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Abstract

The last few years witnessed some major breakthroughs in the field of fundamental particle

physics, which had a big impact in our understanding of Nature at a microscopic level.

On March 30th, 2010, the first proton-proton collisions took place at the Large Hadron Col-

lider (LHC), marking the beginning of a new era in particle physics. The excellent performance

of the machine and the detectors, due to the fantastic work of all the researchers involved in

the experiments, lead, in only two years, to the announcement of the discovery of the Higgs

boson on July 4th, 2012. This event could be considered as the peak of success for the Standard

Model (SM) of elementary particles, which predicted the existence of this particle – as well as

all its properties – since more than forty years before. In the following two years the ATLAS

and CMS experiments at the LHC measured the properties of the Higgs particle with a good

accuracy, showing no significant deviation from the SM. In the meanwhile, also the numerous

direct searches for other new particles turned out to give only negative results, against all ex-

pectations from the theory community, pushing the scale of new physics to higher and higher

values. Also, while the cosmological evidence for Dark Matter (DM) is now stronger than ever,

so far all direct and indirect searches provided negative results (albeit with some isolated excep-

tions which, however, are still much debated in the literature and seem to be incompatible with

other negative results) and the bounds on weakly interacting massive particle DM are extremely

strong.

In neutrino physics an important event took place in June 2011, when the Tokay-to-Kamioka

(T2K) collaboration reported an evidence for a non-zero, and sizable, value of the reactor neutrino

mixing angle, θ13. This was confirmed in March 2012 by the Daya Bay collaboration, which

measured this mixing angle with a very high precision, confirming that its value lies on the

high-end of previous upper bounds. Since many popular and well motivated models of neutrino

mixing predicted a zero, or very small, value of the reactor angle, this result was very important

and offered a new insight in the quest for understanding the origin of flavor in the lepton sector.

Also, since CP violation in the lepton sector effects vanish in the θ13 → 0 limit, the fact that

this angle is sizable opens up many interesting possibilities for measuring CP violation in the

neutrino sector.

The work presented in this thesis was largely stimulated by these two major breakthroughs

in particle physics.

On the one hand the Higgs discovery and the measurement of its properties, in particular

its mass, lead us to study the consequences of these measurements for a specific class of models

beyond the SM: composite Higgs models [1, 2] (and also in supersymmetric versions of these

models [3]). In particular, we found that a very definite (and testable) prediction for the spectrum

of new physics can be obtained [1]: fermionic top partners are expected to be near the ∼ 1TeV
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scale. Also, the measurements of the Higgs couplings and the fact that the bounds for the new

physics scale are often much higher than the electroweak scale, open up the possibility of studying

possible deformations from the SM in an effective field theory framework. In this context we

studied the possibility of linking the properties of the Higgs with other electroweak observables,

very well constrained by LEP, via renormalization group effects, finding that they already allow

to derive constraining, and independent, bounds on some Higgs properties [4]. In the future,

when some deviation from the SM will be – hopefully – observed, these effects could provide a

new window on the new physics sector. Some results regarding expectations from possible future

colliders have been presented in ref. [5].

On the other hand, we studied how the measured value of θ13 can be accommodated in some

motivated models of neutrino mixing by exploiting corrections due to the mixing among the

charged leptons [6, 7]. Such corrections are expected, for example, in Grand Unified Theories,

which allow to link the charged lepton sector with the quark sector, and therefore the neutrino

mixing matrix with the quark mixing one. This analysis allowed us to obtain a precise prediction

for the value of the Dirac CP violating phase in neutrino mixing, testable by future neutrino

experiments.
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CHAPTER 1

The Standard Model

Of course our model has too many

arbitrary features for these predictions

to be taken very seriously

Steven Weinberg [8]

The discovery of the Higgs boson at the Large Hadron Collider (LHC) in Geneva, by the AT-

LAS and CMS experiments on July 4th, 2012, [9, 10], was a milestone in the progress of the

understanding of fundamental particle physics. This particle, predicted fifty years ago [11–13]

as a consequence of a mechanism able to provide a mass to spin-1 gauge bosons, and included

as the cornerstone of the electroweak (EW) sector of the Standard Model (SM) [8, 14, 15], was

the last missing piece of this extraordinary theory. The incredible success of the SM to correctly

describe, and predict, a great variety of physical phenomena, ranging several orders of magni-

tude in energy scale, sometimes with a very high precision, is unattained in any other field of

human knowledge. Furthermore, since G. t’Hooft [16] proved that the SM is a renormalizable

theory, it can also be seen as a theoretically consistent theory up to extremely high energies.

There are, however, both experimental observations – such as the presence of gravity, neutrino

oscillations, dark matter and the baryonic asymmetry in the Universe – and theoretical issues –

as the naturalness problems for the cosmological constant, the Higgs mass and the QCD θ angle

– which make us expect that this should not be the case, i.e. that the SM should be extended in

order to provide an explanation to these issues. In particular, the naturalness problem for the

Higgs mass points to a scale of new physics (NP) near the TeV, that is in the range of energies

currently probed at the LHC. In this chapter we review some basic concepts regarding the SM

and present some of the experimental and theoretical problems of the SM mentioned above.
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1 The SM action 2

1.1 The SM action

The SM [8,14,15] is a renormalizable quantum field theory based on the local non-abelian gauge

group

GSM = SU(3)c × SU(2)L ×U(1)Y , (1.1)

where the first factor is the quantum chromodynamics (QCD) gauge symmetry while the other

two represent the electroweak symmetry group GEW. It can be described by the Lagrangian

LSM = Lgauge + Lmat + LHiggs + LY uk , (1.2)

where the addends on the r.h.s. are, respectively, the gauge-invariant kinetic terms of the gauge

bosons and of the fermion matter fields, the gauge-invariant kinetic and potential terms of the

Higgs scalar and finally the Yukawa interaction between the Higgs and the SM fermions. Let us

now briefly discuss each term separately.

Gauge Term

The Yang-Mills Lagrangian for the SM gauge fields GAµ , W a
µ and Bµ, with A = 1, . . . , 8 and

a = 1, 2, 3, is

Lgauge = −1

4
GAµνG

Aµν − 1

4
W a
µνW

aµν − 1

4
BµνB

µν , (1.3)

where the field strength are defined as V i
µν = ∂µV

i
ν − ∂νV i

µ + igV f
ijkV j

µV k
ν , and f ijk represent

the structure constants of the non-abelian gauge groups.1 In order to quantize the theory, to

eq. (1.3) one should add also the gauge fixing terms for the three SM gauge factors and the

Lagrangian for the ghost fields. For simplicity we omit these terms here, the relevant ones will

be specified in the text whenever necessary.

The field content of the SM is such that the QCD coupling constant gs has a negative β-

function, meaning that its value decreases when increasing the energy of the process, a behavior

called asymptotic freedom. This also implies that upon reducing the energy of a process gs
increases, eventually becoming non-perturbative at a scale

ΛQCD ∼ Λ exp

(
1

2β0g2
s(Λ)

)
∼ 1GeV , (1.4)

where Λ is either the UV cutoff of the theory or any other matching scale from which the running

starts. The dynamical generation of an energy scale from the renormalization group flow of an

adimensional coupling is called dimensional transmutation [17]. Below this QCD scale, all degrees

of freedom charged under the QCD gauge group condense and become confined in color-neutral

1Here and in the following, otherwise explicitly stated, repeated indices imply a sum.



1 The SM action 3

composite states, the hadrons. In general, at the renormalizable level, another operator could

be added to the QCD Lagrangian:

∆Lθ = −iθQCD
g2

32π2
GAµνG̃

Aµν , (1.5)

where G̃Aµν = 1
2εµνρσG

Aρσ. Even though this term can be written as a total derivative, using the

Bardeen identity, the non-trivial topology at infinity of the SU(3)c gauge group makes it physical.

This CP-odd operator, in fact, reflects non-perturbative topological properties of the QCD gauge

group and in general one would expect θQCD ∼ O(1). Assuming non-vanishing quark masses, a

non-zero value of θQCD would generate, for example, an electric dipole moment for the neutron

dN ∼ |θQCD| em2
π/m

3
N ∼ 10−16 |θ| e cm.2 The experimental upper bound dN . 10−25e cm

implies |θQCD| . 10−9. This big hierarchy between the expected value and the measured upper

bound, and the fine-tuning this implies, is known as the strong CP problem.

The EW gauge group is spontaneously broken to the electromagnetic subgroup U(1)em via

the Higgs mechanism, described in the following, providing a mass for three linear combinations

of the four gauge bosons of GEW: the W± and Z bosons. The remaining combination is massless

and is identified with the photon.

Matter

The matter content of the SM consists of three copies (generations) of a set of chiral fermions

transforming under fundamental representations of GSM as

qjL ujR djR `jL ejR

SU(3)c 3 3 3 1 1

SU(2)L 2 1 1 2 1

Y 1/6 2/3 -1/3 -1/2 -1

,

where Y is the hypercharge of U(1)Y , the components of the doublets are qjL = (ujL, d
j
L), `jL =

(νjL, e
j
L) and j = 1, 2, 3 is the generation index. The second term in eq. (1.2) contains the

gauge-invariant kinetic terms for all the SM fermions, schematically

Lmat =
∑

f=q,`;j

f̄ jLiγ
µDµf

j
L +

∑

f=u,d,e;j

f̄ jRiγ
µDµf

j
R , (1.6)

where Dµ = ∂µ − igsGAµ tAf − igW a
µT

a
f − ig′BµY and tAf , T

a
f are the generators of the SU(3)c and

SU(2)L groups in the representation of the fermion f (for doublets of SU(2)L the T a are given

by the Pauli matrices, σa/2, and for triplets of QCD the tA are given by the Gell-Mann matrices

λA/2).

2This expression holds in a particular phase convention for the quarks. In general physical observables depend

on an phase parametrization-invariant combination of the QCD θ angle and the quark phases.
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Higgs Lagrangian

The SM Higgs boson is a complex scalar, singlet under the color group, doublet of SU(2)L and

with hypercharge Y = 1/2: H = (1,2, 1/2). It is the only elementary scalar of the SM. Its

Lagrangian is

LHiggs = |DµH|2 − V (H), (1.7)

where DµH = ∂µH − igW a
µ
σa

2 H − ig′ 12BµH and the potential V (H) can be parametrized as

V (H) = −1

2
m2
H |H|2 + λ |H|4 , (1.8)

with λ,m2
H > 0. This potential has an obvious minimum away from the origin, therefore the

Higgs takes a vacuum expectation value (vev) at 〈|H|2〉 = v2/2 = m2
H/(4λ), where we introduced

the vev parameter v = (
√

2GF )−1/2 ' 246GeV. In this class of minima the EW symmetry

is spontaneously broken to a U(1) subgroup, which we identify with the electromagnetic gauge

group. As a consequence of this spontaneous symmetry breaking, three Nambu-Goldstone bosons

(NGB) are present in the theory. An efficient way to parametrize the physics around one of these

vacua is to define

H(x) = Σ(x)
1√
2

(
0

v + h(x)

)
, (1.9)

where h(x) is the physical Higgs boson and Σ(x) is a matrix containing the three NGBs χa(x):

Σ(x) = exp

(
i
σaχa(x)

v

)
, (1.10)

which satisfies ΣΣ† = 12, where 12 is the 2 × 2 identity matrix. In this parametrization the

kinetic term of the Higgs can be written as

LHiggskin =
1

2
(∂µh)2 +

v2

4
Tr
[
(DµΣ)†DµΣ

](
1 +

h

v

)2

, (1.11)

where DµΣ = ∂µΣ−ig2W a
µσ

aΣ+ig
′

2 Σσ3. The gauge choice in which Σ = 1 is called unitary gauge

and makes explicit the fact that the fieldsW±µ = (W 1
µ∓iW 2

µ)/
√

2 and Zµ = cos θWW
3
µ−sin θWBµ

become massive with

mW =
gv

2
' 80.4GeV , mZ =

mW

cos θW
' 91.2GeV , (1.12)

where the Weinberg angle is given by tan θW = g′/g. In this gauge, the three NGB modes

have become the longitudinal polarization of the massive W and Z bosons. The orthogonal

combination to Zµ, Aµ = cos θWBµ + sin θWW
3
µ , remains massless and is the photon. The

electric charge is defined as Q = Y + T 3L
f and the fine structure constant is given by α = e2/4π,

where electric coupling is e = g sin θW .
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In this parametrization it is also manifest that the potential depends only on the physical

field h. Expanding in powers of this field one gets the physical tree-level Higgs mass [18,19]

M2
H = m2

H = 2λv2 ' (125 GeV)2 . (1.13)

Given the knowledge of v from muon decay, in the SM the measurement of the Higgs mass at

the LHC corresponds to an indirect measurement of the self coupling λ ' 0.13.

Yukawa Lagrangian

The EW gauge symmetry forbids a mass term between the left-handed and the right-handed

fermions. Yukawa interactions with the Higgs, therefore, are needed in order to provide masses

to SM fermions. The last term in eq. (1.2) is:

LY uk = −yiju q̄iLHcujR − y
ij
d q̄

i
LHd

j
R − yije ¯̀i

LHe
j
R + h.c. , (1.14)

whereHc = iσ2H∗ and yu, yd, ye are 3×3 complex matrices. In the unitary gauge this Lagrangian

provides mass terms for the SM quarks and charged leptons, mu,d,e = yu,d,ev/
√

2, as well as inter-

actions with the Higgs. These mass matrices can be diagonalized by biunitary transformations

acting on the three generations of fermions

mu,d,e = UuL,dL,eLm
diag
u,d,e(UuR,dR,eR)† . (1.15)

Since uL and dL are part of the same SU(2)L doublet, in general it is not possible to diagonalize

both the up and down quark matrices while at the same time respecting the gauge invariance. For

example, one can choose to diagonalize the down-quark mass matrix, obtaining from eq. (1.14),

in the unitary gauge,

LY uk = −
(
muj ū

i
L(VCKM)iju

j
R +mdi d̄

i
Ld

i
R +mei ē

i
Le

i
R + h.c.

)(
1 +

h

v

)
, (1.16)

where muj ,dj ,ej are (real and positive) the singular values of the three mass matrices and VCKM =

(UdL)†UuL is the Cabibbo-Kobayashi-Maskawa (CKM) matrix which contains the 3 physical

quark mixing angles and the only physical CP violating phase. Note that the three neutrinos νiL
remain massless at this level. A Dirac neutrino mass term is forbidden since the SM does not

contain their right-handed counterpart. Also, even though in principle a Majorana mass term

could be allowed, since neutrinos are neutral, gauge invariance forbids this at the renormalizable

level. As we explain in more detail in section 5.1, this offers a simple and elegant explanation to

why neutrinos are much lighter than all the other fermions.
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1.1.1 Global symmetries of the SM

The SM Lagrangian presented above, eq. (1.2), enjoys many accidental, exact or approximate,

global symmetries. These symmetries have an important role in shaping the phenomenology of

the theory. Let us introduce here the most relevant ones.

Custodial symmetry

Let us rewrite the Higgs doublet in 2× 2 matrix notation as Φ(x) = hi(x)σi + h4(x)12, and the

Lagrangian in eq. (1.7) as

LHiggs =
1

4
Tr
[
DµΦ†DµΦ

]
− λ

(
1

4
Tr
[
Φ†Φ

]
− v2

2

)2

, (1.17)

where DµΦ = ∂µΦ− ig2W a
µσ

aΦ + ig
′

2 BµΦσ3. In the limit in which g′ = 0, this Lagrangian enjoys

a global SU(2)L×SU(2)R symmetry, acting on the Higgs field as Φ→ ULΦU †R. This symmetry is

broken, other than the hypercharge (which, in this formalism, corresponds to the gauging of only

the third generator of SU(2)R), also by the difference of the Yukawa couplings between the up-

type and down-type quarks. The Higgs vev breaks spontaneously this SU(2)L×SU(2)R ∼ SO(4)

symmetry to the diagonal subgroup SU(2)C ∼ SO(3)C , called custodial symmetry group. The

three NGBs arising from this symmetry breaking pattern are exactly the NGBs of the electroweak

symmetry breaking, eaten by the massive W and Z bosons.

In the SM, the gauge bosons masses and couplings satisfy the tree level relation [20]

ρ ≡ m2
W

m2
Z cos2 θW

= 1 . (1.18)

This tree-level relation is a consequence of the custodial symmetry, which also protects the ρ

parameter from receiving big quantum corrections [21, 22]. In fact, in the SM these corrections

vanish in the limit of zero hypercharge and equal up and down quark masses.

In general, new physics model, as well as higher dimension effective operators, violate this

symmetry at tree-level and predict sizable corrections to ρ. Experimentally, LEP [23] put very

strong bounds on the deviations from the SM prediction, which put very strong constraints on

the NP sector.

Flavor symmetries

Let us now discuss the global symmetries of the matter sector of the SM. The kinetic Lagrangian

of the SM fermions, eq. (1.6), is symmetric under the global flavor group

U(3)q ×U(3)u ×U(3)d ×U(3)` ×U(3)e , (1.19)
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under which the generation-index of each type of fermion transforms in the fundamental repre-

sentation. This big symmetry group is explicitly broken by the Yukawa Lagrangian, eq. (1.14).

The bigger the Yukawa coupling, the stronger the breaking.

The only exact global symmetries left are the baryon number and the lepton numbers.

• The baryon number is the conserved charge of the U(1)B global symmetry under which

all quarks change phase: q → eiαq. Since baryons carry a non-zero net baryon number,

the proton – which is the lightest baryon – is predicted to be stable. Higher dimension

effective operators, in general, violate this symmetry and therefore can mediate proton

decay. Experimental constraints on the proton lifetime pushed the scale of baryon number

violation to ∼ 1015GeV.

• The electron, muon and tau lepton numbers are conserved charges corresponding to three

independent U(1) phase redefinitions of each lepton generation. These independent quan-

tum numbers are slightly violated by non-vanishing neutrino masses, the most important

effect being neutrino oscillation. If neutrinos are Dirac particles then a global U(1)L is left,

like the baryon number, where L = Le + Lµ + Lτ ; if instead the neutrinos are Majorana

particles, then also this symmetry is violated. The nature of neutrinos is currently tested

for, experimentally, by searching for neutrino-less double-β decays.

• At the quantum level, due to the matter content of the SM, the L and B global symme-

tries are anomalous and are broken, in particular, by instanton effects. Only the linear

combination B − L remains unbroken, unless neutrinos have a non-vanishing Majorana

mass.

1.2 Naturalness problem

Big and small numbers found in Nature have always puzzled physicists trying to unveil the

laws of the Universe.3 Dirac’s “Large Number Hypothesis” [25, 26] was an attempt to explain

the smallness of the proton mass with respect to the Planck mass, or why the gravitational

interaction in an atom is so much weaker than the electromagnetic one:

e2

GNmemp
= 2.85× 1040. (1.20)

Now we know that the generation of the QCD scale is due to the quantum nature of the theory

and, in particular, to dimensional transmutation which suppresses exponentially the QCD scale

with respect to the Planck scale, see eq. (1.4).

3For a review on naturalness problems in physics see ref. [24].
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Figure 2.2. Feynman diagrams contributing to mh at one loop in the Standard Model.

property holds also in absence of a gauge symmetry, because of the chiral symmetry which
is broken by the mass term. In general any point of the parameter space with an enhanced
symmetry is stable under renormalization group (RG) running.

The same property does not hold for scalar particles. The mass of the Higgs boson
mh is an arbitrary parameter of the model, not protected by any approximate symmetry,
which is additively renormalized: it gets radiative corrections proportional to the mass of
any particle which couples to it. In that sense the point mh = 0 is UV-unstable. This
is easily seen in the Standard Model, where the one-loop corrections to the Higgs mass
are generated by the diagrams in figure 2.2 and are given in appendix D. However, if we
compute the beta function for the running mass we get

�m2
h

=
dm2

h

d log µ̄
=

3m2
h

8⇡2

⇣
2�+ y2

t �
3g2

4
� g02

4

⌘
, (2.19)

i.e. the running of the mass parameter m2
h is proportional to itself. This is true in the

pure SM because the masses of the particles are all proportional to the EWSB scale v.
Suppose now that the SM is modified at some energy ⇤NP > ⇤SM, where ⇤SM ' 4⇡mW

is the typical energy scale of the SM. If the Higgs boson is coupled to the new physics
sector, then its mass will get a correction also from loops of the new heavy particles, which
will be quadratic in their mass M ⇡ ⇤NP. If we want a UV completion of the Standard
Model in which the Higgs mass is a predictable quantity, this constitutes a problem.

To make the statement more precise, let us calculate explicitly the one-loop correction
to the Higgs pole mass arising from a fermion with Dirac mass M and Yukawa coupling y.
From a diagram analogous to the first one of figure 2.2, using dimensional regularization
we get

�m2
h = Re ⇧hh|p2=m2

h
=

y2

2(4⇡)2
Re
⇥
�✏ + (m2

h � 4M2)B0(mh; M, M)� 2A0(M)
⇤

=
y2

2(4⇡)2

⇣
�✏ + (6M2 �m2

h) log
m2

h

µ̄2
+ f(mh, M)

⌘
, (2.20)

where �✏ is the pole which has to be subtracted by a counterterm, A0 and B0 are the
finite parts of the Passarino-Veltman one-loop functions defined in appendix D, µ̄ is the
renormalization scale and f is some function. Very similar equations hold for scalar
and vector particles circulating in the loop (see eq. (D.5) in the appendix). The term
f(m2

h, M
2) in (2.20) is unphysical since it does not depend on µ̄ and it can be subtracted

Figure 1.1: Diagrams contributing at one-loop to the Higgs mass in the SM.

Other examples of a very small (or big) numbers in the SM are the value of the QCD CP-

violating angle θQCD . 10−9 (see eq. (1.5)) and the ratio of the strength of the weak and

gravitational forces,
GF~2

GNc2
= 1.738 59(15)× 1033 . (1.21)

In terms of energy scales, this translates in the question of why the electroweak scale v is much

smaller than the Planck mass MPl. The rest of this section is devoted to discuss the problems

associated with this hierarchy and to show that this is not only an aesthetical and philosophical

issue, but a deep problem related to fundamental properties of quantum field theories.

1.2.1 Understanding the problem

Since the electroweak scale can be traded for the Higgs mass parameter mH which enters in the

potential in our parametrization, let us discuss the problem associated to the value of the Higgs

mass.

To appreciate the problem it is necessary to consider the quantum nature of the theory.

Interactions of the Higgs with virtual particles in the quantum vacuum produce corrections to

the Higgs mass of the order of the largest energy scale available to these virtual particles, i.e.

the maximum energy up to which the theory is valid. At the technical level this reflects in

quadratic divergencies in the computation of quantum corrections to m2
H as in fig. 1.1 which,

barring cancellations, can be estimated to be

δm2
H ∼ g2 Λ2

16π2
, (1.22)

where Λ is the cutoff of the computation. If the SM was valid up to the Planck mass MPl, this

would mean that the ratio of eq. (1.21) would be expected to be of order 1 (or only slightly

bigger due to the loop factor).

An important assumption we took in the previous argument was the introduction of a physical

energy scale much bigger than the Higgs mass. This is crucial, in fact the SM is a renormalizable

theory, which means that all divergencies can be reabsorbed by unphysical counter-terms, in this



1 Naturalness problem 9

case the bare Higgs mass itself. After this process the only remnant of the divergence is the

renormalization group (RG) flow of the Higgs mass parameter:

βm2
H

=
dm2

H

d logµ
'
(

3y2
t −

3

4
(3g2 + g′2) + 6λ

)
m2
H

8π2
, (1.23)

where we neglected higher order corrections and contributions from fermions lighter than the

top (see e.g. ref. [27] for the complete RG equations in the SM up to three loops). We see

that, as expected, any dependence on the cutoff has disappeared, in fact if we would have

used dimensional regularization for the computation, we would not have found any quadratic

divergence to begin with. Eq. (1.23) also shows that the RG of the Higgs mass is proportional

to the mass itself. This means that if the SM would be the complete theory of Nature and no

other energy threshold would be present at high scales, then any value of the electroweak scale

would be equally natural at the technical level.

The problem hinted by eq. (1.22) arises if the SM has to be completed by some other dynamics

at a scale Λ2 � m2
H . The motivations for such a new dynamics are manifold, here we will only list

some of them briefly: the quantization of gravity most probably involves some new effects at (or

before) the Planck scale; reproducing the dark matter abundance of the Universe requires some

degree of freedom beyond the SM, even though the scale is almost arbitrary; Majorana neutrino

masses (assuming O(1) Yukawa couplings) and unification of the gauge couplings both point to

some new dynamics at the 1014−16GeV scale; many models explaining baryogenesis and inflation

also hint to some new physics at a very high energy scale. Moreover, even neglecting altogether

gravity or these other new physics phenomena, the SM itself presents a new scale at energies of

∼ 1041GeV, where the hypercharge (and the Higgs quartic coupling) become non-perturbative.

As a simple example to understand what could such a heavy new dynamics lead to, let us

consider a new complex scalar field φ with mass M � MH , coupled to the Higgs via a portal

interaction V ⊃ λφ |H|2 |φ|2. Above the scale M , where the scalar is present in the theory, this

interaction generates an additive contribution to the Higgs mass β function given by

δβm2
H

= δ
dm2

H

d logµ
= − λφ

16π2
M2 . (1.24)

This RG effect from a scale M∗ > M down to M (below which the scalar has to be integrated

out and one recovers the SM), gives a contribution to the Higgs mass much bigger (in absolute

value) than the physical Higgs mass:

δm2
H = − λφ

16π2
M2 log

M∗
M

. (1.25)

As can be seen from the blue line in fig. 1.2, immediately above M the (running) Higgs mass

saturates near the value of eq. (1.25). This means that a big tuning between the boundary

condition at the UV scale M∗ and this RG contribution is therefore needed in order to keep the
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Figure 1.2: Running of the Higgs mass parameter in the SM plus a heavy complex scalar at M =

1015GeV, where we fixed the portal coupling λφ = 0.2. The blue line is obtained by fixing the boundary
conditionm2

H(MH) ≡M2
H ' (125GeV)2, this provides a (tuned) UV value atM∗ = 1017GeV form2

H(M∗).
By changing this UV condition by 1% and running back down we get the red line, and a value of the
Higgs mass m̃2

H(MH) ' −(4× 1012GeV)2, showing that a small change in the UV condition destabilizes
the physical Higgs mass.

physical Higgs light. To see this, for the red line of fig. 1.2 we changed the UV boundary condition

at M∗ by 1% and then followed the RG back into the IR to obtain the physical Higgs mass,

obtaining a much bigger value M̃2
H ' −(4×1012GeV)2. We see that the mass scaleM destabilizes

the Higgs mass and brings its value close to that scale. The same phenomenon would appear for

any kind of new heavy dynamics coupled to the Higgs boson. For example, in supersymmetric

models with large stop masses, the one-loop correction to m2
H grows quadratically with the stop

mass m̃2
t . This quadratic sensitivity of the Higgs mass to any heavy mass scale was first pointed

out in 1976 by Gildener [28] and then by Weinberg [29] and Susskind [30] in the context of grand

unified theories (GUT).

By the end of the 70s it became clear that the naturalness problem is indeed fundamentally

connected with two of the most important concepts in physics: effective field theories (EFT)

and symmetries. If the NP scale is higher than the EW one, at low energy the physics can be

described by an EFT approach. This consists in adding to the SM action non-renormalizable

operators with dimension bigger than 4. In general an effective Lagrangian has a form

LEFT =
∑

d≥0

∑

i

ciΛ
4−dO(d)

i , (1.26)

where d indicates the classical scaling-dimension of the operators, i = 1, 2, . . . counts the operators

with same dimension and the ci are adimensional Wilson coefficients expected to be of O(1),

unless they are protected by some symmetry. A physical, and intuitive, explanation for the
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naturalness problem, due to Wilson, is based on the observation that operators with scaling

dimension equal to 2 have a coefficient which is naturally of the order Λ2, unless it breaks some

symmetry [31]. The Higgs mass term in the potential, eq. (1.8), is the only such operator in the

SM. Therefore, one would expect its natural value to be m2
H ∼ Λ2: either Λ is not far from the

EW scale or the theory has a certain amount of tuning needed to keep the Higgs mass much

smaller than its natural value.

Finally, the naturalness criterion proposed by ’t Hooft [32] states that a parameter of the

theory is allowed to be much smaller than unity4 only if the theory acquires a new symmetry when

such a parameter is set to zero. In fact, when a parameter breaks some symmetry all quantum

its corrections are necessarily proportional to the breaking of the symmetry, therefore to the

parameter itself, which ensures that a small breaking parameter remains small also after quantum

corrections. Following this criterion, small fermion masses – or small Yukawa interactions – are

naturale since the theory gains a chiral symmetry when putting them to zero. Analogously,

light spin-1 particles are always natural because when their mass is set to zero the theory gains

gauge invariance. An example of an unnaturally small parameter is the QCD angle θQCD. This

parameter breaks the CP symmetry, however the same symmetry is also broken by the CP

violating phase in the CKM matrix, δ, so no new symmetry is obtained when θQCD = 0. Even

if no quadratic divergence is present in its quantum corrections, these will tend to bring it near

the value of δ, which implies that one would expect θQCD ∼ O(1), making the observed value

θQCD . 10−9 very unnatural.

In the same category falls also the Higgs mass. In fact, setting m2
H to zero does not enhance

the symmetries of the SM, therefore quantum corrections tend to push this parameter to the

highest mass scale available in the theory. This property is typical of any scalar particle, unless

its mass is protected by some symmetry. The difference of this behavior between scalars and spin-

1 or spin-1/2 particles can also be understood in terms of degrees of freedom (d.o.f.). Massless

fermions and vectors have 2 physical d.o.f. while massive ones have four and three, respectively:

there is a discrete difference between the massless and massive case, which reflects the change in

the symmetries of the theory. A massive scalar particle, on the other hand, has the same number

of d.o.f. as a massless one.

In order to obtain a light Higgs, a delicate fine tuning between the values of the high scale

parameters entering in the quantum correction to the Higgs mass is necessary. If the only UV

scale is the Planck one, the amount of tuning is approximately given by eq. (1.21), which means

that the value UV boundary condition and the RG contribution to the Higgs mass squared

should cancel almost exactly, with a precision in the 33rd decimal place. An efficient analogy by

Giudice [24] can help us get a feeling of the amount of this tuning: balancing a pen with length

4Mass parameters should be measured in units of the cutoff of the theory Λ
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R and a tip with a surface of radius r is a challenge of tuning the position of the center of mass

to be exactly over the surface of the tip. The amount of tuning needed is of order of one part in

R2/r2. The tuning needed to keep the electroweak scale so small compared to the Planck scale

is the same as the necessary one to balance a pen as long as the solar system on a millimeter

wide tip. Does Nature present such a behavior just by accident or is there a mechanism which

can explain this?

1.2.2 Many solutions but no experimental evidence

From the previous discussion it is clear that there are, at least, two ways to solve the naturalness

problem associated with light elementary scalars: either its mass breaks some symmetry, and

therefore is protected from big additive quantum corrections, or such a particle does not exist.

Supersymmetry [33] (SUSY), as a way to solve the naturalness problem [34, 35], introduces

a new symmetry which connects bosons with fermions. In this setup, the Higgs mass arises only

when supersymmetry is broken. Quantum corrections to m2
H , therefore, are proportional to the

SUSY breaking soft terms m̃2. If this scale is small enough, SUSY provides an elegant solution

to the problem5.

A solution of the second kind (of the two listed above) was proposed in 1979 by Susskind [30]

and is known as Technicolor. In this setup there is no Higgs particle and EW symmetry breaking

(EWSB) is due to the condensate of a new strongly coupled sector, at a scale of a few TeV, in

a similar way as the QCD condensate breaks the chiral symmetry SU(2)L × SU(2)R → SU(2)D

(as well as the EW symmetry, albeit at the low scale fπ ∼ 102 MeV). In Technicolor, the

hierarchy between the Planck mass and the EW scale is explained by dimensional transmutation,

as in QCD, where this big mass hierarchy is completely natural. By now this proposal has

been excluded experimentally by the discovery of a scalar particle which shows characteristics

(production and decay rates) very similar to those of the SM Higgs boson. However, even before

LHC, already LEP put these models in strong tension due to the very precise measurements

performed at the Z pole which showed none of the deviations from the SM predictions expected

in Technicolor models.

Finally, many solutions which interpolate between these two concepts, and include the Higgs

in the spectrum, have been proposed. The naturalness problem is solved by either assuming that

the Higgs is a composite state of a new strong dynamics [37, 38], in which case the hierarchy

between the weak and Planck scale is explained by dimensional transmutation, or assuming the

existence of some compactified warped extra dimension [39], in which case the suppression of the

EW scale is due to the exponential warping factor of the Anti-de-Sitter (AdS) metric in the fifth

5In this setup, the soft terms scale is assumed to arise dynamically [36], and many models which realize this

mechanism have been proposed,
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dimension. The AdS/CFT correspondence [40], suggests that these two approaches could be

related to each other and can describe the same low-energy physics [41,42]. The most successful

holographic composite Higgs models predict that the Higgs is a pseudo-Nambu-Goldstone boson

(pNGB) of some spontaneously broken approximate global symmetry at a scale f ∼ 1TeV [43],

which explain naturally how the Higgs can be lighter than the strongly coupled scale, in the

same way as pions are lighter than the QCD scale.

In the last two decades, all these frameworks started to be in more and more tension with

the experimental results coming from LEP and, now, from the LHC. The most natural versions

of the minimal supersymmetric SM (MSSM) predicted a spectrum of SUSY partners near the

∼ 100GeV scale, as well as a light value of the Higgs mass which, at tree level, is expected to

be lighter than the Z boson. Already LEP showed that this was not the case and that the SM

is a valid description of Nature at the electroweak scale. The LEP bound on the Higgs mass,

mH & 114 GeV, suggested that the scale of the superpartners could be higher than expected and,

therefore, some amount of tuning in the Higgs mass was necessary. Analogously, also composite

Higgs models were being pushed by LEP to regions with some ∼ 10% tuning. In other words,

the scale of NP was pushed by LEP to ∼ TeV, introducing what has been called small hierarchy

problem. The measured value of the Higgs mass at the LHC [18,19] at mH ' 125GeV pushed the

MSSM to even more uncomfortable regions, where the necessary size of the one-loop correction

to m2
H has to be of the same order as the tree-level contribution. Moreover, the bounds on

superpartners from direct searches pushed most of the MSSM parameter space to percent tuned

regions, or worse. The strongest bounds on Composite Higgs models, on the other hand, are still

coming from LEP, even though LHC constraints on the Higgs couplings and resonances masses

are reaching the same level, and will be the dominant ones in the near future. While the Higgs

mass is lower than what could be expected for this class of models, it has been noted recently

that it offers a quite clear prediction for the spectrum of resonances, which can be tested by

LHC [1,44–47].

On the one hand, as we showed, the naturalness problem is definitely a deep issue in our

understanding of fundamental particle physics. However, even though theorists have produced a

huge variety of results and models able to solve it (often times these models are able to solve, at

the same time, also other open problems in particle physics and cosmology in a unified setup),

so far all hopes of finding new physics crushed against the reality of experimental data, which

do not show any deviation from the SM. On the other hand, the naturalness approach seems to

have failed at least in one instance: the cosmological constant Λcosm. The measurement of the

accelerated expansion of the Universe [48, 49] is explained, in the cosmological standard model,

by a small value of the cosmological constant, Λcosm ∼ 10−47 GeV4. This parameter, in QFT,

receives contributions proportional to the cutoff to the fourth power. Assuming the cutoff of the
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theory to be the Planck scale, this would imply that a tuning of one part in ∼ 10122 would be

necessary to keep Λcosm to the observed value. In 1987, before Λcosm was measured, Weinberg [50]

suggested an upper bound for the cosmological constant based on the anthropic principle, which

turned out to be very close to the observed value. Very briefly, his observation was based on

the fact that a too big value of Λcosm would imply a too fast expansion of the Universe, which

would not allow structures to form and, therefore, life to develop. Since this is obviously not the

case, the cosmological constant can not be too big in our Universe. A similar argument can be

done also for the EW scale since a much bigger value would not allow the complex chemistry,

needed for complex organisms – and life – to develop [51]. This anthropic reasoning, however,

needs a mechanism in which all the possible values for the relevant parameter are populated in

some region of the Universe, so that we happen to live in the one which allows the development

of life. Such a mechanism could be provided by the string landscape and eternal inflation. For

the moment, however, it is not clear if it could ever be tested experimentally.

What is the maximal amount of tuning one can accept? At which point will we be forced to

abandon the naturalness guideline and start focusing on alternatives? Today the conscience of

many particle physicists is struggled by these philosophical questions, to which of course there

is no objective answer until experimental results will push us towards one side or the other.

Our approach for the rest of this thesis is a pragmatic one: the naturalness problem offers

a deep guideline to our understanding of electroweak symmetry breaking. Let us follow this

line to its consequences and study what predictions it allows us to make. From the bottom up,

the naturalness argument predicts some NP at the TeV scale. If this is the case, oservables at

lower energies can be successfully described by an effective field theory (EFT) framework. Some

work in this setup is described in chapter 2. Another approach is to assume one of the explicit

frameworks described above, study what predictions can be obtained and confront them with

experimental data. This is described for composite Higgs models in chapter 3, while in chapter 4

we study a composite Higgs model which offers also a dark matter candidate and confront this

with experimental constraints from both astrophysical and collider data.



CHAPTER 2

SM as an Effective Theory and RG-induced

Bounds

The idea that the dynamics of a complex system with some typical scale L can be studied

without the necessity of describing each of the microscopic constituents at smaller scales `� L

is at the foundation of the scientific progress. In the context of quantum field theories, this idea

has been rigorously formulated by Wilson [52] in the early 70s and is now one of the pillars

of our understanding of Nature at the quantum level. Wilson’s idea is that, after mediating

over the dynamics of the modes shorter than some cutoff scale Λ−1, the resulting non-local

effective action can be expanded in a series of local operators with increasing scaling dimension,

suppressed by powers of Λ, with a procedure known as operator product expansion. In general,

the number of effective operators one obtains is infinite. However, when studying processes at

energies much smaller than the cutoff and given a certain precision desired for the computation,

only operators with dimension lower than a certain value will matter, allowing to reduce the

parameters to a finite number. While before this approach had been established the requirement

of renormalizability of a quantum field theory was a necessary condition for having a consistent

picture, almost all modern particle physics models are regarded as some effective field theories

(EFTs) of some more fundamental theory and the non-renormalizable operators play a major

role.

In particle phenomenology, studying effective operators can often offer important insights

into the nature of the UV theory above the cutoff Λ. For example, the study of weak decays and

neutrino scattering in terms of effective Fermi operators allowed to understand the nature of the

electroweak theory and develop the SM much earlier than the direct discovery of the Z and W

bosons.

Since, as we discussed in the previous chapter, the naturalness problem is a serious hint for

some new physics lying not too far from the EW scale, and since so far all evidence suggest that

15
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this dynamics should be somewhat heavy, i.e. near the TeV scale, studying the effective theory of

the SM could be a powerful tool in the understanding of the NP sector in a model-independent

way.

While these higher dimensional operators are generated at the new physics scale Λ, their

effects are measured at the lower scale of the experiments. In order to compare the predictions

for the coefficients of some NP model with the experimental results it is necessary to follow

the renormalization group (RG) flow of the effective theory between the two scales. Due to

this scaling, the Wilson coefficients run and mix as we go down from Λ to the experimental

scale ∼ mW . The coefficients at the two scales are related to each other via the so-called

anomalous dimension matrix. This operator mixing opens also the possibility of linking different

kinds of deformations of the SM which are otherwise unrelated. Assuming that the different RG

contributions to low-energy observables are not tuned against each other (i.e. that no correlations

from the UV theory are present), and exploiting the wide range of experimental precision in the

determination of some EW and Higgs observables, we are able to cast RG-induced bounds on

some of these observables which are already stronger, or of the same order, than the direct

experimental constraints.

In section 2.1 we introduce the dimension-6 operators in the SM and define the operator

basis which is used in the rest of the chapter. In particular, here we concentrate on a subset of

13 operators made of gauge bosons and Higgs which give the most important contributions to

the EW and Higgs observables we consider. In section 2.2 we present our computation of the

anomalous dimension matrix of this subset of operators while the EW and Higgs observables we

study are presented in section 2.3. The RG-induced bounds, as well as the tuning assumptions,

are described in section 2.4. Finally, in section 2.5 we study prospects for these RG effects for

high luminosity LHC and at future possible lepton colliders. This chapter is mainly based on

the work done in refs. [4, 5] and in previous literature on the subject.

2.1 Dimension-6 operators in the SM

Let us assume that the new physics sector at the scale Λ, which should cure the SM naturalness

problem, does not contain any light (i.e. near the EW scale) degree of freedom. We also assume

that the observed scalar at 125 GeV is indeed the SM Higgs boson, i.e. part of the same SU(2)L

doublet as the Nambu-Goldstone bosons of EWSB. This is strongly suggested by the fact that

the observed couplings of this particle with SM fermions and gauge bosons are in good agreement

with the SM prediction, in particular they are proportional to the mass as can be seen from the
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Figure 2.1: CMS summary of the fits for the Higgs couplings expressed as a function of the particle
mass. No extra contributions to the couplings with γγ and gg are introduced in the fit.

plot in fig. 2.1.1 In this case small deformations from the SM in experiments performed at the

EW scale can be described by an effective Lagrangian containing non-renormalizable operators,

invariant under the SM gauge group of eq. (1.1), written in an expansion in powers of 1/Λ [55]:

LEFT =
∑

d

∑

i

cdi
Λd−4

O(d)
i = L0 +

1

Λ
L5 +

1

Λ2
L6 + . . . . (2.1)

The operators in L0, with dimension d ≤ 4 define the SM action as described in the first

chapter: the SM is the most general renormalizable theory compatible with the given gauge

symmetries and field content. In this framework, all other global symmetries of the SM discussed

in section 1.1.1, like baryon and lepton number conservation, are just accidental and not imposed

by hand. The fact that the baryon number B and each lepton number Li are good quantum

numbers implies that the non-renormalizable operators which violate these symmetries should

be suppressed by a very high scale ΛB,Li . Here we will assume that these scales are much higher

than Λ, which suppresses the operators which violate B and Li and allows as to discard those

operators when studying processes at the EW scale.

The only gauge-invariant operator at dimension 5 present in L5 is the Weinberg operator for

Majorana neutrino masses [56], discussed in section 5.1. However, since this operator violates

Lepton number its scale is constrained to be very high, therefore we will neglect it in the following.

Let us then focus on the dimension 6 operators in L6. Since here we will not discuss flavor

1An alternative analysis can be performed in a more generic framework, in which the EW symmetry is non-

linearly realized and the observed scalar is introduced as a generic singlet under the custodial symmetry. In this

case O(1) deviations can be expected, which are however constrained by experimental data, albeit not for all

observables, see e.g. refs. [53, 54]. We do not discuss further this approach in this thesis.
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observables and constraints, we will assume flavor universality in L6, which amounts to reducing

the study of the operators for only one generation of the SM fermions. The classification of all

SM dim-6 operators was first attempted in ref. [55], while the complete basis of independent

operators was obtained in ref. [57], where the authors found that, for one generation of fermions,

it contains 59 independent operators. In order to find the complete set, relations among operators

can be found by using Fierz identities, integration by part and, most importantly, by performing

small field redefinitions, which corresponds to applying the equations of motion (EoM) obtained

from the renormalizable Lagrangian L0. Let us briefly prove this point. Consider an EFT

LEFT = L0(φ, ∂µφ) +
1

Λ2
L6(φ, ∂µφ) +O(Λ−4) , (2.2)

where φ is some generic field with given quantum numbers, and consider the field redefinition

φ′ = φ+
α

Λ2
δφ , (2.3)

where α is an order 1 coefficient and δφ is some generic current of dimension [δφ] = 2 + [φ] and

with the same quantum numbers as φ 2. Under eq. (2.3) the Lagrangian becomes

LEFT(φ′, ∂µφ′) = L0(φ, ∂µφ) +
1

Λ2

(
L6(φ, ∂µφ) +

δL0

δφ
δφ+

δL0

δ∂µφ
δ∂µφ

)
+O(Λ−4) =

= LEFT(φ, ∂µφ)− 1

Λ2

(
∂µ

δL0

δ∂µφ
− δL0

δφ

)
δφ+O(Λ−4) ,

(2.4)

where we neglected contributions suppressed by more powers of Λ. The last term in the sec-

ond line is an operator of dimension 6 which vanishes upon the EoM. Since physics has to be

independent of any such field redefinition, they, or equivalently EoM, can be used to obtain

relations between different dim-6 operators. Something to be noticed is that operators generated

by such field redefinitions are necessarily constructed as a product of two separate currents, each

with spin ≤ 1 (since we do not consider fields with spin greater than 1). We call this class as

(current) × (current) (CC) operators. It is useful to notice here that field redefinitions always

take CC operators into operators in this same class. More details on the field redefinitions and

their effects on SM dim-6 operators are reported in appendix A.2.

2.1.1 Our choice of basis

While in principle any basis is equally viable for the study of the phenomenology of dim-6

operators, some basis are better suited than others for studying some particular processes, or

as low-energy description of given UV theories. From the UV point of view one could require

2Here by current we do not mean only some spin-1 operator, but any operator with the same quantum numbers

as φ. In particular, if φ is a spin-1 field then the current will be a vector, if φ is a scalar then δφ is a scalar and,

analogously, δφ is a fermonic current if φ is a spin-1/2 field.
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that the operators have a clear connection with the UV dynamics. For example, it could be

convenient to work in a basis in which operators generated when integrating out at tree-level the

heavy degrees of freedom in a large class of theories (minimally coupled, renormalizable, weakly-

interacting) are kept distinct from operators generated only at loop level, which are expected to

have suppressed Wilson coefficients. An example of such basis is the one used in ref. [58], where

the authors focus on the low-energy description of a wide class of strongly interacting light Higgs

(SILH) models (containing also composite Higgs models), while the one used in ref. [57] does not

classify operators into tree-level and loop ones.

From the phenomenological point of view, a good feature of the basis is to be able to describe

as much clearly and univocally as possible some particular set of observables, for example dividing

operators which are strongly constrained from weakly constrained ones, or at least by reducing

as much as possible the strong correlations among coefficients. Since it is impossible to find a

single basis which satisfies all these properties for any UV theory and any observable, a choice

has to be made depending on the problem at hand.

Our choice of basis is motivated by the observables we are interested in, and the subset of

operators we consider is defined by those which (in our basis) give a tree-level contribution to

our set of observables. In this work, we shall be interested in EW observables, Higgs couplings

to gauge bosons and QCD observables involving gluons only and the relations among each other

as imposed from the running between the scale of new physics to the weak scale. These include

the four electroweak oblique pseudo-observables Ŝ, T̂ , W and Y [59, 60], the three triple gauge

coupling observables gZ1 , κγ and λγ , the Higgs couplings to vector bosons, a shift on the Higgs

width, the gluon oblique parameter Z [60] and the anomalous triple gluon coupling parameter

ĉ3G. We describe these observables in more detail in section 2.3. For ealier systematic studies

of the effects of higher-dimensional operators on these observables, see refs. [61, 62]. We have

not included the Higgs decays to fermions in our list of observables. The only dim-6 operators

contributing to these observables are Oyu ,Oyd and Oye (see definition in table 2.3)3 and their RG

effects have already been studied in ref. [65]. These are weakly constrained operators and new

RG-induced constraints can be derived only if they contribute to the running of more strongly

constrained operators. In ref. [65] it has been shown that there is no such contribution and

therefore we do not include these operators in our analysis.

Our basis is also well suited to study universal new physics scenarios, that is models (e.g.

composite Higgs models) in which the most important effects induce universal couplings of the

3The flat direction [63] between the operators Oyu ,OBB and OGG from the measurements of Higgs couplings

to photons and gluons is lifted by considering the (still loose) upper limit on the cross section production of a

Higgs boson in association with a pair of top-antitop quarks [64]. Stronger bounds on the Wilson coefficients of

OBB and OGG can be obtained by imposing some theoretical priors on the value of the Wilson coefficient of Oyu
but we did not consider these stronger bounds here and we can safely ignore the operator Oyu in our analysis.
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fermions to the SM gauge fields, like in the SILH case [58]. A first phenomenological study of

some EW observables in the context of dim-6 operators, assuming universal new physics, was

performed in refs. [66, 67].

In this context, NP effects can be described by the subset of 14 operators made of SM

bosons listed in table 2.1, which we will denote in the following as bosonic operators. These

operators can also efficiently parametrize dim-6 contributions to the observables specified above

and therefore we include them in the basis. The basis therefore contains a total of 14 CP-even

bosonic operators, notice however that O6 does not contribute to any of the observables we are

interested in, neither at tree-level nor by RG running [65]; it contributes instead to the Higgs

self-coupling which however is still not directly measured. For this reason we did not include

this observable in our list and did not compute its RG scaling. The operators in table 2.1 have

been grouped in two different categories, corresponding to operators of the CC form (left box)

and operators which are not products of SM currents (right box). As discussed above, the CC

operators can be related to each other and to other fermionic CC operators using the SM EoM or,

equivalently, by performing field redefinitions. This means that one has to be careful in choosing

the other operators in the basis to ensure that there are no redundancies. These relationships

provide an important consistency check on the anomalous dimension matrix, which is discussed

in ref. [4].

To this set of operators we add the 6 CP-odd counterparts of the bosonic operators, as listed

in table 2.2. The rest of the basis is a small variation of the one adopted in ref. [65] where, from

the ones in table 2 therein, using field redefinitions we trade the four-fermions operators of the

first family {O(8)u1d1

RR ,O(3) l1
LL ,Oe1RR} for {O2G,O2W ,O2B} and the Higgs-lepton operators of the

first family {O(3) l1
L ,Oe1R } in favor of the ones in table 2.1. The remaining operators of our basis

are listed in table 2.3. The conventions in tables 2.1, 2.2, 2.3 and in the rest of the text are as

follows: DρW
a
µν = ∂ρW

a
µν + gεabcW b

ρW
c
µν and H†

↔
DµH ≡ H†DµH − (DµH)†H, where DµH is

defined below eq. (1.7).

Let us comment on other bases of common use in the literature. The set of operators

{OW ,OB,OWW ,OWB,OBB} (2.5)

is in one-to-one correspondence with the operators used in ref. [67]

{OHW ,OHB,OWW ,OWB,OBB} , (2.6)

where OHW ≡ ig(DµH)†σa(DνH)W a
µν , OHB ≡ ig′(DµH)†(DνH)Bµν , and with the ones used

in ref. [58]

{OW ,OB,OHW ,OHB,OBB} . (2.7)
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OH = 1
2 (∂µ|H|2)2

OT = 1
2

(
H†
↔
DµH

)2

O6 = λ|H|6

OW = ig/2

(
H†σa

↔
DµH

)
DνW a

µν

OB = ig′YH

(
H†
↔
DµH

)
∂νBµν

O2W = − 1
2 (DµW a

µν)2

O2B = − 1
2 (∂µBµν)2

O2G = − 1
2 (DµGAµν)2

OBB = g′2|H|2BµνBµν

OWB = gg′H†σaHW a
µνB

µν

OWW = g2|H|2W a
µνW

aµν

OGG = g2s |H|2GAµνGAµν

O3W = 1
3!gεabcW

a ν
µ W b

νρW
c ρµ

O3G = 1
3!gsfABCG

Aν
µ GBνρG

C ρµ

Table 2.1: The 14 CP-even operators made of SM bosons. The operators have been grouped in two
different categories corresponding to (current) × (current) ones (left box) and operators which are not
products of SM currents (right box).

OBB̃ = g′2|H|2BµνB̃µν

OWB̃ = gg′H†σaHW a
µνB̃

µν

O
WW̃

= g2|H|2W a
µνW̃

aµν

OGG̃ = g2s |H|2GAµνG̃Aµν

O
3W̃

= 1
3!gεabcW̃

a ν
µ W b

νρW
c ρµ

O3G̃ = 1
3!gsfABCG̃

Aν
µ GBνρG

C ρµ

Table 2.2: The 6 CP-odd operators made of SM bosons.

The relations between these operators are simply obtained from integration by parts and read

OW = OHW +
1

4
(OWW +OWB) ,

OB = OHB +
1

4
(OWB +OBB) .

(2.8)

From this relation it is clear that the two particular linear combinations of not-CC operators

in the r.h.s. reconstruct two CC operators, even if no operator of this kind is present in the

subset, as in the case of eq. (2.6) [67]. Since in a wide class of NP models CC operators can arise

at tree-level while the not-CC ones can only be generated at loop level, it might be desirable

to work in a basis which keeps this separation explicit, as in our basis, eq. (2.5), or the SILH

one, eq.(2.7). Our basis has a further advantage that the anomalous dimension matrix of the

sector {OB,OW }× {OBB,OWB,OWW } is block diagonal [68]. As the SILH basis [58], our basis

also separates the operators generated at tree-level from the ones obtained at the radiative level

only, when the new physics degrees of freedom, assumed to be weakly coupled, are integrated

out [68]. When the Higgs emerges as pseudo Nambu–Goldstone boson, the SILH basis further
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Oyu = yu|H|2Q̄LH̃uR Oyd = yd|H|2Q̄LHdR
Oye = ye|H|2L̄LHeR

OqL = (iH†
↔
DµH)(Q̄Lγ

µQL) OuR = (iH†
↔
DµH)(ūRγ

µuR)

O(3) q
L = (iH†σa

↔
DµH)(Q̄Lγ

µσaQL) OdR = (iH†
↔
DµH)(d̄Rγ

µdR)

OlL = (iH†
↔
DµH)(L̄Lγ

µLL)

OudR = y†uyd(iH̃†
↔
DµH)(ūRγ

µdR)

OuLR = (Q̄Lγ
µQL)(ūRγµuR) OdLR = (Q̄Lγ

µQL)(d̄RγµdR)

O(8)u
LR = (Q̄Lγ

µTAQL)(ūRγµT
AuR) O(8) d

LR = (Q̄Lγ
µTAQL)(d̄RγµT

AdR)

OuRR = (ūRγ
µuR)(ūRγµuR) OdRR = (d̄Rγ

µdR)(d̄RγµdR)

OqLL = (Q̄Lγ
µQL)(Q̄LγµQL) OeLR = (L̄Lγ

µLL)(ēRγµeR)

O(8) q
LL = (Q̄Lγ

µTAQL)(Q̄LγµT
AQL)

OqlLL = (Q̄Lγ
µQL)(L̄LγµLL) OudRR = (ūRγ

µuR)(d̄RγµdR)

O(3) ql
LL = (Q̄Lγ

µσaQL)(L̄Lγµσ
aLL) OueRR = (ūRγ

µuR)(ēRγµeR)

OqeLR = (Q̄Lγ
µQL)(ēRγµeR) OdeRR = (d̄Rγ

µdR)(ēRγµeR)

OluLR = (L̄Lγ
µLL)(ūRγµuR) OldLR = (L̄Lγ

µLL)(d̄RγµdR)

Oyuyd = yuyd(Q̄
r
LuR)εrs(Q̄

s
LdR) O(8)

yuyd = yuyd(Q̄
r
LT

AuR)εrs(Q̄
s
LT

AdR)

Oyuye = yuye(Q̄
r
LuR)εrs(L̄

s
LeR) O′yuye = yuye(Q̄

r α
L eR)εrs(L̄

s
Lu

α
R)

Oyeyd = yey
†
d(L̄LeR)(d̄RQL)

OuDB = yuQ̄Lσ
µνuR H̃g

′Bµν OuDW = yuQ̄Lσ
µνuR σ

aH̃gW a
µν

OdDB = ydQ̄Lσ
µνdRHg

′Bµν OdDW = ydQ̄Lσ
µνdR σ

aHgW a
µν

OeDB = yeL̄Lσ
µνeRHg

′Bµν OeDW = yeL̄Lσ
µνeR σ

aHgW a
µν

OuDG = yuQ̄Lσ
µνTAuR H̃gsG

A
µν OdDG = ydQ̄Lσ

µνTAdRHgsG
A
µν

Table 2.3: 39 operators made of one-family of SM fermions. The upper box contains operators in the
CC class while the lower one does not. Dashed lines separate operators of different structure.
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makes the distinction between a loop involving new-physics interactions and a loop involving SM

interactions only.

In this study we limit ourselves to the set, B1, of 13 operators appearing in table 2.1 (omitting

O6 that does not contribute directly to the 13 physical observables we are studying). We compute

the running of B1 into B1. If the remaining set of independent operators, needed to complete

the basis specified above, is denoted by B2, there could also be i) a running of B2 into B1, ii) a

running of B1 into B2 and of course iii) a running of B2 into itself. The first effect would reflect

itself in new RG contributions to our list of low-energy observables; under our hypothesis of

no-tuning (or no correlations) among the different RG contributions these effects do not change

our RG-induced bounds on the operators in B1. In principle new RG-induced bounds on some

operators in B2 could be obtained, however we already commented on the fact that this is not the

case for O6 and Oyu,d,e . The second effect could, in principle, allow us to obtain new RG-induced

bound on the operators in B1 via the mixing to some tightly constrained operators in B2, for

example via the mixing to OL and O12
LL, as we mentioned above. The study of these effects

would be an interesting generalization of our ideas but would require the computation of the full

anomalous dimension matrix and a complete phenomenological analysis of all the observables

relevant to the dimension-6 operators, which is beyond the purpose of this work.

2.2 Scaling of the Wilson coefficients

In general, quantum effects mix all the operators among themselves when going from the scale of

new physics down to the scale at which the experimental measurements are performed. However,

the 3 operators with gluons, OGG,O2G and O3G, constitute a separate sector that does not mix

with the other 11 bosonic operators at one-loop.4 So, even if OGG affects Higgs physics by

controlling the dominant production mode of the Higgs boson at the LHC, it can be treated

separately from the 3 other Higgs observables we are interested in here. Furthermore, since

the Higgs self-interactions have not been measured yet, and since O6 does not enter into the

anomalous dimensions of any dim-6 operator other than itself, it can also be omitted from our

analysis. For the Higgs and EW sector RG study, we can thus restrict to the following set of 10

dim-6 operators and compute the corresponding anomalous dimension matrix

{OH ,OT ,OB,OW ,O2B,O2W ,OBB,OWW ,OWB,O3W } . (2.9)

We include all the one-loop contributions proportional to ci and depending on
{
g′, g, gs, λ, yt

}
, (2.10)

4The only exception is a contribution from O2B to the RG of O2G, see table 2.7. This mixing, however, is

phenomenologically not very relevant since the Wilson coefficient of O2B is strongly constrained, as we show in

section 2.4.1.
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where yt is the Yukawa coupling of the top quark, i.e. we neglect the contributions proportional

to the Yukawas of the light fermions (yb/yt ∼ 0.02, yb is the bottom quark Yukawa) and the

other SM couplings are normalised as in chapter 1 (eqs. (1.3,1.6,1.7,1.8,1.14)).

We regularized the loop integrals using dimensional regularisation and used MS subtraction

scheme. We performed the computation in the unbroken phase of the SM and in the background

field gauge, with the gauge fixing term

Lg.f. = − 1

2ξA
(D(A)

µ δAaµ)2 , (2.11)

where δA = {δB, δW, δG} is the quantum field with respect to which the dim ≥ 4 SM ac-

tion is path-integrated and D
(A)
µ is the covariant derivative with respect to the corresponding

background field A = {B,W,G}.
In table 2.4, we give the one-loop anomalous dimensions of the operators of eq. (2.9), in the

basis defined in section 2.1.1.5 We have defined

γci = 16π2 dci
d logµ

. (2.12)

A common effect encountered while computing the RG scaling of the above operators is the

appearance of counter-terms which correspond to dim-6 operators that are not in our basis [65].

These radiatively-generated redundant operators need to be redefined into operators present in

our basis. Upon redefinition, these redundant operators contribute to the anomalous dimensions

of the operators in our basis at the same order as other direct contributions coming from one-

particle-irreducible graphs. For details on the radiatively generated operators and how we deal

with the redundant ones see appendix A.2. Notice that the matrices of table 2.4 already contain

these indirect effects. This ensures that the result is gauge invariant and indeed we checked that

the result is independent of the gauge fixing parameters ξA of eq. (2.11).

Some parts of the anomalous dimension matrix presented here have been calculated in pre-

vious literature [65–76]. In some cases these previous computations use methods different from

ours, but we find complete agreement in the final results. A detailed comparison with previous

literature, including a discussion about the difference in the methods is presented in ref. [4].

2.3 Electroweak, Higgs and gluon observables

Let us now apply the general formulas of the previous section to the electroweak, Higgs and

gluon observables we want to constrain. In section 2.1.1 we have considered 10 EW and Higgs

operators

OH , OT , OW , OB, O2W , O2B, OWW , OWB, OBB, O3W , (2.13)

5The self-renormalization of c3W has been extracted from the computation of refs. [69,70], where the authors

calculated the one of c3G.
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cH cT

γcH − 9
2
g2 − 3g′2 + 24λ+ 12y2

t −9g2 + 9
2
g′2 + 12λ

γcT
3
2
g′2 9

2
g2 + 12λ+ 12y2

t

γcB − 1
3

− 5
3

γcW − 1
3

− 1
3

other γci ’s 0 or O(yl) 0 or O(yl)

cB cW c2B c2W

γcH
− 9

4
g′2(g′2 − 2g2)− 6λg′2 9

4
g2(2g′2 − g2)− 36λg2 − 141

16
g′4 + 3g′2λ 63

8
g4 + 51

16
g2g′2 + 18λg2

γcT
− 9

4
g′2g2 − 6λg′2 − 9

4
g′2g2 3g′4 + 9

8
g′2g2 + 3λg′2 9

8
g′2g2

γcB
g′2

6
+ 6y2

t
g2

2
59
4
g′2 − g2

4

γcW
g′2

6
17
2
g2 + 6y2

t

(
29
8
− 53g′2

4g2

)
g′2 79

8
g2 + 29

4
g′2

γc2B
− 2

3
g′2 0 94

3
g′2 0

γc2W
0 − 2

3
g2

(
53
12
− 53g′2

4g2

)
g′2 331

12
g2 + 29

4
g′2

γcBB
0 0 0 0

γcWW

0 0 0 0

γcWB
0 0 0 0

γc3W
0 0 0 0

cBB cWW cWB c3W

γcH 0 0 0 0

γcT 0 0 0 0

γcB 0 0 0 0

γcW 0 0 0 0

γc2B 0 0 0 0

γc2W 0 0 0 0

γcBB
g′2

2
− 9g2

2
+ 6y2

t + 12λ 0 3g2 0

γcWW

0 − 3g′2

2
− 5g2

2
+6y2

t +12λ g′2 5
2
g2

γcWB 2g′2 2g2 - g
′2

2
+ 9g2

2
+ 6y2

t + 4λ − g2
2

γc3W 0 0 0 53
3
g2

Table 2.4: Anomalous dimension matrix for the Wilson coefficients of the dim-6 bosonic operators, in
the basis defined in section 2.1.
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and three more operators involving gluons, O2G, O3G, OGG, to parametrize BSM corrections

to the SM Lagrangian. The set of pseudo-observables, briefly mentioned in section 2.1.1, that

constrain all these operators include the four electroweak oblique parameters Ŝ, T̂ , Y and W

[59, 60], constrained by LEP 1 and LEP 2, the four anomalous triple gauge coupling (TGC)

gZ1 , κγ , λγ and ĉ3G, the oblique gluon Z parameter [60] and four observables related to Higgs

physics: the gluon-gluon production rate, the decays to γγ and γZ and a universal rescaling of

all the branching ratios [58].

In general, these observables receive contributions from a particular linear combination of

the dim-6 operator’s Wilson coefficients, suitably multiplied by the SM couplings:

(obs)i = κi + ωijcj ≡ κi + ĉi → δ(obs)i = ĉi , (2.14)

where κi is the SM contribution, the ck’s are the Wilson coefficients and ωij is a matrix con-

taining the SM couplings and ratios of scales (ω ∼ O(m2
W /Λ

2)). We defined ĉi as the linear

combinations of the Wilson coefficients which contribute directly to each observable (obs)i and

we shall refer to them in the following as observable couplings, with a slight abuse of language.

If the new combinations ĉi are independent, this corresponds to a change of basis such that

to each operator corresponds an observable; we shall call this the observable basis. To derive

the RG-induced constraints on these observables we therefore first need to relate them to the

operators in eq. (2.13), that is define the transformation matrix, ωij , from the basis in eq. (2.13)

to the observable basis. Another possible basis strictly related to the observables which provide

the strongest constraints on dim-6 operators has recently been introduced in ref. [77].

As an example, consider the process h→ γZ which receives a contribution from the SM (in

this case at one loop) as well as a direct contribution from a linear combination of the dim-6

operators. We parametrize this contribution with the observable coupling ĉγZ , to be defined in

eq. (2.27), which is related to the Wilson coefficients of our basis as (cθW and sθW are respectively

the sinus and cosinus of the weak mixing angle θW )

ĉγZ =
m2
W

Λ2

(
2c2
θW
cWW − 2s2

θW
cBB − (c2

θW
− s2

θW
)cWB

)
. (2.15)

The above relation defines the coefficients ωγZ,j for this particular observable. Let us now describe

in detail all the observables mentioned above, and the relations with the Wilson coefficients of

the dim-6 operators.

2.3.1 EW oblique parameters

We begin with the electroweak precision observables constrained by measurements at LEP1,

LEP2 and Tevatron. The first step of the analysis is to fix the SM parameters g, g′ and v

by the three most precise measurements: the Fermi constant GF from muon decay, the fine-

structure constant αem and the Z-boson massmZ . With the input parameters fixed, the SM gives
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predictions for observables such as Z-pole measurements at LEP 1, the Tevatron measurement

of the W -mass and LEP 2 measurements of the e+e− → f+f− cross-sections. New physics can

affect this analysis by either changing the relationship between the input parameters g, g′ and v

to the measurement of GF , αem and mZ or by directly contributing to the other measurements

(see e.g. ref. [64]).

In universal theories some of the most important deviations from the SM reside in the vacuum

polarization amplitudes ΠV1V2(q2) of the SM gauge bosons (V1V2 = {W+W−,W 3W 3,W 3B,BB}),

V µ
1 V ν

2

q q

= iΠV1V2(q2)ηµν + (qµqν terms) , (2.16)

which can also be read from the effective Lagrangian in momentum space

Leff =
ηµν

2

(
2ΠW+W−W

+
µ W

−
ν + ΠW 3W 3W 3

µW
3
ν + 2ΠW 3BW

3
µBν + ΠBBBµBν

)
+ (qµqν terms) ,

(2.17)

Assuming a heavy new-physics scale we can expand these amplitudes for small momentum q2 �
Λ2
NP , obtaining

ΠV1V2(q2) = ΠV1V2(0) + q2Π′V1V2
(0) +

q4

2
Π′′V1V2

(0) + . . . , (2.18)

where Π′V1V2
(0) = dΠV1V2(q2)/dq2|q2=0 and so forth. At these order in the expansion in q2 there

are 12 coefficients. Of these, three enter in the definition of the EW gauge couplings and the

Higgs vev ,

1 = −Π′W+W−(0) , 1 = −Π′BB(0) ,
v2g2

4
= ΠW+W−(0) , (2.19)

and two more relations come from the QED Ward identity:

ΠW 3B(0) = ΠBB(0) = 0 . (2.20)

This leaves 7 free parameters Ŝ, T̂ , Û , V,X, Y,W [60], defined as 6

T̂ = − 1

m2
W

(ΠW 3W 3(0)−ΠW+W−(0)) Ŝ = − g
g′

Π′W 3B(0)

Y = −m
2
W

2
Π′′BB(0) W = −m

2
W

2
Π′′W 3W 3(0)

Û =
(
Π′W 3W 3(0)−Π′W+W−(0)

)
X = −m

2
W

2
Π′′W 3B(0)

V = −m
2
W

2

(
Π′′W 3W 3(0)−Π′′W+W−(0)

)
.

(2.22)

6For convenience, we report here the relation between the Ŝ, T̂ , Û [60] and the Peskin-Takeuchi S, T, U [59]

parameters:

S =
16π

g2
Ŝ , T =

4π

g2s2
θW

T̂ U = −16π

g2
Û . (2.21)
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T̂ is also related to the ρ parameter introduced in eq. (1.18) by ρ = (1−T̂ )−1 ' 1+T̂ . In the EFT

approach, only the four Ŝ, T̂ , W and Y parameters are generated by dim-6 operators, while the

remaining ones are generated by dimension-8 (or higher) terms. In terms of a phenomenological

effective Lagrangian these four can be described by

∆LEWPT = −T̂ m
2
Z

2
ZµZ

µ − Ŝ

4m2
W

gg′v2

2
(W 3

µνB
µν)− W

2m2
W

(∂µW 3
µν)2 − Y

2m2
W

(∂µBµν)2. (2.23)

The contribution of the Wilson coefficients of the operator set in eq. (2.13) to the above observ-

ables is

T̂ = ĉT (mW ) =
v2

Λ2
cT (mW ) , Ŝ = ĉS(mW ) =

m2
W

Λ2
[cW (mW ) + cB(mW ) + 4cWB(mW )] ,

Y = ĉY (mW ) =
m2
W

Λ2
c2B(mW ) , W = ĉW (mW ) =

m2
W

Λ2
c2W (mW ) . (2.24)

The above oblique parameters have been measured very precisely and are constrained at the

per-mil level. We present the 95 % CL bounds on these parameters in table 2.5.

2.3.2 Anomalous triple gauge couplings

A second set of independent measurements that constrain the operator set in eq. (2.13) are the

TGC that were measured in the e+e− → W+W− process at LEP2. The standard phenomeno-

logical Lagrangian used to describe deviations in the TGC observables, from their SM values,

is [78, 79]

∆L3V = ig gZ1 cθWZ
µ
(
W+νŴ−µν −W−νŴ+

µν

)
+ ig

(
κzcθW Ẑ

µν + κγsθW Â
µν
)
W+
µ W

−
ν

+
ig

m2
W

(
λZcθW Ẑ

µν + λγsθW Â
µν
)
Ŵ−ρµ Ŵ+

ρν , (2.25)

where V̂µν = ∂µVν − ∂νVµ, the photon field Aµ = cθWBµ + sθWW
3
µ has field-strength Âµν ,

while Zµ = cθWW
3
µ − sθWBµ has field-strength Ẑµν and we use sθW ≡ sin θW = g′/

√
g2 + g′2,

cθW ≡ cos θW = g/
√
g2 + g′2 and e = gsθW . Note that the above Lagrangian has only three

independent parameters at the dim-6 level taken to be gZ1 , κγ and λγ here; the other two can be

expressed as : λZ = λγ and κZ = gZ1 −t2θW κγ . These relations are a consequence of the accidental

custodial symmetry that is preserved by the dim-6 operators entering in the TGC [80]. The SM

contribution is given by (gZ1 )SM = (κγ)SM = 1 and (λZ)SM = 0. The corrections induced by

the dim-6 operators in our basis are given by:

δgZ1 ≡ ĉgZ(mW ) = −m
2
W

Λ2

1

c2
θW

cW (mW ) , δκγ ≡ ĉκγ(mW ) =
m2
W

Λ2
4cWB(mW ) ,

λZ ≡ ĉλγ(mW ) = −m
2
W

Λ2
c3W (mW ) ,

(2.26)
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where δgZ1 = gZ1 − (gZ1 )SM and δκγ = κγ − (κγ)SM . The constraints on these TGC observables

are at the percent level (see table 2.5) and thus at least an order of magnitude weaker than the

constraints on the electroweak parameters in eq. (2.24). Note that, for this reason, in eq. (2.26)

we have ignored contributions to the e+e− →W+W− process from the couplings in eq. (2.23).

2.3.3 Higgs couplings

Higgs physics provides the three remaining observables for our observable basis. Indeed, operators

in which the Higgs enters with the |H|2 combination, like OH , OWW and OBB (also OGG, O6

and the Oyf ones) can only give a physical effect, at tree level, in processes involving the Higgs

boson, since otherwise they only provide an unphysical redefinition of the SM couplings [64]. We

consider the branching ratios h→ γγ/Zγ and the correction to the Higgs kinetic term,

∆LHiggs ⊃
ĉH
2

(∂µh)2 +
ĉγγe

2

m2
W

vhÂµνÂ
µν +

ĉγZ eg

m2
W cθW

vhÂµνẐ
µν . (2.27)

The above coefficients, in terms of the dim-6 operator’s Wilson coefficients are given by

ĉH(mH) =
v2

Λ2
cH(mH),

ĉγγ(mH) =
m2
W

Λ2
(cBB(mH) + cWW (mH)− cWB(mH)) ,

ĉγZ(mH) =
m2
W

Λ2

(
2c2
θW
cWW (mH)− 2s2

θW
cBB(mH)− (c2

θW
− s2

θW
)cWB(mH)

)
.

(2.28)

We present the constraints on these three observables in table 2.5. The coupling ĉγγ is constrained

at the per mille level although the constraint on the SM diphoton width has been measured only

with O(1) precision. This is because the SM width Γ(h → γγ) is already one-loop suppressed

and thus the current O(1) precision of the measurement corresponds to ĉγγ ≈ 10−3. On the other

hand, the correction to the Higgs kinetic term ĉH is still poorly constrained. This is because

ĉH causes a universal shift in all the Higgs couplings and thus drops out from the branching

ratios. Moreover, if only gluon fusion production channels are considered, the coupling cGG

mimics the effect of ĉH . Therefore, to disentangle the effect of cGG and constrain ĉH , Higgs

production cross-sections in different channels have to be compared; in particular the weakly

sensitive vector-boson fusion (VBF) channels have to be considered.

2.3.4 Gluon observables

Let us now consider the observables sensitive to the bosonic operators that contain gluons, as

defined in table 2.1:

{O2G, OGG, O3G}. (2.29)
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A first observable is the parameter Z, introduced in ref. [60] from the two point function of the

gluon (analogous to the EW W and Y oblique parameters) as

Z =
m2
W

2
Π′′GG(0) , (2.30)

where the constant term of the expansion in q2 for the gluon polarization amplitude is zero

by gauge invariance (as for the photon) and the first-derivative term fixes the strong coupling

constant. The Wilson coefficient c2G can be put in one-to-one relation with Z,

Z =
m2
W

Λ2
c2G. (2.31)

A strong bound on this parameter has been obtained by an analysis of dijets events at LHC [81]:

−9× 10−4 . Z . 3× 10−4. (2.32)

A bound on cGG can be obtained from the analysis of the Higgs production cross section at LHC.

The relevant phenomenological Lagrangian is

Lh ⊃ ĉGG
hv

m2
W

g2
sG

A
µνG

µν A, (2.33)

where we defined

ĉGG ≡
m2
W

Λ2
cGG. (2.34)

The most recent bound, obtained in ref. [64] after marginalizing over the other deviations from

the SM, reads

ĉGG ∈ [−0.8, 0.8]× 10−3. (2.35)

The coefficient c3G, analogous to the SU(2)L counterpart c3W , contributes to the anomalous

triple gluon couplings. This effect can be measured at LEP, Tevatron and LHC, for example via

top-quark pair production, see for example ref. [82] where it is estimated that LHC should be

able to put a bound |ĉ3G| ≡ |c3G|m2
W /Λ

2 . 0.1.

2.3.5 Present constraints

Based on their precision of measurement, the Higgs and EW observables (we neglect the gluon-

related observables in the following) can be divided into at least two groups. In the first group,

containing highly constrained operators, we have the four electroweak parameters and the Higgs

diphoton coupling,

{ĉS , ĉT , ĉW , ĉY , ĉγγ} , (2.36)

which have been measured at the per mille level. In the second group we have the hγZ coupling,

the couplings related to the three TGC observables κγ , g1
Z , λγ and ĉH ,

{ĉγZ , ĉκγ , ĉgz, ĉλγ , cH} , (2.37)
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Coupling Direct Constraint
RG-induced
Constraint

ĉS(mt) [−1, 2]× 10−3 [83] -

ĉT (mt) [−1, 2]× 10−3 [83] -

ĉY (mt) [−3, 3]× 10−3 [60] -

ĉW (mt) [−2, 2]× 10−3 [60] -

ĉγγ(mt) [−1, 2]× 10−3 [64] -

ĉγZ(mt) [−0.6, 1]× 10−2 [64] [−2, 6]× 10−2

ĉκγ(mt) [−10, 7]× 10−2 [23] [−5, 2]× 10−2

ĉgZ(mt) [−4, 2]× 10−2 [23] [−3, 1]× 10−2

ĉλγ(mt) [−6, 2]× 10−2 [23] [−2, 8]× 10−2

ĉH(mt) [−6, 5]× 10−1 [64] [−2, 0.5]× 10−1

Table 2.5: In this table we present the 95 % CL direct constraints on the coefficients in the observable
basis (second column). The constraints on Ŝ and T̂ presented here are the ones obtained after marginaliz-
ing on the other parameters in the fit of ref. [83]. In the analysis we use the Ŝ, T̂ -ellipse from ref. [83] with
U = 0. Simultaneous constraints on all three of the TGC observables do not exist in the literature, so we
have provided the individual constraints on the three couplings without taking into account correlations
between them [23]. In the third column we show the RG-induced constraint we are able to obtain under
the assumption of no fine-tuning in eq. (2.48), for Λ = 2 TeV.

which are much more weakly constrained. One can, in fact, further split the above set into cH
which is constrained only at the O(1) level and the other couplings that are constrained at the

few percent level. The present experimental constraints are reported in table 2.5.

2.4 RG-induced bounds and tuning

As we saw, the observables we consider have lower and upper bounds from experimental mea-

surements, which constrain possible deviations from the SM:

δ(obs)i|mH = ĉi(mH) = ωij(mH)cj(mH) ∈ [εlowi , εupi ] . (2.38)

The observable coupling ĉi(mH) (constrained at low energy) is related, through the running, to

the high-scale value of the Wilson coefficients cj(Λ), which are not directly known since they are

determined by the BSM degrees of freedom that have been integrated out. The matrix ωij(mH)

also runs with the scale (in the example of eq. (2.15) this would be the running of g, g′ and v

inside mW and θW ), however we are not interested in such a running because ωij is determined

by measurements performed at the EW scale and because, for the purpose of this work, we are
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not interested in the UV value of the SM couplings. This is the reason why we have not taken

care of the contributions of the dim-6 operators to the SM couplings, parametrized by κi in

eq. (2.14), which would only be necessary if we wanted to relate ωij(mH) to ωij(Λ) at the order

we are working.

This discussion leads us to define the scale-dependent observable couplings as

ĉi(µ) ≡ ωij(mH)cj(µ) , (2.39)

obtaining

δ(obs)i|mH = ĉi(mH) = ĉi(Λ)− 1

16π2
γ̂ij ĉj(Λ) log

(
Λ

mH

)
, (2.40)

where

γ̂ij ≡ ωik(mH) γkl ω
−1
lj (mH) (2.41)

and γkl is the matrix computed in sec. 2.2. Our interest in eq. (2.40) is twofold: we want to find

instances where a less constrained operator can mix with a more constrained one by appearing

in its RGE’s and secondly (but closely related), to learn about the new degrees of freedom at the

matching scale. In the following we shall work at leading-log order, which is fine if the hierarchy

between the new physics scale Λ and the EW scale is not too big.

The fundamental assumption we make in order to obtain an indirect constrain on the ĉj(mH)

through the RG is that we require each term in the sum on the r.h.s. of eq. (2.40), proportional

to some coefficient ĉj , to be contained in the experimental bounds associated to the observable

δ(obs)i|mH :

(1− δi)ĉi(Λ) ∈ [εlowi , εupi ] , (2.42)

− 1

16π2
γ̂i̂ĉ̂(mH) log

(
Λ

mH

)
∈ [εlowi , εupi ] , (2.43)

where we defined δi = γ̂ii/(16π2) log(Λ/mH) and in the last line the index ̂ is not summed over.7

We have also used the fact that substituting ĉj(Λ) for ĉj(mH) in the γ̂ij ĉj term of eq. (2.40)

amounts to corrections O
(
(4π)−4 log2(Λ/mH)

)
that are beyond our precision (the same is true

for the evaluation of γij). Notice that this assumption is not only a requirement of the absence of

fine-tuning but also an hypothesis on the UV physics, since particular relations, due to symmetry

or dynamical accidents, between those combinations could be generically found when considering

a BSM theory. From our bottom-up approach we parametrize also this absence of correlations

as an absence of tuning. From eq. (2.42) we can put bounds on the matching-scale Wilson

coefficients cj(Λ):

cj(Λ) ∈
[∑

i

(1− δi)−1ω−1
ji ε

low
i ,

∑

i

(1− δi)−1ω−1
ji ε

up
i

]
, (2.44)

7In the rest of this chapter we shall denote with a hat all repeated indices which are not summed over.
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notice that, as expected, they grow quadratically weaker with the increase of the UV scale Λ since

ω−1 ∼ Λ2/m2
W . Using eq. (2.43), instead, we can put an RG-induced bound on the observable

|δ(obs)j |mH < εRGji using the direct constraints on δ(obs)i|mH , eq. (2.38):

if γ̂ı̂j > 0 : δ(obs)j |mH ∈
16π2

log (Λ/mH)
(γ̂ı̂j)

−1[−εupı̂ ,−εlowı̂ ] ,

if γ̂ı̂j < 0 : δ(obs)j |mH ∈
16π2

log (Λ/mH)
(γ̂ı̂j)

−1[εlowı̂ , εupı̂ ] .

(2.45)

The indirect bounds in eq. (2.45) grow logarithmically stronger with the increase of the UV

scale Λ. However, since the expected effects from new physics decrease quadratically with Λ,

assuming order one coefficients ci, even if the RG-induced bounds on the observables become

slightly stronger, their power in investigating the UV degrees of freedom becomes much weaker

for higher values of Λ, as is clear from eq. (2.44). It might seem that these bounds are not

significant because of the loop factor in the above equation; the εi’s are, however, not of the

same order and if |εlow,upi | � |εlow,upj |, the bound in the above equation can be stronger than

the direct bound on δ(obs)j |mH , in spite of the loop factor. The RG-induced bounds are, thus,

significant only when a weakly constrained coupling appears in the RGE of a strongly coupled

one.

Once new physics effects will be, hopefully, observed and the constraints of eq. (2.38) will not

include the zero value in the allowed interval (0 < εlowj < |δ(obs)j |mH < εupj ), another interesting

information that could be extracted from RG effects is a quantification of how much tuned,

among themselves, are the electroweak and Higgs observables. First of all, let us define the

fine-tuning in an observable as [84]

∆i ≡ Maxj

∣∣∣∣
∂ log δ(obs)i|mH
∂ log ĉj(Λ)

∣∣∣∣ ' Max
{ |ĉi(Λ)|
|δ(obs)i|mH

,
log (Λ/mH)

16π2

Maxj 6=i |γ̂i̂| |δ(obs)̂|mH
|δ(obs)i|mH

}
,

(2.46)

where in the second step we separated the diagonal contribution from the off-diagonal ones and,

for the diagonal term, we neglected the loop contribution since ĉi(Λ) enters already at tree level

and this would be its leading contribution to the tuning. Looking at the off-diagonal terms, the

fine-tuning ∆i satisfies,

∆i ≥
log (Λ/mH)

16π2

Maxj 6=i |γ̂i̂| |δ(obs)̂|mH
|δ(obs)i|mH

>
log (Λ/mH)

16π2

Maxj 6=i |γ̂i̂| εlow̂
εupi

= Maxj 6=i
εlow̂

εRGji
,

(2.47)

and one might be able to conclude that a certain degree of fine-tuning among the contributions

to the RG flow of some operator is necessary.
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ĉ
γ
Z

0
0

0
0

0

γ
ĉ
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ĉ
Y

0
0

2 3
g
′2

−
2 3
e2

0

γ
ĉ
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c2G cGG c3G c2B c2W

γc2G
266
9
g2
s 0 0 g′2

(
17
6

(Y 2
u + Y 2

d ) + 12YuYd
)

0

γcGG 0 − 3
2
g′2 − 9

2
g2 + 12λ+ 6y2

t 0 0 0

γc3G 0 0 22g2
s 0 0

Table 2.7: Anomalous dimension matrix for the Wilson coefficients of the dim-6 bosonic operators with
gluons, in the basis defined in section 2.1. The contributions to and from the other coefficients of the
operators in eq. (2.9), not reported here, are zero.

2.4.1 RG-induced bounds on our set of observables

Let us now apply the general formulas of the previous section to the electroweak and Higgs

observables we want to constrain.

We are interested in finding instances where the couplings from the second group in eq. (2.37)

appear in the RGE’s of the first group of couplings in eq. (2.36). To check this we rotate

the anomalous dimension matrix to the observable basis defined by eq. (2.24), eq. (2.26), and

eq. (2.28). We present the anomalous dimension matrix in the observable basis in table 2.6.

Using this, and fixing Λ = 2 TeV, we write numerically eq. (2.40) as

(ĉS , ĉT , ĉY , ĉW , ĉγγ , ĉγZ , ĉκγ , ĉgz, ĉλγ , ĉH)t (mt) ' (2.48)



0.9 0.003 −0.03 −0.08 −0.02 −0.02 −0.04 0.05 −0.01 0.001

0.03 0.8 −0.02 −0.009 0 0 −0.03 0.01 0 −0.003

0.001 0 0.9 0 0 0 −0.001 0.001 0 0

0 0 −0.001 0.8 0 0 0 −0.003 0 0

0 0 0 0 0.9 0 0.006 0 0.02 0

0 0 0 0 0 0.9 0.007 0 0.03 0

0 0 0 0 −0.02 −0.02 0.9 0 −0.01 0

0.0004 −0.0007 −0.0004 0.1 0 0 −0.0004 0.9 0 −0.0007

0 0 0 0 0 0 0 0 0.9 0

−0.02 0.03 0.01 −0.4 0 0 0.02 −0.3 0 0.8







ĉS(Λ)

ĉT (Λ)

ĉY (Λ)

ĉW (Λ)

ĉγγ(Λ)

ĉγZ(Λ)

ĉκγ(Λ)

ĉgz(Λ)

ĉλγ(Λ)

ĉH(Λ)




.

We can now derive the RG-induced constraints by using eq. (2.45) assuming no fine-tuning among

the different terms in the RGE’s.

The strongest RG-induced constraints come from the direct bounds on the Ŝ, T̂ ,W and Y

parameters, i.e. the first four lines in eq. (2.48). We require that each observable coupling indi-

vidually satisfies the four RG-induced constraints from these electroweak precision parameters

simultaneously. It is very important to take into account the experimental correlations between

Ŝ, T̂ ,W and Y while imposing these bounds [85–87]. Note that the RG-mixing contributions to
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Figure 2.2: The ellipses represent 95% CL bounds on Ŝ and T̂ as obtained in the fit of ref. [83] with
U = 0 (blue), expected from the ILC (purple) and TLEP (orange). The straight lines represent the
RG-induced contribution to the oblique parameters from the weakly constrained observable couplings of
eq. (2.37), divided in Higgs couplings (a) and TGC couplings (b), using the first two lines of eq. (2.48),
for Λ = 2 TeV. The length of the lines corresponds to their present 95% CL direct bounds, see table 2.5;
the line is green (red) for positive (negative) values of the parameters.

ĉW and ĉY , from the couplings in the weakly constrained group in eq. (2.37), is either absent or

accidentally much smaller than the ones to ĉS and ĉT (see the RG contributions to ĉW and ĉY
in the third and fourth row of eq. (2.48)). We, therefore, look at the constraints on the Ŝ − T̂
plane taking W = Y = 0. We use the Ŝ − T̂ ellipse in ref. [83], which assumes W = Y = U = 0,

to derive our constraints. We present these RG-induced bounds and compare them with the

direct bounds in table 2.5 and in figure 2.2. We find that for each of the couplings in the second

group we can derive a RG-induced constraint stronger than, or of the same order of, the direct

tree-level constraint. We also obtain RG-induced bounds from the direct constraint on ĉγγ using

the fifth line in eq. (2.48) and eq. (2.45),

ĉκγ ∈ [−0.2, 0.3] ,

ĉλγ ∈ [−0.05, 0.10] ,
(2.49)

but at present these bounds are weaker than those from the direct bounds on electroweak pa-

rameters.

Let us briefly comment on alternate choices for our observable basis. In general, a change of

observable basis modifies the anomalous dimension matrix of table 2.6, also for the observables

which were maintained in the basis. Thus, the RG-induced constraints we have derived, are

applicable only to our particular choice of observables, and for an alternate choice the analysis
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must be repeated.8 For instance, the Higgs decay observables related to h→W+W−, ZZ decays

could have been alternatively chosen as part of our observable basis instead of two of the TGC

observables (κγ and gZ) but we have kept the TGC in our basis as they are measured more

precisely than these Higgs decay observables. This situation is likely to continue in the future.

Although, observables like the relative deviation of h → W+W−, ZZ with respect to the SM

would be strongly constrained at the 5 %(3 %) level at the LHC with 300 fb−1 ( 3000 fb−1)

data [88], the bounds on TGC are also expected to become stronger by an order of magnitude

at the LHC [88] so that the TGC would still be more precisely measured than these Higgs

observables. At linear colliders the Higgs h → W+W−, ZZ is expected to be measured at the

level of 0.5 % [88] and the TGC observables at the 10−4 level [89]; again the TGC observables

would be more constrained.

As can be seen in table 2.7, no mixing to (or from) these gluon operators is present among

the operators we considered in table 2.1, the only exception being a contribution from c2B to

c2G which, however, is not very interesting since c2B is already very well directly constrained by

the oblique Y parameter. For this reason, we are not able to cast any indirect constraint using

these gluon operators.

2.5 Future prospects

Let us now discuss the future prospects for the RG-induced bounds, given the expected sensitiv-

ities on the observable couplings introduced above for 300 fb−1 and 3000 fb−1 [90] of luminosity

at the LHC and for the ILC [89] and TLEP [91] projects, as collected in table 2.8.

The precision on the oblique parameters could reach the 10−4 level at ILC [92] and the 10−5

level at a TLEP collider [93]. This would allow to improve sensibly the RG-induced bounds on

our set of observable couplings, as can be seen in figure 2.2 and in table 2.9

The measurement of the Higgs couplings, in particular the one to two photons ĉγγ , will

improve substantially in the future: by one order of magnitude at 14TeV LHC with 300 fb−1 of

integrated luminosity and at the ILC, and almost two orders of magnitude at a high-luminosity

LHC phase and at a TLEP collider [88]. The prospects for RG-induced bounds on the observable

coefficients which mix to ĉγγ , that is the TGC ĉkγ and ĉλγ , are reported in table 2.10.

If a deviation from the SM will be observed (i.e. one observable coefficient will have a direct

bound 0 < εlowj < |ĉj(mW )| < εupj ), then by comparing the lower bound εlowj with the RG-

induced bound on ĉj (|ĉj | < εRGji ) obtained considering its RG mixing to a strongly constrained

8Note that for our choice of observable basis, h → γγ does not receive a contribution from the Ŝ parameter

even though there is a dependance on cWB in the anomalous dimension but cWB is actually reconstructing the

δκγ parameter.
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Obs. Now LHC (300 fb−1) HL-LHC (3 ab−1) ILC TLEP

ĉS [−1, 2]× 10−3 [83] – – 1.4× 10−4 [92] 5× 10−5 [93]
ĉT [−1, 2]× 10−3 [83] – – 1.6× 10−4 [92] 3.1× 10−5 [93]
ĉgZ [−4, 2]× 10−2 [23] 3× 10−3 [90] 2× 10−3 [90] 1.8× 10−4 [89] n.a.
ĉkγ [−10, 7]× 10−2 [23] 3× 10−2 [90] 1× 10−2 [90] 1.9× 10−4 [89] n.a.
ĉλγ [−6, 2]× 10−2 [23] 9× 10−4 [90] 4× 10−4 [90] 2.6× 10−4 [89] n.a.
ĉγγ [−1, 2]× 10−3 [64] 1× 10−4 [88] 4× 10−5 [88] 7.6× 10−5 [88] 2.9× 10−5 [88, 91]
ĉγZ [−6, 10]× 10−3 [64] 9× 10−4 [88] 2× 10−4 [88] n.a. n.a.
ĉH [−6, 5]× 10−1 [64] 1× 10−1 [88] 5× 10−2 [88] 5× 10−2 [88] 1× 10−2 [88, 91]

Table 2.8: Future prospects in the direct determination of the observable couplings discussed here from
the LHC, a high-luminosity LHC, the ILC at 800GeV and from TLEP after a first phase at 240GeV and
a second one at 350GeV. The precision in Ŝ, T̂ will not improve sensibly at the LHC or HL-LHC and the
other missing elements have not yet been studied in the literature.

mix. to (Ŝ, T̂ ) Now ILC TLEP

ĉγZ [−2, 6]× 10−2 2× 10−2 5× 10−3

ĉH [−2, 0.5]× 10−1 7× 10−2 2× 10−2

ĉgZ [−3, 1]× 10−2 8× 10−3 3× 10−3

ĉkγ [−5, 2]× 10−2 9× 10−3 3× 10−3

ĉλγ [−2, 8]× 10−2 2× 10−2 7× 10−3

Table 2.9: Present status and future prospects for the RG-induced bounds, for Λ = 2 TeV, from the
mixing to (Ŝ, T̂ ), given the predicted sensitivity in this observables at ILC and TLEP, as shown in
table 2.8.

observable ĉi (like Ŝ and T̂ ) we can determine the necessary amount of tuning in eq.(2.40). By

taking the logarithmic derivative of eq.(2.40) with respect to the UV coefficient ĉj(Λ) one gets

that the tuning is [4] ∆ij > εlowj /εRGji . Therefore, if εlowj � εRGji a definite amount of tuning (or

of correlation) in the UV dynamics would be necessary. This could provide a new window on

the UV physics.

For example, if ĉH should be measured to be ∼ 0.2 (0.1) while no deviation in (Ŝ, T̂ ) should

be observed after TLEP, the RG-induced bound |ĉRG,TLEPH | < 2 × 10−2 would imply a tuning

∆H,(S,T ) > 10 (5). Similarly, should one measure ĉkγ ∼ 5 × 10−2, the RG-induced bound from

(Ŝ, T̂ ) at TLEP, |ĉRG,TLEPkγ | < 3× 10−3, would imply a tuning ∆kγ ,(S,T ) > 17.
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mix. to ĉγγ Now LHC HL-LHC ILC TLEP

ĉkγ [−0.2, 0.3] 2× 10−2 7× 10−3 1× 10−2 5× 10−3

ĉλγ [−0.05, 0.10] 5× 10−3 2× 10−3 4× 10−3 1× 10−3

Table 2.10: Present status and future prospects for the RG-induced bounds, for Λ = 2 TeV, on two
anomalous TGC from the mixing to ĉγγ , given the predicted sensitivity in this observable as shown in
table 2.8.

2.6 Summary

We computed the scaling and mixing of 13 dim-6 deformations of the SM affecting EW precision

observables (4), anomalous EW triple gauge boson couplings (3), QCD observables (2) and Higgs

production and decays (4). This computation has important phenomenological implications.

Particularly interesting is the RG-mixing induced among 10 of these observables (the 2 two

QCD observables and one Higgs observable, namely Γ(h→ gg), constitute a separate sector that

does not mix in a relevant way with the severely constrained EW observables.).

These 10 different observables are constrained at very different levels of precision. For ex-

ample, whereas the electroweak precision observables and the operator coefficient related to the

h → γγ partial width are constrained at the per mille level, the TGC and the 2 other Higgs

observables are constrained at the percent level at most. As we run down from the new physics

scale to the lower scale of experiments, quantum effects mix the observables and the most severely

constrained ones receive a contribution from the ones allowed to deviate the most from the SM

predictions. These RG-contributions could in principle be of the same size or even larger than the

direct experimental bounds, in other words, the difference in the experimental sensitivities can

compensate for the RG-loop factor. Requiring that these RG-contributions do obey individually

the direct bounds, i.e. dismissing any possible tuning/correlation among the various RG-terms,

we can derive some indirect RG-induced bounds on the weakly constrained observables from the

direct measurement of the severely constrained ones. This analysis is particularly relevant for

the TGC and the universal shift of the Higgs couplings, as reported in figure 2.2 and table 2.5.

We also looked at the future prospects of these RG-induced effects. If a deviation from the SM

is observed in some of the observables we considered, in the absence of tuning one would expect

a deviation, due to these RG effects, to appear also in other seemingly unrelated observables. If,

instead, these RG-induced deviations are not observed, it would mean that some tuning is needed,

or it would indicate some correlation among the higher dimensional operators pointing towards

a particular structure of the new physics that has been integrated out. We have presented the

projected future experimental sensitivity to these RG effects in tables 2.8,2.9,2.10.



CHAPTER 3

Composite Higgs Models

A way to obtain a large hierarchy between two scales in a natural way is by means of dimensional

transmutations. In nature this mechanism is realized in the SM itself, where the QCD scale

ΛQCD is naturally much smaller than the UV cutoff because of an exponential suppression due

to the RG flow of the QCD strong coupling from the UV down to the scale ΛQCD at which

it becomes non-perturbative, eq. (1.4). It is therefore possible that an analogous mechanism

is at work in explaining the large hierarchy between the EW and the Planck scales, in which

case we expect the presence of a strongly coupled sector at a scale Λ ∼ TeV. The earliest

setup realizing this mechanism is Technicolor models, which – in the simplest realizations –

resemble just scaled-up versions of QCD and therefore do not predict any light Higgs boson in

the spectrum. Obviously, such models have been now definitely excluded by the LHC. However,

even after LEP they suffered from severe bounds from EW precision measurements and flavor

physics, which disfavored this class of models. A more realistic possibility is that the Higgs boson

itself is a composite state of the strongly coupled sector, in which case the UV sensitivity to its

mass would be cutoff above the scale Λ by its finite dimension. If, furthermore, the Higgs arises

as a pseudo-Nambu-Goldstone boson (pNGB) of the strongly coupled sector (such as pions in

QCD), then its mass would be naturally smaller than the typical scale of the other composite

resonances, helping to evade the tight phenomenological constraints on these states. The pNGB

nature of the Higgs, moreover, allows to construct low-energy effective chiral Lagrangians which

are able to capture the low-energy phenomenology of these composite Higgs (CH) models in

terms of a few parameters without the need of specifying the fundamental description of the

strongly coupled theory, in the same way as the pion dynamics is well described by the effective

QCD chiral Lagrangian.

In this chapter we review the most important features of these class of models, focusing on

the minimal realistic scenarios, and we explore the phenomenological predictions these models

offer.1

1For excellent reviews on composite Higgs models we refer to ref. [94] and to the more recent ref. [95].

40
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3.1 Strong dynamics behind the EWSB

The idea that the electroweak scale could arise as a condensate of some strong dynamics with the

typical scale at the TeV, thereby solving the naturalness problem by dimensional transmutation –

as in QCD – has its origin in Technicolor models [30]. In this class of models there is no physical

Higgs scalar but the EW symmetry is spontaneously broken by the condensate of some composite

operator. In many explicit models the constituents of the strong sector are fermions called techni-

quarks which interact strongly via a Technicolor gauge group and form a condensate at the EW

scale v. From the expression of the SM Higgs Lagrangian in the chiral formalism, eq. (1.11), it

is evident that the SM is just the simplest linear-σ model for the custodial symmetry breaking

pattern SU(2)L × SU(2)R → SU(2)V able to provide a UV completion for the EWSB dynamics.

In Technicolor models the Higgs is not present and therefore, of the terms in eq. (1.11), only the

kinetic term for the NGB in Σ survives. It can then be seen as the leading term of an effective

chiral Lagrangian, valid for energies lower than the strong dynamics scale ΛTC , in an expansion

of derivatives over the cutoff ΛTC :

Lchiral =
v2

4
Tr
[
(DµΣ)†DµΣ

]
+O(D4/Λ2

TC) . (3.1)

A mass for the SM fermions can be described by the effective Lagrangian

LY uk = − v√
2

∑

ij

Q̄iLΣ

(
yuiju

j
R

ydijd
j
R

)
+ h.c. , (3.2)

In QCD, the low energy dynamics of the pions, NGBs of the spontaneous breaking of the

chiral symmetry SU(2)L×SU(2)R → SU(2)I , can be described by an analogous chiral Lagrangian

(3.1) with the substitution v → fπ. Therefore QCD itself breaks the electroweak symmetry to

the electromagnetic subgroup, providing a mass to the W boson mQCD
W = gfπ/2 ' 29MeV.

The simplest Technicolor models can thus be seen as scaled-up versions of QCD in which case

the physical W mass is given by m2
W = g2(v2

0 + f2
π)/4 ≡ g2v2/4, where v0 is the Technicolor

condensate, given by v2
0 = v2 − f2

π ' v2. In the following we will neglect the small effect due to

fπ and identify v0 with v.

One consequence of the absence of a physical Higgs scalar is that the scattering of W and Z

bosons loses perturbative unitarity at an energy E ∼ 4πv ' 3TeV ' ΛTC , which suggests that

before this energy scale the strong dynamics should intervene and restore unitarity, possibly in

the form of some composite resonances as in QCD. The Equivalence Theorem (ET) [96–98] states

that for high energies E � mW ,mZ , the scattering amplitudes involving longitudinally polarized

massive gauge bosons in the external states can be studied by substituting those states with the

corresponding NGBs (see ref. [99] for a more recent take on the ET). Expanding eq. (3.1) in the
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Figure 3.1: Diagrams contributing to elastic scattering of longitudinally polarized W bosons. In the
first line (a) only the gauge contribution and the simplification due to the equivalence theorem are shown,
in the second line (b) we show the contribution from a Higgs scalar.

fields χa and computing, for example, the scattering amplitude χ1χ1 → χ3χ3 , one finds (see

diagrams in fig. 3.1(a))

A(χ1χ1 → χ3χ3) ' s

v2
. (3.3)

This tree-level elastic amplitude grows quadratically with the energy. In order to satisfy the

unitarity bound, the imaginary contribution to the same amplitude due to loop corrections has

to increase. At energies
√
s ∼ ΛTC ∼ 4πv the tree-level and the loop contribution become

of the same order, which implies that the theory is no more in a perturbative regime. This

problem of perturbative unitarity requires some new dynamics before that scale. In the SM this

new dynamics is the physical Higgs, which contributes to the same scattering amplitude exactly

cancelling this quadratic growth with the energy when s � m2
H , as can be easily obtained by

computing the diagram in fig. 3.1(b) using the Lagrangian in eq. (1.11):

A(χ1χ1 → χ3χ3)SM '
s

v2

(
1− s

s−m2
H

)
. (3.4)

In Technicolor, instead, no Higgs is present and the NGB scattering is cured by the strong

dynamics, possibly in form of exchange of some composite resonances, as in QCD the pion

scattering is unitarized by the exchange of resonances like the spin-1 ρ meson.

From an early age, these Technicolor models suffered from severe experimental constraints,

both from electroweak and flavor physics. On the EW side, Naïve Dimensional Analysis (NDA)
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estimates show that generically these models predict sizable corrections to EW gauge bosons two

point functions, which reflects – for example – in too big values for the EW oblique parameter

S. The main reason for this is that the scale of the strong dynamics ΛTC – for example the

masses of the first composite resonances – is fixed to be not far from EW scale and therefore its

effect are not suppressed enough. On the flavor side, as we explain in more detail in sec. 3.2,

constraints on flavor changing neutral currents (FCNC) and CP violation put very strong limits

on the sector responsible for generating SM fermion masses via SM fermion bilinears coupled to

some operator of the strong dynamics.

Models where the Higgs arises as a composite pNGB of a strong dynamics and in which

the elementary SM fermions mix linearly with fermonic operators of the strong sector (partial

compositeness) offer a solution to both problems. The idea of a composite Higgs as a way to

be able to interpolate continuously between the SM and Technicolor models was proposed in a

series of seminal papers by Georgi, Kaplan and other collaborators in the early 80s [37, 38], see

also refs. [100, 101]. In this class of models the strong sector enjoys a bigger global symmetry

group, spontaneously broken at some scale f > v. The NGBs of this breaking pattern include the

complete Higgs doublet. Contrary to Technicolor, the condensate of the strong sector responsible

for this symmetry breaking is aligned – at tree-level – with the EW gauge group and thus preserves

it. A potential for the Higgs is then generated at the quantum level by interactions which break

explicitly the global symmetry of the strong sector. Different contributions to the potential have

to be tuned so that the mass term for the Higgs doublet becomes negative and of the order of

the EW scale, thus inducing a non-zero vev for the Higgs and a misalignment of the vacuum

with respect to the EW symmetry preserving direction, thereby breaking the EW symmetry

and generating a mass for the W and Z gauge bosons. It was soon realized [102, 103] that a

strong constraint on the global symmetry breaking pattern was given by the EW ρ parameter,

see eq. (1.18). In order to avoid big tree-level corrections to the SM value, the unbroken global

symmetry group should contain the custodial symmetry as a subgroup.

In these models the Higgs Lagrangian after EWSB can be parametrized as [104]

LHiggs =
1

2
(∂µh)2 +

v2

4
Tr
[
(DµΣ)†DµΣ

](
1 + 2a

h

v
+ b

h2

v2
+ . . .

)
− V (h) , (3.5)

where a and b are generic coefficients and the dots represent interactions with higher powers of

the Higgs. V (h) represents the potential for the physical Higgs particle. The effective Yukawa

Lagrangian, for example for the quarks, is

LY uk = − v√
2

∑

ij

Q̄iLΣ

(
yuiju

j
R

ydijd
j
R

)(
1 + c

h

v
+ . . .

)
+ h.c. (3.6)

In this parametrization, the SM is a particular point in which a = b = c = 1 and all higher

order terms vanish. In composite Higgs models, instead, these parameters deviate from the SM
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value by O(v2/f2). As we will shortly see, in the minimal composite Higgs model (MCHM)

these parameters are given by a =
√

1− ξ, b = 1 − 2ξ, while the precise expression for c is

model-dependent, where we defined the ratio of scales ξ = v2/f2. The limit f →∞ (i.e. ξ → 0)

describes the SM case, in which all NP effects decouple, while the opposite limit f → v is

a Technicolor-like case, albeit with a composite scalar in the spectrum. Given the modified

couplings of the Higgs with the SM gauge bosons, the elastic WW scattering amplitude for

E � mW becomes

A(χ1χ1 → χ3χ3)MCHM '
s

v2

(
1− a2 s

s−m2
H

) √
s�mH−→ ξ

s

v2
=

s

f2
. (3.7)

We see that the presence of a physical Higgs in the spectrum postpones the loss of perturbative

unitarity in WW scattering to a scale ΛCH ∼ 4πf = 4πv/
√
ξ, and therefore increases the scale

at which the contribution from composite resonances to the scattering is expected.2 Having the

scale f somewhat higher than the EW scale (by increasing the fine-tuning) allows these models

to evade the bounds from the S parameter. Present bounds from S and from the measurement

of the Higgs couplings require ξ . 0.1, which corresponds to f & 3v.

3.1.1 Brief historical overview

After the first proposal of the composite Higgs setup by Georgi and Kaplan, the idea revived

in the context of warped extra dimensional models at the end of the 90’s, stimulated by the

proposal of the Randall-Sundrum (RS) model [39] (also [106–108]). In these models the SM

fields live on a 4-dimensional brane embedded in a 5d space-time, in which the fifth dimension

has a warped geometry. This warping allows to obtain an exponential suppression of the EW

scale with respect to the Planck scale. The AdS/CFT correspondence [40] allows to interpret

these setups in terms of some strongly coupled conformal field theories (CFT), where the SM

gauge and matter fields are external to the conformal sector [106].

The idea of dimensional deconstruction [109,110] allowed to construct purely 4d theories with

analogous properties as 5d models. Little Higgs models [111,112] were among the first concrete

4d realizations which employed deconstructions to build models in which a light Higgs arises

naturally as a pNGB of a spontaneously broken global symmetry.

Somewhat in parallel, another class of 5d models, known as gauge-Higgs unification models,

was devised [113], in which the pNGB Higgs arises as the fifth component of the SM gauge fields

living in the bulk of the extra dimension [114–117]. In this case, the finiteness of the Higgs

potential is assured by the 5d gauge invariance, i.e. by the fact that the potential can only arise

2In this setup also the scattering involving the Higgs loses perturbative unitarity at the same scale, for example

A(χ1χ1 → hh)MCHM

√
s�mH−→ (b−a2)s/v2 = s

f2
. For a phenomenological study of this process in composite Higgs

models see refs. [87,104,105].
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from non-local Wilson lines wrapping the compactified 5th dimension. This eventually lead to

the construction of the holographic composite Higgs models [41,42] and the Minimal Composite

Higgs Model with the custodially-preserving SO(5)→ SO(4) symmetry breaking pattern [43].

The low-energy features of these models, including also the phenomenology of the first reso-

nances, can be efficiently described by effective 4d theories [58, 73, 118]. In this case, a finite –

and calculable – Higgs potential can be obtained by using the deconstruction idea and building

multi-sites models as in ref. [119,120] or by imposing some generalized Weinberg sum rules [1,46].

Another class of possible UV completions of composite Higgs models is in the context of

supersymmetric theories [3, 121, 122]. In these models the UV sensitivity of the effective Higgs

potential is protected both by the pNGB nature and by supersymmetry (SUSY) [123–125].

SUSY can also offer tools to keep under some control the strongly coupled dynamics using

Seiberg dualities [126]. This also allows to describe in a natural way the appearance of light

top-partners [121].

In the rest of this thesis we concentrate on the low-energy effective 4d description of composite

Higgs models. The strong connection of our approach to deconstructed models is described in

appendix E.

3.2 A flavor paradigm: partial compositeness

Let us now review how the SM fermions can get a mass in this class of models. We follow closely

the discussion presented in ref. [94]. The SM fermions are assumed to be elementary fields, not

part of the new strongly coupled sector. However, since they need to feel EWSB, which takes

place inside the strongly coupled sector, in order to get a mass, a mechanism which connects the

elementary fermions with this sector is necessary.

In the simplest Technicolor models, SM fermion masses are generated through effective op-

erators operators with a bilinear of SM fermions coupled to some composite scalar operator of

the strong sector OTC , with the same quantum numbers of the Higgs field,

L ⊃ gETC
Λ2
ETC

(f̄LfR)OTC . (3.8)

In the UV theory this operator is made of a bilinear of techniquarks, OTC = (ψ̄TCχTC) and

the term in eq. (3.8) is assumed to be generated at a higher scale ΛETC � ΛTC where some

bigger extended Technicolor gauge group – containing both the full SM and the Technicolor

gauge groups – is spontaneously broken. At lower energies the techniquarks condensate and

the operator OTC interpolates the Higgs field, breaking the EW symmetry and providing a mass

term for the SM fermions mf ∼ gETCΛ3
TC/Λ

2
ETC , as shown schematically in fig. 3.2(a). Since the

operator in eq. (3.8) arises from gauge interactions, in order to explain the observed hierarchies

in SM fermion masses it is necessary to embed the three families in the same ETC multiplet
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Figure 3.2: Technicolor (a) and partial compositeness (b) mechanisms for generating SM fermion masses.

and to arrange a complicated cascade of symmetry breakings at different scales. Requiring a

perturbative gETC coupling, these breaking scales ΛfETC are bounded for each fermion mass:

ΛfETC . (Λ3
TC/mf )1/2. For example this scale is O(10TeV) for the strange quark.

Such a low scale for this flavor mechanism poses a serious phenomenological problem. In fact,

the same mechanism which generates the four-fermion operator discussed above, also generates

four-fermion operators of SM fermions, L ⊃ gETC/Λ
2
ETC(f̄LfR)(f̄ ′Lf

′
R). These operators induce

flavor changing neutral currents and are very strongly constrained: ΛETC & 103 − 105TeV,

depending on the particular operator and its properties. This problem can be somewhat al-

leviated in walking Technicolor models, where one assumes that the coupling gTC reaches a

non-perturbative infrared fixed point when running from ΛETC down to ΛTC , making the the-

ory nearly conformal in this window. In this case the anomalous dimension γ of the opera-

tor O can become important, modifying the expression for the SM fermion masses to mf ∼
ΛTC(ΛTC/ΛETC)2+γ , allowing to increase the value of ΛETC if γ < 0. There are however many

arguments which indicate that the anomalous dimension should be bounded γ > −1, which

indicate that the flavor problem can only be somewhat alleviated but not completely solved. For

a review see ref. [94] and references therein.

This kind of mechanism for generating quark masses was used in the first composite Higgs

models, where ΛTC → Λ ∼ 4πf . In this case the flavor model can be solved by increasing both

scales Λ and ΛETC , albeit at the price of increasing the fine-tuning. By increasing Λ to very

high scales one eventually recovers the SM, along with the original naturalness problem we set

out to solve.

An alternative mechanism to provide masses to SM fermions was proposed by Kaplan in

’91 [127] and then revived in extra-dimensional holographic Higgs models [128–130]. The idea

consists in coupling linearly a single SM fermion to a fermonic operator of the strongly coupled
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sector:

L ⊃ λLf̄LOfR + λRf̄ROfL + h.c. , (3.9)

where λL,R are adimensional couplings. The fermonic operators need to have the same quantum

numbers as the SM fermions they couple to, therefore for this mechanism to work it is necessary

to have at least one fermonic operator for each SM fermion. These operators are assumed to be

generated at some scale ΛUV � Λ. When flowing down to Λ, the strong dynamics confines and

ŌfLO
f
R interpolates the Higgs field, so that the terms in eq. (3.9) generate a Yukawa interaction

for the SM fermion f and the composite Higgs, as depicted schematically in the right panel of

fig. 3.2. Expanding for a large number of ‘colors’ N of the strongly coupled sector, a rough

estimate for the fermion mass is

mf ∼ v
√
N

4π
λL(Λ)λR(Λ) , (3.10)

where the mixing parameters λL,R should be evaluated at the scale Λ where the strong sector

condenses and generates the Yukawa term. The couplings at this scale are related to the ones at

the higher scale ΛUV by the RG equation

dλ

d logµ
= γλ+ c

N

16π2
λ3 + . . . , (3.11)

where γ = [O] − 5/2 is the anomalous dimension of the fermonic operator O and c is an O(1)

coefficient. If λ is perturbative we can neglect higher order terms. Let us then assume that λ is

perturbative at the high scale ΛUV and study its evolution when flowing towards Λ. If γ > 0, λ

decreases upon decreasing the scale, therefore the second term in eq. (3.11) is negligible and one

gets λ(Λ) = λ(ΛUV )(Λ/ΛUV )γ . If γ < 0 then λ increases when flowing towards Λ. In this case,

if c < 0 then λ becomes non-perturbative. Instead, if c is positive then at a certain point the two

terms in eq. (3.11) cancel and the flow reaches a fixed point near λ ' λfix '
√
−γ/c 4π/

√
N ,

which is perturbative at large N .

Let us consider the case where both γL and γR are positive. In this case, using eq. (3.10)

we get mf ∼ v
√
N

4π (Λ/ΛUV )γL+γR . In contrast with the Technicolor case studied before, now

the exponent of the suppression factor can be very close to zero without introducing new UV

instabilities. This allows to increase arbitrarily the scale ΛUV , even up to the Planck scale, while

keeping Λ fixed. In this way all flavor violating operators generated by this UV flavor dynamics

are strongly suppressed and thus can be safely neglected. Moreover, a large hierarchy between Λ

and ΛUV implies that O(1) differences in the anomalous dimensions γL,R generate big hierarchies

in SM fermion masses. In this way it is possible to explain naturally the big hierarchy in quark

and lepton masses. The case with negative anomalous dimension, instead, can be used to explain

the big value of the top mass, in fact if γL,R < 0 then mf ∼ v 4π√
N

√
γLγR.

In this context the most important source of flavor-violating processes comes instead from

the lower scale Λ, via the exchange of composite resonances coupled to the SM fermions via the
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linear mixing terms of eq. (3.9). Eq. (3.10), however, suggests that light fermions – such as those

of the first two generations – have small mixing couplings λL,R with the composite sector. This

implies that flavor changing processes involving light fermions, which are the most constraining

processes, are automatically suppressed in this framework by the smallness of their mixing with

the composite sector. However, sizable flavor-violating effects can still arise via the big mixing

of the third family with the strong sector. This implies that a realistic scenario of flavor in

the partial compositeness framework needs some flavor symmetry which protects against such

processes [131].

3.2.1 Partial compositeness in CH models

The most important phenomenological consequence of the linear couplings in eq. (3.9) is the fact

that the elementary SM fermions mix with composite fermion resonances in the strong sector.

The composite operators Of can excite from the vacuum a tower of heavy fermonic resonances

with the same quantum numbers as the SM fermion f they couple to. Since these states are

charged and massive even before EWSB, they are necessarily Dirac (i.e. vector-like) fermions.

Assuming that the first few states of this tower of resonances are somewhat below the strong

coupling scale Λ ∼ 4πf , it is possible to write a perturbative Lagrangian for the system with

the mixing in eq. (3.9). For example, consider an elementary chiral field fL and the respective

massive fermion resonance Ψ:

Lferm = f̄L∂/fL + Ψ̄(∂/−m)Ψ + (εf̄LΨR + h.c.) , (3.12)

where ε is a mixing parameter with dimension of mass estimated to be of the order ε ∼ λf .

Given the above Lagrangian, the elementary fermion fL mixes with ΨL by an angle

tan θL =
ε

m
, (3.13)

and the two eigenstates f ′L and Ψ′ have masses

MΨ′ =
√
m2 + ε2 , Mf ′ = 0. (3.14)

Since here we did not include any elementary right-handed fermion, f ′ is still massless but now it

is a mixture of the elementary and the composite states, hence it is a partially composite fermion.

From eq. (3.13) we see that the bigger the mixing ε, the higher is the degree of compositeness.

Therefore, since the mixing is big for heavy SM fermions, we expect those to be the ones with

the higher degree of compositeness.

In the following sections we will show how complete models can be built following this princi-

ples, how they generate Yukawa interactions between the SM fermions and the composite Higgs

and, finally, how these terms generate an effective potential for the Higgs.
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Figure 1: Schematic representation of the structure of our models.

source of SUSY breaking and its mediation to the other two sectors. We do not specify it and we

parametrize its e↵ects by adding soft terms in both the elementary and the composite sectors.

Our key assumption is that the soft masses in the composite sector are G invariant. See fig.1

for a schematic representation. The main sources of explicit breaking of G are the couplings

between the elementary and the composite sectors, namely the SM gauge couplings and the

top mass mixing terms. We assume that partial compositeness in the matter sector is realized

through a superpotential portal of the form

W � ✏ ⇠SMNcomp . (2.1)

In eq.(2.1) Ncomp are chiral fields in the composite sector and ⇠SM denote the SM matter chiral

fields. No Higgs chiral fields are present in the elementary sector, since the Higgs arises from the

composite sector. The term (2.1) is the only superpotential term involving SM matter fields. For

concreteness, we consider in this paper only the minimal custodially invariant SO(5) ! SO(4)

symmetry breaking pattern with Ncomp in the fundamental representation of SO(5). Like in

non-SUSY CHM, the SM Yukawa couplings arise from the more fundamental proto-Yukawa

couplings of the form (2.1).6 We do not consider SM fermions but the top in this paper, since

they are not expected to play an important role in the EWSB mechanism. They can get a

mass via partial compositeness through the portal (2.1), like the top quark, or by irrelevant

deformations, for instance by adding quartic superpotential terms.

As mentioned in the introduction, the SUSY models we consider can be seen as the weakly

coupled description of some IR phase of a strongly coupled theory, in which case the Higgs is

really composite, or alternatively one can take them as linear UV completions, in which case no

compositeness occurs. Depending on the di↵erent point of view, general considerations can be

6In the field basis where we remove non-derivative interactions of the pNGB Higgs from the composite sector,

the Higgs appears in eq.(2.1).

5

Figure 3.3: Schematic representation of the structure of composite Higgs models.

3.3 The minimal composite Higgs model

Let us assume the existence of an unspecified strongly interacting sector, symmetric under global

transformations of some group G, spontaneously broken to a subgroup H by the condensate of

the strong dynamics at a scale f > v.3 The Higgs is assumed to be a composite pNGB of the

spontaneous symmetry breaking pattern of the composite sector, together with the longitudinal

polarizations of the W and Z bosons and the other heavy resonances. The elementary sector,

instead, contains the transverse polarizations of the SM gauge bosons and the SM fermions. The

global symmetry is also explicitly broken by gauging a subgroup SU(2)L × U(1)Y ⊂ H and by

Yukawa terms in the fermion sector. This explicit breaking terms are assumed to be the only ones

which allow the elementary and composite sector to communicate, as depicted in fig. 3.3, and

they generate, at one loop, a potential for the NGBs such that the Higgs takes a non-vanishing

vev and breaks the EW symmetry.

In order to avoid big tree-level corrections to the ρ parameter, eq. (1.18), the unbroken

subgroup H should contain the custodial symmetry of the SM SU(2)L × SU(2)R ∼ SO(4).

Moreover, since we aim to construct a model in which the complete Higgs doublet arises as

NGB of the spontaneous symmetry breaking G → H, the G/H coset should contain at least

four broken generators. The minimal symmetry breaking pattern satisfying these requirements

is SO(5) → SO(4), which is at the basis of the minimal composite Higgs model [41, 43]. From

this symmetry breaking four NGBs arise, which transform in the fundamental of SO(4), i.e. as a

bidoublet SU(2)L×SU(2)R, and can be identified with the components of the Higgs doublet. By

enlarging the symmetry groups more NGBs arise. The next-to-minimal case is SO(6)→ SO(5),

where the NGBs are the Higgs doublet and a real singlet, which in some cases can be a stable

particle and thus a potential dark matter candidate. In this thesis we concentrate on these two

scenarios, a description of other non-minimal cases can be found in refs. [132,133]

Let us now study in more detail the minimal scenario, postponing the discussion of the

next-to-minimal model to chapter 4. We assume that the strong sector is invariant under the

3The strongly interacting sector should also be gauge-invariant under the SU(3)c symmetry associated to color,

but this is irrelevant for our considerations and will not be considered in what follows.
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group G = SO(5) × U(1)X , spontaneously broken to the subgroup H = SO(4) × U(1)X ∼
SU(2)L ⊗ SU(2)R ⊗ U(1)X

4 at some scale f > v. The SM EW gauge symmetry is identified as

the subgroup GEW = SU(2)L ⊗ U(1)Y ⊂ SU(2)L ⊗ SU(2)R ⊗ U(1)X , where the hypercharge is

defined as

Y = T 3R +X . (3.15)

3.3.1 Basic construction and σ-model

For energies lower than the strong coupling scale Λ ∼ 4πf , the dynamics of the NGBs can

be described by an effective chiral Lagrangian. Callan, Coleman, Wess and Zumino [134, 135]

(CCWZ) showed how to construct such Lagrangians for a generic coset, the main results are

reviewed in appendix B.

The four NGBs hâ which arise from the SO(5)→ SO(4) symmetry breaking pattern can be

described by means of the matrix

U = exp

(
i

√
2

f
hâT â

)
, (3.16)

which transforms under SO(5) as U → gUk†(g, hâ(x)), where k is a SO(4) transformation de-

pending on g and on the space-time position through the NGB dependence. The SO(5) generators

TA are normalized so that in the fundamental representation Tr[TATB] = δAB, where A = a, â,

and a, â denote the unbroken and broken generators (a = 1, . . . , 6, â = 1, . . . , 4) respectively.

Considering SU(2)L × SU(2)R ∼ SO(4), the unbroken generators can be further classified in

those corresponding to the left and right subgroups: a = (aL, aR), with aL = a, aR = a+ 3 and

a = 1, 2, 3. In the unitary gauge the NGBs can be taken in the form hâ = (0, 0, h, 0) and the

matrix U reduces to

U =




1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 cos hf − sin h
f

0 0 0 sin h
f cos hf



. (3.17)

The gauged CCWZ structures dµ and Eµ introduced in appendix B are given by

iU †DµU = dâµT
â + EaµT

a , (3.18)

where Dµ = ∂µ − i(g0W
a
µT

aL + g′0BµT
3R). Expanding in the number of fields, their first terms

4The U(1)X factor is only needed to correctly reproduce the SM fermion hypercharges and does not play any

role in the σ-model description.
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are 


dâµ = g0A

â
µ −

√
2
f (Dµh)â + . . .

Eaµ = g0A
a
µ + i

f2 (h
↔
Dµ h)a + . . .

, (3.19)

where the SM gauging corresponds to

Aâ = 0, AaLµ = W a
µ , A3R

µ =
g′0
g0
Bµ . (3.20)

At the leading order in the chiral expansion, the Lagrangian describing the dynamics of the EW

gauge fields and the NGBs is

LMHCM = −1

4
W aL
µνW

aLµν − 1

4
BµνB

µν +
f2

4
Tr (dµd

µ) . (3.21)

The explicit breaking of SO(5) due to the fact that only a subgroup of SO(5) is gauged by

the EW gauge fields and the Yukawa terms for the fermions generates a potential for the Higgs

through loop corrections. This potential features a non-vanishing vacuum expectation value

for h which triggers the spontaneous breaking of the EW symmetry and gives mass to the SM

fermions and gauge fields. With a little algebra, the last term in eq. (3.21) can be translated in

the formalism of eq. (3.5), obtaining

LHiggs =
1

2
(∂µh)2 +

f2

4
Tr
[
(DµΣ)†DµΣ

]
sin2 h

f
. (3.22)

Expanding this Lagrangian in the physical Higgs h→ 〈h〉+ h and defining

ξ ≡ v2

f2
= s2

h ≡ sin2 〈h〉
f

, (3.23)

we get the expression for the SM W , Z boson masses,

mW =
g0f

2
sin
〈h〉
f

=
g0v

2
, mZ =

mW

cos θW

(
where tan θW =

g′0
g0

)
, (3.24)

and for the a, b coefficients,

a =
√

1− ξ, b = 1− 2ξ . (3.25)

3.3.2 Partial compositeness and fermion embedding

In order to give mass to the SM fermions we adopt the partial compositeness scenario: the

SM fields mix linearly with some fermonic operators of the composite dynamics with same

quantum numbers. As described in sec. 3.2, we assume that such mixing terms arise from

some flavor dynamics at a scale ΛUV much higher than the spontaneous symmetry breaking

scale f . It is thus reasonable to assume that the fermonic composite operators Of belong to

some linear representation rG of the global symmetry group G, therefore it transforms linearly

under g ∈ G: Of → gOf . Since the SM fields are not in complete representations of G, such
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mixings will necessarily break explicitly the global symmetry. In order to write the mixing terms

it is however convenient to embed the SM fields in the same representation of Of . At lower

energies, where the symmetry is spontaneously broken, we render explicit the NGB dependence

of these terms as Of = U(x) Ψ(x) (see app. B), where U(x) is the NGB matrix (3.17) and Ψ(x)

is a composite fermion beloning to some irreducible representation rH of the unbroken subgroup

H. Any representation rH can be “dressed" with the matrices U to get representations of G. The
choice of the representation rG , in which to embed the SM fields, and the representation of the

composite fermions rH is a source of model dependence, in particular the choice of the embedding

of the elementary fields fixes the functional dependence of the effective Yukawa couplings of the

Higgs with the SM fermions, hence the functional dependence in the effective potential and the

deviation in the Higgs couplings.

We will not perform a systematic study of all possible rG ’s here, but focus on the simplest

case where rG is the fundamental, 5, of SO(5). The SM fields are then conveniently written in

terms of spurion five-component fermions ξL and ξR, formally transforming in the fundamental

of SO(5). The embedding of the SM quark doublets has to be different for the mixing terms

responsible for the up-type or down-type quark masses:

ξuL =
1√
2




bL

−ibL
tL

itL

0




2/3

, ξuR =




0

0

0

0

tR




2/3

, ξdL =
1√
2




tL

itL

−bL
ibL

0




−1/3

, ξdR =




0

0

0

0

bR




−1/3

,

(3.26)

where the subscripts indicate the U(1)X charge needed to reproduce the correct hypercharge,

eq. (3.15). With the above choice of fermion quantum numbers for the up-type embedding, bL
mixes with the bi-doublet component of the fermion resonance with T3R = T3L and potentially

large contributions to δgb vanish [136].5

In order to obtain the possible structures of the low energy effective Lagrangian, when all the

resonances have been integrated out, it is possible to write all the G-invariants with the above

spurions, the NGB matrix U and the projectors on the SO(4) irreducible representations, PQ =

diag(1, 1, 1, 1, 0) (fundamental), PS = diag(0, 0, 0, 0, 1) (singlet). Recalling the transformation

rule of U , U → gUk†(g, hâ(x)), where g ∈ SO(5) and k ∈ SO(4), we can write the following

5Such sizable corrections are instead present in the, even more minimal, case in which the elementary fermions

are embedded in the spinorial representation 4 of SO(5). For this reason we do not consider this case.
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SO(5)×U(1)X invariants:

ξ̄uLUPQU
†γµξuL = b̄Lγ

µbL +

(
1− 1

2
s2
h

)
t̄Lγ

µtL ,

ξ̄uLUPSU
†γµξuL =

1

2
s2
ht̄Lγ

µtL ,

ξ̄dLUPQU
†γµξdL =

(
1− 1

2
s2
h

)
b̄Lγ

µbL + t̄Lγ
µtL ,

ξ̄dLUPSU
†γµξdL =

1

2
s2
hb̄Lγ

µbL ,

ξ̄uRUPQU
†γµξuR = s2

ht̄Rγ
µtR ,

ξ̄uRUPSU
†γµξuR = (1− s2

h)t̄Rγ
µtR ,

ξ̄dRUPQU
†γµξdR = s2

hb̄Rγ
µbR ,

ξ̄dRUPSU
†γµξdR = (1− s2

h)b̄Rγ
µbR ,

(3.27)

ξ̄uLUPQU
†ξuR =

i√
2
chsht̄LtR ,

ξ̄uLUPSU
†ξuR = − i√

2
chsht̄LtR ,

ξ̄dLUPQU
†ξdR =

i√
2
chshb̄LbR ,

ξ̄dLUPSU
†ξdR = − i√

2
chshb̄LbR ,

(3.28)

where we evaluated U in the unitary gauge and omitted the trivial diagonal ones such as ξ̄XγµξX .

In general, all these operators are generated when the heavy fermions are integrated out, pro-

viding an effective Lagrangian for the SM fermions with a specific functional dependence on the

Higgs field dictated by eqs. (3.27,3.28) (see eqs. (3.88,3.90)). Each of the above operators will be

generated by the relevant mixing terms related to the specific spurion field, in particular the op-

erators involving the ξuX spurions will be generated by the top mixing while the ones involving ξdX
will be generated by the much smaller bottom quark mixing. The operators in eq. (3.27) provide

a wave function normalization factor while those in eq. (3.28) generate the Yukawa interactions

and – when the Higgs takes a vev – a mass term for the SM fermions. In fact, from eq. (3.28)

we can obtain the correction of the Higgs couplings to fermions by expanding the Higgs field

around its vev h→ f arcsin(v/f) + h:6

chsh =
√
ξ(1− ξ)

(
1 +

1− 2ξ√
1− ξ

h

v
− 2ξ

h2

v2
+O(h3)

)
. (3.29)

The first, constant, term in eq. (3.29) provides the mass for the SM fermion, while the second

one is the single Higgs coupling to fermions. Comparing with eq. (3.6) we get

c =
1− 2ξ√

1− ξ . (3.30)

6We neglect here small wave function normalization corrections.
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We see that, differently from the SM, the pNGB nature of the Higgs implies the presence of

interactions with more than one Higgs external leg, with a coupling suppressed by ξ.

3.4 Composite resonances

Generically, in strongly coupled theories conserved currents Jαµ are expected to excite from

the vacuum composite spin-1 resonances. This indeed happens in QCD, where the current

corresponding to the unbroken SU(2)I isospin symmetry excites the ρµ meson while the broken

generators of the SU(2)L×SU(2)R/SU(2)I coset excite the axial vector aµ. Therefore, we expect

that also composite Higgs models present spin-1 composite resonances corresponding to the

unbroken and broken generators of the G → H symmetry breaking pattern. These states are also

important in restoring unitarity in the elastic NGB scattering before the cutoff scale Λ ∼ 4πf .

Moreover, as we discussed before, the partial compositeness mechanism predicts the presence of

fermion resonances mixing linearly with the SM fermions.

According to the CCWZ formalism, the most general Lagrangian invariant under a non-

linearly realized group G, spontaneously broken to a linearly realized subgroup H, should be

written using the structures dµ and the covariant derivative ∇µ = ∂µ − iEµ introduced before,

that act on matter fields in representations of H. Therefore, we expect the Lagrangian of the

composite resonances to be just H-invariant.
In this section we present how to construct generic Lagrangians for these composite resonances

and show how they mix with the SM gauge bosons and fermions.

3.4.1 Spin-1 resonances

We assume that below the cut-off of the theory at Λ ∼ 4πf , the theory contains spin-1 resonances

parametrized by a mass mρ ' gρf and a coupling 1 < gρ < 4π. The coupling gρ controls both

the interactions among the resonances and the resonance-NGB interactions.

There are several ways to add vector resonances in a chiral Lagrangian. They have been

shown to be all equivalent, once field redefinitions and the addition of local counterterms is taken

into account [137]. Given our assumptions, the most useful set-up is a generalization of the so-

called “hidden local symmetry" approach, where the resonances ρLµ and ρRµ , in representations

(3,1)⊕ (1,3) of SU(2)L × SU(2)R respectively, transform non-linearly, while the resonances aµ,

forming (2,2) representations of SU(2)L × SU(2)R, transform homogeneously. With an abuse

of language, for simplicity we will denote in the following the ρL,Rµ ’s and the aµ as “vector" and

“axial" resonances, respectively, although not all ρL,Rµ and not all aµ actually transform under
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parity as vector and axial gauge fields. Under a transformation g ∈ SO(5), we have




ρLµ = ρaLµ T aL , ρLµ → hρLµh
† + i

gρL
(h∂µh

†)L,

ρRµ = ρaRµ T aR , ρRµ → hρRµh
† + i

gρR
(h∂µh

†)R,

aµ = aâµT
â , aµ → haµh

†,

(3.31)

where h = h(g, hâ). At leading order in derivatives, the most general Lagrangian allowed by

eq.(3.31) for NρL multiplets in the (3,1), NρR in the (1,3) and Na axial vectors in the (2,2) is

Lg = LvL + LvR + La, (3.32)

where

LvL =

NρL∑

i=1

(
− 1

4
Tr
(
ρiL,µνρ

i,µν
L

)
+
f2
ρiL

2
Tr
(
gρiL

ρiL,µ − ELµ
)2

+
∑

j<i

f2
mixij

2
Tr
(
gρiL

ρiL,µ − gρjLρ
j
L,µ

)2
)
,

LvR = LvL , with L→ R,

La =

Na∑

i=1

(
− 1

4
Tr
(
aiµνa

iµν
)

+
f2
ai

2∆2
i

Tr
(
gaia

i
µ −∆idµ

)2 )
. (3.33)

In eq.(3.33), EL,Rµ are the SU(2)L,R components of Eµ. The field strengths and covariant deriva-

tives are defined as

ρiL,µν = ∂µρ
i
L,ν − ∂νρiL,µ − igρiL [ρiL,µ, ρ

i
L,ν ], aµν = ∇µaν −∇νaµ, ∇ = ∂ − iE. (3.34)

Note that for the axial vectors there is no need to add mass mixing terms, since one can always

diagonalize the quadratic terms and bring the Lagrangian in the form above. It is useful to define

the mass parameters

m2
ρiL

= f2
ρiL
g2
ρiL
, m2

ρiR
= f2

ρiR
g2
ρiR
, m2

ai =
f2
aig

2
ai

∆2
i

, (3.35)

keeping of course in mind that the actual masses for the ρ’s in presence of mixing have to be

obtained via a diagonalization of the quadratic terms. The mass terms in eq.(3.33) induce mixing

terms between the vector resonances ρiL,µ (ρiR,µ) and the SM gauge fields W (B), as expected by

the partial compositeness scenario [118], generalized to more resonances. ForNρL = NρR = 1, the

actual mass eigenstates before EWSB are found by simple SO(2) rotations: WaL →WaL cos θg+

ρaL sin θg, B → B cos θ′g′ + ρ3R sin θg′ (and similar transformations for ρaL and ρ3R), where

tan θg = g0/gρL , tan θg′ = g′0/gρR . Alternatively, for sufficiently heavy resonances, one can keep

the originalW and B fields and integrate out the resonances. The two descriptions are obviously

equivalent, but depending on the problem at hand, one can be more convenient than the other.

We assume that the coefficients of higher dimensional operators are dictated by NDA, where

gρ is treated as a “weak" coupling. This should in principle be contrasted to the recent partial UV
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completion (PUVC) hypothesis, introduced in [105], according to which the couplings of higher

dimensional operators should not exceed the σ model coupling, g∗ = Λ/f , at the cutoff scale

Λ. In particular, the NDA hypothesis puts more severe bounds on the values of the coefficients

of the higher dimensional operators. For instance, let us consider as an illustration the O(p4)

operators Q1 and Q2 (in the notation of [105]), Q1 = Tr (ρµνi[dµ, dν ]), Q2 = Tr (ρµνf+
µν). The

NDA and PUVC estimates of their couplings α1 and α2 are

α
(NDA)
1 ' gρ

16π2
, α

(PUV C)
1 ≤ 1

4π
,

α
(NDA)
2 ' ggρ

16π2
, α

(PUV C)
2 ≤ 1 .

(3.36)

We see that the two estimates are consistent with each other, but the PUVC hypothesis allows

for larger coefficients.

Demanding a partial unitarization of A(ππ → ππ) by the vector resonances allows to select a

definite range in the values of fρ and fa. For example, for one vector resonance ρµ in the adjoint

of SO(4), assuming left-right (LR) Z2 symmetry, from the Lagrangian in eq.(3.33) and eq.(3.21)

one can obtain its contribution to the ππ scattering amplitude [105]. Neglecting the finite width

of the resonance, one has

A(πaπb → πcπd) = A(s, t, u)δabδcd +A(t, s, u)δacδbd +A(u, t, s)δadδbc,

A(s, t, u) =
s

f2

(
1− 3

2
a2
ρ

)
−
a2
ρ

2

m2
ρ

f2

[
s− u
t−m2

ρ

+
s− t
u−m2

ρ

]
,

(3.37)

where aρ ≡ fρ/f and s, t, u are the usual Mandelstam variables. From this formula one can

check that ρµ unitarizes the scattering for aρ =
√

2/3. Assuming PUVC one obtains the bounds

aρ ∼ 1 and fa/f ≡ aa . 1, which we will typically assume in the following.

3.4.2 Spin-1/2 resonances

Let us now describe the composite fermion resonances responsible for providing a mass to the

SM fermions. In the following we focus only on the top quark because it has the highest amount

of mixing with the composite fermions, since its mass is – by far – the biggest among the SM

fermions. As described in sec. 3.3.2, we need to embed the composite fermions in irreducible

representations, rH of H. For simplicity we consider only the singlet and the fundamental

4 ∼ (2,2). Let us consider NS and NQ singlets and bi-doublets spin 1/2 resonances Si and Qj
(i = 1, . . . , NS , j = 1, . . . , NQ), with U(1)X charge qX = +2/3. The two doublets contained in

each Qi have hypercharge 1/6 and 7/6 respectively, the first one therefore is the partner of the

top doublet while the latter is an exotic fermion doublet which contains a fermion with electric

charge Q = 5/3. From these fields, we can construct fermions transforming in the fundamental
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of G as follows:
4∑

a=1

UAaQa,j , UA5Si , A = 1, . . . , 5 , (3.38)

where we have explicitly reported the SO(5) group indices. Each of the above two operators

(3.38) can couple to the SM fermion fields, included in the spurions ξL,R of eq. (3.26)7.

As described in appendix B, the Lagrangian for non-linearly realized symmetries should

include all local H-invariant terms. The leading order Lagrangian for the SM and composite

fermions is easily constructed:

Lf,0 = q̄LiD/qL + t̄RiD/tR +

NS∑

i=1

S̄i(i /∇−miS)Si +

NQ∑

j=1

Q̄j(i /∇−miQ)Qj+

NS∑

i=1

( εitS√
2
ξ̄RPLUSi + εiqS ξ̄LPRUSi

)
+

NQ∑

j=1

(εjtQ√
2
ξ̄RPLUQi + εjqQξ̄LPRUQi

)
+ h.c.,

(3.39)

where a
√

2 factor in the definition of εi,jtS,tQ has been introduced for later convenience and

∇µ = ∂µ − iEµ − iqXg′0Bµ . (3.40)

There are in general 3NQ + 3NS complex phases appearing in eq.(3.39), 2NQ + 2NS + 1 of

which can be reabsorbed by appropriate phase redefinitions of the fermion fields, for a total of

NQ +NS − 1 physical phases. Therefore, without any loss of generality, we can take the vector

masses miS and mjQ to be real and positive. Along the lines of [119], it will be useful to rewrite

the last row in (3.39) as
NS∑

i=1

(
t̄RE

i
tSPLUSi + q̄LE

i
qSPRUSi

)
+

NQ∑

j=1

(
t̄RE

j
tQPLUQi + q̄LE

j
qQPRUQi

)
+ h.c. (3.41)

where the E’s are spurion mixing terms, transforming as follows under the enlarged group

SU(2)0
L ×U(1)0

R ×U(1)0
X × SO(5)×U(1)X , eventually broken to GSM by the spurion VEV’s:

EitS , E
j
tQ ∼ (1, 0, 2/3, 5̄,−2/3), EiqS , E

j
qQ ∼ (2,−1/2, 2/3, 5̄,−2/3) . (3.42)

Couplings between spin 1/2 and spin 1 resonances and additional couplings to the σ-model

fields dµ and Eµ are easily constructed by recalling that gρρµ − Eµ, aµ and dµ, under SO(5),

homogeneously transform according to local SO(4) transformations. The most general leading

order couplings are the following (assuming LR symmetry):

Lf,int =
∑

η=L,R

(
kV,ηijk Q̄jγ

µ(gρiρ
i
µ − Eµ)PηQk + kmix

ijklQ̄iγ
µ(gρkρ

k
µ − gρlρlµ)PηQj

+ kA,ηikj S̄iγ
µgaka

k
µPηQj +

∑

i,j

kd,ηij S̄iγ
µdµPηQj + h.c.

)
,

(3.43)

7We drop the u, d index since, unless explicitly stated, we assume always the embeddings for the up-type

quarks.
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where Pη are chiral projectors. The last term in eq. (3.43), in particular, can play an important

role in the phenomenology of single production processes of top partners [138, 139] and in the

fermion contributions to EW precision tests [86]. However, since they do not influence the scalar

potential at one-loop, we neglect the terms in eq. (3.43) in the following.

The total fermion Lagrangian is obtained by summing eq. (3.39) with eq. (3.43):

Lf = Lf,0 + Lf,int . (3.44)

The fermion Lagrangian (3.44) is easily generalized to include the couplings to other SM fermions.

For instance, the bottom quark sector can be obtained by adding the bR field and additional

fermion singlet and bi-doublet resonances S(d)
i and Q(d)

j , with qX = −1/3. The latter mix to bR
and bL by means of operators of the form b̄L/RUS

(d)
i,R/L and b̄L/RUQ

(d)
j,R/L. These mixing affect

the top sector, but they are safely negligible, given the smallness of the bottom mass. They

also induce a non vanishing tree-level δgb, which is however usually sub-dominant with respect

to one-loop corrections coming from fermion mixing in the charge 2/3 (top) sector. It is then

consistent to consider the Lagrangian (3.44), neglecting altogether the fermion resonances S(d)
i

and Q(d)
j .

It is useful to discuss in some more detail the simple case NS = NQ = 1. For simplicity let

us take real mixing terms εt,q/Q,S . We see from eq. (3.39) that before EWSB the LH top mixes

with Q through the parameter εqQ and the RH top mixes with S through εtS , The degree of

compositeness of the top quark can be measured by the angles θL,R [118] defined as:

tan θL =
|εqQ|
mQ

, tan θR =
|εtS |√
2mS

. (3.45)

The larger tan θL/R is, the more tL/R is composite. For sh � 1, the top mass is given by

Mtop '
sin θL sin θR√

2

∣∣∣ εqS
εqQ

mQ −
εtQ
εtS

mS

∣∣∣sh . (3.46)

The physical masses of the fermion resonances, before EWSB, are the following:

M0 =
mS

cos θR
, M1/6 =

mQ

cos θL
, M7/6 = mQ , (3.47)

where the subscripts 0, 1/6 and 7/6 denote the hypercharges of the singlet and of the two SU(2)L

doublets forming the bi-doublet Q.

The case in which tR is fully composite can be studied by assuming that tR is a chiral massless

fermion bound state coming from the compositTevatrone sector and directly identifying it as the

RH component of the singlet fermion resonance SR in eq.(3.39). In this way, tR and SL, and

hence the parameters mS , εtS and εtQ, should be removed from eq.(3.39). We will come back to

this particularly simple model in section 3.8.

The total Lagrangian of the model is finally given by

LTot = Lσg + Lg + Lf . (3.48)
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3.5 Phenomenology of composite Higgs models

As we saw in the previous sections, composite Higgs models offer a rich phenomenology at

colliders. The pNGB nature of the Higgs at a scale f not too far from the EW scale implies a

definite pattern of deviations in the Higgs couplings to SM gauge bosons and fermions, which is

largely independent on the details of the spectrum of the model.

For what regards searches of new particles, a rich spectrum of new states is predicted. On

the one hand the presence of a strongly coupled sector at the few-TeV scale, the necessity of

regularizing the SM gauge contribution to the Higgs potential and of curing the UV behavior

of the NGB scattering amplitudes strongly suggests the presence of spin-1 resonances charged

under the EW gauge group and mixing with the elementary SM gauge bosons at a scale of a few

TeV. On the other hand, the partial compositeness mechanism predicts the presence of fermion

top partners which, as we will show in section 3.7, are expected to be very near the ∼ 1TeV mass

range.

Both the deviations in the Higgs couplings and the presence of these resonances produce

also deviations in electroweak pseudo-observables such as the S and T oblique parameters and

deviations in the Z boson couplings to the physical b quark. All these observables have been

strongly constrained by LEP and impose strong indirect bounds on the new physics spectrum,

albeit these constraints are more model-dependent.

In this section we discuss these phenomenological aspects of composite Higgs models in more

detail, reviewing the constraints they offer on the models.

3.5.1 Higgs couplings deviations

As we saw, composite Higgs models predict O(ξ) deviations of the tree level Higgs couplings to

gauge bosons and fermions w.r.t. their SM values, which implies deviations in the Higgs decay

rates. In particular, in both minimal and next-to-minimal composite Higgs models with SM

fermions embedded in the fundamental of G one has (see eqs. (3.25,3.30) for SO(5)/SO(4) and

table F.1 for the SO(6)/SO(5) case)

ΓV V

ΓSMV V
= |a|2 = 1− ξ ,

Γff̄

ΓSM
ff̄

= |c|2 =
(1− 2ξ)2

1− ξ ' 1− 3 ξ +O(ξ2) , (3.49)

with V = W,Z. It should be noted here that the ξ-dependence in the modified coupling of

the Higgs with EW gauge bosons is model-independent,8 whereas the coupling with fermions

is modified according to the representation of G in which the SM fermions are embedded, as

8In general the couplings depend on the chosen parametrization of the coset, only when computing physical

observables this parametrization-dependence is removed. See appendix F for a detailed discussion of this issue in

the context of the next-to-minimal SO(6)/SO(5) model.
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discussed in section 3.4.2. As in the previous construction of the models, we assume here that

SM fermions are embedded in the fundamental 5 (or a symmetric 10) of SO(5).9 Loop-induced

couplings – i.e. Higgs to gluons, photons and Zγ – are also modified as an indirect consequence

of the deviations in the tree-level Higgs couplings (see e.g. [141]):

Γgg
ΓSMgg

' 0.678 |1.28ct − (0.07− 0.1i)cb|2 =
(1− 2ξ)2

1− ξ ' 1− 3 ξ +O(ξ2) , (3.50)

Γγγ
ΓSMγγ

' 1.73 |0.97a− 0.21ct|2 = 1.73

(
0.97

√
1− ξ − 0.21

1− 2ξ√
1− ξ

)2

' 1− 0.45 ξ +O(ξ2) ,

ΓZγ

ΓSMZγ
' 0.51 |1.49a− 0.09ct|2 = 0.51

(
1.49

√
1− ξ − 0.09

1− 2ξ√
1− ξ

)2

' 1− 0.87 ξ +O(ξ2) ,

where we specified the SM fermion included in the loop by the suffix t, b. For instance the

Higgs coupling to gluons, whose value sets the Higgs production cross-section via gluon fusion,

is dominated by the top triangle loop while the Higgs decays to γγ and to γZ is given by an

interference of the top and the W contributions.

The proprieties of the Higgs boson, and in particular its couplings to each of the SM gauge

bosons and fermions, are currently under investigation at the LHC. The couplings are measured

by the ATLAS [142] and CMS [143] experiments considering the channels h → γγ, h → ZZ∗

(with ZZ∗ → 4l, 2l2ν, 2l2q, 2l2τ), h→ WW ∗ (with WW ∗ → lνlν, lνqq), h→ bb̄ and h→ τ+τ−

(with both leptonic and hadronic τ -decays). Since we aim to use this analysis also for the

SO(6)/SO(5) model presented in chapter 4, in which the extra singlet NGB is a stable dark

matter candidate, we study here also the possibility of a non-zero invisible decay branching ratio,

BRinv, of the Higgs boson. This is strongly constrained by the fact that the rates associated to

the channels listed above are compatible with the predictions of the SM [144,145]. In our analysis

we perform a combined fit of all the data related to the Higgs searches under investigation at the

LHC and the Tevatron taking into account both the modified Higgs couplings in eq. (3.49) and

the invisible decay width. We perform a χ-square fit following ref. [141] (see also refs. [146–151]

for similar analysis) and we present our results in figure 3.4. In the upper plot of figure 3.4 we

show the result of a two-dimensional fit considering as free parameters both BRinv and ξ [2].

Notice that larger values of BRinv are allowed only if combined with small values of ξ. The

reason is that a high value of ξ suppresses the Higgs production cross-section via gluon fusion,

as immediately follows from the modified coupling ghgg previously discussed. This suppression,

in turn, gives a tighter bound on the invisible branching fraction since, intuitively, less Higgses

than expected are produced [141]. In the lower panel of figure 3.4 we restrict our analysis to a

one-dimensional fit obtained fixing either BRinv or ξ to some given value. In the lower-left plot

9See ref. [140] for a special case, based on the non-compact global symmetry SO(4, 1), in which ghV V =

gSM
hV V

√
1 + ξ.
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Figure 3.4: Results of the χ-square fit obtained considering all the Higgs searches under in-

vestigation at the LHC and the Tevatron (see ref. [141] for details).In the upper row we show

the 1σ, 2σ and 3σ confidence regions obtained considering a two-dimensional fit of the data as

a function of the invisible branching ratio and the parameter ξ. In the lower row we show the

∆χ2 = χ2−χ2
min distribution together with the corresponding 1σ, 2σ and 3σ confidence contours

as a function of ξ (left panel) and the invisible branching ratio for a fixed value of ξ (right panel).

The χ2
min is 51 in the lower left plot, and 52 (51) for ξ = 0.1 (0.05) in the lower right plot.
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we fix BRinv = 0, which is the case of the minimal composite Higgs model presented in this

chapter, and find that a value of ξ > 0.226 is excluded at the 3σ level. In the lower-right plot,

instead, we consider as free parameter only the invisible branching ratio, while we fix ξ to two

benchmark values ξ = 0.1 and ξ = 0.05. For ξ = 0.1 (ξ = 0.05) we find that BRinv > 0.24

(BRinv > 0.275) is excluded at 3σ level.

3.5.2 Direct searches of composite resonances

Let us now focus on constraints from the LHC on the composite resonances present in our

models, discussed in sections 3.4.1, 3.4.2. It is already well established that, in the context

of composite pseudo-Nambu Goldstone Higgs models with partial compositeness, the measured

values of the Higgs and top masses require the presence of top-partners with a mass below the

TeV scale [1, 44–46]. The parameter scans we performed for our models (which are presented in

the following sections, as well as for those in appendix D and for the next-to-minimal composite

Higgs models discussed in chapter 4) confirm this fact, as can be seen from figures 3.8, 3.7, D.1,

D.2, D.4, 4.3, 4.4. Moreover, in some interesting models, the spin-1 resonances are expected to

be near (or even below) the ∼ 2 TeV scale, see eqs. (3.104), (4.32) and figures D.1(b,d), D.2(a).

The present experimental bounds on spin-1 resonances and, more importantly, on spin-1/2

top partners are already able to rule out a relevant part of the parameter space of our models.

Vector resonances

Ref. [152] recently studied the bounds from direct searches at the LHC of spin-1 resonances

introducing a simplified model with a triplet of SU(2)L and presenting the bound in the (gρ,mρ)

plane. Our model presents a more complicated spectrum of vector resonances: the adjoint of

SO(4) (ρaµ), with masses of the order mρ, contains a (3,1) ⊕ (1,3) of SU(2)L ⊗ SU(2)R and

the fundamental of SO(4) (aâµ), with mass ma transforms as a bidoublet (2,2). In order to

obtain experimental bounds on these states it would be necessary to perform a complete collider

study of the model, including also possible chain decays involving composite fermions through

the interactions of eq. (3.43), see ref. [153] for a recent phenomenological analysis of this issue.

Since this is well beyond the purpose of this thesis we take at face value, as an approximate

reference value of the experimental bound on these states, the result of ref. [152]. Fixing the two

benchmark values of ξ = 0.1, 0.05 and taking for simplicity fρ = f , so that mρ ' gρf = gρ
v√
ξ
,

we get that the allowed region is approximately

mρ & 1.8 (2.2) TeV for ξ = 0.1 (0.05) . (3.51)

This is comparable with the bound one can extract from the tree-level contribution of the spin-1

resonances to the Ŝ parameter [59, 60] in eq. (3.85), assuming no correlation with other contri-
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butions. In fact, from the constraint Ŝ . 2 × 10−3 [83] one obtains a bound of mρ & 1.8 (2.4)

TeV for fρ = f/
√

2 (= 2f).

Top partners

Both ATLAS and CMS collaborations are providing bounds on pair produced top partners,

studying different decay modes. The relevant searches for our models are those for colored vector-

like fermions, X, with electric charge Q = 5/3 decaying in W+t with BR(X → W+t) = 100%

[154, 155] and for vector-like top partners T ′ with Q = 2/3 decaying into bW+, tZ and th

[156–158]. The Q = 5/3 fermion decays with unity probability to tW+ when it is the lightest

and masses MX < 800 GeV are excluded at 95% C.L. by CMS [154]. The branching ratios of

the T ′ in the three channels listed before are instead model-dependent and the 95% C.L. bound

given in ref. [156] varies from ∼ 680 GeV up to ∼ 780 GeV. Applying the Equivalence Theorem

gives a reference value, for the singlet branching ratios, of BR(T ′ → W+b) ' 2BR(T ′ → Zt) '
2BR(T ′ → ht) ' 50% [138], in which case the bound is ∼ 700 GeV. These analysis are always

performed under the assumption that only one new state is present at low energy while the

others are much heavier. This assumption is very strong and seldom realized in concrete models,

including our case. For these reasons a complete analysis of the experimental results in order

to adapt them to the realistic case would be needed, but is beyond the purpose of the present

thesis.

In models which include more than one copy of resonances in the bidoublet or singlet rep-

resentation of SO(4), we assume that the first copy is lighter than the others. This situation is

often realized in realistic points in the parameter space. We then classify the parameter space

of our models in three broad regions depending on the mass of the doublet which includes the

exotic Q = 5/3 fermion, M7/6, and the mass of the lightest SO(4) singlet, MS1 . The first region

is defined asMS1 �M7/6 (light singlet) in which case we expect that the bound on the singlet T ′

to be approximately valid since all other states are heavier. In the opposite case, M7/6 � MS1 ,

the Y = 7/6 doublet is the lightest. Since the experimental bound on this state is the strongest,

we still expect that it will put the strongest constraint on this region. Even though the precise

value of the bound may differ from the one in the simplified model with only one resonance, for

our purposes we take that as a reference value. The same argument applies also in the region

where M7/6 ∼MS1 . Therefore, as a first approximation we adopt the following constraints:

M7/6 & 800 GeV , MS1 & 700 GeV . (3.52)

Comparing these bounds with the spectrum obtained by our parameter scans, reported in figures

3.7, 3.8, D.1, D.2, D.4, 4.3, 4.4, we see that the models with lower tuning, ξ = 0.1, are already

on the verge to be excluded by direct searches and also for ξ = 0.05 the bounds cut a sizable

part of the parameter space of the models.
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3.5.3 Electroweak precision tests

Electroweak precision tests (EWPT) put strong indirect constrains on new physics beyond the

SM. In the context of composite Higgs models, the most relevant constraints come from the

oblique Ŝ and T̂ parameters, bounded by LEP1 at the per-mil level (see sec. 2.3.1 for a presenta-

tion of the EW oblique parameters). Constraints coming from the W and Y parameters [60] can

be neglected in composite Higgs models because they are parametrically suppressed with respect

to Ŝ by a factor (g/gρ)
2 [58], where by gρ here we indicate a generic coupling from the strong

sector. A non-universal important bound comes from δgb, the deviation of the b̄LZbL coupling

from its SM value. Imposing a custodial symmetry and a proper mixing of bL with the fermion

resonances allow to suppress the tree-level values of T̂ and δgb [136]. More precisely, in the

(oblique) basis where the contributions to δgb coming from vector resonance mixing (universal

for any SM fermion) vanish, T̂ exactly vanishes.

As we will show in the following, however, in our effective setup the contributions to these

observables are not predictable with a sufficient degree of accuracy. Moreover, estimates suggest

that the indirect bounds obtainable from EWPT are now of the same order as those which can

be derived from Higgs couplings and from direct searches of heavy resonances.

Ŝ and T̂ parameters

Let us now analyze in some detail the different contributions of this class of models to the

electroweak Ŝ and T̂ parameters. In general it is possible to disentangle an IR, calculable part,

from the uncalculable part and use NDA and a spurionic analysis to estimate the size of the

latter. More details on how to make such estimates can be found, e.g., in refs. [86, 119].

The IR contribution to the oblique EW oblique parameters arises from the modified couplings

of the Higgs with the SM gauge bosons, due to the non-linearity of the pNGB dynamics [73].

This modification depends only on the symmetry breaking pattern. This can be computed by

introducing running Ŝ and T̂ parameters from the compositeness scale Λ, where the effect is

generated, down to the Z boson mass scale, where the parameters are measured. In this way, for

Λ � µ ' mZ , one obtains the “leading log” deviations to Ŝ and T̂ due to a pNGB composite

Higgs:

T̂H(mZ) = − g′2

16π2

3ξ

2
log

Λ

mZ
, ŜH(mZ) =

g′2

16π2

ξ

6
log

Λ

mZ
. (3.53)

In the language of effective operators introduced in chapter 2, this corresponds to the RG con-

tribution of the operator OH (see table 2.1), generated at the scale Λ by the pNGB nature of

the Higgs with a coefficient 1/f2 (i.e. ĉH = ξ) [58], to the Ŝ and T̂ parameters, as reported

in table 2.6 and figure 2.2(a). This IR contribution is also represented in fig. 3.5 (taken from

ref. [86]) for different values of ξ.
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Figure 2: Constraints on the oblique EW parameters bS and bT [43]. The gray ellipses correspond
to the 68%, 95% and 99% confidence level contours for mh = 126 GeV and mt = 173 GeV.
The red lines show the contributions which arise in composite Higgs models as explained in the
main text. The IR contribution corresponds to the corrections due to non-linear Higgs dynamics,
approximately given in eqs. (3.2) and (3.7), and is obtained fixing m⇤ ⇠ 3 TeV. The UV contribution
is due to the EW gauge resonances (see eq. (3.1)).

ysis. As we will see, these corrections are typically large and including them is essential in order to
obtain a reliable fit of the EW parameters. Although these e↵ects have been already considered in
the literature, most of the previous analyses did not take into account the full non-linear structure
of the composite Higgs Lagrangian. Our analysis will show that the non-linearities are relevant and
their inclusion can significantly a↵ect the result and lead to new important e↵ects.

The bS parameter

At tree level the bS parameter receives a correction due to the mixing of the elementary gauge fields
with the composite vector bosons. An estimate of this correction is given by [11]

�bS ' g2

g2⇤
⇠ ' m2

w

m2⇤
. (3.1)

The UV dynamics can lead to deviations with respect to the above formula. However those devia-
tions are typically small and eq. (3.1) is usually in good agreement with the predictions of explicit
models. Assuming that the correction in eq. (3.1) is the dominant contribution to bS (or at least
that the other contributions to bS are positive), a rather strong upper bound on the mass of the
EW gauge resonances is found, m⇤ & 2 TeV (see the fit of the oblique parameters in fig. 2).

The other contributions to the bS parameter arise at loop level due to the non-linear Higgs
dynamics and to the presence of fermion resonances. The leading contribution due to the non-

8

Figure 3.5: Constraints on the Ŝ and T̂ parameters as taken from ref. [86]. The grey ellipses represent
the 68%, 95% and 99% CL contours from ref. [83]. In this plot we can recognize the IR contribution
due to the deviations in the Higgs couplings as described in eq. (3.53), a UV contribution, such as the
tree-level one from spin-1 resonances, and the fermion contribution.

Let us consider now the calculable and incalculable UV contributions, starting with Ŝ. A

tree level contribution to Ŝ is due to the exchange of heavy spin-1 resonances which mix with the

SM electroweak gauge bosons. In our models this is given by (see sec. 3.6.2 for the derivation)

∆Ŝtree ' 2
m2
W

f2




Nρ∑

j=1

f2
ρj

m2
ρj
−

Na∑

i=1

f2
ai

m2
ai


 , (3.54)

The UV uncalculable gauge contribution to Ŝ is easily estimated by using NDA:

∆Ŝ(NDA) ∼ 1

4π2

m2
W

f2
. (3.55)

As expected, this is the value one gets from eq.(3.54) (modulo accidental cancellations or en-

hancements), when the vector and axial couplings approach 4π. Fermion resonances contribute

to Ŝ at the loop level. A finite contribution, due to the mixing with the SM fermions, can be

estimated as

∆Ŝf '
Nc

16π2

λ2m2
W

m2
f

' Nc

16π2

m2
W

f2

ε2

m2
f

. (3.56)

For θL,R ∼ O(1) this is roughly of the same size of eq.(3.55). The authors of ref. [86] pointed

out the presence of a logarithmically-divergent contribution due to derivative interactions be-

tween composite fermions and the Higgs, in particular those proportional to the kd couplings in

eq. (3.43) and the interactions with Eµ in the covariant derivative in eq. (3.39). This correction
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can easily be the dominant one. While the kd couplings could in principle be computed in explicit

UV models, in our effective framework they do not contribute to the Higgs potential at one loop

and therefore are arbitrary. This strongly limits our capability of computing contributions to

the EW parameters.

The T̂ parameter is a measure of breaking of the custodial symmetry. Since this is an exact

symmetry of the strong sector, the only contribution to T̂ will come from the mixing with the

elementary sector and will be proportional either to the hypercharge coupling g′ or to the fermion

mixing. The NDA estimate for the uncalculable contribution to T̂ coming exclusively from the

gauge sector is

∆T̂ (NDA)
g ∼ m2

W

8π2f2
tan θ2

W . (3.57)

Eq.(3.57) also coincides with the NDA estimate for the contribution of the vector and axial res-

onances, because their couplings gρ, ga < 4π and their masses mρ ' gρf , ma ' gaf , precisely

compensate in the contribution to ∆T̂ to reproduce eq.(3.57). The uncalculable fermion contri-

bution is easily shown to be sub-leading, in the limit of small mixing εi, and can be neglected.

The calculable contribution to T̂ due to the fermion resonances is given by (see e.g. the appendix

of [159] for some explicit expressions of fermion contributions to T̂ )

∆T̂f ∼
Nc

8π2

λ4f2s2
h

m2
L

, (3.58)

where λ is the Yukawa coupling between the top and a fermion resonance, λ ∼ ε/f , and mf is

its vector-like mass. We get

∆T̂f

∆T
(NDA)
g

∼ Nc

π
cos2 θW

ε4

f2m2
L

∼ Nc

π
cos2 θWλ

2
top , (3.59)

where in the last equality we have used eq.(3.46). The calculable fermion contribution is hence

the dominant contribution to ∆T̂ . A schematic representation of the possible contribution to

Ŝ and T̂ from composite Higgs models is showed in fig. 3.5, from ref. [86]. Since, as we saw,

not all of these contributions are completely under control we do not present a fit of electroweak

precision data for our models.

Deviation in the Zbb̄ coupling

Let us now consider ∆δgb. We define by ∆δgb the non-universal gauge coupling deviation due

only to new physics, with the SM contribution (from loops) subtracted:

∆δgb = δgb − δgb,SM , (3.60)

where

gb,SM = −1

2
+

1

3
sin2 θ2

W , δgb,SM =
αem

16π sin2 θW

r(r2 − 7r + 6 + (2 + 3r) log r)

(r − 1)2
, (3.61)
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and r ≡ M2
top

m2
W

, where Mtop is the pole top mass, Mtop = 173.1 GeV, not to be confused with Mtop

at the high scale, always taken around 150 GeV in this work. The calculable contribution we

have computed arises from loops where a SM W is exchanged, δgWb , that can be estimated as

δgWb '
|λ|4v2

16π2m2
L

' |ε|4s2
h

16π2f2m2
L

. (3.62)

In addition to that, we also have a calculable contribution where a vector resonance is exchanged

in the loop, and the usual uncalculable contribution. The latter is estimated by NDA. It arises

when the spurions (3.42) are inserted in the fermion bilinears. There are several local operators

one can construct. For example, one contributing to δgb is the following:

cg
f4(16π2)2

(
q̄LEqQγ

µE†qQqL
) 3∑

α=1

(ΣtE†,αqQ )(EαqQDµΣ) = − cg|εqQ|4s2
h

4(16π2)2f4

g

cos θW
q̄L /ZqL (3.63)

with cg an O(1) coefficient and α the SU(2)0
L index (see [119] for details), leading to

δg
(NDA)
b ∼ |εqQ|4

(16π2)2f4
s2
h , (3.64)

which is sub-leading with respect to eq.(3.62). The one-loop deviations where a vector and a

fermion resonance are exchanged in the loop are induced by the couplings in eq. (3.43). They

are estimated to be

δgρb '
k2g2

ρ|ε|2|λ|2v2

16π2m2
Lm

2
ρ

' k2|ε|4s2
h

16π2f2m2
L

, (3.65)

where k generically represents the O(1) k coefficients in eq.(3.43). In general δgρb ∼ δgWb and both

should be taken into account. However, δgρb depends on the couplings (3.43) that are otherwise

irrelevant in our analysis.

The only tree-level correction to δgb is due to the bottom quark mixing, and therefore is

suppressed due to the smallness of the bottom mass with respect to the top one. Since we did

not include these mixing terms in our computation of the potential, this contribution is arbitrary

in our setup. However, we have checked for N (u,d)
S = N

(u,d)
Q = 1 that this tree-level correction is

typically 2-3 times smaller than δgWb .

3.6 The Higgs potential

In the previous sections we described in detail the tree-level effective Lagrangian of the composite

Higgs model we study. We saw that the global symmetry G of the strong sector is explicitly broken

in two sectors, in both cases due to mixing with the elementary SM fields. On the one hand the

fact that only a subgroup of G is gauged by the EW gauge bosons selects a preferred direction in

G, which can also be seen as the fact that only some components of the spin-1 resonances mix with
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the elementary SM gauge bosons. On the other hand the mixing terms between the elementary

SM fermions and the composite fermion resonances breaks the global symmetry because the

SM fermions are not in complete representations of G. When a spontaneously broken global

symmetry is explicitly broken by some small terms, the would-be NGBs acquire a non-vanishing

potential, hence a mass term. Consider for example QCD with two flavors (up and down quarks

only): the explicit breaking of the chiral symmetry SU(2)L × SU(2)R due to the quark masses

generates a mass term for the Nambu-Goldstone bosons, i.e. the pions. In this case the breaking

involves only the strongly coupled sector and therefore, in the language of chiral Lagrangians,

the mass term for the pions is generated at tree-level by a chiral symmetry breaking operator.

In QCD, however, there is also another explicit breaking at play, due to the mixing with an

elementary field: the photon. In fact, much like in the model we described in section 3.4.1, it is

possible to write a Lagrangian for the spin-1 ρµ meson, which transforms in the adjoint of the

unbroken SU(2)I of isospin, very similar to the one of eq. (3.33). The photon gauges a U(1)em

subgroup of the unbroken SU(2)I and mixes linearly with the neutral ρ0 meson. This linear

mixing generates, at one loop, a potential for the charged pion, contributing to its mass and

describing why the charged pion is slightly heavier than the neutral one (see e.g. ref. [94]).

In our models we assume that the strong sector is exactly symmetric under G, therefore no

tree-level potential term is present for the Higgs. However, the explicit breaking of the global

symmetry due to the linear mixing between the elementary SM gauge bosons and fermions with

the composite resonances induces, at one loop, an effective potential. Since all terms in the

Lagrangian respect the EW gauge invariance, this potential affects only the physical Higgs h

(and the scalar η in the SO(6)/SO(5) case).

When computing the one loop effective potential, since both the spin-1 and spin-1/2 lines

are necessarily closed inside the loop, the contributions from the two breaking terms – gauge

couplings g, g′ and fermion mixings ε – act separately. For this reason we can consider separately

the spin-1 and the spin-1/2 contributions to the potential.

The pNGB nature of the Higgs implies that its potential V (h) depends on sh only. Due to

the contribution of particles whose masses vanish in the sh → 0 limit (such as the top, W and

Z), the one-loop Higgs potential contains non-analytic terms of the form s4
h log sh that do not

admit a Taylor expansion around sh = 0. In the phenomenological regions of interest, these

terms do not lead to new features and are qualitatively but not quantitatively negligible [3].

However, they make an analytic study of the potential slightly more difficult. For this reason, we

neglect them altogether in what follows and refer to the appendix C for a more refined analysis

of the Higgs potential where they are included. For sh � 1, we can therefore expand V (h) up

to quartic order and obtain

V (h) ' −γ s2
h + β s4

h +O(s6
h) . (3.66)
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The coefficients γ and β are induced by the explicit breaking of the shift symmetry: the gauge

couplings g and g′ in the gauge sector, the mixing terms ε in the fermion sector and possibly

other terms coming from higher dimensional operators, not appearing in the Lagrangian (3.48).

The Higgs potential in our model is, strictly speaking, not calculable. There are generically

two different contributions to γ and β that, with an abuse of language, we denote by IR and

UV contributions. The IR contribution is the one coming from the leading operators defining

our model (3.48), the UV contribution is the one coming from higher dimensional operators and

physics at the cut-off scale. The explicit form of γ and β can be deduced, in the limit of small

breaking terms, by a simple spurion analysis [119]. As expected from NDA, the IR contribution

to γ and β shows generically quadratic and logarithmic divergencies, respectively. Instead of

introducing as usual counterterms for such divergencies, leading to a loss of predictability in the

Higgs sector, we can demand that the one-loop form factors defining the IR part of γ and β,

that should be integrated over all energies scales, are peaked around the resonance masses and

go to zero sufficiently fast at infinity. This is done by fulfilling some generalized Weinberg sum

rules [1, 46]. In this way, the one-loop IR contribution to V (h) can be made finite.

On the other hand, possible local operators contributing to the UV part of γ and β, coming

purely from the gauge sector or the fermion sector, are for example10

cgf
4

3∑

aL=1

ΣtgT aLgT aLΣ =
3

4
cgg

2f4s2
h ≡ γ(NDA)

g s2
h ,

dg
16π2

f4(

3∑

aL=1

ΣtgT aLgT aLΣ)2 =
9

256π2
dgg

4f4s4
h ≡ β(NDA)

g s4
h .

cff
2(EqSΣ)(ΣtE†qS) =

1

2
|εqS |2s2

h ≡ γ
(NDA)
f s2

h ,

df
16π2

(
(EqSΣ)(ΣtE†qS)

)2
=

1

64π2
|εqS |4s4

h ≡ β
(NDA)
f s4

h ,

(3.67)

where cg,f and dg,f are estimated by NDA to be coefficients of O(1). By comparing γ(NDA)
g and

β
(NDA)
g with the typical values one gets from the IR contribution, once made calculable (such as

eqs.(3.84) and (3.99) below), we see that γ(NDA)
g,f > γg,f and β(NDA)

g,f ' βg,f so that calculability

is still lost. In order to circumvent this problem, we assume here that the underlying UV

theory is such that γ(NDA) and β(NDA) are sub-leading with respect to the IR part of γ and

β, so that the Higgs potential is calculable and dominated at one-loop level by the fields in our

10The leading fermion local operators above were not considered in [119]. This is probably due to the fact that

the free fermion composite Lagrangian has an obvious linearly realized SO(5) symmetry when miQ = miS . In

addition, when the mixing terms are taken to be equal, εitS = εitQ and εiqS = εiqQ (as in [119]), the whole Higgs field

can be removed from the quadratic fermion Lagrangian by a field redefinition and hence vector mass insertions

are needed to get a non-trivial one-loop potential. This is however an accident of the one-loop result and fermion

operators like the ones in eq.(3.67) will be anyway generated at higher loop level.
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model. The logic underlying the above assumption (that might seem too radical and strong) is

that any theory where a symmetry mechanism is at work (not only collective breaking or extra

space-time dimensions) to actually predict a calculable Higgs potential would automatically

satisfy the above requirements and fall into our class of models, which can then be seen as a

general parametrization of composite Higgs models. We denote the above assumption as the

Minimal Higgs Potential (MHP) hypothesis. We have explicitly checked that deconstructed

models present in the literature [119, 120] can be translated in our framework and it turns out

that in this case the Weinberg sum rules are indeed satisfied due to the symmetries of the models.

A dictionary between these models and our setup is presented in appendix E.

Having explained the philosophy of our perspective, we turn to the computation of the IR

contribution of the one-loop Higgs potential, from now on simply denoted by the Higgs potential.

First, we shift the NGBs, in this case the Higgs, with a constant background field h and a quantum

field δh: h→ h+δh. Since, by assumption, the strong sector is exactly G invariant, loops of only

the Higgs do not contain any explicit symmetry breaking term and therefore do not generate

any contribution to the potential. We present in the following two different ways to compute the

contribution to the potential due to the spin-1 and spin-1/2 fields.

3.6.1 Potential in dimensional regularization

Let us now show how the incalculability of the potential manifests itself when one uses di-

mensional regularization to regularize the quadratic and logarithmic divergencies, and how the

Weinberg sum rules arise in this framework. The one loop Coleman-Weinberg potential can be

easily obtained from the mass matrix in each sector (gauge and fermionic), keeping sh as back-

ground fields. Let us parametrize the field-dependent mass terms for the spin-1 and spin-1/2

fields as

Lmass =
1

2
V i
µM

2
V,ij(sh)V jµ −

(
ψ̄iLMF,ij(sh)ψjR + h.c.

)
, (3.68)

where i, j run over all the fields in each sector and M2
V is a real symmetric matrix while MF

is a generic complex matrix. From these matrices one can obtain the singular values with a sh
background: mn(sh)2 > 0, where n runs over all the states with a spin sn = 1, 1

2 . These singular

values can finally be used to obtain the one-loop effective potential. Regularizing the integral

with dimensional regularization one has

V (1)(sh) =
1

16π2

∑

n

(−1)2sn(2sn + 1)

4
mn(sh)4

(
log

mn(sh)2

Q2
− ksn

)

=
3

64π2
Tr
[
M4
V (sh)

(
log

M2
V (sh)

Q2
− k1

)]

− 2Nc

64π2
Tr

[
(M †FMF )2(sh)

(
log

(M †FMF )(sh)

Q2
− k1/2

)]
,

(3.69)
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where Q is the sliding scale and ksn are numerical factors which depend on the subtraction scheme

used. We see that, in general, the potential is scale-dependent as well as scheme-dependent, which

would imply the necessity to fix some boundary conditions at some scale, for example by matching

with the measured Higgs mass and vacuum expectation value. This, however, would imply our

impossibility to predict those values from our explicit models. To avoid this, we impose a set of

generalized Weinberg sum rules by asking that Tr[M4
V ] and Tr[(M †FMF )2] are independent on h

WSR: Tr
[
M4
V (sh)

]
≡ const and Tr

[(
M †F (sh)MF (sh)

)2
]
≡ const . (3.70)

Requiring this for both the s2
h and the s4

h dependences is equivalent to requiring the absence of

UV divergencies in the computation of the γ and β coefficients.

While this method is very efficient for numerical computations, for analytic studies it is

troublesome because of the difficulty of obtaining analytic field-dependent eigenvalues for the

mass matrices, when the number of fields involved becomes high.

3.6.2 Form Factors analysis

The computation of the one-loop Coleman-Weinberg potential consists essentially in integrating

out all fields at quadratic level, in the background of the scalar field of which we want to compute

the potential. This process can be performed either in one single step, as presented above, or in

two separate steps. One can first integrate out at tree-level the quadratic Lagrangian of the heavy

spin 1 and 1/2 resonances, with no need to go to a mass basis, keeping the whole momentum

dependence by introducing some form factors for the light fields, and then integrate at one-loop

the remaining light degrees of freedom with the momentum-dependent form factors, usually with

a cutoff regularization. This is a useful way to proceed because the pseudo-Goldstone nature of

the Higgs field and the SO(5)×U(1)X symmetries allow to fix in terms of a few form factors the

form of the effective Lagrangian for the light states and encode there all the information of the

heavy resonances, making it easier to perform approximations to obtain analytic results.

Gauge Contribution

In momentum space, the effective Lagrangian of the SM gauge fields up to quadratic order in

the gauge fields and to any order in the Higgs field can be written in terms of some scalar form

factors, functions of the momentum p2, which correspond to the vacuum polarization amplitudes

introduced in section 2.3.1:

Pµνt
2

(
2ΠW+W−W

+
µ W

−
ν + ΠW3W3W

3
µW

3
ν + ΠBBBµBν + 2ΠW3BW

3
µBν

)
, (3.71)

where Pµνt = ηµν−pµpν/p2 is the projector on the transverse field configurations and the Π’s are

form factors that also depend on the Higgs field. In particular, since we assume that the strong
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sector – which we integrate out at tree level to obtain the Π’s – is invariant under the custodial

symmetry, the form factors will satisfy the relation ΠW+W− = ΠW3W3 , which implies T̂ = 0 at

tree level (2.22). The one-loop Higgs potential is easily computed from the above expression by

taking the Landau gauge ∂µBµ = ∂µW a
µ = 0. In this gauge the longitudinal components of the

gauge fields, as well as the ghosts, decouple and can be neglected. Integrating out the gauge

fields and going to Euclidean momenta, one gets:

Vg(h) =
3

2

∫
d4pE
(2π)4

(
2 log ΠW+W−(−p2

E) + log
(
ΠBB(−p2

E)ΠW3W3(−p2
E)−Π2

W3B(−p2
E)
) )

.

(3.72)

To have an analytic understanding of the possible functional dependence on the Higgs field of

the effective potential, it is useful to introduce spurionic gauge fields such that the whole SO(5)×
U(1)X group becomes gauged: Aµ = AâµT

â + AaLµ T aL + AaRµ T aR. The most general SO(5) ×
U(1)X -invariant Lagrangian depending on the gauge fields and the NGB’s, at the quadratic order

in the gauge fields and in momentum space, is

Leff =
Pµνt

2

(
ΠX

0 (p2)XµXν + Π0(p2)Tr[AµAν ] + Π1(p2)ΣtAµAνΣ+

+ΠLR(p2)
(
Tr[(U †AµU)L(U †AνU)L]− Tr[(U †AµU)R(U †AνU)R]

))
,

(3.73)

where (. . .)L,R implies the projection on the (3,1) and (1,3) irreducible representations inside

the adjoint of SO(4).11 Switching off the spurionic fields, that is keeping only the components

AaLµ = W a
µ , A3R

µ = cXBµ and Xµ = sXBµ, where

cX =
gX√
g2

0 + g2
X

=
g′0
g0
, sX =

g0√
g2

0 + g2
X

, (3.74)

we obtain the most general effective Lagrangian for the gauge bosons in SO(5)/SO(4) with the

explicit dependence on the Higgs field:

Leff =
Pµνt

2

(
Π0W

a
µW

a
ν + Π1

s2
h

4

(
W 1
µW

1
ν +W 2

µW
2
ν

)
+

+ ΠBBµBν + Π1
s2
h

4

(
g′0
g0
Bµ −W 3

µ

)(
g′0
g0
Bν −W 3

ν

)
+

+ chΠLR

(
W a
µW

a
ν −

g′20
g2

0

BµBν

))
,

(3.75)

11The term in the second line of (3.73) could be generated, for example, by the operator O3 =(
Tr[ELµνEL µν ]− Tr[ERµνER µν ]

)
[105], or directly in a model with vector resonances ρLµ , ρRµ without invariance

under L↔ R, see section 3.6.2.
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where ΠB = (s2
XΠX

0 + c2
XΠ0), ch = cos〈h〉/f , and g′0 = g0cX . From this Lagrangian one obtains

ΠW+W− = ΠW3W3 = Π0 +
s2
h

4
Π1 + chΠLR,

ΠBB = ΠB + c2
X

s2
h

4
Π1 − c2

XchΠLR,

ΠW3B = − cX
s2
h

4
Π1 .

(3.76)

The form factor ΠW3B is related to the oblique Ŝ-parameter, see eq. (2.22),

Ŝ = − g
g′

Π′W3B(0) ' 〈s
2
h〉
4

Π′1(0) , (3.77)

where the prime indicates a derivative with respect to p2 and in the second step we approxi-

mated g ' g0 and g′ ' g′0. It is well known that the bound on S provides one of the main

phenomenological electroweak constraints on composite Higgs models, that requires s2
h � 1. As

we will show below, a necessary condition to kill the quadratic divergence in the potential is to

demand limpE→∞ΠLR = 0. In order to ensure this condition and to keep the model simple, in the

following we impose a LR symmetry in the strong sector, that automatically implies ΠLR = 0.

The explicit expression of the form factors is obtained by integrating out the heavy vector

resonances at tree-level and quadratic order (the one relevant at one-loop level). This is not

straightforward to do for an arbitrary number of vector resonances, due to the last term in LvL ,
eq.(3.33). Let us then set fmix = 0 in the following (in ref. [1] we studied the effect of this term

in the two vector case). In this simple case, we get

Π1(p2) = g2
0f

2 + 2g2
0p

2



Na∑

i=1

f2
ai

(p2 −m2
ai)
−

Nρ∑

j=1

f2
ρj

(p2 −m2
ρj

)


 ,

Π0(p2) = −p2 + g2
0p

2

Nρ∑

j=1

f2
ρj

(p2 −m2
ρj

)
, ΠX

0 (p2) = −p2 .

(3.78)

The physical SM gauge couplings are modified by the contribution of the resonances and given

by (2.19):

g2 = − g2
0

Π′0(0)
= g2

0

(
1 +

Nρ∑

j=1

g2
0

g2
ρj

)−1
, g′2 = − g2

0

Π′B(0)
= g′20

(
1 +

Nρ∑

j=1

g′20
g2
ρj

)−1
, (3.79)

where Π′ = dΠ/dp2. It is straightforward to get from the above relations the form of the gauge
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contribution to γg and βg to the Higgs potential:12

γg = − 3

8(4π)2

∫ ∞

0
dp2

E p
2
E

(
3

Π0
+
c2
X

ΠB

)
Π1,

βg = − 3

64(4π)2

∫ ∞

µ2
g

dp2
E p

2
E

(
2

Π2
0

+

(
1

Π0
+
c2
X

ΠB

)2
)

Π2
1.

(3.80)

For large Euclidean momenta, the form factors Π0 ∝ ΠB
0 ∝ p2

E , while Π1 ∝ p0
E , indicating that

all higher terms in the sh expansion are UV finite. On the other hand, γg and βg are respectively

quadratically and logarithmically divergent in the UV, in general. Their UV properties are fixed

by the single form factor Π1. Without imposing any condition, the form factor Π1 goes to

a constant at high energy and the potential diverges quadratically. However, the form-factor

Π1(p2) is an order parameter of the spontaneous symmetry breaking (being proportional to the

difference of the form factors of gauge fields along the unbroken and broken generators [43]), so

for energies much higher than the symmetry breaking scale f , it should go to zero, assuring that

the potential should diverge only logarithmically. Imposing this condition, we obtain the first

Weinberg sum rule [160]:

lim
p2
E→∞

g−2
0 Π1(−p2

E) = f2 + 2

Na∑

i=1

f2
ai − 2

Nρ∑

j=1

f2
ρj ≡ 0 . (I) (3.81)

Demanding that Π1 goes to zero faster than p2
E (finite potential) for large Euclidean momenta

gives the second Weinberg sum rule:13

lim
p2
E→∞

g−2
0 p2

EΠ1(−p2
E) = 2

Na∑

i=1

f2
aim

2
ai − 2

Nρ∑

j=1

f2
ρjm

2
ρj ≡ 0. (II) (3.82)

Notice that the first sum rule requires the presence of at least one vector resonance ρµ, while

the second sum rule requires at least one axial resonance aµ. There is a qualitative difference

between the Weinberg sum rules (I) and (II). While the former must be unavoidably imposed (at

high energies the global symmetry is by assumption restored), the latter can be relaxed, leaving

a mild logarithmic UV-sensitivity of the Higgs potential.14 From eqs.(3.77) and (3.78), we get

12We have inserted the IR cut-off µg ' mW to regulate a logarithmic divergence appearing in βg. This is a

spurious divergence arising from a non-analytic term in the potential in the sh → 0 limit and does not play an

important role in what follows. We have checked that our results do not sensitively depend on the choice of µg.

For a discussion on this non-analytic term see app. C.
13The sum rules (3.81) and (3.82) are also valid for the general case fmix 6= 0 when Nρ = 2.
14The second sum rule was originally derived by assuming that the broken and unbroken currents behave as

free fields in the UV [160]. This assumption holds for asymptotically-free gauge theories but can break down

if, say, the UV theory is a strongly interacting CFT. In particular, it has been pointed out in [161], where an

approach similar to ours has been advocated in Higgsless models, that the second Weinberg sum rule does not

hold in conformal Technicolor.
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the tree-level contribution to the Ŝ-parameter:

∆Ŝ ' 2
m2
W

f2




Nρ∑

j=1

f2
ρj

m2
ρj
−

Na∑

i=1

f2
ai

m2
ai


 . (3.83)

The explicit form of γg and βg is readily computed for Nρ = Na = 1. Setting for simplicity

g′ = 0, aρ = 1 and expanding at leading order in (g/gρ)
2 (and in µg(= mW )/mρ in βg), we get

γg ' −
9f2g2m2

ρ log 2

64π2
, βg '

9f4g4

1024π2

(
5 + log

m2
W

32m2
ρ

)
. (3.84)

For Nρ = Na = 1, when both eqs.(3.81) and (3.82) are imposed, ∆S can be rewritten as

∆Ŝ = 2
m2
W

m2
ρ

(
1− f2

4f2
ρ

)
(3.85)

and, as eq.(3.81) imposes fρ > f/
√

2, it is manifestly positive definite. As expected, for sh = 1,

eq.(3.85) agrees with the vector dominance estimate in Technicolor theories derived in [162]. In

holographic 5d models, ∆Ŝ is positive as well. For Nρ or Na > 1, on the other hand, ∆Ŝ can in

principle have any sign. Since as far as we know there is no general proof about the positivity

of ∆Ŝ (neither in Higgsless Technicolor theories nor in Composite Higgs Models) we will also

consider, in the following, one model (with Nρ = 1, Na = 2) in the “exotic" region where ∆Ŝ

can be negative.

A possible constrain on the form factor Π1 comes from the results of [163]. A straightforward

generalization of the proof given there implies that any composite Higgs model, UV-completed

by vector-like gauge theories, cannot give rise to EWSB without additional contributions to

the Higgs potential (such as those given by fermion resonances). In other words, for sh < 1,

γg in eq.(3.80) should be negative definite. This condition (always satisfied in 5d models) is

automatically satisfied when both (I) and (II) hold for Nρ = Na = 1 (see eq.(3.84)).15 On the

other hand, when Nρ or Na > 1, γg can be positive and induce EWSB by itself (although these

regions are never found in our numerical scans).

Left-Right Asymmetric Case

Let us study in this section what are the consequences of having a LR asymmetric model. We

consider the simplest example, with NρL = NρR = 1, which already shows all the important

15On the contrary, if one imposes only the sum rule (I), even for Nρ = Na = 1, γg (and ∆S) can have any sign.
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aspects. From eq.(3.33) and eq.(3.76) we get:

Π0(p2) = −p2 +
g2

0f
2
ρL
p2

2(p2 −mρ2
L
)

+
g2

0f
2
ρR
p2

2(p2 −mρ2
R

)
,

ΠB(p2) = −p2 +
g′20 f

2
ρL
p2

2(p2 −mρ2
L
)

+
g′20 f

2
ρR
p2

2(p2 −mρ2
R

)
,

Π1(p2) = g2
0

(
f2 −

f2
ρL
p2

p2 −mρ2
L

−
f2
ρR
p2

p2 −mρ2
R

)
,

ΠLR(p2) =
g2

0f
2
ρL
p2

2(p2 −mρ2
L
)
−

g2
0f

2
ρR
p2

2(p2 −mρ2
R

)
.

(3.86)

The form factor ΠLR goes to a constant for large Euclidean momenta, and it induces a quadratic

divergence in the Higgs potential. Since the functional dependence related to this form factor is

ch, see eq.(3.75), this divergence is present at any order in the expansion for small s2
h. Similarly

to Π1, ΠLR is an order parameter for the symmetry breaking and should hence go to zero at

high energies. From the expression above we get

5d lim
pE→∞

ΠLR(−p2
E) =

g2
o

2

(
f2
ρL
− f2

ρR

)
− g2

0

2p2
E

(
f2
ρL
m2
ρL
− f2

ρR
m2
ρR

)
+O(p−4

E ) . (3.87)

Cancelling the quadratic and logarithmic divergence requires fρL = fρR and mρL = mρR , respec-

tively, which is equivalent in this case to impose a complete LR symmetry, for which ΠLR = 0

identically. Note that by adding more copies of vector resonances, however, one might be able

to have a finite potential even without imposing a LR symmetry.

Fermion Contribution

Following a very similar approach to the one described for the gauge contribution to the potential,

let us now consider the contribution due to SM fermions. In particular we focus on the top quark

since its mixing with the strong sector is expected to be the dominant source of breaking of the

global symmetry. The top quark effective Lagrangian up to quadratic order in the fermions and

to any order in the Higgs field can be written, in momentum space, as

t̄L/pΠtLtL + t̄R/pΠtRtR − (t̄LΠtLtRtR + h.c.) , (3.88)

resulting in the following contribution to the Higgs potential:

Vf (h) = −2Nc

∫
d4pE
(2π)4

log
(
p2
EΠtL(−p2

E)ΠtR(−p2
E) +

∣∣ΠtLtR(−p2
E)
∣∣2
)
. (3.89)

Integrating out the fermion resonances Si and Qj , we get the following expression for the form

factors (see eqs. (3.27,3.28)):

ΠtL = ΠQ + s2
hΠ1Q , ΠtR = ΠS + s2

hΠ1S , ΠtLtR = ishchΠQS , (3.90)
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where

ΠQ(p2) = 1−
NQ∑

j=1

|εjqQ|2
p2 −m2

jQ

, Π1Q(p2) = −1

2

( NS∑

i=1

|εiqS |2
p2 −m2

iS

−
NQ∑

j=1

|εjqQ|2
p2 −m2

jQ

)
,

ΠS(p2) = 1−
NS∑

i=1

|εitS |2
2(p2 −m2

iS)
, Π1S(p2) =

1

2

( NS∑

i=1

|εitS |2
p2 −m2

iS

−
NQ∑

j=1

|εjtQ|2
p2 −m2

jQ

)
,

ΠQS(p2) =
1

2

( NS∑

i=1

εi∗tSε
i
qS

miS

p2 −m2
iS

−
NQ∑

j=1

εj∗tQε
j
qQ

mjQ

p2 −m2
jQ

)
. (3.91)

The top mass can be obtained either as the lightest singular value of the mass matrix of the

Q = 2/3 fields in eq. (3.39), or from eq. (3.88) by finding the pole of the propagator:

M2
top −

|ΠtLtR(M2
top)|2

ΠtL(M2
top)ΠtR(M2

top)

∣∣∣∣∣
h=v,η=0

= 0 , (3.92)

which, if the top is much lighter than the top partners, can be approximated as

Mtop '
|ΠtLtR(0)|√
ΠtL(0)ΠtR(0)

∣∣∣∣∣
h=v,η=0

. (3.93)

Similarly to the gauge case, for sh � 1, we can expand Vf up to quartic order:

Vf (h) ' −γfs2
h + βfs

4
h, (3.94)

with

γf =
2Nc

(4π)2

∫ ∞

0
dp2

E p
2
E

(
Π1Q

ΠQ
+

Π1S

ΠS
+

Π2
QS

p2
EΠQΠS

)
,

βf =
Nc

(4π)2

∫ ∞

µ2
f

dp2
E p

2
E

((
Π2
QS

p2
EΠQΠS

+
Π1Q

ΠQ
+

Π1S

ΠS

)2

−
2(p2

EΠ1QΠ1S −Π2
QS)

p2
EΠQΠS

)
.

(3.95)

For large Euclidean momenta ΠQ,S ∝ p0
E , Π1Q,1S ∝ p−2

E , ΠQS ∝ p−2
E . It then follows that the

terms involving ΠQS in eq.(3.95) are all finite. The factor µf is an IR-cutoff curing a spurious

logarithmic divergence arising from the non-analytic term in the potential. We fix it to be

around the top mass (see footnote 12). All higher terms in the sh expansion are UV finite. We

can impose the fermion analogue of the Weinberg sum rules, demanding that the divergencies in

γf and βf above cancel. The cancellation of the logarithmic divergence in βf requires

lim
p2
E→∞

(−2)p2
E

Π1S

ΠS
=

NS∑

i=1

|εitS |2 −
NQ∑

j=1

|εjtQ|2 = 0 .

lim
p2
E→∞

2p2
E

Π1Q

ΠQ
=

NS∑

i=1

|εiqS |2 −
NQ∑

j=1

|εjqQ|2 = 0 .

(III) (3.96)
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When eq.(3.96) is satisfied, the quadratic divergence in γf is automatically cancelled. Imposing

the cancellation of the logarithmic divergence in γf requires the second condition

lim
p2
E→∞

2p4
E

(Π1S

ΠS
+

Π1Q

ΠQ

)
=

NS∑

i=1

m2
iS

(
|εitS |2−|εiqS |2

)
−
NQ∑

j=1

m2
jQ

(
|εjtQ|2−|ε

j
qQ|2

)
= 0 (IV) . (3.97)

It is useful to consider in some detail the case NQ = NS = 1, taking all the mixing parameters

to be real, for simplicity. Assuming mS 6= mQ, a solution to eqs.(3.96) and (3.97) is

εtS = εtQ = εqS = −εqQ ≡ ε . (3.98)

Other solutions with different sign choices can also be considered. We take εqQ of opposite sign

with respect to the other ε’s so that the top mass is maximized, see eq.(3.46). The coefficients γf
and βf are now easily computed in analytic form, but the resulting expressions are too lengthy

to be reported. For illustration, we just show here their approximate form in the limit of small

mixing, θL,R � 1. At leading order we get16

γf =
Ncε

4

32π2

1− x2 +
(
x2 + 2x+ 2

)
log x2

x2 − 1
, x =

mQ

mS
,

βf =
Ncε

4

32π2

(1 + x) log x2

x− 1
.

(3.99)

Notice that the ε4 behaviour of γf is an accident of the NQ = NS = 1 case, the typical scaling

being ∝ ε2.
The generalized Weinberg sum rules (I-IV) must be satisfied by any composite Higgs model

where a symmetry mechanism is at work to realize the MHP hypothesis. They are clearly also

satisfied in the notable case of five-dimensional theories, where locality in the extra dimension

forbids any local Higgs potential to all orders in perturbation theory (thus implementing in full

the MHP hypothesis). However, when one has to sum over an infinite set of fields, with increasing

mass, such as in the 5d models, the sum rules written as in (I-IV) are not very useful. It is more

convenient to first sum over the infinite set of fields and then take the limit of large euclidean

momenta.17 In doing that, one finds that the form factors such as Π1, Π1S , Π1Q and ΠQS

introduced before, all go to zero exponentially for pE →∞. For instance, in the simplest set-up

of a 5d theory on a flat interval of length L, one gets Π1(pE) ∝ pE/ sinh(2LpE) (see e.g. [164]

for an introduction and further examples).

16Contrary to the expansion in g/gρ in the gauge contribution (3.84), that is always a sufficiently accurate

approximation, the explicit forms (3.99) are not always useful. When tL and/or tR significantly mix with the

composite sector, different limits should be considered.
17The higher-dimensional symmetries demand that one has to sum over the whole infinite tower of states,

despite the limited regime of validity of the 5d effective theory.
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3.7 Light top partners for a light composite Higgs

Let us now analyze in detail the Higgs potential obtained in our framework and study what are

the consequences, on the new physics spectrum, of imposing a successful electroweak symmetry

breaking and the correct values of the top and Higgs masses.

The total Higgs potential up to O(s4
h) is given by

V (h) = Vg(h) + Vf (h) = −γs2
h + βs4

h , (3.100)

where we have denoted γ = γg + γf and β = βg + βf . For γ ≥ 0 and 0 < β ≥ γ/2, the potential

has three extrema: sh = 0 (no EWSB), sh = 1 (maximal EWSB) and

s2
h = ξ =

γ

2β
. (3.101)

The one at ξ = 1 should be discarded because it is outside the regime of validity of eq.(3.100)

(and leads anyway to massless SM fermions, ΠtLtR = 0 in eq.(3.90)). The extremum (3.101) is

a local minimum of the potential when γ > 0 and, at the same time, γ < 2β. Demanding a

sufficiently small value of ξ, as suggested by the EWPT, requires to tune γ < β. The Higgs mass

at the non trivial minimum (3.101) equals

m2
H =

8β

f2
ξ (1− ξ) . (3.102)

It is very useful to parametrically understand what are (if any) the generic relations among the

Higgs mass and the masses of the vector and fermion resonances.

From eq.(3.84), we see that the following parametric expressions for γg and βg approximately

hold:

γg ∼ −
g2f2m2

ρ

16π2
, βg ∼

g4f4

16π2
∼ |γg|

( g
gρ

)2
� |γg| . (3.103)

For ξ � 1, using eqs.(3.101) and (3.102) we have

m2
ρ

m2
H

' 4π2

g2

|γg|
γ

. (3.104)

Given the bounds coming from the Ŝ parameter and from direct searches (eq. (3.51)), we para-

metrically require γ � |γg|, as well as γ � β. This implies a fine-tuning at work, so that γ is

small because the fermion and the gauge contribution compensate with each other, γf ' −γg.
As we will shortly see, |γf | ' |βf |, while βg ∼ γg(g/gρ)

2, implying that generally βg � βf and

can be neglected.

The fermion sector, with more different mass scales, is more involved. Before going into the

details of the models, let us present some general – and rough – estimates. From eq. (3.102)

we see that for a given ξ the Higgs mass depends only on the β parameter. This means that
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the Higgs mass value at fixed ξ will depend largely only on the fermion sector. In the case of

elementary tL and tR, which we are considering, the top mass goes like

Mtop ∼
εLεR
Mf

sh , (3.105)

where εL,R are the mixing parameters for the tL,R quarks andMf represents the mass of the light-

est fermion resonances that couple to tL and tR. A simple NDA estimate of the top contribution

to γ and β then gives

γf ∼
Nc

16π2
ε2M2

f , βf ∼
Nc

16π2
ε4 . (3.106)

Using eqs. (3.105), (3.106) and (3.102) we obtain [3]

m2
H ∼

Ncε
4

2π2f2
ξ ∼ Nc

2π2
M2
top

M2
f

f2
. (3.107)

This shows that the Higgs mass grows linearly with the top partners mass scale, in particular for

a given ξ (i.e. f) we expect that the measured value of the Higgs mass should point to a specific

range of masses for the top partners. In the rest of the chapter we focus on this prediction.

3.7.1 Estimates for the minimal model

For simplicity, we first consider the set-up where Nρ = Na = NS = NQ = 1, taking aρ = 1 and

g′ = 0. When the Weinberg sum rules (I-II) in the gauge sector are imposed, the axial mass

and decay constant are completely determined in terms of the vector mass mρ, which is the only

mass scale in the spin 1 sector, see eq. (3.84).

We choose to solve the sum rules (III-IV) as in eq.(3.98), so that the fermion sector is

characterized by three mass scales: the mixing parameter ε and the vector masses mS and mQ.

It is useful to parametrize the system in terms of ωL ≡ tan θL and ωR ≡ tan θR, introduced in

eq.(3.45), and one mass scale. We can split the fermion parameter space in 3 × 3 = 9 regions,

ωL � 1 (elementary tL), ωL ' 1 (semi-composite tL), and ωL � 1 (fully composite tL) and

similarly for ωR. We always take ωL and ωR to scale in a similar fashion, so that ωL ' ωR

for (ωL � 1, ωR � 1) and (ωL � 1, ωR � 1), and ωLωR ' 1 for (ωL � 1, ωR � 1) and

(ωL � 1, ωR � 1).18 In each region we choose as mass scale the physical mass of the Lightest

18It is important to keep in mind that physically there is actually no way to take the formal parametric limit

ωL,R → 0 or ωL,R → ∞, because, at fixed top mass, some fermion resonance mass becomes infinitely massive.

The maximal value of a fermion mass in the effective theory should be less than Λ = 4πf , above which we should

integrate out the heavy field. In light of that, the actual allowed range for ωL,R is

1

4π
. ωL,R . 4π . (3.108)
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HH
HHH

HHH
ωL

ωR � 1 ' 1 � 1

� 1 (M,ω4, ω4, ω4) (M0, 1, 1, 1) (M0, 1, 1, 1)

' 1 (M7/6, 1, 1, 1) (M, 1, 1, 1) (M, 1, 1, 1)

� 1 (M7/6, ω
2
L, ω

4
L, ω

4
L) (M7/6, ω

2
L, ω

4
L, ω

4
L) (M7/6, 1, ω

2
L, ω

2
L)

Table 3.1: Values of mL, kt, kγ and kβ (in order) for the parametric limits of elementary, semi-

composite and fully composite tL, tR. For simplicity, we have omitted the subscripts 0, 7/6 on

M , and L,R on ω, when not necessary.

Fermion Resonance (LFR), denoted by mL, as given by eq.(3.47). This is always either M0 or

M7/6. We then define the parameters

M2
top ≡ kt(ωL, ωR)m2

Lξ, γf ≡
Ncm

4
L

16π2
kγ(ωL, ωR) , βf ≡

Ncm
4
L

16π2
kβ(ωL, ωR) . (3.109)

We report in table 1 the parametric dependence of kt, kγ and kβ on ωL and ωR, as well as mL, in

each region. Notice that the table is not symmetric under the exchange ωL ↔ ωR andmQ ↔ mS ,

because of the presence of the bi-doublet with Y = 7/6, whose mass isM7/6 = mQ, independently

of ωL and ωR. Given the mixing parameters and ξ, everything else is parametrically determined,

namely mρ, mL and mH . In particular, we have

m2
ρ '

NcM
2
top

4m2
W

kγ
k2
t ξ
M2
top , m2

H '
g2NcM

2
top

8π2m2
W

kβ
k2
t

M2
top , m2

L =
M2
top

ktξ
, (3.110)

m2
ρ

m2
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' 2π2

g2ξ
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,
m2
ρ

m2
L

'
NcM

2
top

4m2
W

kγ
kt
,

m2
H

m2
L

'
g2NcM

2
top

8π2m2
W

kβ
kt
ξ . (3.111)

In all regions, except (ωL � 1, ωR � 1) and (ωL � 1, ωR � 1), kβ/k2
t ∼ 1 and the Higgs

is parametrically determined in terms of Mtop to be quite light (below the LEP bound, taking

eq.(3.110) literally).19 In all these regions, for reasonably natural values of ξ (say, ξ ' 1/10), the

LFR (singlet T ′ or the exotic fermion X contained in the Y = 7/6 doublet, depending on the

region) is always light, of order 1/
√
ξ times the top mass, or even too light, of order 1/(ωL

√
ξ),

with ωL � 1. For (ωL � 1, ωR � 1) the Higgs is heavier and yet the fermion resonance Q7 is

light. Finally, when (ωL � 1, ωR � 1), both the Higgs and the resonance masses (vector and

fermion) increase as 1/ω2. In all regions, kβ = kγ , implying that mρ/mH is independent of the

fermion sector and determined, at fixed ξ. Finally, since kβ,γ ≥ kt in all regions, we can conclude

that a light Higgs implies light fermion and vector resonances. The latter are always heavier than

19Needless to say, the considerations above are quite schematic and are only valid parametrically. They are not

accurate enough for a more quantitative description.
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the former, as can be seen from eq.(3.111) that, taken literally, predict vector masses roughly

twice heavier than fermion masses. The converse is not always true. In particular, for a strongly

composite top, we can have light fermion resonances and an heavy Higgs.20

3.7.2 Generalizing to non-minimal scenarios

Let us now consider the generalizations to models with multi vector and fermion resonances.

When more spin 1 resonances are considered, a too large Ŝ parameter can be circumvented

by either some tuning between the axial and vector resonances or by an increase in the vector

resonance mass. For illustration, let us consider how the latter situation can be realized with 2

vectors and 1 axial resonance (see section 3.7.3 and appendix D for a discussion of a model based

on this gauge sector). For simplicity, we take fρ1 = fρ2 = f and fmix = 0. Imposing the sum

rules (I) and (II) allows to determine ma and fa as a function of f and of the two vector masses

mρ1 and mρ2 . A simple calculation gives as leading expression in an expansion in (g/gρ)
2

γg = −
9f2g2m2

ρ

64π2

(
(1 + x2) log

(2

3
(1 + x2)

)
− 2x2 log x

)
, (3.112)

where mρ = mρ1 and x = mρ2/mρ1 . For an appropriate range in x, the coefficient multiplying

f2g2m2
ρ in eq.(3.112) can be significantly smaller than the one in eq.(3.84). At fixed γf , this

implies the possibility of increasing mρ and hence decreasing the value of ∆Ŝ within the allowed

range. One can also check that in the case of 2 axials and 1 vector resonance, ∆Ŝ can be made

small when one of the two axial resonances is quite light (see eq.(D.4)).

When more fermion resonances are involved, NQ and/or NS greater than one, the analysis is

greatly complicated by the large number of parameters involved. The main qualitative feature,

as already mentioned, comes from γf that for small mixing terms scales as ε2. This implies that

parametrically γf � βf , in tension with eq.(3.101), that would favour regions where γ � β. On

the other hand, a larger γf is welcome, because it implies a larger γg (in order to tune γf + γg to

be small) and hence spin one resonance masses heavy enough to keep ∆Ŝ under control, although

at the expense of a higher fine-tuning. We still expect the Higgs to be light when the LH and RH

top are substantially composite (εi & mi) and at least one fermion resonance, barring accidental

cancellations, to be light and parametrically related to the top mass by m2
L ∼ M2

top/ξ. On the

other hand, when we approach the region of an elementary top, both the Higgs mass and the

fermion resonances related to the top become heavy. We then expect that the implication light

Higgs → light fermion resonances continue to apply. These arguments are also supported by the

20 The direct link between mH and mρ can be problematic for these minimal models with just one resonance. In

fact, a more detailed analysis reveals that mρ is always below 2 TeV for a 125 GeV Higgs mass (see eqs.(D.1)-(D.3)

and fig. D.1 (b,d) in appendix E), leading generally to a too large Ŝ parameter and to a tension with the bound

from direct searches reported in eq. (3.51).



3 Light top partners for a light composite Higgs 83

NQ = NS = 2, Nρ = Na = 1 - ξ = 0.1
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3-sites [119]: NQ = NS = Nρ = 2, Na = 1 - ξ ' 0.1

0 5 10 15 20 25 30
Γ f �H-ΓgL0.0

0.1

0.2

0.3

0.4

0.5

Γ f

2 Β f

(b)

Figure 3.6: Values of γf/(−γg) versus γf/(2βf ), that is the value of ξ one would get by neglecting
the gauge contribution to the Higgs potential. The points are obtained by a numerical scan, requir-
ing mH ∈ [100, 150] GeV. (a) The range of the parameters is taken as follows: miQ,miS ∈ [0, 8f ],
θqQ, θtQ, θqS , θtS ∈ [0, 2π], aρ ∈ [1/

√
2, 2]. εt, as defined in eq.(D.5), has been obtained by fixing Mtop

while mρ by fixing ξ. The green line represents ξ = 0.1. In most of the points γg ' −γf and it is
never possible to go in the region where γf � −γg. (b) The range of the parameters is taken, in the
notation of [119], as follows: g∗, g̃∗ ∈ [0, 8], MQ,MS ,m,∆ ∈ [0, 8f ], yR/(

√
2yL) ∈ [0.3, 0.6] and yL has

been obtained fixing Mtop, cutting for ξ ∈ [0.05, 0.15]. The green band represents the actual values
of ξ ∈ [0.05, 0.15]. In most of the points still γg ' −γf , but now there is a region where the gauge
contribution is negligible.

estimate in eq. (3.107). We will provide more accurate estimates of the relation among Higgs

and fermion resonance masses in the next section, where we consider in more detail some specific

classes of models.

Non-minimal models with more vectors and fermions allow the possibility to tune ξ � 1

in a different way. Since with more vectors, as we have just seen, the estimate (3.103) does

not necessarily hold, there is the possibility to have γf � |γg| (and yet heavy enough vector

resonances), so that the whole gauge contribution to the Higgs potential is sub-leading with

respect to the fermion one. All the tuning is at work in the fermion sector to get γf ' 2ξβf � βf .

This is possible, in the region of small mixing, if both the coefficients of the leading quadratic

and next-to-leading quartic terms in the mixing in γf are tuned to be small, so that γf � βf .

In such regions a double tuning is at work, needed to get a small hierarchy between v and f .

See fig. 3.6 for a comparison between the multi-fermion and multi-gauge model (e.g. the 3-sites

theory of [119]), where this kind of tuning can occur, and the multi fermion (but minimal-gauge)

model.
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3.7.3 Three Examples of Selected Models

The framework introduced in the previous sections opens up a huge set of possibilities for model

building. In fact, not only the number of spin 1 and spin 1/2 resonances to be introduced be-

low the cutoff is free, but also the Weinberg sum rules have often physically different possible

solutions. Studying in detail each of these models is well beyond the scope of this work and, as

the simplest cases are already able to produce working models which display all the interesting

aspects, we focus in the following on the case where NQ, NS , Nρ, Na ≤ 2. A schematic presenta-

tion of the results for all the different cases will be presented in the appendix D. The simplest

realization of our framework, that is the model with Nρ = Na = NQ = NS = 1 described in

section 3.7 and in appendix D, does not grossly pass the EWPT for mH ∈ [100, 150], GeV be-

cause of a too large tree-level Ŝ parameter, induced by (relatively) too light vector resonances,

mρ . 2 TeV, as can be seen in fig. D.1 (b, d). This is a direct consequence of the first relation in

eq.(3.111) and of the fact that kγ ' kβ in this model.

A straightforward way to circumvent this problem is to add more freedom either in the gauge

sector or in the fermionic sector. In the rest of this section we consider three models. The first

two, in our opinion, offer the best compromise between simplicity and viability, that is Nρ = 2,

Na = NQ = NS = 1 and NS = 2, NQ = Nρ = Na = 1. The third one is actually the simplest

possible model, with Nρ = NQ = 1 and Na = NS = 0. Here the composite sector is assumed

to contain a massless chiral bound state, identified with the RH top quark. As we will see, this

model is not realistic because it predicts a too light Higgs, but it is a counterexample to the

statement that a light Higgs predicts light fermion resonances.

For the first two models presented here and those in the appendix D we have performed a

scan of the parameters imposing the generalized Weinberg sum rules, setting the ratio v2/f2 =

ξ = 0.1, 0.2 and requiring a light Higgs boson, mH ∈ [100, 150] GeV. In all our scans we set the

top mass (roughly at the TeV scale) to be Mtop(TeV) ' 150 GeV 21.

Direct search bounds on the fermion resonance masses should be taken into account. The

present available experimental constraints are discussed in section 3.5.2. The plots presented

in this chapter, however, use only an older (and weaker) bound on the exotic fermion X with

electric charge Q = 5/3 coming from the CMS bound on double production of B′ resonances

(Q = −1/3) decaying to W−t, mB′ > 611 GeV [165], which also applies to the X search (the

signature of the final state is two pairs of same-sign di-leptons in both cases, also the efficiency

of the cuts is approximately the same):

M7/6 > 611 GeV . (3.113)

21This value is obtained by considering the running of the top Yukawa coupling in the SM from the top mass

energy scale, where it is measured, to the scale of the top partners ∼ TeV, where it is generated.
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Nρ = 2, Na = NQ = NS = 1 - ξ = 0.1
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Nρ = 2, Na = NQ = NS = 1 - ξ = 0.2
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Figure 3.7: Mass of the LFR (in GeV), before EWSB, as a function of the Higgs mass (in GeV). The
green circles represent the points where the LFR is the singlet T ′ while if it is the exotic X with charge
5/3 then they are represented by purple triangles. The masses mQ,mρ1 and mρ2 are taken in the range
[0, 8f ], aρ1 , aρ2 ∈ [1/2, 2] and amix ∈ [0, 5]; ε and mS have been obtained by fixing Mtop and ξ.

In appendix D we also comment on the models where the generalized second Weinberg sum

rules are relaxed and the Higgs potential is logarithmically divergent.

Two-vector model

The models with Nρ = 2, Na = NQ = NS = 1, are the simplest models passing the EWPT within

our set-up. A similar model with Nρ = NQ = NS = 1 and Na = 2, considered in the appendix D,

also pass the EWPT, but it is theoretically less motivated than the Nρ = 2, Na = 1 case. Indeed,

while the gauge sector of the latter can be realized, for instance, in a deconstructed model (such

as the 3-sites model of [119]), the former appears to be more exotic and unconventional. For this

reason, we have decided to focus on the Nρ = 2, Na = 1 model in the following. We assume

invariance under LR symmetry, so that ΠLR in the last row of eq.(3.75) vanishes. In the fermion

sector we take eq.(3.98) to satisfy the two sum rules (3.96) and (3.97), and keep mS 6= mQ. This

solution allows us to explore both the regions of parameter space where the LFR is a T ′ or X.

As explained in section 3.7, adding a second vector resonance allows for a higher overall mass

scale for the vectors, keeping γg fixed, and alleviate the constraints coming from the S parameter.

This can be explicitly seen in the approximation fmix = 0 and fρ1 = fρ2 = f , where we obtain

the expression (3.112) for γg, which is negative in the range 0.4 . x ≡ mρ2/mρ1 . 2.5 and

positive otherwise. It is therefore possible to tune x ' 2.5 (or x ' 0.4) and at the same time

increase mρ1 to keep γg fixed. A posteriori, the numerical scan shows that amix ≡ fmix/f . 0.3,

so that the approximation used above is valid.
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The fermion sector of this model is simple enough that it is not hard to write simple analytic

formulas for the top and Higgs mass, that go beyond the parametric estimate given in section 4.

In particular, this allows us to explicitly check that a light Higgs requires light fermion resonances.

Let us first consider the elementary tL,R region, with ωL,R < 1. In this region, at leading order

in ωL ∼ ωR, we have

M2
top '

1

2
m2
Sω

2
R(ωL +

√
2ωR)2ξ =

1

4
ε4

(mQ +mS)2

m2
Qm

2
S

ξ . (3.114)

Using eq.(3.102) for ξ � 1 and expanding βf at leading order in ωL,R, we immediately get

m2
H '

Nc

π2f2

m4
Sω

4
R(ωL +

√
2ωR)2ξ

2ω2
R − ω2

L

log
(2ω2

R

ω2
L

)
=

Nc

π2f2

m2
Qm

2
S

m2
Q −m2

S

log
(m2

Q

m2
S

)
M2
top , (3.115)

where in the last relation we have used eqs.(3.45) and (3.114). It is straightforward to derive

from eq.(3.115) an upper bound for the LFR mass mL:

mL ≤
πf√
Nc

mH

Mtop
' 1.2

(
0.1

ξ

)1/2

TeV . (3.116)

Let us now consider the region ωL < 1, ωR ' 1 (elementary tL, semi-composite tR, often found

in the numerical scan). In this region the LFR is necessarily T ′, with mL = M0 '
√

2mS .

Expanding in ωL < 1, we have

M2
top '

m2
L

4
ξ ,

m2
H '

Nc

8π2f2
m2
L

(
log ξ−1 + 8 log

(m2
Q

m2
S

)
+ log 4− 1

)
M2
top ,

(3.117)

and gives the upper bound

mL ≤
2
√

2πf√
Nc

√
log ξ−1

mH

Mtop
' 2.2 TeV for ξ = 0.1 . (3.118)

We performed the parameter scan for a light Higgs, both for ξ = 0.1 and ξ = 0.2. We show in

fig. 3.7 the relation between the LFR mass, mL, and the Higgs mass, mH , in the light Higgs

region, obtained by a numerical scan over the parameter space. The bounds in eq. (3.52) rule

out most of the region with a light X. As explained above, the vector masses can be arbitrarily

heavy, so passing the constraints on the Ŝ parameter is not an issue for this model. Also in this

case, the tuning to get a successful EWSB is between the gauge and the fermion contribution to

the Higgs potential, γg and γf .

Two-singlet model

Adding a second composite fermion, singlet of SO(4), is the minimal choice to go beyond the

simplest setup in the fermionic sector. This is already enough to increase γf and therefore to

obtain heavier vector resonances and smaller tree-level contribution to the Ŝ parameter.
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Nρ = Na = NQ = 1, NS = 2 - ξ = 0.1
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Figure 3.8: Mass of the LFR (in GeV), before EWSB, as a function of the Higgs mass (in GeV). The
green circles represent the singlet T ′ while the purple triangles represent the fermion X. All the fermion
masses are taken in the range [0, 6f ], the angles θq, θt ∈ [0, 2π] and aρ ∈ [1/

√
2, 2]. The mixing εt and the

mass mρ have been obtained by fixing Mtop and ξ respectively.

The fermionic Lagrangian we start with is the one of eq.(3.39) with NQ = 1, NS = 2. The

most general solution to the first fermionic sum rule, eq.(3.96), is given in terms of two angles

and two mixings:

εqQ = εq ~εqS = (εq cos θq, εq sin θq),

εtQ = εt ~εtS = (εt cos θt, εt sin θt).
(3.119)

We can solve eq.(3.97) for one of the remaining parameters, say εq, in terms of the remaining

ones, obtaining

εq = εt

√√√√m2
Q −m2

1S cos2 θt −m2
2S sin2 θt

m2
Q −m2

1S cos2 θq −m2
2S sin2 θq

. (3.120)

Once we impose this relation, for small mixing εt we have γf ∝ ε2t and βf ∝ ε4t , in contrast to

the 1-singlet case where γf , βf ∝ ε4. In particular, we get

γf ∝ ε2t (m2
Q −m2

1S)(m2
Q −m2

2S)(m2
2S −m2

1S)(cos 2θq − cos 2θt). (3.121)

This implies that γf can be enhanced with respect to the estimate in eq.(3.99). However γg
cannot increase too much, leading otherwise to too heavy vector resonances, and hence the

enhancement of γf should be kept small. This is confirmed by the numerical scan where we get

small deviations from the exact cancellation. In this simple, yet fundamental, observation lies

the reason why this model, like all the ones with more fermionic resonances, is able to pass the

EWPT.
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Let us consider a specific region in parameter space selected by EWSB, where εq ∼ εt ∼ ε,

mQ ∼ m2S ∼M , θq ∼ π and θt ∼ 0, with both m1S and ε much smaller than M . In this region

the coefficient of the ε2t term in γf is suppressed. We get

γf '
Nc

32π2
ε4
(

log
M2

m2
L

− 1

)
=

Nc

32π2
ε4bγ ,

βf '
Nc

32π2
ε4

(
log

M2

m2
L

+
ε4

8m4
L

(
log

m2
L

µ2
f

− 1

))
=

Nc

32π2
ε4bβ,

M2
top '

ξ

4

ε4

m2
L

,

(3.122)

where µf is the IR regulator of the spurious IR divergence arising from βf (see eq.(3.95) and

footnote 12) and mL denotes the mass of the LFR, that is clearly the singlet S1 in this region:

mL '
√
m2
S1

+ ε2/2. From these relations we obtain the estimate

mL ' f
√
π

bβ

mH

Mtop
. (3.123)

Since bβ > log M2

m2
L
& 2 for at least M > 3mL, the singlet has an upper bound of mL . 800 GeV

for ξ = 0.1. We therefore obtain that also in this case a light Higgs boson implies light fermionic

resonances. For both ξ = 0.1 and 0.2 we find that the singlet is the LFR, with a mass in the

range ∼ 300−800 GeV, see fig.3.8. A sizable portion of this region is now excluded by the bound

in eq. (3.52) from direct searches of double production of T ′ resonances, in particular the model

for ξ = 0.2 is now completely excluded. Even though the bulk of the points show a vector mass

in the same range as in the minimal model, there are nevertheless points with bigger values of

mρ so that the model can pass the EWPT

3.8 A Counter-Example: a Light Higgs and Heavy Resonances

Let us now consider a qualitatively different setup. We modify the picture presented in sec. 3.3 by

assuming that the right-handed top quark is part of the composite sector. Such a choice, which

differentiates the third family with respect to the first two, could be justified by the fact that the

top is much heavier than the other SM fermions. Since composite states should be in complete

representations of SO(4), if we assumed that the doublet qL was part of the composite sector,

then we should have added other light states in order to complete a representation of SO(4) (in

particular another doublet), which is not observed. Moreover, bounds from the measurement

of the Zbb̄ coupling do not allow to assume a composite RH bottom quark. The only available

possibility is then to consider a composite RH top quark in a (chiral) singlet representation of

SO(4). As in the previous sections we embed the LH top doublet in a 5 of SO(5), ξL, with

X = 2/3.
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Na = NS = 0, Nρ = NQ = 1 - ξ = 0.1
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Figure 3.9: Higgs mass (in GeV) as a function of the Y = 1/6 doublet mass (in TeV) in the composite
tR model, for ξ = 0.1. The blue points are obtained by a numerical scan, while the thin red line represents
the analytic estimate eq.(3.127). The two results are compatible, up to a ∼ 5% error, due to the expansion
for small ξ in eq.(3.127). In the numerical scan, the mass mQ has been taken in the range [0, 10f ], while
the mixing parameter ε has been obtained by fixing Mtop.

In order to provide a mass to the top the mixing term ε ξ̄LUtR would be sufficient since

it would give Mtop ' εsh, however the Higgs potential in this model would be quadratically

divergent and therefore we would not be able to compute the Higgs mass. To cure this issue let

us add some composite top partners and estimate the expected values of the Higgs mass in this

class of models [3]. We can easily estimate β ∼ Nc
16π2 ε

4 and therefore the Higgs mass

M2
H '

Ncε
4

2π2f2
ξ ' Nc

2π2
M2
top

M2
top

v2
' (36GeV)2. (3.124)

We see that, at this level of approximation, the Higgs mass is independent of the details of the

models and too light.

Let us now construct an explicit model in order to confirm this estimate. In order to cure the

quadratic divergence in the Higgs potential it is sufficient to add one composite fermion in the

bidoublet representation, Q, while no singlet fields S are needed, NS = 0. The leading fermion

Lagrangian is22

Lf,0 = q̄LiD/qL + t̄Ri /∇tR + Q̄(i /∇−mQ)Q+ εqS ξ̄LUtR + εqQξ̄LUQR + h.c. . (3.125)

The Weinberg sum rules (III) and (IV) obtained in section 3 do not apply in this case with

22One might think that the Lagrangian (3.125) can be obtained from eq.(3.39) with NQ = NS = 1, in the limit

εtS,tQ → ∞, in which case the singlet becomes ultra-heavy and can be integrated out. This is however not the

case, because the Weinberg sum rule (III) would imply εqS,qQ →∞, and hence a ultra-heavy doublet as well.
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NS = 0, but the expressions for the form factors and the 1-loop Higgs potential are particularly

simple. Demanding the cancellation of the quadratic divergence in the fermion sector requires

|εqQ| = |εqS | ≡ ε. Requiring also the cancellation of the logarithmic divergence in γf would imply

ε = 0, which of course is not a viable possibility. This is not an issue because we are interested

mostly in computing the Higgs mass, which is finite in this case. Keeping the logarithmic

divergence, as we explained in section 3.6.1, means that γ is scale-dependent and therefore one

has to fix ξ via some observation, rendering it not calculable. We then proceed by assuming a

given value for ξ and computing only β. Since βg � βf , we can completely neglect the gauge

sector.23 In this approximation, and at first order in ξ, we obtain the expression for the Higgs

and top masses:

M2
H '

Nc

8π2

ε4m4
Q

f2m4
1/6

ξ

(
log

m2
1/6

µ2
f

− 1

)
, M2

top '
ε2m2

Q

2m2
1/6

ξ , (3.126)

where m2
1/6 = m2

Q + ε2 is the physical mass of the composite Y = 1/6 doublet before EWSB.

From these expressions we get the estimate for the Higgs mass as

MH '
√
Nc

2π2

M2
top

v

√√√√log
m2

1/6

µ2
f

− 1 ' 36

√√√√log
m2

1/6

µ2
f

− 1 GeV , (3.127)

which is in very good agreement with eq. (3.124). As can be noticed immediately, the Higgs is

always too light (MH ' 90 GeV for m1/6 ' 6 TeV). This conclusion has also been checked by

a numerical scan of the model, which gives results in agreement with the estimate above, see

fig. 3.9. In this model the LFR is χ, with a mass (before EWSB) M7/6 = mQ. It is interesting to

notice that a light Higgs does not imply a light fermionic resonance, at least for models with a

chiral composite sector. In this class of models a heavier value for the Higgs mass can of course

be obtained by adding to the model other sources of explicit breaking of the global symmetry.

For example this is the case of the SUSY pNGB Higgs model with a composite tR studied in

ref. [121], where the extra symmetry breaking terms are required by anomaly cancellation and

for the absence of unwanted massless non-SM states.

3.9 Summary

In this chapter we constructed an effective theory in which the Higgs arises as a composite pseudo-

NGB of a spontaneously broken global symmetry of a strongly coupled sector at the ∼few TeV

scale and in which the SM fermions (the top quark in particular) get a mass via the partial

compositeness mechanism. Assuming that some vector and fermion resonances are somewhat

23Since ξ is not calculable, we can also relax the Weinberg sum rule (II) in the gauge sector, in which case we

can assume that no axial resonance is present at all.
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lighter than the typical strong coupling scale Λ, we included those states in the effective theory

and computed their contribution to the Higgs potential, which allowed us to link the Higgs mass

with the properties – the mass in particular – of these states. In order to have a calculable

potential in our effective approach, we introduce the Minimal Higgs Potential hypothesis. That

is, we require that the contribution to the potential from dynamics at the cutoff is subleading

and we regulate the quadratic and logarithmic divergencies of the calculable contribution by

imposing suitable generalized Weinberg sum rules.

After constructing various realizations of the models with different content of composite

resonances, sec. 3.4, we were able to show that in such composite Higgs models, the measured

value of the Higgs mass implies the presence of light (sub-TeV) fermion top partners, sec. 3.7.

The LHC constraints on these states, described in section 3.5.2, are already able to exclude a big

part of the parameter space of the models. We expect that the next run of the LHC at 14TeV

will be able to cover completely all the parameter space of these natural models.



CHAPTER 4

A Composite Dark Matter Model

As already mentioned in the previous chapter, the next-to-minimal symmetry breaking pattern

for composite Higgs models is SO(6)→ SO(5), which includes five NGBs in the spectrum. Under

the custodial subgroup SU(2)L × SU(2)R they transform as a bidoublet, (2,2), plus a singlet

(1,1), which are identified respectively with the Higgs doublet H and a real singlet η. This

scalar singlet can be made stable by introducing a symmetry under a parity Pη.

This opens up the possibility for this new particle to be a dark matter (DM) candidate. In

this chapter we study this issue. We construct the models following very closely the approach

described in the previous chapter, i.e. we introduce spin-1 and spin-1/2 resonances which mix

linearly with the SM fields, and then we compute the effective potential for the Higgs and the DM

candidate by assuming the MHP hypothesis and curing the UV sensitivity by suitable generalized

Weinberg sum rules. In this way we are be able to link the properties of the DM candidate (mass

and couplings), relevant to the astrophysical constraints, to the resonance spectrum, and study

how the LHC bounds on these resonances and the Higgs couplings affect the DM properties.

This chapter is based on the work done in ref. [2], where we extended the results of ref. [166].

4.1 A composite Dark Matter model

In this section we present a Composite DM model in which both the Higgs doublet H and the

scalar singlet DM particle η arise as composite pNGBs, characterized by the NGB decay constant

f , from a spontaneous symmetry breaking due to the dynamics of a new strongly coupled sector,

lying at a high scale Λ ∼ 4πf . The scenario considered here is based on the SO(6) → SO(5)

symmetry breaking pattern. The singlet η is stable thanks to a parity Pη under which

η → −η . (4.1)

The main difference between this case and models in which η is an elementary scalar (see,

e.g., refs. [167–169]) comes from derivative interactions between η and H. The universality of

the leading-order chiral Lagrangian implies that these interactions depend only on the symmetry

92
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breaking pattern and on the scale f . As showed in the previous chapter, fit of the Higgs couplings,

EW precision observables and bounds from direct searches of composite resonances constrain the

scale f to be somewhat higher than the EW scale, v2/f2 . 0.2. We can therefore expand the

chiral Lagrangian for the NGBs in powers of (|H|2, η2)/f2; up to dimension-6 terms one has [166]

Lkin ' |DµH|2 +
1

2
(∂µη)2 +

1

2f2

(
∂µ|H|2 +

1

2
∂µη

2

)2

. (4.2)

As for the MCHM, in order to provide a mass to SM fermions we assume the partial com-

positeness mechanism. Upon integrating out the heavy fermions, the SM Yukawa interactions

are generated, along with higher order interaction terms. Considering, for example, the bottom

quark, up to dimension-6 terms the effective Yukawa Lagrangian can be written as

LY uk,b ' −ybq̄LHbR
(

1− κhb
|H|2
f2
− κηb

1

2

η2

f2
+ . . .

)
+ h.c. , (4.3)

and similarly for the other SM fermions. In our explicit model all the coefficients κhf = κηf = 1,

where in general they depend on the choice of embedding of the SM fermions in (incomplete)

SO(6) representations and on the parametrization of the SO(6)/SO(5) coset, as discussed in

detail in appendix F.

As we saw in section 3.6, the mixing term between elementary and composite fields generate

an effective potential for the pNGBs at the quantum level. Assuming invariance under the parity

in eq. (4.1), the most general scalar potential, up to dimension 4 terms, is

V (H, η)eff = µ2
h|H|2 +

µ2
η

2
η2 + λh|H|4 +

λη
4
η4 + λ|H|2η2 , (4.4)

where λ is often dubbed Higgs portal coupling [170]. Assuming that 0 < −µ2
h < λhf

2 and

µ2
η − λ

µ2
h
λh
> 0, this potential has a minimum for

〈H〉 =

(
0,

v√
2

)t
, 〈η〉 = 0, where v2 = −µ

2
h

λh
≡ ξf2 ' (246 GeV)2 . (4.5)

The masses of the physical fields h and η, being h the Higgs boson, are given by

m2
H = 2λhv

2(1− ξ) , m2
η = µ2

η + λv2 , (4.6)

where the (1− ξ) factor in the Higgs mass is a correction due to a wave function normalization

effect, see eq. (4.12) in the next subsection.

Following the discussion of chapter 3 we render the scalar potential calculable by assuming the

Minimal Higgs Potential hypothesis and we impose generalized Weinberg sum rules in order to

remove the quadratic and logarithmic sensitivity to the cutoff. At one loop, the only composite

states which contribute to the scalar potential are those that mix with the elementary SM

particles, breaking the global SO(6) symmetry with such mixings. Such states are the spin-1/2
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top partners and composite spin-1 resonances, with masses of the order m2
ρ � Λ2, which mix

with the SM EW gauge bosons.

The main aim of the rest of this section is to build explicit models in order to study the

allowed range of the DM mass and Higgs portal coupling in realistic cases which, in particular,

correctly describe both the top and Higgs mass and which still evade the bounds from direct

searches of top partners at the LHC.

4.1.1 Structure and symmetries of the SO(6)/SO(5) coset

Let us review here the basic structure of next-to-minimal Composite Higgs models where the

strong sector enjoys a global symmetry SO(6) ⊗ U(1)X
1 spontaneously broken to the subgroup

SO(5)⊗ U(1)X at a scale f [45, 132, 166]. Due to this spontaneous symmetry breaking, the low

energy theory has 5 NGBs, which transform in the fundamental, 5, of SO(5). The custodial

symmetry group is contained in the unbroken group, SO(4) ∼ SU(2)L ⊗ SU(2)R ⊂ SO(5), and

the NGBs transform as a 4⊕1 ∼ (2,2)⊕ (1,1) of the custodial group. Here and in the following

we describe the five broken SO(6)/SO(5) generators as T â, with â = 1, . . . , 5. The 10 unbroken

generators of SO(5), T a, can be divided in the 6 generators of the SO(4) custodial subgroup,

T aL,R with aL,R = 1, 2, 3, and the 4 generators of the SO(5)/SO(4) coset, Tα with α = 1, . . . , 4

(see eq. (F.1) in appendix F for the explicit definition of the generators). The SM EW gauge

symmetry is identified as the subgroup GEW = SU(2)L ⊗ U(1)Y ⊂ SU(2)L ⊗ SU(2)R ⊗ U(1)X ,

where the hypercharge is defined as Y = T 3R +X.

The NGBs can be described by the Σ field

Σ =
1

f

(
h1, h2, h3, h4, η,

√
f2 − h2 − η2

)
, (4.7)

where h2 =
∑4

i=1 h
2
i and where hi and η live in the region

√
h2 + η2 ≤ f .2 The usual Higgs

doublet can can be constructed as H = 1√
2
(h1 + ih2, h3 + ih4)t. In the unitary gauge h1(x) =

h2(x) = h4(x) = 0 and h(x) ≡ h3(x). See Appendix F for more details.

The chiral Lagrangian can be written in an expansion in derivatives over the cutoff. The

leading term, with two derivatives, can be written as

Lkin =
f2

2
(DµΣ)tDµΣ , (4.8)

where Dµ = ∂µ − i
(
g0W

aL
µ T aL + g′0BµY

)
and f > v is the symmetry breaking scale, that is the

only parameter of the leading order chiral Lagrangian. To eq. (4.8) one should add the kinetic

1The U(1)X factor is needed in order to correctly reproduce the SM fermion hypercharges.
2The effect of this constraint is negligible at any order in perturbation theory and therefore does not have any

effect in any of the computation we perform in this work. In appendix F we will explicitly show the relations to

other parametrizations used in the literature.
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term for the elementary SM EW gauge bosons (we neglect QCD here since it does not play an

important role in our discussion)3

Lgauge = −1

4
W a
µνW

aµν − 1

4
BµνB

µν , (4.9)

In the unitary gauge, the chiral Lagrangian in eq. (4.8) reads

f2

2
(DµΣ)tDµΣ =

1

2

[
(∂µh)2 + (∂µη)2 +

(h∂µh+ η∂µη)2

f2 − h2 − η2

]

+
h2

8

{
g2

0

[
(W 1

µ)2 + (W 2
µ)2
]

+ (g′0Bµ − g0W
3
µ)2

}
.

(4.10)

The SM gauge boson masses are given by

m2
W =

g2
0

4
〈h〉2 , m2

Z =
(g2

0 + g′20 )

4
〈h〉2 . (4.11)

This fixes the EW scale v = 〈h〉 ≡ f
√
ξ ' 246 GeV. Given that in the vacuum 〈η〉 = 0, it is

immediate to see that the canonically normalized fields, in this parametrization, are

h→ v +
√

1− ξ hphys , η → ηphys . (4.12)

The parity η → −η, which keeps this scalar stable, corresponds to the operator

Pη = diag(1, 1, 1, 1,−1, 1) ∈ O(6) , (4.13)

and is an accidental symmetry of the leading order chiral Lagrangian, eq. (4.10). Higher derivative

terms (such as the Wess-Zumino-Witten term) in general break this symmetry. As we want this

scalar to be a viable DM candidate, we assume that this is a symmetry of the whole strong

sector, that is we take the symmetry breaking pattern to be O(6)→ O(5) [166].

Another symmetry of eq. (4.10), very relevant for the η phenomenology, is a SO(2)η ' U(1)η

generated by T 5̂ which rotates the fifth and sixth components of Σ and under which η shifts. If

the fermion mixings also respect this symmetry then η remains an exact NGB, thus its mass and

couplings from the potential vanish.

4.1.2 Composite resonances Lagrangian

The Lagrangian of the spin-1 and spin-1/2 resonances which mix with the SM gauge bosons

and fermions is completely analogous to the one for the MCHM described in section 3.4. Let us

briefly review it adapting it to the SO(6)/SO(5) coset.

3Our convention for the field strength is Wµν = ∂µWν − ∂νWµ − ig0[Wµ,Wν ] and Bµν = ∂µBν − ∂νBµ, where
Wµ ≡W aL

µ T aL .
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Vector Lagrangian

Let us consider spin-1 fields in the adjoint, ρµ = ρaµT
a ∈ 10, and in the fundamental, aµ =

aâµT
â ∈ 5 of SO(5). For simplicity we limit ourself to one copy only of each resonance. At

leading order in the number of derivatives, the Lagrangian for these fields, assumed to be lighter

than the cutoff, is

Lspin−1 = −1

4
Tr
[
ρ2
µν

]
+
f2
ρ

2
Tr
[
(gρρµ − Eµ)2

]
− 1

4
Tr
[
a2
µν

]
+

f2
a

2∆2
Tr
[
(gaaµ −∆dµ)2

]
. (4.14)

Let us also define the masses mρ = fρgρ, ma = fa
ga
∆ . As we see, this Lagrangian is formally

identical to the one in eq (3.33), but it should be kept in mind that the field content is different.

Fermion Lagrangian

In order to give mass to the SM fermions we adopt the partial compositeness scenario. The choice

of the representation of SO(6) in which to embed the SM fields is a source of model dependence,

in particular the characteristics of the scalar one-loop potential and the preservation of Pη and

of U(1)η depend on the choice of the embedding of the third generation of quarks. It has been

shown in ref. [166] that, since [Pη, T
5̂] 6= 0, the only way in which both symmetries can be

respected by the mixing terms is if the SM fermions are embedded in representations of SO(6)

with vanishing U(1)η charge.

In the following we focus on the embedding of the SM doublets qL, `L in the bi-doublet inside

the 6, with Pη = +1 and which preserves U(1)η, and the right-handed fermions uR, dR, eR in the

parity even singlet inside the 6, that is its sixth component with non-zero U(1)η charge. The

charge under U(1)X is fixed by requiring the correct hypercharge. The embedding of the SM

doublets has to be different for the mixing terms responsible for the up-type or down-type quark

masses:

ξuL =
1√
2




bL

−ibL
tL

itL

0

0




2/3

, ξuR =




0

0

0

0

0

tR




2/3

, ξdL =
1√
2




tL

itL

−bL
ibL

0

0



−1/3

, ξdR =




0

0

0

0

0

bR



−1/3

,

(4.15)

where the subscript indicate the X charge.4 We embed the SM lepton doublets and singlets in

the same way as ξdL and ξdR but with U(1)X charges X`L = XeR = −1.

4In section 4.4.2 the couplings between DM and the first two generations of quarks will be extremely important

for our phenomenological analysis in the context of DM direct detection. In order to be as general as possible,

therefore, we will consider also different embedding w.r.t. eq. (4.15).
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Let us briefly comment on the case in which the right handed top quark is embedded in a 15

of SO(6), in order to preserve the U(1)η symmetry. In this case the breaking of this symmetry,

and therefore the contribution to the η potential, comes only from the bottom quark, assuming

its right chirality is embedded in the 6. Since the bottom mixings to the composite sector are

much smaller than those of the top, we expect that in this case the singlet is much lighter,

mη . O(10) GeV. From the expression of the DM mass in eq. (4.6), assuming µ2
η > 0, this

implies that also the coupling λ is generically small: λ . 10−3. In this case the bound from the

Higgs invisible width is able to exclude such a framework for any value of ξ & 0.05. For this

reason, we will not further consider this possibility in the rest of this paper.

Let us now focus on the fermion partners responsible to give mass to the top quark, since

the mixing terms with these fermions provide the leading contributions to the effective potential.

We assume that the right-handed top is an elementary state, as all the other SM fermions. We

introduce NF vector-like composite fermions in the fundamental, F ∈ 5 with X = 2
3 (each

contains two doublets F1/6 ∈ (2, 1
6), F7/6 ∈ (2, 7

6) and one singlet F5 ∈ (1, 2
3) under SU(2)L ×

U(1)Y ), and NS vector-like singlets, S ∈ 1, of SO(5), with X = Y = 2
3 . We embed the

SM fermions in the 6 of SO(6). The leading Lagrangian for the top sector, relevant for the

computation of the one-loop effective potential, is given by

Lf = q̄LiD/qL + t̄RiD/tR +

NS∑

i=1

S̄i(i /∇−miS)Si +

NF∑

j=1

F̄j(i /∇−mjF )Fj (4.16)

+

NS∑

i=1

(
εitS ξ̄RPLUSi + εiqS ξ̄LPRUSi

)
+

NF∑

j=1

(
εjtF ξ̄RPLUFj + εjqF ξ̄LPRUFj

)
+ h.c. ,

where PL,R = 1∓γ5

2 are chirality projectors and

∇µ = ∂µ − iEµ − iqXg′0Bµ . (4.17)

In general at the same order in the expansion in derivatives it is possible to write other

invariants which do not involve the elementary fields, analogous to those of eq. (3.43). Even if

they can be phenomenologically important, since they do not contribute to the pNGB potential

at one-loop we neglect them in the following.

4.2 Analysis of the potential and parameter scans

In this section we present the main results of this approach, focusing the discussion on the

analysis of the one-loop effective potential for the h and η scalars. All the details of the compu-

tation, including the explicit formulae for the form factors, are the same as in the minimal case

presented in section 3.6, therefore we will be very brief here presenting only the most relevant
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results. Analytical approximations and full numerical results are explicitly computed using two

benchmark values for the parameter ξ = v2/f2, namely ξ = 0.1, corresponding to f ' 800 GeV,

and ξ = 0.05, corresponding to f ' 1.1 TeV.

4.2.1 Vector contribution

The gauge sector, described by the Lagrangian of eq. (4.14), contributes to the potential only

via the h2 dependence, therefore only to the µ2
h and λh coefficients of eq. (4.4). In general, this

contribution is quadratically divergent. We require the cancellation of this quadratic divergence

by imposing the sum rule

(WSR 1)gauge :
f2

2
+ f2

a − f2
ρ = 0 , (4.18)

while the logarithmic divergence is removed requiring

(WSR 2)gauge : f2
am

2
a = f2

ρm
2
ρ . (4.19)

We use these two sum rules to express fa and ma in terms of the other parameters; note that

this fixes all the parameters of the aµ fields relevant for the effective potential, since only the

combination g2
a/∆ enters in the potential. The sum rule of eq. (4.18) requires a bound fρ > f/

√
2,

that is compatible with the partial UV completion (PUVC) criterion introduced in ref. [105] which

predicts fρ ∼ f .
In order to obtain a simple analytic expression for the gauge contribution to the potential let

us take g′ = 0, fρ = f and expand for g2 � 1. We obtain

(µ2
h)g '

9g2f2m2
ρ

32π2
log 2 , (λh)g ' −9g4f4

256π2

(
log

32m2
ρ

m2
W

− 5

)
. (4.20)

4.2.2 Fermion contribution

In general, the fermion sector contributes to all the coefficients of the potential in eq. (4.4). To

cure the quadratic divergence we impose the sum rules

(WSR 1)ferm :





NF∑

j=1

|εjqF |2 =

NS∑

i=1

|εiqS |2 ,

NF∑

j=1

|εjtF |2 =

NS∑

i=1

|εitS |2 .
(4.21)
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In order to cancel the residual logarithmic divergence we further require

(WSR 2)ferm :





NF∑

j=1

m2
jF |εjqF |2 =

NS∑

i=1

m2
iS |εiqS |2 ,

NF∑

j=1

m2
jF |εjtF |2 =

NS∑

i=1

m2
iS |εitS |2 .

(4.22)

The rest of the section is devoted to analyze in more detail two specific models. First we

consider the minimal scenario which allows to enforce both sum rules and to reproduce the top

mass, that is with only one fundamental F and one singlet S. Then we study the next-to-

minimal scenario, in which we add a second singlet, since it allows more freedom in exploring

the parameter space of these composite Higgs models.

Minimal case: NF = NS = 1

In this minimal model it is straightforward to obtain the mass spectrum of the top partners

before EWSB from the Lagrangian of eq. (3.39). The SM top is massless at this level, the singlet

S gets a mass M2
S = m2

S + |εtS |2, the doublet F1/6 has a mass M2
1/6 = m2

F + |εqF |2 while the

other doublet, F7/6, and the other singlet, F5, are degenerate with a mass M7/6 = MF5 = mF .

After EWSB the fermions with same electric charge mix and these masses shift by an amount of

the order O(vε/m). From eq. (3.93) we obtain the top mass, at leading order for small ξ, [1]

Mtop '
|εqF εtS |√
2M1/6MS

∣∣∣∣mS
εtF
εtS

+mF
εqS
εqF

∣∣∣∣
√
ξ . (4.23)

In this minimal setup, the first sum rule is solved by imposing

|εqF |2 = |εqS |2 ≡ ε2Q and |εtF |2 = |εtS |2 ≡ ε2T . (4.24)

The second sum rule further fixes

mF = mS = m , (4.25)

where we used the field basis where the masses are real and positive. Assuming for simplicity

that the mixing parameters are real, the only solution (up to field redefinition) for which the

potential does not vanish is

εqF = εqS = εQ , εtF = εtS = εT . (4.26)

In this case, it turns out that

(µ2
η)
f

f2
= λfη = 0 , λf = λ = −(µ2

h)f

f2
. (4.27)
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Since µ2
η does not receive any contribution neither from the gauge sector nor from the fermion

sector, it vanishes and therefore the singlet will be light (its mass is ξ-suppressed, as the Higgs

mass, eq. (4.6)).

In this simple model it is straightforward to obtain exact analytic formulae for these coef-

ficients, however in order to get an understanding of the behavior of this model it is useful to

make some approximations. For example assuming big mixings, that is m2 �M2
1/6,M

2
S , we get

M2
top ' 2m2ξ and

λ = λf = −(µ2
h)f

f2
' 1

2
λfh '

NcM
2
top

4π2v2

M2
1/6M

2
S

f2(M2
1/6 −M2

S)
log

M2
1/6

M2
S

, (4.28)

which is evidently always positive. The top mass fixesm = M7/6 ∼ 350 GeV which, as we showed

in section 3.5.2, is experimentally excluded, therefore this region is strongly disfavored. In the

opposite limit, that is ε2Q, ε
2
T � m2, we obtain M2

top ' 2ξε2Qε
2
T /m

2 and

λ = λf = −(µ2
h)f

f2
' 1

2
λfh '

NcM
2
top

4π2v2

m2

f2
. (4.29)

In this case, the scale of the top partner masses m has to be smaller than ∼ 1.5f ' 1.2 (1.6) TeV

for ξ = 0.1 (0.05), in order to reproduce the correct Higgs mass. We have checked numerically

that, indeed, the relation λf ' 1
2λ

f
h holds, up to O(20%) corrections, in all the parameter space.

This fact, using eq. (4.6) and the fact that the gauge contribution to λh is always negligible,

allows us to conclude that in this model, for a given ξ, the Higgs mass fixes both the DM mass

and portal coupling

mη '
1

2
mH ' 63 GeV , and λ =

m2
η

v2
' 1

4

m2
H

v2
' 0.065 . (4.30)

Let us finally discuss how ξ can be tuned to realistic values, in particular our benchmark

values ξ = 0.1, 0.05. From the relation − (µ2
h)f

f2 ' 1
2λ

f
h and eq. (4.6) we get

ξ ' 1

2
− (µ2

h)g

m2
H

2ξ , (4.31)

where we neglected the gauge contribution to λh since it is always negligible with respect to

the fermionic one. The gauge contribution to µ2
h is therefore necessary in order to reduce ξ.

Eq. (4.20) allows to fix the composite vector mass as a function of the Higgs mass (for a given

value of fρ/f , which has been set to 1 in this example)

mρ ∼
√

2

log 2

π

3

mH

mW

v√
ξ
' 2 TeV (for ξ = 0.1) . (4.32)

From eq. (4.31) we see that, in absence of the gauge contribution, the natural value of ξ would

be ∼ 0.5. Therefore, we can estimate the amount of tuning needed to get a smaller value with

the simple relation

∆ ∼ 1

2ξ
, (4.33)
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NF = 1, NS = 1
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Figure 4.1: Here we show the distribution of the fine-tuning ∆, computed summing in quadrature
the logarithmic derivatives of ξ with respect to all the free parameters of the model after imposing the
Weinberg sum rules, versus mη. The left plot is for ξ = 0.1 while the right one is for ξ = 0.05. All the
points here reproduce the correct top and Higgs masses. The blue points pass the direct searches bounds
described in section 4.3.2, the orange ones do not.

that is, a ∼ 20% tuning for ξ = 0.1. Such a low amount of tuning in this model is due to the

fact that the extreme simplicity of the model after imposing the Weinberg sum rules fixes − (µ2
h)f

f2

to be of the same order (actually, a factor of 2 smaller) of λh, see eqs. (4.28, 4.29). This and

the relations in eq. (4.27) are non-generic features of these kind of models: in general the mass

term in the potential is expected to be generated at quadratic order in the mixings while the

self-coupling term only at quartic order, so that
∣∣∣∣

(µ2
h)f

f2λfh

∣∣∣∣ would be naturally much bigger than 1

and therefore the needed amount of tuning much larger. For this reason, in order to assess with

more generality the viability of these DM model, in the next section we study also a non-minimal

model, in which this more generic feature is indeed present.

To verify the conclusions obtained by our analytic study, we performed a numerical parameter

scan of the model, extracting randomly the parameters fρ ∈ [ 1√
2
f, 2f ], εT ∈ [0.2f, 6f ],m ∈ [0, 6f ]

and obtaining εQ by requiring the correct top mass at the TeV scaleMtop(1 TeV) ' 155 GeV. The

vector mass mρ finally has been fixed by requiring the desired value of ξ (we took as benchmark

points ξ = 0.1 and ξ = 0.05). After computing the full potential with the chosen parameters, we

selected only the points with a Higgs mass between 120 GeV and 130 GeV.5 As can be seen from

5This loose interval has been chosen in order to obtain a sufficient number of points from the scan and because
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fig. 4.1, our scan confirms the analytical estimations presented above, in particular the relation

in eq. (4.30), within a few percent deviation. For each point of the scan we computed the fine

tuning in ξ adding in quadrature the logarithmic derivatives of ξ with respect to all the free

parameters of the model after fixing the Weinberg sum rules (that is ci ∈ {fρ/f,mρ,m, εT , εQ}),

∆ =

√√√√∑

i

(
∂ log ξ

∂ log ci

)2

, (4.34)

and found that ∆−1 ' 10% for ξ = 0.1 and ∆−1 ' 5% for ξ = 0.05, confirming the estimate of

eq. (4.33).

Next-to-minimal case: NF = 1, NS = 2

Let us now move to discuss the next-to-minimal scenario with one fundamental and two fermionic

singlets. Also in this model, the mass spectrum before EWSB can be easily obtained from

eq. (3.39). The mass of the fields in the fundamental is the same as in the previous model, while

the two singlets now have a mass

M2
S1,2

=
1

2

{
m̃2 ∓

√
m̃2 − 4

[
m2

1Sm
2
2S + (ε1tS)2m2

2S + (ε2tS)2m2
1S

]}
, (4.35)

where we defined m̃2 ≡ m2
1S +m2

2S + (ε1tS)2 + (ε2tS)2. In the limit where m2S is much bigger than

the other masses, these two expressions reduce to M2
SX=1,2

' m2
XS + (εXtS)2. From eq. (3.93) we

get the top mass, at leading order in ξ � 1

Mtop '

√
ξε1qF ε

1
tSε

2
tS

∣∣∣∣
m1Sm2Sε

1
tF

ε1tSε
2
tS

+ mF
εqF

(
m1Sε

2
qS

ε1tS
+

m2Sε
1
qS

ε2tS

)∣∣∣∣
√

2MF1/6

√
(M2

S2
+M2

S2
)2 − (M2

S2
−M2

S2
)2

. (4.36)

In this case the most general solution to the first sum rule is (assuming real mixings)

(WSR 1)ferm :




εqF = εQ , ε1qS = εQ cos θ , ε2qS = εQ sin θ ,

εtF = εT , ε1tS = εT cosφ , ε2tS = εT sinφ .
(4.37)

After imposing this, the second sum rule becomes

(WSR 2)ferm :




m2
F = m2

1S cos2 θ +m2
2S sin2 θ ,

m2
F = m2

1S cos2 φ+m2
2S sin2 φ .

(4.38)

Solving these two conditions in terms of m2S and φ, up to arbitrary signs, we get

(WSR 2)ferm :




m2S =

1

sin θ

√
m2
F −m2

1S cos2 θ ,

sinφ = sin θ .

(4.39)

a O(5) GeV deviation in mH does not have a significant relevance in our models. Moreover, we expect some small

correction to m2
H to arise from the bottom quark mixing, which we didn’t include in the scan.
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Without loss of generality we take m2S > m1S . This and eq. (4.39) imply that the relation

m2
F > m2

1S has to be satisfied.

In this model, from our numerical parameter scans, we find two characteristic regions de-

pending on the values of mF and sin θ. In the limit of small mF , that is of big mixing terms, the

DM quadratic term µ2
η goes to zero, so the DM mass is expected to be of the order of the Higgs

mass, and, like in the minimal model, the other coefficients are related by O(1) factors:

λ = λf = −(µ2
h)f

f2
' 1

2
λfh '

Ncm
2
F

8π2f4
(9 + 7| sin θ|)

ε2Qε
2
T

ε2Q − ε2T
log

ε2Q
ε2T

, (4.40)

where we fixed m1S = mF /2 in order to respect the bound from the second sum rule and to

simplify the expression. In this region this model behaves like the minimal model discussed in

the previous section, in particular we expect the DM mass to be mη ∼ 63 GeV and the coupling

λ ∼ 6 × 10−2, eq. (4.30). A similar result is obtained by expanding for small mixings εQ and

εT (in order to obtain simple analytic expressions) and going in the sin θ → 1 limit, due to a

term proportional to log sin2 θ in the leading term in µ2
h and µ2

η, as in eq. (4.41). In this case we

exactly reproduce the relations of eq. (4.29), and therefore the same conclusions apply.

A different region is reached (always in an expansion for small mixings) in the limit of big

mF � f and small sin θ � 1, that is with a hierarchy m2S � mF � m1S ∼ f . In this case we

obtain

(µ2
h)f ' − Nc

8π2

m2
F (ε2Q − 2ε2T )

f2
log

1

sin2 θ
,

µ2
η '

Nc

4π2

m2
F ε

2
T

f2
log

1

sin2 θ
,

λfh '
Nc

16π2f4

[
−2(ε2Q − 2ε2T )2 + (ε4Q + 4ε4T ) log

m2
F

m2
S

]
,

λ ' Nc

4π2

ε2T
f4

(
ε2Q − 2ε2T + ε2T log

m2
F

m2
S

)
.

(4.41)

In this case the DM mass can be arbitrarily high (for big mF and small sin θ), while in order

to obtain the correct EW scale, that is to suppress (µ2
h)f , it is necessary to tune ε2Q ∼ 2ε2T .

If this tuning is avoided here, then the gauge contribution to µ2
h has to provide the necessary

cancellation, which will imply higher values of the vector mass mρ than the case in eq. (4.32). In

both cases, we expect the tuning in this region to be higher than in the cases examined previously,

for which the expected tuning is as in eq. (4.33). Taking ε2Q ∼ 2ε2T , from the expression for λh
in eq. (4.41) we can fix εT by requiring the correct Higgs mass and then substitute this in the

formula for λ. We obtain

λ ' m2
H

4v2
' 0.065 , (4.42)

which is the same value we obtained in the minimal model.



4 Analysis of the potential and parameter scans 104

NF = 1, NS = 2, ξ = 0.1

0 100 200 300 400 500 600 700

0.03

0.04

0.05

0.06

0.07

mΗ !GeV"

Λ

0 100 200 300 400 500 600 700
0

2

4

6

8

10

12

mΗ !GeV"
"
#
1
!$"

NF = 1, NS = 2, ξ = 0.05

0 100 200 300 400 500 600 700

0.030

0.035

0.040

0.045

0.050

0.055

0.060

0.065

mΗ !GeV"

Λ

0 100 200 300 400 500 600 700
0

1

2

3

4

5

mΗ !GeV"

"
#
1
!$"

Figure 4.2: In the left column we show the distribution of the points obtained from the scan of the
next-to-minimal model in the (mη, λ) plane, while in the right column we show the distribution of the
fine-tuning ∆, computed summing in quadrature the logarithmic derivatives of ξ with respect to all the
parameters of the model, versus mη. The upper row is for ξ = 0.1 while the lower one for ξ = 0.05. All
the points here reproduce the correct top and Higgs masses. The blue points pass the direct searches
bounds described in section 4.3.2, the orange ones do not.

Also in this case we performed a numerical parameter scan of the model, extracting randomly

fρ ∈ [ 1√
2
f, 2f ], εT ∈ [0.2f, 6f ], mS ∈ [0, 8f ], mF ∈ [mS , 8f ], θ ∈ [0, π2 ] and obtaining εQ by
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requiring the correct top mass at the TeV scale Mtop(1 TeV) ' 155 GeV. As in the minimal

model, the vector mass mρ has been fixed by requiring ξ = 0.1 (or 0.05) and we selected only

the points with a Higgs mass between 120 GeV and 130 GeV. From these scans we observe that,

even when relaxing the tuning condition ε2Q ∼ 2ε2T , the value of the coupling λ remains always of

the same order of magnitude, that is in the range 3× 10−2 . λ . 7× 10−2, while the DM mass

can vary from mη ∼ mH/2 up to mη ∼ O(700) GeV, see figure 4.2.

Computing the fine-tuning as presented in the minimal model, we find that for mη . 200

GeV most of the points present ∆−1 ∼ ξ with a tail of points with ∆−1 . 0.5%, as can be seen

in the right panels of figure 4.2. Increasing mη the fine-tuning increases: for mη ' 600 GeV we

have 0.5% . ∆−1 . 1%.

Relaxing the second Weinberg sum rules

In order to assess the generality of our prediction for λ ∼ 6× 10−2, which we obtain both in the

minimal and in the next-to-minimal models presented above, we also consider a generalization

of the next-to-minimal model in which we impose only eq. (4.37), relaxing the second Weinberg

sum rules of eq. (4.39), which renders the effective potential incalculable. In particular, relaxing

the second sum rules leaves a logarithmic divergence (i.e. a scale dependence) in µ2
h and µ2

η.

On the other hand, the quartic couplings λ, λh and λη are still scale-independent and therefore

calculable. As a consequence, both ξ and m2
η can not be explicitly computed in this case but

need to be fixed as boundary conditions.

Since we are mostly interested in the range of λ given the measured Higgs mass, we performed

a parameter scan of this model fixing ξ = 0.1 and extracting randomly εT ∈ [0.2f, 6f ],m1S ,mF ∈
[0, 8f ], m2S ∈ [m1S , 8f ], θ ∈ [0, π2 ], φ ∈ [0, π2 ] and obtaining εQ by requiring the correct Mtop.

6

For each point we computed λ and mH and selected only the points with mH between 120 GeV

and 130 GeV. As shown in the left panel of figure 4.3, we obtain that λ ranges from ∼ 3× 10−2

and ∼ 8 × 10−2, with the distribution of the points peaked near λ ∼ 6 × 10−2, thus confirming

the range obtained in the cases where both Weinberg sum rules were being imposed. The DM

mass mη, not being calculable, is in this case a free parameter.

4.3 Phenomenological analysis – part I: LHC

In this section we analyze the constraints placed on the parameter space of our Composite DM

model by the LHC. In section 4.3.1 we discuss the bound on the invisible Higgs decay width,

while in section 4.3.2 we consider direct searches of composite resonances.

6We took into consideration only the fermion sector, since the gauge contribution to the Higgs mass is always

negligible due to the g4 factor as well as a numerical suppression, see eq. (4.20).
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Figure 4.3: In the left plot we show the points obtained from the parameter scan in the model with
NS = 2, NF = 1 relaxing the second Weinberg sum rules, in the (mH , λ) plane. In the right one we show
the lightest top partner masses, the green line is a reference line for MF7/6

= MS1
. The blue points pass

the direct searches bounds described in section 4.3.2, the orange ones do not.

4.3.1 Invisible Higgs decay width

If mη < mh/2, the Higgs boson can decay invisibly into two DM particles. The invisible decay

width corresponding to this process is given by [166]

Γinv(h→ ηη) =
v2

32πmH

(
m2
Hξ

v2
√

1− ξ − 2λ
√

1− ξ
)2
√

1−
4m2

η

m2
H

θ(mH − 2mη) . (4.43)

This can be rephrased in terms of the following invisible branching ratio

BRinv ≡
Γinv(h→ ηη)

Γ ξ
SM + Γinv(h→ ηη)

, (4.44)

where Γ ξ
SM is the decay width of the Higgs boson into SM particles obtained including the

deviations of the Higgs couplings in eqs. (3.49, 3.50). Writing explicitly BRinv as a function of

the DM mass and the Higgs portal coupling – using eqs. (4.43, 4.44) – it is possible to draw

an exclusion curve in the plane (mη, λ) using the constraint on BRinv described in section 3.5.1

(figure 3.4). We will show this bound in section 4.5, together with all the other phenomenological

constraints that we will derive in the following sections.
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4.3.2 Direct searches of composite resonances

Let us now apply to this model the experimental constraints from direct searches at the LHC of

spin-1 and spin-1/2 resonances presented in section 3.5.2.

The spectrum of spin-1 resonances in this next-to-minimal model is the following: the adjoint

of SO(5) (ρaµ), with masses of the order mρ, contains a (3,1)⊕(1,3)⊕(2,2) of SU(2)L⊗SU(2)R

while the fundamental of SO(5) (aâµ), with mass ma, contains (2,2)⊕(1,1). We apply to mρ the

approximate bound of eq. (3.51), albeit for a completely consistent bound a dedicated collider

study would be necessary.

Also for the top partners of this model, in particular the doublet F7/6 and the lightest singlet

S1, we apply the constraints of eq. (3.52). In this case, the difference between the minimal

and the next-to-minimal composite Higgs model is the presence of another fermion as part of the

fundamental ofH. In particular the field F , in the 5 of SO(5), includes – other than the bidoublet

– also a singlet F5 which is degenerate in mass with the F7/6 doublet. This field is odd under the

parity Pη, which implies that it does not mix with the top and that its only allowed two-body

decay channel is F5 → tη, where η is stable and detected only as missing energy. Although the

study of this decay can be a promising source of new bounds, in the work presented here we do

not research further this direction. Aside from this point, as described in section 3.52 we expect

that the constraints on the top partners would be dominated by the bound from searches of F7/6

since it provides the strongest bound.

In figure 4.4 we present the results of the parameter scans we performed for the two mod-

els (the minimal in the upper row, the next-to-minimal in the lower one) showing the points

which reproduce the correct top and Higgs masses, as well as the desired value of ξ, in the

plane (MS1 ,MF7/6
). The blue (orange) points are those which pass (do not pass) the bounds of

eqs. (3.51, 3.52) while the green is a reference for the two regions specified before. We see that

the models with lower tuning, ξ = 0.1, are already on the verge to be excluded by direct searches

and also for ξ = 0.05 the bounds cut a sizable part of the parameter space of the models.

4.4 Phenomenological analysis – part II: astrophysics

In this section we analyze all the relevant bounds placed on the parameter space of our Composite

DM model by the most constraining DM searches currently ongoing in high-energy astrophysics.

In section 4.4.1 we discuss the DM relic abundance, while in section 4.4.2 we analyze the result

of the LUX experiment in the context of direct detection of DM particles. In section 4.4.3 we

study indirect detection experiments, focusing in particular on the measurement of the antiproton

energy spectrum.



4 Phenomenological analysis – part II: astrophysics 108

NF = 1, NS = 1

0 500 1000 1500 20000

200

400

600

800

1000

MS1 !GeV"

M
F 7
#6!Ge

V
"

0 500 1000 1500 2000 2500 30000

200

400

600

800

1000

1200

1400

MS1 !GeV"

M
F 7
#6!Ge

V
"

NF = 1, NS = 2

0 200 400 600 800 1000 1200 14000

500

1000

1500

2000

2500

3000

MS1 !GeV"

M
F 7
#6!Ge

V
"

0 500 1000 1500 2000 25000

1000

2000

3000

4000

MS1 !GeV"

M
F 7
#6!Ge

V
"

Figure 4.4: In the upper (lower) row we show the lightest top partner masses (before EWSB)

in the minimal (next-to-minimal) model with for ξ = 0.1 [0.05] in the left [right] plot. The

points reproduce the correct top and Higgs masses, up to a ∼ 5 GeV tolerance on mH . The blue

points pass the selection while the orange ones are excluded by direct searches of top partners

and vector resonances, eqs. (3.51, 3.52). The green line is a reference for MF7/6
= MS1 .

4.4.1 Relic density

The DM scenario considered here is the standard one for Weakly Interacting Massive Particles

(WIMP), in which the η DM candidate is a weakly-interacting cold thermal relic. According
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to this paradigm, in the early Universe DM particles are kept in thermal equilibrium with the

other species in the thermal bath because processes in which a pair of DM particles annihilate

occur at the same rate as those in which they are created. As the Universe expands and cools,

however, the thermal energy is no longer enough to produce the massive DM particles with a fast

enough rate and also their number density dilutes due to the expansion of the Universe, making

more and more rare the annihilation process. This brings the DM particles out of the thermal

equilibrium and their number density “freezes-out”, that is scales in the same way as the entropy

density.

The evolution of the DM number density n(x) during the expansion of the Universe, being

x ≡ mη/T where T is the temperature, is quantitatively described using a Boltzmann equation.

In terms of the yield Y(x) = n(x)/s(x), where s(x) is the entropy density, this equation reads

dY

dx
= −Z(x)

[
Y2(x)−Y2

eq(x)
]
, (4.45)

where

Z(x) ≡
√

π

45

mηMPL

x2

√
g∗(T )〈σvrel〉(x) , (4.46)

MPL = 1.22 × 1019 GeV is the Planck mass and g∗(T ) is the number of relativistic degrees of

freedom. The thermally averaged annihilation cross-section is given by

〈σvrel〉(x) =

∫ ∞

4m2
η

ds
s
√
s− 4m2

ηK1(
√
s/T )

16Tm4
ηK

2
2 (mη/T )

σvrel(s) , (4.47)

where s is the center of mass energy squared, Kα=1,2 are the modified Bessel functions of second

kind and σvrel(s) is the total annihilation cross-section times relative velocity of two DM particles.

At the equilibrium

Yeq(x) =
45

4π4

x2

heff(T )
K2(x) , (4.48)

where heff(T ) is the effective entropy.7 The integration of the Boltzmann equation gives the yield

today, Y0, which is related to the DM relic density through

Ωηh
2 =

2.74× 108mηY0

GeV
, (4.49)

where Ωη ≡ ρη/ρc is the ratio between the energy density of DM and the critical energy density of

the Universe and h ≡ H0/(100 km/s/Mpc) is the reduced value of the present Hubble parameter.

We solved numerically the Boltzmann equation in eq. (4.45), requiring to reproduce the value

observed by the Planck collaboration, ΩDMh
2 = 0.1199± 0.0027 (68% C.L.) [172].

7Solving numerically the Boltzmann equation, we keep the temperature dependence both in g∗(T ) and heff(T )

(see ref. [171]).
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Figure 4.5: Left panel: thermally averaged annihilation cross-section 〈σvrel〉(x) evaluated at the typical
freeze-out temperature for a weakly-interacting DM particle, namely Tf = mη/xf with xf = 20. Right
panel: DM relic density Ωηh

2 in eq. (4.49) compared with the 3σ interval measured by the Planck
collaboration (green band). We show two different values ξ = 0.1 (solid line) and ξ = 0.05 (dashed line)
while we fix λ = 0.065 as suggested by eqs. (4.30, 4.42).

In our analysis we included the annihilation processes ηη → f̄f , ηη → W+W−, ηη → ZZ,

ηη → hh. The relevant SM fermions entering in the computation are the bottom and the top

quark. Moreover, below the kinematical threshold for the annihilation into two on-shell gauge

bosons, we also include the three-body processes ηη → WW ∗, ηη → ZZ∗. Given the great

precision reached by the measurement of the relic abundance, in fact, the inclusion of these

radiative effects is mandatory in order to obtain an accurate matching [173].8 Let us now discuss

the results of our analysis from a more quantitative point of view.

In the left panel of figure 4.5 we plot the thermally averaged annihilation cross-section at the

freeze-out epoch, i.e. assuming xf = 20, as a function of the DM mass mη, for the benchmark

values ξ = 0.1 and ξ = 0.05. We fix λ = 0.065, as suggested by eqs. (4.30, 4.42). Going from

small to large values for the DM massmη it is possible to recognize the Higgs resonance (mη ≈ 63

GeV), the two-body threshold for annihilation into two on-shell W bosons (mη ≈ 80 GeV) and the

effect of the momentum-dependent interactions of the chiral Lagrangian in eq. (4.2). The latter,

growing proportionally to the square of the total energy in the c.o.m., becomes important for

large values of the DM mass enhancing the annihilation cross-section. Finally, the dip around 130

GeV for ξ = 0.1 (180 GeV for ξ = 0.05) corresponds to the value of mη that solves the equation

8See refs. [174, 175] for a more general discussion about the role of radiative corrections for the computation

of the relic abundance.
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s−2λξ(1− ξ)/v2 = 0, with s = 4m2
η/(1−v2

rel/4) and vrel ≈ 1/2 at the freeze-out. This condition

corresponds to an accidental cancellation between the derivative and the λ contribution to the

η-η-h vertex (see appendix F and ref. [166]).

In the right panel of figure 4.5 we plot, as a function of the DM mass mη, the value of the

relic density in eq. (4.49) compared with the 3σ interval measured by the Planck collaboration.

As before, we take ξ = 0.1 and ξ = 0.05, with λ = 0.065. At the qualitative level the result can

be understood bearing in mind that a naïve but useful approximated solution of the Boltzmann

equation is given by
Ωηh

2

0.1199
' 3× 10−26 cm3s−1

〈σvrel〉(xf )
. (4.50)

As a consequence the relic abundance retraces, upside down, the same contour of the thermally

averaged annihilation cross-section.

In section 4.5 we will present our numerical results for the computation of the relic density

from a more general viewpoint as contour plot in the plane (mη, λ). In this way we will be able

to compare the region of the parameter space in which the model can reproduce the observed

value of the relic abundance with the other constraints analyzed in the rest of this paper.

4.4.2 Direct detection

WIMP Dark Matter particles present in the galactic halo can scatter elastically with matter

in the Earth. Experiments for direct detection of DM aim to detect such rare DM scatterings

with a target nucleus of a detector by measuring the nuclear recoil energy. To reduce the

natural background these experiments place their detectors beneath the Earth surface. The

LUX experiment has recently reported the most stringent limit on the spin-independent DM-

nucleon elastic cross-section σSI [176].

In our model the spin-independent DM-nucleon elastic cross-section is generated by two types

of diagrams. On the one hand, the η-η-h vertex in the chiral Lagrangian in eq. (4.2) generates

a tree-level contribution via the exchange in the t-channel of the Higgs boson which, in turn,

couples to quarks and gluons inside the nucleon. On the other one, the Yukawa Lagrangian in

eq. (4.3) contains a contact interaction between DM and quarks proportional to (mq/f
2)η2q̄q.

Note that in both cases we have a scalar-mediated interaction with quarks, i.e. the interactions

involving quarks are always proportional to the scalar operator mq q̄q. The momentum transfer

in these processes is given by q2 = −2mXeEre � m2
H (where the mass of a nucleus of Xenon is

mXe = 121 GeV while for the typical kinetic recoil energy one has Ere ∼ few keV), therefore it

is possible to integrate out the Higgs and to neglect the effect of the derivative interactions. It

is then possible to describe the DM interaction via a single operator and a few parameters aq:

LDD
η ⊃

∑

q

aqmqη
2q̄q , (4.51)
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In order to write down explicitly these coefficients in our model, we need to specify the contact

interactions between DM and the first two generations of quarks. Since the computation of

the spin-independent elastic cross-section is the only place in which these interactions play an

important phenomenological role, we decided to distinguish between two cases

Case 1 : aq=u,d,c,s =
λ(1− 2ξ)

m2
H

, aq=t,b =
λ(1− 2ξ)

m2
H

+
ξ

2(1− ξ)v2
, (4.52)

Case 2 : aq=u,d,c,s,t,b =
λ(1− 2ξ)

m2
H

+
ξ

2(1− ξ)v2
. (4.53)

In the first case – eq. (4.52) – we set to zero the contact interaction between η and all the

quarks belonging to the first two generations. This setup can be easily realized, for instance,

considering the embedding of the right handed quarks of the first two generations into the 15 of

SO(6). The only non-zero contribution to aq=u,d,c,s, as a consequence, arises from the t-channel

exchange of the Higgs boson. The coefficients aq=t,b receive, in addition to the term generated by

the t-channel exchange of the Higgs, an extra contact interaction from the Yukawa Lagrangian

in eq. (4.3); according to the discussion in section 4.1.2, this contribution has been computed

assuming the embedding of the bottom and top quark into the fundamental representation 6 of

SO(6). In the second case – eq. (4.53) – we assumed non-zero contact interactions also for the

quarks belonging to the first two generations, adopting the same embedding into the 6 of SO(6)

characterizing the top-bottom sector.

Given the operator in eq. (4.51), the spin-independent DM-nucleon elastic cross-section me-

diated by scalar interactions can always be parametrized as

σSI =
1

π

(
mN

mη +mN

)2 [Zfp + (A− Z)fn]2

A2
, (4.54)

where mN = (mn +mp)/2 = 938.95 MeV is the nucleon mass while Z and A−Z are the number

of protons and neutrons inside the nucleus, with Z = 54 and A = 130 for a nucleus of Xenon. In

eq. (4.54) fp and fn describe the coupling between DM and, respectively, protons and neutrons.

They are given by

fn,p =
∑

q=u,d,s

f
(n,p)
Tq

aqmn,p +
2

27
fTG

∑

q=c,b,t

aqmn,p , (4.55)

where for the nuclear matrix elements we take [177,178] f (n)
Tu

= 0.026, f (n)
Td

= 0.020, f (p)
Tu

= 0.020,

f
(p)
Td

= 0.026, f (n,p)
Ts

= 0.043, and fTG = 1− f (n,p)
Tu

− f (n,p)
Td

− f (n,p)
Ts

= 0.911.

We show our results in figure 4.6. In the left panel we compare the spin-independent elastic

cross-section computed in our model with the bound set by the LUX experiment. Following our

choice of benchmark values, we plot σSI for λ = 0.065 and for ξ = 0.1, ξ = 0.05. Moreover, for

definiteness, we show only the setup corresponding to eq. (4.52). The bound of LUX turns out
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Figure 4.6: Left panel: comparison between the spin-independent elastic cross-section σSI in eq. (4.54)
and the bound extracted by the LUX experiment (the region above the red line is excluded). We plot
the value of σSI corresponding to λ = 0.065 limited to case 1 in eq. (4.52), with ξ = 0.1 (green solid line)
and ξ = 0.05 (green dashed line). Right panel: region of the parameter space (mη, λ) excluded by the
LUX experiment. We show the corresponding bound for ξ = 0.1 (red solid line) and ξ = 0.05 (red dashed
line), considering both case 1 in eq. (4.52) (lighter red) and case 2 in eq. (4.53) (darker red).

to be very stringent, and only values of DM mass larger than 200 GeV are allowed. The two lines

for ξ = 0.1 and ξ = 0.05 are almost indistinguishable. The difference between these two values,

in fact, starts to be significant when λ(1 − 2ξ)/m2
H < ξ/2(1 − ξ)v2, i.e. for λ . 10−2. In the

right panel of figure 4.6 we illustrate the difference between case 1 and case 2 in eqs. (4.52, 4.53)

showing the bound of the LUX experiment in the parameter space (mη, λ), both for ξ = 0.1 and

ξ = 0.05. For small values of λ, i.e. λ . 10−2, the role of the additional contact interactions in

case 2 starts to be significant, pushing the excluded region towards larger values of DM mass if

compared with those allowed in case 1. For mη & 150 GeV, where the LUX bound can exclude

only large values of λ & 10−2 in order to compensate the m−2
η suppression in σSI, the difference

between case 1 and case 2 is less relevant.

In section 4.5 we will use the result in the right panel of figure 4.6 in order to combine

the bound of LUX with all the other phenomenological constraints under investigation in our

analysis.

4.4.3 Indirect detection

DM annihilation into lighter SM particles can still occur in regions of relatively high DM density

in the halo of the Milky Way galaxy. This process leads, eventually, to a flux of stable particles
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– e.g. photons, positrons, antiprotons and neutrinos – that could be detectable from Earth

[179,180]. The major task that has to be addressed in order to detect such signal is to understand,

for each of the stable species mentioned above, the contribution of the astrophysical background,

mostly originated from the interactions of ultra high-energy cosmic rays of extragalactic origin

with the interstellar medium in the Galaxy. In this context, the measurement of the antiproton

flux plays a central role because it offers the best signal-to-background ratio (including different

spectra features) and because the astrophysical background for antiprotons is moderately under

control.

The balloon-borne experiment BESS [181] and the space-based experiment PAMELA [182]

have measured with good precision the antiproton energy spectrum in the energy range from 0.1

GeV up to about 180 GeV. A further improvement is expected when the antiproton data collected

by the AMS-02 experiment will be released. The measured rate agrees well with standard

background estimate; this result, as a consequence, can be used to set limits on the yield of

antiprotons from exotic sources like DM annihilation.

The number of antiproton per unit energy, time and volume produced by DM annihilation is

given by the following source term

Qp̄ =
1

2

[
ρDM(r)

mη

]2

〈σvrel〉0
dN

dE

∣∣∣∣
p

, (4.56)

where 〈σvrel〉0 is the thermally averaged annihilation cross-section times relative velocity describ-

ing DM annihilation today and dN/dE|p̄ is the antiproton energy spectrum per DM annihilation.

This is given by
dN

dE

∣∣∣∣
p

=
∑

f

BRf ×
dN

dE

∣∣∣∣
f

p

, (4.57)

where the sum runs over all the possible final states ηη → f that are kinematically allowed for

a given value of DM mass mη (we included the three-body annihilation processes ηη → WW ∗,

ZZ∗ below the kinematical threshold for the annihilation into two on-shell gauge bosons). In

eq. (4.57) dN/dE|fp is the number of antiprotons per each annihilation into the finale state

ηη → f whose branching ratio is given by BRf . Concerning the DM halo profile ρDM(r) we

adopted three different possibilities, namely the Einasto [183], NFW [184] and Isothermal [185]

profiles. We then propagated the antiprotons produced by DM annihilation considering for

definiteness two different propagation models among those described in refs. [186], i.e. the KOL

and CON propagation models. The comparison between these two different choices should give

an idea of the uncertainties affecting the propagation of charged particles in the Galaxy. Finally,

comparing the DM antiproton signal with the background generated using the same propagation

models, we were able to 3σ extract exclusion curves for 〈σvrel〉0. For more details on our approach

see ref. [2].
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Figure 4.7: Bounds on the thermally averaged annihilation cross-section times relative velocity 〈σvrel〉0
obtained using the antiproton flux measured by the PAMELA experiment. The region above the blue
lines is excluded at 3σ level. We show the bounds obtained using two different models for the propagation
of charged cosmic rays in the Galaxy, namely the KOL (left panel) and CON (right panel) propagation
models. In both cases we plot three lines corresponding to different DM density profiles, namely – from
bottom to top – Einasto (darker blue), NFW (blue), Isothermal (lighter blue). We also show the value
of 〈σvrel〉0 for ξ = 0.1 (pink solid line) and ξ = 0.05 (pink dashed line), with λ = 0.065.

In figure 4.7 we show the bounds on 〈σvrel〉0 obtained using this procedure, considering both

the KOL (left panel) and CON (right panel) propagation models (the three shades of blue lines

correspond to the three DM profiles mentioned above). For comparison, we also plot the value

of 〈σvrel〉0 using the two benchmark values ξ = 0.1 and ξ = 0.05, with λ = 0.065. In both

cases it is clear that the antiproton bound provides a stringent constraint on the annihilation

cross-section. In section 4.5 we will present the antiproton bound as contour plot in the plane

(mη, λ) considering both the KOL and CON propagation models but focusing only on the NFW

profile for definiteness.

4.5 Results

Here we combine all the constraints obtained in our phenomenological analysis for the Compos-

ite DM model studied in this chapter. We present our results in figure 4.8 in the plane (mη, λ).

The green strip reproduces the correct amount of relic abundance as measured by the Planck

collaboration [172] (section 4.4.1). In the same plot we also show the bounds placed by the LUX

experiment [176] in the context of direct detection of DM (section 4.4.2), the PAMELA exper-

iment [182] in the context of indirect detection of DM (section 4.4.3) and the LHC experiment
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considering the invisible decay width of the Higgs (section 4.3.1). On top of this, we superimpose

the results of the scans performed in section 4.2 analyzing the effective potential, dividing the

points among those which pass or not the bounds from direct searches of top partners and vector

resonances at the LHC described in section 4.3.2. We consider the two benchmark values ξ = 0.1

and ξ = 0.05.

Let us now describe in detail the features present in figure 4.8. The region of the parameter

space reproducing at 3σ the correct value of the relic density is covered by the green strip.

Considering DM annihilation, the interactions between η and the Higgs boson described by

the chiral Lagrangian in eq. 4.2 grow with the DM mass and decrease with the scale f . For

ξ = 0.1 (0.05) and mη & 180 (250) GeV these annihilations become too efficient, thus leading

to a value of relic density that is too small to match the observed one.9 The funnel-shaped

region that stretches towards this limit value mη ≈ 180 (250) GeV corresponds to the condition

s−2λξ(1− ξ)/v2 = 0 with s = 4m2
η/(1− v2

rel/4) and vrel ≈ 1/2, where an accidental cancellation

between the derivative and the λ contribution to the η-η-h vertex partially counterbalances the

growth of the cross-section discussed before. On the basis of this observation, and in order to

keep our discussion as clear as possible, let us divide the plane (mη, λ) in three parts: the low-

mass region mη . mH/2, the resonant region mη ≈ mH/2 and the funnel-shaped region defined

above.

For ξ = 0.1, the region mη . mH/2 is ruled out by a combination of LHC and LUX bounds.

On the one hand, as soon as the invisible decay channel h → ηη is kinematically allowed,

Γinv(h → ηη) easily dominates over the SM contribution Γ ξ=0.1
SM ≈ 3 MeV (eqs. (4.43, 4.44));

on the other one, the LUX experiment reaches in this region its best sensitivity. Decreasing ξ,

however, reduces the strength of the η-η-h interaction for low values of λ. Therefore, for ξ = 0.05

a combination of LHC and LUX bound rules out only values of λ & 7× 10−3 in the mη . mH/2

region; this bound can be further pushed towards lower values λ ' 10−3 considering non-zero

contact interactions between η and light quarks (see section 4.4.2 and eq. (4.53)).

The resonant regionmη ' mH/2 cannot be ruled out by constraints on the invisible branching

ratio or the spin-independent elastic DM-nucleon cross-section since in the first case BRinv → 0

if mη → mH/2 while in the second one −q2 � m2
H . Around the Higgs resonance, however, DM

particles mostly annihilate into bb̄ pairs, producing a large antiproton signal that is ruled out

by the bound extracted from the local antiproton flux measured by the PAMELA experiment.

This conclusion is still valid regardless the astrophysical uncertainties plaguing the propagation

of charged particles in the Galaxy and the DM density profile and for both values of ξ considered

9It is worth noting that this is a distinctive feature of the composite model. In the singlet scalar extension of

the SM, in which the derivative interactions are absent, it is always possible to increase the value of λ in order to

reproduce the correct relic density for large DM masses.
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here. Note that for ξ = 0.1 the antiproton bound, at least adopting the KOL propagation

models, can also rule out the right boundary of the funnel-shaped region (i.e. the vertical line

corresponding to mη ' 80 GeV).

As far as the bottleneck of the funnel-shaped region is concerned, the bound from antiproton

cannot be applied since the accidental cancellation that characterizes this region also suppresses

DM annihilations today (vrel ≈ 0). On the contrary the spin-independent DM-nucleon elastic

cross-section, relying on a different kinematic w.r.t. the annihilation process, does not suffer

from the same cancellation and, as a consequence, the funnel-shaped region turns out to be ruled

out by the LUX experiment for ξ = 0.1 and strongly constrained for ξ = 0.05, in particular the

upper half part of the region. For ξ = 0.05 a viable candidate of DM, therefore, sits on the strip

of the analyzed parameter space (mη, λ) that spans values from mη ' 100 GeV, λ ' 3 × 10−4

up to mη ' 200 GeV, λ ' 6× 10−2.

Finally, we also show in the right panels of figure 4.8 the result of the numerical parameter

scans performed in the next-to-minimal scenario discussed in section 4.2.2. We do not show here

the result for the minimal case since it predicts a very narrow region in this plane which is also

contained in the next-to-minimal one. Both for ξ = 0.1 and ξ = 0.05, the points reproducing the

correct top and Higgs masses, as expected from eq. (4.42), lie around the value λ ' 0.065 and

vary between mη ∼ mH/2 and mη ∼ 700 GeV; moreover the points with mη . 200 GeV, shown

in the plot, have the smaller amount of tuning, see figure 4.2.

For ξ = 0.1 all the points which provide the correct DM abundance lie in the region excluded

by LUX or by the antiproton flux measurements. Moreover, most of the points are also disfavored

by direct searches of top partners and vector resonances at the LHC. In conclusion we find that

– remarkably – the entire region of the (mη, λ) plane in which the model can accommodate a

realistic DM candidate is ruled out by our phenomenological analysis.

For the smaller value of ξ considered here, ξ = 0.05, the constraints from direct searches at

LHC are substantially alleviated. The favored region of the parameter space lies close to the

bound imposed by DM direct detection experiments, mη ' 200 GeV and λ ' 6× 10−2. In this

regard it should be noted that if we assume non-zero contact interactions between η and light

quarks the bound becomes even more stringent (red dot-dashed line in figure 4.8). In any case

– including or not this theoretical uncertainty – we expect that this region will be definitely

covered in the near future by direct detection experiments.
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Figure 4.8: Green line: 3σ contour reproducing the correct DM relic abundance. Red region (vertical
meshes): region excluded by the LUX experiment at 95% C.L. assuming case 1 in eq. (4.52) while the red
dot-dashed line represents the bound assuming case 2 in eq. (4.53). Purple region (horizontal meshes):
region excluded by the LHC at 3σ considering the bound on the invisible Higgs branching ratio. Blue
region (no meshes): region excluded at 3σ by the PAMELA measurement of the antiproton flux (solid
line: KOL propagation model; dashed line: CON propagation models). In the upper (lower) plot we use
ξ = 0.1 (0.05). In the right panel we zoom on a specific window of values for λ, and we superimpose the
result of the scan performed in section 4.3.2. All the points reproduce the correct top and Higgs masses;
the orange points are excluded by direct searches of top partners and vector resonances, while the blue
points pass the selection.



CHAPTER 5

Neutrino Mixing and CP Violation

The observation of neutrino mixing implied that neutrinos are massive and that they mix

among themselves. The rich experimental program in neutrino physics, culminating with the

2012 measurement of the reactor angle θ13 at the Daya Bay experiment [187,188], allowed us to

know with fairly good precision the value of all three neutrino mixing angles. However, on the

experimental side, other than measuring with even better accuracy the mixing angles, there are

still very important open questions to be addressed. Are neutrinos Dirac or Majorana fermions?

What is the value of the leptonic CP violating phase (or phases, in the Majorana case) and the

ordering of neutrino masses?

On the theory side, understanding the observed pattern of neutrino masses and mixings is a

very challenging problem, part of the quest to understand the origin of flavor of SM fermions.

In this chapter, after a brief presentation of the basic aspects of neutrino mixing, we shall study

the predictions of a particular class of neutrino mixing models. In particular we will see how, in

this setup, the Dirac CP violating phase can be sharply predicted in terms of the three neutrino

mixing angle, making this class of models testable at future experiments. The work presented

here is based on refs. [6, 7]. For a complete presentation on neutrino physics we refer to the

classic review [189] (see also the relevant chapter in ref. [190]).

5.1 Neutrino masses

In the SM neutrinos are massless because it is not possible to write a renormalizable and gauge

invariant operator which provides a mass term for the neutrinos νiL inside the lepton doublets `iL.

Going beyond the SM, however, it is straightforward to include a mass term for these particles.

The fact that neutrinos are neutral opens up the possibility of having two different kind of mass

terms: Dirac or Majorana. Let us briefly describe in the following how these two mechanisms

work, at least in their simplest implementation.

119
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Dirac Neutrinos

Adding to the SM spectrum a set of three right-handed (RH) neutrinos completely neutral under

the SM gauge group, νiR = (1,1)0, allows to write a Yukawa interaction analogous to the ones

in eq. (1.14):

LD = −yijν ¯̀i
LH

cνjR + h.c. . (5.1)

Upon EWSB, this Lagrangian provides Dirac mass terms to neutrinos given by

LDmν = −ν̄iLmij
ν ν

j
R + h.c. , (5.2)

where mν = yνv
√

2. In this case the smallness of neutrino masses is achieved just by fixing

the Yukawa couplings yν to very small values. No explanation for the hierarchy between these

couplings and the other Yukawa couplings in the SM is present.

In general the matrix mν is not diagonal, implying that each lepton number Li is not con-

served by itself, however in this case the sum of the three lepton numbers L is a conserved

quantum number (L is however anomalous at the quantum level, while only the B − L combi-

nation remains conserved), see sec. 1.1.1. As in the quark case, the Dirac mass matrix mν can

be diagonalized by a biunitary transformation:

mν = UνLm
diag
ν U †νR , (5.3)

where UνL , UνR are 3× 3 unitary matrices.

Majorana Neutrinos

A Majorana neutrino mass term can instead be obtained, without enlarging the field content

of the SM, only with the left-handed (LH) neutrinos. Assuming that the lepton number is just

an accidental low-energy symmetry and that the SM is only an effective theory (see chapter 2),

then it is possible to write non-renormalizable operators which violate L and provide a neutrino

Majorana mass. In fact, at scaling dimension-5 the only gauge-invariant operator that can be

written with the SM field content is the Weinberg operator [56]

L5 = − y
ij
ν

ΛL
(¯̀
Liσ

2Hc)(H†iσ2`cL) , (5.4)

where `cL = C ¯̀t
L (C is the charge-conjugation matrix), iσ2 = ε is the 2× 2 antisymmetric tensor

and ΛL is the UV scale at which this operator is generated, i.e. the scale of the dynamics which

breaks the lepton number. When the Higgs takes a vev , this operator provides a Majorana

mass term for the neutrinos

LMmν = −ν̄iLmij
ν ν

j c
L + h.c. , (5.5)
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where mν = yνv
2/ΛL. This mass matrix, complex and symmetric, can be diagonalized by a

congruent transformation introducing only one unitary matrix Uν :

mν = UνLm
diag
ν U tνL . (5.6)

Since the lepton number is a good symmetry of the SM, we expect ΛL � v, which suppresses

the neutrino masses. The value of ΛL necessary to reproduce the neutrino masses is

ΛL ' 0.6
(yν

1

)(0.1eV
mν

)
× 1015 GeV , (5.7)

which, for O(1) values of the yν couplings is very near to the scale at which the SM gauge

couplings become similar. This is a strong hint to the possibility that the dynamics responsible

for generating neutrino masses could be tightly linked to grand unified theories (GUT). This

suppression of the neutrino masses due to a very high scale is known as see-saw mechanism.

Note that by relaxing the assumption of having O(1) Yukawa couplings it would also be possible

to lower the scale ΛL down to the TeV scale, or even to lower values. While many studies of

sterile neutrinos rely on this approach, in the rest of the thesis we will assume that ΛL is a very

high scale, near to the GUT scale.

In terms of UV degrees of freedom, the operator in eq. (5.4) can be obtained by integrating

out at tree-level a set of singlet right-handed neutrinos (type 1 see-saw), scalar triplets under

SU(2)L (type 2) or right-handed fermion triplets (type 3). In particular, the presence of singlet

right-handed heavy neutrinos νR is one of the predictions of many GUTs, for example based on

the gauge group SO(10). For our discussion of neutrino mixing, however, the details of the UV

dynamics generating the Weinberg operator are not important and therefore we take eq. (5.4) as

our starting point.

5.2 Neutrino Mixing

As we saw in chapter 1, after EWSB in the SM the charged leptons acquire a mass matrix me

given by (1.14)

Lme = −ēiLmij
e e

j
R . (5.8)

The complex matrix me can by diagonalized by a biunitary transformation

me = UeLm
diag
e U †eR , (5.9)

where UeL,R are unitary matrices. As in the quark sector, the misalignment of the mass matrices

of the charged leptons and the neutrinos does not allow to simultaneously diagonalize the charged

lepton and the neutrino mass matrices in a gauge invariant way. For example, one can choose to
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diagonalize the charged lepton mass matrix by a gauge-invariant transformation in flavor space

`L → UeL`L, eR → UeReR, obtaining (in the Majorana case)

Lmleptons = −ēLmdiag
e eR − ν̄LUPMNSm

diag
ν U tPMNSν

c
L , (5.10)

(in the Dirac case one can also transform the RH neutrino νR → UνRνR and the last term in

eq. (5.10) is substituted by −ν̄LUPMNSm
diag
ν νR) where UPMNS is the unitary Pontecorvo-Maki-

Nakagawa-Sakata (PMNS) neutrino mixing matrix, given by

UPMNS = U †eLUνL . (5.11)

It should be noticed that if the neutrino were massless then this mixing matrix would not be

physical since it would always be possible to rotate the three neutrinos so that UPMNS = 1. This

means that any evidence of neutrino mixing implies that neutrinos are massive. Similarly to the

CKM matrix VCKM (1.16), the PMNS matrix UPMNS has three physical angles and one physical

CP-violating (CPV) phase. In the case of Majorana masses there are two further physical CPV

phases. In the widely used standard parametrisation [190], UPMNS is expressed in terms of the

solar (θ12), atmospheric (θ23) and reactor (θ13) neutrino mixing angles and one Dirac (δ) and

two Majorana [191] (α21 and α31) CPV phases:

UPMNS ≡ U = V (θ12, θ23, θ13, δ)Q(α21, α31) , (5.12)

where

V =




1 0 0

0 c23 s23

0 −s23 c23







c13 0 s13e
−iδ

0 1 0

−s13e
iδ 0 c13







c12 s12 0

−s12 c12 0

0 0 1


 , (5.13)

Q = diag(1, eiα21/2, eiα31/2) , (5.14)

and we have used the standard notation cij ≡ cos θij , sij ≡ sin θij with 0 ≤ θij ≤ π/2, 0 ≤ δ < 2π

and, in the case of interest for our analysis, 0 ≤ αj1 < 4π, j = 2, 3. If CP invariance holds, we

have δ = 0, π, and α21(31) = 0, π, 2π, 3π [192].

5.2.1 Neutrino oscillations

Let us now briefly review the basics of neutrino oscillations. The concept of neutrino flavor is

related to the production and detection mechanisms via the charged weak current (CC). For

example νe is the neutrino produced in CC processes current together with e+, or the one which

produces an e− when interacting with something via a CC process, and analogously for νµ and

ντ . This fixes the flavor basis |ν`〉. Neutrino mixing arises because this basis is not aligned with

the basis of the mass eigenstates |νi〉:

νi =
∑

`=e,µ,τ

U`i ν` , i = 1, 2, 3 , (5.15)
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where U = UPMNS is the PMNS mixing matrix, eq. (5.11), and each νi is a mass eigenstates with

mass mi. Assuming that a neutrino of flavor ν` is generated by some CC process with an energy

E and that it travels (in the vacuum) a distance L, where it interacts with a detector capable of

observing also other flavors ν`′ , the probability of observing a flavor `′ is (see e.g. ref. [190])

P (ν` → ν`′) =
∑

i

|U`′i|2|U`i|2 + 2
∑

i>j

|U`′iU∗`iU`jU∗`′j | cos

(
∆m2

ij

2E
L− φ`′`;ij

)
, (5.16)

where ∆m2
ij = m2

i −m2
j and φ`′`;ij = arg

(
U`′iU

∗
`iU`jU

∗
`′j

)
. In the case of antineutrino oscillation

one gets

P (ν̄` → ν̄`′) =
∑

i

|U`′i|2|U`i|2 + 2
∑

i>j

|U`′iU∗`iU`jU∗`′j | cos

(
∆m2

ij

2E
L+ φ`′`;ij

)
. (5.17)

As a consequence of CPT invariance, these probabilities satisfy P (ν` → ν`′) = P (ν̄`′ → ν̄`). If

neutrino mixing would satisfy the CP symmetry then P (ν` → ν`′) = P (ν̄` → ν̄`′), therefore a

measure of CP violation is given by the asymmetry

A
(`′`)
CP ≡ P (ν` → ν`′)− P (ν̄` → ν̄`′) = 4

∑

i>j

Im
(
U`′iU

∗
`iU`jU

∗
`′j

)
sin

∆m2
ij

2E
L . (5.18)

As a consequence of the unitarity of U , these asymmetries are the same in all three cases, up to

a sign difference:

A
(µe)
CP = −A(τe)

CP = A
(τµ)
CP = 4JCP

(
sin

∆m2
32

2E
L+ sin

∆m2
21

2E
L+ sin

∆m2
13

2E
L

)
, (5.19)

where JCP is the Jarlskog invariant [193–195]

JCP = Im
(
Uµ3U

∗
e3Ue2U

∗
µ2

)
. (5.20)

The presence of matter in the path of the neutrinos can induce some relevant effects which

change qualitatively the picture of neutrino oscillations. These effects are particularly important

for understanding the solar neutrino mixing, the atmospheric and long baseline accelerator neu-

trinos which pass through the earth. We will not discuss these effects here, for a review see e.g.

refs. [189,190].

5.2.2 Present status of neutrino mixing data

The neutrino oscillation data, accumulated over many years, allowed to determine the parameters

which drive the solar and atmospheric neutrino oscillations, ∆m2
21, θ12 and |∆m2

31| ∼= |∆m2
32|,

θ23, with a good precision (see, e.g., [196]).
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Parameter Best fit 1σ range 2σ range 3σ range

sin θ13 0.154 0.147 - 0.160 0.140 - 0.166 0.133 - 0.172
sin2 θ12 0.308 0.291 - 0.325 0.275 - 0.342 0.259 - 0.359
sin2 θ23 (NH) 0.425 0.398 - 0.454 0.376 - 0.506 0.357 - 0.641
sin2 θ23 (IH) 0.437 0.408 - 0.496 ⊕ 0.531 - 0.610 0.384 - 0.637 0.363 - 0.659
δ (NH) 4.37 3.52 - 5.40 0.00 - 0.346 ⊕ 2.76 - 6.28 —
δ (IH) 4.24 3.02 - 5.00 0.00 - 0.126 ⊕ 2.04 - 6.28 —

Table 5.1: Summary of the results of the global fit of the PMNS mixing angles taken from [196](v1

version) and used in our analysis. The results on the atmospheric neutrino angle θ23 and on the

Dirac CPV phase δ depend on the type of neutrino mass hierarchy. The values of sin2 θ23 and δ

obtained in both the cases of normal hierarchy (NH) and inverted hierarchy (IH) are shown.

Furthermore, there were spectacular developments in the last 1.5 years in what concerns the

angle θ13 (see, e.g., [190]). They culminated in 2012 with a high precision determination of

sin2 2θ13 in the Daya Bay experiment with reactor ν̄e [187,188]:

sin2 2θ13 = 0.089± 0.010± 0.005 . (5.21)

Similarly the RENO, Double Chooz, and T2K experiments reported, respectively, 4.9σ, 2.9σ

and 3.2σ evidences for a non-zero value of θ13 [197–199], compatible with the Daya Bay result.

Most recently, during the Neutrino 2014 conference, Daya Bay announced the most precise

determination of θ13 [200] to date, after 621 days of data taking:

sin2 2θ13 = 0.084± 0.005 . (5.22)

The high precision measurement on θ13 described above and the fact that θ13 turned out to have

a relatively large value, have far reaching implications for the program of research in neutrino

physics (see, e.g., [190]). After the successful measurement of θ13, the determination of the

absolute neutrino mass scale, of the type of the neutrino mass spectrum, of the nature – Dirac or

Majorana – of massive neutrinos, as well as getting information about the status of CP violation

in the lepton sector, are the most pressing and challenging problems and the highest priority

goals of the research in the field of neutrino physics.

A global analysis of the neutrino oscillation data presented at the Neutrino 2012 International

Conference, was performed in [201]. An updated version of the fit with 2013 data added has been

published in [196] and will be used in the following. The results on sin2 θ12, sin2 θ23 and sin2 θ13

obtained in [196], which play important role in our further discussion, are given in table 5.1. An

inspection of table 5.1 shows that, in addition to the nonzero value of θ13, the new feature which

seems to be suggested by the current global neutrino oscillation data is a sizeable deviation of the
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angle θ23 from the value π/4. This trend is confirmed by the results of the subsequent analysis of

the global neutrino oscillation data performed in [202], however the significance of the deviation

is still too small to say anything definite.

Regarding the absolute neutrino mass scale, bounds can be obtained both directly from

experiments in the lab measuring β decay of radioactive nuclei and indirectly via cosmological

measurements of the CMB anisotropies and Large Scale Structures. The most recent bounds are

approximately

mν . 2eV (lab, from tritium decay) ,
∑

i

mνi < 0.2− 1eV (cosmo) . (5.23)

5.3 Hints of an organizing principle

While neutrino masses and mixings may or may not look anarchical, the hierarchy of charged

lepton masses suggests an ordered origin of lepton flavour. Given the wide spectrum of specific

theoretical models, which essentially allows to account for any pattern of lepton masses and

mixings, we would like to consider here the consequence for lepton mixing of simple, general

assumptions on its origin.

In fact, although θ13 6= 0, θ23 6= π/4 and θ12 6= π/4, the deviations from these values are

small, in fact we have sin θ13
∼= 0.16� 1, π/4− θ23

∼= 0.07 and π/4− θ12
∼= 0.20, where we have

used the relevant best fit values in table 5.1. The value of θ13 and the magnitude of deviations

of θ23 and θ12 from π/4 suggest that the observed values of θ13, θ23 and θ12 might originate from

certain “symmetry” values which undergo relatively small (perturbative) corrections as a result

of the corresponding symmetry breaking. This idea was and continues to be widely explored

in attempts to understand the pattern of mixing in the lepton sector (see, e.g., [6, 7, 203–214].

Given the fact that the PMNS matrix is a product of two unitary matrices, U = U †e Uν (5.11),

it is usually assumed that Uν has a specific form dictated by a symmetry which fixes the values

of the three mixing angles in Uν that would differ, in general, by perturbative corrections from

those measured in the PMNS matrix, while Ue (and symmetry breaking effects that we assume

to be subleading) provide the requisite corrections. A variety of symmetry forms of Uν have been

explored in the literature on the subject (see, e.g., [215]). In the present study we will consider

three widely used forms.

i) Tribimaximal Mixing (TBM) [216]:

UTBM =




√
2
3

√
1
3 0

−
√

1
6

√
1
3

√
1
2√

1
6 −

√
1
3

√
1
2




; (5.24)



5 Hints of an organizing principle 126

ii) Bimaximal Mixing (BM) [217,218]:

UBM =




1√
2

1√
2

0

−1
2

1
2

1√
2

1
2 −1

2
1√
2




; (5.25)

iii) the form of Uν resulting from the conservation of the lepton charge L′ = Le−Lµ−Lτ of the

neutrino Majorana mass matrix (LC) [219]:

ULC =




1√
2

1√
2

0

− cν23√
2

cν23√
2

sν23

sν23√
2
− sν23√

2
cν23



, (5.26)

where cν23 = cos θν23 and sν23 = sin θν23.

We would like to notice here that if Ue = 1, 1 being the unity 3× 3 matrix, we have:

i) θ13 = 0 in all three cases of interest of Uν ;

ii) θ23 = π/4, if Uν coincides with UTBM or UBM, while θ23 can have an arbitrary value if Uν is

given by ULC;

iii) θ12 = π/4, for Uν = UBM or ULC, while θ12 = sin−1(1/
√

3) if Uν = UTBM.

Thus, the matrix Ue has to generate corrections

i) leading to θ13 6= 0 compatible with the observations in all three cases of Uν considered;

ii) leading to the observed deviation of θ12 from π/4 in the cases of Uν = UBM or ULC.

iii) leading to the sizable deviation of θ23 from π/4 for Uν = UTBM or UBM, if it is confirmed by

further data that sin2 θ23
∼= 0.40.

In the following we investigate quantitatively what are the “minimal” forms of the matrix Ue
in terms of the number of angles and phases it contains, that can provide the requisite corrections

to UTBM, UBM and ULC so that the angles in the resulting PMNS matrix have values which are

compatible with those derived from the current global neutrino oscillation data, table 5.1. In

particular, we introduce the two types of “minimal” charged lepton “rotation” matrix Ue, with

“standard” and “inverse” ordering. The two differ by the order in which the 12 and 23 rotations

appear in Ue and will be defined more precisely in the following section.

5.3.1 General Setup

As we have indicated above, we are interested in the possibility that the θ13 mixing angle origi-

nates because of the contribution of the charged lepton sector to lepton mixing. This assumption

needs a precise definition.
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We assume that the neutrino contribution Uν to the PMNS matrix U in eq. (5.11) has Uν13 = 0,

so that the PMNS angle θ13 vanishes in the limit in which the charged lepton contribution Ue can

be neglected, Ue = 1. This is a prediction of a number of theoretical models. As a consequence,

Uν can be parameterized as

Uν = ΨνR23(θν23)R12(θν12)Φν , (5.27)

where Rij(θ) is a rotation by an angle θ in the ij block and Ψν , Φν are diagonal matrices of phases.

We will in particular consider specific values of θν12 and, in certain cases, of θν23, representing the

predictions of well known models, such as those presented in eqs. (5.24-5.26).

The above assumption on the structure of Uν is not enough to draw conclusions on lepton

mixing: any form of U can still be obtained by combining Uν with an appropriate charged lepton

contribution Ue = UνU
†. However, the hierarchical structure of the charged lepton mass matrix

allows to motivate a form of Ue similar to that of Uν , with U e13 = 0, so that we can write: 1

Ue = ΨeR
−1
23 (θe23)R−1

12 (θe12)Φe. (5.28)

In fact, the diagonalisation of the charged lepton mass matrix gives rise to a value of U e13 that

is small enough to be negligible for our purposes, unless the hierarchy of masses is a consequence

of correlations among the entries of the charged lepton mass matrix or the value of the element

(mE)31, contrary to the common lore, happens to be sizable. In such a scheme, with no 13

rotation neither in the neutrino nor in the charged lepton sector, the PMNS angle θ13 is generated

purely by the interplay of the 23 and 12 rotations in eqs. (5.27) and (5.28).

While the assumption that U e13 is small, leading to eq. (5.28), is well motivated, textures

leading to a sizeable U e13 are not excluded. In such cases, it is possible to obtain an “inverse

ordering” of the R12 and R23 rotations in Ue:

Ue = ΨeR
−1
12 (θe12)R−1

23 (θe23)Φe. (5.29)

In the following, we will also consider such a possibility.

5.3.2 Standard Ordering

Consider first the standard ordering in eq. (5.28). We can then combine Uν and Ue in eqs. (5.27)

and (5.28) to obtain the PMNS matrix. When doing that, the two 23 rotations, by the θν23

and θe23 angles, can be combined into a single 23 rotation by an angle θ̂23. The latter angle

is not necessarily simply given by the sum θ̂23 = θν23 + θe23 because of the possible effect of the

phases in Ψν , Ψe (see further, eq. (G.3)). Nevertheless, the combination R23(θe23)Ψ∗eΨνR23(θν23)

1The use of the inverse in eqs. (5.28) and (5.29) is only a matter of convention. This choice allows us to lighten

the notation in the subsequent expressions.
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entering the PMNS matrix is surely a unitary matrix acting on the 23 block and, as such, it

can be written as ΩνR23(θ̂23)Ωe, where Ων,e are diagonal matrices of phases and θ̂23 ∈ [0, π/2].

Moreover, we can write ΩνR23(θ̂23)Ωe = Ω′νΦR23(θ̂23)Ω′e, where Φ = diag(1, eiφ, 1) and Ω′ν,e are

diagonal matrices of phases that commute with the 12 transformations and either are unphysical

or can be reabsorbed in other phases. The PMNS matrix can therefore be written as [6]

U = PR12(θe12)ΦR23(θ̂23)R12(θν12)Q, (5.30)

where the angle θ̂23 can have any value, P is a diagonal matrix of unphysical phases, Q contains

the two Majorana CPV phases, and Φ = diag(1, eiφ, 1) contains the only Dirac CPV phase.

The explicit relation between the physical parameters θ̂23, φ and the original parameters of the

model (θν23, θe23, and the two phases in Ψ = Ψ∗eΨν) can be useful to connect our results to the

predictions of specific theoretical models. We provide it in app. G.

The observable angles in the standard PMNS parametrization are given by

sin θ13 = |Ue3| = sin θe12 sin θ̂23,

sin2 θ23 =
|Uµ3|2

1− |Ue3|2
= sin2 θ̂23

cos2 θe12

1− sin2 θe12 sin2 θ̂23

,

sin2 θ12 =
|Ue2|2

1− |Ue3|2
=

∣∣∣sin θν12 cos θe12 + eiφ cos θν12 cos θ̂23 sin θe12

∣∣∣
2

1− sin2 θe12 sin2 θ̂23

.

(5.31)

The rephasing invariant related to the Dirac CPV phase, JCP (5.20), in the standard parametriza-

tion is given by

JCP = Im
{
U∗e1U

∗
µ3Ue3Uµ1

}
=

1

8
sin δ sin 2θ13 sin 2θ23 sin 2θ12 cos θ13 . (5.32)

At the same time, in the parametrization given in eq. (5.30), we get:

JCP = −1

8
sinφ sin 2θe12 sin 2θ̂23 sin θ̂23 sin 2θν12 . (5.33)

The relation between the phases φ and δ present in the two parametrisations is obtained by

equating eq. (5.32) and eq. (5.33) and taking also into account the corresponding formulae for

the real part of U∗e1U∗µ3Ue3Uµ1. To leading order in sin θ13, one finds the approximate relation

δ ' −φ (see further eqs. (5.44), (5.45) and eqs. (5.49) and (5.50) for the exact relations).

In the simplest case, considered in ref. [6], the charged lepton corrections to neutrino mixing

are dominated only by the angle θe12 and θ̂23 is fixed at the maximal value θ̂23 = π/4. In this

case the atmospheric mixing angle would be given by

sin2 θ23 =
1

2

1− 2 sin2 θ13

1− sin2 θ13

∼= 1

2
(1− sin2 θ13) , where sin θ13 =

1√
2

sin θe12 . (5.34)

This in turn would imply that the deviation from maximal atmospheric neutrino mixing corre-

sponding to the observed value of θ13 is relatively small, as shown in fig. 5.1.
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Figure 5.1: The thick red line corresponds to the relation in eq.(5.34). The black and green lines

show the 1σ, 2σ, 3σ contours (solid, dashed and dotted lines, respectively) for sin θ13 and sin2 θ23,

as obtained in [196] (see table 5.1).

Since the data seems to suggest a possible larger deviation from maximal atmospheric mixing

[196,201], we also consider the case in which θ̂23 is essentially free. A deviation of θ̂23 from π/4

can occur in models in which θν23 = π/4 (BM, TBM) because of the charged lepton contribution

to θ̂23, or in models in which θν23 itself is not maximal (LC). This allows to account for a sizable

deviation of θ23 from the value π/4. As for the neutrino angle θν12, we will consider two cases:

• bimaximal mixing (BM): θν12 =
π

4
(as also predicted by models with approximate conser-

vation of L′ = Le − Lµ − Lτ );

• tri-bimaximal mixing (TBM): θν12 = sin−1 1√
3
.

Recently, ref. [220] extended this analysis also to the case in which θν12 is related to the golden

ratio and to the hexagonal mixing case (i.e. θν12 = π/6), both of which can be obtained in explicit

models with discrete symmetries.

Since in the approach we are following the four parameters of the PMNS matrix (the three

measured angles θ12, θ23, θ13 and the CPV Dirac phase δ) will be expressed in terms of only

three parameters (the two angles θe12, θ̂23 and the phase φ), the values of θ12, θ23, θ13 and

δ will be correlated. More specifically, δ can be expressed as a function of the three angles,

δ = δ(θ12, θ23, θ13), and its value will be determined by the values of the angles. As a consequence,

the JCP factor also will be a function of θ12, θ23 and θ13, which will allow us to obtain predictions

for the magnitude of the CP violation effects in neutrino oscillations using the current data on

sin2 θ12, sin2 θ23 and sin θ13.

We note first that using eq. (5.31) we can express sin2 θ23 in terms of sin2 θ̂23 and sin2 θ13:

sin2 θ23 =
sin2 θ̂23 − sin2 θ13

1− sin2 θ13
. (5.35)
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It follows from these equations that θ̂23 differs little from θ23 (it is somewhat larger). Further,

using eqs. (5.31) and (5.35), we can express sin2 θ12 in terms of θν12, θ23, θ13 and φ:

sin2 θ12 =
(
1− cos2 θ23 cos2 θ13

)−1 [
sin2 θν12 sin2 θ23 + cos2 θν12 cos2 θ23 sin2 θ13

+ 1
2 sin 2θν12 sin 2θ23 sin θ13 cosφ

]
. (5.36)

As we have already indicated, we will use in the analysis which follows two specific values of

θν12 = π/4 (BM or LC); sin−1(1/
√

3) (TBM). Equation (5.36) will lead in each of the two cases

to a new type of “sum rules”, i.e., to a correlation between the value of θ12 and the values of θ23,

θ13 and φ. In the case of bimaximal and tri-bimaximal θν12, the sum rules have the form:

BM : sin2 θ12 =
1

2
+

1

2

sin 2θ23 sin θ13 cosφ

1− cos2 θ23 cos2 θ13
(5.37)

∼= 1

2
+ cot θ23 sin θ13 cosφ

(
1− cot2 θ23 sin2 θ13 +O(cot4 θ23 sin4 θ13)

)
, (5.38)

TBM : sin2 θ12 =
1

3

(
2 +

√
2 sin 2θ23 sin θ13 cosφ− sin2 θ23

1− cos2 θ23 cos2 θ13

)
(5.39)

∼= 1

3

[
1 + 2

√
2 cot θ23 sin θ13 cosφ

(
1− cot2 θ23 sin2 θ13

)

+ cot2 θ23 sin2 θ13 +O(cot4 θ23 sin4 θ13)
]
. (5.40)

The expressions for sin2 θ12 in eqs. (5.37) and (5.39) are exact, while those given in eqs. (5.38)

and (5.40) are obtained as expansions in the small parameter cot2 θ23 sin2 θ13. The latter satisfies

cot2 θ23 sin2 θ13 . 0.052 if sin2 θ23 and sin2 θ13 are varied in the 3σ intervals quoted in table 5.1.

To leading order in sin θ13 the sum rule in eq. (5.38) was derived in ref. [206].

We note next that since θ12, θ23 and θ13 are known, eq. (5.36) allows us to express cosφ as

a function of θ12, θ23 and θ13 and to obtain the range of possible values of φ. Indeed, it follows

from eqs. (5.37) and (5.39) that

BM : cosφ = − cos 2θ12 (1− cos2 θ23 cos2 θ13)

sin 2θ23 sin θ13
, (5.41)

TBM : cosφ =
(3 sin2 θ12 − 2) (1− cos2 θ23 cos2 θ13) + sin2 θ23√

2 sin 2θ23 sin θ13

. (5.42)

Taking for simplicity for the best fit values of the three angles in the PMNS matrix sin2 θ12 = 0.31,

sin2 θ23 = 0.43 and sin θ13 = 0.16 (see table 5.1), we get:

cosφ ∼= − 1.0 (BM); cosφ ∼= − 0.20 , (TBM). (5.43)

Equating the imaginary and real parts of U∗e1U∗µ3Ue3Uµ1 in the standard parametrisation and

in the parametrisation under discussion one can obtain a relation between the CPV phases δ and
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φ. We find for the BM case (θν12 = π/4):

sin δ = − sinφ

sin 2θ12
, (5.44)

cos δ =
cosφ

sin 2θ12

(
2 sin2 θ23

sin2 θ23 cos2 θ13 + sin2 θ13
− 1

)
. (5.45)

Since, as can be easily shown,

sin 2θ12 =

(
1− 4

cot2 θ23 sin2 θ13 cos2 φ

(1 + cot2 θ23 sin2 θ13)2

) 1
2

, (5.46)

we indeed have to leading order in sin θ13, sin δ ∼= − sinφ and cos δ ∼= cosφ.

The expressions for sin δ and cos δ in eqs. (5.44) and (5.45) are exact. It is not difficult

to check that we have sin2 δ + cos2 δ = 1. Using the result for cosφ, eq. (5.41), we can get

expressions for sin δ and cos δ in terms of θ12, θ23 and θ13. We give below the result for cos δ:

cos δ = − 1

2 sin θ13
cot 2θ12 tan θ23

(
1− cot2 θ23 sin2 θ13

)
. (5.47)

Numerically we find for sin2 θ12 = 0.31, sin2 θ23 = 0.43 and sin θ13 = 0.16:

sin δ ∼= 0 , cos δ ∼= − 1 . (5.48)

Therefore, we have δ ' π. For fixed sin2 θ12 and sin θ13, | cos δ| increases with the increasing of

sin2 θ23. However, sin2 θ23 cannot increase arbitrarily since eq. (5.37) and the measured values

of sin2 θ12 and sin2 θ13 imply that the scheme with bimaximal mixing under discussion can be

self-consistent only for values of sin2 θ23, which do not exceed a certain maximal value. The

latter is determined taking into account the uncertainties in the values of sin2 θ12 and sin θ13 in

section 3, where we perform a statistical analysis using the data on sin2 θ23, sin2 θ12, sin θ13 and

δ as given in [196].

In a similar way we obtain for the TBM case (θν12 = sin−1(1/
√

3)):

sin δ = − 2
√

2

3

sinφ

sin 2θ12
, (5.49)

cos δ =
2
√

2

3 sin 2θ12
cosφ

(
−1 +

2 sin2 θ23

sin2 θ23 cos2 θ13 + sin2 θ13

)

+
1

3 sin 2θ12

sin 2θ23 sin θ13

sin2 θ23 cos2 θ13 + sin2 θ13
. (5.50)

The results for sin δ and cos δ we have derived are again exact and, as can be shown, satisfy

sin2 δ+cos2 δ = 1. Using the above expressions and the expression for sin2 θ12 given in eq. (5.39)

and neglecting the corrections due to sin θ13, we obtain sin δ ' − sinφ and cos δ ' cosφ. With
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the help of eq. (5.42) we can express sin δ and cos δ in terms of θ12, θ23 and θ13. The result for

cos δ reads:

cos δ =
tan θ23

3 sin 2θ12 sin θ13

[
1 +

(
3 sin2 θ12 − 2

) (
1− cot2 θ23 sin2 θ13

)]
. (5.51)

For the best fit values of sin2 θ12 = 0.31, sin2 θ23 = 0.39 and sin θ13 = 0.16, we find:

sin δ ∼= ±0.998 , cos δ ∼= − 0.066 . (5.52)

Thus, in this case δ ' π/2 or 3π/2. For sin2 θ23 = 0.50 and the same values of sin2 θ12 and

sin2 θ13 we get cos δ ∼= −0.096 and sin δ ∼= ±0.995.

The fact that the value of the Dirac CPV phase δ is determined (up to an ambiguity of the sign

of sin δ) by the values of the three mixing angles θ12, θ23 and θ13 of the PMNS matrix, eqs. (5.47)

and (5.51), are the most striking predictions of the scheme considered with standard ordering

and bimaximal and tri-bimaximal mixing in the neutrino sector. For the best fit values of θ12, θ23

and θ13 we get δ ∼= π and δ ∼= π/2 or 3π/2 in the cases of bimaximal and tri-bimaximal mixing,

respectively. These results imply also that in the scheme with standard ordering under discussion,

the JCP factor which determines the magnitude of CP violation in neutrino oscillations is also a

function of the three angles θ12, θ23 and θ13 of the PMNS matrix:

JCP = JCP (θ12, θ23, θ13, δ(θ12, θ23, θ13)) = JCP (θ12, θ23, θ13) . (5.53)

This allows to obtain predictions for the range of possible values of JCP using the current data

on sin2 θ12, sin2 θ23 and sin θ13. We present these predictions in section 3. The predictions we

derive for δ and JCP will be tested in the experiments searching for CP violation in neutrino

oscillations, which will provide information on the value of the Dirac phase δ.

Let us finally point out that such a scheme with “standard ordering” and TBM mixing

was realized in a self-consistent model of lepton flavor based on T ′ symmetry in ref. [221]. In

particular, the same prediction for δ was obtained.

5.3.3 Inverse Ordering

As anticipated, we also study for completeness the case where the diagonalisation of the charged

lepton mass matrix gives rise to the inverse ordering in eq. (5.29). The PMNS matrix, in this

case, can be written as [205]

U = R23(θ̃e23)R12(θ̃e12)ΨR23(θν23)R12(θν12)Q̃, (5.54)

where unphysical phases have been eliminated, Q̃ contains the two Majorana phases, and Ψ =

diag(1, eiψ, eiω). Unlike in the case of standard ordering, it is not possible to combine the 23

rotation in the neutrino and charged lepton sector and describe them with a single parameter, θ̂23.
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After fixing θν23 and θν12, we therefore have, in addition to the Majorana phases, four independent

physical parameters, two angles and two phases, one more with respect to the case of standard

ordering. In particular, it is not possible anymore to write the mixing matrix in terms of one

physical Dirac CPV phase only. Thus, in this case the four parameters of the PMNS matrix (the

three angles θ12, θ23 and θ13 and the Dirac CPV phase δ) will be expressed in terms of the four

parameters of the inverse ordering parametrisation of the PMNS matrix, eq. (5.54). We have

for sin θ13, sin θ23 and sin θ12:

sin θ13 = s̃e12s
ν
23,

sin θ23 = sν23

∣∣(tν23)−1s̃e23 + ei(ψ−ω)c̃e12c̃
e
23

∣∣
√

1− (s̃e12s
ν
23)2

,

sin θ12 = sν12

∣∣c̃e12 + eiψ(tν12)−1s̃e12c
ν
23

∣∣
√

1− (s̃e12s
ν
23)2

.

(5.55)

Given that the expressions for θ23 and θ13 do not depend on the value of θν12, they will be the

same for bimaximal and tri-bimaximal mixing (in both cases θν23 = π
4 ):

sin θ13 =
sin θ̃e12√

2
, (5.56)

sin2 θ23 =
1

2

1 + sin 2θ̃e23

√
cos 2θ13 cosω′ − 2 sin2 θ13 cos2 θ̃e23

cos2 θ13
(5.57)

∼= 1

2

(
1 + sin 2θ̃e23 cosω′ − cos 2θ̃e23 sin2 θ13 +O(sin4 θ13)

)
, (5.58)

where the phase ω′ = ψ − ω. For each value of the phase ψ, any value of θ13 and θ23 in the

experimentally allowed range at a given C.L., can be reproduced for an appropriate choice of ω′,

θe12 and θe23. This is not always the case for the solar neutrino mixing angle θ12, as we will see in

sec. 5.5. Using eqs. (5.56), sin2 θ12 can be expressed in terms of θ13 and ψ as follows:

• bimaximal mixing (BMIO), θν12 =
π

4
:

sin2 θ12 =
1

2 cos2 θ13

(
1 + 2 sin θ13

√
cos 2θ13 cosψ − sin2 θ13

)
(5.59)

' 1

2
+ sin θ13 cosψ +O(sin5 θ13) ; (5.60)

• tri-bimaximal mixing (TBMIO), θν12 = sin−1 1√
3
:

sin2 θ12 =
1

3 cos2 θ13

(
1 + 2

√
2 sin θ13

√
cos 2θ13 cosψ

)
(5.61)

' 1

3
(1 + sin2 θ13) +

2
√

2

3
sin θ13 cosψ +O(sin4 θ13) . (5.62)
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The expressions for sin2 θ12 in eqs. (5.59) and (5.61) are exact, while those given in (5.60) and

(5.62) are obtained as expansions in sin2 θ13 in which the terms up to O(sin4 θ13) and O(sin3 θ13),

respectively, were kept. This together with eq. (5.60) and the 3σ ranges of allowed values of

sin2 θ12 and sin θ13 quoted in table 5.1 suggests that the bimaximal mixing scheme considered by

us can be compatible with the current (3σ) data on sin2 θ12 and sin θ13 only for a very limited

interval of negative values of cosψ close to (−1).

It follows from eqs. (5.59) and (5.61) that the value of cosψ is determined by the values of

the PMNS angles θ12 and θ13. At the same time, sin2 θ23 depends on two parameters: ω′ and

θe23. This implies that the values of ω′ and θe23 are correlated, but cannot be fixed individually

using the data on sin2 θ23.

It is not difficult to derive also the expressions for the JCP factor in terms of the inverse

ordering parameters in the two cases of values of θν12 of interest:

BM : JCP '−
sin θ13

4

(
sinψ cos 2θ̃e23 + sinω′ cosψ sin 2θ̃e23

)
+O(sin2 θ13) , (5.63)

TBM : JCP '−
sin θ13

3
√

2

(
sinψ cos 2θ̃e23 + sinω′ cosψ sin 2θ̃e23

)
+O(sin2 θ13) . (5.64)

We have not discussed here the LC case (conservation of the lepton charge L′ = Le−Lµ−Lτ )
as it involves five parameters (θe23, θe12, θν23, and two CPV phases). At the same time, the

“minimal” LC case with θe23 = 0 is equivalent to the standard ordering case with BM mixing (i.e.,

with θν12 = π/4) analised in detail in the previous subsection.

As in the case of the standard ordering, to obtain the CPV phase δ of the standard pa-

rametrisation of the PMNS matrix from the variables of these models, that is the function

δ = δ(ψ, ω, θ̃e23, θ13), we equate the imaginary and real parts of U∗e1U∗µ3Ue3Uµ1 in the two

parametrisations.

5.4 Results with Standard Ordering

In the numerical analysis presented here, we use the data on the neutrino mixing parameters

obtained in the global fit of ref. [196] to constrain the mixing parameters of the setup described

in section 5.3.1. Our goal is first of all to derive the allowed ranges for the Dirac phase δ, the

JCP factor and the atmospheric neutrino mixing angle parameter sin2 θ23. We also obtain the

allowed values of sin2 θ12 and sin2 θ13. We start by considering the standard ordering setup, and in

particular the two different choices for the angle θν12: θν12 = π/4 (BM and LC), θν12 = sin−1(1/
√

3)

(TBM).

We construct the likelihood function and the χ2 for both schemes of bimaximal and tri-

bimaximal mixing as described in appendix H, using as parameters for this model sin θ13, sin2 θ23
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Figure 5.2: Contour plots for Nσ =
√
χ2 in the standard ordering setup and normal hierarchy of

neutrino masses. The value of the reactor angle θ13 has been marginalized. The solid, dashed and dotted
thick lines represent respectively the 1σ, 2σ and 3σ contours. The dashed blue lines are contours of
constant |JCP | in units of 10−2.

and δ, and exploiting the constraints on sin2 θ12, sin2 θ23, sin2 θ13 and on δ obtained in ref. [196].

In fig. 5.2 we show the contours of Nσ =
√
χ2 in the (sin2 θ23, δ) plane, where the value of

sin θ13 has been marginalized. The blue dashed lines represent the contours of constant JCP
(in units of 10−2). In figs. 5.3 and 5.4, starting from the same likelihood function, we show the

bounds on the neutrino mixing parameters and JCP in each scheme, both for normal and inverted

neutrino mass hierarchy. These bounds are obtained minimizing the χ2 in the parameter space of

the model, keeping as a constraint the value of the corresponding parameter. To make a direct

comparison of the bounds obtained in the scheme considered by us with the general bounds

obtained in the global fit in ref. [196], we show the results from ref. [196] with thin dashed lines.

Thus, the thin dashed lines in fig. 5.4 are the bounds on JCP obtained using directly the results

of the global fit [196] and eq. (5.32), and represent the present status of our knowledge on this
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Figure 5.3: Nσ as a function of each mixing angle for the TBM and BM models in the standard

ordering setup. The dashed lines represent the results of the global fit reported in ref. [196]

while the thick ones represent the results we obtain in our setup. Blue lines are for normal

hierarchy while the red ones are for inverted hierarchy (we used purple when the two bounds

are approximately identical). These bounds are obtained minimizing the value of Nσ in the

parameter space for fixed value of the showed mixing angle.
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Figure 5.4: Nσ as a function of δ and JCP for the TBM and BM models in the standard ordering setup.
The dashed lines represent the results of the global fit reported in [196] while the thick ones represent
the results we obtain in our setup. Blue lines are for normal hierarchy while the red ones are for inverted
hierarchy. These bounds are obtained minimizing the value of Nσ in the parameter space for a fixed value
of δ (left plots) or JCP (right plots).
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observable assuming the standard 3-neutrino mixing setup 2. The thick solid lines represent the

results obtained in the scheme with standard ordering considered. The blue and red color lines

correspond respectively to the cases of normal and inverted neutrino mass hierarchy; in the case

when the two bounds are essentially identical we used purple color lines.

From figs. 5.2 and 5.3 we see that both the tribimaximal and bimaximal cases are well

compatible with data. The ∼ 1.5σ difference between the minimum of Nσ in the two cases is due

to the fact that the bound on δ obtained in ref. [196] favours values of δ ∼ 3π/2 (see table 5.1),

which is indeed the value needed in the tri-bimaximal mixing scheme (| cos δ| � 1), while the

bimaximal mixing scheme prefers δ ∼ π (see Subsection 5.3.2).

The results we obtain for sin2 θ12, sin2 θ23 and sin2 θ13 (i.e., the best fit values and the 3σ

ranges) in the case of tri-bimaximal mixing are similar to those given in ref. [196]. In contrast, our

results for the Dirac phase δ and, correspondingly, for the JCP factor, are drastically different.

For the best fit values and the 3σ allowed ranges 3 of δ and JCP we find (see also section 5.2):

NH : δ ∼= 4.63 ∼= 3π

2
, 1.53 <∼ δ <∼ 1.80 , or (5.65)

4.24 <∼ δ <∼ 4.92 , (5.66)

IH : δ ∼= 4.62 ∼= 3π

2
, 1.45 <∼ δ <∼ 2.10 , or (5.67)

4.03 <∼ δ <∼ 4.94 , (5.68)

NH : JCP ∼= −0.034 , 0.032 <∼ JCP <∼ 0.036 , or (5.69)

−0.038 <∼ JCP <∼ −0.028 , (5.70)

IH : JCP ∼= −0.034 , 0.027 <∼ JCP <∼ 0.037 , or (5.71)

−0.039 <∼ JCP <∼ −0.024 . (5.72)

The 3σ intervals of allowed values of δ (JCP ) in eqs. (5.65) and (5.67) (eqs. (5.69) and (5.71))

are associated with the local minimum at δ ∼= π/2 (JCP ∼= 0.034) in table. 5.4 upper left (right)

panel, while those given in eqs. (5.66) and (5.68) (eqs. (5.70) and (5.72)) are related to the

absolute minimum at δ ∼= 3π/2 (JCP ∼= −0.034).

A degeneracy with respect to JCP → −JCP , or δ → (2π − δ), which stems from the fact

that the phase φ enters into the expressions for the mixing angles only via its cosine, see eqs.

(5.37) and (5.39), is broken by the explicit bound on δ given in ref. [196], which is graphically

represented in fig. 5.4 by the asymmetry of the dashed lines showing that negative values of JCP
are favored at the 2σ level.

2More refined bounds on JCP in the standard parametrisation of the PMNS matrix could be obtained by the

authors of ref. [196], using the full likelihood function.
3These ranges are obtained imposing:

√
∆χ2 =

√
N2
σ − (Nmin

σ )2 ≡ 3.
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Best fit 3σ range

JCP (NH) −0.034 −0.038÷−0.028⊕ 0.032÷ 0.036

JCP (IH) −0.034 −0.039÷−0.024⊕ 0.027÷ 0.037

δ (NH) 4.63 1.53÷ 1.80⊕ 4.24÷ 4.92

TBM δ (IH) 4.62 1.45÷ 2.10⊕ 4.03÷ 4.94

sin θ13 0.15 0.13÷ 0.17

sin2 θ23 (NH) 0.43 0.36÷ 0.64

sin2 θ23 (IH) 0.44 0.36÷ 0.66

sin2 θ12 0.31 0.26÷ 0.36

JCP (NH) −0.008 −0.026÷ 0.022

JCP (IH) −0.003 −0.025÷ 0.023

δ (NH) 3.35 2.50÷ 3.92

BM δ (IH) 3.22 2.47÷ 3.88

sin θ13 0.16 0.14÷ 0.17

sin2 θ23 (NH) 0.41 0.35÷ 0.50

sin2 θ23 (IH) 0.42 0.36÷ 0.55

sin2 θ12 0.32 0.29÷ 0.36

Table 5.2: Best fit and 3σ ranges in the standard ordering setup. When not explicitly indicated

otherwise, the result applies both for normal hierarchy and inverted hierarchy of neutrino masses.

As figs. 5.2 and 5.4 show, in the case of tri-bimaximal mixing, the CP conserving values

of δ = 0;π; 2π are excluded with respect to the best fit CP violating values δ ∼= π/2; 3π/2 at

more than 5σ. Correspondingly, JCP = 0 is also excluded with respect to the best-fit values

JCP ' (−0.034) and JCP ' 0.034 at more than 5σ. It follows from eqs. (5.65) - (5.72) (see also

table 5.2) that the 3σ allowed ranges of values of both δ and JCP form rather narrow intervals.

These are the most striking predictions of the scheme with standard ordering and tri-bimaximal

mixing under investigation.

We obtain different results assuming bimaximal mixing in the neutrino sector. Although in

this case the best fit values of sin2 θ23 and sin2 θ13 practically coincide with those found in [196],

the 3σ allowed intervals of values of sin2 θ12 and especially of sin2 θ23 and δ differ significantly

from those given in [196].
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For the best fit values and the 3σ intervals of sin2 θ12 and sin2 θ23 we get (see also table 5.2):

sin2 θ12
∼= 0.32 , 0.29 <∼ sin2 θ12

<∼ 0.36 ; (5.73)

NH : sin2 θ23
∼= 0.41 , 0.35 <∼ sin2 θ23

<∼ 0.50 ; (5.74)

IH : sin2 θ23
∼= 0.42 , 0.36 <∼ sin2 θ23

<∼ 0.55 . (5.75)

As in [196], we find for the best fit value of δ and JCP : δ ∼= π and JCP ∼= 0. However, the 3σ

range of δ and, correspondingly, of JCP , we obtain differ from those derived in [196]:

NH : 2.50 <∼ δ <∼ 3.92 ; − 0.026 <∼ JCP <∼ 0.022 . (5.76)

IH : 2.47 <∼ δ <∼ 3.88 ; − 0.025 <∼ JCP <∼ 0.023 . (5.77)

We see, in particular, that also in this case the Dirac CPV phase δ is constrained to lie in a

narrow interval around the value δ ' π. This and the constraint sin2 θ23 . 1/2 are the most

important predictions of the scheme with standard ordering and bimaximal neutrino mixing.

5.5 Results with the Inverse Ordering

The case of inverse ordering is qualitatively and quantitatively different from the case of standard

ordering. For given values of θν12, θν23, the number of parameters is the same as in the PMNS

matrix. Still, not all values of U can be obtained, as we shall see.

The constraints on the reactor and atmospheric neutrino mixing angles are the same for

bimaximal and tri-bimaximal mixing and can be derived directly from eq. (5.56). For any given

value of the phase ψ, any values of θ13 and θ23 in the ranges

0 ≤ sin θ13 ≤
1√
2
,

0 ≤ sin2 θ23 ≤
cos 2θ13

cos4 θ13
' 1 +O(sin2 θ13),

(5.78)

can be obtained by an appropriate choice of ω′, θe12 and θe23. Clearly, the range of values allowed

for θ13 and θ23 covers the full experimentally allowed range. The solar neutrino mixing angle can

now be expressed in terms of θ13 and ψ as in eq. (5.56). Any value of θ12 in the interval

BMIO :

1

2

1− 2 sin θ13

√
cos 2θ13 − sin2 θ13

cos2 θ13
≤ sin2 θ12 ≤

1

2

1 + 2 sin θ13

√
cos 2θ13 − sin2 θ13

cos2 θ13
, (5.79)

TBMIO :

1

3

1− 2
√

2 sin θ13

√
cos 2θ13

cos2 θ13
≤ sin2 θ12 ≤

1

3

1 + 2
√

2 sin θ13

√
cos 2θ13

cos2 θ13
, (5.80)
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can then be obtained for an appropriate choice of ψ. At leading order in sin θ13 these bounds

become

BMIO :
1

2
− sin θ13 . sin2 θ12 . 1

2
+ sin θ13,

TBMIO :
1

3
− 2
√

2

3
sin θ13 . sin2 θ12 . 1

3
+

2
√

2

3
sin θ13.

(5.81)

Given the experimental bounds on the PMNS angles found in the global fit [196], see table 5.1,

one can immediately notice that while the tri-bimaximal case is perfectly compatible with the

data, the bimaximal case has a ∼ 2σ tension in the prediction of the solar neutrino mixing angle

parameter sin2 θ12.

As was done for the standard ordering case, we construct the likelihood function and the

χ2 for both models as described in appendix H, exploiting the constraints on sin2 θ12, sin2 θ23,

sin2 θ13 and on δ obtained in [196], and using in this case as parameters sin θ13, sin θe23 and the

phases ψ and ω. We show in figs. 5.5 and 5.6 the bounds on the neutrino mixing angles and the

JCP factor both in the cases of bimaximal and tri-bimaximal mixing in the neutrino sector, and

for normal and inverted neutrino mass hierarchy.

From fig. 5.5, we see that in the case of tribimaximal mixing (upper row), the intervals of

allowed values of the PMNS mixing angles obtained in the model under discussion and in the

global fit performed in [196] coincide. This is a consequence of the fact that the 4D parameter

space of the model considered completely overlaps with the experimentally allowed parameter

space in the PMNS parametrisation and therefore it does not give any additional constraint. It

is consistent with the analytic bounds reported above as well.

In the case of bimaximal mixing instead (fig. 5.5 lower row), only a portion of the relevant

PMNS parameter space is reachable, a fact that is reflected in the bounds on sin2 θ12 given in

eq. (5.81). Values of θ12 in the upper part of its present experimental range are favoured in this

case.

In both cases of tri-bimaximal and bimaximal mixing from the neutrino sector, the bounds

on sin2 θ13 and sin2 θ12 corresponding to the normal and inverted neutrino mass hierarchy are

approximately identical, while they differ for the atmospheric neutrino mixing angle and for the

JCP factor.

Considering the expressions for JCP in eqs. (5.63) and (5.64) and fig. 5.6, we see that within

∼ 2σ from the best-fit point, every value in the range

∣∣JBMCP
∣∣ . sin θ+2σ

13

4
∼ 0.041,

∣∣JTBMCP

∣∣ . sin θ+2σ
13

3
√

2
∼ 0.039, (5.82)

is allowed, where we have used the 2σ upper bound on sin θ13 from table 5.1. As a consequence,

we cannot make more specific predictions about the CP violation due to the Dirac phases δ in

this case. This is an important difference with respect to the standard ordering scheme where,
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Figure 5.5: Nσ as a function of each mixing angle for the TBM and BM models with the inverse

ordering setup. The dashed lines represent the results of the global fit reported in [196] while the

thick ones represent the results we obtain in our setup. Blue lines are for normal hierarchy while

the red ones are for inverted hierarchy (we use purple when the two bounds are approximately

identical). These bounds are obtained minimizing the value of Nσ in the parameter space for

fixed value of the showed mixing angle.
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Figure 5.6: Nσ as a function of JCP for the TBM and BM models in the inverse ordering setup. The
dashed lines represent the results of the global fit reported in [196] while the thick ones represent the
results we obtain in our setup. Blue lines are for normal neutrino mass hierarchy while the red ones are
for inverted hierarchy. These bounds are obtained minimizing the value of Nσ in the parameter space for
a fixed value of JCP .

in the tri-bimaximal mixing case, relatively large values of the |JCP | factor lying in a narrow

interval are predicted at 3σ and, in the bimaximal mixing case, δ is predicted to lie at 3σ in a

narrow interval around the value of δ ∼ π.

5.6 Relation between θe12 and θ13 in GUTs

Let us now focus, for simplicity, on the standard ordering case with θ̂23 = π/4, i.e. we assume

that the charged lepton rotation matrix is dominated only by the θe12 angle. We would like

to study the possibility of generating a θe12 large enough to induce a θ13 in the experimentally

allowed range, in the context of an SU(5) SUSY Grand Unified Theory (GUT). The unification

assumption is powerful because it allows to relate the charged lepton and down quark Yukawa

matrices λE and λD. If all the Yukawa entries were generated by renormalizable operators and

the MSSM Higgs fields were embedded in 5 and 5̄ representations only, we would have λEji = λDij ,

leading to wrong predictions for the fermion mass ratios. In the general case one has instead

λEji = αijλ
D
ij . The Clebsh-Gordan (CG) coefficients αij depend on the operators from which

the Yukawa entries arise. Such values can be constrained to belong to a finite set of rational
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Operator Dimension αij

4 1

-3

5 -1/2

1

±3/2
-3

9/2

6

9

-18

Table 5.3: Summary of possible SU(5) predictions for the CG coefficients αij . Numbers are

taken from [222], where also the corresponding operators are listed.

numbers at the price of assuming that each Yukawa entry comes at least dominantly from a

single renormalizable or non-renormalizable SU(5) operator4. In this case, the possible values of

the αij coefficients are listed in table 5.3, see also ref. [222].

The θe12 angle is obtained from the diagonalization of the 12 block of the charged lepton

Yukawa matrix after the 23 block has been diagonalized. Let us denote such 12 blocks in the

charged lepton and down quark sectors (in the RL convention in which the Yukawa interactions

are written with the left-handed fields on the right) as

λ̂D[12] =

(
a b′

b c

)
λ̂E[12] =

(
αa βb

β′b′ γc

)
. (5.83)

In the following we will assume that the entries in eq. (5.83) can be approximated with the

corresponding entries of λE,D, in which case the coefficients α, β, β′, γ are still bound to take

one of the values in table 5.3 (the rotation used to diagonalize the 23 sector can have a sizeable

effect on the coefficient γ and, if the charged lepton contribution to θ23 from U e23 is sizeable, on

the coefficient β).

We would like to determine the values of the coefficients α, β, β′, γ allowed by data, and in

particular capable to account for the measured value of θ13 (see table 5.1). Not all the values of

the coefficients are allowed, in principle. The observables to be described are in fact

θ13, |Vus|,
me

mµ
,

md

ms
,

mµ

ms
, (5.84)

4This could not be the case, for example, if SU(5) is embedded in SO(10) or a larger unified group.
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Input Parameter Value Assumed error distribution

me/mµ (4.7362− 4.7369)× 10−3 [223] Uniform

mµ/ms 2.48− 7.73 [222] Uniform

ms/md 18.9± 0.8 [224] Gaussian

|Vus| 0.2252± 0.0009 [190] Used uniform in |Vus| ±∆

sin θ13 0.140− 0.166 (2σ) [196] Gaussian

Table 5.4: List of input parameters used in our analysis

and for given α, β, β′, γ, the five experimental inputs above depend on the four real variables |b/c|,
|b′/c|, |a/c|, ω, where the phase ω is defined by ac(bb′)∗ = eiω|acbb′|. The explicit dependence is

given by the following relations

tan θe12 =

∣∣∣∣
β′b′

γc

(
1−

∣∣∣βb
γc

∣∣∣
2
)

+
βb∗

γc∗
αa

γc

∣∣∣∣ (5.85a)

|Vus| =
∣∣∣∣
b

c

(
1−

∣∣∣b
′

c

∣∣∣
2
− 1

2

∣∣∣b
c

∣∣∣
2
)

+
b′∗

c∗
a

c

∣∣∣∣±∆ (5.85b)

me

mµ
=

∣∣∣∣
α

γ

a

c
− ββ′

γ2

bb′

c2

∣∣∣∣
(

1− β2|b|2 + β′2|b′|2
γ2|c|2

)
(5.85c)

md

ms
=

∣∣∣∣
a

c
− bb′

c2

∣∣∣∣
(

1− |b|
2 + |b′|2
|c|2

)
(5.85d)

mµ

ms
= |γ|

(
1 +

(β2 − γ2)|b|2 + (β′2 − γ2)|b′|2
2|c|2γ2

)
, (5.85e)

where ∆ takes into account the possibility of a model-dependent contribution to |Vus| from the up

quark sector and is assumed to be in the range |∆| <
√
mu/mc ≈ 0.045. The experimental inputs

used for the quantities on the LHS are listed in table 5.4. The relations above are approximated

and are accurate up to corrections of order λ4, if |b/c| . |b′/c| . λ, |a/c| . λ2.

Besides the general case in eq. (5.83), we will also consider the case in which a = 0 and the

symmetric case in which |λD12| = |λD21| and |λE12| = |λE21|, as they arise in many models of fermion

masses. Note that the symmetry condition implies b = ±b′ and β = β′.

5.6.1 Procedure

Before we come to the results we briefly discuss the procedure we implemented. Since only the

ratios |a/c|, |b/c|, and |b′/c| enter when computing the experimental inputs, we have set in our

forthcoming numerical analysis |c| = 1. We can also always perform a phase redefinition of the

fields such that all the remaining coefficients are real and positive and the only physical phase is

in c, so that c = exp(iω).

For each possible combination of Clebsh-Gordan (CG) coefficients we diagonalized exactly
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both the mass matrices, using the expressions for the observables in eq. (5.84) in terms of

a, b, b′, ω, of which the relations in eq. (5.85) are the expansion at NLO. Then we determined

numerically a solution for these parameters such that all the experimental inputs are satisfied.

We extracted the values for these inputs randomly following the distributions given in table 5.4.

We repeated this procedure until one solution is found. If, after a large number of attempts, no

solution is found, we discard this combination of CG coefficients. For the viable CG coefficients

we obtained by this procedure a distribution for θ13, from which we computed the mean value

and the standard deviation. To obtain sin θ13 from sin θe12 we have assumed that θ23 in the

neutrino sector is maximal for simplicity. Given the uncertainties on the other input variables,

this is a good approximation.

Note that eq. (5.85e) fixes γ to lie in the range of the observedmµ/ms. Therefore we used this

equation only to reduce the possible values of γ to −3, 9/2 and 6, cf. table 5.4. The GUT scale

ratio mµ/ms depends strongly on low energy SUSY threshold corrections (see e.g. ref. [225]) and

in principle one can use them to push this ratio to more extreme values, but in simple SUSY

breaking scenarios these are the only plausible values [222].

5.6.2 Results

We restrict the following analysis to some well motivated cases. In order to choose the allowed

and excluded cases we use the present 2σ bound, 0.140 < sin θ13 < 0.166 (see table 5.1 [196]).

Note also the recent Daya Bay measurement, eq. (5.22), which sets the stringent 2σ interval

0.137 < sin θ13 < 0.155.

Results for Renormalizable Operators Only

{α, β, β′, γ} {a, b, b′, ω} sin θ13

{−3, 1,−3,−3} {0.0151, 0.220, 0.189,−2.81} 0.130± 0.013

Table 5.5: Possible CG coefficients with Yukawa couplings coming only from renormalizable

operators. We also show typical values for the entries of λ̂D, where c is normalised to one, and

we give the prediction for sin θ13 inlcuding its 1σ standard deviation.

We start our discussion with the case in which the Yukawa couplings come only from renor-

malizable operators. This case is very restrictive as there are only two possible CG coefficients,

which are αij = 1, if the Higgs sits in a 5̄ of SU(5), and αij = −3, if the Higgs sits in a 45 of

SU(5) [226]. There is only one combination which is marginally in agreement with the experi-

mental data when including the uncertainty in the prediction. It is shown in table 5.5, where we

give in addition typical values for the entries of λ̂D and the prediction for sin θ13.
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Results without Representations larger than the Adjoint

{α, β, β′, γ} {a, b, b′, ω} sin θ13

{6, 1, 6, 6} {0.0155, 0.281, 0.259, 0.278} 0.175± 0.009

{6,−3/2, 6, 6} {0.0134, 0.247, 0.184,−2.77} 0.137± 0.014

Table 5.6: Possible CG coefficients with Higgs fields in representations not larger than the adjoint.

We also show typical values for the entries of λ̂D, where c is normalised to one, and we give the

prediction for sin θ13 inlcuding its 1σ standard deviation.

The next case we consider is the one in which the Yukawa couplings are generated by a

dimension five operator, with all fields sitting in a representation not larger than the adjoint.

This concerns also the messenger sector of a possible UV completion. Especially the Georgi-

Jarlskog factor of −3 [226] is here not possible anymore. There are only three αij left, which are

1, −3/2, and 6, giving two valid combinations as listed in table 5.6, where we give again typical

values for the parameters and the predictions for sin θ13, including its standard deviation.

Results for a = 0

{β, β′, γ} {b, b′} sin θ13

{−1/2, 6, 6} {0.251, 0.240} 0.164± 0.013

Table 5.7: Possible Clebsch Gordan coefficients with a texture zero in the 11 element, a = 0.

We also show typical values for the entries of λ̂D, where c is normalised to one, and we give the

prediction for sin θ13 inlcuding its 1σ standard deviation.

Let us now consider the scenario in which we have a texture zero in the 11 element, a = 0.

This can be motivated by having a flavon vacuum alignment, which has a zero in this position or

having a Froggat-Nielsen mechanism at work, which puts there a zero or suppresses this element

very strongly. For the CG coefficients we take all the possible values in table 5.3. In this case

we end up with only one possible combination showed in table 5.7. Note that in this case there

are no physical phases.

Results for Symmetric Mass Matrices

In the (anti-)symmetric case |λD12| = |λD21| and |λE12| = |λE21|, which implies b = ±b′ and β = β′,

we find 5 possible combinations listed in table 5.8. Such a mass matrix is generated, if the 12

and the 21 entries are coming from the same operator. Note that by choosing the unphysical

phases appropriately we can always make b = b′.
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{α, β, γ} {a, b, ω} sin θ13

{−3/2,−3,−3} {0.115, 0.233,−0.0736} 0.164± 0.007

{6,−3,−3} {0.0186, 0.205,−3.08} 0.139± 0.001

{9,−3,−3} {0.0142, 0.212,−3.04} 0.144± 0.003

{−18, 9/2, 9/2} {0.0117, 0.209,−3.05} 0.149± 0.003

{−18, 6, 6} {0.0133, 0.211,−3.08} 0.143± 0.003

Table 5.8: Possible Clebsch-Gordan coefficients with a symmetric mass matrix and the resulting

prediction for sin θ13.

This case cannot be combined with any other case. If we restrict ourselves to certain operators

or choose a = 0, no combination remains viable.

5.7 Summary and Conclusions

We considered the possibility that the neutrino mixing angle θ13 arises from the interplay of

12 and 23 rotations in the neutrino (Uν) and charged lepton (Ue) contributions to the PMNS

neutrino mixing matrix (U = U †eUν). We considered two possible orderings of 12 and 23 rotations

in Ue, the “standard”, Ue ∼ Re23R
e
12, and the “inverse”, Ue ∼ Re12R

e
23, while keeping the standard

ordering in the neutrino sector, Uν ∼ Rν23R
ν
12. In order to be able to accommodate a possible

deviation of the atmospheric neutrino mixing angle θ23 from π/4, we allowed the charged lepton

23 rotation angle (and possibly the neutrino one, in the standard case) to assume arbitrary

values. We considered the cases in which Uν is in the bimaximal or tri-bimaximal form, or in

the form resulting from the conservation of the lepton charge Le − Lµ − Lτ (LC). We took, of

course, all relevant physical CP violation (CPV) phases into account.

The case of standard ordering turns out to be particularly interesting. The PMNS matrix

can be parameterized in terms of the charged lepton and neutrino 12 rotation angles, θe12 and θν12,

an effective 23 rotation angle, θ̂23 ≈ θ23, and a CPV phase φ. Once θν12 is fixed to the bimaximal

(LC) or tri-bimaximal value, the number of parameters reduces to three, and the Dirac phase

δ in the PMNS matrix can be predicted in terms of the PMNS solar, atmospheric and reactor

neutrino mixing angles θ12, θ23 and θ13. Moreover, the range of possible values of the PMNS

angles turns out to be constrained.

In the tri-bimaximal case, the Dirac CPV phase δ is predicted to have a value δ ≈ 3π/2 or

δ ≈ π/2 (with the former favored at ∼ 2σ), implying nearly maximal CP violation in neutrino

oscillations, while in the bimaximal (and LC) case we find δ ≈ π and, consequently, the CP

violation effects in neutrino oscillations are predicted to be small. The present data have a mild

preference for the TBM option (see table 5.1 and, e.g., fig. 5.4). Moreover, θ23 is predicted to
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be below π/4 in the bimaximal case, which is also in agreement with the indications from the

current global neutrino oscillations data. In the set-up considered by us, the θ23 > π/4 solution

of the global fit analysis in [196,201] is disfavored.

The case of inverse ordering is qualitatively and quantitatively very different. Fixing Uν

to the bimaximal or tri-bimaximal form is not sufficient to obtain a prediction: the number

of free physical parameters in this case is four – two angles and two CPV phases. Still, not

all values of the four physical parameters in the PMNS matrix, θ12, θ23, θ13 and δ, can be

reached in this parameterization. In the tri-bimaximal case, the ranges of parameters that can

be reached overlaps with the experimental ranges, so that no predictions can be made. In the

bimaximal case, however, this is not the case. One obtains, in fact, the approximate relation

sin2 θ12 & 1/2− sin θ13, which is barely compatible with the data. As a consequence, i) there is a

tension in the above relation that worsen the quality of the fit, and ii) values of θ12 in the upper

part of its present experimental range are preferred. In both cases, no predictions for the Dirac

CPV phase δ can be made. We did not consider here the LC case as it involves, in general, five

parameters, while its “minimal” version, corresponding to setting θe23 = 0, is equivalent to the

standard ordering case with BM mixing (i.e., with θν12 = π/4).

The fact that the value of the Dirac CPV phase δ is determined (up to an ambiguity of

the sign of sin δ) by the values of the three PMNS mixing angles, θ12, θ23 and θ13, eqs. (5.47)

and (5.51), are the most striking predictions of the scheme considered with standard ordering

and bimaximal (LC) and tri-bimaximal mixing in the neutrino sector. As we have already

indicated, for the best fit values of θ12, θ23 and θ13 we get δ ∼= π and δ ∼= 3π/2 in the cases of

bimaximal and tri-bimaximal mixing, respectively. These results imply also that in the scheme

with standard ordering we have discussed, the JCP factor which determines the magnitude of

CP violation in neutrino oscillations, is also a function of the three mixing angles: JCP =

JCP (θ12, θ23, θ13, δ(θ12, θ23, θ13)) = JCP (θ12, θ23, θ13). This allowed us to obtain predictions for

the range of possible values of JCP using the current data on sin2 θ12, sin2 θ23 and sin θ13, which

are given in eqs. (5.65) - (5.71) and eqs. (5.76) - (5.77). For a recent work on using this strategy

to predict the Majorana phases see ref. [220].

The predictions for sin2 θ23, and for δ and JCP we have obtained in the scheme with standard

ordering and bimaximal (or LC) or tri-bimaximal form of Uν will be tested by the neutrino

oscillation experiments able to determine whether sin2 θ23 . 0.5 or sin2 θ23 > 0.5, and in the

experiments searching for CP violation in neutrino oscillations.

Finally, restricting ourselves to the simple case in which the only contribution from charged

leptons is the 12 rotation, we studied the predicted values of θ13 in SU(5) Grand Unified theories,

where the 12 rotation in the charged lepton sector is related to the Cabibbo angle in the CKM

matrix and to some ratios of quark and lepton masses, depending on the particular type of
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operator which generates the Yukawas. After performing a scan over all possible combinations

of Clebsh-Gordan coefficients, only a few of them are compatible with the present measurement

of the reactor angle, as can be seen from tables 5.5, 5.6, 5.7, 5.8.



APPENDIX A

Redundant operators and field redefini-

tions

To compute the anomalous dimension matrix of the set of 13 operators we are interested in,

{OH ,OT ,OB,OW ,O2B,O2W ,OBB,OWW ,OWB,O3W ,O2G,OGG,O3G} , (A.1)

we compute the one-loop effective action generated by those operators. One important feature of

this kind of computation is the appearance of counterterms corresponding to operators which are

not in our basis: the computation does not know our choice of basis. Working in the background

field gauge assures that the structure of these counterterms is gauge-invariant, therefore they

can be written as some gauge-invariant dim-6 operators. However, this does not imply that

the coefficient of the counterterms should be also gauge-invariant, in fact at this stage many

terms are ξ-dependent, which reflects the fact that the computation is not physical at this point.

A possible way to obtain physical results is to consider some physical process and include all

one-loop contributions: both those from operators in the basis and those from loop-generated

ones. When this process is completed, the result has to be gauge-independent. Another way

for dealing with this, without the need of considering physical observables, is to ‘rotate’ back

this loop-generated redundant operators into the basis we are working with. The completeness

of the basis assures that this is always possible. After this process, which will be described in

this appendix for the subset of operators we consider, the final anomalous dimension matrix

has to be gauge-independent. This subtlety is well known and, for instance, it also appears

in the context of non-relativistic QCD, where the running of the Wilson coefficients is gauge

independent only when the redundancy of different operators is taken into account [227]. This

has also been recently stressed again in ref. [75].
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The relevant redundant operators that are radiatively generated by those in eq. (A.1) are:

Or = |DµH|2 |H|2 , OK4 =
∣∣D2H

∣∣2 ,

O(3)L1

LL = (L̄Lσ
aγµLL)(L̄Lσ

aγµLL) , O(3)L1

L = i(H†σa
↔
DµH)L̄1

Lσ
aγµL1

L ,

OL1
LL = (L̄Lγ

µLL)(L̄Lγ
µLL) , Oe1R = i(H†

↔
DµH)(ē1

Rγ
µe1
R) ,

O(8)u1d1

RR = (ūRγ
µTAuR)(d̄Rγ

µTAdR) , Oe1RR = (ēRγ
µeR)(ēRγ

µeR) ,

OFiK3L = 1
2 F̄

i
L

(
D/D2 +D2D/

)
F iL , OfiK3R = 1

2 f̄
i
R

(
D/D2 +D2D/

)
f iR ,

OFiWL = gDνW a
µν(F̄ iLσ

aγµF iL) , O′FiWL = gW̃ a
µνiF̄

i
Lσ

aγµDνF iL ,

OFiBL = g′DνBµν(F̄ iLγ
µF iL) , O′FiBL = g′B̃µνiF̄ iLγ

µDνF iL ,

OfiBR = g′DνBµν(f̄ iRγ
µf iR) , O′fiBR = g′B̃µνif̄ iRγ

µDνf iR ,

OQiGL = gsD
νGAµν(Q̄iLT

AγµQiL) , O′QiGL = gsG̃
A
µνi(Q̄

i
LT

AγµDνQiL) ,

OqiGR = gsD
νGAµν(q̄iRT

AγµqiR) , O′qiGR = gsG̃
A
µνi(q̄

i
RT

AγµDνqiR) ,

(A.2)

By relevant we mean those radiatively generated redundant operators that modify the Wilson

coefficient of the operators in eq. (A.1) when the former operators are redefined into operators

in our basis, defined in Section 2.1.

A.1 Anomalous dimension matrix

Below we present in three different tables the anomalous dimension matrix of the operators in

eq. (A.1) as well as the relevant redundant operators generated by them, eq. (A.2), at the order

stated in eq. (2.10). We work with arbitrary ξ in the background field gauge (see eq. (2.11)) and

use dimensional regularization. All the contributions given in Tables A.1, A.2 and A.3 below

arise from one-particle-irreducible Feynman diagrams, i.e. it is the one-loop renormalization of

the Effective Action. We have defined

γci = 16π2 dci
d logµ

, βg =
dg

d logµ
(A.3)

and

γH = −Ncy
2
t +

1

4

(
3[3− ξW ]g2 + [3− ξB]g′2

)
, γW = −1

g
βg =

(
43

6
− 4

3
NG

)
g2 ,

γG = − 1

gs
βgs =

(
11− 4

3
NG

)
g2
s , γB = − 1

g′
βg′ =

(
−1

6
− 20

9
NG

)
g′2 ,

(A.4)

in the background field gauge. NG = 3 is the number of generations.

In Table A.1 we display the contributions of OH , Or and OT to the running of the Wilson

coefficients of the operators in eq. (A.1). The contributions not shown are either zero or propor-

tional to the Yukawa coupling yl of any fermion lighter than the top. Notice that in Table A.1
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cH cr cT

γcH 28λ+ 12y2
t − 3

(
5
2
g2 + g′2

)
3
2

(
2g2 + g′2

)
− 4λ 8λ− 6g2 − 3

2
g′2

γcT
3
2
g′2 − 3

2
g′2 12λ+ 12y2

t + 9
2
g2

γcB − 1
3

1
3

− 5
3

γcW − 1
3

1
3

− 1
3

γcr 4λ− 3g2 20λ+ 12y2
t − 3

2

(
g2 + g′2

)
−4λ+ 3g2 − 6g′2

Table A.1: Anomalous dimension matrix. Further contributions of OH , Or and OT to other operators
in eq. (A.1) and eq. (A.2) are either zero or proportional to the Yukawa coupling of any fermion lighter
than the top. The dashed line separates the anomalous dimension of the operators in our basis from that
of the redundant operators.

cBB cWW cWB c3W

γcH 6g′4 18g4 6g′2g2 0

γcT 0 0 0 0

γcB 0 0 0 0

γcW 0 0 0 2g2

γc2B 0 0 0 0

γc2W 0 0 0 4g2

γcBB
g′2

2
− 9g2

2
+ 6y2

t + 12λ 0 3g2 0

γcWW 0 − 3g′2

2
− 5g2

2
+ 6y2

t + 12λ g′2 5
2
g2

γcWB 2g′2 2g2 - g
′2

2
+ 9g2

2
+ 6y2

t + 4λ − g2
2

γc3W 0 0 0 24g2 − 2γW

γcr 6g′4 18g4 6g′2g2 0

γ
c
Q,L
WL

0 0 0 g2

Table A.2: Anomalous dimension matrix. Further contributions of OBB ,OWW ,OWB and O3W to other
operators in eq. (A.1) and eq. (A.2) are either zero or proportional to the Yukawa coupling of fermions
lighter than the top. The dashed line separates the anomalous dimension of the operators in our basis
from that of the redundant operators.



A Anomalous dimension matrix 154

cB cW c2B c2W

γcH
3
4
g′2

(
g′2 + 4g2

)
3
4
g2

(
3g2 + 4g′2

)
− 6λg2 − 3

8
g′2

(
g′2 + 4g2

)
− 3

8
g2

(
g2(3 + 2ξW ) + 4g′2

)
+ 3λg2

γcT − 9
4
g′2g2 − 6λg′2 − 9

4
g′2g2 9

8
g′2g2 + 3λg′2 9

8
g′2g2

γcB
g′2

6
+ 6y2

t
g2

2
− g′2

12
− g2

4

γcW
g′2

6
11
2
g2 + 6y2

t − g′2
12

−g2
(

1
4

+ 3ξW
)

γc2B − 2
3
g′2 0 −2γB 0

γc2W 0 − 2
3
g2 0 g2

(
59
3
− 3ξW

)
− 2γW

γcBB 0 0 0 0

γcWW 0 0 0 0

γcWB 0 0 0 0

γc3W 0 0 0 0

γcr
3
2
g′2

(
2g′2 − g2

)
+ 6λg′2 3

2
g2

(
6g2 − g′2

)
+ 30λg2 3

4
g′2

(
g2 − 2g′2

)
− 3λg′2 − 3

4
g2

(
2g2(3− ξW )− g′2

)
− 15λg2

γcK4 −g′2 −3g2 g′2

2
3
2
g2

γ
c
(3)Q,L
L

0 3
4
g4 0 3

4
g4ξW

γ
c
Q,L
L

0 0 0 0

γ
c
u,d,e
R

0 0 0 0

γ
c
Q,L
K3L

0 0 −Y 2
F g
′2 − 3

4
g2

γ
c
u,d,e
K3R

0 0 −Y 2
f g
′2 0

γ
c
Q,L
WL

O (yi) O (yi) − 5
12
Y 2
F g
′2 − 21

16
g2 − 3

2
ξW g2

γ
c
Q,L
BL

O (yi) O (yi) − 5
6
Y 3
F g
′2 −YF 5

8
g2

γ
c
u,d,e
BR

O (yi) O (yi) − 5
6
Y 3
f g
′2 0

γ
c
′Q,L
WL

O (yi) O (yi) − 1
2
Y 2
F g
′2 − 3

8
g2

γ
c
′Q,L
BL

O (yi) O (yi) −Y 3
F g
′2 − 3

4
YF g

2

γ
c
′u,d,e
BR

O (yi) O (yi) −Y 3
f g
′2 0

γ
c
(3)F
LL

0 0 − 3
2
g2(g′YF )2 3

8
g2(g2(1 + ξW )− 4(g′YF )2)

γcF
LL

0 0 −6(g′YF )4 − 9
8
g4

γ
c
f
RR

0 0 −6(g′Yf )4 0

Table A.3: Contributions of the operators OB ,OW ,O2B and O2W to the anomalous dimension matrix
of the operators in eq. (A.1) and eq. (A.2). By yi we denote the Yukawa coupling of any fermion. The
dashed line separates the anomalous dimension of the operators in our basis from that of the redundant
operators.
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c2G cGG c3G c2B c2W

γc2G
1
2
g2
s(59− 9ξG)− 2γG 0 6g2

s 0 0

γcGG 0 − 3
2
g′2 − 9

2
g2 + 12λ+ 6y2

t 0 0 0

γc3G 0 0 36g2
s − 2γG 0 0

γcud
RR

−12g2
s(g′2YuYd) 0 0 −12(g′2YuYd)2 0

γ
c
(8)ud
RR

1
2
g4
s(9ξG − 1) 0 0 −12g2

s(g′2YuYd) 0

γ
c
Q
K3L

− 4
3
g2
s 0 0 Table A.3 Table A.3

γ
c
u,d
K3R

− 4
3
g2
s 0 0 Table A.3 0

γ
c
u,d
GR

−g2
s( 9

2
ξG + 37

9
) 0 3g2

s − 5
6

(g′Yu,d)2 0

γ
c
Q
GL

−g2
s( 9

2
ξG + 37

9
) 0 3g2

s − 5
6

(g′YQ)2 − 5
8
g2

γ
c
Q
WL

− 5
9
g2
s 0 0 Table A.3 Table A.3

γ
c
Q
BL

− 10
9
g2
sYQ 0 0 Table A.3 Table A.3

γ
c
u,d
BR

− 10
9
g2
sYu,d 0 0 Table A.3 0

γ
c
′u,d
GR

− 4
3
g2
s 0 0 −(g′Yu,d)2 0

γ
c
′Q
GL

− 4
3
g2
s 0 0 −(g′YQ)2 − 3

4
g2

γ
c
′Q
WL

− 2
3
g2
s 0 0 Table A.3 Table A.3

γ
c
′Q
BL

− 4
3
g2
sYQ 0 0 Table A.3 Table A.3

γ
c
′u,d
BR

− 4
3
g2
sYu,d 0 0 Table A.3 0

Table A.4: Contributions of the operators O2G,OGG,O3G,O2B and O2W to the anomalous dimension
of the operators in eq. (A.1) and eq. (A.2). The dashed line separates the anomalous dimension of the
operators in our basis from that of the redundant operators.
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we have gone beyond the strictly necessary computations to obtain the anomalous dimension

matrix and also included the contributions of the operator Or, that is redundant with respect to

our basis; their contributions can be used for an important crosscheck, described in Appendix B

of ref. [4].

In Table A.2 we show the contributions of OBB,OWW ,OWB and O3W to the running of

the operators in eq. (A.1). The c3W self-renormalization has been extracted from the result of

ref. [69]. The contributions of these operators to the running of the redundant ones in eq. (A.2)

that we have not written are either zero or proportional to light fermion Yukawas yl.

Lastly, in Table A.3 we show the contributions of OB,OW ,O2B and O2W to the running of

any of the operators in eq. (A.1) and eq. (A.2). We have indicated by O (yl) those contributions

that at most are expected to be proportional to the Yukawa coupling of a fermion lighter than

the top. As can be noted from Table A.3, the contribution of O2W to the running of OH , Or,
OW , O2W , O(3)Fi

L , OFiWL and O(3)Fi
LL is ξ-dependent. In section A.2 we show that upon redefining

the redundant operators in terms of operators in our basis the ξ dependence vanishes.

Table A.4 reports the contributions ofO2G,OGG,O3G,O2B andO2W to the anomalous dimen-

sion of the (redundant) operators in eq. (A.1) and eq. (A.2), as needed to derive the anomalous

dimension matrix of the dim-6 bosonic operators with gluons of our basis (see Table 2.7).

A.2 Removal of the radiatively-generated redundant operators

Let us now discuss how to deal with each operator in eq. (A.2) and their effect on the operators

of eq. (A.1). The easiest way to deal with the redundant operator O′fiBR = g′B̃µνif̄ iRγ
µDνf iR [57]

is by means of the identity1

γµγνγρ = gµνγρ + gνργµ − gµργν + iεµνρσγσγ
5 ; (A.5)

one finds

g′B̃µν f̄RγµiDνfR =
g′

4
f̄Ri

(
γµγνD/+

←−
D/γµγν

)
fRg

′B̃µν

+ ig′f̄RγργµγνfRDρB̃µν . (A.6)

Then, using the fermion’s EoM

g′

4
f̄Ri

(
γµγνD/+

←−
D/γµγν

)
fRg

′B̃µν =
1

4
g′yf iF̄LσµνfRHg

′B̃µν + h.c.

=
1

4
g′yf F̄LσµνfRHg

′Bµν + h.c. ≡ 1

4
OfDB , (A.7)

1We use the conventions of Peskin & Schroeder textbook.



A Removal of the radiatively-generated redundant operators 157

which is a dipole operator, where σµν ≡ i
2 [γµ, γν ]; using again eq. (A.5) in the second term of

the right hand side of eq. (A.6)

ig′f̄RγργµγνfRDρB̃µν = 2g′f̄RγσfRDρB
σρ = 2OfBR . (A.8)

Therefore, Eqs. (A.6)-(A.8) and analogous manipulations, are equivalent to the following shifts

(ci → ci + δci) in the following Wilson coefficients:

δcFWL = 2c′FWL , δcFBL = 2c′FBL , δcfBR = 2c′fBR, δcQGL = 2c′QGL, δcqGR = 2c′qGR . (A.9)

The Wilson coefficient of the dipole operators are also shifted, see eq. (A.7), however, we can not

conclude that the dipoles are renormalized by the set of bosonic operators we considered because

we did not compute direct contributions, those coming from one-particle-irreducible diagrams.

Then, for the operator OfiK3R, consider the field redefinition δfi = − c
fi
K3R
2Λ2 D

2fi, that removes

OfiK3R from the Lagrangian while generates the operator

−c
fi
K3Ryfi
2Λ2

DµF̄iLD
µ (fiRH) + h.c. = −c

fi
K3Ryfi
2Λ2

[DµF̄iLγ
µγνDν (fiRH)

− 1

2
F̄iLXµνσ

µνfiRH + h.c.] ,
(A.10)

where Xµν = g′YFiBµν+gW a
µντ

a+gsG
A
µνT

a, being τa and TA the SU(2)L and SU(3)c generators

in the fundamental representation, respectively. Then, by inserting the fermion’s EoM in the

first operator in the right hand side of eq. (A.10) one gets operators of the type LYuk |H|2 and

the operator yfiOfiR ≡ yfii(H
† ↔DµH)f̄ iRγ

µf iR; we do not care about the latter (proportional to

yfi) since our basis choice of Section 2.1 was to remove the operator OfiR corresponding to a

light fermion. Performing an analogous analysis for OFiK3L we reach the same conclusion: neither

of the two operator’s scaling affects the anomalous dimension of the set of bosonic operators

in eq. (A.1). As in the case of O′WL,BL,BR, the same comment applies here: even-though the

Wilson coefficient of the dipoles is shifted by the above manipulations, we do not conclude that

they are renormalized by the bosonic operators.

Now, the remaining operators are redefined into our basis by performing field redefinitions

as showed in eq. (2.3). Consider the 37 independent field redefinitions

Λ2δGAµ = α2G(DνGAµν) + gS
∑

i

αiQGQ̄
i
LT

AγµQ
i
L + gS

∑

i,q

αiqGq̄
i
RT

Aγµq
i
R, ,

Λ2δW a
µ = igαW (H†σa

↔
DµH) + α2W (DνW a

µν) + g
∑

i,F

αiFW F̄
i
Lσ

aγµF
i
L,

Λ2δBµ = ig′αB(H†
↔
DµH) + α2B(∂νBµν) + g′

∑

i,F

YFα
i
FBF̄

i
LγµF

i
L + g′

∑

i,f

Yfα
i
fB f̄

i
Rγµf

i
R,

Λ2δH = α1H|H|2 + α2

(
(D2H)− yije ēiRLjL − y

ij
d d̄

i
RQ

j
L − yiju iσ2(ūiRQ

j
L)∗
)
,

(A.11)
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with F = {L,Q}, f = {e, d, u}, q = {d, u} and i = 1, 2, 3. These generate the following shifts for

the Wilson coefficients of the dimension 6 operators:

cH → cH + 2(α1 + 2λα2)− αW g2 cr → cr + 2(α1 + 2λα2) + αW g
2

cT → cT − αBg′2 cK4 → cK4 − 2α2

cB → cB + α2B − 2αB cFiWL → cFiWL + 1
2α2W − αiFW

cW → cW + α2W − 2αW cFiBL → cFiBL + YF (α2B − αiFB)

c2B → c2B + 2α2B cf iBR → cf iBR + Yf (α2B − αifB)

c2W → c2W + 2α2W c
(3)Fi
LL → c

(3)Fi
LL + g2

2 α
i
FW

c2G → c2G + 2α2G cFiLL → cFiLL + (YF g
′)2αiFB

c6 → c6 − 4α1 cf iRR → cf iRR + (Yfg
′)2αifB

ciyf → ciyf − α1 + 2λα2 c
Fifj
LR → c

Fifj
LR + (YFYfg

′2)(αifB + αiFB)

cijyfyf → cijyfyf + 2α2 c
(3)Fi
L → c

(3)Fi
L + g2

2 (αW + αiFW )

cu
idj

RR → cu
idj

RR + g′2YuYd(αiuB + αjdB) cFiL → cFiL + YF g
′2(αB + 1

2α
i
FB)

cf iR → cf iR + Yfg
′2(αB + 1

2α
i
fB)

cqiGL,R → cqiGL,R + α2G − αiqG for q = Q, u, d

c
(8)uidj

RR → c
(8)uidj

RR + g2
s(α

i
uG + αjdG).

(A.12)

Notice that using Fierz identities we can always trade the operator OFiLL for O(3)Fi
LL : OFiLL = O(3)Fi

LL .

This means that the shift in cFiLL can be recast as a shift in c(3)Fi
LL , which becomes:

c
(3)Fi
LL → c

(3)Fi
LL +

g2

2
αiFW +

(
cFiLL + (YF g

′)2αiFB

)
. (A.13)

We use the freedom given by the field redefinitions to set to zero the following 37 coefficients:

cr, cK4, c
(3)L1

LL , ce1RR, c
(3)L1

L , ce1R , c
Fi
WL, c

Fi
BL, c

fi
BR, c

Qi
GL, c

ui
GR, c

di
GR, c

(8)u1d1

RR . This fixes all the shift pa-

rameters αi and gives shift invariant combinations, under eq. (A.12), of the Wilson coefficients
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of the operators in our basis:

cH → cH − cr + 6(c
(3)L1

L − c̃(3)L1

LL ) ,

cT → cT +
1

Ye
(ce1R −

1

2Ye
ce1RR) ,

cW → cW − 2cL1
WL − 4c′L1

WL +
4

g2
(c

(3)L1

L − 2c̃
(3)L1

LL ) ,

cB → cB −
1

Ye
ce1BR −

2

Ye
c′e1BR +

2

Yeg′2
(ce1R −

1

Ye
ce1RR) ,

c2W → c2W − 4cL1
WL − 8c′L1

WL −
8

g2
c̃

(3)L1

LL ,

c2B → c2B −
2

Ye
ce1BR −

4

Ye
c′e1BR −

2

Y 2
e g
′2 c

e1
RR ,

c6 → c6 + 2cr + 4λcK4 − 8(c
(3)L1

L − c̃(3)L1

LL ) ,

c2G → c2G − cd1
GR − 2c′d1

GR − cu1
GR − 2c′u1

GR −
1

g2
s

c
(8)u1d1

RR ,

(A.14)

where

c̃
(3)L1

LL = c
(3)L1

LL + cF1
LL + g′2YL

(
cL1
BL + 2c′L1

BL −
YL
Ye

(ce1BR + 2c′e1BR +
1

g′2Ye
ce1RR)

)
(A.15)

and eq. (A.9) has already been taken into account. This completes the removal of the operators

in eq. (A.2) in terms of the bosonic operators. After these shifts, the anomalous dimensions of

the operators in eq. (A.1) are redefined as

γcH → γcH − γcr + 6(γ
c
(3)L1
L

− γ̃
c
(3)L1
LL

) ,

γcT → γcT +
1

Ye
(γce1R

− 1

2Ye
γce1RR

) ,

γcW → γcW − 2γ
c
L1
WL

− 4γ
c
′L1
WL

+
4

g2
(γ
c
(3)L1
L

− 2γ̃
c
(3)L1
LL

) ,

γcB → γcB −
1

Ye
γce1BR

− 2

Ye
γ
c
′e1
BR

+
2

Yeg′2
(γe1R −

1

Ye
γce1RR

) ,

γc2W → γc2W − 4γ
c
L1
WL

− 8γ
c
′L1
WL

− 8

g2
γ̃
c
(3)L1
LL

,

γc2B → γc2B −
2

Ye
γce1BR

− 4

Ye
γ
c
′e1
BR
− 2

Y 2
e g
′2γce1RR ,

γc6 → γc6 + 2γcr + 4λγcK4 − 8(γ
c
(3)L1
L

− γ̃
c
(3)L1
LL

) ,

γc2G → γc2G − γcd1GR − γc′d1GR − γc
u1
GR
− γ

c
′u1
GR
− 1

g2
s

γ
c
(8)u1d1

RR

,

(A.16)

where

γ̃
c
(3)L1
LL

= γ
c
(3)L1
LL

+ γ
c
F1
LL

+ g′2YL

(
γ
c
L1
BL

+ 2γ
c
′L1
BL

− YL
Ye

(γcBRe1 + 2γ
c
′e1
BR

+
1

g′2Ye
γce1RR

)

)
. (A.17)

The remaining bosonic operators, not of the CC type, are not affected by these field redefinitions

and therefore their anomalous dimension is not affected. In this way we can go back to our original
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basis taking into account that some operators are generated radiatively even if we set their Wilson

coefficient to zero at the matching scale. In the main body of the thesis, Tables 2.4 and 2.7,

we give the physical anomalous dimensions obtained using the right hand side of eq. (A.16). As

expected, the ξ-dependence cancels out in the physical combinations of γci ’s, which can be easily

checked using eq. (A.16).



APPENDIX B

Non-linear realizations of a global sym-

metry

In refs. [134, 135], Callan, Coleman, Wess and Zumino showed how to build effective chiral

Lagrangians able to describe the low-energy dynamics of NGBs of a generic global symmetry

breaking G → H. Here we review some basic aspects of this approach following closely the

presentation of ref. [228].

Let us assume that the theory is invariant under transformations of a global symmetry group

G, and that this symmetry is spontaneously broken to a subgroup H. This means that H is the

group of transformations h which leave the vacuum invariant,

h 〈Φ〉 = 〈Φ〉 , (B.1)

where Φ = {φ1, φ2 . . . φN} includes all the fields in the theory which belong, in general, to some

reducible representation of G. For non-scalar fields of course 〈φn〉 = 0 by Lorentz invariance.

Let us now remove from Φ(x) the NGB degrees of freedom by defining

Φn(x) = Unm(x)Φ̃m(x) , (B.2)

where U(x) ∈ G. Eq. (B.2) ensures that the transformation U(x) is universal for all fields in the

theory. Since the NGBs are aligned along some linear combinations of the T ânm〈Φm〉 vectors, the
condition Φ̃ needs to satisfy in order not to contain NGBs is

Φ̃n(x)T ânm〈Φm〉 = 0 . (B.3)

These are NNGB independent equations, where NNGB is the number of broken generators T â,

NNGB = dim(G) - dim (H), i.e. the number of Nambu-Goldstone bosons. Since the theory is

invariant under global G transformations, the matrix U(x) will enter only via its derivatives.

Let us now show that it is always possible to choose U(x) so that eq. (B.3) is satisfied. Given

a field configuration Φ, let us consider the function of a group transformation g ∈ G defined as

VΦ(g) = Φngnm〈Φm〉, (B.4)

161
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which is continuos and limited since G is compact. This implies that for any given x, VΦ(x)(g)

has a maximum corresponding to some group element U(x) ∈ G, therefore V is stationary in

that point. Given the group element U , a nearby element is given by

U ′ = U + δU = U(1 + iεαTα) = U + iεαUTα, (B.5)

that is δU = iεαUTα. The variation of VΦ(x)(U(x)) is

δVΦ(x)(U(x)) = iεαΦn(x)Unl(x)Tαlm〈Φm〉 = iεαUTln(x)Φn(x)Tαlm〈Φm〉 ≡ 0. (B.6)

Since this should hold ∀εα and since UT = U−1, we get

U−1
ln (x)Φn(x)Tαlm〈Φm〉 = 0, (B.7)

that is, comparing with (B.2), we obtained Φ̃(x) = U−1(x)Φ(x).

Let us now find how to parametrize U(x). First of all, the choice of the matrix U is not unique:

since the vacuum expectation value of the fields is H-invariant by hypothesis, the function (B.4)

is invariant under a right-multiplication by h ∈ H:

VΦ(g) = VΦ(gh). (B.8)

Therefore, if U(x) is a stationary value for VΦ, then also U(x)h is such ∀h ∈ H. It follows

that the elements of G can be divided in equivalence classes, where U1, U2 ∈ G are equivalent if

∃ h ∈ H such that U1 = U2h. It is possible to verify that this is indeed an equivalence relation,

being reflective, symmetric and transitive. These classes are known as laterals of G with respect

to H, the space of these laterals is G/H. Parametrizing this space is the same as choosing a

particular representative for all equivalent classes. In general, it is always possible to write any

element of G as

g = eiθ
âT âeiθ

aTa . (B.9)

Since U(x) is defined up to a right-multiplication by h, it is possible to choose the representative

for each lateral of G/H as

U(x) = eiξ
â(x)T â , (B.10)

where the n ξâ(x) are, up to some normalization factor, the NGBs.

Let us now study how the fields ξâ(x) and Φ̃(x) transform under a g ∈ G transformation.

Since Φ trasforms linearly according to its representation, we have:

Φ′(x) = gΦ(x) = gU(ξ(x))Φ̃(x), (B.11)

where, with an abuse of notation, we call by g both the element of the group and the matrix of

the associated transformation in the representation of Φ. For any x, since U(ξ(x)) ∈ G, from
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the definition of group follows that ∀g ∈ G also gU(ξ(x)) ∈ G, therefore gU(ξ(x)) will belong to

some lateral of G/H. Thus, we can write

gU(ξ(x)) = U(ξ′(x))h(ξ(x), g) → U(ξ′(x)) = g U(ξ(x)) h(ξ(x), g)−1, (B.12)

where h(ξ(x), g) is a local H transformation, depending on ξ(x) and g. We see that the transfor-

mation under G of the NGB is non-linear, since the transformation matrix h(ξ(x), g)−1 depends

on the ξ(x) in a non-linear way. Substituting this expression in (B.11) we get

Φ′(x) = gΦ(x) = U(ξ′(x))h(ξ(x), g)Φ̃(x) ≡ U(ξ′(x))Φ̃′(x), (B.13)

where

Φ̃′(x) = h(ξ(x), g)Φ̃(x). (B.14)

The last equation implies that also the matter fields Φ̃ transform non-linearly under G according

to some h ∈ H matrix: a global g ∈ G transformation acts non-linearly on the matter fields as a

local transformation under the unbroken group, h(ξ(x), g) ∈ H.
In the particular case where the global transformation belongs to the unbroken group H,

let us show that it is always possible to choose the NGBs such that they transform linearly,

that is they belong to some linear representation of H. In fact if g = h ∈ H, in (B.12) we

can always choose a representative of the lateral such that h(ξ, g) = h. Using the property

AeBA−1 = eABA
−1 we get

h eiξ(x)h−1 = eihξ(x)h−1 ≡ eiξ′(x), (B.15)

from which follows the transformation law of the NGBs under h ∈ H:

ξ′(x) = h ξ(x) h−1. (B.16)

Let us now start defining the structures needed to build our Lagrangians. Performing the

substitution (B.2), from the terms with derivatives of Φ one gets:

∂µΦ(x) = ∂µ

(
U(x)Φ̃(x)

)
= U(x)

[
∂µΦ̃(x) +

(
U−1(x)∂µU(x)

)
Φ̃(x)

]
, (B.17)

where the NGB appear in the anti-Hermitian combination U †(x)∂µU(x). In general, since this

structure belongs to the algebra, it is possible to decompose it in linear combinations of broken

and unbroken generators:

U †(x)∂µU(x) = idâµT
â + iEaµT

a. (B.18)

From eq. (B.12) follows the transformation laws of the terms in eq. (B.18) under g ∈ G:

U−1(ξ′)∂µU(ξ′) = h(ξ, g)
[
U(ξ)−1∂µU(ξ)

]
h(ξ, g)−1 − [∂µh(ξ, g)]h−1(ξ, g). (B.19)
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In terms of the dâµ and Eaµ structures defined in (B.18), this transformation is equivalent to

d′µ = h(ξ, g)dµh
−1(ξ, g); (B.20)

E′µ = h(ξ, g)Eµh
−1(ξ, g) + i [∂µh(ξ, g)]h−1(ξ, g),

in particular Eµ transforms as a gauge field. From eq. (B.14) follows that the derivative of Φ̃

transforms according to

∂µΦ̃′ = (∂µh)Φ̃ + h∂µΦ̃ = h
(
∂µ + h−1∂µh

)
Φ̃. (B.21)

This motivates the introduction of the covariant derivative

∇µ ≡ ∂µ + iEµ(x), (B.22)

such that ∇′µΦ̃′ = h(ξ, g)(∇µΦ̃). Analogously to gauge fields, with Eµ(ξ(x)) it is possible to

define

Eµν = ∂νEµ − ∂µEν − i[Eµ, Eν ], (B.23)

which transforms non-linearly under g ∈ G according to

E′µν = h(ξ, g) Eµν h
−1(ξ, g). (B.24)

A Lagrangian written in terms of the Φ̃, ∇µΦ̃, Eµν and dµ structures, invariant under local

H transformations, will also be invariant under global G transformations, which would be non-

linearly realized.

B.1 Approximate symmetry

In many applications, such as those relevant for the QCD chiral Lagrangian and for composite

Higgs models, the symmetry under G transformation is not exact, but only approximate. In other

words, there exist a term in the Lagrangian, suppressed by some small parameter (for example

quark mass terms mq/fπ, gauge couplings or fermion mixing terms ε/f), which is not invariant

under these transformations.

Let us consider the case in which the breaking term in the Lagrangian, ∆L, is not invariant
under G but transforms as some linear representation of G. This amounts to give some spurionic

transformation properties under G to the symmetry breaking terms.

∆L = cAOA, (B.25)

where OA = OA(Φ(x)) are operators which transform under g ∈ G according to some represen-

tation D[g]:

OA g−→ D[g]ABOB. (B.26)
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Substituting Φ(x) with U(ξ(x))Φ̃(x), this transformation becomes

OA[ξ, Φ̃]
g−→ OA[ξ′, h(ξ, g)Φ̃] = D[g]ABOB[ξ, Φ̃], (B.27)

where ξ′ = ξ′(ξ, g) comes from U(ξ′(ξ, g))h−1(ξ, g) = gU(ξ) and eq. (B.10).

Let us now show how to build an operator which transform linearly according to eq. (B.26)

from the fields Φ̃ and ξ, which transform linearly under H but non-linearly under G. In the

ξ = 0 case let us take the transformation g = U(ξ′); since U(ξ) = U(0) = 1, from the transfor-

mation law for ξ we get that gU(ξ) = g = U(ξ′), that is h(0, U(ξ′)) = 1 and ξ′(0, U(ξ′)) = ξ′.

Substituting these relations in eq. (B.27) one has

OA[ξ′, Φ̃] = D[U(ξ′)]ABOB[0, Φ̃], (B.28)

which shows how to include the ξ-dependence of the operator OA starting from an operator

defined only in terms of the Φ̃ fields.

Considering now the case with ξ = 0 and g = h ∈ H we have that gU(ξ) = g = h, that is

h(0, h) = h and U(ξ′(0, h)) = 1, i.e. ξ′(0, h) = ξ′ = 0. Substituting this result in eq. (B.27) we

obtain

OA[0, hΦ̃] = D[h]ABOB[0, Φ̃], (B.29)

that is under a transformation h ∈ H, if ξ = 0, then the operators OA[0, Φ̃] transform linearly

according to the representation D[h]AB.

Let us finally show that any operator satisfying eq. (B.29), can also satisfy eq. (B.26). Using

eqs. (B.28) and (B.29) in eq. (B.27) we get

OA[ξ′(ξ, g), h(ξ, g)Φ̃] = D[U(ξ′(ξ, g))]ABOB[0, h(ξ, g)Φ̃] = (B.30)

= D[U(ξ′(ξ, g))]ABD[h(ξ, g)]BCOC [0, Φ̃] =

= D[U(ξ′(ξ, g))h(ξ, g)]ABOB[0, Φ̃] = D[gU(ξ)]ABOB[0, Φ̃] =

= D[g]ABD[U(ξ)]BCOC [0, Φ̃] = D[g]ABOB[ξ, Φ̃]

q.e.d.

In summary, to obtain an operator O which transform linearly under G starting from an

operator O[0, Φ̃] defined in terms of the non-linearly transforming fields Φ̃, which belong to H
representation in eq. (B.29), it is enough to multiply it by the NGB matrix U(ξ), written in the

same representation (D[U(ξ)]), that is as in eq. (B.28).

This is exactly the construction we used to introduce the mixing terms between elementary

and composite fermions Ψ in section 3.3.2. The latter belong to irreducible representations of

H and we dressed those with the NGB matrix U in order to create an operator transforming

linearly under G: O = UΨ.



APPENDIX C

Non-analytic terms in the potential

For sh � 1, the tree-level + one-loop potential V = V (0) +V (1) admits an expansion of the form

V = −γs2
h + βs4

h + δs4
h log sh +O(s6

h) . (C.1)

The last non-analytic term cannot obviously be obtained by a Taylor expansion around sh = 0.

It arises at the one-loop level and is due to the contribution of particles whose mass vanishes for

sh = 0. In a naive expansion around sh = 0, its presence would be detected by the appearance

of a spurious IR divergence in the coefficient β. At first order in δ, the non trivial minimum of

the potential is found at

〈s2
h〉 ≡ ξ = ξ0

(
1− δ

4β
(1 + 2 log ξ0)

)
, (C.2)

where

ξ0 =
γ

2β
(C.3)

is the leading order minimum for δ = 0. The Higgs mass is given by

m2
h =

8β

f2
ξ0(1− ξ0) +

4δξ0

f2

(
1− ξ0

2
+ ξ0 log ξ0

)
. (C.4)

For ξ0 � 1 we get

m2
h ' (m0

h)2
(

1 +
δ

2β

)
, (C.5)

where

(m0
h)2 ' 8β

f2
ξ0 (C.6)

is the leading order mass for δ = 0.

In the models we considered, the particles massless at sh = 0 are always the top, in the

matter sector, and the W and the Z gauge boson, in the gauge sector. Correspondingly, the

explicit form of δ = δgauge + δmatter is universal and given by

δmatter = − Nc

8π2
λ4
topf

4 ,

δgauge =
3f4(3g4 + 2g2g′2 + g′4)

512π2
,

(C.7)

with Nc = 3 the QCD color factor and Mtop ≡ λtopv.
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APPENDIX D

Results for Other Simple Models

In this appendix we briefly present the results for all the models studied in our analysis. They

differ by the number of spin-1 and spin-1/2 resonances introduced. In all the models studied,

and presented schematically below, EWSB is due to a tuning between the fermionic and gauge

contributions to γ. In the parameter scans we performed, we have set Mtop(TeV) ' 150 GeV

and ξ = 0.1, solving these constraints for two of the input parameters. We have then imposed a

cut for a light Higgs, mH ∈ [100, 150] GeV.

Minimal model: NQ = 1, NS = 1, Nρ = 1, Na = 1

For illustration, we consider here two versions of the minimal model, differing on how the Wein-

berg sum rules (3.97) are satisfied. We denote by “type 1" the model where εtS = εtQ = εqS =

−εqQ = ε, mS 6= mQ (as in eq.(3.98)), and by “type 2" the model where εtS = εtQ ≡ εt,

εqS = −εqQ ≡ εQ, mQ = mS ≡ m. In the first model the LFR is either t′ or χ, while in the

second one the LFR is necessarily χ. In both cases the vector resonance’s mass is bounded from

above bymρ . 2 TeV, which implies that the S parameter is too big (∆S & 0.3) and both models

don’t pass the EWPT, see fig. D.1(b,d).

It is not difficult to see in more detail the tension present in this model. Let us for definiteness

consider the type 1 model. The numerical scan show that EWSB mostly occurs in the region

ωL � 1, ωR ' 1. Taking ωR = 1 and expanding at leading order in ωL, one finds

m2
ρ

m2
H

' 8π2

9 log 2

f(ωL)

g2ξ
≤ 8π2

9 log 2

1

g2ξ
(D.1)

where

f(ωL) =
8(1 + logω2

L)

1 + 8 logω2
L − log 4/ξ

(D.2)

is a smooth function f(x) ≤ 1, for any x. Using eq.(D.1) for mH ' 125 GeV, we immediately

find an upper bound for mρ (for ξ = 1/10):

mρ . 1.8 TeV . (D.3)
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Figure D.1: (a,c) Mass of the LFR, before EWSB, as a function of the Higgs mass. The green circles
represent the (lightest) singlet while the purple triangles represent the (lightest) exotic doublet with
Y = 7/6. (b,d) Mass of the ρµ vector as a function of the Higgs mass. One can see that for mH . 130

GeV, mρ . 1.8 TeV, which is too low for the model to pass the EWPT. In (a,b) we took the masses
mQ,mS ∈ [0, 5f ], aρ ∈ [1/

√
2, 2] while ε and mρ have been obtained by fixing mtop and ξ. In (c,d) the

same range has been taken for the parameters m, εq and aρ, while εt and mρ have been obtained by fixing
Mtop and ξ.

Demanding ∆Ŝ . 2×10−3 [83] in eq.(3.85), with fρ = f/
√

2, givesmρ & 1.8 TeV, only marginally

in agreement with the bound in of eq. (D.3).

Two vectors: NQ = 1, NS = 1, Nρ = 2, Na = 1

We choose the type 1 finiteness condition for the fermionic sector. The numerical scan shows

that the vector mass eigenstates and the axial vector can be arbitrarily heavy and therefore



169

Nρ = 2, Na = NQ = NS = 1 - ξ = 0.1

ô
ô ô

ô
ô

ôô ôô
ôô ô ôô

ô

ô

ô ô

ô

ô

ô

ôô

ô ô

ô
ô

ô

ôôô ô

ôô
ôô

ô

ô
ô

ô
ô

ô

ô ô
ô

ôô ô

ô
ô

ô

ô
ô

ôô

ô

ô
ôô

ô ô

ô
ô ô

ô
ôô

ô

ô

ô
ô

ô

ô
ô

ô
ô

ôô

ô
ô

ôô
ôô

ô

ô

ô ô
ô

ô
ô

ô

ô

ô

ô ô

ô
ô

ô

ô ô ô

ô
ô

ô

ô

ô
ô

ô ô ôô

ô
ô ô ôô

ô
ôôô ôô

ô ô

ô
ô ô

ôôô ôô
ô

ô ô
ô

ô

ô ô

ô

ô ô

ô
ô

ô

ô
ô

ô
ôô

ô ô

ô
ô

ôô
ô ô

ô

ô
ô

ô

ô
ô

ô
ô

ô

ô
ô

ô ôôôô

ô
ôô

ô
ô

ôô
ô ôô

ô

ô

ô

ô

ô
ô

ô
ô

ô
ô

ô

ô ô

ô

ô

ô

ô

ô

ô

ô

ô
ô

ô ô

ô

ô
ô

ô
ô ô

ô

ô ôô
ô

ôô ô
ôô

ô ô ô

ô ô
ô

ô

ô
ô

ô

ô

ô
ô

ô

ô

ô ô

ô
ôô

ô

ô

ô

ô

ô

ôô

ô
ôô

ô
ô

ô
ô

ô

ô

ô

ô

ô

ô

ô

ô

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

ææ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ
æ

æ

æ

æ
æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ
æ

æ

æ
æ

æ

æ

æ

æ

ææ

æ
æ

æ

æ

æ æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ
æ

æ

æ

ææ

æ

æ

æ

110 120 130 140 150
mH

200

400

600

800

1000

1200
mL

(a)

Nρ = 1, Na = 2, NQ = NS = 1 - ξ = 0.1
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Figure D.2: Mass of the LFR, before EWSB, as a function of the Higgs mass. The green circles represent
the (lightest) singlet while the purple triangles represent the (lightest) exotic doublet with Y = 7/6. In
the model (a) the range in which we scanned the parameters is the same as in fig.3.7. For the model (b),
instead, we took the fermionic masses in [0, 5f ], aρ ∈ [1/

√
2, 2], a1a ∈ [0,

√
a2ρ − 1/2] and ma1/mρ in a

region [0.2, 2] times the value for which ∆Ŝ vanishes. As usual, mρ and ε have been obtained by fixing ξ
and Mtop.

having a small ∆Ŝ is no longer a problem. The LFR is either χ, with m7/6 ∼ 500 GeV, or t′,

with m0 ∼ 600− 1000 GeV, see fig.D.2(a). The bound (3.52) rules out almost the whole region

with a light X fermion. The lightest vector can be as light as 1.5 TeV, while the axial is always

heavier than ∼ 2.2 TeV.

Two axials: NQ = 1, NS = 1, Nρ = 1, Na = 2

We choose the type 1 finiteness condition for the fermionic sector. The results in this sector

are completely analogue to the minimal model with the same type of finiteness condition. In

particular, the vector resonance is always light: mρ . 2 TeV, see fig.D.3(a). The tree level Ŝ

parameter of this model can be written as

∆Ŝtree = 2m2
W

(m2
a1 +m2

a2)m2
ρ + 2f2

ρ/f
2(m2

a1 −m2
ρ)(m

2
a2 −m2

ρ)

2m2
a1m

2
a2m

2
ρ

, (D.4)

after having solved the two Weinberg sum rules in terms of the two axial decay constants. We

can see that ∆Ŝ can be made small or even negative by choosing the two masses of the axial

resonances such that ma1 < mρ < ma2. The lightest axial resonance has a mass ma1 ∼ 300−900

GeV, see fig.D.3(b). This model has therefore a potentially interesting phenomenology, but it is

fair to say that a model with light axial resonances and negative Ŝ parameter looks quite “exotic"

and might not admit a consistent UV completion.
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Figure D.3: (a) Mass of the vector resonance ρµ and (b) of the lightest axial vector, as a function of
the Higgs mass. The range of the parameters is the same as in fig.D.2(b).

Two singlets: NQ = 1, NS = 2, Nρ = 1, Na = 1

See section 3.7.3 for a more complete description of this model. In this case, the LFR is the

singlet S1, with m0 ' 300 − 800 GeV, see fig.D.4(a), the second singlet S2 being always much

heavier. The vector resonance can be as heavy as 5-6 TeV, due to the fact that now γf can be

bigger than the minimal case.

Two bidoublets: NQ = 2, NS = 1, Nρ = 1, Na = 1

In this case the LFR can be either the singlet or the lightest Y = 7/6 doublet, their masses being

always below ∼ 1 TeV, see fig.D.4(b). Analogously to the previous case, the vector resonance

can be heavy and thus ∆Ŝtree small.

Two singlets and bidoublets: NQ = 2, NS = 2, Nρ = 1, Na = 1

The most general solution for eq.(3.96) is given in terms of four angles and two mixings:

~εqQ = (εq cos θqQ, εq sin θqQ), ~εqS = (εq cos θqS , εq sin θqS),

~εtQ = (εt cos θtQ, εt sin θtQ), ~εtS = (εt cos θtS , εt sin θtS).
(D.5)

Now one can solve eq.(3.97) for one of the remaining parameters, in the parameter scans we

choose to solve it for εq, as this allows us to go in the light singlet region. The scan shows that

the LFR tends to be the first singlet, see fig.D.4(c). As in the previous two cases, the points

which pass the direct bound of eq. (3.52) have mρ > 2 TeV, T ′ as the LFR with m0 ' 700−1000

GeV, the other resonances being generally heavier than 1 TeV.
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Nρ = 1, Na = 1, NQ = 1, NS = 2
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Figure D.4: Mass of the LFR, before EWSB, as a function of the Higgs mass. The green circles
represent the (lightest) singlet while the purple triangles represent the (lightest) exotic doublet with
Y = 7/6. The range of the parameters in the model (a) is the same as in fig.3.8. For the models (b,c) we
took all the fermion masses miQ,miS ∈ [0, 8f ] and aρ ∈ [1/

√
2, 2], while εt and mρ have been obtained

by fixing respectively Mtop and ξ. In the log. divergent case, (d), the range is mQ,mS , εt ∈ [0, 8f ] while
εq has been obtained by fixing Mtop.

Minimal Model with Logarithmic Divergence

As we have seen above, the minimal model with NQ = NS = Nρ = Na = 1 is not viable

because of a too light vector resonance, which implies a too big Ŝ parameter at tree-level. This

problem can be circumvented by relaxing the second Weinberg sum rules, so that the Higgs

potential keeps a logarithmic divergence. This obviously implies that the MHP hypothesis is

no longer defendable, since local operators have to arise in order to renormalize the logarithmic

divergence. In other words, the coefficients γ(NDA)
g and γ(NDA)

f introduced in eq.(3.67) run and
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can be assumed to be vanishing only at a given energy scale. One could however hope that their

impact is somehow small, so that it is still possible to make good estimates for the parameter ξ

integrating the form factors only up to the cutoff Λ ∼ 4πf . To satisfy the first Weinberg sum

rule in the fermion sector we can assume that

εqS = −εqQ = εq, εtS = εtQ = εt. (D.6)

The logarithmically divergent term in γf is proportional to the square of the mixing parameters,

γf ∝ (ε2t − ε2q) log Λ/m where m is a generic fermion mass. This is the same effect seen when

adding more fermions which would allow higher values of γf and, therefore, heavier vector masses.

Doing a numerical scan of such model we indeed obtain these results but, on the other side, we

notice that the physics (that is, the value of ξ andmH) is too sensitive to the value of Λ: changing

it by a factor of 2 has an O(1) effect on these observables, making the model unpredictable.

We can adopt another approach to deal with the logarithmic divergence, which is accepting

that γ, and therefore ξ, is uncalculable. Assuming a given value of ξ and using eq.(3.102) we can

still compute the Higgs mass, being β finite. The relation γf ' −γg, connecting the fermion and

the gauge sector in a crucial way, is now lost. Given that βg � βf , as far as the Higgs potential

is concerned, the gauge sector is completely negligible and thus unconstrained. This allows the

model to pass the EWPT, although in a somewhat trivial way. Neglecting the gauge sector and

performing a parameter scan for the minimal model presented above, we still obtain that a light

Higgs implies light fermionic resonances, as can be seen from fig.D.4(d).

Similar considerations would of course apply to the non-minimal models. As far as the

Higgs sector is concerned, the price to be paid is high since EWSB is no longer under control.

Moreover, as we have seen, non-minimal models are viable without the need of relaxing the second

Weinberg sum rules. For these reasons, we have decided to not explore any further models where

a logarithmic divergence in the Higgs potential is kept.



APPENDIX E

A dictionary for deconstructed models

In chapter 3 we constructed a general framework for composite Higgs models, based only on

the assumptions of SO(5)/SO(4) symmetry breaking pattern and the MHP hypothesis. In this

appendix we explicitly show how this general setup is able to reproduce the physics of two decon-

structed composite Higgs models and how in these cases the Weinberg sum rules are automatically

satisfied due to the enhanced symmetry of the models.

E.1 Discrete Composite Higgs Model

Let us start with the two and three sites deconstructed models described in ref. [119]. The two

sites model is based on the coset SO(5)L⊗SO(5)R/SO(5)V , where the SM group is embedded in

SO(5)L. From this coset one has 10 Goldstones πA, transforming in the adjoint of SO(5)V . The

SO(4) subgroup of SO(5)R is gauged by introducing six gauge fields ρ̃aµ, which become massive

by eating the six Goldstone bosons πa. The Lagrangian of this model is (in the notation of

ref. [119])

Lg,2−sitesPW =
f̃2

4
Tr
[
(DµU)tDµU

]
− 1

4
Tr [ρ̃µν ρ̃

µν ] + LgaugeSM , (E.1)

where the Goldstone matrix is U = exp
[
i
√

2πATA/fπ
]
, the covariant derivative is DµU =

∂µU − i(g0W
α
µ T

α
L + g′0BµT

3
R)U + ig̃∗Uρ̃aµT

a and LgaugeSM is the usual gauge Lagrangian for the SM

EW gauge bosons. Going in the gauge where the only non-zero Goldstones are the ones along the

generators of the coset SO(5)V /SO(4) (“holographic gauge"), πâ, this model is described by the

Lagrangian of eq.(3.33), with one vector multiplet in the adjoint of SO(4), no axial resonances,

and fixing the parameters as (imposing invariance under LR symmetry):

2-sites: f = fπ = f̃ , gρ = g̃∗, m2
ρ =

1

2
g̃2
∗ f̃

2, f2
ρ =

f̃2

2
. (E.2)

One can check that only the first Weinberg sum rule is satisfied and the gauge contribution to

the Higgs potential remains logarithmically divergent.

173
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In order to get a finite potential, the authors of [119] add to the model another site, doubling

the coset to (SO(5)2
L ⊗ SO(5)1

R)/SO(5)1
V × (SO(5)2

L ⊗ SO(5)2
R)/SO(5)2

V . From this symmetry

breaking pattern 20 Goldstone bosons arise and can be parametrized by two SO(5) matrices

U1 = U(πA1 ) and U2 = U(πA2 ). Sixteen NGB’s are eaten by the gauging of SO(4) ⊂ SO(5)2
R by

ρ̃aµ and of the diagonal combination of SO(5)1
R ⊗ SO(5)2

L by the gauge field ρAµ :

DµU1 = ∂µU1 − i(g0W
α
µ T

α
L + g′0BµT

3
R)U1 + ig∗U1ρ

A
µT

A,

DµU2 = ∂µU2 − ig∗ρAµTAU2 + ig̃∗U2ρ̃
a
µT

a.
(E.3)

The Lagrangian of this model is

Lg,3−sitesPW =
f̃2

4
Tr
[
(DµU1)tDµU1

]
+
f̃2

4
Tr
[
(DµU2)tDµU2

]
− 1

4
Tr [ρ̃µν ρ̃

µν ]− 1

4
Tr [ρµνρ

µν ]+LgaugeSM .

(E.4)

In the holographic gauge where πA2 = πa1 = 0, one obtains the Lagrangian of (3.33) for two

vectors and one axial resonances, with LR symmetry and the following parameters:

3-sites:





f = fπ =
f̃√
2
, fa =

f̃

2
, fρ1 =

f̃√
2
, fρ2 = 0,

fmix =
f̃√
2
, ga = gρ1 = g∗, gρ2 = g̃∗, ∆ = −1

2
.

(E.5)

Both Weinberg sum rules (3.81) and (3.82) are now satisfied. Notice that the term proportional

to fρ2 is absent in the deconstructed model because it would correspond to a non-local interaction

in field space.

The fermionic sector of [119] can be studied directly in the holographic gauge. As we are

interested only in the leading contribution to the 1-loop Higgs potential, we neglect in the follow-

ing interactions between fermions and spin-1 fields (gauge bosons, vector and axial resonances)

as well as composite fermions necessary to give mass to SM fermions other than the top. In

the two sites model the authors introduce a complete multiplet in the fundamental of SO(5)R,

ψ̃ = Q̃+ S̃, with a mass term that is only SO(4)R invariant:

Lf,2−sitesPW = Lelem + Lcomp + Lmix, (E.6)

where Lelem is the kinetic term for the SM fermions,

Lcomp = i ¯̃Q /DQ̃+ m̃Q
¯̃QQ̃+ i ¯̃S /DS̃ + m̃T

¯̃SS̃, (E.7)

Lmix = yLf̃ ξ̄LU
(
Q̃+ S̃

)
+ yRf̃ ξ̄RU

(
Q̃+ S̃

)
+ h.c. (E.8)

Comparing this Lagrangian to the general one of eq.(3.39), it is immediate to recognize that the

models are the same once we fix NQ = NS = 1 and

2 sites: εqQ = εqS = yLf, εtQ = εtS =
√

2yRf, mQ = −m̃Q, mS = −m̃T .

(E.9)
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One can check that the sum rules of (3.96) are satisfied while the one in eq.(3.97) is generically

not, so that the potential is logarithmically divergent. One could however impose the finiteness

of the one loop potential setting yL =
√

2yR.

In the three sites model there are two composite fermionic multiplets, one in the fundamental

of SO(5)1
R, ψ = Q + S, and another one in the fundamental of SO(5)2

R, ψ̃ = Q̃ + S̃. In the

holographic gauge, the Lagrangian is

Lcomp = i ¯̃Q /DQ̃+ i ¯̃S /DS̃ + iQ̄ /DQ+ iS̄ /DS+

m̃Q
¯̃QQ̃+ m̃T

¯̃SS̃ +m(Q̄Q+ S̄S) + ∆(Q̄Q̃+ S̄S̃) + h.c. ,

Lmix = yLf̃ ξ̄LU (Q+ S) + yRf̃ ξ̄RU (Q+ S) + h.c.

(E.10)

Note that ∆, as well as the gauging by ρAµ , explicitly breaks SO(5)1
R ⊗ SO(5)2

L to the diagonal

subgroup SO(5)D. As the composite mass terms are not diagonal, one needs to diagonalize them

before comparing this model with our setup:



Q1 = cθQQ̃+ sθQQ,

Q2 = − sθQQ̃+ cθQQ,
,




S1 = cθS S̃ + sθSS,

S2 = − sθS S̃ + cθSS.
(E.11)

After doing that, we obtain that this three sites model can be described by the Lagrangian (3.39)

for NQ = NS = 2 and

3-sites:





m1,2Q =
1

2

(
m+ m̃Q ∓

√
(m− m̃Q)2 + 4∆2

)
,

m1,2 S =
1

2

(
m+ m̃S ∓

√
(m− m̃S)2 + 4∆2

)
,

tan θQ =
∆√

∆2 + (m− m̃Q)
(
m− m̃Q +

√
(m− m̃Q)2 + 4∆2

) ,

tan θS =
∆√

∆2 + (m− m̃S)
(
m− m̃S +

√
(m− m̃S)2 + 4∆2

) ,

ε1qQ = yLf̃ sθQ , ε2qQ = yLf̃ cθQ ,

ε1qS = yLf̃ sθS , ε2qS = yLf̃ cθS ,

ε1tQ =
√

2yRf̃ sθQ , ε2tQ =
√

2yRf̃ cθQ ,

ε1tS =
√

2yRf̃ sθS , ε2tS =
√

2yRf̃ cθS .

(E.12)

One can check that the sum rules (3.96) and (3.97) are satisfied. One can also check that the

fermion contribution to the potential has a leading mass term proportional to the square of the

mixings, which can be tuned away for yL '
√

2yR, allowing for a successful EWSB, confirming

what stated in [119].
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E.2 Minimal 4D Composite Higgs

Let us now write a similar dictionary for the deconstructed model described in ref. [120]. This

model is based on a two-coset Lagragian: SO(5)L ⊗ SO(5)R/SO(5)D, described by the NGB

matrix Ω1 = exp(i
√

2π̃AT a/f1), and another coset SO(5)/SO(4), described by the matrix Ω2 =

exp(i
√

2π̄âT â/f2). The SM gauging is embedded in SO(5)L and to absorb the 10 exceeding

NGB’s, the diagonal subgroup of SO(5)R ⊗ SO(5) is gauged by the field ρAµ . In the notation of

ref. [120], the Lagrangian is

L =
f2

1

4
Tr |DµΩ1|2 +

f2
2

2
(DµΦ2)tDµΦ2 −

1

4g2
ρ

ρAµνρ
Aµν , (E.13)

where Φ2 = Ω2φ0 (φ0 = (0, 0, 0, 0, 1)t) and

DµΩ1 = ∂µΩ1 − iAµΩ1 + iΩ1ρµ, DµΩ2 = ∂µΩ2 − iρµΩ1. (E.14)

Going again to the holographic gauge, where Ω2 = 1 and Ω1 ≡ U = exp(i
√

2π̃âT â/f1), and

redefining the NGB fields as π̃â = f1/fπ
â, one can write the Lagrangian as in eq.(3.33):

L =
f2

1 f
2
2

4(f2
1 + f2

2 )
Tr [dµd

µ]+
f2

1

4
Tr
[
(gρρµ − Eµ)2

]
+
f1

1 + f2
2

4
Tr
[
(gρaµ −

f2
1

f2
1 + f2

2

dµ)2

]
−1

4
ρ2
µν−

1

4
a2
µν ,

(E.15)

from which we obtain the dictionary for Nρ = Na = 1:




f2 =
f2

1 f
2
2

f2
1 + f2

2

, f2
ρ =

f2
1

2
, ga = gρ,

∆ =
f2

1

f2
1 + f2

2

,
f2
a

∆2
=
f2

1 + f2
2

2
.

(E.16)

It is straightforward to check that both Weinberg sum rules are satisfied with these parameters.

The fermion sector of [120], as far as the top is concerned, consists of the elementary SM

fields and two complete multiplets in the fundamental of SO(5): ψ̃ = (Q̃, S̃), ψ = (Q,S), where

we have decomposed them in the irreducible representations of SO(4). In the holographic gauge,

the fermion Lagrangian is1

Lferm = Lelem + i ¯̃Q /DQ̃+ i ¯̃S /DS̃ + iQ̄ /DQ+ iS̄ /DS+

−mT (Q̄Q+ S̄S)−mT̃ ( ¯̃QQ̃+ ¯̃SS̃)+

− (mYT + YT )S̄LS̃R −mYT Q̄LQ̃R + h.c.+

+ ∆tL ξ̄LU(QR + SR) + ∆tR ξ̄RU(Q̃L + S̃L) + h.c. .

(E.17)

1We thank Michele Redi and Andrea Tesi for having pointed out that in their model ∆tL 6= ∆tR in general.
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To compare this Lagrangian with our framework, we need to diagonalize the composite mass

terms via biunitary transformations:

MQ =

(
mT mYT

0 mT̃

)
= VQL(θQL)Md

QVQR(θQR)†,

MS =

(
mT mYT + YT

0 mT̃

)
= VSL(θSL)Md

SVSR(θSR)†,

(E.18)

where Md
Q = diag(m1Q,m2Q), Md

S = diag(m1S ,m2S),

m1,2Q =
1√
2

√
m2
T +m2

T̃
+m2

YT
∓
√

(m2
T +m2

T̃
+m2

YT
)2 − 4m2

Tm
2
T̃
,

tan θQL =
m2
T̃
−m2

T −m2
YT
−
√

(m2
T̃
−m2

T )2 +m2
YT

(m2
YT

+ 2mT̃ + 2m2
T )

2mT̃mYT

,

tan θQR =
m2
T̃
−m2

T +m2
YT
−
√

(m2
T̃
−m2

T )2 +m2
YT

(m2
YT

+ 2mT̃ + 2m2
T )

2mTmYT

,

(E.19)

and m1,2 S , tan θSL and tan θSR are the same as above with the substitution mYT → YT +mYT .

Writing the Lagrangian in terms of the mass eigenstates (before EWSB),



QL = cos θQLQ1L − sin θQLQ2L

Q̃L = sin θQLQ1L + cos θQLQ2L

, (E.20)

and analogously for the other cases, we obtain the Lagrangian (3.39) for NQ = NS = 2 and




ε1qQ = ∆tLcθQR , ε2qQ = −∆tLsθQR ,

ε1qS = ∆tLcθSR , ε2qS = −∆tLsθSR ,

ε1tQ =
√

2∆tRsθQL , ε2tQ =
√

2∆tRcθQL ,

ε1tS =
√

2∆tRsθSL , ε2tS =
√

2∆tRcθSL .

(E.21)

One can check that all the sum rules are satisfied by this model and therefore the Higgs potential

is finite at 1-loop level. One can also check that the leading term in γf , quadratic in the mixing

∆tL,R , is proportional to YT (∆2
tL
m2
T − 2∆2

tR
m2
T̃

)(2mYT + YT ).



APPENDIX F

Parametrizing the SO(6)/SO(5) coset and

physical couplings

In this appendix, after providing some definitions useful for our work, we present three different

parametrizations of the physical h and η fields, used in previous literature, and the relations

among them. In particular, we show how the couplings among the physical fields differ between

the parametrizations: only physical observables are parametrization-independent.

Let us first define the broken and unbroken generators of SO(6)/SO(5) in the fundamental

representation of SO(6). We classify them in the five broken ones of SO(6)/SO(5) and the ten

unbroken generators of the SO(5) subgroup, which can be further divided into the six of the

SU(2)L ⊗ SU(2)R ∼ SO(4) ⊂ SO(5) subgroup and the four of the SO(5)/SO(4) coset

T âij = − i√
2

(
δâiδ6j − δâjδ6i

)
,

T
aL,R
ij = − i

2

[
1

2
εabc(δbiδcj − δbjδci)± (δaiδ4j − δajδ4i)

]
,

Tαij = − i√
2

(
δαiδ5j − δαjδ5i

)
,

(F.1)

where â = 1, . . . , 5, aL,R = 1, 2, 3 and α = 1, . . . , 4.

The five NGBs can be parametrized by a 6 × 6 unitary matrix obtained exponentiating a

linear combination of the broken generators,

U(x) = exp

[
i
√

2
θâ(x)

f
T â
]
, (F.2)

which transforms under a global SO(6) transformation g as U(x)→ g U(x) k†(g, θâ(x)), where k

is a local transformation of the unbroken group SO(5), which depends on g and on the position

via the NGB dependence. From the NGB matrix U one can define the standard CCWZ structures

dµ and Eµ as

dâµT
â + EaµT

a = −i(U †DµU) . (F.3)
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Defining Σ(x) ≡ U(x)Σ0, with Σ0 = (0, 0, 0, 0, 0, 1)t, one gets

Σ = sin
θ

f

(
θ1̂

θ
,
θ2̂

θ
,
θ3̂

θ
,
θ4̂

θ
,
θ5̂

θ
, cot

θ

f

)

=
1

f

(
h1, h2, h3, h4, η,

√
f2 − h2 − η2

)
,

(F.4)

where θ2 ≡ ∑5
â=1(θâ)2 and h2 ≡ ∑4

i=1 h
2
i . The usual Higgs doublet can can be constructed as

H = 1√
2
(h1 + ih2, h3 + ih4)t. The fields hi(x) and η(x) live in the region

√
h2 + η2 ≤ f . In the

unitary gauge h1(x) = h2(x) = h4(x) = 0 and h(x) ≡ h3(x)

Σunitary = sin
θ

f

(
0, 0,

θ3̂

θ
, 0,

θ5̂

θ
, cot

θ

f

)

=
1

f

(
0, 0, h, 0, η,

√
f2 − h2 − η2

)

=

(
0, 0, sin

φ

f
cos

ψ

f
, 0, sin

φ

f
sin

ψ

f
, cos

φ

f

)
,

(F.5)

where in the third line we introduced another parametrization [45], in terms of two angles, which

is related to the previous two as

φ =

√
(θ3̂)2 + (θ5̂)2 , tan

ψ

f
=
θ5̂

θ3̂
,

sin
φ

f
=

1

f

√
h2 + η2 , tan

ψ

f
=
η

h
.

(F.6)

Let us call the first parametrization, in terms of the θâ variables, Cartesian, the one we use

throughout the paper, in terms of h and η, constrained and the third one, in terms of the angles

φ and ψ, polar. In the rest of this appendix we will show how the physical fields in the three

parametrization have qualitatively different couplings, both from the chiral Lagrangian and from

the effective potential. In the computation of physical quantities such as cross-sections or decay

widths, these differences conspire and give the exact same result, as expected.

The leading-order chiral Lagrangian, eq. (4.8), can be written in a compact form in both the

constrained and in the polar parametrization, it reads

Lchiral =
f2

4
Tr [dµd

µ] =
f2

2
(DµΣ)tDµΣ =

=
1

2

[
sin2 φ

f
(∂µψ)2 + (∂µφ)2

]
+
f2

8
sin2 φ

f
cos2 ψ

f
(g̃2AµA

µ)

=
1

2

[
(∂µh)2 + (∂µη)2 +

(h∂µh+ η∂µη)2

f2 − h2 − η2

]
+
h2

8
(g̃2AµA

µ) ,

(F.7)

where, for convenience, we defined g̃2AµA
µ ≡ g2

0[(W 1
µ)2 + (W 2

µ)2] + (g′0Bµ − g0W
3
µ)2. In the

three parametrizations, the EWSB vacuum can be identified as (〈θ3̂〉 = f sin−1
√
ξ, 〈θ5̂〉 = 0),
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(sin〈φ〉 =
√
ξ, 〈ψ〉 = 0) or (〈h〉 = v = f

√
ξ, 〈η〉 = 0), where ξ = v2/f2. It is then straightforward

to identify the physical Higgs and DM fields in the three parametrizations

θ3̂ = f sin−1
√
ξ + hCart , θ5̂ = f

sin−1
√
ξ√

ξ
+ ηCart ;

φ = f sin−1
√
ξ + hpol , ψ =

1√
ξ
ηpol ;

h = v +
√

1− ξ hcon , η = ηcon .

(F.8)

Let us now look at the effective potential. With a simple spurionic analysis it is possible to

obtain the possible functional dependence of the potential on the pNGBs. The gauge contribution

to the potential depends only on h2 = f2 sin2 φ
f cos2 ψ

f , instead the functional dependence of

the fermion contribution depend on the particular embedding of the SM fermions in SO(6)

representations. In our models, that is embedding the third generation quarks in fundamentals

as in eq. (4.15), the functional dependences are h2 = f2 sin2 φ
f cos2 ψ

f and (h2 + η2) = f2 sin2 φ
f .

Expanding for small values of h2, η2 and keeping terms up to quartic order, the effective potential

can thus be parametrized as

Veff =
µ2
h

2
h2 +

λh
4
h4 +

µ2
η

2
η2 +

λ

2
h2η2 +

λη
4
η4 + . . . (F.9)

= −γ sin2 φ

f
cos2 ψ

f
+ β sin4 φ

f
cos4 ψ

f
+ δ sin2 φ

f
+ σ sin4 φ

f
cos2 ψ

f
+ χ sin4 φ

f
+ . . . .

The relation between the coefficients in the two formalisms, at this order, is

µ2
hf

2 = −2(γ − δ) , µ2
ηf

2 = 2δ ,

λhf
4 = 4(β + σ + χ) , λf4 = 2(σ + 2χ) , ληf

4 = 4χ .
(F.10)

The EWSB minimum is given by

ξ =
v2

f2
= − µ2

h

λh f2
=

γ − δ
2(β + σ + χ)

. (F.11)

The mass matrix for physical fields defined in eq. (F.8), in all three parametrizations, is the same

m2
h =

∂2V (hphys, ηphys)

∂h2
phys

∣∣∣∣∣
min

= 2λhv
2(1− ξ) =

8(β + σ + χ)

f2
ξ(1− ξ) , (F.12)

m2
η =

∂2V (hphys, ηphys)

∂η2
phys

∣∣∣∣∣
min

= µ2
η + λv2 =

2δ

f2
+

2(σ + 2χ)

f2
ξ , (F.13)

m2
hη =

∂2V (hphys, ηphys)

∂hphys∂ηphys

∣∣∣∣
min

= 0 . (F.14)

Which confirms that the physical fields defined above are indeed mass eigenstates.

Let us now move to study the couplings of the physical fields in the three parametrizations

arising from the Lagrangian of eq. (F.7) and the potential in eq. (F.10). We parametrize the



181

generic couplings of the physical fields following, and adapting, the formalism of ref. [104]. Up

to four-particle interaction terms and assuming custodial invariance and parity under η → −η,
(from now on we neglect the subscript “phys”), we write the phenomenological Lagrangian

Lpheno =
1

2
(∂µh)2

(
1 + 2ahh

h

v
+ bhh

h2

v2
+ bhη

η2

v2
+ . . .

)

+
1

2
(∂µη)2

(
1 + 2aηh

h

v
+ bηh

h2

v2
+ bηη

η2

v2
+ . . .

)

+ (∂µη∂
µh)

(
cη
η

v
+ dηh

ηh

v2
+ . . .

)
− Veff(h, η)

+

[
M2
WW

+
µ W

−µ +
M2
Z

2
ZµZ

µ

](
1 + 2aV h

h

v
+ bV h

h2

v2
+ bV η

η2

v2
+ . . .

)

−mf ψ̄fψ

(
1 + cfh

h

v
+ bfh

h2

v2
+ bfη

η2

v2
+ . . .

)
,

(F.15)

where f = ui, di, ei represents any SM fermion and

Veff(h, η) =
m2
h

2
h2 +

m2
η

2
η2 +

λh3

2
h3v +

λh4

4
h4 +

λη2h

2
η2h+

λη2h2

4
η2h2 +

λη4

4
η4 . (F.16)

We report the expression of the couplings in the three parametrizations, as functions of ξ, in

table F.1. It can be noticed that the constrained parametrization offers the cleanest expressions

for the physical couplings. For this reason, and for its intuitive relation with the physical Higgs

and DM fields, we decided to use this parametrization throughout the work.

In table F.1 it can be noted that the couplings of the physical fields differ also qualitatively

among the three parametrizations. It can be checked that, however, when computing physical

observables (for example cross-sections) they all give the same result. As an example it can be

easily checked that the NGB scattering amplitudes for high energies, E2 � m2
h,m

2
η,M

2
W,Z , go like

|A|2 ∼ E4/f4 in all three parametrizations. In order to check that also the couplings from the

potential provide the same physical results (which can not be tested from the previous check), we

explicitly computed the unpolarized cross-section
∑

pol σ(ηη →W+W−) in all parametrizations

and for all energies above threshold and confirmed that the result is indeed the same in all three

cases.
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APPENDIX G

Parametrization of the PMNS matrix

In the present Appendix we show how the parametrisation of eq. (5.30) follows from the ones in

eqs. (5.27) and (5.28). We start by writing explicitly the PMNS matrix as

U = Φ∗eR12(θe12)R23(θe23)ΨR23(θν23)R12(θν12)Φν , (G.1)

where Ψ = diag(1, eiψ, eiω), without loss of generality. Any 2× 2 unitary matrix V can be recast

in the form V = PR(θ)Q, where P = diag(eiφ1 , eiφ2), Q = diag(1, eiω2) and R(θ) is a 2 × 2

rotation. We use this to write

R23(θe23)ΨR23(θν23) = Φ′R23(θ̂23)Ω, (G.2)

where R23(θ̂23) is an orthogonal rotation in the 23 block with

sin θ̂23 =
∣∣∣cos θe23 sin θν23 + ei(ω−ψ) sin θe23 cos θν23

∣∣∣ , (G.3)

Φ′ = diag(eiφ1 , eiφ2 , eiφ3), and Ω = diag(1, eiω2 , eiω3). An explicit solution for the angles in terms

of the original parameters is

φ1 = 0, φ2 = δc + δs + ψ − ω, φ3 = 0,

ω2 = −δs + ω, ω3 = −δc + ω,
(G.4)

where

δs = Arg
(

cos θe23 sin θν23 + ei(ω−ψ) sin θe23 cos θν23

)
,

δc = Arg
(

cos θe23 cos θν23 − ei(ω−ψ) sin θe23 sin θν23

)
.

(G.5)

Considering now also the R12(θν12) rotation, we obtain

R23(θ̂23)ΩR12(θν12) = Φ′′R23(θ̂23)R12(θν12)Q′′, (G.6)

with Φ′′ = diag(1, eiω2 , eiω2) and Q′′ = diag(1, 1, ei(ω3−ω2)). The phases in Q′′ add to the ones in

Q′ and are Majorana phases. The ones in Φ′′, instead, add to the ones in Φ′:

Φ′Φ′′ = eiφ1 diag(1, ei(φ2−φ1+ω2), ei(φ3−φ1+ω2)). (G.7)
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The phase in the 33 position commutes with R12(θe12). Together with the overall phase φ1, it

will describe the unphysical phase matrix P in eq. (5.30):

P = eiφ1 diag(1, 1, ei(φ3−φ1+ω2)). (G.8)

We see that the only physical Dirac CP violating phase in this parametrisation is contained in

the matrix Φ = diag(1, eiφ, 1), with

φ = φ2 − φ1 + ω2 = ψ + δc. (G.9)



APPENDIX H

Statistical analysis

In this appendix we describe the simplified statistical analysis performed to obtain the results.

Our aim is to use the results of the global fit performed in ref. [196] to assess how well each of the

models introduced in the previous section can fit the data. In particular, we use the constraints

on the PMNS angles θ13, θ12, θ23 and on the phase δ for the normal hierarchy (NH) and inverted

hierarchy (IH) cases, as derived in ref. [196]. There, the results are reported by plotting the value

of Nσ ≡
√

∆χ2 (with ∆χ2 = χ2 − χ2
min) as a function of each observable, with the remaining

ones marginalized away. We construct an approximate global likelihood from these functions as

Lj(αj) = exp

(
−

∆χ2
j (αj)

2

)
, L(~α) =

n∏

j

Lj(αj), (H.1)

where ~α = {sin2 θ13, sin
2 θ23, sin

2 θ12, δ} are the observables relevant for our analysis, and we

define

χ2(~α) ≡ −2 logL(~α)/Lmax (H.2)

and Nσ(~α) =
√
χ2(~α). In using this procedure we loose any information about possible correla-

tions between different observables. The effect of this loss of information is however negligible,

as one can check comparing our 1σ, 2σ and 3σ contours in the (sin2 θ23, sin
2 θ13) and (sin2 θ13, δ)

planes shown in figure H.1 with the ones in Fig. 5, Fig. 6 and Fig. 7 of ref. [196]. Only in the

sin2 θ23 vs. δ plane there is a visible deformation of the distribution at the 3σ level.

Each model introduced in the previous section (which we dub with an index m) depends on a

set of parameters xm = {xmi }, which are related to the observables via expressions αj = αmj (xm),

obtained from eqs. (5.31), (5.55). We then construct the likelihood function in the space of the

parameters xm as

Lm(xm) = L(~αm(xm)). (H.3)

We define χ2(xm) = −2 logLm(xm) and Nσ(xm) =
√
χ2(xm). The last one is the function we

use to produce the plots shown in figures 5.2-5.6, once we marginalize over the variables which

are not shown in each plot. Finally, to obtain the best-fit point we use the maximum likelihood

method.
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Figure H.1: 1σ, 2σ, 3σ contours (respectively solid, dashed and dotted lines) of our global like-

lihood function in the (sin2 θ23, sin
2 θ13) plane (left), (sin2 θ13, δ) plane (center) and (sin2 θ23, δ)

plane (right), using the data for NH. These plots can be compared with Fig. 5, Fig. 6 and Fig. 7

of ref. [196] for NH. Undisplayed variables have been marginalized.
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