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List of abbreviations 

 

Aβ, β-amyloid; 

α-syn, alpha-synuclein; 

AuNP, gold nanoparticle; 

BBB, blood-brain barrier;  

BC, BiCappa;  

BQ, 2,5-diamino-1,4-benzoquinones;  

CoQ, coenzyme Q;  

DKP, diketopiperazine;  

GT1, mouse hypothalamus cells;  

HOBt , N-hydroxybenzotriazole;  

MTDL , multi-target directed ligand; 

N2a, mouse neuroblastoma cells; 

NQO1, NAD(P)H/quinone oxidoreductase 1; 

OS, oxidative stress; 

PK, proteinase K;  

PPIs, protein-protein interactions;  

PrP, prion protein;  

PrPC, normal cellular prion protein;  

PrPSc, infectious conformational form of prion protein;  

recMoPrP, recombinant mouse prion protein; 

ROS, reactive oxygen species;  

ScGT1, scrapie-infected mouse hypothalamus cells;  

ScN2a, scrapie-infected mouse neuroblastoma cells; 

TBARS, thiobarbituric acid-reactive substances;  

TSE, transmissible spongiform encephalopathy. 
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1. Introduction 

1.1 Protein misfolding  

In protein folding, the three-dimensional (3D) structure of a protein is determined 

by its amino acid sequence and the biological function of a protein depends on its 3D 

structure. However, the conformational changes in the secondary and/or tertiary 

structure of a normal protein may promote diseases including several 

neurodegenerative diseases such as Alzheimer’s disease (AD), transmissible 

spongiform encephalopathies (TSEs), Hungtinton’s disease (HD), Parkinson’s disease 

(PD), amyotrophic lateral sclerosis (ALS) and other amyloidoses such as diabetes 

type II, etc.1 

The protein misfolding may be associated to disease by either gain of a toxic 

activity by the misfolded protein or by the lack of biological function of the natively 

folded protein. The misfolded protein is rich in β-sheets which are formed of 

alternating peptide pleated strands linked by hydrogen bonding between the NH and 

CO groups of the peptide bond. In β-sheets the bonds are between one strand and 

another and formation of β-sheets is usually stabilized by protein oligomerization or 

aggregation since the second β-strand can come from a different region of the same 

protein or from a different molecule. In contrast to the misfolded protein, the natively 

folded protein is rich in α-helices with the hydrogen bonds are between groups within 

the same strand.1-3 The role of protein misfolding in disease is provided by 

neuropathologic and genetic studies as well as the development of transgenic animal 

models that the end point of protein misfolding is aberrant protein aggregation and 

accumulation as amyloid-like deposits in diverse organs.2,4-6 

 Three different hypotheses have been proposed to describe the relationship 

between conformational changes and aggregation (Fig. 1). The critical event in 

protein conformational disease is the formation of protein oligomers that act as seeds 

to induce protein misfolding. In this model, the polymerization hypothesis has been 

shown that misfolding occurs as a consequence of protein aggregation (Fig. 1A).7  An 

alternative conformational hypothesis is that the underlying protein is stable in both 

the folded and misfolded forms in solution (Fig. 1B). In this model, protein 

misfolding is independent of aggregation, which is a non-necessary end point of 

conformational changes, can be an accompanying consequence rather than a direct 

cause of the disease.3,8,9 Moreover, the conformation/oligomerization hypothesis 
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represents an intermediate view in which slight conformational changes trigger 

oligomerization that is essential for the stabilization of protein misfolding (Fig. 1C).  

In this model, an unstable amyloidogenic intermediate formed by slight 

conformational changes is stabilized by intermolecular interactions with other 

molecules forming small β-sheet oligomers, which by further produce amyloid 

fibrils.2,3,10,11 The conformation/oligomerization hypothesis is the most 

comprehensive and accepted model of protein misfolding and aggregation. 

                           
Figure 1. Models for the molecular mechanism of protein misfolding and aggregation. Three 

diferent hypotheses have been proposed to describe the relationship between conformational changes 
and aggregation. (A) The polymerization hypothesis, aggregation induces the protein conformational 
changes. (B) The conformational hypothesis, protein misfolding is independent of aggregation, which 
is a non-necessary end point of conformational changes. (C) The conformation/oligomerization model  
represents an intermediate view in which slight conformational changes trigger oligomerization that is 
essential for the stabilization of protein misfolding. Square represents the folded native conformation, 
circles represent the disease-associated conformer and pentagon corresponds to an unstable 
conformational intermediate. Adapted from Soto (2001). 
 

Understanding molecular mechanism of protein misfolding and aggregation is 

useful to aim to inhibit or reverse the conformational changes as a therapy to protein 

conformational disease. Soto and co-workers designed peptides to prevent and to 

reverse β-sheet formation named by β-sheet breaker peptides for blocking the 

conformational changes and aggregation undergone by both Aβ and PrP.11-13 
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1.2 Protein aggregation and fibrillation 

The onset of aggregation may be triggered by any factor such as mutations, 

environmental changes or chemical modifications reducing the conformational 

stability of the protein. This results in a rise of the concentration of the amyloidogenic 

precursors such as a shift of the equilibrium between correctly folded and partially 

folded molecules. In Figure 2, under destabilizing conditions, the equilibrium (1) is 

shifted to the left thus increasing the population of partly folded molecules. Under 

normal conditions, these are refolded by the molecular chaperones or cleared by the 

ubiquitin-proteasome machinery. These machineries should be impaired or the 

population of misfolded molecules overwhelm their buffering possibility, disordered 

aggregates arise or the aggregation path is undertaken. Equilibrium (2) is intrinsically 

shifted to the right and the nucleation of ordered aggregates is kinetically favoured by 

mutations increasing the mean hydrophobicity or propensity to beta structure or 

reducing the net charge of the misfolded/unfolded molecules. In equilibrium (3), the 

formation of pre-fibrillar assemblies in the form of amyloid pores could be directly 

related to the cytotoxic effects of amyloids. Molecular chaperones (heat-shock 

proteins and others) may suppress the appearance of pre-fibrillar aggregates by 

reducing the population of misfolded protein molecules assisting their correct folding 

or favouring their complete misfolding for proteasome degradation. The chaperones 

may also clear amyloid assemblies by detaching monomers and favouring their 

clearance. Alternatively, specific mutations may enhance aggregation simply by 

favouring kinetically the assembly of the unfolded or partly folded monomers into the 

early oligomeric pre-fibrillar species.14 

The general physicochemical features such as mean hydrophobicity, net charge and 

propensity to alpha and beta structure formation affect the tendency of an unfolded or 

partially folded polypeptide chain to aggregate.15 For instance, α-synuclein and tau 

carrying specific mutations enhancing their mean hydrophobicity or reducing their 

mean net charge. Intracellular aggregates of these proteins are the pathologic hallmark 

of the familial forms of synucleinopathies (Parkinson’s disease and others) and 

tauopathies (Alzheimer’s disease and others), respectively.14 In addition, the prion 

diseases (Creutzfeld-Jacob disease and others) where aggregates of the prion protein 

(PrPSc) recruit the natively folded PrPC molecules and thus propagating the PrPSc 

aggregates, meet a suitable template favouring a specific conformational 

modification.9 
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Figure 2. The possible fates of newly synthesized polypeptide chains. Modifications of protein 

structure or medium conditions may favour protein-protein interactions into fibers or into crystalline 
lattices. DANGER! indicates the processes generating the pre-fibrillar assemblies presently considered 
mostly associated with cell impairment. The question mark indicates that it is not known whether 
amyloid pores (when formed) are on path or dead end intermediates of fibril formation. Adapted from 
Stefani (2004). 
 

Protein aggregation may be favoured under conditions resulting in the impairment 

or overwhelming of the molecular machineries. These molecular machineries 

comprise the molecular chaperones of the endoplasmic reticulum (ER) such as Bip, 

Grp94, calnexin and of the cytosol (heat-shock proteins, crystallins, prefoldin, Hsc70) 

and the ubiquitin-proteasome pathway in ensuring the quality control of protein 

folding.16-18 

Under destabilized conditions, a protein or a peptide undergoes the path eventually 

leading to the appearance of mature amyloid fibrils which share basic structural 

features found in the differing amyloidoses. Typically, amyloid fibrils are straight, 

unbranched, 6-12 nm wide (but larger in some cases) formed by a variable number of 

elementary filaments (protofilaments) around 1.5-2.0 nm in diameter, twisted around 

each other in a rope-like structure (Fig. 3).19,20 These structural features have been 

studied by differing biophysical techniques such as transmission and cryoelectron 

microscopy, atomic force microscopy and solid-state NMR. By X-ray diffraction 

technique, the ordered core of the amyloid fibrils as a cross-beta structure, where each 
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protofilament results from a double row of beta-sheets provided by each monomer, 

has been descripted. The strands of the cross-beta structure of the core of amyloid 

aggregates run parallel to each other and perpendicular to the main fibril axis (Fig. 

3).14  

               
Figure 3. Close-up view of the structural organization of an amyloid fibril.  The four 

protofilaments are wound around each other and their core structure is a row of β-sheets where each 
strand runs perpendicular to the fibril axis. Adapted from Stefani (2004). 
 

The studies have been reported that the pathogenic protein aggregates are the 

destabilised monomeric, or the non-fibrillar oligomeric species of distinct morphology 

(protofibrils) preceding mature fibrils in the aggregation pathway. The earliest 

protofibrils typically appear as globular assemblies 2.5-5.0 nm in diameter 

spontaneously organizing into chains and variously sized rings comprising small 

bdoughnutsQ with a central pore, further organising into ribbons, protofilaments and 

mature fibrils.21,22 

 

1.3 Prion proteins and diseases 

Prion diseases, also known as transmissible spongiform encephalopathies (TSEs) 

are fatal and incurable neurodegenerative disorders of animals and humans.9 They can 

manifest as genetic, infectious and sporadic illnesses and they include bovine 

spongiform encephalopathy (BSE) of cattle, scrapie of sheep, chronic wasting disease 

(CWD) of deer, moose and elk, Creutzfeldt-Jakob (CJD) and Gerstmann-Sträussler- 

Scheinker (GSS) diseases of humans.23 

 

The prion hypothesis 

In 1967, Alper and co-workers demonstrated that the infectious materials was not 

destroyed under very high doses of ionizing radiation and ultraviolet (UV) which 
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obliterate nucleic acids.24 And also in this year, Griffith demonstrated that a protein 

can act as the infectious agent causing scrapie.25 However, until 1982, Prusiner first 

proposed the prion (proteinaceous infectious particles) hypothesis.26 Over decades of 

research, there have been crucial evidences for this hypothesis by starting with the 

initial indication that prion diseases can be transmissible, owing to the accidental 

transmission of scrapie in sheep and ending with the demonstration that infectious 

materials can be generated in vitro using pure recombinant prion protein (Fig. 4).27  

         
Figure 4. A timeline representation of the major milestones in the prion hypothesis. Adapted 

from Soto (2010). 

 

Cellular prion protein and its biological functions 

The cellular prion protein (PrPC) is highly conserved protein in mammals and 

paralogues, present in turtle,28 amphibians29 and fish.30 PrPC expression is broad and 

diverse in heart, kidney, pancreas, skeletal muscle, central nervous system (CNS) and 

peripheral nervous system (PNS).31,32 

PrPC is expressed in synaptic membranes of neurons, oligodendrocytes, Schwann cells 

and astrocytes in CNS and PNS.33 In addition, PrPC presents in lymphocytes and a 

stromal cell of the immune system as the follicular dendritic cell.34 

PrPC, a detergent-soluble and protease-sensitive ubiquitous protein, is located mainly 

in lipid rafts of extracellular membrane and is a glycosyl phosphatidyl inositol (GPI)-

linked glycoprotein which can be in three glycosylated patterns of either un-, mono- 

or di- forms (Fig. 5B).34 There are common features in the 3D structure of mouse, 
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Syrian hamster, cattle and human mature PrPC including a long, flexible N-terminal 

(residue 23-121), three α-helices and a two-stranded anti-parallel β-sheet that flanks 

the first α-helix.35 The C-terminal is stabilized by a disulfide bond linking α-helices 

two and three (Fig. 5A,B).36  

A 

 

B        

                          
Figure 5. Structural features of cellular prion protein. (A) The human PrPC protein contains 208 

amino acid residues. A secretory signal peptide resides at the extreme N-terminus. CC, charged cluster; 
HC, hydrophobic core; GPI, glycosyl phosphatidyl inositol anchor; OR, octa-repeats; H1- H3: three α-
helices. The numbers describe the position of the respective amino acids. (B) Scheme of the primary 
structure of PrPC and its posttranslational modifications. S-S, single disulfide bridge; MA, membrane 
anchor region; the proteinase K (PK) resistant core of PrPSc is depicted in grey; the approximate cutting 
site within PrPSc is indicated by the arrow. The size of the PK resistant fragment is variable, being cut 
at various positions between amino acids 78-102. Adapted from Liden et al. (2008) and Heikenwalder 
et al. (2007). 
 

PrPC has many different functions such as neuroprotection, synaptic transmission, 

regulation of immune system, inducing apoptosis or being anti-apoptotic, etc.37 

Cerebellar granule cell apoptosis was observed in mice expressing toxic N-terminal 

deletion mutants of PrP. PrPC has often been reported to promote neuronal survival, in 

particular following apoptotic or oxidative stress. Neurite outgrowth, including 

growth of axons and dendrites, was observed to be reduced in neurons lacking PrPC.38 

In addition, functions of PrPC have also been found in transmembrane signaling, cell 

adhension and trafficking of metal ions, e.g. copper binding.39 A role in myelination 

and involvement in synaptic activity which is often affected in the first stage of prion 

diseases and whose formation was found to be reduced in neuronal cultures devoid of 

PrPC have been attributed to PrPC. The transgenic mice show an impaired 

maintenance of myelinated axons in the white matter. Furthermore, 
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electrophysiological studies indicate a role of PrPC in synapse function, especially in 

neurotransmitter release.38 

 

The central role of PrPSc and characteristics of prion diseases 

Prion protein (PrP) is normally present in its native conformation (PrPC), but in all 

prion diseases the protein is in an abnormal conformation (PrPSc). PrPSc can be 

distinguished from PrPC by its insolubility in detergent and partial resistance to 

protease digestion. PrPSc accumulates and forms deposits around neurons. Prion 

diseases are infectious, sporadic and genetic. Differing from other neurodegenerative 

diseases and amyloidoses such as Alzheimer’s disease and Parkinson’s disease, prion 

diseases have a unique feature is that they are transmissible among humans and across 

species. Remarkably, the infectious agent in all prion diseases is composed 

exclusively of PrPSc aggregates although other cellular factors may be required in the 

conversion process from PrPC to PrPSc.40 The structure of PrPC corresponds to the 

experimentally determined 3D conformation of the protein by nuclear magnetic 

resonance (NMR)35 and the structure of PrPSc corresponds to a model based on low 

resolution techniques.41 Characteristics of PrPSc compared with PrPC are displayed in 

Table 1. 

Typical neuropathological changes for prion diseases include vacuolation of the 

neuropil in the gray matter, synaptic alterations, prominent neuronal loss, exuberant 

reactive astrogliosis and cerebral accumulation of prion protein aggregates.42 The loss 

of a critical biological function of PrPC is one possible mechanism by which PrPSc 

formation might result in neurodegeneration.39 Another possible mechanism by which 

PrPSc formation might be linked to the disease is by direct toxicity of the misfolded 

protein. Moreover, synaptic damage and dendritic atrophy, spongiform degeneration, 

brain inflammation and neuronal death have been proposed for prion diseases (Fig. 

6).43  
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Table 1. Comparison of PrPC with PrPSc 

     
Adapted from Pandeya et al. (2010). 

 
Figure 6. Multiple neurodegenerative pathways are implicated in TSEs. The conversion of the 

natively folded PrPC to PrPSc triggers disease. PrPSc deposition was determined after 
immunohistochemical staining with anti-PrP antibodies (black arrowheads). Dendrites were labeled by 
Golgi-silver staining to illustrate the substantial decrease on dendrites and synaptic connections in 
prion-infected animals. Spongiform degeneration was evaluated after hematoxylin and eosin staining. 
Astrogliosis (brain inflammation) was detected by immunohistochemical staining of reactive astrocytes 
with an anti-GFAP (glial fibrillary acidic protein) antibody. Apoptosis was detected by staining with 
caspase-3 antibody (red indicated by white arrowheads) and DAPI (40,6-diamidino-2-phenylindole, 
blue) staining of nucleus. Adapted from Soto et al. (2011). 

 
In addition, the mechanisms for neurodegeneration of prion diseases include 

microglial activation, ER stress and oxidative stress (Fig. 7). It is possible that 

multiple mechanisms contribute to the pathology of prion diseases. However, the 

absolute mechanism still remains obscure.43 
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Figure 7. Putative signaling pathways for PrPSc-induced neurodegeneration in prion diseases. 

Several mechanisms have been proposed by which PrPC to PrPSc conversion results in 
neurodegeneration. PrPSc might produce mitochondrial stress, leading to apoptosis. An alternative 
model implicates sustained ER stress. Adapted from Soto et al. (2011). 
 

Recently, Soto and Satani proposed a model in which the primary abnormality is 

PrPSc formation and accumulation, from in peripheral tissues to in the brain. The 

disease process starts with the formation of PrPSc, beginning a long and clinically 

silent presymptomatic phase, in which PrPSc slowly but gradually accumulates in the 

brain. PrPSc accumulation triggers ER stress and activation of the unfolded protein 

response, which represents the first line of defense against protein misfolding. Other 

early consequences of PrPSc accumulation are brain inflammation (in the form of 

astrocytosis and microglial activation) and autophagy. Both inflammation and 

autophagy might initially be defensive mechanisms, but later could also contribute to 

neuronal death and perhaps brain vacuolation. The first damage leading to noticeable 

clinical consequences is probably synaptic disruption, ending the presymtomatic 

phase and beginning the early clinical phase of the disease. Synaptic dysfunction 

produces loss of dendrites and finally neuronal death. The end and irreversible stages 

of the disease are characterized by massive spongiform degeneration and neuronal 

death, which are probably triggered by a variety of interconnecting cellular 

pathways.43 

1.4 Prion replication 

 Prion replication involves the direct interaction between the PrPSc template and 

the endogenous cellular PrPC driving the formation of nascent infectious prions.44 
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The central feature of prion pathogenesis is the conversion of PrPC to PrPSc which 

is thought to proceed via formation of a complex between PrP isoforms and an 

unknown molecular chaperone "X" (Fig. 8).45 This conversion occurs post-

translationally and thought to involve conformational change rather than covalent 

modification. The mechanism by which the conversion of PrPC to PrPSc takes 

place and results in the distinct pathogenesis of prion diseases remains unknown. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 8. The conformational conversion of the PrPC to PrPSc, which is thought to involve an 
unknown molecular chaperone "X". Adapted from Telling et al. (1995). 
 

 Models for the conformational conversion of PrPC to PrPSc 

 There are two models to explain the conversion of PrPC to PrPSc as the 

“refolding” and the “seeding” models. In the first model, there is an interaction 

between exogenously introduced PrPSc and endogenous PrPC, which is induced to 

transform itself into further PrPSc. A high energy barrier may prevent spontaneous 

conversion of PrPC to PrPSc (Fig. 9A). In the latter, by nucleation-polymerization, 

PrPC and PrPSc are in a reversible thermodynamic equilibrium. The seed formation 

begins very slowly, then monomeric PrPSc can be recruited and eventually 

aggregate to amyloid. Fragmentation of PrPSc aggregates increases the number of 

nuclei, which can recruit further PrPSc and thus results in apparent replication of 

the agent (Fig. 9B).46 

PrPSc 

 

PrPSc 

PrPSc multimers 

 

PrP* 

PrP* 

Wild-type PrPC 

X 

X 

X 

X 
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Figure 9.  Models for the conformational conversion of PrPC to PrPSc. (A) the “refolding” or 
template assistance model. (B) the “seeding” or nucleation-polymerization model. Adapted from 
Aguzzi et al. (2009). 
 

Recently, the protein misfolding cyclic amplification (PMCA) technique which is 

designed to mimic PrPSc autocatalytic replication has been developed.47-49 In the 

PMCA, PrPSc is amplified in a cyclic manner by incubating small amounts of 

PrPSc-containing brain homogenate with PrPC-containing brain homogenate. 

Hence, PrPC is recruited into growing aggregates of PrPSc and it undergoes 

conformational conversion and becomes PrPSc. The growing PrPSc species are 

disrupted by repeated sonication in the presence of detergents to generate multiple 

smaller units functioning as a seed for the continued formation of new PrPSc 

aggregates. The whole procedure is repeated several times (Fig. 10).46 

     In addition, an important mechanism of prion replication process is the 

propagation of prions through fragmentation of existing fibrils verified for yeast 

prions,50 mammalian prion51 and non-prion related amyloid fibrils.52 
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Figure 10. Schematic representation of the protein misfolding cyclic amplification (PMCA) 
reaction. PrPC is shown as light gray spheres. PrPSc is shown as trapezium. The original seed is in dark 
gray, and the newly formed PrPSc is in light gray. Adapted from Aguzzi et al. (2009). 
 
  

 Cell biology of PrPC and PrPSc with potential sites of conversion  

PrPC is usually associated with detergent-resistant membrane domains known as 

rafts. The scrapie-associated conversion site for membrane-anchored wild-type PrPC 

seems to be on the cell surface and/or in endosomes. However, PrPC released from the 

cell due to lack of a GPI anchor may be converted to extracellular deposits such as 

amyloid fibrils and plaques.37 In N2a cells, PrPSc mainly accumulates in late 

endosomes and lysosomes53,54 and only very small amounts of PrPSc are located at 

plasma membrane.55 In addition, some PrPSc was also found in the Golgi apparatus 

detected in N2a cells persistently infected with RML/Chandler scrapie, but not in 

hamster cells infected with a hamster scrapie strain by immuno-EM study.56 Also in 

this cell line infected with RML or 22L scrapie strain, increased PrPSc levels are along 

with increased retrograde transport to Golgi and ER.57 Furthermore, misfolded PrPC 

can be subject to the ER-associated degradation pathway (ERAD). Under conditions 

of proteosome inhibition, cytoplasmic forms of PrP aggregates are associated with 

neurotoxicity such as aggresomes.58 Excessive levels of misfolded proteins in the 

cytosol might impair proteosome function, either directly or after incorporation into 

aggresomes.37
 

Regarding the presence of co-factors in conformational convesion of PrP, the 

laminin receptor or its precusor as crucial co-factors is important for PrPSc 

formation in GT1 cells infected with Chandler scrapie strain. Although it is 
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unclear how glycosaminoglycans (GAGs) contribute to PrPSc biogenesis, cell 

surface GAGs might bind to both PrPC and PrPSc to generate conversion of PrPC to 

PrPSc (Fig. 11).59,60 

        
 

Figure 11. Cell biology of PrPC and PrPSc with potential sites of conversion. The conformational 
refolding of PrPC to PrPSc is thought to take place at the cell surface and/or along the endocytic 
pathway, probably involving co-factors, e.g. glycosaminoglycans (GAGs). Adapted from Krammer et 
al. (2009). 
 

Involvement of cellular co-factors in prion replication 

 Conversion factor activity is not present in the lower organisms such as yeast, 

bacteria and flies, but is only present in mammals. Several evidences indicate that 

co-factors might participate in prion replication. Although “protein X” refers to 

this factor coined by Prusiner as mentioned above, there is no formal proof that the 

accessory molecule is indeed a protein.27 Further evidence is from PMCA sudies 

in which purified hamster PrPC is converted when added brain homogenate to the 

sample but not converted when mixed with highly purified PrPSc.61,62 These results 

suggest that unknown factors in brain homogenate are essential for prion 

replication. Also there are evidences for nucleic acids such as RNA involved in 

prion replication.63-65 Supattapone’s group has shown that natural or synthetic 

RNA can act as conversion factors and catalyze prion replication in hamsters but 

not in mice and the negative charge of RNA is responsible for the interaction with 
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PrP.66 In addition, synthetic anionic phospholipids are required for PrPSc 

replication67 and higher infectivity was reported with lipid membrane-associated 

PrPSc.68 Surprisingly, treatments that eliminate nucleic acids, lipids, or proteins do 

not prevent prion replication in vitro. Indeed, the addition of various classes of 

molecules (synthetic nucleic acids, heparin, albumin or fatty acids) produces a 

small but detectable effect on enhancing prion replication in vitro. These findings 

suggest that various different compounds might act as a conversion factor in vitro, 

that elimination of only some of them does not prevent prion replication.27,62 

 At least five different scenarios can be proposed for the involvement of cellular 

co-factors in prion propagation. (i) The co-factor might integrate into the 

infectious agent, alter PrPSc folding, and provide biological information to the 

infectivity process, perhaps by determining strain characteristics. (ii)  The co-factor 

might act as an essential catalyst for prion replication, perhaps by interacting with 

PrPC, altering its folding, and permitting its interaction with PrPSc. (iii) Through 

binding and integration into the PrPSc polymer, the co-factor might help to 

stabilize the conformation of PrPSc. (iv) The co-factor might participate in the key 

process of fragmenting PrPSc polymers to produce smaller structures, and 

multiplying the number of seeds to allow the continuation of prion replication. (v) 

The co-factor might bind to PrPSc, thus increasing its biological stability, reducing 

its clearance in vivo, and increasing its chances to reach target organs. It is 

important to highlight that these possibilities are not mutually exclusive, and 

indeed, it is likely that a co-factor could be involved in several of these processes 

simultaneously.27 

Therefore, in prion therapy, the molecules binding to either PrPC or PrPSc 

conformers at the binding interface may inhibit the interaction of PrPC with PrPSc, 

thus interrupting prion production. Additionally, the compounds that bind to the 

molecules supporting and participating in prion replication, such as chaperones or 

other ligands, may also be good candidates for blocking prion replication.  

 

1.5 Prion infectivity  

In peripheral infection, prions silently accumulate and replicate in peripheral organs 

or reservoirs and transit through at least one PrP-positive (PrP+) tissue before reaching 

the CNS.69 Prions replicate in lymphoid organs during the early stages of infection.70 

Within the lymphoreticular system, follicular dendritic cells (FDCs) are a prominent 
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site of PrPSc deposition.71 In rodent scrapie models, prion replication is typically 

detected first in the spleen and reaches plateau levels before detectable neuroinvasion 

after peripheral inoculation was performed. Then brain levels rise exponentially to 

100-fold or more above splenic levels before clinical disease occurs. Infectivity can 

be recovered from the spleen very early during the incubation period (Fig. 12a).72  

Infectivity is detectable on hamster and mouse bioassay following inoculation of 

wild-type CD-1 mice with 263K hamster prions. On hamster bioassay, infectivity can 

be recovered early in incubation period and at low level of the original 263K 

inoculum or new infectivity can be accumulated slowly. On mouse bioassay, 

infectivity appears after a lengthy period and the animal dies of natural causes 

following a normal lifespan. At this stage, on both hamster and mouse bioassay, 

infectivity can be recovered at high levels from these clinically normal animals (Fig. 

12b).72 

 

 

Figure 12. Prion infection in vivo. Adapted from Hill et al. (2003). 

 

Thus, neuroinvasion typically begins upon ingestion of the TSE agent. The 

pathogen must first cross the intestinal epithelium in a process that still remains 

elusive. Migratory dendritic cells are known to directly capture antigens within the 

intestinal lumen and could also be responsible for initial uptake of the TSE agent. 

After absorption through the intestinal epithelium, PrPSc appears to be phagocytosed 

by antigen-displaying cells such as macrophages and dendritic cells. While 

macrophages appear to serve a more protective role,73 dendritic cells deliver the TSE 

agent to FDCs located in the germinal centers of B cell-rich follicles present in 

Payer’s patches and other gut-associated lymphoid tissue (GALT) underlying the 
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intestinal epithelium. After incubation in lymphoid tissue such as the GALT and 

spleen, the TSE agent spreads to CNS via the enteric nervous system (Fig. 13).69  

Routes for neuroinvasion including tunneling nanotubes, exosomes and blood have 

been studied. Tunneling nanotubes are important for intracellular transfer of prion 

during neuroinvasion.74 Prions gain access into and between neurons by hijacking 

tunneling nanotubes (for 12 hours of co-culture) which is more effective than 

transportation by exosomes (for 5 days of co-culture).75 Recently, for removing TSE 

infectivity from whole blood, the removal of all white cells reduced infectivity by 

only 42%, suggesting that other blood components, cells or plasma, could be 

infectious.69,76 

              
 

Figure 13. The route of prion neuroinvasion. After absorption through the intestinal epithelium, 
prion reach the peyer’s patches, via blood constituents (Plasminogen that bind to PrPSc). FDCs are 
infected in the patches and in other lymphoid organs, including the spleen. The prions reach the spleen 
by a B-cell independent route involving complement factors. Other factors that are required for 
spreading infection to the CNS are lymphotoxin (stimulus for FDCs), and at least one interposed PrP+ 
tissue. Adapted from Pandeya et al. (2010). 

 

1.6 Therapies for prion diseases 

Early treatment regimes, including various prophylactic compounds and 

immunotherapies, have sought efficacy through neutralization of infectious sources, 

blockade of infection via the most common peripheral routes, and/or blockade of 

neuroinvasion. Effective therapies targeting later disease, which are initiated after the 

appearance of clinical signs, will most likely involve some combination of inhibiting 

pathogenic PrP formation, destabilizing or enhancing clearance of existing pathogenic 
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PrP, blocking neurotoxic effects of the infection, and/or promoting the recovery of 

lost functions in the CNS.77 

 

1.6.1 Chemotherapy for prion diseases 

 Many compounds have been proposed for the treatment of prion diseases, 

including polysulfated anions, dextranes, and cyclic tetrapyrroles.78-81 Recently, 

some success has been achieved using pentosan polysulfate82 although this 

compound seems to be unsuccessful in the treatment of human prion diseases.83 In 

addition, molecules targeting the different molecular steps involved in 

pathological prion replication have also been investigated.84-90 However, to date, 

the use of these compounds in clinical applications is limited, due to their high 

toxicity and poor crossing of the blood-brain barrier (BBB). Thus, there is an 

urgent need to develop systematic pharmacological and mechanistic studies for the 

identification of a new class of compounds as therapeutic agents capable of 

inhibiting several pathways in prion conversion and replication. 

  

 Strategies for developing new drugs 

Three strategies are usually developed to identified new drugs against a well-

characterized disease. (i) A rational approach will specifically target the key 

molecules responsible for the disease. The limiting factor here is to possess the 

structure of one or more proteins implicated in the pathogenesis of the disease. (ii) A 

blind screening on a large panel of drug already synthesized and commercially 

available. The idea is to identify new molecules with a chemical structure different 

from those already existing and which can serve as lead molecule for the 

pharmaceutical chemistry. (iii) Synthesis of chemical derivatives of recently identified 

lead molecules that showed promising therapeutic properties. The idea here is to 

modify some chemical characteristics of the drug in order to make it more potent or to 

facilitate its delivery, especially in the brain for instance. Various combinations 

between these three strategies are possible in the drug development field.91 

A common task in pharmaceutical research is the search for new lead compounds 

against diseases that show a greater specificity and/or fewer side effects than already-

known agents. Therefore, a widely used search method as high throughput screening 

(HTS) of large compound collections was established. However, since this approach 

is expensive and time consuming and futher on only can be used once a suitable test 
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assay is developed, the silico design and proposal of new lead structures becomes 

more important.92 Moreover, the nature of the prion agent as well as its replication 

cycle which are not yet completely understood, does not facilitate HTS.91 A central 

origin of the strategy of in silico screening of drug database is the experience that 

similarities in structures are indicative of similarities in activities of drugs. Thus, a 

structural search of large compound databases is of great interest. Today, about two 

million chemical compounds are available commercially.93 The use of SuperDrug94 

(http://bioinf.charite.de/superdrug), a new data base of essential WHO approved drugs 

(2003), for 2D and 3D search for new lead structures starting from compounds against 

prion diseases was performed by Lorenzen and co-workers.92 In this method, the 

authors started with known lead compounds, a data base is searched to create a pool 

of putative drugs. These compounds are compared to known inhibitors and non-

inhibitors, and drugs with similarities to inactive structures are removed from the list 

of proposed inhibitors. Combining structural features of ineffective substances with 

property filtering rules allows the exclusion of further candidates. Drugs surpassing 

this sieve are proposed as new TSE inhibitors. Furthermore, the first PrP(90-231) 

NMR structure solved in 1996 provided some structural information  to monomeric 

structure of the PrP protein and opened a new area of drug research since PrP 

constitutes an attractive therapeutic target within the replication cycle of prions. 

However, the surface of the PrP(90-231) NMR structure presented no crevasses, so 

the classical docking program used for the structure-based drug design was not 

adapted in this case.91 For the rational approach, Perrier and co-workers (2000) found 

two drugs Cp60 and Cp62 that could mimic a small region at the PrP surface to inhibit 

prion replication.90 

In addition, Korth and co-workers (2001) have performed a blind screening on drugs 

known to cross the BBB. They found that quinacrine and chlorpromazine, both 

tricyclic compounds with an aliphatic side chain in their middle ring, exhibited an 

anti-prion activity with EC50 of 0.3 and 3 µM respectively. Hence, Korth and co-

workers synthesized nine derivatives of quinacrine in order to establish a structure-

activity relationship study.95 Their results have revealed the importance of the 

aliphatic side chain for the inhibition of PrPSc formation.91   
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Models for studying chemotherapeutic candidates 

In vivo tests provide the most rigorous evaluations of anti-TSE treatments, but are 

slow, costly, and impractical for screening purposes. A variety of relatively high 

throughput, low cost, cell culture models,96,97 and some yeast models,98 have enabled 

the identification of a number of different classes of anti-prion compounds which then 

have shown efficacy in animal models. Also, in vitro assays have allowed 

investigation of the mechanisms of prion inhibition. In many cases, anti-prion 

compounds which bind to PrPC cause it to cluster and internalize, thus rendering PrPC 

inaccessible or incompatible for conversion to protease-resistant prion protein 

(PrPres).37,97,99 Non-cellular in vitro assays have also been developed to assess a wide 

range of potentially effective compounds. These methods generally assess the 

competitive binding of PrPC and PrPres or the prevention of PrP amyloid fibril 

formation. Recent techniques include surface plasmon resonance,100 fluorescence 

correlation spectroscopy,101 semiautomated cell-free conversion,102 and a fluorescence 

polarization-based competitive binding assay.103 Computer “in silico” modeling is 

also being used to predict binding molecules.90,104 

Ultimately, promising treatments discovered in vitro require testing in animals and 

humans. Of the many compounds studied in rodent models, few have made their way 

into human trials or case reports, and the effectiveness of treatment administered at 

the onset of clinical symptoms, or when there is significant neuropathology, is low. 

However, many compounds show some prophylactic or early treatment effect in TSE-

infected animals, and are therefore relevant to decontamination and early therapy 

efforts. These drugs need not be permeable to the BBB since they can target the 

peripheral replication of the agent, before neuroinvasion that arise following oral or 

other peripheral exposures. The option for early treatment has been hindered by a lack 

of early diagnosis, but with the recent development of new sensitive detection 

assays,66,105-108 there is hope for early preclinical TSE diagnostics, and more effective 

screening and testing of at risk individuals. This, coupled with the rising concern of 

blood transmission of variant Creutzfeldt Jakob disease (vCJD), the occurrence of 

BSE in livestock, and the spread of CWD, lends tremendous relevance to such 

chemoprophylaxis compounds and potential decontaminants in the management of 

prion diseases.77 
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Identification of prion drug targets 

A major focus of drug screening efforts has been the PrP conversion reaction. Many 

inhibitors prevent conversion by directly binding and blocking interactions between 

PrPC and PrPSc. Others affect conversion by interfering with important accessory 

molecules, or by altering PrPC expression and distribution.37 Many different chemical 

classes of compounds have been screened and tested in vitro, and additional in vivo 

data are available for some (Table 2), including early or prophylactic treatments and 

later stage therapies.77 

Targeting PrP conversion of the compounds include binding PrPC and/or PrPres, 

redistribution or sequestration of PrPC (e.g. cholesterol-depleting agents such as the 

statin drug simvastatin109 and polyene antibiotics such as amphotericin B110), 

suppressing PrPC expression by using small interfering RNA (siRNA) to the PrP 

gene,111 targeting accessory molecules and pathways to conversion with Laminin 

receptor precursor protein (LRP/LR) antibodies112 or tyrosine kinase inhibitor STI571 

(known as imatinib mesylate),113,114 enhanced PrPres clearance with polycations115-117 

and other unknown mechanisms by using copper chelators118,119 or dimethylsulfoxide 

(DMSO)120 or antivirals such as vidarabine (adenine arabinoside).121 

For binding PrPC and/or PrPres, the compounds include polyanions (RNA,63,122,123 

sulfated glycosaminoglycans (GAGs),124,125 pentosan polysulfate (PSS),82 fucoidan,126 

phosphorothioate oligonucleotides,127 copaxone128), sulphonated dyes and similar 

compounds (Congo red,84,129 suramin,130,131 curcumin132-134), cyclic tetrapyrroles 

(porphyrins, phthalocyanines),81,135,136 lysosomotropic factors (quinacrine, quinoline, 

acridines, phenothiazines),95,137-140 tetracyclic compounds (tetracycline, 

doxycycline),141-143 other amyloidophilic compounds,144 pyridine dicarnitrile 

compounds,145 peptide aptamers and β-sheet breaker.13,89,146 

In addition, compounds without direct effects on PrPC, PrPres or conversion may 

have therapeutic potential as neuroprotective agents or symptomatic treatment 

including analgesics such as flupirtine maleate,147 cannabidiol (a nonpsychoactive 

constituent of cannabis)148 and antioxidants such as pyrazolone derivatives149 (Table 

2). 
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Table 2. Chemical-based therapeutic and prophylactic agents 
 
+ Effect demonstrated 
- Effect not present 
# Induces conversion in vitro 
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Adapted from Sim et al. (2009) 

 

From given the partial efficacies of treatments targeting PrP conversion, PrPres 

clearance, PrPC expression, and neuroprotection, we could try combining therapies 

and look for cooperative or synergistic effects.77 For instance, quinacrine enhanced 

PrPres inhibition in cell culture when used in combination with the conversion-

resistant mutant rPrP-Q218K.150,151 Quinacrine also produced more than additive 

inhibition when cells were co-treated with simvastatin or desipramine. This latter 

observation led to the creation of a more potent cell culture inhibitor of PrPres, called 

quipramine, by covalently linking the acridine scaffold of quinacrine with the 

iminodibenzyl scaffold of desipramine.152 
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1.6.2 Immunotherapy for prion diseases 

Rational drug design strategies which are the basis of most modern drug discoveries 

are difficult to set up for prion diseases, due to the absence of a well-defined tertiary 

and/or quaternary structure of both PrP isoforms and lack of knowledge of the 

replication cycle of the prion agent. Only antibodies directed against the prion protein 

can set free from these barriers as they specifically recognized PrP isoforms and bind 

to their target with a high affinity.153 Treatment of cells with Fab fragments D18 and 

D13, which recognized epitope 132-156 and 97-106 of PrP protein respectively, has 

been proven effective in clearing pre-existing PrPSc in ScN2a cells.88 Monoclonal 

anti-PrP antibody 6H4 which recognized epitope 144-152 of PrP protein, also 

prevents infection of susceptible N2a.154 Moreover, transgenic mice expressing anti-

PrP antibody 6H4 in their spleen, prevent scrapie pathogenesis in vivo, sustaining the 

development of vaccination strategy.155 

 For the roles of the lymphoid system and immune cells in prion pathogenesis, 

immunotherapeutic approaches to prion diseases have been studied. At least four 

strategies including removal of functional FDCs and therefore ablation of 

lymphoid prion replication sites; stimulation of the innate immune system; 

enhancement of elimination of PrPSc using PrP-specific antibodies; or binding of 

available PrPC or PrPSc so that they are unavailable for conversion have been 

studied (Fig. 14). All of these approaches, which include both suppression and 

stimulation of the immune system, are now being tested in suitable in vivo systems 

using mice experimentally infected with mouse-adapted scrapie. However, 

because the lymphoid system has been found to be involved in almost all forms of 

TSE, it is reasonable to presume that mouse-adapted scrapie provides a realistic 

generic model for TSE therapy.46 
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Figure 14. Immunotherapeutic strategies for prion disease.  

(A) treatment with the lymphotoxin-β receptor fusion protein (LTβR)-Ig breaks up the FDC networks 
and disrupts lymphoid follicles. The best protection is achieved when the fusion protein is administered 
immediately after exposure to prions. (B) ablation of mature follicular dendritic cells (FDCs) delays the 
development of prion disease in mice. However, treatment with multiple doses of CpG-containing 
oligodeoxynucleotides (CpG ODNs) produces severe unwanted side effects, including 
immunosuppression, liver necrosis, and thrombocytopenia. (C) vaccination against a self-protein is 
difficult because of immune tolerance, and it has the potential to induce autoimmune disease. 
Transgenic expression of an immunoglobulin µ chain containing the epitope-interacting region of 6H4, 
a high-affinity anti-PrP monoclonal antibody, associated with endogenous κ and λ chains, leads to high 
anti-PrPC titers in Prnpo/o and Prnp+/+  mice. It suffices to block prion pathogenesis upon intraperitoneal 
prion inoculation. After active immunization with full-length PrP in attenuated Salmonella vector, the 
mice develop high PrP specific antibody titers. (D) treatment with dimeric full-length PrP fused to the 
Fc portion of human IgG1 (PrP-Fc2) delays the development of prion disease in mice, most probably 
owing to its interaction with the disease-associated PrP (PrPSc). LT-α1β2, LT heterotrimer; TLR, Toll-
like receptor. Adapted from Aguzzi et al. (2009). 
 

1.6.3 Cell and gene therapies for prion diseases 

Therapeutic use of RNA interference (RNAi) in prion diseases 

RNA interference (RNAi) is a highly conserved, sequence-specific 

posttranscriptional gene-silencing mechanism, whereby small interfering RNA 

(siRNA) targets homologous mRNA for degradation. siRNAs are generated from 

endogenous or exogenous double-stranded RNAs (dsRNAs) by the dsRNA 
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endonuclease Dicer; subsequently, siRNA activates the RNA-induced silencing 

complex (RISC) to degrade the target mRNAs (Fig. 15).156 Rapid advancement in the 

understanding of RNAi in general, and mammalian RNAi in particular157, makes it 

feasible to use RNAi to develop therapeutics for a variety of human diseases.158 

The first therapeutic use of lentivirally mediated RNAi against prion protein was 

demonstrated in scrapie-infected mice.159 Knockdown of PrP by RNAi and resultant 

inhibition of PrPSc replication in cell culture have been described.111,160 Virally 

expressed RNAi has been used to reduce the levels of PrPC in goats, cattle161 and 

mice.162 Pfeifer and co-workers have shown that anti-PrPC short hairpin RNA 

(shRNA) carried on a lentivector is transfected into neuronal or embryonic stem cells, 

integrated into chromosomal DNA, and transcribed; anti-PrPC shRNA is released into 

the cytoplasm, where it is processed by Dicer into siRNA. This in turn activates the 

RISC to degrade PrP mRNAs, leading to reduced expression of PrPC and 

consequently diminished PrPSc accumulation and significantly improved survival time 

after prion infection (Fig. 15).162 These data indicate that RNAi has therapeutic 

potential for prion disease, providing a novel venue for the search of an effective 

prion disease treatment.158 

In contrast to many previous candidate treatments for prion diseases, which have 

suffered from inconsistent results dependant upon the prion strain involved, the RNAi 

therapeutic approach has a significant advantage of its applicability to all known 

strains of prion disease. Within any species the primary sequence of PrPC and PrPSc is 

the same for all strains, thus RNAi should be an effective treatment for all variants. 

This should also apply to familial prion diseases that arise from a coding mutation in 

gene encoding PrPC, PRNP. Genetic testing can identify these patients during the 

preclinical phase, so successful treatment of this category may be possible through 

preventative silencing of the mutant PRNP allele expression prior to development of 

pathology.163 
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Figure 15. RNAi and other strategies for prion disease treatment. Monomeric PrPC (yellow 

ovals) converts into multimeric PrPSc (yellow rectangles) in the process of prion replication and prion 
pathogenesis. Reagents or strategies that effectively reduce the PrPC level or interfere with the PrPC-to-
PrPSc conversion process have shown therapeutic potential for prion disease. Adapted from Kong 
(2006). 

 

Cell grafting therapy for prion diseases 

The transplantation of embryonic cells or tissue to protect against neuronal loss 

could be a promising strategy for late stage treatment of prion diseases. Since PrP is 

essential for prion replication, grafting of PrP knock-out cells would prevent prion 

replication in the transplanted cells. Therefore, Brown and co-workers have used the 

fetal cells from PrP knock-out mice (PrPo/o) to inject in hippocampal area 150 days 

after scrapie infection in C57bl/6//VM mice and observed a neuron survival of 54% 

greater than the control group despite no delay in the incubation time of the 

disease.91,164 

 

1.7 Therapies for other neurodegenerative diseases 

1.7.1 Therapies for Alzheimer’s disease 

Alzheimer’s disease (AD), the most common neurodegenerative disorder, is 

currently the focus of some of the most exciting and rapidly progressing research on 
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amyloid therapeutics. AD is a progressive neurodegenerative disorder and the leading 

cause of dementia in the elderly. As the incidence and prevalence of AD rise steadily 

with increasing longevity, AD threatens to become a catastrophic burden on health 

care, particularly in developed countries. AD patients typically present with 

symptoms of global cognitive decline and loss of memory.165 AD pathology is 

characterized by the formation of two types of protein aggregates in the brain: 

amyloid plaques (Fig. 16a), which form an extracellular lesion composed of the Aβ 

peptide; and intracellular neurofibrillary tangles (Fig. 16b), which are composed of 

abnormal, hyperphosphorylated filaments of the microtubule-associated protein tau.40 

Genetic evidence implicates deregulated Aβ homeostasis as an early event in AD 

pathology.166 Indeed as all familial AD mutations lead to increased production of this 

peptide or preferential production of a more fibrillogenic Aβ isoform (Aβ42).
167 For 

this reason, most AD therapeutics have targeted the Aβ peptide although tau-targeted 

therapies are also being pursued.168,169 

          
Figure 16. Characteristics of Alzheimer’s disease (AD). (a) A human cortical section from a 

patient affected by AD, stained with an amyloid-β (Aβ)-specific antibody. One of the classical 
hallmarks of AD histopathology is the appearance of extracellular lesions known as senile or amyloid 
plaques. (b) A human cortical section from a patient affected by AD, stained with a phospho-tau-
specific antibody. The second histopathological hallmark of AD is the presence of intraneuronal lesions 
known as neurofibrillary tangles (indicated by an arrow). Adapted from Aguzzi et al. (2010). 
 

Pharmacological inhibition of the enzymes responsible for Aβ formation (γ-

secretase and β-secretase) is a prime strategy for blocking Aβ production. The γ-

secretase complex is responsible for the carboxy-terminal cleavage of amyloid 

precursor protein (APP) to produce Aβ40 or Aβ42. Potent small-molecule inhibitors of 

γ-secretase can dramatically reduce Aβ40 and Aβ42 production.170,171 These 

compounds either selectively inhibit γ-secretase cleavage of APP, leaving Notch 

cleavage unaffected, or alter γ-secretase cleavage of APP to favour Aβ40 production 

rather than Aβ42 which seems to be more closely associated with the development of 
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amyloid pathology than Aβ40.
40 Drugs that modulate γ-secretase activity in this 

manner include non-steroidal anti-inflammatory drugs (NSAIDs). The NSAID (R)-

flurbiprofen (also known as tarenflurbil), effectively reduced amyloid plaque 

formation172 and rescued memory deficits173 in APP-transgenic mice. It also yielded 

encouraging results in early human trials.174,175
 

The amino-terminal cleavage of APP to form both Aβ40 and Aβ42 results from β-

secretase activity. After the discovery that β-secretase cleavage of APP seemed to be 

due to the activity of a single aspartic protease, β-secretase 1 (BACE1; also known as 

memapsin 2 and ASP2), there was much interest in the possibility of targeting β-

secretase for the treatment of AD.176-180 Inhibition of BACE1 activity can block the 

production of Aβ, prevent the development of amyloid pathology in the brain and 

rescue AD-related memory deficits in mice.181-184 The large BACE1 active site 

requires the identification of large compounds for potent BACE1 inhibition that also 

readily penetrate the BBB185 and are reasonably stable. Unfortunately, the slow 

progress of the BACE1 inhibitor field is a testament to the fact that such molecules 

are relatively rare.40 Nevertheless, some BACE1 inhibitors have progressed to early 

clinical trials.186
 

An alternative approach to protein aggregation therapeutics is to enhance the 

degradation of the aggregating protein or the aggregates themselves. Manipulating the 

immune system for the purpose of enhancing Aβ clearance has been pursued as a 

therapeutic approach for AD.40 Several studies reported dramatically reduced Aβ 

levels and plaque pathology and/or cognitive improvements upon active 

immunization of APP-transgenic mice with full-length Aβ peptide,187,188 Aβ peptide 

fragments189 and passive transfer of Aβ-specific antibodies.190-192 Based on these 

studies and encouraging results from Phase I trials, active Aβ immunotherapy in 

humans subsequently progressed to a widely publicized Phase II clinical trial in 2001. 

Unfortunately, this trial was halted in January 2002 owing to the development of 

sterile meningoencephalitis in some patients.40,193 

In addition, several compounds, such as Congo red,194 anthracycline,195 

rifampicin,196 anionic sulphonates197 or melatonin,198 can interact with Aβ and prevent 

its aggregation into fibrils in vitro, thereby reducing toxicity. Moreover, certain non-

fibrillogenic, Aβ homologous peptides can bind to Aβ and break the formation of β-

sheet structure.12,199 
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1.7.2 Therapies for Parkinson’s disease 

Parkinson’s disease (PD) is the second most common progressive 

neurodegenerative brain disorder of humans, after Alzheimer’s disease. The 

pathogenesis of the movement disorder PD and dementia with Lewy bodies (DLB) is 

associated with loss of dopaminergic neurons and the accumulation of aggregated 

forms of the alpha-synuclein (α-syn) protein (Fig. 17A,B).200,201 An early event in the 

neuropathology of PD and DLB is the loss of synapses and a corresponding reduction 

in the level of synaptic proteins. Loss of substantia nigra neurons and the presence of 

Lewy bodies and Lewy neurites in some remaining neurons are the hallmark of 

pathology seen in the final stages of the disease.202  

A 

   

B 

                   
 

Figure 17. The alpha-synuclein (αααα-syn) pathology of Parkinson’s disease (PD). (A) Formation of 
α-syn fibrils and the loss of dopaminergic neurons in the substantia nigra are observed in patients with 
PD. α-Syn (in grey) is normally a monomeric unstructured protein which undergoes conformational 
changes upon interaction with lipids and also upon fibrillation. (B) Lewy bodies and Lewy neurites in 
the substantia nigra and several other brain regions define PD at a neuropathological level. Here, these 
entities are labelled by α-syn antibodies. (a) Two pigmented nerve cells, each containing an α-syn-
positive Lewy body (red arrows). Lewy neurites (black arrows) are also immunopositive. Scale bar, 20 
µm. (b) Pigmented nerve cell with two α-syn-positive Lewy bodies. Scale bar, 8 µm. (c) α-Syn-
positive extracellular Lewy body. Scale bar, 4 µm. Adapted from Ruiperez et al.(2010) and Goedert 
(2001). 
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Alpha-synuclein, the main constituent of Lewy bodies, is a small soluble protein 

expressed primarily at presynaptic terminals in the CNS. The function of α-syn 

remains unclear although several evidences suggest that α-syn is involved in synaptic 

vesicle trafficking probably via lipid binding.200,202 Moreover, interactions with 

cholesterol and lipids have been shown to be involved in α-syn aggregation.203 Not 

only is α-syn found in Lewy bodies characteristic of PD, but also mutations in the 

gene for α-syn can cause an inherited form of PD and expression of normal α-syn can 

increase the risk of developing PD in sporadic or non-familial cases. Although the 

exact pathogenic mechanisms leading to cell death in the PD are not fully understood, 

various pathways including aggregation of natively unfolded α-syn, oxidative stress, 

or mitochondrial impairment can lead to cause cell death (Fig. 18).204  

                                                   

 
 

Figure 18. α-Syn aggregation and toxic effects in dopaminergic neurons. A hypothetical scheme 
depicts various pathways that leading to aggregation of natively unfolded α-syn, oxidative stress, or 
mitochondrial impairment, cause cell death. DA, dopamine; DOPA, dihydroxyphenylalanine; LBs, 
Lewy bodies; MAO, monoamine oxidase; ROS, reactive oxygen species; TH, tyrosine hydroxylase; 
THP, phosphorylated tyrosine hydroxylase; Tyr, tyrosine; UPS, ubiquitin proteasome system. Adapted 
from Recchia et al. (2004). 
 

There have been therapeutic approaches for PD such as dopaminergic therapy, gene 

therapy, stem cell therapy, drug therapy. Current treatment of PD is symptomatic and 

the primary pharmacological therapies include dopamine replacement with levodopa, 
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synthetic dopamine agonists, and drugs which increase dopamine supply by inhibiting 

its metabolism (catechol-O-methyltransferase inhibitors and monoamine oxidase B 

inhibitors).205 Though pharmacological treatment and brain stimulation have been 

shown to reduce symptoms of PD, they are not cures. The controlled production of 

dopaminergic cells in large amounts for cell replacement (neurotransplantation) in PD 

is technically possible. Embryonic stem cells might have a great potential for cell 

replacement strategies in PD, either concerning their proliferative or their 

differentiative capacity. The use of fetal tissue-specific neural stem cells seems to be 

the safest and most likely the fastest way to establish a transplantation protocol in 

PD.206 

To determine if statins, cholesterol synthesis inhibitors, might interfere with α-syn 

accumulation in cellular models, Bar-on and co-workers studied the effects of 

lovastatin, simvastatin, and pravastatin on the accumulation of α-syn in a stably 

transfected neuronal cell line (B103 neuroblastoma cells) and in primary fetal human 

neurons. Their results revealed that statins reduced the levels of α-syn accumulation in 

the detergent insoluble fraction of the transfected cells and enhanced neurite 

outgrowth while the contrastive results were obtained if the media supplemented with 

cholesterol. These results suggest that regulation of cholesterol levels with cholesterol 

inhibitors might be a novel approach for the treatment of PD.203  

In addition, several compounds, such as dopamine analogs207,208 can interact with α-

syn and prevent its aggregation into fibrils in vitro.  

 

1.8 Aim of the present work  

One of the causes for neurodegenerative diseases including Alzheimer’s disease, 

Parkinson’s disease and prion diseases is protein misfolding and aggregation. The 

protein misfolding may be associated to the diseases by either gain of a toxic activity 

by the misfolded protein or by the lack of biological function of the natively folded 

protein. Therefore, designed drugs aim to inhibit or reverse the conformational 

changes as a therapy to protein conformational diseases. However, the effective 

pharmacological tools for the diseases are not yet available. Moreover, the recently 

established interplay between prion and Alzheimer’s diseases have led to an urgent 

demand to develop systematic pharmacological and mechanistic studies for the 

identification of new classes of compounds as therapeutic agents capable of inhibiting 

several pathways in prion conversion and replication. Thereby, the molecules binding 
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to either PrPC or PrPSc conformers at the binding interface may interrupt prion 

production by inhibiting the interaction between the PrPSc template and the 

endogenous cellular PrPC. Additionally, the compounds that bind molecules 

supporting and participating in prion replication, such as chaperones or other ligands, 

may also be good candidates for blocking prion replication. Most of the lead 

compounds identified so far are derived from screening approaches in established 

cellular models.  

Based on these considerations, it emerges that rational design of anti-prion 

compounds is still a big challenge for medicinal chemists. However, a favorable point 

that could further motivate rational drug discovery in prion diseases, is that the 

lessons we can learn from their investigation with small molecules might have an 

impact on other conformational diseases, characterized by a similar pathological 

aggregation and accumulation of misfolded proteins.209 In this connection, it is 

relevant to note the recent discovery that PrPC is a mediator of Aβ oligomer-induced 

synaptic dysfunction, and hence PrPC-specific compounds may have therapeutic 

potential for Alzheimer’s disease.210,211 

In the thesis, we discuss about therapeutic approaches for prion diseases and 

other neurodegenerative diseases from biological evaluation of four new libraries 

of the compounds designed and synthesized on nanotechnology, computational 

study and chemistry as well as study their mechanism of action in inhibiting 

prion replication. The most active anti-prion compounds may be therapeutic 

agents for the diseases. 
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2. Polyelectrolyte multilayer-coated gold nanoparticles as 
multi-target compounds for treatment of prion diseases and 
related neurodegenerative disorders 

2.1 Introduction 

 The field of nanoparticle technology is rapidly expanding and promises 

revolutionary advances in the diagnosis and treatment of many devastating human 

diseases. Nanoparticles have been developed to allow targeted delivery and 

sustained release of therapeutics. Such nanoparticle-based drug formulations 

interact with biological systems both at molecular and supra-molecular levels. 

Nanoparticles can be tailored to respond to specific cell environments, and even to 

induce desired physiological responses in cells, whilst minimizing unwanted side 

effects. Compared to conventional drugs, nanoparticles-bearing therapeutics 

possess higher intrinsic pharmacological activity and their main advantage is their 

small dosage that would not require the administration of large amounts of 

potentially toxic therapeutics.212 

 Here, we report the preparation of coated gold nanoparticles (AuNP) exposing, 

on their surface, functional groups that can selectively bind, inhibit or prevent the 

formation of misfolded protein aggregates such as prions. The build-up of 

nanoparticles was carried out with gold nanoparticles as core and a layer-wise 

deposition of oppositely charged polyelectrolytes, such as polycation 

polyallylamine hydrochloride (PAH) and polyanion polystyrenesulfonate (PSS). 

To examine the structure-activity relationship, we tested different numbers of 

layers, as well as the nanoparticles’ outermost layer surface charge, for their 

possible role in inhibiting scrapie prion formation in vitro and in vivo. Our 

findings represent the first report of functionalized nanoparticles as novel potent 

anti-prion drugs. 

2.2 Materials and methods 

2.2.1 Synthesis of gold nanoparticles 

 Monodisperse AuNPs were prepared as described by Turkevich and co-

workers.213 For particles with a size of 15 ± 1 nm, 5.3 mg of NaAuCl4.2 H2O in 25 

mL of Milli-Q grade water were boiled under reflux. One milliliter of a 1% 

trisodium citrate solution was rapidly added to the boiling pale yellow solution, 
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which resulted in a color change to deep red. After boiling for additional 20 min, 

the solution was cooled down to room temperature and stored protected from light 

at room temperature. All experiments described here were performed with the 

above colloidal gold nanoparticle stock solution. 

The 46 nm gold particles were prepared using the same procedure but with 10.6 

mg of NaAuCl4 in 25 mL water and the fast addition of 750 µL 1% trisodium 

citrate solution. 

2.2.2 Polyelectrolyte coating 

 The polyelectrolyte coating was applied in accordance to the method previously 

described with a few modifications.214-216 Briefly, 1 mL colloidal AuNPs were 

added drop-wise under constant stirring to 200 µL of PSS solution (10 mg/mL) or 

500 µL PAH solution (3 mg/mL). Both solutions are supersaturated to allow for an 

immediate coverage of the particles with polyelectrolytes. After incubation for 20 

min in the dark, this solution was centrifuged for 20 min at 20,000 × g. The 

supernatant was removed and the particles were washed twice by 

centrifugation/resuspension in Milli-Q water. Prior to the next layer deposition the 

coated AuNPs were stored in the dark for 1 hour. The coated particles were then 

incubated with the oppositely charged polyelectrolyte (Fig. 19).          

                  

                      
 Figure 19. Layer-by-Layer technique for oppositely charged polyelectrolye coating. 
Polystyrenesulfonate (PSS) and polyallylamine hydrochloride (PAH) are used as polyanion and 
polycation, respectively.   
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Each coating step was proved on a NS Zetasizer (Malvern, Milan, Italy) with 

dynamic light scattering (DLS) for size and polydispersity index (PDI) and zeta-

potential measurements for changes in the surface charge. The concentration of the 

AuNPs was determined at 580 nm in a UV/Vis spectrometer applying the Beer-

Lambert law (λabs = 518 nm, ε = 5.14×107 M-1 cm-1).217 

2.2.3 Transmission electron microscopy of coated gold nanoparticles 

 High-resolution transmission electron microscopy (HRTEM) measurements 

were performed by diluting the coated AuNP solution with Milli-Q water to a ratio 

of 1:100. Then the solution was deposited on a carbon-covered 200-mesh copper 

grid and dried in air at room temperature. The images were acquired with 

acceleration voltage ranging from 18.5 to 150 kV. The non-digital images were 

digitized and the data analyses of the images were performed using ImageJ 

software. 

2.2.4 Cell culture, drug treatment and cell viability 

 Cell culture, drug treatment and cell viability were performed in accordance to 

protocols described previously.218 

Cell culture 

ScGT1 cells were seeded in 10-cm plates containing 10 mL of Dulbecco’s modified 

Eagle’s medium (DMEM) culture media, supplemented with 10% fetal bovine serum 

(FBS) and 1% penicillin-streptomycin. ScN2a cells were cultivated in 10-cm plates, 

containing 10 mL of minimal essential medium with Earle’s salt (EMEM) culture 

media, supplemented with 10% FBS, 1% non-essential amino acids, 1% L-glutamax, 

1% penicillin-streptomycin. The cells were grown at 37°C in 5% CO2 to 95% 

confluence for 1 week before splitting at 1:10 for further cultivation. 

Drug treatment 

Quinacrine was dissolved in PBS at 1 mM. Imipramine was dissolved in 100% 

dimethyl sulfoxide (DMSO) to a solution with a concentration of 100 mM. This 

solution was then further diluted into the final stock solution of 10 mM with 10% 

(v/v) DMSO/PBS. The final concentration of DMSO in the cell medium was never 

above 0.1%. The nanoparticles were diluted in PBS. The media were refreshed and 

drugs were added to the cultures 2 days after splitting of the cells and incubated for 5 

days. Each experiment was performed using triplicate cultures. 
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Cell viability 

ScGT1 and ScN2a cells were maintained in DMEM and EMEM, respectively, and 

supplemented with 10% FBS. After 1 day of incubation, media were aspirated from a 

confluent 10-cm plate of cells, and cells were detached by addition of 1 mL of 1X 

trypsin-EDTA solution. Media were added, and cell density determined by cell 

counting using a haemacytometer. The cell density was adjusted to 2.5 × 105 cells/mL 

with DMEM for ScGT1cells and 3.0 × 105 cells/mL with EMEM for ScN2a cells. A 

96-well, tissue culture-treated, clear bottom, black plate (Costar) wetted with 90 µL of 

DMEM or EMEM, was incubated at 37°C, prior to use. One hundred µL of the cell 

suspension were added to each well and the cells were allowed to settle for 2 hours, 

prior to the addition of the test compound. Compound library stocks were prepared as 

described above and diluted 1/20 with sterile PBS prior to use at the required 

concentrations in 96-well plates. Ten µL of the compounds were added to each well, 

and the plates were incubated at 37°C in 5% CO2. Final DMSO concentration was 

never above 0.1% (v/v). Media were aspirated after incubation of 5 days and cells 

were washed twice with 200 µL of PBS. One hundred µL of 2.5 µM calcein-AM were 

added, and the plates were incubated at 37°C for 30 min. Fluorescence emission 

intensity was quantified using a SpectraMax Gemini EM or SpectraMax M5 

fluorescence plate reader, excitation/emission ratio equal to 492/525 nm. 

2.2.5 PrPSc detection in cell lysates by Western blot 

 After 5 days of drug treatment, the accumulation of PrPSc was detected by 

proteinase K (PK) digestion followed by immunoblotting of lysed cells as 

described previously.88 One mL of lysis buffer (10 mM Tris-HCl pH 8.0, 150 mM 

NaCl, 0.5 % nonidet P-40, 0.5 % deoxycholic acid sodium salt) was added to cell 

plates and the cell lysates were collected after centrifugation at 2,000 rpm for 5 

min in a bench microfuge (Eppendorf). The total protein amount of the samples 

was measured by the bicinchoninic acid assay (BCA) (Pierce). Five hundred µL of 

1 mg/mL ScGT1 or 100 µL of 1 mg/mL ScN2a cell lysates were digested by 20 

µg/mL of PK for 1 hour at 37°C. The reaction was stopped with 2 mM 

phenylmethylsulphonylfluoride (PMSF) and the PK-digested cell lysates 

centrifuged at 48,000 rpm for 1 hour at 4°C in an ultracentrifuge (Beckman 

Coulter). The pellets were resuspended in 1X sample loading buffer. For the non-

PK digested sample, 50 µg of cell lysates for ScGT1 or 25 µg of cell lysates for 
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ScN2a were used and 2X loading buffer (125 mM Tris HCl, pH 6.8, 10% 2- 

mercapethanol, 4 % SDS, 0.2 % bromophenol blue, 20 % glycerol) was added in a 

1:1 ratio. The samples were boiled for 5 min at 100°C, loaded onto either a 12% or 

a 15% Tris-Glycine SDS- PAGE gel, and transferred overnight onto Immobilon P 

PVDF membranes (Millipore). Membranes were blocked by 5% nonfat milk, 

incubated with 1 µg/mL anti-PrP Fab D18 followed by incubation with goat anti-

human IgG F(ab)2 fragment conjugated with horseradish peroxidase. Blots were 

developed with the enhanced chemiluminescent system (ECL, Amersham 

Biosciences) and visualized on Hyperfilm (Amersham Biosciences). 

 2.2.6 PrPSc quantification by ELISA 

 The quantification of PrPSc by ELISA followed a protocol described 

previously.137 Briefly, PK digestion of cell lysates was as described above. PK-

digested PrPSc was selectively precipitated by the addition of 0.5% aqueous 

phosphotungstic acid (PTA, Sigma-Aldrich) solution with continuous shaking at 

37°C, 350 rpm for 1 hour, and centrifuged at room temperature, 14,000 x g for 30 

min. Pellets were dissolved and denatured in 50 µL of 8M guanidine 

hydrochloride (GdnHCl) in coating buffer (0.1 M sodium bicarbonate, pH 8.2) for 

1 hour and diluted into 500 µL of coating buffer. Twenty µL of the suspension 

were transferred to 96-well MaxiSorp ELISA plates (Nunc), with each well 

containing 180 µL coating buffer and the plates were sealed and incubated 

overnight at 4°C. To increase the immunoreactivity of PrPSc, coated proteins were 

denatured in situ. Fifty µL of 8M GdnHCl were added to each well and incubated 

for 10 min at room temperature. The ELISA plates were washed three times with 

TBST (20 mM Tris-HCl, 137 mM NaCl, 0.05% Tween-20, pH 7.5) and blocked 

with 200 µL of 3% BSA, made up in TBS (20 mM Tris-HCl, 137 mM NaCl, pH 

7.5) sealed and incubated at 37°C. After 1 hour, the plates were washed three 

times with TBST, and incubated with 100 µL of anti-PrP antibody D18 (2 µg/mL) 

in 1% BSA/TBS, at 37°C for 2 hours. They were then washed seven times with 

TBST. One hundred µL of goat anti-human IgG Fab conjugated to HRP and 

diluted 1:1000 with 1% BSA/TBS were added to the plates and incubated at 37°C 

for 1 hour. Again, plates were washed seven times with TBST, and then developed 

with 100 µL of 1-step TMB (3,3’,5,5’- tetramethylbenzidine) Turbo ELISA HRP 

substrate (Pierce). The reaction was stopped by the addition of 100 µL of 2 M 

sulfuric acid to the plates. Absorbance at 450 nm was measured using a microplate 
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reader (VersaMax, Molecular Devices). Dose-response curves and EC50 values 

were computed using GraphPad Prism (version 4.0). 

2.2.7 Coated nanogold uptake studies  

GT1 and N2a neuronal cell lines (1.0 × 105 cells) were seeded on 24 x 24 mm cover 

slips in 35 mm-plates with 2 mL of DMEM supplemented with 10% FBS, 1% 

penicillin-streptomycin and EMEM with 10% FBS, 1% non-essential amino acids, 

1% L-glutamax, 1% penicillin-streptomycin, respectively, and were cultured for 24 

hours at 37°C in 5% CO2. For the uptake 50 µL of a solution containing either 

nanogold particles coated with (PSS/FITC-PAH) tagged as 2A, or coated with 

(PSS/FITC-PAH)2/PSS called 5S were added, along with 30 µM of DiA [4-di-16-

ASP, (4-(4-dihexadecylamino)styryl)-N-methylpyridinium iodide, Molecular Probes] 

(labeling intracellular membranes) and incubated for 2, 6, 12, 24 or 48 hours at 37°C 

in 5% CO2. After incubation, the culture media were aspirated and the adherent cells 

were washed 2 times with 2 mL of respective media, without antibiotics and sera. 

Then, the cells were studied by confocal fluorescence microscopy. The experiments 

were repeated at least 3 times for each cell line and time. 

Imaging acquisition was performed with Nikon C1 laser scanning confocal unit 

(Nikon D-eclipse C1, Japan) attached to an inverse fluorescence microscope 

(Nikon D-eclipse C1Si, Japan) with 100 X/1.49 oil Apo TIRF objective (Nikon, 

Japan). Excitation was performed with an air-cooled Argon laser emitting at 488 

nm for FITC (λex = 488 nm, λem = 520 nm) and a diode laser at 561nm exciting 

DiA (λex = 570 nm, λem = 630 nm), with appropriate filter sets to collect the 

fluorescence emission. Images were acquired and processed using the operation 

software EZ-C1. 

2.2.8 Detection of in vitro effect of the nanoparticles on prion fibril formation 

and amyloid seeding assay (ASA) 

 Fibril formation was performed in accordance to the method previously 

described with a few modifications.219 Briefly, 500 µL of 2 mg/mL ScN2a or 

ScGT1 cell lysates was used for PTA precipitation by adding 500 µL of PBS/4% 

Sarkosyl/protease inhibitor and 0.5% PTA with continuous shaking at 37°C, 350 

rpm for 1 hour, and centrifuged at room temperature, 14,000 x g for 30 min. The 

pellets were washed with 500 µL of PBS/2% Sarkosyl/protease inhibitor, 

centrifuged and resuspended in 150 µL of water and then stored at -80oC until use. 
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In ASA, 4 µL of resuspended PTA pellets was diluted into 400 µL of water and 20 

µL of the diluted sample was added to each well containing 180 µL of reaction 

solution (50 µg/mL MoPrP(23-230), 0.4 M GdnHCl, 10 µM ThT in PBS 1X 

buffer) in a 96-well black plate (BD Falcon). The nanoparticles added in different 

concentrations to each well. Each sample was performed in four replicates. Each 

well contained one 3-mm glass bead (Sigma). The plate was covered with sealing 

tape (Fisher Scientific), incubated at 37°C with continuous shaking and read on 

SpectraMax M5 or Gemini EM fluorescence plate reader (Molecular Devices) by 

top fluorescence reading every 5 min at excitation of 444 nm and emission of 485 

nm. 

 2.2.9 Detection of in vitro effect of the nanoparticles on β-amyloid and α-

synuclein fibril formation 

 Twenty µL of the nanoparticles added in different concentrations to each well 

containing 180 µL of reaction solution (10 µg/mL Aβ1-40 wild-type, 10 µM ThT in 

50 mM Tris-HCl pH 7.4 for β-amyloid fibril formation; or 1 mg/mL recombinant 

human α-synuclein, 100 mM NaCl, 10 µM ThT in 20 mM Tris-HCl pH 7.4 for α-

synuclein fibril formation) in a 96-well black plate (BD Falcon). Each sample was 

performed in four replicates. Each well contained one 3-mm glass bead (Sigma). 

The plate was covered with sealing tape (Fisher Scientific), incubated at 37°C with 

continuous shaking and read on SpectraMax M5 fluorescence plate reader 

(Molecular Devices) by top fluorescence reading every 5 min at excitation of 444 

nm and emission of 485 nm. 

 2.2.10 Binding activity of the nanoparticles to prion proteins in cultured 

cells 

 N2a, GT1, ScN2a, ScGT1 were cultured for 5 days, refreshed media and added 

100 pM of nanogold particles coated with (PSS/FITC-PAH) tagged as 2A, or 

coated with (PSS/FITC-PAH)2/PSS called 5S, and then incubated for 2 more days.  

The cells were washed by media without antibiotics and sera and the cell proteins 

were extracted. Five hundred µg protein was used with or without 20 µg/mL of 

PK, PTA-precipitated and pellets dissolved in 200 µL lysis buffer. The samples 

were added in each well of 96-well black plate and relative fluorescence unit 

(RFU) values were measured by Gemini EM fluorescence plate reader (Molecular 

Devices) at 488/525 nm. 
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2.2.11 Preparation of the nanoparticles pre-treated brain homogenates 

 Ten % RML (Rocky Mountain Laboratories) infected brain homogenate (wt/vol) 

was prepared from pools of brains of terminally RML-sick CD-1® IGS mice 

(Charles River Laboratories), while 10% mock homogenate (wt/vol) was obtained 

from pools of brains of healthy CD-1 mice. 2A and 5S coated AuNPs were 

separately pre-incubated with both RML and mock brain homogenates at 4°C for 

24 hours. Even RML and mock brain homogenates untreated with nanoparticles 

were subjected at the same pre-treatment. The final 2A coated AuNPs 

concentration in both RML and mock homogenates was 25.35 nM while that of 

AuNPs 5S was 26.65 nM.  

2.2.12 Analysis of the homogenates by transmission electron microscopy 

 Mouse brain homogenates (both RML and mock) treated with 2A or 5S particles 

were dissolved in distilled water (1:2) then 5 µL of the final suspension were 

applied to Formvar-carbon-200-mesh nickel grids for 6 min, negatively stained 

with uranyl acetate and observed with an electron microscope (EM109 Zeiss, 

Oberkoken, Germany) operated at 80 kV at a standard magnification (X 30,000), 

calibrated with an appropriate grid. The samples were evaluated for the presence 

and amount of AuNP aggregates.  

2.2.13 Animal inoculation 

 All mice were divided in six different groups, housed in ventilated cages and 

identified by ear-tags. Each group was intracerebrally inoculated with 30 µL of a 

precise solution: i.e. (i) RML or (ii) mock brain homogenate pre-incubated with 

AuNPs 2A; (iii) RML or (iv) mock brain homogenate pre-incubated with AuNPs 

5S; (v) RML and (vi) mock brain homogenates untreated. 10-15 mice for each 

group were anesthetized with sevofluorane and inoculated into the right caudatus 

nucleus by using Hamilton syringes with 26G needle. Both preparations of the 

inocula and their injection were carried out using sterile instrumentation and 

disposable equipment for each animal and each inoculum. Groups of mock-

inoculated and untreated mice were included as controls. 

2.2.14 Behavioral monitoring 

 Behavioral monitoring was carried out weekly, beginning at 16 weeks post-

inoculation, and included spontaneous locomotor activity in the open field, nest 
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construction test, reactivity to external stimuli and inverted screen test.220,221 The 

incubation time was calculated as the period between the day of inoculation and 

the appearance of clinical signs of disease, confirmed by a subsequent assessment 

at 3 days interval. At the terminal stage of disease (characterized by ataxia, 

hunched dorsal kyphosis, and suppressed righting reflex) clinically affected mice 

were sacrificed, while the other mice were monitored for the entire predicted life 

span and then culled and subjected to necroscopy.  

2.2.15 Histological examinations 

 All mouse tissues were collected for the study. Regarding CNS, the left 

hemisphere of each mouse brain was fixed in Carnoy solution at 4°C for 24 

hours,222 while the right hemisphere was frozen at -80°C for Western blot analysis. 

The same procedure was followed for the other organs (i.e. brain stem, muscle, 

spleen, liver, kidney, Peyer’s patch, etc.). Fixed brain samples were cut in four 

standard coronal levels,223 dehydrated, and embedded in paraplast. 7 µm thick 

serial sections from paraffin embedded tissues were stained with hematoxylin-

eosin (HE) or probed with different antibodies (i.e. 6H4, GFAP, Caspase-3, etc.). 

Spongiform profiles were determined on HE-stained sections, by scoring the 

vacuolar changes in nine standard grey matter area as described.223 

 2.2.16 Immunohistochemical staining 

 Sections were immunostained with monoclonal antibody to PrP (6H4 1:1000, 

Prionics), monoclonal antibody to myelin protein (CNPase 1:500, Sigma-Aldrich), 

polyclonal antibody to glial fibrillary acidic protein (GFAP 1:1000, Dako), 

monoclonal antibody to T-lymphocyte (CD3ε 1:500, Millipore) and a polyclonal 

antibody to apoptotic cells (Caspase-3 1:100, Millipore). Before PrP 

immunostaining, the sections were sequentially subjected to PK digestion (10 

µg/mL, room temperature, 5 min) and guanidine isothiocyanate treatment (3M, 

room temperature, 20 min), and non-specific binding was prevented using Animal 

Research Kit Peroxidase (Dako). Immunoreactions were visualized using 3-3’-

diaminobenzidine (DAB, Dako) chromogen. 

2.2.17 PK immunoblot analysis of mouse brain homogenates 

 Ten % (wt/vol) brain homogenates from frozen tissues were prepared in lysis 

buffer (100 mM sodium chloride, 10 mM EDTA, 0.5% Nonidet P40, 0.5% sodium 
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deoxycholate in 10 mM Tris-HCl, pH 7.4). Aliquots of cleared lysate equivalent to 

100 µg were digested with 50 µg/mL of PK for 1 hour at 37°C. Reactions were 

terminated by the addition of phenylmethanesulfonyl fluoride (PMSF, 5mM). 

Treated homogenates were loaded on 12,5% polyacrylamide gels, transferred to 

polyvinylidene fluoride membranes and probed with anti-PrP antibody 6H4 

(1:10000, Prionics), anti-CNPase antibody (1:1000, Sigma-Aldrich) and anti-

Caspase-3 antibody (1:100, Millipore). The immunoreactions were visualized by 

enhanced chemiluminescence system (Amersham). 

2.2.18 Magnetic resonance imaging (MRI)  

 MRI was performed in clinically symptomatic CD-1 mice challenged with RML 

and in non-infected control mice on a Brucker BioSpec 70/30 USR Tesla scanner. 

Mice were anesthetized with isofluorane at a dose approximately of 2.5 L/min, 

modulated according to the breathing frequency. The animals were positioned on 

apposite bed inside the magnet and were monitored throughout the procedure for 

breathing frequency and body temperature with specific probes. Twenty-six axial 

slices were acquired for each mouse with T2 High Resolution Turbo Spin Echo 

sequences. The following parameters were employed: thickness 0.60 mm without 

gap, TR 3000 ms, TE 27.1 ms, FOV 2.20/2.20 cm, and 256 matrix.  

2.2.19 Statistical analysis 

 Statistical analyses were performed using the GraphPad-Prism 4.0 software. 

Kaplan-Meier survival curves were plotted, and differences in survival between 

groups of mice inoculated with RML (positive control) and RML pre-incubated 

with AuNPs 2A or AuNPs 5S were compared using the log-rank test. 

2.3 Results  

2.3.1 Physical characteristics of polyelectrolyte multilayer-coated gold 

nanoparticles 

 The physical characteristics of the coated nanoparticles are given in Table 3. For 

the experiments to inhibit PrPSc replication in vitro, particles from 1 to 5 layers 

were prepared, finishing with either a positive (PAH) or negative (PSS) charged 

layer. All particle preparations finishing with PSS were tagged as nS (n = 1-5) and 

each one with PAH was labeled mA (m = 1-5). The layers were deposited onto 
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AuNPs with a hydrodynamic diameter (Dh) of 19.9 ± 0.2 nm via a electrostatic 

driven self-assembly process and their size was measured by dynamic light 

scattering (DLS). DLS usually gives a larger diameter than electron microscopy, 

because it also measures the ionic shell (citrate) around the hard core (gold). As an 

example, in Figure 20 we show a high-resolution transmission electron 

microscopy (HRTEM) image of a coated (2A) AuNP. As can be noted, the particle 

is around 15 nm in diameter and, in the dehydrated form in ultra-high vacuum, the 

2 layers of the coating measures less than 1 nm. The thickness is not perfectly 

homogenous, but the coating is covering the particle surface completely. 

 The concentration was determined via UV-VIS absorption spectrometry. It has 

to be noted that with UV-VIS it was only possible to quantify the AuNPs 

concentration but not the concentration of the active compounds which are the 

polyelectrolyte. Experiments are under development to quantify directly the 

polycation and polyanion concentration on the surface. Table 3 shows that the 

particle diameter increases with every deposited layer. In addition, the successful 

deposition of the polyelectrolyte layers was confirmed by the change in surface 

charge (ζ-potential measurements).  

 Finally, experiments were performed to investigate if the curvature of the 

AuNPs had an effect on functionality. To this purpose, AuNPs with a bigger 

diameter (45.7 ± 0.3 nm) were prepared and tested. 

 

                                           
  

Figure 20. HRTEM image of a 2A coated nanogold particle. It was acquired with an acceleration 
voltage of 200 kV. 

10 nm  
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Table 3. Physical characteristics of the nanoparticles 
 

Nanoparticles 
 

(Dh)  
(nm) 

ζ-potential 
(mV) 

Concentration 
(nM) 

Number of particles/mL 

 Mean ± SD Mean ± SD   

NG-15nm 19.9 ± 0.2 -40.0 ± 0.4 33.0 1.99 ×10+13 
1A* 105.1 ± 2.9 52.8 ± 0.9 18.7 1.12 ×10+13 
2A 128.9 ± 9.9 63.0 ± 0.9 30.3 1.83 ×10+13 
3A 112.8 ± 6.3 58.8 ± 0.9 32.7 1.97 ×10+13 
4A 110.9 ± 3.2 65.4 ± 5.4 14.2 8.55 ×10+13 
5A 110.1 ± 1.4 56.4 ± 3.2 14.2 8.55 ×10+13 
1S* 59.0 ± 1.7 -50.7 ± 1.3 37.9 2.28 ×10+13 
2S 88.7 ± 5.4 -48.1 ± 3.8 29.2 1.76 ×10+13 
3S 103.8 ± 0.6 -56.0 ± 3.3 24.5 1.48 ×10+13 
4S 98.6 ± 5.0 -49.8 ± 6.1 16.1 9.72 ×10+13 
5S 94.0 ± 0.7 -53.6 ± 0.5 14.2 8.55 ×10+13 
NG-46nm 45.7 ± 0.3 -32.4 ± 3.2 82.9 4.99 ×10+13 
2A  86.9 ± 1.8 50.8 ± 0.8 61.3 7.38 ×10+12 
5S 155.4 ± 8.3 -39.6 ± 0.83 34.0 4.10×10+12 
  

 *A - outermost layer PAH and S - outermost layer PSS 
The mean particle size (Dh) and zeta-potential (ζ-potential) were obtained from cumulative 
measurements (SD, n = 6). 
 

2.3.2 Anti-prion potency and cytotoxicity of nanoparticles in cell lines 

 Potency of known drugs such as quinacrine and imipramine was used as a 

control for anti-prion activity in our cellular models, two different types of 

immortalized neuronal cells, GT1 and N2a. The potency of quinacrine and 

imipramine was similar to previous publications,95 as indicated in Table 4; namely 

EC50 of quinacrine was 0.4 ± 0.1 and 0.3 ± 0.1 µM for ScGT1 and ScN2a, 

respectively; whereas for imipramine EC50 was 6.2 ± 0.4 and 5.5 ± 0.5 µM for 

ScGT1 and ScN2a, respectively. In comparison, citrate stabilized AuNPs without 

polyelectrolyte layers did not show any detectable prion inhibitory activity. The 

number of layers and the surface charge of the nanoparticles influenced survival of 

the neuronal cells, ScGT1 and ScN2a. Cytotoxicity was determined by measuring 

the number of cells surviving after incubation in the drug-doped medium for five 

days, assayed with calcein-AM in a fluorescence plate reader. With positively 

charged particles (1-5 A) a 92-100% cell viability was obtained and with 

negatively charged particles (1-5 S) the 74-100% of the cells survived (Table 4). 
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Table 4. PrPSc inhibition and cellular toxicity of quinacrine, imipramine and the 

nanoparticles in ScGT1 and ScN2a cells 

 

Compounds  PrPSc inhibi tion *   %  cell v iability  ± SE †  

Small mo lecules 
ScG T1 

(E C 50  ± SE , µ M ) 
S cN2a 

(EC 5 0  ±  S E, µM ) S cGT 1 ScN2a 
Qui nacrine 0.4  ±  0.1 0.3  ± 0.1  100  ± 4 100  ± 2 

Imip ramime 6.2  ±  0.4 5.5  ± 0.5 100  ± 7 100  ± 5 

Nan op art icles  
ScG T1 

(EC 5 0 ± SE, pM ) 
S cN2a 

(EC 5 0 ± SE, pM ) S cGT 1 ScN2a 

Positive su rface 
charge  –PAH  

        (N G-15nm ) 

1A 8.3  ±  0.5 8.4  ± 0.6 100  ± 6 100  ± 3 
2A 8.8  ±  0.2 24.5  ± 1.0 100  ± 1 97 ± 1 
3A 10 .1  ± 0 .2 20.4  ± 0.5 100  ± 7 96 ± 3 
4A 25 .4  ± 1 .3 25.1  ± 1.2 100  ± 6 100  ± 5 
5A 20 .1  ± 1 .1 30.0  ± 1.4 100  ± 3 92 ± 1 

Negati ve surface 
charge  –PS S 

    (N G-15nm ) 
1S  121 .4 ± 6 .5  248.7  ± 12 .9 95  ± 2 92 ± 5 
2S  99 .8  ± 4 .7 220.3  ± 11 .8 97  ± 1 87 ± 3 
3S  70 .1  ± 3 .2 149 .5  ±  6 .1 74  ± 7 90 ± 3 
4S  50 .3  ± 2 .0 130 .1  ±  5 .4 100  ± 2 90 ± 7 
5S  35 .0  ± 1 .4 129 .9  ±  7 .1 84  ± 8 93 ± 4 

NG-46nm     

2A  10 .3  ± 0 .3 30.2  ± 1.7  100  ± 4 94 ± 2 

5S   89 .7  ± 3 .5 329.5  ± 10 .7 90  ± 1 91 ± 6 
  

*EC50 - Compound concentration required to reduce PrPSc level 50% versus untreated cells. 
†Cell viability at EC50 values was determined by calcein-AM cytotoxicity assay and expressed as an 
average percent of viable cells versus control untreated cells (SE, n = 3). 

 

 Moreover, the concentration at which complete inhibition of PrPSc formation in 

ScGT1 and ScN2a cells is achieved was determined by immunoblotting. Particle 

preparations were added at different concentrations to scrapie-infected cells, and 

the inhibitory activity was measured over five days. PrPSc levels were quantified 

by ELISA. The resulting EC50 of the particles with a positive outermost layer 

(mA) was in the range of 8.3 ± 0.5 - 25.4 ± 1.3 pM in ScGT1 and 8.4 ± 0.6 - 30.0 

± 1.4 pM in ScN2a cells (Table 4). In both cases, the influence of size and number 

of layers on efficacy was limited. However, prion inhibition by particles with a 

negative outermost layer (nS) showed an increase in efficacy with a higher number 

of layers. In particular, EC50 of 1S was 121.4 ± 6.5 pM and 5S was 35.0 ± 1.4 pM 

in ScGT1 while EC50 of 1S was 248.7 ± 12.9 pM and 5S was 129.9 ± 7.1 pM in 

ScN2a cells (Table 4). 

To investigate the influence of particle curvature on prion inhibition, bigger 
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AuNPs were used. Regarding the AuNPs with a diameter of 46 nm, efficacy and 

cytotoxicity were only tested for 2A and 5S coatings. Both tested cell types 

showed cell viability in the range of 90-100% (Table 4). Prion inhibition of 2A-46 

nm was similar to 2A, and 5S-46 nm was three times less effective than 5S (Fig. 

21 and Table 4).  

 

 

 

 

 

 
 
 
 
 
 
       
 
 
 Figure 21. Western blot of cell lysate from ScGT1 cells treated with nanoparticles. (a) 2A, (b) 
2A-46 nm, (c) 5S, (d) 5S-46 nm. After a two-day cell culture, the media were refreshed, the 
nanoparticles added at the indicated concentrations and the cells were incubated for five more days. 
Proteins from the cell lysate were quantified, treated with or without PK and immunoblotted using anti-
PrP Fab D18.  

 

2.3.3 Coated gold nanoparticles uptake studies 

 The uptake mechanism of AuNPs coated with 2A or 5S was monitored in the 

two different types of immortalized neuronal cells used in this study, GT1 and 

N2a. Figure 22 shows the uptake of 5S nanoparticles by GT1 (Fig. 22a,b) and N2a 

cells (Fig. 22c) at 2 and 24 hours. This was deduced by co-localization of two 

fluorescent dyes evident from the yellow signal due the overlap of the red 

fluorescence emitted by lipid dye DiA, incorporated in the membrane encircling 

the nanoparticles, and the green fluorescence from FITC-PAH bound to AuNP 

(Fig. 22a, arrow in 7th image). In contrast if the particles are only attached to the 

plasma membrane the fluorescence is green (Fig. 22a, ring in 3rd image). Images 

were acquired 2 hours after incubation of GT1 cells with the coated AuNPs. After 

24 hours GT1 cells still show the yellow signal of nanoparticles in vesicles (Fig. 

22b). The same uptake mechanism was observed for N2a cells (Fig. 22c) imaged 2 

hours after incubation with particles. 
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Figure 22. Uptake of coated nanoparticles into immortalized neuronal cells. The particles were 
labeled with FITC (green) and cell membranes were stained with DiA (red). Co-localization of 
particles in vesicles gave a yellow signal. (a) 3D optical sectioning of GT1 cells incubated for 2 hours 
with 5S coated nanogold. The white circles in section 3 indicate coated gold nanoparticles attached to 
the cell surface and therefore showing only green fluorescence. The arrow in section 7 indicates 
membrane encircled structures filled with nanoparticles (yellow). (b) 5S nanoparticles in GT1 cells 
after 24 hours of incubation. (c) 5S nanoparticles in N2a cells after 2 hours of incubation. 
 

2.3.4 In vitro effect of the nanoparticles on prion fibril formation 

 Given 2A and 5S potent anti-prion activity in scrapie-infected cells, these two 

particles were chosen to test their ability of inhibiting recombinant PrP fibril 

formation in an amyloid seeding assay (ASA).219 Using full-length recombinant 

mouse (Mo) PrP(23-230) as template and ScN2a- and ScGT1-PTA precipitated 

prions as seeds in a standard ASA assay, 2A and 5S, at concentrations of 50 pM 

and 200 pM respectively, extended the lag phase by 5-15 hours, hence showing a 

much slower kinetics than the control (Fig. 23). The potency of 2A and 5S in 

delaying PrP fibril formation suggests that these nanoparticles may directly 

interact with PrP and prevent its conversion into the pathogenic PrPSc-like form. In 

light of these results, ASA could also be utilized to study the mechanistic steps 

involved in the inhibitory effects of drugs screened for prion diseases, and of 

AuNPs in particular.  
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Figure 23. Effect of the nanoparticles on prion fibril formation and ASA. Lag phase of amyloid 

formation kinetics are compared between (a) SpectraMax M5 and (b) Gemini EM instruments 
(Molecular Devices) in the assays, using full-length MoPrP(23-230) and amyloid seeding with ScN2a- 
and ScGT1-PTA precipitated protein in presence of coated gold nanoparticles. Fifty pM of 2A 
nanoparticles or 200 pM of 5S nanoparticles were added to each well; Ctrl = control. The Student’s t-
test (two-tailed) was used to determine significant differences among measurements (n=4). *P<0.05, 
**P<0.01.  
 
 
 2.3.5 In vitro effect of the nanoparticles on β-amyloid and α-synuclein fibril 

formation 

 To demonstrate if the nanoparticles may directly interact with Aβ and α-

synuclein to prevent the fibril formation of the proteins, 2A and 5S were chosen to 

add to the reaction of Aβ1-40 and α-synuclein fibril formation. In fact, 2A, at 

concentrations of 100-1000 pM, extended the lag phase by 1-3 hours in a 24 hour-

running assay of β-amyloid fibril formation; and at 500-1000 pM, 2A 

nanoparticles also extended the lag phase by 8 hours in a 96 hour-running assay of 

α-synuclein fibril formation when compared to the controls (Fig. 24a,b). Although 

5S did not show any delay of β-amyloid fibril formation, 5S extended the lag 

phase by 5-10 hours at 200-1000 pM in α-synuclein fibril formation (Fig. 24a,b). 

These results suggest that these nanoparticles may directly interact with Aβ and/or 
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α-synuclein, hence slowing amyloid formation kinetics of the proteins. 

                         

Figure 24. Effect of the nanoparticles on fibril formation of Aβ and α-synuclein. (a) Lag phase 
of Aβ amyloid formation kinetics; (b) Lag phase of α-synuclein amyloid formation kinetics in the 
assays, using Aβ1-40 peptide and recombinant human α-synuclein protein in presence of coated gold 
nanoparticles. Concentrations of 20-1000 pM of 2A and 5S nanoparticles were added to each well. 
Values are means ± SD (n = 4). 

  

 2.3.6 Binding activity of the nanoparticles to prion proteins in cultured cells 

Labeling FITC green fluorescent marker for 2A and 5S nanoparticles tagged as 2A-

F and 5S-F respectively is to be able to measure binding activity of the nanoparticles 

to prion proteins from the samples of cell lysate proteins treated with or without PK 

by a fluorescence microplate reader. Figure 25 shows that 2A and 5S might bind to 

both PrPC and PrPSc and binding activity of 2A is stronger than 5S in both cell lines of 

cultured N2a, ScN2a cells (Fig. 25a) and GT1, ScGT1 cells (Fig. 25b). These results 

suggest that the nanoparticles bound to prion proteins, hence inhibiting prion 

replication in cellular model. 
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 Figure 25. Binding activity of the nanoparticles to prion proteins. The particles 2A and 5S were 
labeled with FITC (green) as 2A-F and 5S-F respectively. 100 pM of 2A-F and 5S-F were added to (a) 
N2a, ScN2a cells and (b) GT1, ScGT1 cells cultured for 5 days, and then the nanoparticles-treated cells 
were incubated for 2 more days. Proteins from the cell lysate were quantified, treated with or without 
proteinase K (PK) and PTA-precipitated. Relative fluorescence unit (RFU) values were measured at 
488/525 nm. The Student’s t-test (two-tailed) was used to determine significant differences among 
measurements (n=3). *P<0.05, **P<0.01. 
 
 

2.3.7 In vivo application of the nanoparticles  

 Outbred CD-1 mice were intracerebrally inoculated with 30 µL of 10% RML 

brain homogenates, pre-incubated with a nanomolar concentration of gold 

nanoparticles 2A or 5S. Before the inoculation, TEM analysis of nanoparticles-

treated homogenates confirmed the presence of sparsely distributed particles. The 

incubation period of mice treated with both 2A (mean ± standard error of the mean 

SEM: 139 ± 3 days) and 5S (mean ± SEM: 135 ± 2 days) were significantly longer 

(respectively p = 0.0021 and p = 0.023, log-rank test) than that of control animals 

infected with pure RML homogenate (mean ± SEM: 128 ± 2 days) (Fig. 26a). 
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Only 2A-treated animals showed a modest, but statistically significant, increase of 

survival time compared with controls (163 ± 3 vs 152 ± 3 days, p = 0.025 log-rank 

test), whereas treatment with nanoparticles 5S was not effective (151± 1 vs 152 ± 

3 days, p = 0.075 log-rank test) (Fig. 26b). Histopathological assessment of 

haematoxylin and eosin (H&E)-stained sections was carried out on all mice brains 

(Fig. 26c). Neuropathological results showed similar moderate spongiform 

alterations in each group of mice, with a major involvement of the hippocampus 

(Fig. 26d-f), thalamus (Fig. 26g-i) and somatosensory cortex.  

 For PrPres immuno-histochemical and biochemical analysis (Fig. 27) brain 

homogenates were treated with proteinase K (PK), analyzed by SDS-PAGE and 

Western blotting, using anti-PrP monoclonal antibody 6H4. 

Immunohistochemistry showed similar PrPres immunoreactivity in the form of 

synaptic and diffuse deposits in the cerebral cortex, basal ganglia, hypothalamus, 

hippocampus, brainstem, cerebellum, and thalamus (Fig. 27b-d), which was often 

affected by coarse PrPres deposition (Fig. 27e-g). Glial immunoreaction (GFAP) 

was mainly detected in the hippocampus, thalamus, mesencephalic nuclei, 

brainstem and the granular layer of the cerebellar cortex. To summarize, all 

immunohistochemical analysis (6H4, GFAP, CNPase) did not underline any 

difference between groups of mice challenged with different inocula. Kidneys, 

spleens and livers of mice inoculated with both RML and mock nanoparticles-

treated homogenates were analyzed, and indicated the lack of acute systemic 

toxicity following the injection of the particles. Even the brains of mice inoculated 

with mock pre-incubated with nanoparticles 2A or 5S did not reveal specific 

alterations correlated to a potential toxic effect of the particles on the CNS. These 

results were also confirmed by periodical MRI analysis (data not shown). 

Immunoblot analysis of brain homogenates revealed the same PrPSc profile for all 

groups of mice (Fig. 27a). 
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Figure 26. Incubation time, survival curves and vacuolation profile. Coated 2A and 5S gold 
nanoparticles were able to delay the incubation period of RML infected mice if compared with 
untreated controls (a), while only nanoparticles 2A treated animals showed a moderate but statistically 
significant increase in survival time compared with controls, whereas treatment with nanoparticles 5S 
was not effective (b). Vacuolation profile (c) was scored on a scale of 0-5 in the following brain areas: 
(1) dorsal medulla, (2) cerebellar cortex, (3) superior culliculus, (4) hypothalamus, (5) thalamus, (6) 
hippocampus, (7) septum, (8) retrosplenial and adjacent motor cortex, and (9) cingulated and adjacent 
motor cortex. Data are mean ± SEM. Micrographs were obtained from areas of hippocampal and 
thalamic regions (most affected by vacuolation) stained with haematoxylin-eosin (d-i). Spongiosis in 
mice inoculated with RML brain homogenates pre-incubated with nanogold 2A (d and g) or 5S (e and 
h), and untreated (f and i) are shown. Scale bar: 200 µm (d-f) and 100 µm (g-i). 
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Figure 27. PrPres immunohistochemical and biochemical analysis. Western blot analysis of PK-

resistant mouse PrPres. Immunoblot data revealed the same PrPSc profile in all groups of mice (a), while 
immunohistochemical results showed the same synaptic-diffuse pattern of PrPSc deposition for each 
group of mice (b-g). Micrographs were obtained from areas of hippocampus (b-d) and thalamus (e-g). 
Pyramidal cells layer and dentate gyrus of the hippocampus were spared from PrPres accumulation. 
Synaptic and coarse PrPres immunostaining was detected into the thalamus of every group of mice. 
Scale bar: 200 µm. 

2.4 Discussion 

 Due to their intrinsic properties as being non-toxic, inert to most chemical 

reactions, coupled with easy and fast preparation, pure AuNPs are excellent 

candidates for use in both therapeutic214 and diagnostic approaches. Citrate-

stabilized AuNPs maintain good long-term stability in solution. Gold nanoparticles 

can be functionalized using Layer-by-Layer (LbL) deposition.215,216 

Polyelectrolyte assembling on AuNPs is induced by electrostatic interactions 

between the oppositely charged polyelectrolytes. A supersaturated concentration 

of the polyelectrolytes was chosen for the LbL, in order to guarantee fast and 

complete surface coverage and good stability.214 

 The range for the number of deposited layers was chosen to present the 

precursor region described by Decher as model for the deposition of a strong and 

weak polyelectrolyte.224 The first five to eight layers of deposited polyelectrolytes 

differ from the following set of layers in terms of composition and thickness, and 

are called precursor layers. The attractive and repulsive forces of the underlying 

layers as well as that of the core contribute to the self-assembly of the 
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polyelectrolyte. If the core is negatively charged, the first positively charged 

polyelectrolyte layer will be self-assembled exclusively by attractive forces, and 

by binding they will overcompensate the charge of the core. For the next layer, the 

opposite charge of the first polyelectrolyte layer is present, but due to the vicinity 

to the core also the repulsive forces by the like-wise charged core. This leads to a 

less tight binding and a decreased amount of bound polyelectrolytes. Moreover, 

the polyelectrolyte layers penetrate each other in the precursor layer, and are 

thinner than the following set of layers, which are more distant from the core.224 

We used the intercalation of polycations and polyanions, containing either 

sulfonate or primary amine groups, to selectively bind and inhibit prion formation, 

creating a surface exposing both moieties randomly and in varying ratios. 

There is some reported evidence that polyamines can have an effect on PrPSc. 

Indeed, Supattapone and co-workers225 found that branched polyamines are able to 

disintegrate aggregates of PrPSc to undetectable levels. For polysulfates, the 

influence of their chemical structure on selective binding to either PrPC or PrPSc 

leading to prion inhibitory activity was also demonstrated.226 In our work, both 

functional groups were combined on the surface of the AuNPs in varying ratios, to 

obtain a platform of possible interactive sites for the misfolded PrP. 

 Two studies on the bio-distribution of citrate stabilized AuNPs should also be 

considered, though the results were somehow contradictory: De Jong and co-

workers227 found that only 10 nm particles were crossing the BBB, while Sonavane 

and co-workers228 found 50 nm particles in the brain. Our particles were found to 

have a hydrodynamic diameter 90 to 130 nm, and in electron microscopy the fully 

dehydrated polyelectrolyte matrix was condensed until it was only 1-2 nm thick. 

We assume that the polyelectrolyte shell loses some of its water molecules while 

crossing the BBB. 

 From previous experiments on cells of the BBB, it is known that AuNPs coated 

with different numbers of polyelectrolyte layers are cytotoxic (for example, 

porcine brain capillary endothelial cells).215 Moreover, a strong dependency on the 

number of layers and surface charge was observed. Polycations were more 

cytotoxic than polyanions and with lower number of layers were more cytotoxic 

than a higher number of layers. An additional binding of albumin to the final 

polyelectrolyte layer should diminish the toxicity, and animal experiments 

confirmed that after intracranial inoculation no toxicity leading to morphological 
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changes in the brain was present.229 

 Preliminary in vitro experiments showed the efficacy of both nanoparticles (2A 

and 5S) to interfere with prion propagation. Because of the limited information 

available about the toxic effects of these particles when injected in animals, we 

started our experiments by using a dosage of compound lower than those generally 

reported in the literature for other therapeutic approaches.227 Whereas 5S 

nanoparticles significantly increased only the incubation time of treated mice, 2A 

nanoparticles showed higher anti-prion activity. Indeed, even when 2A were used 

at nanomolar concentrations (25.35 nM), a moderate but statistically significant 

increase in both incubation and survival time was observed, thus indicating a 

possible interaction between PrPSc and the nanoparticles. Even though the animals 

were treated with just a single dose of nanoparticles the increase of incubation and 

survival time was statistically significant. Several studies are currently underway 

to determine the best 2A concentration, able to inhibit or perhaps completely block 

disease progression. To this end, several mice were intracerebrally infected with 

RML brain homogenate pre-incubated with higher dosages of 2A particles (53 nM 

vs 25.35 nM). Groups of control mice were also included to monitor the onset of 

general toxic effects. Since the gold 2A, modified with the addition of albumin in 

the outermost layer, were able to cross the BBB,229 new therapeutic approaches 

based on their injection into the tail vein of mice have already been scheduled. 

Coated nanogold is not only a potential drug delivery shuttle through the BBB but 

by itself it can be used as a drug for the treatment of prion disease and perhaps 

other neurodegenerative diseases. With different microscopic techniques like near 

infrared time domain (NIR-TD) imaging, X-ray tomography, confocal 

fluorescence microscopy and standard cell stains visualized by wide field light 

microscopy combined with fluorescence staining, it was possible to show that the 

particles accumulate in regions of the brain close to possible target cells of prion, 

Alzheimer’s and Parkinson’s diseases.229  

2.5 Conclusion 

 The polyelectrolyte multilayer-coated gold nanoparticles are a novel class of 

potential anti-prion drugs. While they showed in vitro very high efficacy at very 

low concentration, their potential in vivo to inhibit completely prion aggregation 

needs further improvement. A slight increase in incubation time and survival time 
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was observed for the 2A coated particles and at the tested concentration. Further 

concentrations as well as other coatings need to be studied in vivo as the 

correlation between the in vitro experiments and the in vivo inoculation is not so 

striking. Especially the extremely low concentration required to suppress complete 

the prion aggregation raise the expectations that this small amount of particles will 

pass the blood-brain barrier and will enter the brain parenchyma.      
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3. Discovery of a class of diketopiperazines as anti-prion 

compounds 

3.1 Introduction 

Prion diseases, also known as transmissible spongiform encephalopathies (TSEs), 

are neurodegenerative and infectious disorders that affect both humans and animals, 

and are not curable with drugs. Although reliable proof of principle was demonstrated 

in a variety of experimental models, and several small molecules have been identified 

as active against TSE, the mode of action and targets for most of these molecules 

remain largely unexplored. As a result, drugs effective against this process are still 

years away from approval.230 There are two main reasons why drug discovery for the 

treatment of prion diseases has not progressed as rapidly as in other pharmaceutical 

fields. First, human prion diseases are very rare. Each year, only approximately 300 

people in the USA and approximately 100 people in the UK succumb to various forms 

of prion disease.231 Nevertheless, these disorders have come to public and scientific 

attention due to the fact that they can be transmissible among humans and, in 

particular conditions, from animals to humans. The emergence of a CJD variant in the 

1990s demonstrated the transmissibility of BSE to humans and set the scene for a 

hypothetical epidemic scenario.231 Second, TSE is a conformational disease,232 where 

the cellular form of the prion protein (PrPC) is converted to a misfolded variant (PrPSc) 

through a nucleated polymerization process.37 From a medicinal chemistry 

perspective, all conformational diseases are ‘black boxes’ because the knowledge of 

the 3D structure and mechanistic properties of the target, fundamental prerequisites in 

modern drug discovery, are mostly unknown. In general, high-resolution structural 

information on amyloid fibrils is very scarce and is currently almost exclusively 

restricted to amyloid fibrils formed by small peptides. This is mostly due to the 

inability of X-ray crystallography and NMR spectroscopy to address insoluble, 

filamentous specimens.233 In the case of PrP, the partial structure of PrP has been 

solved to high resolution,234 whereas for PrPSc only models have been proposed, 

including the β-helix fold41 and the spiral model.235 

As a consequence, if we exclude the discovery of aptamers236 and RNA 

interference,163 most of the lead compounds identified so far are derived from 

screening approaches in established cellular models. Based on these considerations, it 
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emerges that rational design of anti-prion compounds is still a big challenge for 

medicinal chemists.  

3.2 Materials and methods 

3.2.1 Design rationale 

In an effort to identify anti-prion lead compounds with unprecedented molecular 

frameworks, we started from the following basic assumption. We noticed that most of 

the anti-prion molecules possessed a symmetrical bifunctional structure consisting of 

two moieties joined via an appropriate spacer. This is the case for the dye Congo red84 

and its analogues,237 the polysulfonated aromatic urea derivative suramin,131 the 

natural product curcumin,132 the bis-acridine218 and bis-quinoline analogues,238 and 

the diphenylmethane derivative GN8239 (see Fig. 28 for structures). Notably, among 

them, planar molecules with aromatic end groups share common anti-aggregating 

properties.240  For all of these compounds, and for bivalent compounds in general, the 

role of the spacer has been demonstrated to be very critical.241 

Therefore, in our search of novel bifunctional molecules, we looked for a spacer that 

might have an active role in the molecular recognition process. In inhibiting protein-

protein interactions (PPIs), peptides mimicking the interacting zone have been 

considered as relevant starting points in the rational design of effective molecules.242 

Similarly, peptidomimetics have become effective modulators of a range of 

biologically significant PPIs243 by orienting their side-chain substituents in a spatially 

defined manner. Furthermore, these compounds are stable to proteolysis and 

consequently possess better drug-like properties than peptides. 

Among possible peptidomimetic fragments, we focused on the 2,5-diketopiperazine 

(DKP) scaffold for several reasons: (i) it is synthetically readily accessible and 

amenable to compound library generation; (ii) DKP derivatives have been shown to 

modulate PPIs,244 to possess neuroprotective activities,245 and also to cross the blood-

brain barrier (BBB);246 (iii) it has been extensively explored in medicinal 

chemistry.247 Therefore, it seemed conceivable that DKPs carrying (Z)-alkene units of 

general structure I  (Fig. 28) could serve as a template for a diverse array of 

pharmacophores towards the identification of novel bifunctional structures for the 

treatment of prion diseases. Building on this, a compound library was generated by 

appending several aromatic and heteroaromatic rings in positions 3 and 6 of the 3,6-

dimethylenepiperazine-2,5-dione scaffold. The role of aromatic residues in molecular 

recognition and self-assembly processes leading to various fibrillar aggregates has 
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been recognized as critical.248 Consequently, targeting these aromatic residues has 

been proposed as an important strategy to inhibit amyloid formation.248 

In the case of our DKPs 1a-c (see Table 5 for structures), we selected various 

polymethoxylated benzenes as aromatic appending groups, in view of their structural 

similarity with those of curcumin.132 The choice of pyridine90,104 and quinoline140,238 

rings present in 1d-i was dictated by the fact that these ring systems are frequently 

observed in anti-prion compounds. Indole, furan, thiophene and benzene derivates 1j-

n were then also synthesized to enlarge the chemical diversity of the library. 

Heteroaromatic β-carboline derivatives 1o and 1p were purposely designed with the 

aim to obtain potential fluorescent probes, owing to the excellent native fluorescence 

found in carboline systems249 that has led to their use as probes for biomolecules.250 

To study the importance, if any, of an appropriate planar conformation of 1a-p, some 

singly reduced (2a-d, 2j-k, 2q) and a saturated derivative (3d) were also synthesized 

(structures given in Table 6). 

     
Figure 28. Design strategy leading to novel DKP derivatives of general structure I. 
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3.2.2 Library synthesis  

 The preparation of 3,6-bis(arylmethylene)-2,5-piperazinedione compounds 1a-p 

was achieved in a single step by means of an AB2-type three-component reaction251 

involving treatment of commercially available 1,4-diacetyl-2,5-piperazinedione with 

two equivalents of the suitable aromatic aldehydes in the presence of a base 

(triethylamine). As expected based on literature precedent,252 the double aldol 

condensations were accompanied by nitrogen deacetylation and were completely 

diastereoselective, affording exclusively the Z,Z-isomers. Selective reduction of one 

of the double bonds in a selection of these compounds (1a-d, 1j-k, 1q) was achieved 

by treatment with zinc in refluxing acetic acid.253 These conditions left all other 

groups present in the starting materials unaffected, with the exception of formyl 

groups, which were reduced to the hydroxymethyl units found in 2q. The preparation 

of the doubly saturated compound 3d was achieved either by catalytic hydrogenation 

of 1d or by prolonged treatment of 2d with zinc in acetic acid (Scheme 1, Tables 5 

and 6).  
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Scheme 1. Library synthesis. Reagents and conditions: (i) Et3N, DMF, room temperature (RT), 14 

h or Et3N, DMF, 150°C, 12-48 h; (ii) Zn, AcOH, reflux, 1-48 h; (iii) H2 (30 psi), 30% Pd-C, CH3OH, 
RT, 24 h; (iv) Zn, AcOH, reflux, 24 h.  

3.2.3 Screening methodology 

A cell-screening assay was used to test anti-prion activity across the synthesized 

compounds. Their ability to reduce PrPSc concentrations in scrapie-infected mouse 

hypothalamus (ScGT1) cells was determined by Western blotting followed by 

densitometry of the PK-resistant PrPSc, and PrPSc levels were quantified by ELISA. 

Library compounds were initially screened at 10 µM, and their ability to reduce PrPSc 
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levels for five days was evaluated by comparison with the untreated control. For 

entries 1d and 1o the EC50 values, which represent the effective concentrations for 

half-maximal inhibition, were also calculated (Table 7). Two well-documented anti-

prion agents were investigated as positive controls; EC50 values of 6.2 ± 0.4 and 0.4 ± 

0.1 µM were obtained for imipramine and quinacrine, respectively. 

All assays for cell culture, drug treatment, cell viability, PrPSc detection and 

quantification were performed in accordance to the protocols described in parts 2.2.4, 

2.2.5 and 2.2.6. 

3.2.4 In vitro effect of test compounds on prion fibril formation 

 Fibril formation of PrP was performed using a previously described method with 

minor modifications.219 Briefly, 20 µL of test compound at the indicated 

concentrations were added to each well containing 180 µL of reaction solution, 

including 50 µg/mL recMoPrP (23-230) or recMoPrP(89-230), 0.4 M GdnHCl and 10 

µM ThT in PBS buffer (1X) in a 96-well black plate (BD Falcon). Each sample was 

performed in four replicates. Each well contained one 3 mm glass bead (Sigma). The 

plate was covered with sealing tape (Fisher Scientific), incubated at 37oC with 

continuous shaking and read on SpectraMax Gemini EM fluorescence plate reader 

(Molecular Devices) by top fluorescence reading every 5 min (excitation, 444 nm; 

emission, 485 nm). 

 

3.3 Results and discussion 

3.3.1 Biological activity  

Firstly, the cytotoxic effects of series 1, 2, and 3 compounds were determined by 

calcein-AM assay in ScGT1 cell line. As reported in Tables 5 and 6, the treatment of 

ScGT1 cells with most test compounds (10 µM) did not lead to any significant change 

in cell viability, with the exception of 1a, 1c, 1p, 2a and 2j, where the cell viability 

was lower than 50%. Therefore, the latter were not screened for prion replication, 

whereas the other library members were assayed at a concentration of 10 µM. From 

an analysis of the results, it is possible to derive that, at this concentration, not all of 

the tested DKPs displayed activity. The DKP fragment may be a scaffold for anti-

prion activity; however, the appended substituents have a crucial effect on biological 

activity. In fact, among the selected aromatic rings, derivatives bearing a benzene 

(1n), furan (1l), thiophene (1m) or quinoline (1g-h) moiety had very low or no 

activity. The most striking result of this investigation was the remarkable activity 
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displayed by the 2-pyridyl derivative 1d, which completely inhibits prion replication 

at 10 µM (100.8 ± 2.5 % inhibition). Intriguingly, when the pyridine nitrogen was 

moved to positions 3 (1e) or 4 (1f), the activity decreased to 12.4% and 11.5%, 

respectively. Similarly, the potent activity of 1d was reduced by fusing additional 

aromatic rings, as in the 2-quinolinyl 1g and β-carbolin-2-yl 1o. 

Significant preliminary structure-activity relationships can be gathered from this first 

set of tested compounds. DKP bearing a 2-pyridine substituent was revealed as a strict 

requirement for potency in the cellular assay. Intriguingly, this result is in line with 

that obtained in a recently reported series of anti-prion compounds, where a 2-

substituted pyridine conferred optimal activity.254 The only exception to this trend was 

the 4-quinolyl derivative 1i, which was the only compound lacking the key molecular 

feature and displaying an activity higher than 20%. Notably, several 4-substituted 

quinolines have shown anti-prion activity.140,238 As a general comment, it should be 

mentioned that in cellular assays changes in activity also correlate to physicochemical 

parameters, such as solubility and permeability. However, the results obtained could 

imply that a planar conformation, as in 1d, is as a basic requirement for activity. 

Starting from this assumption, we were keen to examine the effects of reduction on 

the double bonds at positions 3 and 6 of the DKP system. To this end, a second library 

was synthesized (2a-d, 2j-k , 2q), generated from the singly reduced DKP scaffold in 

combination with a subset of the aromatic substituents reported in Table 5 (Scheme 1, 

Table 6). As expected, even in this series the most active compound was the 2-pyridyl 

derivative 2d. Again, this can be rationalized by assumption that at least one half of 

the molecule is able to assume the planar conformation critical for activity. In line 

with this speculation, the doubly saturated compound 3d showed lower potency. In 

this second library, an interesting profile was shown by 1-tosylindole 2k, which 

exhibited 37.7% inhibition. 

Given the high inhibitory activity of 1d and the possible use of 1o as a fluorescent 

probe, their anti-prion potential was studied in more detail by calculating their EC50 

values. For 1d, a remarkable single-digit micromolar EC50 value (4.1 ± 0.2 µM; Table 

7) was observed, comparable to that of imipramine (6.2 ± 0.4 µM), a reference anti-

prion compound. Notably, 1o (EC50 = 15.8 ± 0.9 µM) was only fourfold less active 

than 1d, emerging as a promising fluorescent probe.  
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Table 5. Reaction conditions, yields and screening results for the DKP Series 1 

  

 

  

  
1a-p 

  

Cpd R Conditions Yield [%] 
Viable cells 

[%] b 

PrPSc 

inhibition 

[%] c 

1a 

 

RT, 16 h 97 32.2 ± 1.0a NDd 

1b 

 

RT, 16 h 99 72.7 ± 3.3 1.4 ± 0.1a 

1c 

 

RT, 16 h 74 20.6 ± 1.7 ND 

1d 
 

reflux, 48 h 64 50.9 ± 2.1 100.8 ± 2.5 

1e 
 

reflux, 16 h 41 102.7 ± 3.7 12.4 ± 0.5 

1f 
 

reflux, 24 h 68 108.5 ± 4.2 11.5 ± 0.5 

1g 

 

reflux, 20 h 80 71.7 ± 3.1 5.1 ± 0.1 

1h 

 

reflux, 16 h 65 63.7 ± 2.8 3.5 ± 0.1 

1i 

 

reflux, 16 h 84 94.8 ± 4.1 20.6 ± 0.8 

1j 

 

reflux, 16 h 94 81.3 ± 2.5 7.4 ± 0.5 
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1k 

 

RT, 16 h 80 98.4 ± 3.3 9.4 ± 0.4 

1l 
 

reflux, 16 h 68 83.0 ± 2.9 0.14 ± 0.02 

1m 
 

reflux, 16 h 61 73.6 ± 3.5 1.8 ± 0.1 

1n 

 

reflux, 16 h 60 85.6 ± 3.1 0.11 ± 0.01 

1o 

 

reflux, 16 h 52 77.0 ± 3.2 10.4 ± 1.2 

1p 

 

reflux, 16 h 58 37.3 ± 2.6 ND 

a Values are mean ± the standard deviation of three experiments. b ScGT1 cells were cultured in DMEM 
with 10% FBS and plated into 96-well plates (25000 cells per each well). The compounds were 
dissolved in DMSO (100%) and diluted in PBS (1X). Test compound (10 µM) was added and the cells 
were incubated for five days at 37°C, 5% CO2. The results were developed by calcein-AM fluorescence 
dye and read by microplate reader. c Effect of test compounds on inhibition of scrapie prion replication. 
ScGT1 cells were cultured in DMEM with 10% FBS, split 1:10 into Petri dishes and incubated for two 
days at 37°C and 5% CO2. Test compound (10 µM), being non-cytotoxic, was added to the plated cells. 
After five days incubation, the protein content of the cells was extracted, quantified, digested with PK, 
and western blotted. d ND: not determined. RT: room temperature. 
 
Table 6. Reaction conditions, yields and screening results for the DKP Series 2 and 3 

 

 

 

 

 

 2a-d, 2j-k, 2q  3d  

Cpd R Conditions 
Yield 

[%] 

Viable cells 

[%] b 

PrPSc 

inhibition 

[%] c 

2a 

 

125 °C,  20 h 100 36.4 ± 1.2a NDd 
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2b 

 

125 °C,  48 h 100 103.2 ± 4.2 5.9 ± 0.2a 

2c 

 

125 °C,  83 h 98 96.9 ± 3.8 6.8 ± 0.3 

2d 
 

125 °C,  1 h 52 100.1 ± 4.4 18.1 ± 0.7 

2j 

 

125 °C,  48 h 76 27.5 ± 1.3 ND 

2k 

 

125 °C,  16 h 96 90.9 ± 3.6 37.7 ± 2.2 

2q 
 

125 °C,  16 h 20 110.5 ± 5.3 13.8 ± 0.4 

3d 
 

125 °C,  22 h 58 107.4 ± 4.6 12.2 ± 0.2 

a Values are mean ± the standard deviation of three experiments. b ScGT1 cells were cultured in DMEM 
with 10% FBS and plated into 96-well plates (25000 cells per each well). The compounds were 
dissolved in DMSO (100%) and diluted in PBS (1X). Test compound (10 µM) was added and the cells 
were incubated for five days at 37°C, 5% CO2. The results were developed by calcein-AM fluorescence 
dye and read by microplate reader. c Effect of test compounds on inhibition of scrapie prion replication. 
ScGT1 cells were cultured in DMEM with 10% FBS, split 1:10 into Petri dishes and incubated for two 
days at 37°C and 5% CO2. Test compound (10 µM), being non-cytotoxic, was added to the plated cells. 
After five days incubation, the protein content of the cells was extracted, quantified, digested with PK, 
and western blotted. d ND: not determined. 
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Table 7. Cell viability and inhibition of PrPSc accumulation in ScGT1 cells grown 

with 1d and 1oa 

 
 
 
 
 
 
 
 
 
 
 
 
 
  
a Values given are the mean ± the standard deviation (SD) of three experiments. b The concentration of 
test compound required to reduce the PrPSc level in cells to 50% versus untreated cells (EC50). 

c Cell 
viability at the EC50 concentration was determined by calcein-AM cytotoxicity assay and expressed as 
an average percentage of viable cells versus untreated control cells. 

 

3.3.2 Modeling Studies 

To better elucidate the putative relationships between bioactivity and the planarity 

of tested compounds, we modeled their structural conformations. Initial structures of 

molecules 1d, 1g, 1l, 1m, 1n and 1o were drawn in Marvin version 5.0.1 from 

ChemAxon.255 3D low-energy geometries were computed by means of density 

functional theory using GAUSIAN 03 software suite.256 The B3LYP function was 

used in conjunction with a 6-31G** basis set. Berny geometry optimization procedure 

was applied until the interatomic forces were below 0.08 cal/Å. The planarity of the 

optimized geometries was measured as the value of the dihedral angle (ω) defined by 

the atoms C=C–C– (C/ N/ O/ S) (see Table 8). All molecules turned out to be planar, 

with the exception of the benzene-substituted DKP 1n. In fact, the benzene rings are 

rotated by 33.6o with respect to the DKP plane in 1n (Fig. 29). Molecular planarity 

may be a necessary, but not sufficient, condition for anti-prion activity. In fact, 

modeling results predict that compounds 1g, 1l, 1m and 1o are equally as planar as 1d 

(see ω values in Table 8), but possessed lower activity. 

The difference between planar (1g, 1l, 1m, 1o and 1d) and non-planar (1n) molecules 

is due to the presence or absence of an intramolecular hydrogen bond between the R 

substituents and the DKP ring. To clarify the role of the intramolecular hydrogen 

0 0.1 1 5 10 15 20µM 0 0.1 1 5 10 15 20µM

 

0 0.1 0.5 1 5 10µM 0 0.1 0.5 1 5 10µM

 

 
Western blot 

 
60.4 ± 4.1 

 

 
75.2 ± 2.1 

 

 
Viable cells c (%)  

 
15.8 ± 0.9 

 

 
4.1 ± 0.2 

 

 
EC50 

b (µM) 

   
Compound 
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bond in biological activity, the conformational analysis of molecules 1d, 1g, 1l, 1m, 

1n and 1o was extended to conformations with the substituents rotated by 180o of ω. 

New geometries were optimized following the above-mentioned procedure. The 

corresponding flipped conformers were unable to form an intramolecular hydrogen 

bond. The loss of the hydrogen bond and the steric hindrance present between 

adjacent groups broke the planarity of the compounds, disrupting the π-electron 

conjugation (see Fig. 29). These flipped conformers (non-planar) were less stable than 

the planar ones. The energy difference between these two conformers served as a 

measure of the planarity strength (see Table 8). The planar geometry of 1d was the 

most stable among the selected series, followed by 1g and 1o, which could also form 

a canonical intramolecular hydrogen bond. Notably, these data parallel those of 

activity (see Table 8). Conversely, the planarity of molecules 1l and 1m, which were 

not active, is very weak. Taken altogether, these calculations confirm that anti-prion 

activity of this subset of molecules is directly related to their capability to retain a 

planar conformation. 

                         
Figure 29. 3D structure of a planar (1d) and a non-planar (1n) DKP; the difference in geometry is 

due to the presence or absence of intramolecular hydrogen bonds. 
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Table 8. The putative relationships between biological activity and the planarity of 
tested compounds 

 

 

Cpd R 

PrPSc 
inhibition at 10 µM 

(%)  
 

Planarity  
 

(ω degrees) 

Planar Stabilitya 
 

(∆E kcal/mol) 

1d 
 

100.8 ± 2.5 0.02 18.2 

1g 

 

5.1 ± 0.1 0.01 15.6 

1l 
 

0.14 ± 0.02 0.00 7.3 

1m 
 

1.8 ± 0.1 0.00 1.8 

1n 

 

0.11 ± 0.01 33.60 0.0 

1o 

 

10.4 ± 1.2 0.07 17.2 

aA planar stability defined as the energy difference between flipped conformers 

 

3.3.3 Mechanism of action 

The biological assay performed allows us to discover compounds that are effective 

at any of the several steps of the misfolding pathway in the cell. Thus, compounds 

that block PrPC synthesis, stabilize PrPC, inhibit its conformational conversion and/or 

stimulate cellular clearance can be identified. Therefore, the mechanism of action of 

the active compounds must be investigated. Based on the consideration that planar 

aromatic molecules are reported as good inhibitors of fibril formation in several 

neuronal amyloidoses,257 we decided to study the behavior of 1d in a PrP fibrillation 

assay. We used as templates recombinant mouse (recMo) full-length PrP(23-230) and 

truncated recMoPrP(89-230), which both form amyloid fibrils.219 The anti-
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aggregation potential of 1d (50 µM) was quantitatively detected by observing the 

increase in the mean lag phase of the fibrillation reaction, compared with control 

samples. Compound 1d (50 µM) exhibited PrP amyloid fibril formation inhibitory 

activity, showing a much slower kinetics than the control, in which the lag phase was 

57 hours and 15 hours for recMoPrP(23-230) and recMoPrP(89-230), respectively. In 

particular, 1d significantly extended the lag phase to 72 hours in recMoPrP(23-230) 

and 48 hours in recMoPrP(89-230) fibrillation assays. Given the potency of 1d at 

inhibiting recPrP fibril formation, we suggest that the compound might interact 

directly with recPrP to prevent its conversion to the pathogenic PrPSc-like form. 

 

3.4 Conclusion 

In conclusion, we have identified DKP as a novel scaffold in anti-prion drug design. 

Compound 1d, thanks to its planar conformation, is able to inhibit PrP amyloid fibril 

formation in vitro. Moreover, it inhibits prion replication in the low micromolar range 

in a cellular context. For these reasons, 1d is a lead candidate for further optimization 

studies. While preliminary, these results represent a first step toward the discovery of 

novel DKPs with therapeutic potential against prion diseases. Clearly, proof of 

concept will involve in vivo investigation of the profile of 1d.  

A second major outcome of this work is the identification of the β-carboline 

derivative 1o. Fluorescent probes that specifically target amyloid aggregates are of 

great relevance to advance our understanding of the molecular pathogenesis 

underlying cerebral amyloidoses.257,258 Derivative 1o might represent a valuable 

starting point to design novel probes for the optical imaging of amyloid plaques in 

prion disease. Properly addressed studies aimed at the investigation of the fluorescent 

profile of 1o and its labeling of amyloid fibrils are in progress and will be reported in 

due course.  
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4. Anti-prion activity and preliminary structure-ac tivity 

relationship of benzoquinones 

4.1 Introduction 

Despite the numerous efforts aimed at identifying compounds useful against prion 

diseases, there are still no therapies on the market. Therefore, it is of continued 

importance to identify chemical scaffolds to be exploited for the design of novel 

drugs.259 Most of the anti-prion molecules that have been identified so far are derived 

from screening approaches. Structurally, diverse chemical compounds covering a 

broad range of the chemical space have been identified.226 Intriguingly, most of them 

share a common bivalent structure. This is the case of the natural product curcumin,132 

the bis-acridine analogues,218,260 the diphenyl-methane derivative (GN8),239 

bebeerines,96 bisepigallocatechin digallate,96 2,2’-bisquinolines,140 4,5-

dianilinophthalimide,261 analogues of Congo red237 and diketopiperazines (DKP) 

derivatives.262 

Although a structure-activity relationship is not easy to discern from such chemically 

unrelated compounds, we envisaged that bivalent ligands bearing lipophilic bi- or tri-

(hetero)-cyclic scaffolds connected by a central core might possess anti-prion activity. 

Bivalency, and multivalency in general, is a well-known and efficient strategy widely 

used by medicinal chemists to enhance binding efficacy in molecular recognition 

processes.263 Multivalent chemical probes, featuring multiple copies of an amyloid 

binding motif connected by a spacer, have been developed with the aim to 

simultaneously bind to several binding sites or several amyloid peptides, thus 

achieving higher potency.232,264 

In prion research, by joining two quinacrine moieties through a piperazine spacer, 

May and co-workers afforded the first bivalent anti-prion ligand BiCappa (BC; Fig. 

30), which was 10 times more potent than monomeric quinacrine.218 Heterodimers 

incorporating recognition elements taken from quinacrine itself and imipramine with a 

piperazine unit were shown to improve the anti-prion efficacy of quinacrine up to a 

low nanomolar range.265 Furthermore, assembling multiple acridine or curcumin 

moieties to a cyclopeptide scaffold has emerged as a promising strategy for the 

development of inhibitors against amyloid formation.266,267 
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Figure 30. BiCappa (BC) structure. 

 

Protein-protein interactions (PPIs) are crucial elements in mediating diverse cellular 

physiological and pathological events.268 They are involved in fibrillation processes 

and thus play a pivotal role in the pathogenesis of several neurodegenerative 

diseases.269,270 Systematic analysis of PPI interfaces reveals great heterogeneity, from 

large and flat to narrow and structured interactions.271 However, the majority of PPIs 

deal with protein surfaces,272 where a complex network of weak interactions takes 

place. Peptides may be good PPI blockers.1,273 However, they are not optimal drug 

candidates, due to problems with bioavailability and enzymatic degradation. To 

overcome this limitation, one could use combinatorial chemical libraries based on 

small molecules. However, the widely spaced interactions required for PPI blockers 

are difficult to mimic with small molecules. Despite this challenge, the strategy holds 

great potential for identifying novel lead compounds against PPIs.274 The extreme 

attractiveness of PPIs as drug targets has led to important progresses in this field in 

the last decade.268,275,276 In particular, Janda and co-workers have recently 

demonstrated the ability of what they have named ‘‘credit card” libraries to disrupt 

PPIs of biological relevance.277 The chemical structures of these libraries are built 

upon flat, rigid scaffolds, decorated with appended groups that span a wide range of 

size, aromaticity, polarity, and hydrogen-bonding capability.277 Their rationale was 

based on the concept that the ‘hot spot’ regions in protein-protein interfaces are rich in 

aromatic residues. 

Building on the bivalent approach, we have recently reported that a 2,5-diamino-

1,4-benzoquinone (BQ) linked to two phenylalanine residues displayed remarkable 

anti-prion activity in a cellular model of prion replication278 (see part 4.2 in the 

thesis). In this compound, because of a resonance effect of the BQ ring, a 

hydrophobic and planar system is generated, which might interfere, through 

hydrophobic interactions, with aromatic hydrophobic residues critical to fibril 

formation.279 This hypothesis is corroborated by the key role of planarity as a major 
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determinant for anti-prion activity in a recently synthesized series of bivalent DKP262 

(see part 3 in the thesis). Altogether these results allowed us to propose that the 

planar BQ scaffold might be considered as a privileged motif in modulating PPIs and 

as a promising spacer in the search for more effective bivalent anti-prion chemical 

probes280 (see part 4.3 in the thesis). 

  

4.2 Synthesis and evaluation of a library of 2,5-bisdiamino-benzoquinone 

derivatives as probes to modulate protein-protein interactions in prions 

So far, several peptides have been developed with the specific aim of blocking PPIs 

and reversing the aberrant conformational changes. A short synthetic peptide (iPrP13, 

DAPAAPAGPAVPV), designed by Soto and co-workers on the basis of sequence 

homology with PrPC, acted as a β-sheet breaker, inducing unfolding of β-pleated sheet 

structure.13 More recently, Gilbert and co-workers281 reported on a series of small 

peptides active at levels of 100 µM in two prion disease models and in an in vitro 

anti-aggregation polymerization assay. Prompted by the advantages of using small 

molecules as PPI inhibitors as opposed to peptides, here we propose the planar 2,5-

bisdiamino-benzoquinone scaffold as a privileged motif in modulating PPIs. This is 

based on (i) Janda’s criteria for credit card libraries;277 (ii) the finding that a 2,5-

bisdiamino-benzoquinone derivative binds to β-amyloid (Aβ), and interferes with the 

native ability of Aβ to self-assemble, by disrupting PPIs.282 Due to a resonance effect, 

a hydrophobic and planar system is generated in 2,5-bisdiamino-benzoquinones. This 

should, in principle, perturb PPIs in the fibrillogenesis processes.283 

Therefore, in our search for novel anti-prion compounds, we decided to attach seven 

amino acid methyl esters to two different benzoquinone cores, generating a small 

combinatorial library of fourteen 2,5-bisdiamino-benzoquinones (1-7a and 1-7b), 

reported in Figure 31. The selected amino acid esters (AlaOMe (1), Nω-Nitro-

ArgOMe (2), Nε-BOC-LysOMe (3), IleOMe (4), MetOMe (5), PheOMe (6), TrpOMe 

(7)) act as capping groups, allowing us to enlarge the library’s chemical diversity by 

exploiting differences in size, aromaticity, polarity, and hydrogen-bonding capability. 

Analysis of natural amino acids involved in PPIs revealed that Trp, Phe, Tyr, and Ile 

are the most important in driving aggregation.284 Consequently, it is highly 

conceivable that the novel derivatives bearing these motifs might compete for binding 

and, therefore, efficiently disrupt the assembly of prion protein. 
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Figure 31. Chemical structures of 1-7a and 1-7b. 

 

To develop an efficient parallel synthesis approach, we focused on the displacement 

reaction of tetrahalo-substituted quinones (chloranil, a and bromanil, b) with amino 

acid methyl esters (1-7) to afford a library of fourteen 2,5-diamino-3,6-dihalo-

[1,4]benzoquinone derivatives. We carried out a one-pot reaction at room temperature 

that, in most cases, would achieve the quantitative conversion of the starting reactant 

within 3 hours (see Scheme 2). Moreover, we developed an operationally simple and 

versatile work-up protocol, which involved recovering high purity final products by 

filtration upon addition of water to the reaction mixture.  

           
 

Scheme 2. Library synthesis. Reagents and conditions: (a), EtOH, NEt3, 3 h, 30-45% yield.  
 

A cell-screening assay was used to test anti-prion activity across the synthesized 

library compounds. The ability of 1-7a and 1-7b to reduce PrPSc concentrations in 

ScGT1 cells was determined by Western blotting followed by densitometry of the PK-

resistant PrPSc. PrPSc levels were quantified by ELISA test. First, we determined the 

effects of library compounds on cell viability (Table 9). Compound toxicity is 
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expressed as an average percentage of viable cells when treated with a compound 

concentration of 1 µM, versus control cells treated with no compound. For compound 

6a, the LC50 value (lethal concentration, 50%) for ScGT1 cells was also identified. 

Anti-prion activity is expressed as the average percentage of PK-resistant PrPSc 

remaining after incubation with compound at the given concentration, versus control 

cells incubated with no compound. For entries 6a, 6b, and 7a, we also calculated the 

EC50 values, which represent the effective concentrations for half-maximal inhibition. 

 
Table 9. Cell viability and anti-prion activity on ScGT1 cells of library compounds 
 

 
 
 

Cpd 

% of viable cells 
at 1 µMb 

 

% of PrPSc 

inhibition at 1 µM  c 

 

EC50
c (µM) LC 50

b (µM) 

1a 71.6 ± 5.4a 0.36 ± 0.03a   
1b 91.2 ± 6.8 0.29 ± 0.05   
2a 81.4 ± 8.7 0.23 ± 0.01    
2b 74.1 ± 4.3 0.31 ± 0.03   
3a 40.7 ± 5.5 NDd   
3b 52.3 ± 5.9 ND   
4a 88.2 ± 6.1 6.6 ± 0.4   
4b 91.3 ± 8.8 28.1 ± 1.5   
5a 95.5 ± 6.2 4.8 ± 0.7   
5b 96.1 ± 7.5 11.4 ± 0.5   
6a 68.4 ± 7.3 73.2 ± 3.3 0.87 ± 0.1 2.4 ± 0.2 
6b 80.2 ± 5.8 18.1 ± 0.5 3.6 ± 0.5  
7a 96.0  ± 7.6 0.25 ± 0.04 7.7 ± 1.2  
7b 65.9 ± 3.4 0.43 ± 0.01   

 

a Values are the mean of three experiments, standard deviations are given. b ScGT1 cells were cultured 
in DMEM with 10% FBS, plated 25000 cells in each well of 96-well plates. The compounds were 
dissolved in DMSO (100%) and diluted in PBS (1X) before adding various concentrations (1 nM - 10 
µM) and the cells were incubated for five days at 37°C and 5% CO2. The results were developed by 
calcein-AM fluorescence dye and read by microplate reader. c Effect of library compounds on 
inhibition of scrapie prion replication. ScGT1 cells were cultured in DMEM with 10% FBS, split 1:10 
into Petri dishes and incubated for two days at 37°C and 5% CO2. Then, various compound 
concentrations (0.1 nM - 1 µM), being non-cytotoxic, were added to the plates. After a five-day 
incubation, proteins of cells were extracted, quantified, digested with PK, and western blotted. d ND: 
not determined. 
 

Analyzing the results in Table 9, we note some interesting trends. The cytotoxic 

effects of 1-7a and 1-7b were first determined by a calcein-AM assay in the ScGT1 

cell line. As reported, treating ScGT1 with the compounds (1 µM) did not 

significantly modify cell viability. However, treatment with the BOC-Lys derivatives 

3a and 3b decreased cell viability by percentages of 40% and 52% respectively. 

Because of the toxicity profile shown, 3a and 3b were not screened for prion 
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replication, whereas the other library members were assayed at a concentration of 1 

µM. Notably, despite this low concentration range, three couples of library hits were 

active against PrPSc accumulation. IleOMe (4a-b), MetOMe (5a-b) and PheOMe (6a-

b) derivatives of both series at 1 µM displayed activities ranging from 4.8% to 73%. 

Conversely, AlaOMe (1a-b), Nω-Nitro-ArgOMe (2a-b), TrpOMe (7a-b) derivatives 

had no effect at that concentration. Due to its low cytoxicity, 7a could also be tested at 

higher concentrations, revealing a fair EC50 value of 7.7 µM. For 6a, we found a 

remarkable submicromolar EC50 value (0.87 ± 0.10 µM), comparable to that of 

quinacrine (0.4 ± 0.1 µM), a reference anti-prion compound.285,286 The high activity of 

6a and 6b was not unexpected, as it is in line with the well-known central role of pi-

stacking interactions in self-assembly processes in the fields of chemistry and 

biochemistry.287 

To better rationalize the obtained results, we applied a systematic procedure for 

identifying key fragments responsible for a given activity.288 We used an algorithm 

which breaks down a structure into fragments.255 Subsequently, all the obtained 

substructures were related to biological activities to identify hot fragments. The 

analysis provides a score [100 – 0] for each fragment, which gives an indication of 

how often a fragment occurs in the active and inactive structures (Fig. 32). From this 

preliminary computational study, we have identified that the 2,5-bisdiamino-

benzoquinone linked with two phenyl rings by a spacer is a good anti-prion motif. In 

addition, our analysis suggests the relevance of the atomic size of the substituents in 

position 3 and 6 at benzoquinone ring (Cl being better than Br), with an inverse 

relationship to van der Waals radius. Both items of information can be exploited to 

design further series of anti-prion small molecules. 

 

                          
Figure 32. Substructures identified from the synthesized library. 
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Despite the small number of compounds synthesized, the results suggest that some 

are active against prion replication. Although the exisiting derivatives were overall 

quite cytotoxic toward ScGT1 cells, we identified entries 6a and 6b as hit compounds 

for further lead optimization studies. At a time when it remains challenging to design 

chemical entities able to target PPIs, these studies might shed light on the underlying 

principles governing molecular recognition and the chemical basis for the inhibition 

of quinone derivatives in prions.  

  
4.3 Evaluation and preliminary structure-activity r elationship of 2,5-diamino-

1,4-benzoquinones as a novel class of bivalent anti-prion compound 

4.3.1 Materials and methods 

4.3.1.1 Design rationale 

We have designed a small combinatorial library of bivalent ligands whose general 

structure is depicted in Figure 33. The ligands feature the BQ nucleus as central core, 

with two linkers in positions 2 and 5 connecting two terminal moieties. As linkers, we 

selected three polyamine chains (24-26, Scheme 3) that would allow exploring 

different lengths and chemical composition for the different molecules. This is of 

particular importance, since linker length has been shown by May and co-workers to 

be very critical against PrPSc formation for the bivalent acridines series.218    

                         

 Figure 33. General structure of the designed library compounds. 

 
As terminal moieties, starting from the consideration that aromatic groups provided 

the best activity in the previous series of BQ compounds (see part 4.2 in the thesis), 

we selected several aromatic prion recognition motifs, such as 6-chloro-2-

methoxyacridine (as in 1-3, Scheme 3), 7-chloroquinoline (4-6), and 1,2,3,4-

tetrahydroacridine (THA) (7-9). Several acridine and quinoline derivatives have been 

shown to inhibit PrPSc formation in infected cells and to bind to prion 
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proteins.140,238,289 Given that the analogous THA-9-amine is active against yeast 

prion,290 derivatives 7-9 were also designed. As a second step, on the basis of the 

remarkable profile shown by 5, three other derivatives (10-12) were designed with the 

aim of further optimizing activity in the existing series of compounds. Herein, we 

present a solution-phase parallel synthesis of a library of bivalent BQ derivatives, 

which were chosen for their anti-prion activity in ScGT1 cells, together with their 

capability of inhibiting PrPSc aggregation and of reducing oxidative stress (OS). 

 

4.3.1.2 Library synthesis 

Disubstitution reaction of diamines with 2,5-dimethoxy-1,4-benzoquinone provides 

an easy access to a variety of 2,5-diamino-1,4-benzoquinones.283,291 Encouraged by 

the good yields and the straightforward work-up associated with this reaction, we 

decided to synthesize the designed bivalent compounds 1-11 using a solution phase 

parallel synthesis approach. Eleven N-substituted polyamines (13-23, Scheme 3) were 

loaded with 2,5-dimethoxy-1,4-benzoquinone into different vessels of a carousel 

workstation. After heating at 50°C for 5 hours, the desired products formed in 

moderate to good yields (38-88%). Monovalent 12 was obtained by Michael reaction 

starting from naftoquinone and amine 17 (40%).  

The preparation of intermediates 13-23 was easily achieved treating in parallel 

fashion commercially available polyamines 24-26 with heteroaryl halides 27-31. 

Compounds 13-23 were obtained in 25-67% yield by reacting a large excess of the 

polyamine with the corresponding heteroaryl halide (27:1) in phenol and using NaI as 

a catalyst (Scheme 3). In these conditions we were able to obtain selective mono-

substitution at the terminal primary amino group of the polyamine, obviating the need 

for protection/deprotection of the other amino functionalities.292 Furthermore, we 

overcame the low-yield of common SNAr reactions and the use of costly reagents of 

Pd-catalyzed amination methodologies.293 
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Scheme 3. Library synthesis. Reagents and conditions: (a) phenol, NaI, 120°C (1 h), followed by 
addition of amine, 5 h, 120°C; (b) EtOH, 5 h, 60°C (38-88% yield); (c) EtOH, 80°C (1 h), followed by 
addition of amine, 5 h, 50°C (40%). A= 6-chloro-2-methoxyacridine; B= 7-chloroquinoline; C= 
1,2,3,4-tetrahydroacridine; D= 6-chloro-1,2,3,4-tetrahydroacridine; E= 6-methoxyquinoline. 

 
4.3.1.3 Screening methodology 

A cell-screening assay was used to test anti-prion activity across the library of 

synthesized compounds. Prior, we determined the effects of library compounds on 

cell viability by calcein-AM assay, measuring viable ScGT1 cells after incubation in 

the drug-doped medium with various compound concentrations of 10 nM to 10 µM 

for five days (Table 10). Then, their ability to reduce PrPSc in ScGT1 cells was 

determined by Western blotting followed by densitometry of the PK-resistant PrPSc, in 

comparison with BiCappa (BC), used as a reference compound. PrPSc levels were 

quantified by ELISA test. For entries BC, 2, 5, 6, and 10, we also calculated the EC50 

values, which represent the effective concentrations for half-maximal inhibition. Cell 

viability at EC50 values were expressed as an average percentage of viable cells versus 

untreated control (Table 10, Fig. 34, Fig. 35).  

All assays for cell culture, drug treatment, cell viability, PrPSc detection and 

quantification were performed in accordance to the protocols described in parts 2.2.4, 

2.2.5 and 2.2.6. 
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4.3.1.4 Detection of in vitro effect of the synthesized compounds on prion fibril 

formation  

For compounds BC, 2, 5, 6, and 10, the capability of inhibiting prion fibril 

formation was studied in vitro. Fibril formation was performed in accordance to the 

method previously described by Colby and co-workers with a few modifications.219 

Briefly, 20 µL of the diluted compounds at indicated concentrations were added to 

each well containing 180 µL of reaction solution including 100 µg/mL recombinant 

mouse (recMo) full-length PrP(23-230), 2 M GdnHCl and 10 µM ThT in PBS buffer 

(1X) in a 96-well black plate (BD Falcon). Each sample was performed in four 

replicates. Each well contained one 3-mm glass bead (Sigma). The plate was covered 

with sealing tape (Fisher Scientific), incubated at 37°C with continuous shaking and 

read on SpectraMax M5 fluorescence plate reader (Molecular Devices) for 72 hours 

by top fluorescence reading every 15 min at excitation of 444 nm and emission of 485 

nm. 

4.3.1.5 Detection of antioxidant activity of the compounds by lipid peroxidation 

assay 

Lipid peroxidation is an indicator of oxidative stress. The thiobarbituric acid 

reactive substances (TBARS) assay measures lipid hydroperoxides and aldehydes, 

such as malondialdehyde (MDA), in the cell media and lysates. The assay was 

performed in accordance to the method previously described.294 Briefly, 106 ScGT1 

cells were cultured in 1 mL of DMEM per each well of 6 well-plates for 24 hours. 

After 24 hours, the compounds with various concentrations were added to each well. 

After 3 hours, the cell media were collected and the cells were washed twice with 

PBS and scraped off with 1 mL of 2.5% Trichloroacetic acid (TCA). After 

centrifugation (13,000 x g, 2 min), 125 µL the supernatant was added to a mixture of 

100 µL 15% TCA and 200 µL 0.67% (w/v) 2-thiobarbituric acid (TBA) and heated at 

95oC for 20 min. After cooling, 750 µL of 1-butanol was mixed thoroughly into the 

solution and centrifuged. Two hundred µL was transferred into 96-well plates. Each 

sample was performed in three replicates. The fluorescence in the butanol phase was 

measured at excitation of 521 nm and emission of 552 nm by using M5 fluorescence 

plate reader (Molecular Devices). A blank was performed for each sample. Standard 

curves specific for the assay was created using MDA. 

4.3.1.6 Detection of antioxidant activity of quinone compounds by sulforaphan 

(4-methylsulfinylbutyl isothiocyanate, SFP) assay 
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The assay was performed in accordance to the method previously described.291 

Briefly, ScGT1 cells were seeded in 96-well plates at 3 x 104 cells/well in DMEM.  

Experiments were performed after 24 hours of incubation at 37oC in 5% CO2 with 

SFP (2.5 µM), a potent inducer of cytosolic NQO1. After 24 hours, the cells were 

washed and treated for 24 hours with 1 µM of compounds. The antioxidant activity of 

compounds was evaluated after 30 minutes of incubation with 10 µM fluorescent 

probe (2’,7’-dichlorofluorescein diacetate, DCFH-DA) in PBS. After removal of 

DCFH-DA, the cells were incubated with 0.1 mM tert-butyl hydroperoxide (t-

BuOOH) in PBS for 30 min. The fluorescence values of the cells from each well were 

measured at excitation of 485 nm and emission of 535 nm by using M5 fluorescence 

plate reader (Molecular Devices). Each sample was performed in three replicates. 

 

4.3.1.7 Docking studies 

In Autodock,295 a Lamarckian genetic search algorithm was used to identify low 

energy binding sites and orientations of 10. Binding modes were ranked by a scoring 

function implemented in the Autodock. A point grid with a spacing 0.386 Å and 106 

× 82 × 66 points were used. A point grid was centered to the center of mass of the 

cellular prion protein (PDBentry: 1HJM). Gasteiger atom charges were assigned to 

the protein atoms using AutoDock tools. Water molecules were excluded from the 

protein before docking. One hundred randomly seeded runs were performed. The 

binding poses were identified by the AClAP 1.0 clustering procedure.296 

 

4.3.2 Results and discussion 

Preliminarily, the possible toxicity of 1-9 was assessed in ScGT1 cells. At 1 µM, 

the toxicity profiles among the library members varied from 1.5% to 114.8% (Table 

10). Treatment with 1 and 3 decreased cell viability to 18.2% and 1.5%, respectively. 

Because of the toxicity shown, 1 and 3 were studied for their anti-prion activity at a 

lower concentration (0.2 µM), whereas the other library members were assayed at 1 

µM. The synthesized 2, 4-9 were found to cover a broad range of activity against 

PrPSc formation, with inhibition spanning from 3.4% to 89.7% (Table 10).  
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Table 10. Cell viability and anti-prion activity on ScGT1 cells of library compounds 
 

Cpd 
% of viable 

cells at 1 
µMb 

% of PrPSc 

inhibition 
at 1 µMc 

% of viable 
cells at 0.2 

µMb 

% of PrPSc 
inhibition 
at 0.2 µMc 

EC50 (µM)c 
% of viable 

cells at EC50
b 

BC 75.6 ± 7.1 a 102.1 ± 2.7 a   0.32 ± 0.03a 92.4 ± 6.2a 

1 18.2 ± 1.2 NDd 80.1 ± 6.3 a 3.1 ± 0.3 a   

2 65.5 ± 5.6 89.7 ± 5.1   0.68 ± 0.05 75.2 ± 8.4 

3 1.5 ± 0.2 ND 65.8 ± 4.6 5.4 ± 0.4   

4 114.8 ± 7.9 6.2 ± 0.6     

5 100.4 ± 3.6 85.5 ± 3.9   0.73 ± 0.03 99.6 ± 2.7 

6 105.0 ± 7.4 49.1 ± 2.2   1.2 ± 0.1 91.3 ± 4.2 

7 108.0 ± 8.4 7.1 ± 0.9     

8 104.4 ± 5.6 3.6 ± 0.4     

9 95.4 ± 7.4 3.4 ± 0.2     

10 78.6 ± 5.2 105.3 ± 5.5   0.17 ± 0.01 101.5 ± 3.6 

11 87.2 ± 5.8 4.7 ± 0.3     

12 94.3 ± 3.8 2.9 ± 0.1     
 

a Values are the mean of three experiments, standard deviations are given. b ScGT1 cells were cultured 
in DMEM with 10% FBS, plated 25000 cells in each well of 96-well plates. The compounds were 
dissolved in DMSO (100%) and diluted in PBS (1X) before adding various concentrations (10 nM - 10 
µM) and the cells were incubated for five days at 37°C and 5% CO2. The results were developed by 
calcein-AM fluorescence dye and read by microplate reader. c Effect of library compounds on 
inhibition of scrapie prion replication. ScGT1 cells were cultured in DMEM with 10% FBS, split 1:10 
into Petri dishes and incubated for two days at 37°C and 5% CO2. Then, various compound 
concentrations (10 nM - 2 µM), being non-cytotoxic, were added to the plates. After a five-day 
incubation, proteins of cells were extracted, quantified, digested with PK, and western blotted. d ND: 
not determined. 

 
Compounds 1-3, bearing an acridine moiety, displayed a general higher toxicity in the 

cell viability assay. 2 turned out to be the most active compound, with a 

submicromolar EC50 (0.68 ± 0.05 µM) and a percentage of viable cells at EC50 of 

75.2% (Table 10, Fig. 34 A,B). A different toxicity profile was observed for quinoline 

derivatives 4-6, which were not toxic to ScGT1 cells (cell viability of > 100% at 1 

µM). Intriguingly, 5 and 6 showed also remarkable submicromolar EC50 values (0.73 

± 0.03 µM, and 1.2 ± 0.1 µM, respectively; Fig. 34A) comparable to that of BC (0.32 

± 0.03 µM). To note, a series of bisquinolines with a polyamine linker have been 

already designed and tested in ScN2a cell line but showed a lower activity against 

prion infection (in the one-digit micromolar range).238 This might confirm the design 

rationale, indicating that the presence of a BQ core is critical for activity. The 

replacement of the 2,6-disubstituted acridine ring of 1-3 with the unsubstituted THA, 
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as in 7-9, resulted in a complete loss of activity, pointing out to a possible role for the 

aromatic substituents in the recognition process. Interestingly, these latter compounds 

did not show toxicity. For all the three series (1-3, 4-6, and 7-9), data from the cell-

screening assay suggest that a linker length of three methylenes is important for 

optimal activity. Intriguingly, a similar trend was observed by May and co-workers in 

their series of analogous bivalent ligands.218 Altogether, these preliminary results 

suggest that a specific length of the linker and the presence of a chlorine substituent 

on the prion recognition motifs might contribute to activity against PrPSc formation. 

Regarding toxicity, the presence of the acridine ring seems to be a major determinant, 

in line with the reported DNA intercalation properties of this heterocycle.218 

Conversely, quinoline and THA moieties do not confer cytotoxicity. Building on 

these considerations, we decided to synthesize a second set of compounds in which 

the effect of the substituents on the heteroaromatic ring was investigated by 

synthesizing the 6-chloro-THA (10) and the 6-methoxyquinoline (11) derivatives. 

Furthermore, to probe the bivalent mechanism of action of 5, its corresponding 

monomeric derivative 12 was designed. 

From the biological studies (Table 10), as expected, quinoline 11, lacking the 

chlorine atom, was not toxic against ScGT1 cells while displaying negligible activity 

against prion replication (inhibition of 4.7%). These results again point out the critical 

role played by the chlorine substituent of the aromatic ring. This speculation was 

further confirmed by the outstanding activity shown by 10. In contrast to 8, which 

does not carry the chlorine atom and is devoid of anti-prion activity, 10 showed a 

remarkable EC50 of 0.17 µM, which is the lowest among the present series of 

derivatives, even better than that of BC. Remarkably, 10 showed a concomitant low 

toxicity (101.5% of viable cells at EC50 value) (Fig. 34A,B). 

By comparing the dramatically different profiles shown by monovalent 12 and 

bivalent 5 (2.9% vs 85.5% of inhibition), we were able to provide the definitive proof 

of principle that two proper substituted aromatic prion recognition motifs connected 

by a BQ spacer are critical for activity. 

To study the mechanism of action of the most active compounds (2, 5, 6, and 10) at 

a molecular level, a prion fibrillation assay was used. Only 5, 10, and BC, at 2 µM, 

exhibited significant PrP amyloid fibril formation inhibitory activity. In fact, they 

extended the lag phase to ≥ 53 hours, showing significantly slower kinetics than the 

control (45 hours, Fig. 35). These results, although preliminary, are in agreement with 
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the starting hypothesis that bivalent ligands might interact directly with the recPrP to 

prevent its conversion to the misfolded PrPSc isoform. Furthermore, the idea that 

hydrophobic and planar molecular features are crucial for perturbing PPIs in the prion 

fibrillogenesis processes seems confirmed.278 In addition, a key molecular 

determinant seems to be the presence of a chlorine substituent on the heteroaromatic 

terminal moieties.  
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B

 
 

Figure 34. (A) Western blot of protease-digested ScGT1 cell lysates depicting the presence or 
absence of PrPSc after treatment with 2, 5, 6, and 10 before (up) or after (bottom) PK; Ctrl = control. 
(B) Toxicity profile of compounds 2, 5, 6, and 10.  

 

                 

 Figure 35. Prion fibril formation inhibitory activity in vitro for BC, 2, 5, 6, and 10; Ctrl = control. 
Statistical analysis was done by analysis of Student’s t-test (n=4); (*) p ≤ 0.05, (**) p ≤ 0.01. 
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The PrPSc infected cells are under OS, mainly caused by mitochondrial 

dysfunction.297,298 In light of this, antioxidants might be beneficial against prion 

diseases.299 Indeed, benzoquinones, such as Coenzyme Q (CoQ), can scavenge ROS, 

and CoQ treatment has been proposed for prion and other neurodegenerative 

diseases.300-302 Thus, we tested the antioxidant potential of the most active BQ 

derivatives (2, 5, 6, and 10) in ScGT1 cell line by using the thiobarbituric acid 

reactive substances (TBARS) assay and the water-soluble derivative of vitamin E (6-

hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid, 32) as a positive control.303 

The assay measures lipid hydroperoxides and aldehydes expressed as an average 

percentage of TBARS of treated cells versus untreated cells. As shown in Figure 36A, 

2, 5, and 6 displayed low antioxidant activity (83-87%) at 1 µM while 10 behaves 

similarly to 32 (69% vs 71%, respectively). As expected, BC, which does not carry a 

BQ scaffold, did not show any antioxidant capacity (93%).  

The antioxidant property of related BQ derivatives have been previously 

demonstrated283,291 and CoQ itself concerns mainly their reduced hydroquinone forms. 

NQO1, an inducible enzyme that catalyzes the reduction of quinones to 

hydroquinones, was shown to be responsible for the production of the CoQ-reduced 

antioxidant forms, as well as that of BQ derivatives.283,291 Therefore, since 2, 5, 6, and 

10 share the same BQ nucleus, their antioxidant activity was also evaluated in ScGT1, 

following exposure to t-BuOOH, and in the absence or presence of pretreatment with 

sulforaphane (SFP), an inducer of NQO1. Figure 36B clearly shows that 2, 5, 6, and 

10 (at 1 µM) in their oxidized form show a basal antioxidant activity, but this activity 

was increased in cells pretreated with SFP, confirming that NQO1 is involved in the 

activation of BQ derivatives. As expected, the antioxidant activity of BC is not 

influenced by the overexpression of NQO1. 
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 Figure 36. (A) Effect of 32, BiCappa, 2, 5, 6, and 10 (1 µM) on ScGT1, evaluated by TBARS 
formation. Values are the means ± SD (n = 3); (B) Antioxidant activity of BiCappa, 2, 5, 6, and 10 in 
ScGT1 cells against ROS formation induced by t-BuOOH. Experiments were performed with ScGT1 
cells treated or not with 2.5 µM SFP; (*) p ≤ 0.05 with respect to t-BuOOH treated samples, (#) p ≤ 
0.05 with respect to t-BuOOH + SFP treated samples. 

 

With an aim to further unraveling the molecular mechanism whereby the present 

series of compounds can tackle prion-mediated infections, we carried out docking 

simulations by means of the AutoDock software at the putative binding region defined 

by the H2 helix and the loop connecting β-sheet S2 and helix H1 (Fig. 37).239,304,305 

Such computations did not provide a unique binding mode for compound 10, in line 

with our previous findings clearly demonstrating that only a combination of several 

different techniques would allow to propose a reasonable binding mode for the 

molecule GN8 at the prion protein.272 Furthermore, different molecular mechanisms, 
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such as the simultaneous interaction with multiple prion protein, might be envisaged. 

For these reasons, results of the docking procedure are not shown here. 

                      
Figure 37. Predicted docking pose of compound 10 in human PrPC (PDBentry: 1HJM).  
 

4.3.3 Conclusion 

A library of 11 symmetrical bivalent compounds was synthesized by solution phase 

parallel synthesis and tested against prion replication. Despite the small number of 

compounds, four of them (2, 5, 6, and 10) were active against prion replication in the 

submicromolar range, whereas monovalent 12 showed negligible activity. These 

results confirmed the rationale for the design of bivalent anti-prion ligands. 7-

chloroquinolines (5 and 6) and 6-chloro-THA (10) derivatives showed a concomitant 

encouraging low toxicity. Notably, the EC50 of 10 was even lower than that displayed 

by BiCappa, which is a reference compound for prion diseases.218 Furthermore, 10 

showed the largest correlation between the cellular anti-prion activity and the 

capability of inhibiting PrP fibril formation. Interestingly, for 10 we could also find 

correspondence between anti-prion and antioxidant activities, in contrast to the results 

obtained by Miyata and co-workers in a series of very potent pyrazolone 

derivatives.149 

Although its mechanism of action is not fully disclosed (see docking studies in part 

4.3.2), we assume that the bivalent structure of 10 favors the interaction with prion 

recognition domains, whereas the spacer acts simultaneously as a disrupting element 



 91

against PPIs and an effective antioxidant moiety. Remarkably, the 6-chloro-THA 

scaffold emerges as an effective and completely novel prion recognition motif.  

In conclusion, the present series of molecules are chemical probes that may 

facilitate the exploration of the molecular mechanism underlying prion disease. We 

envisage that a better understanding of the molecular framework of bivalent ligands 

capable of inhibiting prion aggregation and OS would facilitate the creation of new 

effective anti-prion agents. 

 

 
 

Figure 38. Summary of anti-prion potency of the designed BQ derivatives. 
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5. Synthesis and biological evaluation of lipoic acid hybrids 

as novel compounds against prion diseases 

5.1 Introduction 

Prion diseases pathogenesis involves a complex array of processes operating 

simultaneously and synergistically. These include: (i) protein aggregation,46,51 (ii) 

oxidative stress accompanied by lipid and protein oxidation,298,300,303,306,307 (iii) 

reduced levels of potent free-radical scavenger such as polyunsaturated fatty acids, α-

tocopherol, and glutathione,299,306 (iv) unbalance of metal ions,308 and (v) brain 

inflammation with activation of astrocytes and microglia.43 Thus, the failures of drug 

candidates developed accordingly to the traditional drug discovery paradigm “one 

molecule - one target” and the current challenge of discovering an efficacious therapy 

are likely related to such a multifactorial nature of these diseases. Against this 

backdrop, a polypharmacological approach, which, rather than consisting of a single 

compound that interacts with a single target, is a concerted pharmacological 

intervention of compound(s) that interact with multiple targets, offers promise for the 

effective treatment of prion diseases. Although this approach is still in its infancy, two 

different strategies have been already addressed to achieve polypharmacology: drug 

combination (DC) and multi-target directed ligand (MTDL) approaches. In DC 

approach multiple drugs (drug cocktail) are combined in the therapeutic regimen. A 

major drawback of DC therapy is the drug-drug interactions. Conversely, the MTDL 

approach, where two pharmacophores with distinct mechanism of action are 

chemically merged in a single structure with a single ADMET (being an acronym for 

absorption, distribution, metabolism, elimination, and toxicology) profile, offers 

advantages over DC therapy. Notably, this approach, already used in other complex 

diseases,309-313 might be envisaged as being optimal also in prion diseases.  

For prion diseases, DC strategy has been applied in numerous in vitro and in vivo 

approaches with the aim of exploiting synergistic effects. The several examples 

reported in Table 11 suggest that inhibition of prion replication can be effectively 

potentiated by DC treatment. As for MTDLs, the literature contains cases where the 

deliberate aim of creating an MTDL has not always been explicitly stated. Instead, the 

molecular hybridization strategy has been followed, leading to chimeric molecules 

capable, in principle, of modulating multiple targets.140,218,238,289,314 The first anti-prion 

chimeric ligand, Quinpramine, was designed on the basis of in vitro synergistic anti-
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prion effects of drugs Quinacrine and Imipramine. Quinpramine, obtained by linking 

Quinacrine and Imipramine moieties through a piperazine ring, showed an improved 

anti-prion activity as much as 15-fold over quinacrine and 250-fold over 

imipramine.152,265 Recently, we have reported a new class of anti-prion compounds 

obtained by linking the antioxidant nucleus of 2,5-diamino-1,4-benzoquinone to 

several heterocyclic scaffolds potentially able to perturb protein-protein interactions 

in prion (6-chloro-2-methoxyacridin-9-amine, or 4-amino-7-chloroquinoline or 6-

chloro-1,2,3,4-tetrahydroacridin-9-amine). These compounds displayed a multitarget 

profile, effectively contrasting both prion fibril formation and oxidative stress in a cell 

culture model of prion replication.280  

Table 11. Drug combination strategy in anti-prion compounds 
 
Two-drug 

combination 

cholesterol ester modulators (everolimus, 
pioglitazone, progesterone, and verapamil) 
and an antipsychotic drug (chlorpromazine) or 
an antimalarial drug (quinacrine) 

Ref.315 

 anti-inflammatory drug (pentosan polysulfate)  
and an anticancer compound (Fe(III)meso-
tetra(4-sulfonatophenyl)porphine) 

Ref.316 

 polyphenolic antioxidant (epigallocatechin-3-
gallate) and 4,5-bis-(4-
methoxyanilino)phthalimide 

Ref.317 

Three-drug 

combination 

antimalarial drug (quinacrine), a tricyclic 
antidepressants (desipramine) and an inhibitor 
of cholesterol biosynthesis (simvastatin) 

Ref.152 

  
These encouraging results together with a solid background of MTDLs in the field of 

Alzheimer’s disease led us to pursue in that direction. We hypothesized that the 

presence of  a so-called prion-recognition motif (PRM), key element for anti-prion 

activity, along with a moiety endowed with an alternative mechanism of action 

against prion diseases might lead to discover more effective compounds.280  

 

5.2 Materials and methods 

5.2.1 Design rationale 

As a first step, a 4-amino-7-chloroquinoline nucleus was linked by an alkylamino 

chain to diverse antioxidant moieties. The choice of a N1-(7-chloroquinolin-4-

yl)propane-1,3-diamine (13) as PRM was supported by our previous results280 and the 

studies of Cordeiro and co-workers that demonstrated the direct binding of 13 to 
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PrP.314 As a further strength, a 4-amino-7-chloroquinoline motif recurs in a broad 

variety of biologically active compounds that hit different targets and pathways. Thus, 

it can be classified as a privileged sub-structure, with optimal pharmacokinetic 

properties and a high degree of drug-likeness, extremely favorable features when 

starting a drug discovery program.140,238,289 

Building on 13, we selected different antioxidant fragments, such as caffeic acid (9, 

Scheme 4), trans-ferulic acid (10), and lipoic acid (12), for several reasons: (i) all of 

them are natural antioxidant; (ii) well tolerated in vivo; (iii) effective against fibril 

formation; (iv) chemically linkable to the amine group of 13 by amide bond 

formation. Several lines of evidence have shown that 9 and 10 act as a potent 

scavenger of reactive species, including ROS and reactive nitrogen species, and 

thereby reduce the chance of free radical attack on proteins and DNA and hence 

preventing their oxidative modification.318-320 Furthermore, both appeared to be 

neuroprotective against β-amyloid-induced cytotoxicity.321-323 9 also inhibits 5-

lipoxygenase (5-LOX) enzyme, which is involved in the early events of prion 

disease.324 12 has been proposed as a lead structure for designing multi-target directed 

drugs for neurodegeneration.325 More importantly, it was administered together with 

other antioxidants to a patient affected by prion disease, showing moderate 

therapeutic effects,326 and shown to inhibit the formation of β-amyloid fibrils.327,328 In 

particular, 12 and its derivatives have been shown to have a variety of properties 

which interfere with several pathological events of Alzhemer’s disease (AD).325,327,329 

As a further application of the MTDL approach, we aimed at combining 13 with the 

molecular features of guanidinium chloride. Guanidinium chloride causes curing of 

yeast prions by perturbing Hsp104, a molecular chaperone essential for both 

dissolving protein aggregates and inhibiting prion propagation.330,331 This choice was 

driven by previous results that guanidinium chloride and Guanabenz, a guanidine 

derivative, are anti-prion compounds.290 However, the guanidine group is nearly 

quantitatively protonated under physiological conditions, which might result in a lack 

of CNS penetration. To overcome this limitation, in 3 (Scheme 4) as guanidinium 

motif we selected L-arginine (11). The availability of a transport system for arginine 

in humans means that a portal of entry to the brain for circulating drugs is potentially 

available. 

In a second round of optimization, based on the promising anti-prion profile of 4 

(Scheme 4), we decided to expand the alpha-lipoic acid hybrids series. Four additional 
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derivatives (5-8) were hence designed and tested. Derivative 5 is a structural analogue 

of 4, whereas in 6-8 other PRMs were selected: 6-chloro-2-methoxy-acridin-9-amine 

and 8-chloro-1,2,3,4-tetrahydroacridin-9-amine.  

 

5.2.2 Library synthesis  

The synthesis of 1-2 was obtained by using dicyclohexyl carbodiimide (DCC) as a 

coupling reagent. We have carried out the reaction of the caffeic acid (9) or trans-

ferulic acid (10) with the polyamine 13 (Scheme 4) under reflux THF to give the 

corresponding amide products in good yield (42-53%). In these conditions we were 

able to obtain selective amide bond formation, obviating the need for 

protection/deprotection of the hydroxyl functionalities. 

The synthesis of quinoline-arginine hybrid requests the protection of the guanidino 

and amine groups of the arginine. In our case, all groups were protected by tert-

butoxycarbonyl groups. Using this protected arginine derivative (19, Scheme 4), 

compound 20 was prepared via standard peptide coupling procedure. Removal of the 

protecting groups of 20 with a solution of HCl/dioxane afforded 3 in high yield. 

A reaction of diamines with lipoic acid (12) provides easy access to a variety of 

derivatives.291,332 Thus, we decided to synthesize the designed compounds 4-7 

following the procedure described by Rosini and co-workers.332 12 was loaded with 

EDCI, HOBt and NEt3, then N-substituted polyamine (13-16, Scheme 4) was added at 

0°C for 2 hours. After stirring over night at room temperature, the desired product was 

obtained in good yields (67-96%).  

The preparation of intermediate 13-16 was easily achieved by parallel synthesis as 

described by Bongarzone and co-workers.280 
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Scheme 4. Library synthesis. Reagents and conditions: (a) DCC, THF, reflux 3 h (53-78% yield); 
(b) Di-tert-butyl dicarbonate, dioxane (RT, 39 h, 76% yield); (c) EDCI, HOBt, NEt3, DMF, 0°C (1 h), 
RT, overnight (47% yield); (d) HCl/dioxane (84% yield); (e) EDCI, HOBt, NEt3, CH2Cl2, 0°C (0.5 h), 
followed by addition of amine 13-17, RT, overnight (67-96% yield). 

 
5.2.3 Screening methodology 

A cell-screening assay was first used to test anti-prion activity across the library of 

synthesized compounds (1-8), and their corresponding fragments (12, 13, and 16). 

Prior, we determined the effects of all compounds on cell viability by calcein-AM 

assay measuring viable ScGT1 cells after incubation in the drug-doped medium with 

various compound concentrations of 10 nM - 10 µM for five days (Table 12). Then, 

their ability to reduce PrPSc concentrations in ScGT1 cells was determined by Western 

blotting followed by densitometry of the PK-resistant PrPSc, and PrPSc levels were 

quantified by ELISA test. For entries 1-8, 12, 13, and 16, we also calculated the EC50 

values, which represent the effective concentrations for half-maximal inhibition. Cell 

viability at EC50 values was expressed as an average percentage of viable cells versus 

untreated control (Table 12, Fig. 40). 

In addition, for compounds showing cellular anti-prion activity (1-8), the capability of 

inhibiting prion fibril formation was studied in vitro by using a previously reported 

PrP fibrillation assay.219 Prion fibril formation inhibitory activity was evaluated by 

measuring the increase of the lag phase of PrP amyloid formation kinetics (Fig. 41). 

Finally, we tested the antioxidant potential of the most active hybrid derivatives (6-8) 
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in ScGT1 cell line by using the thiobarbituric acid reactive substances (TBARS) assay 

and the antioxidant Trolox as a positive control (Fig. 42).  

All assays for cell culture, drug treatment, cell viability, PrPSc detection and 

quantification were performed in accordance to the protocols described in parts 2.2.4, 

2.2.5 and 2.2.6. 

Detection of in vitro effect of the synthesized compounds on prion fibril formation 

was performed in accordance to the protocol described in part 4.3.1.4. 

Detection of antioxidant activity of the compounds by lipid peroxidation assay was 

performed in accordance to the protocol described in part 4.3.1.5. 

 

5.3 Results and discussion 

Preliminarily, the possible toxicity of the hybrid compounds 1-4 was assessed in 

ScGT1 cells. At 1 µM, the toxicity profile among quinoline-based hybrid compounds 

(1-4) was very low and therefore they were studied for their anti-prion activity at 

same concentration (Table 12). All hybrid derivatives 1-4 turned out to have mild 

anti-prion activity, with similar micromolar EC50 values (2.7-9.5 µM), despite the 

potential different mechanism of action. However, 2 and 4, carrying the ferulic and 

lipoic acids moieties respectively, were slightly more active than 1 and 3 (Table 12). 

To better investigate the multi-target activity of the designed compounds, we tested 

the anti-prion activity of their starting fragments (9-13). As expected, the PRM 13 

showed a micromolar EC50 value (7.8 ± 0.3 µM) with no toxicity in ScGT1 cells up to 

10 µM. Regarding the three antioxidant fragments (9, 10, and 12) and guanidinium 

derivative (11), only lipoic acid (12) possessed an interesting activity against PrPSc 

formation (EC50 = 5.3 ± 0.4 µM), together with a suitable toxicity profile (no toxic 

effects up to 100 µM). To our knowledge, this is the first time that the proposed anti-

prion potential of 12 has been demonstrated in a cellular model. Notably, 9-12 did not 

show toxicity at 10 µM (see Fig. 39). Altogether, these preliminary results suggested 

us to link 12 with other PRMs (6-chloro-2-methoxy-acridin-9-amine and 8-chloro-

1,2,3,4-tetrahydroacridin-9-amine), already exploited by us and others in the search 

for anti-prion ligands and drug-likeness similar to that of 13.218,265,280,289 Thus, we 

decided to synthesize and test a further subset of alpha-lipoic acid hybrids (5-8). 

From the biological studies (Table 12), this rational design was confirmed by the 

outstanding activity shown by 6 and 7. In fact, both compounds did not show toxicity 

against ScGT1 cells at 1 µM, while they displayed high activity against prion 
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replication (107% and 102% inhibition, respectively). 6 and 7 showed a remarkable 

EC50 of 0.18 µM and 0.15 µM respectively, which are the lowest among the 

synthesized derivatives and even better than the reference drug Quinacrine. We 

focused on 7 because preliminary results showed that it was less cytotoxic than 6 at 

higher concentration (Table 12). Then, we analyzed 7’s profile in comparison to its 

starting fragments (12 and 16, Table 12). 7 showed an improved anti-prion activity as 

much as 35-fold over 12 and 2.3-fold over 16. As expected, 16 did inhibit prion 

replication with a submicromolar activity (0.35 µM), and thus it can be truly 

considered a PRM. Notably, also compound 8 (Lipocrine®) developed as a promising 

drug candidate for the treatment of AD,332 showed a submicromolar EC50 value (0.85 

± 0.05 µM; Table 12 and Fig. 40) with a concomitant low toxicity. 
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Figure 39. Toxicity profile of compounds 9-12. 

 
Table 12. Cell viability and anti-prion activity on ScGT1 cells of library compounds 
 

Cpd 
% of viable 

cells at 1 µMa 

% of PrPSc 

inhibition at 1 
µM b 

EC50 
(µM)b 

% of viable 
cells at EC50

a 

Quinacrine 98.5 ± 3.9c 103.8 ± 6.1c 0.4 ± 0.1c 100.0 ± 4.3c 

1 97.3 ± 6.7 9.2 ± 0.3 8.1 ± 0.3 88.4 ± 5.4 

2 102.7 ± 5.8 12.8 ± 0.7 2.7 ± 0.2 105.1 ± 5.8 

3 104.9 ± 5.8 4.4 ± 0.5 9.5 ± 0.5 95.7 ± 6.2 

4 100.7 ± 2.2 8.7 ± 0.5 5.6 ± 0.1 95.8 ± 3.5 

5 101.6 ± 4.3 13.4 ± 0.6 3.2 ± 0.2 100.8 ± 2.6 
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6 88.1 ± 2.3 107.1 ± 3.0 0.18 ± 0.01 101.9 ± 3.3 

7 94.3 ± 5.6 102.5 ± 5.8 0.15 ± 0.01 92.1 ± 5.2 

8 95.9 ± 2.1 68.3 ± 2.2 0.85 ± 0.05 94.8 ± 5.5 

9 110.2 ± 3.9 
Not active up to 

10 µM 
NDd NDd 

10 104.7 ± 5.0 
Not active up to 

10 µM 
ND ND 

11 109.1 ± 5.7 
Not active up to 

10 µM 
ND ND 

12 103.0 ± 1.9 2.6 ± 0.1 5.3 ± 0.4 95.4 ± 4.2 

13 103.3 ± 3.7 5.8 ± 0.1 7.8 ± 0.3 90.7 ± 4.8 

16 88.0 ± 5.7 98.5 ± 5.4 0.35 ± 0.02 95.4 ± 3.9 
 

 a ScGT1 cells were cultured in DMEM with 10% FBS, plated 25000 cells in each well of 96-well 
plates. The compounds were dissolved in DMSO (100%) and diluted in PBS (1X) before adding 
various concentrations (10 nM - 10 µM) and the cells were incubated for five days at 37°C, 5% CO2. 
The results were developed by calcein-AM fluorescence dye and read by microplate reader. b The effect 
of library compounds on inhibition of scrapie prion replication. ScGT1 cells were cultured in DMEM 
with 10% FBS, split 1:10 into Petri dishes and incubated for two days at 37°C and 5% CO2. Then, 
various compound concentrations (10 nM - 2 µM), being non-cytotoxic, were added to the plates. After 
a five-day incubation, proteins of cells were extracted, quantified, digested with PK, and western-
blotted. c Values are the mean of three experiments, standard deviations are given. d ND: not 
determined. 
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Figure 40. (A) Western blot of protease-digested ScGT1 cell lysates depicting the presence or 
absence of PrPSc after treatment with 6-8 before (up) or after (bottom) PK; (B) Toxicity profile of 
compounds  6-8. 

 
To study at a molecular level the mechanism of action of the active compounds (1-

8, 12, 13, and 16), a PrP amyloid fibrillation assay was used. All compounds were 

capable of delaying fibril formation, with lag phase spanning from 52 to 70 hours 

(control 49 hours, Fig. 41). Intriguingly, their in vitro PrP amyloid fibril formation 

inhibitory activity parallels the cellular anti-prion profile. In fact, 6, 7, and 8, which 

were the most active in ScGT1 cell line, resulted in the most active also in this assay. 

6 and 7 extended the lag phase to ≥ 68 hours, showing a significantly slower kinetics 

than the control (Fig. 41). These results, although preliminary, are in agreement with 
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the starting hypothesis that PRM might interact directly with PrP to prevent its 

conversion to the misfolded PrPSc isoform. Furthermore, the low anti-amyloid activity 

of 12 versus those of hybrids 4-8 suggests that marked aggregation inhibition may be 

achieved only when 12 and a suitable PRM are combined into the same structure, as 

in 6 and 7. 

       
 Figure 41. Prion fibril formation inhibitory activity in vitro for 1-8, 12, 13, and 16; Ctrl = control. 
Statistical analysis was done by analysis of Student’s t-test (n=4); (*) p ≤ 0.05, (**) p ≤ 0.01. 

 

The PrPSc infected cells are under OS, mainly caused by mitochondrial 

dysfunction.297,298 In light of this, antioxidant fragments might be beneficial against 

prion diseases.299 Indeed, lipoic acid hybrids scavenge ROS, and they have been 

proposed for the treatment of other multifactorial neurodegenerative diseases.300,302,312 

Thus, we tested the antioxidant potential of the most active derivatives (6-8) in ScGT1 

cell line by using TBARS assay and the antioxidant Trolox as a positive control.303 

The assay measures lipid hydroperoxides and aldehydes expressed as an average 

percentage of TBARS of treated cells versus untreated cells. Figure 42 clearly shows 

that 6 and 7 displayed antioxidant activity (78-82% of control) at 1 µM, while 8 was 

even better than Trolox (58% vs 71%, respectively). Although a perfect match with 

cellular data is not evident, these results confirm the design rationale, indicating that 

the presence of a PRM (a lipophilic bi- or tri-(hetero)-cyclic scaffold) and an 

antioxidant fragment (lipoic acid) is suitable to the discovery of anti-prion hybrids. 
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 Figure 42. Effect of compounds Trolox, and 6-8 (1 µM) on ScGT1 cells, evaluated by TBARS 
formation. Values are means ± SD (n = 3); Ctrl = control. 
 

5.4 Conclusion 

The goal of this communication is to provide a starting point against the 

development of MTDLs for prion diseases treatment. As an example, 7, owing to the 

presence of an antioxidant fragment, the lipoic acid, and a PRM, the acridine motif, is 

able to simultaneously interact with at least two of the multiple targets involved in 

prion pathology: It inhibits PrPSc accumulation, delays fibril formation and reduces 

oxidative stress. Altogether these in vitro results make 7 an effective candidate to be 

investigated in vivo for its multiple biological properties in prion diseases. 

Furthermore, given the promising cellular anti-prion profile of 12, further efforts 

towards the design of novel lipoyl hybrids are warranted. 

                                             
 

Figure 43. Summary of anti-prion potency of the designed lipoic acid hybrid 7. 
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6. Concluding remarks 
 

In the thesis, we discuss about biological evaluation of four new libraries of 

anti-prion compounds designed and synthesized on nanotechnology, 

computational study and chemistry. 

Firstly, in the first library, we discovered a novel class of anti-prion compounds 

as polyelectrolyte multilayer-coated gold nanoparticles for their ability to interact 

and reduce the accumulation of the disease-causing prion protein (PrPSc) in 

scrapie prion-infected cell lines and mice. Gold nanoparticles coated with 

oppositely charged polyelectrolytes, such as polyallylamine hydrochloride and 

polystyrenesulfonate, were tested for potential inhibition of prion protein 

aggregation. Different coatings, finishing with a positive or negative layer, were 

tested, and different numbers of layers were investigated for their ability to 

interact and reduce the accumulation of PrPSc in scrapie prion-infected ScGT1 

and ScN2a cells. The particles efficiently hampered the accumulation of PrPSc in 

ScN2a cells and showed curing effects on ScGT1 cells with a nanoparticle 

concentration in the picomolar range. Moreover, incubation periods of prion-

infected mice treated with nanomolar concentrations of the nanoparticles were 

significantly longer compared to untreated controls. In addition, the coated gold 

nanoparticles may interact with Aβ and α-synuclein to inhibit β-amyloid and α-

synuclein fibril formation implicated in Alzheimer’s and Parkinson’s diseases, 

respectively. 

Secondly, we have also developed possible peptidomimetic fragments in 

inhibiting protein-protein interactions including diketopiperazines and 2,5-

diamino-1,4-benzoquinones for search of bivalent anti-prion compounds. In the 

second library, we report the identification of a novel bifunctional 

diketopiperazine (DKP) derivative 1d, which exhibited activity in the low 

micromolar range against prion replication in ScGT1 cells, while showing low 

toxicity. By properly addressed molecular modeling studies we hypothesized that 

a planar conformation is the major determinant for activity in this class of 

compounds. Moreover, studies aimed to assess the mechanism of action at a 

molecular level showed that 1d might interact directly with recPrP to prevent its 

conversion to the pathogenic PrPSc-like form. This investigation suggests that 
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DKP based anti-prion compounds can serve as a promising lead scaffold in 

developing new drugs to combat prion diseases. In the third library, the 

compounds combining two different benzoquinone cores with seven (L) amino 

acid methyl esters (alanine, Nω-nitro-arginine, Nε-BOC-lysine, isoleucine, 

methionine, phenylalanine and tryptophan) were prepared and tested for prion 

replication inhibition in ScGT1 cells. The most potent hit, 6a, displayed an EC50 

value of 0.87 µM, which is very close to that of quinacrine (0.4 µM). From this 

finding, a small library of twelve entries, featuring a 2,5-diamino-1,4-

benzoquinones nucleus as spacer connecting two aromatic prion recognition 

motifs (PRMs): 6-chloro-2-methoxyacridin-9-amine, or 4-amino-7-

chloroquinoline or 6-chloro-1,2,3,4-tetrahydroacridin-9-amine, was designed and 

evaluated against prion infection. Notably, 6-chloro-1,2,3,4-tetrahydroacridine 10 

showed an EC50 of 0.17 µM, which was lower than that displayed by reference 

compound BiCappa. More importantly, 10 possessed the capability of inhibiting 

prion fibril formation and oxidative stress, together with a low cytotoxicity. This 

study further corroborates the bivalent strategy as a viable approach to the 

rational design of anti-prion chemical probes. 

Finally, in the fourth library, we have designed a small library of multi-target 

directed ligands (MTDLs) as the alpha-lipoic acid hybrids. Hybrid compounds 6-8 are 

based on PRMs: 6-chloro-2-methoxyacridin-9-amine and 8-chloro-1,2,3,4-

tetrahydroacridin-9-amine, possessed anti-prion activity and the capability of 

inhibiting prion fibril formation and oxidative stress. 7 showed a remarkable EC50 of 

0.15 µM, which is the lowest among lipoic acid derivatives. 7, owing to the presence 

of an antioxidant fragment, the lipoic acid, and a PRM, the acridine motif, is able to 

simultaneously interact with at least two of the multiple targets involved in prion 

disease pathology. The development of MTDLs might lead to new pharmaceutical 

treatments for the multifactorial pathology of prion diseases. 
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