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CHAPTER 1

Introduction

In the last decades extensive work has been devoted to the definition, construction and characteri-

zation of noncommutative spaces. Motivations for this interest came both from mathematics [C94]

and from physics [Be88, C94, DFR94, DFR95, Pad85, Pad87, CMa07]. A noncommutative space

can be studied on several levels: algebraic, topological, differential, metric and others. In this

thesis we shall be interested, in particular, in the differential and metric structure of (compact)

noncommutative spin manifolds and of noncommutative principal bundles. Noncommutative spin

manifolds are the central objects of Connes’ noncommutative geometry [C94]. A structure of non-

commutative spin manifold on a noncommutative topological compact space (which is described

by a C∗-algebra A, representing the algebra of continuous functions over the noncommutative

space) is codified as spectral triple (A,H, D). Here A ⊆ A is a pre-C∗-algebra representing the

algebra of smooth functions, H a Hilbert space representing the space of L2-spinors and D the

Dirac operator. Often one can equip a spectral triple with a real structure J and a certain Z2-

grading γ. Connes introduced a number of axioms for such a real or even spectral triple, in order

to describe a noncommutative spin manifold [C95, C96, C00, GBFV, CMa07]. We shall review

these axioms in chapter 3. Moreover, we will discuss some additional properties of spectral triples

and introduce some tools we shall use elsewhere in this thesis.

Noncommutative principal bundles, instead, were mostly studied on the algebraic level till

recently. Their construction relies on the identification of Hopf algebras as noncommutative

generalization of groups [Dri87, Wor87, FRT90, Wor91, Kassel]. T. Brzezinski and S. Majid

[BM93] introduced the notion of quantum principal bundles, defining them to be H-comodule

algebras (where H is a Hopf algebra replacing the structure group of the bundle). Moreover, they

introduced also a notion of connection and discussed the role of the differential calculus. These

notions were substantially developed recently (see, e.g., [B96, Haj96, BM98b, B99, BH99, BM00,

DGH01, BH09, HKMZ11]) and we shall review them in the first sections of chapter 4.

The main goal of this thesis is to study the noncommutative (spin) geometry of some classes

of quantum principal bundles. Namely we shall consider noncommutative bundles mainly with

1



1. Introduction

classical structure (Lie) group; that is, H-comodule algebras with H a Hopf algebra of smooth

functions over a (compact, connected, semisimple) Lie group G. In particular, chapters 4, 5, 6, 7

will be devoted to the cases G = U(1) and G = Tn, while a partial extension of our constructions

and of our results to the general case will be discussed in chapter 8. Our aim will be to understand

the relation of the spin structure on the total space of a quantum principal bundle with the spin

structure on the base space and with the metric structure of the fibres.

Let us briefly recall the classical picture. Consider, first, a principal G-bundle π : P → M

(with G a compact, connected, semisimple Lie group), and assume that (M, g) is a Riemannian

(spin) manifold. Then, given a bi-invariant metric on G and a connection on P , there is a metric

on P such that π is a Riemannian submersion with totally geodesic fibres (see, e.g., [Mor96],

lemma 1.1.1). Moreover, under suitable hypotheses, the Dirac operator on the total space of

the bundle can be related to that one on the base space. So, in the classical case it is quite

straightforward to put a structure of Riemannian (spin) manifold on the total space of a principal

G-bundle over a Riemannian (spin) manifold. Moreover, the metric structure obtained in this

way depends on the choice of a connection on the bundle and of a bi-invariant metric on the

group. In this thesis we shall obtain a (partial) extension of this construction to noncommutative

G-bundles. Next, consider the opposite situation. That is, assume to be given a principal G-

bundle π : P → M with P and M two Riemannian spin manifolds and assume that π is a

Riemannian submersion with totally geodesic fibres. Then we can look for a relation between the

spin structure and the Dirac operator on P and those on M . In the U(1) case such a relation

admits a quite simple description [Amm98, AmmB98]: the Dirac operator on the total space can

be expressed as the sum of three differential operators: a vertical Dirac operator, which acts on

the fibres, an horizontal Dirac operator which encodes the metric structure of the base space and

a zero order term whose existence is connected with the vanishing of the torsion of the Levi-Civita

connection. For a generalization to noncommutative bundles usually the concept of the metric is

not available in general, if not indeed codified in terms of a spectral triple. Thus one has to work

directly with spectral triples and, if necessary, to introduce other suitable notions. First steps

in this direction appeared in [DS13a, DSZ13], for quantum principal U(1)-bundles and we shall

recall these results. Moreover, we shall introduce a generalization for the case of Tn-bundles.

The thesis is organized as follows. In chapter 2, after a brief introduction to noncommutative

topological spaces, we shall quickly review basic notions on noncommutative geometry: the con-

struction of first order differential calculi over noncommutative algebras [C85], the definition and

the main properties of Hopf algebras [Sw69, Abe80, Maj95], the K-theory of C∗-algebras and the

algebraic K-theory of associative algebras [AtiHir59, AtiHir61, Blck98, Lan03], the Hochschild

homology and the Hochschild cohomology [CE, GM], the cyclic cohomology [C85] and, finally,

Kasparov’s bivariant KK-theory [Kas80].

In chapter 3 we shall review Connes’ noncommutative geometry [C94, C95, C96, C00, GBFV,

CMa07]. The first part will be dedicated to the definition of spectral triple and real spectral

triples and to the discussion of Connes’ axioms. Next, we shall recall some properties of spectral

triples: the Dirac calculus (that is, the first order differential calculus defined by the Dirac

operator), the inner fluctuations of the Dirac operator (which are related to the construction of

2



noncommutative gauge theories [CC96, CC06b, CMa07, CCM07, CC08]), the relation between

Connes’ noncommutative geometry and Riemannian geometry. Moreover, we shall recall the

notion of equivariant spectral triples (with respect to an action or to a coaction of a Hopf algebra):

this is the noncommutative formulation of the invariance of the metric and of the spin structure

of a Riemannian spin manifold under a group of the transformations. Finally, we shall briefly

discuss the relation between spectral triples and Kasparov’s KK-theory.

In chapter 4 we shall discuss the algebraic properties of quantum principal bundles. First

we shall review the definitions and the general structure of quantum principal bundles [BM93,

Haj96, BM98b, B99, BH99, BM00, DGH01, HKMZ11, BH09] discussing both the definition of

bundles with universal differential calculus and that of bundles with general calculus. We shall

pay attention to the different definitions of (strong) connections, recalling the reasons for which

they are equivalent, and to their behaviour under gauge transformations. Then we shall discuss

the cleft bundles. Cleftness is a notion close to that of triviality for a quantum principal bundle

[BM93]. We shall focus our attention to the case when all the algebras involved are ∗-algebras. As

a new result shall show how the known isomorphism of a cleft extension with a crossed product

algebra [BlCM86, DT86, BlM89, Ch98] becomes a ∗-isomorphism once a suitable structure of
∗-algebra on the crossed product is introduced. At the end of this part we shall also recall a

possible definition of quantum associated bundles [BF12]. Moreover, we will consider the special

case of quantum principal Tn-bundles. Requiring the compatibility of the calculus on the total

space of the bundle with the de Rham calculus on Tn, we shall show how these bundles admit

a characterization which makes easier to see that they share many properties with ordinary

principal Tn-bundles. In particular, we shall show how any strong connection, compatible with

the de Rham calculus, can be described in terms of a family of n 1-forms; this picture, of course,

is closely related to the classical one, when a connection can be described by a tn-valued 1-form

(here tn is the Lie algebra of Tn), whose components with respect to a suitable basis of tn are

exactly n 1-forms on the total space of the bundle.

In chapter 5 we study projectable spectral triples over noncommutative principal torus bun-

dles. The notion of projectability for a U(1)-equivariant real spectral triple over a quantum

principal U(1)-bundle was introduced in [DS13a], for triples of KR-dimension 3. In the first part

of this chapter we extend it to triples of any dimension (both even and odd); most of the results

discussed here can be found also in the recent paper [DSZ13]. Next we shall consider the more

general case of noncommutative principal Tn-bundles, extending the notion of projectability to

Tn-equivariant spectral triples (some of these results will appear in [DZ13]). Both in the U(1)

and in the more general Tn case we shall construct twisted Dirac operators: given a projectable

spectral triple and a strong connection over the bundle, we use the latter to twist the Dirac

operator of the original triple, obtaining in this way a new spectral triple. This gives a way to

produce new Dirac operators, encoding, possibly, different geometries. As an example of this issue

we discuss, in appendix D, the noncommutative 3-torus (as U(1)-bundle over a noncommutative

2-torus), showing that starting from the canonical flat Dirac operator we can produce twisted

Dirac operators that could describe geometries with non-trivial curvature. Moreover we shall

relate our construction to recent results in KK-theory [Mes11, BMS13].
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1. Introduction

Chapter 6 is the first of three chapters dedicated to the construction of real spectral triples

over cleft quantum principal G-bundles. Of course, we start from the simplest case: we consider

U(1)-bundles. Given a cleft Hopf-Galois O(U(1))-extension (where O(U(1)) is a suitable Hopf

algebra of functions over the circle) B ↪→ A together with an O(U(1))-equivariant real spectral

triple over B, we construct a U(1)-equivariant real spectral triple over A, exploiting the fact that

A is isomorphic to a crossed product algebra B oα A (in particular, we shall extend some of the

results in [BMR10]). We shall see that the triple obtained in this way is projectable, so that

one can produce twisted Dirac operators from it. Moreover, we shall discuss some properties

of the triple obtained in this way; in particular, we shall see that if the triple over B satisfied

some of Connes’ axioms, this will still be true for the triple over A. Finally, we shall give a brief

account of the behaviour of the construction under gauge transformations and discuss, as a simple

application, the noncommutative 2-torus.

Chapter 7 contains several new results which extend those of chapter 6 to cleft Tn-bundles.

In this case we shall exploit the isomorphism of a cleft Hopf-Galois H-extension B ↪→ A with a

crossed product algebra B#σH [BlCM86, DT86, BlM89, Ch98]. As we shall see in chapter 8, the

construction introduced here could be a good candidate for extending our construction to cleft

extensions with general Hopf algebra. Also in this case we shall see that the triples we construct

are projectable and we shall construct twisted Dirac operators.

In chapter 8 we shall discuss noncommutative principal G-bundles, where G is a compact

connected semisimple Lie group. We shall identify them with principal C∞(G)-comodule algebras.

In the first part of the chapter we shall study some general properties of these objects. In

particular we shall extend the results discussed in chapter 4 for torus bundles, showing how

demanding compatibility of the differential calculus over the total space of the bundle with the de

Rham calculus on C∞(G) allows to introduce a different characterization of quantum principal

G-bundles and, overall, of strong connections: these ones, indeed, can be described by families

{ωa} of 1-forms, with a = 1, . . . ,dim(G), each 1-form being associated to an element Ta of a

basis {Ta} of the Lie algebra of G. Next we shall discuss the construction of spectral triple over

cleft Hopf-Galois C∞(G)-extensions. These extensions can be identified with (almost trivial)

noncommutative principal G-bundles. We shall see that, under suitable hypotheses, the results of

chapter 6 and chapter 7 extend to this more general situation. In particular we shall produce new

spectral triples and new (twisted and non-twisted) Dirac operators. In this chapter, moreover,

we shall discuss in some detail the action of a gauge transformation on non-universal strong

connections and on the objects we introduced in the construction of the new spectral triples.

Finally, in chapter 9 we shall review the main results obtained in this thesis, adding some

general comments. Appendix A contains a review of the structure and the properties of noncom-

mutative tori, which we shall use many times as examples. Appendices B and C contain brief

accounts of locally convex topological spaces and noncommutative line modules, respectively. In

appendix D we shall discuss some further geometric properties of twisted Dirac operators on

the noncommutative 3-torus. In particular, we shall recover a (modified) Lichnerowicz formula,

obtaining in this way a possible expression for the scalar curvature of the geometry associated to

these operators.
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CHAPTER 2

Preliminaries

2.1 Introduction to noncommutative topological spaces

In this thesis we study noncommutative spin manifolds and noncommutative (principal or associ-

ated) bundles. Instead of ’noncommutative’ we shall often use the adjective ’quantum’, though in

physics, from which this term originates, it usually concerns phase spaces (e.g. cotangent spaces).

Roughly, coordinates on such ’virtual’ spaces ’fail to commute’, and indeed they are described in

terms of certain noncommuative algebras of would be ’functions’.

There are two pillars which underly our comprehension of such algebras. On the topological

level the first one is the commutative Gelfand-Naimark theorem, which establishes a bijective

correspondence between isomorphism classes of commutative (unital) C∗-algebras and homeo-

morphism classes of (compact) Hausdorff topological spaces. In one direction one associates to

a compact Hausdorff topological space X the C∗-algebra C(X) of continuous functions with the

sup norm. In the other direction to a C∗-algebra A one associates its spectrum ΣA, with the

weak-∗ topology.

The other one, valid on the topological level and as well on the smooth level, is Serre-Swan

theorem [Ser55, Swa62]. Given a vector bundle E → X over a topological space M , we can

consider the space Γ(E) = Γ(E,X) of continuous sections of E. Γ(E) is a C(X)-module and,

moreover, one can prove that the assignment E → Γ(E) is functorial, so that Γ can be seen as

a functor from the category of vector bundles over M to the category of C(X)-modules. It is a

faithful, full and exact functor. Then Serre-Swan theorem gives a one-to-one correspondence be-

tween isomorphism classes of vector bundles over X and isomorphism classes of finitely generated

projective C(M)-modules. Hence, given a compact noncommutative space A (that is, a unital

C∗-algebra), a vector bundle over A can be defined as a finitely generated projective A-module.

Notice that, in the noncommutative case, we have to distinguish between left and right modules.

Thus it is fully justified to work with C∗-algebras as algebras of continuous functions over

”virtual” noncommutative spaces. Moreover it is well-founded to consider, among all C∗-algebras,

5



2. Preliminaries

those which admit additional structures corresponding to the usual ones of topological and smooth

spaces, such as metric structure and well-behaving differential calculus.

2.2 First order differential calculus

To a compact smooth manifold M we can associate the space of smooth 1-forms Ω1(M). This is

a bimodule over the algebra C∞(M) of smooth functions over M , and determines the first order

differential calculus over M . In noncommutative geometry one replaces the algebra of smooth

functions with a (quite) general (possibly) noncommutative algebra A. Of course, in such a case

we do not have anymore canonically given Ω1(M), but it is convenient to have some differential

calculus over the algebra A. The problem is that there are different candidates and there is,

in general, no reason to prefer one or another. Nevertheless it is possible to study some of the

properties of all this calculi, and this is the aim of this section. Of course, here we will give only

the main results, omitting many details. We refer to e.g. [GBFV, Wor89] for a more detailed

discussion.

In this section A is taken to be a unital associative algebra over the field of complex numbers.

The symbol ⊗ shall denote the algebraic tensor product over C.

Definition 2.2.1. A first order differential calculus for an algebra A is an A-bimodule Γ together

with a linear map d : A→ Γ, obeying the Leibniz rule d(ab) = (da)b+ adb, such that any element

of Γ can be written as
∑

k akdbk for some ak, bk ∈ A. The map d is called differential.

Let now A be a unital algebra and consider the following differential calculus.

Definition 2.2.2. The universal differential calculus Ω1A = (Γu, du) over A is the differential

calculus defined by the bimodule Γu = ker(m) ⊂ A⊗A, where m : A⊗A→ A is the multiplication

map, and the differential d(a) = 1 ⊗ a − a ⊗ 1. The bimodule structure is simply given by

a(b⊗ c)a′ = ab⊗ ca′.

Ω1A (in the following we shall omit the differential du) is called the universal calculus. The

reason for this terminology is the following one.

Proposition 2.2.3. Let N be a sub-bimodule of Ω1A = ker(m). Consider the bimodule Γ =

Ω1A/N and the quotient map π. Let d = π ◦ du. Then (Γ, d) is a first order differential calculus.

Moreover, any first order differential calculus over A can be obtained in this way.

Proof. See [Wor89], proposition 1.1.

We shall use the notation Ω1(A) for a general first order differential calculus, like that of

proposition 2.2.3.

2.3 Hopf algebras

In this section we recall the definition and the main properties of Hopf algebras. For a more

detailed treatment we refer to literature (see e.g. [Abe80, Maj95, Sw69]). We will always work

on the field of complex numbers, although Hopf algebras can be defined over any field.
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2.3. Hopf algebras

Definition 2.3.1. A Hopf algebra is a unital associative algebra H equipped with two algebra

maps, ∆ : H → H ⊗ H and ε : H → C, and a linear map S : H → H obeying the following

relations:

(i) (∆⊗ id) ◦∆ = (id⊗∆) ◦∆,

(ii) (ε⊗ id) ◦∆ = (id⊗ ε) ◦∆ = id,

(iii) m ◦ (S ⊗ id) ◦∆ = m ◦ (id⊗ S) ◦∆ = η ◦ ε,
where m : H ⊗ H → H denotes the multiplication in H and η : C → H is the unit map. ∆ is

called the coproduct, ε the counit and S the antipode of H.

We shall adopt Sweedler’s notation [Sw69]: ∆(a) =
∑
a(1) ⊗ a(2) for any a ∈ H. Also, the

summation symbol will usually be understood, so that we shall simply write

∆(a) = a(1) ⊗ a(2).

Using Sweedler’s notation, we can rewrite the properties (i)-(iii) of the maps ∆, ε and S as follows:

(i) (a(1))(1) ⊗ (a(1))(2) ⊗ a(2) = a(1) ⊗ (a(2))(1) ⊗ (a(2))(2),

(ii) ε(a(1))a(2) = a(1)ε(a(2)) = a,

(iii) S(a(1))a(2) = a(1)S(a(2)) = ε(a)1H .

In particular, from property (i) (called coassociativity) we see that the following notation, and

its natural iterated version, are well defined:

(∆⊗ id)∆(a) = (id⊗∆)∆(a) = a(1) ⊗ a(2) ⊗ a(3).

Now let τ : H ⊗H → H ⊗H be the switch map, i.e. τ(x⊗ y) = y ⊗ x.

Definition 2.3.2. A Hopf algebra H is called commutative if it is commutative as associative

algebra. It is called cocommutative if τ ◦∆ = ∆.

Theorem 2.3.3. Let H be a Hopf algebra and S its antipode. Then the following properties hold.

(i) S(hl) = S(l)S(h) and S(1) = 1, i.e. S is an anti-homomorphism of algebras;

(ii) ε ◦ S = ε;

(iii) τ ◦ (S ⊗ S) ◦∆ = ∆ ◦ S. That is,

∆(S(h)) = Sh(2) ⊗ Sh(1);

(iv) the following conditions are equivalent:

1. for any h ∈ H, S(h(2))h(1) = η(ε(h)),

2. for any h ∈ H, h(2)S(h(1)) = η(ε(h)),

3. S2 = 1;

(iv) if H is both commutative and cocommutative, then S2 = 1.

Proof. See [Abe80], theorem 2.1.4.

Lemma 2.3.4. The antipode of a Hopf algebra is unique.

Proof. See [Maj95], proposition 1.3.1.
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Lemma 2.3.5. Let H be a Hopf algebra with invertible antipode S. Then, for any h ∈ H,

∆(S−1h) = S−1h(2) ⊗ S−1h(1) and h(2)S
−1h(1) = (S−1h(2))h(1) = ε(h).

Proof. See [Maj95], section 1.3 (in particular the solution of exercise 1.3.3).

Before going on we give some examples of Hopf algebras.

Example 2.3.6. Group algebra. Let G be a group and let C[G] be its group algebra, that is the

associative algebra whose elements are (finite) complex linear combinations of elements of G, and

whose product is the one induced by the product of G. We can make it into a Hopf algebra by

defining the maps ∆, ε and S on the elements of G and extending them by linearity to the whole

C[G]. In particular, we set, for any x ∈ G,

∆(x) = x⊗ x, ε(x) = 1, S(x) = x−1.

C[G] is a cocommutative Hopf algebra, with invertible antipode; moreover S−1 = S.

Example 2.3.7. Universal enveloping algebra. Let g be a Lie algebra and let Ug be its

universal enveloping algebra. Then it has a natural Hopf algebra structure, with coproduct,

counit and antipode defined as follows: for X ∈ g ⊂ Ug,

∆(X) = X ⊗ 1 + 1⊗X, ε(X) = 0, S(X) = −X.

Let us come back to the general theory of Hopf algebras. Since, as one would expect, we

will usually deal with ∗-algebras, we recall here the definition and the main properties of a Hopf
∗-algebra. For the details we refer to section 1.7 of Majid’s book [Maj95].

Definition 2.3.8. A Hopf ∗-algebra H is a Hopf algebra H equipped with an antilinear involution

∗ which makes it into an associative ∗-algebra, and such that:

∆(h∗) = (h(1))
∗ ⊗ (h(2))

∗, ε(h∗) = ε(h), (S ◦ ∗)2 = id.

Lemma 2.3.9. If H is a Hopf ∗-algebra then the antipode S is invertible, and we have: (Sh)∗ =

S−1(h∗) for any h ∈ H.

Proof. See [Pas01], 5.1.20.

Remark 2.3.10. In this thesis we will always assume the Hopf algebras we work with to have an

invertible antipode. There are at least two reasons for making this assumption: first, in general

we will deal with Hopf ∗-algebras, and in this case, due to the previous lemma, this will be

an empty requirement; in the second place, the lack of invertibility of the antipode carries some

technical difficulties: in particular it is an obstruction to the definition of a Hopf algebra structure

on the opposite and the co-opposite algebra of a Hopf algebra (see below). Also, some results

about the first order differential calculus (see e.g. [Wor87, Wor89]) and the structure of Hopf-

Galois extensions [Sch90a, Sch90b] have been proved under the assumption that the antipode is

invertible.
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2.3. Hopf algebras

As we have anticipated in the remark above, if the antipode of a Hopf algebra is invertible we

can define a Hopf algebra structure over its opposite and coopposite algebras [Maj95]. Indeed,

let H be a Hopf algebra with invertible antipode S. Then the opposite algebra Hop is still a Hopf

algebra, with antipode given by S−1. Moreover we can define the co-opposite algebra Hcop as

follows: it is isomorphic to H as an associative algebra, but the coproduct is given by ∆cop = τ ◦∆
(that is, ∆cop(h) = h(2)⊗ h(1)) and the antipode is S−1. If we perform both “operations”, that is

we take the co-opposite algebra of the opposite algebra of H, we get a Hopf algebra isomorphic

to H itself.

Let now H be any Hopf algebra, A be an associative algebra, and consider the space of linear

maps H → A. We can define a product on this space.

Definition 2.3.11. Let f, g : H → A be two linear maps. Their convolution product is the linear

map f ∗ g : H → A given by:

(f ∗ g)(h) = f(h(1))g(h(2)).

Due to the coassociative property of the coproduct of a Hopf algebra, the convolution product

is associative. Assume now that A has a unit, which we can see as a map ηA : C → A. Then

f ∗ (ηA ◦ ε) = (ηA ◦ ε) ∗ f = f , so ηA is the identity w.r.t. the convolution product. Moreover:

Definition 2.3.12. We say that a linear map f : H → A is convolution invertible if there exists

a linear map f−1 : H → A such that f−1 ∗ f = f ∗ f−1 = ηA ◦ ε.

2.3.1 Actions and equivariant modules

Let H be a Hopf algebra over C. Then we can consider modules over H.

Definition 2.3.13. A (left) H-module is a pair (V, ρ) where V is a complex vector space and ρ

is a representation of H on V (as an associative algebra). We shall usually write h . v (h ∈ H,

v ∈ V ) for ρ(h)v.

In the same way one defines right H-modules; we will denote by v / h (for v ∈ V , h ∈ H) the

right action of H on a right H-module V . We mention here only the simplest example of action

of H on a vector space V : the trivial action h . v = v / h = ε(h)v.

Now let A be an associative algebra (not necessarily unital). consider the following definitions.

Definition 2.3.14. The algebra A is a left H-module algebra if A is a left H-module and the

representation of H respects the algebra structure:

h . (ab) = (h(1) . a)(h(2) . b),

for any h ∈ H, a, b ∈ A. If A is unital we require moreover that

h . 1A = ε(h)1A, ∀h ∈ H.
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Definition 2.3.15. The algebra A is a right H-module algebra if A is a right H-module and the

representation of H respects the algebra structure:

(ab) / h = (a / h(1))(b / h(2)),

for any h ∈ H, a, b ∈ A. If A is unital we require moreover that

1A / h = ε(h)1A, ∀h ∈ H.

Definition 2.3.16. The algebra A is an H-bimodule algebra if it is both a left and a right H-

module algebra, and the left and the right actions commute with each other: (h.a)/ l = h. (a/ l),

for any h, l ∈ H and any a ∈ A.

We notice that the trivial action of H on an algebra A makes it into both a left and a right

H-module algebra (and also into a H-bimodule algebra, of course).

Now let A be a left H-module algebra and M be a left A-module; we denote simply by am

the action of a ∈ A on m ∈M . Then we consider the following definition.

Definition 2.3.17. M is a (left) H-equivariant A-module if M is itself a left H-module and

h . (am) = (h(1) . a)(h(2) . m)

for any h ∈ H, a ∈ A and m ∈M .

In the same way can be defined right H-equivariant A-modules. We conclude this paragraph

introducing an additional condition on the action of H on an algebra A in case of ∗-algebras. Let

H be a Hopf ∗-algebra, A be a ∗-algebra and assume that A is a (left) H-module algebra, in the

sense of definition 2.3.14. Then:

Definition 2.3.18. The action of H on A is said to be compatible with the star structure if

(h . a)∗ = (Sh)∗ . a∗

for any h ∈ H, a ∈ A.

When we will consider H-module ∗-algebras w.r.t. a Hopf ∗-algebra we will always assume,

unless otherwise indicated, that the action of H on A is compatible with the star structure.

2.3.2 Coactions and comodules

Again, let H be a Hopf algebra over C. The coalgebra structure of H allows us to give the

following definitions.

Definition 2.3.19. Let V be a complex vector space. A linear map ρR : V → V ⊗H is said to

be a right coaction of H on V if:

(ρR ⊗ id) ◦ ρR = (id⊗∆) ◦ ρR,
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2.3. Hopf algebras

(id⊗ ε) ◦ ρR = id.

If ρR is a right coaction, V is called a right H-comodule.

Definition 2.3.20. Let V be a complex vector space. A linear map ρL : V → H ⊗ V is said to

be a left coaction of H on V if:

(id⊗ ρL) ◦ ρL = (∆⊗ id) ◦ ρL,

(ε⊗ id) ◦ ρL = id.

If ρL is a left coaction, V is called a left H-comodule.

For H-comodules we introduce the analogue of Sweedler’s notation:

ρR(v) = v(0) ⊗ v(1),

ρL(v) = v(−1) ⊗ v(0).

If V is both a left and a right H-comodule we can consider the following definition.

Definition 2.3.21. V is a H-bi-comodule if it is both a left and a right H-comodule, with

coactions ρL and ρR respectively, and

(ρL ⊗ id) ◦ ρR = (id⊗ ρR) ◦ ρL.

As in the case of actions of a Hopf algebra, we can consider coactions on associative algebras.

So, let A be an algebra (non necessarily unital); then:

Definition 2.3.22. The algebra A is a left (right) H-comodule algebra if it is an H-comodule

and the coaction ρL (ρR) is an algebra map. If A has a unit we also require that ρL,R(1) = 1⊗ 1.

In case A is a ∗-algebra and H is a Hopf ∗-algebra, we require also the compatibility between

the star structure and the comodule structure:

ρL,R◦∗ = (∗⊗∗) ◦ ρL,R. (2.3.1)

We give here also the following definition, which we shall use in the definition of quantum principal

bundles.

Definition 2.3.23. Let A be a left H-comodule algebra, with left coaction ρL. The invariant

subalgebra of A is the subalgebra

AcoH = {a ∈ A | ρL(a) = 1⊗ a}.

If instead A is a right H-comodule algebra, with coaction ρR, then we define:

AcoH = {a ∈ A | ρR(a) = a⊗ 1}.
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Let us mention here one important example of H-comodule algebras: to any Hopf algebra H

can be given a structure of (right) H-comodule algebra via the right adjoint coaction,

adR(h) = h(2) ⊗ S(h(1))h(3). (2.3.2)

Let now A be a (right) H-comodule algebra, with coaction ρR, and let B be another associative

algebra. Then, generalizing (2.3.11), we can define the right convolution product of a map f :

A→ B with a map g : H → B as the map f ∗R g : A→ B defined by:

(f ∗R g)(a) = f(a(0)g(a(1)). (2.3.3)

In a similar way one defines the left convolution product ∗L for left H-comodule algebras.

Finally, as for H-module algebras, we can define H-equivariant A-modules for H-comodule

algebras. So let A be a left H-comodule algebra and let M be a left A-module; we denote by am,

a ∈ A m ∈M , the action of A on M .

Definition 2.3.24. M is a left H-equivariant (left) A-module if it is itself a left H-comodule,

with coaction ρ′L, and

ρ′L(am) = a(−1)m(−1) ⊗ a(0)m(0).

A similar definition can of course be given for right A-modules and/or for right H-comodule

algebras.

2.3.3 First order differential calculus over Hopf algebras

As for any associative algebra, we can endow a Hopf algebra with a first order differential calculus

(see section 2.2). The coalgebra structure of a Hopf algebra allows us to consider a special class

of first order differential calculi, which satisfy suitable properties of covariance with respect to

the coproduct of the Hopf algebra.

So, let us consider a (general) first order differential calculus Ω1(H) on a Hopf algebra H. We

know that each element of Ω1(H) can be written as a sum
∑

k akdbk with ak, bk ∈ H. Then we

can give the following definitions.

Definition 2.3.25. The first order differential calculus Ω1(H) is left-covariant if, for any

ak, bk ∈ H, ∑
k

akdbk = 0 ⇒
∑
k

∆(ak)(id⊗ d)∆(bk) = 0.

Definition 2.3.26. The first order differential calculus Ω1(H) is right-covariant if, for any

ak, bk ∈ H, ∑
k

akdbk = 0 ⇒
∑
k

∆(ak)(d⊗ id)∆(bk) = 0.

Definition 2.3.27. Ω1(H) is a bicovariant first order differential calculus if it is both left-

covariant and right-covariant.
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One of the most relevant properties of left/right-covariant calculi is that they can be charac-

terized by a right ideal R ⊆ ker(ε) of H. In order to state this result we need to introduce two

maps r, s : H ⊗H → H ⊗H [Wor87, Wor89]:

r(a⊗ b) = (a⊗ 1)∆(b) = ab(1) ⊗ b(2), (2.3.4)

s(a⊗ b) = (1⊗ a)∆(b) = b(1) ⊗ ab(2). (2.3.5)

Both r and s are bijections, and their inverses are given by [Wor87, Wor89]:

r−1(a⊗ b) = (a⊗ 1)(S ⊗ id)∆(b) = aS(b(1))⊗ b(2), (2.3.6)

s−1(a⊗ b) = (b⊗ 1)τ(id⊗ S−1)∆(a) = bS−1a(2) ⊗ a(1). (2.3.7)

Using these maps we can state the following theorems.

Theorem 2.3.28. Let R ⊂ ker(ε) be a right ideal of H and let N = r−1(H ⊗ R). Then N is

a sub-bimodule of ker(m). Moreover, let Ω1(H) = ker(m)/N , let π : ker(m) → Ω1(H) be the

canonical projection and let d = π ◦ du. Then the first order differential calculus (Ω1(H), d) is

left-covariant. Moreover, any left-covariant first order differential calculus on H can be obtained

in this way.

Proof. See [Wor89], theorem 1.5.

Theorem 2.3.29. Let R ⊂ ker(ε) be a right ideal of H and let N = s−1(H ⊗ R). Then N

is a sub-bimodule of ker(m). Moreover, let Ω1(H) = ker(m)/N , let π : ker(m) → Ω1(H) be

the canonical projection and let d = π ◦ du. Then the first order differential calculus (Ω1(H), d)

is right-covariant. Moreover, any right-covariant first order differential calculus on H can be

obtained in this way.

Proof. See [Wor89], theorem 1.6.

Even more interesting is the structure of bicovariant calculi. And this is the class we are

interested in (at least, it is the relevant class of differential calculi we need in order to define

quantum principal bundles). Before stating the main result we need a definition. We recall that

adR is the right adjoint coaction, see equation (2.3.2).

Definition 2.3.30. A linear subset Q ⊆ H is adR-invariant if adR(Q) ⊆ Q⊗H.

Theorem 2.3.31. Let Q ⊂ ker(ε) be a right ideal of H, let N = r−1(H ⊗ Q) and let Ω1(H) be

the associated differential calculus, like in theorem 2.3.28. Then Ω1(H) is bicovariant if and only

if Q is adR-invariant

Proof. See [Wor89], theorem 1.8.

In particular any bicovariant differential calculus can be realized in this way. It is clear that

the universal calculus Ω1H is a bicovariant calculus (it corresponds to the choice Q = {0}). Also,
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we see that any Hopf algebra admits a non-trivial bicovariant differential calculus. Indeed, take

Q = ker(ε): it is adR-invariant,

(ε⊗ id)adR(h) = ε(h(2))S(h(1))h(3) = S(h(1))h(2) = ε(h) = 0

for any h ∈ ker(ε), and therefore it determines a bicovariant first order differential calculus.

We conclude this paragraph by noticing the fact that a bicovariant differential calculus Ω1(H)

admits a natural structure of H-bi-comodule, with coactions ∆Ω
L : Ω1(H) → H ⊗ Ω1(H) and

∆Ω
R : Ω1(H)→ Ω1(H)⊗H defined as follows:

∆Ω
L(adb) = a(1)b(1) ⊗ a(2)db(2), (2.3.8)

∆Ω
R(adb) = a(1)db(1) ⊗ a(2)b(2). (2.3.9)

Both coactions are well defined. Moreover, Ω1(H) is both a left and a right H-equivariant H-

module. We refer to [Wor89], sections 1 and 2, for the proof of these results.

2.4 K-theory

K-theory is a generalized cohomological theory. Its topological version was first introduced by Sir

M. F. Atiyah and F. Hirzebruch in 1959 [AtiHir59, AtiHir61]; they defined the K group K(X) of

a topological space X to be the Grothendieck group of stable isomorphism classes of topological

vector bundles over X. K-theory proved to be a very useful tool and to have applications in many

fields of mathematics (see, e.g., the discussion in [Bak87, C94]). Moreover, Serre-Swan theorem

[Ser55, Swa62] allows for a reformulation of K-theory, where topological vector bundles over X are

replaced by finitely generated projective modules over C(X). This was generalized to K-theory

of C∗-algebras (see [Blck98] and references therein) and it is a main tool in noncommutative

topology and noncommutative geometry (see [C94] and references therein).

In this section we will briefly recall the definition and the properties of K-theory of C∗-

algebras. Moreover, in the last part, we will discuss the relation between the algebraic K-theory

of a pre-C∗-algebra with that of its C∗-completion.

2.4.1 The K0 group of a C∗-algebra

First of all we present the construction of the K0 group of a C∗-algebra and we study its main

properties. We begin by considering unital C∗-algebras. In the next section we will extend the

construction to non-unital algebras using the functoriality properties of K0. For the details we

refer to [Lan03].

Let us begin by discussing some properties of projections in a C∗-algebra. We recall that a

projection in a C∗-algebra B is a selfadjoint element p of B such that p2 = id.

Definition 2.4.1. Let B be a unital C∗-algebra. Two projections p, q ∈ B are called:

• homotopy equivalent, written p ∼h q, if there is a path e(t) of projections in B such that

e(0) = p, e(1) = q;

14
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• unitarily equivalent, written p ∼u q, if there is a unitary u ∈ B such that q = upu∗.

Lemma 2.4.2. Let p, q be projections in a unital C∗-algebra B. Then if p and q are homotopy

equivalent then they are unitarily equivalent.

In general the converse is not true. Now let A be a unital C∗-algebra and let Mn(A) be the

space of n × n matrices with coefficients in A. Consider the disjoint union M(A) =
∞∐
n=1

Mn(A).

We define the direct sum of an element a ∈Mk(A) with an element b ∈Ml(A) as the element

a⊕ b =

(
a 0

0 b

)

in Mk+l(A). Next we introduce an equivalence relation on M(A) as follows: for p ∈Mn(A) and

q ∈ Mm(A) we say that p ∼ q if q = p⊕ 0m−n (for m > n) or p = q ⊕ 0n−m (for n < m), where

0k is the zero k × k matrix. Then we give the following definition.

Definition 2.4.3. For a C∗-algebra A we define the space M∞(A) to be the quotient M(A)/ ∼.

We make M∞(A) into a ∗-algebra in the following way: any two classes [a], [b] in M∞(A) come

from two elements a, b ∈Mn(A) for some n, so we can define

[a] + [b] = [a+ b], [a] · [b] = [ab];

the star structure is simply the one induced by that of Mn(A): [a]∗ = [a∗]. In the same way we

can put a norm on M∞(A): ‖[a]‖ = ‖a‖. Taking the closure w.r.t. this norm we get a C∗-algebra.

Now we focus our attention on projections. In particular, we define P∞(A) as the set of

projections in M∞(A). We have seen above that in general homotopic equivalence is stronger

than unitarily equivalence. A relevant fact is that this is no longer true for P∞:

Lemma 2.4.4. The equivalence relations ∼h and ∼u on the set P∞(A) coincide.

Now we can define the K0 group of a unital C∗-algebra A.

Definition 2.4.5. Let A be a unital C∗-algebra. Then we define K0(A) as the abelian group

with one generator for each equivalence class p of projections p ∈ P∞(A) under the equivalence

relation ∼h=∼u, and addition [p] + [q] = [p⊕ q] between these generators.

The geometric meaning of this definition can be deduced from the result below, recalling that

spaces of continuous sections of vector bundles over a topological space X are in correspondence

with finitely generated projective modules over C(X).

Proposition 2.4.6. Let A be a unital C∗-algebra. Let p ∈Mn(A) and q ∈Mm(A). Then p ∼h q
in P∞(A) iff pAn and qAm are isomorphic as right A-modules.

Therefore K0(A) can also be seen as the (Grothendieck) group of isomorphism classes of

finitely generated projective modules over A.
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2.4.2 K-theory functors and functoriality of K0

Now that we have defined K0, we can show that it is actually a functor, and this allows us to

introduce the general notion of K-theory functor. We begin with some preliminary definitions.

Definition 2.4.7. Let A be a C∗-algebra and let K be the C∗-algebra of compact operators on a

separable Hilbert space. Then the tensor product AS = K ⊗ A is the completion of the algebraic

tensor product K�A in the unique1 C∗-norm and it is called the stabilization of A. A C∗-algebra

B is called stable whenever BS ' B. Two C∗-algebras B and C are said stably equivalent if

BS ' CS.

Definition 2.4.8. Let A and B be C∗-algebras. Two morphisms of C∗-algebras ϕ,ψ : A → B

are called homotopic, written ϕ ∼h ψ, if there is a path φt : A→ B of morphisms of C∗-algebras

for which the function φt(a) is continuous in t ∈ [0, 1] for each a ∈ A and φ0 = ϕ, φ1 = ψ.

Definition 2.4.9. Two C∗-algebras A and B are said to be homotopy equivalent, written A ∼h B,

if there are morphisms α : A→ B and β : B → A such that α ◦ β ∼h idB and β ◦ α ∼h idA.

Definition 2.4.10. A C∗-algebra A is called contractible if A ∼h 0.

Definition 2.4.11. The cone of a C∗-algebra A is the C∗-algebra CA = C0((0, 1], A), that is the

algebra of continuous functions from (0, 1] to A vanishing at zero.

The suspension of a C∗-algebra A is the C∗-algebra SA = C0((0, 1), A), that is the algebra of

continuous functions from (0, 1) to A vanishing at 0 and at 1.

Lemma 2.4.12. The cone of any C∗-algebra is contractible.

Definition 2.4.13. A functor H from C∗-algebras to abelian groups is called half-exact if, given

the short exact sequence of C∗-algebras

0→ J → A→ A/J → 0,

the corresponding sequence of abelian groups is exact at H(A):

H(J)→ H(A)→ H(A/J).

Definition 2.4.14. A functor H from C∗-algebras to abelian groups is called a K-theory functor

if it has the following properties

(a) it is normalized: either H(C) = Z or H(C) = 0;

(b) it is homotopy-invariant: if A and B are homotopy equivalent, then H(A) ' H(B);

(c) it is stable: H(AS) = H(A);

(d) it is continuous: it commutes with inductive limits;

(e) it is half-exact.

Theorem 2.4.15. The functor K0 is a K-theory functor.

1See [GBFV], section 1.A.
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The property of half-exactness of the functor K0 allows us to define in a satisfactory way the

K0 group of a non-unital C∗-algebra A. And, although we shall always deal with unital algebras

in this thesis, we need to define the K0 group of a non-unital algebra since we shall use suspension

algebras, which are non-unital, to define higher-rank K-theory groups.

So, let us consider a non-unital C∗-algebra A, and let us denote by A+ the unitization of A

obtained adjoining a unit: A+ = A×C, with product (a, λ) · (b, µ) = (ab+ λb+ µa, λµ) and sum

(a, λ) + (b, µ) = (a+ b, λ+ µ) [GBFV]. Then we have the short exact sequence

0→ A→ A+ → C→ 0.

Hence, if π : A+ → A+/A ' C denotes the canonical surjection, we define K0(A) as the kernel of

π∗ : K0(A+) → K0(C). In this way we extend K0 to a (covariant) functor from the category of

C∗-algebras, unital and non-unital, to that of abelian groups, this extension still being a K-theory

functor.

2.4.3 The K1 group of a C∗-algebra

There are several different (but equivalent) ways to define the K1 group of a C∗-algebra. Here

we present one of them, while in the next section we will introduce a general construction for

higher-rank K-theory groups Kn, and we will show that in the n = 1 case it reduces to the

definition presented here. We refer to [Blck98, GBFV, C85, C94, Kar78, W-O93] for the details.

Let A be a C∗-algebra and let A+ denote its unitization. Let GLn(A+) be the set of invertible

n× n matrices with values in A+; we define GLn(A) to be the group

GLn(A) = {x ∈ GLn(A+) | x ≡ idn mod Mn(A)}.

It can be shown that GLn(A) is a normal closed subgroup of GLn(A+). Next we embed GLn(A)

into GLn+1(A) in the following way:

x ∈ GLn(A) 7→

(
x 0

0 1

)
.

Finally we define GL∞(A) to be the direct limit of the groups GLn(A). Let GL∞(A)0 denote the

connected component of the identity in GL∞(A). Then we can give the following definition.

Definition 2.4.16. The K1 group of the C∗-algebra A is the quotient K1(A) = GL∞(A)/GL∞(A)0.

There is an equivalent characterization of K1(A). Let U∞(A) be the group of unitary matrices

defined in the same way as GL∞(A) and let U∞(A)0 be the connected component of the identity

of U∞(A). Then one can prove that [W-O93]:

Lemma 2.4.17. K1(A) is isomorphic to U∞(A)/U∞(A)0.

In particular an element of K1 can be seen as an equivalence class [u], with u ∈ Un(A+) for
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some n > 0, and the product in K1(A) can be written in the following way:

[u][v] = [uv] =

[(
u 0

0 v

)]
.

This allows us to see that K1(A) is an abelian group. One can also prove the following result

[W-O93].

Proposition 2.4.18. K1 is a K-theory functor.

2.4.4 Higher K-theory groups and Bott periodicity

In the previous section we introduced the concept of suspension of a C∗-algebra (see definition

2.4.11). It can be proved that it gives rise to a covariant functor [W-O93], the suspension functor,

which we shall denote by S. Also, one can prove that S is an exact functor2. Now we will use this

functor to introduce higher dimensional K-theory groups and to state one of the main results of

algebraic K-theory: the Bott periodicity.

Let us begin by noticing the following fact: the K1 group of a C∗-algebra A is nothing else

than the K0 group of its suspension. More precisely,

Theorem 2.4.19. For every C∗-algebra A there is an isomorphism θA : K1(A)→ K0(SA) which,

whenever α : A→ B is a C∗-algebras morphism, makes the following diagram commutative:

K1(A)
α∗ //

θA
��

K1(B)

θB
��

K0(SA)
Sα∗

// K0(SB)

Proof. See [W-O93], theorem 7.2.5.

This result allows us to give the following definition.

Definition 2.4.20. The n-th K-theory group of a C∗-algebra A is the abelian group Kn(A) =

K0(SnA).

Proposition 2.4.21. For any n ≥ 0, Kn is a K-theory functor.

The following results show that the only relevant groups are K0 and K1:

Theorem 2.4.22. For every C∗-algebra A there is an isomorphism βA : K0(A)→ K1(SA) such

that, for every morphism α : A→ B, the following diagram is commutative:

K0(A)
α∗ //

βA
��

K0(B)

βB
��

K1(SA)
Sα∗

// K1(SB)

2A functor F : C → D, between two abelian categories [McL] C and D, is said an exact functor if it carries
exact sequences into exact sequences. More precisely, if for every short exact sequence 0→ A→ B → C → 0 in C,
0→ F (A)→ F (B)→ F (C)→ 0 is a short exact sequence in D (see [McL], VIII.3).
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Proof. See [W-O93], chapter 9.

Corollary 2.4.23 (Bott periodicity). For every C∗-algebra A, K0(A) ' K0(S2A) and K1(A) '
K1(S2A).

2.4.5 Algebraic K-theory

The definition of the K-theory groups introduced in the previous sections is valid only for C∗-

algebras. We introduce now a more general formulation, entirely algebraic, which is applicable

to any algebra. We refer to [GBFV, Lo, Kar78, Ros97] for the details of the construction.

Let A be a unital algebra. Consider the following definition.

Definition 2.4.24. The algebraicK-theory group Kalg
0 (A) of a unital algebra A is the Grothendieck

group of isomorphism classes of finitely generated projective right A-modules.

In the case of C∗-algebras there is no difference with the previous definition. Indeed (see

[GBFV], theorem 3.14),

Theorem 2.4.25. There is an isomorphism Kalg
0 (A) ' K0(A) for any unital C∗-algebra A.

Now we introduce the definition of the algebraic K1 group. As we shall see, it does not

coincide with the K1 group defined above.

Definition 2.4.26. The algebraic K-theory group Kalg
1 (A) of a unital algebra A is the abelian-

ization GL∞(A)ab of the group GL∞(A), that is, the quotient of GL∞(A) by the subgroup of the

commutators.

We can compare it to the group K1(A). Let A be a unital C∗-algebra. Then GL∞(A) is a

topological group (see discussion above). If we endow GL∞(A) with the discrete topology we

get another topological group, which we denote by GLdisc∞ (A). One can show that the identity

map GLdisc∞ (A) → GL∞(A) induces an homomorphism Kalg
1 (A) → K1(A). More precisely (see

[GBFV], section 3.7; see also [Ros97]),

Proposition 2.4.27. Let A be a unital C∗-algebra. Then the identity map GLdisc∞ (A)→ GL∞(A)

induces an homomorphism Kalg
1 (A)→ K1(A) which is surjective and functorial in A.

Under some conditions on the algebra A this morphism is also injective.

Proposition 2.4.28. Let A be a stable unital C∗-algebra, that is a C∗-algebra such that A '
A⊗K. Then the map of proposition 2.4.27 is an isomorphism of groups.

Proof. See [Ros97], theorem 1.4.

It is possible to define also higher dimensional algebraic K-theory groups, but this is far

beyond the aim of this thesis. So we shall not discuss them here.
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2.4.6 K-theory of pre-C∗-algebras

In this thesis we shall often deal with pre-C∗-algebras: indeed, if we take a look to the commutative

case, we see that the algebra of continuous functions over a compact smooth manifold M , C(M),

is a C∗-algebra, while the subalgebra of smooth functions, C∞(M), is only a pre-C∗-algebra.

Since in Connes’ noncommutative geometry it is the latter to be involved, we need to define also

K-theory of pre-C∗-algebras. In this section we discuss the main properties of this version of K-

theory. We refer to [GBFV] for the details. First of all we recall the definition of a pre-C∗-algebra

[GBFV].

Definition 2.4.29. A pre-C∗-algebra is a subalgebra of a C∗-algebra that is stable under holo-

morphic functional calculus.

Now, let A be a pre-C∗-algebra. We define its K0 group to be its algebraic K-theory group

Kalg
0 . That is,

Definition 2.4.30. The K0 group of a pre-C∗-algebra A is the Grothendieck group of isomor-

phism classes of finitely generated projective right A-modules.

Now we shall study the relation between the K0 group of a pre-C∗-algebra and that of its

C∗-completion. We begin by stating the following result [Schw92].

Proposition 2.4.31. Let A be a pre-C∗-algebra. Then Mn(A) is a pre-C∗-algebra for all n.

This result implies (see [GBFV], section 3.8) that, if A is the completion of A, the inclusion

ι : A → A extends to a morphism K0ι : K0(A)→ K0(A). Moreover, one can prove the following

fact (see [GBFV], theorem 3.44).

Theorem 2.4.32. If A is a Fréchet pre-C∗-algebra with C∗-completion A, the inclusion ι : A → A

induces an isomorphism K0ι : K0(A)→ K0(A).

Therefore, the K-theory of Fréchet pre-C∗-algebras is the same as that of the corresponding

C∗-completions.

2.5 Hochschild (co)homology

In this section we introduce Hochschild homology and Hochschild cohomology. We will give only

a brief discussion, referring to classical literature for the details (see e.g. [CE, GM, GBFV]).

Let A be a unital associative algebra over C and let A◦ be its opposite algebra. We define

the enveloping algebra of A to be the unital associative algebra Ae = A⊗ A◦. Now let M be an

A-bimodule. We can regard it as a right Ae-module, where the right action of Ae on M is given

by

m(a⊗ b◦) = bma,

for m ∈M , a, b ∈ A. Then we can give the following definition

Definition 2.5.1. Given an A-bimodule M , we define the n-th Hochschild homology group of

A with values in M to be the group Hn(A,M) = TorA
e

n (M,A).
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That is, Hn(A,−) is the n-th left derived functor [HS] of the functor M ⊗Ae −. Using the

bar resolution to compute TorA
e

n we can give an alternative description of Hochschild homology.

Skipping some details, we say that the Hochschild homology can be defined to be the homology

of the following complex: let Cn(M,A) = M ⊗A⊗n and let bn : Cn → Cn−1 be the map

b(m⊗ a1 ⊗ . . .⊗ an) =ma1 ⊗ . . .⊗ an

+
n−1∑
i=1

(−1)im⊗ a1 ⊗ . . .⊗ aiai+1 ⊗ . . .⊗ an

+ (−1)nanm⊗ a1 ⊗ . . .⊗ an−1.

(2.5.1)

Then we can see, by direct computation, that bnbn−1 = 0. We call b the collection of the maps

bn. We put a structure of A-bimodule on Cn(M,A) in the following way:

a(m⊗ a1 ⊗ . . . an)b = am⊗ a1 ⊗ . . .⊗ anb.

We call Cn(M,A) the space of Hochschild n-chains with values in M , and we define the Hochschild

homology to be the homology of the complex (C•(M,A), b). The elements ξ of Cn(M,A) such

that bξ = 0 will be called Hochschild n-cycles and the elements ξ of Cn(M,A) such that there is

η ∈ Cn+1(M,A) with bη = ξ will be called Hochschild n-borders.

Now we turn to Hochschild cohomology. Consider, again, an A-bimodule M . Now we see it

as a left Ae-module, with action of Ae on M given by

(a⊗ b◦)m = amb.

Then we give the following definition.

Definition 2.5.2. Given an A-bimodule M , we define the n-th Hochschild cohomology group of

A with values in M to be the group Hn(A,M) = ExtnAe(A,M)

This means that the n-th cohomology group is the left n-derived functor of the functor

Hom(−,M). Also in this case, using the bar resolution, we can obtain an equivalent defini-

tion of Hochschild cohomology. Consider, indeed, the following complex. Let Cn(A,M) be the

space of n-linear maps ϕ : An →M . Put on Cn(A,M) the following structure of A-bimodule:

(aϕb)(a1, . . . , an) = aϕ(a1, . . . , an)b.

Then define a map b : Cn(A,M)→ Cn+1(A,M) by

bnϕ(a1, . . . , an+1) =a1ϕ(a2, . . . , an+1)

+

n∑
j=1

(−1)jϕ(a1, . . . , ajaj+1, . . . , an+1)

+ (−1)n+1ϕ(a1, . . . , an)an+1.

(2.5.2)

Let now b denote the collection of the operators bn. Then one can see that b2 = 0. Hence
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Hochschild cohomology can be defined as the cohomology of the complex (C•(A,M), b). The

elements of Cn(A,M) will be called Hochschild n-cochains, the elements ϕ ∈ Cn(A,M) such that

bϕ = 0 Hochschild n-cocycles and those such that there exists ψ ∈ Cn−1(A,M) with bψ = ϕ

Hochschild n-coborders. The space of Hochschild n-cocycles will be denoted by Zn(A,M), that

one of n-coborders by Bn(A,M).

2.6 Cyclic cohomology

In this section we introduce an analogue for the de Rham cohomology for noncommutative spaces

[C85], the cyclic cohomology, and we discuss briefly its relation with Hochschild homology and

K-theory. We begin with the basic definitions.

Let A be a unital associative algebra and let A∗ be the space of all linear functionals from A

to C. A∗ is a bimodule over A, and therefore one can consider Hochschild n-cochains with values

in A∗. Then we can notice [GBFV] that a Hochschild n-cochain ϕ ∈ Cn(A,A∗) can be seen as a

linear map ϕ : A⊗
n+1 → C. Under this identification the Hochschild coboundary map b is given

by:

bϕ(a0, . . . , an+1) =ϕ(a0a1, a2, . . . , an+1)

+
n∑
i=1

(−1)iϕ(a0, . . . , aiai+1, . . . , an+1)

+ (−1)n+1ϕ(an+1a0, . . . , an).

Now let λ : C•(A,A∗)→ C•(A,A∗) be the operator, of degree 0, defined as follows:

λϕ(a0, . . . , an) = (−1)nϕ(an, a0, . . . , an−1). (2.6.1)

Definition 2.6.1. A Hochschild n-cochain ϕ ∈ Cn(A,A∗) is called cyclic if λϕ = ϕ. A Hochschild

n-cocycle ϕ ∈ Zn(A,A∗) is called cyclic if λϕ = ϕ.

Let us denote by Cnλ (A) the space of cyclic n-cochains and by Znλ (A) the space of cyclic

n-cocycles. One can prove the following result (see [C85], part II, corollary 4.).

Proposition 2.6.2. (C•λ(A), b) is a subcomplex of the Hochschild complex.

Therefore we can take the cohomology HC•(A) = H•λ(A) of (C•λ(A), b), and we call it the

cyclic cohomology of A. Notice that HC0(A) = Z0
λ(A) is the linear space of traces on A.

2.6.1 Cycles and Chern characters

Definition 2.6.3. Let Ω =

n⊕
i=0

Ωi be a graded differential algebra, with differential d of degree 1.

An integral on Ω is a linear map
∫

: Ω→ C such that:

(i)
∫
ωk = 0 for ωk ∈ Ωk, k < n;

(ii) if ωk ∈ Ωk and ωl ∈ Ωl then
∫
ωkωl = (−1)kl

∫
ωlωk;
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(iii) if ωn−1 ∈ Ωn−1 then
∫
dωn−1 = 0.

Definition 2.6.4. A cycle of dimension n is a complex graded algebra differential algebra (Ω, d),

Ω =

n⊕
i=0

Ωi, together with an integral
∫

.

Given two cycles it is straightforward to define their direct sum cycle and their tensor product

cycle [C85].

Next we define cycles over an algebra A.

Definition 2.6.5. Let A be an associative algebra. A cycle over A is an n-dimensional cycle

(Ω, d,
∫

) together with a homomorphism ρ : A→ Ω0.

Notice that if (Ω, d,
∫

) is a cycle over A, for any a0, . . . , ak ∈ A the object a0da1 · · · dak defines

an element of Ωk (here the map ρ is understood).

Now, given a cycle over A of dimension n we can canonically associate to it a cyclic n-cocycle:

Definition 2.6.6. The Chern character of a cycle (Ω, d,
∫

) of dimension n over a unital asso-

ciative algebra A is the (n+ 1)-linear functional defined by

chΩ(a0, . . . , an) =

∫
a0da1 · · · dan,

for any a0, . . . , an ∈ A.

The fact that chΩ is cyclic and that it is a cocycle follows directly from the property of the

integral of a cycle. Moreover one can prove the following result (see [GBFV], proposition 8.12;

see also [C85], part II, proposition 1 and proposition 8).

Proposition 2.6.7. An (n + 1)-linear functional τ : An+1 → C that vanishes on C ⊕ An is a

cyclic n-cocycle if and only if it is the Chern character of a cycle over A.

2.6.2 Cup product and periodicity of cyclic homology

Now we discuss some properties of cyclic homology. We begin by introducing the cup product.

We will use the following characterization of cyclic cocycles (cfr. also proposition 2.6.7).

Definition 2.6.8. Let A be a unital associative algebra. Then the universal graded differential

algebra Ω•A is the graded algebra Ω•A =
∞⊕
n=0

ΩnA, where Ω0A = A and ΩnA is the span of the

elements a0da1 · · · dan, with a0, . . . , an ∈ A. The differential d is simply defined as follows:

d(a0da1 · · · dan) = da0 · · · dan.

Proposition 2.6.9. Let ϕ be an (n+1)-linear functional on a unital associative algebra A. Then

the following conditions are equivalent:
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(i) there exists an n-dimensional cycle (Ω, d,
∫

) and a homomorphism ρ : A→ Ω0 such that

ϕ(a0, . . . , an) =

∫
ρ(a0)d(ρ(a1)) · · · d(ρ(an)),

for any a0, . . . , an ∈ A;

(ii) there exists a closed graded trace ϕ̂ of dimension n on Ω•A such that

ϕ(a0, . . . , an) = ϕ̂(a0da1 · · · dan),

for any a0, . . . , an ∈ A;

(iii) one has ϕ(a0, . . . , an) = (−1)nϕ(an, a0, . . . , an−1) and

n∑
i=0

(−1)iϕ(a0, . . . , aiai+1, . . . , an) + (−1)n+1ϕ(an+1a0, . . . , an) = 0,

for any a0, . . . , an ∈ A.

Proof. See [C85], part II, proposition 1.

Consider now two algebras A and B. In general the equality Ω•(A⊗B) = Ω•(A)⊗Ω•(B) does

not hold; nevertheless, from the universal property of Ω•(A⊗B) we get a natural homomorphism

π : Ω•(A⊗B)→ Ω•(A)⊗ Ω•(B). So we can give the following definition.

Definition 2.6.10. Consider two arbitrary cocycles ϕ ∈ Znλ (A) and ψ ∈ Zmλ (B). Then we define

ϕ#ψ as the (n+m+ 1)-linear functional associated to the graded trace

ϕ̂#ψ = (ϕ̂⊗ ψ̂) ◦ π.

ϕ#ψ is called the cup product of ϕ and ψ.

Proposition 2.6.11. The cup product defines a homomorphism HCn(A)⊗HCm(B)→ HCn+m(A⊗
B). Moreover the character of the tensor product of two cycles is the cup product of their char-

acters.

Proof. See [C85], part II, theorem 9. See also [C94], III.1.α, theorem 12.

Now we can use the cup product to deduce some properties of cyclic cohomology.

Lemma 2.6.12. HC•(C) is a polynomial ring with one generator σ of degree 2.

Proof. The 2-cocycle σ is defined by σ(1, 1, 1) = 2πi. For the details see [C85], part II, proof of

corollary 10.

Proposition 2.6.13. For any unital algebra A, HC•(A) is a module over HC•(C).

Proof. Let ϕ ∈ Znλ (A) and let σ be the generator of HC•(C). Define a map S : Znλ (A)→ Zn+2
λ (A)

by Sϕ = ϕ#σ = σ#ϕ. Due to proposition 2.6.11 this defines a map S : HCn(A) → Hn+2(A).

This makes HC•(A) into a HC•(C)-module. For the details see [C85], part II, corollary 10 and

lemma 11.
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2.6.3 Pairing with K-theory

In [C85, C94] Connes introduced a pairing between the cyclic cohomology and the algebraic K-

theory of an algebra. In this section we briefly recall the construction. For a different looking,

but equivalent, approach see [Kar87]. See also [Lo], chapter 8.

First of all let us define the even and the odd part of the cyclic cohomology of a unital algebra

A. We set HCev(A) =
⊕

nHC
2n(A) and HCodd(A) =

⊕
nHC

2n+1(A).

We begin by defining a pairing between HCev(A) and Kalg
0 (A). Kalg

0 was defined in terms

of isomorphism classes of finitely generated projective modules: since any finitely generated pro-

jective A-module is of the form eAn for some n and for some idempotent e ∈ Mn(A), we can

equivalently define Kalg
0 as the Grothendieck group generated by equivalence classes [e] of idem-

potents e. Let now Tr be the trace on M∞(A) (which is well defined on each Mn(A)). Then the

following result holds.

Proposition 2.6.14. The following equality defines a bilinear pairing between K0(A) and HCev(A):

〈[e], [ϕ]〉 =
1

(2πi)mm!
(ϕ#Tr)(e, . . . , e) (2.6.2)

for e ∈Mk(A) and ϕ ∈ Z2m
λ (A). Moreover one has 〈[e], [Sϕ]〉 = 〈[e], [ϕ]〉.

Proof. See [C85], part II, proposition 14.

Now we pass to the odd case. We recall that any element of K1(A) is an equivalence class

[u] of unitaries in M∞(A). Therefore we can define a pairing between HCodd(A) and K1(A) as

follows.

Proposition 2.6.15. The following equality defines a bilinear pairing between K1(A) and HCodd(A):

〈[u], [ϕ]〉 =
1

(2πi)m2−(2m+1)

1

(m− 1/2) · · · 1/2
(ϕ#Tr)(u−1 − 1, u− 1, u−1 − 1, . . . , u− 1) (2.6.3)

for u ∈Mk(A) and ϕ ∈ Z2m−1
λ (A). Moreover one has 〈[u], [Sϕ]〉 = 〈[u], [ϕ]〉.

Proof. See [C85], part II, proposition 15.

2.7 Kasparov’s KK-theory

Kasparov’s bivariant KK-theory [Kas80] is a generalization of the K-theory of C∗-algebras. The

basic idea is to see the K-theory functor no more as a functor of a single variable, but as a functor

KK(A,B) of two variables, both C∗-algebras. As a functor of the first variable it represents the

K-homology (cfr. [BDF77]), while as a functor of the second one it represents ordinary K-theory

of C∗-algebras. In this section we will briefly recall the main aspects of KK-theory. For a

detailed discussion we refer to literature (see, in particular, [Kas80, BJ83, CS84, Hig87, Cun87,

C94, Kuc97]).
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2.7.1 C∗-modules

Kasparov’s construction relies on Hilbert C∗-modules [GBFV, C94, La].

Definition 2.7.1. Let B a C∗-algebra with C∗-norm ‖·‖. A (Hilbert) right C∗-B-module is a

complex vector space E which is also a right B-module, together with a bilinear pairing 〈·, ·〉 :

E × E → B such that

(i) 〈e, f〉 = 〈f, e〉∗,
(ii) 〈e, fb〉 = 〈e, f〉 b,
(iii) 〈e, e〉 ≥ 0 and 〈e, e〉 = 0 iff e = 0,

(iv) E is complete in the norm ‖e‖2E = ‖〈e, e〉‖,
for any e, f ∈ E and any b ∈ B.

Let E ,F be C∗-B-modules. The vector space of continuous B-module homomorphisms from

E to F is denoted by HomB(E ,F). We can introduce the notion of adjointable morphism:

Definition 2.7.2. A homomorphism T : E → F is an adjointable operator if there exists a

B-module homomorphism T ∗ : F → E such that, for any e ∈ E, f ∈ F , 〈Te, f〉 = 〈e, T ∗f〉. The

space of adjointable operators will be denoted by Hom∗B(E ,F).

If F = E , an adjointable operator will also be called an adjointable endomorphism. We will

set EndB(E) = HomB(E , E) and End∗B(E) = Hom∗B(E , E). EndB(E), with the operator norm, is a

Banach algebra. Moreover,

Proposition 2.7.3. End∗B(E) is a closed subalgebra of EndB(E), and it is a C∗-algebra w.r.t. the

operator norm and the involution T 7→ T ∗.

Definition 2.7.4. Two C∗-B-modules E and F are unitarily isomorphic if there exists a unitary

u ∈ Hom∗B(E ,F). They are topologically isomorphic if there exists an invertible g ∈ Hom∗B(E ,F)

(with inverse g−1 ∈ Hom∗B(F , E)).

Let E be a C∗-B-module. The B-valued inner product of E can be used to define a structure

of ∗-algebra on the algebraic tensor product3 E ⊗B E :

(e1 ⊗ e2)(f1 ⊗ f2) = e1 〈e2, f1〉 ⊗ f2, (e1 ⊗ e2)∗ = e2 ⊗ e1.

The algebra obtained in this way will be denoted by FinB(E); moreover there is an injective
∗-homomorphism from FinB(E) into End∗B(E), described by the following assignment:

(e1 ⊗ e2)(e) = e1 〈e2, e〉 .

Definition 2.7.5. The closure of FinB(E) in End∗B(E) w.r.t. the operator norm is the C∗-algebra

of B-compact operators on E. It will be denoted by KB(E).

Now, since we need it in order to define the KK functor, we introduce the notion of (Z2-)

graded C∗-module. Let B be a Z2-graded C∗-algebra, with grading γ̂. Then B decomposes as

3E can be seen also as a left B-module: for e ∈ E and b ∈ B we set be ≡ eb∗.
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B0 ⊕ B1 (we admit also the trivial case: B0 = B, B1 = {0}). We will denote the degree of an

element b ∈ B by ∂b ∈ {0, 1}.

Definition 2.7.6. A C∗-B-module E is graded if there is an element γ ∈ AutC(E) of order 2

(i.e. γ2 = 1) such that:

γ(eb) = γ(e)γ̂(b), 〈γ(e1), γ(e2)〉 = γ̂(〈e1, e2〉),

for all e, e1, e2 ∈ E, b ∈ B.

From now on we will assume all C∗-modules to be graded, possibly trivially. Given now two

(graded) C∗-modules we define their tensor product. Let A,B be two Z2-graded C∗-algebras, let

E be a C∗-A-module and F be a C∗-B-module. Let C = A⊗B be the minimal C∗-tensor product

of A and B; that is, the closure of A ⊗ B in L(H ⊗ H′), where H and H′ are Hilbert spaces

carrying a faithful representation of A and B, respectively. In order to make C into a graded

algebra we define its multiplication as follows:

(a1 ⊗ b1)(a2 ⊗ b2) = (−1)∂b1∂a2a1a2 ⊗ b1b2.

Definition 2.7.7. The completion E⊗F of E ⊗ F in the inner product

〈e1 ⊗ f1, e2 ⊗ f2〉 = 〈e1, e2〉 ⊗ 〈f1, f2〉

is a graded C∗-module over the algebra C = A⊗B, with grading γ = γE ⊗ γF . It is called the

exterior tensor product of E and F .

Notice that the graded tensor product of maps φ ∈ End∗A(E) and ψ ∈ End∗B(F),

(φ⊗ ψ)(e⊗ f) = (−1)∂e∂ψφ(e)⊗ ψ(f),

gives a graded inclusion

End∗A(E)⊗End∗B(F)→ End∗C(E⊗F)

which restricts to an isomorphism KA(E)⊗KB(F) ' KC(E⊗F).

We have defined C∗-modules and bounded operators on them. There is also a notion of

unbounded operators on C∗-modules (see, e.g., [La, Wor91]), which allows to give an alternative

description of the KK functor (cfr. [BJ83]).

Definition 2.7.8. Let E be a C∗-B-module. A densely defined closed operator D : Dom(D)→ E,

Dom(D) ⊂ E, is called regular if D∗ is densely defined in E and (1 +D∗D) has dense range.

Definition 2.7.9. A regular operator D is symmetric if Dom(D) ⊆ Dom(D∗) and D = D∗ on

Dom(D). If moreover Dom(D) = Dom(D∗) it is called selfadjoint.

Lemma 2.7.10. A regular operator D : Dom(D) → E is B-linear and its domain Dom(D) is a

B-submodule of E.
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To a regular operator D : Dom(D) → E we can associate two operators, called respectively

the resolvent and the bounded transform of D, as follows:

r(D) = (1 +D∗D)−1/2, (2.7.1)

b(D) = D(1 +D∗D)−1/2. (2.7.2)

Proposition 2.7.11. If D : Dom(D) → E is a regular operator, then D∗D is selfadjoint and

regular. Moreover, Dom(D) is a core for D∗D and Im(r(D)) = Dom(D).

Moreover, since r(D) = 1− b(D)∗b(D), the following holds.

Corollary 2.7.12. A regular operator D is completely defined by b(D).

There is a useful characterization of regular operators [Wor91]. Let G(D) denote the graph

of D. Let v ∈ End∗B(E ⊕ E) be the unitary defined by v(e, f) = (−f, e). Then G(D) and vG(D∗)

are orthogonal submodules of E ⊕ E and, moreover,

Proposition 2.7.13. A densely defined closed operator D : Dom(D) → E, with densely defined

adjoint D∗, is regular if and only if G(D)⊕ vG(D∗) ' E ⊕ E.

Remark 2.7.14. Whenever E is a graded module, with grading γ, we will always consider E ⊕ E
as a graded module, with grading γ′ = γ ⊕ (−γ).

2.7.2 KK-theory: bounded picture

We can now give a brief description of Kasparov’s KK-theory [Kas80]. An equivalent character-

ization, due to S. Baaj and P. Julg [BJ83], will be discussed in the next section. Let A,B be two

(eventually trivially) Z2-graded C∗-algebras.

Definition 2.7.15. An A-B-bimodule E is called a C∗-A-B-bimodule if it is a C∗-B-module. It

is called a graded bimodule if it admits a Z2-grading γ which is compatible with the grading of A

and which makes it into a graded C∗-B-bimodule.

Definition 2.7.16. Let E be a countably generated graded C∗-A-B-module, with grading operator

γ, and let F ∈ End∗B(E) be an odd operator (that is γF = −Fγ). Then (E , F ) is a Kasparov

(A,B)-bimodule if, for all a ∈ A, [F, a], a(F 2 − 1), a(F − F ∗) are B-compact operators; that is,

they belong to KB(E). We will denote the set of Kasparov (A,B)-bimodules by E(A,B).

Definition 2.7.17. A Kasparov (A,B)-bimodule (E , F ) will be called degenerate if, for any

a ∈ A,

[F, a] = a(F 2 − 1) = a(F ∗ − F ) = 0.

The set of degenerate Kasparov (A,B)-bimodules will be denoted by D(A,B).

Now we can introduce two equivalence relations on the set of Kasparov bimodules.

Definition 2.7.18. Two Kasparov (A,B)-bimodules (E , F0) and (E , F1) are operatorial homo-

topic if there exists a family (E , F ′t) of Kasparov (A,B)-bimodules with F ′0 = F0, F ′1 = F1 and

such that t 7→ Ft is norm continuous.
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The notion of operatorial homotopy gives rise to an equivalence relation in E(A,B), which we

shall denote by ∼oh. We can define also a homotopy transformation between Kasparov bimodules.

Definition 2.7.19. Two Kasparov (A,B)-bimodules (E0, F0) and (E1, F1) are homotopic if there

exists a Kasparov bimodule (E , F ) ∈ E(A,B⊗C([0, 1])) such that, if we denote by εi : B⊗C([0, 1])

the evaluation map at i ∈ [0, 1], (E ⊗εj B,F ⊗ 1) is unitarily equivalent to (Ej , Fj), for j = 0, 1.

The notion of homotopy between Kasparov bimodules gives rise to an equivalence relation in

E(A,B), which we shall denote by ∼h.

We can define the sum of two Kasparov bimodules as follows: for (E1, F1), (E2, F2) ∈ E(A,B)

we set

(E1, F1)⊕ (E2, F2) = (E1 ⊕ E2, F1 ⊕ F2). (2.7.3)

This allows us to take the quotient of E(A,B) with respect to D(A,B). So the following definitions

of KK groups make sense.

Definition 2.7.20. The set KK(A,B) is defined as the quotient of the set of Kasparov (A,B)-

bimodules by the equivalence relation of homotopy: KK(A,B) = E(A,B)/ ∼h.

Definition 2.7.21. The set K̃K(A,B) is defined as the quotient of the classes of Kasparov

(A,B)-bimodules, up to sum with a degenerate bimodule, by the equivalence relation of operatorial

homotopy: K̃K(A,B) = (E(A,B)/D(A,B))/ ∼oh.

Proposition 2.7.22. Both KK(A,B) and K̃K(A,B) are abelian groups w.r.t. (2.7.3).

Proposition 2.7.23. KK(A,B) is a quotient of K̃K(A,B). If A and B are separable C∗-

algebras then KK(A,B) ' K̃K(A,B).

Now let Clj denote the j-th complex Clifford algebra. Then, for j ≥ 0, we define:

KKj(A,B) = KK(A⊗ Clj , B),

KKj(A,B) = KK(A,B ⊗ Clj).
(2.7.4)

For j < 0, instead, we set:

KKj(A,B) = KK−j(A,B), KKj(A,B) = KK−j(A,B).

In this way we unify the two cases, obtaining a unified KK-theory KK•(A,B).

Theorem 2.7.24. For any j ∈ Z, KKj(−,−) is a bifunctor, contravariant in the first variable

and covariant in the second.

Moreover one can prove that KK•(C, B) and KK•(A,C) are naturally isomorphic to the

K-theory of B and to the K-homology of A, respectively. In particular, KK-theory groups share

with ordinary K-theory a property of periodicity. Indeed,

Theorem 2.7.25. The KK groups are periodic modulo 2: KKj(A,B) = KKj+2(A,B), for any

j ∈ Z.
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Proof. It comes from the periodicity of Clifford algebras, see [Kas80], section 5, theorem 5.

Remark 2.7.26. If instead of complex algebras and complex Clifford algebras we had considered

real ones, the periodicity would have been modulo 8 instead of modulo 2 [Kas80].

2.7.3 KK-theory: unbounded picture

Now we give a different characterization of KK-theory, which relies on unbounded operators on

C∗-modules [BJ83].

Definition 2.7.27. An unbounded Kasparov (A,B)-bimodule is a pair (E , D) where E is a

graded C∗-A-B-bimodule and D is an odd selfadjoint regular operator on E such that:

(i) all the commutators [D, a], for a in a dense subalgebra A of A, extend to adjointable operators

in End∗B(E),

(ii) for any a ∈ A, ar(D) ∈ KB(E).

We will denote the set of unbounded Kasparov (A,B ⊗ Clj)-bimodules, up to unitary equiv-

alence, by Ψj(A,B).

Proposition 2.7.28. Let (E , D) ∈ Ψ1(A,B). Then (E , b(D)) is a Kasparov (A,B)-bimodule.

This implies that there exists a map β : Ψ1(A,B)→ KK(A,B).

Proposition 2.7.29. The map β : Ψ1(A,B)→ KK(A,B) is surjective.

2.7.4 Kasparov products

Kasparov introduced4 two product operations in KK-theory. The first one is a bilinear pairing

between KK(A,D) and KK(D,B) (where, of course, A,B,D are graded C∗-algebras):

Proposition 2.7.30. There exists a bilinear associative pairing

KKi(A,D)⊗D KKj(D,B)→ KKi+j(A,B).

We will usually refer to the product of proposition 2.7.30 as to the Kasparov product. The

second one is the external Kasparov product :

Proposition 2.7.31. For any graded C∗-algebras A1, A2, B1, B2 there exists an associative bilin-

ear pairing

KKi(A1, B1)⊗KKj(A2, B2)→ KKi+j(A1⊗A2, B1⊗B2).

In both the previous propositions the tensor product between KK groups comes from the

graded tensor product of modules.

Remark 2.7.32. The bilinear associative pairings of proposition 2.7.30 and 2.7.31 can also be

written in the following way:

KKi(A,D)⊗D KKj(D,B)→ KKi+j(A,B),

4See [Kas80], section 4, theorem 4.
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KKi(A1, B1)⊗KKj(A2, B2)→ KKi+j(A1⊗A2, B1⊗B2).

respectively.

In [BJ83] S. Baaj and P. Julg showed that the external Kasparov product can be recovered

from the tensor product of unbounded Kasparov modules. Indeed,

Proposition 2.7.33. For i = 1, 2 let (Ei, Di) be unbounded Kasparov (Ai, Bi)-bimodules. Then

the operator D = D1 ⊗ 1 + 1 ⊗D2 extends to a selfadjoint regular operator, with compact resol-

vent, on E1⊗E2. Moreover, the assignment (E1, D1) × (E2, D2) 7→ (E1⊗E2, D) determines a map

ψ1(A1, B1)×ψ1(A2, B2)→ ψ1(A1⊗A2, B1⊗B2) which makes the following diagram commutative:

ψ1(A1, B1)× ψ1(A2, B2) //

β×β
��

ψ1(A1⊗A2, B1⊗B2)

β
��

KK(A1, B1)⊗KK(A2, B2) // KK(A1⊗A2, B1⊗A2)

(the bottom line is the external Kasparov product).

So the external Kasparov product can be recovered from the product of unbounded Kasparov

bimodules in a quite simple way. It took, instead, many years to come to an analogous result for

the Kasparov product of proposition 2.7.30. The first result was that by D. Kucerovsky [Kuc97],

who gave a sufficient condition for an unbounded Kasparov (A,B)-bimodule to describe the same

class as the Kasparov product of the classes of an (A,D)-bimodule with that of a (D,B)-bimodule.

A full characterization of the Kasparov product in terms of unbounded modules has been achieved

later by B. Mesland [Mes11]; this characterization of Kasparov product was recently linked to the

formulation of gauge theories over noncommutative spaces [BMS13].

We conclude this short discussion of KK-theory noticing that the two Kasparov products of

proposition 2.7.30 and proposition 2.7.31 can be written as a unique bilinear coupling (also called

intersection product, cfr. [Kas80], section 4, theorem 3):

KK(A1, B1 ⊗D)⊗D KK(D ⊗A2, B2)→ KK(A1 ⊗A2, B1 ⊗B2), (2.7.5)

where, of course, the algebras Ai, Bi, D are graded C∗-algebras, all the tensor products are graded

tensor products and the completions with respect to the minimal C∗-norms are understood.
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CHAPTER 3

Spectral triples and spectral metric spaces

In the previous chapter of this thesis we reviewed some approaches to the study of topologi-

cal/differential properties of noncommutative spaces. In the last twenty years great attention has

been paid to the metric structure of noncommutative spaces. The main steps in this direction, of

course, are the one made by A. Connes and his collaborators [C88, C94, C95, C96, CC96, CMa07].

Connes introduced a formulation of spin geometry for noncommutative manifolds, based on spec-

tral triples (A,H, D), where A represents the algebra of smooth functions over a noncommutative

space, H the Hilbert space of L2-sections of the spinor bundle and D the Dirac operator (for the

geometry of spin manifolds see, e.g., [LM]). In this chapter we shall review the main aspects of

Connes’ formulation of noncommutative geometry. We shall discuss, furthermore, possible def-

initions of equivariance of a noncommutative geometry under a suitable set of transformations

(see, e.g., [PS00, S03]).

3.1 Connes’ axioms

We discuss, first of all, Connes’ definition of real spectral triples [C94, C95, C96, C00]. We

consider here only the more relevant aspects, and we refer to literature for a deeper treatment

[C94, CMa07, GBFV]. In what follows A will always denote a unital complex ∗-algebra, and it

will represent the algebra of “smooth” functions over a noncommutative space. We recall that

the geometrical meaning of the hypothesis of the existence of the unit for the algebra A is that

of compactness of the underlying space.

Definition 3.1.1. A spectral triple for an algebra A is a triple (A,H, D), where H is a Hilbert

space carrying a representation of A by bounded operators (which we shall simply denote by

ψ 7→ aψ, for any a ∈ A, ψ ∈ H) and D is a selfadjoint operator on H with compact resolvent,

such that for any a ∈ A the commutator [D, a] is a bounded operator.

In the commutative case, when A is the algebra of smooth functions over a Riemannian spin
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manifold M , H corresponds to the Hilbert space of L2-sections of the spinor bundle, and D is the

Dirac operator, on the spinor bundle, associated to the Levi-Civita connection [LM]. So, given a

spectral triple (A,H, D), we will call H the space of spinors and D the Dirac operator.

One can introduce a notion of reality, and, together, an (algebraic) notion of dimension for a

spectral triple.

Definition 3.1.2. A real spectral triple of KR-dimension j, where j ∈ Z8, consists of a package

(A,H, D, J, γ) when j is even and of a package (A,H, D, J) when j is odd, where (A,H, D) is a

spectral triple, J is antiunitary operator and γ is a Z2-grading on H such that:

(i) for any a, b ∈ A, [a, Jb∗J−1] = 0;

(ii) J , D and γ satisfy the following commutation relations:

J2 = εid, JD = ε′DJ

and, for j even,

Jγ = ε′′γJ, γD = −Dγ,

where ε, ε′, ε′′ depend on the KR-dimension and are given in the table below1.

Table 3.1: Connes’ convention is marked by •
n 0 2 4 6 0 2 4 6 1 3 5 7

ε + − − + + + − − + − − +
ε′ + + + + − − − − − + − +
ε′′ + − + − + − + −

• • • • • • • •

The operator J will be usually called the real structure of the spectral triple. We will often

treat together the even and the odd dimensional case. So in general we will write (A,H, D, J, γ)

for a real spectral triple, and we will assume γ = idH when j is odd.

Remark 3.1.3. Let (A,H, D, J, γ) be a real spectral triple. Then the antiunitary operator J

determines a left action of the opposite algebra A◦ (or, equivalently, a right action of the algebra

A) on the Hilbert space H, given by

π◦(b)ψ = ψb = Jb∗J−1ψ (3.1.1)

for any b ∈ A and any ψ ∈ H. Now we can observe that condition (i) of definition 3.1.2 is the

requirement that the action of A◦ commutes with the representation of A on H; that is, J maps

A into its commutant on H. Notice that this recalls the properties of Tomita-Takesaki involution

[Tak70].

Now that we have defined real spectral triples we discuss Connes’ requirements for a spectral

triple being a noncommutative geometry [C94, C96, GBFV]. They consist of six2 axioms, which

corresponds to different properties of ordinary smooth spin manifolds:

1See also [DD11].
2Actually one usually considers seven conditions, but we incorporated the reality condition into the definition

of real spectral triples.
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(1) Classical dimension

(2) Regularity

(3) Finiteness, projectivity and absolute continuity

(4) First order condition

(5) Orientation

(6) Poincaré duality

3.1.1 Axiom 1: classical dimension

The first condition we discuss is an analytic condition on the behaviour of the eigenvalues of the

Dirac operator D. Before stating the condition we recall briefly some tools of functional analysis.

Let H be a Hilbert space and K be the set of compact operators on H. Let also L1 =

L1(H) ⊂ K be the ideal of trace-class operators. We introduce the so-called interpolation ideals3

between K and L1. Let T be a compact operator, and let |T | =
√
T ∗T be its absolute value. Let

µ0(T ) ≥ µ1(T ) ≥ . . . µn(T ) ≥ . . . be the sequence of eigenvalues of |T |, counted with multiplicity

and arranged in decreasing order. Define the partial sums of eigenvalues as follows: for any

N ∈ N,

σN (T ) =
N−1∑
n=0

µn(T ).

Notice that the functions σN are subadditive: for any T1, T2 ∈ K, σN (T1 +T2) ≤ σN (T1)+σN (T2).

Definition 3.1.4. For any p ∈ (1,∞), the interpolation space Lp+ = L(p,∞) is the space of

compact operators T such that N (p−1)/pσN (T ) is a bounded sequence.

Lemma 3.1.5. Let T be a compact operator on H. Then T belongs to Lp+ if and only if

µn(T ) = O(n
− 1
p ).

Lemma 3.1.6. Each Lp+ is a two-sided ideal in L(H). Moreover, for any 1 < p1 < p2 <∞ we

have the inclusion

Lp1+ ⊂ Lp2+.

We can put a norm on Lp+:

‖T‖p = sup
N≥1

1

N (p−1)/p
σN (T ).

Such a norm allows us to define the ideal Lp+0 = Lp,∞0 as the norm-closure of the finite rank

operators in Lp,∞. It turns out that a compact operator T belongs to Lp,∞0 if and only if µn(T ) =

o(n−1/p).

Next, we extend the definition of Lp+ to the boundary point p = 1. We set:

L1+ = L1,∞ = {T ∈ K | σN (T ) = O(logN)}.

3See [C94], IV.2.α. See also [V79, V81].
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3. Spectral triples and spectral metric spaces

We can put a norm also on L1+:

‖T‖1,∞ = sup
N≥2

1

logN
σN (T ).

We can also define the norm-closed ideal L1+
0 = L1,∞

0 : one can see that T ∈ L1,∞
0 if and only if

µn(T ) = o(logN).

Now we can state the first of Connes’ axiom.

Definition 3.1.7. A real spectral triple (A,H, D, J, γ) fulfils the classical dimension property if

there is an integer p such that4 D−1 belongs to Lp+ but not to Lp+0 . If such a p exists, it is

called the classical dimension of the triple. If both A and H are finite-dimensional, the classical

dimension of the triple is taken to be zero.

Usually one requires that, if j is the KR-dimension of the triple and p its classical dimension,

then j ≡ p (mod 8). But we admit also the case in which such condition is not fulfilled.

Let us conclude this section by mentioning one of the most relevant consequences of the

classical dimension property; namely, the possibility of defining a functional on A using the

operator D−1. In order to discuss the construction of such a functional we need to recall briefly

what is a Dixmier trace. For the details see, e.g., [Dix66] and [C94], IV.2.β. Let `∞(N) be

the space of bounded sequences. Let ω : `∞(N) → C be a linear form satisfying the following

conditions:

(a) ω({αn}) ≥ 0 if αn ≥ 0,

(b) ω({αn}) = limαn if αn is convergent,

(c) ω(α1, α1, α2, α2, α3, α3, . . . , . . .) = ω({αn}).
Then we can give the following definition.

Definition 3.1.8. Let T ∈ L1+. We define

Trω(T ) = ω

(
1

logN

N−1∑
n=0

µn(T )

)
. (3.1.2)

Trω is called Dixmier trace relative to the form ω.

Proposition 3.1.9. Consider T ∈ L1+ and let Trω be a Dixmier trace. Then:

(i) if T ≥ 0 then Trω(T ) ≥ 0;

(ii) if S is any bounded operator on H, then Trω(TS) = Trω(ST );

(iii) Trω(T ) is independent on the choice of the scalar product on H, i.e. it depends only on the

Hilbert space H as a topological vector space;

(iv) Trω(T ) = 0 if T ∈ L1+
0 .

Proof. See [C94], IV.2.β, proposition 3.

4In all this thesis when we speak of D−1 we mean the inverse of the Dirac operator on the orthogonal complement
of its kernel, in the case 0 belongs to the spectrum of D.
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In order to discuss the dependence of Trω on the choice of ω, we introduce the so-called Cesaro

mean. Given a function f : R+ → C we define its Cesaro mean to be the function

Mf (λ) =
1

log λ

∫ λ

1
f(u)

du

u
.

Proposition 3.1.10. The following facts hold for Dixmier traces of compact operators on an

Hilbert space H.

a. Let T ∈ L1+, T ≥ 0. Let f : R+ → C be the step function whose value in (N − 1, N) is
1

logN

∑N−1
n=0 µn(T ). Then Trω(T ) is independent of ω iff Mf (λ) converges for λ→∞.

b. Let M = {T ∈ L1+ | Trω(T ) is independent of ω}. Then M is a linear space, invariant under

conjugation by invertible operators on H.

c. M contains L1+
0 and it is closed w.r.t. ‖·‖1,∞.

Proof. See [C94], IV.2.β, proposition 6.

A geometric interpretation of Dixmier trace can be obtained by noticing that it is related to

the notion of residue of pseudo-differential operators [Man79, Wod84, Gui85]. Indeed we have

[C88, C94]:

Theorem 3.1.11. Let M be an n-dimensional compact manifold and let T be a pseudo-differential

operator of order −n acting on sections of a complex vector bundle E on M . Then:

(i) the corresponding operator T on H = L2(M,E) belongs to the ideal L1+(H),

(ii) the Dixmier trace Trω(T ) is independent of ω and it is equal to the residue5 Res(T ).

Now, given T ∈ L1+, T ≥ 0, and a Dixmier trace Trω, we can define a positive linear functional

ϕω : L(H)→ C by:

ϕω(a) = Trω(aT ).

In particular, if we have a Dirac operator D s.t. D−1 belongs to Lp+, then we can define a

linear positive functional ϕDω by setting:

ϕDω (a) = Trω(a|D|−p).

Then one can prove the following result (see [GBFV], theorem 10.20):

Theorem 3.1.12. Let (A,H, D) be a spectral triple of classical dimension p and let Trω be any

Dixmier trace on H. Then the functional

a 7→ Trω(a|D|−p)

is a hypertrace on A; that is,

Trω(aT |D|−p) = Trω(Ta|D|−p),

for any bounded operator T on H.

5For the definition of residue see, e.g., [GBFV], chapter 7 (especially theorem 7.12).
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3.1.2 Axiom 2: regularity

We require the real spectral triple (A,H, D, J, γ) to be regular:

Definition 3.1.13. Let δ be the derivation on L(H) defined by:

δ(T ) = [|D|, T ].

A spectral triple (A,H, D) is said to be regular if, for any a ∈ A and k ∈ N, both a and [D, a]

belong to the domain of δk.

Let us consider now the space of smooth vectors H∞ =
⋂
k Dom(Dk): if the triple is regular

one can prove6 that H∞ is a left A-module. Moreover7, if a triple (A,H, D) of classical dimension

p is regular, then the functional

T 7→ Trω(T |D|−p)

defines a hypertrace on the algebra generated by A and [D,A].

The regularity of a spectral triple is associated to the existence of a so called algebra of

generalized differential operators [CM95, Hig04, Hig06, Otg11]. Since we will use this fact later

in this thesis, we give a sketch of these notions. Let H be a Hilbert space and let ∆ be an

invertible, selfadjoint (usually unbounded) operator on H. Then we can introduce the following

definitions.

Definition 3.1.14. The ∆-Sobolev space of order s ∈ R, denoted W s = W s(∆) = W s(∆,H), is

the Hilbert completion of Dom(∆
s
2 ) with respect to the inner product given by

〈ξ, η〉W s =
〈

∆
s
2 ξ,∆

s
2 η
〉

for any ξ, η ∈ H, where 〈·, ·〉 simply denotes the inner product of H.

Definition 3.1.15. The space of ∆-smooth vectors of H is

W∞ =
⋂
s∈R

W s =
∞⋂
n=0

W 2n =
∞⋂
n=0

Dom(∆n).

Now we consider linear operators P : W∞ → W∞. The algebra of these operators will be

denoted by End(W∞).

Definition 3.1.16. A linear operator W∞ →W∞ has analytic order at most t ∈ R if it extends

by continuity to a bounded linear operator W s+t →W s for any s ∈ R.

We write Opt = Opt(∆) = Opt(∆,H) for the class of operators of analytic order at most t.

We define then

Op = Op∞ =
⋃
t∈R

Opt

6See [GBFV], lemma 10.22 and section 10.5.
7See theorem 3.1.12 and [GBFV], corollary 10.21.
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and

Op−∞ =
⋂
t∈R

Opt

Lemma 3.1.17. The operators with finite analytic order form a filtered algebra:

(i) Ops ⊆ Opt for s ≤ t,
(ii) Ops ·Opt ⊆ Ops+t.

In particular, Op0 is a subalgebra of Op, and Op−∞ ⊂ Op and Opt ⊂ Op0, for t < 0, are

two-sided ideals.

Following Higson, we give the following definition.

Definition 3.1.18. An N-filtered subalgebra D ⊆ Op(∆) is called an algebra of generalized

differential operators if it is closed under the derivation [∆, ·] and satisfies

[∆,Dk] ⊆ Dk+1

for any k ∈ N.

Let now (A,H, D) be a spectral triple. Let ∆ = D2 + 1, so that D ∈ Op1(∆), and let W∞

be the space of ∆-smooth vectors. Assume that W∞ is stable under the left action of A. Then

define inductively an N-filtered algebra D ⊂ End(W∞) as follows:

(1) D0 is the subalgebra generated by A+ [D,A],

(2) D1 = D0 + [∆,D0] +D0[∆,D0],

(3) Dk = Dk−1 +

k−1∑
j=1

Dj · Dk−j + [∆,Dk−1] +D0[∆,Dk−1], for k ≥ 2.

Then we have the following result.

Theorem 3.1.19. [Higson] The spectral triple (A,H, D) is regular if and only if Dk ⊆ Opk for

any k ∈ N.

Proof. See [Hig06], theorem 4.26. For a different proof see [Otg11], theorem 2.4 and section 4.

There is also a more general criterion of regularity for a spectral triple (actually the result

is even stronger than the one we discuss here, but the full version of the theorem would require

some more stuff to be introduced, and this is out of the purposes of this thesis):

Theorem 3.1.20. Let (A,H, D) be a spectral triple. Let ∆ = D2 + 1 and let δ be the derivation

[∆
1
2 , ·]. Then the following conditions are equivalent:

(a) the spectral triple (A,H, D) is regular;

(b) the set A+ [D,A] is contained in Dom∞(δ);

(c) there exists an algebra of generalized differential operators containing A+ [D,A] in degree 0.

Proof. See [CM95], appendix B, [Hig04], theorem 3.25 and [Hig06], theorem 4.26.
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3.1.3 Axiom 3: finiteness, projectivity and absolute continuity

The regularity condition implies that H∞ is a left A-module. We require something more. The

additional requirements are the following ones: the first is the so-called finiteness (and projectivity)

property : the algebra A is required to be a pre-C∗-algebra8 and the space of smooth vectors H∞

a finitely generated projective left A-module. One immediate consequence of this property is that

A is a Fréchet pre-C∗-algebra [GBFV]. This implies that the K-theory of A is the same as that

of its C∗-completion (see theorem 2.4.32). The second one is the absolute continuity property : we

require that the following equality,

〈ξ, aη〉 = Trω
(
a(ξ|η)|D|−p

)
, ∀a ∈ A ∀ξ, η ∈ H∞,

defines a hermitian structure (·|·) on the module H∞ [C96, C13].

3.1.4 Axiom 4: first order condition

The fourth requirement is that the real spectral triple (A,H, D, J, γ) satisfies the so-called first

order condition, that is the requirement that A◦ commutes not only with A but also with [D,A]

so that, for any a, b ∈ A, we require the following:

[[D, a], Jb∗J−1] = 0. (3.1.3)

Notice that, using Jacoby identity, one can show (3.1.3) to be equivalent to

[[D,Jb∗J−1], a] = 0;

we see, therefore, that the first order condition is “symmetric” in A and A◦.
If a spectral triple fulfils the first order condition, we can define a representation of A⊗A◦-

valued Hochschild chains by bounded operators on the Hilbert space H:

πD((a0 ⊗ b◦)⊗ a1 ⊗ . . .⊗ ak) = a0Jb
∗J−1[D, a1] · · · [D, ak]. (3.1.4)

This fact allows us to introduce the orientation axiom.

3.1.5 Axiom 5: orientation

Let (A,H, D, J, γ) be a real spectral triple of KR-dimension j. We recall that if j is odd we set

γ = id. In the case of spin geometry of a smooth manifold, the operator γ corresponds to the

Clifford representation of an orientation form. So, in the noncommutative case, we require a real

spectral triple to fulfil the following property:

Definition 3.1.21. A real spectral triple (A,H, D, J, γ) of classical dimension n fulfils the ori-

8See definition 2.4.29.
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entation condition if there exists a Hochschild n-cycle c ∈ Zk(A,A⊗A◦) such that

πD(c) = γ.

3.1.6 Axiom 6: Poincaré duality

Let (A,HF , F, γ) be an even Fredholm module [C85, C94, GBFV] over A. Let π : A → L(HF )

be the representation of A. Then the Hilbert space HF splits as HF = HF+ ⊕ HF− and we can

write the representation π and the operator F as

π(a) =

(
π+(a) 0

0 π−(a)

)
, F =

(
0 P

Q 0

)
,

for suitable operators P,Q. Now, for any n > 0 we can extend the Fredholm module (A,HF , F, γ)

to a Fredholm module (A,HFn , Fn, γn), where

HFn = HF ⊗ Cn, Fn = F ⊗ id, γn = γ ⊗ id.

The representation of A on HFn is simply πn = π⊗ 1, and πn can be written as π+
n ⊕π−n . Let now

p ∈ Mn(A) be a projection, so that it defines an element of K0(A), and consider the following

operator:

π+
n (p)Pπ−n (p) : HF− → HF+.

It is a Fredholm operator [GBFV, Pas01], so its index is well-defined. Moreover one can prove

that it depends only on the class of p in K0(A), therefore we can use it to define a map K0(A)→ Z
as follows: 〈

[p], (HF , F, γ)
〉

= Index(π+
n (p)Pπ−n (p)). (3.1.5)

Now consider an even real spectral triple (A,H, D, J, γ) satisfying the previous axioms. Then

H is a module over A ⊗ A◦. Moreover, if we define an operator F : H → H simply taking

F = D|D|−1, then (A ⊗ A◦,H, F, γ) is an even Fredholm module. Therefore the analogue of

(3.1.5) defines a map K0(A⊗A◦) → Z, and we can see it as a Z-valued pairing between K0(A)

and K0(A◦). And so it allows us to define an additive form 〈·, ·〉 : K0(A)×K0(A) → Z. Such a

pairing can be written [GBFV, Pas01] in the following form:

〈[p], [q]〉 = Index(π+(p⊗ q◦)D+π
−(p⊗ q◦)) (3.1.6)

where D = D+ ⊕D− accordingly to γ2 = 1.

Consider instead an odd real spectral triple (A,H, D, J) satisfying the previous axioms. Let

u ∈ Mk(A) and v ∈ Ml(A) be two unitaries, defining classes in K1(A). Then U = u ⊗ v◦ is a

unitary operator on H ⊗ Ckl. Let now Q be the operator defined as Q = 1
2(1 + D|D|−1) ⊗ id.

Then QUQ is a Fredholm operator on Q(H⊗ Ckl) [GBFV]. This allows us to define an additive

form on K1(A) by

〈[u], [v]〉 = Index(QUQ). (3.1.7)
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Now we can formulate the last of Connes’ axioms, the so-called Poincaré duality condition: we

require that the pairing on Ki(A), defined either by (3.1.6) or (3.1.7), is non-degenerate. Poincaré

duality can also be formulated using KK-theory, see section 3.7.

3.2 Differential calculus

In Connes’ noncommutative geometry a real spectral triple encodes the (Riemannian) geometry

of a noncommutative space. In this section we discuss the first geometric aspect associated to a

spectral triple: the differential calculus. While in differential geometry there is a unique reasonable

choice for the differential calculus over the algebra of smooth functions on a smooth manifold,

i.e. the ordinary de Rham calculus of differential forms, there is no such privileged choice in the

noncommutative setup: a priori, the only canonical choice would be to consider the universal

differential calculus. But it is clear that this choice is not consistent with the classical case, and

so it can not be considered a good candidate for a differential calculus over noncommutative spin

manifolds. The situation changes if we are given a spectral triple over a noncommutative algebra

A: in this case there is a way to associate to it a first order9 differential calculus.

Let us begin by taking a look at the commutative case. So, consider a compact smooth

manifold M and let A = C∞(M) be the algebra of smooth functions over it. Let us denote by

Ω1(A) the set of smooth 1-forms overM . Now consider a Clifford module E overM [BGV, GBFV].

Then there is a map c : Ω1(A)→ End(A), called Clifford map, and we have:

Proposition 3.2.1. If D is a generalized Dirac operator on a selfadjoint Clifford module E then

[D, a] = −ic(da).

This result suggests that we can use the Dirac operator to define a differential calculus. Let

(A,H, D) be a spectral triple. We recall that any first order differential calculus over A is

determined by a sub-bimodule N of Ω1A, where Ω1A is the first order universal calculus over A.

We set

ND =

{∑
j

ajdbj ∈ Ω1A
∣∣∣∣ ∑

j

aj [D, bj ] = 0

}
(3.2.1)

where, of course, we regard
∑

j aj [D, bj ] as an operator on H. This is the sub-bimodule which

determines the calculus we were looking for:

Definition 3.2.2. The Dirac operator based differential calculus over A is Ω1
D(A) = Ω1A/ND.

Then we can find an analogue for the Clifford map: it can be identified with the map πD :

Ω1
D(A)→ L(H) defined by

πD(adb)ψ = a[D, b]ψ. (3.2.2)

This determines a left action of Ω1
D(A) on H. Moreover, if (A,H, D, J) is a real spectral triple,

then we can define also a right action of Ω1
D(A):

π◦D(adb)ψ = J(a[D, b])∗J−1ψ. (3.2.3)

9Actually this construction extends to higher order differential forms, see e.g. [C94], VI.1.1.
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We notice that if the spectral triple fulfils the first order condition then πD(η) commutes with

the action of A◦ and π◦D(η) with that of A for every 1-form η ∈ Ω1
D(A).

3.3 Inner fluctuations of the Dirac operator

In this section we briefly discuss the so-called inner fluctuations of a Dirac operator. We shall not

enter here into the details of the motivations which yield to the construction below, we simply

mention that it is connected with Morita equivalence10; in particular, the fact that each algebra

is Morita equivalent to itself shows that it is geometrically significant to consider, given a Dirac

operator D for an algebra A, acting on a Hilbert space H, operators of the form

D′ = D +A,

where A = A∗ ∈ Ω1
D(A) is a selfadjoint operator acting on H on the left11. The presence of a real

structure allows different modifications of the Dirac operator.

Let be given a real spectral triple (A,H, D, J, γ). Then consider the following definition

[CCM07, CMa07].

Definition 3.3.1. The inner fluctuations of the Dirac operator D are given by

D 7→ DA = D +A+ ε′JAJ−1,

where A =
∑

j aj [D, bj ] is a selfadjoint one-form A = A∗ ∈ Ω1
D(A) and ε′ is defined by JD =

ε′DJ .

Proposition 3.3.2. The data (A,H, DA, J, γ) define a real spectral triple with the same KR-

dimension of the triple (A,H, D, J, γ).

Proof. The one-form A, which is seen as an operator on H, is a bounded operator. Hence DA

is a bounded (selfadjoint) perturbation of D; in particular its resolvent is compact, since so is,

by hypothesis, the resolvent of D. Next, the commutation relations involving only J and γ are

unchanged. Moreover, in the even dimensional case, so is also the commutation relation between

γ and the Dirac operator. Hence we have only to check that the commutation relation between

J and DA is the right one; but this follows by direct computation:

DAJ = DJ +AJ + ε′JA = ε′J(D + ε′J−1AJ +A) = ε′J(D + ε′JAJ−1 +A) = ε′JDA.

Remark 3.3.3. Here we are not requiring the triples to fulfil the first order condition. Indeed, even

if the original triple fulfilled it, this would be, in general, no longer true for the triple with the

fluctuated Dirac operator DA. Moreover, the existence of the orientation cycle for the triple with

operator DA is not guaranteed by the existence of the orientation cycle for the original triple,

10See [CMa07], chapter 1, section 10.8. See also [CC06b], section 2.
11If A =

∑
j ajdbj , then it corresponds to the operator

∑
j aj [D, bj ], see the discussion in the previous section.
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since the fluctuation could not commute both with the elements from A and from A◦. Hence also

the orientation condition is, in general, not preserved by inner fluctuations.

Consider now the unitary group U(A) (i.e. the set of the unitary elements of the algebra A).

We can define the adjoint action of a unitary u ∈ U(A) on H by:

Ad(u)(ψ) = uψu∗ = JuJ−1uψ.

By direct computation, it can be proved (see [CMa07], chapter 1, section 10.8, proposition 1.141)

that:

Proposition 3.3.4. For any inner fluctuation D 7→ DA, A = A∗ ∈ Ω1
D, of the Dirac operator D

and for any unitary u ∈ U(A) we have:

Ad(u)DAAd(u∗) = Dγu(A),

where γu(A) = u[D,u∗] + uAu∗.

This last proposition suggests that, if we view a unitary u ∈ U(A) as a gauge transformation of

some kind, we can identify the one-form A with a gauge potential. This is, indeed, the assumption

made by Connes, Chamseddine, Marcolli et al. (see, e.g., [C96, CC96, CC97, CCM07, CMa07,

CC08]) in their attempt to recover the Standard Model of elementary particles as a pure gravity

theory on a noncommutative space: in their model the (unimodular12) inner fluctuations of the

Dirac operator correspond to the gauge bosons of the SM.

Remark 3.3.5. Inner fluctuations do not compose properly; that is, inner fluctuations of inner

fluctuations of a Dirac operator D can no longer be inner fluctuations of D themselves. Indeed, the

commutators of D and DA, respectively, with elements from A in general, will differ, so the space

of differential 1-forms Ω1
D and Ω1

DA
(A) will not coincide. A possible way to overcome this issue

has recently been proposed in [CCS13], where are considered fluctuations with also a quadratic

term, which violates the first order conditions but allows to obtain a set of transformations closed

under composition and invariant with respect to conjugations by a unitary element of A.

3.4 Distance between states

Now we show how, given a spectral triple over a noncommutative space, it is possible to get some

information on the metric structure defined by the spectral triple. Let us begin considering the

commutative case. Let M be a compact connected Riemannian spin manifold and let D be the

Dirac operator on its spinor bundle [C94, BGV]. Let H be the Hilbert space of L2-spinors on

M ; then C∞(M) acts on H by multiplication and D is a selfadjoint operator on H such that

each commutator [D, f ], for f ∈ C∞(M), is a bounded operator (equal to c(df), where c(·) is the

Clifford map). Then we have the following result.

12This is a technical assumption which corresponds to the fact that the gauge group SU(3) × SU(2) × U(1) of
the SM is the direct product of special unitary groups and not of unitary groups.
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Proposition 3.4.1. Let d(·, ·) be the geodesic distance function on M . Then, for any two points

p, q ∈M , we have

d(p, q) = sup{|f(p)− f(q)| | f ∈ C∞(M), ‖[D, f ]‖ ≤ 1}.

The points of M can be identified with the pure states on C(M) and d can be seen as a

distance on the space of states of the C∗-algebra C(M). Consider now a spectral triple (A,H, D)

over a (noncommutative) pre-C∗-algebra A. Let A denote the C∗-completion of A. Then we can

define a distance on the space of states on A in the following way.

Definition 3.4.2. For any two states ϕ,ψ on A we define their geodesic distance to be

d(ϕ,ψ) = sup{|ϕ(a)− ψ(a)| | a ∈ A, ‖[D, a]‖ ≤ 1}.

3.5 Equivariant spectral triples

In this section we discuss the notion of symmetries of real spectral triples. Making a comparison

with the commutative case, we can identify the group of diffeomorphisms of a differentiable

manifold with that of automorphisms of the algebra of smooth functions. When we consider a

noncommutative space we consider the more general case of Hopf algebra symmetries. This yields

to the definition of H-equivariant real spectral triple [PS98, PS00, S01, S03].

When dealing with Hopf algebra symmetries of a real spectral triple (A,H, D, J, γ) there

are two possibilities: the Hopf algebra H can either act (conventionally on the left) or coact

(conventionally on the right) on the algebra A, therefore we shall consider both cases.

We begin from the former. Let H be a Hopf ∗-algebra acting on the left on the algebra A.

Definition 3.5.1. A spectral triple (A,H, D, γ) is H-equivariant if there is a dense subspace

V ⊂ H with dense intersection with the domain of D such that V is an H-equivariant A-module

and, for every h ∈ H, the Dirac operator and (in the even case) the Z2 grading γ are equivariant:

[γ, h] = 0 and [D,h] = 0 on the intersection of V with the domain of D.

In the case of real spectral triples we add the following requirement.

Definition 3.5.2. A real spectral triple (A,H, D, J, γ) is H-equivariant if (A,H, D, γ) is an

H-equivariant spectral triple and, moreover, for any h ∈ H,

JhJ−1 = (Sh)∗

on the dense subspace V ⊂ H.

One of the direct consequences of the equivariance of a spectral triple is that also the space of

differential forms is an equivariant module. We point out that the notion of equivariance which

we are talking about is different from that introduced by Woronowicz [Wor89] for the differential

calculus of an H-comodule algebra; indeed, here we are considering an action of the Hopf algebra

H on an algebra A, and not a coaction.
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Definition 3.5.3. A bimodule of differential 1-forms Ω1(A) is an H-equivariant differential

bimodule if it is an H-equivariant bimodule and the action of d intertwines with that of H:

d(h . a) = h . da

for any h ∈ H and any a ∈ A.

Lemma 3.5.4. Let N be the sub-bimodule defining a general differential calculus Ω1(A). Then

Ω1(A) is an H-equivariant differential bimodule if and only if N is H-invariant; that is, H .N ⊆
N .

Proof. See [S03], corollary 2.21.

Proposition 3.5.5. Let (A,H, D, γ) be an H-equivariant spectral triple. Then Ω1
D(A) is an

H-equivariant differential bimodule.

Proof. Let us define the action of H on Ω1A simply by

h . adb = (h(1) . a)d(h(2) . b).

Then the thesis follows directly from the previous lemma and the equivariance of the Dirac

operator D.

Now we consider the second case. Let A be a left H-comodule algebra, H being a Hopf
∗-algebra, and denote by ∆L the coaction. Consider a real spectral triple (A,H, D, J, γ) (γ = id

in the odd case) and assume that there is a dense subspace V ⊆ Dom(D) of H, stable under the

action of A and D, which is a left H-equivariant A-module; denote then by ρL the left coaction

of H on V . Then we give the following definition13.

Definition 3.5.6. The real spectral triple (A,H, D, J, γ) is H-equivariant if:

(i) (ρL ◦D)v = (id⊗D) ◦ ρL(v). That is, (Dv)(−1) ⊗ (Dv)(0) = v(−1) ⊗Dv(0);

(ii) (ρL ◦ J)v = (∗⊗J) ◦ ρL(v). That is, (Jv)(−1) ⊗ (Jv)(0) = v∗(−1) ⊗ Jv(0);

And, in the even dimensional case,

(iii) (ρL ◦ γ)v = (id⊗ γ) ◦ ρL(v). That is, (γv)(−1) ⊗ (γv)(0) = v(−1) ⊗ γv(0).

3.6 Spectral metric spaces

In section 3.4 we saw that a spectral triple (A,H, D) over a pre-C∗-algebra A defines a distance dD

on the states space of the C∗-completion A of A (see definition 3.4.2). Such a distance induces a

tolopogy on the space S(A) of states over the C∗-algebra A. The space S(A) is naturally endowed

with the weak-∗ topology [Ru], and if we consider the canonical spectral triple (C∞(M), L2(S), 6D)

over a Riemannian manifold M we can notice that the Dirac operator 6D induces exactly the weak-
∗ topology on S(C(M)) [Kan42, KanRub57]. So one can find natural to consider noncommutative

13Definition 3.5.6 is a slightly weaker version of the notion of equivariance, with respect to a coaction, adopted,
e.g., in [Gos10, BDD11].
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spaces, endowed with suitable spectral triples, which fulfil this property: they are usually called

(compact) spectral metric spaces or quantum metric spaces (compact because we consider unital

algebras). In this section we recall briefly the main results about these spaces; we refer to literature

(especially to Mark Rieffel’s works) for a complete discussion [C89, Ri98, Ri99, Ri02, Ri04].

In this section, and only in this section unless explicitly specified, a spectral triple (even or

odd, it does not matter here) is a triple (A,H, D) where A is a unital C∗-algebra, π : A→ L(H)

is a faithful representation of A on a Hilbert space H and D is a selfadjoint operator on H such

that (1+D2)−1/2 is a compact operator and there is a dense unital ∗-subalgebra A ⊂ A such that

the domain of D is invariant under the multiplication by π(a) and such that [D,π(a)] extends to

a bounded operator for any a ∈ A. We will often omit the representation π, so that π(a) will

simply be denoted by a.

Let us now give the following definition (see [Ri98] and references therein).

Definition 3.6.1. A Lipschitz seminorm over a unital C∗-algebra A is a seminorm L defined on

a dense subalgebra A of A such that it satisfies the Leibniz property:

L(ab) ≤ L(a)‖b‖+ ‖a‖L(b).

Given a Lipschitz norm over A we can define a pseudometric over S(A) in the following way:

dL(ω1, ω2) = sup{|ω1(a)− ω2(a)| | a ∈ A, L(a) ≤ 1}. (3.6.1)

This allows us to give the following definition.

Definition 3.6.2. A Lipschitz seminorm over a unital C∗-algebra A is called a Lip-norm if

L(1) = 0 and if dL induces the weak-∗ topology on S(A).

If L is a Lip-norm over A then (A,L) is called a compact quantum metric space.

Now, given a spectral triple (A,H, D), we can use the Dirac operator to define a Lipschitz

seminorm on A as follows:

LD(a) = ‖[D,π(a)]‖, (3.6.2)

for any a ∈ A. The associated pseudometric dLD is nothing else than the distance dD. So, if LD

is a Lip-norm then dD induces the weak-∗ topology on S(A) and (A,LD) is a quantum metric

space. In this case we will call (A,H, D) a compact spectral metric space.

We conclude this section by giving a characterization of Lip-norms [Ri98, Ri99, HSWZ11].

Theorem 3.6.3. Let L be a Lipschitz seminorm over a unital C∗-algebra A and let dL be the

associated pseudometric on S(A). Then dL induces the weak-∗ topology (i.e. L is a Lip-norm, if

L(1) = 0) if and only if:

(i) dL is bounded;

(ii) the set L1 = {a ∈ A | L(a) ≤ 1, ‖a‖ ≤ 1} is totally bounded in A (w.r.t. ‖·‖).

Proof. See [Ri98], theorem 1.9.

Remark 3.6.4. Condition (ii) of theorem 3.6.3 is equivalent to require that the image of L1 is

totally bounded in A/C1.
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3.7 Spectral triples, KK-theory and Poincaré duality

To a Riemannian spin manifold (M, g) we can associate two classes in Kasparov KK-theory

[LRV12]. The first one is the so-called fundamental class λ ∈ KK(C(M) ⊗ Cl(M),C); it is

represented14 by the unbounded Kasparov bimodule (HΛ, d + d∗), where HΛ = L2(Λ•T ∗CM, g)

and d+d∗ is the Hodge–de Rham operator. The second one is a class µ ∈ KK(C(M)⊗C(M),C)

and it is represented by the unbounded Kasparov module (H, D), where H = L2(S) is the space

of L2-spinors and D is the Dirac operator associated to the Levi-Civita connection.

In noncommutative geometry a similar result holds: it is possible to associate to a real spectral

triple two KK-theory classes as above. Since in this thesis we shall not deal with Riemannian

noncommutative manifolds (in the sense of [Lord04, LRV12]), we consider here only the class µ,

which is associated to the spin structure of the manifold.

Hence, consider an even real spectral triple (A,H, D, J, γ), fulfilling the regularity and the

finiteness condition, so that A is a Fréchet pre-C∗-algebra. Denote by A its C∗-completion. Then

the real structure J determines an action of A ⊗ A◦ on H. Notice now that the operator b(D)

is an odd regular operator on the graded (with grading γ) Hilbert space H and, moreover, the

analytic properties of the Dirac operator imply that, for any a ∈ A, the commutator [D, a] is

bounded and the operator15 ar(D) is compact. It follows that (H, D) is an unbounded Kasparov

(A⊗A◦,C)-bimodule and so we can define µ ∈ KK(A⊗A◦,C) to be its equivalence class. Notice

that this means that µ is the class of the bounded Kasparov bimodule (H, b(D)).

The construction of the fundamental class µ associated to an odd real spectral triple (A,H, D, J)

requires some more work [LRV12]. First of all we “double” the triple as follows. Let Cl1 be the

Clifford algebra generated by the 2× 2 matrix

(
0 −i
i 0

)
. Then we consider the spectral triple

(A′ = A⊗A◦ ⊗ Cl1,H′ = H⊗ C2, D′, γ′), where D′ and γ are the operators

D′ =

(
D 0

0 −D

)
, γ′ =

(
0 1

1 0

)
.

This triple then defines a class µ in16 KK1(A⊗A◦,C) ' KK0(A⊗A◦⊗Cl1,C), which we assume

to be the fundamental class associated to the real spectral triple (A,H, D, J).

The existence of the fundamental class allows to give a different characterization of Poincaré

duality [LRV12]. Indeed, given an (even or odd) real spectral triple (A,H, D, J, γ), defining a

class µ ∈ KKj(A⊗ A◦,C) (j = 0 if the triple is even, j = 1 if it is odd) we can reformulate the

Poincaré duality condition in the following way: the fundamental class µ determines, for each

i = 0, 1, an isomorphism17

−⊗A µ : KKi(C, A)→ KKi+j(A◦,C) ' KKi+j(A,C).

14See [Kas88], 4.2.
15r(D) and b(D) denote, respectively, the resolvent and the bounded transform of D, see equations (2.7.1),

(2.7.2).
16Here we are using the periodicity properties of KK-theory, see theorem 2.7.25.
17With ⊗A we mean, in this section, the minimal completion of the graded tensor product over the algebra A,

see section 2.7.
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CHAPTER 4

Quantum principal bundles

The main objects we shall deal with in this thesis are quantum principal bundles (with a Lie group

G as structure group), i.e. noncommutative spaces which can be seen as principal fibrations over

a noncommutative space, with fibres described by Hopf algebras (of smooth functions over G).

Quantum principal bundles were first introduced by T. Brzezinski and S. Majid [BM93] as first

steps towards a development of gauge theories over noncommutative spaces based upon quantum

groups and principal fibrations. Since then many developments have been made [Haj96, BH99,

DGH01, BH04, HKMZ11, BH09, BZ12].

Since one can consider quantum groups as noncommutative generalizations of groups, quantum

principal bundles can be defined to be H-comodule algebras, with H a Hopf algebra, fulfilling a

set of conditions which correspond to some of the usual properties of principal G-bundles [KN]. It

is possible, actually, to consider a more general definition, identifying quantum principal bundles

with principal coalgebra extensions, but since in this thesis we shall work with quantum principal

bundles with classical structure group, we shall not discuss this part. Since the earliest works

[BM93], it was noticed that, as one would like to introduce also a notion of connection on quantum

principal bundles, it is necessary to take into consideration the first order differential calculi of

the algebras involved. So we can distinguish two different situations: in the first, one considers

each of the algebras involved to be endowed with its universal differential calculus; in the second,

instead, one considers more general calculi and then introduces a notion of compatibility of the

calculus on the total space of the bundle with the calculus on the Hopf algebra.

In the first part of this chapter we shall recall the different formulations and the evolution of

the notion of quantum principal bundle. We shall also give the definition of quantum principal

bundles with general calculus. The second part, instead, is dedicated to the study of two classes

of quantum principal bundles: the cleft bundles, which are the noncommutative counterpart of

trivial bundles, and the Tn-bundles. We shall recall, for the former, that they are related with

crossed product algebras; for the latter, instead, we shall show how requiring the compatibility

of the differential calculus over the total space of the bundle with the de Rham calculus on Tn
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4. Quantum principal bundles

yields to an alternative description of noncommutative principal toral fibrations and of strong

connections. In particular, we shall see how a strong Tn-connection can be equivalently described

by a family of n 1-forms on the total space of the bundle, recovering in this way a more ”classical”

description of strong connections. Part of these results will be extended, in chapter 8, to quantum

principal G-bundle, G being a compact, connected, semisimple Lie group.

4.1 Historical overview

We begin the part of this thesis dedicated to the general theory of noncommutative bundles

with a historical overview on the evolution of the definition and the concept itself of quantum

principal bundles. Our discussion will not be exhaustive; we refer to literature [BM93, Dur93,

Dur96a, Haj96, Dur97a, BH99, DGH01, BH04, HKMZ11, BH09, BZ12] for a more comprehensive

treatment. Since Woronowicz’s works [Wor87, Wor87b, Wor89], (compact) quantum groups are

considered the natural noncommutative generalizations of (compact) Lie groups. On the level of

algebras, quantum groups are described by Hopf algebras and hence a candidate for noncommu-

tative bundles are algebra extensions by Hopf algebras. This was the approach adopted by T.

Brzezinski and S. Majid, in their seminal paper [BM93].

Definition 4.1.1. Let H be a Hopf algebra and A a (unital) right H-comodule algebra, with

coaction ∆R. Let TR : A⊗A→ A⊗H be the map

TR = (m⊗ id) ◦ (id⊗∆R). (4.1.1)

TR will be called the canonical map. Then A is a quantum principal bundle (with universal

differential calculus) over the invariant subalgebra B = AcoH if the following conditions hold:

(i) TR is surjective;

(ii) denote by T the restriction of TR to Ω1A = ker(m) ⊂ A⊗A; then kerT ⊆ A(Ω1B)A.

In [BM93] it was given also a definition of quantum principal bundle with general calculus.

We shall discuss this part of the theory later in this thesis (see section 4.3).

If A is a quantum principal bundle over B, then A will be called the total space of the bundle,

B the base space and H the structure group. Now, given a quantum principal bundle (A,H,∆R),

with invariant subalgebra B = AcoH , we can define the space of horizontal 1-forms, as one can

do for a principal G-bundle over a smooth manifold.

Definition 4.1.2. The space of horizontal 1-forms is the subspace Ω1
horA = A(Ω1B)A of Ω1A.

The space of horizontal forms is a sub-A-bimodule of Ω1A. We point out here, also, that there

is a relevant sub-B-bimodule of the space of horizontal form, which has an important role in the

definition of connections:

Definition 4.1.3. The space of strongly horizontal 1-forms is the subspace Ω1
shorA = (Ω1B)A of

Ω1A.

The notion of quantum principal bundle, as given by definition 4.1.1, is equivalent to that of

Hopf-Galois extension [ChSw69, Sch90a, Sch90b, BM93, Sch94].
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Definition 4.1.4. A right H-comodule algebra A, with right coaction ∆R, is a Hopf-Galois

extension over its invariant subalgebra B = AcoH if the canonical map TR, seen as a map TR :

A⊗B A→ A⊗H, is bijective.

We will usually denote by B ↪→ A a Hopf-Galois extension, omitting the Hopf algebra when

there will not be any possible misunderstanding.

Proposition 4.1.5. An H-comodule algebra A is a Hopf-Galois extension if and only if it is a

quantum principal bundle with the universal calculus.

Proof. See [Haj96], proposition 1.6. See also [B96], lemma 3.2.

4.1.1 Connections and strong connections

One of the most important notion in the study of principal bundles, in differential geometry, is that

of connection. An analogous concept can be introduced in the framework of quantum principal

bundles. The study of (strong) connections over Hopf-Galois extensions leads to a refinement of

the definition of quantum principal bundle, i.e. to the introduction of the definition of principal

comodule algebra. We shall present first the approach of Brzezinski and Majid [BM93], and

then we shall discuss the different characterizations of strong connections introduced afterwards

[Haj96, DGH01, BH04, HKMZ11, BZ12].

Let B ↪→ A be a Hopf-Galois extension. The coaction ∆R of H on A induces a right H-

coaction ∆A⊗A
R on the (algebraic) tensor product A⊗A in the following way:

∆A⊗A
R (a⊗ b) = a(0) ⊗ b(0) ⊗ a(1)b(1), (4.1.2)

for any a, b ∈ A. ∆A⊗A
R restricts to a right coaction on Ω1A = ker(m : A ⊗ A → A), and

the restriction will be denoted by ∆Ω
R : Ω1A → Ω1A ⊗ H. Now we can introduce a notion of

connection for Hopf-Galois extensions [BM93].

Definition 4.1.6. A connection over a Hopf-Galois extension B ↪→ A, or, equivalently, over

a quantum principal bundle (A,H,∆R) with universal differential calculus, is a left A-module

projection Π on Ω1A such that:

(i) ker Π = Ω1
horA;

(ii) ∆Ω
R ◦Π = (Π⊗ id) ◦∆Ω

R.

If Π is a connection, then Im(Π) is called the space of vertical forms. A relevant feature

that connections over a quantum principal bundle share with connections over smooth principal

G-bundles is that they admit a connection form.

Definition 4.1.7. A connection form over a Hopf-Galois extension B ↪→ A is a linear map

ω : H → Ω1A such that:

(i) ω(1) = 0;

(ii) T ◦ ω = 1⊗ (id− ε) (fundamental vector field condition);

(iii) ∆Ω
R ◦ ω = (ω ⊗ id) ◦ adR (right adjoint covariance).
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Proposition 4.1.8. There is a one-to-one correspondence between connections Π and connection

forms ω over a Hopf-Galois extension, given, on exact forms, by

Πω ◦ d = id ∗R ω, (4.1.3)

where ∗R is the right convolution product (2.3.3).

Proof. See [BM93], proposition 4.4. See also [Haj96], sections 1 and 2.

Using definition 4.1.3, we can enforce the notion of horizontality for a 1-form, obtaining

the space Ω1
shorA of strongly horizontal 1-forms. There are corresponding notions of strong

connections and strong connection forms [Haj96].

Definition 4.1.9. A connection Π over a Hopf-Galois extension B ↪→ A is called a strong

connection iff

(id−Π)(dA) ⊆ Ω1
shorA.

Definition 4.1.10. A connection form ω over a Hopf-Galois extension B ↪→ A is called a strong

connection form iff

da− a(0)ω(a(1)) ∈ Ω1
shorA ∀a ∈ A.

Proposition 4.1.11. Equation (4.1.3) restricts to a one-to-one correspondence between strong

connections and strong connections form.

Proof. See [Haj96], sections 1 and 2.

As mentioned before there are different characterizations of strong connections. We recall the

following result from [DGH01]. We give directly the main result.

Theorem 4.1.12. Let B ↪→ A be a Hopf-Galois extension. Then the following are equivalent

descriptions of a strong connection.

(1) a unital left B-linear right H-colinear splitting s of the multiplication map B ⊗A→ A;

(2) a right H-colinear homomorphism D : A→ Ω1
shorA with D(1) = 0 and satisfying the Leibniz

rule: D(ba) = (db)a+ bD(a) for any b ∈ B, a ∈ A;

(3) a left A-linear right H-colinear projection Π : Ω1A→ Ω1A such that (id−Π)(dA) ⊆ Ω1
shorA;

(4) a homomorphism ω : H → Ω1A satisfying

a. ω(1) = 0,

b. T ◦ ω = 1⊗ (id− ε),
c. ∆Ω

R ◦ ω = (ω ⊗ id) ◦ adR,

d. da− a(0)ω(a(1)) ∈ Ω1
shorA for any a ∈ A.

Proof. See [DGH01], theorem 2.3.

Here by H-colinear map is meant a linear map between two H-comodules which respects the

comodule structure. This theorem introduces two new descriptions of a strong connection in

addition to (3) and (4) already discussed before. The theorem above allows also to prove some

properties of Hopf-Galois extensions. In particular (see [DGH01], corollary 2.4),
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Corollary 4.1.13. If B ↪→ A is a Hopf-Galois extension admitting a strong connection, then

(i) A is projective as a left B-module;

(ii) B is a direct summand of A as a left B-module;

(iii) A is faithfully flat1 over B.

Definition 4.1.14. An H-comodule algebra A is called a principal extension if it is a Hopf-Galois

extension and, moreover, it admits a strong connection.

Recently another characterization of strong connections over an H-comodule algebra A was

introduced in [HKMZ11]. It allows one to change the description of quantum principal bundles

from extension to principal comodule algebras [BM98b, BH99, B99, BH09]. We remark that this

construction requires that the Hopf algebra H has invertible antipode, which as mentioned in the

Introduction is also our assumption (though all the results discussed in this chapter till now hold

also for Hopf algebras with non invertible antipode). Denote by ∆R the coaction of H on A.

Then we can define also a left coaction ∆L : A→ H ⊗A using the antipode:

∆L(a) = S−1(a(1))⊗ a(0).

This makes A into a left H-comodule algebra. Then we can consider the following definition2.

Definition 4.1.15. Let H be a Hopf algebra with invertible antipode. An HKMZ-connection on

a right H-comodule algebra A is a unital linear map ` : H → A⊗A satisfying:

(i) (id⊗∆R) ◦ ` = (`⊗ id) ◦∆,

(ii) (∆L ⊗ id) ◦ ` = (id⊗ `) ◦∆,

(iii) TR ◦ ` = 1⊗ id.

Before showing the relation between HKMZ-connections and principal extensions, we recall

the definition of the translation map [B96]. Consider a Hopf-Galois extension B ↪→ A. By

definition the canonical map TR : A ⊗B A → A ⊗ H is invertible. Hence we can define a map

τ : H → A⊗B A by

τ(h) = T−1
R (1⊗ h), (4.1.4)

for any h ∈ H. τ is called the translation map associated to the extension B ↪→ A. We introduce

an abbreviated notation for the translation map:

τ(h) ≡ h[1] ⊗ h[2],

1We recall that a right B-module E is faithfully flat if the following holds: given any sequence of left B-modules
F ′ → F → F ′′, it is exact if and only if the sequence E ⊗B F ′ → E ⊗B F → E ⊗ F ′′ is exact. For the details see
[BourCA], I.3.1.

2See [HKMZ11], definition 2.3. Notice that the authors call this object simply a strong connection, or a strong-
connection lifting (cfr. [BH09]). For the moment we prefer instead to use a different terminology, until we prove
that this is another equivalent description of strong connections.
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with summation understood. We list now some properties of τ (see [Sch90b, B96]):

(id⊗B ∆R) ◦ τ = (τ ⊗ id) ◦∆,

((σ ◦∆R)⊗B id) ◦ τ = (S ⊗ τ) ◦∆,

∆A⊗BA ◦ τ = (τ ⊗ id) ◦ adR,

mA ◦ τ = ε,

τ(hh̃) = h̃[1]h[1] ⊗B h[2]h̃[2],

(4.1.5)

where ∆A⊗BA is the right coaction of H on A⊗B A induced by the usual coaction on A⊗A,

∆A⊗A(a⊗ b) = a(0) ⊗ b(0) ⊗ a(1)b(1),

and σ : A⊗H → H ⊗A is the switch σ(a⊗ h) = h⊗ a.

Let now A be an H-comodule algebra, with coaction ∆R, and consider an HKMZ-connection

` : H → A⊗A. Let us introduce We introduce an abbreviated notation also for `: for any h ∈ H
we write

`(h) ≡ `(h)〈1〉 ⊗ `(h)〈2〉.

with summation understood. Now we can rewrite the properties (i)-(iii) in the following way

[HKMZ11]:

`(h)〈1〉 ⊗
(
`(h)〈2〉

)
(0)
⊗
(
`(h)〈2〉

)
(0)

= `(h(1))
〈1〉 ⊗ `(h(1))

〈2〉 ⊗ h(2),(
`(h)〈1〉

)
(0)
⊗
(
`(h)〈1〉

)
(1)
⊗ `(h)〈2〉 = `(h(2))

〈1〉 ⊗ S(h(1))⊗ `(h(2))
〈2〉,

`(h)〈1〉
(
`(h)〈2〉

)
(0)
⊗
(
`(h)〈2〉

)
(1)

= 1⊗ h.
(4.1.6)

Lemma 4.1.16. Let ` : H → A⊗A be an HKMZ-connection. Then, for any h ∈ H,

`(h)〈1〉`(h)〈2〉 = ε(h).

Proof. Apply id⊗ ε to the last of (4.1.6).

Proposition 4.1.17. A right H-comodule algebra A is a principal extension if and only if it

admits an HKMZ-connection.

Proof. Suppose that ` : H → A ⊗ A is an HKMZ-connection. We can use it to define a map

χ : A⊗H → A⊗B A which is an inverse for the canonical map TR : A⊗B A→ A⊗H. We take

it to be the composition of the map χ̃ : A⊗H → A⊗A, defined by

χ̃(a⊗ h) = a`(h)〈1〉 ⊗ `(h)〈2〉,

with the projection π : A⊗A→ A⊗B A. If now we take p⊗ q ∈ A⊗A we have:

χ̃(TR(p⊗ q)) = pq(0)`(q(1))
〈1〉 ⊗ `(q(1))

〈2〉. (4.1.7)
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Applying ∆R ⊗ id to (4.1.7) we obtain:

(∆R ⊗ id)χ̃(TR(p⊗ q)) = p(0)q(0)(`(q(2))
〈1〉)(0) ⊗ p(1)q(1)(`(q(2))

〈1〉)(1) ⊗ `(q(2))
〈2〉

=
(
p(0)q(0) ⊗ p(1)q(1) ⊗ 1

) (
(`(q(2))

〈1〉)(0) ⊗ (`(q(2))
〈1〉)(1) ⊗ `(q(2))

〈2〉
)

=
(
p(0)q(0) ⊗ p(1)q(1) ⊗ 1

) (
`(q(3))

〈1〉 ⊗ S(q(2))⊗ `(q(3))
〈2〉
)

= p(0)q(0)`(q(1))
〈1〉 ⊗ p(1) ⊗ `(q(1))

〈2〉,

(4.1.8)

where we used the second of (4.1.6). Therefore χ̃(TR(1 ⊗ q)) belongs to B ⊗ A. Hence, using

(4.1.7), we obtain:

χ(TR(p⊗B q)) = p⊗B q(0)`(q(1))
〈1〉`(q(1))

〈2〉

= p⊗B q(0)ε(q(1)) = p⊗B q.

where we used lemma 4.1.16. Hence we have proved that χ ◦ TR = idA⊗BA. Next, take p ⊗ h ∈
A⊗H. We have:

TR(χ(p⊗ h)) = p`(h)〈1〉 ⊗B `(h)〈2〉 = p`(h)〈1〉(`(h)〈2〉)(0) ⊗ (`(h)〈2〉)(1) = p⊗ h, (4.1.9)

where we used the third of (4.1.6). So we have also TR ◦ χ = idA⊗H , which implies that χ is

a two-side inverse for the canonical map. In order to show that A is a principal extension we

need now only to build a splitting of the multiplication map B ⊗ A → A. Consider the map

s : A→ A⊗A defined by

s(p) = p(0)`(p(1))
〈1〉 ⊗ `(p(1))

〈2〉.

With a computation similar to that in (4.1.8), we can see that s takes values in B⊗A. Moreover

it is clearly left B-linear, and it is H-colinear due to the first of (4.1.6). Finally, using the last of

(4.1.6) we see that mA ◦s = idA, and therefore s is the splitting we were looking for. We conclude

that A is a principal extension.

Conversely, assume that A is a principal extension. Then we have both a splitting s : A →
B ⊗ A of the multiplication map B ⊗ A → A and the translation map τ , defined by equation

(4.1.4). Following [BH04], we define a map ` : H → A⊗A as follows:

`(h) = h[1]s(h[2]) (4.1.10)

for any h ∈ H. Since s is left B-linear, and τ takes values in A⊗B A, ` is well-defined. We prove

that ` fulfils properties (i)-(iii) of definition 4.1.15. Let us begin with the first one. Using the

(right) H-colinearity of s we see that

((id⊗∆R) ◦ `)(h) = h[1]s((h[2])(0))⊗ (h[2])(1). (4.1.11)

Now we use the first of (4.1.5) to rewrite (4.1.11) as

((id⊗∆R) ◦ `)(h) = (h(1))
[1]s((h(1))

[2])⊗ h(2),
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which is exactly ((`⊗ id)◦∆)(h), and so (i) of definition 4.1.15 holds. In order to see that also (ii)

holds, we use the H-colinearity of s and the second of (4.1.5) to compute the following expression:

((∆L ⊗ id) ◦ `)(h) = (S−1 ⊗ id) ◦ ((σA⊗H ◦∆R)⊗ id)(h[1]s(h[2]))

= (S−1 ⊗ id)
(
S(h(1))⊗ (h(2))

[1]s((h(2))
[2])
)

= h(1) ⊗ (h(2))
[1]s((h(2))

[2]) = ((id⊗ `) ◦∆)(h),

which is exactly condition (ii). Finally, using property (i), which now we know to hold, we see

that

(TR ◦ `)(h) = (mA ◦ `)(h(1))⊗ h(2) = (h(1))
[1]mA(s((h(1))

[2]))⊗ h(2). (4.1.12)

But the fact that s is a splitting for the multiplication map, together with the third of (4.1.5),

implies that (4.1.12) is actually equal to

(h(1))
[1](h(1))

[2] ⊗ h(2) = ε(h(1))⊗ h(2) = 1⊗ h,

and therefore ` fulfils also property (iii). Hence it is an HKMZ-connection.

Corollary 4.1.18. There is a one-to-one correspondence between strong connections and HKMZ-

connections.

Proof. The correspondence can be seen as a correspondence s ↔ `, where s 7→ ` is given by

equation (4.1.10), while ` 7→ s is given by:

s(a) = a(0)`(a(1)). (4.1.13)

Therefore from now on we will refer to an HKMZ-connection simply as to a strong connection,

or as to a strong-connection lifting (cfr. [BH09]). So, till now, we have five different characteriza-

tions of strong connections (see also theorem 4.1.12). Moreover, we proved that an H-comodule

algebra is a principal extension (and therefore a Hopf-Galois extension) if and only if it admits a

strong connection.

We conclude this section by noticing that definition 4.1.15 can be equivalently reformulated

in the following way [BZ12].

Definition 4.1.19. Let H be a Hopf algebra with bijective antipode, and let A be a right H-

comodule algebra, with coaction ∆R. Let also m denote the multiplication map of A. Then a

linear map ` : H → A ⊗ A is called a strong connection (or a strong-connection lifting) if the

following hold:

(i) `(1) = 1⊗ 1,

(ii) m ◦ ` = ε,

(iii) (`⊗ id) ◦∆ = (id⊗∆R) ◦ `,
(iv) (S ⊗ `) ◦∆ = (σA⊗H ⊗ id) ◦ (∆R ⊗ id) ◦ `.
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The most direct way to see the equivalence between definition 4.1.15 and definition 4.1.19 is

to compare conditions (i)-(iv) above to equations (4.1.6).

4.2 Principal comodule algebras

The results discussed in the previous section of this chapter yield to the following definition, which

is the one adopted in the more recent works (see, e.g., [BZ12]).

Definition 4.2.1. Let H be a Hopf algebra with invertible antipode. Then a right H-comodule

algebra A is called a principal comodule algebra if it admits a strong connection3 ` : H → A⊗A.

In particular a principal comodule algebra A is a Hopf-Galois extension admitting a strong

connection, as it follows from proposition 4.1.17.

4.2.1 Gauge transformations

Since principal comodule algebras are a particular class of principal coalgebra-Galois extensions,

we can define their gauge transformations [BM93, B96, Haj96, Dur96b, Dur97a, Dur97b, DGH01].

Definition 4.2.2. Let A be a principal comodule algebra, and let B denote its invariant sub-

algebra. A vertical automorphism (or gauge transformation) is a left B-module automorphism

F : A→ A such that F(1) = 1 and ∆R ◦ F = (F ⊗ id) ◦∆R. The set of vertical automorphisms

is the group AutB(A).

Now we study the main properties of vertical automorphisms of principal comodule algebras.

As will be clear from the results below, they share many properties with vertical automorphisms

of a principal G-bundle.

Proposition 4.2.3. Vertical automorphisms of a principal comodule algebra A are in bijective

correspondence with convolution invertible linear maps f : H → A such that f(1) = 1 and

∆R ◦ f = (f ⊗ id) ◦ adR. We shall call these maps gauge transformations of the bundle.

Proof. The correspondence is given by

F 7→ f = mA ◦ (id⊗B F) ◦ τ (4.2.1)

(where τ is the translation map, see [B96]), whose inverse is

f 7→ F = id ∗ f. (4.2.2)

For the details see [B96], proposition 5.2.

The gauge transformations f : H → A form a group, say G(A), under the convolution product.

One can prove that:

Corollary 4.2.4. AutB(A) ' G(A) as multiplicative groups.

3Or strong connection lifting; see definition 4.1.19.
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Proof. See [B96], corollary 5.3.

Theorem 4.2.5. Let A be a principal comodule algebra. Let f ∈ G(A) be a gauge transformation,

and let f−1 denote its convolution inverse. Then the following describe left actions of f on strong

connections which are compatible with the identifications of theorem 4.1.12 and corollary 4.1.18:

(i) (f . s)(a) = s(a(0)f(a(1)))f
−1(a(2)),

(ii) (f . D)(a) = D(a(0)f(a(1)))f
−1(a(2)),

(iii) (f .Π)(adb) = aΠ
(
d(b(0)f(b(1)))

)
f−1(b(2)) + ab(0)f(b(1))df

−1(b(2)),

(iv) (f . ω)(h) = f(h(1))ω(h(2))f
−1(h(3)) + f(h(1))df

−1(h(2)),

(v) (f . `)(h) = f(h(1))`(h(2))f
−1(h(3)).

Proof. The consistency between (i), (ii), (iii), (iv) has already been proved in [DGH01] (see

theorem 4.1). We show here that, if ` corresponds to s, then the HKMZ-connection corresponding

to (f . s) is the one given in (v) (the proof in the more general case of coalgebra-Galois extension

can be found in [BH09]; here we present our direct proof for the case of Hopf algebra extensions).

We recall that the correspondence s↔ ` is given by

s(a) = a(0)`(a(1)),

`(h) = h[1]s(h[2]).
(4.2.3)

So, if we denote f . s by s′, then the corresponding HKMZ-connection is given by:

`′(h) = h[1]s′(h[2]) = h[1]s
(
h[2]

(0)f(h[2]
(1))
)
f−1(h[2]

(2))

= h(1)
[1]s
(
h(1)

[2]f(h(2))
)
f−1(h(3)),

(4.2.4)

where we used (4.1.6). Now we use again (4.2.3), together with (4.1.6), to write, in (4.2.4), s in

terms of `, obtaining the following expression:

`′(h) = h(1)
[1](h(1)

[2]f(h(2)))(0)`
(

(h(1)
[2]f(h(2)))(1)

)
f−1(h(3))

= h(1)
[1]h(1)

[2]f(h(3))(0)`
(
h(2)f(h(3))(1)

)
f−1(h(4))

= f(h(2))(0)`
(
h(1)f(h(2))(1)

)
f−1(h(3)),

(4.2.5)

where, in the last equality, we used the properties of the translation map (see (4.1.5)). Now we

use the fact that f is adR-equivariant to rewrite (4.2.5) as

`′(h) = f(h(3))`(h(1)S(h(2))h(4))f
−1(h(5))

= f(h(1))`(h(2))f
−1(h(3)),

which is exactly (f . `)(h), as given by (v).

Notice that we can write the gauge transformed of a strong connection ` under a transforma-

tion f ∈ G(A) as f ∗ ` ∗ f−1.
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4.3 QPBs with general differential calculus

In sections 4.1 and 4.2 we discussed quantum principal bundles, (strong) connections and gauge

transformations assuming that all the algebras involved (the Hopf algebra H, the H-comodule

algebra A and the invariant subalgebra B) were endowed with the respective universal differential

calculus. It is natural, now, to extend this definition and to consider the case of general calculi.

Such an extension is unavoidable if we want our theory to cover many relevant cases: indeed,

even a complete description of a smooth principal G-bundle can not be achieved using only the

universal calculus-based theory, since many of its properties come from the fact that all the

spaces involved are endowed with the de Rham calculus, which is far from universal. So, in

this section, we discuss quantum principal bundles with general calculus. The main definitions

were already given in [BM93]. Due to the results discussed in the previous sections, we restrict

ourself to H-comodule algebras A, where H is a Hopf algebra with invertible antipode, which

are principal comodule algebras (see definition 4.2.1), so that we already know that they admit

a strong connection with respect to the universal calculus.

4.3.1 Definition

Let H be a Hopf algebra with invertible antipode and A a (unital) right H-comodule algebra,

with coaction ∆R. Let TR : A ⊗ A → A ⊗H be the canonical map. Let NA be a sub-bimodule

of ker(m) ⊂ A⊗ A defining4 a first order differential calculus Ω1(A) on A and Q ⊂ ker(ε) be an

adR-invariant right ideal of H defining5 a bicovariant first order differential calculus on H. We

consider the following H-coaction on ker(m) ⊂ A⊗A:

∆Ω
R(a⊗ b) = a(0) ⊗ b(0) ⊗ a(1)b(1). (4.3.1)

Let B be the invariant subalgebra of A and assume that B is endowed with the differential calculus

induced by the inclusion B ↪→ A: Ω1(B) = Ω1B/(NA ∩B ⊗B). Then we can give the following

definition (cf. [BM93, Haj96]).

Definition 4.3.1. (A,H,∆R, NA, Q) is called a quantum principal bundle if:

(i) A is a principal comodule algebra,

(ii) ∆Ω
R(NA) ⊆ NA ⊗H (right covariance of the differential calculus),

(iii) TR(NA) ⊂ A⊗Q (fundamental vector field compatibility condition),

(iv) ker(T ) ⊂ AΩ1(AcoH)A (exactness condition), where Ω1(AcoH) = Ω1AcoH/(NA ∩ Ω1AcoH)

and T : Ω1(A)→ A⊗ (ker(ε)/Q) is the map:

T : [α]NA 7→ ((id⊗ πQ) ◦ TR)(α),

πQ being the canonical projection ker(ε)→ ker(ε)/Q.

The algebra A will be called total space of the bundle, the Hopf algebra H will be called the

structure group and the invariant subalgebra B = AcoH the base space. As in the case of QPBs

4See proposition 2.2.3.
5See theorem 2.3.31.
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with universal calculus (i.e. for principal comodule algebras), we can define the sets of horizontal

and strongly horizontal 1-forms.

Definition 4.3.2. The space of horizontal 1-forms is the subspace Ω1
hor(A) = AΩ1(B)A of Ω1(A).

Definition 4.3.3. The space of strongly horizontal 1-forms is the subspace Ω1
shor(A) = Ω1(B)A

of Ω1(A).

4.3.2 Connections and strong connections

We have already discussed the theory of (strong) connections over a quantum principal bundle

with universal calculus. Now we give the analogous definitions in the case of general first order

differential calculus. We refer to [BM93, Haj96] for the details.

Definition 4.3.4. A left A-module projection Π on Ω1(A) is called a connection for the quantum

principal bundle (A,H,∆R, NA, Q) iff:

(i) ker(Π) = Ω1
hor(A),

(ii) ∆Ω
R ◦Π = (Π⊗ id) ◦∆Ω

R (right covariance).

The image of Π will be called the space of vertical forms and denoted by Ω1
ver(A).

Definition 4.3.5. A connection Π is called strong iff (id−Π)(dA) ⊆ Ω1
shor(A).

Also in this setting we can show that we can associate a (strong) connection 1-form ω to any

(strong) connection Π (and viceversa).

Definition 4.3.6. A strong connection form on a quantum principal bundle (A,H,∆R, NA, Q)

is a homomorphism ω : H → Ω1(A) which satisfies:

(i) ω(C⊕Q) = 0 (compatibility with the differential structure);

(ii) ∆Ω
R ◦ ω = (ω ⊗ id) ◦ adR (right adjoint covariance);

(iii) T ◦ ω = (id⊗ πH) ◦ (1⊗ (id− ε)) (fundamental vector field condition);

(iv) da− a(0)ω(a(1)) ∈ Ω1(B)A for any a ∈ A (strongness).

A map which fulfils (i)-(iii) but not (iv) will be simply called a connection form.

Proposition 4.3.7. There is a one to one correspondence between strong connections Π and

strong connection forms ω, given, on exact forms, by

Πω ◦ d = id ∗R ω, (4.3.2)

where ∗R is the right convolution product (2.3.3).

Proof. See formula (47) in [BM93]; see also [Haj96], sections 1 and 2.

In the case of principal comodule algebras there are five different characterizations of strong

connections (see theorem 4.1.12 and corollary 4.1.18). A similar results for QPBs with general

calculus is, at the best of our knowledge, not (yet) available. Nevertheless, we can notice the

following fact:
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Proposition 4.3.8. Let (A,H,∆R, NA, Q) be a quantum principal bundle and let B = AcoH . Let

` : H → A ⊗ A be a strong connection for principal comodule algebra A (see definition 4.1.19).

Then, if `(Q) ⊆ NA, there is a strong connection form ω : H → Ω1(A), associated to `, for the

quantum principal bundle (A,H,∆R, NA, Q).

Proof. Let ω : H → Ω1A be the universal strong connection form associated to `. Then it

descends to a strong connection form ω : H → Ω1(A) if and only if ω(Q) = 0. Since ` = ω + ε,

and Q ⊆ ker ε, this holds if and only if `(Q) = 0.

4.4 Cleft principal comodule algebras

There is an important class of principal comodule algebras: that of cleft Hopf-Galois extensions.

As proposed in [BM93], they can be identified with “trivial” quantum principal bundles.

Definition 4.4.1. A Hopf-Galois extension B ↪→ A is called a cleft extension if there is a

convolution invertible linear map φ : H → A such that φ(1) = 1 and

∆R ◦ φ = (φ⊗ id) ◦∆.

Proposition 4.4.2. Any cleft Hopf-Galois extension admits a strong connection. In particular,

any cleft Hopf-Galois extension is a principal comodule algebra.

Proof. Let φ be a trivialization of a cleft extension B ↪→ A and let ` : H → A ⊗ A be the map

defined by:

`(h) = φ−1(h(1))⊗ φ(h(2)).

Then ` is a strong-connection lifting (see definition 4.1.19) [BZ12].

In particular we can speak of cleft principal comodule algebras, meaning that they are cleft

extensions over their invariant subalgebra. The next sections will be dedicated to the study of

their structure and their properties.

4.4.1 Gauge transformations of cleft extensions

Let us consider a cleft Hopf-Galois extension B ↪→ A with trivialization φ : H → A. Then we

can rewrite (4.2.1) as:

F 7→ f = φ−1 ∗ (F ◦ φ). (4.4.1)

In [BM93], gauge transformations of a trivial quantum principal bundle were defined as convo-

lution invertible linear maps Λ : H → B with Λ(1) = 1; these maps form a group, say G(B),

under the convolution product. Then we can give the following definition, which can be seen to

be consistent with those given above (see the proposition below) [B96].

Definition 4.4.3. The group of gauge transformations of a cleft Hopf-Galois extension B ↪→ A
is the group G(B) of unital convolution invertible linear maps Λ : H → B.
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Proposition 4.4.4. Let B ↪→ A be a cleft Hopf-Galois extension. Then the groups AutB(A),

G(A) and G(B) are isomorphic one to each other.

Proof. The first isomorphism is given by corollary 4.2.4. The second one is obtained using the

following correspondence between maps f ∈ G(A) and maps Λ ∈ G(B):

f 7→ Λ = φ ∗ f ∗ φ−1, (4.4.2)

with inverse given by

Λ 7→ f = φ−1 ∗ Λ ∗ φ. (4.4.3)

For the details see [B96], theorem 5.4.

From these results we can see that a gauge transformation of a cleft extension can be seen

simply as a change of trivialization:

Proposition 4.4.5. Consider a cleft Hopf-Galois extension B ↪→ A together with a trivialization

φ. Let F be a gauge transformation and Λ : H → B the convolution invertible map associated

to it by proposition 4.4.4. Then φΛ ≡ Λ−1 ∗ φ is another trivialization map for the extension

B ↪→ A, with convolution inverse φ−1
Λ = φ−1 ∗ Λ.

Proof. φΛ is linear and unital. Moreover, φΛ∗φ−1
Λ = Λ−1∗φ∗φ−1∗Λ = ε and φΛ is H-equivariant

since φ is, and Λ takes values in B (which is the invariant subalgebra). Thus φΛ is a trivialization

for the extension B ↪→ A.

4.4.2 Cleft extensions and crossed products

Let B ↪→ A be a cleft Hopf-Galois extension, with Hopf algebra H. We will show that A is

isomorphic to a crossed product B#σH, where σ is a suitable 2-cocyle on H with values in B

[BlCM86, DT86, BlM89, Ch98]. Before proving this result we recall the definition of crossed

product of an algebra with a Hopf algebra.

Definition 4.4.6. Let B be an associative algebra (with unit) and H be a Hopf algebra. A (left)

weak action of H on B is a bilinear map H × B → B (we will use the notation h . a for the

action of h ∈ H on a ∈ B) such that, for any h ∈ H, a, b ∈ B,

(i) h . ab = (h(1) . a)(h(2) . b);

(ii) h . 1B = ε(h)1B;

(iii) 1 . a = a.

Definition 4.4.7. Let H be a Hopf algebra weakly acting on an algebra B, and let σ : H×H → B

be a C-bilinear map. Let B#σH be the algebra whose underlying space is B ⊗ H and whose

multiplication is given by

(a⊗ h)(b⊗ l) = a(h(1) . b)σ(h(2), l(1))⊗ h(3)l(2).

for all a, b ∈ B and h, l ∈ H. The algebra B#σH is called a crossed product if it is associative

with 1⊗ 1 as identity element.

62



4.4. Cleft principal comodule algebras

We will denote by a#h the element a ⊗ h ∈ B#σH. Notice that we can put on B#σH

a structure of right H-comodule algebra, simply defining the coaction as ∆R = id ⊗ ∆. It is

possible to give conditions on σ for which B#σH is a crossed product. We begin with the

following definition.

Definition 4.4.8. A bilinear map σ : H ×H → B is called normal if σ(h, 1) = σ(1, h) = ε(h)1

for any h ∈ H.

Lemma 4.4.9. 1#1 is the identity of B#σH if and only if σ is normal.

Proof. See [BlCM86], lemma 4.4.

Proposition 4.4.10. Assume σ normal. Then B#σH is associative if and only if the following

conditions hold:

(i) (cocycle condition) for all h, l,m ∈ H:

[
h(1) . σ(l(1),m(1))

]
σ(h(2), l(2)m(2)) = σ(h(1), l(1))σ(h(2)l(2),m); (4.4.4)

(ii) (twisted module condition) for all h, l,m ∈ H and all a ∈ B:

(
h(1) . (l(1) . a)

)
σ(h(2), l(2)) = σ(h(1), l(1))(h(2)l(2) . a). (4.4.5)

Proof. See [BlCM86], lemma 4.5.

Hence proposition 4.4.10 gives a complete characterization of crossed products. We can iden-

tify a class of “simple” (non-trivial, i.e. non isomorphic to the tensor product algebra H ⊗ B)

crossed-products:

Definition 4.4.11. A crossed product B#σH is called a smash product if the cocycle σ is trivial.

We will denote a smash product simply by B#H.

Now consider a cleft Hopf-Galois extension B ↪→ A, with trivialization φ : H → A. The map

φ induces [BlCM86, Ch98, DT86] a weak action of H on the invariant subalgebra B:

h . b = φ(h(1))bφ
−1(h(2)). (4.4.6)

Moreover, we can define a cocycle σ : H ×H → B by

σ(h, l) = φ(h(1))φ(l(1))φ
−1(h(2)l(2)). (4.4.7)

Proposition 4.4.12. σ, as defined by 4.4.7, is normal and fulfils conditions (i) and (ii) of

proposition 4.4.10. Thus B#σH is a crossed product.

Proof. It follows by direct computation, using the fact that φ−1 is the convolution inverse of

φ.

Now one can prove that any cleft Hopf-Galois extension is isomorphic to a crossed product

algebra.
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Proposition 4.4.13. There is a right H-comodule algebra isomorphism F : B#σH → A given

by: F (a#h) = aφ(h).

Proof. See [DT86], theorem 11.

Remark 4.4.14. If the cocycle σ, defined in equation (4.4.7), is trivial we get that A is isomorphic

to the smash product B#H. Notice that σ is trivial iff φ is an algebra homomorphism.

Remark 4.4.15. If the algebra B is commutative any weak action of the form (4.4.6) is trivial;

hence any smash product B#H, with B commutative, is isomorphic, as an algebra, to the tensor

product algebra B⊗H. It follows that the usual notion of trivial principal G-bundle in differential

geometry corresponds to the case of cleft extensions with trivialization which is an algebra map,

that is to smash products.

4.4.3 ∗-structure of cleft extensions and crossed products

In this thesis we will usually deal with Hopf ∗-algebras and associative ∗-algebras. We have al-

ready given a definition of H-comodule algebra which takes care of the star structures of both

algebras; now we are interested in studying the ∗-structure of cleft extensions and crossed prod-

ucts. Consider therefore a Hopf-Galois extension B ↪→ A, w.r.t. a Hopf ∗-algebra H, where also

A is a ∗-algebra (and, consequently, so is B). Assume that it is a cleft extension. We know then

that A, as an associative algebra, is isomorphic to a crossed product B#σH, as an associative

algebra. So we can look for the conditions under which it is isomorphic to B#σH as a ∗-algebra.

Of course, the first thing we need is a way to define an involution on a crossed product algebra.

We begin with the following definition6.

Definition 4.4.16. Let B be an associative ∗-algebra and H be a Hopf ∗-algebra. Then a (weak)

action of H on B is called a (weak) ∗-action if the following conditions hold:

(i) for every b ∈ B and every h ∈ H,

(h . a)∗ = (Sh)∗ . a∗;

(ii) the cocycle σ is convolution invertible. In particular, for each h, l ∈ H,

σ(h(1), l(1))σ(S−1h∗(2), S
−1l∗(2))

∗ = ε(h)ε(l),

σ(S−1h∗(1), S
−1l∗(1))

∗σ(h(2), l(2)) = ε(h)ε(l).

Consider now a ∗-algebra B together with a weak ∗-action of H on it, with cocycle σ, such

that B#σH is a crossed product (see proposition 4.4.10). Then we can define an involution ∗ on

B#σH as follows:

(b#h)∗ = σ(S−1h(2), h(1))
∗(h∗(3) . b

∗)#h∗(4), (4.4.8)

for any b#h ∈ B#σH. With this operation, B#σH is an associative (unital) ∗-algebra. Indeed:

6For the cocycle-free case see definition 2.3.18. See also [S03], section 2.2, and [Maj95], p. 31.
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Proposition 4.4.17. The ∗ operation defined by (4.4.8) is an involution, that is (b#h)∗∗ = b#h

for every b#h ∈ B#σH. Moreover, it makes B#σH into a ∗-algebra: for any a, b ∈ B and any

h, l ∈ H,

((a#h)(b#l))∗ = (b#l)∗(a#h)∗.

Proof. First of all we show that ∗∗ = id. We do it by direct computation; given b#h ∈ B#H we

have:

(b#h)∗∗ =
(
σ(S−1h(2), h(1))

∗(h∗(3) . b
∗)#h∗(4)

)∗
= σ(S−1h∗(5), h

∗
(4))
∗(h(6) . (h∗(3) . b

∗)∗)(h(7) . σ(S−1h(2), h(1)))#h(8)

= σ(S−1h∗(5), h
∗
(4))
∗(S−1h∗(6) . (h∗(3) . b

∗))∗(h(7) . σ(S−1h(2), h(1)))#h(8)

=
[
(S−1h∗(6) . (h∗(3) . b

∗))σ(S−1h∗(5), h
∗
(4))
]∗

(h(7) . σ(S−1h(2), h(1)))#h(8)

=
[
σ(S−1h∗(6), h

∗
(3))((S

−1h∗(5))h
∗
(4) . b

∗)
]∗

(h(7) . σ(S−1h(2), h(1)))#h(8)

= b · σ(S−1h∗(4), h
∗
(3))
∗(h(5) . σ(S−1h(2), h(1)))#h(6)

= b · σ(S−1h∗(6), h
∗
(5))
∗(h(7) . σ(S−1h(4), h(1)))σ(h(8), (S

−1h(3))h(2))#h(9)

= b · σ(S−1h∗(5), h
∗
(4))
∗σ(h(6), S

−1h(3))σ(h(7)S
−1h(2), h(1))#h(8).

where we used the cocycle condition and the properties of S−1 (see lemma 2.3.5). Using (ii) of

definition 4.4.16 we see that the product of the first two cocycles of this expression is equal to

ε(h(4))ε(S
−1h(3)). Therefore we obtain:

(b#h)∗∗ = b · ε(h(4))ε(S
−1h(3))σ(h(5)S

−1h(2), h(1))#h(6)

= b · σ(h(3)S
−1h(2), h(1))#h(4) = b#h.

So we are left with the proof that ((a#h)(b#l))∗ = (b#l)∗(a#h)∗. Let us compute separately the

two expressions. For the first one we have:

((a#h)(b#l))∗ =
(
a(h(1) . b)σ(h(2), l(1))#h(3)l(2)

)∗
= σ(S−1(h(4)l(3)), h(3)l(2))

∗
(
l∗(4)h

∗
(5) . σ(h(2), l(1))

∗(h(1) . b)
∗a∗
)

#l∗(5)h
∗
(6)

= σ(S−1(h(4)l(3)), h(3)l(2))
∗(l∗(4)h

∗
(5) . σ(h(2), l(1))

∗)

· (l∗(5)h
∗
(6) . (h(1) . b)

∗)(l∗(6)h
∗
(7) . a

∗)#l∗(7)h
∗
(8)

= σ(S−1(h(4)l(3)), h(3)l(2))
∗(S−1(h(5)l(4)) . σ(h(2), l(1)))

∗

· (l∗(5)h
∗
(6) . (h(1) . b)

∗)(l∗(6)h
∗
(7) . a

∗)#l∗(7)h
∗
(8)

=
[
(S−1(h(5)l(4)) . σ(h(2), l(1)))σ(S−1(h(4)l(3)), h(3)l(2))

]∗
· (l∗(5)h

∗
(6) . (h(1) . b)

∗)(l∗(6)h
∗
(7) . a

∗)#l∗(7)h
∗
(8)

(4.4.9)

Using the cocycle condition we can rewrite equation (4.4.9) as:

((a#h)(b#l))∗ =
[
σ(S−1(h(5)l(3)), h(2))σ(S−1(h(4)l(2))h(3), l(1))

]∗
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· (l∗(4)h
∗
(6) . (h(1) . b)

∗)(l∗(5)h
∗
(7) . a

∗)#l∗(6)h
∗
(8)

= σ(S−1l(2), l(1))
∗σ(S−1(h(3)l(3)), h(2))

∗(l∗(4)h
∗
(4) . (h(1) . b)

∗)

· (l∗(5)h
∗
(5) . a

∗)#l∗(6)h
∗
(6)

= σ(S−1l(2), l(1))
∗σ(S−1(h(3)l(3)), h(2))

∗(S−1(h(4)l(4)) . h(1) . b)
∗ (4.4.10)

· (l∗(5)h
∗
(5) . a

∗)#l∗(6)h
∗
(6)

= σ(S−1l(2), l(1))
∗ [(S−1(h(4)l(4)) . h(1) . b)σ(S−1(h(3)l(3)), h(2))

]∗
· (l∗(5)h

∗
(5) . a

∗)#l∗(6)h
∗
(6)

Finally, we use the twisted module condition to rewrite equation (4.4.10) as follows:

((a#h)(b#l))∗ = σ(S−1l(2), l(1))
∗ [σ(S−1(h(4)l(4)), h(1))(S

−1(h(3)l(3))h(2) . b)
]∗

· (l∗(5)h
∗
(5) . a

∗)#l∗(6)h
∗
(6)

= σ(S−1l(2), l(1))
∗(S−1l(3) . b)

∗σ(S−1(h(2)l(4)), h(1))
∗(l∗(5)h

∗
(3) . a

∗)#l∗(6)h
∗
(4)

= σ(S−1l(2), l(1))
∗(l∗(3) . b

∗)σ(S−1(h(2)l(4)), h(1))
∗(l∗(5)h

∗
(3) . a

∗)#l∗(6)h
∗
(4)

(4.4.11)

The computation of the other expression, instead, yields:

(b#l)∗(a#h)∗ =
(
σ(S−1l(2), l(1))

∗(l∗(3) . b
∗)#l∗(4)

)(
σ(S−1h(2), h(1))

∗(h∗(3) . a
∗)#h∗(4)

)
= σ(S−1l(2), l(1))

∗(l∗(3) . b
∗)

·
(
l∗(4) . σ(S−1h(2), h(1))

∗(h∗(3) . a
∗)
)
σ(l∗(5), h

∗
(4))#l

∗
(6)h

∗
(5)

= σ(S−1l(2), l(1))
∗(l∗(3) . b

∗)

· (S−1l(4) . σ(S−1h(2), h(1)))
∗(l∗(5) . h

∗
(3) . a

∗)σ(l∗(6), h
∗
(4))#l

∗
(7)h

∗
(5)

= σ(S−1l(2), l(1))
∗(l∗(3) . b

∗)

·
[
(S−1l(5) . σ(S−1h(4), h(1)))σ(S−1l(4), (S

−1h(3))h(2))
]∗

· (l∗(6) . h
∗
(5) . a

∗)σ(l∗(7), h
∗
(6))#l

∗
(8)h

∗
(7)

(4.4.12)

Using now both the twisted module condition and the cocycle condition we get, from equation

(4.4.12),

(b#l)∗(a#h)∗ = σ(S−1l(2), l(1))
∗(l∗(3) . b

∗)

·
[
σ(S−1l(4), S

−1h(3))σ(S−1(h(2)l(4)), h(1))
]∗

· σ(l∗(6), h
∗
(4))(l

∗
(7)h

∗
(5) . a

∗)#l∗(8)h
∗
(6)

= σ(S−1l(2), l(1))
∗(l∗(3) . b

∗)σ(S−1(h(2)l(4)), h(1))
∗

· σ(S−1l(4), S
−1h(3))

∗σ(l∗(6), h
∗
(4))(l

∗
(7)h

∗
(5) . a

∗)#l∗(8)h
∗
(6)

= σ(S−1l(2), l(1))
∗(l∗(3) . b

∗)σ(S−1(h(2)l(4)), h(1))
∗(l∗(5)h

∗
(3) . a

∗)#l∗(6)h
∗
(4),

(4.4.13)

where we have used (ii) of definition (4.4.16) to obtain the last equality. Now we see that (4.4.11)

and (4.4.13) coincide, and therefore we have proved that ((a#h)(b#l))∗ = (b#l)∗(a#h)∗.
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Consider now a cleft Hopf-Galois extension B ↪→ A, with A a ∗-algebra, and assume that

H is a Hopf ∗-algebra, with star structure compatible7 with that of A (this implies that B is a
∗-algebra). Then we give the following definition.

Definition 4.4.18. A trivialization φ : H → A of a cleft extension B ↪→ A is said to be unitary

if, for any h ∈ H,

φ(h)∗ = φ−1((Sh)∗). (4.4.14)

Remark 4.4.19. (4.4.14) is equivalent to (φ−1(h))∗ = φ((Sh)∗).

Proposition 4.4.20. If φ is a unitary trivialization then the weak action (4.4.6) is a weak ∗-

action.

Proof. Both properties (i) and (ii) of definition 4.4.16 can be checked by direct computation using

(4.4.14) and (4.4.19).

Proposition 4.4.21. If φ is a unitary trivialization of a cleft Hopf-Galois extension B ↪→ A, and

we equip the associated crossed product B#σH with the involution (4.4.8), then the isomorphism

of proposition 4.4.13 is a ∗-isomorphism.

Proof. We show that the map F : B#σH → A, defined by F (a#h) = aφ(h), satisfies F ((a#h)∗) =

(F (a#h))∗ = φ(h)∗a∗. We prove this by direct computation. Indeed we have:

F ((a#h)∗) = F
(
σ(S−1h(2), h(1))

∗(h∗(3) . a
∗)#h∗(4)

)
= σ(S−1h(2), h(1))

∗(h∗(3) . a
∗)φ(h∗(4)) = φ(h(1))

∗φ(S−1h(2))
∗φ(h∗(3))a

∗φ−1(h∗(5))

= φ(h∗(1))φ
−1(h∗(2))φ(h∗(3))a

∗ = φ(h)∗a∗.

4.5 Quantum associated bundles

In the previous sections of this chapter we have introduced principal comodule algebras as non-

commutative analogues of principal bundles. Now we discuss a similar construction for associated

bundles [BM93, Haj96, DGH01, BF12]. We begin by recalling the following definition.

Definition 4.5.1. Let H be a Hopf algebra, A a right H-comodule and V a left H-comodule with

coactions, respectively, ∆R : A→ A⊗H and ρL : V → H⊗V . Then the cotensor product A�HV

is defined as an equalizer:

A�HV // A⊗ V
∆R⊗id //
id⊗ρL

// A⊗H ⊗ V .

That is, A�HV is the subspace of elements ξ ∈ A⊗ V such that (∆R ⊗ id)ξ = (id⊗ ρL)ξ.

Now let H be a Hopf algebra with invertible antipode, and A a principal H-comodule algebra.

7Cf. equation (2.3.1).
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Definition 4.5.2. If V is a left H-comodule, then the quantum bundle associated to A, with

fibre V , is the cotensor product A�HV .

Now let B denote the invariant subalgebra of A. By assumption, B ↪→ A is a principal

Hopf-Galois extension. This implies the following fact.

Proposition 4.5.3. Let V be a left H-comodule. Then A�HV is a projective left B-module.

Moreover, if V is finite dimensional, A�HV is finitely generated as a left B-module.

Proof. It follows from corollary 4.1.13. See also [BF12].

We recall now that if X is a topological space and E is a vector bundle over X, with finite

dimensional fibres, then the space of continuous sections of E is a finitely generated projective

C(X)-module. Hence, the principality of the extension allows us to interpret quantum associated

bundles as (noncommutative) vector bundles, associated to the quantum principal bundle A.

Moreover, as noticed, e.g., in [BF12], the following result holds.

Lemma 4.5.4. Let B ↪→ A be cleft Hopf-Galois extension and let V be a left H-comodule. Then

A�HV is a free left B-module.

4.6 Quantum principal Tn-bundles

Now we restrict our attention to a particular class of quantum principal bundles: the noncom-

mutative analogues of principal Tn-bundles. Although Tn-bundles are probably the simplest

examples of noncommutative principal bundles, there are several interesting models which fit

into this category (for example quantum Hopf fibrations [BM93, BM98a, HM99, LS05, HMS06],

noncommutative tori [DS13a], bundles over quantum lens spaces and quantum projective spaces

[Szy03, BZ12, HRZ11]). In this section we discuss and prove some general properties of this kind

of bundles, properties that will turn out to be useful in the next chapters.

Our approach will be based on principal comodule algebras; in the literature other proposals

for a definition of (noncommutative) principal toric bundle can be found (see e.g. [ENO09,

HaMa10, Wag12]). We begin by associating a Hopf algebra to the Lie group Tn. Actually, there

are two possible choices, although they are closely related.

Definition 4.6.1. The algebra O(Tn) is the unital complex polynomial ∗-algebra generated by n

commuting unitaries z1, . . . , zn; that is, it is the commutative algebra whose elements are finite

linear combinations ∑
k∈Zn

αkz
k1
1 · · · z

kn
n ,

where {αk} ⊂ C. It is a Hopf ∗-algebra with respect to the following coproduct, antipode and

counit:

∆(zri ) = zri ⊗ zri , S(zri ) = z−ri , ε(zri ) = 1,

for any i = 1, . . . , n and for any r ∈ Z.
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If we introduce the notation zk =
n∏
i=1

zkii , the maps in definition 4.6.1 can be also characterized

by the following relations:

∆(zk) = zk ⊗ zk, S(zk) = z−k, ε(zk) = 1.

Lemma 4.6.2. The algebra O(Tn) is isomorphic to the group algebra C[Zn].

Proof. C[Zn] is the algebra of formal (finite) linear combinations
∑
m∈Zn

αmm. Hence the assign-

ment zm 7→m determines an isomorphism O(Tn) ' C[Zn].

Proposition 4.6.3. The algebra O(Tn) is a dense ∗-subalgebra of the C∗-algebra of continuous

functions over the n-torus Tn. In particular, it inherits a C∗-norm ‖·‖.

Proof. Let {ϕ1, . . . , ϕn} be canonical angular coordinates on Tn. For any k ∈ Zn consider the

function

ψk(ϕ) = exp(ik · ϕ) = exp

(∑
i

kiϕi

)
.

Then the assignment zk 7→ ψk determines an injective algebra homomorphism Ψ : O(Tn) →
C(Tn). This means that O(Tn) can be seen as a subalgebra of C(Tn). Finally, since the

trigonometric polynomials are dense in C(Tn), by Stone-Weierstrass theorem, O(Tn) is dense

in C(Tn).

Let now tn denote the (complex) Lie algebra of Tn. It can be described as the Lie algebra

generated by n commuting elements δ1, . . . , δk. Then we can define an action of tn on O(Tn) in

the following way:

δj(z
k) = kjz

k, for i = 1, . . . , n.

Any δj is a derivation of O(Tn). We can use them to define a countable family of seminorms8 on

O(Tn): for any k ∈ Nn and any a ∈ O(Tn), we set

‖a‖k = ‖δk1
1 · · · δ

kn
n (a)‖, (4.6.1)

where ‖·‖ is the C∗-norm on O(Tn) induced by the inclusion in C(Tn) (that is, the sup norm).

Lemma 4.6.4. Γδ = {‖·‖k | k ∈ Nn} is a countable separating family of seminorms on O(Tn).

Proof. The fact that each ‖·‖k is a seminorm follows directly from the fact that ‖·‖ is a norm.

Moreover, since ‖·‖ ∈ Γδ, Γδ is a separating family.

Proposition 4.6.5. O(Tn) is a metrizable locally convex vector space. Moreover, it is a topolog-

ical algebra, with respect to the same locally convex topology.

Proof. The first part of the proposition is a direct consequence of lemma 4.6.4 and theorem B.2.5.

For the second part it is enough to prove that the topology ofO(Tn) is determined by a (separable)

8See definition B.2.3.
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family of sub-multiplicative seminorms. First of all let us notice that ‖·‖ is sub-multiplicative.

Next, for any k ∈ Nn, k 6= 0; due to the linearity of the derivations δj and the subadditivity of ‖·‖k,
let us consider the seminorm ‖·‖′k = 2n+|k|‖·‖k, where |k| =

∑
i ki. The family of the seminorms

‖·‖′k, together with the norm ‖·‖, is still a separating family of seminorms, and it determines the

same topology as Γδ (indeed, we have simply rescaled some of the seminorms). Now we have to

show that any ‖·‖′k, k 6= 0, is sub-multiplicative. Due to the linearity of the derivations δj and

the subadditivity of the seminorms ‖·‖′k, it is enough to prove that ‖zrzs‖′k ≤ ‖zr‖′k‖zs‖′k for any

r, s ∈ Zn. This follows by direct computation; indeed,

‖zrzs‖′k = ‖zr+s‖′k = 2n
n∏
i=1

|ri + si|ki , (4.6.2)

‖zrzs‖′k = 22n
n∏
i=1

|ri|ki |si|ki . (4.6.3)

Hence it is enough to show that
n∏
i=1

|ri + si|ki ≤ 2n+|k|
n∏
i=1

|ri|ki |si|ki for any r, s ∈ Zn. Of course,

this is true if the following holds:

|m+ l|p ≤ 2p+1|m|p|l|p ∀m, l ∈ Z, ∀p ∈ N. (4.6.4)

If m · l ≤ 0 (4.6.4) is fulfilled, since either |m| or |l| is greater than |m + l|. Without loss of

generality, assume now that m,n > 0. Then m · l > m+ l, and so (4.6.4) is satisfied, unless either

m = 1 or l = 1. If m = l = 1 (4.6.4) becomes 2p ≤ 2p+1, and so it is satisfied. If m = 1 and

l > 1, instead, it becomes (l + 1)p ≤ 2p+1lp, which is always true. Hence O(Tn) is a topological

algebra, with respect to the locally convex topology determined by Γδ.

Proposition 4.6.6. The maps S : O(Tn) → O(Tn) and ε : O(Tn) → C are continuous. More-

over, if we endow the algebraic tensor product O(Tn)⊗O(Tn) with the projective topology9, then

the coproduct ∆ : O(Tn)→ O(Tn)⊗O(Tn) is a continuous map.

Proof. ε is continuous, since it is simply the evaluation at the identity. Next, given f ∈ O(Tn),

Sf(x) = f(x−1) = f(−x); hence ‖Sf‖k = ‖f‖k for any k ∈ Zn. It follows that also S is

continuous. Consider now an element h ∈ O(Tn) given by a finite sum h =
∑
r∈Zn

αrz
r. Then

∆(h) =
∑
k∈Zn

αr(z
r ⊗ zr).

Due to proposition B.3.9, the projective topology on O(Tn)⊗O(Tn) coincides with that induced

by the topology of C∞(Tn × Tn). In particular, it is defined by the following set of seminorms

Γδ⊗δ =

{
qk,l, k, l ∈ Zn

∣∣∣∣ qk,l(ξ(x, y)) = ‖δkxδlyξ(x, y)‖
}
.

9See section B.2.
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Applying a seminorm qk,l to ∆(h) we obtain now:

qk,l(∆(h)) = ‖
∑
r

αrr
k+lzr(x)zr(y)‖ = sup

x,y∈Tn

∣∣∣∣∑
r

αrr
k+lzr(x)zr(y)

∣∣∣∣
= sup

x,y∈Tn

∣∣∣∣∑
r

αrr
k+lzr(x+ y)

∣∣∣∣ = sup
x∈Tn

∣∣∣∣∑
r

αrr
k+lzr(x)

∣∣∣∣ = pk+l(h).

(4.6.5)

From theorem B.2.10 it follows then that ∆ is continuous.

A direct consequence of proposition 4.6.5 is that we can consider the metric completion O(Tn)

of the algebra O(Tn). By definition this will be a Fréchet algebra, and it is clear that it coincides

with the algebra C∞(Tn) of smooth functions on the n-torus. In particular, we shall obtain

a structure of Hopf algebra on C∞(Tn), with the coproduct taking values in the completion

C∞(Tn)⊗C∞(Tn) ' C∞(Tn ⊗ Tn) of the tensor product C∞(Tn)⊗ C∞(Tn).

So, when dealing with quantum principal Tn-bundles, we could either work with O(Tn) or

with C∞(Tn). In this thesis we shall work with the former, but we have given this short discussion

for completeness sake.

4.6.1 The (bicovariant) de Rham differential calculus

In this thesis for quantum principal Tn-bundles we shall mean a suitable class of principal O(Tn)-

comodule (or eventually C∞(Tn)-comodule) algebras. This class will be the class of the principal

comodule algebras which are quantum principal bundles with respect to the de Rham differential

calculus on O(Tn) (see definition 4.3.1). Of course, for de Rham calculus on O(Tn) we mean the

restriction of the ordinary de Rham calculus on C∞(Tn) with respect to the inclusion O(Tn) ⊂
C∞(Tn) (see previous section).

Let us take a look at this calculus. We have seen in section 2.3.3 that any bicovariant first

order differential calculus is defined by an adR-invariant ideal Q ⊆ ker ε. The de Rham calculus

on O(Tn) is a bicovariant calculus and that the ideal which defines it is Q = (ker ε)2. This fact

actually holds for any Hopf algebra of smooth functions over a compact connected semisimple Lie

group G: we shall discuss this in chapter 8. We simply notice here that Q is the ideal of functions

vanishing at the identity e ∈ G with differential vanishing, too.

Let us take a closer look at the ideal Q. In particular let us write down a set of generators.

Proposition 4.6.7. The ideal Q = (ker ε)2 is generated by the elements

qk,r = (zk − 1)(zr − 1),

for k, r ∈ Zn.

Proof. ker ε can be identified with the space whose elements are the linear combinations∑
k∈Zn

αkz
k s.t.

∑
k∈Zn

αk = 0.
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4. Quantum principal bundles

But any element of this kind can be rewritten as∑
k∈Zn

αk(z
k − 1).

Therefore ker ε is generated by the elements (zk − 1) for k ∈ Zn. It follows directly that the

elements qk,r generate Q.

Corollary 4.6.8. The ideal Q contains all the elements of the form

q
(r)
i ≡ z

r
i − 1− r(zi − 1) i = 1, . . . , n,

q(k) ≡ zk − 1−
n∑
i=1

(
zkii − 1

)
,

for any r ∈ Z and any k ∈ Zn.

4.6.2 Quantum principal Tn-bundles

We are now ready to introduce a definition of quantum principal Tn-bundles. Given a quantum

principal bundle A with Hopf algebra H = O(Tn), we shall provide sufficient conditions on the

first order differential calculus of A for it being a quantum principal bundle with general calculus

compatible with the de Rham calculus on O(Tn). In the rest of this thesis we will adopt the

following terminology.

Definition 4.6.9. A quantum principal Tn-bundle is a quantum principal bundle (A,O(Tn),∆R, N,Q)

where Q = (ker ε)2 is the ideal which defines the de Rham calculus on O(Tn).

Let us consider now a right O(Tn)-comodule algebra A. Let ∆R denote the coaction and B

the invariant subalgebra. Assume that B ↪→ A is a Hopf-Galois extension. Then we can split the

algebra A as a direct sum,

A =
⊕
k∈Zn

A(k), (4.6.6)

where the A(k) are the set of elements of homogeneous degree; that is,

a ∈ A(k) ⇔ ∆R(a) = a⊗ zk.

Of course, A(0) = B. This allows us to define actions both of the Lie group Tn and of its Lie

algebra tn on A as follows. If g = (ϕ1, . . . , ϕn) is an element of Tn, then we define

g . a = ei(k1ϕ1+...+knϕn)a for a ∈ A(k).

This corresponds to the following action of the Lie algebra tn:

δj . a = δj(a) = kja for a ∈ A(k).
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Remark 4.6.10. When dealing with pre-C∗-algebras (or C∗-algebras) we will always require the

action of Tn to be norm-continuous (and, therefore, since each element of Tn acts as an automor-

phism of A, the action will actually be norm-preserving).

Let now Ω1(A) be a (general) first order differential calculus over A. We recall that it is

possible to define a O(Tn)-coaction on Ω1A (see equation (4.1.2)). Then we can give the following

definition.

Definition 4.6.11. A first order differential calculus Ω1(A) over a right O(Tn)-comodule alge-

bra A is O(Tn)-covariant if Ω1(A) is an O(Tn)-equivariant bimodule, with comodule structure

inherited from Ω1A, and, moreover,

∆Ω
R(da) = (d⊗ id)∆R(a)

in Ω1(A).

Remark 4.6.12. When A = O(Tn), this definition agrees with definition 2.3.26 (see [Wor89],

proposition 1.3).

Remark 4.6.13. A differential calculus Ω1(A) defined by a sub-bimodule N ⊆ A ⊗ A is H-

equivariant if and only if N is equivariant; that is, if and only if ∆R(N) ⊆ N ⊗H.

Proposition 4.6.14. Let A be a principal O(Tn)-comodule algebra, let B be its invariant subalge-

bra and let Ω1(A) be an O(Tn)-covariant first order differential calculus, defined by a sub-bimodule

N ⊂ A ⊗ A. Then (A,O(Tn),∆R, N,Q), where Q = (ker ε)2 , is a quantum principal bundle if

the following conditions hold:

(i) let aj , bj ∈ A; then∑
j

ajdbj = 0 in Ω1(A) ⇒
∑
j

ajδi(bj) = 0 ∀i = 1, . . . , n, (4.6.7)

(ii) let η ∈ Ω1A, η =
∑

j ajdbj; then∑
j

ajδi(bj) = 0 ∀i = 1, . . . , n ⇒ [η]N ∈ AΩ1(B)A. (4.6.8)

Proof. We check (i)-(iv) of definition 4.3.1. (i) is trivially satisfied, since we assumed A to be a

principal comodule algebra. Furthermore, (ii) follows directly from the O(Tn)-covariance of the

differential calculus Ω1(A).

Let us check condition (iii). Take η ∈ N and write it as η =
∑

j(aj ⊗ bj − ajbj ⊗ 1). We

introduce the following notation: given a ∈ A, we split it as a sum of elements of homogeneous

degree:

a =
∑
k∈Zn

a(k).
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4. Quantum principal bundles

Then we have η =
∑
j

∑
r∈Zn

(aj ⊗ b(r)j − ajb
(r)
j ⊗ 1) and

TR(η) =
∑
j

∑
r∈Zn

ajb
(r)
j ⊗ (zr − 1). (4.6.9)

Let us notice that, for any i = 1, . . . , n,

∆R ◦ δi = (δi ⊗ id) ◦∆R.

Using this fact, together with the compatibility with the de Rham calculus (i.e. equation (4.6.7)),

we obtain ∑
j

∑
r∈Zn

riajb
(r)
j = 0.

Hence, ∑
j

∑
r∈Zn

riajb
(r)
j ⊗ (zi − 1) = 0 (4.6.10)

for any i = 1, . . . , n. If now we sum, for all i and for each r ∈ Zn, (4.6.10) to (4.6.9) we obtain:

TR(η) =
∑
j

∑
r∈Zn

ajb
(r)
j ⊗

(
(zr − 1)−

n∑
i=1

ri(zi − 1)

)
. (4.6.11)

But from corollary 4.6.8 we know that all the right factors of the terms of the sum (4.6.11) belong

to Q, thus TR(η) ∈ A⊗Q and (iii) is fulfilled.

We are left with condition (iv). Take [η] ∈ Ω1(A), and write the representative η as η =∑
j(aj ⊗ bj − ajbj ⊗ 1). Then TR(η) is still given by (4.6.9). We know (see corollary 4.6.8) that,

in H/Q, (zr − 1) is equivalent to
n∑
i=1

ri(zi − 1), so we can write:

T ([η]) = (id⊗ πH)(TR(η)) =
∑
j

∑
r∈Zn

ajb
(r)
j ⊗

[
n∑
i=1

ri(zi − 1)

]
. (4.6.12)

Now assume that at least one of the non-vanishing terms of (4.6.12) has ri 6= 0. Then, imposing

T ([η]) = 0, we get ∑
j

∑
r∈Zn

ajb
(r)
j ⊗ ri(zi − 1) = 0. (4.6.13)

But this implies, since the elements zi are linearly independent also in H/Q, that∑
j

∑
r∈Zn

riajb
(r)
j = 0.

Due to equation (4.6.8), this means that [η]N ∈ AΩ1(B)A. Hence ker(T ) ⊆ AΩ1(B)A, and so

condition (iv) of definition 4.3.1 is fulfilled.

We can also prove the converse: (4.6.7) and (4.6.8) are not only sufficient but also a necessary
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4.6. Quantum principal Tn-bundles

conditions for a quantum principal bundle to be a Tn bundle. Indeed,

Proposition 4.6.15. Let (A,H,∆R, N,Q) be a quantum principal bundle, with H = O(Tn) and

Q = (ker ε)2, so that (A,H,∆R, N,Q) is a quantum principal Tn -bundle. Then properties (4.6.7)

and (4.6.8) hold.

Proof. Take η =
∑

j ajdbj such that it is zero in Ω1(A). This means that
∑

j aj ⊗ bj − ajbj ⊗ 1

belongs to N . Let us introduce the following notation: we write each bj as a sum of elements of

homogeneous degree,

bj =
∑
k∈Zn

b
(k)
j .

From the definition of quantum principal bundle we know that TR(N) ⊆ A⊗Q. This means, in

particular, that: ∑
k∈Zn

∑
j

ajb
(k)
j ⊗ (zk − 1) ∈ A⊗Q.

But Q is the ideal which defines the de Rham calculus Ω1
dR(H) = Ω1H/NH . In particular (see

theorem 2.3.31), for any h ∈ H, we have:∑
k∈Zn

∑
j

ajb
(k)
j ⊗ r

−1(h⊗ (zk − 1)) ∈ A⊗NH

.

⇒
∑
k∈Zn

∑
j

ajb
(k)
j ⊗ hz

−kd(zk) = 0 ∈ A⊗ Ω1
dR(H) (4.6.14)

We recall that the derivations δj form the canonical basis of tn, so we can see them also as

operators on H. If now we denote by {dxj} the dual basis, then the calculus Ω1
dR(H) can be

described in the following way:

h′dh =
∑
i

h′δi(h)dxi.

In particular, (4.6.14) is equivalent to∑
k∈Zn

∑
j

ajb
(k)
j ⊗ kihdx

i = 0 ∀i = 1, . . . , n,

which implies that
∑

j ajδi(bj) = 0 for all i, and this concludes the proof that property (4.6.7)

holds.

Now we prove that also (4.6.8) holds. Consider η ∈ Ω1A, η =
∑

j ajdbj , and suppose that∑
j ajδi(bj) = 0. Then we can write η, as an element of A⊗A, as η =

∑
j

∑
r∈Zn

(aj ⊗ b(k)
j − aib

(k)
j ),

with
∑
j

∑
r∈Zn

riajb
(r)
j = 0. A simple computation now yields to:

T ([η]) =
∑
j

∑
r∈Zn

ajb
(r)
j ⊗ [zr − 1]

75
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But, from corollary 4.6.8, we know that [zr − 1] = [
∑

i ri(zi − 1)] in ker ε/Q. Hence we obtain:

T ([η]) =
∑
i

∑
j

∑
r∈Zn

riajb
(r)
j ⊗ [zi − 1] = 0.

That is, [η] ∈ ker(T ). Then condition (iv) of definition 4.3.1 implies that [η] ∈ AΩ1(B)A. So we

have proved that also (4.6.8) is satisfied.

4.6.3 Strong connections over quantum principal Tn-bundles

In this section we will discuss the main properties of strong connections over quantum principal

Tn-bundles. As we shall see, any strong connection can be characterized by a family of n 1-forms,

property which reflects the classical case, when a Tn-connection can always be written as an

n-dimensional vector of 1-forms, one for each generator of the Lie algebra tn.

We begin with the following observation.

Lemma 4.6.16. Let (A,O(Tn),∆R, NA, Q) be a quantum principal Tn-bundle (that is, Q =

(ker ε)2 defines the de Rham calculus on O(Tn)). Then, any strong connection ω : O(Tn) → A

fulfils the following relation:

ω(zk) =

n∑
i=1

kiω(zi).

Proof. This follows simply by corollary 4.6.8 and condition (i) of definition 4.3.6. Indeed, if we

take q(k) ∈ Q, as in corollary 4.6.8, we know that ω(q(k)) = 0. But this means, due to the linearity

of ω, that:

0 = ω(zk)−
n∑
i=1

ω(zkii ).

We also have to impose that ω(q
(r)
i ) = 0, which gives ω(zkii ) = kiω(zi). The two relations together

yield to the thesis: ω(zk) =

n∑
i=1

kiω(zi) for any k ∈ Zn.

In particular, the connection ω is completely described by a family of n 1-forms ωi ∈ Ω1(A).

Conversely, is it true that given a suitable family of 1-forms ωi we can define a strong connection

ω simply by ω(zk) =
∑n

i=1 kiωi? The answer is positive, and the conditions that we have to

impose on the family {ωi} are the n-dimensional analogues of those introduced in [DS13a]:

Definition 4.6.17. A family of n 1-forms {ωi} ⊂ Ω1(A) is a strong Tn-connection for the

quantum principal Tn-bundle (A,O(Tn),∆R, N,Q) if the following conditions hold:

(i) δj(ωi) = 0 for any i, j = 1, . . . , n;

(ii) if ωi =
∑

j pjdqj, with pj , qj ∈ A, then
∑

j pjδi(qj) = 1 and
∑

j pjδl(qj) = 0 for l 6= i;

(iii) ∀a ∈ A, (da−
∑

i δi(a)ωi) ∈ Ω1(B)A.

We have to spend here a few words on condition (i) of definition 4.6.17: the action of the

generators δj of the Lie algebra tn on Ω1(A) is defined by

δj(adb) = δj(a)db+ ad(δj(b)).

76



4.6. Quantum principal Tn-bundles

Proposition 4.6.18. Let a family of 1-forms {ωi} ⊂ Ω1(A) be a strong Tn-connection, in the

sense of definition 4.6.17, over a quantum principal Tn-bundle (A,O(Tn),∆R, N,Q). Then it

defines a strong connection ω, in the sense of definition 4.3.6, by:

ω(zk) =
n∑
i=1

kiωi.

Proof. We check properties (i)-(iv) of definition 4.3.6. Let us begin proving (i). By definition we

have ω(1) = 0. So we need only to show that ω(Q) = 0. By proposition 4.6.7 we know that Q is

generated by the elements qk,r = (zk − 1)(zr − 1) for k, r ∈ Zn. And we have:

ω(qk,r) = ω(zk+r − zk − zr + 1) =
n∑
i=1

[(ki + ri)ωi − kiωi − riωi] = 0.

Hence ω(Q⊕ C) = 0. Next we check (ii). The condition (i) of definition 4.6.17 can be rewritten

as

∆Ω
R(ωi) = ωi ⊗ 1

for any i = 1, . . . , n. Also, the right adjoint coaction adR of H is the following one:

adR(zk) = zk ⊗ z−kzk = zk ⊗ 1.

Thus we get:

(ω ⊗ id)(adR(zk)) = ω(zk)⊗ 1 =
n∑
i=1

kiωi ⊗ 1.

But we have also

∆Ω
R(ω(zk)) =

n∑
i=1

∆Ω
R(kiωi) =

n∑
i=1

kiωi ⊗ 1,

so (ii) is fulfilled. In order to show that (iii) holds we use the fact that Ω1(A) is defined by the

sub-bimodule N ⊆ ker(m) ⊂ A⊗A. Indeed, taken a representative of the equivalence class of ωi,

it can be written as

ω̂i =
∑
j

pj ⊗ qj − pjqj ⊗ 1.

If now we split each qj as a sum of elements of homogeneous degree, w.r.t. the Tn action, we get

ω̂i =
∑
j

∑
k∈Zn

pj ⊗ q(k)
j − pjq

(k)
j ⊗ 1,

so that we can easily compute

TR(ωi) = (m⊗ id) ◦ (idA ⊗∆R)(ω̂0) =
∑
j

∑
k∈Zn

pjq
(k)
j ⊗ (zk − 1).

Now, thanks to corollary 4.6.8, we know that, in H/Q, [zk − 1] =
∑

j [kj(zj − 1)]. Thus, after
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applying id⊗ πH to both sides of previous identity, we get:

T (ωi) =
∑
j

∑
k∈Zn

n∑
l=1

klpjq
(k)
j ⊗ [zl − 1].

But from condition (ii) of definition 4.6.17 we know that this is equal to 1 ⊗ [zi − 1], which is

exactly (id⊗ πH) ◦ (1⊗ (id− ε))(zi). From this we easily deduce that ω fulfils condition (iii).

We are left with the proof that also condition (iv) holds, but it follows immediately using

condition (iii) of definition 4.6.17: indeed, if a ∈ A(k), then

a(0)ω(a(1)) = aω(zkj ) =
∑
j

kjaωj .

Proposition 4.6.18 together with lemma 4.6.16 show that, for quantum principal Tn-bundles,

definition 4.3.6 and definition 4.6.17 give equivalent characterizations of strong connections.
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CHAPTER 5

Projectable spectral triples and twisted Dirac operators

Let M be a (compact) smooth manifold, G a compact semi-simple Lie group and let π : P →M

be a principal G-bundle. If M is a Riemannian manifold, with metric tensor g, we can define, for

any connection over this bundle, a Riemannian metric on the total space P such that the action

of the group is isometric and that the bundle projection π is a Riemannian submersion (a possible

generalization of this construction to the noncommutative case will be discussed later; see also

the introduction of this thesis for a brief account of the commutative case). Assume, instead, to

be given a Riemannian metric on the total space P , such that the bundle projection π : P →M

is a Riemannian submersion, the action of G on P is isometric and P is a spin manifold; in this

case, what can we say about the metric and the spin structure induced on the base space M? An

answer to this question for U(1)-bundles was given in [AmmB98, Amm98, GLP96].

Results analogous to those by Ammann and Bär for noncommutative U(1)-bundles with spec-

tral geometry of KR-dimension 3 were discussed in [DS13a]. Here1 we extend them, considering,

first, noncommutative U(1)-bundles of any dimension and then noncommutative Tn-bundles. We

point out that our approach is operatorial and exploits only the algebraic and the spectral prop-

erties of the Dirac operator. In particular we can not directly follow [AmmB98, Amm98], where

the properties of the spin structure of principal U(1)-bundles were proved using the metric tensor

and the Christoffel symbols, which, in general, can not be defined in the noncommutative case,

but we elaborated another method, which relies on the properties of the Dirac operator.

So, in the first part of this chapter, we shall discuss the U(1) case, both in the even and in the

odd dimensional case. Next, we will consider a quantum principal Tn-bundle (A, H,∆R, N,Q)

and we will start from a Tn-equivariant real spectral triple over A (see below for the definition);

this choice corresponds to assume that the action of the structure group is isometric. Then we

will discuss some conditions under which it is possible to build a spectral triple for the base space,

i.e. for the invariant subalgebra B = AcoH . Finally, we will show how this construction allows us

to define spectral triples and Dirac operators twisted by a strong connection. This will lead us to

1Part of the results discussed here are contained in [DSZ13].
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5. Projectable spectral triples and twisted Dirac operators

the construction of new Dirac operators: for example, in the case of noncommutative n-tori we

get twisted operators that are no more Tn-invariant. In addition, these operators are expected

to describe a noncommutative geometry with non zero scalar curvature2. We just mention here

that a “perturbative” study of the properties of operators of this kind can be found in [DS13b].

Finally, we shall relate our results to recent developments in KK-theory [Mes11, BMS13]: we

shall discuss, in particular, the case of U(1) gauge theories on a noncommutative 2-torus.

In this section with real spectal triple we mean a real spectral triple (A,H, D, J, γ), in the

sense of definition 3.1.2, fulfilling, at least, the classical dimension and the first order condition.

5.1 Twists of spectral triples

We begin by discussing a general way to twist a spectral triple using a (suitable) connection over

a module. Let (B,H, D, J) be a real spectral triple over a (unital) algebra B. Consider another

Hilbert space HM together with a representation of B. Let M be a space of B-linear bounded

maps m : H → HM . Assume that:

(a) M is a finitely generated projective B-module;

(b) HM ≡ M(H) is dense in HM , where M(H) is the linear span of elements m(h), m ∈ M ,

h ∈ H;

(c) the multiplication map from H⊗BM to HM is an isomorphism.

Using the right B-module structure induced on H by the real structure J , namely

hb ≡ Jb∗J−1h (5.1.1)

for any h ∈ H and any b ∈ B, we define a left B-module structure on M through:

(bm)(h) = m(hb) ∀m ∈M.

We introduce a new notation: we write the action of M on the right, that is m(h) ≡ hm. Then

the B-linearity reads

(bh)m = b(hm),

while the left B action on M becomes

h(bm) = (hb)m.

Also, it follows from the first order condition (see section 3.1.4 or classical textbooks of noncom-

mutative geometry, e.g.[GBFV]) that there is a right action of Ω1
D(B) on H, given by:

hω = −Jω∗J−1h ∀ω ∈ Ω1
D(B), (5.1.2)

2Of course, to make this assertion meaningful we need to introduce some well-defined notion of scala curvature.
For a possible approach to these problem see appendix D; see also [DS13b] for the construction of ”curved”
Dirac operators for the noncommutative 2-torus. For a general discussion of scalar curvature for noncommutative
manifolds see also [BhMa12, CM11].
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where ω∗ is the adjoint of ω, s.t. ([D, b])∗ = −[D, b∗] and

h[D, b] = D(hb)− (Dh)b. (5.1.3)

Such an action is clearly left B-linear. Also, it induces a left action of Ω1
D(B) on M , and Ω1

D(B)M

is just the space of all compositions m ◦ ω of left B-linear maps. For further details we refer to

[DS13a].

Now we pass to connections (or covariant derivatives) and, following [DS13a], we give the

following definition.

Definition 5.1.1. We call a linear map ∇ : M → Ω1
D(B)M a D-connection on M if it satisfies:

∇(bm) = [D, b]m+ b∇(m), ∀b ∈ B, m ∈M.

Since we are dealing with maps between Hilbert spaces, we can define their adjoints. In

particular, taken m ∈ M , it is clear what is its adjoint m†. Also, it is straightforward to define

the adjoint η∗ of a 1-form η ∈ Ω1
D(B). Thus we can define the adjoint of an element of Ω1

D(B)M

simply by (ηm)† = m†η∗. Of course, in general it will not be an element of Ω1
D(B)M , but we do

not need this. Now we can introduce a notion of hermiticity for a D-connection [DS13a].

Definition 5.1.2. A D-connection ∇ is said to be hermitian if, for each m1,m2 ∈M ,

(i) as an operator on H, m†1 ◦m2 ∈ JBJ−1;

(ii) writing the action on arbitrary h ∈ H on the right, we have:

h∇(m2)m†1 − hm2∇(m1)† = (Dh)m2m
†
1 −D(hm2m

†
1).

Using D-connections we can now define an operator DM on a the dense subset of M(H) ⊂ HM .

Definition 5.1.3. We define DM on M(Dom(D)) ⊂ HM by:

DM (hm) = (Dh)m+ h∇(m) ∀m ∈M.

Remark 5.1.4. DM is well defined. Indeed, for any b ∈ B we get, using the Leibniz rule for ∇,

(D(hb))m+ hb∇(m) = (Dh)bm+ h∇(bm).

Proposition 5.1.5. If ∇ is a hermitian D-connection, the operator DM is selfadjoint and has

compact resolvent. Moreover, all the commutators [DM , b], for b ∈ B, are bounded.

Proof. DM is a symmetric operator. Indeed, for h1, h2 ∈ H and m1,m2 ∈M , we have

〈h1m1, DM (h2m2)〉 = 〈h1m1, (Dh2)m2〉+ 〈h1m1, h2∇(m2)〉

=
〈
h1, (Dh2)m2m

†
1

〉
+
〈
h1, h2∇(m2)m†1

〉
=
〈
h1, D(h2m2m

†
1)
〉

+
〈
h1, h2m2∇(m1)†

〉
= 〈(Dh1)m1, h2,m2〉+ 〈h1∇(m1), h2m2〉 = 〈DM (h1m1), h2m2〉 ,
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where, in the third equality, we used (ii) of definition 5.1.2. Moreover, since both m ∈ M and

∇(m) are bounded operators, and D is selfadjoint, then DM is selfadjoint.

Next, let us compute the commutator of DM with b ∈ B. We get:

[DM , b](hm) = DM (bhm)− bDM (hm)

= (Dbh)m+ (bh)∇(m)− b(Dh)m− b(h∇(m)) = ([D, b]h)m.

Hence ‖[DM , b]‖ ≤ ‖[D, b]‖. Finally we show that DM has compact resolvent. If M is a finite

free module over B, with basis mi, we have∑
j

DM (hjmj) = (Dhj)mj + hj∇(mj).

Now, ∇(mj) can be written as ωjkmk, and so the second part of the expression above is actually

a bounded operator on HM . Therefore DM is at most a bounded perturbation of D, which has

compact resolvent: it follows that the same has to be true also for DM . A similar discussion

applies to the case when M is a finitely generated projective B-module.

5.2 Projectable spectral triples for quantum principal U(1)-bundles

We begin by considering the simple case of quantum principal U(1)-bundles. We extend here the

results presented in [DS13a] in order to cover also the even dimensional case3. Before entering

into the details of the construction we briefly recall the main properties of (projectable) spin

structures over principal U(1)-bundles [AmmB98, Amm98].

5.2.1 Spin geometry of principal U(1)-bundles

Let M be an (n + 1)-dimensional compact smooth manifold which is also the total space of a

principal U(1)-bundle over the n-dimensional manifold N = M/U(1). Assume that M,N are

Riemannian manifolds, with metric tensors, respectively, g̃ and g such that:

- the action of U(1) on M is isometric w.r.t to g̃;

- the bundle projection π : M → N is a Riemannian submersion;

- the fibers are of equal constant length 2πl, for some l ∈ R+.

Consider now a (local) orthonormal frame on TM , e = {e0, e1, . . . , en}, such that e is U(1)-

equivariant and e0 is the (normalized) Killing vector field of the U(1) action. Then there exists a

unique principal connection 1-form ω : TM → R such that kerω is orthogonal to the fibers, for

all m ∈ M , w.r.t. the metric g̃. ω is clearly given by e0/l, where {ej} is the dual frame of {ej}.
Conversely, given a principal U(1) connection and a Riemannian metric on the base space N ,

there exists a unique U(1)-invariant metric on M such that the horizontal vectors are orthogonal

to the fundamental (Killing) vector field K.

Assume now that M is a spin manifold, and let ΣM be its spinor bundle. The U(1) action

either lifts to the spin structure and then to an action U(1) × ΣM → ΣM, or to a projective

3Part of these new results can be found also in our recent paper [DSZ13].
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action. Assuming the former, we have a projectable spin structure on M , and it induces a spin

structure on N [AmmB98].

Given a structure of this kind, we recall that the Dirac operator D̃ on sections of ΣM can be

written as

D̃ =

n∑
i=0

γi∂ei +
1

4

n∑
i,j,k=0

Γ̃kijγiγjγk,

where the γi are the gamma matrices, generating the action of the n-dimensional Clifford algebra,

associated to the orthonormal frame {ej} and the Γ̃kij ’s are the Christoffel symbols of the Levi-

Civita connection on M . In particular [AmmB98] we have:

−Γ̃0
ij = Γ̃ji0 = Γ̃j0i =

l

2
dω(ei, ej),

Γ̃0
i0 = Γ̃0

0i = Γ̃i00 = Γ̃0
00 = 0.

(5.2.1)

We notice that the Lie derivative with respect to the Killing field ∂K , which is equal to 1
l ∂e0 ,

differs from the spinor covariant derivative, which is given, according to (5.2.1), by

∇e0 = ∂e0 +
l

4

∑
j<k

dω(ej , ek)γjγk. (5.2.2)

Now, Amman and Bär showed that D̃ can be expressed as a sum of two first order operators

on L2(ΣM) plus a zero order term. The first operator, called the vertical Dirac operator, is simply

given by

Dv =
1

l
γ0∂K = γ0∂e0 .

Observe that ∂e0 can be seen as the Dirac operator on the circle S1 ' U(1) with the standard

uniform metric that gives S1 length l. In order to construct the second operator we need to

consider separately the case when (n+ 1) is even and the case when (n+ 1) is odd.

Consider first the odd dimensional case. The space of L2-spinors on M can be orthogonally

decomposed into irreducible representations of U(1),

L2(ΣM) =
⊕
k∈Z

Vk,

and this decomposition is preserved by D̃, since it commutes with the U(1) isometric action. Let

now L = M ×U(1) C be the complex line bundle associated to the principal bundle π : M → N .

Then one can prove [AmmB98] that there is a natural homothety of Hilbert spaces (which is an

isomorphism if the fibres are of length l = 1)

Qk : L2(ΣN ⊗ L−k)→ Vk,

which satisfies

Qk(γiψ) = γiQk(ψ) i = 1, . . . , n
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and

∇eiQk(ψ) = Qk(∇fiψ) +
1

4

n∑
j=1

(
Γ̃ji0 − Γ̃0

ij

)
γ0γjQk(ψ),

where f = (f1, . . . , fn) is the local orthonormal frame on N given by fi = π∗(ei). Then we can

define the horizontal Dirac operator Dh as the unique closed linear operator such that, on each

Vk, it is given by the composition

Dh = Qk ◦D′k ◦Q−1
k ,

where D′k =

n∑
i=1

(γi ⊗ id)(∇Nfi ⊗ id + id⊗ k∇ωfi) is the twisted Dirac operator on ΣN ⊗L−k. Here

∇N is the covariant spinor derivative on N coming from the Levi-Civita connection on N , and

k∇ω is the covariant derivative on the bundle L−k associated to the connection iω. Then we can

write the Dirac operator D̃ in the following way:

D̃ = Dv +Dh + Z,

where Z is a zero order operator. Moreover we can give an explicit formula for Z:

Z = − l
4
γ0

∑
j<k

dω(ej , ek)γjγk. (5.2.3)

Now we come to the even dimensional case. We still have the decomposition

L2(ΣM) =
⊕
k∈Z

Vk,

and this decomposition is still preserved by the Dirac operator D̃. But now the spinor bundle

splits as a direct sum ΣM = Σ(+) ⊕ Σ(−) accordingly to ν2 = 1, where

ν = i
n+1

2 γ1 · . . . · γn.

Each Σ(±) corresponds to a spinor bundle Σ(±)N on the base space. Now, as we have done before,

we associate to the U(1) bundle π : M → N the complex line bundle L = M ×U(1) C, with the

natural connection iω. Then [AmmB98] there is a homothety of Hilbert spaces

Qk : L2((Σ(+) ⊕ Σ(−))⊗ Lk)→ Vk

which satisfies Qk(γiψ) = γiQk(ψ) for each i = 1, . . . , n. Now let f = (fi, . . . , fn) be the local

orthonormal frame on N given by fi = π∗(ei). Then the horizontal Dirac operator Dh is defined,

on each Vk, by the composition

Dh = Qk ◦D′k ◦Q−1
k ,
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where

D′k =
n∑
i=1

(γi ⊗ id)
(

(∇(+)
fi
⊕∇(−)

fi
)⊗ id + id⊗ k∇ωfi

)
.

Also in this case, then, the Dirac operator D̃ can be expressed as

D̃ = Dv +Dh + Z,

where Z is a zero order term, still given by:

Z = − l
4
γ0

∑
j<k

dω(ej , ek)γjγk. (5.2.4)

We conclude this section with the following observation: in both the even and the odd dimen-

sional case, the zero-order term Z is the responsible for the vanishing of the torsion of the metric

connection. For the details see [AmmB98, Amm98, DS13a].

5.2.2 U(1)-equivariant spectral triples

In section 3.5 we gave the definition of H-equivariant spectral triple. Here we specialize this

notion to the U(1) case. Given a coaction of the Hopf algebra H = O(U(1)) on an algebra A, we

can define an operator δ : A → A by δ(a) = ka for a ∈ A(k) (see section 4.6.2). This operator can

be seen as the (selfadjoint) generator of the enveloping algebra U = U(u(1)) of the Lie algebra of

U(1). U is a Hopf algebra, with coproduct, counit and antipode given by:

∆(δ) = δ ⊗ 1 + 1⊗ δ, ε(δ) = 0, S(δ) = −δ.

Of course, U acts on the algebra A. Therefore we can require a real spectral triple (A,H, D, J, γ)

to be equivariant w.r.t. U . This yields to the following definition.

Definition 5.2.1. A U(1)-equivariant real spectral triple over the algebra A is a real spectral

triple (A,H, D, J, γ) (γ = id if the triple is odd) together with a selfadjoint operator δ on H, with

domain stable under the action of A, which extends the operator δ : A → A,

δ(π(a)ψ) = π(δ(a))ψ + π(a)δ(ψ),

and such that

δJ + Jδ = 0, [δ, γ] = 0, [δ,D] = 0.

Actually we require also that the spectrum of δ is Z (it could be also Z+ 1
2): this corresponds

to the assumption that the U(1) action on the tangent bundle lifts to an action and not to a

projective action on the spinor bundle.

Hence, if (A,H, D, J, γ, δ) is a U(1)-equivariant real spectral triple, we can split the Hilbert

space H according to the spectrum of δ:

H =
⊕
k∈Z
Hk,
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and this decomposition is preserved by the Dirac operator D. Moreover π(A(k))Hl ⊆ Hk+l for any

k, l ∈ Z; in particular, H0 is stable under the action of the invariant subalgebra B = AcoH = A(0).

5.2.3 Projectable spectral triples: odd case

Now we are ready to study the projectability of the spin structure in the framework of noncom-

mutative geometry. We have to distinguish the odd dimensional case from the even dimensional

one. We begin by considering the former.

Let B ↪→ A be a principal O(U(1))-comodule algebra, and consider a U(1)-equivariant odd

real spectral triple (A,H, D, J, δ) over the total space A. We give the following definition [DS13a].

Definition 5.2.2. An odd U(1)-equivariant real spectral triple (A,H, D, J, γ, δ) of KR-dimension

j is said to be projectable along the fibres if there exists a Z2 grading Γ on H which satisfies the

following conditions,

Γ2 = 1, Γ∗ = Γ,

[Γ, π(a)] = 0 ∀a ∈ A,

[Γ, δ] = 0,

ΓJ =

{
JΓ if j ≡ 1 (mod 4)

−JΓ if j ≡ 3 (mod 4).

If such a Γ exists, we define the horizontal Dirac operator Dh by:

Dh ≡
1

2
Γ[D,Γ]

We will be interested in a particular class of projectable spectral triples, which should rep-

resent the noncommutative counterpart of smooth principal U(1)-bundles which are Riemannian

manifolds with fibers of constant length (see the discussion in section 5.2.1).

Definition 5.2.3. A projectable spectral triple has fibres of constant length if there is a positive

real number l such that, if we set

Dv =
1

l
Γδ,

the operator

Z = D −Dh −Dv

is a bounded operator which commutes4 with the representation of A: [Z, π(a)] = 0 for any a ∈ A.

In such a case, the operator Dv will be called the vertical Dirac operator, and the number

l should represent, up to a 2π factor, the length of the fibres, as like as in the commutative

(smooth) case.

4In [DS13a] a different choice was made: Z was asked to commute with A◦. As pointed out in [DSZ13], remark
4.5, the choice we make here appears more natural. Moreover, it ensures the compatibility between the differential
calculus on the total space and the one induced, projecting the spectral triple, on the base space, see remark 5.2.4.
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Remark 5.2.4. If a projectable spectral triple satisfies the conditions of definition 5.2.3, then the

Dirac operator D and the horizontal Dirac operator Dh determine the same first order differential

calculus on B: [D, b] = [Dh, b] for any b ∈ B.

Consider now a projectable triple (A,H, D, J, δ,Γ) of KR-dimension j, with j odd, and assume

that it has fibres of constant length. Since Γ and D commute with δ, also Dh does the same.

Therefore Dh preserves each Hk. Instead, the real structure intertwines Hk and H−k: JHk ⊆
H−k. In particular, it preserves H0. Now, let us denote, for any k ∈ Z, by Dk, and γk the

restrictions to Hk of Dh and Γ, respectively. For each k ∈ Z we define also an antiunitary

operator jk : Hk → H−k as follows:

jk =

{
γ−kJ if j ≡ 1 (mod 4)

J if j ≡ 3 (mod 4)
(5.2.5)

(where the restriction of J to H0 is understood). Now we can prove the following.

Proposition 5.2.5. The operators Dk, γk, jk satisfy the commutation relations of a real spectral

triple of KR-dimension j − 1. In particular, if the differential calculus Ω1
D(B) is projectable,

(B,H0, D0, γ0, j0) is an even real spectral triple of KR-dimension j − 1. Also, for k 6= 0,

(B,Hk, Dk, γk) are even spectral triples, which are pairwise real.

Proof. We check here only the commutation relations and the first order condition. For rest of

the proof see [DS13a], proposition 4.4. Also, we check these relation only on the subspace H0,

but the extension of the computations below to the general case k ∈ Z is straightforward. In

order to simplify the notation, the restriction of the various operators to H0 will be understood.

For j = 3 the result is already proved in [DS13a]. Let us consider now the case j = 1:

[Γ, J ] = 0, j0 = ΓJ . We need to check that: j2
0 = 1, j0D0 = D0j0, γ0j0 = j0γ0. We have:

j2
0 = γ0Jγ0J = ΓJΓJ = Γ2J2 = 1,

j0D0 =
1

2
ΓJΓ[D,Γ] =

1

2
(ΓJΓDΓ− ΓJD)

=
1

2
(JDΓ− ΓJD) =

1

2
(−DJΓ + ΓDJ) =

1

2
(ΓDJ −DΓJ) = D0j0,

γ0j0 = ΓΓJ = ΓJΓ = j0γ0.

Now the case j = 5: [Γ, J ] = 0, j0 = ΓJ . We need to check that j2
0 = −1, j0D0 = D0j0,

γ0j0 = j0γ0. Since the only difference with the previous case is that now J2 = −1, the proof of

the last two relations is the same as before. For the first one:

j2
0 = γ0Jγ0J = ΓJΓJ = Γ2J2 = −1.

We are left with the proof of the proposition for j = 7. In this case we have j0 = J , JΓ = −ΓJ ,

and we have to check that j2
0 = 1, j0D0 = D0j0, γ0j0 = −j0γ0. We have:

j2
0 = J2 = 1,
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j0D0 =
1

2
JΓ[D,Γ] =

1

2
(JΓDΓ− JD)

=
1

2
(ΓDΓJ −DJ) = D0j0,

γ0j0 = ΓJ = −JΓ = −j0γ0.

The first order condition, instead, follows from remark 5.2.4 and from the fact that the triple

over A fulfils the first order condition.

5.2.4 Projectable spectral triples: even case

Now we extend the notion of projectable spectral triple to the even dimensional case. We give

the following definition, which, as we shall see later, is consistent with the results obtained in the

commutative (smooth) case [AmmB98, Amm98].

Definition 5.2.6. An even U(1)-equivariant real spectral triple (A,H, D, J, γ, δ) is said to be

projectable along the fibres if there exists a Z2 grading Γ on H, which satisfies the following

conditions,

Γ2 = 1, Γ∗ = Γ,

[Γ, π(a)] = 0 ∀a ∈ A,

[Γ, δ] = 0,

Γγ = −γΓ,

ΓJ = −JΓ.

If such a Γ exists, we define the horizontal Dirac operator Dh by

Dh ≡
1

2
Γ[D,Γ]

Also in this case we can introduce the notion of constant length fibres, see definition 5.2.3.

Consider now a projectable triple (A,H, D, J, γ, δ,Γ) of KR-dimension j, with j even, and assume

that it has fibres of constant length. Also in this case Dh preserves each Hk, and the real structure

intertwines Hk and H−k, JHk ⊆ H−k. In particular, it preserves H0. Let us denote, for any

k ∈ Z, by Dk, and γk the restrictions to Hk of Dh and Γ, respectively. Define an operator ν by

ν = iΓγ. Then ν∗ = ν and ν2 = 1, and we can use it to split H0. In particular we obtain the

following result.

Proposition 5.2.7. Decompose H0 as H0 = H(+)
0 ⊕H(−)

0 , where H(±)
0 are the (±1)-eigenspaces

of ν. Then the horizontal Dirac operator Dh preserves both the subspaces H(±)
0 . Moreover, if we

denote by D
(±)
0 the restrictions of D0 to H(±)

0 , respectively, (B,H(±)
0 , D

(±)
0 ) are spectral triples.

Proof. Clearly Dh preserves H0, so, for the first part of the proposition, we need only to check

that [D0, ν] = 0. We have:

[D0, ν] =
1

2
[Γ[D,Γ],Γγ]
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=
1

2
(ΓDγ − ΓγΓDΓ−DΓγ + ΓγD)

=
1

2
(−ΓγD −DγΓ +DγΓ + ΓγD) = 0.

Next we check that [D0, b] is bounded for each b ∈ B. But Γ and γ commutes with B, and [D, b] is

bounded since B ⊂ A; thus [D0, b] is bounded for any b ∈ B. Of course, both H(±)
0 are preserved

by B. So (B,H(±), D
(±)
0 ), where D

(±)
0 are the restrictions of D0, are spectral triples.

In order to conclude the proof we should also discuss the analytic behaviour of the Dirac

operators D
(±)
0 , but the fact that they have compact resolvent, which is what we need, follows

from remark 4 of [DS13a].

Remark 5.2.8. Let (A,H, D, J, γ, δ,Γ) be as in the previous proposition. Notice that Γν = −Γν,

so that ΓH(±)
0 ⊂ H(∓)

0 . Since Γ2 = 1, Γ determines an isomorphism Γ : H(+)
0 → H(−)

0 . Moreover,

one can easily see that DhΓ = −ΓDh. So, D
(+)
0 = −D(−)

0 w.r.t. the isomorphism H(+)
0 ' H(−)

0

determined by Γ. This is nothing else than the noncommutative counterpart of the fact that,

in the smooth case, the two Dirac operators D
(±)
0 are associated to the same metric, but they

differ by a different choice of orientation [AmmB98, Amm98]. So we can say that the two triples

(B,H(±), D
(±)
0 ) differ only by the choice of (the sign of) the orientation.

Now we can check if the spectral triples on B given by the previous proposition are real. We

start with the KR-dimension 2 case.

Proposition 5.2.9. Let (A,H, D, J, γ, δ,Γ) be a projectable real spectral triple of KR-dimension

2, fulfilling the constant length fibres condition. Then the antiunitary operator γJ preserves both

the subspaces H(±)
0 . Moreover, if we denote by j

(±)
0 its restrictions to H(±)

0 , respectively, then

(B,H(±)
0 , D

(±)
0 , j

(±)
0 ) are real spectral triples of KR-dimension 1, and they differ just by a change

in the sign of the orientation (see previous remark).

Proof. We know that both J and γ preserves H0. So, let j0 denote the restriction of γJ to H0.

First of all notice that [j0, ν] = 0, so that j0 preserves both H(±)
0 . Also, we see that j0 commutes

with Γ, since the spectral triple is projectable and has KR-dimension 2. Using the following

relations,

D0j0 =
1

2
Γ[Dj0,Γ],

j0D0 =
1

2
Γ[j0D,Γ] = −1

2
Γ[Dj0,Γ],

where the last equality follows from JD = DJ and γD = −Dγ, we see that D0j0 = −j0D0, as it

should be in KR-dimension 1.

Next, one sees immediately that, since γ commutes with A, j0 maps B into its commutant.

And, since −j2 = γ2 = 1, and Jγ = −γJ , j2
0 = 1. So j0, and thus j

(±)
0 , fulfil all the commutation

relations required for a real structure of a real spectral triple of KR-dimension 1 [GBFV]. The

last property that we need to check is the first order condition. But it follows from the property

[Dh, b] = [D, b], see remark 5.2.4, and from the first order condition for the spectral triple over A.

The last statement of the proposition follows from the fact that Γ intertwines the two triples,

as shown in remark 5.2.8.
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In order to extend the result of proposition 5.2.9 to higher dimensional even spectral triples

we give the following definition.

Definition 5.2.10. Let (A,H, D, J, γ, δ,Γ) be an even dimensional projectable real spectral triple

of KR-dimension j. Then we define a real structure j0 on H0 by:

KR− dim 0 2 4 6

j0 ≡ J γJ J γJ
(5.2.6)

where the restriction of γ and J to H0 is understood.

With this definition of j0 we can prove the following proposition, which is the generalization

of proposition 5.2.9.

Proposition 5.2.11. Let (A,H, D, J, γ, δ,Γ) be a projectable even real spectral triple of KR-

dimension j,fulfilling the constant length fibres condition. Let j0 : H0 → H0 be given by (5.2.6).

Then j0 preserves both the subspaces H(±)
0 , and (B,H(±)

0 , D
(±)
0 , j

(±)
0 ) are real spectral triples of

KR-dimension (j − 1). Moreover they differ just by a change in the sign of the orientation.

Proof. We have already discussed the case n = 2. So we prove the proposition separately in

the other three cases. All what we need to check is that j2
0 = ±1 accordingly to KR-dimension

(j − 1), that [j0, ν] = 0, and that D
(±)
0 and j

(±)
0 satisfy the correct commutation relations (see

tables below); the other properties (like the first order condition) are fulfilled for the same reasons

of the previous proposition. The first condition is easily checked, as follows from [GBFV]:

KR−dim 0 2 4 6

ε + − − +

ε′ + + + +

ε′′ + − + −

KR− dim 1 3 5 7

ε + − − +.

ε′ − + − +

where J2 = ε, JD = ε′DJ and Jγ = ε′′γJ . Let us check that j0 commutes with ν (from now on

the restrictions of the various operators to H(±)
0 will be understood). Let j = 4. Then j0 = J

and

[j0, ν] = [J, iΓγ] = [J, iΓ]γ = 0.

Let j = 6. Then j0 = γJ and

[j0, ν] = [γJ, iΓγ] = γ[J, iΓ]γ = 0.

Finally, let j = 0. Then j0 = J and

[j0, ν] = [J, iΓγ] = [J, iΓ]γ = 0.

Now we check the commutation relation between j0 and D0. But we notice that the commutation

relations between D0 and j0 are the same of those between j0 and D. So, if j = 0 or j = 4 then
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j0 = J and thus j0D0 = D0j0, and it is consistent with the requirements, respectively, of KR-

dimension 7 and 3; instead, if j = 6 then j0D0 = −D0j0, as it should be in KR-dimension

5.

We conclude this section pointing out that, as like as in the odd dimensional case, we can

define pairwise real spectral triples (B,Hk, Dk, jk) simply extending the construction discussed

above for the k = 0 case.

5.2.5 Twisted Dirac operators

In section 5.1 we have described how to twist a Dirac operator using a left module. Now we want

to apply this construction to projectable spectral triples. We shall see that, given a quantum

principal U(1)-bundle (A,O(U(1)),∆R, N,Q) (where, we recall, Q = (ker ε)2), over the invariant

subalgebra B, and a projectable U(1)-equivariant real spectral triple (A,H, D, J, γ, δ,Γ), it is

possible to use strong connections over A to construct twisted versions of the horizontal Dirac

operator Dh. Again, we shall consider separately the odd dimensional and the even dimensional

case. Before entering in the details of the construction of twisted Dirac operators, we notice the

following facts, which give an additional insight on the geometrical meaning of our construction.

Proposition 5.2.12. For any k ∈ Z, A(k) is a quantum associated bundle to the principal

O(U(1)-comodule algebra A. Moreover, it is a finitely generated projective B-module.

Proof. Consider the left O(U(1))-comodule (V, ρL), where V = C and ρL(λ) = z ⊗ λ. For any

k ∈ Z define the O(U(1))-comodule (V k, ρkL) by setting V k = C, ρkL(λ) = zk ⊗ λ. Then it is

straightforward to see that A(k) is isomorphic to A�O(U(1))V
k (see definition 4.5.1). It follows

(see definition 4.5.2) that A(k) is a quantum associated bundle.

Next, it is clear that it is a left B-module. Then the fact that it is finitely generated and

projective as left B-module follows directly from the fact that A is a principal comodule algebra

(see proposition 4.5.3).

Proposition 5.2.13. For any k ∈ Z, k 6= 0, A(k) is a line module over B.

Proof. This is a corollary of theorem C.3.3. Indeed, set E = A(k) and F = A(−k); let µ1 :

E ⊗B F → B and µ2 : F ⊗B E denote the multiplication maps. Then both µ1 and µ2 are

surjective (see lemma C.3.1). This implies that (A,A, E, F, µ1, µ2) is a strict Morita context,

from which it follows that µ1 and µ2 are, actually, two isomorphisms (see proposition C.2.2). If

now we set ev = µ1 and coev = µ−1
2 (cfr. the proof of theorem C.3.3; see also [BB11], theorem

7.3) then we see that, with this choice of evaluation and coevaluation map, E is a weak left

module. Since both ev and coev are isomorphism, E = A(k) is a left line module over B.

Odd dimensional case

The results discussed in this paragraph are mostly taken from [DS13a]. Let (A,H, J,D, δ,Γ)

be a projectable U(1)-equivariant odd real spectral triple over a quantum principal U(1)-bundle

(A, H,∆R, N,Q), and let B be the invariant subalgebra of A. Assume that the triples has the

91



5. Projectable spectral triples and twisted Dirac operators

constant length fibres property; we recall that, in particular, this means that Ω1
D(B) = Ω1

Dh
(B)

(see remark 5.2.4). Let ω ∈ Ω1
D(A) be a strong connection, in the sense of definition 4.3.5. Let us

notice that, for any k ∈ Z, the set A(k), acting on the right on H via the right action induced by

the real structure (see eq. (5.1.1)), can be regarded as a set of bounded B-linear maps between H0

and Hk. Also, it fulfils conditions (a) and (b) which we assumed for M in the previous section. So

we can take M = A(k) and use all the previous results. In order to obtain well-behaving twisted

Dirac operators we need to introduce an additional requirement on the triple (A,H, D, J, γ): we

ask that there exists a bounded selfadjoint operator Z ′ on H such that

(Zh)a = Z ′(ha) ∀h ∈ H, a ∈ A.

Remark 5.2.14. As we have seen in the previous sections, the real structure which makes the

triple over B a real spectral triple is not always the simple restriction of J to H0. Nevertheless

both J and the collection of jk induce the same right action of A on H. Instead, when we use

the real structure to define a right action of Ω1
D(B) on H0 (cfr. section 5.1) we shall use the real

structure j0, to be consistent with the results of section 5.1. And in this case it would be not

the same to use J , since, at least for some KR-dimensions, its commutation relation with D0 is

different from that of j0, and the representation of a differential form involves the Dirac operator.

Notice that this problem does not arise in the odd dimensional case, since for odd dimensional

triple j0 is always obtained as the restriction of the real structure J to H0.

We begin the construction of twisted Dirac operators. The first object we need is a connection

on M = A(k).

Proposition 5.2.15. For any k ∈ Z, the map ∇ω : A(k) → Ω1
D(A)A(k) defined by

∇ω(a) = [D, a]− kaω,

where both a ∈ Dom(D) and ∇ω(a) are regarded as operators on H0 acting from the right, defines

a D0-connection over the left B-module A(k).

Proof. See [DS13a], proposition 5.4.

Proposition 5.2.16. The D0-connection ∇ω is hermitian if ω is selfadjoint (as an operator on

H).

Proof. See [DSZ13], proposition 5.2. We just recall that the action of Dω on hp ∈ H, where

h ∈ H0 and p ∈ A(k) (such that hp is in the domain of D
(±)
ω ), can be written in the following way:

Dω(hp) = (D + j0ω
∗j−1

0 δ − Z ′)(hp). (5.2.7)

Using the construction discussed in the previous section of this chapter we obtain a family

of twisted Dirac operators D
(k)
ω , each one acting on H0 ⊗A(k); since the latter can be identified

with Hk, we have a family of spectral triples (B,Hk, D
(k)
ω ). Taking Dω to be the closure of the
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direct sum of the operators D
(k)
ω , we finally obtain a twisted Dirac operator Dω, which is an

(unbounded) operator on the full Hilbert space H. It is straightforward [DS13a, DSZ13] to check

that:

Proposition 5.2.17. The twisted Dirac operator Dω is selfadjoint if ω is a selfadjoint one form.

Moreover, it has bounded commutators with all the elements of A.

Proposition 5.2.18. Let Z be as in definition 5.2.3. Define

Dω = Γδ +Dω.

Then (A,H,Dω) is a projectable spectral triple with constant length fibres, and the horizontal part

of the operator Dω coincides with Dω.

Proof. See proof of proposition 5.8 in [DS13a].

As in [DS13a] we introduce the following notion of compatibility.

Definition 5.2.19. We say that a strong connection ω is compatible with a Dirac operator D if

Dω and Dh coincide on a dense subset of H.

Even dimensional case

Now let (A,H, J,D, γ, δ,Γ) be a U(1)-equivariant even real spectral triple over a quantum prin-

cipal U(1)-bundle (A,O(U(1)),∆R, N,Q), and let B be the invariant subalgebra of A. Assume

that the triple has the constant length fibres property and that there exists a bounded operator

Z ′ on H such that

(Zh)a = Z ′(ha) ∀h ∈ H, a ∈ A.

Let ω ∈ Ω1
D(A) be a strong connection, in the sense of definition 4.3.5. Let us notice that, for any

k ∈ Z, the set A(k), acting on the right on H via the right action induced by the real structure

(see eq. (5.1.1)), can be regarded as a set of bounded B-linear maps between H(±)
0 and H(±)

k

(where, we recall, the (±)-decomposition is done accordingly to ν2 = 1). Also, it fulfils conditions

(a) and (b) which we assumed for M in the previous section. So we can take M = A(k) and use

all the previous results. Also in this case we have to take care of the fact that the real structure

we shall use when defining the left action of differential forms is j0 and not the simple restriction

of J (cfr. remark 5.2.14). Let begin by defining a connection on M = A(k).

Proposition 5.2.20. For any k ∈ Z, the map ∇ω : A(k) → Ω1
D(A)A(k) defined by

∇ω(a) = [D, a]− kaω,

where both a ∈ Dom(D) and ∇ω(a) are regarded as operators on H(±)
0 acting from the right5,

defines a D
(±)
0 -connection over the left B-module A(k).

5The right action of Ω1
D(B) on H0 is defined via the real structure j0, see (5.1.2) and remark 5.2.14.
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Proof. Due to condition (iii) of definition 4.3.5, ∇ω(a) belongs to Ω1
D(B)A. But the constant

length fibres property implies that Ω1
D(B) = Ω1

Dh
(B) (see remark 5.2.4. Moreover, Dh commutes

with ν and thus it preserves the splitting H = H(+) ⊕H(−) for any k ∈ Z and the same holds for

∇ω(a), for any a ∈ A. Now the fact that ∇ω is both a D
(+)
0 -connection and a D

(−)
0 -connection

follows as in the proof of proposition 5.4 in [DS13a].

Proposition 5.2.21. The D
(±)
0 -connections ∇ω are hermitian if ω is selfadjoint (as an operator

on H).

Proof. It follows by direct computation, see [DS13a], lemma 5.5.

Now we can use the construction discussed in the previous section to twist both the spectral

triples (B,H(±)
0 , D

(±)
0 , j

(±)
0 ). This yields a family of spectral triples (B,H(±)

k , D
(k,±)
ω ), k ∈ Z.

Taking D
(±)
ω to be the respective closures of the direct sums of the two families, we obtain two

twisted Dirac operators D
(±)
ω . Notice that the two families differ only by a different choice of the

orientation, as follows from proposition 5.2.8.

Proposition 5.2.22. The twisted Dirac operators D
(±)
ω are selfadjoint if ω is a selfadjoint one

form, and they have bounded commutators with all the elements of A.

Proof. Take h ∈ H(±)
0 and p ∈ A(k) such that hp is in the domain of D

(±)
ω . Then we have:

D(±)
ω (hp) = (D

(±)
0 h)p+ h[D, p]− khpω

= (D
(±)
0 h)p+ [D, j0p

∗j−1
0 ]h+ j0ω

∗j−1
0 khp

= D(hp) + ((D
(±)
0 −D)h)p+ j0ω

∗j−1
0 δ(hp)

= (D + j0ω
∗j−1

0 δ − Z ′)(hp).

(5.2.8)

From (5.2.8) follows, by standard results of functional analysis, the selfadjointness of Dω. Next,

D has bounded commutator with each a ∈ A; ω is a one-form and so, due to the first order

condition, the commutator of the second term of (5.2.8) with a ∈ A is simply j0ω
∗j−1

0 δ(a) and

hence is bounded. The commutator with the first term is bounded simply because it is the

commutator of two bounded operators. We conlude then that [Dω, a] is bounded ∀a ∈ A.

Corollary 5.2.23. Using D
(±)
ω we can construct a “full” Dirac operator Dω simply taking their

direct sum. Then the operator Dω is selfadjoint if ω is selfadjoint and it has bounded commutator

with all the elements of the algebra A.

Proposition 5.2.24. Let Z be as in definition 5.2.3. Define

Dω = Γδ +Dω.

Then (A,H,Dω) is a projectable spectral triple with equal length fibres and the horizontal part of

the operator Dω coincides with Dω.

Proof. See proof of proposition 5.8 in [DS13a].
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5.3 Projectable spectral triples for quantum principal Tn-bundles

We consider now spectral triples over Tn quantum principal bundles. In this section we will

generalize the previous results, giving a definition of projectability for Tn-equivariant spectral

triples (see below) and constructing twisted Dirac operators.

5.3.1 Spin geometry of principal Tn-bundles

Let M be an (m + n)-dimensional compact smooth manifold and, together, the total space of

a principal Tn-bundle over the m-dimensional manifold N = M/Tn. Assume that M , N are

Riemannian manifolds, with metric tensors, respectively, g̃ and g such that:

- the action of Tn is isometric w.r.t. g̃;

- the bundle projection π : M → N is a Riemannian submersion;

- the fibres are isometric one to each other; moreover, the length of each fundamental vector field

Kj is constant along M .

The last assumption could be weakened (as like as it is possible to define and study projectable

triples over U(1) bundles whose fibers are not of constant length [Amm98, AmmB98]) but the

more general situation would be much more difficult to treat in the noncommutative case, so we

shall not consider it here.

Under these assumptions, there is a unique principal connection 1-form ω : TM → tn such that

kerω is orthogonal to the fibres, at any point of M , with respect to the metric g̃. If {Ta}a=1,...,n

is the canonical basis of the Lie algebra of Tn (we assume each Ka to be the fundamental vector

field associated to Ta), then ω will be of the form

ω =
n∑
a=1

ωa ⊗ Ta,

where each ωa is a C-valued 1-form on M . Next, for any vector field X on N we shall denote by

X̃ its horizontal lifting. Consider now a (local) orthonormal frame f = {f1, . . . , fm} on N . Then,

if we set {
ej = 1

lj
Kj j = 1, . . . , n,

ej+n = f̃j j = 1, . . .m,

where lj are real positive constants, then e = {ej} is a (local) orthonormal frame form M . Assume

now that M is a spin manifold, and let ΣM be its spinor bundle. As in the U(1) case we shall

also assume the Tn action to lift to an action Tn × ΣM → ΣM . In this case we shall speak of

projectable spin structure. A projectable spin structure on M induces a spin structure on N (this

is a straightforward consequence of the analogue property for the U(1) case [AmmB98]).

Assume now that the spin structure over M is projectable. Then the Dirac operator D̃, acting

on L2-sections of ΣM , will be the following one:

D̃ =
n+m∑
i=1

γi∂ei +
1

4

n+m∑
i,j,k=1

Γ̃kijγ
iγjγk,
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where the γj are the gamma matrices, associated to the orthonormal frame {ej}, generating the

action of the (n + m)-dimensional Clifford algebra and Γ̃kij are the Christoffel symbols of the

Levi-Civita connection on TM for the frame {ej}. Using the Koszul formula we can compute

them. Let us use the letters a, b, c... to denote indices from 1 to n and the letters i, j, k... to denote

indices from n+ 1 to n+m. Then we have:

Γ̃kij = Γkij ,

−Γ̃aij = Γ̃jia = Γ̃jai =
la
2
dωa(ei, ej),

Γ̃aib = Γ̃abi = Γ̃iab = Γ̃abc = 0,

where the Γkij are the Christoffel symbols of the Levi-Civita connection on TN , with respect to

the frame f . Before going on, we notice that the Lie derivative with respect to each Killing vector

field differs from the spinor covariant derivative by:

∇ea = ∂ea +
la
4

∑
j<k

dωa(ej , ek)γ
jγk.

We express the Dirac operator D̃ as a sum of two first order operators plus a zero order term.

The first operator, which we shall call the vertical Dirac operator, will be given by:

Dv =

n∑
a=1

1

la
γa∂Ka =

n∑
a=1

γa∂ea .

Now we construct the second operator. First of all, we split the Hilbert space L2(ΣM) into

irreducible representations of Tn:

L2(ΣM) =
⊕
k∈Zn

Vk.

Next, we reduce ourself to the case when both m and n are even. The general result can be

obtained by direct generalization. For each k ∈ Zn consider the vector space C carrying the

irreducible representation of index k of Tn and form the associated complex bundle Lk = M×TnC.

Moreover, endow it with the connection iω. Then we can prove the following result (Σm denotes

the m-dimensional spinor representation).

Proposition 5.3.1. For each k ∈ Zn there is an isomorphism

Qk : L2(ΣN ⊗ Lk)⊗ Σm → Vk

such that the horizontal covariant derivatives, with respect to the vector fields f̃i, are given by

∇
f̃i
Qk(ψ) = Qk(∇fiψ) +

n+m∑
j=n+1

n∑
a=1

la
4
dωa(ei, ej)γ(Ka/la)γ(ej)Qk(ψ),

where VX is the vector field on N satisfying dω(X̃, ·) =
〈
ṼX , ·

〉
. Moreover, Clifford multiplication
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is preserved, i.e.

Qk(γ(X)ψ) = γ(X̃)Qk(ψ).

Proof. We can write ΣM = SM ×Spin(n+m) Σn+m and ΣM = SN ×Spin(n) Σn where SM , SN

are, respectively, the principal Spin(m+ n)- and Spin(m)-bundles defining the spin structures of

the two manifolds and Σn+m, Σn are the canonical spin representations of the spin groups. Then,

since we assumed both m and n even, we have: Σn+m = Σn ⊗ Σm. Then the proposition follows

by direct computations, cfr. the proof of lemma 4.4 in [AmmB98].

Then one can see, by direct computation, that, if we define the horizontal Dirac operator, on

each Vk, by

Dh = Qk ◦ (D ⊗ id) ◦Q−1
k ,

where D is the (twisted) Dirac operator on ΣN ⊗ Lk, then Z = D̃ − Dv − Dh is a zero order

operator, which takes the form

Z = −1

4

n∑
a=1

laγ(Ka/la)γ(dωa).

5.3.2 Tn-equivariant spectral triples

Now we pass to the noncommutative case. We begin by extending definition 5.2.1. Given a

coaction of the Hopf algebra O(Tn) on an algebra A we can define operators δj , for j = 1, . . . , n,

which correspond to the selfadjoint generators of the universal enveloping algebra U(tn) of the

Lie algebra tn of Tn, by setting

δj(a) = kja, for a ∈ A(k).

U is a (commutative) Hopf ∗-algebra, with coproduct, counit and antipode defined by:

∆(δj) = δj ⊗ 1 + 1⊗ δj , ε(δj) = 0, S(δj) = −δj .

This provides us an action of U on the algebra A, and so we can require a real spectral triple

(A,H, D, J, γ) to be equivariant w.r.t. U . This yields to the following definition.

Definition 5.3.2. A Tn-equivariant real spectral triple over the algebra A is a real spectral triple

(A,H, D, J, γ) (γ = id in the odd case) together with commuting selfadjoint operators δj : H → H,

for j = 1, . . . , n, with (common) domain of selfadjointness stable under the action of A, which

extend the operators δj : A → A,

δj(π(a)ψ) = π(δj(a))ψ + π(a)δj(ψ),

and such that

δjJ + Jδj = 0, [δj , γ] = 0, [δj , D] = 0.

Remark 5.3.3. As like as for U(1)-equivariant spectral triples we require the spectrum of each δj

to be equal to Z.
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Now, if (A,H, D, J, γ, {δj}) is a Tn-equivariant real spectral triple, the Hilbert space H splits

according to the spectrum of the operators δj ,

H =
⊕
k∈Zn

Hk,

and this decomposition is preserved by the Dirac operator D. Moreover, for any k, l ∈ Zn,

π(A(k))Hl ⊆ Hk+l. In particular H0 is stable under the action of the invariant subalgebra

B = AcoH = A(0).

5.3.3 Projectable spectral triples: odd case

Now we can extend the notion of projectability to Tn-equivariant spectral triples. We treat

separately the odd dimensional and the even dimensional case. We begin with the former.

Definition 5.3.4. An odd Tn-equivariant real spectral triple (A,H, D, J, {δj}), of KR-dimension

n+m, is said to be projectable along the fibres if there exists a Z2-grading Γ on H which satisfies

the following conditions,

Γ2 = 1, Γ∗ = Γ,

[Γ, π(a)] = 0 ∀a ∈ A,

[Γ, δj ] = 0 for j = 1, . . . , n,

JΓ =

{
ΓJ if m ≡ 0 (mod 4),

−ΓJ otherwise.

We define the horizontal Dirac operator Dh by:

Dh =


1

2
Γ[D,Γ]− for n odd

1

2
Γ[D,Γ]+ for n even

(5.3.1)

where [a, b]± = ab± ba.

It can be imposed, on a projectable spectral triple, a condition equivalent to the constant

length fibres condition introduced in the n = 1 case (cfr. definition 5.2.3). We give the following

definition:

Definition 5.3.5. We say the bundle A to have isometric fibres if there exists an operator Dv :

H → H such that D = Dv +Dh + Z and:

(a) Dv|H0 = 0, where H0 is the common 0-eigenspace of the derivations δi;

(b) [Dv,Γ] = 0 if n is odd, [Dv,Γ]+ = 0 if n is even;

(c) [Dv, δi] = 0 for any i = 1, . . . , n;

(d) Z is a bounded operator;

(e) Z commutes with the elements from A: [Z, a] = 0 for any a ∈ A.
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Remark 5.3.6. As like as in the U(1) case (see remark 5.2.4), condition (e) of previous definition

implies that Ω1
D(B) = Ω1

Dh
(B).

Proposition 5.3.7. Let (A,H, D, J, {δj},Γ) be an odd dimensional projectable spectral triple with

isometric fibres, and let H0 be the common 0-eigenspace of the derivations δj. Then, if we denote

by D0 the restriction of Dh to H0, (B,H0, D0) is a (usually reducible) spectral triple.

Moreover, if we denote by J0 the restriction of J to H0, then J0 determines a right action of

B (or a left action of the opposite algebra B◦) on H0 by

hb = b◦h = J0b
∗J−1

0 h

for any b ∈ B, h ∈ H. This action fulfils the following properties:

(a) [b, J0c
∗J−1

0 ] = 0 for all b, c ∈ B; that is, J0 maps B into its commutant;

(b) [[D0, b], J0c
∗J−1

0 ] = 0 for all b, c ∈ B ( first order condition).

Proof. Clearly Dh is a selfadjoint operator, and it has compact resolvent (see [DS13a]). Also,

B preserves H0 since it is exactly the invariant subalgebra for the Tn action. Finally, since

[D, b] = [Dh, b] for any b ∈ B (see remark 5.3.6), D has bounded commutators with the elements

from B. We conclude that (B,H0, D0) is a spectral triple.

Next we prove (a) and (b). (a) follows simply by the fact that j0 is nothing else than J , and

J maps A, and hence B, into its commutant. For what concerns (b), we recall that the triple

over A satisfies the first order condition; that is,

[[D, a], Jb∗J−1] = 0 ∀a, b ∈ A.

Using this fact we can see that:

[[D0, b], J0c
∗J−1

0 ] =
1

2
[[ΓDΓ, b]± [D, b], Jc∗J−1]

=
1

2
[Γ[D, b]Γ, Jc∗J−1] =

1

2
Γ[[D, b], Jc∗J−1]Γ = 0,

where we used also the fact that JΓ = −ΓJ , according to definition 5.3.4. So the first order

condition (b) is fulfilled.

Lemma 5.3.8. Let (A,H, D, J, {δj},Γ), (B, D0,H0) as above. Then, if we denote by γ0 the

restriction of Γ to H0,

D0γ0 = −γ0D0 for n odd,

D0γ0 = γ0D0 for n even.

Proof. It follows by direct computation, using the definition of Dh.

5.3.4 Projectable spectral triples: even case

Now we consider even dimensional triples over principal O(Tn)-comodule algebras.
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Definition 5.3.9. An even dimensional Tn-equivariant real spectral triple (A,H, D, J, γ, {δj}),
of KR-dimension n+m, is said to be projectable along the fibres if there exists a Z2 grading Γ

on H which satisfies the following conditions,

Γ2 = 1, Γ∗ = Γ,

[Γ, π(a)] = 0 ∀a ∈ A,

[Γ, δj ] = 0 for j = 1, . . . , n,

JΓ = −ΓJ,

Γγ = (−1)nγΓ.

We define the horizontal Dirac operator Dh by:

Dh =


1

2
Γ[D,Γ]− for n odd

1

2
Γ[D,Γ]+ for n even

(5.3.2)

where [a, b]± = ab± ba.

Also in this case we can introduce the isometric fibres property, see definition 5.3.5.

Proposition 5.3.10. Let (A,H, D, J, γ, {δj},Γ) be an even dimensional projectable spectral triple

with isometric fibres, and let H0 be the common 0-eigenspace of the derivations δj. Then, if we

denote by D0 the restriction of Dh to H0, (B,H0, D0) is a (usually reducible) spectral triple.

If we denote by J0 the restriction of J to H0, then J0 determines a right action of B (or a

left action of the opposite algebra B◦) on H0 by

hb = b◦h = J0b
∗J−1

0 h

for any b ∈ B, h ∈ H. And such an action fulfils the following properties:

(a) [b, J0c
∗J−1

0 ] = 0 for all b, c ∈ B; that is, J0 maps B into its commutant;

(b) [[D0, b], J0c
∗J−1

0 ] = 0 for all b, c ∈ B ( first order condition).

Moreover both the operators Γ and γΓ preserve H0, and γ anticommutes with D0.

Proof. The proof is the same as that of proposition 5.3.7.

5.3.5 Real structure and real spectral triples

The construction of a real structure for the triples considered in the previous sections requires to

discuss separately 4 cases. Indeed, if we denote by m the KR-dimension of the triple over A, and

we set j = m− n (so that j should be the dimension of the triple over B) we have four different

situations: j even and n even, j even and n odd, j odd and n even, j odd and n odd.

Before beginning the discussion, we recall here the dependence on the KR-dimension of the

commutation relations between the real structure, the Dirac operator and the Z2-grading. We
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5.3. Projectable spectral triples for quantum principal Tn-bundles

use Connes’ selection6 (see [GBFV, DD11]). Given a real spectral triple (A,H, J,D, γ) we say

that it is of KR-dimension j (which we consider always modulo 8) if:

J2 = ε · id,

JD = ε′DJ,

and, for j even,

Jγ = ε′′γJ,

γD = −Dγ,

where ε, ε′, ε′′ = ±1 according to the following table [GBFV, DD11]:

j 0 2 4 6 1 3 5 7

ε + − − + + − − +
ε′ + + + + − + − +
ε′′ + − + −

j even, n even. (A,H, D, J, γ) is an even real spectral triple of KR-dimension m = j+n. We

extend the triple (B,H0, D0) to an even dimensional real spectral triple (B,H0, D0, j0, γ0) of KR-

dimension j, where j0 and γ0 are defined in the tables below (the restriction of the operators to H0

is always understood). We recall that D0 is the restriction of Dh to H0, where Dh = 1
2Γ[D,Γ]+,

so that ΓD0 = D0Γ. Also, we recall that, since n is even, Γγ = γΓ.

Table 5.1: j0 and γ0 for the even-even case

H
HHH

HHj
n

0 2 4 6

0 J ΓJ ΓJ J

2 J J ΓJ ΓJ

4 J ΓJ ΓJ J

6 J J ΓJ ΓJ

H
HHH

HHj
n

0 2 4 6

0 γ γΓ γ γΓ

2 γ γΓ γ γΓ

4 γ γΓ γ γΓ

6 γ γΓ γ γΓ

j even, n odd. (A,H, D, J) is an odd real spectral triple of KR-dimension m = j + n.

We turn the triple (B,H0, D0) into an even dimensional real spectral triple (B,H0, D
′
0, j0, γ0) of

KR-dimension j, where γ0 = Γ|H0 and j0, D′0 are defined in the tables below7 (the restriction

of the operators to H0 is always understood). We recall that D0 is the restriction of Dh to H0,

where Dh = 1
2Γ[D,Γ], so that ΓD0 = −D0Γ.

Remark 5.3.11. We spend some words about the cases with (j, n) equal to (0, 3), (0, 5), (4, 3)

and (4, 5). In all these situations, indeed, it is not possible to find a set of operators (D0, j0, γ0)

constructed only using Γ, D and J and fulfilling all the required commutation relations. And this

6There is another possible choice, see table 7.3. See also [DD11].
7In the cases with (j, n) equal to (0, 3), (0, 5), (4, 3) and (4, 5), actually, the real structure j0 does not fulfil the

right commutation relations. Indeed, j2
0 has the wrong sign. For a discussion of this issue see remark 5.3.11 and

example 5.3.12.
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5. Projectable spectral triples and twisted Dirac operators

Table 5.2: D′0 and j0 for the even-odd case

HHH
HHHj

n
1 3 5 7

0 D0 D0 D0 D0

2 D0 ΓD0 ΓD0 D0

4 D0 D0 D0 D0

6 D0 ΓD0 ΓD0 D0

HHH
HHHj

n
1 3 5 7

0 ΓJ J7 ΓJ7 J

2 J J ΓJ ΓJ

4 ΓJ J7 ΓJ7 J

6 J J ΓJ ΓJ

issue can not be solved changing the commutation relation between J and Γ. Indeed, there are

two possible choices: JΓ = ΓJ and JΓ = −ΓJ . In the first case γ0 = Γ fulfils all the required

commutation relations, but j2
0 has the wrong sign (that is, j2

0 = −1 for j ≡ 0 (mod 8) and j2
0 = 1

for j ≡ 4 (mod 8)). In the second one, instead, it is possible to recover a j0 with the correct

commutation relations, by setting j0 = ΓJ , but then we can not find a suitable γ0 commuting with

j0. We have chosen to adopt the first convention, since it allows to define all the three operators,

even if with j2
0 with the wrong sign, and, moreover, it appears as the more natural choice (cfr.

example 5.3.12 and remark 5.3.13). We conclude this remark with the following observation: the

fact that we are not able to define a j0 fulfilling all the right commutation relations does not

mean that such a j0 does not exist, but only that it can not be expressed only in terms of J , D

and Γ.

In order to discuss the issues of the previous remark in a more exhaustive way, we consider

an explicit example.

Example 5.3.12. We want to study the behaviour of a projectable spectral triple of KR-dimension

3 over a quantum principal T3-bundle. In order to avoid the trivial cases without, however, dealing

with triples of too high dimension, we shall consider a product geometry between a finite spectral

triple [Kra98] and a noncommutative 3-torus. Let us begin by introducing the former. We take

it to be the simplest finite real spectral triple of KR-dimension 0 [Kra98, PS08].

Let AF = A1 ⊕A2 = C⊕ C. Consider the Hilbert space HF = C3. An element (a1, a2) ∈ A
acts on H = C3 in the following way:

πF (a1, a2) =

 a1 0 0

0 a1 0

0 0 a2

 .

Then we introduce a real structure JF . We take it to be the composition of the complex conju-

gation, on each factor C, with the following matrix:

K =

 1 0 0

0 0 1

0 1 0

 .
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We see immediately that J2 = 1. Moreover,

JFπF (a1, a2)∗J−1
F = JFπF (a1, a2)J−1

F =

 a1 0 0

0 a2 0

0 0 a1

 .

As Z2-grading orientation operator we can consider the following one:

γF =

 1 0 0

0 −1 0

0 0 −1

 .

Consistently with the commutation relations characterizing the triples of KR-dimension 0, we

have JFγF = γFJF . Finally, as Dirac operator we consider the following one:

DF =

 0 a a

a 0 0

a 0 0

 , a ∈ C.

Then D∗F = DF , JFDF = DFJF and DFγF = −γFDF . It follows that (AF ,HF , DF , JF , γF ) is a

real spectral triple of KR-dimension 0.

Next, let (A(T3
θ),HT , DT , JT ) be the real spectral triple on the noncommutative 3-torus con-

sidered in section 5.4.3 (see also appendix A). That is, H = L2(T3)⊗ C2, J = iσ2 ◦ J0, where J0

comes from the Tomita-Takesaki involution, and D =
3∑
i=1

σj ◦ δj . Then the product geometry is

obtained in the following way [Van99, DD11]. The Hilbert space is H = HF ⊗HT with the tensor

product representation of A = AF ⊗ A(T3
θ); also the real structure is simply J = JF ⊗ JT . For

the Dirac operator, instead, we take

D = DF ⊗ id + γF ⊗DT .

Then (A,H, D, J) is a real spectral triple of KR-dimension 3. Moreover, it is T3-equivariant

with respect to the action of T3 generated by the derivations δj , acting on the second factor HT
of H. The algebra A is, trivially, a cleft Hopf-Galois O(T3)-extension with invariant subalgebra

isomorphic to AF . Also, the common 0-eigenspace H0 of the derivations δj is isomorphic to

HF ⊗ C2. Is it a projectable triple? The answer is positive. Let us show this fact. According to

definition 5.3.4, we need a selfadjoint operator Γ commuting with the derivations δj , commuting

with the representation of A and such that: Γ2 = id, ΓJ = JΓ. All these requirements are

satisfied by the following operator:

Γ = γF ⊗ idH.

With this choice of Γ we obtain the following operators:

Dh = DF ⊗ idHT
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⇒ D0 = DF ⊗ idC2 ,

j0 = JF ⊗ (iσ2 ◦ c.c.),

γ0 = γF ⊗ idC2 .

Here c.c. denotes the complex conjugation. It is straightforward to see that they fulfil the following

relations: D0j0 = j0D0, γ0j0 = j0γ0 and γ0D0 = −D0γ0. All these relations are consistent with a

spectral triple of KR-dimension 0. Instead, for the square of the real structure we obtain j2
0 = −1,

hence it has the wrong sign. It is not difficult to see that using only D, J and Γ we can not

construct a j′0 fulfilling the previous relations plus j′20 = 1. This does not mean, of course, that

such an operator does not exists. Indeed, for any 2 × 2 unitary matrix A anticommuting with

(iσ2 ◦ c.c.), the operator Aj0 satisfies all the required commutation relations. Of course, the most

natural choice is A = iσ2, so that j′0 = Aj0 = JF ⊗ idC2 .

Remark 5.3.13. In remark 5.3.11 we pointed out that there are two reasonable choices for the

commutation relation between J and Γ: JΓ = −JΓ. If we had considered the second one, the

only possible solutions for Γ would have been of this kind: Γ = idHF ⊗ idHτ ⊗Σ, with Σ a suitable

selfadjoint matrix acting on the factor C2 (e.g., Σ = σ1). Therefore the horizontal Dirac operator

would have been, e.g., of this form: Dh = DF ⊗ id + σ1δ1. Even if the restriction of H0 would

have been the same as that of the operator constructed in the previous example, it is clear that

we can not ignore the different origin of the two operators, and that the more meaningful choice

is the one adopted in the previous example.

j odd, n even. (A,H, D, J) is an odd real spectral triple of KR-dimension m = j+n. We turn

the triple (B,H0, D0) into an odd dimensional real spectral triple (B,H0, D
′
0, j0) of KR-dimension

j, where j0 and D′0 are defined in the tables below (the restriction of the operators to H0 is always

understood). We recall that D0 is the restriction of Dh to H0, where Dh =
1

2
Γ[D,Γ]+, so that

ΓD0 = D0Γ.

Table 5.3: D′0 and j0 for the odd-even case

HH
HHHHj

n
0 2 4 6

1 D0 ΓD0 D0 ΓD0

3 D0 ΓD0 D0 ΓD0

5 D0 ΓD0 D0 ΓD0

7 D0 ΓD0 D0 ΓD0

HH
HHHHj

n
0 2 4 6

1 J ΓJ ΓJ J

3 J J ΓJ ΓJ

5 J ΓJ ΓJ J

7 J J ΓJ ΓJ

j odd, n odd. (A,H, D, J, γ) is an even real spectral triple of KR-dimension m = j + n.

We turn the triple (B,H0, D0) into an odd dimensional real spectral triple (B,H0, D
′
0, j0) of KR-

dimension j, where j0 and D′0 are defined in the tables below (the restriction of the operators to

H0 is always understood). We recall that D0 is the restriction of Dh to H0, where Dh =
1

2
Γ[D,Γ],

so that ΓD0 = −D0Γ.

We conclude this section pointing out that, in all the cases discussed above, the real structure
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Table 5.4: D′0 and j0 for the odd-odd case

HHH
HHHj

n
1 3 5 7

1 D0 D0 ΓD0 ΓD0

3 D0 D0 D0 D0

5 D0 D0 ΓD0 ΓD0

7 D0 D0 D0 D0

HHH
HHHj

n
1 3 5 7

1 ΓJ ΓJ J J

3 J ΓJ ΓJ J

5 ΓJ ΓJ J J

7 J ΓJ ΓJ J

j0 maps the algebra B into its commutant and the triple fulfils the first order condition. Both

properties follow from proposition 5.3.7 (and from the analogue result in the even dimensional

case, see proposition 5.3.10).

5.3.6 Twisted Dirac operators

Let (A,H, D, J, γ, {δj},Γ) be a projectable Tn-equivariant real spectral triple over a quantum

principal Tn-bundle (A, H,∆R, N,Q) and let B be the invariant subalgebra of A. Assume that

the differential calculus over A is projectable and that the triple has isometric fibres. Then

we can construct twisted Dirac operators, as like as in section 5.2.5. Actually, in order to get

well-behaving operators, we have to add a further requirement to those of definition 5.3.5:

(f) there exists a bounded operator Z ′ on H such that

(Zh)a = Z ′(ha), ∀h ∈ H, a ∈ A.

Proposition 5.3.14. For any k ∈ Zn, A(k) is a quantum bundle associated to the principal

O(Tn)-comodule algebra A. Moreover, it is a finitely generated projective B-module.

Proof. Let k ∈ Z. Consider the left O(Tn)-comodule (V k, ρkL), where V = C and ρL(λ) = zk ⊗ λ.

Then it is straightforward to see that A(k) is isomorphic to A�O(Tn)V
k (see definition 4.5.1). It

follows (see definition 4.5.2) that A(k) is a quantum associated bundle.

Next, it is clear that it is a left B-module. Then the fact that it is finitely generated and

projective as left B-module follows directly from the fact that A is a principal comodule algebra

(see proposition 4.5.3).

Now we can use the results of section 5.1 to build twisted Dirac operators. Indeed, due to the

previous results, we can take M = A(k). We begin defining a connection on A(k).

Proposition 5.3.15. Let ω be a Tn strong connection defined by a family ωi ∈ Ω1
D(A), for

i = 1, . . . , n. Then, for any k ∈ Zn, the map ∇ω : A(k) → Ω1
D(A)A(k) defined by

∇ω(a) = [D, a]−
n∑
i=1

kiaωi,

where both a ∈ A(k) and ∇ω(a) are regarded as operators on H0 acting from the right, defines
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a D0-connection over the left B-module A(k), where D0 denotes the restriction of the horizontal

Dirac operator Dh to H0.

Proof. The proof is the same as that of proposition 5.2.20.

Proposition 5.3.16. The D0-connection ∇ω is hermitian if all the ωi are selfadjoint (as operators

on H).

Proof. We check (i) and (ii) of definition 5.1.2. Since we have taken M = A(k) acting on H0 on

the right via ha = Ja∗J−1h, and since J maps A into its commutant, then (i) is fulfilled. For

what concerns (ii), we proceed by direct computation: let a1, a2 ∈ A(k) and h ∈ H0; then, using

(5.1.2), we get:

h
(
∇ω(a2)a†1 − a2∇ω(a1)† − (Dh)a2a

†
1 +D(ha2a

†
1)
)

= h

(
[D, a2]−

n∑
i=1

kia2ωi

)
a†1 − h

a2

(
[D, a1]−

n∑
i=1

kia1ωi

)†− h[D, a2a
†
1]

= h

(
n∑
i=1

kia2(ω†i − ωi)a
†
1

)
,

which vanishes if ω†i = ωi.

Now, we can identify, up to completion, H0A(k) with Hk; hence, we have obtained a family of

spectral triples (B,Hk, D
(k)
ω ), k ∈ Zn, where each D

(k)
ω is the twisted Dirac operator constructed

using the connection ∇ω on A(k). Taking Dω to be the closure of the direct sum of the Dirac

operators of this family we obtain a twisted Dirac operator Dω, acting on (a dense domain of)

the whole Hilbert space H.

Proposition 5.3.17. The twisted Dirac operator Dω is selfadjoint if all the ωi are selfadjoint

one-forms, and it has bounded commutators with all the elements of A.

Proof. We compute the action of Dω on an element hp in its domain, with h ∈ H0 and p ∈ A(k)

(we use (5.1.2) for the right action of one-forms, where J0 stands either8 for j0 or Γj0):

Dω(hp) = (D0h)p+ h[D, p]−
n∑
i=1

kihpωi

= (D0h)p+ [D,J0p
∗J−1

0 ]h+
n∑
i=1

J0ω
∗
i J
−1
0 kihp

= D(hp) + ((D0 −D)h)p+

n∑
i=1

J0ω
∗
i J
−1
0 hδi(p)

=

(
D +

n∑
i=1

J0ω
∗
i J
−1
0 δi − Z ′

)
(hp).

(5.3.3)

8If D′0 - see tables in the previous section - is simply D0 then we take J0 = j0; if, instead, D′0 = ΓD0, the we
take J0 = Γj0.
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Now, the Dirac operator D and the derivations δi are selfadjoint, Z ′ and ω are bounded and

selfadjoint; moreover, any δi is relatively bounded with respect to D. Then, by Kato-Rellich

theorem, Dω is selfadjoint on H.

Next, D has bounded commutator with each a ∈ A and, since any ωi is a one-form, from

the first order condition (which holds also for the triple (B,H0, D0), see proposition 5.3.7) the

commutator of the second term with a is
∑

i J0ω
∗
i J
−1
0 δi(a) and hence is bounded. The third term

of (7.3.35) gives commutators between bounded operators, since Z ′ is bounded, and thus it gives

only bounded terms. Therefore [Dω, a] is bounded for each a ∈ A.

Proposition 5.3.18. Let Dv be as in definition 5.3.5. Define

Dω = Dv +Dω.

Then (A,H,Dω) is a projectable spectral triple with isometric fibres, and the horizontal part of

the operator Dω coincides with Dω.

Proof. See proof of proposition 5.8 in [DS13a].

As in the U(1) we introduce the following notion of compatibility.

Definition 5.3.19. We say that a strong connection ω is compatible with a Dirac operator D if

Dω and Dh coincide on a dense subset of H.

5.4 Projectable spectral triples and twisted Dirac operators for

noncommutative tori

Now we apply the results of this chapter to some explicit models: we will show how the canonical

flat spectral triples over n-dimensional noncommutative tori are projectable and we will work out

explicit formulae for the twisted Dirac operators. An application of our result to a different model

(a noncommutative Hopf fibration) can be found in [DSZ13]. We will begin by considering two

quantum principal U(1)-bundles: the noncommutative 2-torus as a bundle over the circle S1 and

the noncommutative 4-torus as a bundle over a noncommutative 3-torus. The “intermediate”

case, that is the 3-dimensional torus over the 2-dimensional one is discussed in [DS13a]. Next, we

will consider, again, the noncommutative 3-torus, but now as a T2-bundle over the circle. Some

properties of noncommutative tori will be recalled here, but we refer to appendix A for a more

detailed discussion.

5.4.1 T 2
θ as quantum principal U(1)-bundle

Let A = A(T2
θ) be the unital algebra of a noncommutative 2-torus, that is, the polynomial algebra

generated by the two unitaries U, V with the commutation relation UV = e2πiθV U (θ irrational),

and consider the U(1) action on A, associated to the derivation δ2:

δ2(U) = 0, δ2(V ) = V
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(we recall that there is also the derivation δ1, which acts as δ1(U) = U , δ1(V ) = 0). Then

the invariant subalgebra B is the (commutative) algebra generated by U . In particular, since9

spectrum(U) = S1, we can identify (Gel’fand-Naimark theorem) B with a dense subalgebra of

C∞(S1).

Let τ be the unique tracial state on A, and let Hτ be the associated GNS Hilbert space. Now

let H = Hτ ⊗ C2, and consider the standard flat Dirac operator,

D =
2∑
i=1

σiδi,

where σi are the Pauli matrices. Also, let H0 be the 0-eigenspace10 of δ2 in H. We complete this

spectral triple with the real structure and the orientation Z2-grading. They can be taken equal

to:

γ = id⊗ σ3,

J = J0 ⊗ (iσ2 ◦ c.c.)

where J0 : Hτ → Hτ is the Tomita-Takesaki antiunitary involution and c.c. denotes the complex

conjugation. In this way we obtain a U(1)-equivariant even real spectral triple (A,H, D, J, γ, δ2).

Now we can see if there exists an operator Γ such that the spectral triple (A,H, D, J, γ, δ2,Γ) is

projectable.

Proposition 5.4.1. The unique operators Γ : H →,H such that (A,H, D, J, γ, δ2,Γ) is a pro-

jectable real spectral triple with equal length fibres, are Γ = ±id⊗ σ2.

Proof. Since Γ has to commute with π(A), and Hτ is an irreducible representation of A, we have

that the most general form of an admissible Γ is: Γ = α0 · id +
∑3

i=1 αiσ
i with αi ∈ C. And using

Γγ = −γΓ we see immediately that α0 = 0 and α3 = 0. Next, from Γ2 = −1 we obtain:

α2
1 + α2

2 = 1.

There is a last condition to impose; namely: [Dh, U ] = [D,U ], which comes from the equal length

fibres property (see remark 5.2.4). This gives, for any v ∈ H,

σ1Uδ1(v) = (α1α2σ
2 − α2

2σ
1)Uδ1(v).

Which implies that the only solution is α2 = ±1. Also, notice that Γ = ±σ2 is consistent with

the commutation relation JΓ = −ΓJ . It follows that Dh = σ1δ1. Then, if Γ = ±σ2 and we define

Dv = ±Γδ2 = σ2δ2, we have D = Dv +Dh and so the equal length fibres condition is fulfilled.

Now, notice that we can identify both H(±)
0 with L2(S1, dϕ); then the restriction of Dh to

H(±)
0 will be given by:

D±0 = ±i d
dϕ
.

9Here the spectrum of U is taken in the C∗-completion of A.
10We are assuming that the spin structure relative to δ2 is the trivial one [PS06, DS13a]; that is, we assume that

the spectrum of δ2 in H is Z.
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Also, the real structure j
(±)
0 on H(±)

0 will simply be the complex conjugation. So, each of the

two projected triples is isomorphic to the canonical spectral triple on S1, corresponding to the

uniform metric.

Twisted Dirac operators

Taking Γ = σ2, so that Dv = Γδ2 = σ2δ2, we see that the spectral triple discussed above has

the constant length fibres property with, moreover, Z = 0. So we can construct twisted Dirac

operators. First of all, we need a strong connection over A. We can prove the following result.

Lemma 5.4.2. A selfadjoint U(1) strong connection over A is a one-form

ω = σ2 + σ1ω1,

where ω1 is a selfadjoint element of B.

Proof. Let ω ∈ Ω1
D(A); then ω can be written as:

ω =
∑
i

ai[D, ci]

with ai, ci ∈ A. This implies that we can generically write ω as:

ω =
∑
i

σiωi

with ωi ∈ A. In order to be a strong connection, ω has to fulfil properties (i)-(iii) of definition

4.3.5. In particular we need [δ, ω] = 0, and this implies ωi ∈ B. Also, ω3 should be equal to zero,

since we cannot obtain an operator such as σ3ω3 from a commutator [D, a]. Thus we are left

with a connection of the form:

ω = σ1ω1 + σ2ω2.

Now notice that, for j = 1, 2, we can write the Pauli matrices σj as: σj = U−1
j [D,Uj ] (where

U1 = U , U2 = V ). Then ω becomes:

ω =

2∑
j=1

ωjU
−1
j [D,Uj ].

But now we can use condition (ii) of definition 4.3.5; we obtain: ω2 = 1. Thus the most general

U(1) strong connection on A is:

ω = σ2 + σ1ω1, ω1 ∈ B,

which, of course, is selfadjoint if and only if ω∗1 = ω1.

Now we can compute the Dirac operator Dω obtained twisting Dh by the strong connection

ω, in the way described in the previous sections.
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Proposition 5.4.3. For any selfadjoint U(1) strong connection ω, the associated Dirac operator

Dω has the form

Dω = Dh − σ1j0ω1j
−1
0 δ2.

Proof. From previous results we know that the projectability of the spectral triple (A,H, D, J, δ)
implies that there are two spectral triples over the invariant subalgebra B. They are given by

(B,H(±)
0 , D

(±)
0 , j0). In order to fix the conventions, we say that on H(+)

0 the Dirac operator D0 is

given by −δ1, while on H(−)
0 it is given by δ1 (note that ν = −σ1, and thus σ1 is diagonal w.r.t.

the decomposition H0 = H(+)
0 ⊕H(−)

0 ). Now we can compute the twisted operators D
(±)
ω,k on H(±)

k .

Take h0 ∈ H(+)
0 . Then, for any a ∈ A(k), we have:

D
(+)
ω,k (h0a) = (D

(+)
0 h0)a− h0∇ω(a) = −δ1(h0a) + kh0aω1.

Thus, if we take h ∈ H(+)
k we see that the action of the twisted Dirac operator is given by

D
(+)
ω,k (h) = −δ1(h) + j0ω1j

−1
0 δ2(h).

In the same way, one obtains that, for h ∈ H(−)
k ,

D
(−)
ω,k (h) = δ1(h)− j0ω1j

−1
0 δ2(h).

If now we put them together, and we consider the collection of all of them for any k ∈ Z, we get

that the full twisted Dirac operator Dω is given, as an operator on H, by

Dω = σ1δ1 − σ1j0ω1j
−1
0 δ2,

which is equal to Dh − σ1j0ω1j
−1
0 δ2.

Corollary 5.4.4. The only connection compatible with D, i.e. with the fully T2-equivariant Dirac

operator on the noncommutative 2-torus, is ω = σ2.

Proof. It follows from previous lemma and definition 5.3.19.

Now we can compute, given any strong connection ω, the general form of a Dirac operator

D(ω) compatible with such a connection.

Proposition 5.4.5. Let ω = σ2 + σ1ω1 be a selfadjoint connection. Then the following Dirac

operator,

Dω = D − σ1j0ω1j
−1
0 δ2,

is compatible with ω.

Proof. It follows from definition 5.3.19 together with the computation of proposition 5.4.3.

5.4.2 T4
θ as quantum principal U(1)-bundle

Let A be the unital (smooth) algebra of the noncommutative 4-torus, generated by four unitaries

U1, . . . , U4 with the commutation relations UiUj = e2πiθijUjUi, where θij is an antisymmetric
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matrix with no rational entries and no rational relation between them. On A There is the

canonical action of T4, whose generators are the derivations δj ,

δi(Uj) = δijUj .

As U(1) quantum principal bundle structure we take the one given by the choice δ = δ4, and we

assume the relative spin structure to be the trivial one. Thus the invariant subalgebra B is the

algebra generated by U1, . . . , U3 and is isomorphic to the algebra of a noncommutative 3-torus.

We recall briefly the structure of (one of the) flat T4-equivariant spectral triples over A(T4
θ).

The commutation relations in KR-dimension 4 are the following ones:

J2 = −1, JD = DJ, Jγ = γJ. (5.4.1)

In order to work out explicitly the operators, it is useful to recall the structure of the Clifford

algebra Cl(4) (so that we can fix the notation).

The Clifford algebra Cl(4)

The Clifford algebra Cl(4) is generated by four elements, γ1, . . . , γ4, with the relations

γi
2

= 1,

γiγj = −γjγi for i 6= j,

γi
∗

= γi.

(5.4.2)

We can represent the γi’s as 4× 4 matrices, related to the Dirac matrices. In the so-called Dirac

representation we can write the matrices γi as:

γ4 =

(
1 0

0 −1

)
, γj =

(
0 iσj

−iσj 0

)
. (5.4.3)

Moreover, we can define a matrix γ5 ≡ γ1γ2γ3γ4 which satisfies γ5γj = −γjγ5, γ52
= 1 and

γ5∗ = γ5; in Dirac representation:

γ5 =

(
0 1

1 0

)
.

We recall, also, that using the Dirac matrices we can write down a basis for M4(C). In

particular, if we define σij ≡ [γi, γj ] (for i, j = 1, . . . , 4), then the basis is given by:

id, γ5,

γi i = 1, . . . , 4,

γ5γi i = 1, . . . , 4,

σij i < j.

(5.4.4)
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A projectable spectral triple

Now, let Hτ be the GNS Hilbert space associated to the canonical trace τ on A [GBFV]. Define

H = Hτ ⊗ C4. We consider the usual flat Dirac operator [GBFV, Ven10]:

D =
4∑
j=1

γjδj .

Then we can take the orientation Z2-grading to be γ = γ5. To define J , we recall that it is related

to the charge conjugation operator; so we take

J = J0 ⊗ (γ4γ2 ◦ c.c.),

where J0 : Hτ → Hτ is the Tomita-Takesaki involution and c.c. denotes the complex conjugation.

Then one can see that the spectral triple (A,H, D, J, γ) satisfies the relations (5.4.1), and it is

also a U(1)-equivariant spectral triple. Moreover it is projectable:

Proposition 5.4.6. The unique operators Γ : H → H, such that (A,H, D, J, γ, δ4,Γ) is a pro-

jectable real spectral triple with equal length fibres, are Γ = ±id⊗ γ4.

Proof. Since [Γ, π(a)] = [Γ, δ] = 0 for all a ∈ A, Γ must be of the form Γ = id⊗A for some matrix

A ∈M4(C). Then using the fact that (5.4.4) give a basis of M4(C), we can write Γ as

Γ = a+ bγ5 +
∑
j

cjγ
j +

∑
j

djγ
5γj +

∑
i,j

eijσ
ij .

From Γγ = −γΓ we deduce a = b = eij = 0. Thus we are left with

Γ =
∑
j

(αjγ
j + βjγ

5γj), αj , βj ∈ C,

where αj ∈ R and βj ∈ iR, as follows from the condition Γ = Γ∗. This implies that we can write

Γ2 as:

Γ2 =
∑
j

α2
j +

∑
i 6=j

2αiβjγ
5γiγj −

∑
j

β2
j .

Next, using the condition Γ2 = −1, we deduce:
αiβj = αjβi ∀i 6= j

∑
j

(α2
j − β2

j ) = 1
(5.4.5)

We have now to impose [D, b] = [Dh, b], for all b ∈ B (see remark 5.2.4). Let us compute, first

of all, Dh = 1
2Γ[D,Γ] (we use the Einstein convention for the sum over repeated indices):

Dh =
1

2
(αiγ

i + βiγ
5γi)[γjδj , αkγ

k + βkγ
5γk]
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=
1

2
(αiγ

i + βiγ
5γi)(αkσ

jkδj − 2βkγ
5δk)

= αjαkγ
kδj − αjαjγkδk + εijklαiαkγ

5γlδj (5.4.6)

− αiβkγiγ5δk + εijklβiαkγ
lδj + βiβkγ

iδk.

And now, from the condition [D, b] = [Dh, b], using [δ4,B] = 0 and the linear independence of the

sixteen generators (5.4.4), we get:

εijklαiαkγ
5γlδj − αiαkγiγ5δk = 0

∑
j 6=k

(αjαkγ
kδj + βiβkγ

jδk) + εijklβiαkγ
lδj = 0

∑
j 6=k
−α2

jγ
kδk +

∑
i

β2
i γ

iδi =
3∑
j=1

γiδi.

(5.4.7)

The last condition implies: 
β2

4 =
3∑
j=1

α2
j

for i 6= 4,
∑
j 6=i
−α2

j + β2
i = 1.

(5.4.8)

If now we use (5.4.8) to compute
∑

j β
2
j we get:

∑
j

β2
j =

3∑
j=1

α2
j +

3∑
i=1

1 +
∑
j 6=i

α2
j

 . (5.4.9)

Comparing (5.4.9) with the second equation of (5.4.5) we obtain the following relation: α2
4+ 1

2β
2
4 =

1. Now, we know that αj ∈ R and βj ∈ iR (therefore b2j ≤ 0). Thus, from this last relation we

obtain α2
4 ≥ 1, while from the second equation of (5.4.5) we get α2

4 ≤ 1. So the only solutions are

α4 = ±1, αj = βj = β4 = 0 for j = 1, 2, 3. It is easy to see that such solutions fulfil all the other

conditions of (5.4.5), (5.4.7). We conclude that the unique solutions for Γ are Γ = ±γ4. Now we

take one of the two solutions of the previous proposition, say Γ = γ4. Then:

Dh =

3∑
i=1

γiδi, Dv = γ4δ4,

so that the spectral triple fulfils the constant length fibres condition, with, moreover, Z = 0.

Now we can build the “3-dimensional orientation”: ν = iΓγ = iγ5γ4 = iγ1γ2γ3. We have

ν2 = 1, ν∗ = ν as it should be. In 2× 2 matrix notation ν is given by:

ν =

(
0 −i
i 0

)
.

It is useful to write the down the action of Dh on each of the two eigenspaces of ν. Clearly it
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is enough to know the action of the matrices γj (j = 1, 2, 3). Let us consider the 0-eigenspace

H0 of δ4, and decompose it accordingly to γ: H0 = H+
0 ⊕H

−
0 . Then any vector can be written

as v = v+ ⊕ v−. Moreover, since Γ = γ4 is an intertwiner between H±0 , these two spaces are

isomorphic. If H0 = H(+)
0 ⊕H(−)

0 according to ν, then:

v ∈ H(+)
0 ⇒ v is of the form v = w ⊕ (−iw)

v ∈ H(−)
0 ⇒ v is of the form v = w ⊕ iw

(5.4.10)

for some w ∈ H+. Using (5.4.3), we see that, for j = 1, 2, 3, γj acts as ±σj on H(∓)
0 . We

summarize these results in the following lemma.

Lemma 5.4.7. Each Hilbert space H(±)
0 is isomorphic to Hτ ⊗C2, where Hτ is the GNS Hilbert

space associated to the canonical tracial state on B = A(T3
θ). Moreover the matrices γj, j = 1, 2, 3,

when restricted to H(±)
0 , act as ∓σj.

Thus both the spectral triples are isomorphic to the canonical one [DS13a, Ven10] (see also

appendix A) on the noncommutative 3-torus, with Dirac operators

D
(±)
0 = ∓

3∑
j=1

σjδj .

We discuss now the real structure. Since J is antiunitary, we see that [J, iΓ] = 0. And,

since Jγ = γJ and J2 = −1 we can take j
(±)
0 = J (restricted to H(±)

0 ) and obtain that

(B,H(±)
0 , D

(±)
0 , j

(±)
0 ) are real spectral triples of KR-dimension 3.

Twisted Dirac operators

Now we can proceed to the construction of twisted Dirac operators. First of all we need to

characterize the strong U(1) connections over A. We have:

Lemma 5.4.8. A U(1) selfadjoint strong connection over A is a one-form

ω = γ4 +

3∑
j=1

γjωj ,

where ωj are selfadjoint elements of B.

Proof. Let ω ∈ Ω1
D(A). Then ω has to be of the form ω = γjωj , since [D, a] =

∑
j bjγ

jcj for

any a ∈ A. Moreover, if we impose [ω, δ] = 0, we get ωj ∈ B for all j = 0, . . . , 4. Also, since the

gamma matrices can be written as γj = U−1
j [D,Uj ], we can write ω as:

ω =
∑
j

ωjU
−1
j [D,Uj ].

And now, using condition (ii) of definition (4.3.5) we obtain ω0 = 1. Thus the most general form
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of a U(1) strong connection over A is

ω = γ4 +
3∑
j=1

γjωj , ωj ∈ B.

Of course, ω is selfadjoint if and only if each ωj is selfadjoint.

As we have done in the two dimensional case, we can now compute the Dirac operator Dω.

Proposition 5.4.9. For any selfadjoint U(1) strong connection ω, the associated Dirac operator

Dω has the form

Dω = Dh −
3∑
j=1

γjJωjJ
−1δ4.

Proof. Take h0 ∈ H(+)
0 and a ∈ A(k) such that h0a is in the domain of Dω. Then, using lemma

5.4.7 we can compute the action of Dω on h0a:

D(+)
ω (h0a) = (D

(+)
0 h0)a− h0∇ω(a) = −

3∑
j=1

σjδj(a) +
3∑
j=1

k(σjh0)aωj .

Hence, for h ∈ H(+) we get:

D(+)
ω = −

3∑
j=1

γjδj(h) +
3∑
j=1

σjj0ωjj
−1
0 δ4(h).

In the same way, for h ∈ H(−) we have:

D(−)
ω =

3∑
j=1

γjδj(h)−
3∑
j=1

σjj0ωjj
−1
0 δ4(h).

Thus, if now we put all together using the results about gamma matrices’ action of lemma 5.4.7,

we obtain that, for h ∈ H,

Dω(h) =

3∑
j=1

γjδj(h)−
3∑
j=1

γjJωjJ
−1δ4(h),

where we have used the fact that, up to restriction to H0, j0 = J .

Corollary 5.4.10. The only connection compatible with D is ω = γ4.

Corollary 5.4.11. Let ω = γ4 +
3∑
j=1

γjωj be a selfadjoint strong connection. Then the following

Dirac operator,

Dω = D −
3∑
j=1

γjJωjJ
−1δ4,

is compatible with ω.
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Proof. It follows from definition 5.3.19 together with proposition 5.4.9.

5.4.3 T3
θ as quantum principal T2-bundle

Let A denote the algebra A(T3
θ) of a noncommutative 3-torus: A is the polynomial algebra

generated by three unitaries U1, U2, U3, with the commutation relations UiUj = e2πiθijUjUi. To

the canonical action of T3 on A corresponds the following action of the generators of its Lie

algebra:

δi(Uj) = δijUj .

Consider now the T2 action associated to the derivations δ1 and δ2. The invariant subalgebra B is

simply the algebra generated by U3, and hence it is isomorphic to a dense subalgebra of C∞(S1).

As pointed out in appendix A, B ↪→ A is a cleft Hopf-Galois extension. In particular, A is a

principal O(T2)-comodule algebra.

A projectable spectral triple

Let us consider now the following spectral triple over A. Let Hτ denote the GNS Hilbert space

associated to the canonical trace τ on A (cfr [GBFV] and appendix A of this thesis). Set H =

Hτ ⊗ C2. Next, define a Dirac operator by:

D =
3∑
j=1

σjδj ,

where the σj are the Pauli matrices. The real structure J can be defined in the following way:

if J0 is the Tomita-Takesaki involution on Hτ and c.c. denotes the complex conjugation11 on C2,

then we define

J = J0 ⊗ (iσ2 ◦ c.c.).

(A,H, D, J) is an odd real spectral triple, of KR-dimension 3, on A. It is straightforward

to check that it is T2-equivariant12. Moreover, we know (cfr. appendix A) that the differential

calculus Ω1
D(A) is a O(T2)-covariant calculus, and it makes A into a quantum principal T2-bundle.

Now we can prove the following result.

Proposition 5.4.12. (A,H, D, J) is a projectable spectral triple, with isometric fibres. Moreover,

the operator Γ can be taken equal to ±σ3.

Proof. Take Γ = σ3 (the proof is the same for Γ = −σ3). Then Γ2 = 1, Γ∗ = Γ and if commutes

both with the representation of A and with the derivations δ1, δ2. Moreover, since σ2σ3 = −σ3σ2

and J0σ
3 = σ3J0, we have: JΓ = −ΓJ . Hence Γ satisfies all the requirements of definition 5.3.4.

It follows that (A,H, D, J) is a projectable T2-equivariant spectral triple.

Now let us consider the differential calculus. The horizontal Dirac operator is given by:

Dh =
1

2
Γ[D,Γ]+ = σ3δ3.

11That is, if {e1, e2} denotes the canonical basis of C2 then c.c(λej) = λej for any λ ∈ C.
12Indeed, it is T3-equivariant, see Appendix A.
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Take b ∈ B. Since B is the invariant subalgebra of A, we have δ1(b) = δ2(b) = 0. Therefore,

[D, b] =
∑
j

σjδj(b) = σ3δ3(b).

Since Dh = σ3δ3, and hence [Dh, b] = σ3δ3(b), it follows that D and Dh generates the same

bimodule of forms over B (cfr. remark 5.3.6). It is straightforward to see, then, that if Γ = ±σ3

the triple fulfils the isometric fibres condition.

Now let H0 denote the common 0-eigenspace of δ1 and δ2. Accordingly to the results of the

previous sections, we set D0 = Dh|H0 and D′0 = ΓD0. Then the real structure j0 is given by the

restriction of ΓJ to H0. In particular, j0 = (J0 ⊗ (σ1 ◦ c.c.))|H0 . Then (B,H0, D
′
0, j0) is a real

spectral triple of KR-dimension 1.

Twisted Dirac operators

Let us come back to the triple (A,H, D, J). We have seen that it is a projectable T2-equivariant

spectral triple. Now we observe that it has isometric fibres (cfr. definition 5.3.5). Indeed, let Dv

be the operator

Dv = σ1δ1 + σ2δ2.

Then D = Dv +Dh+Z, with Z = 0, and Dv fulfils (a)-(c) of definition 5.3.5. So we can twist the

horizontal Dirac operator Dh. We begin by working out a general form for strong connections

over A (seen as a quantum principal T2-bundle, i.e. with differential calculus, in this case Ω1
D(A),

compatible with the de Rham calculus on O(T2)).

Lemma 5.4.13. Any selfadjoint strong connection over A, in the sense of definition 4.6.17, is

defined by two selfadjoint 1-forms ω1, ω2 ∈ Ω1
D(A) such that:

ω1 = σ1 + σ3ω1
3,

ω2 = σ2 + σ3ω2
3,

with ωi3 = (ωi3)∗ ∈ B.

Proof. Any 1-form η ∈ Ω1
D(A) can be written in the following way: η =

3∑
j=1

σjηj , with ηj ∈ A.

Hence we write:

ωi =

3∑
j=1

σjωij ,

with ωij ∈ A. Imposing condition (i) of definition 4.6.17 we obtain that each ωij has to belong to B.

Next we have to impose condition (ii). In order to do this we notice that each σj corresponds to the

(universal) 1-form U−1
j dUj . Therefore condition (ii) implies that ωij = δij (for i, j = 1, 2). Finally,

all the ωij must be selfadjoint, since we are requiring the strong connection to be selfadjoint.

117



5. Projectable spectral triples and twisted Dirac operators

For k ∈ Z2, let now A(k) denote the subalgebra of A of homogeneous elements of degree k.

Then the connection ω allows us to define a D0 connection on each A(k):

∇ω : A(k) → Ω1
D(A)A(k),

∇ω(a) = [D, a]−
2∑
i=1

kiaω
i.

By direct computation we obtain then, for any a ∈ A(k), that:

∇ω(a) = σ3δ3(a)− k1σ
3aω1

3 − k2σ
3aω2

3.

Before computing the twisted Dirac operator Dω, we recall the following fact: the real structure

we shall use here is j̃ = Γj0 = J (see the proof of proposition 5.3.17). Then, from equation

(7.3.35), we obtain:

Dω = σ3δ3 − σ3Jω1
3J
−1δ1 − σ3Jω2

3J
−1δ2.

A “full” – three-dimensional – Dirac operator Dω can be obtained simply adding Dv to Dω.

Remark 5.4.14. The operator Dω is the twist of the horizontal Dirac operator Dh; that is, of the

operator D0. The twist of the operator D′0, instead, can be obtained simply multiplying Dω by

Γ.

Remark 5.4.15. The triple (A,H, Dω) is, actually, a reducible spectral triple (indeed, if we split

H according to σ3, we obtain two - isomorphic - spectral triples). The reason for this is that the

triple (B,H0, D0) is reducible: indeed, it is the direct sum of two copies (with opposite orientation)

of the canonical spectral triple over the circle S1.

5.5 Projectable spectral triples, KK-theory and gauge theories:

the case of the noncommutative 2-torus

In [Mes11] B. Mesland recovered the Kasparov product13 from the tensor product of unbounded

Kasparov bimodules introducing the notion of (smooth) connection over an unbounded Kasparov

bimodule and using it to “twist” regular operators. Moreover, in a recent paper [BMS13], these

results were used to formulate KK-theory based gauge theories over noncommutative spaces.

In this section we shall show how it is possible to interpret our result at the light of Mesland’s

work. We shall discuss this relation in the concrete case of the noncommutative 2-torus, seen as

a U(1)-bundle over the circle.

In the first part of this section we shall recall the results in [Mes11, BMS13]. Actually

we will skip the main part of that paper, which is about smoothness of modules, operators

and connections, and we will discuss here only the “algebraic” part of Mesland’s construction.

We underline the fact that most of the results that we discuss below actually need additional

assumptions on the regularity of the objects involved to be true. As we said, we will not discuss

13Cfr. proposition 2.7.30.
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these aspects, referring instead to [Mes11].

5.5.1 Lipschitz cycles and unbounded Kasparov products

In what follows all the algebras will be (possibly trivially) Z2-graded separable C∗-algebras and

Ω1B will denote the universal differential calculus over the algebra B. Given a spectral triple

(B,H, D) over a C∗-algebra B, we can define the Lipschitz algebra B to be the subalgebra

B = {b ∈ B | [D, b] ∈ L(H)}.

Then E is called a Lipschitz module if it is a right projective operator B-module14. So a Lipschitz

module will, in particular, be a pre-C∗-module, and its completion E will be a right C∗-B-module.

We give now the following definition [BMS13]:

Definition 5.5.1. Let A,B be Lipschitz algebras. A Lipschitz (A,B)-bimodule is a projective

operator right B-module E together with a completely bounded ∗-homomorphism A → End∗B(E).

Consider now an even unbounded (B,C) KK-cycle (F , T ). Then the derivation b 7→ [T, π(b)]

defines a first order differential calculus Ω1
T (B). We suppose such a derivation to be completely

bounded. Assume next to be given a Lipschitz B-module E together with a connection ∇T : E →
E⊗̃BΩ1

T (B). Here ⊗̃B denotes the Haagerup tensor product over B, and by connection we mean

a map fulfilling the Leibniz rule

∇(ξ · b) = ξ ⊗ db+ (∇ξ) · b.

Notice that ∇T can be seen as coming from a universal connection; that is, a connection ∇ : E →
E⊗̃BΩ1(B,B), where Ω1(B,B) is simply the kernel of the multiplication map m : B⊗̃B → B.

Now we can define an operator id⊗∇ T : E⊗̃BF → E⊗̃BF by:

(id⊗∇ T )(e⊗ f) = γ(e)⊗ Tf +∇(γ(e))f. (5.5.1)

Here it is understood that we are working with Z2-graded modules, and γ is the grading operator

on E . (id⊗∇ T ) is a selfadjoint regular operator on E⊗̃BF (see, e.g., [BMS13], theorem 2.25). We

can consider now the following definition.

Definition 5.5.2. A Lipschitz cycle between two spectral triples (A,H1, D1), (B,H2, D2) is a

triple (E , S,∇) consisting of:

(i) a Lipschitz (A,B)-bimodule E;

(ii) an odd regular selfadjoint operator S on E with compact resolvent, such that a 7→ [S, a] ∈
End∗B(E) is a completely bounded derivation;

(iii) an even, completely bounded, universal connection ∇ : E → E⊗̃BΩ1(B,B), such that [∇, S] =

0.

14A projective operator B-module is a right operator B-module equipped with a completely bounded B-valued
inner product, such that E is completely boundedly unitarily isomorphic to Im(p), for some projection p on HB,
where HB = `2(Z)⊗ B (Haagerup tensor product) [BMS13].
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Given two Lipschitz algebras A,B, we denote by ΨL
0 (A,B) the set of (A,B) Lipschitz cycles, up

to unitary equivalence.

Now we can state the main result [Mes11, BMS13].

Theorem 5.5.3. Let (E , S,∇) be a Lipschitz cycle for (A,B) and let (F , T ) be a (B, C) KK-cycle.

Then the pair

(E⊗̃BF , S ⊗ id + id⊗∇ T )

is an (A, C) KK-cycle representing the Kasparov product of (E , S) and (F , T ).

Till now we have considered even KK-cycles. The extension to the odd case is obtained in

the usual way: we define

Ψi(A,B) = Ψ0(A,B ⊗ Cli),

where Cli is Clifford algebra in complex dimension i. The same applies to Lipschitz cycles.

5.5.2 KK-theory and gauge theories

In [BMS13] it was proposed that Lipschitz cycles can be used to define (noncommutative) gauge

theories, at least those ones defined over a commutative base space. Given a spectral triple

(A,H, D), defining a spin geometry over the (eventually noncommutative) space A, identified

with the total space of a (noncommutative) principal bundle, the idea is to factorize it as a

Kasparov product

(A,H, D) ' (E⊗̃BH0, S ⊗ id + id⊗∇ D0) ∈ Ψ0(A,C). (5.5.2)

In order to do this one shall assume to own a way to ”project” the spectral triple to a spectral

triple (B,H0, D0) for a ”base space” B. In such a picture the connection ∇ will play the role of a

gauge field. The authors of [BMS13] proposed also a way to introduce scalar fields in a consistent

way, but we shall not deal with them in this thesis, so we don’t discuss them here.

The other aspect we are interested in, instead, is that of gauge transformations. Following

[BMS13], we give the following definition.

Definition 5.5.4. The Lipschitz gauge group associated to the factorization (5.5.2) is

G(E) = {U ∈ End∗B(E) | UU∗ = U∗U = idE , UAU∗ = A, [S,U ] ∈ End∗B(E)}.

Dropping the bounded commutator condition we obtain the group of continuous gauge transfor-

mations G(E), which can be identified with the C∗-closure of G(E).

The action of a Lipschitz gauge transformation U ∈ G(E) on a connection ∇ is defined as

follows:

∇ 7→ ∇U = U∇U∗. (5.5.3)

120



5.5. Projectable spectral triples, KK-theory and gauge theories: the case of the noncommutative 2-torus

5.5.3 Twisted Dirac operators and gauge transformations for T2
θ

Consider the cleft Hopf-Galois O(U(1))-extension B ↪→ A where A = A(T2
θ) and B, the invariant

subalgebra, is isomorphic to (a dense subalgebra of) the algebra of smooth functions over the

circle. We have seen, previously in this chapter, that the canonical spectral triple (A,Hθ, D, J, γ)

is projectable, and so it is possible to twist the Dirac operator D, obtaining new Dirac operators

Dω, D̂ω = Dω + Dv. We want now to study the behaviour of this construction under gauge

transformations. In the next section, then, we will relate our results to the KK-theoretical

approach introduced above.

Let us consider therefore the space of gauge transformations of the noncommutative 2-torus,

seen as a quantum principal U(1)-bundle. Since the right adjoint coaction adR on H = O(U(1)) is

trivial, a gauge transformation f ∈ G(A) is simply a convolution invertible linear map f : H → B,

with f(1) = 1. Consider now a strong connection form ω : H → Ω1
D(A), defined by a strong

U(1)-connection ω0 ∈ Ω1
D(A). If we apply a gauge transformation f to ω, we obtain:

(f . ω)(zk) = f(zk)ω(zk)f−1(zk) + f(zk)df−1(zk). (5.5.4)

Since f, f−1 take values in B, and ω(zk) = kσ2 + σ1ω1 (with ω1 ∈ B), then the commutativity of

B allows us to rewrite (5.5.4) as:

(f . ω)(zk) = ω(zk) + f(zk)df−1(zk). (5.5.5)

It is now clear that f . ω is a strong connection, with respect to the calculus Ω1
D(A), if and only

if f(zk)df−1(zk) = −kθf , for some (fixed) 1-form θf ∈ Ω1
D(B). For this reason, we consider the

following definition.

Definition 5.5.5. The space of differentiable U(1)-gauge transformations is the space UG(A) of

gauge transformations f ∈ G(A) such that:

(i) f−1(h) = f(Sh∗)∗ for any h ∈ H;

(ii) there exists θf ∈ Ω1
D(B) such that f(zk)[D, f−1(zk)] = −kθf , for any k ∈ Z.

Remark 5.5.6. Condition (i) is equivalent to the requirement that each f(zk) is a unitary element,

with f−1(zk) = f(zk)∗.

It follows that each gauge transformation f ∈ UG(A) preserves the space of strong connections

with respect to the calculus Ω1
D(A).

Let us consider now a gauge transformation f ∈ UG(A). We know that ωf ≡ f . ω is still a

strong connection, and that it can be written in the following way:

ωf (zk) = kω0 − kθf .

It follows that the D0-connection associated to ωf will be:

∇ωf (a) = [D, a]− kaω0 + kaθf .
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for a ∈ A(k). Then the Dirac operator Dωf shall be given by:

Dωf (ψa) = (D0ψ)a+ ψ([D, a]− δ(a)ω0 + δ(a)θf ).

That is,

Dωf (ψa) = Dω(ψa) + ψδ(a)θf . (5.5.6)

Now we want to see if it is possible to describe the gauge transformation f in terms of a

unitary operator on the Hilbert space Hθ. The Hilbert space Hθ is isomorphic to L2(T2)⊗C2, so

we can consider the canonical orthonormal basis {ψk,l,j | k, l ∈ Z, j = 1, 2} of eigenvectors of the

derivations δi (the index j is the ”spinor” index associated to the C2 factor). So we can define

an operator V : Hθ → Hθ in the following way:

V ψk,l,j = π◦(f(zl))ψk,l,j . (5.5.7)

Here π◦(b) = Jπ(b)∗J−1 denotes the representation of A◦ induced by the real structure J . Due

to (i) of definition 5.5.5 (see also remark 5.5.6), V is a unitary operator, and its inverse is simply

given by:

V −1ψk,l,j = V ∗ψk,l,j = π◦(f−1(zl))ψk,l,j .

Consider now its action on the twisted Dirac operator Dω. For ψ ∈ H0 and a ∈ A(k). we obtain:

V ∗DωV (ψa) = V D(k)
ω V ∗(ψa) = V D(k)

ω (ψaf(zk))

= V
(

(D0ψ)af(zk) + ψ([D, af(zk)]− kaf(zk)ω0

)
= (D0ψ)a+ ψ

(
[D, af(zk)]f−1(zk)− kaf(zk)ω0f

−1(zk)
)

= (D0ψ)a+ ψ
(

[D, a] + a[D, f(zk)]f−1(zk)− kaω0

)
= Dω(ψa) + kψaηf .

where we used the fact that B is commutative, that f, f−1 take values in B and that ω0 is of the

form σ1ω1 + σ2 with ω1 ∈ B. Hence, for a generic vector of the form ψa, a ∈ A, we have:

V ∗DωV (ψa) = Dω(ψa) + ψδ(a)θf . (5.5.8)

Comparing this result with equation (5.5.6) we see that we have obtained the following relation:

V ∗DωV = Dωf . (5.5.9)

This result extends, of course, to the Dirac operator D̂ω = Dv +Dω.

The next step is to study the effect of the (adjoint) action of V on the representation π. Since

L2(T2) is also the GNS-representation of A (which, we recall, is the C∗-completion of A), each

basic vector ψk,l,j can be written as:

ψk,l,j = [Uk1U
l
2]⊗ ej ,
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{e1, e2} being the canonical basis of C2 and [a] denoting the GNS-equivalence class of a ∈ A. Now,

we know that there is a vertical automorphism F : A → A associated to f , and that it is given by

F = id⊗ f . Hence the gauge transformation can be seen to map the vector ψkl,l,i = [Uk1U
l
2]⊗ ei

into the vector ψ′k,l,i = [Uk1U
l
2f(zl)]⊗ ei, so that

V π(Um1 U
n
2 )V ∗ψ′k,l,i = V π(Um1 U

n
2 )V ∗[Uk1U

l
2f(zl)]⊗ ei

= V π(Um1 U
n
2 )[Uk1U

l
2f(zl)f−1(zl)]⊗ ei

= V [Um1 U
n
2 U

k
1U

l
2]⊗ ei

= [Um1 U
n
2 U

k
1U

l
2f(zl+n)]⊗ ei = λψ′k+m,l+n,i,

where λ is the coefficient defined by:

π(Um1 U
n
2 )V ∗ψk,l,i = λψk+m,l+n,i.

Hence V relates also the representation of A with its gauge-transformed counterpart. In partic-

ular, this means that, as sets of operators on Hθ, VAV ∗ = A.

5.5.4 Twisted Dirac operators, Kasparov products and U(1) gauge theory

We have just introduced a way to implement gauge transformations, at least those belonging to

the group UG(A), in the framework of twisted Dirac operators. Now we want to show that our

”model” admits a KK-theoretical interpretation; in particular each twisted Dirac operator can

be seen as arising from a Lipschitz cycle, and UG(A) can be identified with a subgroup of a group

G(E) of Lipschitz gauge transformation. Our results extend the discussion of gauge theory over

A(T2
θ) in [BMS13].

Let A denote the C∗-algebra of functions over a noncommutative 2-torus T2
θ, and let A be

the subalgebra of smooth elements (with respect to the canonical T2 action). Then the canonical

real spectral triple (A,Hθ, D, J, γ) gives a spectral triple (or K-cycle [C94, GBFV]) (A,Hθ, D)

for A. This gives us a Lipschitz algebra Lip(T2
θ), which is the subalgebra of elements of A which

have bounded commutator with D. The canonical T2 action preserves Lip(T2
θ). Moreover, if

we consider the action of one of the two U(1) factors in T2 (in particular, we shall consider the

action generated by δ2), then fixed-point subalgebra of Lip(T 2
θ ) is Lip(S1) [BMS13], that is the

Lipschitz algebra associated to the spectral triple (C(S1), L2(S1), 6∂) (which is simply the algebra

of Lipschitz functions on the circle).

In order to build a Lipschitz cycle we have, first of all, to choose a Lipschitz module E .

Following [BMS13], we choose it to be a suitable completion15 of Lip(T 2
θ )◦, that is, of the opposite

algebra of Lip(T2
θ). E is naturally a left Lip(T2

θ)
◦-module and a right Lip(S1)◦-module:

a◦ · ξ◦ · b◦ = (bξa)◦,

for a, ξ ∈ Lip(T2
θ), b ∈ Lip(S1). In particular (see [BMS13], proposition 5.8) E is a right Lips-

15For the details see [BMS13].
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chitz module over Lip(S1)◦ ' Lip(S1), isomorphic to L2(S1)⊗̃Lip(S1); and, if we denote by E
the C∗-completion of E , then the C∗-algebra A◦ is represented upon E by a ∗-homomorphism.

As shown in [BMS13], then, if we denote by ∇ the canonical Grassmann connection, ∇ : E →
E⊗̃Lip(S1)Ω(C(S1),Lip(S1)), and (E , S = δ2,∇) defines a Lipschitz cycle in Ψl

−1(Lip(T2
θ)
◦,Lip(S1)).

Moreover the Hilbert space Hθ is isomorphic to the completion E⊗̃Lip(S1)L
2(S1) of the tensor

product E ⊗C(S1) L
2(S1) (see [BMS13], proposition 5.10). On the other hand there is the KK-

cycle (L2(S1), 6∂), which is an element of Ψ0(C(S1),C). In [BMS13] it was shown that (A◦,H, D)

is equivalent, as a KK-cycle, to the product of the two cycles above (taking A◦ instead of A

is simply a technical issue). Now we want to consider a more general situation, related to the

construction of twisted Dirac operators. That is, we want to consider more general connections

on A; in particular, we shall consider those coming from a strong connection ω. Before beginning

this task, we notice that 6∂ corresponds to the derivation δ1, and so the calculus Ω1
6∂(Lip(S1)) is

the same as the calculus Ω1
D0

(Lip(S1)), where D0 is the restriction to H0 (i.e. to the 0-eigenspace

of δ2) of the horizontal Dirac operator Dh; indeed, Dh can be written as σ1δ1 ∼ σ1 6∂.

Consider then a strong connection on A (with respect to the calculus Ω1
D(A)). We know that

it determines a D0-connection ∇ω : A → Ω1
D0

(B)A. Now we can extend it to a connection on

Lip(T2
θ), since the only requirement of regularity it needs to be well defined is to act on elements

of A having bounded commutator with D (which is exactly the Lipschitz condition). Moreover,

seeing it as a map acting on the opposite algebra Lip(T2
θ)
◦, it becomes a map

∇ω : Lip(T2
θ)
◦ → Lip(T2

θ)
◦Ω1

D0
(Lip(S1)◦) ' Lip(T2

θ)
◦Ω1
6∂(Lip(S1)).

By continuity with respect to the Lipschitz topology (cfr. [BMS13]), then, it can be seen as a

map

∇ω : E → E⊗̃Lip(S1)Ω
1
6∂(Lip(S1)).

Since ω(zk) = k(σ2 + σ1ω1), with ω1 ∈ B ' C∞(S1) and S = δ2 is zero on B, then ∇ω commutes

with S. It follows that (E , S,∇ω) is a Lipschitz cycle. So we can form the operator

S ⊗ id + id⊗∇ω 6∂.

Performing the computation as in example 2.35 in [BMS13], we find that this operator coincides

with the twisted Dirac operator D̂ω. So we have shown that the spin geometry of T2
θ defined by

the twisted Dirac operator D̂ω factorizes as a Kasparov product:

(Hθ, D̂ω) ' (E , S,∇ω)⊗Lip(S1) (H, 6∂).

Next we look at gauge transformations. We have seen that a gauge transformation f ∈ UG(A)

is implemented in the spectral triple (A,Hθ, Dω) by a unitary operator V (see equation 5.5.7).

Since V acts trivially on the C2 factor of Hθ, and since Hτ is a faithful GNS representation of

the C∗-algebra A, V can be seen as a map from A to A – and hence from A◦ to A◦ – and then

restricted to a map V : E → E (requirement (ii) of definition 5.5.5 ensures that V maps Lipschitz

elements into Lipschitz elements). Of course, it will still be a unitary operator. Moreover we have
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noticed that it maps A into A, and by continuity the same holds for Lip(T2
θ)
◦. Hence V can be

seen as an element of G(E). To complete the connection between the two approaches we have to

see if the connection ∇ω transforms as a gauge field, in the sense discussed in [BMS13] (see also

equation (5.5.3)). By direct computation we obtain, for a ∈ A(k),

V ∗∇ωV (a) = V ∗∇ω(af(zk)) = V ∗(da · f(zk) + adf(zk)− kaf(zk)ω0)

= (da+ adf(zk)cdotf−1(zk)− kaω0) = da− kaω0 + kaθf = ∇ωfa.

So acting with V on ∇ω corresponds to transforming the strong connection ω by f .

Let us summarize the results we discussed in this section. We have seen how each strong

connection over the noncommutative 2-torus, seen as a quantum principal U(1)-bundles, defines

a connection over the Lipschitz module associated to the KK-factorization [BMS13]. This allows

us, then, to identify the twisted Dirac operator [DS13a] defined by the strong connection with

the operator arising from the unbounded Kasparov product construction associated to the KK-

factorization. In this way we give a geometrical interpretation, in terms of connections over a

(noncommutative) principal U(1)-bundle, to the connections appearing in Mesland’s construction

[Mes11, BMS13].

Next, we considered gauge transformations. We identified a class of U(1) gauge transfor-

mations of T2
θ associated to its quantum principal bundle structure. Then we showed how it is

possible to implements each of these transformations in the spectral triple defined by the twisted

Dirac operator via a unitary operator, and we noticed that this operator defines a gauge trans-

formation in the sense discussed in [BMS13]. Since none of the gauge transformations in UG(A)

is inner (that is, none of them is given by the adjoint action of an element of A) our construction

provides a large class of gauge transformations which do not fit into the description of gauge

theory in terms of inner fluctuations of the Dirac operator. In particular, we notice that the

action of the Pontrjagin dual group Z of T through the bounded Dirac operators e2πinθδ1 , n ∈ Z,

considered in [BMS13] corresponds to the set of gauge transformations fn(zk) = Unk.
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CHAPTER 6

Spectral triples over cleft principal O(U(1))-extensions

In this chapter we shall discuss a first (simple) example of construction of spectral triples over

cleft principal extensions: given a cleft O(U(1))-extension B ↪→ A and a real spectral triple

(B,H, D, J, γ), we will exploit the construction by Bellissard, Marcolli and Reihani [BMR10] to

build, under suitable hypotheses, a real spectral triple over the algebra A. We will see that the

Dirac operator of this triple allows us to define a differential calculus over A which is compatible

with the de Rham calculus on O(U(1)); hence we obtain a structure of quantum principal bundle,

with differential calculus compatible with the de Rham calculus on O(U(1)), over A. We will then

discuss the properties of such a triple. In particular we will show that it is a projectable spectral

triple, and so we will be able to twist it using a strong connection (see chapter 5). Finally, we

will study the behaviour of our construction under gauge transformations.

In this chapter B will denote a unital dense sub-∗-algebra of a C∗-algebra B, H will denote

the Hopf algebra O(U(1)) (see chapter 2) and we will assume that any real spectral triple we

shall consider fulfils at least the first order and the regularity condition.

6.1 Spectral triples over B oα Z

We begin by constructing a real spectral triple over a crossed product algebra Boα Z, extending

the results in [BMR10]. Consider a real spectral triple (B,H, D, J, γ) over the pre-C∗-algebra B
such that (B,H, D) is a compact spectral metric space (see section 3.6). Let α ∈ Aut(B) be an

automorphism of the algebra B; assume that it is a continuous automorphism, so that it extends

to the C∗-completion B. Then α is an isometry of B.

The automorphism α induces an action of Z both on B and B, so we can consider the crossed

product algebra A = B oα Z which is the polynomial algebra generated1 by the elements of B
together with a unitary u, under the relation ubu−1 = α(b) for each b ∈ B, so that u implements

the action of α.

1Here we mean that the elements of A are finite sums of monomials buk, with b ∈ B and k ∈ Z.
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Under the hypotheses above we can construct a spectral triple over A as follows (see [BMR10]

for the details). Let H′ = H ⊗ `2(Z) ⊗ C2; an element f ∈ H′ can be written as f = (fn)n∈Z

with fn ∈ H ⊗ C2. The representation of A on H′ we consider is the left regular representation

π̂ : A → L(H′):
(π̂(a)f)n = π(α−n(a))fn, (ûf)n ≡ (π̂(u)f)n = fn−1, (6.1.1)

where we have extended, in the natural way, the representation π of B on H to a representation,

still denoted by π, of B on H ⊗ C2 (in the following, where there will be no possible misunder-

standing, the representation π will be understood, so that the action of b ∈ B on f ∈ H⊗C2 will

be simply denoted by bf).

Notice now that û is a unitary operator which satisfies ûπ̂(b)û−1 = (π̂◦α)(b), for any b ∈ B, so

that π̂ is a well-defined representation of the crossed product Boα Z: π̂(
∑

n anu
n) =

∑
n π̂(a)ûn.

The Dirac operator is defined as follows:

(D̂f)n = (D ⊗ σ1 + n · idH ⊗ σ2)fn. (6.1.2)

Proposition 6.1.1. (A = Boα Z,H′, D̂) is a spectral triple. Moreover û−1[D̂, û] commutes with

the elements of A.

Proof. For the first part see [BMR10], section 3.4. The second one follows by direct computation;

indeed:

û−1[D̂, û] = idH ⊗ id`2(Z) ⊗ σ2.

We want to discuss and extend this result. The first thing we do is to make (A,H′, D̂) into a

real spectral triple. In order to achieve this result we need to impose some additional conditions

on the triple (B,H, D). In particular we need a suitable action of Z on H, which extends the

action generated by α on B.

Definition 6.1.2. We say that an automorphism α ∈ Aut(B) is implementable w.r.t. a real

spectral triple (B,H, D, J, γ) if there is an invertible bounded operator ρ : H → H such that:

(i) ρ(aξ) = α(a)ρ(ξ) for any a ∈ B, ξ ∈ H;

(ii) 〈ρ(ξ), η〉 =
〈
ξ, ρ−1(η)

〉
for any ξ, η ∈ H;

(iii) ρ(Jξ) = Jρ(ξ) for any ξ ∈ H;

(iv) ρ(Dξ) = Dρ(ξ) for any ξ ∈ H;

(v) ρ(γξ) = γρ(ξ) for any ξ ∈ H.

Remark 6.1.3. Given ρ as above, the assignment k 7→ ρk determines an action of Z on H.

Moreover, definition 6.1.2 implies that the spectral triple (H,B, D, J, γ) is C[Z]-equivariant, in

the sense of definition 3.5.1 and definition 3.5.2 (with the further property that the action of C[Z]

on H is a ∗-action). More precisely, let {k} be the canonical basis of C[Z], for k ∈ Z; the Hopf
∗-algebra structure of C[Z], then, is described by the following relations:

k · l = k + l, k∗ = −k,
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∆(k) = k ⊗ k, S(k) = −k, ε(k) = 1.

We consider the action of C[Z] on B defined by k . b = αk(b), and the corresponding action on

H, k . ξ = ρk(ξ). Then condition (i) of definition 6.1.2 implies that H is a C[Z]-equivariant left

B-module: h . (bξ) = (h(1) . b)(h(2) . ξ) for any h ∈ C[Z], any b ∈ B and any ξιH. Condition (iii)

is equivalent to the requirement that JhJ−1 = (Sh)∗ for any h ∈ C[Z]. Conditions (iv) and (v),

finally, imply that [h,D] = [h, γ] = 0 for any h ∈ C[Z].

Remark 6.1.4. Conditions (i) and (ii) above are satisfied for istance if H is obtained from a

GNS construction over (the C∗-completion of) B. The other ones say simply that the metric

structure on the noncommutative space associated to B must be invariant under the action of α.

In particular, condition (i) is the usual condition of implementability for an automorphism and

(ii) is nothing else than the requirement that ρ is unitary.

Assume now that the automorphism α is implementable w.r.t. the real spectral triple (B,H, D, J, γ).

We have to define a real structure, and, in the even dimensional case (i.e. when the triple over

B is odd dimensional) also a Z2 grading, for the spectral triple (A,H′, D̂). Before doing this we

introduce a “building block” for the construction of the real structure: we define an operator

J̃ : H′ → H′ by

(J̃f)n = Jρ−n(f−n). (6.1.3)

Lemma 6.1.5. The operator J̃ defined in (6.1.3) is an antiunitary operator. Moreover:

(i) J̃2 = εidH′, where J2 = εidH;

(ii) J̃ maps π̂(A) = π̂(B oα Z) into its commutant;

(iii) J̃ ◦ (D ⊗ id⊗ id) = ε′(D ⊗ id⊗ id) ◦ J̃ , where JD = ε′DJ ;

(iv) if (B,H, D, J, γ) is an even dimensional triple, then J̃ ◦ (γ ⊗ id⊗ id) = ε′′(γ ⊗ id⊗ id) ◦ J̃ ,

where Jγ = ε′′γJ .

Proof. (i), (iii) and (iv) follow by direct computation using properties (iii), (iv) and (v) of defi-

nition 6.1.2. So we are left with the proof of (ii) and of the antiunitarity of J̃ . Let us start from

the latter. We have:〈
f, J̃g

〉
H′

=
∑
n

〈
fn, (J̃g)n

〉
=
∑
n

〈
fn, Jρ

−n(g−n)
〉

=
∑
n

〈
ρ−n(g−n), Jfn

〉
=
∑
n

〈ρn(gn), Jf−n〉

=
∑
n

〈
gn, ρ

−n(Jf−n)
〉

=
∑
n

〈
gn, Jρ

−n(f−n)
〉

=
〈
g, J̃f

〉
H′
,

where we used properties (ii) and (iii) of definition 6.1.2 (and where 〈·, ·〉 denotes the natural

scalar product in H ⊗ C2). From this computation it follows easily that J is an antiunitary

operator.

Now we show that J̃ maps π̂(A) into its commutant. It is useful to compute the following

expressions:

(Ĵ π̂(a)Ĵ−1f)n = Jρ−n(π̂(a)Ĵ−1f)−n = Jρ−n(αn(a)(Ĵ−1f)−n)

= Jρ−n(αn(a)ρn(J−1fn)) = JaJ−1fn,
(6.1.4)
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(Ĵ ûĴ−1f)n = Jρ−n(ûĴ−1f)−n = Jρ−n(Ĵ−1f)−n−1

= Jρ−nρn+1(J−1fn+1) = ρ(fn+1).
(6.1.5)

From (6.1.4), since J maps B into its commutant, it is clear that [π̂(a), J̃ π̂(b)J̃−1] = 0 for any

a, b ∈ B. Also, it is easy to see that (6.1.5) implies [û±1, J̃ ûJ̃ ] = 0. Thus we need only to check

that, for any a ∈ B, [π̂(a), J̃ ûJ̃−1] = 0. And we have:

([π̂(a), J̃ ûJ̃−1]f)n = α−n(a)(J̃ ûJ̃−1f)n − (J̃ ûJ̃−1(π̂(a)f))n

= α−n(a)ρ(fn+1)− ρ((π̂(a)f)n+1)

= α−n(a)ρ(fn+1)− ρ(α−n−1(a)fn+1) = 0.

We proceed then considering the odd and the even dimensional case separately.

Odd dimensional case. Assume that (B,H, D, J) is an odd real spectral triple of KR-

dimension j and that α is an implementable automorphism. Let (H′, π̂) denote the left regular

representation of A = B oα Z introduced above.

Definition 6.1.6. Let J̃ be given by (6.1.3). We define an operator Ĵ : H′ → H′ by:

Ĵ =


(id⊗ σ2) ◦ J̃ if j ≡ 1 (mod 4)

J̃ if j ≡ 3 (mod 4)

(6.1.6)

where id denotes the identity operator on H⊗ `2(Z).

Proposition 6.1.7. Let γ̂ = idH ⊗ id`2(Z)⊗ σ3. Then (A = Boα Z,H′, D̂, Ĵ , γ̂) is a real spectral

triple of KR-dimension j + 1.

Proof. For the analytic properties of the Dirac operator we refer to [BMR10]. Also, the com-

mutation relations between D̂, Ĵ , γ̂ can easily be checked by direct computation (notice that

σ2J = −Jσ2). The fact that Ĵ maps A into its commutant follows from lemma 6.1.5. So, the

only thing that we have to check here is the first order condition. First of all we notice that, if

a, b ∈ B, then [[D̂, π̂(a)], Ĵ π̂(b)Ĵ−1] = 0 due to (6.1.4); indeed,

([[D̂, π̂(a)], J̃ b̂J̃−1]f)n = σ1[D,α−n(a)](J̃ π̂(b)J̃−1f)n − JbJ−1([D̂, π̂(a)]f)n

= σ1[[D,α−n(a)], JbJ−1]fn = 0

since the first order condition holds for the triple (B,H, D, J). Also, since [D̂, û] = ûσ2, [D̂, û]

commutes with Ĵ û±1Ĵ−1 (see (6.1.5)). The following two computations conclude the proof of the

first order condition. Let a ∈ B; then:

([[D̂, π̂(a)], Ĵ ûĴ−1]f)n = ([D̂, π̂(a)]Ĵ ûĴ−1f)n − (Ĵ ûĴ−1[D̂, π̂(a)]f)n

= σ1[D,α−n(a)](Ĵ ûĴ−1f)n − ρ([D̂, π̂(a)]f)n+1

= σ1[D,α−n(a)]ρ(fn+1)− σ1ρ([D,α−n−1(a)]fn+1) = 0,
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([[D̂, û], Ĵ π̂(a)Ĵ−1]f)n = (ûσ2Ĵ π̂(a)Ĵ−1f)n − JaJ−1(ûσ2f)n

= σ2(Ĵ π̂(a)Ĵ−1f)n−1 − JaJ−1σ2fn−1

= σ2JaJ−1fn−1 − JaJ−1σ2fn−1 = 0,

(we used repeatedly (6.1.4) and (6.1.5)).

Even dimensional case. Assume that (B,H, D, J, γ) is an even real spectral triple of KR-

dimension j and that α is an implementable automorphism. Let also (H′, π̂) be the left regular

representation of A = B oα Z introduced above.

Definition 6.1.8. Let J̃ be given by (6.1.3). We define an operator Ĵ : H′ → H′ by:

Ĵ =


(γ ⊗ id⊗ σ1) ◦ J̃ if j ≡ 0 (mod 4)

J̃ if j ≡ 2 (mod 4)

(6.1.7)

where id denotes the identity operator on `2(Z).

Proposition 6.1.9. Let Ĵ be defined by (6.1.7). Then D̂ and Ĵ fulfil the commutation relations

of a real spectral triple of KR-dimension j + 1.

Proof. It follows by direct computation.

Now let ν = γ⊗ id`2(Z)⊗σ2. Then ν∗ = ν, ν2 = 1 and thus H′ decomposes as H′ = H′+⊕H′−.

Also, it is easy to see that [ν, D̂] = [ν, Ĵ ] = 0 (where Ĵ is defined by (6.1.7)). And, of course, ν

commutes with the representation π̂ of A = B oα Z. If we denote, respectively, by D̂±, Ĵ± the

restrictions of the two operators to H′±, then, using the previous results, we get:

Proposition 6.1.10. Both (A,H′±, D̂±, Ĵ±) are (odd) real spectral triples of KR-dimension j+1.

Moreover they differ just by a change of sign of the orientation2.

Now let us make some observation about the properties of the spectral triples constructed

above, both in the odd and in the even dimensional case.

Definition 6.1.11. A spectral triple (A,H, D) is said to be irreducible if there is no closed

subspace of H invariant under the action of the operator algebra generated by a ∈ A and D.

Proposition 6.1.12. If (B,H, D) is an irreducible triple, then the triples of proposition 6.1.7

and proposition 6.1.10 are irreducible, too.

Now we come to the metric structure of the triples constructed in this section. We assumed

that the spectral triple over B makes the C∗-algebra B into a spectral metric space. In particular,

this means that the representation π is faithful. It is then easy to see that this implies that also

the representation π̂ is faithful. Hence we have realized A as a subalgebra of the C∗-algebra of

bounded operators on H′: we can take the completion of A in L(H′) obtaining in this way a

C∗-algebra A, which, of course, has A as a dense ∗-subalgebra. Notice that A is nothing else than

the crossed product C∗-algebra B oα Z.

2See remark 5.2.8. See also the discussion in section 6.2.3.
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Proposition 6.1.13. The Lipschitz seminorms on A induced by the Dirac operators of the spectral

triples of proposition 6.1.7 and proposition 6.1.10 are Lip-norms. Hence they give A a structure

of compact spectral metric space. Moreover, the two structures associated to the two triples of

proposition 6.1.10 are actually the same.

Proof. For the first part of the proposition see [HSWZ11], theorem 2.11. The second part is a

direct consequence of the fact that the two triples differ only by a change of orientation.

We conclude this section with the following observation. Assume that B is a locally convex

topological algebra3, with topology defined by a countable separating family {pn} of seminorms.

We give a structure of locally convex vector space to A = BoαZ. We notice, first of all, that as a

complex vector space A is isomorphic to B⊗C[Z], where ⊗ denotes the algebraic tensor product

and C[Z] is the group algebra4 of Z. Next, define an operator ∂ : C[Z]→ C[Z] by ∂(m) = m ·m.

Consider then the following state on C[Z]: ϕ : C[Z] → C, φ(m) = δm,0, and define a norm

by: ‖ξ‖C[Z] = ϕ(ξ∗ξ)
1
2 . Then the following maps determines, for n ≥ 0, a separating family of

seminorms on C[Z]:

qn(ξ) = ‖∂n(ξ)‖C[Z].

It is straightforward to check that the topology associated to this family makes C[Z] into a locally

convex topological algebra. This allows us to endow A with the projective topology5 since, as

a vector space, it is isomorphic to the algebraic tensor product of two locally convex spaces.

Moreover, since the topology obtained in this way will still be defined by a countable separating

family of seminorms, we can give the following definition.

Definition 6.1.14. We define A∞ to be the completion of A with respect to any translation

invariant metric which induces the locally convex projective topology on A. In particular, A∞ is

a Fréchet algebra.

Then also (A∞,H′, D̂, Ĵ) and (A∞,H′, D̂, Ĵ , γ̂) are real spectral triples.. Although we shall

not discuss this issue in this thesis, we point out the following fact: extending from A to A∞
could allow to preserve the finiteness condition; that is, if we assume the triple over B to fulfil

the finiteness axiom, in general we could not expect the triples over A to do the same. Instead,

if we work with A∞, we could get triples enjoying the finiteness condition.

6.2 Further properties of spectral triples over B oα Z

When looking to the results of the previous sections a question arises naturally: if the spectral

triple over the algebra B fulfils Connes’ axiom, does the same still hold for the spectral triples over

A constructed above? We shall see in this section that in many cases the answer is affirmative

(even if to get some axioms to be preserved we will have to impose some additional conditions on

the triple over B). We have already seen that the first order condition is preserved; here we shall

discuss the classical dimension, the regularity and the orientation condition.

3For all the definitions and the results about locally convex spaces we refer to appendix B.
4For the Hopf ∗-algebra structure of C[Z] see remark 6.1.3.
5See appendix B.
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6.2.1 Dimension

If the Dirac operator D onH is p+-summable, then the Dirac operator D̂ (and hence the operators

D̂±) is (p + 1)+-summable. This follows as in the case of product spectral triples; for further

details see [DS13a, GBFV].

6.2.2 Regularity

Let the spectral triple (B,H, D, J, γ) over B be regular. We want to see if this implies that also

the spectral triples of proposition 6.1.7 and 6.1.10 are regular. We will use the results of section

3.1.2, in particular theorem 3.1.19 and theorem 3.1.20.

Since (B,H, D) is a regular spectral triple, there exists an algebra of generalized differential

operators DB ⊂ End(W∞) such that B+[D,B] is dense in D0
B. Here W∞ is the space of ∆-smooth

vectors, where ∆ = D2 + 1. Consider now the Hilbert space H′ = H⊗ `2(Z)⊗C2. We can extend

∆ to an operator ∆̂ on H′, simply defined by ∆̂ = ∆⊗ id. Then the space of ∆̂-smooth vectors

is just Ŵ∞ = W∞ ⊗ `2(Z)⊗ C2.

Now, we assumed that the automorphism α is implementable, via an operator ρ : H → H
(see definition 6.1.2). In particular ρ commutes with D, and so also with ∆. Furthermore, it is

an isometry of H. It follows that the space W∞ is invariant under the action of ρ (notice that ρ

is an isometry also w.r.t. the inner products 〈·, ·〉W s , and so ρ is an isometry of W∞, too). This

allows us to extend the action of α to End(W∞). Indeed, given P ∈ End(W∞), we define α(P )

by:

α(P )ξ = ρ(Pρ−1(ξ)).

Let P ∈ DB. Then we define an operator P̂ acting on Ŵ∞ ⊂ H′ in the following way:

(P̂ f)n = α−n(P )fn,

for any f ∈ Ŵ∞. Then we can consider the filtered algebra D̂ of operators P̂ , where P ∈ DB. Of

course, the filtration is the one induced by the filtration of DB.

Lemma 6.2.1. D̂B ⊆ Op(∆̂).

Proof. Since ρ is an isometry of W∞ then α(P ) has the same analytic properties of P . Hence

if P belongs to Opt(∆) so will do αk(P ), for any k ∈ Z. Since DB ⊆ Op(∆) this implies that

D̂B ⊆ Op(∆̂).

Now let Ĥ ⊂ A be the (unital) ∗-algebra generated by u, u−1. Consider the following N-filtered

algebra:

DkA = D̂kB · Ĥ + Ĥ · D̂kB +
3∑
j=1

(id⊗ σj)(D̂kB · Ĥ + Ĥ · D̂kB).

By construction A + [D,A] is dense in D0
A. Let now ∆′ be the operator D̂2 + 1 on H′. Notice

that it is equal to ∆̂ + δ2. Let W ′∞ be the space of ∆′-smooth vectors of H′. Then it is easy

to see that W ′∞ ⊂ Ŵ∞. Also, since any P ∈ D̂B acts as the identity on `2(Z) ⊗ C, D̂B can
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be seen as an (N-filtered) subalgebra of End(W ′∞). And the same holds for Ĥ. Hence DA is

a subalgebra of End(W ′∞). Moreover, since α commutes with ∆′, it satisfies [∆′,DkA] ⊆ Dk+1
A .

So, in order to prove that it is an algebra of generalized differential operators, we have only to

show that each DkA is contained in Opk(∆′). It is clear that D̂kB is contained in Opk(∆′). Also, Ĥ

and (id⊗ σj) Ĥ (for any j = 1, 2, 3,) are contained in Opk(∆′); more precisely both of them are

contained in Op0(∆′). Hence DkA is contained in Opk(∆′). It follows (see theorem 3.1.19) that

the spectral triples of proposition 6.1.7 and proposition 6.1.10 are regular spectral triples.

6.2.3 Orientation

One of the requirements of Connes’ noncommutative geometry is the existence, for a real spectral

triple of KR-dimension n, of an orientation Hochschild n-cycle (cfr. section 3.1.5). So a natural

question is the following one: given a spectral triple over B with an orientation cycle cB ∈
Zn(B,B ⊗ B◦), can we define orientation (n + 1)-cycles c ∈ Zn+1(A,A ⊗ A◦) for the triples

constructed in proposition 6.1.7 and proposition 6.1.10? In this section we shall see that it is

possible if the orientation cycle cB is α-invariant (see below).

In the case of tensor product algebras B ⊗ H, the cycle can be obtained [DD11], from the

orientation cycles on B and on H, using the shuffle product [Lo]. Since we are dealing with a

smash product instead of a tensor product, we need to modify a little the construction. For any

k ∈ Z, let us consider the following Hochschild 1-cycle with values in H ⊗H◦:

ckH = (z−k ⊗ 1)⊗ zk.

Notice that we can write any Hochschild chain c ∈ Cp(B,B ⊗ B◦) as

c =
∑

(a0 ⊗ b◦0)⊗ a1 ⊗ · · · ⊗ ap. (6.2.1)

Now we give the following definition.

Definition 6.2.2. For any Hochschild p-cycle c ∈ Zp(B,B ⊗B◦), written as in equation (6.2.1),

we define its twisted shuffle product with ckH as the Hochschild (p+1)-chain c×αckH ∈ Cp+1(A,A⊗
A◦) defined by:

c×α ckH =
∑

(a0u
−k ⊗ b◦0)⊗ uk ⊗ a1 ⊗ · · · ⊗ ap

+

p∑
j=2

∑
(−1)j−1(a0u

−k ⊗ b◦0)⊗ αk(a1)⊗ · · · ⊗ αk(aj−1)⊗ uk ⊗ aj ⊗ · · · ⊗ ap

+ (−1)p(a0u
−k ⊗ b◦0)⊗ αk(a1)⊗ · · · ⊗ αk(ap)⊗ uk.

(6.2.2)

Remark 6.2.3. The twisted shuffle product ×α can be extended, by linearity in the second variable,

to a map Cp(B,B ⊗ B◦)⊗ C1(H,H)→ Cp+1(A,A⊗A◦) defining:

c×α (zr ⊗ zk) =
∑

(a0u
r ⊗ b◦0)⊗ uk ⊗ a1 ⊗ · · · ⊗ ap
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+

p∑
j=2

∑
(−1)j−1(a0u

r ⊗ b◦0)⊗ αk(a1)⊗ · · · ⊗ αk(aj−1)⊗ uk ⊗ aj ⊗ · · · ⊗ ap

(6.2.3)

+ (−1)p(a0u
r ⊗ b◦0)⊗ αk(a1)⊗ · · · ⊗ αk(ap)⊗ uk.

for any k, r ∈ Z.

Lemma 6.2.4. The twisted shuffle product (6.2.2), (6.2.3), is linear also in the first variable (i.e.

in c).

Next we introduce an action of α on the space of Hochschild p-chains over B: for c ∈ Cp(B ⊗
B◦), written as in equation (6.2.1), we define

α(c) =
∑

(α(a0)⊗ b◦0)⊗ α(a1)⊗ · · · ⊗ α(ap). (6.2.4)

Definition 6.2.5. An Hochschild p-chain c ∈ Cp(B ⊗ B◦) is α-invariant if α(c) = c.

Then we can prove the following result.

Lemma 6.2.6. If c is an α-invariant Hochschild p-cycle, then the shuffle products c×α ckH are

Hochschild (p+ 1)-cycles.

Proof. Let bA the Hochschild boundary operator on the Hochschild complex C•(A,A⊗A◦). Then

we prove that bA(c ×α ckH) = 0. First of all we introduce the following notation: according to

(6.2.2) we can write c×α ckH as

c×α ckH =

p+1∑
j=1

cj .

We compute now each bAck. For c1 we have:

bAc1 =
∑

(a0 ⊗ b◦0)⊗ a1 ⊗ · · · ⊗ ap

−
∑

(a0u
−k ⊗ b◦0)⊗ uka1 ⊗ a2 ⊗ · · · ⊗ ap

+

p−1∑
i=1

∑
(−1)i+1(a0u

−k ⊗ b◦0)⊗ uk ⊗ a1 ⊗ aiai+1 ⊗ · · · ⊗ ap

+
∑

(−1)p+1(apa0u
−k ⊗ b◦0)⊗ uk ⊗ a1 ⊗ · · · ⊗ ap−1.

(6.2.5)

Next, for j = 2, . . . , p we obtain:

bAcj =
∑

(−1)j−1(a0a1u
−k ⊗ b◦0)⊗ αk(a2)⊗ · · · ⊗ αk(aj−1)⊗ uk ⊗ aj ⊗ · · · ⊗ ap

+

j−2∑
i=1

∑
(−1)i(−1)j−1(a0u

−k ⊗ b◦0)⊗ αk(a1)⊗ · · · ⊗ αk(aiai+1)⊗

· · ·αk(aj−1)⊗ uk ⊗ aj ⊗ · · · ap (6.2.6)

+
∑

(a0u
−k ⊗ b◦0)⊗ αk(a1)⊗ · · · ⊗ ukaj−1 ⊗ aj ⊗ · · · ⊗ ap

−
∑

(a0u
−k ⊗ b◦0)⊗ αk(a1)⊗ · · · ⊗ αk(aj−1)⊗ ukaj ⊗ aj+1 ⊗ · · · ⊗ ap
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+

p−1∑
i=j

∑
(−1)i+1(−1)j−1(a0u

−k ⊗ b◦0)⊗ αk(a1)⊗

· · · ⊗ αk(aj−1)⊗ uk ⊗ aj ⊗ aiai+1 ⊗ · · · ⊗ ap
+
∑

(−1)p+1(−1)j−1(apa0u
−k ⊗ b◦0)⊗ αk(a1)⊗ αk(aj−1)⊗ uk ⊗ aj ⊗ · · · ⊗ ap−1.

Finally,

bAcp+1 =
∑

(−1)p(a0a1u
−k ⊗ b◦0)⊗ αk(a2)⊗ · · · ⊗ αk(p)⊗ uk

+

p−1∑
i=1

∑
(−1)i(−1)p(a0u

−k ⊗ b◦0)⊗ αk(a1)⊗ · · · ⊗ αk(aiai+1)⊗ · · · ⊗ αk(ap)⊗ uk

+
∑

(a0u
−k ⊗ b◦0)⊗ αk(a1)⊗ · · · ⊗ αk(ap−1)⊗ ukap

−
∑

(αk(a0)⊗ b◦0)⊗ αk(a1)⊗ · · · ⊗ αk(ap).
(6.2.7)

Now, the first line of (6.2.5) cancels out with the last of (6.2.7), due to the α-invariance of c.

Next, the terms containing a factor ukai in (6.2.6) and (6.2.7) sum up to zero. What remains is

nothing else than bBc ×α ckH , which is zero since c is a cycle and the twisted shuffle product is

linear (lemma 6.2.4).

Proposition 6.2.7. Assume that the spectral triple (B,H, D, J, γ) over B has KR-dimension n

(if n is odd then γ = id), and let cB be an orientation n-cycle for it. Then, if cB is α-invariant,

the normalized twisted shuffle product cA = in(n+1)−1cB×αc1
H gives an orientation (n+1)-cycle

for the triples of proposition 6.1.7 or of proposition 6.1.10, according to the parity of n.

Proof. For the moment we consider together the odd dimensional and the even dimensional case.

First of all we compute πD̂(cA). Write cB as in (6.2.1). Then, for any f = (fk) ∈ H′, we have:

(πD̂(cA)f)k = in(n+ 1)−1
∑

(π̂(a0)û−1Ĵ π̂(b∗0)Ĵ−1[D̂, û][D̂, π̂(a1)] · · · [D̂, π̂(an)]f)k

+ in(n+ 1)−1
n∑
i=1

∑
(−1)j−1(π̂(a0)û−1Ĵ π̂(b∗0)Ĵ−1[D̂, π̂(a1)]

· · · [D̂, π̂(aj−1)][D̂, û][D̂, π̂(aj)] · · · [D̂, π̂(an)]f)k

+ in(n+ 1)−1
∑

(−1)n(π̂(a0)û−1Ĵ π̂(b∗0)Ĵ−1[D̂, π̂(a1)] · · · [D̂, π̂(an)][D̂, û]f)k

= in(n+ 1)−1
(∑

π(a0)Jπ(b∗0)J−1[D,π(a1)] · [D,π(an)]
)

·
(
σ2(σ1)n +

n∑
j=1

(−1)j−1(σ1)j−1σ2(σ1)n−j+1 + (−1)n(σ1)nσ2

)
fk

= in(n+ 1)−1(n+ 1)πD(cB)σ2(σ1)nfk = inγσ2(σ1)nfk.

(6.2.8)

If n is odd (and so n+1 is even) γ is simply the identity. Therefore πD̂(cA) is equal to in(−i)σ3 =

±σ3 = ±γ̂. If n is even, instead, it is equal to ±γ ⊗ σ2. That is, it is equal to ±ν. Hence it acts

as the identity or minus the identity on H′±, which is what we need, since in this case the triples
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are odd, and so the representation of the orientation cycle has simply to be the identity.

6.3 Quantum principal bundle structure on B oα Z

Consider, as in the previous section, a real spectral triple (B,H, D, J, γ) over a unital algebra

B and an implementable automorphism α ∈ Aut(B). We shall assume in this section that the

representation of B on H is faithful, and so the same holds for the representations of A = BoαZ.

We shall show, in this section, that we can define a structure of quantum principal U(1)-bundle

on A; in particular we will see that it is a principal O(U(1))-comodule algebra and that it is a

quantum principal U(1)-bundle with the first order differential calculus Ω1
D̂

(A). We will also give

a quite explicit formula for strong connections over A.

First of all we recall that any element of A can be written as

a =
∑
n∈Z

bnu
n, bn ∈ B,

where the sum contains only a finite number of non-zero terms. So we can define a map ∆R :

A → A∞ ⊗H as follows. We set

∆R(b) = b⊗ 1 b ∈ B,

∆R(u) = u⊗ z,

and we extend it as an algebra ∗-homomorphism to the whole A. Then it is straightforward to

check that:

Lemma 6.3.1. (A,∆R) is a right O(U(1))-comodule algebra.

Actually we can say something more.

Proposition 6.3.2. B ↪→ A is a cleft Hopf-Galois extension. In particular, A is a principal

O(U(1))-comodule algebra.

Proof. It is clear that TR is surjective. We prove injectivity. Notice that any element of A⊗B A
can be written as:

A =
∑
n,m∈Z

bn,mu
n ⊗ um.

So, for a generic A ∈ A⊗B A we have:

TR(A) =
∑
n,m∈Z

bn,mu
n+m ⊗ zm.

If now we impose TR(A) = 0 we get, due to the mutual linear independence of the elements zm,

∑
n∈Z

bn,mu
n+m =

(∑
n∈Z

bn,mu
n

)
um = 0
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for all m ∈ Z, which implies A = 0. Thus TR is also injective when restricted to A⊗B A.

Finally, to prove that that B ↪→ A is a cleft Hopf-Galois extension, we give its trivialization:

φ(zk) = uk, φ−1(zk) = u−k.

From proposition 4.4.2 it follows that A is a principal comodule algebra.

Now we want to give to (A, H,∆R) a structure of quantum principal U(1)-bundle. In order to

achieve this result, we need to specify a differential calculus over A. We recall that when we speak

of quantum principal U(1)-bundles we assume to consider, on the Hopf algebra H = O(U(1)),

the de Rham calculus, Ω1(H) = Ω1
dR(H), which is the bicovariant calculus associated to the adR-

invariant ideal Q = (ker ε)2. On A, instead, we consider the differential calculus induced by the

Dirac operator D̂. Take Ω1(A) = Ω1
D̂

(A) = Ω1A/N where N , seen as a sub-bimodule of A⊗A,

is given by:

N =

{∑
j

pj ⊗ qj ∈ A⊗A
∣∣∣∣ ∑

j

π̂(pj)[D̂, π̂(qj)] = 0

}
.

Since B ↪→ A is a Hopf-Galois extension, we can define (cfr. section 4.6.2) an action of the

Lie algebra t1 ' C on A. If we denote by δ the canonical generator of t1, then we can extend it

to an unbounded operator on `2(Z), and therefore on H′, in the following way:

(δf)n = nfn.

It follows that δ satisfies the Leibniz rule:

δ(π̂(a)ξ) = π̂(δ(a))ξ + π̂(a)δ(ξ)

for any a ∈ A and any ξ ∈ Dom(δ). Now we can observe that the Dirac operator D̂ can be

written as:

D̂ = D ⊗ σ1 + (id⊗ σ2) ◦ δ. (6.3.1)

Moreover the operator δ is selfadjoint and it defines an action of U(1) on the Hilbert space

H′; it is easy to see, since δ anticommutes with Ĵ , that:

Proposition 6.3.3. The spectral triples constructed in proposition 6.1.7 and proposition 6.1.10

are U(1)-equivariant w.r.t. the U(1) action defined by δ.

Next, we look at the differential calculus defined by the Dirac operator D̂.

Proposition 6.3.4. The differential calculus Ω1
D̂

(A) is a right H-covariant first order differential

calculus.

Proof. We prove that ∆Ω
R(N) ⊆ N ⊗H. Take η ∈ N , η =

∑
pdq. We know that we can write it

in the following form:

η =
∑∑

k,l∈Z
plu

ld(qku
k),
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6.3. Quantum principal bundle structure on B oα Z

with pl, qk ∈ B. Using the Leibniz rule for the differential d, then, we obtain:

η =
∑∑

k,l∈Z

(
plu

l(dqk)u
k + plu

lqkdu
k
)
.

Now, the fact that η belongs to N means that πD̂(η) = 0. That is,∑∑
k,l∈Z

[(
π̂(pl)û

l[D ⊗ id, π̂(qk)]û
k
)
⊗ σ1 + k

(
π̂(pl)û

lπ̂(qk)û
k
)
⊗ σ2

]
= 0.

Since the Pauli matrices are linearly independent, we get:∑∑
k,l∈Z

π̂(pl)û
l[D ⊗ id, π̂(qk)]û

k = 0,∑∑
k,l∈Z

kπ̂(pl)û
lπ̂(qk)û

k = 0.
(6.3.2)

The second of (6.3.2) can be rewritten using the properties of the representation π̂:

0 =
∑∑

k,l∈Z
kπ̂(pl)û

lπ̂(qk)û
k =

∑∑
k,l∈Z

kπ̂(pl)π̂(αl(qk))û
lûk

=
∑∑

k,l∈Z
kπ̂(pl)π̂(αl(qk))û

l+k.
(6.3.3)

In the same way the first of (6.3.2) becomes:

0 =
∑∑

k,l∈Z
π̂(pl)[D ⊗ id, π̂(αl(qk))]û

l+k. (6.3.4)

Since the operators ûn, for different n, are linearly independent, from (6.3.3) and (6.3.4) we obtain

that, for any n ∈ Z,∑ ∑
k+l=n

kπ̂(pl)π̂(αl(qk))û
l+k =

∑ ∑
k+l=n

π̂(pl)[D ⊗ id, π̂(αl(qk))]û
l+k = 0. (6.3.5)

Let us split, now, η in a different way: write η =
∑

n∈Z ηn, with

ηn =
∑ ∑

k+l=n

plu
ld(qku

k).

Then we can compute, for each n, πD̂(ηn):

πD̂(ηn) =
∑ ∑

k+l=n

π̂(pl)û
l[D̂, π̂(qk)û

k]

=
∑ ∑

k+l=n

[(
π̂(pl)û

l[D ⊗ id, π̂(qk)]û
k
)
⊗ σ1 + k

(
π̂(pl)û

lπ̂(qk)û
k
)
⊗ σ2

]
=
∑ ∑

k+l=n

[(
π̂(pl)[D ⊗ id, π̂(αl(qk))]û

l+k
)
⊗ σ1 + k

(
π̂(pl)π̂(αl(qk))û

l+k
)
⊗ σ2

]
= 0,

(6.3.6)
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due to (6.3.5). This means that each ηn belongs to N . Now let us compute ∆Ω
R(η). It is easy to

see that:

∆Ω
R(η) =

∑ ∑
k+l=n

(
plu

ld(qku
k)
)
⊗ zl+k.

But this means that ∆Ω
R(η) =

∑
n ηn ⊗ zn, which implies, since each ηn belongs to N , that it

belongs to N ⊗H. This concludes the proof of the covariance of the calculus.

Now we can prove that, with the first order differential calculus defined by D̂, A is a quantum

principal U(1)-bundle.

Theorem 6.3.5. If N is the sub-bimodule of A⊗A which defines the calculus Ω1
D̂

(A), (A, H =

O(U(1)),∆R, N,Q) is a quantum principal U(1)-bundle.

Proof. We have already proved that A is a principal comodule algebra and that the calculus Ω1
D̂

is H-covariant. So we have only to prove that (i) and (ii) of proposition 4.6.14 are satisfied.

Let
∑

j pjdqj be zero in Ω1
D̂

(A); using expression (6.3.1) for the Dirac operator D̂, we get then

∑
j

π̂(pj)[D̂, π̂(qj)] = 0

⇒
∑
j

π̂(pj)[D ⊗ id, π̂(qj)](id⊗ σ1) + π̂(pj)π̂(δ(qj))(id⊗ σ2) = 0.

Since σ1 and σ2 are linearly independent, this implies that
∑

j pjδ(qj) = 0. So condition (i) is

fulfilled. Now let us prove condition (ii). Take η ∈ Ω1A, η =
∑
pdq, and assume that

∑
pδ(q) = 0.

Then rewrite η as η =
∑∑

k∈Z
pd(qku

k), with qk ∈ B. Using the Leibniz rule we obtain:

η =
∑∑

k∈Z

(
p(dqk)u

k + pqkdu
k
)
.

In order to prove that [η]N belongs to AΩ1
D̂

(B)A it is then enough to show that
∑∑

k∈Z
pqkdu

k is

zero in Ω1
D̂

(A). But this follows by direct computation. Indeed,

πD̂

(∑∑
k∈Z

pqkdu
k

)
=
∑∑

k∈Z
π̂(pqk)[D̂, û

k] =
∑∑

k∈Z
kπ̂(pqk)û

k ⊗ σ2

=
∑

π̂(pδ(q))⊗ σ2 = 0.

Now that we have seen that (A, H,∆R, N,Q) is a quantum principal U(1)-bundle we can give

a characterization of its strong connections. Indeed, the fact that D̂ can be written as in equation

(6.3.1) leads, by direct computation, to the following result.
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Lemma 6.3.6. Any 1-form η ∈ Ω1
D̂

(A) can be written, as an operator on H′, as follows:

η =
∑
n∈Z

π̂(pn)[D̂, ûn] +
∑
j

π̂(qj)[D, π̂(bj)](id⊗ σ1) (6.3.7)

with pn, qj ∈ A, bj ∈ B.

We can use this lemma to prove the following fact.

Proposition 6.3.7. Any strong connection ω1 ∈ Ω1
D̂

(A), in the sense of definition 4.6.17, over

the quantum principal U(1)-bundle (A, H,∆R, N,Q) can be written, as an operator on H′, in the

following form:

ω0 = σ2 +
∑
j

π̂(pj)[D ⊗ σ1, π̂(qj)] (6.3.8)

with pj , qj ∈ B.

Proof. Take ω0 written as in equation (6.3.7):

ω0 =
∑
n∈Z

π̂(rn)[D̂, ûn] +
∑
j

π̂(pj)[D ⊗ σ1, π̂(qj)]

=
∑
n∈Z

nπ̂(rn)ûn(id⊗ σ2) +
∑
j

π̂(pj)[D ⊗ id, π̂(qj)](id⊗ σ1).
(6.3.9)

Since σ1 and σ2 are linearly independent, condition (i) of definition 4.6.17 implies that the first

term of (6.3.9) reduces to π̂(r)σ2 with r ∈ B. Also, it implies that pj belongs to the invariant

subalgebra B for every j. Finally, using condition (ii), and writing id ⊗ σ2 as û−1[D̂, û], we get

r = 1.

One can also check that condition (iii) is fulfilled for any ω1 written as in (6.3.8). We recall

that the associated strong connection form ω (see definition 4.3.6) is defined by the relation

ω(zk) = kω0, k ∈ Z.

6.4 Projectability and twisted Dirac operators

We have shown that the spectral triples of propositions 6.1.7 and 6.1.10 are U(1)-equivariant

triples (see proposition 6.3.3). It is then interesting to answer whether or not they are projectable

triples.

Proposition 6.4.1. Let (A,H′, D̂, Ĵ , γ̂, δ) be the U(1)-equivariant even real spectral triple of

proposition 6.1.7. Then it is a projectable triple with constant length fibres. Moreover, we can

take Γ = û−1[D̂, û] (where û is defined by (6.1.1)).

Proof. Take Γ = û−1[D̂, û]. Then by direct computation one sees that Γ = id ⊗ σ2 [BMR10].

We immediately get Γ2 = 1, Γ∗ = Γ, [Γ, π̂(a)] = 0 for any a ∈ A, [Γ, δ] = 0. Moreover, since γ̂

is nothing else that σ3, we have also that Γγ̂ = −γ̂Γ. So, in order to prove that such a triple

is projectable, we have only to check that Γ has the right commutation relation with Ĵ . But Γ
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6. Spectral triples over cleft principal O(U(1))-extensions

commutes with 1 ⊗ σ2 and it anticommutes with J̃ , since J̃ is an antiunitary operator. Thus

ΓĴ = −ĴΓ independently from the KR-dimension of the triple.

Finally, it is straightforward to see that it has constant length fibres; indeed, Dh = D ⊗ σ1,

so, if we take Dv = (id⊗ σ2) ◦ δ, we have D̂ = Dh +Dv.

Proposition 6.4.2. Let (A,H′±, D̂±, Ĵ±, δ) be the U(1)-equivariant odd real spectral triples of

proposition 6.1.10. Then they are projectable spectral triples with constant length fibres. Moreover

we can take Γ± equal to û−1[D̂, û], restricted either to H′+ or to H′−.

Proof. Take Γ = û−1[D̂, û]. Then, by direct computation, one sees that Γ = id ⊗ σ2 [BMR10].

Hence we get Γ2 = 1, Γ∗ = Γ, [Γ, π̂(a)] = 0 for any a ∈ A, [Γ, δ] = 0. Moreover, since ν =

γ ⊗ id ⊗ σ2, [Γ, ν] = 0 and so Γ restricts to both H′±. Next, the fact that the commutation

relation with Ĵ is the right one for any even KR-dimension (see definition 5.2.2) follows from the

following relations:

Γ(id⊗ σ1) = −(id⊗ σ1)Γ, ΓJ̃ = −J̃Γ, [Γ, γ ⊗ id] = 0.

For the proof of the fact that the the triples fulfil the constant length fibres condition, see propo-

sition 6.4.1.

We can now use the results of section 5.2.5 to define twisted Dirac operators associated to a

strong connection ω. The direct application of the results of section 5.2.5 leads, indeed, to the

following results.

Proposition 6.4.3. Let ω : H → Ω1
D̂

(A) be a strong connection form given by ω(zk) = kω0,

k ∈ Z. Then the twisted Dirac operator Dω has the form:

Dω = D̂ + j0ω
∗
0j
−1
0 δ,

where j0 is obtained from Ĵ , accordingly to the discussion in sections 5.2.3 and 5.2.4. Moreover,

Dω is selfadjoint if ω0 is selfadjoint.

Proposition 6.4.4. Let D̂ω = Dv+Dω. Then (A,H, D̂ω) is a projectable triple with equal length

fibres, and the horizontal part of D̂ω coincides with Dω.

Then, using the description of strong connections given in proposition 4.6.17, we obtain:

Corollary 6.4.5. The unique strong connection ω0 for which D̂ω0 = D̂ is ω0 = û−1[D, û].

6.5 Spectral triples over cleft O(U(1))-extensions

In the previous sections, given a (suitable) spectral triple (B,H, D, J, γ), we have built a spectral

triple for the crossed product algebra A = B oα Z. As we have seen this algebra is nothing else

than a cleft O(U(1))-extension of B. Now we look at this construction from the opposite point

of view: we start with a cleft extension and, using the construction above, we define a spectral
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triple over it. Of course, we will have to impose some conditions over the extension to get a

well-behaving real spectral triple.

So, let B ↪→ A be a cleft Hopf-Galois extension, with respect to the Hopf algebraH = O(U(1)).

Assume that it admits a unitary trivialization φ. This means, in particular, that (cfr. definition

4.4.18)

φ(zk)∗φ(zk) = 1 ∀k ∈ Z.

That is, any element φ(zk) is unitary. Moreover, up to a gauge transformation, we can always

assume that φ is an algebra homomorphism. In particular, we can take φ(zk) = uk, where

u = φ(z). Under this hypothesis A is isomorphic to the smash product B#H. We also see that

the following holds.

Proposition 6.5.1. A is generated by B and by the unitary u = φ(z). Hence it is isomorphic

to the crossed product algebra B oα Z, where the automorphism α is given by α(b) = ubu−1 (for

b ∈ B).

Proof. Take a ∈ A s.t. ∆R(a) = a ⊗ zk with k 6= 0. Then au−k satisfies ∆R(au−k) = au−k ⊗ 1

and thus it belongs to the invariant subalgebra B. But this implies that a = buk for some b ∈ B,

and so A is generated by B, u and u−1.

Assume now that B is a pre-C∗-algebra, with C∗-completion B, and let (B,H, D, J, γ) be a real

(even or odd) spectral triple over B. Assume also that it defines a spectral metric space structure

for the C∗-algebra B. Then the automorphism α is a ∗-homomorphism of pre-C∗-algebras and so

it is norm decreasing [BC91]. Since the same holds for α−1, actually α is norm preserving, and

so it extends to an automorphism α : B → B. This means, in particular, that we can apply the

construction of the previous sections to get a real spectral triple over A. We work out some more

details of this construction.

Let φ(zk) = uk as above. Since it is both a ∗-homomorphism and a unitary trivialization, it

defines a ∗-action of the Hopf algebra H on B:

zk . b = φ(zk)bφ−1(zk) = ukbu−k = αk(b)

for any k ∈ Z and any b ∈ B. Since α preserves the C∗-norm of B, this action extends to an

action on the C∗-algebra B.

Now we consider an H-equivariant (see definition 3.5.2) real spectral triple (B,H, D, J, γ).

We notice that the requirement of H-equivariance corresponds to the implementability of the

automorphism α (cfr. definition 6.1.2). So, under this hypothesis, we can repeat the construction

discussed in the previous sections. This yields the following results.

Proposition 6.5.2. Let (B,H, D, J) be an odd real spectral triple of KR-dimension j. Then

(A,H′, D̂, Ĵ , γ̂), where H′, D̂, Ĵ , γ̂ are as in proposition 6.1.7 and the representation of A on H′

is induced by that of B oα Z under the isomorphism of proposition 6.5.1, defines an even real

spectral triple over A of KR-dimension j + 1.
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Proposition 6.5.3. Let (B,H, D, J, γ) be an even real spectral triple of KR-dimension j. Then

(A,H′±, D̂±, Ĵ±), where H′±, D̂±, Ĵ± are as in proposition 6.1.10 and the representation of A on

H′ is induced by that of B oα Z under the isomorphism of proposition 6.5.1, define two odd real

spectral triples over A, of KR-dimension j + 1, which differ just by a change of sign in the

orientation.

Now assume that (B,H, D) is a spectral metric space. This means that the representation

π : B → L(H) is faithful, which implies that also the representation π̂ : A → L(H′) is faithful.

Hence we can consider the C∗-completion A of π̂(A) in L(H′). A is a C∗-algebra which has A as

a dense ∗-subalgebra. Then we can prove the following fact.

Proposition 6.5.4. The Lipschitz seminorms on A, induced by the Dirac operators of the spectral

triples of proposition 6.5.2 and proposition 6.5.3, are Lip-norms. Hence each of them gives A

a structure of compact spectral metric space. Moreover, the two structures associated to the two

triples of proposition 6.5.3 are actually the same.

Proof. Let A0 be the space of finite linear combinations of elements buk, b ∈ B, k ∈ Z. Then

proposition 6.5.1 implies that A0 is isomorphic to B oα Z. So the thesis follows directly from

proposition 6.1.13

6.5.1 Behaviour under gauge transformations

Let A,B as above and let φ be a unitary trivialization. We can study what happens if we

make a gauge transformation. From proposition 4.4.4 we know that a gauge transformation is a

convolution invertible map Λ : H → B with Λ(1) = 1. We also know that a gauge transformation

corresponds to a change of trivialization (see proposition 4.4.5). Since we restricted ourself to

unitary trivialization, we cannot consider the whole group G(B). Instead, we consider only unitary

gauge transformations; that is, maps Λ ∈ H(B) which take values in the group U(B) of unitaries

of the algebra B.

Corollary 6.5.5. If Λ takes values in U(B), then Λ−1(zk) = Λ(zk)∗. Moreover, if φ is a unitary

trivialization, then so are Λ−1 ∗ φ and Λ ∗ φ.

Actually, since the construction discussed in this chapter depends only on u = φ(z), the

only relevant part of Λ is its value on z. So we consider the following situation. Let u =

φ(z); given any unitary uΛ, such that u∗uΛ ∈ B, we define φΛ(zk) = ukΛ, for any k. This

new trivialization is the one obtained from φ with the gauge transformation Λ(zk) = ukΛu
−k:

φΛ = Λ ∗ φ. Let now (A,H′Λ, D̂Λ, ĴΛ, γ̂Λ) be the spectral triple constructed from uΛ, and denote

by π̂Λ the representation of A on H′Λ.

Proposition 6.5.6. The representations (H′, π̂), (H′Λ, π̂Λ) are unitarily equivalent.

Proof. Let αΛ be the automorphism of B given by the adjoint action of uΛ: αnΛ(b) = unΛbu
−n
Λ .

Then the representation π̂Λ on H′Λ is given by (b ∈ B):

(π̂Λ(b)fΛ)n = α−nΛ (b)fΛ
n , (ûΛf

Λ)n = fΛ
n−1.
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Now, there is a natural isomorphism H′ ' H′Λ, which identifies the two H factors. Hence we can

define a unitary operator U : H′ → H′Λ by:

(Uf)n = α−n(Λ(zn)∗)fn.

Then we have

(Uπ̂(b)U∗f)n = α−n(Λ(zn)∗)α−n(b)α−n(Λ(zn)) = (π̂Λ(b)f)n,

(UûU∗f)n = α−n(Λ(zn)∗)α−n+1(Λ(zn−1))fn−1

= α−n(Λ(zn)∗)α−n(Λ(z)∗Λ(zn))fn−1 = (π̂Λ(u)f)n

where we used the following relation:

α−n+1(Λ(zn−1)) = u−n+1Λ(zn−1)un−1 = u−n+1un−1
Λ

= u−n+1u−1
Λ unΛ = u−n+1u−1Λ(z)∗unΛ =

= u−nΛ(z)∗Λ(zn)un = α−n(Λ(z)∗Λ(zn))

Hence Uπ̂U∗ = π̂Λ.

Now we can see what happens, under this unitary equivalence, to the Dirac operator D̂.

Clearly it can be seen as an operator D̂Λ on H′Λ simply taking D̂Λ = UD̂U∗. It acts on H′Λ in

the following way:

(D̂Λf)n = (D ⊗ σ1 + α−n(Λ(zn)∗)[D,α−n(Λ(zn))] + n · id⊗ σ2)fn.

Hence, in terms of D̂Λ, D̂Λ is given by:

D̂Λ = D̂Λ + U [D̂Λ, U
∗]. (6.5.1)

6.6 An example: the noncommutative torus

We conclude this chapter with an application. It is nothing new nor particular, just an example

of how it works. We consider to the (smooth) noncommutative 2-torus A = A(T2
θ) as a (cleft)

Hopf-Galois extension over a dense subalgebra B of the algebra of smooth functions over the circle.

We denote by U, V the unitary generators of A, with the commutation relation UV = eiθV U .

We identify U with the generator of B, and we take as trivialization φ(zk) = V k; of course, this

trivialization is unitary. Then the automorphism α is given by:

α(Uk) = V UkV ∗ = e−ikθUk.

Now we consider the following spectral triple over B. We take H = L2([0, 2π], dϕ), D = −i ddϕ ,

J = c.c. (complex conjugation). Of course, (B,H, D, J) is a real spectral triple of dimension 1.

We write also explicitly a basis for H; we take eigenvectors of D: ψn = 1√
2π
einϕ, for n ∈ Z.
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We construct now an operator ρ : H → H, which makes the automorphism α implementable

for the triple (A,H, D, J), in the following way. Identify H with the GNS Hilbert space relative

to the state associated to the Lebesgue integral on S1, so that ψn ∼ [Un]. Hence, since α(Un) =

e−inθUn, we define ρ by:

ρψn = e−inθψn.

One can easily check that, with such a ρ, α is an implementable automorphism.

Now we consider the Hilbert space H′ = H ⊗ `2(Z) ⊗ C2. We have a basis of H′ given by

ψn,m = (ψ+
n,m, ψ

−
n,m) (m,n,∈ Z), where, for any m, ψ±n,m = ψn ∈ H and δψn,m = mψn,m. The

representation π̂ is given by:

Ûψn,m ≡ π̂(U)ψn,m = einθψn+1,m, V̂ ψn,m ≡ π̂(V )ψn,m = ψn,m+1.

The real structure is given, according to (6.1.3) and to definition (6.1.6), by

Ĵψn,m = e−inmθ(id⊗ σ2)ψ−n,−m.

The Dirac operator can be written as

D = δ1(id⊗ σ1) + δ2(id⊗ σ2),

where δ2 = δ and δ1ψn,m = nψn,m. The Z2-grading γ is simply γ = id⊗ σ3.

As one can easily check, this is nothing else than the canonical T2-equivariant real spectral

triple (see, e.g., [PS06]) on the noncommutative 2-torus A(T2
θ). Now, using the results of section

6.2.3, we can associate to the spectral triple constructed above a Hochschild orientation 2-cyle. We

begin by noticing that cB = U−1⊗1⊗U is a Hochschild orientation 1-cycle for the spectral triple

over B. Then we consider the twisted shuffle product (6.2.2) of cB with the cocycle c1
H = z−1⊗1⊗z

over H = O(U(1)). By definition we have:

cB ×α c1
H = U∗V ∗ ⊗ 1⊗ V ⊗ U − U∗V ∗ ⊗ 1⊗ α(U)⊗ V

= U∗V ∗ ⊗ 1⊗ V ⊗ U − e−iθU∗V ∗ ⊗ 1⊗ U ⊗ V

= U∗V ∗ ⊗ 1⊗ V ⊗ U − V ∗U∗ ⊗ 1⊗ U ⊗ V,

which is, up to a multiplicative constant, nothing else than the usual orientation cycle of the

canonical T2-equivariant spectral triple over the noncommutative 2-torus (see appendix A; see

also [GBFV], chapter 12, pp. 546-548).
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CHAPTER 7

Spectral triples over cleft principal O(Tn)-extensions

We generalize the construction of the previous chapter to cleft quantum principal Tn-bundles:

given a cleft O(Tn)-extension B ↪→ A, admitting unitary trivializations, and a O(Tn)-equivariant

real spectral triple (B,H, D, J, γ), we will build, under suitable hypotheses, a real spectral triple

over the algebra A. The main difficulty here is that we do not consider only cocycle-free triv-

ializations. As in the U(1) case, we will see that the Dirac operator of this triple allows us to

define a differential calculus over A which is compatible with the de Rham calculus on O(Tn),

obtaining in this way a structure of quantum principal Tn-bundle over A. We will then discuss

the properties of such a triple. In particular we will show that it is a projectable spectral triple,

and so we can twist it using a strong connection (cfr. chapter 5).

Actually similar results could be obtained by iterating the procedure of chapter 6, but the

direct approach adopted in this chapter may be better suited for a generalization to arbitrary

Hopf algebra. Partial results in this direction will be discussed in the next chapter of this thesis.

In this chapter B will denote a pre-C∗-algebra with C∗-completion B, H will denote the Hopf

algebra O(Tn) and φ : H → A will be a unitary trivialization of the principal extension B ↪→ A.

For a spectral triple we shall mean a real spectral triple fulfilling, at least, the classical dimension

and the first order condition.

In the U(1) case we used the fact that a cleft extension is isomorphic to a crossed product

algebra B oα Z. Here we shall do something similar: we use the isomorphism A ' B#σH (see

proposition 4.4.13 and proposition 4.4.21).

7.1 Properties of real cleft extensions A ' B#σO(Tn)

First of all we discuss some properties of cleft extensions B ↪→ A with Hopf algebra H = O(Tn)

and unitary trivialization φ. In particular we will compute some useful relations, using the twisted

module condition and the cocycle condition, involving the cocycle σ and the weak action of H.

147



7. Spectral triples over cleft principal O(Tn)-extensions

Lemma 7.1.1. Let φ be a unitary trivialization and let σ be the cocycle associated to it. Then,

for every r, s ∈ Zn,

σ(zr, zs)σ(zr, zs)∗ = σ(zr, zs)∗σ(zr, zs) = 1.

Proof. First of all we notice that, in the case H = O(Tn), the condition of unitarity of a trivial-

ization reads:

φ−1(zk)∗ = φ(zk) ∀k ∈ Zn. (7.1.1)

Then we have:

σ(zr, zs)σ(zr, zs)∗ = φ(zr)φ(zs)φ−1(zr+s)φ−1(zr+s)∗φ(zs)∗φ(zr)∗

= φ(zr)φ(zs)φ−1(zr+s)φ(zr+s)φ−1(zs)φ−1(zr) = 1

In the same way one proves that σ(zr, zs)∗σ(zr, zs) = 1.

Lemma 7.1.2. Let φ be a unitary trivialization and let σ be the cocycle associated to it. Then,

for every k ∈ Zn,

zk . σ(z−k, zk)∗ = σ(zk, z−k)∗.

Proof. Using (7.1.1) we get:

zk . σ(z−k, zk)∗ = φ(zk)φ(zk)∗φ(z−k)∗φ−1(zk)

= φ(zk)φ−1(zk)φ(z−k)∗φ(zk)∗

= φ(z−k)∗φ(zk)∗ = σ(zk, z−k)∗.

7.2 Weak actions and equivariant spectral triples

We shall deal with crossed product algebras A = B#σH, in general with non-trivial cocycle σ.

This implies that we shall not have an action but only a weak ∗-action of H on B. So we need

to give the definition of equivariance of a real spectral triple with respect to a weak ∗-action of a

Hopf ∗-algebra H.

Hence, assume to be given a weak action of H on B, with cocycle σ. Consider a real spectral

triple (B,H, D, J, γ); let π be the representation of B on H, and let π◦ the representation of the

opposite algebra induced by the real structure J ; namely,

π◦(b) = Jπ(b∗)J−1.

Then we give the following definition.

Definition 7.2.1. A real spectral triple (B,H, D, J, γ) is equivariant w.r.t. a weak action of the

Hopf algebra H, with associated cocycle σ, if:

(i) there is a weak ∗-action of H on a dense subspace V ⊂ H which fulfils the following properties:

1. h . π(b)v = π(h(1) . b)(h(2) . v) for any h ∈ H, b ∈ B, v ∈ V ,
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2. twisted module condition: for any h, l,m ∈ H and any v ∈ V

π◦(σ(h(2), l(2)))(h(1) . l(1) . v) = π(σ(h(1), l(1)))(h(2)l(2) . v),

3. any h ∈ H, seen as an operator on V , can be extended to a bounded operator on H;

(ii) h . Dv = D(h . v) for any h ∈ H, v ∈ V ;

(iii) [π(σ(h, l)), D] = [π◦(σ(h, l)), D] = 0 for any h, l ∈ H;

(iv) h . γv = γ(h . v) for any h ∈ H, v ∈ V ;

(v) h . Jv = J((Sh)∗ . v) for any h ∈ H, v ∈ V ;

(vi) 〈w, h . v〉 = 〈h∗ . w, v〉 for any h ∈ H, v, w ∈ V ;

(vii) for any h ∈ H, v ∈ V : π(σ(h(2), S
−1h(1)))π

◦(σ(S−1h∗(3), h
∗
(4))
∗)v = ε(h)v.

Remark 7.2.2. The only “unnatural” assumption is condition (vii); as we will see it is a sufficient

condition, at least for Tn-bundles, to build a ∗-representation of B#σH on the tensor product of

H with a suitable Hilbert space of spinors on H.

7.3 Spectral triples over cleft O(T2)-extensions

Now we begin the construction of the spectral triples over A, where A is a cleft O(T2)-extension

admitting a unitary trivialization φ.. We present first a simpler case: we take the dimension of

the torus, which is the structure group of our bundle, to be equal to 2. We do it because in

this case we have not to take care of some subtleties coming from the dependence on the KR-

dimension of the commutation relations between the operators appearing in a real spectral triple

(see [DD11] and the discussion in the next sections of this thesis). Nevertheless, we shall see that

all the results and demonstrations in this sections, which do not involve commutation relations

depending on the KR-dimension, apply with no changes to the general case of Tn bundles, to be

discussed later.

7.3.1 Construction of the real spectral triples

Let A ' B#σH, the isomorphism being determined by the (unitary) trivialization φ, which

induces a weak action of H on B with cocycle σ. Let (B,H, D, J, γ) be an H-equivariant real

spectral triple (in the odd dimensional case γ = id), in the sense of definition 7.2.1. Consider the

Hilbert space H′ = H⊗ `2(Z2)⊗ C2. Choose an orthonormal basis {ek}k∈Z2 of `2(Z2); we define

a representation πH of H on `2(Z2) simply by setting:

πH(zh)ek = ek+h.

πH is a ∗-representation, and each πH(zk) is a unitary operator on `2(Z2). We introduce also a

left H coaction ρL on1 H, defined on the basis by

ρL(ek) = zk ⊗ ek.
1Actually ρL is a coaction ρL : V → H ⊗ V , where V ⊆ H is the subspace of vector

∑
k αkek, {αk} ⊂ C with

only a finite number of elements different from zero.
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Now we use these tools to define a representation of A ' B#σH on H′. Let π : B → L(H) be the

representation of B on H; with a little abuse of notation we denote also by π the natural extension

of this representation to H⊗C2 (and by π◦ the analogous extension of the representation of the

opposite algebra induced by the real structure J). Then we define

π̂(b#h)(v ⊗ w) = π(b)π◦(σ(h(2), w(−1)))(h(1) . v)⊗ πH(h(3))w(0) (7.3.1)

Proposition 7.3.1. π̂ : A ' B#H → L(H′), defined by (7.3.1), is a ∗-representation of A.

Proof. First of all we show that it is a representation. For a, b ∈ B and h, l ∈ H we have:

π̂(a#h)π̂(b#l)v ⊗ w = π̂(a#h)
[
π(b)π◦(σ(l(2), w(−1)))(l(1) . v)⊗ πH(l(3))w(0)

]
= π(a)π(h(1) . b)π

◦(σ(h(4), l(3)w(−1)))

· π◦(h(3) . σ(l(2), w(−2)))(h(2) . l(1) . v)⊗ πH(h(5)l(4))w(0).

(7.3.2)

π̂((a#h)(b#l))v ⊗ w = π̂(a(h(1) . b)σ(h(2), l(1))#h(3)l(2))v ⊗ w

= π(a(h(1) . b)σ(h(2), l(1)))π
◦(σ(h(4)l(3), w(−1)))

· (h(3)l(2) . v)⊗ πH(h(5)l(4))w(0)

(7.3.3)

Using now the twisted module condition and the cocycle conditions we see that we can perform

the following replacements: in equation (7.3.2)

π◦(σ(h(4), l(3)w(−1)))π
◦(h(3) . σ(l(2), w(−2))

→ π◦(σ(h(4)l(3), w(−1)))π
◦(σ(h(3), l(2))),

and in equation (7.3.3)

π◦(σ(h(2), l(1)))(h(3)l(2) . v) → π◦(σ(h(3), l(2)))(h(2) . l(1) . v).

After this operation we see that (7.3.2) and (7.3.3) actually coincide, and so π̂ is a representation

of A. Now we show that it is a ∗-representation. The scalar product onH′ is simply the product of

the scalar product on H⊗C2 (which comes directly from that of H) with that one of `2(Z2). It is

enough to show that π̂((a#zk)∗) = π̂(a#zk)∗. Recall that (a#zk)∗ = σ(z−k, zk)∗(z−k . a∗)#z−k.

We have:〈
v′ ⊗ er, π̂((a#zk)∗)v ⊗ es

〉
=
〈
v′ ⊗ er, π̂(σ(z−k, zk)∗(z−k . a∗)#z−k)v ⊗ es

〉
=
〈
v′ ⊗ er, π(σ(z−k, zk)∗(z−k . a∗))π◦(σ(z−k, zs))(z−k . v)⊗ es−k

〉
.

(7.3.4)

But we know that {ek} is an orthonormal basis, so (7.3.4) is different from zero if and only if

s = r + k. In this case we get:〈
v ⊗ er, π̂((a#zk)∗)v′ ⊗ es

〉
=

=
〈
π((z−k . a∗)∗)π(σ(z−k, zk))π◦(σ(z−k, zk+r)∗)v′ ⊗ ek+r, (z

−k . v)⊗ ek+r

〉
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=
〈
π(zk . (z−k . a∗)∗)π(zk . σ(z−k, zk))π◦(zk . σ(z−k, zk+r)∗)(zk . v′)⊗ ek+r, v ⊗ ek+r

〉
=
〈
π(σ(zk, z−k))π(a)π◦(zk . σ(z−k, zk+r)∗)(zk . v′)⊗ ek+r, v ⊗ ek+r

〉
(7.3.5)

where, in the last equality, we have used the twisted module condition and the relation of lemma

7.1.2. Now we use the cocycle condition, the twisted module condition, the results of lemma 7.1.1

and lemma 7.1.2 and the fact that σ(zk, 1) = σ(1, zk) = 1 to rewrite (7.3.5) as:〈
v ⊗ er, π̂((a#zk)∗)v′ ⊗ es

〉
=

=
〈
π(σ(zk, z−k))π◦(σ(zk, z−k)∗)π(a)π◦(σ(zk, zr))(zk . v′)⊗ ek+r, v ⊗ ek+r

〉 (7.3.6)

which, due to property (vii) in definition 7.2.1, is equal to
〈
π̂(a#zk)v′ ⊗ er, v ⊗ er+k

〉
. Therefore

π̂ is a ∗-representation of A. Remark: we often used the fact that [π(a), π◦(b)] = 0 for any

a, b ∈ B.

Before going on we introduce an action of the Lie algebra of T2 on H′. The left coaction ρL

trivially extends to (a dense subspace of) H′; so, if we denote by δ1 and δ2 the representative of

the two commuting generators of the Lie algebra of T2, we can define their action in the following

way:

ρL(w) = zk ⊗ w ⇒ δj(w) ≡ kjw.

Now we can use H′ to build a spectral triple over A (for the moment, without real structure):

the only thing we need is a Dirac operator. Take:

D̂ = D ⊗ id`2(Z2) ⊗ σ1 + δ1 ◦ (id⊗ σ2) + δ2 ◦ (id⊗ σ3). (7.3.7)

Proposition 7.3.2. (A,H′, D̂) is a spectral triple. Moreover, φ−1(zk)[D̂, φ(zk)] commutes with

the elements of A.

Proof. In order to see that (A,H′, D̂) is a spectral triple we need to show that D̂ has compact

resolvent and that it has bounded commutators with all the elements of A. Now, if λj , j ∈ Z,

are the eigenvalues on D (and therefore they goes to infinity as j goes to infinity), then the

eigenvalues of D̂ are tj,m,n = ±
√
λ2
j +m2 + n2 for j,m, n ∈ Z, and so their inverses converge to

zero as either j or m or n go to infinity. Hence D̂ has compact resolvent.

Next, by direct computation, using the equivariance of the trivialization φ and the identifica-

tion 1#h = φ(h), we get, for any k ∈ Z2,

φ−1(z−k)[D̂, φ(zk)] = k1id⊗ σ2 + k2id⊗ σ3. (7.3.8)

In particular the commutator between D̂ and φ(h) is bounded for any h ∈ H and φ−1(zk)[D̂, φ(zk)]

commutes with π̂(A).

We are left with the proof that any commutator [D̂, π̂(a#h)] is a bounded operator. Without

loss of generality, we can take h = zk for some k ∈ Z2. Then the action of such a commutator on
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a vector v ⊗ es ∈ H′ is given by:

[D̂, π̂(a#zk)]v ⊗ es = [D ⊗ σ1, π(a)π◦(σ(zk, zs))](zk . v)⊗ ek+s

+ (k1σ
2 + k2σ

3)π(a)π◦(σ(zk, zs))(zk . v)⊗ ek+s

= [D ⊗ σ1, π(a)]π◦(σ(zk, zs))(zk . v)⊗ ek+s

+ (k1σ
2 + k2σ

3)π(a)π◦(σ(zk, zs))(zk . v)⊗ ek+s.

(7.3.9)

Thus such a commutator can be written as a sum of two operators, and it is enough to show that

each of them is a bounded operator. By hypothesis, the commutator of D with π(a) is bounded.

Moreover, condition (i).3 of definition 7.2.1 implies that zk acts on H as a bounded operator.

Next, the map es 7→ es+k extends to a bounded (actually, unitary) operator on H. So we have

only to show that ‖π◦(σ(zk, zs))‖ ≤ C, C being some real positive constant, independently from

the value of s ∈ Z2. But we know (see lemma 7.1.1) that σ(zk, zs) is unitary, hence such a

constant exists and it can, actually, be taken equal to 1.

The next step in the construction of a real spectral triple is the definition of a real structure.

First of all, let JH be the antiunitary operator JH : `2(Z2)→ `2(Z2) defined by:

JH(λek) = λe−k ∀k ∈ Z2, λ ∈ C.

Then we define an operator J̃ : H′ → H′ by:

J̃(v ⊗ w) = π(σ(S−1w(−2), w(−3))
∗)(w∗(−1) . Jv)⊗ JHw(0) (7.3.10)

(we consider J̃ acting as the identity on the C2 factor).

Lemma 7.3.3. The operator J̃ defined in (7.3.10) is an antiunitary operator. Moreover:

(i) J̃2 = εidH′, where J2 = εidH;

(ii) J̃ maps π̂(A) into its commutant;

(iii) J̃ ◦ (D ⊗ id) = ε′(D ⊗ id) ◦ J̃ , where JD = ε′DJ ;

(iv) if (BH,D, J, γ) is an even dimensional triple, then J̃ ◦ (γ ⊗ id) = ε′′(γ ⊗ id) ◦ J̃ , where

Jγ = ε′′γJ .

Proof. First of all let us show that J̃ is antiunitary. We have:〈
v ⊗ er, J̃(v′ ⊗ es)

〉
=
〈
v ⊗ er, π(σ(z−s, zs)∗)(z−s . Jv′)⊗ JHes

〉
=
〈
π(zs . σ(z−s, zs))(zs . v)⊗ er, Jv′ ⊗ e−s

〉
=
〈
π(σ(zs, z−s))(zs . v)⊗ er, Jv′ ⊗ e−s

〉 (7.3.11)

where we used the result of lemma 7.1.2. Now, since {ek} is an orthonormal basis, (7.3.11) is

different from zero only if s = −r; and in this case we obtain:〈
v ⊗ er, J̃(v′ ⊗ e−r)

〉
=
〈
π(σ(z−r, zr))(z−r . v)⊗ er, Jv′ ⊗ er

〉
=
〈
v′ ⊗ e−r, Jπ(σ(z−r, zr))(z−r . v)⊗ JHer

〉
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=
〈
v′ ⊗ e−r, Jπ(σ(z−r, zr))J−1J(z−r . v)⊗ JHer

〉
=
〈
v′ ⊗ e−r, π◦(σ(z−r, zr)∗)J(z−r . v)⊗ JHer

〉
(7.3.12)

=
〈
v′ ⊗ e−r, π(σ(z−r, zr)∗)π(σ(z−r, zr))π◦(σ(z−r, zr)∗)J(z−r . v)⊗ JHer

〉
=
〈
v′ ⊗ e−r, π(σ(z−r, zr)∗)(z−r . Jv)⊗ JHer

〉
=
〈
v′ ⊗ e−r, J̃(v ⊗ er)

〉
(where we used the results of lemma 7.1.1 and 7.1.2 and property (vii) of definition 7.2.1) which

shows that J̃ is antiunitary. Next we compute J̃2. We have

J̃2(v ⊗ ek) = J̃
(
π(σ(z−k, zk)∗)(z−k . Jv)⊗ e−k

)
= π(σ(zk, z−k)∗)Jπ(zkσ(z−k, zk)∗)J(zk . z−k . v)⊗ ek
= επ(σ(zk, z−k)∗)Jπ(σ(zk, z−k)∗)J−1(zk . z−k . v)⊗ ek
= επ(σ(zk, z−k)∗)π◦(σ(zk, z−k))(zk . z−k . v)⊗ ek
= επ(σ(zk, z−k)∗)π(σ(zk, z−k))v ⊗ ek
= εv ⊗ ek,

(7.3.13)

where we used the twisted module condition together with the result of lemma 7.1.1. (i) follows

directly from (7.3.13). Next we prove (ii). First of all we notice that:

ρL(JHw) = (∗⊗JH)ρL(w). (7.3.14)

Before completing the proof of this lemma, we state and prove two lemmas:

Lemma 7.3.4. For every k, r ∈ Zn we have:

zk−r . zr . σ(z−k, zk)∗ = σ(zk−r, zr)σ(zk, z−k)∗σ(zk−r, zr)∗

Proof. It follows by direct computation.

Lemma 7.3.5. The action of the opposite algebra A◦ on H′ induced by J̃ is given by:

J̃ π̂(a#zr)J̃−1(v ⊗ ek) = π◦((zk−r . a)∗)π◦(σ(zk−r, zr)∗)v ⊗ ek−r. (7.3.15)

Proof. Let ε be as in (i) of lemma 7.3.3. Then we have

J̃ π̂(a#h)J̃−1(v ⊗ ek) = εJ̃π̂(a#h)J̃(v ⊗ ek)

= Jπ(zk−r . a)J−1π(σ(zk−r, zr−k)∗(zk−r . σ(zr, z−k)∗))

· Jπ(zk−r . zr . σ(z−k, zk)∗)J−1(zk−r . zr . z−k . v)⊗ ek−r
= Jπ(zk−r . a)J−1π(σ(zk, z−k)∗σ(zk−r, zr)∗)

· Jπ(σ(zk−r, zr)σ(zk, z−k)∗σ(zk−r, zr)∗)J−1(zk−r . zr . z−k . v)⊗ ek−r (7.3.16)

= Jπ(zk−r . a)J−1π(σ(zk, z−k)∗σ(zk−r, zr)∗)
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· π◦(σ(zk−r, zr)∗)π◦(σ(zk, z−k))π◦(σ(zk−r, zr))(zk−r . zr . z−k . v)⊗ ek−r

where we used lemma 7.3.4 for the last equality. Now, using the twisted module condition, we

get from equation 7.3.16 the following expression.

J̃ π̂(a#h)J̃−1(v ⊗ ek) =

= Jπ(zk−r . a)J−1π(σ(zk, z−k)∗σ(zk−r, zr)∗)

· π◦(σ(zk−r, zr)∗)π◦(σ(zk, z−k))π(σ(zk−r, zr))(zk . z−k . v)⊗ ek−r
= Jπ(zk−r . a)J−1π(σ(zk, z−k)∗σ(zk−r, zr)∗)π(σ(zk−r, zr))

· π◦(σ(zk−r, zr)∗)π◦(σ(zk, z−k))(zk . z−k . v)⊗ ek−r
= Jπ(zk−r . a)J−1π(σ(zk, z−k)∗)

· π◦(σ(zk−r, zr)∗)π(σ(zk, z−k))v ⊗ ek−r
= Jπ(zk−r . a)J−1π◦(σ(zk−r, zr)∗)v ⊗ ek−r

(7.3.17)

from which (7.3.15) follows directly.

We come back to the proof of lemma 7.3.3. We compute explicitly the commutator between

J̃ π̂(a#h)J̃−1 and π̂(b#l) using (7.3.15).

[J̃ π̂(a#zr)J̃−1, π̂(b#zs)](v ⊗ w) =

= π◦((zk+s−r . a)∗)π◦(σ(zk+s−r, zr)∗)π(b)π◦(σ(zs, zk))(zs . v)⊗ ek+s−r

− π(b)π◦(σ(zs, zk−r))π◦(zs . (zk−r . a)∗)π◦(zs . σ(zk−r, zr)∗)(zs . v)⊗ ek+s−r.

(7.3.18)

Using the twisted module condition and the following relation,

(zs . σ(zk−r, zr)∗)σ(zs, zk−r) = σ(zs, zk)σ(zk+s−r, zr)∗,

we can rewrite equation (7.3.18) as follows:

[J̃ π̂(a#zr)J̃−1, π̂(b#zs)](v ⊗ w) =

= π◦((zk+s−r . a)∗)π◦(σ(zk+s−r, zr)∗)π(b)π◦(σ(zs, zk))(zs . v)⊗ ek+s−r

− π(b)π◦((zk+s−r . a)∗)π◦(σ(zk+s−r, zr)∗)π◦(σ(zs, zk))(zs . v)⊗ ek+s−r = 0

(7.3.19)

since J maps π(a) into its commutant on H⊗ C2. The proof of (iii) and (iv) is straightforward:

they are direct consequences of the properties of equivariance stated in definition 7.2.1.

Now, following [DD11], we can define, in terms of J̃ , a real structure Ĵ with the correct

commutation relations, obtaining in this way a real spectral triple over the algebra A (in the even

dimensional case we can define a Z2-grading γ̂, too). We consider separately the odd dimensional

and the even dimensional case.

Odd dimensional case. Let (B,H, D, J) be a odd real spectral triple of KR-dimension j.

Then we consider the following operator on H′.
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Definition 7.3.6. Let J̃ as above. We define an operator Ĵ : H′ → H′ by:

Ĵ =


(id⊗ σ2) ◦ J̃ if j ≡ 1 (mod 4)

(id⊗ σ3) ◦ J̃ if j ≡ 3 (mod 4)

(7.3.20)

where id is the identity operator on H⊗ `2(Z2).

Proposition 7.3.7. Let Ĵ be defined by (7.3.20). Then (A,H′, D̂, Ĵ) is a real spectral triple of

KR-dimension j + 2.

Proof. Due to proposition 7.3.2 and lemma 7.3.3 we have only to prove that Ĵ and D̂ fulfil the

right commutation relations and that the first order condition holds. The commutation relations

can be checked by direct computation. Here we prove only the first order condition. By direct

computation (using the equivariance of the Dirac operator D) we can see that:

[D̂, π̂(a#zr)](v ⊗ ek) =σ1[D,π(a)π◦(σ(zr, zk))](zr . v)⊗ ek+r

+ (r1σ
2 + r2σ

3)π(a)π◦(σ(zr, zk))(zr . v)⊗ ek+r.
(7.3.21)

Using (7.3.21) and (7.3.15) we get:

[[D̂, π̂(a#zr)], Ĵ π̂(b#zs)Ĵ−1](v ⊗ ek)

= [D̂, π̂(a#zr)]
(
π◦(zk−s . b∗)π◦(σ(zk−s, zs)∗)v ⊗ ek−s

)
− Ĵ π̂(b#zs)Ĵ−1

(
σ1[D,π(a)π◦(σ(zr, zk))](zr . v)⊗ ek+r

)
− Ĵ π̂(b#zs)Ĵ−1

(
(r1σ

2 + r2σ
3)π(a)π◦(σ(zr, zk))(zr . v)⊗ ek+r

)
= σ1[D,π(a)π◦(σ(zr, zk−s))]π◦(zr . zk−r . b∗)π◦(zr . σ(zk−s, zs))(zr . v)⊗ ek+r−s

+ (r1σ
2 + r2σ

3)π(a)π◦(σ(zr, zk−s))π◦(zr . zk−r . b∗)π◦(zr . σ(zk−s, zs))(zr . v)⊗ ek+r−s

− σ1π◦(zk+r−s . b∗)π◦(σ(zk+r−s, zs)∗)[D,π(a)π◦(σ(zr, zk))](zr . v)⊗ ek+r−s

− (r1σ
2 + r2σ

3)π◦(zk+r−s . b∗)π◦(σ(zk+r−s, zs)∗)π(a)π◦(σ(zr, zk))(zr . v)⊗ ek+r−s

= σ1[D,π(a)]π◦(σ(zr, zk−s))π◦(zr . zk−r . b∗)π◦(zr . σ(zk−s, zs))(zr . v)⊗ ek+r−s

+ (r1σ
2 + r2σ

3)π(a)π◦(σ(zr, zk−s))π◦(zr . zk−r . b∗)π◦(zr . σ(zk−s, zs))(zr . v)⊗ ek+r−s

− σ1π◦(zk+r−s . b∗)π◦(σ(zk+r−s, zs)∗)π◦(σ(zr, zk))[D,π(a)](zr . v)⊗ ek+r−s

− (r1σ
2 + r2σ

3)π◦(zk+r−s . b∗)π◦(σ(zk+r−s, zs)∗)π◦(σ(zr, zk))π(a)(zr . v)⊗ ek+r−s

= σ1[D,π(a)]π◦((zr . σ(zk−s, zs))(zr . zk−r . b∗)σ(zr, zk−s))(zr . v)⊗ ek+r−s

+ (r1σ
2 + r2σ

3)π(a)π◦((zr . σ(zk−s, zs))(zr . zk−r . b∗)σ(zr, zk−s))(zr . v)⊗ ek+r−s

− σ1π◦(zk+r−s . b∗)π◦(σ(zk+r−s, zs)∗)π◦(σ(zr, zk))[D,π(a)](zr . v)⊗ ek+r−s

− (r1σ
2 + r2σ

3)π◦(zk+r−s . b∗)π◦(σ(zk+r−s, zs)∗)π◦(σ(zr, zk))π(a)(zr . v)⊗ ek+r−s,

(7.3.22)

where we used property (iii) of definition 7.2.1. Now, using the twisted module condition we get
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the following relation:

(zr . zk . b∗)σ(zr, zk−s) = σ(zr, zk−s)(zk+r−s . b∗).

Also, by direct computation we can see that:

zr . σ(zk−s, zs)∗ = σ(zr, zk)σ(zk+r−s, zs)∗σ(zr, zk−s)∗.

Therefore the term in π◦ in the first two lines of the last expression in (7.3.22) becomes:

π◦
(

(zr . σ(zk−s, zs))(zr . zk−r . b∗)σ(zr, zk−s)
)

= π◦
(
σ(zr, zk)σ(zk+r−s, zs)∗σ(zr, zk−s)∗σ(zr, zk−s)(zk+r−s . b∗)

)
= π◦

(
σ(zr, zk)σ(zk+r−s, zs)∗(zk+r−s . b∗)

)
= π◦(zk+r−s . b∗)π◦(σ(zk+r−s, zs)∗)π◦(σ(zr, zk)).

Hence we can rewrite equation (7.3.22) in the following way:

[[D̂, π̂(a#zr)], Ĵ π̂(b#zs)Ĵ−1](v ⊗ ek)

= σ1[D,π(a)]π◦(zk+r−s . b∗)π◦(σ(zk+r−s, zs)∗)π◦(σ(zr, zk))(zr . v)⊗ ek+r−s

+ (r1σ
2 + r2σ

3)π(a)π◦(zk+r−s . b∗)π◦(σ(zk+r−s, zs)∗)π◦(σ(zr, zk))(zr . v)⊗ ek+r−s

− σ1π◦(zk+r−s . b∗)π◦(σ(zk+r−s, zs)∗)π◦(σ(zr, zk))[D,π(a)](zr . v)⊗ ek+r−s

− (r1σ
2 + r2σ

3)π◦(zk+r−s . b∗)π◦(σ(zk+r−s, zs)∗)π◦(σ(zr, zk))π(a)(zr . v)⊗ ek+r−s

= σ1[D,π(a)]π◦(zk+r−s . b∗)π◦(σ(zk+r−s, zs)∗)π◦(σ(zr, zk))(zr . v)⊗ ek+r−s

− σ1π◦(zk+r−s . b∗)π◦(σ(zk+r−s, zs)∗)π◦(σ(zr, zk))[D,π(a)](zr . v)⊗ ek+r−s

= σ1[[D,π(a)], π◦(zk+r−s . b∗)]π◦(σ(zk+r−s, zs)∗)π◦(σ(zr, zk))[D,π(a)](zr . v)⊗ ek+r−s.

(7.3.23)

But then we see that it is equal to zero, since the first order condition holds for the spectral triple

(B,H, D, J). This concludes the proof of the proposition.

Remark: in the computation of equation (7.3.23) we have used the fact that π◦(B) is in the

commutant of π(B), together with the commutation property of D with π◦(σ(·, ·)) (see (iii) of

definition 7.2.1).

Even dimensional case. Let (B,H, D, J, γ) be an even real spectral triple of KR-dimension

j. Then we can define a real structure Ĵ on H′ in the following way.

Definition 7.3.8. Let J̃ as above. We define an operator Ĵ : H′ → H′ by:

Ĵ =


(γ ⊗ id⊗ σ2) ◦ J̃ if j ≡ 0 (mod 4)

(iγ ⊗ id⊗ σ3) ◦ J̃ if j ≡ 2 (mod 4)

(7.3.24)
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where id is the identity operator on `2(Z2).

Proposition 7.3.9. Let Ĵ be defined by (7.3.24), and let γ̂ = γ ⊗ id⊗ σ1. Then (A,H′, D̂, Ĵ , γ̂)

is a real spectral triple of KR-dimension j + 2.

Proof. That the commutation relations between D̂, Ĵ and γ̂ are the right ones follows by direct

computation. For the rest, the proof is the same as that of proposition 7.3.7.

We conclude this section with the following observation.

Definition 7.3.10. A spectral triple (A,H, D) is said to be irreducible if there is no closed

subspace of H invariant under the action of the operator algebra generated by a ∈ A and D.

Proposition 7.3.11. If (B,H, D) is an irreducible triple, then the triples of proposition 7.3.7

and proposition 7.3.9 are irreducible, too.

7.3.2 Quantum principal bundle structure

We started from a (cleft) Hopf-Galois extension B ↪→ A, with Hopf algebra H = O(T2). This

is not enough to say that we are working with a quantum principal T2-bundle: indeed, the

definition2 of quantum principal Tn-bundles involves the differential calculus on the algebra A.

In this section we will show how the construction of the spectral triples over A discussed in the

previous sections allows us to define a differential calculus on A compatible with the de Rham

calculus on H = O(T2).

Lemma 7.3.12. Let Ω1
D̂

(A) be the first order differential calculus associated to the Dirac operator

D̂. Then it is a right O(T2)-covariant calculus.

Proof. We generalize the proof of proposition 6.3.4. Let N be the sub-bimodule of the universal

calculus Ω1A defining the calculus Ω1
D̂

(A). Then η ∈ N iff πD̂(η) = 0. Take η ∈ N , η =
∑
pdq.

We can write it also in the following way:

η =
∑ ∑

k,l∈Z2

(pl#z
l)d(qk#z

k)

=
∑ ∑

k,l∈Z2

[
(pl#z

l)(d(qk#1))(1#zk) + (pl#z
l)(qk#1)d(1#zk)

]
.

Then the condition πD̂(η) = 0 implies:

0 = πD̂(η) =
∑ ∑

k,l∈Z2

π̂(pl#z
l)[D̂, π̂(qk#z

k)

=
∑ ∑

k,l∈Z2

[
π̂(pl#z

l)[D ⊗ id⊗ σ1, π̂(qk#1)]π̂(1#zk)

+(k1(id⊗ σ2) + k2(id⊗ σ3))π̂(pl#z
l)π̂(qk#z

k)
]
.

2See definition 4.6.9.
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Since the Pauli matrices are linearly independent, this means that:∑ ∑
k,l∈Z2

π̂(pl#z
l)[D ⊗ id⊗ σ1, π̂(qk#1)]π̂(1#zk) = 0,

∑ ∑
k,l∈Z2

(k1(id⊗ σ2) + k2(id⊗ σ3))π̂(pl#z
l)π̂(qk#z

k) = 0.

But this implies also that, for any r ∈ Z2,∑ ∑
k+l=r

π̂(pl#z
l)[D ⊗ id⊗ σ1, π̂(qk#1)]π̂(1#zk) = 0, (7.3.25)

∑ ∑
k+l=r

(k1(id⊗ σ2) + k2(id⊗ σ3))π̂(pl#z
l)π̂(qk#z

k) = 0. (7.3.26)

Now we split η in a different way: we write it as η =
∑
r∈Z2

ηr, where the ηr are defined by:

ηr =
∑ ∑

k+l=r

(pl#z
l)d(qk#z

k).

Then equation (7.3.25) and equation (7.3.26) imply that πD̂(ηr) = 0 for any r ∈ Z2; that is, each

ηr belongs to N . But if now we compute ∆Ω
R(η) we obtain ∆Ω

R(η) =
∑
r∈Z2

ηr⊗ zr, hence it belongs

to N ⊗H. It follows that ∆Ω
R(N) ⊆ N ⊗H; that is, Ω1

D̂
(A) is a right H-covariant calculus.

Proposition 7.3.13. Let Ω1
D̂

(A) be the first order differential calculus associated to the Dirac

operator D̂, and let N be the sub-bimodule of A⊗A defining it. Let Q = (ker ε)2 be the ideal of

H = O(T2) which defines the de Rham calculus Ω1
dR(H). Then (A, H,∆R, N,Q) is a quantum

principal T2-bundle.

Proof. Due to lemma 7.3.12, it is enough to show that Ω1
D̂

(H) satisfies (i) and (ii) of proposition

4.6.14. Let us begin by showing that (i) is fulfilled. We recall that the sub-bimodule defining

Ω1
D̂

(A) is:

N =

{∑
j

aj ⊗ bj ∈ A⊗A
∣∣∣∣ ∑

j

π̂(aj)[D̂, π̂(bj)] = 0

}
. (7.3.27)

Take now η ∈ N . We can write it as η =
∑
k,l∈Z2

(akl#z
k) ⊗ (bkl#z

l). Exploiting the fact that η

belongs to N , we get, using (7.3.21),

0 =
∑
k,l∈Z2

π̂(akl#z
k)
(
σ1[D,π(bkl)π

◦(σ(zl, w(−1))](z
l . v)⊗ πH(zl)w(0)

+(l1σ
2 + l2σ

3)π(bkl)π
◦(σ(zl, w(−1)))(z

l . v)⊗ πH(zl)w(0)

)
=
∑
k,l∈Z2

π̂(akl#z
k)
(
σ1[D,π(bkl)π

◦(σ(zl, w(−1))](z
l . v)⊗ πH(zl)w(0)

+(l1σ
2 + l2σ

3)π̂(bkl#z
l)(v ⊗ w)

)
.

(7.3.28)
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Since the Pauli matrices are linearly independent, from equation (7.3.28) we obtain, for i = 1, 2,∑
k,l∈Z2

li(akl#z
k)(bkl#z

l) =
∑
k,l∈Z2

(akl#z
k)δi(bkl#z

l) = 0,

and this concludes the proof that (i) is fulfilled. We prove that also (ii) holds. Take η ∈
Ω1A, η =

∑
pdq, and assume that

∑
pδi(q) = 0, for i = 1, 2. Then rewrite η as η =∑ ∑

k,l∈Z2

(pl#z
l)d(qk#z

k). Using the Leibniz rule we obtain then:

η =
∑ ∑

k,l∈Z2

[
(pl#z

l)(d(qk#1))(1#zk) + (pl#z
l)(qk#1)d(1#zk)

]
.

In order to prove that [η]N belongs to AΩ1
D̂

(B)A it is then enough to show that

πD̂

(∑ ∑
k,l∈Z2

(pl#z
l)(qk#1)d(1#zk)

)
= 0.

Let us compute it. We have:

πD̂

(∑ ∑
k,l∈Z2

(pl#z
l)(qk#1)d(1#zk)

)
=
∑ ∑

k,l∈Z2

π̂(pl#z
l)π̂(qk#1)[D̂, π̂(1#zk)]

=
∑ ∑

k,l∈Z2

(k1 ⊗ σ2 + k2 ⊗ σ3)π̂(pl#z
l)π̂(qk#z

k)

=
∑ ∑

k,l∈Z2

[
(id⊗ σ2)π̂

(
(pl#z

l)δ1(qk#z
k)
)

+ (id⊗ σ3)π̂
(

(pl#z
l)δ2(qk#z

k)
)]

= 0.

7.3.3 Projectability and twisted Dirac operators

Now we show that the triples constructed in the previous sections are projectable spectral triples.

First of all it is not difficult to see that:

Proposition 7.3.14. The spectral triples of proposition 7.3.7 and proposition 7.3.9 are equivari-

ant spectral triples with respect to the T2-action generated by the two commuting derivations δ1,

δ2.

We can now prove the following results.

Proposition 7.3.15. Let (A,H′, D̂, Ĵ , {δj}) be the T2-equivariant odd real spectral triple of propo-

sition 5.3.7. Then it is a projectable triple with isometric fibres. Moreover we can take (under

the isomorphism A ' B#σH)

Γ = −iπ̂(φ−1(z1))[D̂, π̂(φ(z1))]π̂(φ−1(z2))[D̂, π̂(φ(z2))]. (7.3.29)
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Proof. Let Γ be as in (7.3.29). By direct computation one sees that Γ = id ⊗ σ1. Thus we have

immediately Γ2 = 1, Γ∗ = Γ, [Γ, π̂(a)] = 0 for any a ∈ A, [Γ, δj ] = 0. And ΓĴ = −ĴΓ. Hence

(A,H′, D̂, Ĵ , γ̂, δ) is a projectable triple. Finally, it is straightforward to see that the isometric

fibres conditions is fulfilled. Indeed, for Γ = ±id ⊗ σ1 we have Dh = D ⊗ σ1; so if we take

Dv = (id⊗ σ2)δ1 + (id⊗ σ3)δ2 we obtain D̂ = Dv +Dh.

Proposition 7.3.16. Let (A,H′, D̂, Ĵ , γ̂, {δj}) be the T2-equivariant even real spectral triple of

proposition 5.3.10. Then it is a projectable spectral triples with isometric fibres. Moreover we can

take (A ' B#σH)

Γ = −iπ̂(φ−1(z1))[D̂, π̂(φ(z1))]π̂(φ−1(z2))[D̂, π̂(φ(z2))]. (7.3.30)

Proof. Let Γ be as in (7.3.30). Also in this case, Γ = id⊗σ1. The only difference with proposition

7.3.15 is that we have to check also the commutation relation between Γ and γ̂. Since γ̂ =

γ ⊗ id⊗ σ1, we have Γγ̂ = γ̂Γ, which is consistent with definition 5.3.9. The fact that the triple

has isometric fibres follows as in proposition 7.3.15.

Now we can compute the twisted Dirac operator Dω (which will be a “j-dimensional” Dirac

operator, where j is the dimension of the triple over B) associated to a strong connection ω,

which will be defined by a family of n 1-forms ωi (see definition 4.6.17). First of all we work

out an explicit formula for the admissible ωi. Any component ωi of a family defining a strong

connection, due to condition (i) of definition 4.6.17, must be of the following form:

ωi = ωi,1σ
1 + ωi,2σ

2 + ωi,3σ
3 (7.3.31)

with ωi,j ∈ Ω1
D(B). More precisely, we can write ωi as:

ωi =
∑
j

ai,j [D̂, bi,j ] + ci,1σ
2 + ci,2σ

3, (7.3.32)

where ai,j , bi,j , ci belong to B. Now, from condition (ii), we get, using σ2 = (1#z−1
1 )[D̂, 1#z1],

σ3 = (1#z−1
2 )[D̂, 1#z2],

c1,1 = 1, c1,2 = 0,

c2,1 = 0, c2,2 = 1.

Therefore we get obtain following expressions3 for ω1 and ω2:

ω1 = (1#z−1
1 )[D̂, 1#z1] +

∑
j

(a1,j#1)[D ⊗ id, b1,j#1]σ1

= σ2 +
∑
j

(a1,j#1)[D ⊗ id, b1,j#1]σ1,
(7.3.33)

3We consider both of them as operators on H′. We omit the representation π̂ to simplify the notation.
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ω2 = (1#z−1
2 )[D̂, 1#z2] +

∑
j

(a2,j#1)[D ⊗ id, b2,j#1]σ1

= σ3 +
∑
j

(a2,j#1)[D ⊗ id, b2,j#1]σ1,
(7.3.34)

Now we can compute the twisted Dirac operator Dω. We know that in general, for Tn bundles,

it can be written as

Dω = D −
n∑
i=1

j0ω
∗
i j
−1
0 δi − Z,

where D is the Dirac operator of the triple over A and j0 is defined as follows:

Table 7.1: j0
n 0 1 2 3 4 5 6 7

j0 ΓĴ ΓĴ Ĵ Ĵ ΓĴ ΓĴ Ĵ Ĵ

Therefore we get, using Γ = σ1,

Table 7.2: j0
n 0 1 2 3 4 5 6 7

j0 iγσ3J̃ iσ3J̃ iγσ3J̃ iσ3J̃ iγσ3J̃ iσ3J̃ iγσ3J̃ iσ3J̃

It is now clear that, since σ2 anticommutes and σ3 commutes with J̃ , both σ2 and σ3 commute

with j0; instead, σ1 anticommutes with j0. Therefore, writing the 1-forms ωi in the short form

ω1 = σ2 + σ1ωB1 ,

ω2 = σ3 + σ1ωB2 ,

we obtain that the twisted Dirac operator Dω is given by:

Dω = D ⊗ σ1 +

2∑
i=1

(id⊗ σ1)j0(ωBi )∗j−1
0 δi. (7.3.35)

Adding the vertical Dirac operator we obtain a full, j + 2 dimensional Dirac operator:

D̂ω = D ⊗ σ1 + (id⊗ σ2)δ1 + (id⊗ σ3)δ2 +
2∑
i=1

(id⊗ σ1)j0(ωBi )∗j−1
0 δi. (7.3.36)

Corollary 7.3.17. The only connection compatible with the Dirac operator D̂ is the Maurer-

Cartan connection ω = φ−1 ∗ dφ.

7.4 Spectral triples over cleft O(Tn)-extensions

Now we generalize the construction of the previous section to cleft O(Tn)-extensions B ↪→ A, for

n > 2, admitting a unitary trivialization which determines an isomorphism A ' B#σH, with

H = O(Tn). Roughly speaking, the only things to be changed with respect to the 2-dimensional
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case are are in the C2 factor, where we have to replace the Pauli matrices with suitable γ matrices

acting on some representation of an n or n + 1 dimensional Clifford algebra. More precisely we

modify the part of the Dirac operator, the real structure and the Z2 grading acting on the C2

factor that have to be chosen accordingly to n and to the KR-dimension of the triple over B. We

follow [DD11] to get the right formulae.

Since we want to use the results of [DD11], we adopt a slightly different convention w.r.t. the

one we worked with in the previous sections. So, if we specialize the discussion below to the n = 2

case we see that there are some minor differences w.r.t. the results obtained previously. But it

is only a matter of conventions on the commutation relations between the elements of the triple.

We describe shortly, following [DD11], the conventions that we will use.

Given a real spectral triple (A,H, D, J, γ) (γ = id if the triple is odd) the commutation

relations between D, J and γ are given by

J2 = εid, JD = ε′DJ, Jγ = ε′′γJ,

where ε, ε′, ε′′ are given by the following table.

Table 7.3: Connes’ selection in [GBFV] is marked by •
n 0 2 4 6 0 2 4 6 1 3 5 7

ε + − − + + + − − + − − +
ε′ + + + + − − − − − + − +
ε′′ + − + − + − + −

• • • • • • • •

Notice that altogether there are twelve different possibilities, which can be labelled by KR-

dimension n ∈ Z8 with the additional index ε′ if n is even (so for example the case (ε, ε′, ε′′) =

(+,−,−) is labelled by 2−). We keep the notation of [DD11], so we place this additional index also

in the case of odd n, though it is redundant there. We notice also that, in the even dimensional

case, we pass from the n− to the n+ case by multiplying the real structure by the Z2 grading γ.

Given a real spectral triple (B,H, D, J, γ), we define, on H′ = H ⊗ `2(Zn) ⊗ C2[n/2]
, the

representation π̂ and the antiunitary operator J̃ exactly as in the 2-dimensional case. We will

get D̂ and Ĵ acting on the C2[n/2]
factor in a such a way that we obtain the right commutation

relations.

Next we choose a convention for the γ matrices. Let n equal either to 2m or to 2m + 1.

We denote by γ1, . . . , γ2m the canonical generators of the representation of the n-dimensional

complex Clifford algebra on C2m ; they satisfy the relations

γiγj + γjγi = δij .

We define also an operator γ2m+1 = λnγ
1 · · · γ2m, where λn = 1,−i, i, 1 accordingly to n ≡

0, 1, 2, 3 (mod 4). γ2m+1 is defined in a such a way that (γ2m+1)2 = 1. Next, we introduce the
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derivations δj , j = 1, . . . , n, acting on H by:

(δjf)k = kjfk, ∀f ∈ H′, k ∈ Zn.

7.4.1 T2m-bundles

We consider first the case of smash products B#σH, H = O(Tn) with n = 2m. Since the

construction depends on the parity of the KR-dimension of the triple over B, we have to consider

two different situations.

Odd dimensional case. Assume that the triple over B has dimension j, with j odd. Then

we define4 the Dirac operator D̂ as:

D̂ = D ⊗ id⊗ γ2m+1 +
n∑
j=1

(id⊗ γj) ◦ δj .

As real structure we take, instead, Ĵ defined as:

Ĵ =

{
J̃ for j + n ≡ 3 (mod 4)

(id⊗ γ2m+1) ◦ J̃ for j + n ≡ 1 (mod 4)

Then we get immediately, using the results in [DD11], that (A,H′, D̂, Ĵ) is an odd dimensional

real spectral triple of KR-dimension n+ j.

Even dimensional case. Assume that the triple over B has dimension j, with j even. Then

we define5 the Dirac operator D̂ as:

D̂ = D ⊗ id⊗ γ2m+1 +
n∑
j=1

(id⊗ γj) ◦ δj .

As Z2 grading γ̂ we take γ̂ = γ ⊗ id⊗ γ2m+1, while the real structure Ĵ is defined as follows:

Ĵ =

{
J̃ for j + n ≡ 2 (mod 4)

(id⊗ γ2m+1) ◦ J̃ for j + n ≡ 0 (mod 4)

Then we get immediately, using the results in [DD11], that (A,H′, D̂, Ĵ , γ̂) is an even dimensional

real spectral triple of KR-dimension n+ j whose “parity” is given by the following table:

7.4.2 T2m+1-bundles

Now we consider the case of smash products B#σH, H = O(Tn) with n = 2m+ 1. Still, we have

to consider two different situations.

Odd dimensional case. Assume that the triple over B has dimension j, with j odd. Then

we define a new Hilbert space, H′′ = H′ ⊗ C2, and we extend trivially all the operators on H′ to

operators on H′′. Explicitly, we have H′′ = H ⊗ `2(Zn) ⊗ C2m ⊗ C2. Then we define the Dirac

4This is not the only possible choice, see [DD11] for the details.
5See previous footnote.
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HH
HHHHj

n
0 2 4 6

0+ 0+ 2− 4+ 6−
2+ 2+ 4− 6+ 0−
4+ 4+ 6− 0+ 2−
6+ 6+ 0− 2+ 4−

0− 0− 2+ 4− 6+

2− 2− 4+ 6− 0+

4− 4− 6+ 0− 2+

6− 6− 0+ 2− 4+

operator D̂, the real structure Ĵ and the Z2 grading γ̂ in the following way [DD11]:

D̂ = D ⊗ id⊗ id⊗ σ1 +
n∑
j=1

(id⊗ id⊗ γj ⊗ σ2) ◦ δj ,

Ĵ± = J̃ ◦ (id⊗ id⊗ id⊗M±K),

γ̂ = id⊗ id⊗ id⊗ σ3,

whereM± are two complex matrices specified by the table below andK is the complex conjugation

operator defined for the canonical basis of C2 (i.e., if (e1, e2) is the canonical basis, we have

K(λei) = λei for every λ ∈ C).

Table 7.4: Matrices M+, M−.
HHH

HHHj
n

1 3 5 7

1 σ2, σ1 σ3, σ0 σ2, σ1 σ3, σ0

3 σ0, σ3 σ1, σ2 σ0, σ3 σ1, σ2

5 σ2, σ1 σ3, σ0 σ2, σ1 σ3, σ0

7 σ0, σ3 σ1, σ2 σ0, σ3 σ1, σ2

The resulting triple (A,H′′, D̂, Ĵ±, γ̂) is an even dimensional real spectral triple of KR-

dimension (j + n)±.

Even dimensional case. Assume that the triple over B has dimension j, with j even. Then

we define6 the Dirac operator D̂ as:

D̂ = D ⊗ id⊗ γ2m+1 +

n∑
j=1

(id⊗ γj) ◦ δj .

6This is not the only possible choice, see [DD11] for the details.
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The real structure Ĵ is defined as follows: if JD = DJ we take

Ĵ =

{
J̃ for j + n ≡ 3 (mod 4)

(γ ⊗ id) ◦ J̃ for j + n ≡ 1 (mod 4)

instead, if JD = −DJ , we take

Ĵ =

{
J̃ for j + n ≡ 1 (mod 4)

(γ ⊗ id) ◦ J̃ for j + n ≡ 3 (mod 4)

Then we can see, using the results in [DD11], that (A,H′, D̂, Ĵ) is an odd dimensional real spectral

triple of KR-dimension n+ j.

7.5 Further properties

7.5.1 Dimension

If the Dirac operator D on H is p+-summable, then the Dirac operator D̂ is (p+ n)+-summable.

This follows as in the case of product spectral triples; for further details see [DS13a, GBFV].

7.5.2 Regularity

Assume that the spectral triple (B,H, D, J, γ) over B be regular. Let us see that this implies

that also the spectral triples built in the previous sections are regular. We will use the results

of section 3.1.2, in particular theorem 3.1.19 and theorem 3.1.20. We discuss here only the case

when n = 2, but the extension to the general one is straightforward.

Since (B,H, D) is a regular spectral triple, there exists an algebra of generalized differential

operators DB ⊂ End(W∞) such that B+[D,B] is dense in D0
B. Here W∞ is the space of ∆-smooth

vectors, where ∆ = D2 + 1. Consider now the Hilbert space H′ = H ⊗ `2(Z2) ⊗ C2. We can

extend ∆ to an operator ∆̂ on H′, simply defined by ∆̂ = ∆ ⊗ id. Then the space of ∆̂-smooth

vectors is just Ŵ∞ = W∞ ⊗ `2(Z2)⊗ C2.

Now, due to condition (ii) of definition 7.2.1 W∞ is stable under the (weak) action of the

Hopf algebra H = O(T2). For any b ∈ DB and any k ∈ Z2 consider now the operator b̂(k) on H′

defined by: b̂(k)(v ⊗ es) = π(b)π◦(σ(zk, zs))(zk . v) ⊗ es. All the operators of this kind form an

N-graded algebra D̂B, and the space Ŵ∞ is stable under the action of D̂B. Moreover,

Lemma 7.5.1. D̂B ⊆ Op(∆̂).

Now let Ĥ ⊂ A be the (unital) ∗-algebra generated by (1#zk), k ∈ Z2. Consider the following

N-filtered algebra:

DnA = D̂nB · Ĥ + Ĥ · D̂nB +
3∑
j=1

(id⊗ σj)(D̂nB · Ĥ + Ĥ · D̂nB).

By construction A+ [D,A] is contained in D0
A. Let now ∆′ be the operator D̂2 + 1 on H′. Notice

that it is equal to ∆̂ + δ2
1 + δ2

2 . Let W ′∞ be the space of ∆′-smooth vectors of H′. Then it

165



7. Spectral triples over cleft principal O(Tn)-extensions

is easy to see that W ′∞ ⊂ Ŵ∞. Also, since any P ∈ D̂B acts as the identity on `2(Z2) ⊗ C,

D̂B can be seen as an (N-filtered) subalgebra of End(W ′∞). And the same holds for Ĥ. Hence

DA is a subalgebra of End(W ′∞). Moreover, it satisfies [∆′,DnA] ⊆ Dk+1
A . So, in order to prove

that it is an algebra of generalized differential operators, we have only to show that each DnA is

contained in Opn(∆′). It is clear that D̂nB is contained in Opn(∆′). Also, Ĥ and (id ⊗ σj) Ĥ
(for any j = 1, 2, 3,) are contained in Opn(∆′); more precisely both of them are contained in

Op0(∆′). Hence DnA is contained in Opn(∆′). It follows (see theorem 3.1.19) that the spectral

triples constructed in the previous section are regular spectral triples.

7.5.3 Orientation

An orientation Hochschild cycle for the spectral triples (A,H′, D̂, Ĵ , γ̂) and (A,H′′, D̂, Ĵ , γ̂) can

be obtained extending the construction of section 6.2.3. We begin by showing the construction

in the first case. Later we will show how it extends quite trivially to the other one. So, in the

first part of this section, we take n = 2m.

Let us consider, for any i = 1, . . . , n, the following Hochschild 1-cycle with values in H ⊗H◦:

c
(i)
H = (z−1

i ⊗ 1)⊗ zi (7.5.1)

Since the action of H on B is actually a weak action, with (possibly) non-trivial cocycle σ, the

corresponding Hochschild 1-cycle on A is not simply (φ(z−1
i )⊗ 1)⊗ φ(zi)) = ((1#z−1

i )⊗ 1#1)⊗
(1#zi) but it is:

(φ−1(zi)⊗ 1)⊗ φ(zi) = ((σ(z−1
i , zi)

∗#z−1
i )⊗ 1#1)⊗ (1#zi). (7.5.2)

So we introduce the following generalization of the shuffle product [Lo] and of the twisted

shuffle product of section 6.2.3. First of all we recall that any Hochschild chain c ∈ Cp(B,B⊗B◦)
can be written as

c =
∑

(a0 ⊗ b◦0)⊗ a1 ⊗ · · · ⊗ ap, (7.5.3)

with a0, bi ∈ B. Then we give the following definition.

Definition 7.5.2. For any Hochschild p-cycle c ∈ Zp(B,B ⊗ B◦), written as in equation (7.5.3),

we define its twisted shuffle product with the 1-cycle c
(i)
H as the Hochschild (p+1)-chain c×σc(i)

H ∈
Cp+1(A,A⊗A◦) defined by:

c×σ c(i)
H =

∑
((a0σ(z−1

i , zi)
∗#z−1

i )⊗ (b◦0#1))⊗ 1#zi ⊗ a1#1⊗ · · · ⊗ ap#1

+

p∑
j=2

∑
(−1)j−1((a0σ(z−1

i , zi)
∗#z−1

i )⊗ (b◦0#1))⊗ (zi . a1)#1⊗ · · ·

· · · ⊗ (zi . aj−1)#1⊗ 1#zi ⊗ aj#1⊗ · · · ⊗ ap#1

+
∑

(−1)p((a0σ(z−1
i , zi)

∗#z−1
i )⊗ (b◦0#1))⊗ (zi . a1)#1⊗ · · ·

· · · ⊗ (zi . ap)#1⊗ 1#zi

(7.5.4)
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Lemma 7.5.3. The twisted shuffle product (7.5.4) is linear in the first factor (i.e. in c).

Now we extend the (weak) action of H on B to a weak action on Hochschild p-chain over B.

For c ∈ Cp(B,B ⊗ B◦), written as in equation (7.5.3), and for h ∈ H, we define:

h . c =
∑

((h(1) . a0)⊗ b◦0)⊗ (h(2) . a1)⊗ · · · ⊗ (h(p+1) . ap). (7.5.5)

Definition 7.5.4. A Hochschild p-chain c ∈ Cp(B,B ⊗ B◦) is H-invariant if h . c = ε(h)c for

any h ∈ H.

Proposition 7.5.5. If c is an H-invariant Hochschild p-cycle, then its shuffle products c×σ c(i)
H ,

for i = 1, . . . , n, are Hochschild (p+ 1)-cycles.

Proof. We will use the following relations:

(a0σ(z−1
i , zi)

∗#z−1
i )(1#zi) = a0σ(z−1

i , zi)
∗#1,

(aj#1)(1#zi) = aj#zi,

(1#zi)(a0σ(z−1
i , zi)

∗#z−1
i ) = (zi . a0σ(z−1

i , zi)
∗σ(zi, z

−1
i ))#1 = (zi . a0)#1,

(1#zi)(aj#1) = (zi . aj)#zi.

Let bA the Hochschild boundary operator on the Hochschild complex C•(A,A ⊗ A◦). Then we

prove that bA(c ×σ c
(i)
H ) = 0. First of all we introduce the following notation: accordingly to

(7.5.4) we can write c×σ c
(i)
H as

c×σ c
(i)
H =

p+1∑
j=1

cj .

We compute now each bAcj . For c1 we have:

bAc1 =
∑

((a0#1)⊗ (b◦0#1))⊗ a1#1⊗ · · · ⊗ ap#1

−
∑

((a0σ(z−1
i , zi)

∗#z−1
i )⊗ (b◦0#1))⊗ (zi . a1)#zi ⊗ a2#1⊗ · · · ⊗ ap#1

+

p−1∑
k=1

∑
(−1)k+1((a0σ(z−1

i , zi)
∗#z−1

i )⊗ (b◦0#1))⊗ 1#zi ⊗ · · · ⊗ akak+1#1⊗ · · · ⊗ ap#1

+
∑

(−1)p+1((apa0σ(z−1
i , zi)

∗#z−1
i )⊗ (b◦0#1))⊗ 1#zi ⊗ a1 ⊗ · · · ⊗ ap−1.

(7.5.6)

Next we compute bAcj for j = 2, . . . , p. We obtain, using the twisted module condition and the

unitarity of σ(z−1
i , zi),

bAcj =
∑

(−1)j−1((a0a1σ(z−1
i , zi)

∗#z−1
i )⊗ (b◦0#1))⊗ (zi . a2)#1⊗ · · ·

· · · ⊗ (zi . aj−1)#1⊗ 1#zi ⊗ aj#1⊗ · · · ⊗ ap

+

j−2∑
k=1

(−1)k(−1)j−1((a0σ(z−1
i , zi)

∗#z−1
i )⊗ (b◦0#1))⊗ (zi . a1)⊗ · · ·
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· · · ⊗ (zi . akak+1)#1⊗ · · · ⊗ (zi . aj−1)#1⊗ 1#zi ⊗ aj#1⊗ · · · ⊗ ap#1

+
∑

((a0σ(z−1
i , zi)

∗#z−1
i )⊗ (b◦0#1))⊗ (zi . a1)#1⊗ · · ·

· · · ⊗ (zi . aj−1)#zi ⊗ aj#1⊗ · · · ⊗ ap#1

−
∑

((a0σ(z−1
i , zi)

∗#z−1
i )⊗ (b◦0#1))⊗ (zi . a1)#1⊗ · · · (7.5.7)

· · · ⊗ (zi . aj−1)#1⊗ (zi . aj)#zi ⊗ aj+1#1⊗ · · · ⊗ ap#1

+

p−1∑
k=j

(−1)k+1(−1)j−1((a0σ(z−1
i , zi)

∗#z−1
i )⊗ (b◦0#1))⊗ (zi . a1)#1⊗ · · ·

· · · ⊗ (zi . aj−1)#1⊗ (zi . aj)#zi ⊗ aj+1#1⊗ · · · ⊗ ap
+
∑

(−1)p+1(−1)j−1((apa0σ(z−1
i , zi)

∗#z−1
i )⊗ (b◦0#1))⊗ (zi . a1)#1⊗ · · ·

· · · ⊗ (zi . aj−1)#1⊗ 1#zi ⊗ aj#1⊗ · · · ⊗ ap−1#1.

Finally,

bAcp+1 =
∑

(−1)p((a0a1σ(z−1
i , zi)

∗#z−1
i )⊗ (b◦0#1))⊗ (zi . a2)#1⊗ · · · ⊗ (zi . ap)#1⊗ 1#zi

+

p−1∑
k=1

∑
(−1)k(−1)p((a0σ(z−1

i , zi)
∗#z−1

i )⊗ (b◦0)#1))⊗ (zi . a2)#1⊗ · · ·

· · · ⊗ (zi . ajaj+1)⊗ · · · ⊗ (zi . ap)⊗ 1#zi

+
∑

((a0σ(z−1
i , zi)

∗#z−1
i )⊗ (b◦0)#1))⊗ (zi . a2)#1⊗ · · · ⊗ (zi . ap)#zi

−
∑

(((zi . a0)#1)⊗ (b◦0#1))⊗⊗(zi . a2)#1⊗ · · · ⊗ (zi . ap)#1

(7.5.8)

Now, the first line of (7.5.6) cancels out with the last of (7.5.8), due to the H-invariance of c.

Next, the terms containing a factor (zi . u
kak)#zi in (7.5.7) and (7.5.8) sum to zero. What

remains is nothing else than bBc ×σ c
(i)
H , which is zero since c is a cycle and the twisted shuffle

product is linear (lemma 7.5.3).

Before going on we notice the following fact.

Lemma 7.5.6. If c is H-invariant then so is c×σ c(i)
H , for any i = 1, . . . , n.

Now, given an orientation p-cycle cB for the spectral triple (B,H, D, J, γ), we can iterate the

twisted shuffle product to obtain a Hochschild (p+ n)-chain cA:

cA = ν−1
p,n

(((
(cB ×σ c

(1)
H )×σ c

(2)
H

)
×σ · · ·

)
×σ c

(n)
H

)
, (7.5.9)

where νp,n is the normalization factor [DS13a] (λn is the phase which enters in the definition of

γ2m+1, see above)

νp,n = λ∗n
(p+ n)!

p!
.

Corollary 7.5.7. If cB is H-invariant then cA is a Hochschild (p+ n)-cycle over A with values

in A⊗A◦.
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Proof. Due to lemma 7.5.6 we can iterate proposition 7.5.5.

Now we compute πD̂(cA). We begin proving the following preparatory result.

Lemma 7.5.8. For i = 1, . . . , n, the representation on H′ of the Hochschild (p + 1)-cycle is

cB ×σ c(i)
H ) is given by:

πD̂(cB ×σ c(i)
H ) = (p+ 1)γi(γ2m+1)pγ.

Proof. Consider a vector v ⊗ ek ∈ H′. Using the definition of πD̂ we get:

πD̂(cB ×σ c
(i)
H )(v ⊗ ek) =

∑
π̂(a0σ(z−1

i , zi)
∗#z−1

i )Ĵ π̂(b∗0#1)Ĵ−1[D̂, π̂(1#zi)]

· [D̂, π̂(a1#1)] · · · [D̂, π̂(ap#1)](v ⊗ ek)

+

p∑
j=2

∑
(−1)j−1π̂(a0σ(z−1

i , zi)
∗#z−1

i )Ĵ π̂(b∗0#1)Ĵ−1[D̂, π̂((zi . a1)#1)]

· · · [D̂, π̂((zi . aj−1)#1)][D̂, π̂(1#zi)][D̂, π̂(aj#1)]

· · · [D̂, π̂(ap#1)](v ⊗ ek)

+
∑

(−1)pπ̂(a0σ(z−1
i , zi)

∗#z−1
i )Ĵ π̂(b∗0#1)Ĵ−1[D̂, π̂((zi . a1)#1)]

· · · [D̂, π̂((zi . ap)#1)][D̂, π̂(1#zi)](v ⊗ ek)

(7.5.10)

Let us compute the first line of equation (7.5.10). Using the definition of π̂ and of D̂ we get:∑
π̂(a0σ(z−1

i , zi)
∗#z−1

i )Ĵ π̂(b∗0#1)Ĵ−1[D̂, π̂(1#zi)]

· [D̂, π̂(a1#1)] · · · [D̂, π̂(ap#1)](v ⊗ ek)

=
∑[

π◦(b0)π(a0σ(z−1
i , zi)

∗)π◦(σ(z−1
i , zk+fi))(z−1

i . γiπ◦(σ(zi, z
k))(zi . (γ2m+1)p

· [D,π(a1)] · · · [D,π(ap)]v))

]
⊗ ek

=
∑

γi(γ2m+1)p
[
π◦(b0)π(a0)π(σ(z−1

i , zi)
∗)π◦((z−1

i . σ(zi, z
k))σ(z−1

i , zk+fi))

· (z−1
i . zi . [D,π(a1)] · · · [D,π(ap)]v)

]
⊗ ek

= γi(γ2m+1)p
[
π(σ(z−1

i , zi)
∗)π◦(σ(z−1

i , zi))(z
−1
i . zi . [D,π(a1)] · · · [D,π(ap)]v)

]
⊗ ek

= γi(γ2m+1)p
(
π(σ(z−1

i , zi)
∗)σ(z−1

i , zi)γv
)
⊗ ek

= γi(γ2m+1)pγv ⊗ ek
(7.5.11)

Here fi denotes the element of Zn defined by (fi)j = δij . In the computation we used the twisted

module condition, the unitarity of σ(z−1
i , zi) and the fact that cB is an orientation cycle for the

triple over B, which implies that πD(cB) = γ (if p is odd, γ = id). Next we compute the second
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line of equation (7.5.10).

p∑
j=2

∑
(−1)j−1π̂(a0σ(z−1

i , zi)
∗#z−1

i )Ĵ π̂(b∗0#1)Ĵ−1[D̂, π̂((zi . a1)#1)]

· · · [D̂, π̂((zi . aj−1)#1)][D̂, π̂(1#zi)][D̂, π̂(aj#1)] · · · [D̂, π̂(ap#1)](v ⊗ ek)

=

p∑
j=2

∑
(−1)j−1π◦(b0)π(a0σ(z−1

i , zi)
∗)(γ2m+1)j−1γi(γ2m+1)p−j+1

· π◦(σ(z−1
i , zk+fi))

[
z−1
i . [D,π(zi . a1)] · · · [D,π(zi . aj−1)]

· π◦(σ(zi, z
k)) (zi . [D,π(aj)] · · · [D,π(ap)]v)

]
⊗ ek

=

p∑
j=2

∑
γi(γ2m+1)pπ◦(b0)π(a0σ(z−1

i , zi)
∗)π◦(σ(z−1

i , zk+fi))[D,π(z−1
i . zi . a1)] · · ·

· · · [D,π(z−1
i . zi . aj−1)]π◦(z−1

i . σ(zi, z
k))
(
z−1
i . zi . [D,π(aj)] · · · [D,π(ap)]v

)
⊗ ek

=

p∑
j=2

∑
γi(γ2m+1)pπ◦(b0)π(a0σ(z−1

i , zi)
∗)π◦(σ(z−1

i , zk+fi))[D,π(z−1
i . zi . a1)]

· · · [D,π(z−1
i . zi . aj−1)]π◦(σ(z−1

i , zk+fi)∗)π◦(σ(z−1
i , zi))

·
(
z−1
i . zi . [D,π(aj)] · · · [D,π(ap)]v

)
⊗ ek

(7.5.12)

Using the unitarity of σ(zr, zs), the twisted module condition and the first order condition, we

can rewrite (7.5.12) in the following way.

p∑
j=2

∑
γi(γ2m+1)pπ◦(b0)π(a0σ(z−1

i , zi)
∗)[D,π(z−1

i . zi . a1)]

· · · [D,π(z−1
i . zi . aj−1)]π(σ(z−1

i , zi))[D,π(aj)] · · · [D,π(ap)]v ⊗ ek

=

p∑
j=2

∑
γi(γ2m+1)pπ◦(b0)π(a0σ(z−1

i , zi)
∗)π(σ(z−1

i , zi))

· [D,π(a1)] · · · [D,π(aj−1)][D,π(aj)] · · · [D,π(ap)]v ⊗ ek

=

p∑
j=2

∑
γi(γ2m+1)pπ◦(b0)π(a0)[D,π(a1)] · · · · · · [D,π(ap)]v ⊗ ek

= γi(γ2m+1)pγv ⊗ ek.

(7.5.13)

In the same way one can see that also the last line of equation (7.5.10) is equal to γi(γ2m+1)pγv⊗ek.
This concludes the proof of the proposition.

Proposition 7.5.9. For n = 2m we have: πD̂(cA) = γ̂.

Proof. Let p be odd. Then γ̂ = id, (γ2m+1)p = γ2m+1, γ = id. Iterating the result of lemma 7.5.8
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we get:

πD̂(cA) = λ∗nγ
2m · · · γ1γ2m+1γ = γ2m+1γ2m+1 = id = γ̂.

For p even, instead, we have γ̂ = γ2m+1, (γ2m+1)p = id. Which implies that

πD̂(cA) = λ∗nγ
2m · · · γ1γ = γ2m+1γ = γ̂.

We are left with the n = 2m+1 case. If p is even than the Dirac operator is the same as in the

previous discussion and so lemma 7.5.8 still holds. Hence we can take cA as defined by equation

(7.5.9) and, with a computation similar to that of proposition 7.5.9, we obtain the following.

Proposition 7.5.10. Let p be even and let n = 2m+ 1. Let cA be as in (7.5.9). Then πD̂(cA) =

γ̂ = id.

Let us consider now the case when both n and p are odd. The Dirac operator is given by

D̂ = D ⊗ σ1 +
n∑
j=1

γjδj ⊗ σ2,

while the Z2 grading is simply given by γ̂ = id⊗σ3. Then, with a computation similar to that of

lemma 7.5.8, we can prove the following lemma.

Lemma 7.5.11. For i = 1, . . . , n, the representation on H′′ = H′⊗C2 of the Hochschild (p+ 1)-

cycle cB ×σ c(i)
H is given by:

πD̂(cB ×σ c(i)
H ) = (p+ 1)γiσ2(σ1)p.

Iterating this result we get:

Proposition 7.5.12. Let c′A be defined by

c′A = µ−1
p,n

(((
(cB ×σ c(1)

H )×σ c(2)
H

)
×σ · · ·

)
×σ c(n)

H

)
, (7.5.14)

where µp,n is the normalization factor

νp,n = −iλ∗n
(p+ n)!

p!
.

Then we have πD̂(c′A) = γ̂.
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CHAPTER 8

Quantum principal G-bundles and gauge theories

In the previous chapters we discussed various aspects of noncommutative principal Tn-bundles. In

particular, we focused our attention to bundles with differential calculus compatible with the de

Rham calculus on Tn, showing how this property allows a description of strong connections more

close to the classical one; indeed, a Tn-connection over a bundle of this kind can be described by a

family of n 1-forms over the total space of the bundle, which corresponds to the classical picture

of a connection as a tn-valued 1-form over the total space, where tn is the Lie algebra of Tn.

Moreover, we have introduced a way to construct spectral triples over cleft Tn-bundles defining

a Dirac calculus compatible with the de Rham calculus on Tn. This provides a way to put a

structure of quantum principal Tn-bundle over cleft O(Tn)-extensions (with suitable properties).

In this chapter we shall extend – partially – these results to noncommutative principal G-

bundles, G being a compact connected semisimple Lie group. First of all, we shall discuss the

structure of quantum principal G-bundles with calculus compatible with the de Rham calculus

on G. Next, we shall consider cleft extensions and, under suitable hypotheses, we shall work

out a construction of a real spectral triple whose Dirac operator determines a first order differ-

ential calculus compatible with the de Rham calculus. Finally, we shall introduce twisted Dirac

operators and study their behaviour under gauge transformations.

8.1 Quantum principal G-bundles: definition, general properties

and strong connections

In chapter 4 we gave a characterization of quantum principal Tn-bundles. In this section we

will extend this analysis to the more general case of quantum principal bundles whose “structure

group” (which, we recall, is actually a Hopf algebra) is the algebra of smooth functions over a

(compact, semisimple, connected) Lie group G. In particular we shall relate strong connections

to the usual concept of (gauge) connections on a principal G-bundle, i.e. to g-valued 1-forms

(here g denotes the Lie algebra of G).

173



8. Quantum principal G-bundles and gauge theories

8.1.1 The algebra H = C∞(G) and its differential calculus

Let G be a compact connected semisimple Lie group of dimension n, g be its Lie algebra, and

consider the algebra C∞(G) of (complex) smooth functions on G. Let {Xj} be any linear basis

of g; each Xj is a (left invariant) vector field on G, so it acts as a derivation on C∞(M). In

particular, we recall that its action can be written in the following way:

Xj(f) =
d

dt
Rexp tXj (f)

∣∣∣∣
t=0

, (8.1.1)

where Rg is the right regular representation of G on C∞(G), (Rgf)(h) = F (hg) and exp is the

exponential map of G. Then we can define a family of seminorms on C∞(G): for any r ∈ Nn and

any f ∈ C∞(G) we set

pn(f) = sup
g∈G
|Xr1

1 · · ·X
rn
n (f)(g)|.

Proposition 8.1.1. C∞(G) is a nuclear Fréchet algebra with respect to the locally convex topology

defined by the seminorms pn.

Proof. It follows from corollary B.3.8.

Corollary 8.1.2. There is an isomorphism of Fréchet algebras C∞(G)⊗C∞(G) ' C∞(G×G).

Proof. See proposition B.3.9.

Now let H = C∞(G) and consider the maps ∆ : H → H⊗H ' C∞(G × G), S : H → H,

ε : H → C defined as follows (for f ∈ H, g, g′ ∈ G):

∆(f)(g, g′) = f(gg′),

S(f)(g) = f(g−1),

ε(f) = f(e),

where e ∈ G is the identity element.

Proposition 8.1.3. The maps ∆, S, ε are continuous maps.

Proof. The proof that S and ε are continuous is straightforward. Let us prove, instead, that ∆

is continuous. The Lie algebra of G×G is simply g⊕ g. Hence, given a linear basis {Xj}j=1,...n

of g, we can consider the following basis of g ⊕ g: {Y1, . . . , Yn, Z1, . . . , Zn}, with Yj = Xj acting

on the first factor and Zj = Xj acting on the second factor. Then the topology of C∞(G×G) is

defined by the seminorms

qI,J(f) = sup
(g,h)∈G×G

Yi1 · · ·YirZj1 · · ·Zjs(f)(g, h)|,

where I = {i1, . . . , ir}, J = {j1, . . . , js}. Take now f ∈ H; then ∆(f) can be seen as an element
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of C∞(G×G) and we have, for any g, h ∈ G,

(Xi∆(f))(g, h) =
d

dt
f(getXih)

∣∣∣∣
t=0

=
d

dt
f(ghh−1etXih)

∣∣∣∣
t=0

=
d

dt
f(ghetAdh−1 (Xi))

∣∣∣∣
t=0

(8.1.2)

where eX is the exponential map. Hence, if we denote by Rji (g) the matrix elements of the adjoint

representation of G on g, we have:

(Xi∆(f))(g, h) =
d

dt
f(ghet

∑
j R

j
i (h
−1)Xj )

∣∣∣∣
t=0

=
∑
j

(Rji (h
−1)Xjf)(gh). (8.1.3)

By iterating this procedure, then, we obtain the following relation (we use here Einstein conven-

tion: the sum over repeated indices is understood):

Y r1
i1
· · ·YirZj1 · · ·Zjs(∆(f))(g, h)

= [Rk1
i1

(h−1) · · ·Rkrir (h−1)Xk1 · · ·XkrXj1 · · ·Xjs(f)](gh)
(8.1.4)

Using (8.1.4) we can perform the following estimate.

qI,J(∆(f)) = sup
(g,h)∈G×G

|Yi1 · · ·YirZj1 · · ·Zjs(f)(g, h)|

= sup
(g,h)∈G×G

|[Rk1
i1

(h−1) · · ·Rkrir (h−1)Xk1 · · ·XkrXj1 · · ·Xjs(f)](gh)|

≤ sup
(g,h)∈G×G

|Rk1
i1

(h−1)| · · · |Rkrir (h−1)| · |[Xk1 · · ·XkrXj1 · · ·Xjs(f)](gh)|

(8.1.5)

Each Rji is a smooth function on G. So, if we denote by ‖·‖∞ the sup norm on C∞(G), we obtain,

from (8.1.6),

qI,J(∆(f)) ≤ ‖Rk1
i1
‖∞ · · · ‖Rkrir ‖∞ ·

(
sup

(g,h)∈G×G
|Xk1 · · ·XkrXj1 · · ·Xjs(f)(gh)|

)
. (8.1.6)

In particular we have shown that qI,J ◦∆ is less or equal than a finite multiple of a continuous

seminorm on H. Therefore (see proposition B.2.7, proposition B.2.8 and remark B.2.9) it is a

continuous seminorm. It follows (see theorem B.2.10) that ∆ is a continuous map.

The next step toward the definition of quantum principal G-bundles is the choice of a first

order differential calculus on the algebra H = C∞(G). The most natural choice is to consider

the de Rham calculus Ω1(H) = Ω1
dR(H). It is [Wor89] the bicovariant calculus defined by1 the

adR-invariant ideal Q = (ker ε)2. Indeed, the de Rham calculus can be characterized in the

following way. Let {Tj} be a linear basis of g and let {εj} be the dual basis of g∗. Since the

space of sections on the cotangent bundle T ∗G can be identified with C∞(G)⊗g∗, the (de Rham)

1See theorem 2.3.31.
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8. Quantum principal G-bundles and gauge theories

exterior differential dG on G can be described as follows:

dG(f) =
∑
j

Tj(f)εj .

Here Tj is seen as a (left invariant) vector field on G, and so it is clear which is its action on f

(in particular, it is given by (8.1.1)). It follows that we can write Tj(f) as:

Tj(f) = f(1) · (df(2))e(Tj).

Consider now a universal one form η =
∑
adb ∈ Ω1H. If we impose η = 0 in Ω1

dR(H) we obtain:∑
j

∑
ab(1)(db(2))e(Tj)ε

j = 0.

Since the εj are linearly independent, this means that
∑
ab(1)(db(2))e(Tj) = 0 for any j. Now, η

can be seen as an element of H ⊗H: η = a⊗ b− ab⊗ 1. Hence2, r(η) =
∑
ab(1) ⊗ b(2) − ab⊗ 1.

If now we apply (id⊗ eve) ◦ (id⊗ d) to r(η) we obtain:

(id⊗ eve) ◦ (id⊗ d) ◦ r(η) =
∑

ab(1)(db(2))e(Tj) = 0.

That is, r(η) ∈ H ⊗ Q. Conversely, it is straightforward to check that r−1(H ⊗ Q) is contained

in the sub-bimodule N defining the de Rham calculus Ω1
dR(H).

We conclude this section with the following observation: since Q is defined by two closed

conditions (f(e) = 0, (df)e = 0), it is a closed ideal of H. In particular, since H is a Fréchet

algebra, Q is a Fréchet space.

8.1.2 Quantum principal G-bundles

Now we can give the definition of quantum principal G-bundles. Here and in the following sections

H will denote the Fréchet algebra C∞(G), with G a compact connected semi-simple Lie group of

dimension n.

Definition 8.1.4. Let A be a Fréchet algebra and an H-comodule algebra. Assume that the

coaction ∆R : A → A ⊗ H is a continuous3 map. Let N ⊆ A ⊗ A be a sub-bimodule defining

a first order differential calculus Ω1(A). Then A is called a quantum principal G-bundle if

(A, H,∆R, N,Q), where Q = (ker ε)2, is a quantum principal bundle4.

Consider now a principal extension B ↪→ A (with continuous coaction) with respect to the Hopf

algebra H. We know that it is a quantum principal bundles with the universal calculus (both on

A and on H). A natural question is the following one: which are the conditions on a differential

calculus Ω1(A) = Ω1A/N which make (A, H,∆R, N,Q) a quantum principal G-bundle? The

answer is the content of the proposition below. Before stating it we need to introduce an action

2For the definition of the map r see equation (2.3.4).
3With respect to the projective topology (see appendix B) on A⊗H.
4In the sense of definition 4.3.1.
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of the Lie algebra g on the algebra A. It is defined as follows: for X ∈ g and a ∈ A,

X(a) = a(0)a(1)(X), (8.1.7)

where, for f ∈ H, we set

f(X) = X(f)(e) =
d

dt
f(exp tX)|t=0. (8.1.8)

Proposition 8.1.5. Let A be a principal H-comodule algebra, with invariant subalgebra B and

continuous coaction ∆R, and let Ω1(A) be an H-covariant first order differential calculus, defined

by a sub-bimodule N ⊂ A ⊗ A. Then (A, H,∆R, N,Q) is a quantum principal G-bundle if the

following hold:

(i) for any j = 1, . . . ,dim G,∑
adb = 0 in Ω1(A) ⇒

∑
aTj(b) = 0; (8.1.9)

(ii) let η ∈ Ω1A, η =
∑
adb. Then;∑

aTj(b) = 0 ∀j = 1, . . . ,dim G ⇒ [η]N ∈ AΩ1(B)A. (8.1.10)

Here {Tj} is any linear basis of the Lie algebra g.

Proof. We check properties (i)-(iv) of definition 4.3.1. (i) is trivially satisfied, since we assumed

A to be a principal comodule algebra. Also (ii) is fulfilled: indeed, the covariance of the calculus

implies that N is right H-equivariant. Let us check property (iii). Let η ∈ Ω1A be zero in Ω1(A).

That is, it is an element of N . We can write η as η =
∑
p⊗ q − pq ⊗ 1. Then an element f ∈ H

belongs to Q iff f(e) = 0, (df)e = 0. Hence, an element ξ of A⊗H belongs to A⊗Q iff
(id⊗ eve)TR(ξ) = (id⊗ ε)TR(ξ) = 0,

((id⊗ eve) ◦ (id⊗ d) ◦ TR)(ξ) = ((id⊗ ε) ◦ (id⊗ d) ◦ TR)(ξ) = 0.

(8.1.11)

The form η trivially satisfies the first of (8.1.11). Indeed,

(id⊗ ε)TR(η) = pq(0)ε(q(1))− pq = pq − pq = 0.

Next, by direct computation we obtain:

((id⊗ ε) ◦ (id⊗ d) ◦ TR)(η) = (id⊗ ε)
(∑∑

j

pq(0) ⊗ q(1)q(2)(Tj)ε
j

)
=
∑∑

j

pq(0) ⊗ q(1)(Tj)ε
j =

∑
j

∑
pq(0)q(1)(Tj)⊗ εj

(8.1.12)

Here {εj} is the dual basis of {Tj}. But now
∑
pq(0)q(1)(Tj) =

∑
pTj(q) = 0 by hypothesis; hence

also (8.1.12) is equal to zero. It follows that TR(η) belongs to A⊗Q.

In order to conclude the proof of the proposition we need only to show that also property (iv)

is fulfilled. Take η ∈ Ω1A, η =
∑
adb, such that T (η) = 0. Since η can be written, as an element
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of A⊗A, as η =
∑

(a⊗ b− ab⊗ 1), we obtain:

TR(η) =
∑

(ab(1) ⊗ b(2) − ab⊗ 1).

Now, T (η) = 0 means that TR(η) belongs to A⊗Q. Imposing this condition we obtain:{
(id⊗ eve)TR(η) = 0,

(id⊗ eve) ◦ (id⊗ d)TR(η) = 0.
(8.1.13)

From the second of (8.1.13) we get, then,∑
j

∑
ab(1)Tj(b(2))⊗ εj = 0.

But the εj , since they form a frame for the cotangent bundle of G, are linearly independent, so

we obtain that: ∑
ab(1)Tj(b(2)) = 0

for any j = 1, . . . ,dim G. Condition (ii) of the thesis of this proposition now implies that [η]N

belongs to AΩ1(B)A. Hence ker(T ) ⊆ AΩ1(B)A; that is, also condition (iv) of definition 4.3.1 is

fulfilled.

We can also prove the converse. That is,

Proposition 8.1.6. Let (A, H,∆R, N,Q) be a quantum principal G-bundle. Then (8.1.9) and

(8.1.10) hold.

Proof. Take η ∈ N (that is, η = 0 in Ω1(A)) and write it as η =
∑
a⊗ b−ab⊗1. Then condition

(iii) of definition 4.3.1 implies that TR(η) ∈ A⊗Q; that is, (id⊗ eve) ◦ (id⊗d)TR(η) = 0. Making

this condition explicit, we obtain:

0 = (id⊗ eve) ◦ (id⊗ d)TR(η) = (id⊗ eve) ◦ (id⊗ d)

(∑
ab(1) ⊗ b(2) − ab⊗ 1

)
=
∑
j

∑
ab(1)b(2)(Tj)⊗ εj =

∑
j

∑
aTj(b)⊗ εj .

Since the εj are linearly independent, this implies that
∑
aTj(b) = 0 for any j = 1, . . . ,dim G.

So we have proved (8.1.9).

The computation above shows also that, for any η ∈ Ω1A, η =
∑
adb, TR(η) belongs to A⊗Q

if
∑
aTj(b) = 0 for any j. But this means that if this condition holds, T (η) = 0. From condition

(iv) of definition 4.3.1, this implies that [η]N ∈ AΩ1(B)A. So we have proved also (8.1.10).

8.1.3 Strong connections over quantum principal G-bundles

The next step in the study of quantum principal G-bundles is the characterization of strong

connections. We begin introducing the following definition. Here and in the rest of this section

178



8.1. Quantum principal G-bundles: definition, general properties and strong connections

(A, H,∆R, N,Q) will denote a quantum principal G-bundle. Moreover, we assume dim(G) = n

and we fix a linear basis T1, . . . , Tn of the Lie algebra g.

Definition 8.1.7. A strong G-connection for the G-bundle A is a family ω1, . . . , ωn of 1-forms

ωi ∈ Ω1(A) such that:

(i) for any j = 1, . . . , n and for any g ∈ G,

ωj(0)ω
j
(1)(g) = Rjk(g)ωk,

where R is the adjoint representation of G on g;

(ii) for any j, k = 1, . . . , n, if ωj =
∑
pjdqj, then∑

pjTk(q
j) = δjk,

where Tk(a) = a(0)a(1)(Tk), for any a ∈ A;

(iii) ∀a ∈ A, da−
∑

j a(0) · a(1)(Tj)ω
j ∈ Ω1(B)A, where B is the invariant subalgebra of A.

Proposition 8.1.8. Let {ωi} be a strong G-connection over the bundle A. Then the map ω :

H → A, defined by

ω(h) =
n∑
j=1

h(Tj)ω
j , (8.1.14)

is a strong connection (form), in the sense of definition 4.3.6.

Proof. We check (i)-(iv) of definition 4.3.6. Let us begin by proving that (i) is fulfilled by ω. Of

course, ω(1) = 0. Next, take h ∈ Q. This means that h(e) = 0 and (dh)e = 0. Hence, for any

j = 1, . . . , n,

h(Tj) =
d

dt
h(exp tTj)

∣∣∣∣
t=0

= (dh)e(Tj) = 0.

That is, ω(h) = 0, and so ω(Q) = 0. Now we consider condition (ii), that is the covariance with

respect to the right adjoint coaction. Let h ∈ H and g ∈ G. Then we have:

(id⊗ evg) ◦ (ω ⊗ id) ◦ adR(h) = ω(h(2))⊗ h(1)(g
−1)h(3)(g)

=

n∑
j=1

h(1)(g
−1)h(2)(Tj)h(3)(g)ωj

=

n∑
j=1

d

dt
h(g−1 · exp(tTj) · g)ωj

= f(AdgTj)ω
j =

n∑
j,k=1

h(Tk)R
k
j (g−1)ωj ,

(8.1.15)

where R is the adjoint representation of G on g. From the other side of the equation which defines

property (ii), instead, we obtain:

(id⊗ evg) ◦∆R ◦ ω(h) =
n∑
j=1

h(Tj)ω
j
(0)ω

j
(1)(g) (8.1.16)
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It is clear that equations (8.1.15) and (8.1.16) are equal if and only if

ωj(0)ω
j
(1)(g) =

n∑
k=1

Rjk(g)ωk,

which is exactly condition (i) of definition 8.1.7. Since condition (iv) of definition 4.3.6 follows

directly from (iii) of definition 8.1.7, we are left with the proof of condition (iii).

Write each ωj , seen as an element of A⊗A, as ωj =
∑
pj ⊗ qj − pjqj ⊗ 1. Hence we obtain,

for any h ∈ H,

TR(ω(h)) =
∑
j

∑
h(Tj)

(
pjqj(0) ⊗ q

j
(1) − p

jqj ⊗ 1
)
. (8.1.17)

On the other side, we have also:

(1⊗ (id− ε))(h) = 1⊗ (h− h(e)). (8.1.18)

In order to prove condition (iii) we have to show that the difference between (8.1.17) and (8.1.18)

belongs to A ⊗ Q, and so is zero in A ⊗ H/Q. This means that it must vanish at e, and its

differential must vanish, too. More precisely, we have to show that:
(id⊗ eve)

[∑
j

∑
h(Tj)

(
pjqj(0) ⊗ q

j
(1) − p

jqj ⊗ 1
)
− 1⊗ (h− h(e))

]
= 0,

(id⊗ (eve ◦ dG))
[∑

j

∑
h(Tj)

(
pjqj(0) ⊗ q

j
(1) − p

jqj ⊗ 1
)
− 1⊗ (h− h(e))

]
= 0.

(8.1.19)

The first of (8.1.19) is trivially fulfilled. Let us look at the second one. We can rewrite it as:

(id⊗ eve)

∑
j,k

∑
h(Tj)p

jqj(0)q
j
(1)(Tk)⊗ ε

k −
∑
k

h(Tk)⊗ εk


where, we recall, {εk} is the basis of g∗ dual to {Tk}. Relabelling the indices, we obtain:

(id⊗ eve)

∑
k

h(Tj)

∑
j

∑
pkqk(0)q

k
(1)(Tj)⊗ ε

k − 1⊗ εj


=
∑
k

h(Tk)

∑
j

∑
pkTj(q

k)− 1

⊗ εj ,
which is zero due to condition (ii) of definition 8.1.7.

Now we could ask ourself if the converse holds. That is, given a strong connection ω (in

the sense of definition 4.3.6), does it come from a family of 1-forms {ωi} defining a strong G-

connection?

Proposition 8.1.9. Let ω : H → Ω1(A) be a strong connection (form) over the quantum principal

G-bundle A. Then ω is defined by a strong G-connection {ωi}, as in proposition 8.1.8.
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Proof. Let Q be the ideal defining the de Rham differential calculus on H. Then Q can be

identified with the ideal of functions on G vanishing at e with differential vanishing at e, too. By

hypothesis, ω(C) = 0, ω(Q) = 0. In particular, given f, f ′ ∈ H with (df)e = (df ′)e, this means

that ω(f − f ′) = 0. Hence ω(f) depends only on the behaviour of f at the identity e ∈ G. It

follows that ω can be seen as a linear map ω : Oe → Ω1A, where Oe is the set of germs of smooth

functions at e (that is, the stalk at e of the sheaf of smooth functions on G). Now, given a germ

[f ] ∈ Oe, we can write each of its representatives as f = f(e) +
∑

j(df)e(Tj)tj + f̃ , where f̃ is a

smooth function with differential vanishing at e and {t1, . . . , tn} is a set of local coordinates at e

(in particular, they are the coordinates associated to the basis {Tj} of g by the exponential map).

Then ω([f̃ ]) = 0, and so ω(f) =
∑

j(df)e(Tj)ω([tj ]). Now it is enough to define ωj = ω([tj ]) to

get

ω(f) =

n∑
j=1

f(Tj)ω
j .

Finally, ωj has to fulfil (i)-(iii) of proposition 8.1.8: from the proof of proposition 8.1.8, indeed,

it is clear that these are not only sufficient but also necessary conditions.

A nice corollary of the discussion above is the following property of a strong connection over a

quantum principal G-bundle (which can be deduced from the proof of the previous proposition).

Corollary 8.1.10. Let ω : H → Ω1(A) be a strong connection for the quantum principal G-bundle

A. Then ω satisfies the following Leibniz rule:

ω(fg) = ε(g)ω(f) + ε(f)ω(g) = g(e)ω(f) + f(e)ω(g),

for any f, g ∈ G.

We conclude this section discussing some regularity properties of strong connections over

quantum principal G-bundles. In the definition of a quantum principal G-bundles we required

A to be a locally convex topological algebra. Then we can put the projective topology on the

tensor product A ⊗ A. Since the multiplication map m : A ⊗ A → A is continuous, its kernel

Ω1A = ker(m) is a locally convex vector space and then so is the quotient space Ω1(A) (with the

quotient topology).

Lemma 8.1.11. Each Tj, seen as a linear map A → A, is continuous.

Proof. Tj is continuous as a map H → H (it is a vector field on G). Then, since its action on A
is given by the composition (all the tensor product are endowed with the projective topology)

A ∆R−→ A⊗H
id⊗Tj−→ A⊗H id⊗ε−→ A,

and since the coaction ∆R and the counit ε are continuous maps, it is continuous as a map

Tj : A → A.

Lemma 8.1.12. Each strong connection ω : H → Ω1(A) on a quantum principal G-bundle A is

a continuous map.
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Proof. It is a direct consequence of the continuity of Tj : H → H.

8.2 Spectral triples over cleft Hopf-Galois C∞(G)-extension

Consider a cleft Hopf-Galois C∞(G)-extension B ↪→ A, where A and B are unital ∗-algebras, and

assume that it admits a unitary trivialization φ. Then we know5 that A is isomorphic to the

crossed product B#σC
∞(G), where the cocyle σ : C∞(G)⊗ C∞(G)→ B is given by

σ(h, l) = φ(h(1))φ(l(1))φ
−1(h(2)l(2))

and the weak action of C∞(G) on B by

h . b = φ(h(1))bφ
−1(h(2)).

Consider now a real spectral triple (B,HB, D, J, γ) (with γ = id in the odd dimensional case).

Assume also that it is equivariant with respect to the weak action of H = C∞(G) on B (see

definition 7.2.1). Our aim is, starting from this triple, to construct a spectral triple over the

crossed product algebra A ' B#σH, extending the results of the previous chapter. The first

thing we need is a spectral triple over the Hopf algebra H.

8.2.1 A spectral triple over C∞(G)

Let G be a compact connected Lie group, with Lie algebra g. Assume6 that G admits a bi-

invariant metric which is G-spin; that is, the adjoint representation of G on g lifts to Spin(g).

The tangent bundle TG is trivial; in particular, it is isomorphic to G × g. Moreover, any linear

map γ : g → so(g) determines a left G-invariant metric connection on TG [Sle85, Sle87]. In

particular, we can define a real family of connections by

γa(ξ) = a · adξ, ξ ∈ g, a ∈ R.

In the same way, the spin bundle is isomorphic to G×S, S being a suitable [Sle85] left g-module.

Then each γa lifts to a left G-invariant metric connection on G× S, determined by

γSa : g→ u(S),

γSa (ξ) = a · dρ(ξ),

where ρ : G→ GL(S) is the representation of G on S determined by the lift of the adjoint action

[Sle85, Sle87], and u(S) is the Lie algebra of U(S), the group of unitary transformations of S.

The connection obtained in this way is flat if and only if a = 0 or a = 1. Instead, the case a = 1
2

corresponds to the Levi-Civita connection.

Now, let {Tj} be an orthonormal basis of g (with respect to the hermitian scalar product which

5See proposition 4.4.13 and proposition 4.4.21.
6This is true, e.g., for the groups SU(n), SO(n), Sp(n) [Adams].

182



8.2. Spectral triples over cleft Hopf-Galois C∞(G)-extension

induces the bi-invariant metric on G) and denote by c : g ⊗ S → S the Clifford multiplication

map. Moreover, let r : G ⊗ L2(G, dg) ⊗ S → L2(G, dg) ⊗ S (where dg is the Haar measure on

G) be the map rg(f)(h) = f(gh), for any g, h ∈ G. Then we can write the Dirac operator 6D on

G⊗ S in the following way:

6D =
∑
j

c(Tj)
(
dr(Tj) + γSa (Tj)

)
. (8.2.1)

We recall that, for any (differentiable) S-valued function f , we can write dr(Tj)f(g) as:

dr(Tj)f(g) =
d

dt
f(getTj )

∣∣∣∣
t=0

.

If now we put on S the scalar product induced by the metric tensor associated to the bi-invariant

metric of G, we can consider the Hilbert space HG = L2(G,S). Then 6D extends to a selfadjoint

operator on HG and (H = C∞(G),HG, 6D) is a spectral triple. Moreover, since we assumed G to

be a spin manifold, there exists an antiunitary operator JG and, if G is even dimensional, a Z2-

grading γG on HG such that (H,HG, 6D,JG, γG) is a real spectral triple (if G is odd dimensional,

of course, γG = id). We shall not work out the explicit form of the real structure JG; we simply

notice that, given a vector f ⊗ s (f ∈ C∞(G), s ∈ S) of HG, it must act in the following way:

JG(f ⊗ s) = f∗ ⊗ JSs,

for some antiunitary operator JS . Similarly, the grading γG acts only on S: γG(f ⊗ s) = f ⊗ γSs.

Consider now the (dense) subspace H∞ = H⊗S of HG. Since H = C∞(G) is a Hopf algebra,

we can define in a very natural way both a left and a right coaction of H on H∞. Let us consider

the former, ρL : H∞ → H ⊗H∞, ρL(f ⊗ s) = f(1) ⊗ (f(2) ⊗ s). Then we can prove the following

result.

Proposition 8.2.1. The real spectral triple (H,HG, 6D,JG, γG) is equivariant with respect to the

left H-comodule structure of H (and HG).

Proof. H∞ is clearly a left H-equivariant A-module, stable under the action of 6D. We check

(i)-(iii) of definition 3.5.6. The fact that (ii) and (iii) are satisfied follows from the discussion

above. In the same way, we see that the second part of 6D is equivariant. So it is enough to prove

the proposition in the a = 0 case. But in this case the equivariance follows from the fact that

the left coaction of H on itself associated to the coproduct is the coaction associated to the left

regular representation of G on C∞(G), and the Dirac operator is clearly invariant with respect

to it, since it is defined in terms of the right regular representation.

We conclude this section noticing that, of course, the Dirac operator 6D induces the (bi-

covariant) de Rham differential calculus on G (even if it is only left equivariant and not right

equivariant).
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8.2.2 Spectral triples over B#σC
∞(G)

Now we are ready to construct a spectral triple for the crossed product algebra A = B#σH,

where we have set H = C∞(G). First of all, let us consider the Hilbert space Ĥ = HB ⊗HG and

let us define a representation of A on Ĥ in the following way:

π̂(a#h)(v ⊗ w) = aπ◦(σ(h(2), w(−1)))(h(1) . v)⊗ h(3)w(0) (8.2.2)

for any a ∈ B, h ∈ H, v ∈ HB, w ∈ V , where, we recall, V is the dense subspace of HG introduced

in the previous section.

Proposition 8.2.2. The map π̂ is a ∗-homomorphism from A to the algebra of bounded operators

on Ĥ. Moroever, assume that the cocycle σ satisfies the following condition of boundedness: there

exists C ∈ R+ such that7

‖σ(h, l)‖B ≤ C‖h‖2‖l‖2

for any h, l ∈ H. Then π̂ gives a representation of A on Ĥ by bounded operators.

Proof. The fact that π̂ is an algebra map follows as in proposition 7.3.1. We prove that it respects

the ∗-structure. That is, we have to show that, for any x, v ∈ HB, and any y, w ∈ HG

〈x⊗ y, π̂(a#h)v ⊗ w〉 = 〈π̂((a#h)∗)x⊗ y, v ⊗ w〉 .

Let us compute the two sides separately. The first computation is quite trivial:

〈x⊗ y, π̂(a#h)v ⊗ w〉 =
〈
x, aπ◦(σ(h(2), w(−1)))(h(1) . v)

〉
HB

〈
y, h(3)w(0)

〉
HG

. (8.2.3)

Before computing the r.h.s. we need a lemma.

Lemma 8.2.3. For any y, w ∈ V ⊆ HG we have:

y∗(−1)

〈
y(0), w

〉
HG

= (Sw(−1))
〈
y, w(0)

〉
HG

.

Proof. y∗(−1)

〈
y(0), w

〉
HG

is a smooth section of the spinor bundle of G, hence it can be seen as a

function from G to S. Moreover, we recall that the scalar product on HG is obtained from the L2

scalar product on C∞(G) associated to the Haar measure together with a suitable inner product

〈·, ·〉S on S. Hence if we evaluate y∗(−1)

〈
y(0), w

〉
HG

at a generic point h ∈ G we obtain:

y∗(−1)

〈
y(0), w

〉
HG

(h) =

∫
G
〈y∗(hg), w(g)〉S dg =

∫ 〈
y∗(g), w(h−1g)

〉
S
dg

= w(−1)

〈
y, w(0)

〉
HG

(h−1) = (Sw(−1))
〈
y, w(0)

〉
HG

(h).

7B is a dense subset, by hypothesis, of a C∗-algebra B, and ‖·‖B denotes the induced C∗-norm. ‖·‖2, instead,
denotes the L2-norm on H = C∞(G) ⊆ L2(G, dg).
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Now we come back to the proof of the proposition. Using the lemma above and the properties

of equivariance of the spectral triple over B (see definition 7.2.1) we get:

〈π̂((a#h)∗)x⊗ y, v ⊗ w〉 =
〈
π̂(σ(S−1h(2), h(1))

∗(h∗(3) . a
∗)#h∗(4))x⊗ y, v ⊗ w

〉
=
〈
σ(S−1h(2), h(1))

∗(h∗(3) . a
∗)π◦(σ(h∗(5), y(−1)))(h

∗
(4) . x)⊗ h∗(6)y(0), v ⊗ w

〉
=
〈
σ(S−1h(2), h(1))

∗(h∗(3) . a
∗)π◦(σ(h∗(5), (S

−1h∗(6))(S
−1w∗(−1))))(h

∗
(4) . x)⊗ y, v ⊗ h(7)w(0)

〉
=
〈

(h∗(4) . x)⊗ y, π◦(σ(h∗(5), (S
−1h∗(6))(S

−1w∗(−1)))
∗)(h∗(3) . a

∗)∗σ(S−1h(2), h(1))v ⊗ h(7)w(0)

〉
=
〈

(h∗(4) . x)⊗ y, π◦(σ(h∗(5), (S
−1h∗(6))(S

−1w∗(−1)))
∗)(S−1h(3) . a)σ(S−1h(2), h(1))v ⊗ h(7)w(0)

〉
=

〈
x⊗ y, π◦(h(7) . σ(h∗(8), (S

−1h∗(9))(S
−1w∗(−1)))

∗)

· (h(4) . (S−1h(3) . a))(h(5) . σ(S−1h(2), h(1)))(h(6) . v)⊗ h(10)w(0)

〉
.

(8.2.4)

Using again the properties of equivariance (definition 7.2.1) we see that we can rewrite (8.2.4) in

the following way:

〈π̂((a#h)∗)x⊗ y, v ⊗ w〉 =

=

〈
x⊗ y, π◦(σ(S−1h∗(5), h

∗
(6))
∗)π◦(φ(h(2))φ(w(−2))φ

−1(h(7)w(−1)))

· σ(h(4), S
−1h(5))a(h(1) . v)⊗ h(8)w(0)

〉
.

(8.2.5)

But now from condition (vii) of definition 7.2.1 we see that (8.2.5) reduces to

〈
x⊗ y, π◦(σ(h(2), w(−1)))a(h(1) . v)⊗ w(0)

〉
which is the same as equation (8.2.3). Hence π̂ is a ∗-homomorphism. Finally, we show that each

π̂(a#h) is a bounded operator. We have already pointed out that HH is isomorphic to L2(G)⊗S.

From Peter-Weyl theory [Bump, Waw] we know that the matrix elements of unitary irreducible

representations of G are dense in L2(G); moreover, the functions√
dim(u)uij ,

with u a unitary irreducible representation and uij its matrix elements with respect to some

orthonormal basis, form an orthonormal basis of L2(G). Since ∆(uij) =
∑

k uik ⊗ ukj , we have:

‖∆(uij)‖22 = ‖
∑
k

uik ⊗ ukj‖22 =
∑
k,l

∫
G⊗G

u∗ik(g)u∗kj(g
′)uil(g)ulj(g

′)dgdg′

=

∫
G
u∗ij(g)uij(g)dg = ‖uij‖22.

It follows that ∆ is bounded with respect to the L2-norm (both on H and on H ⊗ H). This
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implies then that also ∆L is bounded. Now, by hypothesis, for any h ∈ H, σ(h, ·) : H → B is

bounded; it follows that σ(h, ·)⊗ id : H ⊗H → B⊗H is bounded, with the same norm as σ(h, ·)
[Ryan]. So (σ(h, ·) ⊗ id) ◦ ∆L is bounded. From this, and from the fact that each h ∈ H acts

on HB as a bounded operator (see definition 7.2.1), it follows that each π̂(a#h) is a bounded

operator.

From now on we shall always assume the cocycle σ to be a bounded map, in the sense of

proposition 8.2.2. The next step is the construction of a Dirac operator. Since the definition

depends on the KR-dimension of the triples involved [DD11], we consider separately the different

cases. In the following we shall denote by j the KR-dimension of the triple over B and by n the

dimension, as smooth manifold, of the Lie group G.

Even-even case

Consider first the case when both j and n are even. This means, in particular, that both the two

Z2-gradings γ and γG are non-trivial. According to [DD11], there are two possible choices for the

Dirac operator on Ĥ:

D̂ = D ⊗ idHG + γ ⊗ 6D,
D̂′ = D ⊗ γG + idHB ⊗ 6D.

(8.2.6)

We shall adopt the first choice, but all the results presented in this chapter can be proved also

under the second one. Indeed, we recall, the two choices are unitarily equivalent, the unitary

transformation being given by

U =
1

2
(id⊗ id + γ ⊗ id + id⊗ γG − γ ⊗ γG).

Proposition 8.2.4. The triple (A, Ĥ, D̂) is a spectral triple. That is, the Dirac operator D̂ is

selfadjoint, it has compact resolvent and all the commutators [π̂(a), D̂], a ∈ A, are bounded.

Proof. The first part of the proof follows from the results in [DD11]. We have only to prove

that D̂ has bounded commutators with all the elements of A. Consider therefore a commutator

[D̂, π̂(a#h)]. It can be written as the sum of two terms. The first one is [D ⊗ idπ̂(a#1)]π̂(1#h)

which is equal to ([D, a] ⊗ id)π̂(1#h), and so is bounded since it is equivalent to the product of

two bounded operators. The action of the second term on a vector v ⊗ w, instead, is given by:

γaπ◦(σ(h(2), w(−1)))(h(1) . v)⊗ [6D,h(3)]w(0).

This shows that also the second term is a bounded operator. Indeed, the commutator of 6D
with any element of H is a bounded operator and so the boundedness of [D̂, π̂(a#h)] follows by

arguments similar to those used in the proof of proposition 8.2.2.

Finally, since the triple so obtained should be even, we must define a Z2-grading. We take it

to be:

γ̂ = γ ⊗ γG.
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Even-odd case

Suppose now, instead, that j is even while n is odd. Now we have only one non-trivial Z2-grading,

so the unique choice for D̂ is:

D̂ = D ⊗ idHG + γ ⊗ 6D (8.2.7)

Obviously, the results of proposition 8.2.4 apply also to this case.

Odd-even case

It is the same situation as in the even odd case: the Dirac operator is taken to be

D̂ = D ⊗ γG + idHB ⊗ 6D (8.2.8)

and the results of proposition 8.2.4 still hold.

Odd-odd case

When both j and n are odd we have to enlarge the Hilbert space: indeed, we take Ĥ = HB ⊗
HG ⊗ C2. The representation π̂ will be, of course, defined in the same way as above, and A will

act trivially on the C2 factor. Finally, the Dirac operator D̂ will be taken equal to:

D̂ = D ⊗ id⊗ σ1 + id⊗ 6D ⊗ σ2. (8.2.9)

It is straightforward to check that the proof of proposition 8.2.4 can be easily adapted to this

case, so we obtain a spectral triple also in this case. Moreover, it should be an even triple and,

indeed, we can define a Z2-grading in the following way:

γ̂ = id⊗ id⊗ σ3.

8.2.3 Real structure and real spectral triples

The construction of a real structure for the triples discussed in the previous sections deserves

a distinguished paragraph. We recall that in the case of quantum Tn bundles we were able to

find a general formula for the real structure. In the more general case of quantum principal

G-bundles, we are able to construct a real structure only when the crossed product algebra A is

actually a smash product; that is, the trivialization φ is an algebra map, so that the cocycle σ is

trivial. We present it only in the even-even case, but the extension to the other three situations

is straightforward.

Consider therefore a cleft extension B ↪→ A with unitary trivialization φ and assume the latter

to be an algebra map. Consider also, as like as above, an H-equivariant even real spectral triple

(B,HB, D, J, γ) of KR-dimension j. We define the following map on Ĥ:

Ĵ(v ⊗ w) = (w∗(−1) . Jv)⊗ JHw(0). (8.2.10)
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Proposition 8.2.5. (A, Ĥ, D̂, Ĵ , γ̂) is an even real spectral triple of KR-dimension j+n, where8

n is the dimension of the Lie group G.

Proof. The proof is a straightforward generalization of the proof of lemma 7.3.3, obtained using

lemma 8.2.3.

Even if we have still not been able to work out a real structure for the general case, we have

proved a partial result, which, after all, is what we need in the rest of this thesis: it is possible

to define, without introducing a real structure, a right action of A on Ĥ (or, equivalently, a

representation of the opposite algebra A◦) commuting with π̂(A). Again, we discuss here only

the even-even case, the extension to the other situations being straightforward. For v ⊗ w ∈ Ĥ
and a#h ∈ A ' B#σH consider the following map:

π̂◦(a#h)v ⊗ w = π◦((w(−2) . a)σ(w(−1), h(1)))v ⊗ w(0)h(2), (8.2.11)

where the right action of H on HH is the same as the left one, since H is commutative and HH
is a space of L2-sections.

Proposition 8.2.6. π̂◦ : A◦ → L(H) is a ∗-algebra map. Moreover, [π̂◦(A◦), π̂(A)] = 0.

Proof. First of all we prove that π̂◦ is an algebra map. That is, we show that:

π̂◦((a#h)(b#l))v ⊗ w = π̂◦(b#l)π̂◦(a#h)v ⊗ w. (8.2.12)

The r.h.s. of equation (8.2.12) is given by:

π̂◦(b#l)π̂◦(a#h)v ⊗ w

= π◦((w(−4) . a)σ(w(−3), h(1))(w(−2)h(2) . b)σ(w(−1)h(3), l(1)))v ⊗ w(0)h(4)l(2).
(8.2.13)

Let us compute the l.h.s. Using the cocycle condition (4.4.4) and the twisted module condition

(4.4.5), we obtain:

π̂◦((a#h)(b#l))v ⊗ w = π̂◦(a(h(1) . b)σ(h(2), l(1))#h(3)l(2))v ⊗ w

= π◦((w(−4) . a)(w(−3) . h(1) . b)(w(−2) . σ(h(2), l(1)))σ(w(−1), h(3)l(2)))v ⊗ w(0)h(4)l(3)

= π◦((w(−4) . a)(w(−3) . h(1) . b)σ(w(−2), h(1))σ(w(−1)h(3), l(1)))v ⊗ w(0)h(4)l(2)

= π◦((w(−4) . a)σ(w(−3), h(1))(w(−2)h(2) . b)σ(w(−1)h(3), l(1)))v ⊗ w(0)h(4)l(2)

(8.2.14)

which is equal to (8.2.13). Hence we have proved (8.2.12). Next we have to show that it is a
∗-algebra map. In particular, it is enough to show that the following holds:

〈x⊗ y, π̂◦(a#h)v ⊗ w〉 = 〈π̂◦((a#h)∗)x⊗ y, v ⊗ w〉 . (8.2.15)

8We recall that we are considering the case when n is even.
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Let us compute the r.h.s. of the equation above. Again using the cocycle condition, the twisted

module condition and the fact that φ is a unitary trivialization, we can show it to be equal to:

〈π̂◦((a#h)∗)x⊗ y, v ⊗ w〉

=
〈
π◦(σ(S−1(h(2)y

∗
(−2)), h(1))

∗(y(−1)h
∗
(3) . a

∗)∗x⊗ y(0)h
∗
(4), v ⊗ w

〉
=
〈
x⊗ y(0)h

∗
(4), π

◦((S−1(h(3)y
∗
(−1)) . a)σ(S−1(h(2)y

∗
(−2)), h(1)))v ⊗ w

〉
.

(8.2.16)

Now, using the result of lemma 8.2.3, we can rewrite (8.2.17) in the following way.

〈π̂◦((a#h)∗)x⊗ y, v ⊗ w〉

=
〈
x⊗ y, π◦((S−1(Sw(−2)) . a)σ(S−1(Sw(1)), h(1)))v ⊗ w(0)h(2)

〉
=
〈
x⊗ y, π◦((w(−2) . a)σ(w(−1), h(1)))v ⊗ w(0)h(2)

〉
= 〈x⊗ y, π̂(a#h)v ⊗ w〉 .

(8.2.17)

Finally, we show that π̂ maps A into its commutant over Ĥ. We have:

π̂◦(a#h)π̂(b#l)v ⊗ w

= π◦((l(3)w(−2) . a)σ(l(4)w(−1), h(1)))bπ
◦(σ(l(2), w(−3)))(l(1) . v)⊗ l(5)w(0)h(2);

(8.2.18)

π̂(b#l)π̂◦(a#h)v ⊗ w

= bπ◦(σ(l(2), w(−3))(l(3)w(−2) . a)σ(l(4)w(−1), h(1)))(l(1) . v)⊗ l(5)w(0)h(2)

(8.2.19)

(in the computation of the second equation we used the twisted module condition and the cocycle

condition). Now, since π◦ maps B into its commutant, equation (8.2.19) is equal to (8.2.18), and

so π̂ maps A◦ (or, equivalently, A) into the commutant of π̂(A).

8.2.4 Quantum principal G-bundles structure

In the case of Tn-bundles we have seen that our construction of a spectral triple over a cleft

Hopf-Galois extension B ↪→ A induces a structure of quantum principal bundle with respect to

the de Rham calculus, the calculus over A being the one determined by the new Dirac operator.

Now we want to see if an analogous result hold for cleft C∞(G)-extensions. We shall discuss only

the even-even case (i.e., we assume the triple over B to be even, and the dimension n of the Lie

group G to be even, too), the extension to the other situations being straightforward.

The Dirac operator D̂ determines a first order differential calculus Ω1
D̂

(A) = Ω1A/ND̂. Since

D̂ acts on HH as the Dirac operator 6D, and since the de Rham calculus on G is bi-covariant,

if the crossed product structure of A is trivial this calculus will be right C∞(G)-equivariant.

In the general case is not so straightforward to see that this still holds; it is instead not so

difficult to obtain a weaker result: from the results in [BM98a] it follows that we can construct a

right equivariant calculus Ω1(A) = Ω1A/N still compatible with the Dirac operator D̂ (that is,

N ⊆ ND̂) and, moreover, with the de Rham calculus on G: indeed, the Dirac operator D̂ can

be seen9 to be the operator associated to the Maurer-Cartan connection θ = φ−1 ∗ dφ, and so

9We shall discuss this aspects later in this chapter.
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applying the construction in [BM98a] with θ as strong connection we obtain a calculus compatible

both with D̂ and with the de Rham calculus on G.

However, for simplicity in the rest of this chapter we shall work under the assumption that

the calculus Ω1
D̂

(A) is right C∞(G)-equivariant.

Lemma 8.2.7. If the representation π̂ is faithful, the differential calculus Ω1
D̂

(A) enjoys properties

(i) and (ii) of proposition 8.1.5.

Proof. Let us begin by showing that (i) is satisfied. Take η =
∑

(a#h)d(b#l) such that πD̂(η) = 0.

This means, in particular, that∑
π̂(a#h)π̂(b#1)[γ ⊗ 6D, π̂(1#l)] = 0.

By direct computation then we obtain:∑∑
j

π̂(a#h)π̂(b#1)
(
π◦(σ(h(2), w(−1)))(l(1) . γv)⊗ c(Tj)l(3)l(4)(Tj)

)
= 0. (8.2.20)

Let us consider now the elements αj =
∑

(a#h)Tj(b#l). Each of them is zero if and only if the

following expression is zero: ∑∑
j

c(Tj)π̂((a#h)Tj(b#l)); (8.2.21)

this follows from the linear independence of the c(Tj) and from the fact that π̂ is faithful. But

now we see that (8.2.21) is equal to the left term of equation (8.2.20), and so it is equal to zero.

Next we have to show that also (ii) is satisfied. So, take η ∈ Ω1A, η =
∑

(a#h)d(b#l), such

that ∑
(a#h)Tj(b#l) = 0 (8.2.22)

for any j = 1, . . . ,dim G. We have to show that [η] belongs to AΩ1(B)A. But this follows from

the fact that (8.2.22) implies that

πid⊗ 6D(η) = 0.

Due to proposition 8.1.5, then, we get the following.

Theorem 8.2.8. Let N be the sub-bimodule of A ⊗ A defining the differential calculus Ω1
D̂

(A)

and let Q = (ker ε)2. Assume that the representation π̂ is faithful. Then (A, H,∆R, N,Q) is a

quantum principal G-bundle.

8.3 Strong connections and twisted Dirac operators

In the previous section we have shown that, under suitable conditions, the differential calculus

associated to the Dirac operator D̂ is compatible with the de Rham calculus on C∞(G), so that

the cleft Hopf-Galois extension B ↪→ A admits a structure of quantum principal G-bundle. In

190



8.3. Strong connections and twisted Dirac operators

particular we can consider strong G-connections on it, and we can use them to build twisted Dirac

operators.

We have proved in proposition 8.2.6 that it is possible to define a structure of A-bimodule

(and, hence, in particular, of right A-module) on Ĥ. Going a little further, we can see that Ĥ
can be identified with (the closure of) H0A, where H0 = HB ⊗ S, the right action of A being

the one defined by π̂◦. So, according with the discussion in section 5.1, we can begin by defining

a D-connection on A. Here we denote by D the Dirac operator D ⊗ idS on H0; we shall do the

same for the real structure: J will actually denote the operator J ⊗ c.c..
So, let us be given a strong connection ω : H → Ω1

D̂
(A), and consider the following map (the

representation π̂ here is understood):

∇ω : A → Ω1
D̂

(A)A,
∇ω(a) = [D̂, a]− a(0)ω(a(1)),

(8.3.1)

where we see Ω1
D̂

(A)A as a space of operators on H. Since ω is strong, ∇ω takes values, actually,

in Ω1
D(B)A. Moreover,

Proposition 8.3.1. ∇ω : A → Ω1
D(B)A is a D-connection.

Proof. We have to show10 that, for any b ∈ B and any a ∈ A,

∇ω(ba) = [D, b]a+ b∇ωa. (8.3.2)

But this follows by direct computation. Indeed, the l.h.s. of (8.3.2) is equal to:

∇(ba) = [D̂, ba]− (ba)(0)ω((ba)(1)) = [D̂, b]a+ b[D̂, a]− ba(0)ω(a(1))

= [D, b]a+ b∇ωa,

where we used the fact that B is the invariant subalgebra of A.

Now we can use ∇ω to build a twisted Dirac operator Dω. According with the discussion in

section 5.1, we set

Dω(ξa) = (Dξ)a+ ξ∇ωa, (8.3.3)

for any ξ ∈ H0, a ∈ A. The right action of Ω1
D(B) on H0 is the one defined by the real structure J .

Although the D-connection ∇ω will in general not be hermitian, in the sense of definition 5.1.2,

we can easily find sufficient conditions on a strong connections ω for which Dω is a selfadjoint

operator.

Proposition 8.3.2. Let ω be a strong connection, defined11 by a family {ωj} ⊂ Ω1
D̂

(A) of 1-forms.

Then if each ωj is selfadjoint, as an operator on Ĥ, Dω is a selfadjoint operator. Moreover, it

has has compact resolvent and bounded commutators with the elements B.

10See definition 5.1.1.
11See definition 8.1.7 and proposition 8.1.8.
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Proof. The second part of the proposition is a direct consequence of proposition 4.7 in [DS13a].

So we have only to prove that Dω is symmetric. First of all consider two vectors ξ, η ∈ H0 and

two elements bφ(h), b′φ(l) ∈ A, with b, b′ ∈ B; then the scalar product 〈ηb′φ(l), ξbφ(h)〉, which is

nothing else than the scalar product in Ĥ, can be written as follows:

〈
ηb′φ(l), ξbφ(h)

〉
=

∫
G

〈
ηb′, ξb

〉
H0
l(g)h(g)dg.

Hence we have (here we use the fact that each ωj is selfadjoint):〈
ηb′φ(l), Dω(ξbφ(h))

〉
=

=

〈
ηb′φ(l), D(ξb)φ(h) + ξb

∑
j

φ(h(1))h(2)(Tj)(c(Tj)− ωj)

〉

=
〈
D(ηb′)φ(l), ξbφ(h)

〉
+
∑
j

〈
ηb′φ(l)c(Tj)

∗, ξbφ(h(1))h(2)(Tj)
〉

−
∑
j

〈
ηb′φ(l)ωj , ξbφ(h(1))h(2)(Tj)

〉
.

(8.3.4)

Now let us consider the second term of the last expression in (8.3.4). For what said above, we

have: 〈
ηb′φ(l)c(Tj)

∗, ξbφ(h(1))h(2)(Tj)
〉

=

∫
G

〈
ηb′c(Tj)

∗, ξb
〉
H0
l(g)h(1)(g)h(2)(Tj)dg

=
d

dt

∣∣∣∣
t=0

∫
G

〈
ηb′c(Tj)

∗, ξb
〉
H0
l(g)h(getTj )dg

=
d

dt

∣∣∣∣
t=0

∫
G

〈
ηb′c(Tj)

∗, ξb
〉
H0
l(ge−tTj )h(g)dg

=
〈
ηb′φ(l(1))l(2)(−Tj)c(Tj)∗, ξbφ(h)

〉
=
〈
ηb′φ(l(1))l(2)(Tj)c(Tj), ξbφ(h)

〉
(8.3.5)

where the last equality follows from the fact that c(Tj)
∗ = −c(Tj) (which comes from the self-

adjointness of 6D). Now let us consider the third term of the last expression in (8.3.4). With a

computation similar to the one above we obtain the following:〈
ηb′φ(l)ωj , ξbφ(h(1))h(2)(Tj)

〉
=
〈
ηb′φ(l(1))ω

j
(0)l(2)(−Tj)ω

j
(1)(−Tj), ξbφ(h)

〉
=
〈
ηb′φ(l(1))ω

j
(0)l(2)(Tj)ω

j
(1)(Tj), ξbφ(h)

〉
.

(8.3.6)

Due to the covariance properties of the strong G-connection ω (see (i) of definition 8.1.7), we

obtain from (8.3.6) the following relation.

〈
ηb′φ(l)ωj , ξbφ(h(1))h(2)(Tj)

〉
=
∑
k

〈
ηb′φ(l(1))l(2)(Tj)R

j
k(Tj)ω

k, ξbφ(h)
〉

=
∑
k

〈
ηb′φ(l(1))l(2)(Tj)δ

j
kω

k, ξbφ(h)
〉
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=
∑
k

〈
ηb′φ(l(1))l(2)(Tj)ω

j , ξbφ(h)
〉
. (8.3.7)

Now we see that, using (8.3.5) and (8.3.7) to rewrite (8.3.4), we have:

〈
ηb′φ(l), Dω(ξbφ(h))

〉
=
〈
Dω(ηb′φ(l)), ξbφ(h)

〉
.

That is, Dω is a symmetric operator.

We conclude this section showing that, actually, the ”horizontal part” of the Dirac operator

D̂, which is simply D, is nothing else that the twisted Dirac operator associated to the Maurer-

Cartan connection θ = φ−1 ∗ dφ. First of all we have to show that θ is compatible with the de

Rham calculus.

Proposition 8.3.3. The Maurer-Cartan connection θ = φ−1 ∗ dφ is a strong connection with

respect to the de Rham differential calculus on H = C∞(G). In particular, it is defined by a

strong G-connection {θj}.

Proof. We have to prove that θ fulfils property (i)-(iv) of definition 4.3.6, Q being the ideal

Q = (ker ε)2. In order to show that (i) is satisfied, we have to prove that πD̂(θ(Q)) = 0. So, take

q ∈ Q; then θ(q) = φ(q(1))
−1dφ(q(2)). Since, for any h ∈ H, φ(h) corresponds to 1#h under the

isomorphism A ' B#σH, it follows that:

πD̂(θ(q)) = π̂(φ−1(q(1))[γ ⊗ 6D,φ(q(2))].

But then we have:

πD̂(θ(q))v ⊗ w = π̂(φ−1(q(1)))
(
π◦(σ(q(3), w(−1)))(q(2) . v)⊗ [6D, q(4)]w(0)

)
=
∑
j

π̂(φ−1(q(1)))
(
σ(q(3), w(−1)))(q(2) . v)⊗ q(4)c(Tj)q(5)(Tj)w(0)

)
=
∑
j

π̂(φ−1(q(1)))π̂(φ(q(2)))
(
v ⊗ c(Tj)q(3)(Tj)w

)
=
∑
j

v ⊗ c(Tj)q(Tj)w =
∑
j

v ⊗ (dq)e(Tj)w = 0,

since q ∈ Q and so (dq)e = 0. Next, property (ii) follows from the well-known fact that θ is

a strong connection w.r.t. the universal calculus. We prove that also (iii) holds: we show that

T ◦ θ = (id⊗ πH) ◦ (1⊗)(id− ε). Since T = (id⊗ πH) ◦ TR, for any h ∈ H we have:

T ◦ θ(h) = T (φ−1(h(1))⊗ φ(h(2))− ε(h)⊗ 1)

= (id⊗ πH)(1⊗ h− ε(h)⊗ 1) = (id⊗ πH) ◦ (1⊗ (id− ε))(h).

Finally, we check property (iv).Take a ∈ A, a = bφ(h) with b ∈ B. Then

da− a(0)θ(a(1)) = d(bφ(h))− bφ(h(1))φ
−1(h(2))dφ(h(3))

= db · φ(h) + bdφ(h)− bdφ(h) = db · φ(h) ∈ Ω1(B)A,
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hence θ satisfies also the strongness condition. Hence it is a strong connection w.r.t. the de

Rham calculus on H. In particular, due to proposition 8.1.9, θ can be defined in terms of a

strong G-connection {θj}.

So, since θ is a strong connection, we can consider the twisted Dirac operator Dθ: it is

straightforward to see that it is simply given by D⊗ id, so θ is compatible with the Dirac operator

D. As we shall see in the next section, if we consider a different trivialization things can change

completely: not only the corresponding twisted Dirac operator will no longer be equal to D,

or, in general, to an inner fluctuation of D, but the associated Maurer-Cartan connection could

not be a strong connection with respect to the calculus associated to the “old” trivialization φ:

this means that our construction depends strongly on the choice of the trivialization, and so of

the isomorphism A ' B#σH. And two different trivializations can yield to two different Dirac

operators, D̂, D̂′, determining two first order differential calculi so different one from the other

that a universal strong connection compatible with the first will in general not be compatible with

the second one. So the choice of the trivialization is also the choice of the Dirac operator and

the selection of a distinguished class of strong connections. All these aspects will be discussed in

more detail in the next section, when we shall consider the behaviour of our construction under

gauge transformations.

8.4 Gauge transformations

Let B ↪→ A be a cleft principal C∞(G)-comodule algebra and let φ be a unitary trivialization.

We know that it determines a weak action of H = C∞(G) on B, which we shall denote by .;

moreover, we shall denote by σ the corresponding cocycle. Consider then a real spectral triple

(B,HB, J,D, γ) and assume than it is H-equivariant w.r.t. the weak action of H determined by

φ (assume also the representation of B on H to be faithful). Then, under these hypotheses, we

can use the results of the previous sections to build a spectral triple (A, Ĥ, D̂) for the algebra A,

A being identified with the algebra A = B#σH; we shall denote by π̂ the representation of A on

Ĥ.

Now let Λ : H → B be a gauge transformation. We know12 that Λ can be seen as a change of

trivialization, from φ to φΛ = Λ−1 ∗φ; and φΛ will induce an identification A ' B#σΛH. Assume

the triple over B to be H-equivariant also w.r.t. the weak action associated to the trivialization

φΛ. Then we can construct a spectral triple (A, ĤΛ, D̂Λ). We shall denote the representation of

A on ĤΛ by π̂Λ.

Due to the results of the previous section, we know that each of the two spectral triples above

induces a structure of quantum principal G-bundle on A. A natural question is the following

one: which is the relation between the two spectral triples, and which is the relation between

the two quantum principal bundle structures? To give some answer to this question we begin by

considering the behaviour of strong connections under gauge transformations. In this section we

shall use the results discussed in section 4.2.1 and in section 4.4.1.

12See proposition 4.4.5.
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Let ω : H → Ω1
D̂

(A) be a strong connection. We know (see proposition 8.1.8) that it is defined

in terms of a strong G-connection {ωj} ⊆ Ω1
D̂

(A). Now let us compute the gauge transformed of

ω. We recall that to Λ is associated the gauge transformation f ∈ G(A), f = φ−1 ∗ Λ ∗ φ, whose

convolution inverse is simply f−1 = φ−1 ∗ Λ−1 ∗ φ. We know that ω transforms according to the

following rule:

f . ω = f ∗ ω ∗ f−1 + f ∗ df−1.

Using the fact that ω(h), for h ∈ H, can be written as ω(h) =
∑

j h(Tj)ω
j , we obtain:

(f . ω)(h) =
∑
j

f(h(1))h(2)(Tj)ω
jf(h(3)) + (φ−1 ∗ Λ ∗ φ ∗ dφ−1 ∗ Λ−1 ∗ φ)(h)

+ (φ−1 ∗ Λ ∗ dΛ−1 ∗ φ)(h) + (φ−1 ∗ dφ)(h).

(8.4.1)

Due to the arbitrariness of the ωj , it is clear that, in general, it won’t be possible to rewrite

equation (8.4.1) as (f . ω)(h) =
∑

j h(Tj)η
j , {ηj} ⊆ Ω1

D̂
(A) being a strong G-connection. Hence

we expect, in general, that the gauge transformed of a strong connection w.r.t. a certain first

order differential calculus Ω1
D̂

(A) will no longer be a strong connection w.r.t. the same calculus.

In particular, if we wish to consider the whole space of (unitary) gauge transformations, it is not

possible to deal with it in the framework given by a single spectral triple, but we would have to

introduce a more general setup. Such an aspect is with no doubt interesting, but it appears quite

difficult to study it in a generic situation.

Instead, here we choose to select a space of gauge transformations which leave the space

of strong connections w.r.t. to a given calculus unchanged. Also, we restrict ourself to cleft

extensions admitting unitary trivializations which are also algebra homomorphisms. Hence, let

us consider a cleft Hopf-Galois extension B ↪→ A with a unitary trivialization φ : H → A which

is also an algebra homomorphism (here, of course, H = C∞(G), G being an even-dimensional

compact connected semisimple Lie group). It follows from the uniqueness of the antipode that

φ−1 = φ ◦ S. Since φ is a homomorphism, A is isomorphic to the smash product B#H. Given

an H-equivariant even real spectral triple (B,H, D, J, γ), using the results of the first part of this

chapter, we can construct now a real spectral triple (A, Ĥ, D̂, Ĵ , γ̂) for the algebra A. As usual,

the Dirac operator D̂ defines a differential calculus Ω1
D̂

(A), and we know that A is a quantum

principal bundle w.r.t. this calculus. Now let us consider a gauge transformation Λ : H → B with

the following properties:

(a) Λ is an algebra homomorphism, so that Λ−1 = Λ ◦ S;

(b) φΛ = Λ−1 ◦ φ is still a unitary trivialization;

(c) Λ (and hence Λ−1) takes values13 in B ∩ (A⊕ Ω1
D̂

(A))′.

Lemma 8.4.1. If Λ fulfils (a)-(b)-(c) then, for f = φ ∗ Λ ∗ φ−1, the following hold:

(i) f is an algebra homomorphism;

(ii) f−1 = f ◦ S;

(iii) f takes values in A ∩ (A⊕ Ω1
D̂

)′

13The commutant is taken, of course, in Ĥ.
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Let now ω be a strong G-connection, defined by a family {ωj} ⊂ Ω1
D̂

. The action of f on ω is

given by equation (8.4.1). Now we can prove the following result.

Proposition 8.4.2. Let Λ be a gauge transformation satisfying (a), (b) and (c). If there exists

a family of 1-forms {λj} ∈ Ω1
D(B) such that

Λ(h(1))[D,Λ
−1(h(2))] =

∑
j

h(Tj)λ
j (8.4.2)

for any h ∈ H, then f . ω, where f = φ ∗ Λ ∗ φ−1, is a strong connection w.r.t. the differential

calculus Ω1
D̂

(A). In particular, it is defined by a family {ωjΛ} ⊂ Ω1
D̂

(A).

Proof. We have to check that f . ω fulfils (i)-(iv) of definition 4.3.6. The proof that (ii),(iii) and

(iv) hold is straightforward. So we have only to prove that (f . ω)(Q) = 0 in Ω1
D̂

(A), where

Q = (ker ε)2. Let us begin by considering the first term in (8.4.1). Using (i)-(iii) of lemma 8.4.1

we obtain:

(f ∗ ω ∗ f−1)(h) =
∑
j

f(h(1))h(2)(Tj)ω
jf−1(h(3)) =

∑
j

f(h(1))h(2)(Tj)f(Sh(3))ω
j

=
∑
j

f(h(1) · h(2)(Tj) · Sh(3))ω
j

(8.4.3)

Now, as a function on G, h(1) · h(2)(Tj) · Sh(3) is equal to

(h(1)h(2)(Tj)Sh(3))(g) =
d

dt

∣∣∣∣
t=0

h(getTjg−1),

which is zero if (dh)e = 0. It follows that (8.4.3) is equal to zero for any h ∈ Q. Consider then

the second term of (8.4.1):

(φ−1 ∗Λ ∗φ ∗dφ−1 ∗Λ−1 ∗φ)(h) = φ−1(h(1))Λ(h(2))φ(h(3))[D̂, φ
−1(h(4))]Λ

−1(h(5))φ(h(6)). (8.4.4)

By direct computation we can see that, for any l ∈ H, φ(l(1))[D̂, φ
−1(h(2))] = −ε(h)(γ ⊗ id).

Hence (8.4.5) becomes:

(φ−1∗Λ∗φ∗dφ−1∗Λ−1∗φ)(h) = −φ−1(h(1))Λ(h(2))ε(h(3))(γ⊗id)Λ−1(h(4))φ(h(5)) = −ε(h)(γ⊗id).

In particular, it is zero for h ∈ Q. Now the third term of (8.4.1). Before computing it we notice

that from (c) and from the equivariance of D it follows that each λj commutes with φ(H). So

we have14:

(φ−1 ∗ Λ ∗ dΛ−1 ∗ φ)(h) = φ−1(h(1))Λ(h(2))[D̂,Λ
−1(h(3))]φ(h(4))

= φ−1(h(1))Λ(h(2))[D ⊗ id,Λ−1(h(3))]φ(h(4))

=
∑
j

φ−1(h(1))h(2)(Tj)λ
jφ(h(3))

14We use also the fact that D and D̂ induces the same first order differential calculus on B.
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=
∑
j

φ−1(h(1))h(2)(Tj)φ(h(3))λ
j

=
∑
j

φ(Sh(1))h(2)(Tj)φ(h(3))λ
j (8.4.5)

=
∑
j

φ(Sh(1) · h(2)(Tj) · h(3))λ
j .

But now (Sh(1)h(2)(Tj)h(3))(g) =
d

dt

∣∣∣∣
t=0

h(g−1etTjg), and so it is zero if (dh)e = 0. It follows that

(8.4.5) is equal to zero for any h ∈ Q. Finally, the fourth term of (8.4.1) is nothing else but the

Maurer-Cartan connection associated to the trivialization φ, so it is itself a strong G-connection

w.r.t. the calculus Ω1
D̂

(A) (see proposition 8.3.3).

With proposition 8.4.2 we have identified a class of gauge transformations which transform

strong G-connections into strong G-connections with respect to the same differential calculus.

Observe that, in the classical case (i.e. for a trivial principal G-bundle P → M) this space

coincides more or less with the ordinary space of differentiable gauge transformations ϕ : M → G.

Now we consider a related but different aspect: given a gauge transformation Λ, with suit-

able properties (possibly, different from (a)-(c)) is there any relation between the spectral triple

(A, Ĥ, D̂), associated to a trivialization φ, and the spectral triple (A, ĤΛ, D̂Λ), associated to the

trivialization φΛ = Λ−1 ∗ φ?

First of all we have to relate the representation of A on Ĥ with that on ĤΛ (we shall denote

the former by π̂ and the latter by π̂Λ). Consider the (unitary) map V : Ĥ → ĤΛ, defined by

V (v ⊗ w) = π◦(Λ(w(−1)))v ⊗ w(0). (8.4.6)

We notice immediately that V ∗ acts in the following way:

V ∗(v ⊗ w) = π◦(Λ−1(w(−1)))v ⊗ w(0).

In order to show that V is an intertwining between the two representations we need to introduce

a further requirement on Λ:

(d) for any h ∈ H and any v ∈ H, π◦(Λ(h(2)))(h(1) . v) = Λ(h(1))(h(2) .Λ v).

Here . and .Λ denote, respectively, the weak actions of H on H associated to φ and to φΛ.

Remark 8.4.3. Requirement (d), despite perhaps its appearance, is quite natural: indeed it comes

from the following relation between . and .Λ, seen as weak actions on B, (h(1) . b)Λ(h(2)) =

Λ(h(1))(h(2) .Λ b), which can be checked by direct computation.

Proposition 8.4.4. Let Λ be a gauge transformation15 fulfilling (d). Then, for any a ∈ A,

V π̂(a)V ∗ = π̂Λ.

Proof. We know that φ and φΛ determine two isomorphisms between A and the crossed product

algebras associated to them. In particular, we shall denote by B#σH the crossed product algebra

15Such that φΛ is still a unitary trivialization.
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defined by φ, and by B#σΛH the one defined by φΛ. Moreover, we shall denote the elements of

the former by b#h and the elements of the latter by b#Λh. Now, consider an element a = b#h of

A under the usual isomorphism; that is, a = bφ(h). In order to compute π̂Λ(a) we have to know

which is the corresponding element in B#σΛH. An easy computation shows that a corresponds

to bΛ(h(1))#Λh(2). Hence, in order to prove the proposition we have to show that

V π̂(b#h)V ∗ = π̂Λ(bΛ(h(1))#Λh(2)). (8.4.7)

The computation of the r.h.s. of (8.4.7) is straightforward:

π̂Λ(bΛ(h(1))#Λh(2))v ⊗ w = π◦(σΛ(h(3), w(−1)))bΛ(h(1))(h(2) .Λ v)#h(4)w(0). (8.4.8)

But if now we consider the l.h.s. of (8.4.7) we get:

V π̂(b#h)V ∗v ⊗ w =

= π◦(Λ(h(3)w(−1)))π
◦(σ(h(2), w(−2)))b(h(1) . π

◦(Λ−1(w(−3)))v)#h(4)w(0)

= π◦(Λ(h(4)w(−1)))π
◦(σ(h(3), w(−2)))bπ

◦(h(2) . Λ−1(w(−3)))(h(1) . v)#h(5)w(0)

= π◦(Λ(h(4)w(−1)))π
◦(σ(h(3), w(−2)))π

◦(h(2) . Λ−1(w(−3)))b(h(1) . v)#h(5)w(0)

= π◦
(
(h(2) . Λ−1(w(−3)))σ(h(3), w(−2))Λ(h(4)w(−1))

)
b(h(1) . v)#h(5)w(0)

= π◦
(
Λ(h(2))σΛ(h(3), w(−1)

)
b(h(1) . v)#h(4)w(0)

= π◦(σΛ(h(3), w(−1)))bπ
◦(Λ(h(2)))(h(1) . v)#h(4)w(0)

= π◦(σΛ(h(3), w(−1)))bΛ(h(1))(h(2) .Λ v)#h(4)w(0)

(8.4.9)

where, in the last equality, we have used property (d).

Next we look at the Dirac operators: we can compare D̂ with V ∗D̂ΛV , since they are both

operators on Ĥ. By direct computation we obtain the following result.

V ∗D̂ΛV (v ⊗ w) = D̂(v ⊗ w) + π◦(Λ−1(w(−1)))[D,π
◦(Λ(w(−2)))]v ⊗ w(0). (8.4.10)

Now let us consider the Maurer-Cartan connection associated to the trivialization φΛ:

θΛ = φ−1
Λ ∗ dφΛ.

Since θΛ is nothing else than the gauge transformed of θ = φ−1 ∗ dφ, from proposition 8.4.2 we

know that if Λ satisfies (a), (b), (c) then θΛ is a strong G-connection w.r.t. the calculus Ω1
D̂

(A).

So it defines a D-connection on A:

∇θΛa = [D̂, a]− a(0)πD̂θΛ(a(1)).

In particular, a simple computation yields to the following:

∇θΛφ(h) = −Λ(h(1))[D,Λ
−1(h(2))]φ(h(3)).
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According to the results of the previous section, then, if we take a vector ξ ∈ H0 we have16:

ξ(−Λ(h(1))[D,Λ
−1(h(2))]φ(h(3))) = −(ξΛ(h(1)))[D,Λ

−1(h(2))]φ(h(3))

= −
(
D(ξΛ(h(1))Λ

−1(h(2)))φ(h(3))− (D(ξΛ(h(1))))Λ
−1(h(2))φ(h(3))

)
= −π◦(Λ−1(h(2)))[π

◦(Λ(h(1))), D]ξφ(h(3)) = π◦(Λ−1(h(2)))[D,π
◦(Λ(h(1)))]ξφ(h(3)),

from which follows that V ∗D̂ΛV coincides (as an operator on on Ĥ) with the twisted Dirac

operator DθΛ . Hence V implements the gauge transformation Λ.

16We use here (5.1.3).
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CHAPTER 9

Conclusions

In this conclusive chapter we review the results obtained, adding some general considerations and

spending some words on possible applications and/or developments of the results discussed in

this thesis.

The noncommutative geometry of noncommutative torus bundles. We have stud-

ied the noncommutative geometry of quantum principal U(1)- and Tn-bundles, focusing on the

relation between the geometry of the total space and the geometry of the base space. We have

considered two different situations. In the first case, we assumed given a Tn-bundle together with

a Tn-equivariant spectral triple (defining therefore a noncommutative spin geometry invariant

under the Tn-action), and we discussed the conditions under which this triple is projectable; that

is, it can be projected to a triple on the base space in a way such that the bundle projection

respects the metric structure (in the commutative case, more precisely, the bundle projection is

a Riemannian submersion). Next we have shown that, under some additional assumptions1, the

Dirac operator on the total space of the bundle can be written as a sum of three operators: a

first order operator Dv, called the vertical Dirac operator, acting along the fibres; the horizontal

Dirac operator Dh, which contains the informations on the metric structure of the base space;

a zero order term Z, which, at least in the commutative case, is related to the vanishing of the

torsion of the Levi-Civita connection. On the other side, we have considered cleft (that is, almost

trivial) quantum principal Tn-bundles A over a base space B endowed with a noncommutative

spin geometry, described, as usual, by a real spectral triple on the algebra B. Then, assuming

some equivariance conditions on the triple over B with respect to the (weak) action of the Hopf

algebra O(Tn), we have constructed a real spectral triple for the algebra A. This spectral triple

was easily proved to be Tn-equivariant and projectable, so that our construction preserves the

geometry of the base space. We can give a geometric interpretation of our construction. As we

have discussed in chapter 7, the representation of the algebra A, the Dirac operator and the real

1We refer here to the constant length fibres condition (see definition 5.2.3), for the U(1) case, and to the isometric
fibres condition (see definition 5.3.5), for the Tn case.
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structure depend on the choice of the trivialization of the cleft extension B ↪→ A. So, the first

step is to choose a trivialization φ. In the classical case, this amounts to ”fix the gauge”; that

is, to fix a trivialization of a principal G-bundle; and to a fixed trivialization it corresponds a

Maurer-Cartan connection: the same, as we have seen, holds in the noncommutative case, the

Maurer-Cartan connection being the strong connection form θ = φ−1∗dφ. Then we have seen that

the Dirac operator of the triple over A can be interpreted as the Dirac operator obtained twisting

the Dirac operator of the triple over B with the Maurer-Cartan connection. Hence, the spectral

triple over A that we have constructed defines a geometry which should correspond to the one

obtained by identifying the space of horizontal vector fields with the kernel of the Maurer-Cartan

connection, endowing it with the metric coming from that of the base space and then putting

on the space of vertical vector fields the scalar product associated to the Killing-Cartan form of

tn = Lie(Tn).

The twisted Dirac operators. A distinguished feature of projectable triples is the pos-

sibility to construct twisted Dirac operators. In chapter 5 we exploited the construction intro-

duced in [DS13a] to define twisted Dirac operators on projectable Tn-equivariant spectral triple

(fulfilling the isometric fibres condition2). So, given a projectable Tn-equivariant real spectral

triple (A,H, D, J, γ) on a quantum principal Tn-bundle B ↪→ A and a strong connection form

ω : O(Tn) → Ω1
D(A) we can construct the relative twisted Dirac operators Dω, Dω = Dω + Dv.

Making a comparison with the classical case [Amm98, AmmB98, Mor96] we can see which is

the geometrical meaning of the latter: it is the Dirac operator associated to the metric obtained

”gluing” the metric on the base space with the canonical metric on Tn via the connection ω. From

[Amm98, AmmB98] and from the discussion in appendix D we see that it is not exactly such an

operator. Indeed, it could be seen as the operator obtained from a spin connection compatible

with the metric described above but with non-zero torsion: to recover the operator associated to

the torsionless Levi-Civita connection, at least in the commutative case, one should add to Dω
a suitable zero order term. Hence, leaving apart the issue about the torsion, the construction of

twisted Dirac operators is a way to find new Dirac operators defining, possibly, non-trivial geome-

tries: indeed, even starting from a flat Dirac operator, one can obtain Dirac operators describing

geometries with, e.g., non trivial scalar curvature (of course, in order to make this assertion pre-

cise one need a definition of scalar curvature for noncommutative spaces3). Moreover, looking at

the behaviour under (a suitable class of) gauge transformations, we have shown, in chapter 8,

that we can define gauge transformations of twisted Dirac operators in a way consistent with the

transformation law of strong connections.

Quantum principal G-bundles: the role of the differential calculus. Since the earliest

works on quantum principal bundles [BM93], the differential calculi of the algebras involved (the

algebra defining the total space of the bundle and the Hopf algebra representing the structure

group) were taken into consideration, and one of the requirements for a comodule algebra being a

quantum principal bundle was a compatibility conditions between the two calculi (see definition

4.3.1). Bicovariant calculi [Wor89] on Hopf algebras and bundles with non-universal calculus

2See definitions 5.2.3 and 5.3.5.
3For some results in this direction see [CT11, FK12, CM11, FK11, BhMa12, DS13b]; see also appendix D.
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have been extensively studied in many works (see, e.g., [BM92, BM93, SS95, Haj96, BM98a,

Maj98, MajOe99, Maj02]). In this thesis we considered only principal bundles with a classical

(compact, connected, semisimple) Lie group G as structure group4. For this class of bundles

there is a natural5 choice of (bicovariant) differential calculus on the Hopf algebra: the de Rham

calculus of differential forms over G. We have chosen to restrict ourself to this class. There are

several reasons for making this choice, connected with the properties of the calculus on the total

space of the bundle arising from the assumed compatibility with the de Rham calculus on the

Hopf algebra. The first interesting property we have underlined is the possibility to introduce

equivalent characterizations both of the bundles and of the strong connections. In particular, any

strong connection with respect to a differential calculus compatible with the de Rham calculus on

a quantum principal G-bundle can be described6 by a family of 1-forms, one for each element of

a fixed linear basis of the Lie algebra of G: we obtain in this way a picture of strong connections

very close to the usual one of the classical case, when a connection of a principal G-bundle

P can be described as a g-valued 1-form on P (here g is the Lie algebra of G). The second

aspect concerns the construction of twisted Dirac operators. From a pure algebraic point of view,

D-connections (see chapter 5) could be defined also without assuming compatibility with the

de Rham calculus. But in such a general case it would be much more difficult to control the

regularity properties of the operators obtained in this way. In particular, the selfadjointness of

the twisted Dirac operators constructed in this thesis is deeply connected with the assumption

of compatibility with the de Rham calculus of the calculus on the total space of the bundle;

more precisely, it is connected with the particular form that strong connections assume as a

consequence of this property. So the choice of the calculus, besides adding further algebraic

structure on a quantum principal bundles, can be a way to select a class of strong connections

with some desirable regularity properties. In chapter 6 and chapter 7, moreover, we have shown

that it is possible to construct spectral triples on a class of cleft Hopf-Galois extensions whose

Dirac operators define first order differential calculi compatible with the de Rham calculus. This

provides a way to put a structure of quantum principal G-bundle (in the sense of definition 4.6.9

and definition 8.1.4) on a given cleft Hopf-Galois extension, under the assumption that the base

space admits a suitable equivariant spectral triple.

Gauge transformations and gauge theory. Since the first works on the geometry of

noncommutative spaces attention was paid to the definition and the construction of gauge theories

[CR87, D-VKM90, CL91, BM93, C94]. Among the various approaches, two of them are of special

interest for us: the first is the one based on quantum principal bundles [BM93], the second is the

one based on Connes’ noncommutative geometry [C94, C96, CMa07]. One of the fundamental

bricks in the construction of a gauge theory is the identification of a group of (local) gauge

transformations. In the case of quantum principal bundles (with universal differential calculus),

as we discussed in chapter 4, this group can be taken to be the group of vertical automorphisms7.

In the case of gauge theories based upon Connes’ noncommutative geometry, instead, gauge

4That is, we considered principal H-comodule algebras, with H a suitable algebra of smooth functions over G.
5This is not the only possible choice, of course.
6See the discussion in chapter 4 and chapter 8.
7See definition 4.2.2.
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transformations are connected with inner fluctuations of the Dirac operator, and therefore the

gauge group can be identified with (a subgroup of) the group of inner automorphisms of the

algebra defining the noncommutative space. In particular, in the first case the group of gauge

transformations is defined in an entirely algebraic way; there is therefore no canonical way to select

a group of transformations with some desired degree of regularity (looking at the classical case,

e.g., one could wish to select a group of continuous or derivable transformations). Moreover, when

working with quantum principal bundles with general calculus, it could happen that a certain

gauge transformation of this kind does not preserve strong connections with respect to the given

calculus. So we think that it is possible to make the hypothesis that, at least in some situations,

it could be useful to have a way to select a smaller group of transformations. On the other

side, as pointed out recently in [BMS13], the group of inner automorphisms could be a too small

group, and it could be necessary to enlarge it, including transformations which are not inner.

In this thesis we have discussed some, very partial, results in this direction. First, in section

5.5, working on the noncommutative 2-torus, seen as a U(1)-bundle over the circle, we have

selected a class of gauge transformations and we interpreted it as a subgroup of the set of gauge

transformations introduced in [BMS13]. A similar space of gauge transformations, for quantum

principal G-bundles, is then described in chapter 8. Both these sets of gauge transformations

have the following properties: first of all, they preserve strong connections compatible with the

de Rham calculus; next, each gauge transformation belonging to one of them can be implemented

by a unitary operator in a suitable spectral triple, and the transformation law of the Dirac

operator of this triple is consistent with the construction of twisted Dirac operators discussed in

this thesis.

Further developments. We conclude this thesis discussing which could be possible exten-

sions and/or applications of our results. Looking to what we have done in chapters 6, 7, 7 it is

quite natural to consider, as a possible extension of our work, the construction of spectral triples

over (some suitable class) of cleft Hopf-Galois H-extensions, with H a Hopf algebra more general

than an algebra of smooth functions over a classical Lie group. Our construction relies on some

properties of the Hopf algebra involved, apart from the equivariance of the spectral triple on the

base space: we used the fact that there is a (real) spectral triple also on the Hopf algebra and that

the Dirac operator of this triple defines the bicovariant de Rham calculus. This property could fail

in the general case. Indeed, consider for example the case H = SUq(2); we know that it is possible

to define spectral triples on the quantum SU(2) [ChaP03a, ChaP03b, ChaP06] and, even, real

spectral triples [DLSSV05], but the Dirac operators of these triples do not define a bicovariant

calculus on SUq(2). The problem, actually, is deeper: on SUq(2) (but the same applies also to

other quantum groups [Schm02]) it is not possible to define a bicovariant first order differential

calculus in terms of commutators with a given operator which has, at the same time, bounded

commutators with all the elements from SUq(2) [Schm99]; that is, it is not possible to define a

bicovariant calculus on SUq(2) via the Dirac operator of a spectral triple. Although this appears

to be really a severe obstruction, some recent results [KMT05, KW11, KS12] seem to suggest

that a way to overcome this issue could be to consider twisted spectral triples [CM06, Mos10].

Another possibility to extend our result is to introduce a suitable definition of projectable
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spectral triples for quantum principal G-bundles, with G any (compact, connected, semisimple)

Lie group. This would amount to extend the notion of projectable spinors [Mor96, GLP98] to

the noncommutative case, and then work out a suitable decomposition of the Dirac operator in

a vertical and a horizontal part (plus, possibly, a zero order term). Possible indications in this

direction could come from the structure of the spectral triples we constructed in chapter 8, which

have to turn out to be projectable, whatever definition of projectable spectral triples for quantum

principal G-bundles one considers.

Finally, in order to be able to deal with more general spaces, it could be useful to extend our

construction of real spectral triples to non-cleft bundles. We do not expect that an extension to

the very general case is possible. However, there is a class of bundles, larger than that one of

cleft bundles, which contains a number of interesting examples and which could be a candidate

for an extension of this kind: the class of locally trivial quantum principal bundles [BuK96,

CaMa00, CaMa02, Zie05, HMS06, HKMZ11, HRuZ11]. The main difficulty in a task of this kind

would probably be to give a local description of the noncommutative spin geometries, both of

the base space and of the total space; that is, to describe them in terms of collections of spectral

triples, with well-behaving gluing maps (compatible with the structure of locally trivial bundle,

of course).
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APPENDIX A

Noncommutative tori

Noncommutative tori are probably the best known and most widely discussed examples of non-

commutative spaces. For a review of the literature and the applications of noncommutative tori

the reader can see [GBFV], chapter 12. In this appendix we will review the basic properties of

noncommutative tori, with the unique some results which are used elsewhere in this thesis.

A.1 The C∗-algebra C(Tnθ )

The C∗-algebra C(Tnθ ) defining an n-dimensional noncommutative torus is the universal C∗-

algebra generated by n unitaries U1, . . . , Un under the relations

UiUj = e2πθijUjUi,

where θ = (θij) is an n × n skewsymmetric real matrix. Of course, for θ = 0, we recover the

algebra C(Tn) of continuous functions over an n-torus.

As in the case of the classical n-torus, we can define an action of the torus Tn on the algebra

C(Tnθ ) in the following way. Let z = (ϕ1, . . . , ϕn) be the set of canonical angular coordinates on

Tn. Then we define:

z . Uj =

{
eiϕiUi if i = j,

Uj if i 6= j
(A.1.1)

Averaging on Tn this action yields a linear operator E : C(Tnθ )→ C(Tnθ ),

E(a) =

∫
Tn

(z . a)dz.

One can show (see [GBFV], section 12.2) that the image of E is just C · id, so we are allowed to

define a functional τ on C(Tnθ ) by E(a) ≡ τ(a)id. It turns out that τ is a faithful tracial state.

Consider now the following definition.
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Definition A.1.1. We say that a n× n skewsymmetric matrix θ is quite irrational if the lattice

Λθ generated by its columns is such that Λθ + Zn is dense in Rn.

Then we can prove the following fact.

Proposition A.1.2. If θ is quite irrational, the tracial state τ on C(Tnθ ) is unique.

Proof. Let τ ′ any tracial state on C(Tnθ ). Then τ ′(UsUrU−s) = τ ′(Ur). Since

UsUrU−s = zs . Ur, with zsj = e2πi
∑
k θjksk ,

then UsAU−s = zs . A for all A ∈ C(Tnθ ). Hence τ ′(zs . A) = τ ′(A) for every s ∈ Zn. Now, for

each fixed A ∈ C(Tnθ ), the set {z ∈ Tn | τ ′(z . A) = τ ′(A)} is closed in Tn. Moreover it is dense,

since in contains every zs and θ is quite irrational. Therefore,

τ ′(A) =

∫
Tn
τ ′(z . A)dz = τ ′(E(A)) = τ ′(τ(A)id) = τ(A).

Since A is arbitrary, we conclude that τ ′ = τ .

Corollary A.1.3. If θ is quite irrational, the C∗-algebra C(Tnθ ) is simple.

Proof. Let J be a closed two-sided ideal of Tnθ . Suppose that there is a nonzero element a ∈ J .

Then a∗a ∈ J is positive and nonzero. Moreover, from the previous proof, z(s).a∗a = Usa
∗aU−s ∈

J for s ∈ Zn, so {z ∈ Tn | z . a∗a ∈ J} is dense in Tn whenever θ is quite irrational. Since J is

closed, this set is the whole n-torus Tn, and so

τ(a∗a)id = E(a∗a) =

∫
Tn
z . (a∗a)dz

lies in J , too. But τ(a∗a) > 0 since τ is faithful. Therefore id ∈ J , and thus J = Tnθ .

A.2 The algebras A(Tnθ ) and C∞(Tnθ )

The algebra C(Tnθ ) determines the noncommutative n-torus as a topological noncommutative

space. We want now to specify a smooth structure and a differential structure. We begin by

considering the following (dense) subalgebra of C(Tn).

Definition A.2.1. The algebra A(Tnθ ) is the complex polynomial ∗-algebra generated by the n

unitaries U1, . . . , Un. That is, its elements are linear combinations∑
k∈Zn

αkU
k1
1 · · ·U

kn
n ,

with only a finite number of αk different from zero.

Since A(Tnθ ) is a stable subalgebra of C(Tn), it inherits the action of Tn introduced in the

previous section. Moreover, this action corresponds to an action of the Lie algebra tn. Indeed, if
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we denote by δ1, . . . , δn the canonical generators of tn, then we can define

δi(Uj) = δijUj . (A.2.1)

Each δj acts as a derivation on A(Tnθ ); that is, it satisfies the Leibniz rule. Using the derivations

δj , we can define a family of seminorms on A(Tnθ ): for any k ∈ Z and any a ∈ Tnθ we set

pk(a) = ‖δk1
1 · · · δ

kn
n (a)‖,

where ‖·‖ is the C∗-norm of C(Tnθ ). The family of the seminorms pk is a separating family

of seminorms, hence it induces a locally convex topology on A(Tnθ ) (cfr. appendix B), which

makes it a locally convex topological algebra. Moreover, since it is a countable family, A(Tnθ ) is

metrizable; in particular, it admits a translation invariant norm which induces the same topology

as the seminorms pk. Hence we can consider the following definition.

Definition A.2.2. The algebra C∞(Tnθ ) is the completion of A(Tnθ ) as a locally convex space,

with topology induced by the family of seminorms {pk}k∈Z.

C∞(Tnθ ) is, therefore, a Fréchet algebra. Moreover it can be seen that it is nothing else than

the algebra of smooth elements of C(Tnθ ) under the action of Tn; since the latter is a strongly

continuous action, it follows1 that C∞(Tnθ ) is a Frëchet pre-C∗-algebra.

A.3 The differential calculus

Any noncommutative torus A(Tnθ ) admits an n−dimensional first order differential calculus. It is

defined in the following way: if {ej}j=1,...,n denotes the dual basis of {δj}, then for any a ∈ A(Tnθ )

we define:

da =
∑
j

δj(a)⊗ ej .

The differential calculus Ω1(A(Tnθ )) then is the quotient of Ω1A(Tnθ ) by the sub-bimodule N ,

N =

{∑
adub ∈ Ω1A(Tnθ )

∣∣∣∣ ∑ adb = 0

}
,

where du denotes the universal differential. In the same way one can define an n-dimensional

calculus Ω1(C∞(Tnθ )) over C∞(Tnθ ).

Notice that each ej can be also written in the following way:

ej = U∗j dUj .

1See e.g. [GBFV], proposition 3.45.
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A.4 Equivariant spectral triples over noncommutative tori

Any noncommutative n-torus admits2 a family of Tn-equivariant real spectral triples. We discuss

here only those we need for our examples. For an exhaustive discussion we refer to literature

[GBFV, PS06, Ven10].

Let Hτ be the GNS Hilbert space associated to the tracial state τ . It is easy to see that

Hτ is isomorphic to L2(Tn), which, moreover, can be identified with `2(Zn). Therefore it is

straightforward to define an orthonormal basis {ψk | k ∈ Zn} of Hτ . Consider now the Hilbert

space H = Hτ ⊗ C2[n/2]
(here [t] denotes the integer part of t ∈ R+). Then tensoring the basis

of Hτ with the canonical basis of C2[n/2]
yields an orthonormal basis of H: {ψk,i | k ∈ Zn, i =

1, . . . , 2[n/2]}.

Now, since θ is an antisymmetric matrix, we can write it as θ = A − At, for some matrix

A with real entries such that the representation of A(Tnθ ) on H, which comes from the GNS

representation of A(Tnθ ) on Hτ , can be written in the following way [Ven10]: for any k, l ∈ Zn

and any i ∈ {1, . . . , 2[n/2]},
Ukψl,i = e

1
2

(k·Ak+k·Al)ψk+l,i,

where we introduced the notation

Uk =
n∏
i=1

Ukii .

Now we define the Dirac operator. First of all we extend the derivations δj to selfadjoint operators

on H. This is straightforward: it is enough to set δjψk,i = kjψk,i. Next, let γ1, . . . , γn denotes

the gamma matrices which generates the Clifford algebra Cln. They are 2[n/2] × 2[n/2] matrices,

acting then on C2[n/2]
(and hence on H). We define the Dirac operator D simply by:

D =
∑
j

γjδj .

Next, one can find a bounded linear operator Λ on H which commutes with each δj and such that

ΛΛ∗ = id and DΛ = −ε′ΛD (where ε′ = ±1 accordingly to KR-dimension n (mod 8)). Then the

real structure will be defined by [Ven10]:

Jψk,i = ek·AkΛψ−k,i.

Finally, if n is even we set γ =
∑
σ∈Sn

(−1)σ
n∏
i=1

γσ(i). Then (A(Tnθ ),H, D, J, γ) (with γ = id in the

odd dimensional case) is a real spectral triple. Moreover, it is a Tn-equivariant spectral triples,

with respect to the Tn-action generated by the derivations δj .

This spectral triple can be shown to fulfil Connes’ axioms [GBFV, C96]. In particular, it

admits an orientation cocycle, which can be written (see [GBFV], exercise 12.13 and lemmas

2The complete classification in the n = 2 case was done in [PS06]. An extension of this result to the general
case can be found in [Ven10].
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12.15, 12.16) in the following way (for n = 2m or n = 2m+ 1):

c =
(−i)m

n!(2πi)n

∑
σ∈Sn

(−1)σU∗n · · ·U∗1 ⊗ Uσ(1) ⊗ Uσ(2) ⊗ · · · ⊗ Uσ(n).

A.5 Quantum principal bundle structure of noncommutative tori

Any (n+m)-dimensional torus can be seen as a principal Tm-bundle over an n-dimensional torus.

The same holds for noncommutative tori [DS13a, DZ13]. Indeed, consider a noncommutative

torus A(Tn+m
θ ) and write the matrix θ as

θ =

 θ′
...

· · · . . .


so that θ′ is a skewsymmetric n× n matrix. Then the first n generators, U1, . . . , Un, of A(Tn+m

θ )

can be seen as the generators of the noncommutative torus A(Tnθ′). We shall now see that A(Tnθ )

is a quantum principal Tm-bundle over A(Tnθ′).
First of all we have to introduce a right coaction ∆R of H = O(Tm) on A(Tn+m

θ ). We define

it as follows:
∆R(Uj) = Uj ⊗ 1 j ≤ n,
∆R(Un+j) = Un+j ⊗ zj .

In particular, the invariant subalgebra (A(Tn+m
θ ))coH coincides with the algebra A(Tnθ′).

Proposition A.5.1. A(Tnθ′) ↪→ A(Tn+m
θ ) is a cleft Hopf-Galois O(Tn)-extension.

Proof. First of all let us prove that it is a Hopf-Galois extension. We have to show that the

canonical map TR : A(Tn+m
θ ) ⊗A(Tn

θ′ )
A(Tn+m

θ ) → A(Tn+m
θ ) ⊗H is an isomorphism. Here H =

O(Tm). We begin by observing that a generic element of A(Tn+m
θ )⊗H can be written as a sum

of monomials of the form

Uk1
1 · · ·U

kn+m
n+m ⊗ z

r1
1 · · · z

rm
n .

If now we set a = λUk1
1 · · ·Uknn U

kn+1−r1
n+1 · · ·Ukn+m−rm

n+m and b = U r1n+1 · · ·U
rm
n+m, where λ is a suitable

phase, then

TR(a⊗ b) = Uk1
1 · · ·U

kn+m
n+m ⊗ z

r1
1 · · · z

rm
n .

Since TR is linear, this implies that it is a surjection. Before proving the injectivity, we introduce

the following notation: for any α ∈ Zn+m, we define

Uα = Uα1
1 · · ·U

αn+m
n+m . (A.5.1)

The monomials Uα fulfil the following commutation relation:

UαUβ = ϕ(α, β)Uα+β,

where ϕ(α, β) is a phase coming from the commutation relations of A(Tn+m
θ ). Now observe that
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any element of A(Tn+m
θ ) ⊗A(Tn

θ′ )
A(Tn+m

θ ) can be written as a sum of monomials like Uβ ⊗ Uα,

where α ∈ Zm is seen as an element of Zn+m with the first n entries equal to zero. Hence, if we

take A ∈ ker(TR), we can write it as:

A =
∑
α∈Zm

∑
β∈Zn+m

cαβUβ ⊗ Uα.

Applying TR to this equation yields to the following expression:

TR(A) =
∑

γ∈Zn+m

∑
α+β=γ

cαβϕ(β, α)Uγ ⊗
m∏
j=1

z
αj
j .

Then, since the elements Uγ are linearly independent, TR(A) = 0 implies that, for any γ ∈ Zn+m,

∑
α+β=γ

cαβϕ(β, α)

m∏
j=1

z
αj
j = 0. (A.5.2)

But also the monomials
∏m
j=1 z

αj
j = 0 are linearly independent (for different α). Hence (A.5.2)

implies that all the coefficients cαβ must be equal to zero, and so A = 0. This shows that

A(Tnθ′) ↪→ A(Tn+m
θ ) is a Hopf-Galois extension. Moreover it is cleft since the map φ : H →

A(Tn+m
θ ), defined by φ(1) = 1, φ(zα) = Uα, is a unitary trivialization.

Corollary A.5.2. A(Tnθ′) ↪→ A(Tn+m
θ ) is a principal comodule algebra. In particular, it admits

a strong connection.

Proof. It follows directly from the fact that it is a cleft extension, see proposition 4.4.2.

We have shown that A(Tn+m
θ ) is a quantum principal bundle with respect to the universal

calculus. Now we consider the first order differential calculus Ω1(A(Tn+m
θ )) of section A.3, and

we show that it makes A(Tn+m
θ ) into a quantum principal Tm-bundle3 (see definition (4.6.9)).

Due to proposition 4.6.14, it is enough to show that the calculus Ω1(A(Tn+m
θ )) is compatible with

the de Rham calculus on Tm. Hence, take
∑
pdq ∈ Ω1A(Tn+m

θ ) such that it is equal to zero in

Ω1(A(Tn+m
θ )). By definition of the calculus, this means that

n+m∑
j=1

∑
pδj(q)⊗ ej = 0,

which implies, in particular, that
∑
pδj(q) = 0 for j = n + 1, . . . , n + m. So we have shown

that (4.6.7) for the first order differential calculus Ω1(A(Tn+m)). In order to prove that Tn+m

is a quantum principal Tm-bundle, we have to show that also (4.6.8) does hold. So, consider

η ∈ Ω1A(Tn+m
θ ), and assume that η =

∑
pdq, with

∑
pδj(q) = 0 for any j = n + 1, . . . , n + m.

This means, in particular that [η], as an element of Ω1(A(Tn+m
θ )), can be written in the following

3Notice that Ω1(A(Tn+m
θ )) coincides with the Dirac operator based differential calculus Ω1

D(A(Tn+m
θ )), where

D is the Dirac operator of the canonical spectral triple discussed in this appendix.
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way:

[η] =
∑ n∑

j=1

pδj(q)⊗ ej .

But this means, exactly, that [η] belongs to A(Tn+m)Ω1(A(Tn))A(Tn+m). Therefore also (4.6.8)

holds. It follows that A(Tn+m
θ ) is a quantum principal Tm-bundle.

We conclude this section by noticing that it is possible to give an explicit characterization of

strong connections over the quantum principal Tm-bundle Tn+m
θ .

Proposition A.5.3. Let ω : H → Ω1(A(Tn+m
θ )) be a strong connection form. Then it can be

written in the following way:

ω(zk) =
m∑
i=1

n∑
j=1

kibij ⊗ ej +
m∑
i=1

ki ⊗ en+i, (A.5.3)

with bij ∈ A(Tnθ′), for any k ∈ Zm.

Proof. From proposition 4.6.18, we know that ω is defined by ω(zk) =

m∑
i=1

kiωi, where each ωi

is a 1-form over A(Tn+m
θ ) fulfilling properties (i)-(iii) of definition 4.6.17. Now, any ωi can be

expressed as

ωi =
n+m∑
j=1

bij ⊗ ej .

Condition (i), that is invariance under the Tm-action, implies that each bij has to belong to the

invariant subalgebra A(Tnθ′). Next, since each 1-form 1 ⊗ ej can also be written as U−1
j dUj ,

condition (ii) implies that, for j > n, bij = δij .

Corollary A.5.4. Under the isomorphism Ω1(A(Tn+m
θ )) ' Ω1

D(A(Tn+m
θ )), a strong connection

ω will be of the following form:

ω(zk) =

m∑
i=1

n∑
j=1

kibij ⊗ γj +

m∑
i=1

ki ⊗ γn+i.
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APPENDIX B

Locally convex vector spaces

In this appendix we shall give a brief account of definitions and properties of topological vector

spaces, locally convex vector spaces, Fréchet spaces and Fréchet algebras. We shall work over the

field of complex numbers. Part of the results, however, can be worked out for modules over a

topological division ring [BourGT, BourTVS].

B.1 Topological vector spaces

Definition B.1.1. A topological vector space is a vector space V endowed with a topology T
such that:

(a) every point of V is closed with respect to T ;

(b) the vector space operations are continuous with respect to T .

In particular, the topology T of a topological vector space is translation invariant; that is, for

each v ∈ V , the translation operator Tv : V → V , Tv(w) = v+w, is a homeomorphism. It follows

that T is completely determined by any local basis1 of neighborhoods [Ru]. Moreover,

Theorem B.1.2. Every topological vector space is a Hausdorff space.

Proof. See [Ru], theorem 1.12.

Consider now a topological vector space V , with topology T , and suppose that it is metrizable.

That is, there is a metric d on V which is compatible with the topology T . Then the balls with

radius 1/n, for n ∈ N+, centered in 0 form a local basis for T . In addition, one can also show

that:

Theorem B.1.3. If V is a topological vector space with a countable local basis, then there is a

metric d on V such that:

1In the case of topological vector spaces, in general, for local basis we shall always mean a local basis of
neighborhoods at 0.
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(i) d is compatible with the topology of V ;

(ii) the open balls centered at 0 are balanced (that is, if B is an open ball centered at 0, αB ⊆ B
for any α ∈ C, |α| ≤ 1);

(iii) d is translation-invariant: for any v, w, z ∈ V , d(v + z, w + z) = d(v, w).

Proof. See [Ru], theorem 1.24.

B.2 Locally convex vector spaces

Let V be a topological vector space. Then an open set C ⊂ V is convex if, for any t ∈ [0, 1] and

for any v, w ∈ C, tv + (1− t)w belongs to C.

Definition B.2.1. A topological vector space V is called a locally convex (vector) space if its

topology has a local basis Γ whose members are convex open sets.

In the case of locally convex spaces we can enforce theorem B.1.3:

Theorem B.2.2. If V is a locally convex vector space with a countable local basis then the metric

of theorem B.1.3 can be chosen so that all the open balls are convex.

Proof. See [Ru], theorem 1.24.

Local convexity of a topological vector space is strictly linked to the existence of suitable

families of seminorms.

Definition B.2.3. A seminorm on a vector space V is a function p : V → R+ such that

(i) p(v + w) ≤ p(v) + p(w),

(ii) p(λv) = |λ|p(v),

for any v, w ∈ V and any λ ∈ C.

Clearly, a seminorm is a norm if p(v) = 0 iff v = 0.

Definition B.2.4. A family Γ of seminorms on a vector space X is called a separating family if

for each v 6= 0 in V there exists at least a seminorm p ∈ Γ such that p(v) 6= 0.

Locally convex vector spaces can be equivalently characterized in terms of seminorms. Indeed,

a family Γ of seminorms defines a topology TΓ, which can be identified with the translation

invariant topology defined by the following local basis,

B =
⋃
p∈Γ

Bp,

where Bp is the set of balls of radius 1/n, for n ∈ N+, w.r.t. the seminorm p. Then one can show

the following fact.

Theorem B.2.5. A topological vector space X is a locally convex space if and only if its topology

is defined by a separating family of seminorms. X is metrizable if and only if we can choose a

countable family of seminorms.
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Proof. See [Ru], theorems 1.36, 1.37. See also [Con], IV.1; [Schaef], II.4; [BourTVS], chapter II,

section 4.

In the case of metrizable locally convex spaces, actually we can say something more. Indeed,

Proposition B.2.6. Let Γ = {pi}i∈N+ be a (separating) countable family of seminorms defining

a locally convex topology on V . Then, if we define, for any v, w ∈ V ,

d(v, w) =
∑
n∈N+

1

2n
· pn(v − w)

1 + pn(v − w)
,

d is a translation-invariant metric on V , and the topology defined by Γ is the same as the topology

defined by d.

Proof. See [Con], chapter IV, proposition 2.1.

Let us recall some properties of seminorms.

Proposition B.2.7. Let V be a topological vector space and let p be a seminorm on V . Then

the following are equivalent:

(i) p is continuous;

(ii) {x ∈ V | p(x) < 1} is open;

(iii) 0 belongs to the interior of {x ∈ V | p(x) < 1};
(iv) 0 belongs to the interior of {x ∈ V | p(x) ≤ 1};
(v) p is continuous at 0;

(vi) there is a continuous seminorm q on V such that p ≤ q.

Proof. See [Con], chapter IV, proposition 1.3.

Proposition B.2.8. Let V be a topological vector space. If p1, . . . , pn are continuous seminorms,

then p1 + . . .+ pn and maxi(pi) are continuous seminorms.

Proof. See [Con], chapter IV, proposition 1.4.

Remark B.2.9. Assume that the topology of a topological space V is determined by a family Γ of

seminorms on V . Then it is often convenient to enlarge Γ and assume that it is closed under finite

sums. Moreover, one could also assume that Γ consists of all continuous seminorms. Indeed, in

either case the resulting topology on V remains unchanged.

Now we consider linear maps T : V → W between two locally convex spaces and we look for

continuity conditions.

Theorem B.2.10. Let V , W be locally convex space, with topologies induced by families Γ, Γ′ of

seminorms, respectively. Let T : V →W be a linear map. Then the following are equivalent:

(i) T is continuous;

(ii) for any seminorm q ∈ Γ′, there exists c ∈ R+ and a seminorm p ∈ Γ such that, for any

v ∈ V , q(T (v)) ≤ c · p(v);

(iii) for every continuous seminorm p on W , p ◦ T is a continuous seminorm on V .
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Proof. See [BourTVS], chapter II, proposition 4 and [Con], chapter IV.

Take now two locally convex vector spaces E and F . Consider then the algebraic tensor

product E ⊗ F . We want to turn it into a locally convex vector space. In particular we look

for a topology with respect to which the bilinear map ϕ : E × F → E ⊗ F , ϕ(e, f) = e ⊗ f , is

continuous (E ×F is a topological space with respect to the product topology). Such a topology

exists, but, in general, it is not unique. Nevertheless, if we consider the family of locally convex

topologies for which the map ϕ is continuous, its upper bound is the so called projective topology

[Schaef]. It is the finest topology which makes the map ϕ a continuous map. It is possible to give

a description of the projective topology on E ⊗ F in terms of seminorms (see [Schaef], chapter

III, section 6.3).

Definition B.2.11. Let p be a seminorm on E and q a seminorm on F . Then the tensor product

seminorm p⊗ q on E ⊗ F is defined as:

(p⊗ q)(ξ) = inf

{∑
i

p(ei)q(fi) | ξ =
∑
i

ei ⊗ fi
}
.

Lemma B.2.12. For any e ∈ E, f ∈ F , (p⊗ q)(e⊗ f) = p(e)q(f).

Definition B.2.13. A family Γ of seminorms is called a directed family if for each pair of

seminorms p1, p2 ∈ Γ there exists a seminorm p3 ∈ Γ such that sup{p1, p2} ≤ p3.

Proposition B.2.14. Let the topologies on E and F be defined by two directed families of semi-

norms ΓE and ΓF , respectively. Then the projective topology on E⊗F is defined by the (directed)

family of tensor product seminorms

{p⊗ q | p ∈ ΓE , q ∈ ΓF }.

There is another relevant topology on the algebraic tensor product E ⊗ F , the so called

inductive topology [Schaef]: without entering into details, it is the finest locally convex topology

for which the bilinear map ϕ defined above is separately continuous. In this thesis we shall denote

simply by E ⊗F the tensor product with the projective topology and with E ⊗i F that one with

the inductive topology. However, since we shall usually deal with nuclear spaces2, the two tensor

product spaces will be homeomorphic, and so there will be no distinction to make:

Theorem B.2.15. A locally convex space E is nuclear if and only if, for any other locally convex

space F , the identity map between the spaces E ⊗p F and E ⊗i F is a homeomorphism.

Proof. See [Piet], 7.3.3.

In particular, if E is a nuclear locally convex space, we shall denote its topological (i.e.

endowed with the projective, or equivalently with the injective, topology) tensor product with

another locally convex space simply by E ⊗ F .

2For the definition of nuclear space see [Schaef, Piet], chapter III, section 7.
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B.3 Fréchet spaces and Fréchet algebras

We have seen that a locally convex space is metrizable if its topology is defined by a countable

separating family of seminorms. So it is natural to consider the class of complete locally convex

spaces.

Definition B.3.1. A complete metrizable, with translation invariant metric, locally convex vector

space is called a Fréchet space.

Hence, given a locally convex vector space V , with topology defined by a countable separating

family of seminorms, its metric completion V is a Fréchet space. In particular, given two locally

convex vector spaces E and F we define E⊗F to be the completion of the tensor product E⊗pF .

Now consider associative algebras over the field of complex numbers. We give the following

definitions [Mall].

Definition B.3.2. A topological algebra is an algebra A which is a topological vector space in

such a way that the multiplication map A×A→ A is separately continuous.

If it is locally convex as a vector space, we shall speak of locally convex topological algebra.

In the previous section we saw that any locally convex topology is defined by a separating

family of seminorms. The same holds for locally convex algebras, but in this case we have to

require the seminorms to be sub-multiplicative; that is:

p(ab) ≤ p(a)p(b)

for any elements a, b of the algebra.

Definition B.3.3. A topological algebra A is called a Fréchet algebra if it is a Fréchet space.

Proposition B.3.4. If an algebra A is a Fréchet space and the multiplication A × A → A is

separately continuous (so that A is a Fréchet algebra), the multiplication is jointly continuous.

Proof. See [Wael], chapter VII, proposition 1.

Now consider two locally convex algebras A and B and form the (algebraic) tensor product

A⊗B. Then:

Proposition B.3.5. A ⊗p B, that is the algebraic tensor product of A and B endowed with the

projective topology, is a locally convex topological algebra. In particular, if the multiplication in

A and B is (jointly) continuous, then the same holds for the multiplication in A⊗p B.

Proof. See [Mall], chapter X, lemma 3.1.

Corollary B.3.6. Let A and B be two Fréchet algebras. Then the completion A⊗B of the tensor

product A⊗p B is a Fréchet algebra.

Proof. See [Gr66], proposition I.5.
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Consider now a smooth manifold M of dimension n. Let {K} be a countable compact covering

of M such that each compact set K is contained in an open chart (U, {x1, . . . , xn}). For each

compact set K of the covering and for each r ∈ Nn, consider the following seminorm on the

algebra C∞(M) of smooth functions over M :

pK,r(f) = sup
x∈K
|∂r1x1
· · · ∂rnxn(f)(x)|.

These seminorms determine a structure of locally convex space on C∞(M). Moreover,

Proposition B.3.7. C∞(M), with the topology defined above, is a nuclear Fréchet algebra.

Proof. See [Schw], page 88. See also [Gr66], chapter II, page 54.

Corollary B.3.8. If M is a compact smooth manifold, then the algebra C∞(M) is a nuclear

Fréchet algebra with respect to the topology defined by the following seminorms:

pD(f) = sup
x∈M
|D(f)(x)|,

where D varies on a basis of the space of the algebra of differential operators on M .

Proof. It follows directly from the previous proposition. See also [GBFV], section 3.8.

Proposition B.3.9. Let M be a compact smooth manifold. Then there is an isomorphism of

Fréchet algebras C∞(M)⊗C∞(M) ' C∞(M ×M).

Proof. See [Gr66], theorem II.13.
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Line modules, Morita contexts and Hopf-Galois C[Z]-extensions

In this appendix we shall briefly recall the main aspects of the theory of noncommutative line

modules, which are the generalization of line bundles, and its relation with Morita contexts and

Hopf-Galois C[Z]-extensions [BB11]. As usual, we shall work over the field of complex number.

The symbol ⊗ will denote the algebraic tensor product over C, and the symbol ⊗A the algebraic

tensor product over the algebra A of a right A-module with a left A-module.

C.1 Line modules

Let A be a unital associative algebra and E a left A-module. Then the left dual E′ of E is the

right module of left A-linear maps from E to A. The right A-module structure is the following

one: if α ∈ E′ and a ∈ A, then α · a is defined by

(α · a)(e) = α(e)a ∀e ∈ E.

If E is a finitely generated projective A-module then [BB11] there exist, for i = 1, . . . , n, elements

ei ∈ E, ei ∈ E′ such that any f ∈ E can be written as f =
∑

i ei(f) · ei. Also, any functional

α ∈ E′ satisfies α =
∑

i ei · α(ei).

Assume now that E is an A-bimodule, which is finitely generated and projective as left A-

module. In this case E′ is a bimodule1, too, and we can define two bimodule maps, ev : E⊗AE′ →
A and coev : A→ E′ ⊗A E by:

ev(e⊗ α) = α(e), coev(1A) =
∑
i

ei ⊗ ei, (C.1.1)

for e ∈ E, α ∈ E′. Here 1A denotes the unit of A. ev is called evaluation map, coev coevaluation

1With the following left module structure: (a · α)(e) = α(e · a) for any a ∈ A, e ∈ E, α ∈ E′.
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map. They satisfy the following relations:

(ev ⊗ id) ◦ (id⊗ coev(1A)) = idE ,

(id⊗ ev) ◦ (coev(1A)⊗ id) = idE′ .

Definition C.1.1. An A-bimodule E, which is finitely generated and projective as left A-module,

is called a weak (left) line module if the coevaluation map is an isomorphism. If, in addition,

also the evaluation map is an isomorphism, it is called a (left) line module.

Proposition C.1.2. Let E be an A-bimodule, which is finitely generated and projective as left

A-module. Then the following are equivalent:

(i) E is a weak left line module;

(ii) every left module map from E to E is given by the right action of some element of A, and

the only a ∈ A for which E · a = 0 is a = 0.

Proof. See [BB11], proposition 3.2.

Proposition C.1.3. Let E be a weak left line module. Then if ev is surjective, it is an isomor-

phism.

Proof. See [BB11], proposition 3.6.

C.2 Morita contexts

Let A and B be two unital algebras. Denote by AM the category of left A-modules, by BM the

category of left B-modules and by AMB, BMA the categories of A−B− and B−A−bimodules,

respectively. Then [BB11, Bass, BeKe],

Definition C.2.1. A Morita context for the algebras A and B consists of two bimodules E ∈
AMB and F ∈ BMA, together with two bimodule maps µ1 : E ⊗B F → A and µ2 : F ⊗A E → B

such that
µ1 ⊗ id = id⊗ µ2 : E ⊗B F ⊗A E → E,

µ2 ⊗ id = id⊗ µ1 : F ⊗A E ⊗B F → F.
(C.2.1)

A Morita context is strict if µ1 and µ2 are surjective.

Proposition C.2.2. If (A,B,E, F, µ1, µ2) is a strict Morita context, then:

(i) µ1 and µ2 are isomorphisms;

(ii) E and F are finitely generated projective left A− and B−modules, respectively;

(iii) E and F are finitely generated projective right B− and A−modules, respectively.

Proof. See [Bass], chapter II, theorem 3.5.

Proposition C.2.3. There is a one-to-one correspondence between equivalences2 between the

categories E ∈ AM and E ∈ BM and strict Morita contexts (A,B,E, F, µ1, µ2). The functors

2For the notion of equivalence between two categories see, e.g., [Bass, McL].
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associated to a strict Morita context are:

E ⊗B − : BM→ AM,

F ⊗A − : AM→ BM.

Proof. See [Bass], chapter II, theorem 3.5.

In particular, any autoequivalence of the category AM corresponds to a strict Morita context

(A,A,E, F, µ1, µ2), where both E and F are A-bimodules.

C.3 Line module and Hopf-Galois C[Z]-extensions

Now we consider Hopf-Galois extensions by the Hopf algebra C[Z]. We recall that it can be

described as the commutative polynomial complex ∗-algebra generated by a unitary element z,

with Hopf algebra structure defined by the following relations:

∆(zk) = zk ⊗ zk, S(zk) = z−k, ε(zk) = 1,

for any k ∈ Z. Any Hopf-Galois C[Z]-extension B ↪→ A has the following structure: A is a graded

algebra, A =
⊕
k∈Z

A(k), with A(0) = B. Moreover,

Lemma C.3.1. A Z-graded algebra A =
⊕
k∈Z

A(k) is a Hopf-Galois C[Z]-extension over A(0) if

and only if every product A(k) ⊗A(l) → A(k+l) is surjective.

Proof. See [BB11], proposition 7.1.

Now let A be a unital algebra and E an A-bimodule. Then we can define the Z-graded tensor

algebra TZ(A) in the following way [BB11]:

TZ(E)(k) =


A n = 0

E⊗
n
A n > 0

E′⊗
−n
A n < 0

Here E′ is the dual bimodule of E. If L is a weak line module then it is possible to put a structure

of associative algebra on TZ(L) (see [BB11], proposition 6.1). Moreover,

Lemma C.3.2. Let L be a weak left line module over the algebra A. Then L is a left line module

if and only if TZ(L) is a Hopf-Galois C[Z]-extension.

Proof. See [BB11], proposition 7.2.

Now we can state and prove the result we are interested in3.

3This result is taken from [BB11] (see theorem 7.3). We give here a sketch of the proof because we shall use it
elsewhere in this thesis.
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Theorem C.3.3. Let A be a unital associative algebra. Then there is a one-to-one correspondence

between:

(i) autoequivalences of the category AM;

(ii) left line modules over A;

(iii) Hopf-Galois C[Z]-extensions of A.

Proof. (i) ⇒ (ii). An autoequivalence of AM corresponds (see above) to a strict Morita context

(A,A,E, F, µ1, µ2). Moreover, due to proposition C.2.2, E and F are finitely generated and

projective both as left and right A-modules. Now, by definition of strict Morita context, the

maps µ1 : E ⊗A F → A and µ2 : F ⊗A E → A are isomorphisms of A-bimodules. If now we set

ev = µ1 and coev = µ−1
2 we see that, due to (C.2.1), they behave like the evaluation and the

coevaluation maps of a weak left line module. Moreover, since we started from a strict Morita

context, both ev and coev are isomorphisms; hence E is a left line module over A.

(ii) ⇒ (iii). It L is a left line module then TZ is a Hopf-Galois C[Z]-extension (see lemma

C.3.2).

(iii) ⇒ (i). Let B be a Hopf-Galois C[Z] extension over A. Then B can be split into a

direct sum of subspaces of homogeneous degree: B =
⊕
k∈Z

B(k). In particular, B(0) = A. Now

set E = C(1) and F = C(−1). Clearly E and F are A-bimodules. Moreover, the multiplication

maps µ1 : E ⊗A F → A and µ2 : F ⊗A E → A are surjective, due to lemma C.3.1. Also, µ1, µ2

fulfils (C.2.1), as follows from the fact that B is an associative ring. Hence (A,A,E, F, µ1, µ2)

is a strict Morita context, and so it determines an autoequivalence of the category AM of left

A-modules.
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APPENDIXD

Twisted Dirac operators, curvature and torsion of noncommutative tori

In chapter 5 we discussed, among other things, the construction of twisted Dirac operators. In

particular, we worked out explicitly the twisted Dirac operators for (low dimensional) noncom-

mutative tori. In this section we shall study some “geometric” properties of these operators. The

reason is the following one: we know very well that the canonical spectral triple over a noncommu-

tative n-torus is flat, in the sense that it corresponds exactly to the flat, Tn-invariant, geometry

of the smooth n-torus. In some recent works [CT11, FK12, FK11, CM11, BhMa12, DS13b] it was

pointed out that various modifications of the flat Dirac operator of a noncommutative torus can

lead to noncommutative geometries in which it is possible to associate a nontrivial curvature or

a nontrivial torsion to the new Dirac operator. For this reason, we found interesting to discuss if

and how it is possible to associate (possibly) nontrivial curvature and/or torsion to the twisted

Dirac operators built in this thesis (and in [DS13a]).

D.1 The commutative case

Our discussion will be mainly focused on the noncommutative 3-torus1. We begin by considering

the commutative case, reviewing the results obtained by Ammann and Bär [Amm98, AmmB98]

and applying them to a 3-torus, seen as a principal U(1)-bundle over a flat 2-torus. Let M denote

a smooth 3-torus T3 and N a smooth 2-torus T2, so that M → N is a principal U(1)-bundle.

Put on N a flat, T2-equivariant, metric g. Then, any connection form ω induces a metric g̃ on

M such that the bundle projection π : (M, g̃) → (N, g) is a Riemannian submersion and all the

fibres have equal length. Up to rescaling the metric, we can assume this length to be equal to

1. The metric g̃ can be characterized in the following way. Let K denote the Killing vector field

associated to the U(1) action and let f1 = ∂1, f2 = ∂2 be the canonical (local) orthonormal frame

on N . Then {e1 = f̃1, e2 = f̃2, e3 = K}, where X̃ denotes the horizontal lift of a vector field X

1For the twisted Dirac operator on a noncommutative 3-torus see [DS13a]. Here we will just recall its explicit
expression.
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D. Twisted Dirac operators, curvature and torsion of noncommutative tori

with respect to the connection ω, is a local orthonormal frame for g̃. Using the Koszul formula,

we can easily work out the Christoffel symbols Γ̃kij of the Levi-Civita connection, with respect to

the frame {ej}:

Γ̃kij = 0 for i, j, k = 1, 2,

Γ̃3
ij = −Γ̃ji3 = −Γ̃j3i = −1

2
dω(ei, ej) for i, j = 1, 2,

Γ̃3
i3 = Γ̃3

3i = Γ̃i33 = 0 for i = 1, 2, 3.

(D.1.1)

It follows that the spinor connection∇ΣM on the spinor bundle ΣM can be written in the following

way:

∇ΣM
ei ψ = ∂eiψ +

1

4
Γ̃kijγ(ej)γ(ek)ψ, (D.1.2)

where γ : TM → End(ΣM) is the Clifford multiplication map. We recall that the Clifford

multiplication extends to a map γ : Ω•(M)→ End(ΣM) defined by:

γ(α)ψ =
∑

i1<...<ip

α(ei1 , . . . , eip)γ(ei1) · · · γ(eip)ψ

for any p-form α. Then the Dirac operator is given by

D̃ = −γ ◦ ∇ΣM =
∑
j

−γ(ej)∇ΣM
ej (D.1.3)

and it is a selfadjoint operator on the Hilbert space L2(ΣM). Now, the U(1) action allows us to

split L2(ΣM) as a direct sum of eigenspaces of the Killing vector field K. More precisely,

L2(ΣM) =
⊕
k∈Z

Vk,

where Vk is the eigenspace of eigenvalue ik of the Lie derivative LK . Moreover one can prove the

following result.

Lemma D.1.1. For any ψ ∈ Γ∞(ΣM),

∇Kψ = LKψ +
1

4
γ(dω)ψ. (D.1.4)

Proof. See [AmmB98], lemma 4.3.

Consider now the complex line bundle L = M ×U(1) C associated to the principal bundle

M → N , together with the connection given by iω. Then, since the dimension of N is even and

we have taken the fibres to have length equal to 1, the following holds.

Proposition D.1.2. For any k ∈ Z, there is an isomorphism of Hilbert spaces

Qk : L2(ΣN ⊗ L−k)→ Vk
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such that the horizontal covariant derivatives are given by

∇ΣM
X̃

Qk(ψ) = Qk(∇ωXψ) +
1

4
γ(K)γ(ṼX)Qk(ψ),

where VX is the vector field on N defined by dω(X̃, ·) = g̃(ṼX , ·) and ∇ω is the twisted spin

connection on ΣN ⊗ L−k. Moreover, the Clifford multiplication is preserved; that is,

Qk(γ(X)ψ) = γ(X̃)Qk(ψ),

where we used γ(·) to denote both the Clifford multiplication on ΣM and on ΣN .

Proof. See [AmmB98], lemma 4.4.

Then2 the Dirac operator D̃ can be written, on each Vk, as sum of three operators,

D̃ = Dh +Dv + Z,

where Dh = Qk ◦DN ◦Q−1
k , Dv = γ(K)LK and Z = −1

4
γ(K)γ(dω). Now we compute explicitly

the spin covariant derivatives and the Dirac operator for our 3-torus (M, g̃). We begin by writing

the connection form ω as:

ω = ω1dx
1 + ω2dx

2 + dx3.

Then dω = −ω12dx
1 ∧ dx2, where we set ω12 = ∂2ω1 − ∂1ω2. Next, we consider the following

Clifford multiplication map on the spinor bundle ΣN (and, hence, on each ΣN ⊗ L−k)3:

γ(f1) = γ(∂1) = iσ1, γ(f2) = γ(∂2) = iσ2.

It follows that Q−1
k γ(dω)Qk = −ω12σ

1σ2 = −iω12σ
3. Moreover, by direct computation one can

see that

Vf1 = V∂1 = −ω12f2 = −ω12∂2, Vf2 = V∂2 = ω12f1 = ω12∂1.

Therefore, Q−1
k γ(Vf1)Qk = −ω12σ

1 and Q−1
k γ(Vf2)Qk = ω12σ

2. The last thing we need is γ(K).

Using the fact that Clifford multiplication is preserved by Qk and the properties of Clifford

algebras, we deduce that the only possible choices are Q−1
k γ(K)Qk = ±iσ3. We fix this convention

assuming Q−1
k γ(K)Qk = iσ3.

Using these results, together with lemma D.1.1 and proposition D.1.2, we can obtain the

explicit expressions of the spinor covariant derivatives ∇ΣM
ei . In what follows Q will denote

the collection of the maps Qk, and ∂3 the operator corresponding to the Lie derivative LK (or,

equivalently, to the operator ∂K [AmmB98]); in particular, ∂3 corresponds to the multiplication

by ik on each Hilbert space L2(ΣN ⊗ L−k). For ψ ∈
⊕

k L
2(ΣN ⊗ L−k),

Q−1∇e1Q(ψ) = ∂1ψ − ω1∂3ψ −
i

4
ω12σ

1, (D.1.5a)

2See [AmmB98], theorem 4.1.
3We recall here that the Hilbert space L2(ΣN) can be identified with C(T2)⊗C2 with the scalar product given

by the integral on the torus, since we are considering the flat (Haar) metric on N = T2.
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Q−1∇e2Q(ψ) = ∂2ψ − ω2∂3ψ −
i

4
ω12σ

2, (D.1.5b)

Q−1∇e3Q(ψ) = ∂3ψ +
i

4
ω12σ

3. (D.1.5c)

Now we see that the Dirac operator D̃ is given by:

Q−1D̃Q =
3∑
j=1

−iσj∂j + iσ1ω1∂3 + iσ2ω2∂3 −
1

4
ω12.

In particular we notice that it differs from the twisted Dirac operator D̂ω only for the scalar

term Z = −1
4ω12. We take this as a suggestion for the noncommutative case: in the next

sections we shall look for a suitable modification of the noncommutative Dirac operator D̂ω

which should correspond to the Dirac operator obtained from a metric compatible, torsionless

connection. Moreover, we shall see that the construction discussed below allows to recover a

notion of curvature.

D.2 Tangent bundle, horizontal lifts and Levi-Civita connection

As a first attempt one could try to mimic the commutative case in the most straightforward

way. Hence we look for a noncommutative analogue of an orthonormal frame, from which we

would derive the analogue of Christoffel symbols. In general this would be a very difficult task.

Indeed, in noncommutative geometry the definition of the tangent bundle of a noncommutative

space is far from straightforward. But for noncommutative tori, the Tn action (or better, the

associated action of the Lie algebra tn) allows to give a reasonable definition of tangent bundle: let

δ1, . . . , δn denote the generators of the tn-action on a noncommutative torus A(Tnθ ) and consider

the following definition.

Definition D.2.1. The space of (complex) smooth vector fields of a noncommutative n-torus

Tnθ is the C-linear space X(Tnθ ) = (A(Tnθ ))◦ ⊗ Cn, where the Cn factor is the linear space of the

derivations δ1, . . . , δn.

Hence a smooth vector field over Tn is a linear combination X =
∑n

j=1(aj)◦δj , where each aj

belongs to A(Tnθ ). We can define a (A(Tnθ ))◦ ⊗ A(Tnθ )-valued action of X(Tnθ ) on A(Tnθ ) in the

following way: for any X =
∑

(a◦j )δj ∈ X(Tnθ ) and any f ∈ A(Tnθ ), we set

X(f) =
∑
j

(aj)
◦ ⊗ δj(f).

Moreover, we can put a structure of left A(Tnθ )-module on X(Tnθ ): f · X =
∑

j(faj)
◦δj . In the

following two lemmas we point out two (trivial) properties of X(Tnθ ), which show that it behaves

as the space of sections of the tangent bundle of a smooth manifold.

Lemma D.2.2. Each element of X(Tnθ ) is a derivation of A(Tnθ ); that is, it satisfies the Leibniz

rule

X(ab) = X(a)b+ aX(b) ∀a, b ∈ Tnθ .
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Lemma D.2.3. X(Tnθ ) is a finitely generated projective left A(Tnθ )-module.

Now let us consider, in full generality, a noncommutative torus A(Tn+m
θ ) as a Tm bundle over a

noncommutative torus A(Tnθ′). Identifying the latter with the invariant subalgebra of the former,

and assuming the Tm-action to be the one generated by the derivations δn+1, . . . , δn+m, we can

identify the space X(Tn+m
θ ) with the span, over (A(Tn+m

θ ))◦, of the derivations δ1, . . . , δn+m and

the space X(Tnθ′) with the span, over (A(Tnθ′))
◦, of the derivations δ1, . . . , δn.

The inclusion A(Tnθ′) ↪→ A(Tn+m
θ ) corresponds, from a geometrical point of view, to a Tn-

equivariant submersion π : A(Tn+m
θ ) → A(Tnθ′). Following this idea, we define the push-forward

of π, as a linear map π∗ : X(Tn+m
θ )→ X(Tnθ′). We could give simply the definition and check its

properties, but first we want to give some motivations for our choice.

Let us consider a principal G-bundle π : P →M , where G is a compact Lie group. If we take

a vector field X ∈ Γ(TP ) and a function f ∈ C∞(M), then the push-forward π∗X is the element

of Γ(TM) defined by:

(π∗X)(f)x(x) = Xp(f ◦ π)(p), (D.2.1)

for any x ∈M , where p is any point of P such that π(p) = x. In particular, the value of (D.2.1)

does not depend on the choice of p on the fibre over x. This means that for any g ∈ G we have:

(π∗X)x(f)(x) = Xg·p(f ◦ π)(g · p). (D.2.2)

Nevertheless, we see that the definition of the push-forward is a pointwise definition. In non-

commutative geometry such a pointwise description is usually non available, hence we have to

pay attention and check if we are defining something meaningful. It is quite clear that it is not

possible to define, in a global way, the push-forward of all of the vector fields of the total space

of a bundle; instead, it is possible if one restricts itself to projectable vector fields.

Now we come back to noncommutative tori. We begin by introducing a definition of pro-

jectable vector field, motivated from the fact that invariance under the Tm-action corresponds to

invariance under the coaction of the Hopf algebra H = O(Tm). Let us introduce the following

right coaction of H on X(Tm+n
θ ):

ρXR

(∑
j

(aj)◦δj

)
=
∑
j

(aj(0))
◦δj ⊗ aj(1).

Definition D.2.4. A vector field X ∈ X(Tn+m
θ ) is said to be projectable if ρXR(X) = X ⊗ 1.

Hence, the space of projectable vector fields is the space X(Tn+m
θ )coH .

Then we can define, on projectable vector fields, the push-forward π∗ as the A(Tnθ′)-bimodule

map π∗ : X(Tn+m
θ )coH → X(Tnθ′) defined by

π∗

( n+m∑
j=1

Xjδj

)
=

n∑
j=1

Xjδj .

Before going on and introducing a notion of horizontal lift of vector fields, we spend some

words about the differential calculus and the relation between differential forms and vector fields.
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In this whole chapter we will assume any noncommutative n-torus to be endowed with the first

order differential calculus Ω1(A(Tnθ )) discussed in appendix A: it is described by the bimodule

Ω1(A(Tnθ )) = A(Tnθ ) ⊗ Cn, where the canonical basis {e1, . . . , en} of the second factor can be

identified with the dual of the basis {δ1, . . . , δn} (see the discussion in appendix A; see also

[C80]). Consequently we have a pairing
〈
ei, δj

〉
= ei(δj) = δij . This can be extended to a bilinear

pairing 〈·, ·〉 : Ω1(A(Tnθ ))× X(Tnθ )→ (Tnθ )◦ in the following way:〈∑
i

ηi ⊗ ei,
∑
j

(aj)◦δj

〉
=
∑
i,j

(ηia
j)◦
〈
ei, δj

〉
=
∑
i

(ηia
i)◦. (D.2.3)

Let now ω : O(Tm)→ Ω1(A(Tn+m
θ )) be a Tm strong connection form. From proposition 4.3.7,

we know that ω corresponds to a projection Πω on Ω1(A(Tn+m
θ )), which identifies the space of

vertical forms:

Ω1
ver(A(Tn+m

θ )) = {η ∈ Ω1(A(Tn+m
θ )) | Πω(η) = η}.

We can use this fact to introduce a notion of horizontal vector field and, then, to define the

horizontal lift of vector fields.

Definition D.2.5. A horizontal vector field for the Tm-bundle Tn+m
θ is a vector field X ∈

X(Tn+m
θ ) such that

〈η,X〉 = 0

for any vertical form η ∈ Ω1
ver(A(Tn+m

θ )), where 〈·, ·〉 is the pairing defined in equation (D.2.3).

The linear space of horizontal vector fields will be denoted by Xhor(Tn+m
θ ).

Definition D.2.6. A horizontal lift of a vector field X ∈ X(Tnθ′), with respect to a strong con-

nection ω, is a horizontal projectable vector field X̃ ∈ Xhor(Tn+m
θ )coH such that π∗X̃ = X.

Theorem D.2.7. The horizontal lift of a generic vector X ∈ X(Tnθ′) exists and is unique.

Proof. First of all we work out the general expression of a vertical form η ∈ Ω1
ver(Tn+m

θ ). Let η

be a 1-form, which we write as η =

n+m∑
j=1

ηj ⊗ ej . Then, for ω written as in proposition A.5.3, we

can see, using the fact that 1⊗ ej = U∗j dUj , that

Πω(η) =

n∑
i=1

m∑
j=1

ηj+nbji ⊗ ei +

m+n∑
i=n+1

ηi ⊗ ei. (D.2.4)

Imposing Πω(η) = η we obtain: ηi =
m∑
j=1

ηn+jbji for i = 1, . . . , n. Hence any vertical 1-form η can

be written as in equation (D.2.4), and so it is completely determined by ηn+1, . . . , ηn+m. Consider

now a vector field X ∈ X(Tn+m
θ ). Imposing the horizontality condition implies that, for any η

written as in equation (D.2.4), X must satisfy the following relation:

n∑
i=1

m∑
j=1

ηn+jbjiX
i +

m∑
j=1

ηn+jX
j+n = 0
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⇒
m∑
j=1

ηn+j

(
n∑
i=1

bjiX
i +Xj+n

)
= 0.

This must hold for any choice of the ηj , and so X is horizontal if and only if

Xj+n = −
n∑
i=1

bjiX
i for j = 1, . . . ,m. (D.2.5)

In particular, any horizontal vector field is completely determined by X1, . . . , Xn. Now, take

a vector field Y ∈ X(Tnθ′), and write it as Y =

n∑
j=1

(Y j)◦δj and assume that Ỹ = (Ỹ j)◦δj is a

horizontal lift of Y . We get immediately that Ỹ j = Y j for j = 1, . . . , n, by definition of π∗.

Furthermore, the elements Ỹ n+j , for j = 1, . . . , n are easily computed using equation (D.2.5):

Ỹ n+j = −
n∑
i=1

bjiY
i.

Therefore the horizontal lift of Y exists and, since we have computed an explicit expression for

it, it is also unique.

Corollary D.2.8. The horizontal lifts of the vector fields δ1, . . . , δn ∈ X(Tnθ′) are given by:

δ̃j = δj −
m∑
i=1

b◦ijδn+i j = 1, . . . , n. (D.2.6)

Let us consider now a noncommutative 3-torus as a U(1)-bundle over a noncommutative 2-

torus. In this section we shall use the notation A = A(T3
θ), B = A(T2

θ′), H = O(T3). The

canonical spectral triple (A,H, D, J) (cfr. appendix A) on A is a projectable triple, and the

twisted Dirac operator associated to a hermitian strong connection ω is [DS13a]

Dω =
3∑
j=1

σjδj − σ1Jω1J
−1δ3 − σ2Jω2J

−1δ3, (D.2.7)

where ω is given by ω(zk) = k
(
1⊗ e3 + ω1 ⊗ e1 + ω2 ⊗ e2

)
, with ωi = ω∗i ∈ B. Now, as we have

seen above, the connection ω allows us to define the horizontal lift of any vector field over the

base space T2
θ′ . In particular, we can consider the basis {∂1 = iδ1, ∂2 = iδ2} of X(B) and take the

horizontal lifts of ∂1 and ∂2. We obtain, using equation (D.2.5), the vectors

E1 = ∂1 − ω◦1∂3, E2 = ∂2 − ω◦2∂3.

We complete them to a basis {E1, E2, E3} of X(A) by taking E3 = ∂3 = iδ3. In the commutative

case [Amm98, AmmB98], one consider then the metric for which (the analogue of) {E1, E2, E3}
is an orthonormal frame and compute the associated Dirac operator. We look for a similar result

in the noncommutative case. The first step is the introduction of the analogue of the Levi-Civita

connection. We begin with some recall of Riemannan geometry. It is well known (see, e.g., [Lee],
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theorem 5.4) that the Levi-Civita connection ∇ on a Riemannian manifold (M, g) can be defined

through the Koszul formula:

2g(∇XY,Z) =∂X(g(Y,Z)) + ∂Y (g(X,Z))− ∂Z(g(X,Y ))

+ g([X,Y ], Z)− g([X,Z], Y )− g([Y, Z], X).
(D.2.8)

Hence, if {Ei} is a (local) orthonormal frame, then we obtain:

2g(∇EiEj) = g([Ei, Ej ], Ek)− g([Ei, Ek], Ej)− g([Ej , Ek], Ei). (D.2.9)

Then, still in the commutative case, if we write (using Einstein convention) [Ei, Ej ] = ckijEk, we

can use equation (D.4.2) to compute the symbols Γkij , obtaining

Γkij =
1

2

(
ckij − c

j
ik − c

i
jk

)
. (D.2.10)

We would like to produce noncommutative Christoffel symbols in a similar way. But a problem

arises: in the noncommutative case the commutator [X,Y ] of two vector fields is (in general) no

longer a vector field. In particular, in our specific case we see that:

[E1, E2] = (δ2ω
◦
1 − δ1ω

◦
2)δ3 + [ω◦1, ω

◦
2]δ2

3 .

Hence, in order to go on along this way, we need to overcome this issue. There could be many

different ways to achieve this scope. Here we choose to use the so-called ?-product formalism

[ABDMSW05, A06, ADMW06, A07, A09], which allows to define a “twisted” commutator [·, ·]?
which preserves the space of vector fields. In the next section we shall briefly recall the main

aspects of this formalism and we will apply them to noncommutative tori. Later, we will use

these results to work out Levi-Civita and spin connections and to discuss torsion and curvature.

D.3 ?-geometries and noncommutative tori

By ?-geometries we mean a wide class of noncommutative manifolds, obtained as deformations

of the algebras of functions over smooth manifolds via ?-products. Following Aschieri et al.

[ABDMSW05, A06, ADMW06], we consider here ?-products associated with a deformation of

the algebra of smooth functions over a manifold M obtained using a twist F of the Lie algebra

of infinitesimal diffeomorphisms of M . In particular, the twists we consider are elements F of

UX[[λ]]⊗UX[[λ]], where X is the Lie algebra of vector fields over M , UX is its universal enveloping

algebra, and UX[[λ]] denotes the algebra of formal power series in λ. We will not discuss most

of the algebraic aspects of Lie algebras’ twists; for all the details we refer to classical literature

[Dri83, Dri90, Res90, Kassel]. Here we will briefly recall the construction of the ?-product and

the main properties of ?-geometries. Then, we will apply these results to the specific case of

noncommutative tori.

Consider a smooth manifold M , and let X = X(M) be the space of smooth vector fields; that is,

the space of smooth sections of the tangent bundle TM . X is a Lie algebra, with the commutator
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given by the Lie derivative: [X,Y ] = LXY . Hence we can consider its universal enveloping

algebra UX. We know [Sw69, Maj95, Kassel] that UX admits a Hopf algebra structure, where

coproduct, counit and antipode are defined by:

δ(X) = X ⊗ 1 + 1⊗X, ∆(1) = 1⊗ 1,

S(X) = −X, S(1) = 1,

ε(X) = 0, ε(1) = 1,

for any X ∈ X. From UX we can obtain the algebra UX[[λ]] of formal power series in λ, which is

still a Hopf algebra. Then we can give the following definition.

Definition D.3.1. A twist F for the Lie algebra X is an invertible element F ∈ UX[[λ]]⊗UX[[λ]]

which satisfies the following relations:

(F ⊗ 1) · (∆⊗ id)F = (1⊗F) · (id⊗F)F ,
(ε⊗ id)F = (id⊗ ε)F = 1.

(D.3.1)

Moreover4, we require F = 1⊗ 1 +O(λ).

In what follows we shall denote, with an abuse of notation, the algebra UX[[λ]] simply by UX.

Now letA denote the algebra C∞(M)[[λ]]. Then a twist F can be seen as a map F : A⊗A→ A⊗A.

Hence we can consider the following operation on A.

Definition D.3.2. The ?-product of two functions g, h ∈ A is the function g ? h = mA(F−1(g⊗
h)), where mA : A⊗A→ A is the multiplication map.

We introduce now the following notation: we write

F = fα ⊗ fα, F−1 = f
α ⊗ fα,

where the sum over α is understood and the elements fα, fα, f
α
, fα belong to UX. Then the

?-product can be written in the following form:

g ? h = f
α
(g)fα(h). (D.3.2)

Lemma D.3.3. The ?-product is C-linear, associative and, if A is unital, 1 ∈ A is the unit

element for ?.

We shall denote by A? the algebra which has A as underlying space and ? as product. Also

the algebra UX can be twisted, and there are different ways to do this: we can twist the Hopf

algebra structure, the associative algebra structure or both of them. We shall present here only a

part of this possibilities, for a complete discussion see, e.g., [ADMW06, Dri90, Maj95]. Consider

the element F21 ∈ UX ⊗ UX defined by F21 = fα ⊗ fα. Then we can introduce the so called

universal R-matrix

R = F21F−1.

4Actually this condition can be recovered from (D.3.1), see [ADMW06].
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R is an invertible element of UX ⊗ UX. For the other properties of R we refer to [ADMW06].

We introduce also the following notation:

R = Rα ⊗Rα, R−1 = R
α ⊗Rα.

Lemma D.3.4. For any g, h ∈ A, g ? h = R
α
(h) ? Rα(g).

Now let us define a ?-product also for the (Hopf) algebra UX. We take it to be the map

? : UX⊗ UX→ UX defined by

X ? Y ≡ Lfα(X)Lfα(Y ) ≡ fα(X)fα(Y ). (D.3.3)

We define UX? to be the associative algebra which has UX as underlying vector space and ?,

defined by equation (D.3.3), as multiplication map. We shall see in a few that UX? can be made

into a Hopf algebra. Before doing this, we introduce also the deformed commutator of any two

generators of UX: for X,Y ∈ X we set

[X,Y ]? = X ? Y −Rα(Y ) ? Rα(X). (D.3.4)

Proposition D.3.5. [·, ·]? is a (bilinear) map X⊗ X→ X. That is, the twisted commutator (or

?-commutator) of two vector fields is again a vector field.

The space X?, endowed with the commutator [·, ·]?, is a deformed Lie algebra. It is a left

A?-module in the natural way: g ?X = fα(g)fα(X). Also, we can state the twisted analogues of

the antisymmetry property and of the Jacoby identity for the ?-commutator.

Lemma D.3.6. Let X,Y, Z ∈ X. Then:

(i) [X,Y ]? = −[R
α
(Y ), Rα(X)]?,

(ii) [X, [Y,Z]?]? = [[X,Y ]?, Z]? + [R
α
(Y ), [Rα(X), Z]?]?.

Proof. See, e.g., [ADMW06], section 3.2 and appendix A.2.

We can also define a deformed version of the Lie derivative of a function f ∈ A with respect

to a vector fields X ∈ X; we take it to be [A07]:

L?X(g) = f
α
(X)fα(g). (D.3.5)

L? fulfils the twisted versions of the usual properties of a Lie derivative:

Lemma D.3.7. Let g, h ∈ A and let X ∈ X. Then:

(i) L?g?X(h) = g ? L?X(h),

(ii) L?X(g ? h) = L?X(g) ? h+R
α
(g)L?

Rα(X)
(h) (deformed Leibniz rule).

Proof. See [A07], section 4.

It is possible to introduce also the deformed space of differential forms [ADMW06, A07], but

we shall not use it anywhere in this thesis, so we skip this part. Instead, now we consider a
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noncommutative n-torus, we show that it is possible to see it as a ?-deformation of the smooth

torus Tn and we use this fact to build the deformed Lie algebra of vector fields over Tnθ we

were looking for. So, let C∞(Tnθ ) denote the smooth algebra of a noncommutative n-torus,

which we assume to be generated by n unitaries U1, . . . , Un, with the commmutation relations

UiUj = e−iθijUjUi. We can define a bijective C-linear map ϕ : C∞(Tnθ ) → C∞(Tn). First of all

we introduce the Weyl symbols W (k), for k ∈ Zn:

W (k) = e
i
2

∑
i<j kiθijkjUk1

1 · · ·U
kn
n .

Then we set ϕ(W (k)) = (2π)−n/2ei
∑
j kjxj , where x1, . . . , xn are the canonical angular coordinates

on Tn ' S1 × . . . S1. Since the product rule of C∞(Tnθ ) reads

W (k)W (h) = e
i
2

∑
ij kiθijhjW (k + h),

the following relation holds:

ϕ(W (k)W (h)) = e
i
2

∑
ij θijδ

x
i δ
y
j ϕ(W (k))(x)ϕ(W (h))(y)

∣∣∣∣
x=y

,

where δxi = −i ∂
∂xi

. This means that C∞(Tnθ ) can be identified with the twisted algebra C∞(Tn)?,

where the ?-product is the following one:

(g ? h)(x) = e
i
2

∑
ij θijδ

x
i δ
y
j g(x)h(y)

∣∣∣∣
x=y

. (D.3.6)

This corresponds to the ?-product induced by the following twist:

F = e−
i
2

∑
ij θijδ

x
i ⊗δ

y
j (D.3.7)

whose inverse is simply given by:

F−1 = e
i
2

∑
ij θijδ

x
i ⊗δ

y
j . (D.3.8)

We shall use the notation introduced above, F = fα ⊗ fα, etc., but only as a formal tool: we are

not considering F as a power series in θ. We just find that writing expressions in this way makes

the computations more clear.

Now we come to vector fields. First of all, we notice that the derivations δj fulfil the following

relation: ϕ(δj(A))(x) = δxj ϕ(A)(x), for any A ∈ C∞(Tnθ ). Then we can identify δj with δxj . Hence

the space of ?-vector fields X? can be identified5 with the space X(C∞(Tnθ )) introduced in the

previous section. But now it is endowed with the ?-commutator [·, ·]?, which, therefore, can be

seen as a bilinear map X(C∞(Tnθ ))⊗ X(C∞(Tnθ ))→ X(C∞(Tnθ )).

Remark D.3.8. If we restrict all the maps to Tnθ ⊂ C∞(Tnθ ), we obtain a ?-commutator [·, ·]? on

X(Tnθ ). Moreover, all the results in this section hold also for the opposite algebra (Tnθ )◦.

5Notice that they are isomorphic as left C∞(Tnθ ) ' C∞(Tn)?-modules.
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D.4 Connections, torsion and curvature on T3
θ

In the previous section we have introduced the notion of deformed space X? of vector fields over

a smooth manifold M . Now, following [ADMW06, A06, A07], we give the definition of covariant

derivative of deformed vector fields.

Definition D.4.1. A ?-covariant derivative in the space X? of vector fields over A?, along the

vector fields X ∈ X?, is a linear map ∇?X : X? → X? such that:

(i) ∇?X+Y Z = ∇?XZ +∇?Y Z,

(ii) ∇?f?XY = f ?∇?XY ,

(iii) ∇?X(f ? Y ) = L?X(f) ? Y +R
α
(f) ?∇?

Rα(X)
Y,

for any Y,Z ∈ X? and any f ∈ A?. A map ∇? : X? ⊗X? → X? defined by (X,Y ) 7→ ∇?XY , where

each ∇?X is a ?-covariant derivative, will be called a ?-connection.

Given a ?-connection ∇? on X? we can define its curvature and its torsion.

Definition D.4.2. The curvature R of a ?-connection ∇? is the C-linear map R : X?⊗X?⊗X? →
X? defined by:

R(X,Y, Z) = ∇?X∇?Y Z −∇?Rα(Y )
∇?
Rα(X)

Z −∇?[X,Y ]?
Z

for any X,Y, Z ∈ X?.

Definition D.4.3. The curvature T of a ?-connection ∇? is the C-linear map T : X?⊗X? → X?

defined by:

T (X,Y ) = ∇?XY −∇?Rα(Y )
Rα(X)− [X,Y ]?

for any X,Y ∈ X?.

Both the torsion and the curvature of a ?-connection are ?-antisymmetric. More precisely

[ADMW06],

Lemma D.4.4. Let ∇? be a ?-connection and let T and R be, respectively, its torsion and its

curvature. Then,

T (X,Y ) = −T (R
α
(Y ), Rα(X)),

R(X,Y, Z) = −R(R
α
(Y ), Rα(X), Z),

for any X,Y, Z ∈ X?.

Moreover, both of them fulfil the following properties of A?-linearity [ADMW06].

Lemma D.4.5. Let ∇? be a ?-connection and let T and R be, respectively, its torsion and its

curvature. Then,

T (f ? X, Y ) = f ? T (X,Y ),

T (X ? f, Y ) = R
α
(f) ? T (Rα(X), Y ),

R(f ? X, Y, Z) = f ? R(X,Y, Z),

R(X ? f, Y, Z) = R
α
(f) ? R(Rα(X), Y, Z),
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for any X,Y, Z ∈ X? and any f ∈ A?.

Now assume that the space X? admits global frames. That is, there are E1, . . . , En ∈ X? such

that any other vector field X ∈ X? can be written as X =
∑

j x
j ? Ej , with xj ∈ A?. Then we

can introduce the following description of a ?-connection and of its torsion and its curvature. We

set (using Einstein convention):

∇?EiEj = Γkij ? Ek,

T (Ei, Ej) = T kij ? Ek,

R(Ei, Ej , Ek) = Rlijk ? El,

with Γkij , T
k
ij , R

l
ijk ∈ A? for any i, j, k = 1, . . . , n. This notation is relevant, in particular, when we

assume (or we interpret) E1, . . . , En as an orthonormal frame.

We consider now the noncommutative 3-torus T3
θ, seen as a quantum principal U(1)-bundle

over T2
θ, together with the reference frame {E1, E2, E3} discussed in the first part of this chapter.

We recall that E3 is nothing else than the Killing vector field associated to the U(1) action and

E1, E2 are the horizontal lifts of the canonical orthonormal frame fi = ∂i on the flat noncommu-

tative 2-torus. We can work out a set of Christoffel symbols associated to this frame. Indeed, on

a smooth Riemannian manifold (M, g), the Koszul formula reads:

2g(∇XY,Z) =∂X(g(Y,Z)) + ∂Y (g(X,Z))− ∂Z(g(X,Y ))

+ g([X,Y ], Z)− g([X,Z], Y )− g([Y, Z], X).
(D.4.1)

Hence, if {Ei} is a (local) orthonormal frame, then we obtain:

2g(∇EiEj) = g([Ei, Ej ], Ek)− g([Ei, Ek], Ej)− g([Ej , Ek], Ei). (D.4.2)

If now we set (using the Einstein convention)

∇EiEj = Γkij , [Ei, Ej ] = ckijEk,

we can use equation (D.4.2) to compute the symbols Γkij , obtaining

Γkij =
1

2

(
ckij − c

j
ik − c

i
jk

)
. (D.4.3)

In the noncommutative case, therefore, we can use (D.4.3) to define the Christoffel symbols

associated to the frame {E1, E2, E3}. Indeed, we can define the coefficients ckij using the ?-

commutator:

[ei, ej ]? = ckij ? ek.
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Then, by direct computation, we can see that the only nonzero Γkij are the following ones:

Γ3
12 =

1

2
ω◦12, Γ3

21 = −1

2
ω◦12,

Γ2
13 = −1

2
ω◦12, Γ2

31 = −1

2
ω◦12,

Γ1
23 =

1

2
ω◦12, Γ1

23 =
1

2
ω◦12,

(D.4.4)

where ω◦12 = ∂2ω
◦
1 − ∂1ω

◦
2. These symbols define a ?-connection ∇?, which we may see as a map

∇? : X(T3
θ)⊗ X(T3

θ)→ X(T3
θ). We can compute both the torsion and the curvature of ∇?, using

the formulae of definition D.4.3 and D.4.2. Before this, it is useful to compute the expressions of

∇?∂i∂j . We will use the fact that the vector fields ∂i can be expressed as follows,

∂1 = E1 + ω◦1 ? E3, ∂2 = E2 + ω◦2 ? E3, ∂3 = E3,

and the properties of a ?-covariant derivative (see definition D.4.1). We obtain:

∇?∂1
∂3 = ∇?E1+ω◦1?E3

E3 = ∇?E1
E3 + ω◦1 ?∇?E3

E3 = Γ2
13 ? E2, (D.4.5a)

∇?∂2
∂3 = ∇?E2+ω◦2?E3

E3 = ∇?E2
E3 + ω◦2 ?∇?E3

E3 = Γ1
23 ? E1, (D.4.5b)

∇?∂3
∂1 = ∇?E3

(E1 + ω◦1 ? E3) = ∇?E3
E1 = Γ2

31 ? E2, (D.4.5c)

∇?∂3
∂2 = ∇?E3

(E2 + ω◦2 ? E3) = ∇?E3
E2 = Γ1

32 ? E1, (D.4.5d)

∇?∂3
∂3 = ∇?E3

E3 = 0, (D.4.5e)

∇?∂1
∂1 = ∇?E1+ω◦1?E3

(E1 + ω◦1 ? E3) =

= ∇?E1
E1 +∇?E1

(ω◦1 ? E3) + ω◦1 ?∇?E3
E1 + ω◦1 ?∇?E3

(ω◦1 ? E3)

= L?E1
(ω◦1) ? E3 +R

α
(ω◦1) ?∇?

Rα(E1)
E3 + ω◦1 ? Γ2

31 ? E2

= ∂1(ω◦1) ? E3 + ω◦1 ? Γ2
13 ? E2 + ω◦1 ? Γ2

31 ? E2,

(D.4.5f)

∇?∂1
∂2 = ∇?E1+ω◦1?E3

(E2 + ω◦2 ? E3) =

= ∇?E1
E2 +∇?E1

(ω◦2 ? E3) + ω◦1 ?∇?E3
E2 + ω◦1 ?∇?E3

(ω◦2 ? E3)

= Γ3
12 ? E3 + L?E1

(ω◦2) ? E3 +R
α
(ω◦2) ?∇?

Rα(E1)
E3 + ω◦1 ? Γ1

32 ? E1

= ∂1(ω◦2) ? E3 + Γ3
12 ? E3 + ω◦2 ? Γ2

13 ? E2 + ω◦1 ? Γ1
32 ? E1,

(D.4.5g)

∇?∂2
∂1 = ∇?E2+ω◦2?E3

(E1 + ω◦1 ? E3) =

= ∇?E2
E1 +∇?E2

(ω◦1 ? E3) + ω◦2 ?∇?E3
E1 + ω◦2 ?∇?E3

(ω◦1 ? E3)

= Γ3
21 ? E3 + L?E2

(ω◦1) ? E3 +R
α
(ω◦1) ?∇?

Rα(E2)
E3 + ω◦2 ? Γ2

31 ? E2

= ∂2(ω◦1) ? E3 + Γ3
21 ? E3 + ω◦1 ? Γ1

23 ? E1 + ω◦2 ? Γ2
31 ? E2,

(D.4.5h)
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∇?∂2
∂2 = ∇?E2+ω◦2?E3

(E2 + ω◦2 ? E3) =

= ∇?E2
E2 +∇?E2

(ω◦2 ? E3) + ω◦2 ?∇?E3
E2 + ω◦1 ?∇?E3

(ω◦2 ? E3)

= L?E2
(ω◦2) ? E3 +R

α
(ω◦2) ?∇?

Rα(E2)
E3 + ω◦2 ? Γ1

32 ? E1

= ∂2(ω◦2) ? E3 + ω◦2 ? Γ1
23 ? E2 + ω◦2 ? Γ1

32 ? E1.

(D.4.5i)

Now we are ready to compute the torsion of ∇?. From lemma D.4.4 we know that T (Ei, Ei) = 0

for any i = 1, 2, 3. Next, by direct computation we get the following expressions:

T (E1, E2) = ∇?E1
E2 −∇?Rα(E2)

E1 − [E1, E2]? =

= Γ3
12 ? E3 −∇?∂2

∂1 +∇?∂2
(ω1 ? ∂3) + ω2 ?∇?∂3

∂1

−∇?
R
α

(ω2)?∂3
(Rα(ω1) ? ∂3)− 2Γ3

12 ? E3

= −Γ3
12 ? E3 − Γ3

21 ? E3 = −1

2
ω◦12 ? E3 +

1

2
ω◦12 ? E3 = 0

(D.4.6a)

T (E1, E3) = ∇?E1
E3 −∇?Rα(E3)

E1 − [E1, E3]? = ∇?E1
E3 −∇?E3

E1

= Γ2
13 ? E2 − Γ2

31 ? E2 = −1

2
ω◦12 ? E2 +

1

2
ω◦12 ? E2 = 0

(D.4.6b)

T (E2, E3) = ∇?E2
E3 −∇?Rα(E3)

E2 − [E2, E3]? = ∇?E2
E3 −∇?E3

E2

= Γ1
23 ? E1 − Γ1

32 ? E1 =
1

2
ω◦12 ? E1 −

1

2
ω◦12 ? E1 = 0

(D.4.6c)

In the same way (or using the properties of T , see lemma D.4.4) one can see that also T (E2, E1),

T (E3, E1) and T (E3, E2) are zero. This, together with the linearity properties of the torsion (see

lemma D.4.5), implies that T = 0. Hence ∇? is a torsionless ?-connection. The next step is the

computation of the curvature of ∇?. Performing it in the same way we did for the torsion, we

obtain the following results.

R(Ei, Ei, Ej) = 0 ∀i, j = 1, 2, 3, (D.4.7a)

R(E1, E2, E1) = −1

2
∂1(ω◦12) ? E3 +

3

4
(ω◦12)2 ? E2, (D.4.7b)

R(E1, E2, E2) = −1

2
∂2(ω◦12) ? E3 −

3

4
(ω◦12)2 ? E1, (D.4.7c)

R(E1, E2, E3) =
1

2
∂1(ω◦12) ? E1 +

1

2
∂2(ω◦12) ? E2

− 1

4
ω◦12 ? ω

◦
1 ? ω

◦
12 ? E2 +

1

4
ω◦1 ? (ω◦12)2 ? E2

+
1

4
ω◦12 ? ω

◦
2 ? ω

◦
12 ? E1 −

1

4
ω◦2 ? (ω◦12)2 ? E1,

(D.4.7d)

R(E1, E3, E1) = −1

2
∂1(ω◦12) ? E2 −

1

4
(ω◦12)2 ? E3

+
1

4
ω◦1 ? (ω◦12)2 ? E1 −

1

4
ω◦12 ? ω1 ? ω

◦
12 ? E1,

(D.4.7e)

R(E1, E3, E2) =
1

2
∂1(ω◦12) ? E1 +

1

4
ω◦1 ? (ω◦12)2 ? E2 −

1

4
ω◦12 ? ω

◦
1 ? ω

◦
12 ? E2, (D.4.7f)
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R(E1, E3, E3) =
1

4
(ω◦12)2 ? E1, (D.4.7g)

R(E2, E1, E1) =
1

2
∂1(ω◦12) ? E3 −

3

4
(ω◦12)2 ? E2, (D.4.7h)

R(E2, E1, E2) =
1

2
∂2(ω◦12) ? E3 +

3

4
(ω◦12)2 ? E1, (D.4.7i)

R(E2, E1, E3) = −1

2
∂2(ω◦12) ? E2 −

1

2
∂1(ω◦12) ? E1

− 1

4
ω◦12 ? ω

◦
2 ? ω

◦
12 ? E1 +

1

4
ω◦2 ? (ω◦12)2 ? E1

+
1

4
ω◦12 ? ω

◦
1 ? ω

◦
12 ? E2 −

1

4
ω◦1 ? (ω◦12)2 ? E2,

(D.4.7j)

R(E2, E3, E1) = −1

2
∂2(ω◦12) ? E2 +

1

4
ω◦2 ? (ω◦12)2 ? E1 −

1

4
ω◦12 ? ω

◦
2 ? ω

◦
12 ? E1, (D.4.7k)

R(E2, E3, E2) =
1

2
∂2(ω◦12) ? E1 −

1

4
(ω◦12)2 ? E3

+
1

4
ω◦2 ? (ω◦12)2 ? E2 −

1

4
ω◦12 ? ω2 ? ω

◦
12 ? E2,

(D.4.7l)

R(E2, E3, E3) =
1

4
(ω◦12)2 ? E2, (D.4.7m)

R(E3, Ei, Ej) = −R(Ei, E3, Ej) ∀i, j, (D.4.7n)

where the last relation was obtained using the ?-antisymmetry property of the curvature of a

?-connection (see lemma D.4.4). Now we write the curvature of ∇? in the following way:

R(Ei, Ej , Ek) =
∑
l

Rijkl ? El.

The symbols Rijkl can be easily read directly from equations (D.4.7a) - (D.4.7n). We can make

a step further, introducing the analogue of the Ricci tensor. We set:

Rij =
∑
k

Rkijk.

We can then take the “trace” of Rij : we define the Ricci ?-curvature to be R =
∑

iRii. We find:

R = R11 +R22 +R33 = −1

2
(ω◦12)2 − 1

2
(ω◦12)2 +

1

2
(ω◦12)2 = −1

2
(ω◦12)2. (D.4.8)

Hence we can give the following interpretation of our construction: the ?-connection ∇? can be

seen as a noncommutative analogue of the Levi-Civita connection, and it corresponds to a metric

with scalar curvature equal to −1
2(ω◦12)2. In particular, if ω12 6= 0 we obtain a curved Riemannian

structure over the noncommutative 3-torus.
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D.5 Spin Laplacian, twisted Dirac operator and Lichnerowicz

formula

The next step is to study the construction discussed in the previous sections in the framework

of Connes’ noncommutative geometry. That is, we need to associate a spectral triple (A =

A(T3
θ),H,D) to the ?-connection ∇?. This is what we shall do in this section. As we will see, the

Dirac operator D will simply be a bounded perturbation of the twisted Dirac operator D̂ω [DS13a]

(see also chapter 5 of this thesis). Moreover, we will define an analogue for the spin Laplacian and

prove that it is related to the square of the Dirac operator by a modified Lichnerowicz formula

(which reduces to the classical one in the limit θ → 0).

The first object we have to define is the spin connection associated to the ?-connection ∇?.
We define it giving the spinor covariant derivatives ∇Ei as operators on the Hilbert space of

L2 spinors. We begin by considering the canonical flat real spectral triple (A,H, D, J) over

A = A(T3
θ), where6 H = Hτ ⊗ C2, D =

∑
j σ

jδj and J = J0 ⊗ (iσ2 ◦ c.c.). Due to what

we have seen in the first part of this chapter, in the commutative case we can identify H with⊕
k L

2(ΣT2⊗L−k), and so the Dirac operator associated to the metric induced by the connection

ω can be seen as an operator on H. Hence, in the noncommutative case we define the Dirac

operator D already as an operator on H. For the same reason, moreover, we can define a Clifford

map γ : X? → L(H) by setting γ(Ej) = −iσj and extending it by left A-linearity (but, actually,

we shall not use this extension).

According to classical results, the spinor covariant derivatives, with respect to an orthonormal

frame {Ei}, can be written in the following way:

∇Ei = LEi +
1

4

∑
jk

γ(Ej)γ(Ek)Γ
k
ij , (D.5.1)

where the Γkij are the Christoffel symbols of the Levi-Civita connection. Taking (D.5.1) to be the

definition of the spin connection also in the noncommutative case, we obtain, for any ψ ∈ H,

∇E1ψ = ∂1ψ − ω◦1∂3ψ −
i

4
ω◦12σ

1ψ, (D.5.2a)

∇E2ψ = ∂2ψ − ω◦2∂3ψ −
i

4
ω◦12σ

2ψ, (D.5.2b)

∇E3ψ = ∂3ψ +
i

4
ω◦12σ

3ψ. (D.5.2c)

We recall that A◦ acts on H via the representation induced by the real structure J . Defining the

Dirac operator simply by D =
∑

j γ(Ej)∇Ej , we arrive to the following expression:

D = σ1δ1 + σ2δ2 + σ3δ3 − σ1ω◦1δ3 − σ2ω◦2δ3 −
1

4
ω◦12. (D.5.3)

In particular we see that D differs from the twisted Dirac operator D̂ω only for the bounded

6Hτ is the GNS Hilbert space associated to the tracial state τ , cfr. appendix A; J0 is the Tomita-Takesaki
antiunitary involution on Hτ .
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”scalar” term Z = −1
4ω
◦
12. Next we introduce the spinor Laplacian. We know [Fri00] that the

spinor Laplacian on a Riemannian manifold can be written as

∆S = −
∑
j

∇Ej∇Ej +
∑
j

div(Ej)∇Ej ,

where∇ is the spin connection and {Ej} is a (local) orthonormal frame. In our case the divergence

of each Ej is zero, so we are left with:

∆Sψ = −
3∑
j=1

∇Ej∇Ejψ (D.5.4)

for any ψ ∈ H. We compute separately the three terms of equation (D.5.4):

∇E1∇E1ψ =∂2
1ψ − ∂1(ω◦1)∂3ψ − 2ω◦1∂1∂3ψ −

i

4
∂1(ω◦12)σ1ψ − i

2
ω◦12σ

1∂1ψ

+ (ω◦1)2∂2
3ψ +

i

4
ω◦1ω

◦
12σ

1∂3ψ +
i

4
ω◦12ω

◦
1σ

1∂3ψ −
1

16
(ω◦12)2ψ,

(D.5.5a)

∇E2∇E2ψ =∂2
2ψ − ∂2(ω◦2)∂3ψ − 2ω◦2∂2∂3ψ −

i

4
∂2(ω◦12)σ2ψ − i

2
ω◦12σ

2∂2ψ

+ (ω◦2)2∂2
3ψ +

i

4
ω◦2ω

◦
12σ

2∂3ψ +
i

4
ω◦12ω

◦
2σ

2∂3ψ −
1

16
(ω◦12)2ψ,

(D.5.5b)

∇E3∇E3ψ = ∂2
3ψ +

i

2
ω◦12σ

3∂3ψ −
1

16
(ω◦12)2ψ. (D.5.5c)

As we anticipated, we compare now ∆S with the square of the Dirac operator D. First of

all, let us compute D2. Writing D = D + Xω + Z, where D is the flat Dirac operator on the

noncommutative 3-torus, D =

3∑
j=1

σjδj , Z is the scalar term − i
4ω
◦
12 = − i

4Jω12J
−1, and Xω is the

operator Xω = −σ1ω◦1δ3 − σ2ω◦2δ3, we obtain the following expressions:

D2ψ = −∂2
1ψ − ∂2

2ψ − ∂2
3ψ, (D.5.6a)

X2
ωψ = −(ω◦1)2∂2

3ψ − (ω◦2)2∂2
3ψ − i(ω◦1ω◦2 − ω◦2ω◦1)σ3∂2

3ψ, (D.5.6b)

Z2ψ =
1

16
(ω◦12)2ψ, (D.5.6c)

(DXω +XωD)ψ = ∂1(ω1)◦∂3ψ + ∂2(ω◦2)∂3ψ + 2ω◦1∂1∂3ψ + 2ω◦2∂2∂3ψ − iω◦12σ
3∂3ψ, (D.5.6d)

(DZ + ZD)ψ =
i

2
ω◦12σ

1∂1ψ +
i

4
∂1(ω◦12)σ1∂1ψ +

i

2
ω◦12σ

2∂2ψ

+
i

4
∂2(ω◦12)σ1∂2ψ +

i

2
ω◦12σ

3∂3ψ,

(D.5.6e)

(XωZ + ZXω)ψ = − i
4
ω◦1ω

◦
12σ

1∂3 −
i

4
ω◦12ω

◦
1σ

1∂3 −
i

4
ω◦2ω

◦
12σ

2∂3 −
i

4
ω◦12ω

◦
2σ

2∂3 (D.5.6f)

In order to compute D2
ω −∆S , we compare equations (D.5.5a) - (D.5.5c) with equations (D.5.6a)

- (D.5.6f). We see the following facts.
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• All the terms of D2ψ (equation (D.5.6a)) cancel out with the leading terms of equations

(D.5.5a), (D.5.5b), (D.5.5c).

• All the terms proportional to (ω◦i )
2∂2

3ψ in equation (D.5.6b) are cancelled by the corre-

sponding ones in equation (D.5.5a) and equation (D.5.5c).

• The terms proportional to iω◦12σ
3∂3ψ (equations (D.5.5c), (D.5.6d), (D.5.6e)) sum up to

zero.

• The sum of all the terms proportional to (ω◦12)2ψ (equations (D.5.5a), (D.5.5b), (D.5.5c),

(D.5.6c)) is equal to −1
8(ω◦12)2ψ.

• The terms proportional, respectively, to ∂i(ω
◦
i )∂3ψ and to ω◦i ∂i∂3ψ in equation (D.5.6d)

cancel out with the corresponding ones in equation (D.5.5a) and equation (D.5.5b).

• The terms proportional, respectively, to ω◦12σ
i∂iψ and to ∂i(ω

◦
12)σiψ in equation (D.5.6e)

cancel out with the corresponding ones in equation (D.5.5a) and equation (D.5.5b).

• The terms proportional, respectively, to ω◦12ω
◦
i σ

i∂3ψ and to ω◦i ω
◦
12σ

i∂3ψ in equation (D.5.6f)

cancel out with the corresponding ones in equation (D.5.5a) and equation (D.5.5b).

Hence we are left with

(D2
ω −∆)ψ = −1

8
(ω◦12)2ψ + Ξψ, (D.5.7)

where

Ξψ = i(ω◦2ω
◦
1 − ω◦1ω◦2)σ3δ2

3(ψ). (D.5.8)

We have therefore obtained a modified version of the Licherowicz formula, which reduces, as

expected, to the classical one in the case θ = 0. Indeed, Ξ is different from zero if and only if ω1

and ω2 do not commute. Moreover, from (D.5.7) we obtain that the scalar curvature should be

equal to −1
2(ω◦12)2, and this is consistent with the computation of the Ricci curvature performed

in the previous section (cfr. equation (D.4.8)). It is interesting to notice that the new term

appearing in this Licherowicz-like formula is a second order pseudodifferential operator and it is

proportional to σ3, so that it distinguishes the two polarizations of a spinor field.
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oirs of the AMS 16, Providence (1966)

[Gui85] V. W. Guillemin, A new proof of Weyl’s formula on the asymptotic distribution
of eigenvalues, Adv. in Math. 55, 131 (1985)

[Haj96] P. M. Hajac, Strong Connections on Quantum Principal Bundles, Comm. Math.
Phys. 182, 579 (1996)

[HKMZ11] P. M. Hajac, U. Kraehmer, R. Matthes and B. Zielinski, Piecewise principal
comodule algebras, J. Noncomm. Geom. 5, 591 (2011)

[HM99] P. M. Hajac and S. Majid, Projective module description of the q-monopole,
Comm. Math. Phys. 206, 247 (1999)

[HMS06] P. M. Hajac, R. Matthes and W. Szymanski, A Locally Trivial Quantum Hopf
Fibration, Algebras and Representation Theory 9, 121 (2006)

[HRZ11] P. M. Hajac, A. Rennie and B. Zielinski, The K-theory of Heegaard quantum lens
spaces, arXiv:1110.5897v1 (2011)

[HRuZ11] P. M. Hajac, J. Rudnik and B. Zielinski, Reductions of piecewise trivial principal
comodule algebras, arXiv:1101.0201 (2011)

[HaMa10] K. Hannabuss and V. Mathai, Noncommutative principal torus bundles via
parametrised strict deformation quantization, in Superstrings, Geometry, Topol-
ogy, and C∗-algebras, Proc. Symp. Pure Math. vol. 81, ed. by R. S. Doran, G.
Friedman and J. Rosenberg, AMS, Providence, RI (2010), pp. 133-148

[HSWZ11] A. Hawkins, A. Skalski, S. White and J. Zacharias, Spectral triples on crossed
products arising from equicontinuous actions, arXiv:1103.6199v3 (2011)

[Hig87] N. Higson, A characterization of KK-theory, Pacific J. Math. 126, 253 (1987)

[Hig04] N. Higson, The local index formula in noncommutative geometry, Contemporary
developments in algebraic K-theory, ICTP, Lect. Notes, XV, Trieste, pp. 443-536
(2004)

[Hig06] N. Higson, The residue index theorem of Connes and Moscovici, Surveys in non-
commutative geometry, Clay Math. Proc., vol. 6, AMS, Providence, RI (2006),
pp. 71-126

[HS] P. J. Hilton and U. Stammbach, A Course in Homological Algebra, Springer-
Verlag, New York (1971)

[KL13] J. Kaad and M. Lesch, Spectral flow and the unbounded Kasparov product, Adv.
in Math (in press, DOI:10.1016/j.aim.2013.08.015), 495 (2013)

251



BIBLIOGRAPHY

[KS12] J. Kaad and R. Senior, A twisted spectral triple for quantum SU(2), J. Geom.
Phys. 62, 731 (2012)

[Kan42] L. V. Kantorovic, On the translocation of masses, C. R. (Doklady) Acad. Sci.
URSS (N.S.) 37, 199 (1942)

[KanRub57] L. V. Kantorovic and G. S. Rubinstein, On a functional space and certain ex-
tremum problems, Dokl. Akad. Nauk SSSR (N.S.) 115, 1058 (1957)

[Kar78] M. Karoubi, K-Theory. An Introduction, Springer-Verlag, Berlin (1978)

[Kar87] M. Karoubi, Homologie cyclique et K-théorie. Astérisque 149 (1987)
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[Schm02] K. Schmüdgen, Commutator representations of covariant differential calculi on
quantum groups, Lett. Math. Phys. 59, 95 (2002)
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