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Chapter 1

Introduction

One of the greatest discoveries in modern cosmologies is the apparent accelerating

cosmic expansion. In terms of “canonical” physics, i.e. in the framework of a general

relativistic description of cosmology itself, the latter may be interpreted as the effect of a

non-null energy density in the vacuum, the Cosmological Constant. The discrepancy of the

observed amount of this new entity with respect to any known scale in particle physics,

reaching 120 orders of magnitudes if compared with the Planck scale, led the community

to look for different solutions, generalizing the concept of vacuum energy in cosmology to

the plethora of models, ideas and speculations forming nowadays the class of dark energy

cosmologies. Differently from the Cosmological Constant, almost all of those involve some

spacetime dynamics in the substance inducing cosmic acceleration. One of the greatest

challenges in the modern observational cosmology is to isolate the fingerprint of one of those

scenarios, if any, in order to confirm or reject the existence of a Cosmological Constant in

our Universe. The study concerns the whole epoch in which the acceleration is active, about

half of the life of the Universe in ordinary time; in particular, since the existing data already

indicate that the dark energy today is close (10% precision) to a Cosmological Constant,

it is important to design tools which are able to probe the dark energy behavior at earlier

epochs than the present. This work represents an effort in this direction.

We focus on the gravitational lensing induced by forming cosmological structures

on the background light, represented by the anisotropies in the temperature of the Cosmic

1



2 Chapter 1: Introduction

Microwave Background (CMB) radiation. The reason is simple and purely geometric, be-

ing one of the very basic laws of gravitational lensing: for any given source position, the

gravitational lensing deflection is zero if the lens position coincides with the observer or the

source itself. The lensing deflection, therefore, keeps some record of the cosmic behavior at

intermediate epochs only.

The lensing impacts CMB anisotropies in several ways. They are powered by pri-

mordial perturbations, now accurately probed by the existing measurements; it is crucial to

isolate CMB observables which are unbiased by such primordial power, in order to be most

sensitive to the lensing contribution, containing the relevant information for our purposes.

One of them is the non-Gaussian distortion induced by lensing deflection on the primordial

anisotropies. That may be parameterized in several ways. We choose here its harmonic

description, by means of the three-point CMB anisotropy correlation function expressed in

the spherical harmonics domain, the so called CMB bispectrum. We shall show that, al-

though challenging in its detection, the CMB bispectrum actually shows promising features

in the sensitivity to the cosmic expansion, the dark energy properties in other words, at

the onset of acceleration, providing important complementary information with respect to

other, “canonical” observables such as the two-point correlation function in terms of the

power spectrum of anisotropies.

In order to achieve our goal, we need several pieces of the theoretical framework

of modern cosmology. We need the full theory of CMB anisotropies, and of how growing

cosmological structures affect those by means of gravitational lensing. We need a solid

description of the dark energy, general and not too specific in order to give as much generality

to our results as we can. Moreover, even before facing our main problem, we need a general

study of the phenomenology of the three-point CMB statistics, from a geometrical and

phenomenological point of view, in order to better comprehend our results, and isolate the

signal differences induced by the different underlying dark energy models. Finally, with all

these means, we may face our problem, quantifying the benefit that the CMB bispectrum

knowledge yield on the overall CMB capability to constrain the underlying physical reason

for cosmic acceleration. Here below we give a more detailed and technical description of

the contents of this thesis.
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In Ch. 2 we give a review of the concordance cosmology listing and briefly dis-

cussing the most important evidences for cosmic acceleration. We discuss the Cosmological

Constant as a candidate for explaining the acceleration showing its main weaknesses and its

main theoretical problems. We introduce the dark energy as a generalized form of vacuum

energy, solving some of the classical problems affecting the Cosmological Constant. We

conclude the chapter focusing on the cosmological weak lensing effect as a tool to study the

dark energy.

In Ch. 3, after a little historical digression about the discovery of the CMB radia-

tion and its anisotropies, we review the linear perturbation and CMB anisotropy theory. A

phenomenological description of CMB anisotropies and the discussion of the lensing effect

on the CMB power spectrum concludes the chapter.

In Ch. 4 we write the basic formalism describing the CMB bispectrum induced by

the correlation between lensing and growth of cosmological structures; we also show why the

bispectrum can be useful to study the nature of the dark energy dynamics. Then we make

a little “computational” digression describing the method we implemented to evaluate the

Wigner 3J symbols, a necessary but computationally challenging ingredient to evaluate the

bispectrum. Finally we study the geometrical properties of the bispectrum in full generality

exploring a three-dimensional multipole space.

Ch. 5 is devoted to the dark energy theory, focusing on models involving a scalar

field, the Quintessence. We discuss the background dynamics for exact models adopting a

phenomenological approach to the dark energy equation of state, i.e. the ratio between its

pressure and energy density, which needs to be negative and close to -1 in order to imprint

cosmic acceleration. In the last section of this chapter we show how the present value of

the equation of state influences the CMB power spectrum and large scale structure; we

conclude the chapter with the current constrains on the dark energy equation of state.

In Ch. 6 we discuss the angular diameter distance degeneracy that affect the

CMB power spectrum, which makes hard the study of the dark energy on the basis of that

observable. Then we show how the bispectrum breaks this degeneracy, adding information

on the dark energy dynamics just where the power spectrum fails. We compute the signal to

noise ratio for the bispectrum showing that it is detectable only if we take into account all
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the possible geometrical configurations. We make a likelihood analysis on a three parameters

space where we vary the dark energy abundance, the present and the asymptotic value of its

equation of state. Finally we show how, when and where the bispectrum analysis improves

that of the power spectrum only, narrowing the confidence levels in the likelihood analysis

and breaking the degeneracies.

In Ch. 7 we briefly discuss the main contaminants and systematics that can pollute

the CMB data making the detection of the bispectrum hard. Finally we summarize the work

done in this thesis, pointing to new directions to extend what we have done until now, and

putting our concluding remarks.



Chapter 2

The current cosmic picture

In the last few years our understanding of the Universe has improved considerably

thanks to the progress of several observables such as the supernovae type Ia (SNIa, Riess et

al. 1998; Perlmutter et al. 1999), the Cosmic Microwave Background (CMB) radiation (de

Bernardis et al. 2000; Spergel et al. 2003) and the Large Scale Structure (LSS; Percival et

al. 2001; Dodelson et al. 2002). Those cosmological observations indicate that the Universe

is nearly geometrically flat, filled with structures which grew out of a primordial linear

spectrum of nearly Gaussian and scale invariant perturbations and that its expansion is ac-

celerated. About 4% of the critical energy density is made of baryons, while the remaining

dark part is supposed to interact most weakly with the baryons themselves, since we observe

it only through its gravitational effects. The dark component appears to be 30% pressure-

less, such as in cold dark matter (CDM) scenarios, dominating the gravitational potential

perturbations which host visible structures such as galaxies or clusters. The remaining 70%

should be in some sort of vacuum energy, with a negative pressure acting as a repulsive

gravity, and responsible for a late time cosmic acceleration era. In this chapter we want to

review briefly the evidences and the motivations that led the inclusion of this component

into the cosmic budget and the challenge that it represents for the whole picture. The

chapter is structured as follows: in Sec. 2.1 we review the Friedmann-Robertson-Walker

(FRW) cosmology; in Sec. 2.2 we report the observational evidences in favor of the cosmic

acceleration; in Sec. 2.3 we discuss the Cosmological Constant and the related problems;

5



6 Chapter 2: The current cosmic picture

in Sec. 2.4 we introduce the dark energy cosmology; finally in Sec. 2.5 we discuss the most

important observables capable to constrain the dark energy dynamics, i.e. confirming or

ruling out the Cosmological Constant.

2.1 Standard cosmology

The Einstein field equations rule the general relativistic cosmology; they are

Gµν ≡ Rµν −
1

2
gµνR = 8πGTµν + gµνΛ , (2.1)

where Gµν is the Einstein tensor, Rµν is the Ricci tensor, R is the Ricci scalar, G is the

gravitational constant Tµν is the stress-energy tensor and Λ is the Cosmological Constant

term. We use natural units for the speed of light and the Planck constant. Eq. (2.1) relates

the geometry of the spacetime (left hand side) with the energy sources (right hand side); the

dynamics of the metric is determined by the stress-energy tensor, including the contribution

from non-relativistic matter and radiation; the large scale geometry is described by the FRW

metric which, in spherical coordinates (r, θ, φ), is

ds2 = −dt2 + a2(t)

[
dr2

1−Kr2
+ r2

(
dθ2 + sin2 θdφ2

)]
, (2.2)

where a(t) is the scale factor and K can take the values −1, 0 and +1 defining an open, flat

and closed geometry respectively. Since we assumed spatial homogeneity and isotropy, the

form of the stress-energy tensor for the ith perfect fluid component is diagonal and is given

by

T νµ(i) = diag (−ρi, pi, pi, pi) , (2.3)

being ρi the energy density and pi the pressure; both pressure and energy density are

generally dynamical quantities. In the following, we indicate such dependence both as a

function of time and the scale factor a.

In the FRW metric the Einstein field equations with a perfect relativistic fluid

become the Friedmann equations

H2 ≡
(
ȧ

a

)2

=
8πG

3

∑

i

ρi(a) +
Λ

3
− K

a2
, (2.4)

ä

a
= −4πG

3

∑

i

[ρi(a) + 3pi(a)] +
Λ

3
. (2.5)
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where the overdot means time derivative and H is the Hubble parameter. Defining the

critical density ρc = 3H2
0/(8πG) ' 1.88h2 × 10−29g/cm3 (H0 is the Hubble’s constant, i.e.

the value of the Hubble parameter today, while h is its value in units of 100 km/s/Mpc)

we can parameterize the density parameters of the ith fluid component, the Cosmological

Constant Λ and the curvature as

Ωi(a) =
ρi(a)

ρc
, ΩΛ =

Λ

8πGρc
, ΩK(a) = − K

a2H2
, (2.6)

respectively. Indeed it is sometimes useful to think the Cosmological Constant and the spa-

tial curvature as cosmological components, with ρΛ = Λ/(8πG) and ρK(a) = −3K/
(
8πGa2

)

respectively; ρK is not an energy density but a simple way to keep track of how much energy

density is missing or in excess in comparison to a flat universe. If we rewrite the Friedmann

equation (2.4) as

Ωtot(a) =
∑

i

Ωi(a) + ΩΛ = 1− ΩK(a) , (2.7)

we see that the spatial curvature is fixed by the total energy content.

The energy conservation in general relativity is expressed by the fact that the

stress-energy tensor is divergenceless, i.e. T µν(i);ν = 0; the latter relation is not satisfied for

interacting components. In a FRW metric with perfect fluids, the divergenceless condition

yields to the equation for the evolution of the single fluid component:

ρ̇i(t) = −3H[ρi(t) + pi(t)] . (2.8)

To be solved, this equation needs the introduction of the equation of state linking pressure

and energy density. In most cases they are related by

pi = wiρi . (2.9)

For each fluid the actual value of wi is directly related to the physical properties of that

particular component. Substituting the general equation of state (2.9) into the energy

conservation equation (2.8) we get the time evolution of the energy density

ρi(a) ∝ a−3(1+wi) , (2.10)
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w ρ(a) a(t)

Non-relativistic matter (dust) 0 a−3 t2/3

Relativistic matter and radiation 1/3 a−4 t1/2

Cosmological Constant −1 constant eHt

Curvature −1/3 a−2 t

Table 2.1: Summary of the values of the equation of state of the most important sources of
energy density in cosmology, together with the time dependence of the scale factor if they
dominate the expansion.

where we assumed that wi is not varying in time. Assuming a flat space (K = 0) we see

how the scale factor evolves with time:

a(t) ∝





t
2

3(1+wi) w 6= −1

eHt w = −1
. (2.11)

In Tab. 2.1 we show the values of the equation of state and the behaviors of energy density

and scale factor for the main cosmological components; the latter behavior refers to the case

in which the corresponding component dominates the expansion. While the energy densities

of radiation and dust decrease with time, the Cosmological Constant energy density remains

constant, allowing to dominate the expansion eventually.

The effect of the Cosmological Constant on the expansion rate of the Universe

can be seen from Eq. (2.5); the value of the deceleration parameter today, neglecting the

radiation, is

q0 ≡ −
1

H2
0

(
ä

a

)

0

=
Ωm

2
−ΩΛ . (2.12)

The previous equation tell us that for ΩΛ > Ωm/2 the expansion of the Universe is acceler-

ated since q0 < 0.

We stress that the cosmic dynamics at a given epoch, the present for example, is

mainly determined by the geometrical quantities H0 (the Hubble parameter) and q0 (the

deceleration parameter); the former give us a measure of the velocity of the expansion while

the latter probes the acceleration of the expansion.
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2.2 Evidences for cosmic acceleration

One of the most challenging problems in modern cosmology is to provide an ex-

planation for the recently observed accelerated expansion of the Universe. The first direct

evidence for this came from studies using Supernovæ Type Ia (SNIa) as standard candles

to measure the distance-redshift relation in the Universe (Riess et al. 1998; Perlmutter et

al. 1999).

The SNIa possess a nearly uniform intrinsic luminosity with an absolute magnitude

M ∼ −19.5 that is typically comparable to the brightness of the entire host galaxy in

which they appear. Since they have such high luminosity, they can be detected at high

redshift (the most distant SNIa detected is SN1997ff at redshift z ' 1.7), allowing in

principle a good handle on cosmological effects. The fact that all SNIa have similar intrinsic

luminosities fits well with our understanding of these events as explosions which occur

when a carbon-oxygen white dwarf approaches the Chandrasekhar limit and explodes with

a thermonuclear deflagration. The Chandrasekhar limit is approached because the white

dwarf is gradually accreting from a companion star; this limit is almost a universal quantity,

so the resulting explosions possess similar luminosities (see Hillebrandt & Niemeyer 2000

for reviews). The correlation between the peak luminosity of a SNIa and its decline rate

makes it possible to estimate the magnitude, whereas with spectral measures of the host

galaxy one can determine its redshift. Dimmer SNIa decline more rapidly after maximum

brightness while brighter SNIa decline more slowly; such correlation can be quantified by

the drop in magnitude 15 days after the peak luminosity is reached.

A standard candle is used to determine cosmological distances and must satisfy

three conditions: it needs to be bright, homogeneous and present everywhere in space. SNIa

fulfill all these requirements, possessing a magnitude-redshift relation given by

m(z)−M = 5 log dL(z) + 25 , (2.13)

where m(z) is the apparent bolometric magnitude, M is the absolute magnitude and dL(z)

is the luminosity distance in units of Mpc. Furthermore, the luminosity distance depends

on the geometry of the space and its energy content, being defined by d2
L = L/(4πF), where

F is the measured flux and L is the absolute luminosity of the object. We can express dL
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Figure 2.1: Upper panel: Hubble diagram in linear redshift scale. The solid curve represents
the best-fit flat universe model, (Ωm = 0.25, ΩΛ = 0.75). Two other cosmological models
are shown for comparison, (Ωm = 0.25, ΩΛ = 0) and (Ωm = 1, ΩΛ = 0). Lower panel:
Residuals of the averaged data relative to an empty universe. From Knop et al. (2003).

as a function of the comoving distance r(z) as

dL(z) = (1 + z)r(z) , (2.14)

where r(z) contains the parameters of the background cosmology being defined in flat space

as

r(z) =

∫ z

0

dz′

H(z′)
. (2.15)

A large sample of supernovæ at high and low redshift has been observed by two

independent groups: the High-Z Supernova Research Team (Riess et al. 1998) and the

Supernova Cosmology Project (Perlmutter et al. 1999). Both groups have found that distant
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supernovæ are fainter than expected in a matter dominated universe. In fact the data are

much more consistent with a universe dominated by a Cosmological Constant. Obviously the

supernova results alone allow a substantial range of possible values of Ωm and ΩΛ; however,

if we think we know something about one of these parameters from other independent

measures, the other will be tightly constrained. In particular, if we take Ωm ∼ 0.3 from

clustering of matter (Dodelson et al. 2002; Percival et al. 2002) and flat cosmology from

Cosmic Microwave Background, (Bennett et al. 2003; Spergel et al. 2003) we get ΩΛ ∼ 0.7

providing a direct evidence for a non-zero value of Cosmological Constant. In Fig. 2.1 we

show the dimming of the supernovæ as a function of the redshift for different cosmological

models.

The presence of possible systematic uncertainties in the SNIa observation has

attracted some criticism (see Leibundgut 2001 for reviews). In fact the SNIa might have an

evolution over the cosmic time, due to changes in characteristics of the progenitors, making

their use as standard candles unreliable; but the spectra of low redshift supernovæ appear

similar to those of high redshift and this evidence seems to exclude evolutionary effects in

data (Hoeflich, Wheeler & Thielemann 1998; Aldering, Knop & Nugent 2000). Another

possible systematics is that the dimming of the supernovæ light is due to the intergalactic

dust; against this statement there is the fact that the high redshift supernovæ suffer of little

reddening (Riess et al. 2000).

In conclusion the dimming of SNIa brought the Cosmological Constant back into

the framework of the modern cosmology. In fact the presence of Λ is capable to explain the

supernovæ dimming in terms of an accelerating phase of the cosmic expansion.

It is important to notice that joint measures of the CMB anisotropies and large

scale structures yielded a strong indication in favor of cosmic acceleration, independently

on the SNIa. The abundance of clustered matter is known to be at the 30% level of the

critical density by observing the nearby Universe (Dodelson et al. 2002; Percival et al.

2002); on the other hand, the scale subtended in the sky by the acoustic oscillations in the

CMB anisotropy angular power spectrum supports a flat cosmological geometry; the rather

definitive confirmation came from the observation of the Wilkinson Microwave Anisotropy

Probe, WMAP (see Spergel et al. 2003 and reference therein). The position of the first
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acoustic peak of the CMB angular power spectrum is sensitive to Ωtot but does not allow

to constrain independently Ωm and ΩΛ since the relation that links the first acoustic peak

location to the total energy density is roughly lpeak ∝ Ω
−1/2
tot (see e.g. Hu & Sugiyama

1995) where l represents the multipole in the angular expansion, as we show in detail in

the next chapters. Assuming the so called “Hubble Space Telescope (HST) prior” h =

0.71± 0.076 (Freedman et al. 2001) on the Hubble constant, already before WMAP several

experiments (BOOMERanG, Balloon Observation Of Millimetric Extragalactic Radiation

and Geophysics, de Bernardis et al. 2000; DASI, Degree Angular Scale Interferometer, Kovac

et al. 2002; MAXIMA, Millimeter Anisotropy eXperiment IMaging Array, Stompor et al.

2001) have put strong constraints on the curvature of the Universe. Restricting the analysis

to a flat cosmological model (Ωtot = 1), then these CMB data provided ΩΛ = 0.69+0.03
−0.06 for

the Cosmological Constant density parameter (Sievers et al. 2003). At the same time, the

large scale structure data gave tight constraints on Ωm, as we anticipated. The 2dF Galaxy

Redshift Survey (Percival et al. 2001) and the Sloan Digital Sky Survey (Dodelson et al.

2002) probed scales from 10 to 100 Mpc yielding Ωmh
2 = 0.20±0.03 with a baryon fraction

of Ωb/Ωm = 0.15 ± 0.07. When this LSS data were combined with the CMB, such a low

value of the matter density gave an indirect evidence for a large value of the Cosmological

Constant energy density. A joint analysis of the 2dF and the CMB data allowed to put the

constrain at 2σ for the Cosmological Constant to 0.65 ≤ ΩΛ ≤ 0.85 (Efstathiou et al. 2002).

The age of the Universe also is consistent with the presence of the Cosmological

Constant. The age of a given cosmological model is obtained integrating the Friedmann

equation (2.4), and it is easy to see that large values of ΩΛ make the Universe older.

Matter dominated cosmological models are younger than globular clusters, the age of which

is estimated to be 11.5 ± 1.5 Gyr (Chaboyer et al. 1998); the presence of a Cosmological

Constant alleviates this problem. On the other hand the age of the Universe can be increased

also lowering the Hubble constant in a purely matter dominated cosmological model, but

H0 assumes a value too low in order to be consistent with HST prior, h ≈ 0.71 ± 0.07

(Freedman et al. 2001).

A low value of Ωm around 0.3 is indicated by other different measures such as
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Figure 2.2: The (Ωm, ΩΛ) plane with the present data set of cosmological observations (the
SNIa, the large scale structure and the CMB anisotropies) as well as the future determina-
tions by SNAP. Notice the orthogonality between clusters data, supernovæ data and CMB
data. From Aldering et al. 2002.

peculiar velocities of galaxies (Ωm = 0.30 ± 0.06, Silberman et al. 2001), observed cluster

mass-luminosity relation in X-ray compared with prediction from numerical simulations

(Ωm < 0.36 at 1σ, Allen et al. 2003), gravitational lens statistics (Ωm = 0.31+0.39
−0.24, Chae et

al. 2002).

In Fig. 2.2 we show the combination of data from SNIa, CMB and LSS in the

(Ωm, ΩΛ) plane as well as future experiments such as the SuperNovæ Acceleration Probe

(SNAP)1, a planned satellite to map the high redshift Type Ia supernovæ in order to

constrain the cosmic acceleration over the whole relevant redshift interval (Perlmutter 2003

1http://snap.lbl.gov/
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Figure 2.3: The CMB angular power spectrum, l(l + 1)Cl/2π, obtained from the 28 cross-
power spectra measured by WMAP satellite. The data are plotted with 1σ error, solid
line is the best-fit ΛCDM model from Spergel et al. (2003) while the grey band is the 1σ
uncertainty due to cosmic variance on the cut sky. From Hinshaw et al. (2003).

and references therein). Notice the complementarity between CMB data, supernovæ data

and clustering data. The present picture of cosmology is built upon the combination of

the full sky measure of CMB anisotropies performed by the WMAP experiment (Hinshaw

et al. 2003) with ACBAR (Arcminute Cosmology Bolometer Array Receiver, Kuo et al.

2004) and CBI (Cosmic Background Imager, Pearson et al. 2003) experiments, the 2dF

measurements (Percival et al. 2001) and the Lyman α forest data (Croft et al. 2002; Gnedin

& Hamilton 2001). The observed total intensity power spectrum measured the curvature as

ΩK = 0.030+0.026
−0.025. For a flat ΛCDM cosmological model the best fit parameters are: Hubble

constant h = 0.72 ± 0.03, baryon density Ωbh
2 = 0.0226 ± 0.0008 and total matter density

Ωmh
2 = 0.133 ± 0.06. The constraints concern many other most relevant cosmological

observables, we list here two of them. The first structures emitting light are supposed

to reionize the cosmic medium: the Thomson scattering optical depth at reionization was

measured to be τ = 0.117+0.057
−0.053. Moreover, the spectrum of primordial perturbations was

tightly constrained, although assuming that no gravitational waves are present, therefore

reducing possible degeneration among cosmological parameters (Efstathiou 2002). As we
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shall see in detail in the next chapters, the density perturbations are usually parameterized

in terms of the exponent of the power spectrum of density perturbations in the Fourier space,

P (k) =
〈
(δρ/ρ)~k

〉
∝ kns , where the average is taken over all the possible realization of a

statistics which is assumed Gaussian; the spectral index was measured as ns = 0.96± 0.02.

The total intensity CMB cross power spectrum with the best fit cosmological model is shown

in Fig. 2.3 (Hinshaw et al. 2003); as we shall see in the next chapter, the Cl coefficients

give a measure of the amount of anisotropy on scale given by ϑ ' 180o/l.

2.3 The Cosmological Constant problems

In Sec. 2.1 we wrote some basic equations in standard cosmology, including the

Cosmological Constant Λ; here we want to deepen this subject reporting the problems

arising when trying to exploit it in order to explain the cosmic acceleration.

The Cosmological Constant was introduced by Einstein in the gravitational field

equations to make the Universe static. Since the Universe was found not static at all,

Einstein himself rejected the Λ term in 1931. In the following years Λ became relevant in

the context of quantum mechanics. In fact, Λ may be interpreted as a measure of the energy

density of the vacuum (i.e. the state of the lowest energy) and although we cannot calculate

it with any confidence from a quantum-mechanical point of view, this identification allows

us to consider the energy scales of the possible contributions.

The identification of Λ with the energy of the vacuum can be shown considering a

scalar field φ with a potential V (φ), with the action given by

S =

∫
d4x
√−g

[
1

2
gµν∂µφ∂νφ− V (φ)

]
, (2.16)

where g is the determinant of the metric tensor gµν and the corresponding stress-energy

tensor is

T φµν = ∂µφ∂νφ− gµν
[

1

2
(∂σφ∂σφ)− V (φ)

]
. (2.17)

In this theory, if the configuration with the lowest energy density exists, it will be one in

which the contribution from kinetic or gradient energy is null; this implies ∂µφ = 0 and

Tµν = −V (φ0) gµν , where φ0 minimizes the potential V (φ). Thus the stress-energy tensor
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for the vacuum can be written as

T Vµν = −ρV gµν . (2.18)

In this example ρV is simply given by the value of the potential in its minimum. On the

other hand, comparing the above vacuum stress energy tensor with Eq. (2.3), the vacuum

can be thought as a perfect fluid with pV = −ρV . Finally, the stress-energy tensor of the

vacuum contributes to the Einstein field equation just as a Cosmological Constant:

ρV = ρΛ =
Λ

8πG
. (2.19)

The zero point energy, associated with quantum fluctuations in the vacuum, add

another contribution from a quantistic point of view. We can see a quantum field as a

collection of infinite harmonic oscillators (see e.g. Sakurai 1994), and at a quantum level

it is well known that the zero point energy of such a system is infinite. The integral of

the zero point energy of normal modes (with wavenumber k) of a massive scalar field (with

mass m) provides the vacuum energy density and is given by

ρV =
1

2

∑

i

ωi =
1

(2π)3

∫ ∞

0
4πk2dk

√
k2 +m2

2
, (2.20)

that diverges as k4. However any quantum field theory is thought to be valid up to a

limiting cut-off scale, which marks the boundary to a more fundamental theory. Imposing

kmax as cut-off in the previous integral, we obtain

ρV =
k4
max

16π2
, (2.21)

where the mass m is neglected. The most natural choice is to set the cut-off to the Planck

scale, the one given by all physical constants combined; thus the vacuum energy density

will be ρthV ≈ M4
P =

(
1019 GeV

)4
. This theoretical value is very far from the observed one.

Once we have a measure of the density parameter ΩV = O(1), we can give an estimate of

the energy density of Λ obtaining ρobsV ∼
(
10−3 eV

)4
. Comparing this “observed” value with

the “theoretical” one from the particle physics, we have a discrepancy of about 120 order

of magnitude. This is a quick and simplified picture of the Cosmological Constant problem,

well known and unsolved in physics in the past century.
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Figure 2.4: Density parameters Ωi for radiation (solid line), matter (dotted line) and Cos-
mological Constant (dashed line) as a function of the scale factor a. The present values of
the density parameters are 5× 10−5, 0.27 and 0.73 for radiation, matter and Cosmological
Constant respectively. The vertical lines indicate, from left to right, the Planck era, the
electroweak symmetry breaking, the Big Bang nucleosynthesis and the present.

A way to solve this problem is to invoke the Supersymmetry (SUSY, see e.g. Wess

& Bagger 1992 and references therein). In the SUSY scenario, for each bosonic particle there

exists a supersymmetric fermionic partner and vice-versa, leading to an exact cancellation

of both bosonic and fermionic degrees of freedom. Unfortunately, since we do not observe

supersymmetric particles, Supersymmetry must be broken at low energy. At the present

status of the knowledge, there is no reason why such breaking should keep Λ = 0. Still,

even assuming that SUSY is broken at MSUSY ∼ 103 GeV, which is the scale probed by

current detectors, the discrepancy between the “observed” and the “theoretical” value of

ρV is about 60 orders of magnitude. Hence any cancellation mechanism will still require a

severe fine-tuning in order to explain the discrepancy between ρthV and ρobsV .

As well as the fine-tuning problem, the observed tiny value of Λ presents an ad-

ditional problem known as the coincidence. The best fit model of our Universe in terms

of energy density is of roughly 27 % of matter (baryons and cold dark matter) and 73 %

of Cosmological Constant (Spergel et al. 2003; Tegmark et al. 2004, Sanchez et al. 2005);
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these two densities are of the same order of magnitude, but their ratio changes rapidly as

the Universe expands:

ρΛ(a)

ρm(a)
=

ΩΛ(a)

Ωm(a)
=

ΩΛ

Ωm
a3 . (2.22)

As a consequence, matter and radiation dominate over the Cosmological Constant in the

past times and vice-versa in the future. There is only a brief epoch of transition from the

matter domination to the Cosmological Constant domination in which the densities of the

two components are comparable. The coincidence is that we live right in that epoch. The

evolution of the density parameters as a function of the scale factor is shown in Fig. 2.4;

notice the narrow range, in terms of expansion history, for which matter and Λ abundances

are comparable.

The introduction of a Cosmological Constant into the Einstein equations may

explain the dimming of the SNIa, the CMB and LSS data. However, due to the theoretical

difficulties outlined above, the community has been generalizing the concept of vacuum

energy in cosmology. This new component, generally known as the dark energy, represents

the attempt to explain the process of cosmic acceleration without invoking a Cosmological

Constant.

2.4 The dark energy

The most important difference between the dark energy and the Cosmological

Constant is that the dark energy is generally dynamical (see e.g. Padmanabhan 2003 and

Peebles & Ratra 2003 for general reviews). A dynamical energy density may be evolving

slowly to zero, allowing for a solution (at least classical) to the Cosmological Constant

problem since the vacuum energy vanishes exactly at infinite times. Moreover, an evolving

dark energy opens the possibility of finding a dynamical solution to the coincidence problem,

if the dynamics is capable of triggering a recent takeover by the dark energy independently

on the parameters in the theory, or for a wide set of those.

The easiest way to make a dynamical dark energy is to build a model with a

decaying Λ imposing wde > −1. With this parameterization the Cosmological Constant is

replaced by a dark energy modeled as a fluid. The dark energy density ρde(t) is approximated
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as a function of time alone and interacts only with gravity and itself, while its pressure is

given by pde(t) = wdeρde(t); thus the local energy conservation is

ρ̇de(t) = −3Hρde(t) (1 + wde) . (2.23)

If wde is constant in time, the dark energy density scales with the scale factor as

ρde(a) ∝ a−3(1+wde) . (2.24)

If wde < −1/3 the dark energy contributes positively to Eq. (2.5), while if wde = −1/3

the dark energy mimics the effect of the curvature in the Friedmann equations. Finally if

wde < −1 the dark energy density increases with time.

From basic principles, it may be seen that any dynamical cosmological component

must admit also spatial fluctuations. The minimal extension of a Cosmological Constant is

represented by a scalar field, evolving slowly enough to yield an almost constant vacuum

energy out of its potential and providing cosmic acceleration. Since this new component

will be the fifth one in the cosmic energy budget (the other four are baryons, neutrinos,

radiation and dark matter), it has been named Quintessence. As we shall see in Ch. 5,

where the dark energy will be studied in more detail, it was demonstrated how the dynamics

of the Quintessence (under suitable form of the potential energy) can originate attractors

in the trajectory space capable to reach the present dark energy density starting from a

wide set of initial conditions in the early Universe. These attractors are named tracking

solutions and can alleviate the fine-tuning problem described in the previous section (see

e.g. Liddle & Lyth 2000 for reviews).

Here we describe some basic principles of the scalar field dynamics, while a more

detailed analysis will be done in Ch. 5. Scalar fields arise naturally in grand unified models

of very high energy particle physics (see e.g. Binetruy 1999 and references therein). The

total action including gravity, radiation, matter and Quintessence is

S =

∫
d4x
√−g

(
− R

16πG
+ Lf + Lφ

)
, (2.25)

where Lf is the Lagrangian density of the matter and radiation and Lφ is the Lagrangian

density of the scalar field. The latter is given by

Lφ =
1

2
∂µφ∂µφ− V (φ) , (2.26)
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where the first term is the kinetic contribution and V (φ) is the potential that determines

the characteristics of the time evolution of the scalar field. The related stress-energy tensor

is given by (2.17).

In a flat FRW universe, and for a homogeneous scalar field, we can define the

energy density and pressure of the dark energy as

ρφ =
1

2
φ̇2 + V (φ) , (2.27)

pφ =
1

2
φ̇2 − V (φ) . (2.28)

Since the equation of state of a perfect fluid is given by w = p/ρ, the dark energy behaves

as a perfect fluid with a time dependent equation of state

wφ =
pφ
ρφ

=
1
2 φ̇

2 − V (φ)
1
2 φ̇

2 + V (φ)
. (2.29)

If the scalar field evolves slowly in time verifying the condition φ̇2 � V (φ), i.e. the kinetic

energy of the field is negligible with respect its potential energy (slow rolling condition),

Eq. (2.29) becomes pφ ' −ρφ and the scalar field approximates the effect of a Cosmological

Constant. The evolution of the scalar field is obtained varying the action with respect φ

and is described by the Klein-Gordon equation

φ̈+ 3Hφ̇+
dV

dφ
= 0 , (2.30)

equivalent to (2.23), in which H is given by the modified Friedmann equation

H2 =
8πG

3

[
ρm(a) + ρr(a) +

1

2
φ̇2 + V (φ)

]
, (2.31)

taking φ into account, where ρm(a) and ρr(a) are the matter and the radiation background

energy densities respectively; in the Klein-Gordon equation, the term proportional to φ̇ acts

as a friction term. Both the time evolution of the scalar field and the equation of state of

dark energy depend on the shape of the potential. In Ch. 5 we shall discuss some relevant

potentials and a phenomenological approach to the time evolution of the equation of state.

2.5 Current and new observables for the dark energy

In this chapter we have shown a brief (and surely incomplete) picture of the Uni-

verse as we know it at the beginning of the XXI century. The dimming of SNIa, the position
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of the acoustic peaks in the CMB power spectrum and the clustering of matter strongly

indicate the presence of a form of energy with negative pressure that contributes to the total

energy density roughly for 70 %. The first candidate to explain all these observations is the

Cosmological Constant, which carries theoretical problems, going back and forth between

general relativity and quantum mechanics in the last century of physics. One of the main

goals of the modern cosmology is to understand the nature of the dark energy and the

reason for cosmic acceleration.

The combination of CMB observations with the LSS, HST and SNIa data has

been used also to constrain the effective dark energy equation of state, assumed to be con-

stant in time, to be wde < −0.78 at 2σ confidence level imposing wde > −1 prior and

wde = −0.98± 0.12 at 1σ confidence level dropping the previous prior (Spergel et al. 2003).

Future observations will improve that constraints, but the real challenge is to gain insight

into the dark energy equation of state redshift dependence, in order to discriminate between

different models. Since the dark energy starts to dominate the cosmological expansion at

about the same epoch when the structures form (the two processes overlap in time), the

study of structure formation is crucial for investigating the onset of cosmic acceleration.

One of the most promising ways to look at that epoch is to study the weak gravitational

lensing deflection induced by forming structures along the line of sight of the background

light (see Bartelmann & Schneider 2001 for reviews), as we already anticipated and recall

later before concluding this chapter. The shear induced by weak lensing in terms of ellip-

ticity in the shape of background galaxies has been observed by several groups, and the

results agree impressively between different telescopes and data reduction techniques (see

e.g. Bacon, Refregier & Ellis 2000; Van Waerbeke et al. 2000; Wittman et al. 2000; Maoli

et al. 2001; Van Waerbeke et al. 2001; Wilson, Kaiser & Luppino 2001); already, several

dark energy weak lensing observables have been proposed (see e.g. Bartelmann, Perrotta &

Baccigalupi 2002; Hu 2002; Huterer 2002; Bartelmann et al. 2003; Bernardeau 2003; Wein-

berg & Kamionkowski 2003;). New powerful probes to map the weak lensing shear over

large sky areas are being designed to operate in the next decade with ground-based and

space surveys (see Refregier et al. 2004 and references therein). On the CMB side, the weak

lensing effect on the total intensity and polarization CMB anisotropies can be predicted
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on the general basis of cosmological perturbation theory (see e.g. Hu 2000 and references

therein). The effect is generally non-Gaussian, and relevant at the arcminute angular scale;

attempts to detect the lensing distortion on the WMAP data produced so far no results

(Hirata et al. 2004); it is likely that the low noise, arcminute resolution imaging expected

by the Planck2 satellite and future CMB missions will have a crucial importance in weak

lensing studies. The subject of the present work is the weak lensing effect on the CMB

focusing on the third order statistics and its dependence on the dark energy parameters,

in particular the time dependence of the equation of state. If the background CMB light

is described by a Gaussian process at last scattering, consistently with the recent CMB

observations (Komatsu et al. 2003), it yields a zero contribution within cosmic variance to

the third order statistics. As we already mentioned, a suitable harmonic approach to the

weak lensing effects on the CMB total intensity and polarization has been carried out (Hu

2000), based on general description of the CMB anisotropies (Hu & White 1997).

Before concluding, let us stress once again the reason why the gravitational lensing

is crucial in this context; that is simple, and relies upon a very basic property of gravitational

lensing (see Bartelmann & Schneider 2001 for reviews): for a give position of the source, the

lensing deflection is zero if the lens coincides with the observer or source position. Thus,

the lensing is maybe the unique tool which has the built-in property of probing cosmology

at redshift greater than one, independently on the cosmic acceleration and everything else

at the present. This concept will be exploited several times in this work.

2http://www.rssd.esa.int/Planck
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CMB physics

Our work is based on the gravitational lensing of the primordial anisotropies in the

CMB radiation by growing cosmological structures along the line of sight. In this chapter

we provide a most relevant brick of this picture, reviewing the general CMB physics: how

cosmological perturbations evolve, and how they become the CMB anisotropies imprinted

at decoupling between matter and radiation, their properties in the angular domain. We

also describe the other sources of anisotropies, the so called secondary ones arising along the

line of sight, as well as the gravitational lensing of primordial CMB anisotropies by forming

cosmological structures; the latter issue will be greatly expanded in the next chapter and

later, being the subject of the whole work, in connection with the properties of the dark

energy. For our purposes, it is enough to restrict our analysis to anisotropies in the ther-

modynamical CMB blackbody temperature, originated by linear cosmological perturbation,

the dominant source of anisotropies at last scattering. We make some historical remarks

about the discovery of the Cosmic Microwave Background radiation anisotropies in Sec.

3.1; we write the relevant equations for linear cosmological perturbation theory in Sec. 3.2;

the Boltzmann equation is derived in Sec. 3.3; we discuss the main phenomenology of the

CMB anisotropy in Sec. 3.4; we analyze the lensing effect on CMB in Sec. 3.5.

23
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3.1 CMB: historical remark

The first idea of a relic cosmological radiation was based on the theory of element

synthesis, and worked out by George Gamow in 1949 (Gamow 1949). In the fifties a

somewhat detailed theoretical analysis of the present radiation temperature in connection

with some early hot era where undertaken by Alpher and Herman (Alpher & Herman 1950).

It was only in the mid sixties that the problem of determining the radiation temperature

was once again taken up. The argument by Dicke, Peebles, Roll and Wilkinson (Dicke et

al. 1965) was that the early Universe was hotter than 1010 K because of the composition of

the primordial plasma, described in terms of the known particles. They suggested that the

energy density of the CMB would be such that the temperature is somewhat less than or

close to 40 K. An experiment by Roll and Wilkinson was prepared to measure the radiation

temperature. In order to detect the relic radiation, a radiometer designed by Dicke in the

mid forties was used. But, before Roll and Wilkinson could achieve the detection, they

learned that Penzias and Wilson got it.

Penzias and Wilson observed a weak background signal from a horn antenna in

the Bell laboratories at Holmdel, New Jersey. For Penzias and Wilson it was a truly

serendipitous, well placed and beautifully timed discovery; with a temperature detection of

T ≈ 3.5 ± 1 K (Penzias & Wilson 1965) resulting from an antenna intended to track the

Echo satellite. It was at one frequency only, thus making a very little impact with respect to

the expectation of a blackbody spectrum. The impact on cosmology was immense and the

public perception of cosmology itself increased dramatically. This observation, published in

1965, along with the work of Dicke, Peebles, Roll and Wilkinson, was to hail the beginning

of the modern CMB physics in cosmology. Penzias and Wilson received the Nobel Prize in

Physics in 1978.

The closeness to isotropy suggests that the CMB uniformly fills space, meaning

that an observer in another galaxy would see almost the same intensity of radiation. The

spectrum is close to a blackbody, in fact the best example of a blackbody available in nature.

It has a thermal planckian form with temperature of about 2.726 K. This suggests that the

radiation has almost completely relaxed to thermodynamic equilibrium. This could not
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Figure 3.1: A comparison of recently published CMB power spectra, the data shown are
from Hinshaw et al. (2003) for WMAP, Kuo et al. (2004) for ACBAR, Readhead et al. (2004)
for CBI and Jones et al. (2005) for BOOMERanG. The data are derived from measures in
a band extending from 20 GHz to 200 GHz. From Jones et al. (2005).

have happened recently as the Universe is currently optically thin to radiation. The CMB

can move across the present Universe on scale of the Hubble length with little change other

than that caused by the expansion. The interpretation is that the CMB is left over from

an earlier time when the expanding universe was dense and hot, and the interaction rates

between particles were rapid enough to have allowed a relaxation to thermal equilibrium,

thus filling space with a sea of blackbody radiation. Furthermore, when the interaction is

negligible, cooling is due to the expansion only, preserving the thermal spectrum. When the

radiation interacts with the matter, because the heat capacity of the radiation is very much

larger than that of the matter, the spectrum will still tend to remain close to a blackbody.

A nearly thermal spectrum of blackbody radiation is thus an expected signature of an

expanding universe in which the radiation is that left over from a early hot dense era.

There is however structure in the universe, we see galaxies and clusters of galax-

ies, stars and other interesting objects and phenomena. If the CMB was perfectly isotropic
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Figure 3.2: Weighted linear combination of the five 1 year WMAP frequency maps (23, 33,
41, 61 and 94 GHz). The weights are computed using criteria which minimize the Galactic
foreground contribution to the sky signal. The resulting map provides a low contamination
image of the whole sky CMB anisotropy at degree resolution. Red spots are at higher
temperature than the average, while blues spots are colder; the amplitude is of the order of
10 µK. From http://lambda.gsfc.nasa.gov website.

one would have expected that there were no deviations from isotropy and homogeneity in

the early Universe; where then would the structure come from? In the Big Bang Model,

complex structures arise from primordial perturbations, which grow by gravitational in-

stability as a result of the expansion. In the last years several experiments have been

developed to detect such anisotropies, the most important are: ACBAR1 (Goldstein et al.

2003); BOOMERanG2 (de Bernardis et al. 2000); CBI3 (Sievers et al. 2003); COBE4, COs-

mic Background Explorer (Bennett et al. 1994); DASI5 (Kovac et al. 2002); MAXIMA6,

(Stompor et al. 2001); WMAP7 (Bennett et al. 2003). In Fig. 3.1 we plot a collection

of some of the most recent CMB power spectrum data, the degree of consistency between

1http://cosmology.berkeley.edu/group/swlh/acbar/
2http://cmb.phys.cwru.edu/boomerang/
3http://www.astro.caltech.edu/∼tjp/CBI/
4http://lambda.gsfc.nasa.gov/product/cobe/
5http://astro.uchicago.edu/dasi/
6http://cosmology.berkeley.edu/group/cmb/
7http://map.gsfc.nasa.gov/
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such a diverse set of measurements is remarkable. The COBE satellite that was flown in

1989-1996 made the first detection of the large scale anisotropies (other than the dipole,

which is due to our motion with respect to the reference frame where it is zero). Inspired

by the COBE results, a series of ground-based and balloon-borne experiments, actually all

the experiments mentioned above except WMAP, measured CMB anisotropies on smaller

angular scales over the next decade. The primary goal of these experiments was to measure

the CMB anisotropies on the degrees scales, or somewhat less, corresponding to distances in

causal coupling at the epoch at which the CMB decouples from the rest of the system. As

we shall see in detail in the following, on these angular scales acoustic oscillations (acoustic

peaks) are expected to occur, originated by photons and baryons bouncing in the gravi-

tational potential wells provided by the dark matter, because of their pressure. The first

acoustic peak was measured with increasing sensitivity when the BOOMERanG experiment

reported that the highest power fluctuations occur at about one degree scales. Together

with other cosmological data, these results implied that the geometry of the Universe is flat,

i.e. described essentially by a Minkowski metric with expanding distances (de Bernardis et

al. 2000). In June 2001, NASA launched a second CMB space mission, WMAP, to make

detailed measurements of the anisotropies over the full sky (see Fig. 3.2). As we stressed

already in the Ch. 2, the results of this mission, combined with other ones, provide a

detailed measurement of the angular power spectrum down to a scale corresponding to a

few tens of arcminutes (see Fig. 2.3), tightly constraining various cosmological parameters.

The results are broadly consistent with those expected from cosmic inflation (see e.g. the

WMAP first-year results: Bennett et al. 2003; Hinshaw et al. 2003; Komatsu et al. 2003;

Peiris et al. 2003; Spergel et al. 2003) and are available in detail at NASA’s data center for

Cosmic Microwave Background8.

3.2 Linear cosmological perturbation theory

The CMB anisotropies arise from perturbations in the metric and the stress-energy

tensors, introduced in the previous chapter. In this section we classify these perturbations

8http://lambda.gsfc.nasa.gov/
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and analyze their evolution in the linear regime. In general, the latter means that cos-

mological equations split in a set describing the homogeneous and isotropic cosmological

expansion, having the cosmic time t as the dynamical variable, plus another one describing

perturbations, assumed small enough not to interfere with the background and featuring a

dependence on the generic spacetime coordinate x:

Gµν(x) = 8πGT µν(x) ≡





Gµν(t) = 8πGTµν(t) background

δGµν(x) = 8πGδTµν (x) perturbations
. (3.1)

Similarly, concerning conservation equations, one has

T
ν
µ;ν(x) = 0→





T νµ;ν(t) = 0 background

δT νµ;ν(x) = 0 perturbations
. (3.2)

We shall work out the different ingredients composing the fluctuations above, in the metric

as well as the stress energy tensors. Our treatment and notation is based on the origi-

nal works by Kodama and Sasaki (1984) and Hu and White (1997); see also Mukhanov,

Feldmann and Brandenberger (1992) for further details.

3.2.1 Perturbation classification

The metric and the stress-energy perturbations can be classified in terms of their

property under spatial rotation into scalar, vector and tensor components (Kodama &

Sasaki 1984). It is convenient to expand those in the Fourier space, as in the linear limit

the different modes do not mix simply because no products of perturbations appear into the

equations. We describe here the eigenfunctions of such expansion. Those of the Laplacian

operator are:

∇2Q(0) = −k2Q(0) (scalar) ,

∇2Q
(1)
i = −k2Q

(1)
i (vector) , (3.3)

∇2Q
(2)
ij = −k2Q

(2)
ij (tensor) .

In a flat (K = 0) cosmology, the solutions are
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Q(0) = exp
(
i~k · ~x

)
,

Q
(1)
i = − i√

2
(ê1 ± iê2)i exp

(
i~k · ~x

)
, (3.4)

Q
(2)
ij = −

√
3

8
(ê1 ± iê2)i ⊗ (ê1 ± iê2)j exp

(
i~k · ~x

)
,

where ê1, ê2 and ê3 form an orthogonal basis. Notice that scalar perturbations are rep-

resented by pure plane waves. From scalar modes we can build the so called scalar-type

vector and symmetric tensor quantities simply performing spatial derivatives:

Q
(0)
i = −1

k
∇iQ(0) ,

Q
(0)
ij =

[
1

k2
∇i∇j +

1

3
δij

]
Q(0) , (3.5)

where δij is the Kronecker’s Delta. The scalar-type component of vectors is irrotational

by construction
(
~∇× ~Q(0) = 0

)
, while Q

(1)
i in (3.4) generally describes a rotational field.

On the other hand vector perturbations are divergenceless
(
∇iQ(1)

i = 0
)

, thus describing

a vorticity velocity field. Similarly, by spatial derivatives of vector perturbations we can

describe the vector-type component of tensors:

Q
(1)
ij = − 1

2k

[
∇iQ(1)

j +∇jQ(1)
i

]
. (3.6)

As it is evident from Eqs. (3.4) the tensor perturbations must satisfy the transverse-traceless

condition
(
δijQ

(2)
ij = ∇iQ(2)

ij = 0
)

; scalar-type and vector-type component of tensors cannot

be built from the modes Q
(2)
ij . Here and in the following we are omitting the k arguments

in the Q functions for all cosmological perturbations to slim the formalism.

3.2.2 Metric and stress-energy tensor perturbations

Now we are able to perform the Fourier expansion of cosmological perturbations of

any kind, if the solutions of the Laplace operator are (3.4) in flat space. The perturbed met-

ric gµν can be written in terms of the unperturbed Minkowski metric γµν = diag(−1, 1, 1, 1)

and the metric fluctuations hµν as

gµν = a2 (γµν + hµν) . (3.7)
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Linearity is expressed by the condition hµν � 1. Due to the linearization, vectors and scalars

are affected by a gauge freedom, arising from shifting the coordinate frame with respect

to the background. It may be shown that the gauge freedom allows for two independent

perturbation quantities for scalars, one for vectors and one for tensors (Kodama & Sasaki

1984). In this work we adopt the conformal Newtonian gauge exhibiting degrees of freedom

along the diagonal of the metric tensor:

h00 = 2ΨQ(0) ,

hij = 2ΦQ(0)δij . (3.8)

For the vectors the contribution is defined as

h0i = −V Q(1)
i , (3.9)

while for the tensors it is

hij = 2HQ
(2)
ij . (3.10)

As well as the metric, also the stress-energy perturbations can be broken up into

scalar, vector and tensor contributions. The perturbed stress-energy tensor is

T
ν
µ = T νµ + δT νµ , (3.11)

where T νµ represents the unperturbed one, already defined in Sec. 2.1. The decomposition

of the fluctuations into the normal modes is defined as

δT 0
0 = −ρδQ(0) ,

δT 0
i = (ρ+ p) v(0)Q

(0)
i ,

δT i0 = − (ρ+ p) v(0)Q(0)i , (3.12)

δT ij = δpQ(0)δij + pπ(0)Q
(0)i
j ,

for the scalar components,

δT 0
i = (ρ+ p)

[
v(1) − V

]
Q

(1)
i ,

δT i0 = − (ρ+ p) v(1)Q(1)i , (3.13)

δT ij = pπ(1)Q
(1)i
j ,
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for the vector components and

δT ij = pπ(2)Q
(2)i
j , (3.14)

for the tensor components; δ = δρ/ρ represents the fluid density contrast, v is the peculiar

velocity, δp is the isotropic pressure perturbation and π is the anisotropic stress or shear. In

the following we consider the scalar perturbations only, dropping the (0) script. Therefore,

the perturbed length element can be written as

ds2 = a2(η)
[
−(1− 2Ψ)dη2 + (1 + 2Φ)dxidxi

]
, (3.15)

where dη = dt/a is the conformal time, xi is the spatial coordinate and the potential Ψ

plays the role of the gravitational potential in the Newtonian limit.

As we stressed already, to express the metric evolution in terms of the matter

sources and to evolve the matter and metric perturbations we need to perturb the Einstein

equations Gµν = 8πGTµν and the energy-momentum conservation T µν;ν = 0. Using the

expression of the metric (3.15) and the scalar perturbations of the stress-energy tensor,

the dynamical equations for the independent metric fluctuations, the so called generalized

Poisson equations, are written as

k2Φ = 4πGa2

[
ρδ +

3

k
H (ρ+ p) v

]
, (3.16)

k2(Ψ + Φ) = −8πGa2pπ , (3.17)

where H = a−1da/dη. The corresponding matter evolution is given by the perturbation

of the energy-momentum conservation T µν;ν = 0, which gives the evolution equations for

density contrast and peculiar velocity, and is written as

dδ

dη
= −(1 +w)

(
kv + 3

dΦ

dη

)
− 3Hδw , (3.18)

d

dη
[(1 + w)v] = (1 + w) [kΨ−H(1− 3w)v] + wk

(
δp

p
− 2

3
π

)
, (3.19)

where w = p/ρ. The first equation represents the energy density conservation while the

second one is the momentum density conservation; they remain true for each fluid individ-

ually in the absence of momentum exchange. Even though the Universe passes through

epochs in which is dominated by a single energy component (such as radiation, matter
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or dark energy), there are also transient phases in which more components may dominate

and interact; here we want to give the basic criteria generalizing the quantities above in a

multi-component system. The pressure and the stress-energy tensor of a multicomponent

fluid are the sum of the quantities of each component. The total stress-energy tensor must

be conserved, but the divergence of the stress-energy tensor for a single component may be

generally non-zero. An example of this occurrence is the photon-baryon system which we

treat next. The density contrast, the pressure contrast, the peculiar velocity, the anisotropic

stress and the equation of state of the multicomponent fluid are related to those of each

component by (Kodama & Sasaki 1984):

δtot =
1

ρtot

∑

i

ρiδi ,

(
δp

p

)

tot

=
1

ptot

∑

i

pi

(
δp

p

)

i

,

vtot =
1

(ρtot + ptot)

∑

i

(ρi + pi) vi , (3.20)

πtot =
1

ptot

∑

i

piπi ,

wtot =
ptot
ρtot

=

∑
i pi∑
i ρi

.

Eqs. (3.16) - (3.19) still hold formally in a multi-component system with the quantities

above.

3.3 The Boltzmann equation and the line of sight approach

The Boltzmann equation describes the time evolution of the spatial and the angular

distribution of the radiation under gravity and scattering processes. Throughout this work

we use dimensionless quantities for the CMB, following Hu and White (1997); Θ = ∆T/T

is the temperature fluctuation of the CMB anisotropies (T = 2.726 K is the average CMB

temperature) and it is a function of the conformal time η, the position ~x and the photon

propagation direction n̂. The Boltzmann equation is written as

d

dη
Θ (η, ~x, n̂) ≡ ∂Θ

∂η
+ ni∇iΘ = C(Θ) +G (hµν) , (3.21)
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where ni = dx/dη and we used the fact that in a flat universe the photons propagate in

straight lines with dni/dη = 0. The two terms G and C take into account the gravita-

tional redshift and the electromagnetic scattering of photons on electrons, respectively. At

decoupling energies, (Tdec ≈ 3000 K), the electromagnetic interaction may be described by

Thomson scattering. In the following we specify G and C. The CMB anisotropies possess

also fluctuations in polarization that are due to the anisotropic nature of the Thomson

scattering. We do not treat those in this work.

The contribution to the temperature fluctuations due to the gravitational redshift

can be derived from the Euler-Lagrange equations of motion for a photon (Kodama & Sasaki

1984); it is
1

q

dq

dη
= −H− 1

2
ninj

dhij
dη
− nidh0i

dη
− 1

2
ni∇ih00 , (3.22)

where q ≡ −uµqµ is the energy of the photon, uµ is the four-velocity of an observer at rest in

the background frame, qµ is the photon four-momentum and uµu
µ = 1. Since the first term

in the right hand side of Eq. (3.22) does not affect Θ (it is the cosmological redshift) and

the third one is null because in our gauge the perturbed metric is diagonal, the contribution

to the Boltzmann equation from gravitational redshift is simply reduced to

G (hµν) =
1

2

(
ni∇ih00 + ninj

dhij
dη

)
. (3.23)

The differential cross section of the Thomson scattering is given by

dσ

dΩ
=

3σT
8π

∣∣ε̂ · ε̂′
∣∣2 , (3.24)

where σT is the Thomson scattering cross section, ε̂ and ε̂′ are the outgoing and the incom-

ing polarization vectors, respectively, in the electron rest frame. The contribution to the

temperature fluctuations due to the Thomson scattering is conveniently computed in the

electron rest frame. The Thomson scattering matrix is diagonal when expressed in terms

of the intensities of radiation parallel and perpendicular to the plane containing both the

incident photon and the scattered one. For reasons that shall be clear in the following, it

is convenient to work in a frame having the ê3 axis defined in (3.4) coincident with k̂. This

frame is called k̂-frame, and its use is crucial when dealing with non-Gaussian perturbations

(Baccigalupi 1999). To calculate C, one may perform two rotations from the k̂-frame to the
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scattering one and vice-versa (see Hu & White 1997 and references therein). Moreover, a

boost is needed to go from the electron rest frame to the background frame, which yields a

Doppler shift in the temperature of the scattered photon given by n̂ · ~vB, where ~vB is the

baryon peculiar velocity. Introducing the differential optical depth dτ/dη = aneσT , that

sets the collision rate, where ne is the density of free electrons and a is the scale factor,

after some rotational algebra one finds that the scattering term C is (Ma & Bertschinger

1995; Hu & White 1997)

C(Θ) = −dτ
dη

(
Θ−

∫
dΩ′

4π
Θ′ + n̂ · ~vB −

1

10
Y2 0

∫
dΩ′Y ′2 0Θ′

)
, (3.25)

where the prime indicates the quantities before the scattering. The integrals are evaluated

over all the directions of the incoming photons and Y2 0 are the spherical harmonics with

l = 2 and m = 0.

We are able now to write the explicit form of the Boltzmann equation taking the

Fourier transform of Eq. (3.21) and expanding each term in normal modes. Such expansion

for the temperature fluctuations may be written as

Θ =

∫
d3k

(2π)3
ei
~k·~x

∞∑

l=0

(−i)l
√

4π

2l + 1
Yl 0Θl . (3.26)

The multipole m does not compare into the spherical harmonics expansion (3.26); the

reason is that for each wavenumber ~k, the angular expansion is made in the k̂-frame: it

is possible to show that, if only scalar perturbations are present, the m = 0 are the only

modes excited (Hu & White 1997). The gradient term ni∇i becomes in̂ · ~k = ik
√

4π
3 Y1 0 in

the Fourier space and in the k̂-frame, and multiplies the intrinsic angular dependence of the

temperature distribution in Eq. (3.26); the net effect is that gradients in the distribution

produce temperature anisotropies. This behavior involves the Clebsh-Gordan relation and

couples the l moments of the distribution to the l ± 1 ones as

√
4π

3
Y1 0Yl 0 =

l√
(2l + 1)(2l − 1)

Y(l−1) 0 +
l + 1√

(2l + 1)(2l + 3)
Y(l+1) 0 . (3.27)

The Boltzmann equation follows directly from the previous relation, yielding a hierarchy of
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coupled differential equations, written as

dΘl

dη
= k

(
l

2l − 1
Θl−1 −

l + 1

2l + 3
Θl+1

)
− dτ
dη

Θl+





dτ
dηΘ0 − dΦ

dη (l = 0)

dτ
dηvB + kΨ (l = 1)

1
10
dτ
dη

(
Θ2 −

√
6E2

)
(l = 2)

0 (l > 2)

, (3.28)

where E2 is the quadrupole of the electric-type polarization of the incoming photons (see

Hu & White 1997 for more details). The first term on the right hand side of (3.28) is

the free streaming effect transferring power on different scales, while the second one takes

into account the main effect of scattering; the last terms account for the gravitational and

residual scattering effects. Eqs. (3.28) form a coupled system of differential equations that

can be solved with the evolution of the metric sources. The lowest order equations, for l = 0

and l = 1, reproduce the conservation and continuity equations for a blackbody radiation.

Indeed, specifying Eq. (3.18) for the photons and comparing that with the l = 0 and l = 1

equations of (3.28), one has δγ = 4Θ0 and vγ = Θ1. Defining the baryon to photon ratio as

R = 3ρB/4ργ , the energy momentum conservation equations for the baryons become

dδB
dη

= −kvB − 3
dΦ

dη
, (3.29)

dvB
dη

= −HvB + kΨ +
1

R

dτ

dη
(Θ1 − vB) , (3.30)

where the last term in the momentum conservation gives us the form of the coupling between

photons and baryons.

Defining the optical depth between η and η0, being η0 the conformal time at the

present, as τ(η) =
∫ η0

η
dτ
dη (η′)dη′, the solution to the Boltzmann equation (3.28) can be

formally written as an integral along the photon past light cone

Θl(k, η0)

2l + 1
=

∫ η0

0
dηe−τ ·

·
{[

dτ

dη
(Θ0 + Ψ) +

dΨ

dη
− dΦ

dη

]
j0
l (x) + vB

dτ

dη
j1
l (x) +

Θ2 −
√

6E2

10

dτ

dη
j2
l (x)

}
,(3.31)

with x = k(η0−η); the combination dτ
dη e
−τ is the visibility function expressing the probability

that a photon is last scattered between η and η + dη, and is sharply peaked at the last
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scattering epoch, z ≈ 1100 ± 100 in typical cosmologies. The previous equation is simply

the projection of the various plane wave sources (i.e. the last terms of Eq. (3.28)) on the

sky today with

j0
l (x) = jl(x) ,

j1
l (x) =

d

dx
jl(x) , (3.32)

j2
l (x) =

1

2

[
3
d2

dx2
jl(x) + jl(x)

]
.

In the term dτ
dη e

τ (Θ0 + Ψ) of Eq. (3.31) we can recognize the intrinsic anisotropy and the

gravitational potential contributions from the last scattering surface that acts as an effective

temperature and gives us the Sachs-Wolfe effect at last scattering. The term eτ
(
dΨ
dη − dΦ

dη

)

is the so called integrated Sachs-Wolfe effect after last scattering, as we discuss later. vB
dτ
dη

is the the Doppler term and the last term arises from the anisotropic Thomson scattering.

The main advantage of Eq. (3.31) is that it decomposes the anisotropy into a source term,

which does not depend on the multipole moment, and a geometrical term, including the j l

and their derivatives, which does not depend on the particular cosmological model. The

latter only needs to be computed once and can be stored for subsequent calculations, while

the source term is the same for all multipoles and only depends on a small number of

contributors (gravitational potentials, baryon velocity and photon moments up to l = 2,

Seljak & Zaldarriaga 1996). By specifying the source term as a function of time, one can

compute the corresponding spectrum of anisotropies; however, formally in Eq. (3.31) the

first moments appear on both sides of equations. To solve for these moments one uses the

equations in their differential form (3.28); once the moments that enter into the source

function are computed, one can solve for the higher ones by performing the integration in

(3.31).

Finally, let us define the CMB angular power spectrum, mapping the anisotropy

power on different angular scales. The CMB anisotropy power spectrum is defined in terms

of the coefficients alm of the harmonic expansion of the temperature Θ =
∑

lm almYlm, in a

generic frame fixed for all wavevectors, averaged all the m values:

Cl =
1

2l + 1

l∑

m=−l
|alm|2 . (3.33)



Chapter 3: CMB physics 37

In terms of the Fourier expansion, using Eq. (3.26) it may be seen that the power spectrum

today gets

Cl =
2

π

∫
dk

k

k3|Θl(k, η0)|2
(2l + 1)2

. (3.34)

This completes the set of equations which can be exploited to numerically evolve CMB

anisotropies along with cosmological perturbations. We now turn to study their phe-

nomenology.

3.4 CMB anisotropy phenomenology

Before recombination the differential optical depth is very large and the scattering

between photons and baryons is very rapid and efficient. This regime is called the tight

coupling and is active at scales such that k/(dτ/dη) � 1: photons and baryons behave

as a single fluid and their velocities are the same at the 0th order in k/(dτ/dη). Under

this assumption, we can combine the equations (3.28) for l = 0 and l = 1 with the Euler

equation for the baryons in the tight coupling limit, obtaining the second order equation

d2Θ0

dη2
+

1

1 +R

dR

dη

dΘ0

dη
+ k2c2sΘ0 = −d

2Φ

dη2
− 1

1 +R

dR

dη

dΦ

dη
− k2

3
Ψ , (3.35)

where cs = [3(1 +R)]−1/2 is the photon-baryon sound speed (Doroshkevich, Zel’dovich &

Sunyaev 1978) and the right hand side is a forcing function due to cosmological perturba-

tions. The sound speed defines formally another horizon in the particular problem at hand,

besides the Hubble horizon H−1. However, in typical cosmological models the baryon abun-

dance is subdominant at last scattering, so that R does not introduce a significant correction

to the sound speed; therefore at any time cs ' η/
√

3; moreover, it is easy to see that for a

power law evolution of the scale factor with time, like in matter or radiation dominated eras,

the Hubble horizon is proportional to the time itself. Therefore, sound and Hubble hori-

zons represent physically the same quantity in typical cosmologies, and we keep mentioning

generically horizon below indicating both of them. In the tight coupling limit Eq. (3.35)

has three main contributions to the evolution of Θ0, which we treat in detail in Section

3.4.1:
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• k2c2sΘ0 is the photon pressure, supporting the oscillations of the photon-baryon plasma

and is relevant on sub-horizon scales;

• −d2Φ
dη2 − 1

1+R
dR
dη

dΦ
dη yields the constancy of Θ0 + Φ on super-horizon scales;

• −k2

3 Ψ is the gravitational infall of the photon-baryon fluctuations in the potential

well, relevant on sub-horizon scales.

Eq. (3.35) describes a forced harmonic oscillator with the effective dimensionless mass

meff = 1 +R, simply accounting for the inertia of baryons, as it is evident if we rewrite it

as (Peebles & Yu 1970):

d

dη

(
meff

dΘ0

dη

)
+
k2

3
Θ0 = −k

2

3
meffΨ− d

dη

(
meff

dΦ

dη

)
. (3.36)

Baryons contribute to the gravitational mass of the system as it is evident by the presence

of meff on the right hand side of Eq. (3.36), while they do not contribute significantly to

the pressure or restoring force of the system. The change in the momentum of the photon-

baryon fluid is determined by a competition between pressure restoring and gravitational

driving force.

In the following we discuss qualitatively the primary and the secondary anisotropies,

arising at last scattering and along the line of sight, respectively.

3.4.1 Primary anisotropies

Let us assume that both the gravitational potentials Ψ and Φ and the baryon to

photon ratio R are constant in time. The first statement is true on super-horizon scales in a

flat universe dominated by matter or radiation, while both of them are true on sub-horizon

scales, on time intervals much shorter than the Hubble scale. Under these assumptions, Eq.

(3.35) becomes the equation of an harmonic oscillator with constant acceleration provided

by gravitational infall:

d2Θ0

dη2
+ k2c2sΘ0 = −k

2

3
Ψ . (3.37)

In this work we assume adiabatic initial conditions, consistent with present observations

(Spergel et al. 2003) meaning that the initial super-horizon curvature is perturbed (Ma &
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Bertschinger 1995). Intuitively (White & Hu 1997), one may see that, since the background

temperature redshifts as aT = constant and a ∼ t2/3(1+w), the temperature fluctuations

and the gravitational potential are linked initially by

Θ = −δa
a

= − 2

3(1 + w)
Ψ . (3.38)

One may also see that on super-horizon scales, in radiation and matter dominated eras, the

gravitational potentials are constant in time. That may be seen most easily by deriving a

second order equation for δ, combining (3.18) and (3.19). For vanishing anisotropic stress

and isotropic perturbations only (π = 0), one may see that δ ∝ a2 and a, in the radiation

and matter dominated eras, respectively. By using the Poisson equation (3.16) on large

scales where peculiar velocities are absent (for adiabatic initial conditions), one may be

easily see indeed that the gravitational potential is constant. Such condition is violated

in transition epochs, for example at equivalence between radiation and matter or matter

and dark energy. The latter consideration is most important for the integrated Sachs-Wolfe

effect, which we treat in the following; for our purposes here, the equality (3.38) truly

represents the initial conditions for anisotropies deep in the radiation dominated era. The

solution of Eq. (3.37) equation is

Θ0(η) = [Θ0(0) +meffΨ] cos(ks)−meffΨ , (3.39)

where s =
∫
csdη is the sound horizon. Since in the early Universe photons are the dominant

component, we can approximate the effective mass of the fluid as meff ≈ 1; as a consequence

the oscillation takes the simpler form

Θ0(η) = [Θ0(0) + Ψ] cos(ks)−Ψ , (3.40)

that represents an oscillator with the zero point, i.e. the state at which pressure and gravity

are balanced, displaced by gravity. The displacement −Ψ > 0 yields hotter photons in the

potential wells because the gravitational infall increases both the photon energy, through

gravitational blueshift, and their number density. After the last scattering, the photons

acquire a gravitational redshift, climbing out of the potential wells, that cancels exactly the

blueshift given by −Ψ yielding an effective temperature perturbation of

Θ0(η) + Ψ = [Θ0(0) + Ψ] cos(ks) , (3.41)
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where the effective fluctuation is determined by the phase of the oscillation at last scattering.

The temperature fluctuations present a harmonic series of peaks whose themth one is located

at km = mπ/s. Odd and even peaks represent compression and rarefaction phase inside the

potential wells, respectively; the former are temperature crests, the latter are temperature

troughs. Knowing that the typical size of the sound horizon at last scattering is 100h−1 Mpc,

that the comoving distance at last scattering is about 6000h−1 Mpc, and using the empirical

relation l ' 180o/ϑ (ϑ is the angle in degrees) valid for spherical harmonics, one has that

the temperature fluctuations produce acoustic oscillations in the CMB power spectrum at

multipole equal and higher than 200, as we can see in Fig. 3.3. In that figure we plot the

CMB power spectrum for a flat ΛCDM concordance model in which the main cosmological

parameters are fixed as follows: vacuum density ΩV = 0.73, Hubble constant h = 0.72,

baryon density Ωb = 0.046, cold dark matter density Ωcdm = 1 − ΩV − Ωb, reionization

optical depth τ = 0.11, scalar perturbations only with spectral index ns = 0.96. In the

matter dominated era we recover the familiar Sachs-Wolfe effect (Sachs & Wolfe 1967)

[Θ0 + Ψ] =
1

3
Ψ , (3.42)

as a direct consequence of Eq. (3.38) with w = 0. This effect is the dominant source of

anisotropies on large angular scales, responsible for the low multipole (l < 100) region in

the CMB power spectrum. That is evident plotting the CMB power spectrum in log-linear

scale (Fig. 3.3). The Sachs-Wolfe effect is a combination of an intrinsic temperature and

a gravitational redshift and it gives the effective super-horizon perturbations in the photon

temperature when the photons last scatter and climb out of the potential well Ψ.

We now include the effect of the baryons that contributes to the inertial and

gravitational mass of the fluid meff decreasing the sound of speed and changing the balance

of pressure and gravity. The gravitational infall now leads to greater compression of the fluid

in a potential well displacing the zero point of the oscillation (baryon drag); this relative

shift is active at last scattering enhancing all peaks from compression (odd ones) over those

from rarefaction (even ones). This behavior makes the relative heights of the acoustic peaks

extremely sensitive to the baryon density Ωbh
2 (see Fig. 3.3). Taking the baryon-photon
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Figure 3.3: CMB power spectrum for the ΛCDM concordance model in log-linear scale.
The main physical processes are listed (see text for details).

ratio constant in time, the effective temperature perturbation becomes

Θ0(η) + Ψ =
1

3
Ψ(1 + 3R) cos(ks)−RΨ , (3.43)

where it is evident how the extra gravity provided by the baryons enhance compression into

potential wells.

Since the photons possess a finite mean free path in the baryon fluid due to the

Thomson scattering, photons and baryons are not perfectly coupled. Thus, as the photons

random walk through the baryons, hot and cold spots are mixed. Fluctuations remain only

in the unscattered fraction causing a near exponential decrease in amplitude as the diffusion

length overtakes the wavelength. The result of that photon diffusion is that the acoustic

oscillations are damped by a factor exp
[
−(k/kD)2

]
where the squared diffusion scale is

given by

k−2
D =

1

6

∫ η

0
dη

(
dτ

dη

)−1 R2 + 4(1 +R)/5

(1 +R)2
, (3.44)

which is essentially the distance a photon can random walk by η (Hu & White 1997a). This

process destroys the baryonic acoustic oscillations and is known as Silk damping (Silk 1968).

In Figs 3.3 and 3.4 the damping tail is visible in the CMB power spectrum at multipoles

higher than 1000, where the amplitude falls down.
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Summarizing, we have seen how the CMB anisotropy is essentially an image of

the acoustic fluctuations at last scattering modified by diffusion damping and free streamed

to the present. Since inhomogeneities at the last scattering appear as anisotropies on the

sky today, this can be equivalently viewed as a simple projection of the plane wave on

the sphere. As we stressed above, we choose initial adiabatic perturbations, so the peak

locations of the CMB power spectrum only depends on the background cosmology: the

dominant factor in the peak locations is the cosmic geometry, i.e. the comoving distance

to the last scattering, including contribution from all cosmological components, given their

dynamics.

3.4.2 Secondary anisotropies

The secondary anisotropies can be divided in two categories: those produced by

gravitational effects and those produced by scattering effects after the recombination. Com-

pared with the primary signal, secondary anisotropies provide more details on the evolution

of cosmic structures.

If metric fluctuations evolve as the photons stream through them, they leave

their mark as a gravitational redshift or blueshift; this effect is known as the Integrated

Sachs-Wolfe (ISW) effect and can be divided into three main contributions: early ISW

(from radiation-matter transition), late ISW (from accelerating expansion at low redshifts)

and Rees-Sciama effect (from sub-horizon evolution of structures, including the non-linear

regime, Rees & Sciama 1968). Metric fluctuations can also lens the photons and distort

the primary signal; this is the gravitational lensing effect and will be analyzed in detail

in Sec. 3.5. Other gravitational effects are produced by vector and tensor perturbations

(gravitational waves) or more exotic sources of metric distortions such as topological defects

(Kaiser & Stebbins 1984); we do not discuss them further in this work.

The concept behind the ISW effect is that if the depth of the potential well changes

as the photons cross it, the blueshift from falling in and the redshift from climbing out no

longer cancel leading to a residual temperature fluctuation, or vice versa for potential peaks.

An approximate solution to the Boltzmann equation (3.31), including both ordinary Sachs-
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Wolfe effect and ISW, obtained assuming the recoupling as instantaneous, is given by

Θl(k, η0)

2l + 1
= [Θ0 + Ψ] (η∗) jl [k (η0 − η∗)] +

∫ η0

η∗
dη

(
dΨ

dη
− dΦ

dη

)
jl [k (η0 − η)] , (3.45)

where the integral between the present η0 and the last scattering η∗ represents the ISW.

As we stressed in Sec. 3.4.1, The change in the cosmic equation of state makes dΨ/dη

and dΦ/dη non-vanishing in particular on super-horizon scales; this process injects power

expecially on large angular scales, appearing at very low multipoles (see Fig. 3.3). The

late ISW occurs in Cosmological Constant or dark energy dominated cosmologies, as the

Universe starts accelerating and the rapid expansion causes the decay of the density fluc-

tuations that drive the decay of the gravitational potentials. The early ISW is also caused

by the change in the cosmic equation of state, occurring in a low matter density universe,

where the radiation is still significant at decoupling. For this reason, it contributes mostly

on scale corresponding to a few degrees in the sky (Hu & Sugiyama 1995a). Finally, the

Rees-Sciama effect is due to the sub-horizon dynamics of cosmological structures, in partic-

ular in the non-linear regime, also leading to a change in the potential wells or peaks while

CMB photons cross them. It is relevant on small scales, not comparable to the primary

signal until well into the diffusion damping tail.

The light emitted during an early round of structure formation may be able to

reionize all or part of the Universe (Kogut et al. 2003 and references therein). Re-scattering

both erases primary anisotropies and generates new ones, damping fluctuations just as

diffusion leaves anisotropies only in the unscattered fraction e−τ . The relevant scale for

this process is the horizon scale at the epoch of re-scattering. On scales smaller than that,

rescattering itself results in a damping of primary anisotropies.

Finally, hot clusters provide a variation in the optical depth which causes scatter-

ing of the primary CMB photons. The Doppler effect due to the peculiar velocity of the

cluster yields an anisotropy known as kinematic Sunyaev-Zel’dovich (SZ) effect (Sunyaev

& Zel’dovich 1972). Compton scattering of CMB photons on hot electrons also produces

spectral distortions; this effect is the thermal SZ and upscatter photons to the Rayleigh-

Jeans to the Wien regime leaving a clear fingerprint on the CMB spectral distribution (see

Birkinshaw 1999 for a review).
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3.5 CMB lensing

In this section we begin the treatment of a central topic for this work, namely

the process of gravitational lensing of primordial CMB anisotropies by growing structures

along the line of sight. The first part is general and will be also useful in the following,

as we review the formalism necessary to compute the gravitational lensing effect on a pair

of propagating photons separated by an angle θ; in the last part, we specialize and then

apply such formalism in order to describe the lensing effect on the CMB angular power

spectrum. As in the previous sections, our framework is defined by the metric (3.15) without

anisotropic stress, leading to Ψ = −Φ.

The mass concentrations along the path of photons traveling in the Universe will

deflect the photon trajectory as a gravitational lens. We can evaluate the rate of change

in the photon direction ~s, as a function of the comoving path length λ along the photon

geodesic, applying the photon geodesic equation to the perturbed metric (3.15) we obtain

(Weinberg 1972; Schneider, Ehlers & Falco 1992)

d~s

dλ
= 2~s×

(
~s× ~∇Ψ

)
≡ −2~∇⊥Ψ , (3.46)

where ~∇⊥Ψ is the derivative of the gravitational potential, transverse to the line of sight.

The gradient of the gravitational potential can be viewed as a force deflecting the photons

while they propagate through the unperturbed spacetime. Because the only observable

photon direction is that at the observer position, it is convenient to propagate photons

backward in time (i.e. relatively to their final direction). Therefore, the total deflection

angle between the photon source at last scattering surface and the observer is given by

~ξ = −2

∫ rls

0
dr~∇⊥Ψ ; (3.47)

similarly, the photon angular excursion relative to its observed value, propagated backward

to the last scattering, is given by

~α = −2

∫ rls

0
dr
rls − r
rlsr

~∇⊥Ψ , (3.48)

where the factor depending on the distances takes into account the geometry of the lens-

source system (Schneider, Ehlers & Falco 1992; Bartelmann & Schneider 2001); in our
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case the last scattering surface is the source plane located at rls, while the (infinitesimal)

deflection plane is located at r, and since we assumed a flat space the distance between the

source plane and the deflection plane is simply their difference. Finally the global effect

due to the lensing is simply the integral between the source and the observer. Since we are

interested in the angular excursion of a photon on the CMB and not in the absolute change

in its direction, the relevant quantity for our discussion is ~α.

Two photons observed with an angular separation θ have a different angular sep-

aration when emitted from the source position. Its mean is equal to the unperturbed value

while the dispersion is given by (Seljak 1994)

σ(θ) =

[
1

2

〈
(~α1 − ~α2)2

〉]1/2

= [CGL(0)− CGL(θ)]1/2 , (3.49)

where brackets denotes the ensemble average performed over all the pairs of photons with

a fixed observed angular separation θ. The quantity CGL(θ) is the correlation function

of the gravitational lensing, which contains the contribution of the gravitational potential

perturbations, encoded in (3.48). It is defined as

CGL(θ) = 16π2

∫
dkk3

∫
dr

(
rls − r
rlsr

)2

J0(kθr)PΨ(k, η)|η=η0−r , (3.50)

where J0(x) is the Bessel function of order zero and PΨ(k, η) is the power spectrum of the

potential; the latter is usually defined assuming Gaussianity:

〈
Ψ
(
~k, η
)

Ψ∗
(
~k, η
)〉

= PΨ(k, η)δ3
(
~k − ~k′

)
. (3.51)

Basically Eq. (3.50) is the Fourier expansion of the ensemble average of Eq. (3.48) and its

derivation is based on the Limber equation in Fourier space (see e.g. Kaiser 1992), in which

it is assumed that the dominant scales contributing to the dispersion are much smaller than

the photon travel distance; this condition is satisfied for sources at cosmological distances.

We discuss the Limber approximation in detail in the next chapter. No assumption on the

power spectrum has been made, so that Eq. (3.50) can be used both in the linear and in the

non-linear regime of density perturbations, provided that the Gaussianity is maintained.

The evaluation of the gravitational lensing effect on the CMB is simplified and

more intuitive if only small angular scales are considered and if the fluctuations in relative
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Figure 3.4: CMB power spectrum for the ΛCDM concordance model. The solid line repre-
sents the case without lensing effect while the dotted line is with lensing effect.

separation between the two photons can be considered Gaussian. This assumption should

limit the validity of the calculation to the linear scales only, where the prediction of most

models that initial fluctuations are Gaussian makes its validity reliable. In reality it is valid

up to the quasi-linear regime, because the relative fluctuations are obtained by a projection

of a three-dimensional distribution over a broad radial window function and are in general

more Gaussian than the three-dimensional distribution of the gravitational potential itself

(Bartelmann & Schneider 2001).

Let us now focus on the modification induced by lensing on the CMB anisotropy

temperature power spectrum. With the approximation shown above, we can write the

temperature anisotropies in terms of its two dimensional transform in the Fourier space:

Θ
(
~θ
)

=

∫
d2~le−i

~l·~θΘ
(
~l
)
. (3.52)

Defining ~θ1 and ~θ2 the unlensed positions of the two photons, the correlation function

including lensing is given by

C̃(θ) =
〈

Θ
(
~θ1 + ~α1

)
Θ
(
~θ2 + ~α2

)〉
~θ1·~θ2=cos θ

=

=

∫
d2~l

∫
d2~l′e−i

~l·~θ1+~l′·~θ2
〈
e−i

~l·~α1+i~l′·~α2Θ
(
~l
)

Θ
(
~l′
)〉

. (3.53)
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Figure 3.5: Relative amplitude ∆Cl/Cl for the ΛCDM concordance model.

In the previous equation we have to average over the intrinsic temperature anisotropies

Θ
(
~l
)

, exploiting the Gaussian CMB statistics in the two dimensional Fourier transform

form:
〈

Θ
(
~l
)

Θ
(
~l′
)〉

=
δ2
(
~l −~l′

)

(2π)2
Cl . (3.54)

We also average over the lensing fluctuations ~α, giving the characteristic function of a

Gaussian field

〈
exp

[
−i~l · (~α1 − ~α2)

]〉
= exp

[
−1

2

〈[
~l · (~α1 − ~α2)

]2
〉]

. (3.55)

Using (3.49), we get the lensed correlation function

C̃(θ) =
1

(2π)2

∫ ∞

0
ldlCl

∫ 2π

0
dϕl exp

{
− l

2

2

[
σ2(θ)−CGL,2(θ) cos 2ϕl

]
− il cosϕl

}
, (3.56)

where CGL,2 is obtained from (3.50) by replacing the Bessel function of order 0 with that

of order 2. Assuming l2CGL,2 � 1, which corresponds to the small deflection limit, we can

expand in Taylor series the exponential of previous equation, keeping only the first term

J0(lθ), and integrating over the angle ϕl; this leads to

C̃(θ) =
1

2π

∫ ∞

0
ldle−

1
2
l2σ2(θ)ClJ0(lθ) . (3.57)
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The lensing effect in terms of the CMB power spectrum is given by

C̃l =

∫ π

0
θdθ

∫ ∞

0
l′dl′e−

1
2
l′2σ2(θ)Cl′J0(l′θ)J0(lθ) , (3.58)

and can be simplified additionally assuming ε = σ(θ)/θ to be constant or slowly changing

with θ and small, obtaining

C̃l =

∫ ∞

0

l′dl′

(εl′)2
Cl′I0

(
l

ε2l′

)
exp

[
l2 + l′2

2(εl′)2

]
, (3.59)

in which I0(x) is the modified Bessel function of order zero. In order to understand the

lensing effect on the CMB power spectrum we need to use l ≈ l ′ everywhere except in the

exponential and assume ε� 1 to asymptotically expand I0(x). In this limit we have

C̃l =
1√
2πε

∫ ∞

0

dl′

l′
Cl′ exp

[
−(l − l′)2

2(εl′)2

]
. (3.60)

Eq. (3.60) tells us that the effect of gravitational lensing on the CMB angular power

spectrum is essentially a smoothing of the power spectrum with a Gaussian of relative

width ε. Fig. 3.4 shows the lensing effect on the CMB power spectrum for the ΛCDM

concordance model. The lensing induces a modest change in the power spectrum: indeed

the lensed and unlensed spectra are indistinguishable on large scales (small multipoles). The

peaks of acoustic oscillations are smoothed accordingly to (3.60). This is because σ(θ)/θ

is an increasing function of the multipole (Seljak 1996a) and because the relative width of

the oscillations becomes narrower toward the smaller angular scales. The influence of the

lensing on the CMB power spectrum is more evident in Fig. 3.5 where we plot the relative

amplitude between the lensed and the unlensed power spectra ∆Cl/Cl =
(
Cl − C lensl

)
/Cl;

as we can see the effect is relevant at very high multipoles while it is practically null at low

multipoles.

Of course the lensing does not affect the power spectrum only. Actually it re-maps

the primordial anisotropies, injecting a non-Gaussian pattern in them, as it will becomes

clear in the rest of this work. Such non-Gaussian pattern has an impact already at the level

of the CMB three point statistics. We shall now study in detail the harmonic transform of

the three point correlation function when lensing effect and ISW are taken into account,

getting closer to the subject of the present work.



Chapter 4

CMB three point correlation

function and gravitational lensing

In this chapter we expand the analysis of the lensing effect on the CMB anisotropies,

by studying how it affects the overall CMB statistics, indeed injecting power where the pri-

mary anisotropy are expected to yield a null contribution within cosmic variance, i.e. the

non-Gaussian distortion of the primary image. As another, most important ingredient for

our purposes, we shall see how the power injection is actually non-vanishing only at the

epoch of the onset of cosmic acceleration, overlapping with structure formation, being null

earlier and at present. Such non-Gaussian power injection is actually already evident at

the level of the three-point correlation function. Technically, it is caused by the correlation

between the lensing and the ISW effects on the CMB temperature anisotropies. We will

focus on the harmonic expression of the three point correlation function, namely the bis-

pectrum, studying its geometrical properties. Throughout the discussion we adopt a flat

ΛCDM model as reference cosmology in which the main cosmological parameters are fixed as

follows: vacuum density ΩV = 0.73, Hubble constant h = 0.72, baryon density Ωb = 0.046,

cold dark matter density ΩCDM = 1− ΩV − Ωb, reionization optical depth τ = 0.11, three

massless neutrino species, scalar perturbations only with spectral index ns = 0.96. In Sec.

4.1 we describe the ISW and its correlation with the lensing; in Sec. 4.2 we compute the

three point statistics in the harmonic domain generated by that correlation, pointing out

49
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the computational challenges for its evaluation; Sec. 4.3 contains a full geometrical analysis

of the bispectrum.

4.1 ISW and lensing correlation

We wish to study the distortion induced on the CMB anisotropies by the gravita-

tional lensing and its correlation with the ISW; we take into account also the Rees-Sciama

effect, and specifically the ISW caused by the dynamics of non-linear density fluctuations

along the photon path (Rees & Sciama 1968). As we discussed in the previous chapter, the

gravitational lensing produces a deflection of CMB photons: in a direction n̂ in the sky we

see the anisotropy originally scattered on a different one, n̂+ ~α, where ~α is the deflection

angle. The ISW effect is a redshift or a blueshift of the CMB photons when they pass

through the potential perturbations of evolving structures. When they fall in overdensities,

the photons gain energy (gravitational blueshift) and when they climb back out, they are

redshifted, or vice-versa for underdensities. The process is not balanced because the struc-

ture is evolving and its potential perturbation gets steeper or shallower when the photons

propagate through it.

Taking into account only the two effects described above, we can decompose the

CMB anisotropy in a direction n̂ in the sky as

Θ(n̂) = ΘP (n̂+ ~α) + ΘISW (n̂) , (4.1)

where the first term represents the primordial CMB anisotropy at decoupling, which was

last scattered on a direction n̂+ ~α and gravitationally lensed to our line of sight n̂, whereas

the second term is the CMB anisotropy contribution from the ISW effect. We assume that

the primordial anisotropies are Gaussian, so the lensing and ISW effects are the only sources

of non-Gaussianity. Expanding Eq. (4.1) to the first order in ~α we obtain

Θ(n̂) ' ΘP (n̂) + ΘISW (n̂) + ~∇ΘP (n̂) · ~α . (4.2)

Now we analyze each contribution to Eq. (4.2) in terms of physical quantities. As before

we work in the conformal Newtonian gauge, and we include only scalars, assuming no



Chapter 4: CMB three point correlation function and gravitational lensing 51

anisotropic stress. The line element is ds2 = a2
[
−(1− 2Ψ)dt2 + (1− 2Ψ)dxidxi

]
where Ψ

is the only relevant gravitational potential if the anisotropic stress is zero. Since the CMB

anisotropies are sourced by the gravitational potential, and assuming an instantaneous

decoupling, the primordial contribution to the anisotropy Θ(n̂) can be written as

ΘP (n̂) =

∫
d3k

(2π)3
exp

(
i~k · n̂rls

)
Ψ
(
~k
)
TR(k) , (4.3)

where Ψ
(
~k
)

made the dependence of Ψ from ~k explicit, and rls is the conformal distance to

the last scattering surface. TR(k) is the radiation transfer function modifying the primordial

power spectrum to take into account the super-horizon and sub-horizon dynamics: in the

previous chapter we saw how for adiabatic initial conditions, the primordial temperature

fluctuation Θ encodes the initial spectrum of the fluctuations in the gravitational potential,

and how a hierarchical series of differential equations propagate that power on different

scales. TR(k), which can be evaluated numerically, takes into account the corresponding

transfer of the initial power from super-horizon to sub-horizon scales. Its role is totally

analogous to the transfer function for the matter power spectrum, to be discussed next. For

simplicity, all quantities in (4.3) are evaluated at decoupling.

Taking into account the time variation of the gravitational potential along the line

of sight, the ISW effect can be expressed as (Sachs & Wolfe 1967; Martinez-Gonzalez, Sanz

& Silk 1990; Seljak 1996)

ΘISW (n̂) = 2

∫ rls

0
dr

∂

∂η
Ψ(η, n̂r) , (4.4)

where η is the conformal time, coinciding with r if the geometry is flat. Note that the above

relation is another form of the last term in Eq. (3.45), where the harmonic expansion was

exploited. The deflection angle ~α is responsible for the gravitational lensing effect and is

defined as the gradient on the angular coordinates of the lensing potential φ(n̂) (Schneider,

Ehlers & Falco 1992; Bartelmann & Schneider 2001):

~α = ~∇⊥φ(n̂) . (4.5)

As we saw in the previous chapter, the lensing potential is simply the projection of the

gravitational potential along the line of sight, this can be written as (Kaiser 1998):

φ(n̂) = −2

∫ rls

0
dr
rls − r
rlsr

Ψ(r, n̂r) . (4.6)
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Let us now specify better the density perturbations, powering the gravitational

potential fluctuations and therefore the whole lensing process. The gravitational potential

Ψ is built out of the density fluctuations through the Poisson equation and the linear power

spectrum is defined as usual as

PL(k, z) = AknsT 2
M (k, z) , (4.7)

where A represents the primordial perturbation amplitude and TM (k, z) is the matter trans-

fer function. As for radiation, the latter describes, at each z, how the primordial power is

transferred on the scale k, which may or may not have crossed the horizon. To describe

the non-linear behavior of density perturbations, we use a semi-analytical approach (Ma

1998) consisting essentially of a re-mapping and rescaling of the linear one; the linear power

spectrum PL(k, z) is computed at the wavenumber

kL =
k

[1 + 4πk3PNL(k, z)]1/3
, (4.8)

and is related to the non-linear one PNL(k, z) via the empirical formula

PNL(k, z) = G

[
4πk3PL(k, z)

f3/2σβ8 (z)
, z

](
kL
k

)3

PL(kL, z) , (4.9)

where σ8 is the normalization of the matter power spectrum on cluster scales, β = 0.83,

f = g0 for the ΛCDM model considered here (Ma 1998) and G is defined as

G(x, z) =
[1 + ln(1 + x/2)]

[
1 + 0.02x4 + 1.08 · 10−4x8/g(z)

]

1 + 2.1 · 10−5x15/2
; (4.10)

g(z) is the perturbation growth rate defined by the matter transfer function on small scales

as

g(z) = g0(1 + z)
TM (k → 0, z)

TM (k → 0, 0)
, (4.11)

where g0 is the present value of the growth factor. As we shall see in Ch. 6, the linear

growth factor g(z) is a key ingredient for our purposes; it is plotted in Fig. 4.1 for the

present cosmology. Note how at high redshifts, i.e. in the radiation dominated era, g(z)

gets proportional to a = 1/(1 + z), as discussed in the previous chapter. The decrease

at low redshifts is due to the dominance of the Cosmological Constant, slowing down the
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Figure 4.1: Growth factor g(z) for our ΛCDM model normalized to unity on the last
scattering surface.

perturbation growth. To compute PNL(k, z) we must solve numerically an implicit equation,

represented by Eq. (4.8) and Eq. (4.9), at any epoch z and for any wavenumber k. In Fig.

4.2 we plot the matter power spectra PL(k, z) and PNL(k, z) for the cosmology considered

here; as we can see, the non-linearity produces a bump in the matter power spectrum around

k = 0.5 Mpc−1 at z = 0 increasing the power at higher wavenumber (smaller scales). At

higher redshift the non-linear contribution becomes smaller and the wavenumber at which

the non-linearity starts moves towards higher values, as expected.

We now expand the observed CMB fluctuation of Eq. (4.2) in spherical harmonics:

alm =

∫
dΩn̂

[
ΘP (n̂) + ΘISW (n̂) + ~∇ΘP (n̂) · ~α

]
Y ∗lm . (4.12)

The first and the second terms clearly are the coefficients of the harmonic expansion of the

primordial and secondary anisotropy, respectively, while the third one represents the lensing

effect. Using Eq. (4.5), the lensing contribution may be written as

∫
dΩn̂

(
~∇ΘP · ~∇⊥φ

)
Y ∗lm =

=

∫
dΩn̂

[
~∇
∑

l′m′

(
aPl′m′

)∗
Y ∗l′m′

]
·
[
~∇
∑

l′′m′′

(
alensl′′m′′

)∗
Y ∗l′′m′′

]
Y ∗lm , (4.13)
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Figure 4.2: Matter power spectra PL(k, z) (solid line) and PNL(k, z) (dashed line) at dif-
ferent redshifts as function of k.

where we have expanded both the primordial contribution and the lensing one in spherical

harmonics, independently. Exchanging the sums with the integral we can rewrite the right

hand side of the equation above in the form

∑

l′m′

∑

l′′m′′
(−1)m+m′+m′′

(∫
dΩn̂

~∇Yl′m′ · ~∇Yl′′m′′Yl−m
)(

aPl′m′
)∗ (

alensl′′m′′

)∗
, (4.14)

where we applied the identity Y ∗lm = (−1)mYl−m. Integrating by parts one gets

∫
dΩn̂∇2Yl′m′Yl′′m′′Yl−m =

−
∫
d2n̂~∇Yl′m′ · ~∇Yl′′m′′Yl−m −

∫
dΩn̂

~∇Yl′m′ · ~∇Yl−mYl′′m′′ , (4.15)

and using the eigenvalues equation for the spherical harmonics ∇2Ylm = l(l + 1)Ylm, Eq.

(4.14) becomes

∑

l′m′

∑

l′′m′′
(−1)m+m′+m′′ l

′(l′ + 1)− l(l + 1) + l′′(l′′ + 1)

2
G−mm′ m′′
l l′ l′′

(
aPl′m′

)∗ (
alensl′′m′′

)∗
, (4.16)
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where the Gaunt’s integral G−mm′ m′′
l l′ l′′ is defined as

Gm1m2m3
l1l2l3

=

∫
d2n̂Yl1m1(n̂)Yl2m2(n̂)Yl3m3(n̂) =

=

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π


 l1 l2 l3

0 0 0




 l1 l2 l3

m1 m2 m3


 . (4.17)

The parenthesis are the Wigner’s 3J symbols (see Sec. 4.2.2 and Appendix A), finally we

are able to write the full harmonic expansion of Eq. (4.2):

alm = aPlm + aISWlm +
∑

l′m′

∑

l′′m′′
(−1)m+m′+m′′G−mm′ m′′

l l′ l′′ ·

· l
′(l′ + 1)− l(l + 1) + l′′(l′′ + 1)

2

(
aPl′m′

)∗ (
alensl′′m′′

)∗
. (4.18)

We clearly see three contributions to (4.18): the primordial one
(
aPlm
)
, the ISW one

(
aISWlm

)

and the product between the primordial one and the lensing one
(
alenslm

)
. As we shall

see in the next section, the correlation between lensing and ISW induces a non-vanishing

bispectrum power.

4.2 The three point statistics in the harmonic domain and

Wigner’s 3J symbols

We divide this section in two subsections. In the first we write the relevant algebra

to describe the CMB bispectrum, and discuss the power injection from lensing; in the second

one we show how to calculate the Wigner’s 3J symbols, a necessary ingredients in these

computations, as we shall see.

4.2.1 CMB bispectrum induced by lensing and ISW correlation

The CMB power spectrum contains all the statistical information about the CMB

anisotropies only if the alm are Gaussianly distributed. Here we study the non-Gaussianity

due to weak lensing and ISW correlation on the CMB anisotropies assuming that the pri-

mordial ones are Gaussian. The non-Gaussianity arises when evolving structures correlate

the CMB photons between the last scattering surface and us: the photons are deflected
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Figure 4.3: A structure between the last scattering surface and us correlates the CMB
anisotropy via the ISW effect (solid line) and the lensing effect (dashed line).

by the gravitational lensing when they pass nearby density perturbation whereas the same

structure redshifts or blueshifts them via the ISW (see Fig. 4.3). Because of the corre-

sponding correlation, the CMB fluctuations acquire a non-Gaussian pattern which may be

described in terms of higher order statistics in the anisotropies.

The bispectrum is the harmonic transform of the three point correlation function

and it is defined as

Bm1m2m3
l1l2l3

= 〈al1m1al2m2al3m3〉 , (4.19)

where alm are the coefficients of the expansion of the total intensity CMB fluctuations and

we average over all the possible realization according to the CMB statistics. With the

bispectrum we probe the harmonic space with triangles: the triplet (l1, l2, l3) give us the

triangle configuration, i.e. its shape, while the triplet (m1,m2,m3) represents the triangle

orientation, i.e. how it is oriented in the l-space. For a universe which is isotropic on

average, the ensemble averaged bispectrum does not depend on the triangle’s orientation

but only on its configuration. With these considerations we can build the angle averaged
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Figure 4.4: Configuration of the angular bispectrum in the l-space: the bispectrum may be
thought to probe the harmonic space with triangles with sides given by l1, l2 and l3.

bispectrum

Bl1l2l3 =
∑

m1m2m3


 l1 l2 l3

m1 m2 m3


Bm1m2m3

l1l2l3
, (4.20)

summing over m; the Wigner’s 3J symbols transform the m indeces under a rotation pre-

serving the triangle configuration (see Appendix B). Since l1, l2 and l3 form a triangle

and the angular correlation function is invariant under parity, the three multipoles must

satisfy the triangularity condition |li− lj | ≤ lk ≤ li + lj (for all permutation of indices) and

li + lj + lk = even; if one of these two conditions is not satisfied the bispectrum is zero. An

example of triangular configuration is plotted in Fig. 4.4. After some algebra, substituting

Eq. (4.18) into Eq. (4.19) we obtain

Bm1m2m3
l1l2l3

= Gm1 m2 m3
l1 l2 l3

l1(l1 + 1)− l2(l2 + 1) + l3(l3 + 1)

2
CPl1Ql3 + 5P , (4.21)

where CP
l1

is the primordial power spectrum, Ql3 encodes the correlation between lensing

and ISW effect as we specify later and 5P means permutations over the three multipoles.

In writing Eq. (4.21) we have neglected the correlation between the primordial anisotropies

and those arising from the ISW. From this consideration and from our assumption of Gaus-

sianity of the primordial anisotropies, the only terms that survive to the average are those

involving the primordial power spectrum Cl, the ISW aISWlm and the lensing
(
alensl′′m′′

)∗
. Sub-

stituting Eq. (4.21) into the expression of the angle averaged bispectrum (4.20) and using
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the orthogonality relation of the 3J symbols (see. Appendix A), we obtain:

Bl1l2l3 =

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π


 l1 l2 l3

0 0 0


 ·

· l1(l1 + 1)− l2(l2 + 1) + l3(l3 + 1)

2
CPl1Ql3 + 5P . (4.22)

In the following we shall concentrate on the angle averaged bispectrum; hereafter we will

refer to Eq. (4.22) simply as bispectrum. To derive the expression of Ql we start from

〈(
alensl1m1

)∗
aISWl2m2

〉
= −4

〈∫
dΩn̂1dΩn̂2

∫
dr
rls − r
rlsr

Ψ(r, n̂1r)·

·
∫
dη
∂Ψ(η, n̂1r)

∂η
Y ∗l1m1

(n̂1)Yl2m2(n̂1)

〉
; (4.23)

expanding the gravitational potential Ψ in terms of its Fourier modes and using the Rayleigh

expansion exp
(
~k · n̂r

)
= 4π

∑
lm i

lY ∗lm(k̂)Ylm(n̂)jl(kr) for the exponentials (k̂ is the direc-

tion in the Fourier space and jl(kr) are the spherical Bessel functions), we obtain

〈(
alensl1m1

)∗
aISWl2m2

〉
= −4(4π)2

∫
dΩn̂1dΩn̂2

∫
dr
rls − r
rlsr

∫
dη ·

·
∫

d3k

(2π)3

∫
d3k′

(2π)3

〈
Ψ
(
~k, r
) ∂Ψ

(
~k′, η

)

∂η

〉
jl′(kr)jl′′(k

′η) ·

·il′+l′′Y ∗l′m′(k̂)Yl′m′(n̂1)Y ∗l′′m′′(k̂
′)Yl′′m′′(n̂2)Y ∗l1m1

(n̂1)Yl2m2(n̂2) . (4.24)

Using the identity dk3 = k2dkdΩk, and integrating over dΩn̂1 , dΩn̂2 and dΩk̂ we have

〈(
alensl1m1

)∗
aISWl2m2

〉
= −4(4π)2

∫
dr
rls − r
rlsr

∫
dη ·

·
∫

k2dk

(2π)3

∫
k′2dk′

(2π)3

〈
Ψ(k, r)

∂Ψ(k′, η)

∂η

〉
jl′(kr)jl′′(k

′η) , (4.25)

where we applied the orthogonality relation of spherical harmonics. We introduce now the

Limber approximation (see Afshordi, Loh & Strauss 2004 for reviews), in which the spherical

Bessel functions are replaced by the relation

jl(x) =

√
π

2l + 1

[
δ

(
l +

1

2
− x
)

+ ∆l

]
, (4.26)

where δ is the Dirac’s delta and ∆l goes as l−2. In the following we neglect ∆l in order

to simplify the evaluation of the bispectrum; the error made on the Ql quantities to this
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approximation is about 1% at l = 10 and falls down as l−1 (Giovi, Baccigalupi & Perrotta

2005). Under the assumption of Gaussian statistics, we define

2

(2π)3

〈
Ψ(k, r)

∂Ψ(k′, r)
∂r

〉
=
∂PΨ(k, r)

∂r
δ(k − k′) ; (4.27)

performing now the integrals in η, k and k ′ and integrating in z instead of r the cross-power

becomes

Ql ≡
〈(
alenslm

)∗
aISWlm

〉
' 2

∫ zls

0
dz
r (zls)− r(z)
r (zls) r3(z)

[
∂PΨ(k, z)

∂z

]

k= l+1/2
r(z)

, (4.28)

in which PΨ(k, z) is the power spectrum of the gravitational potential related to the matter

power spectrum (Sugiyama 1995; Hu 2000; Verde & Spergel 2002) by the relation

PΨ(k, z) =

(
3

2
Ωm

)2(H0

k

)4

P (k, z)(1 + z)2 . (4.29)

In Eq. (4.28) the redshift derivative of PΨ(k, z) has to be evaluated at the wavenumber

k = (l + 1/2)/r(z) where the the left hand side represents the scale entering the non-linear

regime at the epoch represented by z, while the right hand side is purely geometric. In

the matter power spectrum we may take into account both the linear and the non-linear

growth described by Eq. (4.9). We want to stress that the integrand of (4.28) is made by

a product of a geometrical factor R(z), which depends on cosmological distances, and a

derivative factor F (l, z), including the evolution of the cosmological fluctuations; these two

factors are defined as

R(z) = 2
r (zls)− r(z)
r (zls) r3(z)

, (4.30)

F (l, z) =

[
∂PΨ(k, z)

∂z

]

k= l+1/2
r(z)

. (4.31)

We now study how the contribution to Ql is distributed over the redshift. For this purpose,

it is relevant to study the redshift behavior of dQ/dz for a given l. This analysis tells us

at which redshift the integrand of (4.28) is relevant, and answers our question. In Fig. 4.5

we show dQ/dz both including (dashed line) and not including (solid line) the non-linear

growth for a fixed multipole. As we can see, in the linear regime, the contribution is always

positive, while the non-linearity produce a negative feature; as we can see in a moment,
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Figure 4.5: dQ/dz as function of redshift in units of 10−20 for different multipoles. The
solid line describes the contribution from linear perturbations only, while the dashed one
represents the case in which the non-linear power is considered.

this can be explained by looking at the time-variation of the gravitational potential, since

dQ/dz ∝ dPΨ/dz. The most important and apparent feature is the asymptotic behavior of

dQ/dz at z → 0 and z →∞: in both cases the contribution is vanishing. Actually, most of

the power is concentrated between 0.1 and 10 for the scales considered. This aspect, and

the overall behavior of the curves, are explained in the following discussion. The relation

λ(z) = 2πr(z)/l links the cosmological scale λ(z) with the distances r(z) and the multipole

l; for a given l, decreasing the redshift means decreasing λ(z). In the past (z →∞) the scale

λ(z) is outside the horizon and the Universe is matter or radiation dominated; therefore

the gravitational potential remains constant and dQ/dz vanishes. As z decreases, the scale

λ(z) gets in horizon crossing; in this regime the free streaming of the underlying matter

density fluctuations will produce a decrease of the gravitational potential. This yields a

dQ/dz > 0, visible as the positive part of the curves in the Fig. (4.5). Decreasing further

z makes the scale λ(z) smaller and smaller matching the scale which is entering the non-
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Figure 4.6: |Ql| for our ΛCDM concordance model. At l = lc ≈ 550 the integral is null
because the linear contribution balances the non-linear one: for l < lc the linear growth
dominates, for l > lc the non-linear growth dominates.

linear phase at that epoch; now the power PΨ is increasing in time, yielding the negative

part of the curves in Fig. 4.5, coming from dQ/dz < 0. Approaching the present time

(z → 0) the wavenumber k goes to infinity and the power spectrum vanishes (see Fig.

4.2). We make the important conclusion that dQ/dz probes structure formation at non-

zero redshifts only, peaking at structure formation, and vanishing at earlier epochs and at

present. In particular, as we already stressed, for multipoles between 1000 and 100 dQ/dz

is non-null in a redshift interval extremely interesting for the onset of cosmic acceleration,

say between 0.1 and 10, and, most importantly, it cuts out the present. As we shall see in

the following, these features make the bispectrum useful to study the dark energy dynamics

at the epoch in which it starts to be relevant. We conclude this section analyzing Eq. (4.28)

in the multipole space; a logarithmic plot of |Ql| is shown in Fig. 4.6. As we can see, in

this example there is a very clear feature at lc ≈ 550, where Ql changes sign and |Ql| has

a cusp. Recalling that Ql is a line of sight integral, and hence in redshift, the meaning of

the cusp in Fig. 4.6 is easy to understand. For l < lc the linear contribution of dQ/dz is

greater than the non-linear one and the overall integral is positive; for l > lc the non-linear

regime dominates and the overall integral is negative; at l = lc the non-linear power balances
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exactly the linear one and the overall integral is zero. The position of the cusp depends on

the growth of the cosmic structures and the latter depends on the cosmological parameters;

in Ch. 6 we will try to exploit the phenomenology discussed there to discriminate between

different cosmological models.

4.2.2 Wigner’s 3J symbols

One of the computational challenges to deal with the bispectrum in its full config-

uration is the evaluation of the Wigner’s 3J symbols in Eq. (4.22). We built a numerical

machinery to compute them, and we show here the main criteria and features of our ap-

proach.

The Wigner’s 3J symbols are non-trivial functions of their arguments and they

have a closed formula only for very few combinations of l1, l2 and l3, m1, m2 and m3 (see

Appendix A); calculating them up to multipoles of the order of 1000 requires refined numer-

ical techniques as we show now. There are routines, developed for nuclear and molecular

physics, able to calculate the 3J symbols; unfortunately they fail when the multipoles reach

values of the order of 100. Indeed the higher orbital momenta (i.e. the higher multipole)

needed in nuclear physics is the higher electron energy level and, for the heaviest element,

it is just of the order of 100. On the other hand we need a routine that can evaluate the 3J

symbols up to multipoles ten times larger. To obtain the 3J symbols we follow an approach

similar to Schulten and Gordon (1975), where two exact recursion relations to evaluate the

full set of the 3J symbols were found: the first one evaluates the 3J symbols varying l1

while the second one varying m2. Since we are interested in the angle averaged bispectrum,

summing m, we choose the second recursion relation for computational convenience.

The recursive relation for the 3J symbols is computed for fixed l1, l2, l3, m1 and

for all the possible values of m2; m3 is given by the relation m3 = −(m1 + m2), if this

equality is not verified, the 3J symbols vanish. The recursive relation is

C(m2 + 1)g(m2 + 1) +D(m2)g(m2) +C(m2)g(m2 − 1) = 0 , (4.32)
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Figure 4.7: Scheme of the recursion relation. The forward recursion starts at mmin
2 while the

backward one at mmax
2 ; they match in mmid

2 where the Wigner’s 3J symbols are normalized;
the last step is the overall renormalization and the phase condition.

where

g(m2) =


 l1 l2 l3

m1 m2 m3


 (4.33)

represents the 3J symbols as function of m2; the coefficients C(m2) and D(m2) are defined

by

C(m2) =
√

(l2 −m2 + 1)(l2 +m2)(l3 +m3 + 1)(l3 −m3) , (4.34)

D(m2) = l2(l2 + 1) + l3(l3 + 1)− l1(l1 + 1) + 2m2m3 , (4.35)

and the boundaries of the m2 domain are given by

mmin
2 = max[−l2, −(l3 +m1)] , (4.36)

mmax
2 = min[l2, l3 −m1] . (4.37)

To assure numerical stability it is necessary to perform the recursion (4.32) from both ends

of the m2 domain, exploiting the recursion relation forward and backward; since C(mmin
2 ) =

C(mmax
2 + 1) = 0, the terminal recursions contain only two terms:

D(mmin
2 )g(mmin

2 ) +C(mmin
2 + 1)g(mmin

2 + 1) = 0 , (4.38)

D(mmax
2 )g(mmax

2 ) + C(mmax
2 )g(mmax

2 − 1) = 0 . (4.39)
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Figure 4.8: Wigner 3J symbols g(m2) as a function of m2 evaluated with the recursion
relation described in the text. The multipoles are fixed to the following values: l1 = 313,
l2 = 666, l3 = 750 and m1 = 34. The value of m3 is constrained by the relation m3 =
− (m1 +m2).

The starting value for the two recursions at the boundaries is arbitrary; a common choice

is g(mmin
2 ) = g(mmax

2 ) = 1. The two recursions meet somewhere in the middle point mmid
2

where they will normalized to have the same value. To have the exact full set of the 3J

symbols we have to apply the normalization condition and the phase convention

mmax
2∑

mi=mmin
2

(2l1 + 1)g2(mi) = 1 , (4.40)

sign[g(mmax
2 )] = (−1)l2−l3−m1 (4.41)

to the g(m2) found with the forward and the backward recursions. A rough scheme of the

two recursion mechanisms is represented in Fig. 4.7. To give an example of the evaluation

of the 3J symbols, in Fig. 4.8 we show an output of our numerical code with l1 = 313,

l2 = 666, l3 = 750 and m1 = 34.

Before concluding we make an historical remark. The algorithm developed by

Schulten and Gordon to evaluate the 3J symbols was made in 1975; at that time the

precision and the speed of the computing machines was much lower than now, so an almost

“perfect” and very optimized algorithm was necessary. From this point of view, the double
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recursion relation is essential to obtain the correct values of the 3J symbols. During the

testing phase of our numerical code we learned that it is possible to work with only one

recursion, forward or backward, but with quadruple precision (during the computation and

for very high multipole the code must be able to handle numbers of the order of 10±1000);

in this way it is sufficient to normalize the whole set of symbols with (4.40) and (4.41).

The use of only one recursion relation is due to the improvement of the performance of the

present computers.

4.3 A geometrical analysis of the CMB bispectrum

In Sec. 4.2 we wrote the basic equation describing the bispectrum arising from the

correlation between lensing and ISW; here we investigate its main geometrical properties.

Since the bispectrum has a triangular configuration we must first define the shape of the

triangles; our first choice (and the easiest one) is to study the equilateral configuration with

l1 = l2 = l3 = l. We limit our range in multipole to 10 ≤ l ≤ 1000; the lower bound is set

not to approach large angular scales, in order to satisfy the approximations done writing

Eq. (4.28).

In the equilateral configuration we probe the CMB with equilateral triangles of

different sizes in the multipole space; in this case Eq. (4.22) simplifies and becomes

Bl = 3l(l + 1)

√
(2l + 1)3

4π


 l l l

0 0 0


CPl Ql . (4.42)

Looking at this new expression, we can notice that the bispectrum is essentially a product

between the primordial power spectrum and the correlation of the lensing and the ISW

at the same scales; we expect that the bispectrum contains signatures from both CP
l and

Ql. In Fig. 4.9 we plot the equilateral configuration of the bispectrum as a function of the

even multipoles only (for odd l the 3J symbols are zero); two very clear features appear:

the bumps and the cusp. The former are a record of the acoustic oscillations of the power

spectrum of the primordial anisotropies, represented by CP
l in (4.42), while the latter is the

signature of the change in sign of Ql due to the balance between the linear and non-linear

growth of cosmic structures, as we already discussed.
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Figure 4.9: Bispectrum equilateral configuration for our ΛCDM model. The bumps are
produced by the primordial power spectrum acoustic oscillations; the change in sign, visible
as a cusp in logarithmic scale, is the fingerprint of the transition from the linear to the
non-linear dominated regime. The plot has been done only for even l, otherwise the 3J
symbols are null.

We consider now all the triangular shapes, with no restriction, in the harmonic

space; besides equilateral triangles, we will have also isosceles and scalene ones. The bis-

pectrum lives in the three-dimensional space of the three multipoles l1, l2 and l3; thus a

representation and a complete analysis of this observable is not so easy. To understand why,

it is convenient to write Eq. (4.22) expanding the permutations, obtaining

Bl1l2l3 =

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π


 l1 l2 l3

0 0 0


 ·

·
[
l1(l1 + 1)− l2(l2 + 1) + l3(l3 + 1)

2

(
CPl1Ql3 + CPl3Ql1

)
+

+
l1(l1 + 1)− l3(l3 + 1) + l2(l2 + 1)

2

(
CPl1Ql2 + CPl2Ql1

)
+

+
l2(l2 + 1)− l1(l1 + 1) + l3(l3 + 1)

2

(
CPl2Ql3 + CPl3Ql2

)]
. (4.43)

Reading this formula, we see that the primordial power spectrum and the lensing-ISW

correlation are not simply their product at the same l, but we have a mixing between CP
l

and Ql at different multipoles. We may see this process as a reprojection of the primordial
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power over different scales, due to the lensing mechanism.

In Fig. 4.10 we plot the bispectrum in six snapshots fixing each time one multipole.

The flat regions are those for which the triangular inequality is not verified (i.e. the three

multipoles don’t form a triangle); despite of the plots, the bispectrum domain is defined

only for l1 + l2 + l3 = even, being otherwise zero because of the 3J symbols. As we can see,

increasing l3 makes the bispectrum surface squeezing along the direction l1 = l2 and inflating

along the orthogonal direction; this behavior is purely geometrical: changing the third

multipole the region where the triangular inequalities is verified and where the bispectrum

is defined changes. The physics is enclosed into the peaks and canyons clearly visible in the

figures; the peaks reflect the harmonic oscillations in the power spectrum while the canyons

are the fingerprints of the lensing-ISW correlation; the latter are the higher dimensional

counterparts of the cusp shown in Fig. 4.6. As in the equilateral case, the canyons represent

the transition from linear to non-linear dominance of the growth of perturbations in the Q(l)

integrals and yield a change in sign in the bispectrum appearing “cuspidal” in module and

producing “a fall” of the bispectrum’s surface; this zero-value is physical and not geometrical

as those due to the triangular inequality. The figures show how the combination of the

two effects produces a complex pattern for the bispectrum’s coefficients: the lensing-ISW

correlation redistributes the oscillatory power of CP
l on multipoles different from the ones

of the primordial acoustic oscillations.

To finish this chapter we attempt a study of the three-dimensional bispectrum

without fixing any multipole; to do that we plot in Fig. 4.11 the hypersurface of constant

S = Log|Bl1l2l3 |. For higher values of S (first row of Fig. 4.11) the bispectrum lives near

to the axes origin, located at l1 = l2 = l3 = 10, and develops along the lines li = lj for

lk = 10 (for all permutation of i, j and k); this behavior is due to the fact that the signal

is taken only at very low multipoles where the triangular relation is satisfied. Decreasing

S (second row of Fig. 4.11) we can see structures growing out of these lines to form a

tetrahedron in l-space; inside the tetrahedron, along its edges, there are some swelling that

meet in the vertex l1 = l2 = l3 = 10. In the last row of Fig. 4.11 we additionally decrease

S; a blob in the center of the tetrahedron appears whereas in the last panel of the figure

only the tetrahedron remains and the bispectrum takes all the space inside it: all the signal
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is acquired. The tetrahedron is simply the bound where the bispectrum is geometrically

constrained and its volume is the region where the triangular relation is verified, being a

pure geometrical feature. The growing swelling along the edges are produced by the linear

phase of the cosmological structure formation while the blob in the center is due to the

non-linear phase. That is because higher values of S probe the bispectrum in the linear

regime where there is the maximum power (see Figs. 4.6 and 4.9), while the non-linear

contribution induces smaller value of S. If, as we already discussed, we want to see the

equivalent of the “cusp” of Fig. 4.6, we may notice that the blob is separated from the

swelling and this separation is just the equivalent of the “cuspidal” feature of Fig. 4.6.

We conclude here this chapter. We computed and studied the CMB bispectrum

arising from the correlation between lensing and ISW effects, we studied its main properties

in particular looking at its capability to probe the Universe at redshift relevant for the onset

of cosmic acceleration. Despite of the computational difficulty due to the three-dimensional

dependence over the angular multipoles, we pushed the phenomenological analysis to the

full configuration.
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Figure 4.10: Logarithmic plot of the three-dimensional bispectrum fixing one multipole;
from left to right and from top to bottom: l3 = 100, l3 = 260, l3 = 420, l3 = 580, l3 = 740
and l3 = 900. The flat regions, fixed at a reference 10−28 for graphical reasons, are those
for which the triangular inequality is not verified and the bispectrum is null.
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Figure 4.11: Hypersurface of Log|Bl1l2l3 | = S. From left to right and from top to bottom
S = 10−22, 10−23, 10−25, 10−26, 10−27, 10−27.5.



Chapter 5

Dark energy models

As we have shown in Ch. 2, the dark energy is merely a generalization of the

Cosmological Constant, and represents an attempt to find an explanation to the coincidence

and fine-tuning problems affecting a vacuum energy density as small as the cosmological

critical density today. As we have already mentioned, a large class of dark energy models

involves the introduction of a scalar field, the Quintessence, self-interacting and with a

shallow potential energy in order to mimic the effect of the Cosmological Constant on

the cosmic expansion. Here we want to give an illustration of the main properties of the

Quintessence, focusing on the dynamical differences between models currently allowed by

observations; in the next chapter, we shall look for the signatures of such differences in the

CMB three-point anisotropy statistics. In Sec. 5.1 we describe the general properties of the

Quintessence field; in Sec. 5.2 we discuss its background and perturbations dynamics in the

framework of the most relevant models proposed for its potential; in Sec. 5.3 we describe

a phenomenological approach to the equation of state of the Quintessence which will be

useful in the following; in Sec. 5.4 we resume the current constraints on the dark energy

equation of state.

5.1 Quintessence

In Sec. 2.4 we briefly introduced the dark energy showing how it modifies the

Friedmann equation, how the scalar field evolves with the Klein-Gordon equation and in

71
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which way the energy density and the pressure are defined starting from the scalar field

itself. In this chapter we extend that analysis, concentrating on the dark energy dynamics

and perturbations. Those properties, i.e. dynamics and spatial perturbations, may allow

the dark energy to imprint distinct signatures on CMB and LSS, which may be detected,

rejecting the Cosmological Constant scenario.

The Quintessence behavior described in Sec. 2.4 is essentially the minimal one, in

which the field is self interacting only; the Quintessence is usually treated in more general

context (non-minimal theories) where all the possible degrees of freedom, i.e. with other

entities, may be active (see e.g. Matarrese, Baccigalupi & Perrotta 2004 and references

therein). In the Extended Quintessence (Perrotta, Baccigalupi & Matarrese 2000, 2000a),

the scalar field is non-minimally coupled to the Ricci scalar R with the action

S =

∫
d4x
√−g

[
1

16πG∗
f(φ,R)− 1

2
ω(φ)∂µφ∂µφ− V (φ) + Lf

]
, (5.1)

originally introduced by Hwang (1991), where ω(φ) specifies the kinetic energy of the scalar

field, G∗ is the bare gravitational constant (Esposito-Farese & Polarski 2001), Lf is the

Lagrangian including all the fluids but Quintessence, finally f(φ,R) is the function that

couples the scalar field to the gravity. An analogous generalization involves the coupling

between dark energy and matter (Amendola 2000).

The action above is more general then the one in Sec. 2.4 but, for our purposes,

we restrict to a single scalar field with a minimal coupling, which corresponds to have ω = 1

and f(φ,R) = R in (5.1). The dynamics of the Quintessence scalar field φ is completely

described by the unperturbed and perturbed Klein-Gordon equation

2φ+
dV

dφ
= 0 , (5.2)

δ(2φ) +
d2V

dφ2
δφ = 0 , (5.3)

where 2 ≡ (−g)−1/2∂µ[(−g)1/2gµν∂ν ] is the D’Alembertian operator applied to a scalar

and δ is the variation with respect φ. Eq. (5.2) describes the background evolution of the

scalar field classical expectation value, while Eq. (5.3) describes the dynamics of its linear

perturbation. In order to describe the Quintessence perturbations we choose a flat FRW

universe, working in the Newtonian gauge, as we did in (3.15). We also work neglecting the
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anisotropic stress, Φ = −Ψ, which is non-null at a linear level, in Extended Quintessence

scenarios (Hwang 1991). The Quintessence homogeneous and inhomogeneous pieces in space

may be defined as

φ (η, ~x) = φ0(η) + δφ (η, ~x) , (5.4)

where the fluctuation δφ obeys to the perturbed Klein-Gordon Eq. (5.3) that in the Fourier

space becomes

δ̈φ+ 3H ˙δφ+

(
k2

a2
+
d2V

dφ2

)
δφ = 4φ̇Φ̇− 2

dV

dφ
Φ . (5.5)

The perturbations in energy density and pressure of the Quintessence field are described

by:

δρφ = φ̇ ˙δφ +
dV

dφ
δφ− φ̇Φ , (5.6)

δpφ = φ̇ ˙δφ − dV

dφ
δφ− φ̇Φ . (5.7)

In the following we give a brief description of the most important aspects of the dark energy

dynamics, concerning the background expansion and its perturbations.

5.2 Tracking solutions

As we saw in Ch. 2, the motivation to substitute the Cosmological Constant with

the Quintessence is the attempt to alleviate the coincidence and the fine-tuning that affect Λ.

In this section we show that the Quintessence field in general admits attractors in the space

of the trajectories of φ. This allow the field to induce the present acceleration in the cosmic

expansion phase starting from a wide set of initial conditions in the early Universe, thus

alleviating the fine-tuning problem. These trajectories are named tracking solutions. The

time in which the scalar field reaches the tracker depends on the energy scale of the potential

and fixes the observed amount of the dark energy at the present. Thus the tracking solution

may solve the problem of initial conditions, but not the coincidence, ultimately related to

the energy today and fixed by hands in tracking trajectories. Our treatment follows closely

that of Liddle and Scherrer (1998); they also define the “scaling solution” as those in which

the scalar field energy density scales exactly as a power law of the scale factor.
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To show the main properties of the tracking solutions, we consider a flat FRW

universe filled by a perfect fluid f , either matter or radiation, and a scalar field φ. We

assume that both the Quintessence and fluid energy density evolve with the scale factor as

ρφ ∝ aβφ = a−3(1+wφ) , (5.8)

ρf ∝ aβf = a−3(1+wf) , (5.9)

being wφ and wf the equation of state of the Quintessence and the perfect fluid, respectively.

In order to have Eqs. (5.8) and (5.9), wφ must remain constant during the single epoch

when each fluid dominates. The energy conservation (2.8) for the Quintessence can be

rewritten as

ρ̇φ = −3Hφ̇2 , (5.10)

simply using the definition of the energy density (2.27) and the pressure (2.28) for a scalar

field. Since the energy conservation tells that ρ̇φ/ρφ = −βφH = −3 (1 +wφ)H, the previous

equation becomes

φ̇2

2ρφ
=
βφ
6

=
1 + wφ

2
. (5.11)

This means that the ratio between kinetic energy and the total energy density of the

Quintessence must remain constant in the regime given by (5.8). The two extreme regimes,

when the kinetic energy becomes dominant or negligible with respect the total energy den-

sity, provide two limits for the equation of state of the Quintessence: wφ = −1 if φ̇2 is

negligible, yielding ρφ = constant and a Cosmological Constant behavior; wφ = 1 if φ̇2 is

dominant with ρφ ∝ a−6.

In the epoch when the perfect fluid dominates, the scale factor evolves with time

as a ∝ t2/βf , thus the Klein-Gordon equation (5.2) can be rewritten as

φ̈+
6

βf t
φ̇+

dV

dφ
= 0 . (5.12)

Substituting the power law behavior (5.8) into its conservation equation (5.10), we obtain

the time-evolution of φ̇ as a function of βf and βφ

φ̇ ∝ t−βφ/βf . (5.13)
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We are able now to determine the shape of the potential V (φ) in order to have tracking

solutions for ρφ. In fact the solution of the previous equation, that depends on the ratio

βφ/βf , is

φ ∝





ln t (βf = βφ)

At1−βφ/βf (βf 6= βφ)
, (5.14)

substituting this result into Eq. (5.12) and solving for the scalar field potential, we obtain

V (φ) =





2
λ2

(
6
βf
− 1
)
e−λφ (βf = βφ)

6−βφ
2βφ

(
1− βφ

βf

)2
A2−γφγ (βf 6= βφ)

, (5.15)

that can be rewritten also in terms of the equation of state of the perfect fluid and

Quintessence:

V (φ) =





2
λ2

1−w
1+we

−λφ (w = wf = wφ)

1
2

1−wφ
1+wφ

(
wf−wφ
1+wf

)2
A2−γφγ (wf 6= wφ)

, (5.16)

where λ and A are constant of integration and γ = 2βφ/(βφ − βf ).

The potential found when βf = βφ is the well investigated exponential potential

(Lucchin & Matarrese 1985; Halliwell 1987; Burd & Barrow 1988) for the limiting case where

ρφ � ρf . Providing βf/λ
2 < 1, this potential has a tracker solution with ρφ =

(
βf/λ

2
)
ρtot

as a unique late-time attractor (Wetterich 1988a, Ratra & Peebles 1988). In order to provide

acceleration, the Quintessence energy density may not scale as the dominant component

(matter) today, and some mechanism must be invoked to break such behavior (Wetterich

1988a; Liddle & Scherrer 1998).

The class of potentials found when βf 6= βφ are power law potentials with exponent

γ, including the inverse power law potential studied by Ratra and Peebles (1988). To have

a growing Quintessence energy density compared to the perfect fluid, that means βf > βφ,

we need a negative γ otherwise we have that ρφ decrease more rapidly than ρf . We can

express βφ in terms of γ and βf obtaining

βφ =
γ

γ − 2
βf . (5.17)

This relation shows that, in order to have scaling solutions for a positive power law potential,

the exponent γ must be restricted to γ > 2 because both βf and βφ are positive. Eq. (5.17)
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can be rewritten in terms of the equation of state as

wφ =
γwf + 2

γ − 2
. (5.18)

Thus, following Liddle and Scherrer (1998), we have classified all the potentials that show a

scaling behavior for Quintessence energy density, they are exponential, yielding a Quintessence

energy density scales as the dominant cosmological component, or negative (inverse) power

law in which the Quintessence energy density decreases less rapidly than the dominant per-

fect fluid. For positive power laws, the Quintessence energy density decreases more rapidly

than the dominant component.

Now we turn to study the attractor properties of the power law potentials. For

convenience we rewrite the power law potential as V (φ) = V0φ
γ , thus Eq. (5.12) can be

rewritten as

φ̈+
6

βf t
φ̇+ φγ−1 = 0 , (5.19)

where V0 has been absorbed simply rescaling t; thus A becomes

A =

[(
2

γ − 2

)(
6

βf
− γ

γ − 2

)] 1
γ−2

. (5.20)

With the change of variables t = ey, u(y) = φ(y)/φe(y) (Ratra & Peebles 1988; Liddle

& Scherrer 1998), being φe(y) the exact solution given by Eqs. (5.14) and (5.20), the

Klein-Gordon equation (5.19) becomes

d2u

dy2
+

(
6

βf
− 4

γ − 2
− 1

)
du

dy
+

2

γ − 2

(
γ

γ − 2
− 6

βf

)(
u− uγ−1

)
= 0, (5.21)

that can be split into a system of differential equations:





du
dy = p

dp
dy = −

(
6
βf
− 4

γ−2 − 1
)
p− 2

γ−2

(
γ
γ−2 − 6

βf

) (
u− uγ−1

) . (5.22)

This system has three critical points, for which the scalar field asymptotically approaches

the exact solution φe with φ̇ = 0, they are located at p = 0 and u = 0, ±1 in the (u, p)

plane. In order to have attractors in the phase space, the critical points must be stable.

While (u = 0, p = 0) is always unstable (saddle point), the stability of (u = ±1, p = 0)
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Figure 5.1: Tracking trajectories with different initial conditions in the phase plane (u, p)
for radiation dominated (first row) and matter dominated (last row) eras for power law
potentials. The power law slope is γ = −6 in the first column and γ = 12 in the second
column. The trajectories spiral inwards joining the attractor.

depends on the shape of the potential, i.e. on γ (Liddle & Scherrer 1998), thus the stability

conditions can be written as

γ < 2
6 + βf
6− βf

(γ < 0) , (5.23)

γ > 2
6 + βf
6− βf

(γ > 0) . (5.24)

For γ negative the inequality is always verified; on the other hand for positive values of γ

the stability condition may not be verified. Thus the inverse power law potential possesses

always stable attractors, while the power law potentials with positive exponent have stable

attractors only for sufficiently large values of γ depending on the dominant perfect fluid. For

example in radiation domination (βf = 4) the attractor scaling solutions exist for γ > 10,

while for matter domination (βf = 3) the stability condition gives us γ > 6. In Fig. 5.1

we plot tracking trajectories both in the radiation and the matter dominated epochs for
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positive and negative power laws. Making a rough analysis, the trajectories that cross the

u = 0 axis correspond to solutions in which the scalar field oscillates around its minimum

in the potential, while trajectories confined in the semi-plane u > 0 or u < 0 correspond to

solutions in which φ approaches its minimum without oscillating.

The relevant property of the potentials discussed above is that for a wide range of

initial conditions, the trajectories of the scalar field approach some critical points (see Fig.

5.1) providing a classical solution to the fine-tuning problem of the Cosmological Constant.

The introduction of a scalar field is motivated by several reasons, also physical and not only

phenomenological; one is that it arises naturally in unified theories and is a necessity in

supersymmetric theories where it plays the role of supersymmetric partners of the standard

model fermion fields. Many potentials have been introduced in the literature; here we briefly

review four relevant potentials that have been studied, and their theoretical origin.

• Quadratic potential: V (φ) = 1
2m

2φ2.

This potential was introduced in the chaotic inflation scenario by Linde (1983) and

the only free parameter is the mass m of the field that should be m =
√

2Ωφρc/MP '
10−33 eV if the field today has the value of the Planck mass (Brax, Martin & Riazuelo

2000) and has to provide acceleration. Since this value is very tiny, a problem analogue

to having a very low value of ρφ arises. Thus, in this case, the introduction of the

Quintessence does not solve the problems listed in Sec. 2.3 affecting the Cosmological

Constant, not even the fine-tuning. In addition, according to Eq. (5.17) that imposes

γ > 2, this potential does not present attractors.

• Exponential potential: V (φ) = M 4e−λφ.

This potential leads to a “time-varying” Cosmological Constant, which has a late time

asymptotic solution characterized by a constant ratio ρφ(t)/ρ(t) (Wetterich 1988) as

we have already seen in the above discussion. Exponential potentials arise naturally in

all models of unification with gravity as Kaluza-Klein theories, supergravity theories

or string theories (see e.g. Green, Schwarz & Witten 1987 and references therein). As

we already have shown, this potential has only one attractor depending on the value

of λ (Wetterich 1988a; Copeland, Liddle & Wands 1998).



Chapter 5: Dark energy models 79

• Ratra-Peebles potential: V (φ) = M4+α

φα with α > 0.

The inverse power law potential was first studied by Ratra and Peebles (1988). As

we shown above, this potential possess two attractors in the phase plane for all the

values of α and allows attracting tracking solutions for ρφ. The inverse power law

potentials V ∝ φ−α arise in super-symmetric gauge theories (Binetruy 1999); and is

generated at low energy. This model has been developed in order to reconcile the

phases of cosmic evolution when the scalar field is dominant, with the phase in which

φ becomes subdominant.

• Supergravity inspired potential: V (φ) = M4+α

φα e
1
2

“
φ
MP

”2

with M2
P = 1

8πG .

This potential is derived from applying correction originating from supergravity effects

to the inverse power law potentials. In particular Brax and Martin (1999, 2000)

showed that inverse power law models leading to Quintessence are stable against

quantum corrections, both in the supersymmetric and non-supersymmetric cases.

We discuss now the latter two potential in some more details, as they well represent the

different dynamics that the dark energy might have, and we shall use them as sort of

reference models in the next chapter.

5.2.1 Ratra-Peebles potential

As above, we may write the Ratra-Peebles (RP) potential as

VRP (φ) =
M4+α

φα
. (5.25)

If the Quintessence is subdominant, the attractor is characterized by ρφ ∝ a−4/(α+2). This

potential depends on two free parameters: the energy scale M and the index α > 0. A

remarkable feature is that the two attractive tracking solutions in the phase plane, shown

in Fig. 5.1, exist independently on the value of α and the energy scale M . The index α is a

priori a free parameter that determines the shape of the potential, whereas the energy scale

is fixed by the requirement that Ωφ ' 0.7 today (see e.g. Zlatev, Wang & Steinhardt 1998).

The relation between M and Ωφ can be obtained as follows if at the present, φ ≈ MP ;

substituting this condition into Eq. (5.25) and neglecting the kinetic term into Eq. (2.27)
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we obtain

M ≈ (ΩφρcM
α
P )

1
α+4 . (5.26)

To give an order of magnitude, fixing α = 6 we have M = 106 GeV.

The Klein-Gordon equation with the RP potential in the radiation and in the

matter domination era has exact tracking solutions for the evolution of φ that are both

attractors; according to Eq. (5.14) they are

φ ∝





a−
4

α+2 (radiation era)

a−
3

α+2 (matter era)
. (5.27)

consequently, using Eq. (5.17), the Quintessence energy density scales with a as

ρφ ∝





a−
4α
α+2 (radiation era)

a−
3α
α+2 (matter era)

. (5.28)

while the equation of state is

wφ = − 2

α+ 2
. (5.29)

Since ρφ evolves slower than radiation and matter, the Quintessence becomes the dominant

component at some stage of the cosmic evolution, depending essentially on M .

To quantify the properties of the family of inverse power law potentials we fix the

index α = 6, we require that Ωφ = 0.7, obtaining M ≈ 4.8 × 106 GeV from (5.26) and we

assume that φ is on track today. As pointed out by Steinhardt, Wang & Zlatev (1999),

this scenario possesses at least three important advantages. First, one can hope to avoid

the fine-tuning, as we mentioned already. Second, the solution will be on track today for

a huge range of initial conditions. In fact, fixing the initial condition at z = 1028 (the end

of inflation, see e.g. Dodelson 2003 and references therein), the allowed range of initial

values for the Quintessence energy density are 10−37GeV4 ≤ ρφ ≤ 1061GeV4, being the

lower and the upper bound approximately the background energy density ρf at equality

and at the initial time respectively. If φ starts at rest, this means that the initial condition

are 10−18MP ≤ φi ≤ 10−2MP . Third, the value of the Quintessence equation of state is

constrained automatically to −1 ≤ wφ ≤ 0; its precise value depends only on the functional

form of the potential, i.e. the slope α, once Ωφ is fixed.
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Figure 5.2: Quintessence equation of state wφ for Ratra-Peebles potential as function of α.
In order to be consistent with the current constraints, α must be in the range 0 < α < 0.5.

In the Ratra-Peebles scenario, if we require the present equation of state to be

in agreement with the current constraints (Spergel et al. 2003), say −1 < w < −0.8, the

exponent must be the range 0 < α < 0.5, yielding a shallow potential shape, see Fig.

5.2. At the present, the tracking regime is broken because the dark energy is no longer

a subdominant component, but the shallow potential shape makes the present equation

of state not far from the tracking one in Eq. (5.29), differing typically at the 10% level

(Baccigalupi et al. 2002).

5.2.2 SUGRA potential

A more physically realistic potential for φ has been built by Brax and Martin

(1999, 2000) taking into account Supergravity (SUGRA) corrections to the inverse power

law potential:

VS(φ) =
M4+α

φα
e

1
2

“
φ
MP

”2

. (5.30)

The exponential factor in (5.30) is a direct consequence of imposing that the expectation

value of the superpotential vanishes (Brax & Martin 1999; Copeland, Nunes & Rosati 2000).

The presence of the exponential term into the potential flattens the shape in the region
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Figure 5.3: Equation of state as function of redshift in logarithmic scale for the Ratra-
Peebles (solid line) and the SUGRA potential (dotted line) both having the same value
(−0.9) at the present. The other cosmological parameters are fixed to a concordance model
(see text). Due to the exponential factor in the SUGRA potential, the present value of the
equation of state is obtained with αRP = 0.34 for RP and αS = 1.76 for SUGRA.

corresponding to the late time evolution of the scalar field, leaving unchanged the dynamics

during the radiation and the matter era. Thus the SUGRA potential provides a solution to

the fine-tuning problem just as the RP one in typical tracking trajectories. Since the initial

value of φ is very small with respect the Planck mass, the exponential factor is not negligible

only at low redshift. Thus the evolution of the equation of state is almost unchanged with

respect the inverse power law potential at high redshifts (when φ�MP ) while is modified

at low redshift (when φ ' MP ). Qualitatively the exponential factor in (5.30) has the

effect to reincrease the potential energy in comparison to the kinetic one pushing down the

equation of state towards wφ = −1 when the kinetic energy vanishes. This means that a

given equation of state at present is obtained for values of α sensibly larger than in the RP

case, meaning that the dark energy dynamics, and thus the cosmological expansion rate, as

a function of the redshift, are generally sensibly different in the two cases.

To show the main phenomenological differences between the RP potential and the

SUGRA one we plot in Fig. 5.3 the equation of state for these two potentials imposing
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w = −0.9 today (the underlying cosmology is a flat FRW universe with h = 0.7, Ωbh
2 =

0.022, Ωcdm + Ωb = 0.3, Ωφ = 0.7, three species of massless neutrinos and a scale invariant

scalar perturbation spectrum with no gravitational waves). The small redshift behaviors

are similar for both models, since they have to converge to w = −0.9 for z → 0, whereas

at higher redshift the two Quintessence scenarios have a markedly different shape reflecting

the two different values of α required to have the same equation of state at the present;

specifically αRP = 0.34 for RP and αS = 1.76 for SUGRA. In other words, fixing the present

value of the equation of state the time evolution of w is greater for the SUGRA potential.

5.2.3 Quintessence perturbations

We examine now qualitatively and briefly how the Quintessence fluctuations mod-

ify the growth of matter density perturbations, represented in terms of the density con-

trast δm, with respect the Λ case (for more details see Ferreira & Joyce 1997; Perrotta

& Baccigalupi 1999 and references therein). As we see in a moment, on small scales the

Quintessence is smooth, thus its perturbations in energy density and pressure are negligi-

ble with respect to those of matter, and the evolution of δm is the same as the case with

Cosmological Constant (Caldwell, Dave & Steinhardt 1998). On super-horizon scales the

effect of Quintessence perturbations modify the growth rate of δm because the scalar field

clusters contributing to the energy density and pressure perturbations. Indeed, looking

at Eq. (5.5), we may notice that, as well as the background φ, also the perturbation δφ

behave as a scalar field with an effective mass given by m2
φ = d2V/dφ2. It is important to

associate to δφ the wavenumber kφ ∼ d2V/dφ2 and the wavelength λφ = k−1
φ characterizing

the different regimes in the Quintessence perturbation, massless for λ� λφ, and vice-versa

in the opposite regime. Since in typical Quintessence models the potential is flat in order

to provide acceleration, λφ is of the order of the horizon scale H−1 (Ma et al. 1999). This

is the reason why on sub-horizon scales (λ� λφ) the Quintessence perturbations δρφ do

not affect the evolution of δm, as δφ behaves as scalar radiation, as we anticipated above.

On the other hand, on large scales (λ� λφ) the Quintessence perturbation δρφ may grow,

dragged by the background dynamics (Brax, Martin & Riazuelo 2000), leading to a clus-

tering of the scalar field and affecting the evolution of the matter density contrast. The
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influence of perturbations in the Quintessence field on growth of matter perturbations are

evident when we compare the matter transfer function of a Quintessence model with that

of a ΛCDM model. On scales smaller than λφ the transfer functions are indistinguishable,

while on scales larger than λφ a bump occurs in Quintessence models with respect to ΛCDM

cosmologies, powered by the Quintessence fluctuations (Ma et al. 1999). We do not push

our analysis further. Indeed, for equation of state consistent with the present constraints

(Tegmark et al. 2004), such effect is modest (Ma et al. 1999).

The qualitative behavior of Quintessence perturbations shown above is not unique

and tightly depends on the way in which we model the Quintessence. For example, with

the action (5.1) of the Extended Quintessence, the energy density perturbations δρφ can be

non-vanishing also if δφ→ 0 (Perrotta & Baccigalupi 2002). This behavior is caused by the

metric induced perturbations, related to the Ricci scalar that couples with the scalar field

itself. Since the growth in the matter perturbations may drag the Extended Quintessence

density perturbations to a non-linear regime, the formation of Quintessence clumps also on

sub-horizon scales cannot be excluded, and this possibility is under investigation by several

authors (Perrotta & Baccigalupi 2002; Amendola 2004).

5.3 A phenomenological approach

From a phenomenological point of view, it is very difficult to get some general

information constraining some particular Quintessence model from observations. In fact, as

we have seen, several Quintessence potentials have been proposed in these years; a common

feature of almost all of them is that they lead to a similar late time behavior. On the

other hand we can approach the problem from another point of view, parameterizing the

Quintessence equation of state in terms of known observables. This approach allows us to

study the Quintessence effects in cosmology without any specification about the potential of

the scalar field. On the other hand, we loose a proper treatment of Quintessence fluctuations.

Since the Quintessence becomes dominant only in the recent cosmological epochs,

it is useful to parameterize the equation of state at low redshifts. This has been done by

several authors, and here we concentrate on the model proposed by Chevallier & Polarski
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(2001) and fully developed by Linder (2003). Very detailed models to parameterize the dark

energy equation of state exist (see e.g. Corasaniti & Copeland 2003 and references therein),

but the easiest way to do that is to expand w into Taylor’s series around z = 0 obtaining

w(z) = w0 + w1z , (5.31)

where w0 = w(0) is the value of the equation of state today and w1 = w′(0) is its redshift

derivative at the present. Although very easy, for z � 1 this parameterization leads to

a diverging w, producing unsuitable effects on the distance to the last scattering surface,

linear growth rate of perturbations, etc.

A new parameterization, as proposed by Chevallier and Polarski (2001) and Linder

(2003), consists in the expansion of the equation of state in Taylor’s series as a function of

the scale factor a instead of the redshift z. Thus the expansion around the present time

will be at a = 1 instead of z = 0, giving

w(a) = w0 + wa(1− a) . (5.32)

Recalling the relation between the scale factor and the redshift a = 1/(1 + z), the former

relation becomes

w(z) = w0 + wa
z

1 + z
. (5.33)

The model (5.33) keeps both the mathematical simplicity, with only two free parameters,

and the physical interpretation of (5.31) having several advantages. First of all, the model

(5.33) does not show the linear growth of (5.31) at high redshift while at low redshift the two

models reproduces to the same behavior. Second, as we shall show later with an example,

the parameterization (5.33) mimics with an high accuracy the equation of state of many

scalar field models and the derived distance-redshift relations. Third, it is a convenient way

to compare the predictions in dark energy cosmologies with the observational data. The

only issue is that Eq. (5.33) is not able to reproduce the equation of state for the potentials

yielding an oscillating or rapid evolution behavior for the scalar field. In Fig. 5.4 we plot

the equation of state as a function of redshift for the model (5.33) and SUGRA fixing for

both models the value of the equation of state today to w0 = −0.9; wa is set to reproduce

the SUGRA one at z = 1 yielding wa ≈ 0.4. The accuracy of the model (5.33) in matching
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Figure 5.4: Comparison between the dark energy equation of state as modelized in Eq.
(5.33) (solid line) and the SUGRA potential (dotted line). Both the models have the same
present value of the equation of state, w0 = −0.9, while wa ≈ 0.4.

the equation of state for the SUGRA behavior, in the range of redshift plotted in the figure

(which is relevant because the dark energy starts to show its effects on the expansion rate),

is always between 1.6 % and −1.8%.

We close this section rewriting Eq. (5.33) in a more convenient way as

w(z) = w0 + (w∞ − w0)
z

1 + z
, (5.34)

where w0 is the same as in (5.33) and w∞ is the asymptotic value, for z →∞, of the dark

energy equation of state. Using the previous form of the equation of state, it is easy to see

that the Quintessence density parameter scales with the redshift as

ΩV (z) = ΩV (1 + z)3(1+w∞) exp

[
3 (w0 − w∞)

z

1 + z

]
. (5.35)

The form (5.34) of the model described in this section will be widely used in the next

chapter.
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Figure 5.5: Effects of varying w0 on CMB power spectrum. The two models differ only
on the value of the present value of the equation of state, assumed constant in time, being
w0 = −1 (solid line) and w0 = −0.8 (dotted line); the other parameters are fixed to the
concordance model of Fig. 3.3. The two power spectra are normalized to the first acoustic
peak, which is essentially equivalent to fix the primordial power.

5.4 Present constraints on the equation of state

Measures of the Quintessence equation of state come mainly from CMB, SNIa and

LSS. In this Section we review the main effects of the dark energy on CMB and LSS, and

the existing constraints. For w > −1, the Quintessence geometrically reduces the distances

with respect to the Cosmological Constant. The comoving distance to the last scattering

surface, located at redshift zls ' 1100 depends on the Quintessence parameters through the

relation

r (zls) = H−1
0

∫ zls

0

dz√
Ωm(1 + z)3 + ΩV (1 + z)3(1+w0)

, (5.36)

where for simplicity we assumed w = w0 constant; r (zls) is clearly reduced when w0 moves

from −1 to higher values. The displacement of the last scattering surface shifts all the

acoustic features in the CMB power spectrum toward lower multipoles that correspond to

larger angular scales in the sky. This projection clearly affects all the cosmological objects

in the Universe including the LSS. A different mechanism modifies the late ISW effect on

the CMB power spectrum at low multipoles (l < 10) produced by the low redshift (z < 10)
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Figure 5.6: Effects of varying w0 on present matter power spectrum, normalized to the same
primordial amplitude on large scales (left panel), and on the growth factor of linear pertur-
bations, normalized to the same value at present (right panel). The underlying cosmology is
fixed by the model described in the text, the same as Fig. 5.5, and the dark energy is mod-
eled with a Cosmological Constant (solid line) and a Quintessence with present equation of
state fixed to w0 = −0.8.

dynamics of the gravitational potentials. For w > −1, the changing in the cosmic equation

of state begins at higher redshifts with respect to the Cosmological Constant case. This

increases the gravitational potential dynamics, and the ISW is consequently stronger. In

Fig. 5.5 we show the effects of varying w0 on the CMB power spectrum.

The influence of the Quintessence on the LSS is reflected into the mass power

spectrum. Both in the Cosmological Constant and the Quintessence model the perturbation

growth is inhibited by the domination of the dark energy at low redshift. In fact the presence

of a dark energy component makes larger the Hubble parameter H(z) that acts as a friction

term in the cosmological perturbation equations involving the first time-derivatives of the

perturbations. Consequently, Quintessence and Cosmological Constant lead to different

growth of density perturbations. Therefore, normalizing to the same power in the early

Universe, we have a lower mass power spectrum in Quintessence models compared to that

of a Cosmological Constant, because H(z) is bigger. The effect of varying w0 on the matter

power spectrum is shown in the left panel of Fig. 5.6; while in the right panel we plot the

growth factor, normalized to the same value at present.

To measure the dark energy equation of state we can cross correlate the information

enclosed in the CMB power spectrum, in the mass power spectrum of the LSS and in SNIa

data. At the present the constraints on the equation of state have been derived from the
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w0 Dataset

Spergel et al. (2003) w0 = −0.98 ± 0.12 WMAPext+2DF

Tegmark et al. (2004) w0 = −1.05+0.13
−0.14 WMAP+SDSS

Sanchez et al. (2005) w0 = −0.85+0.18
−0.17 WMAPext+VSA+2DF

Mac Tavish et al. (2005) w0 = −0.94+0.094
−0.096 WMAPext+VSA+B03+2DF+SDSS

Table 5.1: Summary of the most recent measures of the present value of the dark energy
equation of state. In all dataset SNIa are included (See references in first column for further
details).

CMB (mainly with the projection effect as the ISW is dominated by the cosmic variance)

and LSS. The CMB data come from WMAP+CBI+ACBAR (WMAPext, Spergel et al.

2003), and the three-dimensional power spectrum from over 2×105 galaxies from the Sloan

Digital Sky Survey (SDSS, Tegmark et al. 2004a). The analysis assumed a constant equation

of state. Combining WMAPext with the 2 Degrees Field (2DF) data Spergel et al. (2003)

obtain w0 < −0.78 (95 % c.l.), imposing w0 > −1, and w0 = −0.98 ± 0.12 dropping the

prior. On the other hand, the results from Tegmark et al. (2004) are w0 = −0.72+0.34
−0.27 with

only WMAP data, and w0 = −1.05+0.13
−0.14 including also SDSS and SNIa data; they varied the

baryon density, the dark matter density, the dark energy density, the scalar spectral index,

the amplitude of scalar fluctuations, the optical depth and assumed no spatial curvature and

no gravitational waves; an additional hypothesis made on the dark energy is that does not

cluster (i.e. is homogeneous). Very recently Sanchez et al. (2005) obtained w0 = −0.87+0.12
−0.12

combining the WMAPext data, the Very Small Array (VSA, Dickinson et al. 2004) data,

the final 2DF data (Cole et al. 2005) and the SNIa data (Riess et al. 2004); while the value

from Mac Tavish et al. (2005) is w0 = −0.94+0.094
−0.096 with the same dataset of Sanchez et

al. (2005) plus the BOOMERanG 2003 data (B03) and the SDSS data. In Tab. 5.1 we

summarize the main measures of w0. The effect of dropping the prior on w0 on the other

parameters is similar to those of dropping the flatness assumption. This behavior is easy to

understand physically: as we reported above a change in w0 essentially leads to a shift in

the CMB peaks, plus a small modification in the late ISW and a change in the amplitude

in the matter power spectrum. The same projection effect is reproduced by the curvature,

yielding a degeneracy in the angular diameter distance that can be broken by the late ISW
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effect. On the other hand the latter is affected by the cosmic variance.

In conclusion, all the significant constraints obtained so far on the equation of

state assumed a constant redshift behavior. On the other hand, if the dark energy were

described by such a behavior, the observations are so far consistent with a Cosmological

Constant, with a few percent accuracy. The question of the comparison of a realistic,

redshift dependence Quintessence equation of state is currently completely open. In the

next chapter we shall try to quantify how the knowledge of the CMB three point statistic

can improve the previous analysis, considering the weak lensing dependence on w0, w∞ and

ΩV ; the treatment is based on the analysis carried out in Ch. 4.



Chapter 6

CMB bispectrum and high redshift

expansion rate

In the previous chapter we developed the tools necessary to compute and study the

CMB anisotropy three-point statistics in the angular domain, in a variety of cosmological

models, involving in particular a dynamical dark energy component. We saw how the

lensing power, causing a non-Gaussian distortion in the primary CMB image, is injected

at an epoch corresponding to the onset of cosmic acceleration and structure formation,

being zero earlier and at the present; we therefore expect an enhanced sensitivity of this

CMB observable to the cosmic behavior at that epoch, and in particular to the dark energy

dynamics. In this chapter we provide a first quantification of such expectation, showing

in particular how the knowledge of the CMB bispectrum from lensing, i.e. the three-point

anisotropy statistics in the angular domain, can improve a conventional analysis based on

the CMB power spectrum in constraining the dark energy dynamics. In Sec. 6.1 we outline

the main phenomenology highlighting the complementarity between the two observables; in

Sec. 6.2 we evaluate and study the expected signal to noise ratio relative to the bispectrum

detection for the present and forthcoming CMB probes; in Sec. 6.3 we make a likelihood

analysis for power spectrum, bispectrum and their combination, focused on the dark energy

abundance and dynamics.

91
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6.1 Bispectrum vs. power spectrum

The primordial CMB power spectrum and the bispectrum induced by lensing carry

complementary information on the cosmological expansion history since they acquire their

signal at very different epochs. The dominant power spectrum contribution arises at decou-

pling, when the Universe becomes transparent to the radiation and the photons last scatter;

typically this occurs at redshift zls = 1100 (about 300000 years after the Big Bang). At that

epoch, and in most cosmological models, the dark energy contribution to the cosmological

expansion rate is negligible. Thus, as we anticipated in the previous chapter, the dark

energy affects the CMB power spectrum mainly via a projection shift, since its presence

modifies the comoving distances shifting the acoustic peaks:

r(zls) = H−1
0

∫ zls

0

dz√
Ωm(1 + z)3 + ΩV ef(z)

, (6.1)

where

f(z) = 3

∫ z

0
dz′

1 + w(z′)
1 + z′

. (6.2)

In models with w(z) > −1, the distance to the last scattering is reduced. Since the physical

scales associated with the acoustic oscillations do not depends on the dark energy, as we

stressed above, the contraction of r(zls) results in a shift of the acoustic peaks toward

smaller multipoles, i.e. larger angles. We made this argument clear in Sec. 5.4, but here

in addition we see how the redshift dependence of w on z is washed out by two integrals.

This clearly makes problematic the study the dark energy dynamics with the CMB power

spectrum only. Such analysis is also affected by a degeneracy between dark energy equation

of state and dark energy abundance, i.e. combinations of ΩV and equation of state keeping

r(zls) constant; such degeneracy becomes worse when we take into account the dark energy

dynamics.

On the other hand the bispectrum signal arises when the dark energy starts to

influence the cosmic expansion, as shown in Sec. 4.1. To show how the bispectrum breaks

the projection degeneracy, we plot in Fig. 6.1 the power spectrum and the equilateral

bispectrum for three cosmological models having roughly the same distance to the last

scattering surface. The three models differ only for the dark energy parameters ΩV , w0
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Figure 6.1: Power spectrum (left) and equilateral bispectrum (right) for different dark
energy models with approximately the same distance from the last scattering surface. The
models are: ΩV = 0.75, w0 = −0.76 and w∞ = −0.76 (solid line); ΩV = 0.74, w0 = −0.92
and w∞ = −0.80 (dashed line); ΩV = 0.73, w0 = −1 and w∞ = −1 (dotted line).

and w∞ while the other parameters are fixed to concordance model, already used in Ch.

4, and the energy densities of the other components vary with ΩV in order to keep a flat

cosmology. In the power spectra the position of the acoustic peaks remains almost the same

independently on the dark energy model; the three curves are almost superposed except for

the amplitude of the first acoustic peak, due to the different ISW effect amplitude, and the

fact that the curves are normalized to l = 10.

The situation is very different looking at the equilateral bispectrum; here the

position in multipole of the transition between linear and non-linear regime (the “cusp”) in

the growth of cosmic structures is shifted by tens of multipoles, as a result of the different

growth rate of structures. The amplitude of the bispectrum in the tail powered by the

linear regime mainly determines the position of the cusp since the non-linear one exhibits a

weaker dependence on the expansion rate: the higher is the power in the linear regime, the

higher is the multipole at which the transition from linear to non-linear regime occurs. This

behavior can be better understood plotting the linear perturbation growth factor (4.11),

normalized to the same value at the present, for the dark energy models of Fig. 6.1, in

Fig. 6.2. As we can see, the different dark energy parameters modify the growth factor: for

those models in which the growth factor exhibits a larger dynamics, the cusp is shifted at

higher multipoles. As is evident, the curve corresponding to the Λ model is sensibly smaller

at almost all epoch, while the curve of the dark energy with more dynamics is the highest.
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Figure 6.2: Growth factors as function of redshift for the same cosmological models of
Fig. 6.1: ΩV = 0.75, w0 = −0.76 and w∞ = −0.76 (solid); ΩV = 0.74, w0 = −0.92 and
w∞ = −0.80 (dashed); ΩV = 0.73, w0 = −1 and w∞ = −1. (dotted)

Correspondingly, the change at low redshifts, i.e. when the dark energy starts to dominate

the expansion, is stronger in the scenario with a strong time variation of w(z), inducing a

larger amplitude for the derivative factor F (l, z) > 0 tail in the line of sight integral (4.28),

and pushing the dominance of the linear power in the curves in Fig. 6.1 to smaller scales

(Giovi, Baccigalupi & Perrotta 2003). To have a better insight in this central aspect, in Fig.

6.3 we plot the hypersurfaces of equal distance to the last scattering surface (left panel)

and those of equal position of the cusp of the equilateral bispectrum in the multipole space

(right panel) in the space of the dark energy parameters considered here. As we can see, the

distance degeneracy produces hypersurfaces almost flat and orthogonal to the ΩV direction;

this dependence is very clear looking at the expression (6.1), in which the dynamics of the

dark energy is washed out by two integrals, as we already stressed. The variation of the

dark energy abundance simply shifts the hypersurface of equal distance. On the other hand,

the degeneracy in the cusp position is more complex to interpret because, as we have seen

above, the dark energy parameters enter in the computation of the bispectrum in several

ways, from geometry and perturbations. What matters here is that the hypersurfaces are

clearly misaligned, making them complementary for dark energy studies.
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Figure 6.3: Left panel: hypersurfaces of equal distance to the last scattering surface. Right
panel: hypersurfaces of equal cusp position in the multipole space.

6.2 Bispectrum’s signal to noise ratio

We have shown how the equilateral bispectrum possesses promising properties

which may reduce the projection degeneracy that affects the power spectrum when studying

the dark energy. Of course in real observations the bispectrum is a noisy observable, polluted

by cosmic variance even before the instrumental noise. Indeed, even for a perfect Gaussian

statistics, the CMB sky is a realization of that, featuring a residual rms power also where

the average is expected to be zero, such as in the CMB anisotropy three point power. On

the other hand, just like for the ordinary CMB power spectrum, such uncertainty may be

predicted in detail, as we show here. In this section we want to evaluate the signal to noise

ratio of the bispectrum in the general case. We need to write the expression of the noise

for the bispectrum, i.e. the covariance matrix of Bl1l2l3 (Luo 1994; Heavens 1998; Gangui

& Martin 2000a). Recalling the formalism developed in Ch. 4, the covariance matrix of

(4.20) is

〈
Bl1l2l3Bl′1l′2l′3

〉
=

=
∑

mm′


 l1 l2 l3

m1 m2 m3




 l′1 l′2 l′3

m′1 m′2 m′3



〈
al1m1al2m2al3m3a

∗
l′1m
′
1
a∗l′2m′2a

∗
l′3m
′
3

〉
=
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= Cl1Cl2Cl3

[
δ
l′1
l1
δ
l′2
l2
δ
l′3
l3

+ δ
l′3
l1
δ
l′1
l2
δ
l′2
l3

+ δ
l′2
l1
δ
l′3
l2
δ
l′1
l3

+ (6.3)

+ (−1)l1+l2+l3
(
δ
l′1
l1
δ
l′3
l2
δ
l′2
l3

+ δ
l′2
l1
δ
l′1
l2
δ
l′3
l3

+ δ
l′3
l1
δ
l′2
l2
δ
l′1
l3

)]
,

where δ
lj
li

is the Kronecker’s Delta. We also assumed a weak non-Gaussianity, so that the

coupling between different scales is small, making the off-diagonal terms vanishing and the

covariance matrix is diagonal. For l1 + l2 + l3 = even the bispectrum variance is written in

terms of the power spectrum Cl as

(
σBl1l2l3

)2
= nl1l2l3Cl1Cl2Cl3 , (6.4)

where nl1l2l3 is defined as:

nl1l2l3 =
(

1 + δl2l1 + δl3l2 + δl1l3 + 2δl2l1 δ
l3
l2

)
. (6.5)

The bispectrum variance depends on the triangular configuration, indeed the factor n l1l2l3

takes the value 1 if all the multipoles are different, 2 if two multipoles are equal and 6

if the three multipoles are all equal. This means that when we explore the l space with

equilateral triangles the bispectrum variance is amplified by a factor 6 with respect the

scalene triangles; if we use isosceles triangles the amplification reduces to a factor 2.

We are now able to estimate the bispectrum variance. First of all we assume

an ideal experiment with full sky coverage, so that the only source of error is the cosmic

variance
(
σBl1l2l3

)2
; later we shall consider the instrumental noise. It is important to note

that the single bispectrum coefficients are usually dominated by the cosmic variance. To

give an idea of the magnitude of the signal we are studying, with respect to the case of

the power spectrum, at l ≈ 200 the value of the bispectrum is of the order of Bl ≈ 10−21

whereas the error (including only the cosmic variance) is of the order of C
3/2
l ≈ 10−19. At

higher multipoles it gets worse. The situation changes remarkably if we consider the whole

set of triangles (equilateral, isosceles and scalene), increasing the statistics and making the

bispectrum detectable; to show that we consider the signal to noise ratio (Hu 2000 and

references therein):
(
S

N

)2

=

lmax∑

l1,l2,l3=lmin

B2
l1l2l3

nl1l2l3Cl1Cl2Cl3
. (6.6)
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Figure 6.4: Bispectrum signal to noise ratio as function of lmax for a cosmic variance ex-
periment (solid line), Planck nominal noise (dotted line) and two years WMAP nominal
noise (dashed line). The cosmology corresponds to a model with ΩV = 0.73, w0 = −1 and
w∞ = −0.8; the other parameters are fixed accordingly to the cosmic concordance model.

According to the approximation made in Ch. 4 in order to evaluate Bl1l2l3 , we adopt the

lower limit lmin = 10 in the sum above. The expression (6.6) includes the contributions

from all multipole configurations. The equilateral ones account for lmax terms, which is

just a small fraction of all the l3max terms; this makes clear how the scalene configurations

represent the bulk of the bispectrum power.

In Fig. 6.4 we plot the signal to noise ratio as function of lmax up to lmax = 1500

for three cases: cosmic variance only, Planck nominal noise and two years WMAP nominal

noise, see Tab. 6.1. We don’t take into account systematics and foregrounds and a full sky

coverage is assumed; while those issues are more or less under control when measuring the

CMB spectrum power, since the bispectrum signal is second order, it is natural to expect

enhanced challenges for its measure. Some preliminary considerations on this issue shall

be discussed in the next chapter. For comparison to (6.6), the nominal noise on the single

power spectrum coefficient for a multichannel experiment is given by

(∆Cl)
2 ≈ 2

2l + 1

(
Cl +

1

wtotB2
l

)2

, (6.7)
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WMAP Planck (LFI) Planck (HFI)

νc (GHz) 40 60 90 44 70 100 143 217 353
θc(”) 31.8 21 13.8 24 14 9.2 7.1 5.0 5.0
σc(×10−6) 4.1 9.4 21.8 2.7 4.7 2.0 2.2 4.8 14.7

Table 6.1: Experimental Parameter for WMAP and Planck. From Balbi et al. (2003).

where wtot ≡
∑N

c=1wc ≡
∑N

c=1 (σcθc)
−2 and Bl ≡

∑N
c=1B

2
c,l(wc/wtot) being N the number

of channels c, σc the average sensitivity per pixel, θc the FWHM angular resolution and Bc,l

the Gaussian beam response (see Balbi et al. 2003 and references therein). The specifica-

tion of the main parameters in (6.7) are tabled into Tab. 6.1 for the WMAP and Planck

experiments. Since the single bispectrum coefficient has a very low amplitude, we need to

sum up all the signal in order to achieve as a signal to noise ratio larger than 1. In this

discussion we adopted a cosmological model with ΩV = 0.73, w0 = −1 and w∞ = −0.8,

the other cosmological parameters are set to our concordance model already used in Ch. 4.

The behavior of the signal to noise ratio for Planck and WMAP is qualitatively the same:

first the S/N rises, then it reaches a plateau. The plateau means that adding terms in the

sum no extra information is gained as the signal vanishes below the cosmic variance and the

instrumental noise. The multipole at which the plateau is reached is lp ' 400 for WMAP

and lp ' 1000 for Planck. In the following we restrict our analysis including only the cosmic

variance and probing the bispectrum up to lmax = 1000; as shown in Fig. 6.4 these results

are therefore representative of an experiment with the nominal performance of Planck.

The signal to noise ratio (6.6) is a total compression of the bispectrum’s signal

and is useful to investigate its detectability, but lacks the information of how the signal is

distributed in l. A one-dimensional quantity which contains the contributions from all the

possible configurations, but marginalizes over two of the three multipoles, is

Bl1 =

lmax∑

l2,l3=lmin

Bl1l2l3 , (6.8)

where we take lmin = 10 and lmax = 1000 above; Bl1 is an indicator of the multipoles

from which the bispectrum takes its power. In Fig. 6.5 we plot Bl1 , and we see that

the bispectrum receives most of its contributions at multipoles between 200 and 400. This



Chapter 6: CMB bispectrum and high redshift expansion rate 99

200 400 600 800 1000

-7.5

-5

-2.5

0

2.5

5

7.5

l1

B l1

Figure 6.5: Bispectrum in units of 10−20 as a function of l1 only, obtained by marginalization
over l2 and l3; the cosmological model used is the same of Fig. 6.4. The small scale, positive
and negative oscillations are due to the Wigner’s 3J symbols; the large scale modulation is
a physical feature related to the primordial acoustic peaks.

region is close to the maximum primordial power in the first acoustic peak, consistently with

previous analysis (Spergel & Goldberg 1999). The remaining part of the signal is made of a

relevant part at low multipoles, probably due to the rise of the overall bispectrum power (see

Fig. 4.10), plus a series of oscillations with varying amplitudes. The latter may be related

to the series of peaks in the primordial power spectrum. Finally, the positive and negative

high frequency oscillations are entirely due to the behavior of the 3J Wigner symbols.

6.3 The impact of the bispectrum coefficients on the cosmo-

logical parameter estimation

We now discuss how the bispectrum improves the CMB sensitivity to the high

redshift behavior of the dark energy with respect the power spectrum alone. As we already

stressed, the power spectrum suffers the degeneracy of the comoving distance to the last

scattering surface relatively to different values of the dark energy parameters. On the other

hand the CMB bispectrum from weak lensing receives the relevant contribution at structure
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formation, probing the dark energy behavior at that epoch (Giovi, Baccigalupi & Perrotta

2003), and we do expect a benefit from the combination of the two observables. We evaluate

such benefit by means of a likelihood analysis on simulated data, which we describe here.

Due to a considerable computational difficulty in evaluating the bispectrum for all

coefficients and in different cosmological models, most of the cosmological parameters are

fixed according to the cosmological concordance model; we shall perform only a variation

of the dark energy parameters ΩV , w0 and w∞, which allows us to build a grid of Cl and

Ql values. Then, spanning over our parameter space, we calculate the bispectrum by mean

of the relation (4.21). Once we have that as a function of ΩV , w0 and w∞, we compute

a three parameters likelihood both for the power spectrum and for the bispectrum; the

combined analysis is simply obtained by multiplying the two of them. Our fiducial model

has ΩV = 0.73, w0 = −1 and w∞ = −0.8; the other cosmological parameters are set to the

values of the concordance model already used in the previous chapters, see the beginning

of Ch. 4. Specifically, we evaluate the likelihood as usual as

Ls,b = As,b exp

(
−
χ2
s,b

2

)
, (6.9)

where the subscripts refer, respectively, to the power spectrum (s) and to the bispectrum

(b), As,b are normalization factors and χ2
s,b are functions of the dark energy parameters

defined as

χ2
s =

1000∑

l=2

[
Ctl − C

f
l

σsl

]2

, (6.10)

χ2
b =

1000∑

l1,l2,l3=10

[
Bt
l1l2l3

−Bf
l1l2l3

σbl1l2l3

]2

. (6.11)

In the expression above, we describe spectrum and bispectrum as Gaussian variables (Gan-

gui & Martin 2000a; Takada & Jain 2004): that corresponds to ignore the possible non-

Gaussianity arising in the early Universe, as well as to assume a Gaussian distribution for

the bispectrum coefficients, exploiting the argument which states that in the case of weak

lensing the signal is caused by many independent events. The superscript t refers to the

theoretical model, while f refers to our fiducial model. As we already mentioned, we limit
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our analysis to multipoles smaller than 1000, being consistent with a Planck-like experi-

ment with nominal performance (see Fig. 6.4). The expression of the cosmic variance is

(σsl )
2 = 2/(2l+ 1)C2

l for the power spectrum and (σbl1l2l3)2 = nl1l2l3Cl1Cl2Cl3 for the bispec-

trum, where nl1l2l3 is given by Eq. (6.5). We also neglect the correlation between the two

observables as it is induced by higher order statistics (Takada & Jain 2004), which allows

us to write down the combined likelihood simply as

Lc = LsLb = Ac exp

(
−χ

2
s + χ2

b

2

)
, (6.12)

where Ac normalizes it.

We report the results of our likelihood analysis in three main cases, with one,

two and three free parameters. As we show later this approach is necessary to understand

how different the basins of degeneracy of spectrum and bispectrum are, and the benefit

from their combination. We use the following priors: 0 ≤ ΩV ≤ 1, −1 ≤ w0 ≤ −0.6,

−1 ≤ w∞ ≤ −0.6. When ΩV varies, the matter abundance is changed in order to keep

flatness and leaving Ωbh
2 unchanged.

The simpler case is when two of the three dark energy parameters are fixed to

their fiducial values, while the third one is allowed to vary. In that case, regardless of which

parameter varies, the bispectrum doesn’t improve the basic analysis on the power spectrum

alone. The reason is simply the reduced signal to noise ratio of the bispectrum. When just

one parameter varies, even w∞, the tiny changes in the power spectrum signal dominate the

exponential in the combined likelihood; note that when w∞ varies, the relative changes in

the bispectrum are stronger than in the power spectrum case (Giovi, Baccigalupi & Perrotta

2003, 2005). However, when the cosmic variance is taken into account, such advantage is

canceled and the joint likelihood is almost identical to Ls. As we shall see in the following,

the results change greatly when a multi-dimensional analysis is performed. The reason is

that the basins of degeneracy of spectrum and bispectrum open in markedly different ways,

making their combination advantageous, as we see already in the two dimensional analysis

below.

Let’s begin by fixing ΩV = 0.73; though the power spectrum likelihood is very

narrow (see Fig. 6.6, first row, left panel), it is degenerate along a specific direction, where
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Figure 6.6: First row: likelihoods as function of w0 and w∞ with ΩV = 0.73. Second row:
likelihoods as function of ΩV and w∞ with w0 = −1. Third row: likelihoods as function
of ΩV and w0 with w∞ = −0.8. From left to right: power spectrum only, bispectrum only
and their combination.

different values of w0 and w∞ produce similar values of the function ef(z) in Eq. (6.1) at the

epoch of the structure formation. For this reason, the power spectrum is able to exclude

a wide region of the parameter space, but is unable to constrain w0 and w∞ separately.

The bispectrum likelihood is non-zero over a wider region of the parameter space, but

vanishes on the region where the power spectrum is degenerate (Fig. 6.6, first row, center

panel); while the projection degeneracy affecting the power spectrum is well understood, it

is more difficult to track the dark energy variables in the bispectrum calculation, as they

enter in several aspects, i.e. distances and perturbation growth. The only clear feature is
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the vanishing of the lensing power at present and infinity (Giovi, Baccigalupi & Perrotta

2003), making the bispectrum sensitive to w0 and to w∞, in different ways. As a result,

the degeneracy basins of spectrum and bispectrum are misaligned, allowing the separate

measure of w0 and w∞ from their combination (Fig. 6.6, first row, right panel). In the

second and third row of Fig. 6.6 we set w0 and w∞ to their fiducial values respectively. The

situation is very different with respect to fixing ΩV . We have a slight improvement when

w0 is fixed whereas fixing w∞ that disappears. This is due to the constraining capability of

the CMB power spectrum when only two parameters vary, similarly to the one dimensional

likelihood case. We may notice that the bispectrum is more degenerate with respect to the

dark energy abundance than on the equation of state. On the other hand the power spectrum

has an opposite behavior. Summarizing, in two of the three cases of the two parameters

likelihood analysis, the power spectrum constraints are still stronger except one, in which

the dark energy abundance is fixed. We shall give a more exhaustive explanation of this

behavior in the following discussion where all the three dark energy parameters are allowed

to vary.

In Fig. 6.7, 6.8 and 6.9 we plot the three parameters likelihoods marginalized

respectively over ΩV , w0 and w∞; in each figure, the top-left panel is the power spectrum

likelihood, the top-right panel is the bispectrum likelihood, the bottom-left panel is the

combined likelihood and in the bottom-right panel we put the contour plots at 2σ and 1σ

confidence levels for the power spectrum likelihood and the combined one. As expected,

when marginalizing over ΩV , the likelihood analysis gives almost the same result as when

ΩV is fixed (see above). Indeed, the leading feature is the projection degeneracy in the CMB

power spectrum with respect to the combined variation of w0 and w∞; the latter gets worse

when also ΩV varies, although that variation affects also the matter abundance inducing

relevant changes in the power spectrum; the resulting picture is therefore almost equivalent

to the case when ΩV is fixed. However, the three parameters case is different with respect

to the previous one when the marginalization is performed over w0 or w∞. In the previous

discussion we saw that when w0 or w∞ is fixed, the power spectrum constraints dominate

the joint likelihood. As we have shown, having one of the two dark energy equation of

state parameters fixed means breaking the projection degeneracy for the power spectrum,
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Figure 6.7: Likelihood marginalized over ΩV for the power spectrum only (top-left), bispec-
trum only (top-right) and both (bottom-left). In the bottom-right panel we plot the contour
levels at 1σ (innermost contours) and 2σ (outermost contours) for the power spectrum by
itself (solid line) and combined with the bispectrum (dashed line), the dot is our fiducial
model.

when also ΩV varies. In the present case the latter argument disappears, and the power

spectrum constraints are still fully affected by that degeneracy, causing the visible gain

from having the bispectrum into the analysis. Note that the bispectrum likelihood in the

top right panel of Fig. 6.7 is sharper in the w∞ axis, showing how the bispectrum is more

sensitive to the properties of dark energy at structure formation. The top panels of Fig. 6.8,

obtained marginalizing over w0, reveal two different weaknesses of spectrum and bispectrum,

which make their combination fruitful. First, the weak sensitivity of the power spectrum

to w∞: the likelihood is almost flat for a long line in the w∞ direction, until the latter
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Figure 6.8: As in Fig. 6.7 but with marginalization over w0.

parameter induces a change strong enough to let the likelihood vanishing. On the other

hand, the sensitivity to ΩV is strong as its variation affects the matter abundance, inducing

important changes in the power spectrum shape. The opposite happens for the bispectrum.

Now the preferred parameter is w∞, as it determines the dark energy behavior at the

time when the lensing power is injected. This orthogonality in the degeneracy direction of

spectrum and bispectrum determines the relevant advantage of their combination, clearly

visible in the bottom panels of Fig. 6.8. The minimum gain is got in the case of Fig.

6.9, where the marginalization is performed over w∞. Indeed, the latter operation washes

out the parameter of greatest importance for the bispectrum; in the top right panel, the

bispectrum degeneracy direction roughly corresponds to the constancy of the dark energy
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Figure 6.9: As in Fig. 6.7 but with marginalization over w∞.

abundance at the time in which the lensing injects its power. On the other hand, as we

stressed above, the gain is still relevant and visible in the bottom panels of Fig. 6.9, as the

three parameters analysis makes the power spectrum projection degeneracy fully effective.

In Fig. 6.10 we give a qualitative picture of the different likelihood shapes for

spectrum and bispectrum, in the three parameters analysis, where one has been marginal-

ized. The solid and dashed lines represent the power spectrum and bispectrum likelihoods,

respectively; they are normalized to their maximum values and the five contours for each

observable are equally spaced between 0 and 1 to highlight their shape. In all cases the

two likelihoods are misaligned and that is evident in particular when we marginalize on

w0, so that the power spectrum and the bispectrum add different informations to the joint
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Figure 6.10: Contour levels for the three parameters analysis, where one has been marginal-
ized; the solid and dashed lines represent the power spectrum and bispectrum likelihoods,
respectively; they are normalized to their maximum values and the five contours for each
observable are equally spaced between 0 and 1 showing qualitatively the different basins of
degeneracy. From left to right: marginalization over ΩV , w0 and w∞.

1σ c.l. ΩV w0 w∞
Power spectrum 0.728 ≤ ΩV ≤ 0.732 w0 ≤ −0.95 −0.94 ≤ w∞ ≤ −0.81

Bispectrum 0.731 ≤ ΩV ≤ 0.750 w0 ≤ −0.89 −0.89 ≤ w∞ ≤ −0.78
Combined 0.729 ≤ ΩV ≤ 0.732 w0 ≤ −0.97 −0.87 ≤ w∞ ≤ −0.80

2σ c.l. ΩV w0 w∞
Power spectrum 0.727 ≤ ΩV ≤ 0.734 w0 ≤ −0.92 w∞ ≤ −0.79

Bispectrum 0.724 ≤ ΩV ≤ 0.759 w0 ≤ −0.79 −0.96 ≤ w∞ ≤ −0.74
Combined 0.727 ≤ ΩV ≤ 0.734 w0 ≤ −0.94 −0.93 ≤ w∞ ≤ −0.77

Table 6.2: Confidence level at 1σ and 2σ of the three parameters likelihood study, marginal-
ized over two of them.

likelihood.

Finally, to quantify how the bispectrum analysis improves the estimation of the

dark energy parameters, we report in Tab. 6.2 the constraints (both at 1σ and 2σ) on

our parameters, obtained when the power spectrum, bispectrum and the combined analysis

are applied to our fiducial model. This table refers to the three parameter likelihoods,

marginalized over the remaining two of them. As discussed, the confidence levels are always

narrower when the bispectrum analysis is added to the power spectrum one. Roughly, the

precision on the measures of w0 and w∞ is percent and ten percent, respectively.

We close here this chapter, leaving the summary and other remarks to the con-

cluding one.





Chapter 7

Problems, future perspectives and

concluding remarks

In this thesis we studied the three point CMB statistics induced by weak lensing

of the primordial anisotropies by forming cosmological structures. We studied the lensing

power injection in the angular domain, focusing on the epoch in which it is relevant, in

connection with the dynamics of cosmic acceleration and the nature of the dark energy.

We wish to make here a summary of our work, outlining the issues which needs further

investigation and the future developments. But before that, we also comment about the

challenges that the CMB experimental science may encounter in trying to extract the lensing

signal from the CMB anisotropy pattern, instrumentally but also in competition with other

processes which may pollute the lensing signal itself. This is done in Sec. 7.1. In Sec. 7.2

we make the critical summary outlined above and the concluding remarks.

7.1 The challenge of measuring the CMB bispectrum from

lensing

The weak lensing signal on the CMB bispectrum is a second order effect in cos-

mology, as it is caused by cosmological perturbations lensing primordial ones. Therefore,

it is necessary pay a special attention to the different processes which may lead to a non-
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Gaussian distortion of the CMB anisotropies, as well as to all the possible sources of errors.

Indeed a deviation from Gaussianity can be produced by several effects, both of astrophysi-

cal and instrumental origin. Primordial non-Gaussianity (Gangui & Martin 2000; Komatsu

& Spergel 2001), SZ effect (Cooray, Hu & Tegmark 2000), point sources, diffuse foreground

emission, and all those effects that produce a non-Gaussian signal directly in the a lm be-

long to the first class. All the possible sources of non-Gaussianity that are induced by some

systematics such as sky cuts, and non-Gaussian features in the instrumental noise, beam

asymmetries, etc., are examples of the second class.

In this section we first want to attempt a first comparison of the bispectrum

signal from lensing with respect to the expectations relative to the other possible processes

inducing a non-Gaussian distortion on the CMB. We consider here only the primordial

non-Gaussianity from inflation, the coupling between weak lensing and SZ effect, and the

bispectrum arising from extragalactic radio and infrared sources. We want to stress that

we shall give only an order of magnitude of the estimation of those effect and a rough

comparison with the bispectrum signal discussed in this work; most of those processes

are very poorly known indeed, and presently under investigation, so that our analysis is

completely preliminary and subject to changes. In this section we describe the bispectrum

in terms of the reduced one bl1l2l3 = Bm1m2m3
l1l2l3

/Gm1m2m3
l1l2l3

, where Gm1m2m3
l1l2l3

is the Gaunt

integral (4.17). A primordial non-Gaussianity should be encapsulated in the gravitational

potential perturbations Ψ, generated during inflation (see Bartolo et al. 2004 for reviews).

Assuming the simplest case, the non-linear coupling parameter fNL is simply a constant

factor and is defined as

Ψ(~x) = ΨL(~x) + fNL∆Ψ2
L(~x) , (7.1)

in real space, where ∆Ψ2
L(~x) = Ψ2

L(~x)−
〈
Ψ2
L(~x)

〉
, in which L means linear, and the average

is over the statistical ensemble. Applying the Fourier transform to Eq. (7.1) we get a

decomposition in a linear and non-linear part Ψ
(
~k
)

= ΨL

(
~k
)

+ΨNL

(
~k
)

leading to alm =

aLlm + aNLlm for the CMB anisotropy coefficients after expanding into spherical harmonics.

The primordial equilateral bispectrum is approximately given by bPl ∼ 10−17fNL × l−4

(Gangui & Martin 2000; Komatsu & Spergel 2001). Notice that its amplitude depends on

the magnitude of the non-linear coupling fNL. The present constraints from WMAP on the
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Figure 7.1: Equilateral reduced bispectrum for primordial non-Gaussianity, SZ-lens coupling
and extragalactic points sources. From Komatsu & Spergel (2001).

non-linear coupling are −58 < fNL < 134 at 95 % confidence (Komatsu et al. 2003).

A low redshift effect that can yield power in the CMB anisotropy bispectrum is

the SZ effect, already described in Ch. 3; it occurs when CMB photons travel through a

cluster of galaxies. Since approximately 10% of the total mass of rich clusters of galaxies

is in the form of hot
(
108
)

K ionized plasma, Compton scattering of CMB photons by

electrons in this intra-cluster plasma can result in an optical depth as high as 0.02, inducing

a distortion of the CMB spectrum at the mK level. There are multiple components of

the SZ effect which result from distinct velocity components of the scattering electrons.

The thermal component is due to the thermal (random) velocities of them. The kinematic

component is due to the bulk velocity of the intra-cluster gas with respect to the CMB.

In the Rayleigh-Jeans regime (at low frequencies) the change of the spectrum due to the

Compton scattering can be seen as induced by a lower temperature of the radiation. In

the Wien part of the spectrum (at high frequencies) one can interpret the change with a

higher radiation temperature. Since the SZ effect couples with the weak lensing, just as the
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Figure 7.2: Equilateral reduced bispectrum for ISW-lensing coupling in units of 10−16. The
cosmology is set to our fiducial ΛCDM model used in Ch. 4; the model is different from
that assumed in Fig. 7.1 (flat CDM) in that case the ISW effect is vanishing, reducing the
SZ power with respect to what shown in Fig. 7.1.

ISW, its analysis is similar to that shown in Ch. 4 (for a detailed derivation see Goldberg

& Spergel 1999). The magnitude of the reduced equilateral bispectrum for the SZ-lensing

coupling is about bSZ−lensl ∼ 10−19jνT ρ0pg × l3 (Komatsu & Spergel 2001) being jν the

spectral function of the SZ effect, always of the order one, (equal to −2 in the Rayleigh

regime), T ρ0 the present density weighted mean temperature of the gas in units of 1 KeV

and pg ∼ 6 the linear gas pressure bias (Refregier et al. 2000).

The CMB bispectrum from extragalactic sources is easy to estimate, as long as

they are assumed to have a Poissonian distribution. Since the Poisson distribution has

a white noise power spectrum, the reduced bispectrum is constant with an amplitude of

roughly 10−28 (Komatsu & Spergel 2001).

Just to give an idea of these signals, in Fig. 7.1 we show a plot by Komatsu

and Spergel (2001) representing the equilateral reduced bispectra from primordial non-

Gaussianity, SZ-lensing coupling and point sources. At high multipoles the contribution of

the point sources dominates over the others while at low multipoles (large angular scales)

the primordial bispectrum is dominant. Comparing Figs. 7.1 and 7.2 we may notice that the
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reduced equilateral bispectrum studied in our work has an amplitude generally lower than

the other bispectra listed here, although with a markedly different shape. At low multipoles,

up to 50, the point sources and the SZ produce signals close to zero whereas the primordial

signal is negative. The ISW-lensing coupling contribution at those low multipoles is positive

while at higher multipoles becomes negative, see Fig. 7.2. Comparing Fig. 7.1 and Fig.

7.2 we must also keep in mind that the cosmological models are different: in the former

plot the model is a pure CDM model while in the latter is a ΛCDM model. On the other

hand this very rough analysis can be useful to perform a first comparison of the different

bispectrum sources. The analysis at low multipoles, where the point sources and the SZ

effect contributions are vanishing, may be a tracer of the the primordial and ISW-lensing

coupling bispectra; the amplitudes are roughly comparable for the fNL value chosen, but

we want to stress that the latter might be smaller as long as the early Universe processes

keep close to Gaussianity. Finally the characteristic frequency dependence of the SZ might

be exploited to attempt some subtraction in a multi-frequency observations.

In addition to the different processes outlined above, the foreground astrophysical

signals may distort the CMB pattern and need to be controlled. A study of the foreground

non-Gaussian signal in comparison to the CMB one from weak lensing will be certainly

possible as the CMB observations are providing an excellent improvement on our knowledge

of the foreground emission. An indications that the extra-Galactic foregrounds may not be

dramatic as a contaminant of the lensing signal has been reported by Hirata et al. (2004);

that is supported by the fact that some control of foregrounds may be achieved exploiting

their different scaling in frequency with respect to the CMB in multi-band observations

(Komatsu et al. 2003).

As we stressed above, the expectations outlined here are based on very preliminary

knowledge of the listed physical processes, and should be taken as a first guess, and nothing

more. The indication is that the ISW-lensing contribution may dominate on large angular

scales, while on the degree and subdegree angular scales the other processes might yield

relevant, being even dominating.

Finally, as we stressed in the beginning of this section, the signals of astrophysical

nature are not the only sources of contamination to the weak lensing contribution. In fact,
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it is also necessary to have tightly under control the systematics that can produce a spurious

bispectrum signal. Among the most important, we can recall the incomplete sky coverage,

beam asymmetry and non-Gaussian noise distribution. An analysis of these issues has never

been attempted, and what we write here is even more preliminary than the forecast of the

contamination from non-lensing processes outlined above. To make an example on how the

systematics might impact on the CMB bispectrum observable, we report here the ensemble

average of estimator of the bispectrum on the incomplete sky, the pseudo-bispectrum B bias
l1l2l3

;

it is expected to be (Bartolo et al. 2004; see also Peebles 1980 for further details on the

observables on the incomplete sky)

〈
Bbias
l1l2l3

〉
= Btrue

l1l2l3

fsky
4π

, (7.2)

where fsky is the angular area covered by the observation. Thus the fraction of the observed

sky is the bias factor for the bispectrum. The remaining effects are unknown, and should

be evaluated in future analysis.

7.2 Summary, future perspectives and concluding remarks

The evidence for cosmic acceleration may be due to a new cosmological component

acting as a gravitationally repulsive force on cosmological scales, the dark energy. As this

component may be in the form of a fundamental energy density in vacuum, it is crucial to

exploit the existing cosmological observables and build up new ones in order to probe the

cosmological expansion during the onset of cosmic acceleration. In this thesis we studied the

non-Gaussian signal induced on CMB anisotropies by weak lensing and structure formation

and its dependence on the redshift behavior of the cosmological expansion rate determined

by different dark energy models. Our approach is based on the harmonic expression of the

three point CMB anisotropy statistics, described in terms of the CMB bispectrum.

In Ch. 4 we studied and analyzed general properties of the bispectrum from

lensing. We have shown that the signal is injected at non-zero redshift, centered around the

epoch of structure formation, overlapping with the onset of cosmic acceleration, cutting out

the present. As a result, the CMB bispectrum is quite sensitive to the cosmic expansion rate
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at that redshift, i.e. on the dark energy equation of state at that time, independently on its

present value. The bispectrum signal depends on a triplet of angular multipoles, connecting

the primordial signal with the lensing kernel by products involving different multipoles, and

determines a reprojection of the acoustic peaks on scales markedly different from their

well known location in the CMB power spectrum. The bispectrum coefficients, seen as a

function of the three multipoles in arbitrary configuration, depict a complex structure of

peaks and valleys in a three-dimensional space, bounded by geometrical constraints encoded

in the Wigner 3J symbols. A recurring feature is the presence of a sign inversion in the

bispectrum coefficients, on angular scales of a few hundreds, cutting almost in the middle

the whole signal distribution; the latter feature represents the transition between linear and

non-linear power domination in the lensing kernel, and appears visually as a “canyon” in

the distribution of the absolute value of the bispectrum coefficients (Verde & Spergel 2002;

Giovi, Baccigalupi & Perrotta 2003). A crucial part of the bispectrum evaluation is in the

computation of the Wigner 3J symbols. A part of the work of this thesis was devoted to

build a numerical code able to compute the 3J symbols at very high multipole; we have

tested the code up to l = 1000, but we expect it to be reliable also at higher values.

The expected impact of the bispectrum data on the cosmological parameter esti-

mation is shown in Ch. 6. This has been done analyzing the bispectrum signal to noise ratio

and setting up a maximum likelihood analysis simulating a Planck-like experiment, varying

the dark energy abundance ΩV , its present and high redshift equation of state w0 and w∞

and keeping all the other cosmological parameters fixed to our fiducial model. Although

rich, the phenomenology of the single bispectrum coefficient is unfortunately not observable

in detail, as the effect represents a second order cosmological perturbation, and the single

coefficient is largely dominated by cosmic variance, by a factor of about 100. The only way

to exploit practically the bispectrum coefficients is to compress the information by summing

over the different multipole triplets. By doing that, we verified that most of the signal is

contained in the triplets with “scalene” configurations, merely because they represent the

large majority of the whole number of coefficients. In agreement with previous analyses

(Hu 2000), we shown how a cosmic variance limited experiment should be able to detect

the bispectrum signal by summing at least up to a maximum multipole of a few hundreds.
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The bispectrum data increases the overall sensitivity of the CMB on the dark energy high

redshift dynamics, represented by w∞, in comparison with the usual analysis made on the

basis of the CMB total intensity power spectrum only; the latter is sensitive to the redshift

average of the dark energy equation of state, through a projection effect: different combina-

tions of w0 and w∞ leading to the same redshift average cannot be distinguished. Despite

of the lower signal to noise ratio, the bispectrum likelihood contours present a substantial

misalignment with respect to those of the power spectrum, being more sensitive to the

changes in w∞; consistently with the expectation that the lensing should probe directly the

expansion rate at the epoch when the process is effective, independently on the present.

The bispectrum actually breaks the projection degeneracy, allowing a measure of both w0

and w∞, at least in our three parameters likelihood analysis, where those and the dark

energy abundance are the only varying parameters; the level of accuracy is at percent and

ten percent, respectively. These results may increase the interest and efforts toward the de-

tection of the weak lensing signal by the forthcoming CMB probes, as that may be relevant

to gain insight into the dark energy dynamics at the onset of cosmic acceleration, when

most models similar to a Cosmological Constant at present predict very different behaviors.

We close the thesis pointing out the issues which deserve further investigations,

and some future directions. First, and obviously, our work is based on a few parameters

only, directly related to the dark energy. A multi-parameter study would possibly reveal

dangerous degeneracies in the bispectrum dependence on the underlying cosmology. Since

the bispectrum power is injected at intermediate redshifts, we expect that this observable

will be sensitive to those parameters that affect the cosmic history at that epoch. Second,

besides the ISW-lensing correlation studied here, there can be other sources of bispectrum

of astrophysical nature such as primordial non-Gaussianity, diffuse Galactic foregrounds,

extra-Galactic point sources, Sunyaev-Zel’Dovich effect and so on, that should be carefully

evaluated and taken into account for a realistic exploitation of the bispectrum data. In Sec.

7.1 we only presented a preliminary analysis and a deeper one is required. Third, in our

work we used a semianalytical approach to model the bispectrum power from non-linear

perturbations, a correct modeling of the non-linear matter power spectrum as a function

of the wavenumber k and the redshift z in dark energy cosmologies has not been made
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yet. That could be also done exploiting real data from future observations of Lyman-α

forest (see e.g. Viel, Haehnelt & Springel 2004 and references therein) or with weak lensing

measures (see e.g. Bacon et al. 2004 and references therein). Ultimately our results rely

on two model independent features, namely the geometric modifications onto the cosmic

expansion induced by different dark energy dynamics, and the fact that the lensing power is

non-vanishing at the onset of acceleration and structure formation only, being zero earlier

and at the present. Therefore we expect that our findings may be refined by addressing the

issues mentioned above, but not substantially changed.

The curtain falls on the thesis hoping that, in some near future, the CMB bis-

pectrum get eventually detected, and exploited to enlighten the dark mystery in which our

Universe is enveloped.





Appendix A

Properties of Wigner’s 3J symbols

In this appendix we shall collect and summarize the properties and the special

values of the Wigner’s 3J symbols (Wigner 1959; Messiah 1962; Abramowitz & Stegun

1972):1 
 l1 l2 l3

m1 m2 m3


 . (A.1)

Reality. The Wigner’s 3J symbols are all real.

Selection rules. The Wigner’s 3J symbols are null if the following conditions are not

satisfied

• m1 +m2 +m3 = 0 ,

• |l1 − l2| ≤ l3 ≤ l1 + l2 ,

the second condition is the triangular inequalities and must be verified for all l1, l2 and l3.

Symmetries. The Wigner’s 3J symbols are:

• invariant in a circular permutation of the three columns;

• multiplied by (−1)l1+l2+l3 in a permutation of two columns;

• multiplied by (−1)l1+l2+l3 when we simultaneously change the signs of all m’s.

1See also http://mathworld.wolfram.com/Wigner3j-Symbol.html
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Orthogonality relations.

+l1∑

m1=−l1

+l2∑

m2=−l2


 l1 l2 l3

m1 m2 m3




 l1 l2 l′3

m1 m2 m′3


 =

δl3l′3δm3m′3

2l3 + 1
, (A.2)

l1+l2∑

l3=|l1−l2|

+l3∑

m3=−l3
(2l3 + 1)


 l1 l2 l3

m1 m2 m3




 l1 l2 l3

m′1 m′2 m3


 = δm1m′1

δm2m′2
.(A.3)

δij is the Kronecker’s delta.

Composition relation for the spherical harmonics (Gaunt’s integral).

Gm1m2m3
l1l2l3

=

∫
d2n̂Yl1m1 (n̂) Yl2m2 (n̂) Yl3m3 (n̂) =

=

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π


 l1 l2 l3

0 0 0




 l1 l2 l3

m1 m2 m3


 . (A.4)

Special values. For some special values of l and m the Wigner’s 3J possess a closed

formula.

• l3 is maximum and m3 minimum:


 l1 l2 l1 + l2

m1 m2 −l1 − l2


 =

(−1)2l1
√

2l1 + 2l2 + 1
. (A.5)

• One l is zero: 
 l l 0

m −m 0


 =

(−1)l−m√
2l + 1

. (A.6)

• m1 = m2 = m3 = 0 and L = l1 + l2 + l3 = even:


 l1 l2 l3

0 0 0


 = (−1)L/2

(L/2)!√
(L+ 1)!

3∏

i=1

√
(L− 2li)!

(L/2 − li)!
. (A.7)

If L = odd the 3J symbols are zero. This closed formula has been widely used in this

work; since the computation of factorial may be hard at high multipoles, we can use

the Gosper approximation of the factorial:

n! '
√(

2n+
1

3

)
π
(n
e

)n
. (A.8)
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In this way we can rewrite Eq. (A.7) in a computational simpler form


 l1 l2 l3

0 0 0


 '

(
− L

L+ 1

)L/2 1

(6L+ 7)1/4

(
3e

π

3L+ 1

L+ 1

)1/2 3∏

i=1

(6L− 12li + 1)1/4

(3L− 6li + 1)1/2
.

(A.9)

The Racah formula. An explicit relation between the triplets (l1, l2, l3) and (m1,m2,m3)

and the Wigner’s 3J symbols exists and is named the Racah formula; unfortunately it does

not have any practical application because of its complexity. It is


 l1 l2 l3

m1 m2 m3


 = (−1)l1−l2−m3

√
(l1 + l2 − l3)!(l2 + l3 − l1)!(l3 + l1 − l2)!

(l1 + l2 + l3 + 1)!
·

·
√

(l1 +m1)!(l1 −m1)!(l2 +m2)!(l2 −m2)!(l3 +m3)!(l3 −m3)! · (A.10)

·
∑

t

(−1)t

t!(l3 − l2 + t+m1)!(l3 − l1 + t−m2)!(l1 + l2 − l3 − t)!(l1 − t−m1)!(l2 − t+m2)!
.

∑
t extends over all integer values of t for which the factorial has a meaning, i.e. the

arguments of the factorial are positive or zero.



Appendix B

The angle averaged bispectrum

Assuming statistical isotropy, which means that our sky is isotropic and has no

preferred directions, we can average the bispectrum over mi, representing the azimuthal

orientation in the sky, with appropriate weights. In order to do that we must find a solution

with rotational invariance of the three point correlation function in the sky,

〈Rf(n̂1)Rf(n̂2)Rf(n̂3)〉 = 〈f(n̂1)f(n̂2)f(n̂3)〉 ; (B.1)

where f represent a given function on the sphere, f (n̂) =
∑

lm almYlm (n̂), while R =

R(α, β, γ) is the rotation matrix and α, β and γ are the Euler angles. The rotation matrix

with element Rlm m′ , describing a finite rotation from an initial state with (l, m) to a final

state (l, m′), allow as to write the rotation of the spherical harmonics as

RYlm(n̂) =
l∑

m′=−l
Rlm m′Ylm′(n̂) . (B.2)

Putting together these the above two equations we obtain the statistical isotropy condition

for the three point correlation function

〈al1m1al2m2al3m3〉 =
∑

m′1m
′
2m
′
3

〈
al1m′1al2m′2al3m′3

〉
Rl1
m1m′1

Rl2
m2m′2

Rl3
m3m′3

. (B.3)
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Each pair of rotation matrices may be coupled into a single rotation via the addition of the

angular momentum:

Rl1
m1m′1

Rl2
m2m′2

=
∑

l3

(2l3 + 1)
∑

m3m′3

(
Rl3
m3m′3

)∗

 l1 l2 l3

m1 m2 m3




 l1 l2 l3

m′1 m′2 m′3


 ;

(B.4)

applying this properties to Eq. (B.3) to reduce Rl1
m1m′1

Rl2
m2m′2

to RLMM ′ we obtain

〈al1m1al2m2al3m3〉 =
∑

m′1m
′
2m
′
3

〈
al1m′1al2m′2al3m′3

〉
Rl1
m1m′1

Rl2
m2m′2

Rl3
m3m′3

=

= 〈Bl1l2l3〉
∑

m′1m
′
2m
′
3


 l1 l2 l3

m′1 m′2 m′3


×

×
∑

LMM ′
(2L+ 1)

(
RLMM ′

)∗
Rl3
m3m′3


 l1 l2 L

m′1 m′2 M




 l1 l2 L

m1 m2 M


 =

= 〈Bl1l2l3〉
∑

m′3

∑

LMM ′


 l1 l2 L

m1 m2 M


(RLMM ′

)∗
Rl3
m3m′3

δLl3δ
M ′
m′3

=

= 〈Bl1l2l3〉


 l1 l2 l3

m1 m2 m3


 , (B.5)

where we used the orthonormality relations both for the Wigner 3J symbols (see App. A)

and for the rotation matrices. Comparing the last row of previous equation with Eq. (B.3),

we see that the weights we are looking for are just the Wigner 3J symbols.
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