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Introduction

Traditionally, the characterisation of the properties of proteins and enzymes is articu-
lated according to the tripartite scheme sequence — structure — function.

The investigation of the first two elements of this scheme and the relation between
them largely benefited from the use of alignment methods. In particular, sequence
alignment algorithms have been widely used to identify evolutionary relationships in
different proteins by detecting common stretches of the primary sequence. Similarly,
structure alignment methods provided further evolutionary insight through the com-
parison of the architectural organisation of protein structures. The combined use of
these techniques allowed to broaden our understanding of the relation between sequence
and structure: a striking result concerning this relation is the fact that proteins with
primary sequence similarity above 30% typically adopt the same structural organisation
(I 2; B). In the light of this result, the question naturally rose, of whether a relevant
structural similarity can be shared by proteins having low sequence identity: the use
of structural superposition algorithms to compare large datasets of proteins, and the
subsequent comparison of the primary sequences of the aligned structures, revealed
that the same fold can occasionally be shared by proteins having markedly different
sequences (4 B [6). This result is commonly interpreted in the light of evolutionary
convergence (75 [8; 95 105 1T} [12]).

Experimental results (13]), as well as computational studies (14 [15]), completed the
picture highlighting the impact of structural features on a protein’s biological function.
Specifically, while on the one hand the catalytic activity of an enzyme relies on the
chemical details of the active site, the influence of the overall molecule structural archi-
tecture to carry on its biological functionality has become more and more evident in a
growing number of cases. The architecture of the protein, in fact, not only determines
the shape of the interface the molecule exposes to the substrates, but in many enzymes
it also influences the internal dynamics properties which play a central role for the
performance of the biological activity (16} 17} [18)).

This role can be played in a twofold way: in the vicinity of the active site, the
catalytic geometry poses tight constraints on the possible local structure of the molecule
and its flexibility, which in turn determine which ligands can bind to the enzyme. On
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0. INTRODUCTION

a global scale, on the other hand, the possibility to perform concerted conformational
changes is of paramount biological importance to many enzymes.

A prototypical example of the aforementioned relation between structure, inter-
nal dynamics and function is given by adenylate kinase (Adk). This 214-residue-long
monomeric protein regulates the energy balance of the cell by converting AMP, ADP
and ATP molecules according to the relation:

MgATP + AMP < 2ADP + Mg*"

Adk is composed by a central core and two domains, the ATP binding domain (Lid)
and the AMP binding one. These domains are highly mobile: in the available ‘closed’
crystallographic state (PDB code: lake) they are displaced towards the core by more
than 7 A RMSD with respect to the ‘open’ crystal structure (PDB code: 4ake), as
shown in Fig. [T}

The catalytic activity of Adk relies on a conformational change, bridging the two
structures, which involves the collective displacement of a large number of amino acids.
In fact, the ligands require to be processed in a water-free environment: the open
structures largely populate the ensemble in absence of the ligands, but when the latter
are present the population of conformers is shifted in favour of the closed conformations,
thus excluding water molecules from the catalytic region.

The structural architecture of Adk strongly affects its internal dynamics (145 [15):
the functionally-oriented fluctuations proved to be consistent among adenylate kinase
molecules from a variety of organisms with low sequence similarity (13} [14), thus sug-
gesting that the relative positioning of the secondary and tertiary structure elements
shapes the collective dynamics of a protein.

This relation, which bridges the three-dimensional structure of a protein and its
functionally-relevant collective dynamics, represents the main topic of the present the-
sis.

The functional relevance of proteins’ internal dynamics was not evident at the early
stage of protein science. The first hypothesis on the functioning of enzymes, formulated
by Emil Fischer in 1894 and commonly known as the lock-and-key model (see Fig.
, depicts these biomolecules as rigid units with a defined shape. The interaction
between two enzymes was thought to depend on the complementarity in the shape of
the surfaces.

The lock-and-key model represented a brilliant molecular intuition about enzyme
catalysis, since no protein structure was available at the time. Nonetheless, the lim-
itations of this model became evident when the very first crystallographic structures
of globins were resolved. In fact, the unbound structure of hemoglobin (see Fig. |3)
showed that the channel connecting the surface to the heme groups is too narrow to
allow the oxygen transit. This observation made clear that a more accurate protein

xiv



Figure 1: Open and closed crystallographic structures of adenylate kinase - The
open (panel a) and closed (panel b) crystallographic structures of 214-residue-long E. Coli
adenylate kinase are here shown in cartoon representation. This molecule is customarily
subdivided in three domains: the core (in gray), the Lid and the AMP-binding domain
(both in blue). The two crystallographic structures have a RMSD of about 7A.

substrate

active site

enzyme enzyme enzyme
+ +
substrate products

Figure 2: Lock-and-key model of protein-ligand interaction - The cartoon illus-
trates schematically the lock-and-key model of protein-ligand interaction. In the first stage,
the ligand fits in a pocket of the protein having a complementary shape; the catalysis then

takes place, and the products are released.

XV



0. INTRODUCTION

model had to include conformational plasticity and allow for conformational changes
of the structure.

Figure 3: Crystallographic structure of hemoglobin - The crystallographic structure
of bound-state hemoglobin (in cartoon and Van der Waals representation) is shown. The
heme group is buried in a pocket the oxygen cannot reach, due to steric interactions. A
conformational change is therefore needed to widen the aperture.

Consistently with the previous considerations, the apo and holo forms of several
proteins and, particularly, enzymes, are found in different crystallographic conformers.
This fact supports the relevance of conformational plasticity/elasticity for function.
In particular, several enzymes possess, in physiological conditions, two main confor-
mations -usually called open and closed- and interconvert between these two states
to perform the catalytic activity: adenylate kinase (Fig. [1f) is a typical example of a
molecular switch. The open and closed conformers are commonly associated to minima
or basins of a free energy profile in a multi-dimensional coordinate space describing the
conformations of the protein: the interconversion between the two types of conform-
ers is therefore interpreted as arising from the overcoming of the free energy barrier
separating the minima.

The presence of a partner substrate (another protein or a different type of molecule)
can modify the free energy profile, and in particular the relative depth of the basins and
the height of the barriers. In this case, a set of functionally-active conformations can
become more populated with respect to the equilibrium state, favouring the protein-
ligand interaction. This picture is usually termed induced fit model.

The internal dynamics of adenylate kinase has been considered for a long time an
example of induced fit. It was thought that the interconversion between these two con-
formations was triggered only by the presence of the ligand. However, as single-molecule
experiments (19) have later shown, the two stable conformations of the molecule can
be well populated even in absence of the substrate. This points to the predisposition of
Adk’s internal dynamics to bridge the open/closed conformations and to its capability

xXVi



to overcome the free-energy barriers separating the two reference states, consistently
with indications from atomistic molecular dynamics simulations (15} 20; 21)). In this
case, the protein spontaneously undergoes thermally-activated large-scale conforma-
tional changes by jumping across different free energy minima; the ligand does not
trigger the structural changes, but rather tends to bind to those molecules already
having an appropriate conformation. This model is called conformational selection.

Induced fit and conformational selection are two of the most common and studied
mechanisms of protein-substrate interaction; nonetheless, all intermediate cases can
occur, depending on the effective number of free energy minima associated to equilib-
rium structures and their relative depth, and also on the influence of the ligand on the
properties of the free energy profile.

The paramount importance of internal dynamics for the biological function of a
large number of proteins stimulated the development of many different strategies to
analyse the flexibility properties of these molecules. Specifically, a variety of tools have
been designed to investigate protein internal dynamics in terms of collective degrees of
freedom, aiming at a simplified picture of the structure and dynamics; coarse-grained
descriptions, in fact, can be valuable resources to understand the salient aspects of the
relation between structure, internal dynamics and biological function of a protein.

A large fraction of the work I carried out during my Ph.D. has been devoted to
the study of the flexibility properties of globular proteins, and their relation with their
structure and biological function. In particular, I focused on the development of coarse-
graining strategies to subdivide a protein in a few groups of amino acids, based on their
concerted movements. The resulting simplification of the protein structure is in turn
used to characterise the large-scale fluctuations of the molecule focusing on the collective
properties of the motion.

The similarity of the concerted movements among structurally different proteins
motivated the investigation of the possibility to ascertain nontrivial structural similar-
ities on the basis of good dynamical consistency. Dynamics-based alignment methods
have been, in this respect, the pivot of the study of the dynamics-mediated relation
between structure and biological function.

As a side topic, I worked on the possible sequence and structural relations occurring
among proteins in different topological states. The vast majority of the available pro-
tein structures are unknotted. Nonetheless, a small but non-negligible fraction of the
available chains unambiguously show to be knotted. The use of sequence and structure
alignment methods supply the appropriate framework to perform a dataset-wide com-
parative analysis, providing insight into the unusual properties of knotted proteins.

The material presented in this thesis is organised as follows:
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0. INTRODUCTION

The first chapter is devoted to a brief summary of the basic techniques commonly
used to characterise protein’s internal dynamics, and to perform those primary anal-
yses which are the basis for our further developments. To this purpose we recall the
basics of Principal Component Analysis of the covariance matrix of molecular dynamics
(MD) trajectories. The overview is aimed at motivating and justifying a posteriori the
introduction of coarse-grained models of proteins.

In the second chapter we shall discuss dynamical features shared by different con-
formers of a protein. We’ll review previously obtained results, concerning the univer-
sality of the vibrational spectrum of globular proteins and the self-similar free energy
landscape of specific molecules, namely the G-protein and Adk. Finally, a novel tech-
nique will be discussed, based on the theory of Random Matrices, to extract the robust
collective coordinates in a set of protein conformers by comparison with a stochastic
reference model.

The third chapter reports on an extensive investigation of protein internal dynam-
ics modelled in terms of the relative displacement of quasi-rigid groups of amino acids.
Making use of the results obtained in the previous chapters, we shall discuss the de-
velopment of a strategy to optimally partition a protein in units, or domains, whose
internal strain is negligible compared to their relative fluctuation. These partitions will
be used in turn to characterise the dynamical properties of proteins in the framework
of a simplified, coarse-grained, description of their motion.

In the fourth chapter we shall report on the possibility to use the collective fluctu-
ations of proteins as a guide to recognise relationships between them that may not be
captured as significant when sequence or structural alignment methods are used. We
shall review a method to perform the superposition of two proteins optimising the simi-
larity of the structures as well as the dynamical consistency of the aligned regions; then,
we shall next discuss a generalisation of this scheme to accelerate the dynamics-based
alignment, in the perspective of dataset-wide applications.

Finally, the fifth chapter focuses on a different topic, namely the occurrence of
topologically-entangled states (knots) in proteins. Specifically, we shall investigate
the sequence and structural properties of knotted proteins, reporting on an exhaustive
dataset-wide comparison with unknotted ones. The correspondence, or the lack thereof,
between knotted and unknotted proteins allowed us to identify, in knotted chains, small
segments of the backbone whose ‘virtual’ excision results in an unknotted structure.
These ‘knot-promoting’ loops are thus hypothesised to be involved in the formation of
the protein knot, which in turn is likely to cover some role in the biological function of
the knotted proteins.

The material presented in this thesis is largely based on the following publications:
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Part 1

Coarse-grained modelling of

protein structure and dynamics






Protein internal dynamics: from
all-atom simulations to

coarse-grained models

1.1 Computational methods to investigate protein inter-

nal dynamics

Molecular Dynamics (MD) approaches are among the most common computational
strategies used to characterise the thermodynamics and kinetics of proteins. These
methods have experienced an outstanding growth, allowed by the availability of fast
computers and reliable and free software packages. The transferable formulation of the
force-fields permits to simulate many different classes of biomolecules for constantly
increasing time spans, gaining insight in their physical and chemical properties with
unprecedented detail.

A Molecular Dynamics simulation consists in the numerical integration of the equa-
tions of motion of a molecular system, which can be performed with different degrees of
structural detail and interaction force fields. The simulations can be quantum or clas-
sical; the latter scheme, in particular the atomistic approach, had a deep development
in the last decades.

In atomistic MD all atoms of the molecules are taken into account; the interac-
tions among them are reproduced with empiric force fields which incorporate Van der
Waals forces, dihedral penalties, screened electrostatics etc. The time evolution can
be performed integrating the Newton equations of motion (constant energy simulation
of the NVE ensemble); nonetheless, it is usually preferred to introduce some degree of
stochasticity making use of thermostats to keep the temperature constant (NVT ensem-
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SIMULATIONS TO COARSE-GRAINED MODELS

ble). In a present-day MD simulation the constant temperature dynamical evolution
of a protein can be followed for time scales ranging from the hundredth of ns to the
millisecond.

Solvent molecules can be accounted for explicitly (with one or more atoms per water
molecule) or implicitly, introducing an effective interaction to take into account its
effects; a very simple and used scheme to perform implicit-solvent simulations is given
by Brownian dynamics, in which each atom of the system is subject to a stochastic
force, mimicking the resultant of the solvent molecules’ random impacts, and to a
velocity-dependent friction force absorbing the excess momentum, consistently with
the fluctuation-dissipation theorem.

A single MD trajectory produces a considerable amount of information, since the
full atomistic detail of the molecule is taken into account. A powerful yet standard way
to extract from this wealth of information the few collective degrees of freedom that
most account for the molecule’s structural fluctuations is the calculation and analysis
of the covariance matrix.

The first step of this procedure consists in the alignment of all the frames of the
simulation: in fact, during the time evolution, unless properly constrained the sim-
ulated molecule performs a diffusive motion in space. This motion, consisting of a
roto-translation of the protein, introduces a spurious mobility which must be removed;
it is worth to highlight, nonetheless, that this roto-translational motion can be unam-
biguously removed only for a true rigid body.

Once all the frames are aligned, it is possible to identify a reference structure i, for
example the average structure or, more properly, the instantaneous structure closest to
it. The covariance matrix is then given by the following expression:

Cijpur = (i = 10, (T = 15,)) = (orf'ory) (1.1)

where 7; , is the p-th cartesian component of the i-th amino acid position, and the
angular brackets indicate the time average.

A widely used technique to analyse the covariance matrix is the principal component
analysis (PCA) (22} 23)), consisting in the diagonalisation of the matrix and the study
of its modes of fluctuation. The latter satisfy the equation:

Cty = AUy (1.2)

where ¥y are the eigenvectors of the covariance matrix and Ay are the corresponding
eigenvalues. The mean square fluctuation of the protein, given by MSF = Y, (|7 —0|?)
is by definition the trace of the covariance matrix; therefore, an equivalent way to obtain

the MSF is to sum the covariance eigenvalues:



1.1 Computational methods to investigate protein internal dynamics

MSF =Y (|7 =i =>" A (1.3)

% 1

The modes having the largest covariance eigenvalues describe those degrees of free-
dom which best capture the large-scale conformational changes. It has been shown (23])
that a few modes of the covariance are sufficient to take into account a large fraction of
the protein mobility. The small subspace of these vectors, usually called essential space,
is therefore the starting point of many analyses aimed at characterising the molecule’s
flexibility and internal dynamics.

A possible way to characterise the motion of the molecule in terms of the eigenmodes
of the covariance is to project onto these vectors the instantaneous displacement:

pi(t) = 67 (t) - o (1.4)

—

where 07(t) = 7(t) — 7°, and @ is the f-th vector of the covariance matrix. Go
(24) showed that the histograms of the collective variables p‘(t) are characterised by a
unimodal distribution for time spans of the order of the ns; this property is progres-
sively lost as longer time intervals are considered. As an example, Fig. shows the
normalised distribution of the projection, on the first mode of the covariance, of in-
creasingly long time intervals of a 50-ns long simulation of adenylate kinase performed
by Pontiggia et al. (15).

-15 -10 -5
Projected displacement [ nm ]

15

Figure 1.1: Normalised distribution of a MD trajectory of Adk projected on
the first mode of the covariance - The unimodal character of the distributions, which
is preserved for time spans up to 10 ns, is progressively lost in favour of broad, multimodal
distributions as the time interval is increased. Picture taken from ref. (25).

In the Introduction we mentioned the tight relation between collective conforma-
tional changes and the functional-oriented movements performed by many proteins.
The collective modes of the covariance matrix play a central role in understanding
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a protein’s internal dynamics and its biological function. Unfortunately, in order to
obtain reliable information from the covariance matrix it is required that the MD sim-
ulation has sampled a sufficient fraction of the relevant phase space; this condition can
be difficult to realise due to the important computational effort required by simulations
covering a long enough time span and/or involving large proteins. This limitation can

be overcome making use of coarse-grained models of protein structure and interaction.

1.2 Coarse-grained models of proteins

The collective character of the conformational changes occurring in many proteins opens
a priori the possibility that the functional-oriented internal dynamics can be captured
by simplified models of the structure and interactions. In the following, we shall give
a brief account of the methods commonly employed to characterise the low-frequency
and low-energy fluctuations of proteins under the assumptions of local deviations from

a reference structure.

1.2.1 Normal Modes Analysis

The short-time internal dynamics of proteins is characterised by high-frequency vibra-
tions in local minima of the energy (26). These minima describe small-scale defor-
mations of the molecule, such as rotational motions of the side-chains about dihedral
angles; the energetic barriers separating two minima are very small (below KpT') and
are easily overcome by the molecule, which moves from a minimum to a nearby one on a
timescale of the order of the ps (26). The effective dimensionality of the configurational
space, in which these minima are embedded, is so large that the probability to visit
twice the same minimum is negligible; the protein is therefore assumed to perform a
diffusive motion in this space.

For a given reference structure, the usual way to obtain the local vibrational spec-
trum is the following. First, the energy is minimised with a steepest-descent procedure
in order to bring the original configuration to a new one in the minimum of the energy.
This practice is required due to the fact that crystallographic structures do not corre-
spond to minima of the empiric force field used to parametrize the molecule internal
energy; moreover, they might also be affected by crystal packing effects resulting, for
example, in unnaturally stretched bonds.

The energy F is next expanded in terms of the displacements from the minimum
0

structure 7, according to the Taylor formula:
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The constant term E(7°) can be neglected since it simply represents a shift of the
energy level; on the other hand, the extremality condition requires the first derivatives
of the energy to vanish at 7. Therefore, the first non-zero contribution to the energy
in the neighbourhood of the minimum is given by the quadratic term:

ory’ o1y (1.6)

where, as customary, 6rt' = r;, —r In the most widely used force fields the

0

e
energy is a sum of pairwise interactions lfetween atoms, and the single terms depend
only on the distance separating two atoms. In particular, in the neighbourhood of the
minimum, the reference structure allows to consider the variations of the distance with
respect to the rest configuration: without any loss of generality, we shall assume that
the pairwise energy depends on the absolute value of the distance variation. Therefore

one has:

E(r) = ZEij(ldij—d%l) (1.7)
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1. PROTEIN INTERNAL DYNAMICS: FROM ALL-ATOM
SIMULATIONS TO COARSE-GRAINED MODELS

where the symbol d;; is the Kronecker delta, and cz% is the unit distance vector
between atoms ¢ and j. The Hessian matrix H contains all the relevant information
about the energy profile in the proximity of the reference structure. If the higher order
terms of the expansion are neglected, the dynamics is governed by Newtonian equations
of motion:

MrF = —HF (1.9)

where M indicates the mass matrix. The general solution of these equations is
given by a linear superposition of eigenvectors of the mass-weighted Hessian matrix,
M~Y2HM=1/2 These modes represent the collective degrees of freedom of the pro-
tein’s vibrations; the eigenvectors associated to the lowest eigenvalues oscillate with the
slowest frequency, and represent the concerted vibrations involving the simultaneous
displacements of a large number of atoms. The study of these modes is commonly
known as Normal Mode Analysis (NMA).

Unfortunately, the procedure described above to obtain the low-energy vibrational
spectrum of a protein (energy minimisation, calculation of the all-atom Hessian, diag-
onalisation) requires a considerable computational effort to characterise minima of the
energy in which the system dwells for a few femtoseconds. In her seminal paper, M.
Tirion (27)) suggested a dramatic simplification of the energy; in particular, she pro-
posed to replace the atomistic pairwise interaction terms with simple Hookean springs
between all atoms within a given cutoff distance R.:

1 1
Eij(7, 7)) = 5K Aij (dij — di;)? = 5(WH 67 4 O(67)3 (1.10)
Ajj = 0(R. — dj))

This model is related to the second order Taylor expansion in Eq. by the
substitution:

Cij = KAZ‘j (1.11)

The low-energy modes of vibration obtained with this very simple model remarkably
reproduced, after appropriate tuning of the elastic constant, those resulting from the
diagonalisation of the Hessian. More interestingly, it was found that the low-energy part
of the spectrum was essentially unchanged if different values of the cutoff radius R, were
used, ranging from 1.1 to 2.5 A. This result suggested the hypothesis that the salient
features of a protein’s collective internal dynamics are not sensitive to the fine-grained
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detail of the interaction. The possibility to obtain important informations about the
concerted, functionally-relevant motions of a protein making use of simple harmonic
force fields, has been thoroughly investigated (28; 29 B30; B1; B32; B33)) and represents
the basis for a number of applications, including those that shall be discussed in this
thesis.

1.2.2 Elastic Network Models

The time-scales probed by the protein dynamics described in terms of the Hessian
matrix are of the order of the picosecond (34 [35). In a larger time scale, the protein
visits many energy minima and explores the corresponding equilibrium conformations.
The quadratic expansion of the energy is therefore not applicable in this case.

Nonetheless, in many cases MD simulations have shown that the protein undergoes
pronounced fluctuations around a well-defined reference structure, indicating that the
several ‘tiny’ local energy minima are embedded in a broader minimum of the free
energy, as pictorially sketched in Fig. (36)).

Figure 1.2: Pictorial representation of the free energy landscape of a protein -
The conformational space of a protein, here assumed to be described by a single coordinate,
is characterised by a large number of small energy minima, in which the molecule undergoes
small-scale vibrations. The convolution of these minima forms a large well of the free energy,

which can be approximated with a quadratic potential.

This minimum can be parametrized in the same spirit of the simplification of the
energy suggested by Tirion, i.e. assuming pairwise interactions between atom pairs
quadratically penalising the deviations of the relative distance from the reference value.
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Moreover, a further approximation can be done, taking into account the result shown in
the previous paragraph concerning the mild dependence of the low-frequency spectrum
from the atomistic detail. In fact, the conformational rearrangements that the protein
undergoes during the time-scales of interest are much larger than those explored in
an energy minimum: in this case, the small variations of a side chain dihedral angle
will not change appreciably the free energy; at the same time, the latter cannot take
into account such minutize. Therefore, the fine atomistic details of the protein can be
neglected, and a single atom can be retained to represent an amino acid - typically the
C, atom. These phenomenological, coarse-grained models of a protein are commonly
known as FElastic Network Models (ENMs).
The elastic network free energy (the Hamiltonian) of the protein is given by:

H = % > ork vl ory (1.12)
1],V

where the variables 074" indicate the displacement of the i-th Cf, from its reference
position, r?, along the p-th direction. The Hamiltonian H presents a strict formal
analogy with both the Hessian matrix and the simplified quadratic model of Tirion;
The difference with respect to these models is that the M matrix is built a priori on the
basis of the sole structural information, and its detailed form and properties depend on
the specific elastic network model under exam.

The equilibrium dynamical properties of a protein described as an elastic network
can be obtained with the use of the partition function formalism. In fact, the covariance
matrix is calculated as an equilibrium average:

1 P,
(3,7]." = (0zf'ox}) = Z/@[éf]e_ﬁéézmrémféx; (1.13)
— /@[557’]@5555”55

where Z indicates the partition function of the system, and § = 1/KpgT is the
inverse temperature. The calculation of the covariance matrix elements can be per-
formed exactly introducing an auxiliary field in the Hamiltonian and differentiating the

partition function, as follows:

217 = /D[M]e—ﬁ[;&fmaﬂfaf] (1.14)
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T (=82 20T |y BOJLOTY |1
- 1 .
Fl ]—*Blog(z[ D)

10



1.2 Coarse-grained models of proteins

Performing the substitution:

67 = 65+ JM ! (1.15)

one obtains the following form for the partition function (observe that the integral
is not affected by the change of variables since the extremes of the integrations are
+o0):

Z[J] = /9[5me—ﬁ[éémﬁ—éfﬂvt‘lﬂ =2 ez (1.16)

The derivation of the last equation, according to the Eq. thus gives:

_1 2°FJ]
BOJID.TY

_ KpT
7o 9

el = M1 (1.17)

The above calculation shows that the covariance matrix of amino acid displacements
can be exactly calculated, in the framework of a quadratic ENM, simply performing
an inversion of the interaction matrix M (provided that the null modes are excluded
from the spectral decomposition). The eigenvalues of the interaction matrix are related
to the relaxation time of the collective deformations of the molecule described by the
corresponding modes: smaller eigenvalues of M, or equivalently larger eigenvalues of
C, are related to large-scale, collective fluctuations involving the coherent motion of a

large number of amino acids.

1.2.3 The (-Gaussian Model

In this paragraph we describe the specific elastic network model, namely the g-Gaussian
model (S-GM hereafter) introduced by Micheletti et al. (37), that will be largely used
throughout this thesis.

In this model the protein is described in a two-centroids representation per amino
acid: a C, carbon and an effective Cg representing the side-chain. The use of two atoms
per amino acid determines a negligible increase in the computational complexity; on
the other hand, the mobility of the residues calculated with this approach reproduces
with higher accord the experimental B-factors with respect to one-centroid models. In
fact, in the latter formulation a large and unphysical cutoff radius of ~ 10 A must be
used, in order to prevent the system from having more than 6 null modes. Contrarily,

11
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SIMULATIONS TO COARSE-GRAINED MODELS

if two centroids are used the network is more constrained, and the cutoff radius can be
lowered to ~ 7 A without introducing non-rototranslational null modes.

In the 3-GM, the motion of the U3 is constrained by geometrical relations to follow
the displacement of the neighbouring atoms. The position 7cp(i) of the i-th sidechain
centroid is in fact expressed by (38):

QFCA(i) — FCA(i + 1) — FCA(i — 1)
‘ZFCA(i) — FCA(i + 1) — FCA(Z' — l)|

rop(i) = Toa(i) +1 (1.18)
The parameter [, fixing the distance from the C, and its effective sidechain atom,
is usually assigned a value of 3 A. For amino acids at the beginning/end of the peptide
chain(s), or for glycine atoms, the construction of Eq. is not applicable: in these
cases the effective centroid is taken to coincide with the C,, atom.
The effective energy among the atoms of the model is built as a sum of pairwise
Hookean interactions, as in Eq. The total energy is given by:

Esam = (1.19)

/ /
> 37 B + Y BUAEA) + 3 B0 3 Blacr-cn)
7

i<j i i<j

The first term in Eq. takes into account the chain connectivity; in order to
reflect the strength of the covalent peptide bond a factor 2 is put in front of the sum-
mation. The following terms describe the interaction between non-consecutive atoms,
and the summations are restricted to those pairs whose distance lies within the cutoff
radius, as indicated by the primed sums. In the spirit of Tirion (27)), all terms have the
same strength.

The pairwise interaction terms, which depend only on the coordinates of the Cl,
atoms, admit an expansion as in Eq. [I.8] leading to a quadratic Hamiltonian:

Esonr = — Z ort HIY orY (1.20)
15,1V
This model allows for an efficient and reliable calculation of the low-energy space of
a protein, and has been applied to a number of cases in different contexts (37} [39; [40).
In the present thesis, the 5-GM will be a pivotal gear of many algorithms, whose
application will provide a deeper understanding of the internal dynamics of proteins.

12



Common features in protein
internal dynamics and
identification of relevant

collective variables

In the previous chapter it was shown that salient features of protein internal dynamics
can be captured by coarse-grained models, where the small-scale details of structure
and interactions are neglected. This fact, which was proven a posteriori, prompts
the following question: is it possible to identify conserved dynamical features among
different conformational states of the same protein?

The covariance matrix of a MD simulation and the analysis of its principal compo-
nents are among the most commonly used methods to extract the relevant information
from the ensemble of protein conformers. Garcia (22) and, later, Amadei (23) showed
that a few top eigenvectors of the covariance matrix, having the largest eigenvalues,
account for a large fraction of the protein’s mobility. Moreover, the studies of refs.
(15} 235 24) highlighted the non-harmonic character of these modes, in contrast with
the essentially Gaussian behaviour of higher energy fluctuations. These observations
suggested that a small subset of collective variables, namely the top-ranking modes
of the covariance, capture the relevant, functionally-oriented properties of a protein’s
internal dynamics.

Nonetheless, this reduction of the effective internal dynamics space can be reliably
carried out only for long enough simulations. To show this, Hess (41]) considered the
PCA of a high-dimensional random diffusion, consisting in 120 independent Brownian
processes in Euclidean space. Statistical features of this simple reference model were

13
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IDENTIFICATION OF RELEVANT COLLECTIVE VARIABLES

found in MD simulations of proteins of about 200 residues, covering time spans of a
few ns. In both systems, for example, the amplitude of the top modes of the covariance
were cosines with frequency proportional to the mode rank.

This similarity showed that for short simulated time intervals robust properties of
the protein internal dynamics might not be captured by a PCA. In particular, if only a
small fraction of the conformational space has been sampled, the motion of the molecule
is mainly due to noise, in spite of the fact that the first few modes of the covariance
are sufficient to capture a large fraction of the mean square fluctuation.

A method to validate the robustness of the essential space is to compare the es-
sential dynamics spaces of two subsets of the same MD trajectory (23} 41)), i.e. to
measure the degree of internal consistency between the top-ranking modes of the two
sub-trajectories’ covariance matrices.

Various measures have been proposed to estimate the similarity of sets of vectors
rather than single pairs; one of the most simple and widely used is the Root Mean

Square Inner Product:

RMSIP = | > ()2 (2.1)

n
l,m=1

Notice that in Eq. the consistency of the linear space spanned by the first
n modes of the covariance is measured without reference to the difference in their
eigenvalues, which are thus treated as degenerated.

This quantity represents an extension of the scalar product to subspaces of vectors
having the same dimensionality. If the two sets describe the same manifold the RMSIP
is equal to one, while it is zero for orthogonal subspaces. The consistency of two
subspaces can be easily ascertained comparing the value of their RMSIP with a reference
distribution, obtained for example comparing unrelated vectors (15)).

Unfortunately, no criterion exist for establishing a priori the number n of top modes
that should be retained to describe well the protein internal dynamics: the value of n
is, in fact, customarily taken equal to 10 by a pure convention. Moreover, the results
discussed so far showed that the eigenvalues alone are not sufficient to decide a priori
if a given set of these modes comprise the robust dynamics, nor to be sure that this
information results from a converged simulation.

The study discussed in this chapter is aimed at establishing which subset of a pro-
tein’s low energy modes is robustly shared by the various configurations that altogether
describe a conformational sub-state. The problem will be tackled from a ‘conforma-
tional ensemble’ perspective, in that we shall suitably compare the properties of a large
collection of protein structures. This approach therefore differs in spirit and formu-
lation from other existing schemes where the detailed kinetic history of the protein is

14
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analysed to ascertain if a given MD trajectory is sufficiently long to allow for a confident
determination of the low-energy modes. In the following section we shall review a few
results discussed in the literature to lay the ground of our method.

2.1 Common features in protein internal dynamics

2.1.1 Universal density of vibrational modes in globular proteins

The bulk density of globular proteins is typically comparable with that of molecular
crystals. General features of the latter, such as the vibrational spectral density at low
frequencies, depend essentially on their effective dimensionality. The curiosity might
thus arise, if proteins show ‘universal’ vibrational features similar to molecular crystals.

One of the first attempts to identify shared features among different globular pro-
teins was performed by Ben Avraham (42)). In this work, the number densities of
vibrational modes, g(w), from five different globular proteins were compared. The
spectra, obtained through a normal mode analysis of the quadratic approximation of
the potential energy, showed a striking superposition of the g(w) (see Fig. for
proteins whose difference in length spanned one order of magnitude.
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FIG. 1. Density of vibrational normal modes, g (w), of g ac-
tin (O) lysozyme (A), ribonuclease I (A ), BPTI (V), and cram-
bin (@) as a function of frequency.

Figure 2.1: Density of vibrational normal modes of different proteins - Figure
reproduced from the paper by Ben Avraham (42]).

Another peculiar result is given by the spectral dimension of the ‘universal’ vibra-

tional spectra. From the analysis of the number densities of the modes it turned out
that g(w) ~ w. According to the definition of spectral dimension, d:

g(w) = wh ! (2.2)
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one obtains that ds = 2. Consequently, the low-frequency vibrational spectrum of
proteins is comparable to the one of two-dimensional crystals. A possible explanation of
this fact can be found in the tight backbone bonds, which reduce the effective number of
degrees of freedom to 2 per amino acid, at least for the low-energy modes of fluctuation.

These results indicate that general properties of low-energy vibrations are shared
by different proteins. It is therefore expected that local fluctuations of a protein with
respect to different conformers, as they can be obtained in a MD simulation, show
a large consistency. The lack of the latter, in turn, is likely to reveal features of
the molecule’s internal dynamics that cannot be ascribed to the noise, that is the
unavoidable stochasticity that accompanies MD simulations of large molecular systems.

2.1.2 Self-similarity of free-energy landscape of G-protein and adeny-
late kinase

One of the most striking properties of many proteins is the innate character of their
internal dynamics, depending only on general features of the structure (13)).

In (43) Pontiggia et al. performed four different 100-ns long MD simulations of
immunoglobulin binding domain of protein G (GB1). The analysis of the trajectories
showed that the distributions of the motion projected on the top eigenvectors of the
covariance matrix have a unimodal, quasi-harmonic character at the beginning of the
simulation, which is lost after a few ns. Accordingly, the time evolution of the eigen-
values resulted in a progressive decrease of the effective frequency of the slow modes,
suggesting a broadening of the quadratic well approximating the free energy landscape
explored progressively by the trajectory.

These results are suggestive of the limited range of applicability of the harmonic
approximation of the free energy. Nonetheless, if on the one hand the harmonic ap-
proximation of the free energy profile showed to be valid only for the first ns of the
simulation, on the other hand a remarkable consensus was found among the principal
directions of fluctuation explored corresponding to the low-energy modes of the protein.

In order to quantify the degree of similarity shared by two subspaces, each con-
stituted by N orthonormal vectors, Pontiggia et al. calculated the RMSIP between
the top ten modes of the covariance obtained from the first ns of the first simulation
and those obtained considering increasing time intervals of all four trajectories. The
resulting time-dependent RMSIP spanned values ranging between 0.6 and 0.7: the sta-
tistical significance of this result was established by comparison with the distribution
of RMSIP of two randomly picked sets of orthonormal bases, which returned a value
of 0.24 + 0.02.

The robustness of the low-energy, collective directions of fluctuations among the
four trajectories of protein domain GB1 also emerged from the analysis of a 50-ns long
MD simulation of Adk (I5)). During this 50-ns simulation the molecule explored many
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internal dynamics: a Random Matrix Theory approach

different free energy minima, or sub-states. The latter are defined as structurally homo-
geneous, continuous intervals of the MD trajectory: within each sub-state, the protein
fluctuates around a well-defined average structure. The identification of the optimal
subdivision of the trajectory in a given number of sub-states is performed minimising,
over all possible partitions in continuous intervals, the mean square fluctuation internal
to each sub-state.

A remarkable consensus of the dynamics of this protein was found, not only among
the fluctuations internal to the structurally-homogeneous trajectory sub-states iden-
tified, but also among the modes connecting the different sub-states. The functional
relevance of this self-similarity of the free energy profile was assessed by the high degree
of overlap which was found between the essential dynamical spaces and the difference
vector connecting the open and closed crystallographic structures of the protein.

The successful prediction of a protein’s modes of fluctuation making use of coarse-
grained ENM’s thus results from the fact that the essential dynamics is generally shared
among the sub-states; as a consequence, all sub-states can be used to obtain the essential
spaces. On the other hand, the amplitudes of the modes are out of direct control, so
that the most robust feature is the directionality of the essential modes.

2.2 Identification of relevant modes of fluctuation in adeny-
late kinase internal dynamics: a Random Matrix The-

ory approach

The cases discussed so far showed that robust features of the internal dynamics can
coexist with general properties common to many different proteins. In fact, on the one
hand the collapse of the vibrational spectra observed by Ben Avraham is suggestive that
the coarse features are generally shared by all globular proteins; on the other hand, the
robustness of the collective fluctuations, corresponding to the top-ranking covariance
matrix modes of GB1 Adk, indicates that some internal dynamics properties of proteins
are conserved throughout the dynamical evolution.

Here we carry out a novel analysis, aimed at identifying which subset of a protein’s
low energy modes of fluctuation is robust with respect to differences in the reference
structure. In particular, we consider an ensemble of conformations of adenylate kinase,
obtained in the atomistic MD simulation of ref. (15). In order to characterise the
internal dynamics of these conformers, we make use of the [f-Gaussian ENM as a
proxy for the Hessian, in the spirit of ref. (27). Each instantaneous configuration
of Adk is thus taken as a reference structure for the -GM: the resulting ensemble of
covariance matrices describe the local fluctuation space of different, though structurally
homogeneous conformers of Adk.
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The statistical properties of the corresponding low-energy spaces will be compared
to those of a reference ensemble of random matrices: those modes, whose eigenvalues
markedly deviate from the universal distribution, are identified as the most robust with
respect to small structural differences.

In the following section a brief account of the basics of Random Matrix Theory is
given, to familiarise with the concepts that will be later used.

2.2.1 A brief account of Random Matrix Theory

The foundations of Random Matrix Theory date back to the 1950’s. Originally, en-
sembles of matrices having randomly-distributed entries were introduced as effective
models to describe the excited states of certain atomic nuclei.

At that time, in fact, no well-established theory accounted for a valid dynamical
model of the nucleus which could explain the cross-section spectra obtained experi-
mentally. In order to circumvent this limitation, Wigner (44) suggested a statistical
approach, relying on the complexity of the nuclear spectra. This proposition might
appear in contradiction with the fact that the time evolution of these quantum systems
is governed by a well-defined Hamiltonian; nonetheless, statistical concepts can be use-
ful - and often the only available tools to describe the average properties of complex
systems.

Wigner proposed a statistical theory which is somewhat diverse from the standard
approaches of Statistical Physics. In the latter discipline, in fact, one usually assumes
systems to be governed by a given Hamiltonian, and considers the time evolution of
the system starting from many different initial condition. On the other hand, Wigner
considered ensembles of systems governed by different Hamiltonians, sharing the same
symmetry properties. The basic assumption is therefore that we know nothing about
the system interactions but a few general constraints (e.g. conservation laws) which are
to be enforced. The basic models of this Theory consider finite-size N x N matrices sat-
isfying suitable constraints. The size N is kept finite for sake of computational feasibil-
ity; nonetheless these matrices model quantum Hamiltonians in an infinite-dimensional
Hilbert space, therefore the limit N — oo has to be taken at some stage, akin to the
thermodynamic limit.

Using early group—theoretical results by Wigner, Dyson showed that in the frame-
work of standard Schroedinger theory, there are three generic ensembles of random
matrices, defined in terms of the symmetry properties of the Hamiltonian. These en-
sembles are characterised by:

e Orthogonal symmetry, with time-reversal and rotational invariance

e Hermitian symmetry, where time-reversal invariance is violated
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e Time-reversal invariance, halfinteger spin and broken rotational symmetry

These three models, which are fundamentally group-irreducible, lay the basis of the
Theory.

The matrices of these ensembles are drawn from a probability distribution, whose
functional form must be compatible with the aforementioned symmetry requirements.
A flat, uniform distribution satisfies the constraints, but leads to divergent integrals.
Dyson therefore assumed the trace of the squared Hamiltonians to be Gaussian dis-
tributed:

Png(H) x exp <—]\£5TT[H2]> (2.3)

In the probability distribution of Eq. a normalisation factor has been neglected;
the factor N has been introduced to ascertain that the spectrum remains bounded in
the limit N — oo, and the constant ¢, independent of N, defines the width of the
distribution.

The choice of the 8 parameter and the appropriate symmetries define the ensemble:
for = 1 we have the Gaussian Orthogonal Ensemble (GOE); 5 = 2 defines the
Gaussian Unitary Ensemble (GUE); finally, for 5 = 4 we have the Gaussian Symplectic
Ensemble (GSE). All three ensembles are discussed in the context of Gaussian Random
Matrix Theory (GRMT).

Due to the Gaussian damping of the eigenvalues, in the thermodynamic limit the
support of the spectrum of these matrices is bounded in the interval —2¢ < \ < 2c¢.
Wigner derived the distribution of the eigenvalues, which has the shape of a semicircle
(the semicircle law):

o =2 (1 A)2 (2.4)

e 2c

Another important quantity which is investigated in the theory of random matrices
is the local spacing statistics; for eigenvalues A\, ranked in decreasing order, one is
interested in the the distribution of the Individual Eigenvalue Spacing (IES) s, defined
as (45):

Ak — Akt1
(A — Ait1)

The average (-) is taken over the matrix ensemble where each element is generated
with the weight of Eq. and, clearly, (s;) =1 for any k.

S = (2.5)
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Wigner (44)) proposed a form for the distribution p(s) of individual eigenvalue spac-
ings; this Wigner surmise, originally stated for = 1, has the form:

pgvs(s) = ags B exp(— bgs?) (2.6)
_ I (B+2)/2)
PTIR((B /)
I?((6+2)/2)

"= (5 1) 2)

The Wigner surmise shows a strong, S—dependent level repulsion at small spacings
and a Gaussian decay for large values of s.
An important extension to the Wigner surmise has been introduced by Brody (46):

pe(s) = cq(1+4 q)s?exp(—cys'™9) (2.7)
cg = T'(2+49)/(1+q)

For the orthogonal case (3 = 1) this expression interpolates between the Poisson and
the Wigner distributions; the mixing between the two functional forms is parametrized
by the phenomenological parameter q.

Eq. proved particularly effective to reproduce the spacing distribution of a class
of GOE matrices of particular interest, the Wishart-Laguerre (WL) (47 48) ensemble.
This ensemble includes N x N covariance matrices W of the form:

1 1
== Zk:xkxjk = Txxt (2.8)

where X is an N xT matrix containing N time series of 1" independent elements, and
the superscript t indicates transposition. The elements of the X matrix are drawn from
a Gaussian distribution with zero mean and fized variance, i.e. X;; ~ N(0, o) Vi, j.

Since W is the covariance matrix of a maximally random data-set, it is ideally suited
to serve as a term of reference to establish the non-random character of a covariance
matrix calculated from a MD trajectory. In particular, it can be used to ascertain how
many of the components are robust, i.e. non significantly affected by the ‘noise’ of the
MD simulation. This approach has been previously applied to analyse financial data
(49), internet routers networks (50), EEG data (51)) and atmospheric correlations (52)
among others. It appears therefore appropriate to investigate the statistical properties
of protein covariance matrices, C. Nonetheless, a generalisation of this model is needed,
in order to account for the symmetry properties of the Gaussian Orthogonal Ensemble
which are not shared by protein covariance matrices, as discussed in the following
section.
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internal dynamics: a Random Matrix Theory approach

2.2.2 Reference stochastic model of covariance matrices

The covariance matrix, G, of a protein, as appears in Eq. can be equivalently

written in terms of a matrix X defined as:

X, = dri(k) — (0r:) (2.9)

where k is a time index, and ¢ labels both the residue and the Cartesian coordinate.

The covariance matrix C is thus given by:

€5 = {(6r: — () (6 — {673))) = o 3 XigXe (2.10)
k

In the WL ensemble, the diagonal elements of the covariance matrix

Ciy = <((5ri — <5ri>)2> (2.11)

have the same value - namely, they are normalised to unity. The enforcement of
this constraint in the WL ensemble allows for the exact solvability of the model (53)).
Nevertheless, it makes inappropriate the comparison with protein covariance matrices,
where the variances corresponding to the C;; entries are not forced to be equal.

We thus turned to a generalised o-WL non-invariant model. Specifically, we con-
sidered an ensemble of N x T random matrices X describing N time-series with zero
average and standard deviation drawn from a uniform distribution. This choice, which
represents one of the simplest deviations from the WL ensemble, breaks the invariance
of the model under orthogonal transformations; this in turn prevents the applicability
of standard techniques to solve the problem analytically. However, the latter can be
straightforwardly tackled computationally, so to obtain numerically the distributions
of the spacings for this model.

In spite of the introduction of unequal diagonal elements of the covariance matrices,
the Brody distribution provides a valid model for the spacings of this ensemble’s eigen-
values. In Figs. 2.2]—[2:3] we plotted the histograms of the first 3 and the 9th spacings,
obtained from a set of 10* rectangular matrices with N = 10 and 7' = 20. From the
inspection of Figs. - it can be seen that the histograms are well approximated
by a one-parameter fit with the Brody distribution, with the ¢ value ranging from 1.2
for the first spacing to ¢ = 0.84 for all the remaining 8 spacings. The Brody distribution
may therefore be used as the stochastic reference against which we can compare the
spacing distributions of covariance matrices lacking orthogonal invariance.
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2. COMMON FEATURES IN PROTEIN INTERNAL DYNAMICS AND
IDENTIFICATION OF RELEVANT COLLECTIVE VARIABLES
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Figure 2.2: Distributions of the 1st and 2nd spacing of the o-WL ensemble -
The distributions of the 1st and 2nd spacings here shown have been obtained from a sample

of 10* random matrices of rank 10 built according to the o-WL model.
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Figure 2.3: Distribution of the 3rd and 9th spacing of the ¢-WL ensemble -
Distributions of the 3rd and 9th spacings.
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2.2 Identification of relevant modes of fluctuation in adenylate kinase
internal dynamics: a Random Matrix Theory approach

2.2.3 RMT analysis of an ensemble of covariance matrices

We applied our analysis to the 4000 MD ‘frames’ of the shortest (2 ns) structurally-
homogeneous interval of the simulation of Adk discussed in (15). Each frame was taken
as the reference structure for the 5-GM, so to obtain the corresponding ensemble of
covariance matrices.

For each matrix we computed the eigenvalues and level spacings, whose statistical
properties were compared with the predictions of random correlation matrices.

Together with the spectra of the ‘bare’ eigenvalues {)\éj )} (the ¢-th eigenvalue of j-th
CM sample, ranked in decreasing order), we also considered the eigenvalues normalised
to the trace of the covariance matrix:

()
Gy._ 1 A 2.12
e = BN —6) Th[e0)] (2.12)

where N = 214 is the length of the protein. The u’s are thus normalised so that
their sum reproduces the number of degrees of freedom.

The first quantity we analysed is the fraction of motion captured by the first n
modes:
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and plotted in Fig. As expected, the very first eigenvalues capture more than
70% of the protein’s overall mobility; this feature is consistently preserved throughout
the simulated time span, as indicated by the relatively small error bars.

In order to statistically characterise the k-th ranking eigenvalue we plot, in Fig.
its relative dispersion (stdev/mean) vs. its index ¢: a low ratio signals a strong
localisation. The p’s display a constant value, suggesting stability in the distribution
of the fraction of total mobility captured by each mode. In comparison, the relative
dispersion of the un-normalised \’s rapidly decay to very low values after crossing the
range spanned by the p’s approximately between the 3rd and the 4th eigenvalue. The
broad dispersion of the A; for low k suggests that the amount of internal dynamics, in
absolute value, captured by the first few modes of the covariance can vary depending
on the conformation that is taken as the ENM reference structure. On the other hand,
the low and fairly constant relative dispersion of the p’s indicates that the fraction
of the MSF, which is captured by the low-energy modes, is much less sensitive to
small structural differences. This result points at a possible discrepancy between the
statistical properties of the two eigenvalue sets.
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2. COMMON FEATURES IN PROTEIN INTERNAL DYNAMICS AND
IDENTIFICATION OF RELEVANT COLLECTIVE VARIABLES

fraction of captured internal fluctuation
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Figure 2.4: Cumulative fraction of the internal fluctuation of Adk as a function
of the number of modes - The figure shows the average fraction of the protein’s
fluctuation f,, -defined in Eq. 2.I3} as a function of the first n eigenvalues; the error bars
are calculated as standard deviations. The inset shows the detail of the curve for values of

fn larger than 0.96: the error bars are of the order of 1%.
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Figure 2.5: Relative dispersion of the eigenvalues of Adk - The relative dispersion
of the eigenvalues (defined as standard deviation in units of the mean) is shown for the
bare (black curve) and normalised (red curve) eigenvalues. The former show a rapid drop

to small values, while the normalised ones remain almost constant.

24



2.2 Identification of relevant modes of fluctuation in adenylate kinase
internal dynamics: a Random Matrix Theory approach

In contrast with the latter expectation, the spacing distributions in the ‘bulk’ of the
eigenspace show a remarkably universal pattern. In Figs. and the distributions
of the X’s and s are fitted with a Brody distribution. With a 2 test, the consistency
with the null-hypothesis reference distribution can be rejected with high confidence
(1% level) for the first 3 spacings in both cases. The subsequent ones instead, give
overall quite a good agreement with the Brody distribution fit, with a fit parameter
q =08+ 0.1H Note that the same ¢, within the statistical bounds, fits the spacing
distribution for the null o-WL model, which is remarkable given the simplicity of the

reference model.
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Figure 2.6: Level spacing distributions of the bare ()\) eigenvalues - Left panel:
level spacing distributions of the first 3 ;. Right panel: samples of \; spacings from the
bulk.
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Figure 2.7: Level spacing distributions of the normalised (1) eigenvalues - Left
panel: level spacing distributions of the first 3 ux. Right panel: samples of uj spacings
from the bulk.

!Standard error among the first 100 spacings.
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2. COMMON FEATURES IN PROTEIN INTERNAL DYNAMICS AND
IDENTIFICATION OF RELEVANT COLLECTIVE VARIABLES

The relevance of the first four modes, as indicated by the non-standard statistics of
the corresponding three spacings, is further supported by the high degree of consistency
between the essential spaces calculated from two halves of the trajectory. We applied
the method introduced in (15]) to determine an optimal redefinition of the orthonormal
basis vectors of the two essential spaces, in order to quantify the degree of overlap
between the two sets. Specifically, the redefined basis vectors in one set are ranked in
order of decreasing overlap with the linear space spanned by the vectors in the other
set. The consistency of the top modes of the two covariance matrices is confirmed by
the high overlap of the first few optimal eigenvector pairs. This criterion, based on the
properties of the essential space vectors rather than the eigenvalues, identifies about 4
conserved modes having scalar product of about 0.9 (see Fig. [2.8]).
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Figure 2.8: Scalar products among top-ranking modes of the covariances from
two halves of the trajectory - The pairwise scalar products among two sets of modes
are here shown, which are eigenvectors of the covariance matrices obtained from two halves
of the MD trajectory under exam. These modes result from an optimal linear combination
which maximises the pair scalar products between the two sets. The green line, indicating

the 0.9 threshold, is shown as a guide to the eye.

The analysis of level spacings was completed with a Kolmogorov-Smirnov (KS) test
among all pairs of spacing histograms. Fig. shows the colour-coded values of the
KS distances between the cumulative distributions. The distributions of the spacings

from the 4th

onwards are well-superposable and, in particular, are well-fitted by the
Brody distribution. On the other hand, the first 3 level spacing distributions show
pronounced discrepancies with respect to the reference curve.

The investigation thus allowed to establish that, for the specific ensemble of confor-

mations under consideration, one can identify a subspace spanned by very few collective
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2.3 Summary

Figure 2.9: KS distances among the \ spacing distributions - Kolmogorov-Smirnov

distances among spacing distributions of the A (top triangle) and p (bottom triangle).

modes that have a non-standard statistics. The other modes, instead, share the same
quasi-universal distribution.

2.3 Summary

The functional-oriented character of collective dynamics for many proteins and enzymes
prompted an intense study of these motions in many different ways. To this end,
PCA, ENM normal modes analysis, sub-states identification and analysis, and RMSIP
calculations are among the most widely and proficiently used tools.

In addition to well-established ‘traditional’ analyses, we discussed a novel investi-
gation method based on the theory of Random Matrices. Specifically, we considered
the ensemble of conformers from a 2-ns long interval of a MD simulation of adenylate
kinase. Each conformer was used as a reference structure for the §-Gaussian elastic
network model: the latter allowed us to calculate the low-energy eigenspaces of fluctu-
ation of en ensemble of structurally-homogeneous conformers of Adk. The statistical
properties of these eigenspaces, namely the distribution of the eigenvalue spacings, were
then compared with universal RMT predictions, such as the Brody distribution.

This study highlighted signatures of ‘universality’ and random-like behaviour shared
by all but the first few eigenvectors of the analysed covariance matrix ensemble. The
consequence is a quantifiable separation between the ‘bulk’ modes of the covariance,
whose spacing distributions could be properly fitted by the reference Brody distribu-
tions, and the few top low-energy modes, characterised by their own peculiar statistics.
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2. COMMON FEATURES IN PROTEIN INTERNAL DYNAMICS AND
IDENTIFICATION OF RELEVANT COLLECTIVE VARIABLES

This property might provide a novel framework to characterise the internal dynam-
ics properties of many globular proteins; possible implications include a more precise
identification of the collective variables describing the large-scale, functionally relevant
fluctuations of biological molecules, with applications to accelerated MD schemes.
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Quasi-rigid domains in proteins

In the previous chapters we discussed aspects related to the large-scale dynamics of
proteins. In particular, we have argued that the collective low-energy fluctuations
can be captured by simple structure-based models, such as elastic network models.
This fact suggests that the relevant information about these concerted movements,
characterised by the simultaneous and coherent displacement of large groups of amino
acids, is encoded in the overall architecture of the molecule. Experiments (14) have
also shown that these ‘innate’ modes of structural fluctuation are limitedly affected
by the differences in the amino acid sequence across wild-type conformers or mutants,
indicating that the changes in the chemical detail can have a mild effect on the large-
scale internal dynamics.

These conformational changes play a major role in the function of many proteins
and enzymes (21} 225 27; 54, 65 56, 67 B8, 59 60; 61k 62): it is therefore of great
interest to understand the dynamical features bridging the structural organisation of the
molecule to the biological function. A possible strategy to gain insight into the relation
between collective internal dynamics and biological activity consists in the identification
of domains, in the protein structure, which move approximately as rigid bodies. A
simplified, modular description of the molecule in terms of quasi-rigid domains could
thus help the understanding and the description of the functionally-relevant motions of
biomolecules.

In the present chapter we shall discuss a scheme to optimally subdivide a protein in
a preassigned number of domains on the basis of its collective fluctuations. Specifically,
the internal dynamics of a protein, in the form of a MD trajectory, covariance matrix
PCA or ENM modes, is used to group amino acids in clusters having the least possible
internal distance fluctuation. The method, which is based on the simple and effective
idea of implementing the very definition of rigid body, is developed, tested and applied
to specific test-cases of single proteins and in the context of dataset-wide investigations.
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3. QUASI-RIGID DOMAINS IN PROTEINS

3.1 Features and limitations of available dynamical do-

main decomposition methods

The problem of identifying groups of amino acids in a protein, which undergo a collective
displacement in the molecule’s equilibrium fluctuations, has been already addressed in
the literature. Only a limited number of methods have been developed so far (31 63; 64;
655 [66} [67) to decompose a protein in domains on the basis of their internal dynamics,
making use of different domain definitions and domain-decomposition algorithms. In
the following paragraphs we shall review some of the most common approaches.

3.1.1 Geometrical deformation

One of the first methods introduced to identify quasi-rigid regions of a protein is the
analysis of the degree of deformation internal to the molecule (31)). In this scheme, two
different protein conformations are compared to find those parts which experience a
relatively high geometrical deformation, or strain. The starting point is the calculation
of a deformation energy, given by:

N 2
> k() 1 + 7 — 5] - |dY ] (3.1)
j=1

E; =

N

where J?j indicates the distance between residues ¢ and j in the reference confor-
mation, and ¥; is the displacement vector of residue i. The ‘elastic constant’ K (|J?J])
depends on the distance between the residues, and is usually taken to decrease expo-
nentially with yc@]\

The different structures that are compared can, in principle, come from crystallo-
graphic experiments or from the deformation of a reference structure along a normal
mode of fluctuation. In particular, the difference vector connecting two conformations
(for example, the open and closed structures of adenylate kinase) results in a finite
displacement, while modes describe infinitesimal motions. In the latter case, the ex-
pression in Eq. admits a simple quadratic approximation (see Eq. leading
to:

N N (D)
1 2 |G = 7j) - dij|

E; =~ K(|dy: J 2
5 ; (I1d;1) i (3:2)

The analysis of the elastic strain profile can give indications of those regions of
the protein which undergo an important local deformation. This information can prove
useful to identify quasi-rigid domains in the molecule structure, since it is assumed that
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3.1 Features and limitations of available dynamical domain decomposition
methods

a part of the protein which moves approximately as a rigid body does not experience a
high strain. On the contrary, if a residue shows a high value of the deformation energy
it is likely that it belongs to a hinge between two domains.

This scheme is simple and intuitive; nonetheless, it suffers several limitations. First,
the experimental error in crystallographic structures can result in high strain energies
scattered throughout the molecule, making it difficult to identify a sharp transition from
a rigid to a flexible region; moreover, it does not make use of the information about
the proximity of the residues, thus requiring the direct inspection of the structure and
the local deformation values. On top of that, the lack of a high strain region does
not necessarily imply the absence of a hinge region, since a sharp transition from one
domain to the next can be not captured by the deformation measure.

3.1.2 Rigid-body motion of amino acids groups

In order to overcome these limitations, Hinsen (31} [63) proposed an approach which
identifies protein regions undergoing a coherent motion by using the criterion of search-
ing for subregions whose motion is described by similar rotational-translational param-
eters.

The algorithm of Hinsen first performs a subdivision of the protein in groups of
spatially-close residues; for example the space is partitioned with a three-dimensional
cubic grid, and the residues falling in the same cube form a group; those groups con-
sisting of less than three residues are neglected.

The elimination of groups with one or two residues is required by the fact that the
six rigid-body parameters of the motion are well-defined only for objects of at least three
non-collinear points. These six parameters, which are obtained from a least-square fit
of the reference structure onto the ‘deformed’ structure, characterise a given group
in terms of the six-dimensional space of roto-translations. The metric introduced by
Hinsen to measure the distance between two groups in the rigid-body motion parameter
space is given by:

L3 E4T
Sij:3’?2+qé]|+‘j+_?| (3.3)
6: — @] 1t — 1]

where (E and t indicate, respectively, the rotation angle and the translation vector
of a residue group; the factor 3 in front of the rotation component of the metric is due
to the empirical observation that the former is a better domain identifier with respect
to the translation component. This distance is used in the context of a clustering
algorithm, which is next applied to gather those groups having similar parameters
and therefore undergoing similar motions. The number and dimension of the resulting
clusters depend on a coarseness parameter ¢, which fixes the minimum value of the S
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3. QUASI-RIGID DOMAINS IN PROTEINS

distance for two groups to be assigned to the same cluster. The dynamical domains are
finally identified with the amino acid clusters.

This approach takes as input two structures, or a reference structure and a de-
formation vector. The identification of the domains requires the specification of the
coarseness parameter. The number of resulting clusters is not fixed a priori, since it
depends on this clustering tolerance and on the very properties of the protein’s internal

dynamics.

3.1.3 DynDom

A clustering strategy related to the ones described so far is employed by the DynDom
(64) web-server. In this case a comparison is done between two protein structures.
The building blocks consist of short segments of the protein backbone, that are lumped
together based on the similarity of their rigid-body motion parameters; the latter are
identified making use of a clustering algorithm. In order to ascertain if the residue
grouping is physically meaningful, the hinge axes of two groups are compared: the
groups therefore form a dynamical domain if close-by regions perform a continuous
deformation. The number of domains identified by the algorithm is determined as the
largest for which the backbone-connectedness is preserved and a user-defined criterion
is satisfied, related to the ratio between inter- and intra-domain motion.

As for the methods described so far, DynDom requires the input of two different
conformers. However, two crystallographic conformers of the same protein may not
always be available, or in the case of MD trajectories, there may be too many conformers

among which to choose the two structures.

3.1.4 Methods based on the amino acid correlation

Other dynamics-based grouping schemes of amino acids have been devised, based on
positive correlations of amino acid displacements entailed by a single low-energy mode
(65) or from pairwise correlations in the covariance matrix itself (66). The basic idea
behind these algorithms is that amino acids, or groups of amino acids, performing a
rigid-body motion, are displaced approximately in the same direction: therefore, they
must show a positive correlation of the dynamics. On the other hand, negative or quasi-
zero correlations are assumed to indicate a small degree of coherence in the motion.
In the Hierarchical Clustering Correlation Pattern (HCCP) scheme, for example,
the dynamical domains of a protein are identified with a clustering procedure gather-
ing residues on the basis of their covariance matrix elements. At the first step of the

algorithm each residue represents a cluster itself; next, two residues are grouped in a
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3.1 Features and limitations of available dynamical domain decomposition
methods

single cluster if their pairwise correlation ¢;; is above a given threshold. Once a ‘tempo-
rary’ set of clusters has been defined, the covariance among the clusters is recalculated
according to:

C;j = ml : Z Z Ckl (3.4)

;1M
Y keM; leM;

where M; is the m;-dimensional vector indexing the residues in the i-th cluster.
This clustering procedure is iterated until the whole protein is a unique cluster itself:
the identification of the optimal decomposition is then done performed inspecting the
domain partitions at the various stages of the iteration procedure.

Further insight is obtained by the calculation of the Hierarchical Clustering of the
Correlation Patterns: the latter consists in the linear correlation among two full rows
of the covariance matrix, obtained as:

1 N g
iE:_c.c._CAC,
py = A (3.5)
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where ¢; and o; are, respectively, the mean and the standard deviation of the co-
variance matrix row ¢;. The matrix p;;,which undergoes the same clustering procedure
described above, provides information about the correlations among groups of residues,
rather than pairwise correlations. Therefore, it is assumed to be more robust than the
covariance matrix c;; for the identification of the domains.

Schemes like the HCCP, or other methods based on the positive correlation of
their motion, are inherently affected by a conceptual limitation. In fact, if on the one
hand a positive correlation reasonably suggests a similarity of the motion, it cannot be
concluded a prior: that a negative correlation between two residues implies that they
do not move as a rigid body. For example, consider a group of amino acids performing
a rigid-body rotation about an axis internal to the group: pairs of points, lying at
the two opposite edges of the body will be negatively correlated (see Fig. , even
if their motion is definitely rigid. The aforementioned methods are insensitive to the
anti-correlation of pivotal motions, and would identify as disconnected regions of the

molecule groups of amino acids which fluctuate in a genuinely coherent manner.

3.1.5 Translation/Libration/Screw-like motion (TLS)

A further interesting approach is offered by the TLS (translation, libration, screw-like
motion) analysis introduced by Schomaker and Trueblood (68)). The method permits
the determination of the local mean square fluctuations compatible with the rigid-body
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3. QUASI-RIGID DOMAINS IN PROTEINS

Figure 3.1: Example of anti-correlated rigid body motion - The rotation of an
object around a pivot is undeniably a rigid-body motion; nonetheless, the scalar product
of the displacement vectors on the two sides of the body is negative. Similarly, an anti-
correlated motion with negative covariance matrix entry does not necessarily imply a non-

rigid coherent displacement.

motion of a group of atoms. The pattern of these fluctuations can, in turn, be compared
with crystallographic data.

Originally, it was developed to evaluate the reliability of small molecule crystal-
lographic structures. The effectiveness of the method motivated its use to identify
those regions of a protein whose rigid-body motion is optimally compatible with the
fluctuation pattern described by the B-factors (69)).

This method represents an interesting framework to characterise the rigid-like mo-
tion of a protein’s subparts. Unfortunately, for reasons of computational efficiency,
the combinatorial space of the possible assignments of amino acids to various rigid-
like domains must be explored in a stochastic (non-exhaustive) manner. In particular,
the TLSMD (70) web server explores all the possible domain subdivision of a protein
chain in a given number of uninterrupted segments (from two on), and returns the
one which best fits with the B-factors. On the other hand, it is not possible to identify
groups of amino acids constituted by disconnected segments of the sequence. Moreover,
the B-factors are isotropic quantities which do not provide any information about the
direction of the motion, but are limited to its global extension.

3.2 Optimal subdivision of a protein in quasi-rigid do-

mains

In the following of this chapter we shall discuss and apply a variational scheme for the
identification of nearly-rigid protein subparts. The rigid-like character of the groups,
or dynamical domains, is identified directly from a variational principle where no prior
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3.2 Optimal subdivision of a protein in quasi-rigid domains

assumption is made on the proximity in sequence or space of the grouped amino acids.
The number of domains, @, in which the molecule is partitioned, is assumed to be
pre-assigned; the optimal choice of () can be made on the basis of criteria that will be
later discussed.

3.2.1 Identification of quasi-rigid domains from a MD trajectory

We start by discussing an algorithm to optimally partition a protein into a pre-assigned
number () of domains, based on the data collected in an atomistic MD simulation. The
central idea is that the optimal subdivision is the one for which the motion of the
domains is as close as possible to a rigid-body motion.

Consider therefore an atomistic MD simulation of a protein, of which we shall
neglect the non-C,, atoms for simplicity; and its reference structure, i.e. the ‘frame’ of
the simulation closest to the average.

Our criterion to subdivide the protein into domains can be stated as follows: we
are interested in assigning the amino acids of the protein to a given number @ of
domains; the optimal partition is the one maximising, over all possible assignments,
the contribution to the displacement of the putative domains which can be ascribed to
a rigid-body motion.

To do so, for each tentative partitioning of the amino acids we consider the in-
stantaneous displacement vector, ¥;(t), of a putative domain; this vector connects the
coordinates of the domain in the reference structure, 7"2, to the corresponding coordi-
nates in a given MD trajectory frame:

7_"t;{(t) = 7:2 + _)q(t> (3.6)

where the subscript ¢ labels the putative domain. The vector U, (t) can, in turn, be

separated in two contributions: z_)’gb(t), corresponding to a rigid roto-translation of the

domain, and At (t), which takes into account the fluctuations internal to the domain:

T(t) = TP () + AT (1) (3.7)

The rigid-body component #"°(¢) can be decomposed in a translation vector 7,(t)
and a rotation parametrized by the matrix R and the vector &,(t):

Ty (8) = 7y(t) + RIS (D)(7) — By) (3.8)

where ﬁq are the coordinates of the ¢-th domain’s centre of mass.
The matrix R can be calculated by means of the Kabsch algorithm (71]), which
finds the optimal rotation of to sets of points minimising the RMSD between them.
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3. QUASI-RIGID DOMAINS IN PROTEINS

The extremality conditions that are imposed to find 7,(t) and &y(t) guarantee the
orthogonality between the rigid-body displacement 27(’1"17(15) and the internal fluctuation
term A, (1):

TrP(t) - ATy (t) = 0 V¢ (3.9)

Eq. allows to decompose the total mean square fluctuation of the molecule in

two contributions:
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A natural and intuitive definition of the optimal protein partition into a pre-assigned
number ) of domains, is the one which maximises, over all possible partitions, the rigid-
body component of the mean square fluctuation, MSF”, or equivalently, the partition
which minimises the internal fluctuation MSF=.

This method is completely general, since no assumption is made on the contiguity in
space or sequence of the residues of the domains: in principle, any possible assignment
of the residues to the domains is tried for a given (), and the optimal choice is performed
on the quantitative basis of the internal distance fluctuations of the domain.

A further simplification can be done, in order to characterise, in the simplest possible
terms, the salient features of the protein internal dynamics. Specifically, we can look for
the simplest constrained motion of the domains which best captures the mean square
fluctuation of the protein.

As an example, we can force the motion of the domains to be composed exclusively
by rigid rotations about fixed axes passing through hinge points p,: this amounts at
modifying Eq. as follows:

36



3.2 Optimal subdivision of a protein in quasi-rigid domains

TP(t) = Rlwy (t); R)(7g — ) (3.12)
Note that the rotation matrix now depends parametrically on the rotation axis 7,
and the instantaneous angle w,(t) is the one which maximises the rigid-like component
of the domain MSF, |7’ (t)|?.
For a given domain ¢, the corresponding optimal rotation axis 7, is found as the
one maximising the captured MSF of the domain, defined as:

_ /|7rb2
MSF! = (|a7?|) (3.13)

The total amount of the overall mobility, which is captured by the rigid rotation of
the the domains, is calculated as in Eq.

The quantity MSFI of Eq. represents the amount of the protein internal
motion which can be captured if the moving parts are allowed to perform only rigid-
body rotations.

The specific characteristic of this scheme is that the motion of a quasi-rigid domain
is described by the rotation angle about the axis with respect to the reference frame.
Once the optimal axes are known, it is possible to characterise the internal dynamics
of a protein in terms of nonlinear, continuous coordinates, namely the rotation angles
of the domains. Examples of insight provided by this scheme will be given, in the

following section, for two proteins, namely adenylate kinase and HIV1 protease.

3.2.2 Simplification of the algorithm making use of the essential spaces

The optimal domain partition scheme described so far requires a substantial compu-
tational effort: in fact, the number of possible partitions grows exponentially with the
number of domains @) and the protein length N. Even for small proteins and a small
number of blocks the calculation of MSF! is slow, due to the fact that the instantaneous
roto-translational parameters, namely 7,(t) and J,(t) in Eq. must be obtained for
each domain and each frame of the MD simulation.

In order to reduce the calculations, one can simplify the algorithm replacing the time
average of the rigid-body component of the instantaneous fluctuation with a weighted
average of the rigid-body component of the covariance matrix eigenmodes. In fact,
the relevant information to subdivide a protein in large groups of quasi-rigid domains
is mainly encoded in the concerted movements entailed by the collective modes of
the covariance; it is therefore possible to adapt the scheme devised so far to find the
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3. QUASI-RIGID DOMAINS IN PROTEINS

partition of the protein which maximises the rigid-body component of the low-energy

modes of fluctuation. The quantity to be maximised is therefore given by:

MSFI 370 A |5

= Nisr DY

(3.14)

where 172” and A\, are, respectively, the ¢-th mode rigid-body component and the
eigenvalue of the covariance matrix. The number of modes n, which is left as an input
parameter, can be chosen so to capture a preassigned fraction of the overall internal
fluctuation. If the full eigenspace of the covariance were considered for the sum in Eq.
this scheme would be completely equivalent to the one described in the previous
paragraph (provided that the MSF! is normalised to the total MSF).

Also the optimal axes of rotation can be identified making use of the essential spaces:
the only requirement is that the rigid rotation component which is maximised in Eq.
[3.12] is obtained from the modes of the covariance.

It is worth noting that the use of the modes leads to an important generalisation
of the method. In fact, one can apply the algorithms discussed so far to low-energy
modes obtained from elastic network models: it is therefore possible to perform a
domain subdivision of a protein, and the identification of its optimal rotation axes, also
when MD simulations are not available. This possibility is particularly relevant if one
wants to investigate the internal dynamics of large proteins, which obviously require

time-consuming MD simulations.

3.2.3 Optimised strategy: mapping to a Potts-model colouring prob-
lem

In the previous paragraph we discussed a simplified strategy to optimally identify quasi-
rigid domains making use of the essential dynamical space. This method can appre-
ciably reduce the computational effort required by the frame-per-frame calculations of
the MD-trajectory based scheme. Nonetheless, the large number of possible partitions
of the protein makes it impossible to perform a fast computation: the number of re-
peated matrix operations involved is so large that it is not computationally convenient
to optimise directly the quantity f.

A more effective strategy is to perform a preliminary exploration of the configuration
space by optimising, with respect to the tentative partitions of the molecule, a simple
objective function, in order to efficiently identify a candidate subdivision over which f
is finally evaluated and maximised.

The objective function that we consider is the following one:
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F({o}) = Z%% ZM () - dy)* + (3.15)
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where o; = 1 --- @ labels the group to which amino acid ¢ belongs to, J is the
Kronecker delta, J% is the distance vector of amino acids ¢ and j in the reference
conformation, R, is an interaction cutoff distance set equal to 7 A and n = 10. The
sought optimal grouping of amino acids is the one which minimizes F: for systems
consisting of truly-rigid subparts this will be analogous to maximizing f of Eq.

The first term in the sum represents the cost of the average elastic energy associ-
ated to the internal deformation of the molecule. This term penalises fluctuations in the
distance of any two points belonging to the same putatively-rigid group, consistently
with the definition of rigid bodies. The second term introduces a penalty, controlled
by the parameter a« > 0, for dynamical domains consisting of regions that are discon-
nected in space. Upon increasing «, in fact, the term disfavours the number of pairs
of neighbouring amino acids (those closer than the cutoff distance R. = 7 A) that be-
long to different groups. The optimisation of F', therefore, leads to group assignments
that minimise the interface area between the groups, while not strictly enforcing the
spatial compactness of the domains. The minimisation of F' can be straightforwardly
performed within a simulated annealing protocol, with elementary moves correspond-
ing to changes of the group assignment of individual amino acids. The corresponding
changes of F' only require the summation of N — 1 pre-calculated quantities (N be-
ing the number of amino acids in the protein) corresponding to the interaction terms
among the re-assigned amino acid and all the other ones.

The search for the optimal solution is carried out separately for increasing values
of a. Eventually, for a large enough value of « the presence of boundaries is forbidden
and a single dynamical domain is returned by the minimisation of F: therefore, in
the intermediate range of values the algorithm could find solutions having fewer groups
than @, which are discarded. The solution with () domains corresponding to the largest
value of f will be taken as the one corresponding to the best subdivision.

3.3 Applications

As a first example we shall apply the rigid block decomposition method to adenylate
kinase and HIV-1 protease. The decomposition is performed on the basis of data from
atomistic molecular dynamics simulations (for Adk, the MD simulation performed by
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Pontiggia et al. (15)) and from elastic network models (for HIV-1 PR). In both cases,
the analyses will be complemented with the application of the optimal axis identification
scheme. Subsequently, the method will be applied for a rigid-subunit decomposition
of two sets of proteins. The first set consists of monomeric enzymes, representing of
the main CATH structural classes (6) of hydrolases (class 3 according to EC (72)).
For these enzymes we investigate the existence of systematic biases in the location of
the known catalytic site with respect to the boundaries separating primary dynamical
subdomains. We conclude the analysis by investigating the extent to which the optimal
subdivision returns groups of residues that span uninterrupted stretches of the primary

sequence or occupy compact regions in space.

3.3.1 Test-case i: Adenylate Kinase

The rigid-block decomposition scheme, that we shall apply here to Adk, provides a
natural and objective scheme for assessing if, and to what extent, the molecule’s inter-
nal dynamics can be described in terms of few parts that move as nearly-rigid units.
We begin by considering the fluctuations within the sub-state where the 50ns-long
trajectory started from the open structure, 4ake, dwelled for about 10 ns (15). The
reference structure for the sub-state, which is the most populated of the MD trajec-
tory, is provided in Fig. along with the representation of the lowest energy mode.
The mobility the Lid and of the AMP-binding subdomains, corresponding to regions
117-164 and 30-64 respectively, is evident.

The n = 10 lowest energy modes within the sub-state were used to subdivide the
enzyme into @ = 2,3...10 dynamical domains. A representation of the subdivisions
into 3 and 4 groups are provided in Figs. [3:3h-b. The fraction of essential dynamics
motion, see Eq. captured by the various subdivisions is shown in Fig. |3.4

The graph indicates that a very limited number of dynamical domains is already
sufficient to account for most of the essential dynamics. In fact, subdivisions into Q) = 2,
3 and 4 blocks capture as much as 52%, 77% and 83% of the fluctuations entailed by
the n = 10 essential modes (which account for the 80% of the overall mobility).

The subdivision for () = 2 identifies region 122-156 as an approximately-rigid, but
highly mobile, unit. The region overlaps well with the Lid indicated before. The less
mobile AMP-binding domain is identified as a distinct unit when using @ = 3. In fact,
for Q) = 3, the regions corresponding to the two mobile nearly-rigid subdomains are 122-
158 and 32-59, and are compatible with the customary tripartite subdomain division
of Adk. If the entire 50-ns long trajectory is used rather than the most populated sub-
state it is found that the boundary of the AMP-binding domains is virtually unaltered
(sequence interval 32-60). The larger configurational space spanned by the more mobile
Lid domain instead reflects into an extension of the both the left and right subdomain
boundaries by about ten residues, thus covering the interval 112-167.
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Figure 3.2: First essential mode of E.Coli adenylate kinase - The length of the

arrows has been enhanced for sake of clarity.
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Figure 3.3: Quasi-rigid domain decomposition of adenylate kinase - Figure a

shows the decomposition in three quasi-rigid domains, while figure b shows the partition
in four blocks.
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Figure 3.4: Fraction of essential dynamics captured by the quasi-rigid domain
decomposition of Adk - The fraction of essential dynamical motion (see Eq. [3.14))
captured by the subdivision of Adk into @ = 2...10 rigid domains is here shown.
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Decomposing Adk in = 3 units 5 sequence intervals are found: one for each of
the two mobile domains and three for the nearly-fixed core. It is interesting to compare
this dynamics-based subdivision with the one provided by the TLS (70) analysis of
crystallographic data which enforces the sequence continuity of each rigid-block. The
TLS decomposition of 4ake into five intervals (as many as those found with @ = 3)
returns the following segments: 1-27, 78-116 and 171-214, identifiable with the core,
and 28-77 and 117-170, compatible with the AMP-bd and Lid subdomain, respectively.
With the exception of one of the AMP-bd/core boundaries, the TLS subdivisions and
those of our analysis of the full MD trajectory are mismatched by only about 5 residues.
They are hence generally consistent, despite the differences not only in method but also
for the nature of the input data (crystallographic B-factors for TLS and MD data for
our method). An important distinction between the two results is, however, that the
three segments constituting the core regions are encompassed in a single rigid unit by
the present variational method, while are treated as independent ones within the TLS
scheme.

Our optimal 3-domain subdivision was compared also with the one returned by
the DynDom server (64) which requires the input of two structures representing the
conformational variability of the molecule of interest. Accordingly, from the set of
MD-sampled conformers we selected the pair with the largest RMSD. DynDom re-
turned a subdivision in two domains, the smallest corresponding to the Lid (sequence
interval 110-169) plus a small loop (residues 6-12) and the other to the core plus the
AMP-binding domain. Interestingly, this latter subdomain is recognised as a separate
dynamical domain if the open and closed crystallographic conformers of Adk (lake,
4ake) are used as input structures.

We conclude the analysis of the partitions of Adk considering (Q = 4 domains. With
respect to the @) = 3 case, the boundaries of the two mobile domains are only slightly
adjusted to 35-60 and 118-159, respectively. However, a new domain, comprising sev-
eral sequence segments 7-25; 108-117; 160-174; 195214, is identified at the interface
between the core and the Lid. This group of ‘hinge’ residues have consistently been
shown, by independent methods (I5} [73), to be subject to a significant strain during
the free enzyme dynamical evolution. In Fig. we show the pile-up of the sequence
subdivisions in @ = 2,3 and 4 domains: it is worth to note that the sequence inter-
ruptions between two contiguous domain segments are preserved within a few amino
acids.

The application of the quasi-rigid domain identification scheme to the adenylate ki-
nase returned reasonable results. The partitions of the molecule in different numbers of
domains proved to be consistent with those identified by methods previously discussed
in the literature. Moreover, the large fraction of essential dynamics which is captured
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by the optimal decompositions indicates that the large-scale motion of this molecule

can be reliably described as the rigid-body motion of a small number of subparts.
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Figure 3.5: Sequence partition of Adk in 2, 3 and 4 domains - The domains of the
Adk subdivisions in 2, 3 and 4 quasi-rigid blocks are indicated on the amino acid sequence
in different colours. It is worth noting that the interruptions about residues 33, 74, 110

and 170 are preserved among the different partitions.

The aforementioned simplification of the dynamics can be proficiently performed
with the application of the scheme to optimally identify the domain axes of rotation.
In order to highlight the effectiveness of the method in capturing large-scale motions,
we perform this analysis on the whole 50 ns-long MD trajectory discussed in (15).
The chosen partition of the protein is the one of the customary @ = 3 domains case
previously discussed: this results in a fixed core and two mobile satellite domains
coinciding with the AMP binding domain and the Lid.

The fraction of the total mean square fluctuation, which is captured forcing the
AMP-bd and the Lid to move as rigid rotating bodies, amounts to ~ 80%. This
remarkable result is compatible with the 3 blocks quasi-rigid domain decomposition
based on the PCA, which captures 77% of the top 10 modes of fluctuation, and confirms
the modular character of this molecule structure. Even more interesting are the rotation
axes, shown in Fig. the open-close movement of the molecule can be readily
perceived by the axes orientation. It is worth noting that at both AMP-bd and Lid
interfaces with the core, the rotation axes passes through two C, atoms: this can
be attributed to the fact that the moving domains are connected to the core by two

similarly-bending hinges.
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Figure 3.6: Optimal axes of rotation of Adk - The reference structure of Adk is

shown along with the optimal rotation axes.

3.3.2 Test-case ii: HIV-1 PR

As a second example of the dynamics-based decomposition we consider the HIV-1
protease dimer complexed with a peptide substrate.

HIV-1 PR is a 198-residue-long homodimeric aspartic protease (see Fig. [3.7)). It
is essential for the life cycle of the human immunodeficiency virus (HIV): in fact, its
function is to cleave the polyproteic chains to allow the newly synthesised viral proteins
to fold. Being a central actor in the life cycle of HIV virus, this protein has been
the subject of numerous studies; in particular, it has been pinpointed as a target of
inhibiting drugs hindering the cleavage of viral proteins and preventing the infection to
spread. Unfortunately, the high mutation rate of this protein strongly limits the efficacy
of these drugs, which must necessarily be used together with other pharmaceuticals to
attack simultaneously various facets of the virus’ replication cycle.

One of the earliest all-atom MD simulations of HIV-1 PR was performed by Piana
et al. (56). This 10-ns long simulation shed light on the motion performed by the
flaps of the dimer, and the functional role of these collective displacements of about
25 amino acids in an open-close fashion. In fact, the protein acts as a molecular
scissor both chemically and mechanically, by first opening the flaps to accommodate
the substrate in the catalytic pocket, then closing to stretch the polyprotein in a (-
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Figure 3.7: Crystal structure of the HIV-1 protease - Front and top views of the
HIV-1 protease. The two 99-residue-long dimers are shown with different colours.
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extended conformation to perform the cleavage reaction. Moreover, the analysis of
the MD trajectory put in evidence a mechanical coupling between the catalytically
active aspartic dyad and a distal site, separated by about 25 AGB:ZI; 56). This long-
range coupling plays a central role in the viral resistance to inhibiting drugs: in fact,

mutations, which reduced dramatically the drug efficiency were found in the proximity
of residues mechanically coupled with the aspartic dyads (37; 56} [74).

Figure 3.8: Quasi-rigid domain decomposition of adenylate kinase - Figure a:
first essential mode of HIV-1 protease; figure b, ¢, d: decomposition of HIV-1 PR in two,
three and four quasi-rigid domains, respectively.

To illustrate the applicability of the domain decomposition method in the absence
of data from atomistic simulations, we obtained the essential dynamical spaces from
the §-GM approach (37). The complex shown in Fig. , which corresponds to
the equilibrium structure of the MD study of ref. (56), was subdivided from 2 to 10
domains, see Fig. [3.8b-d. The fraction of internal dynamics captured by the various
decompositions is shown in Fig. 3.9 The curve has a slightly slower increasing trend
compared to Adk . In fact, when @ = 3,4 domains are used, about 72% and
79%, respectively, of the essential dynamical fluctuations is captured for the HIV-1
protease/substrate complex.

The subdivisions into @ = 2, 3,4 approximately-rigid units are represented in Fig.
[B:8p-d. As for Adk, the units are compactly-organised in space but do not cover a single
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Figure 3.9: Fraction of essential dynamics captured by the quasi-rigid domain
decomposition of HIV-1 PR - The fraction of essential dynamical motion (see Eq.
3.14]) captured by the subdivision of HIV-1 protease into @ = 2. .. 10 rigid domains is here
shown.

stretch of the primary sequence. The sequence-disconnected nature of the domains does
not lend itself simply to a detailed comparison with the TLS decomposition for the
same number of blocks. We shall therefore restrict ourselves to consider the primary
‘hinge points’, represented by amino acids 20, 35, 57, 70, that emerge from the pre-
calculated subdivision offered by the TLS web-server of the HIV-1 PR monomer (PDB
structure 1t3r) in 5-7 intervals. The first three hinges fall within 3 amino acids (along
the primary sequence) from boundaries identified for the optimal subdivision in two
primary domains, @ = 2 (see Appendix , suggestive of good consistency.

We also compared our domain decomposition with the pre-calculated subdivision of
the HIV-1 PR monomer offered by the DynDom server (based on structures laid and
1hsg). The returned subdivision consisted of two domains, the smaller one comprising
segments 32-60, 75-77, and broadly corresponding to the monomer flap. Though it
should be bourne in mind that the subdivision might depend on the fact that only one
monomer is considered because multimers are not accepted by the DynDom server, the
identified modular nature of the flaps is compatible with salient aspects of the TLS and
variational decomposition.

The inspection of the optimal subdivisions in Fig. [B:8b-d prompts two consid-
erations. The motion of the flaps is largely consistent with a coordinated rotatory
movement around the central fulcrum regions. It is evident from the Q) = 3,4 cases
that within the nearly-rigid parts comprised by the flaps the points at the two extremes
are displaced in opposite directions. On one hand this feature illustrates that the mo-
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tion of nearly-rigid units in proteins can be sufficiently general to permit the presence
of anti-correlated motion within its constituent parts. On the other hand, the analysis
supports the qualitative description of the flap motion first given by Piana et al. (56)
based on the visual inspection of the first essential mode of a multi-ns MD simulation
(see Fig. 6b in ref. (50)). Indeed, if the first mode only is used for decomposing the
proteins into ) = 2 blocks, it is found that each entire flap is identified as a nearly-rigid
unit (see Fig. in the Appendix).

The second observation regards the location of the catalytic site of HIV-1 protease
with respect to the ‘primary dynamical boundaries’. By the latter we mean the bound-
aries separating the most prominent rigid-like regions in a protein (i.e. when using
@ = 2 or Q = 3). By inspecting Fig. —d it is seen that the highlighted catalytic
aspartic dyad, which has low mobility, straddles the rigid-domains interface for @@ = 2
and is close to one or more domain boundaries for @ = 3 and 4. This suggests that the
proximity of the catalytic amino acids to the primary dynamical boundary is instru-
mental for sustaining functionally-oriented large-scale fluctuations, as required by the
cleavage reaction (75)).

We conclude this analysis with the identification of the optimal axes of rotation of
the HIV-1 protease flaps during the 10-ns long MD trajectory of the HIV1-PR dimer
performed by Piana et al. (56]). The 3 domain subdivision was considered. In order to
allow the flaps to move freely, the tips, which were ascribed to the core by the partition
method (see Fig. , were separated. The domains are thus defined as follows:

e core 1-33, 81-132, 180-198
e flap 1 34-80

e flap 2 133-179

Fig. shows the result of the optimal rotation axis identification scheme. The
fraction of internal dynamics that is captured when forcing the rotation of the flaps
about the optimal axes amounts to 39 % of the overall mobility. This value reflects a
lower degree of collectivity of the internal dynamics of HIV1-PR, compared to adenylate
kinase; yet, it still amounts to a substantial portion of the overall MSF when it is
considered that only two degrees of freedom (the instantaneous rotation angles) are
used to describe the protein’s internal dynamics.

Nonetheless, it is interesting to discuss the direction of the optimal rotation axes.
The latter, in fact, present an orientation which is compatible with the one suggested
by Piana et. al (56). The dynamics of the flaps is described as a rotation about axes
perpendicular to the transverse plane (see Fig. : this picture, which was based
on the direct visual inspection of the protein motion, is here supported by the position
and orientation of the optimal axes of rotation found by our algorithm.
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Figure 3.10: Optimal rotation axes of HIV1-PR - The reference structure of HIV1
protease is shown along with the optimal rotation axes. The orientation of the axes suggest
a coherent rotatory motion of the flaps.

Figure 3.11: Schematic description of the motion occurring in HIV1-PR - The
picture, reproduced from ref. (56]), describes the concerted rotation of the HIV1-PR flaps.
This motion is suggested by the largest-eigenvalue mode of the covariance matrix, obtained

from the 10-ns atomistic MD simulation performed by Piana et al. (56).
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3.3.3 Catalytic site location of EC3 class enzymes

Modulations of the region neighbouring the active site, analogous to those highlighted
by the optimal axes of rotation of HIV-1 protease, have been found for several other
proteolytic enzymes differing by catalytic chemistry and structural architecture (40; [76;
77). One is therefore led to ask wether this particular location of the active site near a
primary dynamical boundary can be a common trait of other enzymes as for HIV1-PR.

The question appears particularly appealing also in view of considerations made
by Del Sol et al. (61)) that functional sites in proteins with allosteric behaviour are
preferentially located at the boundary between regions that are very modular in terms
of contacting amino acids.

The existence of common large scale movements in different proteases was taken as
the starting point for examining what relationship, if any, exists between the location of
the cleavage sites and the proximity of primary dynamical boundaries for other enzymes
belonging to the class of hydrolases. The latter are particularly interesting in this
context, since the chemical reaction which takes place at the active site is accompanied
by an open-close motion, which is suggestive of a possible role of this modulation for
the correct performance of the enzymatic activity.

We addressed the problem within a rather comprehensive framework, where pro-
teolytic enzymes are considered along with other members of class 3 of the Enzyme
Nomenclature Commission (72)). The enzymes were taken from the list of 76 represen-
tatives of the main EC and CATH groups singled out in the study of ref. (77). The list,
restricted for simplicity to monomeric enzymes (following the indication in annotated
UNIPROT (78) entries) is reported in Table along with the EC and CATH code
and with the indication of the amino acids constituting the catalytic site.

For each entry, the boundary between the two primary dynamical domains was
identified from the Q = 2 subdivision. To measure the separation of a catalytic residue
from the primary dynamical boundary, we considered the distance of its C, from the
nearest C, belonging to the other dynamical domain. The normalised distribution
of these distances is shown with a thick line in Fig. along with the reference
distribution (dashed line) of the boundary separation of every amino acid in the 15
proteins.

The two distributions present appreciable and informative differences: the reference
distribution of residue distances from the primary interface appears spread in a range
from 2 to 20—25 A. On the other hand, the catalytic site residues show, with respect to
the previous curve, a marked peak at less than 10 A. This discrepancy indicates that,
despite differences in structural organisation and nature of the bound substrate, the
catalytic site of these enzymes is found to be preferably located at a particular subregion
of the primary interface. At the hinge between the two domains, in fact, the active
site experiences a low mobility, reflected in a negligible structural deformation which is
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PDB length catalytic site

a) 4p2p 124 H48, D99
b) 1lako 268 N7, D151, N153, D229, H259
c) lvas 137 T2, R22, Q23, R26

d) 2fmb 104 D25
e) 1bol 222 H46, E105, H109

f) 1k2a 136 H15, H129

g) 1de3 150 H137, E96, H50
h) 1lkab 136 R35, R87
i) 3eng 213 D10, D121

j)  2f47 175 E11, D20

k) 2ayh 214 E105, E109
1) 4skn 223 N145

m) lavp 204 H54, E71, C122
n) 1qjj 200 E93
o) 1lqy 184 E154

Table 3.1: Monomeric members of the EC class 3 enzymes (hydrolases) - The
enzymes were taken from the representative list of ref. (77) which covers the main CATH
groups. To avoid excessive dispersion in length, only enzymes with 100 to 270 amino
acids were considered. The amino acids constituting the catalytic site were taken from
the catalytic site atlas (79) when literature evidence was available, otherwise they were
obtained by intersecting the catalytic site atlas and Uniprot data.
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necessary to preserve the catalytic geometry. On the other hand, and consistent with
HIV-1 protease, the motion of the rigid units delimiting the active region are found to
be generally compatible with functionally-oriented movements leading to the binding
or processing of the substrate.

The overall indication of catalytic-site/boundary proximity in hydrolases conveyed
by Fig. was complemented by a case-by-case analysis of the 15 enzymes in Table
This detailed investigation was necessary in view of the fact that the cumulated
data in Fig. [3.12] reflect properties of a group of enzymes with a certain heterogeneity

in length, structural architecture, and number of catalytic sites.

— Catalytic residues
- - All residues

Q=3 — Catalytic residues
- - All residues

Distance [ A ]

Figure 3.12: Distribution of amino acid distances from the boundary separating
the two (top) and three (bottom) primary dynamical subdomains. - The dashed
line indicates the distribution of boundary distances for all 2690 amino acids in the data
set of Table [3.I] while the thick line gives the distribution only for the 34 catalytic amino

acids. Both distributions are normalised.

The @) = 2 subdivisions of the 15 enzymes consistently reveal the good proximity
of the cleavage sites with the boundaries between the dynamical domains. Here we
limit the discussion to three enzymes whose dynamical role in the functional cleav-
age of peptides or nucleic acids has been previously considered (80; 81 82 183} [84)),
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namely: ezonuclease III (PDB lako), human adenovirus proteinase (PDB lavp) and
endo-1,3-1,4-3-D-glucan 4-glucanohydrolase (PDB 2ayh). Their Q = 2 subdivision is
representated in Fig. [3.13p,b,c.

Figure 3.13: EC3-class enzymes two-domains decompositions. - Subdivision into
@ = 2 dynamical domains (represented in different colors) of exonuclease III (panel a), hu-
man adenovirus proteinase (b), and endo-1,3-1,4-3-D-glucan 4-glucanohydrolase (c¢). The
decomposition was performed taking into account the ten lowest-energy modes. For clarity,
only the rigid-body approximation to the first mode is shown. Catalytic residues are shown

as spheres.

Exonuclease 111 and adenovirus proteinase bind DNA in double- and single-stranded
forms, respectively. In ref. (77) a dynamics-based connection between them was es-
tablished, which is particularly interesting as they are not evolutionary related and
are characterised by two different architectures, 4-Layer Sandwich (CATH: 3.60.10.10)
and 3-Layer (afa) Sandwich (CATH: 3.40.395.10) respectively. In both cases the cat-
alytic residues are found to be located at the primary boundary. As visible in Fig.
the low-energy modes have a common character as they entail an outward/inward
concerted movement between the two blocks in the surroundings of the catalytic sites,
with the latter at the centre. The analysis carried out on endo-1,3-1,4-3-D-glucan
4-glucanohydrolase also shows that the the two catalytic residues of the enzyme are
located in proximity of the interface between the two primary dynamical domains,
both surrounded by loops that form a groove which can arguably accommodate the
corresponding ligand.
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The consistent indication of Fig. [3.I3] is that the catalytic site is located close
to the primary interface. This fact appears particularly interesting when considering
how the primary boundary is modulated by the lowest-energy modes of the domains
(which are compatible with the opening/closing of the catalytic cleft (80; 83; [84)). By
comparison to non-interface amino acids, it is found that interface residues cover a
fairly large range of values both for overall mobility and for the degree of distortion of
the local structural environment (see Appendix [A)). As anticipated, the catalytic site
is accommodated at, or close to, an interface sub-region having both low mobility and
low-structural deformation. While these properties are consistent with the expected
rigidity of the catalytic region, the relevant observation is that they can take place in
proximity of the primary dynamical boundary, where appreciable elastic strain can be
built up due to the relative motion of the dynamical domains.

Figure 3.14: Two-domain subdivision of the 15 EC3 representatives - The 15 rep-

resentatives of the hydrolases class discussed in the text are here shown. The two quasi-rigid
domains, in which the proteins are subdivided, are shown with different colours, together
with their first low-energy mode of fluctuation. The catalytic residues are highlighted in
Van der Waals representation. The labels refer to the proteins listed in Table @
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3.3.4 Comparison between dynamical and CATH domains

As a final application of the quasi-rigid domain identification scheme we performed a
dataset-wide survey of the sequence compactness of the dynamical domains obtained
with our method. In particular, we carried out a systematic evaluation of the extent to
which the subdivision of a protein into a limited number of approximately-rigid units
results in dynamical domains that are compact in space and/or cover uninterrupted
regions of the primary sequence. The interest in this question is two-fold. On one hand
it can provide indications on the viability, for computational efficiency, of enforcing
a priori the proximity in sequence or space of the group amino acids (as it is done,
for example, in the TLS (70) scheme). On the other hand, it can shed some light on
the existence of consistent modular organisations of proteins at the level of sequence,
structure and dynamics.

An interesting general context where these questions can be posed is provided by
multi-domain proteins. For an appropriate, supervised definition of domain we resorted
to the CATH (6) database. This classification scheme groups proteins in a hierarchy
of categories: Class, Architecture, Topology and Homology. The Class level is the most
general, and takes into account the secondary structure element content of a protein;
Architecture and Topology classify the overall shape and connectivity of the elements;
at the Homology level also the primary sequence is considered. A protein is assigned
a CATH number specifying its location in this hierarchy by an automated procedure,
with a minimal human intervention in ambiguous cases.

For our analysis, we considered a data set of 90 protein monomers, listed in Table
with overall sequence identity below 90%, and each comprising from 3 to 6 CATH
domains consisting of a single sequence interval. Each protein was subdivided into a
number of dynamical domains equal to the number of CATH domains.

We were interested in characterising the robust properties of dynamical domains,
and in particular considering if they preserve the sequentiality of the backbone. In
order to reduce the ‘noise’ due to excessively short sequence fragments, the rigid-unit
subdivisions were post-processed to eliminate segments smaller than 1/20th of the
protein length (and in any case no longer than 10 amino acids); the amino acids in
these fragments were therefore re-assigned to the nearest flanking unit.

The resulting dynamical domains subdivisions (along the primary sequence) were
compared with the ones provided by CATH. It was found that only for 30 proteins out
of 90 the number of sequence intervals matched. Therefore, in two-thirds of the cases
the dynamical domain subdivisions gathered regions that were disconnected along the
primary sequence, at variance with the CATH subdivisions. In fact, for 30 cases the
dynamical subdivisions were very well consistent with the CATH ones. Out of the 91
domain boundaries in the primary sequence occurring in the 30 proteins, as many as
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71 occurred at a separation of less than 10 residues of the CATH ones. By commonly-
employed criteria (85)) this reflects a very strong agreement of the subdivisions. It is
worth noting that also for the 60 non-matching proteins, most of the CATH subdivisions
fall within 10 residues from the dynamical ones, which are however more numerous.

An example of different CATH and dynamical-domain subdivision is reported in
Fig. [3.15| The picture shows the CATH (panels c-d) and dynamics-based domains
(panels e-f) of protein chain lordB. A good consensus can be found in the overall
partition, especially for two of the four domains (in red and blue in the picture). The
major differences are concentrated in two CATH domains (gray and orange in Fig.
—d) which are grouped a single dynamical domain by our method. At the same
time, a small cluster of amino acids associated to the blue CATH domain of Fig. [3.15f-
d is identified as a dynamical domain by itself: this partition can be attributed to the
relatively loose connection of this residue group to the rest of its CATH domain, a
structural property that is likely to result in a high collective mobility. The dynamics-
based partition thus appears more reasonable than the CATH subdivision when the
conformational plasticity of the molecule is taken into account.

For all the 90 proteins we checked the extent to which the non-postprocessed dynam-
ical domains, despite possibly comprising segments that are not contiguous in sequence,
occupy compact regions in space. The compactness of a domain was ascertained by
measuring the diameter of the graph given by the contact map of the residues (with a
contact cutoff distance of 7.5 A). A finite value of the diameter, which measures the
minimum number of graph edges that need to be traversed for connecting any two
nodes in the graph, indicates the spatial compactness of the domain. It was found
that less than 5 dynamical domains out of 308 comprised disconnected, though nearby,
regions. These cases, however, can be neglected, due to the fact that the dynamical
domains partition is excessively influenced by small fluctuating loops. These short,
exposed regions of the protein are characterised by an unnaturally high mobility, which
forces the partition algorithm to identify them as a single domain and assign faraway
residues to the same cluster: this reduces the effective number of large clusters, and
determines a mismatch with the CATH domains. An example of this effect is given
in Fig. where the quasi-rigid domain decomposition of protein chain 2ex3C is
shown. With the exception of a few ‘pathological’ cases, the compactness measure of
the dynamical domains provides an a posteriori indication of the fact that rigid-like
units comprise amino acids that occupy spatially-connected regions.

Finally, in spite of the differences in the sequence partition of the dynamical and
CATH domains we performed a test to quantify the overlap between these two de-
compositions. This quantity was calculated by exploring the combinatorial space of
the possible one-to-one pairings of the ) CATH and ) dynamical domains. For each
combination of paired domains we computed the number n, of amino acids that are
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Dynamical Domains

Figure 3.15: CATH and dynamics-based partition of protein chain lordB - Pan-
els a-b show orthogonal view of protein chain lordB in cartoon representation. The CATH
domain subdivision is similarly shown in panels c-d, while the dynamical decomposition is
shown in panels e-f. The colours of the domains are chosen so to highlight the similarities
in the partitions, as well as the major differences. The latter are mainly located in the
dynamical subdivision of the orange CATH domain of panels c-d, and the small cluster of

residues, in gray in panels e-f, which is identified as a separate dynamical domain.
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Figure 3.16: Example of non-connected quasi-rigid domain - The quasi-rigid
domain subdivision of protein chain 2ex3C showed a block composed by two separate
clusters of amino acids (here coloured in green). Cases like these can occur in presence
of exposed, highly mobile loops or termini whose diffusive motion biases the rigid block

assignment.
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shared by the ¢th corresponding pair of CATH and dynamical domains. The only set
of domain pairing that is further considered is the one yielding the largest number of
shared amino acids:

Q
n, = p(g}j&san (3.16)
q=1
The overlap of the the gth CATH and dynamical domains, comprising NqC and N(P
amino acids respectively, is then defined as:

*
2nq

W= __
N§ + NP

(3.17)

This quantity represents the number of residues shared by the two domains, nor-
malised to the mean size of the latter. It provides an estimate of the degree of similarity
of the two domains’ volumes: if it is close to unity, the residues contained in a domain
are present also in the other.

In the analysis of our dataset, we found that the mutual one-to-one overlap of
the CATH domains and rigid units was, on average, 80%: this degree of similarity
underscores a non-trivial, albeit not perfect, consistency between the two subdivision
criteria. A very good consensus of the domain subdivisions is found, in particular,
for architectures 2.40, 3.30 and especially for 3.40; architectures 1.10 and 2.60 show
an overlap shifted towards smaller values. The distributions of the W parameter,
specialised for the two principal CATH codes (class and architectures) is shown in Fig.

B.17

3.4 Web-server implementation

The optimal scheme to identify quasi-rigid domains in proteins has proven to be effi-
cient: in fact, a protein as long as 200 residues can be partitioned in 2 to 20 domains in
less than 2 minutes on standard desktop computers and laptops. Moreover, the results
of the test-case subdivisions performed insofar proved to be consistent with previous
findings discussed in the literature.

These considerations prompted us to implement the method as a web server: this
freely-accessible resource, called PiSQRIﬂ (after Protein Structure Quasi-Rigid Domain
decomposition) allows users to perform an efficient partitioning of the desired structure
and easily access and download the results.

"http://pisqrd.escience-lab.org/
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Figure 3.17: Histograms of the overlap between CATH and dynamical domains
- Top: histogram of the overlap of all the CATH domains in the dataset with the dynam-
ical domains (quasi-rigid subunits). Bottom: histogram of the overlap of the CATH and
dynamical domains subdivided according to the CATH architecture.
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The user, in fact, is simply required to provide the PDBid of the protein of interest,
which is automatically retrieved from the protein data bank (PDB (86)). Alternatively,
the user can upload a PDB structure file, which can contain the sole C, coordinates.
In both cases it is possible to specify wether a single chain of the molecule is to be
taken into account: if no chain indicator is provided the subdivision is performed on
the whole structure.

OUTPUT

optimal decomposition
in quasi-rigid domains

Retrieve or upload Results visualized
structure and specify Low-energy modes interactively and
ber of i d calculation rovided as dovz'nloadable
number of require (optionally uploaded) P
quasi-rigid unit data files

Figure 3.18: Graphical summary of the PiSQRD flowchart - Users provide the
input structure (4akeA in the example), and the desired threshold fraction of internal
essential dynamics, f. The n = 10 lowest-energy essential modes are next calculated and
used to decompose the protein from 2 to 20 quasi-rigid domains. The returned optimal
decomposition is the one having the smallest ) that is sufficient to capture the preassigned
threshold of internal essential mobility (three domains in the example shown, using the
default values f = 80%,n = 10).

The server relies on the 5-GM (37) elastic network model to calculate the low-energy
essential space; nonetheless, users can seamlessly overcome this step and provide a ‘zip’
file containing the low-energy modes of fluctuation. By default the top 10 modes will be
used for the calculation, but in the advanced options section a form is provided where
it is possible to change this number.

The server automatically subdivides the protein into 2 to 20 quasi-rigid domains.
The first result page returned to the user is the one corresponding to the partition with
the smallest number of domains, having a captured mobility f (Eq. above a given
threshold: the latter is set to 80%, but a different value can be specified by the user
before running the calculation. The result page contains several informative interfaces:
a textual panel provides the data about the calculation; a Jmol applet allows the user
to visualise the subdivided protein in which the domains are coloured differently; a
graph shows the fraction of captured motion f as a function of the number of domains.
Finally, textual data files containing the subdivision details can be downloaded clicking
on the relative link, allowing users to store the results of the PiISQRD calculations.
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3.5 Summary

In the present chapter we discussed the characterisation of a protein’s internal dynam-
ics in terms of the motion of a few subparts; these large groups of amino acids, or
dynamical domains, are assumed to move approximately as rigid bodies. A modular
description of the protein structure presents many advantages: first, the large-scale
internal dynamics, which is often related to the biological function of many enzymes,
is more readily and intuitively perceived in terms of the relative displacement of a few
blocks. Second, the notion of quasi-rigid domain allows to separate the protein’s mo-
tion in two contributions: one due to the rigid-body displacement of the domains, and
one ascribed to the strain internal to the domain. It is therefore possible to estimate
the degree of ‘dynamical modularity’ of the protein from the fraction of total motion
which is captured by a given subdivision.

We introduced an optimal scheme to identify the best partition of a protein in a
given number of domains, which entails the largest fraction of internal dynamics. This
method, in principle, can be applied to a MD trajectory; nonetheless, the computational
effort required to evaluate the effectiveness of a tentative subdivision while exploring
a large combinatorial space pushed us to devise more efficient schemes. Specifically,
we introduced a method to identify the optimal domains minimising a cost function
which penalises the distance fluctuations among residues in the same group. This
function is calculated on a small set of collective modes obtained from a PCA or from
elastic network models. With respect to other schemes, the method does not enforce
any sequence proximity of the grouped amino acids, which are assigned to quasi-rigid
domains with a criterion which is based on the very definition of rigid body.

The partition of a protein in terms of a few blocks can be used to characterise their
motion in a MD simulation, performing a constrained rigid-body fit of the domains. In
addition, we introduced a further scheme where all fluctuations of the domains, except a
rigid rotation about fixed axes, are suppressed; the location and direction of these axes
are found maximising the mean square fluctuation that is captured by the constrained
rotation of the domains. This method represents a further simplification of the protein
internal dynamics, thus highlighting the salient features of the collective motions of few
subparts of the molecule.

The domain subdivision method, and the optimal axis identification scheme, can
be valuable tools for many purposes. Besides the aforementioned advantages in the
analysis, description and interpretation of protein dynamics data, it comes natural, in
fact, to use the quasi-rigid domains to improve the computational efficiency of available
algorithms. Examples are the use of the domains as collective variables in accelerated
MD schemes or, in conjunction with the identification of optimal rotation axes, to speed
up protein-protein docking methods.
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The viability of this tool has been illustrated in a number of cases. Specifically, the
domain subdivision and optimal axes analysis were performed with the benchmark cases
of adenylate kinase and HIV-1 protease, whose internal dynamics have been extensively
studied. The results proved in good accord with previous works, and triggered further
investigations on the similarity of functional-related dynamics in a class of hydrolytic
enzymes. In fact, 2-domains subdivisions of 15 representatives of the EC3 class were
performed. The active sites of these molecules showed a preferential location in prox-
imity of the boundary separating the two domains, suggesting a common dynamical
trait among proteins differing for both fold and architecture. Similar features, which
have been ascertained here on the basis of specific indicators (the active site distance
from the primary boundary), might be general properties of structurally-different pro-
teins and enzymes. The investigation of this similarity is the topic of the next chapter,
where we shall discuss a method to quantitatively compare the internal dynamics of

two proteins.
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Similar collective dynamics in

structurally different proteins

The characterisation of proteins is commonly organised according to the tripartite
scheme sequence — structure — function. In the Introduction we mentioned that our
understanding of the relation bridging the first two steps of this logical cascade has
been extensively investigated using sequence and structure alignment schemes. These
methods helped to unveil similarities between proteins differing for amino acid sequence
or structural organisation. A remarkable result, for example, is that a degree of sequence
identity larger that 30% generally implies a high degree of structural similarity, but also
that proteins sharing low sequence identity can nonetheless have similar folds (4} 55 [6).

In the previous chapter we have further seen that in a dataset of different EC3
representatives a functional property -that is, the location of the active site- could be
related to a common structural /dynamical feature: namely, the fact that the active site
is found preferentially at the interface between the two primary dynamical domains.
This result is suggestive of the possibility that the second link in the logic ladder
of protein characterisation, i.e. the relation between structure and function, may be
mediated by dynamical properties: could the similarity of motion among two different
objects help to find their hidden shared features (see Fig. ? It would be of great
interest to investigate this relation between structure and function on the basis of
protein internal dynamics.

This possibility can be explored with dynamics-based alignment methods, i.e. algo-
rithms which superpose two protein structures taking into account not only the simi-
larity of their structures, but also the consistency of the aligned regions’ motion. In the
past, various approaches were investigated to compare protein structures on the basis
of their internal dynamics (76} [77; 87). In particular, Zen et al. (77) recently developed
a method to align proteins by optimally matching their structures and dynamics.

65



4. SIMILAR COLLECTIVE DYNAMICS IN STRUCTURALLY
DIFFERENT PROTEINS

This scheme relies on a comparison of the low-energy collective motions of the
aligned regions. It has been shown, in fact, that for many proteins the concerted fluc-
tuations described by the lowest-energy modes entail a large fraction of the functionally-
oriented conformational changes (13} [I5). The alignment is thus performed so to max-
imise the degree of similarity of the tentatively superposed regions.

In the present chapter we discuss a dynamics-based alignment scheme, related to the
one of Zen et al., of which our algorithm represents a generalisation. Our method relies
on an approximated scoring function to identify major traits of structural similarity
and dynamical consistency of the aligned regions, thus reducing the exploration of the
possible alignments before looking for more exact matches. The resulting alignments
show a very good, albeit non perfect agreement with the ones obtained with the ‘exact’
method; on the other hand, the fast performance of the calculations makes possible the
application to large dataset-wide surveys, which were not feasible in a short time with
the original algorithm.

In what follows, we shall briefly describe the original method introduced by Zen et
al.; then, the optimised scheme will be discussed and applied to test-cases.

Figure 4.1: Different fold, similar motion - Can objects of different shape have similar

internal movements? Does this dynamical consistency say something about their function?

4.1 Dynamics-based alignment of proteins

The dynamics-based alignment method introduced by Zen et al. (77) aims at establish-
ing correspondences among regions of the two aligned proteins which undergo similar
collective motions. As it was anticipated at the beginning of this chapter, the concerted
movements entailed by low-energy modes are often related to the functionally-oriented
internal dynamics of a protein. It is therefore natural to investigate whether a cor-
respondence exists, and to what extent, among the collective fluctuations of different
proteins: in fact, as structure is more evolutionarily conserved than sequence, it was

speculated (77) that the internal dynamics could be more conserved that the structure
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which sustains it. This conserved dynamical features might unveil relations, in the
biological function of the two proteins, which are not evident by the inspection of the
structures alone.

The dynamical similarities among two proteins are searched as pairwise correspon-
dences of marked amino acids, i.e. structural alignments. The dynamics of the marked
residues are compared, and the optimal alignment is sought, which maximises a scoring
function rewarding spatial proximity and dynamical similarity of the residue pairs.

Specifically, the algorithm of ref. (77) works as follows. The first step is the explo-
ration of one-to-one correspondences between amino acids of two proteins. The number
of aligned residues, n, ranges from 1 to the length of the shortest protein. This tentative
alignment divides the residues of each protein into two classes: the n residues marked
for the alignment, and the non-pairing ones.

The second step is the calculation of the internal dynamics of the marked amino
acids. This is done making use of the S-GM (37) elastic network model where, as
customary, only the C,, atoms are taken into account.

In order to compare on equal footing the fluctuations of the sole marked residues,
the motion of the non-aligned ones is integrated out. Due to the quadratic nature of
the interaction matrix, in fact, this integration can be performed exactly. Consider the
following elastic network Hamiltonian for a protein:

N

1 R o

EIQGM = 5 Z 5$ZHZ] 51’]' (4.1)
4,j=1

The displacement vector can be written as:

P P E A PSR il AR (4.2)

where the first n vectors refer to the marked amino acids (a superscript), and the
second N — n vectors refer to the non-marked ones (b superscript). The Hamiltonian
can be decomposed in blocks, as:

M Vv
o= (v )

The diagonal terms M® and M? describe the interactions among the aligned and
non-aligned residues, respectively, while the off-diagonal term V' takes into account the
interaction between the two groups (the superscript 7" indicates transposition).

Following the example of ref. (76), the non-aligned degrees of freedom can be traced

out, leading to an effective Hamiltonian which describes the interactions among the sole
aligned residues:
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;JCC;J;V[ = Z 5$ MZ + AM”) (S_S'L‘J (43)
,5=1
AM = —V[M"]—lvT

where [M?]7! is the pseudoinverse of M®. This procedure, applied to the two
tentatively aligned proteins, returns two sets of orthonormal vectors, {¥y} and {w,},
describing the motion of the two proteins’ aligned residues alone.

The third and last step of the algorithm described in ref. (77) consists in the
calculation of the scoring function for each tentative alignment. The score, which
compares the first 10 low-energy modes of the two aligned subsets, is defined as:

Gn = | maz O—Z Z [Zv @ f(d ] (4.4)

fm=1 | j=1

where d; is the distance separating the i-th aligned residues, and

£(d) = % [1.0 ~ tanh (CZI;“)} (4.5)

is a weight function penalising those paired residues whose separation exceeds the
cutoff Ro, usually put at ~ 4 A.

The scoring function in Eq. is not sensitive to a redefinition of the basis vectors
{U¢} and {w,}, because it depends only on the full linear space spanned by the two
sets of vectors. Notice that Eq. [f.4]represents a distance-weighted generalisation of the
Root Mean Square Inner Product (RMSIP), which is given by:

RMSIP = , | — Z

Eml

Z

=1

(4.6)

The score in Eq. ranges from 0 to 1, indicating respectively null or perfect cor-
respondence between the marked residues low-energy spaces, as in the case of RMSIP;
on the other hand, at the contrary with respect to the latter, the score g, incorporates
also the structural information, which is encoded in the distance weighting of the scalar
products.

For a given alignment length, n, the optimal pairing is the one maximising, over
all tentative superpositions, the score of Eq. [£.4] The choice of the optimal alignment
length is finally made introducing a suitable normalisation in Eq. [£.4]
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4.2 Optimised strategy of dynamics-based alignment for

large-scale applications

The dynamics-based alignment method described so far was proven to identify and
highlight relevant structural and dynamical correspondences among proteins having
markedly different structures. Most notably, the use of this method allowed to es-
tablish spatial relationships between structurally-dissimilar proteins involved in similar
catalytic reactions. Unfortunately, this scheme requires, for a single alignment, a consid-
erable amount of computational resources. In fact, for each of the tentative alignments
the degrees of freedom of the non-aligned residues have to be traced; the combinato-
rial space of possible alignments is so large to make the exhaustive exploration of all
possible matchings unfeasible.

Optimised schemes have been thus applied, such as a stochastic search making
use of a replica exchange method (88) to efficiently explore the combinatorial space.
Moreover, the pairing scheme was forced to match segments of at least 10 amino acids
rather than single residues, and a sequentiality constraint was enforced.

Even with this restrictions, the computation of a single alignment of two proteins
takes too much time (about 15 minutes on standard computers) to allow for the ef-
ficient application to large protein datasets. The need to improve the efficiency of
the calculation motivated us to develop an optimised, approximate scheme to perform
dynamics-based alignments. In the following, we shall describe this optimised algo-
rithm, its limitations and strengths, and apply it on two test cases.

4.2.1 The algorithm

The main bottleneck of the original formulation of the previously discussed scheme
is the repeated identification of the aligned amino acids and the tracing out of the
non-marked residues. This procedure is nonetheless required to correctly compare the
internal dynamics of two sets of residues having the same length.

This limitation can be overcome, though in an approximate fashion, by relaxing
the requirement of a pairwise comparison of the residues’ motion: in the following
we shall describe a tolerant scoring function whose minimisation, over all the possible
alignments of two proteins, rewards the dynamical similarity of corresponding protein
regions that can be well superposed structurally.

Consider the following scoring function:

2
10 /
N1 N VR
s=-S00 X | X Ay (@)
4m=1 | i=1..N;
j=1...N3
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where indices ¢ and j run, respectively, over the N1 amino acids of the first protein
and the Ny of the second one.

The quantity in Eq. [1.7] closely resembles a Mean Square Inner Product. The main
difference lies in the scalar product: in place of a sum of z_)”f " terms running on the
pair index i, the vector 17”5 of a protein’s residue 7 is compared with all the displacements
w;.n of the other protein. These scalar products are weighted with a decreasing function
f(d) of the distance (see Eq. in order to exclude from the comparison residues
exceeding the cutoff distance R., which in this case is set at a value of 7TA.

The scoring function [4.7]is more tolerant, in the comparison of the internal dynamics
of two proteins, with respect to Eq. A4} in fact, the latter matches only residue
pairs, while in the approximate method the overall motion of two regions (enclosed
by spheres of TA radius) are compared. Therefore, an appropriate notion of distance
between the two regions has been introduced. Specifically, the sigmoidal function f is
not calculated on the simple distance between an amino acid pair: an effective distance
A;j is rather used, measuring the spatial separation of the fragments [i —1,4,7+ 1] and
[7— 1,4, +1]. A priori the latter could be matched with either the same or opposite
sequence orientation. For the two cases the segments distance is defined respectively
as:

d;; = max{di_l,j_l,di,j,di+1,j+1} (48)

di—j = max{d¢_1,j+1, dij di+17j—1}

with d;; being the Euclidean distance of amino acids ¢ and j. The most appropriate
sequence orientation is chosen a posteriori by setting A;; = min(d;.;, d;)

As discussed above, the ‘generalised’ scalar product in Eq. compares the ‘field
of motion’ of entire protein regions rather than single amino acid pairs. Because the
effective number of compared residues does not reflect in the normalisation of the

eigenvectors, which satisfy the relation

N
’Uf ’ ,D;m = Oom (4'9)

=1

we introduced the factors N1 Vs in order to account for this effect. Assuming uniform
displacement vectors, in fact, the normalisation condition requires that each residue
component of a mode has length |7;| = 1/v/N: the multiplication by the proteins’
lengths returns single residues displacement vectors of unit length on average. This
correction is further enforced excluding from the computations those regions having
an atypically large mobility (e.g. exposed loops or termini). The latter, in fact, could
introduce artefacts in the comparison of the dynamics, due to the large module of their
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displacement vectors. The score contributions are thus restricted to pairs, indicated
by the primed sum, whose residues’ square mobility does not exceed by a factor 4 the
average one per amino acid.

The minimisation of the score s of Eq. over the relative rotations and transla-
tions of the two molecules of interest is carried out using the engine of the MISTRAL
structural alignment program (89). Specifically, the two proteins are first superposed
by optimally aligning segments of up to 50 amino acids. This initial superposition is
next optimised by minimising s over the possible relative orientations of the molecules.
The list of equivalent amino acids is finally computed using a ‘seed and grow’ search
for matching segments: in the applications, we used a seed threshold equal to 4.5 A
and a tolerance equal to 5 A (89; 90)).

Once the optimal superposition minimising the score s is found, and the aligned
pairs of residues have been marked, we take apart the approximation and use the
strict, though computationally more onerous, measure of dynamical consistency. This
can be done following the tracing procedure of the non-aligned residues described in the
previous section, and calculating the RMSIP between the two equal-length sets of low-
energy modes. This calculation is performed only once after the effective alignment,
resulting in a considerable saving of computational resources. In Fig. the flow chart
of the original algorithm introduced by Zen et al. is compared with the optimised,
approximate scheme here discussed.

4.2.2 Assessing the statistical significance of the alignments

The approximate dynamics-based alignment algorithm described above returns the
optimal superposition corresponding to the highest consistency of two proteins’ internal
dynamics, as measured by the scoring function s. The latter, though, does not provide
any information about the statistical significance of an alignment, i.e. the probability
to obtain a given value of the optimal score in the alignment of two unrelated protein
entries.

The measure of the statistical significance of an optimal superposition can be as-
sessed comparing the corresponding s score with a reference distribution, obtained from
a pool of alignments among unrelated proteins whose dynamical consistency is expected
to be low.

We calculated the distribution of the s score (in absolute value) performing pair-
wise alignments of the representative protein dataset of Sierk and Pearson (92)): it is
expected a priori that only a negligible fraction of the alignments in this set will cor-
respond to true positive correspondences. From this set we randomly picked 10° pairs
of non-homologous and structurally dissimilar proteins, differing at the level of CATH
architecture.
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Figure 4.2: Flow chart of the exact and approximate dynamics-based alignment

algorithms - The schemes here reproduced illustrate the basic steps of the algorithms in-

troduced by Zen et al. (77) and Potestio et al. (91)), in the exact and approximated version

respectively, to perform a dynamics-based alignment of proteins. Note, in particular, that

the integration of the non-aligned degrees of freedom is performed at each iteration step

in the exact scheme, while it appears only once in the approximated algorithm, after the

optimal alignment has been found.
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In order to take into account the dependence of the score on the proteins’ size, we
grouped the s values according to the largest protein’s length:

{s}n = {s(N1, No) : max €n—An+Al} (4.10)

n=A-(2k+2), k=0,1,2...

where N1, No are the two proteins’ lengths, and A was chosen to be equal to 25.

For each group {s}, we fitted the resulting distribution with a Gumbel extremal
statistics. This particular distribution arises when the maximum of a random set of
values is considered. The analytic expression of the Gumbel distribution is:

e ? z—p

P(z) = ZT with z=e 7 (4.11)

The parameters p and 3 are related to the mean and variance of the distribution
as follows:

(x) = n— By (4.12)
(@®) = (2%) = p — BIn(In(2))

where v ~ 0.577 is the Euler-Mascheroni constant.

The fits of the various sets (see, for example, the fit of the group with n = 200
in Fig. allowed us to obtain the Gumbel parameters as functions of the largest
protein size, n:

u(n) = ai+vyao (4.13)
2
™
B =\ saran
where:
w2
ar(n) = 1.25+ne (z8m) (4.14)
az(n) = 13.45+0.38n

For a given value of the largest protein length, the Gumbel distribution with the ap-
propriate parameters is used as a ‘null’ reference distribution against which we measure
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Figure 4.3: Probability distribution of the optimal alignment score - In this
graph we plotted the absolute values of the score s, associated to the alignments involving
proteins having maximum length between 175 and 225. The normalised histogram was
fitted with a Gumbel distribution (red curve).

the statistical significance of the alignment. This is quantified in terms of the p-value
or, equivalently, by the z-score, defined as follows:

p(sn) = /|°0P<x;u<n>,ﬁ<n>> da (4.15)

S5

sl — {lsnl)

z(s = =+

(50) ~
where o, is the standard deviation of the n-distribution; as anticipated, the score is
taken in absolute value for sake of simplicity. The p-value corresponds to the probability
to obtain a given optimal score |s,| or higher aligning two unrelated proteins. A low
p-value thus indicates a high statistical significance; similarly, the z-score measures the
distance of the alignment score from the average, in units of the standard deviations:
the largest the z-score, the more unlikely, and hence significant is the alignment.

4.3 Test-case application of the dynamics-based alignment
method

We now discuss two applications of the approximate dynamics-based alignment. The
reliability of the scheme has been tested with two benchmark cases, previously treated in
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the literature: human beta-secretase (BACE) vs. HIV-1 protease (93)), and exonuclease

IIT vs. human adenovirus proteinase (945 95)).

4.3.1 HIV-1 PR and beta secretase

The additional insight offered by the dynamics-based alignment with respect to ‘static’
alignment approaches is aptly illustrated by the comparison of HIV-1 PR (PDBid:
laid) and human beta-secretase (PDBid: 3hvgA). The two enzymes, which are both
aspartic proteases, present major structural differences. In fact, HIV-1 PR is a 198-
amino-acid-long homo-dimer, and is almost entirely composed of § sheets. On the
contrary, beta-secretase is a monomeric enzyme consisting of 379 amino acids and
rich in « helices. Despite the differences in symmetry, oligomeric state, length and
secondary structure content the two enzymes share several segments of the primary
sequence and are hence believed to be evolutionarily related (93)). In fact, they admit a
partial, but significant, structural superposition: their DALIlite alignment (96) returns
94 corresponding residues with an associated RMSD of 3.4 A, while the MISTRAL
alignment returns 128 equivalent amino acids at 2.4 A RMSD. In addition to the partial
structural correspondence, previous studies, based on atomistic MD simulations had
highlighted the similarity of the low-energy modes of the two molecules (39; 40).

The dynamics-based alignment returned by our method is statistically significant,
as the associated p-value is appreciably smaller than the conventional threshold of 0.05.
and is fully consistent with the above-mentioned findings. The alignment consists of
more than 140 amino acid pairs at an RMSD smaller than 4 A. The good correspondence
of the modes is highlighted by the large RMSIP value of the matching modes, which is
about 0.8.

The functional relevance of the dynamics-based alignment is underscored by the
following facts. First, the returned alignment superposes the catalytic dyads of the two
enzymes. This is a non-trivial aspect in consideration that no information about the
chemical composition (such as the primary sequence) was used. The second observation
regards the consensus movements in the two proteins, which entail the modulation of
the region accommodating the peptide chain to be cleaved. It is known that in order
for the proteolytic reaction to occur, both BACE and HIV-1 PR must “stretch” the
substrate in a [-extended conformation (39 [40]), and the consensus motion captured
by the method, see Fig. 1, is consistent with the required deformation (97).

The dynamics-based alignment therefore vividly illustrates the existence of a fun-
damental similarity underlying the internal dynamics of these enzymes, which is in-
strumental to produce analogous, functionally-oriented, deformation patterns in spite
of the overall structural differences.
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4.3.2 Exonuclease III and human adenovirus proteinase

Exonuclease III (PDB: lako) and the human adenovirus proteinase (PDB: lavp) are
not evolutionary related and are structurally dissimilar at the CATH architecture level.
Their structural alignment has a p-value larger than 0.1 according to MISTRAL and,
similarly, it is ruled out as ‘not significant’ by DALIlite.

Despite these differences, the enzymes process chemically similar substrates. In
fact, both exonuclease III and human adenovirus proteinase bind DNA (in double- and
single-stranded forms, respectively). In the study of Zen et al. (77) the dynamics-based
alignment of the enzymes was found to have a good statistical significance. As for the
case of BACE and HIV-1 PR, the functional relevance of the dynamical correspondence
was underscored by the fact that the known active sites of the proteins (79) were
spatially-superposed by the alignment and by the fact that the consensus motion was
compatible with the expected functionally-oriented structural changes (94} 05).

All the above established results are reproduced by the new alignment scheme which
employs a more general search scheme than the method of (77). As visible in Fig. 4.4
the two proteins align over more than 90 amino acids, at an RMSD smaller than 4 A.
The consistency of the dynamics of the aligned regions is high (RMSIP value larger
than 0.7). It is readily noticed that the alignment yields a good spatial overlap of
the active sites of the two enzymes. In accord with previous findings (77), the latter
are located in a region at the interface between two oppositely-moving ‘domains’. As
suggested for other enzymes, e.g. the EC3 hydrolase representatives discussed in the
previous chapter (98)), this characteristic ought to preserve the catalytic geometry at
the active site, while facilitating the accommodation/processing of the substrate.

4.4 Web-server implementation

The computational efficiency of this dynamics-based algorithm allowed us to imple-
ment it in a freely-accessible web-server, named ALADYNE] (after Dynamical Alignment
method).

The server interface is kept at a minimum level of complexity, as it only requires
the input of the two proteins of interest (as PDB id’s, or PDB files to be uploaded).

The algorithm’s running time scales approximately proportionally to the product
of the lengths of the input proteins. In fact, the time required for the alignment of
two proteins of about 250 amino acids is typically less than one minute on the modern
multicore server that hosts ALADYN, while two proteins of about 500 amino acids are
completed in about 4 minutes.

"http://aladyn.escience-lab.org

76



4.4 Web-server implementation

Figure 4.4: Examples of dynamics-based alignments - The structural correspon-

dences and the consistency of the fluctuation dynamics of the aligned regions are shown
side-by-side for each of the test cases discussed in the Test cases section. (a) The align-
ment of HIV-1 protease (pink/red) and beta-secretase (cyan/blue) are shown in panels al
and a2. (b) The alignment of human adenovirus proteinase (pink/red) and exonuclease
III (cyan/blue) are shown in panels bl and b2. Aligned regions are shown with saturated
colours (i.e. red and blue), while the active sites are highlighted using a Van der Waals

representation.
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Upon successful completion, users are finally directed to an interactive graphical
representation of the superposed proteins, based on the Jmol (99) applet, which is
complemented by a summary of the salient properties of the alignment, number of
aligned amino acids, RMSIP, RMSD and the statistical significance conveyed by the
z-score and p-value. The links provided at the bottom of the results page allow users
to download data-files containing all details of the alignment output.

4.5 Summary

The dynamics-based alignment of two proteins represents an important complement of
the available sequence- and structure-alignment schemes. The possibility of recognising
a similar modulation of the collective dynamics between structurally-different proteins,
in fact, can widen our understanding of the biological function of these biomolecules
and the strategies they adopt to perform their activity.

In this chapter we revised a dynamics-based alignment scheme previously introduced
by Zen et al. (77), and discussed a possible extension. Our method relies on the
continuity and smoothness of the modes to estimate the similarity of the motion without
establishing a one-to-one correspondence of the proteins’ amino acids, which represents
the bottleneck of the original algorithm. This approximation is justified a posteriori by
the high degree of collectivity of the low-energy modes, whose modulation is compared
between the two proteins under exam. The simplification adopted in this ‘tolerant’
scheme can naturally lead to non-perfect alignments, which are seamlessly performed
by the original method; on the other hand, the drastically reduced computational effort
of the calculations allows for a thorough and efficient exploration of the alignment
configurational space and, consequently, in dataset-wide applications which were out
of reach otherwise.

In the previous chapters a large body of evidence has been collected that large-scale,
functionally-relevant conformational changes of proteins and enzymes are encoded in
their structure. Specifically, the robustness of the low-energy fluctuations and the
modular properties of many protein structures -highlighted by the dynamical domain
decomposition- have shown that the structural properties of a protein often reflect into
the modulation of concerted displacements; the latter, in turn, can assist the biological
function of the molecule.

The application of the dynamics-based alignment can allow us to gain further insight
into this dynamics-mediated relation between structure and function. In particular, we
have seen that a given set of collective fluctuations is not tied to a unique structure:
on the contrary, many different folds can perform similar motions. The possibility to
ascertain this dynamical similarity among structurally-different proteins gives us new
instruments for investigating the structure-function relation in proteins.
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Knotted-unknotted protein pairs:

evidence of knot-promoting loops

The protein fold space is an important concept which plays a pivotal role in the organ-
isation of protein structural data and their relation with sequence and function. The
constantly increasing number of available structures, in fact, imposes the necessity to
classify these informations, in order to recognise correspondences as well as differences
among proteins.

In spite of its importance, the notion of protein fold and its definition are still mat-
ter of controversial debate (100). Two of the most used protein structure classification
resources, namely SCOP (5) and CATH (6), make use of a hierarchical scheme; for
example, in CATH the top level (Class) organises proteins according to the secondary
structure element content: mainly ¢, mainly 3, mixed o — 3 and unstructured. Accord-
ing to these schemes, the protein structure space consists of discrete non-overlapping
‘islands’ (folds): two proteins belonging to different folds can only share those features
which characterise the common parent classification level.

Clearly, relevant structural similarities can be found even among members of dif-
ferent folds. An example was given in chapter [4, where significant dynamics-based
alignments were found for proteins with different CATH topology. In addition, it was
recently suggested that the fold space is continuous (100} 101), and different folds can
be connected with a path of progressively similar structures. In a continuous space the
‘distance’ between two folds is not given by discrete classifiers (like the «/5 content)
but is instead quantified by continuous measures of structural similarity (RMSD could
be one).

Obviously, both descriptions of the fold space -discrete and continuous- are legiti-
mate, and both can contribute different and complementary points of view to broaden
our understanding of the structural features of protein folds. Nonetheless, a feature
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exists, which usually is not incorporated in either of the two schemes: the topology of
the protein chain.

In fact, the topological properties of proteins -namely, the knotted or unknotted
state of the backbone- are difficult to include in a structure classification scheme since,
by its very definition, topology is a geometric invariant. This means that proteins
having completely different structures (according to both the discrete and continuous
view of the fold space) can share the same topology, and symmetrically two almost
identical protein structures can differ by a few angstroms, sufficient to give place to a
knotted and an unknotted structure. An example of the latter possibility is given by
the SOTCase discussed in ref. (102]), whose oligomeric chains contain a trefoil knot.
Sequence-related proteins with the same CATH code of the knotted SOTCase can be
found, which differ by the latter for less than 2 A RMSD though not having a knotted
structure.

The topological state can thus be depicted as a ‘discrete quantum number’ in protein
fold space which can group together structurally far instances and segregate in different
classes proteins with a RMSD close to zero.

In the present chapter, we shall tackle the problem of knotted topologies in proteins
with a comparative approach: a very small and non-redundant set of knotted proteins
is found, and relations with unknotted proteins are sought making use of both sequence
and structure alignment schemes: the evolutionary and structural relationships between
geometrically similar but topologically different protein pairs can help to shed light on
this issue.

5.1 Khnots in proteins

5.1.1 The knotted protein puzzle

The presence of knots in proteins, their formation and their role, represent one of the
major puzzles of nowadays protein science. The existence of protein chains naturally
occurring with a nontrivial topology has been suggested since when the very first crystal
structures were resolved (103)); nonetheless, this possibility was readily deemed as im-
possible: it was in fact assumed that a knotted state of the polypeptide chain could only
represent a hindrance of the folding process or a kinetic trap, preventing the protein
from reaching the functionally active native state.

This idea was shared by the vast majority of the scientific community, and it reflects
the fact that numerous structure prediction algorithms exclude knotted structures by
default (104; [105). It was therefore quite a surprise when the first deeply knotted
protein structure was discovered (103; [I06]), proving that a knotted native state was
not incompatible with the folding process in vivo.
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The existence of knotted proteins obviously poses important conceptual challenges,
both in the comprehension of the role played by knots to carry on the biological activity
and, in particular, for what concerns the formation of the knot itself, being this an
extreme case of folding complexity.

5.1.2 Knots in biopolymers: chance or necessity?

But what makes knots in proteins so unexpected, and knotted proteins so special? A
vast variety of diverse physical and biophysical examples show that knots are not rare at
all: in biopolymers such as DNA filaments, on the contrary, they form extremely often
and with a broad range of complexity (107} [108; 109} [110). Several experiments have in
fact shown that DNA strands can form highly complex knots, and computer simulations
have broadly investigated the occurrence of knotted DNA topologies in various physical
situations, e.g. viral DNA confined in a capsid (107; [108; 109 11T} 112).

Indeed, from the physical point of view, the formation of a knot in a sufficiently
long flexible chain is a certain event which follows precise statistical laws (113} 114}
1155 116; [117), and the occurrence of a specific type of knot can be predicted with
probabilistic methods.

Proteins on the other hand, do not behave like random flexible polymers, as they
have evolved to fold reproducibly in a well-defined native state in physiologic conditions
(118). As anticipated, the formation of a knot in a protein chain is usually assumed
to represent a kinetic trap. Moreover, a substantial difference exists between the knots
observed in proteins and those occurring in other biopolymers like DNA, which is
reproducibility: the appearance of a given type of knot in a given point of a DNA
strand can be assessed only in a statistical sense, while a knotted protein folds always
with the same knot type in the same location. It is in this sense that a knotted protein
differs from a knotted polymer as much as a tied shoelace differs from an entangled
cord in a bag.

5.1.3 Knotted protein folding - a series of fortunate events

The characterisation of the folding process of a knotted protein is a difficult task, due to
the complexity introduced by the topology. How does a knot form? By which succession
of events the molecule entangles itself to form a topologically nontrivial structure?

A possible scheme has been suggested (106; 119), according to which the protein
partially folds forming a loop, through which a terminus is later threaded to form the
knot. It is worth noting nevertheless, that experiments indicate (120) that proteins
fold in a two-state process, in which the molecule exists in a all-or-none fashion. The
rapid transition from denatured to native state is therefore not supportive of a knot
formation scheme assuming a partial folding of a protein region.
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An alternative possibility has been recently explored (121} 122]), that the formation
of the knot occurs at the early stages of the folding process, when the molecule is still
in a swollen configuration. This hypothesis was supported by experiments on fusion
proteins (121} [122)) and circularised, denatured knotted proteins (123)). Nonetheless, it
should be bourne in mind that the presence of the knot was not observed directly in
these complexes, but inferred indirectly.

Presently, the sequence of events which guide a protein to fold in a knotted native
state is far from being understood, and the reasons why a given protein needs a knot

to perform its function are still unclear for many cases.

5.1.4 Identification and classification of protein knots

The study of protein knots requires a proper and unambiguous definition of the latter.
In fact, from the mathematical point of view a knot is well defined only for closed
curves; proteins, on the other hand, are linear open chains E The proper identification
of a knot in a protein therefore requires that the two termini are joined by a suitable
closure procedure.

Different algorithms have been introduced to accomplish this task in an automated
and un-subjective way. One possibility is to extend the termini outwards with respect
to the protein’s centre of mass: this procedure reduces the possibility of crossing the
bulk of the molecule, but does not guarantee the uniqueness of the closure. Recently
Millet (124]) introduced a statistical scheme for the protein closure: a large number of
directions for prolonging the termini are drawn randomly. The protein is then closed
and the knot type is identified: the true knot type is the one occurring with largest
probability.

In our work we adopted a simpler and more stringent scheme, which is also com-
putationally efficient. The method is based on the idea that an unambiguous closure
can be introduced if the termini are sufficiently exposed on the protein surface: in
geometrical terms, this means that a terminus can be safely prolonged away from the
protein if there exist a plane passing through the terminus and leaving all the protein
on one side. When this condition is met for both termini, the latter are extended in
a direction orthogonal to the plane in the outward direction, then joined through an
arc. Because the identification of the knot type can be complicated by the presence of
several coplanar bonds in the closed proteins, a small perturbation is added to the arc
joining the termini. In Fig. a closed globular protein (PDB code lyvel) is shown.

The identification of the planes is performed with the method of the perceptron
(125). In its original formulation, the perceptron is a simple mathematical model of a

'In what follows, we shall take into account only the backbone chain and the knots it forms; other
knots or pseudo-knots formed by covalent bonds (e.g. disulfide bonds) will not be discussed.
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Figure 5.1: Example of protein chain closure - The knotted protein chain lyvel
is here shown in trace representation after the closure process. The arc, connecting the
protrusions of the protein termini, is not smooth but a small random drift is added in order

to prevent problems in the knot type identification (see text).

neural cell: it takes an N-dimensional vector 7 of input values and returns a response
f. In formulae:

f@) =rF-a+b (5.1)

where 7 is a weight pattern, and b is a bias. In our formulation, we search for the
unit vector 7 applied to the terminus of the protein, having negative scalar product
with all the vectors 7; joining the terminus and the other residues. If this vector exists,
the terminus can be extended unambiguously in its direction; otherwise, the protein
cannot be safely closed.

Once the protein chain has been circularised, the topological state must be identi-
fied. This classification is performed making use of topological invariants, i.e. properties
which do not depend on the exact geometry of the ring: typical invariants used to char-
acterise a knot are the Alexander polynomial, the Jones polynomial and the HOMFLY
polynomial (126). The determination of the invariants require the projection of the
three-dimensional chain on a plane in order to calculate the number and type of the
crossings; this procedure can be extremely complex and ambiguous in the case of long
and entangled chains like proteins: therefore, it is typically preceded by a simplifica-
tion of the structure, consisting in a smoothening of the chain and a reduction of its
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length. The procedure we applied in our work was based on a set of routines written
by Micheletti et al. (I07; [108]), and on the Knotfind algorithm (127).

5.2 Sequence and structure comparison of proteins having

different topology

In this section, we shall discuss a quantitative, comparative analysis of proteins having
different topological state. This investigation is performed on a minimally redundant
dataset of knotted and unknotted proteins.

5.2.1 Identification of the knotted and unknotted representatives

The Protein Data Bank as of December 2009 contained 6.2 10% entries: each of these was
parsed into single chains, which were processed separately. In order to avoid incomplete
or badly resolved structures (whose indetermination could result in an incorrect knot
identification) we retained only those chains with length matching the nominal one,
provided in the SEQRES PDB field, to within 25 amino acids. Also those chains,
whose length was shorter than 50 a.a. or larger than 1000 a.a., were eliminated, as well
as those with missing C,, coordinates. This sieving procedure returned 1.2 10° chains.

The closing procedure previously discussed was applied to these chains, out of which
6.4 10* could be circularised. For proteins constituted by identical monomeric chains,
only one representative chain was considered, reducing the number of considered entries
to 4.5 10%.

Finally, this dataset was further processed to establish the knot topology of each
entry; only 247 protein chains, listed in Table were found to have nontrivial topol-
ogy. The sets of knotted and unknotted proteins were affected by a large sequence
redundancy: for example, as many as 194 of the 229 knotted proteins, are carbonic
anhydrases. The primary sequence comparison of the entries revealed that less than 50
chains are non-identical in sequence.

The datasets were hence processed to achieve a uniform and minimally-redundant
coverage in sequence space. The redundancy of the knotted protein set was removed
at the stringent 10% sequence identity level using the web tool developed by Cedric
Notredame[[] The culling procedure returned the 11 representatives shown in Table
No significant structural relatedness was found among any pair of these representatives.

The large set of unknotted proteins was too large to be culled with the Notredame
web tool; we therefore resorted to the standalone UniqueProt (128) program to effi-
ciently remove the overall sequence similarity. Its iterative application with default
parameters returned 2.4 10% unknotted representatives.

!Unpublished. The web address of the tool is http://www.expasy.ch/tools/redundancy
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1la42A  lam6A lazmA 1bcdA  1bicA 1bngA 1bnuA 1bnwA 1bv3A  1bzmA
lcahA lcaiA  lcajA  lcakA  1calA lcamA 1lcayA  lcazA 1cilA  lcngA
lecraA lezmA  1dmxA  1dmyA leouA  1fljA 1fqgnA  1fqrA 1frdA 1fsqA
1fsrA 1g0eA  1g0fA  1gldA  1g3zA  1g45A  1g46A  1g48A  1gdjA  1gdoA
1g52A  1gh4A  1gz0A  1gz0B  1gz0D 1gzOF 1gzOH  1hcbA  lheaA  lhecA
lhuhA  1i8zA  1i90A  1i91A  1i91A  1i9mA 1i9nA  1i9%0A  1i9pA  1i9qA
lifAA  1if5A  1if6A  1if7TA  1ifSA  1if9A  lipaA  1j9wA  1jvOA  lkeqA
lkwqA  lkwrA  1lghA  1InxzA 1nxzB 106dA  logbA  1p7lA  1qmgA 1qmgD
lrayA lrazA  1rg9A  1rjbA  1rj6A  1rzaA  IrzcA  1rzdA  1rzeA 1s1hl
1t9nA  1th0X  1thtX  1te3X  IteuX  1tg3A  1tg9A  1th9A  1thkA  1ttmA
lugaA  lugcA  lugdA  lugeA  lugfA TuggA lurtA  1v9eA  1v9iC  1vhOA
1x7pA  1xd3A 1xd3C 1xegA 1IxevA 1IxevB 1IxpzA 1xq0A 1yddA 1yhlA
1lyo0A  1yolA  1yo2A  1lyvel 1z97A  1zgeA  1zgfA  1zh9A  1zjrA  1lzsaA
1lzsbA  2awlA 2ax2A  2cbaA  2cbbA  2cbcA  2cbdA  2cbeA  2efvA 2egvA
2etlA 2eu2A  2eu3A  2ez7A  2fg6C  2fg6D  2fg6Z  2fg7C  2fg7X  2fnkA
2fnmA  2fnnA  2foqA  2fosA  2fovA  2foyB 2g7mC 2g7mX 2gehA  2h15A
2ha8A  2hd6A  2hfxA  2hfyA  2hkkA 2hl4A  2hocA 2nmxA 2nmxB 2nnlA
2nnlB  2nn7A  2nngA  2nnoA  2nnsA  2nnvA 2nwoA  2nwpA  2nwyA  2nwzA
2nxrA 2nxsA  2nxtA  209cA  20bvA  20sfA  20smA  2p02A  2pouA  2povA
2gqmmA  2qo8A  2qp6A  2rh3A  2vvbX 2wegA 2wehA 2wejA  3b4fA  3bbdA
3bbeA  3bbhA 3betA  3bjxB  3bl0A 3c2wC 3c2wH  3c7pA  3cajA  3czvB
3d0nA  3d93A  3d9zA  3da2A  3dbuA 3dc9A  3dccA  3desA  3ddOA  3ddSA
3dv7A  3dvbA  3dvcA  3dvdA  3eftA  3fdxA  3f8eA 3ffpX  3gz0A  3hkqA
3hkuA  3hs4A 3iaiA 3iaiB 3iaiD 3ibiA 3iblA 3ibnA  3ibuA 3ic6A
3iefA 3ilkA  3k2fA  3ktyB  3ktyC 4cacA  5cacA

Table 5.1: Knotted protein list - List of the 247 knotted protein chains found in the
December 2009 PDB release.
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name

PDB

knot type

CATH

EC

knotted region

hypothetical protein

2efvA

311

6-86

plasmid pTiC58 VirC2

2rh3A

311

82-194

N-succinyl-L-ornithine
transcarbamylase

(SOTCase)

2fg6C

311"

01:3.40.50.1370
02:3.40.50.1370

149-257

methyltransferase (MT)
domain of human TAR
(HIV-1) RNA binding
protein (TARBP1)

2ha8A

311‘

83-167

alpha subunit of human
S-adenosyl-methionine
synthetase (SAM-S)

2p02A

31ir

01:3.30.300.10
02:3.30.300.10
03:3.30.300.10

2.5.1.6

38-328

human carbonic anhy-
drase II (CA2)

5cacA

311‘

3.10.200.10

4.2.1.1

11-260

acetohydroxyacid  iso-

meroreductase

1qmgA

41

01:3.40.50.720
02:1.10.1040.10

1.1.1.86

302-553

photosensory core do-
main of aeruginosa
bacteriophytochrome

(PaBphP)

3c2wH

5-302

ubiquitin carboxy-

terminal

(UCH)

hydrolase

2etlA

52l

3.40.532.10

3.4.19.12

1-233

group I haloacid dehalo-

genase

3bjxB

611‘

3.8.1.10

46-288

80S-eEF2-

sordarin complex

ribosomal

1s1hI

311‘

78-125

Table 5.2: List of the knotted protein representatives - CATH () and EC (72)) codes
are indicated where available; the knotted region refers to the PDB residue numbering.

The chirality is indicated with a [ or r tag appended to the knot type. CATH domains

containing the knot are highlighted in boldface for multidomain proteins. The knot region

is defined by taking the strictly knotted protein segment returned by the Protein Knot

server (129) and extending it by 20 amino acids on both sides. For protein chain 2p02A,

which is not recognised as knotted by the server, the strictly knotted protein segment was
identified using the method of ref. (I30). The knot in the last entry (1s1hI) has a probably

artifactual origin, see Results and Discussion.
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topology

5.2.2 Knots spectrum and knot chirality

Before discussing the comparative analysis, we report in this section the results of our
investigation about the properties of knotted proteins in the dataset.

Sy

1 4

S

51 ep) 6,

Figure 5.2: Knot diagrams of the simplest knots - The knot diagrams of the knots
discussed in the text are here shown. The number labelling each knot is related to the

number of crossings; clearly, the Unknot has zero crossings.

The simplest knot type, 31 (see Fig. , also known as trefoil knot, is by far the
most abundant knot type in the initial redundant set, and is also the most abundant
in the representative list of Table Indeed, 7 of the 11 entries are trefoils.

Among the trefoil representatives in Table[5.2] we have identified the shortest known
knot, consisting of only 10 amino acids. The knot is found in the cryo-em resolved PDB
entry 1slhl (ribosomal 80S-eEF2-sordarin complex) (I3I). Several clues point to its
possible artifactual nature: the knotted region (from a.a. 98 to 105) is listed in the
structure file as having highly non-standard stereochemical parameters. Furthermore,
the associated temperature-factor values are in excess of 100, and are hence indicative
of poor compliance with the electron-density map. For these reasons the knot in entry
1s1hl is probably artifactual and has been excluded from the comparative analysis.

More complex knot types, 41 and 59 (see Fig. , are represented by two and one
entries respectively in Table and, in any case, by very few chains in the redundant
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set. The survey of the December 2009 PDB release did not return knots more complex
than the 6; type (see Fig. [5.2), which was reported in ref. (106).

It is interesting to observe a parallel between the chronological succession of the
first PDB release of the various types of protein knots and the complexity of the knots.
In fact, the first structures containing 31, 41, 52 and 6; knots were resolved or re-
leased, respectively, in 1988 (PDB entries 4cac and 5cac (132))), 1996 (PDB entry lyve
(133))), 2004 (PDB entry 1xd3 (134)) and 2007 (PDB entry 3bjx (135)). Although the
steady increase of the PDB cannot be viewed as resulting from the repeated addition
of structures sampled uniformly in “protein structure space”, it is natural to assume
that the chronological succession of the knots “discovery” is inversely correlated to the
abundance of the various knot types.

This qualitative consideration is supported by the fact that, in compact flexible
polymers, the abundance of the simplest knot types decreases with knot complexity
(I07; [136)). One notable point of these polymeric reference systems is that, for entropic
reasons, the knot type 51 is appreciably less abundant than 52, which has the same
nominal complexity (L07; [108). The absence of the 5; knot in presently-available
proteins (a fact previously also related to the unknotting number (103)), may thus
reflect the still limited pool of known knotted proteins and might hence populate in the
future.

Finally, we discuss the extent to which knots of different handedness occur among
knotted proteins. Apart from the 4; knot which is achiral, knots 31, 53 and 61 can
exist in left- and right-handed versions. Previous observations made on a redundant
set of proteins folded in trefoil knots concluded that, except for a single protein entry,
all other ones were right-handed trefoils. For the most numerous family of knotted
proteins, namely carbonic anhydrases, the bias towards right-handed knots was related
to the intrinsic chirality of the Sa 8 motif adopted by such enzymes (103).

The investigation of the handedness in this latest dataset, where sequence redun-
dancy has been removed, provides a novel context for examining the problem. As
reported in Table the balance between right- and left-handed knots is 5 to 3,
respectively. The near equality of the populations is thus compatible with the null
hypothesis that left- and right-handed protein knots occur in equal proportion (af-
ter removal of the biases of representation due to sequence redundancy of otherwise
detectable evolutionary relationships).

5.2.3 Sequence — structure relationship

As previously anticipated, the ability of a protein to fold in a knotted state represents
a still unsolved problem. A systematic comparison of knotted proteins with unknotted
ones, sharing with the former sequence or structure relations, represents a promising
strategy to understand the peculiarities of topologically entangled protein chains.
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In this subsection we tackle one facet of the problem. Specifically, we discuss how
primary-sequence similarities reverberate in relatedness of the knotted /unknotted topo-
logical state. To this purpose, for each of the 11 representatives in Table we
performed a PDB-wide BLAST (137) search for related sequences. The search was
restricted to sequences of proteins of known structure (i.e. contained in the PDB) be-
cause without the structural data it would not be possible to compare the knottedness
of pairs with related primary sequences. The sequence comparison analysis, mainly
performed by C. Micheletti, started by first running the PDB-wide BLAST queries
using a stringent E-value threshold (0.1). False positives are hence not expected to
occur appreciably among the returned entries. Only for three protein chains, namely
5cacA, 2fg6C and 2ha8A, the number of significant matches was larger or equal to 10.
Incidentally we mention that, consistently with the probable artifactual origin of the
knot in entry 1slhl, all the 10 significant BLAST matches of 1s1hl were unknotted
protein chains.

All the returned matches for the 5cacA human carbonic anhydrase and the 2ha8A
methyltransferase domain of the human TAR RNA binding protein (TARBP1-MTd),
consisted exclusively of a dozen knotted proteins, all with the same knot type. These
matches were therefore not informative for the purpose of understanding if and how dif-
ferences in sequence reverberate into differences of knotted state. On the contrary, the
BLAST matches of the trefoil-knotted N-succinyl-ornithine transcarbamylase (SOT-
Case), associated to the PDB entry 2fg6C (138), proved particularly interesting as only
7 of the tens of matching entries are knotted (all in a trefoil knot).

To advance the understanding of the precise type of sequence relatedness of the
SOTCase and its knotted and unknotted homologs, the matching BLAST sequences
were used as input for a CLUSTALW multiple sequence alignment (139). The results
were used, in turn, to establish a phylogenetic relationship between the related proteins
using a neighbour-joining bootstrapping algorithm (140). The method associates to
each branch of the phylogenetic tree a percent confidence estimated from the occurrence
of the branch in 1000 repeated phylogenetic reconstructions using only a subset of the
aligned amino acids.

The phylogenetic tree for the SOTCase is represented in Fig. [5.3a. The tree shows
that the knotted entries appear in two terminal branches sharing a common root.
Each branch gathers entries that are highly similar in sequence; in fact their sequence
identity (computed by dividing the number of aligned identical amino acids by the
average length of the two compared proteins) is not smaller than 90%. The sequence
identity across the two branches has the much smaller, but still significant, average
value of 40%. The homology relation among all members of the phylogenetic tree is
further confirmed by the fact that those, for which CATH (6) code is known, belong
to the same CATH family. On the other hand, the robustness of the separation of
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the knotted sequence subgroup from the unknotted one is strongly suggested by the
bootstrap algorithm, with a confidence level larger than 99%.

Among the knotted and unknotted entries, the average level of sequence identity is
about 20%, with a standard deviation of 7%. Indeed, it is interesting to observe that
few knotted /unknotted pairs can have a level of mutual sequence identity even larger
than knotted pairs. For example the knotted chain 2g68A has a sequence identity of
33% and 38% respectively, against 1js1X (knotted) and 1pvvA (unknotted).

The present results offered a novel insight into the possible mechanisms that have
led to the appearance of knotted proteins. In particular, the phylogenetic tree structure
suggests the existence of a simple evolutionary lineage between the sets of knotted and
unknotted proteins shown in Fig. [5.3h. In fact, both groups of trefoil knotted proteins,
which have a limited mutual sequence identity, appear to have commonly diverged from
the main tree of unknotted entries.

The implications are twofold. On the one hand, the robust conservation of the
knotted fold in the two sequence-diverged knotted groups suggests the functionally-
oriented characteristics of the knotted topology. Indeed, it had already been pointed
out for one member of this family (102) that the active site is located close to the
knotted region, a fact that led to speculate that knottedness would confer a necessary
mechanical rigidity to the protein as a whole or to the active site (141; 142). On the
other hand, the existence of a single knotted branch indicates that the knot appearance,
and its subsequent conservation, are rare evolutionary events.

Further clues about the biological rationale behind the evolutionary pathways that
have led to the emergence/conservation of the knotted structures in Fig. ought
to be addressed using more powerful tools than the present sequence-based analysis:
in particular, a more general reconstruction of the phylogenetic relatedness should be
accomplished within a genome-wide perspective for the organisms involved.

5.2.4 ‘Knot-promoting’ loops in SOTCase

Valuable insight into the fundamental similarities and differences in the entries appear-
ing in the tree of Fig. can be obtained by inspecting their structural alignment. In
this case it appears particularly appropriate the use of a multiple non-sequential struc-
ture alignment method: in fact, correspondences are sought between proteins with
different knotted state, and hence with expected differences in fold organisation.

To this purpose we used the MISTRAL (89)) multiple structure alignment method.
The alignment tool was used for two reasons. First, it has been shown to yield a
reliable estimate of the statistical significance of a given alignment and, secondly, it
can detect structurally-corresponding regions that do not have the same succession
or directionality along the primary sequence of the input proteins. The necessity to
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Figure 5.3: SOTCase and homologous proteins: phylogenetic tree and struc-
tural alignment core - (a) The phylogenetic tree was obtained by applying a neighbour
joining algorithm (140) to the CLUSTALW multiple sequence alignment of SOTCase and
its sequence homologs. The branches’ length reflects the percentage sequence dissimilarity
(5% gauge shown at the top). The numbers at the nodes, calculated by the bootstrap
algorithm, indicate the percent robustness of the separation of two bifurcating branches.
The two branches involving knotted proteins (all trefoils) are highlighted in green. (b) Two
orthogonal views of the MISTRAL alignment core of six representatives of the SOTCase
homologous proteins, namely 2fg6C (knotted), 2i6uA, 2g68A, 2at2A, 1pgbA and lortA.
These proteins are 313 amino acids long on average. Their alignment core consists of 212
amino acids at an average RMSD of 1.9A. The colour scheme red — white — blue follows
the N to C sequence directionality.
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account for such generalised relationships in proteins has emerged from recent analysis
of protein evolutionary relationships (143]).

All pairwise structural alignments between the representatives of the unknotted and
knotted proteins were computed. Among those with a p-value smaller than 5.0 1072 we
singled out those which involved at least 40% of the protein region that encompasses
the knot. The latter is defined by taking the chain portion that is strictly occupied by
the knot according to the criterion of ref. (129) and extending it by 20 amino acids
on both sides of the primary sequence (unless a terminus is closer): all the selected
alignments are provided in table

The proteins appearing in the phylogenetic tree can be all simultaneously structurally-
aligned. Their aligned core consists of as many as 192 amino acids, which is a substantial
fraction of the full proteins (which have an average length of about 310 a.a.). Over
the core region, the average RMSD of any pair of matching amino acids is less than
2 A. The good structural superposability of the protein set (which we recall includes
protein pairs with average mutual sequence identity of about 20%) is exemplified in
Fig. [6.3b where the alignment of 6 proteins taken from the various primary branches
of the phylogenetic tree is shown.

The detailed pairwise structural comparison indicates that members of the two knot-
ted branches admit a good structural superposition over the full protein length (and,
in particular, over the knotted region). To highlight the salient differences between the
knotted and unknotted entries in the tree we analysed all the pairwise structural su-
perpositions of the knotted SOTCase with the unknotted homologs. This investigation
generalises the structural comparative inspection of two specific instances of knotted
and unknotted carbamylases carried out in ref. (102)).

The results are best illustrated considering the closest matching pair, namely the
SOTCase and PDB entry lortA. In spite of their limited mutual sequence identity,
which is about 25%, these proteins admit a very good structural superposition, see
Fig. ,b. Indeed, as many as 246 of their amino acids (which are 321 and 335 in
total for chains SOTCase and chain lortA, respectively) can be superposed with an
RMSD as small as 2.5A. The alignment respects the overall sequence directionality of
the chains. The few non-matching regions are typically insertions in exposed stretches
of the sequence, corresponding to small loops protruding out of the surface of the
molecule, which have no particular bearing on the protein topology.

The case is different for two regions of the SOTCase: the proline-rich segment
comprising amino acids 174-182, and the segment 235-255; both regions are located in
proximity of the active site (residues 176-178, 252). As shown in Fig. , these loops,
which do not contain highly hydrophobic segments (see Fig. , have a particular
mutual concatenation which directly impacts on the protein knotted state. In fact, the
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virtual excision (bridging) of these two segments, which both have a small end-to-end

separation, results in the elimination of the knot from SOTCase.
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Figure 5.4: Hydrophobicity profile - 2fg6C - Hydrophobicity profiles of the knotted
protein 2fg6C and the structurally-matching amino acids of the unknotted partner lortA.
The knot-promoting segments (174-182, 235-255) are highlighted by the light blue boxes.
The hydrophobicity was calculated using the Kyte and Doolittle scale and an averaging

window of 5 amino acids.

Virnau et al. (102) had observed that the knottedness of the transcarbamylase of X.
Campestris was probably due to the excess length of the region comprising residue 176
with respect to the human analog. This observation is reinforced by the present general
sequence- and structure-based systematic comparison which additionally points out the
systematic absence of a second loop segment 235-255 in the unknotted homologs of the
SOTCase. The results provide a quantitative basis for suggesting that some light on
the process of protein knot formation can be shed by targeting these regions in suitable
mutagenesis experiments. It would be particularly interesting to analyse whether both
of the identified ‘knot-promoting’ loops need to be excised to produce an unknotted

native state, or if only one would suffice.
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Figure 5.5: Structural alignment of knotted and unknotted proteins - SOTCase

(a) is shown in cartoon representation; the knot-promoting loop segments are highlighted
in orange and purple. The MISTRAL alignment with unknotted entry lortA is shown
in panel (b): aligned residues are colored in blue and red, respectively, while non aligned
residues are correspondingly colored in cyan and pink. Knotted protein TARBP1-MTd
is shown in panel (c) with the knot-promoting loop segment highlighted in purple. The
MISTRAL alignments of TARBP1-MTd with the unknotted proteins 1b93A and lhdoA
are shown in panels (d) and (e), respectively.
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5.2.5 Knot-promoting loops in other proteins

The results discussed in the previous subsection indicate that knotted proteins appear
to be sparsely distributed in sequence space. In fact, only for one of the representatives
in Table it was possible to establish significant sequence-based relationships with
unknotted proteins.

We now discuss structural similarities between knotted and unknotted proteins,
irrespective of the level of primary sequence relatedness. The search was performed by
carrying out MISTRAL structural alignments of each of the knotted representatives
in Table against an extensive set of about 2.4 103 unknotted protein chains. The
top-ranking alignments are reported in Table

Hereafter we focus on a limited number of cases which, regardless of their ranking
in alignment quality, can be aptly used to highlight interesting relationships between
knotted and unknotted pairs. In particular, they might possibly be used to shed light
on important kinetic or thermodynamic mechanisms that guide or otherwise favour the
formation of knots in naturally occurring proteins.

We first discuss the limited number of cases where the alignment suggests the pres-
ence of knot-promoting loop segments, analogously to the case of the SOTCase and
chain lortA. These segments are identified using two main criteria: (i) the segments’
ends must be sufficiently close that they could be virtually bridged by very few amino
acids; (ii) the bridging/excision operation should lead to an unknotted conformation.

The automated search for such segments returned positive matches for three repre-
sentatives. One of them was the same SOTCase chain, which we discussed in previous
sections. The other chains were the aforementioned TARBP1-MTd and the photosen-
sory core module of Pseudomonas aeruginosa bacteriophytochrome (PaBphP, PDBid
3c2wH).

5.2.5.1 TARBP1 methyltransferase domain

TARBP1-MTd aligns well with two unknotted protein representatives that have very
different overall structural organisation. Despite the differences, discussed hereafter,
the alignments consistently indicate that loop 101-123 is a knot-promoting loop for
chain A of TARBP1-MTd.

The alignment against the unknotted protein chain 1b93A (144) comprises 87 amino
acids (at 3.5 A RMSD) and covers the entire knotted region with the exception of the
above mentioned segment. The fact that the ends of the segments are less than 5A
apart, readily suggests that the excision of the fragment ought to result in an unknotted
protein with structure analogous to the 1b93A chain. The inspection of the hydropho-
bicity profile based on the Kyte and Doolittle scale (145]) (see Fig. indicates that
one of the regions with high hydrophobicity falls within the knot-promoting loop. In
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knotted unknotted fraction of aligned
protein PDBid protein PDBid knot residues
2fg6C lortA 0.706
2ha8A 2qipA 0.647
2ha8A 1b93A 0.565
2ha8A 1f51E 0.494
1vhOA 1b93A 0.596
2efvA 2rjiA 0.531
2ha8A 3thkA 0.412
3bbeA laoxA 0.443
2ha8A 1uT7oA 0.459
2ha8A 2b98A 0.494
2fg6C ladiA 0.560
1vhOA 1d0iA 0.426
1vhOA 2z5vA 0.468
2gmmA 1hdoA 0.651
2ha8A 1hdoA 0.553
2ha8A 1d0iA 0.518
2ha8A 3gpgA 0.518
2efvA 1d8jA 0.494
2ha8A 1c25A 0.647
3ktyC 121pA 0.413

Table 5.3: Top ranking knot-unknot alignments - Top ranking MISTRAL align-
ments involving representatives of knotted and unknotted chains. In order to account for
the different topology of the compared proteins, the alignments were obtained with the
following non-default MISTRAL parameters: the alignment tolerance was set to 6.0 A; the
minimum segment length was set to 10 amino acids. For each alignment we report, in the
third column, the percentage of the knotted region (defined in Table I of the main article)
that takes part in the structural alignment. The listed pairs include only significant MIS-
TRAL alignments (p-value < 51073) where the percentage of the aligned knotted region
is larger than 40.
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analogy with what suggested in ref. (146) for YibK, it is therefore possible that the
kinetic accessibility of the knotted state is enhanced by contacts that this region forms
with other parts of the protein.

The topologically-important role of the segment is further highlighted by the align-
ment with the 1hdoA chain. At variance with the case of 1b93A, the good alignment
does not involve regions that have the same succession, along the primary sequence,
in the two proteins. This is readily ascertained by the inspection of the structural
diagram of Fig. [5.7h,b where it is possible to appreciate the different “rewiring” of
several corresponding secondary structure elements. In this case too, the alignment
comprises the knotted region with the exception of the previously mentioned segment.
This reinforces the previous suggestion that the removal of the segment ought to result
in an unknotted folded configuration.

5.2.5.2 PaBphP photosensory core module

The “figure-of-eight” knot in protein PaBphP (I47) spans a very large portion of the
photosensory core module of PaBphP (a.a. 24 to 282). This protein is composed of
three domains: named PAS (Per-ARNT-Sim), GAF (cGMP phosphodiesterase/adenyl
cyclase/FhlA) and PHY (phytochrome) domains. The GAF domain is known to be
present in several sequence-unrelated proteins and, in fact, it represent the core region
of the good alignment of PaBphP photosensory core module with the non-homologous
chain 2b18A (148).

The alignment singles out the segment of amino acids 203 to 256 as a knot-promoting
loop. Indeed, while the knot length is very large, the knot appears to result from
the “threading” of the N-terminal domain through the above mentioned loop. As for
SOTCase, the hydrophobicity profile (see fig. does not provide a definite indication
that the loop region takes part to contacts aiding the kinetic accessibility of the knotted
native state.

The removal of the loop, as readily seen from Fig. leads to an unknotted struc-
ture, and therefore suggests that, like the other cases, it could be profitably targeted

in mutagenesis experiments to ascertain its role in the process of knot formation.

5.2.6 Other correspondences of knotted and unknotted proteins

The analysis performed and discussed so far was based on the identification of knot-
promoting regions suggested by significant alignments of the knotted representatives
in Table against unknotted representatives. Only for the three representatives
discussed above it was possible to identify such correspondences on the basis of available
structural data.
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Figure 5.6: Hydrophobicity profile - 2ha8A - Top: hydrophobicity profiles for the
knotted chain 2ha8A and the MISTRAL structurally-matching amino acids of the un-
knotted chain 1b93A. The knot-promoting segment (101-123) is highlighted by the light
blue box. Bottom: hydrophobicity profiles for the knotted chain 2ha8A and the MISTRAL
structurally-matching amino acids of the unknotted chain 1hdoA. The knot-promoting seg-
ment (101-123) is highlighted by the light blue box. Notice that, at variance with the case
in the previous figure, the MISTRAL alignment of 2ha8A and 1hdoA is non-sequential and
shows two gaps, one of which is the knot-promoting segment. The hydrophobicity profiles

show very similar patterns for the aligned regions of the two proteins.
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Figure 5.7: Two-dimensional diagrams of the secondary and tertiary organisa-
tion of the knotted TARBP1-MTd and unknotted counterpart - Two-dimensional
schematic diagrams of the secondary and tertiary organisation of the knotted TARBP1-
MTd (PDBid 2ha8A) (a) and unknotted protein chain 1hdoA (b), which admit a significant
structural superposability (see Fig. [5.5)). The colour-coding of the aligned and non-aligned
secondary elements and of the knot-promoting loop follows the one in Fig. The overall
correspondence of the secondary elements is manifest, despite noticeable differences in their

“wiring” which reflect in (i) a different fold organisation and (ii) a different knotted state.
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Figure 5.8: Hydrophobicity profile - 3c2wH - Hydrophobicity profiles for the knotted
chain 3c2wH and the MISTRAL structurally-matching amino acids of the unknotted chain
2b18A. The knot-promoting segment (203-256) is highlighted by the light blue box.
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Figure 5.9: Knotted photosensory core module of PaBphP - Knotted photosen-
sory core module of PaBphP (a) and its alignment with the unknotted chain 2b18A (b).
In the knotted structure the knot-promoting loop is highlighted in purple, while the N-

terminal domain, which threads through the loop, is shown in green. In panel (b), the
aligned residues of knotted and unknotted proteins are coloured in blue and red, respec-
tively, while non aligned residues are correspondingly coloured in cyan and pink. The
N-terminal PAS domain (green) and C-terminal PHY domain (cyan) are well-separated
by the aligned region, which instead covers almost completely the central GAF domain of
PaBphP photosensory core module.
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Yet, it is interesting to point out that for two other representatives, namely chains
2etlA (ubiquitin carboxy-terminal hydrolase, UCH) and 2p02A (alpha subunit of hu-
man S-adenosylmethionine synthetase, hereafter a-SAM-S), good structural matches
involving the knotted region were found against unknotted structures. At variance
with previous cases, however, these matches do not suggest the possibility to unknot
the protein by a simple excision operation. Yet, they are interesting for the purpose of
understanding how continuous is the structure space between knotted and unknotted
PDB entries.

The two examples are shown in Fig. m Panel (b) presents a superposition of the
knotted UCH (149), which is the only 52 knot representative, against the unknotted
entry laecA (I50). The alignment, though not spanning the entirety of the protein
structures, highlights a good correspondence of secondary and tertiary structure ele-
ments.

Analogous considerations, hold for the alignment of a-SAM-S (I5I) and 2bx4A
(152) (Fig. , whose mutual sequence identity is less than 10%. The alignment
highlights the threefold symmetry of the knotted protein, which however, builds on a

non-trivial domain organization which results in a trefoil knot.

Figure 5.10: Knotted protein UCH - Knotted protein UCH (a) and its alignment
with the unknotted chain laecA (b). The aligned residues of the knotted and unknotted
protein are colored in blue and red, respectively while unsaturated colors (cyan and pink)

are used for non-aligned residues.
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5.3 Summary

The topology of protein chains represents an interesting open problem: the existence
of proteins that fold in a knotted native state provide a most interesting avenue to
characterise the interplay of kinetic and thermodynamic effects in protein folding.

In this chapter we discussed proteins in different topological states sharing a relevant
sequence or structural similarity. Specifically, we performed a dataset-wide search,
among knotted and unknotted representatives, for sequence-related and/or structurally
superposable protein pairs having different knotted states.

A sequence alignment among the proteins of the dataset allowed us to identify a
specific SOTCase, namely 2fg6C, whose phylogenetic tree comprises both knotted and
unknotted entries. Interestingly, the few knotted homologs -less than 1/6 of the whole
set- were gathered in two commonly-rooted sub-branches of the phylogenetic tree, while
the remaining branches were occupied by unknotted proteins. From this fact one may
argue that the appearance of a knot in a protein lineage is a rare evolutionary event.
On the other hand, it must be noticed that the knotted sub-branches did not contain
unknotted entries: this points to a possible role of the knot in the biological activity of
the proteins, because of which it has been preserved by evolutionary pressure.

The members of the SOTCase family showed a considerable degree of structural
similarity. In order to pinpoint their differences in fold organisation we performed
a structure-based alignment. We found that the knotted domains differed from the
unknotted counterparts, for the presence of two additional short segments with a small
end-to-end separation. The bridging of these knot-promoting loop segments, that is
their removal from the primary sequence, ought to result in an unknotted native state
equivalent to the one of the unknotted homologs.

Prompted by the identification of these knot-promoting loops in SOTCases, we
performed structural alignments among knotted and unknotted pairs of proteins in
the dataset: at variance with the sequence, the structural investigation revealed several
significant knotted /unknotted correspondences. In an appreciable number of instances,
these correspondences involved a substantial fraction of the region where the knot
is accommodated. Also in these cases, knotted proteins appeared to differ from the
unknotted partner by the presence of knot-promoting segments analogous to those
identified in the alignments involving the SOTCase. The results therefore point to
the key role that these specific protein segments play for the global knotted topology
of the folded protein: they might thus represent ideal candidates for mutagenesis or
excision experiments, to monitor the impact of these regions on the process of knot
formation. Moreover, the quantitative comparison of the internal fluctuations of aligned
knotted /unknotted regions indicated a possible role of the knot in modulating the
dynamics of these proteins, suggesting that further investigations in this directions
could provide a major insight in the biological function of the knot.
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Figure 5.11: Knotted protein a-SAM-S - Knotted protein a-SAM-S (a) and unknot-
ted protein 1bx4A (b), colored according to the residue index (red-white-blue); bottom,

the structural superposition of these two entries where the aligned residues of knotted and
unknotted proteins in the bottom row are coloured in blue and red, respectively, while
non-aligned residues are correspondingly coloured in cyan and pink. Panel (c) shows the
whole structures, while in panel (d) two orthogonal views of the sole aligned regions are
presented. In all panels catalytic residues are included in Van der Waals representation.
In panel (a), the knotted topology of a-SAM-S can be readily perceived following the

colouring of the chain.
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Concluding remarks

This thesis was largely focussed on the internal dynamics of globular proteins, and in
particular on its relationship with protein structure.

The characterisation of the internal dynamics of proteins can be made with a va-
riety of different methods, ranging from atomistic MD simulations to coarse-grained
models, each contributing with its specific peculiarity. These tools provide a general
and comprehensive picture of the motions occurring in proteins, from the small-scale
vibrations of a residue side-chain to the collective fluctuations involving a large number
of amino acids.

These concerted movements, which often accompany and support the biological
activity, are at the heart of our investigations. In particular, these large-scale con-
formational changes have been used to identify quasi-rigid domains in proteins and
highlight dynamical consistencies among structures lacking major similarities.

The possibility to identify, in a protein structure, those regions undergoing minor
internal fluctuations while performing large-scale displacements relative to the pro-
tein centre of mass represents the basic objective of many methods of investigation:
accelerated schemes to efficiently explore the conformational space, and reliable coarse-
grained descriptions of protein structures to be used in docking algorithms are among
the noteworthy possible applications.

The reductio ad essentiam of the structural and dynamical features of proteins can
also be used to highlight those properties that are shared by molecules which appre-
ciably differ by both sequence and structural organisation. This dynamical similarity
encoded in a variety of architectures motivated the development of specific algorithms
to perform dynamics-based alignments, i.e. to superpose two proteins maximising not
only their structural similarity but also the consistency of their internal dynamics. This
method complements the available sequence- and structure-alignment tools to investi-
gate the relation between sequence, structure and function in proteins.
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6. CONCLUDING REMARKS

Finally, we turned our attention to the topological properties of proteins, namely,
the presence of knots in their folded state. In order to advance our understanding
of the properties of knotted proteins, we performed a comparative analysis involv-
ing both sequence and structure alignments of protein pairs differing by topological
state. Our investigation led to two main conclusions. First, the formation of a knot
in a set of SOTCases appeared to be an evolutionarily rare, but functionally-oriented
event; secondly, for many cases of well-superposable knotted-unknotted protein pairs
the structural difference between the two partners merely consisted in the presence of
small segments, whose excision from the knotted protein resulted in the unravelling of
the knot. These results could be used in further computational/experimental studies
to design new means of probing the salient steps that lead to knot formation during
the folding process.
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Appendix A

Quasi-rigid domain

decomposition

Domain decomposition of HIV-1 PR based on the lowest

energy mode

Figure A.1: Decomposition of HIV-1 protease in 2 dynamical domains - Only
the first low-energy mode was used for the rigid-blocks decompositions (n = 1 in Eq.
of the paper). Left: front view; right: top view. The captured fraction of essential motion
is 81.7%.

111



A. QUASI-RIGID DOMAIN DECOMPOSITION

Decomposition of HIV-1 PR in rigid subunits.

Chain A: 1-99
Chain B: 100-198
Peptide: 199-204

e Subdivision in @ = 2 blocks

Domain 1. 1-48, 53-107, 194-200
Domain 2. 49-52, 108-193, 201-204

e Subdivision in @ = 3 blocks

Domain 1. 1-10, 23-31, 48-53, 84-109, 122-130, 147-152, 183-204
Domain 2. 110-121, 131-146, 153-182
Domain 3. 11-22, 32-47, 54-83

e Subdivision in @ = 4 blocks

Domain 1. 47-54, 146-153, 199-204

Domain 2. 1-10, 23-31, 84-109, 122-130, 183-198
Domain 3. 110-121, 131-145, 154-182

Domain 4. 11-22, 32-46, 55-83
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Amino acids mobility and local structural deformations

In the following figures the mean square fluctuation of all amino acids of proteins lako,
lavp and 2ayh is reported against the degree of deformation of their local structural
environment (again resulting from thermal fluctuations).

The degree of local structural deformation, hereafter also termed geometric strain,
for the i-th residue is defined, in analogy to ref. (15) as:

si= D JUdN (i = d;)?) (A1)

where J;j is the distance vector of the C, atoms of amino acids ¢ and j; a superscript
0 is used to denote quantities calculated for the average reference structure. f(d) =
%(1 — tanh(d — deyut)) is a sigmoidal function weighting the average spatial proximity
of the two amino acids. Its point of inflection is set at the cutoff distance of deyt = 7.5
A; the brackets indicate the canonical average. The mean square fluctuations and the
geometrical strain plotted in the subsequent figures are expressed in the units of the
Beta-Gaussian elastic network model (37]).
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A. QUASI-RIGID DOMAIN DECOMPOSITION
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Figure A.2: Strain vs. MSF - lako - Scatter plot of the local geometric strain versus
the mean square fluctuations for all amino acids of protein lako. Residues at the primary

dynamical boundary are shown in red while catalytic ones are shown in green.
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Figure A.3: Strain vs. MSF - lavp - Scatter plot of the local geometric strain versus
the mean square fluctuations for all amino acids of protein lavp. Residues at the primary

dynamical boundary are shown in red while catalytic ones are shown in green.
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A. QUASI-RIGID DOMAIN DECOMPOSITION

2ayh
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Figure A.4: Strain vs. MSF - 2ayh - Scatter plot of the local geometric strain versus
the mean square fluctuations for all amino acids of protein 2ayh. Residues at the primary

dynamical boundary are shown in red while catalytic ones are shown in green.
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Structural and dynamics-based decomposition

0.003 — -

0,001~ —

I : L g

500
CATH domains length (residues)

captured fraction of essential motion

()

Figure A.5: Histograms from the CATH study - Histogram of (a) the number
of CATH domains, (b) protein lengths and (c) captured fraction of essential motion, for
entries in table A large part of the dataset (almost 60%) is populated by proteins
composed by three CATH domains. Since the average number of residues per protein is
about 500, this results in a small size of CATH domains. This fact reverberates on the
fraction of essential motion captured by the rigid decomposition, which is higher than 70%

for the largest fraction of the dataset.
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A. QUASI-RIGID DOMAIN DECOMPOSITION

PDB L D F PDB L D F PDB L D F

Imw7A 220 3 09154 | 2f8xC 424 3 0.8538 | 1I7rA 573 3 0.6963
lep3B 261 3 0.7157 | 1h3eA 427 3 0.9751 | 1j2bB 576 4 0.8949
1vIEX 274 3 0.9428 | 2banB 427 4 0.9103 | 1k7yA 577 4 0.8125
11021 282 3 09681 | levrA 432 3 0.7949 | 1fuiA 991 3 0.7737
2dIn0 306 3 0.7554 | 1f20A 435 3 0.8790 | 2bzdA 601 3 0.9079
lixsB 315 3 0.8391 | 8ohm0 435 3 0.9669 | 1f7vA 606 3 0.7214
2pial 321 3 0.8037 | 1s3sD 436 4 0.9315 | 2j6hA 608 3 0.9089
lkrhA 337 3 0.8455 | 2b7cA 437 3 0.8527 | 1bhgB 611 3  0.6609
1jr3D 338 3 09849 | 1tubA 440 3 0.5205 | 1i7TdA 620 4 0.9340
lobaA 338 3 0.8304 | 1llwjB 441 3 0.7566 | luh4dA 637 3 0.7454
le4eB 340 3 0.6766 | 1heiA 443 3 0.9393 | 1t2xA 639 3 0.8319
2btvT 349 3 0.9741 | lopkA 449 4 0.8929 | 1kwkA 644 3 0.7309
loxxK 352 3 0.9442 | 1xzqA 449 3 09138 | 1ps9A 671 3 0.8432
1b6sB 355 3 0.7814 | 1w25B 454 3 0.7207 | 4sli0 679 3 0.8936
1g292 372 3 09487 | Inj6A 463 3 0.7278 | 1lciu0 683 4 0.8065
1ThwiC 374 3 0.9318 | 1IkmhB 467 3 0.7376 | 9cgtA 684 4 0.7847
2scull 385 3 09935 | IwOkD 467 3 0.7374 | 1ghpA 686 4 0.8043
2fx3A 387 3 0.8335 | 2cv2A 468 5 0.9712 | 1v3dmA 686 4 0.7950
2fpgB 393 3 09944 | 1gqyB 469 3  0.8809 | 2dijO 686 4 0.8014
lokeB 394 4 0.9622 | 1skyE 470 3 0.7432 | 1ggkB 708 3 0.7684
1svb0 395 4 09712 | 2hgsA 472 5 0.8355 | IrudA 728 5 0.9902
lgvhA 396 3 0.8128 | 1h4sB 473 3 0.6571 | lordB 730 4 0.8907
1hfeM 396 3 0.6684 | ImdfA 536 4 0.8038 | 1bf20 750 3 0.7429
1d2eC 397 3 0.7960 | 1x6nA 539 3 0.9159 | IwOpA 753 3 0.9103
2¢78A 397 3 0.8872 | 1gn9B 543 4 0.6812 | 1gbb0 858 4 0.7816
1dljA 402 3 0.8125 | 1kzhA 550 3 0.8074 | 1keTA 872 6 0.9582
legxB 403 3 0.7244 | leldA 553 4 0.6394 | IvbgA 874 6 0.9895
1psdA 404 3 0.9417 | luok0 558 3 0.5862 | 1xc6A 971 5 0.8801
2dcuA 407 3 0.6887 | 2hmiA 558 5 0.9837 | 2f7pA 1014 5 0.8050
IsqgA 424 4 0.9361 | 2ex3C 570 6 0.9083 | lulvA 1019 4 0.9833

Table A.1: Dataset of proteins used for CATH domain study - Data set of protein
monomers with overall sequence identity below 90% used used in the comparison of dy-
namical subdomains and CATH domains. Each CATH domain occupies an uninterrupted
sequence interval. Entries are sorted by increasing length. The entries in the column cor-
respond to: PDB = protein data bank accession code; L = length (residues); D = number

of CATH domains; F = captured fraction of essential motion.

118



Arch. D
3.40 71
2.60 53
3.30 52
1.10 35
2.40 25

Table A.2: List of the most populated CATH domain architectures - List of the
most populated CATH domain architectures (Arch.) in the dataset and the corresponding

number of domains (D).

PDB id CATH id
1bhgB 2.60.40.320
leldA 1.20.1270.20
1f20A 2.40.30.10
1f7vA 1.10.730.10
12292 2.40.50.140
1gn9B 1.20.1270.20
1;2bB 3.90.1020.10
1kc7A 1.20.80.30
1kwkA  2.60.40.1180
1mdfA 2.30.38.10
lordB 3.90.1150.10
loxxK 2.40.50.140
1vbgA 1.20.80.30
2b7cA 2.40.30.10
2dcuA 2.40.30.10
2ex3C 4.10.80.20
2hgsA 3.30.470.20

Table A.3: Details of the CATH domains - Details of the CATH domains (and parent

proteins) for which the lowest overlaps with dynamical subdivisions are observed.
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