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1. Abstract

One of the major aims of Systems Neuroscience is to understand how the nervous system
transforms sensory inputs into appropriate motor reactions. In very simple cases sensory neurons
are immediately coupled to motoneurons and the entire transformation becomes a simple reflex, in
which a noxious signal is immediately transformed into an escape reaction. However, in the most
complex behaviours, the nervous system seems to analyse in detail the sensory inputs and is
performing some kind of information processing (IP). IP takes place at many different levels of the
nervous system: from the peripheral nervous system, where sensory stimuli are detected and
converted into electrical pulses, to the central nervous system, where features of sensory stimuli are
extracted, perception takes place and actions and motions are coordinated. Moreover, understanding
the basic computational properties of the nervous system, besides being at the core of Neuroscience,
also arouses great interest even in the field of Neuroengineering and in the field of Computer
Science. In fact, being able to decode the neural activity can lead to the development of a new
generation of neuroprosthetic devices aimed, for example, at restoring motor functions in severely
paralysed patients (Chapin, 2004). On the other side, the development of Artificial Neural Networks
(ANNSs) (Marr, 1982; Rumelhart & McClelland, 1988; Herz et al., 1981; Hopfield, 1982; Minsky &
Papert, 1988) has already proved that the study of biological neural networks may lead to the
development and to the design of new computing algorithms and devices. All nervous systems are
based on the same elements, the neurons, which are computing devices which, compared to silicon
components, are much slower and much less reliable. How are nervous systems of all living species
able to survive being based on slow and poorly reliable components? This obvious and naive
question is equivalent to characterizing IP in a more quantitative way.

In order to study IP and to capture the basic computational properties of the nervous system,

two major questions seem to arise. Firstly, which is the fundamental unit of information processing:



single neurons or neuronal ensembles? Secondly, how is information encoded in the neuronal
firing? These questions — in my view - summarize the problem of the neural code.

The subject of my PhD research was to study information processing in dissociated neuronal
cultures of rat hippocampal neurons. These cultures, with random connections, provide a more
general view of neuronal networks and assemblies, not depending on the circuitry of a neuronal
network in vivo, and allow a more detailed and careful experimental investigation. In order to
record the activity of a large ensemble of neurons, these neurons were cultured on multielectrode
arrays (MEAs) and multi-site stimulation was used to activate different neurons and pathways of the
network. In this way, it was possible to vary the properties of the stimulus applied under a
controlled extracellular environment. Given this experimental system, my investigation had two
major approaches. On one side, I focused my studies on the problem of the neural code, where I
studied in particular information processing at the single neuron level and at an ensemble level,
investigating also putative neural coding mechanisms. On the other side, I tried to explore the
possibility of using biological neurons as computing elements in a task commonly solved by
conventional silicon devices: image processing and pattern recognition.

The results reported in the first two chapters of my thesis have been published in two

separate articles. The third chapter of my thesis represents an article in preparation.



2. Introduction

2.1 Understanding neural coding

2.1.1 Single neurons: computation and encoding of information

Understanding the neural code requires the identification of the role of single neurons and
neuronal ensembles in the neural computation. One of the central questions in neuroscience is how
particular tasks or computations, are implemented by neuronal networks in order to generate
behavior. Although, according to the dominant view, information processing in neuronal networks
results primarily from the properties of synapses and the connectivity of neurons within the network
(Hopfield, 1982; Rumelhart & McClelland, 1988; DeCharms & Merzenich, 1996; Georgopoulos et
al., 1986; Gray et al., 1989; Nicolelis et al., 1998; Thorpe et al., 2001), several studies support the
idea that single neurons are indeed able to perform very precise computations (Koch, 1999; Koch &
Segev, 2000; Koch et al., 1983). Starting from the initiation and the dynamics of action potentials
(APs), the timing of the generation of AP can be controlled very precisely, with a submillisecond
precision, by fast membrane fluctuations (Mainen & Sejnowski, 1995). Action potential waveforms
can be highly variable so that they can reliably signal the history of the input for some dozens of ms
before the spike (De Polavieja et al., 2005).

There are several proofs that computation, at a single neuron level, can take place in the
dendrites, for example in direction-selective neurons, to analyse motion and in coincidence-detector
neurons for the auditory system (which are performing the equivalent of the Boolean operation
AND).

Direction-selective neurons respond to image motion in a preferential direction but not in
the opposite direction (Barlow & Levick, 1965). They can be found in many species from fly eyes
to mammalian cortex, and in all these cases, a role for dendritic computation has been proposed.

The direction-selective retinal ganglion cells described by Barlow & Levick (Barlow et al., 1964,



Barlow & Levick, 1965) are a classical example of a complex nonlinear operation that appears to
use synaptic logic (Koch et al., 1982). A popular model for the biophysical basis of directional
selectivity is nonlinear synaptic interaction between cholinergic excitation and GABAergic
inhibition mediated by GABA4 receptors in the dendritic tree of ganglion cells (Koch et al., 1982;
Koch et al., 1983; Koch et al., 1985; Torre & Poggio, 1978). Intracellular recordings from turtle and
frog direction-selective ganglion cells support activation of shunting inhibition in the null direction
(Marchiafava, 1979; Watanabe & Murakami, 1984). Nonlinear interaction between excitation and
shunting inhibition on small dendritic branches can implement logical operations. The result of the
combined operation of a neighboring pair of excitatory and inhibitory inputs will cause somatic
depolarization if and only if excitatory input and not inhibitory input is active. This AND-NOT
function is a Boolean logical operation, of exactly the same kind as implemented in modern
computers and studied in mathematical computational theory.

Analogously, the contribution of the dendrites to computation has been proposed in the
sound localization system, where neurons act as coincidence-detectors. Agmon-Snir et al. (1998)
proposed that in the auditory system of chicks a special type of neuron is responsible for computing
the time difference between sounds arriving to the two ears. Each neuron responds only to a very
precise time difference, which corresponds to a specific location in space. The neurons contain only
two major dendrites, and each dendrite receives inputs only from one ear. The inputs are supposedly
arranged in such a way that there is a constant delay between the inputs arriving from one ear and
the inputs arriving from the second ear. Coincident inputs from both ears arriving to the two
dendrites are summed up at the soma and cause the neuron to emit action potentials. In this way the
neuron would just behave as an AND Boolean operator.

Moreover, passive dendrites can act as passive filters and this property may be exploited to
perform simple computations (Koch, 1999). First, for single inputs, by acting as a delay line, the
dendrites can “label” particular inputs on distinct regions of the dendritic tree by the latency of the

resulting output spikes. In fact, EPSPs with different somatic shape are likely to affect the somatic
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output spike trains in different ways (Fetz & Gustafsson, 1983). Second, for multiple inputs, the
time course of the somatic voltage response depends on the temporal order of activation of the
dendritic synapses (in contrast with the scenario where they are all located on the soma).

Single neurons, apart from being potentially capable of precise relevant computations, can
encode in their firing a large amount of information. In fact, since the discovery of face and hand
selective cells in the inferior temporal cortex (Gross et al., 1969; Gross et al., 1972), a strict link
between single neurons and perception has been proposed. It has been shown that neurons in the
human medial temporal lobe (MTL) fire selectively to images of faces, animals, objects or scenes
(Fried et al., 1997; Kreiman et al., 2000) and, more surprisingly, a remarkable subset of MTL
neurons are selectively activated by strikingly different pictures of given individuals, landmarks or
objects and in some cases even by letter strings with their names (Quiroga et al., 2005). These
results support the idea of an invariant and sparse neural code. This is an extreme hypothesis based
on the explicit representations by highly selective neurons or “grandmother cells”, a hypothetical
neuron that responds only to a highly complex, specific, and meaningful stimulus, such as the image
of one’s grandmother (Barlow, 1972). Indeed, how such a robust, fast (it takes a fraction of a
second to recognize a person or an object even when seen under strikingly different conditions
(Konorski, 1967; Gross et al., 1969; Barlow, 1972; Logothetis & Sheinberg, 1996; Young &
Yamane, 1992)), high-level representation is achieved by neurons in the human brain is still
unclear. In general, how neurons can encode different percepts is one of the most intriguing

questions in neuroscience which has still no answer.

2.1.2 Neuronal networks: computation and encoding of information

As already mentioned above, according to the dominant view information processing in the

nervous system results primarily from the properties of synapses and the connectivity of neurons



within the network (Hopfield, 1982; Rumelhart & McClelland, 1988; DeCharms & Merzenich,
1996; Georgopoulos et al., 1986; Gray et al., 1989; Nicolelis et al., 1998; Thorpe et al., 2001).

In the past 60 years, many studies have shown how networks are capable of any basic
mathematical computation, like those implemented on digital computers, even though not as rapidly
or as conveniently, and, more relevantly, they can perform complex computations like those
required for learning and for pattern recognition (Marr, 1982; Rumelhart & McClelland, 1988; Herz
et al., 1981; Hopfield, 1982; Minsky & Papert, 1988).

First, in 1943, McCullough and Pitts showed how a collection of simple, interconnected
neuron-like units could process information. Their view of neuronal processing was a very simple
one. All synaptic inputs converge onto a single compartment (‘point neuron’). Each synapse is
modeled by a positive number, its synaptic weight. The activity of each presynaptic fiber (originally
assumed to be either on or off) is multiplied by its associated synaptic weight and summed over all
inputs. This sum is then compared against a threshold. If the threshold is exceeded, and if no
inhibitory unit is active, the neuron generates a spike and sends it on to its postsynaptic targets.
Otherwise, the cell remains quiet. McCullough and Pitts proved that a sufficiently large number of
these simple logical devices, wired together in an appropriate manner, are capable of universal
computation.

Later, in 1982 Hopfield showed how the ability of large collections of neurons to perform
"computational" tasks might in part be a spontaneous collective consequence of having a large
number of interacting simple neurons.

By passing from the work of McCullough and Pitts through the studies of Hopfield, the field
of Artificial Neural Networks (ANNs) grew up and models of networks with more sophisticated
neuron-like units and connections were proposed (Anderson & Rosenfield, 1988; Caudill & Butler,
1990). The major aim of ANNs was to capture basic computational properties of biological
neuronal networks, such as learning, adaptation and parallelism and to implement these features on

new computational devices. In fact, image recognition, movement coordination or other problems



of artificial intelligence, computer vision and robotics require a more sophisticated computation in
respect to the standard serial computation implemented on typical computers. Although ANNs can
be trained to recognize features and patterns, presently it is still impossible to think of developing a
computational device able to process information and to extract features of INPUT in such a fast
and reliable way, just like the nervous system can. A strikingly clear example is the ability of the
nervous system to extract and classify features of images in just a few hundreds of ms (Konorski,
1967; Gross et al., 1969; Barlow, 1972; Logothetis & Sheinberg, 1996; Young & Yamane, 1992).
From a technological point of view, there is even an obvious difficulty in forming large numbers of
interconnections in two dimensional silicon devices, which though is a fundamental prerequisite for
implementing massive parallel processing. On the other hand, biological neurons form connections
and synapses between themselves very naturally.

Besides, apart from these clear technological problems of building hardware capable of
parallel computation, there are still many questions, that still remain open, about how neuronal
networks work in the nervous system to process information.

In this context, the study of neural coding is a central issue for the investigation of nervous
system function. In fact, before being able to understand how neural circuits process information,
we must understand how they represent it.

Information is conveyed to and processed within the brain primarily in the form of action
potentials. In the great majority of invertebrate species and in almost all vertebrates, sensory signals
are coded in trains of evoked action potentials (APs). In the central nervous systems (CNSs) of all
vertebrates messages and signals are exchanged and processed as APs trains. How does the
sequence of action potentials fired by neurons represent the information that is encoded and
conveyed to other neurons?

The neural code is particularly complex because both the properties of the stimulus (light,
touch or sound intensity), and the way that the stimulus changes over time are encoded in the

temporal pattern of neural spiking. Information about the stimulus value and about changes in the



stimulus are both represented in the time domain by the neural code. As a result, it is important to
distinguish between the structure imposed on the code by the nature of the stimulus, and the
structure that arises from the nature of encoding itself.

Although there are many open questions about the neural code, it is now widely accepted
that in most nervous systems information about a stimulus is encoded in the activity of a large
number of responding neurons (population coding) (Pouget et al., 2000).

Earlier studies, owing to technological limitations, were based on the recording of single
neurons or of very few neurons and, as a consequence, they mainly contributed to revealing the role
of firing rates in the neural coding (Barlow, 1972, Hubel & Wiesel, 1959). In fact, due to the very
limited number of cells simultaneously recorded, it was very difficult to detect any different coding
strategy based, for example, or the relative timing of firing in ensembles of cells. In the last two
decades, the diffusion and application of new experimental techniques that allowed the
simultaneous recordings of more than 100 neurons (Nicolelis et al., 1997; Rousche & Normann,
1988; Meister et al., 1996) gave the possibility to study neural coding mechanisms and distributed
representations in different part of the brain. In this way, although the response of most neurons
even when the same stimulus is presented repeatedly show a high degree of variability (Shadlen &
Newsome, 1998), it was shown how precise information can be encoded in different features of the
firing pattern of neural ensembles like: the firing rate, the timing of firing, the synchrony of firing,
or the order of the first evoked spikes (Nicolelis et al., 1998; Gray et al., 1989; Singer & Gray,
1995, DeCharms & Merzenich, 1996; O’Keefe & Recce, 1993; Hopfield, 1995; Thorpe et al., 2001;
Johansson & Birznieks, 2004).

So, only in the last decade synergistic neural coding based on the precise or on the relative
timing of spiking between neurons could be experimentally studied and their relevance
demonstrated.

A very clear example of how information is distributed and can be differently encoded in

neural ensembles was given by Nicolelis et al. (1998). By using multielectrode recordings, they
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showed how sensory information is distributed and differently encoded in the activity of different
ensembles of neurons situated in distinct cortical regions. In their experiment, using simultaneous
multi-site neural ensemble recordings, they compared the representation of tactile information in
three areas of the primate somatosensory cortex. They observed how small neural ensembles of 30-
40 neurons were simultaneously able to identify the location of a single tactile stimulus in a very
precise way. Moreover, they showed how each of those cortical regions could use different
encoding schemes, based on the average firing rates or on the precise temporal firing pattern, to
retrieve the stimulus correctly. In summarizing their work, they were able to show at the same time
how information is distributed in the response of neurons and how different coding mechanisms
(rate and temporal) can be used.

Their work, in common with most works dealing with the problem of neural coding, focused
on how the information encoded in the activity of a population of neurons can be read out or
decoded. In this approach, decoding is an effective way of determining the accuracy, efficiency, and
information carrying capacity of a neural code. Information theory and classification analysis are
the methodologies generally used to evaluate the coding/decoding schemes (Panzeri et al., 2001;
Petersen et al., 2001; Foffani & Moxon, 2004; Nicolelis et al., 1998; Rolls et al., 1997). In
particular, information theory (Shannon & Weaver, 1949), a branch of the mathematical theory of
probability and mathematical statistics, allows quantifying precisely the concept of information.
Entropy is the fundamental measure of information theory and it is used to measure the uncertainty
of a random variable. In the field of neuroscience, entropy is generally taken as a measure of the
information contained in a stimulus and as a measure of the variability of the neuronal response.

In other experiments (Panzeri et al., 2001; Petersen et al., 2001) similarly performed on the
somatosensory cortex (in this case rats were used), it was shown how temporal precision (on the
order of 2 ms) of firing in an ensemble of neurons encoded a larger amount of information with

respect to the mean firing rate. In particular, an important role was attributed to the first evoked



APs, which could carry more than 80% of the total spike train information, excluding synergy in
cross neuronal spike patterns.

As in the case of somatosensory stimuli, for auditory stimuli an important role in
information coding was attributed to the temporal firing patterns and to the first evoked APs by
Furakawa et al. (2002). They showed how the activity of an ensemble of cortical neurons encoded
the sound-source location of the stimulus. The recognition of spike patterns, based on ANNSs, used a
rate coding scheme (relative spike count) and temporal schemes (relative spike timing). They found
that the proportion of information about source location transmitted by first spike latency averaged
89% of that of full spike patterns.

The role of first spike latencies in the neural code can be extremely important. In fact,
recognition of complex scenes and images occurring in just few hundreds ms (Thorpe et al., 2001)
requires several steps of processing and a very fast processing. Therefore, a neural code based on
the first evoked APs in an ensemble of neurons would be the fastest coding mechanisms which can
be implemented by neurons.

The study done by Johansson et al. (2004) represents a possible proof for the existence of
coding mechanisms based on the first spikes. They demonstrated that the rank order of first spikes
in individual units of ensembles of tactile afferents from the human fingertip conveys sufficient
information to discriminate four directions of fingertip force and three different shapes of the
surfaces contacting the tip. The information is available more promptly than would be possible by
the fastest rate code and quick enough to account for the speed observed in natural object
manipulations.

First spike codes can be considered for recognition of sudden stimuli as in the cases
discussed above, but cannot be easily extended to the dynamical stimuli cases, steady stimuli or
movement control.

In this last context, Georgopoulos et al. (1986) showed first in a pioneering paper how,

although individual neurons in the arm area of the primate motor cortex are only broadly tuned to a
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particular direction in three-dimensional space, the animal can control very precisely the movement
of its arm. He found that the direction of movement could be uniquely predicted by the action of a
population of motor cortical neurons. When the firing rates of individual neurons were represented
as vectors that make weighted contributions along the axis of their preferred direction, the resulting
vector sum of all cell vectors (population vector) had a direction which was congruent with the
direction of the movement.

Similarly, Wessberg et al. (2000) were able to predict with high accuracy the arm movement
of a monkey. They recorded the simultaneous activity of large populations of neurons, distributed in
the pre-motor, primary motor and posterior parietal cortical areas, as monkeys performed two
distinct motor tasks. Accurate real-time predictions of one- and three-dimensional arm movement
trajectories were obtained based on the activity (spike count) of the cortical neuronal ensemble. In
this experiment a dynamical description of the movement was described by the population activity
represented in time series.

Only in the last decade clear experimental evidence of the important role played by the
correlation of firing in neural ensembles has been given. Correlated firing between single neurons in
the frontal cortex of monkeys was detected while the animal was performing a behavioural task
(Vaadia et. al., 1995). The temporal dynamic of correlation evolved in systematic relation to the
behavioural tasks. Their findings were a first demonstration of how neurons can synchronize rapidly
their activity to form functional groups performing a computational task.

In a different experiment (DeCharms & Merzenich, 1996), it was shown how correlation can
signal the presence of a continuous steady stimulus while the firing rate could encode the transients
like the onset of the stimulus. The authors of the experiment reported that the relative firing of a
population of neurons in the primary auditory cortex displayed a coordination (synchrony) while a
continuous stimulus was present. In this way, although the firing rates did not change, the correlated
activity of the cortical neurons was signalling the presence of the stimuli. Interestingly, the firing

rate changes were observed at the onset of the stimulus. Their conclusion was that population codes
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based on synchronization across neurons can encode features of the stimulus and can follow the

time course of the stimulus without provoking a change in the firing rate.

2.2 Investigation of in-vitro neuronal networks: dissociated neuronal cultures grown on

MEAs

In order to understand neural coding and to investigate how the nervous system performs
parallel computation, it is essential to measure simultancously the activity of large ensembles of
neurons (massive parallel recordings). In the previous section of the introduction, I tried to give a
large overview of network studies performed in-vivo, whereas here I will focus on the studies of in-
vitro neuronal networks. In the last two decades, great efforts were spent in developing planar
multielectrode arrays (MEAs), i.e. dishes with embedded electrodes able to record and stimulate the
electrical activity of neuronal preparations like brain slices and dissociated cultures (Pine, 1980;
Novak & Wheeler, 1986; Regehr et al., 1989; Jimbo & Kawana, 1992; Martinoia et al., 1993; Nisch
et al.,, 1994). The experimental work I present in my thesis is entirely based on the study of
hippocampal dissociated neuronal cultures grown on MEAs. Therefore in this introductory part, I
will present previous works describing the electrical activity of dissociated cultures, with particular
attention to experiments performed with the use of MEAs. A large literature is especially focused
on the study of cortical neurons.

Mammalian neurons can be mechanically and enzymatically dissociated from brain tissue
and plated on a dish. In a typical cortical network developing in a 20-mm diameter culture dish,
100000 neurons can be present (Marom & Shahaf, 2002) and they can grow in culture for months.
In particular Potter and DeMarse (2001) showed that cortical dissociated cultures can survive for
over a year when sterility, temperature, pH, osmolarity, oxygenation are opportunely controlled and
when nutrients and growth factors are appropriately provided. Their investigation was particularly

relevant for my thesis, since they described in detail what procedures have to be used and to what
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points special attention must be paid in order to be able to monitor the electrical activity of neurons
over months. In particular, the application of their protocols allowed us to prolong our
measurements for hours and to repeat further experiments on the same preparations over a period of
several weeks or few months.

After plating the cells, neurons begin to extend arborizations within hours (Huettner &
Baughman, 1986). During the first week in culture, the neurons extend many neurites, form
synapses, and begin to develop spontaneous activity (Habets et al., 1987; Comer & Ramakers,
1991; Basarsky et al., 1994). The glial cells, if present in the dish, continue to divide and proliferate
until limited by contact inhibition or exogenous inhibitors of cell division (Banker & Goslin, 1998).
Glial cells provide necessary trophic factors for cultured neurons (Banker & Goslin, 1998), and
there is evidence that direct contact between neurons and glia is also crucial for neuronal survival
(Pfrieger & Barres, 1997).

Once mature, the network forms a monolayer, with axodendritic branches that extend over 1
mm, and an immense number of functional synapses are present (Marom & Shahaf, 2002; Potter,
2001). A typical cortical preparation contains all the types of cells that are present in the cortex at
the time of extraction, including glial cells and the distribution of types of cells in in-vitro networks
can be similar to that found in vivo (Neale et al., 1983; Huettner & Baughman, 1986; Nakanishi &
Kukita, 2000).

By using planar MEAs, Jimbo, Kawana and their team have carefully studied the
development of the spontaneous activity in dissociated rat cortical cultures during maturation
(Jimbo and Kawana, 1992; Robinson et al., 1993a,b; Maeda et al., 1995, 1998; Kamioka et al.,
1996). They showed (Kamioka et al., 1996) that after a few days of culture, the networks first
exhibited uncorrelated spontaneous firing which was progressively transformed into synchronized
bursting in approximately 1 week. After a few weeks in culture, the networks showed non-periodic
synchronous patterns of electrical activity and this behaviour did not change for more than 2

months, representing in this way the mature state of the network. These phenomena are observed in
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most of cultured networks, regardless of the exact source from which cells are extracted, or the
means of measurement (Morin et al., 2005; Shahaf & Marom, 2002; Potter, 2001). Regardless of
their origin, they all develop some sort of synchronous bursting activity when they mature (Morin et
al., 2005; Shahaf & Marom, 2002; Potter, 2001). During the maturation of the network (Maeda et
al.,, 1995) the frequency and propagation velocity of synchronized clustered activity increase
remarkably. The origin of spontaneous bursts can vary randomly with each burst and the activity
does not necessarily spread across the network in a wave-like fashion. In fact, electrodes that are far
away from an initiation site can be recruited into a burst before some others that appear to be
physically closer.

The bursting activity is regulated by the balance of inhibition and excitation (Streit et al.,
2001) and is temporally concomitant with the increase of intracellular calcium in the neurons
(Robinson et al., 1993a). Transitions from asynchronous firing dynamics to synchronous firing
dynamics can be induced by increasing the extracellular Ca®" concentration (Canepari et al., 1997).
Periodic synchronized bursting with concomitant intracellular calcium transients is induced by low
magnesium in the extracellular medium (Robinson et al., 1993a).

Addition of extracellular Mg>" can reduce the spontaneous activity at any Ca®’
concentration, and an increase in the extracellular K concentration can enhance the frequency of
periodical synchronous bursts (Canepari et al., 1997). Blockage of N-methyl-D-aspartate (NMDA)
and non-NMDA glutamate receptor inhibits synchronous activity (Canepari et al., 1997).

Bursting activity in-vivo is present during development when it contributes to establishing
appropriate connections (Meister et al., 1991; Ben-Ari, 2001; Zhang and Poo, 2001) but it is present
in-vitro during the entire life (up to 1 year) of the culture. This observation suggests that the
bursting could be related to a lack of input which is present in an in-vivo system. Starting form this
hypothesis, Wagenaar et al. (2005) showed how appropriate stimulation of a cortical dissociated
network can lead to a controlled bursting activity. By using a closed loop system, they were able to

control over a period of time the electrical discharge of the network through an appropriate
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stimulation. The stimulation was distributed through several electrodes of the MEA with an
amplitude adjusted in real time depending on the level of network activity. While when applied at
lower frequencies the stimulation enhanced the bursting regime, at higher frequencies the bursts
were reduced and the electrical activity in the network was more sparse and distributed over the
time period, displaying similarity with the mature activity of networks in-vivo.

A detailed characterization of the pattern of activity evoked by electrical stimulation through
the MEA was presented by Jimbo et al. (2000). They showed that a brief voltage pulse applied to
one extracellular electrode can evoke a clear electrical response over almost the entire network. In
particular, a strong voltage induces an early phase in the response of a few dozens of ms, and a late
phase of several hundreds of milliseconds. The early phase is characterized by precisely-timed
firing and by a spread (wave-like) of the electrical activity over the network. By contrast, the late
phase is characterized by the occurrence of fluctuating patterns of electrical activity, similar to the
dynamics of the spontaneous activity. The late phase of the response could be suppressed by
blocking the NMDA-mediated excitatory pathways by adding small amounts of APV to the
extracellular medium or by increasing the amount of extracellular Mg®". On the contrary, the
spontaneous activity and the late phase were enhanced by blocking the inhibitory GABA-ergic
pathways by adding bicuculline. According to the authors, the neuronal network exhibits two
different dynamical states: a state typical of non-chaotic deterministic systems and another state
typical of stochastic or chaotic systems.

In-vitro networks have been studied in depth to investigate synaptic plasticity. By using the
double-patch technique, the group of Poo investigated synaptic plasticity in pairs of neurons in
dissociated rat hippocampal cultures. Their researches contributed greatly to the study of activity-
induced synaptic modifications (Dan & Poo, 2004).

Moreover, the use of MEAs has allowed scientists to carry out studies on plasticity in the
network at larger scale. A very recent paper (Arnold et al., 2005) showed how exposure of the

hippocampal network to bicuculline (the GABA4 receptor antagonist), induces a change in network
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activity from uncoordinated firing (lacking any recognizable pattern) to a highly organized, periodic
and synchronized bursting firing. Once induced, the burst pattern persists for several days in normal
conditions and the maintenance phase is dependent on gene transcription taking place in the critical
period of some hours following induction. Thus, cultured hippocampal neurons showed a simple
form of plasticity dependent on transcription and protein synthesis.

Very interesting results in terms of plasticity were obtained when using the electrodes of the
MEA as source for delivering external stimuli to the network.

Several works published by the group of Jimbo and Kawana pioneered the study of synaptic
plasticity in neuronal cultures. In a first work (Maeda et al., 1998), using MEAs, they investigated
how intrinsic synchronized activity in cortical cultures was modified with the application of an
external stimulation. In particular, they observed that a strong high frequency stimulation (tetanus)
was capable of potentiating the response of a weak and low frequency test stimulation, increasing
the probability of eliciting bursts and increasing the frequency of spontaneous bursts. A detailed
analysis showed that the essential mechanism for inducing plastic modifications was the capability
of the tetanus to elicit a propagating burst. In a later paper (Jimbo et al., 1999), they demonstrated
that a tetanic stimulation was able to induce simultaneously in the network long-term potentiation
and depression. In their experiments control stimuli were delivered separately through each single
electrode of the array, in order to measure the network response elicited by the activation of many
distinct pathways. Once the tetanus was delivered, tests on the different pathways revealed a
potentiated transmission in some cases and depressed transmission in others. These variations could
be accounted for by considering the correlation of firing before the tetanus between tetanized
pathways and tested pathways. High correlation resulted in potentiation and poor correlation
determined depression. In another similar work (Tateno & Jimbo, 1999) it was shown that a tetanic
stimulation can affect the reliability and reproducibility of spike trains evoked by a stimulus and can

vary the fine temporal structure of evoked spike trains.
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Further studies of learning and adaptation in cortical cultures have been carried out by the
group of Prof. Marom. In a first investigation, (Shahaf & Marom, 2001) they showed how selective
learning could be induced in a network. In particular, given a fixed stimulus, the network could
learn to respond to the stimulation in the desired way, i.e. in a predefined time window following
the stimulus. The training consisted of repeating the stimulus till the desired response was observed,
1.e. stopping the stimulation represented a sort of reward for the network. In repeating this training
protocol, the authors observed that the network learned to respond in the desired way in
progressively shorter times. This effect was not observed in the absence of training. The authors
suggested that presumably the stimulation could induce changes in the network. Stopping the
stimulation could allow selection of changes consistent with the desired response.

In a second investigation (Eytan et al., 2003), it has been shown how the network can
selectively adapt to frequent stimuli while becoming more sensitive to rare stimuli. In fact,
repetitive stimulation with two distinct stimuli (a rare one and a frequent one) delivered through two
distinct electrodes, caused a progressively decreasing response to the frequent stimulus whereas, by
contrast, the rare stimulus slightly increased its response. The increasing response to the rare stimuli
required the presence of the frequent stimuli, but the opposite effect was not observed. By using
synaptic blockers, they showed how this effect of selective amplification depended on the balance

between inhibition and excitation in the network.

2.3 Neuroengineering, neuroprosthetics and neuroimplants

Being able to decode the neural activity can lead to the development of a new generation of
neuroprosthetic devices aimed, for example, at restoring motor functions in severely paralysed
patients. In this context, the field of research commonly referred to as neuroengineering tries to
combine parallel advances in nanotecnologies, electronics and neuroscience for powerful clinical

and technological applications. While benefits from neuroengineering to information technology
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still seems premature, implementations of direct brain—machine interfaces (BMIs) have already
shown promising results in clinical applications. Recent experimental demonstrations in rodents,
primates and patients (Nicolelis, 2003) let one realistically suppose that neuroprosthetic devices
could be used for example to restore basic motor functions in patients suffering from severe body
paralysis. Moreover, direct brain—machine interfaces can become the core of a new experimental
approach with which to investigate the operation of neural systems in behaving animals. This
approach assumes that voluntary motor commands can be extracted in real time from the electrical
activity of populations of cortical or subcortical neurons spared by the underlying illness (Wessberg
et al., 2000), and then used to enact motor function either by directly stimulating the patient’s
musculature or by controlling the movements of artificial actuators, such as robot arms (Nicolelis,
2001). Over the years, different sources of neuronal signals, ranging from electroencephalograms
(EEGs) to intracranial single-unit recordings have been proposed as potential sources of control
signals to drive various neuroprostheses (Chapin, 2004). Significant technological problems have
yet to be overcome. Great efforts must be spent in the areas of microelectrode array,
biocompatibility of brain implants, microelectronics for miniaturization of hardwares, power
management, real-time computational modelling and robotics. These engineering bottlenecks must
be overcome in order to move from demonstrations to clinical implementations. A few examples of
what the future might bring are already present in the literature.

Tangible success has been obtained implanting brain stimulators, such as cochlear implants
for restoring auditory function, deep brain stimulators for pain management and control of motor
disorders (such as Parkinson’s disease), and vagal nerve stimulators for treating chronic epilepsy
(Aziz & Yianni, 2003; Siderowf & Stern, 2003; Henry, 2002).

In particular cochlear implants are an evident example of a successful neural prosthesis
(Wilson et al., 2003). The cochlear implant is a quite simple microelectrode array that directly
stimulates the auditory nerve. Auditory prostheses work by converting features of acoustic signals,

such as speech, into patterns of electrical stimuli that are then delivered through an array of
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chronically implanted electrodes to auditory nerve fibers lying on the basilar membrane of the
cochlea. As the basilar membrane contains a representation of sound frequencies, known as a
tonotopic map, auditory prostheses deliver high-frequency information to the basal region of the
cochlea, and low-frequency signals to the apical region, to mimic normal auditory processing.

In contrast to auditory prostheses, visual prostheses encounter much bigger difficulties
which seem still hard to overcome. An encouraging preliminary success has been obtained by
connecting a television camera to the visual cortex (Dobelle, 2000). In this approach the role played
by the prosthesis is to acquire the “sensory signal” and, to encode the information appropriately to
be transferred to the CNS. In fact, the digital video camera was mounted on glasses to capture an
image and send it to a small computer on the patient's belt: the images are processed and sent to
electrodes implanted in the patient's visual cortex. The electrodes stimulate the brain, producing a
pattern of bright spots that form an image. With such a device the patient might be blind to some
objects, some situations, but not totally blind anymore.

In parallel, a number of research groups are developing electrical implants that can be
attached directly to the retina in an attempt to restore vision to patients suffering from retinal
degeneration (Zrenner, 2002). There are two kinds of retinal implant under development: subretinal
and epiretinal. With a subretinal implant, the rods and cones should be replaced by a silicon plate
carrying thousands of light-sensitive microphotodiodes, each equipped with a stimulation electrode.
The stimulation injects current into whichever neurons remain of the retinal network, the middle
and inner retina thus taking over the information-processing part of vision. In this approach the
prosthesis partially replaces the peripheral nervous system in acquiring the visual stimulus and
directly transfers the information through the electrical stimulation to the next stage of the sensory
peripheral visual system pathway. Encoding and conversion of the acquired information into the
stimulation is very simple since the prosthesis acts in an early stage of the peripheral nervous
system. In contrast, the epiretinal implant has no light-sensitive areas but receives electrical signals

from a distant camera and processing unit outside of the body. Electrodes in the epiretinal implant
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then directly stimulate the axons of the inner-layer ganglion cells that form the optic nerve. Unlike
the subretinal implant, the epiretinal implant does not use the remaining network of the retina for
information processing. Thus, the epiretinal sensor has to encode visual information as trains of
electrical impulses that are then conveyed by the electrode array directly into the axons of ganglion
cells, which unite to form the optic nerve. The visual information has to be translated into a
spatiotemporal stimulation pattern of electrical impulses that can be understood by the brain’s
visual cortex. Despite promising results in animal experiments, there are still several major
obstacles to overcome before retinal prostheses can be used clinically. Before retinal implants can
be tested in patients, surgical techniques for implanting, removing, and fixing these electronic
prostheses in the eye must be developed.

In the context of neuroimplants for brain-machine interfaces, a new field of
neuroengineering, referred as “cognitive engineering”, is emerging. In this ambit, Kennedy and
Bakay (1998) have developed a neurotrophic electrode brain implant that is allowing speech-
impaired patients to communicate through a computer. They recorded action potentials in the brain
of the patients over several months by means of an electrode that induces growth of myelinated
fibers into its recording tip. The patients were able to control the neural signals in an on/off fashion.
The patients were taught to control the strength and pattern of the electric impulses being produced
in the brain. The patients learned to move the cursor to letters of the alphabet and spell words. This
result is an important step towards providing such patients with direct control of their environment
by interfacing with a computer. Additionally, it indicates that restoration of paralyzed muscles may
be possible by using the signals to control muscle stimulators. The developments in this field would
open up a tremendous opportunity for patients who have lost the ability to move and talk because of
stroke or spinal cord injury. For spinal cord injured patients who have uncontrolled muscles, these
neural signals could provide some control of electrical stimulators that activate the paralyzed

muscles, thus bypassing the area of spinal cord injury ("spinal bypass").
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In the context of movement disorder diseases, the development of deep brain stimulation in
the treatment of Parkinson’s disease as an effective and safe therapy has led clinicians to explore the

treatment of disorders for which there has been no effective treatment (Aziz & Yianni, 2003).

2.4 Aims and strategies of the Ph.D. project

The major aim of the research presented in this thesis was to study general and basic
mechanisms of information processing in neuronal networks. Therefore,

e as a possible general model of neuronal networks, dissociated neuronal cultures of rat
hippocampal neurons were used;

o the cultures were grown on multielectrode arrays and the electrodes were used to deliver
electrical stimuli to the networks (input) and to record the electrical activity evoked in
the neurons (output).

In order to understand the neural coding and the role of single neurons and neuronal
ensembles in information processing, I studied:

e the variability of firing in single neurons and in neuronal ensembles;

o the response of neurons to stimuli with different features (intensity, spatial profile and
spatial location);

e neural coding mechanisms based on the firing rate and on the first spike latencies of a
population of neurons;

o the role of excitatory and inhibitory transmission by applying appropriate synaptic
blockers.

Information theory and classification analysis were used to evaluate and compare the ability
of different neural coding schemes to convey information. In particular, information theory was

used to quantify precisely the concept of information.
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In order to explore the possibility of using neurons as computing elements in tasks
commonly solved by conventional serial devices:
e neuronal cultures were used for image processing and pattern recognition, tasks which
would optimally require parallel computation and learning;
o digital images and spatial patterns were mapped into the extracellular stimulation of the
neuronal culture in a one to one correspondence between pixels and electrodes;
e pattern recognition and features extraction were studied after induction of learning.
Understanding the neural coding mechanisms and how information processing takes place in
the neuronal networks would give a huge contribution to the development and creation of

neuroprostheses and new computing devices.
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Toward the Neurocomputer: Image Processing and
Pattern Recognition With Neuronal Cultures

Maria Elisabetta Ruaro, Paolo Bonifazi, and Vincent Torre*

Abstract—Information processing in the nervous system is based
on parallel computation, adaptation and learning. These features
cannot be easily implemented on conventional silicon devices. In
order to obtain a better insight of how neurons process informa-
tion, we have explored the possibility of using biological neurons as
parallel and adaptable computing elements for image processing
and pattern recognition. Commercially available multielectrode
arrays (MEAs) were used to record and stimulate the electrical
activity from neuronal cultures. By mapping digital images, i.e.,
arrays of pixels, into the stimulation of neuronal cultures, a low
and bandpass filtering of images could be quickly and easily ob-
tained. Responses to specific spatial patterns of stimulation were
potentiated by an appropriate training (tetanization). Learning
allowed pattern recognition and extraction of spatial features in
processed images. Therefore, neurocomputers, (i.e., hybrid devices
containing man-made elements and natural neurons) seem feasible
and may become a new generation of computing devices, to be
developed by a synergy of Neuroscience and Material Science.

Index Terms—Long-term potentiation, multielectrode array,
neuronal culture, pattern recognition.

1. INTRODUCTION

NDERSTANDING differences and similarities between
Uconventional computers and biological nervous systems
is a fascinating problem, at the core of Neuroscience and Com-
puter Science. This comparison can provide a deeper under-
standing of human intelligence and may pave the way to the de-
sign of new computing devices. Standard silicon devices solve
serial problems very efficiently, but, despite their remarkable
speed, are less suitable for solving the parallel problems of artifi-
cial intelligence, computer vision and robotics [1], [2]. Because
of the difficulty of forming large numbers of interconnections,
man-made devices are not ideal for massive parallel processing,
a task for which biological neurons are very suitable. Biological
neurons form connections and synapses between themselves
very naturally. Despite being slow and often unreliable com-
puting elements [3]—[5], neurons operate extremely well in par-
allel and can adapt and learn.

In order to capture basic computational properties of biolog-
ical neuronal networks, artificial neural networks (ANNSs) were
developed [1], [2]; [6]-[8]. ANNSs can be trained to recognize
features and patterns. However, ANNs are usually implemented
on conventional serial machines thereby losing their biological
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inspiration. Their implementation on genuinely parallel devices,
ideally networks of natural neurons that are able to learn, is cer-
tainly desirable.

The major aim of the present manuscript is to explore the
possibility of using biological neurons as computing elements in
a task commonly solved by conventional silicon devices: image
processing and pattern recognition.

Advances in the biocompatibility of materials and electronics
have allowed neurons to be cultured directly on metal or sil-
icon substrates, through which it is possible to stimulate and
record neuronal electrical activity [9]-[16]. The work here de-
scribed shows that by using commercially available multielec-
trode arrays (MEAS), it is possible to process simple patterns
using two fundamental properties of natural neuronal networks:
parallelism and learning. By mapping digital images into the
extracellular stimulation of the neuronal culture (in a one to
one correspondence between pixels and electrodes) a low-pass
filtering of the images is obtained. This processing occurs in
just few milliseconds, independently from the dimension of the
image processed. In addition, neuronal cultures can be trained
to potentiate the response to a simple spatial pattern, due to
changes in synaptic efficacy or long-term potentiation (LTP)
[17], [18]. Therefore, the neuronal culture can be trained to rec-
ognize simple spatial patterns. Moreover filtering and learning
can be combined to extract features from processed images.

These results show that biological neurons can be effectively
used as computing elements for massively parallel problems and
support the feasibility of neurocomputers, i.e., hybrid devices
composed of biological neurons and artificial elements.

II. METHODS

A. Neuronal Culture Media

Dissection Medium: Hanks’ modified —Ca’*/Mg®T free-
solution supplemented with 4.2 mM NaHCOj;, 12 mM
Hepes, 33 mM D-glucose, 200 uM kynurenic acid, 25 M
DL-2-amino-5phosphonovaleric acid (APV), 5 ug/ml gen-
tamycin, 0.3% BSA.

Digestion Medium: 137 mM NaCl, 5 mM KCI, 7 mM
NasHPOy, 25 mM Hepes, 42 mM NaHCOj;, 200 M
kynurenic acid, 25 uM APV).

Culture Medium: Minimal Essential Medium with Earle’s
salts (GIBCO-Brl) supplemented with 5% fetal calf serum,
0.5% D-glucose, 14 mM Hepes, 0.1 mg/ml apo-transferrin,
30 pg/ml insulin, 0.1 pg/ml d-biotin, 1 mM Vit. B12 and
2 pg/ml gentamycin.

B. Neuronal Dissection and Dissociation

The hippocampus from three-day-old Wistar rats was dis-
sected in ice-cold dissection medium. Slices, were cut with a
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razor blade, transferred in a 15-ml centrifuge tube and washed
twice with the dissection medium. Slices were then treated with
5 mg/ml Trypsin and 0.75 mg/ml DNAsel in digestion medium
for 5 min at RT to perform enzymatic dissociation. Trypsin
was then neutralized by 1 mg/ml trypsin inhibitor in dissection
medium for 15 min on ice. After three washes with the dissec-
tion medium, mechanical dissociation was performed by 10 pas-
sages through a P1000 blue tip. The cell suspension was then
centrifuged at 100 g for 5 min, and pellet was re-suspended in
culture medium.

C. MEA Coating

MEA dishes were coated by overnight incubation at 37 °C
with 1 ml of 50 pg/ml polyornithine (in water). Dishes were
then air-dried and a film of BD-Matrigel (Beckton—Dickinson)
was added on the electrode matrix region 20 min before seeding.

D. Cell Culture

100 pl of cell suspension was laid on the electrode array of
precoated MEA at the concentration of 8 x 10° cells/cm?. Cells
were let to settle at room temperature for 20 min, and then 1 ml
of culture medium was added to the MEA and incubated in a
5% CO4 atmosphere at 37°C. After 48 hours 5 M cytosine-f3
-D-arabinofuranoside (Ara-C) was added to the culture medium,
in order to block glial cell proliferation, and re-incubated with
gentle rocking.

E. Maintenance of Neuronal Cultures

Neuronal cultures were kept in an incubator providing a con-
trolled level of CO4 (5%), temperature (37°C) and moisture
(95%). Half the medium was changed twice a week. Recordings
were performed, in culture medium, from 3 weeks after seeding
for up to 3 months. To decrease water evaporation and to main-
tain sterile conditions outside the incubator [19], during elec-
trical recordings dishes were sealed with a cap manufactured by
ALA Science and distributed by MCS (MultiChannelSystem).
After termination of the experiment, usually after 3 to 10 hours,
the cap was removed, the medium was changed and the dish was
moved back to the incubator. The same dish could be used for
other experiments in the following days and often repetitively
over a month. In some cases the same dish was used for more
than four different experiments.

F. Electrical Recordings and Electrode Stimulation

MultiChannelSystems commercially supplied the MEA
system used for electrical recording. We used a 10 X 6 mi-
croelectrode array, with 500 pm spacing between adjacent
electrodes. Each titanium-nitride microelectrode has a 30 ym
diameter circular shape; its frequency-dependent impedance
is of the order of 100 k2 at 1 kHz. Through gold contacts
it is connected to a 60 channel, 10 Hz —3 kHz bandwidth
preamplifier/filter-amplifier MEA 1060-AMP) which redirects
the signals toward a further electronic processing (i.e., amplifi-
cation and AD conversion), operated by a board lodged within
a high performance PC. Signal acquisitions are managed under
software control. A thermostat (HC-X) maintains the tempera-
ture at 37 °C underneath the MEA. The MEA provided by MCS
is able to digitize in real time at 20 kHz all voltage recordings
obtained from the 60 metal electrodes. One electrode was

used as ground [see Fig. 1(c)]. Sample data were transferred
in real time to the hard disk for later processing. Each metal
electrode could be used for recording or for stimulation, but
the present MCS system does not allow a computer-controlled
switch from one mode to the other. Therefore, during a trial,
each electrode can be used either for stimulation or recording.
Voltage stimulation consisted of bipolar pulses lasting 100 s at
each polarity, of amplitude varying from 0.2 V to 1V, injected
through the STG1004 Stimulus Generator. An artifact lasting
5 — 20 ms caused by the electrical stimulation was induced on
the recording electrodes but was removed from the electrical
recordings during data analysis.

Tetanus: The tetanus, i.e., a high frequency stimulation, con-
sisted of 40 trains of bipolar pulses of +/ — 0.9 V lasting for
200 us delivered every 2 s. Every train consisted of 100 pulses
at 250 Hz. Test stimuli before and after tetanus were delivered
every 2 s. The tetanus had a spatial profile usually composed by
two perpendicular bars of electrodes meeting in a corner, or by
a vertical or horizontal bar of electrodes.

G. Data Analysis

Acquired data were analyzed using the software MatLab (The
Mathworks, Inc., Natick, MA).

Artifact Removal: The artifact at each electrode and for each
pattern of stimulation was estimated and subtracted from the
voltage recordings. The artifact was estimated in the following
way: for each pattern of stimulation and at each electrode the
voltage response was averaged over all trials (typically 50),
computed and fitted by 2 polynomials of ninth degree. Using
polynomials of a lower order provide similar results in most of
experiments, but not in all, therefore, ninth degree polynomials
were routinely used. The 2 polynomials fitted respectively
the data in the time windows of 0.5-25 ms and 7.5-100 ms
after stimulation. The first polynomial was used to evaluate
the artifact in the time window of 0.5 to 7.5 ms, while the
second in the time window of 7.5 and 82.5 ms. The artifact,
so evaluated, was subtracted from the original voltage signal.
The time window between 0 and 1 ms after stimulation was not
considered in the data analysis.

Computation of Firing Rate (FR;;(t)) and Related Quantities
(AFR;;(t), FR(t), AFR(t), IntAFR;;, IntAFR, IntFR): Let
Vij(t) be the voltage recorded at electrode (i,j) and oy; be the
standard deviation of the noise computed considering a period
of at least 1 s where no spikes were visually observed. The oy; of
the noise ranged for individual electrodes from 3 to 6 V. Ac-
tion potentials are considered to be events exceeding 5 o3;. The
firing rate per electrode FR;;(t) is computed with a binwidth
of 10 ms centered on t. The FRyj(t) counts spikes from dif-
ferent neurons, making a good electrical contact with electrode
(i, j). The average firing rate AFR;;(t) was computed by aver-
aging FR;;(t) over the entire set or a subset of identical stimu-
lations [Figs. 1(e), (f) and 5(a), (b)]. Let active electrodes be the
electrodes showing a clear electrical contact with the neuronal
culture, i.e., where spikes can be recorded. Generally, in order
to have a simple measure of the overall evoked firing rate, the
firing rate spatially averaged FR(t) was obtained by averaging
FR;;(t) over the entire set of active recording electrodes. Only
for the computation, shown in Figs. 2(a) and 3(a), the spatial
average was limited to a row of electrodes. The average overall
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TABLE I
Abbreviations / Definitions Figure
Names of variables
FR(t) Firing rate per electrode in either 5 or 10 ms bins
Firing rate with centers specified by t
AFR;(t) Firing rate per electrode averaged over the entire | 1E, 1F, 5A, 5B
Average firing rate set or a subset of identical stimulations
FR(t) Firing rate spatially averaged over a set of
Firing rate spatially averaged | recording electrodes
AFR(t) Average of FR(t) over the entire set or a subset of | 3B, 4C, 5C, 5D
Average overall evoked identical stimulations
response
IntAFR;; Integral between t=1 ms and t=50 ms of AFR;(t) 4A
IntAFR Integral between t=1 ms and t=50 ms of AFR(t) 7
IntFR Integral between t=1 ms and t=50 ms of FR(t) 6

evoked response AFR(t) is the average of FR(t) over the en-
tire set or a subset of identical stimulations [Figs. 3(b), 4(c),
and 5(c), (d)]. The coefficient of variation CV(t) of AFR;(t)
was computed as the ratio of the standard deviation of FRj;(t)
to the AFR;;(t). Similarly, the coefficient of variation CV(t)
of AFR(t) was computed as the ratio of the standard devia-
tion of FR(t) to the AFR(t). In order to describe the properties
of the neuronal culture to learn and discriminate patterns, the
integrals respectively of AFR;;j(t), FR(t), AFR(t) in a time
window between 1 and 50 ms have been calculated and defined
as, IntAFR;;, IntFR, IntAFR. IntAFR;; and IntAFR were
used to compare the average response evoked by an identical
stimulation before and after the tetanization, at a single elec-
trode and when all the MEA electrodes were considered [see
Figs. 4(a), 7, respectively]. IntFR was used to compare at the
level of a single-trial the response evoked by different patterns
of stimulation, detected by all the MEA electrodes (see Fig. 6).
The different quantities used to characterize the firing of the neu-
ronal culture are reported in Table I.

H. Pattern of Stimulation and Image Processing

The input to the device is the set of extracellular voltage stim-
ulations, delivered at time t = 0, applied to the neuronal culture
through the MEA electrodes. If (i, j) is an electrode of the MEA,
the input is the matrix S;; of voltage stimulations applied to the
electrode (i,j). A binary image or pattern I;; of M x N pixels
[Fig. 1(a)] is coded into the input of a MEA with M x N elec-
trodes [Fig. 1(b)], so that the gray level of pixel (i,j) of I is
converted into the appropriate voltage stimulation S;; of elec-
trode (i,j). The matrix of voltage signals Vi;(t) recorded with
the MEA [Fig. 1(c)], composed of action potentials or spikes
produced by the neurons in the culture [Fig. 1(b)] is analyzed.
The output of the device is the matrix FR;;(t). MEAs with
at least 54 electrodes providing electrical recordings of clear
spikes were used for image processing. For each pattern of elec-
trodes used for stimulation, let S; /5 be the voltage stimulation
evoking half of the maximal AFR(t) in the time window be-
tween 1 and 11 ms after the onset of the voltage pulse. If Ij; is
the corresponding binary image or the pattern to be processed
and its gray levels are either O or 1, then .S;; will be 3/2 x S; /2
if I; is 1, O otherwise.

Filling Silent Electrodes and Smoothing: The procedure
here described has been applied only for image processing
[Figs. 2(b), (c¢), 3(d), and 8]. MEAs with at least 54 electrodes

providing electrical recordings of clear spikes were used. When
one electrode (i,j) is silent, i.e., no spikes can be recorded,
the corresponding hole in the processed image is filled in by
assigning to FR;;(t) the value obtained by averaging the firing
rate from neighboring electrodes — i.e., electrodes at a distance
of 500 pm. FRy;(t) of stimulated electrodes was determined by
extrapolation from the neighboring active electrodes using (1).
All processed images had at most 3 silent electrodes, including
the one used as ground. The value of FR;;(t) was smoothed
over the neighboring electrodes (i — 1,j) (i + 1,j), (i,j — 1)
and (i,j+ 1).

Processing of 8 Bit Images: The 8-bit image O;; was de-
scribed by

8
Z [igp)Q(P—l)

p=1

where Iigp ) is a 1-bit image. The 8 Iigp ) 1-bit images are pro-
cessed as described below and their output was summed as de-
scribed in (4) and (5).

Scaling of FR;;(t), AFRy;(t) and Output Color-Coding: In
order to display processed images using a standard color-
coding, the values of FR;j(t), AFR;j(t) or their combination
(for bandpass filtering) were rescaled. The scaling procedures
described in this section refer to the factors o and aP) of 2),
(4) and (5) (see Results). For low-pass filtered images, the
values of FR;(t) [Fig. 3(d)] or AFR;;(t) [Fig. 2(b), upper row]
were scaled between 0 and 1 by dividing for the corresponding
maximal value among all electrodes in the time-window
1-30 ms. Digitally low-pass filtered images [Fig. 2(b) lower
row] were scaled between 0 and 1 dividing by their maximal
value. Bandpass filtered image [Fig. 2(c) top panel] was ob-
tained as the difference of AFR;;(t) calculated in time bins
1-6 ms and 4-9 ms and the resulting matrix was scaled be-
tween —1 and +1, dividing by its maximum absolute value.
For digitally bandpass filtered images [Fig. 2(c) lower panel],
obtained as the difference of digitally low-pass filtered images,
the resulting output was scaled between —1 and +1, dividing
for its maximum absolute value. The color map (of 256 colors)
was always scaled between —1 and 1. For 8-bit processed
images [Fig. 8(a)], the values of AFR;;(t) were scaled as
described above, and were added according to (4). When it was
necessary to compare 8-bit image processing before and after
tetanization [see Fig. 8(b)], the values of AFR;j(t) obtained
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Mapping an image into the stimulation of a neuronal culture. (A) 10 X 6 binary image of a | used as the stimulation pattern of a neuronal culture grown

over a 10 x 6 MEA manufactured by MCS. (B) Photo of dissociated hippocampal neurons grown on the MEA. Magnification of the neuronal culture on the area
marked by the letters B and C (white rectangle) shown in the inset. (C) Electrical recordings of electrical activity evoked by the electrodes stimulation with bipolar
voltage pulses of 0.9 V. The silent electrode indicated by the arrow was used as the ground. (D) Three voltage recordings evoked by voltage pulses of 0.3, 0.6, and
0.9 V when the 6 electrodes of the upper row were stimulated. (E) AFR;;(t) (see Section II) recorded by a representative electrode in response to five different
voltage stimulations, as indicated in the panel. (F) AFR;;(t) recorded by a representative electrode at different repetition rates as indicated in the panel Data in
(E) and (F) are averaged from 50 different trials of the same stimulation. Time 0 ms corresponds to the voltage stimulation.

after tetanization were scaled dividing by the maximal value of
AFR;;(t) measured before tetanization. In this case the scaled
values of AFR;;(t) before tetanization varied between 0 and 1,
but, after tetanization, they could be larger than 1. The scaled
values of AFR;;(t) were added according to (5). The color map
(of 256 colors) was scaled between 0 and 256. Therefore, with
this coding, the processing of images at 1 or 8-bit has the same
map, i.e., the output has 256 different colors.

III. RESULTS

A. The Device

The great majority of MEAs presently available and charge-
coupled device (CCD) arrays share the same geometry of a
square grid. Therefore, CCD pixels and MEA electrodes can
be put in a simple one-to-one correspondence preserving their
neighborhood [see Fig. 1]. This observation inspired the design
of a new device for processing images and patterns, using a
MEA and a neuronal culture grown on its surface. The image
is mapped to the voltage stimulation of the neuronal culture and

the evoked electrical activity is taken as the output of the de-
vice. The computing elements of the device are the neurons of
the culture.

The input to the device is the set of extracellular voltage stim-
ulations, delivered at time t = 0, applied to the neuronal culture
through the MEA electrodes, coding for the image I;; to be pro-
cessed. The output of the device is the matrix FR;;(t), counting
the number of times in which the extracellular voltage recorded
at electrode (i, ) exceeds a given threshold in the time window
between t— At and t+ At. Several average quantities — in space,
time and over different trials — were computed from FR;;(t) (see
Section II for further details).

B. Dynamic Range and Cycle Time

In order to explore the dynamic range and cycle time of the
proposed device, a row of electrodes, was repeatedly used for
stimulation. Brief (200 us) bipolar voltages with amplitude
varying from 0.3 V to 0.9 V were used. When the voltage
stimulation was increased, the frequency of evoked spikes
increased and often spikes with a novel shape, produced by
a different neuron, appeared [Fig. 1(d)]. The average firing
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Fig. 2. Spread of excitation through the neuronal culture. (A) AFR;;(t) averaged by row (AFR(t)) and calculated in the time windows of 1-6, 4-9, 7-12 and
12-17 ms after the stimulation of the uppermost row of electrodes with a voltage pulse of 0.6 V. Different symbols indicate experimental data from 6 different
neuronal cultures. Thick curves are theoretical fits calculated from (1). Data obtained in the time windows 1-6 and 4-9 ms were fitted by setting p equal to 0 and
o respectively, to 890 and 1240 pm. Data in the time windows 7-12 and 12—17 ms were obtained with p equal to 920 and 1750 and o equal to 980 and 1130 pm
respectively. (B) Comparison between neuronal and digital filtering. (Upper row) images obtained from the processing performed by the neuronal culture in the
corresponding time windows. (Lower row) digital Gaussian filtering of the original binary image with the uppermost row of pixels equal to 1 and 0 elsewhere.
(C) (Upper panel) bandpass filtering of the neuronal culture obtained by subtracting the AFRs in the time windows 1-6 and 4-9 ms; (lower panel) digital filtering
obtained by convolving the original binary image with the difference of two Gaussians fitting the experimental data in the first and second panel of Fig. 2(a).
The thin bars indicate the stimulated electrodes. Color-coding is reproduced at the right side of panel A.

AFR;;(t) increased with the voltage stimulation [Fig. 1(e)], but
its dynamic range was rather narrow: usually no spikes were
evoked by voltage pulses below 0.2 V and a saturating maximal
response was evoked with voltage stimulation of about 1 V.
In the vast majority of the experiments, it was possible to
distinguish reliably 4 levels of evoked activity.

In order to determine the cycle time of the device, the same
stimulation was repeated at intervals from 0.1 s to 10 s. With
a repetition interval higher than 1 or 2 s the AFR;;(t) had two
components: one which was evoked with a delay of very few ms
and lasting for about 15 ms, followed by a second lasting around
0.1 s. The amplitude of the first component was not significantly
affected by decreasing the repetition time from 4 to 0.1 s [see
Fig. 1(f)]. The amplitude of the second component was clearly
depressed at short repetition times and it was stable for repeti-
tion times greater than 4 s (data not shown).

C. Filtering Properties of the Neuronal Culture

The neuronal culture grown on the MEA constitutes a two-di-
mensional (2-D) network. Given a homogenous culture, its fil-

tering properties can be simply analyzed by using a long bar as
a spatial stimulus, thus reducing a 2-D problem to a much sim-
pler one-dimensional. In these experiments the six electrodes of
the upper row were used for stimulation and the average firing
rate evoked in each electrode was measured (see Section II)
and averaged by row (AFR(t)). At early times, i.e., in the time
window between 1 and 6 ms [Fig. 2(a)] the AFR(t) decayed asa
Gaussian function with a standard deviation ¢ of about 900 pm
corresponding to 1.8 pixels (solid line). In the time window be-
tween 4 and 9 ms the electrical activity decayed similarly as a
Gaussian function but with a larger o of about 1200 pm cor-
responding to 2.5 pixels (solid line). A very similar decay and
spread of electrical excitation was consistently observed in all
the 24 analyzed neuronal cultures. Data collected from 6 dif-
ferent dishes are shown in Fig. 2 as different symbols.

After about 10 ms from the stimulus, the peak of the AFR(t)
moved away from the stimulated electrodes and the spread of
the electrical activity could be described by a Gaussian function
centered at a distance p from the stimulated electrodes [Fig. 2(a),
time interval of 7—-12 ms]. After 15 ms the evoked electrical ac-
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tivity decayed even further, maintaining a Gaussian-like profile
[Fig. 2(a), time interval of 12—17 ms]. While the same quali-
tative behavior was observed in all neuronal cultures, after at
least 25 days of cultivation, the speed at which the electrical ac-
tivity moved from the stimulating electrodes varied between 70
to 250 pm/ms. The electrical activity in young cultures, i.e.,
with less than 20 days, did not propagate well throughout the
culture.

A comparison between the spatio-temporal filtering per-
formed by the neuronal culture and a digital gaussian filtering
is shown in Fig. 2(b). The processing of the bar-stimulus by the
neuronal culture represented by the color-coding of the evoked
AFR;;(t) is shown in the upper row of Fig. 2(b) in the four
time windows. The corresponding digital convolution of the
binary image correspondent to the bar-stimulus (see Section II)
is shown in the lower panels of Fig. 2(b). Between 1 and 9 ms
the neuronal filtering is a good approximation of a Gaussian
digital filtering which used the o extracted from the fit of
Fig. 2(a). Between 7 and 12 ms (and 12-17 ms), the Gaussian
filtering with the values of p = 1250 pm and o = 850 pm (and
p = 1750 pm and o = 1130 pm) shows the same features of
the neuronal filtering. Therefore, at later times, AFR;; (t)is a
noisy displaced low-pass filtering of the original image.

When an horizontal bar in a different location or a vertical
bar of electrodes was used to stimulate the neuronal culture,
the electrical activity propagated from the stimulation site with
almost the same properties of the horizontal bar in the upper
part shown in Fig. 2(a) and (b). Experiments where a row (or a
column) of electrodes or individual electrodes were stimulated
indicate that the spatial-temporal processing of the neuronal cul-
ture is — to a first approximation — spatially invariant and can be
described by a radial impulse response with a Gaussian function
or kernel, centered on p and with a time varying variance o2 (t)

h(p,t) = exp <—M> ey

202(1)

and p is the polar coordinate of the electrode.
Therefore, given a 1-bit image Ij; the output of the proposed
device FRj(t) varies in time according to

IRy t)=a- Iij**h(p./ t). 2)
** indicates a 2-D convolution and « is a scaling factor
(see Section II). As shown in Fig. 2(b), in the time window
1-6 ms, the impulse response of the neuronal culture is a
Gaussian function with a o of about 900 um, but 2 or 3 ms
later with a larger value of o of about 1200 m. The neuronal
filters obtained in the time windows 1-6 ms and 4-9 ms are low
pass, and their difference is bandpass (see Section II). Bandpass
filtering of the binary image corresponding to the bar-stimulus
obtained with the neuronal culture, is shown in the upper panel
panels of Fig. 2(c). This neuronal filtering is rather similar
to that obtained by a digital band-pass filtering, shown in the
lower panel of Fig. 2(c) (see Section II).

D. Reproducibility of Neuronal Firing and Filtering

Unlike silicon devices, biological neurons are affected by a
significant noise and their reliability is variable. In our neuronal
cultures, during repetitions of the same stimulations, the number

of evoked spikes measured by a single electrode was variable,
but often the first evoked spike was rather reliable with a jitter
varying from just a few hundreds ps to some ms.

The reproducibility of neuronal firing measured by a single
electrode was evaluated computing the coefficient of variation
CV(t) of AFR;;(t) (see Section II). When the value of CV is
less than 0.4, the firing is considered reproducible. Fig. 3(a)
shows the CV(t) of the evoked response recorded by the elec-
trodes in the 2nd (left panel, open symbols) and in the 7th (right
panel, open symbols) rows of the array [Fig. 3(c)]. For the elec-
trodes in the 2nd row, in the time window between 1 and 11 ms,
the CV(t) was for most electrodes smaller than 0.5 and could
approach 0.2. For the electrodes in the 7th row, in the time
window between 11 and 16 ms, the CV(t) was always smaller
than 0.75 and could approach 0.3. The value of the CV(t) was
slightly higher at increasing distances of the recording electrode
from the stimulation site. These results indicate that there is a
“ reliability window “ soon after the stimulation in which the
CV(t) of the evoked activity at most electrodes is less than 0.5
and often around 0.3.

The CV(t) of the evoked response was further decreased by
considering all the spikes recorded from a row of electrodes,
as shown in Fig. 3(a) (thick line). The CV(t) was between 0.1
and 0.2 for both the electrode rows and the CV (t) remains less
than 0.5 for at least 20 ms. When all the spikes recorded from
all electrodes on the MEA were pooled together, the CV(t) of
the evoked response was transiently lower than 0.1 (in the time
window between 11 and 21 ms) and remained less than 0.3 for at
least 45 ms [see Fig. 3(b)]. Therefore, considering larger pools
of neurons, the reliability of the response is improved and ex-
tended to larger time windows.

Fig. 3(d) illustrates images obtained from three single trials
when the uppermost row of electrodes was stimulated with the
same voltage pulse of 0.6 V. While at early times, during the so
called “reliability window,” the spread of the evoked activity in
different trials was rather similar, at later times, the spread dif-
fered from trial to trial consistently with the high CV (t) of the
electrical recordings [see Fig. 3(a)]. Neuronal cultures obtained
from different rats and cultivated in different dishes had a vari-
able number of active electrodes, i.e., providing good electrical
recordings, ranging from 30 to 58. All neuronal cultures, with
a sufficient number of electrically active electrodes to allow a
quantitative characterization of the filtering of the neuronal net-
work, i.e., larger than 40, had the same behavior illustrated in
Fig. 2(a). A very similar decay and spread of electrical excitation
was consistently observed in all the analyzed neuronal cultures.
At early times the spread of electrical excitation was character-
ized by a Gaussian function with a standard deviation increasing
from 800 to 1200 pm in about 3 ms. At later times the be-
havior of different neuronal cultures [Fig. 2(a)] was more vari-
able than the response of an individual culture [see Fig. 3(a)].
These data show that immediately after the voltage stimulation
there is a “good” time window during which the processing of
the neuronal culture is reproducible leading to a reliable com-
putation. This reproducibility is observed among trials from the
same neuronal culture [see Fig. 3] and in different cultures [see
Fig. 2(a)]. Since neuronal cultures could be maintained up to
six months, it was possible to repeat several times the same ex-
periment in the same culture and to verify that the spread of
electrical excitation in the same culture had identical properties
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Reproducibility of the neuronal firing and reproducibility of the spread of the excitation. Data obtained stimulating the uppermost row of electrodes (shown

as black squares in panel C). (A) CV(t) of the evoked response considering the spikes recorded from each single electrode (open symbols) and from the row of
electrodes (thick line), in the second (left panel) and the seventh (right panel) rows of the array. (B) AFR(t) and CV(t) of the spikes recorded from the entire array
of active recording electrodes (excluding the 1st row used for stimulation). (C) Map of the MEA electrodes analyzed in (A) and (B). (D) Spread of the excitation
in different trials of stimulation. Each row reproduces images obtained from a single sweep or trial, in the four time windows after stimulation indicated at the top
of each column. The FR;;(t) in each image is represented according to the color map reproduced at the right side of the figure.

when analyzed in different days (in a time window of approxi-
mately two weeks).

E. Learning

Having characterized the filtering properties of the neuronal
cultures, we investigated whether it was possible to induce
learning in the neuronal culture [20]-[23] in a consistent and
controlled way. If so, is it possible to train the neuronal culture
to recognize a specific spatial pattern?

Learning in neurons is associated with changes in synaptic
efficacy, leading to a persistent increase in amplitude of the
response to the “learnt” stimulus. This is usually referred to
long-term potentiation (LTP) and can be induced by delivering a
tetanus (usually trains of stimuli at 100 Hz or more) to the neu-
ronal culture. We refer to a |-stimulus (]-stimulus) when the
stimulation was applied to two perpendicular bars of electrodes
forming an | (]) and to a |-tetanus when the tetanus had the same
spatial profile of the |-stimulus.

To test the ability of hippocampal cultures to learn, the elec-
trical response to a | -stimulus before and after the application of
a |-tetanus was compared. The |-stimulus was delivered to the
neuronal culture every 2 s. The evoked electrical activity was
monitored by computing IntAFR;; (see Section II). After the
|-tetanus, the IntAFR;; [Fig. 4(a)] and the electrical activity in
individual traces [Fig. 4(b)] evoked by the | -stimulus were sig-
nificantly increased for at least 1 hour.

The firing rate averaged over different trials and over all
MEA electrodes, AFR(t), is a global indicator of the changes
induced by LTP. The AFR(#) evoked by the |-stimulus clearly

increased after |-tetanus in the time window between 10 and
90 ms after the stimulation. Fig. 4(c) shows the averaged data
from 4 neuronal cultures before (left panel) and after (right
panel) |-tetanus.

As LTP can be induced in the neuronal cultures, it is necessary
to establish its spatial structure. Therefore, the electrical activity
evoked by stimuli with different spatial profiles was compared.
Neuronal cultures were stimulated every 2 s with | -stimulus and
-stimulus. Prior to |-tetanus, the | -stimulus and the |-stimulus
evoked a similarly diffused response [see AFR;(t) in left and
right panel of Fig. 5(a)]. This was also evident when the firing
rate was averaged over different trials and over all recording
electrodes (AFR(t)) [see left and right panels in Fig. 5(c)]. After
the |- tetanus, only the response to the |-stimulus significantly
increased [Fig. 5(b)] being more than twice the response evoked
by the |- stimulus [compare left and right panels in Fig. 5(d)].

In Figs. 4 and 5, learning and pattern discrimination was
examined by averaging responses over different trials. A useful
device, however, must be able to discriminate between patterns
on the basis of a single trial, and its learning capabilities should
be evident by inspection of a single trial. The single response
was evaluated computing IntFR (see Section II). Fig. 6(a)
shows single-trial responses for a |-stimulus (open symbols)
and a |-stimulus (filled symbols). Prior the application of the
| -tetanus, single-trial responses to the two stimuli could not be
distinguished reliably. After |-tetanus the single-trial response
to the |-stimulus was consistently larger than the single-trial
response evoked by the ]-stimulus.

Fig. 6(b) reproduces the distribution of single-trial responses
for the |-stimulus (white bars) and the |- stimulus (black
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Induction of LTP in a neuronal culture from hippocampal neurons. (A) Time-dependence of Int AFR;; prior to and after | -tetanus for the electrodes (6,3),

(7,3), (1,5), and (9,2), with tetanus indicated by an arrow. Each point was obtained by averaging 20 responses to the same stimulation repeated every 2 s. | -tetanus
was performed as described in Section II. (B) Single extracellular voltage response obtained before (left) and after tetanization (right) from the electrodes shown
in A. Time zero, indicated by the arrow, corresponds to the delivery of the stimulation. The large transient at time zero is the residual artifact after its subtraction
(see Section II). (C) AFR(t) and standard deviation of an |- stimulus calculated averaging 4 different experiments before and after the | -tetanus. AFR(t) was

obtained averaging single sweeps measured in a time window of 30 min.

bars) before (left panel) and after (right panel) |-tetanus. The
experimental distributions were fitted with Gaussian functions
of unitary area and the superimposed area of the two curves
was calculated. Before |-tetanus the average value of the
single-trial responses for the ]- and the [- stimulus was
4.7+ /—0.8 and 5.6 + / — 0.8 respectively. In 58% of cases
the presented stimulus could not be recognized on the basis
of the single-trial response (superimposed area). After tetanus
the average value of single-trial responses for the ] and |-
stimuli was 4.1+ / — 0.5 and 6.4 + / — 0.7 respectively.
Now, the superimposed area of the two Gaussian functions
fitting the experimental distributions was reduced to 5.5%.
As a consequence, after tetanus, it was possible to recognize
the presented stimulus from its single-trial response with an
accuracy of about 94.5%.

Results of similar experiments from 4 neuronal cultures are
presented in Fig. 6(c). The distribution of single-trial responses
(IntFR) before (left panels) and after (right panels) | -tetanus for
the | and |-stimulus are shown as black and white bars respec-
tively. Before |-tetanus, the distributions of the IntFR for the
2 patterns were almost completely overlapping. After | -tetanus
in all 4 neuronal cultures, single-trial responses were modified
so that it was possible to discriminate the stimulating pattern

from the great majority of single-trial responses. In fact, after
tetanus, single-trial responses for the two stimuli were distin-
guishable for 80%, 98%, 78% and 95% in the 4 neuronal cul-
tures. In general, when the tetanus was applied to two perpen-
dicular bars of electrodes meeting in a corner, the response to
the stimulation applied to the same bars of electrodes increased,
while the response to the stimulation applied to distinct perpen-
dicular bars of electrodes meeting in the opposite corner was
never potentiated.

If the neuronal culture can be trained to discriminate between
a | -stimulus and a |—stimulus it is important to analyze the selec-
tivity of this recognition and verify whether it degrades “grace-
fully” with the corruption of the stimulus. Therefore, the evoked
responses to stimuli with different spatial profiles prior to and
after |-tetanus were compared.

Prior to |-tetanus, the response of the neuronal culture was
not specific to the spatial profile of the stimulus [Fig. 7(a) open
circles]. On the contrary, after |-tetanus, the neuronal culture
preferentially responded to stimuli resembling to an | [Fig. 7(a)
filled circles]: in fact, after |-tetanus, the IntAFR was signif-
icantly larger for stimuli with a spatial profile similar to | (for
the five stimuli from the left of the x-axis, t-test p < 0.001).
The relative change of the IntAFR after |-tetanus was clearly
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Fig.5. Neuronal cultures can learn to distinguish between two different spatial
profiles. (A) AFR;;(t) evoked by the |-stimulus (left) and the | -stimulus (right)
recorded from 24 electrodes (Y -axis limits: O to 10 spikes/bin; X-axis limits:
—50 to 200 ms). During the experiment the | -stimulus and a ]|-stimulus were
alternated every 2 s. AFR;;(t) in (A) were obtained averaging the individual
responses recorded in a time window of 30 min before tetanus. (B) As in (A)
but in the time window of 30 min after the | -tetanus. (C) AFR(t) obtained by
averaging the AFR;;(t) over all the active recording electrodes. The 2 AFR(¢)
shown refer to the responses to the |-stimulus (left) and the |-stimulus (right)
before | -tetanus. (D) AFR(¢) obtained by averaging the AFR;;(t) over all the
active recording electrodes. The 2 AFR(¢) shown refer to the responses to the
1-stimulus (left) and the | -stimulus (right) after | - tetanus.

selective [Fig. 7(b)] and showed positive value for similar spa-
tial profiles.

F. Image Processing of 8-Bit Images and Feature Extraction

The neuronal culture can be used also for processing digital
images at 8 bits. Let O;; be an image with 8 bit gray levels at
location (i, j). Then Oj; can be represented by the decomposition

8
O =Y 120D 3)
p=1

where Iigp ) is a 1-bit image.
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Fig. 6. Discrimination at single-trial level before and after |-tetanus
for a neuronal culture. |-stimulus and ]-stimulus have been analyzed.
(A) Time-evolution of the IntER evoked by a |-stimulus (open symbols) and
an |- stimulus (black symbols) prior and after a |- tetanus (indicated by a
black vertical line). (B) Distribution of the IntFR before (left panel) and after
(right panel) L-tetanus for the | -stimulus (black bars) and the |-stimulus (white
bars). (C) Distribution of the IntF'R before (left panel) and after (right panel)
L-tetanus for the | -stimulus (black bars) and the |-stimulus (white bars) for 4
different neuronal cultures. In the left panels the distributions of IntFR for the
2 stimuli are almost entirely overlapping. In the right panels, as consequence of
LTP induction, the overlap of the distributions for the | -stimulus and ] -stimulus
is enormously decreased.

Given this decomposition, according to (2), the processing of
an 8-bit image is obtained as

8
> a2~V 1P (p, t) 4)

p=1



380 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 52, NO. 3, MARCH 2005

Pre-L Tet

+ PostL Tet

s
nh o
[ ]

e
tn

AIntAFR/IntAFR
)
)
[ ]
»

1
=
=]

Fig. 7. Spatial selectivity of LTP. (A) Int AF R before (open symbols) and
after (filled symbols) |-tetanus for stimuli shown with the shape indicated in
the abscissa. Int AF'R before and after tetanus was obtained as an average
during 30 min before and after tetanus respectively. The voltage intensity of
the stimulation was 0.6 V. Stars indicate the response to the |-stimulus and
-stimulus. (B) Relative change of the Int AFR produced by the |-tetanus.
Data obtained from those shown in A before and after | -tetanus.

where () is a scaling factor (see Section II). By processing in-
dependently the 8 1-bit images with the neuronal culture, a low
or a bandpass filtering of an 8-bit image is obtained. A low-pass
filtering of the original 8 bit images [Fig. 8(a) left panels], ob-
tained by the neuronal culture in the time bin 1-6 ms and by
a digital filtering with a Gaussian function, are shown in the
central and right panels respectively of Fig. 8(a). The high simi-
larity of images in the central and right panel shows that the pro-
posed hybrid device can process efficiently 8 bit images. After
a neuronal culture has learned, its temporal-spatial filtering is
different. First of all, it is not anymore spatially invariant and,
therefore, cannot be described by a temporal and spatial convo-
lution as in (4). In fact, the firing rate FR;;(t) evoked by a given
image I;; cannot be predicted from (1) and (2) but must be mea-
sured. The processing of an 8-bit image is, therefore, obtained
as

8
S a2V FRP (1) (5)

p=1

where FRi(jp ) (t) is the measured response to Ii(jp ) after tetaniza-
tion and aP) is a scaling factor (see Section IT). Having lost spa-
tial invariance, the device is now able to extract a specific pattern
from a complex image. When the neuronal culture has learned
to recognize an | [see Fig. 8(b)], the processing of original im-
ages [Fig. 8(b) left column] is modified [see central column of
Fig. 8(b)] and becomes tuned and selective to |-stimulus [right
column of Fig. 8(b)]. It is evident that after learning, the neu-
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Fig. 8. Image processing of 8-bit images. (A) Low-pass filtering of two

different 8-bit images. (Left panels) The original 8 bit images. (Central panels)
Low-pass filtering of the images obtained with the neuronal culture. (Right
panels) Low-pass filtering of the images, obtained by digital convolution of
the original 8-bit image, with the Gaussian profile shown in 2A in the time
window between 1 and 6 ms. Color-coding is reproduced at the right side
of the figure. (B) Features extraction obtained by low-pass filtering of two
different 8-bit images before and after learning. (Left columns) The original 8
bit images. (Central columns) Low-pass filtering of the images obtained with
the neuronal culture before the tetanization. (Right columns) Low-pass filtering
of the images obtained with the neuronal culture after | -tetanus. Color-coding
is reproduced at the right side of the figure. Original 8-bit images are obtained
according to (3). For 1-bit processed images, the values of the AFR;;(t) were
scaled between 0 and 1 by dividing for the corresponding maximal value among
all electrodes in the time-window of 1-30 ms. 8-bit processed images are then
obtained by (4). For features extraction, the values of AFR;;(t) obtained after
the tetanization were scaled by dividing for the same maximal value calculated
before the tetanization. 8-bit processed images are then obtained by (5) (see
Section II).

ronal culture is able to extract the | from the rest of the image,
in both processed images. The upper image shows clearly that,
before learning, the neuronal filtering is symmetric and becomes
asymmetric after learning, allowing, in this way, the extraction
of the learned feature.

G. Consistency of Potentiation and Learning

Neural plasticity is certainly a major advantage for Neuro-
computers if LTP or LTD can be evoked in a neuronal culture
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consistently and in a repeated way. As shown by Jimbo et al.
[23] when a tetanizing train of pulses is applied through a single
electrode of a MEA both LTP and LTD can be observed. The in-
duction of LTP occurred when neurons before tetanus fired in a
correlated way; while LTD occurred when the firing of neurons
were poorly correlated. Therefore, when a single electrode was
used the induction of LTP or LTD could not be controlled but
depended from the intrinsic connectivity of the network. This
situation is not satisfactory if neuronal cultures have to be used
for information processing and learning. Therefore, we looked
for experimental conditions in which LTP could be induced con-
sistently. LTP described in previous sections was always evoked
when the same tetanizing pulse was applied to many electrodes,
more than 10, with a spatial profile of two perpendicular bars.
With this pattern of stimulation, LTP was successfully induced
in 10 (over 12 tested) neuronal cultures. LTP could be evoked in
the same neuronal culture on different days over a period of 6
weeks. When the tetanus was applied through a smaller number
of electrodes, i.e., less than 7, LTP was not consistently induced
and both LTP and LTD was observed. When a bar-tetanus was
delivered, LTP was never induced in 6 experiments. In 3 ex-
periments performed with young (less than 20 days) neuronal
cultures, stimulation applied to a bar of electrodes, either hor-
izontal or vertical, produced an electrical excitation confined
around the electrodes used for stimulation, and LTP could not
be induced by an | - tetanus. In one dish the two tetanization pro-
tocols were combined: a bar-tetanus was first applied and, after
2 hours, an |- tetanus was applied. The response to the |- stim-
ulus after the bar-tetanus was unchanged, while the |- tetanus
clearly induced LTP. LTP could be evoked in the same neuronal
culture, on different days over a period of 6 weeks. When 50 mi-
cromolar DL-2-amino-5-phosphonovaleric acid (APV), a well
known blocker of NMDA channels, was added to the extracel-
lular medium bathing the neuronal culture, the evoked electrical
activity did not spread significantly from the electrodes used for
stimulation, as in cortical neuronal cultures [24]. Under these
conditions LTP could not be induced in the neuronal cultures.

IV. DISCUSSION

The work described here demonstrates that, by growing neu-
ronal cultures over multi electrode arrays (MEA), a new hybrid-
computing device, composed of biological neurons and metal
electrodes, can be foreseen. The biophysical mechanisms un-
derlying the low-pass and band-pass filtering of digital images,
here described, originate from membrane properties of culti-
vated neurons and their mode of interaction. Synaptic proper-
ties limit and shape the propagation of action potentials in the
culture. The combination of these biophysical mechanisms de-
termines the exact parameters of the filtering. The consistency
of the experimental set up was discussed in the two sections
on the reproducibility of neuronal filtering and consistency of
potentiation and learning. The major difference with previous
work on neuronal culture grown on MEA [23]-[25] is the con-
trolled induction of LTP and its use for pattern recognition. The
presented results, show, in our opinion, that neuronal cultures
grown on MEA can constitute the basis for the development of
Neurocomputers, possibly new computing devices.

A. Comparison With Previous Work

The present work is a continuation of previous analysis of the
behavior of neuronal cultures grown on MEAs [23]-[25] and
confirms several previous observations on how the evoked elec-
trical activity spreads throughout the neuronal culture. Jimbo
et al. [23] have shown that when a tetanizing train of pulses is
applied through a single electrode of a MEA, both LTP and LTD
can be observed and that the induction of LTP or LTP depended
from the intrinsic connectivity of the network. The present work
shows that, when many electrodes are used for tetanizing, LTP
is preferentially induced and, therefore, the induction of LTP
can be controlled. The controlled induction of LTP allows the
use of neuronal cultures for pattern recognition (see Figs. 5 and
6) and opens the way for using neuronal cultures as new com-
puting devices, i.e., Neurocomputers. Although the molecular
mechanisms controlling the induction of LTP and/or LTD have
not yet been fully revealed [26], it is well established that a
moderate elevation of intracellular Ca”* favors the induction
of LTD, while a larger increase is more likely to induce LTP. As
neuronal firing leads to an elevation of intracellular Ca2+, it is
not surprising that a massive electrical excitation preferably in-
duces LTP instead of LTD. As stated in the Results section, LTP
was induced in 10 over 12 tested neuronal cultures. However,
in all neuronal cultures, after an |-tetanus, the discriminability
between an | and ]-stimulus increased. Therefore, in all tested
cultures learning was observed, provided that the tetanus was
applied through a sufficiently large number of electrodes. LTP
was not observed when the frequency of tetanization was lower
than 100 Hz.

B. Reproducibility and Reliability of Neuronal Firing

The reliability of the evoked response increases by pooling
the electrical activity recorded from a larger number of neu-
rons, as shown by the decrease of the CV (t) calculated for a
single electrode, a row of electrodes or the 60 electrodes of the
MEA. These conclusions, drawn from an investigation in a dis-
sociated culture of hippocampal neurons, are remarkably sim-
ilar to those obtained in an isolated leech ganglion (5) and in
a semi-intact leech [27]. In the leech nervous system, motoneu-
rons coactivated during the same behavioral reaction, fire spikes
in an almost statistically independent way. As a consequence of
statistical independence pooling, the electrical activity over all
co-activated motoneurons makes highly variable spike trains un-
derlying reproducible motor reactions.

These results suggest that, analogously to nervous systems,
reliability and reproducibility of neurocomputers can be ob-
tained by pooling the neuronal electrical activity over popula-
tions of neurons, as already shown by several previous inves-
tigations with intelligent prostheses [28]-[31]. The extent of
pooling depends on the task to be solved: in fact, when it is nec-
essary to discriminate between patterns, it is convenient to av-
erage the neuronal activity over a very large number of neurons
(of the order of 100) in order to obtain a successful discrimina-
tion over a single trial, as shown in Fig. 6. When the MEA is
used to filter images, averaging is restricted to neurons recorded
from the same electrode, i.e., less than 6 or so different neurons.
In this case the resulting computation is noisier. In a population
of N neurons firing spikes in an almost unrelated way, the CV
decreases as the square root of N [32]. Therefore, if each neuron
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has a CV between 0.5 and 1 [27], a good reproducibility — with
a CV of less than 0.1 — can be obtained by pooling the electrical
activity of 100-1000 neurons, i.e., the same order of magnitude
of neurons thought to be present in a column in the cortex [33].
This requirement may pose severe constraints on the construc-
tion of MEA and on the development of future Neurocomputers.

C. Limitations of the Tested Device

The tested device, based on the MEA supplied by MultiChan-
nelSystem, has several limitations, which may be overcome by
future technological improvements. First of all, in the present
release it is not possible to stimulate and record simultaneously
from the same electrode, contrary to the MEA developed by
Jimbo and coworkers [25]. As a consequence, the electrical ac-
tivity evoked in the stimulated electrode cannot be measured
but has to be interpolated (see Section II) from the neighboring
recording electrodes. In addition, switching between recording
and stimulation cannot be obtained via software and has to be
performed manually, reducing the possible experimentation and
the analysis of parallel processing with the neuronal culture. Re-
cently new circuits for distributing stimuli to all electrodes elec-
tronically (from Multichannel Systems, MEA1060-BC) and for
stimulating and recording on the same electrode [34] have been
developed. These circuits will allow to overcome the limitations
discussed above. The implementation of on-line analysis [21],
[35] allows the exploration of alternative parallel processing and
learning with the neuronal culture.

Another disadvantage of the present device, possibly shared
by a large variety of Neurocomputers, is the presence of silent
electrodes or of electrodes making good electrical contacts with
a limited number of neurons. The ideal device is composed
of electrodes all making good electrical contact with a large
number of healthy neurons. Since it is necessary to measure in-
dividual spikes and not field potentials, the number of neurons in
good electrical contact with each electrode cannot be too high.
Therefore, it is necessary to develop standard protocols in order
to have MEA with almost all electrodes making good electrical
contact with approximately the same number of neurons.

The training procedure, by which a neurocomputer learns to
recognize a spatial feature, is simply an appropriate tetanus, i.e.,
a relatively simple procedure, representing, therefore, an ob-
vious advantage of the Neurocomputer. On the other side the
Neurocomputer — at least in its present form — seems to be pri-
marily a coprocessor, which cannot be easily programmed for a
different tasks, as usual digital processor can. After the decline
of LTP, the neurocomputer can be trained to learn a new pat-
tern and, therefore, can be reprogrammed and becomes reusable.
Several issues, however, must be addressed such as the dura-
tion of induced LTP, the possibility of encoding new inputs and
to erase stored information — possibly by inducing LTD. Once
these issues will be properly addressed, the exploitation of LTP,
as here demonstrated, and of LTD [18], [36], may provide a
natural implementation of algorithms based on artificial neural
networks (ANN).

D. Future of Neurocomputers

The use of biological neurons as computing devices opens a
new avenue in which computer science can capitalize on the ex-
pertise and technology of cell biology and genetic engineering.

Taking advantage of stem cell technology [37]-[39] we are
trying to obtain a standard source of neurons in order to elimi-
nate the variability intrinsic to individual rats, possibly leading
to computing devices with a much higher reproducibility. Stem
cell technology could provide also populations of neurons
with specific properties, for example neurons that release
selected neurotransmitters. In this way neuronal cultures with
controlled ratios of inhibitory and excitatory neurons could be
constructed. The possibility of guiding neuronal growth along
specific spatial directions [40]-[43] will allow the fabrication
of large variety of spatial filters, imitating the receptive field
properties of neurons in early visual area [44]. Neurocomputers
can become promising new computing devices if their relia-
bility can be increased. In order to do so, besides using stem
cell technology for obtaining a standardized source of neurons,
it will be necessary to automate with appropriate robots all the
subsequent procedures necessary for preparing and maintaining
neuronal cultures. It will be very important to standardize the
handling of MEAs, neuron deposition on the MEAs and their
maintenance.
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Abstract

Information processing and coding were analyzed in dissociated hippocampal cultures,
grown on multielectrode arrays. Multi-site stimulation was used to activate different neurons
and pathways of the network. The neural activity was binned into firing rates and the
variability of the firing of individual neurons and of the whole population was analyzed. In
individual neurons, the timing of the first action potential (AP) was rather precise from trial
to trial whereas the timing of later APs was much more variable. Pooling APs in an ensemble
of neurons reduced the variability of the response and it allowed to distinguish reliably in a
single trial stimuli varying in intensity. A similar decrease of variability was observed pooling
the first evoked APs in an ensemble of neurons. The size of the neuronal pool (about 50-100
neurons) and the time bin (about 20 ms) necessary to provide reproducible responses are
remarkably similar to those obtained in in vivo preparations and in small nervous systems.
Blockage of excitatory synaptic pathways mediated by NMDA receptors improved the
mutual information between the evoked response and stimulus properties. When inhibitory
GABAergic pathways were blocked by bicuculline the opposite effect was obtained. These
results show how ensemble averages and an appropriate balance between inhibition and

excitation allow neuronal networks to process information in a fast and reliable way.
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Introduction

Understanding the neural code requires the identification of electrical events occurring
consistently and reliably from trial to trial. These electrical events could correspond to the exact
timing of action potentials (APs) in individual neurons or to the firing rate averaged over a
population of neurons. These two neural codes are usually referred to as the temporal and the rate
code, respectively (Georgopoulos et al., 1986; Hopfield, 1995; DeCharms & Merzenich, 1996; de
Ruyter van Steveninck et al., 1997; Nicolelis et al., 1998; Parker & Newsome, 1998; Panzeri et al.,
2001; Zoccolan et al. 2002; Johansson & Birznieks, 2004). Whether the computational unit in the
nervous system is a single neuron or a neuronal assembly is still an open debate (Cohen &
Nicolelis, 2004; Johansson & Birznieks, 2004; Osborne et al., 2004).

The analysis of neuronal networks has been carried out by intracellular recordings from a
small number of neurons (Silberberg et al., 2004) or by using multielectrode arrays (MEA) either
implanted in the cortex (Nicolelis et al., 1997), or in the hippocampus (Harris et al., 2003) Optical
methods have also been used to analyze the dynamics of cortical neurons and to characterize the
global states of cortical networks (Jancke et al, 2004) and to visualize plasticity in the
hippocampal CA1 area (Aihara et al., 2004). Recording the electrical activity from neuronal
networks in vivo provides valuable information on how the brain works, but has a number of
limitations. Firstly, given the high convergence of inputs to the cortex it is difficult to control
exactly, in every trial performed with the same stimulation, the effective input reaching the
neuronal network. Secondly, it is not easy to change in a controlled way the properties of the
stimulus applied to the cortical network and its chemical environment. These limitations are
overcome by studying neuronal cultures grown over MEAs (Eytan ef al., 2003; Gross, 1979; Jimbo
et al., 1999; Pine, 1980; Potter, 2001). These cultures with random connections, provide a more
general view of neuronal networks and assemblies, not depending on the circuitry of a neuronal

network in vivo, and allow a more detailed and careful experimental investigation.
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In order to investigate statistical properties of information processing in neuronal networks, rat
hippocampal neurons were cultured on a MEA. After few weeks in culture the network established
synaptic contacts, showed spontaneous activity (Van Pelt et al., 2004; Maeda et al., 1995) and was
largely composed of excitatory glutamatergic neurons with few percent of inhibitory GABAergic
neurons. Extracellular electrical stimuli were delivered to the network, through the MEA. The
neural activity was binned into firing rates over time windows of different length and its statistical
properties were analyzed. The variability of firing of individual neurons and of the whole
population was first studied. In individual neurons, the timing of the first AP was rather precise
whereas the timing of the following APs was much more variable. Pooling evoked APs in an
ensemble of neurons reduced the variability of the response across different trials. As a
consequence, it was possible to distinguish at the level of a single trial stimuli varying in intensity.
A similar decrease of variability was observed counting the first evoked APs in an ensemble of
neurons. Blockage of excitatory synaptic pathways mediated by NMDA receptors improved the
mutual information between the evoked response and the stimulus. The opposite effect was
observed when inhibitory GABAergic pathways were blocked by bicuculline. The estimations of
the size of the neuronal pool and time bin necessary to process information in a reliable way are
remarkably similar to those obtained in in vivo preparations (Shadlen & Newsome, 1998; Nicolelis
et al., 1998) and in small nervous systems (Lewis & Kristan, 1998; Zoccolan et al., 2002). These
results show how an appropriate ensemble average and a balanced presence of inhibition and

excitation allow neuronal networks to process information in a fast and reliable way.
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Materials and Methods

Neuronal culture preparation. Hippocampal neurons from Wistar rats (P0-P2) were prepared as
described previously (Ruaro et al., 2005). Cells were plated on polyorhitine/matrigel pre-coated
MEA (Ruaro et al, 2005) at a concentration of 8 x 10’ cells/cm” and maintained in Minimal
Essential Medium with Earle’s salts (GIBCO-Brl) supplemented with 5% fetal calf serum, 0.5%
D-glucose, 14 mM Hepes, 0.1 mg/ml apo-transferrin, 30 pg/ml insulin, 0.1 pg/ml D-biotin, 1 mM
Vit. B12, and 2pg/ml gentamycin. After 48 hours 5 uM cytosine-/-D-arabinofuranoside (Ara-C)
was added to the culture medium, in order to block glial cell proliferation. Half of the medium was

changed twice a week. Neuronal cultures were kept in an incubator providing a controlled level of

CO; (5%), temperature (37°C) and moisture (95%).

Immunohistochemistry. Cells were fixed in 4% paraformaldehyde-0.15% picric acid and were
stained with the following primary antibodies: mouse monoclonal antibodies against Nestin
(Chemicon) GFAP (Sigma-Aldrich), Tubulin (TUJI) (Covance), Glutamate (Sigma-Aldrich).
Rabbit polyclonal antibodies against CaMKII and GABA (Sigma-Aldrich) serotonin (Sigma-
Aldrich) and TH (DiaSorin). Appropriate FITC-labeled and TRITC-labeled secondary antibodies
and Hoechst33345 nuclei counterstain were used for visualization. Images were acquired under a

Zeiss Axioshop?2 fluorescent microscope using an Optronics camera.

Density of Neuronal cultures. Cell density on the MEA after 4 weeks in culture was evaluated with
incubation of the culture with 2pug/ml of Hoechst 33342 in PBS which stain all nuclei (Latt &
Stetten, 1976), for 10 minutes at RT. After washing with PBS the cells were covered with a round
coverslip and observed under a fluorescent microscope. Images of microscope fields covering
500mm” (the region comprised among a square of 4 electrodes on the MEA, as shown in fig. 1 B)
were taken and the number of cell nuclei counted. The mean was obtained counting 4 fields of 5

different preparations. To evaluate the relative composition of neurons and glial cells in the
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preparation, parallel cultures were obtained at the same density on coverslip and double
immunofluorescence assays were performed with the primary antibody TUJ1 which binds to a
neuron-specific class III beta-tubulin (Geisert & Frankfurter, 1989) (Fig. 1C) and with anti Glial
fibrillary associated protein (GFAP; Fig. 1D) (Debus et al, 1983). Total nuclei were
counterstained with Hoechst 33342 dye. The percentage of neurons and glia in the culture was
therefore evaluated by counting the number of TUJ1 or GFAP labeled cells over the total number
of nuclei. The graph of fig 1F shows the results of these counts after 1,2,3 and 4 weeks culture. At
each time point about 20% of the cells is positive for GFAP. The percentage of neurons increases
from the first to the second week in culture and remains stable in the following weeks. The
remaining cells in the first week samples are positive to nestin, a marker for neural precursors
(Renfranz et al., 1991). In similar cultures, the neuronal composition was evaluated by double
immuno-fluorescence assays. Neurons were recognized by the antibody TUJ1. GABAergic,
glutamatergic, or serotonergic neurons were revealed by specific antibodies binding to their
neurotransmitters; dopaminergic neurons were revealed with specific antibodies against the
enzyme tyrosine hydroxylase (TH), which is required for the production of catecholamine
neurotransmitter. (Molinoff & Axelrod, 1971). The percentage of neurotransmitter specific
neurons relative to the total number of neurons was therefore counted under the fluorescence
microscope. To estimate the number of synaptic contacts between cells an immunofluorescence
assay against the synaptic vesicle marker protein SV2 and the neuron-specific class III beta-tubulin
(TUJ1) was performed. 5 fields were photographed under the normal fluorescent microscope and
the confocal microscope, then the number of dots per field were counted and divided by the
number of cells in the field to give an approximate number of synapses per neuron.
(Fig. 1 near here)

Electrical recordings and electrode stimulation. The multi electrode array (MEA) system used for
electrophysiology was commercially supplied by Multi Channel Systems (MCS). MEA dishes had

10x6 TiN electrodes with an interelectrode spacing of 500 um and each metal electrode had a
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diameter of 30 um. The MEA is connected to a 60 channel, 10 Hz — 3 kHz bandwidth pre-
amplifier/filter-amplifier (MEA 1060-AMP) which redirects the signals towards a further
electronic processing (i.e. amplification and AD conversion), operated by a board lodged inside a
high performance PC. Signal acquisitions are managed under software control and each channel
was sampled at a frequency of 20kHz. One electrode was used as ground (see Figure 2A). Sample
data were transferred in real time to the hard disk for later processing. In order to keep the desired
environmental conditions during the electrical recordings, the dish was moved to a different
incubator providing only a controlled level of CO; (5%) and temperature (37°C) and it was sealed
by a cap distributed by MultiChannelSystem in order to eliminate evaporation and contamination.
The neuronal culture was then allowed to settle for about 1 hour in order to reach a stationary state.
After conclusion of the experiment, usually after 3 to 10 hours, the medium was changed and the
dish was moved back to the original incubator. Recordings were performed, in culture medium,
from 3 weeks after seeding for up to 6 months. The same culture could be used repeatedly for other
experiments for up to one month. Each metal electrode could be used either for recording or for
stimulation. Voltage stimulation was used and consisted of bipolar pulses lasting 100 ps at each
polarity injected through the STG1004 Stimulus Generator. The voltage pulse generated by the
STG1004 was applied in parallel to the set of electrodes manually selected for stimulation
(simultaneous multi-site stimulation). A thermostat (HC-X) maintained the temperature at 37°C
underneath the MEA.

The amplitude of the voltage pulse varied between 200 and 900 mV. The minimum amplitude
required to evoke an electrical response varied between 200 and 300 mV depending on the
responsiveness of the culture and on the geometry of the stimulus. Analogously the lower
amplitude giving the maximum response varied between 750 and 900 mV. In order to avoid
invasive effects due to the stimulus itself, intensities higher that 900mV were not applied. Once the
lowest and highest intensity for a specific culture were selected, two intermediate values were
chosen to complete the experiment. In most of the experiments the intensities applied were 300,
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450, 600 and 900mV. For each different spatial stimulus, once the amplitude of the voltage pulse
was selected, the neuronal culture was usually stimulated for 100 trials with a fixed inter-pulse
interval, selected between 2s and 4s. In general, every 30 minutes, test stimulation was repeated in

order to test the stability of the response.

Pharmacology. The following chemicals were used as synaptic blockers: 2-amino-5-
phosphonovalerate (APV, Sigma-Aldrich), bicuculline (Sigma-Aldrich) and 6-cyano-7-
nitroquinoxaline-2,3-dione disodium salt (CNQX, Sigma-Aldrich). Synaptic blocker/s was/were
added to the extracellular medium in their required amount. After completion of the planned
measurements, blockers were washed out by four medium replacements, and the original

extracellular medium was restored.

Data analysis. Acquired data were analyzed using MATLAB (The Mathworks, Inc.). An artifact
lasting 5 — 20 ms, caused by the electrical stimulation, was induced on the recording and was
removed during data analysis (Wagenaar & Potter, 2002; Ruaro et al., 2005). As the artifact
removal was not reliable during the first 2 ms following the stimulation, we excluded this time bin
from the analysis. Antidromically evoked APs were identified in two different ways: first, all APs
observed in the presence of a cocktail of synaptic blockers (50 uM APV, 10 uM bicuculline and
100 uM CNQX) were classified as antidromic APs; second, — in agreement with Wagenaar et al
2004 - all APs with a reliability close to 100% and with a temporal jitter of less than 0.25 ms were
classified as antidromic (Wagenaar et al., 2004). In our analysis of the variability of neuronal firing
we excluded those APs classified as antidromic. For each individual electrode, we computed the
standard deviation (o) of the noise, which ranged from 3 to 6 puV, and only APs crossing the
threshold of -5c were counted as APs used for data analysis. AP sorting was obtained using
principal component analysis and open source toolboxes for the analysis of multi-electrode data

(Egert et al., 2002) with MATLAB. For the analysis on the first evoked APs, for each electrode,
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only the timing of the first evoked AP was considered. Taken a pool of neurons, we define first the
AP response as the number of neurons within the pool firing at least an AP in the time bin ¢ after
the stimulation (FAPR;, fig. 7 B). In order to calculate the average firing rate (AFR) of the neurons,
peri-stimulus time histograms (PSTHs) were calculated for the sorted neurons (fig. 3A) using a 10
ms time bin, where time 0 ms corresponds to the delivery of the stimulation. When APs recorded
from sorted neurons were pooled, the PSTH over the population of neurons (PPSTH) was similarly
calculated, counting in each time bin the APs of all neurons (fig. 3B). In the same way, when APs
recorded from the whole array of electrodes were pooled, the population PSTH (APSTH) was
calculated (fig. 3C, 8A and 9A). We define single neuron response (SR¢) the number of APs fired
in a single trial by a single neuron in the time bin ¢ after the stimulation. Summing the SR; of a
pool of neurons, a population response (PR;) is defined. Analogously, when all the APs recorded
by an electrode or by a population of electrodes are counted in the time bin ¢ in a single trial,
respectively an electrode response (ER;) and an electrode population response (EPR;) are obtained.

The coefficient of variation (CV) of any analyzed variable, is the standard deviation over the mean

of the variable. If CV,, is the CV of the single neuron #i response (SR,), (CV) is the average

CV,, over a population of M selected neurons.

Calculation of correlation and statistical independence of neuron firing. The degree of correlation
and of statistical independence of neuronal firing was measured on short ( i.e. few ms ) and longer
time scales ( i.e. few tens of ms ). On short time scales, i.e. with binwidth of 2 ms as in fig. 4 C, for

each pair of neurons #i and #j the product of the probability of firing p, - p, was compared to the
joint probability of firing p,, as described by Pinato et al. (2000). The same procedure was used to

measure the statistical independence of the neuronal firing recorded for each pair of electrodes #i
and #j (fig. 4F). On longer time scales, i.e. with a time bin of 50 ms, the cross correlation between

pairs of single neuron responses (SR;) were calculated (CSNy) as shown in Fig. 4B. The same
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procedure was applied to calculate the cross correlation between single electrode responses (ERy)

for a pair of electrodes (CSEy), as shown in Fig.4E.

Calculation of the mutual information. In order to decode the stimulus intensity, we analyzed and
compared neural codes based on the firing rate of single neurons (SR;), on the firing rate of an
ensemble of neurons (ER;, EPR;) and on the first evoked APs in an ensemble of neurons (FAPRy).
We used information theory (Shannon & Weaver, 1949) and in particular mutual information to
estimate the amount of information which can be decoded by the different neural codes in different
time bins (i.e. varying ¢) and for different extent of pooling (i.e. different number of electrodes

considered). In particular, the mutual information was calculated as follows:

1,=1,(R,S)=) p(s)D).p,(r|s)-log,(p,(r|s)/ p,(r) (1)
where
p,(r)=>p(s)p,(r|s) 2)

seS
I; quantifies in bits the amount of information that a single response, 7, (i.e. SRy, ER;, EPRy, or
FAPR; depending on the different neural code) provides about the intensity of the stimulus s. p,(7)
is the total probability of observing the response » considering the time bin 1 to ¢ ms after the
stimulus, averaged over all stimuli. In our case, all stimuli occurred with equal probability, p(s). In
order to minimize the effects of finite sample size on our estimates of information, the real
response 7 have been binned into different intervals, following the methods of Panzeri and Treves

(1996).
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Results

Characterization of the neuronal culture

Hippocampal neurons from neonatal rats were grown over a 10 x 6 MEA (fig. 1A). After 4 weeks
in culture, the density of neurons was evaluated by counting the cell nuclei on the surface
delimited by 4 adjacent electrodes on the MEA (Fig. 1B). The obtained density was 1756+ 255
cells/mm” (n=4). By immunofluorescence assays, it was possible to clearly identify neurons (fig.
1C) and astrocytes (fig. 1D). The neuronal culture composition was analyzed over a period of 4
weeks. As shown in fig 1, during the first four weeks, the fraction of glial cells was always about
20%. The percentage of neurons increased between the first and the second week in culture and
remained stable afterwards. The remaining cells during the first week were positive to nestin, a
marker for neural precursors (Renfranz et al., 1991) (fig. 1H). Neurons had long dendrites
extending in all directions and often it was possible to recognize an axonal structure. Due to the
difference in cell body size, although much less abundant in number, glial cells occupied most of
the space of the culture and neurons appeared to be growing over and beneath glial cells.
Approximately 8% of neurons were GABAergic (fig. 1E) and 90% were glutamatergic. No
serotonin or dopaminergic neurons were detected and we were unable to determine the nature of
the few remaining neurons. With double immunofluorescence assay against the synaptic vesicle
marker protein SV2 and the neuronal masker TUJ1, (fig. 1F and G) we estimated the number of
synapses between 450 and 500 per cell, in agreement with the data published for cortical neurons

in culture (Tateno et al., 2002).

Electrophysiology, single neuron detection and antidromically evoked APs
MEAs allow the recording of the extracellular voltage signals, produced by APs of all neurons

establishing a good electrical contact with MEA electrodes (fig. 2A). Often extracellular APs
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larger than 100 uV were measured. The neuronal culture was stimulated by a brief bipolar voltage
pulse applied to a set of electrodes. The electrical stimulation produced an artifact lasting 5 — 20
ms (removed off-line, see Methods) in all electrodes (indicated by an arrow in fig. 2 A and B),
followed by clear evoked APs. Extracellular signals larger than five times the standard deviation of
the voltage noise (5c¢) were considered as reliable APs. The number of neurons recorded by
different MEAs ranged from few dozen to hundreds of units. APs clearly produced by the same
neuron (indicated in red and blue in fig. 2 C lower panel) were identified using AP sorting
algorithms (see Methods) and the reproducibility of their firing during repetitive stimulations was
studied. The population of neurons which could be identified on different MEAs ranged between
10 and 50 units. As neurons of our cultures had long axons (see Fig. 1), some detected APs were
produced by a direct antidromic stimulation of the neuron and were not evoked through synaptic
pathways (Wagenaar et al. 2004). In order to identify these antidromic evoked APs, we compared
recordings in the absence and in the presence of a cocktail of synaptic blockers (50 uM APV, 10
uM bicuculline and 100 pM CNQX). In addition to what reported by Wagenaar et al. (2004), we
observed highly reliable APs with a low temporal jitter (less than 0.25ms) which were abolished by
the cocktail, indicating that they were traveling through synaptic pathways (fig. 2D). We also
observed APs with a low temporal jitter (less than 0.25ms) detected only in presence of synaptic
blockers (fig. 2E). These APs are likely to be antidromically evoked but in control conditions are
blocked by inhibitory synapses.
(Fig. 2 near here)

Reproducibility, pooling and statistical independence of neuronal firing

When the same voltage pulse was repetitively applied to the same electrodes, the number of
evoked APs in a single neuron varied, but often the first evoked AP was reliable with a jitter
varying from just a few hundreds us to some ms. The evoked average firing rate (AFR) and the

associated coefficient of variation (CV, see Methods) computed on a time window of 10 ms, for 10
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individual neurons, at progressively longer distances from the stimulated electrodes are shown in
fig. 3A.

(Fig. 3 near here)
The 10 neurons were recorded at distances varying between 500 pm to 4000 pm from the row of
electrodes used for stimulation (black bar in the grid). Neurons #1 and #10 were not activated and
their firing was almost abolished by the electrical stimulation. The CV of their firing increased
following the electrical stimulation. On the contrary, the firing of neurons #2-9 increased
significantly, whereas their CV decreased. Neuron #4 responded to the stimulation by firing an AP
in the time window between 1 and 11 ms, in each of the 50 trials, with a jitter of less than 0.25 ms
and the corresponding CV was 0. Other identified neurons, were less reliable, their firing was more
distributed over time and, at the peak of the evoked response, their CV was between 0.2 and 0.8.
When antidromically evoked APs were excluded (see methods) and the firing of the 10 identified
neurons was pooled, the CV was about 0.25 and remained less than 0.4 for at least 20 ms at the
peak of the evoked response (fig. 3B). Similar results were obtained from 5 additional neuronal
cultures. When we pooled together all APs recorded from all electrodes on the MEA, the CV was
transiently lower than 0.1 and remained lower than 0.3 for at least 40 ms (fig. 3C). When
antidromically evoked APs were included in the pool, the CV did not change significantly, since
antidromic APs are extremely reliable (fig. 3B and C).

(Fig. 4 near here)

When pooling single neuron responses (SRsoms) with a similar CV (fig. 4A), the CV of the pooled
activity decreased as (CV)/+/N (thick black line), where (CV) is the average CV ad N is the

number of pooled neurons. Fig. 4A shows how the CV varies when neurons with the lowest ( black
symbols ) and the highest CV (gray symbols) were progressively pooled one by one. Single
neurons had an average CV of 0.5 and, when 12 neurons were pooled, the CV approached 0.15.
Therefore at least two dozens of neurons are needed to obtain a CV of about 0.1, i.e. a very reliable

response. Pooling the electrical activity from different neurons reduces the corresponding CV only
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if their evoked firing is not correlated (Shadlen & Newsome, 1994, 1998; Gawne & Richmond,
1993). The correlation between single neuron responses (SRsoms) of pooled neurons, was on
average 0.11+-0.02 (mean and standard deviation of the mean for 5 preparations) (fig. 4B)
considering all possible pairs of neurons. Also on shorter time scales, i.e. at a binwidth of 2 ms,
neuronal firing was very poorly correlated as shown in fig. 4C: for each pair of neurons #i and #;

the product of the probability of firing p, - p;, was very similar to the joint probability of firing
p;;» of neurons #i and #j firing simultaneously. As a consequence, on short time scales the binned

firing of pairs of neurons is close to statistical independence and therefore is almost uncorrelated.
Similar results were obtained when all APs recorded in a single electrode were counted in the first
50ms following the stimulation (ERsns) and pooled (fig. 4D). In this case, when APs from
approximately 10 electrodes were pooled, the CV approached 0.1. As each electrode of the MEA
detects APs from different neurons (usually between 2 and 5), a pool of 20 to 50 neurons provides
a reliable response.
The correlation between pairs of ERsopms was 0.17+-0.05 (fig. 4E). Similarly, at a binwidth of 2 ms,
APs recorded by pairs of electrodes were almost statistically independent and therefore not
correlated (fig. 4F). These results, although obtained on a small fraction of neurons forming the
network under investigation, suggest that coactivated neurons on a time scale of some
milliseconds are poorly correlated and therefore averaging their electrical activity reduces the
variability of the evoked response.

(Fig. 5 near here)
Statistical properties of neuron firing, when a single bar of electrodes was stimulated, for a
population of 99 neurons identified in the 5 neuronal cultures analyzed (different colors correspond
to different cultures) are reproduced in fig. 5. The jitter of the first evoked AP on its average
latency were significantly correlated with coefficient of correlation p = 0.76 (fig. S5A). Since the

latency of an evoked AP is primarily determined by the number of synapses between the
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stimulating site and the neuron, the significant correlation between jitter and latency shows that the
reliability of the firing of a single neuron decreases with the number of synapses that the signal has
to cross. The minimum CV (mincy) of the AFR and the time of its occurrence (timepincy) were
correlated to the latency of the first evoked AP respectively with p = 0.87 and p = 0.89 (fig. 5B
and D), indicating that the firing of the first evoked AP is the most reliable part of the neural
response. The average latency increases with the physical distance (d) between the recording
electrode and the bar of stimulating electrodes (fig. 5C). The slope of the line provides the
maximum speed of APs propagation in the cultures, which is approximately 350mm/s, in

agreement with our previous report (Ruaro et al., 2005).

Processing information: coding stimulus intensity by pooling neuron firing

The neural code is expected to distinguish - and therefore to encode - important features of the
stimulus, such as its intensity. Therefore, the coding of stimulus intensity was investigated and
compared at the level of a single neuron and when APs were pooled from a population of neurons.
More precisely it is assumed that N stimulus intensities can be distinguished in a reliable way - and
therefore properly coded — if, by analyzing features of the response, it is possible to determine in
almost all trials the exact stimulus intensity. In this case, the response distributions for the N

stimuli do not overlap appreciably and it is possible to code log, N bits of information.

The first evoked AP is usually highly reliable and these APs may carry most of the relevant
information for recognition (Thorpe et al, 2001; Abeles, 1991; Van Rullen & Thorpe, 2001;
Delorme, 2003; Delorme & Thorpe, 2001) and later processing. The first evoked APs are possibly
the fastest signals achievable within the nervous system and are ideal for a fast neural code.

Voltage pulses of different intensities were applied to an electrode row. By increasing the voltage
pulse, APs recorded on each electrode became more frequent and often APs with a new shape,
produced by a different neuron, appeared (Ruaro et al., 2005). Usually, no APs were evoked by
voltage pulses below 200mV and a saturating maximal response was evoked with a voltage of
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about 1V. Four voltage pulses, varying between 200 mV and 900 mV, were considered (see
methods) and coding was measured by computing the mutual information I; (see methods) between
the evoked response in each trial and the stimulus intensity.

(Fig. 6 near here)
The maximal mutual information I carried by binned firing rates of single neurons (see methods),
was on average 0.34 bits. The analysis was performed on 91 neurons from 5 different preparations
(fig. 6A). In the great majority of these neurons, I; was much less than 1 bit and only in 10 neurons
I; approached to 1 bit. Therefore, by counting the number of evoked APs in single neurons, it is not
possible to reliably distinguish two stimulus intensities. Very similar results were obtained,
computing I; carried by the first evoked AP (FAPR,, see methods) (fig. 6B). In this case I; was, on
average, 0.32 bits and in 7 neurons out of 91 the value of I; approached 1 bit.

(Fig. 7 near here)
As binned firing rates of single neurons cannot reliably distinguish the stimulus intensity, we
investigated population coding in which APs from different neurons were pooled. Each electrode
of the MEA usually detects APs from different neurons (between 2 and 5, data not shown) and
therefore we pooled all APs recorded by a single electrode (ER,) and by an ensemble of electrodes
of the array (EPR;). Iy was maximal (1.48+0.22 bits, mean and standard deviation over 5 cultures)
when APs recorded by a population of at least 20 electrodes were pooled in a time bin of about 30
ms. Similar results were obtained when the first evoked APs in all electrodes were counted, in this
case I; was 1.3520.18 bits in a similar time bin.
Fig. 7 shows, in one preparation, the dependence of I; on the number of electrodes pooled and on
the time bin 7, when the first evoked APs were counted (fig. 7A upper panel) and when all APs
were pooled (fig. 7A lower panel). In this case, the network distinguishes clearly 4 stimulus
intensities, both when the first evoked APs were counted (fig. 7B upper panel) and when all APs

were pooled (fig. 7B lower panel).
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The effect of APV and bicuculline
Hippocampal neuronal cultures are composed of GABAergic and of glutamatergic neurons (fig. 1).
Therefore, we analyzed the effect of blockers of these synaptic pathways such as APV and
bicuculline on the mutual information. APV is a well known blocker of excitatory synaptic
transmission mediated by NMDA receptors and bicuculline blocks inhibitory pathways mediated
by GABAergic synapses.

(Fig. 8 near here)
Increasing the extracellular concentration of APV from 1 uM to 50 uM, the second component of
the evoked response progressively decreased and in the presence of 50 uM APV was completely
blocked (Fig. 8A). In the presence of 50 uM APV, the initial component of the AFR was almost
unaltered, but the second component was significantly depressed leading to an increase of the
corresponding CV. For single neurons, the late evoked response was also depressed but the timing
and the occurrence of the first evoked AP was unaltered and had approximately the same latency
and jitter (data not shown). The correlation between the electrode responses in the first 50 ms post
stimulus (ERsoms) did not significantly change.
The value of I; when the first evoked APs were counted (fig. 8B) and when all APs were pooled
(fig. 8C), significantly increased in the presence of APV of 15% (n=5, t-test, p<0.01).

(Fig. 9 near here)
The opposite effect was observed when bicuculline was added to the extracellular medium.
Increasing the concentration from 200 nM to 10 uM, the spontaneous electrical activity increased
and became progressively synchronized.
While the late component of the evoked response increased, the correspondent CV decreased (Fig.

9A). In the presence of 10 pM bicuculline, the correlation between the electrode responses

(ERsoms) of two electrodes increased drastically (0.61%0.19). The mutual information based on first
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evoked APs (Fig. 9B) and on rate coding (Fig. 9C) significantly decreased in the presence of 10
UM bicuculline respectively of 25% and 23% (n=5, t-test, p<0.01).

These results show that blockage of excitatory synaptic pathways mediated by NMDA receptors
increases the mutual information and improves neuronal coding. We observed instead the opposite

effect when inhibitory pathways mediated by GABA receptors are blocked.
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Discussion

In order to investigate the statistical properties of information processing in neuronal
networks, the reproducibility of the electrical activity evoked by multi-site stimulation in a
neuronal culture from rat hippocampal neurons was investigated in single neurons and in neuronal
assemblies. The neural activity was binned into firing rates over time windows of different length
and its statistical properties were analyzed. Our analysis reaches three major conclusions. Firstly,
although individual neurons are noisy and unreliable elements carrying a low amount of
information, by averaging APs from a neuronal assembly of about 25-100 neurons, it is possible to
decode at a single trial level a stimulus in about 20 ms. Secondly, a reliable information processing
is obtained by averaging evoked APs or by counting the first evoked APs, provided that enough
neurons are pooled. Thirdly, information processing depends critically on the balance between

excitation and inhibition.

Variability of firing of individual neurons and of neuronal populations

When a neuron was postsynaptically excited by the stimulation, the evoked firing was composed
by a first reliable AP followed by less reliable APs (fig. 3). The degree of correlation on short
binwidths (i.e. less than 50 msec) between coactivated individual neurons and between all APs
recorded by individual electrodes was usually small, often less than 0.1 (see Fig. 4). These results,
although obtained on a small fraction of the neurons forming the neuronal network, suggest that
coactivated neurons fire almost independently on a short time scale. This is not surprising as
vesicle release at different synapses is an uncorrelated process at short time scales. As a

consequence of this statistical independence, when the electrical activity was pooled over N

coactivated neurons, the CV of the pooled electrical activity decreased as 1/ JN (see fig. 4)
(Papoulis, 1984; Pinato et al., 2000). As neurons had an average CV of 0.5, a good reproducibility

- with a CV of less than 0.1 - was obtained by pooling the electrical activity of 25 neurons or more.
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These conclusions, drawn from an investigation carried out in a dissociated culture of rat
hippocampal neurons, are remarkably similar to those obtained in intact neuronal tissues or small
nervous systems. In the leech nervous system (Arisi et al, 2001; Zoccolan et al., 2002)
motoneurons coactivated during the same behavioral reaction and fired APs in an almost
statistically independent way. As a consequence of statistical independence, pooling the electrical
activity over all coactivated motoneurons makes AP trains underlying reproducible motor
reactions. Shadlen and Newsome (1998) suggested that in the cortex quantities are represented as
rate codes in ensembles of 50-100 neurons, i.e. a column-like ensembles, providing a reliable
estimation of rate in just one interspike interval (10-50 ms). Using multi-site recordings, Nicolelis
et al. (1998) showed that in the primate somatosensory cortex, the electrical activity from a small
neural ensemble — of about 30-40 neurons - coded correctly the location of a single tactile stimulus

on a single trial.

Processing information by ensemble averaging

The large variability of firing of individual neurons is reflected in the low amount of
information carried by binned firing rates of the single neurons (fig. 6). Since the first evoked AP
is the most reliable, in the large majority of neurons the information carried by the first evoked AP
is almost identical to the information carried by the firing rate (fig. 6). In order to decode a larger
amount of information, it is necessary to average the response of a neuron population (fig. 7). By
pooling the electrical activity of 50-100 neurons evoked in the first 20-50 ms, it was possible to
extract more than 1.5 bits (fig. 7). Pooling over an ensemble of neurons the first evoked APs or the
number of evoked APs (fig. 7) allowed the extraction of approximately the same amount of
information (fig. 7). Therefore, pooling first evoked APs or firing rates is almost equivalent. First
evoked APs also represent the fastest signal in the nervous system. /n vivo experiments on the
somatosensory cortex (Panzeri et al., 2001) have shown the prominent role of the first AP, which

contained about 83% of the total information. Recently, Johansson and Birznieks (2004) have
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shown that first APs in ensembles of about 30 neurons of human tactile afferents can code, within
40 ms after the stimulus onset, complex spatial fingertip events.

Recognition of complex scenes and images occurs within 180 ms (Thorpe et al., 2001) likely
obtained in several steps, each completed within a short time interval of 10 to 20 ms. In this case,
the best procedures are either averaging APs in a short time window or considering the first evoked
APs in an ensemble of neurons. A faster and reliable processing such as that necessary in the
auditory system requires an appropriate neuronal network composed of specific neurons and
synapses (Koppl, 1997). For different tasks it may be necessary to have a different amount of
temporal and spatial averaging. For instance in the leech nervous system, in order to guarantee
reliability of important behavioral reactions, such as the escape from a noxious stimulus, a longer
integration time is used — some hundreds of ms - but on 10-20 motoneurons (Zoccolan et al.,

2002).

The role of inhibition and excitation: variability, reliability and information processing

Inhibition and excitation seem to play a fundamental role in the mechanisms underlying
variability and reliability of the evoked response and they influence the the network’s potential to
process information. Blocking the excitatory pathways mediated by NMDA-receptors had several
major effects, in agreement with previous investigations (Jimbo et al., 2000; Kamioka et al., 1996).
In the present investigation, it is shown (fig. 8) how the blockage of these synaptic pathways
reduced and almost eliminated the second component of the evoked response and, most relevant
for the present investigation, increased the mutual information between the evoked response and
the stimulus, allowing a greater recovery of information. Blocking inhibitory pathways mediated
by GABA-receptors had opposite effects as previously described (Jimbo et al., 2000; Arnold et al.,
2005). The present investigation shows how, blocking these synaptic pathways, the mutual
information between the evoked response and stimulus decreases and a very little information can

be recovered. This remarkable deterioration of information processing was caused by an increased
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variability of the early phase of the evoked response and by the occurrence of large spontaneous
bursts of synchronized electrical activity. Under these conditions, the noise in the neuronal
network became correlated and could not be eliminated or reduced by averaging or pooling. These
results support the idea (Shadlen & Newsome, 1998; Marifo et al., 2005; Turrigiano & Nelson,
2004; Wehr & Zador, 2003; Zhang et al., 2003) that, in order to process information in a reliable
way, neuronal networks require an appropriate balance of excitation and inhibition, so that a

stimulus can generate a reliable neuronal response, distributed through the network.
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Tables

Table 1: definition of variables

Abbreviations / Definition Unit

names of variable

First AP response number of neurons within the pool firing at | # neurons

FAPR; least an AP in the time bin ¢ after the
stimulation).

single neuron number of APs fired in a single trial by a # APs

response single neuron in the time bin ¢ after the

SR¢ stimulation

population response | sum of SR; of a pool of neurons # APs

PR

electrode response number of APs recorded by an electrode # APs

ER; counted in the time bin ¢ after the
stimulation

electrode population | sum of ER; of a pool of electrodes # APs

response
EPR;
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Figure legends:

Figure 1. Characterization of the neuronal culture. A: image of dissociated hippocampal neurons
on the MEA. B: cell nuclei of the dissociated culture stained with Hoechst33342. C: neurons
expressing type Il tubulin recognized by TUJ1 antibody (green); total nuclei (blue); D: glial cells
expressing GFAP (green); total nuclei (blue). E: GABAergic neurons recognized by antiGABA
specific antibody. F: synaptic vesicles stained by the protein specific for synaptic vesicle SV2
(green) and neurons expressing type III tubulin recognized by TUJ1 antibody (red) G: confocal
image of the same preparation shown in F. In A and B the reference bar corresponds to 100um; in
C, D and E the reference bar corresponds to 50um; in F the reference corresponds to 25pum. Images
in C-G are from cells after 3 weeks in culture. H: cell composition of neuronal cultures after 1-4
weeks of culture.

Figure 2. Electrical recordings, AP sorting and APs antidromically evoked. A: electrical
recordings obtained with a MEA composed by an array of 10x6 electrodes. The electrical artifact is
indicated by the black arrow. A bipolar voltage pulse was applied to the fifth row of electrodes.
The electrode framed in the gray box was used as ground. The stimulation evoked APs of different
amplitude in most of the MEA electrodes. B: magnified electrical recordings obtained from the
encircled electrode in panel A. Red and blue squares mark APs from two identified neurons. C: AP
sorting. Upper panel shows all events exceeding a threshold of -50 uV. Lower panel shows APs
sorted from two different neurons in red and blue. Same color in B and C indicates the same
neuron. D: raster plots (left panel) and electrical recordings (right panel) from one electrode in
normal conditions showing a highly reliable AP with a low temporal jitter (less than 0.25ms)
which is suppressed in presence of synaptic blockers (10 uM bicuculline, 100 uM CNQX and 50
uM APYV). E: raster plots (left panel) and electrical recordings (right panel) from one electrode in

the presence of synaptic blockers (10 uM bicuculline, 100 uM CNQX and 50 uM APV), showing
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a highly reliable AP with a low temporal jitter (less than 0.25ms) which is not evoked in normal
conditions.

Figure 3. Reproducibility of neuronal firing. A: each panel reproduces the AFR (open bars) and
the corresponding CV (black symbols) for 10 neurons identified in the electrodes indicated in the
grid, where the black bar corresponds to the electrodes used for stimulation. B: AFR (open bars)
and its CV (black symbols) when all APs of the 10 neurons identified in A were pooled. C: AFR
(open bars) and its CV (black symbols) when all the APs recorded by the MEA were pooled. In B
and C the shaded bar corresponds to antidromic APs, i.e. APs which were observed also in the
presence of APV, CNQX and bicuculline.

Figure 4. Coefficient of variation of the population response and correlation of neuron firing. A:
CV of the population response in the first 50 ms post-stimulus (PRsons) as a function of the number
of neurons pooled (N). Neurons with a similar CV (i.e. less than 1) were pooled. In the gray

(black) plot, neurons with an increasing (decreasing) CV were added one by one. The data are

averaged over 5 different preparations. The thick black line represents <C V> /[N , where <C V> is

the average CV of the neurons. B: distribution of the coefficient of correlation of single neuron
response in the first 50 ms post-stimulus (CSNsons). For each different preparation, all the possible
pairs of neurons were considered. The data were averaged over 5 different preparations. C: average
joint probability of firing of all possible pair-wise combinations of neurons. Considering all the
possible pairs of neurons #i and #j, the average joint probability of firing p;; (filled circles) is
compared with the average product of individual probabilities p;*p; (open circles). The data shown
are from a single preparation and identical results were obtained in the other 4 preparations
considered. D: CV of the electrode population response in the first 50 ms post-stimulus (EPRsgps)
as a function of the number of pooled electrodes. In the gray (black) plot, electrodes with an
increasing (decreasing) CV were added one by one . The data were averaged over 5 different
preparations. E: distribution of the coefficient of correlation of single electrode response in the first

50 ms post-stimulus (CSEsgns). For each different preparation, all the possible pairs of electrodes
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were considered. The data were averaged over 5 different preparations. F: average joint probability
of firing of all possible pair-wise combinations of electrodes. Considering all the possible pairs of
electrodes #i and #j, the average joint probability of firing p;; (filled circles) is compared with the
average product of individual probabilities p;*p; (open circles). The data shown are from a single
preparation and identical results were obtained in the other 4 preparations considered.

Figure 5. Statistical properties of single neuron firing, when a single bar of electrodes was
stimulated. APs antidromically evoked are considered only in the statistic shown on panel C. A:
relation between jitter and latency of first evoked AP. B: relation between the minimum CV
(mincy) of the AFR and latency of first evoked AP. C: relation between latency of first evoked AP
and distance between stimulating and recording electrodes. The slope of the line estimates the
maximum speed of propagation of action potentials in the cultures, which is approximately
350mm/s. D: relation between the time of the minimum CV (timemincv) and latency of first evoked
AP. The bin width considered is 10 ms. Only neurons, which had a CV of the evoked AFR lower
than 4, were analyzed. A population of 99 neurons identified in five neuronal cultures was
considered (different colors correspond to different cultures). In panel A, B and D the coefficient
of correlation p is reported on the top. The red line is the linear regression.

Figure 6. Statistic of the maximal mutual information I; carried by single neurons computed
considering the highest and the lowest intensities of stimulation. 5 different preparations were
considered. For each of the 91 neurons analyzed, the time bin # was varied in order to maximize the
mutual information. A: distribution of the mutual information provided by the first evoked AP
(FAPR,). B: distribution of the mutual information provided by the single neuron response (SNRy).
Figure 7. Coding stimulus intensity by pooling neuron firing. The statistics shown in the upper and
lower panels were done respectively by pooling the first evoked APs (FAPR,) and by pooling all
the APs evoked (EPR;) in the time bin # after the stimulus. A: mutual information I; calculated for 4
different stimulus intensities as function of bin width (¢) and of the number of pooled electrodes. B:

distribution of the population response to the 4 different intensities of stimulation. The APs evoked

71



in the first 15 ms post-stimulus in all the electrode arrays were pooled. The data shown refer to one
preparation.

Figure 8. The effect of APV on information processing. The statistics shown on the left panels and
on the right panels were calculated in normal conditions and in the presence of 50 uM APV. The
statistics shown in the upper and lower panels were done respectively by pooling the first evoked
APs (FAPR}) and by pooling all the APs evoked (EPR}) in the time bin # after the stimulus. A: AFR
(solid bars) and CV (black dots) of all APs recorded by the MEA. B and C: mutual information I;
calculated for 4 different stimulus intensities as functions of bin width # and of the number of
pooled electrodes.

Figure 9. The effect of bicuculline on information processing. The statistics shown on the left
panels and on the right panels were calculated in normal conditions and in the presence of 10 uM
bicuculline. The statistics shown in the upper and lower panels were done respectively by pooling
the first evoked APs (FAPR;) and by pooling all the APs evoked (EPR;) in the time bin ¢ after the
stimulus. A: AFR (solid bars) and CV (black dots) of all APs recorded by the MEA. B and C:
statistics of the mutual information I; calculated for 4 different stimulus intensities as functions of

bin width (¢) and of the number of pooled electrodes.
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Abstract

Neural coding was analyzed in dissociated hippocampal cultures, grown on
multielectrode arrays. The efficiency of different coding schemes was considered and
quantitatively compared by using criteria from information theory and pattern
recognition. When neurons are tuned for the same stimulus pooling or averaging evoked
action potentials (APs) provides a nearly optimal coding. On the contrary, when neurons
are specific for different stimuli a distributed coding is advantageous. A distributed
temporal coding based on the latency of the first evoked APs provided very similar
performances as a rate coding integrating action potentials APs over a short time
window. The efficiency of all these coding schemes was greatly affected when excitatory
synaptic pathways mediated by NMDA receptors and/or inhibitory GABAergic pathways
were blocked. Blockage of NMDA receptors improved the efficiency of all coding schemes
while blockage of GABAergic synapses significantly deteriorated their efficiency. These
results suggest that: i - a nearly optimal coding is represented by pooling the electrical
activity of neurons with the same tuning and considering as distributed these averaged
activity; ii — a distributed temporal coding based on the first evoked APs is reliable and is

the fastest in the nervous system.
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Introduction

In the great majority of invertebrate species and in almost all vertebrates, sensory signals
are coded in trains of evoked action potentials (APs). In the central nervous systems (CNSs) of all
vertebrates messages and signals are exchanged and processed as APs trains. Therefore,
information processing in the CNS is based on the analysis of APs trains and on their
transformation in other APs trains, ultimately reaching muscles, evoking a motor response. A
fundamental problem of Systems Neuroscience is the understanding of the neural code, that is to
identify how the stimulus and its characteristics are coded in trains of APs. A common way to
tackle this problem is to look for features of the evoked trains of APs which are reproducible from
trial to trial and are at the basis of the reliability and robustness of information processing in
biological nervous systems (de Ruyter van Steveninck et al., 1997; Zoccolan et al. 2002; Panzeri et
al., 2001; Johansson & Birznieks, 2004; Georgopoulos et al., 1986; Nicolelis et al., 1998; Bialek et
al., 1991). These features are usually identified by decoding the evoked train of APs so to recover
exactly — or almost - the stimulus and its characteristics in every single trial. Thus, by finding
optimal ways to decode evoked trains of APs, good clues to understand neural coding and
information processing are obtained (Johansson & Birznieks, 2004; Georgopoulos et al., 1986;
Nicolelis et al., 1998; Foffani & Moxon, 2004; DeCharms & Merzenich, 1996; McAlpine et al.,
2001; Nirenberg & Latham, 2003; Young & Yamane, 1992).

Two coding schemes seem at the basis of the operation of the nervous system: one scheme
is based on the exact timing of APs in individual neurons and the other scheme on the firing rate of
a population of neurons. These two neural codes are usually referred to as the temporal and the rate
code, respectively (Georgopoulos et al., 1986; Hopfield, 1995; DeCharms & Merzenich, 1996; de
Ruyter van Steveninck et al., 1997; Nicolelis et al., 1998; Parker & Newsome, 1998; Panzeri et al.,
2001; Zoccolan et al. 2002; Johansson & Birznieks, 2004; Nirenberg & Latham, 2003).
Experimental evidences from different preparations showed that the firing of individual neurons is

noisy and unreliable but by averaging the firing of some dozens of neurons, it is possible to reduce

84



the variability so to reliably process stimuli (Shadlen & Newsome, 1998; Zoccolan et al. 2002;
Bonifazi et al., in press). Instead of averaging, the firing rate of each neuron can be considered
separately, i.e. a population rate vector is constructed and coding is based on the statistics of these
vectors (Lewis & Kristan, 1998; Georgopoulos et al., 1986). On the other side, temporal codes are
based on the precision of AP timing in a population of neurons and information can be encoded
either in the synchrony of firing (Gray et al., 1989; Singer & Gray, 1995), or in the relative timing
of APs (DeCharms & Merzenich, 1996; O’Keefe & Recce, 1993; Hopfield, 1995) or in the latency
of first evoked APs (Thorpe et al., 2001; Johansson & Birznieks, 2004). Correlation can play an
opposite role for different coding mechanisms, whereas in most neural codes correlation is
deleterious, in the case of temporal coding based on synchronization, it can improve the encoding
of information (Nirenberg & Latham, 2003; Schneidman et al., 2003).

In order to analyze population coding in a quantitative way and to compare the rate and
temporal codes based on the latency of the first APs, hippocampal neurons from neonatal rats were
cultured on a multielectrode array (Ruaro et al., 2005; Arnold et al., 2005). After few weeks in
culture the network established synaptic contacts and exhibited the spontaneous firing typical of
physiological neuronal networks (Van Pelt et al., 2004; Maeda et al., 1995; Bonifazi et al., in
press). Extracellular electrical stimuli, with a different spatial profile and intensity, were delivered
to the network, through the MEA. By changing the ionic medium it was possible to modulate the
relative weight of excitatory and inhibitory synaptic pathways.

The efficiency of different coding schemes was considered and quantitatively compared by
using criteria from information theory and pattern recognition. For neurons with similar tuning
properties, a simple pooling of evoked APs provided a good coding/decoding scheme with an
efficiency not significantly lower than of a more complex distributed coding. When stimuli
differed in their amplitude and their spatial location, a distributed coding was necessary to achieve
a good efficiency. A distributed temporal coding based on the latency of the first evoked APs

provided very similar performances as a rate coding integrating APs over a short time window.
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Blockage of excitatory synaptic pathways mediated by NMDA receptors decreased the correlation
in the electrical activity of the network and improved the efficacy of the coding/decoding
mechanisms. The opposite effects were observed when inhibitory GABAergic pathways were

blocked by bicuculline.
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Materials and Methods

Neuronal culture preparation. Hippocampal neurons from Wistar rats (P0-P2) were
prepared as previously described (Ruaro et al., 2005). Cells were plated on polyorhitine/matrigel
pre-coated MEA (Ruaro et al, 2005) at a concentration of 8 x 10° cells/cm® and maintained in
Minimal Essential Medium with Earle’s salts (GIBCO-Brl) supplemented with 5% fetal calf
serum, 0.5% D-glucose, 14 mM Hepes, 0.1 mg/ml apo-transferrin, 30 pg/ml insulin, 0.1 pg/ml D-
biotin, 1 mM Vit. Bl2, and 2pg/ml gentamycin. After 48 hours 5 pM cytosine-f-D-
arabinofuranoside (Ara-C) was added to the culture medium, in order to block glial cell
proliferation. Half of the medium was changed twice a week. Neuronal cultures were kept in an
incubator providing a controlled level of CO, (5%), temperature (37°C) and moisture (95%).

Electrical recordings and electrode stimulation. The multi electrode array (MEA) system
used for electrophysiology was commercially supplied by Multi Channel Systems (MCS). MEA
dishes had 10x6 TiN electrodes with an interelectrode spacing of 500 um and each metal electrode
had a diameter of 30 pum. The MEA is connected to a 60 channel, 10 Hz — 3 kHz bandwidth pre-
amplifier/filter-amplifier (MEA 1060-AMP) which redirects the signals towards a further
electronic processing (i.e. amplification and AD conversion), operated by a board lodged inside a
high performance PC. Signal acquisitions were managed under software control and each channel
was sampled at a frequency of 20kHz. One electrode was used as ground. Sample data were
transferred in real time to the hard disk for later processing. In order to keep the desired
environmental conditions during the electrical recordings, the dish was moved to a different
incubator providing only a controlled level of CO, (5%) and of temperature (37°C). It was also
sealed with a cap supplied by MultiChannelSystem in order to eliminate evaporation and
contamination. The neuronal culture was then allowed to settle for about 1 hour in order to reach a
stationary state. Once the experiment was terminated, usually after 3 to 10 hours, the medium was

changed and the dish was moved back to the original incubator.

87



Each metal electrode could be used either for recording or for stimulation. Voltage
stimulation was used and consisted of bipolar pulses lasting 100 us at each polarity injected
through the STG1004 Stimulus Generator. The voltage pulse generated by the STG1004 was
applied in parallel to the set of electrodes manually selected for stimulation (simultaneous multi-
site stimulation). The amplitude of the voltage pulse was selected between 200 and 900 mV. The
minimum amplitude required to evoke an electrical response varied between 200 and 300 mV
depending on the responsiveness of the culture and on the geometry of the stimulus. Analogously
the lower amplitude giving the maximum response varied between 750 and 900 mV. In order to
avoid invasive effects due to the stimulus itself, intensities higher that 900mV were never applied.
Once the lowest and highest intensity for a specific culture were selected, two intermediate values
were chosen to complete the experiment. In most of the experiments the intensities applied were
300, 450, 600 and 900mV. Six electrodes forming a bar were used for stimulation. Given six
electrodes laying on a line of the array, four different spatial patterns of stimulation were used (see
fig. 1 A): three patterns composed of two electrodes and one pattern composed of all six
electrodes. By using four different intensities and four different spatial configurations, a total of
sixteen different stimuli were used. For each stimulus, hundred repetitions of the same stimulus
were delivered. A fixed inter-pulse interval of 2s was used. In general, every 30 minutes, a test
stimulation was repeated in order to test the stability of the response.

Pharmacology. The following chemicals were used as synaptic blockers: 2-amino-5-
phosphonovalerate (APV, Sigma-Aldrich), bicuculline (Sigma-Aldrich) and 6-cyano-7-
nitroquinoxaline-2,3-dione disodium salt (CNQX, Sigma-Aldrich). Synaptic blocker/s was/were
added to the extracellular medium in their required amount. After completion of the planned
measurements, blockers were washed out by four medium replacements, and the original
extracellular medium was restored.

Data analysis. Acquired data were analyzed using MATLAB (The Mathworks, Inc.). An

artifact lasting 5 — 20 ms, generated by the electrical stimulation, was induced on the recording and
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was removed during data analysis (Wagenaar & Potter, 2002; Ruaro et al., 2005). As the artifact
removal was not reliable during the first 2 ms following the stimulation, the first 2 ms following
stimulation were excluded from the analysis.

Antidromically evoked APs were identified in two different ways: first, all APs observed
in the presence of a cocktail of synaptic blockers (50 puM APV, 10 uM bicuculline and 100 uM
CNQX) were classified as antidromic APs; second, — in agreement with Wagenaar et al 2004 - all
APs with a reliability close to 100% and with a temporal jitter of less than 0.25 ms were classified
as antidromic (Wagenaar et al., 2004). APs classified as antidromic were excluded from the
analysis. For each individual electrode, we computed the standard deviation (o) of the noise,
ranging from 3 to 6 uV, and only APs crossing the threshold of -5c were considered . Since each
electrode could record the activity of several neurons, varying between 1 and 5, we define here as a
multiunit recording the electrical (or neural) activity recorded by a single electrode. AP sorting was
obtained using principal component analysis and open source toolboxes for the analysis of multi-
electrode data (Egert et al., 2002) with MATLAB.

Calculation of correlation. The degree of correlation of firing in the network was measured
by averaging the cross correlation analyzing among electrical recordings obtained from pairs of
electrodes. The correlation of the spontaneous activity was computed in the following way: the
spontaneous activity was recorded for about 30 minutes and the number of APs recorded at each
electrode in a bin width At was computed so to obtain a time series (SA,, ..., SA,). For each pair of
electrodes (7, ), the cross correlation between the time series (S4iy, ..., S4in) (S4j1, ..., SAjz) was

calculated according to the equation (Papoulis, 1984)

(84, ~ SA)(SA, ~S4)
(1)

\/['Z’(SA,-k —E)zj['z’(sfl,k —SZ)Z]

and the average cross correlation over all the possible pairs of electrodes was computed

The correlation of the evoked activity was obtained in the following way: for each electrode the
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APs evoked in the time bin At following the stimulation were counted at each single trial so to
obtain a series of single trial responses depending on the time bin At. For each pair of electrodes,
the cross correlation between the “trial” series was calculated according to equation (1) and the
obtained cross correlation was averaged over all the possible pairs of electrode. The cross
correlation for the spontaneous and evoked activity shown in fig. 2, was obtained by varying the
size of the bin width At.

Neural coding mechanisms. Given a set of different stimuli S;, we investigated how
information about S; could be encoded in the evoked APs trains. Three distributed mechanisms
were considered: a rate code, a 1¥ evoked APs code and a binary code. For each trial, a population
vector was computed in the bin width At following the stimulus. The vector dimension N was
equal to the number of neurons included in the population (or to the number of active electrodes
when multiunit recordings were considered). A single time window At following the stimulation,
was considered, as we are interested in fast coding mechanisms. In the case of the first evoked APs
code, for each neuron (electrode) i the inverse of the latency t; of the first evoked AP was
measured (see fig. 1 B and C) and the vector (1/1,....,1/1N5) was considered. When the latency was
larger than the time window At, the latency was considered as infinite, i.e. the neuron was
supposed not to fire. For the rate code (see fig. 1 B and C), the number of APs (FR;) evoked in the
bin width At was counted for each neuron i (electrode) and the vector (FRy,...,FRy) was
constructed. For the binary coding, the activity detected in the bin width At was converted to “0”
when no APs were evoked or to “1” when one or more APs were evoked and a vector of 0 or 1 was
obtained. The analysis shown in the paper was obtained varying the bin width At. Given S different
stimuli and T repetitions of the same stimulus, a total of S*T vector responses were collected for
each different coding mechanisms. For the population rate code, for each single trial, the APs

evoked in the neural pool (FR,, ..., FRy) were summed (XFR)).
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Evaluation of neural coding mechanisms: mutual information and efficiency of decoding.
In order to extract the information about the stimulus from the firing of populations of neurons, we
used two different procedures: information theory (Shannon & Weaver, 1949) and classification
analysis (Ghazanfar et al., 2000; Foffani & Moxon, 2004). Information theory was used to
compare the information carried by single neurons and by pairs of neurons. In order to calculate
the mutual information, a reliable estimate of conditional probabilities is required and this was not
possible when more than two neurons were considered, due to the limited set of trials.

The mutual information / (Shannon & Weaver, 1949) was calculated as follow

I=1(R,S)=> p(s)D_ p(r|s)-log,(p(r|s)/ p(r)) 2)
where
p(r)=2 p(s):p(rls) 3)

seS

and p(7) is the total probability of observing the response 7. In our case, all stimuli occurred
with equal probability, p(s). The response 7 could be the firing rate FR; of a single neuron 7, or the
distributed firing rate (population vector response) (FR;, FR;) of neuron i and neuron j, or the
pooled firing rate (FR; + FR;) of neuron i and neuron j. The response was measured in the bin
width At following the stimulus and the data shown in fig. 4 represent the maximal mutual
information obtained by varying At. In order to minimize the effects of finite sample size on our
estimates of information, the real response » was binned into different intervals, following the
methods of Panzeri and Treves (1996).

In order to measure the information encoded in the response of a neural population,
classification analysis was used and the efficiency of decoding was calculated (Ghazanfar et al.,
2000; Foffani & Moxon, 2004). The algorithm used to classify the pattern of neural response, was
the K-nearest neighbor method (Foffani & Moxon, 2004). During training, half of the trials of
stimulation were selected and for each different stimulus the average neural response was calculated

(the average is a vector for the distributed codes and a scalar for the population rate code).
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Therefore, given a set of S different stimuli, a set of S templates was constructed. During testing,
half of the trials were used for classification. Each trial was classified according to its minimal
distance (in the Euclidean sense) from the templates. Trials used for the training part were randomly
selected and the remaining trails were used for testing (complete cross-validation, Foffani &
Moxon, 2004). In order to eliminate any effect due to the random sample of the training trials, the
complete cross-validation procedure was repeated 50 times and average values were considered.
The analysis reported in fig. 5C, 6 and 7 show how the efficiency of decoding and time of optimal
decoding varies as a function of the size of the ensemble of neurons (electrodes). When subsets of N
elements (neurons or electrodes) were considered out of N, possible elements, only a maximum of
1000 combinations were randomly selected and averages were calculated. The error bars in the
graphics represent standard deviation calculated for 5 different experiments. The analysis shown in
fig. 5, 6 (left panels) and 7 (first and second panels from the left) showed the maximal efficiency of
retrieval which was computed for the bin width giving maximal efficiency. The analysis of the bin
width with optimal response versus the ensemble size (fig. 6 right panels and 7 right panels),
considered the minimal bin width where the efficiency was at least 95% of its maximal value.
Measures of the tuning properties of the neurons. The choice of the most appropriate
coding scheme depends on the stimuli which have to be coded and on the tuning properties of
neurons under consideration. Tuning properties of a neurons to a set of S stimuli were
characterized in the following way: let be AFR;(Sy) the average number of APs of neuron i in the
bin width of 50 ms following the stimulus S; For each pair of neurons i and j and for pairs of
stimuli Sx and S; the relative specificity (RS) of their firing was defined as the minimum between

AFR (S,)- AFR (S,)
AFR(S,)- AFR ,(S,)

and its reciprocal.
RS is close to 1 when the two neurons have a similar selectivity for the two stimuli and is

close to 0 when the two neurons respond very differently (see fig. 4 B).
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When three stimuli or more (Sy,..., Sy) are considered it, neurons could respond in a
progressive-like way, i.e.

AFR;(S))< AFR(Sy)<...... <AFRi(S,)

This is the case when the stimuli differ in their intensity (with the intensity of S; larger than
the intensity of Sy when j>k) and the average firing rate of neuron i increases monotonically with
the stimulus intensity. This kind of behavior can be detected by plotting AFR;(S;) versus AFR;(Sy).
If points cluster in one semisector for all pairs of stimuli (S, Sx) then the neuron i responds to the

stimuli in a progressive-like way.
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Results

Hippocampal neurons from neonatal rats were grown over a 10 x 6 MEA (fig. 1A). After
three or four weeks of culture a well developed neuronal network was observed exhibiting bursts
of spontaneous activity. Cultures were primarily composed by glutamatergic neurons and with a
small proportion of GABAergic neurons (Bonifazi et al., in press). The MEA on which neurons are
grown allows the recording of extracellular voltage signals, produced by APs of all neurons
establishing a good electrical contact with MEA electrodes. Extracellular APs larger than 100 uV
were often measured. The neuronal culture was stimulated with brief bipolar voltage pulses applied
to the electrodes. Stimuli could differ in intensity and in their spatial location, i.e. different pattern
of stimulated electrodes (fig. 1 A, see methods). The electrical stimulation produced an artifact
lasting 5 — 20 ms (removed off-line, see Methods) in all electrodes, followed by clear evoked APs.
Extracellular signals larger than five times the standard deviation of the voltage noise (5c) were
considered. The total number of neurons recorded by a MEA ranged from few dozens to hundreds
of units. Out of these it was possible to identify APs originating from individual neurons and its
number ranged from 10 to 25 units in different experiments. As neurons of our cultures had long
axons, some detected APs were produced by a direct antidromic stimulation of the neuron and
were not evoked through synaptic pathways (Wagenaar et al. 2004). In order to identify these
antidromic evoked APs, recordings in the absence and in the presence of a cocktail of synaptic
blockers (50 uM APV, 10 uM bicuculline and 100 pM CNQX) were compared as described in
Bonifazi et al. (in press).

(Fig. 1 near here)

The purpose of the present investigation is to explore and compare coding mechanisms
based on the response of a population of neurons. Given N distinct neurons (or electrodes, when
multiunit recordings are considered, see Methods), the firing rate of the neurons can be summed
(population rate code) or can be considered as distributed (distributed rate coding) (fig.1 B and C,

see methods). Distributed codes based on the latency of the first evoked APs are also analyzed
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(distributed temporal codings, fig.1 B and C). These coding schemes are compared in term of their
ability to recover the stimulus and its characteristics in every trial (Panzeri et al., 2001; Petersen et
al., 2001; Ghazanfar et al., 2000; Foffani & Moxon, 2004). In this view decoding is adopted as the
criterium to evaluate coding mechanisms.

Two classes of decoding procedures have been proposed so far. One procedure is based on
information theory and makes use of the mutual information / between features of evoked trains of
APs and the stimulus (Panzeri et al., 2001; Petersen et al., 2001), as used in the analysis shown in
Fig.4. This procedure requires an estimate of several probabilities, and, due to our limited set of
trials, they could not be computed reliably when more than two neurons were considered. In this
case, procedures based on pattern recognition and/or classification were used (Ghazanfar et al.,
2000; Foffani & Moxon, 2004) as in Figs 5-7. These procedures are based on a training in which the
correct mapping between evoked APs trains and stimulus is learned. The K-nearest neighbor

procedure, possibly the simplest methods of classification, was here used.

Correlation of the spontaneous and evoked electrical activity

The amount of correlation among neurons is a key element of neural coding (Nirenberg &
Latham, 2003; Schneidman et al., 2003). Therefore, we have investigated in detail the degree of
correlation in the electrical activity of the neuronal culture in bin width time of increasing duration
and in the presence of specific blockers of synaptic transmission. The cross-correlation (CC)
among the number of APs detected on pairs of electrodes was computed as described in the
Methods. Fig.2A and B illustrates collected data from 5 cultures for the spontaneous and evoked
electrical activity respectively.

(Fig. 2 near here)

In normal conditions, when no synaptic blockers were present in the medium, at bin widths

of about 5 ms, the CC was around 0.1, both for the spontaneous and for the evoked activity. By

increasing the bin width from 5 to 200 ms, whereas for the evoked activity the CC slightly
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increased from 0.1 to 0.25, while the CC of the spontaneous activity reached 50% of its saturating
value for a bin width of about 25 ms. For bin widths larger than 15 ms there was a significant
difference between spontaneous and evoked activity (z-test, p<<0.05). When excitatory synaptic
pathways mediated by NMDA receptors were blocked by the addition of 50 uM APV, the CC was
drastically reduced for all bin widths and was less than 0.05 and 0.15 for the evoked and
spontaneous activity respectively. The CC of the evoked activity in normal conditions and in the
presence of APV was significantly different only for bin width larger than 60 ms (z-test, p<0.05),
i.e. when the late phase of the evoked response, mediated by the NMDA receptors, was considered
(Jimbo et al., 2000). A very different effect was observed when GABAergic inhibitory pathways
were blocked by 10 uM bicuculline. In this case, the CC for both the spontaneous and the evoked
activity was always significantly larger with respect to normal conditions (z-test, p<0.05).
Moreover, even at a bin width of 25 ms the electrical activity showed a high correlation, larger

than 0.5.

Tuning properties of the neurons in response to stimuli varying in intensity and in spatial
location

The nervous system is able to process visual stimuli varying for their intensity and location
in the visual field and mechanical stimuli applied to different regions of the skin with a different
pressure. In order to study similar mechanisms, in the present investigation two classes of stimuli
were studied: stimuli differing for their intensity, i.e. the amplitude of the voltage pulse used, and
stimuli differing for their spatial location, i.e. delivered through distinct patterns of electrodes (see
Methods and fig. 1 B and C). Therefore the response of neurons to three spatial stimuli (X1, X2
and X3, see the grid of fig. 3 C) and to three voltage intensities (300, 450 and 900 mV) was
analyzed. Neurons responded in three modes, summarized by the three neurons N1, N2 and N3
shown in fig. 3A and B: neurons could respond only to the highest stimulation intensity and to only
spatial stimuli (neuron N3), neurons could respond to more than one intensity but only to one
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spatial stimulus (neuron N1) and finally neurons responding to one intensity and to several spatial
stimulus (neuron N2). We never observed neurons (5 preparations for a total of 88 neurons)
responding to all intensities and to all spatial stimuli. The majority of neurons behaved like neuron
N3 (about 55 neurons), this class includes the case of neurons that poorly responded to all the
stimuli. Some neurons behaved like neuron N2 (about 28 neurons) and only few neurons behaved
like neuron N1 (about 5 neurons).

(Fig.3 near here)

Neurons responded to stimuli with different intensities in a “progressive-like way “ (see
Methods), i.e. they increased the number of evoked APs when the stimulus intensity increased (see
Methods). This property is illustrated in the upper panels of fig. 3C where the AFR evoked by a
stronger stimulus is plotted against the AFR evoked by a weaker stimulus (the three panels
correspond to the three possible pairs of stimuli). Points (AFR;(Si), AFRi(S;)) cluster in one semi
sector, showing that neurons respond to the stimuli in a progressive-like way (see Methods). On
the contrary, when stimuli of different spatial location were considered (fig. 3C lower panels),
neurons did not fire in a progressive-like way. This different tuning originates from the fact that a
neuron responding to a stimulus of weak intensity responds also to the same stimulus but with

stronger intensity. This different selectivity determines optimal distinct coding mechanisms.

Coding the location and the intensity of the stimulus: population and distributed rate code

As shown in Fig.3 neurons have different tuning properties for the intensity and the spatial
location of the stimulus. Therefore we have studied how these two features are encoded in the
firing of a population of neurons. Information theory and classification analysis were used to
measure the decoding or retrieval efficiency.

Given N neurons with a firing FR; in the bin width At , the population rate code is based on
the pooled response (i.e. 2FR;) and the distributed rate code is based on the vector (FR;, ..., FRy).
As shown in Fig. 4A the information encoded by the firing rate FR of single neurons (5
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preparations for a total of 88 neurons) is generally low. Indeed the mutual information between FR
and the stimulus was on average 0.2 and 0.4 bits for stimuli with different intensities (upper panel)
and with different spatial locations (lower panel) respectively.

(Fig. 4 near here)

The information encoded in the rate slightly increased when pairs of neurons were
considered (fig. 4B and C). Fig. 4B illustrates for stimuli varying in intensity, the relation between
information encoded in the pooled (/,0,7) and in the distributed (/45) responses. The experimental
points clustering around the straight line /,,,; = 14 indicate a substantial equivalence between the
two codes. However, the average information encoded in the response of a pair of neurons (0.3
bits) was slightly larger compared to the response of single neurons (0.2 bits) (88 neurons, #-test,
p<0.05). In the case of stimuli differing for their spatial location, for several pairs of neurons /;;
was larger than /,,,. In this case, the average information encoded in the distributed response (0.5
bits) was larger compared to the response of single neurons (0.4bits) (z-test, p<0.05). A distributed
rate code is more advantageous when neurons in the pair are tuned to different spatial stimuli. Fig.
4D shows that the relative variation of the mutual information ((ZuisZpoo1)/Ipoo)) 1s larger when the
relative specificity of the pair of neurons (RS, see Methods) is close to 0, i.e. when neurons are
tuned to different stimuli.

Fig. 5 shows for both type of stimuli and for the distributed (continuous line) and pooled
coding scheme (dotted line) how the retrieval efficiency varied, when neurons were added one by
one to the ensemble. Figure 5 A shows the dependence of retrieval when the best predictors (i.e.
the neurons with the highest mutual information) are one by one included in the ensemble for
stimuli varying in intensity (left panel) and in spatial location (right panel). For all neural codes,
the efficiency obtained by the four “best neurons” was more than 90%, i.e. few optimal neurons
provide almost an optimal coding. The distributed code showed a slightly better efficiency when
more than eight neurons were considered (¢-fest, p<0.05)

(Fig. 5 near here)
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Figure 5 B shows how retrieval is affected when the best predictors are removed one by
one from the ensemble (from right to left in the x-axes). The smooth degradation of the ensemble
performance confirms that the information is distributed in the population response. Between the
two extreme cases shown in fig. 5A and B, fig. 5 C shows the case when neurons are randomly
added one by one (an average was calculated over a set of possible random combinations, see
Methods). For a single neuron, the efficiency of retrieval of the spatial location (right panel)
compared to the intensity (left panel), was higher — reflecting the different average mutual
information carried by single neurons for the two features of the stimulus (fig. 4 A) - and increased
more rapidly when more neurons were added to the ensemble. The efficiency of intensity retrieval
(left) increased more rapidly for the distributed rate code (continuous line) than for the population
rate code (broken line), and both codes were equally efficient (about 0.95%) when all the APs of

the multiunit recordings (see Methods) were considered.

Comparison of distributed codes: rate, first AP and binary codes

First evoked APs are the fastest signals in the nervous system. In addition, they are usually
highly reliable and often carry most of the relevant information (Gawne Richmond 1993,
Johansonn 2004, Panzeri et al., 2001 Thorpe et al., 2001; Abeles, 1991; Van Rullen & Thorpe,
2001; Delorme, 2003; Delorme & Thorpe, 2001; Bonifazi et al., in press; Zoccolan et al., 2002;) :
first evoked APs are ideal candidates for an efficient and fast code. Therefore we compared the
distributed rate code and temporal codes based on the latency of the first evoked APs. Given an
ensemble of N neurons and a bin width A¢ following the stimulus, three distinct vectors describing
the population response were computed: a rate vector, a first AP vector and a binary vector (see
Methods and fig. 1).

(Fig. 6 near here)
Fig. 6 shows a comparison of the three neural coding mechanisms for the intensity (upper

panels) and for spatial patterns (lower panels) respectively. The dependence of the maximal
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efficiency on the ensemble size was not significantly different (n=5, ¢-test, p>0.05) (left panels).
For the largest ensemble considered (12 neurons, central panels), the efficiency reached its
maximum in a bin width of about 20ms for the intensity retrieval (upper central panel) and of
about 10ms for the spatial retrieval (lower central panel). While for the latter case, measuring the
response in larger bin widths did not alter retrieval efficiency, in the other task, at larger bin
widths, the performance of the rate and of the binary coding schemes slightly decreased and a
significant difference was observed between the rate code and the first AP code at a time window
of 100 ms (n=5, t-test, p<0.05). By increasing the ensemble size, the time needed to obtain the
optimal response decayed in an approximately equivalent way for the three neural codes (right

panels).

Distributed analysis of pooled signals and effect of APV and bicuculline

Hippocampal neuronal cultures are composed of GABAergic and of glutamatergic neurons
(Bonifazi et al., in press), therefore the effect of the selective blockage of excitatory synaptic
pathways mediated by NMDA receptors (50 uM APV) and of inhibitory GABAergic pathways (10
UM bicuculline) on information processing was studied.

In this analysis, reported in the graphs of Fig.7, all APs recorded at each electrode were
averaged (multiunit recordings, see Methods). Therefore, given N electrodes, vector responses (of
N dimensions) were computed as for single neurons (see Methods and fig. 1) but the number of
evoked APs and the latency of the first evoked AP (7) were measured in the pool of neurons
recorded by each electrode. In this way t the variability of firing of each element is reduced. Fig. 7
A, B and C show the statistic of single-trial retrieval among 12 stimuli with different intensities
and spatial locations in normal conditions, in the presence of 50um APV and of 10um bicuculline
respectively. Stimuli were delivered at three spatial locations, (indicated by X1, X2 and X3 in the
grid of fig. 3C) with four different intensities (see Methods). In all experimental conditions, as

shown in the left panels of fig. 7, retrieval efficiency based on the distributed rate response
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(distributed rate code, black line) was superior to the pooled rate response (population rate code,
red line) (n=5, #-test p<<0.05).

When the retrieval was based on the responses of 32 electrodes, the maximal average
efficiency obtained with the two codes, compared to normal conditions, increased of about 10 % in
the presence of 50um APV (#test p<0.05) and decreased of about 15% in the presence of 10um
bicuculline (z-test p<0.05). Therefore, blockage of excitatory pathways mediated by NMDA
receptors improves information processing while the opposite effect is observed when inhibitory
pathways mediated by GABAergic synapses were blocked. When the three distributed codes (rate,
first evoked AP and binary) were compared, the maximal retrieval efficiency in normal conditions
was not significantly different (n=5, #-test, p>0.05) (fig. 7 A second panel from the left) and
similarly when NMDA receptors were blocked by 50uM APV (fig. 7 B second panel from the
left).

(Fig. 7 near here)

Only in the presence of 10mM bicuculline, the rate code was slightly less efficient
compared to the other two codes (n=5, t-test, p<0.05). None of the distributed codes outperformed
the others. In fact all distributed codes were similarly influenced by synaptic blockers, and the
correlation of the electrical activity played the same role for all.

A difference between the three distributed codes was observed varying the time window At
where optimal response was measured. For the largest ensemble considered (32 electrodes, second
panel from the right), the dependence of the average retrieval efficiency on A¢, was different for the
three conditions and for the three codes. In normal conditions (fig. 7A second panel from the
right), the efficiency reached its maximum for a A¢ about 20ms and it remained constant at larger
At for the first AP code. In fact, neurons with the largest latencies (7) poorly contribute to the
coding since the weight of their response is //7. On the contrary, later APs do contribute to the

binary and rate coding. Since APs evoked at later times are more variable (Bonifazi et al., in
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press), their firing at larger A¢ degrades the efficiency of these codes. When inhibitory synaptic
pathways were blocked (fig. 7C second panel from the right) the late phase is prolonged, therefore
there are more variable APs for longer values of At and more the rate and binary codes deteriorate.
On the contrary, when the excitatory synaptic pathways were blocked (fig. 7B second panel from
the right), no significant difference was observed between the three codes, as the late phase is
either reduced or abolished in the presence of APV (Bonifazi et al., in press).

By increasing the ensemble size, the time needed to obtain the optimal response decreased
similarly for the three distributed codes (right panels), in normal conditions (fig. 7 A right panels)
and in the presence of 50uM APV (fig. 7 B right panels). When 10mM bicuculline was present
(fig. 7 C right panels), the time needed to obtain the optimal response at larger ensemble size was

lower for the rate code but, as discussed above, the rate code had a slight lower efficiency.
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Discussion

The purpose of the present manuscript was to explore and compare coding mechanisms
based on the response of a population of neurons. In the present investigation a dissociated
neuronal culture of hippocampal neurons was grown over a MEA and stimuli were applied through
the extracellular electrodes. Stimuli, consisting of a brief bipolar voltage pulse, differed for their
intensity and their spatial location. The neural coding schemes explored were based alternatively
either on the number of APs fired by a population of neurons in response to the stimulus or on the
latency of the first evoked APs.

Our analysis provides two major conclusions. Firstly, distributed codes based on the firing
rate and distributed coding based on the latency of first evoked APs or on a simplified form of it
very often provides comparable results when APs on a bin width of about 10-20 ms were
considered. Secondly, retrieval efficiency of all coding schemes depends critically on the balance
between excitation and inhibition: inhibition of NMDA excitatory receptors decrease the
correlation in the electrical activity of the network increasing successful retrieval and inhibition of
GABAergic inhibitory receptors increase the correlation in the electrical activity of the network

decreasing retrieval efficiency.

Decoding or retrieving the stimulus is really necessary?

Our investigation of the neural code is based on finding the best way to retrieve the
stimulus and its characteristics from the evoked trains of APs. In this view, decoding the evoked
trains of APs provides the key to understand the neural code. This paradigm cannot be taken as a
general rule though: indeed, in simple avoiding reactions, animals and even humans have to escape
very quickly from the obstacle or the noxious stimulation and it is not necessary to decode exactly
the incoming train of APs (Arisi et al., 2001). On the contrary, when an animal or a human is
exploring the environment, it may be very important to be able to retrieve properly the stimulus

and its exact characteristics. In the present investigation, we aim at retrieving the intensity and
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spatial location of stimuli, as often is the case in vision or in hearing, when it is useful and often

necessary to retrieve the intensity of a stimulus and its location.

Pooled versus distributed responses

Considering the number of APs evoked in an ensemble of neurons, when APs are pooled
and averaged (population rate code) the relevant information is reduced to a scalar quantity, when
the activity of neurons is considered separately (distributed rate coding) a vector of numbers is
obtained. It is evident that, whenever it is possible, pooling the activity is computationally
economic and therefore advantageous. As shown in Figs. 5 and 6 and in agreement with Bonifazi
et al. (in press), it is possible to use pooling to code and retrieve the intensity of a stimulus. In this
case, increasing the ensemble size from few neurons to dozens of neurons, both the distributed and
the pooled responses allow us to reach an efficiency close to 100 % (fig. 5 C left panel). As shown
in Fig.5, the efficiency of pooling grows with a lower slope and requires a larger ensemble of
neurons. The choice between pooled and distributed response is strictly linked to the tuning
properties of the neurons to the different stimuli. It has already been shown that pooling is the right
strategy to handle information from neurons with similar tuning characteristics, as in cortical
columns where neurons in the sensory motor cortex respond to deflections of the same whisker
(Panzeri et al., 2003) or in the visual cortex to visual stimuli with the same orientation and/or
direction (Albright et al., 1984). In present investigation we showed that pooling can be used when
neurons respond in a progressive-like way (see fig. 3 C) to the stimuli, as in the case of stimuli
differing for their intensity. In this case the firing rate of neurons increases monotonically with the
stimulus intensity. On the contrary, a distributed coding is the appropriate strategy for neurons with
different tuning characteristics, such as those belonging to distinct cortical columns where neurons
respond to deflections of the different whiskers (Panzeri et al., 2003) or in the visual cortex to

visual stimuli, with the different orientation and/or direction (Albright et al., 1984). In our
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investigation we showed that a distributed coding is advantageous with neurons tuned to different

spatial stimuli (fig. 4D).

Comparison of distributed codes and retrieval of information

The comparison of the retrieval efficiency of differently distributed coding (see Fig. 6 and
7) shows that a rate code, based on the latency of the first APs and a binary code provide very
similar results. All these distributed schemes seem to be equivalent, even in the presence of synaptic
blockers such as APV and bicuculline (see Fig.7). The equivalence of a rate and of a temporal
coding using bin width of 20 ms is not surprising: within 20 ms neurons respond to stimuli with one
or at most two APs and a rate coding becomes very similar to a coding based on the first evoked
AP. Indeed, as shown in Fig.7 the optimal bin width to retrieve correctly the stimulus from the
population response is only about 20 ms, which appears to be the time required for one elementary
computation. This was clearly shown by the code based on the first evoked AP, when the response
of each neuron decayed as the inverse of the latency of the first AP. In this way, early responses
contribute more to the retrieval of the stimulus. An integration time of about 20 ms is also
suggested by several biophysical mechanisms occurring in that time scale, such as processing in
dendrites (Koch, 1999) and timing-dependent synaptic plasticity rule required for hebbian-like
learning (Song et al., 2000).

The short time needed for the retrieval of the stimulus prevents a significant role of NMDA
receptors known to generate slow and long lasting synaptic potentials (Jimbo et al., 2000).
Moreover, in the 20ms following the stimulus, the correlation present in the network activity is low
(fig. 2B) while it seem to be more relevant at larger time windows when NMDA receptors are
contributing to the network activity (compare open and closed circles of fig. 2B).

In agreement with our results, Bast et al. (2005) showed that in the hippocampus, retrieval
depends on AMPA receptor and NMDA are required for storing. Analogously, we previously

showed for hippocampal cultures how after LTP-induction - which requires the involvement of
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NMDA receptors - pattern recognition, i.e. stimulus retrieval, was obtained by pooling APs in few
tens of ms, the time domain of AMPA contribution.

An alternative view recently proposed and rather interesting is that the shape itself of the
evoked AP is an essential component of the neural code (de Polavieja et al., 2005) which could

code for the past history of the signal reaching the neuron under consideration.

The role of inhibition and excitation and the contribution of the correlation in stimulus
retrieval

Inhibition and excitation greatly determine the efficiency of retrieval of all considered
coding schemes (see Fig.7). Blockage of excitatory synaptic pathways mediated by NMDA-
receptors in agreement with our previous investigation (Bonifazi et al., in press) substantially
increased the retrieval capabilities of the neural coding mechanisms explored. An opposite effect
was observed when inhibitory synaptic pathways mediated by GABA-receptors were blocked. The
correlation of the electrical activity in the network, which is clearly present in the spontaneous
activity in normal conditions (fig. 2 A), was highly affected by the balanced presence of inhibition
and excitation and therefore played a fundamental role in the retrieval of the stimulus (Marifio et
al., 2005). Nevertheless, in normal conditions, the spontaneous activity was clearly correlated even
for short time windows of few dozens of ms, the presence of balanced inhibition and excitation
allowed to maintain a low correlation in the evoked electrical activity and, as a consequence, it
allowed the efficient retrieval of the stimuli. At a large bin width (>80 ms) when the excitatory
synaptic pathways mediated by NMDA-receptors contributed to the evoked response, the
correlation of the evoked response significantly increased and, as a consequence, the efficiency of
rate and of the binary code decreased (fig. 6 central upper panel and fig. 7A second panel from the
right). On the contrary, in absence of inhibition the evoked activity was highly correlated,

analogously to the spontaneous activity.
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Figure legends:

Figure 1. Stimuli of different spatial location and vector responses. A Picture of the
hippocampal neuronal culture grown on a grid of 10x6 electrodes after three weeks in culture.
Electrodes are interspaced by 500pum. The white graph superimposed to the picture schematises the
different spatial stimuli delivered through the electrodes. Four different patterns of electrodes were
used to stimulate: three patterns composed of two electrodes, the forth composed by the all six
electrodes. B Single-trial response of an ensemble of n neurons (or electrodes when multiunit
recordings are considered, see Methods) to the stimulus. The delivery of the stimulation is
indicated by the black vertical arrow. The population response was evaluated in the time
window At of variable size. 7; represents the latency of the first evoked AP in the neuron i. C
Single-trial responses. For the three distributed neural codes examined (rate, first evoked AP and
binary code) the response is represented by a vector. For the binary coding, the activity measured
in At was converted to “0” when no APs were detected or to “1” when one or more APs were
detected. For the first evoked AP code, the inverse of the latency t; was considered. When the
latency was larger than the time window A¢, the latency was considered as infinite, i.e. the neuron
was supposed not to fire. For the rate code, the number of APs fired within A¢ are counted. For the
population rate code, the APs fired within A¢ in the all ensemble of neurons were pooled, i.e.
summed.

Figure 2. Correlation in the electrical activity of the network. The results are averaged over
5 different preparations. For each dish, the average correlation was calculated between the firing
rate of all possible pairs of electrodes. Closed circles, open circles and open squares correspond
respectively to control conditions, S0uM APV and 10uM bicuculline. A. Average crosscorrelation
of the spontaneous activity for different time bins. The electrical activity was binned into firing
rate so to obtain a time series. The cross correlation between the time series of each pair of

electrodes was calculated according to equation (1). B. Average crosscorrelation of the evoked
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activity for different time bins A¢. For each single trial and each single electrode, the number of
APs evoked in the bin Af following the stimulus was calculated. The cross correlation between the
trial time series of each pair of electrodes was calculated according to equation (1).

Figure 3. Tuning properties of the neurons for the distinct features of the stimuli. A Raster
plots of three neurons (N1, N2 and N3) in response to stimuli (S1, S2 and S3) of different
intensities (300, 450 and 900mV). The stimuli were delivered through the six electrodes indicated
by X1, X2 and X3 in the grid of panel C. B: raster plots of neurons N1, N2 and N3, in response to
the stimuli of different spatial location X1, X2 and X3. Stimuli of different spatial location were
applied at the maximal intensity of 900mV. C. Upper plots: for each neuron, the average firing rate
(AFR) in response to the higher (y-axis) and to the lower (x-axis) intensity of stimulation is
plotted. The AFR is the average number of APs evoked in the 100ms following the stimulation.
Lower Plots: analogous analysis but for stimuli of different spatial location.

Figure 4. Statistics of the mutual information encoded in the rate response of single
neurons and of pairs of neurons. Analysis distinguishes stimuli of different intensity (S1, S2, S3)
and of different spatial location (X1, X2 and X3) as described in fig. 3. The response of each
neuron was represented by the number of APs fired in the time At following the stimulus. For pairs
of neurons the response was pooled or considered as distributed (i.e. a vector). The maximal
mutual information calculated varying At was plotted. A. Distributions of the mutual information
for single neurons. Vertical arrows indicate the average values. B Mutual information of pairs of
neurons for stimuli of variable intensity. The mutual information of the pooled response (Z,001) s
plotted versus the mutual information of the distributed response (luisi). C luise versus Iy, for
stimuli of variable location. In B and C dotted lines represent /,,,~/s: and arrows indicate average
values. D. For each pair of neurons, the relative variation of 1, in respect to /., is plotted versus
the relative specificity (RS, see Methods). RS is close to 1 when the two neurons have a similar

tuning for the two stimuli and is close to 0 when the two neurons oppositely tuned (see fig. 4 B).
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Figure 5. Efficiency of single-trial classification of stimuli, for different ensemble sizes.
Analysis distinguishes stimuli of different intensity (S1, S2, S3) (left panels) and of different
spatial location (X1, X2 and X3) (right panels) as described in fig. 3. Continuous and dotted lines
refer respectively to the distributed rate code and to the population rate code. Data are averaged
over 5 different preparations. The maximal efficiencies maximized varying the time window A¢ of
the response are considered. A. The twelve best predictors neurons (i.e. having the maximal mutual
information) are one by one added to the ensemble, starting from the absolute best predictor. B.
The twelve best predictors neurons (i.e. having the maximal mutual information) are one by one
(from right to left in the x-axis) removed from the ensemble, starting from the absolute best
predictor. C. Neurons are randomly added one by one to the ensemble. For each different ensemble
size, the efficiency is calculated for a large number of possible random combinations and averaged.

Figure 6. Comparison between distributed codes: rate (red), first evoked APs (black) and
binary (green) codes. Analysis distinguishes stimuli of different intensity (S1, S2, S3) (upper
panels) and of different spatial location (X1, X2 and X3) (lower panels) as described in fig. 3. Data
are averaged over 5 different preparations. Left panels: variation of maximal efficiencies of
retrieval (maximized varying the time window A4¢ where the response is measured) when neurons
are one by one added to the ensemble. Central panels: efficiency of retrieval for an ensemble of
twelve neurons as function of Af. Right panels. Minimal bin width of maximal efficiency of
retrieval as function of the ensemble size. The minimal bin width was calculated considering the
minimal 4f where the efficiency reached at least 95% of its maximal value.

Figure 7. Effect of bicuculline and APV on the distributed neural coding mechanisms.
Population rate code (red) and distributed rate code (black) are compared in left column of panels.
Rate (red), first evoked APs (black) and binary (green) codes are compared in the 2m 3™ and 4™
column of panels from the right. Twelve stimuli varying in intensity (300, 450, 600, 900mV) and
spatial location (X1, X2, X3, see fig. 3) were used. Data are averaged over 5 different preparations.

A, B and C correspond respectively to control conditions, 50uM APV and 10uM bicuculline. The
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distributed response considered separately the APs recorded by each electrode (multiunit
recordings, see Methods). 1* and 2" column of panels form the left: variation of maximal
efficiencies of retrieval (maximized varying the time window Af where the response is measured)
when electrodes are one by one added to the ensemble. For each different ensemble size, the
efficiency is calculated for a large number of possible random combinations and averaged. 31
column of panels form the left: efficiency of retrieval for an ensemble of 32 electrodes as function
of At. 4™ column of panels form the left: minimal bin width of maximal efficiency of retrieval as
function of the ensemble size. The minimal bin width was calculated considering the minimal A¢

where the efficiency reached at least 95% of its maximal value.

117



Figure 1

‘L‘ Bin :.M .Dism?l?e‘i c;::;ng Population rate
binary| ASP:VO rate coding
s 1 N N I SN LT I
Y | L] 1k |1
] ]| L] o [ 2]\
T 0 0 0 2:4
l=
S| L] Vs |2
NI L[ 1k | 2
e

118



Correlation

Figure 2
B

Spontaneous activity Evoked activity

1 1
09

09|
0.8 T s _ — - —% 08 - . I
o Tt SIS REE S S

06+ _ g 06 L ‘g[
05!/ l B 2 05 -
d“ e — 2 .-’1
04 4 I \ S 04,
i O /
031 */fr 03/ L 4}
02 02 {r {% %‘
011y LI B
0 i ——F—— & —&— 3 $ ) 0 . . . )
D 20 40 60 S0 100 120 140 160 180 200 D 20 40 60 80 100 120 140 160 180 200
Bin (ms) Bin (ms)

119



A

S1

S2

L XIuX2uX3 &80
S3 =

@)

AFR(S2)

X1uX20X3
(300 mV)

XluX2uUX3
450 mV)

(900 mV)

N1

:_ i

= 40

"
s

I > b
o S
s L . I
- L) 3
ot &
*a

Figure 3

B

N3

X1
(900mV)

X2
(900mV)

X3
(900mV)E

=
T 07 40 w0
Time (ms)
% e, .:: 3 " o
& £ | :
= R
3

.-\.FR(S ] )]

ATFR(52)

.. P I~
.. ol 3
Lo 2. E oLt
st ERxS Z 'k
st ., L e
Y 2 Si

AFR(X1)

AFR(X1)

AFR(X2)

N2

N1

NYNYN2ING

N3

—
I
—

N1

80| .

40
o

0

"0 40 80
Time (ms)

L

| v

[ *

.,

3 ".

H
b

120



>

Distribution (%)

.n

I, (bits)

Figure 4

B

Intensity coding
S1(300mV)

Intensity coding d $2 (450mV)
| " S3 (900mV)
| I T 5.

Spatial coding T |
l - o, -f

25+ ||_:.1 y-
_Illll_llll-__-_]__ N 43
0 05 1 bl -

0 0.4 0.8 1.2 16 2

I(bits) (bits)

pN |

Spatial coding D

X1 (900mV)
X2 (900mV)
X3 (900mV) .- )

. ?2_' 08 r% .
. toe e = LA
Ttegte s » ’—% 0 -":d"-
RS = .-..-
n oy, W iy LY 1
[N % 04 .“.--. .3
e - op“\ - -.:..b -
re att
1‘. ;\ e o {i:‘ £ 1 ~ "l

-‘J 3-:’!:5?5;?}_5#:% ::i's.'..; i

. : . B | " .
04 0.8 12 16 5 0 1.2 c:_4 ( .fu 0.8 ]

(bits) RS

pm]

121



C

Best

Worst

Average

Effciency (%)

Effciency (%)

Figure 5

Intensity coding Spatial coding

| B T 1 1.— o
0.8 ‘+. LS, S ‘ 2at
0.6 |-
0.4
0.2

O L

1' _ T _i l . ;
08 R e ! poe

. S ol 7

0.6 _(,,__..1 | [
04 T+
0.2

ol

‘ ; PP S
08 .I -
0.4 —_o— distributed
02! -+-- @0 pooling

0 N

0 4 8 12 All 0 4 8 12

Ensemble size (# neurons) Ensemble size (# neurons)

122



Effciency (%)

Effciency (%)

1
0.8
0.6 A
Rate
04 Temporal
0.2 Binary
0 )
0 4 8 12
Ensemble size (# neurons)
1
——3
.
08 . A& - ¥
0.6 /
Rate
04 Temporal
0.2 Binary
0 . i
0 4 8 12

Ensemble size (# neurons)

Effciency (%)

Effciency (%)

© o o
N = N ]

e
[}

(=]

=
o>

= s
r2 =

e

Figure 6

i

20 40 60 80 100
Bin (ms)

Rate

Temporal

Binary

20 40 60 80 100
Bin (ms)

80
Rate
60 Tfj‘mporal
T Binary
0 t -
Eao| \\
= Y t
20 } _}ﬁ__%-\ }
0 )
0 4 8 12
Ensemble size (# neurons)
80
Rate
60 Temporal
Binary
Bl N
E \{
m
SR S
I +—§—
0 .
0 4 8 12

Ensemble size (# neurons]

123



1
08 .
S T
206~
L S S
m pad Podling
027 Distributed
0" . . -
0 10 20 30

Ensemble size (# electrodes)

1
)
08 p —+
Pl
o I 1
Zo4ll]
oo lf
0 - ‘ -
0 10 20 30

Ensemble size (i electrodes)

0.8
0.6

0.4

Effciency (%)

[ -
0 10 20 30
Ensemble size (# electrodes)

Eflciency (%)

Eflciency (%)

Figure 7

Normal medium
.

0.8 E—t
= =]
S0 A
ﬁ 04 % Rate
E "/ Temporal

02

Binary
0t . " i
0 10 20 30

Ensemble size (# electrodes)

APV

1

0.8 +//+_, —f
0.6 }’

0.4 p

02 }

0 : : :
0 10 20 30
Ensemble size (# electrodes)

Bicuculline
10
0.8 |
0.6 R
e ?
04 | . !
02 !

0

0 10 20 30

Ensemble size (# electrodes)

Effciency (%)

Eflciency (%)

Effciency (%)

N
ol 7 5 S
o6 f Tl
0.4 F Rate !
02" by

0 . . . . .
0 20 40 60 80 100
Bin (ms)

0.6 |

||
04|
02t

U—._ 2 " L i
0 20 40 60 80 100
Bin (ms)

80
60 |y Rate
. ." Temporal
-] 11 Binary
E ol
= .
2 1 ‘\F 1 N
200 - T ] “-"1-—-_.___.__ —
0 - - -
0 10 20 30

Ensemble size (# electrodes)

80
60
2 [\
Ea0 ¢
200, e
0 " " "
0 10 20 30

Ensemble size (# electrodes)

1 80
. 4|
0.8
] AR
06 1 5% —L—o—o o~ !
R ! 5 l Ty E‘m"ﬁ. i
04 1, # = | S
! - T B N
02 20 [~ T 7%
0 - 0t
0 20 40 60 B0 100 0 10 20 30
Bin (ms) Ensemble size (# electrodes)

124



4. Conclusions and future perspectives

In my thesis I have studied information processing in neuronal networks. In particular I have
analysed dissociated neuronal cultures of rat hippocampal neurons grown on MEAs. This system
provided three major advantages for investigating the computational capabilities of neuronal
networks. First, it was possible to record the activity of a large ensemble of neurons in the network
(up to two hundreds), a fundamental requisite to investigate parallel processing in neural systems.
Secondly, the use of extracellular electrodes allowed the delivery of controlled stimuli (i.e. INPUT)
to the network. Stimuli could vary in amplitude, spatial location, spatial profile and frequency. In
this way the network was processing well-known INPUT. Thirdly, varying the extracellular
conditions, it was possible to block selectively the contribution of excitatory and inhibitory
pathways during information processing.

My major research findings concern the role of single neurons, neuronal populations,
inhibition and excitation in information processing and how optimal fast coding is obtained by
distributed population codes.

When a neuron was post-synaptically excited by the stimulation, the evoked firing was
composed of a first reliable AP followed by less reliable APs. The degree of correlation on short
binwidths (i.e. few dozens of ms) between coactivated individual neurons was usually small, i.e.
coactivated neurons fire almost independently on a short time scale. As a consequence of this

statistical independence, when the electrical activity was pooled over a population of coactivated

neurons (N), the variability of the pooled response (measured by the CV) decreased as /N .
Since neurons had an average CV of 0.5, a good reproducibility - with a CV of less than 0.1 - was
obtained by pooling the electrical activity of at least 25 neurons in a few dozens of ms following the
stimulus. These conclusions are remarkably similar to those obtained in intact neuronal tissues or
small nervous systems (Zoccolan et al., 2002; Shadlen & Newsome, 1998; Nicolelis et al., 1998). In

terms of computation, it means that neurons are noisy and unreliable computing elements and a
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good signal-to-noise ratio can be obtained by pooling the electrical activity over an ensemble of
neurons. Therefore, neural ensembles composed of at least few dozens of neurons (column-like
ensembles) can be considered reliable computing elements. In fact, when neurons were used as
computing elements for pattern recognition (after LTP induction) or intensity discrimination,
pooling the neuronal activity over a very large number of neurons (of the order of 100) enabled a
successful discrimination over a single trial. In a different way, when neurons were used for image
processing (a task commonly solved by conventional silicon devices which optimally require
parallel computation), a low pass filtering was quickly and easily obtained in about 10 ms but the
result of the computation was more noisy compared to pattern recognition. In fact pooling was
restricted to neurons recorded by a single electrode, i.e. less than 6 neurons, a number which is too
low to guarantee a very low noise signal. These results represent a proof of principle of the
feasibility of neurocomputers, i.e. hybrid devices composed of biological neurons and artificial
elements, ideal machines capable of massive parallel computation. In fact, I showed that using
neuronal networks grown on MEAs, it was possible to process simple patterns using two
fundamental properties of natural neuronal networks: parallelism and learning. The parallel
processing performed by the neuronal networks allowed filtering of digital images in just a few
milliseconds, independently from the dimension of the image processed. In standard digital
computers performing serial computation, the time required for the same computation would
diverge exponentially with the size of the images. Additionally, neuronal cultures could be trained
to recognize a simple spatial pattern, due to a controlled induction of long-term potentiation. When
filtering and learning were combined it was possible to extract features from processed images.

In my thesis I showed how optimal coding mechanisms depend on the tuning properties of
the neurons. In fact pooling provides a nearly optimal coding when neurons are tuned to the same
stimuli, as in the case of stimuli differing in their intensity. On the contrary, when neurons are
specific for different stimuli, as in the case of stimuli of different spatial location, a distributed

coding is required. My conclusions are very similar to what has been observed in in-vivo networks.
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It has already been shown that pooling is the right strategy to handle information from neurons in
the same cortical columns, where neurons share similar tuning characteristics (Panzeri et al., 2003;
Albright et al., 1984). On the contrary, a distributed coding is the appropriate strategy for neurons
belonging to distinct cortical columns where neurons have different tuning characteristics (Panzeri
et al., 2003; Albright et al., 1984).

A further achievement of my thesis was to show how distributed codes based on the firing
rate and distributed codes based on the latency of first evoked APs provide comparable results.
These coding schemes allowed reliable retrieval of the stimulus in few dozens of ms. Information
processing based on the first evoked APs over an ensemble of neurons is possibly the fastest
computational scheme adopted by the nervous system. Several models and experiments in in-vivo
networks demonstrated the feasibility of neural coding mechanisms based on the first evoked APs
(Johansson & Birznieks, 2004; Thorpe et al., 2001). My results suggest that a few dozens of ms is
the time required for one elementary computation. An integration time of about 20 ms was also
suggested by several biophysical mechanisms occurring in that time scale, such as processing in
dendrites (Koch, 1999) and a timing-dependent synaptic plasticity rule required for Hebbian-like
learning (Song et al., 2000). I showed that the retrieval of the stimulus obtained in 20 ms prevented
a significant role of NMDA receptors. In agreement with my results, Bast et al. (2005) showed that
in the hippocampus, retrieval depends on AMPA receptors and NMDA receptors are required for
storing. Analogously, I showed that after LTP-induction - which requires the involvement of
NMDA receptors - stimulus retrieval was obtained in a few tens of ms, the time domain of AMPA
contribution.

A major achievement of my thesis was to show that inhibition and excitation underlie
variability and reliability of the evoked response and influence the network’s potential to process
information. Blockage of excitatory synaptic pathways mediated by NMDA -receptors substantially
decreased the correlation of the electrical activity and increased the retrieval capabilities of the

neural network. An opposite effect was observed when inhibitory synaptic pathways mediated by
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GABA-receptors were blocked. This remarkable deterioration of information processing was
caused by an increased variability of the early phase of the evoked response and by the occurrence
of large spontaneous bursts of synchronized electrical activity. My results support the idea (Shadlen
& Newsome, 1998; Marifio et al., 2005; Turrigiano & Nelson, 2004; Wehr & Zador, 2003; Zhang et
al., 2003) that, in order to process information in a reliable way, neuronal networks require an
appropriate balance of excitation and inhibition, so that a stimulus can generate a reliable neuronal
response, distributed through the network.

The conclusions of my investigation concering the neural coding mechanisms of processing
information are based on the study of brief transient stimuli, like that obtained by extracellular
bipolar voltage pulses. Neural codes based on the first evoked APs allow reliable processing of this
type of stimuli, as shown even in in-vivo networks. In order to process different types of stimuli like
continuous, static or slow varying stimuli, the nervous system probably uses different neural coding
mechanisms. Studies in-vivo (Gray et al., 1989; DeCharms & Merzenich, 1996) showed how
neuronal networks could use synchrony or the relative timing of firing in a population of neurons to
process information. Therefore, in the future, it could be interesting to investigate these neural
coding mechanisms in in-vitro networks. For example, by applying high frequency stimuli of low
amplitude the firing rate of the network might not vary significantly but a regime with correlated
firing could be present.

In general, my results showed that in-vitro neuronal networks are valid and reliable systems
for studying how information can be processed by the nervous system. Having described in detail
how information processing is performed by dissociated hippocampal networks, my model could be
used to compare different networks with different properties. For example it could be interesting to
study how information is processed by neuronal networks derived from stem cells or by networks

extracted from animals with genetic mutations.
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... and Dennis the Russian passed thourgh the house too... and then ...
... well in just one night many things had to change... somewhere it was written like that... accept or not ...
no time... it already happened... it’s like this...

....e poi giu di nuovo a correre come pazzi...

...thesiren... the birthday you would like to avoid and forget... and Frederic joint us ... he smelled craziness
and ... he came in the house... and now it smell even more craziness...

the congress... that congress ... piazza delle erbe... ilcostipatoconilm....enelc..o...lacamomilla... crazy
months... Iporticati...

piazzasantostefano...lataranta...isilenzi...ibagniaottobre...nottifolli...ilcabernetfranc. .. RankenZagabriaandt
hecomunisticulicontrol... Davidellciut...

...and now?!?!...well... I got lost in the acknowdelgements...

I would like to thank all the people of SISSA who shared with me spaces, computers, solutions, neurons. ..
and EMOTIONS ... during the all time I have spent here...
AnilKamil(andTheUnforgettableRussianWedding)SofijaElisabethJelenaWalter AlbertoJummyRadjesh(I get
lost with exotic names...)... SilviaRezaAnnaGiuliettaJadaClaudioPaoloCosmaBellavistaglobalvillage...
...and still I would like to thank the neighbour “il vicino che ha rajjone”...
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...I caffe’ la mattina e La lago che mi ascolta in silenzio nei miei deliri...la Lago ve I’immaginate la Lago
zitta ad ascoltare... be ora diteglielo pure che ¢ successo perché credo che ancora non lo sappia...

...and ... well... again in a months many things changed... you just go out for take some relax and look
what it happens... crazymonth...GrisgnanaRovignoPiadineElefanticheattraversanolestradedellemarche...e
vai a trovare un senso che un senso non ce 1’ha... maybe it is all like this... when [ was a child I was
dreaming “what [ will do in 2000™?... well in 2000 I arrived in Munich for cutting poor snails and looking
for their neurons ... questo ce I’ha un senso???... and then I was imaging “what [ will do when I will be 30
years old?”... many people on a terrace were singing compleaiio feliz for me... e questo ce I’ha un senso?...
at the present moment I am speaking a language which is a mixture of marchigianoitalianoinglesespagnolo...
“does it have any sense?”... this is the point...

... I have to thank all of you for helping me to avoid to give a sense to all... I prefer like this... I will have
time to find the sense... and I hope that I helped you as well to avoid your sense...

... and finally ...
.. a special thank for Manu who helped me with my poor English...
.. Sergio for assisting the craziness of my computers ...
.. and to Elisabetta with whom it was a great pleasure to work dayByDay ...
... thank to Felice Yolanda and Frederic ... che mi hanno sopportato ...
... thank to Simone& Valentina&Lalago...
.. thank to Trieste and his poetry ... and to the poets of Trieste Luca and Davide ...

... € poi grazie alla mia famiglia Mara e Yolanda le persone che piu di tutti mi hanno sopportato nei miei

momenti di stanchezza e difficolta e a dare un senso a questa tesi...

... finally I did it...
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