ 2% (4.33)
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Figure 4.1: Here we show the distribution of the fine-tuning A, computed summing in quadrature
the logarithmic derivatives of £ with respect to all the free parameters of the model after imposing the
Weinberg sum rules, versus m,. The left plot is for £ = 0.1 while the right one is for £ = 0.05. All the
points here reproduce the correct top and Higgs masses. The blue points pass the direct searches bounds

described in section 4.3.2, the orange ones do not.

that is, a ~ 20% tuning for £ = 0.1. Such a low amount of tuning in this model is due to the

2y f
fact that the extreme simplicity of the model after imposing the Weinberg sum rules fixes —%

to be of the same order (actually, a factor of 2 smaller) of \p, see eqs. (4.28, 4.29). This and
the relations in eq. (4.27) are non-generic features of these kind of models: in general the mass

term in the potential is expected to be generated at quadratic order in the mixings while the
(13)”
2,
and therefore the needed amount of tuning much larger. For this reason, in order to assess with

self-coupling term only at quartic order, so that

’ would be naturally much bigger than 1

more generality the viability of these DM model, in the next section we study also a non-minimal
model; in which this more generic feature is indeed present.

To verify the conclusions obtained by our analytic study, we performed a numerical parameter
scan of the model, extracting randomly the parameters f, € [%f, 2f], er € 10.2f,6f], m € [0,6f]
and obtaining eg by requiring the correct top mass at the TeV scale Myop,(1 TeV) ~ 155 GeV. The
vector mass m,, finally has been fixed by requiring the desired value of £ (we took as benchmark
points £ = 0.1 and £ = 0.05). After computing the full potential with the chosen parameters, we
selected only the points with a Higgs mass between 120 GeV and 130 GeV.” As can be seen from

5This loose interval has been chosen in order to obtain a sufficient number of points from the scan and because
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fig. 4.1, our scan confirms the analytical estimations presented above, in particular the relation
in eq. (4.30), within a few percent deviation. For each point of the scan we computed the fine
tuning in £ adding in quadrature the logarithmic derivatives of £ with respect to all the free

parameters of the model after fixing the Weinberg sum rules (that is ¢; € {f,/f,mp, m,er,€eq}),

Odlog¢ 2
A = 4.34
zi: (5 log Cz‘) ’ ( )
and found that A= ~ 10% for £ = 0.1 and A~! ~ 5% for & = 0.05, confirming the estimate of
eq. (4.33).

Next-to-minimal case: Np =1, Ng =2

Let us now move to discuss the next-to-minimal scenario with one fundamental and two fermionic

singlets. Also in this model, the mass spectrum before EWSB can be easily obtained from

eq. (3.39). The mass of the fields in the fundamental is the same as in the previous model, while

the two singlets now have a mass
1

M, , = B {m2 T \/m2 — 4 [migmig + (ejg)*mig + (ﬁfs)Qm%s}} ; (4.35)

where we defined m? = mig+m3g + (e/¢)? + (¢25)?. In the limit where mog is much bigger than

the other masses, these two expressions reduce to M gle , m% g + (65%)2. From eq. (3.93) we

get the top mass, at leading order in £ < 1

1 1 2
Ve reistis

2 1
mismaseip | mp <mls€qs n m2seqs>‘

el e €qF el €2
Mtop ~ tSTtS q tS tS (436)
2 2 2 2
ﬁMFua \/(Ms2 + Mg, )? — (Mg, — Mg, )?
In this case the most general solution to the first sum rule is (assuming real mixings)
1 2 .
€qF = €Q , €55 =€Qcosl , €;q=c¢€qpsind
(WSR 1) ferm : : . (4.37)
€tF = €T , €9 =€TCOSP, €q=€rsing .
After imposing this, the second sum rule becomes
2 2 2 2 2
mp = mjgcos”  + mygsin© o ,
(WSR 2)fe7‘m : ) ) ) ) ) (4.38)
myp = mjgcos” ¢ + mygsin® ¢ .
Solving these two conditions in terms of mag and ¢, up to arbitrary signs, we get
1
Mog = ,—\/m2 —m?2,cos?f ,
(WSR 2) ferm * sing VLS (4.39)

sing = sinf .

a O(5) GeV deviation in mpg does not have a significant relevance in our models. Moreover, we expect some small

correction to m? to arise from the bottom quark mixing, which we didn’t include in the scan.
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4 Analysis of the potential and parameter scans |

Without loss of generality we take mog > myg. This and eq. (4.39) imply that the relation
m?% > mig has to be satisfied.

In this model, from our numerical parameter scans, we find two characteristic regions de-
pending on the values of mg and sin . In the limit of small mp, that is of big mixing terms, the
DM quadratic term M727 goes to zero, so the DM mass is expected to be of the order of the Higgs

mass, and, like in the minimal model, the other coefficients are related by O(1) factors:

(i) 1y Nemi o@D
A=)\ =— 7 ~ §Ah o~ S fi (9+7|sm9|)622_6% log% , (4.40)

where we fixed m1s = mp/2 in order to respect the bound from the second sum rule and to
simplify the expression. In this region this model behaves like the minimal model discussed in
the previous section, in particular we expect the DM mass to be m, ~ 63 GeV and the coupling
A~ 6x 1072 eq. (4.30). A similar result is obtained by expanding for small mixings eg and
er (in order to obtain simple analytic expressions) and going in the sinf — 1 limit, due to a
term proportional to logsin? # in the leading term in ,u%L and ,u%, as in eq. (4.41). In this case we
exactly reproduce the relations of eq. (4.29), and therefore the same conclusions apply.

A different region is reached (always in an expansion for small mixings) in the limit of big

mp > f and small sinf < 1, that is with a hierarchy mog > mp > mis ~ f. In this case we

obtain
(MQ)f ~ N. m%’(eé - 26%) log 1
h — . )
82 12 sin?
N, m%e%

472 f2 8 sin?6 ’

iy =
N ) (4.41)
m
/\£ o~ |:—2(6%2 —2e2)2 + (6%2 + 4et) log mg} ,
S
A

1672 f4

Ne et ( 5 2 2 my,
~ 12 i €0 —26T+€T10gm .
S

In this case the DM mass can be arbitrarily high (for big mp and small sin @), while in order

to obtain the correct EW scale, that is to suppress (u%)f , it is necessary to tune 622 ~ 262T.

If this tuning is avoided here, then the gauge contribution to M}% has to provide the necessary

cancellation, which will imply higher values of the vector mass m,, than the case in eq. (4.32). In

both cases, we expect the tuning in this region to be higher than in the cases examined previously,

for which the expected tuning is as in eq. (4.33). Taking 62Q ~ 2€%, from the expression for Ay,

in eq. (4.41) we can fix ep by requiring the correct Higgs mass and then substitute this in the
formula for A\. We obtain )
m

A~ 8 ~0.065, 4.42

4U2 ( )

which is the same value we obtained in the minimal model.
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Figure 4.2: In the left column we show the distribution of the points obtained from the scan of the
next-to-minimal model in the (m,, A) plane, while in the right column we show the distribution of the
fine-tuning A, computed summing in quadrature the logarithmic derivatives of £ with respect to all the
parameters of the model, versus m,. The upper row is for { = 0.1 while the lower one for { = 0.05. All
the points here reproduce the correct top and Higgs masses. The blue points pass the direct searches

bounds described in section 4.3.2, the orange ones do not.

Also in this case we performed a numerical parameter scan of the model, extracting randomly

fo € [%f, 2f], er € [0.2f,6f], ms € [0,8f], mr € [mg,8f], 6 € [0, 3] and obtaining g by



4 Phenomenological analysis — part I: LHC |

requiring the correct top mass at the TeV scale My,,(1 TeV) ~ 155 GeV. As in the minimal
model, the vector mass m, has been fixed by requiring £ = 0.1 (or 0.05) and we selected only
the points with a Higgs mass between 120 GeV and 130 GeV. From these scans we observe that,
even when relaxing the tuning condition €2Q ~ 262T, the value of the coupling A remains always of
the same order of magnitude, that is in the range 3 x 1072 < A < 7 x 1072, while the DM mass
can vary from m, ~ mg/2 up to m, ~ O(700) GeV, see figure 4.2.

Computing the fine-tuning as presented in the minimal model, we find that for m, < 200
GeV most of the points present A~! ~ ¢ with a tail of points with A~! < 0.5%, as can be seen

in the right panels of figure 4.2. Increasing m,, the fine-tuning increases: for m, ~ 600 GeV we

have 0.5% < A~! <1%.

Relaxing the second Weinberg sum rules

In order to assess the generality of our prediction for A ~ 6 x 1072, which we obtain both in the
minimal and in the next-to-minimal models presented above, we also consider a generalization
of the next-to-minimal model in which we impose only eq. (4.37), relaxing the second Weinberg
sum rules of eq. (4.39), which renders the effective potential incalculable. In particular, relaxing
the second sum rules leaves a logarithmic divergence (i.e. a scale dependence) in ,ui and u%.

On the other hand, the quartic couplings A, A and ), are still scale-independent and therefore

2

5 can not be explicitly computed in this case but

calculable. As a consequence, both & and m
need to be fixed as boundary conditions.
Since we are mostly interested in the range of A\ given the measured Higgs mass, we performed
a parameter scan of this model fixing ¢ = 0.1 and extracting randomly ep € [0.2f,6f], m1s,mp €
0,8f], mas € [m1s,8f], 0 € [0,5], ¢ € [0, 5] and obtaining eg by requiring the correct Miop.5
For each point we computed A and mpg and selected only the points with m between 120 GeV
and 130 GeV. As shown in the left panel of figure 4.3, we obtain that A ranges from ~ 3 x 1072
and ~ 8 x 1072, with the distribution of the points peaked near A ~ 6 x 1072, thus confirming
the range obtained in the cases where both Weinberg sum rules were being imposed. The DM

mass my, not being calculable, is in this case a free parameter.

4.3 Phenomenological analysis — part I: LHC

In this section we analyze the constraints placed on the parameter space of our Composite DM
model by the LHC. In section 4.3.1 we discuss the bound on the invisible Higgs decay width,

while in section 4.3.2 we consider direct searches of composite resonances.

5We took into consideration only the fermion sector, since the gauge contribution to the Higgs mass is always

negligible due to the g* factor as well as a numerical suppression, see eq. (4.20).
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Figure 4.3: In the left plot we show the points obtained from the parameter scan in the model with
Ng =2, Ny =1 relaxing the second Weinberg sum rules, in the (mg, A) plane. In the right one we show
the lightest top partner masses, the green line is a reference line for Mp, , = Msg,. The blue points pass

the direct searches bounds described in section 4.3.2, the orange ones do not.

4.3.1 Invisible Higgs decay width

If m, < my/2, the Higgs boson can decay invisibly into two DM particles. The invisible decay
width corresponding to this process is given by [166]

2
Cine(h = 77) = =2 (mﬁ -2VIE) L ey oy (443)
2mmpy \v2/1—-¢& miy

This can be rephrased in terms of the following invisible branching ratio

BRjy, = L= 7) (4.44)

Fs%w + Finv(h — 7777) ’

where I‘S%/I is the decay width of the Higgs boson into SM particles obtained including the
deviations of the Higgs couplings in egs. (3.49, 3.50). Writing explicitly BRi,, as a function of
the DM mass and the Higgs portal coupling — using eqs. (4.43, 4.44) — it is possible to draw
an exclusion curve in the plane (m,, ) using the constraint on BRj,, described in section 3.5.1
(figure 3.4). We will show this bound in section 4.5, together with all the other phenomenological

constraints that we will derive in the following sections.
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4.3.2 Direct searches of composite resonances

Let us now apply to this model the experimental constraints from direct searches at the LHC of
spin-1 and spin-1/2 resonances presented in section 3.5.2.

The spectrum of spin-1 resonances in this next-to-minimal model is the following: the adjoint
of SO(5) (pf;), with masses of the order m,, contains a (3,1)®(1,3)®(2,2) of SU(2),®@SU(2)r
while the fundamental of SO(5) (az), with mass mg, contains (2,2)@®(1,1). We apply to m, the
approximate bound of eq. (3.51), albeit for a completely consistent bound a dedicated collider
study would be necessary.

Also for the top partners of this model, in particular the doublet F7 /s and the lightest singlet
Si, we apply the constraints of eq. (3.52). In this case, the difference between the minimal
and the next-to-minimal composite Higgs model is the presence of another fermion as part of the
fundamental of . In particular the field F', in the 5 of SO(5), includes — other than the bidoublet
— also a singlet F; which is degenerate in mass with the Fy /5 doublet. This field is odd under the
parity P, which implies that it does not mix with the top and that its only allowed two-body
decay channel is F5 — tn, where 7 is stable and detected only as missing energy. Although the
study of this decay can be a promising source of new bounds, in the work presented here we do
not research further this direction. Aside from this point, as described in section 3.52 we expect
that the constraints on the top partners would be dominated by the bound from searches of Fr g
since it provides the strongest bound.

In figure 4.4 we present the results of the parameter scans we performed for the two mod-
els (the minimal in the upper row, the next-to-minimal in the lower one) showing the points
which reproduce the correct top and Higgs masses, as well as the desired value of &, in the
plane (Mg, , MF, ;). The blue (orange) points are those which pass (do not pass) the bounds of
egs. (3.51, 3.52) while the green is a reference for the two regions specified before. We see that
the models with lower tuning, £ = 0.1, are already on the verge to be excluded by direct searches

and also for £ = 0.05 the bounds cut a sizable part of the parameter space of the models.

4.4 Phenomenological analysis — part II: astrophysics

In this section we analyze all the relevant bounds placed on the parameter space of our Composite
DM model by the most constraining DM searches currently ongoing in high-energy astrophysics.
In section 4.4.1 we discuss the DM relic abundance, while in section 4.4.2 we analyze the result
of the LUX experiment in the context of direct detection of DM particles. In section 4.4.3 we
study indirect detection experiments, focusing in particular on the measurement of the antiproton

energy spectrum.
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Figure 4.4: In the upper (lower) row we show the lightest top partner masses (before EWSB)
in the minimal (next-to-minimal) model with for £ = 0.1 [0.05] in the left [right] plot. The
points reproduce the correct top and Higgs masses, up to a ~ 5 GeV tolerance on mp. The blue
points pass the selection while the orange ones are excluded by direct searches of top partners

and vector resonances, eqs. (3.51, 3.52). The green line is a reference for Mp, 6 = Ms,.

4.4.1 Relic density

The DM scenario considered here is the standard one for Weakly Interacting Massive Particles

(WIMP), in which the n DM candidate is a weakly-interacting cold thermal relic. According
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to this paradigm, in the early Universe DM particles are kept in thermal equilibrium with the
other species in the thermal bath because processes in which a pair of DM particles annihilate
occur at the same rate as those in which they are created. As the Universe expands and cools,
however, the thermal energy is no longer enough to produce the massive DM particles with a fast
enough rate and also their number density dilutes due to the expansion of the Universe, making
more and more rare the annihilation process. This brings the DM particles out of the thermal
equilibrium and their number density “freezes-out”, that is scales in the same way as the entropy
density.
The evolution of the DM number density n(z) during the expansion of the Universe, being
x = m,,/T where T is the temperature, is quantitatively described using a Boltzmann equation.
In terms of the yield Y(x) = n(z)/s(z), where s(x) is the entropy density, this equation reads
dy
dx

\Fm"MPL (T){ovrar)(x) | (4.46)

Mpy, = 1.22 x 10! GeV is the Planck mass and g.(7T) is the number of relativistic degrees of

—Z(x) [YQ(x) — qu(:n)] , (4.45)

where

freedom. The thermally averaged annihilation cross-section is given by

sy/s —4mZKi(\/s/T)
(ovrer) ( / ds oUrel($) (4.47)
4m3

16Tms K3 (my,/T)

where s is the center of mass energy squared, K,—1 2 are the modified Bessel functions of second
kind and oy (s) is the total annihilation cross-section times relative velocity of two DM particles.

At the equilibrium

45 g2

Yeq(z) = mheT(T)KQ(x) , (4.48)

where heg(T) is the effective entropy.” The integration of the Boltzmann equation gives the yield
today, Y, which is related to the DM relic density through

2.74 x 108m,, Yo
GeV ’

Q,h% = (4.49)

where Q, = p;,/pc is the ratio between the energy density of DM and the critical energy density of
the Universe and h = H(/(100 km/s/Mpc) is the reduced value of the present Hubble parameter.
We solved numerically the Boltzmann equation in eq. (4.45), requiring to reproduce the value

observed by the Planck collaboration, Qpyh? = 0.1199 + 0.0027 (68% C.L.) [172].

"Solving numerically the Boltzmann equation, we keep the temperature dependence both in g.(7") and heg (1)
(see ref. [171]).
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Figure 4.5: Left panel: thermally averaged annihilation cross-section (o) () evaluated at the typical
freeze-out temperature for a weakly-interacting DM particle, namely Ty = m, /x; with x; = 20. Right
panel: DM relic density Q,h? in eq. (4.49) compared with the 30 interval measured by the Planck
collaboration (green band). We show two different values £ = 0.1 (solid line) and & = 0.05 (dashed line)
while we fix A = 0.065 as suggested by eqs. (4.30, 4.42).

In our analysis we included the annihilation processes np — ff, nmm — WHW =, o — ZZ,
nn — hh. The relevant SM fermions entering in the computation are the bottom and the top
quark. Moreover, below the kinematical threshold for the annihilation into two on-shell gauge
bosons, we also include the three-body processes nn — WW?* nn — ZZ*. Given the great
precision reached by the measurement of the relic abundance, in fact, the inclusion of these
radiative effects is mandatory in order to obtain an accurate matching [173].% Let us now discuss
the results of our analysis from a more quantitative point of view.

In the left panel of figure 4.5 we plot the thermally averaged annihilation cross-section at the
freeze-out epoch, i.e. assuming z; = 20, as a function of the DM mass m,), for the benchmark
values £ = 0.1 and & = 0.05. We fix A = 0.065, as suggested by egs. (4.30, 4.42). Going from
small to large values for the DM mass m,, it is possible to recognize the Higgs resonance (m,, ~ 63
GeV), the two-body threshold for annihilation into two on-shell W bosons (m,, =~ 80 GeV) and the
effect of the momentum-dependent interactions of the chiral Lagrangian in eq. (4.2). The latter,
growing proportionally to the square of the total energy in the c.o.m., becomes important for
large values of the DM mass enhancing the annihilation cross-section. Finally, the dip around 130

GeV for £ = 0.1 (180 GeV for £ = 0.05) corresponds to the value of m,, that solves the equation

8See refs. [174,175] for a more general discussion about the role of radiative corrections for the computation

of the relic abundance.
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s—2X(1—€)/v? =0, with s = 4m%/(1 —v2,/4) and vy &~ 1/2 at the freeze-out. This condition
corresponds to an accidental cancellation between the derivative and the A\ contribution to the
n-n-h vertex (see appendix F and ref. [166]).

In the right panel of figure 4.5 we plot, as a function of the DM mass m,,, the value of the
relic density in eq. (4.49) compared with the 30 interval measured by the Planck collaboration.
As before, we take £ = 0.1 and £ = 0.05, with A = 0.065. At the qualitative level the result can
be understood bearing in mind that a naive but useful approximated solution of the Boltzmann

equation is given by
Qh? 3% 10720 em’s~!
0.1199 = (ovga)(zy)

As a consequence the relic abundance retraces, upside down, the same contour of the thermally

(4.50)

averaged annihilation cross-section.

In section 4.5 we will present our numerical results for the computation of the relic density
from a more general viewpoint as contour plot in the plane (m,;, A). In this way we will be able
to compare the region of the parameter space in which the model can reproduce the observed

value of the relic abundance with the other constraints analyzed in the rest of this paper.

4.4.2 Direct detection

WIMP Dark Matter particles present in the galactic halo can scatter elastically with matter
in the Earth. Experiments for direct detection of DM aim to detect such rare DM scatterings
with a target nucleus of a detector by measuring the nuclear recoil energy. To reduce the
natural background these experiments place their detectors beneath the Earth surface. The
LUX experiment has recently reported the most stringent limit on the spin-independent DM-
nucleon elastic cross-section ogy [176].

In our model the spin-independent DM-nucleon elastic cross-section is generated by two types
of diagrams. On the one hand, the 7-n-h vertex in the chiral Lagrangian in eq. (4.2) generates
a tree-level contribution via the exchange in the t-channel of the Higgs boson which, in turn,
couples to quarks and gluons inside the nucleon. On the other one, the Yukawa Lagrangian in
eq. (4.3) contains a contact interaction between DM and quarks proportional to (mq/f?)n?qq.
Note that in both cases we have a scalar-mediated interaction with quarks, i.e. the interactions
involving quarks are always proportional to the scalar operator my,gq. The momentum transfer
in these processes is given by ¢ = —2mxeFre < m%{ (where the mass of a nucleus of Xenon is
mxe = 121 GeV while for the typical kinetic recoil energy one has E;, ~ few keV), therefore it
is possible to integrate out the Higgs and to neglect the effect of the derivative interactions. It

is then possible to describe the DM interaction via a single operator and a few parameters a,:

,C?]?)D > Zaqmqn2ch , (4.51)
q
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In order to write down explicitly these coefficients in our model, we need to specify the contact
interactions between DM and the first two generations of quarks. Since the computation of
the spin-independent elastic cross-section is the only place in which these interactions play an

important phenomenological role, we decided to distinguish between two cases

A(1—2¢) A(1—2¢) §
Case 1 : e = IS = (452
A(L - 2¢) ¢
Case 2 : Qg=u,d,cs,tb = + . (4.53)
a ! m?, 2(1 — &)v2

In the first case — eq. (4.52) — we set to zero the contact interaction between 7 and all the
quarks belonging to the first two generations. This setup can be easily realized, for instance,
considering the embedding of the right handed quarks of the first two generations into the 15 of
SO(6). The only non-zero contribution to ag—y 4., as a consequence, arises from the t-channel
exchange of the Higgs boson. The coefficients a,—¢ j receive, in addition to the term generated by
the t-channel exchange of the Higgs, an extra contact interaction from the Yukawa Lagrangian
in eq. (4.3); according to the discussion in section 4.1.2, this contribution has been computed
assuming the embedding of the bottom and top quark into the fundamental representation 6 of
SO(6). In the second case — eq. (4.53) — we assumed non-zero contact interactions also for the
quarks belonging to the first two generations, adopting the same embedding into the 6 of SO(6)
characterizing the top-bottom sector.

Given the operator in eq. (4.51), the spin-independent DM-nucleon elastic cross-section me-

diated by scalar interactions can always be parametrized as

1( my >2[pr+<A—Z>fn]2

0SI = —
my + my A2 ’

(4.54)

™

where my = (my, +my)/2 = 938.95 MeV is the nucleon mass while Z and A — Z are the number
of protons and neutrons inside the nucleus, with Z = 54 and A = 130 for a nucleus of Xenon. In
eq. (4.54) fp and f,, describe the coupling between DM and, respectively, protons and neutrons.
They are given by

2
fap= > f}:’p)aqmn,p + 5 1 S agmng (4.55)
q=u,d,s q=c,bt
where for the nuclear matrix elements we take [177,178| fj(wz) = 0.026, fi(“:) = 0.020, fj({) = 0.020,
(p) _ (np) _ _ (n,p) (n,p) (n.p) _
fr, =0.026, f7" =0.043, and fr, =1~ fp." — fp 7 — fr7 = 0.911.

We show our results in figure 4.6. In the left panel we compare the spin-independent elastic
cross-section computed in our model with the bound set by the LUX experiment. Following our
choice of benchmark values, we plot ogr for A = 0.065 and for £ = 0.1, £ = 0.05. Moreover, for
definiteness, we show only the setup corresponding to eq. (4.52). The bound of LUX turns out
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Figure 4.6: Left panel: comparison between the spin-independent elastic cross-section ogy in eq. (4.54)
and the bound extracted by the LUX experiment (the region above the red line is excluded). We plot
the value of og1 corresponding to A = 0.065 limited to case 1 in eq. (4.52), with £ = 0.1 (green solid line)
and ¢ = 0.05 (green dashed line). Right panel: region of the parameter space (m,, A) excluded by the
LUX experiment. We show the corresponding bound for £ = 0.1 (red solid line) and & = 0.05 (red dashed
line), considering both case 1 in eq. (4.52) (lighter red) and case 2 in eq. (4.53) (darker red).

to be very stringent, and only values of DM mass larger than 200 GeV are allowed. The two lines
for £ = 0.1 and £ = 0.05 are almost indistinguishable. The difference between these two values,
in fact, starts to be significant when (1 — 2¢)/m% < £/2(1 — &)v?, ie. for A < 1072, In the
right panel of figure 4.6 we illustrate the difference between case 1 and case 2 in eqs. (4.52, 4.53)
showing the bound of the LUX experiment in the parameter space (m,,, A), both for £ = 0.1 and
¢ = 0.05. For small values of ), i.e. A < 1072, the role of the additional contact interactions in
case 2 starts to be significant, pushing the excluded region towards larger values of DM mass if

compared with those allowed in case 1. For m,, 2 150 GeV, where the LUX bound can exclude

" 2 suppression in ogy, the difference

only large values of A > 102 in order to compensate the m
between case 1 and case 2 is less relevant.

In section 4.5 we will use the result in the right panel of figure 4.6 in order to combine
the bound of LUX with all the other phenomenological constraints under investigation in our

analysis.

4.4.3 Indirect detection

DM annihilation into lighter SM particles can still occur in regions of relatively high DM density
in the halo of the Milky Way galaxy. This process leads, eventually, to a flux of stable particles
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— e.g. photons, positrons, antiprotons and neutrinos — that could be detectable from Earth
[179,180]. The major task that has to be addressed in order to detect such signal is to understand,
for each of the stable species mentioned above, the contribution of the astrophysical background,
mostly originated from the interactions of ultra high-energy cosmic rays of extragalactic origin
with the interstellar medium in the Galaxy. In this context, the measurement of the antiproton
flux plays a central role because it offers the best signal-to-background ratio (including different
spectra features) and because the astrophysical background for antiprotons is moderately under
control.

The balloon-borne experiment BESS [181] and the space-based experiment PAMELA [182]
have measured with good precision the antiproton energy spectrum in the energy range from 0.1
GeV up to about 180 GeV. A further improvement is expected when the antiproton data collected
by the AMS-02 experiment will be released. The measured rate agrees well with standard
background estimate; this result, as a consequence, can be used to set limits on the yield of
antiprotons from exotic sources like DM annihilation.

The number of antiproton per unit energy, time and volume produced by DM annihilation is

given by the following source term

L)y O

Qs = = 0 —| (4.56)
P my dE 5

2

where (ovge))o is the thermally averaged annihilation cross-section times relative velocity describ-
ing DM annihilation today and dN/dE)|; is the antiproton energy spectrum per DM annihilation.
This is given by

dN |
= BRyx —| , (4.57)
f P

where the sum runs over all the possible final states nn — f that are kinematically allowed for
a given value of DM mass m,, (we included the three-body annihilation processes nn — WW*,
ZZ* below the kinematical threshold for the annihilation into two on-shell gauge bosons). In
eq. (4.57) dN/dE ]% is the number of antiprotons per each annihilation into the finale state
nn — f whose branching ratio is given by BR;. Concerning the DM halo profile ppn(r) we
adopted three different possibilities, namely the Einasto [183], NFW [184] and Isothermal [185]
profiles. We then propagated the antiprotons produced by DM annihilation considering for
definiteness two different propagation models among those described in refs. [186], i.e. the KOL
and CON propagation models. The comparison between these two different choices should give
an idea of the uncertainties affecting the propagation of charged particles in the Galaxy. Finally,
comparing the DM antiproton signal with the background generated using the same propagation
models, we were able to 30 extract exclusion curves for (ovye1)o. For more details on our approach

see ref. [2].
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Figure 4.7: Bounds on the thermally averaged annihilation cross-section times relative velocity (ovye1)o
obtained using the antiproton flux measured by the PAMELA experiment. The region above the blue
lines is excluded at 30 level. We show the bounds obtained using two different models for the propagation
of charged cosmic rays in the Galaxy, namely the KOL (left panel) and CON (right panel) propagation
models. In both cases we plot three lines corresponding to different DM density profiles, namely — from
bottom to top — Einasto (darker blue), NFW (blue), Isothermal (lighter blue). We also show the value
of (ovrel)o for € = 0.1 (pink solid line) and & = 0.05 (pink dashed line), with A = 0.065.

In figure 4.7 we show the bounds on (ov.e) obtained using this procedure, considering both
the KOL (left panel) and CON (right panel) propagation models (the three shades of blue lines
correspond to the three DM profiles mentioned above). For comparison, we also plot the value
of (ovrel)o using the two benchmark values £ = 0.1 and £ = 0.05, with A = 0.065. In both
cases it is clear that the antiproton bound provides a stringent constraint on the annihilation
cross-section. In section 4.5 we will present the antiproton bound as contour plot in the plane
(my;, A) considering both the KOL and CON propagation models but focusing only on the NFW

profile for definiteness.

4.5 Results

Here we combine all the constraints obtained in our phenomenological analysis for the Compos-
ite DM model studied in this chapter. We present our results in figure 4.8 in the plane (m,, A).
The green strip reproduces the correct amount of relic abundance as measured by the Planck
collaboration [172] (section 4.4.1). In the same plot we also show the bounds placed by the LUX
experiment [176] in the context of direct detection of DM (section 4.4.2), the PAMELA exper-
iment [182] in the context of indirect detection of DM (section 4.4.3) and the LHC experiment
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considering the invisible decay width of the Higgs (section 4.3.1). On top of this, we superimpose
the results of the scans performed in section 4.2 analyzing the effective potential, dividing the
points among those which pass or not the bounds from direct searches of top partners and vector
resonances at the LHC described in section 4.3.2. We consider the two benchmark values € = 0.1
and £ = 0.05.

Let us now describe in detail the features present in figure 4.8. The region of the parameter
space reproducing at 3¢ the correct value of the relic density is covered by the green strip.
Considering DM annihilation, the interactions between 1 and the Higgs boson described by
the chiral Lagrangian in eq. 4.2 grow with the DM mass and decrease with the scale f. For
¢ = 0.1 (0.05) and m, 2 180 (250) GeV these annihilations become too efficient, thus leading
to a value of relic density that is too small to match the observed one.” The funnel-shaped
region that stretches towards this limit value m,, ~ 180 (250) GeV corresponds to the condition
s —2XE(1—€)/v? = 0 with s = 4m? /(1 —vZ,/4) and vre ~ 1/2, where an accidental cancellation
between the derivative and the A contribution to the 7-n-h vertex partially counterbalances the
growth of the cross-section discussed before. On the basis of this observation, and in order to
keep our discussion as clear as possible, let us divide the plane (m,, A) in three parts: the low-
mass region m,, < mpy /2, the resonant region m, ~ mg /2 and the funnel-shaped region defined
above.

For £ = 0.1, the region m,, < mp/2 is ruled out by a combination of LHC and LUX bounds.
On the one hand, as soon as the invisible decay channel h — nn is kinematically allowed,
[inv(h — 1) easily dominates over the SM contribution Fsgl\fo'l ~ 3 MeV (egs. (4.43, 4.44));
on the other one, the LUX experiment reaches in this region its best sensitivity. Decreasing &,
however, reduces the strength of the n-n-h interaction for low values of A. Therefore, for £ = 0.05
a combination of LHC and LUX bound rules out only values of A > 7 x 1073 in the m, < my/2
region; this bound can be further pushed towards lower values A ~ 10~3 considering non-zero
contact interactions between 7 and light quarks (see section 4.4.2 and eq. (4.53)).

The resonant region m,, ~ mpy /2 cannot be ruled out by constraints on the invisible branching
ratio or the spin-independent elastic DM-nucleon cross-section since in the first case BRj,y — 0
if m, — mg /2 while in the second one - < ml%[. Around the Higgs resonance, however, DM
particles mostly annihilate into bb pairs, producing a large antiproton signal that is ruled out
by the bound extracted from the local antiproton flux measured by the PAMELA experiment.
This conclusion is still valid regardless the astrophysical uncertainties plaguing the propagation

of charged particles in the Galaxy and the DM density profile and for both values of £ considered

Tt is worth noting that this is a distinctive feature of the composite model. In the singlet scalar extension of
the SM, in which the derivative interactions are absent, it is always possible to increase the value of A in order to

reproduce the correct relic density for large DM masses.
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here. Note that for & = 0.1 the antiproton bound, at least adopting the KOL propagation
models, can also rule out the right boundary of the funnel-shaped region (i.e. the vertical line
corresponding to m, =~ 80 GeV).

As far as the bottleneck of the funnel-shaped region is concerned, the bound from antiproton
cannot be applied since the accidental cancellation that characterizes this region also suppresses
DM annihilations today (v = 0). On the contrary the spin-independent DM-nucleon elastic
cross-section, relying on a different kinematic w.r.t. the annihilation process, does not suffer
from the same cancellation and, as a consequence, the funnel-shaped region turns out to be ruled
out by the LUX experiment for £ = 0.1 and strongly constrained for & = 0.05, in particular the
upper half part of the region. For £ = 0.05 a viable candidate of DM, therefore, sits on the strip
of the analyzed parameter space (my,, A) that spans values from m,, ~ 100 GeV, A\ ~ 3 x 10~4
up to my ~ 200 GeV, A ~ 6 x 1072,

Finally, we also show in the right panels of figure 4.8 the result of the numerical parameter
scans performed in the next-to-minimal scenario discussed in section 4.2.2. We do not show here
the result for the minimal case since it predicts a very narrow region in this plane which is also
contained in the next-to-minimal one. Both for £ = 0.1 and £ = 0.05, the points reproducing the
correct top and Higgs masses, as expected from eq. (4.42), lie around the value A ~ 0.065 and
vary between m,, ~ mg/2 and m,, ~ 700 GeV; moreover the points with m, < 200 GeV, shown
in the plot, have the smaller amount of tuning, see figure 4.2.

For £ = 0.1 all the points which provide the correct DM abundance lie in the region excluded
by LUX or by the antiproton flux measurements. Moreover, most of the points are also disfavored
by direct searches of top partners and vector resonances at the LHC. In conclusion we find that
— remarkably — the entire region of the (m,, A) plane in which the model can accommodate a
realistic DM candidate is ruled out by our phenomenological analysis.

For the smaller value of £ considered here, £ = 0.05, the constraints from direct searches at
LHC are substantially alleviated. The favored region of the parameter space lies close to the
bound imposed by DM direct detection experiments, m, ~ 200 GeV and A ~ 6 x 10~2. In this
regard it should be noted that if we assume non-zero contact interactions between 7 and light
quarks the bound becomes even more stringent (red dot-dashed line in figure 4.8). In any case
— including or not this theoretical uncertainty — we expect that this region will be definitely

covered in the near future by direct detection experiments.
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Figure 4.8: Green line: 30 contour reproducing the correct DM relic abundance. Red region (vertical
meshes): region excluded by the LUX experiment at 95% C.L. assuming case 1 in eq. (4.52) while the red
dot-dashed line represents the bound assuming case 2 in eq. (4.53). Purple region (horizontal meshes):
region excluded by the LHC at 30 considering the bound on the invisible Higgs branching ratio. Blue
region (no meshes): region excluded at 30 by the PAMELA measurement of the antiproton flux (solid
line: KOL propagation model; dashed line: CON propagation models). In the upper (lower) plot we use
& =10.1(0.05). In the right panel we zoom on a specific window of values for A, and we superimpose the
result of the scan performed in section 4.3.2. All the points reproduce the correct top and Higgs masses;
the orange points are excluded by direct searches of top partners and vector resonances, while the blue

points pass the selection.
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CHAPTER D

Neutrino Mixing and CP Violation

The observation of neutrino mixing implied that neutrinos are massive and that they mix
among themselves. The rich experimental program in neutrino physics, culminating with the
2012 measurement of the reactor angle 613 at the Daya Bay experiment [187,188], allowed us to
know with fairly good precision the value of all three neutrino mixing angles. However, on the
experimental side, other than measuring with even better accuracy the mixing angles, there are
still very important open questions to be addressed. Are neutrinos Dirac or Majorana fermions?
What is the value of the leptonic CP violating phase (or phases, in the Majorana case) and the
ordering of neutrino masses?

On the theory side, understanding the observed pattern of neutrino masses and mixings is a
very challenging problem, part of the quest to understand the origin of flavor of SM fermions.
In this chapter, after a brief presentation of the basic aspects of neutrino mixing, we shall study
the predictions of a particular class of neutrino mixing models. In particular we will see how, in
this setup, the Dirac CP violating phase can be sharply predicted in terms of the three neutrino
mixing angle, making this class of models testable at future experiments. The work presented
here is based on refs. [6,7]. For a complete presentation on neutrino physics we refer to the

classic review [189] (see also the relevant chapter in ref. [190]).

5.1 Neutrino masses

In the SM neutrinos are massless because it is not possible to write a renormalizable and gauge
invariant operator which provides a mass term for the neutrinos 1/2 inside the lepton doublets EiL.
Going beyond the SM, however, it is straightforward to include a mass term for these particles.
The fact that neutrinos are neutral opens up the possibility of having two different kind of mass
terms: Dirac or Majorana. Let us briefly describe in the following how these two mechanisms

work, at least in their simplest implementation.
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Dirac Neutrinos

Adding to the SM spectrum a set of three right-handed (RH) neutrinos completely neutral under
the SM gauge group, u}é = (1,1)p, allows to write a Yukawa interaction analogous to the ones
in eq. (1.14):

L£P = fyf,jfiﬂcué + h.c. . (5.1)

Upon EWSB; this Lagrangian provides Dirac mass terms to neutrinos given by

£h = —Dimiyjug% + h.c., (5.2)

where m, = y,vv/2. In this case the smallness of neutrino masses is achieved just by fixing
the Yukawa couplings ¥, to very small values. No explanation for the hierarchy between these
couplings and the other Yukawa couplings in the SM is present.

In general the matrix m, is not diagonal, implying that each lepton number L; is not con-
served by itself, however in this case the sum of the three lepton numbers L is a conserved
quantum number (L is however anomalous at the quantum level, while only the B — L combi-
nation remains conserved), see sec. 1.1.1. As in the quark case, the Dirac mass matrix m, can
be diagonalized by a biunitary transformation:

_ diagyrt
ml/ - UVLmV UVR7

(5.3)

where Uy, , U,, are 3 x 3 unitary matrices.

Majorana Neutrinos

A Majorana neutrino mass term can instead be obtained, without enlarging the field content
of the SM, only with the left-handed (LH) neutrinos. Assuming that the lepton number is just
an accidental low-energy symmetry and that the SM is only an effective theory (see chapter 2),
then it is possible to write non-renormalizable operators which violate L and provide a neutrino
Majorana mass. In fact, at scaling dimension-5 the only gauge-invariant operator that can be
written with the SM field content is the Weinberg operator [56]
]
L5 = —i—VL(?LiJQHC)(HTiUQZE) , (5.4)

where ¢5 = C/f% (C' is the charge-conjugation matrix), io?

= ¢ is the 2 x 2 antisymmetric tensor
and Ay is the UV scale at which this operator is generated, i.e. the scale of the dynamics which
breaks the lepton number. When the Higgs takes a VEV | this operator provides a Majorana
mass term for the neutrinos

o = —Dimf,jl/ic + h.c., (5.5)
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where m, = y,v?/Ar. This mass matrix, complex and symmetric, can be diagonalized by a

congruent transformation introducing only one unitary matrix U,:
_ diagrrt
my, = U, m," U, . (5.6)

Since the lepton number is a good symmetry of the SM, we expect Ar > v, which suppresses

the neutrino masses. The value of Ay, necessary to reproduce the neutrino masses is

N Yv\ (0.1eV 15
AL_0.6(1><mV>><10 GeV | (5.7)

which, for O(1) values of the y, couplings is very near to the scale at which the SM gauge
couplings become similar. This is a strong hint to the possibility that the dynamics responsible
for generating neutrino masses could be tightly linked to grand unified theories (GUT). This
suppression of the neutrino masses due to a very high scale is known as see-saw mechanism.
Note that by relaxing the assumption of having O(1) Yukawa couplings it would also be possible
to lower the scale A down to the TeV scale, or even to lower values. While many studies of
sterile neutrinos rely on this approach, in the rest of the thesis we will assume that Ay is a very
high scale, near to the GUT scale.

In terms of UV degrees of freedom, the operator in eq. (5.4) can be obtained by integrating
out at tree-level a set of singlet right-handed neutrinos (type 1 see-saw), scalar triplets under
SU(2) (type 2) or right-handed fermion triplets (type 3). In particular, the presence of singlet
right-handed heavy neutrinos vg is one of the predictions of many GUTs, for example based on
the gauge group SO(10). For our discussion of neutrino mixing, however, the details of the UV
dynamics generating the Weinberg operator are not important and therefore we take eq. (5.4) as

our starting point.

5.2 Neutrino Mixing

As we saw in chapter 1, after EWSB in the SM the charged leptons acquire a mass matrix m,
given by (1.14)
Lo, = —éiLméje% . (5.8)

e

The complex matrix m, can by diagonalized by a biunitary transformation

dia;
me = Ue, mg gUgR ,

(5.9)

where U,

e, p are unitary matrices. As in the quark sector, the misalignment of the mass matrices

of the charged leptons and the neutrinos does not allow to simultaneously diagonalize the charged

lepton and the neutrino mass matrices in a gauge invariant way. For example, one can choose to
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diagonalize the charged lepton mass matrix by a gauge-invariant transformation in flavor space

lr, — Ue, L, er — Ucper, obtaining (in the Majorana case)

= di — di t
L = —eLmelageR — I/LUPMNSmVIagUpMNsl/i N (5.10)

Mleptons

(in the Dirac case one can also transform the RH neutrino vg — U,,vg and the last term in
eq. (5.10) is substituted by —ﬂLUpMNSmgiagz/R) where Uppyns is the unitary Pontecorvo-Maki-

Nakagawa-Sakata (PMNS) neutrino mixing matrix, given by
Upnins = Ul Uy, - (5.11)

It should be noticed that if the neutrino were massless then this mixing matrix would not be
physical since it would always be possible to rotate the three neutrinos so that Upying = 1. This
means that any evidence of neutrino mixing implies that neutrinos are massive. Similarly to the
CKM matrix Vexwm (1.16), the PMNS matrix Upyng has three physical angles and one physical
CP-violating (CPV) phase. In the case of Majorana masses there are two further physical CPV
phases. In the widely used standard parametrisation [190], Upying is expressed in terms of the
solar (f12), atmospheric (f23) and reactor (f13) neutrino mixing angles and one Dirac (4) and

two Majorana [191] (21 and as;) CPV phases:

Upmns = U = V (012, 023,613, 0) Qaz1, az1), (5.12)
where
1 0 0 Cc13 0 813671’5 C12 sio O
V= 0 C23 593 0 1 0 —S12 C12 0 y (513)
0 —S8923 (€23 —81361'(S 0 C13 0 0 1
Q = diag(1, e'*21/2 ¢ias1/2) (5.14)

and we have used the standard notation ¢;; = cos;;, s;; = sinf;; with 0 < 6;; <7/2,0 < < 27
and, in the case of interest for our analysis, 0 < a1 < 47, j = 2,3. If CP invariance holds, we

have § = 0,7, and agy(31) = 0,7, 27, 37 [192].

5.2.1 Neutrino oscillations

Let us now briefly review the basics of neutrino oscillations. The concept of neutrino flavor is
related to the production and detection mechanisms via the charged weak current (CC). For
example v, is the neutrino produced in CC processes current together with e™, or the one which
produces an e~ when interacting with something via a CC process, and analogously for v, and
vr. This fixes the flavor basis |vy). Neutrino mixing arises because this basis is not aligned with
the basis of the mass eigenstates |v;):

v = Z Us vp i=1,2,3, (5.15)
l=e,u,T
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where U = Upyns is the PMNS mixing matrix, eq. (5.11), and each v; is a mass eigenstates with
mass m;. Assuming that a neutrino of flavor vy is generated by some CC process with an energy
E and that it travels (in the vacuum) a distance L, where it interacts with a detector capable of

observing also other flavors vy, the probability of observing a flavor ¢ is (see e.g. ref. [190])

Am?-
P(Vg — VZI) = Z|Ug/i|2‘UZi’2+2;|Ug/iUZ~UngZ/j’COS ( 2E]L—¢)glg;ij> s (516)
% 1>]

where Amfj = m? — m? and ¢pg,;; = arg (Ug/iUZ*iUgj Ug‘,j). In the case of antineutrino oscillation

one gets

Am2,
P(vg — vpr) = Z Uil |Uai* + QZ: \UeiUgUei Uy | cos ( 55 L+ ¢£’é;ij> : (5.17)
i i>]
As a consequence of CPT invariance, these probabilities satisfy P(vy — vp) = P(vp — 1y). If
neutrino mixing would satisfy the CP symmetry then P(vy — vp) = P(vy — ), therefore a

measure of CP violation is given by the asymmetry

’ Am?
ALY = Plug— vp) = P(g — ) =4 Im (UpiUgUy; Uy ;) sin 5L (5.18)

1>]
As a consequence of the unitarity of U, these asymmetries are the same in all three cases, up to

a sign difference:

e Te T Am3 Am3 Am?
AV — AT = AT — 4 0p (Sin 327, 4+ sin —2L [, 4 sin m13L), (5.19)

2K 2F 2K

where Jeop is the Jarlskog invariant [193-195]
Jop =Im (U3UUeUs) (5.20)

The presence of matter in the path of the neutrinos can induce some relevant effects which
change qualitatively the picture of neutrino oscillations. These effects are particularly important
for understanding the solar neutrino mixing, the atmospheric and long baseline accelerator neu-
trinos which pass through the earth. We will not discuss these effects here, for a review see e.g.
refs. [189,190].

5.2.2 Present status of neutrino mixing data

The neutrino oscillation data, accumulated over many years, allowed to determine the parameters
which drive the solar and atmospheric neutrino oscillations, Am3;, 612 and |Am3,| = |Am3,|,

093, with a good precision (see, e.g., [196]).
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Parameter Best fit 1o range 20 range 3o range
sin 613 0.154 0.147 - 0.160 0.140 - 0.166 0.133 - 0.172
sin? 64 0.308 0.291 - 0.325 0.275 - 0.342 0.259 - 0.359
sin?fy3 (NH) | 0.425 0.398 - 0.454 0.376 - 0.506 0.357 - 0.641
sin’ O3 (IH) 0.437  0.408 - 0.496 & 0.531 - 0.610 0.384 - 0.637 0.363 - 0.659
0 (NH) 4.37 3.52 - 5.40 0.00 - 0.346 @ 2.76 - 6.28 —

0 (IH) 4.24 3.02 - 5.00 0.00 - 0.126 & 2.04 - 6.28 —

Table 5.1: Summary of the results of the global fit of the PMNS mixing angles taken from [196](v1
version) and used in our analysis. The results on the atmospheric neutrino angle 6,3 and on the
Dirac CPV phase ¢ depend on the type of neutrino mass hierarchy. The values of sin? fa3 and &

obtained in both the cases of normal hierarchy (NH) and inverted hierarchy (IH) are shown.

Furthermore, there were spectacular developments in the last 1.5 years in what concerns the
angle 013 (see, e.g., [190]). They culminated in 2012 with a high precision determination of
sin? 2013 in the Daya Bay experiment with reactor 7, [187,188]:

sin? 2615 = 0.089 = 0.010 = 0.005 . (5.21)

Similarly the RENO, Double Chooz, and T2K experiments reported, respectively, 4.90, 2.90
and 3.20 evidences for a non-zero value of 613 [197-199|, compatible with the Daya Bay result.
Most recently, during the Neutrino 2014 conference, Daya Bay announced the most precise

determination of 613 [200] to date, after 621 days of data taking:
sin® 20,5 = 0.084 % 0.005 . (5.22)

The high precision measurement on 63 described above and the fact that 613 turned out to have
a relatively large value, have far reaching implications for the program of research in neutrino
physics (see, e.g., [190]). After the successful measurement of 613, the determination of the
absolute neutrino mass scale, of the type of the neutrino mass spectrum, of the nature — Dirac or
Majorana — of massive neutrinos, as well as getting information about the status of CP violation
in the lepton sector, are the most pressing and challenging problems and the highest priority
goals of the research in the field of neutrino physics.

A global analysis of the neutrino oscillation data presented at the Neutrino 2012 International
Conference, was performed in [201]. An updated version of the fit with 2013 data added has been
published in [196] and will be used in the following. The results on sin? 619, sin? B3 and sin® O3
obtained in [196], which play important role in our further discussion, are given in table 5.1. An
inspection of table 5.1 shows that, in addition to the nonzero value of 613, the new feature which

seems to be suggested by the current global neutrino oscillation data is a sizeable deviation of the
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angle 023 from the value 7w/4. This trend is confirmed by the results of the subsequent analysis of
the global neutrino oscillation data performed in [202], however the significance of the deviation
is still too small to say anything definite.

Regarding the absolute neutrino mass scale, bounds can be obtained both directly from
experiments in the lab measuring S decay of radioactive nuclei and indirectly via cosmological
measurements of the CMB anisotropies and Large Scale Structures. The most recent bounds are

approximately

my, S 2eV (lab, from tritium decay) ,
Zmyi <0.2—1eV (cosmo) .

)

(5.23)

5.3 Hints of an organizing principle

While neutrino masses and mixings may or may not look anarchical, the hierarchy of charged
lepton masses suggests an ordered origin of lepton flavour. Given the wide spectrum of specific
theoretical models, which essentially allows to account for any pattern of lepton masses and
mixings, we would like to consider here the consequence for lepton mixing of simple, general
assumptions on its origin.

In fact, although 013 # 0, 023 # 7/4 and 012 # /4, the deviations from these values are
small, in fact we have sinf13 =2 0.16 < 1, 7/4 — 623 = 0.07 and 7/4 — 612 = 0.20, where we have
used the relevant best fit values in table 5.1. The value of #13 and the magnitude of deviations
of 023 and 615 from /4 suggest that the observed values of 613, 623 and 612 might originate from
certain “symmetry” values which undergo relatively small (perturbative) corrections as a result
of the corresponding symmetry breaking. This idea was and continues to be widely explored
in attempts to understand the pattern of mixing in the lepton sector (see, e.g., [6,7,203-214].
Given the fact that the PMNS matrix is a product of two unitary matrices, U = U{ U, (5.11),
it is usually assumed that U, has a specific form dictated by a symmetry which fixes the values
of the three mixing angles in U, that would differ, in general, by perturbative corrections from
those measured in the PMNS matrix, while U, (and symmetry breaking effects that we assume
to be subleading) provide the requisite corrections. A variety of symmetry forms of U, have been
explored in the literature on the subject (see, e.g., [215]). In the present study we will consider
three widely used forms.

i) Tribimaximal Mixing (TBM) [216]:

UrsMm = | —/% 3 B E (5.24)
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ii) Bimaximal Mixing (BM) [217,218]:

1 1
vz v 0
1 1 1
Usm=| 2 2 ; (5.25)
11 1
2 2 2

iii) the form of U, resulting from the conservation of the lepton charge L' = L, — L, — L; of the

neutrino Majorana mass matrix (LC) [219]:

1 1
—= —= 0
V2 V2
% g
Uc = V2 V2 23 , (5.26)
S % w
V2 V2 23

where c5; = cos 655 and sh; = sin 65,.
We would like to notice here that if U, = 1, 1 being the unity 3 x 3 matrix, we have:
i) #13 = 0 in all three cases of interest of U,;
ii) O3 = /4, if U, coincides with Urgy or Upy, while 623 can have an arbitrary value if U, is
given by Ur,c;
iii) 619 = /4, for U, = Uy or Urc, while 015 = sin=(1/v/3) if U, = Utp1.
Thus, the matrix U, has to generate corrections
i) leading to #13 # 0 compatible with the observations in all three cases of U, considered;
ii) leading to the observed deviation of 819 from 7/4 in the cases of U, = Upym or Urc.
iii) leading to the sizable deviation of 093 from 7 /4 for U, = Urpm or Uy, if it is confirmed by
further data that sin® fa3 2 0.40.

In the following we investigate quantitatively what are the “minimal” forms of the matrix U,
in terms of the number of angles and phases it contains, that can provide the requisite corrections
to UrsMm, Usm and Upc so that the angles in the resulting PMNS matrix have values which are
compatible with those derived from the current global neutrino oscillation data, table 5.1. In
particular, we introduce the two types of “minimal” charged lepton “rotation” matrix U., with
“standard” and “inverse” ordering. The two differ by the order in which the 12 and 23 rotations

appear in U, and will be defined more precisely in the following section.

5.3.1 General Setup

As we have indicated above, we are interested in the possibility that the 613 mixing angle origi-
nates because of the contribution of the charged lepton sector to lepton mixing. This assumption

needs a precise definition.

126



5 Hints of an organizing principle |

We assume that the neutrino contribution U, to the PMNS matrix U in eq. (5.11) has U} = 0,
so that the PMNS angle 613 vanishes in the limit in which the charged lepton contribution U, can
be neglected, U, = 1. This is a prediction of a number of theoretical models. As a consequence,

U, can be parameterized as

Uy == \PVR23(653)R12(9T2)¢V, (527)

where R;;(6) is a rotation by an angle § in the ij block and ¥,,, ®,, are diagonal matrices of phases.
We will in particular consider specific values of 67, and, in certain cases, of 055, representing the
predictions of well known models, such as those presented in egs. (5.24-5.26).

The above assumption on the structure of U, is not enough to draw conclusions on lepton
mixing: any form of U can still be obtained by combining U,  with an appropriate charged lepton
contribution U, = U,U'. However, the hierarchical structure of the charged lepton mass matrix

allows to motivate a form of U, similar to that of U, with Ufy = 0, so that we can write: !
Ue = ‘IJeR2_31(9§3)R1_21( 12) Pe. (5.28)

In fact, the diagonalisation of the charged lepton mass matrix gives rise to a value of Uf; that
is small enough to be negligible for our purposes, unless the hierarchy of masses is a consequence
of correlations among the entries of the charged lepton mass matrix or the value of the element
(mpg)s1, contrary to the common lore, happens to be sizable. In such a scheme, with no 13
rotation neither in the neutrino nor in the charged lepton sector, the PMNS angle 613 is generated
purely by the interplay of the 23 and 12 rotations in eqs. (5.27) and (5.28).

While the assumption that Uf; is small, leading to eq. (5.28), is well motivated, textures
leading to a sizeable Uy are not excluded. In such cases, it is possible to obtain an “inverse

ordering” of the Rjs and Ras rotations in U,:
Ue = WeRyy (075) Roy (053)De. (5.29)

In the following, we will also consider such a possibility.

5.3.2 Standard Ordering

Consider first the standard ordering in eq. (5.28). We can then combine U, and U, in egs. (5.27)
and (5.28) to obtain the PMNS matrix. When doing that, the two 23 rotations, by the 6%,
and 65, angles, can be combined into a single 23 rotation by an angle f93. The latter angle
is not necessarily simply given by the sum 523 = 055 + 055 because of the possible effect of the
phases in ¥,,, W, (see further, eq. (G.3)). Nevertheless, the combination Ro3(65;)W:W, Ro3(6053)

!The use of the inverse in egs. (5.28) and (5.29) is only a matter of convention. This choice allows us to lighten

the notation in the subsequent expressions.
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entering the PMNS matrix is surely a unitary matrix acting on the 23 block and, as such, it
can be written as Ql,Rgg(égg)Qe, where €2, . are diagonal matrices of phases and fgs € [0, 7/2].
Moreover, we can write €0, Ro3(623)Q, = Q, ®Ro3(023)SY,, where ® = diag(1, e, 1) and Q,,, are
diagonal matrices of phases that commute with the 12 transformations and either are unphysical

or can be reabsorbed in other phases. The PMNS matrix can therefore be written as [6]
U = PRua(65,)® Ros(fa3) R12(67,)Q, (5.30)

where the angle 923 can have any value, P is a diagonal matrix of unphysical phases, () contains
the two Majorana CPV phases, and & = diag(l,em, 1) contains the only Dirac CPV phase.
The explicit relation between the physical parameters B3, ¢ and the original parameters of the
model (0%, 655, and the two phases in ¥ = ¥!W¥,) can be useful to connect our results to the
predictions of specific theoretical models. We provide it in app. G.

The observable angles in the standard PMNS parametrization are given by

sin 013 = |Ues| = sin 0, sin Oa3,

sin? Oa3 = M = sin® 6 cos® 01z
p) 23 . 9 . 94
1 — |Ues| 1 — sin® 65, sin® fa3 (5.31)
: . 2
i Ueo|? sin 0%, cos 05, + €% cos 6%, cos fag sin 05,
sin® 619 = 5 = — 57
1 — |Ues| 1 — sin® 65, sin” a3

The rephasing invariant related to the Dirac CPV phase, Jop (5.20), in the standard parametriza-

tion is given by
Jop =Im {U:l U;SUE;»,UM} = é sin d sin 2013 sin 2693 sin 2015 cos 013 . (5.32)
At the same time, in the parametrization given in eq. (5.30), we get:
Jop = —é sin ¢ sin 205, sin 203 sin fo3 sin 207, . (5.33)

The relation between the phases ¢ and § present in the two parametrisations is obtained by
equating eq. (5.32) and eq. (5.33) and taking also into account the corresponding formulae for
the real part of Ug;UjsUesUpi. To leading order in sin 63, one finds the approximate relation
d ~ —¢ (see further egs. (5.44), (5.45) and eqs. (5.49) and (5.50) for the exact relations).

In the simplest case, considered in ref. [6], the charged lepton corrections to neutrino mixing
are dominated only by the angle 6f, and 693 is fixed at the maximal value fa3 = /4. In this

case the atmospheric mixing angle would be given by

11—2sin%6;5 1

~

1
Sin2 923 = 5 m = 5 (1 — Sin2 613) s where sin 013 = ﬁ sin 0?2 . (534)

This in turn would imply that the deviation from maximal atmospheric neutrino mixing corre-

sponding to the observed value of 013 is relatively small, as shown in fig. 5.1.
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Figure 5.1: The thick red line corresponds to the relation in eq.(5.34). The black and green lines
show the 1o, 20, 30 contours (solid, dashed and dotted lines, respectively) for sin 613 and sin? Oy3,
as obtained in [196] (see table 5.1).

Since the data seems to suggest a possible larger deviation from maximal atmospheric mixing
[196,201], we also consider the case in which 923 is essentially free. A deviation of 923 from /4
can occur in models in which 655 = 7/4 (BM, TBM) because of the charged lepton contribution
to B3, or in models in which 655 itself is not maximal (LC). This allows to account for a sizable

deviation of 93 from the value 7/4. As for the neutrino angle 67,, we will consider two cases:

e bimaximal mixing (BM): 6, = % (as also predicted by models with approximate conser-

vation of L' = L, — L, — L );

e tri-bimazimal mixing (TBM): 6%, = sin™* \}3
Recently, ref. [220] extended this analysis also to the case in which Y, is related to the golden
ratio and to the hexagonal mixing case (i.e. 87, = 7/6), both of which can be obtained in explicit
models with discrete symmetries.

Since in the approach we are following the four parameters of the PMNS matrix (the three
measured angles 019, 623, 613 and the CPV Dirac phase ) will be expressed in terms of only
three parameters (the two angles 65, 03 and the phase ¢), the values of 012, 623, 013 and
6 will be correlated. More specifically, § can be expressed as a function of the three angles,
0 = (612, 023, 013), and its value will be determined by the values of the angles. As a consequence,
the Jop factor also will be a function of 819, 23 and 613, which will allow us to obtain predictions
for the magnitude of the CP violation effects in neutrino oscillations using the current data on
sin? 619, sin® O3 and sin 6;3.

We note first that using eq. (5.31) we can express sin? fa3 in terms of sin? 095 and sin? 0;5:

sin2 923 — sin2 913

sin? Aoz = (5.35)

1-— sin2 (913
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It follows from these equations that 0y differs little from 6o3 (it is somewhat larger). Further,

using eqs. (5.31) and (5.35), we can express sin? f12 in terms of 6%, 63, 613 and ¢:
sin?fyy = (1 — c0s? f93 cos? 913) -1 [sin2 07y sin? 63 + cos? 07y cos? g3 sin? 013
+ 1 sin26Y, sin 26053 sin 63 cos ¢ (5.36)

As we have already indicated, we will use in the analysis which follows two specific values of
0¥, = 7/4 (BM or LC); sin"1(1/4/3) (TBM). Equation (5.36) will lead in each of the two cases
to a new type of “sum rules”, i.e., to a correlation between the value of 612 and the values of 03,

013 and ¢. In the case of bimaximal and tri-bimaximal 67,, the sum rules have the form:

1 1sin 2693 sin 013 cos ¢

BM: sin®6p = - 5.37
NI g o3 cos? 013 (5:37)
1
o 3 + cot B3 sin H13 cos ¢ (1 — cot? Oy3 sin® O35 + O(cot4 053 sin’ 913)) , (5.38)
. 1 V/2 sin 2693 sin 013 cos ¢ — sin® fag
TBM : 20p==|2 5.39
StU12 = g < * 1 — cos? 093 cos? 013 (5.39)
1
= 3 [1 + 2v/2 cot 093 sin 013 cos 10) (1 — cot? o3 sin® 913)
+ cot? 03 sin? 013 + O(COt4 Oo3 sin? 913)] . (540)

The expressions for sin? 615 in egs. (5.37) and (5.39) are exact, while those given in eqs. (5.38)
and (5.40) are obtained as expansions in the small parameter cot? fo3 sin? f13. The latter satisfies
cot? O3 sin? O3 < 0.052 if sin? O3 and sin? @3 are varied in the 3o intervals quoted in table 5.1.
To leading order in sin #;3 the sum rule in eq. (5.38) was derived in ref. [206].

We note next that since 612, 623 and 603 are known, eq. (5.36) allows us to express cos ¢ as
a function of 612, A23 and 6,3 and to obtain the range of possible values of ¢. Indeed, it follows
from eqs. (5.37) and (5.39) that

2 1 — cos? 2
BM : cosp = — cos 2012 (1 — cos” O3 cos® 013)

5.41
sin 2653 sin 013 ’ ( )

(3sin? B9 — 2) (1 — cos? O3 cos? f13) + sin? fa3
\@ sin 2923 sin 913 .

TBM : cos ¢ = (5.42)

Taking for simplicity for the best fit values of the three angles in the PMNS matrix sin? 615 = 0.31,
sin? fo3 = 0.43 and sin 13 = 0.16 (see table 5.1), we get:

cos¢ = —1.0 (BM); cos ¢ = —0.20, (TBM). (5.43)

Equating the imaginary and real parts of U}, U, ;SUegUyl in the standard parametrisation and

in the parametrisation under discussion one can obtain a relation between the CPV phases § and
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¢. We find for the BM case (07, = 7/4):

sin ¢

ind = — 5.44
St sin 2(912 ’ ( )
2 sin? 0
cosd = ,COS¢ — S 723 —— 1. (5.45)
sin 2012\ sin® fa3 cos? 013 + sin® O3
Since, as can be easily shown,
1
t2 0 22 4 2 )
§in20;y = (1 — 42238 20 18 708 AN (5.46)
(1 + CO'E2 923 Sin (913)2

we indeed have to leading order in sin 63, sin § = —sin ¢ and cos § = cos ¢.

The expressions for sind and cosd in eqgs. (5.44) and (5.45) are exact. It is not difficult
to check that we have sin?¢§ + cos?§ = 1. Using the result for cos¢, eq. (5.41), we can get
expressions for sind and cosd in terms of 815, 623 and 613. We give below the result for cos d:

1
cosd = — Teinfi cot 2619 tan 693 (1 — cot? fy3 sin? 913) . (5.47)

Numerically we find for sin® 615 = 0.31, sin® fa3 = 0.43 and sin 613 = 0.16:
sind 20, cosd=—1. (5.48)

Therefore, we have § ~ 7. For fixed sin® 612 and sin 63, | cos §| increases with the increasing of
sin? 3. However, sin® 6,3 cannot increase arbitrarily since eq. (5.37) and the measured values
of sin? 615 and sin?#;3 imply that the scheme with bimaximal mixing under discussion can be
self-consistent only for values of sin®fs3, which do not exceed a certain maximal value. The
latter is determined taking into account the uncertainties in the values of sin? 615 and sin 6,3 in
section 3, where we perform a statistical analysis using the data on sin® a3, sin® 619, sin 613 and
d as given in [196].
In a similar way we obtain for the TBM case (6%, = sin=!(1/+/3)):

2v/2 sing
ind = — — 5.49
St 3 sin 2012 ’ ( )
2v/2 2sin% 0
cosd) = ————— V2 cos¢ | —1+ — 3 S Y2 —
3 sin 2912 sin (923 cos? 913 + sin 013
1 sin 2(923 sin 913 (550)

3sin 2012 sin® fag cos? 013 + sin? 13
The results for sind and cosd we have derived are again exact and, as can be shown, satisfy

sin? § 4 cos? § = 1. Using the above expressions and the expression for sin? f;5 given in eq. (5.39)

and neglecting the corrections due to sin 13, we obtain sind ~ — sin ¢ and cos§ =~ cos ¢. With
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the help of eq. (5.42) we can express sind and cosd in terms of 612, 023 and 013. The result for

cos d reads:

tan a3 1+ (3 sin? 01y — 2) (1 cot? By sin? 013)] - (5.51)

0=
€0 3 sin 2912 sin 013

For the best fit values of sin? 615 = 0.31, sin® f3 = 0.39 and sin 63 = 0.16, we find:
sind =2 +0.998, cosd = —0.066. (5.52)

Thus, in this case 6 ~ 7/2 or 37/2. For sin” A3 = 0.50 and the same values of sin? 615 and
sin? 013 we get cosd =2 —0.096 and sin§ = +0.995.

The fact that the value of the Dirac CPV phase ¢ is determined (up to an ambiguity of the sign
of sin ¢) by the values of the three mixing angles 015, f23 and 613 of the PMNS matrix, eqs. (5.47)
and (5.51), are the most striking predictions of the scheme considered with standard ordering
and bimaximal and tri-bimaximal mixing in the neutrino sector. For the best fit values of 819, 63
and 013 we get 6 2 7 and § = 7/2 or 37/2 in the cases of bimaximal and tri-bimaximal mixing,
respectively. These results imply also that in the scheme with standard ordering under discussion,
the Jop factor which determines the magnitude of CP violation in neutrino oscillations is also a

function of the three angles 812, 623 and 613 of the PMNS matrix:

Jop = Jop(012, 023, 013,0(612, 023, 013)) = Jop (612,623, 613) . (5.53)

This allows to obtain predictions for the range of possible values of Jop using the current data
on sin? 612, sin? 03 and sin63. We present these predictions in section 3. The predictions we
derive for § and Jop will be tested in the experiments searching for CP violation in neutrino
oscillations, which will provide information on the value of the Dirac phase .

Let us finally point out that such a scheme with “standard ordering” and TBM mixing
was realized in a self-consistent model of lepton flavor based on 7" symmetry in ref. [221]. In

particular, the same prediction for § was obtained.

5.3.3 Inverse Ordering

As anticipated, we also study for completeness the case where the diagonalisation of the charged
lepton mass matrix gives rise to the inverse ordering in eq. (5.29). The PMNS matrix, in this

case, can be written as [205]
U = Ro3(053) Ri2(07) U Roz (055) R12(67)Q, (5.54)

where unphysical phases have been eliminated, Q contains the two Majorana phases, and ¥ =
diag(1, e™, ™). Unlike in the case of standard ordering, it is not possible to combine the 23

rotation in the neutrino and charged lepton sector and describe them with a single parameter, fa3.
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After fixing 655 and 607,, we therefore have, in addition to the Majorana phases, four independent
physical parameters, two angles and two phases, one more with respect to the case of standard
ordering. In particular, it is not possible anymore to write the mixing matrix in terms of one
physical Dirac CPV phase only. Thus, in this case the four parameters of the PMNS matrix (the
three angles 012, 023 and 013 and the Dirac CPV phase ¢) will be expressed in terms of the four
parameters of the inverse ordering parametrisation of the PMNS matrix, eq. (5.54). We have

for sin 613, sin fo3 and sin 615:

Sin 013 = §§2$53,

‘(%3)71553 + ei(wfw)éizég?,‘
1- (§§2553)2

v ‘ETQ + ew(t'fz)flgﬁcg?,‘

sinf12 = s7
— (g6 oV )2
1 — (8§9553)

Given that the expressions for 623 and 613 do not depend on the value of 67,, they will be the

. v
sin fg3 = S53 , (5.55)

same for bimaximal and tri-bimaximal mixing (in both cases 653 = 7):

in Qe
sin 07,

sinf3 = , (5.56)
V2
Sin? oy = 11+ sin 205,+/cos 2013 cos W' — 2sin? 03 cos? 65, (5.57)
2 cos? 013
1 - -
= 3 (1 + 8in 26055 cosw’ — cos 2055 sin? O3 + O(sin? 913)) , (5.58)

where the phase w’ = 9 — w. For each value of the phase v, any value of #13 and 33 in the
experimentally allowed range at a given C.L., can be reproduced for an appropriate choice of w’,
07, and 605;. This is not always the case for the solar neutrino mixing angle 612, as we will see in

sec. 5.5. Using eqs. (5.56), sin? #15 can be expressed in terms of #3 and v as follows:

o bimazimal mixing (BMjo), 6, = %

sinfyp = ———— (1 + 25in 0134/ cos 2013 cos ) — sin? 913> (5.59)
2 cos? 013
1
~ 5 +sinfig cos+ O(sin® 0;3) ; (5.60)
e tri-bimazimal mixing (TBMjp), %, = sin~? %:
1
sinfp = ———— <1 + 2v/2sin 013/ cos 2613 cos zp) (5.61)
3cos? 13
1 2v2
~ (1 + Sin2 913) + \f sin 913 COS @D + O(Sin4 913) . (5.62)

wil
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The expressions for sin?f;5 in egs. (5.59) and (5.61) are exact, while those given in (5.60) and
(5.62) are obtained as expansions in sin? f13 in which the terms up to O(sin* #;3) and O(sin? 6;3),
respectively, were kept. This together with eq. (5.60) and the 30 ranges of allowed values of
sin? A1 and sin 6,3 quoted in table 5.1 suggests that the bimaximal mixing scheme considered by
us can be compatible with the current (30) data on sin” f12 and sin 63 only for a very limited
interval of negative values of cos ) close to (—1).

It follows from egs. (5.59) and (5.61) that the value of cos® is determined by the values of
the PMNS angles 615 and 613. At the same time, sin? 53 depends on two parameters: w’ and
055. This implies that the values of w’ and 65, are correlated, but cannot be fixed individually
using the data on sin? f3.

It is not difficult to derive also the expressions for the Jop factor in terms of the inverse

ordering parameters in the two cases of values of 67, of interest:

- . .

BM: Jop~-— P71 <sin¢ cos 2655 + sin w’ cos 1 sin 29§3> + O(sin? 0y3), (5.63)
sin 913 . ~e . ’ . ~e .9

TBM: Jop~— 372 (smz/)cos 2055 + sinw’ cos ¢ sin 2923> + O(sin” 613) . (5.64)

We have not discussed here the LC case (conservation of the lepton charge L' = L, — L, — L)
as it involves five parameters (055, 69,5, 055, and two CPV phases). At the same time, the
“minimal” LC case with 655 = 0 is equivalent to the standard ordering case with BM mixing (i.e.,
with 67, = 7/4) analised in detail in the previous subsection.

As in the case of the standard ordering, to obtain the CPV phase § of the standard pa-
rametrisation of the PMNS matrix from the variables of these models, that is the function
6 = 5(w,w,9~§3,913), we equate the imaginary and real parts of U:1U;3U33UH1 in the two

parametrisations.

5.4 Results with Standard Ordering

In the numerical analysis presented here, we use the data on the neutrino mixing parameters
obtained in the global fit of ref. [196] to constrain the mixing parameters of the setup described
in section 5.3.1. Our goal is first of all to derive the allowed ranges for the Dirac phase §, the
Jop factor and the atmospheric neutrino mixing angle parameter sin® fo3. We also obtain the
allowed values of sin? §15 and sin? ;3. We start by considering the standard ordering setup, and in
particular the two different choices for the angle 6%,: 6%, = 7/4 (BM and LC), 6%, = sin"1(1/V/3)
(TBM).

We construct the likelihood function and the x? for both schemes of bimaximal and tri-

bimaximal mixing as described in appendix H, using as parameters for this model sin 013, sin? 63
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Figure 5.2:  Contour plots for N, = 4/x? in the standard ordering setup and normal hierarchy of
neutrino masses. The value of the reactor angle 6,3 has been marginalized. The solid, dashed and dotted

thick lines represent respectively the 10,20 and 3¢ contours. The dashed blue lines are contours of
constant |Jop| in units of 1072,

and 6, and exploiting the constraints on sin? f}5, sin? fa3, sin? 613 and on § obtained in ref. [196].

In fig. 5.2 we show the contours of N, = \/? in the (sin?#a3,d) plane, where the value of
sin #13 has been marginalized. The blue dashed lines represent the contours of constant Jop
(in units of 1072). In figs. 5.3 and 5.4, starting from the same likelihood function, we show the
bounds on the neutrino mixing parameters and Jop in each scheme, both for normal and inverted
neutrino mass hierarchy. These bounds are obtained minimizing the y? in the parameter space of
the model, keeping as a constraint the value of the corresponding parameter. To make a direct
comparison of the bounds obtained in the scheme considered by us with the general bounds
obtained in the global fit in ref. [196], we show the results from ref. [196] with thin dashed lines.
Thus, the thin dashed lines in fig. 5.4 are the bounds on Jop obtained using directly the results
of the global fit [196] and eq. (5.32), and represent the present status of our knowledge on this
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Figure 5.3: N, as a function of each mixing angle for the TBM and BM models in the standard
ordering setup. The dashed lines represent the results of the global fit reported in ref. [196]
while the thick ones represent the results we obtain in our setup. Blue lines are for normal
hierarchy while the red ones are for inverted hierarchy (we used purple when the two bounds
are approximately identical). These bounds are obtained minimizing the value of N, in the

parameter space for fixed value of the showed mixing angle.
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Figure 5.4: N, as a function of 6 and Jop for the TBM and BM models in the standard ordering setup.
The dashed lines represent the results of the global fit reported in [196] while the thick ones represent
the results we obtain in our setup. Blue lines are for normal hierarchy while the red ones are for inverted
hierarchy. These bounds are obtained minimizing the value of N, in the parameter space for a fixed value

of § (left plots) or Jeop (right plots).
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observable assuming the standard 3-neutrino mixing setup 2. The thick solid lines represent the
results obtained in the scheme with standard ordering considered. The blue and red color lines
correspond respectively to the cases of normal and inverted neutrino mass hierarchy; in the case
when the two bounds are essentially identical we used purple color lines.

From figs. 5.2 and 5.3 we see that both the tribimaximal and bimaximal cases are well
compatible with data. The ~ 1.5¢0 difference between the minimum of N, in the two cases is due
to the fact that the bound on § obtained in ref. [196] favours values of § ~ 37/2 (see table 5.1),
which is indeed the value needed in the tri-bimaximal mixing scheme (|cosd| < 1), while the
bimaximal mixing scheme prefers § ~ 7 (see Subsection 5.3.2).

The results we obtain for sin® 619, sin® 623 and sin® 613 (i.e., the best fit values and the 3o
ranges) in the case of tri-bimaximal mixing are similar to those given in ref. [196]. In contrast, our
results for the Dirac phase d and, correspondingly, for the Jop factor, are drastically different.

For the best fit values and the 30 allowed ranges * of § and Jop we find (see also section 5.2):

2371'

NH: §=463=%, 153555180, or (5.65)
4.24 56 5492, (5.66)
IH : 5%4.62237”, 1.45 <6 <210, or (5.67)
4.03 <0 <4.94, (5.68)

NH: Jep 2 —0.034, 0.0325 Jop $0.036, or
—0.038 < Jop < —0.028,

IH: Jop=~—-0034, 0027 Jop $0.037,  or
—0.039 < Jop < —0.024..

The 30 intervals of allowed values of § (Jop) in egs. (5.65) and (5.67) (egs. (5.69) and (5.71))
are associated with the local minimum at § = 7/2 (Jop = 0.034) in table. 5.4 upper left (right)
panel, while those given in eqs. (5.66) and (5.68) (eqs. (5.70) and (5.72)) are related to the
absolute minimum at 6 = 37/2 (Jop = —0.034).

A degeneracy with respect to Jop — —Jop, or 6 — (2 — 0), which stems from the fact
that the phase ¢ enters into the expressions for the mixing angles only via its cosine, see eqs.
(5.37) and (5.39), is broken by the explicit bound on ¢ given in ref. [196], which is graphically
represented in fig. 5.4 by the asymmetry of the dashed lines showing that negative values of Jop

are favored at the 20 level.

2More refined bounds on Jop in the standard parametrisation of the PMNS matrix could be obtained by the
authors of ref. [196], using the full likelihood function.
3These ranges are obtained imposing: \/Ax2 = \/N§ — (Ngwn)2 = 3.
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Best fit 30 range

Jop (NH) —0.034 | —0.038 + —0.028 © 0.032 = 0.036

Jop (IH) —0.034 | —0.039 + —0.024 @ 0.027 + 0.037

§ (NH) 4.63 1.53 =+ 1.80 @ 4.24 + 4.92
TBM 6 (IH) 4.62 1.45 =+ 2.10 © 4.03 +~ 4.94

sin 613 0.15 0.13 +0.17

sin?fy3 (NH) | 0.43 0.36 + 0.64

sin? B3 (IH) 0.44 0.36 + 0.66

sin? 019 0.31 0.26 = 0.36

Jop(NH) —0.008 —0.026 <+ 0.022

Jop(IH) —0.003 —0.025 + 0.023

5 (NH) 3.35 2.50 + 3.92
BM  § (IH) 3.22 2.47 + 3.88

sin 613 0.16 0.14 +0.17

sin?fe3 (NH) | 0.41 0.35 -+ 0.50

sin? B3 (IH) 0.42 0.36 + 0.55

sin? 015 0.32 0.29 = 0.36

Table 5.2: Best fit and 30 ranges in the standard ordering setup. When not explicitly indicated

otherwise, the result applies both for normal hierarchy and inverted hierarchy of neutrino masses.

As figs. 5.2 and 5.4 show, in the case of tri-bimaximal mixing, the CP conserving values
of & = 0;7; 27 are excluded with respect to the best fit CP violating values § = 7/2;37/2 at
more than 50. Correspondingly, Jop = 0 is also excluded with respect to the best-fit values
Jop =~ (—0.034) and Jop ~ 0.034 at more than 50. It follows from egs. (5.65) - (5.72) (see also
table 5.2) that the 30 allowed ranges of values of both ¢ and Jop form rather narrow intervals.
These are the most striking predictions of the scheme with standard ordering and tri-bimaximal
mixing under investigation.

We obtain different results assuming bimaximal mixing in the neutrino sector. Although in
this case the best fit values of sin? fa3 and sin? 613 practically coincide with those found in [196],
the 30 allowed intervals of values of sin? 615 and especially of sin? 63 and § differ significantly

from those given in [196].
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For the best fit values and the 3¢ intervals of sin? 615 and sin® 63 we get (see also table 5.2):

sin? 612 2 0.32, 0.29 S sin®612 $0.36; (5.73)
NH: sin?fo3 2041, 0.35 < sin?6a3 < 0.50; (5.74)
IH: sin®fy3220.42, 0.36 < sin?fy3 < 0.55. (5.75)

As in [196], we find for the best fit value of § and Jop: § = m and Jop = 0. However, the 30

range of § and, correspondingly, of Jop, we obtain differ from those derived in [196]:

NH: 250S6<392; — 0.0265 Jop < 0.022. (5.76)
IH: 247<65388;  — 00255 Jop S 0.023. (5.77)

We see, in particular, that also in this case the Dirac CPV phase § is constrained to lie in a

narrow interval around the value § ~ 7. This and the constraint sin?fs3 < 1/2 are the most

~

important predictions of the scheme with standard ordering and bimaximal neutrino mixing.

5.5 Results with the Inverse Ordering

The case of inverse ordering is qualitatively and quantitatively different from the case of standard
ordering. For given values of 65, 055, the number of parameters is the same as in the PMNS
matrix. Still, not all values of U can be obtained, as we shall see.

The constraints on the reactor and atmospheric neutrino mixing angles are the same for
bimaximal and tri-bimaximal mixing and can be derived directly from eq. (5.56). For any given

value of the phase 1, any values of 613 and 23 in the ranges

1
0 S sin913 S —

V2 (5.78)
~ 1+ O(Sin2 013),

can be obtained by an appropriate choice of ', 65, and 65;. Clearly, the range of values allowed
for 613 and 623 covers the full experimentally allowed range. The solar neutrino mixing angle can

now be expressed in terms of 013 and v as in eq. (5.56). Any value of 612 in the interval

BM[O .
11— 2sinf13v/cos 2013 — sin? 013 . 9 11+ 2sinfq3+v/cos 2013 — sin? 013
- <sin“ 610 < = ) (5.79)
2 cos? f13 2 cos? O3
TBM;jo :

11— 2v2sin#i3+/cos 20;3 < in2 0y, < 11+ 2v/25sinf3+/cos 20;3
— < SIn 12 S — s

5.80
3 cos? 013 3 cos? 013 (5.80)
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can then be obtained for an appropriate choice of 1. At leading order in sinfy3 these bounds

become

1 1
BM;jo : 5~ sinf13 < sin? 012 < B + sin 613,

(5.81)
1 2v2 1 2v2
TBM;jo : g — {Singlg S sin? 012 g g + \3/>
Given the experimental bounds on the PMNS angles found in the global fit [196], see table 5.1,

sin 913.

one can immediately notice that while the tri-bimaximal case is perfectly compatible with the
data, the bimaximal case has a ~ 2¢ tension in the prediction of the solar neutrino mixing angle
parameter sin® 1.

As was done for the standard ordering case, we construct the likelihood function and the
x? for both models as described in appendix H, exploiting the constraints on sin® 619, sin? 63,
sin? @13 and on § obtained in [196], and using in this case as parameters sin 613, sin 055 and the
phases 1 and w. We show in figs. 5.5 and 5.6 the bounds on the neutrino mixing angles and the
Jop factor both in the cases of bimaximal and tri-bimaximal mixing in the neutrino sector, and
for normal and inverted neutrino mass hierarchy.

From fig. 5.5, we see that in the case of tribimaximal mixing (upper row), the intervals of
allowed values of the PMNS mixing angles obtained in the model under discussion and in the
global fit performed in [196] coincide. This is a consequence of the fact that the 4D parameter
space of the model considered completely overlaps with the experimentally allowed parameter
space in the PMNS parametrisation and therefore it does not give any additional constraint. It
is consistent with the analytic bounds reported above as well.

In the case of bimaximal mixing instead (fig. 5.5 lower row), only a portion of the relevant
PMNS parameter space is reachable, a fact that is reflected in the bounds on sin® 615 given in
eq. (5.81). Values of 612 in the upper part of its present experimental range are favoured in this
case.

In both cases of tri-bimaximal and bimaximal mixing from the neutrino sector, the bounds
on sin® 03 and sin® 619 corresponding to the normal and inverted neutrino mass hierarchy are
approximately identical, while they differ for the atmospheric neutrino mixing angle and for the
Jop factor.

Considering the expressions for Jop in egs. (5.63) and (5.64) and fig. 5.6, we see that within
~ 20 from the best-fit point, every value in the range

0?}’20

~0.041,  |JTBM| < B0

32

is allowed, where we have used the 20 upper bound on sin 63 from table 5.1. As a consequence,

. 9—}—20’
TGN | < T8 ~ 0.039, (5.82)

we cannot make more specific predictions about the CP violation due to the Dirac phases  in

this case. This is an important difference with respect to the standard ordering scheme where,
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Figure 5.5: N, as a function of each mixing angle for the TBM and BM models with the inverse
ordering setup. The dashed lines represent the results of the global fit reported in [196] while the
thick ones represent the results we obtain in our setup. Blue lines are for normal hierarchy while
the red ones are for inverted hierarchy (we use purple when the two bounds are approximately

identical). These bounds are obtained minimizing the value of N, in the parameter space for

fixed value of the showed mixing angle.
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Figure 5.6: N, as a function of Jop for the TBM and BM models in the inverse ordering setup. The
dashed lines represent the results of the global fit reported in [196] while the thick ones represent the
results we obtain in our setup. Blue lines are for normal neutrino mass hierarchy while the red ones are

for inverted hierarchy. These bounds are obtained minimizing the value of N, in the parameter space for

a fixed value of Jop.

in the tri-bimaximal mixing case, relatively large values of the |Jop| factor lying in a narrow
interval are predicted at 3o and, in the bimaximal mixing case, ¢ is predicted to lie at 3o in a

narrow interval around the value of § ~ .

5.6 Relation between 0{, and 6,3 in GUTs

Let us now focus, for simplicity, on the standard ordering case with égg = /4, i.e. we assume
that the charged lepton rotation matrix is dominated only by the 0{, angle. We would like
to study the possibility of generating a 67, large enough to induce a 613 in the experimentally
allowed range, in the context of an SU(5) SUSY Grand Unified Theory (GUT). The unification
assumption is powerful because it allows to relate the charged lepton and down quark Yukawa
matrices Ag and Ap. If all the Yukawa entries were generated by renormalizable operators and
the MSSM Higgs fields were embedded in 5 and 5 representations only, we would have )\ﬁ = )\3 ,
leading to wrong predictions for the fermion mass ratios. In the general case one has instead
)\f; = aij)\g . The Clebsh-Gordan (CG) coeflicients «;; depend on the operators from which

the Yukawa entries arise. Such values can be constrained to belong to a finite set of rational
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Operator Dimension  «y;

4 1

-18

Table 5.3:  Summary of possible SU(5) predictions for the CG coefficients «;;. Numbers are

taken from [222|, where also the corresponding operators are listed.

numbers at the price of assuming that each Yukawa entry comes at least dominantly from a
single renormalizable or non-renormalizable SU(5) operator?. In this case, the possible values of
the aj; coefficients are listed in table 5.3, see also ref. [222].

The 6, angle is obtained from the diagonalization of the 12 block of the charged lepton
Yukawa matrix after the 23 block has been diagonalized. Let us denote such 12 blocks in the
charged lepton and down quark sectors (in the RL convention in which the Yukawa interactions

are written with the left-handed fields on the right) as

“ v . b
Ay = My =" ) (5.83)
b ¢ By ~e

In the following we will assume that the entries in eq. (5.83) can be approximated with the
corresponding entries of A¥*P in which case the coefficients «, 3, 3/, v are still bound to take
one of the values in table 5.3 (the rotation used to diagonalize the 23 sector can have a sizeable
effect on the coefficient v and, if the charged lepton contribution to 23 from US; is sizeable, on
the coefficient j3).

We would like to determine the values of the coefficients «, 3, 8, v allowed by data, and in
particular capable to account for the measured value of 613 (see table 5.1). Not all the values of

the coefficients are allowed, in principle. The observables to be described are in fact

m mq m
0133 ’VUS’a e? ] #a (584)
my’ ms Mg

4This could not be the case, for example, if SU(5) is embedded in SO(10) or a larger unified group.
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Input Parameter Value Assumed error distribution
me/my, (4.7362 — 4.7369) x 1073 [223] Uniform
my,/msg 2.48 — 7.73 [222] Uniform
ms/mq 18.9 + 0.8 [224] Gaussian

Vs | 0.2252 4 0.0009 [190] Used uniform in |Vis| £ A
sin 613 0.140 — 0.166 (20) [196] Gaussian

Table 5.4: List of input parameters used in our analysis

and for given «, 3, 3, v, the five experimental inputs above depend on the four real variables |b/c|,
It/ /c|, |a/c|, w, where the phase w is defined by ac(bb')* = e™|acbb’|. The explicit dependence is

given by the following relations

/b/ b*
tan9§2 = IB,YC <1 ) B Oéa (585&)
b b2 11b b’*
[Vus| = |- (1 =l =32 ) ——| A (5.85b)
c c c
[ANY] 2|1p|2 12|1/12
Me _ gg_%% (1_5 0| ;‘52 ‘b| > (5.85¢)
m,  |ye % c Vel
mqg |a bV b2 4 V|
AR e e N [ b B b B .85d
ms c ( |e|? (5:85d)
my, (8% = )bl + (87 — )b
= 1 5.85
"ol (14 A , (5.850)

where A takes into account the possibility of a model-dependent contribution to |V,s| from the up
quark sector and is assumed to be in the range |A| < \/W ~ 0.045. The experimental inputs
used for the quantities on the LHS are listed in table 5.4. The relations above are approximated
and are accurate up to corrections of order A, if [b/c| < |0/ /c| S A, |a/c| < N2

Besides the general case in eq. (5.83), we will also consider the case in which a = 0 and the
symmetric case in which [AD| = |A]}| and |A\| = [AJ], as they arise in many models of fermion

masses. Note that the symmetry condition implies b = £b" and 3 = 3'.

5.6.1 Procedure

Before we come to the results we briefly discuss the procedure we implemented. Since only the
ratios |a/c|, |b/c|, and |b'/c| enter when computing the experimental inputs, we have set in our
forthcoming numerical analysis |c| = 1. We can also always perform a phase redefinition of the
fields such that all the remaining coefficients are real and positive and the only physical phase is
in ¢, so that ¢ = exp(iw).

For each possible combination of Clebsh-Gordan (CG) coefficients we diagonalized exactly
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both the mass matrices, using the expressions for the observables in eq. (5.84) in terms of
a,b, b/ w, of which the relations in eq. (5.85) are the expansion at NLO. Then we determined
numerically a solution for these parameters such that all the experimental inputs are satisfied.
We extracted the values for these inputs randomly following the distributions given in table 5.4.
We repeated this procedure until one solution is found. If, after a large number of attempts, no
solution is found, we discard this combination of CG coeflicients. For the viable CG coefficients
we obtained by this procedure a distribution for #;3, from which we computed the mean value
and the standard deviation. To obtain sinf;3 from sinf{, we have assumed that 63 in the
neutrino sector is maximal for simplicity. Given the uncertainties on the other input variables,
this is a good approximation.

Note that eq. (5.85¢) fixes 7 to lie in the range of the observed m,, /m,. Therefore we used this
equation only to reduce the possible values of v to —3, 9/2 and 6, cf. table 5.4. The GUT scale
ratio m, /m, depends strongly on low energy SUSY threshold corrections (see e.g. ref. [225]) and
in principle one can use them to push this ratio to more extreme values, but in simple SUSY

breaking scenarios these are the only plausible values [222].

5.6.2 Results

We restrict the following analysis to some well motivated cases. In order to choose the allowed
and excluded cases we use the present 20 bound, 0.140 < sinf3 < 0.166 (see table 5.1 [196]).
Note also the recent Daya Bay measurement, eq. (5.22), which sets the stringent 20 interval

0.137 < sin 613 < 0.155.

Results for Renormalizable Operators Only

{Oé,ﬂ,ﬂl,’}/} {a,b,b’,w} sin 013
(-3,1,-3,-3} {0.0151,0.220,0.189, ~2.81} 0.130 + 0.013

Table 5.5: Possible CG coefficients with Yukawa couplings coming only from renormalizable
operators. We also show typical values for the entries of A D, where ¢ is normalised to one, and

we give the prediction for sin #y3 inlcuding its 1o standard deviation.

We start our discussion with the case in which the Yukawa couplings come only from renor-
malizable operators. This case is very restrictive as there are only two possible CG coeflicients,
which are a;; = 1, if the Higgs sits in a 5 of SU(5), and «;; = —3, if the Higgs sits in a 45 of
SU(5) |226]. There is only one combination which is marginally in agreement with the experi-
mental data when including the uncertainty in the prediction. It is shown in table 5.5, where we

give in addition typical values for the entries of Ap and the prediction for sin 6;3.
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Results without Representations larger than the Adjoint

{O‘m@aﬂ,u’)/} {CL,b, b/7w} sin013

{6,1,6,6} {0.0155,0.281,0.259,0.278}  0.175 % 0.009
{6,—3/2,6,6} {0.0134,0.247,0.184,—2.77} 0.137 +0.014

Table 5.6: Possible CG coeflicients with Higgs fields in representations not larger than the adjoint.
We also show typical values for the entries of A D, where c¢ is normalised to one, and we give the

prediction for sin #y3 inlcuding its 1o standard deviation.

The next case we consider is the one in which the Yukawa couplings are generated by a
dimension five operator, with all fields sitting in a representation not larger than the adjoint.
This concerns also the messenger sector of a possible UV completion. Especially the Georgi-
Jarlskog factor of —3 [226] is here not possible anymore. There are only three a;; left, which are
1, —=3/2, and 6, giving two valid combinations as listed in table 5.6, where we give again typical

values for the parameters and the predictions for sin #,3, including its standard deviation.

Results for a = 0

{/875,77} {b7b,} Sin913
{~1/2,6,6} {0.251,0.240} 0.164 £ 0.013

Table 5.7: Possible Clebsch Gordan coefficients with a texture zero in the 11 element, a = 0.
We also show typical values for the entries of A D, wWhere c¢ is normalised to one, and we give the

prediction for sin #y3 inlcuding its 1o standard deviation.

Let us now consider the scenario in which we have a texture zero in the 11 element, a = 0.
This can be motivated by having a flavon vacuum alignment, which has a zero in this position or
having a Froggat-Nielsen mechanism at work, which puts there a zero or suppresses this element
very strongly. For the CG coefficients we take all the possible values in table 5.3. In this case
we end up with only one possible combination showed in table 5.7. Note that in this case there

are no physical phases.

Results for Symmetric Mass Matrices

In the (anti-)symmetric case |AD| = [A| and |A5,| = |AJ}|, which implies b = +¥ and 3 = A/,
we find 5 possible combinations listed in table 5.8. Such a mass matrix is generated, if the 12
and the 21 entries are coming from the same operator. Note that by choosing the unphysical

phases appropriately we can always make b = b'.
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{a, 8,7} {a,b,w} sin 613

{~3/2,-3,-3} {0.115,0.233,-0.0736} 0.164 = 0.007
6,-3, -3} {0.0186,0.205, —3.08}  0.139 = 0.001
{9,-3,-3} {0.0142,0.212, —3.04}  0.144 = 0.003
(-18,9/2,9/2}  {0.0117,0.209, ~3.05}  0.149 = 0.003
{-18,6,6} {0.0133,0.211, —3.08}  0.143 £ 0.003

Table 5.8: Possible Clebsch-Gordan coefficients with a symmetric mass matrix and the resulting

prediction for sin f43.

This case cannot be combined with any other case. If we restrict ourselves to certain operators

or choose a = 0, no combination remains viable.

5.7 Summary and Conclusions

We considered the possibility that the neutrino mixing angle 6,3 arises from the interplay of
12 and 23 rotations in the neutrino (U,) and charged lepton (U.) contributions to the PMNS
neutrino mixing matrix (U = Ul U, ). We considered two possible orderings of 12 and 23 rotations
in Ue, the “standard”, U, ~ R$3 Ry, and the “inverse”, U, ~ R{y RS, while keeping the standard
ordering in the neutrino sector, U, ~ R53R{,. In order to be able to accommodate a possible
deviation of the atmospheric neutrino mixing angle 63 from /4, we allowed the charged lepton
23 rotation angle (and possibly the neutrino one, in the standard case) to assume arbitrary
values. We considered the cases in which U, is in the bimaximal or tri-bimaximal form, or in
the form resulting from the conservation of the lepton charge L. — L, — L, (LC). We took, of
course, all relevant physical CP violation (CPV) phases into account.

The case of standard ordering turns out to be particularly interesting. The PMNS matrix
can be parameterized in terms of the charged lepton and neutrino 12 rotation angles, 67, and 675,
an effective 23 rotation angle, fgs ~ 023, and a CPV phase ¢. Once 67, is fixed to the bimaximal
(LC) or tri-bimaximal value, the number of parameters reduces to three, and the Dirac phase
0 in the PMNS matrix can be predicted in terms of the PMNS solar, atmospheric and reactor
neutrino mixing angles 12, 623 and #13. Moreover, the range of possible values of the PMNS
angles turns out to be constrained.

In the tri-bimaximal case, the Dirac CPV phase ¢ is predicted to have a value § ~ 37/2 or
0 = /2 (with the former favored at ~ 20), implying nearly maximal CP violation in neutrino
oscillations, while in the bimaximal (and LC) case we find § ~ 7 and, consequently, the CP
violation effects in neutrino oscillations are predicted to be small. The present data have a mild

preference for the TBM option (see table 5.1 and, e.g., fig. 5.4). Moreover, 3 is predicted to
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be below 7/4 in the bimaximal case, which is also in agreement with the indications from the
current global neutrino oscillations data. In the set-up considered by us, the 623 > 7/4 solution
of the global fit analysis in [196,201] is disfavored.

The case of inverse ordering is qualitatively and quantitatively very different. Fixing U,
to the bimaximal or tri-bimaximal form is not sufficient to obtain a prediction: the number
of free physical parameters in this case is four — two angles and two CPV phases. Still, not
all values of the four physical parameters in the PMNS matrix, 612, 023, 613 and J, can be
reached in this parameterization. In the tri-bimaximal case, the ranges of parameters that can
be reached overlaps with the experimental ranges, so that no predictions can be made. In the
bimaximal case, however, this is not the case. One obtains, in fact, the approximate relation
sin? @15 > 1/2 —sin @3, which is barely compatible with the data. As a consequence, i) there is a
tension in the above relation that worsen the quality of the fit, and ii) values of 612 in the upper
part of its present experimental range are preferred. In both cases, no predictions for the Dirac
CPV phase § can be made. We did not consider here the LC case as it involves, in general, five
parameters, while its “minimal” version, corresponding to setting 65, = 0, is equivalent to the
standard ordering case with BM mixing (i.e., with 6%, = 7/4).

The fact that the value of the Dirac CPV phase 0 is determined (up to an ambiguity of
the sign of sind) by the values of the three PMNS mixing angles, 012, 623 and 613, eqs. (5.47)
and (5.51), are the most striking predictions of the scheme considered with standard ordering
and bimaximal (LC) and tri-bimaximal mixing in the neutrino sector. As we have already
indicated, for the best fit values of 019, 023 and 613 we get § = 7 and § = 37/2 in the cases of
bimaximal and tri-bimaximal mixing, respectively. These results imply also that in the scheme
with standard ordering we have discussed, the Jop factor which determines the magnitude of
CP violation in neutrino oscillations, is also a function of the three mixing angles: Jop =
Jop(012,023,013,0(012, 023, 613)) = Jop(012,023,013). This allowed us to obtain predictions for
the range of possible values of Jop using the current data on sin® 012, sin® a3 and sin 613, which
are given in egs. (5.65) - (5.71) and eqgs. (5.76) - (5.77). For a recent work on using this strategy
to predict the Majorana phases see ref. [220].

The predictions for sin? 653, and for ¢ and Jop we have obtained in the scheme with standard
ordering and bimaximal (or LC) or tri-bimaximal form of U, will be tested by the neutrino
oscillation experiments able to determine whether sin? 63 < 0.5 or sin?#fy3 > 0.5, and in the
experiments searching for CP violation in neutrino oscillations.

Finally, restricting ourselves to the simple case in which the only contribution from charged
leptons is the 12 rotation, we studied the predicted values of 613 in SU(5) Grand Unified theories,
where the 12 rotation in the charged lepton sector is related to the Cabibbo angle in the CKM

matrix and to some ratios of quark and lepton masses, depending on the particular type of
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operator which generates the Yukawas. After performing a scan over all possible combinations
of Clebsh-Gordan coefficients, only a few of them are compatible with the present measurement

of the reactor angle, as can be seen from tables 5.5, 5.6, 5.7, 5.8.



APPENDIX A

Redundant operators and field redefini-

tions

To compute the anomalous dimension matrix of the set of 13 operators we are interested in,

{On, 071,08, 0w, 025, 02w, O, Oww, Ows, Osw, O2c, Oca, Osa} (A1)

we compute the one-loop effective action generated by those operators. One important feature of
this kind of computation is the appearance of counterterms corresponding to operators which are
not in our basis: the computation does not know our choice of basis. Working in the background
field gauge assures that the structure of these counterterms is gauge-invariant, therefore they
can be written as some gauge-invariant dim-6 operators. However, this does not imply that
the coefficient of the counterterms should be also gauge-invariant, in fact at this stage many
terms are £-dependent, which reflects the fact that the computation is not physical at this point.
A possible way to obtain physical results is to consider some physical process and include all
one-loop contributions: both those from operators in the basis and those from loop-generated
ones. When this process is completed, the result has to be gauge-independent. Another way
for dealing with this, without the need of considering physical observables, is to ‘rotate’ back
this loop-generated redundant operators into the basis we are working with. The completeness
of the basis assures that this is always possible. After this process, which will be described in
this appendix for the subset of operators we consider, the final anomalous dimension matrix
has to be gauge-independent. This subtlety is well known and, for instance, it also appears
in the context of non-relativistic QCD, where the running of the Wilson coefficients is gauge
independent only when the redundancy of different operators is taken into account [227|. This

has also been recently stressed again in ref. [75].
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A Anomalous dimension matrix |

The relevant redundant operators that are radiatively generated by those in eq. (A.1) are:
= |D,HI |HP Oxcs = [D?H[*

) ) .
Of"™ = (Luo®y"Li)(Lro®y"Ly),  OF"™ =i(H'o"D,H)L}o" L}

OE: = (Lpy" L) (Liy"Ly) Of = i(HTBHH)(é}%'y“e}%),

OGN — (apyTAug)(dpy " TAdR), 0%, = (ery™er)(Err™er)

011?3L:%F£ (JDD2+D2]D) F£> 0{531% 2fR (lDDQ‘FDQlD) va (A.2)
O = gD WS, (Fi o9y F} ), Oy = gWe,iFio*y"DVF} |
Ofy, = 4/ D By (Fiy'Fj). OF: = ¢ BuiFir" D'F},

Ofr = 9'D"Bu(fi" fR) O = 9/ Buifiy"D¥ i,

0gy, = 9sD" G, (QLT*YQY) O = g:GAIQLTAY DY QY),

Obir = 9sD" G (TRT ") Ofie = g G i(GRTAY DV )

By relevant we mean those radiatively generated redundant operators that modify the Wilson
coefficient of the operators in eq. (A.1) when the former operators are redefined into operators

in our basis, defined in Section 2.1.

A.1 Anomalous dimension matrix

Below we present in three different tables the anomalous dimension matrix of the operators in
eq. (A.1) as well as the relevant redundant operators generated by them, eq. (A.2), at the order
stated in eq. (2.10). We work with arbitrary £ in the background field gauge (see eq. (2.11)) and
use dimensional regularization. All the contributions given in Tables A.1, A.2 and A.3 below
arise from one-particle-irreducible Feynman diagrams, i.e. it is the one-loop renormalization of

the Effective Action. We have defined

dc; dg
.. = 1672 = A3
ei m dlogpu’ & dlog (A.3)
and
1 1 43 4
N2t _ 2 _ 2 __1a % 2
v = —=Neyi + 4 (3[3 Ewlg” +[3 —¢&Bly ) ;W gﬁg <6 3NG>9 :

1 4 1 1 20
=——B, =(11— -Ng | ¢? =—"B,=(—-=—"2Ng| g?
G s 695 < 3 G) 9s 5 B g,/Bg < 6 9 G> g

in the background field gauge. Ng = 3 is the number of generations.
In Table A.1 we display the contributions of O, O, and Or to the running of the Wilson
coefficients of the operators in eq. (A.1). The contributions not shown are either zero or propor-

tional to the Yukawa coupling y; of any fermion lighter than the top. Notice that in Table A.1
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Anomalous dimension matrix

cr

Yer | 28X +12y7 — 3 (247 + ¢?)

Yer 39"

Yes -3
e s

Yer 4\ — 362

Table A.1: Anomalous dimension matrix. Further contributions of Oy, O, and Op to other operators
in eq. (A.1) and eq. (A.2) are either zero or proportional to the Yukawa coupling of any fermion lighter

than the top. The dashed line separates the anomalous dimension of the operators in our basis from that

of the redundant operators.

20\ + 12y7 — 2 (g% + %)

8\ — 69> — 24”7

12X + 12y7 + 3¢

CBB CWW CWB caw

Yen 69"t 18¢4 69292 0

Yer 0 0 0 0

Ve 0 0 0 0

Yew 0 0 0 2g2
YeaB 0 0 0 0
Yeaw 0 0 0 442
Yepn § % + 6y7 + 12X 0 3¢2 0
Yew w 0 —39% _ 5% 4 6y2 4122 g 342
Yew s 29" 2¢% N e -
Yeaw 0 0 0 2492 — 2y

Ver 69’4 18g4 69292 0
V@ L 0 0 0 g2

Table A.2: Anomalous dimension matrix. Further contributions of Ogg, Oww, Ow s and Oz to other
operators in eq. (A.1) and eq. (A.2) are either zero or proportional to the Yukawa coupling of fermions

lighter than the top. The dashed line separates the anomalous dimension of the operators in our basis

from that of the redundant operators.
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154

cw

C2B

Cow

Yeap
Yeaw

YesB

Veka

v.Q,L
‘wr

Y.Q,L
°BL

Y ru,d,e
°BR

Y .(3)F
S)

Y.F
‘LL

i

°RR

O (yi)
O (vi)
O (vi)
O (i)
O (yi)

O (yi)

%gz (3g2 + 4g’2) — 6)g?

_392

,%glz (gl2 +492)

%glng + 3)\gl2

<,
0

=
[V

RS
N

=
»

—2vB

[e=]

_Y1429/2
_yf29l2
—13Yig"?
~§Yig”?
gy
~3Yig"?
,ylgjg/Q
_yj§g/2
~39%(g'Yr)?
—6(g'Yr)*

—6(g'Yyp)*

8

2 (g2(3 + 26w) + 4g"%) + 3Ag?

Table A.3: Contributions of the operators Op, Ow,Osp and Ooyr to the anomalous dimension matrix

of the operators in eq. (A.1) and eq. (A.2). By y; we denote the Yukawa coupling of any fermion. The

dashed line separates the anomalous dimension of the operators in our basis from that of the redundant

operators.
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C2G@ Helel 3G C2B C2w
Yese | 392(59 — 966) — 27 0 692 0 0
Yeca 0 —39"2 — 247 + 12X + 6y? 0 0 0
VYesa 0 0 3692 — 2v¢g 0 0
Veud, —1292(9"?Y.Yq) 0 0 12(g'2Y, Yy)? 0
V(S 192(9%c — 1) 0 0 —12¢2(g"?YuYy) 0
,Q —392 0 0 Table A.3  Table A.3
K3L
Y, ud 392 0 0 Table A.3 0
K3R
Vo —92(5¢c + %) 0 392 —2(9'Yu,a)? 0
Q, —g:(3¢c + %) 0 392 —-2(9'Yq)? -3¢
v, 592 0 0 Table A.3  Table A.3
WL
7.Q, -2042v 0 0 Table A.3  Table A.3
Y ud — 592V 0 0 Table A.3 0
BR
Y rud —392 0 0 —(9'Yu,a)? 0
GR
v.Q —3g2 0 0 —(g'Yg)? —342
GL
o) —292 0 0 Table A.3  Table A.3
WL
9 —-392Yq 0 0 Table A.3  Table A.3
"/Clgj,%d —%gEYu,d 0 0 Table A.3 0

Table A.4: Contributions of the operators Osq, Oca, Osa, O2p and Oay to the anomalous dimension
of the operators in eq. (A.1) and eq. (A.2). The dashed line separates the anomalous dimension of the

operators in our basis from that of the redundant operators.
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we have gone beyond the strictly necessary computations to obtain the anomalous dimension
matrix and also included the contributions of the operator O,., that is redundant with respect to
our basis; their contributions can be used for an important crosscheck, described in Appendix B
of ref. [4].

In Table A.2 we show the contributions of Opp, Oww,Owp and Oz to the running of
the operators in eq. (A.1). The cay self-renormalization has been extracted from the result of
ref. [69]. The contributions of these operators to the running of the redundant ones in eq. (A.2)
that we have not written are either zero or proportional to light fermion Yukawas ;.

Lastly, in Table A.3 we show the contributions of Og, Ow, Osp and Osyy to the running of
any of the operators in eq. (A.1) and eq. (A.2). We have indicated by O (y;) those contributions
that at most are expected to be proportional to the Yukawa coupling of a fermion lighter than
the top. As can be noted from Table A.3, the contribution of Oy to the running of Oy, O,.,
Ow, O, O(L?’)Fi, (’)5;}' ;, and (’)(LSL)Fi is £&-dependent. In section A.2 we show that upon redefining
the redundant operators in terms of operators in our basis the £ dependence vanishes.

Table A.4 reports the contributions of Oy, Oga, Osa, O2p and Oy to the anomalous dimen-
sion of the (redundant) operators in eq. (A.1) and eq. (A.2), as needed to derive the anomalous

dimension matrix of the dim-6 bosonic operators with gluons of our basis (see Table 2.7).

A.2 Removal of the radiatively-generated redundant operators

Let us now discuss how to deal with each operator in eq. (A.2) and their effect on the operators
of eq. (A.1). The easiest way to deal with the redundant operator (’)g’R =4 E,ﬂ,i ey D" fi |57

is by means of the identity"

VAP = ghyP + gyt — gHPAY + ey (A.5)
one finds
' oMV gl F o = ! v
9 B frY"iD" fr = me (’Yu%l9+ lD%ﬁu) fr9'B
+ ig,fR’Vp'YuVufRDpéuy- (A.6)

Then, using the fermion’s KoM
g/ Fo. A ! T3y 1 1T ! RuY
L (’m%lDJr %,m) frgB™ = gyriFLow frRHg B +h.c.

1, = 1
= Zg/yfFLUpufRHg/BMV-I-h.C.EZO{)B, (A7)

'We use the conventions of Peskin & Schroeder textbook.
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A Removal of the radiatively-generated redundant operators |

which is a dipole operator, where o#¥ = %['y“,v”]; using again eq. (A.5) in the second term of
the right hand side of eq. (A.6)

ig FrYpYu Yo [RDPBY = 24 Frrye fRD,B7P = 20% . (A.8)

Therefore, Egs. (A.6)-(A.8) and analogous manipulations, are equivalent to the following shifts

(¢; = ¢; + 0c¢;) in the following Wilson coefficients:
505@ = QCQ,IF,L, 5ch = 2cj§L, (SCJ];R = 2ch, (5ch = 20/(%, 5chR = 2C/GqR. (A.9)

The Wilson coefficient of the dipole operators are also shifted, see eq. (A.7), however, we can not
conclude that the dipoles are renormalized by the set of bosonic operators we considered because
we did not compute direct contributions, those coming from one-particle-irreducible diagrams.

fi
Then, for the operator O{'(ig r»> consider the field redefinition § f; = —65{/\35 D?f;, that removes

(9}23 p from the Lagrangian while generates the operator

c{é?)Ryfi I o CQSRyfi I WAV MV
L :
— §FiLX#VUMVfZ‘RH =+ hC] s
where X, = g’YFiBM,,+gWﬁ,,Ta+gsGﬁyTa, being 7% and T the SU(2);, and SU(3). generators
in the fundamental representation, respectively. Then, by inserting the fermion’s EoM in the
first operator in the right hand side of eq. (A.10) one gets operators of the type Lyux |H|* and
+ _ A

the operator yin{{ = yfii(HTDHH)f}%’y“f}%; we do not care about the latter (proportional to
yy,) since our basis choice of Section 2.1 was to remove the operator O{% corresponding to a
light fermion. Performing an analogous analysis for 01}?3 ;, we reach the same conclusion: neither
of the two operator’s scaling affects the anomalous dimension of the set of bosonic operators
in eq. (A.1). As in the case of (’){,VL’BL’BR, the same comment applies here: even-though the
Wilson coefficient of the dipoles is shifted by the above manipulations, we do not conclude that
they are renormalized by the bosonic operators.

Now, the remaining operators are redefined into our basis by performing field redefinitions
as showed in eq. (2.3). Consider the 37 independent field redefinitions

A*6G = ava(DYGp) + 95 Y apa QLT QL + 95 ) bad' RT Yudks »

i 4,9
ras . _. .
N?6W = igaw (H 0" D' H) + agw (D*WS,) + g Y alpy Fioy, Fi,
i F
< S . o :
A%6By, = ig'ap(H'D'H) + azp(0”Bu) + ¢ Y YraepFivuFi + 9 Yiahp frvufh,
i,F if
A2 H = oy HIH P + as (D2H) =yl L], -y dp@), — yilio*(uhQ})" ) .
(A.11)
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with F' = {L,Q}, f ={e,d,u}, ¢ = {d,u} and i = 1,2, 3. These generate the following shifts for

the Wilson coefficients of the dimension 6 operators:

cy — cg +2(a1 + 2 az) — ayy g? e = ¢ +2(a1 + 2 a2) + ayg?
cr = cr —apg’? CK4 = CK4 — 202
cg — cp+asp— 2« i i+ lagy — o
B B 2B B WL WL o Q2w FW
— + -2 =k + Yr(asp — alp)
cw cw + o — 2oy Cor cg + Yr(azp — o
cap — Cap + 20i9B CQR—> CBR—i-Yf(aQB a}B)
3)F; 3
cow —  Cow + 200w c(Lg — ( ) Qs 9 Oy
oG — GG+ 2t ey = cpr + (Yrg')?abg
fi i
g — cg— 4oy CRp — cRR—i—(Yfg) g
& o— . —a+ 2\ chifi by (YrYrg™?) (ol g + abpg)
Yy vr 1 2 LR LR Fryg fB FB
ij ij (3)F; BVF: | g2 j
Clryp = Cipyy T 202 ;= e+ S (aw + ayy)
utd? tdi 2 F; F; 2 1.4
R = chit +9”YaYa(alp + alp) ¢ = ¢ +Yrg=(ap + 30pp)
fi fi 2 1 i
cg = cg +Yrg"(ap + 3a%p)
ai ai ; _
CGZL»R_> céLR—i—ag(;—afIG for g = Q,u,d

C(B)uldﬂ‘ (8)uld?

rR . Crp  +gi(alg +alg).
(A.12)
Notice that using Fierz identities we can always trade the operator (’) ; for (’)g%F (’)5 P = (’)(L?’L)Fi.
This means that the shift in CIZ ' can be recast as a shift in c(L zF , Wthh becomes:
2
3)F; 3)F | 9 i I '
e = )+ L ab + (ef + (Vig)?akp) (A13)
We use the freedom given by the field redefinitions to set to zero the following 37 coefficients:
cr,cK4,cg%L1,c;}R,cf)Ll cp,c M}L,CBL,CQR,ch,CGR,chR, g})%u " This fixes all the shift pa-

rameters «; and gives shift invariant combinations, under eq. (A.12), of the Wilson coefficients
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of the operators in our basis:

( (3)L1 5(3)L1) ’

cg —cg—c +6 LI

1
cT—>cT+Y(R 2YCRR)

I

cw — e — QCWL . 4C/L1 + = g ( (3)L1 25?[)/L1)

e1 /61 €1 €1
CB = CB— +Cgpr— - CprT Cp — —C
Y, BR Y, Y'eg/2( R Y, RR) ’

. 3 (A.14)
cow — cow — ey — 8¢ 'Ll — g—QES%Ll ,
C2B =7 C2B — ?ech é CER — Y22 5CRR
c6 — Cg + 2¢, + 4Acga — 8(0(5') — c(L?’le) ,
oG — Cag — i — 263, — by — 24, — %CSR;% uld! :
s
where
Ett = e + g (C + 25} %(C‘ER + 205 + ,21},6ch)> (A.15)

and eq. (A.9) has already been taken into account. This completes the removal of the operators
in eq. (A.2) in terms of the bosonic operators. After these shifts, the anomalous dimensions of
the operators in eq. (A.1) are redefined as
Ve = Veuw = Yer T6(V 000 =V ®)11)
L LL
1 1
Yer — Yer + ?6(’70;1 - 27}/@’70;‘71}%) ’

4 -
Yew = Yew = 20k~ Nty + 5 (1 — 2 om)

1 2 2 1
Yeu = Yes = Vet~ Y ek ¥y OB Ty Vi)
. (A.16)
Yeaw = Yeaw — V11— 8Ymy — e

2 4 2
Yeap ~7 Veap — ?6’702112 - ?e’)/c’g}{ - Y629/2 chle )

Veo —* Veg T 2Ve, + 4N Vepy — 8(')’6(L3)L1 - :}’C(L?szh) )

1
Yeaq 7 Veag — Vodr — Vordr — Ve — Ve — 5 (8)ulal
2¢ 2¢ CGR CGR ‘GR ‘Gr g? Cgu)zu ’

where

Yr, 1
7(’YCBR61 + 2")/0/1;}% + m’)%g]{)) . (Al?)

Tugpn = g+, + 9N (”céa T

The remaining bosonic operators, not of the CC type, are not affected by these field redefinitions

and therefore their anomalous dimension is not affected. In this way we can go back to our original
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A Removal of the radiatively-generated redundant operators |

basis taking into account that some operators are generated radiatively even if we set their Wilson
coefficient to zero at the matching scale. In the main body of the thesis, Tables 2.4 and 2.7,
we give the physical anomalous dimensions obtained using the right hand side of eq. (A.16). As
expected, the {-dependence cancels out in the physical combinations of v.,’s, which can be easily

checked using eq. (A.16).
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APPENDIX B

Non-linear realizations of a global sym-

metry

In refs. [134, 135], Callan, Coleman, Wess and Zumino showed how to build effective chiral
Lagrangians able to describe the low-energy dynamics of NGBs of a generic global symmetry
breaking G — H. Here we review some basic aspects of this approach following closely the
presentation of ref. [228].

Let us assume that the theory is invariant under transformations of a global symmetry group
G, and that this symmetry is spontaneously broken to a subgroup H. This means that H is the

group of transformations h which leave the vacuum invariant,
h(®) =(®), (B.1)

where ® = {¢1, ¢2 ... ¢n} includes all the fields in the theory which belong, in general, to some
reducible representation of G. For non-scalar fields of course (¢,) = 0 by Lorentz invariance.

Let us now remove from ®(x) the NGB degrees of freedom by defining
(1) = Uppn (@) Py () (B.2)

where U(x) € G. Eq. (B.2) ensures that the transformation U(z) is universal for all fields in the
theory. Since the NGBs are aligned along some linear combinations of the T, (®,,) vectors, the

condition ® needs to satisfy in order not to contain NGBs is
O, (2)T2, (Pp) = 0 . (B.3)

These are Nngp independent equations, where Nygp is the number of broken generators Td,

Nnge = dim(G) - dim (H), i.e. the number of Nambu-Goldstone bosons. Since the theory is

invariant under global G transformations, the matrix U(z) will enter only via its derivatives.
Let us now show that it is always possible to choose U(z) so that eq. (B.3) is satisfied. Given

a field configuration @, let us consider the function of a group transformation g € G defined as
V‘P(g) = (I)ngnm<q)m>> (B.4)
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which is continuos and limited since G is compact. This implies that for any given z, Vi, (g)
has a maximum corresponding to some group element U(z) € G, therefore V is stationary in

that point. Given the group element U, a nearby element is given by
U =U+06U=U(1+41T%) = U +ie*UT*, (B.5)
that is 6U = ie*UT". The variation of Vg, (U(z)) is
V() (U(2)) = i€ @ (2)Unit (2) T (@) = i€ Uy, (2) @ () T3, (1) = 0. (B.6)
Since this should hold Ve® and since UT = U™, we get

Up ()@ (2) T (@) = O, (B7)

in

that is, comparing with (B.2), we obtained ®(z) = U~ (z)®(z).
Let us now find how to parametrize U(x). First of all, the choice of the matrix U is not unique:
since the vacuum expectation value of the fields is H-invariant by hypothesis, the function (B.4)

is invariant under a right-multiplication by h € H:
Va(g) = Va(gh). (B.8)

Therefore, if U(x) is a stationary value for Vg, then also U(x)h is such Vh € H. It follows
that the elements of G can be divided in equivalence classes, where Uy, Us € G are equivalent if
J h € H such that U; = Ush. It is possible to verify that this is indeed an equivalence relation,
being reflective, symmetric and transitive. These classes are known as laterals of G with respect
to H, the space of these laterals is G/H. Parametrizing this space is the same as choosing a
particular representative for all equivalent classes. In general, it is always possible to write any

element of G as
g =0T 0T (B.9)

Since U(x) is defined up to a right-multiplication by h, it is possible to choose the representative
for each lateral of G/H as
Ulz) = € @7 (B.10)

where the n fé(m) are, up to some normalization factor, the NGBs.
Let us now study how the fields £€%(x) and ®(x) transform under a g € G transformation.

Since ® trasforms linearly according to its representation, we have:

®'(2) = g@(x) = gU(&(2))®(2), (B.11)

where, with an abuse of notation, we call by g both the element of the group and the matrix of

the associated transformation in the representation of ®. For any z, since U({(x)) € G, from
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the definition of group follows that Vg € G also gU ({(x)) € G, therefore gU ({(x)) will belong to

some lateral of G/H. Thus, we can write

gU(E(2)) = U (@)h(E(x).9) = UE(2)) = gUE(x)) h&(x),9) 7", (B.12)

where h(£(x), g) is a local H transformation, depending on &(x) and g. We see that the transfor-
mation under G of the NGB is non-linear, since the transformation matrix h(¢(x),g)~" depends

on the {(z) in a non-linear way. Substituting this expression in (B.11) we get

¥'(2) = g®(x) = U(E' (2))h(&(2), 9)@(2) = U(E ()P (), (B.13)

where

®'(z) = h(¢(2), 9)(2)- (B.14)

The last equation implies that also the matter fields ® transform non-linearly under G according
to some h € ‘H matrix: a global g € G transformation acts non-linearly on the matter fields as a
local transformation under the unbroken group, h({(x), g) € H.

In the particular case where the global transformation belongs to the unbroken group H,
let us show that it is always possible to choose the NGBs such that they transform linearly,
that is they belong to some linear representation of H. In fact if ¢ = h € H, in (B.12) we
can always choose a representative of the lateral such that h(¢,g) = h. Using the property

AeB AL = eABAT! e get

b el@ =1 _ gih&(x)h™ — eiﬁ’(m)7 (B.15)
from which follows the transformation law of the NGBs under h € H:
¢(x) =hé(x) L (B.16)

Let us now start defining the structures needed to build our Lagrangians. Performing the

substitution (B.2), from the terms with derivatives of ® one gets:
9,8(z) = 9, (U(x)é(g;)) — Ul(z) [8u<i>(m) + (U @)0,U () é(x)} , (B.17)

where the NGB appear in the anti-Hermitian combination UT(2)9,U (). In general, since this
structure belongs to the algebra, it is possible to decompose it in linear combinations of broken

and unbroken generators:

U(2)0,U (x) = idiT* + i EAT". (B.18)

From eq. (B.12) follows the transformation laws of the terms in eq. (B.18) under g € G:

U=HE)0.U () = h(&,9) [UE€)T'0U(€)] (&, 9) ™" = [0uh(& 9)] h™H (€, 9)- (B.19)
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B Approximate symmetry |

In terms of the dﬁ and Ef, structures defined in (B.18), this transformation is equivalent to

d, = h(&g)d.h" (&, g); (B.20)
E, = h(& 9B (& 9)+i0.h(E 97 (& 9),

in particular E, transforms as a gauge field. From eq. (B.14) follows that the derivative of ®

transforms according to
9,9 = (0,h)® + hd,® = h (9, +h~'9,h) ®. (B.21)
This motivates the introduction of the covariant derivative
V=0, +1iE,(x), (B.22)

such that V;ﬁ)’ = h(&,9)(V,®). Analogously to gauge fields, with E,(£(x)) it is possible to
define
By = 8,E, — 0,E, —iE,, E,), (B.23)

which transforms non-linearly under g € G according to

E,, = h(&,9) Ew h™'(6,9). (B.24)

A Lagrangian written in terms of the P, Vui), E,, and d, structures, invariant under local
‘H transformations, will also be invariant under global G transformations, which would be non-

linearly realized.

B.1 Approximate symmetry

In many applications, such as those relevant for the QCD chiral Lagrangian and for composite
Higgs models, the symmetry under G transformation is not exact, but only approximate. In other
words, there exist a term in the Lagrangian, suppressed by some small parameter (for example
quark mass terms mgy/ fr, gauge couplings or fermion mixing terms e/ f), which is not invariant
under these transformations.

Let us consider the case in which the breaking term in the Lagrangian, AL, is not invariant
under G but transforms as some linear representation of G. This amounts to give some spurionic

transformation properties under G to the symmetry breaking terms.
AL =cpO0y, (B.25)

where O4 = O4(®(x)) are operators which transform under g € G according to some represen-
tation D[g]:
04 > DlglasOs. (B.26)
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Substituting ®(z) with U(&(z))®(z), this transformation becomes
Oal¢, @] = O4€', 1€, 9)®] = DlglapOsl¢. @), (B.27)

where ¢ = ¢/(€,g) comes from U(&(€,9))h=1(€, g) = gU(€) and eq. (B.10).

Let us now show how to build an operator which transform linearly according to eq. (B.26)
from the fields ® and &, which transform linearly under H but non-linearly under G. In the
& = 0 case let us take the transformation g = U({'); since U(§) = U(0) = 1, from the transfor-
mation law for & we get that gU(§) = g = U('), that is h(0,U(¢')) = 1 and £'(0,U(&')) = £
Substituting these relations in eq. (B.27) one has

Oa4l¢', @] = DIU(£)]apOB[0, ¥, (B.28)
which shows how to include the &-dependence of the operator O4 starting from an operator
defined only in terms of the ® fields.

Considering now the case with £ = 0 and g = h € H we have that gU(§) = g = h, that is
h(0,h) = h and U(&'(0,h)) = 1, i.e. £(0,h) = & = 0. Substituting this result in eq. (B.27) we
obtain

04[0, h®] = D[h] 4050, @], (B.29)

that is under a transformation h € H, if £ = 0, then the operators O 4]0, i)] transform linearly
according to the representation D[h]4p

Let us finally show that any operator satisfying eq. (B.29), can also satisfy eq. (B.26). Using
egs. (B.28) and (B.29) in eq. (B.27) we get

Oal€'(€,9), (€. 9)®] = DIU(E'(€,9))]apOB[0, h(E 9)®] = (B-30)
= D[U((& 9)]aBDIh(& 9)lcOc(0, @] =
= D[U(E' (& 9)(E, 9)]apOB[0, @] = D[gU(£)]apOB[0, ®] =
= DlglapD[U(£)]cOc|0, ®] = D[glapOp[¢, D

q.e.d.

In summary, to obtain an operator O which transform linearly under G starting from an
operator O[O0, &D] defined in terms of the non-linearly transforming fields ®, which belong to H
representation in eq. (B.29), it is enough to multiply it by the NGB matrix U(£), written in the
same representation (D[U(§)]), that is as in eq. (B.28).

This is exactly the construction we used to introduce the mixing terms between elementary
and composite fermions ¥ in section 3.3.2. The latter belong to irreducible representations of
H and we dressed those with the NGB matrix U in order to create an operator transforming
linearly under G: O = UWV.
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APPENDIX C

Non-analytic terms in the potential

For s;, < 1, the tree-level 4 one-loop potential V = V(0 + V(1) admits an expansion of the form

V = —vs} + Bs} + 05y log sy + O(s8) . (C.1)
The last non-analytic term cannot obviously be obtained by a Taylor expansion around s; = 0.
It arises at the one-loop level and is due to the contribution of particles whose mass vanishes for
sp = 0. In a naive expansion around sp = 0, its presence would be detected by the appearance
of a spurious IR divergence in the coefficient 5. At first order in §, the non trivial minimum of

the potential is found at

)
(5h) = € =01~ 4501+ 2108&)) (C2)
where
o = % (C.3)
is the leading order minimum for § = 0. The Higgs mass is given by
mi = Lea(1 - o) + 220 (1= 2 4 g 10gy). (c4)
SN 12 2
For &y < 1 we get 5
2 L 032 0
where 8
8
(my)? = Fﬁo (C.6)

is the leading order mass for § = 0.
In the models we considered, the particles massless at s, = 0 are always the top, in the
matter sector, and the W and the Z gauge boson, in the gauge sector. Correspondingly, the

explicit form of § = dgquge + Omatter i universal and given by

N,
5matte7" = _877:2)‘?011]04 5 ( )
C.7
5 _3f4(3g4 4 2929/2 +gl4)
gauge — 51272 )

with V. = 3 the QCD color factor and My, = Aiopv-
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APPENDIX D

Results for Other Simple Models

In this appendix we briefly present the results for all the models studied in our analysis. They
differ by the number of spin-1 and spin-1/2 resonances introduced. In all the models studied,
and presented schematically below, EWSB is due to a tuning between the fermionic and gauge
contributions to <. In the parameter scans we performed, we have set My,,(TeV) ~ 150 GeV
and & = 0.1, solving these constraints for two of the input parameters. We have then imposed a
cut for a light Higgs, my € [100, 150] GeV.

Minimal model: Ng =1, Ng=1, N,=1, N, =1

For illustration, we consider here two versions of the minimal model, differing on how the Wein-
berg sum rules (3.97) are satisfied. We denote by “type 1" the model where €5 = €19 = €45 =
—€,0 = €, mg # mg (as in eq.(3.98)), and by “type 2" the model where €5 = €0 = ¢,
€5 = —€qQ = €Q, mg = mg = m. In the first model the LFR is either t' or x, while in the
second one the LFR is necessarily x. In both cases the vector resonance’s mass is bounded from
above by m, < 2 TeV, which implies that the S parameter is too big (AS 2 0.3) and both models
don’t pass the EWPT, see fig. D.1(b,d).

It is not difficult to see in more detail the tension present in this model. Let us for definiteness
consider the type 1 model. The numerical scan show that EWSB mostly occurs in the region

wr, € 1, wg ~ 1. Taking wr = 1 and expanding at leading order in wy,, one finds

m% N 872 f(wr) 8> 1 (D.1)
m% — 9log2 ¢2¢ ~ 9log2 g% '
where ( 2)
8(1 + logw
flwr) L (D.2)

" 1+ 8logw? —logd/¢
is a smooth function f(z) < 1, for any =. Using eq.(D.1) for mpy =~ 125 GeV, we immediately
find an upper bound for m,, (for £ = 1/10):

m, < 1.8TeV. (D.3)
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Figure D.1: (a,c) Mass of the LFR, before EWSB, as a function of the Higgs mass. The green circles
represent the (lightest) singlet while the purple triangles represent the (lightest) exotic doublet with
Y =7/6. (b,d) Mass of the p, vector as a function of the Higgs mass. One can see that for mg < 130
GeV, m, < 1.8 TeV, which is too low for the model to pass the EWPT. In (a,b) we took the masses
mg,ms € [0,5f], a, € [1//2,2] while € and m, have been obtained by fixing m,, and . In (c,d) the
same range has been taken for the parameters m, ¢, and a,, while ¢; and m, have been obtained by fixing
Mo, and €.

Demanding AS < 2x1073 [83] in eq.(3.85), with f, = f/V2, gives m, 2, 1.8 TeV, only marginally
in agreement with the bound in of eq. (D.3).
Two vectors: Ng =1, Ng=1, N, =2, N, =1

We choose the type 1 finiteness condition for the fermionic sector. The numerical scan shows

that the vector mass eigenstates and the axial vector can be arbitrarily heavy and therefore
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Figure D.2: Mass of the LFR, before EWSB, as a function of the Higgs mass. The green circles represent
the (lightest) singlet while the purple triangles represent the (lightest) exotic doublet with Y = 7/6. In
the model (a) the range in which we scanned the parameters is the same as in fig.3.7. For the model (b),
instead, we took the fermionic masses in [0,5f], a, € [1/v2,2], a1 € [0, /a2 —1/2] and mqe1/m,, in a
region [0.2,2] times the value for which AS vanishes. As usual, m,, and € have been obtained by fixing £
and M;op,.

having a small AS is no longer a problem. The LFR is either x, with my/,5 ~ 500 GeV, or t,
with mg ~ 600 — 1000 GeV, see fig.D.2(a). The bound (3.52) rules out almost the whole region
with a light X fermion. The lightest vector can be as light as 1.5 TeV, while the axial is always
heavier than ~ 2.2 TeV.

Two axials: Ng =1, Ng=1, N,=1, N, =2

We choose the type 1 finiteness condition for the fermionic sector. The results in this sector
are completely analogue to the minimal model with the same type of finiteness condition. In
particular, the vector resonance is always light: m, < 2 TeV, see fig.D.3(a). The tree level S

parameter of this model can be written as
2 2 y,,2 2/ £2(0)2 2 (12 2
(mal + ma?)mp + 2fp /f (mal - mp)(maQ - mp)
2

2 2
2ma1ma2mp

ASt‘ree - 2m%/V

, (D.4)

after having solved the two Weinberg sum rules in terms of the two axial decay constants. We
can see that AS can be made small or even negative by choosing the two masses of the axial
resonances such that m,1 < m, < mg2. The lightest axial resonance has a mass m41 ~ 300 —900
GeV, see fig.D.3(b). This model has therefore a potentially interesting phenomenology, but it is
fair to say that a model with light axial resonances and negative S parameter looks quite “exotic"

and might not admit a consistent UV completion.
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Figure D.3: (a) Mass of the vector resonance p, and (b) of the lightest axial vector, as a function of

the Higgs mass. The range of the parameters is the same as in fig.D.2(b).

Two singlets: Ng =1, Ng=2, N,=1, N, =1

See section 3.7.3 for a more complete description of this model. In this case, the LFR is the
singlet Sp, with mg ~ 300 — 800 GeV, see fig.D.4(a), the second singlet Sy being always much
heavier. The vector resonance can be as heavy as 5-6 TeV, due to the fact that now 7, can be

bigger than the minimal case.

Two bidoublets: Ng =2, Ng =1, N, =1, N, =1

In this case the LFR can be either the singlet or the lightest Y = 7/6 doublet, their masses being
always below ~ 1 TeV, see fig.D.4(b). Analogously to the previous case, the vector resonance

can be heavy and thus AS’tme small.

Two singlets and bidoublets: Ng =2, Ng =2, N, =1, N, =1
The most general solution for eq.(3.96) is given in terms of four angles and two mixings:

€40 = (08040, €4sinbyq), €qs = (€egcosbys, €4sinbys), (0.5)

€@ = (ercos by, € sinbyg), €5 = (€1 cosbyg, €:8inbg).
Now one can solve eq.(3.97) for one of the remaining parameters, in the parameter scans we
choose to solve it for €, as this allows us to go in the light singlet region. The scan shows that
the LFR tends to be the first singlet, see fig.D.4(c). As in the previous two cases, the points
which pass the direct bound of eq. (3.52) have m, > 2 TeV, T as the LFR with mg ~ 700 — 1000

GeV, the other resonances being generally heavier than 1 TeV.
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Figure D.4: Mass of the LFR, before EWSB, as a function of the Higgs mass. The green circles
represent the (lightest) singlet while the purple triangles represent the (lightest) exotic doublet with
Y = 7/6. The range of the parameters in the model (a) is the same as in fig.3.8. For the models (b,c) we
took all the fermion masses m;g, m;s € [0,8f] and a, € [1/v/2,2], while ¢; and m, have been obtained
by fixing respectively M;,, and £. In the log. divergent case, (d), the range is mq,ms, ¢; € [0,8f] while
€, has been obtained by fixing M;,,,.

Minimal Model with Logarithmic Divergence

As we have seen above, the minimal model with Ngp = Ng = N, = N, = 1 is not viable
because of a too light vector resonance, which implies a too big S parameter at tree-level. This
problem can be circumvented by relaxing the second Weinberg sum rules, so that the Higgs
potential keeps a logarithmic divergence. This obviously implies that the MHP hypothesis is
no longer defendable, since local operators have to arise in order to renormalize the logarithmic

divergence. In other words, the coefficients %(,NDA) and 'yj(fNDA) introduced in eq.(3.67) run and
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can be assumed to be vanishing only at a given energy scale. One could however hope that their
impact is somehow small, so that it is still possible to make good estimates for the parameter £
integrating the form factors only up to the cutoff A ~ 4xf. To satisfy the first Weinberg sum

rule in the fermion sector we can assume that

€95 = —€4Q = €q; €15 = €1Q = €. (D.6)

The logarithmically divergent term in «y is proportional to the square of the mixing parameters,
v o (e — eg) log A/m where m is a generic fermion mass. This is the same effect seen when
adding more fermions which would allow higher values of v; and, therefore, heavier vector masses.
Doing a numerical scan of such model we indeed obtain these results but, on the other side, we
notice that the physics (that is, the value of £ and my) is too sensitive to the value of A: changing
it by a factor of 2 has an O(1) effect on these observables, making the model unpredictable.

We can adopt another approach to deal with the logarithmic divergence, which is accepting
that 7, and therefore £, is uncalculable. Assuming a given value of £ and using eq.(3.102) we can
still compute the Higgs mass, being 8 finite. The relation v; ~ —v,, connecting the fermion and
the gauge sector in a crucial way, is now lost. Given that 8, < 3¢, as far as the Higgs potential
is concerned, the gauge sector is completely negligible and thus unconstrained. This allows the
model to pass the EWPT, although in a somewhat trivial way. Neglecting the gauge sector and
performing a parameter scan for the minimal model presented above, we still obtain that a light
Higgs implies light fermionic resonances, as can be seen from fig.D.4(d).

Similar considerations would of course apply to the non-minimal models. As far as the
Higgs sector is concerned, the price to be paid is high since EWSB is no longer under control.
Moreover, as we have seen, non-minimal models are viable without the need of relaxing the second
Weinberg sum rules. For these reasons, we have decided to not explore any further models where

a logarithmic divergence in the Higgs potential is kept.
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APPENDIX E

A dictionary for deconstructed models

In chapter 3 we constructed a general framework for composite Higgs models, based only on
the assumptions of SO(5)/SO(4) symmetry breaking pattern and the MHP hypothesis. In this
appendix we explicitly show how this general setup is able to reproduce the physics of two decon-
structed composite Higgs models and how in these cases the Weinberg sum rules are automatically

satisfied due to the enhanced symmetry of the models.

E.1 Discrete Composite Higgs Model

Let us start with the two and three sites deconstructed models described in ref. [119]. The two

sites model is based on the coset SO(5)1, ® SO(5)r/SO(5)y, where the SM group is embedded in

SO(5). From this coset one has 10 Goldstones 74, transforming in the adjoint of SO(5)y.. The

SO(4) subgroup of SO(5)g is gauged by introducing six gauge fields gy, which become massive

by eating the six Goldstone bosons 7. The Lagrangian of this model is (in the notation of
ref. [119])

72

Eg,Qfsites o L

PW - 4

where the Goldstone matrix is U = exp [iﬂﬂATA/ fﬂ], the covariant derivative is D, U =

0uU —i(goW LTt + g4 B, T3)U + ig:Up}, T and LL7C is the usual gauge Lagrangian for the SM

1 ~ ~V auge
T [(DLU) DAU) = T ™) + L33, (E1)

EW gauge bosons. Going in the gauge where the only non-zero Goldstones are the ones along the
generators of the coset SO(5)17/SO(4) (“holographic gauge"), 7%, this model is described by the
Lagrangian of eq.(3.33), with one vector multiplet in the adjoint of SO(4), no axial resonances,
and fixing the parameters as (imposing invariance under LR symmetry):

2 _ I

. . 1.5z
2—sztes.' f = f71— = f, gp = Jx, mi = 593,}62) fp 9 (EQ)

One can check that only the first Weinberg sum rule is satisfied and the gauge contribution to

the Higgs potential remains logarithmically divergent.
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In order to get a finite potential, the authors of [119] add to the model another site, doubling
the coset to (SO(5)7 ® SO(5)%)/SO(5)i, x (SO(5)2 @ SO(5)%)/SO(5)3,. From this symmetry
breaking pattern 20 Goldstone bosons arise and can be parametrized by two SO(5) matrices
Uy = U(m{') and Uy = U(m4'). Sixteen NGB's are eaten by the gauging of SO(4) C SO(5)% by
py, and of the diagonal combination of SO(5)L ® SO(5)% by the gauge field p/‘j‘:

DUy = 0,Ur — i(goWSTE + 9o BuTi)Ur + g Urpi T,

(E.3)
DUz = 0,Uz — igupy TAU + G U T
The Lagrangian of this model is
g,3—sites f~2 t f? t 1 ~  ~uv 1 v gauge
Loy ™ = Tr [(D,UL) DFU, + T [(D,Us)" D US| - [P P™] — i PPt 1+ LTS
(E4)
In the holographic gauge where 775‘ = 7§ = 0, one obtains the Lagrangian of (3.33) for two
vectors and one axial resonances, with LR symmetry and the following parameters:
f f f
f:fw—727 fa:§7 fp1:ﬁv fp2:()7
3-sites: 7 . (E.5)
fmiz = 0 9a=9p =G o = Ges =-3

Both Weinberg sum rules (3.81) and (3.82) are now satisfied. Notice that the term proportional
to fy, is absent in the deconstructed model because it would correspond to a non-local interaction
in field space.

The fermionic sector of [119] can be studied directly in the holographic gauge. As we are
interested only in the leading contribution to the 1-loop Higgs potential, we neglect in the follow-
ing interactions between fermions and spin-1 fields (gauge bosons, vector and axial resonances)
as well as composite fermions necessary to give mass to SM fermions other than the top. In
the two sites model the authors introduce a complete multiplet in the fundamental of SO(5)g,

¥ =Q + S, with a mass term that is only SO(4)g invariant:
‘C;‘Q};sites — Eelem + [feomp +£m217 (EG)
where £¢€™ is the kinetic term for the SM fermions,

Lo = iQPQ + mQQ + iSPS +mrSS, (E.7)

LM =y fELU (Q + S) +yrfERU (Q - S) + hec. (E.8)
Comparing this Lagrangian to the general one of eq.(3.39), it is immediate to recognize that the

models are the same once we fix Ng = Ng =1 and

2 sites: €qQ = €45 = YL f, €Q = €15 = \[Qny, mQ = —mg, mg = —mp.
(E.9)
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One can check that the sum rules of (3.96) are satisfied while the one in eq.(3.97) is generically
not, so that the potential is logarithmically divergent. One could however impose the finiteness

of the one loop potential setting yr, = v2yr.

In the three sites model there are two composite fermionic multiplets, one in the fundamental
of SO(5)k, ¥ = Q + S, and another one in the fundamental of SO(5)%, ¥ = Q + S. In the
holographic gauge, the Lagrangian is

£ = iQPQ + iSPS + iQIPQ + iSPHS+
m00Q + mrSS +m(QQ + 85) + AQO + 85) + hee. (E.10)
L7 =y FELU(Q + S) + yrfERU (Q + S) + hec.
Note that A, as well as the gauging by pf}, explicitly breaks SO(5)11L2 ® SO(5)2 to the diagonal

subgroup SO(5)p. As the composite mass terms are not diagonal, one needs to diagonalize them

before comparing this model with our setup:
Q1 = co,Q + 50, Q; S1 = cgsS + 5955,
eT e : o (E.11)
QQZ _SGQQ+CQQQ7 52: _SOSS+CQSS'

After doing that, we obtain that this three sites model can be described by the Lagrangian (3.39)
for Ng = Ng = 2 and

( 1
m2Q = 5 <m—|—7‘hQ F \/(m —mq)? +4A2> ,
1 ~ ~
mi2s = 5 (m+m5:|: \/(m*mS)Q +4A2> 7
A
tanfg = 7
\/A2 + (m —mgq) (m —mq + /(m —mq)? + 4A2)
8-sites: tanfg = A ’ (E.12)
A2+(m—ﬁ13) (m—ﬁls+\/(m_ms)2+4A2>
1 3 2 =
GQQ - nySgQ’ qu - nyCGQa
6(115 = nysas, 625 = nyc(;S,
E%Q - \/inySQQ, E?Q = \/ﬁyRJ’ECQQp
G%S = \/inySQS, E?S = \/ﬁyR]?CQS.

One can check that the sum rules (3.96) and (3.97) are satisfied. One can also check that the
fermion contribution to the potential has a leading mass term proportional to the square of the
mixings, which can be tuned away for y;, ~ v/2yg, allowing for a successful EWSB, confirming

what stated in [119].
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E.2 Minimal 4D Composite Higgs

Let us now write a similar dictionary for the deconstructed model described in ref. [120]. This
model is based on a two-coset Lagragian: SO(5)r, ® SO(5)r/SO(5)p, described by the NGB
matrix Q) = exp(iv/274T%/ f1), and another coset SO(5)/SO(4), described by the matrix Qy =
exp(iv/27%T%/ f). The SM gauging is embedded in SO(5)r, and to absorb the 10 exceeding
NGB’s, the diagonal subgroup of SO(5)r ® SO(5) is gauged by the field pl‘;‘. In the notation of
ref. [120], the Lagrangian is

2 2
1
c=Tlnp, i + 2D, Dra, - g™ (E.13)
o

where @3 = Qog (¢ = (0,0,0,0,1)") and
DMQ1 = 8u91 — ’L'AMQI + inpua D,UQQ = aMQ2 - ipﬂgl' (E14)

Going again to the holographic gauge, where Q; = 1 and Q; = U = exp(iv/27%T%/f1), and
redefining the NGB fields as 7% = f;/f7®, one can write the Lagrangian as in eq.(3.33):

1115 ft o, i+ 13 ft o 1o 1,
L=—3"2Tr[d,d"|+=Tr (9,0, — E,)° |+ Tr | (gpa, — —5——5d,)" | —=pi,——a;,,
4(f12+f22) [H]4 [PH .“'] P f12+f22ﬂ 4M 4M
(E.15)
from which we obtain the dictionary for N, = N, = 1:
fifs 7
f2: 2122a fp2:717 Ya = Gp;
fi+ /3 2
) ) ) ) (E.16)
5 B2
YA

It is straightforward to check that both Weinberg sum rules are satisfied with these parameters.
The fermion sector of [120], as far as the top is concerned, consists of the elementary SM
fields and two complete multiplets in the fundamental of SO(5): b= (Q, S ), ¥ =(Q,S), where

we have decomposed them in the irreducible representations of SO(4). In the holographic gauge,

the fermion Lagrangian is'

cferm = celem L iQPQ + iSPS +iQIQ + iSPS+
— mr(QQ + 55) — mz(QQ + SS)+
— (myy + Y7)S1.Sk — my; QLQR + h.c.t
+ A4, ELU(QR + Sr) + Aip€rU(QL + Sp) + hec. .

(E.17)

!We thank Michele Redi and Andrea Tesi for having pointed out that in their model A;, # A, in general.
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To compare this Lagrangian with our framework, we need to diagonalize the composite mass

terms via biunitary transformations:

mrT  My-
Mg = < ! ) = Vo, (00, ) MaVo, (00x)T,

0 ms
4 (E.18)
mr My, + Y7
Ms = LT ) = Vs, (05, ) MEV, (6s,)
0 m
where Mg = diag(mig, mag), Mg = diag(mis, mas),
1
mi2Q = ﬁ\/m% + m% +mi F \/(m?p + m% +mi, )? - 4m%m%,
mQT —mi —my, — \/(m% —m7)? +my, (mi, + 2my + 2m7)
tanfg, = , (E.19)

2mpmy;,

2 2 2
mZ —mi +ms, — \/(m% —m3)2+m3 (m} +2mj+2m?)
tan fg, =

2mrmys;,. ’

and mi 25, tanfg, and tanfg, are the same as above with the substitution my,, — Y7 + my,..

Writing the Lagrangian in terms of the mass eigenstates (before EWSB),

Q1 = cosbg, Qi1 —sinbg, Qar, (B.20)

Q1 = sinfg, Qur, + cos g, Qar,

and analogously for the other cases, we obtain the Lagrangian (3.39) for Ngp = Ng = 2 and

ecle = Di1Coq 62@ = —At,50q,,
6;5 = AYfLC9sR7 625 = _AtL395R7
E%Q = \@AtRSQQL, E?Q = \@AtRCQQL,
6%S = \/EAtRSGSL7 61525 = \/§AtR69SL'

(E.21)

One can check that all the sum rules are satisfied by this model and therefore the Higgs potential
is finite at 1-loop level. One can also check that the leading term in 7, quadratic in the mixing

Ayp g, is proportional to YT(A%Lm% - QA?Rm%)(QmYT +Y7).
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APPENDIX F

Parametrizing the SO(6)/SO(5) coset and
physical couplings

In this appendix, after providing some definitions useful for our work, we present three different
parametrizations of the physical h and 7 fields, used in previous literature, and the relations
among them. In particular, we show how the couplings among the physical fields differ between
the parametrizations: only physical observables are parametrization-independent.

Let us first define the broken and unbroken generators of SO(6)/SO(5) in the fundamental
representation of SO(6). We classify them in the five broken ones of SO(6)/SO(5) and the ten
unbroken generators of the SO(5) subgroup, which can be further divided into the six of the
SU(2)rL ® SU(2)r ~ SO(4) € SO(5) subgroup and the four of the SO(5)/SO(4) coset

a _ _ U (cais6j _ sajs6i
TS ﬁ(a 59 — 5957 |
T = —% Bﬁ“bc(ébia@’ — 34960y + (89164 — aigty| | (F.1)

2
.

wherea=1,...,5,aprp=1,2,3and a=1,...,4.

(6041'553' o 5aj65i> ,

The five NGBs can be parametrized by a 6 x 6 unitary matrix obtained exponentiating a
linear combination of the broken generators,
0%(

U(z) = exp [i\@fm)T&] , (F.2)

which transforms under a global SO(6) transformation g as U(z) — g U(x) k'(g,0%(x)), where k
is a local transformation of the unbroken group SO(5), which depends on g and on the position
via the NGB dependence. From the NGB matrix U one can define the standard CCWZ structures
d, and I, as

diT* + EAT* = —i(U'D,U) . (F.3)
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Defining ¥ (z) = U(z)Xo, with 3o = (0,0,0,0,0, 1), one gets
0 (91 02 0% 0% 0 9)
Y =sin AV Er A t

:j" (h1,h2,h3,h4,77a f2_h2_772) ’

(F.4)

where 62 = 2221(0[1)2 and h? = 2?21 h?. The usual Higgs doublet can can be constructed as
H= %(hl + iha, hs + ihy)t. The fields h;(x) and n(z) live in the region \/h2 +n2 < f. In the
unitary gauge hj(x) = ha(x) = ha(z) = 0 and h(z) = hs(z)

0 0 65 0
Eunitary :Sin? (0707 ?707 §7COt f)
Z; (0, 0,h,0,m,v/f2 —h2 — 772) (F.5)
_ ( o ¢ .Y d>>

0,0, sin = cos —, 0, sin — sin —, cos —

7 fr f

where in the third line we introduced another parametrization [45], in terms of two angles, which

is related to the previous two as

b =1/(6%)2 +(6%)2, tan%zej,

foe (F.6)
o1 Y _n
sm?:? h? +n? | tan?:%.

Let us call the first parametrization, in terms of the 6% variables, Cartesian, the one we use
throughout the paper, in terms of h and 7, constrained and the third one, in terms of the angles
¢ and 1, polar. In the rest of this appendix we will show how the physical fields in the three
parametrization have qualitatively different couplings, both from the chiral Lagrangian and from
the effective potential. In the computation of physical quantities such as cross-sections or decay
widths, these differences conspire and give the exact same result, as expected.

The leading-order chiral Lagrangian, eq. (4.8), can be written in a compact form in both the

constrained and in the polar parametrization, it reads

. _f2 Iz _f2 tppsy
EchlmleTr[dud]f?(DuE)D Y=

1 {sin2 ?(8#1/))2 + (8,@)2] + J;QSin2 jﬁ cos? ? (L(}QA#A“) (F.7)
[(8Mh)2 + (9,m)* + (hduh + nf?;mf] h?

~2
f2 - h2 _ 772 + g(g AMAM) )

T2
1
2
where, for convenience, we defined §2A, A" = g5[(W;)? + (W7)?] + (9pBu — 9oW;2)?. In the
three parametrizations, the EWSB vacuum can be identified as ((03> = fsin™1 /g, <95> = 0),

179



(sin{p) = V&, (1) = 0) or ((h) = v = fVE, (n) =0), where £ = v?/f2. Tt is then straightforward

to identify the physical Higgs and DM fields in the three parametrizations

sin~! /€
V&

¢ = fSin_l \/g+ hpol ’ = \}E Tlpol 3 (F8)

h:U+\/1_£hcon7 T = Ncon -

Let us now look at the effective potential. With a simple spurionic analysis it is possible to

93 = fSin_l \/g“' hCart s ‘95 = f + Ncart ;

obtain the possible functional dependence of the potential on the pNGBs. The gauge contribution
to the potential depends only on h%? = f2sin? ? cos? %, instead the functional dependence of
the fermion contribution depend on the particular embedding of the SM fermions in SO(6)
representations. In our models, that is embedding the third generation quarks in fundamentals
as in eq. (4.15), the functional dependences are h? = f2sin? ? cos? % and (h? 4+ n?) = f?sin? ?
Expanding for small values of h%, n? and keeping terms up to quartic order, the effective potential

can thus be parametrized as

2 2
Phro  Anya  Ppoo Ao o Ay
Veg = —2h*+ —h"+— —h — F.9
off o I T T SR R (F.9)
2@ o 4P 4 .2 4P o 4 P
= —sin® = cos” = 4+ fsin® = cos® = 4+ dsin® = 4+ osin” = cos” = 4 xsin® = + ...
/ ! f f ! ! f f
The relation between the coefficients in the two formalisms, at this order, is
pnf?=-20y=0), pf>=26, (F.10)
Mft=4B+o+x),  AMff=20+20,  Afi=dx
The EWSB minimum is given by
2 2 -9
[ —— (F.11)

TR M 2B+0+x)

The mass matrix for physical fields defined in eq. (F.8), in all three parametrizations, is the same

2
h
m% _ o*V( thysanphyS) _ 2)\hU2(1 —¢) = wg(l —&), (F.12)
ahphys min f2
OV (Mphys, Nphys) 20 2(0+2x)
m2 = phys> 'lphys = et = 4+ 2 Ve (F.13
n 8n§hys . n f2 f2 )
aQV h S S
mi, = (Pphys Tphys) _ 0. (F.14)

8hphysanphys min

Which confirms that the physical fields defined above are indeed mass eigenstates.
Let us now move to study the couplings of the physical fields in the three parametrizations

arising from the Lagrangian of eq. (F.7) and the potential in eq. (F.10). We parametrize the
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generic couplings of the physical fields following, and adapting, the formalism of ref. [104]. Up
to four-particle interaction terms and assuming custodial invariance and parity under n — —n,

(from now on we neglect the subscript “phys”), we write the phenomenological Lagrangian

1 9 h B2 n?
Lpheno = 5(6Nh’) <1 + 2th5 + bhhﬁ + bhnﬁ + ...

1 h h? n?
+ 5(8//47’)2 (]. + 2anh; + bnhvﬁ + bnnﬁ + .. )
" n nh
+ (a,ma h) C’?; + dﬁhﬁ + ... = ‘/G:H(h, 77) (F15)

M h h? 2
+ [M%/WJW_“ + 2ZZ“ZM:| <1 + 2thE -+ thﬁ + an% +.. )
B h h2 2
— mfz/Jf¢ (1 + th; + bthfQ + bfn% +.. ) ,

where f = u!,d’, e’ represents any SM fermion and

2 2
m m Ap3
Verr(h ) = 0% + St + S b +

A Mt

TR (F.16)

252
nhn2h2+

At pa A”th% +=

4 2
We report the expression of the couplings in the three parametrizations, as functions of £, in
table F.1. It can be noticed that the constrained parametrization offers the cleanest expressions
for the physical couplings. For this reason, and for its intuitive relation with the physical Higgs
and DM fields, we decided to use this parametrization throughout the work.

In table F.1 it can be noted that the couplings of the physical fields differ also qualitatively
among the three parametrizations. It can be checked that, however, when computing physical
observables (for example cross-sections) they all give the same result. As an example it can be
easily checked that the NGB scattering amplitudes for high energies, 2 >> m%, m%, MI%V, 7, go like
| A2 ~ E*/f* in all three parametrizations. In order to check that also the couplings from the
potential provide the same physical results (which can not be tested from the previous check), we
explicitly computed the unpolarized cross-section Zpol o(nm — WTW ™) in all parametrizations
and for all energies above threshold and confirmed that the result is indeed the same in all three

cases.
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APPENDIX G

Parametrization of the PMNS matrix

In the present Appendix we show how the parametrisation of eq. (5.30) follows from the ones in

egs. (5.27) and (5.28). We start by writing explicitly the PMNS matrix as
U = R1p(072) Ro3(053) W Ras (033) R12(072) P, (G.1)

where ¥ = diag(1, €', ™), without loss of generality. Any 2 x 2 unitary matrix V' can be recast
in the form V = PR(0)Q, where P = diag(e!, e!??), Q = diag(1,e¢™?) and R(0) is a 2 x 2

rotation. We use this to write
Ro3(053) W Ras(653) = @' Ras(623)2, (G.2)
where Ras(f3) is an orthogonal rotation in the 23 block with
sin fg3 = |cos 055 sin O3 + ¢“ %) sin 05, cos O, | (G.3)

P’ = diag(e'®1, e'?2, ¢/%3), and Q = diag(1, €2, ¢™3). An explicit solution for the angles in terms

of the original parameters is

¢1:07 ¢2:6C+6S+w_wv ¢3207

(G.4)
wo = —0s + w, w3 = —0. + w,
where
ds = Arg (cos 055 sin 055 + €@ ~¥) sin 65, cos 6’53) ,
A (G.5)
0c = Arg (cos 05 cos 055 — €“~%) sin 05, sin 953) .
Considering now also the R12(67;) rotation, we obtain
Ra3(023)2R12(6}3) = " Ros (f23) Ri2(61) Q" (G.6)

with ®” = diag(1, €2, e™2) and Q" = diag(1, 1, e"“3~+2)). The phases in Q" add to the ones in

Q' and are Majorana phases. The ones in ®”, instead, add to the ones in ®':
P'P" = "1 diag(1, e!(P2791w2) (ilPa—drtwa)) (G.7)
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The phase in the 33 position commutes with R12(67,). Together with the overall phase ¢, it
will describe the unphysical phase matrix P in eq. (5.30):

P = ¢t diag(1, 1, e/(®3—91+w2)) (G.8)

We see that the only physical Dirac CP violating phase in this parametrisation is contained in

the matrix ® = diag(1, €', 1), with

=2 — ¢1+wr =1+ 0c. (G.9)
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APPENDIX H

Statistical analysis

In this appendix we describe the simplified statistical analysis performed to obtain the results.
Our aim is to use the results of the global fit performed in ref. [196] to assess how well each of the
models introduced in the previous section can fit the data. In particular, we use the constraints
on the PMNS angles 63, 612, 023 and on the phase  for the normal hierarchy (NH) and inverted
hierarchy (IH) cases, as derived in ref. [196]. There, the results are reported by plotting the value
of N, = \/TXQ (with Ax? = x? — X%mn) as a function of each observable, with the remaining

ones marginalized away. We construct an approximate global likelihood from these functions as
Ax3(ay) T

Lj(aj) = exp (_]2 L@ =[] Ljlay), (H.1)
J

where @ = {sin? f3,sin? fa3,sin? 012, 8} are the observables relevant for our analysis, and we
define
Y3(&) = —210g L(@)/ L (1.2)

and N, (&) = \/W . In using this procedure we loose any information about possible correla-
tions between different observables. The effect of this loss of information is however negligible,
as one can check comparing our 1o, 20 and 30 contours in the (sin? 63, sin? 613) and (sin? 013, 6)
planes shown in figure H.1 with the ones in Fig. 5, Fig. 6 and Fig. 7 of ref. [196]. Only in the
sin? fos vs. & plane there is a visible deformation of the distribution at the 3o level.

Each model introduced in the previous section (which we dub with an index m) depends on a
set of parameters x” = {z!"}, which are related to the observables via expressions a; = ol (x™),
obtained from egs. (5.31), (5.55). We then construct the likelihood function in the space of the
parameters X as

L™(x™) = L(a™(x™)). (H.3)
We define x?(x™) = —2log L™ (x™) and N,(x™) = 1/x2(x™). The last one is the function we
use to produce the plots shown in figures 5.2-5.6, once we marginalize over the variables which
are not shown in each plot. Finally, to obtain the best-fit point we use the maximum likelihood

method.
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Figure H.1: 10,20,30 contours (respectively solid, dashed and dotted lines) of our global like-
lihood function in the (sin® fa3,sin? A13) plane (left), (sin? 613, d) plane (center) and (sin? a3, §)

plane (right), using the data for NH. These plots can be compared with Fig. 5, Fig. 6 and Fig. 7

of ref. [196] for NH. Undisplayed variables have been marginalized.
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