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Plan of the work.

In this thesis we will address the study of quantum field theories using the exact
renormalization group technique. In particular, we will calculate the flow of a
Yukawa system coupled to gravity and that of a higher derivative nonlinear
sigma model. The study of the Yukawa system in presence of gravity, as well
as the study of any matter theory coupled to gravity, is important for two
reason. First, it is interesting to see what gravitational dressing one should
expect to the beta functions of any matter theory. Second, it is important to
test the possibility that gravity is an asymptotically safe theory [1, 2] against
the addition of matter degrees of freedom.

We also calculate the 1-loop flow of a general higher derivative nonlinear
sigma model, using exact renormalization group techniques. We think that the
nonlinear sigma model is an important arena to test the exact renormalization.
The reason is that the nonlinear sigma model shares many of the features of
gravity, like perturbative nonrenormalizability, but does not have the additional
complication of a local gauge invariance. Furthermore, it is an interesting ques-
tion whether a nonlinear sigma model admits a ultraviolet limit or it has to be
regarded as an effective field theory only.

The plan of the work is as follows. In Chapter 1 we give a very brief intro-
duction to the technique of functional exact renormalization group. In Chapter
2 we introduce the notion of “Asymptotic Safety” [1] and discuss some of the
approximation schemes generally involved in calculations. In Chapter 3 we use
a simple Yukawa model as a toy model for many of the techniques we will need
later. We also discuss the background field method in the context of a the-
ory with local gauge invariance, which will turn out to be useful in Chapter 4.
In Chapter 4 we couple the simple Yukawa model with gravity and calculate
its renormalization group flow. In Chapter 5 we study numerically the flow
calculated in Chapter 4 and point out the possibility that the model admits a
nontrivial ultraviolet limit. Chapter 6 is the final chapter and contains the study
of the flow of the higher derivative nonlinear sigma model; it is a self contained
chapter. In fact, Chapter 5 and 6 contain separate discussions for the results
of the Yukawa and sigma model, respectively. We dedicate the appendices to
arguments that would have implied very long digressions in the main text.
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Chapter 1

Introduction to the

functional RG method.

1.1 QFT functionals.

In the following we are going to give a very simple introduction to a quantum
field theory, through the method of functional generators. Most of the subse-
quent concepts we are going to introduce, can of course be refined depending
on the subject under study. Our aim is to develop some necessary tool needed
for the further developments we want to build. In this introduction we want to
develop only the minimal structures needed for the understanding of the next
chapters, avoiding most of the complications.

As basic object we take a field φ that takes value on a spacetime M. We
will assume from now on that the spacetime M is euclidean and in general
riemaniann manifold, so a notion of distance among points is provided. What
we have in mind will thus be a euclidean field theory. It is common knowledge
that the QFTs that are useful for describing physical world are minkowskian,
rather than euclidean. For this reason we will also always assume that the things
we are going to compute will admit a translation, or even a direct interpretation,
in terms of some associated minkowskian field theory. This is generally done in
terms of Wick rotations to imaginary time.

The physical content of a field theory is expressed in terms of correlation
functions of the field φ. We therefore define the n-point correlation function

G(n)
A1,...,An

=
〈

φA1 . . . φAn
〉

(1.1)

Here the labels Ai of the field φ are written in a very condensed form (deWitt
condensed notation). They specify the properties of every single copy φAi of
the field inside the n-point function. In particular every label is of the form

Ai = (ai, xi) (1.2)

where xi are coordinates on M of the i-th insertion of φ. Instead, each index
ai contains information about the geometric nature of the field. Any time an
index A will appear twice in a formula, an Einstein summation convention will

7



8 CHAPTER 1. THE FUNCTIONAL RG METHOD

be assumed (otherwise stated). For example, given two fields φ and ψ having
the same type of indices, their inner product is

φAψA =

∫

dx
∑

a

φa (x)ψa (x) (1.3)

For example the field can belong to a vector space, and in that case ai will be
indices in some vector basis vai such that φ = φai (x) vai , or it can be a section
of a general fiber bundle. However through this work we will also concentrate
on cases in which φ is a map φ : M→N with N a riemaniann manifold, thus,
in this case, ai will be indices in some coordinate basis of it.

We mentioned that the physical content of our theory is encoded in the
n-point functions. Some further specification is in order. Here, in fact, we
implicitly assume that there is a way to relate the functions G(n) to observables
quantities. In general we say that a complete knowledge of the correlation
functions imply a complete knowledge of the theory and its physics.

So far for the construction, it is time to build the formalism in such a way
that things may be computed. We introduce therefore a measure

Dφ (1.4)

on the space of all possible fields and a probability density

P [φ] (1.5)

for φ. We will use Dφ and P [φ] to weigh field configurations. In particular
we ask for the expectation value of a general field configuration O [φ] to be
computed as

〈O [φ]〉 =
1

Z

∫

DφP [φ] O [φ] (1.6)

Here Z is a normalization factor for our probability, we will come back to it
later. As it is well known measure and probability always come together when
calculating correlations in probability theory. In fact one could imagine to
define a new measure D̃φ = P [φ]Dφ with associated probability equal to one,
obtaining the same result

〈O [φ]〉 =

∫

D̃φO [φ] (1.7)

In particular one may think at D̃φ as the true measure of our field theory.
Nonetheless we expect that there is some natural measure on the space N , and
therefore on the space of its maps φ, dictated by its geometry. That measure,
Dφ, will thus be taken as reference and P [φ] will contain the deviations of it
from D̃φ. As we are going to see in a moment some straight physical concept is
associated to P [φ].

With the aid of Dφ and P [φ] we now give a constructive way to calculate
correlations functions. First notice that the correlation (1.1) is obtained as

〈

φA1 . . . φAn
〉

=
1

Z

∫

DφP [φ] φA1 . . . φAn (1.8)
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From the point of view of this definition it is clear that the set of field theories
is in one to one correspondence with that of true functional measures D̃φ. Here
we may also give a distinction between classical and quantum field theory. In a
classical field theory the configuration of φ is assumed to be known once enough
boundary conditions are specified and the equations of motion are solved. We
call that configuration φA

cl. In doing so it is obvious that the probability density
must be a delta functional

Pcl [φ] = δ [φ− φcl] (1.9)

with respect to the measure Dφ. In the general, quantum, case no peculiar
configuration is picked up by the measure. In our euclidean formalism the
probability is parametrized as

Pqu [φ] = e−S[φ] (1.10)

Here we introduced the action functional

S [φ] (1.11)

of our theory.
From now on we will address the quantum case, dropping the distinctive

label. A systematic way to calculate the correlation functions is obtained intro-
ducing a source current J and coupling it to our field φ. We start by computing
the normalization factor

Z =

∫

Dφ e−S[φ] (1.12)

which is sometimes called partition function of our theory. Then, we modify Z
adding a source coupling term to the action

Z [J ] =

∫

Dφ e−S[φ]+JAφA

= Z
〈

eJAφA
〉

(1.13)

therefore making it a functional of current J . A straightforward Taylor expan-
sion around J = 0 gives

Z [J ] /Z = 1 + JA1

〈

φA1
〉

+
1

2
JA1JA2

〈

φA1φA2
〉

+ . . . (1.14)

It is clear that Z [J ] is a generating functional for the correlations, in fact

〈

φA1 . . . φAn
〉

=
1

Z

δn

δJA1 . . . δJAn

Z [J ]

∣

∣

∣

∣

J→0

(1.15)

In the future we will call the source dependent functional Z [J ] partition function
and Z will be referred just as a normalization factor. Further we define J-
dependent correlation functions simply by avoiding the limit J → 0

〈

φA1 . . . φAn
〉

J
=

1

Z

δn

δJA1 . . . δJAn

Z [J ] (1.16)

As is customary, at this point in the theory of generating functionals, to
define another functional

W [J ] = Log Z [J ] (1.17)
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W [J ] is often called generator of connected n-point functions. These connected
functions are again generated by taking J functional derivatives

G(n)
conn.,A1,...,An

=
δn

δJA1 . . . δJAn

W [J ]

∣

∣

∣

∣

J=0

(1.18)

We did not build any diagrammatic expansion so the reason of these names is
not evident. Before going on further it may be the case to give an example for
the sake of interpretation.

First we specify the form of a quite general action as

S [φ] =
1

2
∆ABφAφB + V [φ] (1.19)

Here one could think about these terms as a kinetic one plus an interaction. In
particular we may also call

S0 [φ] =
1

2
∆ABφAφB (1.20)

the “free action”. To fix ideas, imagine we were working on flat spacetime and
φ would belong to linear space. The kernel ∆ represent the propagation of the
states of our field. If ∆ is further specified to be a local differential operator,
say for example −∂µ∂µ or the Dirac operator γµ∂µ, it is well known that the
theory contains only free particle states. A general theory with action S0 [φ] is
easily solved if ∆ is invertible. To this end just calculate the functional

Z0 [J ] =

∫

φ
Dφ e−S0[φ]+JAφA

= C e
1
2JAJB(∆−1)AB

(1.21)

C is a normalization factor that we can neglect because J independent. Some-
times, this is taken as formal definition of the gaussian integration over the
space of fields.

Using Z0 [J ] it is easy to see that any even correlation function is a compli-
cated sum of products of ∆−1. One is tempted to diagrammatically interpret
each term in this expansion. To do that one has to draw a point for each la-
bel Ai of the field. Having done this, it is sufficient to join a couple of points

(A, B) with a segment, any time
(

∆−1
)AB

appears. These n-point correlation
functions are said to be disconnected, when n is larger than two, because the
segments do not join at any point, so they are all separated. Actually this is
rather trivial having introduced no interactions. The only connected function
being

〈

φAφB
〉

0,J=0
=
(

∆−1
)AB

(1.22)

that is precisely the building block for all the others correlators. If one looks at
the associated functional

W0 [J ] = Log Z0 [J ] =
1

2
JAJB

(

∆−1
)AB

(1.23)

easily realizes that it is the generator of the (only) connected function of the
system.
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Let us go beyond the very simple free action, considering also the interaction
term V [φ]. A model like this is not generally explicitly solvable, but still we
can manipulate it a little bit. Notice that

Z [J ] = e−V [ δ
δJ ]Z0 [J ] (1.24)

If the prefactor e−V is expanded, any term is going to look like a combination of
correlations functions of the free theory. The only modifications being vertices,
whose number of external lines are determined by the characteristics of V [φ].
This procedure sets the ground of what is called perturbative expansion. It is
possible to show that the n-point correlation functions generated by W [J ] are
those of Z [J ] provided one removes all the diagrams that are disconnected. This
finally explains the reason of the name generator of connected n-point functions.

Before concluding this section we need to introduce one final, and perhaps
more important, functional. We start considering the J-dependent 1-point func-
tion of any theory

φ̄A =
〈

φA
〉

J
(1.25)

that defines the field φ̄A. We state that it is, under some still unspecified
meaning, a quantum “cousin” of φA. Obviously φ̄A is a functional of the sources
JA. We define the Legendre transform

Γ
[

φ̄
]

= supJ φ̄AJA −W [J ] (1.26)

While taking the extremum in the ensamble of source configurations we are lead
to the relation

JA = JA

[

φ̄
]

(1.27)

so that φ̄ is the field configuration that realizes the maximum. The transform
Γ
[

φ̄
]

is called effective action (EA). It is also a generating functional and its
correlators are defined as

Γ(n)
A1,...,An

=
δn

δφ̄A1 . . . δφ̄An
Γ
[

φ̄
]

(1.28)

By a systematic construction one may see that the diagrammatic of W [J ] and
Γ
[

φ̄
]

are related, in particular the expansion of Γ
[

φ̄
]

contains the proper ver-
tices of the quantum theory. Essentially a proper vertex is a connected function,
that is one of those generated by W [J ], once external lines are removed. These
are also usually called “one particle irreducible functions” (1PI). Beyond the
diagrammatic interpretation, one may think about the effective action as that
(classical) action capable to reproduce the (quantum) correlations.

The computation of the effective action is often a really complicated task,
especially if one does not have theories with many symmetries and spacetime is
not two dimensional, or both. The purpose of the next sections is to highlight
the technical problems shadowed in the discussion up to now. We will also
further extend our definitions, giving up however to some generality as a price
of clarity.
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1.2 Wilson approach.

One lesson of the technique of perturbative renormalization is that the quantum
nature of a theory manifests itself through scale dependent couplings. Somehow
this is a derived feature of a QFT, coming generally to the need of renormalizing
it. Our aim now is to address the issue of scale dependence from the very begin-
ning, introducing scale dependent functionals in such a way this characteristic
is built-in in the formalism. This is rather different from perturbation theory,
where the scale emerges in the development.

We start our discussion of scale dependent functionals by introducing them
in rather historical order. It will be clear step by step that any innovation will
provide some new tool or structure. Each of these will prove useful for the
interpretation of scale dependent physics. Some of these will also be striking
from the point of view of calculations. We are going to try to underline for any
improvement what we are getting and from what point of view.

A systematic attempt to introduce scale dependence in the functionals we
constructed before is due to Wilson [3]. For simplicity we begin by considering
spacetime to be a flat d-dimensional euclidean manifold Rd. We shall also take
the field φ to be a scalar. We have now a natural basis, the momentum basis,
to expand the field

φ (x) =

∫

q
φqe

−iqx. (1.29)

We have therefore also a natural functional measure for our field integration
that is defined by

Dφ =
∏

q∈Rd

dφq (1.30)

Following the procedure of the former sections the partition function would be

Z =

∫

∏

q∈Rd

dφqe
−S[φ] (1.31)

This is of course ill defined because in explicit calculations it is generally diver-
gent, due to the infinitely many modes the field can have.

These divergences come from the unbounded integrations in momentum
space. We therefore introduce a cutoff Λ and a certain action SΛ [φ] such that

Z =

∫

∏

|q|≤Λ

dφqe
−SΛ[φ] (1.32)

The introduction of a cutoff is a regularization for the divergent correlations,
which we need in order to work with finite expressions. What we did was, at
the same time, to modify the action and the measure. We further asked that
both modifications together match and reproduce the same partition function.
From the point of view of the interpretation it makes sense to think at SΛ [φ] as
a certain UV action that contains the information of our theory if large energies
are addressed. Large energies means small scales by the dual relation. If Λ is
a very big scale beyond which we do not know the behavior of the theory, it
makes sense to associate it to the UV action of a theory with a hard cutoff.
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In general we could pick any scale k and perform the same trick to write Z.
and this is precisely what we are going to do now. We define a new action Sk [φ]
as that particular action for which

Z =

∫

∏

|q|≤k≤Λ

dφqe
−Sk[φ] (1.33)

One notices at this point that we are introducing a semigroup structure and
that it is possible to relate any Sk [φ] to SΛ [φ], in fact

Z =

∫

∏

|q|≤k

∏

k≤|q|≤Λ

dφqe
−SΛ[φ] (1.34)

determines the relation

e−Sk =

∫

∏

k≤|q|≤Λ

dφqe
−SΛ[φ] (1.35)

We thus arrived at a complicated integral equation. We interpret SΛ [φ] as the
UV action of a theory possessing a hard cutoff and Sk [φ] as the result that comes
integrating all the modes k ≤ |q| ≤ Λ towards IR. The complete integration of
allowed modes will therefore move us in the direction of a theory in which all
scales contributed to our effective understanding of the theory. We call Sk [φ]
Wilson effective actions.

We have constructed a one parameter family of actions labelled by a scale
k. These actions are supposed to contain a good description of the physics
at the associated scale. A good reason for believe it is that, by definition,
only the modes |q| & k are active at the given scale and therefore we are,
under some approximation, describing their physics. To understand this more
precisely it is the case to refine the technique using a blocking procedure. As a
byproduct, it will prove useful to have some insight on the scheme dependence
of Wilson technique. Finally it will provide us an actual way to calculate the
Wilson effective action, something that is still quite unclear from the formal
manipulations we made in this section. We will implement it in the next section.

1.3 Wilson approach through blocking.

We call a “blocked” field the result of averaging the field using a smearing
function ρk (x) [4]. The blocked version of our scalar field φ (x) is defined to be

φk (x) =

∫

y
ρk (x− y)φ (y) (1.36)

The integration is extended over the whole spacetime, but we want the smearing
function to provide an averaging of our field over a region of typical size k−d

where d is our spacetime dimension. It is clear that φk (x) is rather insensitive to
effects involving wave modes of energies greater than k, although it depends on
our coarse-graining scheme through the function ρk (x). Therefore if we manage
to build a theory for φk (x) from the coarse-graining of the theory for φ (x), we
also manage to construct an effective theory that naturally describes effects of
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energies of order k or less. One can say that we are going to build a theory for
slow-modes. We proceed constructing the coarse-grained functional

e−Sk[Φ] =

∫

Dφδ [Φ− φk] e−S[φ] (1.37)

The coarse-grained action Sk [Φ] precisely represents what we were looking for,
as we shall see in a moment. We denoted Φ the argument of the coarse-grained
functional and its phase space is spanned by all the averaged fields φk

1 .
Before going further we mention again that, as always happens in coarse-

graining procedures, there is a hidden scheme dependence in the method. In
particular, we did not specify any particular form for the smearing function
ρk (x). This is precisely what we were stressing at the end of the previous
section. A very natural choice for the smearing is the sharp cutoff form in
which

ρk (x) =

∫

q≤k
eiqx =

∫

q
θ (k − q) eiqx (1.38)

This kind of smearing provides a clear cut between slow

Φ (x) = φ< (x) =

∫

y
ρk (x− y)φ (y) (1.39)

and fast

φ> (x) = φ (x)− φ< (x) (1.40)

modes. Also, having specified the form of the smearing we can now try to
evaluate Sk [Φ], in fact

e−Sk[Φ] =

∫

Dφ<Dφ>δ [Φ− φ<] e−S[φ<+φ>] (1.41)

It is sufficient to expand quadratically the action S [φ] in φ> and perform the
gaussian integration to have an approximate result

Sk [Φ] = S [Φ] +
1

2
Trk≤q S(2) [φ]

∣

∣

∣

φ=Φ
+ . . . (1.42)

where S(2) [φ] is the second functional derivative of S [φ].
There are some issues at this point. As it is indicated the trace, that in

this case in essentially Fourier modes integration, has a lower bound k. This
essentially means that we are integrating the fast modes down to the scale we
are interested in. Unfortunately there is no upper bound and, as always happens
in QFT these unbounded integrals tend to be divergent. In a real computation
either we should have a lattice, that is a natural UV cutoff Λ proportional to
the inverse of lattice size Λ ∼ 1/a, or we should cut-off the theory in some other
way. In particular we may as well introduce a cutoff Λ and define

Sk,Λ [Φ] = S [Φ] +
1

2
Trk≤q≤Λ S(2) [φ]

∣

∣

∣

φ=Φ
+ . . . (1.43)

1In general, the phase space of the original variable φ and that of Φ differ, however for
theories in continuum they coincide.
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This procedure is rather standard and allows to reabsorb the divergences through
redefinitions of the couplings. If this is possible one can safely take the limit
Λ → ∞ and renormalize the theory. There is, however, a way out that avoids
the UV regularization procedure. It is possible, in fact, to derive an evolu-
tion equation for Sk [Φ]. It is sufficient to perform an infinitesimal step in the
integration, to get a result of the form

k
∂

∂k
Sk [Φ] =

1

2
Tr Log

δ2Sk [φ]

δφδφ

∣

∣

∣

∣

Φ

(1.44)

This is called Wegner-Houghton equation2. Once the equation is derived it
is necessary to specify SΛ [φ] = S [φ] as initial condition of the flow and the
integration towards lower values of k will automatically give regular results for
Sk [φ]. However the problem of taking the UV limit Λ→∞ is not really solved,
but rather hidden in the choice of some initial condition of the flow. We will
extensively address this problem in the next chapter.

1.4 Functional renormalization.

In the previous section we just uncovered a small piece of what generally goes
under the name of functional renormalization. We start by further modifying
the partition function associated to a theory by adding an infrared cutoff that
depends on some cutoff scale k. In this context k is generally called sliding
cutoff scale. We will also try to keep the discussion as general as possible, so
we restore the abstract index notation of the field φA. We define

Zk [J ] =

∫

Dφ e−S[φ]+JAφA−∆Sk[φ] (1.45)

where we introduced by hand a new term, called infrared cutoff term [5]. The
new term is required to satisfy

∆Sk=0 [φ] = 0 (1.46)

in such a way that Zk=0 [J ] = Z [J ]. This means that, taking the limit k → 0,
we get back the partition function we defined previously in (1.13) [5].

We also want ∆Sk [φ] to implement a coarse-graining similar to that pro-
duced by the function ρk of the previous section. To this end we first ask it to
be at most quadratic in the field φA:

∆Sk [φ] =
1

2
φARk,ABφB (1.47)

(we recall that repeated indices imply summation). Now it is clear that the
cutoff affects directly the propagation of φA modes. The coarse-graining of
these may be achieved as follows. We start by looking at the quadratic kernel
of the action and define

∆AB = S(2)
AB

∣

∣

∣
(1.48)

2Note that, differently from the other exact functional equations we are going to derive in
the following, the Wegner-Houghton equation that we present here still needs a subtraction
point to make sense.
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where the vertical bar means that it is evaluated at some particular reference
field configuration. As an example, if we are doing perturbative computations
for a field that belongs to a vector space, a good choice could be φA = 0. In
general ∆AB is some reference operator and with respect to it we are coarse-
graining. It is not really necessary that it is the second order expansion our
action S [φ], what is fundamental instead is that it will provide us a distinction
of rapid and slow modes as we will briefly outline. We will use in the following
a spectral representation that has been introduced in [6].

We first assume the existence of some metric gABδφAδφB in field configura-
tion space so to obtain an endomorphism

∆A
B = gAC∆CB (1.49)

Then there exists a basis ψA
i of functions that diagonalize ∆A

B with eigenvalues
λi

∆A
BψB

i = λiψ
A (1.50)

Modes ψA
i are now referred to “rapid” if λi ! k and “slow” if λi " k. We ask

the kernel Rk
A

B of ∆Sk [φ] to be a function of ∆A
B. The quadratic kernel of

the theory together with the cutoff term is

∆A
B + Rk

A
B [∆] (1.51)

and we require it to kill mainly the propagation of the slow modes ψA
i , so those

such that λi ≤ k2. This is seen easily by moving to the eigenstates basis where

∆A
B + Rk

A
B [∆]→ λi + Rk [λi] (1.52)

We want Rk [λ] to satisfy

• Rk=0 [λ] = 0 that ensures the limit Zk=0 [J ] = Z [J ].

• Rk→∞ [λ] = ∞ at fixed λ. This ensures that in the converse limit no
modes are propagating.

• Rk [λ] & 0 for λ ≥ k, so the rapid modes are unaffected by the coarse-
graining. Conversely slow modes will tend to have a mass that forces their
decoupling from spectrum.

We will later introduce some precise choice for the shape of Rk [λ] function. In
general there is some freedom in its choice, that reflects in some scheme depen-
dence of our averaging technique. This is exactly analog to the Wilson case,
where the blocking smearing function ρk was undetermined in (1.36). There,
we were able to point out a natural form for ρk and some similar consideration
may be done also for Rk [λ].

We can use Zk [J ] in exactly the same way we used Z [J ] previously, although
it has a further k dependence. We first define a modified generator of connected
green functions

Wk [J ] = Log Zk [J ] (1.53)

to be compared with (1.17). Both Zk [J ] and Wk [J ] generate n-points corre-
lations, which will differ from those generated by Z [J ] and W [J ] only for a
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further k dependence. In particular we have the single point correlation (at
non-zero source)

φ̄A = 〈φ〉k,J =
δWk [J ]

δJA
(1.54)

For the “average field” φ̄ we used the same notation that was introduced when
there was no k dependence (1.25). It is interesting to note that this the relation
is generally k dependent. This means that when later k derivatives will be per-
formed, we will have to specify the behavior of J and φ̄ under it. In particular,
we cannot have them simultaneously constant under k, but we can choose that
either the source of the average field are.

Like in (1.26) we can use φ̄ to define a Laplace transform

Γ̂k

[

φ̄
]

= φ̄AJA

[

φ̄
]

−Wk

[

JA

[

φ̄
]]

(1.55)

where again J has to be inverted as a function of φ̄. We slightly changed
notation to Γ̂k because we want to reserve Γk for what we call the “effective
average action”

Γk

[

φ̄
]

= Γ̂k

[

φ̄
]

−∆Sk

[

φ̄
]

= φ̄AJA

[

φ̄
]

−Wk

[

JA

[

φ̄
]]

−∆Sk

[

φ̄
]

(1.56)

In particular this last functional will be our main object of study. Notice that
both (1.55) and (1.56) tend to (1.26) in the limit k → 0 [5].

1.5 Functional equations.

The functionals we introduced in the previous section posses some interesting
property, namely, their behavior with respect to the sliding scale k is governed
by functional equations we are going to derive now [5, 7, 8]. Our first step is to
calculate the k-derivative of Zk [J ] = Exp (Wk [J ]) (see (1.53)) at fixed source J

∂keWk[J] = −1

2

∫

DφφA∂kRk,ABφBe−S[φ]+JAφA−∆Sk[φ]

= −1

2

δ

δJA
∂kRk,AB

δ

δJB
eWk[J] (1.57)

We remind that repeated indices are summed. It is important to notice that J-
derivatives are acting only on the far right of the second line because k-derivative
is taken at fixed J . Easily, one sees that this equation is a functional equation
for Zk [J ]. After some easy manipulation we arrive at Polchinski equation [9]

∂kWk [J ] = −1

2
∂kRk,AB

(

δ2Wk [J ]

δJAδJB
+

δWk [J ]

δJA

δWk [J ]

δJB

)

(1.58)

that is a functional differential equation for the evolution of Wk [J ]. At this point
it is worth to notice that we developed in a rather different way than Polchinski
originally did. There is an obvious notation difference that amounts at replacing
Wk [J ] → −Wk [J ]. Also the original Polchinski equation is a functional of the
field, rather than the current. Therefore it is more precise to say that our
equation is in form analog to Polchinski’s one. Apart from this, our derivation
is useful to obtain the evolution of Γk

[

φ̄
]

as we shall see below.
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The first step is to show some formal manipulation involving the two func-
tionals that are related by a Legendre transform. As the field φ̄A is defined
by

φ̄A =
δWk [J ]

δJA
(1.59)

it is easy to show that the current JA comes from the φ̄A derivative of Γ̂k

[

φ̄
]

of
(1.55). In fact we can use its definition (1.55) as follows

δΓ̂k

[

φ̄
]

δφ̄A
= JA +

δJB

δφ̄A
φ̄B − δWk [J ]

δφ̄A

= JA +
δJB

δφ̄A
φ̄B − δWk [J ]

δJB

δJB

δφ̄A

= JA (1.60)

For the average effective action (1.56) we have therefore

δΓ̂k

[

φ̄
]

δφ̄A
= JA =

δΓk

[

φ̄
]

δφ̄A
+ Rk,AB φ̄B (1.61)

We now also need to distinguish if the derivatives with respect to k are
taken at constant J or φ̄. We therefore temporarily use ∂̄k for the k derivative
at constant φ̄. We can relate these derivatives by [8]

∂k = ∂̄k + ∂kφ̄A δ

δφ̄A
(1.62)

First it is useful to notice that we can reshuffle Γk

[

φ̄
]

definition as

Γk

[

φ̄
]

+ Wk [J ] = JAφ̄A −∆Sk

[

φ̄
]

(1.63)

and act with ∂k on both sides. The left hand side gives

∂k

(

Γk

[

φ̄
]

+ Wk [J ]
)

= ∂̄kΓk

[

φ̄
]

+ ∂kφ̄AJA − ∂kφ̄ARk,ABφ̄B

−1

2
∂kRk,AB

δ2Wk [J ]

δJAδJB
− 1

2
∂kRk,AB φ̄Aφ̄B (1.64)

while the right hand side gives

∂k

(

JAφ̄A −∆Sk

[

φ̄
])

= ∂kφ̄AJA − ∂kφ̄ARk,ABφ̄B

−1

2
∂kRk,AB φ̄Aφ̄B (1.65)

Equating (1.64) and (1.65) gives a result that is very close to what we were
looking for, because it is an equation for the average effective action

∂̄kΓk

[

φ̄
]

=
1

2
∂kRk,AB

δ2Wk [J ]

δJAδJB
(1.66)

but some formal manipulation is still needed because we want it to be expressed
in terms of Γk

[

φ̄
]

only.
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What we need is a simple property that combines the matrices of second
derivatives of two functionals that are related by a Legendre transformation. It
is sufficient to calculate the second derivative of Γ̂k

[

φ̄
]

and after some algebraic
manipulation one gets, in matrix notation

Γ̂(2)
k

[

φ̄
]−1

=

[

δ2Γ̂k

[

φ̄
]

δφ̄δφ̄

]−1

=
δWk [J ]

δJδJ
= W (2)

k [J ] (1.67)

Inserting this relation in the flow for Γk

[

φ̄
]

(1.66) together with the definition

Gk

[

φ̄
]

= Γ̂(2)
k

[

φ̄
]−1

=
(

Γ(2)
k

[

φ̄
]

+ Rk

)−1
(1.68)

we obtain the exact renormalization group equation (ERGE) [5]

∂kΓk

[

φ̄
]

=
1

2
Tr Gk

[

φ̄
]

∂kRk (1.69)

Here we dropped the bar notation in ∂k of (1.62) because from now on derivatives
will be performed at fixed φ̄. The trace is extended to every index, so it includes
integrations over continuous indices. For future reasons we define the scale
parameter t = Log k/k0 that uses an arbitrary reference scale k0. We also
indicate t derivatives by dots, the ERGE is therefore written

Γ̇k

[

φ̄
]

=
1

2
Tr Gk

[

φ̄
]

Ṙk (1.70)

It is obvious from the construction (1.68) that Gk

[

φ̄
]

has a role of modified
propagator in which slow modes are suppressed. As we shall see later one
can interpret the ERGE as a 1-loop equation where the modified propagator
performs a loop with a single insertion of the derivative of the cutoff term.
Indeed, this “1-loop like” structure is very useful from the computational point
of view and makes many calculations accessible. This structure is also best
visualized in terms of diagrams, as we can see in Fig. 1.1. However this equation
is not approximate, as we always have to remember, so the results are exact.
As a final remark we have to say that the ERGE is a functional differential
equation, therefore contains an enormous amount of information. This can be
seen by the fact that it leads to an infinite tower of functional equations for the
correlations

Γ(n)
k

[

φ̄
]

(1.71)

of Γk

[

φ̄
]

. To show this it is sufficient to take any number of derivatives of Γ̇k

[

φ̄
]

using the fact that

δ

δφ̄A
Gk,BC

[

φ̄
]

= −Gk,BD

[

φ̄
]

Γ(3)
k,ADE

[

φ̄
]

Gk,EC

[

φ̄
]

(1.72)

A diagrammatic representation of this identity is given in Fig. 1.2. It is easy

to see that the flow of the n-point correlation Γ̇(n)
k

[

φ̄
]

depends at most on

Γ(n+2)
k

[

φ̄
]

Γ̇(n)
k

[

φ̄
]

= Fn

[

Γ(n+2)
k , . . . ,Γ(2)

k ; φ̄
]

(1.73)

for some functional Fn. We come back later to this point. We will also drop
the bar notation in φ̄ from now on, because no more reference will be made to
the other functionals.
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k ∂
∂kΓk = 1

2

Figure 1.1: Diagrammatic representation of 1
2TrG(2)Ṙk. The straight line rep-

resents the modified propagator G(2), while the crossed vertex is the cutoff
insertion Ṙk in the trace. The line is closed because all the degrees of freedom
are traced.

δ
δφA = −

A

Figure 1.2: Diagrammatic representation of formula (1.72), δ
δφ̄A Gk =

−GkΓ
(3)
k,AGk.

1.6 Alternate form of the ERGE.

We want now to briefly give another derivation of exact renormalization group
equation. In particular we will obtain the flow of the average effective action,
without using that of the functional Wk [J ] and implicitly that of Zk [J ]. We
first recall definition (1.53)

eWk[J] =

∫

Dφ e−S[φ]−∆Sk[φ]+J·φ (1.74)

where we omitted some index for brevity. It is easy to substitute the definition
of the functional Γ̂k

[

φ̄
]

(1.55), being the transform of Wk [J ]. In order to get

rid of the current, we remember that J = δΓ̂/δφ̄ is a general property of the
transform. We obtain

e−Γ̂k[φ̄] =

∫

Dφ e−S[φ]−∆Sk[φ]+
δΓ̂k
δφ̄ (φ−φ̄) (1.75)

In the last step we moved a current-field term on the right hand side. This is
an integro-differential equation for Γ̂k

[

φ̄
]

.

We now want to write it completely in terms of Γk

[

φ̄
]

= Γ̂k

[

φ̄
]

−∆Sk

[

φ̄
]

of (1.56). Before performing the substitution it is crucial to remember that the
infrared cutoff term (1.47) is quadratic in the fields. We first introduce some
notation defining the fluctuation field χ = φ− φ̄. In terms of this one easily sees
that the difference of the cutoff evaluated in φ and φ̄ has finite terms

∆Sk [φ]−∆Sk

[

φ̄
]

=
δ∆Sk

δφ

∣

∣

∣

∣

φ̄

χ + ∆Sk [χ] (1.76)
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We can now substitute the definition of the average action (1.56) and manipulate
it so that only its exponential remains on the left. We also use the invariance
of the integration measure under translation to integrate over χ. We get

e−Γk[φ̄] =

∫

Dχ e
−S[φ̄+χ]−∆Sk[φ̄+χ]+ δΓk

δφ̄
χ+

δ∆Sk
δφ̄

˛

˛

˛

φ̄
χ

(1.77)

which we can further simplify using the properties of the quadratic cutoff we
outlined and obtain

e−Γk[φ̄] =

∫

Dχ e−S[φ̄+χ]−∆Sk[χ]+
δΓk
δφ̄

χ (1.78)

It is important to remember that the expectation value of a single χ field is
always zero by construction

〈χ〉 =
〈

φ− φ̄
〉

= 0 (1.79)

so equations (1.78) and (1.79) are actually a coupled system. Again we have an
integal equation for the effective average action.

In order to recast this integro-differential equation in a differential form, it is
sufficient to perform a k∂/∂k derivative on both sides. A potentially dangerous
term is that coming from the derivative of Γk

[

φ̄
]

appearing on the right. How-
ever, as we expect, it must be zero. Indeed it disappears after the χ integration
is performed, because it is proportional to 〈χ〉 = 0 In the process of obtaining
the flow, it is also necessary to recall how correlators are written in terms of the
functionals and translate everything using the definition of the average action.
The final result is again the exact renormalization group equation (1.69), (1.70).

1.7 1-loop approximation and ERGE.

In this section we are going to review an established approximation scheme of
ERGE that goes under the name of 1-loop approximation. Loop counting is
generally performed by powers of !, so in this section we are going to restore it
although it was originally omitted and set to one. Actually, we are not going to
start from ERGE, but rather from the full effective action that Γk [φ] captures
only in the limit k → 0 by definition.

It is well known in QFT that the saddle point approximation of the path
integral leads to an approximate form of the effective action

Γ1,L [φ] = S [φ] +
!

2
Tr Log S(2) (1.80)

while in general

Γ [φ] = Γ1,L [φ] + O
(

!
2
)

(1.81)

If we evaluate in the same way the action Γk defined in (1.56) we obtain

Γ1,L
k [φ] = S [φ] +

!

2
Tr Log

(

S(2) [φ] + Rk

)

(1.82)

Notice that the term ∆Sk in the bare action cancels against that of the definition
(1.56).
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It obeys

Γ̇1,L
k [φ] =

!

2
Tr

(

S(2) [φ] + Rk

)−1
Ṙk (1.83)

that is, an approximated ERGE (1.69) in which Γ(2)
k [φ] is approximated by

S(2) [φ] (and, of course ! is restored).
We may also derive it entirely in the formalism of exact renormalization

group. First, we expand Γk [φ] in powers of !

Γk [φ] =
∑

n≥0

!
nΓn,L

k (1.84)

and n apex counts the number of loops through the powers of !. If we insert
this expansion inside the ERGE (1.69) we get that the order zero in ! imply

Γ0,L
k = S [φ] (1.85)

because it does not flow as expected and is given by the initial conditions only.
The other terms in the expansion, instead, flow according to

!Γ̇1,L
k + !

2Γ̇2,L
k + . . . =

!

2
Tr

(

S(2) + !Γ1,L,(2)
k [φ] + · · · + Rk

)−1
Ṙk

(1.86)

Equating order by order in ! this equation, we obtain a set functional differential
equations for each Γn,L

k [φ] in the form of an infinite tower of equations. This set

is ordered by powers of !. We notice that the flow of Γn,L
k [φ] depends at most on

Γn+1,L
k [φ], as is customary in perturbation theory. In particular (1.82) coincides

with the order ! of (1.86). This means that the result of perturbation theory
calculated with ERGE coincide with those calculated with standard methods,
modulo the usual scheme dependence due to cutoff procedures. What we just
said is true also in the sense that the validity of the 1-loop approximation of
ERGE is limited to weak coupling regimes, as it is well known for standard
QFT procedures. We refer to [10] for a systematic study of the problem of
reconstructing perturbation theory from exact renormalization group.

There is an apparent difference between the standard perturbative renormal-
ization of a QFT and the functional approach we outlined. It concerns where
the UV problem is addressed. In perturbation theory and with cutoff Λ regular-
ization, the quantities are renormalized so that the limit Λ → ∞ can be safely
taken. A renormalization scale is a byproduct of this realization and the beta
function tells us how the coupling behave according to the scale. As we outlined,
in the functional method we introduced a sliding scale, thus constructing a one
parameter family of actions and a flow connecting them. The UV limit Λ→∞
is addressed at the stage of finding the initial condition of the flow.



Chapter 2

Asymptotic safety.

2.1 Beta functions.

In the previous chapter we introduced a functional, the average effective action
Γk [φ], that has a built-in dependence with respect to a scale k. By abuse of
nomenclature we will often refer to this functional as simply effective action EA
in the future, while, if necessary we will call the effective action in which all
modes have been integrated out true of full effective action. We also obtained
an equation, the ERGE, that describes the evolution of Γk [φ] with respect to
k or equivalently the scale parameter t = Logk/k0. We know that Γk [φ], by
construction, interpolates between some initial condition SΛ [φ] and the full
effective action Γ [φ]. The interpretation we give to this feature of the EA is
that Γk [φ] represents a good description of phenomena with characteristic scale
k. By good description we mean that by the EA we obtain classical equations
of motion, which contain also quantum effects for the scale of interest. The
characteristic scale has to be determined case by case and strongly depends
on the precise effects we have in mind. A particle physics example could be
the scattering amplitude of a certain process, in this case k could be set by
the center of mass energy of the process and Γk [φ] would at tree level resum
the quantum correction to calculate the cross-section. Rather than being a
drawback, the “external” k has to be seen as a useful device with which we can
play to improve our application.

At this point it is necessary to address quantitatively the features of the flow
and to this end it is necessary to make some definitions. As obvious the flow
of Γk [φ] is rather uncontrolled in nature. It is clear by its flow equation that it
will contain very nontrivial effects. The first idea we may have is to parametrize
the effective action with a basis of operators

Oi,k [φ] (2.1)

that are compatible with the symmetries of the system. In some sense Oi,k [φ]
are coordinatizing the space of field theories. Of course this space is in principle
infinite dimensional. We also assumed that the basis could flow with k for
completeness. One is free to keep the basis fixed or not, much like in quantum
mechanics we have the Schroedinger and Heisenberg representations, provided
some care is paid. Dual to operators space is the space of couplings. Each

23
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component of this space is simply called coupling gi,k and gives a weight to its
corresponding operator Oi,k [φ] is in the effective action in the form

Γk [φ] =
∑

i

gi,kOi,k [φ] (2.2)

Let us choose for simplicity a basis that does not flow Oi [φ]. In this
parametrization the flow of the effective action is encoded in the couplings only

Γk [φ] =
∑

i

gi,kOi [φ] (2.3)

The derivative with respect to the scale parameter t of the action defines a
tangent vector βi = ∂tgi,k to coupling space in the form

Γ̇k [φ] =
∑

i

βiOi [φ] (2.4)

Each βi is called beta function of the coupling gi and by definition is simply its
t derivative. By the choice of parametrization it is clear that βi are functions
of k much like the couplings are. However we know that Γ̇k [φ] is expressed,
through a functional RG equation, in terms of Γk [φ] and its derivatives. This
imply that the beta functions have a natural parametrization

βi = βi (g, k) (2.5)

where the g dependence comes from Γk [φ] appearing on the right hand side of
ERGE and k is a genuine dependence on the scale.

The operators Oi [φ] have some canonical mass dimension Di that tells that
also their relative couplings are, in general, dimensionful. In particular gi,k has
dimension di = −Di and their naive scaling with k is thus gi,k ∼ kdi . To each
coupling we can associate a corresponding dimensionless partner

g̃i,k = gi,kk−di (2.6)

which will flow accordingly

β̃i = ∂tg̃i,k = −dig̃i,k + k−diβi (2.7)

We just defined the beta functions of dimensionless couplings, that are dimen-
sionless exactly like their couplings. For this reason a simple scaling argument
tells that, according to the dependence of βi, their natural dependence is

β̃i = β̃i (g̃) (2.8)

In the following we will always compute beta functions of dimensionless cou-
plings, because they are, in some sense, more fundamental. There are two
arguments to justify this last statement, one more physical and the other more
mathematical. From the point of view of experimental physics it is clear that
we always measure quantities compared to some reference scale. For example
we measure height using a meter. The result of a length measurement is not
really a length, but rather a real number that tells us how many times the unit
meter measures our length. This is true for every kind of measurement.
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The mathematical argument that justify the use of dimensionless couplings
has instead to do with the phase space of our quantum field theory and may be
better visualized in Wilson approach. Imagine we are coarse-graining our QFT
over regions of flat space of typical size k−d. Suppose also that initially the
theory has some density of degrees of freedom over spacetime. It is clear that
the number of degrees of freedom will change after coarse-graining, in particular
the density will decrease with k−d. This is quite a problem if someone is willing
to compare the theories before and after the averaging, if these not even live
in the same phase space. The general solution to this problem involves using
dimensionless couplings, that are a byproduct of the procedure of manually
scaling the number of degrees of freedom in order to keep the phase space fixed.
One may see the argument also in terms of the entropy of a system in a lattice,
therefore in more statistical physics settings. The general expectation of an
averaging procedure is that the entropy increases with the size of averaging, but
it is easily seen in lattice models that it actually decrease because the number
of sites is decreasing. The correct quantity to look at is the entropy density
that has a further k−d dependence that balances the coarse-graining. Following
this arguments we may interpret dimensionless couplings as densitized couplings
along the flow.

We dedicate the final part of this section to define some further concept.
Suppose that for some reason we do not want to parametrize our theory di-
rectly with coupling, but we rather want to hide them inside some appropriate
operators in the form

Γk [φ] =
∑

i

Oi,k [φ] (2.9)

In this case the flow of Γk [φ] gives functional beta functions βOi,k
for the oper-

ators Oi,k [φ] by

Γ̇k [φ] =
∑

i

βOi,k [φ] (2.10)

This may be particularly useful if a dependence of the functionals beta like

βOi,k = βOi,k [O] (2.11)

is found. In these terms, even the exact renormalization group equation itself
is a functional beta function for the effective action. In future chapters we will
extensively calculate functional beta functions and see some limitations of their
use.

2.2 Asymptotic safety.

The concepts we are going to introduce in this chapter are better understood in
terms of couplings and corresponding beta functions. Also, the basis of operators
is chosen to be fixed with the scale. Having chosen the settings we may say
that a complete knowledge of the beta functions is equivalent to a complete
knowledge of the RG flow, provided the basis of operators spans completely the
theory space that is explored by the flow. As one may easily imagine and as we
already mentioned, this theory space is infinite dimensional. Our expectation
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is that, at any fixed scale k, the effective action develops infinite terms through
its operators. We may imagine we are testing our theory at that scale k with
some experiment to the end of measuring the action and therefore each single
gi.

If we are particularly skilled experimentally, we may also imagine that there
exists one experiment to measure g1, another to measure g2, then another for
g3 and so on and on. There is no end to this story because there is no end to gi

couplings, in principle. It means we have to do infinite experiments to measure
every coupling of the theory. This may not worry, but we actually use theories
to predict experiments, not only to measure them. There is no chance that we
can predict anything with this theory, because there will always be a infinitely
large parameter space of unmeasured couplings that are unconstrained, after
a finite number of experiments. In perturbatively renormalizable theories the
number of allowed couplings is constrained by the requirement of renormalizabil-
ity, however we want to go beyond perturbation theory. We want to explore the
meaning of renormalizability in the most general settings possible. We therefore
have a big problem. If we trace back the issue, it is clear that it is related to
the initial condition SΛ [φ] of the flow. If we were able to consistently constrain
SΛ [φ] to some finite dimensional subset of coupling space, then it would only be
an issue of integrating it to any scale k but the finite number of parameters to
be measured would be unaltered by flow. The idea is to solve at the same time
the issue of taking Λ→∞ and the requirement of predictivity of the theory.

To this end we define a fixed point (FP) of the beta functions as the set of
dimensionless parameters g̃$i such that

β̃i (g̃$) = 0 (2.12)

By definition a fixed point is a point where all beta functions vanish identically.
It is obviously untouched by the flow, in the sense that if we take it as initial
condition of the flow our theory will remain at the FP at any scale. It is clear
that a FP defines a conformal field theory (CFT), that is by definition a theory
that remains the same through change in scale. In such a theory the result of
experiments is completely determined by the fixed point. In general a FP is a
point where flow lines start or end. Going deeper in the study of FPs amounts
of determining the number of attractive and repulsive directions it has. This is
easily done, at least formally, defining the stability matrix

Mij |g̃# =
∂β̃i

∂g̃j
(2.13)

This matrix can be diagonalized to obtain a set of eigenvalues

{c1, c2, . . . } (2.14)

and corresponding eigenvectors

{v1, v2, . . . } (2.15)

The eigenvalues are not necessarily reals. A complex eigenvalue encodes in
its imaginary part the fact that the flow spirals around a fixed point. In the
following, when saying that an eigenvalue is positive or negative, we actually
refer to the property of its real part. A positive eigenvalue means that the FP
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is repulsive in the corresponding direction, the converse is true for a negative
eigenvalue. In particular, if we are following the flow close to the FP along the
direction vi and we slightly perturb it, it is easy to see that

gi ∼ g$i + bvik
ci (2.16)

The critical exponents bi of a theory at a fixed point are defined through the
scaling relation gi ∼ g$i ∼ k−bi (along the direction vi) and this relation shows
that they correspond to minus the eigenvalues ci. A fixed point with some
attractive direction is a possible ending of the limit Λ → ∞, here interpreted
as a prolongation of k integration from Λ to ∞. The other possible endings are
the theory being pushed to the far boundary of coupling space, so having some
dimensionless quantity going infinity. It is hopefully clear from this discussion
that an attractive FP has possibly an important physical meaning, because it
may represent our UV limit. We may want to find a FP in first instance to take
Λ→∞.

This is not the end of the story. With the fixed point we ensure the finiteness
(in terms of dimensionless quantities) of the theory, but still we do not know if
the theory is predictive. We notice that a subset of coupling space is attracted
in the k → ∞ limit. This subset of coupling space is called “critical surface”
(the flow in coupling space is assumed to be smooth). This subset is finite
dimensional if the number of attractive directions is finite dimensional. In such
a case only a finite number of experiments is needed to identify the trajectory.
So we do not only need an attractive fixed point, but it is important that it has
a finite number of attractive directions. At this point we have all the ingredients
to define a theory, or rather a set of theories, that is UV safe and predictive.

We call “asymptotically safe” [1] a theory (here theory means actually a one
parameter set of theories) which satisfy these conditions:

• There exists a FP in its flow.

• The fixed point has a finite number of attractive directions.

or equivalently

• There exists a FP in its flow.

• The critical surface of the FP is finite dimensional.

We already stressed that such a theory is finite and predictive. An asymp-
totically safe theory is a theory for which the UV limit can be consistently
performed. We call this limit also “continuum limit” borrowing some termi-
nology from lattice theories. In that case, in fact, Λ would correspond to the
inverse of lattice size Λ ∼ 1/a and the UV limit would send a → 0. In that
case continuum limit means that there exists a theory with smooth degrees of
freedom that governs the UV behavior of the lattice ones. Namely, the same is
happening in cutoff-regulated theories and theories with a sliding scale. If we
want our theory’s action to be a low energy manifestation of a more fundamen-
tal action with the same degrees of freedom, it is necessary that a FP exists
with the mentioned properties. Otherwise no meaningful UV-limit is possible.
An example of flux of in coupling space is given in Fig. (2.1).

We refer to [11] for a review of the application of the asymptotic safety
scenario to gravity.
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gi

gj

Figure 2.1: A possible flow of a theory, seen from the point of view of the
2-dimensional subspace spanned by the couplings gi and gj . In the diagrams
both the gaussian FP and the non-trivial FP are shown. The non-trivial FP is
attractive in one direction of the subspace and repulsive in the other. A safe
trajectory, that flows to the FP for k → ∞, is shown and represented with the
dashed line.

2.3 Asymptotic freedom.

The purpose of this section is to show that the familiar concept of asymptotic
freedom [12] can easy be embedded inside that of asymptotic safety. We need
a further definition. We will call gaussian fixed point (GFP) a fixed point
in which all the couplings are zero. The gaussian naively corresponds to the
free theory configuration of a certain QFT. It is a general feature of any QFT
that the gaussian fixed point exists. GFPs are very important under many
circumstances, for example in the former chapter we said that the validity of the
loop expansion holds only if coupled to a small coupling expansion. Therefore
the loop expansion is a good approximation of the RG flow around the gaussian
fixed point and in particular any 1-loop equation approximates well the flow for
small couplings.

We have always to keep in mind in this chapter that we are interested in the
conditions by which we can take the smooth limit Λ → ∞. So we may argue
what happens if we specialize the definition of asymptotic safety requiring the
fixed point to be gaussian. First of all let us have a look to the dimensionless
beta functions

β̃i = −dig̃i + k−diβi (2.17)

where di are the canonical dimensions of the dimensionful coupling gi and βi

their beta functions. It is easy to figure out that βi = 0 for gi = 0 due to the
structure of functional RG flow. This means that around the GFP the scaling
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of the couplings is essentially determined by the canonical dimensions. After
diagonalization, the stability matrix of the gaussian fixed point looks like

Mij |g̃#=0 = diag (−d1,−d2, . . . ) (2.18)

We could classify our operators by increasing canonical dimension, so that also
the sequence −d1 ≤ −d2 ≤ . . . is increasing. Maintaining our abstract notation,
we assume there exists a certain dı̂ so that dı̂+1 > 0 while still dı̂ ≤ 0. dı̂ rep-
resents a threshold, all the couplings before it in the sequence have a negative
eigenvalue and are therefore attracted to the GFP. Contrarily, all the couplings
after it are repulsed by the gaussian fixed point because of the positive eigen-
value. Clearly we are trivializing the situation a little bit, because there may be
a lot of couplings with the same canonical dimension, but what we said is easily
generalized. Some special care is needed to analyze the behavior of dimension
zero couplings. Their attractive or repulsive behavior is actually dictated by a
further expansion of their beta functions and not determined by the linearized
flow Mij .

We finally ended with a finite sequence {g̃1, g̃2, . . . , g̃ı̂} of couplings in the
direction of which we are attracted to the GFP. The total intersection of the
hyperplanes g̃i = 0 represents the (linearized) critical surface of couplings we
used in the definition of asymptotic safety. We know that, close to the GFP, if
our theory stays in the critical surface we safely can take the UV limit. From the
linearized point of view this incidentally means that all the negative dimension
couplings are set to zero, while the others flow to the GFP according to their
scaling. Now we can translate what we just said in perturbation theory termi-
nology. A negative dimensional coupling is generally called non-renormalizable,
the set of these is precisely the set of couplings we excluded by putting our-
selves on the critical surface. All the positive dimensional couplings, which are
super-renormalizable, have been instead included and are free to run thanks to
their controlled behavior. The final case is the case of dimension zero couplings,
where, exactly like in perturbation theory some special care is needed. The fate
of all active (non-zero) couplings around the GFP is to flow to the GFP itself,
thanks to the critical surface, they are therefore asymptotically free because
they go to zero in the UV limit, as dictated by the usual perturbative definition
of asymptotic freedom. The prototype of asymptotically free theory is QCD
and in general any Yang-Mills theory.

The fact that we can embed the definition of asymptotic freedom inside that
of asymptotic safety is promising. One can easily figure out that it is hardly
possible to enlarge even more the definition of renormalizability, at least from
the point of view of functional RG flow and in such general settings.

2.4 Nonperturbative approximation scheme.

It is well known that, if a theory is asymptotically free, it is renormalizable.
This is easily seen because we have a method to produce its expansion, the loop
expansion, that goes parallel to the coupling expansion. In the UV limit we
know the couplings are going to zero, so the loop expansion receives corrections
that are smaller loop by loop at high energies. Unfortunately we are interested
in nonperturbative scenarios. Now we definitely move back to the asymptotic
safety definition, where the fixed point is generally non-gaussian. It still may
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happen that the couplings of the non-gaussian fixed point are small and some
kind of perturbative analysis may be used. The kind of nonperturbative analy-
sis we desire need some new approximation scheme that is nonperturbative in
nature. Some of these schemes have been developed with varying degree of suc-
cess. We are not going to review all of them, instead we will just try to explain
the origin of the approximation scheme we are going to apply in the following.

There has been developed three main approximation schemes in the context
of functional RG flow and that we summarize here. The first is the derivative
expansion, that consists in including higher and higher derivative terms in the
effective action. This scheme is mainly effective when used to explore critical
phenomena. Conversely, a theory such as QCD, is best explored through vertex
expansion. The latter consists in introducing more and more vertices in the
effective action. Finally, one can implement any mixture of derivative and vertex
expansions. The main lesson here is that one must always keep in mind the
nature of the system under consideration and use the approximation that best
captures its physics.

We want to give some example. Let us start by looking at how chiral pertur-
bation theory (χPT) is constructed. We want to look at this example because
χPT is a prototypical perturbatively nonrenormalizable theory, that still has
a lot to say from the experimental point of view. In χPT the loop expansion
is coupled with a derivative expansion of the terms. So to say, at 1-loop the
running of 2-derivative term is calculated and 4-derivative terms are generated.
At 2-loops, the 2-derivative term runs properly with 2-loop equation, the 4-
derivative terms are evolved with 1-loop equations and the 6-derivative terms
are generated. This goes on and on. The validity of the approximation stays
in the fact that the energy scales Λ′ we are interested in, are much smaller
than the scale Λ that is the hard cutoff of the theory (beyond which we assume
new degrees of freedom arise). A similar discussion can be addressed in the
case of gravity where derivative expansion (and locality) can be achieved by an
expansion in curvature invariants and their derivatives.

The truncation is what we are interested in now. A truncation of the effec-
tive action is by definition a nonperturbative way to approximate it. This may
look bad at first sight and indeed it is if one wishes to prove general statements
of renormalizability by use of truncations. However it is very effective when
we have some idea of the dominant terms in the flow (see again χPT for an
example) and therefore we start our study by their inclusion. Often, there are
not many a priori requirements to prefer a truncation rather than another and
accordingly we generally have some freedom in its choice. Consequently, not
much nomenclature of precise truncation has been developed. The general rule
is: after a calculation is done one should test the validity of a truncation by
looking at what else is generated, but could never be completely sure funda-
mental dominant terms have been omitted [13]. There is however a way out.
What we said holds for the general effective action Γk [φ] and particularly for the
full effective action at k = 0. The UV limit, instead, is a typical action SΛ [φ]
that by simple arguments is expected to be local and related to some derivative
expansion, mainly due to the presence of a very high (eventually infinite) scale
Λ. Exactly like in χPT.

We now want to give some example of truncations of systems that are often
studied in the effective field theory framework. Let us fix the ideas by working
with four dimensional spacetime and canonical fields. A typical scalar field
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action in the local potential approximation is of the form [14, 15]

Γk [φ] =

∫

dx

(

Zφ

2
(∂φ)2 + V [φ]

)

(2.19)

where we included the possible field renormalization. This does not include all
possible terms with two derivatives, but includes all those with zero derivatives.
In fact, in the potential V [φ] there are all the possible power-like interactions of
φ. If we further include a spinor and analyze a truncation of the form [16, 17, 18]

Γk

[

φ, ψ̄, ψ
]

=

∫

dx

(

Zφ

2
(∂φ)2 + Zψψ̄iD/ψ + H [φ] ψ̄ψ + V [φ]

)

(2.20)

we end up with a truncation that contains also any interaction involving a power
of φ with the couple ψ̄ψ. The interaction term H [φ] ψ̄ψ is a generalized Yukawa
interaction and accomodates, among the others, a mass term and a true Yukawa
interaction. This contains all dimension zero (local, non-derivative) interactions
because spacetime is four dimensional. The dimension zero operator are φ4 and
φψ̄ψ. This model, describing the interaction of a scalar and a spinor fields, will
be the main subject of Chapter 3 and the toy model for some of the techniques
used in this Thesis.

Now we include gravity in the game through an Einstein-Hilbert action [19,
21]

Γk

[

φ, ψ̄, ψ, gµν

]

=

∫

dx
√

g
(

ZgR +
Zφ

2
(∂φ)2 + Zψψ̄iD/ψ + H [φ] ψ̄ψ + V [φ]

)

(2.21)

This time not all dimension zero local interactions are included, because the
operator φ2R [gµν ] is missing [22]. We will study the inclusion of gravity in
Chapter 4 and its implications for the asymptotic safety scenario in Chapter 5.

A prototypical example of truncation for gravity with infinitely many terms
is the simple f (R)-gravity. Here f is a function of the curvature scalar only
and no other Ricci- and Riemann-tensor interaction are allowed. It would be
[23, 24]

Γk [gµν ] =

∫

dx
√

gf (R) (2.22)

Instead a truncation in local curvature terms, at order zero, one and two in
Riemann tensor, would be of the form [26]

Γk [gµν ] =

∫

dx
√

g
(

g0 + g1R + g2,1R
2 + g2,2Ric2

)

(2.23)

where boundary terms have been eliminated. A nonlocal equivalent could be
[27]

Γk [gµν ] =

∫

dx
√

g (g0 + g1R + Rf1 (!)R + Ricf2 (!)Ric) (2.24)

As it is well known in two dimensional examples, an action with non-local terms
is expected to be important when exploring the IR regimes with RG flow.
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Going back to the scalar field case and relaxing the requirement of having
a canonical dimension one scalar, there is an important model for which φ is
of canonical dimension zero. It is the non-linear sigma model (NLSM) and φ
is dimensionless because interpreted as a coordinate in target space manifold
[28, 29, 30]. Its action is

Γk [φ] =
1

2

∫

dxhαβ∂φα∂φβ (2.25)

It contains all possible two-derivatives interactions, which are all hidden inside
hαβ = h (φ)αβ that will be interpreted as a metric of φ space. A NLSM action is
also that of chiral perturbation theory (χPT), where the field U is group-valued.
In this case, up to four derivatives we could have, schematically

Γk [U ] = tr

∫

dx
(

(

U †∂U
)2

+
(

U †∂U
)4

+
(

U †
!U

)2
)

(2.26)

Chapter 6 will be dedicated to a general study of higher derivative sigma model.
We will also analyze in detail the chiral model.

Many of the truncation we showed here have been studied in the literature
in the context of exact renormalization group flow, some are currently under
study, some other will be the main topics of this work. The calculations of their
beta functions and fixed points will be our main results.



Chapter 3

Methods for the functional

exact RG.

In this chapter we review some methods that are usually applied in the context
of functional renormalization group. Both the methods and the toy models we
will work with will turn out to be useful later.

3.1 A scalar model in the LPA.

We now want to specifically address a very simple toy model of functional renor-
malization group, namely a simple real scalar field [15]. We truncate its action
in a local potential form, but we generally keep the possibility that it has a non-
trivial anomalous dimension by adding a wavefunction renormalization. We also
fix the spacetime dimensions to be four, although it is very easy to generalize
the results we will obtain to general d. The action is therefore

Γk [φ] =

∫

d4x

(

Zφ

2
∂µφ∂µφ + V [φ]

)

(3.1)

No assumption is made on the form of the potential at this point, so in principle
we are including all possible terms. The reason we choose such a model is
twofold. It turns out that we can apply and therefore explain through it all the
techniques we will need in the following chapters. Additionally, we will also be
able to outline a strategy to treat the potential in symmetry-breaking phase. It
is particularly useful to have a functional flow for the potential, because we will
be able to resum it when dealing with the flow of the vacuum expectation value
and a nonperturbative beta function for it will be given.

Before going on to the specific techniques, some general step can be per-
formed by analyzing how φ and its potential get renormalized. The canonical
step in renormalization procedures is to take the renormalized field

φR =
√

Zφφ (3.2)

that is the actual field whose correlations we measure. This is easily seen because
φR has a canonical kinetic term and we always assume the asymptotic states to
be canonically normalized. In the asymptotic safety scenario we know we want

33
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to study the flow of dimensionless couplings. It turns out that it is useful to
define the dimensionless renormalized field

φ̄R = k−1φR = k−1
√

Zφφ (3.3)

Now, k- and t-derivatives are always performed at fixed φ (when using the
effective average action), so we can apply them to φ̄R and get a non-zero result.
We obtain for the t-derivative

∂tφ̄R = −
(

1 +
ηφ
2

)

φ̄R (3.4)

where we defined the anomalous dimension ηφ as minus the logarithmic deriva-
tive of Zφ,

ηφ = − Żφ

Zφ
(3.5)

The reason of the name anomalous dimension is that it changes the scaling
one naively expects of the field φ. In fact, the t-derivative of the dimensionless
renormalized field is telling us that the expected scaling of φ is

φ ∼ k1+
ηφ
2 (3.6)

It looks like φ is not really living in four dimensions (the canonical dimension is
in a general spacetime (d− 2) /2, that equals 1 for d = 4). This is just a little
bite of the full meaning of the anomalous dimension, but actually all we need
at this point.

The dimensionless renormalized field is the natural argument of the dimen-
sionless renormalized potential. We define it as

v̄R

[

φ̄R

]

= k−4V
[

kZ
− 1

2
φ φ̄R

]

(3.7)

and its coefficients in a powerlaw expansion are called dimensionless renormal-
ized couplings. These are precisely the dimensionless couplings we need to test
the possibility of asymptotic safety. To see how the flow of v̄R

[

φ̄R

]

is related
to that of V [φ] it is sufficient to derive with respect to k both sides of (3.7). It
is important to remember that the dimensionless renormalized potential has a
built-in dependence on k through its expansion coefficients and a dependence
due to the argument φ̄R. What we want to calculate is only the intrinsic one.
We obtain

˙̄vR

[

φ̄R

]

= −4v̄R

[

φ̄R

]

+
(

1 +
ηφ
2

)

φ̄Rv̄′R
[

φ̄R

]

+ k−4V̇ [φ] (3.8)

We can identify the three terms that appeared in order. The first is the effect
of the canonical potential scaling, the second represent how the (anomalous)
scaling of φ affects that of the potential. Finally, the third term has to be deter-
mined, for example using ERGE. Again a scaling argument tells that k−4V̇ [φ]
is going to be a function of φ̄R with dependence on k only through its argument
or its powerlaw coefficients.

The main tasks of the next sections will be to determine k−4V̇ [φ] through
exact renormalization group, but also ηφ because, in principle, it leads to im-
portant modifications of the flow.
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3.2 Effective potential at constant field.

We know the exact renormalization group equation is a functional equation of
the form

Γ̇k [φ] = F [Γk] (3.9)

Both sides of it are functionals of φ through the dependences Γ̇k [φ] and Γk [φ].
There is some freedom in choosing the particular field configuration to evaluate
this equation. For example one may want to evaluate it for φ = const. ending
up with the flow

∫

d4xV̇ [φ] =
1

2
Tr

(

Zφ

(

−∂2
)

+ V ′′ [φ] + Rk

)−1 Ṙk (3.10)

where the fact that both sides are evaluated at φ constant is understood.
A precise definition of the cutoff kernel is needed. The IR cutoff term is

∆Sk =
1

2

∫

d4xφRkφ (3.11)

and has to kill the modes of a kinetic term like
∫

d4x
Zφ

2
∂µφ∂µφ = −1

2

∫

d4xZφφ
(

−∂2
)

φ (3.12)

Therefore it is natural to let the cutoff kernel have the same global scaling by
setting Rk = ZφRk. We also move to momentum space and use the operator
−∂2 → q2 as reference for the coarse-graining. Altogether amounts to setting

∆Sk =
Zφ

2

∫

q
φ−qRk

(

q2
)

φq (3.13)

and the RG equation for the potential becomes

V̇ [φ] =
1

2

∫

q

(

q2 +
V ′′ [φ]

Zφ
+ Rk

(

q2
)

)−1
(

Ṙk

(

q2
)

− ηφRk

(

q2
)

)

(3.14)

and a graphical representation of this integral is given in Fig. (3.1).
We further specify the cutoff kernel to be the “optimized” cutoff Rk

(

q2
)

=
(

k2 − q2
)

θ
(

k2 − q2
)

[31]. Some care is needed to approach the composition of
any function with a theta function. In particular we want to write consistently
(

q2 + V ′′[φ]
Zφ

+ Rk

(

q2
)

)−1
. We first note that our cutoff kernel has a support,

q2 ≤ k2. We perform the composition supportwise and we get the inverse
modified propagator in the form

1

q2 + V ′′[φ]
Zφ

+ Rk (q2)
=

1

q2 + V ′′[φ]
Zφ

θ
(

q2 − k2
)

+
1

k2 + V ′′[φ]
Zφ

θ
(

k2 − q2
)

(3.15)

We want to show that the term proportional to θ
(

q2 − k2
)

does not contribute to

the running, because both Rk

(

q2
)

and Ṙk

(

q2
)

are proportional to θ
(

k2 − q2
)

.
It is sufficient to calculate

Ṙk

(

q2
)

= 2k2θ
(

k2 − q2
)

+
(

k2 − q2
)

δ
(

k2 − q2
)

& 2k2θ
(

k2 − q2
)

(3.16)
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qµ

1
2

Figure 3.1: Diagram representing the flow of V [φ] in 3.14. The dashed line is

the inverse modified scalar propagator
(

q2 + V ′′/Zφ + Rk

)−1
, while the vertex

is the cutoff insertion. qµ is the momentum running in the loop.

where an assumption of regularity of all integrated terms is done, namely no
poles in k2 = q2 should be present. The result for the cutoff sector of the ERGE
is thus

Ṙk

(

q2
)

− ηφRk

(

q2
)

=
(

(2− ηφ) k2 + ηφq2
)

θ
(

k2 − q2
)

(3.17)

which obviously cannot have the poles mentioned.
The result of cutoff specification is therefore an easily calculable integral.

Before writing it we also want to factor the angular part of the momentum
integration

∫

q
=

1

(2π)4

∫

d4q =
1

(2π)4

∫

dΩ3

∫

q3dq (3.18)

and change the q integration to a z = q2 one by

∫

q3dq =
1

2

∫

zdz (3.19)

These choices imply for the running of the potential in very compact form

V̇ [φ] =
Vol

(

S3
)

4 (2π)4

∫ k2

0
dz

(2− ηφ) k2z + ηφz2

k2 + V ′′[φ]
Zφ

(3.20)

=
1

32π2

k6
(

1− ηφ

6

)

k2 + V ′′[φ]
Zφ

(3.21)

As expected this is a homogeneous function in the renormalized quantities apart
for an overall scaling k4, in fact V ′′ [φ] /Zφ = k2v̄′′R

[

φ̄R

]

and

k−4V̇ [φ] =
1

32π2

1− ηφ

6

1 + v̄′′R
[

φ̄R

] (3.22)

The final result for the beta functional of the potential is very well known and
the typically studied object when making comparison among the functional
coarse-graining methods. To have the final form we desired, we thus include
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the terms representing the canonical scaling and write down the flow for the
dimensionless renormalized potential

˙̄vR

[

φ̄R

]

= −4v̄R

[

φ̄R

]

+
(

1 +
ηφ
2

)

φ̄Rv̄′R
[

φ̄R

]

+
1

32π2

1− ηφ

6

1 + v̄′′R
[

φ̄R

] (3.23)

For completeness we also give the same result in general d-dimensional spacetime
that is

˙̄vR

[

φ̄R

]

= −dv̄R

[

φ̄R

]

+
1

2
(d− 2 + ηφ) φ̄Rv̄′R

[

φ̄R

]

+
21−dπ−d/2

(

1− ηφ

d+2

)

dΓ
(

d
2

) (

1 + v̄′′R
[

φ̄R

])

(3.24)

where Γ
(

d
2

)

is the Euler gamma function.
Yet another ingredient is missing, the anomalous dimension, and we shall

calculate it in the next section.

3.3 Scalar anomalous dimension.

It should be clear from the calculation of the previous section that it is not
possible to evaluate the anomalous dimension setting φ = const. in the flow
of the effective action. The simple reason is that a constant φ hides from the
functional flow the operator associated to the field renormalization, namely the
kinetic term of our LPA. One easily sees that for the computation of Żφ there
are two major alternatives, that actually give the same result.

The first possibility is maybe the most straightforward, being a simple gener-
alization of the calculation of the previous section. The idea is to take φ = φ1+ϕ
as configuration in which evaluate the flow Γ̇k [φ], where φ1 is a reference con-
stant configuration and ϕ is a nonconstant “perturbation”. If this is done ob-
viously the kinetic term for φ will convert to a kinetic term for ϕ, that in the
flow will become

Żφ

2

∫

d4x∂µϕ∂µϕ (3.25)

Then, for the actual computation, it is sufficient to calculate the functional flow

Γ̇k [φ1 + ϕ] (3.26)

and obtain all its terms containing two powers of ϕ and two derivatives acting
properly on them. The coefficient of these terms is proportional to Żφ. We shall
not follow this line, but still some consideration is possible before starting the
computation.

The kind of calculation we just proposed has a simple, but perhaps unex-
pected byproduct. It is easy to see that if one expands Γ̇k [φ1 + ϕ] as suggested,
the coefficient of the terms of interests (those like the kinetic one, eventually
modulo an integration by parts) is generally a function of φ1. It looks like the
functional flow is suggesting us that the actual truncation we should employ is
beyond the LPA and has a kinetic term of the form

∫

d4x
Z [φ]

2
∂µϕ∂µϕ (3.27)
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This is possibly a problem, because if for consistency we generalize the trun-
cation including it, we shall encounter new terms that are going to contribute
and we should repeat the calculation from the beginning. This apparent issue
is solved by simply noticing that, when computing the anomalous dimension,
some physical meaning has to be attached to the constant configuration φ1. If
this is done then we just need to assume what we call “Z-rule” and choose

Zφ = Z [φ1] (3.28)

so that we fall back in the original LPA truncation. The meaning of the rule is
that the result of the computation of the anomalous dimension depends on the
field configuration one decides to evaluate the ERGE from. This is another kind
of scheme dependence of the functional RG. It is generated by the fact that the
flow does not “know” about our original truncation and produces further terms
that are possible in a scalar action. We have to consistently fix it. A natural
configuration around which we could look at Zφ is a minimum of the potential

V ′ [φ1] = 0 (3.29)

and so its ground state φ1 = 〈φ〉. If the potential is symmetric the minimum
φ1 = 〈φ〉 = 0 will give back the same results of perturbation theory around
φ = 0. Some novelty is expected if the potential has a symmetry-broken phase.
We will see this in more detail later. We will also see that similar considerations
will apply to all other coupling (like Yukawa’s) and eventually to the flow of the
effective potential itself.

Still we have to explain an alternative way to calculate the flow of Zφ. We
want to perform it keeping the simple configuration φ = const. as point in which
evaluate the flow (from now on we drop again the label in φ1 coming back to
the notation of the previous section). The key ingredient is that we have to
look at the flow of the 2-point function, rather than at the flow of the effective
action itself. This is possible because we know that the ERGE provides an
infinite tower of differential equations coupled together. In particular the 2-
point function of the scalar in momentum space and with incoming momentum
pµ is

Zφp2 + V ′′ [φ] (3.30)

It tells us that it is sufficient to calculate, in momentum space, the coefficient of
the p2 term of the flow of the 2-point correlator to obtain Żφ. As a byproduct
we will also have a consistency check by comparing V̇ ′′ [φ] (from the p0 term)
with the second derivative of V̇ [φ]. This check will turn out to be important
in future gravitational applications. A final remark, we avoided to place an
explicit dependence on φ in Żφ in order to distinguish it from more “genuine”
dependences, like that of the potential.

Now we need to calculate the flow of the propagator. To this end we intro-
duce some new compact notation. We write the general n-point correlator of
the effective action as

δnΓk [φ]

δφ (x1) . . . δφ (xn)
= Γ(n)

k;x1,...,xn
(3.31)

which will be later assumed to be evaluated at a certain constant φ configuration.
We also define its momentum space transform as

Γ̃(n)
k;p1,...,pn

(3.32)
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Clearly we have that momenta are conserved at each vertex and therefore each
correlator is proportional to a momentum space delta function

Γ̃(n)
k;p1,...,pn

= Γ(n)
k;p1,...,pn

δp1+···+pn (3.33)

When writing down functional equations we will always drop the momentum

conservations at each vertex, therefore we will always use Γ(n)
k;p1,...,pn

that are
actually functions of n−1 momenta. This means, it will be always assumed that
the Dirac delta has been used when integrating over all undetermined momenta.

In particular, the two point function Γ(2)
k;x1,x2

is a function of (x1 − x2)µ only,
so the information pertaining its Fourier transforms are all in the conserved

Γ(2)
k;p = Γ(2)

k;p,−p, where pµ is the conjugate momentum to (x1 − x2)µ and the
conservation has been dropped. Using the two point function we can construct
the modified inverse propagator, for which we define

Gk;p =
(

Γ(2)
k;p + Rk;p

)−1
(3.34)

where Rk;p = Rk

(

p2
)

is the IR cutoff kernel we saw before. In this notation
the exact RG equation for the simple scalar field model becomes very compact

Γ̇k [φ] =
1

2

∫

q
Gk;qṘk;q (3.35)

Once one knows the simple rule to take functional derivatives of the propaga-
tor, the derivation of the flow of any correlator is straightforward. It is sufficient
to show that, in coordinate space

δ

δφ (x1)
Gk;x2,x3 = −

∫

d4x4d
4x5Gk;x2,x4Γ

(3)
k;x1,x4,x5

Gk;x5,x3 (3.36)

In momentum space the conservation rules come into rescue and we can drop
the integrations thanks to them

δ

δφp
Gk;q = −Gk;qΓ

(3)
k;p,q,−(q+p)Gk;q+p (3.37)

We have now all the ingredients to derive the flow of any n-point function. We
give the first ones in coordinate space

Γ̇(1)
k;x = −1

2

∫

∏

i=1,...,4

d4xiGk;x1,x2Γ
(3)
k;x,x2,x3

Gk;x3,x4Ṙk;x4,x1 (3.38)

Γ̇(2)
k;x,y =

∫

∏

i=1,...,6

d4xiGk;x1,x2Γ
(3)
k;x,x2,x3

Gk;x3,x4Γ
(3)
k;y,x4,x5

Gk;x5,x6Ṙk;x6,x1

−1

2

∫

∏

i=1,...,4

d4xiGk;x1,x2Γ
(4)
k;x,y,x2,x3

Gk;x3,x4Ṙk;x4,x1 (3.39)

Γ(3)
k;x,y,z = . . .

We can look at this set of equations as representative of a vertex expansion, as
it is seen from the increasing number and order of the vertices.
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pµ

qµ + pµ

Figure 3.2: Representation of
∫

q Gk;qΓ
(3)
k;p,q,−(q+p)Gk;q+pΓ

(3)
k;−p,q+p,−qGk;qṘk;q

contribution to the flow of Γ̇(2)
k . Full lines indicate a general field of any type.

pµ

qµ−1
2

Figure 3.3: Representation of− 1
2

∫

q Gk;qΓ
(4)
k;p,−p,q,−qGk;qṘk;q contribution to the

flow of Γ̇(2)
k .

It should be clear that we implicitly assumed that the theory we are working
with does not posses grassmanian degrees of freedom, or any other complicated
tensor structure. For example the order in which derivatives are applied to any
correlator is actually unimportant. All this is true for the scalar model we have
in mind, although we will see when adding a spinor field things will remain

pretty much the same. The flow of Γ̇(1)
k;x somehow represents the flow of the

equations of motions. Diagrammatically it is a tadpole and it goes obviously
to zero when evaluating things on-shell. We will however try to work with
off-shell variables as much as possible, to obtain general results. The flow of

Γ(2)
k;x,y is what we are actually interested in. In momentum space there are less

integrations thanks to momentum conservation

Γ̇(2)
k;p =

∫

q
Gk;qΓ

(3)
k;p,q,−(q+p)Gk;q+pΓ

(3)
k;−p,q+p,−qGk;qṘk;q

−1

2

∫

q
Gk;qΓ

(4)
k;p,−p,q,−qGk;qṘk;q (3.40)

The diagrammatic expression of this flow equation with general momentum
dependence is given in Fig. 3.2 and Fig. 3.3.

We can now specialize completely to our scalar model truncation in the LPA.
First we notice that any correlation beyond the 2-point function is determined
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pµ

qµ + pµ

Figure 3.4: Representation of V (3) [φ]2
∫

q G2
k;qGk;q+pṘk;q contribution to the

flow of Γ̇(2)
k . Scalar lines are dashed.

by the potential, that is a nonderivative functional. Therefore, regardless of the
incoming momenta

Γ(n)
k;q1,...,qn

= V (n) [φ] (3.41)

that greatly simplify the flow because the pµ dependence now appears only
through a propagation Gk;q+p in the first term, while the second term drops it
completely. We have

Żφp2 + V̇ ′′ [φ] = V (3) [φ]2
∫

q
Gk;q+pG

2
k;qṘk;q −

V (4) [φ]

2

∫

q
G2

k;qṘk;q

(3.42)

These two contributions to the flow of the 2-point function are represented in
Fig. 3.4 and Fig. 3.5. The right hand side produces terms of order p4 or greater,
that go beyond the chosen truncation. The graph that produces p2 and higher
order contributions is in particular Fig. 3.4, while Fig. 3.5 is pµ independent. p4

contributions are simply telling us that we should include four derivative terms,
as expected, to further improve our truncation. If we set pµ = 0 in this equation
we read the flow of the second derivative of the potential

V̇ ′′ [φ] = V (3) [φ]2
∫

q
G3

k;qṘk;q −
V (4) [φ]

2

∫

q
G2

k;qṘk;q (3.43)

and it is easy to see that it coincides with the second derivative, at constant φ,
of the previously determined flow of the potential. We can subtract it to obtain
the flow of the terms with non-zero pµ

Żφp2 = V (3) [φ]2
∫

q
(Gk;q+p −Gk;q)G2

k;qṘk;q (3.44)

and obviously the tadpole dropped completely due to the lack of derivative
interactions. The last formula we wrote is actually a formula for the flow of
the entire self-energy Σ

(

p2
)

, but we are not going to solve it although this can
be done numerically. In that case one would be able to obtain the anomalous
dimension from the derivative of Σ

(

p2
)

with respect to p2.
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pµ

qµ−1
2

Figure 3.5: Representation of −V (4)

2

∫

q G2
k;qṘk;q contribution to the flow of Γ̇(2)

k .

3.3.1 A closed formula for the anomalous dimension.

The general computation of the qµ integral is a very complicated task. This is
easily seen by introducing the optimized cutoff. The function that is integrated
in that case contains products like

θ
(

k2 − q2
)

θ
(

k2 − (q + p)2
)

(3.45)

that are hard to manage, although still giving a support to the integration. For
example, polar qµ coordinates cannot be used. The way out is to expand Gk;q+p

as a function of pµ and just look at the p2 term. The expansion is

Gk;q+p = Gk;q + pµ
∂

∂qµ
Gk;q +

1

2
pµpν

∂2

∂qµ∂qν
Gk;q + . . . (3.46)

In many of the applications of this thesis we will be interested only in p2 terms,
so only terms that do not have a tensor structure like pµpν , but rather p2 only.
Also we will usually drop any p4 term. Therefore we can often use the modified
expansion in which any product

pµpν →
1

4
δµνp2 (3.47)

or its generalization to d dimensions. This simplifies the expansion of the prop-
agator

Gk;q+p → Gk;q + pµ
∂

∂qµ
Gk;q +

1

8
p2 ∂2

∂qµ∂qµ
Gk;q + . . . (3.48)

A this point one could immediately start the computation of the derivatives
of the modified propagator, as we shall do generally in gravitational applications.
In the simple LPA scalar case we can actually go a little beyond and give a
closed formula. First one notices that Gk;q is naturally a function of q2 and this
is something that will not generalize to spinors. If we indicate by primes the
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derivatives with respect to q2 it is easy to show that, in four dimensions,

1

8

∂2

∂qµ∂qµ
Gk;q =

1

8

∂q2

∂qµ

∂

∂q2

(

∂q2

∂qµ

∂Gk;q

∂q2

)

=
1

4

∂qµ

∂qµ
G′

k;q +
4qµqµ

8
G′′

k;q

= G′
k;q +

1

2
q2G′′

k;q (3.49)

and a general d-dimensional formula is easily derived. If we plug this result in
the flow of Zφ we easily derive

Żφ = V (3) [φ]

∫

q

(

G′
k;q +

1

2
q2G′′

k;q

)

G2
k;qṘk;q (3.50)

An alternative way to obtain this result is to take a p2 derivative of the flow
of Żφp2 and then set pµ = 0 to drop higher order terms. This derivative cannot
commute with the qµ integration, so we need to replace it by

∂

∂p2
→ 1

8

∂2

∂pµ∂pµ
(3.51)

that has the same behavior on p2, but not on functions of p2. Again this is
easily generalized to any dimensionality. We obtain

Żφ =
∂

∂p2

∣

∣

∣

∣

p=0

Żφp2

=
1

8

∂2

∂pµ∂pµ

∣

∣

∣

∣

p=0

V (3) [φ]2
∫

q
(Gk;q+p −Gk;q)G2

k;qṘk;q

= V (3) [φ]2
∫

q

1

8

∂2

∂pµ∂pµ

∣

∣

∣

∣

p=0

Gk;q+pG
2
k;qṘk;q

= V (3) [φ]2
∫

q

(

1

8

∂2

∂qµ∂qµ
Gk;q

)

G2
k;qṘk;q

= V (3) [φ]2
∫

q

(

G′
k;q +

1

2
q2G′′

k;q

)

G2
k;qṘk;q (3.52)

where we used the ERGE equation of the flow of the two point function. The
result is shown to be the same of (3.50). This formula is particularly useful
when computing ηφ for a smooth cutoff. In the next section we are going to
derive the result for the optimized cutoff and in that case it is more transparent
to work with the expansion. The reason is that derivatives of theta functions
can be handled, but with special care as we shall see.

3.3.2 Optimized cutoff result.

The final step in the computation of the anomalous dimension is to specify the
actual form of the cutoff function and perform the trace. Again we use the
optimized cutoff shape and normalize it with Zφ

Rk;q = ZφRk;q = Zφ

(

k2 − q2
)

θ
(

k2 − q2
)

(3.53)
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The momentum space modified propagator therefore is as before a function of
a theta function and must be worked out supportwise. It looks like

Gk;q =
1

Zφq2 + V ′′ [φ]
θ
(

q2 − k2
)

+
1

Zφk2 + V ′′ [φ]
θ
(

k2 − q2
)

(3.54)

We mentioned before that in the following we are going to calculate the coef-
ficients of p2 by expanding the pµ dependent structures on the right hand side
of the ERGE, like Gk;q+p. Therefore, rather than using the closed formula we
simply give the expansion of Gk;q+p. It is easy to calculate the first term

pµ
∂

∂qµ
Gk;q = − 2Zφ (q · p)

(Zφq2 + V ′′ [φ])2
θ
(

q2 − k2
)

(3.55)

Some terms of the form xδ (x) have been neglected in the assumption of reg-
ularity of the rest of the integrand. Before further expanding, it is useful to
remember that the term of order p2 will be integrated together with Ṙk;q that
only takes values in the support q2 ≤ k2. Therefore any term proportional to
θ
(

q2 − k2
)

in the second order expansion can be neglected, unless we want to
expand it further, that is not the case. So, taking another derivative, what
matters is when we act on the theta function and all other terms are in the
undesired support

1

2
pµpν

∂2

∂qµ∂qν
Gk;q+p = − 2Zφ (q · p)2

(Zφk2 + V ′′ [φ])2
δ
(

q2 − k2
)

+ . . . (3.56)

and this is always integrated with functions of q2. We also used the fact that
f(x)δ(x) = f(0)δ(x). Inside the integration we therefore can substitute by
rotational invariance qµqν → q2/4δµν and this is precisely realizing the simplified
expansion in p2

1

2
pµpν

∂2

∂qµ∂qν
Gk;q+p → −

Zφk2p2

2 (Zφk2 + V ′′ [φ])2
δ
(

q2 − k2
)

(3.57)

Now it seems that we have to integrate in the flow a certain power of the
support function with a Dirac delta

δ
(

q2 − k2
)

θ
(

k2 − q2
)m

(3.58)

and in particular m = 3 for the case under study. This would be actually a
mistake and we would underestimate the result. In the ERGE for the effective
action only two theta functions (or their derivatives) are present, the one from
the modified propagator and the one from the cutoff. When expanding it to a
flow equation for any correlator, one should always remember that no new theta
functions or delta functions are created. In other words, we should write down
all the modified propagators together

G2
k;qGk;q+p (3.59)

and give their support representation. The set of all propagators has actually
only one theta function at time. This tells us that the integral of interest is
actually only

∫

dwδ (w − w0) θ (w − w0) =
1

2
(3.60)
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This relation is shown once one realizes that the Dirac delta function that ap-
pears in the calculation comes from a derivative of the cutoff theta function,
therefore it is sufficient to write it as delta (w − w0) = ∂wθ (w − w0). Further,
in presence of a Dirac delta the derivative of the cutoff term simplifies. It is

Ṙk;q = Zφ

(

2k2 − ηφ
(

k2 − q2
))

θ
(

k2 − q2
)

(3.61)

and reduces to Zφk2 when k2 = q2 is forced.
Finally, we can substitute the quadratic expansion and effectively calculate

the result.

Żφ = −V (3) [φ]2

(2π)4

∫

d4q
Z2
φk4

(Zφk2 + V ′′ [φ])4
δ
(

q2 − k2
)

θ
(

k2 − q2
)

= −
Vol

(

S3
)

V (3) [φ]2

(2π)4

∫

dqq3
Z2
φk4

(Zφk2 + V ′′ [φ])4
δ
(

q2 − k2
)

θ
(

k2 − q2
)

= −
Vol

(

S3
)

V (3) [φ]2

(2π)4

∫

dzz
Z2
φk4

2 (Zφk2 + V ′′ [φ])4
δ
(

z − k2
)

θ
(

z − q2
)

= −
Vol

(

S3
)

V (3) [φ]2

(2π)4
Z2
φk6

4 (Zφk2 + V ′′ [φ])4

= −V (3) [φ]2

32π2

Z2
φk6

(Zφk2 + V ′′ [φ])4
(3.62)

We ended up with a final result that, as expected by the scaling arguments, can
be homogenized by switching to dimensionless renormalized variables. Using
φ̄R and the corresponding potential we can write

ηφ =
v̄(3)

R

[

φ̄R

]2

32π2
(

1 + v̄′′R
[

φ̄R

])4 (3.63)

that is the main result of this section. As we already said the φ dependence of
the right hand side is not a genuine dependence but rather a scheme dependence.
Due to the definition of anomalous dimension we adopted, it is always necessary
to specify the field configuration one uses to calculate it. In perturbative settings
and with a symmetric potential one usually works with the ground state φ = 0

and has v̄(3)
R [0] = 0. In this case ηφ = 0. From the Feynman-diagrammatic

point of view this is easily seen because in a φ4 theory there are no 1-loop
graphs contributing to the 2-point correlator.

As we did for the flow of the potential, we end the section giving the general
d-dimensional result for this calculation of the anomalous dimension. It is ob-
tained slightly generalizing the steps we performed and it should be evident form
the text where the generalizations happen. We have for general Rd spacetime

ηφ =
21−dπ−d/2v̄(3)

R

[

φ̄R

]2

dΓ
(

d
2

) (

1 + v̄′′R
[

φ̄R

])4 (3.64)

3.4 The inclusion of spinors.

Working with the simple LPA approximation for the scalar field we saw that
there is no much difference between working directly with the ERGE and using
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the Feynman rules in momentum space to draw diagrams. In particular we were
able to write close formulas for the anomalous dimension with arbitrary cutoff.
In a general situation this is possibly not true. If many fields with different
tensor structures are propagating, but only few limited kinds of interactions are
allowed by the truncations, it is often convenient to work with the diagram-
matic technique in momentum space. It is a matter of fact that this procedures
eliminates from the beginning a lot of terms that will not contribute to the final
result.

In this section we want to add some Dirac spinor ψ degree of freedom. These
degrees are going to couple to the scalar field with Yukawa-like interactions like
the ones introduced at the end of the second chapter. Like for the simple scalar
case we have to take a reference configuration, to perform the calculations. This
configuration will also play the role of the background. Given our truncation
ansatz for the spinor action is quadratic in ψ and ψ̄, only limited vertices are
possible if we take as reference φ = const. and ψ = 0. In particular the choice
ψ = 0 will prohibit any interaction possessing an odd number of spinor lines by
simple Lorentz invariance. Further, in the action we will have operators with
at most two copies of the spinor field, so actually only diagrams whose vertices
can be written with interaction with no more and no less than two spinors are
possible. These reasoning enormously simplify the very big number of diagrams
one has to calculate.

We shall start by introducing the coupled scalar and spinor action, that still
has no derivative interactions. Again we work in the specialized case of four
dimensions and eventually we will give the general d-dimensional result. The
action is

Γk

[

φ, ψ̄, ψ
]

=

∫

d4x

(

Zφ

2
∂µφ∂µφ + Zψψ̄iD/ψ + H [φ] ψ̄ψ + V [φ]

)

(3.65)

We are as always implicitly working in euclidean space. In the case of Dirac
spinor it is possible to show that H [φ] is a purely imaginary function. Therefore,
if we decide to expand it

H [φ] = im + iyφ + . . . (3.66)

the first two coefficients are the mass and the usual Yukawa coupling times the
imaginary unit. We take this into account when renormalizing. We define the
renormalized dimensionless partner of the function H [φ] as

ih̄R

[

φ̄R

]

= k−1Z−1
ψ H

[

kZ
− 1

2
φ φ̄R

]

(3.67)

This can be see easily by introducing the dimensionless renormalized partner of
ψ and ψ̄ fields, which we avoid in order not to generate confusion with the bar
notation. Obviously h̄R

[

φ̄R

]

is a real quantity.

The canonical scaling terms of h̄R

[

φ̄R

]

will depend both on the anomalous
dimension of the scalar ηφ, but also on the anomalous dimension of the spinor
field, that we define similarly

ηψ = − Żψ

Zψ
(3.68)
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Exactly with the same technique we worked out for the renormalized dimen-
sionless potential, we can easily calculate

˙̄hR

[

φ̄R

]

= (−1 + ηψ)h̄R

[

φ̄R

]

+
(

1 +
ηφ
2

)

φ̄Rh̄′
R

[

φ̄R

]

+ k−1Z−1
ψ Ḣ [φ] (3.69)

If one desires now to know the flow of the coupled system of h̄R

[

φ̄R

]

and
v̄R

[

φ̄R

]

, four things must be calculated. We need to obtain the undetermined

term k−1Z−1
ψ Ḣ [φ] and ηψ from ERGE, but we also need to include the new

spinor effects in the previously calculated k−4V [φ] and ηφ.

3.4.1 Spinor contribution to the effective potential.

As we mentioned before, we are going to take as reference field configuration
φ = const. and ψ = ψ̄ = 0. This limit is technically very useful because the prop-

agation of scalar and spinor degrees of freedom gets decoupled in Γ(2)
k [φ, 0, 0].

It is also quite natural to take such kind of reference field, for the simple reason
that only scalar fields are expected to get a nonzero vacuum expectation value.
Though, we may expect that some condensation happens for the spinor degrees
of freedom. In that case it is sufficient to think about ψ as the field “out of
the condensate” and correctly add to the scalar potential a contribution from
the spinor condensation in the form V [φ] → V [φ] + H [φ]

〈

ψ̄ψ
〉

. After this
discussion it should be evident that, in the chosen configuration, we can freely
accomodate any realistic physical situation we may have in mind.

For the purpose of this subsection it is now sufficient to choose the cutoff
for the spinor degrees of freedom, in the chosen limit. Let us have a first look
at the kernel of the spinor kinetic term in momentum space q/. It satisfy the
property q/2 = q21, where q2 is the momentum space transform of the kernel
of the scalar kinetic term. We want to maintain a similar property when these
kernels are corrected by the infrared cutoff. First we define the IR cutoff term
for the spinor degrees to be in momentum space

∆Sψ
k =

∫

d4xψ̄−qRψ
k (q)ψq =

∫

d4xZψψ̄−qR
ψ
k (q)ψq (3.70)

The kernel Rψ
k (q) has to be a function of qµ rather than q2 to correctly cut off

modes. It also possesses indices in spinor space, so it is generally an element
of the Clifford algebra. It is useful to factor out its Clifford algebra nature by
parametrizing

Rψ
k (q) = q/rψk

(

q2
)

= q/rψk;q (3.71)

which also introduces a new function that is q2 dependent. The modified inverse
propagator therefore looks like

q/
(

1 + rψk;q

)

(3.72)

and in analogy to q/2 = q21 we require

(

q/
(

1 + rψk;q

))2
= q2 + Rk;q (3.73)
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This relation has obviously to be true supportwise. It is easy to show that the
correct choice for the factored function of the spinor cutoff is, for the optimized
cutoff choice,

rψk;q =

(

√

k2

q2
− 1

)

θ
(

k2 − q2
)

(3.74)

that is only slightly more complicated than the scalar one.
We now define the modified propagator for the spinors as the second variation

with respect to spinor fields in the chosen configuration

Gψ
k,q =

(

Zψq/ + H [φ] + ZψRψ
k (q)

)−1
(3.75)

Here we face two problems simultaneously. We have to take the inverse of a
function that contains theta functions, but also lives in the Clifford algebra. It
is convenient to first face the problem of inverting a function of q/ and then work
out the result in terms of the theta functions

Gψ
k,q =

Zψq/
(

1 + rψk,q

)

−H [φ]

Z2
ψ (q2 + Rk;q)−H [φ]2

(3.76)

=
Zψq/ −H [φ]

Z2
ψq2 −H [φ]2

θ
(

q2 − k2
)

+
Zψq/

√

k2

q2 −H [φ]

Z2
ψk2 −H [φ]2

θ
(

k2 − q2
)

One may be worried by the possible pole, but we have to remember that H [φ]
is a purely imaginary function. Before starting the first ERGE computation
with spinors we still need as a last ingredient the t-derivative of the cutoff. It
is easily calculated

Ṙψ
k;q = Zψq/

(

√

k2

q2
− ηψ

(

√

k2

q2
− 1

))

θ
(

k2 − q2
)

(3.77)

Our final task is to calculate the fermion loop contribution to the running
of the scalar effective potential. We therefore have to calculate

−tr

∫

q
Gψ

k;qṘk;q (3.78)

The minus sign is due to the anticommuting nature of the spinor field and
there is no factor 1/2 because there are actually two diagrams contributing
with opposite charge flow. It is represented in Fig. 3.6. It is sufficient to plug in
the explicit forms of modified propagator and derivative of the cutoff to get the
result. We write the new contribution to the running of the potential directly
in terms of renormalized quantities

∆ ˙̄vR

[

φ̄R

]

= −
(

1− ηψ

5

)

8π2
(

1 + h̄R

[

φ̄R

]2
) (3.79)

As usual we also give its generalization in general d spacetime dimensions. We
actually assume the spacetime to be even dimensional (so that the Dirac spinor
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qµ

Figure 3.6: Spinor loop tr
∫

q Gψ
k;qṘk;q contribution to the running of V [φ]. The

arrow denotes a charge flux.

bundle is 2d/2-dimensional) and that there is a number Nf of spinors coupled
to the scalar in a SU (Nf ) symmetric way. We have

∆ ˙̄vR

[

φ̄R

]

= −
21−d

2 π− d
2 Nf (1− ηψ

d+1)

dΓ
(

d
2

)

(

1 + h̄R

[

φ̄R

]2
) (3.80)

If we collect this contribution together with the running of the potential for
the self-interacting scalar field, we obtain in d = 4 the running of the potential
in the coupled system

˙̄vR

[

φ̄R

]

= −4v̄R

[

φ̄R

]

+
(

1 +
ηφ
2

)

φ̄Rv̄′R
[

φ̄R

]

+
1

32π2

1− ηφ

6

1 + v̄′′R
[

φ̄R

] −
(

1− ηψ

5

)

8π2
(

1 + h̄R

[

φ̄R

]2
) (3.81)

3.4.2 Spinor contribution to ηφ.

The next task is to compute the spinor loop contribution to the scalar anomalous
dimension. As we did for the simple scalar model we have to compute the p2

term in the flow of the 2-point function of the scalar with incoming momentum
pµ. In the limit of constant φ and zero ψ there are four graphs contributing to
the flow of the correlator of interest. Two of them involve the scalar loop, one
has the 3-vertices and we already computed its contribution, while the other
has the 4-vertex and gives no contribution because the vertex is non-derivative.
The other two vertices are those new, due to the presence of the spinor. These
are essentially of the same form of the previous two, with the difference that the
field in the loop is the spinor. There cannot be mixed scalar-spinor propagation
in the loop and the cutoff is necessarily on spinor propagation. This means that
the two graphs have a global sign minus in the trace. Further, the tadpole-like
graph gives no contribution to the anomalous dimension because its vertex is
non-derivative. We end up with only a graph to be calculated

−2tr

∫

q
Gψ

k;q+pH
′ [φ] Gψ

k;qṘk;qG
ψ
k;qH

′ [φ] (3.82)

where the factor 2 takes into account different charge propagation. This contri-
bution is represented in Fig. 3.7.
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pµ

qµ + pµ

Figure 3.7: Graph representation of tr
∫

q Gψ
k;q+pH ′ [φ] Gψ

k;qṘk;qG
ψ
k;qH

′ [φ]

To proceed further we need the second order expansion in pµ of Gψ
k;q+p. As

we mentioned before it is not necessary to retain the entire tensor structure
of the expansion, that generally is pµpν , but rather we can already perform
the substitution pµpν → p2/4δµν . Exactly like what we saw for the simple
scalar model this simplification is always realized by rotational symmetry when
integrating in qµ. We shall force it before because the expansion of Gψ

k;q+p is
strongly simplified. A straightforward calculation yields

Gψ
k;q+p → Gψ

k;q + pµ
∂

∂qµ
Gψ

k;q +
p2

8

∂2

∂qµ∂qµ
Gψ

k;q+p (3.83)

The terms of interest are, when restricted to the support θ
(

k2 − q2
)

,

pµ
∂

∂qµ
Gψ

k;q =

(

p/ − q/
p · q
q2

) Zψ

√

k2

q2

Z2
ψk2 −H [φ]2

θ
(

k2 − q2
)

+ . . . (3.84)

and

p2

8

∂2

∂qµ∂qµ
Gψ

k;q+p =

(

q/ − 2Zψk2 (Zψq/ −H [φ])

Z2
ψk2 −H [φ]2

)

×

× Zψ

Z2
ψk2 −H [φ]2

p2

4
δ
(

k2 − q2
)

−3

8

q/

q2

Zψ

√

k2

q2

Z2
ψk2 −H [φ]2

p2θ
(

k2 − q2
)

+ . . . (3.85)

Actually, only the second order expansion is needed for the computation.
We see it is a quite complicated function, especially if compared to the second
order expansion of its scalar counterpart. The reason is that the spinor propa-
gator requires a structural q/ in front because it belongs to the Clifford algebra.
Consequently one is forced to introduce the structure

√

k2/q2 that practically
regularize q/. This procedure could not be achieved directly with a function of k2

only, because k is just an energy scale and has no vector nature like qµ. Cutting
modes in a spinor propagation requires a vector. The net effect is that the first
order expansion is much more complicated than the scalar case and in partic-
ular there is a dependence on qµ also outside the support functions. The main
property of this second order expansion is that both the support functions and
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the Dirac delta distribution are appearing. We therefore expect, when tracing
in qµ, terms with the integration restricted to the support and terms “concen-
trated” in k2 = q2 due to the Dirac delta. We had to manage both in previous
examples, so we shall not spend more time in explaining them. We will instead
give the result for the integration of the second order p2 directly in terms of
renormalized quantities. The new contribution to ηφ is

∆ηφ =

(

1− ηψ

4 −
3
2 h̄R

[

φ̄R

]2 − 1
2

(

1− ηψ

2

)

h̄R

[

φ̄R

]4
)

h̄′
R

[

φ̄R

]2

4π2
(

1 + h̄R

[

φ̄R

]2
)4 (3.86)

We also give the general even dimensional spacetime result for Nf fermions

∆ηφ = −
Nf

(

4− 3d + 2ηψ + 6 (d− 2) h̄R

[

φ̄R

]2
+ (d− 2ηψ) h̄R

[

φ̄R

]4
)

h̄′
R

[

φ̄R

]2

(2π)d/2d(d− 2) Γ
(

d
2

)

(

1 + h̄R

[

φ̄R

]2
)4

(3.87)

As for the potential we collect the complete d = 4 result for the anomalous
dimension ηφ in the scalar-spinor coupled system. We obtain

ηφ =
v̄(3)

R

[

φ̄R

]2

32π2
(

1 + v̄′′R
[

φ̄R

])4

+

(

1− ηψ

4 −
3
2 h̄R

[

φ̄R

]2 − 1
2

(

1− ηψ

2

)

h̄R

[

φ̄R

]4
)

h̄′
R

[

φ̄R

]2

4π2
(

1 + h̄R

[

φ̄R

]2
)4 (3.88)

Some final remark is in order. Again ηφ does not depend on φ, because it
actually depends on the configuration. Therefore any φ appearing on the right
hand side of ∆ηφ is set by some physical requirement like being the ground state
of the potential. One may also notice that the total ηφ depends on ηψ but not
on ηφ itself. We will later see that ηψ will depend on ηφ only, that means that
the actual values for the anomalous dimensions will rather appear diagonalizing
their associated subsystem. This will indeed introduce some further nonlinearity
in their actual functional value. This simple pattern will ultimately be broken
in presence of gravity.

3.4.3 Flow for the function h.

In the previous two subsections we computed the spinor loop contributions to
the anomalous scalar dimension and the flow of the potential. We still need to
calculate the spinor anomalous dimension and the flow of the function H [φ].
These two quantities arise naturally from the spinor 2-point function. In the
limit of the field configuration φ = const. and ψ = ψ̄ = 0, its flow is

δ2Γ̇k

[

φ, ψ, ψ̄
]

δψpδψ̄−p

∣

∣

∣

∣

∣

ψ=ψ̄=0,φ

= Żψp/ + Ḣ [φ] (3.89)

We are interested now in the pµ = 0 limit of this 2-point function. The
external legs are spinorial, no four fermion interactions are allowed by the trun-
cation and the reference configuration is ψ = ψ̄ = 0. These three ingredient
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Figure 3.8: Contribution corresponding to 〈1〉 in formula (3.90).

Figure 3.9: Contribution corresponding to 〈2〉 in formula (3.91).

imply that in the loop of the tadpole-like graph there must be a scalar running,
while in the graphs with 3-vertices there must be one and only one fermion line.
Concerning this last kind of graph, we can have that the cutoff is on the scalar
propagating or on the spinor line. Therefore there are three possible graphs
contributing to pµ = 0 and are

〈1〉 =

∫

q
Gψ

k;q+pH ′ [φ] Gk;qṘk;qGk;qH
′ [φ] (3.90)

〈2〉 = −
∫

q
Gk;q+pH

′ [φ] Gψ
k;qṘ

ψ
k;qG

ψ
k;qH

′ [φ] (3.91)

〈3〉 = −1

2

∫

q
H ′′ [φ] Gk;qṘk;qGk;q (3.92)

We left the pµ dependence although we need them at pµ = 0 now, because in
the next subsection we will use their expansions.

At order pµ = 0 their contributions to the running of H [φ] written in terms
of dimensionless renormalized quantities are

∆1
˙̄hR

[

φ̄R

]

=

(

1− ηφ

6

)

h̄R

[

φ̄R

]

h̄′
R

[

φ̄R

]2

16π2
(

1 + h̄R

[

φ̄R

]2
)

(

1 + v̄′′R
[

φ̄R

])2
(3.93)

∆2
˙̄hR

[

φ̄R

]

=

(

1− ηψ

5

)

h̄R

[

φ̄R

]

h̄′
R

[

φ̄R

]2

16π2
(

1 + h̄R

[

φ̄R

]2
)2

(

1 + v̄′′R
[

φ̄R

])

(3.94)

∆3
˙̄hR

[

φ̄R

]

= −
(

1− ηφ

6

)

h̄′′
R

[

φ̄R

]

32π2
(

1 + v̄′′R
[

φ̄R

])2 (3.95)
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Figure 3.10: Contribution corresponding to 〈3〉 in formula (3.92).

while their general even dimensional d counterparts are

∆1,d
˙̄hR

[

φ̄R

]

=
22−dπ−d/2

(

1− ηφ

d+2

)

h̄R

[

φ̄R

]

h̄′
R

[

φ̄R

]2

dΓ
(

d
2

) (

1 + h̄R

[

φ̄R

]) (

1 + v̄′′R
[

φ̄R

])2 (3.96)

∆2,d
˙̄hR

[

φ̄R

]

=
22−dπ−d/2

(

1− ηψ

d+1

)

h̄R

[

φ̄R

]

h̄′
R

[

φ̄R

]2

dΓ
(

d
2

)

(

1 + h̄R

[

φ̄R

]2
)2

(

1 + v̄′′R
[

φ̄R

])

(3.97)

∆3,d
˙̄hR

[

φ̄R

]

= −
21−dπ−d/2

(

1− ηφ

d+2

)

h̄′′
R

[

φ̄R

]

dΓ
(

d
2

) (

1 + v̄′′R
[

φ̄R

])2 (3.98)

Finally, the total contribution corresponds to the running of the function h̄R

[

φ̄R

]

itself. We write it adding the canonical scaling terms in four dimensions

˙̄hR

[

φ̄R

]

= (−1 + ηψ)h̄R

[

φ̄R

]

+
(

1 +
ηφ
2

)

φ̄Rh̄′
R

[

φ̄R

]

+∆1
˙̄hR

[

φ̄R

]

+ ∆2
˙̄hR

[

φ̄R

]

+ ∆3
˙̄hR

[

φ̄R

]

(3.99)

and in general dimensionality

˙̄hR

[

φ̄R

]

= (−1 + ηψ) h̄R

[

φ̄R

]

+
1

2
(d− 2 + ηφ) φ̄Rh̄′

R

[

φ̄R

]

+∆1,d
˙̄hR

[

φ̄R

]

+ ∆2,d
˙̄hR

[

φ̄R

]

+ ∆3,d
˙̄hR

[

φ̄R

]

(3.100)

3.4.4 Spinor anomalous dimension.

In this subsection we shall refer to the contributions 〈1〉, 〈2〉 and 〈3〉, as defined
in the previous one. The graphs corresponding to them are in Fig. (3.8), (3.9)
and (3.10) respectively. We want to calculate the spinor anomalous dimension,
so we want to isolate the terms that are proportional to p/ out of them. To
achieve this task it is sufficient to use the first order expansion in pµ of Gk;q+p

and Gψ
k;q+p. First we notice that 〈3〉 (Fig. 3.10) is not going to contribute for

the simple reason that it is pµ independent because the vertex is nonderivative.
Second, the first order expansion of Gk;q+p is nonzero, but out of the support

θ
(

k2 − q2
)

forced by Ṙψ
k;q and thus 〈2〉 gives no contribution to Żψ (Fig. 3.9).
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This means that there is actually just one graph contributing when using the
optimized cutoff and it is 〈1〉 of Fig. 3.8. The result is, in four dimensions,

ηψ =

(

1− ηφ

5

)

h̄′
R

[

φ̄R

]2

16π2
(

1 + h̄R

[

φ̄R

]2
)

(

1 + v̄′′R
[

φ̄R

])2
(3.101)

and in general d dimensions

ηψ =
22−dπ−d/2

(

1− ηφ

d+1

)

h̄′
R

[

φ̄R

]2

dΓ
(

d
2

)

(

1 + h̄R

[

φ̄R

]2
)

(

1 + v̄′′R
[

φ̄R

])2
(3.102)

The pattern of dependence of anomalous dimensions we anticipated is now
evident, because ηψ is a function of ηφ and not of itself. The subsystem of
anomalous dimensions can be algebrically solved easily, although it is not our
purpose now. These form a system like

ηφ = ηφ (ηψ)

ηψ = ηψ (ηφ) (3.103)

In the LPA approximation the anomalous dimensions are small and this is telling
us that our approximation is reliable. This also means that we could approxi-
mately solve the system by setting

ηφ = ηφ (0)

ηψ = ηψ (0) (3.104)

We will later go into deeper details about the truncation, but for illustrative
purposes we can now set it to comprehend only a true Yukawa interaction
H [φ] = iyφ and a φ4 one in V [φ] = λ4φ4. The fields are chosen to be massless
so that the thresholds (denominators) disappear. In this case we have in four
dimensions

ηφ =
y2

4π2

ηψ =
y2

16π2
(3.105)

which reproduces the usual 1-loop result that is obtained in the context of
perturbation theory. The LPA approximation is evidently good as long as the y
coupling is small, although not necessarily too small because the factors 1/4π2

and 1/16π2 is relaxing the condition a little bit. The Yukawa coupling is known
to show a Landau pole towards the UV in usual perturbative computations,
unless gauge couplings are present and sufficiently strong to “save” its flow.
This tells us that the Yukawa coupling, in such simple perturbative truncations,
is not going to be small forever if integrated towards UV, and the same holds
for ηψ. At the same time, the appearance of a big ηψ tells us that is probably
necessary to go beyond and analyze truncations that do not belong to LPA
approximation. The typical model one has in mind in such a scenario contains
higher derivatives. In the next sections we shall not analyze these cases. We
instead decide to try to violate one generally underestimated assumption that
we made in the previous argument, namely that the framework is perturbative.
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3.5 Collecting the results in flat space.

In this section, for the sake of clarity, we want to collect all the results involving
the flow of the renormalized dimensionless functions v̄R and h̄R in flat space. We
will also complete this result giving the explicit complete form of the anomalous
dimensions ηφ and ηψ . The results given here will be useful when later we will
add the gravitational degrees of freedom.

The complete flow of the potential v̄R comes from formulas (3.23) and (3.79).
The flow of h̄R comes from formulas (3.99), including the canonical scaling and
contributions (3.93), (3.94) and (3.95). In four dimensions we obtain

˙̄vR = −4v̄R +
(

1 +
ηφ
2

)

φ̄Rv̄′R +
1

32π2

1− ηφ

6

1 + v̄′′R
−

(

1− ηψ

5

)

8π2
(

1 + h̄2
R

) (3.106)

˙̄hR = (−1 + ηψ)h̄R +
(

1 +
ηφ
2

)

φ̄Rh̄′
R +

(

1− ηφ

6

)

h̄Rh̄′
R

2

16π2
(

1 + h̄2
R

)

(1 + v̄′′R)2

+

(

1− ηψ

5

)

h̄Rh̄′
R

2

16π2
(

1 + h̄2
R

)2
(1 + v̄′′R)

−
(

1− ηφ

6

)

h̄′′
R

32π2 (1 + v̄′′R)2
(3.107)

Similarly, the anomalous dimension ηφ in its complete form has contributions
from (3.63) and (3.86). Instead ηψ has only one contribution (3.101). We have

ηφ =
v̄(3)

R
2

32π2 (1 + v̄′′R)4
+

(

1− ηψ

4 −
3
2 h̄2

R − 1
2

(

1− ηψ

2

)

h̄4
R

)

h̄′
R

2

4π2
(

1 + h̄2
R

)4 (3.108)

ηψ =

(

1− ηφ

5

)

h̄′
R

2

16π2
(

1 + h̄2
R

)

(1 + v̄′′R)2
(3.109)

We think it is useful to give these flat space results in the simplified trun-
cation in which the generalized Yukawa interaction reduces to a proper Yukawa
coupling. We therefore set h̄R = ȳRφ̄R, where ȳR is the renormalized Yukawa
coupling. For simplicity, we also decided to expand in the neighbor of φ̄R = 0,
so that we implicitly assume a symmetric phase of the potential. In the system
(3.106) and (3.107) we obtain

˙̄vR = −4v +
(

1 +
ηφ
2

)

φ̄Rv̄′R +
1

32π2

1− ηφ

6

1 + v̄′′R
−

(

1− ηψ

5

)

8π2
(

1 + φ̄2
Rȳ2

R

)(3.110)

˙̄yR =
(ηφ

2
+ ηψ

)

ȳR +
ȳ3

R(1− ηφ

6 )

16π2 (1 + v̄′′R(0))2
+

ȳ3
R(1− ηψ

5 )

16π2 (1 + v̄′′R(0))
(3.111)

The anomalous dimensions (3.108) and (3.109) are more complex than the sys-
tem (3.105), even if we expanded around φ̄R = 0 (the issue of the expansion is
discussed in the next section). They also have an additional Nf dependence.

ηφ =
v̄(3)

R [0]2

32π2 (1 + v̄′′R [0])4
+

Nf ȳ2
R(1 − ηψ

4 )

4π2

=
Nf ȳ2

R(1− ηψ

4 )

4π2
(3.112)

ηψ =
ȳ2

R(1− ηφ

5 )

16π2 (1 + v̄′′R [0])2
(3.113)
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In the second line we used the fact that the potential is symmetric and expanded
around φ̄R = 0.

In order to understand better the meaning of the expression (3.110), (3.111),
(3.112) and (3.113) it is useful to compare them with perturbation theory, like we
did with (3.105). In particular we can check if our flow for the Yukawa coupling
ȳR reproduces the result of perturbation theory. To this end it is convenient to
consider a scale k, which is beyond any possible threshold scale K, k , K. In
particular, the thresholds in our truncation are set by the quantity V ′′ [0] = K
having the role of mass, through the denominators of the beta functions. In this
limit we can neglect v̄′′R [0] = V ′′ [0] /k2Z2

φ - 1. If we plug (3.112) and (3.113)
inside (3.111) we get

˙̄yR =
ȳ3

R

16π2
(2Nf + 1 + 2) + O

(

ȳ5
R

)

(3.114)

This formula has a direct perturbative interpretation. In the parenthesis we
isolated the contributions coming from the field renormalization of the scalar
field 2Nf ȳ3

R/16π2, from the field renormalization of the spinor field Nf ȳ3
R/16π2

and form the vertex renormalization 2ȳ3
R/16π2. In the case in which there is

just one flavor we see that

ẏ =
5y3

16π2
+ O

(

y5
)

(3.115)

we obtain the 1-loop 5/16 positive coefficient of the Yukawa beta function.

3.6 Perturbative vs non-perturbative expansions.

We just mentioned in a simple example, but we actually saw it at many steps.
There is a relation between functional renormalization group results and stan-
dard perturbative renormalization schemes. Namely, 1-loop ERGE results co-
incide with 1-loop perturbative ones. We proved it in chapter one, but now we
can further specify that we really get standard perturbative results when the
configuration field taken as reference is φ = 0. More generally when all fields
are taken to zero. This may be simply interpreted. When using a reference
configuration for the expansion it is necessary to provide it a physical meaning,
because otherwise it is a new external ingredient. It is natural to decide that the
constant φ corresponds to the ground state of our potential. This means that
setting φ = 0 and requiring the symmetry V [φ] = V [−φ] precisely indicates
that the potential is in a symmetric phase.

In this case it is natural to expand the potential as a power series of φ2 in
the form

V [φ] =
∑

j≥0

λ2jφ
2j (3.116)

The convergence of such an expansion has been studied and shown in [32]. Let
us call the renormalized dimensionless partners of the couplings λ̄2j,R, these are
related to the bare dimensionful λ2j in four dimensions by the relation

λ̄2j,R = k2(j−2)Z−j
φ λ2j (3.117)
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that is also correctly taking into account the field renormalization. It is easy to
see that λ̄2j,R are the coefficients of the renormalized dimensionless potential

v̄R

[

φ̄R

]

=
∑

j≥0

λ̄2j,Rφ̄2j
R (3.118)

The same considerations work for all other couplings, for example the coeffi-
cients in h̄R

[

φ̄R

]

are the dimensionless partners of the couplings one expects to
measure. Having expanded around φ = 0 we naturally expand h̄R

[

φ̄R

]

similarly

h̄R

[

φ̄R

]

= m̄R + ȳRφ̄R + . . . (3.119)

The beta functions of these couplings are easily obtained using the functional

flows ˙̄vR

[

φ̄R

]

and ˙̄hR

[

φ̄R

]

. It is sufficient to expand them, for example taking
the appropriate number of derivatives

˙̄λ2j,R =
1

(2j)!

∂2j

∂φ̄2j
R

∣

∣

∣

∣

∣

φ̄R=0

˙̄vR

[

φ̄R

]

(3.120)

˙̄mR = ˙̄hR [0] (3.121)

˙̄yR =
∂

∂φ̄R

∣

∣

∣

∣

φ̄R=0

˙̄hR

[

φ̄R

]

(3.122)

. . . (3.123)

while the anomalous dimensions are consistently fixed to the values of the chosen
configuration

ηφ = ηφ|φ̄R=0 (3.124)

ηψ = ηψ|φ̄R=0 (3.125)

This last equation is a manifestation of the “Z = Z [φ] rule”, we introduced
when computing the anomalous dimension of the scalar. We stress again that
neither the anomalous dimensions, nor the field renormalization, depend on φ,
but they do depend on the reference 〈φ〉 through the rule. Here we are simply
setting the configuration interpreted as ground state.

This is a rather standard procedure when dealing with functional renor-
malization group equation. In principle one could imagine to solve the entire
differential equation for the functions without exploiting any particular expan-
sion, with appropriate boundary conditions. This is actually a hard task that
can be achieved only numerically, due to the high nonlinearity of the flow. By
setting a power expansion and calculating the beta functions we can reduce the
complexity of the system simply choosing a finite number of coefficients in the
expansion of the two functions. If this is done we may wonder now if we reduced
the complexity too much, in the sense that we may be missing some information
contained in the flow. In this respect we can have a look at the existing litera-
ture. The study of the flow of the potential is a quite well known subject in two,
three and four dimensions. It has been studied both in polynomial truncations
and numerically, despite not coupled usually to the function H [φ].

There is a general failure of polynomial truncation we could worry about,
that is, if the flow for the potential has a fixed point which is a function that
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cannot be expanded. This turns out to be a rather pathological situation,
although not impossible. We shall assume this is not the case. In two dimensions
it was shown by Morris that the flow of the dimensionless renormalized potential
leads to a series of fixed points, that are the known multicritical 2d CFT. To
be precise, he increased the truncation adding a field dependent wavefunction
renormalization and treated the anomalous dimension in a slightly different way
than what we do. Apart from that, he was able to calculate with good precision
the nature of the properties of the first few CFTs (the critical exponents) and
found indications that further theories can be obtained by increasing more the
truncation. It is useful to remember that these theories are known analytically,
so he was able to compare his results with the exact ones. The example of two
dimensions is representative because the truncation Morris chooses goes beyond
LPA and such a truncation is necessary to capture the details of the multicritical
theories. This might be seen as an indication that we should also improve in
that direction, without much hope to find some nontrivial structures. All in all,
still two dimensional critical theories are polynomial-like, so at least we may
still trust our expansion.

In three dimensions the situation is slightly different. It is well known that
there is an IR fixed point in the flow which is called Wilson-Fisher (WF) FP. It
has been studied mainly numerically, but also analytically. The best determi-
nation of its properties are those obtained from Monte Carlo techniques, while
functional RG techniques are known to give these numbers with quite good accu-
racy, at least in some cases. The existence of WF FP is very important because
it overcomes the problem of triviality of a scalar theory in three dimensions. To
see this it is sufficient to take the usual λ4 running, that is

λ̇4 ∼ λ2
4 (3.126)

The theory is known to encounter a singularity in finite RG time, so for a finite
k̄, called Landau pole. The question is whether we can still take the smooth
limit. In three dimensions this is possible. In fact we can push the scale k̄
to infinity, by simply sending all other scales to zero. There is actually just
another scale in the problem, k, and when k is going to zero we may tune our
RG trajectory to hit WF fixed point. Therefore we can take the continuum
limit of the theory.

The procedure we just outlined is not possible in four dimensions, because
there are no nontrivial analogues of the Wilson-Fisher FP. This forces the theory
to flow to the gaussian FP. For this reason the four dimensional scalar theory
is said to be trivial. We can rephrase what we just said in terms of asymptotic
safety definition. The system λ̇4 ∼ λ2

4 has just the gaussian (repulsive) solution.
Given this FP is repulsive, its critical surface happens to coincide with the fixed
point itself. Therefore, given that in the context of functional RG we have
to place the initial condition of the flow on the critical surface, we see that
asymptotic safety imply triviality of the scalar model (it will always sit in the
gaussian fixed point). This means that we can define the UV limit of the four
dimensional theory, although it is of no interest because the theory is completely
trivial (free).

The examples we gave all have in common that there is no spinor sector
and therefore no Yukawa interaction. However the Yukawa coupling y is known
to have similar UV behavior to λ4. Among the problems of standard model
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the running of y is as dangerous as that of λ4. We do not really expect that
the addition of a Yukawa sector may really solve any issue. In fact the possible
existence of nontrivial FP in the symmetric potential expansion has been studied
in quite detail by [18, 34, 35]. They were able to show that the LPA symmetric
regime does not posses any nontrivial FP. The question is, do we have any hope
to find some nontrivial structure in four dimensions without giving up with the
LPA?

3.6.1 Expansion around a VEV.

In order to produce some nontrivial result before leaving the LPA, we can still
try to relax the condition of symmetry of the potential. Actually, the potential
is always asked to be symmetric, but its minimum (ground state) may not be.
We parametrize the potential in the form

V [φ] =
∑

j (=1

θ2j

(

φ2 − κ
)j

(3.127)

and correspondingly

v̄R

[

φ̄R

]

=
∑

j (=1

θ̄2j,R

(

φ̄2
R − κ̄R

)2j
(3.128)

At first sight this parametrization is not going to give any improvement. It is
evident that an expansion up to a certain order in θ2j can always be rewritten
in terms of one in λ2i. So we have a linear relation between couplings λ and θ.
There is no way a nontrivial FP is generated for the couplings θ if their beta
functions are obtained from those of λ system.

We have to remember that we introduced the VEV in the potential because
we want to avoid the φ = 0 expansion. Therefore, rather than using the λ sys-

tem, it is convenient to genuinely calculate ˙̄θ2j,R from the flow of the potential.
We have quite naturally

˙̄θ2j,R =
1

j!

∂
(

∂φ̄2
R

)j

∣

∣

∣

∣

∣

φ̄2
R=κ̄R

˙̄vR

[

φ̄R

]

(3.129)

and the results will be different. The reason is simple. The flow equation does
not know about the symmetric or symmetry-breaking phase, so it is sensitive of
this different parametrization as long as the way we calculate the beta functions
is different.

To physically improve further our calculation, it is sufficient to notice that
the limit φ̄2

R = κ̄R has the same role that the limit φ = 0 had in the symmetric
expansion. It is therefore natural to regard the configuration φ̄R =

√
κ̄R (or

alternatively φ̄R = −
√

κ̄R) as the reference configuration of our calculation.
This means that the anomalous dimensions are for this system

ηφ = ηφ|φ̄2
R=κ̄R

(3.130)

ηψ = ηψ|φ̄2
R=κ̄R

(3.131)

and are easily seen to be much more complex than those in φ = 0.
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The symmetry breaking potential is known to provide a mass for the spinor
field, provided there is a Yukawa coupling. We may truncate the interaction the
spinor have with the scalar to the simple Yukawa one

h̄R

[

φ̄R

]

= ȳRφ̄R (3.132)

and coherently calculate its running always making reference to the nontrivial
VEV in the form

˙̄y =
∂

∂φ̄R

∣

∣

∣

∣

φ̄R=
√
κ̄R

˙̄hR

[

φ̄R

]

(3.133)

This way to evaluate the running of the Yukawa coupling is a crucial difference
compared to [16, 17]. In fact, in [16, 17] an expansion around a nonzero VEV
was used for the potential, but not done for the Yukawa coupling. We agree
with [18] and believe that for consistency one should expand all the quantities
around the VEV.

There is a final ingredient we need. We introduced a VEV for the renormal-
ized dimensionless potential, but we still do not have a prescription on how to
calculate its running. We clearly do not want it to be a new external scale. The
issue is solved as follows. The VEV is a minimum of the potential that now we
regard as a function of φ̄2

R = ρ, therefore

∂ρv̄R [κ̄R] = 0 (3.134)

We can take a t derivative on both sides of this equation [18]. This procedure
forces the running of κ̄R to stay on a minimum of the flow. We obtain

∂ρ ˙̄vR [κ̄R] + ∂2
ρ v̄R [κ̄R] ˙̄κR = 0 (3.135)

This relation is easily solved in terms of the beta function for κ̄R. The result is

˙̄κR = − ∂ρ ˙̄vR [ρ]

∂2
ρ v̄R [ρ]

∣

∣

∣

∣

ρ=κ̄R

(3.136)

This relation was first derived by Wetterich [33].
As an example, we give the running of the VEV coming from (3.23), so for a

truncation in which there is just the scalar self-interaction field. We first restore
the usual φ dependence in (3.136) and obtain a formula which is written in
terms of derivatives with respect to φ

˙̄κR = −2
√

κ̄R

˙̄v′R [
√

κ̄R]

v̄′′R [
√

κ̄R]
(3.137)

Then we use (3.137) and (3.23) to obtain

˙̄κR = − (2 + ηφ) κ̄R +

(

1− ηφ

6

)√
κ̄Rv̄(3)

R [
√

κ̄R]

32π2v̄′′R [
√

κ̄R] (1 + v̄′′R [
√

κ̄R])
2 (3.138)

the running of a non-trivial VEV in the self-interacting scalar model.
In [18] it was shown that the symmetry breaking parametrization, with all

the prescription we introduced for the calculation of the anomalous dimensions
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and the Yukawa coupling running, could indeed lead to a nontrivial UV fixed
point for the simple system under study. The only ingredient they had to assume
was a general number of Nf spinors coupled in a SU (Nf ) symmetric way, they
‘extended the results to general real Nf and showed that the nontrivial FP exists
provided Nf " 0.4 − 0.5. This value is far from being completely unnatural.
It is simply telling us that we should consider different models in which the
scalar sector dominates in particle numbers, with respect to the spinor sector.
A situation that is likely to happen in any GUT model, in which a very big
scalar Higgs multiplet is needed to correctly break the symmetry down to the
standard model one. From the point of view of the running of the VEV we may
see the situation in this way. The general running of the VEV is of the form

˙̄κR = −2κ̄R + Ns (. . . )−Nf (. . . ) (3.139)

Between parentheses we are hiding how actually the Ns scalars and Nf spinors
are contributing.

In order to give an example of such a relation, we can calculate using (3.137)
the running of the non-trivial VEV coming from (3.106)

˙̄κR = − (2 + ηφ) κ̄R +

√
κ̄Rv̄′′′R

(

1− ηφ

6

)

16π2v̄′′R (1 + v̄′′R)2
−

hNf
√

κ̄Rh̄′
R

(

1− ηψ

5

)

2
(

1 + h̄2
R

)2
π2v̄′′R

∣

∣

∣

∣

∣

φ̄R=
√
κ̄R

(3.140)

Compared to (3.138), we see that (3.140) has the predicted additional contri-
bution coming from the Nf spinors. The new contribution has, as expected, a
negative sign. In the model we used as an example the scalar number of flavors
is obviously one.

In general, the situation we have in mind is that of a conformal running for
κ̄R, in which the two contributions (see always (3.140) for an explicit exam-
ple) mainly cancel or that of the scalars dominates. It is clear that decreasing
Nf should give approximately an idea of what happens when instead Ns is in-
creased. A flow in the SSB regime is typically characterized by a freeze-out of
all couplings. This is because all particles coupling to the vacuum expectation
value acquire a mass and decouple from the flow. If the conformal running
condition is realized κ ∼ k2 and bosonic degrees of freedom slightly dominate,
a κ̄$

R .= 0 FP for κ is possible. Also, this FP is generally shown to be attrac-
tive with critical exponent 2. This signals that the mass of the spinor, rather
than being a parameter, has to be determined from the constraint on the flow
coming from asymptotic safety. This particular situation, if realized in nature,
would allow to further extend the validity of the standard model, provided a
compatible top-mass is the outcome of the model. To this end, the model was
further extended in more realistic settings and other situations [34].

In [19] it was also extended to include gravity. The reason that makes
the inclusion of gravity particularly important is twofold. First, one wishes to
apply the nontrivial FP scenario to a Higgs sector of the standard model and
therefore hopes that the standard model is asymptotically safe. If it is so, it
could be explored to arbitrarily large energies, including those at which gravity
is unavoidably strong. Second, the inclusion of gravity means the inclusion of
a set of new spin particles. Among the components of the graviton, there are
two spin zero fields which can relax the condition Nf " 0.5, or even avoid it
completely. The task of the next chapter will be to introduce gravity in the
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game, calculate the gravitational corrections to the running of the potential,
the Yukawa function and anomalous dimensions. Finally we will investigate the
possible presence of nontrivial FPs as functions of Nf . For a complete account of
the nontrivial features of the Higgs-like sector in flat space we refer [18, 34, 35].
For the investigations of the flow of matter effective actions coupled to gravity
we refer to [20].

3.7 The background field method.

Among all the techniques that are applied in conjunction with functional renor-
malization group, we will extensively use the background field method [36, 37].
The main aim of its application is to let us manage the gauge dependence of
the scale dependent effective action. In particular it will allow us to precisely
define a gauge invariant functional with built-in scale dependence. As we shall
see the application of the background field technique requires some care when
working with the ERGE, especially when the action we are considering has a
general k-dependence, rather than being the full effective action at k = 0.

Before going into the details of the method, it is worth saying that alterna-
tives exist. The issue of obtaining a gauge invariant effective action has been
addressed using standard variables and modified Ward-Takahashi identities in
[38]. Another alternative is to use gauge invariant (or covariant) variables, that
has been explored in [39].

To fix ideas it is useful to work with a specific theory and we decide to analyze
gravity. The other possible choice would be a general Yang-Mills theory, but as
it will be evident all the discussion of this section can be applied to any gauge
theory too. Our basic quantum field is therefore the metric γµν . We adopted
the symbol γµν because we will reserve gµν for the classical metric, that is the
argument of the effective action. A diffeomorphism invariant theory is invariant
under the transformation

γµν → γ′
µν = γµν + Lvγµν = γµν +∇µvν +∇νvµ (3.141)

where vµ is any vector field.
The essence of the background field method involves a splitting of the metric

of the form

γµν = ḡµν + hµν (3.142)

The metric ḡµν is called the background metric, while hµν is the fluctuation.
Our aim is to quantize with the functional technique hµν leaving the background
as a reference metric. It is important to understand that the perturbations are
not considered small in any sense and all orders in hµν have to be taken into
account. The reason of the background splitting is twofold. The metric ḡµν

provides us a notion of distance that we will use for the coarse-graining. Also,
it will allow us to carry gauge-invariance to quantum level.

The issue of gauge invariance is therefore primary. Having split the metric we
have some freedom in translating the gauge transformation of the full metric, in
terms of split components. There are two main, opposite in respect, alternatives.
The first one is to ask that the background transforms in the same way the metric
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does and hµν behaves accordingly

δḡµν = Lvḡµν (3.143)

δhµν = Lvhµν (3.144)

that is called background gauge transformation. Alternatively one may ask that
the background is fixed and the fluctuation retains all the transformation

δḡµν = 0 (3.145)

δhµν = Lv (ḡµν + hµν) (3.146)

The last one is called the true gauge transformation. It should be clear that it
is possible to gauge fix the true gauge transformation in such a way that the
background gauge transformation is left intact. This is important because we
will be able to carry the background symmetry up to the end of the process of
functional quantization.

We shall start the construction of the functionals introducing a certain clas-
sical action

S [γµν ] = S [ḡµν , hµν ] (3.147)

where we made explicit the double dependence, although at this point it is only
a fake dependence because the split symmetry is assumed

ḡµν → ḡµν + sµν (3.148)

hµν → hµν − sµν (3.149)

The idea, at this point, is to construct the scale dependent effective action
following closely the steps we outlined in the first chapter, but applying them
to hµν only. We therefore introduce the IR cutoff term in the form

∆Sk [ḡµν , hµν ] =
1

2

∫ √
ḡhαβRk [ḡ]µναβ hµν (3.150)

This makes explicit what we meant by saying that the coarse-graining was made
with respect to the background. The kernel of the quadratic cutoff depends on
ḡµν and modes of hµν are suppressed according to an operator that is obtained
through the background structure. In other words, we need an operator con-
structed from the background metric ḡµν to be able to define in a covariant
way high and low frequency modes. An example of such an operator is the
background laplacian defined as −ḡµν∇̄µ∇̄ν . Using the terminology introduced
in the first chapter, the background metric allows us to define a notion of fast-
and slow-modes for the fields hµν or gµν . It is clear that ∆Sk [ḡµν , hµν ] has a
true double dependence because it violates the split symmetry explicitly.

Now we can gauge-fix hµν modes introducing the gauge fixing term and
the related ghost term in the path integral for the partition function. As we
already said the gauge fixing is performed on the true gauge transformation.
The property that this gauge fixing leaves the background gauge intact, is also
particularly useful because it means it can be written in an explicitly covariant
form. Covariance is implied once ḡµν is regarded as the metric and hµν as
a generic symmetric 2-tensor. If we neglect the ghost dependences, that we
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will see in more detail in a specific application below, the result of functional
integration and Legendre transformation is a functional

Γk

[

ḡµν , h̄µν

]

(3.151)

which has the genuine dependence on the background and on the expectation
value

h̄µν = 〈hµν〉 (3.152)

We adopted the symbol Γk instead of Γk, because we want to reserve it for a
slightly different definition of this functional as we shall see in a moment. It
is natural to introduce a new metric out of the expectation value of hµν by
defining

gµν = ḡµν + h̄µν (3.153)

and it easy to see that this metric is the full classical metric because gµν = 〈γµν〉.
For this reason the actual dependence we may want to adopt uses both the
metrics

Γk

[

ḡµν , h̄µν

]

= Γk [ḡµν , gµν − ḡµν ] = Γk [ḡµν , gµν ] (3.154)

In this sense, this is often referred as a bimetric functional.
Again, the presence of the cutoff term influences the fact that the functional

does not respects the split symmetry, this time in ḡµν and h̄µν . Therefore it
does genuinely depends on two metrics, so it is a bimetric functional. The exact
renormalization group equation looks like

Γ̇k [ḡµν , gµν ] =
1

2
Tr

(

Γ(0,2)
k [ḡµν , gµν ] + Rk [ḡ]

)−1
Ṙk [ḡ] (3.155)

The notation Γ(0,2)
k [ḡµν , gµν ] means that derivatives are performed only on the

gµν dependence. Again, ghosts are neglected in our discussion, but can easily
be restored. We temporarily abbreviate the flow equation as

∂tΓk [ḡµν , gµν ] = F [ḡµν , gµν ] (3.156)

The background was useful in our construction because it allowed to per-
form the coarse graining in such a way that Γk [ḡµν , gµν ] is always background
gauge invariant along the flow. However, at the very end, we are looking for a
functional that is invariant under the full gauge transformation on gµν . This
issue is partly resolved by requiring that the true effective action is only gµν

dependent and gauge invariant

Γk=0 [ḡµν , gµν ] & Γ [gµν ] (3.157)

where the equality is not exact for the presence of gauge fixing terms. We want
to briefly see under what circumstances this is achieved.

We now parametrize the action in order to keep under control the terms that
are background dependent when moving to k = 0

Γk [ḡµν , gµν ] = Γ̄k [gµν ] + Γ̂k [ḡµν , gµν ] + Γg.f. (3.158)
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The first term is defined from the relation Γ̄k [gµν ] = Γk [gµν , gµν ], while Γ̂k [ḡµν , gµν ]
contains all the deviations Γk [ḡµν , gµν ] has from being a single-metric functional
of gµν . By construction Γ̄k [gµν ] is precisely the functional that flows to the full
effective action

Γ̄k=0 [gµν ] = Γ [gµν ] (3.159)

while Γ̂k [ḡµν , gµν ] possesses only the general property

Γ̂k [gµν , gµν ] = 0 (3.160)

so it vanishes if evaluated at equal metrics. If we plug these two functionals
inside the ERGE we get two evolution equations

∂tΓ̄k [gµν ] = ∂tΓk [gµν , gµν ]

= F [gµν , gµν ] (3.161)

∂tΓ̂k [ḡµν , gµν ] = ∂tΓk [ḡµν , gµν ]− ∂tΓk [gµν , gµν ]

= F [ḡµν , gµν ]−F [gµν , gµν ] (3.162)

using just their definitions [40].
We want to simplify the situation, by looking at some ad hoc approximation

that allows to study a single metric functional. Notice that the flow equations
of Γ̄k [gµν ], even if it looks decoupled from that of Γ̂k [ḡµν , gµν ], actually is not.

In particular F [gµν , gµν ] contains Γ̂(0,2)
k [gµν , gµν ]. If we decide to approximate

Γ̂(0,2)
k [gµν , gµν ] = 0, then we end up with an equation

∂tΓ̄k [gµν ] = F [gµν , gµν ]|Γ̂(0,2)=0 (3.163)

Now the flow of Γ̄k [gµν ] is decoupled and it maps only over single metric func-
tionals. We rename the single metric functional

Γk [gµν ] = Γk [gµν , gµν ] = Γk [gµν , 0] (3.164)

and this will be the EA we are going to flow in future chapters for gauge theories.
No notational ambiguity should arise because this time we have a functional of
a single metric.

The flow of Γk [gµν ] is not, in general, a function of Γk [gµν ] only, for the
reasons we stressed before. Actually, it is instructive to calculate it and we get

Γ̇k [gµν ] =
1

2
Tr

(

Γ (0,2)
k [gµν , 0] + Rk [g]

)−1
Ṙk [g] (3.165)

The evolution of Γk depends generally on Γk (and in particular on Γ̂(0,2) as
already seen). This flow is not “closed” in a partial differential equation sense.
We are uncomfortable with this situation, because in chapter one and two, we
always used flows that are closed. However, under the approximation Γ̂(0,2) = 0,
it satisfies

Γ̇k [gµν ] =
1

2
Tr

(

Γ(2)
k [gµν ] + Rk [g]

)−1
Ṙk [g] (3.166)

that is, in form, analog to the ERGE.
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From the point of view of an actual calculation, the approximation Γ̂(0,2) = 0

forces
∫

1
2hµνΓ

(0,2)
k [gµν , 0]µναβ hαβ to be exactly the second order expansion of

the single metric functional Γk [gµν + hµν ] with argument displaced by hµν . In
this sense this approximation can be seen as a certain parametrization of the
couplings of the full action Γk [gµν , hµν ], in which corresponding couplings at
order zero and two in hµν are set equal.

The main difference of the flow equation for Γk [gµν ] with the ERGE we
derived in chapter one, is that it has a built-in dependence of the cutoff kernel
Rk [g] on the metric gµν . This feature is not generally present in the exact RG
equation. The result of the integration of this flow is gauge invariant provided
the initial conditions are. This gauge invariance is a direct consequence of the
background gauge invariance, we kept from the beginning (we always maintained
ḡµν gauge invariance and not we set ḡµν = gµν). It was crucial before to preserve
background gauge invariance to have Rk = Rk [ḡ]. Now that the cutoff depends
on ḡµν = gµν , it is crucial that Rk [g] depends on the metric to maintain gauge
gµν invariance.



Chapter 4

Inclusion of gravity.

In this chapter we want to couple gravitational degrees of freedom to the simple
Yukawa system we considered before. The first two calculation we are going
to present involve a direct computation of the flow of V [φ] and H [φ]. We
will extract those runnings evaluating the effective action at a certain proper
configuration for the fields. Then we will address the computation of the gravita-
tionally corrected anomalous dimensions, using momentum space diagrammatic
technique. Finally we will use heat kernel techniques to obtain the flow of Zg.

4.1 Coupling of spinors in brief.

The truncated action we choose is essentially the one of the flat euclidean case,
but minimally coupled to the metric gµν . This means that a volume form

√
g

is added to each term to correctly densitize it and derivatives are replaced by
covariant ones. Further a Einstein term is added encoding the dynamic of the
metric, while the cosmological constant is already present, in principle, in the
potential. The action turns out to be

Γk

[

φ, ψ̄, ψ, gµν

]

=

∫ √
g
[

ZgR [gµν ] +
Zφ

2
(∂µφ)2 + Zψψ̄iD/ψ

+H [φ] ψ̄ψ + V [φ]
]

(4.1)

We will consider this action in four dimensions in the following.
Some care is required when coupling spinor fields to gravity. The general

procedure involves increasing the number of gravitational degrees of freedom by
introducing a vierbein ea

µ, that is a set of one-forms such that

gµν = ea
µeb

νδab (4.2)

We also require the vierbein to have an inverse, so a set of vectors eµ
a such that

ea
µeµ

b = δa
b (4.3)

eµ
aea

ν = δµ
ν (4.4)

The vierbein are sometimes called tetrad. These are useful because when adopt-
ing them as a basis the metric gets trivialized. The number of degrees of freedom

67
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of the vierbein is bigger than that of the metric and it is easy to see it. The
metric is a symmetric tensor that in four dimensions has ten independent com-
ponents, while ea

µ has sixteen components. A tetrad is therefore a general
linear transformation. One is allowed to think of it as a basis transformation on
the tangent bundle. Alternatively it is seen as an endomorphism between the
tangent bundle and another bundle with flat metric tensor.

Let M be the euclidean spacetime manifold and T M its tangent bundle
with metric connection

Γµ
ν
σ =

1

2
gνρ (∂µgρσ + ∂σgµρ − ∂ρgµσ)

Further, we call V a vector bundle with fiber being R4. In this new bundle we
can construct a connection Aµ

a
b requiring

∇µea
ν = 0 (4.5)

where ∇ is the total covariant derivative on T M⊕V . This gives its relation to
the Christoffel connection on T M

Aµ
a

b = Γµ
α
βea

αeβb + eαb∂µea
α (4.6)

This new connection is particularly important because it can be used to
construct a spinor covariant derivative

Dµψ = ∂µψ +
1

2
Aµ,abJ

abψ (4.7)

where the generators Jab of O (4) rotations in V are obtained from the Clifford
algebra {γa, γb} = 2δab

Jab =
1

4

[

γa, γb
]

(4.8)

The O (4) gauge invariance accounts for the additional degrees of freedom of the
tetrad and can be gauge fixed in such a way that the vielbeins are symmetric.
With this choice they essentially maintain only the degrees of freedom of the
metric. Finally we can construct the spinor field action. The conjugate spinor
is introduced as usual ψ̄ = ψ†γ0 and the lagrangian is

iψ̄γaeµ
aDµψ = ψ̄iD/ψ (4.9)

It is easily seen that the metric degrees of freedom will enter in three ways in the
spinor action, namely in the volume element, the covariant derivative and the
inverse tetrad that couples the covariant derivative. This makes the treatment
of spinor field in gravitational settings more complicated than that of a scalar.

4.2 Non-Diagonal cutoff computation.

In this section we present a computation with a particular kind of cutoff the
form of which will be explained in the following [19]. We will also temporarily
stick to the approximation of zero anomalous dimensions for the matter fields.
Let us review step by step the lagrangian pieces we are interested in.



4.2. NON-DIAGONAL CUTOFF COMPUTATION 69

The theory contains a single scalar field with Lagrangian

Lb =
√

g(1
2Zφ∇µφ∇µφ + V (φ)) . (4.10)

As in the previous chapter we choose the potential V to be even in φ. Spinor
degrees of freedom are added in the form of Nf Dirac fermions ψ with U(Nf )-
symmetric Lagrangian

Lf =
√

g( i
2Zψ(ψ̄γµDµψ −Dµψ̄γµψ) + i H(φ) ψ̄ ψ) . (4.11)

We explicitly symmetrized it in terms of ψ and its conjugate using integration
by parts. This is a convenient procedure that ensures that the second order
expansion kernel will be an adjoint operator. As previously mentioned, the O(4)
gauge is chosen such that the vierbein is symmetric. In particular it means that
all vierbein fluctuations can be written in terms of the metric fluctuations and
there are no O(4) ghosts [41]. The function H(φ) is kept general as in the flat
case and represents the Yukawa sector, that in curved space couples also with
the determinant of the metric. In order to neglect anomalous dimensions we
will set Zφ = Zψ = 1.

Gravity is included through an Einstein term

Lg = −Z
√

gR [gµν ] (4.12)

where Z = 1/(16πG). Gravity possesses a gauge invariance, namely diffeomor-
phism invariance, so we shall work with the background-field method. We refer
to the dedicated section for more details. The procedure ensures us that the
final result will be a gauge invariant functional.

For the purpose of calculating the flows of V and H it is sufficient to expand
around constant backgrounds. We still denote

gµν = δµν , φ, ψ, ψ̄ (4.13)

the background fields and

hµν , ϕ, χ, χ̄ (4.14)

the corresponding fluctuations. In particular the gravitational background is
flat. This has to be stressed because a flat choice of background forbids the
calculation of the running of the Newton constant that is hidden in Z. The
calculations of this section are going to give the gravitational corrections to the
running of V and H . Moreover, the backround is off-shell because the constant
φ is not necessarily a solution of the equations of motion.

Diffeomorphism invariance is fixed by a covariant background gauge. The
gauge fixing term is rather standard in gravitational applications

LGF =
Z

2α
δµνFµFν ; Fµ =

(

δβµ∂α − 1+β

4
δαβ∂µ

)

gαβ (4.15)

and represents a two parameters generalization of de Donder gauge 1 . From
the gauge fixing term the ghost action is easily derived using the Fadeev-Popov

1In general d-dimensional applications it is sometimes convenient to replace 1+β
4

with 1+β
d

.
It ensures that the choice β = 1 still removes completely the gauge spin-1 degree of freedom
in any dimensionality. However, we will always study the case d = 4 only, where the two
coincides.
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trick and exponentiating the functional determinant. It is given by

Lgh = c̄µ

(

−δµν∂2 +
β − 1

2
∂µ∂ν

)

cν . (4.16)

It is useful to manage gravitational degrees of freedom in a slightly different
way when using a general cutoff choice. The off-shell symmetric tensor hµν

contains various spins in its decomposition. We will analyze the structure of the
fluctuation in more details in the next sections. For the moment it is sufficient
to know that it admits the tensor decomposition

h⊥
µν + ∂µvν + ∂νvµ +

(

∂µ∂νσ − 1
4δµν∂

2σ
)

+ 1
4δµνh (4.17)

The spin-2 h⊥
µν is transverse and traceless ∂µh⊥

µν = ηµνh⊥
µν = 0, the spin-1 is

also transverse ∂µvµ = 0. Finally there also are two scalar degrees of freedom,
h, that is the trace of the metric fluctuation h = δµνhµν , and σ.

The application of the exact RG equation requires the second order expan-
sion of the entire lagrangian, including the gauge fixing term. We shall give it
in terms of the fluctuations and for the constant background we employed. In
particular the choice of a constant background greatly simplify the calculation.
It is given by

L(2) = −1

4
h⊥

µν

(

Z∂2 + V + iHψ̄ψ
)

h⊥µν − i

16
hT

µ
λ∂ρh

T
λνψ̄γµνρψ

+
1

2
vµ

(

Z

α
∂2 + V + iHψ̄ψ

)

∂2vµ +
i

16
vµ∂ρ∂

2vν ψ̄γµνρψ

+
3

32
∂2σ

(

α− 3

α
Z∂2 − 2V − 2iHψ̄ψ

)

∂2σ + 3
β − α

16α
Z∂2σ∂2h

− 1

32
h

(

β2 − 3α

α
Z∂2 − 2V − 2iHψ̄ψ

)

h +
1

2
(V ′ + iH ′ψ̄ψ)h ϕ

+
1

2
ϕ (−∂2 + V ′′ + iH ′′ψ̄ψ)ϕ− 1

2
c̄µ∂2cµ +

i

2
(χ̄γµ∂µχ− ∂µχ̄γµχ)

+iHχ̄χ + iH ′ϕ(ψ̄χ + χ̄ψ) +
i

2
Hh(ψ̄χ + χ̄ψ)

+

(

i

4
∂2vν +

3i

16
∂ν∂

2σ − 3i

16
∂νh

)

(ψ̄γνχ− χ̄γνψ) (4.18)

As usual primes denote derivatives with respect to φ. We also used some prop-
erty of Clifford algebra. The tensor γµνρ is defined by γµνρ = γ[µγνγρ] and it
has the useful property γµνρ = {Jµν , γρ}.

As is well known, changing field variables generally produces functional de-
terminants, which one has to take into account. In particular when moving to
irreducible spin components for the metric fluctuation some determinant is ap-
pearing. However it is easy to see that these determinants are precisely canceled
if we also use the redefinitions −∂2σ → σ and

√
−∂2vµ → vµ. In this way we

remove the Jacobians arising from the tensor decomposition. We wrote all these
relations in flat space background, but are easily generalized to curved one. We
again refer to future sections for a more detailed analysis.

We want to write the RG flow for our system using the exact equation. It is
convenient to introduce a quite compact notation in the form of a supermultiplet
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ΥT = (h⊥
µν , vµ, cµ, c̄µ, σ, h, ϕ, χT , χ̄) that contains all the field fluctuations of the

system. Using this notation the second functional derivative of the action is a

supermatrix Γ(2)
k =

−→
δ

δΥT Γk

←−
δ
δΥ . Notice that the ghosts are included in the super-

multiplet Υ. Their action (4.16) must be added to the second order expansion
(4.18). It is already quadratic, so no further manipulation is needed.

We define the cutoff requiring that Γ(2)
k +Rk is like Γ(2)

k , once the replacement

i∂µ →
√

Pk(−∂2)/(−∂2)i∂µ (4.19)

is performed. We therefore define the cutoff so that

Γ(2)
k + Rk = Γ(2)

k

∣

∣

∣

i∂µ→
√

Pk(−∂2)/(−∂2)i∂µ

(4.20)

It is very easy to determine its explicit form

Rk = Γ(2)
k

∣

∣

∣

i∂→
√

Pk/(−∂2)i∂
− Γ(2)

k (4.21)

The infrared cutoff term is

∆Sk =
1

2

∫

ΥT RkΥ (4.22)

The function Pk(z) contains the feature of the cutoff profile and plays the role
of modified scalar propagator. In the optimized case it is given by

Pk(z) = z + Rk(z) = zθ
(

z − k2
)

+ k2θ
(

k2 − z
)

(4.23)

The cutoff defined from the requirement (4.20) is non-diagonal in field space.
There are in fact elements in the cutoff ∆Sk defined in (4.22) that mix the
spinor fluctuations χ and χ̄ with the spin-0, -1 and -22.

4.2.1 Beta Functions for the non-diagonal cutoff.

First of all we define the dimensionless field φ̄ = φ/k. It coincides with the
dimensionless renormalized one in the approximation of zero anomalous dimen-
sions, because the wavefunction renormalization constants are set to one. In
this approximation also the dimensionless potential v(φ̄) = V (kφ̄)/k4 and di-
mensionless function h(φ̄) = H(kφ̄)/k, coincide with their dimensionless renor-
malized partners. This slightly changes the canonical scaling of the flow, which
can easily be obtained from the anomalous dimension corrected one, by setting
ηφ = ηψ = 0

v̇ = −4v + φ̄v′ + k−4V̇ (4.24)

ḣ = −h + φ̄h′ + k−1Ḣ (4.25)

The constant background is appropriate for our calculation because it is possible
to obtain the flow of V and H using directly the ERGE

Γ̇ ∼
∫

d4x
(

V̇ + iḢψ̄ψ
)

(4.26)

2One can observe, however, that all these mixings are proportional to the backgrounds
ψ and ψ̄. Later in this chapter, we will use a diagonal cutoff obtained with the further
requirement that ψ = ψ̄ = 0.
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and hence that of their dimensionless partners.
We have all the ingredients to perform the calculation in the given back-

ground. Some special care is needed because we are working with supermatrices.
In particular inversion and product of supermatrices are needed. The calcula-
tion was done in the general two parameter gauge and without any perturbative
assumption on the gravitational coupling G. However the beta functionals for v
and h are generally very complicated functions of the parameters and nonlinear
in the dimensionless partner of the Newton constant Ḡ = k2G. For the sake of
presentation we give the beta functionals for v and h, in the gauge β = 1 and
expanding to first order in the dimensionless Newton constant Ḡ = k2G:

v̇ = −4v + φ̄v′ − Nf

8π2 (1 + h2)
+

3 + 2v′′

32π2 (1 + v′′)

−Ḡ
(3−α)v′2 (2 + v′′)

2π (1 + v′′)2
+ Ḡ

v(3 + 2α)

π
+ O(Ḡ2) , (4.27)

ḣ = −h + φ̄h′ − h′′

32π2 (1+v′′)2
+

hh′2 (2 + h2 + v′′
)

16π2 (1 + h2)2 (1+v′′)2

+Ḡ
(3−α)v′2

π (1+v′′)3

(

1

2
h′′ (3+v′′)−

hh′2 (4 + 3h2 +
(

2 + h2
)

v′′
)

(1 + h2)2

)

+Ḡh′v′
4α−6−(3−2α)v′′ + h2(15−4α) + 2h2(3−α)

((

2+h2
)

v′′+2h2
)

2π (1 + h2)2 (1 + v′′)2

+ Ḡh
27+α

(

29 + 96h2 + 48h4
)

16π (1 + h2)2
+O(Ḡ2). (4.28)

These results give the gravitational dressing of the matter beta functions in the
low energy regime, where gravity is supposed to be weak k2/M2

Planck ≡ Ḡ- 1.
It is known from perturbation theory, that the anomalous dimension of the Dirac
field is not really negligible. The beta functionals we calculated here are useful
for a first qualitative look at the coupled system. We will see in the following
that the qualitative form of the gravitational dressing they give remains true
also when taking into account the anomalous dimensions.

Our next task is to fix the form of the functions v and h and expand around
an appropriate basis of operators. In this way one may find the running of any
coupling of interest. In particular we will consider in the following local power-
law potentials. There are two cases of interest, corresponding to expansions
around a zero VEV 〈φ̄〉 = 0 or a non-zero one 〈φ̄〉 =

√
κ̄. In the first case 〈φ̄〉 = 0

we have a Z2 symmetric phase, because the ground state is Z2 symmetric like
the potential. Instead, in the second case we expand around a non-zero VEV
〈φ̄〉 =

√
κ̄ .= 0 and therefore we describe a phase in which the Z2 symmetry is

broken. Concerning the function h, from now on to the rest of this section, we
will restrict ourselves to a simple Yukawa interaction h = ȳφ̄.

4.2.2 Expansion around 〈φ̄〉 = 0.

The first case we face is that of a symmetric potential. We parametrize it
through a polynomial expansion in even powers of the scalar field. For the time
being we do not have any real idea on how far we should push the polynomial
expansion to capture the flow under a good approximation, so the beta functions
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we are going to give are mainly illustrative. We decide to give them in a trun-
cation in which the potential is at most quartic. The simple reason is that the
quartic interaction behavior is interesting because should give an understand-
ing of the gravitational dressing of the standard model Higgs self-coupling. We
therefore truncate

v(φ̄) = λ̄0 + λ̄2φ̄
2 + λ̄4φ̄

4 , (4.29)

We now insert this parametrization in (4.27) and expand v̇ in powers so that we
can extract the beta functions of the powerlaw couplings. For the time being
λ̄2 is assumed to be positive. To extract the flow of ȳ it is sufficient to take the
linear part in φ̄ of ḣ. We also employ some further simplification, namely we set
α = 0, while still we work in the gauge β = 1. Finally, the results are given in
the limit λ0 = 0. All these simplifications make the beta functions accessible,
while still giving a hint of their complexity

λ̇0 =
3 + 4λ2

32π2 (1 + 2λ2)
− Nf

8π2
,

λ̇2 = −2λ2 +
Nfy2

8π2
− 3λ4

8π2 (1 + 2λ2) 2
+

3G̃λ2

π (1 + 2λ2)
2 ,

λ̇4 =
9λ2

4

2π2 (1 + 2λ2)
3 −

Nfy4

8π2

+ 3 G̃λ4
1− 10λ2 + 36λ2

2 + 24λ3
2

π (1 + 2λ2)
3 + O(G̃2) ,

ẏ =
y3 (1 + λ2)

8π2 (1 + 2λ2)
2 + G̃y

27 + 12λ2 (1 + λ2)

16π (1 + 2λ2)
2 . (4.30)

It is important to stress that, in general, the beta functions would depend
nonpolynomially on λ0 and G̃. This is a typical feature of exact RG calculations
because we resum many orders in perturbation theory. As an example, it is
evident from the denominator that appear, (1 + 2λ2), which also works as a
threshold for the flow of the couplings. We decided to set λ0 = 0, in the
assumption it is negligible. These beta functions give a qualitative picture of how
gravity dresses the flow of typical standard model couplings. A further technical
remark is that in the approximation λ0 = 0, Ḡ appears only polynomially: the
highest power of G̃ occurs in λ̇4 and is 2. In all other terms G̃ appears at most
linearly.

For completeness we can exhibit also the corrections appearing when α .= 0.
These are linear in α, so it is sufficient to add to the previous system the following
correction terms:

∆ẏ = αG̃y
29 + 180λ2 (1 + λ2)

16π (1 + 2λ2)
2 ,

∆λ̇2 = 2αG̃λ2
1 + 6λ2 (1 + λ2)

π (1 + 2λ2)
2 ,

∆λ̇4 = 2αG̃λ4
1 + 14λ2

π (1 + 2λ2)
3 . (4.31)

Let us discuss the content of the system of beta functions we obtained. We
know from (3.115) that the leading term of the beta function of the Yukawa
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coupling is ẏ = 5y3

16π2 + . . .. On the other hand, if we neglect Ḡ and λ2 in the

Yukawa beta function in (4.30) we remain with ẏ = y3

8π2 + . . .. The difference is
due to the fact that here we neglect the anomalous dimensions of φ and ψ. In
particular, it is known that these contribute consistently to the beta function,
although leaving it positive. Anyway, our results should still give a reasonable
qualitative picture of the gravitational corrections. At least, as long as the
validity of the LPA approximation holds, which we assume. It is important to
also stress that even though this is a simple toy model, the leading one loop
gravitational correction applies also to realistic theories. The typical 1-loop
leading contribution, that the beta function of any matter coupling λ has from
gravity, is of the form ∆βλ ∼ Ḡλ. In the realistic standard model case the
Yukawa couplings form a matrix yij . Every beta function ẏij will receive the
same correction (27/16π)G̃yij .

Switching off the gravitational corrections, our results are in agreement with
those of [18], when the anomalous dimensions are neglected. Furthermore, the
results for λ̇ i in (4.30) are also in agreement with those of [42]. In (4.30)
appears also the beta function of the vacuum energy λ0. One can see the leading
contribution, proportional to (3 − 4Nf), the difference between the number of
bosonic and fermionic degrees of freedom.

Having used an expansion around flat space, gravity is off-shell 3 . This is
the cause of the dependence of the results on the gauge parameter α (and β, the
dependence on which we have computed but not reported for simplicity). We
note that the sign of the leading corrections does not change as long as α > 0;
we can also check that it remains the same at least for 0 ≤ β ≤ 1.8, which
comprises the most popular gauge choices. Furthermore, there are arguments
showing that if α is allowed to run, α = 0 would correspond to a nonperturbative
fixed point [43]. This suggests that the results obtained for α = 0 are probably
the most reliable.

The procedure also generically depends on the choice of cutoff scheme, and in
particular on the cutoff profile function. The leading terms in the beta functions
of λ4 and y turn out to be independent on this choice, but not the gravitational
corrections, which depend on a dimensionful coupling. In the results presented
above we only used the cutoff r(y) = (1− y)θ(1− y), so the scheme dependence
is not manifest, but the numerical coefficients of the gravitational correction
would change if we used another cutoff function. We have checked that the
leading gravitational correction is proportional to a single integral involving the
profile function, so that the leading correction terms in (4.30) and (4.31) is
independent of it. Furthermore, the sign of the gravitational correction would
be the same for any choice of the cutoff profile, that satisfies the boundary and
monotonicity conditions to be a good cutoff.

The system (4.30) has a gaussian fixed point when λ2 = λ4 = y = 0.
Without gravity both λ4 and y are marginal, but the gravitational corrections
make them irrelevant. In fact the gravitationally dressed critical exponents
are 2 − (3 + 2α)G̃/π, −(3 + 2α)G̃/π and −(27 + 26α)G̃/16π, corresponding to
the eigenvectors λ2 − 3λ4/16π2, λ4 and y respectively. It is important to note
that the gravitational corrections depend on α but are always negative. This
is a remarkable result, because in the standard model these couplings are free

3We actually gave the system of beta functions (4.30) in the limit λ0 = 0, that corresponds
to on-shell, but we computed them in their full nonlinearity.
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parameters, to be determined by experiment, whereas here they are predicted
to be zero at high energy. Any value they have at low energy is due to the
nonlinearity of the RG flow. It is worth citing that the result may change in
the presence of other matter fields: it was shown in [42] that a certain number
of minimally coupled matter fields can change the sign of the critical exponent,
making λ4 relevant. Then its value at low energy would be a free parameter,
while at high energy it would be asymptotically free.

4.2.3 Expansion around a nonzero VEV.

In this subsection we apply the alternate expansion we introduced in the pre-
vious chapter. It is important to notice that, depending on the sign of λ̄2, the
potential is either in a symmetric phase or in a symmetry broken phase. The
powerlaw expansion around zero we gave previously works well as long as λ̄2

is positive. When it is negative it is convenient to expand v around the VEV
〈φ̄〉 =

√
κ. The VEV is by definition a minimum

v′(
√

κ) = 0 . (4.32)

Again we restrict ourselves to fourth order polynomials. We parametrize v in
the form

v(φ̄) = θ0 + θ4(φ̄
2 − κ)2 . (4.33)

The new couplings of the broken Z2 phase are related to those in (4.29) by
a simple algebraic transformation θ4 = λ4, κ = −λ2/2λ4, θ0 = λ0 − λ2

2/4λ4.
Therefore if we derive the beta functions of the new couplings using these rela-
tions nothing nontrivial will happen. In particular the beta functions also will
be related by an algebraic transformation and the features of the flow will be
unaltered, but simply seen from a different parametrization. There is however
an alternate procedure that resums some order in perturbation theory. The key
idea it that one can obtain the running of κ by deriving (4.32), which yields

κ̇ = −2
√

κ v̇′(
√

κ)/v′′(
√

κ) . (4.34)

and forces κ to be a minimum for all k. Again we will give the results in a
simplified version for illustrative purposes. In the broken phase, using (4.27)
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and retaining only terms up to first order in Ḡ, we then obtain

θ̇0 = −4θ0 +
3 + 16κθ4

32π2 (1 + 8κθ4)
− Nf

8π2 (1 + κy2)
+

3G̃θ0

π
,

κ̇ = −2κ +
3

16π2 (1 + 8θ4κ)2
− Nfy2

16π2(1 + κy2)2
,

θ̇4 =
9θ2

4

2π2 (1 + 8κθ4)
3 −

Nfy4

8π2 (1 + κy2)3
+

3G̃θ4

π (1 + 8κθ4)
2 ,

ẏ =
y3

16π2 (1 + κy2)3 (1 + 8κθ4)
3

[

2− 16κθ4 (3 + 8κθ4)

−3κy2 (1 + 8κθ4 (7 + 16κθ4))− κ2y4 (1 + 56κθ4)
]

+
3G̃y

16π (1 + y2κ)3 (1 + 8θ4κ) 2

[

9 + 16θ4κ (1 + 4θ4κ)

−3y2κ (1 + 8θ4κ) (9 + 8θ4κ) + 192y4θ4κ
3 (3 + 16θ4κ)

+256y6θ4κ
4 (1 + 4θ4κ)

]

. (4.35)

This time we do not give the O(α) corrections to these formulas.
There is some difference with the previous expansion which is worth men-

tioning. Unlike in the expansion around 〈φ̄〉 = 0, here θ0 appears only in its
own beta function. Up to order G̃, there is no approximation involved in setting
θ0 = 0 in the beta functions of κ, θ4 and y, as is natural in an expansion around
flat space.

A remarkable fact is that the beta function of κ does not receive any grav-
itational correction, as was already noted in [44] for the potential (4.33) with
θ0 = 0, even taking into account the scalar field anomalous dimension. It could
be expected because the property of being a minimum is equivalent to an on-
shell condition, as long as the field is constant. We can show this feature in
general. For any scalar potential v, we use the general flow of the VEV (4.34)
and the functional beta function for v (4.27) and obtain

κ̇ =−2κ +

√
κv′′′

16π2v′′ (1 + v′′)2
− hNf

√
κh′

2 (1 + h2)2 π2v′′

∣

∣

∣

∣

∣

φ̄=
√
κ

. (4.36)

What happened is that in this flow any Ḡ contribution couples with at least one
first derivative of v, that goes to zero when evaluating in the background. We
will see that when adding the anomalous dimensions, this property will remain.

In the final part of this chapter we will also compute the flow of the Newton
constant. For the moment, however, we can keep it as a free parameter we can
tune. It is known that in the Einstein-Hilbert truncation gravity has a nontrivial
fixed point, also in the presence of minimally coupled matter fields. Therefore
we may assume it reaches a fixed point also here, despite we do not know its real
value. Since the Yukawa system has a Gaussian fixed point, one can conclude
that the theory of gravity coupled to scalars and fermions also has a fixed point,
which we may argue a “Gaussian matter” fixed point. However, it is clear that
to study the properties of this fixed point, in particular the critical exponents,
it is necessary to calculate also the beta function of G̃.
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There is also the possibility that the matter sector exhibits a non trivial
fixed point [18], although Nf has to be set less than one (Nf " 0.2 − 0.3). If
Ḡ is kept sufficiently small, the fixed point of [18] must be present also in our
system. Indeed we can show that, within the appriximations adopted and as
long as G̃∗ " 1 and Nf " 0.8, the nontrivial fixed point exists. This confirms the
expectation of [18] that adding new bosonic degrees of freedom (the gravitational
ones), the number of fermionic flavors Nf can increase.

4.3 Diagonal cutoff computation.

In this section we will essentially go through the same steps of the previous
section with only a small modification to the cutoff kernel. It is worth remem-
bering that the previous cutoff choice was obtained by requiring that the cutoff
kernel, when added to the 2-point function, cut-off any derivative appearing on
the sum. When this is performed at a general ψ = const. background, a ψ
dependence in the cutoff is introduced and non-diagonal terms in field space are
present. We will use a different cutoff in field space that greatly simplify the
calculation. With this simplification, we will also be able to take into account
the corrections given by the anomalous dimensions.

It is sufficient to note, at this point, that what makes non-diagonal the
previous cutoff is the presence of constant ψ. A diagonal cutoff kernel is therefore
easily obtained by

Rk = Γ(2)
k

∣

∣

∣

i∂→
√

Pk/(−∂2)i∂,ψ→0
− Γ(2)

k

∣

∣

∣

ψ→0
(4.37)

that is worth comparing with (4.20). The infrared cutoff term is defined as in
(4.22). The function Pk(z) again contains the feature of the cutoff profile and
plays the role of modified scalar propagator. We still will use the optimized
shape of (4.23).

4.3.1 Beta functions for the diagonal cutoff.

As we already said, to calculate the functional beta functions, it is sufficient to
go through all the steps of the previous computation with the new cutoff. In
this section we will also take into account the anomalous dimensions. We give
them in their full nonlinearity, but in the gauge α = 0 and β = 1. We start with
the flow of the potential

v̇ = −4v +
1

2
φ v′ (ηφ + 2) +

Nf (ηψ − 5)

40π2 (1 + h2)
−

5Z
(

8 + Ż
Z

)

192π2(v − Z)
+

8 + Ż
Z

64π2
− 1

4π2

+
(v − 2Z) (v′′ + 1)

(

8 + Ż
Z

)

− 3
(

(v′)2
(

8 + Ż
Z

)

+ 2(Z − v)
)

192π2
(

(v − Z) (1 + v′′)− 3 (v′)2
)

+
(Z − v)ηφ

192π2
(

(v − Z) (1 + v′′)− 3 (v′)2
) (4.38)

where Z = 1/16πḠ. We can recognize where each term is coming from. The
first line contains, in order the canonical scalings, the contributions of spinors,
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spin-2 modes, spin-1 modes and ghosts. In the second and third line we have
instead the mixed contributions of the spin-0 ϕ, h and σ.

The expression for ḣ is slightly more complicated. We obtain

ḣ = − (1− ηψ)h + φh′
(ηφ

2
+ 1

)

+
5hZ

(

8 + Ż
Z

)

192π2(Z − v)2

+
(ηφ − 6)

(

h′′(v − Z)2 + 6h′(Z − v)v′ + 3h (v′)2
)

192π2
(

(v − Z) (1 + v′′)− 3 (v′)2
)2

+
Z
(

8 + Ż
Z

)(

3h′′ (v′)2 − 6h′v′ (1 + v′′) + h (1 + v′′)2
)

192π2
(

(v − Z) (1 + v′′)− 3 (v′)2
)2

+
h′(v − Z)v′ (ηφ − 6) + Zh′v′ (1 + v′′)

(

8 + Ż
Z

)

16π2
(

(v − Z) (1 + v′′)− 3 (v′)2
)2

−
h′v′

(

(226 + 87 Ż
Z )Z (1 + v′′) + (29ηφ − 168)(v − Z)

)

560π2 (1 + h2)
(

(v − Z) (1 + v′′)− 3 (v′)2
)2

+3h
−Ż (1 + v′′)2

((

1120h2 + 349
)

− 8960h2 − 3106
)

35840π2 (1 + h2)
(

(v − Z) (1 + v′′)− 3 (v′)2
)2

+9h
(v′)2

(

−
(

1120h2 + 349
)

ηφ + 6720h2 + 2408
)

35840π2 (1 + h2)
(

(v − Z) (1 + v′′)− 3 (v′)2
)2

+
h (h′)2 (v − Z) (5− ηψ)

80π2 (1 + h2)2
(

(v − Z) (1 + v′′)− 3 (v′)2
)

+
h (1 + v′′)

(

19 + 96h2 −
(

20h2 + 23
7

)

ηψ
)

640π2 (1 + h2)2
(

(v − Z) (1 + v′′)− 3 (v′)2
)

+
2h′v′

(

(1 + 11h2)ηψ − 3(1 + 9h2)
)

320π2 (1 + h2)2
(

(v − Z) (1 + v′′)− 3 (v′)2
) (4.39)

The first line contains the canonical scaling. The other contributions are coming
from the loops of the spin-2, -1 and -0. Additionally there are the contributions
coming from the non diagonal terms of the second order expansion of the ef-
fective action (4.18). In this case in the loop is running the spin-1/2 and one
among the spin-2, -1 or -0.

4.4 The anomalous dimensions in the diagonal

cutoff.

In this section we want to complete the results of the previous computation with
the diagonal cutoff, calculating the gravitationally induced contributions to the
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anomalous dimensions. The same comments of Section 3.3 are valid here. If
we want to compute the anomalous dimensions using the flow of the effective
action (1.69) and the background field technique, it is necessary to use a non-
constant background. This procedure is expected to lead to much more involved
computations. Instead, as we did for the flat space case (see again Section 3.3),
it is easier to systematically address the problem of calculating the flow of the
2-point functions, using the momentum space technique. It should be clear that
in order to do so, we need a simple way to work with the graviton propagator.
A hint, coming from the previous computations of this chapter is to use the
irreducible decomposition in which the metric perturbations is decomposed in

hµν =
(

hT
µν , ξµ, σ, h

)

(4.40)

Some considerations are useful at this point. The first thing we have to
note is that the gravitational degrees of freedom mix with the scalar field. The
reason is simple, the metric couples in a non-linear way with both the potential
and the kinetic term of the scalar. In particular the potential interacts with the
volume element via

∫ √
gV [φ] (4.41)

As long as the background configuration for φ is chosen to be constant and
off-shell, we have in general that

V ′ [φ] .= 0 (4.42)

and this implies that the perturbation ϕ of the scalar field mixes with the trace
h = hµ

µ through the second order expansion
∫

1

2
hV ′ [φ]ϕ (4.43)

Since we are interested in the values of the anomalous dimensions ηφ and ηψ at
the VEV, we can put V ′ [φ] = 0. In other words we will calculate them on-shell.

As a consistency check we will also extract the on-shell flow of V [φ], V ′′ [φ]
and H [φ] from the flow of 0- and 2-point functions. These coincide with those
calculated in Subsection 4.4.1 provided V ′ [φ] is set to zero.

We just greatly simplified the gravi-scalar propagator, decoupling it into a
gravitational and a scalar ones. The prescriptions on how the scalar propagator
is constructed are the same, in momentum space and with flat background
metric, of the previous chapter. We are left with the gravitational degrees of
freedom that will be discussed in the next Subsection.

4.4.1 Coarse-graining of the graviton propagator.

We dedicate Appendix A to the construction of a set of irreducible spin-projectors,
which allow to compactly include all the propagations of gravitational modes
and still keep them separated. We will extensively use the results of Appendix
A in this Subsection.

We recall from definitions (4.10), (4.11), (4.12) (4.15) and (4.16), that the
action is truncated to be

Γk [φ, ψ, gµν ] =

∫

√
g (Lb + Lf + Lg + Lgf ) + ghost (4.44)
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In order to apply our momentum space rules to it we have to take functional
derivatives with respect to the fields around a certain background. The tech-
nique allows us to set the simple background for which φ = const., ψ = 0 and
gµν = δµν . The momentum space propagators appearing in the flow of the n-
point correlators are functions of their incoming momentum. This subsection,
in particular, is dedicated to the study of the graviton propagator and its coarse
graining.

Now the question is, what are the terms contributing to it? We see that φ
appears quadratically in its kinetic term and has a potential

Lb =
Zφ

2
gµν∂µφ∂νφ + V [φ] (4.45)

The kinetic term, as long as the background is constant, cannot contribute,
because it will always contain a ∂µφ that goes to zero. Conversely, the potential
term will through a second variation of the volume element. Due to the fact
that φ = const. it will act like a sort of generalized cosmological constant. The
spinor lagrangian, instead, will not contribute to the graviton propagator in the
limit, because it is always proportional to the couple ψ̄ times ψ, that goes to
zero in the limit. Finally, the Einstein-Hilbert action for gravity will provide
through second variation a kernel for the propagation of the graviton modes

δ2

δhµν;qδhαβ;−q

∫ √
gLg (4.46)

Gauge invariance imply it will have zero modes corresponding to the transfor-
mation hµν → hµν+2∇(µvν) These are zero modes because the matrix of second
variations gives zero when applied to them

(

δ2

δhµν;qδhαβ;−q

∫

√
gLg

)

q(µvν) = 0 (4.47)

This property is shared by any diffeomorphism invariant action. The issue of
gauge invariance is solved by the gauge fixing term (4.15). In this way the non-
trivial zero modes disappears. In the future calculations we will also consistently
add a ghost action to take into account the induced functional determinant. The
gauge fixing will depend on the two gauge parameters α and β.

We introduce now a complete set of spin-projectors Pi with i = 2, 1, S, σ, Sσ
that are defined in Appendix A and in particular in (A.13). We can write down
the inverse graviton propagator in terms of the spin-projectors

δ2

δhµν;qδhαβ;−q
Γk =

∑

i=2,1,S,σ,Sσ

ΥiPiµναβ (4.48)

The components Υi refer to the propagator components in the chosen basis, they
depend on q2 because any tensor structure is absorbed in the projectors. The
projectors therefore depend on momentum qµ and for the moment we neglect
to write it for notational simplicity. We give a list of the actual value of the
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components in the chosen truncation and in general d dimensions

Υ2 = −1

2
V [φ] +

1

2
Zq2

Υ1 = −1

2
V [φ] +

1

2α
Zq2

ΥS =
d− 3

4
V [φ] +

(

d− 1

16α
(1 + β)2 +

2− d

2

)

Zq2

Υσ = −1

4
V [φ] +

(β − 3)2

16α
Zq2

ΥSσ =

√
d− 1

4
V [φ] +

√
d− 1 (β − 3) (1 + β)

16α
Zq2 (4.49)

The other ingredient we need for average action computations in the coarse-
graining in the form of an infrared cutoff ∆Sk. In particular, this term will
contain a quadratic kernel Rk that kills the propagation of infrared modes. If
we want to perform a computation that agrees with that of V̇ [φ] and Ḣ [φ],
we will follow the same strategy of the previous sections of this chapter. The
key idea was to ask that the modified inverse propagator, so those in which
the cutoff is added, is equal to the original inverse propagator apart for the
replacement

q2 → Pk

[

q2
]

= q2θ
(

q2 − k2
)

+ k2θ
(

k2 − q2
)

(4.50)

that realize the same of (4.37).

We express the cut-off procedure as we previously did by

qµ → q̂µ

√

Pk [q2] (4.51)

The nice feature of replacement (4.50,4.51) is that it leaves the spin-projectors
of Appendix A invariant. This is easily seen by their building blocks PL and
PT defined in (A.2). For example PL goes to

PLµν =
qµqν
q2
→ q̂µq̂ν

√
Pk

2

Pk
= PLµν (4.52)

and similarly for PT .

Using the same notation of the previous chapters we define the modified
inverse propagator for the gravitational degrees of freedom

Gh −1
= Γ(2)

k + Rk (4.53)

In components it is

Gh −1
µναβ =

∑

i=2,1,S,σ,Sσ

ῩiPiµναβ (4.54)
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and the single terms are

Ῡ2 = −1

2
V [φ] +

1

2
Zq2θ

(

q2 − k2
)

+
1

2
Zk2θ

(

k2 − q2
)

Ῡ1 = −1

2
V [φ] +

1

2α
Zq2θ

(

q2 − k2
)

+
1

2α
Zk2θ

(

k2 − q2
)

ῩS =
d− 3

4
V [φ] +

(

d− 1

16α
(1 + β)2 +

2− d

2

)

Zq2θ
(

q2 − k2
)

+

(

d− 1

16α
(1 + β)2 +

2− d

2

)

Zk2θ
(

k2 − q2
)

Ῡσ = −1

4
V [φ] +

(β − 3)2

16α
Zq2θ

(

q2 − k2
)

+
(β − 3)2

16α
Zk2θ

(

k2 − q2
)

ῩSσ =

√
d− 1

4
V [φ] +

√
d− 1 (β − 3) (1 + β)

16α
Zq2θ

(

q2 − k2
)

+

√
d− 1 (β − 3) (1 + β)

16α
Zk2θ

(

k2 − q2
)

(4.55)

The cutoff that realizes this structure can be determined backward by solving

the definition of Gh for it. We get Rk = Gh −1 − Γ(2)
k and in components it

means

Rk µναβ =
∑

i=2,1,S,σ,Sσ

(

Ῡi −Υi

)

Piµναβ (4.56)

The cutoff explicit components are easily obtained by subtracting the two sets of
components (4.55) and (4.49). Note the important property that the cutoff do
not depend on the background constant scalar field, but only on the background
metric δµν .

Finally, one is actually interested in the modified propagator rather than the
modified inverse propagator, when computing with the average effective action.
To calculate the inverse we have to resort to the rules we derived in the previous
subsection. The spin-2 and spin-1 modes are easily inverted, while the scalar

sector corresponds to the inversion of a 2× 2 matrix. The coefficients of Gh −1

are actually functions of theta functions. We therefore have first to algebrically
invert each coefficient and then support-wise calculate it. We define

Gh
µναβ =

∑

i=2,1,S,σ,Sσ

Υ̃iPiµναβ (4.57)

For i = 2, 1 we previously proved that Υ̃i = Ῡ−1
i . For example

Ῡ2 =
1

2

(

Zq2 − V [φ]
)

θ
(

q2 − k2
)

+
1

2

(

Zk2 − V [φ]
)

θ
(

k2 − q2
)

(4.58)

Now that we wrote it disentangling the two supports, we easily calculate the
inverse

Υ̃2 = Ῡ−1
2 (4.59)

= 2
(

Zq2 − V [φ]
)−1

θ
(

q2 − k2
)

+ 2
(

Zk2 − V [φ]
)−1

θ
(

k2 − q2
)

Similarly we can perform the same steps for the other coefficients. The only
additional complication for the scalar sector are more involved functions of the
theta functions, but that can unambiguously be inverted.
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We conclude this subsection with a couple of comments. A crucial simplifi-
cation was that we could take V ′ [φ] = 0, given the purpose of it was to calculate
the anomalous dimensions in the vacuum expectation value of the potential. For
this reason our construction is on-shell, but it is all we need to be consistent
with the powerlaw expansions we will later introduce in the potential. One may
wonder how to completely stay off-shell, by means of a general expansion around
a given φ configuration that is not a VEV. A straightforward way to do that is
to introduce new spin-projectors in the algebra of the Pi for i = 2, 1, S, σ, Sσ.
A new projector, let us call it Pφ, would take into account the propagation of
φ “polarizations” of the scalar subsector and naturally would mix with PS and
Pσ. This easily imply that the actual basis is completed adding two analogues
of PSσ, that are PSφ and Pσφ. One can show that there is a consistent way to
do that and that, once represented, the set Pi for i = S, σ, φ, Sσ, Sφ, σφ realizes
the same 3 × 3 matrices appearing as scalar sector of [22]. We ultimately plan
to give the full off-shell computation somewhere.

4.4.2 Consistency checks from 0- and 2-point functions.

We constructed the coarse-grained graviton propagator. We now refer to Ap-
pendix B for the vertices involving interactions of gravity and matter. We
therefore have all the ingredients to evaluate the anomalous dimensions. How-
ever before doing that it is worth considering some computation in which we
know we can check explicitly the consistency of the momentum space method,
with the “super-matrix” technique used in the beginning of the chapter.

There are essentially three checks we can perform: the 0-point function, the
2-point function of the scalar and the 2-point function of the spinor fields. From
the flow of the 0-point correlator, the action, we can obtain V̇ [φ]. Since our
momentum space rules are on-shell, we can only obtain

V̇ [φ]
∣

∣

∣

V ′[φ]=0
(4.60)

and compare it with the result of the super-matrix technique with a diagonal
cutoff. There are four graphs contributing to this result, each of them corre-
sponding to a loop with a cutoff insertion. The modes that will run in the loop
are obviously the scalar, spinor, graviton and ghosts ones.

We already computed the scalar and spinor loops in the previous chapter,
with the same momentum space rules, so we can concentrate our attention on
the new degrees of freedom introduced in this section. We denote ∆hV̇ and
∆ghV̇ the contributions to the running of the potential due to graviton and
ghosts respectively. We postpone to the end of the subsection the discussion of
the ghost loop. The graviton loop corresponds to the integration of the graviton
modified propagator and its cutoff (Fig. 4.1). The projectors are useful in this
situation, because the argument of the integration reduces to traces of products
of them. The spin-2 and spin-1 projectors decouple because they commute with
the rest, while the spin-0 projectors can be represented using the 2× 2 matrices
we introduced. Using the notation we introduced in section 4.5.1, the loop
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1
2

Figure 4.1: The graviton loop contributing to Γ̇k at V ′ [φ] = 0.

integral is

∆hV̇ =
1

2

∫

q
Gh

µν
αβṘkαβ

µν

=
1

2

∫

q

∑

i,j=2,1,S,σ,Sσ

Υ̃i∂t

(

Ῡj −Υj

)

trPiPj

=
1

2

∫

q
Υ̃2

(

Ῡ2 −Υ2

)

+
1

2

∫

q
Υ̃1

(

Ῡ1 −Υ1

)

+
1

2

∫

q

∑

i,j=S,σ,Sσ

Υ̃i∂t

(

Ῡj −Υj

)

trPiPj (4.61)

The traces of the projectors, in particular the spin-0 sector that we need, can be
derived easily. It is now an algebraic task to perform them. Once this is done
we can proceed through the integration.

We give the result in the gauge β = 1 for simplicity, while α is left arbitrary.
In terms of the renormalized quantities, the contribution to the renormalized
potential running is

∆h ˙̄vR =
(Z + Ż

8 )(5Z − (2 + 3α)v̄R)

12π2(Z − v̄R)(Z − αv̄R)
(4.62)

In order to check the consistency with the previous calculation we have to add
(3.106) in the on-shell limit v′ = 0 to (4.62) and compare it with formula (4.38)
in the same limit. When this is done, it is easy to show that the matrix-method
and the momentum space give indeed the same result.

A completely similar discussion can be done by checking the flow of the sec-
ond derivative of the potential ∆hV̇ ′′, through the flow of the scalar correlator.
There are three possible graphs contributing to this flow. Two contain a gravi-
ton emitted and absorbed by the scalar and are different because the cutoff
insertion is either on the scalar (Fig. (4.2)) or on the graviton (Fig. (4.3)).
The third is a tadpole-like graph, where in the loop runs the graviton (Fig.
(4.4)). All the graviton interactions are derivative interaction, but fortunately
the calculation is strongly simplified by the fact that we are, for the moment,
interested only in the zero external momentum limit. The result of the sum of
these three graphs can be compared with the second derivative of (4.38) in the
limit v̄′R → 0. It is important to perform the limit after deriving the expression
of the flow, otherwise some terms will be missed. For this reason, this check
gives different informations from the previous one.
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pµ

qµ + pµ

Figure 4.2: One of the graviton contribution to the scalar 2-point function. In
this contribution the cutoff is inserted in the scalar propagator.

pµ

qµ + pµ

Figure 4.3: One of the graviton contribution to the scalar 2-point function. In
this contribution the cutoff is inserted in the graviton propagator.

pµ

qµ

Figure 4.4: Tadpole-like graviton contribution to the scalar 2-point function.
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pµ

qµ + pµ

Figure 4.5: One of the graviton contribution to the spinor 2-point function. In
this contribution the cutoff is inserted in the spinor propagator.

pµ

qµ + pµ

Figure 4.6: One of the graviton contribution to the spinor 2-point function. In
this contribution the cutoff is inserted in the graviton propagator.

The third and final check is analogous to the second, but involves the spinor
degrees of freedom rather that the scalar ones. From the two point function of
the spinor field, calculated using our momentum space rules, we can determine
the gravitational contribution to the flow of the generalized Yukawa interaction
∆hḢ evaluated at V ′ → 0. Then we can compare it with the corresponding
flow obtained with the matrix-technique. Again there are three diagrams con-
tributing to the flow and they are of the same form of the previous check, once
the scalar field is replaced by the spinor one. The tensor structure of the spinor
vertices is quite more involved than that of the scalar, but still we can set zero
external momentum that simplify to some extent the calculation. The diagrams
involved in the calculation are drawn in Figs. (4.5), (4.6) and (4.7).

Some words concerning the ghost loop contribution ∆ghV̇ is needed before

pµ

qµ

Figure 4.7: Tadpole-like graviton contribution to the spinor 2-point function.
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concluding the subsection. If the ghost fields are introduced in a functional
RG scheme, it is natural to assume that they may run as well, with the rest of
the degrees of freedom. Once their action is written, one has to decide how to
truncate it. There are some natural choices. In the matrix-technique we always
fixed the wavefunction renormalization of the ghost Zgh = 1 Alternatively, we
could decide to give them a separate wavefunction renormalization Zgh. This is
currently under study in the literature [45, 46]. Or, in order to keep things as
simple as possible, we can fix their scaling by requiring that it is the same as the
graviton one Zgh = Z. In functional RG studies, this situation is different from
Zgh = 1. Although a wavefunction renormalization can be parametrized away
by a rescaling of the fields, this must be done at each scale. In fact the ghost
loop is different in the two situations. This is easily seen because, if Z = 1

16πG
is present in front of the ghost propagator, the derivative of the ghost cutoff

will contain ηZ = − Ġ
G that introduce some further nonlinearity in the flow. For

consistency with the super-matrix technique we decided to set Zgh = 1 and it
is trivial to show that the momentum space technique gives the same result.
However, when explicitly using the beta functions for the purpose of finding
fixed points, we always checked that the possibilities Zgh = Z and Zgh = 1 do
give very similar values for FP positions and critical exponents. Given that the
ghosts do not couple with the (background) matter fields, this is also the last
time we will actually use the ghost loop, because it does not contribute to the
two point functions running of φ and ψ.

4.4.3 The flow of the scalar 2-point function.

In this subsection we finally calculate the gravitational corrections to the scalar
anomalous dimension. We refer for the diagrammatic part to the graphs in-
troduced in the previous section, namely Figs. (4.2), (4.3) and (4.4). The
computation of the anomalous dimension of the scalar is quite more involved
than that of the flow of the potential and its second derivative. The reason is
that we obtain it, as usual, from the coefficient of the p2 term in the flow of the
2-point function with incoming momentum pµ

Żφp2 + V̇ ′′ [φ] (4.63)

It means that in Fig. (4.2) we have to expand the graviton propagator to order
p2.

The expansion of the graviton propagator imply that we have to simultane-
ously expand the coefficients of the projectors and the projectors themselves.
The propagator in momentum qµ + pµ is

Gh
q+p µναβ =

∑

i=2,1,S,σ,Sσ

Υ̃i [q + p] Pi [q + p] µναβ (4.64)

In this formula we simply introduced the explicit dependence on the incom-
ing momentum. The expansion of the coefficients Υ̃i [q + p] resembles that of
the modified inverse scalar propagator Gk,q+p. They are functions of the mo-

mentum square (q + p)2 through the support functions θ
(

k2 − (q + p)2
)

and

θ
(

(q + p)2 − k2
)

. Their general structure is

Υ̃i [q] = Fi

(

q2
)

θ
(

q2 − k2
)

+ Fi

(

k2
)

θ
(

k2 − q2
)

(4.65)
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This kind of momentum dependence slightly simplifies the expansion, because,
at first order, we get only terms that are out of the support q2 ≤ k2 set by the
cutoff. The general expansion up to quadratic powers of pµ is

Υ̃i [q + p] = Υ̃i [q] + 2 (q · p)F ′
i

(

q2
)

θ
(

q2 − k2
)

+2 (q · p)2
(

F ′
i

(

k2
)

δ
(

q2 − k2
)

+ F ′′
i

(

q2
)

θ
(

q2 − k2
))

+p2F ′
i

(

q2
)

θ
(

q2 − k2
)

(4.66)

Like in the third chapter, we are not really interested in the tangent space indices
structure of the result, so we can adopt the approximated diagonal expansion
where

pµpν → p2

4
δµν (4.67)

and actually replace Υ̃i [q + p] of (4.66) by

Υ̃i [q] + 2 (q · p)F ′
i

(

q2
)

θ
(

q2 − k2
)

+p2 q2

2

(

F ′
i

(

k2
)

δ
(

q2 − k2
)

+ F ′′
i

(

q2
)

θ
(

q2 − k2
))

+2p2F ′
i

(

q2
)

θ
(

q2 − k2
)

(4.68)

that slightly simplifies computations.

The expansion of the projectors requires quite more effort and is structurally
more complicated. We are not going to give the full expansion of the projectors
now, because it is long and not that instructive. We just want to stress that it
still simplifies, but the resulting expressions are again very long and involved.
Further, as an additional tensor structure to take into account, there is the
fact that the vertices where matter couples to gravity are derivative vertices.
In summary, there are two components of any graph that do contribute to the
term p2 and are the propagator displaced to momentum qµ + pµ, that itself
contains projectors and coefficients to be expanded, and the vertices. p2 terms
are formed also by their mixing, so it is an hard task to find all of them because
we have to combine all the long expansion together.

The situation is simpler when evaluating Fig. (4.3) and Fig. (4.4). In the
first case Fig. (4.3) we just have to expand the scalar propagator, because we
always parametrize the graphs to have the integrated momentum as argument
of the cutoff. The gravitational tensor structure, that is the product of two
propagators with a cutoff inserted in the middle, may be strongly simplified
using the projectors products. It is a general fact, that any polynomial of the
projectors can be reduced to a sum of products of one or two of them. In
the second case Fig. (4.4), the calculation is even simpler, because the only
object that carry a pµ dependence in the graph is the 4-vertex and therefore it
is sufficient to find its p2 contribution and isolate it.

Now we just want to give the results associated to each graph. We call
∆h,1ηφ that coming from Fig. (4.2), ∆h,2ηφ from Fig. (4.3) and ∆h,3ηφ from
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Fig. (4.4). We obtain in the gauge α = 0 and β = 1

∆h,1ηφ =
v′′ (Z (−3v′′ + ηφ − 6)− (ηφ − 6)v)

32π2(Z − v)2 (1 + v′′)2

∆h,2ηφ = −
Zv′′

(

( Ż
Z + 11)v′′ + Ż

Z + 8
)

32π2(Z − v)2 (1 + v′′)2

∆h,3ηφ = 0 (4.69)

Notice that we have ∆h,3ηφ = 0 independently of the gauge choice. It is zero
because we are in four dimensions. We explicitly checked that for general d .= 4
it is proportional to d − 4. Concerning the entire system (4.69) we want to
stress that the complete form with α, β and eventually d dependence is quite
complicated. We decided to present it in the gauge α = 0 and β = 1 mainly for
illustrative purposes.

4.4.4 The flow of the spinor 2-point function.

This subsection completes the results of the previous one giving the gravitational
contributions to the spinor anomalous dimension ηψ . Much of the comments
we made previously are valid, especially those on how to expand the graviton
propagator. The calculation of the spinor anomalous dimension is slightly sim-
plified, if compared to that of ηφ, because we just need the first order in pµ

expansion given the flow of the spinor propagator is

Żψp/ + Ḣ [φ] (4.70)

It means that it is sufficient to expand everything at first order and a lot of tensor
complications, that we previously mentioned, do not even appear. However, the
Clifford algebra structure of the vertices and of the propagators do appear and
makes the calculation of ηψ much more involved than that of ηφ.

We refer to the graphs we drew before Figs. (4.5), (4.6) and (4.7). These
contain all the anomalous dimension contributions. We will call ∆h,1ηψ that
coming from Fig. (4.5), similarly ∆h,2ηφ from Fig. (4.6) and ∆h,3ηφ from Fig.
(4.7). The result is

∆h,1ηψ =
(66− 13ηψ)h2 + ηψ − 6

320π2 (1 + h2)2 (Z − v)

∆h,2ηψ =
3Z

(

4( Ż
Z + 12)h2 + 3( Ż

Z + 9)
)

1280π2 (1 + h2) (Z − v)2

∆h,3ηψ = −
9Z( Ż

Z + 8)

512π2(Z − v)2
(4.71)

The same remarks of system (4.69) are valid here. Namely, in a general gauge
(4.71) is a huge and complicated system and we gave the result in the gauge
α = 0 and β = 1 for brevity. We want also to remember that, for consistency
with the rest, the anomalous dimensions have to be evaluated in a fixed constant
on-shell configuration.
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4.5 The flow of the Newton constant.

In this section we wish to calculate the flow of the Newton constant G, that in
our parametrization of the couplings is inside Z = 1

16πG [2, 47]. However, we
will apply a different method than the momentum space rules, that is actually
closer to the super-matrix technique we adopted at the beginning of the chapter.
The reason is that the calculation is a lot simpler if heat kernel methods are
applied. Before going into the details of the calculation, let us explain why this
happens.

We want to remind that we introduced the background field method in the
context of functional RG in the third chapter. Using that technique one gener-
ally has a bimetric functional Γk [ḡµν , gµν ], where ḡµν is the background metric
and gµν the classical one (3.158). The essence of the method is that background
gauge invariance is kept through the construction of the average effective action,
thanks to the fact that the cutoff is background gauge covariant. It has there-
fore a kernel that is background dependent Rk = Rk [ḡ]. A bimetric functional
is quite a complicated object to study, so we adopted another functional that
depends on a single metric (3.164) defining Γk [gµν ] = Γk [gµν , gµν ]. This func-
tional was shown to have a flow equation analog to the ERGE (3.166), but by
construction it has a metric dependence in the cutoff. This dependence is funda-
mental to obtain a gauge invariant result, because it ensures background gauge
invariance, that in the single metric functional becomes the gauge invariance
itself. However, it also makes the diagrammatic computations we extensively
used before a lot more complex.

As an example of this feature, suppose we want to calculate the running of
the Newton constant, using the 2-point function of the metric gµν . We therefore
have to act with a couple of functional derivatives on the flow equation, but,
unlike the cases we studied up to now, this functional derivative will also act on
the cutoff function. This function is present in two places of the flow equation.
It is at the denominator and its derivative, in this case, will contribute modifying
the 3-vertex. It is also at the numerator and in that case the derivative will give
a new genuine vertex contributing to the flow. For the discussion on the gauge
invariances, these new contributions have to sum up in such a way that the
result is gauge invariant. However, from the point of view of the calculation,
it is quite nontrivial to obtain the correct result, because it requires a lot more
effort in the construction of the new vertices, and in fact it is the subject of
another Ph.D. defense [48]. We checked by hand that, if the metric dependence
of the cutoff is neglected, the results are not anymore gauge invariant. For
example, each spin component of the graviton receives a different wavefunction
renormalization.

Instead, we decided to use a different strategy. We will try now to reformu-
late all the traces involved in the computation of the flow equation, in terms of
functional traces that can be easily evaluated by heat kernel method [24, 47].
The clear advantage of this procedure is that heat kernel coefficients have al-
ready been evaluated in the literature for many classes of operators.

We first notice that we are interested in finding out curvature terms from the
flow equation, now regarded as the functional trace of a certain set of operators
that we have to specify. We are free to choose a preferred background space
to evaluate the traces. The background must contain enough information to
distinguish the Ricci scalar from the volume element. We decided to take a
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sphere of radius r as a background. The limit r → ∞ gives the possibility to
compare our findings with those of the rest of the section. In fact, in the Seeley-
deWitt expansion of the heat kernel, the curvature term will appear through
R ∼ 1/r2 and one easily sees that it is sent to zero in the limit.

We can now define the background for the matter fields. We can safely set
ψ = ψ̄ = 0 as background condition. Further, we decided to set φ = const. as in
all previous calculations. The φ dependence of the running of Z will be treated
with the same spirit of Section 3.3. It will, for example, give a different running
of Z when considering a zero or a nonzero VEV. This time, however, φ is not
defined to be a minimum V ′ [φ] = 0 of V like in the momentum space technique,
but it will be general like in the super-matrix application. The result will be
therefore completely off-shell.

We will also employ the spin decomposition of the modes of the fluctuation,
this time expressed in covariant form for any background

hµν = hT
µν +∇µξν +∇νξµ +∇µ∇νσ −

1

4
gµν∇2σ +

1

4
gµνh (4.72)

The scalar modes of the graviton will mix with the scalar matter field. After
the second order expansion of our action, there are in general further mixing of
the spinor fluctuation fields χ and χ̄, with the spin-0, -1 and -2. However, due
to Lorentz invariance these are expected to be proportional to the background
fields ψ and ψ̄. The simple reason is that there are spinor indices to be saturated
in the expression. These mixing disappear in the chosen background. We also
rescale the fields σ and ξµ to σ̂ and ξ̂µ using

σ̂ =
√

−∇2

√

−∇2 − R

3
σ (4.73)

ξ̂µ =

√

−∇2 − R

4
ξµ (4.74)

This rescaling produces a Jacobian in the path integral, that cancels the Jaco-
bian produced by (4.72).

The final result for the second order expansion is an expansion that is diag-
onal in the spin-sectors of the theory, rather than in field space. We get

L(2) =
1

2
hTµν

(

−Z

2
∇2 +

Z

3
R− 1

2
V

)

hT
µν

+
1

2
ξ̂µ

(

−Z

α
∇2 − Z (1− 2α)

4α
R− V

)

ξ̂µ

+
1

2

(

σ̂ h ϕ
)

S
[

∇2, R
]





σ̂
h
ϕ





+
(

χ χ̄T
)

Y
[

∇2, R
]

(

χT

χ̄

)

(4.75)

where R = R [g] is the curvature scalar of the sphere metric. We employed the
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matrix notation

S
[

∇2, R
]

= (4.76)








(

3(α−3)Z
16α

)

∇2 + 3(α−1)R
16α − 3

8V 3Z(β−α)
16α

√
−∇2

√

−∇2 − R
3 0

3Z(β−α)
16α

√
−∇2

√

−∇2 − R
3

Z(3α−β2)
16α ∇2 + 1

8V 1
2V ′

0 1
2V ′ −Zφ∇2 + V ′′









Y
[

∇2, R
]

=

(

0 iZψγµ∇µ −H [φ]
iZψγTµ∇µ + H [φ] 0

)

(4.77)

for brevity.
We write also the ghost sector. We decompose the ghost fields cµ and c̄µ

in irreducible representations cµ = c1µ +∇µc0 and c̄µ = c̄1µ + ∇µc̄0. We also
rescale the scalar modes ĉ0 =

√
−∇2c0 and ˆ̄c0 =

√
−∇2c̄0. The combination of

change of coordinates and rescaling has unit Jacobian in the path integral. The
ghost action becomes

Sgh = c̄µ
1

(

Z∇2 +
R

4

)

c1µ (4.78)

+ˆ̄c0

(

−3− β

2
Z∇2 − 3− β

4
R

)

ĉ0 (4.79)

The spin sectors are decoupled thanks to the background choice. Further also
the ghosts are decoupled. The total decoupling involves therefore both spin and
statistics. This is a useful feature, that we want to preserve after adding the
cutoff structure.

Let us concentrate first on the second order expansions that contain −∇2,
so all the spin blocks apart for the spinor one. For those blocks, we choose the
cutoff matrix Rk such that

Γ(2) + Rk = Γ(2)
∣

∣

∣

−∇2→Pk[−∇2]
(4.80)

It is understood that spinors are left apart for a moment. This allows to deter-
mine backwards the structure of the cutoff, so we regard it as its definition.

The spinors play a distinguished role, because their quadratic kernel is a
function of ∇/ = γµ∇µ and not of −∇2. We know that the square of their free
propagator is

(i∇/)2 = −∇2 +
R

4
(4.81)

This means that in curved space this square is displaced by the simple −∇2 by
a curvature term. In order to take this into account, we wish that the spinor
cut-off r realizes a similar relation

(i∇/ + r (∇/))2 = Pk

[

−∇2
]

+
R

4
(4.82)

We determine backward the spinor cutoff from this relation and we choose the
prescription for the determination of the entire cutoff matrix to be

Γ(2) + Rk = Γ(2)
∣

∣

∣

−∇2→Pk[−∇2],i∇/→i∇/

√
Pk[−∇2]+ R

4√
−∇2+ R

4

(4.83)
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The profile of the cut-off propagator Pk is as usual the optimized one (4.23).
Before going on, it is easy to see that these cutoff, once the flat limit is

taken, do indeed coincide with the coarse-graining schemes we used for flat
backgrounds. It is sufficient to perform the limit of infinite radius of the sphere,
so that R→ 0 and ∇µ → ∂µ. In this limit the cutoff definition we just give coin-
cides with that of the diagonal cutoff computation. In this way we are sure that
the next calculations are consistent with those performed in flat background.

Due to the diagonal structure of the second order expansion and the cutoff,
the trace of the exact renormalization group equation will reduce to a sum
of traces in each spin-statistic subsector. If we further trace over the 3 × 3
matrix structure of the spin-0, all the subsectors apart from the spinor one, give
rise to traces of functions of −∇2, which can be easily computed with the aid
of heat kernel method (see Appendix C). This actually happens also for the
spinor subsector once the trace over the Clifford algebra, that we denote by
tr, is performed. First, notice that the Clifford algebra structure appears only
through the operator ∇/. Any trace of any number of copies of ∇/, will reduce
to functions of ∇2 thanks to the properties of the traces of γ-matrices. Given
there are at most two elements of the algebra in the flow equation, we actually
just need the single traces ∇/ = 0 and any time (∇/)2 appears it is sufficient to
use (4.81).

The final result of these manipulations, is that it is possible to write in our
background ansatz the flow of the effective action as

Γ̇k =
∑

j=0, 1
2 ,1,2,0gh,1gh

STr fj

[

−∇2, R
]

(4.84)

The functions fj contain all the information about the flow, including both the
profile of the cutoff function and the structures emerging from the trace over
3×3 spin-0 and Dirac indices. We introduced the notation 0gh and 1gh, referring
to the spin-0 and -1 of the ghost field, to stress that they are decoupled from the
rest and to remember that they have a different statistic. Additionally, we made
explicit a curvature dependence of the functions fj . This dependence refers to
every R appearing in the flow equation, before acting with the functional traces.
The super-trace appearing in (4.84) is now simply a sum of functional traces
over the operator −∇2, each acting on a different vector space of spin-j.

We are interested in the terms of this flow that are linear in the curvature R.
It is useful to expand the functions fj in powers of the scalar R, before acting
with the trace. We get

Γ̇k =
∑

j

STrfj

[

−∇2, 0
]

+R
∑

j

STrf (0,1)
j

[

−∇2, 0
]

+ O
(

R2
)

(4.85)

where it is understood that j runs over j = 0, 1/2, 1, 2, 0gh, 1gh. The further
terms appearing in the expansion are beyond our curvature truncation.

We evaluate the remaining two traces using heat kernel techniques, in partic-
ular using the Seeley-deWitt expansion (C.20). In this case, the Seeley-deWitt
expansion, coincides with an expansion in powers of R, due to the structure of
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the background. In four dimensions we have

Γ̇k =
∑

j

(−)j B0,jQ2 (fj [z, 0]) +
∑

j

(−)j B2,jQ1 (fj [z, 0])

+R
∑

j

(−)j B0,jQ2

(

f (0,1)
j [z, 0]

)

+ O
(

R2
)

(4.86)

We introduced the heat kernel coefficients Bn,j of the Laplacian operator in the
spin-j space (C.15). They are

B0,0 = 1 B0,1/2 = 4

B0,1 = 3 B0,2 = 5

B2,0 =
R

6
B2,1/2 =

2R

3

B2,1 =
1

2
B2,2 =

5

6

The functions Qm are certain integrals of their argument, that contain the
information about the shape of the functions we are tracing (C.21,C.22). We
give them also here

Q2 (g [z]) =

∫

dz z g (z)

Q1 (g [z]) =

∫

dz g (z)

Finally, we added (−)j to the traces, referring that anticommuting fields will
have an additional minus sign. Among all the heat kernel coefficients, we know
that B0,j ∼ R0 and B2,j ∼ R, while any other term in the Seeley-deWitt
expansion will contain higher powers of R.

We therefore know that the terms linear in R of (4.86) are

Γ̇k

∣

∣

∣

R
=

∑

j

(−)j B2,jQ1 (fj) + R
∑

j

(−)j B0,jQ2

(

f (0,1)
j [z, 0]

)

(4.87)

but we also know, that, according to our truncation Γ̇k

∣

∣

∣

R
= −Ż

∫ √
gR. Once

the integrals are performed, we are able to write the beta function of the grav-
itational coupling.

We give the running of the coupling Z in terms of its dimensionless partner
Z̄ = k−2Z. Further, we split it into the contributions for each single spin that

we denote ∆j
˙̄Z. The complete result has the canonical scaling term and the

sum of all contributions

˙̄Z = −2Z̄ +
∑

j=0, 1
2 ,1,2,0gh,1gh

∆j
˙̄Z (4.88)
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First we give the single spin terms except for the spin-0

∆ 1
2

˙̄Z = Nf
15− 8ηψ + (60− 17ηψ)h2

1440π2 (1 + h2)2

∆1
˙̄Z = Z̄

3vα + Z̄(8α− 7)

128π2(Z̄ − vα)2
− ˙̄Z

vα + 2Z̄(α − 1)

256π2(Z̄ − vα)2

∆2
˙̄Z = −5Z̄

9v − 25Z̄

576π2(Z̄ − v)2
− 5 ˙̄Z

7Z̄ − 3v

1152π2(Z̄ − v)2

∆0gh
˙̄Z =

5

96π2

∆1gh
˙̄Z =

5

64π2
(4.89)

Additionally, we see that a spinor flavor number Nf appeared, indicating that
we are actually considering Nf Dirac spinors coupled in a symmetric way.

We still have to give the spin-0 contribution, coming from the 3 × 3 scalar
subsector. The full expression can be written, but it is very long. Therefore, for
space reasons, we decided to give it in the gauge α = 0 and β = 1. Further we
set it on-shell so we give it when evaluated in a configuration V ′ [φ] = 0. It is

∆0
˙̄Z = −2Z̄ (6 + 5v′′)− v (9 + 7v′′)

192π2(Z − v) (1 + v′′)

+
ηφ

384π2 (1 + v′′)
−

˙̄Z(2v − 3Z)

384π2(Z − v)
(4.90)

The complete result for the running of Ż, in the gauge α = 0 and β = 1 and
with the on-shell condition v′ = 0, comes from the sum of (4.89) and (4.90)

˙̄Z = −2Z̄ − 5Z̄
9v − 25Z̄

576π2(Z̄ − v)2
− 5 ˙̄Z

7Z̄ − 3v

1152π2(Z̄ − v)2

+
˙̄Z

128π2(Z̄)
− 2Z̄ (6 + 5v′′)− v (9 + 7v′′)

192π2(Z − v) (1 + v′′)

+
ηφ

384π2 (1 + v′′)
−

˙̄Z(2v − 3Z)

384π2(Z − v)

+Nf
15− 8ηψ + (60− 17ηψ)h2

1440π2 (1 + h2)2

+
5

96π2
+

5

64π2
− 7

128π2
(4.91)

It is worth remembering that the φ dependence in v is the dependence that ˙̄Z
has in the configuration we use to renormalize and not a genuine dependence
(the same that happened for ηφ and ηψ). By non genuine we mean that in
the truncation we give Z̄ is φ independent, so the dependence on the constant
φ configuration that arises has to be fixed, much like we did for the matter
anomalous dimensions.

We realize at this point that some of the formulas in (4.89) and (4.90), as well

as (4.91), do depend on ˙̄Z on the right hand side. Therefore, we see that (4.88)
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is actually a linear algebraic equation we can solve in terms of ˙̄Z to obtain the
actual beta function of the coupling. The final expression is very complicated,
because further nonlinearities are added after the solution is obtained.

4.5.1 A simple example for the running of Z.

In order to have a flavor of the behavior of the beta function of Z, we calculate
it in a very simple truncation where all the matter couplings are set to zero,
including the cosmological constant that in our parametrization belongs to the
potential. Further, we set the number of flavors to be zero so that we end in
a theory in which there is just a scalar, minimally coupled to gravity through
its kinetic term. In these settings, we can safely set ηφ = 0 due to the lack of
scalar self interactions. In these limits we have that (4.88) reduces to

˙̄Z = −2Z̄ +
265

1152π2
− 17 ˙̄Z

1152π2Z̄
(4.92)

We can solve it in terms of ˙̄Z and get

˙̄Z = Z̄
265− 2304π2Z̄

17− 1152π2Z̄
(4.93)

This equation has a fixed point located at

Z̄$ =
265

2304π2
& 0.0116 (4.94)

Ḡ$ =
1

16πZ̄$
=

144π

265
& 1.707 (4.95)

To obtain the critical exponent with which this fixed point is approached by the

dimensionless Newton constant it is sufficient to note that ˙̄G = − ˙̄Z/16πZ̄2. So

we can use (4.93) to calculate ˙̄G. For the critical exponent we obtain

−530

231
& −2.29437 (4.96)

indicating the existence, in this approximation, of a nontrivial UV-attractive
phase where the gravitational coupling can be asymptotically safe [2].

We can also verify the existence of the gaussian FP of the theory, by simply
noticing that Ḡ = 0 is a zero of its beta function. The critical exponent at
the gaussian fixed point is the negative of the canonical mass dimension of the
coupling, thus 2. This shows that around the gaussian fixed point the theory is
not perturbatively renormalizable.



Chapter 5

Fixed points of the Yukawa

system.

This chapter is dedicated to the study of the flow of the system of beta functions
for v (4.38), h (4.39) and Z̄ (4.91). We will also take into account the corrections
coming from the anomalous dimension ηφ (3.108) and ηψ (3.109) including the
gravitational corrections (4.69) and (4.71). The anomalous dimensions and the
beta function for Z̄ have to be evaluated in a physical configuration 〈φ〉 that re-
alizes V ′ [〈φ〉] = 0. In particular, ηφ and ηψ will be evaluated on the VEV of the
potential, that can either be zero (Z2-symmetric phase) or non-zero (symmetry
breaking case). We will mainly work in the gauge α = 0, β = 1. It is worth to
remind that α = 0 is a FP of the flow [43] and for this reason we consider this
choice the most reliable.

Before going into the details of our findings, we want to stress that they
strongly depend on the choice of the cutoff made in Section 4.5 and in particular
on (4.83). Using the terminology of [24], we choose a “type-I” cutoff. This choice
is crucial because it gives a different screening than [25] for the gravitational
constant when the number of fermion flavors Nf increases. We expect this
situation to hold in more realistic settings, for example those in which the matter
sector is that of a GUT theory and has a large number of scalars Ns , Nf in
the Higgs multiplet. In such a case, no matter what cutoff is chosen, the large-
N behavior of the Newton constant is the same we have. Using again the
terminology from [24], it is independent of the choice of type-I or -II cutoff.

5.1 General features of the flow.

5.1.1 The gaussian fixed point.

The gaussian fixed point (GFP) is by definition the fixed point for which all the
coupling are zero. It is generally expected to be always present in a theory. We
shall consider the dimensionless couplings. We know that the linearized flow
around the GFP is determined by a matrix whose eigenvalues are the negative
of the canonical dimensions of the (dimensonful) couplings.

We ultimately want to analyze the behavior of the anomalous dimension at

97
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the GFP. This can be done quite generally, by evaluating

ηi|v=h=0 (5.1)

where v and h are set to zero as a condition of gaussianity, the mass is assumed
to be zero and i = φ, ψ. The condition Z → ∞ that ensures that also gravity
reaches its GFP is missing and we will add it in a moment. We obtain for a
general gauge

ηφ|v=h=0 = −
18

(

α
(

3β2 − 18β + 31
)

− 3(β − 1)2
)

768π2Z(β − 3)2 + α (−3β2 + 18β − 31) + 3(β − 1)2

ηψ |v=h=0 =
α
(

−631β2 + 3786β − 6799
)

− 697β2 + 6190β − 8937

7(β − 3) (1280π2Z(β − 3) + α(β − 3) + 2(β + 3))
(5.2)

We see that, independently of the gauge choice (left apart β = 2), the limit
Z → ∞ gives the expected result ηφ = ηψ = 0 at the gaussian fixed point.
Formula (5.2) is seen also as the gravitational dressing to the anomalous scaling
of the matter fields around the GFP. For simplicity, we now set β = 1 leaving
only α as a parameter. In proximity of the GFP we can think perturbatively,
so we expand (5.2) in powers of the Newton’s constant G = 1/16πZ and obtain

ηφ|v=h=0 = −3α

2π
G + O

(

G2
)

ηψ |v=h=0 = − (911α + 861)

560π
G + O

(

G2
)

(5.3)

These results depend on the gauge parameter α, but do not change sign as a
function of it because α ≥ 0 are the only admissible gauges. Further, the limit
α → ∞ must not be taken, because it corresponds to the limit in which the
gauge fixing term disappear. Using the gauge α = 0 in (5.3), we see that ηφ
goes to zero, while ηψ has a negative dressing due to gravity.

We can actually use (5.3) as a further argument for the use of the gauge
α = 0. The α dependence is due to the coupling to gravity. We may want to
find an alternative cutoff such that the anomalous dimensions are minimized.
There exists for sure a cutoff such that the anomalous dimension of the scalar is
ηφ = 0, corresponding to the choice α = 0. We further argue an important con-
sequence, namely, if we minimize ηφ, we still have a nonzero negative anomalous
dimension for the Dirac fields. This result makes us expect that the inclusion
of anomalous dimensions in a Yukawa system is important to understand com-
pletely the features of the flow.

5.1.2 The gaussian-matter fixed point.

In [22] it was conjectured that in systems describing the interaction of grav-
ity with matter a gaussian-matter fixed point (GMFP) is always present. It is
defined to be a fixed point such that the gravitational sector of the action ap-
proaches a non-trivial FP value, while the matter couplings are asymptotically
zero. It is an interesting fixed point because it represents a minimal generaliza-
tion of the nontrivial fixed point of the gravitational sector.

The GMFP of a scalar theory coupled to gravity was shown to exist and
studied in detail in [22]. In [19] it was shown to exist if also a number Nf
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of spinors is added. What these two aforementioned works have in common is
that the neglected the anomalous dimensions of the matter fields. In the present
work we were able to show that the GMFP exists even if anomalous dimensions
are added. At the GMFP ηψ and ηφ take the same values as (5.2), but for
Z = Z$. One can insert their value in the beta function of the Newton constant
and see if the non-gaussian fixed point for Z resist the inclusion of ηψ and ηφ. It
turns out that it does resist, that imply that a GMFP is present. The difference
of our GMFP from the one calculated in [19] at zero anomalous dimensions is
negligible. We agree with [22] and think that the GMFP is a general feature of
any flow coupling gravity and matter. It is an important test for all the works
like [22, 47], where the anomalous dimensions have been neglected, to see if the
GMFP persists in more complex truncations.

For illustrative purposes, we give now the GMFP for Z as a function of the
anomalous dimensions and in the approximation of zero cosmological constant.
Note that the anomalous dimensions do depend on Z$ itself for the reasons
explained above and through (5.2)

Z$ =
(60− 32ηψ)Nf + 15ηφ + 1325

11520π2
(5.4)

It is easy to see that for small Nf the numerator of (5.4) is dominated by
the factor 1352. Within the range of values of interest for Z$, the anomalous
dimensions are small. We conclude that the GMFP value, for small Nf is
approximately Z$ ≈ 1325/11520.

5.1.3 Leading corrections to v and h.

We now analyze quite generally the leading contributions of the function h, that
will allow us to understand the leading contributions of their couplings. We will
neglect v. It is calculated through (4.39)

ḣ
∣

∣

∣

leading
= ḣ

∣

∣

∣

h′=h′′=0,v=0
(5.5)

We evaluate it with arbitrary α and β = 1 and obtain

ḣ
∣

∣

∣

leading
= −(1− ηψ)h +

(5α + 23)ηψh

4480π2Z

− (2135α + 2313)Żh

107520π2Z2
+

(1603α + 1437)h

10752π2Z
(5.6)

Now, the terms proportional to ηψ and ηφ in (5.6) are already proportional to
h. We are interested in contributions of ηψ and ηφ which are constant. The
constant contributions are those calculated in the previous subsection in (5.2)
and (5.3).

It is of particular interest to analyze the behavior of h. In order to understand
better what happens to the leading term of the generalized Yukawa interaction
h, we substitute (5.2) for β = 1 in (5.6) and then expand at first order in
G = 1/16πZ. We also assume we sit in proximity of a FP, so that Ż = 0 We
obtain

ḣ
∣

∣

∣

leading
= −h +

(2549α + 2019)

3360π
hG + O

(

G2
)

(5.7)
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Apart for the usual canonical scaling ḣ ∼ −h, this shows that the leading
contribution of gravity to any powerlike coupling inside the function h does
not change sign with the gauge α and is always positive. In other words, the
Yukawa coupling seems not to posses a FP of the kind advocated by [49]. This
is important, because it forbids in the model of [49] the predictivity of the
top-Yukawa coupling. However, the study of the leading contributions (5.7)
trivializes too much the structure of the flow. It needs to be studied in its full
nonlinearity and, indeed, something non-trivial will appear. In particular in the
following, some non-trivial FP will be presented.

5.2 FPs in Symmetric phase.

We studied the symmetric phase using the powerlaw ansatz for the potential

v = λ0 + λ2φ
2 + λ4φ

4 (5.8)

while the Yukawa function is assumed to contain just the Yukawa coupling

h = yφ (5.9)

In particular, we analyzed the beta functions of the set {λ0, λ2, λ4, y, Z} and
used numerical tools to evaluate the FP of their flow. The condition λ2 > 0
is assumed, since λ2 < 0 is generally regarded as an indication that we should
change the parametrization of the potential. Further, we ask to a physical FP
to have Z > 0, while λ0 is allowed to be both positive and negative. When a
possible physical FP was found, we always tested its stability under the inclusion
of further couplings in (5.8) like λ6 and λ8.

In the following, we will often refer to fixed points as“branches”, because
we decided to study them as functions of the number of fermion flavors Nf . A
branch will therefore be a set of fixed points that depends on Nf . Note that
Nf is a natural number, but sometimes it is useful to extend it to the whole
(positive) real axis.

5.2.1 Nontrivial FP branch in symmetric phase.

In the symmetric phase a very interesting non-trivial FP was found, which we
will call “SYM branch”. It does not appear for small values of Nf , but it exists
from Nf ! 2.7 on. For Nf close to this lower bound we have λ4 < 0. The only
natural value of Nf that realizes this condition is Nf = 3. This generally signals
that to ensure that the potential is bounded, we should study the inclusion of
further couplings. However, for the moment, we are interested to its behavior
when increasing Nf . λ4 has a maximum around Nf = 5 where it is close to 1.
Then it starts decreasing for increasing Nf . This feature is shared by all other
couplings except for λ0 (|λ0| is expected to increase for increasing Nf , being the
vacuum energy). This behavior signals some interesting feature of the branch
in the large-Nf limit and we shall discuss it in the next section. Another very
important feature of this branch is that the anomalous dimensions of the matter
fields are small and becomes smaller for increasing Nf . This is telling us that
we can trust the LPA approximation we employed.

Further, we tested that the branch is stable under the addition of further
power coupling like λ6 and λ8 (see Fig. (5.1)). In particular, it is more stable for
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increasing values of Nf . The corrections coming from λ6 inclusion do increase
for increasing values of Nf and for the couplings λ0, λ2 and λ4. However the
relative correction remains always negligible.

We give a table for the values of SYM branch, as functions of Nf , that we
found in the symmetric phase. In the table we also show the values of the
anomalous dimensions.

Nf λ0 λ2 λ4 y Z ηψ ηφ
3 -0.0094 0.49 -11. 3.9 0.0058 -0.31 0.51
4 -0.013 0.24 0.83 2.7 0.0056 -0.22 0.40
5 -0.016 0.17 1.0 2.1 0.0058 -0.17 0.33
6 -0.020 0.13 0.77 1.7 0.0062 -0.14 0.29
7 -0.023 0.10 0.58 1.4 0.0066 -0.12 0.25
8 -0.026 0.087 0.44 1.2 0.0070 -0.10 0.23
9 -0.029 0.075 0.34 1.1 0.0075 -0.091 0.20
10 -0.032 0.066 0.27 0.98 0.0079 -0.082 0.18
20 -0.064 0.029 0.054 0.47 0.013 -0.041 0.096
30 -0.096 0.018 0.022 0.31 0.018 -0.027 0.065
40 -0.13 0.013 0.012 0.23 0.023 -0.020 0.049
50 -0.16 0.011 0.0072 0.18 0.029 -0.016 0.039
60 -0.19 0.0095 0.0061 0.16 0.034 -0.015 0.035
70 -0.22 0.0084 0.0050 0.14 0.039 -0.013 0.031
80 -0.25 0.0073 0.0039 0.13 0.045 -0.011 0.027
90 -0.29 0.0062 0.0028 0.11 0.050 -0.0098 0.024
100 -0.32 0.0051 0.0017 0.089 0.055 -0.0082 0.020
1000 -3.2 0.00050 0.000016 0.0089 0.53 -0.00082 0.0020

We complete the analysis of SYM branch, looking at the critical properties
of the flow in its neighbour. We computed the stability matrix of the system
{λ0, λ2, λ4, y, Z} at the FP and calculated its eigenvalues. It turns out that the
number of attractive directions, so the dimension of the critical surface, is 3 for
every Nf . This is very important for the predictivity properties of the theory. It
is telling us that we have to perform three experiments to locate our position in
theory space. All the couplings are determined by these three experiments. In
the following table we give the critical exponents of the stability matrix (that are
the negative of the eigenvalues) in the symmetric branch under consideration.
The second column indicates the dimension of the critical surface, that is always
three. There are two operators that become marginal in the limit Nf →∞ and
they correspond to λ4 and y.
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Figure 5.1: Comparison of two fixed point potentials, one in the truncation up
to λ4 and the other in the truncation up to λ6. The values of λ2 and λ4 change
of order 10−2 after λ6 inclusion. λ0 and G change is negligible.

Nf dimC c1 c2 c3 c4 c5

3 3 -1.1 -0.36 1.1 1.3 3.8
4 3 -1.0 -0.57 1.3 1.4 3.9
5 3 -0.94 -0.42 1.4 1.5 3.9
6 3 -0.81 -0.33 1.5 1.6 3.9
7 3 -0.70 -0.28 1.6 1.6 3.9
8 3 -0.61 -0.24 1.7 1.7 4.0
9 3 -0.54 -0.21 1.7 1.7 4.0
10 3 -0.48 -0.19 1.7 1.7 4.0
20 3 -0.24 -0.094 1.9 1.9 4.0
30 3 -0.16 -0.063 1.9 1.9 4.0
40 3 -0.12 -0.048 1.9 1.9 4.0
50 3 -0.096 -0.038 1.9 1.9 4.0
60 3 -0.086 -0.035 1.9 2.0 4.0
70 3 -0.077 -0.031 2.0 2.0 4.0
80 3 -0.067 -0.027 2.0 2.0 4.0
90 3 -0.058 -0.023 2.0 2.0 4.0
100 3 -0.049 -0.019 2.0 2.0 4.0
1000 3 -0.0049 -0.0020 2.0 2.0 4.0

5.2.2 Large-Nf behavior.

Here we want to give the analytic structure of the asymptotic limit for large-Nf

of SYM branch [50]. It is convenient to think about the values of the fixed
points in the branch as functions of Nf . We therefore have

{λ0 (Nf ) , λ2 (Nf ) , λ4 (Nf ) , y (Nf ) , Z (Nf )} (5.10)



5.2. FPS IN SYMMETRIC PHASE 103

We want to determine the asymptotic expansion of these in terms of Nf . We
found convenient to parametrize them as

λ0 = − Nf

32π2
+ λ0,∞ (5.11)

λ2 =
λ2,∞

Nf
(5.12)

λ4 =
λ4,∞

N2
f

(5.13)

y =
y∞
Nf

(5.14)

Z = Z∞ +
Nf

192π2
(5.15)

where the values of the constants we introduced is

λ0,∞ = − 541

58800π2
& −0.001 (5.16)

λ2,∞ =
2721

5438
& 1.2 (5.17)

λ4,∞ = −822649π2

517244
& 15.7 (5.18)

y∞ =
1

7

√

2721

7
π & 8.85 (5.19)

Z∞ =
63433

2822400π2
& 0.002 (5.20)

The asymptotic expansion of the anomalous dimensions is

ηψ =
ηψ,∞

Nf
(5.21)

ηφ =
ηφ,∞

Nf
(5.22)

The values of the constants we introduced is

ηψ,∞ = −801

980
& −0.8 (5.23)

ηφ,∞ =
2721

1372
& 2. (5.24)

When working in large-Nf limit, it is possible to study the renormalizability
of gravity in powers of 1/Nf [50]. The idea is to take the limit Nf →∞, while
keeping Z/Nf fixed. This is precisely what is realized by our infinite Nf limit,
where the ratio Z/Nf takes the value 1

192π2 . The intriguing fact of this branch of
fixed points is that it joins a nontrivial FP at small Nf , with a gaussian-matter
FP at large Nf . By gaussian-matter FP we mean a FP which is nontrivial for
gravity, but gaussian for the matter sector. There are indications that gravity
can be renormalized in the large-Nf limit, at least in a perturbative sense, and
we think that this FP is a first step towards the understanding of the large-Nf

behavior in a functional RG scheme.
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5.3 Broken symmetry phase.

We want to study also situations in which the potential is Z2-symmetric, but the
ground state is not. The symmetry breaking regime is signalled also by λ2 < 0.
When this happens it is convenient to change the basis of operators with which
we truncated v. To explore the symmetry breaking regime we truncate the
potential to

v = θ0 + θ4

(

φ2 − κ
)2

(5.25)

The Yukawa function, instead, is parametrized with the Yukawa coupling, like
in the symmetric case

h = yφ (5.26)

This parametrization is known to be efficient in resumming some order of per-
turbation theory, due to the properties of the flow of the VEV κ.

The running of the VEV can be computed in quite generality, before resorting
to any truncation of the potential.

˙̄κR = − (2 + ηφ) κ̄R +

√
κ̄Rv̄′′′R

(

1− ηφ

6

)

16π2v̄′′R (1 + v̄′′R)2
−

hNf
√

κ̄Rh̄′
R

(

1− ηψ

5

)

2
(

1 + h̄2
R

)2
π2v̄′′R

∣

∣

∣

∣

∣

φ̄R=
√
κ̄R

(5.27)

This formula has to be compared with the analog one in which gravity is not
present (3.140). Indeed, (3.140) and (5.27) are equal in form. The only differ-
ence is in the fact that in (5.27) the anomalous dimensions have a gravitational
correction. We can say that the VEV, being a quantity intrinsically on-shell,
couples weakly to gravity and in particular only through the anomalous dimen-
sions. An argument for the fact that a VEV generally couples weakly to gravity
goes as follows. The leading order gravitational correction to the flow of the
potential is ∆ ˙̄v ∼ Ḡv̄. If we use formula (4.34), that is an on-shell condition, it
is clear that ∆ ˙̄v is not going to contribute any correction to the VEV ∆ ˙̄κR = 0.
We believe this argument to be more general and to extend beyond the leading
orders, as hinted by (5.27).

We require that κ > 0 and Z > 0, in agreement with the ansatz we made.
It turns out that the flow in the symmetry breaking regime is far more complex
than in the symmetric one. Also, the results we are going to show are not as
stable as those we showed in the symmetric case. We found five branches of fixed
point, however they are less reliable that the symmetric one because anomalous
dimensions tend to be big and they are less stable under the inclusion of further
couplings (like θ6 and θ8).

We list the branches we found giving some hint of their properties:

• SB branch 1: Has big ηψ and ηφ is increasing with Nf .

• SB branch 2: Exists for Nf ! 1, has big ηψ and ηφ is increasing with Nf .
Has a critical surface of dimension 2.

• SB branch 3: Exists only for the (natural) values Nf = 1, 2. It is totally
repulsive. It has acceptable anomalous dimensions.

• SB branch 4: Exists for Nf ! 1. It has y = θ4 = 0. The anomalous
dimensions are small and decrease with Nf .



5.3. BROKEN SYMMETRY PHASE 105

• SB branch 5: Exists for Nf ! 1. Has a critical surface of dimension 1,
that is interesting, but has a very big ηφ.

We also studied the asymptotic behavior for increasing Nf of the expansion
around a VEV. It is a general feature of the flow that at large-Nf , within
symmetry breaking expansion, one finds either non-physical fixed points or fixed
points with anomalous dimensions increasing in absolute value with Nf . In the
first case, the asymptotic fixed points have negative VEV, a feature that is
forbidden by the very basic assumptions of the broken phase. In the second
case, the LPA cannot be trusted anymore. Therefore, there will not be an
analog discussion to that given in Section 5.2.2.

In the following we give tables for the values of the couplings and the anoma-
lous dimensions at the fixed points for each branch. We alternate these tables
with those containing the critical exponents of the corresponding stability ma-
trices.
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SB branch 1 values (symmetry breaking phase):

Nf θ0 κ θ4 y Z ηψ ηφ
1 0.0074 0.00037 75. 31. 0.022 3.3 -1.4
2 0.0071 0.00037 76. 28. 0.021 3.7 -3.6
3 0.0069 0.00036 72. 25. 0.020 3.8 -5.2
4 0.0066 0.00035 68. 23. 0.020 4.0 -6.6
5 0.0064 0.00035 65. 22. 0.019 4.0 -7.8
6 0.0062 0.00034 62. 21. 0.018 4.1 -8.9
7 0.0060 0.00033 60. 20. 0.018 4.1 -9.8
8 0.0059 0.00032 58. 20. 0.017 4.2 -11.
9 0.0057 0.00031 56. 19. 0.016 4.2 -12.
10 0.0056 0.00030 54. 18. 0.016 4.3 -12.
20 0.0050 0.00022 44. 16. 0.012 4.4 -20.
30 0.0050 0.00017 40. 15. 0.010 4.5 -26.
50 0.0051 0.00012 37. 14. 0.0087 4.5 -40.

Critical exponents in SB branch 1:

Nf dimC c1 c2 c3 c4 c5

1 4 -14. 2.5-1.8 i 2.5+1.8 i 38. 1100.
2 3 -300. -20. 2.5-1.8 i 2.5+1.8 i 37.
3 3 -240. -24. 2.5-1.8 i 2.5+1.8 i 41.
4 3 -220. -28. 2.5-1.9 i 2.5+1.9 i 44.
5 3 -210. -31. 2.5-1.9 i 2.5+1.9 i 48.
6 3 -210. -34. 2.4-2.0 i 2.4+2.0 i 51.
7 3 -210. -37. 2.4-2.0 i 2.4+2.0 i 54.
8 3 -200. -39. 2.4-2.1 i 2.4+2.1 i 57.
9 3 -200. -42. 2.4-2.2 i 2.4+2.2 i 60.
10 3 -200. -44. 2.4-2.3 i 2.4+2.3 i 63.
20 3 -220. -64. 3.0-3.1 i 3.0+3.1 i 93.
30 3 -240. -81. 4.8-3.3 i 4.8+3.3 i 120.
50 3 -320. -120. 3.5 24. 180.
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SB branch 2 values (symmetry breaking phase):

Nf θ0 κ θ4 y Z ηψ ηφ
3 -0.0019 0.00032 66. 23. 0.00032 3.80 -5.
4 -0.0011 0.00029 64. 22. 0.00049 3.86 -7.
5 -0.0007 0.00026 63. 22. 0.00049 3.9 -10.
6 -0.0004 0.00023 62. 22. 0.00042 3.86 -14.
7 -0.00022 0.00020 64. 22. 0.00032 3.8 -20.
8 -0.00012 0.00018 66. 23. 0.00026 3.6 -29.
9 -0.000074 0.00017 67. 23. 0.00024 3.5 -36.
10 -0.000047 0.00016 67. 23. 0.00024 3.4 -42.
20 0.0001 0.0002 60. 20. 0.0004 3.7 -72.
30 0.00024 0.00017 60. 21. 0.00059 3.90 -85.
40 0.0004 0.00017 56. 20. 0.00085 4.07 -92.
50 0.0007 0.00018 53. 19. 0.0012 4.2 -95.

Critical exponents in SB branch 2:

Nf dimC c1 c2 c3 c4 c5

3 2 -126. -25. -3. 3.4 63.
4 2 -117. -32. -8. 3.0 96.
5 2 -120. -41. -15. 2.9 140.
6 2 -124. -53. -24. 2.8 219.
7 2 -130. -75. -43. 3.2 390.
8 2 -150. -110. -67. 5.4 680.
9 2 -160. -130. -85. 9.7 960.
10 2 -180. -150. -95. 15. 1200.
20 2 -290. -250. -81. 66. 1600.
30 2 -379. -284. -51. 115. 1348.
40 2 -463. -290. -31. 166. 1053.
50 2 -540. -280. -18. 220. 770.
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SB branch 3 values (symmetry breaking phase):

Nf θ0 κ θ4 y Z ηψ ηφ
1 0.0022 0.011 4.51 0. 0.015 -0.85 -1.0
2 -0.0047 0.006 13.8 0. 0.007 -0.56 -0.9

Critical exponents in SB branch 3:

Nf dimC c1 c2 c3 c4 c5

1 5 0.69 1.18-0.62 i 1.18+0.62 i 2.34-0.85 i 2.34+0.85 i
2 5 0.22 0.79 0.88 2.74 3.48
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SB branch 4 values (symmetry breaking phase):

Nf θ0 κ θ4 y Z ηψ ηφ
1 0.0024 0.0095 0 0 0.016 -0.86 0
2 -0.0043 0.0095 0 0 0.008 -0.59 0
3 -0.0091 0.0095 0 0 0.0055 -0.34 0
4 -0.013 0.0095 0 0 0.0054 -0.24 0
5 -0.016 0.0095 0 0 0.0056 -0.18 0
6 -0.019 0.0095 0 0 0.0060 -0.16 0
7 -0.023 0.0095 0 0 0.0064 -0.13 0
8 -0.026 0.0095 0 0 0.0069 -0.11 0
9 -0.029 0.0095 0 0 0.0074 -0.096 0
10 -0.032 0.0095 0 0 0.0079 -0.086 0
20 -0.06 0.009 0 0 0.01 -0.042 0
30 -0.1 0.009 0 0 0.02 -0.033 0
40 -0.1 0.009 0 0 0.02 -0.025 0
50 -0.16 0.0095 0 0 0.029 -0.017 0

Critical exponents in SB branch 4:

Nf dimC c1 c2 c3 c4 c5

1 3 -2.24 -0.35 2. 2.32-0.72 i 2.32+0.72 i
2 3 -1.34 -0.016 0.77 2. 3.6
3 4 -0.66 0.13 1.1 2.0 3.8
4 4 -0.42 0.14 1.3 2.0 3.9
5 4 -0.30 0.13 1.5 2.0 3.9
6 4 -0.25 0.12 1.5 2.0 3.9
7 4 -0.19 0.11 1.6 2.0 4.0
8 4 -0.17 0.097 1.7 2.0 4.0
9 4 -0.14 0.088 1.7 2.0 4.0
10 4 -0.12 0.082 1.7 2.0 4.0
20 4 -0.055 0.045 1.9 2.0 4.0
30 4 -0.044 0.036 1.9 2.0 4.0
40 4 -0.032 0.028 1.9 2.0 4.0
50 4 -0.021 0.019 1.9 2.0 4.0
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SB branch 5 values (symmetry breaking phase):

Nf θ0 κ θ4 y Z ηψ ηφ
1 -0.00002 0.020 0.033 6.0 0. 4.6 -9.0
2 -0.00004 0.039 0.030 5.6 0. 4.4 -8.9
3 -0.00005 0.055 0.028 5.3 0. 4.2 -9.3
4 -0.00006 0.067 0.026 5.2 0. 4.1 -10.
5 -0.00007 0.077 0.025 5.1 0.000012 4.0 -11.
6 -0.00007 0.084 0.025 5.1 0.000013 3.8 -12.
7 -0.00007 0.090 0.024 5.1 0.000015 3.7 -14.
8 -0.00006 0.095 0.023 5.1 0.000016 3.6 -15.
9 -0.00006 0.10 0.022 5.1 0.000017 3.6 -17.
10 -0.00006 0.10 0.021 5.1 0.000018 3.5 -18.
20 -0.00003 0.1 0.01 5. 0.00002 2.6 -41.
30 -0.00002 0.2 0.007 5. 0.00002 1.8 -78.
40 0. 0.2 0.005 4. 0.00002 0.90 -130.
50 0. 0.28 0.003 3.8 0.000019 -0.028 -200.

Critical exponents in SB branch 5:

Nf dimC c1 c2 c3 c4 c5

1 1 -419.-394. i -419.+394. i -42. -8.7 20.5
2 1 -257.-2. i -257.+2. i -26. -7.5 21.
3 1 -220.-130. i -220.+130. i -24. -8.5 22.
4 1 -220.-90. i -220.+90. i -24. -11. 24.
5 1 -230.-40. i -230.+40. i -24. -14. 27.
6 1 -310.-0.35 i -190.-0.13 i -21. -20. 31.
7 1 -390. -190. -22.-4. i -22.+4. i 35.
8 1 -460. -180. -24.-8. i -24.+8. i 40.
9 1 -550. -180. -26.-10. i -26.+10. i 45.
10 1 -640. -190. -27.-12. i -27.+12. i 51.
20 1 -3100. -310. -56.-26. i -56.+26. i 130.
30 1 -12000. -480. -106.-33. i -106.+33. i 250.
40 1 -40000. -710. -180.-20. i -180.+20. i 410.
50 1 -110000. -970. -330.-0.36 i -230.-0.22 i 620.

5.4 Discussion.

In this chapter we numerically analyzed the possibility that the system, describ-
ing the interaction of a scalar field and Nf symmetric spinor fields with gravity,
possesses a nontrivial ultraviolet fixed point. In the truncation of the effective
action we included a general potential for the scalar field as well as a generalized
Yukawa interaction. We also took into account the anomalous dimensions of the
matter fields.

We approached the study of the fixed points within two approximation
schemes. In one case we expanded the potential in a powerlaw form around
a trivial VEV 〈φ〉 = 0. In the other case we still relied on a powerlaw ex-
pansion, but expanded around a nonzero VEV. These two expansions capture
all the essential features of a Z2-symmetric potential, namely both the case in
which the ground state is symmetric and the case in which it is not.
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In the case in which the ground state is symmetric, that we called symmetric
phase, our numerical analysis was able to find a nontrivial fixed point as a
function of the number of spinor flavors Nf . This fixed point is interesting
because the dimension of its critical surface is three, meaning that, once the
the cosmological and the Newton constants and the mass of the scalar field
are determined experimentally at some scale, one should be able to predict the
values of the φ4 and Yukawa couplings at that scale. This is of course not an
easy task because it requires to integrate with good precision the flow emanated
by the fixed point, while it is known that going in the direction of infrared scales
nonlocal effects become important. The symmetric case fixed point is interesting
also because it has a large-Nf behavior that we could explicitly parametrize and
study. It is seen that the large-Nf limit do not alter the essential features of
the fixed point (the dimension of the critical surface), but rather joins it to a
fixed point (Nf → ∞) where the matter is gaussian and gravity is nontrivial
(a gaussian matter fixed point GMFP in the sense of [22]). We found these
features very interesting and feel that they deserve some further study in the
future. In particular, we think that a more realistic structure deserve attention
in which the matter multiplets are closer to those of the standard model.

We now want to discuss briefly the situation in which the expansion is around
a nonzero VEV, that we called symmetry breaking phase. When the VEV is
nonzero, an higher complexity is expected in the flow and that is precisely
what happened. We adopted the point of view of [18] and for consistency we
expanded every coupling around the aforementioned VEV. This results in a
more involved structure for the beta functions of the Yukawa coupling and the
Newton constant, not to mention the flow of the potential. This complexity
translated in a richer fixed point structure when numerically analyzing the flow.
We were able to parametrize five branches of fixed points as functions of Nf .
Some of them extend to large values of Nf , some are limited only to a certain
interval Nf,min ≤ Nf ≤ Nf,max. Every possible fixed point should represent, in
principle, a different ultraviolet limit. It is also important to note that each fixed
point has its own unique features of attractivity, thus some branch is interesting
because it could lower or increase the predictivity features of the theory under
consideration.

However, one should take into account that these fixed points have often
very large anomalous dimension. This may be a symptom that the adopted
LPA approximation fails, so we think that the existence of all these fixed points
should be tested against a truncation that goes beyond the local potential one.
We think this should be the main step in the direction of studying the symmetry
breaking phase in presence of gravity.

We also found that there are fixed points in which the Yukawa coupling goes
to zero. This triggered the study of the simpler system of a scalar field coupled
to gravity. The main difference to [22] is that we are including the anomalous
dimensions and we want to study the system in the symmetry breaking phase.
In this study we decided to find all the fixed point potentials for increasing num-
ber of powerlaw couplings in the truncation, starting from θ4 (the φ4 coupling),
up to θ12. We refer to Fig. 5.2 for the plot of all the fixed point potentials of
all the truncations from θ4 to θ12. From the figure one can see that these po-
tentials are, in principle, very different. Compared to the symmetric case (Fig.
5.1), here the fixed point potentials are not stable under the inclusion of further
powerlaw couplings. We want however to give now an argument against this
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Figure 5.2: Plot of all the fixed point in all the truncations from θ4 to θ12. The
convergence radius is approximately φ̄R,max ≈ 2.3. Its relative to the VEV value
is approximately φ̄R,max/

√
κ̄R ≈ 1.2.

statement. The actual flow of the potential v is (4.38) (at Nf = 0 in this case).
The powerlaw expansion “breaks” the denominators of (4.38) that include the
functions v′′ and v itself. It thus means that, when expanding, we are introduc-
ing a convergence radius of the expansion that we can evaluate. It turns out that
for all the potentials drawn in Fig. 5.2 the convergence radius is very similar
and slightly bigger than the VEV value. If we compare all the potentials within
that radius of convergence, one can see that, apart for some isolated case, they
all agree numerically. The question we think that should be addressed in the
future is, are these fixed points really corresponding to different UV limits? We
think there are good reasons that the answer is not. Maybe, we see many fixed
point potentials only because the beta functions symmetry breaking expansion
are more involved than the symmetric expansion. Our present approximations
are still too limited to address this question properly, but we think that the
evaluation of the radius of convergence in the powerlaw approximations is a
tool that must be added from now on in this kind of investigations.



Chapter 6

Higher derivative nonlinear

sigma models.

6.1 Introduction.

In the study of quantum gravity one encounters many technical complications,
and it is often desirable to test one’s ideas and tools in a simpler setting. The
nonlinear sigma models (NLSMs) have striking similarities to gravity: they are
nonpolynomially interacting theories, and from the point of view of power count-
ing, they have exactly the same structure as gravity. On the other hand, they
lack the complications due to gauge invariance. They are therefore a good the-
oretical laboratory where one can study various technical aspects of the renor-
malization of gravity without having to consider the complications due to gauge
fixing, and with the certainty that one’s results are not gauge artifacts. There
exists the possibility that the NLSM shares with gravity also the property of
being asymptotically safe. In any case understanding the UV behavior of the
NLSM may shed some light on the analogous issue for gravity.

The NLSMs also play an important role in particle physics phenomenology:
they are used as low energy effective field theories both for strong and weak
interactions. In the former case the scalar fields are identified with the light
mesons [51], in the latter with the three Goldstone degrees of freedom of the
complex Higgs doublet [52]. These effective field theories are usually thought
to break down at some cutoff scale, of the order of the GeV in the strong case
and of the TeV in the weak case. It is an interesting question in itself, and one
that may have some relevance also for particle physics, whether some of these
NLSM’s might actually be asymptotically safe. Old work on the epsilon expan-
sion and 1/N expansion suggests that a fixed point with the right properties
may exist [53, 54, 55, 56]. More recently, the beta functions of the NLSM were
recalculated using a two-derivative truncation of an exact renormalization group
(RG) equation, and it was found in the case of the O(N) models that they have
a nontrivial UV FP [28]. In the present chapter we begin addressing the issue
of asymptotic safety in the NLSM taking into account also four-derivative in-
teractions. The beta functions of four-derivative NLSM were considered before
in [57, 58]. The former reference uses a formalism that applies only to group-
valued models; the latter uses dimensional regularization and therefore cannot

113
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properly compute the running of the two-derivative terms, which is necessary
to establish asymptotic safety. In this chapter we present the results of [29] and
partly correct the results of these earlier papers. The comparison with [57] is
given in appendix. For a general discussion about effective field theories with
higher derivatives we refer to [59]. The renormalization of the higher derivative
chiral model at order p4 and p6 was considered in [60, 61]. It is also worth noting
that the parallelism of the two derivative NLSM and gravity in any dimension
has been established explicitly [62] when gravity is described by a pure Ricci
scalar term. In particular the critical exponents are shown to coincide.

6.2 The theory.

6.2.1 Geometry and action.

In general the NLSM is a field theory whose configurations are maps from ϕ :
X → Y , where X is a d-dimensional manifold interpreted as spacetime and
Y is some n-dimensional internal manifold. We will always take X to be four
dimensional and to have a fixed flat Euclidean metric, and we will call h a
Riemannian metric on Y . Given a map ϕ, one calls the “vectorfield along ϕ”
a rule that assigns to each point x of X a vector tangent to Y at ϕ(x). 1 For
example, given a fixed vector v tangent to X at x, the image of v under the
tangent map Tϕ is a vectorfield along ϕ. Its components are vµ∂µϕα. Thus we
can view the matrix ∂µϕα as the components of four vectorfields along ϕ.

The Levi-Civita connection of the metric h in TY can be used to define the
covariant derivative of vectorfields along ϕ. Let Γα

β
γ be the Christoffel symbols

of h

Γα
β
γ =

1

2
hβδ (∂αhδγ + ∂γhαδ − ∂δhαγ)

and Rαβ
γ
δ = ∂αΓβ

γ
δ−∂βΓα

γ
δ +Γα

γ
εΓβ

ε
δ−Γβ

γ
εΓα

ε
δ its Riemann tensor. The

covariant derivative of a vectorfields along ϕ is

∇µξα = ∂µξα + ∂µϕγΓγ
α
βξβ (6.1)

A diffeomorphism f of Y can be represented in coordinates by y′ = f(y).
It maps vectorfields along ϕ to vectorfields along ϕ′ = f ◦ ϕ. One can check
explicitly using the transformation properties

ξ′α =
∂ϕ′α

∂ϕβ
ξβ ; Γ ′

γ
α
β =

∂ϕη

∂ϕ′γ
∂ϕ′α

∂ϕδ

∂ϕε

∂ϕ′β Γη
δ
ε +

∂ϕ′α

∂ϕδ

∂2ϕδ

∂ϕ′γ∂ϕ′β (6.2)

that the covariant derivative transforms in the same way as ξ under diffeomor-
phisms of Y .

We also note for future reference that the curvature of the pullback connec-
tion is the pullback of the curvature of the Levi-Civita connection:

[∇µ,∇ν ]ξ
γ ≡ Ωµν

γ
δξ

δ = ∂µϕα∂νϕ
βRαβ

γ
δξ

δ (6.3)

We can now discuss the dynamics of the NLSM. Since the ordinary deriva-
tives of ϕα are the components of vectorfields along ϕ, the second covariant

1The vectorfields along ϕ should be thought of, in geometrical terms, as sections of the
pullback bundle ϕ∗TY .
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derivatives of the scalars are given by

∇µ∂νϕ
α = ∂µ∂νϕ

α + ∂µϕβΓβ
α
γ∂νϕ

γ . (6.4)

Note that due to the symmetry of the Christoffel symbols ∇µ∂νϕα = ∇ν∂µϕα.
We also define !ϕα = ∇µ∂µϕα. After these preliminaries, the most general
Lorentz– and parity–invariant NLSM with up to four derivatives has an action
of the form:

1
2

∫

d4x
[

∂µϕα∂µϕβh(2)
αβ(ϕ) + !ϕα

!ϕβh(4)
αβ(ϕ) (6.5)

+∇µ∂νϕ
α∂µϕβ∂νϕγAαβγ(ϕ) + ∂µϕα∂µϕβ∂νϕ

γ∂νϕδTαβγδ(ϕ)
]

.

Here we defined parity to correspond to the reflection ϕα(x1, x2, x3, x4) 4→
ϕα(−x1, x2, x3, x4). This is the only parity operation one can define in full
generality. We will discuss below other “parities” that can be defined on special
manifolds. At the classical level, h(2), h(4) A, and T are fixed tensorfields on
Y . They represent, in general, an infinite number of interaction terms. In the
quantum theory these tensors will be subject to RG flow. The tensors h(2),
h(4) are assumed to be positive definite metrics. In the present chapter we will
always use h(4) to raise and lower indices, while h(2) is treated as any tensor. Of
course nothing ultimately can depend on this convention. The tensor A can be
assumed to be totally symmetric without loss of generality. The tensor T must
have the following symmetry properties:

Tαβγδ = Tβαγδ = Tαβδγ = Tγδαβ . (6.6)

In (6.5) we have not considered (parity violating) terms that involve the ε
tensor, of the form

c

∫

d4x εµνρσ∂µϕα∂νϕ
β∂ρϕ

γ∂σϕδBαβγδ(ϕ) , (6.7)

where B is some four-form on Y . These could be called “Wess-Zumino-Witten
terms” in a generalized sense. A proper Wess-Zumino-Witten term is one for
which the four form B is not defined everywhere on Y , but the five-form H = dB
is. Then H defines a nontrivial fifth-cohomology class and the coefficient c has
to obey a quantization condition. The original Wess-Zumino term corresponds
to the case Y = SU(N) and H = tr(g−1dg)5. We will briefly return to these
terms in the discussion.

We observe that since the field ϕ appears nonpolynomially in the action,
it must be dimensionless. Then, h(2) must have dimension of mass squared,
whereas the other tensors are dimensionless. Later on we will find it convenient
to split off a dimensionful coupling from the dimensionful tensors, so that all
the tensors are dimensionless.

We will be especially interested in cases in which the theory has some global
symmetries. Let Φ be a diffeomorphism of Y that leaves the tensors h(2), h(4),
A, T invariant, for example

Tαβγδ(y) =
∂Φα′

∂yα

∂Φβ′

∂yβ

∂Φγ′

∂yγ

∂Φδ′

∂yδ
Tα′β′γ′δ′(Φ(y)) . (6.8)
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In particular, Φ is an isometry of h(4). Then the action is invariant under the
transformation ϕ 4→ Φ ◦ ϕ. Such global symmetries may be discrete, or they
may form a continuous group G. In the latter case there exist vector fields Ka

on Y (with a = 1 . . .dimG) whose Lie brackets form an algebra isomorphic to
the Lie algebra of G, and such that h(2), h(4), A, T are invariant under G:

LKah(2) = 0 ; LKah(4) = 0 ; LKaA = 0 ; LKaT = 0 . (6.9)

In particular, Ka are Killing vectors for the metric h(4): ∇αKaβ + ∇βKaα =
0. Then, the action (6.5) is invariant under the infinitesimal transformation
δεϕα = εaKα

a (ϕ).
Discrete isometries may appear in the definition of parity or time reversal.

In linear scalar theories one can define the operation φ 4→ −φ. For example the
pions transform as (Pπ)a(x1, x2, x3, x4) = −πa(−x1, x2, x3, x4) under parity.
In a general NLSM the transformation ϕα 4→ −ϕα has no intrinsic meaning.
However, suppose that every point y ∈ Y is the fixed point of an involutive
isometry Φy. Such a manifold is said to be a symmetric space [63]. We can
then define a new parity operation, let us call it “Parity” with capital P, by
(Pϕ)α(x1, x2, x3, x4) = Φ0 ◦ϕ(−x1, x2, x3, x4), where Φ0 is the involutive isom-
etry of the vacuum. The transformation properties of the action under this new
definition of parity are different than under the previous definition. In particu-
lar, if Aαβγ(Φ0(y)) = Aαβγ(y), then the A-term will not be Parity–invariant. On
the other hand if Bαβγδ(Φ0(y)) = −Bαβγδ(y), then the Wess-Zumino-Witten
term is Parity–invariant [64].

6.2.2 Background field expansion.

We use the background field techniques developed in [65, 66, 67, 68]. We re-
view here some of the main points. Having chosen a (not necessarily constant)
background ϕ̄, any other field ϕ in an open neighborhood of ϕ̄ can be writ-
ten ϕα = ϕ̄α + ηα. In principle one could work with the quantum fields ηα,
but this is not convenient because, as differences of coordinates, they do not
have nice transformation properties. It is therefore convenient to proceed as
follows. For each x one can find a unique vector ξ(x) tangent to ϕ̄(x) such that
ϕ(x) is the point on the geodesic passing through ϕ̄(x) and tangent to ξ(x),
the distance between ϕ(x) and ϕ̄(x) being equal to |ξ(x)|. We can thus write
ϕ(x) = Expϕ̄(x)ξ(x), where Exp is the exponential map. The field, ξα(x) is a
vectorfield along ϕ̄, and its covariant derivative is defined as in (6.1).

In principle, then, the action ϕ can be rewritten as S(ϕ) = S̄(ϕ̄, ξ). In prac-
tice one can compute the first few terms in an expansion S̄(ϕ̄, ξ) = S̄(0)(ϕ̄, ξ) +
S̄(1)(ϕ̄, ξ) + S̄(2)(ϕ̄, ξ) + . . . , where S̄(n) contains n powers of ξ. The first term
is clearly S̄(0)(ϕ̄, ξ) = S̄(ϕ̄, 0) = S(ϕ̄). To compute the next terms we use the
following formulas (whose derivation can be found in [65]):

∂µϕα = ∂µϕ̄α + ∇̄µξα − 1

3
∂µϕ̄γR̄γε

α
ηξ

εξη + . . . (6.10)

tαβ...(ϕ) = tαβ...(ϕ̄) + ξε∇̄εtαβ...(ϕ̄) +
1

2
ξεξη∇̄ε∇̄ηtαβ...(ϕ̄)

−1

6
ξεξηR̄γ

εαηtγβ...(ϕ̄)− 1

6
ξεξηR̄γ

εβηtαγ...(ϕ̄) + . . . (6.11)
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A bar over the derivatives and the curvatures indicates that they have to be
computed with the background field ϕ̄. In particular for the metric g we have

gαβ(ϕ) = gαβ(ϕ̄)− 1

3
R̄αεβηξ

εξη + . . . (6.12)

Inserting in (6.5), with A = 0, and keeping terms of second order in ξ we obtain

1

2

∫

d4x
[

h(2)
αβ∇µξα∇µξβ − ξαξβRαγβ

εh(2)
εδ ∂µϕγ∂µϕδ + 2ξα∇µξβ∇αh(2)

βγ∂µϕγ

+
1

2
ξαξβ∇α∇βh(2)

γδ ∂µϕγ∂µϕδ + h(4)
αβ!ξα!ξβ + 2ξα!ξβRαγβδ∂µϕγ∂µϕδ

−4ξα∇µξβRαγβδ∂
µϕγ

!ϕδ − ξαξβRαγβδ!ϕγ
!ϕδ

+ξαξβ (∇αRεγβδ +∇γRεαβδ) ∂µϕγ∂µϕδ
!ϕε

+ξαξβRφγδαRφ
εηβ∂µϕγ∂µϕδ∂νϕ

ε∂νϕη + 2∇µξα∇µξβ∂νϕ
γ∂νϕδTαβγδ

+4∇µξα∇νξ
β∂µϕγ∂νϕδTαγβδ − 2ξαξβRφ

αγβTφδεη∂µϕγ∂µϕδ∂νϕ
ε∂νϕη

+4ξα∇µξβ∇αTβγδε∂
µϕγ∂νϕ

δ∂νϕε

+
1

2
ξαξβ∇α∇βTγδεη∂νϕ

γ∂νϕδ∂µϕε∂µϕη
]

. (6.13)

For notational simplicity here and in the following we drop the bars over ϕ, ∇
and R, but it is always understood that they are computed at the background
field. The terms have been kept in the order in which they appear in (6.5),
namely the first four terms come from the variation of the two-derivative term,
the next five come from the variation of the term containing h(4), and the others
come from the variation of the term containing T .

6.2.3 The running NLSM action.

Our procedure for calculating the beta functions is to implement the 1-loop ap-
proximation of ERGE. We define formally an “effective average action” Γk by
implementing an infrared cutoff k in the functional integral over the quantum
field ξ. If S̄(ϕ, ξ) is the bare action of the theory, the IR cutoff can be imple-
mented by adding to S̄ the term ∆Sk(ϕ, ξ) which in Fourier space would have
the general structure:

∆Sk(ϕ, ξ) =

∫

d4q ξα(−q)Rkαβ(q2)ξβ(q) . (6.14)

We further decided to write the cutoff in terms of the eigenvalues of some covari-
ant operator, such as the Laplacian constructed with the background field −∇2.
This is the choice that was used in [28]. In this chapter we will find it expedient

to use instead of −∇2 the full covariant fourth order operator ∆ = δ2S
δϕδϕ :

∆Sk(ϕ, ξ) =
1

2

∫

d4x ξαh(4)
αβ(ϕ)Rk(∆)ξβ . (6.15)

Because ∆ depends only on the background field, and not on the quantum fields,
this cutoff is still quadratic in the quantum fields, as required.
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As usual, the effective average action is defined as

Γk(ϕ, ξ̄) = − log

∫

Dξα exp

(

−S̄(ϕ, ξ)−∆Sk(ϕ, ξ)−
∫

jαξα
)

−
∫

jαξ̄α −∆Sk(ϕ, ξ̄) (6.16)

and it tends to the full EA in the limit k→ 0.

6.2.4 The one loop beta functional.

At one loop one can evaluate the functional Γk:

Γ(1)
k = S +

1

2
Tr log

(

δ2S

δϕδϕ
+ Rk

)

. (6.17)

Note that ∆Sk has canceled out. The only remaining dependence on k is in Rk,
so

k
dΓ(1)

k

dk
=

1

2
Tr

(

δ2S

δϕδϕ
+ Rk

)−1

k
dRk

dk
. (6.18)

The right-hand side can be regarded as the one loop beta functional of the the-
ory. The individual beta functions can be read off by isolating the coefficients
of various operators. Although in the present chapter we shall restrict our-
selves to the one loop approximation, the formalism is ready for the calculation
of the beta functions based on a truncation of the exact RG equation, which
amount to resumming infinitely many orders of perturbation theory. A final,
important point is that experience with other systems shows that this procedure
gives exactly the same results as any other procedure for the universal (scheme-
independent) one loop beta functions. We will see in Section 6.4.2 that, to the
extent that a comparison is possible, this expectation will be confirmed also in
this case.

6.2.5 Global symmetries.

If there are any (global) symmetries, one can define the RG flow so as to preserve
them. To see this, let Φ be an internal symmetry, as in Section 6.2.1. Since
it is an isometry of h(4), it also leaves the connection invariant, so it maps the
geodesic through y tangent to ξ to the geodesic through Φ(y) tangent to TΦ(ξ)
[69]:

Φ(Expy(ξ)) = ExpΦ(y)(TΦ(ξ)) . (6.19)

We call ϕ′ = Φ ◦ ϕ and ξ′ = TΦ(ξ) the transform of ϕ and ξ under Φ. Then
ϕ′ = Φ(Expϕ̄ξ) = ExpΦ(ϕ̄)(TΦ(ξ)) = Expϕ̄′ξ′. There follows that

S̄(ϕ̄′, ξ′) = S(ϕ′) = S(ϕ) = S̄(ϕ̄, ξ) , (6.20)

i.e. the background field action S̄ is G-invariant provided both background
and quantum field are transformed. The operator ∆ is covariant, so ∆′(ξ′) =
TΦ(∆(ξ)) or abstractly ∆′ = TΦ ◦ (∆) ◦ TΦ−1, so also the cutoff term (6.15) is
invariant:

∆Sk(ϕ′, ξ′) = ∆Sk(ϕ, ξ) , (6.21)
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One can formally choose the measure in the functional integral (6.16) to be
invariant under Φ. Since both measure and integrand are invariant, the effective
action Γk will also be invariant, for all k.

Somewhat less formally, one can arrive at the same conclusion as follows:
observe that the cutoff as defined in (6.15) is a suppression term that depends
on the eigenvalue of the operator ∆ on the normal modes of the field. From
the transformation properties of ∆ one sees that if ξ is an eigenvector of ∆
with eigenvalue λ, then ξ′ is an eigenvector of ∆′ with the same eigenvalue.
Therefore the spectrum of ∆ is invariant. Equation (6.18) gives the (one loop)
scale variation of Γk(ϕ) as a sum of terms, each term being a fixed function
evaluated on an eigenvalues of ∆. Since the eigenvalues are invariant, the sum
is also invariant, so it follows that ∂tΓk(ϕ) is invariant. This implies that if
the starting action Γk0(ϕ) is invariant, also the action at any other k is. This
argument is mathematically more meaningful, because unlike the one based on
the path integral, it involves only statements about finite expressions.

The previous argument can be applied both to discrete and continuous sym-
metries. For example in the case of discrete symmetries, it implies that the
flow preserves Parity. If the A term violates Parity, it must be set to zero in
order to have a Parity-invariant theory. The flow will preserve this property, so
the beta function of A will be zero. In other words the condition A = 0 will
be “protected by Parity”. We will see this in an explicit calculation in Section
6.3.2.

6.3 Evaluation of beta functions.

The one loop RG flow Eq. (6.18) can be approximated by resorting to a trun-
cation, which means keeping only a finite number of terms in Γk, inserting
this ansatz in the flow equation and deriving from it the beta functions of the
couplings that enter in the ansatz. The best way of truncating Γk is to do so
consistently with a derivative expansion, i.e. to keep all the terms with a given
number of derivatives. In this chapter we will approximate Γk by a functional of
the form (6.5), where the tensors h(2), h(4), and T are k-dependent, and A = 0.
In general this is still a functional flow, because the tensors actually contain
infinitely many couplings. We will be able to say more in the case when a global
symmetry restricts the possible form of these tensors, so that only finitely many
couplings remain. In this chapter we will explicitly compute the beta functions
in the case when Y is a sphere or a special unitary group. Since these are
symmetric spaces, it will be consistent to neglect the A terms altogether.

6.3.1 The inverse propagator.

Integrating by parts one can rewrite (6.13) in the form S̄(2)(ϕ, ξ) = 1
2 (ξ,∆ξ),

where the inner product of vectorfields along ϕ is (ξ, ζ) =
∫

d4xh(4)
αβξαζβ and ∆

is a self-adjoint operator of the form:

∆αβ = h(4)
αβ!

2 + Bµν
αβ∇µ∇ν + Cµ

αβ∇µ + Dαβ . (6.22)
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Self-adjointness means that (ξ,∆ζ) = (∆ξ, ζ) and implies the properties:

Bµν
αβ = Bνµ

βα , (6.23)

Cµ
αβ = −Cµ

βα +∇νBµν
βα +∇νBνµ

βα , (6.24)

Dαβ = Dβα +∇νCµ
βα +∇ν∇νBνµ

βα . (6.25)

In addition by commuting derivatives we can arrange the operator so that Bµν
αβ =

Bνµ
αβ. In order to arrive at the operator ∆ we proceed in two steps. First we

put all the derivatives of (6.13) on one of the ξ’s, so that S̄(2)(ϕ, ξ) = 1
2 (ξ, ∆̃ξ),

where ∆̃ is of the form (6.22), with

B̃µν
αβ = δµν(−h(2)

αβ + 2∂ρϕ
γ∂ρϕδ(Rαγβδ − Tαβγδ))− 4∂µϕγ∂νϕ

δTαγβδ

D̃αβ = ∂µϕγ∂µϕδ

(

1

2
∇α∇βh(2)

γδ − h(2)
γε Rε

βδα

)

−!ϕγ
!ϕδRαγβδ − 2∂ρϕ

γ∂ρϕδ
!ϕε∇(δRα)εβγ

+∂ρϕ
γ∂ρϕδ∂σϕε∂σϕη ×

×
(

RαγδφRβεη
φ +

1

2
∇α∇βTγδεη + 2RφαβεT

φ
ηγδ

)

. (6.26)

We do not display the form of C̃µ
αβ , since it does not contribute to the expressions

we want to calculate, as will become clear in due course. This operator ∆̃ is not
self-adjoint, and we define ∆ = 1

2 (∆̃ + ∆̃†). Its coefficients are

Bµν
αβ =

1

2

(

B̃µν
αβ + B̃νµ

βα

)

,

Cµ
αβ =

1

2

(

C̃µ
αβ − C̃µ

βα +∇νB̃µν
βα +∇ν B̃νµ

βα

)

,

Dαβ =
1

2

(

D̃αβ + D̃βα −∇µC̃µ
βα +∇µ∇νB̃νµ

βα

)

. (6.27)

Note that the last two terms in Cµ
αβ and Dµ

αβ are total derivatives, and will not
contribute to our final formulas because they will be integrated over spacetime.
Finally we symmetrize Bµν

αβ in µ, ν at the cost of generating a commutator term
that contributes to Dαβ . The final form of the operator ∆ is (6.22), with

Bµν
αβ = δµν(−h(2)

αβ + 2∂ρϕ
γ∂ρϕδ(Rαγβδ − Tαβγδ))

−2∂µϕγ∂νϕ
δ(Tαγβδ + Tαδβγ) , (6.28)

Dαβ =
1

2

(

D̃αβ + D̃βα

)

− ∂ρϕ
γ∂ρϕδ∂σϕε∂σϕη(TαγεφRδηβ

φ + TβγεφRδηα
φ) ,

where total derivatives have been omitted. Again we do not give Cµ
αβ , because

it will not contribute to the beta functions. These formulas agree with (Eqs.
3.17-21) in [58], except for a factor 2 in the coefficient of the first term containing
Tαβγδ in Eq. (6.26).

6.3.2 Beta functionals.

We begin by discussing the general case of the action (6.5) with arbitrary h(2),
h(4) and T , and A = 0. We evaluate the trace in (6.18) by heat kernel methods.
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The advantage of this procedure is that pieces of the calculation are readily
available in the literature. Given a differential operator ∆ of order p, and some
function W , we have

TrW (∆) =
1

(4π)2

[

Q 4
p
(W )B0(∆)+Q 2

p
(W )B2(∆)+Q0(W )B4(∆)+. . .

]

. (6.29)

The heat kernel coefficients are defined by the asymptotic expansion

Tr(e−s∆) =
1

(4π)2

[

B0s
−4/p + B2s

−2/p + B0 + . . .
]

, (6.30)

with Bn =
∫

d4xtrbn; bn are matrices with indices α, β and tr denotes the trace
over such indices. The matrices bn that pertain to a fourth order operator of the
form (6.22) can be found in [70]. The quantities Qn(W ) in (6.29) are given by
Qn(W ) = 1

Γ(n)

∫∞
0 dzzn−1W (z) for n > 0 and Q0(W ) = W (0). We do not need

any higher coefficients. In order to be able to evaluate the integrals in closed
form we choose the “optimized” cutoff function Rk(z) = (k4 − z)θ(k4 − z) [31].
The scale derivative of the cutoff is k dRk

dk = 4k4θ(k4−z), and the modified inverse
propagator Pk(z) = z +Rk(z) is equal to k4 for z < k4. Then the function to be
traced in the ERGE is just a step function: W (z) = 1

2
1

Pk
k dRk

dk = 2θ(1 − z/k4),
and the integrals are very simple:

Q1 = 2k4 , Q 1
2

=
4√
π

k2 , Q0 = 2 . (6.31)

The first term in (6.29) is field independent and will be omitted. Putting to-
gether the remaining pieces:

k
dΓk

dk
=

1

(4π)2

∫

d4x

(

1

4
k2Bα

α +
1

6
Ωαβ

µνΩµν
βα +

1

24
Bαβ

µν B
µν
βα +

1

48
BαβBβα −Dα

α

)

(6.32)
where Ω is defined as in (6.3) and B = Bµ

µ. The first term comes from B2, the
others from B4. For brevity we define

B2 = Bαβ
µν B

µν
βα +

1

2
BαβBβα (6.33)
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One finds

1

4
Bα
α = ∂µϕγ∂µϕδ (2Rγδ − 2Tα

αγδ − Tα
γαδ) (6.34)

1

6
Ωαβ

µνΩµν
βα = −1

6
∂µϕα∂µϕβ∂νϕ

γ∂νϕδRαγεηRβδ
εη (6.35)

1

24
B2 =

1

2
h(2)
αβh(2)αβ + ∂µϕα∂µϕβ

(

Tα
γ
β
δ + 2Tαβ

γδ − 2Rα
γ
β
δ
)

h(2)
γδ

+∂µϕα∂µϕβ∂νϕ
γ∂νϕδ ×

[2

3
TαεγηTβ

(ε
δ
η) +

1

3
TαεβηTγ

(η
δ
ε) + 4Tα(εγ)ηTβ

(ε
δ
η)

−4RαεγηTβ
(ε
δ
η) − 2RαεβηTγ

(η
δ
ε) + 2RαεβηRγ

(η
δ
ε)
]

(6.36)

−Dα
α = !ϕα

!ϕβRαβ + !ϕα∂µϕβ∂µϕγ(2∇γRαβ −∇αRβγ)

+∂µϕα∂µϕβ

(

h(2)
αγRγ

β −
1

2
∇γ∇γh(2)

αβ

)

+∂µϕα∂µϕβ∂νϕ
γ∂νϕδ × (6.37)

(

2Rα
εTεβγδ + 2Rβδ

εηTαηγε −
1

2
∇ε∇εTαβγδ −RαεβηRγ

ε
δ
η
)

From here one can read off the beta functionals of h(2), A, T as the coefficients
of terms containing two, three and four powers of ∂µϕα, respectively. We do not
give these general formulae, but just make some observations. The only term
proportional to !ϕα

!ϕβ is contained in −Dα
α, so the beta functional of h(4) is

easily obtained:

k
d

dk
h(4)
αβ =

1

8π2
Rαβ . (6.38)

This is very similar to the result for the two-derivative truncation. In order to
compare results obtained with the same type of cutoff, we should repeat the
calculation of [28] using a cutoff constructed with the full inverse propagator

∆αβ = −h(2)
αβ∇2−∂µϕγ∂µϕδRαγβδ. This is a cutoff of type III in the terminology

used in [24]. In this case the general beta function of the metric is

k
d

dk
h(2)
αβ =

1

(4π)2
Q1

(

Ṙk

Pk

)

Rαβ =
1

8π2
k2Rαβ , (6.39)

where R denotes now the curvature of h(2)
αβ . As a side remark, this little calcu-

lation is also useful to test the scheme dependence of the results: with the type
I cutoff used in [28] the result was

k
d

dk
h(2)
αβ =

1

(4π)2
Q2

(

Ṙk

P 2
k

)

Rαβ =
1

16π2
k2Rαβ , (6.40)

which differs by a factor 2.
Another fact that follows from (6.37) is that the beta function of A (coming

from the coefficient of !ϕα∂µϕβ∂µϕγ) is generated and proportional to covariant
derivatives of the Ricci tensor. For symmetric spaces the covariant derivative of
the curvature vanishes and therefore on such spaces it is consistent to set A = 0
[58]. In [58] it was also noted that there is a larger class of manifolds for which
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it is consistent to choose A = 0. The general statement made in Section 6.2.5
is confirmed. The particular models that we shall consider in the following are
symmetric spaces.

6.3.3 The spherical models.

We now consider the class of models for which the target space Y is the sphere
Sn. Such models are often called the O(N) models, with N = n+1, because they
have global symmetry O(N). There is only one O(n+1)-invariant nonvanishing
rank two tensor on the sphere, there is no invariant rank three tensor and there
are only two invariant rank four tensors with the desired index symmetries, up
to overall constant factors. If we regard Sn as embedded in Rn+1, we call hαβ

the metric of the sphere of unit radius. Its Riemann and Ricci tensors are given
by

Rαβγδ = hαγhβδ − hαδhβγ ; Rαβ = (n− 1)hαβ ; R = n(n− 1) . (6.41)

Therefore both h(2) and h(4) must be proportional to h, and T is a combination
of h’s:

h(2)
αβ =

1

g2
hαβ ; h(4)

αβ =
1

λ
hαβ ;

Tαβγδ =
61
2

(hαγhβδ + hαδhβγ) + 62hαβhγδ . (6.42)

Here g2 has mass dimension 2, while λ, 61, 62 are dimensionless 2. It is convenient
to regard 1

λ as the overall factor of the fourth order terms; then we define the
ratios between the three coefficients of the four-derivative terms as f1 = λ61 and
f2 = λ62. For the reader’s convenience we rewrite the action of the Sn models:

∫

d4x

[

1

2g2
hαβ∂µϕα∂µϕβ +

1

2λ
hαβ!ϕα

!ϕβ

+
1

2λ
∂µϕα∂µϕβ∂νϕ

γ∂νϕδ(f1hαγhβδ + f2hαβhγδ)

]

(6.43)

One then finds the following beta functions:

βλ = −n− 1

8π2
λ2 (6.44)

βf1 =
λ

48π2

(

(n + 21)f2
1 + 20f2f1 + 4f2

2 + 6(n + 3)f1 + 24f2 + 8
)

(6.45)

βf2 =
λ

8π2

(

n + 15

12
f2
1 +

3n + 17

3
f1f2 +

6n + 7

3
f2
2

−(n + 3)f1 − (3n + 1)f2 + n− 7

3

)

(6.46)

βg̃2 = 2g̃2 +
g̃4

16π2
((5 + n)f1 + (2 + 4n)f2 + 4(1− n))

− λg̃2

16π2
((5 + n)f1 + (2 + 4n)f2 + 2(1− n)) (6.47)

2The names &1 and &2 are used commonly in chiral perturbation theory [51].
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Equations (6.45) and (6.46) differ in a significant way from Eq. (5.11) in [58].
This is due to the already mentioned factor 2 in a term in (6.26). Unfortunately,
this changes completely the picture of the fixed points.

It will be instructive to compare the results of this four-derivative truncation
with those of the simpler two-derivative truncation discussed in [28]. If we
specialize (6.39) to Y = Sn, it gives

k
dg̃2

dk
= 2g̃2 − n− 1

8π2
g̃4 , (6.48)

whereas from (6.47), setting for simplicity 61 = 62 = 0 and in the limit λ → 0
one gets

k
dg̃2

dk
= 2g̃2 − n− 1

4π2
g̃4 . (6.49)

The difference is just a factor 2, which is within the range of variation due to the
scheme dependence. It is quite remarkable that the beta function is so similar
in spite of the very different dynamics. We shall see in Section 6.4.1 that this
fact is quite general.

6.3.4 The chiral models.

Next we consider the case where Y is the group SU(N). In this case it is
customary to denote U(x) the matrix (in the fundamental representation) that
corresponds to the coordinates ϕα. We demand that the theory be invariant
under left and right multiplications U(x) 4→ g−1

L U(x)gR, forming the group
SU(N)L × SU(N)R (“chiral symmetry”). Further we demand that the the-
ory be invariant under the discrete symmetries U(x) 4→ UT (x), which corre-
sponds physically to charge conjugation, to the simple parity x1 4→ −x1, to
the involutive isometry Φ0 : U → U−1 and hence to Parity U(x1, x2, x3, x4) 4→
U−1(−x1, x2, x3, x4). More details on the translation between the tensor and
the matrix formalism are given in appendix.

Let ea be a basis of the Lie algebra, with a = 1 . . . n2 − 1. We denote Ta

the corresponding matrices in the fundamental representation; they are a set of
Hermitian, traceless N ×N matrices. We fix the normalization of the basis by
the equation

TaTb =
1

2N
δab +

1

2
(dabc + ifabc)Tc . (6.50)

(In the case of SU(3) these matrices are one half the Gell-Mann λ matrices.)
A tensor on SU(N) which is invariant under SU(N)L × SU(N)R is said to

be “bi-invariant.” There is a one to one correspondence between bi-invariant
tensors on SU(N) and Ad-invariant tensors in the Lie algebra of SU(N), where
Ad is the adjoint representation. Given an Ad-invariant tensor tab...

cd... on the
algebra, the corresponding biinvariant tensorfield on the group is

tαβ...
γδ... = tab...

cd...La
αLb

β . . . Lγ
c Lδ

d . . . (6.51)

where La
α are the components of the left-invariant Maurer Cartan form L =

U−1dU = La
αdyα(−iTa) and Lα

a are the components of the left-invariant vector-
fields on SU(N). The matrix Lα

a is the inverse of La
α. (In this construction we

could use equivalently right-invariant objects.)
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Up to rescalings, there is a unique Ad-invariant inner product in the Lie
algebra, which we choose as hab = 2TrTaTb = δab

3. Then the corresponding
biinvariant metric is

hαβ = La
αLb

βδab , (6.52)

so that the left-invariant vectorfields La can also be regarded as a vierbein. The
Riemann and Ricci tensors and the Ricci scalar of h are given by

Rαβγδ =
1

4
La
αLb

βLc
γLd

δfab
efecd ; Rαβ =

1

4
Nhαβ ; R =

1

4
N(N2 − 1) .

(6.53)

As with the sphere, we define h(2)
αβ = 1

g2 hαβ , h(4)
αβ = 1

λhαβ . The tensors dabc

and fabc are a totally symmetric and a totally antisymmetric Ad-invariant
three tensor in the algebra. In principle chiral invariance would permit a
term in the action with Aαβγ = La

αLb
βLc

γdabc; however using La
α(Φ0(y)) =

Ra
α(y), Lα

a (y)Rb
α(y) = Ad(g(y))b

a and the Ad-invariance of dabc, one sees that
Aαβγ(Φ0(y)) = Aαβγ(y), so this term violates Parity.

For T we have the following Ad-invariant four-tensors in the algebra with
the correct symmetries:

T (1)
abcd =

1

2
(δacδbd + δadδbc) ; T (2)

abcd = δabδcd ;

T (3)
abcd =

1

2
(facefbd

e + fadefbc
e) ;

T (4)
abcd =

1

2
(dacedbd

e + dadedbc
e) ; T (5)

abcd = dabedcd
e . (6.54)

They are not all independent, however. The identity (2.10) of [71] implies that

2

N
T (1) − 2

N
T (2) + T (3) + T (4) − T (5) = 0 , (6.55)

so that T (5) can be eliminated. In the case N = 3 the identity (2.23) of [71],
together with the preceding relation, further implies

T (2) − T (3) − 3T (4) = 0 , (6.56)

so that we can also eliminate T (4). Finally in the case N = 2 the tensor dabc is
identically zero, so we can keep only T (1) and T (2) as independent combinations,
and use T (3) = T (2) − T (1).

The action of the generic SU(N) models can then be written in the form

∫

d4x

[

1

2g2
hαβ∂µϕα∂µϕβ+

1

2λ
hαβ!ϕα

!ϕβ+
1

2
∂µϕα∂µϕβ∂νϕ

γ∂νϕδ
4
∑

i=1

6iT
(i)
αβγδ

]

(6.57)
and the sum stops at i = 3 and i = 2 for N = 3 and N = 2, respectively. As in
(6.43), it will be convenient to use instead of the couplings 6i the combinations
fi = λ6i.

3Here the matrices are in the fundamental representation. The Cartan-Killing form just
differs by a constant: Bab = Tr(Ad(Ta)Ad(Tb)) = Nδab.
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Making repeated use of traces given in [72] one finds the following beta
functions:

βλ = − N

32π2
λ2 (6.58)

βf1 =
λ

768π2N2

[

16N2(N2 + 20)f2
1 + 64N2f2

2 + 180N2f2
3

+4(149N2 − 1280)f2
4 + 320N2f1f2 − 32N3f1f3

+32N(N2 + 4)f1f4 + 128Nf2f4 − 120N2f3f4 + 24N3f1

−108N2f3 + 36N2f4 + 9N2
]

(6.59)

βf2 =
λ

768π2N2

[

8N2(N2 + 14)f2
1 + 32N2(6N2 + 1)f2

2 + 60N2f2
3

+4(7N2 + 656)f2
4 + 32N2(3N2 + 14)f1f2 + 80N3f1f3

+16N(7N2 − 44)f1f4 + 288N3f2f3 + 32N(15N2 − 64)f2f4

+120N2f3f4 − 24N3(f1 + 3f2)− 36N2(f3 + f4) + 3N2
]

(6.60)

βf3 =
λ

1536π2N

[

52N2f2
3 + 12(23N2 − 320)f2

4 + 768Nf1f3

+256Nf1f4 + 384Nf2f3 + 128Nf2f4 + 24(11N2 − 64)f3f4

−192N(f1 + f2)− 60N2(f3 + f4) + 384f4 + N2
]

(6.61)

βf4 =
λ

1536π2N

[

60N2f2
3 + 4(87N2 − 1728)f2

4 + 1536Nf1f4

+768Nf2f4 + 216N2f3f4 − 36N2(f3 + f4) + 3N2
]

(6.62)

βg̃2 = 2g̃2 +
g̃4

16Nπ2

(

N(N2 + 4)f1 + 2N(2N2 − 1)f2 + 3N2f3

+5(N2 − 4)f4 −N2
)

− λg̃2

16Nπ2

(

N(N2 + 4)f1 + 2N(2N2 − 1)f2 + 3N2f3

+5(N2 − 4)f4 −N2/2
)

(6.63)

In appendix we establish the dictionary between our notation and that used
in [57]. When the beta functions are compared, we find perfect agreement,
except for one small difference: the very last term in the first line of βg̃2 would
be N2/2 according to [57], i.e. g̃4 and λg̃2 would have the same coefficients.
This is the same difference that we observed between (6.39) (type III cutoff)
and (6.40) (type I cutoff), so, effectively the calculation in [57] is equivalent to
a type I cutoff. Given that the calculation in [57] was done using completely
different techniques, this agreement confirms that the one loop beta functions of
the dimensionless couplings (which in a calculation of the effective action would
correspond to logarithmic divergences) is scheme independent.

The cases N = 3 and N = 2 have to be treated separately, because in these
cases only three, respectively two, of the couplings fi are independent. In the
case N = 3 one can eliminate f4 in favor of the other three couplings. Then
using (6.56) one can obtain the beta functions of f1, f2 and f3 from the ones
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given above by

βf1

∣

∣

∣

N=3
= βf1

∣

∣

∣

N=3,f4=0
(6.64)

=
λ

768π2

[

464f2
1 + 64f2

2 + 180f2
3 + 320f1f2 − 96f1f3

+72f1 − 108f3 + 9
]

βf2

∣

∣

∣

N=3
= βf2 +

1

3
βf4

∣

∣

∣

N=3,f4=0
(6.65)

=
λ

1536π2

[

368f2
1 + 3520f2

2 + 180f2
3 + 2624f1f2

+480f1f3 + 1728f2f3 − 144f1 − 432f2 − 108f3 + 9
]

βf3

∣

∣

∣

N=3
= βf3 −

1

3
βf4

∣

∣

∣

N=3,f4=0
(6.66)

=
λ

32π2

[

2f2
3 + 16f1f3 + 8f2f3 − 4f1 − 4f2 − 3f3

]

In the case N = 2 we can set f4 = 0, because T (4) = 0 identically, and we
can eliminate f3. One can obtain the beta functions of f1, f2 from the ones
given above by

βf1

∣

∣

∣

N=2
= βf1 − βf3

∣

∣

∣

N=2,f3=0,f4=0
(6.67)

=
λ

96π2

[

48f2
1 + 8f2

2 + 40f1f2 + 18f1 + 12f2 + 1
]

βf2

∣

∣

∣

N=2
= βf2 + βf3

∣

∣

∣

N=2,f3=0,f4=0
(6.68)

=
λ

192π2

[

36f2
1 + 200f2

2 + 208f1f2 − 36f1 − 60f2 + 1
]

The latter result can be used to check also our beta functions for the spherical
sigma model. In fact there is exactly one manifold which is simultaneously a
sphere and a special unitary group: it is SU(2) = S3. Thus the beta functions
should agree in this case. Before comparing, a little point needs to be addressed.
In Section 6.3.3 we chose the metric hαβ to be that of a sphere of unit radius.
In this section we have fixed the metric by the conditions (6.50), (6.52). It turns
out that in the case N = 2 this normalization corresponds to a sphere of radius
two. This can be seen, for example, from Eq. (6.53), specialized to N = 2, with
fabc = εabc. In order to compare the beta functions of S3 with those for SU(2)
we therefore have to redefine λ → λ/4, f1 → 4f1, f2 → 4f2, g2 → g2/4. With
these redefinitions, the beta functions do indeed agree.

6.4 Fixed points.

6.4.1 The spherical models.

We now discuss solutions of the RG flow equations. The beta function of λ
depends only on λ and the solution is

λ(t) =
λ0

1 + λ0
n−1
8π2 (t− t0)

, (6.69)
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where λ0 = λ(t0). We assume λ0 > 0, thus λ is asymptotically free. The
beta functions of f1 and f2 do not depend on g, so their flow can be studied
independently. Here we do not discuss general solutions but merely look for
fixed points. The overall factor λ in these beta functions can be eliminated by
a simple redefinition t = t(t̃) of the parameter along the RG trajectories:

d

dt̃
=

1

λ

d

dt
. (6.70)

Since t̃ is a monotonic function of t, the FPs for f1 and f2 are the zeroes of the
modified beta functions

β̃fi =
dfi

dt̃
=

1

λ
βfi . (6.71)

They are just polynomials in f1 and f2. The model has no real FP for n = 2,
but there are FPs for all n > 2. For n = 3, . . . , 8 they are given in the fifth
and sixth column in Table 6.1. One can then insert the FP values of f1 and
f2 in βg̃2 and look for FP of g̃2. In each case there are two solutions, one at
g̃2 = 0, the other at some nonzero value. These solutions are reported in the
fourth column in Table 6.1, for n = 3, . . . , 8. The first solution describes the
Gaussian FP (GFP), where all the couplings g̃2, λ, 1/61, 1/62 are zero, the
others are non-Gaussian FP’s (NFP), where g̃2 has finite limits instead. Each
FP can be approached only from specific directions in the space parametrized
by λ, 61, 62, i.e. the ratios f1 and f2 take specific values. For each NFP these
values are unique, while for the GFP there may be several possible values: two
if n = 3, 4, 5 and four if n = 6, 7, 8.

When one considers the linearized flow around any of the GFPs, one finds
as expected that the critical exponents of the matrix ∂βi

∂gj
, are -2,0,0,0, corre-

sponding to the canonical dimensions of the couplings. The critical exponents
at the NGP are instead 2,0,0,0. Thus the dimensionless couplings are marginal,
and of the two FPs, the trivial one is IR attractive and the nontrivial one UV
attractive for g̃. For λ it is clear that the FP is UV attractive (if we had chosen
λ < 0 it would be IR attractive). In order to establish the attractive or repul-
sive character of f1 and f2, one can look at the linearized flow in the variable t̃,
which is described by the 2× 2 matrix

∂β̃fi

∂fj
. (6.72)

We define the “critical exponents” θ1,2 to be minus the eigenvalues of this matrix
(notice that these are critical exponents relative to the new scaling t̃ we intro-
duced). They are reported in the last two columns of Table 6.1, for n = 3, . . . 8.
It is important to realize that even for the GFP the eigenvectors of the stability
matrix are not the operators that appear in the action but mixings thereof. We
do not report the eigenvectors here.

Beyond the values given in Table I, we have checked numerically the existence
of the FP up to n = 200. For large n one can study the theory analytically,
to some extent. There are four FPs for the system of the fi’s, which are f1 =
0, f2 = 1 with critical exponents θ1 = 6, θ2 = 12, f1 = 0, f2 = 1/2 with
critical exponents θ1 = 6, θ2 = −12, f1 = −6, f2 = 5/2 with critical exponents
θ1 = −6, θ2 = 12, f1 = −6, f2 = 2 with critical exponents θ1 = −6, θ2 = −12.
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n g̃(III)
∗ FP g̃∗ f1∗ f2∗ θ1 θ2

3 8.886 NFP1 6.626 -0.693 0.453 0.094 -0.0121
3 NFP2 6.390 -1.042 0.615 0.103 0.0119
3 GFP1 0 -0.693 0.453 0.094 -0.0121
3 GFP2 0 -1.042 0.615 0.103 0.0119
4 7.255 NFP1 5.877 -0.479 0.398 0.105 -0.0412
4 NFP2 5.442 -1.555 0.852 0.132 0.0392
4 GFP1 0 -0.479 0.398 0.105 -0.0412
4 GFP2 0 -1.555 0.852 0.132 0.0392
5 6.283 NFP1 5.310 -0.400 0.400 0.118 -0.0608
5 NFP2 4.924 -1.875 0.988 0.154 0.0567
5 GFP1 0 -0.400 0.400 0.118 -0.0608
5 GFP2 0 -1.875 0.988 0.154 0.0567
6 5.620 NFP1 4.883 -0.350 0.408 0.131 -0.0780
6 NFP2 4.577 -2.131 1.091 0.171 -0.0717
6 GFP1 0 -0.350 0.408 0.131 -0.0780
6 GFP2 0 -2.131 1.091 0.171 0.0717
6 GFP3 0 -0.814 1.369 -0.161 -0.0539
6 GFP4 0 -2.363 2.091 -0.164 -0.0617
7 5.130 NFP1 4.548 -0.314 0.417 0.143 -0.0939
7 NFP2 4.322 -2.347 1.175 0.185 0.0851
7 GFP1 0 -0.314 0.417 0.143 -0.0939
7 GFP2 0 -2.347 1.175 0.185 0.0851
7 GFP3 0 -2.790 2.130 -0.181 -0.0647
7 GFP4 0 -0.598 1.241 -0.174 -0.0716
8 4.750 NFP1 4.274 -0.286 0.424 0.156 -0.1092
8 NFP2 4.125 -2.535 1.247 0.197 0.0976
8 GFP1 0 -0.286 0.424 0.156 -0.1092
8 GFP2 0 -2.535 1.247 0.197 0.0976
8 GFP3 0 -2.790 2.131 -0.180 0.1023
8 GFP4 0 -0.598 1.247 -0.187 -0.0872

Table 6.1: Gaussian and non-Gaussian fixed points of the Sn model at one loop.
The first column gives the dimension n. The second column gives the position
of the NGFP in the two-derivative truncation, using a type III cutoff. The rest
of the table refers to the four-derivative truncation, also using a type III cutoff.
The third column gives the name of the FP. Columns 4,5,6 give the position of
the NGFP. Columns 7,8 give the critical exponents, as defined in the text. The
coupling λ, not listed, goes to zero and is marginal in this approximation.
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The numerical values at finite n do indeed tend towards these limits for growing
n.

6.4.2 The chiral models.

The chiral model with N = 2 is equivalent to the spherical model with n = 3
(up to the redefinition of the couplings mentioned in the end of Section 6.3.4)
so we need not discuss this case further. For ease of comparison we just report
the properties of its nontrivial FPs in the parametrization we used for the chiral
models:

NFP1 : f1∗ = −0.173 ; f2∗ = 0.113 ; g̃ = 13.25

NFP2 : f1∗ = −0.261 ; f2∗ = 0.154 ; g̃ = 12.78

The critical exponents do not depend on the definition of the couplings and
therefore are the same as in Table 6.1; they do however depend on the choice of
RG parameter and they differ from those given in [57] by a factor 4π2, which is
due to the definition of the parameter x there.

In the case N = 3 the system of the fi’s has two FPs at

FP1 : f1∗ = −0.154 ; f2∗ = 0.050 ; f3∗ = 0.085 ;

FP2 : f1∗ = −0.108 ; f2∗ = 0.043 ; f3∗ = 0.061 .

The attractivity properties in the space spanned by the fi’s are given, as in the
spherical case, by studying the modified flow with parameter t̃. The critical
exponents at FP1 are 0.0303 with eigenvector (0.411, 0.630, 0.658); 0.0123 with
eigenvector (0.515, -0.570, 0.640); 0.00289 with eigenvector (0.869, -0.148, -
0.473), whereas at FP2 they are 0.0280 with eigenvector (0.366, 0.618, 0.695);
0.0108 with eigenvector (0.513, -0.575, 0.638) and -0.00293 with eigenvector
(0.887, -0.125, -0.445). Therefore FP1 is attractive in all three directions, while
FP2 is attractive in two directions. For each of these two FP’s, the beta function
of g̃ has two FP’s: the trivial FP, which has always critical exponents -2, and a
nontrivial FP, which is located at g̃ = 11.17 for NFP1 or 11.50 for NFP2, and
having critical exponent 2 in both cases.

We have found no FP’s for N > 3: the system of equations β̃fi = 0 for i =
1, 2, 3, 4 only has complex solutions. To cover all of theory space we have checked
this statement also in the parametrization of the 6i and in the parametrization
of ui = 1/6i. This is true also in the large N limit. If we keep only the leading
terms (of order N2 for f1 and f2 and of order N for f3 and f4), again the
resulting polynomials do not have any real zero.

6.5 Discussion.

We have calculated the one loop beta functionals of the NLSM with values in
any manifold, in the presence of a very general class of four-derivative terms.
We have then specialized our results to two infinite families of models: the
O(N) models, with values in spheres, and the chiral models with values in
the groups SU(N). Such calculations had been done before, but since the
results are rather complicated, it is useful to have independent verifications. Our
approach is calculationally very similar to [58], but after correcting some small
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errors at the general level, we find that the FP structure of the O(N) models is
completely different from their findings. On the other hand our results for the
chiral models agree completely with [57] for what concerns the dimensionless
couplings, even though the calculation was done using very different techniques.
Since SU(2) = S3, this provides a check also for our results for the spheres.

In the view of establishing asymptotic safety, or lack thereof, it is important
for us to have also the beta functions of the dimensionful coupling g, which
in the chiral models is the inverse of the pion decay constant. This had not
been considered at all in [58], but it had been calculated in [57] for the chiral
models. Again we have agreement with the result of [57], up to a single factor 2
in one term; as discussed before, since this beta function is scheme dependent,
we believe that this is not an error on either side, but the result of the different
way in which the calculation was done. This difference results in a shift of the
FP value of g̃; for example in the case of SU(2) one would find g̃ = 19.88 instead
of 13.25 for NFP1 and 18.39 instead of 12.78 for NFP2. Such variations by a
factor of order 2 are to be expected.

A motivation for studing the asymptotic behaviour of NLSMs is that it
could be a toy model for gravity. From this point of view we have a perfect
correspondence of results. If we use the 1/p2 propagator that comes from the
two-derivative term, both theories are perturbatively unitary but nonrenormal-
izable; if on the other hand we use the 1/p4 propagator that comes from the
four-derivative terms both theories are renormalizable (see [73] for gravity and
[74] for the NLSM) but contain ghosts (the states with negative norm in Hilbert
space). In the latter case it had also been established (see [75, 76, 77, 78] for
gravity and [57, 58] for the NLSM) that the four-derivative terms, whose cou-
plings are dimensionless, are asymptotically free. Actually the analogy works
even in greater detail. The coefficient of the square of the Weyl tensor (for
gravity) and the square of !ϕα (for the NLSM) have at one loop a beta func-
tion that is constant. These coefficients diverge logarithmically in the UV, so
their inverses, which are the perturbative couplings, are asymptotically free.
The coefficients of the other four-derivative terms have more complicated beta
functions, but overall there is asymptotic freedom, provided the Gaussian FP
is approached from some special direction. There have been many attempts to
avoid the effects of the ghosts; see [75, 80] for gravity and [57] for the NLSM. In
any case, the existence of the ghosts is only established at tree level. Whether
they exist in the full quantum theory is a deep dynamical question whose answer
is not known.

All these “old” works on higher derivatives theories concentrated on the
behavior of the couplings that multiply the four-derivative terms; much less
attention, if any, was paid to the coefficient of the two-derivative term, which
has dimension of square of a mass: the inverse of Newton’s constant in gravity
and the square of the pion decay constant in the chiral NLSM. In several papers
this issue was ignored, or incorrect results were given, because of the use of
dimensional regularization. The correct RG flow of these couplings is quadratic
in k, and is best seen when a momentum cutoff is used.

It is somewhat gratifying to see that the FP does not always exist for all
NLSM: in particular we have seen that within the one loop approximation,
adding the higher derivative terms destroys the FP that is present in the two-
derivative truncation for the sphere S2 and for the chiral models with N > 3.
If there was any doubt, this shows that the existence of the FP is not “built



132 CHAPTER 6. NONLINEAR SIGMA MODELS

into the formalism” but is a genuine property of the theory. This is somewhat
analogous to the situation when one adds minimally coupled matter fields to
gravity [22].

The next step will be to replace the one loop functional RG equation (6.18)
by its exact counterpart, which only differs in the replacement of the bare action
S by Γk in the right-hand side [5]. There are at least two good reasons to do
this calculation. One of the points of [28] that needed further clarification was
the value of the lowest critical exponent. In the two-derivative truncation at
one loop it was always 2 at the nontrivial FP. Thus the critical exponent ν that
governs the rate at which the correlation length diverges was given by

ν = −
(

dβ

dt

∣

∣

∣

∗

)−1

=
1

θ
=

1

2
, (6.73)

which is the value of mean field theory. Using the “exact” RG truncated at two
derivatives gave ν = 3/8 for the O(N) models, independent of N . One would
like to understand what effect the higher derivative terms have on this exponent.
Since here we restricted ourselves to one loop, we found again ν = 1/2, so the
calculations of this chapter are of no use in this respect. Another motivation
comes from recent calculations in higher derivative gravity [79] that go beyond
one loop and find that the theory is not asymptotically free, but rather all
couplings reach nonzero values at the UV FP. It would be interesting to see
similar behavior in (some) NLSM.

Concerning possible direct phenomenological applications of the NLSM, re-
garded as an effective field theory, it is interesting to ask what relation, if any,
the UV properties of the NLSM may have to the properties of the underlying
fundamental theory. Regarding the chiral NLSM as the low energy approxima-
tions of a QCD-like theory, one may note that there is rough agreement between
the range of existence of the NLSM FP and the “conformal window” for the
existence of an IR FP in the case when the quarks are in the adjoint or in the
symmetric tensor representation [82]. One could get a better understanding
of this issue if the beta functions of the NLSM depended on the number of
“colors” of the underlying theory, which in the effective theory are reflected in
the coefficient of the Wess-Zumino-Witten term [64]. The one loop beta func-
tion of the Wess-Zumino-Witten term is zero [58, 83]; this is consistent with
the quantization of the coefficient c. Unfortunately the beta functions of the
remaining couplings are completely independent of this coefficient, so the low
energy theory seems to be insensitive to this parameter.

Another possible application is to electroweak chiral perturbation theory
[52]. If the NLSM turned out to be asymptotically safe in the presence of gauge
fields and fermions, then one may envisage a Higgsless standard model up to
very high energies. This will also require a separate investigation. A related ap-
plication of asymptotic safety to the standard model has been discussed recently
in [18].

To summarize, we believe that the NLSM are interesting theoretical lab-
oratories in which one may test various theoretical ideas, and they have also
important phenomenological applications. The question whether some NLSM
could be asymptotically safe seems to us to be a particularly important one, and
to deserve more attention. As P. Hasenfratz wrote in [57], “We do not know of
any a priori reason, which would imply that these theories are doomed to fail.
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The problems are practically untouched.” These words are still valid twenty
years later.
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Appendix A

The spin-projectors.

We refer to the appendices of [44, 73] for a complete account of the spin-
projectors we are going to introduce. To fix ideas we have to think about
the gravitational inverse propagator in flat space limit and in momentum space.
It turns out that its tensor ingredients are the flat metric δµν and the incoming
momentum qµ. With these tensors we have to construct a “matrix” that maps
the symmetric 2-tensors space into itself, namely the inverse propagator. It is
clear that this tensor structure has to do with the irreducible representation of
the graviton modes. It is possible, in fact, to find a basis of spin-projectors that
parametrize the space of all inverse propagators and that projects hµν modes
onto

(

hT
µν , ξµ, σ, h

)

. The basis is called of spin-projectors because four of them
actually projects to the spin modes, while one of them takes into account their
mixing. We will also call them simply projectors.

Before giving their definition it is convenient to introduce the transverse end
longitudinal projectors on vectors. These decompose any vector vµ into spin-1
and spin-0 components. They are simply

PT µ
ν = δνµ −

qµqν

q2
(A.1)

PLµ
ν =

qµqν

q2
(A.2)

These implicitly depend on a momentum qµ, although no dependence is writ-
ten explicitly. In case more than a momentum is involved we will remove the
ambiguity writing them as Pi = Pi [q] for i = T, L. These are projectors in the
usual sense, so

P 2
i = Pi (A.3)

(A.4)

for i = T, L. Their traces are easily evaluated in general d-dimensional space
to give PT µ

µ = d − 1 and PLµ
µ = 1, reflecting the fact that they projects on

irreducible vector and scalar subspace. It is also convenient to define out of PT

the matrix acting on symmetric tensors

δ̄µν
αβ = PT (µ

(αPT ν)
β) (A.5)

135
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Parentheses indicate symmetrization. It differs from the identity in the sym-
metric 2-tensor space, because for each index the longitudinal component is
projected out. However δ̄ is already a projector, so it may be what we are look-
ing for or lead to it. To understand δ̄ better, we may apply it to the fourier qµ

component of hµν .
The general definition of the irreducible decomposition in momentum space

and flat background is given by

hµν = hT
µν + 2iq(µξν) −

(

qµqνσ −
1

d
δµνq

2σ

)

+
1

d
δµνh (A.6)

and it is easy to see that

δ̄ · hµν = hT
µν +

1

d
PT µν

(

h + q2σ
)

(A.7)

One easily understands that δ̄ correctly projected out the longitudinal compo-
nents, but it was unable to remove the “traces” h and σ. The correct projector
for the spin-2 irreducible component is instead

P2µν
αβ = δ̄µν

αβ − 1

d− 1
PT µνPT

αβ (A.8)

A byproduct of its construction is that we introduced another projector

PSµν
αβ =

1

d− 1
PT µνPT

αβ (A.9)

that is interesting because it projects hµν over the quantity S ∼ h+q2σ, modulo
a normalization factor. In general curved space S = 1

d (h−!σ) is a gauge
invariant quantity.

Other two projectors can easily obtained. First, we note that the two we
just constructed are of the form PT ⊗ PT . Along this line we are still missing
the structures of the form PT ⊗ PL ⊕ PL ⊗ PT and PL ⊗ PL (please note that
the notation does not imply any real tensor product but is only a mnemonic
device, because for example PS mixes the indices spaces of hµν). In particular,
the structure involving both the projectors may be useful to select the spin-1
component, having nonzero combination over it. In fact, it exists a combination
that projects over ξµ and therefore cancels all the rest. It is

P1µν
αβ =

1

2
PT (µ

(αPLν)
β) (A.10)

and it does the job of projecting P1 · hµν = 2iq(µξν) over the term of hµν built
with the spin-1 term. The final projector is easily found, either by noting that
there is only one projector with structure PL ⊗ PL that projects over the σ
sector of hµν , or by requiring that it sums with the others up to the symmetric
identity. In any case the result is

Pσµν
αβ = PLµνPL

αβ (A.11)

Now, as we already said these projectors are not actually a basis of projec-
tors. Each is a projector on its own, but one further element is missing because
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they are not enough to parametrize any possible structure emerging from a
combination of δµν and qµ. The last ingredient we define to be

PSσµν
αβ =

1√
d− 1

(

PT µνPL
αβ + PLµνPT

αβ
)

(A.12)

This completes the basis, but spoils the fact that it is a projector basis because
it does not commute with PS and Pσ. Further, its square is not the projector
itself but rather a combination of PS and Pσ. We will give these properties,
together with analogues for the other elements soon.

First we argue it is the case to recup all the definitions we gave. The spin-
projectors basis is defined to be (in terms of transverse and longitudinal two-
indexed ones) [44, 73]

P2µν
αβ = PT (µ

(αPT ν)
β) − 1

d− 1
PT µνPT

αβ

P1µν
αβ =

1

2
PT (µ

(αPLν)
β)

PSµν
αβ =

1

d− 1
PT µνPT

αβ

Pσµν
αβ = PLµνPL

αβ

PSσµν
αβ =

1√
d− 1

(

PT µνPL
αβ + PLµνPT

αβ
)

(A.13)

As promised we list some of their properties. The first four are projectors, as
we already said, while the square of the fifth represents the mixing of the scalar
degrees of freedom. For i = 2, 1, S, σ we have

P 2
i = Pi (A.14)

P 2
Sσ = PS + Pσ (A.15)

All the other nonzero products of the projectors are in the next list or can be
derived from it

PS · PSσ = PSσ · Pσ (A.16)

PSσ · PS = Pσ · PSσ (A.17)

PSσ · (PS + Pσ) = 1 (A.18)

(PS + Pσ) · PSσ = 1 (A.19)

It should be evident that the sum PS + Pσ acts as an “identity” in the scalars
subspace.

It is interesting to note that the subset Pi with i = S, σ, Sσ generates a
subalgebra of the projectors on its own. In particular we may find useful to
represent it using 2× 2 matrices in the form

PS =

(

1 0
0 0

)

(A.20)

Pσ =

(

0 0
0 1

)

(A.21)

PSσ =

(

0 1
1 0

)

(A.22)
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With this representation in mind we will be able to invert any combination of
the scalar subsector matrices, by simply inverting a 2 × 2 matrix. Obviously,
many possible representations are possible but one easily sees that all will give
the same results upon matrix inversion. To see this let us restrict attention to
solely the scalar subspace in which a combination of them

∑

i=S,σ,Sσ

λiPi =

(

λS λSσ

λSσ λσ

)

(A.23)

is invertible (in the general space also components along P2,1 are needed to have
a finite expression, in the full inverse propagator these will be present). The
inverse is
(

λS λSσ

λSσ λσ

)−1

=
1

λSλσ − λ2
Sσ

(

λσ −λSσ

−λSσ λS

)

(A.24)

=
λσ

λSλσ − λ2
Sσ

PS +
λS

λSλσ − λ2
Sσ

Pσ −
λSσ

λSλσ − λ2
Sσ

PSσ

As expected the expression is S ↔ σ symmetric. Further, one could repre-
sent PSσ with the negative of the matrix we actually used. This ambiguity is
expressed in terms of λSσ → −λSσ. This means, essentially, that λSσ either
appears squared (as it does in the denominators) or multiplied by PSσ making
λSσPSσ invariant under the redefinition of the representation. The general in-
verse, including also P2,1 degrees of freedom is a straightforward generalization
of the former formula. What emerges from this picture is that any inverse grav-
itational propagator can be written in irreducible components notation using
these projectors and easily inverted. The hard task of calculating the inverse
will be moved to the easy one of inverting a 2 × 2 matrix. Further, the tabu-
lated algebra of operators, simplify strongly expressions involving products of
consecutive propagators. Again, such products will reduce to simple products
of numbers and square matrices, upon correct projection of the elements.

We end this section giving some further properties of the set of projectors.
One has to remember that these are going to be traced along graphs, hitting,
in particular, gravi-matter vertices. The effect of the vertices will be to trace
the projectors, so it is useful to study the possible ways in which the projectors
are traced. There are two possible ways to trace them. We call the “straight”
trace of a projector Pi the natural vector space trace trPi = Piµν

µν , while the
“cross” trace is defined as trXPi = Piµν

αβδµνδαβ. A list of these traces in
general d-dimensions is given

trP2 =
d2 − d− 2

2
trXP2 = 0 (A.25)

trP1 = d− 1 trXP1 = 0 (A.26)

trPS = 1 trXPS = d− 1 (A.27)

trPσ = 1 trXPσ = 1 (A.28)

trPSσ = 0 trXPSσ = 2
√

d− 1 (A.29)

We see that the straight traces actually agree with the expectations we have on
tensor degrees of freedom. For example the spin-2 projector counts in d = 4
five components that is the number of components of a symmetric transverse
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and traceless tensor. The spin-1 correctly counts three, so those of a transverse
vector.

The final properties we are going to give involve a general systematic way
to translate expressions involving δµν and qµ, to expressions in the set Pi. The
identity in symmetric space morphisms is easily resolved using the completeness
of the projectors

δαβµν =
∑

i=2,1,S,σ

Piµν
αβ (A.30)

If an expression of the form δµνδαβ is encountered we can use the fact that

δµνδ
αβ = (d− 1)PSµν

αβ + Pσµν
αβ +

√
d− 1PSσµν

αβ (A.31)

The last ingredient we have to manage are general expressions of the form
δµνqαqβ ∼ δµνPLαβ . These generally appear only in a limited number of ways,
determined by the symmetry properties of the space. In particular, the useful
combinations are

δµνPL
αβ + δαβPLµν = 2Pσµν

αβ +
√

d− 1PSσµν
αβ (A.32)

δ(α
(µPL

β)
ν) =

1

2
P1µν

αβ + Pσµν
αβ (A.33)

and will be the only ones appearing in second variations of gravitational pertur-
bations. This completes all the properties we will need of the projector basis.
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Appendix B

Gravi-matter vertices.

For the computations of the momentum space graphs we need the vertices in
momentum space representation. We will write them in full generality for the
moment, without resorting to the limit V ′ [φ] = 0. Further, we need the vertices
having at most two external graviton lines. The reason is, the graphs we are
going to calculate have always two matter external lines, so the vertices are
attached to at most two gravitons inside the loop. The structure of the flow
of the inverse propagator involves at most vertices with four lines. Altogether,
this imply a finite and small amount of vertices we are interested in. We will
omit to write the vertices that do not include graviton lines, which have been
already used in flat space case, because they are trivially obtained.

The normalization of the fourier components we choose are

φ (x) =

∫

q
φqe

−iqx (B.1)

ψ (x) =

∫

q
ψqe

−iqx (B.2)

h (x)µν =

∫

q
hµν;qe

−iqx. (B.3)

Using these definitions we easily express any derivative of any field in terms of
momentum space components, for example

∂µφ (x) = i

∫

q
qµφqe

−iqx (B.4)

−∂2φ (x) =

∫

q
q2φqe

−iqx (B.5)

and so on. The exponential factors produce a delta conservation in momentum
space, which we will not write and left understood. Actually, it is precisely
the term in front of that delta function that represents the momentum space
correlator we are interested in. The results we are going to present are already
the correlators we will use. All the momenta are understood to be incoming and
it is sufficient to take their negative if one wants the vertex with some outgoing
momenta. Finally, conservation is always assumed. If the vertex depends on
n incoming momenta k1,...,kn we will have

∑

i=1,...,n ki = 0. We will give the

141
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results without expressing one of the momenta in terms of the others, because
the vertices will appear in a more symmetric fashion.

We start giving the vertices that do involve at least one scalar field. As
previously stressed, the scalar is somehow special because it forms a vertex with
a graviton and no other external lines. We get in the constant background limit

δ

δφk1

δ

δhµν,k2

Γk =
1

2
δµνV ′ (B.6)

This is precisely telling us that scalars do mix and their propagation should
be considered together. However it will not enter in our calculation of ηφ and
ηψ, because we assume the on-shell condition V ′ = 0. Note also that is is a
non-derivative vertex because it is coming from a non-derivative interaction.

Similarly, a vertex with another graviton line is formed. A short calculation
gives us that

δ

δφk1

δ

δhµν,k2

δ

δhαβ,k3

Γk = −1

2

(

δµν,αβ − 1

2
δµνδαβ

)

V ′ (B.7)

It shares the same properties of the previous one and again it will not contribute
to the anomalous dimensions flow, being set to zero thanks to the properties of
the expectation value.

We continue introducing the vertices with at least two external scalar lines.
It is possible to have one external graviton (see Fig. (B.1))

δ

δφk1

δ

δφk2

δ

δhµν,k3

Γk = Zφk1
(µk2

ν) − 1

2
δαβ (Zφk1 · k2 − V ′′) (B.8)

and two external gravitons (Fig. (B.2))

δ

δφk1

δ

δφk2

δ

δhµν,k3

δ

δhαβ,k4

Γk = −Zφk1
(µδν)(αk2

β) − Zφk2
(µδν)(αk1

β)

+
1

2
Zφk1

(µk2
ν)δαβ +

1

2
Zφk1

(αk2
β)δµν

+
1

2
(Zφk1 · k2 − V ′′)

(

δµν,αβ − 1

2
δµνδαβ

)

(B.9)

These vertices turns out to be fundamental when calculating the scalar anoma-
lous dimension. One notices that, thanks to the double functional derivative
with respect to the scalar field, the scalar kinetic term comes into play.

This situation is further stressed in the case of the vertices possessing exter-
nal spinor lines. The number of external spinors is fixed by charge conjugation
and the fact that their background is ψ = 0. Essentially we have to perform a
derivative with respect ψ̄, for each derivative in ψ. The anomalous dimensions
in our interpretation have to be evaluated in a physical configuration to remove
the spurious field dependence, it is worth noting that 〈ψ〉 = 0 in any sensible
physical configuration. The calculations performed with these momentum rules
will be consistent only with the diagonal-cutoff computation, because in the
non-diagonal one the cutoff do depend on the background ψ. There is also the
possibility that

〈

ψ̄ψ
〉

= C. It easy to realize that it would simply correspond
to a shift redefinition of the potential V [φ]→ V̄ [φ] = V [φ] + H [φ] C.
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k1

k3, (µν)

k2

Figure B.1: Vertex including the interaction of two scalar modes with a graviton
one. The momenta are all incoming.

k1 k2

k3, (µν) k4, (αβ)

Figure B.2: Vertex including the interaction of two scalar modes and two gravi-
ton one. The momenta are all incoming.

Using the results of the appendix involving the second order expansion of
the spinor kinetic action, we can calculate the vertex with two spinor lines and
one graviton. We obtain (Fig. (B.3))

δ

δhµν,k1

δ

δψk2

δ

δψ̄k3

Γk = −Zψ

4

(

γ(µ (k2 − k3)
ν)
)

+
1

2
δµν

(

H +
Zψ

2
γα (k2 − k3)α

)

(B.10)

Note that the vertex is an element of the Clifford algebra, even if we do not
write its indices explicitly. Where no gamma matrices appear, it is understood
that there is an identity in the algebra. Similarly to the scalar case the second
functional derivatives increases in complexity. With two external gravitons we
obtain (Fig. (B.4))

δ

δhµν,k1

δ

δhαβ,k2

δ

δψk3

δ

δψ̄k4

Γk = −Zψ

8
δµνγ(α (k3 − k4)

β) − Zψ

8
δαβγ(µ (k3 − k4)

ν)

+
Zψ

16
γρ (k1 − k2)ρ ×

×
[

γ(µδν)(αγβ) − 1

2
δµαδνβ − 1

2
δµβδνα

]

+
Zψ

8
γ(µδν)(α (k1 + 2k3 − k4)

β)

−Zψ

8
(k1 + 2k4 − k3)

(µ δν)(αγβ)

−1

2

(

δµν,αβ − 1

2
δµνδαβ

)(

Zψ

2
γρ (k3 − k4)

ρ + H

)

(B.11)
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k1, (µν)

k2 k3

Figure B.3: Vertex including the interaction of the spinor modes with one gravi-
ton. The momenta are all incoming. Internal Clifford-algebra indices are un-
derstood.

k3 k4

k1, (µν) k2 (αβ)

Figure B.4: Vertex including the interaction of the spinor modes with two grav-
itos. The momenta are all incoming. Internal Clifford-algebra indices are un-
derstood.

Those written in this subsection are all the vertices we need for our com-
putations of the gravitational corrections of ηφ and ηψ . Infinitely many more
interactions, obviously, exist thanks to the nonpolynomiality of gravity. The
construction of such vertices is generally needed for further computations in-
volving the flow of n-point correlators with n ≥ 2.



Appendix C

Heat kernel expansion.

C.1 Rank-2 operators.

Here we are going to give a very brief account of the heat kernel expansion we
used in chapter 5. The heat kernel (HK) is the study of the flow

(∂s + ∆)K (s) = 0 (C.1)

where ∆ is a differential operator acting on an unspecified bundle. Let the
base manifold be a d-dimensional riemaniann manifold with metric gµν . For the
moment we shall restrict our attention to the case in which ∆ is of rank 2 and
in particular of the form

∆ = ! + E = −∇2 + E (C.2)

We introduced a covariant derivative ∇, which contains the connection of the
bundle, and the box operator defined as ! = −∇2 = −gµν∇µ∇ν . E is a general
endomorphism of the bundle. An operator of the form (C.2) is sometimes called
“generalized laplacian”. The connection itself will be a sum of the connection
of the bundle and the Christoffel connection of the base manifold.

The formal solution of (C.1) is

K (s) = e−s∆ (C.3)

It is useful to evaluate the functional trace of the heat kernel

TrK (s) = tr

∫

dxK (s; x, x) (C.4)

where tr is the trace over the indices of the bundle and K (s; x, x) solves the
differential equation

(∂s + ∆x)K (s; y, x) = 0 (C.5)

with boundary condition K (0; y, x) = δ (x− y) (the Dirac delta is for the mea-
sure dx =

√
gddx).

It turns out that the object TrK (s) possesses an expansion in powers of s,
that relates to a local expansion in curvatures and powers of the endomorphism

145



146 APPENDIX C. HEAT KERNEL EXPANSION

E. This expansion is called Seeley-deWitt expansion and it reads

TrK (s) =
1

(4πs)d/2

∑

n≥0

snB2n [∆] (C.6)

The coefficients B2n [∆] can be written in terms of other coefficients b2n [∆]
defined as

B2n [∆] = tr

∫

dxb2n [∆] (C.7)

The new coefficients take values in the bundle.
The first two bs are

b0 [∆] = 1 (C.8)

b2 [∆] = E +
R

6
(C.9)

R is the curvature scalar. All the terms in these two expansion, apart for E,
are proportional to the identity in the bundle. Therefore, once traced with “tr”,
will give a result proportional to the dimensionality of the bundle itself, let it
be D.

Suppose for a moment that the endomorphism is zero. Suppose also that
the space we are working on is a 4-sphere of volume V , so we can relate any
curvature invariant to powers of the scalar curvature. The operator will be
simply

∆ = ! (C.10)

and (C.9) reduces to

b0 [∆] = 1 (C.11)

b2 [∆] =
1

6
R (C.12)

In such a situation the HK expansion (C.6) becomes an expansion in powers of
R. After taking the trace of (C.12) we obtain

B0 [∆] = V D (C.13)

B2 [∆] =
1

6
DRV (C.14)

In the expansion (4.75) we found that each spin-j mode, possesses a second
order expansion with kernel ∆j = !j + . . . . We are now interested in the
laplacian operator of the single spin mode !j that lives in a vector space of
dimension Dj . We define

B2n,j = B2n [!j ] /V (C.15)

In particular, we used B0,j and B2,j . It is very easy to determine them once one
remembers that Dj = 1, 4, 3, 5 for j = 0, 1/2, 1, 2 (notice that we are considering
Dirac fermions in the 1/2, the result for Majorana is D1/2 = 2).
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C.2 Rank-r operators.

In chapter 6 we needed the study of (C.1) equation for a rank-4 operator of the
form

∆ = !
2 + Bµν∇µ∇ν + Cµ∇µ + D (C.16)

As an additional condition we required Bµν = Bνµ.
Suppose now we are considering a general operator of rank-r of the form

∆ = !
r/2 + . . . . The HK is again defined as TrK (s) = TrExp (−s∆). The

general rank-r operator possesses a similar expansion to (C.6) and it reads in
d = 4

1

(4π)2
1

s4/r

(

B0 [∆] + s2/rB2 [∆] + s4/rB4 [∆] + . . .
)

(C.17)

The detailed form of the coefficients for r = 2 can be found in [70].

C.3 Functional traces using the HK.

The expansions (C.6) and (C.17) can be used to calculate the trace of any
function of an operator ∆. Suppose now we are interested in calculating the
general trace

Tr f [∆] (C.18)

for arbitrary f .
It is convenient to rewrite f in terms of its Laplace transform f̃ and insert

it in the trace

Tr f [∆] = Tr

∫ ∞

0
dsf̃ [s] e−s∆ =

∫ ∞

0
dsf̃ [s] Tr K (s) (C.19)

which shows how to relate any trace with that of the HK.
If we substitute in (C.19) the expansion (C.6) or the general (C.17), we

obtain an expansion with which evaluate the functional trace (C.18). For the
general rank-r case of (C.17) it reads in d = 4

Tr f [∆] =
1

(4π)2
(

Q4/r (f)B0 [∆] + Q2/r (f)B2 [∆] + Q0 (f)B4 [∆] + . . .
)

(C.20)

The case r = 2 of (C.6) is easily obtained by setting the limit.
The functions Qm (f) are obtained by integrals or derivatives of the function

f . Their general form is, for m ≥ 0 integer

Q−m (f) = (−1)m
∂mf [z]

∂zm

∣

∣

∣

∣

z=0

(C.21)

while for m ≥ 0

Qm (f) =
1

Γ (m)

∫ ∞

0
dz zm−1f [z] (C.22)
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Appendix D

SU(N ) model.

In [57] the action for the chiral SU(N) model is written in the form:

1

f2

∫

d4x
[

c0TrLµLµ +
1

2
Tr(∂µLµ∂νLν + ∂µLν∂

µLν)

−1

2
c2Tr(∂µLµ∂νLν − ∂µLν∂

µLν)− 1

2
c3Tr(LµLµLνL

ν + LµLνL
µLν)

−c4Tr(LµLµ)Tr(LµLµ)− c5Tr(LµLµ)Tr(LµLµ)
]

. (D.1)

where Lµ = U−1∂µU . We want to translate this action into the form (6.57).
Deriving the equation Lµ = ∂µϕαLa

α(−iTa) we obtain

∂µLν = −iTa(∇µ∂νϕ
αLa

α − ∂µϕα∂νϕ
β∇αLa

β) (D.2)

The antisymmetric part of this equation is

∂µLν − ∂νLµ = −[Lµ, Lν] (D.3)

whereas using Killing’s equation, the symmetric part is

∂(µLν) = −iTa∇µ∂νϕ
αLa

α (D.4)
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The terms of (D.1) have the following translation into our tensorial language:
∫

d4xTrLµLµ = −1

2

∫

d4x∂µϕα∂µϕβhαβ

∫

d4xTr∂µLµ∂νLν = −1

2

∫

d4x!ϕα
!ϕβhαβ

∫

d4xTr∂µLν∂
µLν = −1

2

∫

d4x
(

∇µ∂νϕα∇µ∂νϕ
βhαβ

+
1

4
∂µϕα∂µϕβ∂νϕ

γ∂νϕδT (3)
αβγδ

)

∫

d4xTrLµLµLνL
ν =

∫

d4x∂µϕα∂µϕβ∂νϕ
γ∂νϕδ ×

(

1

4N
T (2)
αβγδ +

1

8
T (5)
αβγδ

)

∫

d4xTrLµLνL
µLν =

∫

d4x∂µϕα∂µϕβ∂νϕ
γ∂νϕδ ×

(

1

4N
T (1)
αβγδ −

1

8
T (3)
αβγδ +

1

8
T (4)
αβγδ

)

∫

d4xTr(LµLµ)Tr(LνLν) =
1

4

∫

d4x∂µϕα∂µϕβ∂νϕ
γ∂νϕδT (2)

αβγδ

∫

d4xTr(LµLν)Tr(LµLν) =
1

4

∫

d4x∂µϕα∂µϕβ∂νϕ
γ∂νϕδT (1)

αβγδ (D.5)

where !ϕα = ∇µ∂µϕα. One can further manipulate the third term integrating
by parts and commuting covariant derivatives. One finds
∫

d4x∇µ∂νϕα∇µ∂νϕ
βhαβ =

∫

d4x
(

!ϕα
!ϕβhαβ + ∂µϕα∂µϕβ∂νϕ

γ∂νϕδRαβγδ

)

(D.6)

and using (6.53) one can further substitute the Riemann tensor by T (3). In the
fourth term one can eliminate T (5).

One has to note that Hasenfratz’s action has to be compared to minus our
action. This is because it appears with the positive sign in the exponent of
the functional integral (this is consistent with the fact that the (!ϕ)2 term
has a negative coefficient in (D.1)). It is then straightforward to calculate the
following relations between the couplings used in [57] and our couplings:

g2 =
f2

c0
; λ = f2 ; f1 =

c3

2N
+

c5

2
;

f2 =
c4

2
; f3 =

1 + c2

4
; f4 =

c3

4
; (D.7)

With these relations, one can translate his beta functions and one finds
that they agree with those given in Section 6.3.4, with a single exception: the
term proportional to g̃4 and containing no fi in βg̃2 . We observe that the two
polynomials in the c’s in Eq. (39) in [57] are the same, up to an overall factor
2. As a consequence, when one extracts the beta function of c0/f2 = 1/g2 and
rewrites it in terms of the fi’s, the coefficients of g̃4 and g̃2λ are exactly the same.
This differs from the beta function given in (6.63), where the two coefficients
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differ in the last term. We believe that this difference can be attributed to the
different cutoff scheme.
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