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Introduction

In this thesis we present some results concerning existence and multiplicity of so-
lutions for mean field equations of Liouville type on compact surfaces and for the
prescribed Q-curvature equation on fourth dimensional compact manifolds.

Introduction of the problems

Let (Σ, g) be a compact Riemannian surface (without boundary), h ∈ C2(Σ) be a
positive function and ρ a real number. We consider the equation

−△gu+
ρ

∫

Σ dVg
= ρ

h(x)eu
∫

Σ h(x)e
udVg

x ∈ Σ, u ∈ H1
g (Σ). (∗)ρ

where △g is the Laplace-Beltrami operator on Σ.

The above equation arises in statistical mechanics as a mean field equation for
the Euler flow. More precisely, it has been proved in [8] and [50] that, according to
Onsager’s vortex theory, when the number of vortices is supposed to tend to +∞, the
stream function is given by u

ρ , where u satisfies (∗)ρ with h = 1. In this interpretation
the exponential represents the vorticity of the flow and ρ > 0 corresponds to negative
values of the statistical temperature, a range which is expected to describe the high
energy (turbulent) behavior of the flow.

This PDE also concerns the description of self-dual condensates of some Chern-
Simon-Higgs model; indeed via its solutions it is possible to describe the asymptotic
behavior of a class of condensates (or multivortex) solutions which are relevant in
theoretical physics and which were absent in the classical (Maxwell-Higgs) vortex
theory (see [73], [82], [86] and references therein).

Another motivation for the study of (∗)ρ is the problem of prescribing the Gauss
curvature of a surface via a conformal transformation of the metric. Indeed, setting
g̃ = ewg we have

△g̃ = e−w△g; −△gw + 2Kg = 2Kg̃e
w,

where Kg and Kg̃ are the Gauss curvature of (Σ, g) and of (Σ, g̃). In this context, of
particular interest is the classical Uniformization Theorem, which asserts that every
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Introduction

compact surface carries a conformal metric with constant curvature. Motivated by
this result, one may ask whether, given a surface with constant curvature, it is
possible to obtain conformal metrics for which the Gauss curvature becomes a given
function K.
From the analytical point of view, this amounts to ask for which K ∈ C(Σ) the
problem

−△gw + 2Kg = 2Kew (1)

is solvable on Σ. When Σ is the standard sphere, the latter is known as the Kazdan-
Warner problem, or as the Nirenberg problem, and it represents the most delicate
situation in this analysis (see for example [11], [13] and [49]).

The Gauss–Bonnet theorem gives a necessary condition for the existence of a
solution to (1)

∫

Σ
KewdVg = 2πχ(Σ). (2)

This formula has played a crucial role in the problem of the solvability of (1) when
Σ is a surface of positive genus, which is now completely understood.

Problem (∗)ρ has a variational structure and solutions can be found as critical
points of the functional

Iρ(u) =
1

2

∫

Σ
|∇gu|

2dVg + ρ−

∫

Σ
u dVg − ρ log

∫

Σ
h(x)eudVg u ∈ H1

g (Σ). (3)

Since equation (∗)ρ is invariant when adding constants to u, we can restrict ourselves
to the subspace of the functions with zero average

H̄1
g (Σ) :=

{

u ∈ H1
g ( Σ) : −

∫

Σ
u dVg = 0

}

.

Because of the Moser-Trudinger inequality one can easily prove the compactness
and the coercivity of Iρ when ρ < 8π and thus one can find solutions to (∗)ρ by
minimization.

If ρ = 8π the situation is more delicate since Iρ still has a lower bound but it is
not coercive anymore; in general when ρ is an integer multiple of 8π, the existence
problem of (∗)ρ is much harder (a far from complete list of references on the subject
includes works by Chang and Yang [13], Chang, Gursky and Yang [11], Chen and
Li [24], Nolasco and Tarantello [73], Ding, Jost, Li and Wang [35] and Lucia [60]).

For ρ > 8π, as the functional Iρ is unbounded from below and from above,
solutions have to be found as saddle points.

Closely related to problem (∗)ρ, considered according to its geometrical inter-
pretation, is the case when we allow the conformal class to contain metrics that
introduce conical type singularities on Σ. Let us explain it in more detail.

8



Introduction of the problems

A conformal metric gs on Σ is said to have a conical singularity of order α ∈
(−1,+∞) (or of angle ϑα = 2π(1 + α)) at a given point P0 ∈ Σ if there exist local
coordinates z(P ) ∈ Ω ⊂ C and w ∈ C0(Ω) ∩ C2(Ω \ {P0}) such that z(P0) = 0 and

g̃s(z) = |z|2αew|dz|2, z ∈ Ω,

where g̃s is the local expression of gs. The information concerning finitely many
conical singularities is encoded in a divisor, which is the formal sum

αm =

m
∑

j=1

αjPj, m ∈ N, (4)

of the orders of the singularities {α1, . . . , αm} times the singular points {P1, · · · , Pm}.
In particular, a metric gs on Σ is said to represent the divisor αm if it has conical
singularities of order αj at point Pj for any j ∈ {1, . . . ,m}. We will denote by
(Σ, αm) the singular surface.

As for the regular equation, given a Lipschitz function K on Σ we seek a confor-
mal metric g̃ on (Σ, αm) whose Gaussian curvature is K. As above, by considering
the conformal factor w, we can reduce such a geometrical problem to the solvability
of the following differential problem

−△gw + 2Kg = 2Kew − 4π

m
∑

j=1

αjδPj
(5)

see Proposition 0.6 for a detailed proof.

It is evident that (5) contains (∗)ρ as a particular case and this equation, as the
previous one, is not only relevant in conformal geometry but is also physically mean-
ingful. Indeed, as it happens for (∗)ρ, (5) can be seen as the mean field equation for
the two-dimensional Euler flow, where the singularities play the role of k sinks of
vorticity −4π

αj

ρ . More precisely, if we take K = 1 and Kg = 0, Ψ = u
ρ is the stream

function for a Euler flow of vorticity eu
R

Σ
eu − 4π

∑m
j=1

αj

ρ δPj
.

Besides this problem concerns with the search of Abrikosov’s vortex–like configu-
rations for the Electroweak theory of Glashow–Salam–Weinberg [51] in a selfdual
regime.

In four-dimensional geometry there exists a conformally covariant operator, the
Paneitz operator (introduced in [74]), which enjoys analogous properties to the
Laplace-Beltrami operator on surfaces, and to which is associated a natural concept
of curvature: the Q-curvature (introduced in [7]). Let denote by Pg this operator
and by Qg the Q-curvature corresponding to a given 4-manifold (M,g). Their ex-
pressions in terms of the Ricci tensor Ricg and of the scalar curvature Rg are as
follows

Pg(ϕ) = ∆2
gϕ+ divg

(

2

3
Rgg − 2Ricg

)

dϕ, Qg = −
1

12

(

∆gRg −R2
g + 3|Ricg|

2
)

,
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Introduction

and considering the conformal change of metric g̃ = e2ug, Qg̃ is given by

Pg u+ 2Qg = 2Qg̃
e4u

∫

M e4udVg
. (6)

Apart from the analogy with the prescribed Gauss curvature equation, there is an
extension of the Gauss-Bonnet formula involving the Weyl tensor W and the integral
of Qg, which is a conformal invariant:

4π2χ(M) =

∫

M
(Qg +

1

8
|W |2) dVg. (7)

We refer to [12], [15] and [46] for details.
As for the Uniformization theorem one can ask whether every four-manifold

(M,g) carries a conformal metric g̃ for which the corresponding Q-curvature Qg̃ is
a constant. Writing g̃ = e2ug the question amounts to solving (6) in u with Qg̃
constant, namely the equation

Pg u+ 2Qg = 2kP
e4u

∫

M e4udVg
. (#)

where kP :=
∫

M QgdVg.

The regular mean field equation

We start considering the regular case, namely equation (∗)ρ, where no Dirac distri-
butions appear. In the following we will refer to 8Nπ as the set of critical values of
the parameter ρ.

Regular ranges of the parameter

For this problem, Li and Shafrir, exploiting an earlier work of Brezis and Merle [6],
proved an important compactness property. Indeed they showed that if ρ /∈ 8πN,
then solutions of (∗)ρ are bounded in C2,α(Σ) for any α ∈ (0, 1).

The previous result permits to define the global Leray-Schauder degree of (∗)ρ.
As a consequence of the homotopy invariance of the degree, it turns out that it is
independent of h, of the parameter ρ ∈ (8kπ, 8(k + 1)π) for k ∈ N and of the metric
of Σ. In [52], Y.Y.Li first pointed out that the degree of (∗)ρ only depends on k ∈ N

(for ρ ∈ (8kπ, 8(k + 1)π)) and on the Euler characteristic of Σ, χ(Σ), so we will
use d(k, χ(Σ)) to denote it. Extending the results in [36] and [54], Chen and Lin in
[18] analyzed the jump values of the degree after crossing the critical thresholds and
obtained the following explicit expression for the degree when ρ ∈ (8kπ, 8(k + 1)π),
k ∈ N:

d(k, χ(Σ)) =

(

k − χ(Σ)

k

)

≡

{

(k−χ(Σ))...(2−χ(Σ))(1−χ(Σ))
k! if k > 0,

1 if k = 0.
(8)
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The regular mean field equation

In the latter statement we specified what we mean by the binomial coefficient because
the upper term, k − χ(Σ), can be negative; clearly this definition extends the usual
one.

We would like to remark that the positivity of h is a necessary condition for the
Leray-Schauder degree to be counted as in formula (8). If h vanishes somewhere,
then the degree formula is different; see [19].

Notice that d(0, 2) = 1, d(1, 2) = −1, d(k, 2) = 0 for any k ≥ 2, so if Σ has
the homology of a sphere the degree does not suffice to guarantee the existence of a
solution; while when Σ has the homology of a torus, being d(k, 0) = 1 for any k ≥ 0,
we can deduce existence but we have no information about multiplicity.

Finally, Djadli generalized these previous results establishing, for ρ /∈ 8Nπ, the
existence also in the case of positive Euler characteristic.

To do that, he deeply investigated the topology of low sublevels of Iρ in order
to perform a min-max scheme (already introduced in Djadli and Malchiodi [38]). A
crucial observation, as noticed in [25], is that the constant in the Moser-Trudinger
inequality (1.1) can be roughly divided by the number of regions where eu

R

Σ
eu is

supported (see Lemma 1.2 for details). As a consequence, if ρ ∈ (8kπ, 8(k+1)π) and
if Iρ attains large negative values, eu

R

Σ
eu has to concentrate near at most k points

of Σ, in the sense specified in Lemma 1.4. From these considerations one is led
naturally to associate with the probability measure eu

R

Σ
eu some formal barycenter

σ ∈ Σk.
We recall that in literature the set

Σk =

{

k
∑

i=1

tiδxi
| ti ≥ 0,

k
∑

i=1

ti = 1, xi ∈ Σ

}

, (9)

where δxi
stands for the Dirac mass at xi, is known as the set of formal barycenters

of Σ of order k. It is in fact possible to prove that {Iρ ≤ −L} has the same homology
of Σk for L very large positive [64].

On the other hand a deformation lemma due to Lucia [61] and adapted by
Malchiodi permits to show (see [64]) that the high sublevels of Iρ are contractible.

Taking advantage of the previous analysis Malchiodi provided a clear interpre-
tation of the degree–counting formula. Indeed he recently gave an alternative and
direct proof of (8), via a Morse-theoretical approach which relates the degree to the
topology of low and high sublevels of the Euler functional. We refer to subsection
1.2.1 for a more detailed exposition of this result.

In the present work we prove generic multiplicity of solutions also in the cases
when χ(Σ) ≥ 0 and we improve significantly for the other surfaces the estimate of
the number of solutions which can be derived from the degree formula. Our main
result in this direction reads as follows.

11



Introduction

Theorem 0.1. [32] Let ρ ∈ (8kπ, 8(k+ 1)π), k ∈ N∗. Then, for a generic choice of
the metric g and of the function h (namely for (g, h) in an open and dense subset
of M2 × C2(Σ)+)

#{solutions of (∗)ρ} ≥

{

pk if χ(Σ) = 2,
∑k

r=0

(k−r−χ(Σ)+1
k−r

)

pr if χ(Σ) ≤ 0,
(10)

where p0 = 1, p2m+1 = p2m =
∑m

j=0 pj for any m ∈ N∗.
Moreover the latter estimate holds true also for (g, h) in an open and dense subset
of M2

1 × C2(Σ)+.

In the above statement M2 stands for the space of all C2 Riemannian metrics
on Σ equipped with the C2 norm, while M2

1 is the subset of M2 of the metrics g
such that

∫

Σ dVg = 1. In literature it is usually studied the case when V olg(Σ) :=
∫

Σ dVg = 1, namely when g ∈ M2
1. It is for this reason that we specified that the

set of (g, h) for which (10) holds true is dense not only in M2 ×C2(Σ)+ but also in
M2

1 × C2(Σ)+.

By direct calculation and an asymptotic formula for the sequence pr, obtained
in [62], we derive the following Corollary.

Corollary 0.2. [32] Under the hypotheses of Theorem 0.1, for generic (g, h) ∈
M2 × C2(Σ)+:

1. for any Σ and for any k ∈ N∗ (except for the case χ(Σ) = 2 and k = 1)

#{solutions of (∗)ρ} > d(k, χ(Σ)) ≥ 0,

where by d(k, χ(Σ)) we mean the Leray-Shauder degree of the equation (∗)ρ
(see (8)).
When χ(Σ) = 2 and k = 1 the right hand side of formula (10) is simply equal
to 1 = |d(1, 2)|.

2. for any Σ, as k ≥ k0, k0 ∈ N∗ (independent of Σ),

#{solutions of (∗)ρ} ≥ C(
[k2 ]

log[k2 ]
)

1
2l2

log(
[ k
2 ]

log[ k
2 ]

)+1+
ll2
l2 [

k

2
]
( 1

l2
− 1

2
)
, (11)

where by [k2 ] we mean the integer part of k
2 , l2 := log 2 and ll2 =: log log 2; so

in particular for any Σ

#{solutions of (∗)ρ} → +∞ as k → +∞.

Moreover points 1 and 2 hold true also for (g, h) in an open and dense subset of
M2

1 × C2(Σ)+.

12



The regular mean field equation

Actually it is not surprising that our estimate improves the one obtained with the
degree. Indeed we tackle the problem using Morse inequalities and in general Morse
theory gives more information about the structure of the critical points compared
to degree theory, just because one includes the other as a particular case.

Besides it is worth pointing out that our estimate is not only better than the one
given by the degree (point 1 of Corollary 0.2), but improves considerably the order
of infinity, as ρ→ +∞, of the number of solutions (point 2 of Corollary 0.2). Indeed
for χ(Σ) ≥ 0 |d(k, χ(Σ))| ≤ 1 and for χ(Σ) < 0 the degree is just a polynomial in
k, more precisely d(k, χ(Σ)) = Ok(k

−χ(Σ)), while by means of the rough estimate
k

log(k) ≥ k
1
2 (which holds for any k ≥ 2) formula (11) implies that

#{solutions of (∗)ρ} ≥ C[
k

2
]

1
8l2

log[ k
2
]+

2+ll2
2l2 .

To prove Theorem 0.1 we first show that we are in position to apply a transver-
sality result due to Saut and Temam, which guarantees that for (g, h) in an open and
dense subset of M2 ×C2(Σ)+ all the critical points of Iρ are non degenerate. Then
we derive the estimate (10) under the further assumption that all the critical points
of Iρ are non degenerate, i.e. that Iρ is a Morse functional. In these hypotheses we
can exploit the weak Morse inequalities, which, together with the exactness of the
homology of a pair, permit to prove that

# {solutions of (∗)ρ} ≥
∑

q≥0

dimHq({Iρ ≤ b}), {Iρ ≤ −L} ; Z2). (12)

Actually Morse inequalities require the Palais-Smale condition to hold, which is not
known for Iρ, but a deformation lemma from [64] (see also [61]) allows to overcome
the problem. From formula (12) it is clear that the core of the analysis is the un-
derstanding of the homology groups of high and low sublevels. In [64] the author
proved that for large values of b the sublevel {Iρ ≤ b} has the homology of a point,
while for dealing with low sublevels we can take advantage of the aforementioned
characterization in [64] (see Theorem 1.8).
From these considerations it can be deduced that the problem reduces to the compu-
tation of the following sum:

∑∞
q≥0 dim H̃q(Σk; Z2). To get it we use a Theorem due

to Kallel and Karoui [48] dealing with the homology of the set of formal barycenters
on topological spaces (and so on manifolds), which in particular, combined with
results in [70] and [72], permits to have a nice description of the homology of the
family of formal barycenters on spheres of any dimension.

Critical thresholds of the parameter

Equation (∗)ρ is much more delicate when ρ = 8kπ for some positive integer k. For
instance, in these critical cases the degree depends on h and therefore the search for
solutions is much more involved. Only partial results are known.
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Introduction

When ρ = 8π, extending a formula due to Chang and Yang [13] for counting
the topological degree d8π(h) when Σ is the sphere, Chen and Lin derived, from
their deep study on the degree contributions of blow-up solutions, a complete degree
counting formula. First of all they pointed out that, if Σ has constant Gaussian
curvature and h ∈ C2(Σ)+ satisfies △h(p) + 8πgh(p) 6= 0 for any critical point p
of h, then the Leray–Schauder degree is well defined. Furthermore, if h is a Morse
function, then

d8π(h) = 1 −
∑

q∈Λ−

(−1)ind q (13)

where Λ− = {p : ∇h(p) = 0, △h(p) + 8πgh(p) < 0} and ind q stands for the Morse
index of h at q.

Actually, there is a situation where it is possible to claim a general existence
result and it is given by the flat 2–torus. As already noticed, when Σ = T and then
χ(Σ) = 0, formula (8) implies that, for any k ∈ N, d(k, 0) = 1. Since the degree
admits no-jump when ρ crosses an integer multiple of 8π, then it is reasonable to
expect that no solution blows-up, when ρ approaches a critical threshold. This is
exactly the case when ρ ր 8kπ, with k ∈ N, while blow-up phenomena can occur
when the parameter approaches a critical value from above. The fact that solutions
pass to the limit in the first case follows again by the accurate analysis carried out
in [18]. In conclusion, problem (∗)ρ on the flat torus admits a solution for every
ρ > 0.

Always in [18] it was shown that for any compact Riemannian surface Σ with
non positive Euler-characteristic and for any C2 positive function h, there exists a
real number defined by

ρh = max
Σ

(2Kg −△ log h), (14)

such that equation (∗)ρ possesses a solution provided that ρ > ρh.

A multiplicity result has been obtained in a simpler case, namely when h ≡ 1
and one seeks for 1-dimensional periodic solutions on the torus T . More precisely
Ricciardi and Tarantello [76] showed that for ρ > 4k2π2 problem (∗)ρ admits at least
k geometrically distinct solutions, i.e. solutions which do not differ one from another
just for a shift in the unique variable. Also in the case of axially symmetric solutions
on S2, it has been shown that the number of solutions increases as ρ increases [39].

In the same spirit of Chen and Lin, who obtained the existence of at least one
solution for ρ sufficiently large, depending on h (see (14) above), we are able, exploit-
ing our multiplicity estimate (10) holding for the regular values of the parameter,
to prove the following Theorem dealing with generic multiplicity for large critical
values of ρ.

Theorem 0.3. [34] For any h̄ ∈ C3(Σ)+ there exist δ > 0 and nh̄ ∈ N such that for
any k ≥ nh̄ and for a generic choice of h ∈ Bδ(h̄) :=

{

h ∈ C3(Σ) :
∥

∥h− h̄
∥

∥

C3 < δ
}

14



The regular mean field equation

(namely for h in an open and dense subset of Bδ(h̄))

#{solutions of (∗)8kπ} ≥

{

pk−1 if χ(Σ) = 2,
∑k−1

r=0

(k−r−χ(Σ)
k−r−1

)

pr if χ(Σ) ≤ 0,
(15)

The equation on the 2-torus

The case of the flat torus is a relevant situation from the physical point of view,
since many vortex-like configurations naturally develop into periodic lattices.

In particular when the cell of the torus is a square,
{

(x1, x2) : |x1| ≤
a
2 , |x2| ≤

a
2

}

,
and h ≡ 1 the problem looks as follows:

−△u+
ρ

|T |2
= ρ

eu
∫

T e
udx

u ∈ H̄1(T ). (16)

It is plain to see that in this periodic situation, for any value of ρ, the function u = 0
solves (16). A uniqueness result has been proved by Lin and Lucia [55]. Indeed they
showed that the trivial solution is the only solution to (16) for ρ ≤ 8π2. The same
authors partially answered also to the problem for the general flat torus showing
that, if ρ ≤ 8π and u is a minimizer for the corresponding functional, then u is a
one-dimensional solution.

Instead, when ρ ∈ (8π, 4π2) and the fundamental domain of the torus is a square,
the trivial solution u = 0 turns out to be a strict local minimum for Iρ, since the
second variation in the direction v ∈ H̄1

g (T ) can be estimated as follows

D2Iρ(0)[v, v] = ‖v‖2 − ρ

∫

Σ
v2dx ≥

(

1 −
ρ

4π2

)

‖v‖2 . (17)

Under these assumptions Struwe and Tarantello [81] showed that the functional
possesses a mountain pass geometry and by thanks to this structure they detected
the existence of a saddle point uρ of Iρ satisfying Iρ(uρ) ≥ (1 − ρ/4π2)c0, for some
constant c0 > 0 independent of ρ.

As g is the flat metric and h is constant, if u is a solution of (∗)ρ, the functions
uρ,x0(x) := uρ(x−x0) still solve (∗)ρ, for any x0 ∈ T ; so from the previous result we
can deduce the existence of an infinite number of non trivial solutions to (∗)ρ.

Perturbing g and h there is still a local minimum, ū, close to u = 0 and the same
procedure of [81] ensures the presence of a saddle point, but on the other hand, if u
is a non-trivial solution, the criticality of the translated functions ux0 is not anymore
guaranteed. In [31] the author improved this result stating that apart from ū there
are at least two critical points, see Theorem 2.17 in Section 2.2.

The strategy of the proof consists in defining a deformed functional Ĩρ, having
the same saddle points of Iρ but a greater topological complexity of its low sublevels,
and in estimating from below the number of saddle points of Ĩρ using the notion

15
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of Lusternik-Schnirelmann relative category (roughly speaking a natural number
measuring how a set is far from being contractible, when a subset is fixed).

Always in [31] the author conjectured that apart from the minimum and the two
saddle points another critical point should exist. In fact this turns out to be true
and we are now able to prove it.

Theorem 0.4. [33] If ρ ∈ (8π, 4π2) and Σ = T is the torus, if the metric g is
sufficiently close in C2(T ;S2×2) to dx2 and h is uniformly close to the constant 1,
Iρ admits a point of strict local minimum and at least three different saddle points.

In the above statement S2×2 stands for the symmetric matrices on T . To prove
Theorem 0.4 we exploit the following inequality derived in [31]:

# {solutions of (∗)ρ} ≥ CatX,∂X X,

where X is the topological cone over T . Next, applying a classical result we are able
to estimate from below the previous relative category by one plus the cup–length of
the pair (T × [0, 1], T × ({0} ∪ {1})). The cup–length of a topological pair (Y,Z),
denoted by CL(Y,Z), is the maximum number of elements of the cohomology ring
H∗(Y ) having positive dimensions and whose cup product do not “annihilate” the
ring H∗(Y,Z); we refer to the next chapter for a rigourous definition. Finally, to
obtain the thesis, we show that CL(T × [0, 1], T × ({0} ∪ {1})) ≥ CL(T ) = 2.

Since all the arguments only use the presence of a strict local minimum and the
fact that X is the topological cone over T , whenever on some (Σ, g) the functional
Iρ possesses a strict local minimum, the theorem holds true, more precisely Iρ has
at least CL(Σ) + 1 critical points other than the minimum.

The mean field equation with singular data

The study of conformal metrics on surfaces with conical singularities dates back
at least to Picard [75], and has been widely discussed in the last decades, see for
example [22], [27], [25], [28], [26], [42], [57], [59], [68], [83], [84] and the references
quoted there. In this thesis we are concerned with the construction of conformal
metrics with prescribed Gaussian curvature on surfaces with conical singularities.
We refer the reader in particular to [84] where a systematic analysis of this problem
was initiated.
In the latter paper the Euler characteristic of the singular surface (Σ, αm) is defined
by

χ(Σ, αm) = χ(Σ) +

m
∑

j=1

αj ,

where χ(Σ) is the Euler characteristic of Σ.
The Trudinger constant of the singular surface (Σ, αm) (see [23], [84]) is instead
given by

τ(Σ, αm) = 2 + 2 min
j∈{1,...,m}

min{αj , 0}.
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According to the definitions in [84] the singular surface (Σ, αm) is said to be






subcritical if χ(Σ, αm) < τ(Σ, αm),
critical if χ(Σ, αm) = τ(Σ, αm),
supercritical if χ(Σ, αm) > τ(Σ, αm).

As far as one is interested in proving the existence of at least one conformal
metric on (Σ, αm) with prescribed Gaussian curvature, the subcritical case is well
understood. This is mainly due to the fact that on subcritical singular surfaces
the problem corresponds to minimizing a coercive functional [84]. On the contrary,
much less is known concerning critical and supercritical singular surfaces.
We refer the reader to [25], [28], [26], [42], [56], [68], [83], for some positive results
in this direction. In the same spirit of [36], Bartolucci and Tarantello [4] obtained a
result which implies that: if (Σ, αm) is a supercritical singular surface with αj > 0,
j ∈ {1, . . . ,m}, χ(Σ) ≤ 0 and 4πχ(Σ, αm) ∈ (8π, 16π) \ {8π(1 + αj), j = 1, . . . ,m},
then any positive Lipschitz continuous function K on Σ is the Gaussian curvature
of at least one conformal metric on (Σ, αm). See also [19] for related issues.

We are going to present a generalization of this result, obtained via a Morse
theoretical approach.

Let

Γ(αm) = {µ ∈ R+ |µ = 8πk+8π
m
∑

j=1

(1+αj)nj , k ∈ N∪{0}, m ∈ N∪{0}, nj ∈ {0, 1}}.

Our main result is the following

Theorem 0.5. [3] Let (Σ, αm) be a supercritical singular surface with αj > 0,
j ∈ {1, . . . ,m}, χ(Σ) ≤ 0 and 4πχ(Σ, αm) /∈ Γ(αm). Then, any positive Lipschitz
continuous function K on Σ is the Gaussian curvature of at least one conformal
metric on (Σ, αm).

We attack this problem by a variational approach as first proposed in [5] and
then pursued by many authors, see for example [2], [25], [49], [84] and the references
quoted there. Proposition 0.6 below allows to reduce the problem to a scalar differ-
ential equation on Σ. To state it we need to introduce some notation. Let Q ∈ Σ
be a given point and G(P,Q) be the solution of (see [2])

−∆gG(P,Q) = δQ −
1

|Σ|
in Σ,

∫

Σ
G(P,Q)dVg(P ) = 0,

where δQ denotes the Dirac delta with pole Q, ∆g the Laplace-Beltrami operator
associated to g and |Σ| the area of Σ with respect to the volume form induced by g.
For a given divisor αm we define

hm(P ) = 4π

m
∑

j=1

αjG(P,Pj).

Let us also denote by Kg the (smooth) Gaussian curvature induced by g. Then
we have
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Proposition 0.6. [3] Let αj > 0 for j = 1, . . . ,m, K a Hölder continuous function
on Σ and suppose that χ(Σ, αm) > 0. The metric

g̃ = ρ
e−hmeu

∫

Σ 2Ke−hmeudVg
g, with ρ = 4πχ(Σ, αm),

is a conformal metric on (Σ, αm) with Gaussian curvature K if and only if u is a
classical solution to

−∆gu+ 2Kg = ρ
Ke−hmeu

∫

ΣKe
−hmeudVg

−
4π

|Σ|

m
∑

j=1

αj in Σ. (18)

It is immediate to understand that equation (18) is just a reformulation of prob-
lem (5), indeed one can pass from one to another by setting w = u− hm.
By using Proposition 0.6, we are reduced to finding a classical solution of (18), that
is, by standard elliptic regularity theory, a critical point u ∈ H̄1

g (Σ) of

Jρ(u) =

∫

Σ
|∇u|2 dVg − ρ log

(
∫

Σ
2Ke−hmeu dVg

)

, (19)

where ρ satisfies the Gauss-Bonnet constraint

ρ =

∫

Σ
2Ke−hmeudVg = 4πχ(Σ) + 4π

m
∑

j=1

αj = 4πχ(Σ, αm). (20)

By means of Proposition 0.6, Theorem 0.5 will follow immediately from the next
result.

Theorem 0.7. [3] Let Σ be a closed surface of positive genus, Kg ∈ L
s(Σ) for some

s > 1 and K any positive Lipschitz function on Σ. Suppose moreover that αj ≥ 0
for j ∈ {1, . . . ,m}. Then, for any ρ ∈ (8π,+∞) \ Γ(αm) there exists at least one
critical point u ∈ H̄1

g (Σ) for Jρ.

As a consequence of the results in [53] (see also [52]) and in [4], it is straight-
forward to verify that our proof of Theorem 0.7 works whenever K is positive and
Hölder continuous in Σ and Lipschitz continuous in a neighborhood of {P1, · · · , Pm}.
We conclude that the result of Theorem 0.5 holds also under these assumptions on
K.

We notice that in case αj = 0, j ∈ {1, . . . ,m}, since Γ(αm) = 8πN, we come up
with another proof of the existence of solutions for the regular mean field equation.
In the same spirit of [32], [65], other positive results concerning the existence of
solutions for (18) have been derived in [66]. Other results, in the same direction of
[18], have been recently announced in [20], see [21].

Furthermore let us observe in particular that if χ(Σ, αm) ≤ 0, then (Σ, αm) is
subcritical. Therefore, as far as we are concerned with supercriticality, there is no
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loss of generality in assuming χ(Σ, αm) > 0. We also remark that if χ(Σ, αm) ≤ 0
a set of much more detailed results concerning the prescribed Gaussian curvature
problem are at hand, see [84].

We are also able to prove the following generic multiplicity result, where M2

stands for the space of all C2 Riemannian metrics on Σ equipped with the C2 norm.

Theorem 0.8. [3] Let ρ ∈ (8kπ, 8(k+ 1)π) \Γ(αm). Then, under the hypotheses of
Theorem 0.7 and (g,K) in an open and dense subset of M2 × C0,1(Σ), Jρ admits

at least
(k+g−1

g−1

)

= (k+g−1)!
k!(g−1)! critical points, where g is the genus of Σ.

We prove Theorems 0.7 and 0.8 using a variational and Morse-theoretical ap-
proach, looking at topological changes in the structure of sublevels of Jρ. For the
regular case (without Dirac masses), we saw that for ρ ∈ (8kπ, 8(k+1)π), k ∈ N, low
sublevels are homotopically equivalent to formal barycenters of Σ of order k, here we
use a related argument. Even if we do not completely characterize the topology of
low sublevels, we are still able to retrieve some partial information. In particular we
embed a bouquet of circles, Bg, in Σ which does not intersect the singular points, and
we construct a global projection of Σ onto Bg. The latter map induces a projection
from the barycenters of Σ onto those of Bg and we show that the latter set embeds
non-trivially into arbitrarily low sublevels of Jρ. More precisely, we prove that low
sublevels are non contractible, yielding Theorem 0.7, and that their Betti numbers
are comparable to those of the barycenters of the bouquet, which gives Theorem 0.8.

The Q-curvature equation

By the regularity results in [85], it can be seen that the problem of finding a conformal
metric of constant Q-curvature admits a variational formulation. Indeed, critical
points of the following functional

II(u) = 〈Pgu, u〉 + 4

∫

M
QgudVg − kP log

∫

M
e4udVg; u ∈ H2(M), (21)

which are weak solutions of (#), are also strong solutions. Here, for u, v ∈ H2(M),
the symbol 〈Pgu, v〉 stands for

〈Pgu, v〉 =

∫

M

(

△gu△gv +
2

3
Rg∇gu · ∇gv − 2(Ricg∇gu,∇gv)

)

dVg. (22)

The existence of a solution to (#) was proved in [14] under the assumptions
Pg ≥ 0 and kP < 8π2, which are naively the counterpart of ρ < 8π for (∗)ρ. Also in
this case there is a variant of the Moser-Trudinger inequality, the Adams inequality,
which makes the problem coercive.

In [38] an extension of this result was obtained for a large class of manifolds,
indeed Djadli and Malchiodi only assumed that kP 6= 8kπ2, k ∈ N, and that Pg has
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no kernel. The proof relies on a direct min-max method based on the study of the
topology of the sublevels of the associated Euler functional II, on some improvement
of the Adams inequality and on some compactness results in [64, 41], which are the
equivalent of the result by Li and Shafrir [53] for the mean field equation.

Thanks to the boundedness of solutions it is possible to define the Leray-Schauder
degree of equation (#) and the following counting formula was obtained in [64].
Let (M,g) be a compact four-manifold such that the Paneitz operator Pg has k̄
negative eigenvalues and only trivial kernel (the constant functions) and such that
kP :=

∫

M QgdVg ∈ (8kπ2, 8(k + 1)π2), for some k ∈ N. Then the degree of (#) is
given by

d(k, k̄, χ(M)) =

{

(−1)k̄ if kP < 8π2;

(−1)k̄ (k−χ(M))...(2−χ(M))(1−χ(M))
k! if kP ∈ (8kπ2, 8(k + 1)π2), k ≥ 1.

(23)
Notice that under these hypotheses, since formula (7) implies that χ(M) ≥ 2k, the
degree is always positive.

Concerning the Q-curvature equation, again applying Morse inequalities, we can
prove the following multiplicity result.

Theorem 0.9. [3] Let (M,g) be a compact four-manifold such that the Paneitz op-
erator Pg has k̄ negative eigenvalues and only trivial kernel (the constant functions)
and such that kP :=

∫

M QgdVg ∈ (8kπ2, 8(k+1)π2), for some k ∈ N∗. If in addition
all the solutions of (#) are non degenerate, then

#{solutions of (#)} ≥

{

pk if χ(M) = 2,

pk +
∑k−1

r=0

(k−r+χ(Σ)−3
k−r

)

pr if χ(M) ≥ 3,
(24)

where p0 = 1, p2m+1 = p2m =
∑m

j=0 pj for any m ∈ N∗.

Since, as already pointed out, 2k ≤ χ(M), the Euler characteristic of M is always
greater or equal than 2 for any k ≥ 1. Therefore the statement above takes into
account all the possible situations which can occur with kP ∈ (8kπ2, 8(k + 1)π2),
k ∈ N∗.

Although in the case of four-manifolds there is no any classification result in
terms of the Euler characteristic, the latter result permits to improve the degree
estimate, as specified in the following Corollary.

Corollary 0.10. [3] For any (M,g) satisfying the hypotheses of Theorem 0.9 with
kP :=

∫

M QgdVg ∈ (8kπ2, 8(k + 1)π2), then, except for χ(M) = 2 and k = 1,

#{solutions of (#)} > |dP (k, k̄, χ(M))| > 0.

When χ(M) = 2 and k = 1 the righ–hand side of formula (10) is just equal to
1 = |dP (1, k̄, 2)| for any k̄.
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Actually, exactly as in Corollary 0.2, it can also be proved that under these
hypotheses the number of solutions of (#) for k large enough can be estimated from
below by the right–hand side of formula (11). But in fact this is not as relevant as
for equation (∗)ρ because now k and χ(M) are related by (7) and so it is not possible
to fix M and let k tend to +∞.

Notation

We want to stress that Iρ (respectively Jρ) depends on g and h (respectively g and
K) and sometimes to emphasize this dependence and to avoid any ambiguity we
write Iρ,(g,h) for Iρ and Jρ,(g,K) for Jρ.

As already specified we set H̄1
g (Σ) :=

{

u ∈ H1
g ( Σ) : −

∫

Σ udVg
}

and for the aver-
age of a function we fix the following notation ū := −

∫

Σ udVg.
Throughout the thesis the symbol Br(p) denotes the metric ball of radius r and

center p. The genus of Σ is denoted as g(Σ) or simply g and, given two sets A and
B, d(A,B) stands for the distance between them.

For any manifold M , let Mk denote the set of formal barycenters of order k
supported in M , namely

Mk =

{

k
∑

i=0

tiδxi
:

k
∑

i=0

ti = 1, ti ≥ 0, xi ∈M

}

(25)

endowed with the weak topology of distributions.
Large positive constants are always denoted by C, and the value of C is allowed

to vary from formula to formula.
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Chapter 1

Preliminaries

1.1 Analytical preliminaries

In this section we collect some facts needed in order to obtain our results. First
of all we consider some improvements of the Moser-Trudinger inequality which are
useful to study the topological structure of the low sublevels of Iρ. Then we state
a deformation lemma, proved in [61], and a compactness property of the set of
solutions to (∗)ρ, derived in [52]. These last results, for ρ 6= 8kπ, allow us to
overcome the possible failure of the Palais Smale condition and to get a counterpart
of the classical deformation lemma. Finally we present a result dealing with the
topology of high sublevels of Iρ, which leads directly to the existence of a solution
to (∗)ρ in correspondence to regular values of ρ.

1.1.1 The Moser-Trudinger inequality

First of all we recall the well-known Moser-Trudinger inequality on compact surfaces
which can be found in [44].

Lemma 1.1 (Moser-Trudinger inequality). There exists a constant C, depending
only on (Σ, g) such that for all u ∈ H1

g (Σ)

∫

Σ
e

4π(u−ū)2
R

Σ |∇gu|2dVg dVg ≤ C. (1.1)

As a consequence one has that for any p ≥ 0 and for all u ∈ H1
g (Σ)

log

∫

Σ
ep(u−ū)dVg ≤

p2

16π

∫

Σ
|∇gu|

2dVg + C. (1.2)

Chen and Li [25] showed from this result that if eu has integral controlled from
below (in terms of

∫

Σ e
udVg) into (l+ 1) distinct regions of Σ, the constant 1

16π can
be basically divided by (l + 1), in the sense specified in the following result.
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Lemma 1.2. [25] Let δ0, γ be positive real numbers, and for a fixed integer l, let
Ω1, . . .Ωl+1 be subsets of Σ satisfying d(Ωi,Ωj) ≥ δ0, for i 6= j. Then for any ε̃ > 0
there exists a constant C = C(l, ε̃, δ0, γ0) such that

log

∫

Σ
e(u−ū)dVg ≤ C +

1

16(l + 1)π − ε̃

∫

Σ
|∇gu|

2dVg

for all the functions u ∈ H1
g (Σ) satisfying

∫

Ωi
eudVg

∫

Σ e
udVg

≥ γ0 for every i ∈ {1, . . . , l + 1}. (1.3)

Proof. Following [65] we present a modification of the argument in [25], avoiding
the use of truncations: this approach has the advantage of being useful for extensions
to the case of higher dimensions operators, as the Paneitz operator, see [38].

Assuming without loss of generality that ū = 0, we can find l + 1 functions
g1, . . . , gl+1 satisfying the following properties















gi(x) ∈ [0, 1], for every x ∈ Σ;
gi(x) = 1, for every x ∈ Ωi, i = 1, . . . , l + 1;

gi(x) = 0, if d(x,Ωi) ≥
δ0
4 ;

‖gi‖C4(Σ) ≤ Cδ0 ,

where Cδ0 is a positive constant (depending only on δ0. By interpolation, see [58], for
any ε > 0 there exists Cε,δ0depending only on ε and δ0) such that, for any v ∈ H1

g (Σ)
and for any i ∈ {1, . . . , l + 1} there holds

∫

Σ
|∇g(giv)|

2 dVg ≤

∫

Σ
g2
i |∇gv|

2 dVg + ε

∫

Σ
|∇gv|

2 dVg + Cε,δ0

∫

Σ
v2dVg. (1.4)

If we write u as u = u1 + u2 with u1 ∈ L∞(Σ), then for our assumptions we deduce
∫

Ωi

eu2dVg ≥ e−‖u1‖L∞(Σ)γ0

∫

Σ
eudVg; i = 1, . . . , l + 1. (1.5)

Using the properties of gi, (1.5) and then (1.2) with p = 1 we obtain:

log

∫

Σ
eudVg ≤ log

1

γ0
+ ‖u1‖L∞(Σ) + log

∫

Σ
egiu2dVg + C

≤ log
1

γ0
+ ‖u1‖L∞(Σ) + C +

1

16π

∫

Σ
|∇g(giu2)|

2 dVg + giu2,

where C depends only on Σ. We now choose i such that
∫

Σ |∇g(giu2)|
2 dVg ≤

∫

Σ |∇g(gju2)|
2 dVg for every j ∈ {1, . . . , l + 1}. Since the functions g1, . . . , gl+1 have

disjoint supports, the last formula and (1.4) imply

log

∫

Σ
eudVg ≤ log

1

γ0
+ ‖u1‖L∞(Σ) + C +

(

1

16(l + 1)π
+ ε

)∫

Σ
|∇gu2|

2 dVg

+Cε,δ0

∫

Σ
u2

2dVg + giu2.
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Next we choose λε,δ0 to be an eigenvalue of −△g such that
Cε,δ0
λε,δ0

< ε, where Cε,δ0 is

given in the last formula, and we set

u1 = PVε,δ0
u; u2 = PV ⊥

ε,δ0

u.

Here Vε,δ0 is the direct sum of the eigenspaces of −△g with eigenvalues less or equal to
λε,δ0 , and PVε,δ0

, PV ⊥
ε,δ0

denote the projections onto Vε,δ0 and V ⊥
ε,δ0

respectively. Since

ū = 0, the L2-norm and the L∞-norm on Vε,δ0 are equivalent (with a proportionality
factor which depends on ε and δ0), and hence by our choice of u1 and u2 there holds

‖u1‖
2
L∞(Σ) ≤ Ĉε,δ0

∫

Σ
|∇gu1|

2dVg;

Cε,δ0

∫

Σ
u2

2dVg ≤
Cε,δ0
λε,δ0

∫

Σ
|∇gu2|

2dVg < ε

∫

Σ
|∇gu2|

2dVg,

where Ĉε,δ0 depends on ε and δ0. Furthermore, by the Poincaré inequality (recall
that ū = 0), we have

giu2 ≤ C ‖u2‖L2(Σ) ≤ C ‖u‖L2(Σ) ≤ C

∫

Σ
|∇gu|

2 dV
1
2
g .

Hence the last formulas imply

log

∫

Σ
eudVg ≤ log

1

γ0
+ Ĉε,δ0

(∫

Σ
|∇gu1|

2 dVg

)
1
2

+ C +

+

(

1

16(l + 1)π
+ ε

)∫

Σ
|∇gu2|

2 dVg +

+ε

∫

Σ
|∇gu2|

2 dVg + C

(
∫

Σ
|∇gu2|

2 dVg

) 1
2

≤

(

1

16(l + 1)π
+ 3ε

)∫

Σ
|∇gu|

2 dVg + C̄ε,δ0 +C + log
1

γ0
,

where C̄ε,δ0 depends only on ε and δ0 (and l, which is fixed). This concludes the
proof.

In the next lemma we show a criterion which gives sufficient conditions for (1.3)
to hold.

Lemma 1.3. Let l be a given positive integer, and suppose that ε and r are positive
numbers. Suppose that for a non-negative function f ∈ L1(Σ) with ‖f‖L1(Σ) = 1
there holds

∫

∪l
i=1Br(pi)

fdVg < 1 − ε for any l-tuple p1, . . . , pl ∈ Σ.
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Then there exist ε̄ > 0 and r̄ > 0, depending only on ε, r, l and Σ (but not on f),
and l + 1 points p̄1, . . . , p̄l+1 ∈ Σ (which depend on f) satisfying
∫

Br̄(p̄1)
fdVg ≥ ε̄, . . . ,

∫

Br̄(p̄l+1)
fdVg ≥ ε̄; B2r̄(p̄i) ∩B2r̄(p̄j) = ∅ for i 6= j.

Proof. Suppose by contradiction that for every ε̄, r̄ > 0 there is f satisfying the
assumptions and such that for every (l+1)-tuple of points p1, . . . , pl+1 in Σ we have
the implication
∫

Br̄(p1)
fdVg ≥ ε̄, . . . ,

∫

Br̄(pl+1)
fdVg ≥ ε̄ ⇒ B2r̄(pi)∩B2r̄(pj) 6= ∅ for some i 6= j.

(1.6)
We let r̄ = r

8 , where r is given in the statement. We can find h ∈ N and h points
x1, . . . , xh ∈ Σ such that Σ is covered by ∪hi=1Br̄(xi). For ε given in the statement
of the Lemma, we also set ε̄ = ε

2h . We point out that the choice of r̄ and ε̄ depends
on r, ε, l and Σ only, as required.

Let {x̃1, . . . , x̃j} ⊂ {x1, . . . , xh} be the points for which
∫

Br̄(x̃i)
fdVg ≤ ε̄. We

define x̃j1 = x̃1, and let A1 denote the set

A1 = {∪iBr̄(x̃i) : B2r̄(x̃i) ∩B2r̄(x̃j1) 6= ∅} ⊆ B4r̄(x̃j1).

If there exists x̃j2 such that B2r̄(x̃j2) ∩B2r̄(x̃j1) = ∅, we define

A2 = {∪iBr̄(x̃i) : B2r̄(x̃i) ∩B2r̄(x̃j2) 6= ∅} ⊆ B4r̄(x̃j2).

Proceeding in this way, we define recursively some points x̃j3, x̃j4 , . . . , x̃js satisfying

B2r̄(x̃js) ∩B2r̄(x̃ja) = ∅ for any a such that 1 ≤ a < s,

and some sets A3, . . . , As by

As = {∪iBr̄(x̃i) : B2r̄(x̃i) ∩B2r̄(x̃js) 6= ∅} ⊆ B4r̄(x̃js).

By (1.6) the process cannot go further than x̃jl , and hence s ≤ l. Using the definition
of r̄ we obtain

∪ji=1Br̄(x̃i) ⊆ ∪si=1Ai ⊆ ∪si=1B4r̄(x̃ji) ⊆ ∪si=1Br(x̃ji). (1.7)

Then by our choice of h, ε̄, {x̃1, . . . , x̃j} and by (1.7) there holds
∫

Σ\∪s
i=1Br(x̃ji

)
fdVg ≤

∫

Σ\∪j
i=1Br̄(x̃i)

fdVg ≤

∫

(∪h
i=1Br̄(xi))\(∪

j
i=1Br̄(x̃i))

fdVg

< (h− j)ε̄ ≤
ε

2
.

Finally, if we chose pi = x̃ji , for i = 1 . . . , s and pi = x̃js for i = s+ 1, . . . , l, we get
a contradiction to the assumptions of the lemma.

Combining the previous results we obtain that, if ρ ∈ (8kπ, 8(k + 1)π) and
l ≥ k, the functional Iρ is uniformly bounded below. Therefore, if Iρ(u) attains
large negative values, the measure eu

R

Σ e
udVg

has to concentrate near at most k points

in the sense specified by the following lemma.
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Lemma 1.4. [36] If ρ ∈ (8kπ, 8(k + 1)π) with k ≥ 1, the following property holds.
For any ε > 0 and any r > 0 there exists a large positive L = L(ε, r) such that, for
every u ∈ H1

g (Σ) with Iρ(u) ≤ −L, there exist k points p1,u, . . . , pk,u ∈ Σ such that

∫

Σ\∪k
i=1Br(pi,u) he

udVg
∫

Σ he
udVg

< ε. (1.8)

Proof. Suppose by contradiction that the statement is not true, namely that
there exist ε, r > 0 and (un)n ⊂ H1

g (Σ) with Iρ(un) → −∞ and such that for
every k-tuple p1, . . . , pk in Σ there holds

∫

∪k
i=1Br(pi,u) he

undVg < 1 − ε. Recall that

without loss of generality, since Iρ is invariant under translation by constants of the
argument, we can assume that for every n there holds

∫

Σ he
undVg = 1. Then we

can apply Lemma 1.3 with l = k, f = heun , and in turn Lemma 1.2 with δ0 = 2r̄,
Ω1 = Br̄(p̄1), . . . ,Ωk+1 = Br̄(p̄k+1) and γ0 = ε̄, where ε̄, r̄ and (p̄i)i are given by
Lemma 1.4. This implies that for a given ε̃ > 0 there exists C > 0 depending only
on ε, ε̃ and r such that

Iρ(un) ≥
1

2

∫

Σ
|∇gun|

2 dVg+ρ

∫

Σ
undVg−Cρ−

ρ

8(k + 1)π − ε̃

1

2

∫

Σ
|∇gun|

2 dVg−ρūn,

where C is independent of n. Since ρ < 8(k + 1)π, we can choose ε̃ > 0 so small
that 1 − ρ

8(k+1)π−ε̃ := δ > 0. Hence using also the Poincaré inequality we deduce

Iρ(un) ≥ δ

∫

Σ
|∇gun|

2dVg + ρ

∫

Σ
(un − ūn)dVg − Cρ ≥

≥ δ

∫

Σ
|∇gun|

2dVg − C(
1

2

∫

Σ
|∇gun|

2dVg)
1
2 −Cρ ≥ −C.

This violates our contradiction assumption, and concludes the proof.

1.1.2 The structure of low sublevels

Lemma 1.4 implies that the unit measure heu
R

Σ
heu resembles a finite linear combination

of Dirac deltas with at most k elements, and hence heu
R

Σ
heu ≃

∑k
i=1 tiδxi

= σ, where

ti ≥ 0, xi ∈ Σ for every i ∈ {1, . . . , k},
∑k

i=1 ti = 1 and where δxi
stands for the

Dirac mass at xi. Therefore heu
R

Σ
heu is close to some formal barycenter σ ∈ Σk. It

was indeed shown in [38] (see also Section 4 in [65] for the specific case of Iρ) that
it is possible to define a continuous and non trivial map Ψ from low sublevels of
Iρ into Σk, in the sense specified by Proposition 1.8 below. To state it, we need to
introduce the following family of test functions.
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For δ > 0 small, let us consider a smooth non-decreasing cut-off function χδ :
R+ → R satisfying the following properties















χδ(t) = t, for t ∈ [0, δ]
χδ(t) = 2δ for t ≥ 2δ
χδ(t) ∈ [δ, 2δ], for t ∈ [δ, 2δ].
‖χδ(t) − t‖∞ = o(δ4), for t ∈ [δ, 2δ].

Then given σ ∈ Σk, σ =
∑k

i=1 tiδxi
(
∑k

i=1 ti = 1) and λ > 0, we define ϕλ,σ :
Σ → R by

ϕλ,σ(y) = log
k
∑

i=1

ti

(

λ

1 + λ2χ2
δ(di(y))

2

)

− log(π), (1.9)

where we have set

di(y) = d(y, xi), xi, y ∈ Σ.

We point out that, since the distance is a Lipschitz function, ϕλ,σ(y) is also Lipschitz
in y, and hence it belongs to H1

g (Σ). We have then the following result.

Proposition 1.5. [37] Let ϕλ,σ be defined as in (1.9). Then, as λ → +∞ the
following properties hold true

(i) eϕλ,σ ⇀ σ weakly in the sense of distributions;

(ii) Iρ(ϕλ,σ) → −∞ uniformly for σ ∈ Σk.

Proof. To prove (i) we first consider the function

ϕ̃λ,x(y) =

(

λ

1 + λ2χ2
δ(d(x, y))2

)2

, y ∈ Σ,

where x is a fixed element of Σ. It is easy to show that ϕ̃λ,x → πδx as λ → +∞.
Then (i) follows immediately from the explicit expression of ϕλ,σ.

In order to prove (ii), we evaluate separately each term of Iρ, and claim that the
following estimates hold

ρ

∫

Σ
ϕλ,σdVg = −2(ρ+ oλ(1)) log λ (oλ(1) → 0 as λ→ +∞); (1.10)

log

∫

Σ
h eϕλ,σdVg = O(1) (as λ→ +∞); (1.11)

1

2

∫

Σ
|∇gu|

2 dVg ≤ 16kπ(1 + oλ(1)) log λ (as λ→ +∞). (1.12)

If these estimates are proved, then (ii) follows immediately.
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Proof of (1.10). We have

ϕλ,σ(y) = log
λ2

(1 + 4λ2δ2)2
− log π, for y ∈ Σ \ ∪iB2δ(xi),

and

log λ2(1 + 4λ2δ2)2 − log π ≤ ϕλ,σ(y) ≤ log λ2 − log π, for y ∈ ∪iB2δ(xi).

Writing

∫

Σ
ϕλ,σ(y)dVg(y) = log

λ2

(1 + 4λ2δ2)2

∫

Σ
dVg

+

∫

Σ

(

ϕλ,σ(y) − log
λ2

(1 + 4λ2δ2)2

)

dVg(y),

from the last three formulas it follows that
∫

Σ
ϕλ,σ(y)dVg(y) = log λ2(1 + 4λ2δ2)2 +O(δ2 log(1 + 4λ2δ2)) +O(1).

And this implies immediately (1.10).

Proof of (1.11). By the definition of ϕλ,σ, there holds

minΣ h

π

k
∑

i=1

∫

Σ

λ2

(1 + λ2χ2
δ(di(y)))

2
dVg(y) ≤

∫

Σ
h(y)eϕλ,σ(y)dVg(y)

and

∫

Σ
h(y)eϕλ,σ(y)dVg(y) ≤

maxΣ h

π

k
∑

i=1

ti

∫

Σ

λ2

(1 + λ2χ2
δ(di(y)))

2
dVg(y).

We divide each of the above integrals into the metric ball Bδ(xi) and its complement.
By construction of χδ, working in normal coordinates centered at xi, we have (for δ
sufficiently small)

∫

Bδ(xi)

∫

Σ

λ2

(1 + λ2χ2
δ(di(y)))

2
dVg(y) =

∫

BR2
δ (0)

(1 +O(δ))
λ2

(1 + λ2|y|2)2
dy

=

∫

BR2
λδ (0)

(1 +O(δ))
1

(1 + |y|2)2
dy = (1 +O(δ))

(

π +O(
1

λ2δ2
)

)

.

On the other hand, for d(y, xi) ≥ δ there holds

λ2

(1 + 4λ2δ2)2
≤

λ2

(1 + λ2χ2
δ(d(y, xi)))2

≤
λ2

(1 + λ2δ2)2
.
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From these two formulas we deduce
∫

Σ
h(y)eϕλ,x(y)dVg(y) ≥ πmin

Σ
h+O(δ) +O(

1

λ2δ2
) +O(

λ2

(1 + λ2δ2)2
), (1.13)

and
∫

Σ
h(y)eϕλ,x(y)dVg(y) ≤ πmax

Σ
h+O(δ) +O(

1

λ2δ2
) +O(

λ2

(1 + λ2δ2)2
). (1.14)

Finally (1.11) follows immediately from (1.13) and (1.14).

Proof of (1.12). To prove this inequality we need to show two pointwise estimates
on the gradient of ϕλ,σ

|∇gϕλ,σ(y)| ≤ Cλ, for every y ∈ Σ, (1.15)

where C is a constant independent of σ and λ, and

|∇gϕλ,σ(y)| ≤
4

χδ(dmin(y))
where dmin(y) = min

i=1,...,m
{d(y, xi)} . (1.16)

For proving (1.15) we notice that the following inequality holds

λ2χδ(d(y, xi))

1 + λ2χ2
δ(d(y, xi))

≤ Cλ, i = 1, . . . ,m, (1.17)

where C is fixed constant (independent of λ and xi). Moreover we have

∇gϕλ,σ(y) = −2λ2

∑

i ti(1 + λ2χ2
δ(di(y)))

−3∇y(χ
2
δ(di(y)))

∑

j tj(1 + λ2χ2
δ(dj(y)))

−2
. (1.18)

Inserting (1.17) into (1.18) we obtain immediately (1.15). Similarly we find

|∇ϕλ,σ(y)| ≤ 4λ2

∑

i ti(1 + λ2χ2
δ(di(y)))

−3χδ(di(y))
∑

j tj(1 + λ2χ2
δ(dj(y)))

−2

≤ 4λ2

∑

i ti(1 + λ2χ2
δ(di(y)))

−2 χδ(di(y))
1+λ2χ2

δ

(di(y))
∑

j tj(1 + λ2χ2
δ(dj(y)))

−2

≤ 4

∑

i ti(1 + λ2χ2
δ(di(y)))

−2 1
χδ(dmin(y))

∑

j tj(1 + λ2χ2
δ(dj(y)))

−2
≤

4

χδ(dmin(y))
,

which is (1.16).
From (1.15) we then deduce that

∫

∪k
i=1B 1

λ
(xi)

|∇gϕλ,σ|
2 dVg ≤ Ck (1.19)
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for some fixed C depending only on Σ. We define now the sets

Ai =

{

y ∈ Σ : d(y, xi) =
k

min
j=1

{d(y, xj)}

}

.

Then we have that

∫

Σ\∪k
i=1B 1

λ
(xi)

|∇gϕλ,σ|
2 dVg ≤

k
∑

i=1

∫

Ai\B 1
λ

(xi)
|∇gϕλ,σ|

2 dVg

≤ 16k

∫

Ai\B 1
λ

(xi)

1

χ2
δ(d(y, xi))

dVg

≤ 32kπ(1 + oδ(1) + oλ(1)) log λ

as λ→ +∞. From (1.19) and the last formula we finally deduce (1.12).
The proof is thereby concluded.

Remark 1.6. The same estimates of Proposition 4.2 hold when the constant ρ in
the left–hand side of (∗)ρ is replaced by a smooth function over Σ.

Thanks to Lemma 1.4 and to the previous proposition the following result (see
[37] and [65]) has been proved.

Proposition 1.7. Suppose ρ ∈ (8kπ, 8π(k + 1)) with k ≥ 1. Then there exists
L > 0 and a continuous projection Ψ : {Iρ ≤ −L} → Σk such that for λ large the
map σ 7→ Ψ(ϕλ,σ) is homotopically equivalent to the identity on Σk.

Conversely, given L > 0 large, one can construct a homotopy between the identity
on {Iρ ≤ −L} and the map u 7→ ϕλ,Ψ(u), for λ sufficiently large (see the Appendix
of [64]). The latter facts and the invariance of homology groups under homotopy
equivalences imply the following result.

Proposition 1.8. [64] If k ≥ 1 and ρ ∈ (8kπ, 8π(k + 1)), then {Iρ ≤ −L} has the
same homology as Σk.

For our purposes it is sufficient to present the proof of Proposition 1.7 in the
case k = 1 and we refer to [37] for the general case. We just want to stress that for
k > 1 much more work is required, because Σk is not anymore a smooth manifold
but only a stratified set, namely union of open manifolds of different dimensions,
whose maximal one is 3k − 1.

Proof of Proposition 1.7 for k = 1. Since the functional is invariant under
addition of constants to the argument, we can assume that the H1

g (Σ) functions we
are dealing with satisfy the volume normalization

∫

Σ e
wdVg = 1. Whitney’s theorem

assures that it is possible to embed Σ in Rm for some m ∈ N. We will denote by Ω :
Σ → Rm the diffeomorphism which realizes the embedding and by M the embedded
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surface Ω(Σ). First we define the map Ψ̃ : H1
g (Σ) → Rm by Ψ̃(u) =

∫

Σ Ω(x)eu(x)dVg,
whose continuity ensue from the Moser-Trudinger inequality. The key point is to
prove that

for any δ > 0 there exists Lδ > 0 such that Iρ(u) ≤ −Lδ implies d(Ψ̃(u),M) < δ.
(1.20)

To prove (1.20) we let ε = δ
2

1
diam(M) , r = δ

2
1

‖dΩ‖ and we apply Lemma 1.4 with

these values of ε and r. Then, if Iρ ≤ −L(ε, r), we obtain a point pu such that
(1.8) holds. By our normalization we can write Ψ̃(u) − Ω(pu) =

∫

Br(pu)(Ω(x) −

Ω(pu))e
4u(x)dVg(x) +

∫

Σ\Br(pu)(Ω(x) − Ω(pu))e
4u(x)dVg(x).

This implies
∥

∥

∥Ψ̃(u) − Ω(pu)
∥

∥

∥ ≤ r ‖dΩ‖ + εdiam(M) ≤ δ, and hence (1.20) follows.

Now we fix δ sufficiently small such that there exists a continuous projection P from
a δ-neighborhood of M into M. Therefore it is sufficient to define Lδ = L(ε, r) and

Ψ(u) := Ω−1 ◦ P ◦ Ψ̃(u) u ∈ {Iρ ≤ −L} . (1.21)

Thanks to Proposition 1.5 the proof in the case k = 1 is complete.

Remark 1.9. It is well known that the set of formal barycenters Σk is not con-
tractible since the (3k − 1)-th homology group of Σk with coefficients in Z2 is non
trivial.

In [31] the author showed that, when ρ ∈ (8π, 16π), if u ∈ H̄1
g (Σ) belongs to

{Iρ ≤ b}, for some b ∈ R, and eu does not concentrate, then ‖u‖H̄1
g (Σ) is bounded by

a constant depending only on ρ and b and then the following lemma holds.

Lemma 1.10. Suppose ρ ∈ (8π, 16π). Then, given b ∈ R, there exists Cρ,b such that
it is possible to extend the map Ψ defined in Proposition 1.7 also to
{Iρ ≤ b} \ B̄Cρ,b

⊂ H̄1
g (Σ).

Proof. Considering the arguments in the proof of the aforementioned proposition,
it is clear that we only need to find a constant Cρ,b such that for any u ∈ {Iρ ≤ b}
either ‖u‖H̄1

g (Σ) ≤ Cρ,b, or, given an ε opportunely fixed, there exists a point pu ∈ Σ

where the function eu concentrates, namely
∫

Σ\Br(pu) e
udVg

∫

Σ e
udVg

< ε.

Let u ∈ {Iρ ≤ b} such that for any p ∈ Σ
∫

Σ\Br(pu) e
udVg

∫

Σ e
udVg

≥ ε,

then Lemma 1.3 ensures the existence of two positive numbers ε̄ and r̄ (independent
of u) and two points p̄1 and p̄2 (which instead depend on u) such that

∫

Br̄(p̄i)
eudVg

∫

Σ e
udVg

≥ ε̄ for i = 1, 2 and B2r̄(p̄1) ∩B2r̄(p̄2) = ∅.

32



1.1 Analytical preliminaries

So we can apply Lemma 1.2 with δ0 = 2r̄, Ωi = Br̄(p̄i) and γ0 = min[ε̄, 1
3 ]; in

particular, choosing ε̃ such that 4π2

32π−ε̃ <
1
2 , we obtain the existence of a constant

K = K(ε, r) such that

log

∫

Σ
eudVg ≤ K +

1

32π − ε̃

∫

Σ
|∇u|2dVg.

Then

b ≥ Iρ(u) ≥
1

2

∫

Σ
|∇u|2dVg − ρK −

ρ

32π − ε̃

∫

T
|∇u|2dVg ≥ a‖u‖2 − ρK,

where a = 1
2 − ρ

32π−ε̃ > 0. At last, as K does not depend on u, taking C2
ρ,b := b+ρK

a
the thesis is proved.

1.1.3 A deformation Lemma and a Compactness Result

It is well known that, if I ∈ C1(H̄1
g (Σ),R) satisfies the Palais-Smale condition, a

classical deformation lemma ensures that we have the following alternative: either

1. {I ≤ a} is a deformation retract of {I ≤ b} (a < b), or

2. there is a critical point ū for the functional I, with a ≤ I(ū) ≤ b.

This lemma, which is usually employed to derive existence of critical points, can be
obtained by considering the pseudo-gradient vector field associated to I.

Unfortunately for our functional Iρ the (PS)-condition is known to hold only for
bounded sequences. Here we recall a result in [61], where is constructed a vector
field which deforms suitable sublevels of the functional Iρ, bypassing the Palais-
Smale condition. In [80] it was previously used a related argument, which exploited
a monotonicity property in the parameter ρ.

Below we set

K(u) = − log

∫

Σ
h(x)eudVg, x ∈ H̄1

g (Σ),

so we have Iρ(u) = 1
2 ‖u‖

2 + ρK(u). The result in [61] we need is the following.

Lemma 1.11. Given a, b ∈ R, a < b, the following alternative holds: either

1. ∃(ρn, un) ⊂ R × H̄1
g (Σ) satisfying

I ′ρn
(un) = 0 for every n, a ≤ Iρ(un) ≤ b, ρn → ρ,

2. or the set {Iρ ≤ a} is a deformation retract of {Iρ ≤ b}.
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By deformation retract onto A ⊂ X we mean a continuous map η : [0, 1]×X → X
such that η(t, u0) = u0 for every (t, u0) ∈ [0, 1]×A and such that η(1, ·)|B is contained
in A.

To prove the lemma, one argues as follows: assuming the second alternative false,
let τ > 0 be such that Iρ̃ has no critical point ū for ρ̃ ∈ (ρ− τ, ρ), with Iρ̃(ū) ∈ [a, b].
The strategy of the proof consists in constructing, under these hypotheses, a flow
which deforms Ibρ onto a subset of Iaρ by keeping bounded every integral curve (with
bounds depending on the initial datum, a, b and τ). To do this let Z be defined by:

Z(u) := −[|∇K(u)|∇Iρ(u) + |∇Iρ(u)|∇K(u)]. (1.22)

Then we choose a smooth non-decreasing cut-off function ωτ : R → [0, 1] satis-
fying

0 ≤ ωτ ≤ 1, ωτ (ζ) = 0 ∀ζ ≤ τ, ωτ (ζ) = 1 ∀ζ ≥ 2τ,

and we consider the local flow η = η(t, u0) defined by the Cauchy problem:

du

d t
= −ωτ

(

|∇Iρ(u)|

|∇K(u)|

)

∇Iρ(u) + Z(u), u(0) = u0, (1.23)

where ωτ

(

|∇Iρ(u)|
|∇K(u)

)

is understood to be equal to 1 when ∇K(u) = 0. A key point is

to notice that 〈Z(u),∇Iρ(u)〉 ≤ 0, and that if 〈Z(uk),∇Iρ(uk)〉 tends to zero along

some sequence (uk)k, then limk→∞
Z(uk)

|∇J(uk)| = 0.

This lemma is still too weak because it only guarantees that if sublevels are
not homotopically equivalent, then there exists a sequence of solutions of perturbed
problems. Nevertheless, if ρ 6= 8kπ, as in our case, a compactness result due to Yan
Yan Li, [52], comes to our rescue.

Theorem 1.12. If ρ 6= 8kπ, k ∈ N, ρn → ρ and (un)n ⊂ H1
g (Σ) is a sequence

of solutions of (∗)ρn such that
∫

Σ he
udVg = 1, then (un)n admits a subsequence

converging in C2 to a solution of (∗)ρ.

To establish this result it is crucial a theorem of Brezis-Merle [6], and its com-
pletion given by Li-Shafrir [53], concerning the blow up of solutions to

−△wn = Vn(x)e
wn on Ω ⊂ R2.

In particular in [53] it is proved that in case of blow up

Vne
wn ⇀

m
∑

i=1

8πmiδxi
,

where mi ∈ N and xi ∈ Ω. A similar result holds for compact surfaces and moreover
in [52] it is shown that mi = 1 for any i. From these considerations Theorem 1.12
follows immediately.
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So, employing together Lemma 1.11 and Theorem 1.12 (just considering the
right normalization), it is immediate to establish a strong result concerning our
functional Iρ, through and through analogous to the classical aforementioned defor-
mation lemma.

Corollary 1.13. If ρ 6= 8kπ and if Iρ has no critical levels inside some interval
[a, b], then {Iρ ≤ a} is a deformation retract of {Iρ ≤ b}.

It is useful to recall that in [31] the deformation Lemma has been extended to a
slightly more general case, more precisely the following has been proved.

Lemma 1.14. Consider c ∈ R and let U ⊂ H̄1
g (Σ) be an open neighborhood of Zc,

possibly empty. The following alternative holds: either

1. ∃δ > 0 such that Ic+δρ \ U can be deformed in Ic−δρ in a way that Ic−2δ
ρ \ U

holds steady, or

2. for any δ > 0 there exists ρn → ρ, ρn ≤ ρ, such that Iρn admits a critical point
un ∈ H̄1

g (Σ) \ U and c− δ ≤ Iρ(un) ≤ c+ δ.

1.1.4 The structure of high sublevels and an existence result

Since the functional Iρ stays uniformly bounded on the solutions of (∗)ρ (by Corollary
1.13), the Deformation Lemma 1.11 can be used to prove that it is possible to retract
the whole Hilbert space H̄1

g (Σ) onto a high sublevel {Iρ ≤ b}, b≫ 0. More precisely
one has:

Proposition 1.15. [64] If ρ /∈ 8πN and if b is sufficiently large positive, the sublevel
{Iρ ≤ b} is a deformation retract of H̄1

g (Σ), and hence is contractible.

At last, collecting previous results, we can argue the existence of a solution of
(∗)ρ, when ρ ∈ (8kπ, 8(k + 1)π). Indeed we know that, when b ≫ 1, {Iρ ≤ b} is
contractible, while, if L≫ 1, {Iρ ≤ −L} has non trivial homology, as pointed out in
Remark 1.9. Therefore this difference of topology between high and low sublevels
implies that the first alternative of Corollary 1.13 cannot hold and then allows to
establish a general existence result.

Theorem 1.16. [37] If ρ ∈ (8kπ, 8(k + 1)π), there exists a solution of (∗)ρ.

A complete proof of the previous theorem can be found in [37] or [65], but there
the approach is quite different. Indeed, in the spirit of [38], Djadli introduces a
minmax scheme based on the construction on the topological cone over Σk, using
the monotonicity trick due to Struwe to find the existence of bounded Palais-Smale
sequences.
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1.2 Geometrical preliminaries

This section is devoted to collect some classical and more recent results in Morse
theory, which will be useful to derive multiplicity of solutions of (∗)ρ (resp. (#) and
(18)) from the topological structure of the sublevels of Iρ (resp. II and Jρ). We
will also give a short review of basic notions of algebraic topology needed to study
the homology groups which come out from Morse inequalities. Finally, we recall
the definition of Lusternik-Schnirelman relative category stating also some results
relating the category to both the cup-length and the existence of critical points.

1.2.1 Morse theoretical results

First of all, we recall a classical result in Morse theory: Morse inequalities.

Theorem 1.17. Let N be a Hilbert manifold, f ∈ C2(N ; R) be a Morse function
(i.e. all critical points are non degenerate) satisfying the (PS)-condition. Let a, b
(a < b) be regular values for f and

Cq(a, b;G) := # {critical points of f in {a ≤ f ≤ b} with index q} ,

βq(a, b;G) := rank(Hq({f ≤ b} , {f ≤ a} ;G)), where G is an abelian group,

then
∑n

q=0(−1)n−qCq(a, b;G) ≥
∑n

q=0(−1)n−qβq(a, b;G), n ∈ N (strong ineq.)

Cq(a, b;G) ≥ βq(a, b;G), q ∈ N (weak ineq.)

and
∑∞

q=0(−1)qCq(a, b;G) =
∑∞

q=0(−1)qβq(a, b;G).

To prove the above inequalities the (PS)-condition is not necessarily needed, it
only suffices that appropriate deformation lemmas for f hold true (see for example
[10] Theorem 4.3, Lemma 3.2, and Theorem 3.2). Therefore this hypothesis can
be replaced by the request that some proper deformation lemmas hold for f . We
now want to point out that, despite the (PS)-condition is not known for Iρ, is
still possible to get Theorem 1.17 for N = H̄1

g (Σ) and f = Iρ, under the further
assumption that all the critical points of Iρ are non-degenerate.
In [64] (Proof of Theorem 1.2) Malchiodi defined a new flow W̃ , which is nothing
but the steepest descent flow in a big ball of H̄1

g (Σ), containing all the critical points
of Iρ (such a ball exists by the compactness of the set of solutions; see Theorem
1.12), and which coincides with the flow W constructed by Lucia outside a bigger
ball. More precisely:

W̃ (u) := −θ(u)∇Iρ(u) + (1 − θ(u))W (u) (1.24)

where θ : H̄1
g (Σ) → [0, 1] is a radial cutoff function satisfying

θ(u) = 1 for u ∈ BR; θ(u) = 0 for u ∈ H̄1
g (Σ) \B2R.
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By means of W̃ it is still possible to get the alternative of Lemma 1.11, but this flow
has been defined because, unlike W , it allows to adapt to Iρ the classical deformation
lemmas needed so that Theorem 1.17 can be applied.

To sum up, if Iρ is a Morse functional and a and b are regular values for Iρ, then
the weak and the strong Morse inequalities are verified.

Moreover from the last formula of Theorem 1.17 one can deduce the Poincaré–
Hopf index theorem, which can be found in [10], pages 99-104. Here we adapt the
statement to our purposes.

Proposition 1.18. Let X be a Hilbert space and let f : X → R be of class C2.
Suppose that ∇f(x) is of the form Identity-compact for every x ∈ H, and that f
satisfies the Palais-Smale condition. Assume also that, for some a, b ∈ R, a < b,
{a ≤ f ≤ b} is bounded, and that f has no critical points at the levels a, b. Then,
one has

degLS(∇f, {a ≤ f ≤ b} , 0) = χ({a ≤ f ≤ b} , {f = a}).

Applying this result to Iρ with a = −L ≪ 0 and b ≫ 0 (verifying respectively
the hypotheses of Proposition 1.8 and Proposition 1.15), Malchiodi [64] obtained a
clear interpretation of the degree-formula (8), in terms of the barycenters of Σ.
Since by compactness {a ≤ Iρ ≤ b} contains all the solutions of (∗)ρ, one can com-
pute the degree as

d(k, χ(Σ)) = χ({Iρ ≤ b} , {Iρ ≤ −L}) = χ({Iρ ≤ b}) − χ({Iρ ≤ −L}) = 1 − χ(Σk).

The first inequality is derived excising {Iρ < a}, while the second follows from the
exactness of the homology sequence and the third from Proposition 1.8 and Propo-
sition 1.15.
Clearly this argument is purely intuitive and heuristic but actually it can be made
rigorous. Indeed, even if {a ≤ Iρ ≤ b} is not bounded the problem has been tackle
using a generalized notion of degree, which extends the classical one; whereas the
Palais-Smale condition has been bypassed thanks to the vector field W̃ defined in
(1.24).

1.2.2 Some notions in algebraic topology

Let now recall some well known definitions and results in algebraic topology (see
[47] and [10] for further details). Throughout, the sign ≃ will refer to homotopy
equivalences, while ∼= will refer to homeomorphisms between topological spaces or
isomorphisms between groups. Given a pair of spaces (X,A) we will denote by
Hq(X,A;G) (resp. Hq(X,A;G)) the relative q-th homology (resp. cohomology)
group and by H̃q(X;G) := Hq(X,x0;G) (resp. H̃q(X;G) := Hq(X,x0;G)), for
x0 ∈ X, the reduced homology (resp. cohomology) with coefficients in a group G.
Sometimes we will omit A if it is the empty set and G if it is not worthwhile.
Finally, if (X,Y ), (X ′, Y ′) are two topological pairs and f : (X,Y ) → (X ′, Y ′) is a
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continuous function, we will denote by f∗ : Hq(X ′, Y ′) → Hq(X,Y ), for q ∈ N, the
homomorphism induced by f .

First of all, we recall the Kunneth Theorem for cohomology in a particular case.

Theorem 1.19. ([10], page 8) If (X ×Y ′, Y ×X ′) is an excisive couple in X ×X ′,
and H∗(X,Y ;G) is of finite type, i.e., Hq(X,Y ;G) is finitely generated for each q,
and G is a field, then the map

µ : H∗(X,Y ;G) ⊗H∗(X ′, Y ′;G) −→ H∗((X,Y ) × (X ′, Y ′);G), (1.25)

defined as µ(u⊗ v) := u× v ∈ Hp+q((X,Y )× (X ′, Y ′);G), for any u ∈ Hp(X,Y ;G)
and v ∈ Hq(X ′, Y ′;G), is an isomorphism.

Cup product. We recall that it is possible to endow the direct sum of the cohomol-
ogy groups, H∗(X) =

⊕

qH
q(X), with an associative and graded multiplication,

namely the cup product
⋃

: Hp(X)×Hq(X) → Hp+q(X). This multiplication turns
H∗(X) into a ring; in fact it is naturally a Z-graded ring with the integer q serving
as degree and the cup product respects this grading. This definition can be extended
to topological pairs; in particular, if (Y1, Y2) is an excisive couple in X, it is possible
to define the cup product

∪ : Hp(X,Y1;G) ×Hq(X,Y2;G) −→ Hp+q(X,Y1 ∪ Y2;G)

In de Rham cohomology the cup product of differential forms is also known as the
wedge product.

Proposition 1.20. ([79], page 253) Let (X × Y ′, Y ×X ′) be an excisive couple in
X ×X ′, and let p1 : (X,Y ) ×X ′ → (X,Y ) and p2 : X × (X ′, Y ′) → (X ′, Y ′) be the
projections. Given u ∈ Hp(X,Y ;G) and v ∈ Hq(X ′, Y ′;G), if G is a field, then in
Hp+q((X,Y ) × (X ′, Y ′);G) we have

u× v = p∗1(u) ∪ p
∗
2(v).

Cup–length. A numerical invariant derived from the cohomology ring is the cup-
length, which for a topological space X is defined as follows:

CL(X) = max{ l ∈ N | ∃ c1, . . . , cl ∈ H∗(X), with dim(ci) > 0, i = 1, 2, . . . , l,

such that c1 ∪ . . . ∪ cl 6= 0}.

For example the cup–length of the 2-torus is equal to 2; too see it one can think to
the volume form in de-Rham cohomology.
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More generally, we define the cup length for a topological pair (X,Y ).

CL(X,Y ) = max{ l ∈ N | ∃ c0 ∈ H∗(X,Y ), ∃ c1, . . . , cl ∈ H∗(X), with dim(ci) > 0

for i = 1, 2, . . . , l, such that c0 ∪ c1 ∪ . . . ∪ cl 6= 0}.

In the case where Y = ∅, we just take c0 ∈ H0(X); thus the two definitions are the
same.

Join. The join of two spaces X and Y is the space of all segments “joining points”
in X to points in Y . It is denoted by X ∗ Y and is the identification space

X∗Y := X×[0, 1]×Y/(x, 0, y) ∼ (x′, 0, y), (x, 1, y) ∼ (x, 1, y′) ∀x, x′ ∈ X,∀ y, y′ ∈ Y.

Wedge sum. Given spaces X and Y with chosen points x0 ∈ X and y0 ∈ Y ,
then the wedge sum X ∨ Y is the quotient of the disjoint union X ∐ Y obtained by
identifying x0 and y0 to a single point. If {x0} (resp. {y0}) is a closed subspace of X
(resp. Y ) that is a deformation retract of some neighborhood in X (resp. Y ), then
H̃q(X∨Y ) ∼= H̃q(X)

⊕

H̃q(Y ), provided that the wedge sum is formed at basepoints
x0 and y0.

Smash Product. Inside a product space X × Y there are copies of X and Y ,
namely X × {y0} and {x0} × Y for points x0 ∈ X and y0 ∈ Y . These two copies
of X and Y in X × Y intersect only at the point (x0, y0), so their union can be
identified with the wedge sum X ∨ Y . The smash product X

∧

Y is then defined to
be the quotient X × Y/X ∨ Y . For example Sn ∧ Sm ∼= Sn+m.

Suspension. The k-fold (unreduced) suspension of X is defined to be Sk−1 ∗ X,
while the k-fold reduced suspension is the smash product Sk ∧X. A useful property
of the reduced suspension is that, for any q, n ≥ 0, H̃q(X) ∼= H̃q+n(S

n ∧ X). It
is crucial to notice that reduced and unreduced constructions are homotopically
equivalent constructions for the spaces we will deal with. In the following we will
often use the latter property for replacing in some results of [48] the unreduced
suspension by the reduced one.

Reduced symmetric product. We denote by SP
k
(X) the k-th reduced sym-

metric product which is the symmetric smash product X(k)/Sk, where X(k) is the
k-fold smash product of X with itself and Sk is the permutation group. We set

SP
0
(X) = S0. Let us recall also another characterization of the reduced sym-

metric product. Write SP k(X) for the k-th symmetric product of X obtained
as the quotient of Xk by the permutation action of Sk. There is a topologi-
cal embedding SP k−1(X) →֒ SP k(X) which adjoins the basepoint to a configu-

ration in SP k−1(X) and SP
k
(X) is nothing but the cofiber of this embedding,

SP
k
(X) ∼= SP k(X)/SP k−1(X). So a Theorem by Dold ([40], Theorem 7.2) on the
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homology of symmetric products of simplicial complexes implies that the homology
of reduced symmetric products only depends on the homology of the underlying

space. Moreover it has been proved that SP
k
(X ∨ Y ) = ∨r+s=k SP

r
(X) ∧ SP

s
(Y );

finally in the case of the 2-sphere SP
k
(S2) ∼= S2k (see [48]).

Eilenberg MacLane space. A space X having just one nontrivial homotopy group
πn(X) ∼= G (where G is a group and n ∈ N) is called an Eilenberg-MacLane space
K(G,n). For any choice of G and n it is possible to build a K(G,n) space such that
the homotopy type of a K(G,n) space is uniquely determined by G and n.

Steenrod squares. Steenrod defined some homomorphisms between cohomology
groups: Sqi : Hn(X; Z2) → Hn+i(X; Z2) (i ≥ 0), where X is any topological space.
Properties of those homomorphisms can be found in [78] and references therein. To
abbreviate notation we will denote the composition Sqi1 ◦ Sqi2 ◦ . . . ◦ Sqim by SqI ,
where I = {i1, i2, . . . , im}.

Next let us recall a basic result in homology (see [47] Theorem 2.13 and Propo-
sition 2.22).

Theorem 1.21. If X is a space and A is a nonempty closed subspace that is a
deformation retract of some neighborhood in X, then there is an exact sequence

. . .→ H̃q(A) → H̃q(X) → Hq(X,A) → H̃q−1(A) → . . .→ H̃0(X,A) → 0.

1.2.3 Lusternik-Schnirelman relative category

We recall first the definition of Lusternik-Schnirelman category (category, for short);
then, following [45], we will introduce a more powerful notion. In fact, to be precise,
it is not a notion but rather a family of (Lusternik-Schnirelman) relative categories.
In this family we choose only two for their special properties, which are given in
Proposition 1.24. We will see that the category is a useful tool in critical point
theory to obtain multiplicity results.

Definition 1.22. Let X be a topological space and A a subset of X. The category
of A with respect to X, denoted by CatX A, is the least integer k such that A ⊂
A1∪ . . .∪Ak, with Ai (i = 1, . . . , k) closed and contractible in X. We set CatX ∅ = 0
and CatX A = +∞ if there are no integers satisfying the demand.

Definition 1.23. Let X be a topological space and Y a closed subset of X. A closed
subset A ofX is of the k-th (strong) category relative to Y (we write CatX,Y A = k) if
k is the least positive integer such that there exist Ai ⊂ A closed and hi : Ai×[0, 1] →
X, i = 0, . . . , k, such that
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(i) A = ∪ki=0Ai,

(ii) hi(x, 0) = x ∀x ∈ Ai 0 ≤ i ≤ m,

(iii) h0(x, 1) ∈ Y ∀x ∈ A0 and h0(y, t) = y ∀y ∈ Y ∀t ∈ [0, 1],

(iv) ∀ i ≥ 1 ∃xi ∈ X such that hi(x, 1) = xi,

(v) ∀ i ≥ 1 hi(Ai × [0, 1]) ∩ Y = ∅.

We say that A is of the k-th weak category relative to Y , written catX,Y A = k,
if k is minimal satisfying conditions (i) − (iv).
If one such k does not exist, we set CatX,Y A = +∞ (respectively catX,Y A = +∞).

Starting from the above definition, it is easy to check that the following properties
hold true.

Proposition 1.24. [45] Let A, B and Y be closed subsets of X:

1. if Y = ∅, then catX,∅A = CatX,∅A = CatX A;

2. CatX,Y A ≥ catX,Y A;

3. if A ⊂ B, then CatX,Y A ≤ CatX,Y B;

4. if there exists an homeomorphism φ : X → X ′ such that Y ′ = φ(Y ) and
A′ = φ(A), then CatX′,Y ′ A′ = CatX,Y A;

5. if X ′ ⊃ X ⊃ A and r : X ′ → X is a retraction such that r−1(Y ) = Y and
r−1(A) ⊃ A, then CatX′,Y A ≥ CatX,Y A.

Usually, the notion of category is employed to find critical points of a functional
I on a manifold X, in connection with the topological structure of X. Moreover
a classical theorem by Lusternik-Schnirelman shows that either there are at least
CatX X critical points of I on X, or at some critical level of I there is a continuum
of critical points (see, for example, [1]).

This result cannot directly help us because, since we look for critical points on
H̄1
g (T ), we would take X = H̄1

g (T ) which, clearly, has category equal to 1 (being
contractible).

So we will need a generalization of such a theorem which involves relative cate-
gory of sublevels. In particular a Theorem in [45] can be adapted to our functional.

Theorem 1.25. If −∞ < a < b < +∞ and a, b are regular value for Iρ, then

# {critical points of Iρ in a ≤ Iρ ≤ b} ≥ Cat{Iρ≤b},{Iρ≤a} {Iρ ≤ b}.

In its original formulation the previous statement dealt with C1 functionals ver-
ifying the Palais-Smale condition, but, as pointed out in [31], the (PS)-condition is
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used in the proof only twice to apply the classical deformation lemma (see for ex-
ample [29]). Thus, it is not hard to understand that Corollary 1.13 allows to extend
the result to Iρ.

Besides, in a particular case the relative category can be estimated by means of
the cup-length of a pair in the following way:

Theorem 1.26. [10] For any topological space X, if Y is a closed subset of X, then:

catX,Y X ≥ CL(X,Y ) + 1.

1.3 Critical values of ρ

First of all we give a really brief account of the main ideas of the proof of the
degree–counting formula (8). That turns out to be helpful in studying (∗)ρ when
ρ ∈ 8Nπ. To compute the degree for regular values of ρ we should calculate the jump
d(k, χ(Σ)) − d(k − 1, χ(Σ)) at ρ = 8kπ. We recall an asymptotic estimate which
enables under some assumptions to obtain a priori bounds for solutions of (∗)8kπ.
Besides, the following result gives useful information whether the parameter ρn is
greater or less than 8kπ when the bubbling phenomenon occurs.

Theorem 1.27. [17] Let un be a sequence of blowing–up solutions of (∗)ρn and
assume limn→+∞ ρn = 8kπ. Let pj, j = 1, . . . , k, be blowup points. Then

ρn − 8kπ =
2

k

k
∑

j=1

h(pn,j)
−1[△g log h(pn,j) + 8kπ − 2Kg(pn,j) + o(1)]λn,je

−λn,j ,

where λn,j and pn,j are, respectively, local maxima and local minimum points of un
near pj, and Kg denotes the Gaussian curvature of Σ.

By the previous theorem, if we take h satisfying △g log h+ 8kπ− 2Kg > 0 on Σ
(or such that △gh(p) 6= 0 for any critical point p of h, if k = 1 and Σ = S2), we find
that the degree d8kπ(h) is well defined. Note that in general d8kπ(h) depends on h, as
shown for example in (13). Therefore, in order to evaluate d(k, χ(Σ)) by induction
on k, we can compute d(k, χ(Σ)) − d8kπ(h) and d8kπ(h) − d(k − 1, χ(Σ)) for some
suitably chosen h. When ρ crosses the critical threshold the Leray-Schauder degree
for bounded solutions remains constant, then the value d(k, χ(Σ))−d8kπ(h) depends
only on the degree contributed of blowing–up solutions to (∗)8kπ+ε as ε ց 0. The
same happens for d8kπ(h) − d(k − 1, χ(Σ)) which counts the degree contributed of
blowing–up solutions to (∗)8kπ−ε as εց 0. In order to compute these values, Chen
and Lin constructed all possible k-bubble solutions and calculated their contribution
to the degree.
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To do that they introduced a function fh defined on Σk, the k times product
space of Σ, such that the set of blow up points is a critical point for fh. The function
is the following

fh(x1, . . . , xk) =

k
∑

j=1

[log h(xj) + 4πϕ(xj) +
∑

ℓ 6=j

8πG(xj , xℓ)] (1.26)

where (x1, . . . , xk) ∈ Σk and ϕ(xj) = G̃(xj , xj) is the regular part of the Green’s
function, being G̃(x, p) = 1

2π log d(x, p) +G(x, p).
After ignoring the permutations of (x1, . . . , xk), it is meaningful to regard fh as a
function on Σk \ Γk, where

Γk = {(x1, . . . , xk) : xi = xj for some i 6= j} .

In [18] the authors introduced approximate blowing–up solutions, uP,Λ,A, which
allow to reduce (∗)ρ to an equation on a finite dimensional space. Roughly speaking
P = (p1, . . . , pk) specifies the location of blowup points, Λ = (λ1, . . . , λk) the heights
of the bubbles and A = (a1, . . . , ak) ≃ (1, . . . , 1) is a correction parameter (see
Section 3 of [18] for details). Moreover these approximate solutions should fulfill
some compatibility conditions, involving also ρ, and are one-to-one corresponding
to the critical points of fh on Σk \ Γk.

To understand the relationship between blowing–up solutions and critical points
of fh, at least very naively, we need to introduce some quantities. For any critical
point Q of fh let us consider

l(Q) =

k
∑

j=1

(△g log h(qj) + 8kπ − 2Kg(qj))h(qj)e
G∗

j (qj), (1.27)

where G∗
j (qj) = 8π(

∑

ℓ 6=j G(qj , qℓ) + G̃(qj , qj)).
By means of l(Q), for any j = 1, . . . , k, we set λj(Q) to satisfy

ρ− 8kπ =
2

k

l(Q)

h2(qj)
e−G

∗
j (qj)λj(Q)e−λj(Q)

. (1.28)

Moreover, for any critical point Q of fh, the set Sρ(Q) ⊂ H̄1
g (Σ) will play a crucial

role. A rigorous definition of Sρ(Q) goes beyond the aim of this section and again we
refer to [18] the interested reader. Anyhow it is not hard to rough out the elements of
this set. Let Q = (q1, . . . , qk) be a critical point of fh, a function u ∈ H̄1

g (Σ) belongs
to Sρ(Q) if it is of the form uP,Λ,A + w, with the H1-norm of w and the distance
between the blowup points pj and qj controlled in terms of λ1(Q)e−λ1(Q). Besides

|aj − 1| ≤ Cλ
1
2
1 (Q)e−λ1(Q), the difference |λ1 − λ1(Q)| should be less or equal to

Cλ1(Q)−1 and some extra assumptions on w and λj, for j = 2, . . . , k, are required.

The following deep result shows that any blowing–up solution must be contained
in Sρ(Q) for some critical point Q of fh, provided that ρ is sufficiently close to 8kπ.

43



Preliminaries

Theorem 1.28. [18] Let h be a C3 positive function on Σ satisfying the following
two conditions

(c1) the function fh(x) is a Morse function on Σk\Γk with critical points Q1, . . . , QN ;

(c2) the quantity l(Q) does not vanish for any critical point of fh.

Then there exist εk > 0, Cρ > Ck > 0, with εk and Ck depending on k only, Cρ
continuous in ρ, and limρ→8kπ Cρ = +∞ such that for each solution u ∈ H̄1

g (Σ) of
(∗)ρ, with |ρ− 8kπ| < εk, the following hold:

• ‖u‖H1 < Cρ for ρ 6= 8kπ;

• if ρ = 8kπ, then ‖u‖H1 ≤ Ck;

• for ρ 6= 8kπ, we have either

• ‖u‖H1 < Ck or

• ‖u‖H1 > Ck and there exists a critical point Q of fh such that u ∈ Sρ(Q).
In this case we have

∣

∣

∣

∣

∣

∣

‖u‖H1 − 16π

k
∑

j=1

λj(Q)

∣

∣

∣

∣

∣

∣

≤ c

for some constant c independent of ρ, where λj(Q) is given in (1.28).

We point out that h is assumed C3 just for technical reasons.

1.4 The singular case

If instead of (∗)ρ we consider the singular equation (18) and the corresponding
functional Jρ, all the results in subsection 1.1.1 still hold. Hence, it is still possible
to project the low sublevels of Jρ into Σk.

Lemma 1.29. If ρ ∈ (8kπ, 8(k + 1)π) with k ≥ 1, then there exists a continuous
projection Ψ : {Jρ ≤ −L} → Σk.

On the other hand, for what concerns the embedding of the space of formal
barycenters Σk into arbitrarily low sublevels, the statement of Proposition 1.5 does
not apply entirely, indeed the point (ii) should be modified in the following way.

Proposition 1.30. Suppose ρ ∈ (8kπ, 8(k + 1)π), with k ≥ 1. Let ϕλ,σ be defined
as in (1.9) and let K be a compact subset of Σ \ {P1, . . . , Pm}. Then,

eϕλ,σ

∫

Σ e
ϕλ,σdVg

⇀ σ and Jρ(ϕλ,σ) → −∞ uniformly for σ ∈ Kk, as λ→ +∞,

where Kk is the set of formal barycenters of order k supported in K (see (25)).
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To prove this result it is enough to consider the proof of Proposition 1.5, changing
slightly the estimates used to obtain (1.11).

With regard to compactness, when we include Dirac measures as inhomogeneous
data in (18) the analysis of the corresponding solution-set becomes more involved; in
this situation one needs to deal with the additional difficulty of considering solution
sequences which become unbounded from above around a pole of the given Dirac
measures.
It is worth to illustrate briefly, by means of an example, the main difference with
the regular case. Let consider the sequence

un(x) = log
λn |x− P |2α

(

1 + 1
8(1+λ)2

λn |x− P |2(1+α)
)2 , x ∈ R2

of solutions to

−△un = ρn
eun

∫

Ω e
undx

− 4πδP on Ω,

where ρn =
∫

Ω e
un → 8π(1 + α), as n→ ∞. Note that for any domain Ω ⊂ R2 with

P ∈ Ω we have that eun concentrates near P in the sense that

eun = ρn
eun

∫

Ω e
undx

⇀ 8π(1 + α)δP weakly in the sense of measures in Ω.

Therefore in the singular case we see that the condition ρ /∈ 8πN is no longer sufficient
to guarantee uniform upper estimates of solutions; in fact the values ρ = 8π(1+αj)N
may be responsible for a possible blow up point at the Dirac pole Pj , j = 1, . . . ,m,
and yield a concentration phenomenon. In this direction Bartolucci and Tarantello
proved the following result.

Theorem 1.31. [4] Let K be a positive Lipschitz function on Σ and let h̃ = Ke−hm .
Let ui solve (18) with αj > 0, pj ∈ Σ and ρ = ρi, ρi → ρ. Suppose that

∫

Σ h̃e
uidVg ≤

C1 for some fixed C1 > 0. Then along a subsequence uik one of the following
alternatives holds:

(i) uik is uniformly bounded from above on Σ;

(ii) maxΣ

(

uik − log
∫

Σ h̃e
uikdVg

)

→ +∞ and there exists a finite blow-up set S =

{q1, . . . , ql} ⊂ Σ such that

(a) for any s ∈ {1, . . . , l} there exist xsn → qs such that uik(xsn) → +∞ and
uik → −∞ uniformly on the compact sets of Σ \ S,

(b) ρik
h̃e

uik
R

Σ
h̃e

uik dVg
⇀
∑l

s=1 βsδqs in the sense of measures, with βs = 8π for

qs 6= {p1, . . . , pm}, or βs = 8π(1 + αj) if qs = pj for some j = {1, . . . ,m}. In
particular one has that

ρ ∈ Γ(αm).
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From the above result we obtain immediately the following corollary.

Corollary 1.32. Suppose we are in the above situation, and that ρ 6∈ Γ(αm). Then
the solutions of (18) stay uniformly bounded in C2(Σ).

Exactly as for the regular equation, Corollary 1.32 is a compactness criterion
useful to bypass the Palais-Smale condition, which is not known for the functional
Jρ. This corollary, combined with the arguments in [61] (see Lemma 1.11 above,
which adapts in a straightforward way to the singular case), allows to prove the next
alternative.

Lemma 1.33. If ρ /∈ Γ(αm) and if Jρ has no critical levels inside some interval
[a, b], then {Jρ ≤ a} is a deformation retract of {Jρ ≤ b}.

It is then clear that one can derive from the previous lemma the contractibility
of high sublevels of the functional Jρ, namely

Proposition 1.34. If ρ 6∈ Γ(αm) and if b is sufficiently large positive, the sublevel
{Jρ ≤ b} is a deformation retract of H̄1

g (Σ) and hence is contractible.

Remark 1.35. As far as we are concerned with the approach presented in this paper
it seems not easy to remove the hypothesis on the positivity of K. The difficulties
are inherited by the lack of concentration-compactness-quantization results (in the
same spirit of [4], [6], [52]) for solutions of (18) with K possibly changing sign or
even just nonnegative. Actually, our analysis relies heavily on Theorem 1.31 (see
also results in [6] and [52]) where this hypothesis is required (see [67] for related
issues in the regular case).
However the necessary condition imposed by the Gauss-Bonnet constraint (20) just
reads

∫

Σ
2Ke−hmeudVg = 4πχ(Σ, αm),

so that in principle there should be no obstructions (as in the regular and subcritical
cases [49], [84]) in finding conformal metrics on supercritical singular surfaces of
positive genus with Gaussian curvature just assumed to be positive somewhere.

This Remark motivates the following question: is it true that any Lipschitz con-
tinuous function on S can be realized as the Gaussian curvature of a conformal
metric on a supercritical surface satisfying the hypotheses of Theorem 0.5?
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Chapter 2

Proofs of the main theorems

2.1 Generic multiplicity

In order to apply Morse theory to Iρ = Iρ,(g,h) we need to show that it is a Morse
functional for a generic choice of the metric g and of the positive function h.

Proposition 2.1. Let ρ ∈ (8kπ, 8(k + 1)π). Then

D(ρ) =
{

(g, h) ∈ M2 × C2(Σ)+ : all critical points of Iρ,(g,h) are non degenerate
}

is an open and dense subset of M2 × C2(Σ)+ and

D1(ρ) =
{

(g, h) ∈ M2
1 × C2(Σ)+ : all critical points of Iρ,(g,h) are non degenerate

}

is an open and dense subset of M2
1 × C2(Σ)+.

Proof. The main tool of the proof it is an abstract transversality Theorem due to
Saut and Temam [77]. In particular we will apply the following scheme performed
by Micheletti and Pistoia in [69].

First of all we introduce the space S2 of all C2 symmetric matrices on Σ. S2

is a Banach space endowed with the C2 norm, defined in the following way. We
fix a finite covering {Vα}α∈L of Σ such that the closure of Vα is contained in Uα,
where {Uα, ψα} is the open coordinate neighborhood. If g ∈ S2 we denote by gij
the components of g with respect to the coordinates (x1, . . . , xN ) on Vα. We define

‖g‖2 :=
∑

α∈L

∑

|β|≤2

N
∑

i,j=1

sup
ψα(Vα)

∂2gij

∂xβ1
1 ∂x

β2
2

. (2.1)

The set M2 of all C2 Riemannian metrics on Σ is an open subset of S2.
We fix now (g, h) ∈ M2 × C2(Σ)+.

It is easy to verify that there exists δ > 0 such that if g ∈ Gδ :=
{

g ∈ S2 : ‖g‖2 < δ
}

then ḡ+g is a Riemannian metric and the sets H1
ḡ+g(Σ), L2

ḡ+g(Σ), L1
ḡ+g(Σ) coincide

respectively with H1
ḡ (Σ), L2

ḡ(Σ), L1
ḡ(Σ) and the two norms are equivalent. Moreover

we will choose δ sufficiently small in order to have that h̄ + h ∈ C2(Σ)+ for any
h ∈ Hδ :=

{

h ∈ C2(Σ) : ‖h‖∞ < δ
}

.
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Definition 2.2. For g ∈ Gδ we set A(g) := Ag : L2
ḡ(Σ) −→ H1

ḡ (Σ) to be the only
linear operator such that

(Agu, v)H1
ḡ+g(Σ) = (u, v)L2

ḡ+g(Σ) ∀ v ∈ H1
ḡ (Σ), ∀u ∈ L2

ḡ(Σ). (2.2)

Clearly
(Agu, v)H1

ḡ+g(Σ) = (u,Agv)H1
ḡ+g(Σ) ∀u, v ∈ H1

ḡ (Σ),

moreover Ag is nothing but the adjoint operator i∗ḡ+g of the compact embedding
iḡ+g : H1

ḡ+g(Σ) → L2
ḡ+g(Σ). Integrating by parts it can be checked that the main

term of the explicit expression of Ag is the inverse of the laplacian operator. Let
us notice that in the definition of Ag we used the fact that H1

ḡ+g(Σ) and H1
ḡ (Σ)

(respectively L2
ḡ+g(Σ) and L2

ḡ(Σ)) are the same as sets and that the two norms are
equivalent.

For what concerns the regularity in g of A(g) we have the following result.

Lemma 2.3. The map A : Gδ −→ L(Lp
′

ḡ (Σ);H1
ḡ (Σ)) is of class C1, where

L(Lp
′

ḡ (Σ);H1
ḡ (Σ)) stands for the space of linear operators from Lp

′

ḡ (Σ) to H1
ḡ (Σ).

For the proof, see Lemma 2.3 of [69].

Moreover we can assume that δ is sufficiently small such that there exists R̄ > 0
such that for any (g0, h0) ∈ Gδ×Hδ all the critical points of Iρ,(ḡ+g,h̄+h) are contained

in the ball B := BR̄(0) of H̄1
ḡ (Σ).

We are finally in position to introduce the map F : Gδ ×Hδ × B −→ H̄1
ḡ (Σ):

F (g, h, u) := S−1
g (F̃g(h, Sg(u))), (2.3)

where

F̃g : Hδ × H̄1
ḡ+g(Σ) −→ H̄1

ḡ+g(Σ)

(h,w) 7→ w −Ag(ρ
(h̄+ h)ew

∫

Σ(h̄+ h)ewdVḡ+g
−

ρ
∫

Σ dVḡ+g
+ w),

while Sg : H̄1
ḡ (Σ) → H̄1

ḡ+g(Σ) is defined as Sg(u) := u − −
∫

Σ udVḡ+g. Clearly
Sg is linear, invertible and the inverse is given by S−1

g : H̄1
ḡ+g(Σ) → H̄1

ḡ (Σ),
S−1
g (w) := w −−

∫

ΣwdVḡ.
By the regularity of the map A, which associates to g the linear operator Ag, (see
Lemma 2.3) we get that the map F is of class C1.

It is easy to see that (g, h, u) ∈ Gδ × Hδ × B are such that F (g, h, u) = 0 if
and only if u is a critical point of Iρ,(ḡ+g,h̄+h). Taking into account this remark, to
establish the claim we need the following transversality theorem.

Theorem 2.4. [77] Let X, Y , Z be three real Banach spaces and let U ⊂ X, V ⊂ Y
be open subsets. Let F : V × U −→ Z be a Ck-map with k ≥ 1 such that
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2.1 Generic multiplicity

(i) for any y ∈ V , F (y, ·) : x 7→ F (y, x) is a Fredholm map of index l with l ≤ k;

(ii) z0 is a regular value of F , that is the operator F ′(y0, x0) : Y ×X −→ Z is onto
at any point (y0, x0) such that F (y0, x0) = z0;

(iii) the set of x ∈ U such that F (y0, x) = z0 with y0 in a compact set of V is
relatively compact in U .

Then the set {y ∈ V : z0 is a regular value of F (y, ·)} is a dense open subset of V .

We collect now some technical Lemmas needed to verify that we are in condition
to apply Theorem 2.4.

Lemma 2.5. For any (g, h) ∈ Gδ × Hδ the map u 7→ F (g, h, u) with u ∈ B is
Fredholm of index 0.

Proof. For (g0, h0) ∈ Gδ ×Hδ and v ∈ H̄1
ḡ (Σ) we have

F ′
u(g0, h0, u0)[v] = S−1

g0 ((F̃g0)
′
w(h0, Sg0(u0))[Sg0(v)]) = S−1

g0 (Sg0(v) +

−Ag0(ρ
h̃eSg0 (u0)Sg0(v)

∫

Σ h̃e
Sg0 (u0)dVg̃ − h̃eSg0 (u0)

∫

Σ h̃e
Sg0 (u0)Sg0(v)dVg̃

(
∫

Σ h̃e
Sg0 (u0)dVg̃)2

+ Sg0(v)))

= v − S−1
g0 (Ag0(ρ

h̃eu0v
∫

Σ h̃e
u0dVg̃ − h̃eu0

∫

Σ h̃e
u0vdVg̃

(
∫

Σ h̃e
u0dVg̃)2

+ v))

:= v −K(v),

where g̃ := ḡ + g0, h̃ := h̄+ h0 and

K(v) = S−1
g0 (Ag0(ρ

h̃eu0v
∫

Σ h̃e
u0dVg̃ − h̃eu0

∫

Σ h̃e
u0vdVg̃

(
∫

Σ h̃e
u0dVg̃)2

+ v)).

We will verify that K : H̄1
ḡ (Σ) → H̄1

ḡ (Σ) is compact and this will end the proof.
If vn is a bounded sequence in H̄1

ḡ (Σ), then vn is also bounded in H̄1
g̃ (Σ) (because

g0 ∈ Gδ). Then up to a subsequence, vn converges to v in Lqg̃(Σ) for any q ≥ 1.
So, we have





∫

Σ

∣

∣

∣

∣

∣

ρ
(
∫

Σ h̃e
u0dVg̃)h̃e

u0(vn − v) − (
∫

Σ h̃e
u0(vn − v)dVg̃)h̃e

u0

(
∫

Σ h̃e
u0dVg̃)2

+ (vn − v)

∣

∣

∣

∣

∣

2

dVg̃





1
2

≤

≤ ρ(
‖h̃eu0‖L4

g̃
‖vn − v‖L4

g̃

‖h̃eu0‖L1
g̃

+
‖h̃eu0‖2

L2
g̃

‖vn − v‖L2
g̃

‖h̃eu0‖2
L1

g̃

) + ‖vn − v‖L2
g̃
−→ 0.

Therefore, by continuity of Ag0 and of S−1
g0 , K(vn − v) → 0 in H̄1

g̃ (Σ) and so it

converges to 0 in H̄1
ḡ (Σ).
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Remark 2.6. Arguing exactly in the same way we can also prove that for any
(g0, h0, u0) ∈ Gδ ×Hδ × B the map w 7→ (F̃g)

′
w(h, Sg0(u0))[w] for w ∈ H̄1

ḡ+g(Σ) is a
Fredholm map of index 0.

Lemma 2.7. The set

{u ∈ B : F (g0, h0, u) = 0, (g0, h0) belongs to a compact subset of Gδ ×Hδ}

is relatively compact in B ⊂ H̄1
ḡ (Σ).

Proof. We show that if un ∈ B is such that F (gn, hn, un) = 0 with gn → g0 and
hn → h0, then un possesses a converging subsequence.
Let us first notice that, thanks to the invertibility of S−1

gn
for any n, F (gn, hn, un) = 0

implies F̃gn(hn, Sgn(un)) = 0, which in turn is equivalent to

un = Agn(ρ
h̃ne

un

∫

Σ h̃ne
undVg̃n

−
ρ

∫

Σ dVg̃n

+ un).

Since the sequence un is bounded in H1
ḡ (Σ) and also in H1

g̃ (Σ) (being g0 ∈ Gδ),
un (up to a subsequence) converges to a function u in Lqḡ(Σ) and in Lqg̃(Σ) for any
q ≥ 1. If we are able to prove that
∥

∥

∥

∥

∥

ρ(
h̃ne

un

∫

Σ h̃ne
undVg̃n

−
h̃eu

∫

Σ h̃e
udVg̃

) − ρ(
1

∫

Σ dVg̃n

−
1

∫

Σ dVg̃
) + (un − u)

∥

∥

∥

∥

∥

L2
ḡ

−→ 0, (2.4)

where g̃n := ḡ + gn and h̃n := h̄+ hn, then we will get the same convergence in L2
g̃

and so

i∗g̃(fn) = Ag0(fn)
H1

g̃ (Σ)
−→ Ag0(ρ

h̃eu
∫

Σ h̃e
udVg̃

−
ρ

∫

Σ dVg̃
+ u). (2.5)

where fn := ρ h̃neun
R

Σ
h̃neundVg̃n

− ρ
R

Σ dVg̃n
+ un.

On the other hand by Lemma 2.3 we have that for some θ ∈ (0, 1):

‖Agn(fn) −Ag0(fn)‖H1
ḡ

=

= ‖A′(g0 + θ(gn − g0))[gn − g0](fn)‖H1
ḡ
≤

≤ ‖fn‖L2
ḡ
‖A′(g0 + θ(gn − g0))[gn − g0]‖L(L2

ḡ ,H
1
ḡ ) ≤

≤ ‖fn‖L2
ḡ
‖A′(g0 + θ(gn − g0))‖L(Gδ ,L(L2

ḡ,H
1
ḡ ))‖gn − g0‖2. (2.6)

From (2.5) and (2.6) we can deduce that

Agn(fn)
H1

g̃ (Σ)
−→ Ag0(ρ

h̃eu
∫

Σ h̃e
udVg̃

−
ρ

∫

Σ dVg̃
+ u).

Therefore, since un = Agn(fn), we get the claim.
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2.1 Generic multiplicity

Finally to conclude it remains to verify (2.4); as gn → g0 in ‖ · ‖2 and un → u in L2
ḡ,

it will be enough to prove

∥

∥

∥

∥

(

∫

Σ
h̃eudVg̃)h̃ne

un − (

∫

Σ
h̃ne

undVg̃n)h̃eu
∥

∥

∥

∥

L2
ḡ

−→ 0.

Simply manipulating the integrands and using Holder’s inequality we have:

∫

Σ
[(

∫

Σ
h̃eudVg̃)h̃ne

un − (

∫

Σ
h̃ne

undVg̃n)h̃eu]2dVḡ =

= (

∫

Σ
h̃ne

undVg̃n)2
∫

Σ
h̃2e2u[

∫

Σ h̃e
udVg̃

∫

Σ h̃ne
undVg̃n

h̃n

h̃
e(un−u) − 1]2dVḡ ≤

≤ (

∫

Σ
h̃ne

undVg̃n)2(

∫

Σ
h̃4e4udVḡ)

1
2 (

∫

Σ
[

∫

Σ h̃e
udVg̃

∫

Σ h̃ne
undVg̃n

h̃n

h̃
e(un−u) − 1]4dVḡ)

1
2 .

The first two terms are bounded according to the Moser-Trudinger inequality (1.2);
let us consider the square of the third one and use the simple estimate |ex − 1| ≤
|x|e|x|, the triangular inequality and Holder’s inequality.

∫

Σ

[

e
log(

R

Σ h̃eudVg̃
R

Σ h̃neundVg̃n

h̃n
h̃

)+(un−u)
− 1

]4

dVḡ ≤

≤

∫

Σ

[

| log(

∫

Σ h̃e
udVg̃

∫

Σ h̃ne
undVg̃n

h̃n

h̃
) + (un − u)| e

| log(

R

Σ h̃eudVg̃
R

Σ h̃neun dVg̃n

h̃n
h̃

)+(un−u)|

]4

dVḡ ≤

≤

∫

Σ





∣

∣

∣

∣

∣

log(

∫

Σ h̃e
udVg̃

∫

Σ h̃ne
undVg̃n

h̃n

h̃
) + (un − u)

∣

∣

∣

∣

∣

4

×

× max

{

∫

Σ h̃e
udVg̃

∫

Σ h̃ne
undVg̃n

h̃n

h̃
,

∫

Σ h̃ne
undVg̃n

∫

Σ h̃e
udVg̃

h̃

h̃n

}4

e4|un−u|



 dVḡ ≤

≤

(

∫

Σ
| log(

∫

Σ h̃e
udVg̃

∫

Σ h̃ne
undVg̃n

h̃n

h̃
) + (un − u)|12dVḡ

)
1
3

×

×

(

∫

Σ
max{

∫

Σ h̃e
udVg̃

∫

Σ h̃ne
undVg̃n

h̃n

h̃
,

∫

Σ h̃ne
undVg̃n

∫

Σ h̃e
udVg̃

h̃

h̃n
}12dVḡ

)
1
3 (∫

Σ
e12|un−u|dVḡ

) 1
3

.

Again the last two terms can be bounded using (1.2), while the cube of the first one
can be controlled by:

C[

∫

Σ
(log(

∫

Σ h̃e
udVg̃

∫

Σ h̃ne
undVg̃n

h̃n

h̃
))12dVḡ + ‖un − u‖12

L12
ḡ

]

51
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and this sequence converges to 0, as n → +∞, because un → u in L12
ḡ (Σ) and

∥

∥

∥

∥

R

Σ
h̃eudVg̃

R

Σ h̃neundVg̃n

h̃
h̃n

∥

∥

∥

∥

∞

→ 1. Indeed
∥

∥

∥

h̃
h̃n

∥

∥

∥

∞
→ 1 and

∫

Σ h̃(eu − eun)dVg̃
∫

Σ h̃ne
undVg̃n

≤

∫

Σ h̃e
u(1 − e(un−u))dVg̃

C
∫

Σ h̃ne
undVg̃

≤

≤ C
(
∫

Σ h̃
2e2udVg̃)

1
2

∫

Σ h̃ne
undVg̃

(

∫

Σ
(1 − e(un−u))2dVg̃)

1
2 ≤ C(

∫

Σ
|un − u|2e2|un−u|dVg̃)

1
2 ≤

≤ C‖un − u‖L4
g̃
‖e(un−u)‖L4

g̃
−→ 0,

where we used one more time the Holder’s inequality, the estimate |ex− 1| ≤ |x|e|x|,
(1.2) and the fact that un → u in L4

g̃(Σ).

Lemma 2.8. For any (g0, h0, u0) ∈ Gδ ×Hδ × B it holds that if

w ∈ Ker(F̃g0)
′
w(h0, Sg0(u0)) ⊂ H̄1

g̃ (Σ)

and
(Sg0(F

′
(g,h)(g0, h0, u0)[0, h]), w)H1

g̃
= 0 ∀h ∈ C2(Σ)

then w = 0.

Proof. By hypothesis

0 = (Sg0(F
′
(g,h)(g0, h0, u0)[0, h]), w)H1

g̃
= (F̃g0)

′
h(h0, Sg0(u0))[h], w)H1

g̃
=

= −
ρ

(
∫

Σ h̃e
u0dVg̃)2

(

∫

Σ
heu0 [w

∫

Σ
h̃eu0dVg̃ −

∫

Σ
h̃eu0wdVg̃]dVg̃)

for any h ∈ C2(Σ). This implies that w
∫

Σ h̃e
u0dVg̃ −

∫

Σ h̃e
u0wdVg̃ = 0, that is

w ≡
R

Σ
h̃eu0wdVg̃

R

Σ h̃e
u0dVg̃

is constant. Finally by the fact that w ∈ H̄1
g̃ (Σ) we deduce w = 0.

Lemma 2.9. For any (g0, h0, u0) ∈ Gδ ×Hδ ×B such that F (g0, h0, u0) = 0 and for
any b ∈ H̄1

ḡ (Σ) there exists (gb, hb, vb) ∈ S2 × C2(Σ) × H̄1
ḡ (Σ) such that

F ′
(g,h)(g0, h0, u0)[gb, hb] + F ′

u(g0, h0, u0)[vb] = b.

Proof. Let us take b ∈ H̄1
ḡ (Σ). In the following we will use the notations g̃ := ḡ+g0

and h̃ := h̄+ h0.
Since by Remark 2.6 the selfadjoint operator

w 7→ (F̃g0)
′
w(h0, Sg0(u0))[w] = w−Ag0(ρ

(
∫

Σ h̃e
u0dVg̃)h̃e

u0w − (
∫

Σ h̃e
u0wdVg̃)h̃e

u0

(
∫

Σ h̃e
u0)2

+w)
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2.1 Generic multiplicity

is Fredholm of index 0, the following decomposition holds

Im(F̃g0)
′
w(h0, Sg0(u0))

⊕

Ker(F̃g0)
′
w(h0, Sg0(u0)) = H̄1

g̃ (Σ).

We will denote by PIm and PKer the orthogonal projections from H̄1
g̃ (Σ) onto

Im(F̃g0)
′
w(h0, Sg0(u0)) and Ker(F̃g0)

′
w(h0, Sg0(u0)) respectively. According to these

notations we can decompose b as follows

b = S−1
g0 (PIm(Sg0(b))) + S−1

g0 (PKer(Sg0(b))).

Let us show first that there exists hb ∈ C2(Σ) such that

PKer(Sg0(b)) = PKer(Sg0(F
′
(g,h)(g0, h0, u0)[0, hb])). (2.7)

Let {w1, . . . , wν} be a basis of Ker(F̃g0)
′
w(h0, Sg0(u0)) and let us consider the

linear functionals fi : C2(Σ) → R defined by

fi(h) := (F ′
(g,h)(g0, h0, u0)[0, h], wi)H1

g̃
, i = 1, . . . , ν.

By Lemma 2.8 it follows that the fi’s are independent; then there exist ν linearly
independent functions h1,. . . ,hν in C2(Σ) such that fi(hi) = 1 for i = 1 . . . , ν and
so we are able to find hb ∈ C2(Σ) verifying (2.7).

At this point we have

b = S−1
g0 (PKer(Sg0(b))) + S−1

g0 (PIm(Sg0(b))) =

= S−1
g0 (PKer(Sg0(F

′
(g,h)(g0, h0, u0)[0, hb]))) + S−1

g0 (PIm(Sg0(b))) =

= S−1
g0 (Sg0(F

′
(g,h)(g0, h0, u0)[0, hb])) +

+S−1
g0 (PIm(−Sg0(F

′
(g,h)(g0, h0, u0)[0, hb]) + Sg0(b))) =

= F ′
(g,h)(g0, h0, u0)[0, hb] + S−1

g0 (PIm(Sg0(−F
′
(g,h)(g0, h0, u0)[0, hb] + b))).

Since by definition PIm(Sg0(−F
′
(g,h)(g0, h0, u0)[0, hb] + b)) ∈ Im(F̃g0)

′
w(h0, Sg0(u0)),

it is possible to find wb ∈ H̄1
g̃ (Σ) such that

PIm(Sg0(−F
′
(g,h)(g0, h0, u0)[0, hb] + b)) = (F̃g0)

′
w(h0, Sg0(u0))[wb].

Finally, if we set vb := S−1
g0 (wb), we have

S−1
g0 (PIm(Sg0(−F

′
(g,h)(g0, h0, u0)[0, hb] + b))) =

= S−1
g0 ((F̃g0)

′
w(h0, Sg0(u0))[wb]) = F ′

u(g0, h0, u0)[vb].

Therefore, taking gb = 0, we get b = F ′
(g,h)(g0, h0, u0)[gb, hb] + F ′

u(g0, h0, u0)[vb].
The proof is thereby complete.

Thanks to Lemma 2.5, Lemma 2.9 and Lemma 2.7 we have that, if we take
as F the map defined in (2.3) and we set X = Z = H̄1

ḡ (Σ), Y = S2 × C2(Σ),
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Proofs of the main theorems

V = Gδ ×Hδ, U = B and z0 = 0, all the assumptions of Theorem 2.4 are fulfilled.
Applying Theorem 2.4 we get that the following set is an open and dense subset of
Gδ ×Hδ

{(g, h) ∈ Gδ ×Hδ : F ′
u(g, h, u) : H̄1

ḡ −→ H̄1
ḡ is invertible at any point

(g, h, u) such that F (g, h, u) = 0 with u ∈ B} =

{(g, h) ∈ Gδ ×Hδ : any u ∈ B solution of the equation

−△ḡ+gu+
ρ

∫

Σ dVḡ+g
= ρ

(h̄+ h)eu
∫

Σ(h̄+ h)eudVḡ+g
is non degenerate} =

{(g, h) ∈ Gδ ×Hδ : any solution of the equation

−△ḡ+gu+
ρ

∫

Σ dVḡ+g
= ρ

(h̄+ h)eu
∫

Σ(h̄+ h)eudVḡ+g
is non degenerate},

where the last equality follows from our choice of R̄. Finally, since we have this for
any (ḡ, h̄) ∈ M2 × C2(Σ)+, the proof of the first part of the claim is complete.

For what concerns D1(ρ), the openness in M2
1×C

2(Σ)+ follows immediately from
the openness of D(ρ) in M2 ×C2(Σ)+. Actually the previous proof also implies the
density; indeed focusing on the statement of Lemma 2.8 it can be understand that
we proved that for any (g, h) ∈ M2 × C2(Σ)+ there exists h̃ arbitrarily close to h
such that (g, h̃) ∈ Dρ. Applying this remark to an element (g, h) ∈ M2

1 × C2(Σ)+

we get the second part of the claim and this concludes the proof.

For what concerns the singular equation, it is worth to notice that exactly the
same procedure followed in the previous proof allows to show generic non degener-
acy of the critical points of the functional Jρ. That will be crucial to obtain the
multiplicity estimate.

Proposition 2.10. For ρ 6∈ Γ(αm) and for (g,K) in an open and dense subset of
M2 × C0,1(S) Jρ,(g,K) is a Morse functional.

2.1.1 Regular values of ρ

Proof of Theorem 0.1 We will first compute the
∑∞

q≥0 dim H̃q(Σk; Z2), showing
that it equals the right–hand side of formula (10). Finally to conclude, thanks
to Proposition 2.1, it will be enough to get the estimate (10) under the further
assumption that (g, h) are such that Iρ,(g,h) is a Morse functional.

Step 1
We now focus on the homology with coefficients in Z2 of Σk, i.e. the set of formal
barycenters of a surface Σ of order k, defined in (9). We will present the main steps
of the procedure, performed in [48], to achieve a description of H∗((S

2)k; Z2) and
we will derive from that the description in the case of any surface.
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2.1 Generic multiplicity

Then we will compute the sum of the dimensions of the homology groups of Σk, the
real aim of this step.

First of all the main theorems in [48], dealing with the space of formal barycenters
on topological spaces, imply in particular that

Theorem 2.11. [48] For any manifold M , let Mk be the set of formal sums defined
in (25).

Then for any q ≥ 0 H̃q(Mk; Z2) ∼= Hq+1(SP
k
(S1 ∧M); Z2).

Remark 2.12. A key point is that, thanks to the isomorphism above, in the case of
a surface Σ, the homology of Σk only depends on the homology of Σ, in particular
on its genus.

Let us consider two particular situations. When M ∼= Sn, applying Theorem
2.11 we can immediately describe the reduced homology of the space of formal
barycenters by means of the homology of a reduced symmetric product of Sn. With
some more work we can also deal with the case when M is a surface of genus g,
reducing again the comprehension of the homology of the formal barycenters to the
understanding of the homology of a reduced symmetric product of S3.

• Let M ∼= S2, then for any q ≥ 0

H̃q((S
2)k; Z2) ∼= Hq+1(SP

k
(S3); Z2). (2.8)

• Let M ∼= Σg, a surface of genus g. Notice that S1 ∧Σg has the same homology

of S3 ∨ (
∨2g

j=1 S
2); hence, recalling that the reduced symmetric product of a

space only depends on its homology and using, in order, the properties of
the reduced symmetric product, those of the homology of the wedge sum, the
fact that SP

n
(S2) ∼= S2n and the properties of the homology of the reduced

suspension, we obtain for any q ≥ 0:

H̃q((Σ(g))k; Z2) ∼= Hq+1(SP
k
(S1 ∧ Σg); Z2)

∼= Hq+1(SP
k
(S3 ∨ (

2g
∨

j=1

S2)); Z2)

∼= Hq+1(
∨

r+s1+...+s2g=k

(SP
r
S3 ∧ (

2g
∧

j=1

SP
sjS2)); Z2)

∼=
⊕

r+s1+...+s2g=k

Hq+1(SP
r
S3 ∧ (

2g
∧

j=1

SP
sjS2); Z2)

∼=
⊕

r+s1+...+s2g=k

Hq+1(SP
r
S3 ∧ (

2g
∧

j=1

S2sj ); Z2)

∼=
⊕

r+s1+...+s2g=k

H̃q−2k+2r+1(SP
r
(S3); Z2). (2.9)
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Proofs of the main theorems

In the last line, if q < max {0, 2k − 2r − 1}, we mean H̃q−2k+2r+1(SP
r
(S3)) to

be 0.

The above examples show that it is really useful to have a description of

H̃∗(SP
r
(Sn+1); Z2) for r ≥ 1, being SP

0
(Sn+1) = S0. Actually what we need is to

estimate the dimensions of the homology groups H̃q(SP
r
(Sn+1); Z2), seen as vector

spaces. To do that it will be more convenient, at least for notations, to switch by
duality to cohomology; namely to study the dual vector space H̃∗(SP

r
(Sn+1); Z2).

In fact at the moment we are just interested in the case n = 2, but the general case
will be exploited in Subsection 2.1.3.
General facts about symmetric products ([47], page 483) show that

H̃∗(SP
r
(Sn+1); Z2) →֒

⊗

i≥0

H∗(K(H̃i(S
n), i + 1); Z2) = H∗(K(Z, n+ 1); Z2).

Actually we will just summarize how Kallel and Karoui found it, deeply using works
of Milgram [70], Nakaoka [72] and Serre [78]. Using the Steenrod splitting it is
possible to write:

H̃∗(K(Z, n); Z2) ∼=
⊕

j≥1

H̃∗(SP
j
Sn; Z2);

therefore, if we are able to filter H̃∗(K(Z, n); Z2) over the positive integers so that

H̃∗(SP
j
Sn; Z2) corresponds to the class of filtration degree precisely j, we are done.

This procedure relies on the following result.

Theorem 2.13. [78]H∗((Z, n); Z2) is the polynomial algebra with coefficients in Z2

generated by the iterated Steenrod squares SqI(un), where un is the only generator
of Hn((Z, n); Z2) and I = {i1, . . . , ir} is admissible, i.e. if I satisfies the conditions
below:

• i1 − i2 − . . . − im < n,

• ik ≥ 2ik+1, k = 1, 2, . . . ,m− 1,

• im > 1.

Finally the following Theorem leads to the characterization of H̃∗(SP
r
Sn+1; Z2).

Theorem 2.14. ([70], [72]) Set the filtration degree of SqI(un), I = {i1, i2, . . . , im},
to be 2m. Then H̃∗(SP

r
Sn+1; Z2) corresponds to elements of exact filtration r in

H∗((Z, n); Z2).
In particular when n = 3:

H̃∗(SP
r
S3; Z2) ∼= Z2[f(3,1), f(5,2), . . . , f(2i+1+1,2i), . . .]r (2.10)

where f(3,1) = u3 and, for i ≥ 1, f(2i+1+1,2i) = SqIu3 with I =
{

2i, . . . , 4, 2
}

.
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2.1 Generic multiplicity

Since after considering the filtration H∗(SP
r
S3; Z2) is a bigraded algebra over

Z2, writing f(q,m) we want to emphasize that f(q,m) is an element of cohomological
degree q and filtration degree m.

Clearly Theorem 2.11 together with Theorem 2.14 (see also (2.8)) yield by du-
ality to a complete description of H̃∗((S

2)k; Z2). Notice also that our computations
in (2.9) allow to describe H̃∗(Σk; Z2) for any other Σ.

We can now turn to the estimate of
∑∞

q≥0 dim H̃q(Σk; Z2). By (2.8), (2.9) and

using that for any k ≥ 1 SP
k
(S3) is connected while SP

0
(S3) = S0, we obtain:

∑

q≥0

dim H̃q(Σk; Z2) = (2.11)

=

{

∑

q≥0 dim(H̃q(SP
k
S3; Z2)) if g(Σ) = 0,

∑k
r=0

(k−r+2g−1
k−r

)
∑

q≥0 dim(H̃q(SP
r
S3; Z2)) if g = g(Σ) > 0.

In the last line the binomial coefficient
(k−r+2g−1

k−r

)

counts the number of tuples

(s1, . . . , s2g) such that
∑2g

j=1 sj = k − r; instead we denote as g(Σ) the genus of the
surface Σ.

Formula (2.18) rewritten in terms of the Euler characteristic of Σ, χ(Σ) = 2 −
2g(Σ), becomes:

∑

q≥0

dim H̃q(Σk; Z2) = (2.12)

=

{

∑

q≥0 dim(H̃q(SP
k
S3; Z2)) if χ(Σ) = 2,

∑k
r=0

(k−r−χ(Σ)+1
k−r

)
∑

q≥0 dim(H̃q(SP
r
S3; Z2)) if χ(Σ) ≤ 0.

In order to estimate, given r ≥ 1, the quantity
∑

q≥0 dim(H̃q(SP
r
S3; Z2)), we

can first pass to cohomology by duality, being, for any q ∈ N, dim(H̃q(SP
r
S3; Z2)) =

dim(H̃q(SP
r
S3; Z2)), and then exploit the isomorphism in (2.10) and compute how

many elements of filtration degree r there are in Z2[f(3,1), f(5,2), . . . , f(2i+1+1,2i), . . .].
These elements are of the form

F (r, n, a1, . . . , ain) = f r−2n
(3,1)

fa1
(21+1+1,21)

. . . f
ain

(2in+1+1,2in )
, (2.13)

where n ∈ N is such that

r − 2n ≥ 0; i0 := 1, in = max
{

i | 2i ≤ 2n
}

; aj ∈ N s.t.

in
∑

j=1

aj2
j = 2n. (2.14)

Since the last condition can be rewritten as
∑in−1

j=0 aj+12
j = n, for any n ∈

{0, . . . , [ r2 ]}, there are as many in-tuples (a1, . . . , ain) as the partition of n into powers
of 2.
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Finding such number pn (as a function of n) is a classical problem in combinatorics
going back to Euler. Indeed Euler in [43] showed that pn is described by the following
recurrence formula:

p0 = 1, p2m+1 = p2m =

m
∑

j=0

pj ∀m ∈ N.

In particular, since in our case n is varying in {0, . . . , [ r2 ]}, adding up over n we

obtain that there are exactly
∑[ r

2
]

n=0 pn = pr elements of the form (2.13), which
are the generators of Z2[f(3,1), f(5,2), . . . , f(2ir,n+1+1,2ir,n )]r. At last, this computation
together with (2.12) permits to get an explicit formula for the sum in terms of the
elements of the sequence {pn}n:

∑

q≥0

dim H̃q(Σk; Z2) =

{

pk if χ(Σ) = 2,
∑k

r=0

(k−r−χ(Σ)+1
k−r

)

pr if χ(Σ) ≤ 0.
(2.15)

Step 2
In order to prove Theorem 0.1, thanks to what we proved in Proposition 2.1, we can
assume without loss of generality that g ∈ M2 and h ∈ C2(Σ)+ are such that all
the critical points of Iρ,(g,h) are non degenerate. Henceforth we will work assuming
this property of g and h to hold and we will write Iρ for Iρ,(g,h).
Let us fix two real positive numbers b > 0 and L > 0 sufficiently large so that the
hypotheses of Proposition 1.8 and of Proposition 1.15 are verified and such that b
and −L are regular values of Iρ. Thanks to the considerations after Theorem 1.17,
we can apply weak Morse Inequalities to Iρ with G = Z2 and we have that

# {critical points of Iρ in −L ≤ Iρ ≤ b} ≥
∑

q≥0

βq(−L, b; Z2) (2.16)

≡
∑

q≥0

dimHq({Iρ ≤ b}), {Iρ ≤ −L} ; Z2).

We point out that whenever the group G is a field, the rank of the homology group
is nothing but the dimension of the homology group seen as vector space. Now, to
estimate from below the number of critical points we have to focus on the right hand
side of the previous inequality.

Since −L is a regular value, by Corollary 1.13 we have that {Iρ ≤ −L} is a
deformation retract of some neighborhood in H1

g (Σ) and so we can apply Theorem
1.21 obtaining:

. . . → H̃q({Iρ ≤ −L} ; Z2) → H̃q({Iρ ≤ b} ; Z2) → Hq({Iρ ≤ b} , {Iρ ≤ −L} ; Z2) → . . .

. . . → H̃q−1({Iρ ≤ −L} ; Z2) → H̃q−1({Iρ ≤ b} ; Z2) → . . .

Then by Proposition 1.8, Proposition 1.15 and from the exactness of the latter
homology sequence we get:

{

Hq+1({Iρ ≤ b} , {Iρ ≤ −L} ; Z2) ∼= H̃q(Σk; Z2) q ≥ 0
H0({Iρ ≤ b} , {Iρ ≤ −L} ; Z2) = 0.

(2.17)
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2.1 Generic multiplicity

Finally (2.16), (2.17) and (2.15) imply that

# {solutions of (∗)ρ} ≥ #{critical points of Iρ in {−L ≤ Iρ ≤ b}}

(2.16)

≥
∑

q≥0

dimHq({Iρ ≤ b} , {Iρ ≤ −L} ; Z2)
(2.17)

≥
∑

q≥0

dim H̃q(Σk; Z2)

(2.15)
=

{

pk if χ(Σ) = 2,
∑k

r=0

(k−r−χ(Σ)+1
k−r

)

pr if χ(Σ) ≤ 0.
(2.18)

This concludes the proof.

Proof of Corollary 0.2 1. Let us denote by Nk,χ(Σ) the right–hand side of
formula (10). It will be enough to prove that (except in the case χ(Σ) = 2 and
k = 1) Nk,χ(Σ) > d(k, χ(Σ)) ≥ 0. This is trivial for χ(Σ) = 2, while in the remaining
cases, since pr ≥ 1 for any r ∈ N, we have:

Nk,χ(Σ) =

k
∑

r=0

(

k − r − χ(Σ) + 1

k − r

)

pr ≥

(

k − χ(Σ) + 1

k

)

p0 =

=
k − χ(Σ) + 1

−χ(Σ) + 1
d(k, χ(Σ)) > d(k, χ(Σ)).

2. To prove this point we will use a formula on the asymptotic behavior of p2n

derived by Mahler (see [62] and also [30]). Let us recall his result in an explicit way:

p2n = On(1)(
n

log n
)

1
2l2

log( n
log n

)+1+
ll2
l2 n

( 1
l2
− 1

2
)
,

where l2 := log 2 and ll2 =: log log 2.
Now just combining Theorem 0.1 with the previous asymptotic formula, we obtain
estimate (11).

2.1.2 Critical values of ρ

We want now to derive from our estimate (10) the multiplicity result for critical
values of ρ stated in the Introduction, namely Theorem 0.3. The containts of this
subsection are part of a work in progress [34].

We first need a proposition guaranteeing the compactness in Σk \ Γk of the set
of critical points of the function fh defined in (1.26).

Proposition 2.15. Let h̄ be a C2 positive function on Σ, then there exists a compact
subset K ⊂ Σk \Γk such that all the critical points of fh̄ : Σk \Γk → R are contained
in K.

59



Proofs of the main theorems

Proof. Suppose by contradiction that there exists a sequence of critical points

Qn = (qn1 , . . . , q
n
k ) of fh such that d(Qn,Γk)

n→+∞
−→ 0.

Since Σk is compact, up to a subsequence Qn
n→+∞
−→ Q̄ = (q̄1, . . . , q̄k) ∈ Γk.

Let denote by {q̄s1, . . . , q̄sd
}, d < k, a maximal subset of distinct points between

{q̄1, . . . , q̄k}. Without loss of generality we can assume that q̄s1 = q̄1 and that there
exist at least one index j > 1 such that q̄j = q̄1.

Next, we can define δ := 1
2 mini6=j d(q̄si

, q̄sj
) and we take ε > 0 smaller than

the injectivity radius of Σ. By our contradiction assumption there exists n := nε
sufficiently large in order to have that, for any j ∈ {1, . . . , k}, if qnj → q̄sl

then
qnj ∈ Bε(q̄sl

).
Again, the invariance under permutations allows to assume, without loss of gener-
ality, that qn1 is such that d(qn1 , q̄1) = max {d(qnm, q̄1) | q

n
m ∈ Bε(q̄1)}.

We choose normal coordinates in Bε(q̄1) and we compute explicitly

∇fh(q
n
1 , . . . , q

n
k ) ·

vn

‖vn‖
(2.19)

where the sequence of vectors vn is defined as follows

vn :=





∑

m6=1,qn
m∈Bε(q̄1)

(qn1 − qnm), 0, . . . , 0



 . (2.20)

Let notice that by hypothesis (2.19) should be 0.
For ε < δ, up to bounded terms, (2.19) equals:

8π∇(

k
∑

j=1

∑

l 6=j

1

2π
log d(qnj , q

n
l )) ·

vn

‖vn‖
=

= 8





∑

l 6=1

∇q1 d(qn1 , q
n
l )

d(qn1 , q
n
l )

, . . . ,
∑

l 6=j

∇qj d(qnj , q
n
l )

d(qnj , q
n
l )

, . . . ,
∑

l 6=k

∇qk d(qnk , q
n
l )

d(qnk , q
n
l )



 ·
vn

‖vn‖
=

= 8
∑

l 6= 1

m 6= 1, qn
m ∈ Bε(q̄1)

∇q1 d(qn1 , q
n
l )

d(qn1 , q
n
l )

·
(qn1 − qnm)

‖vn‖
=

= 8
∑

l 6= 1, qn
l ∈ Bε(q̄1)

m 6= 1, qn
m ∈ Bε(q̄1)

(qn1 − qnl ) · (q
n
1 − qnm)

(d(qn1 , q
n
l ))2 ‖vn‖

+

+ 8
∑

l 6= 1, qn
l /∈ Bε(q̄1)

m 6= 1, qn
m ∈ Bε(q̄1)

∇q1 d(qn1 , q
n
l )

d(qn1 , q
n
l )

·
qn1 − qnm
‖vn‖

. (2.21)
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2.1 Generic multiplicity

Let consider first the absolute value of the second term of (2.21)
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

l 6= 1, qn
l /∈ Bε(q̄1)

m 6= 1, qn
m ∈ Bε(q̄1)

∇q1 d(qn1 , q
n
l )

d(qn1 , q
n
l )

·
qn1 − qnm
‖vn‖

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤
∑

l 6= 1

qn
l /∈ Bε(q̄1)

‖∇q1 d(qn1 , q
n
l )‖

d(qn1 , q
n
l )

≤ Cδ. (2.22)

Next, we focus on the first term of (2.21)

∑

l 6= 1, qn
l ∈ Bε(q̄1)

m 6= 1, qn
m ∈ Bε(q̄1)

(qn1 − qnl ) · (qn1 − qnm)

(d(qn1 , q
n
l ))2 ‖vn‖

=

=
∑

l 6= 1, qn
l ∈ Bε(q̄1)

m 6= 1, qn
m ∈ Bε(q̄1)

l 6= m

(qn1 − qnl ) · (qn1 − qnm)

(d(qn1 , q
n
l ))2 ‖vn‖

+
1

‖vn‖
≥

1

‖vn‖
. (2.23)

The last inequality follows from our choice of qn1 , indeed either the sum is empty, or,
for any qnl , qnm ∈ Bε(q̄1), the scalar product (qn1 − qnl ) · (qn1 − qnm) is positive, being
d(qn1 , q̄1) = max {d(qnm, q̄1) | q

n
m ∈ Bε(q̄1)}.

Finally, since, as ε → 0 and consequently n → +∞, 1
‖vn‖ → +∞, collecting (2.21),

(2.22) and (2.23) we obtain that

∇fh(q
n
1 , . . . , q

n
k ) ·

vn

‖vn‖

ε→0,n→+∞
−→ +∞,

which violates our contradiction assumption, namely the fact that, for any n ∈ N,
Qn = (qn1 , . . . , q

n
k ) is a critical point of fh, and concludes the proof.

We are now in position to prove the aforementioned theorem.

Proof of Theorem 0.3 Let us fix h̄ ∈ C3(Σ)+. We will see that

there exists nh̄ ∈ N and δ > 0 such that for any k ≥ nh̄ the following holds: there
exists an open and dense subset D of Bδ(h̄) ⊂ C3(Σ)+ such that for any h ∈ D the
function fh, introduced in (1.26), is a Morse function on Σk \ Γk and the function
△ log h+ 8kπ − 2Kg is positive on all its critical points, (♮)

We assume for the moment that (♮) holds true, postponing its proof, and we fix
an integer k ≥ nh̄.
We remark that for any h ∈ D, the conditions (c1) and (c2) are fulfilled and then
we could apply Theorem 1.28. On the other hand we recall that, as showed in
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Proposition 2.1, for a generic choice of h in C2(Σ)+ the functional Iρ,h is Morse. It
is immediate to understand that if we replace C2(Σ)+ with C3(Σ)+ the statement
remains true. Actually, analyzing the proof of the generic non degeneracy, we can
see that the non criticality of ρ was needed only to ensure the boundedness of the
set of solutions.
Keeping in mind these considerations and recalling that, thanks to Theorem 1.28
for any h ∈ D there exists a positive constant such that all the critical points of
I8kπ are contained in a ball of radius Ck(h), we can easily deduce the existence of
an open and dense subset D̃ of D such that, for any h ∈ D̃, the functional I8kπ is
Morse.

Then, by non degeneracy, for any h ∈ D̃ there exists εh such that, for any
ρ ∈ (8kπ − εh, 8kπ), Iρ,h is still a Morse functional.

Clearly, without loss of generality, we can take 2εh to be smaller than the εk
introduced in the statement of Theorem 1.28, in order to have that for any ρ ∈
(8kπ − εh, 8kπ) all the critical points of Iρ,h are contained in BCk(h)(0) ⊂ H̄1

g (Σ).

Finally, for h ∈ D̃, which is an open and dense subset of Bδ(h̄) ⊂ C3(Σ)+, we are
able to estimate from below the number of solutions of (∗)8kπ. Indeed, the positivity
of △ log h + 8kπ − 2Kg on the critical points of fh allow to exclude the existence
of blowing up solutions when ρ approaches 8kπ from below (see Theorem 1.28 and
(1.28) or Theorem 1.27), and then the non degeneracy and the uniform bound on
the set of solutions permit to deduce that:

# { solutions to (∗)8kπ,h } ≥ # { critical points of I8kπ−εh,h } .

In turn the right hand side can be controlled taking advantage of the proof
of Theorem 0.1, being I8kπ−εh,h a Morse functional, and so we obtain the desired
estimate

# { solutions to (∗)8kπ,h } ≥

{

pk−1 if χ(Σ) = 2,
∑k−1

r=0

(k−r−χ(Σ)
k−r−1

)

pr if χ(Σ) ≤ 0,

To conclude it remains to verify (♮).
Let K ⊂ Σk \ Γk be a compact set containing all the critical points of fh̄, whose
existence is guaranteed by the previous proposition. Then, let fix γ > 0 such
that γ < 1

2 d(K,Γk). Now, eventually decreasing γ, it is possible to define an
atlas on the tubular neighborhood Kγ =

{

x ∈ Σk : d(x,K) < γ
}

whose charts are
(Bg(ξ, γ), φ

−1), where φ : B(0, γ) → Bg(ξ, γ). Here Bg(ξ, γ) ⊂ Σk \ Γk is the ball
centered at ξ ∈ K with radius γ given by the metric g and B(0, γ) ⊂ R2k is the ball
centered at 0 with radius γ in the Euclidean space R2k.

Let choose nh̄ to be such that △ log h̄+8nh̄π−2Kg is positive on K̄γ and consider
an integer k ≥ nh̄.

It is clearly possible to find δ > 0 sufficiently small such that if h ∈ Hδ :=
{

h ∈ C3(Σ) : ‖h‖C3 < δ
}

, then h̄+ h is positive, △ log(h̄ + h) + 8kπ − 2Kg is still
positive on K̄γ and all the critical points of fh̄+h belong to Kγ .
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Given ξ0 ∈ Kγ and the chart (Bg(ξ0, γ), φ
−1) we set

f̃h̄+h(x) := fh̄+h(φ(x)), x ∈ B(0, γ), h ∈ Hδ.

Now we introduce the C1-map F : Hδ ×B(0, γ) ⊂ C3(Σ) × R2k −→ R2k defined by

F (h, x) := ∇f̃h̄+h(x). (2.24)

We shall apply to the map F the transversality Theorem 2.4, in order to obtain the
following claim:

the set Θ(δ) =
{

h ∈ C3(Σ) : all critical points of fh̄+h are non degenerate
}

is an open and dense subset of Hδ.

In this case, using the notations of Theorem 2.4, we have V = Hδ, U = B(0, γ),
X = Z = R2k and Y = C3(Σ). We choose z0 = 0. Since X is a finite dimensional
space, it is easy to check that for any h ∈ Hδ the map x 7→ F (h, x) is Fredholm
of index 0 and so assumption (i) of Theorem 2.4 holds. Moreover, assumption (iii)
immediately follows again by the fact that X is a finite dimensional space together
with the observation that (Kγ)γ = K2γ ⊂⊂ Σk \ Γk. Assumption (ii) is verified in
Lemma 2.16 below.
Finally we are in position to apply the transversality theorem and we get that the
set

Θ(ξ0, δ) :=
{

h ∈ Hδ : F ′
x(h, x) : R2k → R2k is invertible at any point

(h, x) such that F (h, x) = 0} (2.25)

=
{

h ∈ Hδ : the critical points of fh̄+h in Bg(ξ0, γ) are non degenerate
}

is an open and dense subset of Hδ.
Next we take a finite covering {Bg(ξi, γ)}i=1,...,ν of Kγ , where ξ1, . . . , ξν ∈ Kγ .

For any index i there exists an open and dense subset Θ(ξi, δ) (see (2.25)) of Hδ such
that the critical points of fh̄+h in Bg(ξi, γ) are non degenerate for any h ∈ Θ(ξi, δ).
Let Θ(δ) := ∩i=1,...,νΘ(ξi, δ). It is immediate that Θ(δ) is an open and dense subset
of Hδ such that all the critical points of fh̄+h are non degenerate for h ∈ Θ(δ).
Finally it is enough to set D = h̄+ Θ(δ) to obtain (♮).
The proof is thereby complete.

Lemma 2.16. The map (h, x) 7→ F ′
h(h̃, x̃)[h] + F ′

x(h̃, x̃)x is onto on R2k for any
(h̃, x̃) ∈ Hδ ×B(0, γ) such that F (h̃, x̃) = 0.

Proof. Let (h̃, x̃) be such that F (h̃, x̃) = 0. We will prove that the map
F ′
h(h̃, x̃) : C3(Σ) → R2k is onto. More precisely we are going to show that given
d = (d1, . . . , d2k) ∈ R2k

there exists h ∈ C3(Σ) such that F ′
h(h̃, x̃)[h] = d; (2.26)
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the claim will follow immediately.

We point out that the ontoness of the map h 7→ F ′
h(h̃, x̃)[h] is invariant with

respect to a change of variable. Then, to show (2.26) we calculate Dh∂ifh̄+h̃(φ(x̃))[h]
by choosing the normal coordinates.
Let us compute the i-th component of F ′

h(h̃, x̃)[h], for i = 1, . . . , 2k,

(F ′
h(h̃, x̃)[h])i =

k
∑

j=1

∇(h̄+ h)(φj(x̃)) ·
∂φj(x̃)
∂xi

(h̄+ h̃)(φj(x̃)) −∇(h̄+ h̃)(φj(x̃)) ·
∂φj(x̃)
∂xi

(h̄+ h)(φj(x̃))

((h̄ + h̃)(φj(x̃)))2
,

where φ(x̃) = (φ1(x̃), . . . , φk(x̃)).
If we restrict ourselves to consider h such that, for any j = 1, . . . , k, (h̄+h)(φj(x̃)) =
1, then to demonstrate (2.26) it is enough to find a C3 function h verifying also the
following conditions:

k
∑

j=1

∇(h̄+ h)(φj(x̃))

(h̄+ h̃)(φj(x̃))
·
∂φj(x̃)

∂xi
= di +

k
∑

j=1

∇(h̄+ h̃)(φj(x̃)) ·
∂φj(x̃)
∂xi

((h̄+ h̃)(φj(x̃)))2
i = 1, . . . , 2k.

(2.27)
Finally, noticing that for any i the right hand side of (2.27) is constant, using that
the Jacobian of φ is invertible and that φ(x̃) ∈ Σk \ Γk (and then its components
φj(x̃) are distinct points of Σ), it is not hard to see that it is sufficient to prescribe,
according to (2.27), the values of ∇(h̄ + h)(φj(x̃)) to find the desired function h.
That concludes the proof.

2.1.3 Conformal metrics with constant Q-curvature

This subsection is devoted to obtain generic multiplicity of conformal metrics with
constant Q-curvature and to compare this result to the multiplicity estimate which
can be deduced by the degree formula (23). More precisely, without following the
order in which the results are stated in the Introduction, we are going to prove
Theorem 0.9 and Corollary 0.10; the reason is that these results are strictly linked
with the others already proved in this section.

Proof of Theorem 0.9 We can reason as in the proof of Theorem 0.1: the main
differences are that the presence of negative eigenvalues for Pg affects the topology of
the sublevels of the Euler functional and that in four dimensions we can not classify
the manifolds in term of their Euler characteristic.

In [38] was shown that the counterpart of Proposition 1.7 holds true replacing

Σk with Ak,k̄ = ˜Mk ×Bk̄
1 , moreover, reasoning exactly as in Morse, one can see that

the low sublevels of II are homotopically equivalent to Ak,k̄.

Here Mk is the set of k-barycenters of M (defined in (25)), Bk̄
1 the closed unit ball

in Rk̄ while the equivalence relation ∼ means that Mk×∂B
k̄
1 is identified with ∂Bk̄

1 ,
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2.1 Generic multiplicity

namely Mk × {y} for every fixed y ∈ ∂Bk̄
1 is collapsed to a single point.

Furthermore the proof of Proposition 1.15 adapts with minor modifications to equa-
tion (#), therefore the high sublevels of II turn out to be retractions of H2(M) and
hence contractible sets.

Then, following exactly Step 2 of the proof of Theorem 0.1, we find that, choosing
L and b sufficiently large positive real numbers, such that −L and b are regular values
for II,

#{solutions of (#)} ≥ #{critical points of II in {−L ≤ II ≤ b}}

≥
∑

q≥0

dimHq({II ≤ b} , {II ≤ −L} ; Z2) ≥
∑

q≥0

dim H̃q(Ak,k̄; Z2). (2.28)

To compute the latter sum we can use the Mayer-Vietoris sequence, see for example
[47], page 149. We can cover Ak,k̄ with the two sets

A = Mk ×Bk̄
3
4
, B = Mk × (Bk̄

1 \Bk̄
1
4
),

where Bk̄
r stands for the closed ball of radius r in Rk̄. Clearly A has the homology

type of Mk, B that of Sk̄−1 and A∩B that of Mk×S
k̄−1. Therefore, by the exactness

of the Mayer-Vietoris sequence and the Kunneth theorem we find the relation

{

H̃k̄+p(Ak,k̄)
∼= H̃p(Mk) for p ≥ 1,

H̃q(Ak,k̄)
∼= 0 for 0 ≤ q ≤ k̄,

which implies
∑

q≥0

dim H̃q(Ak,k̄; Z2) =
∑

q≥0

dim H̃q(Mk; Z2). (2.29)

From formula (2.28) and (2.29) we deduce that the problem reduces to the compu-
tation of

∑

q≥0 dim H̃q(Mk; Z2). By Theorem 2.11 we immediately get

∑

q≥0

dim H̃q(Mk; Z2) =
∑

q≥0

dimHq+1(SP
k
(S1 ∧M); Z2). (2.30)

Since S1∧M is a CW complex with top integral homology group H5(M ; Z) = Z and

rank(H3(M ; Z)) ≥ χ(M)−2, it has the homology of S5∨ (
∨χ(M)−2
j=1 S3)∨Y for some

topological space Y . Thus, as we did in the case of a surface of genus g > 0, we can
apply the properties of the reduced symmetric product and of the homology of the
wedge sum to obtain

Hq+1(SP
k
(S1∧M); Z2) ∼=

⊕

r+s1+...+sχ(M)−2+t=k

Hq+1(SP
r
S5∧(

χ(M)−2
∧

j=1

SP
sjS3)∧SP

t
Y ; Z2).
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Considering now the sum of the dimensions we have

∑

q≥0

dimHq+1(SP
k
(S1 ∧M); Z2) ≥

∑

q≥0

dim H̃q(SP
k
S5; Z2) +

+

k−1
∑

r=0

∑

Pχ(M)−2
j=1 sj=k−r

∑

q≥0

dimHq+1(SP
r
S5 ∧ (

χ(M)−2
∧

j=1

SP
sjS3); Z2). (2.31)

Recalling that by definition the smash product X
∧

Y is the quotient X ×Y/X ∨Y
and using the exact sequence for relative homology it is possible to see that for any

(r, s1, . . . , sχ(M)−2) such that
∑χ(M)−2

j=1 sj = k − r > 0

H
5r+3

Pχ(M)−2
j=1 sj

(SP
r
S5 ∧ (

χ(M)−2
∧

j=1

SP
sjS3); Z2) 6= 0. (2.32)

Clearly for χ(M) = 2 we just have

Hq+1(SP
k
(S1 ∧M); Z2) ∼=

⊕

r+t=k

Hq+1(SP
r
S5 ∧ SP

t
Y ; Z2)

and
∑

q≥0

dimHq+1(SP
k
(S1 ∧M); Z2) ≥

∑

q≥0

dim H̃q(SP
k
S5; Z2). (2.33)

Next collecting formulas (2.28), (2.29), (2.30), (2.31), (2.32) and (2.33) we get that
the number of solutions of (#) can be estimated from below by















∑

q≥0
dim H̃q(SP

k
S5; Z2) if χ(M) ≥ 2,

∑

q≥0
dim H̃q(SP

k
S5; Z2) +

k−1
∑

r=0

(k−r+χ(M)−3
k−r

)

if χ(M) ≥ 3,

where the binomial coefficient
(k−r+χ(M)−3

k−r

)

counts the number of tuples

(s1, . . . , sχ(M)−2) such that
∑χ(M)−2

j=1 sj = k − r.
Finally, since all the admissible tuples {i1, . . . , ir} for n = 3 are also admissible for

n = 5, the elements of exact filtration k in H∗(SP
k
(S5)) are at least as many as the

elements of exact filtration k in H∗(SP
k
(S3)). Then by Theorem 2.14 and duality

we have the desired estimate.

Proof of Corollary 0.10 This estimate follows immediately from Theorem
0.9, indeed it is sufficient to prove that the right–hand side of formula (24) is greater
then d(k, k̄, χ(M)) (except for the case χ(M) = 2). But this is trivial because for

66



2.2 Multiplicity in presence of a local minimum

χ(M) ≥ 3

k
∑

r=0

(

k − r + χ(Σ) − 3

k − r

)

≥

(

k + χ(Σ) − 3

k

)

>

>
(χ(M) − k) . . . (χ(M) − 2)(χ(M) − 1)

k!
= |d(k, k̄, χ(M))|.

On the other hand if χ(M) = 2, then k should be 1 and then p1 = 1 = |d(1, k̄, 2)|.

2.2 Multiplicity in presence of a local minimum

Before proving Theorem 0.4 we recall the previous result in [31] and we give an
account of its proof.
In this section to simplify the notation, for any functional I and for any c ∈ R we
will set Ic := {I ≤ c}.

Theorem 2.17. [31] If ρ ∈ (8π, 4π2) and Σ = T is the torus, if the metric g is
sufficiently close in C2(T ;S2×2) to dx2 and h is uniformly close to the constant 1,
Iρ admits a point of strict local minimum and at least two different saddle points.

Let us consider a new functional Ĩρ which coincides with Iρ out of a small neigh-
borhood of its local minimum, ū, and assumes large negative values near ū. To do
that let consider an increasing cut-off function ζ : R → R such that

ζ(x) < −L if x <
Iρ(0) + inf∂Br(0) Iρ

2
and ζ(x) = x if |x| ≥ inf

∂Br(0)
Iρ,

where L is a large positive constant to be fixed and r > 0 is such that inf∂Br(0) Iρ >

Iρ(ū) and that D2Iρ|Br(0). By means of ζ we define Ĩρ as follows:

Ĩρ(u) :=

{

Iρ(u) if u ∈ H̄1
g (T ) \Br(0)

ζ(Iρ(u)) if u ∈ Br(0).

The choice of Ĩρ, instead of Iρ, is convenient because of the greater topological
complexity of its low sublevels; in particular we will use that they are disconnected
(just for the presence of a strict local minimum). Besides it is crucial to remark that
saddle points of Ĩρ are also saddle points of Iρ, hence we can limit ourselves to study
Ĩρ.

Let X denote the contractible cone over T and let ∂X be its boundary; they can
be represented as X = T×[0,1]

T×{0} , ∂X = T×({0}∪{1})
T×{0} . To get the thesis it is sufficient to
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establish the following chain of inequalities:

#{critical points of Ĩρ in −L ≤ Ĩρ ≤ b}
1
≥ CatĨb

ρ,Ĩ
−L
ρ
Ĩbρ

2
≥ CatĨb

ρ,φ(∂X) Ĩ
b
ρ (2.34)

3
≥ CatĨb

ρ,φ(∂X) φ(X)
4
≥ Catφ(X),φ(∂X) φ(X)

5
≥ CatX,∂X X

6
≥ 2,

being φ is the homeomorphism on the image defined as follows:

φ : X −→ H̄1
g (T )

(x, t) 7−→ t ϕ̃λ,x.

In the latter line ϕ̃λ,x := ϕλ,x− ϕ̄λ,x, where ϕλ,x is the function defined in (1.9) with
σ = x.
Moreover the constants L, b and λ are suitably chosen in such a way that neither
−L nor b are critical levels, that Propositions 1.8 and 1.15 hold and so as to have
Iρ(ϕ̃λ,x) ≤ −L, minx∈T ‖ϕ̃λ,x‖ > Cρ,b and Ψ(X) ⊂ Ibρ (where Ψ is defined in (1.21)),

see [31] for further details. By this choice Ĩbρ = Ibρ.
The first inequality follows from Theorem 1.25 and the considerations after it;

the only important thing to remark is that in the neighborhood of the origin, where
Ĩρ differs from Iρ, we can deform along the flux generated by a cutoff of the opposite
of the gradient.

To derive the second inequality it is worth pointing out that in the hypotheses
of Theorem 2.17 (merely when g is sufficiently close to dx2 and h to 1), the map Ψ
introduced in (1.21) turns out to be a diffeomorphism between {ϕ̃λ,x |x ∈ Σ} and
Σ. So we can define a diffeomorphism ω : Σ → Σ such that ω(Ψ(ϕ̃λ,x)) = x.

Next, reminding that Ĩ−Lρ is the disjoint union of I−Lρ and a neighborhood U of
the origin, we can consider the following map:

χ : Ĩ−Lρ −→ φ(∂X)

u 7−→ ϕλ,ω(Ψ(u)) u ∈ I−Lρ

u 7−→ 0 u ∈ U.

Now, our purpose is to find a deformation retract (in Ĩbρ) of Ĩ−Lρ onto φ(∂X).
First of all, let us set

γ : Ĩ−Lρ × [0, 1] −→ H̄1
g (T )

(u, t) 7−→ (1 − t)u+ tχ(u).

Then, thanks to our choice of b we know that Ĩbρ ≡ Ibρ is a deformation retract of

H̄1
g (T ), namely there exists a continuous map τ : H̄1

g (T ) → Ĩbρ such that τ|Ĩb
ρ

= Id|Ĩb
ρ
.

So composing γ and τ we get the map (h := τ ◦γ : Ĩ−Lρ × [0, 1] → Ĩbρ) we were looking

for. Indeed, for any u ∈ Ĩ−Lρ , h(u, 0) = u and h(u, 1) = χ(u) ∈ φ(∂X), while, for
any (y, t) ∈ φ(∂X) × [0, 1], h(y, t) = y (being χ|φ(∂X) = Id|φ(∂X)).
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At last, if Ai and hi (i = 1, . . . ,CatĨb
ρ,Ĩ

−L
ρ
Ĩbρ) fulfill the conditions of the definition

of relative category for CatĨb
ρ,Ĩ

−L
ρ
Ĩbρ, it is easy to prove that A0, h∗h0 and Ai, hi (i ≥

1) verify the definition of category for CatĨb
ρ,φ(∂X) Ĩ

b
ρ, where h ∗ h0 : A0 × [0, 1] → Ĩbρ

is defined as follows:

h ∗ h0(x, t) :=

{

h(h0(x, 2t), 0) t ≤ 1
2

h(h0(x, 1), 2t − 1) t ≥ 1
2 .

The third and the fifth inequality are merely applications of Points 3 and 4 of
Proposition 1.24, since φ is an homeomorphism on the image.

Moreover, thanks to Proposition 1.24, Point 5, if we construct a continuous
map r : Ĩbρ → φ(X) such that r|φ(X) = Id|φ(X) and that r−1(φ(∂X)) = φ(∂X), we
immediately prove the forth inequality. Let us define Cλ := minx∈T ‖ϕ̃λ,x‖, which is
bigger than Cρ,b, according to our choice of λ; then we are able to define Ψ and also
χ on the set {v ∈ H̄1

g (T ) : ‖v‖ ≥ Cλ}.
Therefore the following map is well defined (see Figure 2.1):

r : Ĩbρ −→ φ(X)

0 7−→ 0

u ∈ {‖v‖ ≥ Cλ} 7−→ η(distx∈T (u, ϕ̃λ,x))χ(u)

u ∈ {‖v‖ ≤ Cλ} 7−→
‖u‖

Cλ
r
( Cλ
‖u‖

u
)

,

where η : R → R is a smooth strictly decreasing function, such that η(0) = 1 and
η([12 ,+∞)) = 1

3 . Finally it is easy to verify that r is continuous and such that
r|φ(X) = Id|φ(X) and r−1(φ(∂X)) = φ(∂X).

At last the sixth inequality has been tackled using a direct topological argument.

r(0) = 0

u1 ∈ Ĩb
ρ \BCλ

r(u1)= η(distx∈T (u, ϕ̃λ,x))χ(u)

u2

BCλ

φ(X)

r(ϕ̃λ,x)= ϕ̃λ,x

Cλ

‖u2‖
u2

r( Cλ

‖u2‖
u2)

r(u2)=
‖u2‖
Cλ

r( Cλ

‖u2‖
u2)

χ̃(u1)

{Ĩρ ≤ b}

{Ĩρ ≤ −L}

Figure 2.1: Construction of the map r : Ĩbρ → φ(X).
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Proof of Theorem 0.4 The first five steps of (2.34) give

# {critical points of Iρ different from ū} ≥ CatX,∂X X, (2.35)

where, as above, ū is the strict local minimum of Iρ near the origin and X is the
contractible cone over T .
Thus, if we are able to improve the last inequality of (2.34), proving that CatX,∂X X ≥
3, the thesis follows. To do that we are going to establish a new chain of inequalities,
involving the notion of cup length.

CatX,∂X X
a
≥ CatT×[0,1],T×({0}∪{1})(T × [0, 1]) (2.36)

b
≥ catT×[0,1],T×({0}∪{1})(T × [0, 1])
c
≥ CL(T × [0, 1], T × ({0} ∪ {1})) + 1
d
≥ CL(T ) + 1

e
= 3.

Let us first prove point a. Let consider the Ai and hi verifying the conditions
for CatX,∂X X.

First of all, in order to show that A0 is disconnected, let us denote by
X0 := T × {0}/T × {0} and X1 := T × {1}/T × {0} the two disconnected com-
ponents of ∂X. By definition we know that X0 ∪ X1 = ∂X ⊂ A0 and that there
exists h0 : A0 × [0, 1] → X continuous with the properties: h0(A0, 1) ⊂ ∂X and
h0|∂X×[0,1] ≡ Id∂X . Now, if A0 was connected we would get a contradiction because
h0(A0, 1) would be connected (by continuity of h0) and disconnected being the union
of X0 and X1.

Thus we can consider the connected component A00 of A0 containing X0 and its
complementary in A0, A01 := A0 \ A00. Then, we define

Ã0j := {(x, t) |x ∈ T, t ∈ [0, 1], [(x, t)] ∈ A0j)} j = 0, 1,

where [(x, t)] stands for the equivalence class of (x, t) in X.
Let us set Ã0 := Ã00 ∪ Ã01.
Next, we construct a continuous map h̃0 : Ã0 × [0, 1] → T × [0, 1] in the following
way:

h̃0((x, t), s) :=

{

(x, (1 − s)t) (x, t) ∈ Ã00

(x, (1 − s)t+ s) (x, t) ∈ Ã01.

Just to be rigorous we also define the sets

Ãi := {(x, t) |x ∈ T, t ∈ [0, 1], [(x, t)] ∈ Ai)} i ≥ 1,

which are nothing but the Ai’s seen as subsets of T × [0, 1], without the equivalence
relation. Analogously we define the maps

h̃i((x, t), s) := hi([(x, t)], s)
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2.3 Supercritical conformal metrics on surfaces with singularities

which turn out to be well defined, being Ai ∩ ∂X = ∅, for any i ≥ 1 (see point (v)
of Definition 1.23).

Now, it is easy to see that the sets Ãi’s, together with the continuous maps h̃i’s,
satisfy the conditions of Definition 1.23 for CatT×[0,1],T×({0}∪{1})(T × [0, 1]) and this
concludes the proof of this first inequality.

Point b follows directly from property 2 of Proposition 1.24, while applying The-
orem 1.26 we obtain inequality c.

To get step d, let us denote by k the cup–length of T . By definition there exist
α1, . . . , αk ∈ H∗(T ; R), with dim(αi) > 0 for any i ∈ {1, . . . , k}, such that

α1 ∪ . . . ∪ αk 6= 0.

Since H1([0, 1], {0}∪{1}; R) = R, we can also choice 0 6= β ∈ H1([0, 1], {0}∪{1}; R).
We are now in position to apply Theorem 1.19 withG = R, X = [0, 1], Y = {0}∪{1},
X ′ = T and Y ′ = ∅. By definition of µ, see (1.25), and its injectivity, we obtain

β × (α1 ∪ αk) = µ(β ⊗ (α1 ∪ αk)) 6= 0. (2.37)

Consider now the projections p1 : T × ([0, 1], {0} ∪ {1}) → ([0, 1], {0} ∪ {1}) and
p2 : T × [0, 1] → T . Applying Proposition 1.20, we find:

β × (α1 ∪ αk) = p∗1(β) ∪ p∗2(α1 ∪ αk) = p∗1(β) ∪ p∗2(α1) ∪ . . . ∪ p
∗
2(αk). (2.38)

Notice that p∗1(β) ∈ H∗(T × [0, 1], T × ({0} ∪ {1}); R) and, for any i ∈ {1, . . . , k},
p∗2(αi) ∈ H∗(T × [0, 1]; R), with dim(p∗2(αi)) > 0.

In conclusion, thanks to (2.37) and (2.38), we proved exactly that CL(T ) ≤
CL(T × [0, 1], T × ({0} ∪ {1})).

Finally, the equality named e is just due to the well known fact that CL(T ) = 2.
The proof is thereby complete.

Remark 2.18. Going back over the previous proof, it is immediate to understand
that in the first four steps we did not use that T is the 2 torus. Thus, as anticipated in
the Introduction, if on some (Σ, g) the functional Iρ possesses a strict local minimum,
the theorem holds true, more precisely Iρ has at least CL(Σ)+1 critical points other
than the minimum.

2.3 Supercritical conformal metrics on surfaces with

singularities

We postpone to the end of this section the proof of Proposition 0.6, which is rather
standard, giving priority to the proofs of Theorem 0.7 and 0.8. To get these existence
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and multiplicity results we analyze the topology of sublevels of Jρ in terms of the
barycenters of the bouquet Bg (see Proposition 2.19), whose Betti numbers are
computed explicitly (see Proposition 2.20).

We want to point out that in the following, according to the notations introduced
in Theorem 1.17, for any couple of real numbers a, b, βq(a, b,Z) will denote the rank
of Hq({Jρ ≤ b} , {Jρ ≤ a} ; Z). While for any topological space X, βq(X; Z) stands
for the q-th Betti number of X, namely the rank of Hq(X; Z). Finally, if X, Y are
two topological spaces and f : X → Y is a continuous function, we will denote by
f∗ : Hq(X) → Hq(Y ), for q ∈ N, the homomorphism induced by f .

Proof of Theorem 0.7 and Theorem 0.8 We first make the following claim,
whose proof follows from Propositions 2.19 and 2.20 below.

Claim. For ρ ∈ (8πk, 8π(k + 1)) \ Γ(αm), choosing L sufficiently large positive
one has that

β2k−1(L,−L; Z) ≥

(

k + g − 1

g − 1

)

=
(k + g − 1)!

k!(g − 1)!
.

Once the claim is proved, the conclusion follows from Lemma 1.33. To prove
Theorem 0.8 it is instead sufficient to apply Proposition 2.10 and then Theorem
1.17 (using the observations after it) with a = −L and b = L.

Proposition 2.19. There exists L > 0 sufficiently large such that, for any q ∈ N,
βq(L,−L; Z) ≥ βq(B

g

k; Z), where Bg

k is the space of formal barycenters (see (25)) on
a bouquet of g circles, with g the genus of Σ.

We recall that a space Bg is a bouquet of g circles if Bg = ∪g

j=1Aj , with Aj
homeomorphic to S1 and Ai ∩Aj = {P}; P is called the center of the bouquet.

Proof. Proposition 1.34 implies that {Jρ ≤ L} is contractible (for L sufficiently
large). Thus, from the exactness of the homology sequence

. . . → H̃q({Jρ ≤ −L} ; Z) → H̃q({Jρ ≤ b} ; Z) → Hq({Jρ ≤ b} , {Jρ ≤ −L} ; Z) → . . .

. . . → H̃q−1({Jρ ≤ −L} ; Z) → H̃q−1({Jρ ≤ b} ; Z) → . . .

we derive that
{

Hq+1({Jρ ≤ L} , {Jρ ≤ −L} ; Z) ∼= H̃q({Jρ ≤ −L} ; Z), q ≥ 0;
H0({Jρ ≤ L} , {Jρ ≤ −L} ; Z) = 0.

Now to obtain the thesis it suffices to construct j : Bg

k → {Jρ ≤ −L} and
f : {Jρ ≤ −L} → Bg

k such that f ◦ j is homotopically equivalent to the Id|Bg

k
. In

fact, if this is true, we have that

f∗ ◦ j∗ = Id|H∗(Bg

k
;Z),
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which implies that rank(Hq({Jρ ≤ −L}; Z)) ≥ rank(Hq(B
g

k; Z)) = βq(B
g

k; Z).
In order to build these maps we will regard Bg as an appropriate subset of Σ:

let us understand how.
Since any two differentiable, compact, orientable surfaces with the same genus

are homeomorphic, we can consider an embedding Θ from Σ to R3 (with coordinates
z1, z2, z3) such that in any hole passes a line parallel to the z3 axis and moreover
such that the projection on the plane {z3 = 0} is a circle with g rounds holes as in
Figure 2.2. Let us denote by ̟ the map projecting R3 onto the plane {z3 = 0}.

̟

Θ(Σ)

B̃g

r

̟(Θ(Σ))

̟(B̃g)

Figure 2.2: B̃g embedded in Θ(Σ) and their projections.

In Θ(Σ \ {P1, . . . , Pm}) it is clearly possible to find a bouquet of circles, B̃g,
verifying:

• ̟|B̃g is an homeomorphism,

• ̟(B̃g) is a bouquet having a hole of ̟(Θ(Σ)) in each loop,

• ̟(B̃g) ∩̟({P1, . . . , Pm}) = ∅.

Then there exists a retraction r : ̟(Θ(Σ)) → ̟(B̃g).
Let us set Bg := Θ−1(B̃g), which is again a bouquet with g loops.

We are at last in position to define the desired maps.

j : Bg

k −→ {Jρ ≤ −L}

σ =
∑k

i=1 tiδbi (bi ∈ Bg) 7−→ ϕµ,σ
(2.39)

f : {Jρ ≤ −L}
Ψ

−→ Σk
Υ

−→ Bg

k

u 7−→ Ψ(u) =
∑k

i=1 tiδxi
7−→

∑k
i=1 tiδΘ−1◦̟−1◦r◦̟◦Θ(xi)

(2.40)
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Going back to the construction of Ψ, carried out in the proof of Proposition 1.7,
we see that all the arguments used to prove the statement (1.20) hold true also in
the singular case. Besides, being Bg a compact subset of Σ \ {P1, . . . , Pm}, we are
in position to apply Proposition 1.30, with K = Bg. Then, combining (1.20) with
the aforementioned Proposition and the uniform continuity of Υ on Bg

k, we obtain
easily that f ◦ j is homotopically equivalent to the identity on Bg

k.

Proposition 2.20. β2k−1(B
g

k; Z) =
(

k+g−1
g−1

)

= (k+g−1)!
k!(g−1)! .

Proof. Theorems 1.1 and 1.3 in [48] imply that for any q ≥ 0

H̃q(B
g

k; Z) ∼= Hq+1(SP
k
(S1 ∧Bg); Z).

Now notice that S1∧Bg has the same homology of
∨

g

j=1 S
2; hence, since the reduced

symmetric product of a space only depends on its homology, it follows that for any
q ≥ 0

H̃q((B
g)k; Z) ∼= Hq+1(SP

k
(S1 ∧Bg); Z) ∼=

∼= Hq+1(SP
k
(

g
∨

j=1

S2); Z) ∼= [property of the reduced symmetric product]

∼= Hq+1(
∨

n1+...+ng=k

(

g
∧

j=1

SP
sjS2); Z) ∼= [property of the homology of the wedge sum]

∼=
⊕

n1+...+ng=k

Hq+1(

g
∧

j=1

(SP
sjS2); Z) ∼= [SP

n
(S2) ∼= S2n]

∼=
⊕

n1+...+ng=k

Hq+1(S
2k; Z) ∼=

∼=

{

Zs, q = (2k − 1),
0, otherwise

(2.41)

Here s =
(

k+g−1
g−1

)

counts the number of tuples (n1, . . . , ng) such that
∑

g

j=1 nj = k.
The proof is thereby complete.

Proof of Proposition 0.6 It is well known ([49], [84]) that g̃ = e2w̃g is a
conformal metric on (Σ, αm) with Gaussian curvature K if and only if



































−∆gw̃ = Ke2w̃ −Kg in Σ \ {P1, · · · , Pm},

1

2π

∫

Σ
Ke2w̃dVg = χ(Σ) +

m
∑

j=1

αj ,

w̃(πj(z)) = αj log |z − zj | + O(1), z ∈ Br(zj), j ∈ 1, . . . ,m

(2.42)
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where πj is a set of local (complex) isothermal coordinates around zj = π−1
j (Pj)

(as induced by the g partition of unity construction) and r > 0 a suitably chosen
positive small enough number. Let us define

w(P ) = w̃(P ) + 2π

m
∑

j=1

αjG(P,Pj). (2.43)

Then w is a distributional solution of the equation

−∆gw = Ke−hme2w −Kg −
2π

|Σ|

m
∑

j=1

αj in Σ \ {P1, · · · , Pm}, (2.44)

which also satisfies

1

2π

∫

Σ
Ke−hme2wdVg = χ(Σ) +

m
∑

j=1

αj, (2.45)

and for z ∈ Br(zj), j ∈ 1, . . . ,m,

w(πj(z)) = αj log |z − zj| + 2π

m
∑

ℓ=1

αℓG(πj(z), πℓ(zℓ)) + O(1).

However it is also well known [2] that

G(P,Pj) =
1

2π
log (dg(P,Pj)) +O(1), P ≃ Pj ,

where dg(·, ·) is the geodesic distance defined by g. In particular it is not too difficult
to verify that

G(πj(z), πj(zj)) = −
1

2π
log |z − zj | +O(1), z ≃ zj , (2.46)

and we readily conclude that

w(πj(z)) = O(1), z ∈ Br(zj), j ∈ 1, . . . ,m.

By standard elliptic theory this condition implies that w is a distributional so-
lution for (2.44) on Σ. In particular, by using (2.46) and the explicit expression of
hm we see that e−hm is Hölder continuous in Σ, and the standard elliptic regularity
theory shows that w is a classical solution to (2.44).
At this point we conclude that if u = 2w then u is a classical solution for

−∆gu = 2Ke−hmeu − 2Kg −
4π

|Σ|

m
∑

j=1

αj in Σ, (2.47)
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and then setting

ρ = 4π



χ(Σ) +

m
∑

j=1

αj



 ,

and by using (2.45) we conclude that u is a classical solution for (18). Therefore, if

g̃ = e2w̃g = e−hmeug ≡ ρ
e−hmeu

∫

Σ 2Ke−hmeudVg
g,

is a conformal metric on (Σ, αm) with Gaussian curvature K, then u is a classical
solution for (18).
On the other side, if u is a classical solution for (18) then (20) holds. Thus, we can
define w by

2w = u+ log ρ− log

(∫

Σ
2Ke−hmeudVg

)

,

and come up with a classical solution for (2.44) on all Σ. At this point we can use
(2.43) to define w̃ and conclude that

ρ
e−hmeu

∫

Σ 2Ke−hmeudVg
g = e−hme2wg = e2w̃g

is a conformal metric on (Σ, αm) with Gaussian curvature K.
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