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Conventions

Let E be a coherent sheaf on a Noetherian scheme Y. The support of E is the closed set
Supp(E) := {x ∈ Y |Ex 6= 0}. Its dimension is called the dimension of E and is denoted
by dim(E). The sheaf E is pure if for all nontrivial coherent subsheaves E′ ⊂ E, we have
dim(E′) = dim(E). Let us denote by T (E) the torsion subsheaf of E, i.e., the maximal
subsheaf of E of dimension less or equal to dim(E)− 1.

Let Y be a projective scheme over a field. Recall that the Euler characteristic of a
coherent sheaf E is χ(E) :=

∑
i(−1)i dim Hi(Y,E). Fix an ample line bundle O(1) on Y. Let

P (E,n) := χ(E ⊗ O(n)) be the Hilbert polynomial of E and det(E) its determinant line
bundle (cf. Section 1.1.17 in [35]). The degree of E, deg(E), is the integer c1(det(E)) ·Hd−1,
where H ∈ |O(1)| is a hyperplane section.

By Lemma 1.2.1 in [35], the Hilbert polynomial P (E) can be uniquely written in the form

P (E,n) =

dim(E)∑
i=0

βi(E)
ni

i!
,

where βi(E) are rational coefficients. Moreover for E 6= 0, βdim(E)(E) > 0.

Let Y → S be a morphism of finite type of Noetherian schemes. If T → S is an S-scheme,
we denote by YT the fibre product T ×S Y and by pT : YT → T and pY : YT → Y the natural
projections. If E is a coherent sheaf on Y , we denote by ET its pull-back to YT . For s ∈ S
we denote by Ys the fibre Spec(k(s)) ×S Y . For a coherent sheaf E on Y , we denote by Es
its pull-back to Ys. Often, we shall think of E as a collection of sheaves Es parametrized by
s ∈ S.

Whenever a scheme has a base field, we assume that the latter is an algebraically closed
field k of characteristic zero.

A polarized variety of dimension d is a pair (X,OX(1)), where X is a nonsingular, projec-
tive, irreducible variety of dimension d, defined over k, and OX(1) a very ample line bundle.
The canonical line bundle of X is denoted by ωX and its associated divisor by KX .

Let E be a coherent sheaf on X. By Hirzebruch-Riemann-Roch theorem the coefficients
of the Hilbert polynomial of E are polynomial functions of its Chern classes, in particular

P (E,n) = deg(X)rk(E)
nd

d!
+

(
deg(E)− rk(E)

deg(ωX)

2

)
nd−1

(d− 1)!
(1)

+ terms of lower order in n.
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CHAPTER 1

Introduction

1. Historical background

This dissertation is primarily concerned with the study of framed sheaves on nonsingular
projective varieties and the geometrical properties of the moduli spaces of these objects. In
particular, we deal with a generalization to the framed case of known results for (semi)stable
torsion free sheaves, such as (relative) Harder-Narasimhan filtration, Mehta-Ramanathan re-
striction theorems, Uhlenbeck-Donaldson compactification, Atiyah class and Kodaira-Spencer
map. The main motivations for the study of these moduli spaces come from physics, in
particular, gauge theory, as we shall explain in the following.

Gauge theory and instantons. There have been over the last 30 years remarkable
instances where physical theories provided a formidable input to mathematicians, offering
the stimulus to the creation of new mathematical theories, and supplying strong evidence for
highly nontrivial theorems. An example of this kind of interaction between mathematics and
physics is gauge theory. A first example of gauge theory can be found in the electromagnetic
theory, in particular Maxwell equations. The fields entering the Maxwell equations, the elec-
tric and magnetic fields, may be written in a suitable way as derivatives of two potentials,
the scalar and the vector potential. However, these potentials are defined up to a suitable
combination of the derivatives of another scalar field; this is the gauge invariance of electro-
magnetism. Now, the essence of gauge theory, from the physical viewpoint, is that this gauge
invariance dictates the way matter interacts via the electromagnetic fields.

The first workable gauge theory after electromagnetism is Yang-Mills theory (see [80],
for a more general approach see also [78]). However gauge theory entered the mathematical
scene only when it was realized that a gauge field may be interpreted as a connection on a
fibre bundle. In a modern mathematical formulation, the gauge potential A is described as
a connection on a principal G-bundle P defined over a four-dimensional (Euclidean) space-
time X. In the physics literature, the Lie group G is called gauge group. In the absence of
matter fields the Lagrangian of the theory is proportional to the L2 norm of the curvature,
or strength field, Tr(FA ∧ F ∗A), thus yielding nonlinear second-order ODEs as equations of
motion for the potential (YM equations, from Yang-Mills). A remarkable breakthrough in
solving SU(2) YM equations, hence finding non trivial vacuum states of the theory, came
in [7]. The pseudoparticle solutions (or instantons), introduced there, correspond to Hodge
anti-selfdual (ASD) connections A whose curvature satisfies F ∗A = −FA, and are classified
by the instanton number n, geometrically identified with the second Chern number of the
bundle n = c2(P ). The original physical theory is defined over X = R4, but the requirement
to consider only finite energy fields translates into working with bundles over S4. We restrict
our attention to the case of G equals to SU(r).
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6 1. INTRODUCTION

In [4], Atiyah and Ward study in details SU(2)-instantons on S4, and in particular they
prove the existence of a correspondence between gauge-equivalence classes of instantons on
S4 and isomorphism classes of locally free sheaves on CP3 satisfying some properties. These
locally free sheaves are characterized by some cohomological properties and in the literature
they are called mathematical instantons. The geometrical properties of moduli spaces of
mathematical instantons are widely studied in algebraic geometry (see, e. g., [30] , [31], in
which Hartshorne studies mathematical instantons as a first step to a full understanding of
the geometrical properties of locally free sheaves on projective spaces; for the irreducibility of
the moduli spaces see, e.g., [6], [21]; for the smoothness of the moduli spaces see, e.g., [43],
[17]).

Independently, Drinfeld and Manin ([20]) and Atiyah ([2]) prove the existence of the same
correspondence for SU(r)-instantons on S4. The existence of such a correspondence between
these analytical objects and algebro-geometric objects is due to the fact that one can always
associate to a SU(r)-instanton some linear data. This idea is well-explained in the article [3],
in which the authors prove that one can associate to an SU(r)-instanton of charge n on S4 the
linear datum (B1, B2, i, j), where B1, B2 ∈ End(Cn), i ∈ Hom(Cr,Cn) and j ∈ Hom(Cn,Cr),
satisfying the following properties

(i) [A,B] + ij = 0,
(ii) there exists no proper subspace V ( Cn such that Bi(V ) ⊆ V for i = 1, 2 and

Im i ⊂ V (stability condition),
(iii) there exists no nonzero subspace W ⊂ Cn such that Bi(W ) ⊆ W for i = 1, 2 and

W ⊂ ker j (costability condition).

In the literature, (B1, B2, i, j) is called an ADHM datum. Moreover, two gauge-equivalence
instantons correspond to two ADHM data (B1, B2, i, j) and (B′1, B

′
2, i
′, j′) equivalent with

respect to the following relation: for g ∈ GL(C, n), (B1, B2, i, j) and (B′1, B
′
2, i
′, j′) are equiv-

alent if and only if

(2) gBig
−1 = B′i for i = 1, 2; gi = i′; jg−1 = j′.

Framed instantons. One can also define the so-called framed instantons. In the princi-
pal bundle picture, these are pairs (A, φ) where A is an anti-selfdual connection on a principal
SU(r)-bundle P on X, and φ is a point in the fibre Px over a fixed point x ∈ X, i.e., a “frame”.
Correspondingly, one restricts to considering gauge transformations that fix the frame. The
framing has a meaning in physical theories: an instanton is invariant with respect to global
rotations of R4, on the other hand a framed instanton is invariant only with respect to local ro-
tations. In the supersymmetric setting, this means that while the moduli space parametrizing
SU(r)-instantons with charge n represents the space of classical vacua of a quantized gauge
theory, the framing has the meaning of a vacuum expectation value of some fields (technically,
the scalar fields in the N = 2 vector multiplet).

In [18], by using Atiyah-Ward correspondence, Donaldson proves that gauge-equivalence
classes of framed SU(r)-instantons with instanton number n on S4 are in one-to-one corre-
spondence with isomorphism classes of locally free sheaves on CP2 of rank r and second Chern
class n that are trivial along a fixed line l∞, and have a fixed trivialization there. Moreover
these objects can be described by ADHM data.
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Afterwards, King proves the same correspondence between framed SU(r)-instantons on

the projective plane with reverse orientation CP2 and locally free sheaves on the blow up of
CP2 at a point, trivial along a fixed line and with a fixed trivialization there ([38]). Buchdahl
generalizes this result for framed SU(r)-instantons on the connected sum of n copies of CP2

and locally free sheaves on the blow up of CP2 at n points, trivial along a fixed line and
with a fixed trivialization there ([16]). Moreover, Nakajima proves a similar correspondence
for framed SU(r)-instantons on the so-called Asymptotically Locally Euclidean spaces ([61]).
This kind of correspondences provides some first tools to translate problems coming from
gauge theories into a mathematical language.

If we consider a datum (B1, B2, i, j) satisfying only the conditions (i) and (ii) written
above, one can prove that it corresponds to a pair (E,α), where E is a torsion free sheaf on

CP2, locally trivial in a neighborhood of a fixed line l∞, and α is an isomorphism E|l∞
∼→ O⊕rl∞ .

In the literature these objects are called framed sheaves on CP2 and α framing at infinity.
Moreover, equivalence classes of (B1, B2, i, j), with respect to the relation (2), correspond to
isomorphism classes of framed sheaves on CP2. Thus, by using these linear data, we construct
a moduli space M(r, n) that parametrizes isomorphism classes of framed sheaves (E,α) on
CP2 with E of rank r and second Chern class n, that is, a nonsingular quasi-projective variety
of dimension 2rn. Moreover the open subset M reg(r, n) consisting of isomorphism classes of
framed vector bundles, i.e., framed sheaves (E,α) with E locally free, is isomorphic to the
moduli space of gauge-equivalence classes of framed SU(r)-instantons of charge n on S4, by
Donaldson’s result. In some sense we can look at M(r, n) as a partial compactification of
M reg(r, n). A detailed explanation of this construction of M(r, n) is in Chapter 2 in [60].
In Chapter 3 of the same book, Nakajima explains another way to construct M(r, n) as the
hyper-Kähler quotient

M(r, n) = {(B1, B2, i, j) | condition (i) holds, [B1, B
†
1 ] + [B2, B

†
2 ] + ii† − j†j = ζid}/U(n),

where (·)† is the Hermitian adjoint and ζ is a fixed positive real number. Moreover, Nakajima
constructs another type of partial compactification MUh(r, n) of M reg(r, n), called Uhlenbeck-
Donaldson compactification, as the affine algebro-geometric quotient

MUh(r, n) := {(B1, B2, i, j) | [B1, B2] + ij = 0}//GL(C, n).

By these descriptions via linear data, we have a projective morphism

(3) πr : M(r, n)→MUh(r, n),

such that the restriction to the locally free part is an isomorphism with its image.

In [63], Nakajima and Yoshioka conjecture that, by using Uhlenbeck-Donaldson’s theory
of ideal SU(r)-instantons on S4 (see Section 4.4 in [19]), one can give a topology to the set

n∐
i=0

M reg(r, n− i)× Symi(C2)

and prove that this latter space is homeomorphic to MUh(r, n). Moreover, in analogy with the
construction of the Uhlenbeck-Donaldson compactification for µ-stable locally free sheaves on
nonsingular projective surfaces (see [47], [55] for the rank two case, [48] and [35], Section 8.2,
for the general case), Nakajima and Yoshioka conjecture that sheaf-theoretically the morphism
πr is

[(E,α)] ∈M(r, n)
πr7−→
(
[(E∨∨, α)], supp (E∨∨/E)

)
∈M reg(r, n− i)× Symi(C2) ⊂MUh(r, n),
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where we denote by E∨∨ the double dual of E, supp (E∨∨/E) is the support of the zero-
dimensional sheaf E∨∨/E counted with multiplicities and i the length of it.

Instanton counting. In 1994 N. Seiberg and E. Witten ([71], [72]) state an ansatz for
the exact prepotential ofN = 2 Yang-Mills theory in four dimensions with gauge group SU(2).
This solution has been extended to SU(r) and to theories with matter, has been rederived
in the context of string theory. One challenge has been to find a field theory derivation of
this result, or at least to verify it with usual quantum field theory methods. The Seiberg-
Witten prepotential can be computed with instanton calculus, and there has been much
work devoted to developing this calculus in order to test their ansatz. Unfortunately, it has
been difficult to obtain explicit results beyond instanton number two due to the complexity
of the ADHM construction. One of the results of the research on instanton calculus has
been, however, that the coefficients of the Seiberg-Witten prepotential can be computed as
the equivariant integral of an equivariant differential form on the moduli space of framed
instantons. In [64], Nekrasov produces explicit formulae for the Seiberg-Witten prepotential
for gauge group SU(r) and general matter content. Moduli spaces of framed sheaves on CP2

represent the natural ambient spaces on which one computes these integrals. More precisely,
let us fix l∞ = {[z0 : z1 : z2] | z0 = 0}. Let Te be the maximal torus of GL(C, r) consisting of
diagonal matrices and let T := C∗ × C∗ × Te. We define an action on M(r, n) as follows: for
(t1, t2) ∈ C∗ × C∗, let Ft1,t2 be the automorphism on P2 defined as

Ft1,t2([z0 : z1 : z2]) := [z0 : t1z1 : t2z2].

For diag(e1, e2, . . . , er) ∈ Te, let G(e1,...,er) denote the isomorphism of O⊕rl∞ given (locally) by

(s1, . . . , sr) 7→ (e1s1, . . . , ersr). Then for a point [(E,α)] ∈M(r, n) we define

(t1, t2, e1, . . . er) · [(E,α)] := [((F−1
t1,t2

)∗(E), α′)],

where α′ is the composite of morphisms

(F−1
t1,t2

)∗(E)|l∞ (F−1
t1,t2

)∗(O⊕rl∞ ) O⊕rl∞ O⊕rl∞
(F−1
t1,t2

)∗(α|l∞ ) G(e1,...,er)

where the middle arrow is the morphism given by the action.

For k = 1, . . . , r, let ek be the 1-dimensional T -module given by

(t1, t2, e1, . . . , er) 7→ ek.

In the same way consider the 1-dimensional T -modules t1, t2. Let ε1, ε2 and ak be the second
Chern classes of t1, t2 and ek, k = 1, 2, . . . r. Thus the T -equivariant cohomology of a point
is C[ε1, ε2, a1, . . . , ar]. From a geometric viewpoint, Nekrasov’s partition function (or, more
precisely, its instanton part) is the generating function

Z(ε1, ε2, a1, . . . , ar; q) :=

∞∑
n=0

qn
∫
M(r,n)

1,

where 1 is the equivariant fundamental class of H∗T (M(r, n)). Hence it is a function of the
equivariant parameters ε1, ε2, a1, . . . , ar and a formal variable q. In the case of gauge theories
with masses, one can define Nekrasov’s partition function as the generating function of the
integral of an equivariant cohomology class depending on the equivariant parameters and the
masses. Actually, the moduli space is not compact (it is only quasi-projective) and therefore,
strictly speaking, the integral is not defined. However one can formally apply the localization
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formula in equivariant cohomology, and the resulting expression is a rational function in
the equivariant parameters. Nekrasov’s partition function is explicitly computed in [13] for
framed sheaves on CP2. Nakajima and Yoshioka computed Nekrasov’s partition formula for
the blow-up of CP2 at a point (see [63], [62]). A general computation for toric surfaces is given
in [24]. These computations are done by looking at the finite set of fixed points of the toric
action on the moduli space. The tangent spaces at the fixed points provide representations
of the acting torus, and one can compute the characters of the representations. This allows
one to compute the “right-hand side” of the localization formula, and therefore, to compute
Nekrasov’s partition function. The identification of the fixed points, and the calculations of
the characters, is done with some combinatorial computations, using Young tableaux. This
is what is meant (at least by mathematicians) by instanton counting.

Moduli spaces of framed sheaves on nonsingular projective varieties. One can
generalize the notion of framed sheaves on CP2 to a nonsingular projective variety. Let X be
a nonsingular projective variety, D ⊂ X an effective divisor and FD a locally free sheaf on it.

Definition 1.1. A framed vector bundle on X is a pair (E,α) where E is a locally free sheaf

on X, locally free on a neighborhood of D, and α is an isomorphism E|D
∼→ FD. We call α

framing and FD framing sheaf.

For arbitrary D and FD, the family of framed vector bundles is too big, hence we have to
choose good D and FD to restrict it.

Definition 1.2. An effective divisor D on X is called a good framing divisor if we can write
D =

∑
i niDi, where Di are prime divisors and ni > 0, and there exists a nef and big divisor

of the form
∑

i aiDi, with ai ≥ 0. For a coherent sheaf F on X supported on D, we shall
say that F is a good framing sheaf on D, if it is locally free of rank r and there exists a real
number A0, 0 ≤ A0 <

1
rD

2, such that for any locally free subsheaf F ′ ⊂ F of constant positive

rank, 1
rk(F ′) deg(F ′) ≤ 1

rk(F ) deg(F ) +A0.

Definition 1.3. The framing sheaf FD is simplifying if for any two framed vector bundles
(E,α) and (E′, α′) on X, the group H0(X,Hom(E,E′)(−D)) vanishes.

In [46], Lehn proves that if the divisor D is good and the framing sheaf FD is good and
simplifying, there exists a fine moduli space of framed vector bundles on X in the category of
separated algebraic spaces. In [49], Lübke proves a similar result: if X is a compact complex
manifold, D a smooth hypersurface (not necessarily “good”) and if FD is simplifying, then
the moduli space of framed vector bundles on X exists as a Hausdorff complex space.

From now on, let (X,OX(1)) be a polarized variety of dimension d. Let F be a coherent
sheaf on X. In [33] and [34] Huybrechts and Lehn generalize the previous definition of framed
sheaves, in the following way:

Definition 1.4. A framed module1 on X is a pair E := (E,α), where E is a coherent sheaf
on X and α : E → F is a morphism of coherent sheaves. We call α framing of E.

Huybrechts and Lehn define a generalization of Gieseker semistability (resp. µ-semistabili-
ty) for framed sheaves that depends on a rational polynomial, that we call stability polynomial.

1In [33], Huybrechts and Lehn call this object stable pair.
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More precisely, let δ be a rational polynomial of degree d− 1 with positive leading coefficient
δ1.

Definition 1.5. A framed module (E,α) of positive rank is said to be (semi)stable with
respect to δ if and only if the following conditions are satisfied:

(i) rk(E)P (E′) (≤) rk(E′)(P (E)− δ) for all subsheaves E′ ⊂ kerα,
(ii) rk(E)(P (E′)− δ) (≤) rk(E′)(P (E)− δ) for all subsheaves E′ ⊂ E.

Definition 1.6. A framed module (E,α) of positive rank is µ-(semi)stable with respect to
δ1 if and only if kerα is torsion free and the following conditions are satisfied:

(i) rk(E) deg(E′) (≤) rk(E′)(deg(E)− δ1) for all subsheaves E′ ⊂ kerα,
(ii) rk(E)(deg(E′)−δ1) (≤) rk(E′)(deg(E)−δ1) for all subsheaves E′ ⊂ E with rk(E′) <

rk(E).

One has the usual implications among different stability properties of a framed module
of positive rank:

µ− stable⇒ stable⇒ semistable⇒ µ− semistable.

Let us denote by Mss
δ (X;F, P ) (resp. Ms

δ(X;F, P )) the contravariant functor from the
category of Noetherian k-schemes of finite type to the category of sets, that associates to
every scheme T the set of isomorphism classes of families of semistable (resp. stable) framed
sheaves on X with Hilbert polynomial P parametrized by T. The main result in Huybrechts
and Lehn’s papers is the following:

Theorem 1.7. There exists a projective scheme Mss
δ (X;F, P ) that corepresents the functor

Mss
δ (X;F, P ). Moreover there is an open subscheme Ms

δ(X;F, P ) of Mss
δ (X;F, P ) that rep-

resents the functor Ms
δ(X;F, P ), i.e., Ms

δ(X;F, P ) is a fine moduli space for stable framed
sheaves.

The theory developed by Huybrechts and Lehn covers not only the case of framed vector
bundles à la Lehn, but also other kinds of additional structures on coherent sheaves. Let
F = OX and consider the framed module (E,α : E → F ) with E a locally free sheaf. By
dualizing, one get a locally free sheaf G = E∨ together with a morphism φ = α∨ : OX → G,
hence a pair (G,φ ∈ H0(X,G)). In the literature this object is called a Higgs pair on X. Higgs
pairs yield solutions of so-called vortex equations (see, e.g., [11], [12],[22], [23]). Moreover,
the stability condition for Higgs pairs (see [8], [75]) coincides with the stability condition
above.

Moduli spaces of framed sheaves on nonsingular projective surfaces. There is
another way to extend the original definition of framed sheaves on CP2 with framing along a
fixed line to arbitrary nonsingular projective surfaces. Huybrechts and Lehn’s theory provides
new tools for constructing moduli spaces of framed sheaves on nonsingular projective surfaces.

Let X be a nonsingular projective surface over C, D a big and nef curve and FD a good
framing sheaf on it.

Definition 1.8. A framed sheaf on X is a pair (E,α) where E is a torsion free sheaf, E is
locally free in a neighborhood of D and α is a morphism from E to FD such that α|D is an
isomorphism.
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In [14], Bruzzo and Markushevich prove the following result.

Theorem 1.9. There exists a very ample line bundle on X and a positive rational number δ1

such that every framed sheaf on X is a µ-stable framed module with respect to δ1. In particular
there exists a fine moduli space M∗(X;FD, P ) for framed sheaves on X with fixed Hilbert
polynomial P , that is, an open subscheme of Ms

δ(X;FD, P ), for any rational polynomial
δ(n) = δ1n+ δ0.

This result improves and extends to torsion free sheaves Lehn’s result for framed vec-
tor bundles. Moreover, if D is a smooth connected curve of genus zero with positive self-
intersection and FD is a Gieseker-semistable coherent OD-module, then the moduli space of
framed sheaves on X is a nonsingular quasi-projective variety.

There are other results about the construction of moduli spaces of framed sheaves on
nonsingular projective surfaces over C in which Huybrechts and Lehn’s theory of framed
modules is not used. For example, in [65], Nevins proves that if D is a smooth connected
curve with positive self-intersection and FD is a semistable locally free sheaf, there exists a
moduli space of framed sheaves on X, that is a scheme. On the other hand, for the blowup of
CP2 at a finite number of points and for Hirzebruch surfaces, there are constructions of moduli
spaces of framed sheaves using some generalizations of the ADHM data (see, respectively, [32],
[68]).

Symplectic structures on moduli spaces of framed sheaves. Let l∞ be a line in
the complex projective plane CP2. As described in Chapter 3 of Nakajima’s book [60], the
moduli space M(r, n) of framed sheaves on CP2 of rank r and second Chern class n is a
hyper-Kähler quotient. On the other hand it is possible to define a hyper-Kähler structure
by using the theory of SU(r)-framed instantons. It was proved by Kronheimer and Nakajima
([40]), and by Maciocia ([51]) that these two structures are isomorphic. By fixing a complex
structure on M(r, n), the hyper-Kähler structure induces a holomorphic symplectic form on
M(r, n).

Leaving aside these results for framed sheaves on CP2, the only relevant result in the
literature for framed sheaves on arbitrary nonsingular projective surfaces is due to Bottacin
(see [10]). Let X be a complex nonsingular projective surface, D an effective divisor such
that D =

∑n
i=1Ci, where Ci is an integral curve for i = 1, . . . , n, and FD a locally free

OD-module. Fix a Hilbert polynomial P. Bottacin constructs Poisson brackets on the moduli
space M∗lf (X;FD, P ) of framed vector bundles on X, induced by global sections of the line

bundle ω−1
X (−2D). In particular, when X is the complex projective plane, D = l∞ and FD the

trivial vector bundle of rank r on l∞, he provides a symplectic structure on the moduli space
M reg(r, n) of framed vector bundles on CP2, induced by the standard holomorphic symplectic
structure of C2 = CP2 \ l∞. It is not known if this symplectic structure is equivalent to that
given by the ADHM construction.

Bottacin’s result can be seen as a generalization to the framed case of the construction
of Poisson brackets and holomorphic symplectic two-forms on the moduli spaces of Gieseker-
stable torsion free sheaves on X. We recall briefly the main results for torsion free sheaves. In
[56], Mukai proved that any moduli space of simple sheaves on a K3 surface or abelian surface
has a non-degenerate holomorphic two-form. Its closedness was proved later independently by
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Mukai ([57]), O’Grady ([66]) and Ran ([67]) for vector bundles, by Bottacin ([9]) for Gieseker-
stable torsion free sheaves. Mukai’s result was extended by Tyurin ([76]) to moduli spaces
of Gieseker-stable vector bundles over surfaces of general type and over Poisson surfaces; a
more thorough study of the Poisson case was accomplished by Bottacin in [9]. In all these
situations, the symplectic two-form is defined in terms of the Atiyah class. Moreover, the
two-form or a Poisson bivector on the moduli space of Gieseker-stable torsion free sheaves is
induced by the one on the base space of the sheaves.

2. My work

Let (X,OX(1)) be a polarized variety of dimension d, F a coherent sheaf on X and δ
a rational polynomial of degree d − 1 and positive leading coefficient δ1. Leaving aside the

results on the representability of the moduli functor M(s)s
δ (X;F, P ) discussed, a complete

theory of framed modules and a study of the geometry of their moduli spaces is missing in
the literature.

From now on we call framed sheaves Huybrechts and Lehn’s framed modules, (D,F )-
framed sheaves the pairs (E,α) where E is a coherent sheaf on a nonsingular projective

variety X, locally free in a neighborhood of a divisor D, and α is a isomorphism E|D
∼→ F ,

where F is a locally free OD-module, and (D,F )-framed vector bundles the (D,F )-framed
sheaves in which the underlying coherent sheaf is locally free.

In this thesis we provide a complete study of the properties of the (µ)-(semi)stability
conditions for framed sheaves and their behaviour with respect to restrictions to hypersurfaces
of X. Moreover, we extend to (D,F )-framed sheaves the notion of Atiyah class and generalize
the definition of Kodaira-Spencer map and the construction of closed two-forms via the Atiyah
class.

Even if we want to work with torsion free framed sheaves, torsion may appear in the
graded objects of the Harder-Narasimhan and Jordan-Hölder filtrations. For this reason, we
choose Definition 1.5 as the definition of (semi)stability for framed sheaves of positive rank
and we give a new definition for the (semi)stability of framed sheaves of rank zero. The latter
is different from that given by Huybrechts and Lehn in their papers (see Section 2).

Definition 1.10. Let E = (E,α) be a framed sheaf with rk(E) = 0. If α is injective, we say
that E is semistable2. Moreover, if P (E) = δ we say that E is stable with respect to δ.

This definition singles out exactly those objects which may appear as torsion components
of the Harder-Narasimhan and Jordan-Hölder filtrations.

In the case of Gieseker semistability, to verify if a torsion free sheaf E is (semi)stable or
not, one can restrict oneself to the family of saturated subsheaves of E. In the absolute case,
one can find inside this family the maximal destabilizing subsheaf of E. In the relative case,
one can consider a flat family E of coherent sheaves on the fibres of a projective morphism
X → S, where S is an integral k-scheme of finite type, and one can study the behaviour of
the semistability condition while moving along the base scheme. More precisely, by using the
boundedness of the family of torsion free quotients of the sheaves E|Xs on the fibres Xs, for
s ∈ S (cf. Lemma 3.12), one can find a generically minimal destabilizing quotient.

2For torsion sheaves, the definition of semistability of the corresponding framed sheaves does not depend
on δ.
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In the framed case the situation is more complicated. We need to introduce a genera-
lization of the notion of saturation:

Definition 1.11. Let E = (E,α) be a framed sheaf where kerα is nonzero and torsion free.
Let E′ be a subsheaf of E. The framed saturation Ē′ of E′ is the saturation of E′ as subsheaf
of

• kerα, if E′ ⊂ kerα.
• E, if E′ 6⊂ kerα.

In this way, we get the following characterization:

Proposition 1.12. Let E = (E,α) be a framed sheaf where kerα is nonzero and torsion free.
Then the following conditions are equivalent:

(a) E is semistable with respect to δ.
(b) For any framed saturated subsheaf E′ ⊂ E one has P (E′, α′) ≤ rk(E′)p(E).
(c) For any surjective morphism of framed sheaves ϕ : E → (Q, β), where α = β ◦ ϕ and

Q is one of the following:
– Q is a coherent sheaf of positive rank with nonzero framing β such that kerβ is

nonzero and torsion free,
– Q is a torsion free sheaf with zero framing β,
– Q = E/kerα,

one has rk(Q)p(E) ≤ P (Q, β).

As one can see from the previous proposition, in the framed case it may happen that
rank zero subsheaves destabilize a framed sheaf of positive rank. This phenomenon does not
happen in the nonframed case. Inside the family of framed saturated subsheaves of a framed
sheaf of positive rank, one can find the maximal one, with respect to the inclusion. Moreover,
by using this subsheaf one can construct the Harder-Narasimhan filtration, as explained in
Theorem 2.33.

Now consider the relative case: let f : X → S be a projective flat morphism, where S is
an integral k-scheme of finite type, and an flat family F of coherent sheaves of rank zero on
the fibres of f has been chosen as a framing sheaf. If we define flat families of framed sheaves
of positive rank on the fibres of f as pairs E = (E,α : E → F ), where E is an flat flat family
of coherent sheaves of positive rank on the fibres of f , we can encounter a problem of jumping
of the framing when moving along the base scheme, i.e., the possibility that there exists a
nonempty open subset U of S and two points s1, s2 ∈ U such that the restriction of α to the
fibre at s1 is zero and the restriction of α to the fibre at s2 is nonzero. Moreover, we do not
want that there exists a point s ∈ S such that kerαs is a framed-destabilizing subsheaf of
Es, because we would like only to deal with destabilizing quotients of Es of positive rank. To
avoid these situations, we give the following definition of families of framed sheaves:

Definition 1.13. A flat family of framed sheaves of positive rank on the fibres of the morphism
f consists of a framed sheaf E = (E,α : E → F ) on X, where αs 6= 0 and rk(Es) > 0 for all
s ∈ S and E and Im α are flat families of coherent sheaves on the fibres of f.

We prove that the family of saturated subsheaves of the fibres of E is bounded (cf. Proposi-
tion 3.14 and 3.15), hence, as in the nonframed case, we can construct a generically minimal
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destabilizing quotient of the framed sheaves E|Xs , for s ∈ S, and a relative version of the
Harder-Narasimhan filtration with respect to a stability polynomial δ̄ such that δ̄ ≤ P (Imαs)
for any point s ∈ S (cf. Section 4). To avoid the problem of the jumping of the framings
of the minimal destabilizing quotient when moving along the base scheme, we construct this
quotient by using the relative framed Quot scheme, that parametrizes only quotients of E|Xs ,
for s ∈ S, with nonzero induced framings, and the open subset of the relative Grothendieck
Quot scheme parametrizing only quotients with generically zero framings. In this way we get
a quotient with a framing that generically does not jump.

Regarding the study of Gieseker’s stability for torsion free sheaves, one can define the
so-called socle and extended socle. These are “special” saturated subsheaves of a semistable
torsion free sheaf E: the socle is the sum of all destabilizing subsheaves of E with the
same reduced Hilbert polynomial of E, while the extended socle plays the same role as the
maximal destabilizing subsheaf in the stable case. Unfortunately, we cannot introduce framed
analogues of these objects in general because the sum of two framed saturated subsheaves
of a fixed framed sheaf may not be framed saturated. Thus we generalize the socle and
the extended socle only for semistable (D,F )-framed sheaves, where D is a divisor and F
a locally free OD-module. On the other hand, we define in general the notion of a Jordan-
Hölder filtration, leading to the notions of S-equivalence and polystability, that play a key
role in the construction of the moduli space of (semi)stable framed sheaves with fixed Hilbert
polynomial.

Also in the case of µ-semistability, we give two different definitions: Definition 1.6 for
framed sheaves of positive rank and a definition for framed sheaves of rank zero similar to
that given before. All the previous results hold also for the µ-semistability condition.

By using the relative Harder-Narasimhan and Jordan-Hölder filtrations, we fill one more
gap of theory of framed sheaves, by providing a generalization of the Mehta-Ramanathan
theorems:

Theorem 1.14. Let (X,OX(1)) be a polarized variety of dimension d. Let F be a coherent
sheaf on X supported on a divisor DF . Let E = (E,α : E → F ) be a framed sheaf on X of
positive rank with nontrivial framing. If E is µ-semistable with respect to δ1, then there is a
positive integer a0 such that for all a ≥ a0 there is a dense open subset Ua ⊂ |OX(a)| such
that for all D ∈ Ua the divisor D is smooth and meets transversally the divisor DF , and E|D
is µ-semistable with respect to aδ1. Moreover, a0 depends only on the Chern character of E.

The same statement holds with “µ-semistable” replaced by “µ-stable” under the following
additional assumptions: the framing sheaf F is a locally free ODF -module and E is a (DF , F )-
framed sheaf on X.

Mehta-Ramanathan theorems are very useful as they often allow one to reduce a problem
from a higher-dimensional variety to a surface or even to a curve, as for example happens
with the proof of Hitchin-Kobayashi correspondence (see Chapter VI in [39]).

The classical Mehta-Ramanathan theorems are also used in the algebro-geometric con-
struction of the Uhlenbeck-Donaldson compactification of moduli space of µ-stable vector
bundles on a nonsingular projective surface ([47] and [35], Section 8.2). In the same way, our
framed version of these theorems is used in a work of Bruzzo, Markushevich and Tikhomirov
in the construction of the Uhlenbeck-Donaldson compactification for framed sheaves.
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We briefly recall the construction of this compactification. Let (X,OX(1)) be a polarized
surface, D ⊂ X a big and nef curve and F a coherent OD-module. Fix a stability polynomial δ
and a numerical polynomial P of degree two. One can define a scheme Rµss(c, δ) that, roughly
speaking, parametrizes framed sheaves onX with topological invariants defined by a numerical
K-theory class c ∈ K(X)num that are µ-semistable with respect to δ1. On Rµss(c, δ)×X we
can define a universal family E = (E,α : E → p∗X(F )), where pX is the projection from the
product to X.

Let a� 0 and C ∈ |OX(a)| a general curve. Then C is smooth and transversal to D. By
using the µ-semistable part of Theorem 1.14, the restriction of E to Rµss(c, δ)×C produces a
family of generically µ-semistable framed sheaves of positive rank on C and therefore a rational
map Rµss(c, δ) 99KMss

δ1
(C;F |C , c|C) from Rµss(c, δ) to the moduli spaceMss

δ1
(C;F |C , c|C) of

semistable framed sheaves of topological invariant c|C on C (on a curve semistability coincides
with µ-semistability). In Chapter 6 we prove that there exists a line bundle L1 on Rµss(c, δ)
such that the pullback of an ample line bundle of Mss

δ1
(C;F |C , c|C) is isomorphic to L⊗ν1 for

some positive integer ν. In this way we obtain that L1 is generated by global sections.

By taking the projective spectrum of the direct sum of the spaces of global sections of
suitable powers of L1 (as it is explained in Chapter 6), we can define a projective scheme
Mµss

δ and projective morphism

π : Mδ(X;F, P ) −→Mµss
δ .

As it is proved in [15], Mµss
δ is, in a naive sense, a moduli space of µ-semistable framed

sheaves.

Let F be a locally freeOD-module. If we restrict ourselves to the open subsetMX,D(r,A, n)
consisting of µ-stable (D,F )-framed sheaves of rank r, determinant line bundle A and second
Chern class n, we obtain a map

πr := π|MX,D(r,A,n) : MX,D(r,A, n) −→
∐
l≥0

MX,D(r,A, n− l)× Syml(X \D)

(E,α) 7−→
(
(E∨∨, α∨∨), supp (E∨∨/E)

)
.

Moreover, the restriction of πr to the open subset consisting of µ-stable (D,F )-framed vector
bundles is a bijection onto the image.

This result follows from Theorem 4.6 in [15], where the µ-stable part of Theorem 1.14 is
used, and generalizes a similar construction for (l∞,O⊕rl∞ )-framed sheaves on CP2 (see Chapter

3 in [60], see also formula (3)).

Another main result of this thesis consists of the generalization to the framed case of
the notion of the Atiyah class. Let (X,OX(1)) be a polarized surface and S a Noetherian k-
scheme of finite type. Let E be a flat family of coherent sheaves on the fibres of the projection
morphism pS : S×X → S. The Atiyah class of E is the element at(E) in Ext1(E,Ω1

S×X ⊗E)
that represents the obstruction for the existence of an algebraic connection on E. The Atiyah
class was introduced in [1] for the case of vector bundles and in [36] and [37] for any complex
of coherent sheaves. One way to define the Atiyah class at(E) is by using the so-called sheaf
of first jets J1(E) (see, e.g., [50]).

Let D ⊂ X be a divisor and F a locally free OD-module. We introduce the following
definition of a S-flat family of (D,F )-framed sheaves:
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Definition 1.15. A flat family of (D,F )-framed sheaves parametrized by S is a pair E =
(E,α) where E is a coherent sheaf on S × X, flat over S, α : E → p∗X(F ) is a morphism
such that for any s ∈ S the sheaf E|{s}×X is locally free in a neighborhood of {s} ×D and
α|{s}×D : E|{s}×D → p∗X(F )|{s}×D is an isomorphism.

Let E = (E,α) be a S-flat family of (D,F )-framed sheaves. We introduce the framed
sheaf of first jets J1

fr(E) as the subsheaf of the sheaf of first jets J1(E) consisting of those

sections whose p∗S(Ω1
S)-part vanishes along S × D. We define the framed Atiyah class at(E)

of E by using J1
fr(E) as a class in

Ext1(E,
(
p∗S(Ω1

S)⊗ p∗X(OX(−D))⊕ p∗X(Ω1
X)
)
⊗ E).

Consider the induced section At(E) under the global-relative map

Ext1
(
E,
(
p∗S(Ω1

S)⊗ p∗X(OX(−D))⊕ p∗X(Ω1
X)
)
⊗ E

)
−→

−→ H0(S, Ext1pS (E,
(
p∗S(Ω1

S)⊗ p∗X(OX(−D))⊕ p∗X(Ω1
X)
)
⊗ E)),

coming from the relative-to-global spectral sequence

Hi(S, ExtjpS (E,
(
p∗S(Ω1

S)⊗ p∗X(OX(−D))⊕ p∗X(Ω1
X)
)
⊗ E))⇒

⇒ Exti+j(E,
(
p∗S(Ω1

S)⊗ p∗X(OX(−D))⊕ p∗X(Ω1
X)
)
⊗ E).

By considering the S-part AtS(E) of At(E) in

H0(S, Ext1pS (E, p∗S(Ω1
S)⊗ p∗X(OX(−D))⊗ E)),

we define the framed version of the Kodaira-Spencer map.

Definition 1.16. The framed Kodaira-Spencer map associated to the family E is the compo-
sition

KSfr : (Ω1
S)∨

id⊗AtS(E)−→ (Ω1
S)∨ ⊗ Ext1pS (E, p∗S(Ω1

S)⊗ p∗X(OX(−D))⊗ E)→
−→ Ext1pS (E, p∗S((Ω1

S)∨ ⊗ Ω1
S)⊗ p∗X(OX(−D))⊗ E)→

−→ Ext1pS (E, p∗X(OX(−D))⊗ E).

This framed Atiyah class allows one to get some new results.

Let δ ∈ Q[n] be a stability polynomial and P a numerical polynomial of degree two. Let
M∗δ(X;F, P ) be the moduli space of (D,F )-framed sheaves on X with Hilbert polynomial P
that are stable with respect to δ. This is an open subset of the fine moduli spaceMδ(X;F, P ) of
stable framed sheaves with Hilbert polynomial P. Let us denote byM∗δ(X;F, P )sm the smooth

locus of M∗δ(X;F, P ). Let us denote by Ẽ = (Ẽ, α̃) the universal objects of M∗δ(X;F, P )sm.
Let p be the projection from M∗δ(X;F, P )sm ×X to M∗δ(X;F, P )sm.

It is a known fact that the Kodaira-Spencer map is an isomorphism on the smooth locus
of the moduli space of Gieseker-stable torsion free sheaves on X (cf. Theorem 10.2.1 in [35]).
We have proved the framed version of this result.

Theorem 1.17. The framed Kodaira-Spencer map defined by Ẽ induces a canonical isomor-
phism

KSfr : TM∗δ(X;F, P )sm
∼−→ Ext1p(Ẽ, Ẽ ⊗ p∗X(OX(−D))).
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From this theorem it follows that for any point [(E,α)] of M∗δ(X;F, P )sm, the vector
space Ext1(E,E(−D)) is naturally identified with the tangent space T[(E,α)]M∗δ(X;F, P ).

For any ω ∈ H0(X,ωX(2D)), we can define a skew-symmetric bilinear form

Ext1(E,E(−D))× Ext1(E,E(−D))
◦−→ Ext2(E,E(−2D))

tr−→ H2(X,OX(−2D))
·ω−→ H2(X,ωX) ∼= k.

When varying [(E,α)], these forms fit into an exterior two-form τ(ω) on M∗δ(X;F, P )sm.
We proved that τ(ω) is a closed form (cf. Theorem 7.15) and provided a criterion of its
non-degeneracy (cf. Proposition 7.17). In particular, if the line bundle ωX(2D) is trivial,
the two-form τ(1) induced by 1 ∈ H0(X,ωX(2D)) ∼= C defines a holomorphic symplectic
structure on M∗δ(X;F, P )sm. As an application, in Section 6 of Chapter 7, we show that the
moduli space of (D,F )-framed sheaves on the second Hirzebruch surface F2 has a symplectic
structure, where D is a conic on F2 and F a Gieseker-semistable locally free OD-module.

Our results about restriction theorems for framed sheaves have appeared in [69]. Sym-
plectic structures on moduli spaces of framed sheaves are a subject of a forthcoming paper
([70]).

3. Contents by chapters

This dissertation is structured as follows. In Chapter 2, we define the notion of framed
sheaf and morphisms of framed sheaves. Moreover, we give a definition of the (µ)-semistability
for framed sheaves: we give a characterization of the semistability condition, introduce the
notion of framed saturation and construct the maximal framed-destabilizing subsheaf. In this
chapter we point out that in the framed case there may exist destabilizing subsheaves of rank
zero. Finally, we construct Harder-Narasimhan and Jordan-Hölder filtrations. In a last part
of the chapter we prove that the family of (µ)-semistable framed sheaves with fixed Hilbert
polynomial is bounded.

In Chapter 3, we define the notion of families of framed sheaves and construct a framed
version of the Grothendieck Quot scheme. By using a boundedness result for the family of
destabilizing subsheaves of a framed sheaf, we obtain the main result of the chapter, that
is, the construction of the relative Harder-Narasimhan filtration. In Chapter 4, we provide
a generalization of Mehta-Ramanathan theorems for framed sheaves ([53], [54]) by using
framed versions of the techniques developed in Chapter 7 of [35].

In Chapter 5 we explain the construction of the moduli space of (semi)stable framed
sheaves on nonsingular projective varieties, by following the work of Huybrechts and Lehn
in [34]. We use the definition of a family given by Huybrechts and Lehn in [33], which is
somehow different from that given in Chapter 3, as we explained in Remark 5.3. Moreover,
we construct the moduli space of (D,F )-framed sheaves on a nonsingular projective surface
X as an open subset of the moduli space of µ-stable framed sheaves by a suitable choice of a
very ample line bundle on X and a stability polynomial.

In Chapter 6, we deal with a generalization of the Le Potier determinant line bundles to
the framed case and the construction of the Uhlebenck-Donaldson compactification for framed
sheaves, where our results on restriction theorems are applied. In particular, we provide the
proof of Proposition 6.3, that state that a suitable framed Le Potier determinant line bundle
is semiample, in which is deeply used the first part of Theorem 1.14.
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In Chapter 7, we generalize to the framed case most of the results explained in Chapter
10 in [35]. After briefly recalling of the classical theory of Atiyah class for families of coherent
sheaves, we introduce the notion of the framed sheaf of first jets and, in terms of it, we define
the framed Atiyah class. Moreover, we introduce the framed Kodaira-Spencer map and prove
that this map is an isomorphism on the smooth locus of the moduli space of stable (D,F )-
framed sheaves. Finally, we show how one constructs closed two-forms by using the Atiyah
class and nonzero global sections of the line bundle ωX(2D) and give a criterion for their
non-degeneracy. As an application, we provide a symplectic structure on the moduli spaces
of (D,F )-framed sheaves on the second Hirzebruch surface F2, for D a conic on F2 and F a
Gieseker-semistable locally free OD-module.

4. Interdependence of the Chapters

Chapter 2

Chapter 3

Chapter 4

Chapter 6

Chapter 5

Chapter 7
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CHAPTER 2

Framed sheaves on smooth projective varieties

This chapter provides the basic definitions of the theory of framed sheaves. After introduc-
ing the notions of framed sheaves and morphisms of such objects, we define a generalization
of Gieseker’s semistability condition for framed sheaves (see Section 2) and give a charac-
terization of this condition. Harder-Narasimhan and Jordan-Hölder filtrations are defined
in Sections 5 and 6, respectively. In Section 7 we give the definition of µ-semistability for
framed sheaves. We conclude the chapter by recalling the notion of bounded families and
the Mumford-Castelnuovo regularity. Moreover we show the boundedness of the family of
(µ)-semistable framed sheaves of positive rank.

Each Section of the chapter starts with a summary which describes when the results in
the framed case coincide with the corresponding ones in the nonframed case or when there are
unexpected phenomena. We refer to the book [35] of Huybrechts and Lehn for the nonframed
case.

1. Preliminaries on framed sheaves

In this section we introduce the notions of framed sheaf and morphism of framed sheaves.
Moreover for such objects we introduce some invariants, such as the framed Hilbert polynomial
and the framed degree. When the framing is zero, a framed sheaf is just its underlying coherent
sheaf and these notions coincide with the classical ones (see Section 1.2 of [35]).

Let (X,OX(1)) be a polarized variety of dimension d. Fix a coherent sheaf F on X and
a polynomial δ ∈ Q[n] with positive leading coefficient δ1. We call F framing sheaf and δ
stability polynomial.

Definition 2.1. A framed sheaf on X is a pair E := (E,α), where E is a coherent sheaf on
X and α : E → F is a morphism of coherent sheaves. We call α framing of E.

For any framed sheaf E = (E,α), we define the function ε(α) by

ε(α) :=

{
1 if α 6= 0,
0 if α = 0.

The framed Hilbert polynomial of E is

P (E , n) := P (E,n)− ε(α)δ(n),

and the framed degree of E is

deg(E) := deg(E)− ε(α)δ1.

21
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We call Hilbert polynomial of E the Hilbert polynomial P (E) of E. If E is a d-dimensional
coherent sheaf, we define the rank of E as the rank of E. The reduced framed Hilbert polynomial
of E is

p(E , n) :=
P (E , n)

rk(E)

and the framed slope of E is

µ(E) :=
deg(E)

rk(E)
.

If E′ is a subsheaf of E with quotient E′′ = E/E′, the framing α induces framings α′ := α|E′
on E′ and α′′ on E′′, where the framing α′′ is defined in the following way: α′′ = 0 if α′ 6= 0,
else α′′ is the induced morphism on E′′. With this convention the framed Hilbert polynomial
of E behaves additively:

(4) P (E) = P (E′, α′) + P (E′′, α′′)

and the same happens for the framed degree:

(5) deg(E) = deg(E′, α′) + deg(E′′, α′′).

Notation: If E = (E,α) is a framed sheaf on X and E′ is a subsheaf of E, then we
denote by E ′ the framed sheaf (E′, α′) and by E/E′ the framed sheaf (E′′, α′′).

Thus we have a canonical framing on subsheaves and on quotients. The same happens
for subquotients, indeed we have the following result.

Lemma 2.2 (Lemma 1.12 in [34]). Let H ⊂ G ⊂ E be coherent sheaves and α a framing
of E. Then the framings induced on G/H as a quotient of G and as a subsheaf of E/H agree.
Moreover

P
( E/H
G/H

)
= P (E/G) and deg

( E/H
G/H

)
= deg (E/G) .

Now we introduce the notion of a morphism of framed sheaves.

Definition 2.3. Let E = (E,α) and G = (G, β) be framed sheaves. A morphism of framed
sheaves ϕ : E → G between E and G is a morphism of the underlying coherent sheaves ϕ : E →
G for which there is an element λ ∈ k such that β ◦ϕ = λα. We say that ϕ : E → G is injective
(surjective) if the morphism ϕ : E → G is injective (surjective).

Remark 2.4. Let E = (E,α) be a framed sheaf. If E′ is a subsheaf of E with quotient
E′′ = E/E′, then we have the following commutative diagram

0 E′ E E′′ 0

F F F

i

α′′α

·λ ·µ

q

α′

where λ = 0, µ = 1 if α′ = 0, λ = 1, µ = 0 if α′ 6= 0. Thus the inclusion morphism i (the
projection morphism q) induces a morphism of framed sheaves between E ′ and E (E and
E/E′). Note that in general an injective (surjective) morphism E → G between the underlying
sheaves of two framed sheaves E = (E,α) and G = (G, β) does not lift to a morphism E → G
of the corresponding framed sheaves. 4
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Lemma 2.5 (Lemma 1.5 in [34]). Let E = (E,α) and G = (G, β) be framed sheaves. The set
Hom(E ,G) of morphisms of framed sheaves is a linear subspace of Hom(E,G). If ϕ : E → G
is an isomorphism, then the factor λ in the definition can be taken in k∗. In particular, the
isomorphism ϕ0 = λ−1ϕ satisfies β ◦ϕ0 = α. Moreover, if E and G are isomorphic, then their
framed Hilbert polynomials and their framed degrees coincide.

Proposition 2.6. Let E = (E,α) and G = (G, β) be framed sheaves. If ϕ is a nontrivial
morphism of framed sheaves between E and G, then

P
(
E/kerϕ, α′′

)
≤ P (Im ϕ, β′) and deg

(
E/kerϕ, α′′

)
≤ deg(Im ϕ, β′).

Proof. Consider a morphism of framed sheaves ϕ ∈ Hom(E ,G), ϕ 6= 0. There exists
λ ∈ k such that β ◦ ϕ = λα. Note that E/kerϕ ' Im ϕ hence their Hilbert polynomials and
their degree coincide. It remains to prove that ε(α′′) ≥ ε(β′). If λ = 0, then β′ = 0 and
therefore ε(β′) = 0 ≤ ε(α′′). Assume now λ 6= 0: α = 0 if and only if β|Im ϕ = 0, hence
ε(β′) = 0 = ε(α′′). If α 6= 0, then also α′′ 6= 0. Indeed if α′′ = 0, then α|kerϕ 6= 0; this implies
that λ(α|kerϕ) = (β ◦ ϕ)|kerϕ = 0 and therefore λ = 0, but this is in contradiction with our
previous assumption. Thus, if λ 6= 0 and α 6= 0 then we obtain ε(β′) = 1 = ε(α′′). �

Remark 2.7. Let E = (E,α) and G = (G, β) be framed sheaves and ϕ : E → G a nontrivial
morphism of framed sheaves. By the previous proposition, we get

P (E) = P (kerϕ, α′) + P
(
E/kerϕ, α′′

)
≤ P (kerϕ, α′) + P (Im ϕ, β′).

The inequality may be strict. This phenomenon does not appear in the nonframed case and it
depends on the fact that in general we do not know if the isomorphism E/kerϕ ∼= Imϕ induces
an isomorphism E/kerϕ ∼= (Im ϕ, β′). 4

2. Semistability

In this section we give a generalization to framed sheaves of Gieseker’s (semi)stability
condition for coherent sheaves (see Definition 1.2.4 in [35]). Comparing to the classical
case, the (semi)stability condition for framed sheaves has an additional parameter δ, which
is a polynomial with rational coefficients. The definition belongs to Huybrechts and Lehn’s
article [33]; we only had to modify it for the case of torsion sheaves. The necessity to handle
torsion sheaves is due to the fact that even if we want to work only with torsion free ones, the
graded factors of the framed Harder-Narasimhan or Jordan-Hölder filtrations may be torsion.
We will also present examples where the underlying coherent sheaf of a semistable framed
sheaf is not necessarily torsion free, and examples of non-semistable framed sheaves (E,α)
with E Gieseker-semistable (see Example 2.10).

Recall that there is a natural ordering of rational polynomials given by the lexicographic
order of their coefficients. Explicitly, f ≤ g if and only if f(m) ≤ g(m) for m � 0. Analo-
gously, f < g if and only if f(m) < g(m) for m� 0.

We shall use the following convention: if the word “(semi)stable” occurs in any statement
in combination with the symbol (≤), then two variants of the statement are asserted at the
same time: a “semistable” one involving the relation “≤” and a “stable” one involving the
relation “<”.

We now give a definition of semistability for framed sheaves E = (E,α) of positive rank.
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Definition 2.8. A framed sheaf E = (E,α) of positive rank is said to be (semi)stable with
respect to δ if and only if the following conditions are satisfied:

(i) rk(E)P (E′) (≤) rk(E′)P (E) for all subsheaves E′ ⊂ kerα,
(ii) rk(E)(P (E′)− δ) (≤) rk(E′)P (E) for all subsheaves E′ ⊂ E.

Lemma 2.9 (Lemma 1.2 in [34]). Let E = (E,α) be a framed sheaf of positive rank. If E is
(semi)stable with respect to δ, then kerα is torsion free.

Proof. Let T (kerα) denote the torsion subsheaf of kerα. By the semistability condition,
we get

rk(E)P (T (kerα), n) (≤) rk(T (kerα)) (P (E,n)− δ(n)) for n� 0.

Since rk(T (kerα)) = 0, we get P (T (kerα), n) (≤) 0 for n � 0. On the other hand, if
T (kerα) 6= 0, then the leading coefficient of P (T (kerα), n) is positive. Thus we get a contra-
diction and therefore T (kerα) = 0. �

Example 2.10. Let (X,OX(1)) be a polarized variety of dimension d and D = D1 + · · ·+Dl

an effective divisor on X, where D1, . . . , Dl are distinct prime divisors. Consider the short
exact sequence associated to the line bundle OX(−D):

0 −→ OX(−D) −→ OX
α−→ i∗(OY ) −→ 0,

where Y = supp(D) = D1 ∪ · · · ∪Dl. Recall that

P (i∗(OY )) = deg(Y )
nd−1

(d− 1)!
+ terms of lower degree in n.

Let δ(n) ∈ Q[n] be a polynomial of degree d− 1 such that δ > P (i∗(OY )). Then we get

P (OX , n)− δ(n) < P (OX , n)− P (i∗(OY ), n) = P (OX(−D), n) < P (OX , n).

Thus we obtain that the framed sheaf (OX , α : OX → i∗(OY )) is not semistable with respect
to δ.

We thus have obtained an example of a framed sheaf which is not semistable with respect
to a fixed δ but the underlying coherent sheaf is Gieseker-semistable. It is possible to construct
examples of semistable framed sheaves whose underlying coherent sheaves are not Gieseker-
semistable, how we will see in Example 2.50.

On the other hand, it is easy to check that the framed sheaf

(OX(−D)⊕ i∗(OY ), α : OX(−D)⊕ i∗(OY )→ i∗(OY ))

is semistable with respect to δ := P (i∗(OY )) and the underlying coherent sheaf has a nonzero
torsion subsheaf. 4
Definition 2.11. A framed sheaf E = (E,α) of positive rank is geometrically stable with

respect to δ if for any base extension X ×Spec(k) Spec(K)
f→ X, the pull-back f∗(E) :=

(f∗(E), f∗(α)) is stable with respect to δ.

In general, a stable framed sheaf is not geometrically stable. The two notions coincide
only for a particular class of framed sheaves of positive rank, as we will show in Section 6.

Lemma 2.12 (Lemma 1.7 in [34]). If deg(δ) ≥ d and rk(F ) > 0, then for any semistable
framed sheaf E = (E,α) of positive rank the framing α is zero or injective. Moreover, every
semistable framed sheaf is stable.



2. SEMISTABILITY 25

Proof. Assume that α 6= 0. Let E′ 6= 0 be a subsheaf of kerα. By the semistability of E ,
we get

rk(E)P (E′)− rk(E′)P (E) ≤ −rk(E′)δ.

The two polynomials on the left-hand side are of degree d and have the same leading coefficient.
If deg(δ) ≥ d, this yields a contradiction. Thus α is injective. Moreover the condition (ii) in
the Definition 2.8 is strictly satisfied because of the dominance of δ. �

In the case rk(F ) = 0, for deg(δ) ≥ d the framing of any semistable framed sheaf of
positive rank is zero, hence this case is not interesting. Moreover, the last lemma shows that
when rk(F ) > 0, the discussion of semistable framed sheaves of positive rank reduces to the
study of subsheaves of F , which is covered by Grothendieck’s theory of the Quot scheme, if
deg(δ) ≥ d. For these reasons, as it is done in [33], we assume that δ has degree d − 1 and
write:

δ(n) = δ1
nd−1

(d− 1)!
+ δ2

nd−2

(d− 2)!
+ · · ·+ δd ∈ Q[n]

with δ1 > 0.

We have the following characterization of the semistability condition in terms of quotients:

Proposition 2.13. Let E = (E,α) be a framed sheaf of positive rank. Then the following
conditions are equivalent:

(a) E is semistable with respect to δ.
(b) For any surjective morphism of framed sheaves ϕ : E → (Q, β), one has

rk(Q)p(E) ≤ P (Q, β).

Proof. Let E′ be the kernel of ϕ. By using the equation

(6) P (E ′)− rk(E′)p(E) = rk(E/E′)p(E)− P (E/E′),

and Proposition 2.6, we get the assertion. �

In the papers by Huybrechts and Lehn, one finds two different definitions of the (semi)stabi-
lity of rank zero framed sheaves. In [33], they use the same definition for the framed sheaves
of positive or zero rank, and with that definition, all framed sheaves of rank zero are automat-
ically semistable but not stable (with respect to any stability polynomial δ). According to
Definition 1.1 in [34], the semistability of a rank zero framed sheaf depends on the choice of a
stability polynomial δ, but all semistable framed sheaves of rank zero are automatically stable.
Now we give a new definition of the (semi)stability for rank zero framed sheaves which singles
out exactly those objects which may appear as torsion components of the Harder-Narasimhan
and Jordan-Hölder filtrations.

Definition 2.14. Let E = (E,α) be a framed sheaf with rk(E) = 0. If α is injective, we say
that E is semistable1. Moreover, if P (E) = δ we say that E is stable with respect to δ.

1For torsion sheaves, the definition of semistability of the corresponding framed sheaves does not depend
on δ.
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Remark 2.15. Let E = (E,α) be a framed sheaf with rk(E) = 0. Assume that E is stable
with respect to δ. If G is a subsheaf of E, then P (G) < P (E) = δ; on the other side since the
framing is injective, α|G 6= 0 and therefore P (G,α|G) = P (G) − δ < 0 = P (E) − δ = P (E).
Hence any subsheaf G of E satisfies an inequality condition, similar to inequality (ii) of
Definition 2.8. 4

Lemma 2.16 (Lemma 2.1 in [33]). Let E = (E,α) be a framed sheaf where kerα is nonzero
and α is surjective. If E is (semi)stable with respect to δ, then

δ (≤) P (E)− rk(E)

rk(kerα)
(P (E)− P (F )).

If F is a torsion sheaf, then δ (≤) P (F ) and in particular δ1 (≤) deg(F ).

Proof. By the (semi)stability condition, we get

rk(E)P (kerα) (≤) rk(kerα)P (E) = rk(kerα) (P (E)− δ) .

Since rk(kerα) > 0 by Lemma 2.9, we obtain

δ (≤) P (E)− rk(E)

rk(kerα)
P (kerα).

Since P (E) − P (kerα) = P (Im α) = P (F ), we obtain the assertion. Moreover, if F is a
torsion sheaf, then rk(Im α) = 0. Therefore rk(kerα) = rk(E) and

δ (≤) P (E)− P (kerα) = P (F ).

In particular, by formula (1) we obtain δ1 (≤) deg(F ). �

3. Characterization of semistability

Let E = (E,α) be a framed sheaf, and assume that kerα is nonzero and torsion free. In
this section we would like to answer the following question: to verify if E is (semi)stable or
not, do we need to check the inequalities (i) and (ii) in the Definition 2.8 for all subsheaves of
E? Or, can we restrict our attention to a smaller family of subsheaves of E? For Gieseker’s
(semi)stability condition, this latter family consists of saturated subsheaves of E (see Proposi-
tion 1.2.6 in [35]). In the framed case, we need to enlarge this family because of the framing,
as we explain in what follows.

Definition 2.17. Let E be a coherent sheaf. The saturation of a subsheaf E′ ⊂ E is the
minimal subsheaf Ē′ ⊂ E containing E′ such that the quotient E/Ē′ is pure of dimension
dim(E) or zero.

Now we generalize this definition to framed sheaves:

Definition 2.18. Let E = (E,α) be a framed sheaf where kerα is nonzero and torsion free.
Let E′ be a subsheaf of E. The framed saturation Ē′ of E′ is the saturation of E′ as subsheaf
of

• kerα, if E′ ⊂ kerα.
• E, if E′ 6⊂ kerα.
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Remark 2.19. Let Ē′ be the framed saturation of E′ ⊂ E. In the first case described in the
definition, if rk(E′) < rk(kerα), then the quotient Q = E/Ē′ is a coherent sheaf of positive
rank, with nonzero induced framing β, which fits into an exact sequence

(7) 0 −→ Q′ −→ Q
β−→ Im α −→ 0,

where Q′ = kerβ is a torsion free quotient of kerα. If rk(E′) = rk(kerα), then Ē′ = kerα and
Q = E/kerα. In the second case, Q is a torsion free sheaf with zero induced framing. Moreover

• rk(E′) = rk(Ē′), P (E′) ≤ P (Ē′) and deg(E′) ≤ deg(Ē′),
• P (E ′) ≤ P (Ē ′) and deg(E ′) ≤ deg(Ē ′).

4

Example 2.20. Let us consider the framed sheaf (OX , α : OX → i∗(OY )) on X, defined in
Example 2.10. Since kerα = OX(−D), the saturation of OX(−D) (as subsheaf of OX) is OX
but the framed saturation of OX(−D) is OX(−D). 4

We have the following characterization:

Proposition 2.21. Let E = (E,α) be a framed sheaf where kerα is nonzero and torsion free.
Then the following conditions are equivalent:

(a) E is semistable with respect to δ.
(b) For any framed saturated subsheaf E′ ⊂ E one has P (E′, α′) ≤ rk(E′)p(E).
(c) For any surjective morphism of framed sheaves ϕ : E → (Q, β), where α = β ◦ ϕ and

Q is one of the following:
– Q is a coherent sheaf of positive rank with nonzero framing β such that kerβ is

nonzero and torsion free,
– Q is a torsion free sheaf with zero framing β,
– Q = E/kerα,

one has rk(Q)p(E) ≤ P (Q, β).

Proof. The implication (a) ⇒ (b) is obvious. By Remark 2.19, P (E ′) ≤ P (Ē ′) ≤
rk(Ē′)p(E) = rk(E′)p(E), where Ē′ is the framed saturation of E′, thus (b) ⇒ (a). Finally,
the framed sheaf Q has the properties stated in condition (c) if and only if kerϕ is a framed
saturated subsheaf of E , hence (b)⇐⇒ (c). �

Corollary 2.22. Let E = (E,α) and G = (G, β) be framed sheaves of positive rank with the
same reduced framed Hilbert polynomial p.

(1) If E is semistable and G is stable, then any nontrivial morphism ϕ : E → G is surjec-
tive.

(2) If E is stable and G is semistable, then any nontrivial morphism ϕ : E → G is injective.
(3) If E and G are stable, then any nontrivial morphism ϕ : E → G is an isomorphism.

Moreover, in this case Hom(E ,G) ' k. If in addition α 6= 0, or equivalently, β 6= 0,
then there is a unique isomorphism ϕ0 with β ◦ ϕ0 = α.

Proof. Let ϕ : E → G be a nontrivial morphism of framed sheaves. Suppose that ϕ is
not surjective. If rk(Im ϕ) > 0, then by the (semi)stability condition we get

p = p(E) ≤ p(E/kerϕ) ≤ p(Im ϕ, β′) < p(G) = p,
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which is impossible. If rk(Im ϕ) = 0, then we obtain P (E/kerϕ) ≤ P (Im ϕ, β′) < 0, hence
p < p(kerϕ, α′), but this contradicts the semistability of E . Thus we proved the statement
(1). In the same way one can prove statement (2) and the first part of statement (3). In
order to prove the remaining statements it is enough to show End(E) = k · idE . Suppose that
ϕ is an automorphism of E . Choose x ∈ supp(E) and let µ be an eigenvalue of ϕ restricted
to the fiber Ex. Then ϕ − µidE is not surjective at x and hence not an isomorphism, which
implies ϕ− µidE = 0. �

Definition 2.23. Let E be a framed sheaf. We say that E is simple if Aut(E) = k∗ · idE .

4. Maximal framed-destabilizing subsheaf

Let E = (E,α) be a framed sheaf where kerα is nonzero and torsion free. If E is not
semistable with respect to δ, then there exist destabilizing subsheaves of E . In this section we
would like to find the maximal one (with respect to the inclusion) and show that it has some
interesting properties. Because of the framing, it is possible that this subsheaf has rank zero
or it is not saturated and we want to emphasize that this kind of situations are not possible
in the nonframed case (see Lemma 1.3.5 in [35]).

Proposition 2.24. Let E = (E,α) be a framed sheaf where kerα is nonzero and torsion free.
If E is not semistable with respect to δ, then there is a subsheaf G ⊂ E such that for any
subsheaf E′ ⊆ E one has

rk(E′)P (G) ≥ rk(G)P (E ′)
and in case of equality, one has E′ ⊂ G.

Moreover, the framed sheaf G is uniquely determined and is semistable with respect to δ.

Proof. On the set of nontrivial subsheaves of E we define the following order relation
�: let G1 and G2 be nontrivial subsheaves of E, G1 � G2 if and only if G1 ⊆ G2 and
rk(G2)P (G1) ≤ rk(G1)P (G2). Since any ascending chain of subsheaves stabilizes, for any
subsheaf E′, there is a subsheaf G′ such that E′ ⊆ G′ ⊆ E and G′ is maximal with respect to
� .

First assume that there exists a subsheaf E′ of rank zero with P (E ′) > 0, that is, P (E′) >
δ. Let T (E) be the torsion subsheaf of E. Then P (T (E)) ≥ P (E′) > δ. Hence E′ � T (E).
Moreover, there are no subsheaves G ⊂ E of positive rank such that T (E) � G. Indeed, should
that be the case, by the definition of �, we would obtain P (T (E))− δ ≤ 0, in contradiction
with the previous inequality. Thus we choose G := T (E). Since α|G = 0, G is semistable.

From now on assume that for every rank zero subsheaf T ⊂ E we have P (T, α′) ≤ 0.
Let G ⊂ E be a �-maximal subsheaf with minimal rank among all �-maximal subsheaves.
Note that rk(G) > 0. Suppose there exists a subsheaf H ⊂ E with rk(H)p(G) < P (H). By
hypothesis we have rk(H) > 0. From �-maximality of G we get G * H (in particular H 6= E).
Now we want to show that we can assume H ⊂ G by replacing H with G ∩H.

If H * G, then the morphism ϕ : H → E → E/G is nonzero. Moreover kerϕ = G ∩ H.
The sheaf I = Im ϕ is of the form J/G with G ( J ⊂ E and rk(J) > 0. By the �-maximality
of G we have p(J ) < p(G), hence we obtain

rk(G)P (I) = rk(G)(P (J )− P (G)) < rk(J)P (G)− rk(G)P (G) = rk(I)P (G),
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and therefore

(8) rk(G)P (I) < rk(I)P (G).

Now we want to prove the following:

Claim: The sheaf G ∩H is a nontrivial subsheaf of positive rank of E.

Proof. Assume that G ∩H = 0. In this case, we get H ∼= I; moreover this isomorphism
lifts to an isomorphism H ∼= I of the corresponding framed sheaves and therefore ϕ lifts to
a morphism of framed sheaves ϕ between H and (E/G, β). By Proposition 2.6, P (H) ≤ P (I)
and using formula (8) one has

rk(H)P (G) < rk(G)P (H) ≤ rk(G)P (I) < rk(H)P (G),

which is absurd.

The rank of G ∩ H is positive, indeed if we assume that rk(G ∩ H) = 0, then we have
rk(I) = rk(H) and again by Proposition 2.6 and formula (8) we get

rk(G)P (G ∩H,α′) = rk(G)P (H)− rk(G)P (H/G ∩H, α′′)

≥ rk(G)P (H)− rk(G)P (I) > rk(G)P (H)− rk(H)P (G) > 0

hence G ∩H is a rank zero subsheaf of E with P (G ∩H,α′) > 0, but this is in contradiction
with the hypothesis. �

By the following computation:

rk(G ∩H)
(
p(G ∩H,α′)− p(H)

)
= rk(H/G ∩H)

(
p(H)− p(H/G ∩H, α′)

)
> rk(I) (p(H)− p(I)) > rk(I) (p(H)− p(G)) > 0

we get p(H) < p(G∩H,α′), hence from now on we can consider a subsheaf H ⊂ G such that
H is �-maximal in G, rk(H) > 0 and

p(G) < p(H).

Let H ′ ⊂ E be a sheaf that contains H and is �-maximal in E. In particular, one has

p(G) < p(H) ≤ p(H′).
By �-maximality of H and G, we have H ′ * G. Then the morphism ψ : H ′ → E → E/G is
nonzero and H ⊂ kerψ. As before

p(H′) < p(kerψ, α′).

Thus we have H ⊂ H ′∩G = kerψ and p(H) < p(kerψ, α′), hence H � kerψ. This contradicts
the �-maximality of H in G. Thus for all subsheaves H ⊆ E, we have rk(H)p(G) ≥ P (H).

If there is a subsheaf H ⊂ E of rank zero such that P (H) = 0 and H * G, then by using
the same argument as before, we get P (H ∩G,α′) > 0, but this is in contradiction with the
hypothesis. So there are no subsheaves H ⊂ E of rank zero such that P (H) = 0 and H * G.
If there is a subsheaf H ⊂ E of positive rank such that p(G) = p(H), then H ⊂ G. In fact, if
H * G then we can replace H by G ∩H and using the same argument as before we obtain
p(G) = p(H) < p(H ∩G,α′) and this is absurd. �

Definition 2.25. We call G the maximal framed-destabilizing subsheaf of E .

Remark 2.26. Note that if G is the maximal framed-destabilizing subsheaf of E , then it is
framed saturated. 4
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We give now a criterion to find the maximal framed-destabilizing subsheaf that will be
useful later.

Proposition 2.27. Let E = (E,α) be a framed sheaf where kerα is nonzero and torsion
free. Assume that E is not semistable with respect to δ but there are no rank zero framed-
destabilizing subsheaves. If G ⊂ E is a positive rank subsheaf with positive rank quotient
G′ = E/G such that

(i) the framed sheaves G and G′ are semistable with respect to δ,
(ii) p(G) > p(G′),

then G is the maximal framed-destabilizing subsheaf of E .

Proof. Let H be a subsheaf of E.

Case 1: H ( G. By semistability we get P (H) ≤ rk(H)p(G).

Case 2: G ( H. By properties (i) and (ii) one has rk(H/G)p(G) > rk(H/G)p(G′) ≥
P (H/G, γ), where γ is the induced framing on H/G, and therefore

P (H) < P (H/G, γ) + P (G) = rk(H/G)p(G) + rk(G)p(G) = rk(H)p(G).

Consider now the case in which G * H and H * G. The morphism ϕ : H → E → E/G is
nonzero. Moreover kerϕ = H ∩G.

Case 3: H ∩ G = 0. In this case the morphism ϕ is injective. If rk(H) = 0, then by
hypothesis P (H) ≤ 0 = rk(H)p(G). Assume that rk(H) > 0. Then ϕ induces a morphism of
framed sheaves ϕ : H → G′, hence by Proposition 2.6 we obtain p(H) ≤ p(Imϕ, β′) ≤ p(G′) <
p(G), where β is the induced framing on G′.

Case 4: H ∩G 6= 0. From the hypothesis follows that P (H ∩G,α′) ≤ rk(H ∩G)p(G) and
P (H/kerϕ, α′′) ≤ P (Im ϕ, β′) ≤ rk(H/kerϕ)p(G′) < rk(H/kerϕ)p(G), hence we get

P (H) = P (kerϕ, α′) + P (H/kerϕ, α′′) < (rk(kerϕ) + rk(H/kerϕ))p(G) = rk(H)p(G). �

If the rank of the framing sheaf F is zero, then we have this additional characterization:

Proposition 2.28. Let F be a coherent sheaf of rank zero and E = (E,α : E → F ) a framed
sheaf where kerα is nonzero and torsion free. Assume that E is not semistable with respect to
δ. Then kerα is the maximal framed-destabilizing subsheaf of E if and only if it is Gieseker-
semistable and P (E/kerα, β) < 0, where β is the induced framing.

Proof. This follows from the same arguments as in the previous proposition. �

4.1. Minimal framed-destabilizing quotient. Let E = (E,α) be a framed sheaf
where kerα is nonzero and torsion free. Suppose that E is not semistable with respect to
δ.

Remark 2.29. If the rank of the framing sheaf F is zero, we further assume that kerα is
not the maximal framed-destabilizing subsheaf.

Let T1 be the set consisting of the quotients E
q→ Q→ 0 such that

• Q is torsion free,
• the induced framing on ker q is nonzero,
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• p(Q) < p(E).

Let T2 be the set consisting of the quotients E
q→ Q→ 0 such that

• Q has positive rank,
• the induced framing on ker q is zero,
• Q fits into an exact sequence of the form (7),
• p(Q) < p(E).

By Proposition 2.21, the set T1∪T2 is nonempty. For i = 1, 2 define an order relation on Ti as
follows: if Q1, Q2 ∈ Ti, we say that Q1 v Q2 if and only if p(Q1) ≤ p(Q2) and rk(Q1) ≤ rk(Q2)
in the case p(Q1) = p(Q2).

Let us consider the relation < defined in the following way: for Q1, Q2 ∈ Ti, we have
Q1 < Q2 if and only if Q1 v Q2 and p(Q1) < p(Q2) or rk(Q1) < rk(Q2) in the case
p(Q1) = p(Q2). Let Qi− be a <-minimal element in Ti, for i = 1, 2. Define

Q− :=

{
Q1
− if p(Q1) < p(Q2) or if p(Q2) = p(Q1) and rk(Q1) ≤ rk(Q2),

Q2
− if p(Q2) < p(Q1) or if p(Q2) = p(Q1) and rk(Q2) < rk(Q1).

By easy computations one can prove the following:

Proposition 2.30. The sheaf G := ker(E → Q−) is the maximal framed-destabilizing sub-
sheaf of E .

5. Harder-Narasimhan filtration

In this section we construct the Harder-Narasimhan filtration for a framed sheaf. We
adapt the techniques used by Harder and Narasimhan in the case of vector bundles on curves
(see [27]). When the framing sheaf has rank zero, the rank of the kernel of the framing is
equal to the rank of the sheaf and because of this fact we get a more involved characterization
of the Harder-Narasimhan filtration than in the nonframed case (as one can see in Proposition
2.35). The characterization of the Harder-Narasimhan filtration when the framing sheaf has
positive rank is similar to the nonframed case (see Theorem 1.3.4 in [35]).

In this section we consider separately the case in which the rank of the framing sheaf F
is zero and the case in which rk(F ) is positive.

In the first case, we can have two types of torsion sheaves as graded factors of the Harder-
Narasimhan filtration of a framed sheaf (E,α): the torsion subsheaf T (E) of E and the
quotient E/kerα. In the second case, the only torsion sheaf that can appear as a graded factor
of the Harder-Narasiham filtration is the torsion subsheaf.

Consider first the case rk(F ) = 0.

Definition 2.31. Let F be a coherent sheaf of rank zero and E = (E,α : E → F ) a framed
sheaf where kerα is nonzero and torsion free. A Harder-Narasimhan filtration for E is an
increasing filtration of framed saturated subsheaves

(9) HN•(E) : 0 = HN0(E) ⊂ HN1(E) ⊂ · · · ⊂ HNl(E) = E

which satisfies the following conditions
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(A) the quotient sheaf grHN
i (E) := HNi(E)/HNi−1(E) with the induced framing αi is a

semistable framed sheaf with respect to δ for i = 1, 2, . . . , l.
(B) The quotient E/HNi−1(E) has positive rank, the kernel of the induced framing is

nonzero and torsion free and the subsheaf grHN
i (E) is the maximal framed-destabilizing

subsheaf of (E/HNi−1(E), α′′) for i = 1, 2, . . . , l − 1.

Lemma 2.32. Let F be a coherent sheaf of rank zero and E = (E,α : E → F ) a framed sheaf
where kerα is nonzero and torsion free. Suppose that E is not semistable (with respect to δ).
Let G be the maximal framed-destabilizing sheaf of E . If G 6= kerα, then for every rank zero
subsheaf T of E/G, we get P (T, β′) ≤ 0, where β is the induced framing on E/G.

Proof. If the quotient E/G is torsion free then the condition is trivially satisfied. Other-
wise let T ⊂ E/G be a rank zero subsheaf with P (T, β′) > 0. The sheaf T is of the form E′/G,
where G ⊂ E′ and rk(E′) = rk(G), hence we obtain p(E ′) > p(G), therefore E′ contradicts
the maximality of G. �

Theorem 2.33. Let F be a coherent sheaf of rank zero and E = (E,α : E → F ) a framed
sheaf where kerα is nonzero and torsion free. Then there exists a unique Harder-Narasimhan
filtration for E .

Proof. Existence. If E is a semistable framed sheaf with respect to δ, then we put l = 1
and a Harder-Narasimhan filtration is

HN•(E) : 0 = HN0(E) ⊂ HN1(E) = E

Else there exists a subsheaf E1 ⊂ E such that E1 is the maximal framed-destabilizing subsheaf
of E . If E1 = kerα, then a Harder-Narasimhan filtration is

HN•(E) : 0 = HN0(E) ⊂ kerα ⊂ HN2(E) = E

Otherwise, by Lemma 2.32 (E/E1, α′′) is a framed sheaf with kerα′′ 6= 0 torsion free and no
rank zero framed-destabilizing subsheaves. If (E/E1, α′′) is a semistable framed sheaf, then a
Harder-Narasimhan filtration is

HN•(E) : 0 = HN0(E) ⊂ E1 ⊂ HN2(E) = E

Else there exists a subsheaf E′2 ⊂ E/E1 of positive rank such that E′2 is the maximal framed-
destabilizing subsheaf of (E/E1, α′′) . We denote by E2 its pre-image in E. Now we apply
the previous argument to E2 instead of E1. Thus we can iterate this procedure and we
obtain a finite length increasing filtration of framed saturated subsheaves of E, which satisfies
conditions (A) and (B).

Uniqueness. The uniqueness of the Harder-Narasimhan filtration follows from the unique-
ness of the maximal framed-destabilizing subsheaf. �

Remark 2.34. By construction, for i > 0 at most one of the framings αi is nonzero and all
but possibly one of the factors grHN

i (E) are torsion free. In particular if rk(grHN
1 (E)) = 0,

then grHN
1 (E) = T (E) and α1 6= 0; if rk(grHN

l (E)) = 0, then grHN
l (E) = E/kerα and αl 6= 0. 4

Now we want to relate condition (B) in Definition 2.31 with the framed Hilbert polyno-
mials of the pieces of the Harder-Narasimhan filtration. In particular we get the following.
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Proposition 2.35. Let F be a coherent sheaf of rank zero and E = (E,α : E → F ) a framed
sheaf where kerα is nonzero and torsion free. Suppose there exists a filtration of the form (9)
satisfying condition (A). Then condition (B) is equivalent to the following:

(B’) the quotient (E/HNj(E), α′′) is a framed sheaf where kerα′′ is nonzero and torsion free
for j = 1, 2, . . . , l − 2, it has no rank zero framed-destabilizing subsheaves, and

(10) rk(grHN
i+1(E))P (grHN

i (E), αi) > rk(grHN
i (E))P (grHN

i+1(E), αi+1)

for i = 1, . . . , l − 1.

Proof. The arguments used to prove this proposition are similar to the one used in the
proof of the analogous result for vector bundles on curves (see Lemma 1.3.8 in [27]). For
completeness, we give all the details of the proof.

Suppose that there is an increasing filtration (9) such that conditions (A) and (B) are
satisfied. Consider the following short exact sequence

0 −→ grHN
i (E) −→ HNi+1(E)/HNi−1(E) −→ grHN

i+1(E) −→ 0.

The subsheaf grHN
i (E) is the maximal framed-destabilizing subsheaf of the framed sheaf

(E/HNi−1(E), α′′) . By using Lemma 2.2 and formula (6), we get

rk(grHN
i+1(E))P (grHN

i (E), αi) > rk(grHN
i (E))P (grHN

i+1(E), αi+1).

Vice versa, suppose now that (9) satisfies conditions (A) and (B’). First we prove that grHN
l−1(E)

is the maximal framed-destabilizing subsheaf of (E/HNl−2(E), α′′) . Consider the short exact
sequence

0 −→ HNl−1(E)/HNl−2(E) −→ E/HNl−2(E) −→ E/HNl−1(E) −→ 0.

By condition (B’) we get

rk(grHN
l (E))P (grHN

l−1(E), αl−1) > rk(grHN
l−1(E))P (grHN

l (E), αl).

Moreover, by condition (A) we have that (grHN
l−1(E), αl−1) and (grHN

l (E), αl) are semistable

framed sheaves. If rk(grHN
l (E)) is positive, then by Lemma 2.2 and Proposition 2.27 the sheaf

grHN
l−1(E) is the maximal framed-destabilizing subsheaf of (E/HNl−2(E), α′′) .

Otherwise, if rk(grHN
l (E)) = 0, then by relation (10) follows that P (grHN

l (E), αl) < 0. Since

grHN
l (E) 6= 0, we get αl 6= 0, hence HNl−1(E) ⊂ kerα and rk(HNl−1(E)) = rk(kerα) = rk(E).

Thus by definition of framed saturation, we get HNl−1(E) = kerα, hence grHN
l (E) = E/kerα;

by Proposition 2.28 we obtain that grHN
l−1(E) is the maximal framed-destabilizing subsheaf of

(E/HNl−2(E), α′′) .

We proceed to prove that condition (B) is satisfied by downward induction on i. Fix i > 1
and consider the exact sequences

0 −→ HNi(E)/HNi−1(E) −→ E/HNi−1(E) −→ E/HNi(E) −→ 0

and
0 −→ HNi+1(E)/HNi(E) −→ E/HNi(E) −→ E/HNi+1(E) −→ 0.

By inductive hypothesis, we know that grHN
i+1(E) is the maximal framed-destabilizing sub-

sheaf of (E/HNi(E), α′′) . Since 1 < i < l − 2, the framed sheaf (E/HNi(E), α′′) has no framed-
destabilizing subsheaves of rank zero, hence rk(grHN

i+1(E)) > 0. We prove now that grHN
i (E) is

the maximal framed-destabilizing subsheaf of (E/HNi−1(E), α′′) . Let Q be a coherent subsheaf
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of E/HNi−1(E). As usual, we denote by Q the associated framed sheaf with the induced fram-
ing. Note that Q is of the form H/HNi−1(E) with HNi−1(E) ⊂ H and rk(HNi−1(E)) ≤ rk(H).
If Q ⊂ grHN

i (E), then by condition (A) we get

rk(grHN
i (E))P (Q) ≤ rk(Q)P (grHN

i (E), αi).

If HNi(E) ⊂ H, then by inductive hypothesis and by condition (B’) we get

rk(grHN
i (E))P (H/HNi(E)) < rk(H/HNi(E))P (grHN

i (E), αi).

Therefore rk(grHN
i (E))P (Q) < rk(Q)P (grHN

i (E), αi). This also happens for H = E, too. So
the framed sheaf E/HNi(E) is not semistable.

We still need to check the case when H * HNi(E) or HNi(E) * H. In this case the
morphism ϕ : H → E → E/HNi(E) is nonzero and kerϕ = H ∩ HNi(E) 6= 0. By condition (A)
we get

rk(grHN
i (E))P ( kerϕ/HNi−1(E), β) ≤ rk( kerϕ/HNi−1(E))P (grHN

i (E), αi),

where β is the induced framing on kerϕ/HNi−1(E). Moreover by Proposition 2.6 one has

P
( Q

kerϕ/HNi−1(E)

)
= P (H/kerϕ) ≤ P (Imϕ, α′′) ≤ rk(H/kerϕ)p(grHN

i+i(E), αi+i),

hence rk(grHN
i (E))P

(
Q

kerϕ/HNi−1(E)

)
< rk(H/kerϕ)P (grHN

i (E), αi). Therefore

rk(grHN
i (E))P (Q) = rk(grHN

i (E))
(
P
( Q

kerϕ/HNi−1(E)

)
+ P

(
kerϕ/HNi−1(E), β

))
=

< rk( kerϕ/HNi−1(E))P (grHN
i (E), αi) + rk(H/kerϕ)P (grHN

i (E), αi)

< rk(Q)P (grHN
i (E), αi).

Thus the sheaf grHN
i (E) is the maximal framed-destabilizing subsheaf of (E/HNi−1(E), α′′) .

For i = 1, if HN1(E) has positive rank, we can apply the same argument as before; if
rk(HN1(E)) = 0, then by relation (10) it follows P (HN1(E), α1) > 0, thus by the definition of
the maximal framed-destabilizing subsheaf, we get HN1(E) = T (E). �

Now we turn to the case in which the rank of F is positive. First, we give the following
definition.

Definition 2.36. Let F be a coherent sheaf of positive rank and E = (E,α : E → F ) a
framed sheaf where kerα is nonzero and torsion free. A Harder-Narasihman filtration for E
is an increasing filtration of framed saturated subsheaves

HN•(E) : 0 = HN0(E) ⊂ HN1(E) ⊂ · · · ⊂ HNl(E) = E

which satisfies the following conditions

(A) the quotient sheaf grHN
i (E) := HNi(E)/HNi−1(E) with the induced framing αi is a

semistable framed sheaf with respect to δ for i = 1, 2, . . . , l.
(B) the quotient (E/HNi(E), α′′) is a framed sheaf where kerα′′ is nonzero and torsion free

for i = 1, . . . , l − 1, it has no rank zero framed-destabilizing subsheaves, and

rk(grHN
i+1(E))P (grHN

i (E), αi) > rk(grHN
i (E))P (grHN

i+1(E), αi+1).

In this case one can prove results, similar to those stated in Lemma 2.32, Theorem 2.33
and Proposition 2.35. In particular we get the following:
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Theorem 2.37. Let F be a coherent sheaf of positive rank and E = (E,α : E → F ) a framed
sheaf where kerα is nonzero and torsion free. Then there exists a unique Harder-Narasimhan
filtration for E .

We conclude this section by proving a result for the maximal framed-destabilizing subsheaf
of a framed sheaf. This result holds for a framing sheaf of any rank.

Let B be a torsion free sheaf on X. We denote by pmax(B) the maximal reduced Hilbert
polynomial of B, that is, the reduced Hilbert polynomial of the maximal destabilizing subsheaf
of B (see Section 1.3 in [35]).

Lemma 2.38. Let E = (E,α) be a semistable framed sheaf of positive rank and B a torsion
free sheaf with zero framing. Suppose that p(E) > pmax(B). Then Hom(E , (B, 0)) = 0.

Proof. Let ϕ ∈ Hom(E , (B, 0)), ϕ 6= 0. Let j be minimal such that ϕ(E) ⊂ HNj(B).
Then there exists a nontrivial morphism of framed sheaves ϕ̄ : E → grHNj (B). By Propositions
2.6 and 2.21 we get

p(E) ≤ p(E/ker ϕ̄, α′′) ≤ p(Im ϕ̄) ≤ p(grHNj (B)) ≤ pmax(B)

and this is a contradiction with our assumption. �

Proposition 2.39. Let E = (E,α) be a framed sheaf where kerα is nonzero and torsion free.
Assume that E is not semistable with respect to δ. Let G be the maximal framed-destabilizing
subsheaf of E . Then

Hom (G, E/G) = 0.

Proof. We have to consider separately four different cases.

Case 1: G = kerα. In this case by definition of morphism of framed sheaves, we get
Hom (G, E/G) = 0.

Case 2: α|G = 0 and rk(G) < kerα. In this case Hom (G, E/G) = Hom(G, kerα/G).
Recall that G is a Gieseker-semistable sheaf and kerα/G is a torsion free sheaf; moreover
from the maximality of G follows that pG > p(T/G) for all subsheaves T/G ⊂ kerα/G, hence
pmin(G) = p(G) > pmax( kerα/G) and by Lemma 1.3.3 in [35] we obtain the assertion.

Case 3: α|G 6= 0 and rk(G) > 0. In this case E/G is a torsion free sheaf and the induced
framing is zero. From the maximality of G it follows that p(G) > p(T/G) for all subsheaves
T/G ⊂ E/G, so we can apply Lemma 2.38 and we get the assertion.

Case 4: G = T (E). Let ϕ : T (E)→ E/T (E). Since rk(Imϕ) = 0 and E/T (E) is torsion free,
we have Im ϕ = 0 and therefore we obtain the assertion. �

5.1. Base field extension. Let E = (E,α) be a framed sheaf on X where kerα is
nonzero and torsion free. Let K be an extension of k. Consider the following cartesian
diagram

X̃ X

Spec(K) Spec(k)

φ̃

φ

ff̃
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Put Ẽ := φ̃∗(E), F̃ := φ̃∗(F ), α̃ := φ̃∗(α) and Ẽ := (Ẽ, α̃).

Now we describe the behaviour of the semistability condition with respect to the base
field extension. In particular, we give a generalization of Proposition 3 in [41]:

Theorem 2.40. A subsheaf G ⊂ E is the maximal framed-destabilizing subsheaf of E if and
only if φ̃∗(G) is so for Ẽ .

Proof. Note that since φ̃ is a flat morphism, the sheaf ker α̃ = φ̃∗(kerα) is torsion free.
The Hilbert polynomial is preserved under base extensions, so the framed Hilbert polynomial
is preserved. If E′ ⊂ E is a framed-destabilizing subsheaf, then so is φ̃∗(E′) ⊂ Ẽ. Hence

if Ẽ is semistable, then E is semistable. So it suffices to prove that if GK is the maximal
framed-destabilizing subsheaf of Ẽ , then there is G ⊂ E such that φ̃∗(G) = GK .

Since GK is finitely presented, it is defined over some field L, k ⊂ L ⊂ K, which is
finitely generated over k, so we can suppose that K = k(x) for some single element x ∈ K
and K/k is a purely trascendental or separable extension. Note that there do not exist field
extensions of k which are purely inseparable, because k is a perfect field. Let σ ∈ Gal(K/k),

we denote by σX̃ the automorphism of X̃ over X induced by σ. Since σ∗
X̃

(GK) has the same

Hilbert polynomial of GK and ε(α̃|GK ) = ε(α̃|σ∗
X̃

(GK)), we must have σ∗
X̃

(GK) = GK . Hence

by descent theory (see [25], p. 22) there exists a subsheaf G ⊂ E such that φ̃∗(G) = GK .
Since the framed Hilbert polynomial of G coincides with the one of GK , we get that G is the
maximal framed-destabilizing subsheaf of E . �

6. Jordan-Hölder filtration

By analogy to the study of Gieseker-semistable coherent sheaves we will define Jordan-
Hölder filtrations for framed sheaves. Because of the framing, one needs to use Lemma 2.2
in the construction of the filtration. Moreover, in general we cannot extend the notions of
socle and the extended socle for stable torsion free sheaves to the framed case, because, for
example, the sum of two framed saturated subsheaves may not be framed saturated, hence
we construct these objects only for a smaller family of framed sheaves with extra properties.

Definition 2.41. Let E = (E,α) be a semistable framed sheaf of positive rank r. A Jordan-
Hölder filtration of E is a filtration

E• : 0 = E0 ⊂ E1 ⊂ · · · ⊂ El = E

such that all the factors Ei/Ei−1 together with the induced framings αi are stable with framed
Hilbert polynomial P (Ei/Ei−1, αi) = rk(Ei/Ei−1)p(E).

Proposition 2.42 (Proposition 1.13 in [34]). Jordan-Hölder filtrations always exist. The
framed sheaf

gr(E) := (gr(E), gr(α)) =
⊕
i

(Ei/Ei−1, αi)

does not depend on the choice of the Jordan-Hölder filtration.

Proof. If E is not stable, then there exists a proper subsheaf E′ ⊂ E such that P (E ′) =
rk(E′)p(E). Let E′ be the maximal subsheaf with this property. Then E′ is framed saturated,
E ′ is semistable and E/E′ is stable. Inductively, we can construct a finite length descending



6. JORDAN-HÖLDER FILTRATION 37

sequence of subsheaves, that will be a Jordan-Hölder filtration of E . Let E• and E′• be two
such filtrations. Let j the smallest index such that E1 ⊂ E′j . The morphism ϕ : E1 → E′j →
E′j/E′j−1 is nontrivial and induces a morphism between the corresponding framed sheaves. Since
(E1, α1) and (E′j/E′j−1, α

′
j) are stable, by Corollary 2.22 we get that ϕ is an isomorphism of

framed sheaves. Moreover the morphism E′j−1 → E/E1 is injective. Therefore we obtain an
exact sequence of framed sheaves

0 −→ E ′j−1 −→ E/E1 −→ E/E′j −→ 0.

By Lemma 2.2, the induced Jordan-Hölder filtrations on E/E′j and E ′j−1 by E′• give rise to

a Jordan-Hölder filtration of E/E1, whose graded object by induction on the rank of E is
isomorphic to the graded object of the filtration E•/E1. Therefore we get the assertion. �

Remark 2.43. By construction, for i > 0 all subsheaves Ei are framed saturated and the
framed sheaves (Ei, α

′) are semistable with framed Hilbert polynomial rk(Ei)p(E). In partic-
ular (E1, α

′) is a stable framed sheaf. Moreover at most one of the framings αi is nonzero
and all but possibly one of the factors Ei/Ei−1 are torsion free. 4

Now we introduce an equivalence relation that will be important in the construction of
moduli spaces of semistable framed sheaves of positive rank (cf. Chapter 5), because these
spaces parametrizes the equivalence classes of this relation.

Definition 2.44. Two semistable framed sheaves E and G of positive rank with reduced
Hilbert polynomial p are called S-equivalent if their associated graded objects gr(E) and
gr(G) are isomorphic.

Obviously, if an S-equivalence class contains a stable framed sheaf then it does not contain
nonisomorphic framed sheaves.

Definition 2.45. A framed sheaf E = (E,α) of positive rank is polystable if E has a filtration
E• : 0 = E0 ⊂ E1 ⊂ . . . ⊂ En = E such that

(i) for i = 2, . . . , n, every exact sequence

0 −→ Ei−1 −→ Ei −→ Ei/Ei−1 −→ 0

splits,
(ii) E• is a Jordan-Hölder filtration of E .

As we saw above, every S-equivalence class of semistable framed sheaves contains exactly
one polystable framed sheaf up to isomorphism. Thus, the moduli space of semistable framed
sheaves of positive rank in fact parametrizes polystable framed sheaves.

Lemma 2.46. Let E = (E,α) be a semistable framed sheaf of positive rank r. Then there
exists at most one subsheaf E′ ⊂ E such that α|E′ 6= 0, E ′ is a stable framed sheaf and
P (E ′) = rk(E′)p(E).

Proof. Suppose that there exist E1 and E2 subsheaves of E such that α|Ei 6= 0, the
framed sheaf Ei is stable (with respect to δ) and P (Ei) = rip(E), where ri = rk(Ei), for
i = 1, 2. So we have P (Ei) = rip(E) + δ for i = 1, 2. Let E12 = E1 ∩ E2. Suppose that
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E12 6= 0 and α|E12 6= 0. Denote by r12 the rank of E12. Since Ei is stable, we have that
P (E12)− δ < r12p(E). Consider the exact sequence

0 −→ E12 −→ E1 ⊕ E2 −→ E1 + E2 −→ 0.

The induced framing on E1 + E2 is nonzero; we denote it by β.

P (E1 + E2) = P (E1) + P (E2)− P (E12) = r1p(E) + δ + r2p(E) + δ − P (E12)

> rk(E1 + E2)p(E) + δ

and therefore
P (E1 + E2, β) = P (E1 + E2)− δ > rk(E1 + E2)p(E),

but this is a contradiction, because E is semistable. Now consider the case α|E12 = 0. By
similar computations, we obtain

P (E1 + E2, β) = P (E1 + E2)− δ > rk(E1 + E2)p(E) + rk(E1 + E2)δ > rk(E1 + E2)p(E),

but this is absurd. Thus E12 = 0 and therefore E1 + E2 = E1 ⊕ E2. In this case we get

P (E1 + E2, β) = P (E1 + E2)− δ = P (E1) + P (E2)− δ
= r1p(E) + δ + r2p(E) + δ − δ
= rk(E1 + E2)p(E) + δ > rk(E1 + E2)p(E),

but this is not possible. �

Remark 2.47. Let E = (E,α) be a semistable framed sheaf of positive rank r. If there exists
E′ ⊂ E such that rk(E′) = 0 and P (E′) = δ, then E′ = T (E), indeed from P (T (E)) ≥ P (E′)
follows that P (T (E)) ≥ δ. Since E is semistable, we have P (T (E)) = δ and so E′ = T (E). 4

By using similar computations as before, one can prove:

Lemma 2.48. Let E = (E,α) be a semistable framed sheaf of positive rank. Let E1 and E2 be
two different subsheaves of E such that P (Ei) = rk(Ei)p(E) for i = 1, 2. Then P (E1+E2, α

′) =
rk(E1 + E2)p(E) and P (E1 ∩ E2, α

′) = rk(E1 ∩ E2)p(E).

6.1. Framed sheaves that are locally free along the support of the framing
sheaf. In this section we assume that F is supported on a divisor D and is a locally free
OD-module.

Definition 2.49. Let E = (E,α) be a framed sheaf on X. We say that E is (D,F )-framable
if E is locally free in a neighborhood of D and α|D is an isomorphism. We call E also
(D,F )-framed sheaf.

Recall that in general for a framed sheaf E = (E,α) where kerα is nonzero and torsion
free, the torsion subsheaf of E is supported on Supp(F ). Therefore if E is (D,F )-framable, E
is torsion free.

Example 2.50. Let CP2 be the complex projective plane and OCP2(1) the hyperplane line
bundle. Let l∞ be a line in CP2 and i : l∞ → CP2 the inclusion map. The torsion free sheaves
of rank r on CP2, trivial along the line l∞ are — in the language we introduced before —
(l∞,Orl∞)-framed sheaves of rank r on CP2. Let M(r, n) be the moduli space of (l∞,Orl∞)-

framed sheaves of rank r and second Chern class n on CP2. This moduli space is nonempty
for n ≥ 1 as one can see from the description of this space through ADHM data (see, e.g.,
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Chapter 2 in [60]). Let [(E,α)] be a point in M(r, 1): the sheaf E is a torsion free sheaf of
rank r and second Chern class one. By Proposition 9.1.3 in [45], E is not Gieseker-semistable.
On the other hand, the framed sheaf (E,α) is stable with respect to a suitable choice of δ (cf.
Theorem 5.13). Thus we have proved that there exist semistable framed sheaves such that
the underlying coherent sheaves are not Gieseker-semistable. 4

Lemma 2.51. Let E = (E,α) be a semistable (D,F )-framed sheaf. Let E1 and E2 be two
different framed saturated subsheaves of E such that p(Ei) = p(E), for i = 1, 2. Assume that
α|E1 = 0. Then E1 + E2 is a framed saturated subsheaf of E such that gr(E1 + E2, α

′) =
gr(E1)⊕ gr(E2).

Proof. Since E is (D,F )-framable, the quotient E/Ei is torsion free for i = 1, 2, hence
E/(E1 + E2) is torsion free as well and therefore E1 +E2 is framed saturated. By Lemma 2.48,
p(E1 +E2, α

′) = p(E). Moreover we can always start with a Jordan-Hölder filtration of Ei and
complete it to one of (E1 +E2, α

′), hence we get gr(Ei) ⊂ gr(E1 +E2, α
′) (as framed sheaves)

for i = 1, 2. Let G• : 0 = G0 ⊂ G1 ⊂ · · · ⊂ Gl−1 ⊂ Gl = E1 be a Jordan-Hölder filtration
for E1 and H• : 0 = H0 ⊂ H1 ⊂ · · · ⊂ Hs−1 ⊂ Hs = E2 a Jordan-Hölder filtration for E2.
Consider the filtration

0 = G0 ⊂ G1 ⊂ · · · ⊂ Gl−1 ⊂ Gl = E1 ⊂ E1 +Hp ⊂ · · · ⊂ E1 +Ht−1 ⊂ Ht = E1 + E2

where p = min{i |Hi 6⊂ E1}. We want to prove that this is a Jordan-Hölder filtration for
(E1 + E2, α

′). It suffices to prove that E1 +Hj/E1 +Hj−1 with its induced framing γj is stable
for j = p, . . . , t (we put Hp−1 = 0). First note that by Lemma 2.48, we get P (E1 +Hj , α

′) =
rk(E1 +Hj)p(E) and P (E1 +Hj−1, α

′) = rk(E1 +Hj−1)p(E), hence

P (E1 +Hj/E1 +Hj−1, γj) = rk(E1 +Hj/E1 +Hj−1)p(E).

Since E/E1 +Hj−1 is torsion free, rk(E1 +Hj/E1 +Hj−1) > 0. Let T/E1 +Hj−1 be a subsheaf of
E1 +Hj/E1 +Hj−1. We have

P (T/E1 +Hj−1, γ
′
j) = P (T, α′)− P (E1 +Hj−1, α

′) ≤ rk(T )p(E)− rk(E1 +Hj−1)p(E)

= rk(T/E1 +Hj−1)p(E) = rk(T/E1 +Hj−1)p(E1 +Hj/E1 +Hj−1, γj),

so the framed sheaf (E1 +Hj/E1 +Hj−1, γj) is semistable. Moreover we can construct the fol-
lowing exact sequence of coherent sheaves

0 −→ E1 ∩Hj/E1 ∩Hj−1 −→ Hj/Hj−1

ϕ−→ E1 +Hj/E1 +Hj−1 −→ 0.

Recall that the induced framing on E1 is zero, hence the induced framing on E1 ∩Hj/E1 ∩Hj−1

is zero as well and therefore the morphism ϕ induces a surjective morphism between framed
sheaves

ϕ : (Hj/Hj−1, βj) −→ (E1 +Hj/E1 +Hj−1, γj).

Since (Hj/Hj−1, βj) is stable, by Corollary 2.22 the morphism ϕ is injective, hence it is an
isomorphism. �

Now we introduce the extended framed socle of a semistable (D,F )-framed sheaf, that
plays a similar role of the maximal destabilizing subsheaf of a framed sheaf of positive rank.
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Definition 2.52. Let E = (E,α) be a semistable (D,F )-framed sheaf. We call framed socle of
E the subsheaf of E given by the sum of all framed saturated subsheaves E′ ⊂ E such that the
framed sheaf E ′ = (E′, α|E′) is stable with reduced framed Hilbert polynomial p(E ′) = p(E).

Let E = (E,α) be a semistable (D,F )-framed sheaf. Consider the following two conditions
on framed saturated subsheaves E′ ⊂ E:

(a) p(E ′) = p(E),
(b) each component of gr(E ′) is isomorphic (as a framed sheaf) to a subsheaf of E.

Let E1 and E2 be two different framed saturated subsheaves of E satisfying conditions (a) and
(b). By previous lemmas the subsheaf E1 +E2 is a framed saturated subsheaf of E satisfying
conditions (a) and (b) as well.

Definition 2.53. For a semistable (D,F )-framed sheaf E = (E,α), we call extended framed
socle the maximal framed saturated subsheaf of E satisfying the above conditions (a) and
(b).

Proposition 2.54. Let G be the extended framed socle of a semistable (D,F )-framed sheaf
E = (E,α). Then

(1) G contains the framed socle of E .
(2) If E is simple and not stable, then G is a proper subsheaf of E.

Proof. (1) It follows directy from the definition.

(2) Let E• : 0 = E0 ⊂ E1 ⊂ · · · ⊂ El = E be a Jordan-Hölder filtration of E . If E = G,
the framed sheaf (E/El−1, αl) is isomorphic (as framed sheaf) to a proper subsheaf E′ ⊂ E
with induced framing α′. The composition of morphisms of framed sheaves

E E/El−1 E′ E

F F F F

α

·ν

∼p

αα′

·λ ·µ

i

αl

induces a morphism ϕ : E → E that is not a scalar endomorphism of E . �

Corollary 2.55. A (D,F )-framed sheaf E = (E,α) is stable with respect to δ if and only if
it is geometrically stable.

Proof. Assume E is stable but not geometrically stable. Let K be a field extension of
k. According to the previous lemma, the extended framed socle G of f∗(E), where X ×Spec(k)

Spec(K)
f→ X, is a proper subsheaf of f∗(E). Since the extended framed socle is invariant

under all automorphisms in Gal(K/k), it is already defined over k, thus we get a contradiction
(cf. the arguments in the proof of Theorem 2.40). On the other hand, since the framed Hilbert
polynomial is preserved under base extensions, if E is not stable, then it is not geometrically
stable. �
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7. Slope-(semi)stability

In this section we give a generalization to framed sheaves of the Mumford-Takemoto
(semi)stability condition for torsion free sheaves (see Definition 1.2.12 in [35]). Also in this
case one can construct examples of framed sheaves that are semistable with respect to this
new condition but the underlying coherent sheaves are not µ-semistable and vice versa.

Definition 2.56. A framed sheaf E = (E,α) of positive rank is µ-(semi)stable with respect
to δ1 if and only if kerα is torsion free and the following conditions are satisfied:

(i) rk(E) deg(E′) (≤) rk(E′) deg(E) for all subsheaves E′ ⊂ kerα,
(ii) rk(E)(deg(E′)−δ1) (≤) rk(E′) deg(E) for all subsheaves E′ ⊂ E with rk(E′) < rk(E).

One has the usual implications among different stability properties of a framed module
of positive rank:

µ− stable⇒ stable⇒ semistable⇒ µ− semistable.

Definition 2.57. Let E = (E,α) be a framed sheaf with rk(E) = 0. If α is injective, we say
that E is µ-semistable2. Moreover, if the degree of E is δ1, we say that E is µ-stable with
respect to δ1.

All the previous results hold also for µ-(semi)stability.

For i ≥ 0, let us denote by Cohi(X) the full subcategory of Coh(X) whose objects are
sheaves of dimension less or equal to i. Let Cohd,d−1(X) be the quotient category Cohd(X)/Cohd−1(X).
In Section 1.6 of [35], Huybrechts and Lehn define the notion of µ-Jordan-Hölder filtration
for µ-semistable sheaves E in the category Cohd,d−1(X). For a µ-semistable torsion free sheaf
E, the graded object associated to a µ-Jordan-Hölder filtration is uniquely determined only
in codimension one.

In our case, we define µ-Jordan-Hölder filtrations by using filtrations in which every term
is a framed saturared subsheaf of the next term. In this way, the graded object is uniquely
determined. The notions we gave in Section 6 of this chapter for semistable framed sheaves
of positive rank will be extended in this section to µ-semistable framed sheaves of positive
rank by using this definition of µ-Jordan-Hölder filtration. Thus, when the framing of a µ-
semistable framed sheaf is zero, our definition of µ-Jordan-Hölder filtration does not coincide
with the nonframed one given by Huybrechts and Lehn (cf. Section 1.6 in [35]).

8. Boundedness I

In order to construct moduli spaces one first has to ensure that the set of sheaves one wants
to parametrize is not too big. Indeed the family of semistable framed sheaves is bounded, i.e.,
it is reasonably small. In this section, we introduce the notion of bounded family and give
some characterizations, by using the so-called Mumford-Castelnuovo regularity. Thanks to a
trick that allows one to use results about torsion free sheaves in the framed case, we give a
proof of the boundedness of the family of (µ)-semistable framed sheaves with a fixed Hilbert
polynomial P.

Let Y be a projective scheme over k and OY (1) a very ample line bundle.

2For torsion sheaves, the definition of µ-semistability of the corresponding framed sheaves does not depend
on δ1.
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Definition 2.58. A family of isomorphism classes of coherent sheaves on Y is bounded if
there is a k-scheme S of finite type and a coherent OS×Y -sheaf G such that the given family
is contained in the set {G|Spec(k(s))×Y | s a closed point in S}.

Later we use the word family in a different setting (cf. Chapter 3). Now we give two
characterizations of this notion.

Proposition 2.59 (Proposition 1.2 in [26]). Let G and G′ be two bounded families of coherent
sheaves on Y. Then

(1) the families of kernels, cokernels and images of morphisms G → G′, where G ∈ G
and G′ ∈ G′, are bounded.

(2) the family of extensions of an element of G by an element of G′ is bounded.

Before giving the second characterization, we need to introduce the notion of Mumford-
Castelnuovo regularity.

Definition 2.60. Let m be an integer. A coherent sheaf G is said to be m-regular, if

Hi(X,G(m− i)) = 0 for all i > 0.

Because of Serre’s vanishing theorem, for any sheaf G there is an integer m such that G
is m-regular. It is possible to prove that if G is m-regular, then G(m) is globally generated.
Moreover, if G is m-regular then G is m′-regular for all integers m′ ≥ m. Because of this fact,
the following definition makes sense.

Definition 2.61. The Mumford-Castelnuovo regularity of a coherent sheaf G is the number
reg(G) = inf{m ∈ Z |G is m-regular}.

The regularity of G is −∞ if and only if G is a zero-dimensional sheaf.

Proposition 2.62. The following properties of family of sheaves {Gι}ι∈I are equivalent:

(i) The family is bounded.
(ii) The set of Hilbert polynomials {P (Gι)}ι∈I is finite and there is a uniform bound

reg(Gι) ≤ ρ for all ι ∈ I.
(iii) The set of Hilbert polynomials {P (Gι)}ι∈I is finite and there is a coherent sheaf G

such that all Gι admit surjective morphisms G→ Gι.

Proof. See Lemma 1.7.6 in [35] and Theorem 2.1 in [26]. �

Now we would like to prove that the family of µ-semistable framed sheaves of positive
rank on a polarized variety (X,OX(1)) of dimension d is bounded. To do this, we want to
use the following result due to Maruyama:

Theorem 2.63 ([52]). Let (X,OX(1)) be a polarized variety of dimension d. Let P be a
numerical polynomial and C a constant. Then the family of torsion free sheaves G on X with
Hilbert polynomial P and µmax(G) ≤ C is bounded, where µmax(G) is the maximal slope of
G, that is, the slope of the maximal destabilizing subsheaf of G.
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To apply this result in the study of framed sheaves, we need to use the following trick.
For the framing sheaf F , choose once and for all a fixed locally free sheaf F̂ and a surjective
morphism φ : F̂ → F. We denote by B the kernel of φ. Then to each framed sheaf E = (E,α)
of positive rank we can associate a commutative diagram with exact rows and columns:

0 0

B B

0 kerα Ê F̂

0 kerα E F

0 0

α̂

α
φ̂ φ

The second row of the diagram shows that Ê is torsion free if the kernel of α is torsion free,
hence in particular this happens if (E,α) is µ-semistable.

Proposition 2.64. Let (X,OX(1)) be a polarized variety of dimension d. The family of
framed sheaves of positive rank on X, µ-semistable with respect to δ1 and with fixed Hilbert
polynomial P , is bounded.

Proof. Let E = (E,α) be a µ-semistable framed sheaf of positive rank on X. Let us

consider the torsion free sheaf Ê associated to E, given by the previous diagram. Since F̂
and φ are fixed, the Hilbert polynomial P (Ê) = P +P (B) of Ê does not depend on E . Let G

be a nonzero subsheaf of Ê. Let us denote by G its image through φ̂ and by BG the kernel of
the restriction morphism φ|Ĝ. By the µ-semistability of E , we get deg(G) ≤ rk(G)(µ(E)+δ1).
Hence

µ(Ĝ) =
deg(G) + deg(BG)

rk(Ĝ)
≤ rk(G)(µ(E) + δ1) + rk(BG)µmax(B)

rk(Ĝ)
.

This show that µmax(Ê) is uniformly bounded from above. Therefore, by Theorem 2.63,

the family of sheaves Ê associated to µ-semistable framed sheaves E is bounded. Since B is
fixed and the sheaves E are quotients of the sheaves Ê, the family of sheaves E associated to
µ-semistable framed sheaves (E,α) of positive rank with fixed polynomial P is bounded by
Proposition 2.59. �

By using the same argument, one can prove the following.

Proposition 2.65. Let (X,OX(1)) be a polarized variety of dimension d. The family of
framed sheaves of positive rank on X, semistable with respect to δ and with fixed Hilbert
polynomial P , is bounded.





CHAPTER 3

Families of framed sheaves

In the first chapter we proved some elementary properties of framed sheaves related to
semistability. In this chapter we see how these properties vary in algebraic families. The
main result of the chapter is the construction of the relative Harder-Narasimhan filtration.
In Section 1 we recall the notion of flatness for coherent sheaves and define the notion of flat
family of framed sheaves. In Section 2 we construct a framed version of the Grothendieck Quot
scheme and as a byproduct we obtain a universal quotient (with fixed Hilbert polynomial)
of a family of framed sheaves such that the induced framing is either nonzero at each fibre
or zero at each fibre. In this way not only the Hilbert polynomial of that quotient but
also its framed Hilbert polynomial is constant along the fibres. In Section 3 we introduce
the notion of hat-slope of a coherent sheaf and provide a boundedness result for families of
quotients of a given family of framed sheaves. That will be useful in the constructions of the
minimal framed-destabilizing quotient of a fixed family of framed sheaves and the relative
Harder-Narasimhan filtration given in Section 4.

All the results of this chapter hold also for the µ-(semi)stability condition.

1. Flat families

In this section we recall the definition of flatness. Moreover, we state some properties that
we shall use in the following. Finally we introduce the notion of families of framed sheaves of
positive rank.

Let g : Y → S be a morphism of finite type of Noetherian schemes.

Definition 3.1. A flat family of coherent sheaves on the fibres of the morphism g : Y → S is
a coherent sheaf G on Y , which is flat over S.

This means that for each point y ∈ Y the stalk Gy is flat over the local ring OS,f(y). If
G is S-flat, GT is T -flat for any base change T → S. If 0 → G′ → G → G′′ → 0 is a short
exact sequence of coherent OY -sheaves and if G′′ is S-flat then G′ is S-flat if and only if G is
S-flat. If Y ∼= S, G is S-flat if and only if G is locally free.

Assume that g is a projective morphism and consider a g-ample line bundle OY (1) on Y ,
that is, a line bundle on Y such that the restriction to any fibre Ys is ample for s ∈ S. Let G
be a coherent OY -sheaf. Let us consider the following assertions:

(1) G is S-flat,
(2) for all sufficiently large m the sheaves g∗(G⊗OY (m)) are locally free,
(3) the Hilbert polynomial P (Gs) is locally constant as a function of s ∈ S.

Proposition 3.2 (Theorem III 9.9 in [29]). There are implications 1⇔ 2⇒ 3. If S is reduced
then also 3⇒ 1.

45
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Let (X,OX(1)) be a polarized variety of dimension d, S an integral k-scheme of finite type
and f : X → S a projective flat morphism. It is easy to prove that OX(1) is a f -ample line
bundle on X.

Let us denote by d̄ the dimension of the fibre Xs for s ∈ S. Fix a flat family of sheaves
F of rank zero on the fibres of f and a rational polynomial δ̄ of degree d̄ − 1 and positive
leading coefficient δ̄1.

Now we introduce the notion of flat families of framed sheaves. We want to deal with
families parametrizing framed sheaves of positive rank with nonzero framings. Moreover, we
want to avoid the possibility that in some fibre the kernel of the framing destabilizes the
corresponding framed sheaf. For these reasons, we give the following ad hoc definition.

Definition 3.3. A flat family of framed sheaves of positive rank on the fibres of the morphism
f consists of a framed sheaf E = (E,α : E → F ) on X, where αs 6= 0 and rk(Es) > 0 for all
s ∈ S and E and Im α are flat families of coherent sheaves on the fibres of f.

Remark 3.4. By flatness of E and Im α, we have that also kerα is S-flat.

Let us consider a flat family E = (E,α) of framed sheaves of positive rank r on the fibres
of f such that P (Imαs) ≥ δ̄ for s ∈ S. From now on we fix S, f : X → S, F , δ̄ and E = (E,α)
as introduced above, unless otherwise stated.

2. Relative framed Quot scheme

In this section we introduce the notions of representability and (universal) corepresentabil-
ity for a contravariant functor. We recall the construction of the relative Quot scheme and
construct the relative framed Quot scheme as a closed subscheme of it.

Let C be a category, C◦ the opposite category, i.e., the category with the same objects and
reversed arrows, and let C′ be the functor category whose objects are the functors C◦ → (Sets)
and whose morphisms are the natural transformations between functors. The Yoneda Lemma
(weak version) states that the functor C → C′ which associates to M ∈ Ob(C) the functor
MorC(·,M) : T → MorC(T,M) embeds C as a full subcategory into C′. A functor in C′ of the
form MorC(·,M) is said to be represented by the object M.

Definition 3.5. Let F ∈ Ob(C′) be a functor. A universal object for F is a pair (M, ξ)
consisting of an object M of C, and an element ξ ∈ F(M), with the property that for
each object U of C and each σ ∈ F(U), there is a unique arrow g : U → M such that
(F(g))(ξ) = σ ∈ F(U).

By the Yoneda lemma, there is a bijective correspondence MorC′(MorC(·,M),F) ∼= F(M).
From this fact, we get the following result.

Proposition 3.6. A functor F ∈ Ob(C′) is representable if and only if it has an universal
object.

Also, if F has a universal object (M, ξ), F is represented by M.

Definition 3.7. A functor F ∈ Ob(C′) is corepresented by F ∈ Ob(C) if there is a C′-
morphism ϕ : F → MorC(·, F ) such that any morphism ϕ′ : F → MorC(·, F ′) factors through
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a unique morphism fC′ : MorC(·, F )→ MorC(·, F ′). A functor F ∈ Ob(C′) is universally corep-
resented by ϕ : F → MorC(·, F ) if for any morphism MorC(·, T ) → MorC(·, F ), the fiber
product T = MorC(·, T )×MorC(·,F ) F is corepresented by T. Finally, F is represented by F if
ϕ : F → MorC(·, F ) is a C′-isomorphism.

If F represents F then it also universally corepresents F , and if F corepresents F then it
is unique up to a unique isomorphism. This follows directly from the definition.

Let us recall the definition of the relative Quot scheme. Let C = (Sch/S) be the category
of Noetherian S-schemes of finite type. Let E be a coherent OX -module and P ∈ Q[n] a
numerical polynomial, i.e., a rational polynomial such that for any n ∈ Z, P (n) ∈ Z. We
define the functor

Quot
X/S

(E,P ) : C◦ −→ (Sets)

as follows: if T → S is an object in C, let Quot
X/S

(E,P )(T ) be the set of all T -flat coherent

quotient sheaves ET → Q with P (Qt) = P for all t ∈ T , modulo isomorphism. If g : T ′ → T is
an S-morphism, let Quot

X/S
(E,P )(g) be the map that sends ET → Q to ET ′ → g∗XQ, where

gX : XT ′ → XT is the induced morphism by g.

Theorem 3.8 (Theorem 2.2.4 in [35]). The functor Quot
X/S

(E,P ) is represented by a pro-

jective S-scheme π : QuotX/S(E,P )→ S.

In the following we call Quot scheme the scheme QuotX/S(E,P ).

Now we introduce the framed version of the Quot scheme. Let E = (E,α) be a S-flat
family of framed sheaves of positive rank and P a numerical polynomial. Define the functor

FQuot
X/S

(E,α, P ) : C◦ −→ (Sets)

in the following way:

• For an object T → S, FQuot
X/S

(E,α, P )(T → S) is the set consisting of coherent

quotient sheaves (modulo isomorphism) ET
q→ Q→ 0 such that

(i) Q is T -flat,
(ii) the Hilbert polynomial of Qt is P for all t ∈ T ,
(iii) there is a induced morphism α̃ : Q→ FT such that α̃ ◦ q = αT .
• For a S-morphism g : T ′ → T , FQuot

X/S
(E,α, P )(g) is Quot

X/S
(E,P )(g).

Obviously, this functor is a subfunctor of Quot
X/S

(E,P ). We have the following result.

Theorem 3.9. The functor FQuot
X/S

(E,P ) is represented by a projective S-scheme

πfr : FQuotX/S(E,α, P )→ S,

that is a closed subscheme of QuotX/S(E,P ).

Proof. The property (iii) in the definition is closed, hence one can construct a closed sub-
scheme FQuotX/S(E,α, P ) ⊂ QuotX/S(E,P ) that represents the functor FQuot

X/S
(E,α, P ),

by using the same arguments of the proof of Theorem 1.6 in [73]. Moreover the composition
of morphisms

πfr : FQuotX/S(E,α, P ) ↪→ QuotX/S(E,P )
π−→ S

makes FQuotX/S(E,α, P ) a projective S-scheme. �
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Roughly speaking, FQuotX/S(E,α, P ) parametrizes all the quotients Es
q→ Q, for s ∈ S,

such that the induced framing on ker q is zero.

The universal object on FQuotX/S(E,α, P ) ×S X is the pull-back of the universal ob-
ject on QuotX/S(E,P ) ×S X with respect to the morphism FQuotX/S(E,α, P ) ×S X →
QuotX/S(E,P )×SX, induced by the closed embedding FQuotX/S(E,α, P ) ↪→ QuotX/S(E,P ).

Let s ∈ S and q ∈ π−1
fr (s) be k-rational points corresponding to the commutative diagram

on Xs

0 K Es Q 0

Fs

i

α̃
αs

q

One has the following result about the tangent space of π−1
fr (s) at q:

Proposition 3.10. The kernel of the linear map (dπfr)q : TqFQuotX/S(E,α, P ) → TsS is
isomorphic to the linear space Hom(K, kerαs/K) = Hom(K,Q).

Proof. It suffices to readapt the techniques used in the proof of the corresponding result
for π (see Proposition 4.4.4 in [74]). �

Now we have a tool for constructing a flat family of quotients (with a fixed Hilbert
polynomial) of E such that the induced framing is nonzero in each fibre. Using the relative
Quot scheme associated to E, one can construct a flat family of quotients such that the
induced framing is generically zero.

3. Boundedness II

In this section we characterize the families of quotient sheaves of a family of framed
sheaves. In particular we prove that these families are bounded if the hat-slopes of their
elements are bounded from above. As an application of this result, we prove that the property
of being (semi)stable is open in families of framed sheaves.

Definition 3.11. Let E a coherent sheaf. We call hat-slope the rational number

µ̂(E) =
βdim(E)−1(E)

βdim(E)(E)
.

For a polynomial P (n) =

t∑
i=0

βin
i/i! we define µ̂(P ) = βt−1/βt.

Lemma 3.12 (Lemma 2.5 in [26]). Let Y → S be a projective morphism of Noetherian
schemes and denote by OY (1) a line bundle on Y , which is very ample relative to S. Let L be
a coherent sheaf on Y and E the set of isomorphism classes of quotient sheaves G of Ls for
s running over the points of S. Suppose that the dimension of Ys is ≤ r for all s. Then the
coefficient βr(G) is bounded from above and from below, and βr−1(G) is bounded from below.
If βr−1(G) is bounded from above, then the family of sheaves G/T (G) is bounded.

Corollary 3.13. Let E be a flat family of coherent sheaves on the fibres of the morphism
f : X → S. Then the family of torsion free quotients Q of Es for s ∈ S with hat-slopes bounded
from above is a bounded family.
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From this result and Lemma 2.62 it follows that there are only a finite number of rational
polynomials corresponding to Hilbert polynomials of destabilizing quotients Q of Es for s ∈ S.
Thus it is possible to find the “minimal” polynomial that will be the Hilbert polynomial of
the minimal destabilizing quotient of Es for a generic point s ∈ S. Now we want to use the
same argument in the framed case.

Let F1 be a family of quotients Es
q→ Q, for s ∈ S, such that

• kerαs is torsion free,
• ker q 6⊆ kerαs,
• Q is torsion free and µ̂(Q) < µ̂(Es).

Proposition 3.14. The family F1 is bounded.

Proof. The family F1 is contained in the family of torsion free quotients of E, with hat-
slopes bounded from above, hence it is bounded by Corollary 3.13 and Proposition 2.62. �

Let F2 be a family of quotients

Es Q 0

Fs

q

αs
α̃

for which

• kerαs is a torsion free sheaf,
• Q fits into a exact sequence

0 −→ Q′ −→ Q
α̃−→ Im αs −→ 0

where Q′ = ker α̃ is a nonzero torsion free quotient of kerαs,
• µ̂(Q) < µ̂(Es) + δ̄1.

Proposition 3.15. The family F2 is bounded.

Proof. Since a family given by extensions of elements from two bounded families is
bounded (cf. Proposition 2.59), it suffices to prove that every element in F2 is an extension
of two elements that belong to two bounded families. By definition of flat family of framed
sheaves, the families {kerαs}s∈S and {Imαs}s∈S are bounded. So it remains to prove that the
family of quotientsQ′ is bounded. Since the family {kerαs} is bounded, there exists a coherent
sheaf T on X such that kerαs admits a surjective morphism Ts → kerαs (see Lemma 2.62),
hence the quotient Q′ admits a surjective morphism Ts → Q′. By Lemma 3.12, the coefficient
βd̄(Q

′) is bounded from above and from below and the coefficient βd̄−1(Q′) is bounded from
below. Moreover, since {Es} and {Imαs} are bounded families, the coefficients of their Hilbert
polynomials are uniformly bounded from above and from below, hence µ̂(Es) is uniformly
bounded from above and from below and since µ̂(Q) < µ̂(Es) + δ̄1, we obtain that µ̂(Q) is
uniformly bounded from above. By a simple computation we obtain that µ̂(Q′) ≤ Aµ̂(Q)+B
for some constants A,B, hence we get that µ̂(Q′) is uniformly bounded from above and by
Lemma 3.12 we obtain the assertion. �
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As an application of the previous results we obtained the following.

Proposition 3.16. Let S, f : X → S, F , δ̄ and E = (E,α) be as before. The set of points
s ∈ S such that (Es, αs) is (semi)stable with respect to δ̄ is open in S.

Proof. In the proof we apply the same arguments as in the nonframed case (see Propo-
sition 2.3.1 in [35]).

Let P denote the Hilbert polynomial of E. For i = 1, 2 let Ai ⊂ Q[n] be the set consisting
of polynomials P ′′ such that there is a point s ∈ S and a surjection Es → E′′, where PE′′ = P ′′

and E′′ ∈ Fi. Note that by Propositions 3.14 and 3.15 the sets A1 and A2 are finite. Denote
by p′′ the reduced Hilbert polynomial associated to the rational polynomial P ′′ and by r′′ its
leading coefficient.

Semistable case. Define the sets

T1 =

{
P ′′ ∈ A1 | p′′ < p− δ̄

r

}
,

T2 =

{
P ′′ ∈ A2 | p′′ −

δ̄

r′′
< p− δ̄

r

}
.

For any P ′′ ∈ A1 we consider the relative Quot scheme π : QuotX/S(E,P ′′) → S. Since π is
projective, the image S(P ′′) is a closed subset of S. For any P ′′ ∈ A2 the image Sfr(P

′′) of
FQuotX/S(E,α, P ′′) through πfr is closed in S. Thus

(Es, αs) is semistable if and only if s /∈

 ⋃
P ′′∈T1

S(P ′′)

 ∪
 ⋃
P ′′∈T2

Sfr(P
′′)

 ,

Note that these unions are finite, hence closed in S.

Stable case. The proof in this case is similar to the previous one, by using the sets

T ′1 =

{
P ′′ ∈ A1 | p′′ ≤ p−

δ̄

r
and P ′′ < P

}
,

T ′2 =

{
P ′′ ∈ A2 | p′′ −

δ̄

r′′
≤ p− δ̄

r
and P ′′ < P

}
.

�

4. Relative Harder-Narasimhan filtration

In this section we would like to construct a flat family of minimal framed-destabilizing
quotients associated to a framed sheaf. The construction is more complicated than in the
nonframed case (see Theorem 2.3.2 in [35]). Iterating this construction, we obtain the relative
Harder-Narasimhan filtration of a family of framed sheaves of positive rank.

Theorem 3.17. Let (X,OX(1)), S, f : X → S, F , δ̄ and E = (E,α) be as before. Then
there is an integral k-scheme T of finite type, a projective birational morphism g : T → S, a
dense open subscheme U ⊂ T and a flat quotient Q of ET such that for all points t in U ,
(Et, αt) is a framed sheaf of positive rank where kerαt is nonzero and torsion free and Qt is
the minimal framed-destabilizing quotient of Et with respect to δ̄ or Qt = Et.
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Moreover, the pair (g,Q) is universal in the sense that if g′ : T ′ → S is any dominant
morphism of k-integral schemes and Q′ is a flat quotient of ET ′ satisfying the same property
of Q, there is an S-morphism h : T ′ → T such that h∗X(Q) = Q′.

Proof. Let P denote the Hilbert polynomial of E. For i = 1, 2, let Ai ⊂ Q[n] be as in
the proof of Proposition 3.16. Let

B1 =

{
P ′′ ∈ A1 | p′′ < p− δ̄

r

}
,

B2 =

{
P ′′ ∈ A2 | p′′ −

δ̄

r′′
≤ p− δ̄

r

}
.

The set B1 ∪ B2 is nonempty. We define an order relation on B1: P1 v P2 if and only if
p1 ≤ p2 and r1 ≤ r2 in the case p1 = p2. We define an order relation on B2: P1 v P2 if and

only if p1 − δ̄
r1
≤ p2 − δ̄

r2
and r1 ≤ r2 in the case of equality.

Let C1 be the set of polynomials P ′′ ∈ B1 such that π(QuotX/S(E,P ′′)) = S and for any

s ∈ S one has π−1(s) 6⊂ FQuotX/S(E,α, P ′′). Let C2 be the set of polynomials P ′′ ∈ B2 such
that πfr(FQuotX/S(E,α, P ′′)) = S. Note that C1 ∪ C2 is nonempty. Now we want to find a
polynomial P− in C1 ∪C2 that is the Hilbert polynomial of the minimal framed-destabilizing
quotient of Es for a general point s ∈ S.

Let us consider the relation < defined in the following way: for P1, P2 ∈ B1 we have
P1 < P2 if and only if P1 v P2 and p1 < p2 or r1 < r2 in the case p1 = p2. In a similar
way we can define < for polynomials in B2. Let P i− be a <-minimal polynomial among all
polynomials of Ci for i = 1, 2. Consider the following cases:

• Case 1: p1
− < p2

− − δ̄
r2
−
. Put P− := P 1

−.

• Case 2: p1
− > p2

− − δ̄
r2
−
. Put P− := P 2

−.

• Case 3: p1
− = p2

− − δ̄
r2
−
. If r2

− < r1
−, put P− := P 2

−, otherwise P− := P 1
−.

Note that the set( ⋃
P ′′∈B1
P ′′<P1

−

π(QuotX/S(E,P ′′))
)
∪
( ⋃

P ′′∈B2
P ′′<P2

−

πfr(FQuotX/S(E,α, P ′′))
)

is a proper closed subscheme of S. Let U− be its complement. Let Utf be the dense open
subscheme of S consisting of points s such that kerαs is torsion free. Put V = U− ∩ Utf .

Suppose that P− ∈ C2, the other case is similar. By definition of P− the projective
morphism πfr : FQuotX/S(E,α, P−) → S is surjective. For any point s ∈ S the fiber of πfr
at s parametrizes possible quotients of Es with Hilbert polynomial P−. If s ∈ V , then any
such quotient is a minimal framed-destabilizing quotient by construction of V. Recall that
the minimal framed-destabilizing quotient is unique by Proposition 2.24: this implies that
πfr|U : U := π−1

fr (V ) → V is bijective. By Theorem 2.40, that quotient is defined over the

residue field k(s), hence for t ∈ U , s = πfr(t) one has k(s) ' k(t). Let t ∈ π−1
fr (s) be a point
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corresponding to a diagram

0 K Et Q 0

Ft

i q

αt
α̃

By Proposition 3.10, the Zariski tangent space of π−1
fr (s) at t is Hom(K,Q). Since K is the

maximal framed-destabilizing subsheaf of Et, we have that Hom(K,Q) = 0 by Proposition 2.39
and therefore ΩU/V = 0, hence πfr|U : U → V is unramified. Since πfr is projective, we have
that πfr|U is a proper morphism. Since V is integral, we obtain that πfr|U is an isomorphism.
Now let T be the clousure of U in FQuotX/S(E,α, P−) with its reduced subscheme structure
and f : = π|T : T → S is a projective birational morphism. We put Q equal to the pull-back
on XT of the universal quotient on FQuotX/S(E,α, P−)×S X.

The proof of the universality of the pair (g,Q) is similar to that for the case of torsion
free sheaves (second part of Theorem 2.3.2 in [35]), since to prove this part of the theorem
we need only the universal property of FQuotX/S(E,α, P−) or QuotX/S(E,P−). �

Now we can conclude this section by giving the construction of the relative version of the
Harder-Narasimhan filtration.

Theorem 3.18. Let (X,OX(1)), S, f : X → S, F , δ̄ and E = (E,α) be as before. There
exists an integral k-scheme T of finite type, a projective birational morphism g : T → S and
a filtration

HN•(E) : 0 = HN0(E) ⊂ HN1(E) ⊂ · · · ⊂ HNl(E) = ET

such that the following holds:

• The factors HNi(E)/HNi−1(E) are T -flat for all i = 1, . . . , l, and
• there is a dense open subscheme U ⊂ T such that (HN•(E))t = g∗XHN•(Eg(t)) for all
t ∈ U.

Moreover, the pair (g,HN•(E)) is universal in the sense that if g′ : T ′ → S is any dominant
morphism of k-integral schemes and E′• is a filtration of ET satisfying these two properties,
there is an S-morphism h : T ′ → T such that h∗X(HN•(E)) = E′•.

Proof. By applying Theorem 3.17 to the pair (S, E) we get a projective birational mor-
phism g1 : T1 → S of integral k-schemes of finite type, a dense open subsheme U1 and a
T1-flat quotient Q with the properties asserted in that theorem. If Qt = Et for all t ∈ U1, we
obtain the trivial relative Harder-Narasimhan filtration:

HN•(E) : 0 ⊂ HN1(E) = ET1

Otherwise, Q is a flat family of sheaves of positive rank parametrized by T. If the induced
framings on the fibres of Q are nonzero, then Q with the induced framing by α is a flat family
of framed sheaves of positive rank parametrized by T and we can apply Theorem 3.17 to
the pair (T,Q). If on the contrary the framings of Qt for t ∈ U1 are zero, we can apply the
nonframed version of the previous theorem (Theorem 2.3.2 in [35]) to the pair (T,Q). In this
way we obtain a finite sequence of morphisms

Tl −→ Tl−1 −→ · · · −→ T1 = T → S
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and an associated filtration such that the composition of these morphism and the filtration
have the required properties. The universality of the filtration follows from the universality
of the relative minimal framed-destabilizing quotient. �





CHAPTER 4

Restriction theorems for µ-(semi)stable framed sheaves

In this chapter we generalize the Mehta-Ramanathan restriction theorems to framed
sheaves. We limit our attention to the case in which the framing sheaf F is a coherent
sheaf supported on a divisor DF . In the framed case the results depend also on the parameter
δ1. Moreover the proofs are somehow more complicated than in the nonframed case (see, e.g.,
Section 7.2 in [35]) because of the presence of the framing. In Section 1 we provide the proof
for the semistable case, in Section 2 we prove the stable case.

1. Slope-semistable case

In this section we provide a generalization of Mehta-Ramanathan’s theorem for µ-semistable
torsion free sheaves (Theorem 6.1 in [53]).

Theorem 4.1. Let (X,OX(1)) be a polarized variety of dimension d. Let F be a coherent
sheaf on X supported on a divisor DF . Let E = (E,α : E → F ) be a framed sheaf on X of
positive rank with nontrivial framing. If E is µ-semistable with respect to δ1, there exists a
positive integer a0 such that for all a ≥ a0 there is a dense open subset Ua ⊂ |OX(a)| such
that for all D ∈ Ua the divisor D is smooth, meets transversally the divisor DF and E|D is
µ-semistable with respect to aδ1.

In order to prove this theorem, we need some preliminary results: for a positive integer
a, let Πa := |OX(a)| be the complete linear system of hypersurfaces of degree a in X and let
Za := {(D,x) ∈ Πa ×X|x ∈ D} be the incidence variety with its natural projections

Za X

Πa

q

p

Remark 4.2. It is possible to give a schematic structure on Za so that p is a projective
flat morphism (see Section 3.1 in [35]). Moreover Pic(Za) = q∗(Pic(X)) ⊕ p∗(Pic(Πa)) (see
Section 2 in [53]).

For all D ∈ Πa, the Hilbert polynomials of the restrictions E|D, F |D and Im α|D are
indipendent from D, indeed, e.g., the Hilbert polynomial of E|D is P (E|D, n) = P (E,n) −
P (E,n− a). Since Πa is a reduced scheme, by Proposition 3.2 q∗F is a flat family of sheaves
of rank zero on the fibres of p and (q∗E, q∗α) is a flat family of framed sheaves of positive
rank on the fibres of p. For any a and for general D ∈ Πa the restriction kerα|D is torsion
free (see Corollary 1.1.14 in [35]), hence the set {C ∈ Πa | kerα|C is torsion free} ⊂ Πa

is nonempty. Since E is µ-semistable with respect to δ1, we have deg(Im α) ≥ δ1, hence

55
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deg(Im α|D) = adeg(Im α) ≥ aδ1 for an integer a > 0. According to Theorem 3.17, which
states the existence of the relative minimal µ-framed-destabilizing quotient with respect to
δ̄1 = aδ1, there are a dense open subset Va ⊂ Πa and a Va-flat quotient on ZVa := Va ×Πa Za

(q∗E)|ZVa Qa

(q∗F )|ZVa

qa

(q∗α)|ZVa

with a morphism α̃a : Qa → (q∗F )|ZVa , such that for all D ∈ Va the framed sheaf (E|D, α|D)
has positive rank, and kerα|D is torsion free; moreover, Qa|D is a coherent sheaf of posi-
tive rank, α̃a|D is the framing induced by α|D and (Qa|D, α̃a|D) is the minimal µ-framed-
destabilizing quotient of (E|D, α|D). Let Q be an extension of det(Qa) to some line bundle
on all of Za. Then Q can be uniquely decomposed as Q = q∗La⊗ p∗M with La ∈ Pic(X) and
M ∈ Pic(Πa). Note that deg(Qa|D) = a deg(La) for D ∈ Va.

Let Ua ⊂ Va be the dense open set of points D ∈ Va such that D is smooth and meets
transversally the divisor DF .

Let deg(a), r(a) and µfr(a) denote the degree, the rank and the framed slope of the mini-
mal µ-framed-destabilizing quotient of (E|D, α|D) for a general point D ∈ Πa. By construction
of the relative minimal µ-framed-destabilizing quotient, the quantity ε(α̃a|D) is independent
of D ∈ Va, so we denote it by ε(a). Then we have 1 ≤ r(a) ≤ rk(E) and

µfr(a)

a
=

degLa − ε(a)δ1

r(a)
∈ Z
δ′′1(rk(E)!)

⊂ Q,

where δ1 = δ′1/δ′′1 .

Let l > 1 be an integer, a1, . . . , al positive integers and a =
∑

i ai. We would like to
compare r(a) (resp. µfr(a)/a) with r(ai) (resp. µfr(ai)/ai) for all i = 1, . . . , l. To do this, we use
the following result, which allows us to compare the rank and the framed degree of Qai in a
generic fibre with the same invariants of a “special quotient” of (q∗E)|ZVa .

Lemma 4.3 (Lemma 7.2.3 in [35]). Let l > 1 be an integer, a1, . . . , al positive integers,
a =

∑
i ai, and Di ∈ Uai divisors such that D =

∑
iDi is a divisor with normal crossings.

Then there is a smooth locally closed curve C ⊂ Πa containing the point D ∈ Πa such that
C \ {D} ⊂ Ua and ZC = C ×Πa Za is smooth in codimension 2.

Remark 4.4. If D1 ∈ Ua1 is given, one can always find Di ∈ Uai for i ≥ 2 such that
D =

∑
iDi is a divisor with normal crossings.

Lemma 4.5. Let a1, . . . , al be positive integers, with l > 1, and a =
∑

i ai. Then µfr(a) ≥∑
i µfr(ai) and in case of equality r(a) ≥ max{r(ai)}.
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Proof. Let Di be divisors satisfying the requirements of Lemma 4.3 and let C be the
curve with the properties of 4.3. Over Va there is the quotient

(11)

(q∗E)|ZVa Qa

(q∗F )|ZVa

qa

(q∗α)|ZVa

Now we have to consider two cases:

(1) there exists a nonzero framing α̃a on Qa such that (q∗α)|ZVa = α̃a ◦ qa,
(2) ker qa|D′ 6⊂ kerα|D′ for all D′ ∈ Va.

For the first case we have that α̃a|D′ 6= 0 for all D′ ∈ Va. The restriction of diagram (11)
to ZVa∩C is

0 K (q∗E)|ZVa∩C Qa|ZVa∩C 0

(q∗F )|ZVa∩C

qa|ZVa∩C

(q∗α)|ZVa∩C
α̃a|ZVa∩C

Since the morphism ZVa∩C → ZC is flat (because it is an open embedding), we have
ker(q∗α|ZVa∩C ) = (ker q∗α|ZC )|ZVa∩C and we can extend the inclusion K ⊂ ker q∗α|ZVa∩C to
an inclusion KC ⊂ ker q∗α|ZC on ZC . Since Va∩C = C \{D}, in this way we extend Qa|ZVa∩C
to a C-flat quotient QC of q∗E|ZC and we get the following commutative diagram

(q∗E)|ZC QC

(q∗F )|ZC

qC

(q∗α)|ZC α̃C

and therefore α̃C |c 6= 0 for all c ∈ C. By the flatness of QC we obtain P (QC |c, n) =
P (QC |D, n) for all c ∈ C \ {D}, hence rk(QC |D) = r(a) and deg(QC |D) = deg(a), there-
fore µ(QC |D, α̃C |D) = µfr(a). Let Q̄ = QC |D/T ′(QC |D), where T ′(QC |D) is the sheaf that to
every open subset U associates the set of sections f of QC |D in U such that there exists n > 0
for which InD ·f = 0, where ID is the ideal sheaf associated to D. Roughly speaking, T ′(QC |D)
is the part of the torsion subsheaf T (QC |D) of QC |D that is not supported in the intersection
D∩DF . By the transversality of Di with respect to DF , we have T ′(QC |D) ⊂ ker α̃C |D, hence
there is a nonzero induced framing ᾱ on Q̄. Moreover, rk(Q̄|Di) = rk(Q̄) = rk(QC |D) = r(a).
So

µfr(a) = µ(QC |D, α̃C |D) ≥ µ(Q̄, ᾱ).
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The sequence

0 −→ Q̄ −→
⊕
i

Q̄|Di −→
⊕
i

⊕
i<j

Q̄|Di∩Dj −→ 0

is exact modulo sheaves of dimension d − 3 (the kernel of the morphism Q̄ −→
⊕

i Q̄|Di is
zero because the divisors Di are transversal with respect to the singular set of Q̄). By the
same computations as in the proof of Lemma 7.2.5 in [35] we have

µ(Q̄) =
∑
i

(
µ(Q̄|Di)−

1

2

∑
j 6=i

(rk
(
Q̄|Di∩Dj

)
r(a)

− 1
)
aiaj

)
.

For every i and j 6= i we define also the sheaf Tij(Q̄|Di) as the sheaf on Di that to every
open subset U associates the set of sections f of Q̄|Di in U such that there exists n > 0 for
which InDj · f = 0. Note that Tij(Q̄|Di) ⊂ ker ᾱ|Di . We define Qi = Q̄|Di/

⊕
j 6=i Tij(Q̄|Di ). By

construction rk(Qi) = rk(Q̄), there exists a nonzero induced framing αi on Qi, and

µ(Qi) = µ(Q̄|Di)−
∑
j 6=i

(rk
(
Q̄|Di∩Dj

)
r(a)

− 1
)
aiaj .

Therefore µ(Q̄) ≥
∑

i µ(Qi), and

µfr(a) ≥ µ(Q̄, ᾱ) ≥
∑
i

µ(Qi, αi).

By definition of minimal framed µ-destabilizing quotient, we have µ(Qi, αi) ≥ µfr(ai),
hence µfr(a) ≥

∑
i µfr(ai).

Consider the second case. On the restriction to ZVa∩C we have the quotient:

(q∗E)|ZVa∩C Qa|ZVa∩C

(q∗F )|ZVa∩C

q

(q∗α)|ZVa∩C

By definition of Qa we get ker q|D′ 6⊂ kerα|D′ for all points D′ ∈ Va ∩ C, hence ker q 6⊂
ker(q∗α)|ZVa∩C . As before, we can extend Qa|ZVa∩C to a C-flat quotient

(q∗E)|ZC QC

(q∗F )|ZC

qC

(q∗α)|ZC

Since ker qC and ker(q∗α)|ZC are C-flat, also ker qC ∩ ker(q∗α)|ZC is C-flat. Moreover
for all points D′ ∈ Va ∩ C we have (ker qC ∩ ker(q∗α)|ZC )|D′ = ker q|D′ ∩ kerα|D′ , hence by
flatness we get ker qC |D′ 6⊂ kerα|D′ for all points D′ ∈ C. As before, by flatness of QC we
have that rk(QC |D) = r(a) and deg(QC |D) = deg(a); moreover the induced framing on QC |D
is zero, hence µ(QC |D) = µfr(a). Let Q̄ = QC |D/T (QC |D) and Qi = Q̄|Di/T (Q̄|Di ). Using the same
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computations as in the proof of Lemma 7.2.5 in [35], we obtain µ(Q̄) ≥
∑

i µ(Qi). As before,
we get µfr(a) = µ(QC |D) ≥ µ(Q̄) ≥

∑
i µ(Qi) ≥

∑
i µfr(ai).

Now let us consider the case µfr(a) =
∑

i µfr(ai). In both cases, if we denote by αi
the induced framing on Qi; from this equality, it follows that µ(Qi, αi) = µfr(ai) and
rk(Q̄|Di∩Dj ) = r(a). Since µfr(ai) is the framed slope of the minimal framed µ-destabilizing
quotient, we have r(a) = rk(Qi) ≥ r(ai) for all i. �

By using the same arguments as in Corollary 7.2.6 in [35], we can prove:

Corollary 4.6. r(a) and µfr(a)/a are constant for a� 0.

If µfr(a)/a = µfr(ai)/ai and r(a) = r(ai) for all i, then Qi is the minimal framed µ-
destabilizing quotient of E|Di , hence QC |Di differs from the minimal framed µ-destabilizing
quotient of E|Di only in dimension d − 3, in particular their determinant line bundles are
isomorphic. From this argument it follows:

Lemma 4.7. There is a line bundle L ∈ Pic(X) such that La ' L for all a� 0.

Proof. The proof is similar to that of Lemma 7.2.7 in [35]. �

By Corollary 4.6 and Lemma 4.7, ε(a) is constant for a� 0.

In this way, we proved that for any a � 0 and Va-flat family Qa (introduced before),
an extension of the determinant line bundle det(Qa) is of the form q∗L⊗ p∗M for some line
bundle M ∈ Pic(Πa). Moreover deg(Qa|D) = a deg(L) for any D ∈ Va.

Proof of Theorem 4.1. Suppose the theorem is false: we have to consider separately
two cases: ε(a) = 1 and ε(a) = 0 for a� 0. In the first case we have

deg(L)− δ1

r
< µ(E)

and 1 ≤ r ≤ rk(E), where r = r(a) for a � 0. We want to construct a rank r quotient Q of
E, with nonzero induced framing β and det(Q) = L. Thus

µ(Q) < µ(E)

and therefore we obtain a contradiction with the hypothesis of µ-semistability of E with
respect to δ1. Let a be sufficiently large, D ∈ Ua and the minimal framed µ-destabilizing
quotient

E|D QD

F |D

qD

α|D
βD

Put KD = kerβD and LKD = det(KD). By Proposition 2.21 (for µ-semistability), QD fits
into an exact sequence

(12) 0 −→ KD −→ QD −→ Im α|D −→ 0
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with KD torsion free quotient of kerα|D. So there exists an open subscheme D′ ⊂ D such
that KD|D′ is locally free of rank r and D \D′ is a closed subset of codimension two in D.
Consider the restriction of the sequence (12) on D′

0 −→ KD|D′ −→ QD|D′ −→ Im α|D′ −→ 0.

By Proposition V-6.9 in [39], we have a canonical isomorphism

LKD |D′ ⊗ det(Im α|D′) = det(QD|D′) = L|D′ .

If we denote by L̄ the determinant bundle of Im α, we get

LKD |D′ = L|D′ ⊗ L̄∨|D′ = (L⊗ L̄∨)|D′

and therefore

LKD = (L⊗ L̄∨)|D

So we have a morphism σD : Λr kerα|D → (L ⊗ L̄∨)|D which is surjective on D′ and
morphisms

D′ −→ Grass(kerα, r) −→ P(Λr kerα)

Consider the exact sequence

Hom(Λr kerα, (L⊗ L̄∨)(−a)) −→ Hom(Λr kerα,L⊗ L̄∨) −→
−→ Hom(Λr kerα, (L⊗ L̄∨)|D) −→ Ext1(Λr kerα, (L⊗ L̄∨)(−a))

By Serre’s vanishing theorem and Serre duality, one has for i = 0, 1

Exti(Λr kerα, (L⊗ L̄∨)(−a)) = Hd−i(X,Λr kerα⊗ (L⊗ L̄∨)∨ ⊗ ω∨X(a))∨ = 0

for all a� 0 (since d ≥ 2), hence

Hom(Λr kerα,L⊗ L̄∨) = Hom(Λr kerα|D, (L⊗ L̄∨)|D).

So for a sufficiently large, the morphism σD extends to a morphism σ : Λr kerα → L ⊗ L̄∨.
The support of the cokernel of σ meets D in a closed subscheme of codimension two in D,
hence there is an open subscheme X ′ ⊂ X such that σ|X′ is surjective, X \ X ′ is a closed
subscheme of codimension two and D′ = X ′∩D. So we have a morphism i : X ′ → P(Λr kerα)
and we want it to factorize through Grass(kerα, r). The ideal sheaf of Grass(kerα, r) in
P(Λr kerα) is generated by finitely many sheaves Iν ⊂ Sν(Λr kerα), ν ≤ ν0. The morphism i
factors through Grass(kerα, r) if and only if the composite maps

φν : Iν −→ Sν(Λr kerα) −→ (L⊗ L̄∨)ν

vanish. But we already know that the restriction of φν to D vanishes, so that we can consider
φν as elements in Hom(Λr kerα, (L⊗ L̄∨)(−a)). Clearly, these groups vanish for a� 0. Thus
the morphism i factorizes and we get a rank r locally free quotient

kerα|X′ −→ KX′

such that det(KX′) = (L ⊗ L̄∨)|X′ . So we can extend KX′ to a rank r coherent quotient
K of kerα such that det(K) = L ⊗ L̄∨. Let G = ker(kerα → K). We have the following
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commutative diagram

0 0 0

0 G kerα K 0

0 G E Q 0

0 Im α Im α 0

0 0

We have that the determinant of Q is canonically isomorphic to det(K) ⊗ L̄ = L, so Q
destabilizes E and this contradicts the hypothesis.

In the second case we have
deg(L)

r
< µ(E).

Let a be sufficiently large, D ∈ Ua and the minimal framed µ-destabilizing quotient

E|D QD

F |D

qD

α|D

with ker qD 6⊂ kerα|D. By Proposition 2.21 (for µ-semistability), QD is torsion free, hence
there exists an open subscheme D′ ⊂ D such that D \ D′ is a closed set of codimension
two in D and QD|D′ is locally free of rank r. Moreover ker qD|D′ 6⊂ kerα|D′ . Using the same
arguments than the previous case, we extend QD|D′ to a quotient QX′ of X ′ which is locally
free of rank r with det(QX′) = L|X′ . By construction we have ker(E|X′ → QX′) 6⊂ kerα|X′ ,
hence in this way we obtain a quotient Q of E with det(Q) = L and zero induced framing,
such that Q destabilizes E . �

2. Slope-stable case

In this section we want to prove the following generalization of Mehta-Ramanathan’s
theorem for µ-stable torsion free sheaves (Theorem 4.3 in [54]).

Theorem 4.8. Let (X,OX(1)) be a polarized variety of dimension d. Let F be a coherent
sheaf on X supported on a divisor DF , over which is a locally free ODF -module. Let E =
(E,α : E → F ) be a (DF , F )-framed sheaf on X. If E is µ-stable with respect to δ1, there exists
a positive integer a0 such that for all a ≥ a0 there is a dense open subset Wa ⊂ |OX(a)| such
that for all D ∈ Wa the divisor D is smooth, meets transversally the divisor DF and E|D is
µ-stable with respect to aδ1.
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The techniques we need to prove this theorem are quite similar to the ones used before.
By Proposition 2.54 a µ-semistable (DF , F )-framed sheaf which is simple but not µ-stable
has a proper extended framed socle. Thus we first show that the restriction of a µ-stable
(DF , F )-framed sheaf is simple and we use the extended framed socle (rather its quotient) as
a replacement for the minimal µ-framed-destabilizing quotient.

Proposition 4.9. Let E = (E,α) be a µ-stable (DF , F )-framed sheaf. For a� 0 and general
D ∈ |OX(a)| the restriction E|D = (E|D, α|D) is simple.

To prove this result, we need to define the double dual of a framed sheaf. Let E = (E,α)
be a (DF , F )-framed sheaf; we define a framing α∨∨ on the double dual of E in the following
way: α∨∨ is the composition of morphisms

E∨∨ −→ E∨∨|DF ' E|DF
α|DF−→ F |DF .

Then α is the framing induced on E by α∨∨ by means of the inclusion morphism E ↪→ E∨∨.
We denote the framed sheaf (E∨∨, α∨∨) by E∨∨. Note that also E∨∨ is a (DF , F )-framed sheaf.

Lemma 4.10. Let E = (E,α) be a µ-stable (DF , F )-framed sheaf. Then the framed sheaf
E∨∨ = (E∨∨, α∨∨) is µ-stable.

Proof. Consider the exact sequence

0 −→ E −→ E∨∨ −→ A −→ 0

where A is a coherent sheaf supported on a closed subset of codimension at least two. Thus
rk(E∨∨) = rk(E) and deg(E∨∨) = deg(E). Moreover, since α = α∨∨|E , we have µ(E∨∨) =
µ(E). Let G be a subsheaf of E∨∨ and denote by G′ its intersection with E. So rk(G) = rk(G′),
deg(G) = deg(G′) and α|G′ = α∨∨|G. Thus we obtain

µ(G,α∨∨|G) = µ(G′, α|G′) < µ(E) = µ(E∨∨).

�

Recall that a d-dimensional coherent sheaf G on X is reflexive if the natural morphism
G→ G∨∨ is an isomorphism.

Lemma 4.11. Let G be a reflexive sheaf. For a � 0 and D ∈ |OX(a)| the homomorphism
End(G)→ End(G|D) is surjective.

Proof. Let D be an element in |OX(a)|. Consider the exact sequence

0 −→ G(−a) −→ G −→ G|D −→ 0.

By applying the functor Hom(G, ·) we obtain

0 −→ Hom(G,G(−a)) −→ End(G) −→ End(G|D) −→ Ext1(G,G(−a))→ · · ·
Recall the Relative-to-Global spectral sequence

Hi(X, Extj(G,G⊗ ωX(a)))⇒ Exti+j(G,G⊗ ωX(a)).

For sufficiently large a� 0 we get

Ext1(G,G(−a))∨ ' Extn−1(G,G⊗ ωX(a)) ' H0(X, Extn−1(G,G)⊗ ωX(a)).

Since G is reflexive, the homological dimension dh(G) is less or equal to n− 2 and therefore
Extn−1(G,G) = 0. Hence for a sufficiently large, End(G) −→ End(G|D) is surjective. �
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Proof of Proposition 4.9. For arbitrary a and general D ∈ |OX(a)| the sheaf E|D is
torsion free on D and E∨∨|D is reflexive on D, moreover the double dual of E|D (as sheaf on
D) is E∨∨|D (cf. Section 1.1 in [35]). We have injective homomorphisms

δ : End(E) −→ End(E∨∨),

δD : End(E|D) −→ End(E∨∨|D).

Let ϕ ∈ End(E): the image ϕ∨∨ = δ(ϕ) of ϕ is an element of End(E∨∨, α∨∨), indeed if
α ◦ ϕ = λα, then we can define an endomorphism of E∨∨ in the following way:

E∨∨ E∨∨

E∨∨|DF E∨∨|DF

E|DF E|DF

F |DF F |DF

ϕ∨∨

ϕ∨∨|DF

' '
ϕ|DF

α|DF α|DF
·λ

α∨∨ α∨∨

In the same way it is possible to prove that for ϕ ∈ End(E|D), δD(ϕ) is an element of
End(E∨∨|D). So the homomorphisms

δ : End(E) −→ End(E∨∨),

δD : End(E|D) −→ End(E∨∨|D)

are injective. Therefore it suffices to show that E∨∨|D is simple for a� 0 and general D. By
Lemma 4.10, E∨∨ is µ-stable, hence by point (3) of Corollary 2.22 it is simple. By Lemma
4.11, the homomorphism χ : End(E∨∨)→ End(E∨∨|D) is surjective for a� 0 and general D.
Since for ϕ ∈ End(E∨∨), χ(ϕ) is an element of End(E∨∨|D), we have that the map

χ|End(E∨∨) : End(E∨∨)→ End(E∨∨|D)

is also surjective. Thus End(E|D) = End(E∨∨|D) ' k. �

Remark 4.12. Since E is µ-stable with respect to δ1, we have deg(Im α) > δ1. This implies
deg(Im α|D) = a deg(Im α) > aδ1 for a positive integer, hence kerα|D is not µ-framed-
destabilizing for all D ∈ Πa. 4

Let a0 ≥ 3 be an integer such that for all a ≥ a0 and a general D ∈ Πa, the restriction
E|D is µ-semistable with respect to aδ1 and simple (cf. Proposition 4.9). Suppose that for an
integer a ≥ a0, the framed sheaf E|D is not µ-stable with respect to aδ1 for a general divisor
D. Then E|Dη is not geometrically µ-stable for the divisor Dη associated to the generic point
η ∈ |OX(a)|, i.e., the pull-back to some extension of k(η) is not µ-stable (cf. Corollary 2.55).
Hence E|Dη is not µ-stable. Since E|Dη is simple, by Proposition 2.54 the extended socle of
E|Dη is a proper framed µ-destabilizing subsheaf. Consider the corresponding quotient sheaf
Qη, with induced framing βη: we can extend it to a coherent quotient q∗E → Qa over all of
Za.

Let Wa be the dense open subset of points D ∈ Πa such that

• D is a smooth divisor, meets transversally the divisor DF , E|D is torsion free,
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• Qa is flat over Wa and ε ((α̃a)|D) = ε(βη), where we denote by α̃a the induced framing
on Qa.

Thus Qa|D is a coherent sheaf of positive rank such that with the induced framing is a
µ-framed-destabilizing quotient for all D ∈Wa.

Lemma 4.13. If there exists a divisor D0 ∈ Wa, a ≥ a0, such that E|D0 is µ-stable with
respect to aδ1, then for all D′ ∈Wa′ the framed sheaf E|D′ is µ-stable with respect to a′δ1 for
all a′ ≥ 2a.

Proof. If the lemma is false, then there exists a′ ≥ 2a and a divisor D ∈ Wa′ such that
E|D is not µ-stable with respect to a′δ1. Choose a divisor D1 ∈Wa′−a such that D = D0 +D1

is a divisor with normal crossings. Let C ⊂ Πa′ be a curve with the properties asserted in
the Lemma 4.3. Using the same techniques as in the proof of Lemma 4.5, we can extend
q∗E → Qa′ to a C-flat quotient (q∗E)|ZC → QC . Using the same notations and computations
than before, we have

a′µ(E,α) = µ(E|D, α|D) = µ(QC |D, α̃C |D) ≥ µ(Q̄, ᾱ) ≥ µ(Q0, α0) + µ(Q1, α1).

Since a′ − a ≥ a0, (E|D1 , α|D1) is µ-semistable, hence µ(Q1, α1) ≥ (a′ − a)µ(E,α). Moreover
by hypothesis µ(Q0, α0) > aµ(E,α), hence we have a contradiction. �

Proof of Theorem 4.8. Assume that the theorem is false: for all a ≥ a0 and general
D ∈ Πa, E|D is not µ-stable with respect to aδ1. Thus one can construct for any a ≥ a0

a coherent quotient q∗E → Qa and a dense open subset Wa ⊂ Πa such that Qa|D, with
the induced framing, is a µ-framed-destabilizing for all D ∈ Wa. We denote by ε(a) the
quantity ε(α̃a|D) for D ∈ Wa. As before, there are line bundles La ∈ Pic(X) such that
det(Qa|D) = La|D for D ∈Wa and all a ≥ a0.

Let N ⊂ Z be an infinite subset consisting of integers a ≥ a0 such that rk(Qa) is constant,
say r. By Remark 4.12 we have 0 < r < rk(E). By using the same arguments of the proof of
the Lemma 4.5, one can prove that if a1, a2, . . . , al are integers in N , with l > 1 and ai ≥ a0

for i = 1, . . . , l and a =
∑
ai, and Di are divisors in Wai such that D =

∑
Di is a divisor with

normal crossings, then La|Di is the determinant line bundle of some µ-framed-destabilizing
quotient of E|Di .

Lemma 4.14. Let G = (G, β) be a framed sheaf of positive rank. If G is µ-semistable with
respect to δ̄1, then the set T of determinant line bundles of µ-framed-destabilizing quotients
of G is finite and its cardinality is bounded by 2rk(G).

Proof. Let gr(G) ' (G1, β1) ⊕ (G2, β2) ⊕ · · · ⊕ (Gl, βl) be the grade object associated
to a Jordan-Hölder filtration of G. Recall that Gi = (Gi, βi) is µ-stable with respect to δ̄1

and deg(Gi) = rk(Gi)µ(G), for i = 1, . . . , l. Let G′ be a subsheaf of G with deg(G′, β′) =
rk(G′)µ(G). We can start with a stable filtration of G′ and complete it to one of G:

0 = G′0 ⊂ G′1 ⊂ · · · ⊂ G′s = G′ ⊂ · · · ⊂ Gl = G.

Since gr(G) is indipendent of the filtration, we have that det(G′) has to be isomorphic to
one of det(Gi1) ⊗ · · · ⊗ det(Gij ). Thus the set T is finite and its cardinality is bounded by

2rk(G). �
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Let a ≥ 2a0 and D ∈Wa0 be an arbitrary point. By Lemma 4.13, we have that E|D is not
µ-stable with respect to a0δ1. If we denote by TD the set T of the previous lemma associated
to E|D, then La|D ∈ TD. Consider the function

ϕ : N≥2a0 →
∏

D∈Wa0

TD

a 7→ (La|D)D

Let ∼ be the equivalence relation on N≥2a0 defined in the following way: a ∼ a′ if and only
if the set {s ∈Wa0 | ϕ(a)(s) = ϕ(a′)(s)} is dense in Wa0 . By using the same arguments as in

the nonframed case, one can prove that there are at most 2rk(E) distinct equivalence classes
and, in particular, there is at least one infinite class Ñ . By this result, we get the following.

Lemma 4.15. There is a line bundle L ∈ Pic(X) such that L ' La for all a ∈ Ñ . Moreover

ε(a) is constant for a ∈ Ñ .

Proof. Let a, a′ ∈ Ñ . a ∼ a′ means that ϕ(a) and ϕ(a′) are equal on a dense subset of
Wa0 , then La|D ' La′ |D for all D in a dense subset of Πa0 . It suffices to prove that La ' La′
(see Lemma 7.2.2 in [35]). �

Summing up, we have that there is a line bundle L on X and an integer 0 < r < rk(E)
such that for a� 0 and for general D ∈Wa

µ(Qa|D, α̃a|D) =
deg(L|D)− ε(a)aδ1

r
= a

(deg(L)− ε(a)δ1

r

)
= µ(E|D, α|D) = aµ(E,α),

hence
deg(L)− ε(a)δ1

r
= µ(E,α).

Using the arguments at the end of the proof of the restriction theorem for µ-semistable framed
sheaves, one can show that this suffices for constructing a framed µ-destabilizing quotient
E → Q for sufficiently large a. This contradicts the assumptions of the theorem. �

Remark 4.16. Since the family of µ-semistable framed sheaves with fixed Chern character
is bounded (cf. Proposition 2.64), the positive constant a0 in the statement of Theorem 4.1
depends only on the Chern character. The same holds for the µ-stable case. 4





CHAPTER 5

Moduli spaces of (semi)stable framed sheaves

In this chapter we give a construction of moduli spaces of semistable framed sheaves
of positive rank. The contents of this chapter will be useful later on, when we apply our
restriction theorems to the definition of Uhlenbeck-Donaldson compactification for framed
sheaves (see Chapter 6) and when we construct symplectic structures on the moduli spaces of
stable framed sheaves (see Chapter 7). If the framing is trivial (i.e. it is the zero morphism),
these are just the ordinary moduli spaces of semistable torsion free sheaves (cf. Chapter 4 in
[35]). Therefore, we shall always assume that the framings are nontrivial, unless the contrary
is explicitly stated.

Now we give an overview of the construction by following what Huybrechts and Lehn
made in [33]; all technical results will be only stated.

1. The moduli functor

In this section we introduce the moduli functor associated to (semi)stable framed sheaves.

Let (X,OX(1)) be a polarized variety of dimension d. Fix a stability polynomial δ of
degree d− 1 and a framing sheaf F.

Definition 5.1. A flat family of coherent sheaves on X parametrized by a Noetherian scheme
S consists of a coherent sheaf E on S ×X, flat over S.

Definition 5.2. A flat family of framed sheaves of positive rank on X parametrized by a
Noetherian scheme S is a pair E = (E,α), consisting of a coherent sheaf E on S × X, flat
over S, and a morphism α : E → p∗X(F ) such that rk(Es) > 0 and αs 6= 0 for every point
s ∈ S. An isomorphism of flat families of framed sheaves (E,α) and (G, β) parametrized by
S is an isomorphism ϕ : E → G for which there exists λ ∈ O∗S such that β ◦ ϕ = p∗S(λ)α.

Remark 5.3. In Definition 3.3 we impose the condition that the image sheaf Imα of the
framing α in a flat family must be S-flat because we do not want that the kernel of the framing
can destabilize. Since, in this chapter, we will only deal with flat families of (semi)stable
framed sheaves of positive rank, in the previous definition we did not assume that Imα is
S-flat. 4

Let P be a numerical polynomial of degree d. Define the moduli functor from the category
of Noetherian k-schemes of finite type to the category of sets

M(s)s
δ (X;F, P ) : (Sch/k)◦ → (Sets)

that assigns to any scheme S the setM(s)s
δ (X;F, P )(S) of isomorphism classes of flat families

of (semi)stable framed sheaves on X parametrized by S with Hilbert polynomial P , and to

67
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any morphism f : T → S, the map M(s)s
δ (X;F, P )(f) obtained by pulling-back sheaves via

f × idX .

Definition 5.4. A scheme is called a moduli space of (semi)stable framed sheaves if it corep-

resents the functor M(s)s
δ (X;F, P ).

2. The construction

Now we construct the moduli space of (semi)stable framed sheaves as a GIT quotient
of a certain subscheme in the product of a Quot scheme and projective space by a natural
group action. Since semistable framed sheaves with fixed Hilbert polynomial form a bounded
family, we can choose a suitable sheaf such that the associated Quot scheme parametrizes all
their underlying coherent sheaves. On the other hand, roughly speaking, the fixed projective
space parametrizes the framings of these framed sheaves. Since the quotient is obtained by
using the so-called GIT stability, we need to relate this notion with the stability condition
for framed sheaves introduce in Chapter 2 (cf. Proposition 5.6). Finally, in Theorem 5.9
we prove the (co)representability of the moduli functors for (semi)stable framed sheaves of
positive rank.

Let P be a numerical polynomial of degree d. According to the Proposition 2.65, the
family of semistable framed sheaves of positive rank on X with fixed Hilbert polynomial P is
bounded. In particular, by Proposition 2.62 there is an integer m such that any underlying
sheaf E of a semistable framed sheaf (E,α) is m-regular. Hence, E(m) is globally generated

and h0(E(m)) = P (m). Thus if we let V := k⊕P (m) and H := V ⊗k OX(−m), there is a
surjection

g : H −→ E,

obtained by composing the canonical evaluation map H0(E(m)) ⊗ OX(−m) → E with an
isomorphism V → H0(E(m)). This defines a closed point [g : H −→ E] ∈ Q := QuotX/k(H, P ).
For sufficiently large l the standard maps

Q −→ Grass(V ⊗H0(OX(l −m)), P (l)) −→ P(ΛP (l)(V ⊗H0(OX(l −m))))

are well-defined closed immersions. Let L denote the corresponding very ample line bundle
on Q. Let P := P(Hom(V,H0(F (m)))∨). A point [a] ∈ P induces a morphism

H −→ F

defined up to a constant factor. Finally, let QuotX/k(H, P, F ) be the closed subscheme of Q×P
formed by pairs ([g], [a]) such that there is a morphism α : E → F for which the diagram

H E

F

g

αa

commutes. Obviously α is uniquely determined by a. Let O(1) be the pullback of OP(1) on
QuotX/k(H, P, F ) through the natural projection pP.

Remark 5.5. The scheme QuotX/k(H, P, F ) is quite different from the framed Quot scheme
introduced in Section 2, because QuotX/k(H, P, F ) identifies pairs with the same underlying
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coherent sheaf and framings that differ by a nonzero constant. On the other hand, these pairs
correspond to different points in the framed Quot scheme. 4

The universal objects on Q and P induces a universal object on QuotX/k(H, P, F )×X

V ⊗OQuotX/k(H,P,F )×X −→ Ẽ,

with a universal framing1

αẼ : Ẽ −→ p∗QuotX/k(H,P,F )(OP(1))⊗ p∗X(F ).

The action of SL(V ) on V induces well-defined actions on Q and P which are compatible, so
that one has an action of SL(V ) on QuotX/k(H, P, F ). Moreover the ample line bundles

LQuotX/k(H,P,F )(n1, n2) := p∗Q(L)⊗n1 ⊗ p∗P(OP(1))⊗n2

carry natural SL(V )-linearization, where pQ, pP are the projections from QuotX/k(H, P, F ) to
Q and P, respectively. We choose n1 and n2 such that

(13)
n2

n1
= AX(l) := (P (l)− δ(l)) δ(m)

P (m)− δ(m)
− δ(l),

assuming, of course, that l is chosen large enough so as to make this term positive.

Since torsion freeness is an open property for families of sheaves (cf. Proposition 2.3.1 in
[35]), we can define an open subscheme U ⊂ QuotX/k(H, P, F ) consisting of those points that
represents framed sheaves with torsion free kernel. If there are any semistable framed sheaves
with the given Hilbert polynomial at all (otherwise the present discussion is void), then U is
nonempty and we denote by Z its closure in QuotX/k(H, P, F ).

Now we recall a technical result due to Huybrechts and Lehn that relates the (semi)stability
of the points of Z with respect to the SL(V )-action with the (semi)stability condition of
framed sheaves of positive rank.

Proposition 5.6 (Proposition 3.2 in [34]). For sufficiently large l, a point ([g], [a]) ∈ Z is
(semi)stable with respect to the linearization of LQuotX/k(H,P,F )(n1, n2) if and only if the cor-

responding framed sheaf (E,α) is (semi)stable with respect to δ and g induces an isomophism
V → H0(E(m)).

Let Zs ⊂ Zss ⊂ Z denote the open subschemes of stable and semistable points of Z
with respect to the SL(V )-action, respectively. By the previous proposition, a point in Z(s)s

corresponds, roughly speaking, to a (semi)stable framed sheaf (E,α) of positive rank together
with a choice of a basis in H0(E(m)).

Now we want to describe what kind of geometrical properties are inherited by the quotient
that we shall construct by using the GIT-(semi)stability condition. First recall the following
notions.

Definition 5.7. Let G an affine algebraic group over k acting on a k-scheme Y. A morphism
f : Y →M is a good quotient, if

• f is affine and invariant.

1This morphism is not a framing in the sense of Definition 5.2, but it is locally a framing in the way
explained by Proposition 1.14 in [33].
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• f is surjective, and U ⊂M is open if and only if f−1(U) ⊂ Y is open.
• The natural homomorphism OM → (f∗(OY ))G is an isomorphism.
• If W is an invariant closed subset of Y , then f(W ) is a closed subset of M. If W1

and W2 are disjoint invariant closed subsets of Y , then f(W1) ∩ f(W2) = ∅.

The morphism f is said to be a geometric quotient if it is a good quotient and the geometric
fibres of f are the orbits of geometric points of Y.

By applying Theorem 1.10 and Remark 1.11 of [58], we obtain the following result.

Proposition 5.8. There exists a projective scheme Mss and a morphism π : Zss → Mss

which is a good quotient for the action of SL(V ) on Zss. Moreover there is an open sub-
scheme Ms ⊂ Mss such that Zs = π−1(Ms) and π|Zs : Zs → Ms is a geometric quotient.
Moreover, there is a positive integer ν and a very ample line bundle OMss(1) on Mss such
that LQuotX/k(H,P,F )(n1, n2)⊗ν |Zss ∼= π∗(OMss(1)).

Now we are ready to prove the main theorem of this chapter.

Theorem 5.9. Let δ ∈ Q[n] be a polynomial of degree d− 1 with positive leading coefficient.
There is a projective schemeMss

δ (X;F, P ) that corepresents the moduli functorMss
δ (X;F, P ).

Moreover, there is an open subscheme Ms
δ(X;F, P ) ⊂ Mss

δ (X;F, P ) which represents the
moduli functor Ms

δ(X;F, P ), i.e. Ms
δ(X;F, P ) is a fine moduli spaces parametrizing sta-

ble framed sheaves of positive rank on X. A closed point in Mss
δ (X;F, P ) represents an S-

equivalence class of semistable framed sheaves.

Proof. Let T be a Noetherian scheme parametrizing a flat family (E,α) of semistable
framed sheaves of positive rank. Let m be still the number choose at the beginning of
this section. Then V = (pT )∗(E ⊗ p∗X(OX(m))) is a locally free sheaf of rank P (m) on T
and g : p∗T (V) → E is surjective. Moreover, the framing α induces a morphism a : V →
OT ⊗H0(F (m)). Covering T by small enough open subschemes Ti, we can find trivializations
V ⊗ OTi → V|Ti , where V is a vector space. Thus the compositions of g and a with these
trivializations gives morphisms gi : V ⊗OTi×X → E and ai : V ⊗OTi → H0(F (m))⊗OTi . Hence
we obtain maps fi : Ti → QuotX/k(H, P, F ) ⊂ Q × P. Moreover, by Proposition 5.6, fi(Ti) ⊂
Zss ⊂ QuotX/k(H, P, F ). The trivializations of V over the intersection Tij of two open sets Ti
and Tj differ by a morphism g : Tij → GL(V ), in the sense that fi|Tij = g ·fj |Tij . Therefore, if
π denotes the geometric quotient Zss →Mss, the morphisms π ◦ fi and π ◦ fj coincide on Tij
and thus glue to give a morphism f : T →Mss. If the family (E,α) consists of stable framed
sheaves of positive rank, obviously f(T ) ⊂Ms. This gives a natural transformation

Mss
δ (X;F, P )→ Mor(·,Mss).

Let N be any other scheme with a natural transformation Mss
δ (X;F, P ) → Mor(·, N), then

the universal family over Zss defines a SL(V )-invariant morphism Zss → N which must
factor through π and a morphism Mss → N. This show that Mss corepresents the functor
Mss

δ (X;F, P ).

By taking étale slices to the SL(V )-action on Zs, we can find an étale cover M′ →Ms

over which a universal family G = (G, β) exists (cf. Luna’s Étale Slice Theorem, see Chapter 4
in [35]). LetM′′ =M′×MsM′. Take an isomorphism Φ: p∗1(G)→ p∗2(G), which is normalized
by the requirement that p∗1(β)◦Φ = p∗2(β). The uniqueness result of Corollary 2.22 implies that
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Φ satisfies the cocycle condition of descend theory (cf. Chapter VII in [59]). Hence, (G, β)
descends to a universal family onMs and thereforeMs represents the functorMs

δ(X;F, P ).
Finally, the assertion about the closed point of Mss is proved in Proposition 3.3 in [34]. �

We conclude this section by stating a smoothness criterion for the fine moduli space of
stable framed sheaves.

Theorem 5.10 (Theorem 4.1 in [34]). Let [(E,α)] be a point in Ms
δ(X;F, P ). Consider

E and E
α→ F as complexes which are concentrated in dimensions zero, and (zero, one),

respectively.

(i) The Zariski tangent space of Ms
δ(X;F, P ) at a point [(E,α)] is naturally isomorphic

to the first hyper-Ext group Ext1(E,E
α→ F ).

(ii) If the second hyper-Ext group Ext2(E,E
α→ F ) vanishes, thenMs

δ(X;F, P ) is smooth
at [(E,α)].

3. An example: moduli spaces of framed sheaves on surfaces

In this section we are dealing with framed sheaves that are locally free along the support
of the framing sheaf. In particular, we would like to construct a moduli space parametrizing
these objects under some mild conditions on the framing sheaf and its support in the case in
which the ambient space is a surface. We follow the work of Bruzzo and Markushevich (see
[14]).

Let C be the field of complex numbers and (X,OX(1)) a polarized variety of dimension d
over it. Fix an effective divisor D and a sheaf F on X, supported on D, over which is a locally
free OD-module. Recall that a framed sheaf E = (E,α : E → F ) is called a (D,F )-framed
sheaf if E is locally free in a neighborhood of D and α|D is an isomorphism. From these
properties, it follows that E is torsion free.

As we explained before, the boundedness property for a family of geometrical objects is
the first step to construct moduli spaces that parametrize such objects. In [46], Lehn proved
that the family of (D,F )-framed sheaf is bounded under some assumptions on the divisor D
and on the framing sheaf F. More precisely, we need to give the following definition.

Definition 5.11. An effective divisor D on X is called a good framing divisor if we can write
D =

∑
i niDi, where Di are prime divisors and ni > 0, and there exists a nef and big divisor

of the form
∑

i aiDi, with ai ≥ 0. For a coherent sheaf F on X supported on D, we shall
say that F is a good framing sheaf on D, if it is locally free of rank r and there exists a real
number A0, 0 ≤ A0 <

1
rD

2, such that for any locally free subsheaf F ′ ⊂ F of constant positive

rank, 1
rk(F ′) deg(F ′) ≤ 1

rk(F ) deg(F ) +A0.

Theorem 5.12. Let (X,OX(1)) be a polarized variety of dimension d ≥ 2. Let D be a
good framing divisor and F a coherent sheaf on X, supported on D, which is a locally free
OD-module. Then for every numerical polynomial P ∈ Q[n] of degree d, the family of (D,F )-
framed sheaves on X with Hilbert polynomial P is bounded.

Proof. For locally free (D,F )-framed sheaves, this result is proved in Theorem 3.2.4 of
[46], but the proof goes through also in the general case. �
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Although we have a boundedness result for (D,F )-framed sheaves on varieties of arbitrary
dimension, at this moment we are able to construct a moduli space for these objects only
in the two-dimensional case. In particular, we will prove that there exists an ample divisor
and a positive rational number for which all the (D,F )-framed sheaves with fixed Hilbert
polynomial are µ-stable. Hence this moduli space will be an open subscheme of the moduli
space of stable framed sheaves, constructed in the previous section.

Theorem 5.13. Let X be a smooth projective surface, D a big and nef curve, and F a good
framing sheaf on D. Then for any numerical polynomial P ∈ Q[n] of degree 2, there exists
an ample divisor H on X and a positive rational number δ1 such that all the (D,F )-framed
sheaves on X with Hilbert polynomial P are µ-stable with respect to δ1 and the ample divisor
H.

Proof. Since we are dealing with different ample divisors, for a coherent sheaf G of
positive rank on X, we denote its slope with respect to an ample divisor C by µC(G).

Let X be a smooth projective surface and C an ample divisor on it. Fix a numerical
polynomial P ∈ Q[n] of degree 2. Since the family of (D,F )-framed sheaves E = (E,α) with
Hilbert polynomial P is bounded, by Proposition 2.62 and Lemma 3.12, there exists a non-
negative constant A1, independent from E, such that for any (D,F )-framed sheaf E = (E,α)
and for any saturated subsheaf E′ ⊂ E of rank r′ < r = rk(E)

µC(E′) ≤ µC(E) +A1.

For n > 0, let us denote by Hn the ample divisor C + nD. We shall verify that there exists
a positive integer n such that the range of positive real numbers δ1, for which all the (D,F )-
framed sheaves of Hilbert polynomial P are µ-stable with respect to δ1 and Hn, is nonempty.

Let E = (E,α) be a (D,F )-framed sheaf and E′ a nonzero subsheaf of E of rank r′.
Assume first that E′ is not contained in kerα. Hence 0 < r′ < r. The µ-stability condition
with respect to δ1 and Hn for E reads

(14) µHn(E′) < µHn(E) +

(
1

r′
− 1

r

)
δ1.

By saturating E′, we can make µHn(E′) bigger, so we may assume that E′ is a saturated
subsheaf of E , and hence that it is locally free in a neighborhood of D. Thus E′|D ⊂ E|D and
we get

(15) µHn(E′) =
n

r′
deg(E′|D) + µC(E′) ≤ µHn(E) + nA0 +A1.

Thus we see that the inequality (15) implies the inequality (14) whenever

(16)
rr′

r − r′
(nA0 +A1) < δ1.

Let E′ ⊂ kerα ∼= E⊗OX(−D) of rank r′ < r. As before, we can assume that E′ is saturated,
hence it is a locally free sheaf on a neighborhood of D and E′|D ⊂ E|D. In this case the
µ-stability condition for E is

(17) µHn(E′) < µHn(E)− 1

r
δ1.

The inclusion E′ ⊗OX(D) ⊂ E yields

(18) µHn(E′) < µHn(E)−HnD + nA0 +A1 = µHn(E)− (D2 −A0)n+A1 −DC.
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We see that the inequality (18) implies the inequality (17) whenever

(19) δ1 ≤ r
[
(D2 −A0)n−A1 +DC

]
.

Let us consider E′ ⊂ kerα of rank r. By framed saturating E′, we can take E′ = kerα =
E ⊗OX(−D). Hence

µHn(kerα) = µHn(E)−HnD.

The inequality (17) is satisfied in this case, whenever δ1 < r
[
D2n+ CD

]
; but the inequality

(19) trivially implies this latter inequality. Hence the inequalities (16), (19), for all r′ =
1, . . . , r − 1, have a nonempty interval of common solutions δ1 if

n > max

{
rA1 − CD
D2 − rA0

, 0

}
.

�

Corollary 5.14. Let X be a smooth projective surface, D a big and nef curve, and F a good
framing sheaf on D. Then for any numerical polynomial P ∈ Q[n] of degree 2, there exists a
quasi-projective scheme M∗(X;F, P ) which is a fine moduli space of (D,F )-framed sheaves
on X with Hilbert polynomial P.

Remark 5.15. Let D be a smooth irreducible curve with D2 > 0 and F a Gieseker-semistable
locally free OD-module. By Example 1.4.5 and Theorem 2.2.14 in [42], D is a big and nef
curve. Moreover, F is a good framing sheaf with A0 = 0.

Let us assume that (KX + D) ·D < 0. One can prove that Ext2(E,E
α→ F ) = 0 for any

(D,F )-framed sheaf (E,α) on X. Thus by Theorem 5.10, M∗(X;F, P ) is smooth for any
Hilbert polynomial P.





CHAPTER 6

Uhlenbeck-Donaldson compactification for framed sheaves on
surfaces

In this chapter we give an interesting application of the restriction theorems for µ-
(semi)stable framed sheaves proved in Chapter 4. In particular, we describe the so-called
Uhlenbeck-Donaldson compactification Mµss(c, δ) of the moduli space of µ-stable framed vec-
tor bundles on a nonsingular projective surface X. We define a semiample line bundle on the
locally closed subscheme of QuotX/k(H, P (c), F ) (introduced in the previous chapter) that
parametrizes, roughly speaking, µ-semistable framed sheaves of positive rank on X. In the
proof of the semiampleness of this line bundle we heavily use Theorem 4.1. By using this line
bundle (or more precisely the spaces of global sections of its powers), we define Mµss(c, δ)
and a projective morphism π from the moduli space of semistable framed sheaves of topolog-
ical invariants defined by c on X to Mµss(c, δ). Moreover, by using Theorem 4.8 we give a
description of π in the case of (D,F )-framed sheaves.

In Section 1 we recall the construction of the Le Potier determinant bundles (see also
[44]). In Section 2 we define a semiample line bundle that we will use in Section 3 to define
the Uhlenbeck-Donalson compactification.

1. Determinant line bundles

Let Y be a Noetherian scheme. The Grothendieck group K0(Y ) is the quotient of the free
abelian group generated by all the locally free sheaves on Y , by the subgroup generated by
all expressions E − E′ − E′′, whenever there is an exact sequence 0→ E′ → E → E′′ → 0 of
locally free sheaves on Y. K0(Y ) is a commutative ring with unity 1 = [OY ] with respect to
the operation [E1] · [E2] := [E1⊗E2] for locally free sheaves E1 and E2. Since the determinant
is multiplicative in short exact sequences, it defines a homomorphism

det : K0(Y )→ Pic(Y ).

If one consider all the coherent sheaves on Y , by using the same definition, one can obtain
the Grothendieck group K0(Y ). Moreover, we can give to it a structure of K0(Y )-module.

A projective morphism f : Y → S of Noetherian schemes induces a homomorphism
f! : K0(Y ) → K0(S), by putting f!([G]) =

∑
ν≥0(−1)⊗ν [R⊗νf∗(G)]. If f is a smooth projec-

tive morphism of relative dimension d between schemes of finite type over k, by Proposition
2.1.10 in [35], for any flat family G of coherent sheaves on the fibres of f , there is a locally
free resolution

0 −→ Ed −→ Ed−1 −→ · · · −→ E0 −→ G

such that Rdf∗(Eν) is locally free for ν = 0, . . . , d, Rif∗(Gν) = 0 for i 6= d and ν = 0, . . . , d.
Thus [G] ∈ K0(Y ) and f![G] ∈ K0(S). Obviously, we can use the same argument for any
locally free sheaf on Y , hence we get a well defined homomorphism f! : K

0(Y ) −→ K0(S).

75
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Let X be a nonsingular projective variety of dimension d. In this case K0(X) = K0(X)
and we will denote it by K(X). Two classes u and u′ in K(X) are said to be numerically
equivalent, and we will denote u ≡ u′, if their difference is contained in the radical of the
bilinear form (a, b) 7→ χ(a · b). Let K(X)num = K(X)/≡.

By Hirzebruch-Riemann-Roch theorem, χ(a·b) depends on the rank and the Chern classes
of a and b. Hence the numerical behaviour of a ∈ K(X)num is determined by its associated
rank rk(a) and Chern classes ci(a).

Let us fix a very ample line bundle OX(1) on X. For any class c in K(X)num, we write
c(n) := c · [OX(n)] and denote by P (c) the associated Hilbert polynomial P (c, n) = χ(c(n)).

A flat family E of coherent sheaves on X parametrized by a Noetherian scheme S defines
an element [E] ∈ K0(S×X), and as the projection pS is a smooth projective morphism, there
is a well defined morphism (pS)! : K

0(S ×X)→ K0(S).

Definition 6.1. Let E be a family of coherent sheaves on X parametrized by a Noetherian
scheme S. Let λE : K(X)→ Pic(S) be the composition of the homomorphisms

λE : K(X)
p∗X−→ K0(X × S)

·[E]−→ K0(S ×X)
(pS)!−→ K0(S)

det−→ Pic(S).

Lemma 6.2 (Lemma 8.1.2 in [35]). The following properties hold for the homomorphism λ:

(1) If 0 → E′ → E → E′′ → 0 is a short exact sequence of S-flat families of coherent
sheaves, then λE(u) ∼= λE′(u)⊗ λE′′(u) for any class u ∈ K(X),

(2) If E is a S-flat family and f : S′ → S a morphism, for any u ∈ K(X) one has
f∗(λE(u)) = λf∗(E)(u).

(3) If G is an algebraic group, S a scheme with a G-action and E a G-linearized S-
flat family of coherent sheaves on X, then λE factors through the group PicG(S) of
isomorphism classes of G-linearized line bundles on S.

(4) Let E be a S-flat family of coherent sheaves of numerical K-theory class c ∈ K(X)num
and N a locally free OS-sheaf. Then λE⊗p∗S(N )(u) ∼= λE(u)rk(N ) ⊗ det(N )χ(c·u).

Let us denote by H the divisor associated to OX(1) and let h = [OH ] be its class in K(X).
Let E be a family of coherent sheaves on X parametrized by a Noetherian scheme S, x a
point in X and c ∈ K(X)num. Let

ui(c) = −rk(c) · hi + χ(c · hi) · [Ox] for i ≥ 0.

In the following we will consider the line bundles λE(ui(c)) ∈ Pic(S) for i ≥ 0.

2. Semiample line bundles

Let (X,OX(1)) be a polarized surface. Fix a stability polynomial δ(n) = δ1n+ δ0 ∈ Q[n],
with δ1 > 0, and a framing sheaf F that is a coherent OD-module, where D ⊂ X is a fixed
big and nef curve. Fix a numerical K-theory class c ∈ K(X)num with rank r, Chern classes
c1 and c2, and a line bundle A with c1(A) = c1. Let us denote by P (c) the Hilbert polynomial
associated to c.

Let a � 0 be an integer and C ∈ |OX(a)| a general curve. Then C is smooth and
transversal to D. By the boundedness of the family of µ-semistable framed sheaves with
Hilbert polynomial P (c) (cf. Proposition 2.64), we can fix a sufficiently large number m such
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that for each µ-semistable framed sheaf E = (E,α) with Hilbert polynomial P (c), the sheaf

E is m-regular and h1(E(m − a)) = 0. Let us define V = k⊕P (c,m) and H = V ⊗ OX(−m)
and consider the scheme

Y := QuotX/k(H, P (c), F ) ⊂ QuotX/k(H, P (c))× P(Hom(V,H0(F (m)))∨),

defined in Chapter 5, Section 2. Put P := P(Hom(V,H0(F (m)))∨).

Let Rµss(c, δ) be the locally closed subscheme of Y formed by pairs ([g : H → E], [a : H →
F ]) such that E is a coherent sheaf with Hilbert polynomial P (c) and determinant A, the
framed sheaf (E,α) is µ-semistable with respect to δ1, where the framing α is defined uniquely
by the relation a = α ◦ g, and g induces an isomorphism V → H0(E(m)).

Let us denote by p1, p2 the projections from Rµss(c, δ) to Y and P, respectively. Let Ẽ
denote the universal quotient of Y (cf. Chapter 5, Section 2). Define the line bundle on
Rµss(c, δ)

L1(n1, n2) = p∗1(λẼ(u1(c)))⊗n1 ⊗ p∗2(OP(n2)).

where we set
n2

n1
= AX(l),

where AX(l) is defined by formula (13) and l is a sufficiently large positive integer such that
AX(l) > 0.

Now we want to prove the following result.

Proposition 6.3. There exists a positive integer lX such that the line bundle L(n1, n2)⊗ν is
generated by its SL(V )-invariant sections, for ν � 0 and n2/n1 = AX(lX).

Proof. Let S = Rµss(c, δ). The pullback of the universal quotient of Y to S gives us
a flat family ES = (E, αE) of µ-semistable framed sheaves E = (E,α : E → F ) on X with
Hilbert polynomial P (c) and determinant A. Moreover, the restriction of (E, αE) to S × C
yields a family (EC , αEC ) of framed sheaves (EC , αC : EC → F |C) on C, where i : C ↪→ X is
the inclusion map. By Theorem 4.1, the general1 element in this family is µ-semistable with
respect to δC := aδ1.

The K-theory class i∗(c) ∈ K(C) is uniquely determined by r and A|C . Let m′ =

a deg(X)m, VC = k⊕P (i∗(c),m′) and HC = VC ⊗ OC(−m′). Let QC ⊂ QuotC/k(HC , P (i∗(c)))
be the closed subset parametrizing quotients of HC with determinant A|C . Let us denote by

ẼC the universal quotient of QC . Furthermore, let PC := P(Hom(VC ,H
0(F |C(m′)))∨), so that

a point [a] ∈ PC induces a morphism HC → F |C defined up to a constant factor. Consider
the closed subscheme YC := QuotC/k(HC , P (i∗(c)), F |C) of QC × PC defined similarly to the
scheme Y above. Clearly the group SL(VC) acts on YC .

Let us denote by p1,C , p2,C the projections from YC to QC and PC , respectively, and
degC = C ·H. Consider the line bundle on YC

L′0(n1, n2) = p∗1,C(λẼC (u0(i∗(c)))⊗n1 ⊗ p∗2,C(OPC (n2)).

Choose n1, n2 in a way that there exists a sufficiently large integer l for which
n2

n1
= AC(l) > 0,

1By general we mean that the property holds true for all closed points in a nonempty open subset.
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where AC(l) is the rational function defined in (13).

Proposition 6.4. Let a � 0. There exist m and la, depending on a, deg(X), and c, such
that for all l ≥ la the following statements hold:

(1) the line bundle L′0(n1, n2) is very ample on YC ,
(2) Given a point ([g : HC → EC ], [a : HC → F |C ]) ∈ YC , the following assertions are

equivalent:
• the corresponding framed sheaf (EC , αC) is µ-semistable with respect to δC and
g induces an isomorphism VC → H0(E(m)),
• the point ([g], [a]) is semistable for the action of SL(VC) with respect to the

linearization of L′0(n1, n2),
• there is an integer ν and an SL(VC)-invariant section σ of L′0(n1, n2)⊗ν such

that σ([g], [a]) 6= 0.
(3) Two points ([gi], [ai]), i = 1, 2, are separated by invariant sections in some tensor

power of L′0(n1, n2) if and only if either both are semistable points with respect to the
SL(VC) action but the corresponding framed sheaves are not S-equivalent, or one of
them is semistable but the other is not.

Proof. Let E = (E,α) be a framed sheaf on X corresponding to a point in Y. First recall
that for any general curve C ∈ |OX(a)|, the family of subsheaves E′C of E|C generated by all
subspaces W of VC is bounded, so the set NE|C of their polynomials P (E′C) is finite. Since
the family Sµss(c, δ) of µ-semistable framed sheaves of numerical K-theory class c is bounded,
the set

NC(c, δC) :=
⋃

E∈Sµss(c,δ)

NE|C

is finite. Hence also the set

N (c, δC) :=
⋃

C∈|OX(a)|

NC(c, δC)

is finite. For a polynomial B ∈ N (c, δC), define

GB(l) := dim(VC)
(
n1B(l) + n2ε(αE′C )

)
− dim(W )(n1P (c, l) + n2).

where E′C is a subsheaf of some µ-semistable framed sheaf E = (E,α) of numerical K-theory
class c, defined by a subspace W ⊂ VC , and αE′C is the induced framing on E′C . Since the set

{GB(l) |B ∈ N (c, δC)} is finite, there exists a number la, depending only on a, such that for
any l ≥ la the implication

GB(l) > 0⇒ GB(l) is positive for l� 0,

is true for all B ∈ N (c, δC). Thus by combining the following argument with Proposition
3.1 in [34], we obtain that statement (1) follows from the same arguments of the proof of
Theorem 8.1.11 in [35], and statement (2) by Proposition 5.6. The assertion (3) follows from
the third statement of Theorem 5.9. �

Choose the positive integer lX such that the following equality holds

AX(lX) = AC(la).

Thus we take
n2

n1
= AC(la) = AX(lX).
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By the choice of m′, we can construct a linear map

Hom(V,H0(F (m))) −→ Hom(VC ,H
0(F |C(m′))),

that induces a rational map f : P 99K PC . Since f is induced by a linear map, we get

(20) f∗(OPC (1)) ∼= OP(1).

Consider now the exact sequence

0 −→ E⊗ (p∗S(OS)⊗ p∗X(OX(−a)) −→ E −→ EC −→ 0.

Assume that m is big enough so that, not only the results in Proposition 6.4 hold, but one
also has:

(EC)s is m′-regular for all s ∈ S.
The sheaf p∗(EC(−m′)) is a locally free OS-module of rank P (i∗(c),m′), where EC(−m′) =

(EC ⊗ p∗S(OS) ⊗ p∗C(OC(m′))) and p : S × C → S is the projection. Let π : S̃ → S be the
projective frame bundle associated to p∗(EC(−m′)) (cf. Examples 4.2.3 and 4.2.6 in [35]). By
construction there is a universal GL(P (i∗(c),m′))-equivariant isomorphism

(21) VC ⊗OS̃ → π∗(p∗(EC(−m′)))⊗OS̃(1),

that induces a family (π × idX)∗(EC) of coherent sheaves on X parametrized by S̃ with a
surjective morphism

p∗
S̃

(HC) −→ (π × idX)∗(EC)⊗ p∗
S̃

(OS̃(1)).

This induces a SL(P (i∗(c),m′))-invariant morphism ΦEC : S̃ → QC . Moreover, we get a S̃-

flat family of framed sheaves ES̃ := ((π × idX)∗(EC), (π × idX)∗(αEC )). For any s ∈ S̃, the
composition of morphisms

p∗X(HC)|{s}×C
qs−→ (π × idX)∗(EC)|{s}×C

(π×idX)∗(αEC
)

−→ p∗C(F |C)|{s}×C
gives a morphism VC ⊗OC(−m′)→ F |C , and, by passing to cohomology, a morphism VC →
H0(F |C(m′)). Since qs is uniquely defined by the isomorphism (21) and the framing (π ×
idX)∗(αEC )|{s}×C is defined up to a nonzero constant factor, we obtain a morphism

gES̃ : S̃ −→ PC .

By construction the morphism ΦEC×gES̃ : S̃ → QC×PC factors through the closed embedding

YC ↪→ QC × PC (cf. Section 1.3 in [33]), hence we obtain an SL(P (i∗(c),m′))-invariant
morphism

ΨES̃ : S̃ −→ YC .

The group SL(V ) acts on S, hence also on S̃. Thus we have an action of SL(V ) × SL(VC)

on S̃ such that π and ΨES̃ are both equivariant for SL(V ) × SL(VC). By using the same

arguments of the proof of Proposition 8.2.3 in [35], in particular formula (8.2), we get

λEC (u0(i∗(c)))adeg(X) ∼= λE(u1(c))a
2 deg(X).

Thus, from formula (20), it follows

Ψ∗ES̃

(
L′0(n1, an2)deg(C)

)
∼= π∗

(
L1(n1, n2)a

2 deg(X)
)
.



80 6. UHLENBECK-DONALDSON COMPACTIFICATION FOR FRAMED SHEAVES ON SURFACES

Take an arbitrary SL(VC)-invariant section σ in L′0(n1, an2)deg(C). Then Ψ∗ES̃
(σ) is a SL(V )×

SL(VC) -invariant section and therefore descends to a SL(V )-invariant section of the line

bundle L1(n1, n2)a
2 deg(X). In this way we get a linear map

sES : H0
(
YC ,L′0(n1, an2)deg(C)

)SL(VC)
−→ H0

(
S,L1(n1, n2)a

2 deg(X)
)SL(V )

By the definition of GIT semistability with respect to a linearized line bundle (see, e.g.,
Definition 4.2.9 in [35]) and by Proposition 5.6, for any point s ∈ S such that (ES)|{s}×C is

semistable, then there is an integer ν > 0 and a SL(V )-invariant section σ̄ in L1(n1, n2)⊗ν

such that σ̄(s) 6= 0. Therefore we get the assertion. �

3. Compactification for framed sheaves

In this section we perform the construction of the Uhlenbeck-Donaldson compactification.

First we need to recall the following result, that is a straightforward generalization of
Langton’s Theorem (Theorem 2.B.1 in [35]):

Theorem 6.5. Let X be a smooth projective variety over an algebraically closed field k. Let
(R,m) be a discrete valuation ring with residue field k and quotient field K. Let E be an
Spec(R)-flat family of framed sheaves of positive rank on X such that the pullback EK of it
in XK = Spec(K) × X is a µ-semistable framed sheaf in XK . Then there exists a coherent
subsheaf G ⊂ E such that GK = EK and the pullback Gk of G in Spec(k) × X ∼= X is a µ-
semistable framed sheaf in X, where the framed sheaf G consists of G with the induced framing
by E .

Corollary 6.6. If T is a separated scheme of finite type over k and if φ : Rµss(c, δ) → T is
any SL(V )-invariant morphism, the image of φ is proper.

Proof. The proof of the corollary goes as for Proposition 8.2.5 in [35]. �

By Proposition 6.3, the line bundle L(n1, n2)⊗ν is generated by its SL(V )-invariant sec-
tion. Thus we can find a finite-dimensional subspace

W ⊂Wν := H0(Rµss(c, δ),L1(n1, n2)⊗ν)SL(V ),

that generates L(n1, n2)⊗ν . Let φW : Rµss(c, δ)→ P(W ) be the induced SL(P (c,m))-invariant
morphism. By the previous corollary, we get that MW := φ(Rµss(c, δ)) is a projective scheme.
By proceeding as in the proof of Proposition 8.2.6 in [35], we can prove the following result.

Proposition 6.7. There is an integer N > 0 such that ⊕l≥0WlN is a finitely generated graded
ring.

We can eventually define the Uhlenbeck-Donaldson compactification.

Definition 6.8. Let N is a positive integer as in the proposition above. Let Mµss(c, δ) be
the projective scheme

Mµss(c, δ) = Proj

⊕
k≥0

H0(Rµss(c, δ),L1(n1, n2)⊗kN )SL(P (c,m))

 ,

and let γ : Rµss(c, δ)→Mµss(c, δ) be the canonically induced morphism.
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As it is proved in Section 4 of [15], the morphism π descends to a projective morphism

π : Mss
δ (X;F, P (c))→Mµss(c, δ).

From now on the framing sheaf F is a locally free OD-module.

Let Rµss(c, δ)∗ be the open subset of Rµss(c, δ) consisting of pairs ([g : H → E], [a : H →
F ]) such that the associated framed sheaf (E,α) is a µ-semistable (D,F )-framed sheaf on X.
Let

Mµss(c, δ)∗ := γ(Rµss(c, δ)∗) and Mδ(X;F, P (c))∗ := π−1(Mµss(c, δ)∗).

These are open subsets of Mµss(c, δ) and Mss
δ (X;F, P (c)), respectively. Now we would like

to give an explicit description of the morphism

πrk(c) := π|Mδ(X;F,P (c))∗ : Mδ(X;F, P (c))∗ −→Mµss(c, δ)∗.

Let E = (E,α) be a µ-semistable (D,F )-framed sheaf. The graded object grµ(E) = (grµ(E),
grµ(α)) associated to a µ-Jordan-Hölder filtration of E is a µ-polystable framed sheaf. By
applying the definition of µ-semistability to E(−D) = kerα ⊂ E, we conclude that δ1 ≤
r degD. Moreover, in the case of equality, kerα ⊂ E is the upper level of a Jordan-Hölder
filtration, hence in the associated graded object there is a rank zero quotient E/kerα. Since
E is torsion free, this is the only possible torsion sheaf in the graded object associated to
a Jordan-Hölder filtration. To avoid this possibility, from now on we impose the following
additional hypothesis

δ1 < r degD.

Thus the sheaf grµ(E) is torsion free, hence the double dual (grµ(E))∨∨ of grµ(E) is a µ-
polystable framed vector bundle, i.e., a µ-polystable framed sheaf such that the underlying
coherent sheaf is locally free (cf. Lemma 4.10). Let us consider the function

lE : X −→ Syml(X \D),

x 7−→
∑
x

length ((grµ(E)∨∨/grµ(E))x) [x],

where l = c2(E) − c2(grµ(E)∨∨). Both grµ(E)∨∨ and lE are well-defined invariants of E , i.e,
they do not depend on the choice of the µ-Jordan-Hölder filtration (cf. Proposition 2.42).

By using Theorem 4.8 and the same techiques as the nonframed case (cf. Theorem 8.2.11
in [35]), we obtain the following result.

Theorem 6.9 (Theorem 4.6 in [15]). Assume that δ1 < r degD. Two µ-semistable (D,F )-
framed sheaves E1 = (E1, α1) and E2 = (E2, α2) of numerical K-theory class c on X define
the same closed point in Mµss(c, δ)∗ if and only if

grµ(E1)∨∨ ∼= grµ(E2)∨∨ and lE1 = lE2 .

Remark 6.10. Assume, as before, that δ1 < r degD. Let c be a numerical K-theory class
of X with rank r, Chern classes c1 and c2, and a line bundle A with c1(A) = c1. By the
previous theorem, we can define the subsetMµ−poly(r,A, c2, δ) ⊂Mδ(X;F, P (c))∗ consisting
of µ-polystable framed vector bundles. Moreover, set-theoretically, there is a stratification

Mµss(c, δ)∗ =
∐
l≥0

Mµ−poly(r,A, c2 − l, δ)× Syml(X \D).

4
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From now on assume that X is a nonsingular projective surface over C, D a big and nef
curve and F a good framing sheaf on D. By Theorem 5.13, for any numerical K-theory class
c ∈ K(X)num with rank r, Chern classes c1 and c2, and a line bundle A with c1(A) = c1,
there exists a fine moduli space MX,D(r,A, n) of (D,F )-framed sheaves (E,α) on X where
E is a torsion free sheaf of rank r, first Chern class c1, second Chern class c2 and determinant

line bundle A. It is an open subset of the moduli space Mµ−stable
δ (X;F, P (c),A) of µ-stable

framed sheaves on X with the same topological invariants, for a suitable choices of a very
ample line bundle on X and a stability polynomial δ.

Since the graded object of a µ-stable framed sheaf coincides with the framed sheaf itself,
we get the following map

πr := π|MX,D(r,A,n) : MX,D(r,A, n) −→
∐
l≥0

MX,D(r,A, n− l)× Syml(X \D)

(E,α) 7−→
(
(E∨∨, α∨∨), supp (E∨∨/E)

)
.

Moreover the restriction of πr to the open subset consisting of (D,F )-framed vector bundles
is a bijection onto the image.

Remark 6.11. Let X be the complex projective plane CP2 and l∞ a line. Fix positive
integer numbers r, n. The open subset in MCP2,l∞

(r,OCP2 , n) consisting of (l∞,O⊕rl∞ )-framed

vector bundles on CP2 is isomorphic to the moduli space of framed SU(r)-instantons with
instanton number n on S4 (cf. [18]). By using Theorem A’ in [79] and Uhlenbeck’s removable
singularities Theorem (see [77]), we expect that it is possible to define a topology on the set

n∐
l=0

MCP2,l∞
(r,OCP2 , n− l)× Syml(C2)

such that πr is a proper map. Moreover we expect that by using Buchdal’s work for framed
SU(r)-instantons on the connected sum of n copies of CP2 (see [16]) it is possible to generalize
this result to the moduli spaces of (l∞,O⊕rl∞ )-framed sheaves on the blow up of CP2 at n points.



CHAPTER 7

Symplectic structures

A symplectic structure on a non-singular variety M is by definition a non-trivial regular
two-form, i.e., a global section 0 6= w ∈ H0(M,Ω2

M ), which is non-degenerate and closed. In
this chapter we give a construction of closed two-forms on the moduli spaces of stable (D,F )-
framed sheaves by using a framed version of the Atiyah class. In particular, in Section 2 we
recall the definition of Atiyah class for a flat family of coherent sheaves and describe some
geometric constructions one can do by using it, as for example the Kodaira-Spencer map. In
Section 3 we give the definitions of the framed version of the Atiyah class and of the Kodaira-
Spencer map. In Section 4 we prove that the framed Kodaira-Spencer map is an isomorphism
for the moduli space of stable (D,F )-framed sheaves and, in Section 5, we construct closed
two-forms on it. Finally, in Section 6 we apply our results when the ambient space is the
second Hirzebruch surface and provide a symplectic structure on the moduli spaces of stable
(D,F )-framed sheaves on it.

1. Yoneda pairing and trace map

In this section we introduce the notions of Yoneda pairing (or cup product) for hyper-Ext
groups of complexes of sheaves and the trace map. These are some of the technical tools we
need to obtain the geometric results of the following sections.

Let Y be a k-scheme of finite type. Let E• and G• be finite complexes of locally free
sheaves. We define the complex of coherent sheaves Hom•(E•, G•) with components

Homn(E•, G•) =
⊕
i

Hom(Ei, Gi+n),

and differential

d(ϕ) = dG• ◦ ϕ− (−1)degϕ · ϕ ◦ dE• .
If L• is another finite complex of locally free sheaves, composition yields a morphism

(22) Hom•(G•, L•)⊗Hom•(E•, G•) −→ Hom•(E•, L•),

such that d(ψ ◦ ϕ) = d(ψ) ◦ ϕ+ (−1)degψψ ◦ d(ϕ) for homogeneous elements ϕ and ψ.

Recall that the hyper-Ext group Exti(E•, G•) is the hypercohomology of the complex
Hom•(E•, G•), that is, the direct limit, over the open coverings U of Y , of the cohomology of
the total complex associated to the Čech complex C•(Hom•(E•, G•),U). The product (22)
induces a product in hypercohomology

Exti(G•, L•)⊗ Extj(E•, G•) −→ Exti+j(E•, L•).

This is the Yoneda pairing for hyper-Ext groups of finite complexes of locally free sheaves.

83
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For any locally free sheaf E, let trE : End(E)→ OY denote the trace map, which can be
defined as the pairing between E∨ and E, since End(E) ∼= E∨ ⊗ E. More generally, if E• is
a finite complex of locally free sheaves, define the trace

trE• : Hom•(E•, E•) −→ OY ,
by setting trE• |Hom(Ei,Ej) = 0, except in the case i = j, when we put trE• |End(Ei) = (−1)itrEi .

Let us consider the morphism

iE• : OY −→ Hom0(E•, E•),

1 7−→
∑
i

idEi .

Clearly, trE•(iE•(1)) =
∑

i(−1)irk(Ei), which is the rank rk(E•) of E•.

Both iE• and trE• are chain morphism (where OY is a complex concentrated in degree
zero) and induce homomorphisms

tr : Extj(E•, E•)→ Hj(Y,OY ) and i : Hj(Y,OY )→ Extj(E•, E•).

An easy modification of the previous construction leads to homomorphisms

tr : Extj(E•, E• ⊗N )→ Hj(Y,N ) and i : Hj(Y,N )→ Extj(E•, E• ⊗N ),

for any coherent sheaf N on Y.

Now we turn to the relative version of these constructions. Let S be a k-scheme of finite
type and p : Y → S a smooth projective morphism. Any S-flat family E of coherent sheaves
admits a finite locally free resolution E• → E (see, e.g., Proposition 2.1.10 in [35]). Recall

that the sheaf ofOS-modules Extjp(E, ·) is the derived functor ofHomp(E, ·) := p∗◦Hom(E, ·).
It is easy to see that Extjp(E,G) is the sheafification of the presheaf defined by

U 7→ Extj(E|p−1(U), G|p−1(U)),

for any open subset U ⊂ S.
Since E• is a resolution of E, they are quasi-isomorphic, hence Extj(E•, E•) ∼= Extj(E,E).

Thus by sheafifying the Yoneda pairing and the maps i and tr defined for E•, we get mor-
phisms

Extip(E,E)⊗ Extjp(E,E) −→ Exti+jp (E,E),

and

tr : Extjp(E,E) −→ Rjp∗(OY ),

i : Rjp∗(OY ) −→ Extjp(E,E).

2. The Atiyah class

In this section we define the Atiyah class for flat families of coherent sheaves. The Atiyah
class was introduced in [1] for the case of vector bundles and in [36] and [37] for any complex
of coherent sheaves. For the definition of the Atiyah class, we will follow the approach of
Maakestad which involves the notion of the sheaf of first jets (see [50]) and, at the same
time, Huybrechts and Lehn’s description of the Atiyah class in terms of finite locally free
resolutions (see Section 10.1.5 in [35]).
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Let p1, p2 : Y × Y → Y be the projections to the two factors. Let I be the ideal sheaf
of the diagonal ∆ ⊂ Y × Y and let O2∆ = OY×Y/I2 denote the structure sheaf of the first
infinitesimal neighborhood of ∆. Note that I/I2 ∼= N∨∆/Y × Y ∼= Ω1

∆, hence we have the following
exact sequence

(23) 0 −→ Ω1
∆ −→ O2∆ −→ O∆ −→ 0

The corresponding class at ∈ Ext1(O∆,Ω
1
∆) is called the universal Atiyah class of Y.

Let E be a locally free sheaf on Y. Since O∆ is p2-flat, after tensorizing with p∗2(E) the
sequence (23) remains exact. By applying the functor (p1)∗, we get a short exact sequence

0 −→ Ω1
Y ⊗ E −→ (p1)∗(O2∆ ⊗ p∗2(E)) −→ E −→ 0

whose extension class at(E) ∈ Ext1(E,Ω1
Y ⊗E) is called the Atiyah class of E. As it is proved

in Proposition 3.4 in [50], the Atiyah class at(E) is the obstruction for the existence of an
algebraic connection on E.

The sheaf (p1)∗(O2∆ ⊗ p∗2(E)) is called the sheaf of first jets of E and it is denoted by
J1(E). As it is explained in Section 3 of [50], one can describe it in the following way: it is
the sheaf of abelian groups (Ω1

Y ⊗ E) ⊕ E, with the following left OY -module structure: for
an open subset U of Y , a ∈ OY (U) and (z ⊗ e, f) ∈ J1(E)(U), define

a(z ⊗ e, f) = (az ⊗ e+ d(a)⊗ f, af),

where d is the exterior differential of Y.

In [50], Maakestad constructs the sheaf of first jets J1(E) for any coherent sheaf E by
using the same definition as before. In this way, she obtains an extension

0 −→ Ω1
Y ⊗ E −→ J1(E) −→ E −→ 0.

The corresponding extension class at(E) ∈ Ext1(E,Ω1
Y ⊗ E) is called the Atiyah class of E.

There is another equivalent way to construct the Atiyah class of a coherent sheaf E. Let
E• be a finite complex of locally free sheaves. One has a short exact sequence

0 −→ Ω1
Y ⊗ E• −→ (p1)∗(O2∆ ⊗ p∗2(E•)) −→ E• −→ 0

defining a class at(E•) ∈ Ext1(E•,Ω1
Y ⊗ E•).

A quasi-isomorphism E• → G• of finite complexes of locally free sheaves induces an
isomorphism Ext1(E•,Ω1

Y ⊗E•) ∼= Ext1(G•,Ω1
Y ⊗G•) which identifies at(E•) and at(G•). In

particular, if E is a coherent sheaf that admits a finite locally free resolution E• → E, then
at(E•) is independent of the resolution and coincides with the class at(E) defined before.

2.1. Newton polynomials. Let E• be a finite complex of locally free sheaves on Y. Let
at(E•)i denote the image in Exti(E•,Ωi

Y ⊗ E•) of the i-th product

at(E•) ◦ · · · ◦ at(E•) ∈ Exti(E•, (Ω1
Y )⊗i ⊗ E•),

under the morphism induced by (Ω1
Y )⊗i → Ωi

Y .

Definition 7.1. The i-th Newton polynomial of E• is

γi(E•) := tr(at(E•)i) ∈ Hi(Y,Ωi
Y ).



86 7. SYMPLECTIC STRUCTURES

In the same way, one can define the i-th Newton polynomial γi(E) of a coherent sheaf E
by using at(E). If E• is a finite locally free resolution of E, clearly γi(E) = γi(E•).

The de Rham differential d : Ωi
Y → Ωi+1

Y induces k-linear maps

d : Hj(Y,Ωi
Y )→ Hj(Y,Ωi+1

Y ).

Proposition 7.2. The i-th Newton polynomial of E• is d-closed.

Proof. Let U = {Ui}i∈I be an open covering of Y. The trace map only depends on the
components with p = i, q = 0 in∏

p+q=i

Cp(Homq(E•,Ωi
Y ⊗ E•),U).

In particular, γn(E•) =
∑

l(−1)lγn(El).

Let us assume that E is a locally free sheaf. Since γi is additive with respect to short
exact sequences, by using the splitting principe we can assume that E is a line bundle. If
gij ∈ O∗(Ui ∩ Uj) are the transition functions of E, dgijg

−1
ij is a cocycle representing at(E)

(see, e.g., Section 4 in [1]). Thus at(E) clearly vanishes under d. �

2.2. The Kodaira-Spencer map. Let (X,OX(1)) be a polarized surface and S a Noe-
therian scheme of finite type over k.

Let E be an S-flat family of coherent sheaves on X and at(E) ∈ Ext1(E,Ω1
Y ⊗ E) its

Atiyah class. Consider the induced section At(E) under the global-relative map

Ext1(E,Ω1
Y ⊗ E) −→ H0(S, Ext1pS (E,Ω1

Y ⊗ E)),

coming from the relative-to-global spectral sequence

(24) Hi(S, ExtjpS (E,Ω1
Y ⊗ E))⇒ Exti+j(E,Ω1

Y ⊗ E).

The direct sum decomposition Ω1
Y = p∗S(Ω1

S)⊕ p∗X(Ω1
X) leads to an analogous decomposition

At(E) = AtS(E) +AtX(E).

Definition 7.3. The Kodaira-Spencer map associated to the family E is the composition

KS : (Ω1
S)∨

id⊗AtS(E)−→ (Ω1
S)∨ ⊗ Ext1pS (E, p∗S(Ω1

S)⊗ E)→
−→ Ext1pS (E, p∗S((Ω1

S)∨ ⊗ Ω1
S)⊗ E)→ Ext1pS (E,E).

3. The Atiyah class for framed sheaves

In this section we turn to the framed case. Our goal is to define for the case of framed
sheaves all the geometric notions introduced in the previous sections. In particular, first we
give a definition of the framed Atiyah class for flat families of (D,F )-framed vector bundles
by using a framed version of the sheaf of first jets. For a flat family (E,α) of (D,F )-framed
sheaves we give two equivalent definitions. The first one is given in terms of the framed sheaf
of first jets. For the second definition, we consider a finite locally free resolution of E and,
locally over the base, we define a framing on each element of the resolution in a way that the
latter becomes a flat family of (D,F )-vector bundles. By using the framed Atiyah class of
each element in the resolution, we define the framed Atiyah class of (E,α) locally over the
base.
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Let (X,OX(1)) be a polarized surface, D ⊂ X a divisor and F a locally free OD-module.

Let S be a Noetherian k-scheme of finite type and pS , pX the projections from Y = X×S
to S and X respectively. Let us denote by D the divisor S ×D.

Definition 7.4. A locally free family of (D,F )-framed sheaves parametrized by S is a pair
E = (E,α) where E is a locally free sheaf on Y and α : E → p∗X(F ) is a morphism such that
α|{s}×D : E|{s}×D → p∗X(F )|{s}×D is an isomorphism for any s ∈ S.

Remark 7.5. For any point s ∈ S, E|{s}×X is a (D,F )-framed vector bundle.

Now we would like to introduce a framed version of the sheaf of the first jets: we define a
subsheaf J1

fr(E) of J1(E), that we shall call framed sheaf of first jets of E . Let U = {Ui}i∈I be

a cover of D over which p∗X(F )|D trivializes, and choose on any Ui a set {e0
i } of basis sections

of Γ(p∗X(F )|D, Ui). Let g0
ij be transition functions of p∗X(F )|D with respect to chosen local

basis sections (i.e., e0
i = g0

ije
0
j ), constant along S. Let us fix a cover V = {Vi}i∈I of Y over

which E trivializes with sets {ei} of basis sections such that Vi ∩ D = Ui for any i ∈ I and

ei|D = e0
i ,

gij |D = g0
ij .

Let x be a point in Y. If x /∈ D, we put J1
fr(E)x = J1(E)x. If x is in D, let Vi be an

open set of the cover V that contains x. Then J1
fr(E)x ⊂ J1(E)x = (Ω1

Y,x ⊗ Ex) ⊕ Ex is
the OY,x-module spanned by the basis obtained by tensoring all the elements of the set

{fidz1
i , . . . , fidz

s
i , dz

s+1
i , . . . , dzti}, where {dz1

i , . . . , dz
t
i} is a basis of Ω1

Y,x, by the elements of

the basis {ei} := {e1
i , . . . , e

r
i } of Ex and then adding the elements of {ei}, where we denote

by z1
i , . . . , z

s
i and zs+1

i , . . . , zti the local coordinates of S and X on Vi, respectively, and fi = 0
is the local equation of D on Vi. If x is also a point of the open subset Vj of V, let us denote
by lij ∈ O∗Y (Vi ∩ Vj) the transition function on Vi ∩ Vj of the line bundle associated to the
divisor D and by Jij the Jacobian matrix of change of coordinates. Let us define the following
matrices:

Lij :=

(
lijIs 0s,t−s
0t−s,s It−s

)
and

Fi :=

(
fiIs 0s,t−s

0t−s,s It−s

)
where Ik is the identity matrix of order k and 0k,l is the k-by-l zero matrix.

The change of basis matrix of the two corresponding bases in J1
fr(E)x under changes of

bases in Ex is: (
Lij ⊗ gij (F−1

i ⊗ id) · dgij
0 gij

)
where the block at the position (1,2) is a regular matrix function, because gij is constant
along D.

The change of basis matrix under changes of local coordinates is:(
Lij · Jij ⊗ id 0

0 id

)
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In this way, we get an exact sequence of left OY -modules

0 −→
(
p∗S(Ω1

S)(−D)⊕ p∗X(Ω1
X)
)
⊗ E −→ J1

fr(E) −→ E −→ 0,

where we denote by p∗S(Ω1
S)(−D) the tensor product p∗S(Ω1

S)⊗OY (−D).

We call framed Atiyah class of E the class at(E) in Ext1
(
E,
(
p∗S(Ω1

S)(−D)⊕ p∗X(Ω1
X)
)
⊗ E

)
defined by this extension.

Let us consider the short exact sequence

0 −→ p∗S(Ω1
S)(−D)⊕ p∗X(Ω1

X)
i−→ Ω1

Y
q−→ p∗S(Ω1

S)|D −→ 0.

After tensoring by E and applying the functor Hom(E, ·), we get the long exact sequence

· · · → Ext1(E,
(
p∗S(Ω1

S)(−D)⊕ p∗X(Ω1
X)
)
⊗ E)

i∗−→

Ext1(E,Ω1
Y ⊗ E)

q∗−→ Ext1(E, p∗S(Ω1
S)|D ⊗ E)→ · · · .

By construction, the image of at(E) under i∗ is at(E), which is equivalent to saying that we
have the commutative diagram

0
(
p∗S(Ω1

S)(−D)⊕ p∗X(Ω1
X)
)
⊗ E J1

fr(E) E 0

0 Ω1
Y ⊗ E J1(E) E 0

Moreover, q∗(at(E)) = q∗(i∗(at(E))) = 0, hence we get the commutative diagram

0 Ω1
Y ⊗ E J1(E) E 0

0 p∗S(Ω1
S)|D ⊗ E

(
p∗S(Ω1

S)|D ⊗ E
)
⊕ E E 0

Example 7.6. Let F be a line bundle on D. Let L = (L,α) be a locally free family of
(D,F )-framed sheaves parametrized by S with L line bundle. As before, choose transition
functions g0

ij and gij for p∗X(F ) and L, respectively, such that

gij |D = g0
ij .

Recall that dgijg
−1
ij is a cocycle representing at(L). By the choice of g0

ij , we get that dS(gij)

vanishes along D, where dS is the exterior differential of S. Hence dgijg
−1
ij can be also inter-

preted as a cocycle representing at(L). Moreover, it vanishes under the restriction of the de

Rham differential d̃ := d|p∗S(Ω1
S)(−D)⊕p∗X(Ω1

X). 4

Now we want to turn to the non-locally free case. Assume that S is a smooth Noetherian
scheme of finite type over k.

Definition 7.7. A flat family of (D,F )-framed sheaves parametrized by S is a pair E = (E,α)
where E is a coherent sheaf on Y , flat over S, α : E → p∗X(F ) is a morphism such that for any
s ∈ S the sheaf E|{s}×X is locally free in a neighborhood of {s}×D and α|{s}×D : E|{s}×D →
p∗X(F )|{s}×D is an isomorphism.
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We would like to define the framed sheaf of first jets J1
fr(E) for E . As before, we set

J1
fr(E)x = J1(E)x for x /∈ D. Let us fix x ∈ D; by definition of a flat family of (D,F )-framed

sheaves, there exists an open neighborhood V ⊂ Y of x such that E|V is a locally free OV -
module. Then we apply the previous construction to the locally free sheaf E|V and in the
same way as before we define J1

fr(E)x. Thus we get an extension

0 −→
(
p∗S(Ω1

S)(−D)⊕ p∗X(Ω1
X)
)
⊗ E −→ J1

fr(E) −→ E −→ 0,

and we call the framed Atiyah class at(E) of E the corresponding class in

Ext1(E,
(
p∗S(Ω1

S)(−D)⊕ p∗X(Ω1
X)
)
⊗ E).

There is another way to describe the framed Atiyah class of a flat family of (D,F )-framed
sheaves E = (E,α) by using finite locally free resolutions of E, but in this case the costruction
is local over the base, as we will explain in the following. First, we recall a result due to Banica,
Putinar and Schumacher that will be very useful later on.

Theorem 7.8 (Satz 3 in [5]). Let p : R → T be a flat proper morphism of schemes of
finite type over k, T smooth, E and G coherent OR-modules, flat over T. If the function
y 7→ dim Extl(Ey, Gy) is constant for l fixed, then the sheaf Extlp(E,G) is locally free on T
and for any y ∈ T we have

Extip(E,G)y ⊗OT,y (OT,y/my) ∼= Exti(Ey, Gy) for i = l − 1, l.

Moreover, the same statement is true for complexes.

Let E = (E,α) be a flat family of (D,F )-framed sheaves parametrized by S. Since the
projection morphism pS : S ×X −→ S is smooth and projective, there exists a finite locally
free resolution E• → E of E.

Let us fix a point s0 ∈ S. By the flatness property, the complex (E•)|{s0}×D is a finite res-
olution of locally free sheaves of E|{s0}×D ∼= F. Let us denote by F • the complex (E•)|{s0}×D.
Define F• := F • �OS .

The complex F• is S-flat since (E•)|{s0}×D is a complex of locally free OD-modules and
the sheaf OD is a S-flat OY -module. Moreover, for any s ∈ S, the complex (F•)|{s}×X is
quasi-isomorphic to F , hence we get

Hom((E•)|{s}×X , (F•)|{s}×X) = Hom(E|{s}×X , F ) ∼= End(F ).

By applying Theorem 7.8, we get that the the natural morphism of complexes between E•

and F• on {s0} ×X extends to a morphism of complexes

α• : E• −→ F•.

Let U ⊂ S be a neighborhood of s0 such that the following condition holds

(25) (α•)|{s}×D is an isomorphism for any s ∈ U.

Let YU = U × X and DU = U × D. For any i, the pair (Ei|YU , αi|YU : Ei|YU → F i|YU ) is a
locally free family E iU of (D,Ei|{s0}×D)-framed sheaves parametrized by U. If for any i, we
consider the short exact sequence

0 −→
(
p∗U (Ω1

U )(−DU )⊕ p∗X(Ω1
X)
)
⊗ Ei|YU −→ J1

fr(E iU ) −→ Ei|YU −→ 0,
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defined in Section 2, we get a class atU (E) in

Ext1
(
E•|YU ,

(
p∗U (Ω1

U )(−DU )⊕ p∗X(Ω1
X)
)
⊗ E•|YU

) ∼=
∼= Ext1

(
E|YU ,

(
p∗U (Ω1

U )(−DU )⊕ p∗X(Ω1
X)
)
⊗ E|YU

)
.

By construction, atU (E) is independent of the resolution and it is the image of at(E) with
respect to the map on Ext-groups induced by the natural morphism i∗ : Ω1

S → Ω1
U , where

i : U ↪→ S is the inclusion morphism.

3.1. Framed Newton polynomials. Let E = (E,α) be a flat family of (D,F )-framed
sheaves parametrized by S. As we did in Section 2.1 of this chapter, we define

at(E)i ∈ Ext1
(
E, Ω̃i

Y ⊗ E
)
,

where Ω̃1
Y := p∗S(Ω1

S)(−D)⊕ p∗X(Ω1
X) and Ω̃i

Y := Λi(Ω̃1
Y ) is the i-th exterior power of Ω̃1

Y .

Definition 7.9. The i-th framed Newton polynomial of E is

γi(E) := tr(at(E)i) ∈ Hi(Y, Ω̃i
Y ).

Let E• → E be a finite locally free resolution of E. Let s0 be a point in S and U ⊂ S a
neighborhood of s0 satisfying condition (25). We define the i-th framed Newton polynomial
of E on U as

γiU (E) := tr(atU (E)i) ∈ Hi(YU , Ω̃
i
YU

).

Moreover, γi(E)|YU = γiU (E) by construction.

The restricted de Rham differential d̃ introduced in Example 7.6, induces k-linear maps

d̃ : Hi(Y, Ω̃i
Y ) −→ Hi+1(Y, Ω̃i

Y (D)).

For any open subset U ⊂ S the restricted differential d̃U := d|p∗U (Ω1
U )(−DU )⊕p∗X(Ω1

X) induces

k-linear maps
d̃U : Hi(YU , Ω̃

i
YU

) −→ Hi+1(YU , Ω̃
i
YU

(DU )).

Proposition 7.10. The i-th framed Newton polynomial of E is d̃-closed.

Proof. Let U ⊂ S be an open subset satisfying condition (25). The cohomology class

γiU (E) is d̃U -closed by the same arguments as in the proof of Proposition 7.2, in particular
the splitting principle and Example 7.6. Since the restriction of γi(E) to YU is γiU (E) and U

is arbitrary, we get that γi(E) is closed with respect to d̃. �

3.2. The Kodaira-Spencer map for framed sheaves. Let E = (E,α) be a flat
family of (D,F )-framed sheaves parametrized by S. Consider the framed Atiyah class at(E)
in Ext1

(
E,
(
p∗S(Ω1

S)(−D)⊕ p∗X(Ω1
X)
)
⊗ E

)
and the induced section At(E) under the global-

relative map

Ext1
(
E,
(
p∗S(Ω1

S)(−D)⊕ p∗X(Ω1
X)
)
⊗ E

)
−→ H0(S, Ext1pS (E,

(
p∗S(Ω1

S)(−D)⊕ p∗X(Ω1
X)
)
⊗ E)),

coming from the relative-to-global spectral sequence

Hi(S, ExtjpS (E,
(
p∗S(Ω1

S)(−D)⊕ p∗X(Ω1
X)
)
⊗ E))⇒ Exti+j(E,

(
p∗S(Ω1

S)(−D)⊕ p∗X(Ω1
X)
)
⊗ E).

By considering the S-part AtS(E) of At(E) in

H0(S, Ext1pS (E, p∗S(Ω1
S)(−D)⊗ E)) = H0(S, Ext1pS (E, p∗S(Ω1

S)⊗ p∗X(OX(−D))⊗ E)),
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we define the framed version of the Kodaira-Spencer map.

Definition 7.11. The framed Kodaira-Spencer map associated to the family E is the compo-
sition

KSfr : (Ω1
S)∨

id⊗AtS(E)−→ (Ω1
S)∨ ⊗ Ext1pS (E, p∗S(Ω1

S)⊗ p∗X(OX(−D))⊗ E)→
−→ Ext1pS (E, p∗S((Ω1

S)∨ ⊗ Ω1
S)⊗ p∗X(OX(−D))⊗ E)→

−→ Ext1pS (E, p∗X(OX(−D))⊗ E).

3.3. Closed two-forms via the framed Atiyah class. From now on, assume that S
is smooth and affine. Let E = (E,α) be a flat family of (D,F )-framed sheaves parametrized
by S.

Let γ0,2 denote the component of γ2(E) in H0(S,Ω2
S)⊗H2(X,OX(−2D)).

Definition 7.12. Let τS be the homomorphism given by

τS : H0(X,ωX(2D)) ∼= H2(X,OX(−2D))∨
· γ0,2

−→ H0(S,Ω2
S),

where ∼= denotes Serre’s duality.

Proposition 7.13. For any ω ∈ H0(X,ωX(2D)), the associated two-form τS(ω) on closed
in S.

Proof. We can write

γ0,2 =
∑
l

µl ⊗ νl,

for elements µl ∈ H0(S,Ω2
S) and νl ∈ H2(X,OX(−2D)). Since d̃(γ2(E)) = 0 (cf. Proposition

7.10), the component of d̃(γ0,2) in H0(S,Ω3
S)⊗H2(X,OX(−2D)) is zero, which means∑

l

dS(µl)⊗ νl = 0.

Therefore

dS(τS(ω)) = dS

(∑
l

µl · ω(νl)

)
=
∑
l

dS(µl) · ω(νl) = 0.

�

Fix ω ∈ H0(X,ωX(2D)). For any point s0 ∈ S, we obtained a skew-symmetric bilinear
form τS(ω)s0 on Ts0S:

Ts0S × Ts0S
KS×KS−→ Ext1(E|{s0}×X , E|{s0}×X(−D))× Ext1(E|{s0}×X , E|{s0}×X(−D))

◦−→ Ext2(E|{s0}×X , E|{s0}×X(−2D))
tr−→ H2(X,OX(−2D))

·ω−→ H2(X,ωX) ∼= k.
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4. The tangent bundle of moduli spaces of framed sheaves

Let Ms(X;P ) be the moduli space of Gieseker-stable torsion free sheaves on X with
Hilbert polynomial P. The open subset M0(X;P ) ⊂ Ms(X;P ) of points [E] such that
Ext2

0(E,E) vanishes is smooth according to Theorem 4.5.4 in [35]. Suppose there exists a

universal family Ẽ on M0(X;P )×X. Then it is possible to prove that the Kodaira-Spencer

map associated to Ẽ

KS : TM0(X;P ) −→ Ext1p(Ẽ, Ẽ)

is an isomorphism, where p : M0(X;P ) × X → M0(X;P ) is the projection (cf. Theorem
10.2.1 in [35]). In this section we shall prove the framed analogue of this result for the moduli
spaces of stable (D,F )-framed sheaves on X.

Let δ ∈ Q[n] be a stability polynomial and P a numerical polynomial of degree two. Let
M∗δ(X;F, P ) be the moduli space of (D,F )-framed sheaves on X with Hilbert polynomial P
that are stable with respect to δ. This is an open subset of the fine moduli spaceMδ(X;F, P )
of stable framed sheaves with Hilbert polynomial P. Let us denote by M∗δ(X;F, P )sm the

smooth locus ofM∗δ(X;F, P ) and by Ẽ = (Ẽ, α̃) the universal objects ofM∗δ(X;F, P )sm. Let
p be the projection from M∗δ(X;F, P )sm ×X to M∗δ(X;F, P )sm.

Theorem 7.14. The framed Kodaira-Spencer map defined by Ẽ induces a canonical isomor-
phism

KSfr : TM∗δ(X;F, P )sm
∼−→ Ext1p(Ẽ, Ẽ ⊗ p∗X(OX(−D))).

Proof. First note thatM∗δ(X;F, P )sm is a reduced separated scheme of finite type over
k. Hence it suffices to prove that the framed Kodaira-Spencer map is an isomorphism on the
fibres over closed points. Let [(E,α)] be a closed point. We want to show that the following
diagram commutes

T[(E,α)]M∗δ(X;F, P )sm Ext1(E,E(−D))

Ext1(E,E(−D))

∼

KSfr([(E,α)])

where the horizontal isomorphism comes from deformation theory (see proof of Theorem 4.1
in [34]).

Let w be an element in Ext1(E,E(−D)). Consider the long exact sequence

· · · → Ext1(E,E(−D))
j∗−→ Ext1(E,E)

α∗−→ Ext1(E,F )→ · · ·

obtained by applying the functor Hom(E, ·) to the exact sequence

0 −→ E(−D)
j−→ E

α−→ F −→ 0.
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Let v = j∗(w) ∈ Ext1(E,E). We get a commutative diagram

0 E(−D) G̃ E 0

0 E G E 0

j

ĩ

i π

π̃

where the first arrow is a representative for w and the second one a representative for v.

Let S = Spec(k[ε]) be the spectrum of the ring of dual numbers, where ε2 = 0. We can
think G as a S-flat family by letting ε act on G as the morphism i ◦ π.

Since εG′ = E(−D) and εG = E, by applying snake lemma to the previous diagram we
get

0 E(−D) G̃ E 0

0 E G E 0

0 εF εF 0

0 0

ĩ

idE
i

β

π

π̃

Moreover α∗(v) = 0, hence we have the commutative diagram

0 E G E 0

0 εF E ⊕ εF E 0

i π

Thus we get a framing γ : G→ F ⊕ εF induced by α and β. Moreover γ|D is an isomorphism.
We denote by G the corresponding S-family of (D,F )-framed sheaves on X.

Since S is affine, the relative-to-global spectral sequence (24) degenerates in the second
term, so that we have an isomorphism

H0(S, Ext1pS (G,Ω1
Y ⊗G)) ∼= Ext1

Y (G,Ω1
Y ⊗G).

Thus one can see the section AtS(G) as an element of

Ext1
Y (G, p∗SΩ1

S ⊗G) ∼= Ext1
Y (G,E).

Consider the short exact sequence of coherent sheaves over Spec (k[ε1, ε2]/(ε1, ε2)2)×X

(26) 0 −→ E
i′−→ G′

π′−→ G −→ 0,

where ε1 and ε2 act trivially on E and by i ◦ π on G, and

G′ ∼= k[ε1]⊗k G/ε1ε2G ∼= G⊕ E,
with actions

ε1 =

(
0 π
0 0

)
and ε2 =

(
iπ 0
0 0

)
.
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By definition of Atiyah class, AtS(G) is precisely the extension class of the short exact se-
quence (26), considered as a sequence of k[ε1]⊗OX -modules.

The morphims π induces a pull-back morphism π∗ : Ext1
X(E,E)→ Ext1

Y (G,E), which is
an isomorphism. Moreover π∗(v) = AtS(G), indeed we have the commutative diagram

0 E G′ G 0

0 E G E 0

π

i′

t′

i π

π′

Thus G′ is the sheaf of first jets of G relative to the quotient Ω1
Y → p∗S(Ω1

S)→ 0. By following
Maakestad’s construction of Atiyah classes of coherent sheaves relative to quotients of Ω1

Y (cf.
Section 3 in [50]) and by readapting to this particular case our construction of the framed

sheaf of first jets given in Section 3, we can define a framed sheaf of first jets G̃′ of the framed
sheaf G relative to p∗S(Ω1

S). Thus we get a commutative diagram

0 E(−D) G̃′ G 0

0 E G′ G 0

ĩ′

i′ π′

π̃′

The first arrow is a representative for the S-part AtS(G) of G in

Ext1
Y (G, p∗SΩ1

S(−D)⊗G) ∼= Ext1
Y (G,E(−D)).

Consider the three-dimensional diagram

0

0

E(−D)

E(−D)

G̃′

G̃

G

E

0

0

0

0

E

E

G′

G

G

E

0

0

F

F

F

F

ĩ π̃

π

π′

t′ π

ĩ′ π̃′

i′

i π

By diagram chasing, one can define a morphism G̃′ → G̃ such that the corresponding diagram
commutes. Thus the image of w through the map Ext1

X(E,E(−D)) → Ext1
Y (G,E(−D)) is

exactly AtS(G). This completes the proof. �
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5. Closed two-forms on moduli spaces of framed sheaves

In this section we show how to construct closed two-forms on the moduli spacesM∗δ(X;F, P )sm

by using global sections of the line bundle ωX(2D). Moreover, we give a criterion of non-
degeneracy for these two-forms.

Let us fix a point [(E,α)] ofM∗δ(X;F, P )sm. By Theorem 7.14 (also by Theorem 5.10), the
vector space Ext1(E,E(−D)) is naturally identified with the tangent space T[(E,α)]M∗δ(X;F, P ).

For any ω ∈ H0(X,ωX(2D)), we can define a skew-symmetric bilinear form

Ext1(E,E(−D))× Ext1(E,E(−D))
◦−→ Ext2(E,E(−2D))

tr−→ H2(X,OX(−2D))
·ω−→ H2(X,ωX) ∼= k.

By varying of the point [(E,α)], these forms fit into a exterior two-form τ(ω) onM∗δ(X;F, P )sm.

Theorem 7.15. For any ω ∈ H0(X,ωX(2D)), the two-form τ(ω) is closed onM∗δ(X;F, P )sm.

Proof. It suffices to prove that given a smooth affine variety S, for any S-flat family
E = (E,α) of (D,F ) framed sheaves on X defining a classifying morphism

ψ : S −→ M∗δ(X;F, P ),

s 7−→ [E|{s}×X ],

the pullback ψ∗(τ(ω)) ∈ H0(S,Ω2
S) is closed. Since, ψ∗(τ(ω)) = τS(ω) by construction, the

thesis follows from Proposition 7.13. �

Thus we have constructed closed two-forms τ(ω) on the moduli spaceM∗δ(X;F, P )sm for
ω ∈ H0(X,ωX(2D)). In general, these forms may be degenerate.

Now we want to give a criterion to check when the two-form is non-degenerate. First, we
need to recall Serre’s duality for bounded complexes of coherent sheaves.

Theorem 7.16 (Serre’s duality, cf. [28]). Let M be a smooth projective variety of dimension
n and let A• be a bounded complex of coherent sheaves on M. Then the pairing

Extn−i(A•, ωM )⊗Hi(A•) −→ Hn(M,ωM ) ∼= k

is perfect.

Proposition 7.17. Let ω ∈ H0(X,ωX(2D)) and [(E,α)] a point in M∗δ(X;F, P )sm. The
closed two-form τ(ω)[(E,α)] is non-degenerate at the point [(E,α)] if and only if the multipli-
cation by ω induces an isomorphism

ω∗ : Ext1(E,E(−D)) −→ Ext1(E,E ⊗ ωX(D)).

Proof. Let E• be a finite locally free resolution of E. Consider the perfect pairing

Hom•(E•, E•)⊗Hom•(E•, E•) ◦−→ Hom•(E•, E•) tr−→ OX .

If we tensor by OX(−2D), we get the perfect pairing

A• ⊗A• ◦−→ Hom•(E•, E•(−2D))
tr−→ OX(−2D).
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where A• = Hom•(E•, E•(−D)). Hence we get an isomorphism A• → Hom•(A•,OX(−2D)).
For any section ω : OX → ωX(2D), we get a commutative diagram

(A• ⊗ ωX(2D))⊗A• Hom•(A•, ωX)⊗A• ωX

A• ⊗A• Hom•(E•, E•(−2D)) OX(−2D))

∼ eval

◦
(1⊗ω)⊗1

tr

ω⊗idOX (−2D)

Passing to cohomology, we get

Exti(E,E ⊗ ωX(D))⊗ Extj(E,E(−D)) Exti(A•, ωX)⊗Hj(A•) Hi+j(X,ωX)

Exti(E,E(−D))⊗ Extj(E,E(−D)) Exti+j(E,E(−2D)) Hi+j(X,OX(−2D))

∼

ω∗⊗1

tr

(ω⊗idOX (−2D))∗

For i = j = 1, we obtain

Ext1(E,E ⊗ ωX(D))⊗ Ext1(E,E(−D)) Ext1(A•, ωX)⊗H1(A•) H2(X,ωX)

Ext1(E,E(−D))⊗ Ext1(E,E(−D)) Ext2(E,E(−2D)) H2(X,OX(−2D))

∼

ω∗⊗1

tr

(ω⊗idOX (−2D))∗

Observe that τ(ω)[(E,α)] is the map from the lower left corner of the diagram to the upper
right corner. By using Serre’s duality for bounded complexes of coherent sheaves (in the form
stated in Theorem 7.16), we get that τ(ω)[(E,α)] is non-degenerate at the point [(E,α)] if and
only if ω∗ is an isomorphism. �

Obviously, if the line bundle ωX(2D) is trivial, for any point [(E,α)] in M∗δ(X;F, P )sm

the pairing

τ(1) : Ext1(E,E(−D))× Ext1(E,E(−D)) −→ k

is a non-degenerate alternating form.

6. An example of symplectic structure (the second Hirzebruch surface)

We denote by Fp the p-th Hirzebruch surface Fp := P(OCP1 ⊕ OCP1(−p)), which is the

projective closure of the total space of the line bundle OCP1(−p) on CP1. One can describe
explicitly Fp as the divisor in CP2 × CP1

Fp := {([z0 : z1 : z2], [z : w]) ∈ CP2 × CP1 | z1w
p = z2z

p}.

Let us denote by p : Fp → CP2 the projection onto CP2. Let D be the inverse image of a

generic line of CP2 through p. D is a smooth connected curve of genus zero with positive
self-intersection.

Let F denote the fibre of the projection Fp → CP1. Then the Picard group of Fp is
generated by D and F. One has

D2 = p, D · F = 1, F 2 = 0.

In particular, the canonical divisor Kp can be expressed as

Kp := −2D + (p− 2)F.
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Let X = F2 be the second Hirzebruch surface. In this case X is the projective clousure of the
cotangent bundle T ∗CP1 of the complex projective line CP1.

Let D be as before and F a Gieseker-semistable locally free OD-module. Note that D is
a big and nef curve and F is a good framing sheaf on D. By Corollary 5.14 there exists a fine
moduli space M∗(X;F, P ) of (D,F )-framed sheaves on X with Hilbert polynomial P.

The canonical divisor of X is K2 = −2D. Since (KX+D) ·D = −D2 < 0, by Remark 5.15
the moduli spaceM∗(X;F, P ) is smooth. Moreover, the line bundle ωX(2D) is trivial and, for
1 ∈ H0(X,ωX(2D)) ∼= C, the two-form τ(1) defines a symplectic structure on M∗(X;F, P ).

It is easy to see that our construction provide a generalization to the non-locally free case of
Bottacin’s construction of symplectic structures on the moduli spaces of (D,F )-framed vector
bundles on X with Hilbert polynomial P induced by non-degenerate Poisson structures (cf.
[10]).
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[37] —. Complexe cotangent et déformations. II. Lecture Notes in Mathematics, Vol. 283. Springer-Verlag,

Berlin, 1972.
[38] A. King. Instantons and holomorphic bundles on the blow-up plane. PhD thesis, University of Bath, UK,

1989.
[39] S. Kobayashi. Differential geometry of complex vector bundles, volume 15 of Publications of the Math-

ematical Society of Japan. Princeton University Press, Princeton, NJ, 1987. Kanô Memorial Lectures,
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[80] C. N. Yang and R. L. Mills. Conservation of isotopic spin and isotopic gauge invariance. Physical Rev.

(2), 96:191–195, 1954.

http://arxiv.org/abs/1010.5096

	Conventions
	Chapter 1. Introduction
	1. Historical background
	2. My work
	3. Contents by chapters
	4. Interdependence of the Chapters

	Acknowledgments
	Chapter 2. Framed sheaves on smooth projective varieties
	1. Preliminaries on framed sheaves
	2. Semistability
	3. Characterization of semistability
	4. Maximal framed-destabilizing subsheaf
	5. Harder-Narasimhan filtration
	6. Jordan-Hölder filtration
	7. Slope-(semi)stability
	8. Boundedness I

	Chapter 3. Families of framed sheaves
	1. Flat families
	2. Relative framed Quot scheme
	3. Boundedness II
	4. Relative Harder-Narasimhan filtration

	Chapter 4. Restriction theorems for -(semi)stable framed sheaves
	1. Slope-semistable case
	2. Slope-stable case

	Chapter 5. Moduli spaces of (semi)stable framed sheaves
	1. The moduli functor
	2. The construction
	3. An example: moduli spaces of framed sheaves on surfaces

	Chapter 6. Uhlenbeck-Donaldson compactification for framed sheaves on surfaces
	1. Determinant line bundles
	2. Semiample line bundles
	3. Compactification for framed sheaves

	Chapter 7. Symplectic structures
	1. Yoneda pairing and trace map
	2. The Atiyah class
	3. The Atiyah class for framed sheaves
	4. The tangent bundle of moduli spaces of framed sheaves
	5. Closed two-forms on moduli spaces of framed sheaves
	6. An example of symplectic structure (the second Hirzebruch surface)

	Bibliography

