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Introduction 
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Introduction 

 

Understanding the behavior of materials subjected to elevated pressures of the order of 104 

bar or 1 GPa has been the subject of considerable interests in the last decades [1]. High-pressure 

synthesis on an industrial scale is applied to obtain synthetic diamonds and cubic boron nitride 

(c-BN), which are the superhard abrasives of choice for cutting and shaping hard metals and 

ceramics. Recently, high-pressure sciences have undergone a renaissance with new techniques and 

instrumentation. For example, superconducting behaviour was previously known for only a few 

elements and compounds. Under high-pressure conditions, the “superconducting periodic table” 

now extends to all classes of the elements, including condensed rare gases, and ionic compounds 

such as CsI. Another surprising result is the newly discovered solid-state chemistry of the novel 

compounds such as nitrides and light-element gas molecules such as CO2, N2, O2 and N2O, which 

react to give polymerized covalently bonded or ionic mineral structures under conditions of high 

pressure and temperature. On the other hand, there are continuous interests in the properties of 

minerals found in the crust, proposed for mantle and the core of the Earth. 

Silica is ubiquitous in the Earth’s crust and mantle with many crystalline and amorphous 

forms or as a fundamental building block of many rock-forming minerals. With the invention of 

high-pressure apparatus (to 10 GPa) by P. W. Bridgman (Nobel prize 1946) and the introduction of 

the Mao-Bell diamond anvil cell (to 300 GPa) [2] and the the brightness of Sychrotron radiation, 

lots of experimental data have been collected about silica, which have in turn generated a number 

of open problems. Under pressure and room temperature, quartz and cristobalite are reported to 

transform into metastable phases, instead of the thermodynamically stable coesite and stishovite 

phases. Some of them, such as quartz-II and phase X-I are still unknown after 20 years [3,4]. 

Phase X-II has been assigned as isostructure to α-PbO2 [5,6], however, previous simulations 

couldn’t reproduce the experiments. The pathway is therefore unclear so far. There are a number 

of experiments, which reported quartz and coesite to become amorphous under pressure [7], a 

phenomenology first observed in ice [8]. The microscopic description of such pressure-induced 

amorphization is still debated [9,10].  
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Problem of predicting, a priori, the structure that a solid will adopt is even today (with 

powerful computer), extremely difficult. Faced with this problem one looks for approximate but 

general principles that serve both as aids to rationalizing crystal structures and as guides to 

predicting the structures of new compounds. 

Silica glass is a prototypical example of a network-forming disordered material like water. 

The geometrical, topological, and coordination changes resulting from the application of pressure 

provide an ideal testing ground for atomistic models. Contrary to ordinary solids, which are 

normally known to harden by compression, the compressibility of silica glass has a maximum at 

about 2-4 GPa [10-15], and its mechanical strength shows a minimum around 10 GPa [16]. At this 

pressure, the compression of silica glass undergoes a change from purely elastic to plastic, and 

samples recovered from above 10 GPa are found to be permanently densified [17-22]. As first 

noted by Roy and Cohen [23,24], recent in situ measurements have confirmed that densification 

can also take place at lower pressures provided the glass is annealed to several hundred degrees 

[22,25-27]. There are plenty of theoretical studies though, no unified model exist for all above 

phenomena.  

 In spite of theoretical and computational advances, including the availability of increasingly 

efficient first-principles codes, addressing the above problems is still out of reach for state-of-art 

first principles methods due to the size and time scales. Classical molecular dynamics is of great 

help to have better statistics due to possibility of simulating the larger sizes and time scales. 

However, the results will be dependent on the quality of the force field. To combine classical 

molecular dynamics and first-principles calculations is therefore becoming a very important 

branch of computational physics and material sciences. One efficient way is to construct accurate 

and transferable potentials for atomic interactions from ab initio by so called “force matching 

method”, initially developed for metals by F. Ercolessi and colleagues at SISSA [28]. My starting 

point is the availability of a polarizable potential for silica developed in our group [29]. Even 

though the potential has already been shown to yield better results than all the other potentials to 

which it has been compared so far, it is not obvious a priori that its validity can be extended to 

address all the above problems in silica, so part of my thesis focuses on the testing the reliability 

of the potential.  
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In this thesis, I’ll use the silica potential [29] to understand: 

 

1). What is phase X-I of silica? How does phase X-II (a-PbO2-like phase) form? 

2). What is quartz-II? What is the mechanism of the quartz pressure-induced amorphization and of 

the appearance of post-quartz crystalline phases? 

3). What is the reason for yield strength minimum, compressibility maximum and densification in 

compressed silica glass? 

4). Is it possible to use the polarizable potential to extract infrared and Raman spectra? 

 

    The outline of my thesis is the following: In Chapter 1, I present more details related to the 

motivation for studying silica. In Chapter 2, I mainly discuss the force matching method which has 

been used to construct the force field, and some methology. In Chapter 3, I show how the 

performance of the potential and how it can be used to calculate infrared and Raman spectra, 

focusing on the the calcuation of the spectra for high-temperature phase. Based on the calculated 

specta and the structural analysis, more profound understanding of the silica high-temperature 

phase is given. I will show in Chapters 4 and 5, pressure–induced changes in oxygen packing in 

quartz and cristobalite can be understood based on well-known transition paths for close-packing 

lattices. I will present in Chapter 6, a microscopic picture of the compression mechanisms of silica 

glass. In order to advance the understanding of pressure-induced amorphization, in Chapter 7 I 

also studied one example of the silica clathrate (type I) under pressure. I will then summarise the 

main results of my work in Chapter 8. 
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Chapter 1 

Why Study Silica? 

 

1.1 Silica in Earth and Material Sciences 

Silica is one of the primary components of Earth. Based on the chondritic model, SiO2 makes 

up 50 weight percent of Earth bulk [30]. Although it is generally accepted that SiO2 component of 

Earth’s lower mantle occurs as (MgFe)SiO3-perovskite, experimental evidence for the breakdown 

of perovskite at about 80 GPa [31,32] suggests that free silica may exist in the lower mantle 

[30,33,34]. Silica is also of great technological importance in both its crystalline and glassy forms 

[35], such as frequency control by crystalline quartz, microelectronics on glass surface/interface, 

chemical processing and corrosion control in the confinement by the cages of clathrasis (zeolite) 

and versatile ceramics (hard-toughness). From the point of view of condensed matter physics 

[36,37], silica glass is an ideal analogue of network forming materials. The structure of silica at 

moderate pressures consists of rigid tetrahedral building blocks connected at their corners by soft 

“floppy” joints. Understanding of the response to pressure of such structures is of general interests 

due to the possible polyamorphism (first-order transition between two kinds of glasses) [9] and 

due to the anomalies [10-27] with respect to all the other solids found by experiments. The 

low-pressure crystalline phases under pressure presents an important system for investigating 

pressure-induced amorphization [7], and the existence of metastable phases and the transition 

mechanisms between them (reconstructive or displacive) [3,4,38,39].  

1.2 Phase Diagram 

Silica exists in many different polymorphs, quartz, cristobalite, tridymite, coesite, stishovite, 

CaCl2-like form, α-PbO2-like form and pyrite form (Fig.1.1)[40], each one thermodynamically 

stable in a different region of the phase diagram. The most stable phase of silica at ambient 

condition is α-quartz, which belongs to the class of silica structures with corner-sharing SiO4 

tetrahedral. Quartz is traditionally considered a nontrivial benchmark system for examining the 

accuracy of the theory [41,42]. Cristobalite belongs to the same class of structures, but has smaller 
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density, different symmetry, and a different medium- and long-range arrangement of the 

tetrahedral. Stishovite (rutile structure) and the CaCl2-like phase of silica are also of considerable 

interest, not only because of their edge-sharing SiO6 octahedral structures, with Si in six-fold 

coordination to O, but also because the pressure-induced rutile-to-CaCl2 transitions is a typical 

example of a soft-mode-induced Laudau-type transition, as first found by Raman spectroscopy [43] 

and later confirmed by x-ray diffraction [44]. Since the discovery of stishovite [45], there have 

been significant progresses in the discovering of denser phases that are stable at higher pressure, 

for example, pyrite structure has been recently identified under pressures exceeding 200 GPa [26]. 

CaCl2 phase [43,44] and α-PbO2-like phase [46] are related to the properties of the silica under 

deep mantle conditions. Such a variety of phases offer an interesting stage for theoretical models. 

Moreover, despite decades of extensive work, a number of issues related to different aspects of 

silica phase diagram are still unclear. In this chapter, I will list several open issues covering both 

the low- and high-pressure regions of the phase diagram. 

 

Fig.1.1 Phase diagram of silica after Kuwayama et al [40]. 

1.2.1 IR and Raman Spectra 

I will start with the list by describing a methodological problem, the theoretical determination 

of the Raman and IR spectra of the low-pressure tetrahedral phases, which has so far hampered the 

theoretical investigation of the spectra particularly at high temperature. Besides their obvious 

relevance “per se”, understanding the Raman and IR spectra of both quartz and cristobalite might 

set a basis for the interpretation of vibrational spectra in silica glass, the disordered counterpart of 
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the class of corner-sharing tetrahedral networks. By increasing temperature, quartz and cristobalite 

transform from a low temperature α phase, where the harmonic approximation is believed to be 

valid, into a β phase, whose dynamics is believed to be dominated by dynamical disorder, and 

hence to be completely anharmonic. Raman and IR experiments on quartz and cristobalite as a 

function of temperature show that the α -β transition is characterized by the sudden disappearance, 

in the high-temperature β phases, of some of the peaks of the low-temperature α phases [47-50]. In 

quartz, the Raman modes present at 128 and 207 cm-1 in the α phase merge and weaken, and only 

one major peak remains in the spectrum of β-quartz around 464 cm-1, slightly left-shifted with 

respect to the same peak in α-quartz [48]. For cristobalite, all the strong Raman bands at 416, 230 

cm-1 and 114 cm-1 disappear in the transition of α–cristobalite to β-cristobalite [49,50]. Theory has 

been unable so far to describe the IR and Raman spectra of the high temperature β phases, but the 

availability of accurate polarizable potentials brings this goal under reach. 

1.2.2 Possible Post Stishovite Phases 

   The relative stability of CaCl2 phase and α-PbO2-like phase under higher pressure is still 

debated, typically because it is dependent on the starting materials [51]. Nevertheless, α-PbO2-like 

phase is stable according to some experiments [46,52] and first-principles calculations [53-56], 

and overall the difference of the enthalpy is small [54]. The fact that α-PbO2-like phase can be 

obtained at room temperature from cristobalite is one of the most interesting and debated topics 

[5,6,57-60], particularly because the Martian meteorite Shergotty, a shocked achondrite to 

~29-45GPa, contains a dense orthorhombic SiO2 phase with α-PbO2 structure [33,34], and also 

because previous calculations didn’t reproduce α-PbO2-like phase as a resulting octahedral phase, 

starting from cristobalite [61-64]. 

1.3 Compressed Silica Glass 

It is very interesting to study the structure of silica glass upon slight compression (between 0 

and 10 GPa, approximately). Here there are a number of puzzling observations that await 

theoretical interpretation. The first observation is that SiO2 glass is very compressible [65], much 

more compressible than quartz, with respect to which, glass becomes finally denser at about 12 
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GPa [7]. The reason for this has been highly debated. Meade et al [66] believe that compression is 

achieved by reducing the Si-O-Si angle, i.e. by tilting the tetrahedra, without any bond breaking 

and reforming. In ref. [65] a different mechanism is proposed whereby compression is achieved by 

changing the topology of the network (ring distribution). Changes in coordination (silicon 

increases its average coordination) cannot be ruled out either, as it is the case in liquid silica [67]. 

 

 

Fig.1.2 Bulk sound velocity obtained according to the measurement of the Brillouin scattering 

after Zha et al [14]. 

In connection with this, SiO2 glass displays a very anomalous compressiblity versus pressure 

[11-15], with a maximum (minimum in the bulk modulus) around 2-4 GPa (Fig.1.2). This is 

typical of an underlying phase transition, or crossover, between two states, as argued for the case 

of GeO2 glass [68]. Indeed, evidence for a first order phase transition in the glass has been 

proposed theoretically [69] and experimentally [70], although both results have been seriously 

questioned [22]. Notice that, at variance with GeO2, where differences exist between the 

compressibility measured statically (derivative of the P(V) curve) and dynamically (measuring the 

sound velocity), due to the long time dynamics of the structural rearrangements when pressure is 

changed (see Ref [68] for an instructive discussion on this), the anomaly is present, in SiO2, also 

in the sound velocity [14] indicating that silica glass is long-lived metastable state at each pressure. 

This implies that the acoustic branch is indeed becoming softer with pressure in SiO2, up to about  
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Fig. 1.3 The yield strength at different pressure after Meade & Jeanloz [16]. 

 

Fig. 1.4 The densification (indicated by the Brillouin frequency shift) for different subjected peak 

pressure after Polian & Grimsditch [19]. 

5 GPa, which is a very unusual phenomenon. In connection with such a "softening", the rheology 

of compressed glass is also becoming weaker. The yield strength decreases [16] and has minimum 

about 10 GPa (Fig.1.3). The crystal growth rates increase dramatically at higher temperature as 

well [70]. 

Notice that much has been discussed about the permanent densification of glass when 

compressed above 10 GPa, i.e. the recovered sample is denser than the starting one (Fig.1.4), 

however most of the models proposed so far for densified glass obtained from cold decompression 

at room temperature [71-74], contain sizable amounts of coordination defects, which are also not 
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seen in experiments [20, 75]. On the other hand, five-fold defects are known to be responsible for 

the diffusivity maximum in silicate melts [76,77], whether it exists and yields the anomalies in 

glass is still unknown. 

The problem of studying compressed silica glass by simulations is complicated by the 

well-known difficulty of generating a good starting configuration at zero pressure. Generally 

speaking, there are two kinds of methods to prepare a model for study: one is from such as WWW 

model [78] as ideated for silicon glass; another one is more natural as it is prepared quenching 

from liquid [79]. The former is useful, however is limited, particularly we find it to contain no 

three member ring in the final configuration therefore the spectra generated from such model is 

generally in poor agreement with experiments, and it is not clear how far it is comparing with the 

natural glass. The second one will be perfect in principle, however the quality of the glass will be 

related to the quenching rate [79]. We will start our simulation based on the knowledge above and 

obtain an “ideal” glass at least from the view of the density (saturated with quenching rate) and 

then proceed with the study of the anomalies presented above. 

1.4 Metastable Phases 

1.4.1 Phase X-I and Phase X-II by Compressing Cristobalite 

Experiments at low pressures show that a first-order transition from α-cristobalite to 

cristobalite-II (the space group symmetry P21/c) take place at around 2 GPa [80-85]. Dove et al. 

reproduced cristobalite-II from ideal cubic cristobalite [83]. So far cristobalite-II couldn’t be 

reached directly by rigid unit mode (RUM) model as well [83,86] due to high-energy barrier. At 

pressure above 10 GPa, i.e. well within the stability domain of stishovite, cristobalite transforms 

into a new phase (phase X-I), and above 30 GPa a second new phase (phase X-II) is formed, both 

of which are crystalline [3] and metastable. As mentioned earlier in this chapter, the phase X-II has 

been established as α-PbO2-like phase [5,6]. The finding is very interesting, because so far no 

theory could reproduce this phase starting from cristobalite [61-64]. Phase X-I remains mysterious 

as the diffraction peaks are not enough to extract the crystalline structure and earlier theories yield 

a different phase (CmCm) with 50% of 6-coordinated silicon [63], which is in contrast to the 

Raman and infrared spectra. Very recently, Huang et al [62], by using a combination of classical 

and first-principle simulations, have proposed hp-cristobalite with oxygen (hexagonal) close 
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packed lattice, which allows to reconcile the evidence, from X-ray diffraction, of a low 

compressibility for phase XI [3], with that of tetrahedral order within the same phase, as inferred 

from infrared and Raman spectroscopy [37,84,85]. However, hp-cristobalite is reported to 

transform, in the second step of the process described in Ref. [62], into stishovite, which has never 

been observed in experiments starting from cristobalite and phase X-I so far. Gratz et al. reported 

that amorphization could be obtained by compressing cristobalite particles (~30 nm) around 23-28 

GPa [87], i.e. in the regime of phase X-I. However, the physical behavior under nano scales is 

beyond the scope of this study.  

We will focus on the description of structural information of phase X-I and show how it is 

possible to obtain phase X-II from phase X-I.  

 

 

 

Fig. 1.5 Pressure dependence of interplanar spacings of cristobalite after Tsuchida and Yagi [3]. 

1.4.2 Quartz-II, P21/c (Z=6) and Pressure-induced Amorphization 

    A number of experimental studies have reported the pressure-induced amorphization in 

quartz and coesite at around ~30GPa [7]. Different mechanisms have been proposed to explain 

amorphization, including pressure induced melting. Theoretical studies have provided a deeper 
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understanding of metastable phase transition in quartz (and coesite as well), mainly from the view 

of the dynamic instability [88,89] or elastic instability [90,91]. The mechanism is still debated also 

because new experiments have shown that before or at amorphization there is evidence of new 

crystalline phase named quartz II [4, 39]. Experiences have also yielded evidence for additional 

phases above the amorphization pressure [39, 92]. Among them, the P21/c (Z=6) is a denser phase 

similar to stishovite and has been clearly resolved by Haines et al using helium pressure medium 

[39]. Rationalizing such a complex behavior requires microscopic models for quartz-II, for 

amorphous phase, for the transition mechanisms (to at least three different phases), which have not 

been extracted from experiment yet.  

 

Fig. 1.6 The X-Ray diffraction pattern and the interpanar spacings as a function of pressure. The 

evidence for quartz-II is the convergence of the (110) and (102) peaks as discussed by Kingma et 

al [23,79]. 

Crystalline-amorphous transitions have been also documented in melanophlogite (type I 

clathrate) and dodecasil (type II clathrate) very recently, primarily through a broadening and drop 

in intensity of the X-ray diffraction lines [93-95]. Unlike quartz and coesite, the starting crystal 

(melanophlogite) is already less dense than glass, and with similiar Gibbs free energy at 0GPa, 
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which explain its lower amorphization pressure of ~ 8GPa [94]. The microscopic mechanisms 

have not been extracted from experiment however. 

 

1.4.3 Effect of Non-hydrostaticity 

Many transformations in minerals (such as quartz [7,39] and cristobalite [57, 96]) are 

sensitive to deviatoric or non-hydrostatic stresses, so it is of prime importance to consider the 

nature of pressure conditions generated by different types of pressure-transmitting media. Purely 

hydrostatic conditions prevail if the pressure medium, employed to compress the sample, remains 

liquid or gaseous under pressure. This is the case for 4:1 methanol:ethanol mixture up to 10 GPa 

and for the 16:3:1 methanol:ethanol:water mixture up to 15 GPa [97]. Above these pressures 

vitrification of mixtures occurs and non-hydrostatic conditions prevail, with typical pressure 

gradients on the order of 1-2 GPa over a 200-μm hole at 20-30 GPa. Helium and hydrogen remain 

the most hydrostatic and can be used into Mbar range, however, recent experiments show that 

helium and hydrogen can be absorbed in the materials and possibly change the properties of the 

sample [95]. As it is hard to achieve purely hydrostatic conditions above 20 GPa, it is very 

important from theoretical view to study the resulting phases at different stress conditions, in the 

hope that if the stress conditions in experiments are known, the measurements together with the 

theory can provide important additional information on material behavior. Characterizing the state 

of stress in a sample is possible by vibrational spectroscopy. For example, the pressure 

dependence of Raman mode in 13C diamond has been used for calibration in high P-T experiments 

[97].  
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Chapter 2  

Theoretical Methods 

 

In spite of theoretical and computational advances, including the availability of increasingly 

efficient first-principles codes, most of the physical phenomena described in this thesis deal with 

time and size scales that are still out of reach for state-of-art first principles methods. It is thus 

desirable to construct accurate and transferable potentials for atomic interactions. The force 

matching method, initially developed by F. Ercolessi and colleagues at SISSA [28], which consists 

in parameterizing effective potentials from ab initio data, among all the other methods, is very 

appealing, due to its “first-principles” character (except for the functional form, no other 

information is from experiments). The many-body character of the atomic interactions is generally 

included in the most advanced force fields. The polarizable potential for silica developed by 

Tangney and Scandolo [29] is presented in this chapter. We start the introduction with a brief 

description of the first principles methods used to construct the TS potential. Some relevant 

theoretical techniques used throughout this thesis are also presented in the end of this chapter. 

2.1 Quantum Mechanics Modeling 

Molecular dynamics (MD) is a widely used technique for the simulation of a system of 

atomic nuclei (and electrons) at a microscopic level. In particular, the method ideated by Car and 

Parrinello [98] made feasible to perform MD simulations with a full quantum description of 

electrons within Density Functional Theory (DFT) [99]. Explicitly treating the electrons means 

that, in principle, one does not make assumptions about the bonding of the system and this allows 

surprises to occur. Spontaneous changes in bonding can take place without loss of accuracy, which 

means that one can simulate changes of phase with more confidence. Ab initio molecular 

dynamics (AIMD) can also allow one to model chemical reactions. This is something that 

effective force fields are unable to do because, by definition, chemical reactions involve changes 

in the bonding and when they occur it is the electrons, which play the dominant role. Unless the 

dependence of electrons on ionic positions is explicitly calculated, the reaction cannot be modeled.  



SISSA Ph.D. Thesis  Modelling Structure,phase transition,vibrational spectroscopy of silica at extreme conditions 

 16

2.1.1 Car-Parrinello Molecular Dynamics (CPMD) in NVE Ensemble 

    The Car-Parrinello (CP) method [98] approximates the exact adiabatic evolution of the 

electronic ground state during the ionic dynamics, by evolving electronic and ionic degrees of 

freedom according to the classical Lagrangian: 
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   Kohn-Sham DFT [99] allows the calculations of forces acting on the atoms according to 

Hellmann-Feynman theorem 
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In the CP method, the forces are calculated on the instantaneous wave functions, which, in 

practice, closely approximate the exact adiabatic ones.  

2.1.2 The Internal Stress Tensor in DFT 

In principle, Kohn-Sham DFT [99] allows Hellmann-Feynman theorem works for the 

calculations of internal stress tensor acting on the cell 
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2.2 Force Matching Method 

In a molecular dynamics simulation the important quantities are the forces on each atom, and 

if one is performing simulations at constant pressure, the stress on the simulation cell. Ercolessi 

and Adams [28] have introduced the idea of fitting the parameters of an “empirical” force field to 

reproduce ab initio forces as well as possible. Laio et al. [91,92] were interested in simulating 

systems (iron) under high pressure and so have extended the method slightly by trying fit also the 

calculated stress. In the fitting potential for complex system such as silica (with many 

polymorphs), Tangney et al [86, 93, 94] also include in the function to be optimized, the energy 

differences between different configurations. As long as we are not interested in the chemical 

reactions or magnetism properties or other subtle changes in the electronic properties, the method 

should be valid. Details have been given in Tangey’s PhD thesis [93], some necessary content is 

repeated here for completeness. 

2.2.1 Why Effective Potentials in the Era of Ab Initio Calculations? 

The computational expense involved in AIMD means that for most of the problems in 

which we are interested, an alternative solution is required. We would like to find a compromise 

between the accuracy in static calculations and the quality of thermodynamic sampling, thus can 

be computed with more confidence than has been done in the past. The approach was taken to 

finding this compromise was to look for force fields with functional forms (NOT a function), 

which capture phenomenologically more of the dynamical electronic effects, which contribute to 

interionic forces and which are therefore capable of providing more accuracy [29, 103-116]. The 

compromise lies in the fact that this capacity for improved accuracy is generally at the expense of 

computational efficiency. The improved accuracy was achieved with a given functional form by 

using data from density functional theory simulations in a general and well-controlled 

parametrization procedure. An obvious advantage is that the calculations by effective potential are 

much cheaper than AIMD, and therefore permit larger system sizes and run lengths, for example, 

the liquid silica at lower pressure and glass is highly viscous, as shown in Fig.2.1, AIMD (within  
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Fig.2.1 Equation of state of liquid silica [29] for the new potential compared to experiment, ab 

initio simulations and classical simulations using the BKS potential. Time and size constraints and 

the very high viscosity of liquid silica at low pressures mean that the ab initio system cannot 

diffuse enough to give meaningful averages of thermodynamic properties. Different initial 

configurations account for the different abinitio volumes at the same pressure.  

short time scale and small size) can only give some scattered data at lower pressure [29], and only 

become meaningful [67] after the combination with the calculations by efficient potential. A 

number of properties, of viscous melts/glasses, interfaces or grain boundaries, solubility (with 

different percentage of components), fracture, defects extended in crystals, can only be addressed 

by classical potential so far. For example, the simulated silica glass quenching from liquid depends 

on the quenching rate [79] and convergence is reached for quenching rate, which are not feasible 

with AIMD in the present ages, however we can do it by classical MD. More examples will be 

found from our study: the resulting crystal structures are dependent on the compression rate (See 

in Chapters 4 and 5).  

2.2.2 Parametrizing from Ab-initio Data 

Given a form for the interatomic force-field, which depends on a set of parameters {η}, the 

following function was minimized: 

ESF ESf Δ+Δ+Δ=Γ ωωωη})({                                              (2.4) 

with respect to the parameters {η} where 
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Here α
IclF ,  is the α-th component of the force on atom I as calculated with classical 

potential, α
IaiF , is the force component as calculated ab initio, αβ

clS is the stress tensor component 

as calculated with classical potential and αβ
clS  is the stress tensor component as calculated ab 

initio, B is the bulk modulus, k
clU and k

clU  are the potential energy of configuration k as  

 

Fig.2.2 The sketch of force matching method [103] 

calculated with classical potential and ab initio respectively, cn is the number of the 

configurations for which the potential were fitted. The quantity fω > Sω > Eω were chosen to 

reflect the amount of available data. The final fit was insensitive to the values chosen as long 

as Eω was relatively small. cn was required to be reasonable large, e.g. 10, and another 5 



SISSA Ph.D. Thesis  Modelling Structure,phase transition,vibrational spectroscopy of silica at extreme conditions 

 20

configurations were retained for convergence (see Fig.2.2). Minimization of })({ηΓ  with 

respect to {η} was performed using a combination of simulated annealing [119] and Powell 

minimization [120]. A basin in surface defined by })({ηΓ  in {η} space was initially found using 

simulated annealing and, once found, further minimization was performed using the method 

Powell. 

The requirement to fit also the ab initio stress and energy improved greatly the capability of 

the fitting routine to find the correct basin of attraction. This is partially because, for a system with 

many body forces, the stress is not a trivial function of the forces like in the two-body case; 

partially because, for an AIMD calculation, energy, forces and stresses are anticipated values of 

different operators with respect to the same ground state. Regarding the differences between 

quartz and stishovite at ambient conditions, the two structures differ substantially in their bulk 

modulus and energies, which strongly suggest the fit to the ab initio stress and energy. 

2.3 Many-body Interactions of Simple Ionic Systems 

The problem of simulating ionic materials has a long history. One of the oldest, and still the 

most widely used interaction potential for such systems treats the ions as though they are rigid 

particles which are undistorted by their environment. This is the Born-Mayer pair potential [121], 

86)exp()(
IJ

IJ

IJ

IJ
IJIJIJ

IJ

JI
IJIJ R

D
R
CRB

R
qqRU −−−+= α                               (2.5) 

where IJU  and IJR is the interaction energy and the distance of particles I and J , respectively. 

Iq and Jq are charges on the ions and the first term ( MV ) of the expression is electrostatic energy 

(Madelung potential)of the point charges and is generally evaluated by the method of Ewald 

summation [122]. The second term ( repV ) reflects the fact that an isolated electro distribution tails 

off exponentially and so the repulsion between ions at short range due to the Pauli exclusion 

principle can be approximated by a constant IJB times an exponential overlap of ionic charge 

distributions; the final two terms ( polV ) model the ion dispersion interactions which are always 
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attractive and which represented van der Waals, as a sum of dipole-induced dipole ( 6
IJR  term), 

dipole-induced quadrupole ( 8
IJR  term) and higher order terms which are generally neglected.  

This potential form has the advantage that it has a pairwise form and it is quick and easy to 

evaluate, so that the relative large system sizes and long times may be simulated with relative ease. 

However, it has been recognized for a long time that this form does not contain some of physics 

relevant for many real ionic systems. Iq , IJα , IJB , IJC and IJD are parameters of the model 

which may be determined by physical reasoning, empirical considerations or by fitting to data 

obtained from ab initio calculations. But once determined, keep it fixed for simulations. The fact 

that we can introduce functional (self-consistence) or environment-dependent (such as 

coordination) so that those parameters are varied according to the configurations therefore make 

the force field become a many body potential [29, 103-116].  

2.3.1 Aspherically Compressible Anions 

Many systems contain anions, which have an appreciable size relative to interionic distances 

and which are not rigid, in the sense they become aspherically distorted and can change their size 

in the condensed phase depending on their environments. This, in practice, can be realized by 

slightly modifying the second term ( repV ) and the total Hamiltonian so that something as IJB is 

variable. Details can be found in the work by Madden’s group [108,112] and Tangney’s thesis 

[103]. Typically, we can write: 
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where A and C stand for anion and cation respectively. And  

)()( )2()1( jijijiijij SSr αβαβαβααα κκυυδσδσρ −−−−−−=  

ijij rrS /)1(
αα =  
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αββααβ δ−=
2)2( /3 ijijij rrrS  

The first three summations represent short-range repulsions, while the last term represents the 

energy cost of deforming the charge density of an ion (anion). iδσ is variable which characterizes 

the deviation of the radius of ion i  from its default value. iν is a set of three variables 

describing the Caresian components of a dipolar deformation. i
αβκ  is a set of five variables 

describing the quadrupolar distortions.  

2.3.2 Charge Transfer Model 

Because electrostatics play an essential role in determining the structure and properties, more 

models about flexible point charges were reported in the past, which are realized by slightly 

modifying the first term and the total Hamiltonian so that something as Iq is variable. For a 

certain local configuration (coordination number) [115], the charge of each atom can be evaluated 

according to  

∑ =
−=

Nc

j ijijii qq
1

0 εδ                                                         (2.7)  

where 0
iq  is the charge of the isolated atom and 1

0 )](exp(1[ −−+= rrb ijijε  is the charge 

transfer function, which is only related to the distance of the tagged atom pairs. 

For a variable local configuration (coordination number), one is refer to QEq method [116], 

in which the charges are determined by requiring that the chemical potential Aχ be equal on all 

the atoms, and Aχ  is a function of the charges on all of the atoms of the systems 

∑+=
B

ABABABAA qRJ )(0χχ                                                  (2.8) 

Where 0
Aχ  and 0

AAJ  correspond physically to the electronegativity and hardness of the atom 

and are obtained from the valence-averaged atomic ionization potential (IP) and electron affinity 

(EA) as 2/)(0
AAA EAIP −=χ  and ).(0

AAAA EAIPJ +=  )(RJ AB  is described as a shielded 

Coulomb potential for a normalized Slater orbital. 
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2.3.3 Polarizable Anions 

A distorted ion is one with multipole moments, the most important of which is the lowest 

order or dipole moment. The induction, via electrostatic interactions, or short range Pauli 

exclusion-type interactions of dipole moments on ions can have a significant effect on the 

electrostatics of a system. The inclusion of polarizable part make the third (and fourth) part 

variable according to the configuration. The many body character is achieved by the 

self-consistence of the induced dipoles on each anion of every configuration. The effective 

potential for silica developed by Tangney et al. [29] includes the dipole polarization of oxygen 

ions, in which the induction of dipole moments both by electrostatic forces and the short-range 

repulsive forces between anion and cation. The short-range contribution to dipole moments is 

given by 

)(3 ijij
ij ij

ijjSR
i rf

r
rq

p ∑
≠

=α                                                       (2.9) 
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                                              (2.10) 

α is the polarizability of the dipoles,b and c are parameters of the model. The dipoles on each ion 

are found self-consistently at each time step (of MD) by iterating to self-consistency the equation 

SR
iNjjNj

n
ji

n
i prprEp += ==

− )}{,}{;( ,1,1
1α                                        (2.11) 

where the dipole moment on ion i , ip depends on the electric field )( irE  at position ir which 

in turn depends on the positions and dipole moments of all the other ions. At each MD step, the 

iteration begins using initial electric field strengths NjjrE ,1)}({ = which have been extrapolated 

from their values at the previous three MD time steps. The inclusion of polarizability to classical 

potential is considered “to be the single most significant development in the next generation of 

force fields for bio-molecular simulations”[123] and “as one of the most important and urgent 

improvements to be implemented in modern empirical potential models” [124]. 
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2.3.4 Polarizability Variable 

This is, however, even second order with respect to the total Hamiltonian (based on Item C). 

The potential allows the polarizability variable [112] according to the instaneous ionic radii 

( ir δ+0 ) and the Madelung potential ( M
iV ),  

)]exp()[exp(0
M

iVii Vαδααα δ +=                                            (2.12) 

so that that anions of larger radii or under the action of a less intense Madelung potential have 

larger polarizaibility. More recently, Heaton et al. makes the calculation on individual ionic 

polarizability possible is a further development. 

2.4 The Potential of Silica  

The quest for a better potential for silica polymorphs has a long history, which started with  

 

Fig.2.3 Temperature dependence of c/a ratio at α-β transition of quartz [129] 

observation that an effective empirical pair potential could describe the relevant structural and 

dynamical features of silica liquid and glass [73]. Explicit inclusion of covalency in Si-O bonds 

was achieved by adding three body contributions [115,125]. The TTAM pair potential [126] was 

regarded as an important development, because its parameters were fitted to ab initio data (on 

small clusters) and because partial covalence was modeled by the use of partial charges and a 
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compensating short-range attraction. The BKS potential [127] went further along this line by 

re-parameterizing the TTAM potential on experimental data for quartz, an extended solid. The 

deficiencies of rigid-ionmodels have been neatly discussed by Wilson et al [128]. In particular, 

rigid-ion models were shown to be unable to reproduce the experimental gap between stretching 

and bending frequencies in the infrared spectra of silica glass. It was instead shown that by 

allowing oxygen ions to be polarizable, the infrared spectra could be substantially improved. The 

TS potential was developed starting from the ideas of Wilson et al, with the additional feature that 

its parameters were obtained by best fit to forces, stresses, and energies obtained by ab-initio 

methods on selected configurations in the liquid [29]. Previous simulations using the TS potential 

are in very good agreement with experimental data on the structural properties of most SiO2 

low-pressure crystalline polymorphs, liquid and glass [129]. The temperature dependence of the 

c/a ratio in α- and β- quartz (see Fig. 2.3), and pressure dependence of the lattice constant across 

the rutile-to-CaCl2 transition (see Fig. 2.4) are just a few examples of the accuracy of the potential 

 

Fig. 2.4 Lattice constants a and b against pressure across the stishovite-CaCl2 transition [129] 

with respect to other existing force-fields for silica. The TS potential has been shown to reproduce 

the Si-O-Si angular distribution in the liquid and in all the low-pressure crystalline silica phases 

better than rigid-ion potentials. Recent work has shown that the TS potential agrees very well with 

ab-initio calculations on the vibrational density of states (VDOS) of quartz, indicating that the 

vibrational properties are also reproduced faithfully by the TS potential. 
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In the year of 2000, Stixrude [130] gave a serious review for all the classical potentials 

(existing at that moment), which have been used to study silica glass, i.e. none of the potentials 

can reproduce the thermodynamic stabilities for all the silica stable phase. This situation even 

extends to density functional theory calculations based on GGA approximation, where the 

cristobalite is predicted as the most stable phase instead of quartz [131]. And density functional 

theory calculations based on LDA approximation gives too low energy difference between 

stishovite and quartz as noted by Hamman [132]. The TS potential gives the right ordering among 

stable phases (as we will show it in Chapter 4). The energy difference between stishovite and 

quartz calculated by the TS potential is slightly higher than experiments. It is important to remark 

that the enthalpy of glass (at 0 GPa) is between quartz and stishovite [97], which makes the TS 

potential unique role in addressing the problems, treated in my thesis.  

The discussion about the TS potential wouldn’t be complete without mentioning some of its 

weakness. As far as the speed of the calculations is concerned, the TS potential is slower than 

two-body potentials with Coulomb terms by one or two orders magnitude, depending on the 

optimization of the codes. Compared to the force fields for metals, where no long-range forces are 

needed, the speed is slower by additional 2 orders of magnitudes. The TS potential occasionally 

(particularly in the liquid at high pressure) undergoes the polarization catastrophe, which can be 

easily treated by slightly modifying the electric response as [133] 

)1ln(
0

0 E
E

E
EEp ii +=
v

rv α                                                     (2.13) 

where 0E  is an adjustable parameter. 

2.5 Parrinello-Rahman methods 

The method introduced by Parrinello and Rahman [134] was firstly introduced to perform 

MD simulations with constant pressure conditions. MD simulations can be applied to finite 

number atoms with periodic boundary conditions. According to Parrinello and Rahman, the atomic 

configurations can be defined by a Bravais vectors and rescaled coordinates: 

II RhS 1−=                                                                 (2.14) 
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where ),,( cbah vvv=  

The system can be described by the set of coordinates },{ ISh  and its Lagrangian can be written 

as  
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where hht=Γαβ  is the metric tensor, W is a fictitious mass controlling the motion of the cell 

variables, P is the external pressure and |det| h=Ω  is the volume of the cell. From the 

Lagrangian (Eq. 2.14), we are able to derive the equation of motion for the system 
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is the total stress tensor, the first term of Π  is internal stress tensor 

αβαβ επ ∂∂Ω−= V)1( and )1( 1
0

1
02

1 −Γ= −− hhtε is the strain tensor with reference to 0h  

[135]. 

    The mass parameter for the cell dynamics has no influence on the results obtained for static 

equilibrium properties, but is relevant when what is to be obtained are dynamical properties (such 

as phase transition). As W is the inertia, which accounts for all the infinitely replicated atoms in 

the periodically repeated cells, it has been suggested that its value be proportional to the total mass 

of the atoms in a single cell: ∑=
i

iMW 24/3 π [136]. 

 After the original work of Parrinello and Rahman several improvements of variable cell MD 

has been proposed. In particular constant pressure MD lends itself naturally to the introduction of 
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non-isotropic external stress [137], which may be used for simulations of uniaxial stress and more 

general non-isotropic pressure transformations (Chapters 4 and 5). The disentangled variables 

},{ ISh  make it possible to calculate the component of elastic constant and yield strength 

(Chaper 6) [138], with time-dependent shear strains, increasing at a constant rate, at different 

pressures.  

2.6 Some Structural Analysis Techniques 

The main order parameters describing the local structure, or short-range order, in compressed 

glass are the Si-O bond length, the Si coordination number, and the Si-O-Si angle distribution [65, 

67, 71, 72, 74, 139-145]. Changes in the intermediate range order are instead typically described 

by changes in the position and shape of the first sharp diffraction peak (FSDP) in neutron and 

X-Ray diffraction static structure factors [65,72,74, 139-146].  We calculate the neutron structure 

factor )(qSn
v

 as [146-148]  

)exp()exp(1)( 22 l
l

lk
k

k
OOSiSi

n RqibRqib
bNbN

qS ⋅−⋅
+

= ∑∑ vvv
                  (2.16) 

where kb , k { }OSi,∈ , are the neutron scattering cross sections, with Sib = 1.097 10-4 Bohr and 

Ob =7.840 10-5 Bohr [149]. kR , lR denote the position of atoms k and l, N is the total number of 

atoms, and ...  is the thermal average taken over a MD trajectory of at least 10 ps. The structure 

factor was then calculated for a discrete set of { }cba qqqq ,,=v , fixed by the period boundary 

conditions as )(2 cbnq aa ×= π /V, )(2 acnq bb ×= π /V, and )(2 banq cc ×= π /V, where the 

three vectors a, b and c define the simulation cell, V is the cell volume and an , bn , cn  are 

integers, with Mn cba <|| ,, . The value of M determines the maximum q for which the structure 

factor is calculated. Because the glass is an isotropic system, S(q) was expressed as a function of 

q=| qv | only. Contributions at different q were convoluted with a Gaussian width of σ =0.1Å. 

The X-ray structure factor )(qS RayX
v

−  was calculated by replacing in (1) the neutron cross 
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sections with the q-dependent atomic form factors )(qfk , with k { }OSi,∈ : 
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(2.17) 

The form atomic factors were approximated by the general expression 

∑
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)exp()(

n
nn csbasf                                                  (2.18) 

where θsin=s /λ = q / π4 . The parameters na , nb , c  relative to Si and O can be found in Ref. 

[150]. 

Changes in the position of the FSDP, which is generally located in the region FSDPq ~ 1.5-2 

Å-1, are indicative of changes at length scales 2π/ FSDPq  ~ 3-4 Å. The intermediate range order at 

these length scales can also be described in terms of the so-called “ring statistics” [65,79,142-145], 

i.e. by the statistics of closed paths in the network. Closed paths, or rings, are defined here by the 

“shortest-path” criterion [151], and a Si-O pair is considered connected if the interatomic distance 

is less than 2 Å, which corresponds to the first minimum of the Si-O pair correlation function.  
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Chapter 3 

Infrared and Raman Spectra of Silica Polymorphs 

 

The general aim of this study is to test the reliability of polarizable model potentials for the 

prediction of vibrational (Infrared and Raman) spectra in highly anharmonic systems such as high 

temperature crystalline phases. By using an ab-initio parameterized interatomic potential for SiO2 

and molecular dynamic simulations, we calculate the infrared and Raman spectra for quartz, 

cristobalite and stishovite at various thermodynamic conditions. The model is found to perform 

very well in the prediction of infrared spectra. Raman peak positions are also reproduced very well 

by the model, however, Raman intensities calculated by explicitly taking the derivative of the 

polarizability with respect to the atomic displacements are found to be in poorer agreement than 

intensities calculated using a parameterized “bond polarizability” model. Calculated spectra for 

the high temperature β phases, where the role of dynamical disorder and anharmonicities is 

predominant, are found to be in excellent agreement with experiments. For the octahedral phases, 

our simulations are able to reproduce changes in the Raman spectra across the rutile-to-CaCl2 

transition around 50 GPa, including the observed phonon softening. 

3.1 Introduction 

Raman and infrared spectroscopies are routinely used as an experimental tool for the 

characterization of materials. By probing the vibrational dynamics of a material, they are very 

effective in providing information about its mechanical and elastic properties, as well as on the 

occurrence of structural phase transitions. In high-pressure physics, where alternative techniques 

are difficult to use in conjunction with diamond anvil cells, vibrational spectroscopies are 

instrumental to detect phase transitions. The theoretical determination of Raman and infrared (IR) 

spectra is a powerful complementary tool to experimental analysis, particularly at extreme 

conditions of pressure and temperature, where experiments are challenging. The theoretical 

analysis establishes a direct link between the peaks observed in the experimental spectra and the 

character of the underlying atomic dynamics and structure, and can be used to validate or dismiss 

structural models. Theoretical efforts to model the vibrational dynamics of solids have been to a 
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large extent limited to the harmonic approximation, whereby the vibrational density of states 

(VDOS) is obtained by direct diagonalization of the dynamical matrix obtained in the limit of 

small-amplitude harmonic oscillations of the atoms around their equilibrium positions. Theoretical 

models of IR and Raman Spectra require, in addition to the VDOS, the calculation of the 

derivative of the polarization vector or of the polarizability tensor with respect to atomic 

displacements, respectively. The derivatives can either be obtained from simple empirical models, 

or from an ab-initio quantum treatment of the electronic response [41,42,153,154]. The harmonic 

approximation holds well for most solids at low temperatures. However, a large number of 

materials, including ferroelectrics, ionic conductors and silicates, undergo phase transitions 

between ordered and disordered states (which are completely anharmonic) due to temperature and 

/ or pressure changes. In addition, Raman spectra in various melts, especially, the liquid silicates in 

magmas, still lack a theoretical interpretation [154-156]. The harmonic approximation is obviously 

unable to describe such strongly anharmonic or fluid phases. 

Attempts to go beyond the harmonic approximation normally range from the systematic 

calculation of higher-order contributions in terms of the atomic displacements from equilibrium, to 

the full time-dependent treatment of the atomic trajectories by means of molecular dynamics (MD), 

the latter being applicable also to fluids, where atomic displacements from the initial positions can 

be arbitrarily large and power expansions ill-defined. Within a molecular dynamics approach, the 

full VDOS can be calculated as the Fourier transform of the velocity-velocity autocorrelation 

function, and derivatives of the polarization and of the polarizability can be obtained “on the fly” 

at each instantaneous configuration of the system during its time evolution [157]. While this 

approach guarantees in principle a full treatment of the dynamics in anharmonic solids and in 

fluids, and can be extended to include an ab-initio calculation of the electronic polarization and 

polarizability, a full quantum mechanical approach to the determination of Raman and IR spectra 

has so far been severely limited by the computational overhead of the quantum mechanical 

response, and has been reported so far only for very simple systems [158,159]. In this context, it is 

clear that the development of simplified models for the calculation of Raman and IR spectra, 

which retain the accuracy of ab-initio treatments but at a much reduced computational cost, would 

be extremely useful.  
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In this chapter we present a model, based on molecular dynamics and on a polarizable force 

field parameterized on ab-initio calculations, which is able to reproduce the experimental spectra 

of various silica (SiO2) polymorphs with good accuracy. The choice of silica was motivated by the 

availability of a polarizable force field from previous work, but also by the need to test the method 

on a large variety of phases with different degrees of anharmonicity and/or dynamical disorder.   

Calculating infrared spectra from model potentials requires the knowledge of the polarization 

changes during the dynamics, which can be extracted from classical [79,115,128,160] or from ab 

initio simulations [159]. The results in the case of classical simulations depend on the potential 

employed, so the ability of a potential to reproduce infrared spectra has become an important 

criterion in determining the quality of a potential and in identifying the relevant 

interactions[79,115,128,160]. For example, the most widely used force fields for silica, such as the 

TTAM [126] and BKS [127] potentials, showed some difficulties in reproducing the infrared 

spectra of silica polymorphs [79,160]. Calculating Raman spectra requires, in addition to the 

polarization, also the knowledge of the electronic linear response to an electric field (i.e. the 

polarizability) of the system, during the vibrational dynamics. Ab-initio approaches can provide 

such a response, albeit with a substantial computational effort. On the other hand, empirical 

approaches based on rigid charges, such as the TTAM and BKS potentials are unable, by 

construction, to simulate the electronic response, which explains why no attempt has been made so 

far to provide a theoretical model for the vibrational spectra of the high-temperature β phases. we 

have recently developed a new polarizable force field for silica (the TS potential [29]), which 

describes experimental data on the structural properties of most SiO2 low-pressure crystalline 

polymorphs, liquid and glass, better than any other empirical model [29,129], as detailed in Sec. II 

A. For the purpose of the present work however, the main advantage of the TS potential, with 

respect to rigid-ion models, is its fluctuating-dipole feature, which implies that the polarizability of 

the system (and thus its Raman spectra) can be extracted from the model itself, without further 

empirical and/or external assumptions. The reliability of the Raman spectra calculated with the TS 

potential is not obvious a priori, as the parameters of the potential were fitted to reproduce 

ab-initio forces, stresses and energies on selected configurations, while the electronic response was 

not included explicitly in the set of physical quantities to which the potential was fitted. So the 
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possibility exists that the parameters related to the induced fluctuating dipoles took effective 

values able to reproduce the structural properties, but perhaps not the electronic response, as 

recently shown in the case of the piezoelectrical constant [171].    

The goal of this work is two-fold. On one hand we determine the accuracy of the TS potential 

in reproducing the Raman and IR spectra of selected silica polymorphs, including octahedral 

phases. On the other hand, we present a model, based on molecular dynamics, which is capable of 

simulating Raman and IR spectra at arbitrary temperatures, up to the fully anharmonic regime. 

This chapter is organized as follows: in Section 3.2, we give a brief overview of the calculation 

methods. In Section 3.3, we present the infrared spectra for the low-pressure phases (quartz and 

cristobalite) and the high-pressure phase stishovite, and compare them with the results of other 

potentials. In Section 3.4.1, we present Raman Spectra for quartz and cristobalite at low 

temperatures, and discuss the reliability of the Raman spectra calculated with the TS potential. In 

Section 3.4.2, we present Raman Spectra for quartz and cristobalite at high temperatures. In Sec. 

3.4.3, we describe the Raman spectra of stishovite and how it changes across the rutile-to-CaCl2 

transition. We summarize our results in Section 3.5.  

3.2 Computational Methods 

3.2.1 Infrared and Raman Spectra 

The infrared spectra have been calculated from the Fourier transform of the total polarization 

autocorrelation function, as already done for other potentials [79,115,128,160]:  

∫
∞

∞−

− >⋅<−−= )0()())exp(1(
3
4)(

2

PtPdteTKh
hcn

I ti
B

vvωωωπω                     (3.1) 

where n is the refractive index of the medium, which for practical purposes can be treated as a 

constant in the calculation, h is Planck constant, c is the speed of light, BK is the Boltzman 

constant, T is the temperature, and )(tP
v

is the total polarization vector at time t, which includes 

rigid charges, and induced and short-range dipoles [29], and angular brackets indicate the 

statistical average.  
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Raman spectra reported in this work have been calculated by Fourier transforming the dynamical 

autocorrelation functions of the electronic contribution to the polarizability tensor α
t

[157,158]. 

Following the procedure in Ref. [158], we divide α
t

into its scalar part α and anisotropic part β
t

 

so that 

)()()( tItt βαα
tt

+=                                                         (3.2) 

where )(
3
1)( tTrt αα

t
=  and I is the identity matrix. Then it can be shown that the polarized 

component of Raman intensity is given by 
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3
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whereω  is the frequency of the Raman spectra, with the isotropic scattering component given by 
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and the depolarized (or anisotropic) component by 
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Because the correlation functions are computed classically, quantum effect corrections [144] are 

taken into account by multiplying Eq. (3.4) and (3.5) a factor 
2

)1( KT
h

e
ω−

−
. 

We calculated the tensor α
t

 with two different approaches. In the “direct” approach, α
t

 was 

calculated as the derivative of the instantaneous electronic polarization with respect to an external 

electric field. The polarizability tensor was also calculated at each step using the bond 

polarizability model [42], as discussed below. 

3.2.2 The Direct Approach 

In the direct approach, α
t

 was calculated as: 

vE
P
∂

∂
−= μ

μνα                                                              (3.6) 
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where P
v

is the polarization vector, E
v

is the applied electric field, μ andν are x, y, z in Cartesian 

coordinates. The derivative on (3.6) was calculated by finite differences at each MD step, by 

keeping atoms fixed. We found that E = 0.001 atomic units guarantees that it is still in the linear 

regime, with negligible numerical noise. As a test of the accuracy of the method, we computed the 

electronic contribution ( ∞ε ) to the dielectric tensor of α-quartz as μνμνμν απδε 4+=∞ , 

where the average is taken over a MD trajectory at 0GPa and 300K. we obtained similar values for 

the parallel ( 295.2|| =ε ) and perpendicular ( 290.2=⊥ε ) directions to the optical axis (z axis), 

which is in excellent agreement with the experiments ( 383.2|| =ε  and 356.2=⊥ε ) [164].  

3.2.3 The Bond Polarizability Model 

The polarizability tensor α
t

 was also calculated, at each MD step, with the so-called bond 

polarizability model (BP model) [42], in which the polarizability is parameterized in terms of bond 

contributions as follows: 

)
3
1)(()2(

3
1

2 μν
νμ

μνμν δααδααα −−++=
R

RR
pllp v                             (3.7) 

where SiO RRR
vvv

−= is the vector connecting a bonded pair of oxygen and silicon atoms located 

at OR
v

 and SiR
v

 , respectively. The parameters lα  and pα  define the longitudinal and 

perpendicular contributions to the bond polarizability, respectively, and depend on the length of 

the Si-O bond with the following derivative: 
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where R̂  is a unit vector along R
v

 and lα ′  and pα ′  are the derivatives of the bond 

polarizabilities with respect to the bond length. Notice that only the derivative of the bond 

polarizability is needed, as only its time-dependent changes, and not its absolute values, enter in 
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the construction of the Raman intensity. The derivative of the polarizability is thus completely 

defined, in the BP model, by three parameters:  

lp ααα ′+′= 2  

pl ααβ ′−′=                                                               (3.9) 

R
pl αα

γ
−

=  

Here we used the parameters of Ref. [42], which were determined by ab-initio density 

functional methods. In order to calculate Raman intensities with the BP model we generated a MD 

trajectory with the TS potential, and extracted the fluctuating part of the bond lengths by 

substracting from their instantaneous values the average value of the individual Si-O bonds 

averaged along the full trajectory. The total polarizability at each MD time step was finally 

determined by means of Eq.(3.6), by summing over all the Si-O bonds.  

We will use both the direct method and the BP model to construct the polarizability of α - 

cristobalite and quartz. For the octahedral phases however no bond-polarizability model exists to 

our knowledge, so the polarizability was determined exclusively using the direct method. It is 

important to remark that while the BP model has been widely employed so far to construct Raman 

spectra for silica polymorphs [165], most of the calculations reported in the literature so far have 

been obtained in the harmonic approximation, and no calculation has been thus reported for high 

temperature β phases. 

3.2.4 Details of the Molecular Dynamics 

    The MD trajectories were obtained in the microcanonical (NVE) ensemble. For quartz we 

used a simulation cell containing 2×2×2 α-quartz unit cells, for a total of 24 SiO2 formula units; 

for cristobalite a cell with 2×2×2 α-cristobalite unit cells (32 SiO2 formula units); for stishovite a 

cell with 2×2×4 stishovite unit cells (32 SiO2 formula units). The Verlet algorithm was used to 

integrate Newton’s equations of motion and the time step was set to 0.72 fs throughout this work. 

The initial atomic configurations at low temperature were taken from the ideal crystal structures 

[166], and the initial velocities were taken from a Gaussian random distribution. Simulations of the 
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high temperature and high-pressure phases were either started from the structures of Ref. [129], or 

obtained with the TS potential in the NPT ensemble by increasing temperature/or pressure very 

slowly. Equilibration times were of the order of 200 ps for the NPT runs, which were followed by 

about 200 ps in the NVT ensemble. Finally, runs longer than 200 ps were performed in the 

microcanonical ensemble to construct the correlation functions. The finite length of the runs 

introduces a 2-3 cm-1 broadening in the spectra, which was convoluted with an additional 

empirical broadening of 4 cm-1. 

3.3 Infrared Spectra 

 In this Section we compare infrared spectra for quartz , cristobalite and stishovite with 

experiments, as well as with spectra obtained with other force fields, such as TTAM [126], BKS 

[127], and three-body potentials [115]. Infrared spectra for low-pressure and low-temperature 

crystalline phases, α- quartz and cristobalite, are in excellent agreement with experimental data 

[47,167], as shown in Figs. (3.1) and (3.2), respectively. Calculated frequencies are systematically 

underestimated, but differences are below 7-8 %. Intensities are also in fair agreement with 

experiments, if one considers that experimental spectra are obtained from powders and are 

generally broad, as a consequence of grain shape heterogeneity (see also Appendix of this thesis) 

[167]. A comparison with the infrared spectra obtained with the BKS potential [64] shows that the 

addition of polarization effects can greatly improve the quality of simulated infrared spectra, 

particularly for what concerns intensities, as already noted for silica glass by Wilson et al. [128]. 
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Fig.3.1 Infrared spectra for α-quartz at 0GPa and 300K. The upper panel is experiments [167]; the 

lower panel is our calculation. 
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Fig.3.2 Infrared spectra for α-cristobalite at 0GPa and 100K. The upper panel is experiments [47]; 

the lower panel is our calculations. 
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Fig.3.3 Infrared spectra for β-cristobalite at 0GPa and 600K. The upper panel is experiments [47]; 

the lower panel is our calculations. Note the disappearance of the 590 cm-1 band (609 cm-1 in 

experiments [47]) as a result of the α to β transition. 

Comparison of our results for cristobalite with those obtained with a charge-transfer 

three-body potential [115], shows that the two models have similar intensity ratios, and that both 

compare well with experiments. However, peak positions with the three-body potential are in 

worse agreement with experiments than those obtained with the TS potential. In addition, the α to 

β transition is estimated to take place around 1000 K with the three-body potential [115], in 

contrast with experimental values ranging from 393 to 545 K [168], while the TS potential gives a 

value within the experimental range [129]. In Fig.3.3, we show the calculated infrared spectrum of 

high-temperature β-cristobalite, together with the experimental data [47]. The peak at around 600 
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cm-1 in the α phase, disappears in the β phase, in agreement with experiments and with the results 

obtained with the three-body potential [115].  

The TS potential employed in this work was obtained by best fit to ab-initio data in liquid 

silica at low pressure, i.e. in a regime where the Si-O coordination is close to four, but for a few 

coordination defects. The applicability of the TS potential to 6-fold coordinated, octahedral phases, 

such as stishovite is thus not straightforward. However, the TS potential was recently shown to 

reproduce very well the c/a ratio [129] during the rutile-to-CaCl2 transitions in stishovite. The 

lattice constants a and b predicted by the TS potential are also in excellent agreement with 

experiments,  
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Fig.3.4 Infrared spectra for stishovite at 9GPa and 300K. The upper panel is experiments at 1 atm 

and room temperature (see text for explanation) [169]; the lower panel is our calculations. 

and show a clear Landau-type transition around 50 GPa [129]. The only discrepancy with 

experiment is that the lattice constant is systematically overestimated in the simulation. While we 

believe that the problem might be solved by modifying the potential so as to allow the ion size and 

shape to vary, similarly to MgO [104], we also believe that it is important to assess whether the 

accuracy of the potential in its present form can be extended to octahedral phases also for what 

concerns the Raman and IR spectra. We show in Fig.3.4, the calculated IR spectra of stishovite at 

9 GPa with experimental spectra obtained at ambient pressure [169], since we could not stabilize 

stishovite at ambient pressure and no experimental spectra with intensities are available at finite 

pressure. The position of the peaks in the calculated spectra is in fair agreement with the position 

of the main experimental peaks [169]. Consistent with experiments, the peak corresponding to the 

octahedral Si-O stretching mode lies around 800 cm-1. Our results are in much better agreement 
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with experiments than those obtained with the BKS model [64], where all peaks lie in the 500-620 

cm-1 range, and those obtained with a charge-transfer three body potential [62], where only two 

peaks were reported around 800-1000 cm-1. 

3.4 Raman Spectra 

3.4.1 Low Temperature Tetrahedral Phases 
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Fig. 3. 5 Raman spectra for α-quartz at 0GPa and 300K. the top panel is experiments [162], the 

middle panel is ab initio calculations [153], the bottom panel is our calculations, based on the 

bond polarizibility model (seen in Sec. 3.2.3) and the trajectory generated by MD simulations with 

the TS potential. Theoretical data are convoluted with a uniform Gaussian broadening with width 

14 −= cmσ . 
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Fig.3.6 Raman spectra for α-cristobalite at 0GPa and 100K. Panels are the same as in Fig. 3. 5. 
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We first compare the Raman spectra calculated using the BP model (Section 3.2.3) with 

experiments and ab initio calculations. Raman spectra for the low-pressure and low-temperature 

crystalline phases, α-quartz and α-cristobalite, are presented in Figs. (3.5) and (3.6), respectively. 

The spectra are in excellent agreement with experimental data [48,49,162,170] and with ab initio 

calculations [153], especially concerning the Raman peak positions. The three main peaks for α- 

quartz are found at 129, 205 and 467 cm-1 in our simulations, compared with 128, 207(6) and 464 

cm-1 in experiments, respectively [48,162]. The two main peaks for α-cristobalite are at 223 and 

409 cm-1 in our simulations, compared with 230 and 416 cm-1 in experiments [49]. A weaker peak 

at around 114 cm-1 for α-cristobalite is found both in ab initio and our calculations. Such accuracy 

in the peak positions is beyond expectations, and is probably due to a compensation of errors. The 

ab-initio frequencies of Ref. [153], shown in Figs. 3.5 and 3.6, were in fact rescaled by 5% to 

match the experimental spectra. The TS potential was constructed to match the ab-initio potential, 

so a similar error (5%) would be expected, with respect to experimental data, in case of perfect fit. 

Therefore, the accuracy of the TS results (<3%) must be the consequence of a compensation 

between the ab-initio intrinsic error and the residual fit error.  
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Fig.3.7 Isotropic part of the Raman spectra for α-quartz at 300K and 0GPa. In the upper panel, the 

intensity is obtained by the BP model (see Sec. 3.2.3); in the lower panel it is obtained with the 

direct approach (see Sec. 3.2.2). 
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Fig.3.8 Isotropic part of the Raman spectra for α-cristobalite at 100K and 0GPa. Panels are the 

same as in Fig.3.7. 

 

Intensities calculated with BP model are known to be accurate [41,42], so the agreement 

between theoretical and experimental intensities in Figs. 3.5 and 3.6 is not surprising. Intensities 

calculated with the direct approach (Section 3.2.2) turns out to be in worse agreement with 

experiments than those obtained with the BP model. In Figs.3.7-3.9, we compare isotropic and 

anisotropic parts (as defined in Eqs. 3.4 and 3.5), calculated with the two approaches for α-quartz 

and α-cristobalite. The peak positions are obviously the same in the two approaches, as the same 

MD trajectory was employed. The intensities of the isotropic parts calculated with the two 

approaches are also in good agreement. However, regarding the anisotropic part, the direct 

approach seems to perform rather badly for what concerns intensities, which are about one order 

of magnitude larger than with the BP model. Because the spectra obtained with BP model are in 

good agreement with experiment, we conclude that the current implementation of the 

polarizability in the TS model serves very well the purpose of providing accurate force on the 

atoms and first derivatives of the polarization (such as effective charges and dielectric constant), 

but needs further improvement in order to match the accuracy of BP model in the calculation of 

higher order derivatives such as Raman intensities. For this reason, Raman spectra for the 

tetrahedral phases at high temperature will be calculated using the BP model only. 
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Fig.3.9 Anisotropic part of the Raman spectra for α-quartz. Panels are the same as in Fig. 3. 7. 

3.4.2 High Temperature Tetrahedral Phases 

 Raman spectra calculated using the BP model (Section 3.2.3) for the high-temperature and 

low-pressure crystalline phases, β-quartz and cristobalite are compared with experimental data 

[48,49] in Figs. (3.10) and (3.11), respectively. we find an excellent agreement with experiments 

in both cases. For quartz, the modes at 129 and 205 cm-1 merge and are drastically attenuated; the 

peak around 467 cm-1 in α-quartz is left-shifted to 458 cm-1, to be compared with a peak position 

at 459 cm-1 in experiments [48]. For cristobalite all major bands (at 110, 223 and 409 cm-1) merge 

into a structureless bump, in agreement with experiments [49,50]. It is important to notice that 

Raman spectra at high temperature differ substantially with respect to the low temperature phases. 

In cristobalite no clear peak is observed above the transition temperature, and in quartz only one 

sharp peak around 460cm-1 remains. The capability of our theoretical approach to reproduce the 
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Fig.3.10 Raman spectra for β-quartz at 0GPa and 750 K. The left panel is experimental data from 

Ref. [48]; the right panel is our calculations based on BP model. The simulated data are 

convoluted with a uniform Gaussian broadening with width 14 −= cmσ  as Fig. 3. 5. 
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Fig.3.11 Raman spectra for β-cristobalite at 0GPa and 600K. The upper panel is experimental data 

from Ref. [49]; the bottom panel is our calculations based on BP model. 

changes in the experimental spectra across the α-β transition suggests that the method can be 

applied with confidence in the study of temperature-induced transitions where the role of 

dynamical disorder and anharmonicities is predominant. we also remark that this is the first 

theoretical attempt to model Raman spectra in high temperature silica phases.  

The atomistic mechanisms of the α-β transformations and the nature of the high temperature 

phases are still a subject of debate [50,171-178], and the correct interpretation of Raman and IR 

spectra may provide important hints to the solution of the debate. For example, the disappearance 

of the Raman and IR peaks in cristobalite has been used to rule out domain models of the 

transition [50]. The mode around 400-600 cm-1 are particularly interesting because they are 

connected with the displacement of oxygen atoms along the bisector direction of the Si-O-Si bond 

angle [41,125,162,163]. In the high-temperature (β) phases, the Si-O-Si plane normal undergoes 

reversals, as shown by Huang and Kieffer [115,173]. In β cristobalite, the distribution of the 

Si-O-Si plane normals is such that for any direction of the plane normal there is an equal 

probability of finding its opposite. Because in a simple bond polarization picture the plane 

reversals change the sign of their individual contributions to the total Raman signal, the Raman 

intensity around 400-600 cm-1 in β cristobalite is very weak. On the contrary, in quartz, the α-β 

transition is characterized, on average, by a 45o flip of the Si-O-Si plane normal [173], which 

breaks the “inversion” symmetry discussed above for β-cristobalite, and preserves the finite 

intensity of this mode at around 460 cm-1. 
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Fig.3.12 Raman spectra for stishovite at 9 GPa and 300K. The upper panel is experimental data at 

1 atm from Ref. [48]; the bottom panel is our calculations using the direct approach (see Sec. 

3.2.2).  

3.4.3 Octahedral Phases 

We focus here on the rutile-to-CaCl2 transition reported to take place in experiments around 

50 GPa. We notice that no BP model parametrization exists for octahedral silica, so we are forced 

to use the direct method (Sec. 3.2.2). In Fig. 3.12, we compare calculated and experimental Raman 

spectra for stishovite. Calculations were performed again at 9 GPa, as we could not stabilize 

stishovite at ambient pressure. No clean experimental spectra with intensities are available at finite 

pressure, so we report in Fig. 3.12 experimental spectra obtained at ambient pressure [48,170,179]. 

Pressure corrections in the Raman peak positions amount to less than 30 cm-1 between 0 and 9 

GPa [43]. The results are in qualitative agreement with the experimental spectra, however the peak 

positions are systematically underestimated and, like in quartz, the intensity of the anisotropic part 

is overestimated. Nevertheless, it is instructive to notice the peaks at 180 and 480 cm-1 only come 

from the anisotropic part.  

The pressure-induced rutile-to-CaCl2 transitions is a typical example of a soft-mode-induced 

Laudau-type transition, as first found by Raman spectroscopy [43] and later confirmed by x-ray 

diffraction [44]. A detailed theoretical study of this subtle transition is potentially useful in the 

modeling of silica at high pressure. In Fig. 3.13, we show the pressure dependence of the 

vibrational modes for the stishovite, and compare it with experiments [43]. In spite of the poor 

accuracy in the absolute positions of the peaks, their pressure dependence appears to be correctly 
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captured by the model. In particular, the lowest peak shows a softening behavior below 51 GPa, 

which is consistent with experiments [43,180] and simulations [43,53,181]. Our simulations also 

reproduce the subsequent increase in the peak position after the transition. Considering that the TS 

potential was optimized for tetrahedral, low-pressure phases, the present results are quite 

encouraging and confirm that its range of applicability could be substantially larger, and include 

octahedral phases, even though with a reduced accuracy.  
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Fig.3.13 Raman shifts with pressure during the rutile-to-CaCl2 transition. Crosses are experimental 

data from Ref. [43]; squares are our calculations, lines are guide for eyes. The lowest frequency 

mode clearly shows a softening around 50 GPa. 

3.5 Conclusions 

By using an improved, ab-initio parameterized interatomic potential for SiO2, we first 

calculated infrared and Raman spectra for quartz , cristobalite and stishovite and compared them 

with experiments, as well as with spectra obtained with other force fields, such as TTAM, BKS 

and an improved three-body potential. The reliability of the interaction potential in the calculation 

of IR spectra is validated by the excellent agreement with experimental IR data both in the peak 

positions and in the relative intensities. In particular, we were able to reproduce the relevant 

spectral changes mode in the α-β transition of cristobalite. For the octahedral phases, even though 
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the agreement with experiments is worse than for the low-pressure phases, the potential 

reproduces the three main modes with reasonable accuracy.  

In the case of Raman spectra, peak positions turned out to be in good agreement with 

experimental and ab initio calculations. However, intensities determined by explicitly calculating 

the derivatives of the polarizability with respect to atomic displacements turned out to be in worse 

agreement with experiments than those obtained when a parametrized bond polarizability model 

was employed. Raman spectra calculated using the bond polarizability model for the 

high-temperature and low-pressure crystalline phases, β-quartz and β-cristobalite were found to be 

in excellent agreement with experiments. It is important to remark that the atomic dynamics in the 

proximity of α-β transitions and in the high temperature β phases is generally considered to be 

highly non-harmonic. Our results suggest that the present method can be extended to the study of 

other temperature-induced transitions where the role of dynamical disorder and anharmonicities is 

predominant. The performance of the potential in octahedral structures was evaluated by 

calculating Raman spectra across the rutile-to-CaCl2 transition at around 50GPa. In spite of the 

poor accuracy in the absolute positions of the peaks and the relative intensities, their pressure 

dependence appears to be correctly captured by the model. In particular, the lowest frequency peak 

shows a softening behavior below ~50 GPa, which is consistent with experiments and other 

calculations.  

Polarizable model potentials are increasingly used in the simulation of water and 

bio-molecular systems [169,113,114], where vibrational spectroscopy is still a primary source of 

information about microscopic structure and dynamics. Our study highlights virtues and 

deficiencies of a polarizable model in the determination of Raman and IR spectra in the highly 

anharmonic regime in the specific case of silica. The study shows that the silica model performs 

very well for IR spectra, but suggests that improvements are required in the polarization part 

before a satisfactory agreement with experiments can be reached on Raman intensities. On the 

other hand, combining the MD trajectories obtained with the polarizable potential with a 

parameterized model for the polarizability yields results in very good agreement with experiments 

for Raman intensities. 
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Chapter 4  

Pressure-induced Collapse of Cristobalite 

 

The transformation of SiO2 cristobalite into denser phases with octahedral coordination has 

been recently proposed to follow a two step process consisting of a collapse of the oxygen 

sublattice into a close packed arrangement, followed by the transformation of tetrahedral units into 

octahedral. The result of the transformation is also known to show a strong dependence on the 

presence of non-hydrostatic conditions. The present (atomistic) simulations shown in this chapter 

show that the collapse of the oxygen sublattice is concomitant with the disappearance of 

tetrahedral units and that the collapse is strongly affected by non-hydrostatic conditions. Different 

non hydrostatic stresses yield phases with different oxygen close packed sublattices, including the 

observed α-PbO2-like phase, for which a microscopic formation path is provided, and phases with 

a cubic close packing, like anatase, not seen in experiments yet.         

4.1 Introduction 

Understanding the structural response of silica to the application of elevated pressures has 

wide-ranging implications in fundamental physics, Earth and material sciences. The structural 

collapse of the tetrahedral network, typical of the ambient pressure phases, into denser lattices 

with silicon in octahedral (six-fold) coordination has attracted considerable interest in recent years. 

Following the discovery of stishovite [40], a number of other octahedral or even denser phases of 

silica have been synthesized in the laboratory, or discovered as extraterrestrial minerals 

[33,34,40,43,44,46]. The structural collapse of cristobalite from its tetrahedral form into denser 

forms has been difficult to characterize, due to the strong dependence of the structure of the denser 

forms on the experimental procedures. Room temperature experiments have reported the 

appearance of new phase (phase XI) between 10 GPa and 26-30 GPa [3,5,6,37, 51,57-60,96], but 

attempts to index the structure have so far failed due to the poor quality of the diffraction patterns. 

By further compression, a number of metastable/or stable octahedral silica phases have been 

reported below 120 GPa at room temperature [3,5,6,37, 51,57-60,96]. Nonhydrostatic components 
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have been shown to affect the experimental outcomes substantially [34,51,96]. Experiments at 

high temperature, with laser-heated diamond anvil cells, have described the direct transition of 

cristobalite into a α-PbO2-like octahedral phase around 45-64 GPa [46,51]. A similar phase has 

been detected in the martian meterorite Shergotty, a shocked achondrite probably subjected to 

pressures of ~30-45GPa [33]. Experiments and theories however show that the α-PbO2 structure 

becomes thermodynamically stable only above ~98GPa [52-56]. The occurrence of a transition 

from cristobalite to metastable α-PbO2-like within the thermodynamical range of stability of 

stishovite or of the CaCl2-like phase can be explained in terms of kinetics arguments, which 

require the existence of a microscopic path way connecting the two phases. First principles and 

classical molecular dynamics studies would in principle be ideally suited to study the microscopic 

details of the collapse of cristobalite. However simulations have only obtained stishovite as the 

first octahedral phase below 50 GPa [61-64] and stishovite has never been reported so far in 

experiments starting from cristobalite. Moreover, simulations have never addressed so far the role 

of non hydrostatic conditions, which are instead known to play an important role in the 

transformation. 

In a recent attempt to clarify the microscopic nature of the structural collapse of cristobalite, 

Huang et al [62], based on a combination of classical and first-principle simulations, have 

proposed a two-step mechanism whereby the formation of the octahedral units is pre-empted by a 

continuous transition of the oxygen sublattice, within a tetrahedral phase (phase X-I), into a 

(hexagonal) close packed lattice. The concept of a two-step transition allows to reconcile the 

evidence, from X-ray diffraction, of a low compressibility for phase X-I [3], with that of 

tetrahedral order within the same phase, as inferred from infrared and Raman spectroscopy 

[37,84,85]. However, the behaviour of cristobalite would then have to be clearly distinct from that 

of quartz, where the oxygen sublattice approaches continuously a body-centered cubic (bcc) 

structure and the collapse into a close packed arrangement is only observed as a result of a sharp 

transition into post-quartz phases. Moreover, phase X-I is reported to transform, in the second step 

of the process described in Ref. [62], into stishovite, which has never been observed in 

experiments starting from cristobalite so far.  
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To summarize, while the dominant role of the oxygen sublattice and of nonhydrostatic 

stresses have been recognized as central in driving the transformation of cristobalite into denser 

phases, the two aspects have been so far treated independently, and no attempt has been made to 

rationalize the diversity of experimental outcomes.   

 

4.2 Description of Oxygen Packing 

The problem of predicting, a priori, the structure that a crystal will adopt is even today (with 

powerful computer), very difficult. Faced with this problem one looks for approximate but general 

principles that serves both as aids to rationalizing crystal structures and as guides to predicting the 

structures of new compounds. An example from the crystal chemistry of metals is the space 

principle, which states that atoms of an element or alloy pack together to fill space as well as 

possible. The wide occurrence of hexagonal closest packing (hcp) or cubic closest packing (ccp) is 

rationalized on this basis.  

It has been shown in some examples that observed ionic crystal structures (with partially 

covalence) are close to those for both a maximum in volume and a minimum in electrostatic 

energy subject to the constraint of fixed nearest neighbor distance [182]. It is instructive to 

consider examples where the requirements of maximum volume (Madelung constant) and 

covalence (bond lengths and angles) are in conflict. Not surprisingly the structure represents a 

compromise. Often the structure at low pressure is one, which is favorable for directional bonding 

(so that e.g. Si is tetrahedrally surrounded by anions). For example, in silica case, such as quartz, 

crystalbalite, coesite and clathrate structure can be well described by rigid unit model (RUM) 

[176]. 

The oxygen packing is becoming more predominant, as the “rigid” tetrahedral unit is highly 

distorted under pressure as suggested by many experiments [183,184]. It is the case in quartz, 

where it is well accepted that the quartz at high pressure can be described by oxygen bcc sublattice 

[183-185]. The way of looking at the structure in terms of oxygen packing has a wider application, 

including the case of high-pressure forms [186]. For instance, stishovite and α-PbO2 silica 

obtained in high pressure has closely packed sheets of oxygen atoms, for which the arrangement 
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of SiO6 octohedra differs. Furthermore, Teter et al [54] have found that a large class of 

energetically competitive phases can be generated from hcp arrays of oxygen with silicon 

occupying one-half of octahedral sites by first principles total energy calculations. Fcc is also 

possible in terms of eutaxy [182]. The next subsection describes an efficient way to distinguish 

among them. 

 

4.2.1 Analyzing Oxygen Packing by Pair Analysis—HA index 

The local coordination structure around oxygen has been described by the pair analysis 

technique. The pair analysis technique, which is first used by Blaisten-Farojas [187] for 

decomposing the first two peaks of the pair correlation function and generalized by Honeycutt and 

Andersen [188] has been widely used to monitor liquid, glass and crystalline structure [189-192]. 

In this technique pairs of atoms can be classified by the relationship among their neighbors with 

four indices of integer (for short, HA index). The first integer indicates whether the pair of atoms 

is bonded or not: 1 if the pair is bonded and 2 otherwise. The second integer represents the number 

of neighbors shared by the pair atoms. The third integer represents the number of bonds among the 

shared neighbors. The fourth integer is used to distinguish the pair atoms when the first three 

integers are not sufficient. As an example, Fig.4.1 shows how to define the type of bonded pairs 

within ideal bcc lattice. 

The local structure of polyhedron is obtained based on HA index. We define a bcc-type 

atom/polyhedron, which has 6 pairs of 1441 bonds and 8 pairs of 1661 bonds; and define a 

fcc-type atom/polyhedron, which has 12 pairs of 1421 bonds; and define a hcp-type 

atom/polyhedron, which has 6 pairs of 1421 bonds and 6 pairs of 1422 bonds. The equal bonding 

number is chosen for the pair analysis in order to reduce the arbitrariness coming from different 

cutoff distances. Fcc/and hcp is 0 percentage when 14-coordinated oxygen is assumed; bcc is 0 

percentage when 12-coordinated oxygen is assumed. 
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Fig.4.1 Sketch of pair analysis. 1441 and 1661 in bcc lattice, as examples to show how to define 

HA index: bonded “atom 1” and “atom 2” is an example of 1441, bonded “atom 1” and any of 

“atoms A/B/C/D” is the example of 1661. We define a “atom 1” is bcc-type atom/polyhedron, only 

if “atom 1” has 6 pairs of 1441 bonds and 8 pairs of 1661 bonds. 

 

4.3 Transformation Between Packings 

In this section I will briefly describe two transformation paths, between fcc and bcc, and 

between bcc and hcp, which will be described in the context of oxygen packing in silica at high 

pressure. The bcc-hcp transition [193] and bcc-fcc transition [194] happen, where the shear 

modulus 2/)( 1211 CCC −=′ approaches zero. 

4.3.1 Bain Path 

Bain path is a microscopic mechanism in the transition from bcc to fcc and vice versa [195]. 

Let us consider a bcc lattice in a cube whose side is of length a (Fig.4.2). The 

plane ABCD perpendicular to a face diagonal is a rectangle of sides of a  and a2 . If we 

stretch the bcc cube along the edge BC so as to make CBBA ′′=′′ , we can easily recognize in 

the diagonal DCBA ′′′′  of the tetragonal body centered cell one of the cubic faces of the fcc 

lattice. The reverse is also true since by compressing an fcc lattice it is possible to generate a bcc 

structure.  
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Fig. 4.2 The sketch of Bain path after Parrinello [136], see text. 

 

 

(a)                                   (b) 

 

(c) 

Fig. 4.3 The sketch of Burgers path, point 1 is denoted as P1 and point 2 denoted as P2 in text, the 

plane 21CPAP  is the same as in Fig. 4.1. 
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4.3.2 Burgers Path 

Burgers path is a microscopic mechanism in the transition from bcc to hcp and vice versa 

[196]. Let us consider a bcc lattice in a cube whose side is of length a (Fig.4.1). The 

plane 21CPAP perpendicular to a face diagonal is a rhombus of side of 2/3a (Fig.4.3a). If we 

compress the bcc cube along the edge 21PP  so as to make 2/321 aPP = , we can easily 

recognize the diagonal plane 21CPAP  (Fig.4.3b) as basal plane of “hcp”. A subsequent shuffle of 

the basal plane results in the ideal hcp structure (Fig. 4.3c). The reverse is also true since by 

stretching an hcp lattice it is possible to generate a bcc structure.  

4.4 Results and Discussions 

Here, I present the results of simulations of the pressure-induced collapse of cristobalite done 

for different combinations of non hydrostatic stress. The simulations were carried out using TS 

potential [29]. As mentioned in Chapter 2, the force field describes the structural and vibrational 

properties of most SiO2 crystalline polymorphs, liquid and glass [29,129] better than all the 

available force fields to which it has been compared so far. In particular, it describes the 

thermodynamic stability of the crystalline polymorphs of silica (Fig.4.4), at the same level of 

ab-initio simulations [131,132], including the pressure dependence of the lattice constant and the 

phonon softening across the rutile-to-CaCl2 transition (see Chapter 3) [129].  

Molecular dynamics (MD) simulations are started from a α-cristobalite cell consisting of 256 

SiO2 formula units (4×4×4 unit cells). The MD time step was set to 0.72 fs. A stepwise hydrostatic 

compression at 300 K is then applied, with pressure increments of 2 GPa, followed, at each 

pressure, by an equilibration time of 20 ps. A clear volume collapse can be identified in the 

equation of state, at a pressure of about 25 GPa (see Fig. 4.5), with a negligible dependence on the 

compression rate. Before the collapse, the phase is tetrahedral, shows tetragonal symmetry (P41212) 

and parameters at 24 GPa (a=4.2767, c=6.1021, u=0.3596, x=0.2294, y=0.2228, z=0.2256) [197], 

in reasonable agreement with the d-spacings obtained by x-ray diffraction at 3.46 Å, 2.94 Å, 2.67 

Å, 2.49 Å and 2.14 Å at the same pressure [3,5,58,96]. Infrared spectra (Fig.4.6) calculated at 0 

and 18 GPa, are in better agreement with experiments [84] than the spectra calculated in ref. [62], 
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Fig.4.4 Equation of state of silica polymorphs (a), enthalpies versus pressure for a set of SiO2 

polymorphs (b) and (c), calculated with our force field. 

 

 

 



Chapter 4 Pressure-induced Collapse of Cristobalite 

 57
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bsilicon packing. 

 
 
Table 4.1 Dependence of the resulting structures and oxygen packing geometry on the differential 
stresses (expressed in percentage of the average of the diagonal values of the stress tensor). 

Structure type 
Space 
group 
(no.) 

Oxygen 
Packing 

Initial 
Structure 

Stress Condition (xx,yy,zz) Transition 
Pressure

Hp-cristobalite 92 BCC α-Cristobalite 0,, =zzyyxx  ~10 GPa

Anatase 141 FCC Hp-cristobalite %4%;10, ≤≤ zzyyxx  28 GPa

PbCl2 62 FCC Hp-cristobalite 0%,10, => zzyyxx  28 GPa

α-PbO2
 60 HCP P21(z=4) 0,, =zzyyxx  58 GPa

P21(Z=4) 4 - Hp-cristobalite %20,,%6 ≤< zzyyxx  36-50GPa

P21(Z=4) 4 - Hp-cristobalite %6%,6,0 =−== zzyyxx  50 GPa

Stishovite 136 HCP Hp-cristobalite %6%;3, =−= zzyyxx  32GPa

Stishovite 136 HCP Hp-cristobalite %5%;5.05.2, =±−= zzyyxx  34 GPa

CaCl2 58 HCP Stishovite 0,, =zzyyxx  50 GPa

P21/c (Z=8) 14 CPa Hp-cristobalite %5%,10%,5 =−== zzyyxx  48 GPa

P21(Z=4) 4 - Hp-cristobalite %5,0%,5 ==−= zzyyxx  52 GPa

Pyrite 205 FCCb P21(z=4) %20%,10%,10 =−=−= zzyyxx  74 GPa
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a likely consequence of the improved model used in this work to calculate infrared intensities. The 

present work also agrees with the simulations of Ref. [62], both in terms of space group and 

internal parameters. However, it disagrees on the structure of the oxygen sublattice, a crucial point 

in the analysis of Ref. [62]. To this aim, carried out a detailed pair analysis [188]. The analysis 

shows (Fig. 4.7) that the oxygen sublattice before the volume collapse is still bcc-like, and 

transforms to close-packed only after the collapse, in concomitance with the transition to 

octahedral coordination. This is confirmed also by the integral of the O-O pair distribution 

function (PDF), which reaches a plateau value of 14, typical of bcc local coordination, in 

correspondence to the first minimum of the PDF (see the insets of Fig. 4.7). A gradual approach of 

the oxygen sublattice to a bcc-like structure has been first reported for quartz [183], where it is 

believed to lead to the structural instability responsible for amorphization [184,185].   
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Fig.4.5 Scaled volume versus pressure for compressed cristobalite. 

Further compression leads to volume collapse (Fig. 4.5) and to the transition to structures 

with silicon in higher coordination than four. At variance with the results of Ref. [62], changes in 

silicon coordination and oxygen close packing take place in a single step. It is crucially important 

to find that the structure resulting from the collapse depends strongly on the stress conditions. 

Table 4.1 reports the results of compression of cristobalite at zero temperature by subjecting the 

sample to anisotropic stresses along different directions. Simulations were performed with 32 SiO2 

formula units. Tests with larger (up to 576 SiO2 formula units) and smaller (down to 16 formula 

units) cells yielded identical results. Identical results were also obtained by replacing the use of the 

MD time evolution with a structural optimization (i.e. quenching the structures to zero temperature) 
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at each pressure, indicating that temperature effects are negligible at least at 300 K. As shown in 

Table 4.1, stishovite could be obtained by applying a small (about 5-6%) uniaxial compressive 

component along the bcc [100] axis (or c axis in our setting). Of particular interest is a phase of 

symmetry P21 (z=4) obtained for compressive uniaxial components larger than 6%. The phase has 

silicon in five-fold coordination, and transforms, under further hydrostatic compression to 58 GPa, 

into the α-PbO2 phase. The existence of a microscopic path connecting cristobalite to α-PbO2  
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Fig. 4.6 Calculated IR spectra (lower panels) compared with experimental data [84] (upper panels) 

at different pressures. Phase C2221 was recovered from phase P21 at 44 GPa (see text). 

explains the observation of α-PbO2 from the compression of cristobalite at pressures much below 

the thermodynamic range of stability of the α-PbO2 phase. The existence of an intermediate phase 

in the transformation of cristobalite to α-PbO2 is consistent with the evidence that samples 

recovered from 40 GPa display an infrared spectrum which does not match neither that of 

cristobalite nor that of α-PbO2 [84]. Quenching the intermediate P21 monoclinic phase to 0 GPa 

results in a new tetrahedral phase with C2221 (Z=8) space group, whose infrared spectrum (Fig. 

4.6) is in very good agreement with the spectrum measured for the phase recovered from 

compression of cristobalite to 40 GPa [84]. On the other hand the α-PbO2-like phase obtained at 

58 GPa could be recovered to 0GPa in our simulations, without further transitions. It can therefore 

be concluded that the transformation from cristobalite to α-PbO2-like, proceeds through the 

formation of an unquenchable intermediate phase and it can be confirmed that the phase recovered 

from 60-64 GPa in Refs. [5,6], and from 53.1GPa in Ref. [3] is predominantly α-PbO2-like.  
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Finally, anisotropic compression of the P21 phase leads to the pyrite structure at 74 GPa. 

Pyrite-like SiO2 has been reported to form in hydrostatic conditions at about 268 GPa [40] and 

becomes thermodynamically stable with our force field at 250 GPa. Our results indicates that 

anisotropic compression lowers the transition pressure to pyrite considerably. A new octahedral 

monoclinic phase P21/c (z=8) was also obtained, with a close-packed oxygen lattice that is neither 

hcp nor fcc. Prokopenko et al. have suggested a structure with the same space group [57,60] in 

order to reproduce a small but unexplained Bragg peak at 3.5 Å in their X-ray diffraction patterns, 

which our new monoclininc phase also displays. Their number of SiO2 formula units per unit cell 

(Z=6) differs from ours (Z=8), so it is not clear whether it is the same structure.   
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Fig.4.7 Calculated polyhedral changes for hydrostatically compressed cristobalite. Insets show 

pair distribution functions and average coordination numbers at selected pressures. The y-axis in 

the insets refers to coordination numbers. 

For ideal hydrostatic conditions the structure resulting from the volume collapse is, in our 

simulation, isostructural to anatase [197]. The phase can be recovered to ambient pressure and the 

analysis of the structure factor at 0GPa shows peaks at 3.2 Å, 2.15 Å, 2.05 Å, 1.74 Å and 1.48 Å, 

which coincide with the peaks observed for the recovered α-PbO2-like phase, except for an 

additional peak that the latter has around 2.5 Å [5,6]. The discrepancy between our simulations 

and those based on ab-initio MD, which reported stishovite as an outcome of the collapse, can be 

explained by the difference in time scales in the two simulations. A simulation with our force field 

at a much higher compression rate, comparable to that of ab-initio MD, yielded in fact a much 

higher pressure for the volume collapse (40-50 GPa), and stishovite as a product. Neither the 
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anatase nor the stishovite structure have been seen in experiments from cristobalite yet. Whether 

this discrepancy is due to difficulties in reaching perfect hydrostatic conditions in experiments, or 

to a systematic error in the calculation of stresses in ab-initio and classical simulations, or, finally, 

to kinetic arguments, is difficult to say at this point. Interestingly however, anatase differs with 

respect to all octahedral forms reported so far by its cubic close packed (fcc) arrangement for the 

oxygen sublattice, as opposed to the hexagonal close packed arrangement found in all other forms. 

Monitoring the atomic trajectories of the oxygen sublattice during the collapse to anatase shows 

 

Fig.4.8 Crystallographic orientations of the oxygen quasi-bcc sublattice in the initial phase 

(hp-cristobalite) and after transformation to octahedral phases. Axes with “cr” subscripts refer to 

the principal axes of hp-crystobalite. Notice that the hcp basal planes in α-PbO2 and stishovite are 

orthogonal. For simplicity, P21 is not shown here. 

 

that the transition from a bcc to a fcc arrangement follows the Bain path [181], which proceeds 

through the elongation of one of the bcc [100] axes. Similarly, the collapse into the hcp oxygen 

sublattice in stishovite proceeds through the compression of the bcc [100] axis, i.e. along the 

so-called Burgers path [182]. The above transition path analysis and in particular the finding that 

ccp or hcp sublattice formation proceeds through opposite strains along the original bcc [100] axis 

(Fig. 4.8), explains the sensitivity of the resulting oxygen sublattice on the residual anisotropic 
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components of the microscopic stress tensor in the sample, and may therefore explain the large 

diversity of results reported in the literature.  

This observation also explains why the transition between CaCl2 and α-PbO2-like phases is 

very sluggish even at very high temperature [51]. Stishovite and the α-PbO2-like phase share the 

same hcp oxygen sublattice, but the two hexagonal basal planes are orthogonal (Fig.4.8), if seen 

from the perspective of the bcc sublattice from which they both originate, therefore a large 

structural reorganization is required to transform them into one another. Different paths (besides 

Bain and Burgers) can also be activated through particular stress configurations, leading to more 

complex close packing arrangements. For example, oxygen packing in the octahedral monoclinic 

phase with space group P21/c (Z=8) is neither hcp nor fcc. A complete exploration stress 

configurations with off-diagonal terms has not been attempted, as the results obtained with 

diagonal stresses are already richer than expected. 

4.5 Conclusions 

To summarize, the present work shows that the collapse of the tetrahedral network in 

cristobalite is concomitant with the collapse of the oxygen sublattice from a bcc-like to a close 

packed arrangement, and does not take place in two steps, as recently proposed. The current 

analysis explains the large amount of conflicting experimental evidence regarding the dense 

phases of silica by invoking the important role of non hydrostatic stresses in driving the formation 

of different oxygen packing arrangements, including the appearance of the α-PbO2-like phase 

which, so far, lacked a microscopic connection with the original cristobalite phase, and the 

suggestion that a phase with a cubic close packed arrangement for the oxygen sublattice may be 

synthesized under appropriate stress conditions. Controlling the amount and geometry of non 

hydrostatic components in DAC experiments is challenging, but the present results suggest that 

efforts in that direction may prove fruitful.  
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Chapter 5 

Pressure-induced Collapse of Quartz 

 

The present results, based on extensive molecular dynamic simulations, confirm that quartz 

between 20 GPa and 30 GPa can be described by oxygen bcc sublattice. Under further hydrostatic 

compression, or slightly non-hydrostatic loading, a bifurcation in its stress-strain relation has been 

found, which follows either dynamic instability leading to a phase with P32 (Z=9) space group, or 

a shear instability leading to phases with C2 and P21/c space group via Bain and Burgers paths, 

respectively. Raman spectra based on density functional perturbation theory and X-Ray structure 

factor calculated for various phases indicate that features reported experimentally as evidence for 

quartz-II are consistent instead with the features calculated for quartz. We suggest that the close 

packing of the oxygen sublattice induced by stress inhomogeneities is the cause of bulk 

amorphization.  

5.1 Introduction 

    Large energy barriers hinder the transition of compressed SiO2 quartz to the high-pressure 

phases coesite and stishovite. At 21 GPa quartz collapses into quartz-II, a poorly crystallized 

metastable phase with undetermined structure [4], followed either by amorphization [7,179] or by 

transition to metastable high-density crystalline polymorphs [39,92]. Rationalizing such a complex 

behavior requires microscopic models for quartz-II, for the amorphous phase, and for the 

transition mechanisms, which have not been extracted from experiment yet. The pressure-induced 

amorphization of quartz has been examined either from a thermodynamical point of view (as a 

density-driven transition to the reentrant highly viscous liquid [7,198], a phenomenology first 

observed in ice [8]) or from a mechanical standpoint (as an elastic/dynamic instability of the 

quartz lattice [88-91]). None of these scenarios accounts for the observation of quartz-II, or for the 

crystalline sequence found in some experiments [39,92], or all together.  

Atomistic simulations can in principle provide microscopic models [88-91,199,200], which 

can help rationalizing the observed phenomenology. To date simulations with empirical potentials 

have confirmed the experimental evidence that nonhydrostatic stresses play an important role [7], 
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but simulations under nonhydrostatic conditions yield a crystalline structure with 100% Si(V) 

atoms (V stands for five-fold coordination with oxygen) [201], which is not consistent with  
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Fig.5.1 Calculated X-Ray diffraction pattern at different pressures, which is showing the two 

Bragg peaks (110) and (102) converge together above ~20GPa. 

 

experiments. On the basis of first-principles simulations, where the interatomic potential is 

generated from a quantum mechanical solution of the electronic ground state, a structure with P32 

(Z=9) space group has been proposed for quartz-II [202], however, another ab initio simulations, 

under non-isotropic pressure, obtained a C2 structure [203] as many previous classical calculations 

under hydrostatic pressure [200]. The comparison of calculated diffraction patterns for these 

model structures with the experimental patterns does not yield a unique solution. On the other 

hand, Raman and IR measurements suggest only a minor structural change between quartz and 

quartz-II [36,38,97]. No vibrational calculations have been reported so far for the quartz-II 

theoretical candidates, however. Moreover, no evidence for an amorphous phase has emerged from 

previous ab initio calculations [202,203].   

In Chapter 4, I have presented the structural transformations for compressed cristobalite. 

Analysis of the atomic pathways reveals the crucial role played by the oxygen sublattice in the 

interpretation of the transition sequence. Cristobalite (hp-cristobalite) between 10GPa and 26 GPa 

can be explained as oxygen bcc sublattice, followed by fcc sublatiice phases (anatase or PbCl2) or 

hcp sublattice phases (stishovite or α-PbO2 phase) controlled by different stress conditions. The 

transformation mechanism is rationalized by following Bain path or Burgers path. As the 
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experimental results for quartz have been reported mainly under quasi-hydrostatic conditions, here 

we will only concentrate the situation with low non-isotropic stress components up to 10 %(which 

is 2-3 GPa between 20 and 30 GPa relevant to most of pressure media [97]). The simulations were 

carried out using the TS potential [29].  
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Fig.5.2 Calculated inter-planar distance as a function of pressure, which is showing the two Bragg 

peaks (110) and (102) converge together above ~20GPa. 

 

5.2 Results 

The simulations are started by repeating a recent ab initio calculations by Trave et al [204], 

pressure was increased in steps of 10 GPa every 0.4 picosecond on a sample of 24 SiO2 formula 

units, under hydrostatic conditions, and found a first order transition at 40 GPa. At 60 GPa, an 

oxygen hcp sublattice was obtained, which contains 2/3 5-fold and 1/3 6-fold coordination for Si 

atoms. Further hydrostatic compression of this new phase to 90 GPa led to a dramatic 

rearrangement of the oxygen sublattice (temporally losing the hcp order), which allows for an 

increased ordering of the Si sublattice so that the resulting structure is entirely composed of 

octahedrally coordinated Si, and coincides with the P21/c crystal structure first proposed for SiO2 



SISSA Ph.D. Thesis  Modelling Structure,phase transition,vibrational spectroscopy of silica at extreme conditions 

 66

in [54] and recently observed in [39]. Such results are in excellent agreement with ab initio 

calculations [204] and with available X-ray diffraction data on post-quartz structures [39]. 

However, when pressure was instead increased in steps of 10 GPa every 2 picoseconds, up to 90 

GPa, under hydrostatic conditions, the C2 phase was obtained. The pair analysis [188] shows that 

the P21/c crystal structure is with oxygen hcp sublatttice and C2 crystal structure is with oxygen 

fcc sublatttice.  
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Fig.5.3 Calculated c/a ratios compared with the experiments [208], when c/a equals to 2/3  

(≈ 1.225) an ideal oxygen bcc sublattice is formed (around 38 GPa). Inset: polyhedral changes for 

hydrostatically compressed quartz up to 30 GPa. We define a bcc-type atom/polyhedron, which 

has 6 pairs of 1441 bonds and 8 pairs of 1661 bonds. The equal bonding number is chosen for the 

pair analysis in order to reduce the arbitrariness coming from different cutoff distances. All the 

data are obtained assuming oxygen is 14-coordinated (see Sec. 4.2.1). 

In order to rationalize the findings of MD simulations, we carried an enthalpy minimization 

procedure with pressure increasement of 2 GPa up to ~120 GPa. We were monitoring X-ray 

structure factor, the c/a ratios by symmetry analysis and the polyhedra distributions by so called 

HA index (pair analysis technique) [41]. First we noted that the calculated X-Ray structure factor, 

which is showing the two Bragg peaks (110) and (102) converge together above ~20GPa (see Figs. 

5.1 and 5.2), which is in good agreement with experimental reports [4]. As c/a serves as an order 

parameter for bcc sublattice in literature [184], we presents c/a ratio as a function of pressure in 

Fig. 5.3. The ideal bcc sublattice is reached at 38 GPa, when c/a equals to 1.225. The inset of 

Fig.5.3 shows that according to the pair analysis, the quasi bcc sublattice has an onset at 6-8 GPa 



Chapter 5 Pressure-induced Collapse of Quartz 

 67

and increases continuously up to 18 GPa [209], which coincides with the pressure where the 

Bragg peaks (110) and (102) converge. For short, we will call “hp-quartz” the structure of quartz 

in the regime of pressure where oxygen is in a bcc sublattice. It is important to note that in Fig. 5.4, 

where we show a calculation of the diffraction pattern of the oxygen sublattice alone, the line 

merged by (110) and (102) peaks above 20 GPa can be understood as diffraction line (110) of 

oxygen bcc sublattice. The peak around 1.48 Å corresponds instead as (002) peak of the oxygen 

bcc sublattice. Further compression with enthalpy minimization procedure leads to a monoclinic 

crystalline structure P21 (Z=12) with a mixture of 50% fcc and 50% hcp oxygen sublattice at 36 

GPa and a mixture of 1/3 4-fold coordination and 2/3 6-fold coordination for Si atoms. Imposing a 

non-isotropic stress component up to 10% along the quartz c-axis simply lowers the transition 

pressure but yields the same P21 (Z=12) phase. We failed to obtain the P21/c crystal structure (with 

oxygen hcp sublattice) with this choice of the non-isotropic stress component. The reason we 

couldn’t generate a crystalline phase with oxygen hcp sublattice from hp-quartz may be related to 

the fact that the orientation of the original quartz cell is not compatible with Burgers path for the 

oxygen sublattice, as we will discuss it later. Moreover, as the size and shape of this simulation 

cell (which was chosen as identical to that used in [204]) is not compatible with the predicted K 

point (1/3,1/3,0) instability [88,89,202].  
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Fig.5.4 Calculated X-Ray structure factors for oxygen atoms only at 0 GPa and 30 GPa, 

respectively. The converged peak (Figs.5.1 and 5.2) is (110) peak of new bcc cell. The 1.48 Å is 

(002) peak of new bcc cell. 

We therefore decided to repeat the simulation with a new supercell that is compatible with the 
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K point instability and with all the three post-quartz crystalline phases reported so far (C2, P32 and 

P21/c). A natural option is to follow Binggeli et al. [91, 185] and generate a preliminary supercell 

with 27 SiO2 formula units based on the bcc conventional unit cell (for short, Binggeli Cell, i.e. 

see Fig. 5.5). Such a choice makes it easy to control orientation of the non-isotropic stress with 

respect to the oxygen sublattice (the difference between hp-quartz and hp-cristobalite is shown in 

Fig. 5.6). For clarity, the relationship between the unit cells of the Binggeli cubic supercell and the 

primitive unit cell vectors of quartz can be represented by the transformation matrix equation: 
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where xev , yev and zev are unit cell vectors of the underlining conventional bcc sublattice, 

av , b
v

and cv  are the primitive unit cell vectors of α-quartz, i.e. 

( )0,2/3,2/ aaa −=v , ( )0,2/3,2/ aab =
v

 and ( )cc ,0,0=v . 

 

 

 

Fig.5.5 Binggeli cubic cell relaxed at 36 GPa by the new developed potential. 

The supercell is compatible with C2 and P32, but not yet with P21/c (Z=6). In order to be 

compatible with the possible resulting P21/c (Z=6), we employed a larger supercell consisting 216 

SiO2 formula units (2×2×2 Binggeli Cell) and applied an enthalpy minization procedure up to 

~50 GPa. With this cell, we found that quartz transformed into two phases with the same space 

group (P32), but with different silicon coordinations at 38 GPa and at 46 GPa, which is consistent 
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with what Wentzcovitch et al. [202] found with ab initio methods at 33 GPa and 40 GPa, 

respectively. The structural parameters, as well as the coordination, of the two phases are in 

excellent agreement with first-principles calculations. We tested the stability of the relaxed phases 

(quartz and P32) by heating the samples to room temperature at all pressures. We found that quartz 

remains up to 30 GPa. From 32 GPa to 36 GPa we found the P32 (Z=9), and then between 38 GPa 

and 44 GPa we found that the system transforms into an amorphous phase (we define a phase as 

amorphous if the space group analysis yields a P1 space group with Z=216, with tolerance ~0.1 Å). 

Heating the P32 phase to 1000K also yields an amorphous. It is important to realize that the 

oxygen sublattice in P32 phase is neither fcc nor hcp, thus it seems that this phase is the result of 

the dynamical instability at K point (1/3,1/3,0) [202], and not of a concomitant shear instability of 

the oxygen sublattice similar to the one discussed for cristobalite in the previous chapter. The 

structure factor of the resulting amorphous obtained at 300 K and 40 GPa is shown in Fig. 5.7. The 

spectrum is very similar to the one observed experimentally for compressed glass at the same 

pressure [66]. The coordination analysis shows the amorphous is a mixture 4-fold and 6-fold 

coordinated silicon with a small amount of 5-fold silicon. The pair analysis shows that the 

amorphous is a mixture of fcc and hcp oxygen sublattice. 

 

Fig. 5.6 The relationship between the orientations of oxygen bcc sublattice vectors and hp-quartz 

unit cell vectors (left) and hp-cristobalite unit cell vectors (right). 

 

We then proceeded and studied the supercell consisting 216 SiO2 formula units (2×2×2 

Binggeli Cell) at different non-isotropic stress conditions, starting from hp-quartz at 30 GPa. As 

expected, a C2 crystal with oxygen fcc sublattice is obtained under a small tensile component 

along [100] [i.e. (27 GPa, 31.5 GPa, 31.5GPa) along the three Cartesian directions], along so 
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called Bain path. The Burgers path is activated at 36 GPa under a small compressive component 

along [100] [i.e. (39.6 GPa, 34.2 GPa, 34.2GPa)], which led to a monoclinic phase P21 (Z=6) with 

oxygen hcp sublattice. The phase has silicon in 1/3 4-fold and 2/3 6-fold coordination and 

transformed into another monoclinic phase with 2/3 5-fold and 1/3 6-fold silicon but with the same 

space group under hydrostatic pressure at 90 GPa. The P21/c phase is obtained in our calculations 

by further compressing hydrostatically the P21 (Z=6) phase up to 120 GPa and 300 K (or 150 GPa 

and 0 K). The P21/c has 100% oxygen hcp sublattice and 6-fold silicon coordination, and can be 

retained when recovered to 0GPa. The parameters at 0GPa are in excellent agreement with 

recently reported ab initio calculations [210]. At this point, it is important to remark that the 

present work differs with respect to the study by Badro et al., where a phase with 5-fold Si 

coordination was found, as the non-hydrostatic conditions are here imposed along different and 

well-defined directions relative to the oxygen sublattice.  

1 2 3 4 5 6
0

1

2

3

4

5

This work

St
ru

ct
ur

e 
fa

ct
or

Q (A-1)

Exp. (Meade et al)

 

Fig.5.7 Comparison between the structure factor calculated at 40 GPa and the experimentally 

determined structure factor for compressed glass (at 40 GPa) [66]. The calculated structure factor 

has been broadened with an intrinsic width 0.25 Å. 

5.3 Discussions 

C2 and P32 have been assigned to quartz-II historically by theory according to previous 

simulations [200,202,203]. As shown in Figs. 5.1 and 5.2, hp-quartz shows the convergence of the 

(110) and (102) peaks, which was reported as an experimental evidence for quartz-II [4]. The new 

lines around 3.7 and 2.7 Å [92] have been suggested to originate from a different post-quartz  
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Fig.5.8 Calculated Raman spectra of hp-quartz, C2 and P32 at 24 ± 2 GPa, compared with 

experiments for quartz II at 24.5 GPa[38]. 

 

crystalline phases by Kingma et al. [92]. It is therefore reasonable to propose hp-quartz as a 

candidate for quartz-II. Because the comparison of calculated diffraction patterns for these model 

structures with the experimental patterns is problematic and does not yield a unique solution, 

Raman spectra, which have also been measured across the quartz collapse transition, are then 

calculated for all the possible phases, based on density functional perturbation theory [211]. Ab 

initio Raman caculations of the spectra of quartz and other tetrahedral silica phases at ambient 

pressure are known to yield excellent agreement with experiments [153]. In Fig. 5.8, we compare 

our calculated Raman spectra for all the three different phases (hp-quartz, C2 and P32) obtained 

with the same approximation used in [153], with experimental Raman spectra corresponding to 

quartz-II. It is clear that the C2 and P32 phases do not reproduce the Raman spectra of quartz-II. 

On the other hand, it seems that the spectrum calculation of hp-quartz is in excellent agreement 

with experiments. We therefore argue that the small changes observed with X-Ray diffraction 

across the quartz to quartz-II transition are simply a consequence of the “symmetrization” of the 
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oxygen sublattice in quartz at high pressure. 

Our simulations offer some insights into the mechanisms leading to the amorphiztion of 

quartz. The amorphous sample in our simulations is characterized by a close packed oxygen 

sublattice (mixture of fcc and hcp), but appears under hydrostatic conditions from a phase (P32) 

where the oxygen packing is not complete. On the other hand, oxygen close packing is readily 

achieved directly from quartz with small non-hydrostatic components. We thus speculate that the 

amorphous phase produced experimentally from quartz results from the collapse of the oxygen 

sublattice into close packed arrangement induced by local inhomogeneous stress fields in the 

sample. This is consistent with the observation that the appearance of the amorphous phase is 

enhanced by the non-hydrostaticity of the pressure medium [7,179]. 

5.4 Conclusions 

We have presented a comprehensive understanding of pressure-induced collapse of quartz 

based on extensive molecular dynamics simulations and enthalpy minimization, with the TS 

potential, and by performing ab initio Raman spectra calculations. We argue that quartz-II is not a 

distict phase, but simply a partial symmetrization of quartz. Pressure-induced (bulk) 

amorphization (in quartz) can be understood based on oxygen packing arguments. A pathway to 

transform quartz into the P21/c phase is also shown to be connected with the oxygen sublattice 

packing. 
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Chapter 6 

Compressed Silica Glass 

 

By means of molecular dynamic simulations, the structural properties of compressed glass by 

cold compression at room temperature and by quenching the liquid are compared at selected 

pressures. The noticeable differences found below 10 GPa between the two results are interpreted 

in the context of the experimentally reported temperature-induced densification and of the 

speculated occurrence of a first-order transition between two distinct polyamorphs. Calculated 

X-Ray and neutron structure factors agree well with available experiments, and indicate that 

structural differences between annealed and cold-compressed forms take place at distances of 

3.5-4 Å. In contrast, short-range order (atomic coordination, bond length and angular distribution 

functions) is identical in the two forms of silica glass. We conclude that the compressibility 

maximum does not require changes the tetrahedral network topology. We provide a unified picture 

of the compression mechanisms based on the pressure-induced appearance of unquenchable 

fivefold defects and find them to be responsible for the reduction of the mechanical strength and 

for permanent densification.  

6.1 Introduction 

SiO2 glass is an important material in technological applications such as optical fibers and 

transistors, it is present in the Earth crust and mantle, and it is a prototypical example of a 

network-forming material like water. Contrary to ordinary solids, which are normally known to 

harden by compression, the compressibility of SiO2 glass has a maximum at about 2-4 GPa 

[11-15], and its mechanical strength shows a minimum around 10 GPa [16]. At this pressure, the 

compression of silica glass undergoes a change from purely elastic to plastic, and samples 

recovered from above 10 GPa are found to be permanently densified [17-20]. As first noted by 

Roy and Cohen [23,24], recent in-situ measurements have confirmed that densification can also 

take place at lower pressures provided the glass is annealed to several hundred degrees [22,25-27]. 
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The scope of this chapter is to elucidate the microscopic mechanisms of densification and 

plasiticity, based on molecular dynamics. 
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Fig. 6.1 Density after annealing vs cooling rate. Full circles: annealing at 0 GPa. Square: annealing 

at –2 GPa followed by cold recovery to 0 GPa. The horizontal line is the experimental value (2.22 

g/cm3) [17]  

6.2 Preparation of Silica Glass at 0 GPa 

With the TS potential a glass sample consisting of 192 SiO2 formula units was generated by 

MD by quenching a liquid configuration from 3000 K down to 300 K at different rates. The 

structural properties of simulated glass samples quenched at ambient pressure are known to 

depend strongly on the quenching rate [79]. Fig. 6.1 shows the dependence of the final density of 

our samples on the quenching rate. A quenching rate of 14 K/ps is found to be enough to yield a 

glass sample with density in excellent agreement with the experimental value. Because samples 

generated with faster quenching rates systematically yield denser samples, a glass sample was 

obtained by first quenching with a fast rate but at negative pressure and then equilibrating at room 

pressure. This procedure yields a sample with density comparable to that of the slowest quenching 

rates at ambient pressure, but at a considerably faster rate, and thus with a considerably lower 

computational effort. This procedure to generate glass samples at ambient conditions was not 

explored further, but it is a route worth pursuing in future studies. 

6.3 Temperature-induced densification below 10 GPa 

The densification has been frequently connected with the hypothetical occurrence of 
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“polyamorphism” in amorphous silica, i.e. with the possibility that two distinct (e.g. by density) 

forms of amorphous silica could exist, separated by a first-order transition line, similarly to the 

low-density / high-density polyamorphism observed in amorphous ice [212]. That such a 

phenomenology could be relevant also for silica glass was suggested, for example, by molecular 

dynamic simulations [69]. Evidence for polyamorphism in silica glass is still controversial 

however. Mukherjee et al reported an apparently first-order phase transition at 3.6GPa and 680 oC 

[26], and El’kin et al indicated at least two pressure-induced phase transitions by in situ 

measurements [27]. However, more recent X-ray diffraction experiments support the existence of 

a single stable high pressure SiO2 glass form, with no abrupt transitions [22]. The controversy 

stems from the very high viscosity of silica glass at ambient temperature and low pressure, which 

introduces a strong history dependence and hinders a proper comparison of the results obtained 

with different preparation and compression methods.  The temperature-induced densification, for 

example, was shown to obey a sluggish logarithmic kinetics [15].  

Addressing such issues with molecular dynamics (MD) simulations, where time scale rarely 

exceeds a few nanoseconds, would look, in this respect, meaningless. Yet, while MD would be 

totally inappropriate to study the kinetics of densification at the moderate temperatures considered 

in experiments, the pristine cold-compressed and the annealed densified forms of silica can be 

obtained by MD, separately, by following more amenable routes than the one followed 

experimentally. For example, the densified form can be obtained, in MD, by heating the glass up 

to the point where atomic diffusion becomes non negligible even on a nanosecond time scale. A 

similar procedure has been used to generate by MD densified amorphous ice samples, which 

displayed very good agreement with the available experimental data on ice [213,214].  

To this aim, two different compression routes are employed in MD simulations: a cold 

compression route consisting of increasing pressure slowly at ambient temperature at a rate of 0.3 

GPa/ps, followed, at each pressure, by an equilibration time of 20 ps, and a 

“quench-from-the-melt” procedure with a reasonable slow quenching rate, whereby the 

compressed glass was obtained by slow cooling of a compressed sample from a temperature where 

atomic diffusion is observable on the time scale of the MD simulation. By comparing the present 

results with the available experimental data on compressed glass, it is shown that the samples 
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obtained with the two procedures are representative of the cold-compressed and densified forms of 

glass, respectively, and the two microscopic structures is then analyzed by searching for 

differences in the local structural order at short and medium range [215].  
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Fig.6.2 Calculated X-Ray structure factor (upper) and neutron scattering factor (lower) at 0 GPa, 

12 GPa and 20 GPa, compared with experimental X-Ray diffraction [22] and neutron scattering 

data [140]. 

The temperature-induced densification of compressed silica is firstly analysed by considering 

temperature-induced changes in the X-ray structure factor and neutron scattering factor at constant 

pressure. The calculated structure factors agree well with the experimental data [22], as shown in 

Fig. 6.2. The present calculations also reproduce very well the pressure dependence of the position 

of the FSDP, as shown in Fig. 6.3. In particular, the results on samples quenched from the melt 

differ, with respect to the results of cold compression, by an amount very similar to the 

experimental difference between temperature-densified and cold-compressed samples, indicating 
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that the procedure of quenching the sample from a highly diffusive state yields a final state similar 

to the one obtained experimentally at milder temperatures. The difference between densified and 

cold-compressed samples reaches in both cases a maximum at about 6 GPa. The inset of Fig. 6.3 

shows the calculated behavior of the second peak (at about ~3.0 Å-1) in the structure factor of 

silica glass. This peak is very weak in the x-ray structure factor due to a cancellation of terms, but 

appears clearly in the neutron structure factor [149]. Its pressure dependence is extremely weak up 

to 10 GPa, indicating that the microscopic structure of glass at length scales of the order of 2 Å is 

unaffected in that pressure range. In Fig. 6.4 (a) we show the difference )(PVΔ between the SiO2 

unit volume before and after the heating, as a function of pressure. The experimental data of 

Trachenko et al. [25] are given in their paper in relative terms, as )(/)( PVPV CCΔ− , where 

)(PVCC  is the volume obtained with cold compression. The present (calculated) value of 

)(PVCC  was used to obtain the experimental )(PVΔ . Data from the experiments by Inamura et 

al. are obtained from the position of the FSDP in their X-Ray structure factor [22], assuming that 

the peak position is linearly related to the density as in densified glass [216]. The experimental 

data are compared with the calculated values of )(PVΔ , as obtained from cold compression and 

from quench from the melt at the same pressure P. For increasing pressure the volume difference 

)(PVΔ shows a maximum around 4-6 GPa, in good agreement with experiments [22, 25], and 

also with the results on the position of the FSDP shown in Fig. 6.3. The results of Figs.6.3 and 6.4 

suggest that at pressures between 0 and 10 GPa a ``thermodynamical'' minimum (within the realm 

of disordered phases) is not reached upon “fast” cold compression. This is consistent with the 

results of strain-gauge experiments, which show that the volume of cold compressed samples 

relaxes to higher densities with a very slow logarithmic time dependence, confirming the 

metastable, long-lived nature of the samples obtained by cold compression [15]. Such a metastable 

behaviour becomes less pronounced at higher pressures, where, in fact, the densification kinetics 

is known to be much faster [15]. As shown later in this chapter, the faster kinetic is tightly 

associated to the appearance of network defects consisting in five-fold coordinated silicon atoms, 

above 8 GPa. Appearance of such defects activates atomic diffusion and lowers kinetic barriers for 

the reorganization of the network at intermediate distances. 
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Fig.6.3 Position of the FSDP in the calculated X-Ray structure factor for cold-compressed and 

annealed glasses, as a function of pressure, compared with experiments [22]. Inset: position of the 

second sharp diffraction peak in the calculated neutron structure factor, as a function of pressure. 

Inherent in the above considerations on the stability of two distinct forms of glass is the 

argument that the annealed state is thermodynamically more stable than the metastable state 

reached by fast cold compression. Fig. 6.4(b) shows the enthalpy difference between the annealed 

and the cold-compressed glasses, calculated at low temperature (300 K). The enthalpy of the 

annealed phase is always lower at least for the lowest cooling rates, at all pressures but for the 

very low-pressure region where the two phases are virtually identical (at 0 GPa they are identical 

by definition). This confirms that the cold-compressed phase is thermodynamically unstable 

towards the annealed phase, which can therefore be assumed to represent the room-temperature 

thermodynamical ground state within the realm of the disordered phase. Fig. 6.4(b) also shows 

that annealing causes an increase of the heat of formation of the glass up to about 0.12 eV/SiO2 (at 

8 GPa), which is even larger than typical heat of formation differences between tetrahedral 

crystalline phases, but smaller than the differences between tetrahedral and octahedral phases 

[130]. The current finding that annealed samples are thermodynamically more stable than 

cold-compressed ones at all pressures is in contrast with the result of Lacks [69], where a 

first-order transition between a low-density and a high-density form was proposed on the basis of  
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Fig. 6.4 (a) Volume difference between cold-compressed and annealed glasses, compared with 

experimental data up to 10 GPa [25]. Direct measurements of densities are not available on a 

wider pressure range, comparisons to the shifts of FSDP of X-Ray diffraction measurements [22] 

are shown (a linear relationship between shift and density is assumed as in Ref. [216]). (b) 

Enthalpy difference between the cold-compressed and annealed glass. 

 

calculated enthalpy differences. The difference can be traced to the fact that in Ref. [69] enthalpies 

for the two forms were calculated on the basis of cold-compression and cold-decompression 

simulations, while evidence from our work and from Ref. [15, 22-24] suggest that the true 

thermodynamical minimum can only be reached by annealing. The equations of state (we will 

show it in Fig. 6.8) and the position of the FSDP of the annealed glass indicate that there is no 

abrupt “thermodynamic” transformation between distinct amorphous forms with pressure. 
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The structural differences between annealed and cold compressed forms of silica was then 

analyzed, in the hope of obtaining some insights into the microscopic reasons that lead to 

densification. The Si-O bond length remains identical to the zero pressure value of 1.61 Å up to at 

least 10 GPa (Fig. 6.5), in good agreement with the X-Ray diffraction measurements 

(1.59 01.0± Å at 0GPa and 8GPa)[66]. The Si-O coordination number is also essentially fixed to 

the value of 4, up to 10 GPa, with a percentage of five-fold defects ~ 4 % at the highest pressure of 

10 GPa (Fig. 6.6). This is consistent with a number of different experiments [66,217,218], which 

provide no evidence for coordination different from 4 below 8-10 GPa. Notice that this is different 

from the behavior of liquid silica, where the large compressibility has been explained based on the 

appearance of coordination defects [67].   

Susman et al. [140] suggested that glass densification could be explained by a reduction of 

the Si-O-Si angle (or Si-Si bond length, if the Si-O length is fixed). Fig.6.7(a) shows the 

distribution of the Si-O-Si angles at 6 GPa for annealed and cold compressed glass. No noticeable 

difference is found between the two distributions. The fact that we do observe densification rules 

out the reduction of the Si-O-Si angle as a microscopic fingerprint of densification. We also 

searched for differences in the ring distribution but found that at all pressures below 10 GPa, the 

ring size in densified and cold compressed glass has an average value around 6.58 with little 

fluctuations between samples. In order to obtain a clearer understanding of the length scale at 

which structural difference take place, the behaviour of the modified total pair correlation 

function )1)((3/4 3 +rnrπ  is shown in Fig. 6.5(b), where n(r) is the total number of SiO2 

formula units within a radius r from any given Si atom, averaged over the tagged atom. At large 

radii the function tends to the volume per formula unit of the system. At distances shorter than 3.5 

Å the curves for annealed and cold compressed glass are identical, which confirms their structural 

similarity at short range. The structural changes responsible for the density difference appear to 

occur in the short radius interval between 3.5 and 4 Å, above which the two curves show no 

noticeable differences in their approaching the asymptotic limit given by their respective densities. 

What Fig. 6.7(b) suggests is that the microscopic changes responsible for densification take place 

in a well-defined region of radius, which is consistent with the length scale indicated by the 

position of the FSDP. 
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Fig.6.5 Average Si-O bond length as a function of pressure. The average is taken over the Si-O 

pair distribution function with a cutoff radius of 2.1Å. The error bar was evaluated by changing 

the cutoff distance with 0.1 Å. 
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Fig.6.6 Percentages of Si atoms coordinated four (squares), five (circles), and six (triangles), to 

oxygen, as obtained by cold compression simulations (same results were obtained on samples 

quenched from the liquid). 

In summary, the features of the temperature-induced densification of compressed glass in the 

pressure range 0-10 GPa, where the glass is known to retain a tetrahedral structure, can be 

reproduced by the new developed potential. It is shown that the annealed, densified form of glass 

corresponds to the thermodynamical minimum, within the realm of disordered phases, at all 

considered pressures. No abrupt changes in the properties of the annealed glass have been found, 

indicating that ideas of a possible polyamorphism, i.e. of a first-order transition between two 

distinct phases, may have to be revised for silica. It is found that cold-compressed and annealed 

glasses have similar short-range order (atomic coordination, bond length and angle distribution 
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function) and start to differ at distances of 3.5-4 Å. It is worthwhile to study in more details the 

microscopic nature of the structural difference between the two forms. 
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Fig. 6.7 Si-O-Si angle distribution function at 6 GPa for cold-compressed and annealed samples 

(upper); radial unit volume )1)((3/4 3 +rnrπ  vs radius (lower). 

 6.4 “Cold” Compressed Silica Glass 

As mentioned above, compression of silica glass at room temperature leads to an unexpected 

mechanical weakening, with a reported minimum of the yield strength around 10 GPa [16], where 

the mechanical response changes from purely elastic to plastic, as first noted by Bridgman [17]. 

Samples recovered from pressures lower than 10 GPa appear indistinguishable from the original 

material, while compression above 10 GPa results in the recovery of a densified amorphous 

polymorph, with densities 10-20 % higher than the density of the starting material [17-20]. The 

compressibility of silica glass in the elastic region below 10 GPa is also anomalous, as it shows a 

maximum at about 2-4 GPa [11-15]. Despite the large pressure difference between the onset of the 
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two anomalies, microscopic theories have traditionally attempted to explain both anomalies with a 

single model, typically consisting in the pressure induced appearance of coordination defects 

triggering the activation of local rebonding events [25,71,72,139]. In particular, local displacive 

mechanisms involving six-fold coordinated Si defects have been proposed earlier on as an 

effective microscopic path to compression and densification [210]. Such models are seriously 

questioned however by the lack of evidence for coordination defects below 8-10 GPa (i.e. where 

the compressibility anomaly takes place), in NMR [220], X-Ray diffraction [66], Raman [217] and 

Infrared spectroscopy [218] experiments. Moreover, all models proposed so far for densified glass 

obtained from cold decompression at room temperature [71-74], contain sizable amounts of 

coordination defects, which are also not seen in experiments [20, 75]. In order to overcome this 

problem, models have been introduced which explicitly forbid coordination changes. While some 

of these models correctly reproduce the compressibility maximum [143], they obviously cannot 

account for the cold densification process, as this is known to be crucially affected by coordination 

defects [66,217,218]. More recently, an improved three-body potential has been successfully used 

to reproduce the elastic-to-plastic transition in shocked glass [145], however, more than 95% of 

the Si atoms were reported to be still in fourfold coordination at pressures exceeding 20 GPa, 

which is in contrast with the experimental observation of substantial coordination changes above 

10 GPa [66]. Here we provide, using an improved interatomic potential for SiO2, a unified 

theoretical model based on the pressure-induced appearance of five-fold coordinated silicon above 

10 GPa, which describes all the observed phenomenology. Previously employed atomistic models 

for SiO2 have been recently shown to fail to reproduce pressure-induced coordination changes in 

liquid SiO2 [29], and some of them explicitly exclude them [20,143].  

Fig. 6.8 shows the densities obtained as a function of pressure for the two cases. The two 

compression mechanisms lead to different results for pressures below 10 GPa, but start to 

converge to similar structures and densities above 10 GPa. This indicates that below 10 GPa a 

thermodynamical minimum is not reached upon cold compression at least on the time scale of 

several tens of picoseconds. This is in agreement with experimental data [15,22,25], where 

temperature annealing is shown to be necessary to bring the system to a state of higher density and, 

presumably, lower enthalpy, at pressures below about 10 GPa. Experiments also indicate that the 
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kinetics to reach thermodynamic equilibrium has a faster rate for increasing pressure [15,25], in 

agreement with our finding that at 10 GPa the two compression routes start to converge to similar 

results. 
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Fig.6.8 Equations of state of SiO2 glass as obtained by cold compression (black squares), isobaric 

quenching from the liquid (red triangles), and cold decompression from 10 GPa (green diamonds). 

Experimental data obtained by cold compression (empty squares) are from Ref. [13], using our 

value (2.2295 g/cm3) for the ambient pressure density (data in [13] are scaled to the ambient 

pressure volume). 

A microscopic analysis of the average Si-O coordination number (Fig.6.6) shows that the 

silicon coordination number deviates significantly from the ideal value of four, characteristic of a 

perfect tetrahedral network, only above 10 GPa, in agreement with experiments on compressed 

glass [66,217,218]. It is verified that the network topology also did not change, up to 10 GPa. 

Such a rigidity of the network explains the elastic recovery of the samples below the threshold 

pressure. The calculated compressibility of the glass compressed up to 10 GPa displays a 

maximum at about 3-5 GPa (Fig.6.9), in fair agreement with experimental data on the 

compressibility [12-13,15] and on the sound velocity [14]. It’s therefore concluded that the 

compressibility maximum is not a consequence of a change in the network topology -- as it would 

result, for example, in the case of an underlying kinetically hidden phase transition [68] --  nor of 

a change in Si coordination, as argued in Ref. [71].  Rather, it is the consequence of a 

continuously increasing number of Si-O-Si plane normal reversals (Fig.6.10), as already suggested 

by Huang and Kieffer [143], and first hypothesized by Vukcevich [11]. 
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Fig.6.9 Bulk sound velocity as a function of pressure as obtained by cold compression simulations. 

The bulk sound velocity was calculated from the compressibility determined by small (1-2%) 

finite strains. Experimental data are from Ref. [14] 
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Fig. 6.10 The time-dependent average Si-O-Si plane normal correlation was calculated as in Ref. 

[143] by definining the vector normal |)(|/)(ˆ 2121 RRRRn
rrrr

××= , with 1R
r

 and 2R
r

the Si-O 

vectors in the Si-O-Si plane, and constructing the time correlation function )0(ˆ)(ˆ)( ntntC ⋅= , 

where the average ...  is taken over the different Si-O-Si in the sample. The time step was set to 

0.72 fs throughout this work. The time origin (t=0) coincides with the last configuration of the 0 

GPa simulation. For increasing pressure, a continuously increasing number of Si-O-Si planes 

switch their plane orientation, as already observed in [6], leading to a decay of the correlation 

function. 
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Fig. 6.11 Shear-stress versus strain curves obtained by subjecting the samples to strain rates of 

1010 s-1, at room temperature and different pressures. 

Compression above 10 GPa results instead in important changes in the network topology and 

in irreversible densification. Topological changes of the network are tightly connected with the 

appearance of five-fold Si-O coordination defects (see Fig.6.5). The idea that coordination 

changes could be responsible for compression and densification of glasses above a critical 

pressure has been originally put forward by Stolper and Ahrens [219]. They suggested a displacive 

mechanism leading to the spontaneous formation of six-fold coordinated Si, which -they argued- 

could provide a microscopic path to the network reorganization required to obtain a densified 

recovered sample.  The present simulations show that six-fold coordinated Si only appears in 

significant amounts above 20 GPa, while coordination changes are essentially purely five-fold 

between 10 and 20 GPa. We thus infer that the plastic behaviour observed in glass above 10 GPa 

is a consequence of the pressure-induced appearance of five-fold defects. Five-fold defects are 

known to be responsible for the diffusivity maximum in silicate melts [76-77]. They have been 

also advocated among the possible transition states in the atomic migration mechanisms 

responsible for the high temperature growth of quartz from glass [70]. It seems that five-fold-Si 

activated diffusion is responsible for the minimum of the glass yield strength observed at about 10 

GPa in mechanical strength measurements [16]. In order to corroborate such hypothesis, we 

carried out MD calculations of the yield strength of our samples by subjecting them to 

time-dependent shear strains, increasing at a constant rate, at different pressures. Due to the 

intrinsic time scale limitations of our MD approach, our strain rates, 1% per 1 ps, are much faster 

than any experimental rate. However, the stress-strain curves shown in Fig. 6.11 indicate not only 
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a qualitative agreement with the position of the observed minimum of the yield strength, but also, 

quite surprisingly, with the absolute values of the yield strength, indicating that the microscopic 

processes responsible for the strength of compressed glass can be activated on the time scale of 

our MD simulations. However, it cannot be excluded that other long-term processes longer than 

the time scale of our MD simulations may also contribute to the observed minimum. Fig. 6.12 

shows that the plastic behavior is tightly correlated with the appearance of five-fold coordinated 

defects. Minimal six-fold coordination defects have been detected in the simulations of Fig. 6.12, 

indicating that octahedral units such as those proposed in Ref. [25] do not play any role in the 

plastic behavior of silica glass at the onset of densification. In order to support our speculation that 

fivefold defects drive the plastic events, we show in Fig. 6.13 the mean-squared displacement of 

Si atoms, separating the contribution due to Si atoms that have remained fourfold coordinated 

throughout the simulation from that due to Si atoms that have experienced a fivefold instantaneous 

coordination for at least one time step during the run. In order to remove the component of the 

elastic displacement due to the change in shape of the simulation cell we calculated all 

displacements in scaled coordinates, as defined in Ref. [134]. By doing so we highlight the 

component of the atomic displacements due to internal elastic relaxation and/or to bond breaking 

and reforming, which is responsible for the plasticbehavior. The results shown in Fig. 6.13 

indicate that five-fold coordination enhances local rebonding and relaxation, and therefore 

plasticity. 

The existence of fivefold coordination defects in silica glass is consistent with several 

experimental data. X-ray diffraction experiments indicate that the Si-O bond length elongates 

starting from a pressure of about 8–10 GPa [66]. Together with the lack of evidence for six-fold 

coordination below 17 GPa, from infrared experiments [218], this implies the appearance of a 

sizable proportion of fivefold defects between 10 and 17 GPa. Moreover, our simulations show 

that the appearance of fivefold defects is accompanied locally by the formation of small rings in 

the network, with units similar to those reported in electronic structure calculations [221]. For 

example, the number of three-membered rings doubles between 10 and 16 GPa. Such an increase 

is consistent with the interpretation of in situ high-pressure Raman experiments (Fig. 6.14) 

[217,222]. Finally, x-ray experiments on the analog system GeO2 glass indicate that in the pressure 



SISSA Ph.D. Thesis  Modelling Structure,phase transition,vibrational spectroscopy of silica at extreme conditions 

 88

window 6–10 GPa Ge is fivefold coordinated to oxygen on average [223]. This could be equally 

accounted for by an equal proportion of fourfold and sixfold coordination, however. 

 

Fig.6.12 Percentages of five-fold coordinated Silicon during the runs described in Fig. 6.11. The 

stress versus strain curves are those of Fig. 6.11 and are repeated here for clarity.  As in Fig. 6.10, 

the time step is 0.72 fs. Notice the peaks in the concentration of five-fold coordinated Si in 

connection with the onset of plastic events, as signalled by the sudden decrease of the shear stress. 

At 0 GPa the concentration of five-fold defects during such events is small but non negligible (at 

least 3 simultaneous occurrences out of 192 Si atoms).    

Simulated glass samples recovered by cold compression from 10-28 GPa are found to have 

densities in very good agreement with experimental data on densified glass, as shown in Fig. 6.15. 

Both the threshold pressure and the range of densities agree well with the experimental data 

[17-20]. It is important to stress that previous theoretical models for densified glass either 

contained unrealistically large concentrations of coordination defects [71-74], or had to be 

obtained by annealing [20], or by forcing four fold coordination [20, 144]. The capability of the 

new developed interatomic potential to produce defect-free densified glass (within 1-2%) by 

following the experimental route, is a further illustration of its accuracy. 

In conclusion, the observed transition from elastic to plastic behaviour observed in 
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compressed glass, and the permanent densification, are due to the appearance of five-fold 

coordinated Si defects above a threshold pressure of about 10 GPa. Defects activate atomic 

diffusion and are responsible for plastic behaviour. NMR spectroscopy would be ideally suited to 

verify our findings experimentally, but experiments would have to be carried out in situ at high 

pressure, as five-fold defects are not quenchable to ambient conditions. It is also confirmed that 

the compressibility anomaly is a purely elastic phenomenon that does not require topology 

changes or hidden phase transitions. 

0 10 20 30 40 50

0.000

0.002

0.004

0.006
 

 

M
SD

 in
 s

ca
le

d 
co

or
di

na
te

s

Shear Strain (%)

 5-fold at least once
 always 4-fold

 

Fig.6.13 Mean squared displacement (MSD) of silicon atoms in scaled coordinates during the run 

descibed in Fig.5, at 8 GPa. Solid line: MSD averaged over those Si atoms that have been 

five-fold coordinated at least once during the run (75 atoms out of 192). Dashed line: MSD 

averaged over Si atoms always in four-fold coordination (117 out 192). 
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Fig.6.14 Calculate Raman spectra based on BP model (right) compared with experimental data 

(left) [217]. 
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Fig.6.14 Density of the simulated densified glass as obtained by ambient temperature 

decompression from different pressures. Direct measurements of densities are not available on a 

wide pressure range, so comparison with Brillouin frequency shifts is shown, which are believed 

to be connected with density changes [19].    

6.5 Conclusions 

In summary, the TS potential can reproduce the features of the temperature-induced 

densification of compressed glass in the pressure range 0-10 GPa, where the glass is known to 

retain a tetrahedral structure. The annealed, densified form of glass corresponds to the 

thermodynamical minimum, within the realm of disordered phases, at all considered pressures. No 

abrupt changes in the properties of the annealed glass have been found, indicating that ideas of a 

possible polyamorphism, i.e. of a first-order transition between two distinct phases, may have to 

be revised for silica. The TS potential can reproduce the mechanical strength minimum and the 

onset of pressure-induced densification at 10 GPa and the bulk modulus minimum at 2-4 GPa. The 

compressibility maximum does not require changes of the tetrahedral network topology. The 

pressure induced appearance of unquenchable five-fold defects is responsible for the reduction of 

the mechanical strength and for permanent densification.  
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Chapter 7 

Pressure-induced Amorphization of a Silica Clathrate 

 

Melanophlogite, a low-pressure silica polymorph, has been extensively studied at different 

temperatures and pressures by molecular dynamics simulations. While the high-temperature form 

is confirmed as cubic, the low temperature phase is found to be slightly distorted, in agreement 

with experiments. With increasing pressure, the crystalline character is gradually lost, the topology 

changes and plastic behavior and permanent densification appears above ~12 GPa, triggered by Si 

coordination number changes.  

7.1 Introduction 

Melanophlogite is a rare mineral first described by Lasulx in 1876 [224], known from only 

five volcanic areas. The name melanophlogite describes the fact that mineral turns black when 

heated. Melanophlogite contains up to 8% C, H, O, N and S [225]. The role of these additional 

elements was not understood until Kamb concluded from X-Ray powder data that melanophlogite 

is isostructual with the cubic gas hydrates of type I (Fig.7.1) [226], in which there are two types of 

cage per unit cell: two pentagonal dodecahedra [512] and 6 tetrakaidecahedra [51262] cages with the 

guest molecules M12 (N2, CH4) and M14 (CO2), respectively [225-227]. The guest molecules are  

 
Fig. 7.1 A snapshot of the melanophlogite at 1000 K. 
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thought to act as templates during crystallization. Using a mixture of CO2, CH4 and N2 as guest 

molecules, melanophlogite was first synthesized under hydrothermal conditions from aqueous 

silica solutions in 1982 [228]. Melanophlogite is known to distort slightly from cubic symmetry 

below around 80 oC [229-232]. By careful thermal treatment (e.g. heating to above 600 oC), the 

guest molecules can be removed [94,95,229,232-235]. While it is very interesting to investigate 

the guest molecules entrapped in the clathrates [236,237], and the interaction between guest and 

host framework [95], here we, as a first step, only focus on guest-free melanophlogite. 

A crystalline-amorphous transition has been documented in melanophlogite very recently, 

primarily through a broadening and drop in intensity of the X-ray diffraction lines [94,95]. 

Amorphization in melanophlogite is observed at 8 GPa [94], much earlier than quartz and coesite, 

which is consistent with the fact that the starting crystal (melanophlogite) is already less dense 

than glass, and with similiar Gibbs free energy at 0GPa. In this chapter, we are going to study the 

atomic behavior during the amorphization. 

 

7.2 Results and Discussions 

We first present the results of simulations of the pressure-induced amorphiszation of 

guest-free melanophlogite. The simulations were carried out using the TS potential [29]. We 

started our molecular dynamics (MD) simulations from a cell consisting of 368 SiO2 formula units 

( 222 ×× unit cells), which is obtained by first linearly inserting oxygen tatoms in the middle of 

two silicon atoms in Type I silicon clathrate and then relaxing the structure to 0 GPa and 0 K. The 

MD time step was set to 0.72 fs (30 a.u.). We then studied the lattice and volume changes at 

different temperatures [Figs. 7.2 and 7.3]. It interesting to note that the volume is expanded very 

fast and then saturated at around 500 K, which is typical of α-β transition like in quartz and 

cristobalite [173]. Like quartz and cristobalite, melanophlogite shows the dynamic disorder of 

oxygen atoms above ~500K.. While the high-temperature form is found to be cubic, in agreement 

with experiments, the low temperature phase is found to be slightly distorted (Fig.7.3), which is 

also in agreement with experiments [229-232]. However, the experimental studies find the low 

temperature phase as tetragonal, whereas we find it with lower symmetry than tetragonal (see Fig. 

7.3). Nevertheless, the distortion is small as mentioned by Yagi and others [95]. 
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Fig.7.2 The volume as a function of temperature, initially 7 ps (open) is used and further 7 ps 

(solid) for checking convergence. 
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Fig. 7.3 Lattice parameter as a function of temperature obtained by taking the average of 

molecular dynamics trajectories. 
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Fig.7.4 Equation of state of melanophlogite at 300 K, initial 7 ps (open square) and further 14 ps 

(solid square), at 50 K (triangle), and of cold compressed glass (circle) from Fig.6.8. 
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Fig. 7.5 Calculated X-ray structure factor at some selected pressures at 300 K (line) and 900 K 

(circle) (a) and the intensity of Bragg peak (423) varies at elevated pressure (b). 
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Fig.7.6 The density of the simulated densified glass (or a mixture with crystalline) at 0GPa as a 

function of subjected peak pressure. 
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Fig.7.7 Percentages of Si atoms coordinated four (squares), five (circles), and six (triangles), to 

oxygen, at different pressures. 
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Fig. 7.8 The ring statistics of recovered sample from different subjected peak pressure. 

Next, we applied a stepwise hydrostatic compression at 300 K and 50 K, with pressure 
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increments of 2 GPa, followed, at each pressure, by an equilibration time of 20 ps. No clear 

volume collapse can be identified in the equation of state, up to a pressure of 28 GPa (Fig. 7.4), 

with a negligible dependence on the compression rate. Melanophlogite has higher compressibility 

than glass in agreement with experiments [94,95], while the equation of states converge at 

pressures above 12 GPa. No first order transition has been found in the whole studied range. We 

compared the X-ray structure factor at different pressures in Fig. 7.5. At 0 GPa and room 

temperature, the diffraction pattern is consistent with the experimental data [94,95]. The relative 

intensity differs between different experimental reports. Our data show higher intensity in the 

second and third peaks (i.e. [202] and [222] on a basis of tetragonal unit cell [227]) than in Ref. 

[94], but similar to those of Ref. [95]. In any case, we agree with experiments on the fact that the 

strongest peak (423) and other peaks, shown in Fig.7.5(b), decrease in intensity with increasing 

pressure [94]. However, recovered sample only show densification above around 12 GPa (Fig.7.6), 

which suggest that the reduction of the Bragg peaks below 12 GPa is not a consequence of 

bonding changes. This is confrmed by the analysis of the coordination changes and ring statistics 

(Figs.7.7 and 7.8). The coordination increases only above ~12 GPa, and as a consequence, the 

topology changes to produce densified glass. In contrast, for pressures lower than 10-12 GPa, the 

compression takes place only through the reduction of Si-O-Si angles. At 10 GPa, the Si-O-Si 

ange is distributed around 120-124o, which pre-empts the Si coordination changes. The crystalline 

melanophlogite contains only 5-member, 6-member and 10-member rings. As can be seen in Fig. 

7.8, the topology of recovered sample from 12 GPa has 2 five-member rings and 1 six-member 

ring less than the starting crystal. For the sample recovered from 16 GPa, the ring size distribution 

shows some memory of the crystal, with a maximum for 5-member rings and a second peak for 

10-member rings. At high pressure, the densification process saturates and generates a ring 

statistics similar to that of densified glass. It is noteworthy that at higher subjected peak pressure 

the densification is saturated like normal glass behaves as shown in Chapter 6. We remark that the 

increase of small member ring with peak pressure is consistent with Raman experimental data 

[217]. 

7.3 Conclusions 

To summarize, we have shown the TS potential can reproduce the experimentally reported 

transition from a low-temperature distorted structure to a high-temperature cubic structure in 
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melanophlogite. This is only one example for pure silica zeolite. The simulation on high-pressure 

melanphlogite doesn’t show any first-order transition, but does show (gradual) amorphization and 

densification. The gradual changes, not collapse, make it possible to produce a glass less dense 

than normal glass (2.22g/cm3) [238]. 
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Chapter 8 

Conclusions and Perspectives 

 

In this thesis, we have attempted to provide a comprehensive understanding of the phase 

transformations in silica polymorphs and glasses based on the microscopic analysis that emerges 

from molecular dynamics. 

The simulations were carried out using an interatomic force field optimized by best fit on 

first-principles (density functional theory) calculations. The performance of the TS potential is 

very excellent when solving the problem listed in this thesis. We first calculated infrared and 

Raman spectra for quartz, cristobalite and stishovite and compared them with experiments, as well 

as with spectra obtained with other force fields, such as TTAM, BKS and an improved three-body 

potential. The reliability of the interaction potential in the calculation of IR and Raman spectra is 

validated by the excellent agreement with experimental data both in the peak positions and in the 

relative intensities. In particular, we were able to reproduce the relevant spectral changes mode in 

the α-β transition, which is generally considered to be highly non-harmonic. Our results suggest 

that the polarizable potential can be extended to the study of other temperature-induced transitions 

where the role of dynamical disorder and anharmonicities is predominant. The performance of the 

potential in octahedral structures was evaluated by calculating Raman spectra across the 

rutile-to-CaCl2 transition at around 50GPa. The lowest frequency peak shows a softening behavior 

below ~50 GPa, which is consistent with experiments and other calculations. Regarding to Raman 

spectra by using direct approach (see Chapter 3), it is very challenging direction and certainly 

needs more efforts in future study.  

Having established the reliability of the TS potential for the study of the very high-pressure 

phasesof silica, we have then turned our attention to the packing of oxygen in high-pressure silica 

phases. We have employed the pair analysis, a method widely used in the study of metals, for 

describing the geometry of the oxygen sublattice. We confirm that both cristobalite and quartz 

under high pressure can be described by oxygen bcc sublattice. The collapse of the tetrahedral 
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network in cristobalite (phase X-I) is concomitant with the collapse of the oxygen sublattice from 

a bcc-like to a close packed arrangement. We explain the large amount of conflicting experimental 

evidence regarding the dense phases of silica by invoking the important role of non hydrostatic 

stresses in driving the formation of different oxygen packing arrangements, including the 

appearance of the α-PbO2-like phase which, so far, lacked a microscopic connection with the 

original cristobalite phase, and the suggestion that an anatase-like phase with a cubic close packed 

arrangement for the oxygen sublattice may be synthesized under appropriate stress conditions. We 

further presented a comprehensive understanding about the collapse of quartz under pressure. We 

argue that quartz-II is not a distinct phase, but simply a partial symmetrization of quartz. A 

pathway to transform from quartz to P21/c (Z=6) phase is well understood by following oxygen 

sublattice only. Pressure-induced bulk amorphization of quartz can also be understood based on 

oxygen packing arguments. We have also studied pressure-induced amorphization in a more 

complicated clathrate structures melanophlogite and found a gradual apparent amorphization 

before plastic deformation and densification.  

The TS potential is shown to reproduce the features of the temperature-induced densification 

of compressed glass in the pressure range 0-10 GPa, where the glass is known to retain a 

tetrahedral structure. The annealed, densified form of glass corresponds to the thermodynamical 

minimum, within the realm of disordered phases, at all considered pressures. No abrupt changes in 

the properties of the annealed glass have been found. The TS potential can reproduce the 

mechanical strength minimum and the onset of pressure-induced densification at 10 GPa and the 

bulk modulus minimum at 2-4 GPa. The compressibility maximum does not require changes of 

the tetrahedral network topology. The pressure induced appearance of unquenchable five-fold 

defects is responsible for the reduction of the mechanical strength and for permanent densification. 

It is noteworthy that the intermediate phase between hp-cristobalite and α-PbO2-like phase is 

5-fold silicon crystalline phase. The concept of 5-fold silicon coordination in pure silica has only 

rarely been advocated so far, so our results call for an experimental confirmation. 

We hope that our finding that a polarizable potential fitted to ab initio data can provide such a 

comprehensive picture of the silica phase diagram will stimulate further work towards the 

development of similar potentials for more complex systems, including silicates and other 
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minerals, as well as materials of practical interest such as zeolites and other nano- or 

meso-structureed silica-based materials. 
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Appendix 

 

In Chapter 3, I’ve shown how to calculate infrared spectra based on the molecular dynamics 

by assuming the refractive index of the medium as a constant. However, in the most cases, the 

refractive index varies within the infrared frequency range. It’s possible to treat explicitly 

refractive index by using Kramers-Kronig (KK) relationship.  

A.1 The Formulations 

By Fourier transforming the total polarization autocorrelation function, we are able to 

calculate the imaginary part )(2 ωε  of the dielectric constant in the classical limit [159]: 

∫
∞ −>⋅<=

02 )0()(
3

2)( dteMtM
TVK

ti

B

ωπωωε
vv

                                  (A.1) 

where M
v

 is the total dipole moment, V is the volume of the sample, and BK  is 

Boltzmann's constant, respectively. The correlation functions in the above equations were obtained 

directly from our simulations and the use of KK relations [239-241] allow us to obtain the real 

part )(1 ωε  of the dielectric constant )(~ ωε  [242]: 

∫
∞

∞+′
−′

′
=

0 22
2

1
)(2)( εω

ωω
ωεω

π
ωε dP                                           (A.2) 

where ∞ε is the electric contribution. The complex refractive index n~  and the complex 

dielectric function ε~  by definition are following: 

)()()(~ ωωω iknn += , 2
21 )(~)()()(~ ωωεωεωε ni =+=                         (A.3) 

The relationship between the optical functions and dielectric functions is thus as is obvious: 

22
1 )()()( ωωωε kn −= , )()(2)(2 ωωωε kn=                                   (A.4) 
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Given an (infrared) wave propagation described by )](exp[0 trqiEE ω−⋅= vvvv
, where E

v
 

is the electric field strength, qv  is the wave vector, rv is the space coordinate and t is the time; by 

using Maxwell’s equation in dielectric material [239], the infrared absorption spectra )(ωα  can 

be obtained from the equation below 

)(
)()( 2

ω
ωωεωα

cn
=                                                            (A.5) 

We determine the reflectivity according to the equation 

22

22

)()1)((
)()1)(()(

ωω
ωωω

kn
knR

++
+−

=                                                 (A.6) 

In essence, our method involves calculating )(2 ωε  by the method described above with the 

MgO potential developed by Tangney and Scandolo [104], we then go on to determine the real 

part of the dielectric constant and finally using KK relations to obtain the optical functions and the 

absorption and reflection infrared spectra. With this approach, we are able to obtain results that 

agree with experimental results in MgO. 

A.2 The Results on MgO 

In Fig.A.1, we compare the optical properties from our simulations with the experiment 

results of Hofmeister and collaborators [243]. In Fig. A.1a, the peak in both the experiment and 

calculated dielectric functions occurred at the same point around 411 cm-1 although experiment 

has a wider base. We then use formula listed in Sec. A.1 to calculate the absorption and reflection 

infrared spectra shown in Fig. A. 1b. The overall agreement is very good, although the right 

shoulders of absorption and reflection reduces to zero earlier than experiments. A similar extent of 

agreement between experiment and theory are found in optical function in Fig.A.1c, we notice that 

the calculated static refractive index is underestimated and the width of the band is smaller than 

experiments.  
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Fig.A.1 Calculated optical properties as compared with experiments. Solid lines are simulation 

results; scattered are from experiments [243]. 
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