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CHAPTER 1

Introduction

In the last decades extensive work has been devoted to the definition, construction and characteri-
zation of noncommutative spaces. Motivations for this interest came both from mathematics [C94]
and from physics [Be88, [C94], [DFR94, IDFRI5 [Pad85, [Pad87, [CMa07]. A noncommutative space
can be studied on several levels: algebraic, topological, differential, metric and others. In this
thesis we shall be interested, in particular, in the differential and metric structure of (compact)
noncommutative spin manifolds and of noncommutative principal bundles. Noncommutative spin
manifolds are the central objects of Connes’ noncommutative geometry [C94]. A structure of non-
commutative spin manifold on a noncommutative topological compact space (which is described
by a C*-algebra A, representing the algebra of continuous functions over the noncommutative
space) is codified as spectral triple (A, H, D). Here A C A is a pre-C*-algebra representing the
algebra of smooth functions, H a Hilbert space representing the space of L2-spinors and D the
Dirac operator. Often one can equip a spectral triple with a real structure J and a certain Zo-
grading y. Connes introduced a number of axioms for such a real or even spectral triple, in order
to describe a noncommutative spin manifold [C95l [C96, [CO0, [GBFV], [CMa07]. We shall review
these axioms in chapter |3l Moreover, we will discuss some additional properties of spectral triples
and introduce some tools we shall use elsewhere in this thesis.

Noncommutative principal bundles, instead, were mostly studied on the algebraic level till
recently. Their construction relies on the identification of Hopf algebras as noncommutative
generalization of groups [Dri87, Wor87, [FRT90, Wor91, Kassel]. T. Brzezinski and S. Majid
[BM93] introduced the notion of quantum principal bundles, defining them to be H-comodule
algebras (where H is a Hopf algebra replacing the structure group of the bundle). Moreover, they
introduced also a notion of connection and discussed the role of the differential calculus. These
notions were substantially developed recently (see, e.g., [B96, [Haj96, BM98bl [B99, BH99. [BMO00L
DGHO1, BH09, HKMZI1]) and we shall review them in the first sections of chapter

The main goal of this thesis is to study the noncommutative (spin) geometry of some classes

of quantum principal bundles. Namely we shall consider noncommutative bundles mainly with
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1. Introduction

classical structure (Lie) group; that is, H-comodule algebras with H a Hopf algebra of smooth
functions over a (compact, connected, semisimple) Lie group G. In particular, chapters @,
will be devoted to the cases G = U(1) and G = T", while a partial extension of our constructions
and of our results to the general case will be discussed in chapter[8] Our aim will be to understand
the relation of the spin structure on the total space of a quantum principal bundle with the spin

structure on the base space and with the metric structure of the fibres.

Let us briefly recall the classical picture. Consider, first, a principal G-bundle 7 : P — M
(with G a compact, connected, semisimple Lie group), and assume that (M, g) is a Riemannian
(spin) manifold. Then, given a bi-invariant metric on G and a connection on P, there is a metric
on P such that 7 is a Riemannian submersion with totally geodesic fibres (see, e.g., [Mor96],
lemma 1.1.1). Moreover, under suitable hypotheses, the Dirac operator on the total space of
the bundle can be related to that one on the base space. So, in the classical case it is quite
straightforward to put a structure of Riemannian (spin) manifold on the total space of a principal
G-bundle over a Riemannian (spin) manifold. Moreover, the metric structure obtained in this
way depends on the choice of a connection on the bundle and of a bi-invariant metric on the
group. In this thesis we shall obtain a (partial) extension of this construction to noncommutative
G-bundles. Next, consider the opposite situation. That is, assume to be given a principal G-
bundle 7 : P — M with P and M two Riemannian spin manifolds and assume that 7 is a
Riemannian submersion with totally geodesic fibres. Then we can look for a relation between the
spin structure and the Dirac operator on P and those on M. In the U(1) case such a relation
admits a quite simple description [Amm98, [AmmBO98]|: the Dirac operator on the total space can
be expressed as the sum of three differential operators: a vertical Dirac operator, which acts on
the fibres, an horizontal Dirac operator which encodes the metric structure of the base space and
a zero order term whose existence is connected with the vanishing of the torsion of the Levi-Civita
connection. For a generalization to noncommutative bundles usually the concept of the metric is
not available in general, if not indeed codified in terms of a spectral triple. Thus one has to work
directly with spectral triples and, if necessary, to introduce other suitable notions. First steps
in this direction appeared in [DS13al, [DSZ13|, for quantum principal U(1)-bundles and we shall

recall these results. Moreover, we shall introduce a generalization for the case of T"-bundles.

The thesis is organized as follows. In chapter [2] after a brief introduction to noncommutative
topological spaces, we shall quickly review basic notions on noncommutative geometry: the con-
struction of first order differential calculi over noncommutative algebras |C85], the definition and
the main properties of Hopf algebras [Sw69, [Abe80, Maj95], the K-theory of C*-algebras and the
algebraic K-theory of associative algebras [AtiHir59, [AtiHir61, BIck98| [Lan03], the Hochschild
homology and the Hochschild cohomology [CEL [GM], the cyclic cohomology [C85] and, finally,
Kasparov’s bivariant K K-theory [Kas80].

In chaptervve shall review Connes’ noncommutative geometry [C94. [(C95, [C96 [CO0, [GBFV],
CMaQ7]. The first part will be dedicated to the definition of spectral triple and real spectral
triples and to the discussion of Connes’ axioms. Next, we shall recall some properties of spectral
triples: the Dirac calculus (that is, the first order differential calculus defined by the Dirac

operator), the inner fluctuations of the Dirac operator (which are related to the construction of
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noncommutative gauge theories [CC96l [CCO6bL [CMa07, [CCMQT7, [CCO8]), the relation between
Connes’ noncommutative geometry and Riemannian geometry. Moreover, we shall recall the
notion of equivariant spectral triples (with respect to an action or to a coaction of a Hopf algebra):
this is the noncommutative formulation of the invariance of the metric and of the spin structure
of a Riemannian spin manifold under a group of the transformations. Finally, we shall briefly

discuss the relation between spectral triples and Kasparov’s K K-theory.

In chapter |4 we shall discuss the algebraic properties of quantum principal bundles. First
we shall review the definitions and the general structure of quantum principal bundles [BM93]
Haj96, BM98bl [B99, BH99, BMO00, DGHO1, HKMZ11, BH09] discussing both the definition of
bundles with universal differential calculus and that of bundles with general calculus. We shall
pay attention to the different definitions of (strong) connections, recalling the reasons for which
they are equivalent, and to their behaviour under gauge transformations. Then we shall discuss
the cleft bundles. Cleftness is a notion close to that of triviality for a quantum principal bundle
[BMO93]. We shall focus our attention to the case when all the algebras involved are *-algebras. As
a new result shall show how the known isomorphism of a cleft extension with a crossed product
algebra [BICMS86), [DT86, BIMS9, [Ch98] becomes a *-isomorphism once a suitable structure of
*-algebra on the crossed product is introduced. At the end of this part we shall also recall a
possible definition of quantum associated bundles [BF12]. Moreover, we will consider the special
case of quantum principal T"-bundles. Requiring the compatibility of the calculus on the total
space of the bundle with the de Rham calculus on T", we shall show how these bundles admit
a characterization which makes easier to see that they share many properties with ordinary
principal T"-bundles. In particular, we shall show how any strong connection, compatible with
the de Rham calculus, can be described in terms of a family of n 1-forms; this picture, of course,
is closely related to the classical one, when a connection can be described by a t,-valued 1-form
(here t,, is the Lie algebra of T™), whose components with respect to a suitable basis of t,, are

exactly n 1-forms on the total space of the bundle.

In chapter [5| we study projectable spectral triples over noncommutative principal torus bun-
dles. The notion of projectability for a U(1)-equivariant real spectral triple over a quantum
principal U(1)-bundle was introduced in [DS13a], for triples of K R-dimension 3. In the first part
of this chapter we extend it to triples of any dimension (both even and odd); most of the results
discussed here can be found also in the recent paper [DSZ13|]. Next we shall consider the more
general case of noncommutative principal T"-bundles, extending the notion of projectability to
T"-equivariant spectral triples (some of these results will appear in [DZ13]). Both in the U(1)
and in the more general T" case we shall construct twisted Dirac operators: given a projectable
spectral triple and a strong connection over the bundle, we use the latter to twist the Dirac
operator of the original triple, obtaining in this way a new spectral triple. This gives a way to
produce new Dirac operators, encoding, possibly, different geometries. As an example of this issue
we discuss, in appendix @], the noncommutative 3-torus (as U(1)-bundle over a noncommutative
2-torus), showing that starting from the canonical flat Dirac operator we can produce twisted
Dirac operators that could describe geometries with non-trivial curvature. Moreover we shall

relate our construction to recent results in K K-theory [Mes11l [BMS13].
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1. Introduction

Chapter [6] is the first of three chapters dedicated to the construction of real spectral triples
over cleft quantum principal G-bundles. Of course, we start from the simplest case: we consider
U(1)-bundles. Given a cleft Hopf-Galois O(U(1))-extension (where O(U(1)) is a suitable Hopf
algebra of functions over the circle) B < A together with an O(U(1))-equivariant real spectral
triple over B, we construct a U(1)-equivariant real spectral triple over A, exploiting the fact that
A is isomorphic to a crossed product algebra B x, A (in particular, we shall extend some of the
results in [BMR10]). We shall see that the triple obtained in this way is projectable, so that
one can produce twisted Dirac operators from it. Moreover, we shall discuss some properties
of the triple obtained in this way; in particular, we shall see that if the triple over B satisfied
some of Connes’ axioms, this will still be true for the triple over .A. Finally, we shall give a brief
account of the behaviour of the construction under gauge transformations and discuss, as a simple
application, the noncommutative 2-torus.

Chapter [7] contains several new results which extend those of chapter [0] to cleft T"-bundles.
In this case we shall exploit the isomorphism of a cleft Hopf-Galois H-extension B < A with a
crossed product algebra B#,H [BICMS86, [DT86L BIM&9, [Ch9g|. As we shall see in chapter |8} the
construction introduced here could be a good candidate for extending our construction to cleft
extensions with general Hopf algebra. Also in this case we shall see that the triples we construct
are projectable and we shall construct twisted Dirac operators.

In chapter [§] we shall discuss noncommutative principal G-bundles, where G is a compact
connected semisimple Lie group. We shall identify them with principal C*°(G)-comodule algebras.
In the first part of the chapter we shall study some general properties of these objects. In
particular we shall extend the results discussed in chapter [ for torus bundles, showing how
demanding compatibility of the differential calculus over the total space of the bundle with the de
Rham calculus on C*°(G) allows to introduce a different characterization of quantum principal
G-bundles and, overall, of strong connections: these ones, indeed, can be described by families
{we} of 1-forms, with a = 1,...,dim(G), each 1-form being associated to an element T}, of a
basis {1y} of the Lie algebra of G. Next we shall discuss the construction of spectral triple over
cleft Hopf-Galois C*°(G)-extensions. These extensions can be identified with (almost trivial)
noncommutative principal G-bundles. We shall see that, under suitable hypotheses, the results of
chapter [6] and chapter [7] extend to this more general situation. In particular we shall produce new
spectral triples and new (twisted and non-twisted) Dirac operators. In this chapter, moreover,
we shall discuss in some detail the action of a gauge transformation on non-universal strong
connections and on the objects we introduced in the construction of the new spectral triples.

Finally, in chapter [9] we shall review the main results obtained in this thesis, adding some
general comments. Appendix [A] contains a review of the structure and the properties of noncom-
mutative tori, which we shall use many times as examples. Appendices [B] and [C] contain brief
accounts of locally convex topological spaces and noncommutative line modules, respectively. In
appendix [D| we shall discuss some further geometric properties of twisted Dirac operators on
the noncommutative 3-torus. In particular, we shall recover a (modified) Lichnerowicz formula,
obtaining in this way a possible expression for the scalar curvature of the geometry associated to

these operators.



CHAPTER 2

Preliminaries

2.1 Introduction to noncommutative topological spaces

In this thesis we study noncommutative spin manifolds and noncommutative (principal or associ-
ated) bundles. Instead of 'noncommutative’ we shall often use the adjective 'quantum’, though in
physics, from which this term originates, it usually concerns phase spaces (e.g. cotangent spaces).
Roughly, coordinates on such ’virtual’ spaces ’fail to commute’, and indeed they are described in
terms of certain noncommuative algebras of would be ’functions’.

There are two pillars which underly our comprehension of such algebras. On the topological
level the first one is the commutative Gelfand-Naimark theorem, which establishes a bijective
correspondence between isomorphism classes of commutative (unital) C*-algebras and homeo-
morphism classes of (compact) Hausdorff topological spaces. In one direction one associates to
a compact Hausdorff topological space X the C*-algebra C'(X) of continuous functions with the
sup norm. In the other direction to a C*-algebra A one associates its spectrum A, with the
weak-* topology.

The other one, valid on the topological level and as well on the smooth level, is Serre-Swan
theorem [Ser55l [Swa62]. Given a vector bundle E — X over a topological space M, we can
consider the space I'(E) = I'(E, X)) of continuous sections of E. T'(E) is a C(X)-module and,
moreover, one can prove that the assignment E — T'(FE) is functorial, so that I can be seen as
a functor from the category of vector bundles over M to the category of C'(X)-modules. It is a
faithful, full and exact functor. Then Serre-Swan theorem gives a one-to-one correspondence be-
tween isomorphism classes of vector bundles over X and isomorphism classes of finitely generated
projective C(M )-modules. Hence, given a compact noncommutative space A (that is, a unital
C*-algebra), a vector bundle over A can be defined as a finitely generated projective A-module.
Notice that, in the noncommutative case, we have to distinguish between left and right modules.

Thus it is fully justified to work with C*-algebras as algebras of continuous functions over

”virtual” noncommutative spaces. Moreover it is well-founded to consider, among all C*-algebras,
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2. Preliminaries

those which admit additional structures corresponding to the usual ones of topological and smooth

spaces, such as metric structure and well-behaving differential calculus.

2.2 First order differential calculus

To a compact smooth manifold M we can associate the space of smooth 1-forms Q!(M). This is
a bimodule over the algebra C°°(M) of smooth functions over M, and determines the first order
differential calculus over M. In noncommutative geometry one replaces the algebra of smooth
functions with a (quite) general (possibly) noncommutative algebra A. Of course, in such a case
we do not have anymore canonically given Q!(M), but it is convenient to have some differential
calculus over the algebra A. The problem is that there are different candidates and there is,
in general, no reason to prefer one or another. Nevertheless it is possible to study some of the
properties of all this calculi, and this is the aim of this section. Of course, here we will give only
the main results, omitting many details. We refer to e.g. [GBEV) [Wor89] for a more detailed
discussion.

In this section A is taken to be a unital associative algebra over the field of complex numbers.

The symbol ® shall denote the algebraic tensor product over C.

Definition 2.2.1. A first order differential calculus for an algebra A is an A-bimodule I' together
with a linear map d : A — T, obeying the Leibniz rule d(ab) = (da)b+ adb, such that any element
of I' can be written as ), ardby, for some ay, by, € A. The map d is called differential.

Let now A be a unital algebra and consider the following differential calculus.

Definition 2.2.2. The universal differential calculus Q'A = (I'y,d,) over A is the differential
calculus defined by the bimodule I'y, = ker(m) C A® A, where m : A®Q A — A is the multiplication
map, and the differential d(a) = 1 ® a — a ® 1. The bimodule structure is simply given by
a(b® c)a’ = ab® ca’.

QA (in the following we shall omit the differential d,) is called the universal calculus. The

reason for this terminology is the following one.

Proposition 2.2.3. Let N be a sub-bimodule of Q'A = ker(m). Consider the bimodule T =
QYA/N and the quotient map . Let d = wod,. Then (I',d) is a first order differential calculus.

Moreover, any first order differential calculus over A can be obtained in this way.
Proof. See [Wor89], proposition 1.1. O
We shall use the notation Q!(A) for a general first order differential calculus, like that of

proposition [2.2.3]

2.3 Hopf algebras

In this section we recall the definition and the main properties of Hopf algebras. For a more
detailed treatment we refer to literature (see e.g. [Abe80L Maj95|, [Sw69]). We will always work
on the field of complex numbers, although Hopf algebras can be defined over any field.

6
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Definition 2.3.1. A Hopf algebra is a unital associative algebra H equipped with two algebra
maps, A : H - H® H ande : H — C, and a linear map S : H — H obeying the following
relations:

(i) (A®id)ocA=(1d®A) oA,

(ii) (e®id)oc A= (id®e)o A =id,

(iii) mo(S®id)ocA=mo (id®S)o A =noe,

where m : H ® H — H denotes the multiplication in H and n : C — H is the unit map. A is
called the coproduct, € the counit and S the antipode of H.

We shall adopt Sweedler’s notation [Sw69]: A(a) = > a1y ® a(y) for any a € H. Also, the

summation symbol will usually be understood, so that we shall simply write
Aa) = amy ® a)-

Using Sweedler’s notation, we can rewrite the properties (i)-(iii) of the maps A, € and S as follows:
(1) (aq))@) @ (aq))(2) @ a@) = aw) @ (a@)) ) @ (a2))2),

(ii) e(a@))ap) = ap)elae) =

(iii) S(aq)ae) = a)S(agp)) = e(a)ly.

In particular, from property (i) (called coassociativity) we see that the following notation, and

a,

its natural iterated version, are well defined:
(A®id)A(a) = (Id ® A)A(a) = a(1) @ aez) @ ag).

Now let 7: H ® H — H ® H be the switch map, i.e. T(x ®@y) =y ® x.

Definition 2.3.2. A Hopf algebra H is called commutative if it is commutative as associative

algebra. It is called cocommutative if 7o A = A,

Theorem 2.3.3. Let H be a Hopf algebra and S its antipode. Then the following properties hold.
(i) S(hl) =S()S(h) and S(1) =1, i.e. S is an anti-homomorphism of algebras;

(ii) eo S =¢;

(iii) To(S®S)oA=AoS. That is,

A(S(h)) = Sh@) 0y Sh(l);

(iv) the following conditions are equivalent:
1. for any h € H, S(h(g))ha)y = n(e(h)),
2. for any h € H, hS(hay) = n(e(h)),
3. 8%=1;

(iv) if H is both commutative and cocommutative, then S?* = 1.
Proof. See [Abe80], theorem 2.1.4. O
Lemma 2.3.4. The antipode of a Hopf algebra is unique.

Proof. See [Maj95], proposition 1.3.1. O
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Lemma 2.3.5. Let H be a Hopf algebra with invertible antipode S. Then, for any h € H,
A(Silh) = Silh@) X Sflh(l) and h(z)Sflh(l) = (Silh(g))h(l) = E(h)

Proof. See [Maj95], section 1.3 (in particular the solution of exercise 1.3.3). O

Before going on we give some examples of Hopf algebras.

Ezample 2.3.6. Group algebra. Let G be a group and let C[G] be its group algebra, that is the
associative algebra whose elements are (finite) complex linear combinations of elements of G, and
whose product is the one induced by the product of G. We can make it into a Hopf algebra by
defining the maps A, € and S on the elements of G and extending them by linearity to the whole
C[G]. In particular, we set, for any x € G,

Alx)=z®x, e)=1, S)=z"

C[G] is a cocommutative Hopf algebra, with invertible antipode; moreover S~! = S.

FEzample 2.3.7. Universal enveloping algebra. Let g be a Lie algebra and let Ug be its
universal enveloping algebra. Then it has a natural Hopf algebra structure, with coproduct,

counit and antipode defined as follows: for X € g C Ug,
AX)=X®1+1®X, X)=0 SX)=-X.

Let us come back to the general theory of Hopf algebras. Since, as one would expect, we
will usually deal with *-algebras, we recall here the definition and the main properties of a Hopf
*-algebra. For the details we refer to section 1.7 of Majid’s book [Maj95].

Definition 2.3.8. A Hopf *-algebra H is a Hopf algebra H equipped with an antilinear involution

x which makes it into an associative *-algebra, and such that:

A(h*) = (hay)* @ (hg)*,  e(h*) =<(h), (Sox)?=id.

Lemma 2.3.9. If H is a Hopf *-algebra then the antipode S is invertible, and we have: (Sh)* =
S=Y(h*) for any h € H.

Proof. See [Pas01], 5.1.20. O

Remark 2.3.10. In this thesis we will always assume the Hopf algebras we work with to have an
invertible antipode. There are at least two reasons for making this assumption: first, in general
we will deal with Hopf *-algebras, and in this case, due to the previous lemma, this will be
an empty requirement; in the second place, the lack of invertibility of the antipode carries some
technical difficulties: in particular it is an obstruction to the definition of a Hopf algebra structure
on the opposite and the co-opposite algebra of a Hopf algebra (see below). Also, some results
about the first order differential calculus (see e.g. [Wor87, Wor89]) and the structure of Hopf-
Galois extensions [Sch90al [Sch90b] have been proved under the assumption that the antipode is

invertible.
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As we have anticipated in the remark above, if the antipode of a Hopf algebra is invertible we
can define a Hopf algebra structure over its opposite and coopposite algebras [Maj95]. Indeed,
let H be a Hopf algebra with invertible antipode S. Then the opposite algebra HP is still a Hopf
algebra, with antipode given by S~!'. Moreover we can define the co-opposite algebra HP as
follows: it is isomorphic to H as an associative algebra, but the coproduct is given by AP = 7oA
(that is, AP(h) = h(2) ® h(1)) and the antipode is S~1. If we perform both “operations”, that is
we take the co-opposite algebra of the opposite algebra of H, we get a Hopf algebra isomorphic
to H itself.

Let now H be any Hopf algebra, A be an associative algebra, and consider the space of linear

maps H — A. We can define a product on this space.

Definition 2.3.11. Let f,g: H — A be two linear maps. Their convolution product is the linear
map fxg: H— A given by:
(fxg)(h) = f(ha)g(he))-

Due to the coassociative property of the coproduct of a Hopf algebra, the convolution product
is associative. Assume now that A has a unit, which we can see as a map 4 : C — A. Then

fx(maoe)=(naoe)xf=f,sona is the identity w.r.t. the convolution product. Moreover:

Definition 2.3.12. We say that a linear map f : H — A is convolution invertible if there exists
a linear map f~': H — A such that f '« f=fxfl=naoe.
2.3.1 Actions and equivariant modules

Let H be a Hopf algebra over C. Then we can consider modules over H.

Definition 2.3.13. A (left) H-module is a pair (V, p) where V is a complex vector space and p
is a representation of H on' V' (as an associative algebra). We shall usually write h>v (h € H,

veV) for p(h)v.

In the same way one defines right H-modules; we will denote by v<h (for v € V, h € H) the
right action of H on a right H-module V. We mention here only the simplest example of action
of H on a vector space V: the trivial action h>v =v <h = e(h)v.

Now let A be an associative algebra (not necessarily unital). consider the following definitions.

Definition 2.3.14. The algebra A is a left H-module algebra if A is a left H-module and the

representation of H respects the algebra structure:
h (ab) = (h(l) > a)(h(g) > b),
forany h € H, a,b € A. If A is unital we require moreover that

h1y4 =e(h)lya, Vh € H.
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Definition 2.3.15. The algebra A is a right H-module algebra if A is a right H-module and the

representation of H respects the algebra structure:
(ab)ah = (a<h@))(b<ha)),
for any h € H, a,b € A. If A is unital we require moreover that
lgy<h=c¢e(h)ly, VheH.

Definition 2.3.16. The algebra A is an H-bimodule algebra if it is both a left and a right H -
module algebra, and the left and the right actions commute with each other: (h>a)<l = h>(a<l),
for any h,l € H and any a € A.

We notice that the trivial action of H on an algebra A makes it into both a left and a right
H-module algebra (and also into a H-bimodule algebra, of course).
Now let A be a left H-module algebra and M be a left A-module; we denote simply by am

the action of a € A on m € M. Then we consider the following definition.

Definition 2.3.17. M is a (left) H-equivariant A-module if M is itself a left H-module and
h o (am) = (h(l) > a)(h@) > m)

foranyhe H,a€ A and me M.

In the same way can be defined right H-equivariant A-modules. We conclude this paragraph
introducing an additional condition on the action of H on an algebra A in case of *-algebras. Let
H be a Hopf *-algebra, A be a *-algebra and assume that A is a (left) H-module algebra, in the
sense of definition 2.3.14l Then:

Definition 2.3.18. The action of H on A is said to be compatible with the star structure if
(h>a)* = (Sh)*>a”

forany he H, a € A.
When we will consider H-module *-algebras w.r.t. a Hopf *-algebra we will always assume,

unless otherwise indicated, that the action of H on A is compatible with the star structure.

2.3.2 Coactions and comodules

Again, let H be a Hopf algebra over C. The coalgebra structure of H allows us to give the

following definitions.

Definition 2.3.19. Let V' be a complex vector space. A linear map pr :V — V ® H is said to
be a right coaction of H on V if:

(pr®id) o pp = (Id® A) o pp,

10
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(id®e)opr =id.
If pr is a right coaction, V is called a right H-comodule.

Definition 2.3.20. Let V' be a complex vector space. A linear map pr, : V — H @V is said to
be a left coaction of H on V if:

(id®pr)opr = (A®id)opy,

(€®ld) opr = id.
If pr, is a left coaction, V is called a left H-comodule.

For H-comodules we introduce the analogue of Sweedler’s notation:
pr(v) = V(o) @ V),

pL(v) = v(_1) @ V().
If V is both a left and a right H-comodule we can consider the following definition.

Definition 2.3.21. V s a H-bi-comodule if it is both a left and a right H-comodule, with

coactions pr, and pgr respectively, and
(pr ®id) o pgr = (id ® pr) © pr.

As in the case of actions of a Hopf algebra, we can consider coactions on associative algebras.

So, let A be an algebra (non necessarily unital); then:

Definition 2.3.22. The algebra A is a left (right) H-comodule algebra if it is an H-comodule
and the coaction pr, (pr) is an algebra map. If A has a unit we also require that pr, (1) =1® 1.

In case A is a "-algebra and H is a Hopf *-algebra, we require also the compatibility between

the star structure and the comodule structure:
pr,re” = ("®") 0 pL R (2.3.1)

We give here also the following definition, which we shall use in the definition of quantum principal
bundles.

Definition 2.3.23. Let A be a left H-comodule algebra, with left coaction pr. The invariant
subalgebra of A is the subalgebra

AH —fa e Al prla) =1®a}.
If instead A is a right H-comodule algebra, with coaction pr, then we define:
At = {ac A pra) =a®1}.

11
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Let us mention here one important example of H-comodule algebras: to any Hopf algebra H

can be given a structure of (right) H-comodule algebra via the right adjoint coaction,
adr(h) = h(z) ® S(h(l))h(3). (2.3.2)

Let now A be a (right) H-comodule algebra, with coaction pg, and let B be another associative
algebra. Then, generalizing (2.3.11]), we can define the right convolution product of a map f :
A — B with amap g: H — B as the map f xg g: A — B defined by:

(f *r 9)(a) = f(a@)g(aq))- (2.3.3)

In a similar way one defines the left convolution product xp, for left H-comodule algebras.

Finally, as for H-module algebras, we can define H-equivariant A-modules for H-comodule
algebras. So let A be a left H-comodule algebra and let M be a left A-module; we denote by am,
a € Am e M, the action of A on M.

Definition 2.3.24. M is a left H-equivariant (left) A-module if it is itself a left H-comodule,

with coaction pf, and

pLlam) = acyym (1) @ ag)m()-

A similar definition can of course be given for right A-modules and/or for right H-comodule

algebras.

2.3.3 First order differential calculus over Hopf algebras

As for any associative algebra, we can endow a Hopf algebra with a first order differential calculus
(see section . The coalgebra structure of a Hopf algebra allows us to consider a special class
of first order differential calculi, which satisfy suitable properties of covariance with respect to
the coproduct of the Hopf algebra.

So, let us consider a (general) first order differential calculus Q!(H) on a Hopf algebra H. We
know that each element of Q'(H) can be written as a sum > i ardby, with ag, b, € H. Then we

can give the following definitions.

Definition 2.3.25. The first order differential calculus Q'(H) is left-covariant if, for any
ag, b, € H,
S apdby =0 = > A(ag)(id @ d)A(bg) = 0.
k k
Definition 2.3.26. The first order differential calculus Q'(H) is right-covariant if, for any
ag, b € H,
S apdby =0 = > Alag)(d®id)A(by) = 0.
k k
Definition 2.3.27. Q!'(H) is a bicovariant first order differential calculus if it is both left-

covariant and right-covariant.

12
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One of the most relevant properties of left /right-covariant calculi is that they can be charac-
terized by a right ideal R C ker(e) of H. In order to state this result we need to introduce two
maps 7,s: H® H— H ® H [Wor87, Wor89|:

r(a X b) = (CL X 1)A(b) = ab(l) &® b(g), (2.3.4)

s(a®b) = (1®a)A(b) = b(l) & ab(g). (2.3.5)

Both r and s are bijections, and their inverses are given by [Wor87, (Wor89]:
Tﬁl(a X b) = (a X 1)(S ® id)A(b) = CLS(b(l)) &® b(g), (2.3.6)

sTHa®b) = (b D)T({Id® S ) A(a) =bS  a@) ® (). (2.3.7)
Using these maps we can state the following theorems.

Theorem 2.3.28. Let R C ker(e) be a right ideal of H and let N = r~'{(H ® R). Then N is
a sub-bimodule of ker(m). Moreover, let Q'(H) = ker(m)/N, let 7 : ker(m) — QY(H) be the
canonical projection and let d = 7o d,. Then the first order differential calculus (Q'(H),d) is
left-covariant. Moreover, any left-covariant first order differential calculus on H can be obtained

i this way.
Proof. See [Wor89], theorem 1.5. O

Theorem 2.3.29. Let R C ker(e) be a right ideal of H and let N = s~'(H ® R). Then N
is a sub-bimodule of ker(m). Moreover, let Q'(H) = ker(m)/N, let m : ker(m) — QY(H) be
the canonical projection and let d = 7 o d,. Then the first order differential calculus (Q'(H),d)
18 right-covariant. Moreover, any right-covariant first order differential calculus on H can be

obtained in this way.
Proof. See [Wor89], theorem 1.6. O

Even more interesting is the structure of bicovariant calculi. And this is the class we are
interested in (at least, it is the relevant class of differential calculi we need in order to define
quantum principal bundles). Before stating the main result we need a definition. We recall that

adp is the right adjoint coaction, see equation (2.3.2]).
Definition 2.3.30. A linear subset Q C H is adg-invariant if adr(Q) C Q ® H.

Theorem 2.3.31. Let Q C ker(e) be a right ideal of H, let N = r~'(H ® Q) and let Q' (H) be
the associated differential calculus, like in theorem[2.5.28. Then QY (H) is bicovariant if and only

if Q is adg-invariant
Proof. See [Wor89], theorem 1.8. O

In particular any bicovariant differential calculus can be realized in this way. It is clear that

the universal calculus Q! H is a bicovariant calculus (it corresponds to the choice Q = {0}). Also,

13
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we see that any Hopf algebra admits a non-trivial bicovariant differential calculus. Indeed, take

Q = ker(e): it is adg-invariant,
(e ®@id)adp(h) = e(h))S(ha))h@E) = S(ha))h@) =e(h) =0

for any h € ker(g), and therefore it determines a bicovariant first order differential calculus.

We conclude this paragraph by noticing the fact that a bicovariant differential calculus Q! (H)
admits a natural structure of H-bi-comodule, with coactions A : Q'(H) — H ® Q!'(H) and
A QY (H) — QY(H) ® H defined as follows:

A%(adb) = a(l)b(l) & a(g)db@), (2.3.8)

A%(adb) = a(l)db(l) & CL(Q)b(Q). (2.3.9)

Both coactions are well defined. Moreover, Q'(H) is both a left and a right H-equivariant H-

module. We refer to [Wor89], sections 1 and 2, for the proof of these results.

2.4 K-theory

K-theory is a generalized cohomological theory. Its topological version was first introduced by Sir
M. F. Atiyah and F. Hirzebruch in 1959 [AtiHir59, [AtiHir61]; they defined the K group K(X) of
a topological space X to be the Grothendieck group of stable isomorphism classes of topological
vector bundles over X. K-theory proved to be a very useful tool and to have applications in many
fields of mathematics (see, e.g., the discussion in [Bak87, [C94]). Moreover, Serre-Swan theorem
[Ser55l [Swa62] allows for a reformulation of K-theory, where topological vector bundles over X are
replaced by finitely generated projective modules over C'(X). This was generalized to K-theory
of C*-algebras (see [Blck98] and references therein) and it is a main tool in noncommutative
topology and noncommutative geometry (see [C94] and references therein).

In this section we will briefly recall the definition and the properties of K-theory of C*-
algebras. Moreover, in the last part, we will discuss the relation between the algebraic K-theory

of a pre-C*-algebra with that of its C*-completion.

2.4.1 The K, group of a C"*-algebra

First of all we present the construction of the Ky group of a C*-algebra and we study its main
properties. We begin by considering unital C*-algebras. In the next section we will extend the
construction to non-unital algebras using the functoriality properties of Ky. For the details we
refer to [Lan03].

Let us begin by discussing some properties of projections in a C*-algebra. We recall that a

projection in a C*-algebra B is a selfadjoint element p of B such that p? = id.

Definition 2.4.1. Let B be a unital C*-algebra. Two projections p,q € B are called:
e homotopy equivalent, written p ~y, q, if there is a path e(t) of projections in B such that
6(0) =D 6(1) =4q;

14
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e unitarily equivalent, written p ~,, q, if there is a unitary u € B such that ¢ = upu®.

Lemma 2.4.2. Let p,q be projections in a unital C*-algebra B. Then if p and q are homotopy

equivalent then they are unitarily equivalent.
In general the converse is not true. Now let A be a unital C*-algebra and let M, (A) be the
o
space of n x n matrices with coefficients in A. Consider the disjoint union M(A) = H M, (A).
n=1

We define the direct sum of an element a € My (A) with an element b € M;(A) as the element

0
adb= “
0 b

in My;(A). Next we introduce an equivalence relation on M(A) as follows: for p € M, (A) and
q € My, (A) we say that p ~ qif ¢ =p @ 0p—p, (for m >n) or p = q @ 0y, (for n < m), where

0y is the zero k x k matrix. Then we give the following definition.
Definition 2.4.3. For a C*-algebra A we define the space M (A) to be the quotient M(A)/ ~.

We make My, (A) into a *-algebra in the following way: any two classes [a], [b] in M (A) come

from two elements a,b € M, (A) for some n, so we can define
[a] + [b] = [a+0],  [a] - [b] = [ab];

the star structure is simply the one induced by that of M,,(A): [a]* = [a*]. In the same way we
can put a norm on My (A): ||[a]]| = |la||. Taking the closure w.r.t. this norm we get a C*-algebra.

Now we focus our attention on projections. In particular, we define Py (A) as the set of
projections in My, (A). We have seen above that in general homotopic equivalence is stronger

than unitarily equivalence. A relevant fact is that this is no longer true for P:
Lemma 2.4.4. The equivalence relations ~p, and ~, on the set Px(A) coincide.
Now we can define the Ky group of a unital C*-algebra A.

Definition 2.4.5. Let A be a unital C*-algebra. Then we define Ko(A) as the abelian group
with one generator for each equivalence class p of projections p € Pso(A) under the equivalence

relation ~p=r,, and addition [p] + [q] = [p @ q] between these generators.

The geometric meaning of this definition can be deduced from the result below, recalling that
spaces of continuous sections of vector bundles over a topological space X are in correspondence

with finitely generated projective modules over C(X).

Proposition 2.4.6. Let A be a unital C*-algebra. Let p € M, (A) and q € M, (A). Thenp ~p q
in P (A) iff pA™ and qA™ are isomorphic as right A-modules.

Therefore Ky(A) can also be seen as the (Grothendieck) group of isomorphism classes of

finitely generated projective modules over A.
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2.4.2 K-theory functors and functoriality of K|

Now that we have defined K, we can show that it is actually a functor, and this allows us to

introduce the general notion of K-theory functor. We begin with some preliminary definitions.

Definition 2.4.7. Let A be a C*-algebra and let KC be the C*-algebra of compact operators on a
separable Hilbert space. Then the tensor product Ag = KK ® A is the completion of the algebraic
tensor product KK ® A in the um’queE] C*-norm and it is called the stabilization of A. A C*-algebra
B is called stable whenever Bg ~ B. Two C*-algebras B and C are said stably equivalent if
Bg ~ Cg.

Definition 2.4.8. Let A and B be C*-algebras. Two morphisms of C*-algebras ¢, : A — B
are called homotopic, written @ ~p ¥, if there is a path ¢r : A — B of morphisms of C*-algebras
for which the function ¢i(a) is continuous in t € [0,1] for each a € A and ¢p = ¢, 1 = 1.

Definition 2.4.9. Two C*-algebras A and B are said to be homotopy equivalent, written A ~p, B,
if there are morphisms a: A — B and 8 : B — A such that ao 8 ~p idg and 8o a ~yp, id4.

Definition 2.4.10. A C*-algebra A is called contractible if A ~y, 0.

Definition 2.4.11. The cone of a C*-algebra A is the C*-algebra C A = Cp((0, 1], A), that is the
algebra of continuous functions from (0,1] to A vanishing at zero.
The suspension of a C*-algebra A is the C*-algebra SA = Cy((0,1), A), that is the algebra of

continuous functions from (0,1) to A vanishing at 0 and at 1.
Lemma 2.4.12. The cone of any C*-algebra is contractible.

Definition 2.4.13. A functor H from C*-algebras to abelian groups is called half-exact if, given

the short exact sequence of C*-algebras
0—-J—>A—A/J =0,
the corresponding sequence of abelian groups is exact at H(A):
H(J)— H(A) — H(A/J).

Definition 2.4.14. A functor H from C*-algebras to abelian groups is called a K-theory functor
if it has the following properties

(a) it is normalized: either H(C) =Z or H(C) = 0;

(b) it is homotopy-invariant: if A and B are homotopy equivalent, then H(A) ~ H(B);

(c) it is stable: H(Ags) = H(A);

(d) it is continuous: it commutes with inductive limits;

(e) it is half-exact.

Theorem 2.4.15. The functor Ko is a K-theory functor.

'See [GBEV], section 1.A.

16



2.4. K-theory

The property of half-exactness of the functor Ky allows us to define in a satisfactory way the
Ky group of a non-unital C*-algebra A. And, although we shall always deal with unital algebras
in this thesis, we need to define the Ky group of a non-unital algebra since we shall use suspension
algebras, which are non-unital, to define higher-rank K-theory groups.

So, let us consider a non-unital C*-algebra A, and let us denote by A" the unitization of A
obtained adjoining a unit: A* = A x C, with product (a, ) - (b, ) = (ab+ A\b+ pa, \) and sum
(a,\) + (byp) = (a+ b, A+ p) [GBEV]. Then we have the short exact sequence

0—>A—> AT 5 C—0.

Hence, if 7 : At — AT /A ~ C denotes the canonical surjection, we define Ko(A) as the kernel of
e : Ko(AT) = Ko(C). In this way we extend Ky to a (covariant) functor from the category of
C*-algebras, unital and non-unital, to that of abelian groups, this extension still being a K-theory

functor.

2.4.3 The K, group of a C*-algebra

There are several different (but equivalent) ways to define the K; group of a C*-algebra. Here
we present one of them, while in the next section we will introduce a general construction for
higher-rank K-theory groups K,,, and we will show that in the n = 1 case it reduces to the
definition presented here. We refer to [Blck98, [GBEV] [C85] [C94| [Kar78, [W-093] for the details.

Let A be a C*-algebra and let A" denote its unitization. Let GL,,(A™) be the set of invertible
n X n matrices with values in A*; we define GL,(4) to be the group

GLy(A) = {x € GL,(A") | # = id,, mod M, (A)}.

It can be shown that GL,(A) is a normal closed subgroup of GL,(A"). Next we embed GL,(A)
into GL,11(A) in the following way:

z 0
x € GL,(A) — (0 1).

Finally we define GLoo(A) to be the direct limit of the groups GL,(A). Let GL(A)o denote the

connected component of the identity in GLy(A). Then we can give the following definition.
Definition 2.4.16. The K7 group of the C*-algebra A is the quotient K1(A) = GLxo(A)/GLx(A)o.

There is an equivalent characterization of K;(A). Let Ux(A) be the group of unitary matrices
defined in the same way as G Lo (A) and let Us(A)g be the connected component of the identity
of Us(A). Then one can prove that [W-0O93]:

Lemma 2.4.17. K;(A) is isomorphic to Uss(A)/Usc(A)o.

In particular an element of K can be seen as an equivalence class [u], with u € U,(A™) for
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some n > 0, and the product in K;(A) can be written in the following way:

u 0
fullv] = [ur] = K - )]

This allows us to see that K;(A) is an abelian group. One can also prove the following result
[W-093].

Proposition 2.4.18. K is a K-theory functor.

2.4.4 Higher K-theory groups and Bott periodicity

In the previous section we introduced the concept of suspension of a C*-algebra (see definition
. It can be proved that it gives rise to a covariant functor [W-093], the suspension functor,
which we shall denote by S. Also, one can prove that .S is an exact functorﬂ Now we will use this
functor to introduce higher dimensional K-theory groups and to state one of the main results of
algebraic K-theory: the Bott periodicity.

Let us begin by noticing the following fact: the K; group of a C*-algebra A is nothing else

than the Ky group of its suspension. More precisely,

Theorem 2.4.19. For every C*-algebra A there is an isomorphism 64 : K1(A) — Ko(SA) which,

whenever a : A — B is a C*-algebras morphism, makes the following diagram commutative:

Qi

Ki(A) K1(B)
9Al iGB
Ko($4) — = Fo(SD)
Proof. See [W-093], theorem 7.2.5. O

This result allows us to give the following definition.

Definition 2.4.20. The n-th K-theory group of a C*-algebra A is the abelian group K,(A) =
Ky(S™A).

Proposition 2.4.21. For anyn > 0, K,, is a K-theory functor.
The following results show that the only relevant groups are Ky and Kji:

Theorem 2.4.22. For every C*-algebra A there is an isomorphism B4 : Ko(A) — Ki(SA) such

that, for every morphism « : A — B, the following diagram is commutative:

Qlx

Ko(A) Ko(B)
BA\L lﬂs
K1(SA) S K,(SB)

2A functor F' : C — D, between two abelian categories [McI] C and D, is said an ezact functor if it carries
exact sequences into exact sequences. More precisely, if for every short exact sequence 0 + A - B — C — 0in C,
0 — F(A) — F(B) — F(C) — 0 is a short exact sequence in D (see [McL], VIIL.3).
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Proof. See [W-093], chapter 9. O

Corollary 2.4.23 (Bott periodicity). For every C*-algebra A, Ko(A) ~ Ko(S?A) and K1(A) ~
K1(S?A).

2.4.5 Algebraic K-theory

The definition of the K-theory groups introduced in the previous sections is valid only for C*-
algebras. We introduce now a more general formulation, entirely algebraic, which is applicable
to any algebra. We refer to [GBEV] [Lol Kar78|, [Ros97] for the details of the construction.

Let A be a unital algebra. Consider the following definition.

Definition 2.4.24. The algebraic K-theory group Kglg (A) of a unital algebra A is the Grothendieck

group of isomorphism classes of finitely generated projective right A-modules.

In the case of C*-algebras there is no difference with the previous definition. Indeed (see
[GBEV], theorem 3.14),

Theorem 2.4.25. There is an isomorphism Kglg(A) ~ Ko(A) for any unital C*-algebra A.

Now we introduce the definition of the algebraic K group. As we shall see, it does not

coincide with the K7 group defined above.

Definition 2.4.26. The algebraic K-theory group Kflg(A) of a unital algebra A is the abelian-
ization GLso(A)gp of the group GLoo(A), that is, the quotient of GLxo(A) by the subgroup of the

commutators.

We can compare it to the group K;(A). Let A be a unital C*-algebra. Then GLy(A) is a
topological group (see discussion above). If we endow G Lo (A) with the discrete topology we
get another topological group, which we denote by GL%5¢(A). One can show that the identity
map GLE(A) — GLoo(A) induces an homomorphism Kflg(A) — K1(A). More precisely (see
[GBEYV], section 3.7; see also [Ros97]),

Proposition 2.4.27. Let A be a unital C*-algebra. Then the identity map GLY5¢(A) — G Lo (A)

induces an homomorphism Kflg(A) — K1 (A) which is surjective and functorial in A.
Under some conditions on the algebra A this morphism is also injective.

Proposition 2.4.28. Let A be a stable unital C*-algebra, that is a C*-algebra such that A ~
AQ® K. Then the map of proposition is an isomorphism of groups.

Proof. See [Ros97|, theorem 1.4. O

It is possible to define also higher dimensional algebraic K-theory groups, but this is far

beyond the aim of this thesis. So we shall not discuss them here.
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2.4.6 K-theory of pre-C*-algebras

In this thesis we shall often deal with pre-C*-algebras: indeed, if we take a look to the commutative
case, we see that the algebra of continuous functions over a compact smooth manifold M, C(M),
is a C*-algebra, while the subalgebra of smooth functions, C°°(M), is only a pre-C*-algebra.
Since in Connes’ noncommutative geometry it is the latter to be involved, we need to define also
K-theory of pre-C*-algebras. In this section we discuss the main properties of this version of K-
theory. We refer to [GBEV] for the details. First of all we recall the definition of a pre-C*-algebra
[GBEFV].

Definition 2.4.29. A pre-C*-algebra is a subalgebra of a C*-algebra that is stable under holo-

morphic functional calculus.

Now, let A be a pre-C*-algebra. We define its K group to be its algebraic K-theory group
K", That is,

Definition 2.4.30. The Ky group of a pre-C*-algebra A is the Grothendieck group of isomor-

phism classes of finitely generated projective right A-modules.

Now we shall study the relation between the Ky group of a pre-C*-algebra and that of its
C*-completion. We begin by stating the following result [Schw92].

Proposition 2.4.31. Let A be a pre-C*-algebra. Then M, (A) is a pre-C*-algebra for all n.

This result implies (see [GBEFV], section 3.8) that, if A is the completion of A, the inclusion
t: A— A extends to a morphism Koy : Ko(A) — Ko(A). Moreover, one can prove the following
fact (see [GBEV], theorem 3.44).

Theorem 2.4.32. If A is a Fréchet pre-C*-algebra with C*-completion A, the inclusiont: A — A
induces an isomorphism Ko : Ko(A) — Ko(A).

Therefore, the K-theory of Fréchet pre-C*-algebras is the same as that of the corresponding

C*-completions.

2.5 Hochschild (co)homology

In this section we introduce Hochschild homology and Hochschild cohomology. We will give only
a brief discussion, referring to classical literature for the details (see e.g. [CEL IGM, IGBEV]).
Let A be a unital associative algebra over C and let A° be its opposite algebra. We define
the enveloping algebra of A to be the unital associative algebra A¢ = A ® A°. Now let M be an
A-bimodule. We can regard it as a right A°~-module, where the right action of A® on M is given
by
m(a ® b°) = bma,

for m € M, a,b € A. Then we can give the following definition

Definition 2.5.1. Given an A-bimodule M, we define the n-th Hochschild homology group of
A with values in M to be the group H, (A, M) = Tora" (M, A).
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That is, H,(A, —) is the n-th left derived functor [HS| of the functor M ®4e —. Using the
bar resolution to compute Tor;?‘e we can give an alternative description of Hochschild homology.
Skipping some details, we say that the Hochschild homology can be defined to be the homology
of the following complex: let C,, (M, A) = M @ A®™ and let b, : C;, — C,,—1 be the map

bm®Ra1 ®...Qay) =ma; @ ... ap
n—1 A
—l—Z(—l)’m@al®...®aiai+1®...®an (2.5.1)
i=1

+ (_1)nanm Ka1 Q... ap—1.

Then we can see, by direct computation, that b,b,_1 = 0. We call b the collection of the maps

b,. We put a structure of A-bimodule on C,, (M, A) in the following way:
am®a; ®...ap)b=am®a; @ ...R® apb.

We call C,, (M, A) the space of Hochschild n-chains with values in M, and we define the Hochschild
homology to be the homology of the complex (Co(M, A),b). The elements £ of C, (M, A) such
that b§ = 0 will be called Hochschild n-cycles and the elements £ of C,, (M, A) such that there is
n € Cpy1 (M, A) with by = £ will be called Hochschild n-borders.

Now we turn to Hochschild cohomology. Consider, again, an A-bimodule M. Now we see it

as a left A°~-module, with action of A° on M given by
(a ® b°)m = amb.

Then we give the following definition.

Definition 2.5.2. Given an A-bimodule M, we define the n-th Hochschild cohomology group of
A with values in M to be the group H"(A, M) = Ext’j.(A, M)

This means that the n-th cohomology group is the left n-derived functor of the functor
Hom(—, M). Also in this case, using the bar resolution, we can obtain an equivalent defini-
tion of Hochschild cohomology. Consider, indeed, the following complex. Let C™(A, M) be the
space of n-linear maps ¢ : A" — M. Put on C"(A, M) the following structure of A-bimodule:

(apdb)(ay,...,an) = ap(ay, ..., ap)b.

Then define a map b: C"(A, M) — C"t1(A, M) by

bpo(ar, ... an+1) =ar1p(ag, ..., an41)
n
+ Y (~1g(ar,...,a5a541,- ., an1) (2.5.2)
j=1

+ (="M o(ar,. .., an)any1.
Let now b denote the collection of the operators b,. Then one can see that b> = 0. Hence
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Hochschild cohomology can be defined as the cohomology of the complex (C*(A, M),b). The
elements of Cy,(A, M) will be called Hochschild n-cochains, the elements ¢ € C™(A, M) such that
bo = 0 Hochschild n-cocycles and those such that there exists ¢ € C" (A, M) with byp = ¢
Hochschild n-coborders. The space of Hochschild n-cocycles will be denoted by Z"(A, M), that
one of n-coborders by B™(A, M).

2.6 Cyclic cohomology

In this section we introduce an analogue for the de Rham cohomology for noncommutative spaces
[C85], the cyclic cohomology, and we discuss briefly its relation with Hochschild homology and
K-theory. We begin with the basic definitions.

Let A be a unital associative algebra and let A* be the space of all linear functionals from A
to C. A* is a bimodule over A, and therefore one can consider Hochschild n-cochains with values
in A*. Then we can notice [GBFV] that a Hochschild n-cochain ¢ € C™(A, A*) can be seen as a
linear map ¢ : A®"" 5 C. Under this identification the Hochschild coboundary map b is given
by:

bp(ag, ... ,ant1) =p(apai,az,...,an41)
n
+ Z(_l)lw(aﬂu sy @41, - - an-‘rl)
=1
+ (_1)n+190(an+1@07 NCE

Now let A : C*(A, A*) — C*(A, A*) be the operator, of degree 0, defined as follows:
Ap(ag, ... an) = (=1)"p(an,ag,...,an-1). (2.6.1)

Definition 2.6.1. A Hochschild n-cochain ¢ € C™(A, A*) is called cyclic if \¢p = ¢. A Hochschild
n-cocycle ¢ € Z™(A, A*) is called cyclic if Ap = .

Let us denote by C{(A) the space of cyclic n-cochains and by Z}(A) the space of cyclic

n-cocycles. One can prove the following result (see [C85], part II, corollary 4.).
Proposition 2.6.2. (C3(A),b) is a subcomplex of the Hochschild complex.
Therefore we can take the cohomology HC®(A) = H3(A) of (C3(A),b), and we call it the

cyclic cohomology of A. Notice that HC?(A) = Z{(A) is the linear space of traces on A.

2.6.1 Cycles and Chern characters

Definition 2.6.3. Let ) = @QZ be a graded differential algebra, with differential d of degree 1.
i=0
An integral on Q is a linear map [ : Q — C such that:

(i) [wr =0 forw, € QF, k <n;
(ii) if wr € Qx and w; € Q then [wrw, = (=M [wwk;
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2.6. Cyclic cohomology

(iii) if w1 € Q"1 then [ dwp—1 = 0.

Definition 2.6.4. A cycle of dimension n is a complezx graded algebra differential algebra (£2,d),

n
Q= @ Q. together with an integral /.
1=0

Given two cycles it is straightforward to define their direct sum cycle and their tensor product
cycle [C85].

Next we define cycles over an algebra A.

Definition 2.6.5. Let A be an associative algebra. A cycle over A is an n-dimensional cycle
(Q,d, [) together with a homomorphism p: A — QO.

Notice that if (2, d, [) is a cycle over A, for any ao, - .., ax € A the object agday - - - day, defines
an element of QF (here the map p is understood).

Now, given a cycle over A of dimension n we can canonically associate to it a cyclic n-cocycle:

Definition 2.6.6. The Chern character of a cycle (., d, [) of dimension n over a unital asso-

ciative algebra A is the (n + 1)-linear functional defined by

ChQ(ao,...,an) :/aodal---dan,

for any ag,...,a, € A.

The fact that chq is cyclic and that it is a cocycle follows directly from the property of the
integral of a cycle. Moreover one can prove the following result (see [GBFV], proposition 8.12;

see also [C85], part II, proposition 1 and proposition 8).

Proposition 2.6.7. An (n + 1)-linear functional 7 : A"*1 — C that vanishes on C @ A" is a

cyclic n-cocycle if and only if it is the Chern character of a cycle over A.

2.6.2 Cup product and periodicity of cyclic homology

Now we discuss some properties of cyclic homology. We begin by introducing the cup product.

We will use the following characterization of cyclic cocycles (cfr. also proposition [2.6.7)).

Definition 2.6.8. Let A be a unital associative algebra. Then the universal graded differential
algebra Q°®A is the graded algebra Q°A = EBQ”A, where QA = A and Q™A is the span of the

n=0
elements agday - - - dayn, with ag, ...,a, € A. The differential d is simply defined as follows:
d(apday - - - day) = dag - - - day,.

Proposition 2.6.9. Let ¢ be an (n+1)-linear functional on a unital associative algebra A. Then

the following conditions are equivalent:
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1) there exists an n-dimensional cycle (2, d and a homomorphism p: A — QO such that
(1) y ,d, 14 P

(a0, an) = / plao)d(p(ar)) - d(p(an).

for any ag,...,a, € A;

(ii) there exists a closed graded trace ¢ of dimension n on Q*A such that

o(ag, ..., an) = $(apday - - - day,),
for any ag,...,a, € A;
(iii) one has @(ag, ..., ay) = (=1)"p(an,ag, .. .,an—1) and

n

Z(—l)igo(ao, @i - - )+ (1) o (any1a0, - - ., an) =0,
1=0

for any aq,...,a, € A.
Proof. See [C85], part II, proposition 1. dJ

Consider now two algebras A and B. In general the equality Q*(A® B) = Q*(A)®Q°*(B) does
not hold; nevertheless, from the universal property of Q°*(A® B) we get a natural homomorphism
T:Q(A® B) = Q%(A) ® Q*°(B). So we can give the following definition.

Definition 2.6.10. Consider two arbitrary cocycles p € ZY(A) and € ZY'(B). Then we define
©#1 as the (n +m + 1)-linear functional associated to the graded trace

oH) = (PR P) o

w# is called the cup product of ¢ and .

Proposition 2.6.11. The cup product defines a homomorphism HC"(A)@ HC™(B) — HC" ™™ (A®
B). Moreover the character of the tensor product of two cycles is the cup product of their char-

acters.

Proof. See [C85], part II, theorem 9. See also [C94], III.1.cr, theorem 12. O

Now we can use the cup product to deduce some properties of cyclic cohomology.
Lemma 2.6.12. HC*(C) is a polynomial ring with one generator o of degree 2.

Proof. The 2-cocycle o is defined by o(1,1,1) = 27i. For the details see [C85], part II, proof of
corollary 10. O

Proposition 2.6.13. For any unital algebra A, HC*(A) is a module over HC*(C).

Proof. Let ¢ € Z¥(A) and let o be the generator of HC*(C). Define amap S : Z¢(A) — Zy1?(A)
by S¢ = @#0 = o#¢. Due to proposition [2.6.11] this defines a map S : HC"(A) — H""2(A).
This makes HC*(A) into a HC*®(C)-module. For the details see [C85], part II, corollary 10 and

lemma 11. O
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2.6.3 Pairing with K-theory

In [C85) [C94] Connes introduced a pairing between the cyclic cohomology and the algebraic K-
theory of an algebra. In this section we briefly recall the construction. For a different looking,
but equivalent, approach see [Kar87]. See also [Lo|, chapter 8.

First of all let us define the even and the odd part of the cyclic cohomology of a unital algebra
A. We set HO®(A) = @, HC?"(A) and HC*¥(A) = @, HC?"F1(A).

We begin by defining a pairing between HC®Y(A) and Kglg (A). Kglg was defined in terms
of isomorphism classes of finitely generated projective modules: since any finitely generated pro-
jective A-module is of the form eA™ for some n and for some idempotent e € M,(A), we can
equivalently define Kglg as the Grothendieck group generated by equivalence classes [e] of idem-
potents e. Let now Tr be the trace on My (A) (which is well defined on each M,,(A)). Then the

following result holds.

Proposition 2.6.14. The following equality defines a bilinear pairing between Ko(A) and HC®(A):

(lel [9]) = e (R T, . ) (26.2)

(27mi)™m)!
for e € My(A) and ¢ € Z3™(A). Moreover one has ([e], [S¢]) = ([e], [¢])-

Proof. See [C85], part II, proposition 14. O

Now we pass to the odd case. We recall that any element of K;(A) is an equivalence class
[u] of unitaries in M., (A). Therefore we can define a pairing between HC°%(A) and K;(A) as

follows.

Proposition 2.6.15. The following equality defines a bilinear pairing between K1(A) and HC(A):

1 1

([u], []) = @ri)m-@n D (m =172 1/2(so#Tr)(u—1 —lu—1l,u ' —1,...,u—1) (2.6.3)

for u € My(A) and ¢ € Zy"*(A). Moreover one has ([u], [S¢]) = ([u], [¢]).

Proof. See [C85], part II, proposition 15. O

2.7 Kasparov’s K K-theory

Kasparov’s bivariant K K-theory [Kas8(] is a generalization of the K-theory of C*-algebras. The
basic idea is to see the K-theory functor no more as a functor of a single variable, but as a functor
KK (A, B) of two variables, both C*-algebras. As a functor of the first variable it represents the
K-homology (cfr. [BDFTT]), while as a functor of the second one it represents ordinary K-theory
of C*-algebras. In this section we will briefly recall the main aspects of K K-theory. For a
detailed discussion we refer to literature (see, in particular, [Kas80, [BJ83, [CS84. Hig87, [Cun&7,
C94., [Kuc97]).
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2.7.1 (C*-modules
Kasparov’s construction relies on Hilbert C*-modules [GBEFV], [C94. [Lal.

Definition 2.7.1. Let B a C*-algebra with C*-norm ||-||. A (Hilbert) right C*-B-module is a
complex vector space € which is also a right B-module, together with a bilinear pairing (-,-) :
E x & — B such that

(@) (e.f) =(f.e)",

(i) (e, fb) = (e, /)b,

(iii) (e,e) >0 and (e,e) =0 iff e=0,

(iv) & is complete in the norm |le||2 = || (e, e)|,
foranye, f €& and any b € B.

Let £, F be C*-B-modules. The vector space of continuous B-module homomorphisms from

€ to F is denoted by Homp (&, F). We can introduce the notion of adjointable morphism:

Definition 2.7.2. A homomorphism T : £ — F is an adjointable operator if there exists a
B-module homomorphism T : F — & such that, for anye € E, f € F, (Te, f) = (e, T*f). The
space of adjointable operators will be denoted by Homz(E, F).

If F =&, an adjointable operator will also be called an adjointable endomorphism. We will
set Endp(€) = Homp(&,€) and Endj;(€) = Homp(E,E). Endp(E), with the operator norm, is a

Banach algebra. Moreover,

Proposition 2.7.3. Endj(€) is a closed subalgebra of Endp (&), and it is a C*-algebra w.r.t. the

operator norm and the involution T — T*.

Definition 2.7.4. Two C*-B-modules £ and F are unitarily isomorphic if there exists a unitary
u € Hompi (&, F). They are topologically isomorphic if there ezists an invertible g € Homz(E, F)
(with inverse g~ € Homy(F, &) ).

Let € be a C*-B-module. The B-valued inner product of £ can be used to define a structure
of *-algebra on the algebraic tensor productE] ERpE:

(e1 ®e2)(f1 ® f2) = e1 {e2, f1) ® fo, (e1 ®e2)" =e2®ey.

The algebra obtained in this way will be denoted by Fing(€); moreover there is an injective

*-homomorphism from Fing(€) into Endj(€), described by the following assignment:
(e1 ®eg)(e) = e1 (eg,€) .

Definition 2.7.5. The closure of Fing(€) in Endj(E) w.r.t. the operator norm is the C*-algebra
of B-compact operators on €. It will be denoted by Kp(E).

Now, since we need it in order to define the KK functor, we introduce the notion of (Zg-)

graded C*-module. Let B be a Zo-graded C*-algebra, with grading 4. Then B decomposes as

3¢ can be seen also as a left B-module: for e € £ and b € B we set be = eb*.
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B @ B! (we admit also the trivial case: B® = B, B! = {0}). We will denote the degree of an
element b € B by db € {0, 1}.

Definition 2.7.6. A C*-B-module £ is graded if there is an element v € Autc(E) of order 2
(i.e. v2 =1) such that:

v(eb) =y(e)¥(b),  {y(er),v(e2)) = F((e1, e2)),
foralle,ej,es € E, b€ B.

From now on we will assume all C*-modules to be graded, possibly trivially. Given now two
(graded) C*-modules we define their tensor product. Let A, B be two Zs-graded C*-algebras, let
€ be a C*-A-module and F be a C*-B-module. Let C = A®B be the minimal C*-tensor product
of A and B; that is, the closure of A ® B in L(H ® H'), where H and H' are Hilbert spaces
carrying a faithful representation of A and B, respectively. In order to make C into a graded

algebra we define its multiplication as follows:
(al X bl)(a2 X bz) = (_1)8b18a2a1a2 ® b1by.
Definition 2.7.7. The completion EQF of £ ® F in the inner product

(e1® f1,e2 ® f2) = (e1, e2) @ (f1, f2)

is a graded C*-module over the algebra C = AR®B, with grading v = ve¢ ® yr. It is called the

exterior tensor product of £ and F.

Notice that the graded tensor product of maps ¢ € End’% () and ¢ € Endj(F),

(e@¥)(e® f) = (=) p(e) @ 9(f),
gives a graded inclusion
End} (£)@End3(F) — Endp (EQ@F)

which restricts to an isomorphism K4 (E)RKp(F) ~ Ko (EQF).
We have defined C*-modules and bounded operators on them. There is also a notion of

unbounded operators on C*-modules (see, e.g., [Lal [Wor91]), which allows to give an alternative
description of the K K functor (cfr. [BJ83]).

Definition 2.7.8. Let £ be a C*-B-module. A densely defined closed operator D : Dom(D) — &,
Dom(D) C &, is called regular if D* is densely defined in € and (1 + D*D) has dense range.

Definition 2.7.9. A regular operator D is symmetric if Dom(D) C Dom(D*) and D = D* on
Dom(D). If moreover Dom(D) = Dom(D*) it is called selfadjoint.

Lemma 2.7.10. A regular operator D : Dom(D) — & is B-linear and its domain Dom(D) is a
B-submodule of £.
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To a regular operator D : Dom(D) — £ we can associate two operators, called respectively

the resolvent and the bounded transform of D, as follows:
(D) = (1+ D*D)"'7?, (2.7.1)

b(D) = D(1+ D*D)"Y/2 (2.7.2)
Proposition 2.7.11. If D : Dom(D) — £ is a regular operator, then D*D is selfadjoint and
regqular. Moreover, Dom(D) is a core for D*D and Im(t(D)) = Dom(D).
Moreover, since t(D) =1 — b(D)*b(D), the following holds.
Corollary 2.7.12. A regular operator D is completely defined by b(D).

There is a useful characterization of regular operators [Wor91]. Let G(D) denote the graph
of D. Let v € Endj;(€ & £) be the unitary defined by v(e, f) = (—f,e). Then G(D) and vG(D*)

are orthogonal submodules of £ & £ and, moreover,

Proposition 2.7.13. A densely defined closed operator D : Dom(D) — &£, with densely defined
adjoint D*, is reqular if and only if G(D) @ vG(D*) ~E B E.

Remark 2.7.14. Whenever £ is a graded module, with grading v, we will always consider £ & £
as a graded module, with grading v/ = v & (—7).

2.7.2 KK-theory: bounded picture

We can now give a brief description of Kasparov’s K K-theory [Kas80]. An equivalent character-
ization, due to S. Baaj and P. Julg [BJ83], will be discussed in the next section. Let A, B be two
(eventually trivially) Zs-graded C*-algebras.

Definition 2.7.15. An A-B-bimodule £ is called a C*-A-B-bimodule if it is a C*-B-module. It
is called a graded bimodule if it admits a Zo-grading v which is compatible with the grading of A

and which makes it into a graded C*-B-bimodule.

Definition 2.7.16. Let £ be a countably generated graded C*-A-B-module, with grading operator
v, and let F € Endi(E) be an odd operator (that is YF = —Fv). Then (£,F) is a Kasparov
(A, B)-bimodule if, for all a € A, [F,a], a(F? — 1), a(F — F*) are B-compact operators; that is,
they belong to Kp(E). We will denote the set of Kasparov (A, B)-bimodules by E(A, B).

Definition 2.7.17. A Kasparov (A, B)-bimodule (£, F) will be called degenerate if, for any
a€A,

[F,a] = a(F* —1) = a(F* — F) = 0.
The set of degenerate Kasparov (A, B)-bimodules will be denoted by D(A, B).

Now we can introduce two equivalence relations on the set of Kasparov bimodules.

Definition 2.7.18. Two Kasparov (A, B)-bimodules (£, Fy) and (£, Fy) are operatorial homo-
topic if there exists a family (€, F]) of Kasparov (A, B)-bimodules with F| = Fy, F| = Fy and

such that t — F} is norm continuous.
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The notion of operatorial homotopy gives rise to an equivalence relation in £(A, B), which we

shall denote by ~,;. We can define also a homotopy transformation between Kasparov bimodules.

Definition 2.7.19. Two Kasparov (A, B)-bimodules (&, Fy) and (&1, F1) are homotopic if there
exists a Kasparov bimodule (£, F) € £(A, BRC([0,1])) such that, if we denote by ¢; : BRC(]0,1])
the evaluation map at i € [0,1], (€ ®¢, B, F @ 1) is unitarily equivalent to (&;, Fj), for j =0, 1.

The notion of homotopy between Kasparov bimodules gives rise to an equivalence relation in
E(A, B), which we shall denote by ~y,.

We can define the sum of two Kasparov bimodules as follows: for (&1, F1), (&2, F2) € E(A, B)

we set

(gl,Fl)@(EQ,FQ) = (51@52,F1 @FQ) (273)

This allows us to take the quotient of £(A, B) with respect to D(A, B). So the following definitions

of KK groups make sense.

Definition 2.7.20. The set KK(A, B) is defined as the quotient of the set of Kasparov (A, B)-
bimodules by the equivalence relation of homotopy: KK(A,B) = E(A, B)/ ~y.

Definition 2.7.21. The set I/(T((A,B) 1s defined as the quotient of the classes of Kasparov
(A, B)-bimodules, up to sum with a degenerate bimodule, by the equivalence relation of operatorial
homotopy: KK(A, B) = (£(A, B)/D(A, B))/ ~o.

Proposition 2.7.22. Both KK (A, B) and KK (A, B) are abelian groups w.r.t. ([2.7.3).

Proposition 2.7.23. KK (A, B) is a quotient of I/(\I/((A,B). If A and B are separable C*-
algebras then KK (A, B) ~ ﬁ((A, B).

Now let Cl; denote the j-th complex Clifford algebra. Then, for j > 0, we define:

KK;(A,B) = KK(A®Cl;, B),

‘ (2.7.4)
KKIi(A,B) = KK(A, B®Clj).

For j < 0, instead, we set:
KKj(A,B)=KK 9(A,B), KK/(A B)=KK_j(A,B).

In this way we unify the two cases, obtaining a unified K K-theory K K*(A, B).

Theorem 2.7.24. For any j € Z, KK’(—,—) is a bifunctor, contravariant in the first variable

and covariant in the second.

Moreover one can prove that K K*(C,B) and KK*(A,C) are naturally isomorphic to the
K-theory of B and to the K-homology of A, respectively. In particular, K K-theory groups share
with ordinary K-theory a property of periodicity. Indeed,

Theorem 2.7.25. The KK groups are periodic modulo 2: KK7(A, B) = KK'72(A, B), for any
jez.
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Proof. Tt comes from the periodicity of Clifford algebras, see [Kas8(], section 5, theorem 5.  [J
Remark 2.7.26. If instead of complex algebras and complex Clifford algebras we had considered
real ones, the periodicity would have been modulo 8 instead of modulo 2 [Kas80].

2.7.3 KK-theory: unbounded picture

Now we give a different characterization of K K-theory, which relies on unbounded operators on
C*-modules [BJ83].

Definition 2.7.27. An unbounded Kasparov (A, B)-bimodule is a pair (£, D) where £ is a

graded C*-A-B-bimodule and D is an odd selfadjoint regular operator on £ such that:

(i) all the commutators [D,al, for a in a dense subalgebra A of A, extend to adjointable operators
in Endj (&),

(i) for any a € A, arx(D) € Kp(€).

We will denote the set of unbounded Kasparov (A, B ® Cl;)-bimodules, up to unitary equiv-
alence, by ¥;(A, B).

Proposition 2.7.28. Let (£,D) € W1(A, B). Then (£,b(D)) is a Kasparov (A, B)-bimodule.
This implies that there exists a map 5 : Vi(A, B) - KK(A, B).

Proposition 2.7.29. The map f: V1(A, B) - KK(A, B) is surjective.

2.7.4 Kasparov products

Kasparov introducedE] two product operations in K K-theory. The first one is a bilinear pairing
between K K (A, D) and KK (D, B) (where, of course, A, B, D are graded C*-algebras):

Proposition 2.7.30. There exists a bilinear associative pairing
KKYA,D)®p KK’/(D,B) — KK (A, B).
We will usually refer to the product of proposition [2.7.30] as to the Kasparov product. The
second one is the external Kasparov product:

Proposition 2.7.31. For any graded C*-algebras A1, As, By, Bo there exists an associative bilin-
ear pairing
KK'(Ay,B)) ® KK’ (A, By) - KK (A @Ay, Bi®Bs).

In both the previous propositions the tensor product between KK groups comes from the

graded tensor product of modules.

Remark 2.7.32. The bilinear associative pairings of proposition [2.7.30] and [2.7.31] can also be

written in the following way:

KKz(A, D) ®D KKj(D, B) — KKZ'+]‘(A, B),

“See [Kas80], section 4, theorem 4.
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KKZ'(Al, Bl) X KKj(AQ, Bg) — KKZ'+J'(A1®A2, Bl®Bg)

respectively.

In [BJ83| S. Baaj and P. Julg showed that the external Kasparov product can be recovered

from the tensor product of unbounded Kasparov modules. Indeed,

Proposition 2.7.33. For i = 1,2 let (&;, D;) be unbounded Kasparov (A;, B;)-bimodules. Then
the operator D = D1 ® 1 + 1 ® Do extends to a selfadjoint regular operator, with compact resol-
vent, on E1®@E2. Moreover, the assignment (E1, D1) X (€2, D2) +— (£1®E2, D) determines a map
1(A1, B1) X ¢1(Ag, Ba) — 11 (A1®Ag, Bi®Bs) which makes the following diagram commutative:

V1(A1, B1) x ¥1(Az, B) Y1(A1®As, Bi®By)

o E

KK(A1,B)) ® KK(Ay, Bs) KK(A1®As, Bi®As)

(the bottom line is the external Kasparov product).

So the external Kasparov product can be recovered from the product of unbounded Kasparov
bimodules in a quite simple way. It took, instead, many years to come to an analogous result for
the Kasparov product of proposition The first result was that by D. Kucerovsky [Kuc97],
who gave a sufficient condition for an unbounded Kasparov (A, B)-bimodule to describe the same
class as the Kasparov product of the classes of an (A, D)-bimodule with that of a (D, B)-bimodule.
A full characterization of the Kasparov product in terms of unbounded modules has been achieved
later by B. Mesland [Mes11]; this characterization of Kasparov product was recently linked to the
formulation of gauge theories over noncommutative spaces [BMS13].

We conclude this short discussion of K K-theory noticing that the two Kasparov products of
proposition and proposition can be written as a unique bilinear coupling (also called

intersection product, cfr. [Kas80], section 4, theorem 3):
KK(Al, B ® D) XRp KK(D ® Ao, BQ) — KK(Al R Ay, B1 ® Bg), (275)

where, of course, the algebras A;, B;, D are graded C*-algebras, all the tensor products are graded

tensor products and the completions with respect to the minimal C*-norms are understood.
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CHAPTER 3

Spectral triples and spectral metric spaces

In the previous chapter of this thesis we reviewed some approaches to the study of topologi-
cal/differential properties of noncommutative spaces. In the last twenty years great attention has
been paid to the metric structure of noncommutative spaces. The main steps in this direction, of
course, are the one made by A. Connes and his collaborators [C88],[C94} [C95, [C96, [CCI6, [CMa07].
Connes introduced a formulation of spin geometry for noncommutative manifolds, based on spec-
tral triples (A, H, D), where A represents the algebra of smooth functions over a noncommutative
space, H the Hilbert space of L2-sections of the spinor bundle and D the Dirac operator (for the
geometry of spin manifolds see, e.g., [LM]). In this chapter we shall review the main aspects of
Connes’ formulation of noncommutative geometry. We shall discuss, furthermore, possible def-
initions of equivariance of a noncommutative geometry under a suitable set of transformations

(see, e.g., [PS0Q, [SO3]).

3.1 Connes’ axioms

We discuss, first of all, Connes’ definition of real spectral triples [C94] [C95, [C96, [(C0O0]. We
consider here only the more relevant aspects, and we refer to literature for a deeper treatment
[C94], [CMa07, [IGBEV]. In what follows A will always denote a unital complex *-algebra, and it
will represent the algebra of “smooth” functions over a noncommutative space. We recall that
the geometrical meaning of the hypothesis of the existence of the unit for the algebra A is that

of compactness of the underlying space.

Definition 3.1.1. A spectral triple for an algebra A is a triple (A, H, D), where H is a Hilbert
space carrying a representation of A by bounded operators (which we shall simply denote by
Y — ay, for any a € A, v € H) and D is a selfadjoint operator on H with compact resolvent,

such that for any a € A the commutator [D,a| is a bounded operator.
In the commutative case, when A is the algebra of smooth functions over a Riemannian spin
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manifold M, H corresponds to the Hilbert space of L2-sections of the spinor bundle, and D is the
Dirac operator, on the spinor bundle, associated to the Levi-Civita connection [LM]. So, given a
spectral triple (A, H, D), we will call H the space of spinors and D the Dirac operator.

One can introduce a notion of reality, and, together, an (algebraic) notion of dimension for a

spectral triple.

Definition 3.1.2. A real spectral triple of K R-dimension j, where j € Zg, consists of a package
(A, H, D, J,~v) when j is even and of a package (A, H,D,J) when j is odd, where (A, H,D) is a
spectral triple, J is antiunitary operator and v is a Za-grading on ‘H such that:

(i) for any a,b € A, [a, Jb*J ] =0;

(ii) J, D and v satisfy the following commutation relations:
J? = ¢eid, JD =¢'DJ

and, for j even,
Jy=¢"yJ, 4D =-Dy,

where e,¢',&" depend on the K R-dimension and are given in the table beloufl]

Table 3.1: Connes’ convention is marked by e

n|0]2[4]6[0]2[4[6|1]|3]|5]|7
e+ —1—|+|+|+|-]-|+|-]—-|+
I e e e A e B | I A e I A
I+ =1+ -+ -]+]-

[ ] [ [ ] [ ] o [ [ ] L]

The operator J will be usually called the real structure of the spectral triple. We will often
treat together the even and the odd dimensional case. So in general we will write (A, H, D, J,~)
for a real spectral triple, and we will assume v = idyg when j is odd.

Remark 3.1.3. Let (A, H,D,J,v) be a real spectral triple. Then the antiunitary operator J
determines a left action of the opposite algebra A° (or, equivalently, a right action of the algebra
A) on the Hilbert space H, given by

7 (b)Y = b = Jb* T 14 (3.1.1)

for any b € A and any ¢ € H. Now we can observe that condition (i) of definition is the
requirement that the action of A° commutes with the representation of A on H; that is, J maps
A into its commutant on H. Notice that this recalls the properties of Tomita-Takesaki involution
[Tak70].

Now that we have defined real spectral triples we discuss Connes’ requirements for a spectral
triple being a noncommutative geometry [C94, [C96, (GBEFV]. They consist of sixﬂ axioms, which

corresponds to different properties of ordinary smooth spin manifolds:

'See also [DD1].
2Actually one usually considers seven conditions, but we incorporated the reality condition into the definition
of real spectral triples.
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(1) Classical dimension

(2) Regularity

(3) Finiteness, projectivity and absolute continuity
(4) First order condition

(5) Orientation

(6) Poincaré duality

3.1.1 Axiom 1: classical dimension

The first condition we discuss is an analytic condition on the behaviour of the eigenvalues of the
Dirac operator D. Before stating the condition we recall briefly some tools of functional analysis.

Let H be a Hilbert space and K be the set of compact operators on H. Let also £' =
L(H) C K be the ideal of trace-class operators. We introduce the so-called interpolation idealsﬂ
between K and £!. Let T' be a compact operator, and let |T| = VT*T be its absolute value. Let
po(T) > i (T) > ... pun(T) > ... be the sequence of eigenvalues of |T'|, counted with multiplicity
and arranged in decreasing order. Define the partial sums of eigenvalues as follows: for any
N e N,

N-1
on(T) = pa(T).
n=0
Notice that the functions oy are subadditive: for any 71,75 € K, on(T1+T2) < on(Th)+on(T3).

Definition 3.1.4. For any p € (1,00), the interpolation space LPT = LP>) s the space of

compact operators T such that NP~V/Pan (T) is a bounded sequence.

Lemma 3.1.5. Let T be a compact operator on H. Then T belongs to LPT if and only if
1
in(T) = O(n ).

Lemma 3.1.6. Fach LP is a two-sided ideal in L(H). Moreover, for any 1 < p1 < p2 < 0o we

have the inclusion
[}71-‘:— C £P2+.

We can put a norm on L£PT:

1
o175 oV (D)

T, = su
Il = sup

Such a norm allows us to define the ideal £€+ = L5 as the norm-closure of the finite rank

operators in £P°°. It turns out that a compact operator T' belongs to Eg’oo if and only if p,(T) =
o(n=1/7).

Next, we extend the definition of £PT to the boundary point p = 1. We set:

LM =L ={T e K|on(T) = O(log N)}.

3See [C94], TV.2.a.. See also [VT9, [VEI].
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We can put a norm also on £F:

171,00 = sup on(T).
N>2

log N

We can also define the norm-closed ideal £(13+ = Eé’oo

1(T) = oflog N).

Now we can state the first of Connes’ axiom.

: one can see that T € £y if and only if

Definition 3.1.7. A real spectral triple (A, H, D, J,~) fulfils the classical dimension property if
there is an integer p such tha D=1 belongs to LPT but not to £8+. If such a p exists, it is
called the classical dimension of the triple. If both A and H are finite-dimensional, the classical

dimension of the triple is taken to be zero.

Usually one requires that, if j is the K R-dimension of the triple and p its classical dimension,
then j = p (mod 8). But we admit also the case in which such condition is not fulfilled.

Let us conclude this section by mentioning one of the most relevant consequences of the
classical dimension property; namely, the possibility of defining a functional on A using the
operator D~!. In order to discuss the construction of such a functional we need to recall briefly
what is a Dixmier trace. For the details see, e.g., [Dix66] and [C94], IV.2.5. Let ¢*°(N) be
the space of bounded sequences. Let w : £°°(N) — C be a linear form satisfying the following
conditions:

(a) w{an}) >0if a,, >0,
(b) w({an}) =limay, if a,, is convergent,
(¢) wlag, a1, a0, az,as,a3,...,...) =w({ay}).

Then we can give the following definition.

Definition 3.1.8. Let T € L. We define

ﬂmﬂﬁ_w<b;V2iMMTO. (3.1.2)

=0

Try, s called Dixmier trace relative to the form w.

Proposition 3.1.9. Consider T € L' and let Tr,, be a Dizmier trace. Then:

(i) o T >0 then Tr,(T) > 0;

(ii) if S is any bounded operator on H, then Tr,(TS) = Tr,(ST);

(iii) Tr,(T) is independent on the choice of the scalar product on H, i.e. it depends only on the
Hilbert space H as a topological vector space;

(iv) Tro(T)=04if T € L}*.

Proof. See [C94], IV.2.3, proposition 3. O

“In all this thesis when we speak of D™! we mean the inverse of the Dirac operator on the orthogonal complement
of its kernel, in the case 0 belongs to the spectrum of D.
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In order to discuss the dependence of Tr,, on the choice of w, we introduce the so-called Cesaro

mean. Given a function f: R™ — C we define its Cesaro mean to be the function

1 A du
M = o [ 1

Proposition 3.1.10. The following facts hold for Dizmier traces of compact operators on an

Hilbert space H.

a. Let T € LY, T > 0. Let f: Rt — C be the step function whose value in (N — 1,N) is
loglN nNz_Ol pn(T). Then Tr,(T) is independent of w iff Ms(X) converges for A — oco.

b. Let M = {T € L'* | Tr,(T) is independent of w}. Then M is a linear space, invariant under

conjugation by invertible operators on H.

c. M contains Ly and it is closed w.r.t. ||-|1,00-
Proof. See [C94], IV.2.3, proposition 6. O

A geometric interpretation of Dixmier trace can be obtained by noticing that it is related to
the notion of residue of pseudo-differential operators [Man79, [Wod84l [Gui85]. Indeed we have
[C88, [C94]:

Theorem 3.1.11. Let M be an n-dimensional compact manifold and let T be a pseudo-differential
operator of order —n acting on sections of a complex vector bundle E on M. Then:

(i) the corresponding operator T on H = L*(M, E) belongs to the ideal L1 (H),

(ii) the Dizmier trace Tr,(T) is independent of w and it is equal to the residud’| Res(T).

Now, given T € £, T > 0, and a Dixmier trace Tr,,, we can define a positive linear functional
Yw : L(H) — C by:
vw(a) = Tr,(aT).

In particular, if we have a Dirac operator D s.t. D~! belongs to £P1, then we can define a

linear positive functional o by setting:
D — —p
@, (a) = Try(alD[7P).

Then one can prove the following result (see [GBEV], theorem 10.20):

Theorem 3.1.12. Let (A, H, D) be a spectral triple of classical dimension p and let Tr, be any

Dizmier trace on H. Then the functional
a — Try(a|D|7P)
is a hypertrace on A; that is,
Try(aT|D|™P) = Try(Ta|D|™P),

for any bounded operator T on H.

SFor the definition of residue see, e.g., [GBFV], chapter 7 (especially theorem 7.12).
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3.1.2 Axiom 2: regularity

We require the real spectral triple (A, H, D, J,~) to be regular:

Definition 3.1.13. Let 6 be the derivation on L(H) defined by:
o(T) = |1 DI, T7.

A spectral triple (A, H, D) is said to be regular if, for any a € A and k € N, both a and [D,a]
belong to the domain of 6%.

Let us consider now the space of smooth vectors H* = (0, Dom(DF¥): if the triple is regular
one can proveﬂ that H* is a left .A-module. Moreover[], if a triple (A, H, D) of classical dimension
p is regular, then the functional

T — Tr,(T|D|7P)

defines a hypertrace on the algebra generated by A and [D, AJ.

The regularity of a spectral triple is associated to the existence of a so called algebra of
generalized differential operators [CM95|, [Hig04], Hig06|, [Otgl1]. Since we will use this fact later
in this thesis, we give a sketch of these notions. Let H be a Hilbert space and let A be an
invertible, selfadjoint (usually unbounded) operator on H. Then we can introduce the following

definitions.

Definition 3.1.14. The A-Sobolev space of order s € R, denoted W* = W*(A) = W*(A,H), is
the Hilbert completion of Dom(Ag) with respect to the inner product given by

for any &,n € H, where (-,-) simply denotes the inner product of H.

Definition 3.1.15. The space of A-smooth vectors of H is

W = (W= ﬁ W = ﬁ Dom(A™).
seR n=0 n=0

Now we consider linear operators P : W — W, The algebra of these operators will be

denoted by End(W®).

Definition 3.1.16. A linear operator W — W™ has analytic order at most t € R if it extends
by continuity to a bounded linear operator W5t — W?* for any s € R.
We write Op' = Op'(A) = Op'(A,H) for the class of operators of analytic order at most t.
We define then
Op =Op™ = U Op'

teR

See [GBEV], lemma 10.22 and section 10.5.
"See theorem [3.1.12| and [GBEV], corollary 10.21.
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and
Op™ > = ﬂ Op!
teR
Lemma 3.1.17. The operators with finite analytic order form a filtered algebra:
(i) Op® C Op’ for s <t,
(ii) Op®-Op' C Op*tt.
In particular, Op° is a subalgebra of Op, and Op~>° C Op and Op! C Op, for t < 0, are

two-sided ideals.
Following Higson, we give the following definition.

Definition 3.1.18. An N-filtered subalgebra D C Op(A) is called an algebra of generalized

differential operators if it is closed under the derivation [A,-] and satisfies
[A’ Dk] - Dk+1
for any k € N,

Let now (A, H, D) be a spectral triple. Let A = D? 4 1, so that D € Op'(A), and let W
be the space of A-smooth vectors. Assume that W ° is stable under the left action of A. Then
define inductively an N-filtered algebra D C End(W°) as follows:

(1) DY is the subalgebra generated by A + [D, Al
(2) D' =D° + [A,D°] + DA, DY,
k—1
(3) DF =DF 1+ DI . DFI 4 [A, DM 4+ DA, DY, for k > 2.

j=1
Then we have the following result.

Theorem 3.1.19. [Higson] The spectral triple (A, H, D) is reqular if and only if D* C Op* for
any k € N.

Proof. See [Hig00], theorem 4.26. For a different proof see [Otgl1], theorem 2.4 and section 4. [

There is also a more general criterion of regularity for a spectral triple (actually the result
is even stronger than the one we discuss here, but the full version of the theorem would require

some more stuff to be introduced, and this is out of the purposes of this thesis):

Theorem 3.1.20. Let (A, H, D) be a spectral triple. Let A = D?+ 1 and let § be the derivation
[A%, :|. Then the following conditions are equivalent:

(a) the spectral triple (A, H, D) is regular;

(b) the set A+ [D,A] is contained in Dom™(4);

(c) there exists an algebra of generalized differential operators containing A+ [D, A] in degree 0.
Proof. See [CM95], appendix B, [Hig04], theorem 3.25 and [Hig06], theorem 4.26. O
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3.1.3 Axiom 3: finiteness, projectivity and absolute continuity

The regularity condition implies that H> is a left A-module. We require something more. The
additional requirements are the following ones: the first is the so-called finiteness (and projectivity)
property: the algebra A is required to be a pre—C*—algebraﬁ and the space of smooth vectors H>°
a finitely generated projective left . A-module. One immediate consequence of this property is that
A is a Fréchet pre-C*-algebra [GBFV]. This implies that the K-theory of A is the same as that
of its C*-completion (see theorem . The second one is the absolute continuity property: we
require that the following equality,

(€. an) = Try, (al€)|DI?),  Vae AVEn € He,

defines a hermitian structure (-|-) on the module H, [C96, [C13].

3.1.4 Axiom 4: first order condition

The fourth requirement is that the real spectral triple (A, #H, D, J,~) satisfies the so-called first
order condition, that is the requirement that A° commutes not only with .A but also with [D, A]

so that, for any a,b € A, we require the following:

([D,a], Jb*J '] = 0. (3.1.3)
Notice that, using Jacoby identity, one can show to be equivalent to

(D, Jb*J 1], a] = 0;

we see, therefore, that the first order condition is “symmetric” in A and A°.
If a spectral triple fulfils the first order condition, we can define a representation of A ® A°-

valued Hochschild chains by bounded operators on the Hilbert space H:
(a0 @) @ a1 @ ... ®ax) = agJb* T [D,a1]---[D, ay). (3.1.4)

This fact allows us to introduce the orientation axiom.

3.1.5 Axiom 5: orientation

Let (A, H, D, J,7v) be a real spectral triple of K R-dimension j. We recall that if j is odd we set
v = id. In the case of spin geometry of a smooth manifold, the operator v corresponds to the
Clifford representation of an orientation form. So, in the noncommutative case, we require a real

spectral triple to fulfil the following property:

Definition 3.1.21. A real spectral triple (A, H, D, J,~) of classical dimension n fulfils the ori-

8See definition
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entation condition if there erists a Hochschild n-cycle ¢ € Zr(A, A® A°) such that

mp(e) = 7.

3.1.6 Axiom 6: Poincaré duality

Let (A, HF, F,7) be an even Fredholm module [C85] [C94, [GBEV] over A. Let 7 : A — L(HF)
be the representation of A. Then the Hilbert space H!" splits as HF = Hf ® HE and we can

write the representation m and the operator F' as

71_(a):<7r‘*'(a) 70 >’ F:(O P>’
0 7 (a) Q 0

for suitable operators P, Q. Now, for any n > 0 we can extend the Fredholm module (A, H'', F,~)
to a Fredholm module (A, HE', F,,,v,), where

HY=HoC", F,=F®id, v,=y®id

The representation of A on HL is simply 7, = 7® 1, and 7, can be written as 7} ® 7, . Let now
p € M, (A) be a projection, so that it defines an element of K(.A), and consider the following
operator:

o (p)Pr, (p) : HY — Hf

It is a Fredholm operator [GBEV] [Pas01], so its index is well-defined. Moreover one can prove
that it depends only on the class of p in Ky(.A), therefore we can use it to define a map Ky(A) — Z
as follows:

(I}, H", F,7)) = Index(m; (p) P, (p)).- (3.1.5)

Now consider an even real spectral triple (A, H, D, J, ) satisfying the previous axioms. Then
H is a module over A ® A°. Moreover, if we define an operator F' : H — H simply taking
F = D|D|7}, then (A ® A°,H,F,v) is an even Fredholm module. Therefore the analogue of
defines a map Ky(A ® A°) — Z, and we can see it as a Z-valued pairing between Ky(.A)
and Ky(A°). And so it allows us to define an additive form (-,-) : Ko(A) x Ko(A) = Z. Such a
pairing can be written [GBEV] [Pas01] in the following form:

([p), [a]) = Index(7* (p ® ¢°) D17~ (p © ¢°)) (3.1.6)

where D = DT @ D~ accordingly to 72 = 1.
Consider instead an odd real spectral triple (A, H, D, J) satisfying the previous axioms. Let
u € Mp(A) and v € Mj(A) be two unitaries, defining classes in K;(A). Then U = u ® v° is a
unitary operator on H ® C¥. Let now @ be the operator defined as @ = 1(1+ D|D|™!) ® id.
Then QUQ is a Fredholm operator on Q(H ® C*) [GBEFV]. This allows us to define an additive
form on K;(A) by
([u], [v]) = Index(QUQ). (3.1.7)
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3. Spectral triples and spectral metric spaces

Now we can formulate the last of Connes’ axioms, the so-called Poincaré duality condition: we
require that the pairing on K;(A), defined either by (3.1.6) or (3.1.7)), is non-degenerate. Poincaré
duality can also be formulated using K K-theory, see section

3.2 Differential calculus

In Connes’ noncommutative geometry a real spectral triple encodes the (Riemannian) geometry
of a noncommutative space. In this section we discuss the first geometric aspect associated to a
spectral triple: the differential calculus. While in differential geometry there is a unique reasonable
choice for the differential calculus over the algebra of smooth functions on a smooth manifold,
i.e. the ordinary de Rham calculus of differential forms, there is no such privileged choice in the
noncommutative setup: a priori, the only canonical choice would be to consider the universal
differential calculus. But it is clear that this choice is not consistent with the classical case, and
S0 it can not be considered a good candidate for a differential calculus over noncommutative spin
manifolds. The situation changes if we are given a spectral triple over a noncommutative algebra
A: in this case there is a way to associate to it a first order| differential calculus.

Let us begin by taking a look at the commutative case. So, consider a compact smooth
manifold M and let A = C°°(M) be the algebra of smooth functions over it. Let us denote by
Q! (A) the set of smooth 1-forms over M. Now consider a Clifford module € over M [BGV],IGBFV].
Then there is a map ¢ : Q!(A) — End(A), called Clifford map, and we have:

Proposition 3.2.1. If D is a generalized Dirac operator on a selfadjoint Clifford module £ then
[D,a] = —ic(da).

This result suggests that we can use the Dirac operator to define a differential calculus. Let
(A,H,D) be a spectral triple. We recall that any first order differential calculus over A is
determined by a sub-bimodule N of Q' A, where Q' A is the first order universal calculus over A.
We set

Np = { Zajdbj cQlA ‘ Zaj [D,b;] = o} (3.2.1)

where, of course, we regard Zj a;[D,b;] as an operator on H. This is the sub-bimodule which

determines the calculus we were looking for:
Definition 3.2.2. The Dirac operator based differential calculus over A is Qh(A) = QLA/Np.

Then we can find an analogue for the Clifford map: it can be identified with the map 7p :
Q5 (A) — L(H) defined by
mp(adb)y = alD, b]y. (3.2.2)

This determines a left action of Q%) (A) on H. Moreover, if (A, H, D, J) is a real spectral triple,

then we can define also a right action of QL (A):

75 (adb)yy = J(a[D,b])* T 4. (3.2.3)

9 Actually this construction extends to higher order differential forms, see e.g. [C94], VI.1.1.
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3.3. Inner fluctuations of the Dirac operator

We notice that if the spectral triple fulfils the first order condition then 7p(n) commutes with
the action of A° and 79,(n) with that of A for every 1-form n € Q},(A).

3.3 Inner fluctuations of the Dirac operator

In this section we briefly discuss the so-called inner fluctuations of a Dirac operator. We shall not
enter here into the details of the motivations which yield to the construction below, we simply
mention that it is connected with Morita equivalench_G]; in particular, the fact that each algebra
is Morita equivalent to itself shows that it is geometrically significant to consider, given a Dirac

operator D for an algebra A, acting on a Hilbert space H, operators of the form
D' =D+ A,

where A = A* € Q}D (A) is a selfadjoint operator acting on H on the leftE} The presence of a real
structure allows different modifications of the Dirac operator.

Let be given a real spectral triple (A, H, D, J,7). Then consider the following definition
[CCMOT, [CMa07].

Definition 3.3.1. The inner fluctuations of the Dirac operator D are given by
Dw— Dy=D+A+eJAT L,

where A = 3. a;j[D,bj] is a selfadjoint one-form A = A* € QL (A) and &' is defined by JD =
e'DJ.

Proposition 3.3.2. The data (A, H,Da,J,7y) define a real spectral triple with the same KR-
dimension of the triple (A, H, D, J,).

Proof. The one-form A, which is seen as an operator on H, is a bounded operator. Hence D4
is a bounded (selfadjoint) perturbation of D; in particular its resolvent is compact, since so is,
by hypothesis, the resolvent of D. Next, the commutation relations involving only J and v are
unchanged. Moreover, in the even dimensional case, so is also the commutation relation between
~ and the Dirac operator. Hence we have only to check that the commutation relation between

J and Dy is the right one; but this follows by direct computation:
DpyJ =DJ+AJ+JA=EJ(D+TJ1AT+A) = J(D +JAT L+ A) =Dy,

O]

Remark 3.3.3. Here we are not requiring the triples to fulfil the first order condition. Indeed, even
if the original triple fulfilled it, this would be, in general, no longer true for the triple with the
fluctuated Dirac operator D 4. Moreover, the existence of the orientation cycle for the triple with

operator D4 is not guaranteed by the existence of the orientation cycle for the original triple,

108ee [CMa(7], chapter 1, section 10.8. See also [CCO6b], section 2.
HIf A = > a;dbj, then it corresponds to the operator 3°; a;[D, b;], see the discussion in the previous section.
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3. Spectral triples and spectral metric spaces

since the fluctuation could not commute both with the elements from A and from .A°. Hence also

the orientation condition is, in general, not preserved by inner fluctuations.

Consider now the unitary group U(A) (i.e. the set of the unitary elements of the algebra A).
We can define the adjoint action of a unitary u € U(A) on H by:

Ad(u)(¥) = uwpu* = JuJ tu.

By direct computation, it can be proved (see [CMaQ7], chapter 1, section 10.8, proposition 1.141)
that:

Proposition 3.3.4. For any inner fluctuation D — Da, A= A* € QL,, of the Dirac operator D
and for any unitary u € U(A) we have:

Ad(u)DAAd(u*) = D’*m(A)?
where vy, (A) = u[D, u*] + uAu*.

This last proposition suggests that, if we view a unitary u € U(A) as a gauge transformation of
some kind, we can identify the one-form A with a gauge potential. This is, indeed, the assumption
made by Connes, Chamseddine, Marcolli et al. (see, e.g., [C96l [CC96, [CCI7, [CCMO07, [CMa07,
CCO08]) in their attempt to recover the Standard Model of elementary particles as a pure gravity
theory on a noncommutative space: in their model the (unimodula@ inner fluctuations of the

Dirac operator correspond to the gauge bosons of the SM.

Remark 3.3.5. Inner fluctuations do not compose properly; that is, inner fluctuations of inner
fluctuations of a Dirac operator D can no longer be inner fluctuations of D themselves. Indeed, the
commutators of D and D4, respectively, with elements from A in general, will differ, so the space
of differential 1-forms Q}, and QlDA (A) will not coincide. A possible way to overcome this issue
has recently been proposed in [CCS13|, where are considered fluctuations with also a quadratic
term, which violates the first order conditions but allows to obtain a set of transformations closed

under composition and invariant with respect to conjugations by a unitary element of A.

3.4 Distance between states

Now we show how, given a spectral triple over a noncommutative space, it is possible to get some
information on the metric structure defined by the spectral triple. Let us begin considering the
commutative case. Let M be a compact connected Riemannian spin manifold and let D be the
Dirac operator on its spinor bundle [C94, BGV]. Let H be the Hilbert space of L2-spinors on
M; then C*°(M) acts on H by multiplication and D is a selfadjoint operator on H such that
each commutator [D, f], for f € C°°(M), is a bounded operator (equal to ¢(df), where ¢(+) is the
Clifford map). Then we have the following result.

12This is a technical assumption which corresponds to the fact that the gauge group SU(3) x SU(2) x U(1) of
the SM is the direct product of special unitary groups and not of unitary groups.
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3.5. Equivariant spectral triples

Proposition 3.4.1. Let d(-,-) be the geodesic distance function on M. Then, for any two points
p,q € M, we have

d(p,q) = sup{|f(p) = f()| | f € C=(M), [|[D, f]]| <1}.

The points of M can be identified with the pure states on C(M) and d can be seen as a
distance on the space of states of the C*-algebra C'(M). Consider now a spectral triple (A, H, D)
over a (noncommutative) pre-C*-algebra A. Let A denote the C*-completion of A. Then we can

define a distance on the space of states on A in the following way.

Definition 3.4.2. For any two states ¢, on A we define their geodesic distance to be

d(p, ) = sup{[p(a) —P(a)| | a € A, [[[D,a]]| < 1}.

3.5 Equivariant spectral triples

In this section we discuss the notion of symmetries of real spectral triples. Making a comparison
with the commutative case, we can identify the group of diffeomorphisms of a differentiable
manifold with that of automorphisms of the algebra of smooth functions. When we consider a
noncommutative space we consider the more general case of Hopf algebra symmetries. This yields
to the definition of H-equivariant real spectral triple [PS98| [PS00, [SO1l [S03].

When dealing with Hopf algebra symmetries of a real spectral triple (A, H, D, J,7) there
are two possibilities: the Hopf algebra H can either act (conventionally on the left) or coact
(conventionally on the right) on the algebra A, therefore we shall consider both cases.

We begin from the former. Let H be a Hopf *-algebra acting on the left on the algebra A.

Definition 3.5.1. A spectral triple (A, H,D,~) is H-equivariant if there is a dense subspace
V C H with dense intersection with the domain of D such that V is an H-equivariant A-module
and, for every h € H, the Dirac operator and (in the even case) the Zs grading v are equivariant:
[v,h] =0 and [D, h] = 0 on the intersection of V with the domain of D.

In the case of real spectral triples we add the following requirement.

Definition 3.5.2. A real spectral triple (A, H, D, J,~) is H-equivariant if (A, H,D,~) is an

H -equivariant spectral triple and, moreover, for any h € H,
JhJ ' = (Sh)*

on the dense subspace V C H.

One of the direct consequences of the equivariance of a spectral triple is that also the space of
differential forms is an equivariant module. We point out that the notion of equivariance which
we are talking about is different from that introduced by Woronowicz [Wor89] for the differential
calculus of an H-comodule algebra; indeed, here we are considering an action of the Hopf algebra

H on an algebra A, and not a coaction.
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3. Spectral triples and spectral metric spaces

Definition 3.5.3. A bimodule of differential 1-forms Q'(A) is an H-equivariant differential

bimodule if it is an H -equivariant bimodule and the action of d intertwines with that of H:
d(h>a) =h>da

for any h € H and any a € A.

Lemma 3.5.4. Let N be the sub-bimodule defining a general differential calculus Q*(A). Then
QY A) is an H-equivariant differential bimodule if and only if N is H-invariant; that is, H>N C
N.

Proof. See [S03|, corollary 2.21. O

Proposition 3.5.5. Let (A,H,D,v) be an H-equivariant spectral triple. Then Qh(A) is an

H -equivariant differential bimodule.

Proof. Let us define the action of H on Q' A simply by
hadb = (h(l) > a)d(h(2) > b)

Then the thesis follows directly from the previous lemma and the equivariance of the Dirac

operator D. O

Now we consider the second case. Let A be a left H-comodule algebra, H being a Hopf
*-algebra, and denote by Ay the coaction. Consider a real spectral triple (A, H, D, J,~v) (v =id
in the odd case) and assume that there is a dense subspace V' C Dom(D) of ‘H, stable under the
action of A and D, which is a left H-equivariant .A-module; denote then by py, the left coaction
of H on V. Then we give the following deﬁnitiorﬂ

Definition 3.5.6. The real spectral triple (A, H, D, J,~) is H-equivariant if:
(i) (proD)v = (id® D)o pr(v). That is, (Dv)(_1) ® (Dv) ) = v(—1) ® Dv(gy;
(ii) (proJ)v=("®J)opr(v). That is, (Jv)—1) @ (Jv)) = U1y ® J();
And, in the even dimensional case,

(iii) (provy)v = (id®~)opr(v). That is, (Yv)(—1) @ (Yv)(0) = V(1) ® YV(0)-

3.6 Spectral metric spaces

In Sectionwe saw that a spectral triple (A, H, D) over a pre-C*-algebra A defines a distance dp
on the states space of the C*-completion A of A (see definition [3.4.2)). Such a distance induces a
tolopogy on the space S(A) of states over the C*-algebra A. The space S(A) is naturally endowed
with the weak-* topology [Rul, and if we consider the canonical spectral triple (C*°(M), L*(S), )
over a Riemannian manifold M we can notice that the Dirac operator J) induces exactly the weak-

* topology on S(C(M)) [Kan42, KanRub57]. So one can find natural to consider noncommutative

BDefinition is a slightly weaker version of the notion of equivariance, with respect to a coaction, adopted,
e.g., in [Gos10l, [(BDD11].
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spaces, endowed with suitable spectral triples, which fulfil this property: they are usually called
(compact) spectral metric spaces or quantum metric spaces (compact because we consider unital
algebras). In this section we recall briefly the main results about these spaces; we refer to literature
(especially to Mark Rieffel’s works) for a complete discussion [C89, [Ri98, [R199, Ri02| [Ri04].

In this section, and only in this section unless explicitly specified, a spectral triple (even or
odd, it does not matter here) is a triple (A4, H, D) where A is a unital C*-algebra, 7 : A — L(H)
is a faithful representation of A on a Hilbert space H and D is a selfadjoint operator on H such
that (1+D?)~'/2 is a compact operator and there is a dense unital *-subalgebra A C A such that
the domain of D is invariant under the multiplication by m(a) and such that [D, w(a)] extends to
a bounded operator for any a € A. We will often omit the representation 7, so that m(a) will
simply be denoted by a.

Let us now give the following definition (see |[Ri98] and references therein).

Definition 3.6.1. A Lipschitz seminorm over a unital C*-algebra A is a seminorm L defined on

a dense subalgebra A of A such that it satisfies the Leibniz property:
L(ab) < L(a)[[b][ + [|al[ L (D).
Given a Lipschitz norm over A we can define a pseudometric over S(A) in the following way:
dr (w1, ws) = sup{|wi(a) —wz(a)| | a € A, L(a) < 1}. (3.6.1)

This allows us to give the following definition.

Definition 3.6.2. A Lipschitz seminorm over a unital C*-algebra A is called a Lip-norm if
L(1) =0 and if dr, induces the weak-* topology on S(A).

If L is a Lip-norm over A then (A, L) is called a compact quantum metric space.
Now, given a spectral triple (A, H, D), we can use the Dirac operator to define a Lipschitz

seminorm on A as follows:

Lp(a) = ||[D,m(a)lll, (3.6.2)

for any a € A. The associated pseudometric dr,,, is nothing else than the distance dp. So, if Lp
is a Lip-norm then dp induces the weak-* topology on S(A) and (A, Lp) is a quantum metric
space. In this case we will call (A, H, D) a compact spectral metric space.

We conclude this section by giving a characterization of Lip-norms [Ri98 [Ri199, HSWZI11].

Theorem 3.6.3. Let L be a Lipschitz seminorm over a unital C*-algebra A and let dp be the
associated pseudometric on S(A). Then dy, induces the weak-* topology (i.e. L is a Lip-norm, if
L(1) =0) if and only if:

(1) dp is bounded;

(ii) the set L1 ={a € A| L(a) <1, |la|]| <1} is totally bounded in A (w.r.t. |-||).

Proof. See |[Ri98], theorem 1.9. O

Remark 3.6.4. Condition (ii) of theorem is equivalent to require that the image of £; is
totally bounded in A/C1.
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3.7 Spectral triples, K K-theory and Poincaré duality

To a Riemannian spin manifold (M, g) we can associate two classes in Kasparov K K-theory
[LRV12]. The first one is the so-called fundamental class A € KK(C(M) @ CI(M),C); it is
representedlﬂ by the unbounded Kasparov bimodule (Ha,d + d*), where Hy = LQ(A'T{:‘M ,9)
and d+d* is the Hodge-de Rham operator. The second one is a class p € KK(C(M)®C(M),C)
and it is represented by the unbounded Kasparov module (#, D), where H = L?(S) is the space
of L?-spinors and D is the Dirac operator associated to the Levi-Civita connection.

In noncommutative geometry a similar result holds: it is possible to associate to a real spectral
triple two K K-theory classes as above. Since in this thesis we shall not deal with Riemannian
noncommutative manifolds (in the sense of [Lord04, [ILRV12]), we consider here only the class p,
which is associated to the spin structure of the manifold.

Hence, consider an even real spectral triple (A, H, D, J,~), fulfilling the regularity and the
finiteness condition, so that A is a Fréchet pre-C*-algebra. Denote by A its C*-completion. Then
the real structure J determines an action of A ® A° on H. Notice now that the operator b(D)
is an odd regular operator on the graded (with grading =) Hilbert space H and, moreover, the
analytic properties of the Dirac operator imply that, for any a € A, the commutator [D,a] is
bounded and the operatorm ar(D) is compact. It follows that (#, D) is an unbounded Kasparov
(A® A°, C)-bimodule and so we can define p € KK(A® A°,C) to be its equivalence class. Notice
that this means that u is the class of the bounded Kasparov bimodule (H, b(D)).

The construction of the fundamental class 1 associated to an odd real spectral triple (A, H, D, J)

requires some more work [LRV12]. First of all we “double” the triple as follows. Let Cl; be the

0 —
Clifford algebra generated by the 2 x 2 matrix ( . !
i

(A=A® A° @Cl;,H =H®C? D' +), where D’ and v are the operators

D,:DO’ 7,:01.
0 -D 10

This triple then defines a class p inlﬂ KK'(A®A°,C) ~ KK°(A® A°®Cly, C), which we assume
to be the fundamental class associated to the real spectral triple (A, H, D, J).

> . Then we consider the spectral triple

The existence of the fundamental class allows to give a different characterization of Poincaré
duality [LRV12]. Indeed, given an (even or odd) real spectral triple (A, H, D, J,v), defining a
class p € KKI(A® A°,C) (j = 0 if the triple is even, j = 1 if it is odd) we can reformulate the
Poincaré duality condition in the following way: the fundamental class p determines, for each
1=0,1, an isomorphisrrﬂ

—@ap: KKY(C,A) - KK™(A°,C) ~ KK (A,C).

1See [Kas88), 4.2.
15¢(D) and b(D) denote, respectively, the resolvent and the bounded transform of D, see equations (2.7.1)),

*.
"Here we are using the periodicity properties of K K-theory, see theorem [2.7.25

"With ®4 we mean, in this section, the minimal completion of the graded tensor product over the algebra A,

see section @
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CHAPTER 4

Quantum principal bundles

The main objects we shall deal with in this thesis are quantum principal bundles (with a Lie group
G as structure group), i.e. noncommutative spaces which can be seen as principal fibrations over
a noncommutative space, with fibres described by Hopf algebras (of smooth functions over G).
Quantum principal bundles were first introduced by T. Brzezinski and S. Majid [BM93] as first
steps towards a development of gauge theories over noncommutative spaces based upon quantum
groups and principal fibrations. Since then many developments have been made [Haj96, BH99.
DGHO1, BHO04, HKMZ11l, BH09, BZ12).

Since one can consider quantum groups as noncommutative generalizations of groups, quantum
principal bundles can be defined to be H-comodule algebras, with H a Hopf algebra, fulfilling a
set of conditions which correspond to some of the usual properties of principal G-bundles [KN]. It
is possible, actually, to consider a more general definition, identifying quantum principal bundles
with principal coalgebra extensions, but since in this thesis we shall work with quantum principal
bundles with classical structure group, we shall not discuss this part. Since the earliest works
[BM93], it was noticed that, as one would like to introduce also a notion of connection on quantum
principal bundles, it is necessary to take into consideration the first order differential calculi of
the algebras involved. So we can distinguish two different situations: in the first, one considers
each of the algebras involved to be endowed with its universal differential calculus; in the second,
instead, one considers more general calculi and then introduces a notion of compatibility of the
calculus on the total space of the bundle with the calculus on the Hopf algebra.

In the first part of this chapter we shall recall the different formulations and the evolution of
the notion of quantum principal bundle. We shall also give the definition of quantum principal
bundles with general calculus. The second part, instead, is dedicated to the study of two classes
of quantum principal bundles: the cleft bundles, which are the noncommutative counterpart of
trivial bundles, and the T™-bundles. We shall recall, for the former, that they are related with
crossed product algebras; for the latter, instead, we shall show how requiring the compatibility

of the differential calculus over the total space of the bundle with the de Rham calculus on T"
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4. Quantum principal bundles

yields to an alternative description of noncommutative principal toral fibrations and of strong
connections. In particular, we shall see how a strong T"™-connection can be equivalently described
by a family of n 1-forms on the total space of the bundle, recovering in this way a more ”classical”
description of strong connections. Part of these results will be extended, in chapter|8] to quantum

principal G-bundle, G being a compact, connected, semisimple Lie group.

4.1 Historical overview

We begin the part of this thesis dedicated to the general theory of noncommutative bundles
with a historical overview on the evolution of the definition and the concept itself of quantum
principal bundles. Our discussion will not be exhaustive; we refer to literature [BM93|, [Dur93,
Dur96al, [Haj96| Dur97al, BH99, [DGHO1l, BH04, HKMZ11l, BH09, BZ12] for a more comprehensive
treatment. Since Woronowicz’s works [Wor87, Wor87bl, [Wor89], (compact) quantum groups are
considered the natural noncommutative generalizations of (compact) Lie groups. On the level of
algebras, quantum groups are described by Hopf algebras and hence a candidate for noncommu-
tative bundles are algebra extensions by Hopf algebras. This was the approach adopted by T.
Brzezinski and S. Majid, in their seminal paper [BM93].

Definition 4.1.1. Let H be a Hopf algebra and A a (unital) right H-comodule algebra, with
coaction Agr. Let Tr: AQ A — A® H be the map

Tr = (m®id)o (id ® Ag). (4.1.1)

Tr will be called the canonical map. Then A is a quantum principal bundle (with universal

AH if the following conditions hold:

differential calculus) over the invariant subalgebra B =
(i) Tg is surjective;

(ii) denote by T the restriction of Tg to QLA =ker(m) C A® A; then ker T C A(Q'B)A.

In [BM93] it was given also a definition of quantum principal bundle with general calculus.
We shall discuss this part of the theory later in this thesis (see section .

If A is a quantum principal bundle over B, then A will be called the total space of the bundle,
B the base space and H the structure group. Now, given a quantum principal bundle (A4, H, Ag),
with invariant subalgebra B = A“H we can define the space of horizontal 1-forms, as one can

do for a principal G-bundle over a smooth manifold.

Definition 4.1.2. The space of horizontal 1-forms is the subspace Qi A= A(Q'B)A of Q' A.

hor

The space of horizontal forms is a sub-A-bimodule of Q' A. We point out here, also, that there
is a relevant sub-B-bimodule of the space of horizontal form, which has an important role in the

definition of connections:

Definition 4.1.3. The space of strongly horizontal 1-forms s the subspace QihorA = (Q'B)A of
OLA.

The notion of quantum principal bundle, as given by definition is equivalent to that of
Hopf-Galois extension [ChSw69, [Sch90al, [Sch90b, BM93|, [Sch94].
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Definition 4.1.4. A right H-comodule algebra A, with right coaction Apg, is a Hopf-Galois
extension owver its invariant subalgebra B = A®H if the canonical map Tr, seen as a map Tg :
A®RpA— A® H, is bijective.

We will usually denote by B — A a Hopf-Galois extension, omitting the Hopf algebra when

there will not be any possible misunderstanding.

Proposition 4.1.5. An H-comodule algebra A is a Hopf-Galois extension if and only if it is a

quantum principal bundle with the universal calculus.

Proof. See [Haj96|, proposition 1.6. See also [B96], lemma 3.2. O

4.1.1 Connections and strong connections

One of the most important notion in the study of principal bundles, in differential geometry, is that
of connection. An analogous concept can be introduced in the framework of quantum principal
bundles. The study of (strong) connections over Hopf-Galois extensions leads to a refinement of
the definition of quantum principal bundle, i.e. to the introduction of the definition of principal
comodule algebra. We shall present first the approach of Brzezinski and Majid [BM93|, and
then we shall discuss the different characterizations of strong connections introduced afterwards
[Haj96, DGHO1l, BHO4, HKMZ11], BZ12].

Let B < A be a Hopf-Galois extension. The coaction Ar of H on A induces a right H-
coaction A£®A on the (algebraic) tensor product A ® A in the following way:

AR a ®@b) = a(0) ® bo) @ ayba), (4.1.2)

for any a,b € A. A£®A restricts to a right coaction on Q!4 = ker(m : A® A — A), and
the restriction will be denoted by A% Q1A - Q'A® H. Now we can introduce a notion of

connection for Hopf-Galois extensions [BM93].

Definition 4.1.6. A connection over a Hopf-Galois extension B — A, or, equivalently, over
a quantum principal bundle (A, H, AR) with universal differential calculus, is a left A-module
projection I1 on Q' A such that:

(i) kerII =0 A;

(ii) AZoll = (I ®id) o AL,

If IT is a connection, then Im(II) is called the space of wertical forms. A relevant feature
that connections over a quantum principal bundle share with connections over smooth principal

G-bundles is that they admit a connection form.

Definition 4.1.7. A connection form over a Hopf-Galois extension B — A is a linear map
w:H — QYA such that:

(i) w(1) =0;
(ii) Tow =1® (id —¢) (fundamental vector field condition);
(iii) A ow = (w®id)oadp (right adjoint covariance).
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4. Quantum principal bundles

Proposition 4.1.8. There is a one-to-one correspondence between connections I1 and connection

forms w over a Hopf-Galois extension, given, on exact forms, by
¥ od =id *p w, (4.1.3)

where xR 1is the right convolution product ([2.3.3).
Proof. See [BM93], proposition 4.4. See also [Haj96], sections 1 and 2. O

Using definition we can enforce the notion of horizontality for a 1-form, obtaining
the space QihOTA of strongly horizontal 1-forms. There are corresponding notions of strong

connections and strong connection forms [Haj96|.

Definition 4.1.9. A connection Il over a Hopf-Galois extension B — A is called a strong
connection iff
(id — ) (dA) € QL A.

shor

Definition 4.1.10. A connection form w over a Hopf-Galois extension B — A is called a strong
connection form iff

shor

da — a(o)w(a(l)) el A Va € A.

Proposition 4.1.11. Fquation (4.1.3) restricts to a one-to-one correspondence between strong

connections and strong connections form.
Proof. See [Haj96|, sections 1 and 2. O

As mentioned before there are different characterizations of strong connections. We recall the

following result from [DGHO1]. We give directly the main result.

Theorem 4.1.12. Let B — A be a Hopf-Galois extension. Then the following are equivalent
descriptions of a strong connection.
(1) a unital left B-linear right H-colinear splitting s of the multiplication map B® A — A;
(2) a right H-colinear homomorphism D : A — Ql, A with D(1) = 0 and satisfying the Leibniz
rule: D(ba) = (db)a + bD(a) for any b € B, a € A;
(3) a left A-linear right H-colinear projection I1 : QA — QA such that (id —II)(dA) C QL, ~A;
(4) a homomorphism w : H — Q' A satisfying
a. w(l) =0,
b. Tow=1® (id —¢),
c. ARow = (w®id)oadg,
d. da —agw(a)) € QL A for any a € A.

shor

Proof. See [DGHO01], theorem 2.3. O

Here by H-colinear map is meant a linear map between two H-comodules which respects the
comodule structure. This theorem introduces two new descriptions of a strong connection in
addition to (3) and (4) already discussed before. The theorem above allows also to prove some

properties of Hopf-Galois extensions. In particular (see [DGHO1], corollary 2.4),
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4.1. Historical overview

Corollary 4.1.13. If B — A is a Hopf-Galois extension admitting a strong connection, then
(i) A is projective as a left B-module;

(ii) B is a direct summand of A as a left B-module;

(iii) A is faithfully flaﬂ over B.

Definition 4.1.14. An H-comodule algebra A is called a principal extension if it is a Hopf-Galois

extension and, moreover, it admits a strong connection.

Recently another characterization of strong connections over an H-comodule algebra A was
introduced in [HKMZ11]. It allows one to change the description of quantum principal bundles
from extension to principal comodule algebras [BM98b, BH99, B99, BH09]. We remark that this
construction requires that the Hopf algebra H has invertible antipode, which as mentioned in the
Introduction is also our assumption (though all the results discussed in this chapter till now hold
also for Hopf algebras with non invertible antipode). Denote by Apg the coaction of H on A.
Then we can define also a left coaction Ap : A — H ® A using the antipode:

Ap(a) = S (aq)) ® ).

This makes A into a left H-comodule algebra. Then we can consider the following deﬁnitionﬂ

Definition 4.1.15. Let H be a Hopf algebra with invertible antipode. An HKMZ-connection on
a right H-comodule algebra A is a unital linear map £ : H - A ® A satisfying:

(i) ([d® Ag)ol = (f®id)o A,

(il) (Ar®id)ol=(1d®{)o A,

(iii) Trol =1®id.

Before showing the relation between HKMZ-connections and principal extensions, we recall
the definition of the translation map [B96]. Consider a Hopf-Galois extension B < A. By
definition the canonical map Tr : A®g A — A ® H is invertible. Hence we can define a map
T:H— A®p A by

7(h) = Tr' (1 ® h), (4.1.4)

for any h € H. 7 is called the translation map associated to the extension B — A. We introduce

an abbreviated notation for the translation map:

7(h) = Wl @ B2,

"We recall that a right B-module E is faithfully flat if the following holds: given any sequence of left B-modules
F' — F — F" it is exact if and only if the sequence E ®p F' — E®p F — E ® F" is exact. For the details see
[BourCA]J, 1.3.1.

2See [HKMZ11], definition 2.3. Notice that the authors call this object simply a strong connection, or a strong-
connection lifting (cfr. [BHQ9]). For the moment we prefer instead to use a different terminology, until we prove
that this is another equivalent description of strong connections.
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4. Quantum principal bundles

with summation understood. We list now some properties of 7 (see [Sch90b, [B96]):

(id®p Ar)oT = (T®id) 0 A,
((coAg)®@pid)oT = (S®7T)0A,
AsgpaoT= (T ®id) o adg, (4.1.5)
maoT =E¢,

T(hﬁ) = hUplt @5 BRI
where A g4 is the right coaction of H on A ®p A induced by the usual coaction on A ® A,
Aagala®b) = a@) ® by @ ayba),

and 0: A® H— H ® A is the switch o(a ® h) = h ® a.

Let now A be an H-comodule algebra, with coaction Ag, and consider an HKMZ-connection
{:H — A® A. Let us introduce We introduce an abbreviated notation also for ¢: for any h € H

we write

((n) = £(h)M @ £(h)2.

with summation understood. Now we can rewrite the properties (i)-(iii) in the following way
[IKMZ11):

((h)Y @ (f(h)<2>)(0 ® (£(h)) oy = L(ha)) V) @ £(h1)? @ ),
? ) @ S(h()) @ £(hz)) P, (4.1.6)
)

Proof. Apply id ® € to the last of (4.1.6]). O

Proposition 4.1.17. A right H-comodule algebra A is a principal extension if and only if it

admits an HKMZ-connection.

Proof. Suppose that £ : H - A ® A is an HKMZ-connection. We can use it to define a map
X:A® H — A®p A which is an inverse for the canonical map T : AR A - A® H. We take
it to be the composition of the map Y : A® H - A® A, defined by

Xla®h) = al(h)V @ £(h)®),
with the projection 7: A® A - A®p A. If now we take p® ¢ € A ® A we have:

X(Tr(p ® 0)) = pao)L(g) " @ £(g)®. (4.1.7)
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4.1. Historical overview

Applying Ar ® id to (4.1.7) we obtain:

(Ar @id)X(Tr(p ® q)) = Poya(0) (Ua@) ) 0) @ payaa) (Eae) ™) ) @ €ae)
= (pya(0) ® Pya) ® 1) ((5((1(2))<1>)(0) ® (Uqe) ™)y @ K(Q(z))@))
= (p)90) ® Pya1) © 1) (K(Q(a))<1> ® S(q(2)) @ 5(@(3))@))

= poyd(0yam) @ pay ® €(qa)",

(4.1.8)

where we used the second of (4.1.6). Therefore X(Tr(1 ® q)) belongs to B ® A. Hence, using
(4.1.7), we obtain:

X(Tr(p ®5 q)) = P ®5 qo)(a)) M (qq))?
=p®B q0)c(q1) =P ®Bq.

where we used lemma Hence we have proved that y o T = idag 4. Next, take p® h €
A® H. We have:

Tr(x(p ® b)) = pt()" @5 €(h)® = pt(h) ™M (L(h)#) o) @ (L(R)P) @y =p® h, (4.1.9)

where we used the third of (4.1.6)). So we have also Tr o x = idagm, which implies that x is
a two-side inverse for the canonical map. In order to show that A is a principal extension we

need now only to build a splitting of the multiplication map B ® A — A. Consider the map
s: A— A® A defined by

s(p) = p(oy(pa)) ™ @ Lpay)@.

With a computation similar to that in (4.1.8), we can see that s takes values in B ® A. Moreover
it is clearly left B-linear, and it is H-colinear due to the first of (4.1.6). Finally, using the last of
(4.1.6)) we see that m4o0s = id 4, and therefore s is the splitting we were looking for. We conclude

that A is a principal extension.

Conversely, assume that A is a principal extension. Then we have both a splitting s : A —
B ® A of the multiplication map B ® A — A and the translation map 7, defined by equation
(4.1.4). Following [BHO04], we define a map ¢: H - A® A as follows:

¢(h) = hs(nly (4.1.10)

for any h € H. Since s is left B-linear, and 7 takes values in A ®p A, £ is well-defined. We prove
that ¢ fulfils properties (i)-(iii) of definition [4.1.15, Let us begin with the first one. Using the
(right) H-colinearity of s we see that

((id ® Ag) 0 0)(h) = hs((h?) ) ® (W) y). (4.1.11)
Now we use the first of (4.1.5) to rewrite (4.1.11)) as

((id® Ag) 0 O)(h) = (hay)Ms((ha))?) ® hez,
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4. Quantum principal bundles

which is exactly (({®id)oA)(h), and so (i) of definition [4.1.15| holds. In order to see that also (ii)
holds, we use the H-colinearity of s and the second of (4.1.5) - to compute the following expression:

(Ap®id)of)(h) = (7" ®id) o ((0A®H o Ap) @ id)(hs(h™))
= (57" @id) (S(h)) @ (ha)s((hz)?))
= hy ® (hea))Ms((h)?) = ([ © £) 0 A)(h),

which is exactly condition (ii). Finally, using property (i), which now we know to hold, we see
that

(Tr 0 €)(h) = (ma 0 0)(h1)) @ hizy = (haay)Mma(s((ha)?)) @ ha). (4.1.12)

But the fact that s is a splitting for the multiplication map, together with the third of (4.1.5)),
implies that (4.1.12)) is actually equal to

(h(l))[l](h(l))[z] ® h(z) = E(h(l)) &K h(Q) =1® h,
and therefore ¢ fulfils also property (iii). Hence it is an HKMZ-connection. 0

Corollary 4.1.18. There is a one-to-one correspondence between strong connections and HKMZ-

connections.

Proof. The correspondence can be seen as a correspondence s <+ ¢, where s — /¢ is given by

equation (4.1.10[), while ¢ +— s is given by:
s(a) = a(o)ﬁ(a(l)). (4.1.13)
O

Therefore from now on we will refer to an HKMZ-connection simply as to a strong connection,
or as to a strong-connection lifting (cfr. [BH09]). So, till now, we have five different characteriza-
tions of strong connections (see also theorem . Moreover, we proved that an H-comodule
algebra is a principal extension (and therefore a Hopf-Galois extension) if and only if it admits a
strong connection.

We conclude this section by noticing that definition can be equivalently reformulated
in the following way [BZ12].

Definition 4.1.19. Let H be a Hopf algebra with bijective antipode, and let A be a right H-
comodule algebra, with coaction Agr. Let also m denote the multiplication map of A. Then a
linear map ¢ : H - A® A is called a strong connection (or a strong-connection lifting) if the
following hold:

(i) (1) =1®1,

(i) mol =g,

(iii) (/®id) o A = (id® AR) o/,

(iv) (S®l) oA = (0agn ®id) o (Ar ®id) o /.
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4.2. Principal comodule algebras

The most direct way to see the equivalence between definition 4.1.15| and definition 4.1.19]is
to compare conditions (i)-(iv) above to equations (4.1.6).

4.2 Principal comodule algebras

The results discussed in the previous section of this chapter yield to the following definition, which

is the one adopted in the more recent works (see, e.g., [BZ12]).

Definition 4.2.1. Let H be a Hopf algebra with invertible antipode. Then a right H-comodule
algebra A is called a principal comodule algebra if it admits a strong connectiorﬂ {:H—>ARQA.

In particular a principal comodule algebra A is a Hopf-Galois extension admitting a strong
connection, as it follows from proposition 4.1.17]
4.2.1 Gauge transformations

Since principal comodule algebras are a particular class of principal coalgebra-Galois extensions,
we can define their gauge transformations [BM93],[B96, [Haj96, Dur96bl Dur97al [Dur97b, DGHO1].

Definition 4.2.2. Let A be a principal comodule algebra, and let B denote its invariant sub-
algebra. A vertical automorphism (or gauge transformation) is a left B-module automorphism
F:A— A such that F(1) =1 and Apo F = (F ®id) o Agr. The set of vertical automorphisms
is the group Autp(A).

Now we study the main properties of vertical automorphisms of principal comodule algebras.
As will be clear from the results below, they share many properties with vertical automorphisms

of a principal G-bundle.

Proposition 4.2.3. Vertical automorphisms of a principal comodule algebra A are in bijective
correspondence with convolution invertible linear maps f : H — A such that f(1) = 1 and

Apo f=(f®id)oadr. We shall call these maps gauge transformations of the bundle.
Proof. The correspondence is given by
F = f=myo(id®pF)or (4.2.1)
(where 7 is the translation map, see [B96]), whose inverse is
f F=idxf. (4.2.2)

For the details see [B96], proposition 5.2. O

The gauge transformations f : H — A form a group, say G(A), under the convolution product.

One can prove that:

Corollary 4.2.4. Autp(A) ~ G(A) as multiplicative groups.

30r strong connection lifting; see definition [4.1.19
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4. Quantum principal bundles

Proof. See [B96], corollary 5.3. O

Theorem 4.2.5. Let A be a principal comodule algebra. Let f € G(A) be a gauge transformation,
and let =% denote its convolution inverse. Then the following describe left actions of f on strong
connections which are compatible with the identifications of theorem [[.1.19 and corollary[{.1.18:
(1) (fvs)(a) = s(aq)flaw))f (aw),

(ii) (f>D)(a) = D(ag)flany))f aw),

(iii) (f>IT)(adb) = all (d(b)f (b)) f~ (b)) + aby f(bay)df ~ (b)),

(iv) (f>w)(h) = f(ha))w(h ) Hhs)) + Fhay)df (b)),

(v) (f>0)(h) = f(ha))(h ) Hh))-

Proof. The consistency between (i), (ii), (iii), (iv) has already been proved in [DGHOI] (see
theorem 4.1). We show here that, if £ corresponds to s, then the HKMZ-connection corresponding
to (f>s) is the one given in (v) (the proof in the more general case of coalgebra-Galois extension
can be found in [BH09]; here we present our direct proof for the case of Hopf algebra extensions).

We recall that the correspondence s <> £ is given by

s(a) = a()t(aq)),
¢(h) = hls(hP). (4.2.3)

So, if we denote f > s by s, then the corresponding HKMZ-connection is given by:

¢(h) = B (B2 = pllg (hm(o)f (hm(l))> (P )
= 1y s (b () ) £ ()

where we used (4.1.6). Now we use again (4.2.3), together with (4.1.6)), to write, in (4.2.4), s in

terms of £, obtaining the following expression:

(4.2.4)

¢ (h) = heyM(hy? (b)) 0y ((hu)p]f(h@)))u)) fH(h)
= hey My P F(hgy) o) (hay f () ) £ (i) (4.2.5)
= f(h@)) ) (hayf(h@) ) f (h)),

where, in the last equality, we used the properties of the translation map (see (4.1.5)). Now we
use the fact that f is adg-equivariant to rewrite (4.2.5) as

O'(h) = f(he)l(hayS(ha)ha) f (b))
= f(ha)l(h@) f (h)),

which is exactly (f>¢)(h), as given by (v). O
Notice that we can write the gauge transformed of a strong connection ¢ under a transforma-
tion f € G(A) as f*{x f~L.
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4.3. QPBs with general differential calculus

4.3 QPBs with general differential calculus

In sections and we discussed quantum principal bundles, (strong) connections and gauge
transformations assuming that all the algebras involved (the Hopf algebra H, the H-comodule
algebra A and the invariant subalgebra B) were endowed with the respective universal differential
calculus. It is natural, now, to extend this definition and to consider the case of general calculi.
Such an extension is unavoidable if we want our theory to cover many relevant cases: indeed,
even a complete description of a smooth principal G-bundle can not be achieved using only the
universal calculus-based theory, since many of its properties come from the fact that all the
spaces involved are endowed with the de Rham calculus, which is far from universal. So, in
this section, we discuss quantum principal bundles with general calculus. The main definitions
were already given in [BM93]. Due to the results discussed in the previous sections, we restrict
ourself to H-comodule algebras A, where H is a Hopf algebra with invertible antipode, which
are principal comodule algebras (see definition , so that we already know that they admit

a strong connection with respect to the universal calculus.

4.3.1 Definition

Let H be a Hopf algebra with invertible antipode and A a (unital) right H-comodule algebra,
with coaction Ag. Let T : A®Q A — A® H be the canonical map. Let N4 be a sub-bimodule
of ker(m) C A® A defining a first order differential calculus Q2'(A) on A and @ C ker(e) be an
ad g-invariant right ideal of H defining’| a bicovariant first order differential calculus on H. We
consider the following H-coaction on ker(m) C A ® A:

A%(a ®b) = ag) @ b(o) & a(l)b(l). (4.3.1)

Let B be the invariant subalgebra of A and assume that B is endowed with the differential calculus
induced by the inclusion B < A: QY(B) = Q'B/(Na N B ® B). Then we can give the following
definition (cf. [BM93, Haj96]).

Definition 4.3.1. (A, H,Ar, N4, Q) is called a quantum principal bundle if:

(1) A is a principal comodule algebra,

(if) A%(N4) C Na® H (right covariance of the differential calculus),

(iii) Tr(Na) C A® Q (fundamental vector field compatibility condition),

(iv) ker(T) C AQY(A“H)A (exactness condition), where QY (A®H) = QLAH /(N4 N QL AcH)
and T : QY (A) - A® (ker(e)/Q) is the map:

T:faln, = ((id®mg) o Tr)(a),

g being the canonical projection ker(e) — ker(e)/Q.

The algebra A will be called total space of the bundle, the Hopf algebra H will be called the

structure group and the invariant subalgebra B = A®H the base space. As in the case of QPBs

4See proposition
5See theorem [2.3.31
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4. Quantum principal bundles

with universal calculus (i.e. for principal comodule algebras), we can define the sets of horizontal

and strongly horizontal 1-forms.

Definition 4.3.2. The space of horizontal 1-forms is the subspace Q} (A) = AQY(B)A of Q1 (A).

hor

Definition 4.3.3. The space of strongly horizontal 1-forms is the subspace L, (A) = Q1(B)A
of Q1(A).

4.3.2 Connections and strong connections

We have already discussed the theory of (strong) connections over a quantum principal bundle
with universal calculus. Now we give the analogous definitions in the case of general first order
differential calculus. We refer to [BM93, [Haj96|] for the details.

Definition 4.3.4. A left A-module projection II on Q'(A) is called a connection for the quantum
principal bundle (A, H, Ar, Na, Q) iff:
(i) ker(Il) = Q}_(A),

(ii) A% oIl = (I ®id) o AR (right covariance).

The image of IT will be called the space of vertical forms and denoted by Ql_.(A).

ver

Definition 4.3.5. A connection II is called strong iff (id — IT)(dA) C Q!, (A).

shor

Also in this setting we can show that we can associate a (strong) connection 1-form w to any

(strong) connection IT (and viceversa).

Definition 4.3.6. A strong connection form on a quantum principal bundle (A, H, Ar, N4, Q)
is a homomorphism w : H — QY(A) which satisfies:

(1) w(Ca® Q) =0 (compatibility with the differential structure);

(if) A% ow = (w®id)oadg (right adjoint covariance);

(iii) Tow=(1d®@7y) o (1 ® (id — €)) (fundamental vector field condition);

(iv) da — agyw(ap)) € QY(B)A for any a € A (strongness).

A map which fulfils (i)-(iii) but not (iv) will be simply called a connection form.

Proposition 4.3.7. There is a one to one correspondence between strong connections II and

strong connection forms w, given, on exact forms, by
[I¥od =id xp w, (4.3.2)

where xg 1is the right convolution product (2.3.3)).
Proof. See formula (47) in [BM93]; see also [Haj96], sections 1 and 2. O

In the case of principal comodule algebras there are five different characterizations of strong
connections (see theorem 4.1.12 and corollary 4.1.18). A similar results for QPBs with general
calculus is, at the best of our knowledge, not (yet) available. Nevertheless, we can notice the

following fact:
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Proposition 4.3.8. Let (A, H,Ap, N4, Q) be a quantum principal bundle and let B = A, Let
(:H — A® A be a strong connection for principal comodule algebra A (see definition [4.1.19).
Then, if £(Q) C Na, there is a strong connection form w : H — QY (A), associated to £, for the
quantum principal bundle (A, H, A, N4, Q).

Proof. Let w : H — Q'A be the universal strong connection form associated to ¢. Then it
descends to a strong connection form w : H — Q!(A) if and only if w(Q) = 0. Since { = w + ¢,
and @ C kere, this holds if and only if £(Q) = 0.

O

4.4 Cleft principal comodule algebras

There is an important class of principal comodule algebras: that of cleft Hopf-Galois extensions.

As proposed in [BM93], they can be identified with “trivial” quantum principal bundles.

Definition 4.4.1. A Hopf-Galois extension B — A is called o cleft extension if there is a
convolution invertible linear map ¢ : H — A such that ¢(1) =1 and

Arpo¢ = (p®id)o A.

Proposition 4.4.2. Any cleft Hopf-Galois extension admits a strong connection. In particular,

any cleft Hopf-Galois extension is a principal comodule algebra.

Proof. Let ¢ be a trivialization of a cleft extension B < A and let £ : H —+ A ® A be the map
defined by:

U(h) = ¢~ (hq)) @ B(hez).
Then ¢ is a strong-connection lifting (see definition [4.1.19)) [BZ12]. O

In particular we can speak of cleft principal comodule algebras, meaning that they are cleft
extensions over their invariant subalgebra. The next sections will be dedicated to the study of

their structure and their properties.

4.4.1 Gauge transformations of cleft extensions

Let us consider a cleft Hopf-Galois extension B < A with trivialization ¢ : H — A. Then we
can rewrite (4.2.1) as:
F = f=¢ 1« (Foo). (4.4.1)

In [BM93], gauge transformations of a trivial quantum principal bundle were defined as convo-
lution invertible linear maps A : H — B with A(1) = 1; these maps form a group, say G(B),
under the convolution product. Then we can give the following definition, which can be seen to

be consistent with those given above (see the proposition below) [B96].

Definition 4.4.3. The group of gauge transformations of a cleft Hopf-Galois extension B — A
is the group G(B) of unital convolution invertible linear maps A : H — B.
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Proposition 4.4.4. Let B — A be a cleft Hopf-Galois extension. Then the groups Autp(A),
G(A) and G(B) are isomorphic one to each other.

Proof. The first isomorphism is given by corollary [£:2.4f The second one is obtained using the
following correspondence between maps f € G(A) and maps A € G(B):

fr A=¢xfxo L, (4.4.2)
with inverse given by

A= f=¢txAx0o. (4.4.3)
For the details see [B96], theorem 5.4. O

From these results we can see that a gauge transformation of a cleft extension can be seen

simply as a change of trivialization:

Proposition 4.4.5. Consider a cleft Hopf-Galois extension B — A together with a trivialization
¢. Let F be a gauge transformation and A : H — B the convolution invertible map associated
to it by proposition m Then ¢n = A™' x ¢ is another trivialization map for the extension
B — A, with convolution inverse qu_\l =¢ 1 xA.

Proof. ¢y is linear and unital. Moreover, ¢ *¢X1 =A"'xpxp %A = ¢ and ¢, is H-equivariant
since ¢ is, and A takes values in B (which is the invariant subalgebra). Thus ¢, is a trivialization

for the extension B «— A. O

4.4.2 Cleft extensions and crossed products

Let B — A be a cleft Hopf-Galois extension, with Hopf algebra H. We will show that A is
isomorphic to a crossed product B#,H, where o is a suitable 2-cocyle on H with values in B
[BICMS6, [DT86, BIMS9L [(Ch98|. Before proving this result we recall the definition of crossed
product of an algebra with a Hopf algebra.

Definition 4.4.6. Let B be an associative algebra (with unit) and H be a Hopf algebra. A (left)
weak action of H on B is a bilinear map H x B — B (we will use the notation h > a for the
action of h € H on a € B) such that, for any h € H, a,b € B,

(i) hvab= (hqy>a)(he) >b);

(ii) h>1lp =e(h)lp;

(iii) 1>a=a.

Definition 4.4.7. Let H be a Hopf algebra weakly acting on an algebra B, and letoc : Hx H — B
be a C-bilinear map. Let B#,H be the algebra whose underlying space is B ® H and whose

multiplication is given by
(a®@h)(b®@1) = a(h)>b)o(h), 1)) @ ha)l)-

for all a,b € B and h,l € H. The algebra B#,H 1is called a crossed product if it is associative
with 1 ® 1 as identity element.
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4.4. Cleft principal comodule algebras

We will denote by a#h the element a ® h € B#,H. Notice that we can put on B#,H
a structure of right H-comodule algebra, simply defining the coaction as Agr = id ® A. It is
possible to give conditions on ¢ for which B#,H is a crossed product. We begin with the

following definition.

Definition 4.4.8. A bilinear map o : H x H — B is called normal if o(h,1) = o(1,h) = e(h)1
for any h € H.

Lemma 4.4.9. 1#1 is the identity of B#,H if and only if o is normal.

Proof. See [BICMS86], lemma 4.4. O

Proposition 4.4.10. Assume o normal. Then B#,H is associative if and only if the following
conditions hold:
(i) (cocycle condition) for all h,l,m € H:

[hy > oy, my)] o () Lgym) = o(hay, lay)o(hele), m); (4.4.4)

(ii) (twisted module condition) for all h,l,m € H and all a € B:

(h(l) > (l(l) > a)) U(h(g), l(g)) = U(h(l), l(l))(h(g)l(g) > a). (4.4.5)
Proof. See [BICMS86|, lemma 4.5. O

Hence proposition [£.4.10] gives a complete characterization of crossed products. We can iden-
tify a class of “simple” (non-trivial, i.e. non isomorphic to the tensor product algebra H @ B)

crossed-products:

Definition 4.4.11. A crossed product B#,H 1is called a smash product if the cocycle o is trivial.
We will denote a smash product simply by B#H .

Now consider a cleft Hopf-Galois extension B < A, with trivialization ¢ : H — A. The map
¢ induces [BICMS6 [Ch98|, [DT86] a weak action of H on the invariant subalgebra B:

heb=¢(ha)bsd™ ' (b)) (4.4.6)

Moreover, we can define a cocycle o : H x H — B by

o (1) = p(ha)) (1))~ (ha)lz))- (4.4.7)

Proposition 4.4.12. o, as defined by is normal and fulfils conditions (i) and (ii) of
proposition [{.4.10. Thus B#,H is a crossed product.

Proof. Tt follows by direct computation, using the fact that ¢! is the convolution inverse of
P. O

Now one can prove that any cleft Hopf-Galois extension is isomorphic to a crossed product

algebra.
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4. Quantum principal bundles

Proposition 4.4.13. There is a right H-comodule algebra isomorphism F : B#,H — A given
by: F(a#h) = agp(h).

Proof. See [DT86], theorem 11. O

Remark 4.4.14. If the cocycle o, defined in equation (4.4.7)), is trivial we get that A is isomorphic
to the smash product B# H. Notice that o is trivial iff ¢ is an algebra homomorphism.

Remark 4.4.15. If the algebra B is commutative any weak action of the form is trivial;
hence any smash product B#H, with B commutative, is isomorphic, as an algebra, to the tensor
product algebra B H. It follows that the usual notion of trivial principal G-bundle in differential
geometry corresponds to the case of cleft extensions with trivialization which is an algebra map,

that is to smash products.

4.4.3 *-structure of cleft extensions and crossed products

In this thesis we will usually deal with Hopf *-algebras and associative *-algebras. We have al-
ready given a definition of H-comodule algebra which takes care of the star structures of both
algebras; now we are interested in studying the *-structure of cleft extensions and crossed prod-
ucts. Consider therefore a Hopf-Galois extension B — A, w.r.t. a Hopf *-algebra H, where also
A is a *-algebra (and, consequently, so is B). Assume that it is a cleft extension. We know then
that A, as an associative algebra, is isomorphic to a crossed product B#,H, as an associative
algebra. So we can look for the conditions under which it is isomorphic to B#,H as a *-algebra.
Of course, the first thing we need is a way to define an involution on a crossed product algebra.
We begin with the following deﬁnitionﬂ

Definition 4.4.16. Let B be an associative *-algebra and H be a Hopf *-algebra. Then a (weak)
action of H on B is called a (weak) *-action if the following conditions hold:

(i) for every b e B and every h € H,
(h>a)* = (Sh)* >a™;
(ii) the cocycle o is convolution invertible. In particular, for each h,l € H,
o(hq), l(l))U(S_lhfz)v S_ll&))* =e(h)e(l),
a(s—lhg), S—lzfl))*a(hm, Ligy) = e(h)e(l).

Consider now a *-algebra B together with a weak *-action of H on it, with cocycle o, such
that B#,H is a crossed product (see proposition [4.4.10). Then we can define an involution * on
B+#,H as follows:

(b#h)* = o (S~ hzy, hr))* (Biz) > b)) #h{y, (4.4.8)

for any b#h € B#,H. With this operation, B#,H is an associative (unital) *-algebra. Indeed:

5For the cocycle-free case see definition [2.3.18 See also [S03], section 2.2, and [Maj93], p. 31.
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4.4. Cleft principal comodule algebras

Proposition 4.4.17. The * operation defined by is an involution, that is (b#h)** = b#h
for every b#h € B#,H. Moreover, it makes B#,H into a *-algebra: for any a,b € B and any
h,l € H,

((a#th) (b3))" = (b#1)* (a#th)".

Proof. First of all we show that ** = id. We do it by direct computation; given b#h € B#H we
have:
(b#th)™* = (o5 By b)) (hizy > ) #h) )
= (87 sy, hiay)* (he) > (hizy > b)) (hzy > o (S gy, b)) #hs)
= 0 (S higy, hiy) (S hig) b (hiy) b)) (hery b (S~ h(Q),h( ) #hs)

(57 Ry > (hiy > b)) (S~ 05, i) Uiy o 0(S ™ sy, b))t

(757 iy B (S iy iy o b >}*< . >>o<5*1h(2),h<1>>>#h<g>
=b-0(S7 iy, hiz) (h(s) > (ST hzy, b)) #he)

b'U(S 6)? () (h(z Df"(S_lh() hy))o(h), (S_lh(3))h(2))#h(9)

b £) 0 (i), S~ hip)a (hen S~ hiay, hny)#hs)-
where we used the cocycle condition and the properties of S~! (see lemma . Using (ii) of

definition we see that the product of the first two cocycles of this expression is equal to
E(h(4))6(5*1h(3)). Therefore we obtain:

(b#h)™ = b e(h(a))e(S™ hiz))o (b S by, b)) #h)
=b-a(h(z)S™ ' hiay, he))#h(a) = b#h.

So we are left with the proof that ((a#h)(b#1))* = (b#!1)*(a#h)*. Let us compute separately the

two expressions. For the first one we have:
((a#h) (b#1))* = (a(hay > b)o (b, L) #he)le)”
= (S~ hial). hiol)" (ki > oy, 1)) (heay > 0)*a”) #155
= (57 (hls); h(3)l(2))*(lf4)hT5) > U(h(z), 1(1))*)
- (Usy 1y & (h(ay & 0)") U6y hiry > a™)#l 7 (4.4.9)
= (57 (hwl(s): hial) (S (h(s)l(4)) > U(h(Q), l(1)))*
. (lZ‘5)hfﬁ) > (h(yy > b)*)(lzk(;)hz}) > a*)#la)h&)
= (57 (heliay) > o (R, L))o (ST (haylia): hisy )]
. (Z?S)h?ﬁ) > (h(yy > b)*)(lzk(;)h’&) > a*)#lz})h@)

Using the cocycle condition we can rewrite equation (4.4.9)) as:

((a#th) (b#0)* = [o(S™ (hsylz)s h2))o (S~ hiayl2) by L))

65



4. Quantum principal bundles

(L hisy & (hiay & 0) ") (I(5)ir) > a™) #l ()
= (S ), L)) "o (ST hs)l))s hz))* Uayh{ny & (hay & b) )
U5y s) > 7)) ()
= (S 2y, 1)) o (S ha)ls))s b)) (ST (hayliay) & gry > b)* (4.4.10)
(Iis)his) > a”)3lie) M)
= 0(S M), L))" [(STH (hylay) > heay 2 ) (ST (hayla) b))
Uy (5) > a7)F#(6) ()
Finally, we use the twisted module condition to rewrite equation as follows:
((a#th) (b#1))* = o (S (2, L))" [0’(5_1(h( Vi) b)) (S (Al hz) > b))
(U5 his) > @) #l 6 s

= (5 2y, 1)) (S Uy Db) (S~ hiylay)s hay)* Usyhis) > ) #1 s Py
= 0(S™ 2y, La))* Uy > b)o (ST (haylay)s ha))* (Usyhiay > a*)# sy Iy

(4.4.11)

The computation of the other expression, instead, yields:

(btl) (atth)” = (0(S™ oy, ) Uy & )07y ) (S ™ by ) (i > @)y )

= (S ), L)) (1) > %)
' (la) > o (S™ gy, b)) (W) Da*)) o (Iisy hiay)#li6) 1 s

= (S ), L)) (1) > %) (4.4.12)
(87 Hay > o (ST ey b)) (Us) B iz > @) o (L 1y ) # 7y G

= (S @), Uy () > )
(57 Mgy > o (S hay, by Do (S qay, (S™ i) i)
(Ue) > Az > a”)o Uiz, hig) ) #lis) )

Using now both the twisted module condition and the cocycle condition we get, from equation

L)

(b#0)" (ath)” = (S oy, L))" (Ufgy & b°)
(o (S My, ST s o (ST (higylay)s hary)]”
10 (I{e)> hay) Uy sy & @)l )
20(5711() L)) (U3 > b")o (5™ (Re2yliay), hay)*
o(S™ l(4 ST h(3))*0'( (4))(5(7) DG)#Z
= 0 (5™ 2y, L))  (Uay > 0o (S~ (hgylay)s hay)* (L) hiay > @ )#5?6) @)

(4.4.13)

where we have used (ii) of definition (4.4.16|) to obtain the last equality. Now we see that (4.4.11])
and (4.4.13)) coincide, and therefore we have proved that ((a#h)(b#1))* = (b#1)*(a#h)*. O
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4.5. Quantum associated bundles

Consider now a cleft Hopf-Galois extension B < A, with A a *-algebra, and assume that
H is a Hopf *-algebra, with star structure compatibleﬂ with that of A (this implies that B is a

*-algebra). Then we give the following definition.

Definition 4.4.18. A trivialization ¢ : H — A of a cleft extension B < A is said to be unitary
if, for any h € H,

B(h)" = 671 (Sh)"). (4.4.14)
Remark 4.4.19. is equivalent to (¢~ 1(h))* = ¢((Sh)*).

Proposition 4.4.20. If ¢ is a unitary trivialization then the weak action (4.4.6) is a weak *-
action.

Proof. Both properties (i) and (ii) of definition [4.4.16|can be checked by direct computation using
(TA.14) and (TL.19). O

Proposition 4.4.21. If ¢ is a unitary trivialization of a cleft Hopf-Galois extension B < A, and
we equip the associated crossed product B#,H with the involution (4.4.8), then the isomorphism
of proposition[{.4.13 is a *-isomorphism.

Proof. We show that the map F' : B#,H — A, defined by F(a#h) = a¢(h), satisfies F'((a#h)*) =
(F(a#h))* = ¢(h)*a*. We prove this by direct computation. Indeed we have:

F((a#h)")

F (a(s—lh@), hey)* (Bl > a*)#ha))
= (S hzy, hp))* (Bzy > a*)b(hiyy) = d(ha)) G(S™ ha)) d(hiz))a* ¢~ (hs)
(hZ‘l))ng*l(ha))ng(hz‘g))a* = ¢(h)*a".

4.5 Quantum associated bundles

In the previous sections of this chapter we have introduced principal comodule algebras as non-
commutative analogues of principal bundles. Now we discuss a similar construction for associated
bundles [BM93], [Haj96, DGHO1, BE12]. We begin by recalling the following definition.

Definition 4.5.1. Let H be a Hopf algebra, A a right H-comodule and V a left H-comodule with
coactions, respectively, Ar : A — AQH and pr, : V — HRV . Then the cotensor product A0z V
is defined as an equalizer:

Ar®id

AOgV — AV ARH®V .

id®pr,
That is, AV is the subspace of elements £ € A®V such that (Ar ®id)§ = (id ® pr)E.

Now let H be a Hopf algebra with invertible antipode, and A a principal H-comodule algebra.
“Cf. equation .
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4. Quantum principal bundles

Definition 4.5.2. If V is a left H-comodule, then the quantum bundle associated to A, with
fibre V, is the cotensor product AOgV .

Now let B denote the invariant subalgebra of A. By assumption, B — A is a principal

Hopf-Galois extension. This implies the following fact.

Proposition 4.5.3. Let V be a left H-comodule. Then AOgV is a projective left B-module.
Moreover, if V is finite dimensional, AUgV is finitely generated as a left B-module.

Proof. 1t follows from corollary 4.1.13| See also [BF12]. O

We recall now that if X is a topological space and F is a vector bundle over X, with finite
dimensional fibres, then the space of continuous sections of F is a finitely generated projective
C(X)-module. Hence, the principality of the extension allows us to interpret quantum associated
bundles as (noncommutative) vector bundles, associated to the quantum principal bundle A.

Moreover, as noticed, e.g., in [BF12], the following result holds.

Lemma 4.5.4. Let B — A be cleft Hopf-Galois extension and let V' be a left H-comodule. Then
AQOyV is a free left B-module.

4.6 Quantum principal T"-bundles

Now we restrict our attention to a particular class of quantum principal bundles: the noncom-
mutative analogues of principal T"™-bundles. Although T"-bundles are probably the simplest
examples of noncommutative principal bundles, there are several interesting models which fit
into this category (for example quantum Hopf fibrations [BM93, [BM98al, [HM99. [.S05, [HMS06],
noncommutative tori [DS13a], bundles over quantum lens spaces and quantum projective spaces
[Szy03, BZ12, [HRZ11]). In this section we discuss and prove some general properties of this kind
of bundles, properties that will turn out to be useful in the next chapters.

Our approach will be based on principal comodule algebras; in the literature other proposals
for a definition of (noncommutative) principal toric bundle can be found (see e.g. [ENOQ09,
HaMal0, Wag12]). We begin by associating a Hopf algebra to the Lie group T™. Actually, there

are two possible choices, although they are closely related.

Definition 4.6.1. The algebra O(T™) is the unital complex polynomial *-algebra generated by n

commuting unitaries z1, ..., zn; that is, it is the commutative algebra whose elements are finite
linear combinations
E aszl '--Z,’j",
kezmn

where {a} C C. It is a Hopf *-algebra with respect to the following coproduct, antipode and
counit:
Az]) =2z ® 27, S(zj)==z", e(z]) =1,

2

foranyi=1,...,n and for any r € Z.
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n
If we introduce the notation z¥ = H zf", the maps in definition |4.6.1|can be also characterized

i=1

by the following relations:
ARy =Pk SEM) =2 e(ZF) =1
Lemma 4.6.2. The algebra O(T") is isomorphic to the group algebra C[Z"].

Proof. C[Z,)] is the algebra of formal (finite) linear combinations Z aymm. Hence the assign-

mez™
ment 2" — m determines an isomorphism O(T") ~ C[Z"]. O

Proposition 4.6.3. The algebra O(T™) is a dense *-subalgebra of the C*-algebra of continuous

functions over the n-torus T". In particular, it inherits a C*-norm ||-||.

Proof. Let {p1,...,¢n} be canonical angular coordinates on T". For any k € Z" consider the

function

Vi (p) = exp(ik - p) = exp (Z km) .

Then the assignment zF — 1)), determines an injective algebra homomorphism ¥ : O(T") —
C(T™). This means that O(T") can be seen as a subalgebra of C(T™). Finally, since the
trigonometric polynomials are dense in C(T™), by Stone-Weierstrass theorem, O(T") is dense
in C(T™). O

Let now t,, denote the (complex) Lie algebra of T™. It can be described as the Lie algebra
generated by n commuting elements ¢1,...,0;. Then we can define an action of t, on O(T") in
the following way:

5j(zk):kak, fori=1,...,n.

Any §; is a derivation of O(T"). We can use them to define a countable family of seminormsﬁ on
O(T™): for any k € N and any a € O(T"), we set

lallx = (167" - - - 85 (@), (4.6.1)

where |[|-|| is the C*-norm on O(T") induced by the inclusion in C(T") (that is, the sup norm).
Lemma 4.6.4. I's = {||-||x | K € N"} is a countable separating family of seminorms on O(T").

Proof. The fact that each [-||x is a seminorm follows directly from the fact that ||-|| is a norm.

Moreover, since ||-|| € I's, I's is a separating family. O

Proposition 4.6.5. O(T") is a metrizable locally convex vector space. Moreover, it is a topolog-

ical algebra, with respect to the same locally convex topology.

Proof. The first part of the proposition is a direct consequence of lemma and theorem |B.2.5
For the second part it is enough to prove that the topology of O(T") is determined by a (separable)

8See definition
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family of sub-multiplicative seminorms. First of all let us notice that ||-|| is sub-multiplicative.
Next, for any k € N™, k # 0; due to the linearity of the derivations d; and the subadditivity of ||-||x,
let us consider the seminorm ||-||; = 2"*I¥||.||;,, where |k| = 3, k;. The family of the seminorms
||l together with the norm |-||, is still a separating family of seminorms, and it determines the
same topology as I'y (indeed, we have simply rescaled some of the seminorms). Now we have to
show that any -], & # 0, is sub-multiplicative. Due to the linearity of the derivations d; and
the subadditivity of the seminorms |-/}, it is enough to prove that [|2"2%||} < [|2"[}]|2°||}, for any

r,s € Z". This follows by direct computation; indeed,

n
12722l = 127, = 2" T I + sl (4.6.2)
=1
n
7=l = 2% T ] sl (46.3)
i=1

n n

Hence it is enough to show that H |ri + si]ki < ontlkl H |n\k’ \sz]kz for any r,s € Z™. Of course,
i=1 i=1

this is true if the following holds:

im + 1P < 2P mIPlIP  Vm,l€Z, VpeN. (4.6.4)

Ifm-1<0 is fulfilled, since either |m| or |I| is greater than |m + [|. Without loss of
generality, assume now that m,n > 0. Then m -1l > m+1, and so is satisfied, unless either
m=1lorl=1 Ifm=1=1 becomes 2P < 2Pt and so it is satisfied. If m = 1 and
[ > 1, instead, it becomes (I + 1)? < 2P*1[P_ which is always true. Hence O(T™) is a topological
algebra, with respect to the locally convex topology determined by I's. O

Proposition 4.6.6. The maps S : O(T") — O(T") and € : O(T™) — C are continuous. More-
over, if we endow the algebraic tensor product O(T™) @ O(T™) with the projective topologgﬂ then
the coproduct A : O(T") — O(T™) @ O(T™) is a continuous map.

Proof. ¢ is continuous, since it is simply the evaluation at the identity. Next, given f € O(T"),
Sf(x) = f(z™Y) = f(—x); hence |Sfllx = ||fllx for any k € Z". Tt follows that also S is

continuous. Consider now an element h € O(T™) given by a finite sum h = Z a,z". Then
rezn

Ah) =) ap(z"®2").

kezn

Due to proposition the projective topology on O(T") ® O(T™) coincides with that induced
by the topology of C°°(T™ x T™). In particular, it is defined by the following set of seminorms

sz{%waGZ’Mm@@wD=W$$@wm}

9See section
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Applying a seminorm gj; to A(h) we obtain now:

z,ycT”

Ga(AW) = [ o Hr (@) @)l = sup Zw’f“z%x)zmm\

(4.6.5)
— Zaer+lZT(ﬂf+y)' = sup | 3 anr* e (@) = pra(h).
z,yeTn r zeTn r
From theorem [B.2.10] it follows then that A is continuous. O

A direct consequence of proposition is that we can consider the metric completion W
of the algebra O(T"). By definition this will be a Fréchet algebra, and it is clear that it coincides
with the algebra C°°(T™) of smooth functions on the n-torus. In particular, we shall obtain
a structure of Hopf algebra on C°°(T"), with the coproduct taking values in the completion
C®(TM)RC™>®(T™) ~ C*°(T" @ T™) of the tensor product C*°(T") @ C*°(T").

So, when dealing with quantum principal T"-bundles, we could either work with O(T"™) or
with C°°(T"™). In this thesis we shall work with the former, but we have given this short discussion

for completeness sake.

4.6.1 The (bicovariant) de Rham differential calculus

In this thesis for quantum principal T"-bundles we shall mean a suitable class of principal O(T")-
comodule (or eventually C*°(T")-comodule) algebras. This class will be the class of the principal
comodule algebras which are quantum principal bundles with respect to the de Rham differential
calculus on O(T™) (see definition [4.3.1)). Of course, for de Rham calculus on O(T") we mean the
restriction of the ordinary de Rham calculus on C°°(T™) with respect to the inclusion O(T") C
C>°(T™) (see previous section).

Let us take a look at this calculus. We have seen in section that any bicovariant first
order differential calculus is defined by an adpg-invariant ideal @) C kere. The de Rham calculus
on O(T") is a bicovariant calculus and that the ideal which defines it is Q = (kere)?. This fact
actually holds for any Hopf algebra of smooth functions over a compact connected semisimple Lie
group G: we shall discuss this in chapter |8 We simply notice here that @ is the ideal of functions
vanishing at the identity e € G with differential vanishing, too.

Let us take a closer look at the ideal ). In particular let us write down a set of generators.
Proposition 4.6.7. The ideal Q = (kere)? is generated by the elements
Gy = (2" = 1)(z" = 1),
fork,r e Z".

Proof. kere can be identified with the space whose elements are the linear combinations

Z akzk s.t. Z ap = 0.

kezZm kezZm

71



4. Quantum principal bundles

But any element of this kind can be rewritten as

Z (¥ —1).

kezZn
Therefore kere is generated by the elements (¥ — 1) for k& € Z™. It follows directly that the

elements gy , generate Q. O

Corollary 4.6.8. The ideal Q contains all the elements of the form

qZ(T)Ezf—l—r(zi—l) 1=1,...,n,

n

for any r € Z and any k € Z".

4.6.2 Quantum principal T"-bundles

We are now ready to introduce a definition of quantum principal T"-bundles. Given a quantum
principal bundle A with Hopf algebra H = O(T"), we shall provide sufficient conditions on the
first order differential calculus of A for it being a quantum principal bundle with general calculus
compatible with the de Rham calculus on O(T"). In the rest of this thesis we will adopt the

following terminology.

Definition 4.6.9. A quantum principal T"-bundle is a quantum principal bundle (A, O(T"), Agr, N, Q)
where Q = (kere)? is the ideal which defines the de Rham calculus on O(T™).

Let us consider now a right O(T")-comodule algebra A. Let A denote the coaction and B
the invariant subalgebra. Assume that B < A is a Hopf-Galois extension. Then we can split the

algebra A as a direct sum,

A= P AW, (4.6.6)
kezZm

where the A®) are the set of elements of homogeneous degree; that is,
ac A% o Ap(a)=a®F

Of course, A®) = B. This allows us to define actions both of the Lie group T" and of its Lie
algebra t, on A as follows. If g = (¢1,...,¢,) is an element of T™, then we define

g>a = et thagn), forae AW,
This corresponds to the following action of the Lie algebra t,:
dj>a=dj(a) =kja fora e AR,
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Remark 4.6.10. When dealing with pre-C*-algebras (or C*-algebras) we will always require the
action of T" to be norm-continuous (and, therefore, since each element of T™ acts as an automor-

phism of A, the action will actually be norm-preserving).

Let now Q'(A) be a (general) first order differential calculus over A. We recall that it is
possible to define a O(T™)-coaction on QA (see equation (4.1.2)). Then we can give the following

definition.

Definition 4.6.11. A first order differential calculus Q'(A) over a right O(T")-comodule alge-
bra A is O(T™)-covariant if Q'(A) is an O(T")-equivariant bimodule, with comodule structure

inherited from Q'A, and, moreover,
AR(da) = (d ® id)Ag(a)

in QY(A).

Remark 4.6.12. When A = O(T"), this definition agrees with definition [2.3.26| (see [Wor89],
proposition 1.3).

Remark 4.6.13. A differential calculus Q'(A) defined by a sub-bimodule N C A ® A is H-
equivariant if and only if N is equivariant; that is, if and only if Ar(N) C N ® H.

Proposition 4.6.14. Let A be a principal O(T™)-comodule algebra, let B be its invariant subalge-
bra and let Q1 (A) be an O(T™)-covariant first order differential calculus, defined by a sub-bimodule
N C A® A. Then (A, O(T"), Ag, N,Q), where Q = (kere)? | is a quantum principal bundle if
the following conditions hold:

(i) let aj,b; € A; then

Zajdbj =0in Ql(A) = Zajdi(bj) =0 Vi=1,...,n, (4.6.7)
J J
(ii) letne QA n= >_jajdbj; then
> aoi(b;) =0 Vi=1,....n = [Ny € AQY(B)A. (4.6.8)
J

Proof. We check (i)-(iv) of definition [4.3.1] (i) is trivially satisfied, since we assumed A to be a
principal comodule algebra. Furthermore, (ii) follows directly from the O(T"™)-covariance of the
differential calculus Q!(A).

Let us check condition (iii). Take n € N and write it as n = >_;(a; ® bj — a;b; ® 1). We
introduce the following notation: given a € A, we split it as a sum of elements of homogeneous

degree:
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Then we have n = Z Z (a; ® b;T) — aij) ® 1) and
j rezn

=S Y gV @z ). (4.6.9)

j TEZ"

Let us notice that, for any i = 1,...,n,
AR 051' = ((5, ®1d) o AR.

Using this fact, together with the compatibility with the de Rham calculus (i.e. equation (4.6.7))),

we obtain
D> gt =
j rezn
Hence,
SN el @ (2 -1) =0 (4.6.10)
j rezn

for any ¢ = 1,...,n. If now we sum, for all ¢ and for each r € Z", (4.6.10) to (4.6.9) we obtain:

=3 Y el ((zr 1) = iz - 1)) . (4.6.11)

Jj rezm =1

But from corollary we know that all the right factors of the terms of the sum (4.6.11)) belong
to @, thus Tr(n) € A® @ and (iii) is fulfilled.
We are left with condition (iv). Take [n] € Q'(A), and write the representative 17 as n =

>_j(a; ®bj —ajb; ®1). Then Tg(n) is still given by (4.6.9) ([4.6.9). We know (see corollary [4 that,

n
in H/Q, (2" — 1) is equivalent to ZT’L(Z’L — 1), so we can write:
i=1

T([) = (id@7m)(Tam) =Y Y a;b”

j rezn

iri(zi - 1)] . (4.6.12)

i=1

Now assume that at least one of the non-vanishing terms of (4.6.12)) has r; # 0. Then, imposing

T([n]) = 0, we get
ST a4l @ri(z 1) = 0. (4.6.13)
j rezn

But this implies, since the elements z; are linearly independent also in H/@, that

Z Z riajby) =0

j rezr

Due to equation (4.6.8), this means that [n]y € AQY(B)A. Hence ker(T) C AQ(B)A, and so
condition (iv) of definition is fulfilled. O

We can also prove the converse: (4.6.7) and (4.6.8]) are not only sufficient but also a necessary
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4.6. Quantum principal T"-bundles

conditions for a quantum principal bundle to be a T™ bundle. Indeed,

Proposition 4.6.15. Let (A, H,Ar, N,Q) be a quantum principal bundle, with H = O(T™) and
Q = (kere)?, so that (A, H,Ar, N, Q) is a quantum principal T" -bundle. Then properties (4.6.7)

and (4.6.8]) hold.

Proof. Take n = Zj ajdb; such that it is zero in Q'(A). This means that Zj a; ®bj —a;b; ®1

belongs to V. Let us introduce the following notation: we write each b; as a sum of elements of

bi=> ol

keZm

homogeneous degree,

From the definition of quantum principal bundle we know that Tr(/N) C A ® @. This means, in

S SN gt e -1 ed0q.

kezr j

particular, that:

But @ is the ideal which defines the de Rham calculus Q},(H) = Q'H/Ng. In particular (see
theorem [2.3.31]), for any h € H, we have:

SN gpP erthe (F-1) e Ao Ny

kez™ j

= 3 Y 4 @haFd(2) = 0 € Aw Qyp(H) (4.6.14)
kezr j

We recall that the derivations J; form the canonical basis of t,, so we can see them also as

operators on H. If now we denote by {dz/} the dual basis, then the calculus Q},(H) can be

Wdh =" 16;(h)da'.
In particular, (4.6.14)) is equivalent to
> Zaj @ kihdz' =0 Vi=1,...,n,

kez™ j

described in the following way:

which implies that Zj a;0;(bj) = 0 for all ¢, and this concludes the proof that property (4.6.7)
holds.

Now we prove that also (| - ) holds. Consider n € Q'A, n = Z a;db;, and suppose that

> @;6i(bj) = 0. Then we can write 7, as an element of A® A, as n = Z Z a; ® b(k) bgk)),
j rezn
with Z Z riajbg.r) = 0. A simple computation now yields to:
j rezr

Z Z a]b(T [z" —1]

j rezn
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4. Quantum principal bundles

But, from corollary we know that [2" — 1] = [, (2 — 1)] in kere/Q. Hence we obtain:

T([) =333 rap!) @z —1] =0,

i § rezn

That is, [n] € ker(T"). Then condition (iv) of definition implies that [] € AQY(B)A. So we
have proved that also (4.6.8) is satisfied. O

4.6.3 Strong connections over quantum principal T"-bundles

In this section we will discuss the main properties of strong connections over quantum principal
T"-bundles. As we shall see, any strong connection can be characterized by a family of n 1-forms,
property which reflects the classical case, when a T™-connection can always be written as an
n-dimensional vector of 1-forms, one for each generator of the Lie algebra t,.

We begin with the following observation.

Lemma 4.6.16. Let (A, O(T"),Ar,Na,Q) be a quantum principal T™-bundle (that is, Q@ =
(kere)? defines the de Rham calculus on O(T™)). Then, any strong connection w : O(T") — A
fulfils the following relation:

w(zF) = Z kiw(z).
i=1

Proof. This follows simply by corollary and condition (i) of definition Indeed, if we
take ¢%) € Q, as in corollary we know that w(q(k)) = 0. But this means, due to the linearity
of w, that:

n

0=w(zF) =) w().

i=1
(r)

We also have to impose that w(g; ') = 0, which gives w(zfl) = kjw(z;). The two relations together

n
yield to the thesis: w(z¥) = Z kiw(z;) for any k € Z". O
i=1
In particular, the connection w is completely described by a family of n 1-forms w; € Q'(A).
Conversely, is it true that given a suitable family of 1-forms w; we can define a strong connection
w simply by w(2¥) = S | kjw;? The answer is positive, and the conditions that we have to

impose on the family {w;} are the n-dimensional analogues of those introduced in [DS13al:

Definition 4.6.17. A family of n 1-forms {w;} C Q'(A) is a strong T"-connection for the
quantum principal T"-bundle (A, O(T"), Ar, N, Q) if the following conditions hold:

(i) 0j(ws) =0 foranyi,j=1,...,n;

(i) if w; = ijjdqj, with p;,q; € A, then ijjéi(qj) =1 and ijjél(qj) =0 forl #1i;

(iii) Va € A, (da— Y, di(a)w;) € QY(B)A.

We have to spend here a few words on condition (i) of definition [4.6.17t the action of the
generators §; of the Lie algebra t, on Q!(A) is defined by

(5]' (adb) = 5j(a)db + ad(éj(b))
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4.6. Quantum principal T"-bundles

Proposition 4.6.18. Let a family of 1-forms {w;} C QY(A) be a strong T"-connection, in the
sense of definition over a quantum principal T"-bundle (A, O(T™), Ar, N, Q). Then it
defines a strong connection w, in the sense of definition [{.3.6, by:

w(zk) = i kiw;.
i=1

Proof. We check properties (i)-(iv) of definition Let us begin proving (i). By definition we
have w(1) = 0. So we need only to show that w(Q) = 0. By proposition we know that @ is
generated by the elements g, = (2% — 1)(2" — 1) for k,r € Z". And we have:

n

w(qrr) = w(szrr —k 1) = Z [(k; + 7i)wi — kiw; — riw;] = 0.
i=1

Hence w(@ @ C) = 0. Next we check (ii). The condition (i) of definition can be rewritten
as
A%(wl) =w; & 1

for any i = 1,...,n. Also, the right adjoint coaction adgr of H is the following one:
adp(z¥) =@z %= el

Thus we get:

But we have also

AR (w(zh) = Z AR (kiw;) = Zkiwi ® 1,
i=1 i=1

so (ii) is fulfilled. In order to show that (iii) holds we use the fact that Q!(A) is defined by the
sub-bimodule N C ker(m) C A® A. Indeed, taken a representative of the equivalence class of wj,

it can be written as

Gi=) pi®q¢—pig®L
J

If now we split each g; as a sum of elements of homogeneous degree, w.r.t. the T" action, we get

~ k k
s=32 3 pog —pg ol
J kezn

so that we can easily compute

Tr(w) = (m@id) o (ida ® Ap)(@0) = Y Y. pia}" @ (< —1).
j kezn

Now, thanks to corollary we know that, in H/Q, [2F — 1] = >_jlkj(z; — 1)]. Thus, after
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4. Quantum principal bundles

applying id ® 7y to both sides of previous identity, we get:
= k
T(wi) =Y > Zkzqu](- V@ [ - 1].
i kezn =1

But from condition (ii) of definition [4.6.17 we know that this is equal to 1 ® [2; — 1], which is
exactly (id ® mg) o (1 ® (id — €))(z;). From this we easily deduce that w fulfils condition (iii).

We are left with the proof that also condition (iv) holds, but it follows immediately using
condition (iii) of definition 4.6.17; indeed, if a € A®), then

a@yw(a)) = aw(z;-“) = Z kjaw;.
J

O]

Proposition together with lemma show that, for quantum principal T”-bundles,

definition [4.3.6] and definition [4.6.17] give equivalent characterizations of strong connections.
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CHAPTER D

Projectable spectral triples and twisted Dirac operators

Let M be a (compact) smooth manifold, G a compact semi-simple Lie group and let 7 : P — M
be a principal G-bundle. If M is a Riemannian manifold, with metric tensor g, we can define, for
any connection over this bundle, a Riemannian metric on the total space P such that the action
of the group is isometric and that the bundle projection 7 is a Riemannian submersion (a possible
generalization of this construction to the noncommutative case will be discussed later; see also
the introduction of this thesis for a brief account of the commutative case). Assume, instead, to
be given a Riemannian metric on the total space P, such that the bundle projection 7 : P — M
is a Riemannian submersion, the action of G on P is isometric and P is a spin manifold; in this
case, what can we say about the metric and the spin structure induced on the base space M? An
answer to this question for U(1)-bundles was given in [AmmB98| [Amm98| [GLP96].

Results analogous to those by Ammann and Bér for noncommutative U (1)-bundles with spec-
tral geometry of K R-dimension 3 were discussed in [DS13al. Herdﬂ we extend them, considering,
first, noncommutative U (1)-bundles of any dimension and then noncommutative T"-bundles. We
point out that our approach is operatorial and exploits only the algebraic and the spectral prop-
erties of the Dirac operator. In particular we can not directly follow [AmmB98, [Amm98|, where
the properties of the spin structure of principal U(1)-bundles were proved using the metric tensor
and the Christoffel symbols, which, in general, can not be defined in the noncommutative case,
but we elaborated another method, which relies on the properties of the Dirac operator.

So, in the first part of this chapter, we shall discuss the U(1) case, both in the even and in the
odd dimensional case. Next, we will consider a quantum principal T"-bundle (A, H, Ag, N, Q)
and we will start from a T"-equivariant real spectral triple over A (see below for the definition);
this choice corresponds to assume that the action of the structure group is isometric. Then we
will discuss some conditions under which it is possible to build a spectral triple for the base space,
i.e. for the invariant subalgebra B = A“H . Finally, we will show how this construction allows us

to define spectral triples and Dirac operators twisted by a strong connection. This will lead us to

'Part of the results discussed here are contained in [DSZ13].
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5. Projectable spectral triples and twisted Dirac operators

the construction of new Dirac operators: for example, in the case of noncommutative n-tori we
get twisted operators that are no more T"™-invariant. In addition, these operators are expected
to describe a noncommutative geometry with non zero scalar curvatureﬂ We just mention here
that a “perturbative” study of the properties of operators of this kind can be found in [DS13b].
Finally, we shall relate our results to recent developments in K K-theory [Mes11, BMS13|: we

shall discuss, in particular, the case of U(1) gauge theories on a noncommutative 2-torus.

In this section with real spectal triple we mean a real spectral triple (A, H, D, J,7), in the
sense of definition fulfilling, at least, the classical dimension and the first order condition.

5.1 Twists of spectral triples

We begin by discussing a general way to twist a spectral triple using a (suitable) connection over

a module. Let (B,H, D, J) be a real spectral triple over a (unital) algebra B. Consider another

Hilbert space Hjs together with a representation of B. Let M be a space of B-linear bounded

maps m : H — Hys. Assume that:

(a) M is a finitely generated projective B-module;

(b) HM = M(H) is dense in H,s, where M(#H) is the linear span of elements m(h), m € M,
heH;

(c) the multiplication map from H ®pg M to HM is an isomorphism.

Using the right B-module structure induced on H by the real structure J, namely
hb= Jb*J1h (5.1.1)
for any h € ‘H and any b € B, we define a left B-module structure on M through:
(bm)(h) = m(hb) Vm € M.

We introduce a new notation: we write the action of M on the right, that is m(h) = hm. Then
the B-linearity reads
(bh)m = b(hm),

while the left B action on M becomes
h(bm) = (hb)m.

Also, it follows from the first order condition (see section or classical textbooks of noncom-
mutative geometry, e.g.[GBEV]) that there is a right action of Q1,(B) on H, given by:

hw=—Jw*J'h  Vw e QL(B), (5.1.2)

20f course, to make this assertion meaningful we need to introduce some well-defined notion of scala curvature.
For a possible approach to these problem see appendix @ see also [DS13Db] for the construction of ”curved”
Dirac operators for the noncommutative 2-torus. For a general discussion of scalar curvature for noncommutative
manifolds see also [BhMal2l [CM11].
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5.1. Twists of spectral triples

where w* is the adjoint of w, s.t. ([D,b])* = —[D, b*] and
h|D,b] = D(hb) — (Dh)b. (5.1.3)

Such an action is clearly left B-linear. Also, it induces a left action of QL (B) on M, and QL (B)M
is just the space of all compositions m o w of left B-linear maps. For further details we refer to
[DS13a).

Now we pass to connections (or covariant derivatives) and, following [DS13a)], we give the

following definition.

Definition 5.1.1. We call a linear map V : M — Q},(B)M a D-connection on M if it satisfies:
V(bm) = [D,blm + bV (m), Ybe B, m € M.

Since we are dealing with maps between Hilbert spaces, we can define their adjoints. In
particular, taken m € M, it is clear what is its adjoint m'. Also, it is straightforward to define
the adjoint n* of a 1-form 7 € Q},(B). Thus we can define the adjoint of an element of Q}(B)M
simply by (nm)f = min*. Of course, in general it will not be an element of Q1 (B)M, but we do

not need this. Now we can introduce a notion of hermiticity for a D-connection [DS13a].

Definition 5.1.2. A D-connection V is said to be hermitian if, for each mi,mao € M,
(i) as an operator on H, mJ{ omg € JBJL;

(ii) writing the action on arbitrary h € H on the right, we have:
hV(mg)mJ{ — hmaV(mp)T = (Dh)mng{ - D(hmgm]i).

Using D-connections we can now define an operator Djs on a the dense subset of M (H) C Hyy.

Definition 5.1.3. We define Dj; on M (Dom(D)) C Has by:
Dyr(hm) = (Dh)m 4+ hV(m) VYm € M.
Remark 5.1.4. Dy is well defined. Indeed, for any b € B we get, using the Leibniz rule for V,
(D(hb))m + hbV(m) = (Dh)bm + hV (bm).

Proposition 5.1.5. If V is a hermitian D-connection, the operator Dy is selfadjoint and has

compact resolvent. Moreover, all the commutators [Dys,b], for b € B, are bounded.

Proof. Dy is a symmetric operator. Indeed, for hy, hs € H and my,ms € M, we have

(hima, Dar(hama)) = (himy, (Dha)msa) + (himi, haV(mz))
hi, Dhg m2m1> + <h1, hQV(mg)m1>

<h1, D h2m2m1)> + <h1, thQV(ml)T>
<(Dh1)m1, hg, m2> <h1V(m1), h2m2> = <DM(h1m1), h2m2> N
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5. Projectable spectral triples and twisted Dirac operators

where, in the third equality, we used (ii) of definition Moreover, since both m € M and
V(m) are bounded operators, and D is selfadjoint, then Dy, is selfadjoint.

Next, let us compute the commutator of Djy; with b € B. We get:

[Dar, b](hm) = Dy (bhim) — bDyy(hm)
= (Dbh)m + (bh)V(m) — b(Dh)m — b(hV (m)) = ([D, b]h)m.

Hence ||[Das,b]|| < ||[D,b]||. Finally we show that Djs has compact resolvent. If M is a finite

free module over B, with basis m;, we have

Z Dy (hjmj) = (Dhj)m; + hjV (m;).

Now, V(m;) can be written as wj;my, and so the second part of the expression above is actually
a bounded operator on Hps;. Therefore Dy is at most a bounded perturbation of D, which has
compact resolvent: it follows that the same has to be true also for Dj;. A similar discussion

applies to the case when M is a finitely generated projective B-module. O

5.2 Projectable spectral triples for quantum principal U(1)-bundles

We begin by considering the simple case of quantum principal U(1)-bundles. We extend here the
results presented in [DS13al in order to cover also the even dimensional caseﬂ Before entering
into the details of the construction we briefly recall the main properties of (projectable) spin

structures over principal U(1)-bundles [AmmB98|, [Amm9§].

5.2.1 Spin geometry of principal U(1)-bundles

Let M be an (n + 1)-dimensional compact smooth manifold which is also the total space of a
principal U(1)-bundle over the n-dimensional manifold N = M/U(1). Assume that M, N are
Riemannian manifolds, with metric tensors, respectively, g and g such that:

- the action of U(1) on M is isometric w.r.t to g;

- the bundle projection 7 : M — N is a Riemannian submersion;

- the fibers are of equal constant length 2xl, for some [ € R;..

Consider now a (local) orthonormal frame on TM, e = {eg, €1, ..., en}, such that e is U(1)-
equivariant and eq is the (normalized) Killing vector field of the U(1) action. Then there exists a
unique principal connection 1-form w : T'M — R such that kerw is orthogonal to the fibers, for
all m € M, w.r.t. the metric g. w is clearly given by €°/l, where {e’} is the dual frame of {e;}.
Conversely, given a principal U(1) connection and a Riemannian metric on the base space N,
there exists a unique U (1)-invariant metric on M such that the horizontal vectors are orthogonal
to the fundamental (Killing) vector field K.

Assume now that M is a spin manifold, and let M be its spinor bundle. The U(1) action
either lifts to the spin structure and then to an action U(1) x XM — XM, or to a projective

3Part of these new results can be found also in our recent paper [DSZ13].
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5.2. Projectable spectral triples for quantum principal U(1)-bundles

action. Assuming the former, we have a projectable spin structure on M, and it induces a spin
structure on N [AmmB9g].

Given a structure of this kind, we recall that the Dirac operator D on sections of $M can be
written as
_ n 1 n -
D = Z’Yiaei + 1 Z FZ]’Y’LV]’Y]{H
i=0 i,5,k=0
where the v; are the gamma matrices, generating the action of the n-dimensional Clifford algebra,
associated to the orthonormal frame {e;} and the ffj’s are the Christoffel symbols of the Levi-

Civita connection on M. In particular [AmmB98| we have:

~ _ 1
_F?j = Fgo = F{)i = idw(ei, €j)s
(5.2.1)

f?o = fgi = féo = f80 =0.

We notice that the Lie derivative with respect to the Killing field Ok, which is equal to %860,
differs from the spinor covariant derivative, which is given, according to (5.2.1]), by

l
Veo = Ocy + 1 Z:kdw(ej, k)Y V- (5.2.2)
j

Now, Amman and Bér showed that D can be expressed as a sum of two first order operators
on L?(XM) plus a zero order term. The first operator, called the vertical Dirac operator, is simply
given by

D, = %'708K = Y00 -

Observe that d, can be seen as the Dirac operator on the circle S* ~ U(1) with the standard
uniform metric that gives S! length I. In order to construct the second operator we need to

consider separately the case when (n + 1) is even and the case when (n + 1) is odd.

Consider first the odd dimensional case. The space of L?-spinors on M can be orthogonally

decomposed into irreducible representations of U(1),

12(£M) = PV,

keZ

and this decomposition is preserved by 1~), since it commutes with the U(1) isometric action. Let
now L = M Xy 1) C be the complex line bundle associated to the principal bundle 7 : M — N.
Then one can prove [AmmB98|] that there is a natural homothety of Hilbert spaces (which is an

isomorphism if the fibres are of length [ = 1)
Qr: L*(EN @ L% = W,

which satisfies

Qr(viv) = viQr(v) i

1,....,n
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and .
1 .~
Ve, @r(¥) = Qu(Vyt) + > (Tfo - F%) Y07 @k (),
j=1
where f = (f1,..., fn) is the local orthonormal frame on N given by f; = m.(e;). Then we can

define the horizontal Dirac operator Dy as the unique closed linear operator such that, on each

Vi, it is given by the composition

Dy =QroDjoQ;",

n

where D), = Z(% ® id)(V% ®id +1d ® kVY)) is the twisted Dirac operator on XN @ L=F. Here
i=1
V¥ is the covariant spinor derivative on N coming from the Levi-Civita connection on N, and

kV¥ is the covariant derivative on the bundle L% associated to the connection iw. Then we can

write the Dirac operator D in the following way:
D=D,+Dy+Z,

where Z is a zero order operator. Moreover we can give an explicit formula for Z:

l
Z == > dw(ej, ex) e (5.2.3)

i<k

Now we come to the even dimensional case. We still have the decomposition

L(2M) = P Vi

kEZ

and this decomposition is still preserved by the Dirac operator D. But now the spinor bundle

splits as a direct sum XM = %) @ £() accordingly to v = 1, where

n+1

V=12 Y ... Vn.

Each &) corresponds to a spinor bundle £ N on the base space. Now, as we have done before,
we associate to the U(1) bundle 7 : M — N the complex line bundle L = M Xy C, with the

natural connection iw. Then [AmmB98] there is a homothety of Hilbert spaces
Qr: (P e @ L) = Wi

which satisfies Qr(7:%) = viQr(¢) for each i = 1,...,n. Now let f = (f;,..., fn) be the local
orthonormal frame on N given by f; = m.(e;). Then the horizontal Dirac operator Dy, is defined,

on each Vj, by the composition
D, =QroDjoQ;",

84



5.2. Projectable spectral triples for quantum principal U(1)-bundles

where
n

Dy =Y (v ®id) ((vgcj) Vi) @id+ide kv;g_) .
=1

Also in this case, then, the Dirac operator D can be expressed as
D=D,+Dy+ 2,

where Z is a zero order term, still given by:

l
7 = —Efyozdw(ej,ek)'yj’yk. (5.2.4)
i<k
We conclude this section with the following observation: in both the even and the odd dimen-
sional case, the zero-order term Z is the responsible for the vanishing of the torsion of the metric
connection. For the details see [AmmB98, [Amm98| [DS13a].

5.2.2 U(1)-equivariant spectral triples

In section [3.5] we gave the definition of H-equivariant spectral triple. Here we specialize this
notion to the U(1) case. Given a coaction of the Hopf algebra H = O(U(1)) on an algebra A, we
can define an operator § : A — A by §(a) = ka for a € A®) (see section. This operator can
be seen as the (selfadjoint) generator of the enveloping algebra & = U(u(1)) of the Lie algebra of
U(1). U is a Hopf algebra, with coproduct, counit and antipode given by:

AB)=6®1+1®5, 0)=0, S(6)=—06.

Of course, U acts on the algebra A. Therefore we can require a real spectral triple (A, H, D, J,~)
to be equivariant w.r.t. /. This yields to the following definition.

Definition 5.2.1. A U(1)-equivariant real spectral triple over the algebra A is a real spectral
triple (A, H, D, J,v) (v = id if the triple is odd) together with a selfadjoint operator § on H, with
domain stable under the action of A, which extends the operator § : A — A,

o(m(a)p) = m(6(a))¥ + m(a)d(y),

and such that
6J+Jd=0, [0,7] =0, [0, D] = 0.

Actually we require also that the spectrum of ¢ is Z (it could be also Z + %) this corresponds
to the assumption that the U(1) action on the tangent bundle lifts to an action and not to a
projective action on the spinor bundle.

Hence, if (A, H, D, J,v,0) is a U(1)-equivariant real spectral triple, we can split the Hilbert

space H according to the spectrum of §:

H =P,

kEZ
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5. Projectable spectral triples and twisted Dirac operators

and this decomposition is preserved by the Dirac operator D. Moreover W(A(k))’Hl C Hyyy for any
k,l € Z; in particular, H, is stable under the action of the invariant subalgebra B = A®H# = A©).

5.2.3 Projectable spectral triples: odd case

Now we are ready to study the projectability of the spin structure in the framework of noncom-
mutative geometry. We have to distinguish the odd dimensional case from the even dimensional
one. We begin by considering the former.

Let B < A be a principal O(U(1))-comodule algebra, and consider a U(1)-equivariant odd
real spectral triple (A, H, D, J,0) over the total space A. We give the following definition [DS13a].

Definition 5.2.2. An odd U(1)-equivariant real spectral triple (A, H, D, J,~,d) of K R-dimension
j s said to be projectable along the fibres if there exists a Zs grading I' on H which satisfies the

following conditions,
=1, =T,

[,7m(a)] =0 Vae€ A,

[T, 6] =0,
I = JT if j =1 (mod 4)
—Jr if j = 3 (mod 4).

If such a T' exists, we define the horizontal Dirac operator Dy, by:

D, = -T'[D,T]

We will be interested in a particular class of projectable spectral triples, which should rep-
resent the noncommutative counterpart of smooth principal U(1)-bundles which are Riemannian
manifolds with fibers of constant length (see the discussion in section 5.2.1)).

Definition 5.2.3. A projectable spectral triple has fibres of constant length if there is a positive
real number | such that, if we set
1
DU = 7]._‘5,

the operator
Z =D — Dy — D,

is a bounded operator which commuted| with the representation of A: [Z,7(a)] = 0 for any a € A.
In such a case, the operator D, will be called the vertical Dirac operator, and the number

[ should represent, up to a 2w factor, the length of the fibres, as like as in the commutative

(smooth) case.

“In [DS13a) a different choice was made: Z was asked to commute with .A°. As pointed out in [DSZI3|, remark
4.5, the choice we make here appears more natural. Moreover, it ensures the compatibility between the differential
calculus on the total space and the one induced, projecting the spectral triple, on the base space, see remark
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Remark 5.2.4. If a projectable spectral triple satisfies the conditions of definition then the
Dirac operator D and the horizontal Dirac operator Dy, determine the same first order differential
calculus on B: [D,b] = [Dy, b] for any b € B.

Consider now a projectable triple (A, H, D, J, §,T") of K R-dimension j, with j odd, and assume
that it has fibres of constant length. Since I' and D commute with J, also Dj does the same.
Therefore D;, preserves each H;. Instead, the real structure intertwines H; and H_j: JH C
H_i. In particular, it preserves Hg. Now, let us denote, for any k € Z, by Dj, and ;. the
restrictions to Hi of Dy and I', respectively. For each k € Z we define also an antiunitary

operator jr : Hip — H_ as follows:

. i if =1 (mod 4

J if j =3 (mod 4)
(where the restriction of J to Hy is understood). Now we can prove the following.

Proposition 5.2.5. The operators Dy, vk, ji satisfy the commutation relations of a real spectral
triple of K R-dimension j — 1. In particular, if the differential calculus Q% (B) is projectable,
(B, Ho, Do,0,J0) is an even real spectral triple of KR-dimension j — 1. Also, for k # 0,

(B, H, Dy, k) are even spectral triples, which are pairwise real.

Proof. We check here only the commutation relations and the first order condition. For rest of
the proof see [DS13a], proposition 4.4. Also, we check these relation only on the subspace Hy,
but the extension of the computations below to the general case k € Z is straightforward. In
order to simplify the notation, the restriction of the various operators to Hy will be understood.

For j = 3 the result is already proved in [DS13a]. Let us consider now the case j = 1:
[T, J] =0, jo = T'J. We need to check that: j& =1, j0Do = Dojo, Yojo = joyo. We have:

j2 =~voJyJ =TJIJ =T2J% =1,

joDo = %FJF[D, I = % (TJTDT — TJD)

1 1
(JDT ~TJD) = o (~=DJT +TDJ) = o ('DJ — DT'J) = Dojo,

DN |

’yoj(] = FFJ = FJF = jo’)/().

Now the case j = 5: [[,J] = 0, jo = I'J. We need to check that j2 = —1, joDo = Dojo,
Yojo = joyo- Since the only difference with the previous case is that now J2 = —1, the proof of

the last two relations is the same as before. For the first one:
2 =9Jy0] = DJDJ =22 = —1.

We are left with the proof of the proposition for j = 7. In this case we have jo = J, JI' = —I'J,
and we have to check that jg =1, joDo = Dqgjo, v0jo = —joYyo. We have:

jo =Tt =1,
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5. Projectable spectral triples and twisted Dirac operators

1 1
joDo = JT[D,T] = 5 (JTDT — JD)
1
= 3 (DDLJ = DJ) = Dojo,
Yojo =I'J = —JI' = —jo70.

The first order condition, instead, follows from remark and from the fact that the triple
over A fulfils the first order condition. O

5.2.4 Projectable spectral triples: even case

Now we extend the notion of projectable spectral triple to the even dimensional case. We give
the following definition, which, as we shall see later, is consistent with the results obtained in the

commutative (smooth) case [AmmBI8, [Amm9g].

Definition 5.2.6. An even U(1)-equivariant real spectral triple (A, H, D, J,~,d) is said to be
projectable along the fibres if there exists a Zo grading I' on H, which satisfies the following

conditions,
=1, =T,

[,7m(a)] =0 Vae€ A,

[Fa 5] =0,
Iy = —T,
I'J=—JI.

If such a T' exists, we define the horizontal Dirac operator Dy by

D, = -T'[D,T]

Also in this case we can introduce the notion of constant length fibres, see definition [5.2.3
Consider now a projectable triple (A, H, D, J,v,9,T') of K R-dimension j, with j even, and assume
that it has fibres of constant length. Also in this case Dy, preserves each Hj, and the real structure
intertwines Hy and H_p, JHr € H_i. In particular, it preserves Hg. Let us denote, for any
k € Z, by Dy, and ~; the restrictions to Hy of Dy and I'; respectively. Define an operator v by
v = ilv. Then v* = v and v? = 1, and we can use it to split Ho. In particular we obtain the

following result.

Proposition 5.2.7. Decompose Ho as Ho = 7—[(()+) & H(()_), where H(()i) are the (£1)-eigenspaces

of v. Then the horizontal Dirac operator Dy, preserves both the subspaces ’Héi)

denote by D(()i) the restrictions of Dy to H(()i), respectively, (B,H(()i), D(()i)) are spectral triples.

. Moreover, if we

Proof. Clearly Dy, preserves Hy, so, for the first part of the proposition, we need only to check
that [Dg,v] = 0. We have:

LIP[D, T,

[DOvV] = 5
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(I'Dy — TAI'DT — DIy + T'yD)

(=I'yD — DAT' 4+ DAT' +TyD) = 0.

DO =D =

Next we check that [Dy, b] is bounded for each b € B. But I' and v commutes with B, and [D, b] is
bounded since B C A; thus [Dy, b] is bounded for any b € B. Of course, both ’H(()i) are preserved
by B. So (B, H™), D(()i)), where D((]i) are the restrictions of Dy, are spectral triples.

In order to conclude the proof we should also discuss the analytic behaviour of the Dirac
operators D(()i)

from remark 4 of [DS13al. O

, but the fact that they have compact resolvent, which is what we need, follows

Remark 5.2.8. Let (A, H, D, J,7,d,T) be as in the previous proposition. Notice that I'v = —T'v,

so that F?—[(()i) C ’Héﬂ. Since I'’> = 1, T" determines an isomorphism I : Héﬂ —H. Moreover,

one can easily see that D,I" = —I'Dy. So, D(()+) = —D(()_) w.r.t. the isomorphism 7—[(()+) ~ ’H(()_)
determined by I'. This is nothing else than the noncommutative counterpart of the fact that,
in the smooth case, the two Dirac operators D(()i) are associated to the same metric, but they
differ by a different choice of orientation [AmmB98, [Amm98|. So we can say that the two triples

(B, 1), D((]i)) differ only by the choice of (the sign of) the orientation.

Now we can check if the spectral triples on B given by the previous proposition are real. We

start with the K R-dimension 2 case.

Proposition 5.2.9. Let (A, H, D, J,7,6,T") be a projectable real spectral triple of K R-dimension
2, fulfilling the constant length fibres condition. Then the antiunitary operator vJ preserves both

the subspaces H(()i). Moreover, if we denote by jéi) its restrictions to H(()i), respectively, then
(B, ’H(()i), D((]i),jéi)) are real spectral triples of K R-dimension 1, and they differ just by a change

in the sign of the orientation (see previous remark).

Proof. We know that both J and v preserves Hy. So, let jo denote the restriction of vJ to Hy.
)

First of all notice that [jo, ] = 0, so that jp preserves both H(()i . Also, we see that jo commutes
with T', since the spectral triple is projectable and has K R-dimension 2. Using the following
relations,

. 1 .
DOJO - §F[Dj07r]7

. 1. 1 )
JoDo = if[JoDaF] = —§F[D30,F],

where the last equality follows from JD = DJ and vD = — Dy, we see that Dgjg = —joDo, as it
should be in K R-dimension 1.

Next, one sees immediately that, since v commutes with A, jo maps B into its commutant.
And, since —j? =~% =1, and Jy = —vJ, 52 = 1. So jo, and thus j(()i), fulfil all the commutation
relations required for a real structure of a real spectral triple of K R-dimension 1 [GBFV]. The
last property that we need to check is the first order condition. But it follows from the property
[Dp, b] = [D,b], see remark and from the first order condition for the spectral triple over A.

The last statement of the proposition follows from the fact that I' intertwines the two triples,

as shown in remark [£.2.8] O
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5. Projectable spectral triples and twisted Dirac operators

In order to extend the result of proposition to higher dimensional even spectral triples

we give the following definition.

Definition 5.2.10. Let (A, H, D, J,v,6,T") be an even dimensional projectable real spectral triple

of KR-dimension j. Then we define a real structure jo on Hg by:

KR — dim 0
jo = J

2
vJ

4
J

6

%] (5.2.6)

where the restriction of v and J to Hy is understood.

With this definition of jy we can prove the following proposition, which is the generalization
of proposition

Proposition 5.2.11. Let (A, H,D,J,7,6,1") be a projectable even real spectral triple of K R-
dimension j,fulfilling the constant length fibres condition. Let jo : Ho — Ho be given by (5.2.6)).
Then jo preserves both the subspaces H(()i), and (B,Héi),Déi),jéi)) are real spectral triples of

K R-dimension (j — 1). Moreover they differ just by a change in the sign of the orientation.

Proof. We have already discussed the case n = 2. So we prove the proposition separately in
the other three cases. All what we need to check is that jg = #+1 accordingly to K R-dimension
(j — 1), that [jo,»] = 0, and that Déi) and jéi) satisfy the correct commutation relations (see
tables below); the other properties (like the first order condition) are fulfilled for the same reasons

of the previous proposition. The first condition is easily checked, as follows from |[GBFV]:

KR—dm|0]|2|4]|6 -
KR—dim|1|3|5]| 7
€ +|—1—-]+
7 € + | = -]+
€ + |+ |+ |+ ;
1" € -t f
€ +l =+ -

where J?2 =€, JD = €D.J and Jvy = €"v.J. Let us check that jo commutes with v (from now on
the restrictions of the various operators to H(()i) will be understood). Let j = 4. Then jo = J

and

Let j = 6. Then jo = ~J and
(o, v] = [y, ily] = y[J,il]y = 0.
Finally, let j = 0. Then jo = J and
[jo, ] = [J,iT7] = [J,il]y = 0.

Now we check the commutation relation between jo and Dg. But we notice that the commutation

relations between Dy and jy are the same of those between jo and D. So, if j = 0 or j = 4 then
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5.2. Projectable spectral triples for quantum principal U(1)-bundles

jo = J and thus joDg = Dgjo, and it is consistent with the requirements, respectively, of K R-
dimension 7 and 3; instead, if j = 6 then joDg = —Dgjo, as it should be in K R-dimension
5. O

We conclude this section pointing out that, as like as in the odd dimensional case, we can
define pairwise real spectral triples (B, Hg, Dg, ji) simply extending the construction discussed

above for the £ = 0 case.

5.2.5 Twisted Dirac operators

In section 5.1 we have described how to twist a Dirac operator using a left module. Now we want
to apply this construction to projectable spectral triples. We shall see that, given a quantum
principal U(1)-bundle (A, O(U(1)), Ag, N, Q) (where, we recall, Q = (ker¢)?), over the invariant
subalgebra B, and a projectable U(1)-equivariant real spectral triple (A, H, D, J,v,6,T"), it is
possible to use strong connections over A to construct twisted versions of the horizontal Dirac
operator Dj,. Again, we shall consider separately the odd dimensional and the even dimensional
case. Before entering in the details of the construction of twisted Dirac operators, we notice the

following facts, which give an additional insight on the geometrical meaning of our construction.

Proposition 5.2.12. For any k € Z, A® is a quantum associated bundle to the principal
O(U(1)-comodule algebra A. Moreover, it is a finitely generated projective B-module.

Proof. Consider the left O(U(1))-comodule (V, pr), where V = C and pr(A) = 2 ® A. For any
k € 7 define the O(U(1))-comodule (V*,p%) by setting V¥ = C, ph(\) = zF @ A. Then it is
straightforward to see that A®*) is isomorphic to AD@(U(l))Vk (see definition . It follows
(see definition that A®) is a quantum associated bundle.

Next, it is clear that it is a left B-module. Then the fact that it is finitely generated and

projective as left B-module follows directly from the fact that A is a principal comodule algebra
(see proposition [4.5.3)). O

Proposition 5.2.13. For any k € Z, k # 0, A®) is a line module over B.

Proof. This is a corollary of theorem Indeed, set £ = A® and F = AR let p; :
E® F — B and us : F ®3 F denote the multiplication maps. Then both p; and po are
surjective (see lemma . This implies that (A, A, E, F, u1, u2) is a strict Morita context,
from which it follows that u; and pg are, actually, two isomorphisms (see proposition . If
now we set ev = 1 and coev = py ' (cfr. the proof of theorem see also [BB11], theorem
7.3) then we see that, with this choice of evaluation and coevaluation map, E is a weak left

module. Since both ev and coev are isomorphism, E = A®*) is a left line module over B. 0

0Odd dimensional case

The results discussed in this paragraph are mostly taken from [DS13a]. Let (A, H,J,D,d,T)
be a projectable U(1)-equivariant odd real spectral triple over a quantum principal U(1)-bundle
(A, H,Ar,N,Q), and let B be the invariant subalgebra of A. Assume that the triples has the
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constant length fibres property; we recall that, in particular, this means that QL,(B) = Qth(B)
(see remark. Let w € 2},(A) be a strong connection, in the sense of definition Let us
notice that, for any k € Z, the set A®) acting on the right on H via the right action induced by
the real structure (see eq. ), can be regarded as a set of bounded B-linear maps between H
and Hy. Also, it fulfils conditions (a) and (b) which we assumed for M in the previous section. So
we can take M = A®) and use all the previous results. In order to obtain well-behaving twisted
Dirac operators we need to introduce an additional requirement on the triple (A, #H, D, J,v): we

ask that there exists a bounded selfadjoint operator Z’ on H such that
(Zh)a = Z'(ha) VheH, ac A

Remark 5.2.14. As we have seen in the previous sections, the real structure which makes the
triple over B a real spectral triple is not always the simple restriction of J to Hy. Nevertheless
both J and the collection of j; induce the same right action of A on H. Instead, when we use
the real structure to define a right action of Q},(B) on Ho (cfr. section we shall use the real
structure jg, to be consistent with the results of section And in this case it would be not
the same to use J, since, at least for some K R-dimensions, its commutation relation with Dyq is
different from that of jy, and the representation of a differential form involves the Dirac operator.
Notice that this problem does not arise in the odd dimensional case, since for odd dimensional

triple jo is always obtained as the restriction of the real structure J to Hy.

We begin the construction of twisted Dirac operators. The first object we need is a connection
on M = A®).

Proposition 5.2.15. For any k € Z, the map V,, : A®) — QL (A)A®) defined by
Vw(a) =[D,a] — kaw,

where both a € Dom(D) and V(a) are regarded as operators on Hg acting from the right, defines
a Dy-connection over the left B-module A%,

Proof. See [DS13a), proposition 5.4. O

Proposition 5.2.16. The Dg-connection ¥V, is hermitian if w is selfadjoint (as an operator on

1.

Proof. See [DSZ13], proposition 5.2. We just recall that the action of D, on hp € H, where

h € Hg and p € A®) (such that hp is in the domain of D&i)), can be written in the following way:

Doy (hp) = (D + jow*jy 6 — Z')(hp). (5.2.7)

O]

Using the construction discussed in the previous section of this chapter we obtain a family
of twisted Dirac operators Dg,k), each one acting on Ho ® A®); since the latter can be identified

with Hy, we have a family of spectral triples (B, Hz, D&k)). Taking D,, to be the closure of the
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ﬁ,"’), we finally obtain a twisted Dirac operator D,,, which is an

direct sum of the operators D
(unbounded) operator on the full Hilbert space H. It is straightforward [DS13al [DSZ13] to check

that:

Proposition 5.2.17. The twisted Dirac operator D, is selfadjoint if w is a selfadjoint one form.

Moreover, it has bounded commutators with all the elements of A.

Proposition 5.2.18. Let Z be as in definition[5.2.3. Define
D, =16+ D,,.

Then (A, H,D,) is a projectable spectral triple with constant length fibres, and the horizontal part

of the operator D,, coincides with D,,.

Proof. See proof of proposition 5.8 in [DS13al. O

As in [DS13a] we introduce the following notion of compatibility.

Definition 5.2.19. We say that a strong connection w is compatible with a Dirac operator D if

D, and Dy, coincide on a dense subset of H.

Even dimensional case

Now let (A, H,J,D,~,d,T) be a U(1)-equivariant even real spectral triple over a quantum prin-
cipal U(1)-bundle (A, O(U(1)),ARr, N,Q), and let B be the invariant subalgebra of A. Assume
that the triple has the constant length fibres property and that there exists a bounded operator
Z'" on H such that

(Zh)a = Z'(ha) VheH, ac A

Let w € QL,(A) be a strong connection, in the sense of definition Let us notice that, for any
k € Z, the set A% acting on the right on A via the right action induced by the real structure
(see eq. ), can be regarded as a set of bounded B-linear maps between ”Héi) and H,(Ci)
(where, we recall, the (4)-decomposition is done accordingly to v? = 1). Also, it fulfils conditions
(a) and (b) which we assumed for M in the previous section. So we can take M = A®*) and use
all the previous results. Also in this case we have to take care of the fact that the real structure

we shall use when defining the left action of differential forms is jo and not the simple restriction

of J (cfr. remark |5.2.14)). Let begin by defining a connection on M = Ak,
Proposition 5.2.20. For any k € Z, the map V,, : A®) — QL (A)A®) defined by
Vu(a) = [D,a] — kaw,

where both a € Dom(D) and V(a) are regarded as operators on Héi) acting from the m’ghﬂ

defines a D(()i)—connection over the left B-module A®).

®The right action of Q}(B) on Ho is defined via the real structure jo, see (5.1.2)) and remark [5.2.14
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Proof. Due to condition (iii) of definition Vw(a) belongs to Q1,(B).A. But the constant
length fibres property implies that QL (B) = Q})h (B) (see remark [5.2.4, Moreover, Dy, commutes
with v and thus it preserves the splitting % = H(H) @& H () for any k € Z and the same holds for
Vw(a), for any a € A. Now the fact that V,, is both a Dé+)—connection and a D(()_)—connection
follows as in the proof of proposition 5.4 in [DS13al. O

Proposition 5.2.21. The D((]i)-connections V. are hermitian if w is selfadjoint (as an operator

on H).
Proof. Tt follows by direct computation, see [DS13a], lemma 5.5. O

Now we can use the construction discussed in the previous section to twist both the spectral
triples (B,’H(()i),D(()i),jéi)). This yields a family of spectral triples (B,H,gi),Dfuk’i)), k € Z.

Taking D&i) to be the respective closures of the direct sums of the two families, we obtain two

)

twisted Dirac operators D&i . Notice that the two families differ only by a different choice of the

orientation, as follows from proposition [5.2.8
Proposition 5.2.22. The twisted Dirac operators DU(Ji) are selfadjoint if w is a selfadjoint one
form, and they have bounded commutators with all the elements of A.

Proof. Take h € Héi) and p € A®) such that hp is in the domain of D&i) . Then we have:

DS (hp) = (DS h)p + KD, p] — khpuw
= (DS m)p + (D, jop iy ' 1h + jow* sy ke
= D(hp) + (DS — D)h)p + jow*jg *6(hp)
= (D + jow*jo 16 = Z")(hp).

(5.2.8)

From follows, by standard results of functional analysis, the selfadjointness of D,,. Next,
D has bounded commutator with each a € A; w is a one-form and so, due to the first order
condition, the commutator of the second term of with a € A is simply jow*jalé(a) and
hence is bounded. The commutator with the first term is bounded simply because it is the

commutator of two bounded operators. We conlude then that [D,, a] is bounded Va € A. O

Corollary 5.2.23. Using Dfui) we can construct a “full” Dirac operator D, simply taking their
direct sum. Then the operator D, is selfadjoint if w is selfadjoint and it has bounded commutator
with all the elements of the algebra A.

Proposition 5.2.24. Let Z be as in definition[5.2.3. Define
Dy, =16+ D,.

Then (A, H,D,) is a projectable spectral triple with equal length fibres and the horizontal part of

the operator D,, coincides with D,,.

Proof. See proof of proposition 5.8 in [DS13al. O
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5.3 Projectable spectral triples for quantum principal T"-bundles

We consider now spectral triples over T” quantum principal bundles. In this section we will
generalize the previous results, giving a definition of projectability for T"-equivariant spectral

triples (see below) and constructing twisted Dirac operators.

5.3.1 Spin geometry of principal T"-bundles

Let M be an (m + n)-dimensional compact smooth manifold and, together, the total space of
a principal T™-bundle over the m-dimensional manifold N = M/T". Assume that M, N are
Riemannian manifolds, with metric tensors, respectively, g and g such that:

- the action of T™ is isometric w.r.t. g;

- the bundle projection 7 : M — N is a Riemannian submersion;

- the fibres are isometric one to each other; moreover, the length of each fundamental vector field

K is constant along M.

The last assumption could be weakened (as like as it is possible to define and study projectable
triples over U(1) bundles whose fibers are not of constant length [Amm98| [AmmB98]) but the
more general situation would be much more difficult to treat in the noncommutative case, so we
shall not consider it here.

Under these assumptions, there is a unique principal connection 1-form w : T'M — t,, such that
ker w is orthogonal to the fibres, at any point of M, with respect to the metric g. If {7}, }o=1,..n
is the canonical basis of the Lie algebra of T™ (we assume each K, to be the fundamental vector
field associated to Ty ), then w will be of the form

n
w= Zwa ®T,,
a=1

where each w, is a C-valued 1-form on M. Next, for any vector field X on N we shall denote by
X its horizontal lifting. Consider now a (local) orthonormal frame f = {f1,..., f;u} on N. Then,
if we set
{ej:in ji=1,....n,
ej+n:fj j=1,...m,
where [; are real positive constants, then e = {e;} is a (local) orthonormal frame form M. Assume
now that M is a spin manifold, and let XM be its spinor bundle. As in the U(1) case we shall
also assume the T™ action to lift to an action T" x XM — X M. In this case we shall speak of
projectable spin structure. A projectable spin structure on M induces a spin structure on N (this
is a straightforward consequence of the analogue property for the U(1) case [AmmB98]).
Assume now that the spin structure over M is projectable. Then the Dirac operator l~?, acting

on L?-sections of M, will be the following one:

n+m 1 n+m
o i 1 Tk i gk
D = ZVa@iJWL,Z iy,
=1 1,7,k=1
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5. Projectable spectral triples and twisted Dirac operators

where the 4/ are the gamma matrices, associated to the orthonormal frame {e;}, generating the
action of the (n + m)-dimensional Clifford algebra and ffj are the Christoffel symbols of the
Levi-Civita connection on T'M for the frame {e;}. Using the Koszul formula we can compute
them. Let us use the letters a, b, c... to denote indices from 1 to n and the letters 4, j, k... to denote
indices from n + 1 to n + m. Then we have:

Tk _ 1k

a _ 1) _1J _ ‘@ . .
I =1, =1y = §dwa(e,,ej),
Ta _Ta _Ti _ Ta __
b =14 =T =T =0,

where the Ffj are the Christoffel symbols of the Levi-Civita connection on T'N, with respect to
the frame f. Before going on, we notice that the Lie derivative with respect to each Killing vector

field differs from the spinor covariant derivative by:

la <
Ve, = Oe, + 1 gdwa(ej, ek)’y]’yk.
J

We express the Dirac operator D as a sum of two first order operators plus a zero order term.

The first operator, which we shall call the vertical Dirac operator, will be given by:
n 1 n
D, = —7*0k, = e, -

Now we construct the second operator. First of all, we split the Hilbert space L?(XM) into

irreducible representations of T™:

L*(=M) = P Vi

kezn
Next, we reduce ourself to the case when both m and n are even. The general result can be
obtained by direct generalization. For each k € Z" consider the vector space C carrying the
irreducible representation of index k of T" and form the associated complex bundle Ly = M xnC.
Moreover, endow it with the connection iw. Then we can prove the following result (3, denotes

the m-dimensional spinor representation).
Proposition 5.3.1. For each k € Z" there is an isomorphism

Qr: L) EN®@ L) @ %, — Vi

such that the horizontal covariant derivatives, with respect to the vector fields ﬁ-, are given by

n+m n la
Vi Qr() = Qu(Vyt) + Z z:l4dwa(ez‘,€j)’Y(Ka/la)’Y(€j)Qk(1/f)7
j=n+1la=

where Vx is the vector field on N satisfying dw()z, )= <‘~/X, > Moreover, Clifford multiplication
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5.3. Projectable spectral triples for quantum principal T"-bundles

is preserved, i.e.
Qe(v(X)Y) = v(X)Qk(¥).
Proof. We can write XM = SM Xgpin(ngm) 2ntm and XM = SN Xgpinpn) Xn where SM, SN

are, respectively, the principal Spin(m + n)- and Spin(m)-bundles defining the spin structures of
the two manifolds and ¥,,4,,, X, are the canonical spin representations of the spin groups. Then,
since we assumed both m and n even, we have: ¥4, = X, ® Xy, Then the proposition follows

by direct computations, cfr. the proof of lemma 4.4 in [AmmB98]. O

Then one can see, by direct computation, that, if we define the horizontal Dirac operator, on
each Vi, by
Dp=Qro(D®id)oQ,",

where D is the (twisted) Dirac operator on XN ® Ly, then Z = D — D, — Dy, is a zero order

Z 1 § la ( a/ CL) ( 'CL)
a=1 ,.Y fy .

5.3.2 T"-equivariant spectral triples

Now we pass to the noncommutative case. We begin by extending definition Given a
coaction of the Hopf algebra O(T") on an algebra A we can define operators §;, for j =1,...,n,
which correspond to the selfadjoint generators of the universal enveloping algebra U(t,) of the
Lie algebra t,, of T™, by setting

A(dj) :(5j®1+1®5j, 6(5]') :0, S((SJ): —(5]'.
This provides us an action of U on the algebra A, and so we can require a real spectral triple
(A, H, D, J,7) to be equivariant w.r.t. &. This yields to the following definition.

Definition 5.3.2. A T"-equivariant real spectral triple over the algebra A is a real spectral triple
(A, H,D,J,vy) (v =1id in the odd case) together with commuting selfadjoint operators 0; : H — H,
for j =1,...,n, with (common) domain of selfadjointness stable under the action of A, which

extend the operators §; : A — A,

dj(m(a)y) = m(9;(a))y + m(a)d; (),

and such that
5jJ+J5j =0, [5] ’}/] =0, [5j,D] =0.

Remark 5.3.3. As like as for U(1)-equivariant spectral triples we require the spectrum of each §;

to be equal to Z.
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5. Projectable spectral triples and twisted Dirac operators

Now, if (A, H, D, J,v,{d;}) is a T"-equivariant real spectral triple, the Hilbert space H splits

according to the spectrum of the operators d;,

H=EP M

keZm

and this decomposition is preserved by the Dirac operator D. Moreover, for any k,l € Z",
T(A¥NYH, C Hjyy. In particular Hg is stable under the action of the invariant subalgebra
B = A« = A0,

5.3.3 Projectable spectral triples: odd case

Now we can extend the notion of projectability to T"-equivariant spectral triples. We treat

separately the odd dimensional and the even dimensional case. We begin with the former.

Definition 5.3.4. An odd T™-equivariant real spectral triple (A, H, D, J,{0;}), of K R-dimension
n~+m, is said to be projectable along the fibres if there exists a Zo-grading I' on H which satisfies
the following conditions,

rz=1, * =T,

[,7(a)] =0 Vae€ A,
[,o;]=0 forj=1,...,n,

JT = rJ if m =0 (mod 4),
] —1rJ otherwise.

We define the horizontal Dirac operator Dy, by:

1
il“[D,F]_ for n odd

$
>
|

(5.3.1)

1
§I‘[D, I for n even

where [a,b]+ = ab =+ ba.

It can be imposed, on a projectable spectral triple, a condition equivalent to the constant
length fibres condition introduced in the n =1 case (cfr. definition [5.2.3). We give the following

definition:

Definition 5.3.5. We say the bundle A to have isometric fibres if there exists an operator D, :
H — H such that D = D, + Dy, + Z and:

(a) Dyly, =0, where Ho is the common 0-eigenspace of the derivations 6;;

(b) [Dy,T] =0 if n is odd, [Dy,T]+ =0 if n is even;

(¢) [Dy,6] =0 foranyi=1,...,n;

(d) Z is a bounded operator;

(€) Z commutes with the elements from A: [Z,a] =0 for any a € A.
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5.3. Projectable spectral triples for quantum principal T"-bundles

Remark 5.3.6. As like as in the U(1) case (see remark , condition (e) of previous definition
implies that Q,(B) = Qp, (B).

Proposition 5.3.7. Let (A, H, D, J,{0;},I') be an odd dimensional projectable spectral triple with
isometric fibres, and let Ho be the common 0-eigenspace of the derivations d;. Then, if we denote
by Dq the restriction of Dy, to Ho, (B, Ho, Do) is a (usually reducible) spectral triple.

Moreover, if we denote by Jo the restriction of J to Hg, then Jy determines a right action of
B (or a left action of the opposite algebra B°) on Hy by

hb = b°h = Job*Jy 'h

for any b € B, h € H. This action fulfils the following properties:
(a) [b, Joc*Jo_l] =0 for all b, c € B; that is, Jy maps B into its commutant;
(b) [[Do,b], Joc*J; ] =0 for all b,c € B (first order condition).

Proof. Clearly Dy, is a selfadjoint operator, and it has compact resolvent (see [DS13a]). Also,
B preserves Hy since it is exactly the invariant subalgebra for the T" action. Finally, since
[D,b] = [Dp, b] for any b € B (see remark [5.3.6)), D has bounded commutators with the elements
from B. We conclude that (B, Ho, Do) is a spectral triple.

Next we prove (a) and (b). (a) follows simply by the fact that jo is nothing else than J, and
J maps A, and hence B, into its commutant. For what concerns (b), we recall that the triple

over A satisfies the first order condition; that is,
([D,a), Jb*J Y =0 Va,bec A.

Using this fact we can see that:

[[Do, b], Joc* Jy ] = %[[FDF, bl £ [D,b], Je* T

1 1
= 5[r[D, I, JerJ T = 5LD, 8], JerJ I =0,
where we used also the fact that JI' = —I'J, according to definition [5.3.4} So the first order
condition (b) is fulfilled. O

Lemma 5.3.8. Let (A,H,D,J,{6;},T"), (B,Do,Ho) as above. Then, if we denote by vy the
restriction of T' to Ho,

Do’y() = —"Y(]D() for n Odd,
Dovo = v Do for n even.
Proof. 1t follows by direct computation, using the definition of Dy,. O

5.3.4 Projectable spectral triples: even case

Now we consider even dimensional triples over principal O(T")-comodule algebras.
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5. Projectable spectral triples and twisted Dirac operators

Definition 5.3.9. An even dimensional T™-equivariant real spectral triple (A, H,D, J,~v,{d;}),
of K R-dimension n + m, is said to be projectable along the fibres if there exists a Zo grading I’

on H which satisfies the following conditions,
=1, =T,

[, 7(a)] =0 Vae€ A,
[,6;]=0 forj=1,...,n,
JI' = -TJ,

[y = (=1)"I.

We define the horizontal Dirac operator Dy, by:

1
§F[D,F], for n odd
Dy, = (5.3.2)
1
il“[D, I+ for n even

where [a,b]+ = ab + ba.
Also in this case we can introduce the isometric fibres property, see definition [5.3.5

Proposition 5.3.10. Let (A, H, D, J,~v,{0;},I') be an even dimensional projectable spectral triple
with isometric fibres, and let Ho be the common 0-eigenspace of the derivations ;. Then, if we
denote by Dq the restriction of Dy, to Ho, (B, Ho, Do) is a (usually reducible) spectral triple.

If we denote by Jy the restriction of J to Ho, then Jy determines a right action of B (or a
left action of the opposite algebra B°) on Hoy by

hb = b°h = Job* Jy 'h

forany b e B, h € H. And such an action fulfils the following properties:
(a) b, JOC*J(;l] =0 for all b, c € B; that is, Jy maps B into its commutant;
(b) [[Do,d], Joc*J5 ] = 0 for all b,c € B (first order condition).

Moreover both the operators I' and I preserve Ho, and v anticommutes with Dy.

Proof. The proof is the same as that of proposition [5.3.7 O

5.3.5 Real structure and real spectral triples

The construction of a real structure for the triples considered in the previous sections requires to
discuss separately 4 cases. Indeed, if we denote by m the K R-dimension of the triple over A, and
we set j = m —n (so that j should be the dimension of the triple over B) we have four different
situations: j even and n even, j even and n odd, j odd and n even, j odd and n odd.

Before beginning the discussion, we recall here the dependence on the K R-dimension of the

commutation relations between the real structure, the Dirac operator and the Zy-grading. We
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5.3. Projectable spectral triples for quantum principal T"-bundles

use Connes’ Selectiorﬂ (see [GBEVL IDD11]). Given a real spectral triple (A, H,J, D,v) we say

that it is of K R-dimension j (which we consider always modulo 8) if:

J? =¢-id,

JD =¢€¢'DJ,
and, for j even,

Jy = ¢&"vJ,

vD = —D~,

where ¢,¢’, " = +1 according to the following table [GBFV], [DD11]:

jllol24f6]1][3]5]7
el +]—|—|+[|+|—-|—-|+
I e A o B e e B e I
|+ =+ ] -

j even, n even. (A, #H,D,J,~) is an even real spectral triple of KR-dimension m = j+n. We
extend the triple (B, Hg, Dg) to an even dimensional real spectral triple (B, Ho, Do, jo,v0) of KR~
dimension j, where jy and 7 are defined in the tables below (the restriction of the operators to Ho
is always understood). We recall that Dy is the restriction of Dy, to Hg, where Dy, = %I‘[D, I,
so that I'Dg = DgI'. Also, we recall that, since n is even, ['y = ~I".

Table 5.1: jp and ~g for the even-even case

. "ol 21]4]6 . Yol 2 4] 6
J J
0 J|\TJ | TJ| J 0 vy | v | AT
2 J J |T'J|TJ 2 YAl | v | AT
4 J|TJ|TJ | J 4 YAl | v | AT
6 J| J | TJ|T'J 6 YA | v | AT

j even, n odd. (A,H,D,J) is an odd real spectral triple of KR-dimension m = j + n.
We turn the triple (B, Ho, Dy) into an even dimensional real spectral triple (B, Ho, Dy, jo,70) of
KR-dimension j, where 7o = I'|y, and jo, Dj, are defined in the tables belowﬂ (the restriction
of the operators to Hg is always understood). We recall that Dy is the restriction of Dy to Ho,
where Dy, = $I'[D, T, so that Dy = —Dy".

Remark 5.3.11. We spend some words about the cases with (j,n) equal to (0,3), (0,5), (4,3)
and (4,5). In all these situations, indeed, it is not possible to find a set of operators (Dy, jo,Y0)

constructed only using I';, D and J and fulfilling all the required commutation relations. And this

There is another possible choice, see table See also [DD11].
"In the cases with (j,n) equal to (0,3), (0,5), (4,3) and (4, 5), actually, the real structure jo does not fulfil the
right commutation relations. Indeed, j3 has the wrong sign. For a discussion of this issue see remark [5.3.11] and

example
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5. Projectable spectral triples and twisted Dirac operators

Table 5.2: Dj and jo for the even-odd case

ol T 5 | 7 "y 3| 5 |7

J J
0 Do | Dy | Dy | Dy 0 LJ|JT|TJ" | J
2 Dy | TDy | TDy | Dy 2 J | J|TJ|TrnJ
4 Do | Dy | Dy | Dy 4 rJ|J|TJ | J
6 Dy | TDy | TDy | Dy 6 J | J|TJ|1nJ

issue can not be solved changing the commutation relation between J and I'. Indeed, there are
two possible choices: JI' = I'J and JI' = —I'J. In the first case y9 = I" fulfils all the required
commutation relations, but j2 has the wrong sign (that is, j3 = —1 for j = 0 (mod 8) and j3 = 1
for j = 4 (mod 8)). In the second one, instead, it is possible to recover a jy, with the correct
commutation relations, by setting jo = I'J, but then we can not find a suitable v9 commuting with
Jo. We have chosen to adopt the first convention, since it allows to define all the three operators,
even if with j¢ with the wrong sign, and, moreover, it appears as the more natural choice (cfr.
example and remark . We conclude this remark with the following observation: the
fact that we are not able to define a jp fulfilling all the right commutation relations does not
mean that such a jy does not exist, but only that it can not be expressed only in terms of J, D
and I

In order to discuss the issues of the previous remark in a more exhaustive way, we consider

an explicit example.

Example 5.3.12. We want to study the behaviour of a projectable spectral triple of K R-dimension
3 over a quantum principal T3-bundle. In order to avoid the trivial cases without, however, dealing
with triples of too high dimension, we shall consider a product geometry between a finite spectral
triple [Kra98] and a noncommutative 3-torus. Let us begin by introducing the former. We take
it to be the simplest finite real spectral triple of K R-dimension 0 [Kra98, [PS08].

Let Ar = A1 ® Ay = C ® C. Consider the Hilbert space Hp = C3. An element (a,as) € A
acts on H = C? in the following way:

al 0 0
mr(al,a2)=| 0 a; 0O
0 0 a9

Then we introduce a real structure Jrp. We take it to be the composition of the complex conju-

gation, on each factor C, with the following matrix:

Il
o O =
= o O
S = O
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5.3. Projectable spectral triples for quantum principal T"-bundles

We see immediately that J? = 1. Moreover,

al 0 0
JFTI'F(al,ag)*JEI = JFFF(CTl,CTQ)JEI = 0 ay O
0 0 al

As Zs-grading orientation operator we can consider the following one:

1 0 0
YF = 0O -1 0
0o 0 -1

Consistently with the commutation relations characterizing the triples of K R-dimension 0, we

have Jpyrp = ypJp. Finally, as Dirac operator we consider the following one:

e O

Dp = a € C.

o o 9
o O 9

IS]

Then D} = Dp, JEDp = DpJp and Dpyp = —ypDp. It follows that (.AF,’HF,DF, JF,’YF) is a

real spectral triple of K R-dimension 0.

Next, let (A(T3), Hr, D7, Jr) be the real spectral triple on the noncommutative 3-torus con-
sidered in section (see also appendix . That is, H = L?(T?) ® C?, J = io9 o Jy, where Jo
3

comes from the Tomita-Takesaki involution, and D = Z oo ;. Then the product geometry is

=1
obtained in the following way [Van99, [DD11]. The Hilbert space is H = Hp ® Hp with the tensor
product representation of A = Ap ® A(Tg); also the real structure is simply J = Jp ® Jp. For

the Dirac operator, instead, we take

Then (A,H,D,J) is a real spectral triple of K R-dimension 3. Moreover, it is T3-equivariant
with respect to the action of T3 generated by the derivations d;, acting on the second factor Hr
of H. The algebra A is, trivially, a cleft Hopf-Galois O(T?)-extension with invariant subalgebra
isomorphic to Ap. Also, the common 0-eigenspace Hg of the derivations d; is isomorphic to
Hr ® C2. Is it a projectable triple? The answer is positive. Let us show this fact. According to
definition we need a selfadjoint operator I' commuting with the derivations d;, commuting
with the representation of A and such that: I'? = id, I'’J = JI'. All these requirements are
satisfied by the following operator:
I'=~vp ®idy.

With this choice of I' we obtain the following operators:
D), = Dr ® idy,,
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5. Projectable spectral triples and twisted Dirac operators

= Dy = Dp ® ide2,
jo=Jr ® (ic? o c.c.),
Y0 = vF @ idce.

Here c.c. denotes the complex conjugation. It is straightforward to see that they fulfil the following
relations: Dgjo = joDo, Yojo = joyo and v9Dg = —Dyyg. All these relations are consistent with a
spectral triple of K R-dimension 0. Instead, for the square of the real structure we obtain jg = -1,
hence it has the wrong sign. It is not difficult to see that using only D, J and I" we can not
construct a jj fulfilling the previous relations plus j62 = 1. This does not mean, of course, that
such an operator does not exists. Indeed, for any 2 x 2 unitary matrix A anticommuting with

2

(io® o c.c.), the operator Ajy satisfies all the required commutation relations. Of course, the most

natural choice is A = i0?, so that j) = Ajo = Jp ® idce.

Remark 5.3.13. In remark we pointed out that there are two reasonable choices for the
commutation relation between J and I': JI' = —JI'. If we had considered the second one, the
only possible solutions for I' would have been of this kind: I' = idy, ®idy, ®3, with ¥ a suitable
selfadjoint matrix acting on the factor C2 (e.g., ¥ = o'). Therefore the horizontal Dirac operator
would have been, e.g., of this form: D, = Dr ® id + ¢'6;. Even if the restriction of Hy would
have been the same as that of the operator constructed in the previous example, it is clear that
we can not ignore the different origin of the two operators, and that the more meaningful choice

is the one adopted in the previous example.

j odd, n even. (A, H,D,J)is an odd real spectral triple of KR-dimension m = j+n. We turn
the triple (B, Ho, Do) into an odd dimensional real spectral triple (B, Ho, Dy, jo) of KR-dimension

J, where jo and D) are defined in the tables below (the restriction of the operators to H is always

1
understood). We recall that Dy is the restriction of Dy, to Hg, where D), = iF[D, ')+, so that

I'Dy = Dyl
Table 5.3: D{, and jo for the odd-even case
"lo] 2 4] s . “lof 2] 46
J J

1 Dy | I'Dgy | Do | T'Dg 1 J|TJ|TJ| J
3 Dy | Dy | Do | T'Dg 3 J| J | TJ|TJ
5 Dy | I'Dgy | Do | T'Dg 5 J|J|TJ| J
7 Dy | I'Dgy | Do | T'Dg 7 J| J | TJ|TJ

j odd, n odd. (A,H,D,J, ) is an even real spectral triple of KR-dimension m = j + n.
We turn the triple (B, Ho, D) into an odd dimensional real spectral triple (B, Ho, Dy}, jo) of KR-
dimension j, where jo and Dy, are defined in the tables below (the restriction of the operators to
Ho is always understood). We recall that Dy is the restriction of Dy, to Hg, where Dy, = %I‘[D, I,
so that I'Dg = — Dyl

We conclude this section pointing out that, in all the cases discussed above, the real structure
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5.3. Projectable spectral triples for quantum principal T"-bundles

Table 5.4: D{, and jo for the odd-odd case

"1 3 s 7 . "1l 3|5 |7

] ]
1 Do | Do | TDy | TDy 1 TJ | TJ | J | J
3 Do | Do | Do | Do 3 J | TJT | TJ | J
5 Do | Do | TDg | TDy 5 TJ | TJ | J | J
7 Do | Do | Do | Do 7 J | TT | TJ | J

jo maps the algebra B into its commutant and the triple fulfils the first order condition. Both
properties follow from proposition (and from the analogue result in the even dimensional

case, see proposition [5.3.10)).

5.3.6 Twisted Dirac operators

Let (A,H,D,J,v,{d;},T') be a projectable T"-equivariant real spectral triple over a quantum
principal T"-bundle (A, H,Ar, N, Q) and let B be the invariant subalgebra of A. Assume that
the differential calculus over A is projectable and that the triple has isometric fibres. Then
we can construct twisted Dirac operators, as like as in section Actually, in order to get
well-behaving operators, we have to add a further requirement to those of definition [5.3.5}

(f) there exists a bounded operator Z’ on H such that

(Zh)a = Z'(ha), VheH, ac A

Proposition 5.3.14. For any k € 7", A®) is a quantum bundle associated to the principal

O(T™)-comodule algebra A. Moreover, it is a finitely generated projective B-module.

Proof. Let k € Z. Consider the left O(T")-comodule (V*, p%), where V = C and pr()\) = 2K @ A
Then it is straightforward to see that A®*) is isomorphic to ADO(Tn)Vk (see definition . It
follows (see definition that A®) is a quantum associated bundle.

Next, it is clear that it is a left B-module. Then the fact that it is finitely generated and

projective as left B-module follows directly from the fact that A is a principal comodule algebra
(see proposition 4.5.3)). O

Now we can use the results of section [5.1] to build twisted Dirac operators. Indeed, due to the

previous results, we can take M = A®). We begin defining a connection on Ak

Proposition 5.3.15. Let w be a T™ strong connection defined by a family w; € Qh(A), for
i=1,...,n. Then, for any k € Z", the map V,, : A®) — QL (A)A®) defined by

Va(a) = [D,a] = 3 ks,
=1

where both a € A®) and Vu(a) are regarded as operators on Hy acting from the right, defines
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a Dq-connection over the left B-module A¥®), where Dy denotes the restriction of the horizontal

Dirac operator Dy, to Hy.
Proof. The proof is the same as that of proposition [5.2.20 O

Proposition 5.3.16. The Dy-connection V, is hermitian if all the w; are selfadjoint (as operators

on H).

Proof. We check (i) and (ii) of definition Since we have taken M = A®) acting on Hg on
the right via ha = Ja*J 'h, and since J maps A into its commutant, then (i) is fulfilled. For

what concerns (ii), we proceed by direct computation: let a1, as € A®) and h € Hy; then, using

B-12). we get:

B (Vulaz)al — a2Vu(@)! = (Dh)asal + D(hasal))

.I.
=h ([D,CLQ Z k; agwl> a; —h | az ( (D, a1] Z k; a1w2> — h[D, agaJ{]

i=1
=h (Z kiag(w;r — wﬁa}) ,
i=1

which vanishes if wg = wj. ]

Now, we can identify, up to completion, Hy.A*) with Hj; hence, we have obtained a family of
spectral triples (B, Hy, D D¢ )) k E 7", where each DY is the twisted Dirac operator constructed
using the connection V,, on A®). Taking D,, to be the closure of the direct sum of the Dirac
operators of this family we obtain a twisted Dirac operator D,,, acting on (a dense domain of)
the whole Hilbert space H.

Proposition 5.3.17. The twisted Dirac operator D, is selfadjoint if all the w; are selfadjoint

one-forms, and it has bounded commutators with all the elements of A.

Proof. We compute the action of D,, on an element hp in its domain, with h € Hg and p € AK*)
(we use ([5.1.2)) for the right action of one-forms, where Jy stands eitherﬁ for jo or T'jp):

D, (hp) = (Doh)p + h|D,p] — Z ki hpw;

= (Doh)p + D, Jop* Jy Y|h + Z Jows Jy tkihp
=1

: (5.3.3)
= D(hp) + (Do — D)R)p+ 3 Jow! Ty " hdi(p)
=1
— <D + Zn: Jow; Jg Lo — Z’> (hp).
i=1

8If D} - see tables in the previous section - is simply Dg then we take Jo = jo; if, instead, D) = I'Dy, the we
take Jo = I'jo.
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Now, the Dirac operator D and the derivations ¢; are selfadjoint, Z’ and w are bounded and
selfadjoint; moreover, any J; is relatively bounded with respect to D. Then, by Kato-Rellich
theorem, D,, is selfadjoint on H.

Next, D has bounded commutator with each a € A and, since any w; is a one-form, from
the first order condition (which holds also for the triple (B, Ho, Dp), see proposition the
commutator of the second term with a is ), Jow; J; 1§;(a) and hence is bounded. The third term
of gives commutators between bounded operators, since Z’ is bounded, and thus it gives
only bounded terms. Therefore [D,,, a] is bounded for each a € A. O

Proposition 5.3.18. Let D, be as in definition[5.3.5 Define
Dy, =Dy + D,,.

Then (A, H,D,) is a projectable spectral triple with isometric fibres, and the horizontal part of

the operator D,, coincides with D,,.
Proof. See proof of proposition 5.8 in [DS13al. O
As in the U(1) we introduce the following notion of compatibility.

Definition 5.3.19. We say that a strong connection w is compatible with a Dirac operator D if

D, and Dy, coincide on a dense subset of H.

5.4 Projectable spectral triples and twisted Dirac operators for

noncommutative tori

Now we apply the results of this chapter to some explicit models: we will show how the canonical
flat spectral triples over n-dimensional noncommutative tori are projectable and we will work out
explicit formulae for the twisted Dirac operators. An application of our result to a different model
(a noncommutative Hopf fibration) can be found in [DSZ13]. We will begin by considering two
quantum principal U (1)-bundles: the noncommutative 2-torus as a bundle over the circle S* and
the noncommutative 4-torus as a bundle over a noncommutative 3-torus. The “intermediate”
case, that is the 3-dimensional torus over the 2-dimensional one is discussed in [DS13al]. Next, we
will consider, again, the noncommutative 3-torus, but now as a T?-bundle over the circle. Some
properties of noncommutative tori will be recalled here, but we refer to appendix [A] for a more

detailed discussion.

5.4.1 T} as quantum principal U(1)-bundle

Let A = A(T?%) be the unital algebra of a noncommutative 2-torus, that is, the polynomial algebra
generated by the two unitaries U, V with the commutation relation UV = 2™V U (# irrational),

and consider the U(1) action on A, associated to the derivation da:
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(we recall that there is also the derivation d;, which acts as §,(U) = U, 61(V) = 0). Then
the invariant subalgebra B is the (commutative) algebra generated by U. In particular, sinceﬂ
spectrum(U) = S', we can identify (Gel'fand-Naimark theorem) B with a dense subalgebra of
C>(Sh).

Let 7 be the unique tracial state on A, and let H be the associated GNS Hilbert space. Now
let H = H, ® C?, and consider the standard flat Dirac operator,

where o; are the Pauli matrices. Also, let Hg be the O-eigenspacﬂ of d9 in H. We complete this
spectral triple with the real structure and the orientation Zo-grading. They can be taken equal

to:

v =1id® o3,
J=Jy® (ic? o c.c.)

where Jy : H, — H, is the Tomita-Takesaki antiunitary involution and c.c. denotes the complex
conjugation. In this way we obtain a U(1)-equivariant even real spectral triple (A, H, D, J,~, d2).
Now we can see if there exists an operator I' such that the spectral triple (A, H, D, J,~,d2,T") is
projectable.

Proposition 5.4.1. The unique operators I' : H —,H such that (A, H,D,J,~,d2,T) is a pro-
jectable real spectral triple with equal length fibres, are I' = +id ® 2.

Proof. Since T" has to commute with 7(.A), and H, is an irreducible representation of A, we have
that the most general form of an admissible I is: T' = g -id + Z?:1 a;o" with a; € C. And using

'y = —TI" we see immediately that ag = 0 and a3 = 0. Next, from I'> = —1 we obtain:
oz% + oz% =1

There is a last condition to impose; namely: [Dy, U] = [D, U], which comes from the equal length
fibres property (see remark [5.2.4). This gives, for any v € H,

clU6,(v) = (a1000? — a2a!)US (v).

Which implies that the only solution is ey = £1. Also, notice that I' = +02 is consistent with
the commutation relation JI' = —I'J. It follows that Dj, = 0'6;. Then, if I' = +02 and we define
D, = 4+I'6y = 0265, we have D = D, + D}, and so the equal length fibres condition is fulfilled. [

Now, notice that we can identify both ’Héi) with L2(S!,dy); then the restriction of Dj to
1) will be given by:
0 given by:

. d
Df = +i—.
de
9Here the spectrum of U is taken in the C*-completion of A.
10We are assuming that the spin structure relative to ds is the trivial one [PS06, [DS13a); that is, we assume that
the spectrum of 2 in H is Z.
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5.4. Projectable spectral triples and twisted Dirac operators for noncommutative tori

Also, the real structure j(()i) on ”H(()i) will simply be the complex conjugation. So, each of the

two projected triples is isomorphic to the canonical spectral triple on S', corresponding to the
uniform metric.

Twisted Dirac operators

Taking I' = o2, so that D, = I'dy = 020, we see that the spectral triple discussed above has
the constant length fibres property with, moreover, Z = 0. So we can construct twisted Dirac

operators. First of all, we need a strong connection over A. We can prove the following result.

Lemma 5.4.2. A selfadjoint U(1) strong connection over A is a one-form
w= 0%+ o',
where wy is a selfadjoint element of B.

Proof. Let w € QL(A); then w can be written as:
w= Z a;[D, ¢;]
i
with a;, ¢; € A. This implies that we can generically write w as:
w= Z olw;
i

with w; € A. In order to be a strong connection, w has to fulfil properties (i)-(iii) of definition
In particular we need [0, w] = 0, and this implies w; € B. Also, w3 should be equal to zero,
since we cannot obtain an operator such as o3w? from a commutator [D,a]. Thus we are left

with a connection of the form:

w = Ulwl + 02w2.

Now notice that, for j = 1,2, we can write the Pauli matrices ¢/ as: ¢/ = Uj_l[D, U] (where
Uy =U, Uy =V). Then w becomes:

2
w=Y wU;'[D,Uj].
j=1

But now we can use condition (ii) of definition we obtain: wy = 1. Thus the most general

U(1) strong connection on A is:
w=o0’+olw, w1 € B,
which, of course, is selfadjoint if and only if w} = wy. O

Now we can compute the Dirac operator D,, obtained twisting D}, by the strong connection

w, in the way described in the previous sections.
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Proposition 5.4.3. For any selfadjoint U(1) strong connection w, the associated Dirac operator
D,, has the form
Dy, = Dy — o jowsjg '02.

Proof. From previous results we know that the projectability of the spectral triple (A, H, D, J, )

implies that there are two spectral triples over the invariant subalgebra B. They are given by

(B, Héi), D[()i), jo). In order to fix the conventions, we say that on ’H(()ﬂ the Dirac operator Dy is

() it is given by d1 (note that v = —¢!, and thus o! is diagonal w.r.t.
the decomposition Hg = 7-[(()+) EB’H(_)). Now we can compute the twisted operators D(E)ik) on H,(Ci).

Take hg € ’Héﬂ. Then, for any a € A®) | we have:

given by —d1, while on H

D) (hoa) = (DS ho)a — hoVa(a) = 61 (hoa) + khoaw.
Thus, if we take h € H,(j) we see that the action of the twisted Dirac operator is given by

D) (h) = ~51(h) + jowidy *6a(h).

(=)

)

In the same way, one obtains that, for h € H

D, /(h) = 61(h) — jowjy ' 6a(h).

(
w
If now we put them together, and we consider the collection of all of them for any k € Z, we get
that the full twisted Dirac operator D,, is given, as an operator on H, by

D, = d'61 — o' jowi g 69,

which is equal to Dy, — Uljowljo_lég. O

Corollary 5.4.4. The only connection compatible with D, i.e. with the fully T?-equivariant Dirac

operator on the noncommutative 2-torus, is w = o>.

Proof. It follows from previous lemma and definition [5.3.19 O

Now we can compute, given any strong connection w, the general form of a Dirac operator

D) compatible with such a connection.

Proposition 5.4.5. Let w = 02 + o'wy be a selfadjoint connection. Then the following Dirac
operator,

Dw =D — O’ljowljo_l(SQ,
is compatible with w.

Proof. 1t follows from definition [5.3.19| together with the computation of proposition [5.4.3 O

5.4.2 T, as quantum principal U(1)-bundle

Let A be the unital (smooth) algebra of the noncommutative 4-torus, generated by four unitaries

Ui,...,Us with the commutation relations U;U; = e2mi0i; U;U;, where 6;; is an antisymmetric
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matrix with no rational entries and no rational relation between them. On A There is the

canonical action of T*, whose generators are the derivations d;,
6i(Uj) = 0:5U;.

As U(1) quantum principal bundle structure we take the one given by the choice § = d4, and we
assume the relative spin structure to be the trivial one. Thus the invariant subalgebra B is the

algebra generated by Uy, ...,Us and is isomorphic to the algebra of a noncommutative 3-torus.

We recall briefly the structure of (one of the) flat T4-equivariant spectral triples over A(Tj).

The commutation relations in K R-dimension 4 are the following ones:
J*=—-1, JD=DJ, Jy=n~lJ. (5.4.1)

In order to work out explicitly the operators, it is useful to recall the structure of the Clifford
algebra Cl(4) (so that we can fix the notation).

The Clifford algebra Cl(4)

The Clifford algebra Cl(4) is generated by four elements, 7', ..., +*, with the relations

¥ =1

We can represent the 7%’s as 4 x 4 matrices, related to the Dirac matrices. In the so-called Dirac

representation we can write the matrices «* as:

1 0 ; 0 ol
4= , J= . . 5.4.3
7 (0 —1) 7 (—ia] 0 ) ( )
Moreover, we can define a matrix 4° = y'9?934% which satisfies 7277 = —17+5, 752 = 1 and
5
75 — 0 1 ]
10

75" = ~®; in Dirac representation:
We recall, also, that using the Dirac matrices we can write down a basis for My(C). In

particular, if we define 0/ = [y*,77] (for i,j = 1,...,4), then the basis is given by:

id, ~°,

7 i=1,...,4,

5 _ (5.4.4)
Y2y 1=1,...,4,

o i< j.
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A projectable spectral triple

Now, let H, be the GNS Hilbert space associated to the canonical trace 7 on A [GBFV]. Define
H = H, ® C*. We consider the usual flat Dirac operator [GBEV] [Ven10]:

4
D= Z’yjéj.
j=1

Then we can take the orientation Zo-grading to be v = 4°. To define J, we recall that it is related

to the charge conjugation operator; so we take
J=Jy® (v?oc.c),

where Jy : H; — Hr is the Tomita-Takesaki involution and c.c. denotes the complex conjugation.
Then one can see that the spectral triple (A, H, D, J,~) satisfies the relations (5.4.1)), and it is

also a U(1)-equivariant spectral triple. Moreover it is projectable:

Proposition 5.4.6. The unique operators I' : H — H, such that (A, H, D, J,7,04,T) is a pro-
jectable real spectral triple with equal length fibres, are T' = 4+id ® ~*.

Proof. Since [I',7(a)] = [I',0] = 0 for all a € A, I must be of the form I' = id® A for some matrix
A € My(C). Then using the fact that (5.4.4)) give a basis of My(C), we can write I as

I'=a+by"+ Z ey + Z div°y? + Z eijo'd.
J J i,
From I'y = —1I" we deduce a = b = ¢;; = 0. Thus we are left with
I'= Z(a]7] + 6]757])7 ajaﬁj € (Ca
J

where o; € R and 3; € iR, as follows from the condition I' = I'*. This implies that we can write

I'? as:
D S 7
J i#] J
Next, using the condition I'> = —1, we deduce:

a;Bj = a;B; Vi # j
(5.4.5)

We have now to impose [D,b] = [Dy, b], for all b € B (see remark [5.2.4)). Let us compute, first

of all, D, = 3T'[D,T"] (we use the Einstein convention for the sum over repeated indices):

1 o
Dr = 3lan"+ B ) 85, aw™ + By
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= 5(0%7’ + By (ol 5; — 28778k )
= ajak'yktsj — ajozjfykcsk + eijklaiakv‘r’vléj (5.4.6)

— QiBky'V 0k + eijriBicy' 5 + BiBr Ok

And now, from the condition [D, b] = [D}, b, using [04, B] = 0 and the linear independence of the
sixteen generators ([5.4.4]), we get:

eijrioiary V) — a8, = 0
Z(%‘amk@' + BiBey 0k) + ijmBicxy'd; = 0 (5.4.7)
ik

3
> ey S+ B = 4
i j=1

\ Jj#k

The last condition implies:

3
2 2
Pi = Z%‘
7j=1

fori#4, Y —af+ 8 =1
J#i

If now we use (5.4.8) to compute > _; 5]2 we get:

(5.4.8)

3 3
DoB=> i+ [1+> aF ). (5.4.9)
] j=1 i=1

J#i

Comparing with the second equation of we obtain the following relation: ai—k% B2 =
1. Now, we know that o; € R and f3; € iR (therefore b? < 0). Thus, from this last relation we
obtain a3 > 1, while from the second equation of we get a2 < 1. So the only solutions are
ag ==x1, a5 = B = B4 = 0 for j = 1,2,3. It is easy to see that such solutions fulfil all the other
conditions of , . We conclude that the unique solutions for I' are I' = +v*. Now we

take one of the two solutions of the previous proposition, say I' = v*. Then:
3
Dh22716i7 DU:74547
i=1
so that the spectral triple fulfils the constant length fibres condition, with, moreover, Z =0. O

Now we can build the “3-dimensional orientation”: v = iI'y = iv°y* = iy'y2y3. We have

v? =1, v* = v as it should be. In 2 x 2 matrix notation v is given by:

y_<3 j).

It is useful to write the down the action of Dy on each of the two eigenspaces of v. Clearly it
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is enough to know the action of the matrices v; (j = 1,2,3). Let us consider the 0-eigenspace
Ho of d4, and decompose it accordingly to v: Ho = ’Har ® H, . Then any vector can be written
as v = vy @ v_. Moreover, since I' = 74 is an intertwiner between ’Hat, these two spaces are

isomorphic. If Hy = Héﬂ @ 7—[(()_) according to v, then:

v G’Héﬂ = v is of the form v = w & (—iw) (5.4.10)
UGH(_) = v is of the form v = w @ 1w o

for some w € H'. Using (5.4.3), we see that, for j = 1,2,3, 4/ acts as £07 on HéﬂF). We

summarize these results in the following lemma.

Lemma 5.4.7. Fach Hilbert space H[()i) is isomorphic to H, @ C?, where H, is the GNS Hilbert

space associated to the canonical tracial state on B = A(Tg). Moreover the matrices 7, j = 1,2,3,
when restricted to H(()i), act as Fo.
Thus both the spectral triples are isomorphic to the canonical one [DS13a, VenI0] (see also

appendix on the noncommutative 3-torus, with Dirac operators

3
D(():t) =F Zojéj'
j=1

We discuss now the real structure. Since J is antiunitary, we see that [J,iI'] = 0. And,
since Jy = vJ and J? = —1 we can take j(()i) = J (restricted to ’H[()i)) and obtain that

(B, H(()i), D(()i), j(()i)) are real spectral triples of KR-dimension 3.

Twisted Dirac operators

Now we can proceed to the construction of twisted Dirac operators. First of all we need to

characterize the strong U(1) connections over A. We have:

Lemma 5.4.8. A U(1) selfadjoint strong connection over A is a one-form
3 .
w = ’74 + Z ’7jwj7
j=1

where w; are selfadjoint elements of B.

Proof. Let w € QL(A). Then w has to be of the form w = +/w;, since [D,a] = > bjye; for
any a € A. Moreover, if we impose [w,d] = 0, we get w; € B for all j =0,...,4. Also, since the

gamma matrices can be written as 77 = Uj_l[D, Uj], we can write w as:
-1
w= ijUj (D, Uj].
J

And now, using condition (ii) of definition (4.3.5) we obtain wp = 1. Thus the most general form
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of a U(1) strong connection over A is
3 .
w:fy4+Z’yij, wj € B.
j=1

Of course, w is selfadjoint if and only if each w; is selfadjoint. O
As we have done in the two dimensional case, we can now compute the Dirac operator D,,.

Proposition 5.4.9. For any selfadjoint U(1) strong connection w, the associated Dirac operator

D,, has the form
3

D, =D, — Z’ijij_l54.
j=1
Proof. Take hg € 7-[(()+) and a € A% guch that hoa is in the domain of D,,. Then, using lemma
we can compute the action of D, on hga:

3 3
DS (hoa) = (DS ho)a — hoVu(a) = =Y 078;(a) + Y k(ojho)aw;.
j=1 j=1
Hence, for h € H(T) we get:
DED == "95;(h) + > o jow;jg dalh).
j=1 j=1

In the same way, for h € H(™) we have:

3 3
DS = "475;(h) = > o7 jowjg ba(h).
j=1

j=1

Thus, if now we put all together using the results about gamma matrices’ action of lemma [5.4.7
we obtain that, for h € H,

3 3
Dy(h) =Y 78i(h) =77 Jw; " 6a(h),
j=1

j=1
where we have used the fact that, up to restriction to Hy, jo = J. ]

Corollary 5.4.10. The only connection compatible with D is w = v*.

3
Corollary 5.4.11. Let w =~* + nyjwj be a selfadjoint strong connection. Then the following
j=1
Dirac operator,

3
Dy =D—> ~JwjJ s,
j=1

is compatible with w.
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Proof. It follows from definition [5.3.19| together with proposition [5.4.9 O

5.4.3 T3 as quantum principal T?>-bundle

Let A denote the algebra A(Tj) of a noncommutative 3-torus: A is the polynomial algebra
generated by three unitaries Uy, Us, Us, with the commutation relations U;U; = e2mibij U;U;. To
the canonical action of T3 on A corresponds the following action of the generators of its Lie
algebra:

0;(Uj) = 0i;U;.

Consider now the T? action associated to the derivations §; and d3. The invariant subalgebra B is
simply the algebra generated by Us, and hence it is isomorphic to a dense subalgebra of C*(S1).
As pointed out in appendix [A] B < A is a cleft Hopf-Galois extension. In particular, A is a
principal O(T?)-comodule algebra.

A projectable spectral triple

Let us consider now the following spectral triple over A. Let H, denote the GNS Hilbert space
associated to the canonical trace 7 on A (cfr [GBEV] and appendix [A] of this thesis). Set H =
M, ® C2. Next, define a Dirac operator by:

3

D= Zoj5j,

Jj=1

where the ¢/ are the Pauli matrices. The real structure J can be defined in the following way:
if Jy is the Tomita-Takesaki involution on H, and c.c. denotes the complex conjugationlﬂ on C?,
then we define

J=Jy® (ic®oc.c.).

(A,H,D,J) is an odd real spectral triple, of K R-dimension 3, on A. It is straightforward
to check that it is TQ—equivarian@ Moreover, we know (cfr. appendix that the differential
calculus O} (A) is a O(T?)-covariant calculus, and it makes A into a quantum principal T?-bundle.

Now we can prove the following result.

Proposition 5.4.12. (A, H, D, J) is a projectable spectral triple, with isometric fibres. Moreover,
the operator I' can be taken equal to £o3.

Proof. Take I' = 03 (the proof is the same for I' = —¢3). Then I'> = 1, I'* = T and if commutes
both with the representation of A and with the derivations 61, do. Moreover, since o203 = —g30?
and Joo? = o%.Jy, we have: JT' = —T'.J. Hence I satisfies all the requirements of definition [5.3.4]
It follows that (A, #H, D, .J) is a projectable T?-equivariant spectral triple.

Now let us consider the differential calculus. The horizontal Dirac operator is given by:

1
Dy, = 5F[D,r]+ = 0355.

"That is, if {e1, e2} denotes the canonical basis of C? then c.c(\e;) = Ae; for any A € C.
2Tndeed, it is T3-equivariant, see Appendix
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Take b € B. Since B is the invariant subalgebra of A, we have 6;(b) = d2(b) = 0. Therefore,

[D,b] =) " 076;(b) = 0°63(b).

Since Dy = 0363, and hence [Dy,,b] = o393(b), it follows that D and Dj, generates the same
bimodule of forms over B (cfr. remark [5.3.6). It is straightforward to see, then, that if I' = +03
the triple fulfils the isometric fibres condition. O

Now let Hy denote the common 0-eigenspace of ;1 and do. Accordingly to the results of the
previous sections, we set Dy = Dj|y, and Djj = I'Dy. Then the real structure jy is given by the
restriction of I'J to Ho. In particular, jo = (Jo ® (0! o c.c.))|p,. Then (B, Ho, D}, jo) is a real
spectral triple of K R-dimension 1.

Twisted Dirac operators

Let us come back to the triple (A, H, D, J). We have seen that it is a projectable T?-equivariant
spectral triple. Now we observe that it has isometric fibres (cfr. definition . Indeed, let D,
be the operator

D, = 0’1(51 + 0'252.

Then D = D, + Dy + Z, with Z = 0, and D,, fulfils (a)-(c) of definition So we can twist the
horizontal Dirac operator Dj. We begin by working out a general form for strong connections
over A (seen as a quantum principal T?-bundle, i.e. with differential calculus, in this case Q1 (A),
compatible with the de Rham calculus on O(T?)).

Lemma 5.4.13. Any selfadjoint strong connection over A, in the sense of definition [{.6.17, is
defined by two selfadjoint 1-forms wt,w? € QL (A) such that:

wh =0l + ngé,

w? =0% + 03w§,

with w§ = (Wi)* € B.

3
Proof. Any 1-form n € QL(A) can be written in the following way: n = Zajnj, with n; € A.
j=1
Hence we write:

3
i i i
w' = g olws,
Jj=1

with wé € A. Imposing condition (i) of definition 4.6.17| we obtain that each w;has to belong to B.
Next we have to impose condition (ii). In order to do this we notice that each o7 corresponds to the
(universal) 1-form U;lde. Therefore condition (ii) implies that wj- = 0;; (for 4,5 = 1,2). Finally,

all the wé must be selfadjoint, since we are requiring the strong connection to be selfadjoint. [
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For k € Z2, let now A®*) denote the subalgebra of A of homogeneous elements of degree k.

Then the connection w allows us to define a D connection on each AR

Vo A® QL) A®),

2
Vw(a) =[D,a] — Z kiaw®.
i=1
By direct computation we obtain then, for any a € A% that:
Vo (a) = 0383(a) — kio3awi — koo®aw?.

Before computing the twisted Dirac operator D,,, we recall the following fact: the real structure
we shall use here is 5 = I'jo = J (see the proof of proposition |[5.3.17). Then, from equation

(7.3.35)), we obtain:

D, = 003 — a® JwyJ 161 — oP Jwi T 16,.
A “full” — three-dimensional — Dirac operator D,, can be obtained simply adding D, to D,,.

Remark 5.4.14. The operator D,, is the twist of the horizontal Dirac operator Dy; that is, of the
operator Dy. The twist of the operator Dy, instead, can be obtained simply multiplying D,, by
I.

Remark 5.4.15. The triple (A, H, D,,) is, actually, a reducible spectral triple (indeed, if we split
H according to o, we obtain two - isomorphic - spectral triples). The reason for this is that the
triple (B, Ho, Dp) is reducible: indeed, it is the direct sum of two copies (with opposite orientation)

of the canonical spectral triple over the circle S*.

5.5 Projectable spectral triples, K K-theory and gauge theories:

the case of the noncommutative 2-torus

In [MeslI] B. Mesland recovered the Kasparov producdr_g] from the tensor product of unbounded
Kasparov bimodules introducing the notion of (smooth) connection over an unbounded Kasparov
bimodule and using it to “twist” regular operators. Moreover, in a recent paper [BMS13|, these
results were used to formulate K K-theory based gauge theories over noncommutative spaces.
In this section we shall show how it is possible to interpret our result at the light of Mesland’s
work. We shall discuss this relation in the concrete case of the noncommutative 2-torus, seen as
a U(1)-bundle over the circle.

In the first part of this section we shall recall the results in [Mesll, BMS13]. Actually
we will skip the main part of that paper, which is about smoothness of modules, operators
and connections, and we will discuss here only the “algebraic” part of Mesland’s construction.
We underline the fact that most of the results that we discuss below actually need additional

assumptions on the regularity of the objects involved to be true. As we said, we will not discuss

13Cfr. proposition [2.7.30
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these aspects, referring instead to [Mes11].

5.5.1 Lipschitz cycles and unbounded Kasparov products

In what follows all the algebras will be (possibly trivially) Zs-graded separable C*-algebras and
Q' B will denote the universal differential calculus over the algebra B. Given a spectral triple
(B,H, D) over a C*-algebra B, we can define the Lipschitz algebra B to be the subalgebra

B={be B|[D,b e L(H)}.

Then £ is called a Lipschitz module if it is a right projective operator B—modulﬂ So a Lipschitz
module will, in particular, be a pre-C*-module, and its completion £ will be a right C*- B-module.
We give now the following definition [BMS13]:

Definition 5.5.1. Let A, B be Lipschitz algebras. A Lipschitz (A, B)-bimodule is a projective
operator right B-module £ together with a completely bounded *-homomorphism A — Endg(E).

Consider now an even unbounded (B, C) K K-cycle (F,T). Then the derivation b +— [T, 7w(b)]
defines a first order differential calculus QIT(B) We suppose such a derivation to be completely
bounded. Assume next to be given a Lipschitz B-module £ together with a connection Vp : & —
& QNQBQIT(B). Here ®p denotes the Haagerup tensor product over B, and by connection we mean

a map fulfilling the Leibniz rule
V(E-b)=E&xdb+ (VE) - b.

Notice that V1 can be seen as coming from a universal connection; that is, a connection V : £ —
E@0NY(B, B), where Q!(B, B) is simply the kernel of the multiplication map m : BB — B.
Now we can define an operator id @y T : EQpF — EQRF by:

(devT)e® f)=~(e) @Tf + V(v(e))f. (5.5.1)

Here it is understood that we are working with Zs-graded modules, and ~y is the grading operator
on £. (id®y T) is a selfadjoint regular operator on EQF (see, e.g., [BMS13], theorem 2.25). We

can consider now the following definition.

Definition 5.5.2. A Lipschitz cycle between two spectral triples (A, Hi,D1), (B, Hz2,D2) is a

triple (€,5,V) consisting of:

(1) a Lipschitz (A, B)-bimodule E;

(i) an odd regular selfadjoint operator S on & with compact resolvent, such that a — [S,a] €
Endg(€) is a completely bounded derivation;

(iii) an even, completely bounded, universal connection V : & — E20Y (B, B), such that [V, S] =
0.

A projective operator B-module is a right operator B-module equipped with a completely bounded B-valued
inner product, such that £ is completely boundedly unitarily isomorphic to Im(p), for some projection p on Hz,
where Hp = (*(Z) ® B (Haagerup tensor product) [BMSI3].
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Given two Lipschitz algebras A, B, we denote by Wk (A, B) the set of (A,B) Lipschitz cycles, up

to unitary equivalence.
Now we can state the main result [Mes11, BMS13].

Theorem 5.5.3. Let (£,5,V) be a Lipschitz cycle for (A, B) and let (F,T') be a (B,C) KK-cycle.
Then the pair
(ERpF,S®id +id @y T)

is an (A, C) KK -cycle representing the Kasparov product of (€,5) and (F,T).

Till now we have considered even K K-cycles. The extension to the odd case is obtained in

the usual way: we define
\Ifz(A, B) = \Ifo(A, B® (Clz),

where Cl; is Clifford algebra in complex dimension i. The same applies to Lipschitz cycles.

5.5.2 K K-theory and gauge theories

In [BMS13] it was proposed that Lipschitz cycles can be used to define (noncommutative) gauge
theories, at least those ones defined over a commutative base space. Given a spectral triple
(A, H, D), defining a spin geometry over the (eventually noncommutative) space A, identified
with the total space of a (noncommutative) principal bundle, the idea is to factorize it as a

Kasparov product
(A, H, D) ~ (ERpHo, S ®id +id ®v Dy) € ¥o(A,C). (5.5.2)

In order to do this one shall assume to own a way to "project” the spectral triple to a spectral
triple (B, Ho, Dg) for a "base space” B. In such a picture the connection V will play the role of a
gauge field. The authors of [BMS13] proposed also a way to introduce scalar fields in a consistent
way, but we shall not deal with them in this thesis, so we don’t discuss them here.

The other aspect we are interested in, instead, is that of gauge transformations. Following
[BMS13], we give the following definition.

Definition 5.5.4. The Lipschitz gauge group associated to the factorization (5.5.2) is
G(€) ={U € Endg(&) |UU* =U"U =idg, UAU* = A, [S,U] € Endj;(€)}.

Dropping the bounded commutator condition we obtain the group of continuous gauge transfor-
mations G(E), which can be identified with the C*-closure of G(&).

The action of a Lipschitz gauge transformation U € G(€) on a connection V is defined as
follows:
Vi VY =Uvu. (5.5.3)
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5.5.3 Twisted Dirac operators and gauge transformations for T3

Consider the cleft Hopf-Galois O(U(1))-extension B — A where A = A(T%) and B, the invariant
subalgebra, is isomorphic to (a dense subalgebra of) the algebra of smooth functions over the
circle. We have seen, previously in this chapter, that the canonical spectral triple (A, Hg, D, J, )
is projectable, and so it is possible to twist the Dirac operator D, obtaining new Dirac operators
Dy, D, = D, + D,. We want now to study the behaviour of this construction under gauge
transformations. In the next section, then, we will relate our results to the K K-theoretical
approach introduced above.

Let us consider therefore the space of gauge transformations of the noncommutative 2-torus,
seen as a quantum principal U(1)-bundle. Since the right adjoint coaction adg on H = O(U(1)) is
trivial, a gauge transformation f € G(A) is simply a convolution invertible linear map f : H — B,
with f(1) = 1. Consider now a strong connection form w : H — Q},(A), defined by a strong

U(1)-connection wy € 2},(A). If we apply a gauge transformation f to w, we obtain:
(Frw)(&*) = () [T + FE)d (). (5:5.4)

Since f, f~! take values in B, and w(z*) = ko? + o'w; (with w; € B), then the commutativity of

B allows us to rewrite as:
(f > w)(2F) = w(2®) + f(F)df 1 (2F). (5.5.5)

It is now clear that f > w is a strong connection, with respect to the calculus Q}:,(.A), if and only
if f(zF)df~1(zF) = —kOy, for some (fixed) 1-form 6y € QL (B). For this reason, we consider the

following definition.

Definition 5.5.5. The space of differentiable U(1)-gauge transformations is the space UG(A) of
gauge transformations f € G(A) such that:

(i) f~Y(h) = f(Sh*)* for any h € H;
(ii) there exists 05 € QL,(B) such that f(z*)[D, f=1(2%)] = kb, for any k € Z.

Remark 5.5.6. Condition (i) is equivalent to the requirement that each f(z*) is a unitary element,
with f=1(2F) = f(2F)*.

It follows that each gauge transformation f € UG(A) preserves the space of strong connections
with respect to the calculus Q1 (A).

Let us consider now a gauge transformation f € UG(A). We know that wy = f v w is still a

strong connection, and that it can be written in the following way:
wi(2F) = kwy — kb
It follows that the Dyp-connection associated to wy will be:
V¥ (a) = [D,a] — kawy + kaby.
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for a € A®). Then the Dirac operator D, shall be given by:

D, (a) = (Do)a+ (D, ] — 8(a)wo + 6(a)fy).
That is,

D, ($a) = Dy (ta) + $:3(a)b). (5.5.6)

Now we want to see if it is possible to describe the gauge transformation f in terms of a
unitary operator on the Hilbert space Hy. The Hilbert space Hy is isomorphic to L?(T?) ® C2, so
we can consider the canonical orthonormal basis {¢;; | k,1 € Z, j = 1,2} of eigenvectors of the
derivations d¢; (the index j is the ”spinor” index associated to the C2 factor). So we can define

an operator V : Hy — Hp in the following way:

Vet = 7°(f () ¥rj- (5.5.7)

Here 7°(b) = J7(b)*J~! denotes the representation of .A° induced by the real structure J. Due
o (i) of definition (see also remark , V is a unitary operator, and its inverse is simply
given by:
V5 = Vg = 7 (F () vk
Consider now its action on the twisted Dirac operator D,,. For ¢ € Hy and a € A®) - we obtain:
V* D,V (a) = VDEIV* (a) = VD (Yaf(2"))
=V ((Dov)af (%) + (D, af (%)
= (DoY)a + v ([D,af(z5)]f~
— (Dow)a + (ID,a] +alD, |
= D, (va) + kiany.

where we used the fact that B is commutative, that f, f~! take values in B and that wy is of the

form olwy + 02 with w; € B. Hence, for a generic vector of the form va, a € A, we have:
V*D,V (a) = Dy, (a) +1d(a)by. (5.5.8)
Comparing this result with equation we see that we have obtained the following relation:
VD,V = Dy, (5.5.9)

This result extends, of course, to the Dirac operator Dy =Dy + D,

The next step is to study the effect of the (adjoint) action of V' on the representation 7. Since
L?(T?) is also the GNS-representation of A (which, we recall, is the C*-completion of A), each

basic vector v ; can be written as:

Uy = [UTU ®@ej,
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{e1, e2} being the canonical basis of C? and [a] denoting the GNS-equivalence class of a € A. Now,
we know that there is a vertical automorphism F : A — A associated to f, and that it is given by
F =id ® f. Hence the gauge transformation can be seen to map the vector vy ;,; = [UFUY) @ e
into the vector ¢y, ; = [UFULf(2Y)] ® e, so that

Va(UP UV, = Va(UP U VUTUs ()] @
= Va(UPUD)UTUL (N (D @ e
= V[UI'URUFUY) @ e;
= [UT"U3UFUS F(Z™)] @ € = A i

where X is the coefficient defined by:

W(Ulng)V*wk,l,i = Mk tm,i4n,i-

Hence V relates also the representation of A with its gauge-transformed counterpart. In partic-

ular, this means that, as sets of operators on Hy, VAV* = A.

5.5.4 Twisted Dirac operators, Kasparov products and U(1) gauge theory

We have just introduced a way to implement gauge transformations, at least those belonging to
the group UG(A), in the framework of twisted Dirac operators. Now we want to show that our
"model” admits a K K-theoretical interpretation; in particular each twisted Dirac operator can
be seen as arising from a Lipschitz cycle, and UYG(.A) can be identified with a subgroup of a group
G(&) of Lipschitz gauge transformation. Our results extend the discussion of gauge theory over
A(T2) in [BMS13].

Let A denote the C*-algebra of functions over a noncommutative 2-torus T2, and let A be
the subalgebra of smooth elements (with respect to the canonical T? action). Then the canonical
real spectral triple (A, Hg, D, J,7y) gives a spectral triple (or K-cycle [C94, [GBFV]) (A, Hy, D)
for A. This gives us a Lipschitz algebra Lip(’]I‘(%), which is the subalgebra of elements of A which
have bounded commutator with D. The canonical T? action preserves Lip('ﬂ%). Moreover, if
we consider the action of one of the two U(1) factors in T? (in particular, we shall consider the
action generated by d2), then fixed-point subalgebra of Lip(Ty) is Lip(S') [BMS13], that is the
Lipschitz algebra associated to the spectral triple (C'(S'), L?(S1), @) (which is simply the algebra
of Lipschitz functions on the circle).

In order to build a Lipschitz cycle we have, first of all, to choose a Lipschitz module &.
Following [BMS13]|, we choose it to be a suitable completionE] of Lip(T92)°7 that is, of the opposite
algebra of Lip(T%). £ is naturally a left Lip(T2)°-module and a right Lip(S*)°-module:

a®- &% b” = (ba)®,

for a,& € Lip(T2), b € Lip(S'). In particular (see [BMSI3], proposition 5.8) € is a right Lips-

5For the details see [BMST13].
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chitz module over Lip(S')° ~ Lip(S!), isomorphic to L?(S')®@Lip(S'); and, if we denote by &
the C*-completion of £, then the C*-algebra A° is represented upon £ by a *-homomorphism.
As shown in [BMS13], then, if we denote by V the canonical Grassmann connection, V : & —
E@Lip(s1)Q(C(SY), Lip(S')), and (£, 5 = 02, V) defines a Lipschitz cycle in W' | (Lip(T3)°, Lip(S*)).
Moreover the Hilbert space Hg is isomorphic to the completion 5(§>Lip(51)L2(Sl) of the tensor
product € ®¢(g1y L*(S') (see [BMSI3], proposition 5.10). On the other hand there is the K K-
cycle (L?(S1), @), which is an element of Uo(C(S1),C). In [BMS13] it was shown that (A°, H, D)
is equivalent, as a K K-cycle, to the product of the two cycles above (taking A° instead of A
is simply a technical issue). Now we want to consider a more general situation, related to the
construction of twisted Dirac operators. That is, we want to consider more general connections
on A; in particular, we shall consider those coming from a strong connection w. Before beginning
this task, we notice that ¢ corresponds to the derivation d;, and so the calculus Qé(Lip(S 1) is
the same as the calculus Qbo (Lip(S1)), where Dy is the restriction to Hg (i.e. to the 0-eigenspace

of 62) of the horizontal Dirac operator Dy; indeed, Dy, can be written as o'6; ~ o§.

Consider then a strong connection on A (with respect to the calculus Q1 (A)). We know that
it determines a Dy-connection V¥ : A — Q}DO (B)A. Now we can extend it to a connection on
Lip(Tg), since the only requirement of regularity it needs to be well defined is to act on elements
of A having bounded commutator with D (which is exactly the Lipschitz condition). Moreover,

seeing it as a map acting on the opposite algebra Lip('ﬂ‘g)o, it becomes a map
V¥ < Lip(T3)° — Lip(T3)° 2, (Lin(S')°) ~ Lip(T3)° 0} (Lip(51))

By continuity with respect to the Lipschitz topology (cfr. [BMS13]), then, it can be seen as a
map

Ve € — EéLip(Sl)Qla(Lip(Sl)).

Since w(z¥) = k(o? + olwy), with wy € B~ C>®(S') and S = §5 is zero on B, then V¥ commutes

with S. It follows that (€, S, V%) is a Lipschitz cycle. So we can form the operator
S @id + id @y §.

Performing the computation as in example 2.35 in [BMS13], we find that this operator coincides
with the twisted Dirac operator D,,. So we have shown that the spin geometry of ']Tg defined by

the twisted Dirac operator D, factorizes as a Kasparov product:
(Heﬂ Dw) = (55 S, vw) ®Lip($’1) (%7 a)

Next we look at gauge transformations. We have seen that a gauge transformation f € UG(A)
is implemented in the spectral triple (A, Hg, D,,) by a unitary operator V (see equation .
Since V acts trivially on the C? factor of Hg, and since H, is a faithful GNS representation of
the C*-algebra A, V' can be seen as a map from A to A — and hence from A° to A° — and then
restricted to a map V : £ — £ (requirement (ii) of definition ensures that V' maps Lipschitz

elements into Lipschitz elements). Of course, it will still be a unitary operator. Moreover we have

124



5.5. Projectable spectral triples, K K-theory and gauge theories: the case of the noncommutative 2-torus

noticed that it maps A into A, and by continuity the same holds for Lip(T2)°. Hence V can be
seen as an element of G(&). To complete the connection between the two approaches we have to
see if the connection V* transforms as a gauge field, in the sense discussed in [BMS13] (see also
equation (5.5.3)). By direct computation we obtain, for a € Ak,

V*VYV (a) = V*V¥(af (2F)) = V*(da - f(25) + adf (%) — kaf(zF)wo)
= (da + adf (2%)edot f 1 (%) — kawo) = da — kawo + kaf; = V*!a.

So acting with V' on V¥ corresponds to transforming the strong connection w by f.

Let us summarize the results we discussed in this section. We have seen how each strong
connection over the noncommutative 2-torus, seen as a quantum principal U(1)-bundles, defines
a connection over the Lipschitz module associated to the K K-factorization [BMS13]. This allows
us, then, to identify the twisted Dirac operator [DS13al] defined by the strong connection with
the operator arising from the unbounded Kasparov product construction associated to the K K-
factorization. In this way we give a geometrical interpretation, in terms of connections over a
(noncommutative) principal U(1)-bundle, to the connections appearing in Mesland’s construction
[Mes11l, BMS13].

Next, we considered gauge transformations. We identified a class of U(1) gauge transfor-
mations of ']I‘g associated to its quantum principal bundle structure. Then we showed how it is
possible to implements each of these transformations in the spectral triple defined by the twisted
Dirac operator via a unitary operator, and we noticed that this operator defines a gauge trans-
formation in the sense discussed in [BMS13]. Since none of the gauge transformations in 4G (.A)
is inner (that is, none of them is given by the adjoint action of an element of A) our construction
provides a large class of gauge transformations which do not fit into the description of gauge
theory in terms of inner fluctuations of the Dirac operator. In particular, we notice that the
action of the Pontrjagin dual group Z of T through the bounded Dirac operators 271 p ¢ 7,

considered in [BMS13] corresponds to the set of gauge transformations f, (%) = U™¥.
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CHAPTER 0

Spectral triples over cleft principal O(U(1))-extensions

In this chapter we shall discuss a first (simple) example of construction of spectral triples over
cleft principal extensions: given a cleft O(U(1))-extension B — A and a real spectral triple
(B,H,D,J,v), we will exploit the construction by Bellissard, Marcolli and Reihani [BMR10] to
build, under suitable hypotheses, a real spectral triple over the algebra A. We will see that the
Dirac operator of this triple allows us to define a differential calculus over A which is compatible
with the de Rham calculus on O(U(1)); hence we obtain a structure of quantum principal bundle,
with differential calculus compatible with the de Rham calculus on O(U (1)), over A. We will then
discuss the properties of such a triple. In particular we will show that it is a projectable spectral
triple, and so we will be able to twist it using a strong connection (see chapter [5)). Finally, we
will study the behaviour of our construction under gauge transformations.

In this chapter B will denote a unital dense sub-*-algebra of a C*-algebra B, H will denote
the Hopf algebra O(U(1)) (see chapter [2) and we will assume that any real spectral triple we

shall consider fulfils at least the first order and the regularity condition.

6.1 Spectral triples over B %, Z

We begin by constructing a real spectral triple over a crossed product algebra B x, Z, extending
the results in [BMR10]. Consider a real spectral triple (B, H, D, J,~y) over the pre-C*-algebra B
such that (B, H, D) is a compact spectral metric space (see section [3.6). Let o € Aut(B) be an
automorphism of the algebra B; assume that it is a continuous automorphism, so that it extends
to the C*-completion B. Then « is an isometry of B.

The automorphism « induces an action of Z both on B and B, so we can consider the crossed
product algebra A = B x4 Z which is the polynomial algebra generatedlﬂ by the elements of B
together with a unitary u, under the relation ubu=! = a(b) for each b € B, so that u implements

the action of «.

1Here we mean that the elements of A are finite sums of monomials bu”, with b € B and k € Z.
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Under the hypotheses above we can construct a spectral triple over A as follows (see [BMR10]
for the details). Let H' = H ® (2(Z) @ C?; an element f € H' can be written as f = (fu)nez
with f, € H ® C2. The representation of A on H’ we consider is the left reqular representation
7 A— L(H):

(@) P = 7@ @) (@) = (G() Pl = for, (6.1.1)

where we have extended, in the natural way, the representation 7w of B on H to a representation,
still denoted by 7, of B on H ® C? (in the following, where there will be no possible misunder-
standing, the representation 7 will be understood, so that the action of b € Bon f € H® C? will
be simply denoted by bf).

Notice now that 4 is a unitary operator which satisfies 47 (b)a~! = (7oa)(b), for any b € B, so
that 7 is a well-defined representation of the crossed product B x4 Z: #(}_, anu™) =, #(a)u".

The Dirac operator is defined as follows:

(Df)n = (D@ +n-idy ® 02) fn. (6.1.2)

Proposition 6.1.1. (A= Bx,Z,H, D) is a spectral triple. Moreover 4~1[D, 4] commutes with
the elements of A.

Proof. For the first part see [BMR10], section 3.4. The second one follows by direct computation;
indeed:

@' [D, 4] = idy @ idpe(g ® o
O

We want to discuss and extend this result. The first thing we do is to make (A, %', D) into a
real spectral triple. In order to achieve this result we need to impose some additional conditions
on the triple (B,#, D). In particular we need a suitable action of Z on #H, which extends the

action generated by a on B.

Definition 6.1.2. We say that an automorphism o € Aut(B) is implementable w.r.t. a real
spectral triple (B, H, D, J,~) if there is an invertible bounded operator p : H — H such that:

(1) p(ag) = ala)p(§) for any a € B, £ € H;

(i1) (p(&),n) = (& p~'(n)) for any & n € H;

(iii) p(JE) = Jp(§) for any & € H;

(iv) p(DE) = Dp(§) for any § € H;

(v) p(v§) = p(§) for any § € H.

Remark 6.1.3. Given p as above, the assignment k — p* determines an action of Z on H.
Moreover, definition implies that the spectral triple (H, B, D, J,v) is C[Z]-equivariant, in
the sense of definition and definition (with the further property that the action of C[Z]
on H is a *-action). More precisely, let {k} be the canonical basis of C[Z], for k € Z; the Hopf
*-algebra structure of C[Z], then, is described by the following relations:

k-l=k+1,

k= —k,
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Ak)=kok,  Sk)=—k k) =1

We consider the action of C[Z] on B defined by kb = o (b), and the corresponding action on
H, k> & = pF(€). Then condition (i) of definition implies that #H is a C[Z]-equivariant left
B-module: ht(b§) = (h)>b)(ho)>§) for any h € C[Z], any b € B and any {tH. Condition (iii)
is equivalent to the requirement that JhJ~! = (Sh)* for any h € C[Z]. Conditions (iv) and (v),
finally, imply that [h, D] = [h,~] = 0 for any h € C[Z].

Remark 6.1.4. Conditions (i) and (ii) above are satisfied for istance if H is obtained from a
GNS construction over (the C*-completion of) B. The other ones say simply that the metric
structure on the noncommutative space associated to B must be invariant under the action of a.
In particular, condition (i) is the usual condition of implementability for an automorphism and

(ii) is nothing else than the requirement that p is unitary.

Assume now that the automorphism « is implementable w.r.t. the real spectral triple (B, H, D, J, ).
We have to define a real structure, and, in the even dimensional case (i.e. when the triple over
B is odd dimensional) also a Zs grading, for the spectral triple (A, H/, D) Before doing this we
introduce a “building block” for the construction of the real structure: we define an operator
J:H —H by

(T =Tp " (f-n)- (6.1.3)
Lemma 6.1.5. The operator J defined in is an antiunitary operator. Moreover:
(i) J? = eidyyr, where J? = eidy;
(ii) J maps #(A) = #(B x4 Z) into its commutant;
(iii) Jo(D®id®id) =& (D ®id®id) o J, where JD = &' D.J;
(iv) if (B,H,D,J,~) is an even dimensional triple, then J o (y @ id ®id) = /(v ® id ® id) o J,

where Jy = &"~J.

Proof. (i), (iii) and (iv) follow by direct computation using properties (iii), (iv) and (v) of defi-
nition So we are left with the proof of (i) and of the antiunitarity of J. Let us start from
the latter. We have:

<f7 jg>H/ = Z <fm (jg)n> = Z <fm Jp_n(gfn»

n

=S Mg Th) = S (0™ (Gn)s T fn)
- Z <gn>p_n(<]f—n)> = Z <gn, Jp_n(f_n)> = <g, jf>7-[/ ,

where we used properties (ii) and (iii) of definition (and where (-,-) denotes the natural
scalar product in H ® C?). From this computation it follows easily that .J is an antiunitary
operator.

Now we show that J maps 7(A) into its commutant. It is useful to compute the following

expressions:

(Jit(a) I~ = Jp " (F(@) T f)on = Jp (@M (@)(T 7" f)-n)

(6.1.4)
= Jp (@ (@)p™ (T fa)) = JaT " fu,
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(JaT ™ fn = Tp " (@I ) = Tp (T ) na
= Jp " p" (T ) = p(fat)-
From (6.1.4)), since J maps B into its commutant, it is clear that [#(a), J7(b)J ] = 0 for any

a,b € B. Also, it is easy to see that (6.1.5) implies [a%!, Ja.J] = 0. Thus we need only to check
that, for any a € B, [#(a), Ji.J!] = 0. And we have:

(6.1.5)

([F(a), JaT '] f)n = @™ (@) (JaT " f) = (J&T~H(7(a) f))n
= o "(a)p(fnt1) — p((7(a) fnt1)
= a "(a)p(fas1) — pla™" " (a) fus1) = 0.

We proceed then considering the odd and the even dimensional case separately.
Odd dimensional case. Assume that (B,H,D,J) is an odd real spectral triple of KR-
dimension j and that « is an implementable automorphism. Let (H’,7) denote the left regular

representation of A = B x,, Z introduced above.

Definition 6.1.6. Let J be given by (6.1.3). We define an operator J : H' — H' by:

(id® o) o] if j =1 (mod 4)
J= (6.1.6)

J if j =3 (mod 4)
where id denotes the identity operator on H ® (*(Z).

Proposition 6.1.7. Let ¥ = idy ®@idpz) @ o3, Then (A= BxyZ,H, D, J, 4) is a real spectral
triple of KR-dimension j + 1.

Proof. For the analytic properties of the Dirac operator we refer to [BMRI10]. Also, the com-
mutation relations between D, J , 4 can easily be checked by direct computation (notice that
02J = —Jo?). The fact that J maps A into its commutant follows from lemma So, the
only thing that we have to check here is the first order condition. First of all we notice that, if
a,b € B, then [[D, #(a)], J(b)J '] = 0 due to (6.1.4); indeed,

([D, #(a)], JbT Y f)n = oD, a ™ (@)](J7 (D) T " f)n — JbJ (D, #(a)]f)n
= ol [[D,a""(a)], JbT ] f, =0

since the first order condition holds for the triple (B, H, D, J). Also, since [[),a] = Go?, [15, ]
commutes with Ja=1J =1 (see (6.1.5)). The following two computations conclude the proof of the
first order condition. Let a € B; then:

N A A

(D, #(a)], JaJ ' f)n = (D, 7(a)] JaT ' f)n — (JaT D, 7(a)] f)n
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([[D, ], Ja(a)J N f)n = (o J#(a)J L f)n — JaT (a0? f)n
= o (J(a)J " fln-1 — JaT 'o? fry
=o2JaJ 1 — JaJ Lo f_1 =0,

(we used repeatedly (6.1.4]) and (6.1.5). O

Even dimensional case. Assume that (B,H, D, J,v) is an even real spectral triple of KR-
dimension j and that « is an implementable automorphism. Let also (H', 7) be the left regular

representation of A = B x4 Z introduced above.

Definition 6.1.8. Let J be given by (6.1.3). We define an operator J : H' — H' by:

(7®id®al)oj if j =0 (mod 4)
J= (6.1.7)

J if j =2 (mod 4)

where id denotes the identity operator on (*(7Z).

Proposition 6.1.9. Let J be defined by (6.1.7). Then D and J fulfil the commutation relations
of a real spectral triple of KR-dimension j + 1.

Proof. It follows by direct computation. O

Now let v = y®idp(g) ®02. Then v* = v, v? = 1 and thus H’ decomposes as H' = LTeH..
Also, it is easy to see that [v, D] = [v,J] = 0 (where J is defined by (6.1.7)). And, of course, v
commutes with the representation 7 of A = B %, Z. If we denote, respectively, by ﬁi, Jy the

restrictions of the two operators to H/_, then, using the previous results, we get:

Proposition 6.1.10. Both (A, H/,, Dy, ji) are (odd) real spectral triples of KR-dimension j+1.
Moreover they differ just by a change of sign of the orientatioﬂ.

Now let us make some observation about the properties of the spectral triples constructed

above, both in the odd and in the even dimensional case.

Definition 6.1.11. A spectral triple (A, H,D) is said to be irreducible if there is no closed

subspace of H invariant under the action of the operator algebra generated by a € A and D.

Proposition 6.1.12. If (B,H, D) is an irreducible triple, then the triples of proposition m
and proposition |6.1.10 are irreducible, too.

Now we come to the metric structure of the triples constructed in this section. We assumed
that the spectral triple over B makes the C*-algebra B into a spectral metric space. In particular,
this means that the representation 7 is faithful. It is then easy to see that this implies that also
the representation 7 is faithful. Hence we have realized A as a subalgebra of the C*-algebra of
bounded operators on H': we can take the completion of A in L(H') obtaining in this way a
C*-algebra A, which, of course, has A as a dense *-subalgebra. Notice that A is nothing else than
the crossed product C*-algebra B x,, Z.

2See remark See also the discussion in section m
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Proposition 6.1.13. The Lipschitz seminorms on A induced by the Dirac operators of the spectral
triples of proposition and proposition |6.1.10] are Lip-norms. Hence they give A a structure
of compact spectral metric space. Moreover, the two structures associated to the two triples of

proposition |6.1.10) are actually the same.

Proof. For the first part of the proposition see [HSWZ11], theorem 2.11. The second part is a

direct consequence of the fact that the two triples differ only by a change of orientation. O

We conclude this section with the following observation. Assume that B is a locally convex
topological algebraﬂ, with topology defined by a countable separating family {p,} of seminorms.
We give a structure of locally convex vector space to A = B x4 Z. We notice, first of all, that as a
complex vector space A is isomorphic to B ® C|[Z], where ® denotes the algebraic tensor product
and C[Z] is the group algebraﬁ of Z. Next, define an operator 9 : C[Z] — C[Z] by 9(m) = m - m.
Consider then the following state on C[Z]: ¢ : C[Z] — C, ¢(m) = 6,0, and define a norm
by: [[€llciz) = go({*f)%. Then the following maps determines, for n > 0, a separating family of

seminorms on C[Z]:

(&) = 10" (O)llcz)-

It is straightforward to check that the topology associated to this family makes C[Z] into a locally
convex topological algebra. This allows us to endow A with the projective topologyﬁ since, as
a vector space, it is isomorphic to the algebraic tensor product of two locally convex spaces.
Moreover, since the topology obtained in this way will still be defined by a countable separating

family of seminorms, we can give the following definition.

Definition 6.1.14. We define Ay, to be the completion of A with respect to any translation
invariant metric which induces the locally convex projective topology on A. In particular, A is

a Fréchet algebra.

Then also (Aso,H', D, J) and (As, H', D, J,4) are real spectral triples.. Although we shall
not discuss this issue in this thesis, we point out the following fact: extending from A to A
could allow to preserve the finiteness condition; that is, if we assume the triple over B to fulfil
the finiteness axiom, in general we could not expect the triples over A to do the same. Instead,

if we work with 4., we could get triples enjoying the finiteness condition.

6.2 Further properties of spectral triples over B x, Z

When looking to the results of the previous sections a question arises naturally: if the spectral
triple over the algebra B fulfils Connes’ axiom, does the same still hold for the spectral triples over
A constructed above? We shall see in this section that in many cases the answer is affirmative
(even if to get some axioms to be preserved we will have to impose some additional conditions on
the triple over B). We have already seen that the first order condition is preserved; here we shall

discuss the classical dimension, the regularity and the orientation condition.

3For all the definitions and the results about locally convex spaces we refer to appendix
“For the Hopf *-algebra structure of C[Z] see remark
5See appendix
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6.2.1 Dimension

If the Dirac operator D on H is p™-summable, then the Dirac operator D (and hence the operators
f)i) is (p + 1)T-summable. This follows as in the case of product spectral triples; for further
details see [DS13al, [GBEV].

6.2.2 Regularity

Let the spectral triple (B,H, D, J,v) over B be regular. We want to see if this implies that also
the spectral triples of proposition [6.1.7] and [6.1.10] are regular. We will use the results of section
3.1.2} in particular theorem and theorem (3.1.20

Since (B,H, D) is a regular spectral triple, there exists an algebra of generalized differential
operators Dg C End(W>) such that B+[D, B] is dense in DY. Here W is the space of A-smooth
vectors, where A = D? 4+ 1. Consider now the Hilbert space H' = H ® ¢?(Z) ® C2. We can extend
A to an operator A onH, simply defined by A = A ®id. Then the space of A-smooth vectors
is just W = W™ @ (2(Z) @ C2.

Now, we assumed that the automorphism « is implementable, via an operator p : H — H

(see definition . In particular p commutes with D, and so also with A. Furthermore, it is
an isometry of H. It follows that the space W is invariant under the action of p (notice that p
is an isometry also w.r.t. the inner products (-,-)ys, and so p is an isometry of W, too). This
allows us to extend the action of o to End(W ). Indeed, given P € End(W ), we define a(P)
by:

a(P)¢ = p(Pp~ ().

Let P € Dg. Then we define an operator P acting on We° c H in the following way:

(Pf)n = ain(P)fna

for any f € W. Then we can consider the filtered algebra D of operators P, where P € Dg. Of
course, the filtration is the one induced by the filtration of Dg.

Lemma 6.2.1. Dz C Op(A).

Proof. Since p is an isometry of W then «(P) has the same analytic properties of P. Hence
if P belongs to Op’(A) so will do a¥(P), for any k € Z. Since D C Op(A) this implies that
Dp C Op(A). O

Now let H C A be the (unital) *-algebra generated by u,u~!. Consider the following N-filtered
algebra:
3
Dh=Df H+H D+ (ideo’)(Df- H+ H-Dg).
7j=1

By construction A + [D, A] is dense in DY. Let now A’ be the operator D? + 1 on #. Notice
that it is equal to A + §2. Let W’™ be the space of A’-smooth vectors of #’. Then it is easy
to see that W'™ C W™. Also, since any P € Dpg acts as the identity on (*(Z) ® C, Dp can
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6. Spectral triples over cleft principal O(U(1))-extensions

be seen as an (N-filtered) subalgebra of End(W’>°). And the same holds for H. Hence D4 is
a subalgebra of End(W'®®). Moreover, since a commutes with A’, it satisfies [A/ ,Dﬁ] - Dﬁl“.
So, in order to prove that it is an algebra of generalized differential operators, we have only to
show that each DX is contained in Op¥(A’). It is clear that D} is contained in Op*(A’). Also, H
and (id ® o7) H (for any j = 1,2,3,) are contained in Op*(A’); more precisely both of them are
contained in Op’(A’). Hence D¥ is contained in Op*(A’). It follows (see theorem that
the spectral triples of proposition [6.1.7] and proposition are regular spectral triples.

6.2.3 Orientation

One of the requirements of Connes’ noncommutative geometry is the existence, for a real spectral
triple of K R-dimension n, of an orientation Hochschild n-cycle (cfr. section . So a natural
question is the following one: given a spectral triple over B with an orientation cycle cg €
Zn(B,B ® B°), can we define orientation (n + 1)-cycles ¢ € Z,1(A, A ® A°) for the triples
constructed in proposition [6.1.7] and proposition In this section we shall see that it is

possible if the orientation cycle cp is a-invariant (see below).

In the case of tensor product algebras B ® H, the cycle can be obtained [DD11], from the
orientation cycles on B and on H, using the shuffle product [Lo]. Since we are dealing with a
smash product instead of a tensor product, we need to modify a little the construction. For any
k € Z, let us consider the following Hochschild 1-cycle with values in H ® H®:

="l "

Notice that we can write any Hochschild chain ¢ € C,(B, B ® B°) as
c=) (ag®by) ®ar @ @ a. (6.2.1)

Now we give the following definition.

Definition 6.2.2. For any Hochschild p-cycle ¢ € Z,(B,B ® B°), written as in equation (6.2.1)),
we define its twisted shuffle product with c&; as the Hochschild (p+1)-chain ex ¢l € Cpi1(A, AR
A°) defined by:

C Xq clfq:Z(aou_k®bg)®uk®a1®-~®%
p
) D (=1 HauF @ b)) @ af(a1) @+ ®@aF(a; ) 9uF ®a; @ ®a, (6.2.2)
j=2

+(=DP(agu™" @ b3) @ aF(a1) @ - - © a®(ap) @ u”,

Remark 6.2.3. The twisted shuffle product X, can be extended, by linearity in the second variable,
to a map Cp(B,B® B°) ® C1(H,H) — Cpy1(A, A® A°) defining:

cxa(zr®zk):Z(aour®bg)®uk®a1®---®ap
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p
Y Y (1 N agu" @) @ 0F () @ - @ aF (e ) @uF R a; - @ ay
j=2
(6.2.3)

+ (=1)P(apu” @ b3) @ a*(a1) @ - -- @ a*(ay) @ u”.

for any k,r € Z.

Lemma 6.2.4. The twisted shuffle product (6.2.2)), , 18 linear also in the first variable (i.e.

in c).

Next we introduce an action of o on the space of Hochschild p-chains over B: for ¢ € C,(B®
B°), written as in equation ([6.2.1)), we define

alc) = (afag) @) ® afar) @ -~ @ afay). (6.2.4)

Definition 6.2.5. An Hochschild p-chain ¢ € Cp(B ® B°) is a-invariant if o(c) = c.
Then we can prove the following result.

Lemma 6.2.6. If ¢ is an a-invariant Hochschild p-cycle, then the shuffle products ¢ X c]fq are
Hochschild (p 4 1)-cycles.

Proof. Let by the Hochschild boundary operator on the Hochschild complex Co(A, A®.A°). Then

we prove that ba(c x4 k) = 0. First of all we introduce the following notation: according to

; k
(6.2.2) we can write ¢ x, c}; as

p+1

C Xqchp = E Cj.
j=1

We compute now each b4c. For ¢; we have:

bAclzz(a()@bS)@al@---@ap
> (auF @b ®uFa ®ar @ @ ap

n pz_:l S (1) aou @ ) @ ut ® a1 @ s ® -+ B (6.2.5)
i=1

+3 (-1 (apaouF @ ) @ uF @ ar @ - © a4y,

Next, for j = 2,...,p we obtain:
bacj = Z(—l)j—l(agalu—k b)) @ af(a) @ @ af(aj_1) RuF ®a; @ @ ap
+ Jz_f Z(—l)i(—ly_l(aou_k @) ®ar(a1) ® - ® a¥(aiais1)®
i=1

oM @uF ©a; - (6.2.6)

+ Z(aou_k @) ®ak(a1) @ @uta; 1 ®a; @@ a,
- Z(aou_k ®by) ® Oék(al) K- ® Oék(aj_l) & ukaj ®aj11 @ Qap
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+ Z Z i (—1)7- 1(aou4C ®by) ® ak(a1)®

- @ad(ajo1) @ Ut ®a; ®aai @ @a,
+Z PP (=1)7 Y apaou™ @ bY) @ a¥(a1) ® o¥(a;—1) ® v ®a; ® -+ @ ap-1.

Finally,
bacyi1 = Z(—l)p(aoalu*’“ @ b5) ® af(az) @ ® o (p) @ u*
+ ZZ Plagu™ @ b3) ® o (a1) @ - - ® o (a;ai41) ®@ - @ oF(ap) @ uP

+Z apu " @ b3) ® a¥(a1) @ - @ a¥(ap_1) ® uPa,
= (a¥(ag) @ 5)) ® &F(a1) ® - ® F(ap).
(6.2.7)

Now, the first line of (6.2.5) cancels out with the last of (6.2.7)), due to the a-invariance of c.
k

Next, the terms containing a factor u”a; in (6.2.6)) and (6.2.7) sum up to zero. What remains is

nothing else than bgc X, c’}{, which is zero since c is a cycle and the twisted shuffle product is
linear (lemma [6.2.4)). O

Proposition 6.2.7. Assume that the spectral triple (B,H, D, J,~) over B has K R-dimension n
(if n is odd then v =id), and let cg be an orientation n-cycle for it. Then, if cg is a-invariant,
the normalized twisted shuffle product ca = i"(n+1)"tep X €k gives an orientation (n+1)-cycle
for the triples of proposition[6.1.7 or of proposition [6.1.10, according to the parity of n.

Proof. For the moment we consider together the odd dimensional and the even dimensional case.
First of all we compute 75 (c4). Write cg as in (6.2.1). Then, for any f = (f) € H', we have:

(mp(ca) )k =i"(n+1) 12 #t(ao)a ™ I (b5) D, a][D, (1)) - - [D, & (an)] f )i
122 17 Y (#(ag)a~t Ta(b) T YD, 7 (a1))]
- [D, 7 (a;- 1)][15 ﬂ][f?,fr(aj)k--[b (an)]f )k
(7 (ao

"(n+1) IZ
"(n+1)” (Z <a0m<bg)f1[g,w<al>].[D,mn)])

If n is odd (and so n+1 is even) v is simply the identity. Therefore 7 (c4) is equal to i"(—i)o® =
+03 = +4. If n is even, instead, it is equal to &y ® 2. That is, it is equal to . Hence it acts

as the identity or minus the identity on H/,, which is what we need, since in this case the triples
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are odd, and so the representation of the orientation cycle has simply to be the identity. O

6.3 Quantum principal bundle structure on B x, Z

Consider, as in the previous section, a real spectral triple (B,H, D, J,7) over a unital algebra
B and an implementable automorphism « € Aut(5). We shall assume in this section that the
representation of B on H is faithful, and so the same holds for the representations of A = B x, Z.
We shall show, in this section, that we can define a structure of quantum principal U(1)-bundle
on A; in particular we will see that it is a principal O(U(1))-comodule algebra and that it is a
quantum principal U(1)-bundle with the first order differential calculus Q}) (A). We will also give
a quite explicit formula for strong connections over A.

First of all we recall that any element of A can be written as

a= anu", b, € B,

ne”L

where the sum contains only a finite number of non-zero terms. So we can define a map Ap :
A — A @ H as follows. We set

Ap(b)=b®1 beB,

Ar(u) =u® z,
and we extend it as an algebra *-homomorphism to the whole A. Then it is straightforward to
check that:
Lemma 6.3.1. (A, ARg) is a right O(U(1))-comodule algebra.

Actually we can say something more.

Proposition 6.3.2. B — A is a cleft Hopf-Galois extension. In particular, A is a principal
O(U(1))-comodule algebra.

Proof. 1t is clear that Tg is surjective. We prove injectivity. Notice that any element of A ®p5 A

can be written as:

A= Z bpmu" @ u™.

n,me”Z

So, for a generic A € A ®p3 A we have:

Tr(A) = Y bymu" ™™ ® 2™

n,meZL
If now we impose Tr(A) = 0 we get, due to the mutual linear independence of the elements 2™,

Z bn,mu”'”” = (Z bn,mu”> u" =0

nez neL
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for all m € Z, which implies A = 0. Thus Ty is also injective when restricted to A ®p A.

Finally, to prove that that B — A is a cleft Hopf-Galois extension, we give its trivialization:

From proposition it follows that A is a principal comodule algebra. O

Now we want to give to (A, H, Ar) a structure of quantum principal U(1)-bundle. In order to
achieve this result, we need to specify a differential calculus over A. We recall that when we speak
of quantum principal U(1)-bundles we assume to consider, on the Hopf algebra H = O(U(1)),
the de Rham calculus, Q' (H) = Q},(H), which is the bicovariant calculus associated to the adp-
invariant ideal @ = (kere)?. On A, instead, we consider the differential calculus induced by the
Dirac operator D. Take Q'(A) = Q})(A) = Q' A/N where N, seen as a sub-bimodule of A® A,

is given by: R
N — {;pj Qg eADA ' ;fr(pj)[ ,7(g5)] = o}.

Since B — A is a Hopf-Galois extension, we can define (cfr. section [4.6.2]) an action of the
Lie algebra t; ~ C on A. If we denote by d the canonical generator of t;, then we can extend it

to an unbounded operator on ¢2(Z), and therefore on H’, in the following way:

(5f)n =nfn-

It follows that ¢ satisfies the Leibniz rule:

(7 (a)€) = 7(5(a))€ + 7 (a)d(E)

for any a € A and any £ € Dom(d). Now we can observe that the Dirac operator D can be
written as:

D=D®c' +(id®o?) os. (6.3.1)

Moreover the operator § is selfadjoint and it defines an action of U(1) on the Hilbert space

H’; it is easy to see, since ¢ anticommutes with J , that:

Proposition 6.3.3. The spectral triples constructed in proposition |6.1.7 and proposition [6.1.10
are U(1)-equivariant w.r.t. the U(1) action defined by §.

Next, we look at the differential calculus defined by the Dirac operator D.

Proposition 6.3.4. The differential calculus le (A) is a right H-covariant first order differential

calculus.

Proof. We prove that A%(N) CN®H. Take n € N, n=>_pdq. We know that we can write it

in the following form:
n=>_ > puld(gub),
k,€Z
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with py, g € B. Using the Leibniz rule for the differential d, then, we obtain:

155 (b )

k€T

Now, the fact that  belongs to N means that m4(n) = 0. That is,

Z Z [( ' [D ®id, 7 (qy)]a ) ®@ct+k (ﬁ'(pl)ﬁlfr(qk)ak) ® 02} =0.
kl€Z
Since the Pauli matrices are linearly independent, we get:
> > #p)d'[D @id, #(gr)]a* =0,

g (6.3.2)

S ki(pita(gr)at = 0.

k,leZ

The second of (6.3.2) can be rewritten using the properties of the representation 7:

0=> "> kir(p)ia(g)d® =Y Y ki(p)w(a (qr))ila"

k,leZ l - k,leZ (633)
=> > ka(p)r(a! (gr)a .
k,leZ
In the same way the first of (6.3.2) becomes:
0=> Y #p)[D@id, #(c!(g))]a"**. (6.3.4)

k,l€Z

Since the operators 4", for different n, are linearly independent, from ([6.3.3) and ([6.3.4)) we obtain
that, for any n € Z,

YN k) At =3 N w(p)[D @id, 7 (o (qr))]a T = 0. (6.3.5)

k+l=n k+l=n

Let us split, now, 1 in a different way: write n = >, 7, with

=Y > puld(geu®)

k+l=n
Then we can compute, for each n, mpa(n,):
=D > Al (qr)a’]
k+l=n
=-> > [( D ®id,#g)]it) © o'+ k (#p)it(a) ) © o]
k+l=n

=3 3 [(Fmipeid a @i ™) s o'+ k (#p)ra'@)i ™) @ o] o

k+l=n
(6.3.6)
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due to (6.3.5). This means that each 7,, belongs to N. Now let us compute A%(n). It is easy to

see that:
— Z Z <pluld(qkuk)) ® 2k,

k+l=n

But this means that A%(n) =Y, Mn ® 2", which implies, since each 7, belongs to N, that it
belongs to N ® H. This concludes the proof of the covariance of the calculus. O

Now we can prove that, with the first order differential calculus defined by D, A is a quantum

principal U(1)-bundle.

Theorem 6.3.5. If N is the sub-bimodule of A® A which defines the calculus Q}j(A), (A H =
OU1)),ARr,N,Q) is a quantum principal U(1)-bundle.

Proof. We have already proved that A is a principal comodule algebra and that the calculus Q})
is H-covariant. So we have only to prove that (i) and (ii) of proposition [4.6.14] are satisfied.
Let ). p;dg; be zero in Qlﬁ (A); using expression (6.3.1)) for the Dirac operator D, we get then

> #tp)D.#(g)] =0

j
= Z #(pj)[D ®id, #(qj)](id @ o') + #(p;)#(5(g;)) (id ® 0%) = 0.

Since o! and o2 are linearly independent, this implies that >_;Pj6(g;) = 0. So condition (i) is
fulfilled. Now let us prove condition (ii). Taken € Q' A, n = 3" pdq, and assume that > pd(q) =

Then rewrite n as n = Z Z pd(qkuk), with ¢ € B. Using the Leibniz rule we obtain:
keZ

n= ZZ( (dgr.)u” +qudu)

kEZ

In order to prove that [n]y belongs to AQ% (B).A it is then enough to show that Z Z pgpdu® is
keZ
Z€ero in Q}j(A). But this follows by direct computation. Indeed,

Th < Z ZPdeuk> = Z Zﬁ(qu)[f?, ak] = Z Z kﬁ(qu)ﬂk 2 02

keZ keZ keZ
= #(pd(q) ®a® =0,

O]

Now that we have seen that (A, H, Ar, N, Q) is a quantum principal U(1)-bundle we can give
a characterization of its strong connections. Indeed, the fact that D can be written as in equation
(6.3.1)) leads, by direct computation, to the following result.
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Lemma 6.3.6. Any I-form n € Qlﬁ(A) can be written, as an operator on H', as follows:

n=Y_ #p)[D, " + ) #(g))[D,7(by)](id @) (6.3.7)
neZ J

with pn,q; € A, bj € B.
We can use this lemma to prove the following fact.

Proposition 6.3.7. Any strong connection wy € Qg(A), in the sense of deﬁmtion over
the quantum principal U(1)-bundle (A, H, Ar, N, Q) can be written, as an operator on H', in the
following form:
wo =0+ Y #(p)) D@ #(q)) (6.3.8)
J

with pj,q; € B.

Proof. Take wy written as in equation ([6.3.7)):

wo = Z ﬁ-("ﬂn)[ﬁ7 an] + Z ﬁ-(pj)[D ® 0-17 ﬁ-(Qj)]
nek ! (6.3.9)

= ni(ry)a"(id® o) + > #(p;)[D @id, #(q;)](id ® o).
nez J
Since o' and o2 are linearly independent, condition (i) of definition [4.6.17) implies that the first
term of (6.3.9) reduces to #(r)o? with » € B. Also, it implies that p; belongs to the invariant
subalgebra B for every j. Finally, using condition (ii), and writing id ® o2 as a—l[ﬁ,a}, we get
r=1. O

One can also check that condition (iii) is fulfilled for any w; written as in (6.3.8)). We recall
that the associated strong connection form w (see definition [4.3.6)) is defined by the relation
w(2®) = kwo, k € Z.

6.4 Projectability and twisted Dirac operators

We have shown that the spectral triples of propositions [6.1.7| and [6.1.10] are U(1)-equivariant

triples (see proposition [6.3.3). It is then interesting to answer whether or not they are projectable
triples.

Proposition 6.4.1. Let (A, H,D,J, 4, d) be the U(1)-equivariant even real spectral triple of

proposition [6.1.7. Then it is a projectable triple with constant length fibres. Moreover, we can

take T = 41D, 4] (where i is defined by (6.1.1))).

Proof. Take I' = ffl[f),ﬂ]. Then by direct computation one sees that I' = id ® o2 [BMRI0].
We immediately get I'2 = 1, I'* =T, [[',7(a)] = 0 for any a € A, [[,6] = 0. Moreover, since 4
is nothing else that o3, we have also that I'4 = —A4T. So, in order to prove that such a triple

is projectable, we have only to check that I' has the right commutation relation with J. But T
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6. Spectral triples over cleft principal O(U(1))-extensions

commutes with 1 ® o2 and it anticommutes with J. , since J is an antiunitary operator. Thus
IJ=-Jr independently from the KR-dimension of the triple.

Finally, it is straightforward to see that it has constant length fibres; indeed, D, = D ® o',
so, if we take D, = (id ® 02) 0 §, we have D = Dy, + D,. O

Proposition 6.4.2. Let (A, H' ,ﬁi,ji,é) be the U(1)-equivariant odd real spectral triples of
proposition|6.1.10} Then they are projectable spectral triples with constant length fibres. Moreover

we can take I+ equal to ﬂfl[f),ﬁ], restricted either to H', or to H'_.

Proof. Take T' = 4~'[D, d]. Then, by direct computation, one sees that I' = id ® ¢ [BMRI0).
Hence we get ' = 1, I'* =T, [I',7(a)] = 0 for any a € A, [I',6] = 0. Moreover, since v =
vy ®id ® o2, [[,v] = 0 and so T restricts to both H/_. Next, the fact that the commutation
relation with J is the right one for any even KR-dimension (see definition D follows from the

following relations:
Fideo!)=—(ide®c)l, IJ=-JI, [[,y®id]=0.

For the proof of the fact that the the triples fulfil the constant length fibres condition, see propo-
sition [6.4.1 0

We can now use the results of section to define twisted Dirac operators associated to a
strong connection w. The direct application of the results of section leads, indeed, to the

following results.

Proposition 6.4.3. Let w : H — Q%(A) be a strong connection form given by w(zF) = kw,
k € Z. Then the twisted Dirac operator D,, has the form:

Dy, = D+ jowsjg o,

where jo is obtained from j, accordingly to the discussion in secti0n5|5.2.5’| and|5.2.4|. Moreover,

D,, is selfadjoint if wg is selfadjoint.

Proposition 6.4.4. Let D, = D,+D,,. Then (A,H, ﬁw) is a projectable triple with equal length
fibres, and the horizontal part of D, coincides with D,,.

Then, using the description of strong connections given in proposition 4.6.17, we obtain:

Corollary 6.4.5. The unique strong connection wgy for which ﬁwo =D iswy = o~ [D, ).

6.5 Spectral triples over cleft O(U(1))-extensions

In the previous sections, given a (suitable) spectral triple (B, H, D, J,~), we have built a spectral
triple for the crossed product algebra A = B x, Z. As we have seen this algebra is nothing else
than a cleft O(U(1))-extension of B. Now we look at this construction from the opposite point

of view: we start with a cleft extension and, using the construction above, we define a spectral
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triple over it. Of course, we will have to impose some conditions over the extension to get a
well-behaving real spectral triple.

So, let B < A be a cleft Hopf-Galois extension, with respect to the Hopf algebra H = O(U(1)).
Assume that it admits a unitary trivialization ¢. This means, in particular, that (cfr. definition
4.4.18))

o)V o(zF)=1  VkeZ

That is, any element ¢(z*) is unitary. Moreover, up to a gauge transformation, we can always
assume that ¢ is an algebra homomorphism. In particular, we can take ¢(z¥) = u*, where
u = ¢(z). Under this hypothesis A is isomorphic to the smash product B#H. We also see that
the following holds.

Proposition 6.5.1. A is generated by B and by the unitary u = ¢(z). Hence it is isomorphic

to the crossed product algebra B %, Z, where the automorphism « is given by a(b) = ubu=! (for
beB).

Proof. Take a € A s.t. Ar(a) = a® zF with k # 0. Then au™ satisfies Ag(au™") = au=* @1
and thus it belongs to the invariant subalgebra B. But this implies that a = bu”* for some b € B,
and so A is generated by B, u and u™!. O

Assume now that B is a pre-C*-algebra, with C*-completion B, and let (B, H, D, J,7) be a real
(even or odd) spectral triple over B. Assume also that it defines a spectral metric space structure
for the C*-algebra B. Then the automorphism « is a *~-homomorphism of pre-C*-algebras and so
it is norm decreasing [BC91]. Since the same holds for a~!, actually « is norm preserving, and
so it extends to an automorphism « : B — B. This means, in particular, that we can apply the
construction of the previous sections to get a real spectral triple over A. We work out some more
details of this construction.

Let ¢(z¥) = u* as above. Since it is both a *-homomorphism and a unitary trivialization, it

defines a *-action of the Hopf algebra H on B:
2K b= p(F)bp1(2F) = uFbuF = oF (b)

for any k € Z and any b € B. Since « preserves the C*-norm of B, this action extends to an
action on the C*-algebra B.

Now we consider an H-equivariant (see definition real spectral triple (B, H, D, J,7).
We notice that the requirement of H-equivariance corresponds to the implementability of the
automorphism « (cfr. definition . So, under this hypothesis, we can repeat the construction

discussed in the previous sections. This yields the following results.

Proposition 6.5.2. Let (B,H,D,J) be an odd real spectral triple of KR-dimension j. Then
(A, H',D,J,%), where H',D,J,4 are as in proposition and the representation of A on H'
1s induced by that of B X Z under the isomorphism of proposition defines an even real
spectral triple over A of K R-dimension j + 1.
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Proposition 6.5.3. Let (B,H, D, J,v) be an even real spectral triple of K R-dimension j. Then
(A, H, Dy, ji), where H/,, D+, Js are as in proposition and the representation of A on
H' is induced by that of B X Z under the isomorphism of proposition define two odd real
spectral triples over A, of KR-dimension j + 1, which differ just by a change of sign in the

orientation.

Now assume that (B,H, D) is a spectral metric space. This means that the representation
7 B — L(H) is faithful, which implies that also the representation 7 : A — L(H') is faithful.
Hence we can consider the C*-completion A of 7(A) in L(H'). A is a C*-algebra which has A as

a dense *-subalgebra. Then we can prove the following fact.

Proposition 6.5.4. The Lipschitz seminorms on A, induced by the Dirac operators of the spectral
triples of proposition and proposition [6.5.3, are Lip-norms. Hence each of them gives A
a structure of compact spectral metric space. Moreover, the two structures associated to the two

triples of proposition[6.5.5 are actually the same.

Proof. Let Ay be the space of finite linear combinations of elements bu*, b € B, k € Z. Then
proposition implies that Ag is isomorphic to B X, Z. So the thesis follows directly from

proposition [6.1.13] O

6.5.1 Behaviour under gauge transformations

Let A, B as above and let ¢ be a unitary trivialization. We can study what happens if we
make a gauge transformation. From proposition we know that a gauge transformation is a
convolution invertible map A : H — B with A(1) = 1. We also know that a gauge transformation
corresponds to a change of trivialization (see proposition . Since we restricted ourself to
unitary trivialization, we cannot consider the whole group G(B). Instead, we consider only unitary
gauge transformations; that is, maps A € H(B) which take values in the group U(B) of unitaries
of the algebra B.

Corollary 6.5.5. If A takes values in U(B), then A=1(2¥) = A(2F)*. Moreover, if ¢ is a unitary

trivialization, then so are A= x ¢ and A * ¢.

Actually, since the construction discussed in this chapter depends only on u = ¢(z), the
only relevant part of A is its value on z. So we consider the following situation. Let u =
¢(z); given any unitary uy, such that u*up € B, we define ¢(zF) = uk, for any k. This
new trivialization is the one obtained from ¢ with the gauge transformation A(z%) = wku=":
én = A * ¢. Let now (A, H'\, Dy, Ja, 4a) be the spectral triple constructed from wuy, and denote

by 7a the representation of A on #Hy.
Proposition 6.5.6. The representations (H', ), (H)\,TA) are unitarily equivalent.

Proof. Let ap be the automorphism of B given by the adjoint action of up: o} (b) = ulbu,".
Then the representation 774 on H/y is given by (b € B):

(ﬁA(b)fA)n = axn(b)fé\’ (ﬁAfA)n = f?jz\fl'
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Now, there is a natural isomorphism H' ~ #/,, which identifies the two H factors. Hence we can

define a unitary operator U : H' — H/, by:
(Uf)n = a " (AZ")") fn-
Then we have
(URO)U" fln = a7 (A(")")a™"(b)a"(A(2")) = (FA(D) f)n,

(UaU* f)n = a M (A(z"))a " A("T)) frn
= o "(A(Z"))a " (A(2)"A(Z")) fam1 = (Fa(w) f)n

where we used the following relation:

a—n—l—l(A(zn—l)) — u—n+1A(zn—1)un—1 — u—n-{—lux—l
=u "Mutuly = T A ()l =

= u " A(2) AU = a M (A(2) A ("))

Hence UnU™ = 7y. O

Now we can see what happens, under this unitary equivalence, to the Dirac operator D.
Clearly it can be seen as an operator DA on M\ simply taking DA = UDU*. Tt acts on H/\ in

the following way:
(DM flu = (D@ +a (A" D, a " (A(")] + n-id ® 0%) f.
Hence, in terms of Dy, DA is given by:

DA = Dy 4+ U[Dy, U*). (6.5.1)

6.6 An example: the noncommutative torus

We conclude this chapter with an application. It is nothing new nor particular, just an example
of how it works. We consider to the (smooth) noncommutative 2-torus A = A(T%) as a (cleft)
Hopf-Galois extension over a dense subalgebra B of the algebra of smooth functions over the circle.
We denote by U,V the unitary generators of A, with the commutation relation UV = eV U.
We identify U with the generator of B, and we take as trivialization ¢(z*) = V¥; of course, this

trivialization is unitary. Then the automorphism « is given by:
a(UF) = VUFV* = e~ MUk,

d
dp?
J = c.c. (complex conjugation). Of course, (B, H, D, J) is a real spectral triple of dimension 1.

We write also explicitly a basis for H; we take eigenvectors of D: 1, = \/%em‘/’, for n € Z.

Now we consider the following spectral triple over B. We take H = L?([0,27],dyp), D = —i
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We construct now an operator p : H — H, which makes the automorphism a implementable
for the triple (A, H, D, J), in the following way. Identify H with the GNS Hilbert space relative
to the state associated to the Lebesgue integral on S!, so that 1, ~ [U"]. Hence, since a(U") =
e~ U™, we define p by:

PPn = e_in9¢n-
One can easily check that, with such a p, « is an implementable automorphism.

Now we consider the Hilbert space H' = H ® (*(Z) ® C2. We have a basis of H' given by
Ynm = (1[)7‘;,,1,1/1;’,”) (m,n, € Z), where, for any m, d}im = tp € H and 69y m = MYy m. The

representation 7 is given by:

Uthm

AU )Ynm = € Ypiims Vionm = F(V)nm = Ynmi1.

The real structure is given, according to and to definition , by
j¢n,m = e_mme(id ® 02)Y—n,—m.

The Dirac operator can be written as

D =6,(id ® o!) + 3(id ® o2),

where 62 = 9 and 61¢Vp m = Ny m. The Zg-grading v is simply v = id ® o3.

As one can easily check, this is nothing else than the canonical T?-equivariant real spectral
triple (see, e.g., [PS06]) on the noncommutative 2-torus A(T3). Now, using the results of section
we can associate to the spectral triple constructed above a Hochschild orientation 2-cyle. We
begin by noticing that cg = U"' ® 1®U is a Hochschild orientation 1-cycle for the spectral triple
over B. Then we consider the twisted shuffle product of ¢ with the cocycle cllq =2 1®lez
over H = O(U(1)). By definition we have:

CEXaCh=UV*'@10VeU-UV'®@12al)aV
=UV*'@1eVeU - v eleaUeV
=UV*'Q1VQU -VU"®1U KV,

which is, up to a multiplicative constant, nothing else than the usual orientation cycle of the

canonical T2-equivariant spectral triple over the noncommutative 2-torus (see appendix see
also [GBEV], chapter 12, pp. 546-548).
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CHAPTER [

Spectral triples over cleft principal O(T")-extensions

We generalize the construction of the previous chapter to cleft quantum principal T™-bundles:
given a cleft O(T™)-extension B — A, admitting unitary trivializations, and a O(T")-equivariant
real spectral triple (B, H, D, J,~y), we will build, under suitable hypotheses, a real spectral triple
over the algebra A. The main difficulty here is that we do not consider only cocycle-free triv-
ializations. As in the U(1) case, we will see that the Dirac operator of this triple allows us to
define a differential calculus over A which is compatible with the de Rham calculus on O(T"),
obtaining in this way a structure of quantum principal T"-bundle over A. We will then discuss
the properties of such a triple. In particular we will show that it is a projectable spectral triple,
and so we can twist it using a strong connection (cfr. chapter [3)).

Actually similar results could be obtained by iterating the procedure of chapter [] but the
direct approach adopted in this chapter may be better suited for a generalization to arbitrary
Hopf algebra. Partial results in this direction will be discussed in the next chapter of this thesis.

In this chapter B will denote a pre-C*-algebra with C*-completion B, H will denote the Hopf
algebra O(T") and ¢ : H — A will be a unitary trivialization of the principal extension B < A.
For a spectral triple we shall mean a real spectral triple fulfilling, at least, the classical dimension
and the first order condition.

In the U(1) case we used the fact that a cleft extension is isomorphic to a crossed product

algebra B %, Z. Here we shall do something similar: we use the isomorphism A ~ B#,H (see

proposition [4.4.13| and proposition [4.4.21]).

7.1 Properties of real cleft extensions A ~ B#,0(T")

First of all we discuss some properties of cleft extensions B < A with Hopf algebra H = O(T")
and unitary trivialization ¢. In particular we will compute some useful relations, using the twisted

module condition and the cocycle condition, involving the cocycle ¢ and the weak action of H.
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7. Spectral triples over cleft principal O(T")-extensions

Lemma 7.1.1. Let ¢ be a unitary trivialization and let o be the cocycle associated to it. Then,
for every r,s € 2",

o(z", 2o (2", 2%) = o(2",2%) 0 (", 2%) = 1.

Proof. First of all we notice that, in the case H = O(T"), the condition of unitarity of a trivial-

ization reads:
oM = o(2F)  Vkezm (7.1.1)
Then we have:
U(ZT, ZS)U(ZT, zs)* (Zr)¢(zs)¢—1(zr+s)¢—1(Zr+5)*¢(zs)*¢(zr)*
(2")d(2")¢~ (z*)p(2 )7 (2%)o (27) = 1

¢
¢

In the same way one proves that o(z", z°)*o (2", 2%) = 1. O

Lemma 7.1.2. Let ¢ be a unitary trivialization and let o be the cocycle associated to it. Then,
for every k € 7,

P I M CLA L o

Proof. Using ([7.1.1) we get:

Foo(z7k ) =

7.2 Weak actions and equivariant spectral triples

We shall deal with crossed product algebras A = B#,H, in general with non-trivial cocycle o.
This implies that we shall not have an action but only a weak *-action of H on B. So we need
to give the definition of equivariance of a real spectral triple with respect to a weak *-action of a
Hopf *-algebra H.

Hence, assume to be given a weak action of H on B, with cocycle o. Consider a real spectral
triple (B, H, D, J,7); let ™ be the representation of B on H, and let 7° the representation of the

opposite algebra induced by the real structure J; namely,
7°(b) = Jr(b*)J L
Then we give the following definition.

Definition 7.2.1. A real spectral triple (B, H, D, J,v) is equivariant w.r.t. a weak action of the

Hopf algebra H, with associated cocycle o, if:

(i) there is a weak *-action of H on a dense subspace V- C H which fulfils the following properties:
1. hem(b)v = 7(hqy>b)(hoybv) foranyhe H,be B,veV,
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2. twisted module condition: for any h,l,m € H and anyv € V

7 (o (h), l2))) (hay > Ly >v) = m(a(hay, l1))) (Rl > v),

3. any h € H, seen as an operator on V', can be extended to a bounded operator on H;
(ii) h>Dv = D(h>wv) foranyhe H,veV;
(iii) [n(o(h,1)), D] = [7°(o(h,l)), D] =0 for any h,l € H;
(iv) hoyv =v(h>w) foranyhe H, v e V;
(v) h>Jv=J((Sh)*>v) foranyh e H, ve V;
(vi) (w,h>v) = (h*>w,v) for any h€ H, v,w € V;
(vii) for any h € H, v e V: n(a(heo), S_lh(l)))ﬂo(a(S_lh’("3), h’&))*)v = ¢e(h)v.

Remark 7.2.2. The only “unnatural” assumption is condition (vii); as we will see it is a sufficient
condition, at least for T"-bundles, to build a *-representation of B#,H on the tensor product of

‘H with a suitable Hilbert space of spinors on H.

7.3 Spectral triples over cleft O(T?)-extensions

Now we begin the construction of the spectral triples over A, where A is a cleft O(T?)-extension
admitting a unitary trivialization ¢.. We present first a simpler case: we take the dimension of
the torus, which is the structure group of our bundle, to be equal to 2. We do it because in
this case we have not to take care of some subtleties coming from the dependence on the K R-
dimension of the commutation relations between the operators appearing in a real spectral triple
(see [DD11] and the discussion in the next sections of this thesis). Nevertheless, we shall see that
all the results and demonstrations in this sections, which do not involve commutation relations
depending on the K R-dimension, apply with no changes to the general case of T™ bundles, to be

discussed later.

7.3.1 Construction of the real spectral triples

Let A ~ B#,H, the isomorphism being determined by the (unitary) trivialization ¢, which
induces a weak action of H on B with cocycle o. Let (B,H,D,J,7v) be an H-equivariant real
spectral triple (in the odd dimensional case v = id), in the sense of definition Consider the
Hilbert space H' = H ® ¢*(Z*) ® C2. Choose an orthonormal basis {ej, }rez2 of 2(Z?); we define
a representation my of H on ¢2(Z?) simply by setting:

TFH(Zh)ek- = €k+h-

7y is a *-representation, and each 7y (2¥) is a unitary operator on ¢?(Z?). We introduce also a
left H coaction pr, onr'_-] ‘H, defined on the basis by

pr(ex) = 2* @ ep.

!'Actually pr is a coaction pr : V — H ® V, where V C H is the subspace of vector 3, arex, {ax} C C with
only a finite number of elements different from zero.
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Now we use these tools to define a representation of A ~ B#,H on H'. Let m : B — L(H) be the
representation of B on H; with a little abuse of notation we denote also by 7 the natural extension
of this representation to H ® C? (and by 7° the analogous extension of the representation of the

opposite algebra induced by the real structure J). Then we define
T (b#h) (v @ w) = m(b)7° (o (h2), w(—1))) (ha) > v) ® TE(h3))w) (7.3.1)
Proposition 7.3.1. 71 : A~ B#H — L(H'), defined by (7.3.1)), is a *-representation of A.

Proof. First of all we show that it is a representation. For a,b € B and h,l € H we have:

(a#th) 7t (b#1)v © w = 7t(a#th) [7(b)7° (o (l2), w(—1)))(a) > v) @ 7o (l3))w(o))
m(a)m(hy > b)7 (o (b, [3yw(-1))) (7.3.2)
(h ( Y, W(— 2)))(}7,(2) > l(l) > U) (%9 7rH(h(5)l(4))w(0).

o
- T

T ((a#th)(b#]))v @ w = 7AT(CL(h( ) > b)a(ha), (1)) #h@)l2))v @ w
m(a(hay > b)o(hy, la))T° (o (hals), wi-1))) (7.3.3)
(h@)l) > v) @ T (his)lay))we)

Using now the twisted module condition and the cocycle conditions we see that we can perform

the following replacements: in equation (|7.3.2))
(0 (hays Lgyw-1))m" (h(g) > o (l(2), w(-2))
— 7To(0'(h(4)l(3), w(_l)))wo(a(h(3)7 l(g))),

and in equation ([7.3.3|)

7 (a(hey, () (Al > v) — 7 (a(h), l2))(he) >y ).

After this operation we see that and actually coincide, and so 7 is a representation
of A. Now we show that it is a *-representation. The scalar product on H’ is simply the product of
the scalar product on H ® C? (which comes directly from that of #) with that one of £2(Z?). It is
enough to show that #((a#2*)*) = #(a#2*)*. Recall that (a#zF)* = (2%, 2K)* (27 F > a*)#27F.
We have:

<v’ @ e, 7((a#2") v ® es> = <v’ @ e, (o(z7F, ) (2P a)#2 R e es>

(7.3.4)
= <v/ ® er, (0278, 2KV (27 b a*))n (0 (275, 2%) (2 F b v) @ 65—k> .

But we know that {er} is an orthonormal basis, so (7.3.4) is different from zero if and only if

s =r+ k. In this case we get:

<v ® e, T ((a#2") ) @ es> =

= (w((=* > a") )z, N (0275, HH) W @ e, (70 0) @ e )
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_ <7r(zk b (27 b a") ) (P b o (28, NI (2 b o (27F, V) (R b)) @ e, v @ ek+T>

= <7r(a(zk, 2N (a)m0 (ZF > o (278, 2FTY N (2 s ) @ epgr, v @ ek+r> (7.3.5)

where, in the last equality, we have used the twisted module condition and the relation of lemma
Now we use the cocycle condition, the twisted module condition, the results of lemma|7.1.1

and lemma and the fact that o(2*,1) = o(1, 2%) = 1 to rewrite (7.3.5) as:
<v ® e, w((a#t2") ) @ €s> =

k _—k\\, o ko —kyx o k k.t (7.3.6)
- <7T(U(z )00 (25, ) e (a)n (0 (2F, 7)) (2 Dv)®6k+r,v®ek+r>

which, due to property (vii) in definition is equal to <ﬁ(a#zk)v’ Rer,v® er+k>. Therefore
7 is a *-representation of A. Remark: we often used the fact that [w(a),7°(b)] = 0 for any
a,bebB. O

Before going on we introduce an action of the Lie algebra of T? on H’. The left coaction pr,
trivially extends to (a dense subspace of) H'; so, if we denote by §; and dy the representative of
the two commuting generators of the Lie algebra of T2, we can define their action in the following
way:

pr(w)=2"@w = §iw)=kuw.

Now we can use H' to build a spectral triple over A (for the moment, without real structure):

the only thing we need is a Dirac operator. Take:
D =D®idp@g @' + 6 o (id®o?) + 52 0 (id ® o). (7.3.7)

Proposition 7.3.2. (A, H', D) is a spectral triple. Moreover, ¢~ (zF)[D, p(z*)] commutes with
the elements of A.

Proof. In order to see that (A, H/, 15) is a spectral triple we need to show that D has compact
resolvent and that it has bounded commutators with all the elements of A. Now, if \;, j € Z,
are the eigenvalues on D (and therefore they goes to infinity as j goes to infinity), then the
eigenvalues of D are timmn = 4 /)\32- +m? +n?2 for j,m,n € Z, and so their inverses converge to
zero as either j or m or n go to infinity. Hence D has compact resolvent.

Next, by direct computation, using the equivariance of the trivialization ¢ and the identifica-
tion 1#h = ¢(h), we get, for any k € Z2,

o1 (zF)D, (%)) = k1id @ 02 + koid ® 0. (7.3.8)

In particular the commutator between D and ¢(h) is bounded for any h € H and ¢~ (2%)[D, ¢(2%)]

commutes with 7(.A).

We are left with the proof that any commutator [ﬁ, 7(a#h)] is a bounded operator. Without

loss of generality, we can take h = z* for some k € Z2. Then the action of such a commutator on
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7. Spectral triples over cleft principal O(T")-extensions

a vector v ® e; € H' is given by:
)
I
(7.3.9)
) ®
*)(=*

Thus such a commutator can be written as a sum of two operators, and it is enough to show that
each of them is a bounded operator. By hypothesis, the commutator of D with 7(a) is bounded.
Moreover, condition (i).3 of definition implies that z* acts on H as a bounded operator.

Next, the map es — es1; extends to a bounded (actually, unitary) operator on H. So we have

only to show that |[7°(c(2¥, 2%))|| < C, C being some real positive constant, independently from

the value of s € Z2. But we know (see lemma |7 that o(2*, %) is unitary, hence such a

constant exists and it can, actually, be taken equal to 1. ]

The next step in the construction of a real spectral triple is the definition of a real structure.
First of all, let Jy be the antiunitary operator Jy : £2(Z?) — ¢*(Z?) defined by:

Ja(ex) =Xe_p  VkeZ* XeC.

Then we define an operator J : H/ — H' by:

J(U X w) = W(J(S_lw(_z), w(_g))*)(w’(k_l) > J’U) X JHQU(O) (7.3.10)

(we consider J acting as the identity on the C2 factor).

Lemma 7.3.3. The operator J defined in is an antiunitary operator. Moreover:

(i) J? = cidyy, where J? = eidy,;

(ii) J maps #(A) into its commutant;

(iii) Jo(D®id) =& (D ®id)o.J, where JD =& DJ;

(iv) if (BH,D,J,~) is an even dimensional triple, then J o (y ® id) = ¢"(y @ id) o J, where
Jy=¢€"~J.

Proof. First of all let us show that J is antiunitary. We have:
<v ®ep, J( @ es)> = (v®@ep,m(o(27%,2°)) (27> JV) ® Jpyes)

= (m(2* Da(z_s,zs))(zs >v) @ e, JU ®e_g) (7.3.11)
—<7r NEEBv)®en, JV @ e 5>

where we used the result of lemma Now, since {ex} is an orthonormal basis, ([7.3.11]) is

different from zero only if s = —r; and in this case we obtain:
<v ®er, J(V ® e_r)> =(m(o(z7",2") (27" pv)@ep, JU @ep)
=W @e_,, Jrn(o(z™",2"))(z7 b v) ® Jyey)
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V' @e_p,m(0(z77,2")*)J (27" > v) @ Juey) (7.3.12)

= <v’ Qe _r, J(v® er)>

(where we used the results of lemma and and property (vii) of definition [7.2.1)) which
shows that J is antiunitary. Next we compute J2. We have

Poe) =T (nlo("4 M) e To) @ e y)

(o(2%, 27" In(ZFa(z7F, )T b 2R b v) @ e,
Jr(o(2F, 27" )T (e 2P u) @ e
(o (2, 27N e 2R b o) @ e

m(o(2*, 27 @ e

Il
3

(7.3.13)

I
™
3
—~ —
R)
—~
ISy
Bl
N
B
SN—
*
N— N— N—

where we used the twisted module condition together with the result of lemma/|7.1.1 (i) follows
directly from ((7.3.13). Next we prove (ii). First of all we notice that:

pr(Jgw) = (*@Jm)pr(w). (7.3.14)
Before completing the proof of this lemma, we state and prove two lemmas:

Lemma 7.3.4. For every k,r € Z™ we have:

K o (2R 2R =

Proof. It follows by direct computation. O

Lemma 7.3.5. The action of the opposite algebra A° on H' induced by J is given by:
Jr(a#2")J Yo @ ep) = 1°((ZF 7> a))7°(0(zF 7, 2") v @ ep_s. (7.3.15)
Proof. Let € be as in (i) of lemma Then we have

J(a#th)J (v @ ey,) = eJa(a#h)J (v @ ep,)
= Jr(Z" s a) (o (2P, TR (R s o (27, 27R) )
Jr(ZT e o (27R )TN T s e R b ) @ e,
= Jr(Z" "> a)J (o (2F, 2R o (2R, 2T))
ST (o(ZT 2 e (28 2T e (T ) T T e e 2P b 0) @ e (7.3.16)

= Jr(Z" "> a)J (o (2F, 2R o (2R 2T))
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100 (2P, ) )0 (0 (2R, 2N R (0 (T ) (T e 2 e 2 TR b)) @ ey

where we used lemma for the last equality. Now, using the twisted module condition, we

get from equation [7.3.16] the following expression.

Ti(a#th) T~ (v @ ey) =

= Jr(Z* s a) (o (28, 2R e (2R 2T))

= Jr(Z* e a) (o (2F, 2R o (2R 2w (a (26T, 7))
(o (2577, 2 ) (o (2, TN (P e 2R b ) @ e,

= Jr(Z* "> a) T (o(2F, 27F))
k

(7.3.17)

from which (|7.3.15|) follows directly. O

We come back to the proof of lemma We compute explicitly the commutator between

J#(a#h)J " and #(b#1) using (7.3.15).

[T (agtz") T & (0#2°)) (v © w) =
:WO((ZkJrS T )*)7_[_0( ( k+s—r ZT)*)W(b)ﬂ' ( ( ))( [>1))®6k+3 . (7318)
k—

— (BT (o (2%, N2 e (2P b @) )0 (2 m( TN E D 0) ® eppsr

Using the twisted module condition and the following relation,
(25> o (287, 27 )o(25,257T) = 025, 2F) o (2P 2)*,

we can rewrite equation ([7.3.18)) as follows:

[T (agta") T 7 (0#2°)] (v @ w) =
= 1°((Z* s @) (0 (2P, 2w (D)7 (0 (2, 2)) (25 b 0) @ epps—r (7.3.19)

—w(D)7° (27" b a)* )7 (o (K577, 27 )10 (0(25, 25)) (2° b v) @ epqs—p = 0

since J maps 7(a) into its commutant on H ® C2. The proof of (iii) and (iv) is straightforward:

they are direct consequences of the properties of equivariance stated in definition ]

Now, following [DD11], we can define, in terms of J. . a real structure J with the correct
commutation relations, obtaining in this way a real spectral triple over the algebra A (in the even
dimensional case we can define a Z2-grading 4, too). We consider separately the odd dimensional
and the even dimensional case.

Odd dimensional case. Let (B,#,D,.J) be a odd real spectral triple of KR-dimension j.

Then we consider the following operator on H'.
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Definition 7.3.6. Let J as above. We define an operator J : H' — H' by:

(id®o?)oJ if =1 (mod 4)
(7.3.20)

<
I

(id® o) o J if j =3 (mod 4)
where id is the identity operator on H @ ((Z?).

Proposition 7.3.7. Let J be defined by (7.3.20). Then (A,H’,b,j) is a real spectral triple of
KR-dimension j + 2.

Proof. Due to proposition and lemma we have only to prove that J and D fulfil the
right commutation relations and that the first order condition holds. The commutation relations
can be checked by direct computation. Here we prove only the first order condition. By direct

computation (using the equivariance of the Dirac operator D) we can see that:

(D, #(a#2")] (v ® ex) =0 [D, w(a)n°(o (2", 2°)))(2" > v) @ ey

+ (1102 + ro0)m(a)7° (o (2", 25)) (2" > V) @ ey

Using (|7.3.21)) and ([7.3.15)) we get:

(7.3.21)

It (oD m(@)r (0 (27 2" 5 0) @ ey )
F(b#z®)J < r10° + 1m0 )m(a)m (o (27, 2) (2" b v) @ ek+r>
= ol [D,m(a)7° (o (2", 279 (2" > 2P e b ) (2" b o (2575, 29)) (27 b v) @ eppr—s
+ (r10% 4 190w (a)7° (0 (27, 2F 7)) (2" > 2P e b ) rO (27 b o (2P, 2 (27 b ) ® epyrs
— o' m (T ) (0 (M0, 2%) ) D, () (0 (27, 2 > 0) @ eprrs
(r162 + roo)m° (ZF 5 o ) (o (K770, 29 ) 7w (a) 7 (0 (27, 25)) (27 b v) @ eppr_s
= ol[D,m(a)]m®(o(z", 2F N7 (2" > 257 o )0 (27 b o (2575, 2)) (27 b v) @ epprs
+ (r102 + ro0®)m(a)m® (o (27, 2K )N (2" b 2K b b )70 (27 b o (2875, 2)) (27 b ) @ eppr_s
— ol m (M ) (0 (M0, 2% ) (0 (27, 2) D, w(@)] (2 > 0) @ e
— (r16% 4 190?70 (2P b b)Y (0 (2K %)) 70 (0 (27, 2F)) 7w (a) (27 > v) @ epprs
oD, 7(@)]r (7 b 0 (255, 2°)) (27 b 2T b ) (7, 250)) (275 0) © egr_s
+ (rla + roo®)m(a)m® (2" > o (2875, 25)) (2" b 2K T B b)) o (27, 2K ) (27 b v) @ epar_s
= (T b (0 (R0, ) (0 (27, 2D, m (@) (b 0) © ey

z
— (r16% 4 190?70 (2P b b ) (o (2, S)*)ﬂ'o(a(zr, FNr(a) (2" > v) @ epars,
(7.3.22)

where we used property (iii) of definition Now, using the twisted module condition we get
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the following relation:
(2" 22X b b*)o(2", 257%) = o (2", 279 (P b bY).

Also, by direct computation we can see that:

kfssz)* r k)o_(zlﬂ»rfs

=o(", 2 r k*S)*.

Z'>o(z ,2%) o (2" 2

Therefore the term in 7° in the first two lines of the last expression in becomes:
° ((z’“ > o (2575, 25)) (27 > 25T b Yo (27, Z’H))
(O_(Z’r’ Yo (RS 25 (2, ) (o, ) (R b*))
=7’ <0’(Zr, Yo (RS ) (R b*)>
= 10T b )0 (0 (250 25 )0 (0 (27, 2F)).
Hence we can rewrite equation in the following way:

(D, 7(a#t2")], J&(b#2°) T 1) (v @ ex)

= ol [D, 7(a)]7°(2FTT 5 b b*) 70 (o (2R, 25 ), (a(zr,zk))(z Dv)®ek+r s
+ (1102 4 190w (a)7° (2P b ) (o (KT %)) 10 (0 (27, 2F)) (27 b v) @ enprs
— o't (e b (0 (M0, 2%) )0 (0 (27, 2)) (D, m(a )](Z > V) @ pprs
— (r10° 4120”7 (T 0 )m (o (25 S)*)WO(U( T2 m(a) (2" b 0) © e
= o' [D,m(a)]a (57 e 0w (o (25772, 2°))n° (0 (2, 29)) (27 b 0) @ eprs
— ol m (M ) (0 (M0, 2% ) (0 (27, 2) D, m(@)] (2 > v) @ e
= o' [[D, (@), w* ("7 o b)) (0 (M7, 2%) ) w (o (27, 2) (D, w(@)) (27 > 0) @ eppros.
(7.3.23)

But then we see that it is equal to zero, since the first order condition holds for the spectral triple
(B,H, D, J). This concludes the proof of the proposition.

Remark: in the computation of equation ([7.3.23|) we have used the fact that 7°(B) is in the
commutant of m(B), together with the commutation property of D with 7°(o(-,-)) (see (iii) of

definition |7.2.1)). ]

Even dimensional case. Let (B,#, D, J,~) be an even real spectral triple of KR-dimension

j. Then we can define a real structure J on H' in the following way.

Definition 7.3.8. Let J as above. We define an operator J : H' — H' by:

(v®id®o?)oJ if j =0 (mod 4)

<
|

(7.3.24)
(iy®id®o3) o J if 7 =2 (mod 4)
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where id is the identity operator on (*(Z?).

Proposition 7.3.9. Let J be defined by (7.3.24), and let ¥ = v ® id ® o*. Then (A, H', D, j,ﬁ/)
1s a real spectral triple of KR-dimension j + 2.

Proof. That the commutation relations between D, J and 4 are the right ones follows by direct
computation. For the rest, the proof is the same as that of proposition O

We conclude this section with the following observation.

Definition 7.3.10. A spectral triple (A, H,D) is said to be irreducible if there is no closed

subspace of H invariant under the action of the operator algebra generated by a € A and D.

Proposition 7.3.11. If (B,H, D) is an irreducible triple, then the triples of proposition
and proposition [7.3.9 are irreducible, too.

7.3.2 Quantum principal bundle structure

We started from a (cleft) Hopf-Galois extension B — A, with Hopf algebra H = O(T?). This
is not enough to say that we are working with a quantum principal T?-bundle: indeed, the
deﬁnitionﬂ of quantum principal T™-bundles involves the differential calculus on the algebra A.
In this section we will show how the construction of the spectral triples over A discussed in the

previous sections allows us to define a differential calculus on A compatible with the de Rham
calculus on H = O(T?).

Lemma 7.3.12. Let Q}j(.A) be the first order differential calculus associated to the Dirac operator

D. Then it is a right O(T?)-covariant calculus.

Proof. We generalize the proof of proposition Let N be the sub-bimodule of the universal
calculus 2! A defining the calculus Q%(A). Then n € N iff 7(n) = 0. Take n € N, n =} pdq.

We can write it also in the following way:

n=>_ Y (m#)d(gp#2")

k,lez?

=3 3 [t ) (1#25) + (=) (@D d(1425)|]

k,lez?

Then the condition m4(n) = 0 implies:

=Y > #wp#)D, w (g

klez?

-y ¥ [ (m#2))[D ®id ® o, 7 (gr#t1)| 7 (14425)

klez?

+(k1(id @ 02) + ko(id @ o)) 7 (pi#2 ) 7 (qr#t2) | -

2See definition
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Since the Pauli matrices are linearly independent, this means that:

> w#)Doide ot d(g#l))a(1#2") =

klez?

DY (ki(id®o®) + ka(id @ o) (m# ) (an#2") =

k,leZ?

But this implies also that, for any r € Z2,

YY) wp#)D@ide ol w (g7 (1#25) = 0, (7.3.25)
k+l=r
> ) (ki(id®0®) + ka(id @ o) a(pi#2! )7 (gr#t=™) = 0. (7.3.26)
k+l=r

Now we split 7 in a different way: we write it as n = Z Ny, Where the 7, are defined by:
reZ?

=Y > (m#)d(g#z").

k+l=r

Then equation (|7.3.25) and equation ([7.3.26)) imply that 7rD(77T) = 0 for any r € Z?; that is, each

n- belongs to N. But if now we compute A%( ) we obtain AQ Z nr ® 2", hence it belongs

reZz?
to N ® H. It follows that A%(N) C N ® H; that is, Q})(A) is a right H-covariant calculus. [

Proposition 7.3.13. Let Q})(A) be the first order differential calculus associated to the Dirac
operator D, and let N be the sub-bimodule of A® A defining it. Let Q = (kere)? be the ideal of
H = O(T?) which defines the de Rham calculus Qp(H). Then (A, H,Ag,N,Q) is a quantum
principal T?-bundle.

Proof. Due to lemma|7.3.12] it is enough to show that QE(H) satisfies (i) and (ii) of proposition
4.6.141 Let us begin by showing that (i) is fulfilled. We recall that the sub-bimodule defining
Q}j(.A) is

= { Y a;eb e A9 A| Y #(a;)[D,7(b;)] = 0}. (7.3.27)

J
Take now n € N. We can write it as n = Z (am#2") ® (by#2'). Exploiting the fact that 7

k,lez2
belongs to N, we get, using ((7.3.21),
0= Z ﬁ(akl#zk) (Ul[D, W(bkl)ﬂ'o<0(zl, w(,l))](zl > ’U) & WH(ZZ)'UJ(O)
k,lez?
+(l10'2 + l20’3)7T<bkl)7l'o(0'(Zl, w(,l)))(zl > U) & WH(ZZ)U)(O)>
= Y Flam#z") (UI[D,W(bkz)ﬂo(ff(zl»w(—l))](zl > v) @ 7 (2 )w()

k€72

(7.3.28)

+(10® + Lo )i (bt (0 2 w) )
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Since the Pauli matrices are linearly independent, from equation ([7.3.28]) we obtain, for ¢ = 1, 2,

> lilau#) bu#a') = D (au#=")6i(bu#z') =

k,lez? k,leZ?

and this concludes the proof that (i) is fulfilled. We prove that also (ii) holds. Take n €
QA n = Y pdg, and assume that > pd;(¢) = 0, for i = 1,2. Then rewrite n as n =

Z Z (pi#2")d(qu#2"). Using the Leibniz rule we obtain then:
k,lez?

n=3" " [ dlat ) 1#5) + i) (@t 1)d(1#25)]

k,l€Z2
In order to prove that [n]y belongs to AQ}) (B)A it is then enough to show that
”15<Z > (pl#zl)(Qk#l)d(l#zk)> —0.
k,le7?

Let us compute it. We have:

%(ZZ (m#2") (gr#1)d 1#z> Y wm#)a(@#H)[D, 7 (1427)]

k€72 k,leZ?

= Z Z (ki@ +k® 03)7}(@#21)7%(%#,2’“)
k,leZ?

_ Z Z [ (id ® o ((pl#z )01 (qr#= )) (id® o®)7 <(pl#z )62(an#z )) ] =0.
k,lez?

7.3.3 Projectability and twisted Dirac operators

Now we show that the triples constructed in the previous sections are projectable spectral triples.
First of all it is not difficult to see that:

Proposition 7.3.14. The spectral triples of proposition and proposition[7.3.9 are equivari-
ant spectral triples with respect to the T?-action generated by the two commuting derivations 81,
0s.

We can now prove the following results.

Proposition 7.3.15. Let (A, H', D, J, {8;}) be the T%-equivariant odd real spectral triple of propo-
sition . Then it is a projectable triple with isometric fibres. Moreover we can take (under
the isomorphism A ~ B#,H )

~

T = —if (¢~ (21))[D, #(d(21))]7 (¢~ (22))[D, 7($(22))]- (7.3.29)
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Proof. Let I" be as in . By direct computation one sees that I' = id ® o'. Thus we have
immediately T? = 1, T* = T, [T, #(a)] = 0 for any a € A, [[,§;] = 0. And T'J = —JT. Hence
(A, H', D, J,4,0) is a projectable triple. Finally, it is straightforward to see that the isometric
fibres conditions is fulfilled. Indeed, for I' = +id ® o' we have D), = D ® o'; so if we take
D, = (id ® 62)8; + (id ® 6°)dy we obtain D = D, + D,. O

Proposition 7.3.16. Let (A, H,D,J, 5, {8;}) be the T?-equivariant even real spectral triple of
proposition|5.3.10. Then it is a projectable spectral triples with isometric fibres. Moreover we can
take (A ~ B#,H)

[ = —i(6~ (20)) D, #(6(21)) (6~ (22))[D, 7(6(22))]. (7.3.30)

Proof. Let I' be as in . Also in this case, I' = id®o'. The only difference with proposition
7.3.15| is that we have to check also the commutation relation between I' and 4. Since 4 =
v ®id ® 0!, we have I'4 = 4T, which is consistent with definition m The fact that the triple
has isometric fibres follows as in proposition O

Now we can compute the twisted Dirac operator D,, (which will be a “j-dimensional” Dirac
operator, where j is the dimension of the triple over B) associated to a strong connection w,
which will be defined by a family of n 1-forms w; (see definition . First of all we work
out an explicit formula for the admissible w;. Any component w; of a family defining a strong
connection, due to condition (i) of definition must be of the following form:

w; = wi,lal + wi720'2 + wi,303 (7331)
with w; ; € QL (B). More precisely, we can write w; as:

wi = Z Qi j [IA?, bij] + Ci,10'2 + C7;720'3, (7.3.32)
J

where a; ;,b; j, c; belong to B. Now, from condition (ii), we get, using o2 = (1#2’1_1)[15, 1#21],

0% = (142, 1) [D, 1#22),
c11 =1, c12 =0,

c21 =0, co0 = 1.

Therefore we get obtain following expressionsﬂ for wy and wo:

wi = (142 D, 1#21] + Y (ar;#1)[D ®id, by j#1]0’!
j

= 0% + Y (ar#1)[D ®id, by #1]o",
J

(7.3.33)

3We consider both of them as operators on H'. We omit the representation # to simplify the notation.
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wy = (1425 ) [D, 1#22] + Y (a2,;#1)[D @ id, by j#1]0"

J

= 0% + Y (az;#1)[D ©id, by #1]0",
J

(7.3.34)

Now we can compute the twisted Dirac operator D,,. We know that in general, for T" bundles,

it can be written as

n
Dy=D =) jowiiy i - Z,
i=1
where D is the Dirac operator of the triple over A and jg is defined as follows:

Table 7.1: jo
nl 0] 12345167
jo vl JlJlv{Tg|JlJ

Therefore we get, using I' = o,

Table 7.2: jo
n 0 1 2 3 4 5 6 7

go || ivo3J | io3J | iyo3J | io3J | inodJ | io3J | iyodJ | io3JT

It is now clear that, since o2 anticommutes and % commutes with .J, both o2 and % commute

with jo; instead, o' anticommutes with jy. Therefore, writing the 1-forms w; in the short form

wy =0’ + Ulwf,

Wy = 0> + aleB,

we obtain that the twisted Dirac operator D, is given by:
2
D,=D®c' +) (i[d&a")jo(w’) iy b (7.3.35)
i=1
Adding the vertical Dirac operator we obtain a full, j + 2 dimensional Dirac operator:
2
Dy=D®@c" +([d®o?)d + (id® ) + > _(id® o )jo(w!) sy "o (7.3.36)
i=1

Corollary 7.3.17. The only connection compatible with the Dirac operator D is the Maurer-

Cartan connection w = ¢~ ! x d¢.

7.4 Spectral triples over cleft O(T")-extensions

Now we generalize the construction of the previous section to cleft O(T™)-extensions B — A, for
n > 2, admitting a unitary trivialization which determines an isomorphism A ~ B#,H, with

H = O(T™). Roughly speaking, the only things to be changed with respect to the 2-dimensional
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case are are in the C? factor, where we have to replace the Pauli matrices with suitable v matrices
acting on some representation of an n or n + 1 dimensional Clifford algebra. More precisely we
modify the part of the Dirac operator, the real structure and the Z? grading acting on the C?
factor that have to be chosen accordingly to n and to the KR-dimension of the triple over B. We
follow [DD11] to get the right formulae.

Since we want to use the results of [DD11], we adopt a slightly different convention w.r.t. the
one we worked with in the previous sections. So, if we specialize the discussion below to the n = 2
case we see that there are some minor differences w.r.t. the results obtained previously. But it
is only a matter of conventions on the commutation relations between the elements of the triple.

We describe shortly, following [DD11], the conventions that we will use.

Given a real spectral triple (A, H,D,J,7v) (v = id if the triple is odd) the commutation

relations between D, J and v are given by
J? = ¢id, JD =¢'DJ, Jy = ¢€"yJ,

where ¢, &', ¢” are given by the following table.

Table 7.3: Connes’ selection in [GBEV] is marked by e

nffoj2[4]6]o0]2]4]6]1]|3]5]7
eff+F|—|—|+[|+|F+|-|—|[F]|—| |+
I I o e e B B e e I o B IS
e I e e

[ ] [ ] [ ] L] [ ] [ ] [ ] [ ]

Notice that altogether there are twelve different possibilities, which can be labelled by K R-
dimension n € Zg with the additional index ¢’ if n is even (so for example the case (e, €, €”’) =
(4, —, —) is labelled by 2_). We keep the notation of [DD11], so we place this additional index also
in the case of odd n, though it is redundant there. We notice also that, in the even dimensional

case, we pass from the n_ to the ny case by multiplying the real structure by the Zy grading ~.

Given a real spectral triple (B,H,D,J,~), we define, on H' = H ® (*(Z") ® (CQWQ], the
representation © and the antiunitary operator J exactly as in the 2-dimensional case. We will
get D and J acting on the €2 factor in a such a way that we obtain the right commutation

relations.

Next we choose a convention for the v matrices. Let n equal either to 2m or to 2m + 1.
We denote by v',...,¥*™ the canonical generators of the representation of the n-dimensional

complex Clifford algebra on C2"; they satisfy the relations

Yol 97 = by

2m+1 2m

We define also an operator -~y = Ayt 4?™, where A\, = 1,—i,4,1 accordingly to n =

0,1,2,3 (mod 4). v*™*1 is defined in a such a way that (y?*™*1)2 = 1. Next, we introduce the
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derivations ¢;, j = 1,...,n, acting on ‘H by:
(0 )k = kjfrs VfeH, kezm

7.4.1 T?"bundles

We consider first the case of smash products B#,H, H = O(T") with n = 2m. Since the
construction depends on the parity of the K R-dimension of the triple over B, we have to consider
two different situations.

Odd dimensional case. Assume that the triple over B has dimension j, with j odd. Then
we deﬁn the Dirac operator D as:

D=D®idey" +) ([deq’)od;.

j=1
As real structure we take, instead, J defined as:
- J for j +n =3 (mod 4)
) (de@A2mtyo for j +n =1 (mod 4)

Then we get immediately, using the results in [DD11], that (A, H', D,J ) is an odd dimensional
real spectral triple of K R-dimension n + j.

Even dimensional case. Assume that the triple over B has dimension j, with j even. Then
we deﬁn the Dirac operator D as:

D=D®idey" +) ([dey’)od;

j=1
As Zs grading 4 we take 4 = v ® id ® 42™*1, while the real structure .J is defined as follows:
- J for j +n =2 (mod 4)
| (deyEtyo g for j+n =0 (mod 4)

Then we get immediately, using the results in [DD11], that (A, H’, D, J, %) is an even dimensional
real spectral triple of K R-dimension n + j whose “parity” is given by the following table:

7.4.2 T?"tl_bundles

Now we consider the case of smash products B#,H, H = O(T") with n = 2m + 1. Still, we have
to consider two different situations.

Odd dimensional case. Assume that the triple over B has dimension j, with j odd. Then
we define a new Hilbert space, H” = H' ® C2, and we extend trivially all the operators on H’ to
operators on H". Explicitly, we have H” = H ® ¢>(Z") @ C>" @ C2. Then we define the Dirac

4This is not the only possible choice, see [DD11] for the details.
5See previous footnote.
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. "lol24]6

J
0, 0, | 2_ | 4, | 6_
2. 2. | 4_ | 64 | O_
i, A, 1 6- | 0s | 2o
6. 6+ | 0_ | 24 | 4_
0_ 0_ |2, | 4|6,
9 2 |4, | 6_ |0,
i A6, 0_ |2+
6_ 6_ |0, | 2_ | 4;

operator D, the real structure J and the Zs grading 4 in the following way [DDII]:
D=Deideidec +) (doid®+ @c?) od;
j=1
J*=Jo(ild®id®id ® M*K),
4=id®id ®id ® o3,

where M* are two complex matrices specified by the table below and K is the complex conjugation
operator defined for the canonical basis of C? (i.e., if (e1,e2) is the canonical basis, we have
K()e;) = Me; for every A € C).

Table 7.4: Matrices M ™, M.
T 3 5 7

02,01 | 03,00 | 02,01 | 03,00

00,03 | 01,02 | 00,03 | 01,02

02,01 | 03,00 | 02,01 | 03,00

| O W[+~

00,03 | 01,02 | 00,03 | 01,02

The resulting triple (A,H”,D,J%,4) is an even dimensional real spectral triple of KR-

dimension (j +n)+.

Even dimensional case. Assume that the triple over B has dimension j, with j even. Then
we deﬁneﬁ the Dirac operator D as:

n
D=D®idey"+) ([dey’)od;.
j=1

5This is not the only possible choice, see [DD11] for the details.
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The real structure .J is defined as follows: if JD = D.J we take

F J for j +n =3 (mod 4)
| (y®id)oJ for j +n =1 (mod 4)

instead, if JD = —DJ, we take

A J for j +n =1 (mod 4)
(y®id)o J for j +n =3 (mod 4)

Then we can see, using the results in [DDT1], that (A, H’, ﬁ, J ) is an odd dimensional real spectral
triple of K R-dimension n + j.

7.5 Further properties

7.5.1 Dimension

If the Dirac operator D on H is pT-summable, then the Dirac operator D is (p + n)T-summable.
This follows as in the case of product spectral triples; for further details see [DS13al (GBEFV].

7.5.2 Regularity

Assume that the spectral triple (B,H, D, J,v) over B be regular. Let us see that this implies
that also the spectral triples built in the previous sections are regular. We will use the results
of section [3.1.2} in particular theorem [3.1.19| and theorem We discuss here only the case
when n = 2, but the extension to the general one is straightforward.

Since (B, H, D) is a regular spectral triple, there exists an algebra of generalized differential
operators Dg C End(W ) such that B+[D, B] is dense in DY. Here W is the space of A-smooth
vectors, where A = D? + 1. Consider now the Hilbert space H' = H ® (*(Z?) ® C2. We can
extend A to an operator A on H’, simply defined by A = A ®id. Then the space of A-smooth
vectors is just W™ = W™ @ (%(Z?) @ C2.

Now, due to condition (ii) of definition W is stable under the (weak) action of the
Hopf algebra H = O(T?). For any b € Dg and any k € Z? consider now the operator b®) on H/
defined by: b®) (v ® ey) = m(b)7°(0 (2%, 25)) (2" b v) ® es. All the operators of this kind form an
N-graded algebra Dg, and the space W™ is stable under the action of Dg. Moreover,

Lemma 7.5.1. D C Op(A).

Now let H C A be the (unital) *-algebra generated by (14#2z*), k € Z2. Consider the following
N-filtered algebra:

3
Dy =Dg-H+H Dg+) (ideo!)(Dg- H+ H-Dp).
j=1

By construction A+ [D, A] is contained in DY. Let now A’ be the operator D?+1 on H'. Notice
that it is equal to A 4 67 + 63. Let W™ be the space of A’-smooth vectors of H’. Then it
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is easy to see that W'™ C Wee, Also, since any P € Dg acts as the identity on ¢?(Z?) ® C,
Dp can be seen as an (N-filtered) subalgebra of End(W’™). And the same holds for H. Hence
D4 is a subalgebra of End(W’). Moreover, it satisfies [A’, D] C DkH So, in order to prove
that it is an algebra of generalized differential operators, we have only to show that each D) is
contained in Op™(A’). Tt is clear that D} is contained in Op™(A’). Also, H and (id ® o7) H
(for any j = 1,2,3,) are contained in Op"(A’); more precisely both of them are contained in
OpY(A’). Hence D'y is contained in Op™(A’). It follows (see theorem that the spectral

triples constructed in the previous section are regular spectral triples.

7.5.3 Orientation

An orientation Hochschild cycle for the spectral triples (A, H’, D, J,4) and (A, H", D, J,%) can
be obtained extending the construction of section We begin by showing the construction
in the first case. Later we will show how it extends quite trivially to the other one. So, in the
first part of this section, we take n = 2m.

Let us consider, for any « = 1,...,n, the following Hochschild 1-cycle with values in H ® H®:
cg_? =(z'®1)®z (7.5.1)

Since the action of H on B is actually a weak action, with (possibly) non-trivial cocycle o, the
corresponding Hochschild 1-cycle on A is not simply (¢(z; 1) @ 1) ® ¢(2)) = (142, 1) @ 1#1)
(1#£2;) but it is:

(07 (z) ® 1) @ ¢(ai) = (07, 20) " #21) @ 14#1) © (L2). (7.5.2)

So we introduce the following generalization of the shuffle product [Lo] and of the twisted
shuffle product of section First of all we recall that any Hochschild chain ¢ € C,(B, B® B°)
can be written as

c=) (ag®by) ®ar @ @ ay, (7.5.3)
with ag, b; € B. Then we give the following definition.

Definition 7.5.2. For any Hochschild p-cycle ¢ € Z,(B, B ® B°), written as in equation (7.5.3)),

we define its twisted shuffle product with the I1-cycle cf,_? as the Hochschild (p+1)-chain ¢X 4 cg) €

Cpy1(A, A® A°) defined by:
c Xy c(H) = Z((aoa(z._l, ) #2) @ (00#1) @ 1#2, @ a1 #1 @ - @ ap#l

Z Z ((apo (= zi)*#zjl) ® (by#1)) @ (zi>ay)#1 @ - - -

(7.5.4)
--®(zi>aj 1)#1@1#zi®aj#1®---®ap#1

+ ) (—1P((aoo (2", 20) " #2 ) @ (b5#1)) © (2> a1)#1 @
- ® (2 Dap)#l @ 142
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Lemma 7.5.3. The twisted shuffle product ((7.5.4)) is linear in the first factor (i.e. in c).
Now we extend the (weak) action of H on B to a weak action on Hochschild p-chain over B5.

For ¢ € C,(B, B ® B°), written as in equation (7.5.3)), and for h € H, we define:

h>c= Z((h(l) >ag) ® by) ® (h(g) Pa)®---® (h(p+1) > ap). (7.5.5)

Definition 7.5.4. A Hochschild p-chain ¢ € C,(B,B ® B°) is H-invariant if h> ¢ = e(h)c for
any h € H.

Proposition 7.5.5. If ¢ is an H-invariant Hochschild p-cycle, then its shuffle products ¢ X, c%),
fori=1,...,n, are Hochschild (p + 1)-cycles.

Proof. We will use the following relations:
(a0 (2", 20) "2 1) (1#2) = aoo (27, 2i) "#1,

(a;#1)(1#2) = a;j#zi,
(l#zi)(aoa(zfl,zi)*#zfl) = (z Daoa(zfl,zi)*a(zi,zfl))#l = (zi > ag)F#1,
(1#2i)(a;#1) = (2 > aj)#z;.

Let by the Hochschild boundary operator on the Hochschild complex Co(A, A ® A°). Then we

prove that bu(c X, cg) ) = 0. First of all we introduce the following notation: accordingly to

(7.5.4) we can write ¢ X, c%) as

) p+1
c X c(l)—g C;
ot — 3
J=1

We compute now each b4c;. For ¢; we have:

baci =Y _((ao#tl) ® (B5#1)) @ a1#1 @ - ® ap#tl
= ((aoo (2t 20) #27) @ (bg#1)) ® (200 1) #2 ® ap#tl @ -+ @ ap# 1

p—1
YD (D) (aoo (27 z) ) @ (bg#1) @ 142 @ -+ @ apap #1 @ -+ @ ap#l
k=1

+ > ()P ((apaoo(z ' z) #27) @ (B5#1)) @ 1#2, @ a1 @ -+~ @ ap 1.
(7.5.6)

Next we compute byc; for j = 2,...,p. We obtain, using the twisted module condition and the
unitarity of a(zfl, zi),

bacj = S (1Y (a0 (=, ) #21) © (b3#1) @ (2> a)#1 @ - -

@ (2> aj—)#L @ 1#2 @ ai#LI R D ay
j—2
+ 3 (—DR1 N (aoo (27 Y ) ) © (0§#1) © (2> a1) ® -

k=1
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"®(Zz'DakakH)#l@“-®(Zz‘Mj—l)#1®1#Zi®aj#1®-“®ap#1
+3 (0o (57 ) #27) © (5#1) © (24> a)#1 @ -

~®(zil>aj D#2 @ a;#1® - @ ap#l
= (aoo(z; ", 2i) 2 @ (b#1)) @ (2> a)#1® - - (7.5.7)

R (ZZ > aj_l)#l X (ZZ > aj)#zi X aj+1#1 XX ap#l
p—1

+ ) (D1 (a00 (27 z) #2) © (0 #1)) © (> a))#1 @ -

k=j
S ® (2> aji—1)F#L® (2> aj)#Hz @ aj#LIR - Ray
+ 3P (apaoo (27 20) 2 @ (O5#1) © (> a))#1 @ -
@ (zibaj—1)#lQ1#2 @ a;#1 ® - @ ap—1#1.

Finally,
bacp1 = Y (=1 ((a0aro (2!, 2) #2,7") @ (B#1)) @ (2> a2)#1® -+ @ (2> ap)#1 © 12
p—1
+ 3 S DR (0o (7 z0) 2 © (B)#D) © (200 an)#1 ©
k=1

e (Zi Dajaj+1) K- ® (Zi [>ap) ® 1#Zi
+ 3 ((aoo(z ", 2:) #2) @ (B)#1)) @ (20 ) #1 @+ © (20 ap) #2

— Z zi>ag)#1) @ (bg#1)) @ ®(zi > a2)#1 @ -+ @ (2 > ap)#1
(7.5.8)

Now, the first line of ([7.5.6)) cancels out with the last of (7.5.8), due to the H-invariance of c.
Next, the terms containing a factor (z; > u¥az)#2; in (7.5.7) and (7.5.§) sum to zero. What
remains is nothing else than bgc X, c%), which is zero since c is a cycle and the twisted shuffle

product is linear (lemma [7.5.3)). O
Before going on we notice the following fact.
Lemma 7.5.6. If c is H-invariant then so is ¢ X, cg), foranyi=1,...,n.

Now, given an orientation p-cycle cg for the spectral triple (B,H, D, J,v), we can iterate the

twisted shuffle product to obtain a Hochschild (p + n)-chain c4:

cy = y;}L ((((CB X g cg)) X g c&?) X g ) X g cgl)> , (7.5.9)
where v, is the normalization factor [DS13a] (A, is the phase which enters in the definition of
y2m+Lsee above)

L=t
p!

Corollary 7.5.7. If cg is H-invariant then c4 is a Hochschild (p + n)-cycle over A with values
in A® A°.
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Proof. Due to lemma we can iterate proposition O]

Now we compute 7p(c4). We begin proving the following preparatory result.

Lemma 7.5.8. For i = 1,...,n, the representation on H' of the Hochschild (p + 1)-cycle is

CcB Xo cg)) is given by:

wp(es Xo ) = (p+ 1)y (1> H)Py.

Proof. Consider a vector v ® e;, € H'. Using the definition of 75 we get:

7 xo € )0 @) = Y #laoo (5 z) e ) TR BE#L) T D, 7 (120
1B,k 1D, 300 AN ® er)

+ YD (=1 (oo (277t z) e ) TR (b5 #L) T D, A (20 > a1)#1)]
=2 ) ) ) (7.5.10)
(D, 7((2i > aj—1)#1)][D, 7#(1#2:)][D, 7 (a;#1)]
- [D, 7 (ap#1)] (v @ e)
+ Z(—l)pﬁ(aoa( L) D TR (05#1) S D, 7 (2> a1)#1))]

(D, 7 (2> ap) # D] [D, 7 (1#2)] (v © e
Let us compute the first line of equation (7.5.10)). Using the definition of 7 and of D we get:
> ilaoo(zit z) #a ) TR (0p#1) S D, & (1#t2:)]
(D, (@i #1)] - [D, 7 (ap# D] (v @ e,)

—Z[ m(aoo(z;t, 20))m° (o (2t M) (27 oy 'm0 (2, 27)) (200 (2P

o
|

= (P |:7T(U(Zi1’ 2) ) (0 (27, 20)) (2 B 2i> (D, w(a)] - (D, w(ap)v) | ® e

YN (o (27t 20) o (27 zi)w) @ ey
A (2m

Pyv @ ey
(7.5.11)

Here f; denotes the element of Z™ defined by (f;); = d;;. In the computation we used the twisted
module condition, the unitarity of o(z; L z;) and the fact that cp is an orientation cycle for the

triple over B, which implies that 7p(cg) = v (if p is odd, v = id). Next we compute the second
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line of equation ([7.5.10)).

ZZ #(aoo (2", 20) 2, ) TR #1) D, 7 (20> a1)#1))]
- [D, & (2> ;1) # DD, 7 (1#2)][D, 7 (a;#1)] - - - [D, A(ap#1)] (v © ex)
= iZ(—l)J"lw"(bo)w(aoo(z; Lz) ) (A Ty (PP
(o (27, ) [zgl > [D, (2> a)] - [D, 7 (2> aj_1)]
-7°(0(2i,2%) (i > [D,w(aj)] -+ [D, w(ap)]o) | @ ex
=§2§:v%fm“yﬁ%%ﬁd%a@iﬂafﬁ%a@iﬂfﬁﬂﬂDﬂda1>%>aﬂk~
" [Dyw(z7 e ziv ag )7 (2 B o2, 27) (27 0 2> (D, w(ag)] -+ [D, 7 (ap) o) © e
_227 2170 (po ) (ago (2771, i) )70 (o (27, AN D, 7 (27" b 2 b ar)]

-~ [D,m(z; Dzzba] 1)]m o(a(zi_l,zk+fi)*)7ro(a(zi_1,zi))
(o005 Dontas)]-- [Dortane) @
(7.5.12)

Using the unitarity of o(z", 2%), the twisted module condition and the first order condition, we

can rewrite ([7.5.12)) in the following way.

Zny 2P o (bo) (apo(z; *,2)")[D, m(z; Dzzbal)]
- [Dyw(z ez ag)m(o(z z)) Dy w(ag)] - - [Dyw(ap)o @ e

_227 2P (bo)m(ago (2t z)* ) m(o (27, 2i)

(7.5.13)
D, 7(a1)] - [D, w(a;_1)][D, w(ay)] - - [D, w(ap)]v @ e
= 3 3 A (PP (o) w(ao) Dy ()] -+ (D, wlap) o @ e
j=2
=7 (" Py @ ey

In the same way one can see that also the last line of equation (7.5.10)) is equal to 7 (72" 1)Pyv®ey.
This concludes the proof of the proposition. O

Proposition 7.5.9. For n = 2m we have: mp(ca) = 7.

Proof. Let p be odd. Then 4 = id, (y?™+1)P = 42m+1 4 = id. Iterating the result of lemma
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we get:

Wﬁ(c.A> _ )\;,Y2m . ’Yl’}/2m+1’7 — ,Y2m+l,}/2m+1 —id = 'AY

For p even, instead, we have 4 = 4?1 (42mT1)P = id. Which implies that

Talca) = Xy oyly = 2y = 4.

O]

We are left with the n = 2m+1 case. If p is even than the Dirac operator is the same as in the
previous discussion and so lemma [7.5.8| still holds. Hence we can take c 4 as defined by equation
(7.5.9) and, with a computation similar to that of proposition we obtain the following.

Proposition 7.5.10. Let p be even and let n = 2m+1. Let c4 be as in (7.5.9). Then mp(ca) =
4 =id,

Let us consider now the case when both n and p are odd. The Dirac operator is given by
n
D=Dw®c'+) 50,
j=1

while the Zo grading is simply given by 4 = id ® 03. Then, with a computation similar to that of

lemma [7.5.8] we can prove the following lemma.

Lemma 7.5.11. Fori=1,...,n, the representation on H" = H' @ C? of the Hochschild (p+1)-

cycle cg X4 cg) 1s given by:

wp(es Xo &) = (p+ 1)yio? (o).

Iterating this result we get:

Proposition 7.5.12. Let ¢4 be defined by

iy =t ((((CB X o cg)) X o cg)> Xg o ) X o c?) : (7.5.14)
where p,p s the normalization factor

s P+ n)!
Vpn = _l)\n(pﬂ)‘

~

Then we have mp(c/y) = 7.
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CHAPTER 8

Quantum principal G-bundles and gauge theories

In the previous chapters we discussed various aspects of noncommutative principal T”-bundles. In
particular, we focused our attention to bundles with differential calculus compatible with the de
Rham calculus on T", showing how this property allows a description of strong connections more
close to the classical one; indeed, a T"-connection over a bundle of this kind can be described by a
family of n 1-forms over the total space of the bundle, which corresponds to the classical picture
of a connection as a t,-valued 1-form over the total space, where t, is the Lie algebra of T".
Moreover, we have introduced a way to construct spectral triples over cleft T™-bundles defining
a Dirac calculus compatible with the de Rham calculus on T". This provides a way to put a
structure of quantum principal T™-bundle over cleft O(T")-extensions (with suitable properties).

In this chapter we shall extend — partially — these results to noncommutative principal G-
bundles, G being a compact connected semisimple Lie group. First of all, we shall discuss the
structure of quantum principal G-bundles with calculus compatible with the de Rham calculus
on G. Next, we shall consider cleft extensions and, under suitable hypotheses, we shall work
out a construction of a real spectral triple whose Dirac operator determines a first order differ-
ential calculus compatible with the de Rham calculus. Finally, we shall introduce twisted Dirac

operators and study their behaviour under gauge transformations.

8.1 Quantum principal G-bundles: definition, general properties

and strong connections

In chapter [ we gave a characterization of quantum principal T"-bundles. In this section we
will extend this analysis to the more general case of quantum principal bundles whose “structure
group” (which, we recall, is actually a Hopf algebra) is the algebra of smooth functions over a
(compact, semisimple, connected) Lie group G. In particular we shall relate strong connections
to the usual concept of (gauge) connections on a principal G-bundle, i.e. to g-valued 1-forms
(here g denotes the Lie algebra of G).
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8.1.1 The algebra H = C*~(G) and its differential calculus

Let G be a compact connected semisimple Lie group of dimension n, g be its Lie algebra, and
consider the algebra C*°(G) of (complex) smooth functions on G. Let {X;} be any linear basis
of g; each X; is a (left invariant) vector field on G, so it acts as a derivation on C*°(M). In

particular, we recall that its action can be written in the following way:

d

Xj(f) - %Rexp tX; (f) t_Ov (811)

where Ry is the right regular representation of G on C*°(G), (Ryf)(h) = F(hg) and exp is the
exponential map of G. Then we can define a family of seminorms on C*°(G): for any r € N” and
any f € C*(G) we set
Pu(f) = sup |X7" - - X5 (F)(9)]-
geG

Proposition 8.1.1. C*°(G) is a nuclear Fréchet algebra with respect to the locally convex topology

defined by the seminorms py,.

Proof. 1t follows from corollary O
Corollary 8.1.2. There is an isomorphism of Fréchet algebras C*°(G)RC>®(G) ~ C*(G x G).

Proof. See proposition O

Now let H = C*°(G) and consider the maps A : H - HRH ~ C*(G x G), S : H — H,
e : H — C defined as follows (for f € H, g,¢9 € G):

A(f)(g,9") = f(gd),

where e € G is the identity element.
Proposition 8.1.3. The maps A, S, € are continuous maps.

Proof. The proof that S and ¢ are continuous is straightforward. Let us prove, instead, that A
is continuous. The Lie algebra of G x G is simply g @ g. Hence, given a linear basis {X;};=1
of g, we can consider the following basis of g & g: {Y1,...,Yn, Z1,...,Z,}, with Y; = X acting
on the first factor and Z; = X acting on the second factor. Then the topology of C*(G x G) is

defined by the seminorms

qr(f)= sup Y- Yy Z - Z5.(f)(g, )],
(g,h)EGXG

where I = {i1,...,4}, J = {j1,...,Js}. Take now f € H; then A(f) can be seen as an element
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of C*°(G x G) and we have, for any g,h € G,

= % f(ghe!Adn—1(X0)) (8.1.2)

' _i X _i —1,tX;
(X’A(f))(g’h)_dtf(get h) _dtf(ghh eXih) e d —0

t=0

where e¥ is the exponential map. Hence, if we denote by Rz (g) the matrix elements of the adjoint

representation of G on g, we have:

(XiA(f)(g,h) = %f(ghetzj R{(;rl)xw

= S(RIWHXf)(gh).  (8.13)

t=0 j

By iterating this procedure, then, we obtain the following relation (we use here Einstein conven-

tion: the sum over repeated indices is understood):

Vit Yi Zyy o Z5 (A(f) (9, )

ki3 —1 k -1 (814)
= [Ri} (h7) - Ry (h™ ) Xy - X, X5y -+ XG5, () (gh)
Using (8.1.4) we can perform the following estimate.
arg(A(f)) = sup  |Yi, - Y Zj - Zj (f)(g, )]
(g,h)EGXG
= sup [[RP(hTY) - RE (BTN Xy X Xy XL ()] (9h)] (8.1.5)
(g,h)EGXG
< sup [RE(RTY]IRE (BT Xy - X, Xy X, ()] (gh)]
(9,h)EGXG

Each Rg is a smooth function on G. So, if we denote by ||-||oc the sup norm on C*°(G), we obtain,

from (8.1.6),

q1,7(Af)) < IR oo+ 1 RE [loo - < sup !Xkl"'Xerjl"'st(f)(gh)|>- (8.1.6)
(g,h)EGXG

In particular we have shown that g7y o A is less or equal than a finite multiple of a continuous

seminorm on H. Therefore (see proposition proposition and remark [B.2.9) it is a
continuous seminorm. It follows (see theorem [B.2.10]) that A is a continuous map. O

The next step toward the definition of quantum principal G-bundles is the choice of a first
order differential calculus on the algebra H = C°°(G). The most natural choice is to consider
the de Rham calculus QY(H) = QLo (H). It is [Wor89] the bicovariant calculus defined byﬂ the
adg-invariant ideal Q = (ker ¢)?. Indeed, the de Rham calculus can be characterized in the
following way. Let {T}} be a linear basis of g and let {¢/} be the dual basis of g*. Since the
space of sections on the cotangent bundle T*G can be identified with C*°(G) ® g*, the (de Rham)

1See theorem
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exterior differential d© on G can be described as follows:
d(f) =Y _Ti(f)e’.
J

Here Tj is seen as a (left invariant) vector field on G, and so it is clear which is its action on f
(in particular, it is given by (8.1.1])). It follows that we can write Tj(f) as:

Ti(f) = fay - (df(2))e(Ty)-

Consider now a universal one form n =" adb € Q'H. If we impose = 0 in Q) ,(H) we obtain:
D) abay(dbe))e(Ty)e? = 0.
J

Since the &/ are linearly independent, this means that aby(dby)e(Ty) = 0 for any j. Now, n
can be seen as an element of H@ H: n=a®b—ab® 1. Hen(Z(ﬂ, r(n) = > aby) @bp) —ab® 1.
If now we apply (id ® eve) o (id ® d) to r(n) we obtain:

(id@eve)o(id@d)or(n) = abgy(dbe))e(T;) = 0.

That is, 7(n) € H ® Q. Conversely, it is straightforward to check that »~!(H ® Q) is contained
in the sub-bimodule N defining the de Rham calculus Q. (H).

We conclude this section with the following observation: since @) is defined by two closed
conditions (f(e) = 0, (df). = 0), it is a closed ideal of H. In particular, since H is a Fréchet

algebra, @ is a Fréchet space.

8.1.2 Quantum principal G-bundles

Now we can give the definition of quantum principal G-bundles. Here and in the following sections
H will denote the Fréchet algebra C*°(G), with G a compact connected semi-simple Lie group of

dimension n.

Definition 8.1.4. Let A be a Fréchet algebra and an H-comodule algebra. Assume that the
coaction Agp : A - A® H is a contmuouﬂ map. Let N C A® A be a sub-bimodule defining

a first order differential calculus Q*(A). Then A is called a quantum principal G-bundle if
(A, H,AR,N,Q), where Q = (kere)?, is a quantum principal bundltﬁ.

Consider now a principal extension B < A (with continuous coaction) with respect to the Hopf
algebra H. We know that it is a quantum principal bundles with the universal calculus (both on
A and on H). A natural question is the following one: which are the conditions on a differential
calculus Q1(A) = QLA/N which make (A, H, Ag, N,Q) a quantum principal G-bundle? The

answer is the content of the proposition below. Before stating it we need to introduce an action

2For the definition of the map r see equation (2.3.4).
3With respect to the projective topology (see appendix on A® H.
“In the sense of definition
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of the Lie algebra g on the algebra A. It is defined as follows: for X € g and a € A,
X(a) = a@ya)(X), (8.1.7)

where, for f € H, we set

FX) = X(f)(e) = 2 Fexp 1X) iz (818)
Proposition 8.1.5. Let A be a principal H-comodule algebra, with invariant subalgebra B and
continuous coaction Ag, and let Q*(A) be an H-covariant first order differential calculus, defined
by a sub-bimodule N C A® A. Then (A, H,Agr,N,Q) is a quantum principal G-bundle if the
following hold:
(i) for anyj=1,...,dim G,

Y adb=0 inQ'(A) = > aTy(b)=0; (8.1.9)
(ii) let n € Q*A, n=>"adb. Then;
Y aTi(b)=0 Vj=1,....dmG = [ng]y € AQ'(B)A. (8.1.10)

Here {T}} is any linear basis of the Lie algebra g.
Proof. We check properties (i)-(iv) of definition [£.3.1] (i) is trivially satisfied, since we assumed

A to be a principal comodule algebra. Also (ii) is fulfilled: indeed, the covariance of the calculus
implies that N is right H-equivariant. Let us check property (iii). Let n € Q'A be zero in Q'(A).
That is, it is an element of N. We can write n as n =)  p® q — pg® 1. Then an element f € H
belongs to @ iff f(e) =0, (df). = 0. Hence, an element £ of A ® H belongs to A® @ iff

(id @ eve)Tr(E) = ([d @ &) TR(E) = 0,

(8.1.11)
((id@eve) o (id@ d) o Tr)(€) = ((id @ <) o (id @ d) o Tr)(€) = 0.
The form 7 trivially satisfies the first of . Indeed,
(id ® €)Tr(n) = Pg)e(q(1)) — Pq = pqg — pq = 0.
Next, by direct computation we obtain:
CEERCERIE SORICERIGY qu<o> © a0y <Tj>af)
(8.1.12)

—Zqu © qa) Zqu j) @l

Here {¢’} is the dual basis of {T;}. But now > 1q0)21)(T;) = > pT}(g) = 0 by hypothesis; hence
also (8.1.12) is equal to zero. It follows that Tr(n) belongs to A ® Q.

In order to conclude the proof of the proposition we need only to show that also property (iv)
is fulfilled. Take € Q'A, n = 3" adb, such that T'(n) = 0. Since 7 can be written, as an element
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of A A,asn=> (a®b—ab® 1), we obtain:

Tr(n) = Z(ab(l) & b(g) —ab®1).

Now, T'(n) = 0 means that Tr(n) belongs to A® Q. Imposing this condition we obtain:

{ (id ® eve)Tr(n) = 0, (8.1.13)

(id ® eve) o (id ® d)Tr(n) = 0.
From the second of (8.1.13)) we get, then,

Z Z ab(l)Tj(b(g)) ® Ej =0.
J

But the &7, since they form a frame for the cotangent bundle of G, are linearly independent, so

we obtain that:
> abyTi(bezy) =0
for any 7 = 1,...,dim G. Condition (ii) of the thesis of this proposition now implies that [n]|yx

belongs to AN (B).A. Hence ker(T) C AQ(B)A; that is, also condition (iv) of definition is
fulfilled. O

We can also prove the converse. That is,

Proposition 8.1.6. Let (A, H,Ar, N,Q) be a quantum principal G-bundle. Then (8.1.9) and
(8.1.10) hold.

Proof. Take n € N (that is, n = 0 in Q'(A)) and write it asn = Y. a®b—ab® 1. Then condition
(iii) of definition implies that Tr(n) € A® Q; that is, (id®ev.) o (id®d)Tr(n) = 0. Making

this condition explicit, we obtain:

0= (d®eve) o (id®d)Tr(n) = (id®eve) o (id ® d) ( Z aby ® by —ab®@ 1>
=Y abaybe)(Ty) @& =) " aTy(b) @&
J J

Since the & are linearly independent, this implies that Y aTj(b) = 0 for any j = 1,...,dim G.

So we have proved .

The computation above shows also that, for any n € Q' A, n = 3 adb, Tr(n) belongs to A®Q
if >~ aTj(b) = 0 for any j. But this means that if this condition holds, T'(n) = 0. From condition
(iv) of definition m this implies that [n]x € AQ'(B)A. So we have proved also (8.1.10). O

8.1.3 Strong connections over quantum principal G-bundles

The next step in the study of quantum principal G-bundles is the characterization of strong

connections. We begin introducing the following definition. Here and in the rest of this section

178



8.1. Quantum principal G-bundles: definition, general properties and strong connections

(A, H,Ar, N, Q) will denote a quantum principal G-bundle. Moreover, we assume dim(G) = n

and we fix a linear basis T7,...,T, of the Lie algebra g.

Definition 8.1.7. A strong G-connection for the G-bundle A is a family w',...,w" of 1-forms
w' € QY A) such that:
(i) foranyj=1,...,n and for any g € G,

wgo)wgl) (g) = Ri (g)wk’

where R is the adjoint representation of G on g;
(ii) for any j,k=1,...,n, ifw =3 p’d¢’, then

> PTi(d?) = 6,

where Ty,(a) = agyan)(Tk), for any a € A;
(iii) Ya € A, da — > a() ~ag)(T)w? € QY (B).A, where B is the invariant subalgebra of A.

Proposition 8.1.8. Let {w;} be a strong G-connection over the bundle A. Then the map w :
H — A, defined by

w(h) = zn: h(T;)w, (8.1.14)
j=1

is a strong connection (form), in the sense of definition .

Proof. We check (i)-(iv) of definition Let us begin by proving that (i) is fulfilled by w. Of
course, w(1) = 0. Next, take h € Q. This means that h(e) = 0 and (dh). = 0. Hence, for any
i=1...,n,

= (dh)e(Ty) =0.

d
W(T) = gyhlew 1T
t=

That is, w(h) = 0, and so w(Q) = 0. Now we consider condition (ii), that is the covariance with

respect to the right adjoint coaction. Let h € H and g € G. Then we have:

(id®evy) o (w®id) ocadr(h) = w(h(z)) ® h(l)(gfl)h(g,) (9)

j=1
“d ., (8.1.15)
= %h(g 1 exp(tTj) - g)w’
j=1
= f(Ad, Ty’ = > W(Te)Ri (g™ ),
jk=1

where R is the adjoint representation of G on g. From the other side of the equation which defines
property (ii), instead, we obtain:
n

(id®evy) o Agow(h) = h(Tj)w{O)wgl)(g) (8.1.16)
j=1
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It is clear that equations (8.1.15) and (8.1.16]) are equal if and only if

n

Wiy (9) = ; R*(g)wr,

which is exactly condition (i) of definition Since condition (iv) of definition follows
directly from (iii) of definition we are left with the proof of condition (iii).
Write each w;, seen as an element of A® A, as w’ = > p/ @ ¢/ — p/¢’ ® 1. Hence we obtain,

for any h € H,
ZZh ) (Pl @y~ vd 2 1) (8.1.17)
On the other side, we have also:
(1®(id—¢))(h) =1® (h— h(e)). (8.1.18)

In order to prove condition (iii) we have to show that the difference between (8.1.17)) and (8.1.18])
belongs to A ® @, and so is zero in A ® H/@Q. This means that it must vanish at e, and its

differential must vanish, too. More precisely, we have to show that:

(id @ ev.) [, L MT) (Pl @ gy ~Pa? 1) 18 (h— hle)] =0,
(8.1.19)
(id @ (eve 0 d%)) |, LT (Paly) @ aly) — P @ 1) = 1 (h = h(e)] =0.

The first of (8.1.19) is trivially fulfilled. Let us look at the second one. We can rewrite it as:

(id ® eve) ZZh p]q q(l) (Tx) ® Zh Ti) ®

where, we recall, {¢¥} is the basis of g* dual to {T}}. Relabelling the indices, we obtain:

(id ® eve) Zh Zqu q(l) QeF—1@6
=Y W) [ DD P 1) @,
k J

which is zero due to condition (ii) of definition O

Now we could ask ourself if the converse holds. That is, given a strong connection w (in
the sense of definition , does it come from a family of 1-forms {w'} defining a strong G-

connection?

Proposition 8.1.9. Letw : H — Q'(A) be a strong connection (form) over the quantum principal
G-bundle A. Then w is defined by a strong G-connection {w;}, as in proposition .
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Proof. Let @ be the ideal defining the de Rham differential calculus on H. Then @ can be
identified with the ideal of functions on G vanishing at e with differential vanishing at e, too. By
hypothesis, w(C) = 0, w(Q) = 0. In particular, given f, f' € H with (df). = (df’)., this means
that w(f — f’) = 0. Hence w(f) depends only on the behaviour of f at the identity e € G. Tt
follows that w can be seen as a linear map w : O, — Q' A, where O, is the set of germs of smooth
functions at e (that is, the stalk at e of the sheaf of smooth functions on G). Now, given a germ
[f] € Oc, we can write each of its representatives as f = f(e) + > ;(df)e(T))t; + f, where f is a
smooth function with differential vanishing at e and {¢1,...,¢,} is a set of local coordinates at e
(in particular, they are the coordinates associated to the basis {T}} of g by the exponential map).
Then w([f]) = 0, and so w(f) = > i(df)e(Tj)w([t;]). Now it is enough to define w! = w([t;]) to
get

n
w(f) =Y AT
j=1
Finally, w’ has to fulfil (i)-(iii) of proposition from the proof of proposition indeed,
it is clear that these are not only sufficient but also necessary conditions. O

A nice corollary of the discussion above is the following property of a strong connection over a

quantum principal G-bundle (which can be deduced from the proof of the previous proposition).

Corollary 8.1.10. Letw : H — QY (A) be a strong connection for the quantum principal G-bundle
A. Then w satisfies the following Leibniz rule:

w(fg) =e(gw(f) +e(flw(g) = gle)w(f) + fle)w(g),

forany f,g € G.

We conclude this section discussing some regularity properties of strong connections over
quantum principal G-bundles. In the definition of a quantum principal G-bundles we required
A to be a locally convex topological algebra. Then we can put the projective topology on the
tensor product A ® A. Since the multiplication map m : A ® A — A is continuous, its kernel
QA = ker(m) is a locally convex vector space and then so is the quotient space Q!(A) (with the

quotient topology).
Lemma 8.1.11. Fach T}, seen as a linear map A — A, is continuous.

Proof. Tj is continuous as a map H — H (it is a vector field on G). Then, since its action on A

is given by the composition (all the tensor product are endowed with the projective topology)
A id®T) id®e
A5 A9 H — A H==S A,

and since the coaction Agr and the counit € are continuous maps, it is continuous as a map
T;: A— A. d

Lemma 8.1.12. Each strong connection w : H — Q'(A) on a quantum principal G-bundle A is

a continuous map.
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Proof. 1t is a direct consequence of the continuity of T : H — H. O

8.2 Spectral triples over cleft Hopf-Galois C'*(G)-extension

Consider a cleft Hopf-Galois C*°(G)-extension B < A, where A and B are unital *-algebras, and
assume that it admits a unitary trivialization ¢. Then we know{ﬂ that A is isomorphic to the
crossed product B#,C>(G), where the cocyle o : C*(G) ® C*(G) — B is given by

o(h,1) = ¢(ha))d(la) ¢ (hi)l2)

and the weak action of C*°(G) on B by
hob = ¢(ha))bd ™" (hz).

Consider now a real spectral triple (B, Hp, D, J,7) (with v = id in the odd dimensional case).
Assume also that it is equivariant with respect to the weak action of H = C*(G) on B (see
definition . Our aim is, starting from this triple, to construct a spectral triple over the
crossed product algebra A ~ B#,H, extending the results of the previous chapter. The first
thing we need is a spectral triple over the Hopf algebra H.

8.2.1 A spectral triple over C*(G)

Let G be a compact connected Lie group, with Lie algebra g. Assume[ﬂ that G admits a bi-
invariant metric which is G-spin; that is, the adjoint representation of G on g lifts to Spin(g).
The tangent bundle T'G is trivial; in particular, it is isomorphic to G x g. Moreover, any linear
map v : g — s0(g) determines a left G-invariant metric connection on T'G [Sle85l [SIe87]. In

particular, we can define a real family of connections by

Ya(§) = a - adg, Eeg, aeR

In the same way, the spin bundle is isomorphic to G x S, S being a suitable [Sle85] left g-module.

Then each ~, lifts to a left G-invariant metric connection on G x S, determined by
Yo 8= u(S),

Ve (€) = a-dp(€),

where p : G — GL(S) is the representation of G on S determined by the lift of the adjoint action
[Sle85) [S1e87], and u(S) is the Lie algebra of U(S), the group of unitary transformations of S.
The connection obtained in this way is flat if and only if @ = 0 or a = 1. Instead, the case a = %
corresponds to the Levi-Civita connection.

Now, let {T;} be an orthonormal basis of g (with respect to the hermitian scalar product which

5See proposition [4.4.13| and proposition [4.4.21

5This is true, e.g., for the groups SU(n), SO(n), Sp(n) [Adams).
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induces the bi-invariant metric on G) and denote by ¢ : g ® S — S the Clifford multiplication
map. Moreover, let 7 : G ® L*(G,dg) ® S — L*(G,dg) ® S (where dg is the Haar measure on
G) be the map r4(f)(h) = f(gh), for any g,h € G. Then we can write the Dirac operator ) on
G ® S in the following way:

D =" e(Ty) (dr(Ty) + 5 (1)) (82.1)
J
We recall that, for any (differentiable) S-valued function f, we can write dr(Tj)f(g) as:

ar(T)(9) = % F(ge'™)
t=0
If now we put on S the scalar product induced by the metric tensor associated to the bi-invariant
metric of G, we can consider the Hilbert space Hg = L?(G,S). Then ] extends to a selfadjoint
operator on H¢g and (H = C*(G), Hg, P) is a spectral triple. Moreover, since we assumed G to
be a spin manifold, there exists an antiunitary operator Jg and, if G is even dimensional, a Zo-
grading v¢ on H¢ such that (H, Hq, P, Jo,v¢) is a real spectral triple (if G is odd dimensional,
of course, v = id). We shall not work out the explicit form of the real structure Jg; we simply

notice that, given a vector f ® s (f € C*(G), s € S) of Hg, it must act in the following way:
Ja(f @ s) = f* @ Jss,

for some antiunitary operator Jg. Similarly, the grading v acts only on S: y¢(f ®s) = f ®vss.

Consider now the (dense) subspace H* = H® S of Hg. Since H = C*°(G) is a Hopf algebra,
we can define in a very natural way both a left and a right coaction of H on H*°. Let us consider
the former, p, : H™ — H @ H*, pr(f ® 5) = f) ® (f2) ® 5). Then we can prove the following

result.

Proposition 8.2.1. The real spectral triple (H, Hg, D, Ja,va) is equivariant with respect to the
left H-comodule structure of H (and Hg).

Proof. H*® is clearly a left H-equivariant A-module, stable under the action of ). We check
(1)-(iii) of definition The fact that (ii) and (iii) are satisfied follows from the discussion
above. In the same way, we see that the second part of P is equivariant. So it is enough to prove
the proposition in the ¢ = 0 case. But in this case the equivariance follows from the fact that
the left coaction of H on itself associated to the coproduct is the coaction associated to the left
regular representation of G on C*°(G), and the Dirac operator is clearly invariant with respect

to it, since it is defined in terms of the right regular representation. O

We conclude this section noticing that, of course, the Dirac operator J) induces the (bi-
covariant) de Rham differential calculus on G (even if it is only left equivariant and not right

equivariant).
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8.2.2 Spectral triples over B#,C*(G)

Now we are ready to construct a spectral triple for the crossed product algebra A = B#,H,
where we have set H = C*°(G). First of all, let us consider the Hilbert space H = Hp ® Hg and

let us define a representation of A on # in the following way:
fr(a#h) (U & w) = aﬂ'o(0<h(2), w(_l)))(h(l) > ’U) & h(g)w(o) (8.2.2)

foranya € B,h € H,v € Hp, w € V, where, we recall, V' is the dense subspace of Hg introduced

in the previous section.

Proposition 8.2.2. The map 7 is a *-homomorphism from A to the algebra of bounded operators
onH. Moroever, assume that the cocycle o satisfies the following condition of boundedness: there
exists C € R™ such thaf'

lo(h, D)l[s < CllRll2]|]l2

for any h,l € H. Then 7 gives a representation of A on H by bounded operators.

Proof. The fact that 7 is an algebra map follows as in proposition We prove that it respects
the *-structure. That is, we have to show that, for any x,v € Hg, and any y,w € Hg

(z @y, 7(afth)v @ w) = (F((a#h) )z @ y,v @ w) .
Let us compute the two sides separately. The first computation is quite trivial:

(z @y, T(a#h)v @ w) = (x,an® (0 (he), w_1)))(ha) > U>>7—t5 {y, h(g)W(0)>HG : (8.2.3)

Before computing the r.h.s. we need a lemma.
Lemma 8.2.3. For any y,w € V C Hg we have:

Y1) (W) 0y, = (Sw(1) (¥, 1(0) )y,

Proof. yz‘fl) <y(0), w> He is a smooth section of the spinor bundle of G, hence it can be seen as a
function from G to S. Moreover, we recall that the scalar product on H is obtained from the L?
scalar product on C*°(@G) associated to the Haar measure together with a suitable inner product

(-,-)g on S. Hence if we evaluate yzk_l) <y(0), w> at a generic point h € G we obtain:

Ha

i (0w, ) = [ (579 wi@)sda = [ (7 (@) w(h9)) g do
= w1y (U, w(0) )5y, (W) = (Swion)) (5, w(0) )y, (H)-

O]

"B is a dense subset, by hypothesis, of a C*-algebra B, and ||-||s denotes the induced C*-norm. |-, instead,
denotes the L?-norm on H = C*°(G) C L*(G, dg).
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Now we come back to the proof of the proposition. Using the lemma above and the properties
of equivariance of the spectral triple over B (see definition [7.2.1)) we get:

G((adth) )z @ y,0 @ w) = (7(0(S iy, b)) (W) b @ )#hT e @y, 0 @ w)

= <0(5_1h(2), h(1))"(h(z) & a™)m° (o (h{s); y(-1))) (h{zy > ) @ hig)y(0), v ® w>

= <U(571h(2)7 h))* (hzy > a*)m®(a (hs), (S ) ) (ST wi_y)))) (h{gy > 2) @ y,v @ h(?)w(0)>
(
(

= (s > 2) @ 9,7 (0 (), (S i (S ) )" ) (i) > ") 0 (S hezy, hay)o ® haywgey )

(s (S~ hig) ) (ST w{_y))) ) (S hgy > a)o (ST Rz, hay)v @ h(?)w(o)>

2@y, 7 (hry > o (i), (S hig) ) (S wi_y)))")

< (hay> (S hizy > @) (hs) > (ST heay, hry)) (hisy > v) ® higyw(o) >
(8.2.4)

Using again the properties of equivariance (definition [7.2.1)) we see that we can rewrite (8.2.4]) in

the following way:
(7((a#th) )z @ y,v @ w) =

= <9€ ® y, (0 (S ™ his), hig)) )T (D(hiz))p(w(—2)) ¢~ (hryw(—1))) (8.2.5)
o (hy, S_lh(5))a(h(1) >v) & h(g)w(0)>.
But now from condition (vii) of definition we see that reduces to
(z @y, 7°(a(h(), w_1y))a(h@) > v) @ w))

which is the same as equation ({8.2.3)). Hence 7 is a *-homomorphism. Finally, we show that each
#(a#h) is a bounded operator. We have already pointed out that H is isomorphic to L*(G)® S.
From Peter-Weyl theory [Bump|, Waw| we know that the matrix elements of unitary irreducible

representations of G are dense in L?(G); moreover, the functions
dim(u)uij,

with w a unitary irreducible representation and w;; its matrix elements with respect to some

orthonormal basis, form an orthonormal basis of L?(G). Since Auij) = D Uik @ ugj, we have:
1A (uij) I3 = ”Z uik @ ugslls = Z/ uii(9)ug; (9" )ua(g)uiy(g')dgdy’
= [ wistarus(o)dg = s
It follows that A is bounded with respect to the L?-norm (both on H and on H ® H). This
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8. Quantum principal G-bundles and gauge theories

implies then that also Ay is bounded. Now, by hypothesis, for any h € H, o(h,-) : H — B is
bounded; it follows that o(h, ) ®id: H® H — B® H is bounded, with the same norm as o(h, )
[Ryan]. So (o(h,-) ®id) o Ar is bounded. From this, and from the fact that each h € H acts
on Hp as a bounded operator (see definition , it follows that each 7 (a#h) is a bounded

operator. ]

From now on we shall always assume the cocycle o to be a bounded map, in the sense of
proposition [8.2.2] The next step is the construction of a Dirac operator. Since the definition
depends on the K R-dimension of the triples involved [DD11], we consider separately the different
cases. In the following we shall denote by j the K R-dimension of the triple over B and by n the

dimension, as smooth manifold, of the Lie group G.

Even-even case

Consider first the case when both j and n are even. This means, in particular, that both the two
Zo-gradings v and v are non-trivial. According to [DD11], there are two possible choices for the

Dirac operator on H:

D=D®idy, +7® D, (8.2.6)
D' =D ®~g +idy, @ D.

We shall adopt the first choice, but all the results presented in this chapter can be proved also

under the second one. Indeed, we recall, the two choices are unitarily equivalent, the unitary

transformation being given by
1. : : .
U= 5(1d®1d—|—’y®1d—|—1d®’yg—’y®’yg).

Proposition 8.2.4. The triple (A,’l:l,ﬁ) 1s a spectral triple. That is, the Dirac operator D is

A~

selfadjoint, it has compact resolvent and all the commutators [7t(a), D], a € A, are bounded.

Proof. The first part of the proof follows from the results in [DDII]. We have only to prove
that D has bounded commutators with all the elements of A. Consider therefore a commutator
[D, #(a#h)]. Tt can be written as the sum of two terms. The first one is [D ® id#(a#1)]7(1#h)
which is equal to ([D,a] ® id)7(1#h), and so is bounded since it is equivalent to the product of

two bounded operators. The action of the second term on a vector v ® w, instead, is given by:

vam®(o(he), w—1)))(ha)>v) @ [D, hsylw)-

This shows that also the second term is a bounded operator. Indeed, the commutator of P
with any element of H is a bounded operator and so the boundedness of [D, #(a#h)] follows by
arguments similar to those used in the proof of proposition [8:2.2] O

Finally, since the triple so obtained should be even, we must define a Zs-grading. We take it
to be:

¥=7®7q-
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Even-odd case

Suppose now, instead, that j is even while n is odd. Now we have only one non-trivial Zs-grading,
so the unique choice for D is:
D=D®idy, +7® P (8.2.7)

Obviously, the results of proposition [8.2.4] apply also to this case.

Odd-even case

It is the same situation as in the even odd case: the Dirac operator is taken to be

D=D®~yg+idy, @ P (8.2.8)

and the results of proposition [8.2.4] still hold.

Odd-odd case

When both j and n are odd we have to enlarge the Hilbert space: indeed, we take H = Hp ®
He ® C2. The representation 7 will be, of course, defined in the same way as above, and A will

act trivially on the C? factor. Finally, the Dirac operator D will be taken equal to:
D=D®id®c +ido P o s> (8.2.9)

It is straightforward to check that the proof of proposition can be easily adapted to this
case, so we obtain a spectral triple also in this case. Moreover, it should be an even triple and,

indeed, we can define a Zy-grading in the following way:

4 =id®id ® o°.

8.2.3 Real structure and real spectral triples

The construction of a real structure for the triples discussed in the previous sections deserves
a distinguished paragraph. We recall that in the case of quantum T" bundles we were able to
find a general formula for the real structure. In the more general case of quantum principal
G-bundles, we are able to construct a real structure only when the crossed product algebra A is
actually a smash product; that is, the trivialization ¢ is an algebra map, so that the cocycle o is
trivial. We present it only in the even-even case, but the extension to the other three situations
is straightforward.

Consider therefore a cleft extension B < A with unitary trivialization ¢ and assume the latter
to be an algebra map. Consider also, as like as above, an H-equivariant even real spectral triple
(B,Hp, D, J,~) of KR-dimension j. We define the following map on #:

J(v@w) = (wi_y) > Jv) @ Jaw(). (8.2.10)
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8. Quantum principal G-bundles and gauge theories

Proposition 8.2.5. (A, H, D, J, 4) is an even real spectral triple of K R-dimension j+n, wher

n is the dimension of the Lie group G.

Proof. The proof is a straightforward generalization of the proof of lemma obtained using
lemma [8.2.3] O

Even if we have still not been able to work out a real structure for the general case, we have
proved a partial result, which, after all, is what we need in the rest of this thesis: it is possible
to define, without introducing a real structure, a right action of A on A (or, equivalently, a
representation of the opposite algebra 4°) commuting with 7(.A). Again, we discuss here only
the even-even case, the extension to the other situations being straightforward. For v ® w € H
and a#h € A ~ B#,H consider the following map:

fro(a#h)v KW = 71'0((’(1](_2) > a)a(w(_l), h(l)))v ® w(o)h(g), (8.2.11)

where the right action of H on Hj is the same as the left one, since H is commutative and H s

is a space of L?-sections.
Proposition 8.2.6. 7°: A° — L(H) is a *-algebra map. Moreover, [7°(A°), 7(A)] = 0.
Proof. First of all we prove that 7° is an algebra map. That is, we show that:
7°((a#h) (b#1))v @ w = 7°(b#)7° (a#h)v ® w. (8.2.12)
The r.h.s. of equation is given by:

7 (b#)7° (ath)v ® w

o (8.2.13)
= 7°((w(—g) > a)o(w(_s), hay)(w2yh() > b)o(w_1yh), 1)) @ wo)hale)-

Let us compute the L.h.s. Using the cocycle condition (4.4.4) and the twisted module condition

(4.4.5), we obtain:

7°((ath) (b#1))v @ w = 7°(a (h(1) > b)o(h(2), L)) #h)l2)v @ w
= 7°((w(_g) > a)(w(_3 ) B 0) (w—gy > o (h2), l1)))o(w—1), hz)l))v @ wioyha)ls)
= m°((w—g) > a) (w3 ) b)o(w—ay, hay)o(w—iyh), l1)))v @ weyhale)
=7 ((w(—g) > G)U(w 1))(w(72)h(2) > b)o(w_1yh3), 1)) ® woyhule)
(8.2.14)

which is equal to (8.2.13). Hence we have proved (8.2.12). Next we have to show that it is a
*-algebra map. In particular, it is enough to show that the following holds:

(x @y, 7°(a#h)v @ w) = (7°((a#h)" )z @ y,v @ W) . (8.2.15)

8We recall that we are considering the case when n is even.
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Let us compute the r.h.s. of the equation above. Again using the cocycle condition, the twisted

module condition and the fact that ¢ is a unitary trivialization, we can show it to be equal to:
(7 ((a#th) )z @ y, v @ w)
= <7r0(g(S_1(h(2)yZ‘_2)), h(l))*(y(_nhfg) > a) e @ y(o)ha), v w> (8.2.16)
= <l’ ® Y(0) () WO((Sfl(h(s)yZﬁ_n) > a)a(sfl(h(z)y?_z))» hay))v ® w> .
Now, using the result of lemma we can rewrite in the following way.

(@°((a#th) )z @ y,v @ w)
= <JZ Ry, TFO((Sil(S’w(,Q)) > a)a(Sil(Sw(l)), h(l)))v & w(o)h(2)> (8.2.17)
= (z @y, 7°((w(_g) > a)o(w(1), ha)))v @ woyhz)) = (z @y, T(afth)v ® w).

Finally, we show that & maps A into its commutant over 7. We have:

7 (a#h) 7 (b#)v @ w (8.2.18)
= m°((I3)w(—2) > a)o (Lgyw(—1), h1)))bm* (0 (l(2), w(=3))) (l(1) > V) @ l(5)w(0)h(2);
#(b#) 7 (ath)v @ w (8.2.19)

= br° (o (l(2), w(-3)) (l3yw(-2) > a)o (layw(-1), 1)) (l1) > v) ® 5 w(0)h2)

(in the computation of the second equation we used the twisted module condition and the cocycle

condition). Now, since 7° maps B into its commutant, equation (8.2.19)) is equal to (8.2.18]), and
so @ maps A° (or, equivalently, A) into the commutant of 7(.A). O

8.2.4 Quantum principal G-bundles structure

In the case of T™-bundles we have seen that our construction of a spectral triple over a cleft
Hopf-Galois extension B < A induces a structure of quantum principal bundle with respect to
the de Rham calculus, the calculus over A being the one determined by the new Dirac operator.
Now we want to see if an analogous result hold for cleft C°°(G)-extensions. We shall discuss only
the even-even case (i.e., we assume the triple over B to be even, and the dimension n of the Lie
group G to be even, too), the extension to the other situations being straightforward.

The Dirac operator D determines a first order differential calculus le(.A) = Q' A/Np. Since
D acts on Hy as the Dirac operator /), and since the de Rham calculus on G is bi-covariant,
if the crossed product structure of A is trivial this calculus will be right C'*°(G)-equivariant.
In the general case is not so straightforward to see that this still holds; it is instead not so
difficult to obtain a weaker result: from the results in [BM98a] it follows that we can construct a
right equivariant calculus Q'(A) = Q'A/N still compatible with the Dirac operator D (that is,
N C Np) and, moreover, with the de Rham calculus on G: indeed, the Dirac operator D can

be seerﬂ to be the operator associated to the Maurer-Cartan connection § = ¢! % d¢, and so

9We shall discuss this aspects later in this chapter.
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8. Quantum principal G-bundles and gauge theories

applying the construction in [BM98a] with 6 as strong connection we obtain a calculus compatible
both with D and with the de Rham calculus on G.

However, for simplicity in the rest of this chapter we shall work under the assumption that
the calculus Q}f) (A) is right C*°(G)-equivariant.

Lemma 8.2.7. If the representation 7 is faithful, the differential calculus Q}j(.%l) enjoys properties

(i) and (ii) of proposition[8.1.5

Proof. Let us begin by showing that (i) is satisfied. Take n = > (a#h)d(b#!) such that 74 (n) = 0.

This means, in particular, that

> wla#h)R(b#D) [y @ P, #(1#1)] = 0.

By direct computation then we obtain:

> Z #(agth) 7 (b#1) (7°(0 (hay wi—1))) Ly > 70) @ e(T))3)ly(T})) = 0. (8.2.20)

Let us consider now the elements «; = ) (a#h)T;(b#!). Each of them is zero if and only if the

following expression is zero:

DO e Ty)a((a#th) T (b#1)); (8:2:21)
J

this follows from the linear independence of the ¢(7j) and from the fact that 7 is faithful. But
now we see that (8.2.21)) is equal to the left term of equation (8.2.20f), and so it is equal to zero.

Next we have to show that also (ii) is satisfied. So, take n € QL A, n = >_(a#h)d(b#l), such
that

> (a#h)T;(b#1) = 0 (8.2.22)

for any j = 1,...,dim G. We have to show that [n] belongs to AQ!(B).A. But this follows from

the fact that (8.2.22)) implies that
Tid® l)(”) =0.

Due to proposition then, we get the following.

Theorem 8.2.8. Let N be the sub-bimodule of A ® A defining the differential calculus QE(.A)
and let Q = (kere)?. Assume that the representation 7 is faithful. Then (A, H,Agr,N,Q) is a

quantum principal G-bundle.

8.3 Strong connections and twisted Dirac operators

In the previous section we have shown that, under suitable conditions, the differential calculus
associated to the Dirac operator D is compatible with the de Rham calculus on C*°(G), so that

the cleft Hopf-Galois extension B — A admits a structure of quantum principal G-bundle. In
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8.3. Strong connections and twisted Dirac operators

particular we can consider strong G-connections on it, and we can use them to build twisted Dirac
operators.

We have proved in proposition that it is possible to define a structure of A-bimodule
(and, hence, in particular, of right .A4-module) on #. Going a little further, we can see that H
can be identified with (the closure of) Ho.A, where Ho = Hp ® S, the right action of A being
the one defined by 7°. So, according with the discussion in section [5.1] we can begin by defining
a D-connection on A. Here we denote by D the Dirac operator D ® idg on Hg; we shall do the
same for the real structure: J will actually denote the operator J ® c.c..

So, let us be given a strong connection w : H — Q}f) (A), and consider the following map (the

representation 7 here is understood):

Ve A QL (A)A,

. (8.3.1)
V¥(a) = [D,a] — a@yw(ag)),

where we see Q}f) (A)A as a space of operators on H. Since w is strong, V¥ takes values, actually,
in QL (B).A. Moreover,

Proposition 8.3.1. V¥ : A — QL(B)A is a D-connection.
Proof. We have to showm that, for any b € B and any a € A,

V¥(ba) = [D, bla + bV«a. (8.3.2)
But this follows by direct computation. Indeed, the L.h.s. of is equal to:

V(ba) = [D, ba] — (ba)yw((ba))) = [D,bla + b[D, a] — bagyw(ag))
= [D, bla+ bV«a,

where we used the fact that B is the invariant subalgebra of A. O

Now we can use V¥ to build a twisted Dirac operator D,,. According with the discussion in
section 5.1}, we set
D, (§a) = (D§)a+EV¥a, (8.3.3)

for any ¢ € Ho, a € A. The right action of },(B) on H, is the one defined by the real structure .J.
Although the D-connection V¥ will in general not be hermitian, in the sense of definition [5.1.2
we can easily find sufficient conditions on a strong connections w for which D, is a selfadjoint

operator.

Proposition 8.3.2. Letw be a strong connection, deﬁneﬂ by a family {w} C Q})(A) of 1-forms.
Then if each w is selfadjoint, as an operator on 7—1, D,, is a selfadjoint operator. Moreover, it

has has compact resolvent and bounded commutators with the elements B.

108ee definition [5.1.1
HGee definition [8.1.7| and proposition m
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Proof. The second part of the proposition is a direct consequence of proposition 4.7 in [DS13al.
So we have only to prove that D, is symmetric. First of all consider two vectors &, € Ho and
two elements bop(h),b'¢(l) € A, with b,b’ € B; then the scalar product (nb'¢(1),Ebd(h)), which is

nothing else than the scalar product in #, can be written as follows:
(/o0).b00)) = [ (b €b),, Thlo)ds
Hence we have (here we use the fact that each w’ is selfadjoint):
(' $(1), Dy (EbS(R))) =
= <nb’¢>< ), D(€b)$(h) + b {Z¢ hy)he) (T5) (e(T5) — w’)] >
= (D(nb')¢(1), Ebg(R)) + Z (nb' ¢(D)e(Ty)*, €bp(h1y) by (T5))

(8.3.4)

—Z (b (D), Ebp(h1))hz) (Th)) -

Now let us consider the second term of the last expression in (8.3.4). For what said above, we

have:
LY E60l0an ey (T3)) = / (b e(T5)", €b)3q, U9V 1) (9)2) (T)dg
d , .
" dt /GW)( )" €0), Ug)hlge™)dg
——7T~ 8.3.5
=l [ ey, e

= (o)l (=Ty)e(Ty)", €bo(h)
= (b & (L)) (T3)e(Ty), Ebd(h))

where the last equality follows from the fact that c¢(7})* = —c(7}) (which comes from the self-
adjointness of ). Now let us consider the third term of the last expression in (8.3.4). With a
computation similar to the one above we obtain the following;:

(¥ B0, €06 (1)) (1)) = (b (L )w{o)z@(—mw{ (=T3), €bo(h) )

(8.3.6)
= (' (11))wr Loy (Th )y (T5), €06 (R) )

Due to the covariance properties of the strong G-connection w (see (i) of definition [8.1.7)), we
obtain from (8.3.6)) the following relation.

(b (1w, Ebd(h(1))hay(T})) = Z <775'¢>(l(1)) ) (T ')Ri(j}')wk7€b¢(h)>

Z (nb' ol o) (Ty) 8" €bo(h))

k
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=D (el (T))w? , Eb(h)) - (8.3.7)

k

Now we see that, using and (8.3.7] - ) to rewrite , we have:
(' (1), Doy (€bd(R))) = (D (b6 (1)), EbS()) -
That is, D,, is a symmetric operator. O

We conclude this section showing that, actually, the "horizontal part” of the Dirac operator
D, which is simply D, is nothing else that the twisted Dirac operator associated to the Maurer-
Cartan connection = ¢~ ! % dp. First of all we have to show that 6 is compatible with the de

Rham calculus.

Proposition 8.3.3. The Maurer-Cartan connection 6 = ¢~! % d¢ is a strong connection with
respect to the de Rham differential calculus on H = C*(G). In particular, it is defined by a

strong G-connection {67}.

Proof. We have to prove that 6 fulfils property (i)-(iv) of definition 6, @ being the ideal
Q = (kere)?. In order to show that (i) is satisfied, we have to prove that WD(G(Q)) = 0. So, take
q € Q; then 0(q) = qS(q(l))*ldqb(q(g)). Since, for any h € H, ¢(h) corresponds to 1#h under the
isomorphism A ~ B#,H, it follows that:

T5(0(q)) = #(¢~ (a)) [y © P, dlqe2))]-
But then we have:

Tp(0(@)v ® w = 7(6~ () (7°(0(g), w-1))(a(z) > v) @ (2, qa)]wiey)

since ¢ € @ and so (dg)e = 0. Next, property (ii) follows from the well-known fact that 6 is
a strong connection w.r.t. the universal calculus. We prove that also (iii) holds: we show that
Tof=(id®ny)o (1®)(id —¢). Since T' = (id ® 7g) o Tg, for any h € H we have:

To6(h)=T(¢ (b)) ® ¢(hz) —e(h) © 1)
=(id@rg)1®@h—ch)®1) = ([d®rg)o (1® (id —¢))(h).

Finally, we check property (iv).Take a € A, a = bp(h) with b € B. Then

da — aiy0(a()) = d(bp(h)) — bd(h(1))d " (h(2))dp(hs))
=db- ¢(h) + bdp(h) — bdp(h) = db - ¢(h) € QY(B)A,
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hence 6 satisfies also the strongness condition. Hence it is a strong connection w.r.t. the de
Rham calculus on H. In particular, due to proposition [8.1.9] 6 can be defined in terms of a
strong G-connection {67}. O

So, since 6 is a strong connection, we can consider the twisted Dirac operator Dy: it is
straightforward to see that it is simply given by D ®id, so 6 is compatible with the Dirac operator
D. As we shall see in the next section, if we consider a different trivialization things can change
completely: not only the corresponding twisted Dirac operator will no longer be equal to D,
or, in general, to an inner fluctuation of D, but the associated Maurer-Cartan connection could
not be a strong connection with respect to the calculus associated to the “old” trivialization ¢:
this means that our construction depends strongly on the choice of the trivialization, and so of
the isomorphism A ~ B#,H. And two different trivializations can yield to two different Dirac
operators, ﬁ, D’ , determining two first order differential calculi so different one from the other
that a universal strong connection compatible with the first will in general not be compatible with
the second one. So the choice of the trivialization is also the choice of the Dirac operator and
the selection of a distinguished class of strong connections. All these aspects will be discussed in
more detail in the next section, when we shall consider the behaviour of our construction under

gauge transformations.

8.4 Gauge transformations

Let B — A be a cleft principal C*°(G)-comodule algebra and let ¢ be a unitary trivialization.
We know that it determines a weak action of H = C°°(G) on B, which we shall denote by 1;
moreover, we shall denote by o the corresponding cocycle. Consider then a real spectral triple
(B,Hp,J,D,v) and assume than it is H-equivariant w.r.t. the weak action of H determined by
¢ (assume also the representation of B on H to be faithful). Then, under these hypotheses, we
can use the results of the previous sections to build a spectral triple (A, H, 15) for the algebra A,
A being identified with the algebra A = B#,H; we shall denote by # the representation of A on
H.

Now let A : H — B be a gauge transformation. We knowlﬂ that A can be seen as a change of
trivialization, from ¢ to ¢5 = A~1 x ¢; and ¢ will induce an identification A ~ B#,, H. Assume
the triple over B to be H-equivariant also w.r.t. the weak action associated to the trivialization
¢A- Then we can construct a spectral triple (A, A A ﬁA) We shall denote the representation of
A on Ha by 7.

Due to the results of the previous section, we know that each of the two spectral triples above
induces a structure of quantum principal G-bundle on A. A natural question is the following
one: which is the relation between the two spectral triples, and which is the relation between
the two quantum principal bundle structures? To give some answer to this question we begin by
considering the behaviour of strong connections under gauge transformations. In this section we
shall use the results discussed in section [£.2.1] and in section [£.4.1]

128ee proposition ﬁ
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Letw: H — Q}j(.A) be a strong connection. We know (see proposition that it is defined
in terms of a strong G-connection {w’} C QID(A). Now let us compute the gauge transformed of
w. We recall that to A is associated the gauge transformation f € G(A), f = ¢! x A * ¢, whose
convolution inverse is simply f~! = ¢~ ! *x A=! x ¢. We know that w transforms according to the
following rule:

frw=fswsf 14+ fedf L.

Using the fact that w(h), for h € H, can be written as w(h) =3, h(Tj)w’, we obtain:

(fow)(h) =Y f(ha)hey(T)w’ f(hg) + (¢« Axdxdp™" A1« ¢)(h)
j (8.4.1)
+ (@7 x AxdA % 9)(h) + (67! x do)(h).

Due to the arbitrariness of the w’, it is clear that, in general, it won’t be possible to rewrite
equation as (frw)(h) =3, h(Ty)n?, {n’} C Q})(.A) being a strong G-connection. Hence
we expect, in general, that the gauge transformed of a strong connection w.r.t. a certain first
order differential calculus Q}j(.A) will no longer be a strong connection w.r.t. the same calculus.
In particular, if we wish to consider the whole space of (unitary) gauge transformations, it is not
possible to deal with it in the framework given by a single spectral triple, but we would have to
introduce a more general setup. Such an aspect is with no doubt interesting, but it appears quite
difficult to study it in a generic situation.

Instead, here we choose to select a space of gauge transformations which leave the space
of strong connections w.r.t. to a given calculus unchanged. Also, we restrict ourself to cleft
extensions admitting unitary trivializations which are also algebra homomorphisms. Hence, let
us consider a cleft Hopf-Galois extension B — A with a unitary trivialization ¢ : H — A which
is also an algebra homomorphism (here, of course, H = C*°(G), G being an even-dimensional
compact connected semisimple Lie group). It follows from the uniqueness of the antipode that
¢! = ¢oS. Since ¢ is a homomorphism, A is isomorphic to the smash product B#H. Given
an H-equivariant even real spectral triple (B, H, D, J,v), using the results of the first part of this
chapter, we can construct now a real spectral triple (A, H,D,J, 4) for the algebra A. As usual,
the Dirac operator D defines a differential calculus Q})(A), and we know that A is a quantum
principal bundle w.r.t. this calculus. Now let us consider a gauge transformation A : H — B with
the following properties:

(a) A is an algebra homomorphism, so that A=t = A o S;
(b) ¢a = A~ 0 ¢ is still a unitary trivialization;
(c) A (and hence A™1) takes valueﬂ inBNn(A® Q})(A))’.

Lemma 8.4.1. If A fulfils (a)-(b)-(c) then, for f = ¢ x A x ¢~ 1, the following hold:
(i) f is an algebra homomorphism;

(i) fl=foS;

(iii) f takes values in AN (A @ Q}))’

13The commutant is taken, of course, in 7.
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Let now w be a strong G-connection, defined by a family {w/} C Q}). The action of f on w is

given by equation (8.4.1)). Now we can prove the following result.

Proposition 8.4.2. Let A be a gauge transformation satisfying (a), (b) and (c). If there exists
a family of 1-forms {N} € QL(B) such that

A(h))[D, A (b)) = Y (TN (8.4.2)
j

for any h € H, then fw, where f = ¢ x Ax ¢~, is a strong connection w.r.t. the differential
calculus Qlﬁ(A). In particular, it is defined by a family {wf\} C Q})(A).

Proof. We have to check that f>w fulfils (i)-(iv) of definition [4.3.6] The proof that (ii),(iii) and
(iv) hold is straightforward. So we have only to prove that (f > w)(Q) = 0 in Q})(A), where

Q = (kere)?. Let us begin by considering the first term in (8.4.1)). Using (i)-(iii) of lemma

we obtain:

(fxwsf! Zf T’ f~ (hz)) = Zf T5) f (Shz))e’

B Z ‘o 1) Shged (8.4.3)

Now, as a function on G, hyy - h(g)(T}) - Sh(s) is equal to
d Ty —1
(hyhe)(Tj)She)(g) = | hlge™ g7),
t=0

which is zero if (dh). = 0. It follows that (8.4.3]) is equal to zero for any h € (). Consider then
the second term of (8.4.1)):

(¢~ xAxgxdp™ x A x d)(h) = ¢~ (h1)) Alhz))d(hz)) D, ¢~ (hia))IA " (hs))d(he))- (8:4.4)

By direct computation we can see that, for any | € H, ¢(l(1))[b,¢_1(h(2))] = —¢e(h)(y ® id).

Hence becomes:
(0~ xAxpxdg™ '+ A" x9) (h) = ¢~ (hay) Az (hs)) (YRIA) A (hay))d(h(s) = —e(h)(y®id).

In particular, it is zero for h € Q). Now the third term of (8.4.1). Before computing it we notice

that from (c) and from the equivariance of D it follows that each A/ commutes with ¢(H). So

we have@

(ng*l x A« dA™! % ®)(h)

Il
-

“Hhay) Ah)) [D, A7 (hz))]d(hay)
“H(h1y)A(h2)[D @ id, A~ ()] B ()
¢~ (b)) by (THN ¢ (hs))

|
-

Il
~M

\We use also the fact that D and D induces the same first order differential calculus on B.
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=" 67 h)he) (T)d(h)N
J

=Y $(Shay)he)(T))d(ha)N (8.4.5)
J

=D 8(Shay - hey(Tj) - hes)N-

J

But now (Sh(iyhe)(T;)hs))(g) = 7 h(g~tetTig), and so it is zero if (dh). = 0. Tt follows that
=0

(8.4.5)) is equal to zero for any h € Q. Finally, the fourth term of (8.4.1)) is nothing else but the

Maurer-Cartan connection associated to the trivialization ¢, so it is itself a strong G-connection
1 o).
w.r.t. the calculus £ (A) (see proposition 8.3.3). O

With proposition [8.4.2| we have identified a class of gauge transformations which transform
strong G-connections into strong G-connections with respect to the same differential calculus.
Observe that, in the classical case (i.e. for a trivial principal G-bundle P — M) this space
coincides more or less with the ordinary space of differentiable gauge transformations ¢ : M — G.

Now we consider a related but different aspect: given a gauge transformation A, with suit-
able properties (possibly, different from (a)-(c)) is there any relation between the spectral triple
(A, H, D), associated to a trivialization ¢, and the spectral triple (A, Ha, Dy), associated to the
trivialization ¢ = A1 % ¢?

First of all we have to relate the representation of A on H with that on H, (we shall denote

the former by 7 and the latter by 7). Consider the (unitary) map V : H — Hy, defined by
V(v®w) =7 (Aw—1)))v @ w)- (8.4.6)
We notice immediately that V* acts in the following way:
Vivew) = WO(A_I(w(_l)))U ® w(g)-

In order to show that V is an intertwining between the two representations we need to introduce
a further requirement on A:

(d) for any h € H and any v € H, m°(A(h(2)))(h@) > v) = A(hq))(he) >a v).

Here > and >, denote, respectively, the weak actions of H on H associated to ¢ and to ¢p.
Remark 8.4.3. Requirement (d), despite perhaps its appearance, is quite natural: indeed it comes
from the following relation between > and >, seen as weak actions on B, (h¢yy > b)A(h)) =

A(h(1y)(h2) >a b), which can be checked by direct computation.
Proposition 8.4.4. Let A be a gauge tmnsformatioﬁ fulfilling (d). Then, for any a € A,

Proof. We know that ¢ and ¢, determine two isomorphisms between A and the crossed product

algebras associated to them. In particular, we shall denote by B#,H the crossed product algebra

15Quch that ¢a is still a unitary trivialization.
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8. Quantum principal G-bundles and gauge theories

defined by ¢, and by B#,, H the one defined by ¢5. Moreover, we shall denote the elements of
the former by b#h and the elements of the latter by b#ah. Now, consider an element a = b#h of
A under the usual isomorphism; that is, a = b¢(h). In order to compute 75 (a) we have to know
which is the corresponding element in B#,, H. An easy computation shows that a corresponds

to bA(h(1))#ah(2). Hence, in order to prove the proposition we have to show that
Va(b#Eh) V" = 7a(bA(h(1))F#ah(2))- (8.4.7)
The computation of the r.h.s. of is straightforward:
TADA(h 1)) # b)) v @ w = 7° (oA (h), w(—1)))bA(h)) (Re2) Ba v)Fh @) w(0).- (8.4.8)

But if now we consider the 1.h.s. of (8.4.7)) we get:

h(zyw(—1))m° (0 (h), w—2)))b(hey & 7° (A~ (w(_s)) v)#hgw

hiayw(—1)))w° (o (hz), w(—2))br° (hizy > A~ (w(_3))) (hq) U)#h(5)w(o)

h(4)w( )T (0 (hzy, w—2) T (R > A (w(_3)))b(hay > v)#h )W)
(2> A~ (w(3))) (s, w(-2)) AP )w(—l))) b(h1y > v )#h(5) (0)

=7° (A(h(2))0A ) wi—1y) b(hy > v)#h)

= 1°(oa(h3), w—1)om°(A(h2))) (ha) DU)#h

b3y, w1)))bA (1)) (R(2) A U)#h(4)w

:1
o

—~ o~ o~
-

—~ o~

(8.4.9)

(
(

(oA

where, in the last equality, we have used property (d). O

Next we look at the Dirac operators: we can compare D with V*D,V, since they are both

operators on H. By direct computation we obtain the following result.
VDAV (v ®@w) = D(v®w) + WO(A_l(w(_l)))[D, 7 (A(w(—g)))]v @ w(g). (8.4.10)
Now let us consider the Maurer-Cartan connection associated to the trivialization ¢p:
Or = ¢ * doy.

Since 65 is nothing else than the gauge transformed of § = ¢! % d¢, from proposition we
know that if A satisfies (a), (b), (c) then 6, is a strong G-connection w.r.t. the calculus Qg(A).

So it defines a D-connection on A:
Voya = [D,a]l — apympdalan))-
In particular, a simple computation yields to the following:

Vo, d(h) = —A(h))[D, A (h2))]o(hs))-
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8.4. Gauge transformations

According to the results of the previous section, then, if we take a vector & € Hg we havﬂ

E(=A(h))[D, A (hg)]d(hz))) = —(EA(h)))[D, A
= — (D(EA(ha) A (h2))(h(z)) — (D(EA
= —m° (A" (hi)) [ (A(h(1))), DIEp(hz)) = 7 (A (h2))) [D, 7°(A(h(1))]E(hz)),

from which follows that V*D,V coincides (as an operator on on 7:[) with the twisted Dirac

operator Dy, . Hence V implements the gauge transformation A.

6We use here (5.1.3).
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CHAPTER 9

Conclusions

In this conclusive chapter we review the results obtained, adding some general considerations and
spending some words on possible applications and/or developments of the results discussed in
this thesis.

The noncommutative geometry of noncommutative torus bundles. We have stud-
ied the noncommutative geometry of quantum principal U(1)- and T"-bundles, focusing on the
relation between the geometry of the total space and the geometry of the base space. We have
considered two different situations. In the first case, we assumed given a T™-bundle together with
a T™-equivariant spectral triple (defining therefore a noncommutative spin geometry invariant
under the T"-action), and we discussed the conditions under which this triple is projectable; that
is, it can be projected to a triple on the base space in a way such that the bundle projection
respects the metric structure (in the commutative case, more precisely, the bundle projection is
a Riemannian submersion). Next we have shown that, under some additional assumptions[l, the
Dirac operator on the total space of the bundle can be written as a sum of three operators: a
first order operator D,,, called the vertical Dirac operator, acting along the fibres; the horizontal
Dirac operator Dy, which contains the informations on the metric structure of the base space;
a zero order term Z, which, at least in the commutative case, is related to the vanishing of the
torsion of the Levi-Civita connection. On the other side, we have considered cleft (that is, almost
trivial) quantum principal T"-bundles A over a base space B endowed with a noncommutative
spin geometry, described, as usual, by a real spectral triple on the algebra B. Then, assuming
some equivariance conditions on the triple over B with respect to the (weak) action of the Hopf
algebra O(T™), we have constructed a real spectral triple for the algebra A. This spectral triple
was easily proved to be T"-equivariant and projectable, so that our construction preserves the
geometry of the base space. We can give a geometric interpretation of our construction. As we

have discussed in chapter [7] the representation of the algebra A, the Dirac operator and the real

1We refer here to the constant length fibres condition (see definition|5.2.3)), for the U(1) case, and to the isometric
fibres condition (see definition [5.3.5)), for the T™ case.
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9. Conclusions

structure depend on the choice of the trivialization of the cleft extension B < A. So, the first
step is to choose a trivialization ¢. In the classical case, this amounts to ”fix the gauge”; that
is, to fix a trivialization of a principal G-bundle; and to a fixed trivialization it corresponds a
Maurer-Cartan connection: the same, as we have seen, holds in the noncommutative case, the
Maurer-Cartan connection being the strong connection form 6 = ¢~ !%d¢. Then we have seen that
the Dirac operator of the triple over A can be interpreted as the Dirac operator obtained twisting
the Dirac operator of the triple over B with the Maurer-Cartan connection. Hence, the spectral
triple over A that we have constructed defines a geometry which should correspond to the one
obtained by identifying the space of horizontal vector fields with the kernel of the Maurer-Cartan
connection, endowing it with the metric coming from that of the base space and then putting
on the space of vertical vector fields the scalar product associated to the Killing-Cartan form of
t, = Lie(T™).

The twisted Dirac operators. A distinguished feature of projectable triples is the pos-
sibility to construct twisted Dirac operators. In chapter [5| we exploited the construction intro-
duced in [DS13a] to define twisted Dirac operators on projectable T"-equivariant spectral triple
(fulfilling the isometric fibres conditiorﬂ). So, given a projectable T"-equivariant real spectral
triple (A, H, D, J,7) on a quantum principal T"-bundle B — 4 and a strong connection form
w: O(T") — Q1 (A) we can construct the relative twisted Dirac operators D,,, D, = Dy, + D,
Making a comparison with the classical case |[Amm98, [AmmB98, [Mor96] we can see which is
the geometrical meaning of the latter: it is the Dirac operator associated to the metric obtained
”gluing” the metric on the base space with the canonical metric on T™ via the connection w. From
[Amm98| [AmmBI8] and from the discussion in appendix @] we see that it is not exactly such an
operator. Indeed, it could be seen as the operator obtained from a spin connection compatible
with the metric described above but with non-zero torsion: to recover the operator associated to
the torsionless Levi-Civita connection, at least in the commutative case, one should add to D,
a suitable zero order term. Hence, leaving apart the issue about the torsion, the construction of
twisted Dirac operators is a way to find new Dirac operators defining, possibly, non-trivial geome-
tries: indeed, even starting from a flat Dirac operator, one can obtain Dirac operators describing
geometries with, e.g., non trivial scalar curvature (of course, in order to make this assertion pre-
cise one need a definition of scalar curvature for noncommutative space&ﬂ). Moreover, looking at
the behaviour under (a suitable class of) gauge transformations, we have shown, in chapter
that we can define gauge transformations of twisted Dirac operators in a way consistent with the

transformation law of strong connections.

Quantum principal G-bundles: the role of the differential calculus. Since the earliest
works on quantum principal bundles [BM93], the differential calculi of the algebras involved (the
algebra defining the total space of the bundle and the Hopf algebra representing the structure
group) were taken into consideration, and one of the requirements for a comodule algebra being a
quantum principal bundle was a compatibility conditions between the two calculi (see definition
[4.3.1)). Bicovariant calculi [Wor89] on Hopf algebras and bundles with non-universal calculus

2See definitions and [5.3.5

3For some results in this direction see [CT11, [FK12} [CMT11l [FK11 BhMal2, [DST3h]; see also appendix @
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have been extensively studied in many works (see, e.g., [BM92, BM93, [SS95 Haj96], [BM98al,
Majo98, MajOe99, Maj02]). In this thesis we considered only principal bundles with a classical
(compact, connected, semisimple) Lie group G as structure groupﬂ For this class of bundles
there is a naturaﬂ choice of (bicovariant) differential calculus on the Hopf algebra: the de Rham
calculus of differential forms over G. We have chosen to restrict ourself to this class. There are
several reasons for making this choice, connected with the properties of the calculus on the total
space of the bundle arising from the assumed compatibility with the de Rham calculus on the
Hopf algebra. The first interesting property we have underlined is the possibility to introduce
equivalent characterizations both of the bundles and of the strong connections. In particular, any
strong connection with respect to a differential calculus compatible with the de Rham calculus on
a quantum principal G-bundle can be describedﬁ by a family of 1-forms, one for each element of
a fixed linear basis of the Lie algebra of G: we obtain in this way a picture of strong connections
very close to the usual one of the classical case, when a connection of a principal G-bundle
P can be described as a g-valued 1-form on P (here g is the Lie algebra of G). The second
aspect concerns the construction of twisted Dirac operators. From a pure algebraic point of view,
D-connections (see chapter |5)) could be defined also without assuming compatibility with the
de Rham calculus. But in such a general case it would be much more difficult to control the
regularity properties of the operators obtained in this way. In particular, the selfadjointness of
the twisted Dirac operators constructed in this thesis is deeply connected with the assumption
of compatibility with the de Rham calculus of the calculus on the total space of the bundle;
more precisely, it is connected with the particular form that strong connections assume as a
consequence of this property. So the choice of the calculus, besides adding further algebraic
structure on a quantum principal bundles, can be a way to select a class of strong connections
with some desirable regularity properties. In chapter [ and chapter [7] moreover, we have shown
that it is possible to construct spectral triples on a class of cleft Hopf-Galois extensions whose
Dirac operators define first order differential calculi compatible with the de Rham calculus. This
provides a way to put a structure of quantum principal G-bundle (in the sense of definition m
and definition on a given cleft Hopf-Galois extension, under the assumption that the base
space admits a suitable equivariant spectral triple.

Gauge transformations and gauge theory. Since the first works on the geometry of
noncommutative spaces attention was paid to the definition and the construction of gauge theories
[CR&7, ID-VKM90), [CL91), BM93| [C94]. Among the various approaches, two of them are of special
interest for us: the first is the one based on quantum principal bundles [BM93], the second is the
one based on Connes’ noncommutative geometry [C94) [C96, [CMa07]. One of the fundamental
bricks in the construction of a gauge theory is the identification of a group of (local) gauge
transformations. In the case of quantum principal bundles (with universal differential calculus),
as we discussed in chapter [4] this group can be taken to be the group of vertical automorphismsﬂ

In the case of gauge theories based upon Connes’ noncommutative geometry, instead, gauge

4That is, we considered principal H-comodule algebras, with H a suitable algebra of smooth functions over G.
5This is not the only possible choice, of course.

6See the discussion in chapter [4| and chapter

"See definition
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transformations are connected with inner fluctuations of the Dirac operator, and therefore the
gauge group can be identified with (a subgroup of) the group of inner automorphisms of the
algebra defining the noncommutative space. In particular, in the first case the group of gauge
transformations is defined in an entirely algebraic way; there is therefore no canonical way to select
a group of transformations with some desired degree of regularity (looking at the classical case,
e.g., one could wish to select a group of continuous or derivable transformations). Moreover, when
working with quantum principal bundles with general calculus, it could happen that a certain
gauge transformation of this kind does not preserve strong connections with respect to the given
calculus. So we think that it is possible to make the hypothesis that, at least in some situations,
it could be useful to have a way to select a smaller group of transformations. On the other
side, as pointed out recently in [BMS13], the group of inner automorphisms could be a too small
group, and it could be necessary to enlarge it, including transformations which are not inner.
In this thesis we have discussed some, very partial, results in this direction. First, in section
working on the noncommutative 2-torus, seen as a U(1)-bundle over the circle, we have
selected a class of gauge transformations and we interpreted it as a subgroup of the set of gauge
transformations introduced in [BMS13]. A similar space of gauge transformations, for quantum
principal G-bundles, is then described in chapter Both these sets of gauge transformations
have the following properties: first of all, they preserve strong connections compatible with the
de Rham calculus; next, each gauge transformation belonging to one of them can be implemented
by a unitary operator in a suitable spectral triple, and the transformation law of the Dirac
operator of this triple is consistent with the construction of twisted Dirac operators discussed in
this thesis.

Further developments. We conclude this thesis discussing which could be possible exten-
sions and/or applications of our results. Looking to what we have done in chapters @, E] it is
quite natural to consider, as a possible extension of our work, the construction of spectral triples
over (some suitable class) of cleft Hopf-Galois H-extensions, with H a Hopf algebra more general
than an algebra of smooth functions over a classical Lie group. Our construction relies on some
properties of the Hopf algebra involved, apart from the equivariance of the spectral triple on the
base space: we used the fact that there is a (real) spectral triple also on the Hopf algebra and that
the Dirac operator of this triple defines the bicovariant de Rham calculus. This property could fail
in the general case. Indeed, consider for example the case H = SU,(2); we know that it is possible
to define spectral triples on the quantum SU(2) [ChaP03al, [ChaP03bl, [ChaP06] and, even, real
spectral triples [DLSSV05], but the Dirac operators of these triples do not define a bicovariant
calculus on SU,(2). The problem, actually, is deeper: on SU,(2) (but the same applies also to
other quantum groups [Schm02]) it is not possible to define a bicovariant first order differential
calculus in terms of commutators with a given operator which has, at the same time, bounded
commutators with all the elements from SU,(2) [Schm99]; that is, it is not possible to define a
bicovariant calculus on SU,(2) via the Dirac operator of a spectral triple. Although this appears
to be really a severe obstruction, some recent results [KMTO05, KWT11l, [KST2] seem to suggest

that a way to overcome this issue could be to consider twisted spectral triples [CMO06, Mos10].

Another possibility to extend our result is to introduce a suitable definition of projectable
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spectral triples for quantum principal G-bundles, with G any (compact, connected, semisimple)
Lie group. This would amount to extend the notion of projectable spinors [Mor96, [GLP9§| to
the noncommutative case, and then work out a suitable decomposition of the Dirac operator in
a vertical and a horizontal part (plus, possibly, a zero order term). Possible indications in this
direction could come from the structure of the spectral triples we constructed in chapter |8 which
have to turn out to be projectable, whatever definition of projectable spectral triples for quantum
principal G-bundles one considers.

Finally, in order to be able to deal with more general spaces, it could be useful to extend our
construction of real spectral triples to non-cleft bundles. We do not expect that an extension to
the very general case is possible. However, there is a class of bundles, larger than that one of
cleft bundles, which contains a number of interesting examples and which could be a candidate
for an extension of this kind: the class of locally trivial quantum principal bundles [BuK96l
CaMa00, [CaMa02, Zie05, HMS06, HKMZ11l, HRuZ11]. The main difficulty in a task of this kind
would probably be to give a local description of the noncommutative spin geometries, both of
the base space and of the total space; that is, to describe them in terms of collections of spectral
triples, with well-behaving gluing maps (compatible with the structure of locally trivial bundle,

of course).
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APPENDIX A

Noncommutative tori

Noncommutative tori are probably the best known and most widely discussed examples of non-
commutative spaces. For a review of the literature and the applications of noncommutative tori
the reader can see [GBEV], chapter 12. In this appendix we will review the basic properties of

noncommutative tori, with the unique some results which are used elsewhere in this thesis.

A.1 The C*-algebra C(Ty})

The C*-algebra C(T}) defining an n-dimensional noncommutative torus is the universal C*-

algebra generated by n unitaries Uy, ..., U, under the relations
Uin = 627r9ij UjUi,

where 6 = (0;;) is an n x n skewsymmetric real matrix. Of course, for § = 0, we recover the
algebra C(T") of continuous functions over an n-torus.

As in the case of the classical n-torus, we can define an action of the torus T™ on the algebra

C(Ty) in the following way. Let z = (¢1,...,¢n) be the set of canonical angular coordinates on
T™. Then we define:
Uy =4 s (A.1.1)
U;j if i#7

Averaging on T" this action yields a linear operator £ : C(Ty) — C(Ty),

Ela) = /n(z >a)dz.

One can show (see [GBEV], section 12.2) that the image of E is just C - id, so we are allowed to
define a functional 7 on C(Ty) by E(a) = 7(a)id. It turns out that 7 is a faithful tracial state.

Consider now the following definition.
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A. Noncommutative tori

Definition A.1.1. We say that a n X n skewsymmetric matriz 0 is quite irrational if the lattice

Ay generated by its columns is such that Ag + Z™ is dense in R™.
Then we can prove the following fact.
Proposition A.1.2. If 0 is quite irrational, the tracial state 7 on C(Ty) is unique.

Proof. Let 7/ any tracial state on C(T}). Then 7/ (UsU,U—;) = 7/(U,). Since
UUU_y =20 U, with 2 = €™ 2 ik,

then U;,AU_g = 2° > A for all A € C(Ty). Hence 7/(2° > A) = 7/(A) for every s € Z". Now, for
each fixed A € C(T}), the set {z € T" | /(2> A) = 7/(A)} is closed in T". Moreover it is dense,

since in contains every z° and 6 is quite irrational. Therefore,
7'(A) = / (2> A)dz = 7'(E(A)) = 7(7(4)id) = 7(A).

Since A is arbitrary, we conclude that 7/ = 7. O
Corollary A.1.3. If 0 is quite irrational, the C*-algebra C(Ty) is simple.

Proof. Let J be a closed two-sided ideal of Tj. Suppose that there is a nonzero element a € J.
Then a*a € J is positive and nonzero. Moreover, from the previous proof, z(s)>a*a = Usa*aU_g €
J for s € 2", so {z € T" | z>a*a € J} is dense in T™ whenever 6 is quite irrational. Since J is

closed, this set is the whole n-torus T, and so

7(a*a)id = E(a*a) = / 2> (a*a)dz

n

lies in J, too. But 7(a*a) > 0 since 7 is faithful. Therefore id € J, and thus J = Tj. t

A.2 The algebras A(T}) and C*>(T})

The algebra C(T}) determines the noncommutative n-torus as a topological noncommutative
space. We want now to specify a smooth structure and a differential structure. We begin by

considering the following (dense) subalgebra of C(T").

Definition A.2.1. The algebra A(Ty) is the complex polynomial *-algebra generated by the n

unitaries Uy, ..., Uy,. That is, its elements are linear combinations
E akU{“ o Ukn,
kezn

with only a finite number of oy, different from zero.

Since A(Ty) is a stable subalgebra of C(T"), it inherits the action of T" introduced in the

previous section. Moreover, this action corresponds to an action of the Lie algebra t,. Indeed, if
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we denote by d1,...,d, the canonical generators of t,, then we can define

Each d; acts as a derivation on A(Tj); that is, it satisfies the Leibniz rule. Using the derivations

d;, we can define a family of seminorms on A(T}): for any k£ € Z and any a € T} we set

pr(a) = [0} - - 88 (a)],

where |[|-|| is the C*-norm of C(Tjy). The family of the seminorms py is a separating family
of seminorms, hence it induces a locally convex topology on A(Ty) (cfr. appendix , which
makes it a locally convex topological algebra. Moreover, since it is a countable family, A(Ty) is
metrizable; in particular, it admits a translation invariant norm which induces the same topology

as the seminorms pg. Hence we can consider the following definition.

Definition A.2.2. The algebra C*(Ty) is the completion of A(Ty) as a locally convex space,
with topology induced by the family of seminorms {pg}trez.

C>°(Ty) is, therefore, a Fréchet algebra. Moreover it can be seen that it is nothing else than
the algebra of smooth elements of C'(Tj) under the action of T"; since the latter is a strongly
continuous action, it followsﬂ that C°°(Ty) is a Fréchet pre-C*-algebra.

A.3 The differential calculus

Any noncommutative torus A(Tj) admits an n—dimensional first order differential calculus. It is
defined in the following way: if {€’},;_1,. , denotes the dual basis of {§;}, then for any a € A(T%)

we define:

da = Z5j(a) ® el
J
The differential calculus Q' (A(T%)) then is the quotient of Q1.A(Ty) by the sub-bimodule N,

Zadbzo},

where d,, denotes the universal differential. In the same way one can define an n-dimensional
calculus Q1(C>°(T%)) over C>(Ty).

N = { > adub € Q' A(Tp)

Notice that each e/ can be also written in the following way:

e/ = UydU;.

!See e.g. [GBEV], proposition 3.45.
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A.4 Equivariant spectral triples over noncommutative tori

Any noncommutative n-torus admitsE] a family of T™-equivariant real spectral triples. We discuss
here only those we need for our examples. For an exhaustive discussion we refer to literature
[GBEV,, [PS06, [Ven10].

Let H, be the GNS Hilbert space associated to the tracial state 7. It is easy to see that
H, is isomorphic to L?(T™), which, moreover, can be identified with ¢?(Z"). Therefore it is
straightforward to define an orthonormal basis {¢y | k € Z"} of H,. Consider now the Hilbert

2[n/2]
space H = H, @ C
of #, with the canonical basis of C2"/? yields an orthonormal basis of H: {Yri | kel i=
1,...,2n/2%,

(here [t] denotes the integer part of ¢ € RT). Then tensoring the basis

Now, since # is an antisymmetric matrix, we can write it as # = A — A?, for some matrix
A with real entries such that the representation of A(Ty) on H, which comes from the GNS
representation of A(T}) on H,, can be written in the following way [Venl0]: for any k,l € Z"
and any i € {1,...,20[/2},
Uiy = €%(k'Ak+k'Al)¢k+l,z‘,

where we introduced the notation .
vk =TJ vk
i=1

Now we define the Dirac operator. First of all we extend the derivations ¢; to selfadjoint operators
on H. This is straightforward: it is enough to set d;1¢; = kji ;. Next, let AL, ...,9™ denotes
the gamma matrices which generates the Clifford algebra Cl,. They are 2%/ x 2[7/2l matrices,

acting then on c2/? (and hence on ‘H). We define the Dirac operator D simply by:
D = Z ’)/j 5j-
J

Next, one can find a bounded linear operator A on H which commutes with each J; and such that
AA* =id and DA = —¢’AD (where ¢’ = £1 accordingly to K R-dimension n (mod 8)). Then the
real structure will be defined by [Venl0):

T = A ;.

n

Finally, if n is even we set v = Z (—=1)° Hy"(i). Then (A(Ty),H, D, J,v) (with v = id in the
oESh =1

odd dimensional case) is a real spectral triple. Moreover, it is a T"-equivariant spectral triples,

with respect to the T"-action generated by the derivations d;.

This spectral triple can be shown to fulfil Connes’ axioms [GBFV] [C96]. In particular, it

admits an orientation cocycle, which can be written (see [GBEV], exercise 12.13 and lemmas

2The complete classification in the n = 2 case was done in [PS06]. An extension of this result to the general
case can be found in [Venl10].
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12.15, 12.16) in the following way (for n = 2m or n = 2m + 1):

(=)™ ore 1o
CZWJ; (—1) UTLUI ®UU(1)®UU(2)®®UU(TL)

A.5 Quantum principal bundle structure of noncommutative tori

Any (n+m)-dimensional torus can be seen as a principal T"-bundle over an n-dimensional torus.
The same holds for noncommutative tori [DS13a, [DZ13]. Indeed, consider a noncommutative

torus A(T; ") and write the matrix 6 as

so that € is a skewsymmetric n x n matrix. Then the first n generators, Uy, ..., U,, of A(Tg“”)
can be seen as the generators of the noncommutative torus A(Ty,). We shall now see that A(T})
is a quantum principal T™-bundle over A(T},).

First of all we have to introduce a right coaction Ag of H = O(T™) on A(T;*™). We define

it as follows:
AR(Unyj) = Unyj @ 27.

In particular, the invariant subalgebra (A(T,*™))# coincides with the algebra A(Tj).
Proposition A.5.1. A(Ty,) < A(T;"™) is a cleft Hopf-Galois O(T™)-extension.

Proof. First of all let us prove that it is a Hopf-Galois extension. We have to show that the
canonical map Tg : A(T)™™) ® A(TT,) A(Ty™™) — A(T;*™) ® H is an isomorphism. Here H =
O(T™). We begin by observing that a generic element of A(T, ™) ® H can be written as a sum
of monomials of the form

k1 kntm 1 T

knt1— Kntm— ~ -
If now we set a = AU - .. UknU w2 U™ and b = ULy -+ - Up,,, where X is a suitable

phase, then
TR(a ® b) — U{fl . Ukn+'m ® z{l L. .Zrm.

n+m n

Since Tg is linear, this implies that it is a surjection. Before proving the injectivity, we introduce

the following notation: for any o € Z"t™, we define

Uy = U - Ut (A.5.1)

n+m

The monomials U, fulfil the following commutation relation:

UaUp = W(avﬂ)Ua—FB’
where ¢(a, 8) is a phase coming from the commutation relations of A(Tj; ™). Now observe that
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any element of A(Tj;"™) ®A(Tz) A(T}™™) can be written as a sum of monomials like Ug ® Ug,
where @ € Z™ is seen as an element of Z"™ with the first n entries equal to zero. Hence, if we

take A € ker(Tg), we can write it as:

A= Z Z CEBUB ® Ug.

aeLm gegntm

Applying Tg to this equation yields to the following expression:

= > D casp(B), ®H

YEZNT™ atf=ry

Then, since the elements U, are linearly independent, Tr(A) = 0 implies that, for any v € Z"*™,

Z capp(B, @ H ; (A.5.2)

a+B=y
1 zfj = 0 are linearly independent (for different @). Hence ((A.5.2))
implies that all the coefficients czg must be equal to zero, and so A = 0. This shows that
A(Ty) — A(T,*™) is a Hopf-Galois extension. Moreover it is cleft since the map ¢ : H —
A(Ty ™), defined by ¢(1) = 1, ¢(2%) = Ug, is a unitary trivialization. O

But also the monomials []72

Corollary A.5.2. A(Ty,) < A(Ty™™) is a principal comodule algebra. In particular, it admits

a strong connection.

Proof. Tt follows directly from the fact that it is a cleft extension, see proposition O

We have shown that A(Tngm) is a quantum principal bundle with respect to the universal
calculus. Now we consider the first order differential calculus Q' (A(T;™™)) of section and
we show that it makes A(T,*™) into a quantum principal Tm—bundleﬂ (see definition (4.6.9)).
Due to proposition it is enough to show that the calculus Q! (A(T,*™)) is compatible with
the de Rham calculus on T™. Hence, take > pdq € Q' A(T;™™) such that it is equal to zero in
QY(A(T,*™)). By definition of the calculus, this means that

n+m

ZZp(S ®el =0,

which implies, in particular, that > pd;(¢) = 0 for j = n+1,...,n + m. So we have shown
that for the first order differential calculus Q'(A(T"*™)). In order to prove that T"*™
is a quantum principal T"*-bundle, we have to show that also does hold. So, consider
n € Q'A(T,*™), and assume that n = > pdg, with > pd;(g) = 0 for any j =n+1,...,n+ m.

This means, in particular that [7], as an element of Ql(A(Tngm)), can be written in the following

*Notice that Q'(A(T; ™)) coincides with the Dirac operator based differential calculus Qf, (A(T; ™)), where
D is the Dirac operator of the canonical spectral triple discussed in this appendix.
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way:
Z Z pdi(q) ® el

But this means, exactly, that [n] belongs to A(’]I‘"+m)Ql(A(T”))A(’]I‘”+m). Therefore also (4.6.8))
holds. It follows that A(T},*™) is a quantum principal T™-bundle.
We conclude this section by noticing that it is possible to give an explicit characterization of

strong connections over the quantum principal T™-bundle ']I‘ngm.

Proposition A.5.3. Let w : H — Q(A(T,;*™)) be a strong connection form. Then it can be

written in the following way:

m n
=3 kb @€ +Zk: ® et (A.5.3)
i=1 j=1
with by; € A(Ty,), for any k € Z™.
Proof. From proposition [4.6.18, we know that w is defined by w( Z k;w;, where each w;
=1

is a 1-form over A(Tj"™) fulfilling properties (i)-(iii) of definition 4.6.17] Now, any w; can be

expressed as
n+m

w; = Z bi; ® el
j=1

Condition (i), that is invariance under the T"-action, implies that each b;; has to belong to the
invariant subalgebra A(Tj,). Next, since each 1-form 1 ® el can also be written as Uj_lde,

condition (ii) implies that, for j > n, b;; = d;;. O
Corollary A.5.4. Under the isomorphism Q' (A(Tp ™)) ~ QL (A(T}™™)), a strong connection
w will be of the following form:

n

ZZkag'y +Zk ® 4T,
7j=1

=1
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APPENDIX B

Locally convex vector spaces

In this appendix we shall give a brief account of definitions and properties of topological vector
spaces, locally convex vector spaces, Fréchet spaces and Fréchet algebras. We shall work over the
field of complex numbers. Part of the results, however, can be worked out for modules over a

topological division ring [BourGT, BourTVS§].

B.1 Topological vector spaces

Definition B.1.1. A topological vector space is a vector space V' endowed with a topology T
such that:
(a) every point of V is closed with respect to T ;

(b) the vector space operations are continuous with respect to T .

In particular, the topology 7T of a topological vector space is translation invariant; that is, for
each v € V, the translation operator T, : V. — V| T},(w) = v+ w, is a homeomorphism. It follows

that T is completely determined by any local basisE| of neighborhoods [Ru]. Moreover,
Theorem B.1.2. FEvery topological vector space is a Hausdorff space.

Proof. See |[Rul, theorem 1.12. O

Consider now a topological vector space V', with topology 7, and suppose that it is metrizable.
That is, there is a metric d on V' which is compatible with the topology 7. Then the balls with
radius 1/n, for n € NT, centered in 0 form a local basis for 7. In addition, one can also show
that:

Theorem B.1.3. If V is a topological vector space with a countable local basis, then there is a

metric d on V' such that:

n the case of topological vector spaces, in general, for local basis we shall always mean a local basis of
neighborhoods at 0.
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B. Locally convex vector spaces

(i) d is compatible with the topology of V;
(ii) the open balls centered at 0 are balanced (that is, if B is an open ball centered at 0, aB C B
forany a € C, |o| <1);

(iii) d is translation-invariant: for any v,w,z € V, d(v+ z,w + z) = d(v,w).

Proof. See |[Ru], theorem 1.24. O

B.2 Locally convex vector spaces

Let V be a topological vector space. Then an open set C' C V' is convez if, for any ¢ € [0, 1] and
for any v,w € C, tv + (1 — t)w belongs to C.

Definition B.2.1. A topological vector space V is called a locally convex (vector) space if its

topology has a local basis I' whose members are convex open sets.
In the case of locally convex spaces we can enforce theorem

Theorem B.2.2. IfV is a locally convex vector space with a countable local basis then the metric
of theorem [B.1.5 can be chosen so that all the open balls are convex.

Proof. See [Ru], theorem 1.24. O

Local convexity of a topological vector space is strictly linked to the existence of suitable

families of seminorms.

Definition B.2.3. A seminorm on a vector space V is a function p: V — RT such that
(i) p(v+w) < p(v) + p(w),

(ii) p(Av) = [Alp(v),

for any v,w €V and any A € C.

Clearly, a seminorm is a norm if p(v) = 0 iff v = 0.

Definition B.2.4. A family I' of seminorms on a vector space X is called a separating family if

for each v # 0 in V there exists at least a seminorm p € T’ such that p(v) # 0.

Locally convex vector spaces can be equivalently characterized in terms of seminorms. Indeed,
a family I' of seminorms defines a topology 7r, which can be identified with the translation

invariant topology defined by the following local basis,

B=|]B,

pel

where B, is the set of balls of radius 1/n, for n € N*, w.r.t. the seminorm p. Then one can show

the following fact.

Theorem B.2.5. A topological vector space X is a locally convex space if and only if its topology
is defined by a separating family of seminorms. X is metrizable if and only if we can choose a

countable family of seminorms.
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Proof. See |Rul, theorems 1.36, 1.37. See also [Conl|, IV.1; [Schaef], I1.4; [BourTVS], chapter II,

section 4. ]
In the case of metrizable locally convex spaces, actually we can say something more. Indeed,

Proposition B.2.6. Let I' = {p; };cn+ be a (separating) countable family of seminorms defining
a locally convex topology on V. Then, if we define, for any v,w €V,

d(v,w) =) _ L _Paloow) ,

S 20 14 pa(v - w)

d is a translation-invariant metric on 'V, and the topology defined by I' is the same as the topology

defined by d.
Proof. See [Conl, chapter IV, proposition 2.1. O
Let us recall some properties of seminorms.

Proposition B.2.7. Let V be a topological vector space and let p be a seminorm on V. Then
the following are equivalent:

(i) p is continuous;

(ii) {z € V | p(x) < 1} is open;

(iii) 0 belongs to the interior of {x € V | p(x) < 1};

(iv) 0 belongs to the interior of {x € V' | p(x) < 1};

(v) p is continuous at 0;

(vi) there is a continuous seminorm q on V such that p < q.
Proof. See [Conl, chapter IV, proposition 1.3. O

Proposition B.2.8. Let V be a topological vector space. If p1,...,pn are continuous seminorms,

then p1 + ...+ pp and max;(p;) are continuous seminorms.
Proof. See [Conl, chapter IV, proposition 1.4. O

Remark B.2.9. Assume that the topology of a topological space V is determined by a family I of
seminorms on V. Then it is often convenient to enlarge I' and assume that it is closed under finite
sums. Moreover, one could also assume that I' consists of all continuous seminorms. Indeed, in

either case the resulting topology on V' remains unchanged.

Now we consider linear maps T : V' — W between two locally convex spaces and we look for

continuity conditions.

Theorem B.2.10. Let V., W be locally convex space, with topologies induced by families T', T of

seminorms, respectively. Let T : V — W be a linear map. Then the following are equivalent:

(i) T is continuous;

(ii) for any seminorm q € I, there exists ¢ € RT and a seminorm p € T such that, for any
veV, qT(v)) <c-p(v);

(iii) for every continuous seminorm p on W, po T is a continuous seminorm on V.
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Proof. See [BourTVS], chapter II, proposition 4 and [Conl|, chapter IV. O

Take now two locally convex vector spaces E and F. Consider then the algebraic tensor
product £ ® F. We want to turn it into a locally convex vector space. In particular we look
for a topology with respect to which the bilinear map ¢ : EX F — EQF, p(e,f) = e® f, is
continuous (E X F'is a topological space with respect to the product topology). Such a topology
exists, but, in general, it is not unique. Nevertheless, if we consider the family of locally convex
topologies for which the map ¢ is continuous, its upper bound is the so called projective topology
[Schaef]. It is the finest topology which makes the map ¢ a continuous map. It is possible to give
a description of the projective topology on E ® F' in terms of seminorms (see [Schaef], chapter
ITI, section 6.3).

Definition B.2.11. Let p be a seminorm on E and q a seminorm on F'. Then the tensor product

seminorm p ® ¢ on E® F is defined as:
o0 =int{ Fpeas)| €= aw ).

Lemma B.2.12. Foranye € E, f € F, (p®q)(e® f) = p(e)q(f).

Definition B.2.13. A family I' of seminorms is called a directed family if for each pair of
seminorms p1,p2 € I' there exists a seminorm ps € I' such that sup{pi,p2} < ps.

Proposition B.2.14. Let the topologies on E and F be defined by two directed families of semi-
norms 'y and T, respectively. Then the projective topology on E® F' is defined by the (directed)

family of tensor product seminorms

{poq|pelg, ¢geTr}.

There is another relevant topology on the algebraic tensor product F ® F', the so called
inductive topology [Schaef]: without entering into details, it is the finest locally convex topology
for which the bilinear map ¢ defined above is separately continuous. In this thesis we shall denote
simply by E ® F the tensor product with the projective topology and with E @' F' that one with
the inductive topology. However, since we shall usually deal with nuclear spacesﬂ the two tensor

product spaces will be homeomorphic, and so there will be no distinction to make:

Theorem B.2.15. A locally convex space E is nuclear if and only if, for any other locally conver

space F, the identity map between the spaces E @ F and E @' F is a homeomorphism.

Proof. See [Piet], 7.3.3. O

In particular, if £ is a nuclear locally convex space, we shall denote its topological (i.e.
endowed with the projective, or equivalently with the injective, topology) tensor product with

another locally convex space simply by £ ® F.

2For the definition of nuclear space see [Schaefl [Piet], chapter ITI, section 7.
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B.3 Fréchet spaces and Fréchet algebras

We have seen that a locally convex space is metrizable if its topology is defined by a countable
separating family of seminorms. So it is natural to consider the class of complete locally convex

spaces.

Definition B.3.1. A complete metrizable, with translation invariant metric, locally convex vector

space is called a Fréchet space.

Hence, given a locally convex vector space V', with topology defined by a countable separating
family of seminorms, its metric completion V is a Fréchet space. In particular, given two locally
convex vector spaces F and F' we define EQF to be the completion of the tensor product £ QP F'.

Now consider associative algebras over the field of complex numbers. We give the following
definitions [Mall].

Definition B.3.2. A topological algebra is an algebra A which is a topological vector space in
such a way that the multiplication map A x A — A is separately continuous.

If it is locally convex as a vector space, we shall speak of locally convex topological algebra.

In the previous section we saw that any locally convex topology is defined by a separating
family of seminorms. The same holds for locally convex algebras, but in this case we have to

require the seminorms to be sub-multiplicative; that is:

p(ab) < p(a)p(b)
for any elements a, b of the algebra.
Definition B.3.3. A topological algebra A is called a Fréchet algebra if it is a Fréchet space.

Proposition B.3.4. If an algebra A is a Fréchet space and the multiplication A x A — A 1is

separately continuous (so that A is a Fréchet algebra), the multiplication is jointly continuous.
Proof. See [Wael|, chapter VII, proposition 1. O

Now consider two locally convex algebras A and B and form the (algebraic) tensor product
A® B. Then:

Proposition B.3.5. A ®P B, that is the algebraic tensor product of A and B endowed with the
projective topology, is a locally convex topological algebra. In particular, if the multiplication in

A and B is (jointly) continuous, then the same holds for the multiplication in A ®P B.
Proof. See [Mall|, chapter X, lemma 3.1. O

Corollary B.3.6. Let A and B be two Fréchet algebras. Then the completion AQB of the tensor
product A QP B is a Fréchet algebra.

Proof. See [Gr66], proposition L.5. O
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Consider now a smooth manifold M of dimension n. Let { K} be a countable compact covering
of M such that each compact set K is contained in an open chart (U,{x1,...,2,}). For each
compact set K of the covering and for each r € N, consider the following seminorm on the
algebra C°°(M) of smooth functions over M:

prr(f) = sup [0} -+ 057 (f) ()]
reK

These seminorms determine a structure of locally convex space on C°°(M). Moreover,
Proposition B.3.7. C*(M), with the topology defined above, is a nuclear Fréchet algebra.
Proof. See [Schw]|, page 88. See also [Gr66], chapter II, page 54. O

Corollary B.3.8. If M is a compact smooth manifold, then the algebra C*°(M) is a nuclear
Fréchet algebra with respect to the topology defined by the following seminorms:

po(f) = sup [D(f)(z)],
zeM

where D wvaries on a basis of the space of the algebra of differential operators on M.
Proof. 1t follows directly from the previous proposition. See also [GBEV], section 3.8. O

Proposition B.3.9. Let M be a compact smooth manifold. Then there is an isomorphism of
Fréchet algebras C®°(M)QC™> (M) ~ C>(M x M).

Proof. See |[Gr66], theorem I1.13. O
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APPENDIX C

Line modules, Morita contexts and Hopf-Galois C|Z]-extensions

In this appendix we shall briefly recall the main aspects of the theory of noncommutative line
modules, which are the generalization of line bundles, and its relation with Morita contexts and
Hopf-Galois C[Z]-extensions [BB11]. As usual, we shall work over the field of complex number.
The symbol ® will denote the algebraic tensor product over C, and the symbol ® 4 the algebraic
tensor product over the algebra A of a right A-module with a left A-module.

C.1 Line modules

Let A be a unital associative algebra and E a left A-module. Then the left dual E’ of E is the
right module of left A-linear maps from E to A. The right A-module structure is the following
one: if « € E and a € A, then « - a is defined by

(a-a)(e) = ale)a Vee E.

If E is a finitely generated projective A-module then [BB11] there exist, for i = 1,...,n, elements
e’ € E, ¢; € E' such that any f € F can be written as f = >, e;(f) - €. Also, any functional
a € E' satisfies a = Y, e; - afe?).

Assume now that F is an A-bimodule, which is finitely generated and projective as left A-
module. In this case £’ is a bimodule{l7 too, and we can define two bimodule maps, ev : EQ 4 E' —
A and coev: A — E' ®4 E by:

ev(ie® o) = afe), coev(ly) = Z e;® e, (C.1.1)

for e € E, o € E'. Here 14 denotes the unit of A. ev is called evaluation map, coev coevaluation

!With the following left module structure: (a - )(e) = a(e-a) forany a € A, e € B, a € F'.
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map. They satisfy the following relations:
(ev®id) o (id ® coev(ly)) = idg,

(id®ev) o (coev(ly) ®id) = idpg.

Definition C.1.1. An A-bimodule E, which is finitely generated and projective as left A-module,
is called a weak (left) line module if the coevaluation map is an isomorphism. If, in addition,

also the evaluation map is an isomorphism, it is called a (left) line module.

Proposition C.1.2. Let E be an A-bimodule, which is finitely generated and projective as left

A-module. Then the following are equivalent:

(i) E is a weak left line module;

(ii) every left module map from E to E is given by the right action of some element of A, and
the only a € A for which F-a =0 is a = 0.

Proof. See [BBI11], proposition 3.2. O

Proposition C.1.3. Let E be a weak left line module. Then if ev is surjective, it is an isomor-

phism.

Proof. See [BBI11], proposition 3.6. O

C.2 Morita contexts

Let A and B be two unital algebras. Denote by 4M the category of left A-modules, by g M the
category of left B-modules and by 4 Mp, pM 4 the categories of A— B— and B — A—bimodules,
respectively. Then [BB11l, Bass, BeKel,

Definition C.2.1. A Morita context for the algebras A and B consists of two bimodules E €
AMp and F € gM 4, together with two bimodule maps 1 : EQp F — A and s : F®2 F — B

such that
u1®id:id®,u2 : FRpF®sFE— F,

. (C.2.1)
po®id=id®u; : FRsFE®pF — F.

A Morita context is strict if uy and ps are surjective.

Proposition C.2.2. If (A, B, E, F, u1, u2) is a strict Morita context, then:

(i) w1 and pe are isomorphisms;

(ii) E and F are finitely generated projective left A— and B—modules, respectively;
(iii) F and F are finitely generated projective right B— and A—modules, respectively.

Proof. See [Bass], chapter II, theorem 3.5. O

Proposition C.2.3. There is a one-to-one correspondence between equivalenceﬂ between the
categories E € 4M and E € gM and strict Morita contexts (A, B, E, F, u1, p2). The functors

2For the notion of equivalence between two categories see, e.g., [Bass| [McLJ].
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associated to a strict Morita context are:
E®p— : M — 4 M,

F®Rps—: aM — pM.
Proof. See [Bass|, chapter II, theorem 3.5. O

In particular, any autoequivalence of the category 4 M corresponds to a strict Morita context
(A, A,E, F, u1, 2), where both E and F' are A-bimodules.

C.3 Line module and Hopf-Galois C|[Z]-extensions

Now we consider Hopf-Galois extensions by the Hopf algebra C[Z]. We recall that it can be
described as the commutative polynomial complex *-algebra generated by a unitary element z,

with Hopf algebra structure defined by the following relations:
A(ZF) = 2F @ 2, S(2F) = 27k, e(zF) =1,

for any k € Z. Any Hopf-Galois C[Z]-extension B < A has the following structure: A is a graded

algebra, A = @ A(k), with A©) = B. Moreover,
kEeZ

Lemma C.3.1. A Z-graded algebra A = EBA(]“) is a Hopf-Galois C|Z]-extension over A©) if
kEZ
and only if every product AR @ AD — AK+D) s surjective.

Proof. See [BB11], proposition 7.1. O

Now let A be a unital algebra and E an A-bimodule. Then we can define the Z-graded tensor
algebra Ty (A) in the following way [BB11]:

A n=2~0
Ty (E)R) = { E®% n >0
B n<0

Here E’ is the dual bimodule of E. If L is a weak line module then it is possible to put a structure

of associative algebra on Tz (L) (see [BB11], proposition 6.1). Moreover,

Lemma C.3.2. Let L be a weak left line module over the algebra A. Then L is a left line module
if and only if Tz(L) is a Hopf-Galois C|Z]-extension.

Proof. See [BB11], proposition 7.2. O

Now we can state and prove the result we are interested inf’|

3This result is taken from [BBII] (see theorem 7.3). We give here a sketch of the proof because we shall use it
elsewhere in this thesis.
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Theorem C.3.3. Let A be a unital associative algebra. Then there is a one-to-one correspondence
between:

(i) autoequivalences of the category g4 M;

(i) left line modules over A;

(iii) Hopf-Galois C[Z]-extensions of A.

Proof. (i) = (ii). An autoequivalence of 4 M corresponds (see above) to a strict Morita context
(A, A, E F, 1, p2). Moreover, due to proposition FE and F are finitely generated and
projective both as left and right A-modules. Now, by definition of strict Morita context, the
maps i1 : F a4 F — A and ps : F®4 F — A are isomorphisms of A-bimodules. If now we set
ev = p1 and coev = 5 1 we see that, due to , they behave like the evaluation and the
coevaluation maps of a weak left line module. Moreover, since we started from a strict Morita
context, both ev and coev are isomorphisms; hence F is a left line module over A.

(ii) = (iii). It L is a left line module then T7 is a Hopf-Galois C[Z]-extension (see lemma
C.3.2).

(iii) = (i). Let B be a Hopf-Galois C[Z] extension over A. Then B can be split into a

direct sum of subspaces of homogeneous degree: B = @B(k). In particular, B® = A. Now
keZ
set £ =CWM and F = Y. Clearly E and F are A-bimodules. Moreover, the multiplication

maps p1 : E®a F — Aand ps : F®4 E — A are surjective, due to lemma Also, p1, po
fulfils , as follows from the fact that B is an associative ring. Hence (A, A, E, F, 1, u2)
is a strict Morita context, and so it determines an autoequivalence of the category 4 M of left
A-modules. O
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APPENDIX D

Twisted Dirac operators, curvature and torsion of noncommutative tori

In chapter |5l we discussed, among other things, the construction of twisted Dirac operators. In
particular, we worked out explicitly the twisted Dirac operators for (low dimensional) noncom-
mutative tori. In this section we shall study some “geometric” properties of these operators. The
reason is the following one: we know very well that the canonical spectral triple over a noncommu-
tative n-torus is flat, in the sense that it corresponds exactly to the flat, T”-invariant, geometry
of the smooth n-torus. In some recent works [CT11l, [FK12, [FK11, [CM11, BhMal2l [DS13b] it was
pointed out that various modifications of the flat Dirac operator of a noncommutative torus can
lead to noncommutative geometries in which it is possible to associate a nontrivial curvature or
a nontrivial torsion to the new Dirac operator. For this reason, we found interesting to discuss if
and how it is possible to associate (possibly) nontrivial curvature and/or torsion to the twisted
Dirac operators built in this thesis (and in [DS13al).

D.1 The commutative case

Our discussion will be mainly focused on the noncommutative S—toruﬂ We begin by considering
the commutative case, reviewing the results obtained by Ammann and Bar [Amm98, [AmmB9g]
and applying them to a 3-torus, seen as a principal U(1)-bundle over a flat 2-torus. Let M denote
a smooth 3-torus T3 and N a smooth 2-torus T2, so that M — N is a principal U(1)-bundle.
Put on N a flat, T?-equivariant, metric g. Then, any connection form w induces a metric § on
M such that the bundle projection 7 : (M, g) — (N, g) is a Riemannian submersion and all the
fibres have equal length. Up to rescaling the metric, we can assume this length to be equal to
1. The metric g can be characterized in the following way. Let K denote the Killing vector field
associated to the U(1) action and let f; = 01, fo = 02 be the canonical (local) orthonormal frame
on N. Then {e; = fl, ey = fg, es = K}, where X denotes the horizontal lift of a vector field X

'For the twisted Dirac operator on a noncommutative 3-torus see [DS13a]. Here we will just recall its explicit
expression.
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D. Twisted Dirac operators, curvature and torsion of noncommutative tori

with respect to the connection w, is a local orthonormal frame for g. Using the Koszul formula,
we can easily work out the Christoffel symbols ffj of the Levi-Civita connection, with respect to
the frame {e;}:

I =0 ford,j k=1,2,

~ iy iy 1 o

Fg’j =Tl =-T = —§dw(ei,ej) fori,j =1,2, (D.1.1)
I3, =T3 =T =0 fori=1,2,3.

vEM

It follows that the spinor connection on the spinor bundle ¥ M can be written in the following

way':
1~
Ve = 0e + (T () (en) ¥, (D.1.2)
where v : TM — End(XM) is the Clifford multiplication map. We recall that the Clifford
multiplication extends to a map v : Q*(M) — End(XM) defined by:

’Y(a)w = Z a(eil’ R eip)’}/(eh) T ’Y(Gip)w

11<...<ip

for any p-form «. Then the Dirac operator is given by

D=—yo V™M =" —y(e;) VIV (D.1.3)
j

and it is a selfadjoint operator on the Hilbert space L?(XM). Now, the U(1) action allows us to
split L2(XM) as a direct sum of eigenspaces of the Killing vector field K. More precisely,

LA(2M) = P Vi

kEZ

where V}, is the eigenspace of eigenvalue ik of the Lie derivative L. Moreover one can prove the

following result.
Lemma D.1.1. For any ¢ € I'*°(XM),

Vg =Lgy+ i'y(dw)w. (D.1.4)

Proof. See [AmmB98|, lemma 4.3. O

Consider now the complex line bundle L = M xp(1) C associated to the principal bundle
M — N, together with the connection given by iw. Then, since the dimension of N is even and

we have taken the fibres to have length equal to 1, the following holds.

Proposition D.1.2. For any k € Z, there is an isomorphism of Hilbert spaces
Qr:L*(EN® L") =V
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D.1. The commutative case

such that the horizontal covariant derivatives are given by

VEVQu(8) = QuVES) + 11 (K (V) Qu(o),

where Vx is the vector field on N defined by dw()?,-) = §(T~/X,-) and V¥ is the twisted spin

connection on XN ® L~%. Moreover, the Clifford multiplication is preserved; that is,

Qu(V(X)$) = 1(X)Qr(¥),
where we used y(-) to denote both the Clifford multiplication on XM and on ¥N.
Proof. See [AmmB98|, lemma 4.4. O

The the Dirac operator D can be written, on each V, as sum of three operators,

D=Dy,+D,+Z,
1
where Dj, = Qi o DV o Q;l, D, =~(K)Lk and Z = —Zy(K)’y(dw). Now we compute explicitly
the spin covariant derivatives and the Dirac operator for our 3-torus (M, g). We begin by writing
the connection form w as:
w = widz! + wada® + da®.

Then dw = —wiadz! A dz?, where we set wip = Oswi — O1wa. Next, we consider the following
Clifford multiplication map on the spinor bundle ¥ N (and, hence, on each YN ® L‘k)

V) =7(00) =ic',  y(f2) =v(8:) = ic>.

It follows that Q,;lfy(dw)Qk = —wi90'0? = —iwyp03. Moreover, by direct computation one can
see that
Vi, = Vo, = —wiafo = —w120s, Vi, = Vo, = wizf1 = w1201

Therefore, Q,;lfy(Vfl)Qk = —wigo! and Q,:lfy(VfQ)Qk. = wi20?. The last thing we need is v(K).
Using the fact that Clifford multiplication is preserved by (; and the properties of Clifford
algebras, we deduce that the only possible choices are Q;lfy(K )Q) = Fio3. We fix this convention
assuming Q,;W(K)Qk = jo3.

Using these results, together with lemma and proposition we can obtain the
explicit expressions of the spinor covariant derivatives VEZiM . In what follows @ will denote
the collection of the maps @, and 03 the operator corresponding to the Lie derivative Lx (or,
equivalently, to the operator dx [AmmB98|); in particular, d5 corresponds to the multiplication
by ik on each Hilbert space L2(XN ® L~%). For ¢ € @, L*(XN @ L~F),

Q'Y QW) = Ortb — sty — Twnno, (D.150)

See [AmmB98], theorem 4.1.
$We recall here that the Hilbert space L?(XN) can be identified with C(T?) ® C? with the scalar product given
by the integral on the torus, since we are considering the flat (Haar) metric on N = T2.
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D. Twisted Dirac operators, curvature and torsion of noncommutative tori

Q7 'Ve, Q(v) = 9ot — wazt) — £w1202, (D.1.5b)

Q'Ve QW) = B + Snac® (D1.50)

Now we see that the Dirac operator D is given by:

3
Q_lﬁQ = Z —z'ajﬁj +i0' w105 + i02we0s — %wu.

j=1
In particular we notice that it differs from the twisted Dirac operator D, only for the scalar
term Z = —%wlg. We take this as a suggestion for the noncommutative case: in the next
sections we shall look for a suitable modification of the noncommutative Dirac operator D,
which should correspond to the Dirac operator obtained from a metric compatible, torsionless
connection. Moreover, we shall see that the construction discussed below allows to recover a

notion of curvature.

D.2 Tangent bundle, horizontal lifts and Levi-Civita connection

As a first attempt one could try to mimic the commutative case in the most straightforward
way. Hence we look for a noncommutative analogue of an orthonormal frame, from which we
would derive the analogue of Christoffel symbols. In general this would be a very difficult task.
Indeed, in noncommutative geometry the definition of the tangent bundle of a noncommutative
space is far from straightforward. But for noncommutative tori, the T™ action (or better, the
associated action of the Lie algebra t,,) allows to give a reasonable definition of tangent bundle: let
1,...,0p, denote the generators of the t,-action on a noncommutative torus A(Ty) and consider

the following definition.

Definition D.2.1. The space of (complex) smooth vector fields of a noncommutative n-torus
Ty is the C-linear space X(Ty) = (A(Ty))° ® C", where the C™ factor is the linear space of the

derivations 41, ..., 0.

Hence a smooth vector field over T" is a linear combination X = Zyzl(aj)odj, where each a;
belongs to A(Tj). We can define a (A(T}))° ® A(Ty)-valued action of X(Ty) on A(Tj) in the
following way: for any X = > (aj)d; € X(T}) and any f € A(Tf), we set

X(f) = (a;)° @ 8;(f).

J
Moreover, we can put a structure of left A(Tf)-module on X(Ty): f-X = > .(fa;)°d;. In the

following two lemmas we point out two (trivial) properties of X(T}), which show that it behaves

as the space of sections of the tangent bundle of a smooth manifold.

Lemma D.2.2. Fach element of X(Ty) is a derivation of A(Ty); that is, it satisfies the Leibniz
rule
X (ab) = X(a)b+ aX(b) Va,b € Ty.

228



D.2. Tangent bundle, horizontal lifts and Levi-Civita connection

Lemma D.2.3. X(T}) is a finitely generated projective left A(Ty)-module.

Now let us consider, in full generality, a noncommutative torus A(']I‘ngm) as a T™ bundle over a
noncommutative torus A(Tj,). Identifying the latter with the invariant subalgebra of the former,
and assuming the T"*-action to be the one generated by the derivations dp41,...,0nt+m, We can
identify the space X(T};*") with the span, over (A(T;*™))°, of the derivations d1, ..., dptm and
the space X(T},) with the span, over (A(T},))°, of the derivations d1,...,dy,.

The inclusion A(Tj,) < A(T;*™) corresponds, from a geometrical point of view, to a T"-
equivariant submersion 7 : A(T; ™) — A(T%,). Following this idea, we define the push-forward
of , as a linear map m, : X(Tj™™) — X(T% ). We could give simply the definition and check its
properties, but first we want to give some motivations for our choice.

Let us consider a principal G-bundle 7 : P — M, where G is a compact Lie group. If we take
a vector field X € I'(T'P) and a function f € C>(M), then the push-forward 7. X is the element
of T'(T M) defined by:

(M X)(f)z(2) = Xp(f o 7)(p), (D.2.1)

for any x € M, where p is any point of P such that 7(p) = x. In particular, the value of (D.2.1))

does not depend on the choice of p on the fibre over x. This means that for any g € G we have:

(m:X)2(f)(2) = Xgp(fom)(g-p) (D.2.2)

Nevertheless, we see that the definition of the push-forward is a pointwise definition. In non-
commutative geometry such a pointwise description is usually non available, hence we have to
pay attention and check if we are defining something meaningful. It is quite clear that it is not
possible to define, in a global way, the push-forward of all of the vector fields of the total space
of a bundle; instead, it is possible if one restricts itself to projectable vector fields.

Now we come back to noncommutative tori. We begin by introducing a definition of pro-
jectable vector field, motivated from the fact that invariance under the T™-action corresponds to
invariance under the coaction of the Hopf algebra H = O(T™). Let us introduce the following
right coaction of H on X(T}"*"):

(T @rs) =Syt o iy,
J J
Definition D.2.4. A vector field X € X(T;*™) is said to be projectable if pH(X) = X ® 1.
Hence, the space of projectable vector fields is the space %(’]I‘g+m)C°H.

Then we can define, on projectable vector fields, the push-forward =, as the A(Tjy,)-bimodule
map m, : X(Tj™™)°H — X(T%,) defined by

n+m n
m( > Xj5j> => X/s;.
=1 =1

Before going on and introducing a notion of horizontal lift of vector fields, we spend some

words about the differential calculus and the relation between differential forms and vector fields.
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D. Twisted Dirac operators, curvature and torsion of noncommutative tori

In this whole chapter we will assume any noncommutative n-torus to be endowed with the first
order differential calculus Q!(A(Tj)) discussed in appendix [A} it is described by the bimodule
QY (A(T})) = A(T)) ® C", where the canonical basis {e!,...,e"} of the second factor can be
identified with the dual of the basis {d1,...,d,} (see the discussion in appendix see also
[CR0]). Consequently we have a pairing (e’, d; > = €%(8;) = d;;. This can be extended to a bilinear
pairing (-,-) : Q'(A(Tj)) x X(T%) — (T})° in the following way:

<Zm ®ei,Z(aj)°5j> = Z mial)° (e',6;) = Z n;a)°. (D.2.3)

Let now w : O(T™) — QY(A(T}, ™)) be a T™ strong connection form. From propositionm,
we know that w corresponds to a projection II¥ on Q! (A(Tg*m)), which identifies the space of
vertical forms:

Quer (A(TF™)) = {n € QHA(TF™™)) | 1% (n) = n}.

We can use this fact to introduce a notion of horizontal vector field and, then, to define the

horizontal lift of vector fields.

Definition D.2.5. A horizontal vector field for the T™-bundle T;™™ is a vector field X €
X(Ty™™) such that
(n, X) =0

for any vertical form n € QL .(A(T;™)), where (-,-) is the pairing defined in equation (D-2-3).
The linear space of horizontal vector fields will be denoted by :{hor('ﬂ'g+m).

Definition D.2.6. A horizontal lift of a vector field X € X(T},), with respect to a strong con-
nection w, is a horizontal projectable vector field X € %hor(T2+m)COH such that 1. X = X.

Theorem D.2.7. The horizontal lift of a generic vector X € X(Ty,) exists and is unique.

Proof. First of all we work out the general expression of a vertical form 5 € QL (T;™™). Let
n+m

be a 1-form, which we write as n = Z n; ® ¢’. Then, for w written as in proposition |A.5.3] we
7j=1

can see, using the fact that 1 ® e/ = U;dUj, that

m-+n
ZZUJ‘*‘" Z®e + Z N ® €. (D.2.4)
=1 j=1 i=n+1

m

Imposing I1¥(n) = n we obtain: n; = Z Mn+jbji for ¢ = 1,...,n. Hence any vertical 1-form 1 can
j=1

be written as in equation (D.2.4)), and so it is completely determined by 7,41, - - . , Dnt+m. Consider

now a vector field X € X(Tg*m). Imposing the horizontality condition implies that, for any 7
written as in equation (D.2.4]), X must satisfy the following relation:

Z Z 77n+jbjzX + Z "7n+] ]+n =0

=1 j=1
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D.2. Tangent bundle, horizontal lifts and Levi-Civita connection

m n
= D <Z bjiXi‘f‘XjML) ~0.

j=1 i=1

This must hold for any choice of the n;, and so X is horizontal if and only if

n
Xt = =N "0 X0 for j=1,...,m. (D.2.5)
i=1
In particular, any horizontal vector field is completely determined by X!, ..., X™. Now, take
n

a vector fleld Y € X(T}), and write it as ¥ = Z(Yj)O(Sj and assume that ¥ = (?j)o(Sj is a
j=1

horizontal lift of Y. We get immediately that Y7 = Y7 for j = 1,...,n, by definition of ..

Furthermore, the elements 17"+j, for j =1,...,n are easily computed using equation (D.2.5):

n
Y= =) Yt
i=1
Therefore the horizontal lift of Y exists and, since we have computed an explicit expression for

it, it is also unique. ]

Corollary D.2.8. The horizontal lifts of the vector fields d1,...,6, € X(T}) are given by:
0 =0; — > b5;0nsi j=1,...,n. (D.2.6)
i=1

Let us consider now a noncommutative 3-torus as a U(1)-bundle over a noncommutative 2-
torus. In this section we shall use the notation A = A(T3), B = A(T%), H = O(T?). The
canonical spectral triple (A, #H,D,J) (cfr. appendix on A is a projectable triple, and the

twisted Dirac operator associated to a hermitian strong connection w is [DS13a]

3
Dy=>Y 076; =o' JwJ 05 — 0 JwyJ 133, (D.2.7)
j=1

where w is given by w(z*) =k (1® €3 + w1 ® €' + wy ® €?), with w; = w} € B. Now, as we have
seen above, the connection w allows us to define the horizontal lift of any vector field over the
base space T2,. In particular, we can consider the basis {01 = 61,02 = id2} of X(B) and take the
horizontal lifts of 9 and J2. We obtain, using equation , the vectors

Ey =01 —wi0s, Ey = 0y — w50s.

We complete them to a basis {E1, Eq, E3} of X(.A) by taking E3 = J3 = id3. In the commutative
case [Amm98, [AmmB9§|, one consider then the metric for which (the analogue of) {E1, Ea, E3}
is an orthonormal frame and compute the associated Dirac operator. We look for a similar result
in the noncommutative case. The first step is the introduction of the analogue of the Levi-Civita

connection. We begin with some recall of Riemannan geometry. It is well known (see, e.g., [Lee],
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D. Twisted Dirac operators, curvature and torsion of noncommutative tori

theorem 5.4) that the Levi-Civita connection V on a Riemannian manifold (M, g) can be defined

through the Koszul formula:

29(VxY, Z) =0x(9(Y, Z)) + 0y (9(X, Z)) — 0z(9(X,Y))

(D.2.8)
Hence, if {E;} is a (local) orthonormal frame, then we obtain:
29(Ve Ej) = 9([Ei, Ejl, Ex) — 9([Ei; Ex], Ej) — g([Ej, Exl, Ei). (D.2.9)

Then, still in the commutative case, if we write (using Einstein convention) [E;, E;] = cijk, we

can use equation (D.4.2)) to compute the symbols Ffj, obtaining

1 , 4
k k

We would like to produce noncommutative Christoffel symbols in a similar way. But a problem
arises: in the noncommutative case the commutator [X, Y] of two vector fields is (in general) no

longer a vector field. In particular, in our specific case we see that:
[El, EQ] = (52&); — (510)5)(53 + [wi’,wg]ég.

Hence, in order to go on along this way, we need to overcome this issue. There could be many
different ways to achieve this scope. Here we choose to use the so-called x-product formalism
[ABDMSWO05|, [A06, [ ADMWOG, [A07, [AQ9], which allows to define a “twisted” commutator [, -],
which preserves the space of vector fields. In the next section we shall briefly recall the main
aspects of this formalism and we will apply them to noncommutative tori. Later, we will use

these results to work out Levi-Civita and spin connections and to discuss torsion and curvature.

D.3 x-geometries and noncommutative tori

By x-geometries we mean a wide class of noncommutative manifolds, obtained as deformations
of the algebras of functions over smooth manifolds via *-products. Following Aschieri et al.
[ABDMSWO05, [A06, ADMWOG], we consider here x-products associated with a deformation of
the algebra of smooth functions over a manifold M obtained using a twist F of the Lie algebra
of infinitesimal diffeomorphisms of M. In particular, the twists we consider are elements F of
UZX[[N]®@UZX[[A]], where X is the Lie algebra of vector fields over M, UX is its universal enveloping
algebra, and UX[[A]] denotes the algebra of formal power series in A. We will not discuss most
of the algebraic aspects of Lie algebras’ twists; for all the details we refer to classical literature
[Dri83, Dri90), Res90, Kassel|. Here we will briefly recall the construction of the x-product and
the main properties of x-geometries. Then, we will apply these results to the specific case of
noncommutative tori.

Consider a smooth manifold M, and let X = X(M) be the space of smooth vector fields; that is,

the space of smooth sections of the tangent bundle T'M. X is a Lie algebra, with the commutator
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D.3. x-geometries and noncommutative tori

given by the Lie derivative: [X,Y] = LxY. Hence we can consider its universal enveloping
algebra UX. We know [Sw69, [Maj95| [Kassel|] that UX admits a Hopf algebra structure, where

coproduct, counit and antipode are defined by:

S(X)=X21+1X, A)=1®1,
S(X)=—X, S(1) =1,
e(X) =0, e(1) =1,

for any X € X. From UX we can obtain the algebra UX[[\]] of formal power series in A, which is
still a Hopf algebra. Then we can give the following definition.

Definition D.3.1. A twist F for the Lie algebra X is an invertible element F € UX[[N]]@ UX[[]]

which satisfies the following relations:

(Fel) - (Aid)F=>1&F)- - (d® F)F,

(e®id)F = (i[d®e)F = 1. (D.3.1)

Moreoveﬁ we require F =1® 1+ O(N).

In what follows we shall denote, with an abuse of notation, the algebra UX[[A]] simply by UX.
Now let A denote the algebra C°°(M)[[A]]. Then a twist F can be seen as amap F : AQA — ARA.

Hence we can consider the following operation on A.

Definition D.3.2. The x-product of two functions g,h € A is the function gxh = ma(F (g ®
h)), where my : A® A — A is the multiplication map.

We introduce now the following notation: we write
F=f"®fa, Fl=F®/fa

where the sum over « is understood and the elements f¢, fa,?a,fa belong to UX. Then the

*-product can be written in the following form:

gxh=f"(9)fu(h). (D.3.2)

Lemma D.3.3. The x-product is C-linear, associative and, if A is unital, 1 € A is the unit

element for .

We shall denote by A, the algebra which has A as underlying space and x as product. Also
the algebra UX can be twisted, and there are different ways to do this: we can twist the Hopf
algebra structure, the associative algebra structure or both of them. We shall present here only a
part of this possibilities, for a complete discussion see, e.g., [ADMWO06l [Dri90, Maj95|]. Consider
the element Fo1 € UX ® UX defined by Fo1 = fo ® f* Then we can introduce the so called
universal R-matriz

R = Fo1 F -1

4 Actually this condition can be recovered from (D.3.1]), see [ADMWO06].
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R is an invertible element of UX ® UX. For the other properties of R we refer to [ADMWOG].

We introduce also the following notation:
R=R*®Ra, R '=R"®R,.

Lemma D.3.4. For any g,h € A, gxh =R (h) x Ra(g).

Now let us define a *-product also for the (Hopf) algebra UX. We take it to be the map
*: UX®UX — UX defined by

X#Y =Ly (X)L5 (V) = [T (X) Fa(Y). (D.3.3)

We define UX, to be the associative algebra which has UX as underlying vector space and =,
defined by equation , as multiplication map. We shall see in a few that UX, can be made
into a Hopf algebra. Before doing this, we introduce also the deformed commutator of any two
generators of UX: for X, Y € X we set

[X,Y], = XY — R*(Y) x Ry (X). (D.3.4)

Proposition D.3.5. [, ]« is a (bilinear) map X @ X — X. That is, the twisted commutator (or

*x-commutator) of two vector fields is again a vector field.

The space X, endowed with the commutator [-, |4, is a deformed Lie algebra. It is a left
A,-module in the natural way: gx X = f,(g)f.(X). Also, we can state the twisted analogues of

the antisymmetry property and of the Jacoby identity for the x-commutator.

Lemma D.3.6. Let X,Y,Z € X. Then:
(i) [X, Y] = —[R*(Y), Ra(X)]s, B B
(ii) [X,[Y, ZLds = [[X, Y], Z)s + [R(Y), [Ra(X), Z]sls-

Proof. See, e.g., [ADMWO06], section 3.2 and appendix A.2. O

We can also define a deformed version of the Lie derivative of a function f € A with respect
to a vector fields X € X; we take it to be [A07]:

Lx(9) = [ (X)fal9)- (D.3.5)
L* fulfils the twisted versions of the usual properties of a Lie derivative:

Lemma D.3.7. Let g,h € A and let X € X. Then:

() L) = gx L),
(i) L%(g*h) =L (g)xh+ Ra(g)ﬁ*ﬁa (X)(h) (deformed Leibniz rule).

Proof. See [AQ7], section 4. O

It is possible to introduce also the deformed space of differential forms [ADMWO0G6, [AQ7], but

we shall not use it anywhere in this thesis, so we skip this part. Instead, now we consider a
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noncommutative n-torus, we show that it is possible to see it as a x-deformation of the smooth
torus T" and we use this fact to build the deformed Lie algebra of vector fields over Ty we
were looking for. So, let C°°(Ty) denote the smooth algebra of a noncommutative n-torus,
which we assume to be generated by n unitaries Uy, ..., U,, with the commmutation relations
U;U; = e=?iU;U;. We can define a bijective C-linear map ¢ : C*(T3) — C*°(T"). First of all
we introduce the Weyl symbols W (k), for k € Z™:

W(k) = o3 Lic; kibish; Ukt gkn,

Then we set (W (k)) = (21)™/2¢' 23 %1% where x4, . . ., x,, are the canonical angular coordinates
on T" ~ S! x ... S'. Since the product rule of C*°(T}) reads

W (k)W (h) = e? 2 F0ishi 7 (k + ),
the following relation holds:

(W (k)W () = 2 2 52000 (W (1)) ()0 (W (1)) ()

=y

where 0 = —ia%i. This means that C*°(T}) can be identified with the twisted algebra C*°(T"),,

where the x-product is the following one:

(9% h)() = €25 9% g(a) h(y) (D.3.6)
z=y
This corresponds to the x-product induced by the following twist:
F — o5 2i; 05507 ®0] (D.3.7)
whose inverse is simply given by:
Fl = e Ty 0utied) (D.3.8)

We shall use the notation introduced above, F = f* ® f,, etc., but only as a formal tool: we are
not considering F as a power series in . We just find that writing expressions in this way makes
the computations more clear.

Now we come to vector fields. First of all, we notice that the derivations d; fulfil the following
relation: ¢(9;(A))(z) = §7¢(A)(z), for any A € C°(T§). Then we can identify d; with §7. Hence
the space of %-vector fields X, can be identiﬁedﬂ with the space X(C*°(Ty)) introduced in the
previous section. But now it is endowed with the x-commutator [-, |4, which, therefore, can be

seen as a bilinear map X(C™(Ty)) ® X(C>®(Ty)) = X(C>=(Ty)).

Remark D.3.8. If we restrict all the maps to Ty C C>°(Ty'), we obtain a x-commutator [-, -], on

X(T}). Moreover, all the results in this section hold also for the opposite algebra (T7)°.

®Notice that they are isomorphic as left C°°(Ty) ~ C*°(T™),-modules.
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D.4 Connections, torsion and curvature on Tg

In the previous section we have introduced the notion of deformed space X, of vector fields over
a smooth manifold M. Now, following [ADMWOG, [A06, [A07], we give the definition of covariant

derivative of deformed vector fields.

Definition D.4.1. A x-covariant derivative in the space X, of vector fields over Ay, along the
vector fields X € X, is a linear map V : X, — X, such that:

(i) VxyZ=VxZ+V3yZ,

(i) VixY = fxVyY,

(i) Vi (f+¥) = L5 (1) * ¥ + R () Vi Y.

foranyY,Z € X, and any f € Ar. A map V* : X, @ X, = X, defined by (X,Y) — VY, where

each V% is a x-covariant derivative, will be called a %-connection.
Given a *-connection V* on X, we can define its curvature and its torsion.

Definition D.4.2. The curvature R of a x-connection V* is the C-linear map R : X, X, %X, —
X, defined by:

R(X,Y,Z) = ViVyZ — Vi Vi

(X)

for any XY, Z € X,.

Definition D.4.3. The curvature T of a *-connection V* is the C-linear map T : X, @ X, — X,
defined by:

T(X,Y) = V5Y — Ve Ra(X) = [X, Y],

)
for any X, Y € X,.

Both the torsion and the curvature of a x-connection are x-antisymmetric. More precisely
[ADMWO6],

Lemma D.4.4. Let V* be a x-connection and let T and R be, respectively, its torsion and its

curvature. Then,
o _

T(X,Y)=-T(R'(Y), Ra(X)),
R(X,Y,Z)=—-R(R*(Y),Rua(X), Z),
forany XY, Z € X,.
Moreover, both of them fulfil the following properties of A,-linearity [ADMWO6].

Lemma D.4.5. Let V* be a *-connection and let T and R be, respectively, its torsion and its
curvature. Then,
T(fxX,Y)=fxT(X,Y),

T(X*f,Y) = Ra(f) *T(ECM(X)7Y)7
R(fxX,Y,Z) = fxR(X,Y, Z),
R(X  f,Y,Z) = R*(f)  R(Ra(X),Y, Z),
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for any X,Y,Z € X, and any f € A,.

Now assume that the space X, admits global frames. That is, there are E1, ..., E, € X, such
that any other vector field X € X, can be written as X = Zj xd E;, with ) € A,. Then we
can introduce the following description of a *-connection and of its torsion and its curvature. We
set (using Einstein convention):

Vi, E; =T}« By,

T(EZ‘, Ej) = TZ]; * Ek,

R(E;, Ej, Ey) = Rl « B,

with Ffj, TZ?, Réjk € A, for any 4,7,k =1,...,n. This notation is relevant, in particular, when we
assume (or we interpret) Ei,..., E, as an orthonormal frame.

We consider now the noncommutative 3-torus T3, seen as a quantum principal U (1)-bundle
over T%, together with the reference frame {Ey, Fa, E3} discussed in the first part of this chapter.
We recall that Es3 is nothing else than the Killing vector field associated to the U(1) action and
FEq, Es are the horizontal lifts of the canonical orthonormal frame f; = 0; on the flat noncommu-
tative 2-torus. We can work out a set of Christoffel symbols associated to this frame. Indeed, on

a smooth Riemannian manifold (M, g), the Koszul formula reads:

29(VxY, Z) =0x(9(Y, Z)) + 0y (9(X, Z)) — 02(9(X,Y))

(D.4.1)
Hence, if {E;} is a (local) orthonormal frame, then we obtain:
29(Ve,Ej) = 9([Ei, By, Ex) — 9([Bi, Ex], Ej) — 9([Ej, B, Ey). (D.4.2)
If now we set (using the Einstein convention)
Vg E; =T},  [E,Ej]=c;E,
we can use equation (D.4.2)) to compute the symbols Ffj, obtaining
A O
rh =3 (Cij — e - Cjk> . (D.4.3)

In the noncommutative case, therefore, we can use (D.4.3)) to define the Christoffel symbols
associated to the frame {Ej, E2, F3}. Indeed, we can define the coefficients cfj using the *-
commutator:

i, ejle = cfj * ef.
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Then, by direct computation, we can see that the only nonzero Ffj are the following ones:

1 1

I, = 500(1)2, Iy = —§WT27
r2, — — L r3 = Lo (D44)
13 — 2 12> 31 — 2 12> s
1 o 1 o
F%?, = 2“127 F%:s = 2“’12,

where wiy = Oow] — O1w5. These symbols define a *-connection V*, which we may see as a map
V*: X(T3) @ X(T3) — X(T3). We can compute both the torsion and the curvature of V*, using
the formulae of definition [D.4.3] and [D.4.2] Before this, it is useful to compute the expressions of
V5.0;. We will use the fact that the vector fields 9; can be expressed as follows,

81:E1—|—wf*E3, 82:E2+w§*E3, 03 = E3,

and the properties of a x-covariant derivative (see definition [D.4.1)). We obtain:

V5,05 = Vi, jwewpy B3 = Vi, B3 +wi x Vi, B3 = 2, % By, (D.4.5a)
5,05 = Vi puger, B3 = Vi, B3 + wi x Vi, E3 = I x By, (D.4.5b)
V5,01 = Vi, (Bl +wi x E3) = Vi, By =13, % Es, (D.4.5¢)
V5,02 = Vi, (B2 + w§ x E3) = Vi, By = D'y + B, (D.4.5d)
V5,05 = Vi, E3 =0, (D.4.5¢)

vglal = VEl—i-wf*Eg (El + WT * E3) =
= Vi E1 + Vi, (W] % E3) + wi * Vi, E1 4+ W] % Vi, (W] % E3)

. (D.4.5f)
= L%, (w)) * B3 + R (w)) * V3

(El)E?’ + (/JT *F?ﬂ * E2

= 01(w}) % B3 +w) T2 % By + wi T3 % Fa,

Va@z = v%1+wf*E3 (EQ + OJS * E3) =
= Vg, Eo+ Vi, (g * E3) + wi « Vi, Ea + w) x Vi, (ws x E3)

3 * o DY o * (D'4'5g)

(El)Eg + Wi *x T3y« By

= 01 (w3) * B3 + T3y % B3 + w§ * 5 % By + wi « sy By,

V5,01 = Vi, pugem, (BL + w? * Es) =
= Vi, E1 + Vi, (W] x E3) + w3 « Vi, E1 +wy x Vi, (W] * E3)

, - (D.4.5h)
= F21 * E3 + 5%2(0.)?) *E3 + R (Wi) * V*Ra

(E2)E3 4wl T3, By

= Oo(w) % B3 + T3y % B3 + w) *Ths x By +ws * T2 % By,
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v5282 = V*E2+WS*E3 (E2 + W; * Eg) =
= Vi, B2 + Vi, (ws x E3) + w3 « Vi, Es + w) x Vi, (w3 « E3)

= L}, (w3) * B3 + R* (w3) * Vi () B3+ w5 % iy % By

(D.4.51)

= 82(0);)*E3 —i—w;*I‘%P)*EQ —I—wS*I‘%Q*El.

Now we are ready to compute the torsion of V*. From lemma we know that T(E;, E;) =0

for any ¢ = 1,2, 3. Next, by direct computation we get the following expressions:

T(Ey, By) = Vi By = Vi g B1 = |1, Bl =
=Ty % E3 — V3,01 + Vh, (w1 x 03) + wa x V5,01 ( )
_ D.4.6a
o v*ﬁa (w2)x03 (Ra(wi) * 03) — 2F?2 * By
1 1
= I3, «FE3 — T3, x B3 = —5wh* By + Swhyx By =0
T(Br, Bs) = Vi, Bs = Vi g E1 = [B, Esl, = Vi B = Vi, Iy
. 1 (D.4.6b)
=T x By — T2 By = —§wf2*E2 + 5wf2*E2 =0
(D.4.6¢)

1 1
=T x B —TY«E = g@ia* B — jwiyx By =0

In the same way (or using the properties of T', see lemma one can see that also T'(Fs, E1),
T(FEs, E1) and T'(Es, Es) are zero. This, together with the linearity properties of the torsion (see
lemma , implies that T" = 0. Hence V* is a torsionless x-connection. The next step is the
computation of the curvature of V*. Performing it in the same way we did for the torsion, we

obtain the following results.

R(E;, E;, E;) =0 Vi, j=1,2,3, (D.4.7a)
1 o 3 o \2

R(El, Es, El) = —581 (w12) * B3 + 1(&)12) * o, (D.4.7b)
1 o 3 o \2

1 [¢] 1 o
R(En, B, E3) = 531 (wiz) * E1 + 552(%2) * Fy
1 1
- Zwﬁ * w] * wiy x By + wa * (wiy)? * By (D.4.7d)
1 1
+ Zwﬁ * Wy * Wiy *x By — ng * (Wy)? % Fy,

1 o 1,
R(Ey, Es,Eq) = —551(%2) * Egy — 1(‘012)2 * B3

1 1 (D.4.7¢)
+ wa * (Wiy)? * By — Zw‘b * W1 * Wiy * F1,
1 o 1 o o \2 1 o o o
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L.
R(En, B3, E3) = 1(“112)2 * By, (D.4.7g)
1 o 3 o \2
R(EQ, El, El) = 581 (le) * E3 — Z(wu) * EQ, (D47h)
1 o 3 o \2 :
R(EQ, FEq, EQ) = 582 (w12) * B3 + 1(w12) * B, (D.4.71)

1. . 1. .
R(Ey, By, E3) = —532(“112) *x By — 531 (wiz) * B4

1 1 .
— waz*wg*w‘fz*El + ng*(wa)Q*El (D.4.7j)
1 1
+ waQ * W] * wiy x By — wa * (Wiy)? % Fo,
1 o 1 o o \2 1 o o o
R(EQ, Eg, El) = —5({’)2((,«.)12) * E2 + 1&)2 * (w12) * E1 — wa * Wy * Wig * El, <D47k)
1 o 1 o \2
R(E3, B3, Ep) = 502(wiy) * By — —(wha)” x B3
2 4
1 1 (D.4.71)
+ ng * (wy)2 x By — waQ * W * Wiy * Fa,
Lo
R(E», F3, E3) = Z(w12>2 * B, (D.4.7m)
R(E37EZ7E]) = _R(Ei7E3an) Viaja (D47H)

where the last relation was obtained using the x-antisymmetry property of the curvature of a
*-connection (see lemma [D.4.4)). Now we write the curvature of V* in the following way:

R(EZ, Ej, Ek) = Z Rijkl * El-
l

The symbols R;ji; can be easily read directly from equations (D.4.7a)) - (D.4.7n)). We can make

a step further, introducing the analogue of the Ricci tensor. We set:
Ri; = Z Ryiji-
k

We can then take the “trace” of R;j: we define the Ricci x-curvature to be R =), R;;. We find:

1 (e} 1 (e} 1 (e} 1 (e}
R=Ri1+ Ry + Ry3 = —=(wiy)? — =(wh)? + = (why)? = — = (why)*.

D.4.
2 2 2 2 ( 8

Hence we can give the following interpretation of our construction: the x-connection V* can be
seen as a noncommutative analogue of the Levi-Civita connection, and it corresponds to a metric
with scalar curvature equal to —%(w&)? In particular, if w2 # 0 we obtain a curved Riemannian

structure over the noncommutative 3-torus.
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D.5 Spin Laplacian, twisted Dirac operator and Lichnerowicz

formula

The next step is to study the construction discussed in the previous sections in the framework
of Connes’ noncommutative geometry. That is, we need to associate a spectral triple (A =
A(T3),H,D) to the x-connection V*. This is what we shall do in this section. As we will see, the
Dirac operator D will simply be a bounded perturbation of the twisted Dirac operator D, [DS13a]
(see also chapter 5| of this thesis). Moreover, we will define an analogue for the spin Laplacian and
prove that it is related to the square of the Dirac operator by a modified Lichnerowicz formula
(which reduces to the classical one in the limit § — 0).

The first object we have to define is the spin connection associated to the x-connection V*.
We define it giving the spinor covariant derivatives Vg, as operators on the Hilbert space of
L? spinors. We begin by considering the canonical flat real spectral triple (A, H,D,J) over
A = A(T§), wherd]| # = #, @ C?, D = 33,076; and J = Jy @ (io” o c.c.). Due to what
we have seen in the first part of this chapter, in the commutative case we can identify H with
@, L*(XT?® L~*), and so the Dirac operator associated to the metric induced by the connection
w can be seen as an operator on H. Hence, in the noncommutative case we define the Dirac
operator D already as an operator on ‘H. For the same reason, moreover, we can define a Clifford
map 7 : Xy, — L(H) by setting v(E;) = —io’ and extending it by left A-linearity (but, actually,
we shall not use this extension).

According to classical results, the spinor covariant derivatives, with respect to an orthonormal

frame {E;}, can be written in the following way:

1
Ve, =Le + > AENVEDTS, (D.5.1)
Jk

where the Ffj are the Christoffel symbols of the Levi-Civita connection. Taking (D.5.1]) to be the

definition of the spin connection also in the noncommutative case, we obtain, for any ¢ € H,

7

Vit = 01 — widsyh — qwhho'y, (D.5.2a)
Vit = Ot — WOt — Zwino e, (D.5.2b)
Vit = 03¢ + %WTQU?’@ZJ- (D.5.2¢)

We recall that A° acts on H via the representation induced by the real structure J. Defining the
Dirac operator simply by D = > j v(E;j)VE;, we arrive to the following expression:

1
D = 0'6) + 0205 + 0303 — o'Wl b3 — o2w§ds — Zaﬁg. (D.5.3)

In particular we see that D differs from the twisted Dirac operator D, only for the bounded

57, is the GNS Hilbert space associated to the tracial state 7, cfr. appendix Jo is the Tomita-Takesaki
antiunitary involution on H.
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"scalar” term Z = —%wi’Q. Next we introduce the spinor Laplacian. We know [Fri00] that the

spinor Laplacian on a Riemannian manifold can be written as
S .
A° = — ZVE]-VE]- + Zle(Ej)VEj,
J J

where V is the spin connection and {E;} is a (local) orthonormal frame. In our case the divergence

of each Ej is zero, so we are left with:

3
ASp=—> "V, Vg (D.5.4)

j=1

for any 1 € H. We compute separately the three terms of equation (D.5.4):

i i
Vg, Vit =08 — 01 (w])03¢) — 2w 01031 — 10 (wiy)otep — §w§20161¢

; ; 1 (D.5.5a)
+ (wp)?059 + 1“’?“?2‘71837? + Zw(ﬁw‘fol&gw - Tﬁ(w&)%b’
7 7
V5,V ) =051 — 0y(w3)d3¢) — 2w502031) — 182(6*1?2)021# - 5“’?202321# ( |
. . D.5.5b
1 ) 1
+ (w)?05¢ + ZWSW(132U283¢ + wa2w(2)0233¢ - E(wfz)%ﬁ,
2 i o 3 1 o \2
VE3VE3¢ = ag'lp + 5(&)120’ 83'(/) - T6(w12) 'lp (D55C)

As we anticipated, we compare now A° with the square of the Dirac operator D. First of
all, let us compute D2. Writing D = D + X,, + Z, where D is the flat Dirac operator on the

noncommutative 3-torus, D = 23: Uj5j, Z is the scalar term —iwﬁ = —ﬁmeJ_l, and X, is the
operator X, = —olwdz — 02w]§<:5;, we obtain the following expressions:

D2 = —0%1) — 93¢ — 93, (D.5.6a)

X2 = —(w])?05¢ — (w)?03 — i(wiws — wiw?)o B34, (D.5.6b)

2% = (W), (D.5.6c)

(DX, + X,D)tp = 91 (w1)°03% + O2(w3) D3¢ + 2w 01031 + 2w5Ded31) — iwiyo>d31h,  (D.5.6d)

(DZ + ZD)y :%w;galalw + %al (W) B + %wi’202821/1

; o P (D.5.6e)
+ Eaz(wm)a 02 + F¥120 03¢,
i o, o _1 i o, o1 i o, 0o _2 i o o _2

In order to compute D2 — A, we compare equations (D.5.5a]) - (D.5.5¢) with equations (D.5.6al)
- (D.5.6f). We see the following facts.
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e All the terms of D%t (equation ) cancel out with the leading terms of equations
(D.5.54), (D.5.5b)), (D.5.5¢.

e All the terms proportional to (w$)202¢ in equation are cancelled by the corre-
sponding ones in equation and equation .

e The terms proportional to iw$,03931) (equations (D.5.5d), (D.5.6d), (D.5.6¢)) sum up to
ZETO.

e The sum of all the terms proportional to (w$,)?% (equations (D.5.5a)), (D.5.5b)), (D.5.5d),
(D5.69)) is equal to — & (w$,)?¢.

e The terms proportional, respectively, to 0;(w;)03¢ and to w;{0;031) in equation
cancel out with the corresponding ones in equation and equation .

e The terms proportional, respectively, to wj,0'9;1) and to 9;(w$y)oy in equation
cancel out with the corresponding ones in equation and equation .

e The terms proportional, respectively, to wiyw?o?d31) and to wfwsyo'ds1 in equation
cancel out with the corresponding ones in equation and equation .

Hence we are left with

1
(D — Ay = —2 ()0 + 29, (D5.7)

where

) = i(wiws — wiws)o 363 (). (D.5.8)

We have therefore obtained a modified version of the Licherowicz formula, which reduces, as
expected, to the classical one in the case § = 0. Indeed, = is different from zero if and only if wy
and wy do not commute. Moreover, from we obtain that the scalar curvature should be
equal to —%(wa)Q, and this is consistent with the computation of the Ricci curvature performed
in the previous section (cfr. equation ) It is interesting to notice that the new term
appearing in this Licherowicz-like formula is a second order pseudodifferential operator and it is

proportional to o2, so that it distinguishes the two polarizations of a spinor field.
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