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Abstract

Advances in molecular biological and computational technologies are enabling us to sys-

tematically investigate the complex molecular processes underlying biological systems. In

particular, using high throughput gene expression analysis, we are able to measure the

output of the gene regulatory network of a cell. Here, we aim to review some datamining

and modeling approaches for conceptualizing and unraveling the functional relationships

implicit in these datasets. We discuss some aspects of clustering, ranging from distance

measures to clustering algorithms. More advanced analysis aims to infer causal connec-

tions between genes directly. We discuss some approaches of reverse engineering of genetic

networks and continuous linear model. We conclude that the combination of predictive

modeling with systematic experimental verification will be required to gain a deeper in-

sight into living organisms and therapeutic targeting.
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Chapter 1

Introduction

The genome i.e the genetic information of an individual is encoded in double stranded

deoxyribonucleic acid (DNA) molecules. These DNA molecules are arranged into chro-

mosomes in the cell. A ”gene” is written using four-letter alphabet A, C, G and T which

are abbreviations for the chemicals adenine, cytosine, guanine and thymine respectively.

These chemicals are ’bases’ and together they make up DNA. A gene is ”read” by the

cell and directs the cell to synthesize a specific protein. It is the proteins that control all

the activities of a cell. Proteins give the cell its shape and function, provide the means to

send message within the cells and communicate with other cells, fight invaders.

The central dogma of biology (Crick 1958) describes how genes are first transcribed to

messenger RNA (mRNA), and then the mRNA is translated into a corresponding protein

sequence. Proteins can then be post-translationally modified, localized to certain sites

within the cells, and ultimately degraded. (See Fig.(1.1)). The degradation of proteins

and intermediate RNA products can also be regulated in the cell. The proteins fulfilling

the above regulatory functions are produced by other genes. This gives rise to genetic

regulatory systems structured by networks of regulatory interactions between DNA, RNA,

proteins and small molecules. The concerted efforts of genetics, molecular biology, bio-

chemistry and physiology have led to the accumulation of enormous amounts of data on

the molecular components of genetic regulatory networks and their interactions. Even

though there is an advancement in the mapping of the network structure, surprisingly

little is understood about the dynamic behavior of the system that emerges from the

interactions between the network components. This has inspired an increasingly large

group of researchers to understand the complex patterns of behavior from the interac-

tions between genes in a regulatory network.

The study of genetic regulatory systems has received a major impetus from the recent de-

velopment of experimental techniques like cDNA microarrays and oligonucleotide chips,
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Figure 1.1: Genes code for proteins essential for the development and functioning of an
organism. Schematic diagram showing gene expression in eukaryotes.

which permit the spatiotemporal expression levels of genes to be rapidly measured in

a massively parallel way (Brown and Botstein, 1999; Lipshutz et al., 1999; Lockhart

and Winzeler, 2000). Other techniques, such as mass spectrometric identification of gel-

separated proteins, allow the state of the cell to be characterized on the proteomic level as

well (Kahn, 1995; Mann, 1999; Pandey and Mann, 2000; Zhu and Sydner, 2001). These

techniques have become prominent experimental tools for the understanding of the dy-

namics of gene expression.

In addition to powerful experimental tools, the study of the dynamic behavior of genetic

regulatory networks also requires the support of mathematical and computational tools.

As most genetic regulatory systems of interest involve many genes connected through

interlocking positive and negative feedback loops, their dynamics is hard to understand.

The aim is to describe the structure of regulatory systems and to predict the behavior in

a systematic way. Modeling and simulation methods and various computer tools permit

large and complex genetic regulatory systems to be analyzed.

Figure (1.2) shows the combined application of experimental and computational tools.

Starting from an initial model, suggested by the knowledge of regulatory mechanisms and
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available expression data, the behavior of the system can be simulated for a variety of

experimental conditions. Comparing the predictions with the observed gene expression

profiles gives an indication of the adequacy of the model. If the predicted and observed

behavior do not match, and the experimental data is considered reliable, the model must

be revised. The activities of constructing and revising the models of the regulatory net-

work, simulating the behavior of the system, and testing the resulting predictions are

repeated until an adequate model is obtained.

The formal basis for computer tools supporting the modeling and simulation tasks in

Figure (1.2) lies in methods developed in mathematical biology and bioinformatics. Since

the 1960s with some notable precursors in the two preceding decades, a variety of math-

ematical formulations for describing regulatory networks have been proposed (de Jong.

H et. al 2002). These formalisms are complemented by simulation techniques to make

behavioral predictions from a model of the system, as well as modeling techniques to

construct the model from experimental data and knowledge on regulatory mechanisms.

Traditionally, the emphasis has been on simulation techniques, where the models are as-

sumed to have been obtained from the experimental literature. With more experimental

data becoming available and easily accessible through databases, modeling techniques are

currently gaining popularity.
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Figure 1.2: Analysis of genetic regulatory systems. Boxes represent activities, ovals in-
formation sources and the arrows represent information flows.

1.1 A simple model of gene regulation

The most familiar representation to molecular and cell biologists is a directed graph, with

the nodes representing the key elements - often genes, proteins or metabolites - being

modelled, and the arcs representing how these influence the production or destruction of

others. To formalize this sort of description, one would add weights -positive or negative-

to these arcs, and define how the inputs to a node interact. Figure (1.3) illustrates how

a simple network model might be represented. Even though it consists of only six nodes,

the dynamical behavior of the network is far from obvious. Nevertheless, the network

representation provides a clear and concise summary of the regulatory interactions, and

higher level structures (such as the two pathways from a to e) can be easily extracted.
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Figure 1.3: Graphical representation of a simple 6-node regulatory network model.

1.1.1 Additive regulation model

One of the simplest ways to model a system of interacting variables is to assume that the

change in each variable over time is given by a weighted sum of all other variables.

∆yi = Σjwjiyj + bi (1.1)

where yi is the level of the ith variable, bi is a term indicating whether i is expressed or

not in the absence of regulatory inputs, and the weight wji represents the influence of

j on the regulation of i. A is a regulator of B if the network model predicts a causal

relationship between the level of A and the change in level of B (i.e., an arrow in the net-

work), regardless of the underlying mechanism of this regulation. This is a more general

interpretation of the terms regulator and regulate than is normally used in biology.

For a continuous time system we get the corresponding differential equation:

dyi

dt
= Σjwjiyj + bi (1.2)

Because of the nature of interactions between regulatory factors, gene regulation is often

context sensitive, e.g. A upregulates C, but only if B is present as well. The model

presented here cannot implement such a nonlinear interaction between A and B in the

regulation of C. However, the model should be able to extract the linear component of

this regulation, i.e both A and B upregulate C, even if the regulation is not independent.

The model like this will be a gross simplification for almost any natural system, but
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modeling a gene network with such a minimal model might allow us to extract at least

the most significant information we are looking for: Which genes regulate which other

genes (i.e, which interaction factors wji are nonzero)?. If gene j regulates gene i, is j an

inducer or repressor of i (i.e is wji positive or negative)?



Chapter 2

Unsupervised methods

Clustering can be considered the most important unsupervised learning problem and, as

every other problem of this kind, it deals with finding a structure in a collection of unla-

belled data. A loose definition of clustering could be ”the process of organizing objects

into groups whose members are similar in some way”. A cluster is therefore a collection

of objects which are ”similar” between them and are ”dissimilar” to the objects belonging

to other clusters.

In order to identify genes of interest from the large amount of data, we need software

tools capable of selecting and screening candidate genes for further investigation. (Somo-

gyi, 1999). Normally there is a higher number of genes than experimental points. Hence

all classification and reference problems are under-determined (i.e too many degrees of

freedom), and the results always depend on the method chosen. This is the main prob-

lem one has to deal with, in gene expression analysis. The straightforward method is to

classify gene expression patterns to explore shared functions and regulations. This simple

approach to clustering consists in selecting a gene and determining its nearest neighbors

in expression space within a certain defined distance cut-off. Genes sharing the same

expression pattern are likely to be involved in the same regulatory process. Clustering

allows us to extract groups of genes that are tightly co-expressed over a range of different

experiments.

2.1 Distance measures and preprocessing of data

Most clustering algorithms take a matrix of pairwise distances between genes as input.

The choice of distance measure - used to quantify the difference in expression profiles

between two genes - may be as important as the choice of clustering algorithm.
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2.1.1 Linear metrics

Clustering studies in the gene expression literature use for example Euclidean distance

or Pearson correlation between expression profiles as a distance measure. Both these

measures are the easiest and most commonly used.

Euclidean distance is given by

dfg =

√∑
i

(efi − egi)2 (2.1)

The distance induced by Pearson correlation is

dfg = 1− rfg, with rfg =

∑
i(efi − ēf )(egi − ēg)√∑

i(efi − ēf )2
∑

i(egi − ēg)2
(2.2)

where dfg is the distance between expression for genes f and g, rfg is the Pearson corre-

lation, egi is the expression level of gene g under condition i. ef and eg are the average

expression level of gene f and gene g respectively.

Different clustering methods can have very different results and at this point it is not

yet clear which clustering methods are most useful for gene expression analysis. Each

combination of distance measure and clustering algorithm will emphasize different types

of regularities in the data. Some may be useless for what we want to do. Others may give

us complementary pieces of information.

A related issue is normalization and other preprocessing of the data. Distance mea-

sures that are sensitive to scaling and/or offsets (such as Euclidean distance) may require

normalization of the data. Normalization can be done with respect to the maximum

expression level of each gene, with respect to both minimum and maximum expression

levels or with respect to the mean and standard deviation of each expression profile.

2.1.2 Nonlinear metric: Mutual information

With the size of available datasets steadily increasing, it has become feasible to consider

other, more general, definitions as well, apart from distance measure. One alternative,

based on information theory, is the mutual information, providing a general measure of

dependencies between variables. Variables which are not statistically independent sug-

gest the existence of some functional relation between them. While there are several

approaches to quantify the linear dependence between variables, the framework of in-

formation theory (Shannon, 1948) provides a general measure of dependencies between
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variables. In particular, Pearson correlation provides the linear relationship between the

variables, while the mutual information provides a better and more general criterion to

investigate non-linear relationships between variables.

The concept was initially developed for discrete data. Consider a system A, with a

finite set of M possible states a1, a2, · · · , aM , the Shannon entropy H(A) is defined as

H(A) = −
MA∑
i=1

p(ai)logp(ai) (2.3)

where p(ai) denotes the probability of the state ai. The Shannon entropy is a measure

for how evenly the states A are distributed. If the state A is completely determined to be

ai, thus if p(ai) = 1 and p(aj) = 0 for all i 6= j, one has H(A) = 0, whereas the entropy

becomes maximal if all probabilities are equal. The joint entropy H(A, B) of two systems

A and B is defined as

H(A, B) = −
MA,MB∑
i=1,j=1

p(ai, bj)logp(ai, bj) (2.4)

This leads to the relation

H(A, B) ≤ H(A) + H(B) (2.5)

which fulfils equality only in the case of statistical independence of A and B. Mutual

information MI(A, B) can be defined as

MI(A, B) = H(A) + H(B)−H(A, B) ≥ 0 (2.6)

It is zero if A and B are statistically independent and increases the less statistically in-

dependent A and B are.

Mutual information is defined both for continuous and discrete distributions, but the

discrete form is much easier to use. To apply this technique we need to first discretize

the gene expression data by partitioning the expression levels into bins. Some regulatory

genes exhibit a close approximation to on/off behavior, with several orders of magnitude

of difference between basal and induced expression levels. In such a case, the gene ex-

pression levels can be discretized without loss of information. However, if part of the

regulatory activity of the gene depends on small fluctuations superimposed on the on/off

behavior, then this will not be captured by a discretized model. Similarly, the expression

levels of some genes mirror continuously varying environmental parameters and have a

regulatory effect over their entire range. Discretization of expression levels of such genes
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will lead to a loss of information. The fewer bins we use to discretize the data, the more

information about the original data we ignore. On the other hand, too fine a binning will

leave us with too few points per bin to get a reasonable estimate of the frequency of each

bin, especially when calculating the joint entropy.

2.2 Clustering algorithms

The art in applying a clustering algorithm in a particular application depends greatly on

the particular features of items to be clustered, and on the number of partitions within

which these items are to be clustered (Spellman et al 1998, Chen et al 2002).

Clustering algorithms can be divided into hierarchical and non-hierarchical methods. Hi-

erarchical clustering represents the relationships between genes as a phylogenetic-type

tree structure called a dendrogram, whereas non-hierarchical clustering groups genes into

a predefined number of clusters. Non-hierarchical methods typically cluster N objects

into K groups in an iterative process until certain goodness criteria are optimized. Ex-

amples of non-hierarchical methods include K-means, EM (Expectation - maximization).

Hierarchical methods return a hierarchy of nested clusters where each cluster typically

consists of the union of two or more small clusters.

2.2.1 Hierarchical clustering

In hierarchical clustering the data are not partitioned into a particular cluster in a single

step. Instead, a series of partitions take place, which may run from a single cluster con-

taining all objects to K clusters each containing a single object. Hierarchical clustering

is subdivided into agglomerative methods, which proceed by series of fusions of N ob-

jects into groups, and divisive methods, which separate N objects successively into finer

groupings. Agglomerative techniques are more commonly used.

Inputs Data points x1, x2, · · · , xN

Output Clustering tree

The data points are the leaves and the branching points indicate similarity between the

sub-trees. The horizontal cut in the tree produces the data clusters.
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General algorithm:

1. Place each element xi, in its own cluster Ci = {xi}.

2. Compute the merging cost between each pair of clusters.

3. Merge the pair of clusters Ci, Cj with cheapest merging cost.

4. Repeat until only one cluster is remaining.

There are differences in the algorithms, because of the different ways of defining distance

between clusters (i.e the merging cost).

Single Linkage : minx∈Ci,y∈Cj
d(x, y)

Average Linkage : 1
|Ci||Cj |

∑
x∈Ci

,
∑

y∈Cj
d(x, y)

Complete Linkage : maxx∈Ci,y∈Cj
d(x, y)

where d(x, y) is the distance measure between the elements x and y.

Characteristics of Hierarchical clustering:

• Greedy algorithm - suffers from local optima and builds few big clusters.

• There is a need to choose a threshold on the number of clusters.

2.2.2 K-means clustering

The K-mean algorithm is a popular clustering method, that subdivides the genes into

a predetermined number K of clusters. The algorithm is initialized with K randomly

chosen cluster centroids (i.e the mean point of each cluster). Each gene is assigned to

the cluster with the closest centroid. Elements in the clusters and cluster centroid are
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updated iteratively until no more genes change the cluster.

Inputs Data points x1, x2, · · · , xN and K number of clusters.

Output K clusters

General algorithm:

1. Select K initial cluster centroids C1, C2, · · · , CK .

2. Assign each element xi to the cluster with the nearest centroid.

3. For each cluster, recompute its centroid by averaging the data points in it.

4. Repeat until it converges.

Characteristics of K-means clustering:

• Number of clusters K should be chosen in advance.

• It is sensitive to perturbations.

• Results depend on initial choice for centers.

2.2.3 Example

We use the data obtained from the Microarray Hybridization technique for cell cycle

regulated genes of yeast Saccharomyces Cerevisiae. (Spellman et. al 1998).

This data was obtained from a publicly accessible website:

http://genome-www.stanford.edu/cellcycle

We applied to it the hierarchical and K-means clustering algorithm. The data consists of

6178 genes× 82 experiments, in which different external agents are used to synchronize the

cell cycle in the entire population, so as to have a measurable pattern. Only the ”alpha”

synchronization part is chosen for the clustering (i.e 6178 genes × 18 experiments). See

(Spellman et al 1998) for the details. MATLAB is used to do the cluster analysis. The

main task here is to hightlight periodicities in the data, which can be used to identify

genes involved in the cell cycle of the yeast. At first the data is filtered by eliminating

genes with lower expression values, small variances, lower entropies and by taking the

log2 of the values. Now, we have a managable list of gene expression profiles (i.e 3434

genes × 18 experiments) (shown in Fig (2.1)). This is the data that we use to look for

relationships between the profiles using different clustering techniques from the Statistical

Toolbox of MATLAB.
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Figure 2.1: Time series of the log of expression profiles of genes.
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Figure 2.2: A heatmap of hierarchically clustered genes with Euclidean distance measure
and complete linkage as cost of aggregation. The rows are the genes and the columns
experiments. The dendrogram on the left side defines how the genes are clustered. The
intersection of gene and experiment is colored according to the expression value - red
indicates high expression, green indicates low expression and the intensity of the color
indicates how high or low it is.

For hierarchical clustering, the Matlab function pdist calculates the pairwise distance
between profiles and linkage creates the hierarchical cluster tree. The cluster function is
used to calculate the clusters based on either a cuttoff distance or a maximum number of
clusters. In our case the ”maxclust” option is used to identify 16 distinct clusters.
The result of the hierarchical clustering on the time series is shown in Fig (2.3) and (2.4)
for two different choices in pdist and linkage.
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Figure 2.3: Hierarchical clustering of the log of the expression profiles with Euclidean
distance measure and complete linkage. 16 clusters, each shown in a square box. Each
plot shows the time series of the expression profiles of the genes in each cluster.
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Figure 2.4: Hierarchical clustering of the log of the expression profiles with Correlation
distance measure and average linkage. 16 clusters, each shown in a square box. Each plot
shows the time series of the expression profiles of the genes in each cluster.
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Figure 2.5: K-means clustering expression profiles with correlation distance measure. 16
clusters, each shown in a square box. Each plot shows the time series of the expression
profiles of the genes in each cluster.

To see how clusters change with the distance measure chosen we have compared the 16

clusters of Fig (2.5) obtained by a K-means algorithm with correlation distance measure

with the 16 clusters of K-means based on Euclidean distance measure Fig (2.6), initialized

from the same random seed.

The heat map of Fig. (2.7) shows that only a percentage of the clusters overlap (identical

result should correspond to diagonal red squares and blue off diagonal).

Looking to the time profile, however, we see that the ”shared clusters” correspond to

some of the most significant patterns (e.g cluster no.(12) from Fig (2.5) and cluster no.

(1) from Fig (2.6) contains the most down regulated, non periodic set of genes for the two

algorithms).
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Figure 2.6: K-means clustering expression profiles with Euclidean distance measure. 16
clusters, each shown in a square box. Each plot shows the time series of the expression
profiles of the genes in each cluster.
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Figure 2.7: A heatmap for the comparison of K-means clustered genes with Euclidean
and Correlation distance measure. The two clustering are initialized by the same seed.
The perfect matching would be the ”red squares” showing 100% overlap of the genes in
the same cluster. ”Blue squares” indicates 0% overlap. The intensity of the colors in the
square indicate the percent overlap of the genes in the same cluster for both algorithms.

2.3 Related methods

The clustering methods are inherently local methods, depending on local clustering of

genes in high dimensional space determined by the experiments. An alternative approach

is to examine some of the more global properties of the data, using principal component

analysis (PCA) or the related singular value decomposition (SVD). The assumption is

that the principal components of gene expression may represent independent regulatory

processes. This assumes that the expression level of each gene can be decomposed into a

linear superposition of regulatory processes. We proceed with the summary in order to

suggest the directions for SVD analysis of gene expression data. (E.Wall et al 2003).
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2.3.1 Mathematical definition of SVD

Let X denote an m × n matrix of real valued data and rank r, where without loss of

generality m ≥ n, and therefore r ≤ n. In the case of microarray data, xij is the ex-

pression level of the ith gene in the jth assay. The elements of the ith row of X form

the n-dimensional vector gi, which we refer to as the transcriptional response of the ith

gene. Alternatively, the elements of the jth column of X form the m-dimensional vector

aj, which refer to as the expression profile of the jth assay.

The equation of the singular value decomposition of X is the following:

X = USV τ (2.7)

where U is an m× n matrix, S is an n× n matrix. The columns of U are called the left

singular vectors, (uk), and form an orthonormal basis for the assay expression profiles,

so that ui · uj = 1 for i = j, and ui · uj = 0 otherwise. The rows of V τ contain the

elements of the right singular vectors, (vk), and form an orthonormal basis for the gene

transcriptional responses. The elements of S are only nonzero on the diagonal, and are

called the singular values. The S = diag(s1, · · · , sn). Furthermore, sk > 0 for 1 ≤ k ≤ r,

and si = 0 for (r + 1) ≤ k ≤ n. By convention, the ordering of the singular vectors is

determined by high-to-low sorting of singular values, with the highest singular value in

the upper left index of the S matrix. It should be noted that for a square, symmetric

matrix X, singular value decomposition is equivalent to diagonalization, or solution of

the eigenvalue problem. One important result of SV D of X is that

X l = Σl
k=1ukskv

τ
k (2.8)

is the closest rank-l matrix to X. The term ”closest” means that X(l) minimizes the sum

of the squares of the difference of the elements of X and X l, Σij | xij − xl
ij |2.

One way to calculate the SV D is to first calculate V τ and S by diagonalizing XτX.

XτX = V S2V τ (2.9)

and then to calculate U as follows:

U = XV S−1 (2.10)

where the (r + 1), · · · , n columns of V for which sk = 0 are ignored in the matrix multi-

plication of equation (2.10). Choices for the remaining n − r singular vectors in V or U
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may be calculated using some other extension method.

Relation to principal component analysis : There is a direct relation between PCA and

SV D in the case where principal components are calculated from the covariance matrix.

If one conditions data matrix X by centering each column, then XτX = Σigig
τ
i is pro-

portional to the covariance matrix of the variables of gi (i.e the covariance matrix of the

assays). By equation (2.9), diagonalization of XτX is done by the matrix V τ , and also

yields the principal components of (gi). So, the right singular vectors (vk) are the same as

the principal components of (gi). The eigenvalues of XτX are equivalent to s2
k, which are

proportional to the variance of the principal components. The matrix US then contains

the principal component scores, which are the coordinated of the genes in the space of

principal components.

If instead each row of X is centered, XτX = Σjgjg
τ
j is proportional to the covariance

matrix of the variables if aj (i.e. the covariance matrix of the genes). In this case the

left singular vectors (uk) are the same as the principal components of aj. The s2
k are

again proportional to the variances of the principal components. The matrix SV τ again

contains the principal component scores, which are the coordinates of the assays in the

space of principal components.

2.3.2 SVD analysis of gene expression data

In this section, we discuss ways of interpreting the SVD in the context of gene expression

analysis.

The biological significance of SV D depends on the specific application. We can, how-

ever, consider classes of experiments and provide them as a guide for individual cases.

For this purpose, we define two broad classes of applications under which most studies

will fall: systems biology applications, and diagnostic applications. In both case, the n

columns of the gene expression data matrix X corresponds to assays, and the m rows

correspond to the genes. The SV D of X produces two orthonormal bases, one defined by

right singular vectors and the other by left singular vectors. Referring to the definitions in

previous section, the right singular vectors can span the space of the gene transcriptional

responses (gi) and the left singular vectors span the space of the assay expression pro-

files (aj). We refer the left singular vectors (uk) as eigenassays and to the right singular

vectors (vk) as eigengenes. By analogy with PCA, it can be referred as a component.

Eigengenes, eigenassays and other definitions are shown in Fig.(2.8).
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Figure 2.8: Graphical representation of SVD of a matrix X.

In systems biology applications, we generally wish to understand relations among genes.

The signal of interest in this case is the gene transcriptional response gi. From equation

(2.7), the SV D equation for gi is

gi = Σr
k=1uikskvk, i = 1, · · · , m (2.11)

which is the linear combination of eigengenes (vk). The ith row of U , g′i (See Fig (2.8)),

contains the coordinates of the ith gene in the coordinate system (basis) of the scaled

eigengenes, skvk. If r < n, the transcriptional responses of the genes may be captured

with fewer variables using g′i rather than gi. This property of the SV D is sometimes

referred to as dimensionality reduction. In order to reconstruct the original data, how-

ever, we still need to access to the eigengenes, which are n-dimensional vectors. Due to

the presence of noise in the measurements, r = n in any real gene expression analysis ap-

plication, though the last singular values in S may be very close to zero and thus irrelevant.

In diagnostic application, we may wish to classify tissue samples from individuals with

and without a disease. Referring to the definitions in previous section the signal of interest

in this case is the assay expression profile aj. By equation (2.7) the SV D equation for aj
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is

aj = Σr
k=1vjkskuk, j = 1, · · · , n (2.12)

which is a linear combination of the eigenassays (uk). The jth column of V τ , a′j (See

Fig.(2.8)), contains the coordinates of the jth assay in the coordinate system of the scaled

eigenassays, skuk. By using the vector a′j, the expression profiles of the assays may be

captured by r ≤ n variables, which is always fewer than the m variables in the vector aj.

So, in contrast to gene transcriptional responses, SV D can generally reduce the number

of variables used to represent the assay expression profiles. Similar to the case for genes,

however, in order to reconstruct the original data, we need access to the eigenassay, which

are m-dimensional vectors.

In the literature the number of components that results from such analysis is sometimes

associated with the number of underlying biological processes that give rise to the pat-

terns in the data. It is then of interest to ascribe biological meaning to the significant

eigenassays (in the case of diagnostic applications), or eigengenes (in the case of systems

biology applications). Even though each component on its own may not necessarily be bi-

ologically meaningful, SV D can aid in the search for biologically meaning signals. When

the data are noisy, it may not be possible to resolve gene groups, but it still may be

of interest to detect underlying gene expression patterns, this is the case where the util-

ity of the SV D distinguishes itself with respect to other gene expression analysis methods.

Raychaudhari et. al.’s study of yeast sporulation data (Raychaudhari et al.2000) is an

early application of PCA to microarray analysis. In this study 90% of the variation in

the data was explained by the first two components of the PCA. It suggests that much

of the observed variability in the experiment can be summarized in just 2-components,

i.e two variables capture most of the information. Subsequent reports supported these

results (Alter et al., 2000; Holter et al., 2000). Alter et al. 2000 analyzed yeast cell-cycle

expression data (Spellman et al., 1998), identified sinusoidal modes in the SVD which cor-

respond to cell-cycle modes, and found that 641 out of 784 previously identified cell-cycle

genes had at least 25% of their normalized expression signal due to cell-cycle modes. In

similar work, Holter et al. 2000 analyzed cell-cycle data (Spellman et al., 1998), sporula-

tion data (Chu et al., 1998), demonstrating that groups obtained by cluster analysis tend

to cluster in the space of appropriately chosen SVD matrix elements.

We use MATLAB for the PCA analysis of the same filtered data set used in section

(2.2.3) consisting of 3434 genes × 18 experiments. The MATLAB command used to get

the principal components is [pc, zscores, pcvars] = princomp(yeastvalues), where yeastval-
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ues is the manageable list of genes filtered from the original dataset.

The first output pc, is a matrix of the principal components of the yeastvalues data. The

first column of the matrix is the first component, the second column is the second princi-

pal component and so on. The second output zscores, are the principal component scores.

That is, the representation of yeastvalues in the principal component space. The third

output pcvars contains the principal component variances. The values of pcvars give a

measure of how much of the variance of the data is accounted for by each of the principal

components. The function clusterdata is used to group the points in the dataset accord-

ing to the desired distance measure. The function gscatter creates a grouped scatter plot

where points from each group have a different color or marker (as shown in Fig (2.9) and

(2.10)).

Figure 2.9: The scatter plot of the first and second principal component, with Correlation
distance measure and average linkage. 8 clusters, where points from each cluster have a
different color.
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Figure 2.10: The scatter plot of the first and second principal component, with Euclidean
distance measure and complete linkage. 8 clusters, where points from each cluster have a
different color.



Chapter 3

Gene network inference: reverse

engineering

Clustering is relatively easy way to extract useful information out of large scale gene

expression data sets. It typically (only) tells us which genes are co-regulated, not what

is regulating what. However, the organization of gene expression profile data into func-

tionally meaningful genetic information has proven difficult and so far has fallen short of

revealing the intricate structure of cellular interactions (Basso et al 2005). This challenge

- called network reverse engineering or deconvolution - has led to an entirely new class of

methods aimed at producing high-fidelity representations of cellular networks as graphs,

where nodes represent genes and edges between them represent interactions, either be-

tween the encoded proteins or between the encoded proteins and the genes (as discussed

in the first chapter).

Reverse engineering is the process of elucidating the structure of a system by reason-

ing backwards from observations of its behaviors.

The available methods fall into four broad categories:

1. Optimization methods - which maximize a scoring function over alternative network

models.

2. Regression techniques - which fit the data to a priori models.

3. Integrative bio-informatics approaches - which combine data from a number of in-

dependent experimental clues.

4. Statistical methods - which rely on a variety of measure of pairwise gene expression

correlation.



3.1 Partial correlation 28

All available approaches suffer to various degrees from problems such as over-fitting, high

computational complexity, reliance or non-realistic network models, or a critical depen-

dency on supplementary data that is only available for simple organisms. These limita-

tions have relegated the successful large scale application of most methods to relatively

simple organisms, such as the Saccharomyces cerevisiae or have produced networks with

only a handful of interactions. No method is currently available for the genome wide

reverse engineering of mammalian cellular networks.

3.1 Partial correlation

Inferring the topology of gene networks rests mainly on the ability to distinguish di-

rect from indirect relations. Many studies focused on statistical correlation (Pearson or

Spearman correlation) between gene expression levels, mostly for dimension reduction

techniques and also for network inference. Correlation graphs are formed by connecting

any pair of gene nodes by undirected edges whenever the correlation between them is

statistically significant. However, it is known that such correlation graphs do not corre-

spond to the actual underlying causal graph of the regulatory system, not only because

correlations are undirected, but also because many correlations will be induced indirectly.

Higher order correlation could assist in determining which of the correlations in the cor-

relation graph are due to direct effects and which of those are indirectly caused. Thus,

although correlation network is still informative, the most important concept in the study

of genomic datasets is the partial correlation coefficient (de la Fuente et al 2004). A

partial correlation coefficient quantifies the correlation between two variables (e.g gene

activities) when there is conditioning on one or several other variables. For example, the

correlation rxy.z between variables x and y conditioning on z, is the correlation between

the parts of x and y that are uncorrelated with z. The order of the partial correlation

coefficient is determined by the number of variables it is conditioned on. rxy.z is a first

order partial correlation coefficient, because it is conditioned only one one variable (z).

zeroth-order correlation: rxy =
cov(xy)√

var(x)var(y)
(3.1)

first-order correlation: rxy.z =
rxy − rxzryz√

(1− r2
xz)(1− r2

yz)
(3.2)

second-order correlation: rxy.zq =
rxy.z − rxq.zryq.z√

(1− r2
xq.z)(1− r2

yq.z)
(3.3)

Thus, partial correlation coefficients can be used to distinguish between the correlations

between two variables due to direct casual relationships from the correlations between
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the same two variables that originate via intermediate variables or directly due to other

variables. In other words, it can be used to eliminate the indirect interaction between the

genes.

3.2 ARACNE algorithm

ARACNE (Algorithm for the Reconstruction of Accurate Cellular Networks), is a novel

information theoretic algorithm for the reverse engineering of transcriptional networks

from microarray data that overcomes some of the limitations of most reverse engineering

algorithms, like computational complexity (Margolin et al 2006). Under certain biologi-

cally realistic assumptions about the network topology, the ARACNE algorithm provides

a framework to reconstruct undirected interaction networks reliably from a finite number

of samples in a computationally feasible time.

ARACNE defines an edge as an irreducible statistical dependency between gene expression

that cannot be explained as an artifact of other statistical dependencies in the network.

The presence of such irreducible statistical dependencies is likely to identify direct regu-

latory interactions mediated by a transcription factor binding to a target gene’s promoter

region, although other types of interactions may also be identified.

Theoretical Background:

We start by noting that with little temporal gene expression data available for higher

eukaryotes, one is forced to study state inter-gene statistical dependencies. Briefly by

analogy with statistical physics, we write the joint probability distribution (JPD) of the

stationary expressions of all genes, P ({gi}) , i = 1, · · · , N as:

P ({gi}) =
1

Z
exp

[
−

∑
i

φi(gi)−
∑
i,j

φij(gi, gj)−
∑
i,j,k

φijk(gi, gj, gk)− · · ·

]
≡ exp[−H({gi})]

(3.4)

where N is the number of genes, Z is the partition function, φi(gi) are potentials, and

H({gi}) is the Hamiltonian that defines the system dynamics. Then a set of variables

is called interacting if and only if the single potential that depends exclusively on these

variables is nonzero.

Since the number of realistically obtainable expression profile samples, M is rather small,

it is infeasible to infer the exponential number of potential n-way interactions suggested

by the expansion in equation (3.4). Rather, a set of simplifying assumptions must be

made about the dependency structure. Equation (3.4) provides a principled and con-

trolled way to introduce such approximations. The simplest model is one where genes
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are assumed independent, i.e., H({gi}) =
∑

φi({gi}), such that the first order potentials

can be evaluated from the marginal probabilities., P (gi), which are in turn estimated

from samples. As more data become available, we should be to reliably estimate higher

order marginals and incorporate the corresponding potentials progressively, such that for

M →∞ the complete form of the JPD is restored. In fact, M > 100 is generally sufficient

to estimate 2-way marginals in genomics problems, while P (gi, gj, gk) requires about an

order of magnitude more samples. Thus we truncate equation (1) at pairwise interactions

only, H({gi}) =
∑

i φi(gi) +
∑

ij φij(gij). Within this approximation, two genes are de-

clared non-interacting if they are statistically independent (i.e P (gi, gj) ≈ P (gi)P (gj)),

and more complex interactions are not investigated.

Algorithm:

ARACNE relies on a two step process. First, candidate interactions are identified by

estimating pairwise gene-gene mutual information, MI(gi, gj) = MIij, i, j = 1 · · ·N (ob-

tained from equation (2.6)) (See section 2.1.2), and by filtering them using an appropriate

threshold, MI0, computed for a specific p-value, p0, in the null hypothesis of two inde-

pendent genes. This is done for different sample sizes M and for 105 gene pairs so that

reliable estimates of MI0(p) are produced up to p = 10−4.

In the second step, ARACNE removes the vast majority of indirect interactions using

a well-known information theoretic property, the data processing inequality (DPI).

Data Processing Inequality : The DPI states that if genes g1 and g3 interact only through

a third gene, g2, (i.e if the interaction network is g1 ←→ g2 ←→ g3 and no alternative

path exists between g1 and g3), then

MI(g1, g3) ≤ min[MI(g1, g2); MI(g2, g3)] (3.5)

Thus the least of the three MI’s can come from indirect interactions only, and check-

ing against the DPI may identify those gene pairs for which MIij = 0 even though

P (gi, gj) 6= P (gi)P (gj). Correspondingly, ARACNE starts with a network graph where

each MIij > MI0 is represented by an edge (ij). The algorithm then examines each gene

triplet for which all three MI’s are greater than MI0 and removes the edge with the small-

est value. Each triplet is analyzed irrespectively of whether its edges have been marked for

removal by prior DPI applications to different triplets. Thus the network reconstructed

by the algorithm is independent of the order in which the triplets are examined. Since

this approach focuses only on the reconstruction of pairwise interaction networks, a pair

of mutually independent genes, MIij < MI0, will never be connected by an edge.



3.2 ARACNE algorithm 31

Algorithmic complexity:

Because of a network of N genes there are at most N3 gene triplets, ARACNE’s com-

plexity is O(N3 + N2M2), where M is the number of samples and N is the number of

genes. The first term relates to the DPI analysis and the second to the mutual informa-

tion estimation. In practice, the DPI is applied to a small subset of triplets for which

all three edges survive the mutual information thresholding. Therefore, for large M , the

computationally intensive part is generally associated with the second term (i.e comput-

ing mutual information), which scales as O(N2M2). As a result, ARACNE can efficiently

analyze networks with tens of thousands of genes.



Chapter 4

Gene network inference: differential

equations

Ordinary differential equations offers a description of the network as a continuous time

dynamical system that can be used to infer the genes with the major regulatory functions

in the network. In addition, it can be applied to the RNA expression measurements

obtained from pharmacological perturbations to identify the genes that directly mediate

a compound’s bio-activity in the cell. In a recent study (Gardener et al.(2003)), an

algorithm was developed to identify a genetic network of nine genes, as a set of linear

differential equations, starting from measurements of gene expression at steady state

following transcriptional perturbations.

4.1 Network model description

A network can be described by a set if ordinary differential equations describing the time

evolution of the mRNA concentration of the genes in the network.

ẋ = f(x, u) (4.1)

where x represents the mRNA concentrations of the genes in the network, and u is a set of

transcriptional perturbations. Assuming that the cell under investigation is at equilibrium

near a stable steady state point, a small perturbation can be applied to each of its genes.

A perturbation is small if it does not drive the network out of the basin of attraction of

its stable steady state point and if the stable manifold in the neighborhood of the steady

state point is approximately linear. With these assumptions, the set of nonlinear rate

equations can be linearized near its stable equillibrium point. Thus, for each gene, i, in a
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network of N genes we can write the following equation:

ẋil =
N∑

j=1

aijxjl + uil = aτ
i · xl + uil, i = 1 · · ·N, l = 1 · · ·M, (4.2)

where xil is the mRNA concentration of gene i following the perturbation in experiment

l; aij represents the influence of gene j on gene i; uil is an external perturbation to the

expression of gene i in experiment l. For all N genes, equation(4.2) can be rewritten in

more compact form using matrix notation:

ẋl = A · xl + ul, l = 1 · · ·M, (4.3)

where xl is an N × 1 vector of mRNA concentrations of the N genes in experiment l, A

is an N ×N connectivity matrix, composed of elements aij, and ul is an N × 1 vector of

the perturbations applied to each of the N genes in experiment l.

To identify the network, using the model described above, means to retrieve matrix A.

This is possible if we measure mRNA concentration of all the N genes at steady state

(i.e, ẋl = 0) in M experiments and then solve the system of equations:

A ·X = −U (4.4)

where X is an N ×M matrix composed of columns xl; U is an N ×M with each column

ul. Equation (4.4) can be solved only if M ≥ N . However, the recovered weights A,

will be extremely sensitive to noise both in the data X and in the perturbations, U,

and thus unreliable unless we over-determine the system of equations (4.4). This can be

accomplished either by increasing the number of experiments (M > N), or by assuming

the maximum number of regulators acting on each gene, k is less than M (i.e, the network

is not fully connected) thus reducing the number of weights aij to be recovered.

4.2 Algorithm

A genetic network can be described by the system of linear differential equations (4.2).

For each gene i at steady state (ẋil = 0) in experiment l, we can therefore write:

−uil = aτ
i · xl (4.5)

where uil is the transcriptional perturbation applied to gene i in experiment l, aτ
i is a

row of A, and xl (N × 1) are the mRNA concentrations at the steady state following the



4.2 Algorithm 34

perturbation in experiment l. The algorithm assumes that only k out of N weights in ai

for gene i are different from zero. For each possible combination of k out of N weights,

the algorithm computes the solution to the following linear regression model:

yil = bτ
i · zl + εil (4.6)

where yil = −uil is the perturbation applied to gene i in experiment l; bi is a k× 1 vector

representing one of N !
k!(N−k)!

possible combinations of weights for gene i; zl is a k×1 vector

of mRNA concentrations following the perturbation in experiment l (i.e a sub-vector of

xl ), with added noise εil. Equation (4.6) represents a multiple linear regression model.

If we collect data in M different experiments, then we can write equation (4.6) for each

experiment and obtain the system of equations:

yτ
i = bτ

i · Z + ετ
i (4.7)

where yi is an M × 1 vector of measurements of the perturbation yil to gene i in the M

experiments; Z is a K ×M matrix, where each column is the vector zl for one of the M

experiments; εi is an M × 1 vector of noise in M experiments. From equations (4.8), it

follows that a predictor for yi given the data matrix Z is:

ŷi
τ = bτ

i · Z (4.8)

The following cost function is minimized to find the k weights bi, for gene i:

Ck
i =

M∑
l=1

(yil − ŷil)
2 =

M∑
l=1

(yil − bτ
i · zl)

2 (4.9)

The solution can be obtained by computing the pseudo inverse of Z:

b̃i = (Z · Zτ )−1 · Z · yi (4.10)

The solution b̃i, is not the maximum likelihood estimate for the parameters bi, when the re-

gressors Z are stochastic variables, but it is nevertheless a good estimate for the unknown

A. The best approximation of the weights in equations (4.2) for gene i, is selected the

one with the smallest least-square error, Ck
i , among the (N choose k) possible solutions b̃i.

It is possible to use the recovered network Ã to deconvolve the results of an experiment,

i.e., to recover the unknown perturbations u0 in an experiment, given the measurements

of the response to that perturbation, x0. The predicted perturbations ũ0 can be computed
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from:

ũ0 = −Ã · x0 (4.11)

The recovered network can be used for target prediction, which can be very useful for drug

discovery. Using measurements of mRNA concentration changes at steady state following

the application of a compound to a cell population, the direct targets of that drug in the

large gene network can be predicted, by means of the recovered network model.



Chapter 5

Conclusion

We are witnessing the transition of biology from a mainly qualitative and descriptive

science into quantitative science. This transition, can be meaningful only if the focus is

on generating models that allows to derive systematic predictions about important bio-

logical processes. This will find important applications in pharmaceutical development

and bioengineering. We have reviewed conceptual foundations for understanding complex

biological networks, but there are still major challenges ahead. Some of them are quoted

below:

Computational data analysis must identify the most essential molecular parameters to

guide the experimental measurements, and critically evaluate measurement precision and

reproducibility with appropriate statistical measures.

Methods for clustering according to co-expression profiles should select the appropriate

experimental sets for analysis, and provide flexible solutions that more accurately reflect

the biological reality. Well designed cluster analysis can be helpful in identifying new

pathway relationships and gene functions that may be critical to cellular control in health

and disease.

Top priority should be given to develop reverse engineering methods that provide signifi-

cant predictions. Alternative computational approaches should be applied to given data

sets, and their predictions tested in the experiments to identify the most reliable methods.

With the current focus on the analysis of large scale gene expression data, there are other

established sources of information ranging from sequence homology to disease association

and a wide variety of functional knowledge from targeted experiments. The gene regula-

tory system investigated here is just a ”layer” of the ”fundamental dogma”. Proteomic

and metabolic levels of investigation should be added likewise, in order to make the reverse

engineering methods more realistic. Ideally, all these categories of information should be

included in the model building.
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