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ABSTRACT 
 

In the mature central nervous system (CNS) GABA and glycine are the major inhibitory 

neurotransmitters. They act via shunting incoming excitatory currents and via moving the 

membrane potential away from the action potential threshold. However, during 

development, the action of GABA or glycine can be depolarizing and become even 

excitatory. This phenomenon plays a significant role in the maturation of the CNS, 

including neuronal migration and growth, synapse formation and plasticity of GABA 

synapses (Ben-Ari, 2002). Since synaptic inhibition operate mainly through Cl- fluxes, 

developmental regulation of this anion is crucial for the establishment of GABA/glycine 

inhibition. 

Neuronal Cl- homeostasis is controlled by the activity of several Cl- cotransporters, 

exchangers, and channels. Basically, developmental changes in GABA/glycine signaling 

are determined by the opposite action of two principal cation-chloride cotransporters, 

namely NKCC1 and KCC2 (Payne et al., 2003). The relative contribution to Cl- transport 

(uptake and extrusion, respectively) by these transporters determines the direction and 

magnitude of the Cl- current through GABA or glycine channels. Ostroumov et al. (2007) 

reported that Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is also 

involved in this process in the rat lumbar spinal cord, probably through regulation of the 

Cl- transporter NKCC1. 

The present Ph.D. research project aimed at investigating in rat lumbar spinal cord during 

the first postnatal week how CFTR expression and function may change and what impact 

may have on inhibitory synaptic potentials in relation to KCC2 and NKCC1. This region 

of the spinal cord was selected since it is known to contain the central pattern generator 



 8 

of locomotion (Goulding, 2009; Kiehn, 2006) that relies heavily on GABAergic and 

glycinergic inhition for its correct operation. Thus, with real-time RT-PCR and 

immunohistochemistry the gene expression and protein location of CFTR, NKCC1 and 

KCC2 was examined in neonatal spinal cord at various postnatal days. The Cl- outward 

transporter KCC2 gene was upregulated in females over males and increased from P1 to 

P8. The gene activities of the Cl- inward transporter NKCC1 and CFTR were positively 

correlated and grew between P1 and P8 without sex difference. P1 motoneuronal somata 

were immunopositive for CFTR whose expression later (P8) extended to cell processes. 

KCC2 immunopositivity outlined somata and cell processes at P1 and P8. 

Electrophysiological recording was used to investigate the CFTR function in terms of its 

contribution to postnatal Cl- regulation. Sharp electrode recording with the CFTR blocker 

glibenclamide showed increased motoneuron input resistance, indicating CFTR to be 

functional in motoneurons between P1-P8. Whole cell patch-clamping of spinal 

motoneurons showed that glibenclamide produced a negative shift in GABA/glycine 

reversal potential (EGABA/Gly) of spontaneously occurring synaptic events measured after 

block of excitatory transmission. A similar effect on EGABA/Gly was induced by the 

NKCC1 inhibitor bumetanide. 

Finally, a recent 3D model of the neonatal rat motoneuron (Ostroumov, 2007) was used 

to study the potential impact of CFTR inhibition on motoneuron excitability and 

EGABA/Gly by taking into account the age-dependent expression and distribution of this 

protein. Simulations suggested that CFTR activity contributes to set the EGABA/Gly positive 

to the resting potential with a depressant action on spike generation early after birth and 

at the end of the first postnatal week. 
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INTRODUCTION 

 

There is a dynamic ratio between excitation and inhibition, which is very important for 

the normal function of the nervous system. The control of this ratio is partly provided by 

fast chemical synaptic transmission. Excitatory neurotransmitters like glutamate or 

acetylcholine and inhibitory neurotransmitters like GABA or glycine operate through 

ionotropic channels which are permeable to cations or anions respectively. Excitatory and 

inhibitory neurotransmission and pioneer studies on these topics are described in 

specialized textbooks (Eccles, 1964; McLennan, 1970) 

The present study focused on investigating the impact of CFTR on the rat spinal cord Cl- 

mediated inhibition produced by GABA or glycine during postnatal development. Thus, 

this introduction will describe the developmental establishment of GABA/glycine 

inhibition and the role of canonical transporters in this process in the spinal cord and 

other regions of the CNS. Then, the role of CFTR and its function in non-neuronal cells 

will be discussed. Finally, the poorly explored issue of the expression and function of 

CFTR in the nervous system will be reviewed. 

 

1. INHIBITION IN THE DEVELOPING CENTRAL NERVOUS SYSTEM 

 

1.1. GABA and glycine during development 

 

Glycine and GABA are the major inhibitory transmitters in the adult mammalian spinal 

cord (Nishimaru and Kakizaki, 2009). GABA mediates most of its effects through two 



 10 

classes of receptors: GABAA and GABAB receptors. While GABAB receptors operate 

through G proteins, GABAA receptors are ligand-gated ion channels permeable to Cl- and 

HCO3
- with a net effect that depends on the electrochemical gradient of these anions 

(Ben-Ari, 2007). The activation of GABAA- and glycine-receptor–gated Cl- channels 

results in an inward flux of Cl- and membrane potential hyperpolarization. The inhibitory 

effect of these neurotransmitters therefore consists of two mechanisms. The 

hyperpolarization moves membrane potential away from the action potential threshold 

and this impairs action potential firing. Shunting inhibition is the second mechanism, 

through which either hyperpolarizing or depolarizing GABA/glycine receptor mediated 

responses reduce dendritic excitatory glutamatergic responses via a local increase in 

conductance across the plasma membrane and electrotonic dissipation of excitatory 

signals. 

However, the action of GABA or glycine is often depolarizing in many brain areas during 

development (for review see Cherubini et al., 1991; Ben-Ari et al., 2007; Hernandes and 

Troncone, 2009; Stein and Nicoll, 2003) and spinal cord is not an exception (Gao and 

Ziskind-Conhaim, 1995; Takahashi, 1984; Wu et al., 1992; and Ziskind-Conhaim, 1998 

for review). While Takahashi (1984) was investigating miniature depolarizing potentials 

and showed their glycinergic nature, Wu et al., (1992) showed the inhibitory action of 

GABA/glycine inhibitors on dorsal root-evoked potentials in embryonic motoneurons. It 

is noteworthy to mention that, despite the depolarizing action of GABA and glycine, Gao 

and Ziskind-Conhaim (1995) reported their inhibitory activity on spontaneous potentials 

and motoneuron excitability in the neonatal spinal cord. The indicator of the latter 
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phenomenon was failure of the action potential firing (evoked by the intracellular 

injection of small depolarizing currents) during GABA or glycine application. 

The reason of this developmental phenomenon is the relatively high intracellular Cl- 

concentration which leads to depolarizing action of GABA or glycine via anion efflux 

and loss of negative charges. So the polarity and magnitude of GABA and glycine 

receptor-mediated responses depend on the direction of the transmembrane current 

elicited by these neurotransmitters, its driving force being the difference between 

neuronal resting membrane potential and GABA/glycine reversal potential (EGABA/Gly). 

Developmental changes are determined by the progressive negative shift in EGABA/Gly that 

in turn reflects the developmental reduction of intracellular Cl- concentration (Fig. 1). It 

was shown that, in rat spinal motoneurons, a gradual shift from depolarizing to 

hyperpolarizing action of GABA/glycine occurs during the first postnatal week (Jean-

Xavier et al., 2006). Cl- was shown to be the main anion responsible for GABA/glycine 

action on immature spinal motoneurons (Cupello, 2003; Hamill et al., 1983; Wu et al., 

1992). Since EGABA/Gly is identical to the equilibrium potential of Cl- (ECl), this value can 

be used as a tool to study motoneuronal Cl- homeostasis. 
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Figure 1. Relation between Cl- reversal potential and intracellular Cl- concentration 

obtained by the Nernst equation (from Ben-Ari, 2002). 

 

 

 

1.2. Depolarization and excitation 

 

Despite the fact that GABA/glycine can depolarize immature neurons, the true excitatory 

or inhibitory nature of these depolarizations is still a matter of debate. A brief application 

of glycine onto the in vitro spinal cord isolated from fetal rats, at embryonic day 15.5 

(i.e., 1 week before birth), evokes excitatory responses that are abolished by strychnine 

(Nishimaru et al., 1996). However, in the neonatal rat spinal cord it was shown that 

despite its depolarizing nature GABA/glycine mediated postsynaptic potential 

consistently inhibited synaptic excitation of lumbar motoneurons (Marchetti et al., 2002). 
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Therefore, there is no doubt that GABA and glycine can play an excitatory role at an 

early stage of the development of spinal motoneurons, but it is generally accepted that, 

despite their depolarizing action, GABA/glycine can already be inhibitory on neonatal 

spinal motoneurons because of the shunting action of the increased Cl- conductance. 

Jean-Xavier et al. (2007) demonstrated that the excitatory or inhibitory action of 

depolarizing inhibitory postsynaptic potentials (IPSPs) depends not only on ECl but also 

on location and timing of excitatory and inhibitory inputs. Using mathematical modeling 

and electrophysiological recording, this study showed that a suprathreshold excitatory 

input could be blocked by a depolarizing IPSP when the relative interval between 

excitatory and inhibitory synapses was short. However, when the subthreshold excitatory 

input was timed to occur during the decay phase of the depolarizing IPSP, then an action 

potential (AP) was evoked. The notion that GABA/glycine could be depolarizing and 

excitatory during early postnatal development has recently been challenged by the group 

of Zilberter (Holmgren et al., 2010; Rheims et al., 2009) suggesting that this phenomenon 

is the result of metabolic stress produced by the lack of adequate energy substrate during 

in vitro experiments with hippocampal slices. Holmgren et al. (2010) have shown that 

artificial cerebrospinal fluid containing glucose with other energy substrates like ketone 

bodies, pyruvate or lactate induces significant hyperpolarization of both membrane 

potential and EGABA/Gly. Moreover, generation of giant depolarizing potentials, currently 

regarded as the hallmark of spontaneous neonatal network activity in vitro, is strongly 

inhibited in hippocampus when using the energy substrate enriched solution. Thus, such 

studies claim that the physiological action of GABA is always inhibitory even at birth. 
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1.3. Significance of GABA/glycine mediated depolarizations 

 

The depolarizing action of GABA/glycine has been observed during early development 

and in several pathological conditions (Ben-Ari, 2002). 

Since glutamatergic signaling operates somewhat later than GABAergic synapses, early 

investigations proposed that GABA should be de facto the principal excitatory transmitter 

during development (Ben-Ari et al., 2007). Thus, GABA/glycine mediated depolarization 

plays an important role in the maturation of the nervous system, including neuronal 

migration and growth, synapse formation and plasticity of developing GABA synapses 

(Ben-Ari, 2002). The first evidence that GABA may affect neurite outgrowth was 

provided by Eins et al. (1983). Indeed, they demonstrated that differentiated C1300 

mouse neuroblastoma cells treated with GABA showed an increase in the length and 

branching of processes (Eins et al., 1983). Elevating intracellular Ca2+ concentration 

mediated by GABA/glycine depolarization promotes neurite length and branching not 

just during development, but also in adult neurogenesis (for review see Sernagor et al., 

2010). 

GABA/glycine play an important role in spinal nociceptive processing. The depolarizing 

action of these neurotransmitters at the level of the dorsal horn network is often observed 

during chronic pain syndromes (Coull et al., 2003; Muller et al., 2003), especially in 

models of spinal cord injury pain (for review see Hasbargen et al., 2010). In the cerebral 

cortex, the depolarizing GABA action has also been detected during epileptiform activity 

(Cohen et al., 2002), suggesting a contribution by weakened inhibition to neuronal 

hyperexcitability. A depolarizing shift in EGABA/Gly in response to neuronal trauma has 
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been observed following anoxia/ischemia, neurite transection, and osmotic imbalance 

(Katchman et al., 1994; Pond et al., 2006; van den Pol et al., 1996). Boulenguez et al., 

(2010) has recently shown that spinal cord injury caused by spinal thoracic transection in 

adult rats produced depolarization of ECl and, later, reduction in the strength of 

postsynaptic inhibition. They attributed these changes to the altered expression of cation-

chloride cotransporter which maintains low intracellular Cl- concentration in neurons. 

Downregulation of this transporter after spinal cord injury, particularly in motoneuron 

membranes, led to the disruption of Cl- homeostasis and increased excitability of spinal 

networks and motoneurons (Boulenguez et al., 2010). 

 

2. DEVELOPMENTAL CHANGES IN Cl- HOMEOSTASIS 

 

2.1. Cation-chloride cotransporters as regulators of Cl- homeostasis 

 

Developmental changes in GABA and glycine signaling are determined by the 

progressive negative shift in EGABA/Gly that in turn reflects the developmental reduction of 

intracellular Cl- concentration. Neuronal Cl- homeostasis is maintained by the functional 

expression of Cl- transporters and Cl- channels. However, the developmental shift in 

GABA and glycine action in hippocampus and neocortex is usually attributed to function 

of two cation-chloride cotransporters, namely KCC2 and NKCC1 (for review see Blaesse 

et al., 2009; Delpire, 2000; Payne et al., 2003). These co-transporters belong to the cation 

– chloride cotransporter (CCC) family. The CCC proteins are glycoproteins with 

estimated molecular weight of 120–200 kDa. It was suggested that all of these 
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transporters have a similar transmembrane topology consisting of relatively large 

intracellular N and C termini and a central hydrophobic domain containing 12 membrane-

spanning segments (Haas and Forbush, 2000). However, the predicted secondary 

structure of CCCs, has so far been confirmed for NKCC1 only (Gerelsaikhan and Turner, 

2000). The neuron-specific K+-Cl- co-transporter KCC2 is generally considered to be 

involved in hyperpolarizing effects of GABA and glycine and a developmental up-

regulation of KCC2 expression may underlie the switch from depolarizing to 

hyperpolarizing responses (DeFazio et al., 2000; Rivera et al., 1999). In contrast, Na+-K+-

Cl- co-transporter, NKCC1, accumulates Cl- into the cell under physiological conditions. 

It may therefore contribute to the high intracellular Cl- concentration found in immature 

neurons (Plotkin et al., 1997b; Sun and Murali 1999). Figure 2 shows schematically how 

differential expression of KCC2 and NKCC1 determines developmental changes in 

intracellular Cl- concentration. Recently Stil et al. (2009) investigated the expression of 

KCC2 and NKCC1 in the ventral horn of the rat spinal cord from the embryonic day 17 

to the postnatal day 20. The significant increase in KCC2 during the first postnatal week 

was demonstrated and was correlated with the negative shift in the reversal potential for 

IPSP. Conversely, during the first postnatal week, the NKCC1 immunohistochemical 

signal was decreased. Co-staining experiments demonstrated that KCC2 protein is 

abundant in the plasma membrane of motoneurons, or in close proximity to it, whereas 

NKCC1 labeling was observed outside, with respect to motoneuronal somata (Stil et al., 

2009). Since the specificity of the antibody used in this study is controversial (Zhang et 

al., 2007; Prof. Kaila, personal communication), functional experiments are necessary to 

investigate the role of NKCC1 in neonatal spinal cord. 
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Figure 2. Developmentally regulated expression of KCC2 and NKCC1 determines 

chloride transmembrane gradient during maturation. 

 

Schematic diagram depicting NKCC1, KCC2 as well as the gradients of chloride ions. A) NKCC1 

expression predominates in immature neurons, in which the intracellular concentration of chloride is 

relatively high. B) KCC2 expression predominates in mature neurons. Note that the activation of GABAA 

receptors generates an efflux of Cl- and depolarization of immature neurons, and an influx of Cl- and an 

inhibition of adult neurons. Modified from Ben-Ari, 2002. 

 

 

2.2. KCC2 in spinal cord and brain areas 

 

KCC2 is an exceptional cation-chloride cotransporter as it exclusively expressed in CNS 

neurons (Payne et al., 1996; Rivera et al., 1999). The mammalian KCC2 (Slc12a5) gene 

generates two isoforms, KCC2a and KCC2b, with different N termini (Uvarov et al., 

2007). The mRNA levels of the two isoforms are similar in the neonatal mouse. While 

the overall expression of KCC2a remains relatively constant during postnatal 

development, the expression of KCC2b is strongly upregulated, especially in the cortex 

(Uvarov et al., 2007). This indicates that KCC2b is responsible for the extensively 
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studied ‘‘developmental shift’’ from depolarizing to hyperpolarizing GABAergic 

responses. Mice that completely lack KCC2 expression die immediately after birth due to 

severe motor defects, including respiratory failure (Hübner et al., 2001). KCC2 is located 

in the plasma membrane of somata and dendrites in various brain regions including 

brainstem and lumbar spinal cord (Blaesse et al., 2006; Jean-Xavier, 2006), as KCC2 

expression was not found in axons (Hübner et al., 2001). There is, however, a lack of 

drugs with a specific inhibitory action on KCC2, a fact that hampers functional studies of 

this transporter (Blaesse et al., 2009). The developmental increase in the expression of 

KCC2 parallels the shift of GABA- and glycine-evoked responses from depolarization to 

hyperpolarization in the hippocampus (Rivera et al., 1999; Stein et al., 2004), the 

neocortex (DeFazio et al., 2000) and the retina (Vu et al., 2000). In the rat auditory 

brainstem, KCC2 protein expression is abundant already at birth, when GABA and 

glycine are still depolarizing, and there is no substantial increase in KCC2 level during 

maturation (Balakrishnan et al., 2003). Further experiments showed that, despite this high 

level of expression, there was no KCC2 dependent extrusion of Cl- at birth because the 

transporter becomes functional later during development (Balakrishnan et al., 2003; 

Blaesse et al., 2006). Functionally-inactive KCC2 has also been observed in primary 

cortical cultures during the first few days in vitro (Khirug et al., 2005). In the rat lumbar 

spinal cord, KCC2 protein expression started already at embryonic stage and increased 

during the first postnatal week when GABA and glycine changes their action from 

depolarizing to hyperpolarizing (Stil et al., 2009). 
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2.3. NKCC1 in spinal cord and brain areas 

 

NKCC1 is found in nearly all cell types (for review see Russell, 2000). NKCC1 knockout 

animals demonstrate inner ear defects, impaired blood pressure, growth retardation and 

difficulties in locomotion (Delpire et al., 1999; Flagella et al., 1999). In the CNS NKCC1 

is found not only in neurons, but also in glial cells, the choroid plexus and vascular 

endothelial cells (Mikawa et al., 2002; O’Donnell et al., 1995; Plotkin et al., 1997a). 

However, because of inconsistent and contradictory results, general statements about 

developmental changes or about the cellular and subcellular distribution of NKCC1 in 

CNS neurons are hardly possible. Even the widespread idea that neuronal NKCC1 

expression decreases during postnatal rodent development (Plotkin et al., 1997b; Yamada 

et al., 2004) is challenged by data that show a developmental increase in the NKCC1 

mRNA and protein levels (Clayton et al., 1998; Wang et al., 2002). The current lack of a 

specific NKCC1 antibody suitable for immunocytochemistry makes the situation even 

more complicated (Blaesse et al., 2009). However, using other techniques including 

specific pharmacological block with low doses of bumetanide and analysis of NKCC1 

knockout mice, expression of NKCC1 was found in axons of cortical pyramidal neurons 

(Khirug et al., 2008). In the mouse spinal cord, NKCC1 is expressed and functions early 

in embryonic development when GABA produces an excitatory action (Delpy et al., 

2008; Hübner et al., 2001). While NKCC1 is observed in afferent neurons after birth 

where it plays an important role in nociception (for review see Price et al., 2005), data 

concerning NKCC1 expression and function in postnatal motoneurons are currently 

lacking. 
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2.4. Other contributors to EGABA/Gly 

 

Some studies have reported that NKCC1 is not involved in neuronal Cl- accumulation 

(Balakrishnan et al., 2003; Zhang et al., 2007) or its impact is rather limited (Gonzalez-

Islas et al., 2009; Khirug et al., 2008). These findings suggest that there should be other 

mechanisms involved in pumping Cl- inside immature cells. This accumulator should 

operate in parallel (or even in absence of NKCC1) and remains unidentified. A Na+ 

independent Cl-/HCO3
- exchanger might be a significant contributor to the Cl- uptake 

mechanisms (Gonzalez-Islas et al., 2009). 

In addition to its role in neuronal Cl- homeostasis, HCO3
- acts as a significant carrier of 

depolarizing current across GABAA receptors (Kaila and Voipio, 1987). This is because 

neuronal pH regulation leads to a much higher intracellular level of HCO3
- than would be 

expected on the basis of a passive distribution. Because the intracellular concentration of 

Cl- is high in immature neurons, EGABA/Gly are not directly affected by the intracellular 

HCO3
- concentration, while in mature neurons, the HCO3

--mediated current component 

can be even larger than the one mediated by Cl- (Kaila et al., 1993). Jean-Xavier et al. 

(2006) showed that the reversal potential of IPSP in the rat lumbar motoneurons was 

similar in HCO3
--free and HCO3

--containing solutions during the first postnatal week. 

There are other factors which are involved in GABA/glycine developmental shift from 

depolarization to hyperpolarization. Kelsch et al., (2001) showed that stimulation of 

insulin-like growth factor I receptors intensified KCC2 mediated transport in cultured 

hippocampal neurons. Brain-derived neurotrophic factor (BDNF) acting via tyrosine 

kinase receptor also increased expression of KCC2 in mice during embryonic 
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development (Aguado et al., 2003). Finally, in the recent report by Ostroumov et al., 

(2007) it was shown that CFTR is a modulator of neuronal Cl- homeostasis in the rat 

lumbar spinal cord during development, probably through regulation of NKCC1. 

 

 

3. CFTR IN EPITHELIAL CELLS 

 

3.1. CFTR: role and structure 

 

The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-dependent 

Cl- channel, and CFTR gene mutation has been shown to cause cystic fibrosis (CF), the 

leading lethal genetic disease among the Caucasian population (Hanrahan et al., 2002). 

CFTR is an essential component of epithelial Cl- transport systems in many organs, 

including the intestine, pancreas, lungs, sweat glands, and kidneys. The predicted primary 

structure of this protein is shown in Fig. 3A and consists of two membrane- spanning 

domains, two nucleotide-binding domains, and a regulatory domain (Riordan et al., 

1989). CFTR structure puts it in a family of transporter proteins called ATP-binding 

cassette (ABC) transporters. Several members of this family utilize the energy from ATP 

hydrolysis to actively transport substrates across cell membranes (Riordan, 2008). 

However, this protein is also known to function as an ion channel. 
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Figure 3. CFTR structure and function. 

 

A) Model showing proposed domain structure of CFTR. MSD, membrane-spanning domain; NBD, 

nucleotide-binding domain; R, regulatory domain; PKA, cAMP-dependent protein kinase. From Sheppard 

and Welsh, 1999. B) Cross-section of the epithelium with basolateral side shown on the left and apical side 

on the right. Monovalent ions like Na+, K+ and 2Cl- enter the cells from the vascular side through the 

NKCC1 operation. Na+ is actively pumped out by Na+/K+ ATPase at the basolateral membrane, and K+ also 

leaves via a basolateral potassium channel. Cl- is raised above electrochemical equilibrium and flows to the 

luminal side through the CFTR chloride channel. Na+ follows paracellularly to maintain charge balance. 

From Hanrahan et al., 2002. 

 

3.2. CFTR as an ion channel 

 

The example of Cl- secretion in intestinal epithelial cells where CFTR acts as an ion 

channel is shown on figure 3B. In brief, Cl- enters the cells through the NKCC1 

cotransporter in the basolateral membrane and exits through CFTR in the apical 

membrane (Hanrahan et al., 2002). CFTR ion channel has a low single-channel 

conductance of 6-10 pS. However, there are some variations in these values depending on 
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recording conditions and animal species. This channel is permeable mostly to anions, 

namely for Cl-, I-, Br- (Sheppard and Welsh, 1999). CFTR was also reported to function 

as a bicarbonate channel (Ishiguro et al., 2009). Water is also permeable through the 

CFTR channel (Hasegawa et al., 1992), whereas any ATP permeation is controversial 

(Reddy et al., 1996; Reisin et al., 1994). It has also been reported that CFTR is a multi-

ion pore (Tabcharani et al., 1993). The sulphonylureas glibenclamide and tolbutamide 

were found to be CFTR inhibitors which act probably through open channel block 

(Sheppard and Robinson, 1997). 

 

3.3. CFTR as a regulator of other proteins 

 

In addition to its function as a Cl- channel, CFTR acts as a regulator of other channels and 

transporters (Kunzelmann and Schreiber, 1998). CFTR mediates cAMP regulation of 

amiloride-sensitive Na+ channels (Stutts et al., 1995), outward rectifying Cl- channels 

(Egan et al., 1992; Gabriel et al., 1993), Cl-/HCO3
- exchanger (Lee et al., 1999), and the 

ROMK K+ channel (McNicholas et al., 1996). Whether these regulatory functions result 

from direct interactions between CFTR and the channels and transporters or through 

indirect interactions via other proteins remains to be determined. 

Shumaker and Soleimani (1999) working on a pancreatic duct epithelial cell line showed 

enhancement of NKCC1 expression and activity in the presence of functional CFTR. 

Later, Adam et al. (2005) demonstrated with cultured collecting duct cells that CFTR 

stimulates NKCC1 to increase intracellular Cl- concentration. 
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4. CFTR IN NEURONS 

 

4.1. CFTR expression in CNS 

 

Originally CFTR was thought to be present in epithelial cells only (Riordan et al., 1989). 

However, CFTR expression in nonepithelial cells like macrophages, lymphocytes, 

neutrophils, and smooth muscle cells has been reported (Di et al., 2006; Fonknechten et 

al., 1992; Painter et al., 2006; Vandebrouck et al., 2006). Expression of this protein was 

also found in microglia (Liu et al., 2006) and peripheral ganglia (Niu et al., 2009). 

Mulberg with his associates reported expression of CFTR in neurons of different brain 

regions of the rat brain, including the forebrain, diencephalon, midbrain, hypothalamus 

and thalamus (Mulberg et al., 1994; 1995). They also reported that CFTR was associated 

with clathrin-coated vesicles (CCV) in neurons of the hypothalmus of the bovine brain, a 

finding suggesting that CFTR might be involved in neuropeptide transport or other 

molecular trafficking (Mulberg et al., 1994). In the human nervous system, CFTR is 

expressed in the anterior hypothalamus (Mulberg et al., 1998). Recently it was shown that 

CFTR is expressed in neuronal somata and dendrites of the human spinal cord (Guo et 

al., 2009). The first report of functional expression of CFTR in rat spinal motoneurons 

was provided by Ostroumov et al. (2007). In this study glibenclamide (50 µM) was used 

to study KATP channels (Mironov et al., 1998) with the help of intra- and extracellular 

electrophysiological recordings from lumbar spinal motoneurons and interneurons at P4-

P8. But no effect of glibenclamide on rat spinal motoneurons compatible with 

pharmacological block of KATP channels was found. Facilitated mono- and polysynaptic 
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reflexes, hyperpolarized motoneuron resting potential, increased action potential 

amplitude, decreased Renshaw cell-mediated recurrent inhibition suggested that 

glibenclamide acted through CFTR inhibition (Ostroumov et al., 2007). Furthermore, this 

study showed that effects identical to those of glibenclamide were observed after 

applying tolbutamide and diphenylamine-2,2’-dicarboxylic acid (DPC), both considered 

to be CFTR inhibitors (Schultz et al., 1999). Finally, RT-PCR and western 

immunoblotting indicated strong expression of the CFTR in neonatal rat spinal cord at 

P4-P8 (Ostroumov et al., 2007). 

 

4.2. CFTR function in CNS 

 

The role of CFTR in neurons of the CNS remains unclear and the significance of its 

expression can be twofold. First, CFTR expression in neurons can be important for the 

normal function of the nervous system. Functional expression of CFTR in the 

hypothalamus led to the proposal that this protein might be involved in regulating energy 

utilization, sexual maturation, and reproductive behavior (Mulberg et al., 1995, 1998; 

Weyler et al., 1999). CFTR is able to mediate ATP hydrolysis, thereby regulating the flux 

of glutathione (GSH), which is known as a major antioxidant in the brain and 

neuromodulator of NMDA channels (Aoyama et al., 2008). This suggests that CFTR may 

profoundly affect neuronal function. Finally, this molecule can participate in the control 

of Cl- homeostasis and neuronal excitability as a Cl- channel and as a NKCC1 regulator 

(Ostroumov et al., 2007). This hypothesis was investigated during present Ph.D. research 

project. 
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Second, mutation or alteration of CFTR may induce CNS dysfunction in cystic fibrosis 

(CF). Dysfunction of CFTR in CF disrupts transepithelial ion transport and, hence, the 

function of a variety of organs lined by epithelia. This leads to the wide-ranging 

manifestations of the disease, which can include airway disease, pancreatic failure, 

meconium ileus, male infertility, and elevated levels of salt in sweat. Neural disorders are 

very rear in CF patients; however, seizures were reported in several adult CF patients 

(O’Mahony and FitzGerald, 1991). Lung transplant is often a life-saving treatment for 

CF. It is, however, interesting that those patients surviving longer after transplantation 

show high incidence of neurological syndromes including seizures (Goldstein et al., 

2000; Quattrucci et al., 2005) perhaps compatible with dysfunction of CFTR in the 

central nervous system. Dystrophic axons in the nucleus gracilis and demyelination of the 

fasciculus gracilis have been reported in CF patients, with 66% developing dystrophic 

axons (Cavalier and Gambetti, 1981). Subclinical extrapyramidal hemosiderosis has also 

been reported in CF (Wongmongkolrit et al., 1985). Such findings cannot be explained by 

the pathological changes in the lungs or other organs typically associated with CF. 
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HYPOTHESIS AND AIMS OF THE PRESENT STUDY 

 

Hypothesis 

 

The present project started by testing the hypothesis that CFTR is expressed in neonatal 

lumbar spinal cord motoneurons where it is involved in Cl- homeostasis through the 

regulation of the Cl- transporter NKCC1. 

 

Aims 

 

1. Following the demonstration that the inhibitory action of GABA and glycine in the rat 

lumbar motoneurons strongly depends on developmental changes in intracellular Cl- 

concentration during the first postnatal week, the investigation was aimed at discovering 

the mechanisms involved in the control of Cl- homeostasis during this period. Since 

NKCC1 and KCC2 were proposed as the major players responsible for the gradual shift 

in EGABA/Gly during development, the goal was to investigate age-dependent changes in 

expression and function of these proteins.  

2. In the recent report by Ostroumov et al., (2007) it was suggested that CFTR can 

participate in the control of Cl- homeostasis in rat lumbar motoneurons. So it was 

necessary to study expression and function of this protein during the first postnatal week. 

It was also important to test if CFTR could affect EGABA/Gly during this period. Finally, it 

was attempted to estimate the potential impact of CFTR on Cl- mediated inhibition of 

motoneuron excitability. 
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METHODS 

 

1. SPINAL CORD TISSUE PREPARATION 

 

The spinal cord, from low cervical segment to conus medullaris, was isolated from 

neonatal Wistar rats (0 to 9 postnatal days old, P0-P9). Animals were firstly anaesthetized 

with an intraperitoneal injection of urethane (0.2 ml ip of a 10% wt/vol solution). As soon 

as the animal lost the withdrawal reflex, it was rapidly decapitated with scissors. The 

forelimbs and the ventral part of the chest were removed and the animal was eviscerated 

in order to expose the ventral side of the vertebral column. The remaining skin was also 

removed and the body was washed in cooled (4 °C) oxygenated (95% O2 – 5% CO2) 

artificial cerebrospinal fluid (ACSF) and fixed by pins with the ventral side up to the 

sylgard bottom of a Petri dish containing ACSF at the same temperature. ACSF 

composition was (in mM): 113 NaCl, 4.5 KCl, 1 MgCl2⋅7H2O, 2 CaCl2, 1 NaH2PO4, 25 

NaHCO3 and 11 glucose; pH 7.4 at room temperature. The solution contained in the dish 

was continuously oxygenated. A complete laminectomy was performed in the 

rostrocaudal direction under the microscope. Meningeal tissue was removed from the 

ventral side while dorsal roots (DR) and ventral roots (VR) were cut as close as possible 

to the dorsal root ganglia. Remaining meningeal tissue present on the dorsal side of the 

spinal cord was also removed. For motoneuron electrophysiological studies the spinal 

cord was hemisected sagitally. 

 

 



 29 

2. REAL TIME RT PCR 

 

2.1 RNA extraction 

 

Total RNA was isolated from rat lumbar spinal cord at P1, P4, P6 and P8 following the 

Invitrogen protocol based on Trizol extraction. Namely, the lumbar region from L1 to L6 

segments was isolated and put in 1ml of Trizol (Invitrogen), where it was homogenized 

and left for 5 min. 200 µl of Chloroform was added to the sample which was centrifuged 

for 15 min at 12000 rpm at 4 °C. Then the supernatant was collected and left for 10 min 

in 500 µl of isopropanol at room temperature. After centrifugation for 10 min (12000 

rpm) at 4 °C all the supernatant was removed and 1 ml of ethanol (70%, 4 °C) added. 

Further centrifugation was applied for 7 min (7500 rpm) at 4 °C. All the supernatant was 

carefully removed and the pellet was resuspended in 10 µl of water. The RNA samples 

were kept at -80 °C until use. 

 

2.2 Reverse transcriptase 

 

1 µl of DNAse and buffer 10x (both Invitrogen) were added to 8 µl of RNA and left for 

15 min at room temperature. Then 1 µl of EDTA (25 mM) was added and left for 5 min 

at 65 °C to destroy genomic DNA. To 8 µl of RNA, 1 µl of dNTP, 0.5 µl of oligo-dT and 

0.5 µl of random hexamers were added. After 5 min at 65 °C the following reagents were 

subsequently added: 2 µl of RT buffer, 4 µl of MgCl2 (25 mM), 2 µl of DTT (0.1 M), 1 

µl of RNase OUT (40 u/µl) and 1 µl of SuperScript III RT (200 u/µl). All the oligos were 
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from Invitrogen. Solutions were kept for 10 min at room temperature, 50 min at 50 °C 

and, finally, 5 min at 85 °C. cDNA was kept at -20 °C. 

 

2.3 RT PCR 

 

Quantitative PCR was performed in a Bio-Rad (Hercules, CA) iQ5 thermocycler using 

IQ SyBr Green Supermix.  Reactions were performed in the presence of specific primers 

for CFTR, NKCC1, and KCC2 (Table 1). Data normalization was carried out with 

respect to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and neuronal �-tubulin 

III housekeeping mRNA content. 

Solutions with SyBr Green were prepared for each pair of primers (contents in µl: 25 

SyBr Green Supermix, 1 forward primer, 1 rewind primer, 18 H2O). First cDNA was 

dissolved two times and then subsequently 1:5 and 1:25 to create a standard curve. cDNA 

was mixed with SyBr Green solution and put in a PCR well plate in duplicate for each 

sample. Negative controls containing no template cDNA were run with each pair of 

primers in each condition and gave no result. To ensure absence of amplification 

artifacts, end point PCR products were initially assessed on agarose gels that gave a 

single band of the expected size for each primer. 

 

2.4 Data analysis 

 

Analysis was performed using the 2-��CT method (Livak and Schmittgen, 2001). 
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The reactions were quantified when the PCR product of interest was first detected (cycle 

threshold). Calculations for relative mRNA transcript levels were performed using the 

comparative CT method (��CT) between cycle thresholds of different reactions (Livak 

and Schmittgen, 2001). In particular, for age dependent gene expression changes, the 

parameter CT (threshold cycle) was defined as the cycle number at which the 

fluorescence emission exceeds the fixed threshold. The calculation was based on the 

difference (�CT) between the CT values of the target (CFTR, NKCC1, KCC2) and the 

housekeeping genes (GAPDH or �-tubulinIII) at each time-point at different ages, and 

then normalized with respect to the �CT value of the P1 sample. For sex difference 

experiments, normalization was made with respect to the male signal. 

 

2.5 Laser capture microdissection 

 

To investigate gene expression in distinct cell types, laser-capture experiments were 

performed. The laser pressure catapulting technique allows isolating in a plastic cap only 

one individual cell. Lumbar segments of spinal cords at P1 and P8 were frozen in liquid 

nitrogen and sectioned at 16 µm with a cryomicrotome. To distinguish motoneurons from 

other cell types slices were incubated for 15 minutes in 1% cresyl-violet dissolved in 

RNase free water. I then used a Zeiss PALM system (Carl Zeiss Microimaging) to image, 

cut and catapult motoneurons. Criteria for motoneuron selection included localization in 

the ventral part of the spinal cord; a diameter of at least 20 µm and an identifiable nucleus 

(Perrin et al., 2006; Fig. 4). 



 32 

RNA was isolated from cells following The Absolutely RNA Nanoprep Kit protocol 

(Agilent technology). Briefly, isolated cells were homogenized and protected from 

RNases using a mixture of �-mercaptoethanol, lysis buffer and ethanol (70%). After 

serial usage of High- and Low-Salt Wash Buffer, RNA was stored at -80 °C. 

RNA was retrotranscribed and real time RT PCR was performed as described above. I 

used an astrocytic marker S100B (Kuzhandaivel et al., 2010; Wang and Bordey, 2008; 

Table 1) to test if motoneurons were the only cell type I was collecting. 

 

Table 1. Primers used for real time RT-PCR experiments. 

 Primer sequence Tm (°C) 

CFTR Fw: 5’-GGCAATGTCTGGCAGTATGAATC-3’ 

Rw: 5’-GCACTTCTTCCTCCGTCTCC-3’ 

58 

NKCC1 Fw: 5’-TGGTCACATACACTGCCGAAAG-3’ 

Rw: 5’-TCCTCCTCCTCTCACGAATCC-3’ 

59 

KCC2 Fw: 5’-CACCTACGAGAAGACATTGG-3’ 

Rw: 5’-CGAGTGTTGGCTGGATTC-3’ 

54 

�-tubulin III Fw: 5’-CGCCTTTGGACACCTATTC-3’ 

Rw: 5’-TACTCCTCACGCACCTTG-3’ 

55 

GAPDH Fw: 5’-CAAGTTCAACGGCACAGTCAAG-3’ 

Rw: 5’-ACATACTCAGCACCAGCATCAC-3’ 

60 

S100B Fw: 5’-TCCACACCCAGTCCTCTC-3’ 

Rw: 5’-GCTTGTCACCCTCTCTCC-3’ 

58 
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Figure 4. Laser-capture microdissection experiments. 

 

A) Laser microdissection technique allows isolating single cell or group of cells for further analysis (from 

www.zeiss.de). B) Motoneuronal somata stained with cresyl-violet. The green line is drawn around the 

perimeter of soma. Blue dots show sites where laser impulse is applied to catapult tissue inside area. C) The 

same wide-field image after motoneuron isolation shows empty cavity. 
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3. IMMUNOHISTOCHEMISTRY 

 

For immunofluorescence staining, female rats (P1 and P8) were used. Lumbar regions of 

the spinal cord were fixed in Zinc Fixative (BD Pharmingen™) for 8-10 h and then kept 

in sucrose (30 % dissolved in Zinc fixative) for 10-12 h. Tissue was frozen in liquid 

nitrogen and sectioned at 16 µm with a cryomicrotome. Slices were washed in phosphate 

buffered saline (PBS) and processed with antibodies against CFTR (1:60, Lab Vision 

Products Thermo Fisher Scientific, Table 2), and KCC2 (1:600, Millipore/Upstate, Table 

2) overnight at 4 °C. After washing in PBS immunofluorescence reactions were 

visualized using secondary antibodies labeled with AlexaFluor 488 or AlexaFluor 594 

(1:500; Invitrogen) using wide-field and confocal microscopy. Co-staining experiments 

were performed with the anti-MAP2 antibody (Millipore, Table 2) against the 

microtubule-associated protein 2 to identify neuronal somata and dendrites. Cells stained 

with the secondary antibody only showed no immunostaining (Fig. 5). Quantitative 

analysis of immunofluorescence data was performed with MetaMorph software 

(Molecular Devices). The difference in signal intensity was calculated for somata 

between P1 and P8 by analyzing � 15 somata in sections taken at these two ages for each 

experiment. The Metamorph software was used to automatically set the signal-to-noise 

ratio by selecting a certain fluorescence threshold level (throughout the whole image) that 

was kept constant for each experiment. 

An antibody against NKCC1 (Millipore, Table 2) was also used. However, since the 

specificity of the antibody against NKCC1 is doubtful (Blaesse et al., 2009; Prof. Kaila, 

personal communication), it was important to test the antibody first. Dr Peter Blaesse and 
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Prof. Kai Kaila from University of Helsinki kindly provided NKCC1 knockout tissue. 

Figure 6 demonstrates that NKCC1 antibody was not specific, and it was not used for 

immunohistochemical experiments. 

 

 

 

Table 2. Antibodies used for immunohistochemistry. 

Antibody Type Epitope Source Dilution References 

CFTR Monoclonal 
(L12B4)) aa 386-412 

Thermo 
Fisher 

Scientific 
1:60 Kartner et al. 

(1992) 

KCC2 Polyclonal N/A Upstate 
(Millipore) 1:600 Williams et 

al. (1999) 

NKCC1 Polyclonal N/A Chemicon 
(Millipore) 1:60 Kaplan et al. 

(1996) 

Map 2 Polyclonal N/A Millipore 1:500 
Díez-Guerra 

and Avila 
(1993) 
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Figure 5. Control staining with the secondary antibody. 

 

Image showing staining with the secondary antibody only (on the right). 4',6-diamidino-2-phenylindole 

(DAPI; binds strongly to DNA) staining is shown on the left. Images were kindly provided by Dr. Miranda 

Mladinic. 
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Figure 6. Comparison of anti-NKCC1 antibody staining in coronal sections of 

mouse wild-type and NKCC1 knockout brain at P0. 

 

Coronal sections of the forebrain of the rat show substantial numbers of immunopositive cells in either 

wild-type or knockout animals. This observation confirms the lack of NKCC1 specificity of the 

commercially-available antibodies (see also Blaesse et al., 2009).  

 

 

4. ELECTROPHYSIOLOGY 

 

4.1 Recording chamber for electrophysiological experiments and viability of the spinal 

cord 

 

After dissection, the hemisected spinal cord was pinned (medial side upwards) to the 

sylgard bottom of a recording chamber made of plexiglass (internal volume ~ 3 ml) and 

was continuously perfused with ACSF. Perfusion was fed by a peristaltic pump that 

delivered oxygenated ACSF to the recording chamber, via small tubing, parallel to the 

rostrocaudal axis of the spinal cord and ACSF outflow was drained via small channel. 
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Constant flow rate was ensured by a flow spacer placed between the pump and the 

chamber to damp fast oscillations in the fluid level. Flow was maintained between 5 and 

7 ml/min. All chemicals were applied via the perfusion system. The time necessary to 

completely exchange the solution in the bath was estimated using ACSF stained with 

phenol red and found to be less then 3 min. 

Miniature suction bipolar electrodes were used in order to deliver single or repetitive 

electrical stimuli to either DR or VR. Such electrodes were made from thin (1.5 mm 

diameter) glass capillaries and contained a silver wire inside and another one wound 

around. Electrode tip diameter was chosen to closely fit the root to be stimulated. Roots 

were sucked into the electrode by applying gentle negative pressure with a syringe 

connected to the apical end of the pipette. Square electrical pulses (0.1 – 0.2 ms duration, 

0.5 – 10 V amplitude) were applied via a Grass S88 (Grass Medical Instruments) 

stimulator to either DRs to activate afferent fibers, or to VRs in order to antidromic 

stimulate motoneurons. 

After dissection, the viability of the spinal cord was ascertained before any further 

testing. In healthy preparations, single pulse stimulation delivered to one DR elicited a 

reflex response from the ipsilateral VR at the same segmental level. If this response was 

absent, the preparation was discarded.  
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4.2 Intracellular recording 

 

Intracellular recording from lumbar motoneurons at P1 and P8 was performed with sharp 

glass electrodes filled with 2M K-acetate and connected via 0.1x headstage (Axon 

instruments) to an amplifier (Axoclamp 2A, Axon instruments).  Electrode resistance 

varied between 110 and 180 M�. 

As the sharp electrode was lowered into the ventral spinal cord, the following stimulation 

protocol (delivered at frequency of 2 Hz) allowed motoneurons to be identified: a 

negative current step (10 ms, 0.5 nA) for monitoring electrode resistance, followed, with 

a 50 ms lag, by a pulse stimulus (0.1 ms duration) applied to the ipsilateral homologous 

VR (antidromic stimulation). 

When the electrode was in the proximity of the motor nucleus, antidromic stimulation 

evoked a short latency (~ 2 ms) biphasic field potential due to a synchronous motoneuron 

firing (Fulton and Walton, 1986), while the increase in the electrode resistance was used 

as a sign that the tip of the electrode was in contact with the membrane of the 

motoneuron. At this stage, the “clear” command of the amplifier was applied in order to 

facilitate penetration into the membrane. 

Current-clamp experiments were performed in bridge mode. In such conditions, the 

variable current step is known to cause a corresponding voltage drop across the 

micropipette that adds up to the cell potential in a time-independent fashion. A special 

compensation circuitry can be used to eliminate the micropipette voltage from the 

recording. Thus, the bridge mode compensation generates a signal that is proportional to 

the product of the micropipette current and the micropipette resistance: this signal is then 
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subtracted from the buffer amplifier output. By using manually this facility on the 

Axoclamp amplifier it was possible to eliminate the instantaneous voltage component. 

The accuracy of the bridge compensation was routinely checked during the experiment. 

After motoneuron impalement, VR stimulation elicited a short latency (<2 ms) all-or-

none, overshooting antidromic action potential (Fulton and Walton, 1986). Only cells in 

which this kind of response could be consistently elicited were considered for analysis. 

Electrode capacitance was compensated by injecting a current into the cell in 

Discontinuous Current Clamp mode (DCC; 1.5-2.0 Hz sample rate). In DCC mode the 

capacitance neutralization control plays a similar role to the Bridge Balance control in 

continuous current clamping. Tuning the “Capacitance Compensation” facility 

determines what fraction of time will be used for passing current and what for measuring 

voltage at a preset frequency of switching between these two modes. With the aid of an 

oscilloscope, which continuously monitored the amplifier head-stage output, it was 

possible to see the shape of the waveforms that was optimized (by manually tuning 

sampling frequency and capacitance compensation) to allow full decay of the transients 

(induced after the current pulses) to baseline before the next cycle at the maximum 

frequency. 

Motoneuron input resistance at rest was continuously monitored by injecting a negative 

current pulse (20-50 ms) and then calculated as the ratio between the steady state 

hyperpolarization amplitude induced by injection of the pulse and the amplitude of the 

current injected. Bridge balance was routinely monitored and compensated whenever 

necessary. To monitor the voltage-dependence of single cell responses, current-voltage 

(I-V) curves were performed. In this case, successive hyperpolarizing (0.01 to 0.1 nA, 
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with 0.01 nA intervals) and depolarizing (0.01 to 0.1 nA, with 0.01 nA intervals) current 

steps were delivered at 0.2-0.5 Hz. 

The function of CFTR was investigated with the sulphonylurea glibenclamide (Tocris 

Bioscience), a well-known CFTR blocker at the concentration of 50 µM (Schultz et al., 

1999). Electrical properties of motoneurons like input resistance, spike amplitude and 

membrane potential were analyzed before and after drug application via the bathing 

solution. Input resistance was calculated from the slope of the voltage/current plots. Fast 

synaptic transmission was blocked by 4-hydroxyquinoline-2-carboxylic acid (kynurenic 

acid, 3 mM), strychnine hydrochloride (1 µM), and bicuculline methiodide (20 µM) (all 

from Sigma-Aldrich). Analysis was performed with Clampfit 9.2 software (Molecular 

Devices). 

 

4.3 Whole-cell patch clamp recording 

 

The whole cell patch-clamp technique was applied to sagitally hemisected spinal cords at 

P1 and P8 (Fig. 7 A). Patch pipettes had resistance of 4-7 M� and contained in mM: 125 

K-gluconate, 5 KCl, 5 NaCl, 2 MgCl2, 10 HEPES, 10 EGTA, 2 ATP-Mg salt, pH 7.2. 

Constant positive air pressure was applied to the pipette interior while lumbar 

motoneurons were approached blindly through the medial (cut) surface of the spinal cord 

in current clamp mode as described in the previous section, although the Axopatch 1D 

(Axon Instruments) amplifier was used for patch clamp experiments. 

Similar to the experiments with the sharp electrode, biphasic field potential together with 

the increase in the electrode resistance were used as a sign that the tip of the electrode 
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was in contact with the membrane of the motoneuron. Gentle suction, applied to the 

pipette interior, led to the formation of an electrical seal with the resistance in the order of 

2-10 G� (giga-seal). After the giga-seal formation the amplifier was switched to voltage-

clamp mode and the holding potential was set to -70 mV. After that step, additional 

suction applied to the pipette interior led to membrane rupture, and enabled low 

resistance access to the cell interior. 

Motoneurons were normally held at a potential value corresponding to 0 net current flow 

(resting potential) which was in the range -75 to -85 mV and series resistance was 

routinely monitored without any compensation. All-or-none, overshooting antidromic 

action potentials were elicited at the beginning and at the end of each experiment 

switching the recording to current clamp mode for a short period of time. Only cells in 

which this kind of response could be consistently elicited and whose series resistance was 

not altered for more than 30% during an experiment, were considered for analysis. 

The junction potential from pipette to the external solution (-13 mV) was corrected 

offline based on the composition of the internal and external solutions used for recording. 

Using these transmembrane concentrations of Cl- and disregarding the operation of anion 

transporters, the Nernst equation provided a theoretical EGABA/Gly of -57 mV. During 

electrophysiological recording, the actual estimate of the EGABA/Gly value was obtained as 

previously described (Gonzalez-Islas et al., 2009). Namely, spontaneous events were 

recorded in the presence of 3 mM kynurenic acid in voltage clamp mode. Voltage steps 

were given for 15-60 sec in 5 mV increments usually from -110 to -40 mV. The average 

amplitude of spontaneous postsynaptic currents (sPSCs) at each step was plotted against 

voltage. The potential value read at zero amplitude of sPSCs was taken as the reversal 
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potential. Potential values near the actual reversal potential were avoided to remove 

uncertainty about calculating the size of small amplitude sPSCs close to the background 

noise (Fig. 7 B, C). The influence of CFTR or NKCC1 on Cl- homeostasis was estimated 

by comparing reversal potentials before and after applying of 50 µM glibenclamide or 10 

µM bumetanide (Sigma-Aldrich), respectively.  

 

Figure 7. Estimation of EGABA/Gly in whole-cell patch clamp experiments. 

 

A) Experimental configuration for patch clamping of motoneurons. DR was stimulated to elicit a reflex 

response from the ipsilateral VR at the same segmental level, therefore to check viability of hemisected 

spinal cord. Lumbar motoneurons were approached blindly with the patch pipette through the medial (cut) 

surface of the spinal cord and were identified by their antidromic response to VR stimulation in current 

clamp mode. B) An example of continuous recordings from motoneuron at P1. sPSCs were recorded at 

different holding potentials before and after glibenclamide application. C) An example of EGABA/Gly 

estimation for P1 motoneuron. 
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5. MODELING 

 

5.1. A 3D model of the motoneuron 

 

A 3D model of the neonatal rat lumbar motoneuron was reconstructed in accordance with 

the recent study by Ostroumov (2007). Random 3D morphologies of the rat spinal 

motoneurons, which correspond to a predetermined set of morphological global 

parameters describing these neurons during the first postnatal week (Table 3), were 

generated in MATLAB version 7.1 Release 14 (The MathWorks Inc.). Subsequently, 

voltage-dependent ionic currents necessary for spike generation and passive properties of 

motoneuronal membranes (Table 4, 5) were introduced into the model using the 

NEURON simulation environment (version 5.7; Hines and Carnevale, 1997). Just three 

voltage-dependent conductances were introduced into the model, namely, Na+, transient 

K+ (KA) and delayed rectifier (Kdr). These conductances distributed through the cell 

surface are sufficient to generate action potentials (Lüscher and Larkum, 1998; Safronov 

et al., 2000). Passive properties were specific membrane resistance, Rm, axial resistance, 

Ra, and specific membrane capacitance, Cm. They were defined following Thurbon et al., 

(1998) and were equal for all cell compartments. Since during the first postnatal week 

there is an increase in motoneuronal size (Fulton and Walton, 1986), developmental 

changes in motoneuron morphology were simulated by changing the mean diameters of 

the soma. 
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5.2. Simulating the effect of CFTR on the input resistance 

 

The developmental effect of the CFTR inhibition on input resistance of motoneurons was 

mimicked by changing the specific membrane resistance (Rm) of different compartments 

as indicated by the developmental regulation of CFTR expression observed in the present 

study. To this end, Rm was defined as the resistance of one square centimeter of 

membrane. If dealing with a neuron that could be modeled as a single soma compartment, 

then the input resistance would simply be given by the membrane resistance, Rin = 

Rm/area. When there are other compartments, then the axial resistances (Ra) and 

membrane resistances of these compartments also add to the resistive load, and the 

expression becomes more complicated. For a simple model with a few compartments, 

circuit theory can be used to calculate Rin in terms of Rm, Ra, and the compartment 

dimensions. In the case of an infinite cylinder, the equation is (Segev, 1998)  

Rin=(1/�)⋅d-3/2⋅(Rm⋅Ra)1/2, where d is the diameter of an infinite cylinder. 

Thus, changes in Rm values induced by experimental conditions are not directly 

transferred into variations of Rin of analogous magnitude. 

 

5.3. Estimating CFTR impact on motoneuronal excitability 

 

In order to replicate closely passive and active properties of motoneurons the model 

implies a resting membrane potential value of -70 mV. The driving force for Cl- 

(membrane potential minus the reversal potential) was then set as -10 mV as detected 

experimentally at P1. The role of changes in EGABA/Gly produced by glibenclamide was 
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investigated by simulating action potential (AP) initiation (trigger by a 5 ms depolarizing 

pulse) occurring together with the inhibitory postsynaptic potential (IPSP) whose 

parameters were similar to those recorded for the recurrent IPSP by Marchetti et al. 

(2002) and used by Jean-Xavier et al. (2007) (4-8 mV amplitude and the time constant 

between 20 and 70 ms). Electrotonic depolarizing potentials induced by subthreshold 

current pulses were used to simulate excitatory postsynaptic potentials (EPSPs). The 

kinetics of the recurrent IPSP were described by an �-function conductance given by 

I=g⋅(V-E), where I is the synaptic current (nA), g is the synaptic conductance (�S) 

calculated as g=gmax⋅t/�⋅(exp(1-t/�) with gmax equal to the maximum conductance for 

the postsynaptic inhibitory channels, t is time (ms) and � is the time constant of synaptic 

potential decay, V is the motoneuron membrane potential (mV), and E is the equilibrium 

potential (mV) for the ion(s) permeating through the open channels. The value of E was 

adjusted for the recurrent IPSPs in accordance with physiological measurements of 

EGABA/Gly before and after glibenclamide application at different developmental ages. 
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Table 3. Motoneuronal simulated morphological characteristics 

SOMA 

Minor diameter, µm 

Major diameter, µm 

19.6±5.5 

31.51±8.28 

AXON 

Axon hillock diameter, µm 

Axon hillock length, µm 

Initial segment diameter, µm 

Initial segment length, µm 

Axon proper diameter, µm 

Axon proper length, µm 

3 

8 

0.8 

10 

0.8 

500 

PROXIMAL DENDRITES 

Number, µm 

Diameter, µm 

Maximal length, µm 

6.3±1.8 

3.16±1.42 

25 

DISTAL DENDRITES 

Branching maximal order, µm 

Rall’s ratio, µm 

First group maximal length, µm 

Second group maximal length, µm 

Third group maximal length, µm 

5.1±1.3 

0.89±0.13 

40 

70 

85 
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Table 4. Distribution of voltage-gated conductances through the motoneuron 

surface 

INa, S/cm2 IKA, S/cm2 IKdr, S/cm2  

Soma 

Proximal dendrites 

Distal dendrites 

Axon hillock 

Initial segment 

Soma proper 

0.113 

0.003 

0.003 

0.7 

0.7 

0.012 

0.218 

0 

0 

0 

0 

0 

0.029 

0.001 

0.001 

0.11 

0.11 

0.04 

 

 

 

 

Table 5. Passive properties of motoneuronal membrane 

Specific membrane 

resistance (Rm), k�⋅cm2 

Specific membrane 

capacitance (Cm), µF/cm2 

Axial resistance (Ra), �⋅cm 

5.3 2.4 87 
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6. STATISTICAL ANALYSIS 

 

Statistical analysis was performed using nonparametric tests, namely the Mann-Whitney 

Rank Sum test and the Kruskal-Wallis followed by Tukey post-hoc test when comparison 

was made for more than two groups. Results are presented as mean±standard error (SE). 

Data correlation was expressed using the Spearman rank correlation. 
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RESULTS 

 

1. CFTR, NKCC1 AND KCC2 GENE EXPRESSION IN THE RAT SPINAL CORD 

DURING POSTNATAL DEVELOPMENT 

 

Real-time RT PCR experiments were performed to look at dynamical change in gene 

expression at different ages and sex of the animal. For neuronal KCC2, the neuron-

specific �-tubulin III was used as a housekeeping gene. In all other cases GAPDH was 

used as reference.  

 

1.1. Sex-dependent differences in gene expression and neuronal content of the spinal 

cord at P1 and P8 

 

At first, CFTR, NKCC1 and KCC2 mRNA levels were compared between male and 

female rats at P1 and P8, since former studies on brain tissue reported sex-difference in 

NKCC1 and KCC2 gene expression (Galanopoulou et al., 2003; Nuñez and McCarthy, 

2007; Perrot-Sinal et al., 2007). In the neonatal lumbar spinal cord, KCC2 mRNA was 

1.7±0.4 times higher in females compared to males at P1 (p<0.05, number of spinal 

cords, n=5, Fig. 8 A). At P8 the difference between male and female tissue was even 

larger for KCC2 (2.2±0.7, p<0.05, n=5, Fig. 8 A). Conversely, the β-tubulin III gene was 

less expressed in females than in males (0.7±0.1 at P1, 0.7±0.2 at P8, p<0.05, n=5, Fig. 8 

B). No significant difference between males and females was found for CFTR and 

NKCC1 gene expression at both P1 and P8 (Fig. 8 C, D). 
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Figure 8. Cl- transporter genes in males and females. 

 

A, B) KCC2 and �-tubulin III gene expression between males (	) and females (
) at P1 and P8. At both 

ages, the synthesis of KCC2 mRNA is higher in females compared to males, whereas �-tubulin III mRNA 

is lower (*p<0.05, n=5). C, D) No statistically significant difference between males and females at both 

ages for CFTR and NKCC1 was found (n=5). 
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1.2. Developmental changes in gene expression 

 

I, therefore, investigated gene transcription for KCC2, CFTR and NKCC1 at P1, P4, P6 

and P8 separately for male (top row) and female (bottom row) spinal cord tissues (Fig. 9). 

The KCC2 signal increased from P1 to P8 reaching the maximum at P6 in males 

(2.2±0.2, p<0.03, n=6) and at P8 in females (3.0±0.4, p<0.03, n=5). In accordance with 

the phenomenon of developmental loss of neurons (Bennett et al., 1983), age-dependent 

decrease in �-tubulin III gene expression was observed (Fig. 9, right). Within this age 

span, the lowest signal was at P6 in males (0.44±0.05, p<0.03, n=6) and at P8 in females 

(0.32±0.03, p<0.03, n=5). Gene expression of NKCC1 increased twice from P1 to P8 in 

the neonatal lumbar spinal cord for both sexes (p<0.03, n=6 for males, n=5 for females, 

Fig. 9). As shown in Figure 9, the signal for CFTR mRNA also rose with development in 

males (1.7±0.1 at P8, p<0.03, n=6) and in females (2.1±0.4 at P6, p<0.03, n=5). 
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Figure 9. Developmental changes in gene expression in males (	) and females (
). 

 

Signals for CFTR, NKCC1 and KCC2 increase between P1 and P8 in both genders (*p<0.03, n=6 for males 

and n=5 for females). 

 

1.3. Age dependent correlation between CFTR and NKCC1 

 

Because of the former hypothesis of a functional link between CFTR and NKCC1 

(Ostroumov et al., 2007), it was important to investigate any correlation between CFTR 

and NKCC1. The relative increase of these genes at P4, P6 and P8 was analyzed in 5 

experiments. The correlation coefficient r was obtained using Spearman rank correlation 

and had the value of 0.741 for male and 0.781 for female tissues (n=5, p<0.002; Fig. 10). 

No similar correlation was found between CFTR and KCC2, or NKCC1 and KCC2 for 

either sex. The correlation coefficients for CFTR vs KCC2 had the value of 0.079 for 
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males and 0.179 for females (n=5, p>0.5). And for NKCC1 vs KCC2 the correlation 

coefficients were equal to 0.279 for males and 0.356 for females (n=5, p>0.2). 

 

Figure 10. Developmental correlation between CFTR and NKCC1 PCR signal for 

males (	) and females (
). 

 

 

1.4. Laser capture microdissection 

 

Being interested in developmental changes in CFTR, NKCC1 and KCC2 gene expression 

in motoneurons, it was possible to isolate this type of cell using Laser Microdissection 

and Pressure Catapulting technology and perform real time RT PCR. To obtain a strong 

PCR signal it was necessary to collect at least 200 cells. Considerable S100B (a marker 

of astrocytes, Kuzhandaivel et al., 2010; Wang and Bordey, 2008) signal showed that 

there was a substantial contamination of motoneuron samples with astrocytes. This 

observation indicated that such motoneuron samples could not be further used to study 

the neuronal changes in CFTR or NKCC1 because these proteins are not neuron-specific. 
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2. IMMUNOHISTOCHEMISTRY OF CFTR AND KCC2 

 

Antibodies against CFTR and KCC2 were used to determine the presence of these 

proteins in the female neonatal lumbar spinal cord at P1 and P8. Unfortunately, there was 

no commercially available specific antibody against NKCC1 (Blaesse et al., 2009). 

 

2.1. CFTR expression in motoneurons 

 

Fig. 11 A shows that large cells in the ventral horn of the spinal cord were stained by the 

CFTR antibody. These cells were considered to be motoneurons because of their large 

somata (>20 µm diameter) and laminar location (Molander et al., 1984). Finally, co-

staining experiments with the neuronal marker Map2 were performed. Cells which were 

positive to CFTR antibody were also identified by Map2 (Fig. 11 B). 

Expression of CFTR protein was studied in P1 and P8 lumbar segments. CFTR 

expression apparently increased in cell processes and fibers from P1 to P8 (see example 

in Fig. 11 C). However, it was difficult to follow up its distribution within the dense 

neuronal mesh. Thus, the difference in signal intensity for somata between P1 and P8 was 

calculated by analyzing � 15 somata of these two ages for each experiment using 

MetaMorph software (figure 12 A). A CFTR positive soma was considered to be a 

motoneuron and marked out only if it was localized in the ventral part of the spinal cord, 

had a diameter of at least 20 µm and had an identifiable nucleus. The significant increase 

(30% on the average; p<0.001) in somatic CFTR signal intensity from P1 to P8 was 

systematically found, while the signal-to-noise ratio was the same (Fig. 12 B). 
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Figure 11. CFTR immunohistochemistry in the lumbar spinal cord. 

 

A) Confocal image showing immunohistochemical staining with anti-CFTR antibody in the ventral part of 

lumbar L3-L5 segment of P1 animal. B) Confocal image of motoneurons positive for CFTR and the 

neuronal marker Map2. C) Images showing staining with anti-CFTR antibody in P1 and P8 spinal cords. 

Images were taken using wide-field microscopy. 
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Figure 12. CFTR signal intensity measuring in motoneuronal somata at P1 and P8. 

 

A) Signal intensity was estimated inside the CFTR positive somata, which localized in the ventral part of 

the spinal cord; had a diameter of at least 20 µm and had an identifiable nucleus. An example from P8 

shows marked out regions of interest (1, 2 and 3) where intensity was calculated using MetaMorph 

Software. B) Stronger CFTR signal intensity at P8 vs P1, while signal/noise ratio for somata between P1 

and P8 is similar (* p<0.001, n=16; experiments run in triplicate). 

 

 

2.2. KCC2 expression in the rat lumbar spinal cord 

 

To analyze age-dependent changes in the amount and distribution of KCC2 in 

motoneurons, KCC2 immunoreactivity at P1 and P8 was analyzed in the ventral horn of 

lumbar spinal cords. Already at P1 a very strong signal widely distributed through the 

ventral horn and mainly expressed in cell processes surrounding cell bodies was indicated 

(Fig. 13 A, left; see also Jean-Xavier et al., 2006). At P8, the labeling pattern was similar 

in that the somata and processes were again outlined (Fig. 13 A, right). A method to 

estimate somatic signal intensity, similar to the one used for CFTR, showed that there 

was no difference in somatic KCC2 signal in the ventral horn between P1 and P8. 
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However, the staining became more distinct at P8 (Fig. 13 B for higher magnification). 

The reduction in diffuse labeling was reported by Blaesse et al. (2006) for the developing 

rat lateral superior olive, and was explained as the consequence of pruning the dendrites. 

 

Figure 13. KCC2 immunohistochemistry in the lumbar spinal cord. 

 

A) Confocal images showing staining with anti-KCC2 antibody in P1 and P8 spinal cords. B) Higher 

magnification confocal images showing staining with anti-KCC2 antibody at P1 and P8. 
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3. FUNCTIONAL CONSEQUENCES OF CFTR INHIBITION 

 

Ostroumov et al. (2007) have shown the effect of the CFTR sulphonylurea blocker 

glibenclamide (50 µM) on the electrophysiological properties of rat lumbar motoneurons 

at P4-P8. In the present study, the action of CFTR at earlier postnatal days (P0-P2) was 

clarified first, and then its impact on Cl- homeostasis during the first postnatal week was 

explored. 

 

3.1. Electrophysiology of lumbar motoneurons studied with sharp electrode technique 

 

To explore the effect of glibenclamide on the electrophysiological properties of rat 

lumbar motoneurons, these cells were recorded from the sagittally hemisected spinal cord 

at P1 and P8 in the presence of fast synaptic transmission inhibitors (3 mM kynurenic 

acid, 20 �M bicuculline, and 1 �M strychnine) to prevent network dependent effects 

(Ostroumov et al., 2007). For these initial experiments, sharp electrodes (containing 2M 

K acetate) were employed since it was important to minimize any perturbation to the 

intracellular Cl- concentration. In control solution (containing the synaptic blockers), 

membrane potential was similar for both ages (pooled average = -71.9±2.8 mV, Table 6). 

Motoneurons had input cell resistance of 39.4±5.6 M� at P1 and 17.1±2.0 M� at P8 

(p<0.005; n=5 and 4, respectively). The amplitude of the antidromic action potential was 

significantly higher at P1 than at P8 (83.4±1.5 mV and 77.5±1.4 mV respectively, 

p<0.03, n=7; Table 6). At P8 glibenclamide increased input resistance (31±10%, p<0.05, 

n=4; Fig. 14 A, B) and produced slow membrane potential hyperpolarization 
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(2.4±0.7mV, p<0.01, n=4; Fig. 14 C), in analogy with the effects of similar magnitude as 

reported earlier (Ostroumov et al., 2007). Basic electrophysiological properties of P1 

motoneurons were also affected by glibenclamide that increased input resistance 

(25.8±6.9%, p<0.01, n=5; Fig. 14 B) almost as much as at P8, and hyperpolarized 

membrane potential (1-2 mV). 

 

 

 

Table 6. Electrophysiological properties of lumbar motoneurons at P1 and P8 

obtained with sharp electrode recordings. 

 Membrane Potential, 

mV (±SE) 

Input Resistance, 

M� (±SE) 

Spike Amplitude, mV 

(±SE) 

P1 -72.7±2.3 (n=5) 39.4±5.6 (n=5) 83.4±1.5 (n=7) 

P8 -71.1±2.8 (n=4) 17.1±2.0 (n=4) 77.5±1.4 (n=7) 
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Figure 14. Effect of 50 µM glibenclamide on electrical properties of L3-L5 

motoneurons at P1 and P8. 

 

A) Sharp electrode recording from single motoneuron at P8 shows electrotonic potential induced by -0.1 

nA pulse to measure input resistance followed by VR stimulus to evoke antidromic spike (truncated). B) 

Increase in input resistance after application of glibenclamide was not significantly different between P1 

and P8. C) Continuous recording from single motoneuron at P8 shows slow membrane hyperpolarization 

after application of glibenclamide (indicated by the horizontal bar). Large deflections are truncated 

antidromic spikes. All the experiments were performed in the presence of fast synaptic transmission 

inhibitors (3 mM kynurenic acid, 20 µM bicuculline, 1 µM strychnine). 
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3.2. Patch clamp of lumbar motoneurons 

 

Developmental changes in EGABA/Gly may provide useful information for the functional 

role of CFTR in Cl- homeostasis. To this end, the blind whole-cell patch clamp method of 

recording from sagittally hemisected spinal cords was set up (Fig. 7 A). The reason to 

select patch electrodes was the need to improve the space clamp of motoneurons enabling 

the observation of the actual reversal of the synaptic currents mediating the spontaneous 

IPSPs. 3 mM kynurenic acid was used to block of glutamatergic and cholinergic 

transmission (Hilmas et al 2001; Marchetti et al 2002) to pharmacologically isolate 

spontaneous synaptic events mediated by GABA and glycine (see example in Fig. 7 B for 

P1 motoneuron). In fact, such sPSCs disappeared when strychnine (1 µM) and 

bicuculline (20 µM) were applied (data not shown; Takahashi, 1984). No age-dependent 

differences in motoneuronal electrophysiological properties were found and the data 

were, therefore, pooled together (Table 7). The potential value corresponding to 0 net 

current flow (resting potential) was in the range -75 to -85 mV at P1 and P8. In kynurenic 

acid solution motoneuron resistance was 118.5±10.4 M� (n=21). Antidromically evoked 

spike amplitude was 95.9±4.4 mV (n=21) Control experiments showed that there was no 

change in EGABA/Gly after 30 min in kynurenic acid solution alone (Fig. 15 A). However, 

as it is shown on Fig. 15 B EGABA/Gly were significantly different at P1 and P8 (-73.5±0.8 

mV and -79.6±1.1 mV respectively, p<0.01, n=13 for P1, n=8 for P8). EGABA/Gly values at 

P1 and P8 were very similar to those obtained using Renshaw cell-mediated recurrent 

inhibition recorded with sharp electrodes (Jean-Xavier et al., 2006). 
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Table 7. Electrophysiological properties of lumbar motoneurons at P1 and P8 

derived from patch clamp recordings. 

Resting Potential, mV 

(±SE) 

Motoneuron Resistance, 

M� (±SE) 

Spike Amplitude, mV 

(±SE) 

-80.2±1.2 (n=21) 118.5±10.4 (n=21) 95.9±4.4 (n=21) 

 

 

 

Figure 15. EGABA/Gly in spinal motoneurons. 

 

A) Example showing no shift in EGABA/Gly value (obtained from the horizontal intercept) after 30 min in 

kynurenic acid solution alone in P1. B) Average values of EGABA/Gly recorded at P1 and P8 in control 

solution (*p<0.01, n=13 for P1, n=8 for P8). 
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3.3. Effect of CFTR and NKCC1 block on EGABA/Gly 

 

To test whether CFTR was involved in Cl- homeostasis, EGABA/Gly before and after 

glibenclamide application was measured. The data examples of Fig. 16 A show that there 

was no voltage dependent change (within the -110 and -50 mV range) in the rate of rise 

of sPSC either in control or after glibenclamide, suggesting that those events were 

satisfactorily clamped. Fig. 16 B confirms that the decay time was not changed by 

glibenclamide on the same P1 motoneuron at -95 mV. Interestingly, unlike the data 

obtained with sharp electrode recording (Fig. 14 B), motoneuron resting resistance 

measured as the slope of I-V curve was not significantly different in control or after 

glibenclamide (Fig. 16 C). As demonstrated by the example for P1 motoneuron in Fig. 17 

A, I-V plots for synaptic events were compared before and after applying 50 µM 

glibenclamide to estimate EGABA/Gly values. After 20 min of glibenclamide application, 

the negative shift in EGABA/Gly value vs control at P1 was 6.0±1.2% (p<0.01, n=5). The 

effect of 50 µM glibenclamide on EGABA/Gly at P8 was smaller (2.5±0.5%, p<0.01, n=5; 

Fig. 17 B). 

Next, it was checked if NKCC1 activity could influence EGABA/Gly values. Application of 

the NKCC1 blocker bumetanide (10 �M for 20 min; Gonzalez-Islas et al., 2009) made 

the value of the reversal potential more negative at P1 (6.5±2.5%, p<0.01, n=5; Fig. 17 

B). Conversely, no significant difference was found at P8 (Fig. 17 B). Application of 

bumetanide didn’t produce any change in the basal electrophysiological properties of 

motoneurons at P1 and P8. 
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Figure 16. Glibenclamide did not alter rise/decay time and resting I-V curve. 

 

A) Rise time (from 10 to 90 %) measured at different potentials before and after glibenclamide application 

(example from P1 motoneuron) without significant change. B) Half-decay time (from 90 to 40 %) 

measured at -95 mV before and after glibenclamide application (from the same P1 example as in A) shows 

similar values, indicating no apparent alteration in the event (n=20 for this cell) decline. C) Linear character 

of I-V curve before and after glibenclamide application shows that no voltage activated currents appeared 

in the range of potentials used. 
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Figure 17. Effect of glibenclamide and bumetanide on EGABA/Gly. 

 

A) Example of the negative shift (-4mV) in EGABA/Gly value (obtained from the horizontal intercept) 

produced by 50 µM glibenclamide at P1. B) Histograms summarize negative shift in EGABA/Gly expressed as 

percent of control, produced by either 50 µM glibenclamide or 10 µM of bumetanide at P1 and P8 

(*p<0.01 from corresponding controls at the same age, n=5). 

 

 

4. MODELING 

 

It might be argued that the electrophysiological changes induced by glibenclamide were 

relatively small. Nevertheless, because of the changes in intensity and distribution of 

CFTR during development, their functional effects on motoneurons could be more 

important than initially imagined. It was, however, difficult to experimentally measure 

how discrete alterations in membrane properties were mediated by CFTR distributed to 

different motoneuron compartments. Thus, to gain some information about this issue, a 

recent 3D model of the neonatal rat motoneuron (Ostroumov, 2007) was used to study the 

potential impact of CFTR inhibition on motoneuron excitability and EGABA/Gly by taking 
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into account the age-dependent expression and distribution of this protein (weaker and 

mainly somatic at P1 vs stronger and spreading out to dendrites at P8; Fig. 11 C). 

 

4.1. How can CFTR distribution influence motoneuronal input resistance? 

 

In simulations, sharp electrode penetration was mimicked by drastically decreasing the 

value of the somatic Rm (which is the model variable to replicate alterations in 

motoneuron conductance) from 5300 Ω⋅cm2 (Thurbon et al., 1998) to 600 Ω⋅cm2 that 

corresponded to the input resistance value (calculated from the simulated electrotonic 

potentials depicted in Fig. 18 A, B; P1 motoneuron) similar to the one detected 

experimentally (on average 40 MΩ for P1) in control conditions with sharp electrodes. 

Hence, after setting the model conditions to those observed upon sharp electrode 

penetration, it was explored, by manipulating Rm values, how, at different ages, 

motoneuronal input resistance could be changed by glibenclamide. A 30% increase in Rm 

value restricted to the soma raised the calculated input resistance (by 22.6%) as much as 

the result observed experimentally at P1 (Fig. 18 C). The experimental results obtained at 

P8 were mimicked by a 35% Rm increase at the soma as well as in the proximal dendrites 

(26.9%; Fig. 18 C). Proximal dendrites were modeled as cylindrical segments with their 

origin on motoneuronal soma and a maximal length of 25 µm (Ostroumov, 2007). 

Experimental and modeling data therefore concurred to show that, under sharp electrode 

conditions, CFTR activity likely contributed to the resting input resistance and that its 

role was not apparently intensified by extending its localization to the proximal dendrites. 
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Figure 18. Simulations of CFTR influence on motoneuron input resistance in sharp 

electrode experiments. 

 

A) Example of voltage responses to currents (0.01 nA step increments in the range from -0.05 to 0.05) 

injected into the soma of a P1 modeled motoneuron. B) Rise in input resistance (measured as slope of I-V 

curve) after 30 % increase of the somatic Rm in exemplified P1 motoneuron to mimic the effect of 50 �M 

glibenclamide. C) Histograms depict the estimated changes in input resistance of P1 motoneuron produced 

by simulated 30 % increase  in somatic Rm. Thirtyfive 35 % increase in Rm at the soma and proximal 

dendrites of P8 motoneuron produced comparable rise in input resistance like at P1. 
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4.2. Influence of CFTR inhibition on suprathreshold motoneuron stimulation 

 

The next step was to investigate if, at P1, the 6% shift by glibenclamide of EGABA/Gly 

could be important for the excitability of motoneurons. To study this issue the AP 

initiation with a recurrent IPSP were paired (Fig. 19; see methods) after setting the 

EGABA/Gly value at -60 mV, i.e. with a 10 mV driving force as observed experimentally at 

P1. The motoneuron resting potential was always assumed to be -70 mV throughout. 

In control conditions simulated for a P1 motoneuron, 0.4 nA depolarizing step generated 

an AP (Fig. 19) that, when paired with the recurrent IPSP, required a larger (0.5 nA) 

depolarizing step to be reproduced again. However, a 6% negative shift of EGABA/Gly as 

experimentally observed with glibenclamide led to spike failure when the AP (evoked by 

0.5 nA) was paired with the IPSP (Fig. 19 A), although the AP could be reinstated by 

increasing the amplitude of the depolarizing step to 0.7 nA (not shown). Then it was 

checked if the smaller effect of glibenclamide on EGABA/Gly observed experimentally in P8 

animals was still important for the excitability of motoneurons. Simulating a 2.5% 

negative shift in EGABA/Gly together with 4 mV driving force at P8 was tested with the 

model: even such a slight change was critical for suppressing AP initiation (Fig. 19 B). 
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Figure 19. Example of modeling the interaction between suprathreshold 

depolarizing step evoking an AP and the recurrent IPSP. 

 

A) IPSP is depolarizing because the EGABA/Gly is set positive to the -70 mV resting potential for P1 modeled 

motoneuron. To replicate the AP when the two events coincided, it was necessary to raise the stimulus 

intensity to 0.5 from 0.4 nA, indicating that the IPSP could depress spike generation in control conditions.  

Six % negative shift in EGABA/Gly produced a smaller amplitude IPSP and led to spike failure when tested 

with 0.5 nA, suggesting further elevation in the spike threshold. B) The same as in A) but for P8 modeled 

cell. In this case 2.5 % negative shift in EGABA/Gly and 4 mV driving force for IPSP were introduced. 
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4.3. Influence of CFTR inhibition on subthreshold motoneuron stimulation 

 

Starting from the same resting potential (-70 mV), it was next investigated the interaction 

between an EPSP subthreshold for AP generation and the IPSP in order to find out if the 

depolarizing nature of the IPSP could summate with the EPSP to produce an excitatory or 

inhibitory action. In accordance with the modeling data by Jean-Xavier et al. (2007), 

simulating coincidence in the onset of the EPSP and IPSP failed to generate an AP, in 

keeping with the inhibitory nature of the IPSP. However, the precise time-coincidence of 

such events is probably an unusual phenomenon. Hence, it was investigated what would 

occur to motoneuron excitability when, at P1, the EPSP was timed to be produced on the 

decay phase of the IPSP (Fig. 20): in this case an AP appeared. Introducing a 6% 

negative shift of EGABA/Gly, as observed after glibenclamide application, prevented the 

EPSP from firing an AP during the IPSP decay (Fig. 20 A). The same result was obtained 

by modeling a P8 motoneuron when the EGABA/Gly driving force was set to be 4 mV and 

the change in EGABA/Gly evoked by glibenclamide was just 2.5 % (Fig. 20 B). These 

results suggest that CFTR might play an important role in motoneuron excitability 

immediately after birth and one week later. 
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Figure 20. Example of modeling the interaction between subthreshold EPSP and 

recurrent IPSP for P1 modeled motoneuron. 

 

A) The EPSP could summate with the IPSP to induce an AP at P1 if the EPSP was timed to occur on the 

decay phase of the IPSP. However, with the temporal occurrence of IPSP and EPSP as before, a 6 % 

negative shift in EGABA/Gly prevented AP initiation. Resting potential was assumed to be -70 mV. B) For P8 

modeled cell 2.5 % negative shift in EGABA/Gly and 4 mV driving force for IPSP were introduced. 
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DISCUSSION 

 

The principal finding of the present Ph.D. project is the novel characterization of the time 

profile of CFTR gene expression and immunohistochemical localization in the neonatal 

rat spinal cord during the first postnatal week with consequential influence on EGABA/Gly 

values and excitability of motoneurons. These observations suggest that, in addition to 

KCC2 and NKCC1, CFTR was a functional (yet so far neglected) contributor to Cl- 

homeostasis and, with the help of modeling, it was possible to estimate its impact on 

motoneurons. 

 

Gene expression profile of Cl- transporters in the developing rat spinal cord 

 

Real time RT-PCR experiments gave an opportunity to monitor developmental changes 

in CFTR, NKCC1 and KCC2 gene expression, a result not available to date despite 

detailed investigations into the developmental role of the transporters NKCC1 and KCC2 

(Plotkin et al., 1997b; Stein et al., 2004). A gender difference for KCC2 gene expression 

was observed that was higher in female tissue both at P1 and P8. Since KCC2 is neuron-

specific (Payne et al., 1996), and the number of neurons is reportedly higher in male 

spinal tissue (for review see Forger, 2009; see also stronger �-tubulin III signal in Fig. 8 

B), it seems likely that the difference between male and female KCC2 gene expression 

was not due to the different number of neurons. Although the physiological role of this 

sexual dimorphism remains to be determined, on the basis of the present observations 

records of male and female data were kept separate. It was also interesting if postnatal 
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sex differences in the expression of Cl- transporters might partly contribute to the 

discrepancies reported in the literature for the developmental changes in EGABA/Gly for 

males and females (Galanopoulou et al., 2003; Nuñez and McCarthy, 2007; Perrot-Sinal 

et al., 2007). 

In the present study, the activity of all genes under investigation showed a significant 

age-related rise for both genders. The increase in KCC2 mRNA accords with the notion 

that the developmental up-regulation of KCC2 is responsible for the shift from 

depolarizing to hyperpolarizing GABAergic responses (DeFazio et al., 2000; Rivera et 

al., 1999; Stil et al., 2009). Present results also provided a first description of changes in 

the NKCC1 gene expression during the first postnatal week. Despite its proposed role in 

Cl- homeostasis, the current lack of an NKCC1 antibody suitable for 

immunocytochemistry or western blot analysis (Blaesse et al., 2009) has seriously 

hampered direct validation of this proposal. Thus, RT PCR data indicated that, at least at 

mRNA level, there was a strong growth in NKCC1 and that it was clearly correlated with 

the growth in CFTR signal. Such a correlation was not detected between NKCC1 and 

KCC2. Hence, shifts in Cl- homeostasis could not simply be explained by a diametrically-

opposed change in NKCC1 vs KCC2 and required looking for additional proteins like 

CFTR. 

 

CFTR signal in the developing rat spinal cord 

 

The CFTR gene activity was present in rat lumbar spinal cord already at P1 and gradually 

increased up to P8. Immunohistochemistry data validated the CFTR protein location in 
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the same tissue at P1 and P8. In particular, CFTR was expressed in large ventral horn 

cells, presumably motoneurons because of their size, laminar distribution and 

immunopositivity to the neuron marker Map-2. The present study does not exclude that 

this protein is also expressed by other spinal cells, as CFTR has recently been observed 

even in human spinal cord interneurons (Guo et al., 2009). In the rat spinal cord at the 

end of the first postnatal week, CFTR protein expression became more evident in 

neuronal processes and somata, prompting further experiments to explore its function.  

 

Using glibenclamide to probe the role of CFTR 

 

In accordance with the former investigation (Ostroumov et al., 2007), the sulphonylurea 

glibenclamide at the concentration of 50 µM was used to inhibit CFTR function. While 

glibenclamide was developed as a KATP channel blocker to treat diabetes (Mironov et al., 

1998), at �M concentrations it is a canonical inhibitor of CFTR (Schultz et al., 1999). A 

recent report has found no effect of glibenclamide on rat spinal motoneurons compatible 

with pharmacological block of KATP channels (Ostroumov et al., 2007). Furthermore, 

effects identical to those of glibenclamide are observed after applying tolbutamide and 

diphenylamine-2,2’-dicarboxylic acid (DPC), both considered to be  CFTR inhibitors 

(Schultz et al., 1999). In the present study, the action of glibenclamide was exploited to 

check the CFTR function on EGABA/Gly and basic motoneuron properties immediately after 

birth and at the end of the first postnatal week. Since enhanced Cl- permeability has been 

shown to mediate the synaptic action of GABA and glycine on spinal motoneurons 

(Cupello, 2003; Hamill et al., 1983; Wu et al., 1992), and there is no apparent role for 
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HCO3
- (Jean-Xavier et al., 2006), the effect of glibenclamide on EGABA/Gly was taken as 

an index of the CFTR involvement in motoneuronal Cl- homeostasis.  

 

Glibenclamide actions on passive membrane properties of motoneurons 

 

Using sharp-electrodes for investigating reversal potentials has the important limitation of 

the inherently low current passing ability that prevents considerable shifts in holding 

potential to achieve effective space clamp of synaptic events. On the other hand, it was 

possible to minimize alterations in intracellular milieu due to patch electrode dialysis and, 

therefore, to check any role of CFTR on basic membrane properties under current clamp 

conditions. Glibenclamide produced motoneuron resistance increase and membrane 

hyperpolarization consistent with the inhibition of a background outward conductance 

that was comparatively similar at P1 and P8. Previous investigation has shown changes in 

passive membrane motoneuron properties produced by glibenclamide to be readily 

accounted by inhibition of a CFTR-dependent background conductance (Ostroumov 

2007; Ostroumov et al., 2007). Assuming that this effect of glibenclamide is due to 

inhibition of CFTR which is already largely expressed at somatic level of motoneurons 

even at P1, it may be suggested that there is a CFTR-modulated leak inward conductance 

that regulates the basic somatic properties. Although a possible candidate for rat spinal 

neurons is a cAMP-activated Cl- conductance (Ostroumov et al., 2007), further studies 

are necessary to identify this mechanism. It was, however, interesting that whole-cell 

patch clamp conditions did not allow observing the resistance rise produced by 
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glibenclamide, suggesting perhaps that intracellular dialysis had washed away the soluble 

mediator(s) of such an effect. 

 

Changes in EGABA/Gly in relation to ECl 

 

The whole cell patch-clamp technique allowed to investigate changes in synaptic event 

reversal before and after application of glibenclamide. In the presence of kynurenic acid 

to suppress ionotropic glutamate receptor and nicotinic cholinergic events (Hilmas et al., 

2001; Marchetti et al., 2002), EGABA/Gly of synaptic currents was recorded, a parameter 

that provides a reliable index of Cl- concentration at the synaptic level (Gonzalez-Islas et 

al., 2009). EGABA/Gly values at P1 and P8 were very similar to those obtained using 

Renshaw cell-mediated recurrent inhibition recorded with sharp electrodes (Jean-Xavier 

et al., 2006). It is noteworthy that the EGABA/Gly was less negative at P1 (-73.5±0.8 mV) 

than at P8 (-79.6±1.1 mV), and that, in either case, such a value was more negative than 

the ECl calculated with the Nernst equation. The discrepancy between calculated ECl and 

measured EGABA/Gly in the spinal cord has already been reported by Gonzalez-Islas et al. 

(2009) and Jean-Xavier et al. (2006). One parsimonious interpretation is that the 

intracellular Cl- concentration was kept at a relatively low level by a continuous 

extrusion, probably due to the operation of KCC2 that was already expressed at birth as 

shown in the present study. 
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Changes in EGABA/Gly  evoked by glibenclamide 

 

Glibenclamide produced a negative shift in EGABA/Gly which was smaller at the end of first 

postnatal week. These changes were not accompanied by significant alterations in the rate 

of rise of the synaptic currents, suggesting that there was no inhibition by glibenclamide 

of transmitter release, or alteration in the space clamp properties. Likewise, the similar 

decay time of synaptic events before and after glibenclamide application indicated that 

partial block by this drug of the open Cl- channels was unlikely.  

Since CFTR is a known regulator of membrane conductances (Kunzelmann and 

Schreiber, 1999) and, apparently, of NKCC1 in the spinal cord (Ostroumov et al., 2007), 

the present result could be explained by assuming a triad arrangement concerning the Cl- 

transport process. Thus, on the one hand, KCC2 would operate to extrude Cl- (DeFazio et 

al., 2000; Rivera et al., 1999; Stein et al., 2004), NKCC1 would counteract it by pumping 

this anion in (Plotkin et al., 1997b; Yamada et al., 2004), and CFTR would be a positive 

regulator of the latter mechanism (Fig.21). By inhibiting CFTR, this equilibrium might 

have been perturbed when NKCC1 is allegedly most active, namely at birth (Yamada et 

al., 2004). Indeed, a low concentration of bumetanide, which is reported to be a selective 

blocker of NKCC1 (Gonzalez-Islas et al., 2009), could significantly shift EGABA/Gly only 

at P1.  

Previous investigations have indicated a close inter-relationship between CFTR and 

NKCC1 because, in epithelial cell cultures, CFTR stimulates NKCC1 to increase 

intracellular Cl- (Adam et al., 2005), as well as to enhance the functional expression of 

this transporter (Shumaker and Soleimani, 1999). On the basis of the present data it is 
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proposed that CFTR exerted its modulatory role on NKCC1 activity via intracellular 

signaling pathways, whose identity in spinal motoneurons is currently unknown, but their 

role via phosphorylation has been previously inferred in fibroblasts (Stutts et al., 1997). 

The reason for the gradual loss of NKCC1 contribution to EGABA/Gly during the first week 

of life is unclear, and cannot be attributed to poor expression of CFTR or impaired 

NKCC1 gene expression that actually grew with age, perhaps in cells other than 

motoneurons. CFTR protein expression was increased in motoneurons during the first 

week (Fig. 21) and its effect on the cell input resistance was still substantial at P8, 

whereas the contribution to EGABA/Gly was decreased with the development. These data 

suggest the breakdown of functional association between CFTR and NKCC1 at the end 

of the first postnatal week, despite of high correlation in the developmental expression of 

these two genes. 
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Figure 21. Developmentally regulated functional expression of KCC2, NKCC1 and 

CFTR determines chloride transmembrane gradient during maturation. 

 

Revised version of Figure 2 by taking into account the present data that include CFTR as a possible 

regulator of NKCC1. CFTR influences Cl- homeostasis mainly at birth, whereas this functional property of 

this protein becomes weaker at the end of the first postnatal week. However, the expression of CFTR 

protein is growing during postnatal development (note the increased number of CFTR symbols at P8 on the 

scheme) 

 

Estimating the potential impact of CFTR on Cl- mediated synaptic events and its 

functional implication 

 

On motoneurons, changes in EGABA/Gly evoked by glibenclamide were comparatively 

small. Nonetheless, even small variations in EGABA/Gly might be critical for inhibition of 

such cells (Jean-Xavier et al., 2007). The present study tested this possibility by using a 

3D model of the neonatal rat motoneuron more advanced that the standard simplified 

cable model (Ostroumov, 2007). With such a tool, it was first observed that, in control 
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conditions, the depolarizing IPSP consistently raised the threshold for generating an AP, 

indicating that the IPSP had a functional inhibitory action on motoneurons. 

The 6 % change in EGABA/Gly produced by glibenclamide at P1, together with the smaller 

amplitude of the depolarizing IPSP, depressed the AP generation more strongly than in 

control. This effect was observed at P8 as well, although the action of glibenclamide was 

accompanied by an even smaller alteration in EGABA/Gly (2.5 %).  

These simulations together with the experimental results suggest that, on neonatal rat 

spinal motoneurons, GABA/glycine mediated synaptic depolarizations depressed firing 

probably via the underlying Cl- conductance shunt rather than via changes in the 

membrane potential near AP threshold. Nevertheless, in control conditions, the IPSP 

inhibitory function was transient because a simulated local depolarization (such as an 

EPSP) could summate with the IPSP and trigger a spike when the EPSP occurred during 

the falling phase of the IPSP characterized by fading of its inhibitory conductance 

together with electrotonic dissipation of the underlying potential change (Jean-Xavier et 

al., 2007). When glibenclamide made the EGABA/Gly value more negative, the IPSP 

amplitude was smaller and less effective in summating with the late-onset EPSP to reach 

threshold, thus yielding AP suppression. These observations accord with the dual 

functional nature of the depolarizing IPSP in the spinal cord of the developing rat (Jean-

Xavier et al., 2007) and highlight the novel contribution by CFTR to this phenomenon 

hitherto underestimated.  

In conclusion, RT PCR and immunohistochemistry techniques showed that CFTR was 

expressed in motoneurons of the rat lumbar spinal cord during the first postnatal week. 

Electrophysiological recordings with the sharp electrodes demonstrated this protein to be 
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functional in P1-P8 motoneurons. Whole cell patch-clamping of spinal motoneurons 

confirmed the hypothesis, made at the beginning of this study, namely that CFTR was 

involved in Cl- homeostasis mediating GABAergic and glycinergic events in a 

developmentally-regulated fashion. The present results support the project hypothesis that 

CFTR regulated NKCC1 activity at an early stage of postnatal development and that this 

interaction resulted in the modulation of Cl- mediated synaptic currents. Future studies 

will be necessary to identify the precise molecular mechanisms through which CFTR 

contributes to Cl- regulation. 
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