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1 I N T R O D U C T I O N

Dynamics, from how a car moves up to the evolution of a quantum particle, are modelled in
general by differential equations. Control theory deals with dynamics where it is possible to
act on some part of the equation by means of controls, e.g., how to park a car or how to steer
a quantum particle to a desired state.

More precisely, a control system on a smooth manifold M is an ordinary differential equation
in the form

q̇(t) = f(q(t),u(t)), (1.0.1)

where u : [0, T ] ! U is an integrable and bounded function – called control – taking values in
some set U ⇢ Rm, and f : M⇥U ! TM is a continuous function such that f(·,u) is a smooth
vector field for each u 2 U. Thus, fixing a control and an initial point q0, system (1.0.1) has a
unique maximal solution qu(t). Every curve � : [0, T ] ! M that can be written as solution of
system (1.0.1) for some control u and with starting point �(0), is said to be admissible.

With a control system it is possible to associate an optimal control problem. Namely, one
considers a cost J : (u, T) 7! [0,+1), where T > 0 and u 2 L1([0, T ], Rm). Then, given two
points q0, q1 2 M one is interested in minimizing the functional J among all admissible
controls u 2 L1([0, T ], Rm), T > 0, for which the corresponding solution of (1.0.1) with initial
condition qu(0) = q0 is such that qu(T) = q1. This is written as

8
><

>:

q̇(t) = f(q(t),u(t)),
q(0) = q1, q(T) = q1,
J(u, T) �! min .

(1.0.2)

The final time T can either be fixed, or free to be selected in a certain interval of time.
From the optimal control problem associated with a cost J, one defines the value function

V : M⇥M ! [0,+1]. This is a function that associates to every pair of points q0, q1 2 M
the infimum of the cost of controls admissible for the corresponding optimal control problem
(1.0.2). If there are no such controls, then V(q0,q1) = +1.

The aim of this thesis is to study two different problems arising from control theory, re-
garding control-affine systems with unbounded controls, i.e., with U = Rm. A control-affine
system on a smooth manifold M is a control system in the form

q̇(t) = f0(q(t)) +
mX

i=1

ui(t)fi(q(t)), (1.0.3)

where, u : [0, T ] ! Rm is an integrable control function and {f0, f1, . . . , fm} is a family of
smooth vector fields. The vector fields f1, . . . , fm are called control vector fields, while f0 is
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called the drift. For most of the dissertation we will consider as a cost J : (u, T) 7! [0,+1) the
L1-norm of u. Namely we will be interested in the optimal control problem

8
>>>>>>>>><

>>>>>>>>>:

q̇(t) = f0(q(t)) +
mX

i=1

ui(t)fi(q(t)),

q(0) = q0, q(T) = q1,

J(u, T) =
ZT

0

vuut
mX

i=1

ui(t)2 dt �! min .

(1.0.4)

From a mathematical point of view, these systems describe the underlying geometry of
hypoelliptic operators, as we will see later. In applications, they appear in the study of many
mechanical systems, from the already mentioned car parking problem up to most kind of
robot motion planning, and recently in research fields such as mathematical models of human
behavior, quantum control or motion of self-propulsed micro-organism (see [ADL08, BDJ+08,
BCG02a]). A suggestive application of these systems and of hypoelliptic diffusions, in the
particular case where f0 ⌘ 0, appeared in the field of cognitive neuroscience to model the
functional architecture of the area V1 of the primary visual cortex, as proposed by Petitot,
Citti, and Sarti [PT99, Pet09, CS06].

We will focus on the following two general problems for these kind of systems.

1. Complexity of non-admissible trajectories. A common issue in control theory, used for ex-
ample in robot motion planning, is to steer the system along a given curve � . Since, in
general, � is not admissible, i.e., it is not a solution of system (1.0.3), the best one can
do is to steer the system along an approximating trajectory. The first part of the thesis
is dedicated to quantify the cost of this approximation – called complexity – depending
on the relation between � and (1.0.3). As a preliminary step, it is necessary to study the
value function associated with the optimal control problem (1.0.4), estimating its behavior
along the curve � . This research appears in [Pra14, JP].

2. Singular diffusions. In the second part of the thesis we will focus on a class of two di-
mensional driftless control systems in the form (1.0.3), to which it is possible to asso-
ciate intrinsically a Laplace-Beltrami operator. Due to the control vector fields becoming
collinear on a curve Z, this operator will present some singularities. This research ap-
pears in [BP, BPS]. In [BP] our interest lies on how Z affects the diffusion dynamics. In
particular, we will try to understand if solutions to the heat and Schrödinger equations
associated with this Laplace-Beltrami operator are able to cross Z, and whether some heat
is absorbed in the process or not. On the other hand, in [BPS] we are interested in how
the presence of the singularity affects the spectral properties of the operator, in particular
under a magnetic Aharonov–Bohm-type perturbation. Recent results on this topic, that
have been part of the research developed during the PhD, but are not presented here, are
contained in the work in progress [PP].

The mathematical motivation of the problems considered in this thesis lies in sub-Riemannian
geometry. Thus, next section will be devoted to a short introduction to this topic. Our contri-
butions will then be described in Sections 1.2, 1.3.2, and 1.3.3, while Section 1.4 is devoted to
expose some open problems and future lines of research.



Other material that is related to these topics and that has been part of the research developed
during the PhD, but is not presented here, is contained in the following papers and preprints.

P1. U. Boscain, J.-P. Gauthier, D. Prandi and A. Remizov, Image reconstruction via non-isotropic
diffusion in Dubins/Reed-Shepp-like control systems, to appear on Proceedings of the 51th IEEE
Conference on Decision and Control, December 2014.

P2. R. Chertovskih, J.-P. Gauthier, D. Prandi and A. Remizov, Image reconstruction and hypoellip-
tic diffusion: new ideas – new results., in preparation.

P3. D. Prandi, Sobolev and BV integral differential quotients, in preparation.

�.� ���-���������� ��������
Sub-Riemannian geometry can be thought of as a generalization of Riemannian geometry,
where the dynamics is subject to non-holonomic constraints. Classically (see, e.g., [Mon02]), a
sub-Riemannian structure on M is defined by a smooth vector distribution D ⇢ TM – i.e., a
sub-bundle of TM – of constant rank k and a Riemannian metric g defined on D. From this
structure, one derives the so-called Carnot-Carathéodory distance dSR on M: The length of any
absolutely continuous path tangent to the distribution – called horizontal – is defined through
the Riemannian metric, and the distance dSR(q0,q1) is then defined as the infimum of the
length of all horizontal paths joining q0 to q1. If no such path exists, dSR(q0,q1) = +1.

Locally, it is always possible to find an orthonormal frame {f1, . . . , fm} for D. This allows to
identify horizontal trajectories with admissible trajectories of the non-holonomic control system

q̇(t) =
mX

i=1

ui(t)fi(q(t)). (1.1.1)

The problem of finding the shortest curve joining two fixed points q0, q1 2 M is then naturally
formulated as the optimal control problem

8
>>>>>>>>><

>>>>>>>>>:

q̇(t) =
mX

i=1

ui(t)fi(q(t)),

q(0) = q1, q(T) = q1,

J(u, T) =
ZT

0

vuut
mX

i=1

ui(t)2 dt �! min .

(1.1.2)

With this point of view, the Carnot-Carathéodory distance is the value function associated with
(1.1.2).

This framework is however more general than classical sub-Riemannian geometry. Indeed,
choosing f1, . . . , fm to be possibly non-linearly independent, this optimal control formulation
allows to define sub-Riemannian structures endowed with a rank-varying distribution D(q) =
span{f1(q), . . . , fm(q)}. Namely, it is possible to define a Riemannian norm on D(q) as

kvkq = min

�

|u| | v =
mX

i=1

uifi(q)

✏

, for any v 2 D(q),



from which the metric gq follows by polarization. Through this metric we obtain the Carnot-
Carathéodory distance, coinciding with the value function of the optimal control problem
associated with the non-holonomic control system, as in the classical case. Since it well known
that every distribution can be globally represented as the linear span of a finite family of
(possibly not linearly independent) vector fields (see [Sus08, ABB12a, DLPR12]), it is always
possible to represent globally a sub-Riemannian structure as a non-holonomic system.

Although it is outside the scope of the following discussion, we remark that this control
theoretical setting can be stated in purely geometrical terms, as done in [ABB12a].

�.�.� Metric properties

Once the Carnot-Carathéodory distance is defined, the first natural question is: is it finite? This
amounts to ask if every pair of points of M is joined by an horizontal curve. This property, in
the control theoretic language, is known as controllability or accessibility.

A partial answer (for analytic corank-one distributions) can be found in Carathéodory paper
[Car09] on formalization of classical thermodynamics, where the role of horizontal curves is
roughly taken by adiabatic processes1. However it is not until the 30’s, that Rashevsky [Ras38]
and Chow [Cho39] independently extendend Carathéodory result to a general criterion for
smooth distributions. The key assumption of this theorem is the Hörmander condition (or Lie
bracket-generating condition) for D, i.e., that the Lie algebra generated by the horizontal vector
fields spans at any point the whole tangent space.

Theorem 1.1.1 (Chow-Rashevsky Theorem). Let M be a connected sub-Riemannian manifold, such
that D satisfies the Hörmander condition. Then, the Carnot-Carathéodory distance is finite, continuous,
and induces the manifold topology.

Heuristically, the Chow-Rashevsky theorem is a consequence of the fact that, in coordinate
representation,

e-tg � e-tf � etg � etf(q) = q+ t2[f,g](q) + o(t2). (1.1.3)

Iterating this procedure shows that, if the Lie bracket-generating condition is satisfied, it is
possible to move in every direction and hence to connect every couple of points on M.

Let us remark that the converse is not true without assuming M and D to be analytic (see
[Nag66]). From now on, we will always assume the Lie bracket-generating condition to be
satisfied.

Although finite, the Carnot-Carathéodory distance presents a quite different behavior than
the Riemannian one. It is a basic fact of Riemannian geometry that small balls around a fixed
point are, when looked in coordinates, roughly Euclidean. This isotropic behavior is essentially
due to the fact that geodesics tangent vectors are parametrized on the Euclidean sphere in the
tangent space. In sub-Riemannian geometry this is no more true, and as a consequence the
Carnot-Carthéodory distance is highly anisotropic. Indeed, in order to move in directions
that are not contained in the distribution, it is necessary to construct curves like (1.1.3). This
suggest that the number of brackets we have to build to attain a certain direction is directly
related to the cost of moving in that direction.

1 Indeed, the proof of this fact relies on the theory of Carnot cycles. This is why the sub-Riemannian distance is known
as “Carnot-Carathéodory” distance.



In order to exploit this fact, it is necessary to choose an appropriate coordinate system. Let
D1 = D and define recursively Ds+1 = Ds+[Ds, D], for every s 2 N. By the Hörmander
condition, the evaluations of the sets Ds at q form a flag of subspaces of TqM,

D1(q) ⇢ D2(q) ⇢ . . . ⇢ Dr(q) = TqM. (1.1.4)

The integer r = r(q), which is the minimum number of brackets required to recover the whole
TqM is called degree of non-holonomy (or step) of D at q. Finally, let w1 6 . . . 6 wn be the
weights associated with the flag, defined by wi = s if dim Ds-1(q) < i 6 dim Ds(q), setting
dim D0(q) = 0. A system of coordinates z = (z1, . . . , zn) at q is privileged whenever the non-
holonomic order of zi is exactly wi – i.e., if fi1 · · · fiwi

zi = 0 for any {i1, . . . , iwi
} ⇢ {1, . . . ,m}

but fi1 · · · fiwi
fiwi+1

zi 6= 0 for some {i1, . . . , iwi
, iwi+1} ⇢ {1, . . . ,m}. In particular, any system

of privileged coordinates at q induces a splitting of the tangent space as a direct sum,

TqM = D1(q)� D2(q)/D1(q)� . . .� Dr(q)/Dr-1(q),

where each Ds(q)/Ds-1(q) is spanned by @zi |q with wi = s.
Starting from the 80’s, various authors exploited privileged coordinates to obtain the fol-

lowing result, showing the strong anisotropy of the Carnot-Carathéodory distance. For early
versions see [NSW85, Ger90, Gro96], while a general and detailed proof can be found in [Bel96].

Theorem 1.1.2 (Ball-box Theorem). Let z = (z1, . . . , zn) be a system of privileged coordinates at
q 2 M. Then, there exist C, "0 > 0 such that for any " < "0, it holds

Box
✓
1

C
"

◆
⇢ BSR(q, ") ⇢ Box (C") .

Here, we let BSR(q, ") be both the sub-Riemannian ball of radius " > 0 centered in q and its coordinate
representation z(BSR(q, ")). Moreover, we let

Box(") = {x 2 Rn | |xi| 6 "wi } . (1.1.5)

An immediate consequence of this theorem is the Hölder equivalence of the Carnot-Carathéodory
distance and the Euclidean one. Namely, in any coordinate system centered at q and for q 0

sufficiently close to q, it holds

|q 0 - q| . dSR(q,q 0) . |q 0 - q|
1
r . (1.1.6)

Here we used “.” to denote an inequality up to a multiplicative constant.
As a consequence of the anisotropy of the distance, the Hausdorff dimension of a sub-

Riemannian manifold is different from its topological dimension. A point q is said to be
regular if dim Ds is constant near q for any 1 6 s 6 r. If every point is regular, then the sub-
Riemannian manifold is said to be equiregular. This allows to prove the following celebrated
theorem [Mit85].

Theorem 1.1.3 (Mitchell’s measure theorem). The Hausdorff dimension dimH
q M of a sub-Riemannian

manifold at a regular point q is given by

dimH
q M =

rX

s=1

s(dim Ds(q)- dim Ds-1(q)).

In particular, if dim D(q) < dimM, then dimM < dimH
q M. Moreover, the (dimH

q M)-dimensional
Hausdorff measure is absolutely continuous with respect to any smooth volume, near q.



The theorem has been proved only at regular points since near these points the Ball-Box
Theorem holds with uniform constants. See [GJ13] for some more general results in this
direction.

�.�.� The sub-Laplacian

A differential operator P is hypoelliptic if for any a : U ⇢ M ! R it holds that Pa 2 C1(U)
implies a 2 C1(U). The deep connection between second-order hypoelliptic operators and
sub-Riemannian geometry became evident after the celebrated work [Hör67]. In this paper,
Hörmander proved that the Lie bracket-generating condition is sufficient for the hypoellipticity
of a second order differential operators with local expression

L =
mX

i=1

f2i + “first-order terms”,

where the fi’s are first-order differential operators. Then, interpreting {f1, . . . , fm} as a family
of vector fields, it is possible to define a sub-Riemannian structure on M.

The operator L =
Pm

i=1 f
2
i is commonly called the sub-Laplacian on M associated with the

frame {f1, . . . , fm}. From a sub-Laplacian it is possible to recover the Carnot-Carathéodory met-
ric dSR defined by the frame. In fact, letting the sub-Riemannian gradient rH u =

Pm
i=1 fiu, it

holds that

dSR(q0,q1) = sup
⌦
u(x)- u(y) | u 2 C1

c (M) and |rH u|2 6 1 a.e.
↵

,

where |rH u|2 =
Pm

i=1(fiu)
2. This has allowed to find many estimates on the fundamental

solution of L in terms of the associated Carnot-Carathéodory distance (see, e.g., [FS74, RS76]),
and was at the origin of the renovated interested in sub-Riemannian geometry in the 70’s
[Gav77].

However, the correspondence between hypoelliptic operators and sub-Riemannian mani-
folds is not one-to-one. Indeed, it is easy to check that the sub-Riemannian gradient does
not depend on the family of vector fields {f1, . . . , fm}, but is intrinsically defined by the sub-
Riemannian structure2. On the other hand, the sub-Laplacian L̃ associated with a different
family of vector fields {g1, . . . ,gm}, generating the same distribution, differs from L by a first-
order differential operator. Thus, the same sub-Riemannian structure is associated with differ-
ent sub-Laplacians.

Since we are interested in having a diffusion operator intrinsically associated with the sub-
Riemannian structure, we have to resolve this ambiguity. The same problem arises in Rie-
mannian geometry, when defining the Laplace-Beltrami operator, and it is resolved through
the Green identity. We will proceed in the same way. Namely, instead of defining the sub-
Laplacian through a local frame of the distribution, we consider a global smooth volume form
dµ, and let the sub-Laplacian L to be the only operator satisfying the Green identity:

-

Z

M
f(Lg)dµ =

Z

M
g(rH f,rH g)dµ, for any f,g 2 C1

c (M). (1.1.7)

Hence, in order to have an intrinsically-defined sub-Laplacian, one needs the volume dµ to be
intrinsically defined by the geometric structure of the manifold.

2 Indeed, the sub-Riemannian gradient of u is the only vector field such that gq(rH u(q),v) = du(v), for any q 2 M

and v 2 D(q).



In the Riemannian case this problem is readily settled. Indeed, on any Riemannian man-
ifold there are three common ways to define an intrinsic volume: The Riemannian metric
defines the Riemannian volume, with coordinate expression dV =

p
gdx1 ^ · · ·^ dx2, while

the Riemannian distance allows to define the n-dimensional Hausdorff and spherical Haus-
dorff volumes. Since these three volumes are proportional up to a constant (see, e.g., [Fed69]),
they are equivalent for the definition of the Laplace-Beltrami operator through (1.1.7).

In the sub-Riemannian setting, through the sub-Riemannian structure it is possible to define
an intrinsic measure – called Popp measure – that plays the role of the Riemannian volume, and
which is smooth if M is equiregular. In the equiregular case, by Theorem 1.1.3, we have at our
disposal also the (dimH M)-dimensional Hausdorff measure and spherical Hausdorff measure,
which are commensurable one with respect to the other (see, e.g., [Fed69]) and are absolutely
continuous with respect to the Popp measure. Recent results [ABB12b], have however proved
that the density of the Hausdorff measures with respect to the Popp measure is not, in general,
smooth. Thus these measures define different intrinsic sub-Laplacians. When the manifold is
not equiregular, moreover, these sub-Laplacians can present terms that diverge near singular
points, as we will discuss in the next section.

This said, considering sub-Riemannian manifolds endowed with additional structure can re-
solve this ambiguity. For example, for left-invariant sub-Riemannian structures, i.e., Lie groups
equipped with a left-invariant distribution and metric, both the Popp and the Hausdorff mea-
sures are left-invariant and hence Haar measures. The uniqueness up to a constant of Haar
measures, allows then to define the sub-Laplacian through (1.1.7), as studied in [ABGR09].

�.� ���������� �� �������-������ ������ ��������
The concept of complexity was first developed for the non-holonomic motion planning prob-
lem in robotics. Given a control system on a manifold M, the motion planning problem
consists in finding an admissible trajectory connecting two points, usually under further re-
quirements, such as obstacle avoidance. If a cost function is given, it makes sense to try to
find the trajectory costing the least. This study is critical for applications. As examples we
cite: mechanical systems with controls on the acceleration (see e.g., [BL05], [BLS10]) where the
drift is the velocity, or quantum control (see e.g., [D’A08], [BM06]), where the drift is the free
Hamiltonian.

Different approaches are possible to solve this problem (see [LSL98]). Here we focus on
those based on the following scheme:

1. find any (usually non-admissible) curve or path solving the problem,

2. approximate it with admissible trajectories.

The first step is independent of the control system, since it depends only on the topology of
the manifold and of the obstacles, and it is already well understood (see [SS83]). In the first
part of this thesis, we are interested in the second step, which depends only on the local nature
of the control system near the path. Our goal is to understand how to measure the complexity
of the approximation task for control-affine systems. Namely, we are interested in systems in
the form

q̇(t) = f0(q(t)) +
mX

i=1

ui(t)fi(q(t)), (1.2.1)



By complexity we mean a function of the non-admissible curve � ⇢ M (or path � : [0, T ] ! M),
and of the precision of the approximation, quantifying the difficulty of the latter by means of
the cost function.

The following two sections will be dedicated to some generalities on systems of the form
(1.2.1) and to the preliminary results contained in [Pra14], respectively. These results are es-
sential for the study of the complexity carried out in Section 1.2.3, where we will present the
results contained in [JP].

�.�.� Control-affine systems

It has been known since the the 70’s that under the strong Hörmander condition, i.e., if {f1, . . . , fm}

satisfies the Hörmander condition, and with unbounded controls, systems in the form (1.2.1)
are controllable. Such a result is proved for example in [BL75], considering (1.0.3) as a per-
turbation of a non-holonomic control system. From now on, we will always assume the
strong Hörmander condition to be satisfied. Such assumption is generically satisfied, e.g.,
by finite-dimensional quantum control systems with two controls, as the ones studied in
[BC04, BCG02a, DD01].

Although out of the scope of the present work, we have to mention that from as early as the
60’s the problem of controllability of such systems under the Hörmander condition – i.e., that
the Lie algebra generated by the drift and the control vector fields spans the whole tangent
space at any point – has been subject to a lot of attention, see for example [Kal60, Her64, BL75,
Sus82]. In particular, the main focus has been the so-called small time local controllability around
an equilibrium point, i.e., if given an equilibrium point q 2 M and any time T > 0 the end-
points of admissible trajectories defined on [0, T ] and starting from q cover a neighborhood of
q. This problem is important, for example, in the context of quasi-static motions for robots
with controls on the acceleration. For a review on results obtained in this direction see e.g.,
[Kaw90].

System (1.2.1) can be seen, from a geometrical point of view, as a generalization of sub-
Riemannian geometry, where the distribution D(q) is replaced by the affine distribution f0(q)+
D(q). Thus, in addition to the L1 cost J considered in (1.0.4), it makes sense to study also the
cost

I(u, T) =
ZT

0

vuut1+
mX

i=1

ui(t)2 dt,

that measures the “Riemannian” length of admissible curves. We then fix a time T > 0 and
consider the two value functions VJ(q0,q1) and VI(q0,q1) as the infima of the costs J and I,
respectively, over all controls steering system (1.0.3) from q0 to q1 in time T 6 T. Contrarily
to what happens in sub-Riemmanian geometry with the Carnot-Carathéodory distance, these
value functions are not symmetric, and hence do not induce a metric space structure on M. In
fact, system (1.2.1) is not reversible – i.e., changing orientation to an admissible trajectory does
not yield an admissible trajectory.

The reason for introducing a maximal time of definition for the controls – not needed in the
sub-Riemannian context – is that, by taking T sufficiently small, it is possible to prevent any
exploitation of the geometry of the orbits of the drift (that could be, for example, closed). Let
us also remark that, since the controls can be defined on arbitrarily small times, it is possible to



approximate admissible trajectories via trajectories for the sub-Riemannian associated system
(i.e., the one obtained by posing f0 ⌘ 0 in (1.0.3)) rescaled on small intervals.

�.�.� Hölder continuity of the value function

The work [Pra14], is dedicated to generalize the Chow-Rashewsky theorem and the Ball-box
theorem to system (1.0.3) with the cost J. This is a technical but essential result for the under-
standing of complexities, as we will see in the following section. Indeed, the first result we
obtain is a global continuity result for the value function.

Theorem 1.2.1. For any 0 < T 6 +1, the function VJ : M⇥M ! [0,+1) is continuous. Moreover,
letting dSR be the sub-Riemannian distance induced by {f1, . . . , fm}, it holds

VJ(q,q 0) 6 min
0<t6T

dSR(e
tf0q,q 0), for any q, q 0 2 M.

Letting Rf0(q, ") be the reachable set from q with cost J less than ", Theorem 1.2.1 shows
that

[

0<t6T

BSR(e
tf0q, ") ⇢ Rf0(q, "). (1.2.2)

Thus, the cost to steer the sub-Riemannian system from one point to another is always larger
or equal than the cost to steer the control-affine system between the same points. Moreover,
the fact that in coordinates it holds

etf0-"f1 � etf0+"f1(q) = 2tf0(q) + t"[f0, f1](q) + o("t),

suggests that exploiting the drift it is actually possible to move more easily in some directions.
Indeed, we will prove that this is the case, but only on very special directions realized as
brackets of the drift with the control vector fields. Although this will not suffice to improve
(1.2.2), we will be able to obtain a ball-box-like estimation of the reachable set from the outside.

Assume that the drift is regular, in the sense that there exists s 2 N such that f0 ⇢ Ds \Ds-1,
where Ds is defined through the vector fields {f1, . . . , fm} as in the sub-Riemannian case. In
particular, this allows to build systems of privileged coordinates rectifying f0. Let {@zi }

n
i=1 be

the canonical basis of Rn such that @z` be the coordinate expression of f0, and consider the
following sets:

⌅(⌘) =
[

06⇠6T

�
⇠@z` + Box (⌘)

�

⇧(⌘) =
[

06⇠6T

{z 2 Rn : |z` - ⇠| 6 ⌘s, |zi| 6 ⌘wi + ⌘⇠
wi
s for wi 6 s, i 6= k,

and |zi| 6 ⌘(⌘+ ⇠
1
s )wi-1 for wi > s},

In particular, observe that ⇧(⌘) is contained in Box(⌘), defined in (1.1.5), and that ⇧(⌘)\ {z` <
0} = Box(⌘)\ {z` < 0}. We then get the following generalization of the Ball-Box theorem



Theorem 1.2.2. Let z = (z1, . . . , zn) be a system of privileged coordinates at q for {f1, . . . , fm},
rectifying f0 as the k-th coordinate vector field @z` , for some 1 6 ` 6 n. Then, there exist C, "0, T0 > 0
such that, if the maximal time of definition of the controls satisfies T < T0, it holds

⌅

✓
1

C
"

◆
⇢ Rf0(q, ") ⇢ ⇧(C"), for " < "0. (1.2.3)

Here, with abuse of notation, we denoted by Rf0(q, ") the coordinate representation of the reachable set.

This theorem represent the key step for generalizing the estimates on the complexity of
curves from sub-Riemannian control systems to control-affine systems.

Finally, as in the sub-Riemannian case, as a consequence of Theorem 1.2.2 we get the follow-
ing local Hölder equivalence between the value function and the Euclidean distance.

Theorem 1.2.3. Let z = (z1, . . . , zn) be a system of privileged coordinates at q for {f1, . . . , fm},
rectifying f0 as the k-th coordinate vector field @z` , for some 1 6 ` 6 n. Then, there exist T0, "0 > 0
such that, if the maximal time of definition of the controls satisfies T < T0 and VJ(q,q 0) 6 "0, it holds

dist
⇣
z(q 0), z(e[0,T]f0q)

⌘
. VJ(q,q 0) . dist

⇣
z(q 0), z(e[0,T]f0q)

⌘ 1
r .

Here for any x 2 Rn and A ⇢ Rn, dist(x,A) = infy2A |x-y| denotes the Euclidean distance between
them and r is the degree of non-holonomy of the sub-Riemannian control system defined by {f1, . . . , fm}.

In this result, instead of the Euclidean distance from the origin that appeared in (1.1.6), we
have the distance from the integral curve of the drift. This is due to the fact that moving in
this direction has null cost.

It is worth to mention that these results regarding control-affine systems are obtained by
reducing them, as in [AL10], to time-dependent control systems in the form

q̇(t) =
mX

i=1

ui(t) f
t
i(q(t)), a.e. t 2 [0, T ], (1.2.4)

where fti = (e-tf0)⇤fi is the pull-back of fi through the flow of the drift. On these systems,
that are linear in the control, we are able to define a good notion of approximation of the control
vector fields. Namely, we will define a generalization of the nilpotent approximation, used in
the sub-Riemannian context, taking into account the fact that in system (1.2.4), exploiting the
time, we can generate the direction of the brackets between f0 and the fjs. This approximation
and an iterated integral method yield fine estimates on the reachable set.

�.�.� Complexity and motion planning

The core of the first part of the thesis is [JP], in collaboration with F. Jean. Here, we focus
on extending the concept of complexity, already introduced in the sub-Riemannian setting by
Gromov [Gro96, p. 278] and Jean [Jea01a], to the control-affine case, and to give weak estimates
of these quantities.

Heuristically, the complexity of a curve � (or path � : [0, T ] ! M) at precision " is defined as
the ratio

“cost” to track � at precision "
“cost” of an elementary "-piece

. (1.2.5)
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Figure 4: Neighboring approximation com-
plexity

In order to obtain a precise definition of complexity, we need to give a meaning to the no-
tions appearing above. Namely, we have to specify what do we mean by “cost”3, tracking at
precision ", and elementary "-piece. Indeed, these choices will depend on the type of motion
planning problem at hand.

First of all, we classify motion planning problems as time-critical or static, depending on
wether the constraints depend on time or not. The typical example of static motion planning
problem is the obstacle avoidance problem with fixed obstacles. On the other hand, the same
problem where the position of the obstacles depends on time, or the rendez-vous problems,
are examples of time-critical motion planning problems.

For static motion planning problems, the solution of the first step of the motion planning
scheme (introduced at the beginning of the paper) is usually given as a curve, i.e., a dimension
1 connected submanifolds of � ⇢ M diffeomorphic to a closed interval. On the other hand,
in time-critical problems we have to keep track of the time. Thus, for this type of problems,
the solution of the first step is a path, i.e., a smooth injective function � : [0, T ] ! M. As
a consequence, when computing the complexity of paths we will require the approximating
trajectories to respect also the parametrization, and not only the geometry, of the path. While
in the sub-Riemannian case, due to the time rescaling properties of the control system, these
concepts coincide, this is not the case for control-affine systems.

In this thesis, we consider four distinct notions of complexity, two for curves (static problems)
and two for paths (time-critical problems). In both cases, one of the two will be based on the
interpolation of the given curve or path, while the other will consider trajectories that stays

3 The cost appearing in (1.2.5) is not necessarily related with the cost function (J or I) taken into account. This is the
reason for the quotation marks.



near the curve or path. Thus, for this complexity, we will need to fix a metric. In this work
we will consider only the sub-Riemannian metric of the associated sub-Riemannian control
system (obtained by putting f0 ⌘ 0 in (1.2.1)).

We remark that the two complexity for curves are the same as the sub-Riemannian ones
already introduced in [Gro96, Jea01a]. This is true also for what we call the neighboring
approximation complexity of a path, since in the sub-Riemannian case it coincides with the
tubular approximation complexity. On the other hand, what we call the interpolation by time
complexity never appeared in the literature, to our knowledge. Here, we define them for the
cost J, but the same definitions holds for I.

Fix a curve � . Then, denoting by qu the trajectory associated with a control u and with
starting point qu(0) = x, we define for any " > 0 the following complexities.

• Interpolation by cost complexity: (see Figure 1) For " > 0, let an "-cost interpolation of � to
be any control u 2 U such that there exist 0 = t0 < t1 < . . . < tN = T 6 T for which
the trajectory qu with initial condition qu(0) = x satisfies qu(T) = y, qu(ti) 2 � and
J(u|[ti-1,ti), ti - ti-1) 6 ", for any i = 1, . . . ,N. Then, let

⌃Jint(� , ") =
1

"
inf

�
J(u, T) | qu is an "-cost interpolation of �

 
.

This function measures the number of pieces of cost " necessary to interpolate � . Namely,
following a trajectory given by a control admissible for ⌃Jint(� , "), at any given moment it
is possible to go back to � with a cost less than ".

• Tubular approximation complexity: (see Figure 2) Let Tube(� , ") to be the tubular neighbor-
hood of radius " around the curve � w.r.t. the small sub-Riemannian system associated
with (1.2.1) (obtained by putting f0 ⌘ 0), and define

⌃Japp(� , ") =
1

"
inf

8
<

:J(u, T)

������

0 < T 6 T,
qu(0) = x, qu(T) = y,
qu

�
[0, T ]

�
⇢ Tube(� , ")

9
=

;

This complexity measures the number of pieces of cost " necessary to go from x to y
staying inside the sub-Riemannian tube Tube(� , "). Such property is especially useful for
motion planning with obstacle avoidance. In fact, if the sub-Riemannian distance of �
from the obstacles is at least "0 > 0, then trajectories obtained from controls admissible
for ⌃Japp(� , "), " < "0, will avoid such obstacles.

We then define the following complexities for a path � : [0, T ] ! M at precision " > 0.

• Interpolation by time complexity: (see Figure 3) Let a �-time interpolation of � to be any
control u 2 L1([0, T ], Rm) such that its trajectory qu : [0, T ] ! M with qu(0) = �(0) is
such that qu(T) = �(T) and that, for any interval [t0, t1] ⇢ [0, T ] of length t1 - t0 6 �,
there exists t 2 [t0, t1] with qu(t) = �(t). Then, fix a �0 > 0 and let

�int(�, ") = inf
�
T

�

����
� 2 (0, �0) and exists u 2 L1([0, T ], Rm),
�-time interpolation of �, s.t. � J(u, T) 6 "

�
.

Controls admissible for this complexity will define trajectories such that the minimal
average cost between any two consecutive times such that �(t) = qu(t) is less than ". It
is thus well suited for time-critical applications where one is interested in minimizing the
time between the interpolation points - e.g. motion planning in rendez-vous problem.



• Neighboring approximation complexity: (see Figure 4) Let BSR(p, ") denote the ball of radius
" centered at p 2 M w.r.t. the small sub-Riemannian system associated with the control-
affine system, and define

�Japp(�, ") =
1

"
inf

�
J(u, T)

����
qu(0) = x, qu(T) = y,
qu(t) 2 BSR(�(t), "), 8t

�
.

This complexity measures the number of pieces of cost " necessary to go from x to y
following a trajectory that at each instant t 2 [0, T ] remains inside the sub-Riemannian
ball BSR(�(t), "). Such complexity can be applied to motion planning in rendez-vous
problems where it is sufficient to attain the rendez-vous only approximately.

We remark that for the interpolation by time complexity the “cost” in (1.2.5) is the time,
while for all the other complexities it is the cost function associated with the system. For
the motivation of the bound on � in the definition of the interpolation by time complexity,
see Remark 4.3.3. Finally, whenever a metric is required, we use the sub-Riemannian one.
Although such metric is natural for control-affine systems satisfying the Hörmander condition,
nothing prevents from defining complexities based on different metrics.

Two functions f(") and g("), tending to 1 when " # 0 are weakly equivalent (denoted by
f(") ⇣ g(")) if both f(")/g(") and g(")/f("), are bounded when " # 0. When f(")/g(") (resp.
g(")/f(")) is bounded, we will write f(") 4 g(") (resp. f(") < g(")). In the sub-Riemannian
context, the complexities are always measured with respect to the L1cost of the control, J.
Then, for any curve � ⇢ M and path � : [0, T ] ! M such that �([0, T ]) = � it holds ⌃Jint(� , ") ⇣
⌃Japp(� , ") ⇣ �Japp(�, ").

Let us remark that in the sub-Riemannian setting the asymptotic behavior of �(� , ") as " # 0
is strictly related with the Hausdorff dimension dimH � . A complete characterization of weak
asymptotic equivalence of metric complexities of a path is obtained in [Jea03]. We state here
this result in the special case where M is an equiregular sub-Riemannian manifold.

Theorem 1.2.4. Let M be an equiregular sub-Riemannian manifold and let � ⇢ M be a curve. Then,
if there exists k 2 N such that Tq� ⇢ Dk(q) \ Dk-1(q) for any q 2 � , it holds

⌃int(� , ") ⇣ ⌃app(� , ") ⇣ 1

"k
.

In particular, this implies that

dimH � = k.

Here, similarly to what happened in Theorem 1.1.3, the equiregularity is needed in order
to have a uniform Ball-Box theorem near � . Indeed, to get the general result of [Jea03], it is
necessary to use a finer form of the Ball-Box theorem that holds uniformly around singular
points, proved in [Jea01b].

We mention also that for a restricted set of sub-Riemannian systems, i.e., one-step bracket
generating or with two controls and dimension not larger than 6, strong asymptotic estimates
and explicit asymptotic optimal syntheses are obtained in a series of papers by Gauthier, Za-
kalyukin and others (e.g., see[RMGMP04, GZ05, GZ06] and [BG13] for a review).

Our first result is the following. It completes the description of the sub-Riemannian weak
asymptotic estimates started in Theorem 1.2.4, describing the case of the interpolation by time
complexity.



Theorem 1.2.5. Assume that {f1, . . . , fm} defines an equiregular sub-Riemannian structure and let
� : [0, T ] ! M be a path. Then, if there exists k 2 N such that �̇(t) 2 Dk(�(t)) \ Dk-1(�(t)) for any
t 2 [0, T ], it holds

�int(�, ") ⇣ 1

"k
.

Here the complexity is measured w.r.t. the cost J(u, T) = kukL1([0,T ],Rm).

Since in the sub-Riemannian context one is only interested in the cost J, Theorems 1.2.4 and
1.2.5 completely characterize the weak asymptotic equivalences of complexities of equiregular
sub-Riemannian manifolds.

Then, exploiting the results of the previous section, we are able to prove the following
theorem for the genuinely control-affine case, in the same spirit as Theorem 1.2.4 and 1.2.5.

Theorem 1.2.6. Assume that the sub-Riemannian structure defined by {f1, . . . , fm} is equiregular, and
that f0 ⇢ Ds \Ds-1 for some s > 2. Then, for any curve � ⇢ M, whenever the maximal time of
definition of the controls T is sufficiently small, it holds

⌃Jint(� , ") ⇣ ⌃Iint(� , ") ⇣ ⌃Japp(� , ") ⇣ ⌃Iapp(� , ") ⇣ 1

"
.

Here  = max{k : Tp� 2 Dk(p) \ Dk-1(p), for any p in an open subset of � }.
Moreover, for any path � : [0, T ] ! M such that f0(�(t)) 6= �̇(t) mod Ds-1 for any t 2 [0, T ], it

holds

�Jint(�, �) ⇣ �Iint(�, �) ⇣ �Japp(�, ") ⇣ �Iapp(�, ") ⇣ 1

"max{,s} .

Here  = max{k : �(t) 2 Dk(�(t)) \ Dk-1(�(t)) for any t in an open subset of [0, T ]}.

This theorem shows that, asymptotically, the complexity of curves is uninfluenced by the
drift, and only depends on the underlying sub-Riemannian system, while the one of paths
depends also on how “bad” the drift is with respect to this system. We remark also that for
the path complexities it is not necessary to have an a priori bound on T.

We conclude this section by considering the problem of long time local controllability (hence-
forth simply LTLC), i.e., the problem of staying near some point for a long period of time T > 0.
This is essentially a stabilization problem around a non-equilibrium point.

Since the system (1.2.1) satisfies the strong Hörmander condition, using unbounded controls
it is always possible to satisfy some form of LTLC. Hence, we try to quantify the minimal cost
needed, by posing the following. (To lighten the notation, we consider only the cost J.) Let
T > 0, q0 2 M, and �q0

: [0, T ] ! M, �q0
(·) ⌘ q0.

• LTLC complexity by time:

LTLCtime(q0, T , �) = �Jint(�q0
, �).

Here, we require trajectories defined by admissible controls to pass through q0 at inter-
vals of time of length at most �.

• LTLC complexity by cost:

LTLCcost(q0, T , ") = �Japp(�q0
, ").

Admissible controls for this complexity, will always be contained in the sub-Riemannian
ball of radius " centered at q0.



Clearly, if f0(q0) = 0, then LTLCtime(q0, T , �) = LTLCcost(q0, T , ") = 0, for any ", �, T > 0.
Although �q0

is not a path by our definition, since it is not injective and �̇q0
⌘ 0, the arguments

of Theorem 1.2.6 can be applied also to this case. Hence, we get the following asymptotic
estimate for the LTLC complexities.

Corollary 1.2.7. Assume that the sub-Riemannian structure defined by {f1, . . . , fm} is equiregular,
and that f0 ⇢ Ds \Ds-1 for some s > 2. Then, for any q0 2 M and T > 0 it holds

LTLCtime(q0, T , ") ⇣ LTLCcost(q0, T , ") ⇣ 1

"s
.

�.� ���������� �� �������� ���������

The second part of the thesis is devoted to the study of diffusions on some family of sub-
Riemannian structures and their generalizations. This interest is motivated by the fact that
these structures allow for an intrinsic Laplace-Beltrami operator to be defined without the
ambiguities due to choice of the measure that arise in general sub-Riemannian structures (see
Section 1.1.2).

�.�.� The Laplace-Beltrami operator in almost-Riemannian geometry

A 2-dimensional almost-Riemannian structures (abbreviated to 2-ARS) is a rank-varying sub-
Riemannian structure on a 2-dimensional manifold M that can be defined locally by a pair
of smooth vector fields satisfying the Lie bracket-generating condition. The name almost-
Riemannian is due to the fact that these manifolds can be regarded as equipped with a general-
ized Riemannian metric g, whose eigenvalues are allowed to diverge approaching the singular
set Z where the two vector fields become collinear. Such structures were introduced in the con-
text of hypoelliptic operators [Gru70, FL82], then appeared in problems of population transfer
in quantum systems [BCG+02b, BC04, BCC05], and have applications to orbital transfer in
space mechanics [BC08, BCST09].

Almost-Riemannian manifolds present very interesting phenomena. For instance, geodesics
can pass through the singular set with no singularities, even if all Riemannian quantities (e.g.,
the metric, the Riemannian area, the curvature) diverge while approaching Z (see Figures 7
and 8 in Section 1.3.3 for examples of this type of geodesics in the Grushin cylinder). Moreover,
the presence of a singular set allows the conjugate locus to be nonempty even if the Gaussian
curvature, where it is defined, is always negative (see [ABS08]). See also [ABS08, ABC+10,
BCG13, BCGS13] for Gauss–Bonnet-type formulas, a classification of 2-ARS from the point of
view of Lipschitz equivalence and normal forms for generic 2-ARS.

Given a 2-ARS on M it is always possible to write, in coordinates (x,y), its local orthonormal
frame as

Y1(x,y) =
✓

1
0

◆
, Y2(x,y) =

✓
0

f(x,y)

◆
,



for some smooth function f. With this choice, the singular set Z is the zero-level set of f.
Outside Z the Riemannian metric g, the area element d!, and the Gaussian curvature K are

g(x,y) =

 
1 0

0 1
f(x,y)2

!

,

d! =
1

|f(x,y)|
dxdy,

K(x,y) =
f(x,y)@2xf(x,y)- 2@xf(x,y)2

f(x,y)2
.

Since almost-Riemannian structures are not equiregular, both the Popp measure dP and
the 2-dimensional Hausdorff measures diverge on Z. On the other hand, on M \ Z the Popp
measure coincides with the Riemannian volume and is thus proportional to the 2-dimensional
Hausdorff measures. This allows to define an intrinsic sub-Laplacian L through formula (1.1.7)
applied to smooth functions compactly supported on M \ Z. Namely, we get

L' = @2x'+ f2@2y'-
@xf

f
@x'+ f(@yf)@y'.

Due to the explosion of the metric and of the volume when approaching the singularity, this
operator is singular on Z. Since L is actually the Laplace-Beltrami operator of the Riemannian
manifold M \ Z, it is called the Laplace-Beltrami operator associated with the 2-ARS.

Let us remark that this Laplace-Beltrami operator does not coincide with the hypoelliptic
operator classically associated with the 2-ARS. Indeed, on trivializable structures over R2 –
i.e., structures on R2 admitting a global orthonormal frame – the latter corresponds to the
“sum of squares” sub-Laplacian L. This sub-Laplacian can be defined through (1.1.7) using the
2-dimensional Lebesgue measure, and thus it is not intrinsic. Moreover, since the Lebesgue
measure is locally finite on R2, the operator L is not singular on Z.

In [BL] the following has been proved for a class of 2-ARS, with strong evidence suggesting
that the same is true in general.

Theorem 1.3.1. Let M be a 2-dimensional compact orientable manifold endowed with a 2-ARS. Assume
moreover that Z is an embedded one-dimensional sub-manifold of M and that D+[D, D] = TM. Then
the Laplace-Beltrami operator L is essentially self-adjoint on L2(M, dP) and has discrete spectrum.

The proof proceeds in two steps. First, the statement is proved for the Laplace-Beltrami
operator associated with a compactified version of the Grushin plane ([Gru70, FL82]), and
then this result is extended to a general compact 2-ARS, through perturbation theory [Kat95].

The Grushin plane is the 2-ARS defined globally by the couple of vector fields

X1(x,y) =
✓

1
0

◆
, X2(x,y) =

✓
0
x

◆
, x,y 2 R2, (1.3.1)

and, thanks to the normal forms obtained in [BCG13], it is a good model for general 2-ARS
satisfying D+[D, D] = TM. For this structure, the Laplace-Beltrami operator L and the “sum
of squares” sub-Laplacian L are, respectively,

L = @2x -
1

x
@y + x2@2y and L = X2

1 +X2
2 = @2x + x2@2y.



Theorem 1.3.1 has a number of implications. First, it shows that the singularity splits the
manifold in two connected components that a quantum particle or the heat cannot cross: The
explosion of the area naturally acts as a barrier which prevents the crossing of Z by the particles.
Moreover, since the Carnot-Caratheodory distance between points on different sides of the
singularity is finite, there is no hope to get estimates for the fundamental solution of L in
terms of this distance. However, such estimates have been found by [Léa87] for L, showing that
this operator and L have quite different properties. The first one is not intrinsic, but however
keeps track of intrinsic quantities such as the Carnot-Carthéodory distance. In particular, the
corresponding heat flow crosses the set Z, contrarily to what happens for L.

The statement on the compactness of the spectrum of L contained in Theorem 1.3.1 is, up
to our knowledge, the only result regarding spectral properties of Laplace-Beltrami operators
associated with almost-Riemannian structures. We remark that, differently from the Rieman-
nian setting, for genuinely almost-Riemannian manifolds this result is not trivial since the
considered structures have always infinite volume.

�.�.� The Laplace-Beltrami operator on conic and anti-conic surfaces

Our work [BP], in collaboration with U. Boscain, is devoted to extend Theorem 1.3.1 to more
general singular surfaces, as well as to understand whether the effect of the singularity on the
heat diffusion is repulsive or absorbing.

Namely, we consider a family of Riemannian manifolds depending on a parameter ↵ 2 R,
defined on the disconnected cylinder M =

�
R \{0}

�
⇥ S1, and whose metric has orthonormal

basis

X1(x, ✓) =
✓

1
0

◆
, X2(x, ✓) =

✓
0

|x|↵

◆
, x 2 R, ✓ 2 S1. (1.3.2)

In other words, we will consider the Riemannian metric g = dx2 + |x|↵d✓2. Notice that for
↵ = 1 this reduces, up to a sign difference in X2, to the Grushin structure (1.3.1) defined on
the cylinder.

Through a standard procedure, it is possible to extend this metric to Mcylinder = R ⇥S1

when ↵ > 0, and to Mcone = Mcylinder / ⇠ when ↵ < 0. Here, (x1, ✓1) ⇠ (x2, ✓2) if and only
if x1 = x2 = 0. We will let M↵ be this extended metric space. Notice that in the cases
↵ = 1, 2, 3, . . ., M↵ is an almost Riemannian structure in the sense of Section 1.3.1, while in the
cases ↵ = -1,-2,-3, . . . it corresponds to a singular Riemannian manifold with a semi-definite
metric.

One of the main features of these metrics is the fact that, except in the case ↵ = 0, the
corresponding Riemannian volumes have a singularity at Z,

dµ =
p

detgdxd✓ = |x|-↵dxd✓.

Due to this fact, the corresponding Laplace-Beltrami operators contain some diverging first
order terms,

L =
1p

detg

2X

j,k=1

@j

⇣p
detggjk@k

⌘
= @2x + |x|2↵@2✓u-

↵

x
@x. (1.3.3)

Here, we proceed as in Section 1.3.1 and initially define L as an operator on C1
c (M↵ \ Z) =

C1
c (M).
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Figure 5: Geometric interpretation of M↵. The figures above the line are actually isometric to M↵, while
for the ones below the isometry is singular in Z.

We have the following geometric interpretation of M↵ (see Figure 5). For ↵ = 0, this metric
is that of a cylinder. For ↵ = -1, it is the metric of a flat cone in polar coordinates. For ↵ < -1,
it is isometric to a surface of revolution S = {(t, r(t) cos #, r(t) sin #) | t > 0, # 2 S1} ⇢ R3 with
profile r(t) = |t|-↵ +O(t-2↵) as |t| goes to zero. For ↵ > -1 (↵ 6= 0) it can be thought as a
surface of revolution having a profile of the type r(t) ⇠ |t|-↵ as t ! 0, but this is only formal,
since the embedding in R3 is deeply singular at t = 0. As already mentioned, the case ↵ = 1
corresponds to the Grushin metric defined in (1.3.1), considered on the cylinder.

In [BP] we considered the following problems about M↵.

(Q1) Do the heat and free quantum particles flow through the singularity? In other words, we
are interested to the following: consider the heat or the Schrödinger equation

@t = L , (1.3.4)
i@t = -L , (1.3.5)

where L is given by (1.3.3). Take an initial condition supported at time t = 0 in M- =
{x 2 M | x < 0}. Is it possible that at time t > 0 the corresponding solution has some
support in M+ = {x 2 M | x > 0}? 4

(Q2) Does equation (1.3.4) conserve the total heat (i.e. the L1 norm of  )? This is known
to be equivalent to the stochastic completeness of M↵ – i.e., the fact that the stochastic
process, defined by the diffusion L, almost surely has infinite lifespan. In particular, we
are interested in understanding if the heat is absorbed by the singularity Z.

The same question for the Schrödinger equation has a trivial answer, since the total
probability (i.e., the L2 norm) is always conserved under the Schrödinger evolution, by
Stone’s theorem.

In order for this two questions to have a meaning it is necessary to interpret L as a self-
adjoint operator acting on L2(M,dµ). However, since L is defined only on C1

c (M), it cannot
be self-adjoint and hence one has to apply the theory of self-adjoint extensions. As a compar-
ison, in order to have a well defined evolution for the equation @t = @2x on the half-line

4 Notice that this is a necessary condition to have some positive controllability results by means of controls defined only
on one side of the singularity, in the spirit of [BCG].



[0,+1), it is necessary to pose appropriate boundary conditions at 0: Dirichlet, Neumann, or a
combination of the two. These conditions, indeed, guarantee that @2x is essentially self-adjoint
on L2([0,+1)).

Passage through the singularity

The rotational symmetry of M↵ suggests to proceed by a Fourier decomposition of L in the ✓
variable. Thus, we decompose the space L2(M,dµ) =

L1
k=0Hk, where Hk

⇠= L2(R \{0}, |x|-↵dx),
and the corresponding operators on each Hk will be

bLk = @2x -
↵

x
@x - |x|2↵k2. (1.3.6)

It is a standard fact that L is essentially self-adjoint on L2(M,dµ) if all of its Fourier compo-
nents bLk are essentially self-adjoint on L2(R \{0}, |x|-↵dx), while the contrary is not true.

As remarked at the end of Section 1.3.1, if the Laplace-Beltrami operator is essentially self-
adjoint – i.e., if it admits only one self-adjoint extension that is the Friederichs extension LF

– then (Q1) has a negative answer. Indeed, by definition, LF acts separately on the two sides
of the singularity hence inducing two independent dynamics. The following theorem – that
extends Theorem 1.3.1 – classifies the essential self-adjointness of L and of its Fourier compo-
nents.

Theorem 1.3.2. Consider M↵ for ↵ 2 R and the corresponding Laplace-Beltrami operator L as an
unbounded operator on L2(M,dµ). Then the following holds.

• If ↵ 6 -3 then L is essentially self-adjoint;

• if ↵ 2 (-3,-1], only the first Fourier component bL0 is not essentially self-adjoint;

• if ↵ 2 (-1, 1), all the Fourier components of L are not essentially self-adjoint;

• if ↵ > 1 then L is essentially self-adjoint.

As a corollary of this theorem, we get the following answer to (Q1).

↵ 6 -3 Nothing can flow through Z

-3 < ↵ 6 -1 Only the average over S1 of the function can flow
through Z

-1 < ↵ < 1 It is possible to have full communication between
the two sides

1 6 ↵ Nothing can flow through Z

More precisely, when -3 < ↵ 6 -1 there exists a self-adjoint extension of L, called the
bridging extension and denoted by LB, such that the heat and Schrödinger flows allow the
passage of only the first Fourier component through the singularity. On the other hand, when
-1 < ↵ < 1, there exists a self-adjoint extension of L, still called the bridging extension,
such that (Q1) has a positive answer, i.e., all the Fourier components can flow through the
singularity.

Remark 1.3.3. Notice that in the case ↵ 2 (-3, 0), since the singularity reduces to a single
point, one would expect to be able to “transmit” through Z only a function independent of ✓



(i.e. only the average over S). Theorem 1.3.2 shows that this is the case for ↵ 2 (-3,-1], but
not for ↵ 2 (-1, 0). Looking at M↵, ↵ 2 (-1, 0), as a surface embedded in R3 the possibility
of transmitting Fourier components other than k = 0, is due to the deep singularity of the
embedding. In this case we say that the contact between M+ and M- is non-apophantic.

Stochastic completeness

It is a well known result that each non-positive self-adjoint operator A on a Hilbert space H

defines a strongly continuous contraction semigroup, denoted by {etA}t>0. If H = L2(M,dµ)
and it holds 0 6 etA 6 1 dµ-a.e. whenever  2 L2(M,dµ), 0 6  6 1 dµ-a.e., the semigroup
{etA}t>0 and the operator A are called Markovian.

When {etA}t>0 is the evolution semigroup of the heat equation, the Markov property can be
seen as a physical admissibility condition. Namely, it assures that when starting from an initial
datum  representing a temperature distribution (i.e., a positive and bounded function) the
solution etA remains a temperature distribution at each time, and, moreover, that the heat
does not concentrate. Hence in the following we will focus only on the Markovian self-adjoint
extensions of L.

The interest for Markovian operators lies also in the fact that, under an additional assump-
tion which is always satisfied in the cases we consider, Markovian operators are generators of
Markov processes {Xt}t>0 (roughly speaking, stochastic processes which are independent of
the past).

Since essentially bounded functions are approximable with functions in L2(M,dµ), the
Markov property allows to extend the definition of etA from L2(M,dµ) to L1(M,dµ). Let
1 be the constant function 1(x, ✓) ⌘ 1. Then (Q2) is equivalent to the following property.

Definition 1.3.4. A Markovian operator A is called stochastically complete (or conservative) if
etA1 = 1, for any t > 0. It is called explosive if it is not stochastically complete.

It is well known that this property is equivalent to the fact that the Markov process {Xt}t>0,
with generator A, has almost surely infinite lifespan.

We will consider also the following stronger property of {Xt}t>0.

Definition 1.3.5. A Markovian operator is called recurrent if the associated Markov process
{Xt}t>0 satisfies, for any set ⌦ of positive measure and any point x,

Px{there exists a sequence tn ! +1 such that Xtn 2 ⌦} = 1.

Here Px denotes the probability measure in the space of paths emanating from a point x
associated with {Xt}t>0.

We are particularly interested in distinguishing how the stochastic completeness and the
recurrence are influenced by the singularity Z or by the behavior at 1. Thus we will con-
sider the manifolds with borders M0 = M \ ([-1, 1]⇥ S1) and M1 = M \ [-1, 1]⇥ S1, with
Neumann boundary conditions. Indeed, with these boundary conditions, when the Markov
process {Xt}t>0 hits the boundary it is reflected, and hence the eventual lack of recurrence or
stochastic completeness on M0 (resp. on M1) is due to the singularity Z (resp. to the behav-
ior at 1). If a Markovian operator A on M is recurrent (resp. stochastically complete) when
restricted on M0 we will call it recurrent (resp. stochastically complete) at 0. Similarly, when
the same happens on M1, we will call it recurrent (resp. stochastically complete) at 1.
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Figure 6: A summary of the results obtained in [BP].

In this context, it makes sense to give special consideration to three specific self-adjoint
extensions of L, corresponding to different conditions at Z. Namely, we will consider the
already mentioned Friedrichs extension LF, that corresponds to an absorbing condition, the
Neumann extension LN, that corresponds to a reflecting condition, and the bridging extension
LB, that corresponds to a free flow through Z and is Markovian only for ↵ 2 (-1, 1). Observe
that LF and LN are always self-adjoint Markovian extensions, although it may happen that
LF = LN. In this case LF is the only Markovian extension, and the operator L is called Markov
unique. This happens, for example, when L is essentially self-adjoint.

The following result will answer to (Q2).

Theorem 1.3.6. Consider M↵, for ↵ 2 R, and the corresponding Laplace-Beltrami operator L as an
unbounded operator on L2(M,dµ). Then it holds the following.

• If ↵ < -1 then L is Markov unique, and LF is stochastically complete at 0 and recurrent at 1;

• if ↵ = -1 then L is Markov unique, and LF is recurrent both at 0 and at 1;

• if ↵ 2 (-1, 1), then L is not Markov unique and, moreover,
– any Markovian extension of L is recurrent at 1,
– LF is explosive at 0, while both LB and LN are recurrent at 0,

• if ↵ > 1 then L is Markov unique, and LF is explosive at 0 and recurrent at 1;

In particular, Theorem 1.3.6 implies that for ↵ 2 (-3,-1] no mixing behavior defines a
Markov process. On the other hand, for ↵ 2 (-1, 1) we can have a plethora of such processes.



Figure 7: The geodesics for the Grushin cylinder starting from the singular set (red circle), for t 2 [0, 1.7].
The black (self-intersecting) curve line is the wave front (i.e., the end point of all geodesics at
time 1.7). For the explicit expression of these geodesics see for instance [BL].

Classifying all possible Markov processes in this interval of parameters is the aim of [PP], in
collaboration with A. Posilicano.

Since the singularity Z is at finite distance from any point of M↵, one can interpret a Markov
process that is explosive at 0 as if Z were absorbing the heat. Thus, as a corollary of Theo-
rem 1.3.6, we get the following answer to (Q2).

↵ 6 -1 The heat is absorbed by Z

-1 < ↵ < 1 The Friedrichs extension is absorbed by Z, while
the Neumann and the bridging extensions are not.

1 6 ↵ The heat is absorbed by Z

In Figure 6, we plotted a summary of the results we obtained.

�.�.� Spectral analysis of the Grushin cylinder and sphere

In the last part of the thesis, following the work [BPS], in collaboration with U. Boscain and
M. Seri, we study the spectral properties of the Laplace-Beltrami operator L in two relevant
almost-Riemannian structures with infinite volume, one of which is non-compact: the Grushin
structures on the cylinder and on the sphere.

Note that in the following we use the convention 0 62 N. When needed, we denote N0 =
{0}[ N. We will also denote the ceiling and floor functions with d·e and b·c, respectively.

Almost-Riemannian structures under consideration

In the following we introduce the two main structures studied in this section and we describe
some of their properties.



Figure 8: The geodesics for the Grushin cylinder starting from the the point (0.3, 0), for t 2 [0, 1.7]. Notice
that they cross the singular set (red circle) with no singularities. For the explicit expression of
these geodesics see for instance [BL].

Definition 1.3.7. The Grushin almost-Riemannian structure on the cylinder is the structure on
M = R ⇥S1 whose generating frame is

X1(x, ✓) =
✓

1
0

◆
, X2(x, ✓) =

✓
0
x

◆
.

For this structure the singular set is Z = {0}⇥ S1. On M \ Z the Riemannian metric g, the
area element d!, and the Gaussian curvature K are

g(x,y) =
✓

1 0

0 1
x2

◆
, d! =

1

|x|
dxdy, K(x,y) = -

2

x2
.

Notice that d! is not integrable on any open set intersecting the ✓ axis.
The associated Laplace-Beltrami operator is

Lu = @2xu-
1

x
@xu+ x2@2✓u. (1.3.7)

By Theorem 1.3.1 this operator, with domain C1
c (M\Z), is essentially self-adjoint on L2(M,d!).

Hence, it separates in the direct sum of its restrictions to M± = R±⇥S1. Therefore, w.l.o.g.
we will focus on L on M+. Notice that the Grushin metric restricted to M+ is not geodesically
complete, since geodesics can exit M+ in finite time. The same happens for M-.

Definition 1.3.8. The Grushin almost-Riemannian structure on the sphere is the structure on
M = S2 whose generating frame is, in polar coordinates (x,�),

Y1(x, ✓) =
✓

1
0

◆
, Y2(x, ✓) =

✓
0

tan x

◆
.

Indeed, the Grushin almost-Riemannian structure on the sphere S2 is the trivializable almost-
Riemannian structure obtained by taking as generating frame two unitary rotations along two
orthogonal axis. More precisely, let S2 = {y21 + y22 + y23 = 1} and

X1 =

0

@
0

-y3
y2

1

A , X2 =

0

@
-y3
0
y1

1

A .



Then, passing in spherical coordinates (y1,y2,y3) = (cos x cos�, cos x sin�, sin x) and oppor-
tunely rotating X1,X2, we recover

�
Y1(q) = cos(�- ⇡/2)X1(q)- sin(�- ⇡/2)X2(q),
Y2(q) = sin(�- ⇡/2)X1(q) + cos(�- ⇡/2)X2(q).

For this structure the singular set is Z = {0}⇥ S1, while the singularities for x = ±⇡/2 are
apparent and due to the choice of the coordinates. On S2 \Z the Riemannian metric g, the area
element d!, and the Gaussian curvature K are

g(x,y) =

 
1 0

0 1
tan(x)2

!

, d! =
1

| tan(x)|
dxd�, K(x,y) = -

2

sin(x)2
.

Notice that d! is not integrable on S2.
The associated Laplace-Beltrami operator on L2(S2 \ Z) is

Lu = @2xu-
1

sin(x) cos(x)
@xu+ (tan x)2@2�u. (1.3.8)

This operator, with domain C1
c (S2 \ Z), is essentially self-adjoint in L2(S2,d!) and its spec-

trum is purely discrete, by Theorem 1.3.1. Similarly to the cylinder case, this operator separates
in the direct sum of its restrictions to the north and south hemispheres S±, cutted at the equa-
torial singularity. Thus, we will restrict to consider L on the north hemisphere S+.

This almost-Riemannian metric has been first defined in [BCG+02c].

Spectral analysis of the Laplace-Beltrami operators

Very little is known regarding how the spectral properties of the sub-Laplacian interwines
with the underlying sub-Riemannian geometry. For compact Riemannian manifolds, a first
result in this direction is the Weyl law (see, e.g., [Cha84]), that describes the growth ratio of
the counting function of the eigenvalues of the Laplace-Beltrami operator

N(E) := #{� 2 �d(-L) | � 6 E}. (1.3.9)

Namely, N(E) can be expressed asymptotically as a function of the dimension d, the volume
of the Euclidean ball !d, and the volume of the manifold vol(M),

N(E) ⇠
!d

(2⇡)d
vol(M)Ed/2. (1.3.10)

Similar results have been obtained also for some families of non-compact Riemannian mani-
folds eventually with boundary. See, e.g., [Ivr80, Nor72, Vas92, Par95, Sha02, Bor07, GM08].

In the context of Riemannian manifolds, Weyl asymptotics of the form (1.3.10) can be ob-
tained through pseudo-differential calculus techniques. Some promising results in this direc-
tion have been obtained in step 2 equiregular sub-Riemannian structures (see [Pon08]), where
notably the power exponent is dimH M/2. However, these techniques rely heavily on the
Heisenberg group structure of the tangent cone, and cannot be applied on the non-equiregular
almost-Riemannian structures.

We will now focus on the two structures introduced in the previous section. For these, we
will present an explicit description of the spectrum, the eigenfunctions and their properties.



This allows us to compute the Weyl law for -L, obtaining as leading order N(E) ⇠ E log(E),
which is fairly unusual for Laplace-Beltrami operators on 2-dimensional Riemannian mani-
folds.

In the following theorem we describe explicitly the spectrum of the Laplace-Beltrami opera-
tor on the Grushin cyilinder.

Theorem 1.3.9 (Grushin cylinder case). The operator -L on L2(M+), defined in (1.3.7), has abso-
lutely continuous spectrum �(-L) = [0,1) with embedded discrete spectrum

�d(-L) = {�n,k = 4|k|n | n 2 N, k 2 Z \{0}} .

The corresponding eigenfunctions are given by

 n,k(x, ✓) = eik✓
1

x
W

n, 12
(|k|x2),

where W⌫,µ is the Whittaker W-function of parameters ⌫ and µ.

Through the above explicit description, it is then possible to calculate the Weyl law for the
Grushin cylinder.

Corollary 1.3.10 (Grushin cylinder case). The Weyl law with remainder as E ! +1 is

N(E) =
E

2
log(E) + (�- 2 log(2))

E

2
+O(1),

where � is the Euler-Mascheroni constant.

Similar results can be obtained also for the Laplace-Beltrami operator of the Grushin sphere.

Theorem 1.3.11 (Grushin sphere case). The operator -L on L2(S+), defined in (1.3.8), has purely
discrete spectrum

�(-L) := {�n,k := 4n(n+ |k|) | n 2 N, k 2 Z} .

The corresponding eigenfunctions are given by

 n,k(x,�) = eik(�+⇡
2 ) cos(x)kF

⇣
-(n+ 1), n+ k+ 1; 1+ k; cos(x)2

⌘

where F(a,b; c; x) is the Gauss Hypergeometric function with parameters a,b, c.

Corollary 1.3.12 (Grushin sphere case). The Weyl law with remainder as E ! +1 is

N(E) =
E

4
log(E) +

✓
�- log(2)-

1

2

◆
E

2
+O(

p
E),

where � is the Euler-Mascheroni constant.

Spectra of the Aharonov-Bohm perturbed Laplace-Beltrami operator

A magnetic field B on a Riemannian manifold is an exact 2-form taking purely imaginary
values. Classically the action of B is given by the Lorentz force �, which is a (1, 1) tensor field
given by

g(�(X), Y) = B(X, Y) X, Y 2 Vec(M).



The trajectories of charged particles under the magnetic field B are then the solution of the
Lorentz equation r�̇�̇ = �(�̇). In particular, if B = 0 the Lorentz force is null � ⌘ 0.

In quantum mechanic the situation is different. Given a magnetic field B there exists a 1-
form A, taking purely imaginary values and called magnetic vector potential, such that B = dA.
The magnetic Laplace-Beltrami operator is then defined via the following “magnetic” Green
identity (compare it with (1.1.7)),

-

Z

M
f(LA g)dµ =

Z

M
g((rH +A)f, (rH +A)g)dµ, for any f,g 2 C1

c (M).

The evolution of a charged particle with wave function  in the magnetic field is then given
by the Schrödinger equation

i
d

dt
 = -LA .

When M is simply connected (i.e., if H1
dR(M) = 0) for any two magnetic vector potentials A

and A 0, it holds that A-A 0 is exact. Thus the two magnetic Laplace-Beltrami operators LA

and LA 0 are unitarily equivalent, by gauge invariance, and the evolution of charged particles
depends only on the magnetic field, as in the classical case.

When M is non-simply connected (i.e., if H1
dR(M) 6= 0) this is no more true, as A-A 0 needs

only to be closed. This is known as the Aharonov-Bohm effect [AT98, dOP08]. Two choices of
magnetic potential may lead to in-equivalent magnetic Laplace-Beltrami operator. In R2 with
a bounded obstacle, this phenomenon can be seen through a difference of wave phase arising
from two non-homotopic paths that circumvent the obstacle, and has been experimentally
observed [TOM+86].

If in the Euclidean case the effect of the hidden magnetic fields is surprising but somewhat
simple, the same cannot be said for what concerns asymptotically hyperbolic manifolds with
cusps. In such cases, as proved in [GM08], a change in vector potentials can drastically modify
the spectral properties of the operator, e.g. by destroying the absolutely continuous component
of the spectrum. This phenomenon can be useful for counting eigenvalues embedded in the
absolutely continuous spectrum in non-separable problems [GM08, MT08].

In this section, we investigate the Aharonov-Bohm effect on the spectrum of the Laplace-
Beltrami operators of the Grushin cylinder and sphere. To this purpose, we introduce a mag-
netic vector potential for the zero magnetic field whose flux is non zero and we show that
the aforementioned drastic effect on the spectrum is present. Additionally, we show that the
degeneracy of the eigenvalues is extremely sensitive to the vector potential.

To mimic the Ahronov-Bohm effect for the Laplace-Beltrami operator in the Grushin cylinder
we consider the connection (e.g. a one-form) !b = -ib d✓, b 2 R. The associated magnetic
Laplace-Beltrami operator on the Grushin cylinder is then

Lb = @2x -
1

x
@x + |x|2(@2✓ - 2ib @✓ - b2).

As expected, for b = 0 this coincides with L.
As first results, we obtain the following explicit description of the spectrum of the operator

Lb, which will allow to compute the corresponding Weyl law.

Theorem 1.3.13 (Grushin cylinder case). The operator -Lb on L2(M+) has a non-empty discrete
spectral component

�d(-Lb) =
⌦
�bn,k := 4n|k- b| | n 2 N, k 2 Z \{b}

↵
. (1.3.11)



When b 2 Z the operator has in addition absolutely continuous spectrum [0,+1). When b 62 Z the
spectrum has no absolutely continuous part. In any case, the eigenfunctions are

 b
n,k(x, ✓) = eik✓

1

x
W

n, 12
(|k- b|x2).

Corollary 1.3.14. If b 2 Z, the Weyl law is the one of Corollary 1.3.10. If b 62 Z, let  2 Z be the
closest integer to b. Then, the Weyl law with remainder as E ! +1 is

N(E) =
E

2
log(E) +

E

2

✓
1

2|- b|
+ �- 2 log(2)-

 (1- |- b|) + (1+ |- b|)

2

◆
+O(1),

where � is the Euler-Mascheroni constant and  (x) is the digamma function. Here, the O(1) is uni-
formly bounded with respect to b.

Remark 1.3.15. Notice that N(E) diverges for b !  since, in this limit, part of the discrete
spectrum degenerates and gives rise to an absolutely continuous one.

For this operator, we can also explicitly describe the degeneracy of the spectrum, depending
on the value of b.

Theorem 1.3.16 (Degeneracy of the spectrum in the Grushin cylinder case). Let d(n) denote the
number of divisors of n. Then,

• If b 2 R \Q, the spectrum is simple.

• If b 2 Q, the discrete spectrum is degenerate in the following sense: each eigenvalue � has
multiplicity bounded from above by 2d(�/4).

• If b 2 Z, the eigenvalues achieve the maximal degeneracy and the multiplicity is exactly
�
2d(�/4), if �/4 is odd,
2d(�/4)- 2, if �/4 is even,

(in particular it is bounded below by 2).

Remark 1.3.17. A direct consequence of the previous theorem is that the maximal multiplicity
of the eigenvalues has very slow growth. In fact, it is well known [Apo76] that as n ! 1

d(n) = o(n✏), for any ✏ > 0.

Finally, we give deeper information on the decompactification of the spectrum in the limit
b ! k.

Corollary 1.3.18 (Decompactification of the spectrum on the Grushin cylinder). Fix k 2 Z.
Then, for every n 2 N, the spacing between the eigenvalues

|�bn,k - �bn-1,k| ! 0 as b ! k.

Moreover, for any fixed interval I = [x1, x2] ⇢ [0,1) and any N 2 N

#{n 2 N | �bn,k 2 I} > N as b ! k.



Figure 9: The first row shows the spreading of the projection onto ✓ = 0 of  b
j

n
j

,0(x) as j increases for
� = 3.75. The second row shows the spreading of the projection onto ✓ = 0 of  b

n(b),0(x) as
b ! 0 for � = 3.75. See Theorem 1.3.19 and Remark 1.3.20

In the following theorem, we show that the Ahronov-Bohm perturbation strongly affects the
structure of a subset of the eigenfunctions and makes it degenerate into the set of generalized
eigenfunctions. Up to our knowledge this is the first result of this kind.

Theorem 1.3.19 (Degeneration of the eigenfunctions on the Grushin cylinder). Fix k 2 Z. Then
for any � 2 Q, � > 0, there exist a sequence of pairs (bj,nj) 2

�
k- 1

2 ,k+ 1
2

�
⇥ N, with bj ! k and

nj ! 1, such that

 
bj

nj,k
(x, ✓) ! eik✓

p
�

2
J1(

p
�x) (1.3.12)

uniformly on compact sets, where J⌫(z) is the Bessel function of the first kind of order ⌫. The limit func-
tion on the r.h.s. is the generalized eigenfunction of Lb with generalized eigenvalue � (see Remark 6.1.1).

Remark 1.3.20. Theorem 1.3.19 can be rewritten as follows. For every � > 0, let

n(b) := 2

⇠
�

8|b- k|

⇡
. (1.3.13)

Then

lim
b!k

 b
n(b),k(x, ✓) = eik✓

p
�

2
J1(

p
�x)

uniformly on compact sets. The proof is similar to the one of Theorem 1.3.19 with nj replaced
by n(b).

Remark 1.3.21. Figure 1.3 shows the collapse of the eigenfunctions to the generalized eigen-
functions, while Figure 1.4 shows the collapse of the eigenvalues to the continuous spectrum.

We now shift our attention to the Grushin sphere. Here, we consider the magnetic Laplace-
Beltrami operator induced by the magnetic vector potential !b = -ib d� on the north emi-
sphere of S2 with removed north pole S�+ and Dirichlet boundary conditions. See Section 6.2.3
for more details. The corresponding operator is

Lb = @2x -
1

sin(x) cos(x)
@x + tan(x)2

⇣
@2� - 2ib@� - b2

⌘
. (1.3.14)



Figure 10: The dots correspond to the eigenvalues up to energy 5 for some values of b as it gets closer to
 = 0. The thick red dot represents the only embedded eigenvalue � = 4 of the operator with
b = 0 up to energy 5. The grey line is the the curve �b

n(b), (see Remark 1.3.20) converging to
1.75 as b ! . The purple one is the curve �b

n(b), converging to 3.75.

We then have the description of the spectrum and the corresponding Weyl law, depending
on b.

Theorem 1.3.22 (Grushin sphere case). The operator -Lb defined in (1.3.14) and acting on L2(S�+),
has purely discrete spectrum

�(-Lb) = {�n,k = 4n(n+ |k- b|) | n 2 N,k 2 Z}.

The corresponding eigenfunctions are given by

 n,k(x,�) = eik�ei(k-b)⇡2 cos(x)k-b F
⇣
-(n+ 1),n+ k- b+ 1; 1+ k- b; cos(x)2

⌘
.

As a consequence of the explicit description of the spectrum, we obtain the following.

Corollary 1.3.23. The Weyl law with remainder as E ! +1 is

N(E) =
E

4
log(E) +

✓
�- log(2)-

1

2

◆
E+O(

p
E),

where � is the Euler-Mascheroni constant, and the big O is uniformly bounded w.r.t. b.

Notice that the first two orders of the asymptotic expansion of N(E) are the same with
or without the Aharnov-Bohm perturbation. Indeed, the dependence on b is hidden in the
remainder term.

The degeneracy of the spectrum for the Laplace-Beltrami operator on Grushin sphere is less
explicit than the one in Theorem 1.3.18. Indeed, we can only obtain the following result.



Corollary 1.3.24 (Degeneracy of the spectrum in the Grushin sphere case). If b 2 R \Q the
spectrum is simple, if b 2 Q the spectrum is finitely degenerate.

A brief but more detailed discussion of the topic can be found in Section 6.2.

More general results on conic and anti-conic type surfaces

To conclude this last part of the thesis, we consider the Aharonov-Bohm perturbation on the
conic and anti-conic structures introduced in Section 1.3.2. Here, the Aharonov-Bohm effect
affects not only the spectrum but also the self-adjointness properties of the operator.

As before, we turn it on by considering the connection !b = -ibd✓, where b 2 R. The
corresponding Laplace-Beltrami operator is

Lb = @2x + |x|2↵@2✓ + |x|2↵
⇣
@2✓ - 2ib@✓ - b2

⌘
.

Through the same Fourier decomposition as in (1.3.2), we get that L2(M,dµ) =
L1

k=0Hk,
where Hk

⇠= L2(R \{0}, |x|-↵dx), and the corresponding operators on each Hk is

L̂
b
↵,k = @2x -

↵

x
@x - |x|2↵(b- k)2. (1.3.15)

The same argument of Theorem 1.3.2 applied to (1.3.15) yields the following.

Theorem 1.3.25. If b 62 Z, the operator Lb
↵ with domain C1

c (M) is essentially self-adjoint in
L2(M,d!) if |↵| > 1, and Theorem 1.3.2 still applies for |↵| < 1.

On the other hand, if b 2 Z, Theorem 1.3.2 holds with the following change: if -3 < ↵ 6 -1 for
every k 6= b the operator L̂b

,k is essentially self-adjoint, while L̂b
,b is not.

The Aharonov-Bohm effect on the spectrum extends to this more general setting as follows.

Theorem 1.3.26. For ↵ > 0, the operator -Lb
↵ on L2(M,d!↵) has a non-empty discrete spectral

component �d(-Lb
↵) ⇢ [0,+1).

When b 2 Z the operator has absolutely continuous spectrum [0,+1) with embedded discrete
spectrum. When b 62 Z the spectrum has no absolutely continuous part.

Proof. For b 6= k, the spectrum of the operators L̂
b
↵,k (or of any of their self-adjoint extensions)

is purely discrete (see e.g. [Tit62, Chapter 5]). For b = k, on the other hand, the essential
spectrum of L̂

b
↵,k is non-empty and in particular it contains the half line [0,+1) (see e.g.

[Wei87, Theorem 15.3]).

The previous theorems suggest that, for b = 0 and ↵ > 0, the 0-th Fourier component, is
the only responsible for the continuous spectrum. The Aharonov-Bohm perturbation, when
b 2 Z, shift this role to the b-th Fourier component. When b /2 Z no Fourier component pro-
duces a continuous spectrum. This is a well-known phenomena in the case of asymptotically
hyperbolic manifolds with finite volume [GM08], but completely new in this setting.

Further study of the cases ↵ < 0 is outside the scope of this thesis. As a side remark, note
that the case ↵ = -1 considered on R+⇥S1 coincides with the standard Aharonov-Bohm
Laplacian in polar coordinates. Moreover, in the case ↵ = -1/2, -Lb

↵ has discrete spectrum
accumulating at 0 and absolutely continuous spectrum in [0,+1). When b 62 Z an additional
family of eigenvalues accumulating at 0 appears.



�.� ������������ ��� ���� ��������
The results exposed in this thesis are part of ongoing work. Here, we list some of the natural
extensions of this work.

�.�.� Complexity of non-admissible trajectories

1. Currently, we are working on improving two aspects of Theorem 1.2.6. First, we are
considering the case where f0(�(t)) = �̇(t) mod Ds-h(�(t)) for some 1 6 h 6 s and for
any t 2 [0, T ]. We have strong evidence suggesting that this yields smaller complexities.
Secondly, we are trying to weaken the assumption f0 2 Ds \s-1 to f0(q) /2 D(q) for any
q 2 M.

2. In mechanical systems, where one controls the acceleration and the drift is the velocity,
one is usually interested in quasi-static motion planning, i.e., moving along trajectories
near the zero-level set of the drift. In order to develop a complete theory of control-affine
complexities for the costs J and I, it is then necessary to extend our results to curves or
paths contained in the zero-level set of f0.

3. We focused on costs based on the L1-norm. While in the sub-Riemannian case, thanks to
the rescaling properties of non-holonomic control systems, this is essentially equivalent
to minimize the Lp-norm, such a statement is no more true for control-affine system.
Thus, we intend to study what happens for this kind of costs. This problem is not just a
mathematical curiosity, but is critical for a fruitful application of these results to quantum
control, where the cost is usually the L2-norm.

4. In this thesis we obtained only weak asymptotic estimates for the complexities. It is
then natural to look for strong asymptotic estimates and asymptotic optimal syntheses
in the spirit of [RMGMP04, GZ05, GZ06] . The techniques employed by Gauthier and
Zakalyukin should indeed admit a natural generalization to the control-affine case.

�.�.� Singular diffusions

1. As already mentioned, we are currently collaborating with A. Posilicano on [PP] which
is a direct continuation of the results exposed in Section 1.3.2. Our aim is to completely
classify all the Markovian self-adjoint extensions of L in the case ↵ 2 (-1, 1), where
the deficiency indexes of the Laplace-Beltrami operator are infinite. This would allow
for a better understanding of which kind of transmissions are possible in this context.
The main motivation for this classification, however, is the interest these metrics have for
↵ 2 (0, 1) in the control of partial differential equations, see e.g., [Mor13].

2. It would be nice to understand the scattering properties of these operators (taking the
bridging extension as a reference), and to derive the associated transmission and reflec-
tion coefficients. This would give informations on how much of a wave packet would be
reflected or transmitted, when hitting the singularity.

3. We give results on the behavior of Markov processes by working solely on their gener-
ators. It is natural to try to understand if it is possible to obtain the same results from



a purely probabilistic point of view, for example by defining such Markov processes as
limits of random walks.

4. The spectral properties derived in Section 1.3.3 for two specific almost-Riemannian struc-
tures suggest that in general the first order of the Weyl law should be of the form E logE,
at least for generic structures. At the moment we are working with M. Seri in this
direction, trying to adapt pseudo-laplacian techniques [CdV82, CdV83] to the almost-
Riemannian case.

5. As already mentioned, some work has been done in order to develop a pseudo-differential
calculus on step 2 sub-Riemannian manifolds, through the group structure of the tangent
cone. It would be very interesting to develop a general pseudo-differential calculus for
sub-Riemannian manifolds, that exploits the natural Hamiltonian formulation on the
cotangent bundle. This is a work in progress with Y. Chitour and M. Seri.



Part I

Complexity of control-affine motion

planning
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2 P R E L I M I N A R I E S O F S U B - R I E M A N N I A N
G E O M E T R Y

In this chapter we present some preliminaries in sub-Riemannian geometry. Recall from Sec-
tion 1.1, and in particular from (1.1.2), that a sub-Riemannian structure is determined by a
control-affine system without drift of the form

q̇ =
mX

i=1

ui fi(q), q 2 M, u = (u1, . . . ,um) 2 Rm, (SR)

where {f1, . . . , fm} are smooth (not necessarily linearly independent) vector fields that we al-
ways assume to satisfy the following.

(SR1) The family of smooth vector fields {f1, . . . , fm} satisfies the Hörmander condition, i.e., its
iterated Lie brackets generate the whole tangent space at any point.

The chapter is divided in two sections. In Section 2.1 we discuss more in detail some of the
sub-Riemannian notions already presented in the introduction, as priviliged coordinates and
the ball-box theorem. Then, in Section 2.2 we present some properties of families of coordinates
depending continuously on the points of some curve or path, needed in Chapter 4.

�.� ���������� ����������� ��� ��������� ���������-
����

In this section we discuss more in detail some classical notions and results of sub-Riemannian
geometry, already mentioned in the introduction. In particular, we focus on the equivalent,
in the sub-Riemannian context, of the linearization of a vector field. This classical procedure,
called nilpotent approximation, is possible only in carefully chosen sets of coordinates, called
privileged coordinates.

Let us recall some notation. Let D1 = D := {f1, . . . , fm} and define recursively Ds+1 =
Ds+[Ds, D], for every s 2 N. Since by (SR1) the family {f1, . . . , fm} satisfies the Hörmander
condition, the values of the sets Ds at q form a flag of subspaces of TqM,

D1(q) ⇢ D2(q) ⇢ . . . ⇢ Dr(q) = TqM. (2.1.1)

The integer r = r(q), which is the minimum number of brackets required to recover the whole
TqM, is called degree of non-holonomy (or step) of the family {f1, . . . , fm} at q. Set ns(q) =
dim Ds(q). The integer list (n1(q), . . . ,nr(q)) is called the growth vector at q. From now on
we fix q 2 M, and denote by r and (n1, . . . ,nr) its degree of non-holonomy and its growth
vector, respectively. Finally, let w1 6 . . . 6 wn be the weights associated with the flag, defined
by wi = s if ns-1 < i 6 ns, setting n0 = 0.
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2 ������������� �� ���-���������� ��������

For any smooth vector field f, we denote its action, as a derivation on smooth functions, by
f : a 2 C1(M) 7! fa 2 C1(M). For any smooth function a and every vector field f with f 6⌘ 0
near q, their (non-holonomic) order at q is

ordq(a) = min{s 2 N : 9i1, . . . , is 2 {1, . . . ,m} s.t. (fi1 . . . fis a)(q) 6= 0},
ordq(f) = max{� 2 Z : ordq(fa) > �+ ordq(a) for any a 2 C1(M)}.

In particular, it can be proved that ordq(a) > s if and only if a(q 0) = O(dSR(q
0,q))s.

The following proposition clarifies the relationship between non-holonomic orders and the
flag (2.1.1).

Proposition 2.1.1. Let (SR1) be satisfied, i.e. assume that {f1, . . . , fm} satisfies the Hörmander condi-
tion, and let q 2 M and s 2 N. Then, for any smooth vector field f it holds that ordq 0 f = -s for any
q 0 near q if and only if f(q 0) 2 Ds(q 0) \ Ds-1(q 0) for any q 0 near q.

Remark 2.1.2. In the previous proposition, the fact that the assumptions hold in a neighbor-
hood of q is essential. Indeed, although it is true that ordq f > -s implies f(q) 2 Ds(q), when
the growth vector is not constant around q the contrary is false. To see this, it suffices to con-
sider the sub-Riemannian control system on R2 with (privileged) coordinates (x,y), defined
by the vector fields @x and x2@y. Outside {x = 0}, the non-holonomic degree of these vector
fields is -1, while on {x = 0} we need two brackets to generate the y direction and hence
the non-holonomic degree of @y is -3. Then, the vector field f(x,y) = @x + x@y is such that
f(0, 0) 2 D1(0, 0) but ord(0,0) f = -2.

Definition 2.1.3. A system of privileged coordinates at q for {f1, . . . , fm} is a system of local
coordinates z = (z1, . . . , zn) centered at q and such that ordq(zi) = wi, 1 6 i 6 n.

The family of smooth vector fields {g1, . . . ,gn} is an adapted basis at q 2 M if span{g1(q), . . . ,gns(q)} =
Ds(q) for any 1 6 s 6 r. (Equivalently: if span{g1(q), . . . ,gn(q)} = TqM and gi 2 Dwi(q) for
any 1 6 i 6 n.) By continuity, if {g1, . . . ,gn} is an adapted basis at q, it is a basis of Tq 0M for
any q 0 near q, which in general will not be adapted.

Through an adapted basis at q, it is always possible to define a system of privileged coordi-
nates at q. Namely, for any permutation {i1, . . . , in} of {1, . . . ,n}, the inverse z = (z1, . . . , zn)
of the local diffeomorphism

� : (z1, . . . , zn) 7! ezingin � · · · � ezi1gi1 (q),

is a system of privileged coordinates at q, called canonical coordinates of the second kind. In
particular, in this system gin is rectified, i.e., z⇤gin ⌘ @zin , where z⇤ is the push-forward
operator on vector fields associated with the coordinates, defined as z⇤f = dz � f � z-1. We
immediately obtain the following.

Proposition 2.1.4. Let (SR1) be satisfied, i.e. assume that {f1, . . . , fm} satisfies the Hörmander condi-
tion, and let q 2 M and f be a smooth vector field such that f(q) 6= 0 and f(q) 2 Ds(q) \ Ds-1(q) for
some s 2 N. Then, there exists a system of privileged coordinates z = (z1, . . . , zn) at q rectifying f,
i.e., such that z⇤f ⌘ @k for some 1 6 k 6 n.

Consider any system of privileged coordinates z = (z1, . . . , zn). We now show that it allows
to compute the order of functions or vector fields in a purely algebraic way. Given a multiindex
↵ = (↵1, . . . ,↵n) we define the weighted degree of the monomial z↵ = z↵1

1 · · · z↵n
n as w(↵) =
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2.1 Privileged coordinates and nilpotent approximation

w1↵1 + · · ·+wn↵n and the weighted degree of the monomial vector field z↵@zj as w(↵)-wj.
Then given a 2 C1(M) and a smooth vector field f with Taylor expansions

a(z) ⇠
X

↵

a↵z
↵ and f(z) ⇠

X

↵,j

f↵,jz
↵@zj ,

their orders at q can be computed as

ordq(a) = min{w(↵) : a↵ 6= 0} and ordq(f) = min{w(↵)-wj : f↵,j 6= 0}.

A function or a vector field is said to be homogeneous if all the nonzero terms of its Taylor
expansion have the same weighted degree.

We recall that, for any a,b 2 C1(M) and any smooth vector fields f,g, the order satisfies
the following properties

ordq(a+ b) = min{ordq(a), ordq(b)}, ordq(ab) = ordq(a) + ordq(b),
ordq(f+ g) = min{ordq(f), ordq(g)}, ordq([f,g]) > ordq(f) + ordq(g).

(2.1.2)

Consider the control vector fields fi, 1 6 i 6 m. By the definition of order, it follows that
ordq(fi) > -1. Then we can express fi in coordinates as

z⇤fi =
nX

j=1

�
hij + rij

�
@zj ,

where hij are homogeneous polynomials of weighted degree wj - 1 and rij are functions of
order larger than or equal to wj.

Definition 2.1.5. The nilpotent approximation at q of fi, 1 6 i 6 m, associated with the
privileged coordinates z is the vector field with coordinate representation

z⇤bfi =
nX

j=1

hij @zj .

The nilpotentized sub-Riemannian control system is then defined as

q̇ =
mX

j=1

uj(t)bfj(q). (NSR)

The family of vector fields {bf1, . . . , bfm} is bracket-generating and nilpotent of step r (i.e., every
iterated bracket [fi1 , [. . . , [fik-1

, fik ]]] of length larger than r is zero).
The main property of the nilpotent approximation is the following (see for example [Bel96,

Proposition 7.29]).

Proposition 2.1.6. Let (SR1) be satisfied, i.e. assume that {f1, . . . , fm} satisfies the Hörmander con-
dition, and let z = (z1, . . . , zn) be a system of privileged coordinates at q 2 M for {f1, . . . , fm}. For
T > 0 and u 2 L1([0, T ]; Rm), with |u| ⌘ 1, let �(·) and �̂(·) be the trajectories associated with u in
(SR) and (NSR), respectively, and such that �(0) = �̂(0) = q. Then, there exist C, T0 > 0, independent
of u, such that, for any t < T0, it holds

|zi(�(t))- zi(�̂(t))| 6 Ctwi+1, i = 1, . . . ,n.
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2 ������������� �� ���-���������� ��������

We recall, finally, the celebrated Ball-Box Theorem, that gives a rough description of the
shape of small sub-Riemannian balls.

Theorem 2.1.7 (Ball-Box Theorem). Let (SR1) be satisfied, i.e. assume that {f1, . . . , fm} satisfies the
Hörmander condition, and let z = (z1, . . . , zn) be a system of privileged coordinates at q 2 M for
{f1, . . . , fm}. Then there exist C, "0 > 0 such that for any " < "0, it holds

Box
✓
1

C
"

◆
⇢ BSR(q, ") ⇢ Box (C") .

Here, BSR(q, ") is identified with its coordinate representation z(BSR(q, ")) and, for any ⌘ > 0, we let

Box (⌘) = {z 2 Rn : |zi| 6 ⌘wi }, (2.1.3)

Remark 2.1.8. The constants C and "0 in the above theorem depend on q and are not uniform,
in general. However, this is clearly true on some compact set N ⇢ M if there exists for each
q 2 N a system of privileged coordinates zq such that q 7! zq depends continuously on q.
Observe also that this is always true except when q is a singular point for the sub-Riemannian
structure, i.e., if the growth vector is not constant near q.

We now state an uniform version of the Ball-Box theorem along integral curves of vector
fields, which we will need in Section 3.2.2. This is a particularization of a much more general
result contained in [Jea01b].

Proposition 2.1.9. Let (SR1) be satisfied, i.e. assume that {f1, . . . , fm} satisfies the Hörmander condi-
tion, and let z = (z1, . . . , zn) be a system of privileged coordinates at q 2 M for {f1, . . . , fm}. Let f
be a smooth vector field such that q be regular on its integral curve. Namely, there exists t0 such that
dim Ds(et(q)), s 2 N, is constant for t < t0. Then, there exist C, "0 > 0 such that for any " < "0
and t < t0, it holds

z(etf0(q)) + Box
✓
1

C
"

◆
⇢ BSR(e

tf0(q), ") ⇢ z(etf0(q)) + Box (C") .

As a corollary of the Ball-Box Theorem, we get the following result on the regularity of the
distance.

Corollary 2.1.10. Let (SR1) be satisfied, i.e. assume that {f1, . . . , fm} satisfies the Hörmander condi-
tion, and let z = (z1, . . . , zn) be a system of privileged coordinates at q 2 M for {f1, . . . , fm}. Then
there exists C, " > 0 such that

1

C
|z(q 0)| 6 dSR(q,q 0) 6 C|z(q 0)|1/r, q 0 2 BSR(q, ").

�.� ���������� �������� �� �����������
In this section we consider properties of families of coordinates depending continuously on
points of some curve or path.

From the definition of privileged coordinates, we immediately get the following.
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2.2 Continuous families of coordinates

Proposition 2.2.1. Let � : [0, T ] ! M be a path. Let t > 0 and let z be a system of privileged
coordinates at �(t) for {f1, . . . , fm}. Then, there exists C > 0 such that

|zj(�(t+ ⇠))| 6 C|⇠| for any j = 1, . . . ,n and any t+ ⇠ 2 [0, T ]. (2.2.1)

Moreover, if for k 2 N it holds that �̇(t) /2 �k-1(�(t)), then there exist C1,C2, ⇠0 > 0 and a
coordinate z↵, of weight > k, such that for any t 2 [0, T ] and any |⇠| 6 ⇠0 with t+ ⇠ 2 [0, T ] it holds

C1⇠ 6 z↵(�(t+ ⇠)) 6 C2⇠. (2.2.2)

Finally, if �̇(t) 2 Dk(�(t)) \�k-1(�(t)), the coordinate z↵ can be chosen to be of weight k.

Proof. By the smoothness of �, there exists a constant C > 0 such that |(zj)⇤�̇(t+ ⇠)| 6 C for
any j = 1, . . . ,n and any t+ ⇠ 2 [0, T ]. Thus, we obtain

|zj(�(t+ ⇠))| 6
�����

Zt+⇠

t
|(zj)⇤�̇(t+ ⌘)|d⌘

����� 6 C |⇠|.

Let us prove (2.2.2). Let {f1, . . . , fn} be an adapted basis associated with the system of
coordinates z. In particular it holds that z⇤fi(�(t)) = @zi . Moreover, let k 0 > k be such that
�̇(t) 2 Dk 0

(�(t)) \Dk 0-1(�(t)) and write �̇(t) =
P

wi6k 0 ai(t)fi(�(t)) for some ai 2 C1([0, T ]).
Hence

z⇤�̇(t) =
X

wi6k 0

ai(t) z⇤fi(�(t)) =
X

wi6k 0

ai(t)@zi .

Since there exists i with wi = k 0 such that ai(t) 6= 0, this implies that (zi)⇤�̇(t) 6= 0. Since
k 0 > k, we have then proved (2.2.1).

As a consequence of Remark 2.1.8, in order to apply the estimates of Theorem 2.1.7 uniformly
on � it suffices to consider a continuous family of coordinates {zt}t2[0,T ] such that each zt is
privileged at �(t) for {f1, . . . , fm}. We will call such a family a continuous coordinate family for �.

Let us recall that, fixed any basis {f1, . . . , fn} adapted to the flag in a neighborhood of
�([0, T ]), letting zt be the inverse of the diffeomorphism

(z1, . . . , zn) 7! ez1f1 � . . . � eznfn(�(t)), (2.2.3)

defines a continuous coordinate family for �.
The following proposition precises Proposition 2.2.1.

Proposition 2.2.2. Let � : [0, T ] ! M be a path and let k 2 N such that �̇(s) 2 Dk(�(s)) for any
t 2 [0, T ]. Then, for any continuous coordinate family {zt}t2[0,T ] for � there exists constants C, ⇠0 > 0
such that for any t 2 [0, T ] and 0 6 ⇠ 6 ⇠0 it holds

|ztj (�(t+ ⇠))| 6 C⇠ if wj 6 k and |ztj (�(t+ ⇠))| 6 C⇠
wj
k if wj > k. (2.2.4)

Proof. Fix t 2 [0, T ] and let {f1, . . . , fn} be an adapted basis associated with the privileged
coordinate system zt. To lighten the notation, we do not explicitly write the dependence on
time of such basis. Writing zt⇤fi(z) =

Pn
j=1 f

j
i(z)@ztj

, it holds that fji is of weighted order
> wj -wi, and hence there exists a constant C > 0 such that

|fji(z)| 6 Ckzk(wj-wi)
+

. (2.2.5)
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Here kzk is the pseudo-norm |z1|
1
w1 + · · ·+ |zn|

1
wn and h+ = max{0,h} for any h 2 R. Due to

the compactness of [0, T ], the constant C can be choosen to be uniform w.r.t. the time.
Since �̇(⇠) 2 Dk(�(⇠)) for ⇠ > 0, there exist functions ai 2 C1([0, T ]) such that

�̇(⇠) =
X

wi6k

ai(⇠)fi(�(⇠)) for any ⇠ 2 [0, T ]. (2.2.6)

Observe that, for any t 2 [0, T ], it holds that

1

⇠

Zt+⇠

t
|ai(⌘)|d⌘ = |ai(t)|+O(⇠) as ⇠ # 0, (2.2.7)

where O(⇠) is uniform w.r.t. t. In particular, for any ⇠ sufficiently small, this integral is
bounded.

By (2.2.6), for any t 2 [0, T ] we get

ztj (�(t+ ⇠)) =
X

wi6k

Zt+⇠

t
ai(⌘)f

j
i(z

t(�(⌘)))d⌘, for any t+ ⇠ 2 [0, T ] (2.2.8)

Then, applying (2.2.5) we obtain

max
⇢2[0,⇠]

|ztj (�(t+ ⇢))| 6
X

wi6k

Zt+⇠

t
|ai(⌘)| |f

j
i(z

t(�(⌘)))|d⌘

6 C

✓
max
⇢2[0,⇠]

kzt(�(t+ ⇢))k
◆(wj-k)+ X

wi6k

Zt+⇠

t
|ai(⌘)|d⌘.

(2.2.9)

Up to enlarging the constant C, this and (2.2.7) yield

max⇢2[0,⇠] |z
t
j (�(t+ ⇢

k))|

⇠wj
6 C

 
max⇢2[0,⇠] kzt(�(t+ ⇢k))k

⇠

!(wj-k)+ X

wi6k

1

⇠k

Zt+⇠k

t
|ai(⌘)|d⌘

6 C

 
max⇢2[0,⇠] kzt(�(t+ ⇢k))k

⇠

!(wj-k)+

.

(2.2.10)

Clearly, if max⇢2[0,⇠] kzt(�(t+ ⇢k))k/⇠ 6 C uniformly in t, inequality (2.2.10) proves (2.2.4).
Then, let us assume by contradiction that max⇢2[0,⇠] kzt(�(t+ ⇢k))k/⇠ is unbounded as ⇠ # 0.
For any ⇠ let ⇠̄ 2 [0, ⇠] to be such that kzt(�(t+ ⇠̄k))k = max⇢2[0,⇠] kzt(�(t+⇢k))k. Then, there
exists a sequence ⇠⌫ ! +1 such that

b⌫ =
|ztj (�(t+ ⇠̄

k
⌫))|

⇠
wj
⌫

�! +1 and
1

n

kzt(�(t+ ⇠̄k⌫))k
⇠⌫

6 b
1
wj
⌫ 6 kzt(�(t+ ⇠̄k⌫))k

⇠⌫
.

Moreover, by (2.2.10), it has to hold that wj > k. Then, again by (2.2.10), follows that

b⌫ 6 Cnb
1- k

wj
⌫ �! 0 as ⌫! +1.

This contradicts the fact that b⌫ ! +1, and proves that there exists ⇠0 > 0, a priori depending
on t, such that kzt(�(t+ ⇠̄k))k/⇠ 6 C for any ⇠ < ⇠0. Since [0, T ] is compact, both constants
⇠0,C are uniform for t 2 [0, T ], thus completing the proof of (2.2.4) and of the proposition.
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3 H Ö L D E R C O N T I N U I T Y O F T H E VA L U E
F U N C T I O N

In this chapter we prove the results contained in [Pra14] and already mentioned in Section 1.2.2,
regarding the value function control-affine systems satisfying the strong Hörmander condition
w.r.t. the cost

J(u, T) =
ZT

0

vuut
mX

i=1

ui(t)2 dt. (3.0.11)

Let us remark that in this chapter we will also discuss some results where the maximal time
of definition of the controls is infinite, i.e., T = +1.

The chapter is divided in two sections. In Section 3.1 we consider control systems in the
form (1.2.4), and prove the continuity of the value function for general time-dependent vector
fields, under the following assumptions.

(T1) The map t 7! fti is smooth for 1 6 i 6 m and t 2 I.

(T2) The family of smooth vector fields {ft1, . . . , ftm} satisfies the strong Hörmander condition,
i.e., for any t the family {ft1, . . . , ftm} satisfies the Hörmander condition.

Then, in Theorem 3.1.9, restricting to the case where the time dependency is explicitly given
as fti = (e-tf0)⇤fi, we establish some estimates on the reachable sets, in the same spirit as the
Ball-Box theorem.

Finally, in Section 3.2 we consider control-affine systems satisfying the following assump-
tions.

(D1) The family {f0, f1, . . . , fm} satisfies the strong Hörmander condition, i.e., the family {f1, . . . , fm}

satisfies the Hörmander condition and thus defines a sub-Riemannian control system.

(D2) The point q is regular for the integral curve of the drift, i.e., is such that dim Ds(etf0(q)),
s 2 N, is constant for small t.

(D3) The point q is regular w.r.t. the drift, in the sense that there exists s 2 N such that
f0(q

0) 2 Ds(q 0) \ Ds-1(q 0), for any q 0 near q.

Here, after proving the relation between control-affine systems and time-dependent systems,
we prove the continuity of the value function. Then, in Lemma 3.2.6, exploiting the affine
nature of the control system, we give an upper bound on the time needed to join two points
q and q 0 as a function of VT (q,q 0). From this fact and the estimates of Section 3.1 we finally
obtain Theorems 1.2.3 and 1.2.2.
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�.� ����-��������� �������
Consider the following time-dependent non-holonomic control system

q̇ =
mX

i=1

ui f
t
i(q), q 2 M, u = (u1, . . . ,um) 2 Rm, t 2 I, (TD)

where I = [0,b) for some b 6 +1 and {ft1, . . . , ftm} is a family of non-autonomous smooth
vector fields depending smoothly on time and satisfying (T1) and (T2). We let ftu =

Pm
i=1 ui f

t
i .

As we will see later on in Section 3.2, when considering families of time-dependent vector
fields of the form fti = (e-tf0)⇤fi assumption (T2) will follow from the strong Hörmander
condition for the affine control system with drift f0 and control vector fields {f1, . . . , fm} (i.e.,
assumption (D1)).

Since we will discuss multiple control systems at the same time, to better distinguish them,
in the following we will call the horizontal curves of a sub-Riemannian system (SR)-admissible.
Analogously, we define (TD)-admissible curves as absolutely continuous curves � : [0, T ] ⇢ I !
M such that �̇(t) = ft

u(t)(�(t)) for a.e. t 2 [0, T ] and for some control u 2 L1([0, T ], Rm). Ob-
serve, however, that contrary to what happens in the sub-Riemannian case, the (TD)-admissibility
property is not invariant under time reparametrization, e.g., a time reversal. Thus, we define
the cost (and not the length) of � to be

J(�) = min kukL1([0,T ],Rm),

where the minimum is taken over all controls u such that � is associated with u and is attained
due to convexity. The value function induced by the time-dependent system is then defined as

⇢(q,q 0) = inf{J(�) : � is (TD)-admissible and � : q q 0}.

Clearly, the value function is non-negative. It is not a metric since, in general, it fails both to be
symmetric and to satisfy the triangular inequality. Moreover, as the following example shows,
⇢ could be degenerate. Namely, it could happen that q 6= q 0 but ⇢(q,q 0) = 0.

Example 3.1.1. Let M = R, with coordinate x and consider the vector field ft = (1- t)-2@x
defined on [0, 1). For any x0 2 R, x0 6= 0, and for any sequence tn " 1, let un 2 L1([0, tn]) be
defined as un ⌘ (1- tn)x0. By definition, each un steers the system from 0 to x0. Hence,

⇢1(0, x0) 6 inf
n2N

kunkL1([0,tn]) = inf
n2N

Ztn

0
(1- tn)x0 dt = x0 inf

n2N
tn(1- tn) = 0.

This proves that, for any x0 2 R, ⇢1(0, x0) = 0.

For T > 0, q 2 M and " > 0, we denote the reachable set from q with cost less than " by

R(q, ") = {q 0 2 M : ⇢(q,q 0) < "}.

We will also consider the reachable set from q in time less than T > 0 and cost less than ", and
denote it by RT (q, "). Clearly RT (q, ") ⇢ R(q, ").

In general, the existence of minimizers for the optimal control problem associated with (TD)
is not guaranteed. We conclude this section with an example of this fact.
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3.1 Time-dependent systems

Example 3.1.2. Let M = R, with coordinate x, and consider the vector field ft = e-t@x for
t 2 [0, 1). Fix x0 2 R, x0 6= 0. Observe that, for any T > 0 and any control u 2 L1([0, T ])
steering the system from 0 to x0 , it holds

|x0| =

�����

ZT

0
u(t)e-t dt

����� 6
ZT

0
|u(t)|e-t dt < kukL1([0,T ]). (3.1.1)

This implies ⇢(0, x0) > |x0|. Let now un 2 L1([0, 1/n]) be defined as un(t) = x0ne
t. Clearly

un steers the system from 0 to x0. Moreover,

⇢(0, x0) 6 inf
n2N

kunkL1([0,1/n]) = |x0| inf
n2N

e
1
n - 1
1
n

= |x0|.

This proves that ⇢(0, x0) = |x0|. Hence, the non-existence of minimizers follows from (3.1.1).

�.�.� Finiteness and continuity of the value function

In this section, we extend the Chow–Rashevsky Theorem to time-dependent non-holonomic
systems under the strong Hörmander condition. Namely, we will prove the following.

Theorem 3.1.3. Assume that {ft1, . . . , ftm}t2I satisfies (T1) and (T2). Then, the function ⇢ : M⇥M !
[0,+1) is continuous. Moreover, for any t0 2 I and any q,q 0 2 M, letting dSR be the sub-Riemannian
distance induced by {ft01 , . . . , ft0m}, it holds ⇢(q,q 0) 6 dSR(q,q 0).

Let us introduce some notation. Following [ABB12a], the flows between times s, t 2 R of an
autonomous vector field f and of a non-autonomous vector field ⌧ 7! f⌧ will be denoted by,
respectively,

e(t-s)f : M ! M and ��!exp
Zt

s
f⌧ d⌧ : M ! M.

Fix q 2 M and assume, for the moment, that t0 = 0. Let ` 2 N and F = (i1, . . . , i`) 2
{1, . . . ,m}`. For any T 2 I, T > 0, we define the switching end-point map at time T and associated
with F to be the function ET,F : R` ! M defined as

ET,F(⇠) =
��!exp

ZT
`-1
` T

`

T
⇠` f

⌧
i`
d⌧ � · · · � ��!exp

Z T
`

0

`

T
⇠1 f

⌧
i1
d⌧ (q)

= ��!exp
Z1
`-1
`

`⇠` f
⌧T
i`

d⌧ � · · · � ��!exp
Z 1
`

0
`⇠1 f

⌧T
i1

d⌧ (q).

(3.1.2)

Here, we applied a standard change of variables formula for non-autonomous flows. Let then

g⌧T,F =

8
>>>>><

>>>>>:

`⇠1 f
⌧T
i1

if 0 6 ⌧ < 1/`,
`⇠2 f

(⌧-1/`)T
i2

if 1/` 6 ⌧ < 2/`,
...

`⇠` f
(⌧-(`-1)/`)T
i`

if (`- 1)/` 6 ⌧ < 1,

(3.1.3)
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so that we can write

ET,F(⇠) =
��!exp

Z1

0
g⌧T,F(⇠)d⌧ (q).

Clearly, t 7! ��!exp
Rt
0 g
⌧
T,F(⇠)d⌧ (q), t 2 [0, 1], is a (TD)-admissible trajectory. Thus, ET,F(⇠),

T > 0, is the end-point of a piecewise smooth (TD)-admissible curve of cost
P

i |⇠i|.
We recall that, by the series expansion of ��!exp (see [ABB12a]), for any non-autonomous

smooth vector field f⌧, it holds ��!exp
Rt
0 f
⌧ d⌧ (q) = et f

0
(q) +O(t2). Thus, we can define

E0,F(⇠) = lim
T#0

ET,F(⇠) = e⇠` f
0
` � . . . � e⇠1 f01(q) = ��!exp

Z1

0
g⌧0,F(⇠)d⌧ (q),

where, g⌧0,F(⇠) is defined in (3.1.3). Then t 7! ��!exp
Rt
0 g
⌧
0,F(⇠)d⌧ (q), t 2 [0, 1], is an (SR)-

admissible curve for the sub-Riemannian structure defined by {f01, . . . , f0m} and E0,F(⇠) is the
end-point of a piecewise smooth trajectory in (SR).

After [Sus76], we say that a point q 0 2 M is (TD)-reachable from q at time t0 = 0, if there
exist ` 2 N, F 2 {1, . . . ,m}`, T > 0 and ⇠ 2 R`, such that ET,F(⇠) = q 0. In this case it is clear
that ⇢(q,q 0) 6 P

i |⇠i|. Moreover, if ⇠ 0 7! ET,F(⇠
0) has rank n at ⇠, the point q 0 is said to

be (TD)-normally reachable at time t0 = 0. Finally, the point q 0 is said to be (SR)-reachable or
(SR)-normally reachable for the vector fields {f01, . . . , f0m}, if these properties holds for T = 0.

In the case t0 > 0, taking T > 0 such that T + t0 2 I and changing the interval of integration
in (3.1.2) from [0,T] to [t0, t0 + T], it is clear how to define (TD)-reachable and (TD)-normally
reachable points from q at time t0, and (SR)-reachable and (SR)-normally reachable points for the
vector fields {ft01 , . . . , ft0m}.

The proof of the following lemma is an adaptation of [Sus76, Lemma 3.1].

Lemma 3.1.4. Let q 0 2 M be (SR)-normally reachable for the vector fields {ft01 , . . . , ft0m} from q, by
some ` 2 N, ⇠ 2 R` and F 2 {1, . . . ,m}`. Then, there exist "0,T0 > 0 such that, for any " < "0,
the point q 0 is (TD)-normally reachable at time t0, by the same ` and F, and some ⇠ 0 2 R`, withP

j |⇠j - ⇠
0
j| 6 ", and any T < T0.

Proof. Without loss of generality, we assume t0 = 0.
Let U ⇢ R` be a neighborhood of ⇠ such that E0,F has still rank n when restricted to it.

Then, there exists B = {x :
P

j |xj - ⇠j| 6 "} ⇢ U such that E0,F maps diffeomorphically a
neighborhood of B in U onto a neighborhood of q. It follows, from standard properties of
differential equations, that, for T > 0 sufficiently small, the map ET,F is well defined on B and
that ET,F �! E0,F as T # 0 in the C1-topology over B. Thus, there exists T1 > 0 such that, for
T < T1, ET,F has rank n at every point of B.

Since the map E0,F is an homeomorphism from B onto a neighborhood of q, and ET,F �!
E0,F uniformly as T # 0, it follows that there exists a fixed neighborhood V of q and T2 > 0
such that V ⇢ ET,F(B), for any T < T2. Then, for any T < min{T1,T2}, there exists ⇠ 0 2 B such
that the point q 0 = ET,F(⇠

0) is (TD)-normally reachable.

We will use the following consequence of Lemma 3.1.4. We remark that the result holds
even if {ft1, . . . , ftm}t2I satisfies the Hörmander condition only at the time t0 2 I.

Lemma 3.1.5. Let dSR be the sub-Riemannian distance induced by {ft01 , . . . , ft0m}, then for any t1 2 I,
such that t1 - t0 > 0 is sufficiently small, and for any q,q 0 2 M it holds that

inf{J(�) : � : [t0, t1] ! M is (TD)-admissible,�(t0) = q and �(t1) = q 0} 6 dSR(q,q 0).
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3.1 Time-dependent systems

In particular, ⇢(q,q 0) 6 dSR(q,q 0).

Proof. Fix " > 0. By Chow’s theorem it is clear that q 0 is (SR)-reacheable from q. More-
over, since there exist (SR)-normally reachable points from q 0 arbitrarily close to q 0 (see
e.g., [ABB12a, Lemma 3.21]), follows that q 0 is always (SR)-normally reacheable from q by
⇠ such that

P
j |⇠j| 6 dSR(q,q 0) + "/2. Hence, by Lemma 3.1.4, if " and ⌘ > 0 are suffi-

ciently small, we have that q 0 is (TD)-normally reachable from q at time t0 by ⇠ 0 such thatP
j |⇠

0
j| 6 dSR(q,q 0) + " and T < t1. This clearly implies that

inf{J(�) : � is (TD)-admissible,�(t0) = q and �(t1) = q 0} 6 dSR(q,q 0) + ".

Finally, the lemma follows letting " # 0.

We now prove the main theorem of the section.

Proof of Theorem 3.1.3. By Lemma 3.1.5, we only need to prove the continuity of ⇢. We will
prove only the lower semicontinuity, since the upper semicontinuity follows by similar argu-
ments.

We start by proving the lower semicontinuity of ⇢(q, ·) at q 0. Consider a sequence qk ! q 0

and let uk 2 L1([0, Tk], Rm) be controls such that each one steers system (TD) from q to qk

and lim infk V1(q,qk) = lim infk kukkL1 . Then, by Lemma 3.1.5, for any " > 0 there exists a
sequence of T̃k > 0 and a sequence of controls vk 2 L1([Tk, T̃k], Rm) all steering system (TD)
from qk to q 0 and such that kvkkL1([Tk,T̃k],Rm) 6 dSR(qk,q 0) + ". Since dSR(qk,q 0) ! 0, this
implies that

⇢(q,q 0) 6 lim
n!1

✓
kukkL1([0,Tk],Rm) + kvkkL1([Tk,T̃k],Rm])

◆
= lim inf

n
⇢(q,qk) + ".

Letting " # 0 proves that ⇢(q, ·) is lower semicontinuous at q 0.
In order to prove the lower semicontinuity of ⇢(·,q 0) at q, let us define

'"(p) = inf{J(�) : � : [", T ] ⇢ I ! M is (TD)-admissible and � : p q 0}.

We claim that for any p 2 M it holds that '"(p) �! ⇢(p,q 0) as " # 0. Since it is clear that
'"(·) > ⇢(·,q 0), it suffices to prove that

lim
"#0

'"(p) 6 ⇢(p,q 0) for any p 2 M. (3.1.4)

To this aim, fix p 2 M and ⌘ > 0 and let � : [0, T ] ! M be such that � : p  q 0 and that
J(�) 6 ⇢(p,q 0) + ⌘. It is clear that �(2") ! p as " # 0, and hence that ⇢(p,�(2")) ! 0 as
" # 0, by the first part of the proof. Thus, for any " > 0 sufficiently small, there exists a (TD)-
admissible curve �" : [", 2"] ! M such that �" : p  �(2") and J(�") 6 ⇢(p,�(2")) + ⌘. By
concatenating �" with �|[2",T ], we get that

'"(p) 6 J(�") + J(�) 6 ⇢(p,�(2")) + ⇢(p,q 0) + 2⌘.

Letting " # 0 and then ⌘ # 0, this proves (3.1.4) and thus the claim.
Let now qk ! q and fix ⌘ > 0. By Lemma 3.1.5 this implies that ⇢(qk,q) ! 0 and that

for any " > 0 sufficiently small, there exists a (TD)-admissible curve �" : [0, "] ! M such that
�" : qk  q and J(�") 6 ⇢(qk,q) + ⌘. Hence

⇢(qk,q 0) 6 c(�") +'"(q) 6 ⇢(qk,q) +'"(q) + ⌘.
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Figure 11: The two vector fields of Example 3.1.7 with h(x) = c e
- 1

1-x

2 for x 2 [-1, 1].

By the previous claim, letting ",⌘ # 0, this implies that ⇢(qk,q 0) 6 ⇢(qk,q) + ⇢(q,q 0). Since
⇢(qk,q) ! 0, taking the liminf as k ! +1, this proves the lower semicontinuity of ⇢(·,q 0) at
q, completing the proof.

Remark 3.1.6. From the proof of Theorem 3.1.3, it follows that hypothesis (T2) is not sharp.
Indeed, the following would suffice to prove the theorem.

(T2 0) The family of smooth vector fields {ft1, . . . , ftm}t2I satisfies the strong Hörmander condi-
tion at t = 0 and in an open neighborhood of sup I.

We will conclude this section by showing that, in our framework, it is essential to assume the
Hörmander condition on both ends of I and hence that assumption (T2 0) is minimal. Although
outside the scope of the present work, we remark that stronger assumptions on the regularity
of the vector fields, i.e., that they are uniformly Lipschitz, would allow to prove Theorem 3.1.3
assuming only that {ft1, . . . , ftm}t2I satisfies the Hörmander condition at one time t0 2 I.

The following example proves that if the family {ft1, . . . , ftm}t2I satisfies the Hörmander
condition only near t = 0, then the value function is in general not continuous. Through a
slight modification, the same argument can also be used to prove that the same holds if the
Hörmander condition is satisfied only at a neighborhood of sup I or of any t0 2 I.

Example 3.1.7. Let M = (-2, 2)⇥ (-1,+1), with coordinates (x,y), and consider the vector
fields

f(x,y) =
((y+ 1)(1- x2),-x)p
(y+ 1)2(1- x2)2 + x2

, g(x,y) =
�
x,h(x)(y+ 2)

�
p
x2 + h(x)2(y+ 2)2

,
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3.1 Time-dependent systems

where h : [-2, 2] ! R is a smooth cutoff function such that supph ⇢ [-1, 1], h > 0 and h(0) = 1
(see Figure 11). Fix 0 < " < 1, C > 16 and let �,  : [0, 1] ! R be two smooth functions such
that

�(t) =

�
1 if 0 6 t 6 ",
0 if 2" 6 t 6 1,

 (t) =

�
1 if 0 6 t 6 2",
C if 3" 6 t 6 1,

and such that � is nonincreasing while is nondecreasing. Finally, consider the time-dependent
system on M specified by the vector fields ft(x,y) = �(t)f(x,y) and gt(x,y) =  (t)g(x,y),
t 2 [0, 1]. We will show that {ft,gt} satisfies the Hörmander condition for t 2 [0, "], but that
the value function associated with the family {ft,gt}t2[0,1] is not lower semicontinuous.

We start by showing that f(p) and g(p) are transversal for any p = (x,y) 2 M, thus proving
the Hörmander condition for {ft,gt}, t 2 [0, "]. If x 2 (-2,-1] [ [1, 2), then, by definition of h,
g(p) = (1, 0) is clearly transversal to f(p). On the other hand, if x 2 (-1, 1) \ {0} and g(p) is
parallel to f(p), a simple computation shows that h(x) < 0, which is a contradiction. Finally, for
x = 0, it is clear that g(p) = (0,y+ 2) and f(p) = (y+ 1, 0) are never parallel. We remark that
this implies also that the value function ⇢", induced by controls defined on [0, "], is a distance
equivalent to the Euclidean one. In particular, |p1 - p2| 6 2⇢"(p1,p2) for any p1,p2 2 M.

Fix now q 0 = (1, 0). The set of points from which q 0 is reachable using only f is exactly Oq 0 =

{(1,y) : y > -1}. Let then q0 2 (-1, 0)⇥ {0} be such that ⇢"(q0, (-1, 0)) 6 1
4 minp2Oq 0 ⇢"(q0,p).

In order to show that ⇢1(q0, ·) is not lower semicontinuous at q 0, consider any sequence
{qn}n2N ⇢ (1/2, 1)⇥ {0} such that qn �! q 0. By continuity of ⇢" and the fact that -qn �!
(-1, 0), we can always assume that, up to subsequences, ⇢"(q0,-qn) 6 1

2 minp2Oq 0 ⇢"(q0,p).

Since gt ⌘ 0 for t > 2", if u 2 L1([0, 1], R2) is a control steering the system from q0 to q 0, the
control u|[0,2"] steers the system from q0 to some p 2 Oq 0 . Exploiting the fact that ⇢2" > ⇢" by
monotonicity of  , this implies that

⇢1(q0,q 0) > min
p2Oq 0

⇢"(q0,p) > 2⇢"(q0,-qn). (3.1.5)

Let now u 2 L1([0, 1], Rm) be the control constructed as follows. From time 0 to ", u|[0,"] is
the minimizer of ⇢" steering the system from q0 to -qn. Then, u|(",3") ⌘ 0 and, after this, the
control acts only on ft for time t 2 [3", 1], steering the system from -qn to qn. Hence,

|qn - (-qn)| =

�����

Z1

3"
u(t)ft(x(t),y(t))dt

����� = C

Z1

3"
|u(t)|dt. (3.1.6)

Since |qn - (-qn)| < 2, C > 16/|q0 - q 0| > 8/⇢"(q0,q 0), and by (3.1.6), it holds that

⇢1(q0,qn) 6
Z1

0
|u(t)|dt = ⇢"(q0,-qn) +

1

C
|qn - (-qn)| 6

3

4
⇢1(q0,q 0).

Taking the lim inf as n ! 1 shows that ⇢1(q0, ·) is not l.s.c. at q 0.
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�.�.� Estimates on reachable sets

In this section, we concentrate on a particular class of time-dependent systems. Namely, let
{f1, . . . , fm} be a family of smooth vector fields, f0 be a smooth vector field, and consider the
time-dependent system

q̇ =
mX

i=1

ui f
t
i , fti = (e-tf0)⇤fi(q), q 2 M, u = (u1, . . . ,um) 2 Rm . (3.1.7)

Here, (e-tf0)⇤ is the push-forward operator associated with the flow of f0. Throughout this
section we will assume the following.

(T3) The family of smooth vector fields {f1, . . . , fm} satisfies the Hörmander condition.

Observe, in particular, that from (T3) it follows immediately that the family {(e-tf0)⇤f1, . . . , (e-tf0)⇤fm}

satisfies (T2), i.e., the strong Hörmander condition for time-dependent systems. Moreover, (T1)
is an immediate consequence of the definition of the fti ’s.

As we will see in the next section, this class of systems arises naturally when dealing with
control systems that are affine with respect to the control.

Before proceeding to estimate the shape of the reachable sets, we need to define a suitable
approximation of system (3.1.7). Namely, fix a system of privileged coordinates (in the sub-
Riemannian sense) at q for {f1, . . . , fm}. Assume that f0(q) 6= 0, and let s 2 {1, . . . , r} be such
that ordq f0 = -s. In particular, by Remark 2.1.2, this implies that f0(q) 2 Ds(q) \ Ds-1(q). In
this case, there exist, in coordinates, an homogeneous vector field f-s

0 , of weighted degree -s,
and a vector field f>-s

0 , of weighted degree > -s+ 1, such that f-s
0 6⌘ 0 near z(q) = 0 and

z⇤f0 = f-s
0 + f>-s

0 . (3.1.8)

For any smooth vector field f, let (ad1f0)f = [f0, f] and (ad`f0)f = [f0, (ad`-1f0)f], for any
` 2 N. We recall (see for example [Her91]) that the following Taylor expansion holds

(e-tf0)⇤f ⇠
1X

`=0

t`

`!
(ad`f0)f. (3.1.9)

Since ordq(fj) > -1, by (2.1.2) we have that ordq((ad`f0)fj) > -`s- 1. Then, by decompo-
sition (3.1.8), for any ` > 0, there exists, in coordinates, an homogeneous vector field F`j of
weighted degree -`s, and a remainder r` of order > -`s- 1, such that

z⇤
⇥
(ad`f0)fj

⇤
= F`j + r`. (3.1.10)

Definition 3.1.8. The homogeneous series approximation at q of ftj , 1 6 j 6 m, associated with the
privileged coordinates z, is the vector field with coordinate representation

bftj =
⇢X

`=0

t`

`!
F`j , (3.1.11)

where ⇢ = br-1/sc and r is the non-holonomic degree of {f1, . . . , fm} at q. The approximated
time-dependent control system is then defined as

q̇ =
mX

j=1

uj(t)bftj (q). (ATD)
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If a system, in some system of privileged coordinates, coincides with its homogeneous series
approximation , we will say that it is series homogeneous.

The homogeneous series approximation encodes the idea that the time t is of weight s =
- ordq(f0). This is a consequence of the fact that, due to the expansion (3.1.9), t allows to
build brackets of f0 with the fjs. In this sense, the homogeneous series approximation is a
generalization of the nilpotent approximation.

We are now ready to state the main theorem of this section.

Theorem 3.1.9. Let (T3) be satisfied, i.e., assume that {f1, . . . , fm} satisfies the Hörmander condition,
and let z = (z1, . . . , zn) be a system of privileged coordinates at q 2 M for {f1, . . . , fm}. Then there
exist C, T , "0 > 0 such that, for any " < "0 and any q 0 2 RT (q, "), setting s 2 N to be such that
ordq f0 = -s it holds

|zi(q
0)| 6 C

✓
"wi + "T

wi
s

◆
if wi 6 s, (3.1.12)

|zi(q
0)| 6 C"

✓
"+ T

1
s

◆wi-1

if wi > s. (3.1.13)

Moreover, if the system is series homogeneous, then it holds the stronger estimate

|zi(q
0)| 6 C"wi if wi 6 s. (3.1.14)

To prove this theorem we need the following proposition, estimating the difference between
(3.1.7) and (ATD).

Proposition 3.1.10. Let (T3) be satisfied, i.e., assume that {f1, . . . , fm} satisfies the Hörmander con-
dition, and let z = (z1, . . . , zn) be a system of privileged coordinates at q 2 M for {f1, . . . , fm}. For
T > 0 and u 2 L1([0, T ]; Rm), let �(·) and �̂(·) be the trajectories associated with u in (3.1.7) and
(ATD), respectively, and such that �(0) = �̂(0) = q. Then there exist C, "0, T0 > 0, independent of u,
such that, if t < T0 and

Rt
0 |u|ds = " < "0, and setting s 2 N to be such that ordq f0 = -s it holds

|zi(�(t))- zi(�̂(t))| 6 C"
�
"+ t

1
s
�wi , i = 1, . . . ,n. (3.1.15)

Remark 3.1.11. This proposition generalizes Proposition 2.1.6. In fact, in the sub-Riemannian
case, since f0 ⌘ 0, any curve � associated with u 2 L1([0, t], Rm), t > 0, is associated also to
u⌧(·) = ⌧

tu(
⌧
t ·), for any ⌧ > 0. Thus, since

R⌧
0 |u⌧|ds =

Rt
0 |u|ds = ", (3.1.15) reduces to

|zi(�(t))- zi(�̂(t))| 6 inf
⌧>0

C("wi+1 + ⌧"r) = C"wi+1.

Finally, assuming that u satisfies the hypotheses of Proposition 2.1.6, i.e., that |u| = 1, we get
t = ".

Proof. Let z(�(·)) = x(·), z(�̂(·)) = y(·), and kzk =
Pn
`=1 |z`|

1/wi . We mimic the proof of
Proposition 7.29 in [Bel96]. The first step is to prove that there exists a constant C > 0 such
that kx(t)k, ky(t)k 6 C" for t and " =

Rt
0 |u|ds small enough. We prove this for kx(t)k, the

same argument works also for ky(t)k.
In z coordinates, the equation of the control system (3.1.7) is,

ẋi(t) =
mX

j=1

uj(t)(zi)⇤ f
t
j (�(t)), i = 1, . . . ,n.
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Due to the fact that z⇤ftj = z⇤fj + O(t) uniformly in a neighborhood of q, that ordq(zi) =

wi and that ordq(fj) > -1, we have that there exist T0 and C > 0 such that |(zi)⇤f
t
j (q)| 6

C
2 |(zi)⇤fj(q)| 6 Ckx(t)kwi-1, for any t < T0. Thus we get

|ẋi(t)| 6 C
mX

j=1

|uj(t)|kxi(t)kwj-1. (3.1.16)

As in the proof for the sub-Riemannian case, choosing N sufficiently large, so that all N/wi

are even integers, and setting |||z||| = (
Pn
`=1 |z`|

N/wi)
1
N we get a norm equivalent to kzk.

Deriving with respect to time and using (3.1.16) we get d
dt |||x(t)||| 6 C

Pn
j=1 |uj(t)|. Finally,

by integration, equivalence of the norms, and the fact that x(0) = z(q) = 0, we conclude that
kx(t)k 6 C".

Now we move to proving (3.1.15). By construction of (ATD) and the Taylor expansion of ftj ,
for any ` 6 ⇢ = br-1/sc, there exist homogeneous polynomials h`ji of order wi - `s- 1 and
remainders r`ji of order larger than or equal to wi - `s, such that we can write

(zi)⇤f
t
j =

⇢X

`=0

t`

`!
�
h`ji + r`ji

�
+O(t⇢+1),

(zi)⇤bftj =
⇢X

`=0

t`

`!
h`ji.

Here, the O is intended as t # 0 and is uniform in a compact neighborhood of the origin. Then,

ẋi(t)-ẏi(t) =
mX

j=1

uj(t)

✓ ⇢X

`=0

t`

`!
�
h`ji(x)- h`ji(y) + r`ji(x)

�
+O(t⇢+1)

◆

=
mX

j=1

uj(t)

✓ ⇢X

`=0

t`

`!

✓ X

wk<wi-`s

�
xk(t)- yk(t)

�
Q`jik(x,y) + r`ji(x)

◆
+O(t⇢+1)

◆
,

where Q`jik are homogeneous polynomial in x and y, of order wi -wk - `s- 1. We observe
that, if wi -wk - `s- 1 < 0, then Q`jik ⌘ 0. Thus, for sufficiently small kxk and kyk, we have

|Q`jik(x,y)| 6 C
�
kxk(wi-wk-`s-1)+ + kyk(wi-wk-`s-1)+

�
, |r`ji(x)| 6 Ckxk(wi-`s)

+
.

Here, we let (⇠)+ = max{⇠, 0}, for any ⇠ 2 R. Using the inequalities of the first step, taking
t < T sufficiently small, and enlarging the constant C, we get

|ẋi(t)- ẏi(t)| 6 C|u(t)|

✓ ⇢X

`=0

t`

`!

✓ X

wk<wi-`s

��xk(t)- yk(t)
��"wi-wk-`s-1 + "(wi-`s)

+
◆
+ t⇢+1

◆

6 C|u(t)|

✓ ⇢X

`=0

t`
✓ X

wh<wi

��xh(t)- yh(t)
��"wi-wh-1 + "(wi-`s)

+
◆
+ t⇢+1

◆
.

In the last inequality we applied the change of variable wk 7! wh - `s in each of the sums.
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3.1 Time-dependent systems

We can integrate the system by induction, since it is in triangular form. For wi = 1, since
(wi - `s)

+ = 0 for any ` > 1, the inequality reduces to

|ẋi(t)- ẏi(t)| 6 C|u(t)|

 
⇢X

`=0

t`"(wi-`s)
+
+ t⇢+1

!

6 C|u(t)|("wi + t).

Here we enlarged the constant C. Thus, integrating the previous inequality, we get |xi(t)-

yi(t)| 6 C"("wi + t) 6 C"("+ t
1
s )wi .

Let, then, wi > 1 and assume that |xh(t)- yh(t)| 6 C"("+ t
1
s )wh for any wh < wi. To

complete the proof it suffices to show that |ẋi(t)- ẏi(t)| 6 C|u(t)|("+ t
1
s )wi , since (3.1.15) will

follow, as above, by integration. Thus, we have, enlarging again the constant C and taking t
sufficiently small,

|ẋi(t)- ẏi(t)| 6 C|u(t)|

✓ ⇢X

`=0

t`

 
X

wh<wi

⇣
"+ t

1
s

⌘wh
"wi-wh + "(wi-`s)

+

!

+ t⇢+1

◆

6 C|u(t)|

✓ ⇢X

`=0

t`

 
X

wh<wi

t
wh
s "wi-wh + "(wi-`s)

+

!

+ t⇢+1

◆
.

(3.1.17)

If t 6 "s, from (3.1.17) it is clear that |ẋi(t)- ẏi(t)| 6 C|u(t)|"wi . Here we used the fact that
⇢+ 1 > wi/s. On the other hand, if " < t1/s, it holds

|ẋi(t)- ẏi(t)| 6 C|u(t)|

 
⇢X

`=0

 
X

wh<wi

t
wh
s +`+

wi-wh
s + t`+

wi-`s
s

!

+ t⇢+1

!

6 C|u(t)|t
wi
s .

Putting together these two estimates, we get that |ẋi(t)- ẏi(t)| 6 C|u(t)|("wi + t
wi
s ) 6 C|u(t)|("+

t
1
s )wi , completing the proof of the proposition.

Proof of Theorem 3.1.9. We start by claiming that (3.1.14) implies (3.1.12). In fact, if � : q  q 0

is the trajectory associated in (3.1.7) to a control u 2 L1([0, T ], Rm), and �̂ is the trajectory
associated with the same control in the homogeneous series approximation (ATD), with �̂(0) =
q, it holds

|zi(q
0)| 6 |zi(�̂(T))|+ |zi(�̂(T))- zi(�(T))|.

Thus, by Proposition 3.1.10, the claim is proved.
Hence, from now on we assume our system to be in the form (ATD). Let us define, for

1 6 j 6 n and 0 6 ↵ 6 r, the vector fields '↵j as

'↵j =
↵X

`=0

t`

`!
F`j ,

where F`j are defined in (3.1.10). We do not explicitly denote the dependence on time, to lighten
the notation. Observe that, if ↵ = ⇢, then, by (3.1.11), '↵j = bftj .

We claim that, letting x(↵)(·) be the trajectory associated with a control u 2 L1([0, T ], Rm)
in system (TD) with {'↵1 , . . . ,'↵m} as vector fields, then, for some constant C > 0 and any
i 2 {1, . . . ,n} and ↵ > 1, it holds

|x
(↵)
i (T)- x

(↵-1)
i (T)| 6

�
0 if wi 6 ↵s,
C"("+ T

1
s )wi-1 if wi > ↵s.

(3.1.18)
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In fact, due to the homogeneity of the F`j , proceeding as in the proof of Proposition 3.1.10, we
get that for wi 6 ↵s it holds

|ẋ
(↵)
i (t)- ẋ

(↵-1)
i (t)| 6 C|u(t)|

↵-1X

`=0

t`
X

wh<wi

|x
(↵)
h (t)- x

(↵-1)
h (t)|"wi-wh-1.

By induction on 1 6 wi 6 ↵s, this proves the first part of the claim. On the other hand, if
wi > ↵s, it holds

|ẋ
(↵)
i (t)- ẋ

(↵-1)
i (t)| 6 C|u(t)|

✓↵-1X

`=0

t`
X

wh<wi

|x
(↵)
h (t)-x

(↵-1)
h (t)|"wi-wh-1+ t↵"wi-↵s-1

◆
.

Then, again by induction over wi, we get that |x(↵)i (T)- x
(↵-1)
i (T)| 6 CT↵"wi-↵s. Finally, the

claim follows considering the cases T 6 "s and T > "s.

Due to the fact that '0
j = bfj, by Theorem 2.1.7 it holds |x

(0)
i (T)| 6 C"wi . Thus, applying

(3.1.18) and enlarging the constant C, we get

|zi(q
0)| = |x

(r)
i (T)| 6

rX

`=1

���x(`)i (T)- x
(`-1)
i (T)

���+
���x(0)i (T)

��� 6
�
C"wi if wi 6 s,
C"("+ T

1
s )wi-1 if wi > s.

This proves (3.1.13) and (3.1.14), completing the proof of the theorem.

We end this section by showing that the estimate (3.1.13) is sharp, at least in some directions.
Indeed, for a system which is series homogeneous at q in some privileged coordinates z, and
satisfies the hypotheses of Theorem 3.1.9, it holds that z⇤((adkf0)fj) is an homogeneous vector
field of weighted degree -sk- 1. Thus, since "tk 6 "("+ t

1
s )sk, the following proposition

shows that (3.1.13) is sharp in this direction. The proof is an adaption of an argument from
[Cor07].

Proposition 3.1.12. Let (T3) be satisfied, i.e., assume that {f1, . . . , fm} satisfies the Hörmander condi-
tion. Let, moreover q 2 M, i 2 {1, . . . ,m} and k > 0. Then, for any coordinate system y at q, there
exist T , "0 > 0 such that, for any " < "0 and t < T there exists a (TD)-admissible curve � : [0, t] ! M,
with J(�) 6 ", and such that

y(�(t)) = "tkdy
�
(adkf0)fj(q)

�
+O("tk+1) as "t ! 0.

Proof. Let t,⌘ > 0 be fixed, and define u 2 L1([0, T ], Rm) as ui(⌧) ⌘ ⌘, uj(⌧) ⌘ 0 for j 6= i,
⌧ 2 [0, t]. Then, fix any � 2 Ck([0, 1]) such that �(i)(0) = �(i)(1) = 0, for 0 6 i < k. Thus, by
integrating by parts and the fact that d

dt (e
-tf0)⇤ g = (e-tf0)⇤

�
ad(f0)g

�
, we get

Zt

0
�(k)(⌧/t)(e-⌧f0)⇤fi(q)d⌧ = tk

Zt

0
�(⌧/t)(e-⌧f0)⇤

⇣
(adkf0)fi

⌘
(q)d⌧,
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3.2 Control-affine systems

for any t and q. This implies that the flows generated by�(k)(⌧/t)(e-⌧f0)⇤fi and tk�(⌧/t)(e-⌧f0)⇤
⇣
(adkf0)fi

⌘

coincide. Using the series expansions of the chronological exponential and (e-tf0)⇤, see
[ABB12a, Section 2.4], it holds

��!exp
Zt

0

mX

j=1

�(k)(⌧/t)uj(⌧)(e
-⌧f0)⇤fj d⌧ =

��!exp
Zt

0
⌘�(k)(⌧/t)(e-⌧f0)⇤fi d⌧

= ��!exp
Zt

0
⌘tk�(⌧/t)(e-⌧f0)⇤

⇣
(adkf0)fi

⌘
d⌧

= ��!exp
Z1

0
⌘tk+1�(s)(e-tsf0)⇤

⇣
(adkf0)fi

⌘
ds

= ��!exp
Z1

0
⌘tk+1�(s)

⇣
(adkf0)fi +O(t)

⌘
ds

= Id + ⌘tk+1(adkf0)fi +O(⌘tk+2)

Finally, considering any coordinate system and letting " = ⌘t, this completes the proof.

�.� �������-������ �������
In this section we apply the results of Section 3.1 to control-affine systems. Let {f1, . . . , fm}

be a family of vector fields, f0 be a smooth vector field, called the drift, and consider the
control-affine system

q̇ = f0(q) +
mX

i=1

ui fi(q), q 2 M, u = (u1, . . . ,um) 2 Rm . (D)

Throughout this section we will assume the following.

(D1) The family of smooth vector fields {f0, f1, . . . , fm} satisfies the strong Hörmander condition,
i.e., the family {f1, . . . , fm} satisfies the Hörmander condition.

An absolutely continuous curve � : [0, T ] ! M is (D)-admissible if �̇(t) = f0(�(t)) +
fu(t)(�(t)) for some control u 2 L1([0, T ], Rm). Its cost is defined as

J(�) = min J(u, T),

where the minimum is taken over all controls u such that � is associated with u. The two value
functions we are interested in are

VT (q,q 0) = inf{J(�) : � : [0, T 0] ! M is (D)-admissible, � : q q 0, T 0 6 T },
V1(q,q 0) = inf{J(�) : � (D)-admissible and � : q q 0}.

Here, we omit any reference to the cost under consideration, since we will only consider
(3.0.11). It is clear that VT (q,q 0) & V1(q,q 0) as T ! +1, for any q,q 0 2 M. Moreover, we
observe that, VT (q, etf0q) = 0 for any 0 6 t 6 T . Finally, the reachable sets with respect to
these value functions, from any q 2 M and for ", T > 0, are

R
f0
T (q, ") = {q 0 2 M : VT (q,q 0) < "}, Rf01 (q, ") = {q 0 2 M : V1(q,q 0) < "}.
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�.�.� Connection with time-dependent systems

Applying the variations formula (see [ABB12a]), system (D) can be written as a composition
of a time-dependent system in the form (3.1.7) and of a translation along the drift. Namely, for
any u 2 L1([0, T ], Rm), it holds

��!exp
ZT

0

✓
f0 +

mX

i=1

ui(t) fi

◆
dt = eTf0 � ��!exp

ZT

0

mX

i=1

ui(t) (e
-tf0)⇤fi dt. (3.2.1)

We call time-dependent system associated with (D) the following control system,

q̇ =
mX

i=1

ui (e
-tf0)⇤fi(q), q 2 M, u = (u1, . . . ,um) 2 Rm . (3.2.2)

Observe that, since diffeomorphisms preserve linear independence, the strong Hörmander con-
dition for (D), implies that {(e-tf0)⇤f1, . . . , (e-tf0)⇤fm}t2[0,+1) satisfies (T3), i.e., the strong
Hörmander condition for time-dependent systems.

Observe that by the same argument as Lemma 3.1.5 we can prove

Lemma 3.2.1. For any ⌘ > 0 sufficiently small and for any q0,q1 2 M, it holds

inf{J(u,⌘) | if qu(0) = q0 then qu(⌘) = q1} 6 dSR(q0,q1).

Exploiting these facts, we can prove the following.

Proposition 3.2.2. Let (D1) be satisfied, i.e., assume that {f0, f1, . . . , fm} satisfies the strong Hörmander
condition. Then, for any T > 0, the functions VT ,V1 : M⇥M ! [0,+1) are continuous. Moreover,
letting dSR be the sub-Riemannian distance induced by {f1, . . . , fm}, for any q,q 0 2 M it holds

VT (q,q 0) 6 min
06t6T

dSR(e
tf0q,q 0), V1(q,q 0) 6 min

t>0
dSR(e

tf0q,q 0).

Proof. The continuity of the two functions, and the fact that VT (q,q 0),V1(q,q 0) 6 dSR(q,q 0),
for any q,q 0 2 M, follows from the same arguments used in Theorem 3.1.3, adapting Lem-
mata 3.1.4 and 3.1.5 to the system (D). In particular, one has to consider (T,F, ⇠) 7! eTf0 �
ET,F(⇠) instead of (T,F, ⇠) 7! ET,F(⇠).

To prove the second part of the statement, we let, for any t 2 [0, T),

't(p) = inf{J(�) : � : [t, T 0] ! M is (D)-admissible, � : p q 0, T 0 6 T }.

By Lemma 3.2.1 we immediately have't(p) 6 dSR(p,q 0). Moreover, we observe that VT (q, etf0q) =
0 for any 0 6 t < T , and hence that for any such t it holds

VT (q,q 0) 6 't(e
tf0q) 6 dSR(e

tf0q,q 0).

Taking the minimum for 0 6 t < T , proves the inequality regarding VT . To complete the proof
it suffices to observe that V1(q,q 0) 6 VT (q,q 0) for any T > 0.

We point out that in system (D), as in time-dependent systems, the existence of minimizers
is not assured. Moreover, this lack of minimizers is possible even if they exist for the associated
time-dependent system, as the following example points out.
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Example 3.2.3. Consider the following vector fields on R3, with coordinates (x,y, z),

f1(x,y, z) = @x, f2(x,y, z) = @y + x@z.

Since [f1, f2] = @z, {f1, f2} is a bracket-generating family of vector fields. The sub-Riemannian
control system associated with {f1, f2} on R3 corresponds to the Heisenberg group.

Let now f0 = @z be the drift. Since [f1,@z] = [f2,@z] = 0 it holds that (e-tf0)⇤f1 = f1 and
(e-tf0)⇤f2 = f2. Hence, the associated time-dependent system is actually not time-dependent.
Thus, by (3.2.1), a curve � : [0, T ] ! R3 is (SR)-admissible for {f1, f2} if and only if �̃(·) =
e·f0 � �(·) is (D)-admissible. As a consequence of this, for any q 2 R3 and any " > 0,

Rf01 (q, ") =
[

t>0

etf0 �BSR(q, "). (3.2.3)

As already pointed out, minimizers for the sub-Riemannian system exist between any pair
of points in BSR(q, "), if " is sufficiently small. Let us show that, for any point in R

f01 (q, ")
with positive z coordinate, we have an explicit minimizer, while for the others there exists no
minimizer. Without loss of generality we can consider q = 0. Then, since et

0f0(x 0,y 0, z 0) =

(x 0,y 0, z 0+ t 0), every point (x,y, z) 2 R
f01 (0, ") with z > 0, can be reached optimally considering

the sub-Riemannian minimizing curve between the origin and (x,y, 0) rescaled on time z.

If, instead, z 6 0, we cannot construct any sub-Riemannian trajectory from 0 to (x,y, z- t),
t > 0, with cost 6 dSR(0, (x,y, z)). This is due to the fact that the minimizing trajectories
in Heisenberg group are the lifts of arcs on the plane (x,y), spanning area equal to the z
coordinates, and that |z - t| = -z + t > |z|. Since, by Proposition 3.2.2, V1(0, (x,y, z)) 6
dSR(0, (x,y, z)), this implies that there exists no minimizer for V1(q, (x,y, z)).

�.�.� Estimates on reachable sets

In this section we apply Theorem 3.1.9, in order to prove Theorem 1.2.3. Fixed a point q 2 M,
we will need the following assumptions, already stated at the beginning of the chapter.

(D2) the point q is regular for the integral curve of the drift, i.e., is such that dim Ds(etf0(q)),
s 2 N, is constant for small t;

(D3) the point q is regular w.r.t. the drift, in the sense that there exists s 2 N such that f0(q 0) 2
Ds(q 0) \ Ds-1(q 0), for any q 0 near q.

By Proposition 2.1.1, (D3) is equivalent to ordq 0 f0 = -s for any q 0 near q. We remark also that,
by (D3) and Proposition 2.1.4, it is always possible to find a system of privileged coordinates
at q satisfying the assumptions of Theorem 1.2.3.
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Set s 2 N to be such that ordq f0 = -s and define the following sets, for parameters ⌘ > 0
and T > 0. We remark that Box (⌘) is defined as in (2.1.3) and that {@zi }

n
i=1 is the canonical

basis in Rn.

⌅T (⌘) =
[

06⇠6T

✓
⇠@zk + Box (⌘)

◆
,

⇧T (⌘) = Box (⌘)[
[

0<⇠6T

{z 2 Rn : 0 6 zk - ⇠ 6 ⌘s, |zi| 6 ⌘wi + ⌘⇠
wi
s for wi 6 s, i 6= k,

and |zi| 6 ⌘(⌘+ ⇠
1
s )wi-1 for wi > s},

b⇧T (⌘) = Box (⌘)[
[

0<⇠6T

{z 2 Rn : 0 6 zk - ⇠ 6 ⌘s, |zi| 6 ⌘wi for wi 6 s, i 6= k,

and |zi| 6 ⌘(⌘+ ⇠
1
s )wi-1 for wi > s}.

As for Corollary 2.1.10 in the sub-Riemannian case, Theorem 1.2.3 is a direct consequence of
some local estimates on the shape of the accessible sets, contained in the following. We cannot
expect anything global, since in general the sets R

f01 (q, ") are noncompact.

Theorem 3.2.4. Let (D1) be satisfied, i.e., assume that {f0, f1, . . . , fm} satisfies the strong Hörmander
condition, and let q 2 M be a point satisfying (D2) and (D3). Assume, moreover, that z = (z1, . . . , zn)
is a system of privileged coordinates at q for {f1, . . . , fm}, such that z⇤f0 = @zk , for some 1 6 k 6 n.
Then, there exist C, "0, T0 > 0 such that, setting s 2 N to be such that f0(q) 2 Ds(q) \ Ds-1(q),

⌅T

✓
1

C
"

◆
⇢ R

f0
T (q, ") ⇢ ⇧T (C"), for " < "0 and T < T0. (3.2.4)

Here, with abuse of notation, we denoted by R
f0
T (q, ") the coordinate representation of the reachable set.

In particular,

Box
✓
1

C
"

◆
\ {zk 6 0} ⇢ R

f0
T (q, ")\ {zk 6 0} ⇢ Box (C")\ {zk 6 0}.

Moreover, if the system is nilpotent, it holds

⌅T

✓
1

C
"

◆
⇢ R

f0
T (q, ") ⇢ b⇧T (C"), for " < "0 and T < T0. (3.2.5)

Example 3.2.5. Consider the sub-Riemannian control system of Example 3.2.3, which is nilpo-
tent and corresponds to the Heisenberg group, and endow it with the drift f0(x,y, z) =
@z + g(x,y, z), where g(·) 2 span{f1(·), f2(·)}. Then, by Proposition 2.1.4, for any g we can
find a system of privileged coordinates z = (z1, z2, z3) at (0, 0, 0) such that z⇤f0 = @z3 . Hence,
since (0, 0, 0) satisfies (D2) and (D3), by Theorem 3.2.4, for sufficiently small " and T , it holds

⌅T

⇣
C-1"

⌘
⇢ R

f0
T ((0, 0, 0), ") ⇢ b⇧T (C"),

where (see Figure 12),

⌅T

⇣
C-1"

⌘
=
h
-C-1",C-1"

i
⇥
h
-C-1",C-1"

i
⇥
h
-
⇣
T +C-1"2

⌘
, T +C-1"2

i
,

b⇧T (C") = Box (C")[
[

06⇠6T

⇣h
-
⇣
C"+C"⇠

1
2

⌘
,C"+C"⇠

1
2

i
⇥ [0,C"2]

⌘
.
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z3

z1

b⇧T (C")

⌅T (C
-1")

Figure 12: The section at z2 = 0 of the boxes of Example 3.2.5.

In particular, since the coordinates (x,y, z) are priviliged, by (3.2.3) this is true although not at
all sharp, when g ⌘ 0.

In order to prove Theorem 3.2.4, we need the following lemma.

Lemma 3.2.6. Let (D1) be satisfied, i.e., assume that {f0, f1, . . . , fm} satisfies the strong Hörmander
condition. Let z = (z1, . . . , zn) be a system of privileged coordinates at q 2 M and set s 2 N to be
such that ordq f0 = -s. Then there exist C, "0, T0 > 0 such that, for any q 0 2 R

f0
T (q, "0) for " < "0

and T < T0, and such that

(i) for any t < "0 it holds that ordq f0 = -s, where q 0(t) = e-tf0(q 0),

(ii) dzk
�
f0(z(q

0))
�
6= 0, for some k with wk = -s,

it holds that, if u 2 L1([0, T ], Rm) is a control steering the system (D) from q to q 0, with kuk1 = ",
then

T 6 C
�
"s + max{zk(q 0), 0}

�
.

Proof. For any ⌘ > 0, let � be the trajectory associated with u 2 L1([0, T ], Rm) in the system
(D), and satisfying � : q q 0. Let �̃ be the trajectory associated with u and starting from q, in
the time-dependent system (3.2.2). Thus �(t) = etf0 � �̃(t) and ⇢(q, �̃(T)) 6 ".

Recall that, for any vector field g and point p 2 M, it holds that zk(e
Tg(p)) - zk(p) =RT

0 dzk
�
g(etg(p))

�
. Thus, by the mean value theorem, there exists ⌧ 2 [0, T ] such that

zk(q
0) = zk(�(T)) = T dzk

�
f0(e

⌧f0(�̃(T)))
�
+ zk(�̃(T)). (3.2.6)

Since e⌧f0(�̃(T)) = e-(T-⌧)f0(q 0), by hypothesis (ii) and the smoothness of f0, there exist
T0,C1 > 0, independent of �, such that dzk

�
f0(e

⌧f0(�̃(T)))
�
> C1 for T < T0. Hence, by

Theorem 3.1.9 (since wk = s), there exist C2, "̄ > 0 such that, if " < "̄ and T < T0,

T 6 |zk(�̃(T))|+ max{zk(q 0), 0}
C1

6 C2

�
"s + T"

�
+ max{zk(q 0), 0}
C1

.

Since the constants are independent of �, taking C = C2/C1 and "0 6 min{T0, "̄, (C- 1)/C2}

completes the proof.
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Proof of Theorem 1.2.2. The first inclusion in (3.2.4) follows from Theorem 3.2.2, Proposition 2.1.9,
and the fact that zi(etf0(q)) = 0, if i 6= k, and zk(e

tf0(q)) = t. In fact, combining them, we
have that, for any " < "0 and any T > 0,

⌅T

✓
1

C
"

◆
⇢

[

06t6T

BSR(e
tf0q, ") ⇢ R

f0
T (q, ").

To prove the second inclusion, we let q 0 2 R
f0
T (q, "). Fix any ⌘ > 0 and consider a control

u 2 L1([0, ⌧], Rm), ⌧ 6 T , such that its associated trajectory �, in the system (D), satisfies
� : q  q 0 and cf0(�) 6 "+ ⌘. We distinguish two cases. First we assume that zk(q 0) 6 0. In
this case, by Lemma 3.2.6 it follows there exists C, "0, T0 > 0 such that if ⌧ < T0 and " < "0,
then ⌧ 6 C"s. Moreover (3.2.1) implies that e-⌧f0(q 0) 2 RT (q, "). Then, enlarging the constant
C, Theorem 3.1.9 yields

|zi(q
0)| =

��zi
�
e-⌧f0(q 0)

��� 6 C
�
"wi + "⌧

wi
s
�
6 C"wi , if wi 6 s and i 6= k,

|zk(q
0)| 6 ⌧+

��zk
�
e-⌧f0(q 0)

��� 6 ⌧+C
�
"+ ⌧

1
s )s 6 C"s,

|zi(q
0)| =

��zi
�
e-⌧f0(q 0)

��� 6 C"
�
"+ ⌧

1
s
�wi-1 6 C"wi , if wi > s.

Here, we used the fact that, for any p 2 M, from z⇤f0 = @zk , it holds zi(p) = zi
�
e-Tf0(p)

�
and

|dzk(f0(p))| ⌘ 1. Thus, if T 6 T0, it holds q 0 ⇢ Box (C") ⇢ ⇧ (C").
On the other hand, if zk(q 0) > 0, Lemma 3.2.6 yields that ⌧ 6 C

�
"s+ zk(q

0)
�
. Then, applying

again Theorem 3.1.9, we get

|zi(q
0)| =

��zi
�
e-⌧f0(q 0)

��� 6 C
�
"wi + "⌧

wi
s
�
, if wi 6 s and i 6= k,

zk(q
0) 6 ⌧+

��zk
�
e-⌧f0(q 0)

��� 6 ⌧+C
�
"+ ⌧

1
s )s 6 ⌧+C"s,

|zi(q
0)| =

��zi
�
e-⌧f0(q 0)

��� 6 C"
�
"+ ⌧

1
s
�wi-1, if wi > s.

Letting ⌧ = ⇠, this proves that q 0 ⇢ ⇧ (C"), completing the proof of (3.2.4).
To prove (3.2.5) it suffices to use the same argument as above, applying the result on nilpo-

tent systems in Theorem 3.1.9.

Remark 3.2.7. Theorem 1.2.2 suggests that the behavior of system (D), when moving in the
direction -f0, is essentially sub-Riemannian. However, although this is true locally in time, it
is false in general. For example, consider the Euclidean plane endowed with a rotational drift,
i.e., such that {etf0(q)}t2(0,+1) is diffeomorphic to S1 for any q 6= 0. Then, V1(q, e-tf0(q)) = 0
for any t > 0 and thus we can move in the direction -f0 for free.

Remark 3.2.8. By the arguments used in the proof of [BS90, Theorem 2.2] applied to our
setting, it is possible to recover the first inclusion of Theorem 1.2.2. There, a different notion
of approximation of control-affine systems is used. Namely, the authors do not consider the
associated time-dependent system, preferring to define bfi as a vector field such that ordq(fi -
bfi) > 0. In the literature this is sometimes called a first-order approximation. However, such
notion does not take into account the role played by the time in control-affine systems, and thus
it does not seem well suited to derive the estimates necessary to obtain the second inclusion.
We thank the anonymous referee of [Pra14] for bringing this fact to our attention.
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Proof of Theorem 1.2.3. Since every norm on Rn is equivalent, dist(z(q 0), [0, T ]@zk) is equivalent
to

a(q 0) =
X

16i6n
i6=k

|zi(q
0)|+ min

t2[0,T ]
|zk(q

0)- t|.

Thus, to complete the proof it suffices to prove that it holds C-1a(q 0) 6 VT (q,q 0) 6 Ca(q 0)1/r.
By Theorem 3.1.9, ⌅T (C-1") ⇢ R

f0
T (q, ") ⇢ ⇧T (C") for any " < "0. The first inclusion is

equivalent to the fact that, for every " < "0 such that Ca(q 0) 6 "r, one has VT (q,q 0) 6 ". From
this follows that VT (q,q 0) 6 C1/ra(q 0)1/r. The same reasoning applied to the other inclusion
proves that

|zi(q
0)| 6 C(VT (q,q 0)wi + VT (q,q 0)T

wi
s ) if wi 6 s, i 6= k,

min
t2[0,T ]

|zk(q
0)- t| 6 CVT (q,q 0)s,

|zi(q
0)| 6 C(VT (q,q 0)wi + VT (q,q 0)T

wi-1
s ) if wi > s.

Clearly, this implies that a(q 0) 6 CVT (q,q 0), for some larger constant, completing the proof of
the theorem.
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4 C O M P L E X I T Y A N D M OT I O N P L A N N I N G

In this chapter we present the contents of the work [JP] regarding asymptotic estimates of the
four complexities for control-affine systems introduced in Section 1.2.3. In particular, we prove
Theorems 1.2.5 and 1.2.6.

Let us consider the control affine system

q̇(t) = f0(q(t)) +
mX

i=1

ui(t) fi(q(t)), a.e. t 2 [0, T ], (4.0.7)

where u : [0, T ] ! Rm is an integrable control function and f0, f1, . . . , fm are (not necessarily
linearly independent) smooth vector fields. When posing f0 = 0 in (4.0.7) we obtain the (small)
sub-Riemannian control system associated with (4.0.7), i.e., the driftless control system in the
form

q̇(t) =
mX

i=1

ui(t) fi(q(t)), a.e. t 2 [0, T ], (4.0.8)

Our working assumptions will be the following.

(C1) The family {f0, f1, . . . , fm} satisfies the strong Hörmander condition, i.e., the family {f1, . . . , fm}

satisfies the Hörmander condition and thus defines a sub-Riemannian control system.

(C2) The distribution D defined by {f1, . . . , fm} is equiregular, i.e., the quantities dim Ds(q) are
independent of q.

(C3) There exists s > 2 such that f0(·) ⇢ Ds(·) \ Ds-1(·).

Observe that these assumptions implies the assumptions (D1)–(D3) made in the previous chap-
ter.

Our first result is the following, already stated in the Introduction as Theorem 1.2.5, that
completes the description of the sub-Riemannian weak asymptotic estimates started in Theo-
rem 1.2.4, describing the case of the interpolation by time complexity. It is proved in Section 4.5.

Theorem 4.0.9. Assume that {f1, . . . , fm} defines an equiregular sub-Riemannian structure and let
� : [0, T ] ! M be a path. Then, if there exists k 2 N such that �̇(t) 2 Dk(�(t)) \ Dk-1(�(t)) for any
t 2 [0, T ], it holds

�int(�, ") ⇣ 1

"k
.

Here the complexity is measured w.r.t. the cost J(u, T) = kukL1([0,T ],Rm).

The main result of this chapter is then following theorem, already stated in the Introduction
as Theorem 1.2.6.
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Theorem 4.0.10. Assume that the sub-Riemannian structure defined by {f1, . . . , fm} is equiregular,
and that f0 ⇢ Ds \Ds-1 for some s > 2. Then, for any curve � ⇢ M, whenever the maximal time of
definition of the controls T is sufficiently small, it holds

⌃Jint(� , ") ⇣ ⌃Iint(� , ") ⇣ ⌃Japp(� , ") ⇣ ⌃Iapp(� , ") ⇣ 1

"
.

Here  = max{k : Tp� 2 Dk(p) \ Dk-1(p), for any p in an open subset of � }.
Moreover, for any path � : [0, T ] ! M such that f0(�(t)) 6= �̇(t) mod Ds-1 for any t 2 [0, T ], it

holds

�Jint(�, �) ⇣ �Iint(�, �) ⇣ �
1

max{,s} , �Japp(�, ") ⇣ �Iapp(�, ") ⇣ 1

"max{,s} .

Here  = max{k : �(t) 2 Dk(�(t)) \ Dk-1(�(t)) for any t in an open subset of [0, T ]}.

The chapter is divided in 5 sections. In Section 4.1 we present some technical results regard-
ing families of coordinates depending continuously on the base point and adapted to the drift.
These results will be essential in the sequel. Section 4.2 collects some useful properties of the
costs J and I, proved mainly in [Pra14], while Section 4.3 is devoted to relate the complexities
of the control-affine system with those of the associated sub-Riemannian systems, and to prove
Theorem 4.0.9. In this section we also prove Proposition 4.3.5, that gives a first result in the di-
rection of Theorem 4.0.10 showing when the sub-Riemannian and control-affine complexities
coincide. Finally, the proof of the main result is contained in Sections 4.4 and 4.5, for curves
and paths respectively.

�.� ���������� ������� ������� �� ��� �����
We now focus on coordinate systems adapted to the drift. In particular, if for some s 2 N it
holds that f0 ⇢ Ds \Ds-1, it makes sense to consider the following definition.

Definition 4.1.1. A privileged coordinate system adapted to f0 at q is a system of privileged coor-
dinates z at q for {f1, . . . , fm} such that there exists a coordinate z` such that z⇤f0 ⌘ @z` .

Observe that completing f0 to an adapted basis {f1, . . . , f0, . . . , fn} allows us to consider the
coordinate system adapted to f0 at q, given by the inverse of the diffeomorphism

(z1, . . . , zn) 7! ez`f0 � . . . � eznfn(q). (4.1.1)

The following definition combines continuous coordinate families for a path � : [0, T ] ! M,
defined in Section 2.2, with coordinate systems adapted to a drift.

Definition 4.1.2. A continuous coordinate family for � adapted to f0 is a continuous coordinate
family {zt}t2[0,T ] for �, such that each zt is a privileged coordinate system adapted to f0 at
�(t).

Such coordinates systems can be built as per (4.1.1), letting the point q vary on the curve.
Recall that f0 ⇢ Ds \Ds-1 for some s, and consider a path � : [0, T ] ! M such that �̇(t) 2

Ds(�(t)) and that f0(�(t)) 6= �̇(t) mod Ds-1(�(t)) for any t 2 [0, T ]. In this case, there exists
f↵ ⇢ Ds \Ds-1 and two functions '`,'↵ 2 C1([0, T ]), '↵ > 0, such that

�̇(t) mod Ds-1(�(t)) = '`(t)f0(�(t)) +'↵(t)f↵(�(t)).
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Moreover, by the assumption f0(�(t)) 6= �̇(t) mod Ds-1(�(t)), if '`(t) = 1 then '↵(t) > 0.
Then, using f↵ as an element of the adapted basis used to define a continuous coordinate
family for � adapted to f0, it holds (zti)⇤�̇(t) = 'i(t) for i = ↵, ` and any t 2 [0, T ]. The
following lemma will be essential to study this case.

Lemma 4.1.3. Assume that there exists s 2 N such that f0 ⇢ Ds \Ds-1. Let � : [0, T ] ! M be a
path such that �̇(t) 2 Ds(�(t)) and such that f0(�(t)) 6= �̇(t) mod Ds-1(�(t)) for any t 2 [0, T ].
Consider the continuous coordinate family {zt}t2[0,T ] for � adapted to f0 defined above. Then, there
exist constants ⇠0, ⇢,m > 0 and a coordinate ↵ 6= ` of weight s such that for any t 2 [0, T ] and
0 6 ⇠ 6 ⇠0, it holds

(zt`)⇤�̇(t+ ⇠) 6 1- ⇢ if t 2 E1 = {'` < 1- 2⇢}, (4.1.2)

(zt↵)⇤�̇(t+ ⇠) > m if t 2 E2 = {1- 2⇢ 6 '` 6 1+ 2⇢}, (4.1.3)

(zt`)⇤�̇(t+ ⇠) > 1+ ⇢ if t 2 E3 = {'` > 1+ 2⇢}. (4.1.4)

In particular, it holds that E1 [ E2 [ E3 = [0, T ].

Proof. Since '↵ > 0 on '-1
` (1), by continuity of '` and '↵ there exists ⇢ > 0 such that '↵ > 0

on '-1
` ([1- 2⇢, 1+ 2⇢]). Since E2 = '-1

` ([1- 2⇢, 1+ 2⇢]) is closed, letting 2m = minE2
'↵ > 0

property (4.1.3) follows by the uniform continuity of (t, ⇠) 7! (zt↵)⇤�̇(t+ ⇠) on E2 ⇥ [0, ⇠0], for
sufficiently small ⇠0. Finally, the uniform continuity of (t, ⇠) 7! (zt`)⇤�̇(t+ ⇠) over E1 ⇥ [0, ⇠0]
and E3 ⇥ [0, ⇠0] yields (4.1.2) and (4.1.4).

We end this section by observing that when the path is well-behaved with respect to the sub-
Riemannian structure, it is possible to construct a very special continuous coordinate family,
rectifying both � and f0 at the same time.

Proposition 4.1.4. Let � : [0, T ] ! M be a path and k 2 N be such that �̇(t) 2 Dk(�(t)) \
Dk-1(�(t)) for any t 2 [0, T ], there exists a continuous coordinate family {zt}[0,T ] for � adapted such
that

1. there exists a coordinate z↵ of weight k such that zt⇤�̇ ⌘ @z↵ ;

2. for any ⇠, t 2 [0, T ] it holds that zt↵ = zt-⇠↵ + ⇠ and zti = z⇠i if i 6= ↵.

Moreover, if there exists s 2 N such that f0 ⇢ Ds \Ds-1 and such that f0(�(t)) 6= �̇(t) mod Ds-1(�(t))
for any t 2 [0, T ] whenever s = k, such family can be chosen adapted to f0.

Proof. By the assumptions on �̇, it is possible to choose f↵ ⇢ Dk \Dk-1 such that �̇(t) =
f↵(�(t)). Let then {f1, . . . , fn} be the adapted basis obtained by completing f↵ and f0. Finally,
to complete the proof it is enough to consider the family of coordinates given by the inverse
of the diffeomorphisms

(z1, . . . , zn) 7! ez`f0 � · · · � ez↵f↵(�(t)).
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�.� ���� ���������
In this section we discuss some properties of the cost functions under consideration, namely

J(u, T) =
ZT

0

vuut
mX

i=0

ui(t)2 dt and I(u, T) =
ZT

0

vuut1+
mX

i=0

ui(t)2 dt,

and of the associated value functions. These are respectively denoted by VJ(·, ·) and VI(·, ·).
For J such function is defined by

VJ(q,q 0) = inf
�
J(u, T)| T > 0, qu(0) = q, qu(T) = q 0 . (4.2.1)

The definition of VI is analogous.
Most of the properties discussed in this section will be derived from the results obtained

in the previous chapter. We remark, however, that in the notation of the previous chapter
VJ = VT , i.e., here we are always assuming a maximal bound on the time of definition of the
controls.

It is quite easy to extend Proposition 3.2.2 to I, thus obtaining the following.

Theorem 4.2.1. For any T > 0, the functions VJ and VI are continuous from M⇥M ! [0,+1) (in
particular they are finite). Moreover, for any q,q 0 2 M it holds

VJ(q,q 0) 6 min
06t6T

dSR(e
tf0q,q 0),

VI(q,q 0) 6 min
06t6T

�
t+ dSR(e

tf0q,q 0)
�
.

Here etf0 denotes the flow of f0 at time t and dSR denotes the Carnot-Carathéodory distance w.r.t. the
system (4.0.8), obtained from (4.0.7) by putting f0 = 0.

We notice also that, since Example 3.2.3 is easily extendable to I, it follows that, for neither J
nor I, the existence of minimizers is assured. However, the following proposition assures that
a minimizer for J and I always exists when moving in the drift direction.

Proposition 4.2.2. Assume that there exists s 2 N such that f0 ⇢ Ds \Ds-1. For any 0 < t < T, the
unique minimizer between any q0 2 M and etf0q0 for the cost J is the null control on [0, t]. Moreover,
if f0 /2 D(q0), i.e. s > 2, and the maximal time of definition of the controls T is sufficiently small, the
same is true for I.

Proof. Since, for t 2 [0,T], we have that VJ(q, etf0q) = 0, the first statement is trivial.
To prove the second part of the statement we proceed by contradiction. Namely, we assume

that there exists a sequence Tn �! 0 such that for any n 2 N there exists a control vn 2
L1([0, tn], Rm) ⇢ UTn

, vn 6⌘ 0 , steering the system from q0 to eTnf0(q0) and such that

tn + kvnkL1([0,tn],Rm) = I(vn, tn) 6 I(0,Tn) = Tn. (4.2.2)

Let z = (z1, . . . , zn) be a privileged coordinate system adapted to f0 at q, as per Definition 4.1.1.
Thus, by Theorem 1.2.2, it holds

|z`(e
Tnf0(q0))| 6 tn +Ckvnk2L1([0,tn],Rm). (4.2.3)
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Since z`(e
Tnf0(q0)) = Tn, putting together (4.2.2) and (4.2.3) yields kvnkL1([0,tn],Rm) 6 Ckvnk2L1([0,tn],Rm)

for any n 2 N. Since by the continuity of VI we have that kvnkL1([0,tn],Rm) ! 0, this is a con-
tradiction.

We remark that, in the case of I, the assumption f0 /2 D(q0) of Proposition 4.2.2 is essential.
In particular, in the following example we show that when f0 ⇢ D even if a minimizer between
q0 and etf0(q0) exists, it could not coincide with an integral curve of the drift.

Example 4.2.3. Consider the control-affine system on R2,

d

dt
x = f0(x) + u1f0(x) + u2f(x), (4.2.4)

where f0 = (1, 0) and f = (�1,�2) for some �1,�2 : R2 ! R, with �2 6= 0 and @x(�1/�2)|(0,0) 6=
0. Since f0 and f are always linearly independent, the underlying small sub-Riemannian sys-
tem is indeed Riemannian with metric

g =

 
1 -�1/�2

-�1/�2
1-�2

1

�2
2

!

.

Let us now prove that the curve � : [0, 1] ! R2, �(t) = (t T , 0) is not a minimizer of the
Riemannian distance between (0, 0) and (T , 0). In particular, it is enough to prove that � is not
a geodesic for small T > 0. For � the geodesic equation writes

�
t2�111(�(t)) = 0,
t2�211(�(t)) = 0,

for any t 2 [0, 1] () �111(·, 0) = �211(·, 0) = 0 near 0.

Here, � ik` are the Christoffel numbers of the second kind associated with g. A simple compu-
tation shows that

�111 =
�1

�2
@x1

✓
�1

�2

◆
, �211 = @x1

✓
�1

�2

◆
.

Thus, if @x1
(�1/�2)|(0,0) 6= 0, then �211(0, 0) 6= 0, showing that � is not a geodesic.

We now show that this fact implies that for any minimizing sequence un = (u1
n,u2

n) 2
L1([0, tn], R2 for VI between (0, 0) and eTf0((0, 0)) = (T , 0), such that J(un+1, tn+1) 6 J(un, tn),
then u2

n 6= 0 for sufficiently big n. To this aim, fix any tn ! 0, let un(s) = u(s/tn) and qn(·)
be the trajectory associated with un in system (4.2.4). Moreover, let v = (v1, 0) 2 L1([0,S], R2)
be the minimizer of I between (0, 0) and (T , 0) in the system ẋ1 = 1+ v1. Since the trajectory of
v is exactly �, by rescaling it holds length(�) = I(v,S). Then, by standard results in the theory
of ordinary differential equations, it follows that qn(tn) ! (T , 0) and the fact that � is not a
Riemannian minimizing curve implies that

kunkL1 = kukL1 < length(�) = I(v,S).

Hence, for sufficiently big n it holds that I(un, tn) < I(v,S), proving the claim.

As a consequence of Proposition 4.2.2, we get the following property for the complexities
with respect to the costs J and I. It generalizes to the control-affine setting the trivial minimality
of the sub-Riemannian complexity on the path � = {q}.
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Corollary 4.2.4. Assume that there exists s > 2 such that f0 ⇢ Ds \Ds-1. Let x 2 M and y = eTf0x,
for some 0 < T < T. Then, for any " > 0, the minimum over all curves � ⇢ M (resp. paths
� : [0, T ] ! M) connecting x and y of ⌃Jint(·, ") and ⌃Japp(·, ") (resp. �Jint(·, �) and �Japp(·, ")) is attained
at � = {etf0 }t2[0,T ] (resp. at �(t) = etf0x). Moreover, the same is true for the cost I, whenever T is
sufficiently small.

When we consider two points on different integral curves of the drift, it turns out that the
two costs J and I are indeed equivalent, as proved in the following.

Proposition 4.2.5. Assume that there exists s 2 N such that f0 ⇢ Ds \Ds-1. Let q, q 0 2 M be such
that there exists a set of privileged coordinates adapted to f0 at q. Then, there exists C, "0,T > 0 such
that, for any u 2 U such that, for some T < T, qu(T) = q 0 and J(u, T) < "0, it holds

J(u, T) 6 I(u, T) 6 CJ(u, T).

The proof of this fact relies on the following particular case of Lemma 3.2.6.

Lemma 4.2.6. Assume that there exists s 2 N such that f0 ⇢ Ds \Ds-1. Let q 2 M and let
z = (z1, . . . , zn) be a system of privileged coordinate system adapted to f0 at q. Then, there exist
C, "0,T > 0 such that, for any u 2 U, with J(u, T) < "0 for some T < T, it holds

T 6 C
�
J(u, T)s + z`(qu(T))

+
�
.

Here, we let ⇠+ = max{⇠, 0}.

This Lemma is crucial, since it allows to bound the time of definition of any control through
its cost. We now prove Proposition 4.2.5.

Proof of Proposition 4.2.5. The first inequality is trivial. The second one follows by applying
Lemma 4.2.6, and computing

I(u, T) 6 T + J(u, T) 6 (C"s-1
0 + 1)J(u, T).

�.� ����� ������� �� ������������
In this section we collect some first results regarding the various complexities we defined.

Firstly, we prove a result on the behavior of complexities. For all the complexities under
consideration, except the interpolation by time complexity, such result will hold with respect
to a generic cost function J : U ! [0,+1), satisfying some weak hypotheses.

Proposition 4.3.1. Assume that for any q1 2 M and any q2 /2 {etf0q1}t2[0,T], it holds VJ(q1,q2) >
0. Then, the following holds.

i. For any curve � ⇢ M it holds the following.
a) If the maximal time of definition of the controls, T, is sufficiently small, then lim"#0 ⌃int(� , ") =

lim"#0 ⌃app(� , ") = +1.

b) If � is an admissible curve for (4.0.7), then "⌃int(� , ") and "⌃app(� , ") are bounded from above,
for any " > 0.
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ii. For any path � : [0, T ] ! M it holds the following.

a) If � is not a solution of (4.0.7), lim"#0 �app(�, ") = +1.

b) If the cost is either J or I, f0 ⇢ Ds \Ds-1, �̇(t) ⇢ Dk(�(t)) \ Dk-1(�(t)) and f0(�(t)) 6=
�̇(t) mod Ds-1(�(t)) for any t 2 [0, T ], then lim"#0 �int(�, ") = +1 whenever �0 < ⌘.

c) If � is an admissible curve for (4.0.7), then "�int(�, ") and "�app(�, ") are bounded by above,
for any �, " > 0.

Proof. The last statement for curves and paths follows simply by considering the control whose
trajectory is the curve or the path itself, which is always admissible regardless of ".

We now prove the first statement for the interpolation by cost complexity of a curve � . The
same reasonings will hold for ⌃app and �app. Let x,y be the two endpoints of � and assume T

to be sufficiently small so that VJ(x,y) > 0. Then, the first statement follows from

lim
"#0

⌃int(� , ") > V(x,y) lim
"#0

1

"
= +1.

Consider now the interpolation by time complexity and proceed by contradiction. Namely,
let us assume that there exists a constant C > 0 such that �int(�, ") 6 C for any " > 0. Then,
by definition of �int, this implies that for any " > 0 there exists �" 2 [CT/2, �0) and a �"-time
interpolation u" 2 L1([0, T ], Rm) such that �"J(u", T) 6 ".

Firstly, observe that by Lemma 4.2.6 and the assumptions on f0 and �̇, we obtain that there
exist ⌘ > 0 and an interval I ⇢ [0, T ], with |I| > ⌘, such that

V
�
�(th1 ),�(t

h
2 )
�
�!0 as h # 0 =) th2 - th1�!0 as h # 0, (4.3.1)

whenever th1 2 I and th2 > th1 for any h in a right neighborhood of zero.
For any ", let 0 = t"0 < t"1 < . . . < t"N"

= T be a partition of [0, T ] such that qu"(t
"
i ) = �(t"i )

for any i 2 {0,N"} and t"i - t"i-1 6 �". It is clear that, up to removing some t"i ’s, we can assume
that t"i - t"i-1 > �"/2 > CT/4. Let us fix, ⌧"1 = t"i" 2 I for some index i" and ⌧"2 = t"i"+1. Such
⌧"1 always exists, since |I| > �0. Since, by the definition of u" and the choice of the cost, follows
that VJ(�(⌧"1),�(⌧

"
2)) ! 0 as " # 0 we obtain a contradiction. In fact, this implies that

0 = lim
"#0

�
⌧"2 - ⌧"1

�
> CT

4
> 0.

Remark 4.3.2. Result ii.b, regarding the interpolation by time complexity, holds for any cost
satisfying the assumptions of Proposition 4.3.1, such that for any path � it holds (4.3.1), and
that, for any u 2 L1([0, T ], Rm), there exists a constant such that, if t1, t2 2 [0, T ], t1 < t2, then

J(u|[t1,t2](·+ t1), t2 - t1) 6 CJ(u, T).

Remark 4.3.3. The bound on �0 in Proposition 4.3.1 is essential. For example, consider the
cost J(u, T) = kukL1([0,T ],Rm), and a curve such that, for some N 2 N, it holds �(jT/N) =

ej(T/N)f0(�(0)) for any j = 1, . . . , T/N (see, e.g., Figure 13). In this case, the null control
is a (T/N)-time interpolation of �, with J(0, T) = 0. In particular, if �0 > T/N, it holds
�int(�, ") 6 N.
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�(·)

x

y

ej
T
Nf0(x)

e·f0(x)

f0

Figure 13: An example of a curve satisfying Remark 4.3.3, with a rectified drift.

In the following, we will denote with an apex “SR-s” – e.g. ⌃SR-s
int – the complexities associ-

ated with the small sub-Riemannian system (4.0.8) defined at p. 61, and with an apex “SR-b”,
e.g. ⌃SR-b

int , the ones associated with the big sub-Riemannian system

q̇(t) =
mX

i=1

ui(t) fi(q(t)), a.e. t 2 [0, T ], (4.3.2)

We immediately get the following.

Proposition 4.3.4. Let � ⇢ M be a curve and � : [0, T ] ! M be a path.

i. Any complexity relative to the cost J is smaller than the same complexity relative to I. Namely,
for any ", � > 0, it holds

⌃Jint(� , ") 6 ⌃Iint(� , "), ⌃Japp(� , ") 6 ⌃Iapp(� , "),

�Jint(�, ") 6 �Iint(�, "), �Japp(�, ") 6 �Iapp(�, ").

ii. For any cost, the neighboring approximation complexity of some path is always bigger than the
tubular approximation complexity of its support. Namely, for any � : [0, T ] ! M and any " > 0,
it holds

⌃Japp(�([0, T ]), ") 6 �Japp(�, "), ⌃Iapp(�([0, T ]), ") 6 �Iapp(�, ")

iii. Any complexity relative to the cost I is bigger than the same complexity computed for the system
(4.3.2). Namely, for any ", � > 0, it holds

⌃SR-b
int (� , ") 6 ⌃Iint(� , "), ⌃SR-b

app (� , ") 6 ⌃Iapp(� , "),

�SR-b
int (�, ") 6 �Iint(�, "), �SR-b

app (�, ") 6 �Iapp(�, ").

iv. In the case of curves, the complexities relative to the cost I are always smaller than the same
complexities computed for the system (4.0.8). Namely, for any " > 0 it holds

⌃Iint(� , ") 6 ⌃SR-s
int (� , "), ⌃Iapp(� , ") 6 ⌃SR-s

app (� , ").
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Proof. The inequality in (ii) is immediate, since any control admissible for the �app(�, ") is also
admissible for ⌃app(�([0, T ]), ").

On the other hand, the inequalities in (iii) between the complexities in (4.3.2) and the ones
in (4.0.7), with cost I, is a consequence of the fact that, for every control u 2 U, the trajectory
qu is admissible for (4.3.2) and associated with the control u0 = (1,u) : [0, T ] ! Rm+1 with
ku0kL1([0,T ],Rm+1) = I(u, T). The inequalities in (i) between the complexities in (4.0.7) with
respect to the different costs follows from the fact that J 6 I.

Finally, to complete the proof of the proposition, observe that, by Theorem 1.2.1, it holds
that

VI(q,q 0) 6 dSR(q,q 0), for any q, q 0 2 M.

This shows, in particular, that every "-cost interpolation for (4.0.8), is an "-cost interpolation
for (4.0.7), proving the statement regarding the cost interpolation complexity in (iv). The part
concerning the tubular approximation follows in the same way.

We conclude this section by proving an asymptotic equivalence for the complexities of a
control-affine system in a very special case. In particular, we will prove that if we cannot
generate the direction of � with an iterated bracket of f0 and some f1, . . . , fm, then the curve
complexities for the systems (4.0.7), (4.0.8) and (4.3.2) behaves in the same way.

Let Lf0 be the ideal of the Lie algebra Lie(f0, f1, . . . , fm) generated by the adjoint endomor-
phism ad(f0) : f 7! ad(f0)f = [f0, f], f 2 Vec(M). Then the following holds.

Proposition 4.3.5. Assume that there exists s 2 N such that f0 ⇢ Ds \Ds-1, and let � ⇢ M be a
curve such that there exists k 2 N for which T� ⇢ �k \�k-1. Assume, moreover, that for any q 2 �
it holds that Tq� 6⇢ Lf0(q). Then, for sufficiently small T,

⌃Jint(� , ") ⇣ ⌃Iint(� , ") ⇣ ⌃Japp(� , ") ⇣ ⌃Iapp(� , ") ⇣ 1

"k
. (4.3.3)

Proof. By the fact that Tq� 6⇢ Lf0(q), follows that Tq� ⇢ Liekq(f0, f1, . . . , fm)\Liek-1
q (f0, f1, . . . , fm).

Thus, approximating � in the big or in the small sub-Riemannian system is equivalent, and by
Theorem 1.2.4 follows

⌃SR-s
int (� , ") ⇣ ⌃SR-b

int (� , ") ⇣ ⌃SR-s
app (� , ") ⇣ ⌃SR-b

app (� , ") ⇣ 1

"k
.

The statement then follows by applying Proposition 4.3.4.

Remark 4.3.6. Observe that if f0 2 � in a neighborhood U of � , it holds that Liekq(f0, f1, . . . , fm) =

�k(q) for any q 2 U. Then, by the same argument as above, we get that (4.3.3) holds. This
shows that, where f0 ⇢ �, the asymptotic behavior of complexities of curves is the same as in
the sub-Riemannian case.

�.� ���������� �� ������
This section is devoted to prove the statement on curves of Theorem 4.0.10. Namely, we will
prove the following.
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Theorem 4.4.1. Assume that there exists s > 2 such that f0 ⇢ Ds \Ds-1. Let � ⇢ M be a curve and
define  = max{k : Tp� 2 �k(p) \�k-1(p) for some p 2 � }. Then, if the maximal time of definition
of the controls T is small enough,

⌃Jint(� , ") ⇣ ⌃Iint(� , ") ⇣ ⌃Japp(� , ") ⇣ ⌃Iapp(� , ") ⇣ 1

"
,

Due to the fact that the value functions associated with the costs J and I are always smaller
than the sub-Riemannian distance associated with system (4.0.8), the 4 immediately follows
from the results in [Jea03].

Proposition 4.4.2. Let � ⇢ M be a curve such that there exists k 2 N for which T� ⇢ �k. Then,

⌃Jint(� , ") 4 ⌃Iint(� , ") 4 1

"k
, ⌃Japp(� , ") 4 ⌃Iapp(� , ") 4 1

"k
.

Proof. By (i) in Proposition 4.3.4, follows that we only have to prove the upper bound for
the complexities relative to the cost I. Moreover, by the same proposition and [Jea03, Theo-
rem 3.14], follows immediately that ⌃Iint(� , ") and ⌃Iapp(� , ") 4 "-k, completing the proof of
the proposition.

In order to prove <, we will need to exploit a sub-additivity property of the complexities. In
order to have this property, it is necessary to exclude certain bad behaving points, called cusps.
Near these points, the value function behaves like the Euclidean distance does near algebraic
cusps (e.g., (0, 0) for the curve y =

p
|x| in R2). In the sub-Riemannian context, they have been

introduced in [Jea03].

Definition 4.4.3. The point q 2 � is a cusp for the cost J if it is not an endpoint of � and if, for
every c,⌘ > 0, there exist two points q1,q2 2 � such that q lies between q1 and q2, with q1

before q and q2 after q w.r.t. the orientation of � (in particular q 6= q1,q2), VJ(q1,q2) 6 ⌘ and
VJ(q,q2) > c V(q1,q2).

In [Jea03] is proved that no curve has cusps in an equiregular sub-Riemannian stucture. As
the following example shows, the equiregularity alone is not enough for control-affine systems.

Example 4.4.4. Consider the following vector fields on R3, with coordinates (x,y, z),

f1(x,y, z) = @x, f2(x,y, z) = @y + x@z.

Since [f1, f2] = @z, {f1, f2} is a bracket-generating family of vector fields. The sub-Riemannian
control system associated with {f1, f2} on R3 corresponds to the Heisenberg group.

Let now f0 = @z ⇢ D2 \D be the drift, and let us consider the curve � = {(t2, 0, t) | t 2
(-⌘,⌘)}. Let q = (0, 0, 0). Since Tq� /2 D(q), by smoothness of � and D, for ⌘ sufficiently small
T� ⇢ D2 \D. We now show that the point q is indeed a cusp for the cost J. In fact, for any
⇠ > 0 such that 2⇠ < T, it holds that the null control defined over time [0, 2⇠] steers the control
affine system from q1 = (⇠2, 0,-⇠) 2 � to q2 = (⇠2, 0, ⇠) 2 � . Hence, by Proposition 4.2.2,
VJ(q1,q2) = 0. Moreover, since q and q2 are not on the same integral curve of the drift,
VJ(q,q2) > 0 = VJ(q1,q2). This proves that q is a cusp for J.

The following proposition shows that cusps appear only where the drift becomes tangent to
the curve at isolated points, as in the above example.
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Proposition 4.4.5. Assume that there exists s > 2 such that f0 ⇢ Ds \Ds-1. Let � ⇢ M be a curve
such that T� ⇢ �k \�k-1. Moreover, if s = k, let � be such that either f0(p) /2 Tp� ��s-1(p) for
any p 2 � or f0|� ⇢ T� ��s-1. Then � has no cusps for the cost VJ.

Proof. If f0|� ⇢ Tp� ��s-1(p), the statement is a consequence of Proposition 4.2.2. Hence, we
assume that f0(p) /2 Tp� ��s-1(p) for any p 2 � . Let � : [0,T] ! M be a path parametrizing
� and consider the continuous coordinate family {zt}t2[0,T] adapted to f0 given by Proposi-
tion 4.1.4. In particular, it holds that zt⇤�̇(·) ⌘ @z↵ for some coordinate z↵ of weight k and for
any t 2 [0,T]. We now fix any t0 2 (0,T) and prove that �(t0) is not a cusp. In fact, letting
⌘ > 0 be sufficiently small, by Theorem 1.2.2 and the fact that zt`(�(·)) ⌘ 0 we get

VJ(�(t0),�(t0 + ⌘)) 6 C
nX

j=1

|zt0j (�(t0 + ⌘))|
1
wj = C|zt0↵ �(t0 + ⌘)|

1
k

= 2C|zt0-⌘↵ (�(t0 + ⌘))|
1
k 6 CV(�(t0 - ⌘),�(t0 + ⌘)).

Letting t1 = t0 - ⌘ and t2 = t0 + ⌘, this proves that VJ(�(t0),�(t2)) 6 VJ(�(t1),�(t2)). By
definition, this implies that �(t0) is not a cusp, completing the proof of the proposition.

Finally, we can prove the sub-additivity of the curve complexities.

Proposition 4.4.6. Let � 0 ⇢ � ⇢ M be two curves. Then, if the endpoints of � 0 are not cusps for the
cost J, there exists a constant C > 0 such that for sufficiently small T it holds

⌃Jint(�
0, ") 4 ⌃Jint(� , "), ⌃Japp(�

0, ") 4 ⌃Japp(� , ").

Proof. Cost interpolation complexity. Let u 2 L1([0, T ], Rm) be a control admissible for ⌃Jint(� , "),
and let 0 = t1 < . . . < tN = T be such that kukL1([ti-1,ti]) 6 ". Recall that by Theorem 1.2.1,
VJ is a continuous function. Since for small T > 0, for any " > 0 and for any q0 2 M the
reachable set RT(q, ") is bounded, it holds that RT(q, ") & {etf0(q0) | t 2 [0,T]} as " # 0, in
the sense of pointwise convergence of characteristic functions. From this follows that, for "
and T sufficiently small, there exist i1 6= i2 such that qu(ti) 2 � 0 for any i 2 {i1, . . . , i2} and
qu(ti) 62 � 0 for any i /2 {i1, . . . , i2}. Since x 0 and y 0 are not cusps, there exists c > 0 such that,
letting x 0 and y 0 be the endpoints of � 0, it holds VJ(x 0,qu(ti1)) 6 cVI(qu(ti1-1,qu(ti1)) 6 "
and VJ(qu(ti2),y

0) 6 VJ(qu(ti2),qu(ti2+1)) 6 c". Thus, there exists a constant C > 0 such
that

⌃Jint(�
0, ") 6

J(u|[ti1 ,ti2 ]
)

"
+ 2c 6 C

J(u|[ti1-1,ti2+1])

"
6 C

J(u)

"
.

Taking the infimum over all controls u, admissible for ⌃Jint(� , ") completes the proof.
Tubular approximation complexity. Let u 2 L1([0, T ], Rm) be a control admissible for ⌃Japp(� , ").

Then, letting qu be its trajectory such that qu(0) = x, there exists two times t1 and t2 such
that qu(t1) 2 BSR(x

0,C") and qu(t2) 2 BSR(y
0,C"). Then, since VJ 6 dSR by Theorem 1.2.1,

the same argument as above applies.

Thanks to the sub-additivity, we can prove the < part of Theorem 4.4.1 in the case where the
curve is always tangent to the same stratum Dk \Dk-1.
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Proposition 4.4.7. Assume, that there exists s 2 N such that f0 ⇢ Ds \Ds-1. Let � ⇢ M be a curve
such that there exists k 2 N for which Tp� 2 Dk(p) \ Dk-1(p) for any p 2 � . Then, for sufficiently
small time T, it holds

⌃Iint(� , ") < ⌃Jint(� , ") < 1

"k
, ⌃Iapp(� , ") < ⌃Japp(� , ") < 1

"k
.

Proof. By Proposition 4.3.4, ⌃Iint(� , ") < ⌃Jint(� , ") and ⌃Iapp(� , ") < ⌃Japp(� , "). We will only
prove that ⌃Jint(� , ") < "-k, since the same arguments apply to ⌃Japp(� , ").

Let � : [0,T] ! M be a path parametrizing � . We will distinguish three cases.

���� � f0 (p) /2 Ds-1 (p) � Tp� ��� ��� p 2 � Fix ⌘ > 0 and consider a control u 2 L1 ([0 , T ] , Rm ),
admissible for ⌃int(� , ") such that

kukL1

"
6 ⌃int(� , ") + ⌘ . (4.4.1)

Let ui = u |[ti-1 ,ti ] , i = 1 , . . . , N =
l
kukL1
"

m
to be such that kuikL1 = " for any

1 6 i < N, kuNkL1 6 ". Moreover, let si be the times such that �(si ) = qu (ti ).

By (4.4.1), it holds N 6 d⌃int(� , ") + ⌘ + 1e. However, we can assume w.l.o.g. that
N 6 d⌃int(� , ") + ⌘e. In fact, N > d⌃int(� , ") + ⌘e only if kuNk < ". In this case
we can simply restrict ourselves to compute ⌃int( �̃ , ") where �̃ is the segment of � com-
prised between x and qu (tN-1 ). Indeed, by Propositions 4.4.5 and 4.4.6, it follows that
⌃int( �̃ , ") 4 ⌃int(� , ").

We now assume that " and T are sufficiently small, in order to satisfy the hypotheses of
Theorem 1.2.2 at any point of � . Moreover, let {zt }t2[0 ,T] be the continuous coordinate
family for � adapted to f0 given by Proposition 4.1.4. Then, it holds

T =
NX

i=1

(si - si-1 ) =
NX

i=1

|z
si-1
↵ (�(si )) | =

NX

i=1

|z
si-1
↵ (qu (ti )) | 6 C(⌃int(� , ") + ⌘)"k .

(4.4.2)

Here, in the last inequality we applied Theorem 1.2.2 and the fact that zsi-1
` (qu (ti )) =

0 by Proposition 4.1.4. Finally, letting ⌘ # 0 in (4.4.2), we get that for any " sufficiently
small it holds ⌃int(� , ") > CT "-k . This completes the proof in this case.

���� � s = k ��� f0 (p) 2 Ds-1 (p) � Tp� ��� ��� p 2 � Let {zt }t2[0 ,T] be a continuous
coordinate family for � adapted to f0 . In this case, since (zt` )⇤f0 = 1, it holds that
(zt` )⇤ �̇(·) 6= 0. Hence, there exist C1 , C2 > 0 such that for any t , ⇠ 2 [0 , T ]

C1 (t - ⇠) 6 zt` (�(⇠)) 6 C2 (t - ⇠) , if (zt` )⇤ �̇(·) > 0 ; (4.4.3)

C1 (t - ⇠) 6 -zt` (�(⇠)) 6 C2 (t - ⇠) , if (zt` )⇤ �̇(·) < 0 . (4.4.4)
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If (4.4.4) holds, then we can proceed as in Case 1 with ↵ = `. In fact, |zsi-1

` (qu (ti ) | 6
C"s by Theorem 1.2.2. On the other hand, if (4.4.3) holds, by applying Theorem 1.2.2 we
get

T =
NX

i=1

(si - si-1 ) 6
1

C1

NX

i=1

|z
si-1

` (�(si )) | =
1

C1

NX

i=1

|z
si-1

` (qu (ti )) |

6 1

C1

NX

i=1

(C"s + ti - ti-1 ) 6 C
�
⌃J

int(� , ") + ⌘
�
"s + T .

By taking T sufficiently small, it holds T 6 T < T. Then, letting ⌘ # 0 this proves that
⌃J

int(� , ") > ((T - T )/C)"-s < "-s . This completes the proof of this case.

���� � s = k ��� f0 (p) 2 Ds-1 (p) � Tp� ��� ���� p 2 � In this case, there exists an open
interval (t1 , t2 ) ⇢ [0 , T] such that f0 (�(t)) 6= �̇(t) mod �s-1 (�(t)) for any t 2
(t1 , t2 ). Thus, � 0 = �((t1 , t2 )), satisfies the assumption of Case 1 and hence ⌃J

int(�
0 , ") <

"-k . Moreover, by Proposition 4.4.5, we can assume that �(t1 ) and �(t2 ) are not cusps.
Then, by Proposition 4.4.6 we get

1

"k
4 ⌃J

int(�
0 , ") 4 ⌃J

int(� , ") ,

completing the proof of the proposition.

Finally, we are in a condition to prove the main theorem of this section.

Proof of Theorem 4.4.1. Since it is clear that T � ⇢ � , the upper bound follows by Proposi-
tion 4.4.2. Moreover, by Proposition 4.3.4 it suffices to prove that ⌃J

int(� , ") and ⌃J
app(� , ") <

"- . Since the arguments are analogous, we only prove this for ⌃J
int.

By smoothness of � , the set A = {p 2 � | Tp� 2 � (p) \ �-1 (p)} has non-empty interior.
Let then � 0 ⇢ A be a non-trivial curve such that either f0 (p) /2 Tp�

0 � �s-1 (p) for any p 2
� 0 or that f0 |� 0 ⇢ T � 0 � �s-1 . Then, since by Proposition 4.4.5 we can choose � 0 such that
it does not contain any cusps, applying Proposition 4.4.6 yields that ⌃J

int(�
0 , ") 4 ⌃J

int(� , ").
Finally, the result follows from the fact that, by Proposition 4.4.7, it holds ⌃J

int(�
0 , ") < "- .

�.� ���������� �� �����
In this section we will prove the statement on paths of Theorems 4.0.9 and 4.0.10.

Recall the definition of �-time interpolation given in Section 1.2.3, and define the following
function of a path � : [0 , T ] ! M and a time-step � > 0

!(� , �) = � inf
�
J(u , T ) | u is a �-time interpolation of �

 
.
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Controls admissible for the above infimum define trajectories touching � at intervals of time of
length at most �. Then, function !(� , �) measures the minimal average cost on each of these
intervals. It is possible to express the interpolation by time complexity through !. Namely,

�int(� , ") = inf
�6�0

�
T

�

���� !(� , �) 6 "

�
= sup
�6�0

�
T

�

���� !(� , � 0 ) > " for any � 0 > �

�
. (4.5.1)

From (4.5.1) follows immediately that, for any k 2 N,

�int(� , ") 4 "-k () !(� , �) 4 �
1
k and �int(� , ") < "-k () !(� , �) < �

1
k .

(4.5.2)

Exploiting this fact, we are able to prove Theorem 4.0.9.

Proof of Theorem 4.0.9. Let {zt }t2[0 ,T ] to be the continuous family of coordinates for � given
by Proposition 4.1.4. We start by proving that !(� , �) 4 �

1
k which, by (4.5.2), will imply

�SR-s
int (� , ") 4 "-k . Fix any partition 0 = t0 < t1 < . . . < tN = T such that �/2 6 ti -

ti-1 6 �. If � is sufficiently small, from Theorem 2.1.7 follows that there exists a constant C >

0 such that for any i = 0 , . . . , N in the coordinate system zti it holds that Box(�(ti ) , C�
1
k ) ⇢

BSR (�(ti ) , �
1
k ). Hence, since z

ti-1
↵ (�(ti )) = ti - ti-1 , that z

ti-1

j (�(ti )) = 0 for any
j 6= ↵, and that N 6 d2T/�e 6 CT/�, we get

!(� , �) 6 �
NX

i=1

dSR (�(ti-1 ) , �(ti )) 6 C�
NX

i=1

nX

j=1

|z
ti-1

j (�(ti )) |
1
wj = C�

NX

i=1

(ti - ti-1 )
1
k 6 CT �

1
k .

This proves completes the proof of the first part of the Theorem.
Conversely, to prove that �int(� , ") 4 "-k we need to show that !(� , �) < �

1
k . To this

aim, let ⌘ > 0 and u 2 L1 be a control admissible for !(� , �) such that

kukL1([ti-1 ,ti ]) 6
!(� , �)

�
+ ⌘ .

Let 0 = t0 < t1 < . . . < tN = T be times such that qu (ti ) = �(ti ), i = 0 , . . . , N,
0 < ti - ti-1 6 �. Moreover, let ui 2 L1 ([ti-1 , ti ]) be the restriction of u between ti-1

and ti . Observe that, up to removing some ti’s, we can assume that ti - ti-1 2
�
�
2 , 3

2 �
⇤
.

This implies that d2T /(3�)e 6 N 6 d2T /�e.
To complete the proof it suffices to show that kuikL1([ti-1 ,ti ]) > C�

1
k . In fact, for any

⌘ > 0, this yields

!(� , �)
�

> kukL1([0 ,T ] ,Rm) - ⌘ =
NX

i=1

kuikL1([ti-1 ,ti ]) - ⌘ > C
NX

i=1

�
1
k - ⌘ > C

2T

3�
�

1
k - ⌘ .

Letting ⌘ # 0, this will prove that !(� , �) < �
1
k , completing the proof.

Observe that, by Theorem 2.1.7, for any i = 1 , . . . , N in the coordinate system zti-1 it
holds BSR (�(ti ) , kuikL1([ti-1 ,ti ]) ) ⇢ Box

⇣
�(ti ) , CkuikL1([ti-1 ,ti ])

⌘
. Since z

ti-1
↵ (ti ) =

ti - ti-1 , this implies that

�

2
6 ti - ti-1 = |z

ti-1
↵ (�(ti )) | 6 C kuikkL1([ti-1 ,ti ]) ,

proving the claim and the theorem.
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The rest of the section will be devoted to the proof of the statement on paths of Theo-
rem 4.0.10. Namely, we will prove the following.

Theorem 4.5.1. Assume that there exists s > 2 such that f0 ⇢ Ds \ Ds-1 . let � : [0 , T ] ! M
be a path such that f0 (�(t)) 6= �̇(t) mod �s-1 (�(t)) for any t 2 [0 , T ] and define  =
max{k : �(t) 2 �k (�(t)) \ �k-1 (�(t)) for any t in an open subset of [0 , T ]}. Then, it holds

�J
int(� , ") ⇣ �I

int(� , ") ⇣ �J
app(� , ") ⇣ �I

app(� , ") ⇣ 1

"max{ ,s} ,

where the asymptotic equivalences regarding the interpolation by time complexity are true only when
�0 , i.e., the maximal time-step in �int(� , "), is sufficiently small.

Differently to what happened for curves, the 4 part does not immediately follow from the
estimates of sub-Riemannian complexities, but requires additional care. It is contained in the
following proposition.

Proposition 4.5.2. Assume that there exists s 2 N such that f0 ⇢ Ds \ Ds-1 . Let � : [0 , T ] ! M
be a path such that �̇(t) 2 �k (�(t)). Then, it holds

�J
int(� , ") 4 �I

int(� , ") 4 1

"max{s ,k}
, �J

app(� , ") 4 �I
app(� , ") 4 1

"max{s ,k}
. (4.5.3)

Proof. By (i) in Proposition 4.3.4, follows that we only have to prove the upper bound for the
complexities relative to the cost I. We will start by proving (4.5.3) for �I

int. In particular, by
(4.5.2) it will suffices to prove !I (� , �) 4 �

1
k

Let {zt }t2[0 ,T ] be a continuous coordinate family for � adapted to f0 . Let �̃t (⇠) =

e-(⇠-t)f0 (�(⇠)). Then, since zt⇤f0 = @z` , it holds

zt` (�̃t (⇠)) = zt` (�(⇠)) - (⇠ - t) , zti (�̃t (⇠)) = zti (�(⇠)) for any i 6= ` . (4.5.4)

Fix ⇠ > 0 sufficiently small for Proposition 2.2.2 to hold and choose a partition 0 < t1 <
. . . < tN = T such that �/2 6 ti - ti-1 6 �. In particular, N 6 d2T/�e. We then
select a control u 2 L1 ([0 , T ] , Rm ) such that its trajectory qu in (4.0.7), with qu (0) = x,
satisfies qu (ti ) = �(ti ) for any i = 1 , . . . , N as follows. For each i, we choose ui 2
L1 ([ti-1 , ti ] , Rm ) steering system (TD) from �(ti-1 ) = �̃ti-1

(ti-1 ) to �̃ti-1
(ti ). Then,

by (3.2.1) and the definition of �̃ti-1
, the control ui steers system (4.0.7) from �(ti-1 ) to

�(ti ).
Since by [Pra14, Theorem 8] it holds VI

TD 6 dSR, by (4.5.4), Proposition 2.2.2 and Theo-
rem 2.1.7, if � is sufficiently small we can choose ui such that there exists C > 0 for which

I(ui , ti - ti-1 ) 6 C
nX

j=1

|z
ti-1

j (�̃ti-1
(ti )) |

1
wj 6 C

nX

j=1

|z
ti-1

j (�(ti )) |
1
wj + �

1
s

6 C

0

@
X

wj6k

�
1
wj + �

1
s +

X

wj>k

�
1
k

1

A 6 C�
1

max{k ,s} .

(4.5.5)

Hence, we obtain that

I(u , T ) 6 N I(ui , ti - ti-1 ) 6 3C
T

�
�

1
max{k ,s} . (4.5.6)
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Since the control u is admissible for !I (� , �), this implies that !I (� , �) 4 �
1

max{k ,s} . This
proves the first part of the theorem.

To complete the proof for �app(� , "), let � = "max{k ,s} . Then, by Theorems 2.1.7 and
1.2.2, there exists a constant C > 0 such that R

f0
� (�(t) , ") ⇢ BSR (�(t) , C") for any t 2

[0 , T ]. In particular, dSR (�(ti ) , qu (t)) 6 C" for any t 2 [ti-1 , ti ]. Moreover, again by
Theorem 2.1.7, Proposition 2.2.2, and the fact that �̇(·) 2 �k (�(·)), this choice of � implies
also that dSR (�(ti-1 ) , �(t)) 6 C" for any t 2 [ti-1 , ti ]. Hence, for any t 2 [ti-1 , ti ], we
get

dSR (�(t) , qu (t)) 6 dSR (�(ti-1 ) , qu (t)) + dSR (�(ti-1 ) , �(t)) 6 2C" .

Thus, u is admissible for �I
app(� , C"). Finally, from (4.5.6) we get that �I

app(� , C") 6 "-1I(u , T ) 6
3CT "- max{k ,s} , proving that �app(� , ") 4 "- max{k ,s} . This completes the proof.

Now, we prove the < part of the statement, in the case where �̇ is always contained in the
same stratum Dk \ Dk-1 .

Proposition 4.5.3. Assume that there exists s > 2 such that f0 ⇢ Ds \ Ds-1 . Let � : [0 , T ] ! M
be a path, such that �̇(t) 2 Dk (�(t)) \ Dk-1 (�(t)) for any t 2 [0 , T ]. Moreover, if s = k, assume
that f0 (�(t)) 6= �̇(t) mod Ds-1 for any t 2 [0 , T ]. Then, it holds

�I
int(� , ") < �J

int(� , ") < 1

"max{s ,k}
, �I

app(� , ") < �J
app(� , ") < 1

"max{s ,k}
.

Proof. By Proposition 4.3.4, �J
int(� , ") 4 �I

int(� , ") and �J
app(� , ") 4 �I

app(� , "). Hence,
to complete the proof it suffices to prove the asymptotic lower bound for �J

int(� , ") and
�J

app(� , "). In the following, to lighten the notation, we write �int and �app instead of �J
int

and �J
app.

Interpolation by time complexity. By (4.5.2), it suffices to prove that !(� , �) < �
1

max{k ,s}

Let ⌘ > 0 and u 2 L1 ([0 , T ] , Rm ) be a control admissible for !(� , �) such that

J(u , T ) = kukL1([0 ,T ] ,Rm) 6
!(� , �)

�
+ ⌘ . (4.5.7)

Let N = dT/�e and 0 = t0 < t1 < . . . < tN = T be times such that qu (ti ) = �(ti ),
i = 0 , . . . , N, and 0 < ti - ti-1 6 �. Observe that, up to removing some ti’s, we can always
assume �/2 6 ti - ti-1 6 (3/2)� and N > d(2T )/(3�)e. Moreover, let ui = u |[ti-1 ,ti ] .
Proceding as in the proof of Theorem 4.0.9, p. 74, we get that in order to show that !(� , �) <
�

1
max{k ,s} it suffices to prove

kuikL1([ti-1 ,ti ]) > C�
1

max{s ,k} , i = 1 , . . . , N . (4.5.8)

We distinguish three cases.

���� � k > s Let {zt } be the continuous coordinate family for � adapted to f0 given by
Proposition 4.1.4. Then, since zt` (�(·)) = 0 and zt↵ (�(⇠)) = ⇠ - t, by Theorem 1.2.2 it
holds

�

2
6 (ti - ti-1 ) = |z

ti-1
↵ (�(ti )) | 6 CkuikkL1([ti-1 ,ti ]) .

This proves (4.5.8).
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���� � k < s Also in this case, let {zt } be the continuous coordinate family for � adapted to
f0 given by Proposition 4.1.4. Then, by Lemma 4.2.6 we get

�

2
6 ti - ti-1 6 CkuiksL1([ti-1 ,ti ]) ,

which immediately proves (4.5.8).

���� � k = s Let {zt }t2[0 ,T ] be a continuous coordinate family for � adapted to f0 . By the
mean value theorem there exists ⇠ 2 [ti-1 , ti ] such that

z
ti-1

` (�(ti )) =

Z ti

ti-1

(zt` )⇤ �̇(t) dt =
�
(z

ti-1

` )⇤ �̇(⇠)
�
(ti - ti-1 ) . (4.5.9)

Consider the partition {E1 , E2 , E3 } of [0 , T ] given by Lemma 4.1.3 and let � 6 �0 . Then,
depending to which Ej belongs ti-1 , we proceed differently.

(a) ti-1 2 E1 : By Lemma 4.2.6 and (4.5.9) we get

ti - ti-1 6 CkuiksL1([ti-1 ,ti ]) + z
ti-1

` (�(ti ))
+ = CkuiksL1([ti-1 ,ti ]) +

�
(z

ti-1

` )⇤ �̇(⇠)
�
(ti - ti-1 ) .

Then, by (4.1.2) of Lemma 4.1.3, we get

kuikL1([ti-1 ,ti ]) >
 
1 - (z

ti-1

` )⇤ �̇(⇠)

C

! 1
s

(ti - ti-1 )
1
s >

⇣ ⇢
C

⌘ 1
s
�

1
s .

This proves (4.5.8).

(b) ti-1 2 E2 : By (4.1.3) of Lemma 4.1.3, (4.5.9) and Theorem 1.2.2 we get

m(ti - ti-1 ) 6 |z
ti-1
↵ (�(ti )) | 6 C

⇣
kuiksL1([ti-1 ,ti ]) + kuikL1([ti-1 ,ti ]) |z

ti-1

` (�(ti )) |
⌘

.

Reasoning as in (4.5.5) yields that we can assume kuikL1([ti-1 ,ti ]) 6 C�
1
s . Then,

by (4.5.9) and letting � 6 (m/(2 + 4⇢))s , we get

kuikL1([ti-1 ,ti ]) > (m - �
1
s (1 + 2⇢))

1
s (ti - ti-1 )

1
s >

⇣m
2

⌘ 1
s
�

1
s ,

proving (4.5.8).

(c) ti-1 2 E3 : By Theorem 1.2.2 it follows that

|z
ti-1

` (�(ti )) | 6 CkuiksL1([ti-1 ,ti ]) + (ti - ti-1 ) . (4.5.10)

Then, by (4.5.9) and (4.5.10) we obtain

kuikL1([ti-1 ,ti ]) >
 
(z

ti-1

` )⇤ �̇(⇠) - 1

C

! 1
s

(ti - ti-1 )
1
s >

⇣ ⇢
C

⌘ 1
s
�

1
s .

The last inequality follows from (4.1.4) of Lemma 4.1.3. This proves (4.5.8).
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Neighboring approximation complexity. Fix ⌘ > 0 and let u 2 L1 ([0 , T ] , Rm ) be admis-
sible for �app(� , ") and such that kukL1([0 ,T ] ,Rm) 6 �app(� , ") + ⌘. Let qu : [0 , T ] ! M
be the trajectory of u with qu (0) = �(0). Let then N = d�app(� , ") + ⌘e and 0 = t0 <
t1 < . . . < tN = T be such that kukL1([ti-1 ,ti ]) 6 " for any i = 1 , . . . , N. By Lemma 3.2.1
and the fact that qu (t) 2 BSR (�(t) , ") for any t 2 [0 , T ], we can build a new control, still
denoted by u, such that qu (ti ) = �(ti ), i = 1 , . . . , N, and kukL1([ti-1 ,ti ]) 6 3".

Fixed a �0 > 0, w.l.o.g. we can assume that ti - ti-1 6 �0 . In fact, we can split each inter-
val [ti-1 , ti ] not satisfying this property as ti-1 = ⇠1 < . . . < ⇠M = ti , with ⇠⌫ - ⇠⌫-1 6
�0 . Then, as above, it is possible to modify the control u so that qu (⇠⌫ ) = �(⇠⌫ ) for any ⌫ =
1 , . . . , M. Since M 6 dT/�0e and qu (·) 2 BSR (�(·) , "), we have kukL1([⇠i ,⇠i-1 ]) 6 5" and
the new total number of intervals is 6 (1 + dT/�0e)d�app(� , ") + ⌘e 6 C(�app(� , ") + ⌘).

We claim that to prove �app(� , ") < "- max{s ,k} , it suffices to show that there exists a
constant C > 0, independent of u, such that

ti - ti-1 6 C"max{s ,k} , for any i = 1 , . . . , N . (4.5.11)

In fact, since N 6 C(�app(� , ") + ⌘), this will imply that

T =
NX

i=1

ti - ti-1 6 C(�app(� , ") + ⌘)"max{s ,k} .

Letting ⌘ # 0, we get that �app(� , ") < "- max{s ,k} , proving the claim.
We now let �0 sufficiently small in order to apply Lemma 4.1.3, Theorem 1.2.2, and Lemma 4.2.6.

As before, we distinguish three cases.

���� � k > s Let {zt } be the continuous coordinate family for � adapted to f0 given by
Proposition 4.1.4. By Theorem 1.2.2, using the fact that �(ti ) = qu (ti ) for i = 1 , . . . , N,
we get

(ti - ti-1 ) = |z
ti-1
↵ (�(ti )) | 6 C"k . (4.5.12)

This proves (4.5.11).

���� � k < s Again, let {zt } be the continuous coordinate family for � adapted to f0 given
by Proposition 4.1.4. As for the interpolation by time complexity, by Lemma 4.2.6 and
the fact that qu (ti ) = �(ti ), we get

(ti - ti-1 ) 6 C"s ,

thus proving (4.5.11).

���� � k = s Let {zt }t2[0 ,T ] to be a continuous coordinate family for � adapted to f0 . Con-
sider the partition {E1 , E2 , E3 } of [0 , T ] given by Lemma 4.1.3 and recall (4.5.9). We
distinguish three cases.

(a) ti-1 2 E1 : By Lemma 4.2.6 and (4.5.9) we get

ti - ti-1 6 C"s + z
ti-1

` (�(ti )) = 2C"s +
�
(z

ti-1

` )⇤ �̇(⇠)
�
(ti - ti-1 ) .
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By (4.1.2) of Lemma 4.1.3, this implies

ti - ti-1 6
 

2C

1 - (z
ti-1

` )⇤ �̇(⇠)

!

"s 6 2C

⇢
"s .

Hence, (4.5.11) is proved.

(b) ti-1 2 E2 : By (4.1.3) of Lemma 4.1.3, (4.5.9) and Theorem 1.2.2 we get

m(ti - ti-1 ) 6 |z
ti-1
↵ (�(ti )) | 6 C

⇣
"s + " |z

ti-1

` (�(ti )) |
⌘
6 C

⇣
"s + "s+1 + "(ti - ti-1 )

⌘
.

This, by taking " sufficiently small and enlarging C, implies (4.5.11).

(c) ti-1 2 E3 : By Theorem 1.2.2 it follows that

|z
ti-1

` (�(ti )) | 6 C"s + (ti - ti-1 ) . (4.5.13)

Then, by (4.5.9) and (4.5.13) we obtain

ti - ti-1 6
C

(z
ti-1

` )⇤ �̇(⇠) - 1
"s 6 C

⇢
"s .

The last inequality follows from (4.1.4) of Lemma 4.1.3, and proves (4.5.11).

As for the case of curves, in order to extend Proposition 4.5.3 to paths not always tangent
to the same strata, we will need the following sub-additivity property. Let us remark that due
to the definition of the path complexities, we do not need to make any assumption regarding
cusps.

Proposition 4.5.4. Let � : [0 , T ] ! M be a path and let t1 , t2 ⇢ [0 , T ].

i. If there exists k 2 N such that �J
int(� |[t1 ,t2 ] , ") < "-k , then �J

int(� , ") < "-k ,

ii. �J
app(� |[t1 ,t2 ] , ") 4 �J

app(� , ").

Proof. Time interpolation complexity. By (4.5.2), it suffices to prove that !J (� |[t1 ,t2 ] , �) 4
!J (� , �). Let u 2 L1 ([0 , T ] , Rm ) be a control admissible for ⌃J

int(� , "), and let 0 = ⇠1 <
. . . < ⇠N = T be the times where qu (⇠i ) = �(⇠i ). Let i1 6= i2 such that t1 6 ⇠i 6 t2 for
any i 2 {i1 , . . . , i2 }. Observe that, by Theorems 2.1.7 and 1.2.1, we have VJ (�(t1 ) , �(⇠i1 )) 6
dSR (�(t1 ) , �(⇠i1 )) 6 C�

1
r and VJ (�(⇠i2 ) , �(t2 )) 6 dSR (�(⇠i2 ) , �(t2 )) 6 C�

1
r , where �

is sufficiently small, C is independent of �, and r is the nonholonomic degree of the distribu-
tion. Thus, assuming w.l.o.g. C > 1,

!J (� |[t1 ,t2 ] , �) 6 �J(u |[ti1 ,ti2 ]
) + 2C�1+

1
r 6 C�J(u) + C�1+

1
r .

Taking the infimum over all controls u admissible for !J (� , �), and recalling that, by Propo-
sition 4.5.2, it holds !J (� , �) 4 �

1
r , completes the proof.

Neighboring approximation complexity. In this case, the proof is identical to the one of Propo-
sition 4.4.6 for the tubular approximation complexity. The sole difference is that here, by
definition of �J

app, we do not need to assume the absence of cusps.

79



4 ���������� ��� ������ ��������

We can now complete the proof of Theorem 4.0.10, by proving Theorem 4.5.1.

Proof. The proof is analogous to the one of Theorem 4.4.1, using Propositions 4.5.2, 4.5.3 and
4.5.4.
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Diffusions on singular manifolds
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5 T H E L A P L A C E - B E LT R A M I O P E R ATO R O N
C O N I C A N D A N T I - C O N I C S U R FA C E S

In this chapter we consider the Riemannian metric on M =
�

R \{0}
�
⇥ S whose orthonormal

basis has the form:

X1 (x , ✓) =
✓

1
0

◆
, X2 (x , ✓) =

✓
0

|x |↵

◆
, x 2 R , ✓ 2 S1 . (5.0.14)

Here x 2 R, ✓ 2 S and ↵ 2 R is a parameter. In other words we are interested in the
Riemannian manifold (M , g), where

g = dx2 + |x |-2↵d✓2 , i.e., in matrix notation g =

✓
1 0
0 |x |-2↵

◆
. (5.0.15)

One of the main features of these metrics is the fact that, except in the case ↵ = 0, the
corresponding Riemannian volumes have a singularity at Z = {x = 0},

dµ =
p

det g dx d✓ = |x |-↵dx d✓ .

Due to this fact, the corresponding Laplace-Beltrami operators contain some diverging first
order terms,

L =
1p

det g

2X

j ,k=1

@j

⇣p
det g gjk@k

⌘
= @2x + |x |2↵@2✓u -

↵

x
@x (5.0.16)

As already anticipated in the introduction, the purpose of this chapter is to answer the
following two questions.

(Q1) Do the heat and free quantum particles flow through the singularity? In other words, we
are interested to the following: consider the heat or the Schrödinger equation

@t = L  , (5.0.17)
i@t = - L  , (5.0.18)

where L is given by (5.0.16). Take an initial condition supported at time t = 0 in
M- = {x 2 M | x < 0}. Is it possible that at time t > 0 the corresponding solution has
some support in M+ = {x 2 M | x > 0}?

(Q2) Does equation (5.0.17) conserve the total heat (i.e. the L1 norm of  )? This is known
to be equivalent to the stochastic completeness of M↵ – i.e., the fact that the stochastic
process, defined by the diffusion L, almost surely has infinite lifespan. In particular, we
are interested in understanding if the heat is absorbed by the singularity Z.

The same question for the Schrödinger equation has a trivial answer, since the total
probability (i.e., the L2 norm) is always conserved by Stone’s theorem.
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The answer to (Q1) is related to the self-adjointness of L, and is contained in Theorem 1.3.2,
whose statement will be recalled in Theorem 5.2.3. On the other hand, the answer to (Q2) is
related to the Markovianity and the stochastic completeness of L, which is strictly related to
the theory of Dirichlet forms. The answer to this question is contained in Theorem 1.3.6, whose
statement is recalled in Theorem 5.4.17.

The chapter is divided into 4 sections. The first section is devoted to the geometric interpre-
tation of the above defined structures, both from a topological and from a metric point of view.
Then, in Section 5.2, after some preliminaries regarding self-adjointness, we analyze in detail
the Fourier components of the Laplace-Beltrami operator on M↵ , proving Theorems 5.2.3 and
5.2.10. We conclude this section with a description of the maximal domain of the Laplace-
Beltrami operator in terms of the Sobolev spaces on M↵ , contained in Proposition 5.2.13. In
this section we only concern ourselves with real self-adjoint extensions of L. The discussion
regarding the complex self-adjoint extension of bL0 is the subject of Section 5.3. Finally, in Sec-
tion 5.4, we introduce and discuss the concepts of Markovianity, stochastic completeness and
recurrence through the potential theory of Dirichlet forms. After this, we study the Markov
uniqueness of L |C1

c (M) and characterize the domains of the Friedrichs, Neumann and bridg-
ing extensions (Propositions 5.4.11 and 5.4.12). Then, we define stochastic completeness and
recurrence at 0 and at 1, and, in Proposition 5.4.15, we discuss how these concepts behave if
the k = 0 Fourier component of the self-adjoint extension is itself self-adjoint. In particular, we
show that the Markovianity of such an operator A implies the Markovianity of its first Fourier
component bA0 , and that the stochastic completeness (resp. recurrence) at 0 (resp. at 1) of
A and bA0 are equivalent. Then, in Proposition 5.4.14 we prove that stochastic completeness
or recurrence are equivalent to stochastically completeness or recurrence both at 0 and at 1.
Finally, we prove Theorem 5.4.17.

�.� ��������� ��������������

In this section, we discuss how the topology and the metric properties of M↵ depend on ↵.

�.�.� Topology of M↵

Define Mcylinder = R ⇥S and Mcone = Mcylinder / ⇠, where (x1 , ✓1 ) ⇠ (x2 , ✓2 ) if and only
if x1 = x2 = 0. In the following we are going to suitably extend the metric structure to
Mcylinder through (5.0.14) when ↵ > 0, and to Mcone through (5.0.15) when ↵ < 0.

Recall that, on a general two dimensional Riemannian manifold for which there exists a
global orthonormal frame, the distance between two points can be defined equivalently as

d(q1 , q2 ) = inf
� Z 1

0

q
u1 (t)2 + u2 (t)2 dt | � : [0 , 1] ! M Lipschitz , �(0) = q1 ,

�(1) = q2 and u1 , u2 are defined by �̇(t) = u1 (t)X1 (�(t)) + u2 (t)X2 (�(t))

�
,

(5.1.1)
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5.1 Geometric interpretation

d(q1 , q2 ) = inf
� Z 1

0

q
g�(t) (�̇(t) , �̇(t)) dt | � : [0 , 1] ! M Lipschitz ,

�(0) = q1 , �(1) = q2

�
, (5.1.2)

where {X1 , X2 } is the global orthonormal frame for (M , g).

Case ↵ > 0

Similarly to what is usually done in sub-Riemannian geometry (see Section 1.1), when ↵ > 0,
formula (5.1.1) can be used to define a distance on Mcylinder where X1 and X2 are given by
formula (5.0.14). We have the following.

Lemma 5.1.1. For any ↵ > 0, formula (5.1.1) endows Mcylinder with a metric space structure, which
is compatible with its original topology.

Proof. By (5.1.1), it is clear that d : Mcylinder ⇥ Mcylinder ! [0 , +1) is symmetric, satisfies
the triangular inequality and d(q , q) = 0 for any q 2 Mcylinder. Observe that the topology
on Mcylinder is induced by the distance dcylinder((x1 , ✓1 ) , (x2 , ✓2 )) = |x1 - x2 | + |✓1 - ✓2 |.
Here and henceforth, for any ✓1 , ✓2 2 S when writing ✓1 - ✓2 we mean the non-negative
number ✓1 - ✓2 mod 2⇡. In order to complete the proof it suffices to show that for any
{qn }n2N ⇢ Mcylinder and q̄ 2 Mcylinder it holds

d(qn , q̄) �! 0 if and only if dcylinder(qn , q̄) �! 0 . (5.1.3)

In fact, this clearly implies that if d(q1 , q2 ) = 0 then q1 = q2 , proving that d is a distance,
and moreover proves that d and dcylinder induce the same topology.

Assume that d(qn , q̄) ! 0 for some {qn }n2N ⇢ Mcylinder and q̄ = ( x̄ , ✓̄) 2 Mcylinder. In
this case, for any n 2 N there exists a control un : [0 , 1] ! R2 such that kunkL1([0 ,1] ,R2) !
0 and that the associated trajectory �n (·) = (xn (·) , ✓n (·)) satisfies �n (0) = qn and
�n (1) = q̄. This implies that, for any t 2 [0 , 1]

|xn (t) - x̄ | 6
Z t

0
|u1 (t) | dt 6 kunkL1([0 ,1] ,R2) �! 0 .

Hence, xn (t) �! x̄. In particular, this implies that |xn (t) | 6 kunkL1([0 ,1] ,R2) + | x̄ | for any
t 2 [0 , 1], and hence

|✓n (0) - ✓̄ | 6
Z 1

0
|u2 (t) | |xn (t) |↵ dt 6

�
kunkL1([0 ,1] ,R2) + | x̄ |

�↵
Z 1

0
|u2 (t) | dt

6 kunkL1([0 ,1] ,R2) (kunkL1([0 ,1] ,R2) + | x̄ |)↵ �! 0 .

Here, when taking the limit, we exploited the fact that ↵ > 0. Thus also ✓n (0) �! ✓̄, and
hence qn = (xn (0) , ✓n (0)) �! ( x̄ , ✓̄) = q̄ w.r.t. dcylinder.

In order to complete the proof of (5.1.3), we now assume that for some qn = (xn , ✓n )
and q̄ = ( x̄ , ✓̄) it holds dcylinder(qn , q̄) �! 0 and claim that d(qn , q̄) �! 0. We start by
considering the case q̄ /2 Z, and w.l.o.g. we assume q̄ 2 M+ . Since M+ is open with respect
to dcylinder, we may assume that qn 2 M+ . Consider now the controls

un (t) =

�
2 ( x̄ - xn ) (1 , 0) if 0 6 t 6 1

2 ,
2 (✓̄ - ✓n ) | x̄ |-↵ (0 , 1) if 1

2 < t 6 1 ,
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A simple computation shows that each un steers the system from qn to q̄. The claim then
follows from

d(qn , q̄) 6 kunkL1([0 ,1] ,R2) 6 | x̄- xn |+ |✓̄- ✓n | | x̄ |-↵ 6 (1+ | x̄ |-↵ ) dcylinder(qn , q̄) �! 0 .

Let now q̄ 2 Z and observe that w.l.o.g. we can assume qn /2 Z for any n 2 N. In fact, if this
is not the case it suffices to consider q̃n = (xn + 1/n , ✓n ) /2 Z, observe that d(qn , q̃n ) ! 0
and apply the triangular inequality. Then, we consider the following controls, steering the
system from qn to q̄,

vn (t) =

8
><

>:

3
�
(✓̄ - ✓n )1/2↵ - xn

�
(1 , 0) if 0 6 t 6 1

3 ,
3 (✓̄ - ✓n )1/2 (0 , 1) if 1

3 < t 6 2
3 ,

-3 (✓̄ - ✓n )1/2↵ (1 , 0) if 2
3 < t 6 1 .

Since x̄ = 0 and ↵ > 0, we have

d(qn , q̄) 6 kvnkL1([0 ,1] ,R2) 6 |(✓n - ✓̄)1/2↵ - xn | + |✓̄ - ✓n |
1/2 + |✓n - ✓̄ |

1/2↵ �! 0 .

This proves (5.1.3) and hence the lemma.

Case ↵ > 0

In this case X1 and X2 are not well defined in x = 0. However, to extend the metric structure,
one can use formula (5.1.2), where g is given by (5.0.15). Notice that this metric identifies
points on {x = 0}, in the sense that they are at zero distance. Hence, formula (5.1.2) gives a
structure of a well-defined metric space not to Mcylinder but to Mcone. Indeed, we have the
following (for the proof see Appendix 5.1.1).

Lemma 5.1.2. For ↵ < 0, formula (5.1.2) endows Mcone with a metric space structure, which is
compatible with its original topology.

Proof. By (5.1.2), it is clear that d : Mcone ⇥ Mcone ! [0 , +1) is symmetric, satisfies the
triangular inequality and d(q , q) = 0 for any q 2 Mcone.

Observe that the topology on Mcone is induced by the following metric

dcone((x1 , ✓1 ) , (x2 , ✓2 )) =

8
><

>:

|x1 - x2 | + |✓1 - ✓2 | if x1x2 > 0 ,
|x1 - x2 | if x1 = 0 or x2 = 0 ,
|x1 - x2 | + |✓1 | + |✓2 | if x1x2 < 0 .

By symmetry, to show the equivalence of the topologies induced by d and by dcone, it is
enough to show that the two distances are equivalent on [0 , +1) ⇥ S. Moreover, since by
definition of g it is clear that d(q1 , q2 ) = 0 for any q1 , q2 2 Z and that d is equivalent to
the Euclidean metric on (0 , +1) ⇥ S, we only have to show that for any {qn } ⇢ (0 , +1) ⇥ S,
qn = (xn , ✓n ), and q̄ = (0 , ✓̄) 2 Z, it holds that

d(qn , q̄) �! 0 if and only if dcone(qn , q̄) �! 0 . (5.1.4)

We start by assuming that d(qn , q̄) �! 0. Then, there exists �n : [0 , 1] ! M such that
�n (0) = qn and �n (1) = q̄ and

R1
0

p
g(�n (t) , �n (t)) dt �! 0. This implies that

|xn | 6
Z 1

0

p
g(�n (t) , �n (t)) dt �! 0 ,
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and thus that xn �! 0. This suffices to prove that dcone(qn , q̄) �! 0.
On the other hand, if dcone(qn , q̄) �! 0, it suffices to consider the curves

�n (t) =

��
(1 - 2t)xn , ✓n

�
if 0 6 t < 1

2 ,
�
0 , ✓n + (2t - 1)(✓̄ - ✓n )

�
if 1

2 6 t 6 1 .

Clearly �n is Lipschitz and �n (0) = qn and �n (1) = q̄. Finally, since g |Z = 0, the proof is
completed by

d(qn , q̄) 6
Z 1

0

q
g�n(t) (�̇n (t) , �̇n (t)) dt =

Z 1
2

0

q
g�n(t) ((-2xn , 0) , (-2xn , 0)) dt = xn �! 0 .

�.�.� Surfaces of revolution

For ↵ 2 R, we call M↵ the generalized Riemannian manifold obtained in the previous section.
Namely,

• ↵ > 0: M↵ = Mcylinder and metric structure induced by (5.0.14);

• ↵ < 0: M↵ = Mcone and metric structure induced by (5.0.15).

The corresponding metric space is called (M↵ , d). Moreover, with abuse of notation, we call
Z the singular set, i.e.,

Z =

�
{0} ⇥ S , ↵ > 0 ,
{0} ⇥ S/ ⇠ ↵ < 0 .

The singularity splits the manifold M↵ in two sides M+ = (0 , +1)⇥ S and M- = (-1 , 0)⇥
S.

Notice that in the cases ↵ = 1 , 2 , 3 , . . ., M↵ is an almost Riemannian structure in the
sense of Section 1.3.1, while in the cases ↵ = -1 , -2 , -3 , . . . it corresponds to a singular
Riemannian manifold with a semi-definite metric.

Remark 5.1.3. The curvature of M↵ is given by K↵ (x) = -↵(1 + ↵)x-2 . Notice that M↵

and M� with � = -(↵ + 1) have the same curvature for any ↵ 2 R . For instance, the
cylinder with Grushin metric has the same curvature as the cone corresponding to ↵ = -2,
but they are not isometric even locally (see [BCG13]).

This section is devoted to precise the following geometric interpretation of M↵ (see Figure
14). For ↵ = 0, this metric is that of a cylinder. For ↵ = -1, it is the metric of a flat cone in polar
coordinates. For ↵ < -1, it is isometric to a surface of revolution S = {(t, r(t) cos #, r(t) sin #) |
t > 0, # 2 S} ⇢ R3 with profile r(t) ⇠ |t|-↵ as |t| goes to zero. For ↵ > -1 (↵ 6= 0) it can
be thought as a surface of revolution having a profile of the type r(t) ⇠ |t|-↵ as t ! 0, but
this is only formal, since the embedding in R3 is deeply singular at t = 0. The case ↵ = 1
corresponds to the Grushin metric on the cylinder.

Let us first recall the definition of isometric (generalized) Riemannian manifolds.

87



5 ��� �������-�������� �������� �� ����� ��� ����-����� ��������

-3 -1 1

Figure 14: Geometric interpretation of M↵. The figures above the line are actually isometric to M↵,
while for the ones below the isometry is singular in Z.

Definition 5.1.4. Given two manifolds M and N, endowed with two (possibly semi-definite)
metrics gM and gN, we say that M is C1-isometric to N if and only if there exists a C1-
diffeomorphism � : M ! N such that �⇤gN = gM. Here �⇤ is the pullback of �. Recall
that, in matrix notation, for any q 2 M it holds

(�⇤gN)q(⇠,⌘) = (J�)T gM�(q)J�(⇠,⌘). (5.1.5)

Here J� is the Jacobian matrix of �.

We have the following.

Proposition 5.1.5. If ↵ < -1 the manifold M↵ is C1-isometric to a surface of revolution S =
{(t, r(t) cos #, r(t) sin #) | t 2 R, # 2 S} ⇢ R3 with profile r(t) = |t|-↵ +O(t-2(↵+1)) as |t| # 0 (see
figure 15), endowed with the metric induced by the embedding in R3.

If ↵ = -1, M↵ is globally C1-isometric to the surface of revolution with profile r(t) = t, endowed
with the metric induced by the embedding in R3.

Proof. For any r 2 C1(R), consider the surface of revolution S = {(t, r(t) cos #, r(t) sin #) |

t > 0, # 2 S} ⇢ R3. By standard formulae of calculus, we can calculate the corresponding
(continuous) semi-definite Riemannian metric on S in coordinates (t, #) 2 R ⇥S to be

gS(t, #) =
✓

1+ r 0(t)2 0
0 r2(t)

◆
.

Let now ↵ < -1 and consider the C1 diffeomorphism � : (x, ✓) 2 R ⇥S 7! (t(x), #(✓)) 2 S

defined as the inverse of

�-1(t, #) =
✓

x(t)
✓(#)

◆
=

✓ Rt
0

p
1+ r 0(s)2ds
#

◆
. (5.1.6)

Observe that � is well defined due to the fact that r 0 is bounded near 0. Since @t(�-1) =
@tx(t) =

p
1+ r 0(t)2, by (5.1.5) the metric is transformed in

�⇤gS(x, ✓) =
⇣
J-1
�

⌘T
gS(�(x, ✓))J-1

� =

 
1 0

0 r
�
�(x, ✓)

�2

!

.
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We now claim that there exists a function r 2 C1(R) such that r(t(x)) = |x|-↵ near {x = 0}.
Moreover, this function has expression

r(t) =

�
t-↵ +O(t-2(↵+1)), if t > 0,
-(-t)-↵ +O(t-2(↵+1)) if t < 0.

(5.1.7)

Notice that, this function generates the same surface of revolution as r(t) = |t|-↵+O(t-2(↵+1)),
but is of class C1 in 0 while the latter is not.

The fact that r(t(x)) = |x|-↵ is equivalent to r(t) = |x(t)|-↵, i.e.,

r(t) =

✓Zt

0

q
1+ r 0(s)2 ds

◆-↵

. (5.1.8)

This integral equation has a unique solution. Indeed, after algebraic manipulation and a dif-
ferentiation, it is equivalent to the Cauchy problem

8
><

>:
r 0(t) =

s
1

↵-2r(t)-2(1+1/↵) - 1
,

r(0) = 0.
(5.1.9)

It is easy to check that, thanks to the assumption ↵ < -1, the r.h.s. of the ODE is Hölder
continuous of parameter 1 + 1/↵ at 0 (but not Lipschitz). This guarantees the existence of
a solution, but not its unicity. Indeed, this equation admits two kinds of solutions, either
r1(t) ⌘ 0 or r2(t) 6⌘ 0, where the transition between r1(t) and r2(t- t0) can happen at any
t0 > 0. However, the only admissible solution of (5.1.8) is r2, as can be directly checked.

We now prove the representation (5.1.7). Assume w.l.o.g. that t, and hence x(t), be positive.
Due to the Hölder continuity of the r.h.s. of the ODE in (5.1.9), we get that |r 0(t)| 6 Ct1+1/↵.
Hence,

|x 0(t)- x 0(0)| = |
q

1+ r 0(t)2 - 1| 6 |r 0(t)| 6 Ct1+1/↵.

Here, we used the 1/2-Hölder property of the square root. Finally, a simple computation
shows that |x(t)- tx 0(0)| = O(t2+1/↵), which yields

r(t) = (x(t))-↵ =
⇣
t+O(t2+1/↵)

⌘-↵
= t-↵ +O(t-(2+1/↵)(↵+1)) = t-↵ +O(t-2(↵+1)).

Here, in the last step we used the fact that -(2+ 1/↵)(↵+ 1) < -2(↵+ 1). This proves the
claim and thus the first part of the statement.

Let now ↵ = -1. In this case, by letting r(t) = t, the metric on the surface of revolution is

gS(t, #) =
✓

2 0
0 t2

◆
.

Consider the diffeomorphism  : (x, ✓) 2 R ⇥S 7! (t, #) 2 S defined as

 (x, ✓) =
p
2

✓
x
✓

◆
. (5.1.10)
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t

r(t)

Figure 15: The surface of revolution of Proposition 5.1.5 with ↵ = -2, i.e. r(t) = t2.

Then the statement follows from the following computation,

�⇤gS(x, ✓) =
⇣
J-1
 

⌘T
gS( (x, ✓))J-1

 =

 
1 0

0 r
�
 (x, ✓)

�2
/2

!

=

✓
1 0
0 x2

◆
.

Remark 5.1.6. If ↵ > -1 we cannot have a result like the above, since the change of variables
(5.1.6) is no more regular. In fact, the function r(t) = t-↵ has an unbounded first derivative
near 0.

�.� ����-������� ����������
In this section we prove Theorem 5.2.3, characterizing the self-adjointness of L on L2(M,dµ),
and present some results on its possible self-adjoint extensions. In particular, we will show
when it is possible for a free particle to cross the singularity, thus answering (Q1).

�.�.� Preliminaries

Let H be an Hilbert space with scalar product (·, ·)H and norm k · kH =
p
(·, ·)H. Given an

operator A on H we will denote its domain by D(A) and its adjoint by A⇤. Namely, if A is
densely defined, D(A⇤) is the set of ' 2 H such that there exists ⌘ 2 H with (A ,')H =
( ,⌘)H, for all  2 D(A). For each such ', we define A⇤' = ⌘.

An operator A is symmetric if

(A ,')H = ( ,A')H, for all  2 D(A).

A densely defined operator A is self-adjoint if and only if it is symmetric and D(A) = D(A⇤),
and is non-positive if and only if (A , ) 6 0 for any  2 D(A).

Given a strongly continuous group {Tt}t2R (resp. semigroup {Tt}t>0), its generator A is
defined as

Au = lim
t!0

Ttu- u

t
, D(A) = {u 2 H | Au exists as a strong limit}.
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5.2 Self-adjoint extensions

When a group (resp. semigroup) has generator A, we will write it as {etA}t2R (resp. {etA}t>0).
Then, by definition, u(t) = etAu0 is the solution of the functional equation

�
@tu(t) = Au(t)
u(0) = u0 2 H.

Recall the following classical result.

Theorem 5.2.1. Let H be an Hilbert space, then

1. (Stone’s theorem)The map A 7! {eitA}t2R induces a one-to-one correspondence

A self-adjoint operator () {eitA}t2R strongly continuous unitary group;

2. The map A 7! {etA}t>0 induces a one-to-one correspondence

A non-positive self-adjoint operator () {etA}t>0 strongly continuous semigroup;

For any Riemannian manifold M with measure dV , via the Green identity follows that
L |C1

c (M) is symmetric. However, from the same formula, follows that

D(L |C1
c (M)

⇤) = {u 2 L2(M,dV) | Lu 2 L2(M,dV)} ' C1
c (M),

where Lu is intended in the sense of distributions. Hence, L is not self-adjoint on C1
c (M).

Since, by Theorem 5.2.1, in order to have a well defined solution of the Schrödinger equation
the Laplace-Beltrami operator has to be self-adjoint, we have to extend its domain in order to
satisfy this property. For the heat equation, on the other hand, we will need also to worry
about the fact that it stays non-positive while doing so. We will tackle this problem in the
next section, where we will require the stronger property of being Markovian (i.e., that the
evolution preserves both the non-negativity and the boundedness).

Mathematically speaking, given two operators A,B, we say that B is an extension of A (and
we will write A ⇢ B) if D(A) ⇢ D(B) and A = B for any  2 D(A). The simplest
extension one can build starting from A is the closure Ā. Namely, D(Ā) is the closure of D(A)
with respect to the graph norm k · kA = kA · kH + k · kH, and Ā = limn!+1A n where
{ n}n2N ⇢ D(A) is such that  n !  in H. Since if A is symmetric A ⇢ Ā ⇢ A⇤, any self-
adjoint extension B of A will be such that Ā ⇢ B ⇢ A⇤. For this reason, we let Dmin(A) = D(Ā)
and Dmax(A) = D(A⇤). Moreover, from this fact follows that any self-adjoint extension B will
be defined as B = A⇤ for  2 D(B), so we are only concerned in specifying the domain of
B. The simplest case is the following.

Definition 5.2.2. The densely defined operator A is essentially self-adjoint if its closure Ā is
self-adjoint.

It is a well known fact, dating as far back as the series of papers [Gaf54, Gaf55], that the
Laplace-Beltrami operator is essentially self-adjoint on any complete Riemannian manifold.
On the other hand, it is clear that if the manifold is incomplete this is no more the case, in
general (see [Mas05, Gri09]). It suffices, for example, to consider the case of an open set
⌦ ⇢ Rn, where to have the self-adjointness of the Laplacian, we have to pose boundary
conditions (Dirichlet, Neumann or a mixture of the two). In our case, Theorem 5.2.3 will give
an answer to the problem of whether L |C1

c (M) is essentially self-adjoint or not.
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The problem of determining the self-adjoint extensions of L |C1
c (M) on L2(M,dµ) has been

widely studied in different fields. A lot of work has been done in the case ↵ = -1, in the
setting of Riemannian manifolds with conical singularities (see e.g., [Che80, Moo96]), and the
same methods have been applied in the more general context of metric cusps or horns (see
e.g., [Che79, Brü96]) that covers the case ↵ < -1. See also [LP98]. Concerning ↵ > -1, on the
other hand, the literature regarding � is more thin (see e.g., [Mor]).

In the following we will consider only the real self-adjoint extensions, i.e., all the function
spaces taken into consideration are composed of real-valued functions. The complex case will
be discussed in Section 5.3.

Applying the definition of minimal and maximal domain we immediately obtain that

Dmin(L |C1
c (M)) = closure of C1

c (M) with respect to the norm

k� · kL2(M↵,dµ) + k · kL2(M↵,dµ)},

Dmax(L |C1
c (M)) = {u 2 L2 (M↵,dµ) : �u 2 L2 (M↵,dµ) in the sense of distributions}.

Recall that the Riemannian gradient is given by ru(x, ✓) = (@xu(x, ✓), |x|2↵@✓u(x, ✓)). Follow-
ing [Gri09], we let the Sobolev spaces on the Riemannian manifold M endowed with measure
dµ be

H1(M,dµ) = {u 2 L2(M,dµ) : |ru| 2 L2(M,dµ)}, H1
0(M,dµ) = closure of C1

c (M) in H1(M,dµ),

H2(M,dµ) = {u 2 H1(M,dµ) : �u 2 L2(M,dµ)}, H2
0(M,dµ) = H2(M,dµ)\H1

0(M,dµ).

We define the Sobolev spaces H1 (M↵,dµ) and H2 (M↵,dµ) in the same way. We remark
that with these conventions H2

0(M,dµ) is in general bigger than the closure of C1
c (M) in

H2(M,dµ). Moreover, it may happen that H1(M,dµ) = H1
0(M,dµ). Indeed this property will

play an important role in the next section. In Proposition 5.2.13, is contained a description of
Dmax(L |C1

c (M)) in terms of these Sobolev spaces.
Although in general the structure of the self-adjoint extensions of L |C1

c (M) can be very
complicated, the Friedrichs (or Dirichlet) extension LF, is always well defined and self-adjoint.
Namely,

D(LF) = H2
0(M,dµ).

Observe that, since L2(M,dµ) = L2(M+,dµ)� L2(M-,dµ) and H1
0(M,dµ) = H1

0(M
+,dµ)�

H1
0(M

-,dµ), it follows that

D(LF) = {u 2 H1
0(M

+,dµ) | �u 2 L2(M+,dµ)}� {u 2 H1
0(M

-,dµ) | �u 2 L2(M-,dµ)}.

This implies that LF actually defines two separate dynamics on M+ and on M- and, hence,
there is no hope for an initial datum concentrated in M+ to pass to M-, and vice versa. Thus,
if L |C1

c (M) is essentially self-adjoint (i.e., the only self-adjoint extension is LF) the question
(Q1) has a negative answer.

�.�.� Fourier decomposition and self-adjoint extensions of Sturm-Liouville operators

The rotational symmetry of M↵ suggests to proceed by a Fourier decomposition in the ✓
variable, through the orthonormal basis {ek}k2Z ⇢ L2(S). Thus, we decompose the space
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5.2 Self-adjoint extensions

L2(M,dµ) =
L1

k=0Hk, Hk
⇠= L2(R \{0}, |x|-↵dx), and the corresponding operators on each

Hk will be

bLk = @2x -
↵

x
@x - |x|2↵k2. (5.2.1)

The aim of this section is to prove Theorem 1.3.2, that we recall here.

Theorem 5.2.3. Consider M↵ for ↵ 2 R and the corresponding Laplace-Beltrami operator L as an
unbounded operator on L2(M,dµ). Then the following holds.

• If ↵ 6 -3 then L is essentially self-adjoint;

• if ↵ 2 (-3,-1], only the first Fourier component bL0 is not essentially self-adjoint;

• if ↵ 2 (-1, 1), all the Fourier components of L are not essentially self-adjoint;

• if ↵ > 1 then L is essentially self-adjoint.

There exist various theories allowing to classify the self-adjoint extensions of symmetric
operators. We will use some tools from the Neumann theory (see [RS75]) and, when dealing
with one-dimensional problems, from the Sturm-Liouville theory. Let H be a complex Hilbert
space and i be the imaginary unit. The deficiency indexes of A are then defined as

n+(A) = dim ker(A+ i), n-(A) = dim ker(A- i).

Then A admits self-adjoint extensions if and only if n+(A) = n-(A), and they are in one to one
correspondence with the set of partial isometries between ker(A- i) and ker(A+ i). Obviously,
A is essentially self-adjoint if and only if n+(A) = n-(A) = 0.

Following [Zet05], we say that a self-adjoint extension B of A in H is a real self-adjoint ex-
tension if u 2 D(B) implies that u 2 D(B) and B(u) = Bu. When H = L2(M,dµ), i.e. the
real Hilbert space of square-integrable real-valued functions on M, the self-adjoint extensions
of A in L2(M,dµ) are the restrictions to this space of the real self-adjoint extensions of A in
L2C(M,dµ), i.e. the complex Hilbert space of square-integrable complex-valued functions. This
proves that A is essentially self-adjoint in L2(M,dµ) if and only if it is essentially self-adjoint in
L2C(M,dµ). Hence, when speaking of the deficiency indexes of an operator acting on L2(M,dµ),
we will implicitly compute them on L2C(M,dµ).

We start by proving the following general proposition that will allow us to study only the
Fourier components of L |C1

c (M), in order to understand its essential self-adjointness.

Proposition 5.2.4. Let Ak be symmetric on D(Ak) ⇢ Hk, for any k 2 Z and let D(A) be the set
of vectors in H =

L
k2Z Hk of the form  = ( 1, 2, . . .), where  k 2 D(Ak) and all but finitely

many of them are zero. Then A =
P

k2Z Ak is symmetric on D(A), n+(A) =
P

k2Z n+(Ak) and
n-(A) =

P
k2Z n-(Ak).

Proof. Let  = ( 1, 2, . . .) 2 D(A). Then, by symmetry of the Ak’s and the fact that only
finitely many  k are nonzero, it holds

(Au, v)H =
X

k2Z

(Akuk, vk)Hk
=

X

k2Z

(uk,Akvk)Hk
= (u,Av)H.

This proves the symmetry of A.
Observe now that  = ( 1, 2, . . .) 2 ker(A ± i) if and only if 0 = A ± i = (A1 1 ±

i,A2 2 ± i, . . .). This clearly implies that dim ker(A± i) =
P

k2Z dim ker(Ak ± i), completing
the proof.
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Observe that, for any k 2 Z, the Fourier component bLk, defined in (5.2.1), is a second
order differential operator of one variable. Thus, it can be studied through the Sturm-Liouville
theory (see [Zet05, EGNT13]). Let J = (a1,b1) [ (a2,b2), -1 6 a1 < b1 6 a2 < b2 6 +1,
and for 1/p, q, w 2 L1loc(J) consider the Sturm-Liouville operator on L2(J,w(x)dx) defined by

Au =
1

w

✓
- @x(p@xu) + qu

◆
. (5.2.2)

Letting J = R \{0}, w(x) = |x|-↵, p(x) = -|x|-↵, and q(x) = -k2|x|↵, we recover bLk.
For a Sturm-Liouville operator the maximal domain can be explicitly characterized as

Dmax(A) = {u : J ! R | u, p@xu are absolutely continuous on J, and u, Au 2 L2(J,w(x)dx)}.
(5.2.3)

In (5.2.5), at the end of the section, we will give a precise characterization of the minimal
domain.

Definition 5.2.5. The endpoint (finite or infinite) a1, is limit-circle if all solutions of the equa-
tion Au = 0 are in L2((a1,d),w(x)dx) for some (and hence any) d 2 (a1,b1). Otherwise a1 is
limit-point.

Analogous definitions can be given for b1, a2 and b2.

Let us define the Lagrange parenthesis of u, v : J ! R associated to (5.2.2) as the bilinear
antisymmetric form

[u, v] = up@xv- v p@xu.

By [Zet05, (10.4.41)] or [EGNT13, Lemma 3.2], we have that [u, v](d) exists and is finite for any
u, v 2 Dmax(bLk) and any endpoint d of J.

Definition 5.2.6. The Sturm-Liouville operator (5.2.2) is regular at the endpoint a1 if for some
(and hence any) d 2 (a1,b1), it holds

1

p
, q, w 2 L1((a1,d)).

A similar definition holds for b1, a2, b2.

In particular, for any k 2 Z, the operator bLk is never regular at the endpoints +1 and -1,
and is regular at 0+ and 0- if and only if ↵ 2 (-1, 1).

We will need the following theorem, that we state only for real extensions and in the cases
we will use.

Theorem 5.2.7 (Theorem 13.3.1 in [Zet05]). Let A be the Sturm-Liouville operator on L2(J,w(x)dx)
defined in (5.2.2). Then

n+(A) = n-(A) = #{limit-circle endpoints of J}.

Assume now that n+(A) = n-(A) = 2, and let a and b be the two limit-circle endpoints of
J. Moreover, let �1,�2 2 Dmax(A) be linearly independent modulo Dmin(A) and normalized by
[�1,�2](a) = [�1,�2](b) = 1. Then, B is a self-adjoint extension of A over L2(J,w(x)dx) if and only
if Bu = A⇤u, for any u 2 D(B), and one of the following holds
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5.2 Self-adjoint extensions

1. Disjoint dynamics: there exists c+, c- 2 (-1,+1] such that u 2 D(B) if and only if

[u,�1](0
+) = c+[u,�2](a) and [u,�1](0

-) = d+[u,�2](b).

2. Mixed dynamics: there exist K 2 SL2(R) such that u 2 D(B) if and only if

U(bu) = KU(a), for U(x) =

✓
[u,�1](x)
[u,�2](x)

◆
.

Remark 5.2.8. Let �a
1 and �a

2 be, respectively, the functions �1 and �2 of the above theorem,
multiplied by a cutoff function ⌘ : J ! [0, 1] supported in a (right or left) neighborhood of a in
J and such that ⌘(a) = 1 and ⌘ 0(a) = 0. Let �b

1 and �b
2 be defined analogously. Then, from

(5.2.5), follows that we can write

Dmax(A) = Dmin(A) + span{�a
1 ,�b

1 ,�a
2 ,�b

2 }. (5.2.4)

The following lemma classifies the end-points of R \{0} with respect to the Fourier compo-
nents of L |C1

c (M).

Lemma 5.2.9. Consider the Sturm-Liouville operator b�k on R \{0}. Then, for any k 2 Z the endpoints
+1 and -1 are limit-point. On the other hand, regarding 0+ and 0- the following holds.

1. If ↵ 6 -3 or if ↵ > 1, then they are limit-point for any k 2 Z;

2. if -3 < ↵ 6 -1, then they are limit-circle if k = 0 and limit-point otherwise;

3. if -1 < ↵ < 1, then they are limit-circle for any k 2 Z.

Before the proof, let us remark that, since [u, v](d) = 0 for any limit-point end-point d, by the
Patching Lemma (see [Zet05, Lemma 10.4.1]) and [Zet05, Lemma 13.3.1], Lemma 5.2.9 gives
the following characterization of the minimal domain of b�k,

Dmin(b�k) =
⌦
u 2 Dmax(b�k) | [u, v](0+) = [u, v](0-) = 0 for all v 2 Dmax(b�k)

↵
. (5.2.5)

Proof of Lemma 5.2.9. By symmetry with respect to the origin of b�k, it suffices to check only 0+

and +1.
Let k = 0, then for ↵ 6= -1 the equation b�0u = u 00 - (↵/x)u 0 = 0 has solutions u1(x) = 1

and u2(x) = x1+↵. Clearly, u1 and u2 are both in L2((0, 1), |x|-↵dx), i.e., 0+ is limit-circle,
if and only if ↵ 2 (-3, 1). On the other hand, u1 and u2 are never in L2((1,+1), |x|-↵dx)
simultaneously, and hence +1 is always limit-point. If ↵ = -1, the statement follows by the
same argument applied to the solutions u1(x) = 1 and u2(x) = log(x).

Let now k 6= 0 and ↵ 6= -1. Then b�ku = u 00 - (↵/x)u 0 - x2↵k2u = 0, x > 0, has solutions
u1(x) = exp

⇣
kx1+↵

1+↵

⌘
and u2(x) = exp

⇣
-kx1+↵

1+↵

⌘
. If ↵ > -1, both u1 and u2 are bounded

and nonzero near x = 0, and either u1 or u2 has exponential growth as x ! +1. Hence, in
this case, u1,u2 2 L2((0, 1), |x|-↵) if and only if ↵ < 1, while +1 is always limit-point. On
the other hand, if ↵ < -1, u1 and u2 are bounded away from zero as x ! +1 and one of
them has exponential growth at x = 0. Since the measure |x|-↵dx blows up at infinity, this
implies that both 0+ and +1 are limit-point. Finally, the same holds for ↵ = -1, considering
the solutions u1(x) = xk and u2(x) = x-k.
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We are now able to classify the essential self-adjointness of the operator L |C1
c (M).

Proof of Theorem 5.2.3. Let D ⇢ C1
c (M) be the set of C1

c (M) functions which are finite linear
combinations of products u(x)v(✓). Since L2(M,dµ) = L2(R \{0}, |x|-↵dx)⌦ L2(S,d✓), the set
D is dense in L2(M,dµ) and hence, by Proposition 5.2.4 the operator �|D is essentially self
adjoint if and only if so are all b�k|D\Hk

. Since n±(�|D) = n±(L |C1
c (M)), this is equivalent to

L |C1
c (M) being essentially self-adjoint.

To conclude, recall that by Theorem 5.2.7 the operator b�k is not essentially self-adjoint on
L2(R \{0}, |x|-↵dx) if and only if it is in the limit-circle case at at least one of the four endpoints
-1, 0-, 0+ and +1. Hence applying Lemma 5.2.9 is enough to complete the proof.

�.�.� The first Fourier component bL0

In order to have a more precise answer to (Q1) for ↵ 2 (-3, 1), we now describe the self-
adjoint extension realising the maximal communication between the two sides. We will call
such extension the bridging extension.

We start with the case ↵ 2 (-3,-1] since here it suffices to study the equation on the first
Fourier component. Indeed, by Theorem 5.2.3, in this case any self-adjoint extension A of
L |C1

c (M) can be decomposed as

A = bA0 �

0

@
M

k2Z \{0}

bLk

1

A . (5.2.6)

Here, bA0 is a self-adjoint extension of bL0 and, with abuse of notation, we denoted the only
self-adjoint extension of bLk by bLk as well.

We will thus focus on the first Fourier component bL0|C1
c (R \{0}) on L2(R \{0}, |x|-↵dx), when

↵ 2 (-3, 1), and describe its real self-adjoint extensions. For a description of the complex self-
adjoint extensions of bL0|C1

c (R \{0}), we refer to Theorem 5.3.3. We remark that this operator is
regular at the origin, in the sense of Sturm-Liouville problems (see Definition 5.2.6), if and only
if ↵ > -1. Hence, for ↵ 6 -1, the boundary conditions will be asymptotic, and not punctual.

Let �+
D and �+

N be two smooth functions on R \{0}, supported in [0, 2), and such that, for
any x 2 [0, 1] it holds

�+
D(x) = 1, �+

N(x) =

�
(1+↵)-1 x1+↵ if ↵ 6= -1,
log(x) if ↵ = -1.

(5.2.7)

Let also �-
D(x) = �+

D(-x) and �+
N(x) = �-

N(-x). Finally, recall that, on R \{0} endowed
with the Euclidean structure, the Sobolev space H2(R \{0}, |x|-↵dx) is the space of functions
u 2 L2(R \{0}, |x|-↵dx) such that |@xu|, |@2xu| 2 L2(R \{0}, |x|-↵dx). Then, the following holds.

Theorem 5.2.10. Let Dmin(bL0) and Dmax(bL0) be the minimal and maximal domains of bL0|C1
c (R \{0})

on L2(R \{0}, |x|-↵dx), for ↵ 2 (-3, 1). Then,

Dmin(bL0) = closure of C1
c (R \{0}) in H2(R \{0}, |x|-↵dx)

Dmax(bL0) = {u = u0 + u+
D�

+
D + u+

N�
+
N + u-

D�
-
D + u-

N�
-
N : u0 2 Dmin(bL0) and u±

D, u±
N 2 R},

Moreover, A is a self-adjoint extension of bL0 if and only if Au = (bL0)
⇤u, for any u 2 D(A), and one

of the following holds
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5.2 Self-adjoint extensions

(i) Disjoint dynamics: there exist c+, c- 2 (-1,+1] such that

D(A) =
�
u 2 Dmax(bL0) : u

+
N = c+u

+
D and u-

N = c-u
+
D

 
.

(ii) Mixed dynamics: there exist K 2 SL2(R) such that

D(A) =
�
u 2 Dmax(bL0) : (u

-
D,u-

N)T = K (u+
D,u+

N)T
 

.

Finally, the Friedrichs extension (bL0)F is the one corresponding to the disjoint dynamics with c+ =
c- = 0 if ↵ 6 -1 and with c+ = c- = +1 if ↵ > -1.

From the above theorem (see Remark 5.2.12) it follows that u±
N = limx!0± |x|-↵ @xu(x) and,

if -1 < ↵ < 1, that u±
D = u(0±). Moreover, the last statement implies that

D((bL0)F) =

�
{u 2 Dmax(bL0) : u

+
N = u-

N = 0} if ↵ 6 -1,
{u 2 Dmax(bL0) : u(0

+) = u(0-) = 0} if ↵ > -1.

In particular, if ↵ 6 -1 the Friedrichs extension does not impose zero boundary conditions.
Clearly, the disjoint dynamics extensions will give an evolution for which (Q1) has negative

answer. On the other hand, the mixed dynamics extensions will permit information transfer be-
tween the two halves of the space. Since by Theorem 5.2.3, to classify the self-adjoint extensions
for ↵ 2 (-3,-1] it is enough to study bL0, this analysis completely classifies the self-adjoint
extensions in this case. On the other hand, since for ↵ 2 (-1, 1) all the Fourier components are
not essentially self-adjoint, a complete classification requires more sophisticated techniques.
We will, in turn, study some selected extensions.

Remark 5.2.11. The mixed dynamics extension with K = Id is the bridging extension of the first
Fourier component, which we will denote by (bL0)B. If ↵ 2 (-3,-1], the bridging extension LB

of L |C1
c (M) is then defined by (5.2.6) with A0 = (bL0)B. The bridging extension for ↵ 2 (-1, 1)

is described in the following section.

Proof of Theorem 5.2.10. We start by proving the statement on Dmin(bL0). The operator bL0 is
transformed by the unitary map U0 : L2(R \{0}, |x|-↵dx) ! L2(R \{0}), U0v(x) = |x|-↵/2v(x),
in

�� 0 = @2x -
↵

2

⇣↵
2
+ 1
⌘ 1

x2
.

By [AA12] and [Zet05, Lemma 13.3.1], it holds that Dmin(�� 0) is the closure of C1
c (R \{0}) in

the norm of H2(R \{0},dx), i.e.,

kukH2(R \{0},dx) = kukL2(R \{0},dx) + k@xukL2(R \{0},dx) + k@2xukL2(R \{0},dx).

From this follows that Dmin(bL0) = U-1
0 Dmin(�� 0) is given by the closure of C1

c (R \{0}) in
W = U-1

0 H2(R \{0},dx), w.r.t. the induced norm

kvkW = kU0vkH2(R \{0},dx)

= kvkL2(R \{0},|x|-↵dx) +
��|x|↵/2@x(|x|-↵/2v)

��
L2(R \{0},|x|-↵dx) + k|x|↵/2@2x(|x|-

↵/2v)kL2(R \{0},|x|-↵dx)
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(5.2.8)

To prove the statement, it suffices to show that on C1
c (R \{0}) the induced norm (5.2.8) is

equivalent to the norm of H2(R \{0}, |x|-↵dx), which is

kvkH2(R \{0},|x|-↵dx) = kvkL2(R \{0},|x|-↵dx)+
��@x v

��
L2(R \{0},|x|-↵dx)+kbL0vkL2(R \{0},|x|-↵dx).

(5.2.9)

To this aim, observe that

@xv(x) = |x|
↵/2@x(|x|

-↵/2v) +
↵

2

v

x
, bL0v = |x|

↵/2@2x
�
|x|-

↵/2v
�
+
↵

2

⇣↵
2
+ 1
⌘ v

x2
. (5.2.10)

Moreover, by a cutoff argument, it is clear that we can prove the bound separately for v sup-
ported near the origin and away from it.

Let v 2 C1
c (R \{0}) be supported in (-1, 0)[ (0, 1). By (5.2.10) and the fact that if |x| 6 1 then

|x|-1, |x|-2 > 1, it follows immediately that kvkH2(R \{0},|x|-↵dx) 6 kvkW . In order to prove
the opposite inequality, observe that x-2 > x-1 and v 2 H2

0((0, 1),dx)�H2
0((-1, 0),dx). Thus,

by [AA12, (3.5)] we obtain
���vx-1

���
L2(R \{0},|x|-↵dx)

+
���vx-2

���
L2(R \{0},|x|-↵dx)

6 2kvx-2kL2(R \{0},|x|-↵dx)

= 2kvx-2-↵/2kL2((0,1)) 6 2Ck@x(vx-↵/2)kH2((0,1)) = 2CkvkW . (5.2.11)

Finally, let v 2 C1
c (R \{0}) be supported in (1,+1) (the same argument will work also

between (-1,-1)). In this case, x-2 < x-1 < 1. Thus, by (5.2.10), (5.2.8), (5.2.9) and the
triangular inequality, we get that for any v 2 C1

c (R \{0}) it holds
���kvkW - kvkH2(R \{0},|x|-↵dx)

���

6 C

✓���vx-1
���

L2(R \{0},|x|-↵dx)
+
���vx-2

���
L2(R \{0},|x|-↵dx)

◆
6 2CkvkL2(R \{0},|x|-↵dx),

for some constant C > 0. Since kvkW and kvkH2(R \{0},|x|-↵dx) > kvkL2(R \{0},|x|-↵dx), this
completes the proof of the first part of the theorem.

We now proceed to the classification of the self-adjoint extensions of bL0. For this purpose,
recall the definition of �±

D and �±
N given in (5.2.7) and let

�N(x) = �+
N(x) +�-

N(x), �D(x) = �+
D(x) +�-

D(x).

Observe that �D 2 L2(R \{0}, |x|-↵dx) and that bL0�D(x) = 0 for any x /2 (-2,-1) [ (1, 2).
Since the function is smooth, this implies that �D 2 Dmax(bL0). The same holds for �N.
Moreover, a simple computation shows that [�+

D,�+
N](0+) = [�+

D,�+
N](0-) = 1, and hence �N

and �D satisfy the hypotheses of Theorem 5.2.7. In particular, by Remark 5.2.8, this implies
that

Dmax(bL0) = Dmin(bL0) + span{�+
D,�+

N,�-
D,�-

N}.

We claim that for any u = u0 + u+
D�

+
D + u+

N�
+
N + u-

D�
-
D + u-

N�
-
N 2 Dmax it holds

[u,�N](0+) = u+
D, [u,�D](0+) = u+

N, [u,�N](0-) = u-
D, [u,�N](0-) = u-

N.
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5.2 Self-adjoint extensions

(5.2.12)

This, by Theorem 5.2.7 will complete the classification of the self-adjoint extensions. Ob-
serve that, (5.2.5) and the bilinearity of the Lagrange parentheses imply that [u0,�N](0±) =
[u0,�D](0±) = 0. The claim then follows from the fact that

[�+
D,�N](0+) = [�+

N,�D](0+) = [�-
D,�N](0-) = [�-

N,�D](0-) = 1,
[�-

D,�N](0+) = [�-
N,�D](0+) = [�+

D,�N](0-) = [�+
N,�D](0-) = 0.

To complete the proof, it remains only to identify the Friedrichs extension (bL0)F. Recall that
such extension is always defined, and has domain

D((bL0)F) = {u 2 H1
0(R \{0}, |x|-↵dx) | bL0u 2 L2(R \{0}, |x|-↵dx)}.

Since if ↵ 6 -1, �N /2 H1(R \{0}, |x|-↵dx), it is clear that the Friedrichs extension corresponds
to the case where u+

N = u-
N = 0, i.e., to c+ = c- = 0. On the other hand, if ↵ > -1, since all

the end-points are regular, by [EGNT13, Corollary 10.20] holds that the Friedrichs extension
corresponds to the case where u(0±) = u±

D = 0, i.e., to c+ = c- = +1.

Remark 5.2.12. If u 2 Dmax(bL0), it holds

u+
D = [u,�N](0+) = lim

x#0

�
u(x)- x@xu(x)

�
and u+

N = [u,�D](0+) = lim
x#0

x-↵ @xu(x).

This implies, in particular, that if ↵ > -1 then u+
D = u(0+). Indeed this holds if and only if the

end-point 0+ is regular in the sense of Sturm-Liouville operators, see Definition 5.2.6. Clearly
the same computations hold at 0-.

We conclude this section with a description of the maximal domain, in the case ↵ 2 (-1, 1).

Proposition 5.2.13. For any ↵ 2 R, it holds that

Dmax(L |C1
c (M)) =

8
><

>:

H2(M,dµ) = H2
0(M,dµ) if ↵ 6 -3 or ↵ > 1,

H2(M,dµ)� span{�+
N,�-

N} if - 3 < ↵ 6 -1,
H2(M,dµ) % H2

0(M,dµ) if - 1 < ↵ < 1.

Here we let, with abuse of notation, �±
N(x,y) = �±

N(x).

Proof. Recall that, by definition, H2(M,dµ) ⇢ Dmax(L |C1
c (M)). Moreover, if ↵ 6 -3 or if ↵ > 1,

by Theorem 5.2.3 it holds Dmax(L |C1
c (M)) = D(LF) = H2

0(M,dµ) ⇢ H2(M,dµ). This proves
the first statement.

On the other hand, by Remark 5.2.8, if ↵ 2 (-3,-1], since bLk is essentially self-adjoint for
any k 6= 0 we can decompose the maximal domain as

Dmax(L |C1
c (M)) = Dmax(bL0)�

0

@
M

k2Z \{0}

D(bLk)

1

A

Moreover, letting ⇡0 be the projection on the k = 0 Fourier component and defining (⇡-1
0 u0)(x, ✓) =

u0(x) for any u0 2 L2(R \{0}, |x|-↵dx), the previous decomposition and the fact that Dmin(L |C1
c (M)) ⇢

H2(M,dµ) ⇢ Dmax(L |C1
c (M)) implies that

Dmax(L |C1
c (M)) =

�
u = u0 + ⇡-1

0 ũ | u0 2 Dmin(L |C1
c (M)), ũ 2 span{�+

D,�+
N,�-

D,�-
N}
 

= H2(M,dµ) + span{�+
D,�+

N,�-
D,�-

N}.
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Here, in the last equality, we let �D(x,y) = �D(x) and �N(x,y) = �N(x). A simple computa-
tion shows that �D 2 H1(R \{0}, |x|-↵dx) and �N /2 H1(R \{0}, |x|-↵dx). Since bL0�D = 0, it
follows that �D 2 H2(M,dµ), while �N /2 H2(M,dµ). This implies the statement.

To complete the proof it suffices to prove that if ↵ 2 (-1, 1) it holds Dmax(L |C1
c (M)) ⇢

H2(M,dµ). In fact, the inequality H2(M,dµ) 6= H2
0(M,dµ) will then follow from the fact

that LF is not the only self-adjoint extension of L |C1
c (M). By Parseval identity, �,�� 2

L2(M,dµ) if and only �k, bLk�k 2 L2(R \{0}, |x|-↵dx) for any k 2 Z and thus the state-
ment is equivalent to Dmax(bLk) ⇢ H2(R \{0}, |x|-↵dx) for any k 2 Z. Let u 2 Dmax(bLk).
Since limx!0± x-↵@xu(x) = [u,�D](0±), this limit exists and is finite. Moreover, since ±1
are limit-point, it holds limx!±1 x-↵@xu(x) = [u,�D](±1) = 0. Hence, x-↵@xu is square
integrable near 0 and at infinity, and from the characterization (5.2.3) follows that bLku 2
L2(R \{0}, |x|-↵dx). This proves that u 2 H2(R \{0}, |x|-↵dx) and thus the proposition.

�.� ������� ����-������� ����������
The natural functional setting for the Schrödinger equation on M↵ is the space of square
integrable complex-valued function L2C(M,dµ). It is easy to see that the self-adjoint extension
of A over L2(M,dµ) studied in the previous section are exactly the restrictions to this space of
the real self-adjoint extension of A over L2C(M,dµ).

All the theory of Section 5.2 extends to the complex case, in particular, we have the following
generalization of Theorem 5.2.7.

Theorem 5.3.1 (Theorem 13.3.1 in [Zet05]). Let A be the Sturm-Liouville operator on L2C(J,w(x)dx)
defined in (5.2.2). Then

n+(A) = n-(A) = #{limit-circle endpoints of J}.

Assume now that n+(A) = n-(A) = 2, and let a and b be the two limit-circle endpoints of
J. Moreover, let �1,�2 2 Dmax(A) be linearly independent modulo Dmin(A) and normalized by
[�1,�2](a) = [�1,�2](b) = 1. Then, B is a self-adjoint extension of A over L2C(J,w(x)dx) if and only
if Bu = A⇤u, for any u 2 D(B), and one of the following holds

1. Disjoint dynamics: there exists c+, c- 2 (-1,+1] such that u 2 D(B) if and only if

[u,�1](0
+) = c+[u,�2](0

+) and [u,�1](0
-) = d+[u,�2](0

-).

2. Mixed dynamics: there exist K 2 SL2(R) and � 2 (-⇡,⇡] such that u 2 D(B) if and only if

U(0-) = ei�KU(0+), for U(x) =

✓
[u,�1](x)
[u,�2](x)

◆
.

Finally, B is a real self-adjoint extension if and only if it satisfies (1) the disjoint dynamic or (2) the
mixed dynamic with � = 0.

As a consequence of Theorem 5.3.1, we get a complete description of the essential self-
adjointness of L |C1

c (M) over L2C(M,dµ), extending Theorem 5.2.3, and of the complex self-
adjoint extensions of bL0, extending Theorem 5.2.10.
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Theorem 5.3.2. Consider M↵ for ↵ 2 R and the corresponding Laplace-Beltrami operator L |C1
c (M)

as an unbounded operator on L2C(M,dµ). Then it holds the following.

(i) If ↵ 6 -3 then L |C1
c (M) is essentially self-adjoint;

(ii) if ↵ 2 (-3,-1], only the first Fourier component b�0 is not essentially self-adjoint;

(iii) if ↵ 2 (-1, 1), all the Fourier components of L |C1
c (M) are not essentially self-adjoint;

(iv) if ↵ > 1 then L |C1
c (M) is essentially self-adjoint.

Theorem 5.3.3. Let Dmin(bL0) and Dmax(bL0) be the minimal and maximal domains of bL0|C1
c (R \{0})

on L2C(R \{0}, |x|-↵), for ↵ 2 (-3, 1). Then,

Dmin(bL0) = closure of C1
c (R \{0}) in H2

C(R \{0}, |x|-↵dx)

Dmax(bL0) = {u = u0 + u+
D�

+
D + u+

N�
+
N + u-

D�
-
D + u-

N�
-
N : u0 2 Dmin(bL0) and u±

D, u±
N 2 C},

Moreover, A is a self-adjoint extension of bL0 if and only if Au = (bL0)
⇤u, for any u 2 D(A), and one

of the following holds

(i) Disjoint dynamics: there exist c+, c- 2 (-1,+1] such that

D(A) =
�
u 2 Dmax(bL0) : u

+
N = c+u

+
D and u-

N = c-u
+
D

 
.

(ii) Mixed dynamics: there exist K 2 SL2(R) and � 2 (-⇡,⇡] such that

D(A) =
�
u 2 Dmax(bL0) : (u

-
D,u-

N) = ei�K (u+
D,u+

N)T
 

.

Finally, the Friedrichs extension (bL0)F is the one corresponding to the disjoint dynamics with c+ =
c- = 0 if ↵ 6 -1 and with c+ = c- = +1 if ↵ > -1.

�.� �������� �����
In this section we prove Theorem 1.3.6, that answers to (Q2).

�.�.� Preliminaries

This introductory section is based on [FOT11]. Let H be an Hilbert space with scalar product
(·, ·)H. A non-negative symmetric bilinear form densely defined on H, henceforth called only
a symmetric form on H, is a map E : D(E)⇥D(E) ! R such that D(E) is dense in H and E is
bilinear, symmetric, and non-negative (i.e., E(u,u) > 0 for any u 2 D(E)). A symmetric form
is closed if D(E) is a complete Hilbert space with respect to the scalar product

(u, v)E = (u, v)H + E(u, v), u, v 2 D(E). (5.4.1)

To any densely defined non-positive definite self-adjoint operator A it is possible to associate
a symmetric form EA such that

EA(u, v) = (-Au, v)
D(A) = {u 2 D(EA) : 9v 2 H s.t. E(u,�) = (v,�) for all � 2 D(EA)}.

Indeed, we have the following.
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Theorem 5.4.1 ([Kat95, FOT11]). Let H be an Hilbert space, then the map A 7! EA induces a one to
one correspondence

A non-positive definite self-adjoint operator () EA closed symmetric form.

In particular, the inverse correspondence can be characterized by D(A) ⇢ D(EA) and EA(u, v) =
(-Au, v) for all u 2 D(A), v 2 D(EA).

Consider now a �-finite measure space (X,F,m).

Definition 5.4.2. A symmetric form E on L2(X,m) is Markovian if for any " > 0 there exists
 " : R ! R such that -" 6  " 6 1+ ",  "(t) = t if t 2 [0, 1], 0 6  "(t)- "(s) 6 t- s
whenever s < t and

u 2 D(E) =)  "(u) 2 D(E) and E( "(u), "(u)) 6 E(u,u).

A closed Markovian symmetric form is a Dirichlet form.
A semigroup {Tt}t>0 on L2(X,m) is Markovian if

u 2 L2(X,m) s.t. 0 6 u 6 1 m- a.e. =) 0 6 Ttu 6 1 m- a.e. for any t > 0.

A non-positive self-adjoint operator is Markovian if it generates a Markovian semigroup.

When the form is closed, the Markov property can be simplified, as per the following Theo-
rem. For any u : X ! R let u] = min{1, max{u, 0}}.

Theorem 5.4.3 (Theorem 1.4.1 of [FOT11]). The closed symmetric form E is Markovian if and only
if

u 2 D(E) =) u] 2 D(E) and E(u],u]) 6 E(u,u).

Since any function of L1(X,m) is approximable by functions in L2(X,m), the Markov prop-
erty allows to extend the definition of {Tt}t>0 to L1(X,m), and moreover implies that it is
a contraction semigroup on this space. When {Tt}t>0 is the evolution semigroup of the heat
equation, the Markov property can be seen as a physical admissibility condition. Namely, it
assures that when starting from an initial datum u representing a temperature distribution
(i.e., a positive and bounded function) the solution Ttu remains a temperature distribution at
each time, and, moreover, that the heat does not concentrate.

The following theorem extends the one-to-one correspondence given in Theorems 5.2.1 and
5.4.1 to the Markovian setting.

Theorem 5.4.4 ([FOT11]). Let A be a non-positive self-adjoint operator on L2(X,m). The following
are equivalents

1. A is a Markovian operator;

2. EA is a Dirichlet form;

3. {etA}t>0 is a Markovian semigroup.
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Given a non-positive symmetric operator A we can always define the (non-closed) symmetric
form

E(u, v) = (-Au, v), D(E) = D(A).

The Friedrichs extension AF of A is then defined as the self-adjoint operator associated via
Theorem 5.4.1 to the closure E0 of this form. Namely, D(E0) is the closure of D(A) with respect
to the scalar product (5.4.1), and E0(u, v) = limn!+1 E(un, vn) for un ! u and vn ! v w.r.t.
(·, ·)E. It is a well-known fact that the Friedrichs extension of a Markovian operator is always
a Dirichlet form (see, e.g., [FOT11, Theorem 3.1.1]).

A Dirichlet form E is said to be regular on X if D(E)\Cc(X) is both dense in D(E) w.r.t. the
scalar product (5.4.1) and dense in Cc(X) w.r.t. the L1(X) norm. To any regular Dirichlet form
EA it is possible to associate a Markov process {Xt}t>0 which is generated by A (indeed they
are in one-to-one correspondence to a particular class of Markov processes, the so-called Hunt
processes, see [FOT11] for the details).

If its associated Dirichlet form is regular, by Definitions 1.3.4 and 1.3.5, a Markovian operator
is said stochastically complete if its associated Markov process has almost surely infinite lifespan,
and recurrent if it intersects any subset of X with positive measure an infinite number of times.
If it is not stochastically complete, an operator is called explosive. Observe that recurrence is a
stronger property than stochastic completeness. Since we will only consider regular Dirichlet
forms, we refer to [FOT11] for a definition of recurrence valid for general Dirichlet forms.

We will need the following characterizations.

Theorem 5.4.5 (Theorem 1.6.6 in [FOT11]). A Dirichlet form E is stochastically complete if and only
if there exists a sequence {un} ⇢ D(E) satisfying

0 6 un 6 1, lim
n!+1

un = 1 m- a.e.,

such that

E(un, v) ! 0 for any v 2 D(E)\ L1(X,m).

We let the extended domain D(E)e of a Dirichlet form E to be the family of functions u 2
L1(X,m) such that there exists {un}n2N ⇢ D(E), Cauchy sequence w.r.t. the scalar product
(5.4.1), such that un �! u m-a.e. . The Dirichlet form E can be extended to D(E)e as a
non-negative definite symmetric bilinear form, by E(u,u) = limn!+1 E(un,un).

Theorem 5.4.6 (Theorems 1.6.3 and 1.6.5 in [FOT11]). Let E be a Dirichlet form. The following are
equivalent.

1. E is recurrent;

2. there exists a sequence {un} ⇢ D(E) satisfying

0 6 un 6 1, lim
n!+1

un = 1 m- a.e.,

such that

E(un, v) ! 0 for any v 2 D(E)e.
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3. 1 2 D(E)e, i.e., there exists a sequence {un} ⇢ D(E) such that limn!+1 un = 1 m- a.e.
and E(un,un) ! 0.

Remark 5.4.7. As a consequence of this two theorems we have that if m(X) < +1, stochastic
completeness and recurrence are equivalent.

We conclude this preliminary part, by introducing a notion of restriction of closed forms
associated to self-adjoint extensions of L |C1

c (M).

Definition 5.4.8. Given a self-adjoint extension A of L |C1
c (M) and an open set U ⇢ M, we

let the Neumann restriction EA|U of EA to be the form associated with the self-adjoint operator
A|U on L2(U,dµ), obtained by putting Neumann boundary conditions on @U.

In particular, by Theorem 5.4.1 and an integration by parts, it follows that D(EA|U) = {u|U |

u 2 D(EA)}.

�.�.� Markovian extensions of L |C1
c (M)

The bilinear form associated with L |C1
c (M) is

E(u, v) =
Z

M↵

g(ru,r v)dµ =

Z

M↵

⇣
@xu@xv+ |x|2↵@✓u@✓v

⌘
dµ, D(E) = C1

c (M).

By [FOT11, Example 1.2.1], E is a Markovian form. The Friederichs extension is then associated
with the form

EF(u, v) =
Z

M

�
@xu@xv+ |x|2↵@✓u@✓v

�
dµ, D(EF) = H1

0(M,dµ),

where the derivatives are taken in the sense of Schwartz distributions. By its very definition,
and the fact that D(EF)\C1

c (M) = C1
c (M), follows that EF is always a regular Dirichlet form

on M (equivalently, on M+ or on M-). Its associated Markov process is absorbed by the
singularity.

The following Lemma will be crucial to study the properties of the Friederichs extension.
Let M0 = (-1, 1)⇥ S, M1 = (1,+1)⇥ S and recall the notion of Neumann restriction given
in Definition 5.4.8.

Lemma 5.4.9. If ↵ 6 -1, it holds that 1 2 D(EF|M0
). Moreover, 1 /2 D(EF|M0

)e if ↵ > -1 and
1 2 D(EF|M1)e if and only if ↵ > -1.

Proof. To ease the notation, we let bEk to be the Dirichlet form associated to the Friederichs
extension of bLk. In particular, for k = 0,

bE0(u, v) =
Z

R \{0}
@xu@xv |x|

-↵dx, D(bE0) = H1
0(R \{0}, |x|-↵dx).

Let ⇡k : L2(M,dµ) ! Hk = L2(R \{0}, |x|-↵dx) be the projection on the k-th Fourier compo-
nent. Then, from the rotational invariance of D(EF) follows that

D(EF) =
M

k2Z

D(bEk), EF(u, v) =
X

k2Z

bEk(⇡ku,⇡kv).
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In particular, since ⇡01 = 1 and ⇡k1 = 0 for k 6= 0, follows that 1 2 D(EF|M0
) (resp. 1 2

D(EF|M1)e) if and only if 1 2 D(bE0|(0,1)) (resp. 1 2 D(bE0|(1,+1))e). Here, with abuse of
notation, we denoted as 1 both the functions 1 : M ! {1} and 1 : R ! {1}. Thus, to complete
the proof of the lemma, it suffices to prove that 1 2 D(bE0|(0,1)) if ↵ 6 -1, that 1 /2 D(bE0|(0,1))e

if ↵ > -1 and that 1 2 D(bE0|(1,+1))e if and only if ↵ > -1.
For any 0 < r < R < +1, let f↵r,R be the only solution to the Cauchy problem

�
bL0f = 0,
f(r) = 1, f(R) = 0.

Namely,

f↵r,R(x) =

8
>>>>><

>>>>>:

R1+↵ - x1+↵

R1+↵ - r1+↵
if ↵ 6= -1,

log
�
R
x

�

log
�
R
r

� if ↵ = -1.

Then, the 0-equilibrium potential (see [FOT11] and Remark 5.4.10) of [0, r] in [0,R], is given by

ur,R(x) =

8
><

>:

1 if 0 6 x 6 r,
f↵r,R(x) if r < x 6 R,
0 if x > R.

(5.4.2)

It is a well-known fact that ur,R is the minimizer for the capacity of [0, r] in [0,R). Namely,
for any locally Lipschitz function v with compact support contained in [0,R] and such that
v(x) = 1 for any 0 < x < r, it holds

Z+1

0
|@xur,R|

2x-↵ dx 6
Z+1

0
|@xv|

2x-↵ dx (5.4.3)

Since it is compactly supported on [0,+1) and locally Lipschitz, it follows that ur,R 2 D(bE0|(1,+1))

and 1- ur,R 2 D(bE0|(0,1)) for any 0 < r < R < +1.
Consider now ↵ > -1, and let us prove that 1 2 D(bE0|(1,+1))e. To this aim, it suffices to

show that there exists a sequence {un}n2N ⇢ D(bE0|(1,+1)) = {u|(1,+1) | u 2 H1((0,+1), x-↵dx)}
such that un �! 1 a.e. and bE0|(1,+1). Let

un =

�
un,2n if ↵ 6= -1,
un,n2 if ↵ = -1.

It is clear that un �! 1 a.e., moreover, a simple computation shows that

bE0|(1,+1)(un,un) =

Z+1

1
|@xun|

2 x-↵ dx =

�
1+↵

21+↵-1
n-(1+↵) if ↵ 6= -1,

1
log(n) if ↵ = -1.

Hence bE0|(1,+1) �! 0 if ↵ > -1, proving that 1 2 D(bE0|(1,+1))e.
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We now prove that 1 2 D(bE0|(0,1)) if ↵ 6 -1. Consider the following sequence in H1((0, 1), x-↵dx),

un =

�
u1/2n,1/n if ↵ 6= -1,
u1/n2,1/n if ↵ = -1.

A direct computation of
R1
0 |@xun|

2x-↵dx, the fact that suppun ⇢ [0, 1/n] and 0 6 un 6 1,
prove that un �! 0 in H1((0, 1), x-↵dx). Since 1 - un 2 D(bE0|(0,1)), which is closed, this
proves that 1- un �! 1 in D(bE0|(0,1)), and hence the claim.

To complete the proof, it remains to show that 1 /2 D(bE0|(1,+1))e if ↵ < -1. The same
argument can be then used to prove that 1 /2 D(bE0|(0,1))e if ↵ > -1. We proceed by contra-
diction, assuming that there exists a sequence {vn}n2N ⇢ D(bE0|(1,+1)) such that vn �! 1

a.e. and bE0|(1,+1)(vn, vn) �! 0. Since the form bE0|(1,+1) is regular on [1,+1), we can
take vn 2 C1

c ([1,+1)). Moreover, we can assume that vn(1) = 1 for any n 2 N. In
fact, if this is not the case, it suffices to consider the sequence ṽn(x) = vn(x)/vn(1). Let
Rn > 0 be such that

S
m6n supp vm ⇢ [1,Rn]. Moreover, extend vn to 1 on (0, 1), so that

bE0|(1,+1)(vn, vn) =
R+1
0 |@xvn|

2x-↵dx. Since the same holds for u1,Rn
, by (5.4.3), the fact that

Rn �! +1 and ↵ < -1, we get

lim
n!+1

bE0|(1,+1)(vn, vn) > lim
n!+1

bE0|(1,+1)(u1,Rn
,u1,Rn

) = lim
n!+1

1+↵

R1+↵
n - 1

= -(1+↵) > 0.

This contradicts the fact that bE0|(1,+1)(vn, vn) �! 0, completing the proof.

Remark 5.4.10. The 0-equilibrium potential defined in (5.4.2) admits a probabilistic interpre-
tation. Namely, it is the probability that the Markov process associated with bL0 and starting
from x, exits the first time from the interval {r < x < R} through the inner boundary {x = r}.

It is possible to define a semi-order on the set of the Markovian extensions of L |C1
c (M) as

follows. Given two Markovian extensions A and B, we say that A ⇢ B if D(EA) ⇢ D(EB)
and EA(u,u) > EB(u,u) for any u 2 D(EA). With respect to this semi-order, the Friederichs
extension is the minimal Markovian extension. Let LN be the maximal Markovian extension
(see [FOT11]). This extension is associated with the Dirichlet form E+ defined by

E+(u, v) =
Z

M

�
@xu@xv+ |x|2↵@✓u@✓v

�
dµ,

D(E+) = {u 2 L2(M,dµ) | E+(u,u) < +1} = H1(M,dµ),

where the derivatives are taken in the sense of Schwartz distributions. We remark that E+

is a regular Dirichlet form on M+ = M↵ \M- and M- = M↵ \M+ (see, e.g., [FOT11,
Lemma 3.3.3]). Its associated Markov process is reflected by the singularity.

When L |C1
c (M) has only one Markovian extension, i.e., whenever LF = LN, we say that it

is Markov unique. Clearly, if L |C1
c (M) is essentially self-adjoint, it is also Markov unique. The

next proposition shows that Markov uniqueness is a strictly stronger property than essential
self-adjointness.

Proposition 5.4.11. The operator L |C1
c (M) is Markov unique if and only if ↵ /2 (-1, 1).
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Proof. As observed above, the statement is an immediate consequence of Theorem 5.2.3 for
↵ 6 -3 and ↵ > 1. If ↵ 2 (-3,-1], since by Theorem 5.2.3 all bLk for k 6= 0 are essentially
self-adjoint, it holds that LN = bA0 � (

L
k2N

bLk) for some self-adjoint extension bA0 of bL0.
Recall the definition of �±

D and �±
N given in (5.2.7) and with abuse of notation let �±

D(x, ✓) =
�±
D(x) and �±

N(x, ✓) = �±
N(x). Since E+(�±

N,�±
N) = +1 if and only if ↵ 6 -1, we get that

�+
N,�-

N /2 D(E+) � D(LN) if ↵ 6 -1. Hence, by Theorem 5.2.10, it holds that bA0 = (bL0)F and
hence that LN = LF.

On the other hand, if ↵ 2 (-1, 1), the result follows from Lemma 5.4.9. In fact, it implies
that �D /2 H1

0(M,dµ) = D(EF) but, since E+(�D,�D) < +1, we have that �D 2 D(E+). This
proves that LF $ LN.

By the previous result, when ↵ 2 (-1, 1) it makes sense to consider the bridging extension,
associated to the operator LB and the form EB, defined by

EB(u, v) =
Z

M↵

�
@xu@xv+ |x|2↵@✓u@✓v

�
dµ,

D(EB) = {u 2 H1(M,dµ) | u(0+, ✓) = u(0-, ✓) for a.e. ✓ 2 S}.

From Theorem 5.4.3 and the fact that EB = E+|D(EB) follows immediately that EB is a Dirichlet
form, and hence LF ⇢ LB ⇢ LN. Moreover, due to the regularity of E+ and the symmetry of
the boundary conditions appearing in D(EB), follows that EB is regular on the whole M↵. Its
associated Markov process can cross, with continuous trajectories, the singularity.

We conclude this section by specifying the domains of the Markovian self-adjoint extensions
associated with EF, E+ and, when it is defined, EB.

Proposition 5.4.12. It holds that D(LF) = H2
0(M,dµ), while

D(LN) = {u 2 H1(M,dµ) | (�u, v) = (ru,rv) for any v 2 H1(M,dµ)}.

Moreover, if ↵ 2 (-1, 1), the domain of LB is

D(LB) = {H2 (M↵,dµ) | u(0+, ·) = u(0-, ·), lim
x!0+

|x|-↵@xu(x, ·) = lim
x!0-

|x|-↵@xu(x, ·) for a.e. ✓ 2 S}.

Proof. In view of Theorem 5.4.1, to prove that A is the operator associated with EA it suffices to
prove that D(A) ⇢ D(EA) and that EA(u, v) = (-Au, v) for any u 2 D(A) and v 2 D(EA). The
requirement on the domain is satisfied by definition in all three cases. We proceed to prove
the second fact.

Friedrichs extension. By integration by parts it follows that EF(u, v) = (-LFu, v) for any u, v 2
C1
c (M), and this equality can be extended to u 2 H2

0(M,dµ) = D(LF) and v 2 H1
0(M,dµ) =

D(EF).
Neumann extension. The property that E+(u, v) = (-LNu, v) for any u 2 D(LN) and v 2

D(E+) is contained in the definition.
Bridging extension. By an integration by parts, it follows that

Z

M↵

�
@xu@xv+ x2↵@✓u@✓v

�
dµ = (-LBu, v)-

Z

S
v|x|-↵@xu

��0+

x=0- d✓ = (-LBu, v).
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�.�.� Stochastic completeness and recurrence on M↵

We are interested in localizing the properties of stochastic completeness and recurrence of
a Markovian self-adjoint extension A of L |C1

c (M). Due to the already mentioned repulsing
properties of Neumann boundary conditions, the natural way to operate is to consider the
Neumann restriction introduced in Definition 5.4.8.

Observe that, if U ⇢ M is an open set such that Ū \ ({-1, 0,+1} ⇥ S) = ?, then the
Neumann restriction EA|U is always recurrent on U. In fact, in this case, there exist two
constants 0 < C1 < C2 such that C1dxd✓ 6 dµ 6 C2dxd✓ on U and clearly 1 2 D(EA|U) =
H1(U,dxd✓), that by Theorem 5.4.6 implies the recurrence. For this reason, we will concentrate
only on the properties “at 0” or “at 1”.

Definition 5.4.13. Given a Markovian extension A of L |C1
c (M), we say that it is stochastically

complete at 0 (resp. recurrent at 0) if its Neumann restriction to M0 = (-1, 1)⇥ S, is stochas-
tically complete (resp. recurrent). We say that A is exploding at 0 if it is not stochastically
complete at 0. Considering M1 = (1,1)⇥ S, we define stochastic completeness, recurrence
and explosiveness at 1 in the same way.

In order to justify this approach, we will need the following.

Proposition 5.4.14. A Markovian extension A of L |C1
c (M) is stochastically complete (resp. recurrent)

if and only if it is stochastically complete (resp. recurrent) both at 0 and at 1.

Proof. Let {un}n2N ⇢ D(EA) such that un ! 1 a.e. and EA(un,un) ! 0. Since D(EA|M0
) =

{u|M0
| u 2 D(EA)} and D(EA|M1) = {u|M1 | u 2 D(EA)} follows that {un|M0

}n2N ⇢
D(EA|M0

) and {un|M1 }n2N ⇢ D(EA|M1). Moreover, it is clear that un|M0
,un|M1 ! 1 a.e.

and EA|M0
(un|M0

,un|M0
), EA|M1(un|M1 ,un|M1) ! 0. By Theorem 5.4.6, this proves that

if EA is recurrent it is recurrent also at 0 and 1.
On the other hand, if A|M0

and A|M1 are recurrent, we can always choose the sequences
{un}n2N ⇢ D(EA|M0

) and {vn}n2N ⇢ D(EA|M1) approximating 1 such that they equal 1 in a
neighborhood N of @M0

= @M1 = ({1}⇥ S)[ ({-1}⇥ S). In fact the constant function satisfies
the Neumann boundary conditions we posed on @M0 = @M1 for the operators associated
with EA|M0

and EA|M1 . Hence, by gluing un and vn we get a sequence of functions in D(EA)
approximating 1. The same argument gives also the equivalence of the stochastic completeness,
exploiting the characterization given in Theorem 5.4.5.

Before proceeding with the classification of the stochastic completeness and recurrence of
LF, LN and LB, we need the following result. For an operator acting on L2(R \{0}, |x|-↵dx),
the definition of stochastic completeness and recurrence at 0 or at 1 is given substituting M0

and M1 in Definition 5.4.13 with (-1, 1) and (1,+1).

Proposition 5.4.15. Let A be a Markovian self-adjoint extension of L |C1
c (M) and assume it decom-

poses as A = bA0 � Ã, where bA0 is a self-adjoint operator on H0 and Ã is a self-adjoint operator
on
L

k 6=0Hk. Then, bA0 is a Markovian self-adjoint extension of b�0. Moreover, A is stochastically
complete (resp. recurrent) at 0 or at 1 if and only if so is bA0.

Proof. Let ⇡k : L2(M,dµ) ! Hk = L2(R \{0}, |x|-↵dx) be the projection on the k-th Fourier com-
ponent. In particular, recall that ⇡0u = (2⇡)-1

R2⇡
0 u(x, ✓)d✓. Let u 2 D(bA0) ⇢ L2(R, |x|-↵dx)

be such that 0 6 u 6 1. Hence, posing ũ(x, ✓) = u(x), due to the splitting of A follows
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that ũ 2 D(A) and by the markovianity follows that 0 6 Aũ 6 1. The first part of the state-
ment is then proved by observing that, since ⇡0ũ = u and ⇡kũ = 0 for k 6= 0, we have
Aũ(x, ✓) = bA0u(x) for any (x, ✓) 2 M.

We prove the second part of the statement only at 0, since the arguments to treat the at 1
case are analogous. First of all, we show that the stochastic completeness of A and bA0 at 0
are equivalent. If 1 : M0 ! R is the constant function, it holds that ⇡01 = 1 : (-1, 1) ! R.
Moreover, due to the splitting of A, we have that etA = et

bA0 � etÃ Hence, it follows that
etA1 = et

bA01. This, by Definition 1.3.4, proves the claim.
To prove the equivalence of the recurrences at 0, we start by observing that D(EA) =

D(E bA0
)�D(EÃ) and that

EA(u, v) = E bA0
(⇡0u,⇡0v) + EÃ(�k 6=0⇡ku,�k 6=0⇡kv), for any u, v 2 D(EA) (5.4.4)

In particular, since ⇡01 = 1 this implies that EA|M0
(1, 1) = E bA0

|(-1,1)(1, 1). By Theorem 5.4.6,

this proves that if bA0 is recurrent at 0, so is A. Assume now that A|M0
is recurrent. By

Theorem 5.4.6 there exists {un}n2N ⇢ D(EA|M0
) such that 0 6 un 6 1 a.e., un �! 1 a.e.

and EA|M0
(un, v) ! 0 for any v in the extended domain D(EA|M0

)e. By dominated con-
vergence, it follows that ⇡0un = (2⇡)-1

R2⇡
0 un(·, ✓)d✓ ! 1 for a.e. x 2 (-1, 1). For any

v 2 D(E bA0
|(-1,1))e, let ṽ(x, ✓) = v(x). It is easy to see that ṽ 2 D(EA|M0

)e Then, by applying
(5.4.4) we get

E bA0
|(-1,1)(⇡0un, v) = EA|M0

(un, ṽ) �! 0, for any v 2 D(E bA0
|(-1,1))e.

Since 0 6 ⇡0un 6 1, this proves that bA0|(-1,1) is recurrent

The following proposition answers the problem of stochastic completeness or recurrence of
the Friedrichs extension.

Proposition 5.4.16. Let �F be the Friedrichs extension of L |C1
c (M). Then, the following holds

at 0 at 1
↵ < -1 recurrent stochastically complete
↵ = -1 recurrent recurrent
↵ > -1 explosive recurrent

In particular, LF is stochastically complete for ↵ < -1, recurrent for ↵ = -1 and explosive for ↵ > -1.

Proof. The part regarding the recurrence is a consequence of Lemma 5.4.9 and Theorem 5.4.6,
while the last statement is a consequence of Proposition 5.4.14. Thus, to complete the proof
it suffices to prove that LF is stochastically complete at +1 if ↵ < -1 and not stochastically
complete at 0 if ↵ > -1.

By Proposition 5.4.15 and the fact that LF = �k2Z(bLk)F, we actually need to prove this fact
only for (bL0)F. Moreover, since the Friederichs extension decouples the dynamics on the two
sides of the singularity, we can work only on (0,+1) instead that on R \{0}. As in Lemma 5.4.9,
we let bE0 to be the Dirichlet form associated to the Friederichs extension of bL0.

We start by proving the explosion for ↵ > -1 on (0, 1). Let us proceed by contradiction
and assume that (bL0)F is stochastically complete on (0, 1). By Theorem 5.4.5, there exists
un 2 D(bE0|(0,1)), 0 6 un 6 1, un �! 1 a.e. and such that bE0|(0,1)(un, v) �! 0 for any v 2
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D(bE0|(0,1)) \ L1((0, 1), x-↵dx). Since bE0|(0,1) is regular on (0, 1], we can choose the sequence
such that un 2 C1

c ((0, 1]). In particular un(0) = limx#0 un(x) = 0 for any n. Let us define, for
any 0 < R 6 1,

vR(x) = lim
r#0

�
1- ur,R(x)

�
=

�
x1+↵/R1+↵ if 0 6 x < R,
1 if 0 6 x > R,

where ur,R is defined in (5.4.2). Observe that, by the probabilistic interpretation of ur,R given
in Remark 5.4.10, follows that vR(x) is the probability that the Markov process associated with
(bL0)F and starting from x exits the interval (0,R) before being absorbed by the singularity at 0.
A simple computation shows that vR 2 D(bE0|(0,1)) \ L1((0, 1), x-↵dx). Thus, by definition of
{un}n2N and a direct computation we get

0 = lim
n!+1

bE0|(0,1)(un, vR) =
1+↵

R1+↵
lim

n!+1

ZR

0
@xun dx =

1+↵

R1+↵
lim

n!+1
un(R).

Hence, un(R) �! 0 for any 0 < R < 1, contradicting the fact that un �! 1 a.e..
To complete the proof, we need to show that if ↵ < -1, (bL0)F is stochastically complete on

(1,+1). Since on (1,+1) the metric is regular, we can complete it to a C1 Riemannian metric
on the whole interval (0,+1). Then, the result follows by applying the characterization of
stochastic completeness on model manifolds contained in [Gri09] and Theorem 5.4.14.

We are now in a position to completely answer to (Q2).

Theorem 5.4.17. Consider M↵, for ↵ 2 R, and the corresponding Laplace-Beltrami operator L as an
unbounded operator on L2(M,dµ). Then it holds the following.

• If ↵ < -1 then L is Markov unique, and LF is stochastically complete at 0 and recurrent at 1;

• if ↵ = -1 then L is Markov unique, and LF is recurrent both at 0 and at 1;

• if ↵ 2 (-1, 1), then L is not Markov unique and, moreover,

– any Markovian extension of L is recurrent at 1,

– LF is explosive at 0, while both LB and LN are recurrent at 0,

• if ↵ > 1 then L is Markov unique, and LF is explosive at 0 and recurrent at 1;

Proof. By Propositions 5.4.11 and 5.4.16, we are left only to prove statement (iii)-(a) and the
second part of (iii)-(b), i.e., the stochastic completeness of LN and LB at 0 when ↵ 2 (-1, 1).

Statement (iii)-(a) follows from [FOT11, Theorem 1.6.4], since for ↵ 2 (-1, 1) the Friederichs
extension (which is the minimal extension of L |C1

c (M)) is recurrent at 1. To complete the
proof it suffices to observe that, for these values of ↵, it holds that 1 2 H1(M0,dµ) = D(E+|M0

)
and clearly E+|M0

(1, 1) = 0. By Theorem 5.4.6, this implies the recurrence of E+ at 0. The
recurrence of EB at 0 follows analogously, observing that 1 is also continuous on Z and hence
it belongs to D(EB|M0

)
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In this chapter, we study spectral properties of the Laplace-Beltrami operator on two rele-
vant almost-Riemannian manifolds, namely the Grushin structures on the cylinder and on the
sphere, proving the theorems stated in Section 1.3.3. As proved in [BL] and recalled in Theo-
rem 1.3.2, in these structures the singular set acts as a barrier for the evolution of the heat and
of a quantum particle, although geodesics can cross it.

�.� �������� �������� ��� ��� �������-���� ������ ���
��� ������� ��������

In this section we study the spectrum of the Grushin cylinder, with or without an Aharonov-
Bohm magnetic field.

�.�.� Grushin metric and associated Laplace-Beltrami operator

Recall from Section 1.3.3 that the Grushin almost-Riemannian structure on the cylinder defines
on M+ [M- = (R \{0})⇥ S1 the metric g = dx2 + x-2d✓2, the volume dV =

p
|g|dxd✓ =

1
|x| dxd✓ and the Laplace-Beltrami operator

Lu = @2xu-
1

x
@xu+ x2@2✓u.

As already mentioned, this operator with domain C1
c ((R \{0})⇥ S1) is essentially self-adjoint

in L2(M,d!) and hence the evolutions on the two sides of the singularity are decoupled.
Thus, we will henceforth consider the self-adjoint operator L acting only on M+. Namely, the
domain D(L) will be the closure w.r.t. the graph norm of C1

c (M+).
Recall the Fourier decomposition of L2(M+, dV) w.r.t. the varaible ✓ introduced in Sec-

tion 1.3.3,

L2(M+, dV) =
M

k2Z

Hk, where Hk ' L2
✓

R+,
1

x
dx

◆
.

The operator L decomposes as L =
L

k2Z
bLk, where

bLk = @2x -
1

x
@x - k2x2.

Since L is essentially self-adjoint, each bLk is a self-adjoint operator on the closure w.r.t. the
graph norm of C1

c (R+).
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Consider the unitary transformation U : L2 �R+, 1
xdx

�
! L2(R+,dx) defined by Uv(x) :=

p
xv(x). The operator bLk is then transformed to

Lk := UbLkU
-1 = @2x -

3

4

1

x2
- k2x2, D(Lk) = UD(bLk). (6.1.1)

�.�.� Spectral properties of the Laplace-Beltrami operator

The following relations for the spectrum of direct sums A = �k2ZAk are well known (see e.g.,
[RS80]):

�p(A) =
[

k2Z

�p(Ak) (6.1.2)

�c(A) =

  
[

k2Z

�p(Ak)

!c

\
 
[

k2Z

�r(Ak)

!c

\
 
[

k2Z

�p(Ak)

!!

[
�

� 2
\

k2Z

⇢(Ak) | sup
k

kR�(Ak)k = +1

✏

. (6.1.3)

Since the spectrum is invariant under unitary transformations, from this it follows that we can
reduce the study of the spectrum of L to that of the operators Lk. Exploiting this reduction we
can easily prove Theorem 1.3.9.

Proof of Theorem 1.3.9. The operator -L0 is the Schrödinger operator on the real line with a
Calogero potential of strength 3/4. It is well-known that this operator has continuous spectrum
[0,+1), see e.g., [RS80, Sec. VIII.10].

Let now k 6= 0 and let us compute the solutions of the eigenvalue problem

(Lk - �)u = 0 () (bLk - �)U-1u = 0. (6.1.4)

Through the change of variables |k|x2 7! z and multiplying by 4(k2)z, we obtain

@2zv(z) +

✓
-
1

4
+

�

4z|k|

◆
= 0.

This is the well-known Whittaker equation, whose solutions are the Whittaker functions M �
4|k|,

1
2
(z)

and W �
4|k|

, 12
(z). The solutions of the eigenvalue problem (6.1.4) are then

u1(x) =
1p
x
M �

4|k|
, 12
(|k|x2), u2(x) =

1p
x
W �

4|k|
, 12
(|k|x2).

Through the asymptotic expansions of M⌫,µ and W⌫,µ (see e.g., [BE56]) one easily sees that
u1 is never square-integrable near infinity. On the other hand, u2 2 L2(R+) if and only if there
exists a non-negative integer ` such that -` = 1

2 -⌫+µ = 1
2 - �

4|k| +
1
2 . Namely, for any k 2 N

there exists a sequence {�n,k = 4|k|n}n2N of eigenvalues with (non-normalized) eigenfunction
x 7!  n,k(x) = W

n, 12
(|k|x2)/

p
x.

Let k = 0. Then, the operator L0 given by (6.1.1) can be interpreted as a Laplace operator
with a relatively infinitesimally-bounded perturbation. It is a well known result [RS80] that its
spectrum is purely absolutely continuous and equal to [0,1).
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6.1 Spectral analysis and the Ahronov-Bohm effect for the Grushin cylinder

Finally, the statement follows from the definition of U-1 and the relations (6.1.2) and (6.1.3).

Remark 6.1.1. Observe that (6.1.1) can be explicitly solved, it’s solutions being of the form
�
c1x

3/2 + c2p
x

for � = 0,

c1
p
x J1(

p
�x) + c2

p
x Y1(

p
�x) for � > 0,

(6.1.5)

where J1 and Y1 are the Bessel functions of order 1. In particular, for � > 0 one has the explicit
form of the generalized eigenfunctions of the absolutely continuous spectrum of L0.

With the eigenvalue counting function N(E) defined as in (1.3.9), we are able to prove Corol-
lary 1.3.10.

Proof of Corollary 1.3.10. Obviously, by Theorem 1.3.9, the following holds,

#{� 2 �p(-L) | � 6 E} = #{(n,k) 2 N ⇥Z \{0} | 4n|k| 6 E}. (6.1.6)

For fixed k 2 Z \{0}, this implies that the couples (n,k) admissible in the above, are those such
that n 6 E/(4|k|). Moreover, it is clear that for any |k| > E/4 there exist no couple (n,k) is
admissible. These facts and (6.1.6) yield the estimation

N(E) =
X

0<|k|6E
4

E

4|k|
=

E

2

bE/4cX

`=1

1

`
.

The well-known asymptotic formula (see e.g., [CG96])

nX

m=1

1

m
= log(n) + �+

1

2n
+O

✓
1

n2

◆
, (6.1.7)

where � is the Euler-Mascheroni constant, then implies the following asymptotic estimate as
E ! +1,

N(E) =
E

2

✓
log
✓
E

4
+ �+O

✓
1

E

◆◆◆

=
E

2
log(E) + (�- 2 log(2))

E

2
+O(1).

�.�.� Aharonov-Bohm effect

Now we look at the Aharonov-Bohm effect on the Grushin cylinder. As already introduced
in Section 1.3.3, the magnetic Laplace-Beltrami operator on M+ with vector potential !b =
-ib d✓, b 2 R, is

Lb = @2x -
1

x
@x + x2@2✓ - 2ibx2@✓ - b2x2.
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After the transformation U, introduced in Section 6.1.1, we obtain the following operator acting
on L2(M+,dxd✓),

Lb = ULbU-1 = @2x -
3

4

1

x2
+ x2 (@✓ - ib)2 .

Through a straightforeward extension of the proof of Theorem 1.3.9, we immediately get
Theorem 1.3.13. For b 2 Z it is evident that the role of L0 in the proof of Theorem 1.3.9 is now
taken by Lb.

Proof of Corollary 1.3.14. W.l.o.g. we restrict ourselves to b 2 (-1/2, 1/2), therefore  = 0.
Clearly, if b = 0 the statement reduces to the one of Corollary 1.3.10. Thus we can assume
b 6= 0.

Replacing k with |k - b| in the proof of Corollary 1.3.10 we observe that for k = 0 the
additional term E/4|b| appears in the count. Thus, we can rewrite the counting function as

N(E) =
E

4

bE/4cX

k=1

1

k+ b
+

E

4|b|
+

E

4

bE/4cX

k=1

1

k- b

We now apply the following identity (see e.g., [OLBC10])

nX

k=1

1

k+ x
=  (n+ x+ 1)- (1+ x),

and the asymptotic estimate as x ! 1

 (x+ 1) = log(x) + �+
1

2x
+O

✓
1

x2

◆
,

where  (x) is the digamma function and � is the Euler-Mascheroni constant. By a straightfor-
ward computation we obtain

N(E) =
E

4
( (bE/4c+ b+ 1)- (1+ b)) +

E

4|b|
+

E

4
( (bE/4c- b+ 1)- (1- b))

=
E

2
log(E) +

E

2

✓
1

2|b|
+ �- 2 log(2)-

 (1- b) + (1+ b)

2

◆
+O(1).

The general result then follows by shifting the above computation with b 7! |- b|.

We can now precisely determine the degeneracy of the eigenvalues, depending on the value
of b.

Proof of Theorem 1.3.16. The proof is divided in three cases.
Case 1, b 2 R \Q: This immediately implies that |k- b| 2 R \Q. It is then straightforward

to show that there exist no (n 0,k 0) 6= (n,k) such that �bn 0,k 0 = �bn,k.
Case 2, b 2 Q: Let us write b = p/q with p,q 2 Z such that (p,q) = 1. Fix (n,k) and

(n 0,k 0) 6= (n,k) such that �bn,k = �bn 0,k 0 . Then,

4n 0|qk 0 - p| = q�bn,k. (6.1.8)
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6.1 Spectral analysis and the Ahronov-Bohm effect for the Grushin cylinder

W.l.o.g. assume that qk 0 > p. Then, since 4n 0|qk 0 - p| cannot divide q because (q,p) = 1, we
have that it must divide �n,k.

From q 6= 1, {|qk 0 - p| | k 0 2 Z} ✓ (qZ -p) ( Z, we obtain that the number of couples
(n 0,k 0) such that 4n 0|k 0 - b| = �bn,k is bounded above by 2d(�bn,k/4), where d(n) denotes
the number of divisors of n. In fact, if |k 0 - b| = d1 for some d1 2 Q divides �bn,k/4, then
n 0 = �bn,k/(4d1). Observe that, due to the presence of a non integer b in the term |k- b|, not
all the possible divisors can be considered. However, if a k 0 > b can be taken, then there exists
a k 00 < b that will give an additional couple (k 00,n 0).

Case 3, b 2 Z: In this case, equation (6.1.8) reduces to 4n 0|k 0 -b| = �n,k. Then, for any (n,k)
with k 6= b, a simple computation shows that

�bk,n+b = �bn,k+b = �bn,-k+b = �bk,-n+b.

However if n|k| is even, the combination n = k = �Kn,k+K/8 is repeated twice. Therefore the
degeneracy is given by

�
2d(�/4), if �/4 is odd,
2d(�/4)- 2, if �/4 is even.

Finally, this degeneracy cannot be achieved for b 2 Q \Z. In fact, it would require Z 3 k 0 =
(qn+ p)/q which is impossible for (q,p) = 1.

Corollary 1.3.14 suggests that in the limit b ! k, the number of eigenvalues in a finite
interval explodes. Corollary 1.3.18 makes this statement more precise, namely

• for any fixed k 2 Z and for any n 2 N, the spacing between the eigenvalues

|�bn,k - �bn-1,k| ! 0 as b ! k;

• for any fixed interval I = [x1, x2] ⇢ [0,1) and any N 2 N

#{n 2 N | �bn,k 2 I} > N as b ! k.

Proof of Corollary 1.3.18 (Corollary of Theorem 1.3.13). Observe that

|�bn,k - �bn-1,k| = 4|k- b|. (6.1.9)

Taking the limit for k ! b in the above yields immediately the first statement.
To prove the second statement, assume w.l.o.g. k > 0 and define

L(b) :=

⇠
x1

4|k- b|

⇡
, R(b) :=

�
x2

4|k- b|

⌫
.

Then �b
L(b),k > x1 and �b

R(b),k 6 x2. If now

|k- b| 6 x2 - x1
4(N+ 1)

,

by (6.1.9) we obtain that

#{�bi,k | L(b) 6 i 6 R(b)} > N.

This completes the proof of the second statement and hence of the corollary.
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This limiting process affects also the eigenfunctions. Theorem 1.3.19 describes how the
spectrum of the k-th Fourier components decompactifies in the limit b ! k and produces the
absolutely continuous part of the spectrum.

Proof of Theorem 1.3.19. Recall that  b
n,k(x, ✓) = eik✓W

n, 12
(|k- b|x2)/x. Since w.l.o.g. we can

assume k = 0, to complete the proof it suffices to show that

W
nj, 12

(|bj|x
2) !

p
� x

2
J1(

p
�x). (6.1.10)

Let us recall the following classical results (see resp. [MOS66] and [BE56]).

Wn,1/2(z) = (-1)n-1ze-
1
2zL1n-1(z),

lim
n!1

n-↵L1n(x/n) = x-
1
2↵J↵(2

p
x).

Here L↵n is the generalized Laguerre polynomial of degree n with parameter ↵ and the limit is
in the sense of uniform convergence on compact sets.

Define

nj := 2j and bj :=
�

4(nj + 1)
,

so that �bj

nj+1,0 = � for all j > 0. Then

lim
j!1

W
nj, 12

(|bj|x
2) = lim

j!1

�njx
2

4(nj + 1)
exp

 

-
1

2nj

�njx
2

4(nj + 1)

!

n-1
j L1nj

 
1

nj

�njx
2

4(nj + 1)

!

=

p
� x

2
J1(

p
�x).

This completes the proof of (6.1.10).

Remark 6.1.2. By changing the parity of the sequence nj used in the previous proof, we could
change the sign of the limit in (1.3.12).

�.� �������� �������� ��� �������-���� ������ ���
��� ������� ������

In this section we consider the Grushin almost-Riemannian metric on the sphere introduced in
Section 1.3.3.

�.�.� Grushin metric and associated Laplace-Beltrami operator

The Grushin almost-Riemannian structure defines the metric g = dx2 + tan(x)-2d✓2 on S+ [
S-, the sphere S2 without the equatorial line. The natural volume form defined by this metric
is dV =

p
|g|dxd✓ = | tan(x)|-1 dxd✓ and the associated Laplace-Beltrami operator is

Lu = @2xu-
1

sin(x) cos(x)
@xu+ tan2(x)@2�u
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6.2 Spectral analysis and Ahronov-Bohm effect for the Grushin sphere

As shown in [BL], the operator L with domain C1
c (S+ [ S-) is essentially self-adjoint in

L2(S2,d!) and hence the evolutions on the two sides of the singularity are decoupled. More-
over it has purely discrete spectrum. In the following we will consider the self-adjoint operator
L restricted to L2(S+, dV). Namely, the domain D(L) will be the closure w.r.t. the graph norm
of C1

c (S+).
As in the previous section we can separate the space using the orthoromal eigenbase of S1

getting

L2(S+,d!) =
1M

k=-1
HS+

k , HS+
k ' L2([0,⇡/2), tan(x)dx). (6.2.1)

On each HS+
k the operator separates as

L̃k := @2x -
1

sin(x) cos(x)
@x - tan2(x)k2.

�.�.� Spectral properties of the Laplace-Beltrami operator

Exploiting decomposition (6.2.1), we can describe the spectrum of L.

Proof of Theorem 1.3.11. We look for solutions � 2 HS+
k of the eigenvalue equation

-L̃k�(x) = ��(x).

Since k appears in L̃k only squared, the eigenvalues are simmetric with respect to k = 0. To
simplify the notation, in the following we will assume k > 0, but the same considerations hold
for k < 0 substituting |k| to k.

With the change of variables z = cos(x)2 and writing �(x) = (-z)
k
2'(z), the eigenvalue

equation becomes

4(-z)
k
2

✓
z(1- z)@2z'(z) + (1+ k)(1- z)@z'(z) +

�

4
'(z)

◆
= 0.

The equation in bracket is a particular example of the well-known Euler’s hypergeometric
equations. Two linearly independent solutions can be found in terms of Gauss Hypergeometric
Functions F(a,b; c; z) (see [BE56, Vol. 1, Ch. 2]) as follows:

�1(x) = i-k cos(x)-kF

 

-
k

2
-

p
�+ k2

2
,-

k

2
+

p
�+ k2

2
; 1- k; cos(x)2

!

,

�2(x) = ik cos(x)kF

 
k

2
-

p
�+ k2

2
,
k

2
+

p
�+ k2

2
; 1+ k; cos(x)2

!

.

Notice here that in the case k
2 ±

p
�+k2

2 ,k- 1 2 N0 the first solution is not defined, in fact we
are in the so called degenerate case and the only regular solution is �2. Therefore we do not
need to introduce the other corresponding linearly independent solution.

A solution is an eigenfunction of the Laplace-Beltrami operator if it is in HS+
k . For this to be

true, the solutions has to be square-integrable with respect to the measure d! := tan(x)-1dx
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near 0. This is equivalent to be O(sin(x)) for x ! 0 and, in particular, it is requires that the
solution be zero at x = 0.

Let us recall that

�1 (0) = i-k �(1- k)

�

✓
-k

2 -
p

k2+�
2 + 1

◆
�

✓
-k

2 +
p

k2+�
2 + 1

◆ , (6.2.2)

�2 (0) = ik
�(k+ 1)

�

✓
k
2 -

p
k2+�
2 + 1

◆
�

✓
k
2 +

p
k2+�
2 + 1

◆ . (6.2.3)

Moreover, observing that

±k

2
+

p
k2 + �

2
> 0 for all k 2 N0 and � 2 R0

+,

it is immediate to obtain �1(0) 6= 0 if k > 1. By the previous considerations, this implies that
�1 /2 HS+

k for k > 1. Since k = 0 corresponds to the degenerate case, where the two solutions
coincide, in the following we can restrict ourselves to consider only �2.

By (6.2.3), in order for �2(0) = 0 to hold there has to exist n 2 N0 such that � satisfies

k

2
+ 1-

p
k2 + �

2
= -n.

Solving the above for �, yields the following expression for the candidate eigenvalue

� = �+k,n := 4(1+n)(1+n+ k).

In order to prove that the candidate eigenvalues �+k,n are indeed eigenvalues, we check
the order of convergence of the solutions. For this purpose we use the well-known identity
[OLBC10, 15.2(ii)] for a = -m 2 Z-[{0}, b > 0 and c 62 Z-[{0}

F(-m,b; c; z) =
mX

`=0

(-1)m
✓
m

`

◆
(b)`
(c)`

x`. (6.2.4)

Plugging the values of the parameters for �2 in the above, and setting � = �+k,n, we obtain

F
⇣
-(n+ 1),n+ k+ 1;k+ 1; cos(x)2

⌘
=

n+1X

`=0

(-1)n+1

✓
n+ 1

`

◆
(n+ k+ 1)`
(k+ 1)`

cos(x)2`.

This shows that �2 and his derivative have the correct behaviour in 0 and are regular at ⇡/2,
completing the proof.

Finally, in order to obtain the expression of the eigenvalues and eigenfunctions given in the
statement, it suffices to replace n+ 1 with n in the definition of �bn,k. The theorem then follows
by the symmetry w.r.t. k = 0 of the problem.

We are now in a position to derive the Weyl law for the Laplace-Beltrami operator of the
Grushin sphere.
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6.2 Spectral analysis and Ahronov-Bohm effect for the Grushin sphere

Proof of Corollary 1.3.12. By the simmetry of the eigenvalue problem w.r.t. k = 0, it follows that
N(E) = 2#{k 2 N, n 2 N | �n,k 6 E} + #{n 2 N | �n,0 6 E}. Let N0(E) be the counting
function for this second sum. It is easy to see that �(0,n) 6 E for n 2

h
0, b

p
E/2c

i
. Therefore

N0(E) = O(
p
E).

Let N+(E) be the counting function for positive values of k. A simple computation shows
that �(k,n) 6 E if and only if

0 < k 6
�
E- 4n2

4n

⌫
.

Additionally, notice that if n > b
p
E/2c =: ⌘1(E), then E-4n2

4n < 0.
Let

K(n) :=
E- 4n2

4n
. (6.2.5)

Then we have

bK(n)c 6 #
�
k 2


0,

E- 4n2

4n

�
\ N

�
6 dK(n)e,

and consequently

⌘1(E)X

n=1

bK(n)c 6 N+(E) 6
⌘1(E)X

n=1

dK(n)e.

Due to the asymptotic estimate (6.1.7), we immediately get the following asymptotic estimate
as E ! +1

N(E) = 2N+(E) +N0(E) = 2

⌘1(E)X

n=1

K(n) +O(
p
E)

=
E

2

⌘1(E)X

n=1

1

n
- 2

⌘1(E)X

n=1

n+O(
p
E)

=
E

2

⇣
log(

p
E/2) + �

⌘
-

E

4
+O(

p
E)

=
E

4
log(E) +

✓
�- log(2)-

1

2

◆
E

2
+O(

p
E).

This completes the proof.

It follows from Theorem 1.3.11 that for k 6= 0 the operator L̃k acting on Hk presents an
infinite amount of eigenvalues accumulating at infinity that can be explicitly described by

�d(Hk) := {�n,|k| = 4(1+n)(1+n+ |k|) | n 2 N,k 2 Z}.

Due to the symmetry w.r.t. k of �n,|k|, all the eigenvalues are at least double degenerate.
Moreover, this degeneracy must be finite. In fact it is enough to observe that each operator has
a ground state of energy greater than

�1,|k| = 4(|k|+ 1),
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Figure 16: Degeneracy (halved) of the first 4.893.535 eigenvalues (namely �n,k < 3 · 106). Observe that
only one of those eigenvalues attains the higher multiplicity of 110, far below than our upper
bound.

and that the function n 7! �n,|k| is increasing in n 2 N.
The degeneracy of an eigenvalue � can be easily bounded above by (�- 4)/2, but this is far

from being optimal. In fact, the computation of the first five million eigenvalues (see Figure 16)
suggests the growth of the degeneracy to be irregular and slow as in the case of the Grushin
cylinder (see Theorem 1.3.16). We remark that plotting more eigenvalues yielded qualitatively
the same plot.

Unfortunately, it is not possible to obtain a more precise description of the degeneracy with
the simple techniques employed in Theorem 1.3.16. Indeed, in this case the problem reduces to
counting the number of solutions of a non-linear Diophantine equation, which is well-known
to be an hard problem.

�.�.� Aharonov-Bohm effect

We now consider the Aharonov-Bohm on the Grushin sphere. Since S2 is simply connected,
any closed form is exact and hence we cannot hope to obtain an Aharonov-Bohm effect without
artificially poking a hole in the manifold. This is the same phenomena as in the original
Aharonov-Bohm effect [AT98, dOP08].

In this section we will thus consider the magnetic Laplace-Beltrami operator induced by the
magnetic vector potential !b = -ib d�, b 2 R, on the north hemisphere of S2 with the north
pole removed, denoted by S�+. Note that on S�+ the corresponding magnetic field is 0. The
resulting operator is

Lb = @2x -
1

sin(x) cos(x)
@x + tan(x)2

⇣
@2� - 2ib@� - b2

⌘
. (6.2.6)
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6.2 Spectral analysis and Ahronov-Bohm effect for the Grushin sphere

That decomposes in the Fourier components

L̃
b
k = @2x -

1

sin(x) cos(x)
@x - tan(x)2(k- b)2

It is important to remark that, due to the forceful removal of the origin (the north pole), this
magnetic Laplace-Beltrami operator is not essentially self-adjoint on C1

c (S�+). As is customary
for the standard Aharonov-Bohm effect on R2, we will consider the self-adjoint extension
obtained by posing Dirichlet boundary conditions on the origin. Namely, we will take as
domain the closure of C1

c (S�+) w.r.t. the Sobolev norm W1,2
0 (S�+).

We immediately get Theorem 1.3.22 by the same arguments of Theorem 1.3.11, replacing k
with k- b. We then easily obtain Corollary 1.3.23.

Proof of Corollary 1.3.23. Without loss of generality, we can assume b 2 (-1/2, 1/2), i.e.,  = 0.
If b = 0 then the statement reduces to the one of Corollary 1.3.12, so let us assume, by the
simmetry of the eigenvalue expression, that b < 0.

We then proceed similarly to the proof of Corollary 1.3.12, splitting the counting function in
two components N-(E) and N+(E), depending on wether k is smaller or bigger than b. The
estimates on N+(E) and N-(E) are then obtained as in Corollary 1.3.12, paying attention to
the presence of b. Indeed, in the notation of the proof of that corollary, in both cases we obtain

K(n) =
E- 4n2

4n
+ |b|.

Since the sum has to be computed for n 6 ⌘1(E), given by

⌘1(E) =

$
|b|+

p
E+ |b|2

2

%

,

it is easy to see that b only appears (linearly) in the O(
p
E) term. Since |b| 6 1/2 this completes

the proof.

As already anticipated in the previous section, the degeneracy of the spectrum for the
Grushin sphere seems to be of similar nature as for the Grushin cylinder, at least from a
numerical point of view, but having a precise control on it is much more involved and proba-
bly not possible at present. However, one can still prove that the degeneracy is very unstable
with respect to the parameter b and, in particular, that the spectrum is simple for b 2 R \Q

and finitely degenerate for b 2 Q. This is summarised in Corollary 1.3.23 and it follows from
an argument very close to the one in the proof of Corollary 1.3.16.
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motion planning for co-rank one sub-Riemannian metrics. ESAIM Control Optim.
Calc. Var., 10(4):634–655, 2004.

[RS75] M. Reed and B. Simon. Methods of modern mathematical physics. II. Fourier analysis,
self-adjointness. Academic Press [Harcourt Brace Jovanovich Publishers], New
York, 1975.

[RS76] L. P. Rothschild and E. M. Stein. Hypoelliptic differential operators and nilpotent
groups. Acta Math., 137(3-4):247–320, 1976.

[RS80] Michael Reed and Barry Simon. Methods of modern mathematical physics. I. Aca-
demic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, second
edition, 1980. Functional analysis.

[Sha02] E. Shargorodsky. Semi-elliptic operators generated by vector fields. Dissertationes
Math. (Rozprawy Mat.), 409:96, 2002.

[SS83] J. T. Schwartz and M. Sharir. On the ‘piano movers’ problem ii: General tech-
niques for computing topological properties of real algebraic manifolds. Adv. in
Appl. Math., 4:298–351, 1983.

[Sus76] H. J. Sussmann. Some properties of vector field systems that are not altered by
small perturbations. J. Differential Equations, 20(2):292–315, 1976.

[Sus82] H. J. Sussmann. Lie brackets, real analyticity and geometric control. In R. S. Mill-
mann R. W. Brockett and H.J. Sussmann, editors, Differential Geometric Control
Theory, chapter Lie brackets, real analyticity and geometric control, pages 1–116.
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