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Chapter 1

Introduction

The Standard Model of particle physics, based on spontaneously broken
gauge theories, is a very successful model and can account for almost all
aspects of high energy physics up to the energy range of the present exper-
iments. When combined with supersymmetry, the Standard Model can be
easily extended to unified theories valid up to scales that are only a few orders
of magnitude below the Planck mass.

However the SM cannot account for the values of a large number of pa-
rameters. Most of these constants are related to the masses and mixings
of the three families of the SM and are encoded in the Yukawa couplings
Yijψ

c
iψjh that break the global U(3)5 symmetry of the model. These cou-

plings show a clear pattern with a hierarchy of quark and charged lepton
masses and small mixing angles between the three families in the quark sec-
tor. Data from neutrino oscillations also show that there is a large flavour
mixing in the lepton sector.

Understanding this pattern of fermion masses and mixings is a non-trivial
task, despite the apparent structure of the Yukawa couplings. We do not have
information about the scale of the physics that generates this flavour struc-
ture: the origin of the observed pattern could be a few orders of magnitude
above the electroweak scale or could be at the unification scale. We also can-
not test directly the Higgs sector of the theory, which could play a relevant
role in flavour physics; this situation should change in some years, when LHC
will hopefully improve our understanding of Higgs physics. However many
other high energy experiments can give us precious information about flavour
physics. In fact flavour violation in the SM is suppressed or strongly con-
strained by its flavour structure, therefore there are many processes where
new physics could show up with a relevant contribution, detectable with
precision experiments.

Flavour violation in the MSSM appears only in the Cabibbo-Kobayashi-

11



12 CHAPTER 1. INTRODUCTION

Maskawa mixing matrix that enters the charged current J± for W± mediated
weak processes, and in the Pontecorvo-Maki-Nakagawa-Sakata matrix. The
CKM matrix has small mixing angles, the weak flavor-violating processes are
suppressed by the W mass, and for neutral-current processes the GIM mech-
anism enhance the CKM suppression, therefore hadronic flavour-changing
neutral-current processes are very suppressed or negligible. Physical pro-
cesses that violate lepton flavour through the PMNS matrix require a neu-
trino mass insertion and are therefore strongly suppressed. This means that
FCNC processes represent clean channels where to look for contributions
induced by new flavour physics.

Supersymmetric extensions of the Standard Model are particularly inter-
esting for flavour physics, because of the presence of new flavoured particles
(squarks and sleptons) at the TeV scale. The soft SUSY-breaking couplings
(masses and A-terms) of these particles have a flavour structure that re-
ceives contributions from all energy scales from the electroweak scale to the
one where SUSY-breaking operators involving MSSM fields are generated,
therefore they are potentially sensitive to flavour physics at very high scales.
At low energy, these particles contribute to loop processes giving rise to
measurable FCNC interactions. Their flavour structure is already strongly
constrained by the present data on FCNC processes, but there is still plenty
of room for deviations from a flavour-blind structure. LHC ad future collid-
ers should also be able to test directly the masses and hierarchies of these
particles, giving independent information beyond the one obtained by flavour
physics experiments. LHC and flavour factories should become in some years
a good ground test for theoretical models of flavour.

Theoretical approaches to the origin of flavour are mainly based on the
idea of family symmetries. We review the basic idea in the next section. In
chapter 2 we will build a model of flavour without exact family simmetry: the
hierarchy will be related to an “accidental” symmetry that originates from
the breaking of the Pati-Salam gauge group. In chapter 3 we will show how
gauge coupling unification can be preserved in the presence of incomplete
GUT multiplets at intermediate scales. In chapter 4 we will upgrade the
model to an SO(10) GUT on a 5D orbifold. Finally in chapter 5 we will
discuss the phenomenological predictions of the model.

1.1 Family symmetries

The structure of quark and lepton masses can be roughly described as follows.
The quark Yukawa matrices are almost diagonal and hierarchical, as can be
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seen from the mass ratios (evaluated at MZ)

ms

mb
≃ 2 · 10−2 ,

md

ms
≃ 5 · 10−2 ,

mc

mt
≃ 4 · 10−3 ,

mu

mc
≃ 2 · 10−3 (1.1)

and mixing angles

Vus ≃ 0.23 , Vcb ≃ 0.04 , Vub ≃ 0.004 . (1.2)

The charged lepton masses are also hierarchical

mµ

mτ

≃ 6 · 10−2 ,
me

mµ

≃ 5 · 10−3 (1.3)

while the data we know about neutrino masses are

mν . 1 eV , ∆m2
solar ∼ 8 · 10−5eV2 , ∆m2

atm ∼ 2 · 10−3eV2 (1.4)

and about their mixing angles

θsolar ∼
π

6
, θatm ∼ π

4
, θ13 . 0.2 (1.5)

There are many interesting “numerological” relations that can be guessed
from this structure and from the precise values of particle masses. For ex-

ample, we can find relations for the mixing angles Vus ∼
√

md

ms
, Vcb ∼ ms

mb
and

for the mass ratios
(

mτ

mb

)
GUT

∼ 1,
(

mµ

ms

)
GUT

∼ 3.

A possible way to account for the structure of quark and lepton masses
and mixings is given by family symmetries. In fact the clear distinction be-
tween the three families for quarks and charged leptons suggests to treat them
as separated entities and to distinguish them by assigning different charges
to the different families. To generate the small but nonvanishing Yukawa
couplings and therefore the small mixing between the three families, these
charges should be related to a spontaneously broken symmetry. The small
parameter that controls the mixing is the ratio of the symmetry breaking vev
and the mass scale where the flavour structure is generated.

These family symmetries (also called horizontal or flavour symmetries)
act on the family index i = 1, 2, 3 of the SM fields qi, li, u

c
i , d

c
i , e

c
i . These

symmetries can be abelian [1] or non-abelian [2, 3, 4] (in this last case they
are generally subgroups of SU(3)), discrete or continuous. As an example,
consider the abelian charges under a U(1)H family symmetry:

QH(h, q3, u
c
3, d

c
3) = 0 , QH(q1, d

c
1)/2 = QH(q2, d

c
2) = H , QH(uc

1)/2 = QH(uc
2) = H ′

(1.6)
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The Yukawas couplings of the first two families are forbidden by U(1)H quan-
tum numbers of SM fields, but it is possible to have other couplings between
SM fields and heavy fields at scale MH that result in non-renormalizable op-
erators at low energy. Assuming that U(1)H is broken by the vev of a gauge

singlet 〈S〉 (usually called flavon) with QH(S) = −1 and ǫ = 〈S〉
MH

< 1. Non-

renormalizable operators of the form ckij
Sk

Mk
H
ψc

iψjh correspond to low energy

Yukawas Y U
ij u

c
iqjhu + Y D

ij d
c
iqjhd of the form

Y U
ij ∼ ǫQH(hu)+QH(qj)+QH(uc

i ) , Y D
ij ∼ ǫQH(hd)+QH(qj)+QH(dc

i ) (1.7)

and in the explicit example above:

Y D ∼



ǫ4H ǫ3H ǫ2H

ǫ3H ǫ2H ǫH

ǫ2H ǫH 1


 , Y U ∼



ǫ2H+2H′

ǫH+2H′

ǫ2H′

ǫ2H+H′

ǫH+H′

ǫH
′

ǫ2H ǫH 1




apart from O(1) factors. In this way a mass hierarchy is induced by the
same small parameter that controls the mixing between families. In the case
of abelian family symmetries the predictive power of the theory is small be-
cause of the many possible inequivalent choices of U(1) charges. Non-abelian
symmetries are usually more predictive because the possible representations
of the flavour group are more restricted.

A simple example of the heavy physics giving rise to the non-renormalizable
operators Skψc

iψjh is given by the Froggatt-Nielsen mechanism. At the scale
MH there are heavy vectorlike fermions Qi, U

c
i , D

c
i and Q̄i, Ū

c
i , D̄

c
i with the

same gauge quantum numbers of the SM fermions. Their charges QH allow
them to couple to the light ones through 〈S〉 , 〈h〉:

L = MQ
ijQiQ̄j + ηijSQiQ̄j + λijQiu

c
jhu + αijSqiQ̄j + . . . (1.8)

Integrating out these fermions, we get the non-renormalizable operators and
then the usual Yukawa terms after the breaking of the U(1)H symmetry.



Chapter 2

A model of flavour

The origin of the peculiar pattern of fermion masses and mixing might appear
more or less transparent at low scale depending on the degree of understand-
ing of the full theory it requires. As discussed above, most approaches to
the problem rely on the possibility that a full understanding is not required
and the pattern of fermion masses and mixings follows from a “factorizable”
dynamical principle associated to the “horizontal” family indices. In this
chapter we discuss the possibility that not even such a dynamics needs to
be known, or exists at all, and the peculiar fermion mass pattern we ob-
serve simply follows from the fact that one heavy vectorlike family of fields
turns out to be lighter than the rest of the heavy fields. The couplings of
this lighter heavy family with the light families will not be constrained by
any symmetry or alternative mechanism imposed on the theory. They will
instead all be of order one, perhaps determined by some fundamental theory
we do not need to know, and the charged fermion hierarchy will follow from
the hierarchy in the breaking of the vertical gauge structure of the theory,
in particular from the breaking of the Pati-Salam (PS) gauge group [5, 6].
Chiral symmetries acting on family indices protecting the masses of the first
two fermion families emerge in this context as accidental symmetries.

In section 2.1 we motivate the structure of the model and in particular the
choice of the left-right (LR) symmetric and Pati-Salam (PS) gauge groups.
In section 2.2 we define in detail the model and sistematically analyze it.

All the flavour models presented in these chapters are intended to be
supersymmetric.

15
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2.1 A bottom-up approach to flavour from

accidental symmetries

2.1.1 Messenger dominance

Let ψi = qi, u
c
i , d

c
i , li, n

c
i , e

c
i , i = 1, 2, 3 denote the three light SM families in

Weyl notations, including three singlet neutrinos, and let h = hu, hd denote
the light Higgs. As usual, the lightness of the three SM families (except
possibly the singlet neutrinos) is guaranteed by their chirality with respect
to the SM group, while additional degrees of freedom are allowed to be much
heavier because they come in vectorlike representations of the SM group.
As anticipated in the introduction, the pattern of fermion masses arises in
our model from the existence of a single relatively light vectorlike family of
“messengers” Ψ + Ψ, with Ψ = Q,U c, Dc, L,N c, Ec, and from the breaking
pattern of the gauge group. We also consider the possibility of heavy Higgs
messenger fields H = Hu, Hd.

Since Ψ has the same SM quantum numbers as ψi, we use a discrete Z2

symmetry to tell the light families from the heavy one. The light fields ψi, h
are Z2-odd, while the messengers are even. In the unbroken limit, the light
families are massless, while the messengers fields Ψ,Ψ, H are allowed to be
superheavy1. Yukawa couplings for the light fields are forbidden by the Z2

symmetry. In order to break it, we then also include a SM-singlet Z2-odd
chiral field φ. Its scalar component will get a vacuum expectation value (vev)
at a heavy scale not far from the messenger scale. Needless to say, the Z2

symmetry is not a family symmetry, as it does not tell the three families
apart, all being odd under it. This is similar to what done in [7, 8, 9, 10],
where the hierarchical pattern of fermion masses was also addressed without
the use of family symmetries.

Once φ gets a vev, the light and heavy fermions mix, which gives rise
to the SM Yukawa couplings. In the limit in which the vev is smaller than
the mass of the heavy messengers, 〈φ〉 ≪ M , the Yukawa couplings of the
light fermions can be seen to arise from higher dimensional operators in the
effective theory below the scale M . This limit does not always hold in our
model, as we will see, but it is useful for illustrative purposes and will be
used in this Section. The exact treatment is postponed to Section 2.2. At the
lowest order, the relevant operators are in the form (φ/M)ψiψjh and they
arise from the three diagrams in Fig. 2.1.

If the three contributions in Fig. 2.1 are comparable and if the couplings

1The SM Higgs h is of course in principle also allowed to be heavy. We do not address
this µ-problem here.
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Figure 2.1: Messenger exchanges contributing to the operator (φ/M)ψiψjh
in the effective theory below the messenger scale. F , f refer to electroweak
doublets, while F c, f c refer to electroweak singlets.

involved are uncorrelated, we expect the fermion masses of the three families
to be comparable. On the other hand, in the limit in which one of the three
exchanges dominates (because the corresponding messenger is lighter) one
family turns out to be heavier and a hierarchy is generated. This mechanism
has several interesting features. The “horizontal” hierarchy among different
families follows from a “vertical” hierarchy among messengers belonging to
the same family, as in [7, 8, 9, 10]. As a consequence, the interfamily hierarchy
can be attributed to the breaking pattern of the gauge group. Moreover, we
will see that a two step breaking of the gauge group below the cutoff of
the theory is sufficient to account for the complex hierarchical structure of
charged fermions. We will also see that in spite of the absence of small
coefficients, the CKM mixing angles will turn out to be small, while in the
neutrino sector an attractive mechanism is available to give rise to a naturally
large atmospheric mixing between normal hierarchical neutrinos.

Let us see how this works in greater detail. Let us concentrate on the two
heavier families and let us also neglect for the time being the Higgs exchanges
in Fig. 2.1. We will discuss their role in connection to the first family masses
in Section 2.2. In compact notations, the most general renormalizable super-
potential is (we illegally use the same notation for the chiral superfield and
its “RP -even” component)

W = MΨ̄Ψ + αiΨ̄ψiφ+ λiΨψih, (2.1)

where

MΨ̄Ψ ≡MQQ̄Q+MU Ū
cU c +MDD̄

cDc +MLL̄L+MNN̄
cN c +MEĒ

cEc

αiΨ̄ψiφ ≡ αQ
i Q̄qiφ+ αU

i Ū
cuc

iφ+ αD
i D̄

cdc
iφ+ αL

i L̄liφ+ αN
i N̄

cnc
iφ+ αE

i Ē
cec

iφ
(2.2)

λiΨψih ≡ λQu
i Quc

ihu + λUq
i U cqihu + λQd

i Qdc
ihd + λDq

i Dcqihd+

λLn
i Lnc

ihu + λNl
i N clihu + λLe

i Lec
ihd + λEl

i E
clihd

.

No family symmetry or other dynamical constraint is imposed on the cou-
plings. As a consequence, the dimensionless parameters in eq. (2.1.1) are all
assumed to be O (1) and uncorrelated. When φ gets a vev, the heavy and
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light fermions mix, which gives rise to the quark Yukawa matrices Y U and
Y D. In the limit 〈φ〉 ≪ M (and in the RL convention for the Yukawas)

−Y U
ij = λQu

i αQ
j

〈φ〉
MQ

+ αU
i λ

Uq
j

〈φ〉
MU

(2.3a)

−Y D
ij = λQd

i αQ
j

〈φ〉
MQ

+ αD
i λ

Dq
j

〈φ〉
MD

. (2.3b)

Let us first consider the matrix Y U . The up quark is massless, since Y U has
rank two. If MQ ∼MU , the charm mass is expected to be of the same order
of the top quark mass. This is because no horizontal hierarchy nor align-
ment is forced among the family dependent parameters αQ

i , αU
i , λQu

i , λUq
i .

However, in the limit in which one of the terms in eq. (2.3a) dominates, the
charm mass gets suppressed, as one messenger cannot give a mass to more
than one family. A small Vcb angle is only guaranteed if the Q exchange is
dominant in both the up and down quark sectors2. We refer to this hypoth-
esis as “left-handed dominance”. We have then generated an inter-family
hierarchy in terms of order parameters associated to the intra-family mes-
senger structure, MQ/MU ,MQ/MD ≪ 1. The mechanism at work behind
the explicit discussion above has to do with accidental flavour symmetries
emerging in specific limits. First of all the discussion above holds in the limit
in which the first family is massless. Such a limit, which will be defined in
Section 2.2, implies the presence of an accidental chiral symmetry protect-
ing the first family. Moreover, a second accidental symmetry protecting the
masses of the of the second family fermions emerges in the limit in which
MU , MD become heavy.

A closer look to the textures obtained shows that in this framework the
features of the fermion masses and mixings are best interpreted in the context
of a Pati-Salam extension of the standard model group, as we now see.

2.1.2 Vus and SU(2)R symmetry

In order to write the Yukawa matrices in a simple form, we note that it is
possible to choose a basis in the qi, u

c
i , d

c
i flavour space such that αQ

1,2 = λQu
1,2 =

λQd
1,2 = 0. We can then also rotate the “1,2” fields to set αU

1 = αD
1 = λUq

1 = 0.
If the dimensionless coefficients were of the same order and uncorrelated in
the initial basis, we expect the non-vanishing coefficient to be still of the
same order and uncorrelated in the new basis. The quark Yukawa matrices

2This is true unless appropriate correlations are forced between the U and D coeffi-
cients, see below.
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can now be written as

Y U =




0 0 0
0 rU

2 a
U
2 ǫU rU

3 a
U
2 ǫU

0 rU
2 a

U
3 ǫU 1


αQ

3 λ
Qu
3

〈φ〉
MQ

, (2.4a)

Y D =




0 0 0
rD
1 a

D
2 ǫD rD

2 a
D
2 ǫD rD

3 a
D
2 ǫD

rD
1 a

D
3 ǫD rD

2 a
D
3 ǫD 1


αQ

3 λ
Qd
3

〈φ〉
MQ

, (2.4b)

where ǫU = MQ/MU , ǫD = MQ/MD ≪ 1 , while rU
i = λUq

i /λQu
3 , rD

i =

λDq
i /λQd

3 , aU
i = αU

i /α
Q
3 , aD

i = αD
i /α

Q
3 ∼ O (1) or vanishing.

A few remarks are in order. First of all, we note that eqs. (2.4) give

ms

mb

≈ rD
2 a

D
2 ǫD ∼ rD

2 a
D
3 ǫD ≈ |Vcb|, (2.5)

in agreement with data. In contrast, flavour symmetries often give ms/mb ∼
|Vcb|2, unless non-abelian symmetries [11, 12, 13, 3, 14] or asymmetric tex-
tures [15, 16] are considered. Eqs. (2.4) also show that the top and bottom
Yukawa couplings are of the same order, i.e. tanβ is large. This is a pre-
diction of the left-handed dominance scenario, which holds in the absence
of significant Higgs mixing. Note also that the simplest way to account for
the more pronounced hierarchy in the up quark sector, mc/mt ≪ ms/mb

is to have ǫU ≪ ǫD and therefore a double hierarchy MQ ≪ MD ≪ MU .
We will see below that mc/mt ≪ ms/mb can actually be explained without
introducing a third scale.

The textures in Eqs. (2.4) also have an unpleasant feature. Although the
masses of the first family fermions have still to be generated, the Cabibbo
angle does not vanish and ends up being typically large:

tan θC =

∣∣∣∣
rD
1

rD
2

∣∣∣∣ ∼ 1. (2.6)

While the actual value of the Cabibbo angle is not very small and could
be accomodated by e.g. an accidental cancellation, we prefer to consider its
smallness as the indication of a non-accidental correlation between the λqU

1,2

and λqD
1,2 coefficients in the initial basis. In turn, such a correlation points at

an SU(2)R gauge symmetry [17, 18, 19] forcing

λQu
i = λQd

i λLn
i = λLe

i αU
i = αD

i (2.7a)

λUq
i = λDq

i λNl
i = λEl

i αN
i = αE

i . (2.7b)
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We are therefore lead to a GLR = SU(2)L × SU(2)R × SU(3)c × U(1)B−L

extension of the SM gauge group3. Eqs. (2.7) lead to λDq
1 = 0, rD

1 = 0,
and therefore Vus = 0, as anticipated. A non-vanishing value of Vus will be
generated by the breaking of the SU(2)R symmetry, which is anyway needed.
The standard way to break GLR to GSM is through the vev of the scalar

component L̃′
c ( ˜̄L′

c) of a (Z2-even in our case) chiral right-handed doublet L′
c

(L̄′
c) transforming as Lc = (N c, Ec)T (L̄c = (N̄ c, Ēc)T ).

With the basis choice above, all the first family Z2-odd fermions have the
same charge under the accidental chiral U(1) symmetry protecting the first
family, whereas all the other fields are invariant. While a non-vanishing Vus

will need the breaking of the SU(2)R symmetry, a non vanishing mass for
the first family will need the breaking of that accidental chiral U(1). The
accidental family symmetry protecting the second family emerges in the limit
in which U c, Dc become heavy so that they can be integrated out. All the
second family fermions have the same charge under it.

2.1.3 Neutrino masses and mixing

We have seen above that small mixing angles are easily obtained in the quark
mass sector. At the same time, large mixing angles naturally appear in the
neutrino sector provided that the right-handed neutrino messengers N c, N̄ c

dominate the see-saw. This is closely related to the peculiar features of our
setting, as we now see.

As in the quark sector, it is convenient to consider a basis in which αL
1,2 =

λLn
1,2 = λLe

1,2 = 0 and αN
1 = αE

1 = λNl
1 = λEl

1 = 0. Because of the left-handed
dominance hypothesis, this choice makes in fact the charged lepton Yukawa
matrix approximately diagonal. On the other hand, the couplings λNl

2,3 of
N c to l2 and l3 are expected to be comparable. We have in fact already
used our freedom to redefine l2, l3 to make the mixings small in the charged
lepton sector. As the charged leptons are approximately diagonal, this means
that the singlet neutrino N c has similar O (1) couplings to νµ and ντ . If N c

dominates the see-saw, this is precisely the condition needed to obtain a

3Note that in the presence of an SU(2)R symmetry the possibility of right-handed dom-
inance also opens up. In fact, the argument leading to left-handed dominance holds under
the assumption that the couplings in different sectors, in particular in the right-handed up
and down sectors, are uncorrelated. On the other hand, we just saw that the SU(2)R sym-
metry does correlate quantities involving right handed up and down quarks and leptons.
As a consequence, the possibility that the Q+ Q̄ exchange be subdominant to the Qc + Q̄c

exchange opens up. In this context, one finds λc ∼ λs and therefore tanβ ∼ mc/ms.
The Q and Qc dominance scenarios are therefore characterized by different predictions for
tanβ. We do not pursue this possibility further in this paper.
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large atmospheric mixing angle and normal hierarchical neutrino masses in
a natural way [20, 21, 22, 23]. We will see in the next section that all the
heavy singlet neutrino masses will be approximately at the same scale, but
the “N cN c” entry of the inverse heavy Majorana mass can still dominate the
see-saw mechanism. Note that this is an example of see-saw dominated by
a singlet neutrino that is not a Pati-Salam (or SO(10)) partner of the light
lepton doublets.

2.1.4 The charm quark Yukawa and Pati-Salam

Since the fields U c and Dc are unified in a right-handed doublet Qc =
(U c, Dc)T , an unwanted consequence of the SU(2)R symmetry isMU = MD =
MQc , which gives mc/mt ≈ ms/mb. The SU(2)R symmetry must therefore
on the one hand protect Vus, on the other be badly broken in order to dif-
ferentiate the charm and strange Yukawas. This apparent problem turns out
to provide additional insight on the structure of the model.

It turns out that an indirect coupling of the available source of SU(2)R

breaking (the scalar fields L̃′
c,

˜̄L′
c) to the fermions Qc, Q̄c is the simplest

and most natural way to achieve the hierarchy mc/mt ≪ ms/mb. Coupling

(L̃′
c,

˜̄L′
c) to (Qc, Q̄c) at the renormalizable level needs the introduction of new

fields. There are only two possibilities. The one we are interested in is a vec-
torlike pair of fermion fields T+T̄ transforming as (1, 1, 3, 4/3)+(1, 1, 3̄,−4/3)
under GLR (the last entry denotes the value of B−L). Such fields couple to

the (L̃′
c,

˜̄L′
c) and (Qc, Q̄c) fields through the interaction TQc ˜̄L′

c and T̄ Q̄cL̃′
c.

Once the scalar doublets get a vev, the latter interactions contributes to the
masses in the up sector and allows to suppress the charm mass, as we will
see in Section 2.2.2. The second possibility4 does not suppress the charm
mass, as it only affects the down quark sector. It can play a role in the case
of right-handed dominance.

The introduction of fermions with the quantum numbers of T + T̄ might
look at first sight quite “ad hoc”. On the other hand, such fermions au-
tomatically arise with the Pati-Salam extension of the GLR group, GPS =
SU(4)c×SU(2)L×SU(2)R. The quantum numbers of T + T̄ appear in fact in
the decomposition under GLR of the SU(4)c adjoint and their interactions fol-
low from the standard coupling of the adjoint to the fundamental of SU(4)c.
In particular, fields with the quantum numbers of T + T̄ can certainly be
found among the SU(4)c gauginos5. Unfortunately the simplest implementa-

4A vectorlike pair S + S̄ transforming as (1, 1, 3,−2/3) + (1, 1, 3̄, 2/3) and coupling

through SQcL̃′
c and S̄Q̄c ˜̄L′

c.
5Note that such T + T̄ gauginos automatically get a heavy mass and are thus splitted
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tion of the economical interpretation in which the T + T̄ fields are gauginos
and L′ = L leads to problems in the Higgs sector. In order to avoid those
problem we will make sure that R-parity is not broken, which requires T + T̄

and L̃′, ˜̄L′
c to be associated to new chiral fields.

2.2 A model of flavour from accidental sym-

metries

2.2.1 Definition of the model

The chiral superfield content of the model and the quantum numbers under
GPS and Z2 are specified in Table 2.1. The first block contains the Z2-odd
fields: the 3 light (in the unbroken Z2 limit) families (fi, f

c
i ), i = 1, 2, 3,

the light Higgs h and the Z2-breaking field φ. The latter is in the adjoint
representation of SU(4)c as this provides the Georgi-Jarlskog factor 3 needed
to account for the µ–s mass relation. The second block contains the mes-
sengers, in a single vectorlike family (F, Fc) + (F̄ , F̄c). A Higgs messenger is
also included, corresponding to Fig. 2.1c. The third block contains the fields
F ′

c + F̄ ′
c breaking the Pati-Salam group (including the SU(2)R subgroup) and

an Z2-even SU(4)c adjoint Σ providing the fields T + T̄ discussed in Sec-
tion 2.1. SO(10) partners F ′ + F̄ ′ of F ′

c + F̄ ′
c are also included. The last block

contains two sources of Pati-Salam breaking. They contain the two possible
SM invariant directions in the Pati-Salam adjoint. Table 2.1 also shows the
R-parity associated to each field. R-parity plays a role in preventing the eco-
nomical identification of the primed fields with F c and F̄ c and of Σ with the
SU(4)c gauginos. When discussing the neutrino sector we will also introduce
Pati-Salam singlets.

Our hypothesis is that the Pati-Salam gauge structure and the fields
in Table 2.1 happen to be the only relatively light fields surviving below
the cutoff Λ of our theory, which will not be very far from 1016 GeV. We
implement this hypothesis by linking the mass of the heavy fields to Pati-
Salam breaking. We do not address the origin of this assumption here. No
dynamics related to the family indices is required. On the contrary, we will
assume that the dimensionless coefficients in the superpotential are O (1)
and uncorrelated.

from the lighter gluinos by the SU(4)c → SU(3)c spontaneous breaking. Note also that the

required coupling with Qc ˜̄L′ is also automatically present in the form of a supersymmetric
gauge interaction, provided that L̃′ is the partner of L.
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fi f c
i h φ F F̄ F c F̄ c H F ′ F̄ ′ F ′

c F̄ ′
c Σ X Xc

SU(2)L 2 1 2 1 2 2 1 1 2 2 2 1 1 1 1 1
SU(2)R 1 2 2 1 1 1 2 2 2 1 1 2 2 1 1 3
SU(4)c 4 4̄ 1 15 4 4̄ 4̄ 4 1 4 4̄ 4̄ 4 15 15 1

Z2 − − − − + + + + + + + + + + + +
RP − − + + − − − − + + + + + − + +

Table 2.1: Field content of the model and quantum numbers under GPS and
Z2

The renormalizable part of the superpotential is

W ren = λif
c
i Fh+ λc

ifiF
ch+ αiφfiF̄ + αc

iφf
c
i F̄

c +XF̄F +XcF̄
cF c

+ σ̄cF̄
′
cΣF

c + σcF̄
cΣF ′

c + σ̄F̄ ′ΣF + σF̄ΣF ′ + γXΣ2

+ λH
ijf

c
i fjH + ηF cFH + η̄F̄ cF̄H + η′F ′

cF
′H + η̄′F̄ ′

cF̄
′H. (2.8)

We have included all terms compatible with our hypotheses except a mass
term for the Higgses h and H . We have not shown the part of the super-
potential involving the primed fields and all other fields getting a vev. An
irrelevant term XF̄ cF c is also omitted. As anticipated, the messenger fields
and Σ only get a mass through the Pati-Salam breaking fields. Besides X, Xc,
the fields getting a vev are φ, F ′

c, F̄
′
c (RP is thus preserved). The hierarchy of

fermion masses originates from the assumption that the Pati-Salam breakings
along the T3R and N ′

c, N̄
′
c directions, 〈Xc〉 = MR(2T3R) and 〈F ′

c〉 = (Vc, 0)T ,〈
F̄ ′

c

〉
= (V̄c, 0)T respectively, both take place at a scale MR ∼ Vc much higher

scale than the scale ML ∼ v of the breaking along the B − L direction,
〈X〉 = MLTB−L, 〈φ〉 = vTB−L.6 The horizontal fermion hierarchy therefore
follows from the vertical structure of the theory. The vev of φ breaks the Z2

symmetry and mixes light and heavy fields, thus giving rise to the Yukawa
couplings of light fields. The vevs of F ′

c and F̄ ′
c are responsible for the full

6One example for the superpotential involving the primed fields and Xc, X, φ only is
(neglecting F ′, F̄ ′, including mass terms)

W ′ = (MR − δcXc)F̄
′

cF
′

c +
MXc

2
X2

c +
MX

2
X2 +

Mφ

2
φ2 + ρ1X

3 + ρ2Xφ2.

This it the most general renormalizable potential except for the XF̄ ′
cF

′
c coupling, which

is assumed to vanish. One solution of the F -term equations is (up to an SU(2)R rotation)
δc 〈X〉 = MR(2T3R), (δc/2)2

〈
N̄ ′

cN
′
c

〉
= M2

Xc

, 〈φ〉 = 0, 〈X〉 = 0. Both the breaking along
the T3R and N ′

c, N̄
′
c directions take place at the same scale MR, while the breaking along

the B − L direction is suppressed (zero at the renormalizable level).
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breaking of the Pati-Salam to the SM group, they generate a mixing between
SU(3)c triplets which suppresses the charm quark Yukawa, and they make H
heavy.

It is convenient to choose a basis in flavour space such that λ1,2 = α1,2 = 0,
λc

1 = αc
1 = 0. Moreover, λ3, α3, λ

c
2,3, α

c
2,3, γ, ML, MR, σ̄c, 〈φ〉, Vc = V̄c, can

all be taken positive. We therefore see that the effective theory in which
H is integrated out possesses an accidental chiral U(1)1 flavour symmetry
protecting the first family Yukawas: f1 → eiαf1, f

c
1 → eiαf c

1 . In the limit in
which the heavier messengers F c, F̄ c are also integrated out, an additional
accidental flavour symmetry U(1)2 protects the second family Yukawas: f2 →
eiβf2, f

c
2 → eiβf c

2 . The hierarchy between the third and the first two fermion
family masses can be seen as a consequence of the above flavour symmetries.
The stronger suppression of the first fermion family mass is due to the fact
that the heavy Higgs H does not mix with h at the renormalizable level.
This is because the coupling φHh is not allowed by the SU(4)c symmetry.
The suppression of the first family masses is therefore obtained for free, as
it is a consequence of the Pati-Salam quantum numbers of φ, which are
independently motivated by the mµ/ms ratio.

2.2.2 The fermion spectrum at the renormalizable level

Since R-parity is not broken, we can confine ourselves to the RP -odd fields.
Let us denote by AΣ, TΣ, T̄Σ, GΣ the (properly normalized) SM components
of Σ. Under SU(3)c × SU(2)w × U(1)Y , A is a singlet, T ∼ (3, 1, 2/3) is
a color triplet, T̄ ∼ (3̄, 1,−2/3) is an antitriplet, G ∼ (8, 1, 1) is an octet.
With standard notations for the SM components of the fields in Table 2.1,
the mass terms are

−L̄ [MLL+ α3vl3] − Ēc [MRE
c + v(αc

3e
c
3 + αc

2e
c
2)]

+
1

3
Q̄ [MLQ+ α3vq3] − D̄c

[
MRD

c − v

3
(αc

3d
c
3 + αc

2d
c
2)
]

+Ū c

[
MRU

c +
σc√
2
VcT̄Σ +

v

3
(αc

3u
c
3 + αc

2u
c
2)

]
+ TΣ

[
MΣT̄Σ +

σ̄c√
2
VcU

c

]

+N̄ c [MRN
c − v(αc

3n
c
3 + αc

2n
c
2)] −

√
3

8
σcV

cN̄ cAΣ −
√

3

8
σ̄cVcN

cAΣ +MΣA
2
Σ

+η′VcL
′Hu + η̄′VcL̄

′Hd −
MΣ

2
G2

Σ,

(2.9)
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where MΣ = −(2/3)γML. The charged fermion Yukawas are obtained by
identifying the massless combinations and expressing the Yukawa lagrangian

λc
iU

cqihu+λ
c
iD

cqihd+λ
c
iN

clihu+λ
c
iE

clihd+λiu
c
iQhu+λid

c
iQhd+λin

c
iLhu+λie

c
iLhd

(2.10)
in terms of them. We then obtain, at the scale M and at the leading order
in ǫ,

Y D =




0 0 0
0 αc

2λ
c
2ǫ/3 αc

2λ
c
3c ǫ/3

0 αc
3λ

c
2ǫ/3 −sλ3


 Y E = −




0 0 0
0 αc

2λ
c
2ǫ αc

2λ
c
3c ǫ

0 αc
3λ

c
2ǫ sλ3


 ,

(2.11)
where c = cos θ, s = sin θ, tan θ ≡ α3v/ML = O (1), ǫ ≡ v/MR ≪ 1. The
numerical value of ǫ turns out to be ǫ ≈ 0.06 (sλ3)/(α

c
2λ

c
2).

The up quark sector deserves some additional comments. The situation
is different than in the down quark and charged lepton sector, as the triplet
T̄Σ has the same SM quantum numbers as uc

i and U c and mixes as well.
The charm quark Yukawa arises from the interaction λc

iU
cqihU when U c is

replaced by its light component. The light component must be orthogonal to
both the combinations in squared brackets in the third line of eq. (2.9). As a
consequence, the charm Yukawa turns out to be suppressed twice. The light
component of U c vanishes in fact both in the v → 0 limit (Z2 is not broken,
uc

i do not mix with U c, T̄Σ) and in the MΣ → 0 limit (the light component
must in this case be orthogonal to U c). This explains the factors ǫ2 in

Y U = −




0 0 0
0 (4/9)αc

2λ
c
2ρuǫ

2 (4/9)αc
2λ

c
3cρuǫ

2

0 (4/9)αc
3λ

c
2ρuǫ

2 sλ3


 . (2.12)

In the equation above, ρu = (γα3)/(σcσ̄ctθ)(MR/Vc)
2, which turns out to be

close to one as it should, as ρu ǫ ≈ 0.07–0.08.
The Yukawas of the first family vanish at the renormalizable level, as an-

ticipated. We will see below how they are generated at the non-renormalizable
level. For the time being, let us comment about some interesting features
of eqs. (2.11,2.12). We have assumed that i) the Z2-breaking field φ is in
the adjoint of SU(4)c and ii) the masses of the messenger fields and Σ are
linked to Pati-Salam breaking, with the breaking along the B − L direction
taking place at a much smaller scale than the breaking in the T3R and singlet
neutrino directions. As a consequence, we find i) ms ≪ mb and mµ ≪ mτ , ii)
|Vcb| ∼ ms/mb, iii) (mτ/mb)M ≈ 1 iv) (mµ/ms)M ≈ 3, v) mc/mt ≪ ms/mb.
We also predict the suppression of the first family fermion masses. Note in
particular that two different hierarchies in the down quark/charged lepton
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sectors and in the up quark sector are obtained in terms of a single hierarchy
between the two scales of the theory MR and M . Note also that the relation
|Vcb| ∼ ms/mb is a direct consequence of the principles of our approach. As
usual in the presence of a single Higgs multiplet, one also obtains λτ–λb–λt

unification.
Let us now consider the neutrino sector. The (RP -odd) SM singlet

neutrino fields in the model are nc
1,2,3, N

c, N̄ c, AΣ. Eq. (2.9) shows that
αc

3n
c
3 + αc

2n
c
2, N

c, N̄ c, AΣ get a heavy mass, while αc
2n

c
3 − αc

3n
c
2 and nc

1 are
massless at the renormalizable level. This is clearly a problem, as it implies
a Dirac mass to the tau neutrino at the electroweak scale. A possible solu-
tion is to invoke (small) non-renormalizable contributions to the masses̈ı¿1

2

of αc
2n

c
3 − αc

3n
c
2 and nc

1. However, this would make the latter fields domi-
nate the see-saw, while we saw in the previous section that we prefer N c to
dominate. We therefore couple the SM singlets nc

i to 3 Pati-Salam singlets
si ∼ (1, 1, 1,−,−) through the Dirac mass term provided by the interaction
ηs

kiskf
c
i F̄

′
c. This raises the fields nc

i and sk at the higher of the two scales of
our model. Note that it is always possible to choose a basis for the sk’s such
that the coupling ηs

ki and the Dirac mass term are diagonal.
The fields nc

i and sk constitute a pseudo-Dirac system. That is because
a Pati-Salam invariant Majorana mass term for the Pati-Salam singlets sk

cannot be written at the renormalizable level, according to our hypothesis
stating that the mass terms should originate from PS breaking. The only
correction to the pure Dirac limit therefore comes from the mixing of the
sk’s with AΣ, which is however suppressed by v/MR = ǫ. Since the coupling
of the pseudo-Dirac pair (nc

3, s3), to the light lepton doublets, λ3n
c
3Lhu, only

involves nc
3, the contribution to the see-saw of the (nc

i , si) fields is negligible.
In fact, that contribution vanishes in the pure Dirac limit. This can be
seen for example by diagonalizing the Dirac pairs in terms of two Majorana
mass eigenstates with opposite mass. As in the Dirac limit n3 contains the
two eigenstates with exactly the same weight, the two contributions to the
see-saw exactly cancel7. Taking into account the small corrections to the
pure Dirac limit, the contribution of (nc

i , si) to the see-saw turns out to be
suppressed by ǫ. More precisely, the contribution to the atmospheric angle
is suppressed by ǫ and the contribution to m2/m3 by ǫ2. We can then safely
neglect the fields nc

i and sk for our purposes. This can also be verified by
using the full 9 × 9 singlet neutrino mass matrix in the see-saw formula.

We are then left with 3 SM singlet (right-handed) neutrinos N c, N̄ c, AΣ

7An alternative way to verify that the Dirac system does not contribute to the see-saw
is to observe that its contribution is proportional to (M−1

D )nc

3
nc

3
, where MD is the Dirac

mass term for the two Weyl spinors nc
3, s3 with vanishing diagonal entries. As the inverse

of a Dirac mass matrix is still in the Dirac form, (M−1
D )nc

3
nc

3
= 0
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with mass terms

MRN̄
cN c −

√
3

8
VcAΣ(σcN̄

c + σ̄cN
c) +MΣA

2
Σ (2.13)

entering the see-saw through the Yukawa interaction N c(λc
3l3 + λc

2l2)hu. The
following effective D = 5 left-handed neutrino mass operator is then gener-
ated

1

4

σc

σ̄c

1

MR
(cλc

3l
′
3 + λc

2l
′
2)

2h2
u, (2.14)

where l′3 = cl3 − sL, l′2 = l2 are the light lepton doublets. We have therefore
obtained a normal hierarchy and a large atmospheric mixing angle θ23 in a
natural way,

tan θ23 =
λc

2

cλc
3

, m3 = ρν
v2
EW

2s2
23MR

, m1,2 ≈ 0, (2.15)

where vEW ≈ 174 GeV is the electroweak breaking scale, s23 = sin θ23, and
ρν = (σc/σ̄c)(λ

c
2)

2 ∼ 1. Eq. (2.15) determines the scale MR of our model,
MR ≈ 0.6 · 1015 GeVρν . The solar mixing angle and mass difference are
generated at the non-renormalizable level together with the masses of the
first charged fermion masses.

2.2.3 The first family

As discussed, the first family fermion masses are protected by an accidental
U(1)1 family symmetry. That symmetry is actually broken by the coupling
of the first family with the heavy Higgs messenger H . However, H does not
mix with the light Higgs h at the renormalizable level, which means that for
our purposes it is effectively decoupled. The U(1)1 symmetry can therefore
be broken by non-renormalizable interactions either because the interactions
directly involve the first family or because they induce a H-h mixing. Here
we will consider the second possibility. In both cases, the first family mass
will be further suppressed with respect to the other families by the heavy
cutoff scale Λ.

Not all the non-renormalizable operators are suitable to give a mass to the
first family. For example, the operator f c

i fjφh gives the same contribution
to the Yukawas of the up and down quarks (in this λt ≈ λb scenario the
up quark mass Yukawa needs to be suppressed by a factor of about 200).
The operator F ′

cF
′φh is also dangerous, as it indirectly contributes to the up

quark mass only. We therefore need to make an assumption on the operators
generated by the physics above the cutoff Λ. A simple assumption is that
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the the heavy physics only couples φ to the barred F̄ ′, F̄ ′
c (but not to F ′,

F ′
c). This would still allow an operator in the form

a

Λ
F̄ ′

cF̄
′φh, (2.16)

which turns out to give mass to the electron and the down quark, but not
to the up quark, as desired. The reason is that the operator above induces
a mixing in the down Higgs sector but not in the up Higgs sector. As men-
tioned in Section 2.2.1, Hd and Hu get a mass term, η′VcL

′Hu + η̄′VcL̄
′Hd,

from the vev of F̄ ′
c through the renormalizable interactions in eq. (2.8). In

addition, the operator in eq. (2.16) gives a mass term −a(Vcv/Λ)L̄′hd, which
induces a mixing between the two down Higgses Hd and hd. This in turn
communicates the U(1)1 breaking provided by λH

ijf
c
i fjH to the down quark

and charged lepton sector. When Hd is expressed in terms of the exact Higgs
mass eigestates H ′

d and h′d, the latter operator induces in fact a contribu-
tion to the down and charged lepton Yukawas matrices Y D

ij and Y E
ij given by

ǫ′ρhλ
H
ij (up to the L-l′3 mixing), where

ǫ′ =
v

Λ
= ǫ

MR

Λ
(2.17)

and ρh = a/η̄′ ∼ 1. The small ratio MR/Λ explains the further suppression
of the first fermion family. We then obtain, at leading order,

Y D =



ρhλ

H
11ǫ

′ ρhλ
H
12ǫ

′ ρhλ
H
13c ǫ

′

ρhλ
H
21ǫ

′ αc
2λ

c
2ǫ/3 αc

2λ
c
3c ǫ/3

ρhλ
H
31ǫ

′ αc
3λ

c
2ǫ/3 −sλ3


 Y E =



ρhλ

H
11ǫ

′ ρhλ
H
12ǫ

′ ρhλ
H
13c ǫ

′

ρhλ
H
21ǫ

′ −αc
2λ

c
2ǫ −αc

2λ
c
3c ǫ

ρhλ
H
31ǫ

′ −αc
3λ

c
2ǫ −sλ3


 .

(2.18)
The up Higgs does not mix, which explains the smallness of the up quark
Yukawa. The latter will be eventually generated by Planck scale effects. For
example an operator (c/Mpl)f

c
i fjφh would provide a up quark Yukawa of the

correct order of magnitude for c ∼ 1. The latter argument also provides an
independent estimate (an upper bound in the general case) of the scale MR,
which happens to coincide with our estimate from neutrino physics.

Eq. (2.18) shows that the electron and down quark masses are expected
to be similar, while the correct relation is me ∼ md/3 at the heavy scale.
In order to avoid the wrong relation, λH

11 should be sufficiently suppressed
in the basis in flavour space which identifies the first family. Quantitatively,
the requirement is λH

11/λ
H
12,21 <

√
md/ms/3 ∼ 0.08. This suppression could

for example accidentally arise when rotating the fields to go in the basis in
which eqs. (2.11,2.18) are written. In this case one obtains me ∼ md/3 and
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Vus ∼
√
md/ms, as observed, at the price of a fine-tuning of at least O(10)8.

The full CKM matrix can be obtained by diagonalizing the up and down
Yukawa matrices. Vub/Vcb and Vtd/Vts both get a contribution from Y D

31 . On
top of that, Vtd/Vts also gets a contribution from the commutation of the
“12” rotation used to diagonalize Y D and the relative 23 rotation(Vcb). In
formulas,

Vub

Vcb
=
αc

2λ
H
31

αc
3λ

H
21

Vus, δ = arg

[
αc

2λ
H
31

αc
3λ

H
21

]
,

∣∣∣∣
Vtd

Vts

∣∣∣∣ =

∣∣∣∣|Vus| −
∣∣∣∣
Vub

Vcb

∣∣∣∣ e
iδ

∣∣∣∣ ,
(2.19)

where δ is the CKM phase in the standard parameterization. The present
SM CKM fits give [24] |(αc

2λ
H
31)/(α

c
3λ

H
21)| ≈ 0.4.

A comment on Vus is in order. As we saw, the physics giving rise to
the Yukawas of the first family will typically also generate a contribution to
Vus. Vus and the first family are however in principle independent issues.
In fact, Vus is related to the breaking of the LR symmetry, while the first
family requires the breaking of the corresponding accidental flavour symme-
try. Indeed, the reason why the mechanism generating first family Yukawas
also typically generates Vus is that in order to make md/mb ≫ mu/mt the
LR symmetry must be broken. On the other hand, it is possible to generate
a contribution to Vus without inducing a corresponding contribution to the
first family mass. The operator biXcF

cfih/Λ, involving the SU(2)R breaking
field Xc, gives for example a contribution 2(b1/λ

c
2)(MR/Λ) to Vus without

breaking U(1)1 (it also modifies eq. (2.19)). From the previous argument
and from eq. (2.18) we expect

MR

Λ
∼ |Vus|

2
∼ 0.1. (2.20)

Finally, let us go back to neutrino masses. By using the renormalizable
interactions, we succeeded in giving a mass to the heaviest neutrino ν3 and in
generating a large atmospheric neutrino angle θ23. We still need to generate a
mass for the intermediate neutrino m2 and a corresponding large solar angle
θ12. As we show in section 2.2.3, non-renormalisable interactions involving
the fields introduced so far can generate a mass term for m2 at the correct
level together with a non-vanishing θ13 close to the current experimental limit,
but not a large solar angle θ12. However, a large solar angle can be induced by

8One could make at this point the totally disinterested observation that our model
involves more than O(10) relations among O (1) coefficients, so that accidental cancellation
of leaving less than one part out of 10 is expected to occur somewhere. In fact, from this
point of view, the distribution of the absolute values of our O (1) coefficients turns out to
be rather peaked on 1.
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a Pati-Salam singlet S ∼ (1, 1, 1,+,−) coupling at the non-renormalizable
level only9. Its mass term will be in the form d′(V 2

c /Λ)S2. Its Yukawa
coupling to the lepton doublets comes from the operator eiF

′
cSfihu/Λ. Its

mixing with the other SM singlets is negligible. Therefore, its contribution
to the neutrino mass operator is simply given by

− 1

4d′
1

Λ
(e3c l

′
3 + e2l

′
2 + e1l

′
1)

2h2
u. (2.21)

We then get an additional contribution to θ13, θ
e
13 = −s2

23ρ12e1(c c23e3 +
s23e2)(MR/Λ), where ρ12 = 1/(ρνd

′). Moreover, in the limit in which only
eq. (2.21) adds to the leading term in eq. (2.14), the lighter neutrino masses
m1 and m2, together with the solar mixing angle, are given by the diagonal-
ization of the “12” mass matrix

−s2
23ρ12m3

MR

Λ

(
e21 e1(c23e2 − c s23e3)

e1(c23e2 − c s23e3) (c23e2 − c s23e3)
2

)
. (2.22)

Neutrino mixing, solar angle and θ13

In this section we show that in the absence of S non-renormalizable con-
tributions to the superpotential generate a non-vanishing m2 and a sizable
contribution to θ13, but no large solar mixing angle. In general, the latter
contributions can affect the see-saw either through the singlet neutrino mass
matrix or through the Yukawa interactions with the light SM lepton doublets.
The leading order operators contributing to the singlet neutrino mass matrix
are F̄ ′

cF̄
′
cf

c
i f

c
j , F̄

′
cF̄

′
cF

cF c, F ′
cF

′
cF̄

cF̄ c, F̄ ′
cF

′
csksh, X

2
c sksh. Only the two opera-

tors involving sk affect the see-saw in a significant way. Let dij(V
2
c /Λ)sisj be

the Majorana mass term induced by those operators. If Ms is the singlet neu-
trino mass matrix, the s3s3 mass term gives (M−1

s )nc
3nc

3
≈ −2(d33/η

s
3
2)/Λ. In

turn, through the Yukawa interaction λ3n
c
3Lhu and the see-saw mechanism,

the latter gives a contribution

d

ηs
3
2

1

Λ
(sλ3l

′
3)

2h2
u (2.23)

to the dimension 5 neutrino mass operator, which adds to the leading order
contribution in eq. (2.14). By diagonalizing the resulting light neutrino mass
matrix we then get

m2

m3
≈ 4ρ23 sin4 θ23

MR

Λ
, (2.24)

9This is an important assumption as renormalizable interactions SF̄ ′
cF

c, SF̄ cF ′
c would

in principle be allowed by the symmetries of the theory.
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where ρ23 = (sλ3/λ
c
2)

2(σ̄cd)/(σ
cηs

3
2) ∼ 1 and θ23 is the atmospheric mixing

angle. The ratio m2/m3 turns out to be of the correct order of magnitude
given the estimate in eq. (2.20).

We also have non-renormalizable contributions to the Yukawa interactions
with the light SM lepton doublets. The relevant operators are biXcF

cfih/Λ
and b′iΣF

′
cfihu/Λ, other possibilities leading to a higher ǫ suppression. Both

operators lead to a contribution to θ13 without inducing a significant solar
mixing angle or m2/m3. We have already discussed the first operator in
connection to SU(2)R breaking and Vus. In the lepton sector its role is again
to misalign the Yukawa couplings of N c and Ec to the lepton doublets li. In a
basis in which Ec has no Yukawa interaction with l1, the Yukawa interaction
of N c becomes N c[λc

3l3 + λc
2l2 + 2b1(MR/Λ)l1]hu and eq. (2.14) becomes

1

4

σc

σ̄c

1

MR

(
cλc

3l
′
3 + λc

2l
′
2 + 2b1

MR

Λ
l′1

)2

h2
u. (2.25)

The second operator b′iΣF
′
cfihu/Λ gives rise to a Yukawa interaction for the

singlet AΣ, −
√

3/8b′i(Vc/Λ)AΣlihu, which induces new contributions to the
see-saw. In terms of the inverse mass matrix M−1

s of the singlet neutrinos
N c, N̄ c, AΣ, and in the limit in which the nc

i contribution is neglected, the
neutrino mass operator is in fact now given by

1

2


(M−1

s )NcNc(λc
i li)

2 + (M−1
s )AΣAΣ

(√
3

8
b′i
V c

Λ
li

)2

− 2(M−1
s )AΣNc

(√
3

8
b′i
V c

Λ
li

)
(λc

i li)


h2

u.

Since the determinant of the inverse matrix elements vanishes, (M−1
s )AΣAΣ(M−1

s )NcNc−
(M−1

s )2
AΣNc = (Ms)N̄cN̄c/ det(Ms) = 0, the equation above gives again a con-

tribution to θ13 but not to θ12 or m2/m3. The neutrino mass operator can
be rewritten in fact as

1

4

σc

σ̄c

1

MR

(
cλc

3l
′
3 + λc

2l
′
2 +

b′1
σc

MR

Λ
l′1

)2

h2
u. (2.26)

In the presence of both MR/Λ corrections in eqs. (2.25,2.26), the total con-
tribution to θ13 is

θ13 ⊃ θb
13 = 2 sin θ23

b1 + b′1/(2σc)

λc
2

MR

Λ
, (2.27)

close to the experimental limit.
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2.2.4 Summary

In this section we have discussed a new approach to fermion masses an mix-
ings in which the dominance of a single family of messengers accounts for
the lightness of the first family, and the further dominance of the left-handed
doublet messengers accounts for the lightness of the second family. With only
these assumptions we are able to account for the fermion mass hierarchy, as
well as the successful mass relation ms/mb ≈ |Vcb|. In order to naturally
acount for a small Cabibbo angle, and the correct charm quark mass, we
were then led to consider a broken Pati-Salam gauge structure.

The hypothesis underlying our setting is that the Pati-Salam gauge struc-
ture, the three SM families, and a relatively small set of heavy fields happen
to be the only structure surviving below the cutoff Λ ∼ 1016−17 GeV of our
model. The flavour structure of the SM fermions essentially only follows from
this hypothesis, with no dynamics related to the family indices or detailed
knowledge of the theory above the cutoff required.

This framework has several interesting features. The horizontal hierarchy
among different families follows from a vertical hierarchy among messengers
belonging to the same family. The latter is in turn related to the breaking
pattern of the Pati-Salam group, with the breaking along the T3R and singlet
neutrino directions taking place at a higher scale than the breaking along the
B−L direction. In spite of the absence of small coefficients, the CKM mixing
angles turn out to be small. At the same time, a large atmospheric mixing
appears in the neutrino sector between normal hierarchical neutrinos in a
natural way. This is obtained through a see-saw mechanism dominated by a
singlet neutrino N c which is not unified with the light lepton doublets, as it
belongs to the messenger families. The final scheme has N c as the dominant
singlet, with S as the leading subdominant singlet as in sequential dominance.
The relation |Vcb| ∼ ms/mb is a direct consequence of the principles of our
approach. The two different mass hierarchies in the down quark/charged
lepton sectors on one side and in the up quark sector on the other are obtained
in terms of a single hierarchy between the two scales of the theory MR and
M . The suppression of the first fermion family masses also does not need a
new scale for the messenger fields. It is actually a prediction of the model,
as it again follows from the gauge structure of the model, which forbids the
relevant coupling of the Higgs messenger field. As usual in the presence of a
single Higgs multiplet, one also obtains λτ–λb–λt unification.

The precise structure of the masses and mixings of the first fermion family
requires an assumption on the operators generated by the physics above the
cutoff Λ and relies on an accidental cancellation corresponding to a fine-
tuning of at least 10. In the neutrino sector, a large solar mixing angle is



2.2. A MODEL OF FLAVOUR FROM ACCIDENTAL SYMMETRIES 33

obtained together with θ13 = O (m2/m3), close to the present experimental
limit.
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Chapter 3

Magic fields and unification

In this chapter we discuss exact 1-loop unification with “magic” fields in
incomplete GUT multiplets, which will be used extensively in Chapter 4
and has an intrinsic interest, as alternative way to achieve unification, in
particular in the context of theories with GUT extra dimensions.

In the MSSM gauge coupling unification takes place at 1-loop level, to
a very good approximation and at a scale M0

GUT ≃ 2 · 1016 GeV. This
remarkable coincidence is one of the cornerstones of SUSY GUTs.

In a SUSY GUT framework, it is usually assumed that only complete
GUT multiplets can be added at an intermediate scale between MZ and
M0

GUT . Complete GUT multiplets give a contribution ∆b1 = ∆b2 = ∆b3
to the 1-loop β function and obviously do not spoil the unification of gauge
couplings. However there are also examples of sets of fields which do not
form complete GUT multiplets but have ∆b1 = ∆b2 = ∆b3. One example
can be found in [25].

The condition ∆b1 = ∆b2 = ∆b3 is sufficient but not necessary in order to
achieve gauge coupling unification at 1-loop. This was discussed by Martin
and Ramond in [26]. This work belongs to a large amount of literature (see
[27]) addressing the possibility of enhancing the unification scale, mainly in
the context of string theory phenomenology where the unification scale is
more than one order of magnitude higher than M0

GUT . In that paper it was
noticed that if the extra matter satisfies the condition

∆b3 − ∆b2
∆b2 − ∆b1

=
5

7
(3.1)

then the 1-loop unification of the MSSM is exactly preserved. However the
focus of that work was on the possibility that MSSM unification was not
exact and the extra matter could cure a wrong α3(MZ) prediction.

In this chapter we consider the possibility of adding extra matter that
satisfies the condition (3.1) in order to preserve gauge coupling unification

35
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Figure 3.1: Running of the gauge couplings induced by the matter fields at
scale ML ∼ 1013 − 1014 GeV.

with new non-unified physics at intermediate scales. This condition could
appear fine-tuned, but such a matter content can appear naturally in some
models.

As an example, we consider the model of the previous chapter. This
flavour model contains heavy fields at a scale of order 1014 GeV, much lower
than the unification scale. These heavy field contribute to the beta functions
of the gauge couplings above M . They do not lie in complete representations
of a unified gauge group, therefore they modify the running of the SM gauge
coupling constants between 4 · 1013 GeV and 2 · 1016 GeV, generally spoiling
the usual MSSM unification.

Now we discuss the effect of these new fields on the running. The matter
content at scale MR is not fully determined in the model above, because it
depends on the details of Pati-Salam breaking, so we concentrate instead on
the matter content at the lighter scale M . Neglecting mixings, the chiral
matter at this scale is Q, Q̄, L, L̄, G, TΣ, T̄Σ and its contribution to the beta
functions (b1, b2, b3) is

∆b = (12/5, 4, 6)

The modified running of the gauge couplings is shown in figure 3.1.

Quite surprisingly, the gauge couplings unify even with the new fields,
but the unification scale is modified. The reason is that the matter content
is very similar to (Q, Q̄,G)+(L, L̄,Dc, D̄c) except for the hypercharge of the
last two fields. The last four fields come from full multiplets of SU(5) while
the first three do not fit into complete multiplets. However the contributions
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of all these fields to the beta functions are

∆b = (6/5, 4, 6)

which satisfy the condition (3.1) and preserve unification at 1-loop, but at
an energy scale higher than the usual GUT scale. The effect of the difference
in hypercharge of the fields TΣ, T̄Σ with respect to Dc, D̄c is small for scales
larger than 1014 GeV and results in a lower prediction for α3(MZ) at 1-loop,
which cancels with the 2-loop enhancement.

In the rest of the chapter we show the field contents which preserve 1-loop
unification and their effects on the unification scale and the unified coupling
constant. We also present some applications to 5D models, intermediate scale
models and gauge mediation.

3.1 Magic fields

We consider the MSSM field content with additional matter fields at a scale
Q0. Denoting the contribution of these new fields to the beta functions by
bNi and the contribution of the MSSM by b0i , the 1-loop running of the gauge
couplings is given by

α−1
i (µ) = α−1

i (MZ) − b0i
2π

log

(
µ

MZ

)
− bNi

2π
log

(
µ

Q0

)
. (3.2)

If we assume 1-loop unification in the MSSM at scale M0
GUT with unified

coupling α0
U , the condition for preserving gauge coupling unification at scale

MGUT with the new field content turns out to be

α−1
U = (α0

U)−1 − bNi
2π
log

(
M0

GUT

Q0

)
− bi

2π
log

(
MGUT

M0
GUT

)
(3.3)

with bi = b0i + bNi . Eliminating gauge couplings and scales we get the “magic
condition”

bNi − bNj
bNj − bNk

=
b0i − b0j
b0j − b0k

(3.4)

In the MSSM it can be written as

bN3 − bN2
bN2 − bN1

=
b03 − b02
b02 − b01

=
5

7
. (3.5)

With this condition the 1-loop unification is preserved independently on the
value of Q0.
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Generally unification can take place at a different scale Mnew
GUT given by

Mnew
GUT = M0

GUT

(
Q0

M0
GUT

)r

(3.6)

where

r =
bN3 − bN2
b3 − b2

(3.7)

The unified gauge coupling is

α−1
U = (α0

U)−1 − (1 − r)bNi − rb0i
2π

log

(
M0

GUT

Q0

)
(3.8)

The scale Q0 is almost arbitrary, but two mild bounds come from the require-
ment that Mnew

GUT < MPlanck and that at Mnew
GUT the gauge coupling is still in

the perturbative regime, i.e. α−1(Mnew
GUT) > 1/(4π)

A trivial possibility to preserve unification is to add complete GUT multi-
plets with bN3 = bN2 = bN1 , but there might exist also other field contents which
satisfy the condition (3.5) and to which we refer as “magic” sets of fields in
the following. Most remarkably, these magic sets can lead to unification at
a new GUT scale.

The effect of the magic fields on the running of the gauge couplings is
described by the parameter r given in in eq. (3.7). This parameter determines
the relative order of the three scales Q, M0

GUT and Mnew
GUT. There are five

different scenarios depending on the value of the parameter r.

• r = 0 ⇒ Q < M0
GUT = Mnew

GUT: Usual unification
This corresponds to bN3 = bN2 = bN1 and the GUT scale is unchanged,
but the unified coupling changes accordingly to (3.8). The magic fields
can be complete GUT multiplets, but not necessarily.

• −∞ < r < 0 ⇒ Q < M0
GUT < Mnew

GUT: Retarded unification
In this scenario the magic fields slow the running of the gauge couplings.
It resembles the usual picture of unification with a higher GUT scale.

The simplest example of retarded unification is
(
Q+ Q̄

)
+G or (3, 2)1/6+

(3̄, 2)−1/6 + (8, 1)0, which gives (bN3 , b
N
2 , b

N
1 ) = (5, 3, 1/5) and r = −1.

• r = ±∞ ⇒ Q = M0
GUT < Mnew

GUT: Fake unification
This curious case corresponds to b3 = b2 = b1, which means that the
three gauge couplings run parallel above Q0. This means that the
condition for gauge coupling unification at Mnew

GUT > Q0 is to identify
Q0 = M0

GUT. In this way the gauge couplings unify at the usual scale
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Figure 3.2: Retarded unification

M0
GUT, and then run together up to the scale Mnew

GUT where the unified
gauge group is broken. Note that in this case we have a prediction for
Q0, while Mnew

GUT is completely undetermined.

From a high-energy point of view, Q0 = M0
GUT is quite natural. In fact

the scenario is as follows: the high-energy gauge group breaks down at
a given Mnew

GUT, but there are magic fields of mass Q0 < Mnew
GUT which

remain light. Because of these fields, the GUT symmetry is broken but
the couplings run together from Mnew

GUT down to Q0. At this scale the
couplings are still unified but start diverging below it because the magic
fields decouple, therefore a low-energy observer would define this scale
to be the unification scale M0

GUT even if the unified group is broken at
an higher scale.

A simple example of fake unification can be obtained with only one
multiplet (6, 2)−1/6 + c.c. which has (b3, b2, b1) = (10, 6, 2/5) . This
example was noticed in [28].

• 1 < r < +∞ ⇒ M0
GUT < Q < Mnew

GUT : Hoax unification
In this scenario the magic field content flips the convergence/divergence
of the running. Therefore if this content is added at a scale smaller than
M0

GUT, the gauge couplings diverge above Q0. However there is the
possibility that unification is preserved if the magic fields have mass
above M0

GUT. Then the couplings run apart between M0
GUT and Q,

start to converge above Q and finally unify again at Mnew
GUT, the scale

where the unified group is broken.

Because of the linearity of the condition (3.5), hoax unification can be
easily obtained by componing matter contents belonging to the previous
cases, but there are also other possibilities: for example, (1, 3)0 + 2 ×
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M0
GUT ≡ Q0 MGUT

logµ

α
−

1
i

Figure 3.3: Fake unification

(
(8, 2)1/2 + c.c.

)
has r = 3.

M0
GUT Q0 MGUT

logµ

α
−

1
i

Figure 3.4: Hoax unification

• 0 < r < 1 ⇒ Q < Mnew
GUT < M0

GUT: Anticipated unification
The magic content accelerate the running and unification takes place
below the usual GUT scale. Note that with a lower GUT scale there
can be some tension with bounds from proton decay searches.

If we do not introduce exotic representations, the magic condition requires
bN3 − bN2 to be even and bN2 − bN1 to be a multiple of 14/5, therefore in
the retarded case the only possibility is bN3 − bN2 = 2 which corresponds to
r = −1 [26]. In this case the relation (3.6) between the mass scales becomes
particularly simple: Mnew

GUT/M
0
GUT = M0

GUT/Q0. From this we can see that
Q0 cannot be lower than 1013 − 1014 GeV.
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3.1.1 Examples in SO(10) GUT

In this section we give some simple examples of SO(10) superpotentials pro-
viding a magic content of light fields.

• The simplest example of retarded unification is
(
Q+ Q̄

)
+ G which

belong to a 16 + 1̄6 + 45. This can be obtained by considering for
example the superpotential

W = 16 45H 1̄6+16H 16 10+1̄6H 1̄6 10+45H 45 54+16H 45 1̄6+1̄6H 45 16+M 10 10+M 54 54
(3.9)

with all trilinear couplings of order 1 and M ∼ MGUT . The vev of
45H is taken in the T3R direction and is of order MGUT , therefore this
superpotential gives a mass of order MGUT to all fields except Q, Q̄,G
which are assumed to get a mass at scale Q0.

A two-loop analysis of this case shows that for Q0 = 1015 the unifica-
tion scale is Mnew

GUT = 4 · 1017 GeV and αU = 0.046. The corresponding
prediction for αs(MZ) = 0.127(3) evaluated for a typical SUSY spec-
trum does not differ significantly from the usual 2-loop MSSM analysis
(and around 2σ above the present experimental value [29]).

• An example of fake unification (beyond the simple doubling of the
above solution) is

2LL̄+ 2G+ 2W + 2EĒ +
(
(8, 2)1/2 + c.c

)

which belongs to 2× 45 + 120. This light field content can be obtained
by taking 〈45H〉 = O(MGUT )TB−L in the following superpotential

W = 45 45H 45′ + 120 45H 120′ +M 120′ 120′ (3.10)

with all trilinear couplings of order 1 and M ∼ MGUT .

• A simple example of hoax unification (beyond any combination of re-
tarded and fake solutions, e.g. 3 ×

(
Q+ Q̄+G

)
) is given by 4LL̄ +

2
(
(8, 2)1/2 + c.c

)
which belongs to 120+2×126 ¯126. The corresponding

superpotential is

W = 126 45H
¯126+126′ 45H

¯126
′
+120 45H 120′+M 120′ 120′ (3.11)

with trilinear couplings ∼ 1, M ∼ MGUT and 〈45H〉 = O(MGUT )TB−L.
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3.2 Magic content in 2-step breaking of SO(10)

If we consider a 2-step breaking of SO(10) with Pati-Salam SU(4)×SU(2)L×
SU(2)R as the unbroken gauge group in the intermediate region, the magic
condition is modified and becomes non-linear (because of the contribution of
the PS/SM gauge bosons, which would spoil MSSM 1-loop unification). The
new condition is

b4 − bL
bL − bR

=
1

3
(3.12)

where the contribution of MSSM fields and PS gauge bosons is (b04, b
0
L, b

0
R) =

(−6, 1, 1). Note that Pati-Salam couplings do not unify without extra matter,
that however should be present in order to break Pati-Salam to the SM1.

If the field content below the PS scale is the MSSM one, the classification
given in section 3.1 can be mantained in these models simply by considering
a different definition for r:

r =
bN4 − 3 − bNL
b4 − bL

(3.13)

and the formula (3.6) is still valid provided that we use (3.13) for r. A more
general expression for the new unification scale is:

ln
Mnew

GUT

M0
GUT

=

(
b3 − b2
b4 − bL

− 1

)
ln
M0

GUT

MPS

(3.14)

where b2, b3 are the SM coefficients just below the PS scale.
If we do not consider the contribution of the fields which break Pati-

Salam (e.g. because they appear in complete SO(10) representations), there
are simple examples of magic sets of fields which take their mass from PS-
breaking vevs. One example of retarded unification is given by (4, 1, 2) +
(4̄, 1, 2)+(1, 2, 2)+(1, 1, 3)+(10, 2, 2)+(1̄0, 2, 2) which can take their masses
from a (15, 1, 1) vev proportional to B − L. Another example of fake unifi-
cation is simply (6, 1, 1) + (10, 1, 1) + (1̄0, 1, 1) which can take their masses
from a (1, 1, 3) vev proportional to T3R.

A complete example of fake unification, which also provides the Pati-
Salam breaking, can be constructed with the following fields:

A(6, 1, 1) +W4(15, 1, 1)+

[S(10, 1, 1) + SL(10, 3, 1) + SR(10, 1, 3) + F (4, 2, 1) + F c(4̄, 1, 2) + c.c.]

1Even if unification would not occur without extra matter, it is possible to restore
the usual unification simply by adding a (6, 1, 3) field at the PS breaking scale, since the
contribution of this field exactly cancels the one of the massive PS gauge bosons
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with the superpotential

W = F̄ cW4F
c + SRF

cF c + S̄RF̄
cF̄ c +MF F̄

cF c +MSS̄RSR +

+
MW

2
W4W4 +W4AA+ S̄W4S + S̄LW4SL + F̄W4F (3.15)

where all the trilinear couplings are of order 1 and the masses are of order
M0

GUT = MPS. The couplings in the first line break PS to SM with nonzero
vevs of S, F c,W4 and their conjugates, while those in the second line give
mass to all the other fields. Note that this case is interesting because the
Pati-Salam breaking scale corresponds to the gauge couplings unification
scale, while SO(10) is broken at an higher scaleMnew

GUT which is undetermined.
We can also consider the case of an intermediate left-right gauge group

SU(3) × SU(2)L × SU(2)R × U(1)B−L. In this case the magic condition
becomes

b3 − b2L

b2L − 3
5
b2R − 16

15
bB−L

=
5

7
. (3.16)

where (b03, b
0
2L, b

0
2R, b

0
B−L) = (−3, 1, 1, 16) while the expression for r is the

same as in the MSSM (3.7).

3.3 The magic tower

An interesting possibility appears in theories with extra dimensions. These
theories usually have threshold effects near unification, coming from the tower
of KK states, which can spoil 1-loop unification of the MSSM. These effects
can be highly reduced if the KK states form magic multiplets.

As an example, we take 5D unified models on S1/(Z2 × Z ′
2) [30]. We

consider an SO(10) model with a Pati-Salam brane and an N = 1 brane.
The gauge fields live in the bulk together with a chiral hypermultiplet in the
adjoint of SO(10), while the SM matter fields and Higgses and other fields
live on the branes. The bulk fields are:

(V,Φ) (Φ1,Φ2)
V++,Φ−− Φ1++,Φ2−− PS adjoints
V+−,Φ−+ Φ1+−,Φ2−+ SO(10)/PS adjoints

Their zero-modes are given by gauge fields V++ and an adjoint field Φ1++.
The odd KK levels contain the fields in the SO(10)/PS adjoint representa-
tion, while the even KK states contain those in the PS adjoint.

To obtain a magic tower, both odd and even KK states should form a
magic set of fields. But this is verified due to the presence of the chiral
adjoint field (Φ1,Φ2), because together with the gauge fields it forms an
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N = 4 hypermultiplet which does not contribute to the β function of the
theory (the contribution of three chiral multiplets Φ,Φ1,Φ2 cancels exactly
the one of the gauge fields V ). Therefore both the even and the odd levels
of the KK towers do not spoil unification.

The zero-mode Φ1++ cannot be light. It has a mass at some intermediate
scale MΦ which can be identified with the PS breaking scale. The content
of the theory below this scale is the usual MSSM, while above this scale we
have a PS theory. In order to mantain unification it is sufficient to add some
fields of mass MΦ on the PS brane which form a magic field content together
with Φ1++: an example is (4,1,2)+(6,1,1)+(1,1,3). Now the threshold effects
are of order MΦ/MKK because the Φ1++ tower is shifted with respect to the
other KK towers. This effect is small and decreasing for higher KK levels.

3.4 Applications

3.4.1 Intermediate scale models

We briefly discuss an example of a model with multiple intermediate scales
and a magic content of fields at all scales. This is a flavor model based on
the Pati-Salam gauge group and is a modified version of the model of the
previous chapter. Here we only present the field content of the model and its
mass scales. The full model unifies at SO(10) on a 5D orbifold and a similar
model will be discussed in the next chapter.

The quantum numbers of the chiral supermultiplets of the model are:

fi f c
i h φ F F̄ F c F̄ c F ′

c F̄ ′
c Xc Φ H φL φR

SU(2)L 2 1 2 1 2 2 1 1 1 1 1 1 2 3 1
SU(2)R 1 2 2 1 1 1 2 2 2 2 3 1 2 1 3
SU(4)c 4 4̄ 1 15 4 4̄ 4̄ 4 4̄ 4 1 15 1 1 1

Table 3.1: Quantum numbers of the fields of the Pati-Salam model.

where fi = (li, qi), f
c
i = (nc

i , e
c
i , u

c
i , d

c
i), h = (hu, hd) contain the MSSM

fields and F + F̄ , Fc + F̄ c is an heavy vector-like copy of one SM generation.
We call AΦ, TΦ, T̄Φ, GΦ the SM components of the SU(4) adjoint field Φ.

The scales of the model are ML,MR and satisfy ML ∼M2
R/Λ where Λ is

the cutoff of the theory. The Pati-Salam gauge symmetry is broken at MR

to the SM. The matter content at different mass scales is:

• E < ML: we have the usual MSSM field content;
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• ML < E < MR: beyond the MSSM fields, we have the left-handed
heavy fields F + F̄ , φ and the color octet GΦ. If we want a magic field
content we can simply add the fields H, φL, φR in the last column of
the table.

• E > MR: all the fields in the table are present above MR. The full field
content (including PS/SM gauge bosons) still preserves unification.

The field content at ML corresponds to a retarded solution and therefore
the unification scale increases with respect to M0

GUT :

Mnew
GUT = M0

GUT

M0
GUT

ML
(3.17)

and the extra matter at MR does not modify the GUT scale.
We can embed this model in a 5D GUT theory on S1/Z2 × Z ′

2 orbifold.
The fields fi, f

c
i live on the SO(10) brane, F ′

c, F̄
′
c, Xc on the PS brane and all

the other fields in the bulk. In this setup we obtain that all the KK levels
are magic. This is a nontrivial example of the magic KK towers discussed in
the previous section.

3.4.2 Gauge mediation

We consider the case of SUSY breaking mediated by a messenger sector
consisting of magic fields and communicated to the MSSM through gauge
interactions. We assume the usual superpotential

W = SΨ̄iΨi +MΨ̄iΨi (3.18)

where Ψi, Ψ̄i are the magic fields and S is the spurion with 〈FS〉 6= 0.
Gauge mediation with incomplete GUT multiplets was studied in [25], and

many of the conclusions apply also to this case. However the requirement
of gauge coupling unification gives additional constraints on the sparticle
spectrum.

The gaugino masses at scale Q are given by

Ma(Q) =
αa(Q)

4π
bNa

F

M
(3.19)

The scalar masses are

m̃2
i (Q) =

∑

a

2

(
αa(Q)

4π

)2

Ci
ab

N
a

[
α2

a(Q0)

α2
a(Q)

− bNa
b0a

(
1 − α2

a(Q0)

α2
a(Q)

)] ∣∣∣∣
F

M

∣∣∣∣
2

(3.20)
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The usual sum rules of gauge mediation are still valid. Interestingly, we
obtain a sum rule for gaugino masses valid at all scales:

7
M3

α3

− 2
M2

α2

+ 5
M1

α1

= 0 (3.21)

Generally, gaugino and scalar mass hierarchies are more pronounced than in
the usual scenario. For instance, if the messenger sector is given by Q+Q̄+G,
the ratio between gaugino masses is very peculiar, M1 : M2 : M3 = 1 : 30 :
200, and also the scalar masses result quite splitted: mẽc/mq̃ ∼ 1/20. For a
less peculiar scenario such as QQ̄+G+U cŪ c +DcD̄c +W , we get M1 : M2 :
M3 = 1 : 5 : 20 and mẽc/mq̃ ∼ 1/15. For solutions with b1 = b2 = b3 there
should be no difference with respect to the usual gauge-mediation spectrum.
Here we present some rough estimates of the masses for the two retarded
solutions above, with the selectron mass around the present experimental
limit:

M1 M2 M3 mẽc mq̃

QQ̄+G 25 GeV 750 GeV 5 TeV 100 GeV 2 TeV
QQ̄+G+ U cŪ c +DcD̄c +W 75 GeV 400 GeV 1.5 TeV 100 GeV 1.5 TeV

3.5 Some magic field contents

We present some examples of magic content for the case of SM gauge group.
The magic condition (3.5) is linear, therefore we can add magic contents
together, obtaining again a magic set of fields. Adding a magic content with
r = 0 (like complete multiplets) does not modify the type of unification;
adding two retarded solutions gives a fake solution, and adding a retarded
and a fake (or two fake) solution gives an hoax2.

This table contains the simplest irreducible magic sets that can be built
from fields belonging to SO(10) representations up to 210. We do not write
complete GUT multiplets or anticipated solutions.

2Note that the classification based on r can be rewritten in terms of q = bN
3 − bN

2

introduced by [26]: anticipated unification corresponds to q < 0, usual to q = 0, retarded
to q = 2, fake to q = 4 and hoax to q > 4. The q of a combination of magic fields is the
sum of the qs of the sets, so one could simply read the type of unification from this.
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n field content bN1 bN2 bN3 r type

1 (6, 2)−1/6 + c.c. 2/5 6 10 ∞ fake

2
(
Q+ Q̄

)
+G 1/5 3 5 -1 retarded

3
(
U c + Ū c

)
+
(
Dc + D̄c

)
+W 2 2 2 0 usual

3
(
Dc + D̄c

)
+G+ ((1, 3)1 + c.c.) 4 4 4 0 usual

3
(
Q+ Q̄

)
+
(
(6, 1)−2/3 + (1, 3)1 + c.c.

)
7 7 7 0 usual

3
(
L+ L̄

)
+
(
(6, 1)1/3 + c.c.

)
5 5 5 0 usual

3
(
Q+ Q̄

)
+
(
Dc + D̄c

)
+
(
(8, 2)1/2 + c.c.

)
27/5 11 15 ∞ fake

3 W + 2
(
(8, 2)1/2 + c.c.

)
48/5 18 24 3 hoax

3 W +
(
(6, 2)−1/6 + c.c.

)
+ ((1, 1)2 + c.c.) 26/5 8 10 -1 retarded

3 (3, 3)2/3 + (6, 2)−1/6 +
(
(6, 1)4/3 + c.c.

)
18 18 18 0 usual

3 2W +
(
(6, 2)5/6 + c.c.

)
10 10 10 0 usual

3
(
(3, 3)2/3 + (6, 2)5/6 + (6, 1)−2/3 + c.c.

)
18 18 18 0 usual

3
(
(8, 1)1 + (3̄, 1)4/3 + c.c.

)
+ (8, 3)0 16 16 16 0 usual

3
(
(8, 1)1 + (6, 1)1/3 + c.c.

)
+ (8, 3)0 52/5 16 20 ∞ fake

This table shows the simplest irreducible magic sets which provide re-
tarded unification.

n field content bN1 bN2 bN3 r

2
(
Q+ Q̄

)
+G 1/5 3 5 -1

5
(
Ec + Ēc

)
+ 2W + 2G 6/5 4 6 -1

5 2
(
L+ L̄

)
+W + 2G 6/5 4 6 -1

5
(
Q+ Q̄

)
+
(
U c + Ū c

)
+
(
Dc + D̄c

)
+W +G 11/5 5 7 -1

6 3
(
Dc + D̄c

)
+ 2W +G 6/5 4 6 -1

6
(
U c + Ū c

)
+
(
L+ L̄

)
+ 2W + 2G 11/5 5 7 -1

6
(
Q+ Q̄

)
+ 2

(
Dc + D̄c

)
+
(
Ec + Ēc

)
+W +G 11/5 5 7 -1

6 2
(
Q+ Q̄

)
+
(
Dc + D̄c

)
+ 2

(
Ec + Ēc

)
+ G 16/5 6 8 -1

6 2
(
Q+ Q̄

)
+
(
U c + Ū c

)
+ 3

(
Dc + D̄c

)
16/5 6 8 -1

6 2
(
Q+ Q̄

)
+ 2

(
U c + Ū c

)
+
(
L+ L̄

)
+G 21/5 7 9 -1

6 2
(
Q+ Q̄

)
+ 2

(
Dc + D̄c

)
+G+

(
V + V̄

)
31/5 9 11 -1

This table shows the simplest irreducible magic contents for the Pati-
Salam case. We write only fields belonging to representations of SO(10) up
to 210.
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n field content bN4 bNL bNR r

1 (6, 1, 3) 3 0 12 0
2 (1, 2, 2) + ((20′, 1, 1) + c.c.) 8 1 1 ∞
2 (6, 1, 1) + ((10, 1, 1) + c.c.) 7 0 0 ∞
2 ((10, 1, 1) + c.c.) + (15, 2, 2) 22 15 15 ∞
3 (1, 2, 2) + 2(15, 1, 1) 8 1 1 ∞
3 (6, 1, 1) + (6, 2, 2) + ((20′, 1, 1) + c.c.) 13 6 6 ∞
3 (6, 1, 1) + (6, 1, 3) + (1, 2, 2) 4 1 13 0
3 ((4, 1, 2) + (4, 2, 1)c.c.) + (6, 1, 3) 7 4 16 0
3 (1, 3, 3) + ((10, 1, 1) + c.c.) + (6, 1, 3) 9 6 18 0
3 (6, 2, 2) + ((20′, 1, 1) + c.c.) + (15, 2, 2) 28 21 21 ∞
3 (1, 2, 2) + (6, 1, 3) + (15, 2, 2) 19 16 28 0
3 (1, 1, 3) + (6, 1, 3) + ((20, 2, 1) + c.c.) 29 20 14 3
3 (6, 1, 3) + ((4, 2, 3) + (20, 2, 1) + c.c.) 35 32 44 0
3 (6, 1, 3) + ((4, 3, 2) + (20, 1, 2) + c.c.) 35 32 44 0
3 (6, 2, 2) + (6, 3, 1) + (15, 1, 3) 19 18 36 -1/3
3 (1, 2, 2) + (15, 1, 1) + ((10, 2, 2) + c.c.) 28 21 21 ∞
3 (1, 2, 2) + 2 ((10, 2, 2) + c.c.) 48 41 41 ∞



Chapter 4

Flavour and SO(10) GUT on a
5D orbifold

4.1 Pati-Salam model upgrade

As a first step towards the SO(10) model, we consider a slightly modified
version of the Pati-Salam model of chapter 2. The symmetries of the theory
include the gauge group GPS = SU(2)L × SU(2)R × SU(4)c and the discrete
symmetries Z2, RP . The model has a minimal chiral superfield content and
quantum numbers as in Table 4.1. GPS is broken to the SM at a scale MR.
SO(10) grand unification is achieved at a higher scale MGUT ≫ MR, which
we consider as the cutoff of our model, Λ ≡MGUT. We will later add another
few PS fields in order to preserve gauge coupling unification above the scale
MR and to take care of singlet neutrino masses. As we will see, the MSSM
1-loop unification will be exactly preserved.

The first block contains the Z2-odd fields: the 3 light (in the unbroken Z2

limit) families (fi, f
c
i ), i = 1, 2, 3, the light Higgs h and the Z2-breaking field

φ. The latter is assumed to be in the adjoint representation of SU(4)c as this
provides the Georgi-Jarlskog factor of 3 needed to account for the µ–s mass
relation. The second block contains the messengers, in a single vectorlike
family (F, Fc) + (F̄ , F̄c). The third block contains the fields F ′

c + F̄ ′
c and Xc

breaking the Pati-Salam group at the scale MR. Finally, the last column
corresponds to Z2-odd SU(4)c-adjoint Φ′, which is needed to communicate
the SU(2)R breaking provided by F ′

c + F̄ ′
c to the messengers Fc + F̄c (it was

called Σ in chapter 2). The up and down components of those messengers
need in fact to be different in order to account for mc/mt ≪ ms/mb.

49
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fi f c
i h φ F F̄ F c F̄ c F ′

c F̄ ′
c Xc Φ′

SU(2)L 2 1 2 1 2 2 1 1 1 1 1 1
SU(2)R 1 2 2 1 1 1 2 2 2 2 3 1
SU(4)c 4 4̄ 1 15 4 4̄ 4̄ 4 4̄ 4 1 15

Z2 − − − − + + + + + + + +
RP − − + + − − − − + + + −

Table 4.1: Field content of the model and quantum numbers under GPS and
Z2

4.1.1 Superpotential

Up to explicit mass terms, assumed to be absent, the most general renormal-
izable superpotential for the fields in Table 4.1 is

W = λif
c
i Fh+ λc

ifiF
ch + αiφfiF̄ + αc

iφf
c
i F̄

c + aF̄ cXcF
c

+ σ̄cF̄
′
cΦ

′F c + σcF̄
cΦ′F ′

c +W ′(F ′
c, F̄

′
c, Xc, h) +W ′′(φ), (4.1)

All the couplings are assumed to be O (1) and uncorrelated. The terms in
W ′ +W ′′ provide the vevs of the fields F ′

c, F̄
′
c, Xc, φ along the SM invariant

directions. The Z2 conserving vevs lie near a single scale, MR, which turns
out to be the scale of the mass of the right-handed messengers F c, F̄ c. The
Z2-breaking vev of φ lies at a smaller scaleML, which turns out to be the scale
of the left-handed messengers F , F̄ . The hierarchy of SM fermion masses
originates from ML ≪ MR. We assume that ML ∼ M2

R/Λ, where Λ is the
cutoff of the model.

Non renormalizable terms in the superpotential could give rise (or not)
to mass terms of order M2

R/Λ ∼ ML. The latter could be relevant for the
left-handed messengers F , F̄ and for the field Φ′. As we will see below, a
mass term mΦΦ2/2 with mΦ ∼ML is indeed necessary to generate a Yukawa
coupling for the charm quark. On the contrary, a mass term for the left-
handed messengers could be dangerous, if not in the B-L direction. Here we
assume such a mass term vanishes at the order M2

R/Λ.

We denote F = (L,Q), F̄ = (L̄, Q̄), F c = (Lc, Qc), F̄ c = (L̄c, Q̄c),
Lc = (N c, Ec), Qc = (U c, Dc), L̄c = (N̄ c, Ēc), Q̄c = (Ū c, D̄c) and analogously
for the other fields with the same quantum numbers under PS. We also denote
by AΦ, TΦ, T̄Φ, GΦ the (properly normalized) SM components of Φ′. Under
SU(3)c × SU(2)L × U(1)Y , A is a singlet, T ∼ (3, 1, 2/3) is a color triplet,
T̄ ∼ (3̄, 1,−2/3) is an antitriplet, G ∼ (8, 1, 0) is an octet. Analogously for
the other fields with the same quantum numbers under PS.
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4.1.2 Spectrum

In order to identify the massless (in the unbroken EW symmetry limit) fields,
forming the MSSM spectrum, we plug the vevs in the W −W ′ −W ′′ part of
the superpotential. Since RP is not broken, the RP -even and RP -odd fields
do not mix and we can confine our analysis to the RP -odd fields.

We denote a 〈Xc〉 = MR σ3, 〈N ′
c〉 = Vc,

〈
N̄ ′

c

〉
= V̄c (|Vc| = |V̄c| from the

D-term conditions), 〈φ〉 = v TB−L. Vc ∼ MR ≫ v ∼ ML. We choose a basis
in flavour space such that λ1,2 = α1,2 = 0, λc

1 = αc
1 = 0. λ3, α3, λ

c
2,3, α

c
2,3,

MR, v, Vc = V̄c can all be taken positive. The mass terms are
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+
mΦ

2
G2

Φ. (4.2e)

Because of the absence of L̄L, Q̄Q mass terms, L and Q are massless, while
l3 and q3 get a mass together with L̄ and Q̄ from the vev of φ. The light
lepton and quark doublets are therefore l′3 = L, l′1,2 = l1,2, q

′
3 = Q, q′1,2 = q1,2

and the heavy ones are L′ = l3, Q
′ = q3, L̄

′ = L̄, Q̄′ = Q̄. The light SU(2)L

singlets are
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(ec)′1 = ec
1 (dc)′1 = dc

1 (uc)′1 = uc
1 (4.3)

up to O (ǫ2) terms and higher order corrections to the coefficients, where
ǫ ≡ v/MR ≪ 1 and αc = ((αc

3)
2 +(αc

2)
2)1/2. Note the double ǫ suppression of

the U c component of the light fields, or equivalently the double suppression of
the light component of the U c field, accounting, as we will see, for mc/mt ≪
ms/mb. The reason for the double suppression is that a light component in
U c requires both mΦ and v to be non-vanishing.
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Since mc/mt arises at the ǫ2 level, neglecting O (ǫ2) terms in the expres-
sions for the (uc)′i in eq. (4.3) is not appropriate. The O (ǫ2) term needed to
make (uc)′3 and (uc)′2 orthogonal can be added to (uc)′3, to (uc)′2, or both. We
add it to (uc)′3. This choice preserves Y U

23 = 0 at O (ǫ2)1:
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(uc)′1 = uc
1

We assume that W ′ is such that the Higgs field h is also light.

4.1.3 SM Yukawas

The light fermion Yukawa matrices Y D, Y E , Y U (in right-left convention) at
the scale M are easily determined expressing the superpotential in terms of

1The heavy space is spanned by
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3)/αc. The light space,

orthogonal to the heavy space, is then spanned by the orthonormal fields
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where N is the norm of the square bracket and ǫ1 = 2(mΦMR)/(VcV̄c)/(σ∗
c σ̄∗

c ) ∼ ǫ. While
{(uc)′, ûc, uc

1} would be a totally decent basis for the light fields, we prefer to write the
light Yukawas in a basis for the light fields that is closer to the original fields uc

3,2,1. We
therefore define the following alternative orthonormal set:
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which gives eqs. (4.4), up to higher order corrections to the coefficients.
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the massless fields. At the leading order in ǫ we find
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(4.5)

where ρu = (σcσ̄c)
−1(mΦ/v)(MR/Vc)

2 is an order one coefficient. The numer-
ical value of ǫ turns out to be ǫ ≈ 0.06 λ3/(α

c
2λ

c
2), which implies (using MSSM

RGEs however and for tanβ = 10) ρu ≈ 0.9 (αc
2λ

c
2/λ3), indeed of order one.

The model predicts the first family to be massless in the limit in which
non-renormalizable corrections to W are neglected, and to be further sup-
pressed by MR,L/Λ once those corrections are taken into account. A discus-
sion of the first family masses requires an investigation of the physics at the
cutoff. An example, carried out in the context of the effective theory below
Λ, can be found in chapter 2. Here, we only consider the physics giving rise
to the third and second families of fermion masses.

4.2 Unified theory on S1/Z2 × Z2

SO(10) unification is a natural step towards a complete model of flavour
based on the Pati-Salam theory of the previous section. We are interested
in embedding this theory into the framework of a 5D supersymmetric GUT
theory. The extra dimension is compactified on an orbifold S1/Z2 × Z2 and
the gauge symmetry is broken by the boundary conditions of the gauge fields
in the extra dimension.

Starting from a circle S1 with coordinate y, 0 ≤ y ≤ 2πR where 1/R =
Mc, the orbifold S1/Z2 × Z ′

2 is obtained by imposing the following identifi-
cations

P : y ∼ −y P ′ : y′ ∼ −y′ (4.6)

with y′ = y + πR/2. Under these identifications, there are 2 fixed points
at y = 0 and y = πR/2, referred to as “branes” in the following. These
fixed points are four-dimensional branes where the SM fermions live. The
extra dimension can be truncated to the physically irreducible interval y ∈
[0, πR/2]. In field space, the action of the identifications is given by

P : Φ(x, y) ∼ PΦ(x,−y) P ′ : Φ(x, y′) ∼ P ′Φ(x,−y′) (4.7)
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where on the right hand side the P, P ′ are matrix representations of the
Z2 reflections, with P 2 = 1, and can one choose a basis where they are
diagonal, with eigenvalues ±1. In this basis each field can be classified by its
eigenvalues (±1,±1). The expansion in KK modes is the following:
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∞∑
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−− (x) sin
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R
. (4.11)

Here the normalization is chosen such that the induced 4D kinetic terms for
the KK modes are canonical. Notice that on the brane at y = 0 only Φ++

and Φ+− are non-vanishing, while at the brane at y = πR/2 only Φ++ and
Φ−+ are non-vanishing. Only Φ++ has massless zero modes.

4.2.1 5D bulk action

N = 1 SUSY in 5D is equivalent to N = 2 SUSY in 4D, which can be
formulated in N = 1 superfield language. The N = 2 vector multiplet con-
sists of a N = 1 vector V and chiral multiplet Φ, the N = 2 hypermultiplet
decomposes in two N = 1 chiral multiplets in conjugate representations H
and Ĥ .

In the model under consideration, beside the SO(10) vector multiplet

(V,Φ) we have 4 copies of messengers hypermultiplets (Ψ, Ψ̂), (Ψ̄c, Ψ̂c) in

(16, 16) and (Ψc, Ψ̂c),(Ψ, Ψ̂) in (16, 16). The orbifold parities of the vector
multiplet components can be chosen as (by choosing appropriate matrices P
and P ′)

V = V PS
++ + V

SO(10)/PS
+− (4.12)

Φ = ΦPS
−− + Φ

SO(10)/PS
−+ . (4.13)

Looking at the non-vanishing components on the branes, one recognizes that
on both branes N = 2 SUSY is broken to N = 1, SO(10) is unbroken
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at y = 0 (thus referred to as the SO(10)-brane) and broken at y = πR/2
(referred to as PS-brane).

The choice of P and P ′ on the vectors dictates the relative orbifold parities
of the matter PS components: in fact invariance of the bulk action requires
them to have the same parity under P and the opposite parity under P ′.
The overall signs are chosen in the following way

(10,−,+) : h = h4
++ + h6

+−

ĥ = ĥ4
−− + ĥ6

−+

(16,+,−) : Ψ = F++ + F c
+−

Ψ̂ = F̂−− + F̂ c−+

Ψc = F c
++ + F+−

Ψ̂c = F̂ c−− + F̂−+

(16,+,−) : Ψ̂ = F̂−− + F̂ c−+

Ψ = F++ + F c
+−

Ψ̂c = F̂ c−− + F̂−+

Ψ̄c = F c
++ + F+−

(45,−,+) : φ = φPS
++ + φ

SO(10)/PS
+−

φ̂ = φ̂PS
−− + φ̂

SO(10)/PS
−+

(4.14)

where (R,±,±) denotes the quantum numbers under (SO(10), Z2, RP ). For
our model, the relevant (mass generating) part of the 5D bulk action is the
superpotential term

Wbulk =

∫
d4x

πR/2∫

0

dy

∫
d2θ
(
Ψ∂5Ψ̂ + Ψ∂5Ψ̂ + Ψc∂5Ψ̂c + Ψ̄c∂5Ψ̂c + φ∂5φ̂+ h∂5ĥ

)
.

(4.15)
Inserting the KK decomposition and integrating over y will give mass to
all bulk field modes except to zero modes of (++) fields. For our model,
only the low-energy dynamics is relevant and all the Kaluza-Klein states
are practically decoupled. Only the zero-modes play a role in the flavour
structure.
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4.3 SO(10) model of flavour

4.3.1 Field content

We consider a 5D, SO(10) supersymmetric model with the fifth dimension
compactified in a S1/Z2 ×Z ′

2 orbifold broken to GPS on the R = πR/2 brane
and to N = 1 4D susy on both branes. A bulk hypermultiplet Φ = (Φ, Φ̂)
is denoted by the symbol that would be used for its zero mode component.
The non-gauge interactions are described by 4D superpotentials on the two
branes, WPS and WSO(10). Each of them has a part directly associated to the
origin of the flavour structure and a part that accounts for the vevs used in
the flavour part, W = Wflavour + Wvevs + Wscales. The flavour part involves
the fields listed in Table 4.2,4.3.

ψi ψ′ ψ̄′ F Fc F F c h4 φ Sj

Localization SO(10) bulk
Gauge repr 16 16 16 16 16 16 16 10 45 1

U(1)R 1 0 0 1 1 1 1 0 0 1
Z24 5 5 −7 −6 −6 −6 −6 1 1 2

Table 4.2: SO(10)-brane and bulk fields. i = 1, 2, 3, j = 1, 2, 3

F ′
c F ′

c Xc Σ
Localization PS
Gauge repr (1, 2, 4̄) (1, 2, 4) (1, 3, 1) (1, 1, 15)

U(1)R 0 0 0 1
Z24 2 2 12 4

Table 4.3: PS-brane fields.

Wvevs involves a number of additional fields, listed in Table 4.4. Some
of them are needed to generate the necessary vevs (essentially the singlets),
some to get a magic field content all the way up to the unification scale (H6

and the L and R triplets), some to avoid unwanted Goldstones and to set
each field at the appropriate scale.

Strong coupling regime, natural units, and the order parameter

We assume the theory approaches a strongly interacting regime at the cutoff
scale Λ, where the gauge couplings unify.
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Φ Y10 Y ′
10 H6 θ± Θ± YPS Y ′

PS xc X ′
c x X

Localization SO(10) bulk PS
Gauge repr 45 1 1 10 1 1 1 1 (1, 3, 1) (1, 3, 1) (3, 1, 1) (3, 1, 1)

U(1)R 2 2 2 2 0 0 2 2 2 1 1 1
Z24 2 2 0 −2 ±3 ∓2 −4 0 −7

Table 4.4:

Näıve dimensional analysis (NDA) suggests to write the action in terms of
normalized derivatives ∂̂ = ∂/Λ and of properly normalized (“natural units”)
dimensionless chiral and vector superfields φ̂, V̂ , related to the canonically
normalized fields φ, V by

φ4 = φ̂4

(
Λ2

l4

)1/2

, φ5 = φ̂5

(
Λ3

l5

)1/2

, V4 = V̂4

(
Λ2

lV4

)1/2

, V5 = V̂5

(
Λ3

lV5

)1/2

,

(4.16)
where the index 4 (5) denotes brane (bulk) fields. When expressed in terms
of the dimensionless fields, the brane superpotential acquires the form

Wbrane(φi) =
Λ3

l4
Ŵ (φ̂i), (4.17)

where Ŵ does not contain dimensionful parameters and its expansion in-
volves O (1) coefficients2. The nice thing is that this is independent of
whether the fields on which Ŵ depend are bulk or brane fields3 [31]

The values of the dimensionless coefficients l
(V )
4,5 leading to an “O (1)”

Ŵ are of course themselves defined up to O (1) factors, as the statement
“becomes strongly interacting” itself. Moreover, we might want to consider
a regime in which the couplings are e.g. a factor of 2 smaller than the strong
regime estimate. Finally, as the coefficients of the loop expansion depend on
the theory under consideration, l

(V )
4,5 also do, and they may also be different

2The general 5d Lagrangian at the scale Λ of strong coupling is given by

LΛ =
1

l5

(
Λ3K̂bulk + Λ4Ŵbulk

)
+

1

l4
δ4(0, πR)

(
Λ2K̂brane + Λ3Ŵbrane

)
(4.18)

where all fields and derivatives in K̂ and Ŵ are made dimensionless by rescaling with Λ
and all coefficients are dimensionless and O(1). The above Langrangian ensures that every
loop contributes with the same strength to the amplitudes. This can be easily understood
by the fact that the loop factors appear in the same position as ~ in the path integral.

3Note however that the derivation in the paper assumes an infinite extra-dimension.
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for different fields. Having said that, the guideline provided by NDA is that
lD is just the loop factor in D dimensions:

lD = (4π)D/2Γ(D/2). (4.19)

We will use the same factor l5 (l4) for all the chiral brane (bulk) superfields
(superpotential couplings), while we keep the possibility of having a different
normalization for the vector fields (gauge couplings). This is because the
gauge couplings are qualitatively different in that the coefficients of the gauge
loop expansion grow with the number of charged matter fields. With the field
content in the Tables 4.2 and 4.4, we expect in fact lV to be smaller by a
factor O (5) [32, 33].

We are now in the position of estimating the couplings, vevs, and mass
terms of canonically normalized brane and zero-mode bulk fields. A term in
Ŵ involving nB bulk fields and nb brane fields will give rise to a coupling of
order (

2l5
πRΛ

)nB/2

l
nb/2−1
4 (4.20)

at the scale Λ. Let us call λg(Λ) the generic coupling arising from a brane-
bulk-bulk interaction. Our model requires λg ∼ 1 at the lower scale, the
prototypical example being the top Yukawa coupling. This allows to relate
ΛR to l4,5. The situation can then be summarized as follows.

The most relevant parameter is

λ ≡ (λ2
g(Λ)/l4)

1/4 ≈ 0.24. (4.21)

All the hierarchies will be expressed in terms of this order parameter. The
parameters λg(Λ) and l4 are assumed to be such that λ is close to 0.22, which
is the typical order parameter in models with flavour symmetries.

In natural units, the vevs of brane and bulk superfields are all expected
to be O (1) (barring the presence of small numbers in Ŵ , as we will see).
This statement can be trivially translated into an expectation for the vevs of
canonically normalized fields. However, it turns out that it is more convenient
to use directly the vevs of the fields expressed in natural units.

Let us now consider a mass term. When written in terms of natural units
fields, the mass terms will be a dimensionless number, say ǫ. For example,
ǫ could be the vev of a field (brane or bulk) in natural units. Suppose that
the mass term involves nB bulk fields (nB = 0, 1, 2). In terms of canonically
normalized brane and zero-mode bulk fields, the mass term is

M = ǫ λnBΛ. (4.22)
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Note: if ǫ represents the vev of a field in natural units, the size of the cor-
responding mass term does not depend on the nature (bulk or brane) of the
field getting a vev; it only depends on the nature of the fields getting a mass.

Finally, the separation ΛR between the scales Λ and Mc ≡ 1/R and the
size of the gauge couplings at the unification scale are determined by l5 and
lV5 /l5 respectively. We assume that l5 is such that (2l5/π/λ

2
g(Λ)) ∼ 100, so

that ΛR ∼ 5, and that l5/l
V
5 ∼ 5, so that g2

4D(Λ) ∼ lV5 /(λ
2l5) ∼ 3.5 (only an

estimate, anyway compatible with a radiative enhancement of g2
4D).

Superpotential, F-term equations, vevs

The superpotentials on the two branes (in natural units) are

ŴSO(10),PS = Ŵ flav
SO(10),PS + Ŵ vevs

SO(10),PS + Ŵmass
SO(10),PS. (4.23)

The W flav
SO(10),PS potentials are directly involved in generating the SM flavour

structure and are given by

Ŵ flav
SO(10) = λiψ̂iF̂ ĥ4 + λc

i ψ̂iF̂cĥ4 + αiψ̂i
ˆ̄F φ̂+ αc

i ψ̂i
ˆ̄Fcφ̂+ aij

ˆ̄ψ′Ŝiψ̂j (4.24a)

Ŵ flav
PS = ˆ̄FcX̂cF̂c + ˆ̄F ′

cΣ̂F̂c + ˆ̄FcΣ̂F̂
′
c +

F̂ ′
cX̂cF̂

′
c

2
Σ̂2 + ˆ̄F ′

cŜiF̂cΘ̂σ−
(4.24b)

with hopefully self-explanatory notations. The last terms in W flav
SO(10),PS affect

the singlet neutrino mass matrix. All couplings are supposed to be O (1).
Flavour-independent indexes are omitted.

Some of the R = 0 fields in the superpotentials above get vev due to
W vevs

SO(10),PS, given by

Ŵ vevs
SO(10) = Ŷ10(

ˆ̄ψ′ψ′ − θ̂2
σ−

Θ̂2
σ−

) + Ŷ ′
10(θ̂+θ̂− − ǫ210) + ˆ̄ψ′Φ̂ ψ̂′ + θ̂σ−

φ̂ Φ̂ (4.25a)

Ŵ vevs
PS = ŶPS(

ˆ̄F ′
cF̂

′
c − Θ̂2

σ−
) + Ŷ ′

PS(Θ̂+Θ̂− − ǫ2PS) + θ̂σ+

ˆ̄F ′
c x̂cF̂

′
c + θ̂σ−

Θ̂+x̂c X̂c.

(4.25b)

The seeds of all small vevs are the two anomalously small coefficients ǫPS ∼ λ
and ǫ10 ∼ λ2 characterizing the PS and SO(10) branes respectively. We
do not investigate the origin of those numbers. In the limit in which the
R-symmetry is not broken, the only relevant F -term equations are those
associated to the R = 2 fields containing SM singlets. The YPS, Y

′
PS, Y10, Y

′
10

equations give (assuming again that supersymmetry breaking does not make
the individual vevs too different)

〈
Θ̂±
〉
∼
〈
F̂ ′

c

〉
∼
〈 ˆ̄F ′

c

〉
∼ λ

〈
θ̂±
〉
∼ λ2

〈
ψ̂′〉 ∼

〈 ˆ̄ψ′〉 ∼ λ3. (4.26)
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Moreover, the xc and Φ eqs forceXc and φ to be O (λ) and O (λ4) respectively.
The H6 eqs are not relevant because H6 does not contain a SM singlet. Note
that both the (1,1,15) and (1,3,1) PS components of φ get a vev at present.
This is a problem because the mµ/ms ratio requires the mixing induced by
φ to be along the (1,1,15) direction only. There are two possible solutions to
this problem: i) the F̄cφRf

c
i interaction is forbidden or suppressed, or ii) the

(1,1,15) component of the vev vanishes.
Note that the O (λ) vevs in eq. (4.26) breaks Z24 to the group Z2 of the

previous chapters, which is then broken by the higher order vevs.
At this point we have the vevs we need but we still have to take care of

the spectrum, which by the way so far includes unwanted light fields, the D′
c

component of F ′
c for example, which is not an eaten Goldstone. This can also

be seen as follows. The interactions in eqs. (4.24) do not affect the masses of
F ′

c, F̄
′
c. The interaction with YPS in eqs. (4.25) is invariant under an SU(8)

transformation of the 8 components of the fields F ′
c and F̄ ′

c. Their vevs break
SU(8) down to SU(7), which leaves 15 massless Goldstones: all components
of F ′

c and F̄ ′
c except a linear combination of the SM-singlet fields. The only

relevant interaction left is the one with X ′
c, which only gives a mass to some

of the SU(2)L-singlet charged lepton fields. Analogous considerations hold
for other fields. In short, we need to provide mass terms for several otherwise
light fields, or unification will be spoiled. The mass terms are provided by

Ŵmass
PS = Θ̂σ+

ˆ̄F ′
c
ˆ̄F ′
cĤ6 + Θ̂σ+F̂

′
cF̂

′
cĤ6 +

Θ̂3
+

2
(x̂2 + X̂2) (4.26a)

The superpotentials are then invariant under the U(1)R R-symmetry and the
Z24 discrete symmetry in the Tables.

Let us now discuss the spectrum in more detail. First of all, we have to
determine the size of the mass terms generated be the vevs above. In order
to do that, we make extensive use of eq. (4.22). Taking Λ = 0.9 · 1017 GeV,
the right-handed messengers in Fc, F̄c and Σ get a mass

O
(
λ3Λ

)
∼ 1015 GeV ≡ MR. (4.27)

The up quark sector also contains a mixed mass term enhanced by a factor
1/λ, Vc ∼ MR/λ, which accounts for the smallness of mc/mt and will give
the only threshold correction to the magic running. Once Z2 is broken by
the vev of φ, the messengers and the would be light families get mixed by a
mass term

O
(
λ5Λ

)
∼ 0.7 · 1014 GeV ≡ ML, (4.28)

so that ǫ ≡ ML/MR ≈ 0.06. The two mass terms mixing the singlets Si with
Nc and nc

i are both O (λMR), half way between ML and MR.
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Above MR and below 1/R the spectrum is the one showed in the Tables
(neglecting the threshold effect mentioned above). This is a “retarded” PS
magic field content with ((b3 − b2)/(b4 − bL)− 1) = 2. Let us see which fields
survive at scales lower than MR (we only consider non-gauge-singlet fields).
Let us first consider the limit in which only the O (λ) vevs are switched on (Z2

unbroken). In this limit the light fields are: the SM fields; the left-messengers
L̄L+ Q̄Q; the decomposition Ēc

XE
c
X of X ′

c; ΦV̄ ΦV ; some linear combinations
(φŪ + ψ′

Ū
)(φU + ψ′

U ) and (φĒ + ψ′
Ē
)(φE + ψ′

E) (the orthogonal combinations
are uneaten Goldstones in this limit); the 5̄′SU(5)5

′
SU(5) components of ψ̄′ψ′.

The Ū ′U ′ components of F̄ ′
cF

′
c are mostly eaten Goldstones. This is an “an-

ticipated” SM magic field content with −(bnew
1 − bnew

2 )/(b1 − b2) = −1/3. All
the previous fields get a mass term O (ML). This is easily arranged for ēcec,
while it is less obvious for the remaining R = 0 fields (we could also make xc

a R = 0 field at this point). In particular, we need to generate an O (ML)
mass term for ΦV ΦV and a mass term for ψ̄′ψ′, both breaking R by two
units. We do not go into details of how to achieve this. It is not difficult to
arrange a perturbative superpotential involving R-charged singlets getting
vevs at the level O (ML) = O (λ5Λ) and perhaps breaking supersymmetry at
the level λ10Λ ∼ 1010 GeV. However, chances are that this breaking arises
non-perturbatively, so that it is not worth spelling all details out.

To summarize, we have the following scales: Λ ≈ M0
GUT ≈ 1017 GeV,

Mc = 1/R ≈ 2·1016 GeV, MR ≈ λ3Λ ≈ 1015 GeV, ML ≈ λ5Λ ≈ 0.7·1014 GeV
and a magic field set from Λ down to the electroweak scale except for a small
threshold.

4.3.2 Gauge coupling unification

Let’s analyze the threshold effect. Let α0
3 be the prediction at low scale,

neglecting the threshold given by the two U cŪ c lying at MR/λ instead of
MR. Taking into account the threshold gives

1

α3

=
1

α0
3

−
[
(bU3 − bU2 ) +

5

7
(bU1 − bU2 )

]
log(Vc/MR)

2π
(4.29)

where bU = (16/5, 0, 2). For α0
3 = 0.118 we get α3 = 0.124. The threshold

effect is not so small. Note that unlike most 5D unification models, here the
threshold effect does not come from KK towers as the incomplete floors are
magic.

The complete beta coefficients for the running are: (bL, bR, b4) = (10, 10, 10)
above 1/R; (23,29,21) above MR (neglecting the threshold); (b1, b2, b3) =
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(87/5, 9, 3) above ML. The unification scale is given by

MGUT = ǫ

(
Vc

MR

)8/7
(M0

GUT)2

MR
. (4.30)

There are also brane corrections. This intrinsic uncertainty is due to the
contribution of brane YM terms. Assuming strong coupling regime, those
terms give a correction to g2(Λ) of order 1/lV4 expected to be a few percent.

4.3.3 Proton decay

In 4D GUT theories the leading contributions to proton decay come usually
from d=5 operators (via Higgs triplet exchange), while d=6 operators (via
extra gauge boson exchange) are subleading. In 5D Orbifold GUT models one
generally finds the reverse picture: d=5 operators are strongly suppressed due
to the U(1)R symmetry, while d=6 operators are more important because the
mass of the extra gauge bosons is smaller than in 4D GUTS (Mc < M0

GUT ).
This general picture holds also in our model. The dominant contribution to
proton decay is SO(10)/PS gauge boson exchange, leading to a lower bound
on the compactification scale Mc > 8.8 × 1015GeV. Before deriving this
bound, we show that d=5 operators are indeed subleading.

d=5 Operators

The low energy effective theory below ML is the MSSM with R-parity. This
allows only for two d=5 operators that induce proton decay [34]

LLLL = QQQL|θ2 (4.31)

RRRR = DcU cU cEc|θ2. (4.32)

These operators arise from exchange of fields with standard model quantum
numbers

T1 = (3, 1)−1/3 → LLLL,RRRR

T4 = (3, 1)−4/3 → RRRR.

While there are plenty of fields with T1 quantum numbers around in the
model, there are not dangerous because the above d=5 operators violate the
U(1)R symmetry. Without going into details of SUSY breaking, one can make
a simple estimate of the suppression scale assuming a similar mechanism to
be at work as in [32, 33]. In this case supersymmetry is broken together
with U(1)R by an F-term VEV of some gauge singlet superfield. The U(1)R
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breaking scale is Ms =
√
F , which is related to the soft SUSY breaking scale

by Msoft ∼ M2
sMc/Λ

2 and typically Ms ∼ 1011GeV. One can take the mass
of the above triplets to be MR ∼ 1015, because the triplets at ML (from ψ′)
do not couple directly to the MSSM light fields. The suppression scale of the
above d=5 operators is then at least M2

R/Ms, which is of the order of MP l.

d=6 Operators

Two d=6 proton decay inducing operators are present in the MSSM

QQ = QQ(U c)†(Ec)†|θ4

= uLdLū
c
Rē

c
R (4.33)

QL = QL(U c)†(Dc)†|θ4

= uLeLū
c
Rd̄

c
R (4.34)

These operators come from an exchange of gauge fields with quantum num-
bers

X, Y = (3, 2)(5/6) → QL,QQ

X ′, Y ′ = (3, 2)(1/6) → QL

which are the SO(10)/PS gauge bosons V
(226)
+− . Therefore the suppression

of the d=6 operators is given by 1/M2
c , the numerical coefficients can be

calculated in close analogy to the SU(5) case [35].

Calculation of QL and QQ coefficients

We start with the relevant part of the 5D action

S5 =

∫
d4x

∫ L

0

dy

(
1

2g2
5

Tr
(
W 2|θ2 + h.c. + 4∂5V ∂5V |θ4

)
+ δ(y)ψ†

i e
2V ψi|θ4

)
,

(4.35)

which fixes the normalization in the KK expansion of V
(226)
+−

V+−(x, y) =
√

2
∞∑

n=0

V
(2n+1)
+− (x) cos

(2n+ 1)y

R
. (4.36)

The 4D effective Lagrangian is given by

L4 =
2

g2
4

∞∑

n=0

(
2n+ 1

R

)2

Tr
(
V

(2n+1)
+− V

(2n+1)
+−

)
+ 2

√
2

(
ψ†

i

∞∑

n=0

V
(2n+1)
+− ψi

)
|θ4

(4.37)
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where we have used 1
g2
4

= L
g2
5
.

In component form, using 2-component Weyl notation with the conventions
of [36],

L4 = − 1

g2
4

∞∑

n=0

(
2n+ 1

R

)2

Tr
(
A

(2n+1)
+− A

(2n+1)
+−

)
−
√

2
∞∑

n=0

(
ψ†

iσ
µψi

)
(A

(2n+1)
+− )µ

(4.38)
Decomposing under SM [37] gives

L4 = − 1

g2
4

∞∑

n=0

(
2n+ 1

R

)2 (
XX̄ + Y Ȳ +X ′X̄ ′ + Y ′Ȳ ′)

+
∞∑

n=0

(
X̄OX + ȲOY + X̄ ′OX′ + Ȳ ′OY ′ + h.c.

)
(4.39)

with

OX = ec
Lσ

µd̄R + ec
Rσ

µd̄L + uLσ
µūc

R (4.40)

OY = −ec
Rσ

µūL + dLσ
µūc

R (4.41)

OX′ = −dc
Rσ

µd̄L (4.42)

OY ′ = dc
Rσ

µūL − uRσ
µēc

L (4.43)

Integrating out the gauge bosons gives

L4 =
g2
4

M2
c

π2

8

(
OXŌX + OXŌX + OX′ŌX′ + OY ′ŌY ′ + h.c.

)

=
g2
4

M2
c

π2

4

[
(1 + 1 + 0 + 0)uldlū

c
Rē

c
R + (1 + 0 + 0 + 1)ulelū

c
Rd̄

c
R

]
(4.44)

where the relative contribution of (X, Y,X ′, Y ′) is made explicit. The factor
π2/4 originates from summing KK states, and up to this factor, the result is
the same as of a 4D GUT with gauge boson mass Mc. The final result for
the coefficients of the QQ and QL operators is

L4 =
g2
4

M2
c

π2

4

(
2uldlū

c
Rē

c
R + 2ulelū

c
Rd̄

c
R

)
(4.45)

Proton lifetime

According to [35, 38], the proton decay rate due to the QL and QQ operators
is given by

Γ(p→ π0e+) = 8

(
π2

4

)2

α2
H

(
g4(Mc)

2AR

M2
c

)2
mp

64πf 2
π

(1 +D + F )2 (4.46)
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Note that ΓSO(10) = 8/5 × ΓSU(5), so as a rule of thumb proton decay is
roughly twice as fast in SO(10) than in SU(5). Using the hadronic parameter
αH = 0.015 GeV3, the pion decay constant fπ = 0.13 GeV and the chiral
perturbation theory parameters D = 0.80 and F = 0.47, the partial lifetime
is

1/Γ(p→ π0e+) = 2.7 × 1033

(
α4(Mc)

1/14

)−2(
AR

2.5

)−2(
Mc

1016GeV

)4

years

(4.47)
with the typical values for (almost) unified coupling at Mc and renormal-
ization coefficient AR in the model. Nothe that we obtain roughly the same
renormalization coefficient as in the simple orbifold GUT models. Comparing
to the Particle Data Group bound [29] on the partial lifetime

1/Γ(p→ π0e+) > 1.6 × 1033years (4.48)

gives finally for the compactification scale

Mc > 8.8 × 1015GeV

(
α4(Mc)

1/14

)1/2(
AR

2.5

)1/2

. (4.49)

In the case of Mc ∼ 1.4 × 1016 GeV, the lifetime is

1/Γ(p→ π0e+) ∼ 1.0 × 1034years. (4.50)

4.3.4 Neutrino spectrum

The light neutrino mass matrix originates from the NR operator hij(l
′
ihu)(l

′
jhu)/(2ΛL),

where l′1,2,3 are the three light lepton doublet mass eigenstates: mν
ij = hijv

2
u/ΛL.

The coefficients hij/ΛL are obtained by integrating out the RP -odd heavy
singlet neutrinos.

We aim at obtaining a large atmospheric angle θ23, the atmospheric
squared mass difference ∆m2

23 at the correct scale, and the suppression
of the solar squared mass difference ∆m2

12 (in the context of normal hi-
erarchical neutrinos) and of the θ13 angle. In the previous version of the
model, the large atmospheric angle and the ∆m2

12/∆m
2
23 suppression were ob-

tained essentially through the single right-handed neutrino dominance mech-
anism [20, 21, 22, 23]. In fact, the whole idea underlying this flavour model,
based on the exchange of a single family of flavour messengers, can be con-
sidered as an extension of that mechanism. In order to reproduce the sin-
gle right-handed neutrino dominance mechanism, the left-handed messengers
should have a mass term at the ML scale (along the B −L direction). Here,
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we prefer to consider the more economical option in which such term only
arises at a more suppressed level. This is interesting also because the large
atmospheric mixing arises in a different, unusual mechanism, as we are now
going to see.

In our model, the singlet neutrinos taking part to the see-saw are actually
more than the usual 3. There are 9 RP -odd singlet neutrino fields in the
model. We have the usual 3 “right-handed” neutrinos nc

i , i = 1, 2, 3, SU(2)R

partners of the SM right-handed charged fermions ec
i , i = 1, 2, 3. We also

have N c, N̄ c, AΦ, and three or more gauge singlets Si
4 (there are also other

singlet neutrinos but they have different RP , but they do not mix with the
previous ones, and are not relevant for light neutrino masses. Furthermore,
it is sufficient to consider only the KK 0-modes of N c and N̄ c, because their
mass terms arise purely from the PS brane. That means that higher KK
mode pairs (++,−−)n>0 and (+−,−+)n≥0 decouple from the other fields,
because one member of these pairs vanishes at the PS brane and has therefore
only a heavy massterm with its partner). At the renormalizable level, their
masses are given in eq. (4.2d). We see that αcn̂c ≡ αc

2n
c
3 − αc

3n
c
2 and nc

1 are
massless at this level5. We expect the latter fields to get a mass at a lower
scale ML ∼ M2

R/Λ from non-renormalizable operators. The heavy singlet
neutrino mass term is then −(N c, N̄ c, AΦ, n

c
i , Sk)

TMs(N
c, N̄ c, AΦ, n

c
j, Sh)/2,

where

Ms =




0 MR

√
3
8
σ̄cV̄c 0 bhMSN

MR 0
√

3
8
σcVc αc

jv chMSN√
3
8
σ̄cV̄c

√
3
8
σcV

c MΣ 0 0

0 αc
iv 0 0 aihMSn

bkMSN ckMSN 0 akjMSn 0




(4.51)

and the light neutrino mass operator is

hij

2Λ
(l′ihu)(l

′
jhu) =

1

2

[
(M−1

s )NcNc(λc
2l

′
2)

2 + (M−1
s )nc

3nc
3
(λ3l

′
3)

2 + 2(M−1
s )Ncnc

3
(λc

2l
′
2)(λ3l

′
3)
]
h2

u,

(4.52)

so that

mν = v2
u




0 0 0
0 (λc

2)
2(M−1

s )NcNc λc
2λ3(M

−1
s )Ncnc

3

0 λc
2λ3(M

−1
s )Ncnc

3
λ2

3(M
−1
s )nc

3nc
3


 . (4.53)

4In general, the presence of additional singlet neutrino at high scales might not be so
unlikely, given the different possible sources (flavour, GUT, strings...).

5Which would not be tolerable, as the tau neutrino would get an electroweak scale mass
from its Yukawa coupling to n̂c.
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The entries in the first row and column, accounting for the solar and θ13
mixing angles, will be generated, as in the case of charged fermion masses,
at the NR level by the physics at the cutoff scale. In eq. (4.51) the entries
set to zero arise at a negligible level.

In order to get a large atmospheric mixing angle from eq. (4.53), we need
(M−1

s )NcNc ∼ (M−1
s )Ncnc ∼ (M−1

s )ncnc and in order to obtain the (mild)
hierarchy between the solar and atmospheric squared mass differences, we
need the determinant (M−1

s )NcNc(M−1
s )ncnc − (M−1

s )2
Ncnc to be suppressed.

This is indeed what happens provided that MSN ∼ MSn > ML, in which
case

(M−1
s )NcNc ∼ (M−1

s )Ncnc
3
∼ (M−1

s )nc
3nc

3
∼ 1

2MR

(4.55)

(M−1
s )NcNc(M−1

s )nc
3nc

3
− (M−1

s )2
Ncnc

3
∼ M2

R

V 2
c

(M−1
s )2

NcNc . (4.56)

In the model under consideration, MSN ∼ MSn ∼ λMR > ML ∼ λ2MR and
MR/Vc ∼ λ < 1.

Taking into account all O(1) coefficients we finally obtain for the light
neutrino masses and the atmospheric mixing

m3 =
v2

h

MR

A

2 sin2 θ23
(4.57a)

m2

m3

=
4λ2

3
sin2 2θ23B (4.57b)

tan θ23 = C, (4.57c)

where

A =
(λc

2)
2σc

σ̄c
(4.58a)

B =
σ̄cx

2

σcy2
(4.58b)

C =
λc

2σc det a

λ3y
(4.58c)

x = c2 (a12a31 − a11a32) + c3 (a11a22 − a12a21) (4.58d)

y = σ̄cx− σcb3 (a11a22 − a12a21) . (4.58e)

In order to agree with the experimental values m2/m3 ≈
√

∆m2
12/∆m

2
23 ≃

0.2 and tan θ23 ≃ 1, one has to require that the above functions of O(1)
coefficients take the (not unreasonable) values B ≈ 3 and C ≈ 1. The
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atmospheric squared mass difference provides an experimental determination
ofm3 ≈

√
∆m2

23, which translates into a determination of the scaleMR, given
by

MR =
v2

hA

2 cos2 θ23
√

∆m2
23

∼ A× 6 × 1014GeV. (4.59)

To achieve agreement with the numerical determination of the various scales
provided by gauge coupling unification, we have to require that A ≈ 3 .



Chapter 5

Phenomenology

In this chapter we present a preliminary analysis of the phenomenology of
the unified model that we presented in the previous chapter. We consider
universal soft terms defined at 1/R: a gaugino mass M1/2 and a scalar mass
M0, plus a soft Higgs mass Mh0. The A-terms are absent at high scale and
are generated through the running.

5.1 Renormalization group equations

We outline here some features of the running of the soft terms in this model.
We are only interested in effects in the 2-3 sector, because effects involving
the first family are not taken into account by the model of the previous
chapter.

The off-diagonal terms in the soft mass matrices receive a large contribu-
tion from the high scale Yukawa couplings. These couplings are all O(1) and
generates off-diagonal components in m2

f , m
2
fc through the running between

Mc and MR. However the effects in the LL and RR sectors are quite different
because the light states in the left sector are f2, F and therefore mixed terms
cannot be generated above the Z2 breaking scale ML, while a mixed term for
the light states f c

2 , f
c
3 in the right sector is generated already at Mc. There-

fore we expect small or negligible δLL mass insertions, while δRR insertions
are of order O(10−2).

Large Yukawa couplings have also a strong effect on the diagonal terms:
both the second and the third family masses receive significant contributions.
This effect makes the second family lighter than the first, and the third family
lighter than the other diagonal masses.

Note also that in the absence of Higgs mixing, the model naturally pre-
dicts a value of tanβ of order 50. The problem is that in this regime

69
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λτ , λb ∼ O(1) and, given the fact that the RGEs for m2
hD

and m2
hU

are
similar and the two Higgs doublets come from the same SO(10) multiplet, it
is difficult to reconcile the two requirements that m2

hU
+µ2 must be negative

to break the electro-weak gauge symmetry, while m2
hD

+ µ2 must be positive
enough so that the squared pseudoscalar Higgs mass is positive. Moreover,
the effect of the large Yukawas above MR gives a suppression of the unified
Higgs mass m2

h at that scale. To reconcile the two requirements it is possible
to move to the “hard fine tuning” region where the GUT scale gaugino mass
is larger than the scalar masses.

We report the full RGEs of the model in the next sections.

RGEs above MR

The relevant superpotential above MR is:

WPS = λif
c
i Fh+λ

c
ifiF

ch+αiφfiF̄+αc
iφf

c
i F̄

c+aF̄ cXcF
c+σ̄cF̄

′
cΦF

c+σcF̄
cΦF ′

c

(5.1)

The Yukawa RGEs are:

(4π)2 d

dt
λi =

(
8|~λ|2 + 4|~λc|2

)
λi +

15

8
~αc · ~λαc

i −
(

15

2
g2
4 + 3g2

L + 3g2
R

)
λi

(4π)2 d

dt
λc

i =

(
8|~λc|2 + 4|~λ|2 +

15

8
σ̄2

c +
3

4
a2

)
λc

i +
15

8
~α · ~λc αi

−
(

15

2
g2
4 + 3g2

L + 3g2
R

)
λc

i

(4π)2 d

dt
αi =

(
19

4
|~α|2 + | ~αc|2

)
αi + 2~λc · ~α λc

i −
(

31

2
g2
4 + 3g2

L

)
αi

(4π)2 d

dt
αc

i =

(
19

4
| ~αc|2 + |~α|2 +

15

8
σ2

c +
3

4
a2

)
αc

i + 2~λ · ~αc λi −
(

31

2
g2
4 + 3g2

R

)
αc

i

(4π)2 d

dt
a =

(
7

2
a2 +

15

8
(σ2

c + σ̄2
c ) +

15

8
| ~αc|2 + 2|~λc|2

)
a−

(
15

2
g2
4 + 7g2

R

)
a
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(4π)2 d

dt
σc =

(
19

4
σ2

c + σ̄2
c +

15

8
| ~αc|2 +

3

4
a2

)
σc −

(
31

2
g2
4 + 3g2

R

)
σc

(4π)2 d

dt
σ̄c =

(
19

4
σ̄2

c + σ2
c + 2|~λc|2 +

3

4
a2

)
σ̄c −

(
31

2
g2
4 + 3g2

R

)
σ̄c

The SUSY breaking potential is:

VSSB = (m2
f )ij f̃

∗
i f̃j + (m2

fc)ij f̃
c
i

∗
f̃ c

j +m2
hh̃

∗h̃+m2
φφ̃

∗φ̃+m2
F F̃

∗F̃ +m2
F̄

˜̄F ∗ ˜̄F

+m2
F cF̃ c

∗
F̃ c +m2

F̄ c
˜̄F c

∗ ˜̄F c +m2
F ′

c
F̃ ′

c

∗
F̃ ′

c +m2
F̄ ′

c

˜̄F ′
c

∗ ˜̄F ′
c

+m2
ΦΦ̃∗Φ̃ +m2

XX̃
∗X̃ +m2

XcX̃c
∗
X̃c +m2

HH̃
∗H̃

+
(
Aλ

i f̃
c
iF̃ h̃+ Aλc
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)

+
1
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(5.2)

The A-term RGEs are:

(4π)2 d

dt
Aλ

i =
(
6|~λ|2 + 4|~λc|2

)
Aλ

i +
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+
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8
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4
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i

)
+ 3g2

L

(
2MLλi −Aλ

i

)
+ 3g2

R

(
2MRλi − Aλ

i

)

(4π)2 d

dt
Aλc

i =
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+
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(4π)2 d

dt
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The RGEs for the soft masses are:
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RGEs between ML and MR

The superpotential above ML is:

W = (αA
q )i qiQ̄Aφ + (αA

l )i liL̄Aφ + (αT
q )i qiL̄T̄φ + (αT

l )i liQ̄Tφ + (αG
q )iGφqiQ̄

+λu
i u

c
iQhu + λd

i d
c
iQhd + λe

i e
c
iLhd (5.3)

The boundary conditions at MR are:

λu = λd = λe = λ

√
24αA

q = −
√

24

3
αA

l =
√

2αT
q =

√
2αT

l = αG
q = α (5.4)

The first and the second line of Eq. (5.3) are decoupled: in particular the
RGEs for the second line Yukawas and soft masses are MSSM-like.

5.2 FCNC predictions

We discuss some results for FCNCs in the model in two different regimes:

• High tanβ: this is the natural regime for the model because of λt-λb

unification.
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• Moderate/low tanβ: this regime can be obtained if for example we
include Higgs mixing in the model. Mixing in the Higgs sector can
lower tanβ and we obtain predictions dominated by the off-diagonal
soft mass insertions.

We report here a typical spectrum for the two cases:
tan β ≃ 54 tan β ≃ 15

M1/2 2300 GeV 550 GeV
M0 200 GeV 100 GeV

Mg̃ 3350 GeV 800 GeV
Mt̃R 2350 GeV 560 GeV
Mτ̃1 650 GeV 170 GeV
MA 480 GeV 125 GeV

5.2.1 High tanβ

Figure 5.1: Allowed region for the high-scale universal soft masses in the high
tanβ regime.

In this regime the allowed spectrum of squarks and gluinos turns out to
be heavy, and the heavy Higgses give important tanβ-enhanced contributions
to B → µµ observables. These contributions give strong constraints on the
parameter space (M0 = Mh0,M1/2). In figure 5.1 we plot the part of the
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Figure 5.2: Branching ratio for Higgs-mediated Bd → µµ as a function of the
CP-odd Higgs mass in the high tanβ regime.

parameter space that is allowed by the current limits on BR(Bd → µ+µ−),
that is the observable that give the strongest constraints.

The fact that the light mass of the heavy Higgses is responsible for this
bound can be seen from 5.2, where we show the scatter plot of BR(Bd →
µ+µ−)SUSY /BR(Bd → µ+µ−)SM and the mass MA of the pseudoscalar Higgs
(note that we plot only the Higgs-mediated contribution to the process).

The effects coming from the off-diagonal entries of the soft mass matrices
are suppressed because of the heavy spectrum of the model. For example,
gaugino-mediated b → sγ processes are negligible (but other contributions
could be important and deserve future investigations).

However tanβ enhanced contributions can be relevant for processes like
τ → µγ. In figure 5.3 we plot the branching ratio of this process as a function
of the τ̃1 mass. The amplitude for this process is large enough to be observed
at a future super flavour factory [39], which should be able to set a limit on
its branching ratio of order BR(τ → µγ) ∼ 10−9.

5.2.2 Moderate tanβ

In this regime there are interesting effects coming from the off-diagonal mass
insertions in the lepton sector, contributing to processes like τ → µ γ. The
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Figure 5.3: Branching ratio for τ → µ γ as a function of the lighter slepton
mass in the high tanβ regime.

region of the plane (M0,M1/2) plotted in figure 5.4 is allowed both by τ → µγ
and B → µµ processes.

The figure 5.5 shows the scatter plot of BR(Bd → µ+µ−)SUSY /BR(Bd →
µ+µ−)SM as a function of MA.

The figure 5.6 shows the interesting range for the process τ → µγ. The
effect of the off-diagonal terms is relevant in this regime and the predictions
lie in a region that should be explored by superB factories.
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Figure 5.4: Allowed region for the high-scale universal soft masses in the
moderate tanβ regime.

Figure 5.5: Branching ratio for Higgs-mediated Bd → µµ as a function of the
CP-odd Higgs mass in the moderate tanβ regime.
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Figure 5.6: Branching ratio for τ → µ γ as a function of the lighter slepton
mass in the moderate tanβ regime.
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Chapter 6

Introduction

Supersymmetry is one of the most interesting possibilities that experiments
probing the physics beyond the Standard Model could discover. There are
convincing (although indirect) clues that our world could be described by a
SUSY GUT at high energies. Supersymmetry stabilizes theories of particle
physics in such a way that these theories could be valid up to very high
energies and therefore, if it is realized in the world, provides a good window
into high energy physics and allows us to probe new physics at scales far
from the electroweak one, even if in an indirect way.

However our low energy world is apparently not supersymmetric, there-
fore if we assume that SUSY is an ingredient of our physical world, it should
be spontaneously broken. Many fundamental problems of supersymmetry
are related to its breaking. For example, most of the physics at the TeV
scale is determined by the structure of the supersymmetry breaking terms
of the MSSM Lagrangian. Building a model of SUSY breaking (and its
communication to the MSSM) is therefore quite relevant for our understand-
ing of physics beyond the Standard Model. Here we will concentrate on
models for SUSY-breaking sectors. In supersymmetric model building, the
supersymmetry-breaking sector is the most elusive one: finding generic and
natural models of supersymmetry breaking has been a theoretical challenge
for many years.

There are many models of SUSY breaking. The simplest ones were de-
veloped soon after the discovery of supersymmetry These models work at
tree level, giving VEV to F terms (O’Raifeartaigh [40]) or D terms (Fayet-
Iliopoulos[41]) and therefore breaking supersymmetry. The scale of SUSY
breaking in these models is simply related to some dimensional parameters
in the classical Lagrangian. However the scale of these parameters is ex-
pected be of the same order of the cutoff scale because of naturalness ar-
guments and if we identify the fundamental scale with the Planck scale we

83
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have to explain the huge hierarchy between the Planck scale and the scales
entering the dynamics of the SUSY-breaking sector. Tipically the scale of
supersymmetry-breaking terms in the MSSM, that is around the TeV scale,
is of order 〈F 〉 /Mmess where Mmess is the scale of the messenger sector that
communicate the breaking to the MSSM, therefore

√
〈F 〉 . 1011 GeV that

is much smaller than the Planck scale.
The attention focused then on models of dynamical SUSY breaking, where

supersymmetry is broken by strong coupling dynamics in the low-energy
phase of some gauge theory and the corresponding scales are dynamically
generated. These models are not easy to obtain and they are generally quite
involved, requiring chiral theories or massless particles [42, 43, 44, 45] . One
of the main obstacles is the fact that simple gauge theories like SQCD with
massive flavours cannot have SUSY-breaking vacua. This can be understood
as a consequence of the non-zero Witten index of pure super-Yang-Mills
theories [46] , that ensures that supersymmetry is unbroken. This remains
valid also for massive SQCD, because SYM can be recovered from it going
to the infinite mass limit with a continuous deformations that should not
change the index.

The situation changed completely with the work of Intriligator, Seiberg
and Shih [47] that discovered a metastable SUSY-breaking vacuum in one
of the simplest strongly coupled theories, namely N = 1 SQCD with Nf

massive flavours and Nc < Nf <
3
2
Nc. SUSY is broken near the origin of field

space, while the gauge dynamics restores the usual supersymmetric vacua as
implied by Witten index, but they are far away in field space and separated
enough from the non-supersymmetric vacua, therefore these non-SUSY vacua
are metastable but parametrically long-lived. The ISS model is not the first
realization of metastable supersymmetry breaking, see for example [48], but
the simplicity of the model suggests that metastable SUSY-breaking vacua
are common both in field theories and in string theories. In fact the discovery
triggered a long series of papers looking for properties of metastable vacua
in field theory and string theory and their applications to gauge mediation
and moduli stabilization.

The metastable vacua of the ISS model can be seen in the low-energy
effective theory as vacua of an O’Raifeartaigh-type model. This is not un-
common, because strongly coupled gauge theories often have a low-energy
description in terms of (weakly gauged) Wess-Zumino model where the effec-
tive degrees of freedom are gauge invariant polynomials of the fundamental
fields. This description can be very useful because these models are usually
perturbative and calculable and therefore their properties can be reliably
studied even if SUSY is spontaneously broken. The modern point of view
is that O’Raifeartaigh models are interesting because they can be effective
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theories that encode the dynamics of strongly-coupled gauge theories.
R-symmetry plays a crucial role in O’Raifeartaigh models: in fact the

Nelson-Seiberg argument [49] states that the existence of an R-symmetry is
a necessary condition for supersymmetry breaking in theories with generic
superpotentials. However, the R-symmetry must be broken in order to give
an high mass (greater than about 100 GeV) to gauginos. It is possible to
break the R-symmetry explicitly, but this implies that the SUSY-breaking
vacua are metastable even without including gauge effects, and depending on
the model there could be some tension between the requirement of long-lived
vacua and the bounds on gaugino masses. Because of this tension, sponta-
neous breaking of the R-symmetry seems to be an interesting possibility, if we
neglect the problem of the existence of a massless Goldstone boson (R-axion).
Spontaneous R-symmetry breaking can be driven by gauge interactions as in
[50, 51], but this mechanism works only for a small window of the parameter
space. Here we are interested in models where the breaking is triggered by
the perturbative dynamics of the O’Raifeartaigh superpotential.

Most of the O’Raifeartaigh models featured in the literature have fields
whose R-charges can be chosen to be either 2 or 0. In these models R-
symmetry does not seem to break spontaneously. Shih noted that this fact
is related to the choice of R-charges of these models and that spontaneous
breaking often occurs in models containing fields with R 6= 2, 0 [52]. The
simplest O’Raifeartaigh model that breaks R-symmetry spontaneously for
some values of its parameters is:

W = fX + λXφ(1)φ(−1) +m1φ(3)φ(−1) +
1

2
m2φ

2
(1) (6.1)

where R(X) = 2 and R(φ(k)) = k. The flat direction parametrized by X is
lifted by quantum corrections and R-symmetry is broken in a region of the
parameter space where the resulting vacuum has 〈X〉 6= 0. An interesting
observation is that the above vacuum is metastable because of the existence
of a runaway direction:

φ(1) = − f

λφ(−1)

, X =
m2f

λ2φ2
(−1)

, φ(3) =
m2f

2

m1λ2φ3
(−1)

, φ(−1) → 0 (6.2)

A natural question is if these interesting results correspond to general prop-
erties of models with general R-charges, or if they depend on the choice of the
above model. In these chapters we discuss the properties of these models and
show that these features occur in many generalized O’Raifeartaigh models.

In section 6.1 we review the O’Raifeartaigh model and the class of models
with R-charges R = 2, 0. In section 6.2 we introduce the ISS model and in
section 6.3 we discuss the relation between R-symmetry and SUSY breaking.
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In section 7.1 we discuss generalized O’Raifeartaigh models where R-
charges can be different from 2 or 0. We consider generalizations of the
model (7.1) with generic R-charge assignments and a superpotential

W = fX +
1

2
(M ij +N ijX +Qij

a Ya)φiφj (6.3)

where M,N,Qa are generic symmetric complex matrices. The vacua of these
models break the R-symmetry for a wide range of parameters of the super-
potential. In section 7.2 we show that most of the Wess-Zumino models
which contain fields with R 6= 2, 0 and break SUSY have runaway directions.
The runaway vacuum can be supersymmetric or non-supersymmetric. We
explain the relation between this runaway behaviour and the R-symmetry of
the theory.

6.1 Usual O’Raifeartaigh models

We discuss the physics of the original O’Raifeartaigh model and similar mod-
els of SUSY breaking. These models are Wess-Zumino models of chiral fields
with a renormalizable superpotential. Supersymmetry breaking is related
by the Nelson-Seiberg argument to the existence of an R-symmetry, which
transforms fields with R-charge 2 or 0.

The original model contains three chiral superfields X, φ(2), φ(0) of R-
charge R(X) = R(φ(2)) = 2, R(φ(0)) = 0, a canonical Kahler potential and a
superpotential W = fX +nXφ2

(0) +mφ(2)φ(0). The SUSY vacuum equations
are

f + nφ2
(0) = 0 (6.4)

mφ(0) = 0 (6.5)

2nXφ(0) +mφ(2) = 0 (6.6)

and there is no solution to this system, therefore SUSY is broken. The
non-supersymmetric minimum is obtained by minimizing the potential with
respect to φ(0) and there is a flat direction of minima parametrized by 〈X〉.
This flat direction is lifted by the 1-loop Coleman-Weinberg potential and
this quantum correction forces the vev of X and φ(2) to 0. The global R-
symmetry remains unbroken.

This situation is generic for all the models with fields of R-charge 2 or 0.
In fact the most general O’Raifeartaigh model of this kind contains nX fields
Xn with R(Xn) = 2 and nφ fields φi with R(φi) = 0, has a canonical Kahler
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term and a superpotential

W =

nX∑

k=1

Xk gk(φi) . (6.7)

The SUSY vacuum equations for this model are

gk(φi) = 0 (6.8)∑

k

Xk ∂jgk(φi) = 0 . (6.9)

The subset (6.8) of these equations is a system of nX equations in nφ variables
and therefore it cannot be solved for general functions gk(φ) if nX > nφ. If
the last condition is satisfied supersymmetry is spontaneously broken. and
the minimum of the potential is

Vmin =

nX∑

k=1

|gk(〈φi〉)|2 (6.10)

where 〈φi〉 satisfy the equations
∑

k g
∗
k(〈φi〉)∂jgk(〈φi〉) = 0.

The equations (6.9) for Xk form a linear system of nφ equations in nX

variables and can be generally solved for all values of 〈φi〉, therefore the
minima of the potential form an (nX − nφ)-dimensional linear space of flat
directions parametrized by X1 . . .XnX−nφ

. This structure is partly dictated
by the R-symmetry. In fact complexified R-symmetry acts as a dilatation1

on this space: Xn → e2iαXn, α ∈ C. The potential in the vacuum contains
only squares of F-terms with R-charge 0 and therefore is invariant under
complex R-symmetry transformations. This means that the space of vacua
M must be composed of complex rays in the vector space generated by the
Xks: 〈Xk〉 ∈ M ⇒ 〈X ′

k〉 = c 〈Xk〉 ∈ M, ∀c ∈ C.
This degeneracy of vacua is removed when we take into account the

Coleman-Weinberg 1-loop effective potential [53] that chooses a true min-
imum at Xn = 0, as we will show in section 7.1.

6.2 Metastable vacua in simple theories

The Intriligator-Seiberg-Shih model of metastable dynamical SUSY breaking
[47] is a very simple theory, namely N = 1 SQCD with gauge group SU(Nc).

1Note that this is reminescent of the usual argument for flat directions in supersym-
metric theories. These directions are often present because both the superpotential and
the vacuum equations are invariant under complexified symmetry transformations. The
difference is that the usual argument applies to SUSY vacua, while the argument in the
text applies to SUSY-breaking vacua.
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We consider this theory with a matter content of massive fields Qk, Q̃k with
k = 1 . . . Nf . The mass term has the form mijQiQ̃j . These theories are
asymptotically free for Nf < 3Nc and their low-energy dynamics have been
explained by Seiberg and collaborators [54, 55, 56, 43] . Here we are interested
in the free magnetic regime, which corresponds to Nc < Nf < 3

2
Nc. For

these values of Nc and Nf , the low-energy theory admits a weakly coupled
description in terms of the meson field Mij = QiQ̃j and of Nf flavours of dual
“magnetic” quarks qi, q̃i charged under a “magnetic” gauge group SU(N)
with N = Nf − Nc. The dual description is weakly coupled, has a Kähler
potential of the form K = αM̄M/Λ2

m + βq̄q + β ¯̃qq̃ and a superpotential

W =
1

Λm

q̃iMijqj +mijMij (6.11)

where Λm is the Landau pole of the magnetic gauge coupling. This theory
can be only a low-energy effective description because it is infrared free and
goes to strong coupling above Λm.

Let’s study the vacua of this theory. We consider the case of equal
masses mij = mδij when the theory has a flavour U(Nf ) symmetry. We
start neglecting the effects of the gauge group, because it is at weak cou-
pling. The theory then describes three chiral fields2 with quantum numbers
M = (1,N2

f
− 1)+(1, 1), q = (N,Nf), q̃ = (N̄, N̄f) under SU(N)×SU(Nf )

and superpotential

W = hq̃α
i Mijq

α
j − hµ2Mii (6.12)

Note that this theory has an R-symmetry with charges R(M) = 2,R(q) =
R(q̃) = 0 and therefore is an O’Raifeartaigh model like the ones discussed
in the previous section. The superpotential is not completely generic so we
cannot apply naive counting to understand if SUSY is broken, but we have
to look at the vacuum equations

hq̃α
i q

α
j − hµ2δij = 0 (6.13)

hMijq
α
j = 0 (6.14)

hq̃α
i Mij = 0 (6.15)

(6.16)

The first equation cannot be solved if Nf > N because the product q̃iqj has
rankN and therefore cannot cancel with δij. This means that supersymmetry

2We consider an implicit redefinition of these fields in order to obtain a canonical
Kähler potential for all of them. With this redefinition Mij becomes a chiral field of mass
dimension 1.
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is broken by the “rank condition” and there is a minimum of the potential
V = (Nf −N)|h2µ4| where the vevs are

M = 0, q =

(
0
φ0

)
, q̃T =

(
0

φ̃T
0

)
φ̃0φ0 = µ21N×N (6.17)

up to symmetry rotations. All the pseudo-flat directions are lifted by the
Coleman-Weinberg potential and the masses of the fields in this vacuum are
of order µ (except for the Goldstone bosons coming from flavour symmetries).
The low-energy parameter µ is related to the high-energy parameters as
µ ∼

√
−mΛ.

The supersymmetric vacua of the high-energy theory can be seen also
in the low-energy description if we switch on the gauge interaction. If we
consider points in fields space where 〈M〉 is large, then the mass of q, q̃ is
large and they decouple from the low-energy theory, that contains only M
and the gauge fields of SU(N). The gauge dynamics induces a gaugino
condensation that depends on the quark masses, i.e. on M , and the low-
energy superpotential for M is of the form

W = N
(
hNf Λ

3N−Nf
m det(M)

)1/N

− hµ2Tr(M) (6.18)

that has Nf − N supersymmetric vacua with 〈M〉 ∼ ǫ−(Nf−3N)/(Nf−N)µ/h
where ǫ = µ/Λ. If ǫ≪ 1, these vacua are far away from the region of radius
µ near the origin of field space where the metastable vacua live, therefore the
tunneling amplitude from the metastable vacua to these vacua is paramet-
rically suppressed. This means that SQCD in the free magnetic phase and
with small quark masses has long-lived SUSY-breaking vacua.

6.3 SUSY breaking, R-symmetry and metasta-

bility

The models of supersymmetry breaking discussed in the previous sections are
based on Wess-Zumino theories with exact R-symmetries (or approximate,
if we consider the small breaking due to the gauge dynamics). It is easy
to show that a strong, generic breaking of these R-symmetries generates a
dangerous supersymmetric vacuum in addition to the stable (or metastable)
non-supersymmetric vacua of these models. In fact there is a strong con-
nection between R-symmetry and supersymmetry breaking that has been
discussed by Nelson and Seiberg [49] .

Their argument goes as follows. Consider a Wess-Zumino model with
k chiral fields, a canonical Kahler potential and a generic superpotential
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W (ϕi). Suppose that the superpotential does not respect an R-symmetry.
Then, if there are no other symmetries, the vacuum equations ∂W/∂ϕi = 0
are k equations in k variables and they can generally be solved. If there
are global symmetries that are not R-symmetries, then the potential is a
function W (Ij) of a set of k′ independent invariant combinations Ij(ϕi) and
the vacuum equations have the form (∂W/∂Ij)(∂Ij/∂ϕi) = 0, therefore they
are linear combinations of the equations (∂W/∂Ij) = 0 that are k′ equations
in k′ variables (k′ < k) and can generally be solved. Therefore, without an
R-symmetry, supersymmetry is generally unbroken.

Suppose instead that there is an R-symmetry, but it is spontaneously bro-
ken by the vev of an R-charged field ϕ1. Then we can write the superpotential

as W = ϕ
2/R1

1 f
(
ϕi/ϕ

Ri/R1

1

)
and the vacuum equations are

ϕ
(2−Ri)/R1

1 ∂if = 0 ,
2

R1
ϕ

(2−R1)/R1

1 f − Ri +R1

R1
ϕ

(2−Ri−R1)/R1

1 ϕi∂if = 0

(6.19)
which reduce to f = 0, ∂if = 0 that are k equations in k − 1 variables
ϕ2/ϕ

R2/R1

1 , . . . ϕk/ϕ
Rk/R1

1 . This system cannot generally be solved and there-
fore supersymmetry is generally broken.

The above argument shows that for a generic Wess-Zumino model, R-
symmetry is a necessary condition for SUSY breaking and spontaneously
broken R-symmetry is a sufficient one. Note that this argument considers
only vacua at finite distance in field space, i.e. does not apply to runaway
directions.

If the R-symmetry is only approximate, then there are supersymmetric
vacua in the theory. Suppose that the coupling in front of the R-symmetry
breaking term in the superpotential is ǫ. Then the supersymmetric vacua are
not present in the theory for ǫ = 0 and appear only when ǫ is turned on. The
potential depends on ǫ in a continuous way in any compact region of the space
of fields, therefore the supersymmetric vacua must come in from infinity.
The vevs in the SUSY vacua are or order 1/ǫn and the non-supersymmetric
vacuum is metastable but parametrically long-lived for ǫ≪ 1.

As argued in [51], metastability is a general feature of realistic theories
of supersymmetry. In fact, neglecting possible R-symmetry breaking effects
of gravity, an R-symmetry should exist at least as an approximate symme-
try in order to have SUSY breaking, and it has to be broken explicitly or
spontaneously to give mass to gauginos. However, spontaneously broken or
not, it must be approximate because it should be broken explicitly at a fun-
damental level to avoid an exactly massless R-axion. This means that there
can generally appear supersymmetric vacua far away in field space and we
probably live in a non-supersymmetric metastable vacuum.
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In the next chapter we will see models where the R-symmetry is exact
but there are non-SUSY vacua where it is spontaneously broken by quantum
effects. As we will see, even if the R-symmetry is exact, these vacua are
metastable because of runaway directions related to the R-symmetry itself.
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Chapter 7

Generalized O’Raifeartaigh
models

7.1 Spontaneous R-symmetry breaking

The simplest model that breaks R-symmetry spontaneously for some values
of its parameters is [52]:

W = fX + λXφ(1)φ(−1) +m1φ(3)φ(−1) +
1

2
m2φ

2
(1) (7.1)

where R(X) = 2 and R(φ(k)) = k. Classically this model has a flat direc-
tion of local extrema given by φ(3) = φ(1) = φ(−1) = 0; this direction is
parametrized by X with potential V (X) = |f |2 and is a local minimum for

|X| < m2
1m2

2λ2f
− f

2m2
. Quantum corrections modify the tree-level potential as

V (X) = |f |2 + m2
X |X|2 + . . . and if m2

X < 0 in some region of the space of
couplings, then the potential V (X) can have a (local) minimum away from
the origin and the R-symmetry is broken in this vacuum.

In the paper [52] a class of models that are natural generalizations of the
model (7.1) has been considered. These models consist of a chiral superfield
X with R(X) = 2 and nφ chiral superfields φi. All these fields have a
canonical Kähler potential and a superpotential

W = fX +
1

2
(M ij +N ijX)φiφj (7.2)

where M,N are symmetric complex matrices with det(M) 6= 0. Note that
the last condition constrains both the R-charges and the field content of the
model; for example, it implies that the number of φ fields with R = r is
the same as the number of fields with R = 2 − r. Moreover, R-symmetry

93
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constrains the possible nonzero entries in these matrices:

M ij 6= 0 ⇒ R(φi) +R(φj) = 2 , N ij 6= 0 ⇒ R(φi) +R(φj) = 0 (7.3)

Apart from these restrictions and those coming from other symmetries, we
consider M,N to be generic.

It is possible to prove that a necessary condition for m2
X < 0 in these

models is given by the existence of fields with R-charge different from R = 2
and R = 0 [52]. We generalize the analysis to include models with more
pseudomoduli Ya with R(Ya) = 2 [57] coupled as in the superpotential

W = fX +
1

2
(M ij +N ijX +Qij

a Ya)φiφj (7.4)

This model has a linear space of extrema near the origin, given by φi = 0,
X, Ya arbitrary. Supersymmetry is broken along these flat directions, there-
fore they can be lifted by the Coleman-Weinberg potential

V
(1−loop)
eff =

1

64π2
Tr

(
M4

B ln
M2

B

Λ2
−M4

F ln
M2

F

Λ2

)
(7.5)

. The trick used in [52] is to rewrite this potential as

V
(1−loop)
eff = − 1

32π2

∫ ∞

0

dv v5

(
1

v2 + M2
B

− 1

v2 + M2
F

)
(7.6)

The terms in the Coleman-Weinberg potential that are quadratic in X, Ya

can be written as

Vquad =
1

16π2
Tr

∫ ∞

0

dv v3

[
1

v2 + M̂2 + fN̂

(
Ŷ 2 − 1

2
{M̂, Ŷ } 1

v2 + M̂2 + fN̂
{M̂, Ŷ }

)
+

− 1

v2 + M̂2

(
Ŷ 2 − 1

2
{M̂, Ŷ } 1

v2 + M̂2
{M̂, Ŷ }

)]

(7.7)

where

M̂ =

(
0 M †

M 0

)
, N̂ =

(
0 N †

N 0

)
, Ŷ =

(
0 (NX +QaYa)

†

NX +QaYa 0

)

(7.8)
We consider the case of f ≪ N−1M , because in this limit we can neglect
the possibility of tachyonic directions of φ fields in a large range of values of
X, Ya around the origin of the flat directions. Then at the lowest nonzero
order in |M̂−2fN̂ | this expression reduces to

Vquad =
f 2

32π2
Tr

∫ ∞

0

dv v3
[
M1(v)M†

1(v) −M2(v)M†
2(v)

]
(7.9)
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with

M1(v) =
1√

v2 + M̂2

(
N̂

√
2v

v2 + M̂2
Ŷ

)
1√

v2 + M̂2
(7.10)

M2(v) =
1√

v2 + M̂2

(
N̂

M̂

v2 + M̂2
Ŷ + Ŷ

M̂

v2 + M̂2
N̂

)
1√

v2 + M̂2
(7.11)

after eliminating some terms that do not contribute to the trace. The two
terms are generally of the same order, but the contribution of the first term is
always positive, while the second term always gives a negative contribution.

If there are only fields with R = 2, 0 then the form of the matrices is
forced by R-symmetry constraints to be

M =

(
0 M1

MT
1 0

)
, N =

(
0 0
0 N1

)
, Y =

(
0 0
0 Y1

)
(7.12)

and it is easy to see that in this case N̂M̂2k+1Ŷ = 0 and therefore M2 = 0.
This means that Vquad is positive definite: the quantum corrections lift the
flat directions and choose a (local) vacuum with unbroken R-symmetry.

In the general case Vquad has no definite sign. If the expression (7.9)
is negative for some choice of (X, Ya) = (x, ya) then the classical vacuum
X = 0, Ya = 0 is unstable because the linear combination x̄X + ȳaYa of these
fields has negative m2. In this case there can be an R-symmetry breaking
vacuum along one of these tachyonic directions, stabilyzed by the quartic
contributions to the Coleman-Weinberg potential. This is what happens even
in simple models with a single pseudomodulus X. We will see an explicit
example in the next section.

It is also clear that in models with many pseudomoduli Ya the range
of parameters for spontaneous R-symmetry breaking is much bigger than in
models with a single pseudomodulus. In fact there are many directions in field
space X, Ya that can be tachyonic, including the original one X 6= 0, Ya = 0.

7.1.1 Global symmetries

In this section we are interested in studying spontaneous R-symmetry break-
ing in models with non-abelian global flavor symmetries. Global symmetries
are interesting because they can play an important role in mediating su-
persymmetry breaking: for example, they can be gauged and communicate
SUSY breaking directly through gauge interactions, as in [58, 59] or through
a messenger sector, as in [60, 61, 62].Non-abelian global symmetries can also
be useful when looking for an ultraviolet completion of these models, if we
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consider them as effective theories of strongly-coupled gauge theories, as in
[47].

The models discussed in the previous sections can have non-abelian global
symmetries. Starting from the Shih model (7.1), it is easy to write a model
with real representations, for example SO(N) fundamentals, or to add other
fields that interact only with X and play no role in breaking SUSY:

∆W = λ′Xϕ̄αϕ
α (7.13)

However it would be useful to include also complex representations in our
models. In this section we will study O’Raifeartaigh models with spontaneous
R-symmetry breaking where the SUSY-breaking sector contains fields in real
or complex representations of a flavour symmetry.

The models discussed in the previous sections can have non-abelian global
symmetries. However models that necessarily have a field with R = 0, 1 can
have only fields in real representations. As an example, the model (7.1)
cannot be extended with global symmetries under which the fields transform
as complex representations. In fact the mass term for φ(1) requires that the
representations R(φ(1)) ⊗simm R(φ(1)) ⊃ 1, therefore R(φ(1)) cannot be an
irreducible complex representation and the same is true for the other fields,
because R(φ(−1)) ⊗R(φ(1)) ⊃ 1 and R(φ(3)) ⊗R(φ(1)) ⊃ 1.

An example of a model with real representations of a non-abelian sym-
metry is this small modification of the original Shih model (7.1) where
φ(−1), φ(1), φ(3) are SO(N) fundamentals:

W = fX + λXφα
(1)φ

α
(−1) +m1φ

α
(3)φ

α
(−1) +

1

2
m2φ

α
(1)φ

α
(1) (7.14)

By looking at the Coleman-Weinberg formula

V
(1−loop)
eff =

1

64π2
Tr

(
M4

B ln
M2

B

Λ2
−M4

F ln
M2

F

Λ2

)
(7.15)

it is easy to see that the effective potential is related to that of the original
Shih model by1 V

(1−loop)
eff (X)SO(N) = NV

(1−loop)
eff (X). Then the analysis in

[52] goes unchanged (except for the height of the potential barrier for the
metastable vacuum, which is not relevant) and the model shows spontaneous
non-hierarchical R-symmetry breaking in a metastable vacuum for a wide
range of parameters. The flavour symmetry is unbroken in the metastable
vacuum.

1For a generic representation R of a group G, the only modification is

V
(1−loop)
eff (X)R(G) = dim(R(G))V

(1−loop)
eff (X).
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If we wish to introduce complex representations, we must consider models
without R = 0, 1 fields. The simplest example is

W = fX +XN5φ
α
(5)φ(−5)α +XN3φ

α
(3)φ(−3)α +

+M7φ
α
(7)φ(−5)α +M5φ

α
(5)φ(−3)α +M3φ

α
(3)φ(−1)α (7.16)

where φ(7), φ(5), φ(3) are fields in the fundamental representation of a U(N)
flavour symmetry and φ(−5), φ(−3), φ(−1) are in the antifundamental. Also in

this case we have V
(1−loop)
eff (X)U(N) = NV

(1−loop)
eff (X), therefore all relevant

properties can be found from the model without the flavour symmetry:

W = fX +XN5φ(5)φ(−5) +XN3φ(3)φ(−3) +

+M7φ(7)φ(−5) +M5φ(5)φ(−3) +M3φ(3)φ(−1) (7.17)

Now we have to study R-symmetry breaking in this model. All parameters
can be chosen real and positive. The condition |M−2fN | ≪ 1 is generally
sufficient to avoid tachyonic directions for small X, so we choose f/M2

5 to be
small.

Numerical minimization of the Coleman-Weinberg potential for the model
(7.17) shows that there is spontaneous R-symmetry breaking in some region
of the parameter space, in particular for N3 ∼ N5 and M3,M7 < M5, as can
be seen in figure 7.1.1,7.1.1.

It is possible to show analytically that R-symmetry breaking occurs in this
region. It is possible to expand the Coleman-Weinberg potential at lowest
order in |M̂−2fN̂ | and X and confirm the numerical results. The potential
has the form V (X) = V0 +m2

X |X|2 + λX |X|4 +O(|X|6). In figure 7.3,7.4 we
plot the expressions found for m2

XM
2
5 /f

2, λXM
4
5 /f

2 as functions of M3/M5

in the case M3 = M7, N3 = N5 = 1 and f/M2
5 ≪ 1.

Note that the results for this model reduce to the Shih model if N3 = N5

and M3 = M7.
We have studied the simplest model with complex representations, but we

can also consider models with more fields. The results coming from numerical
minimization are the same: these models have metastable quantum vacua
that break R-symmetry for some range of parameters.

In models with more pseudomoduli the range of parameters for sponta-
neous R-symmetry breaking becomes wider, because a linear combination
of X and Ya that acquires a negative m2 is a sufficient condition for R-
symmetry breaking. Numerical studies indicate that there are stable vacua
that break R-symmetry in a large fraction of the parameter space for param-
eters Nij ,Mij/M of order O(1) and small f/M [63]. Non-hierarchical spon-
taneous R-symmetry breaking seems therefore a common feature of these
models: this opens interesting possibilities for realistic model building.
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Figure 7.1: The white area is the region of the plane (M7/M5,M3/M5) where
there is spontaneous R-symmetry breaking for N3 = N5 = 1 and f/M2

5 =
0.001.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Figure 7.2: The white area is the region of the plane (N5, N3) where there is
spontaneous R-symmetry breaking forM3/M5 = M7/M5 = 0.25 and f/M2

5 =
0.001.
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Figure 7.3: Plot of m2
XM

2
5 /f

2 as a function of M3/M5.

Figure 7.4: Plot of λXM
4
5 /f

2 as a function of M3/M5.
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7.2 Runaway directions

7.2.1 Models with a single pseudomodulus

The SUSY-breaking vacuum of the model (7.1) is metastable because of the
existence of a runaway direction [52]:

φ(1) = − f

λφ(−1)

, X =
m2f

λ2φ2
(−1)

, φ(3) =
m2f

2

m1λ2φ3
(−1)

, φ(−1) → 0 (7.18)

that is a direction along which the potential goes to a minimum. The runaway
direction of the Shih model is “supersymmetric” because V → 0 and the
runaway vacuum at infinity has unbroken supersymmetry. It is interesting
to note that the runaway direction can be seen as a rescaling of fields

ϕ(ǫ) = ǫ−R(ϕ)ϕ(0) , ǫ→ 0 (7.19)

, which is a complexified R-symmetry transformation. This feature is not re-
lated to the particular model (7.1): in fact most of the Wess-Zumino models
with an R-symmetry and generic R-charge assignment have runaway direc-
tions [57].

We begin the analysis of runaway directions from the simple class of
models (7.2). The superpotential of these models has the form

W = fX +
1

2
(M ij +N ijX)φiφj (7.20)

whereM,N are generic symmetric complex matrices with det(M) 6= 0. These
models form the subset of the models (7.4) without the pseudomoduli Ya.

According to general arguments, R-symmetry implies that this superpo-
tential can break SUSY [49]. In fact, it is shown in [52] that SUSY is always
broken in these models. Let’s review the argument for SUSY breaking. The
equations for a SUSY vacuum ∂aW = 0 are

f +
1

2
N ijφiφj = 0 (7.21)

(M ij +N ijX)φj = 0 (7.22)

and cannot be solved simultaneously. To prove this it is sufficient to note that
if det(M +NX) 6= 0 the only solution for (7.22) is φi = 0 that cannot satisfy
(7.21). It can be shown that det(M+NX) = det(M) exp(Tr log(M−1NX)) =
det(M) if R-symmetry is required, because the traces Tr

(
(M−1N)k

)
disap-

pear. SUSY is therefore broken in all models with det(M) 6= 0. However,
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this argument only refers to finite values of the fields and does not exclude a
supersymmetric runaway vacuum.

To obtain a SUSY runaway vacuum, we classify the equations (7.22)
according to their R-charge:

(M ij +N ijX)φj = 0 , R(φi) < 2 (7.23)

(Mkj +NkjX)φj = 0 , R(φk) = 2 (7.24)

(Mmj +NmjX)φj = 0 , R(φm) > 2 (7.25)

The equations (7.23),(7.24),(7.25) have positive, zero and negative R-charges
respectively. As we have seen, there is no solution for the system of equations
(7.21),(7.23),(7.24),(7.25). This can also be seen from the fact the equations
(7.21),(7.24),(7.25) are not compatible, because (7.21) requires at least one
field with non-positive R-charge to be nonzero, while equations (7.24),(7.25)
force all fields with non-positive R-charge to zero. However there could be
a field configuration X ′, φ′

i that solves the subsystem (7.21),(7.23),(7.24). If
this is the case, the potential of these fields is

V =
∑

R(φm)>2

|(Mmj +NmjX ′)φ′
j|2 (7.26)

and it goes to zero along the direction parametrized by ǫ in (7.19):

φi(ǫ) = ǫ−R(φi)φ′
i , X(ǫ) = ǫ−2X ′ , ǫ → 0 (7.27)

This means that the theory cannot have a lower ground state, and there is a
runaway direction parametrized by non-unitary R-symmetry transformations
(7.27).

In the next section we prove that in this class of models it is always
possible to solve (7.21),(7.23),(7.24) at the same time if there are fields with2

R 6= 0, 1, 2. For the models (7.2) that satisfy this condition, this result implies
that local minima of the potential always correspond to metastable vacua,
and that the potential shows a runaway behavior. The properties of these
models are therefore very different from usual O’Raifeartaigh models.

Many models in this class have metastable R-breaking vacua. In fact the
presence of fields with R 6= 0, 1, 2 in these models corresponds both to the
necessary condition for spontaneous R-symmetry breaking and to the suffi-
cient condition for runaway behavior. An interesting consequence is that for
this class of models, spontaneous R-symmetry breaking implies metastability.

2This is not completely correct, because R-charge is defined only up to addition of other
U(1) charges. So a more correct formulation is: we can always solve (7.21),(7.23),(7.24)
at the same time if for every choice of R-charges there is at least a field with R 6= 0, 1, 2.
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Proof of solvability of R ≥ 0 equations

In this section we prove that it is always possible to solve the system of
equations (7.21),(7.23),(7.24).

First of all, note that if there is a solution φ′
i, X

′ to (7.23),(7.24) that
satisfies N ijφ′

iφ
′
j 6= 0, the equation (7.21) can be solved by rescaling all fields

φ′
i → ρφ′

i by a factor ρ = (−f/N ijφ′
iφ

′
j)

1/2. Therefore we only have to prove
that (7.23),(7.24) can be solved with N ijφ′

iφ
′
j 6= 0.

The set of fields φi of a given model (7.2) can be decomposed into minimal
subsets in such a way that two fields belonging to different subsets cannot
appear in the same equation or in the same term of the superpotential3.
Each field φ(r) interacts with X and with fields φ(2−r)j , φ(−r)j only and each
equation has the form

N ij
(r,−r)Xφ(r)j +M ij

(2+r,−r)φ(2+r)j = 0 (7.28)

involving X and two fields whose R-charges differ by 2. Different subsets give
different systems of equations with no fields in common, so we will work with
fields belonging to a minimal subset only, and we will neglect all the fields
belonging to other subsets.

Let’s prove the theorem for the case in which R-charges can be chosen
in such a way that no field has R = 0 or R = 1. (We can always redefine
R-charges by adding charges of U(1) global symmetries.) First of all, note
that it is always possible to choose an R-charge assignment so that all fields
have integer R-charge. In fact if R-charges are not integer it is sufficient
to consider the highest one Rmax and redefine them in the following way:
R(ϕ) → ⌈R(ϕ)⌉ if R(ϕ)−Rmax is an even integer, R(ϕ) → ⌊R(ϕ)⌋ otherwise.
A field with R(ϕ)−Rmax even is coupled only with fields with R(ϕ)−Rmax

not even, therefore this defines a consistent R-charge assignment with only
integer R-charges.

If there are no fields with R = 0 or R = 1, we have a set of fields of 2m
different R-charges φ(k)j , φ(2+k)j . . .φ(2m+k)j and φ(2−k)j , φ(−k)j . . .φ(2−2m−k)j

with integers k,m satisfying k > 2, m > 1. Every term in the superpotential
couples fields with R-charges of opposite sign, therefore there is an accidental
U(1) symmetry whose charge is S(φi) = sign(R(φi)). Using this symmetry,
we redefine the R-symmetry to obtain φ+

(−1)j , φ
+
(1)j . . .φ+

(2m−1)j and φ−
(3)j , φ

−
(1)j

3For example, fields with even and odd R-charge belong to different subsets.
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. . .φ−
(−2m+3)j and the equations (7.23),(7.24) become as follow:

N ij
(−2m+3,2m−3)Xφ

+
(2m−3)j +M ij

(−2m+3,2m−1)φ
+
(2m−1)j = 0

N ij
(−2m+5,2m−5)Xφ

+
(2m−5)j +M ij

(−2m+5,2m−3)φ
+
(2m−3)j = 0

. . .

N ij
(1,−1)Xφ

+
(−1)j +M ij

(1,1)φ
+
(1)j = 0

N ji
(1,−1)Xφ

−
(1)j +M ji

(3,−1)φ
−
(3)j = 0

N ji
(−1,1)Xφ

−
(−1)j +M ji

(1,1)φ
−
(1)j = 0 (7.29)

where N ij
k,k′ couples φ−

(k)i and φ+
(k′)j and the same happens for M ij

k,k′.

We have two systems of equations containing φ+ and φ− fields respec-
tively. For each fixed value of X, φ−

(−1)j , φ
+
(−1)j we have two linear systems of

n+, n− equations in n+, n− variables, which can always be solved provided
that the related linear operators have nonzero determinants. This condi-
tion is verified because these determinants are products of det(M(2−k,k)) and
these cannot be zero because det(M) =

∏
k det(M(2−k,k)) 6= 0. If we choose

φ−
(−1)j , φ

+
(−1)j to be different from zero4 , then also φ−

(1)j , φ
+
(1)j are nonzero and

generically N ijφiφj 6= 0. This completes the proof of this case.
Now we will prove the theorem for the case with φ(1). The equations

(7.23),(7.24) become:

N ij
(2m−3,−2m+3)Xφ(2m−3)j +M ij

(2m−1,−2m+3)φ(2m−1)j = 0

N ij
(2m−5,−2m+5)Xφ(2m−5)j +M ij

(2m−3,−2m+5)φ(2m−3)j = 0

. . .

N ij
(−1,1)Xφ(−1)j +M ij

(1,1)φ(1)j = 0 (7.30)

and, applying the same argument we used above, choosing φ(−1)j 6= 0 is a
sufficient condition. The case with φ(0) is very similar, with equations:

N ij
(2m−2,−2m+2)Xφ(2m−2)j +M ij

(2m,−2m+2)φ(2m)j = 0

N ij
(2m−4,−2m+4)Xφ(2m−4)j +M ij

(2m−2,−2m+4)φ(2m−2)j = 0

. . .

N ij
(0,0)Xφ(0)j +M ij

(2,0)φ(2)j = 0

N ij
(0,−2)Xφ(−2)j +M ij

(2,0)φ(0)j = 0 (7.31)

4The requirements here and in the other cases should be stated more precisely. For
example, these fields have to be chosen such that they do not belong to the kernel of the
matrices N(−1,1), N(1,−1) respectively. However similar conditions are easily satisfied for
generic nonzero fields.
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and choosing φ(−2)j 6= 0 is enough.
To complete the proof, we must discuss what happens when there are

abelian or non-abelian symmetries that constrain the form ofM,N . The only
difference is that now the equations are classified not only by their R-charge,
but also by other charges. However this has no effect on the above arguments,
provided that we consider systems of equations of the same charge5. This
completes the proof.

7.2.2 Models with more pseudomoduli

To understand what can happen in more general models, we add to the
previous models a set of fields Ya with R(Ya) = 2, canonical Kähler potential
and superpotential

W = fX +
1

2
(M ij +N ijX +Qij

a Ya)φiφj (7.32)

where Qa are generic symmetric complex matrices with

Qij
a 6= 0 ⇒ R(φi) +R(φj) = 0 (7.33)

Similarly to the previous case, these models break SUSY. The proof is iden-
tical to the previous one if we substitute NX with NX + QaYa, because it
depends only on the properties (7.3),(7.33).

The analysis of runaway directions is different from the case with a single
pseudomodulus. To see the difference, we analyze some simple examples6:

• This is a simple modification of the Shih model (7.1) with a Y field:

W = fX + (λX + ηY )φ(1)φ(−1) +m1φ(3)φ(−1) +
1

2
m2φ

2
(1) (7.34)

Classically this model has flat directions of SUSY-breaking vacua with
φ(3) = φ(1) = φ(−1) = 0 for some range of parameters. These flat direc-
tions are parametrized by X, Y and are lifted by quantum effects. As
in the original model, the quantum vacuum can break the R-symmetry,
depending on the choice of parameters.

Here the equations ∂XW = 0, ∂YW = 0 have R = 0 but cannot be
solved at the same time. This means that there are no SUSY runaway

5From another point of view, two fields whose charges are not equal or complex conju-
gate belong to different minimal subsets.

6Note that throughout this chapter the indices in parentheses correspond to the R-
charges of the fields.
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vacua. However there is a runaway direction

φ(1) = − f

λ′φ(−1)

, X +
η

λ
Y =

m2f

λ′2φ2
(−1)

, φ(3) =
m2f

2

m1λ′2φ3
(−1)

, φ(−1) → 0

(7.35)
with λ′ = (|λ|2 + |η|2)/λ̄. This non-SUSY runaway vacuum minimizes
the potential and the other vacua are therefore metastable.

• This simple model has a U(1) symmetry φ±
(k) → e±iθφ±

(k) and shows a
different behavior:

W = fX + (λ+X + η+Y )φ+
(1)φ

−
(−1) + (λ−X + η−Y )φ+

(−1)φ
−
(1) +

+m3φ
+
(3)φ

−
(−1) +m1φ

+
(1)φ

−
(1) +m−1φ

+
(−1)φ

−
(3) (7.36)

Here we can solve all the equations withR > 0 in terms of φ+
(−1),φ

−
(−1),X,Y

as in the models of section 7.2.1, obtaining φ±
(1) = −(λ∓X+η∓Y )φ±

(−1)/m1.
The equations with R = 0 become

fm1 − [2λ+λ−X + (λ+η− + λ−η+)Y ]φ+
(−1)φ

−
(−1) = 0 (7.37)

[2η+η−Y + (λ+η− + λ−η+)X]φ+
(−1)φ

−
(−1) = 0 (7.38)

and can be easily solved with φ+
(−1)φ

−
(−1) 6= 0. Then there is a SUSY

runaway vacuum that corresponds to a field rescaling φ+
(−1), φ

−
(−1) → 0.

Let’s analyze the general case. The equations for a SUSY vacuum are:

f +
1

2
N ijφiφj = 0 (7.39)

1

2
Qij

a φiφj = 0 (7.40)

(M ij +N ijX +Qij
a Ya)φj = 0 , R(φi) < 2 (7.41)

(Mkj +NkjX +Qkj
a Ya)φj = 0 , R(φk) = 2 (7.42)

(Mmj +NmjX +Qmj
a Ya)φj = 0 , R(φm) > 2 (7.43)

As in the case with a single pseudomodulus, the equations (7.39),(7.42),(7.43)
are not compatible. Then there are three cases:

(a) If we can solve all the equations with non-negative R-charge (7.39),(7.40),(7.41),(7.42)
at the same time, we can then rescale the solution as in (7.19) and ob-
tain a runaway direction. The runaway vacuum is supersymmetric, and
therefore all other vacua, if any, are metastable.

This is what happens in model (7.36). This case often happens for
small nY .
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(b) If it is not possible to solve the equations (7.39),(7.40),(7.41),(7.42)
for any choice of R-charges, we look for absolute minima ϕmin

a of the
potential Vmin(ϕ) = min(V+(ϕ), V−(ϕ)) with respect to all fields and
all choices of R-symmetries, where V+ and V− are

V+ =
∑

R(ϕa)≤2

|∂ϕaW |2 , V− =
∑

R(ϕa)≥2

|∂ϕaW |2 (7.44)

Now there are two possibilities:

(b1) If there are ϕmin
a that solve both (7.41) and (7.43), these are the

true vacua of the model, with a flat direction parametrized by
R-charge rescalings.

This is what happens in original O’Raifeartaigh model and in all
models with R=0,2.

(b2) Suppose that the absolute minimum is at V+(ϕmin
a ). If there are

no field configurations ϕmin
a that solve (7.41),(7.43) but there is a

ϕmin
a that only solves (7.41), we can then rescale this solution as

in (7.19) and obtain a runaway direction. The runaway vacuum is
not supersymmetric but it corresponds to the true vacuum of the
system and therefore all other vacua, if any, are metastable. The
same if we exchange (7.41) with (7.43) and V+ with V−.

This is what happens in model (7.34). This case often happens
for large nY .

(c) The last possibility is that absolute minima of Vmin do not solve (7.41)
nor (7.43). In this case there are no general results, but there can be
non-SUSY stable vacua or runaway directions, depending on the details
of the models.

A model can belong to one or another of the above cases, depending on its
parameters and field content.

It is possible to find sufficient conditions for the existence of runaway
directions that consider only the field content of the model. If Ya have no
flavor charges then, roughly speaking, there are runaway directions if nY &

nφ/2 and there are SUSY runaway vacua if nY . nφ/2. There is a (small)
window of models without runaway vacua, but these conditions imply that
most of these models have runaway directions. The precise conditions and
their proofs can be found in the next section.
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Conditions for runaway

We discuss some conditions for the existence of runaway directions. We con-
sider only the case of minimal subsets, generic couplings and no symmetries.
We denote the number of φ fields with nφ, the number of Y fields with nY

and the number of φ fields of R-charge j with n(j) (or n±
(j) for φ±).

If it is possible to solve all the equations with R > 0 for a generic choice
of the fields φi that appear in VR=0, then it is always possible to minimize
V+ (or V−). If the minimum is zero, there is a SUSY runaway direction,
otherwise there is a non-SUSY runaway vacuum.

In models with no fields with R = 0, 1, this is possible if nY ≥ nφ

2
+n−

(1) −
n+

(2m−1) − 1. To prove this, we consider the R-charge choice of appendix

7.2.1. We can see that the equations with R > 0 are
nφ

2
+ n−

(1) generic linear

equations in nY + 1 + n+
(2m−1) variables and they can be solved if the above

condition is satisfied.

In models with a field with R = 1 it is possible to repeat the above
argument and obtain the condition nY ≥ nφ

2
+

n(1)

2
− n(2m−1) − 1.

In models with a field with R = 0 the argument is slightly different,
because in this case we need to solve also equations with R = 0 that contain
X, Ya. Considering also these equations, we obtain the condition nY ≥ nφ

2
+

n(0) − n(2m) − 1.

The above conditions imply SUSY or (generally) non-SUSY runaway
vacua. To obtain conditions that imply SUSY runaway vacua, we need to
solve all the equations with R ≥ 0. Consider the case with no fields with
R = 0, 1. Solving all the equations with R > 0, we end with a set of nY + 1
equations with R = 0. The first nY are of the form

∑
k<3 φ

+
(−1)P

a
(k)φ

−
(k) = 0

where P a
(k) are generic matrices that have a polynomial dependence on X, Ya.

These equation have a nonzero solution (choosing a generic nonzero φ+
(−1))

if
nφ

2
− n−

(3) ≥ nY + 1, so the condition is nY ≤ nφ

2
− n−

(3) − 1. The remain-

ing equation has the form
∑

k<3 φ
+
(−1)P(k)φ

−
(k) = −f and can be solved by

rescaling all φs.

Similar conditions can be found for the other cases. If there are fields
with R = 1 the condition is nY ≤ nφ

2
− n(1)

2
− n(−1) − 1, while if there are

fields with R = 0 the condition is nY ≤ nφ

2
− n(0) − 1.

7.2.3 General models

The interesting result of the previous sections is that many O’Raifeartaigh
models have a runaway behavior. In this section we argue that this behavior
is quite common in O’Raifeartaigh models with general R-charge assign-
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ments.
We briefly review the usual O’Raifeartaigh models in our approach. (For

more details about these models, see also the lectures [64].) The superpoten-
tial is

W =
∑

n

Xngn(φi) (n = 1 . . . nX , i = 1 . . . n0) (7.45)

where R(Xn) = 2, R(φi) = 0. These models break SUSY because the con-
ditions gn(φi) = 0 are generally not compatible if nX > n0. The fields φi

are determined by minimization of V =
∑

n |gn(φi)|2; this means that the
equations

∑
nXn∂jgn = 0 have at least a nonzero solution Xn = ḡn(φ̄i).

Rescaling this solution with respect to the R-charges, we obtain a flat direc-
tion of minima7.

When there are fields with R 6= 0, 1, 2 the picture changes completely.
In fact most of the Wess-Zumino models with an R-symmetry and generic
R-charge assignment have runaway directions [57]. We can understand this
if we note that the vacuum equations (and the F-terms) can be classified by
their R-charge:

∂iW = 0, R(ϕi) < 2 R > 0 (7.46)

∂iW = 0, R(ϕi) = 2 R = 0 (7.47)

∂iW = 0, R(ϕi) > 2 R < 0 (7.48)

Because of the Nelson-Seiberg argument, it is not possible to solve all these
equations at the same time. However, it can be possible to solve a subset of
these equations. We can look at two common possibilities:

• In some cases it is possible to solve all the equations with R ≥ 0 (or
R ≤ 0). In this case it is sufficient to rescale all fields by a factor ǫ−R(ϕ)

(or ǫR(ϕ)) as in (7.19). Then we send ǫ→ 0 to solve also the equations
with R < 0 (or R > 0) and obtain a supersymmetric runaway vacuum:
V → 0 as ǫ→ 0. This is the case of model (7.1). This case often occurs
when there are a few equations with R = 0.

If we consider a generic (possibly non-renormalizable) superpotential,
the number of equations with R ≥ 0 is usually smaller than the number
of fields on which these equations depend, so they can be often solved.
This means that runaway directions are common in these models, and
that SUSY-breaking vacua of these models are generally metastable.
We have seen in section 7.2.1 an interesting class of models that show
this behavior.

7Actually there is a (nX − n0)-dimensional space of solutions. R-symmetry rescaling
acts as a dilatation in this space.



7.2. RUNAWAY DIRECTIONS 109

It can also happen that only equations with R ≤ 0 can be solved.
This is not common in the models studied in the previous sections, but
can happen in general models. An example that appeared early in the
literature is the runaway model of [65], that will be discussed in the
examples.

• In other cases it is not possible to solve the equations with R = 0.
This situation is common when there are many equations with R = 0.
In these cases it is often possible to minimize VR=0 =

∑
R(ϕj)=2 |∂jW |2

with respect to all the fields and solve the equations with R > 0 (or
R < 0) at the same time. Then the rescaling (7.19) by a factor ǫ−R(ϕ)

(or ǫR(ϕ)) parametrizes a runaway direction with V → V∞ > 0 that
corresponds to a non-supersymmetric runaway vacuum. We have seen
examples of this behaviour in section 7.2.2.

Most of the models with generic R-charges realize one of these two possibil-
ities. Other models can have stable SUSY-breaking vacua or flat directions,
as the usual O’Raifeartaigh models.

It is interesting that a relation often exists between R-symmetry break-
ing and metastability. In [51] it is argued that metastability is a general
feature of realistic models of SUSY breaking. In fact R-symmetry must be
a good symmetry for the theory to break SUSY, but a small explicit R-
symmetry breaking interaction is needed to give mass to the R-axion; this
explicit breaking generically restores supersymmetry in vacua far away from
the origin of field space. Near the origin, R-symmetry is an approximate
symmetry and SUSY is spontaneously broken in a metastable vacuum. It is
not clear if metastability in the models of [51] and in our models are related.
Some hints in this direction are discussed in the next section, where it is
shown that runaway directions are often remnants of supersymmetric vacua
generated by (small) explicit R-breaking terms in the superpotential.

7.2.4 Runaway vacua as remnants of SUSY vacua

The existence of an R-symmetry is a sufficient condition for SUSY breaking
in the models discussed in sections 7.2.1,7.2.2. More generally, R-symmetry is
a necessary condition for SUSY breaking under some hypothesis of genericity
of the superpotential.

Consider a superpotential W (ϕa) that has an R-symmetry and breaks
SUSY spontaneously, and additional terms W r

R/(ϕa) that does not have R-
charge 2. An immediate consequence of the statements above is that the
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theory defined by

Wν = W +WR/ = W +
∑

r

νrW
R/
r ν = (ν1, ν2 . . .) (7.49)

generally has supersymmetric vacua 〈ϕa〉 = ϕ̃a(ν) that satisfy

∂bWν(ϕ̃a(ν)) = ∂bW (ϕ̃a(ν)) +
∑

r

νr∂bW
R/
r (ϕ̃a(ν)) = 0 (7.50)

so the SUSY-breaking vacua that survive for νr ≪ 1 are metastable. How-
ever, in the limit νr → 0 the SUSY vacua are pushed to infinity [51].

The potential of the original νr = 0 theory along the direction of the
SUSY vacua is

V (ϕ̃a(ν)) =
∑

b

|∂bW (ϕ̃a(ν))|2 =
∑

b

∣∣∣∣∣
∑

r

νr∂bW
R/
r (ϕ̃a(ν))

∣∣∣∣∣

2

(7.51)

Usually this potential doesn’t vanish for νr → 0 because the contribution of
∂bW

R/
r (ϕ̃a(ν)) can grow as 1/νr or faster, so the theory with νr = 0 has no

memory of SUSY vacua when they are pushed to infinity.
However there is an interesting exception. If the condition

sign(R(νr)) = sign(R(νr′)) = sign(2 − R(ϕb)) ≡ σ ∀r, r′ and ∀ϕb ∈WR/

(7.52)
is satisfied, then the limit νr → 0 can be interpreted as a rescaling with
respect to the R-charges ϕa → ǫσR(ϕa)ϕa, νr → ǫσR(νr)νr with ǫ → 0. In this
case metastability of the R-symmetric superpotential can be easily explained,
because the runaway vacuum is exactly the SUSY vacuum pushed to infinity
as νr → 0, and the runaway direction can be found following the positions
of SUSY vacua ϕ̃a(ν) for νr 6= 0. In fact we can parametrize these vacua
as ϕ̃a(ν(ǫ)) where νr(ǫ) = ǫσR(νr)νr(0) and the potential along the direction
parametrized by ǫ is

V (ϕ̃a(ν)) ∼
∑

ϕb∈W R/

|ǫ|2σ(2−R(ϕb)) (7.53)

whose minimum corresponds to ǫ → 0 and |ϕ̃a(ν(ǫ))| → ∞. The above
argument means that the metastability of vacua near the origin for νr = 0 is
a remnant of their metastability for νr 6= 0.

For the models with a single pseudomodulus there is a simple R-breaking
perturbation that explains the metastability of vacua with φ = 0:

WR/ =
∑

R(φj)>2

νjφj (7.54)
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This perturbation satisfies the above conditions (7.52) and in fact it generates
a SUSY vacuum with |φ| ∼ 1/νk that becomes a runaway vacuum when
ν → 0. Similar perturbations explain also the metastability of many vacua
in models with more pseudomoduli.

7.3 Examples and applications

Affleck-Dine-Seiberg superpotential

The most famous example of runaway is the effective superpotential for the
meson field in SQCD with Nf massless quarks, Nf < Nc. The superpotential
for Mij = QiQ̃j is constrained by symmetries and holomorphy to have the
form [56, 43] :

W = (Nc −NF )

(
Λ3Nc−NF

det(M)

) 1
Nc−Nf

(7.55)

It is possible to define an R-symmetry R(M) = −2(Nc − Nf)/Nf and the
fact that all the vacuum equations have R > 0 shows clearly the existence of
runaway directions, given by the complexified R-symmetry transformation
Mij(α) = e2(Nc−Nf )αMij(0), α → ∞.

Witten runaway model

This is a simple model where only equations with R ≤ 0 can be solved. It
appeared early in the literature as a runaway model [65]. Its superpotential
is

W = fX + αX2φ (7.56)

with R(X) = 2, R(φ) = −2. In this model there are no equations with
R < 0, so if we solve the R = 0 equation f + 2αXφ = 0 and then rescale the
fields as φ→ ǫ−2φ,X → ǫ2X we find a runaway direction with V (X, φ) → 0
as ǫ→ 0. This runaway vacuum is the only vacuum of this model.

The model of Essig, Sinha and Torroba

This interesting model [66] is an extension of the Intriligator-Seiberg-Shih
model, obtained by coupling two SQCD theories through singlets. One
SQCD is in the free magnetic phase Nc < Nf < 3

2
Nc and the other is in

the ADS phase N ′
f < N ′

c. The effective potential for this model has the form
(neglecting the coupling constants)

W = TrqMq̃ + ΦTrM + ΦTrPP̄ +
(
detPP̄

)− 1
N′

c−N′
f (7.57)
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where Φ is a singlet and P, P̄ are fundamentals and antifundamentals of
SU(N ′

c) × SU(N ′
f ).

This superpotential admits an R-symmetry with R-charges R(PP̄ ) =
R(M) = −2(N ′

c − N ′
f )/N

′
f , R(Φ) = R(qq̃) = 2N ′

c/N
′
f . Supersymmetry is

broken because of this R-symmetry (the absence of a linear term in the
superpotential is compensated by the presence of a meromorphic term that
forbids the trivial solution with all fields of zero vev). Choosing R(q) >
2N ′

c/N
′
f , we can solve all the vacuum equations with R > 0 or all the vacuum

equations with R > 0, so we find more than one runaway direction and the
runaway vacua are supersymmetric.

The interesting feature of the model is the fact that 1-loop effects can
stabilize these runaway directions near to the origin (pseudo-runaway) be-
cause of the relative flatness of the runaway direction with respect to the
Coleman-Weinber potential, obtaining metastable vacua with spontaneously
broken R-symmetry.

The model of Abel, Durnford, Jaeckel and Khoze

This model [67] is an example of another interesting extension of the Intriligator-
Seiberg-Shih model that breaks R-symmetry spontaneously on a runaway
direction, but the pseudo-runaway vacuum appears because of a different
mechanism.

The model is the usual SQCD in the free magnetic phase but with a
baryonic operator in the superpotential

W = mijQiQ̃j + Λ
3−Nf

cutoffQ
Nf (7.58)

For the case Nc = 5, Nf = 7 the flavour symmetry is SU(5)F × SU(2)F and
the dual operator appearing in the low-energy superpotential is relevant:

W = q̃iαMijq
α
j + µ2Mii + m̃ǫrsǫαβqrαqsβ (7.59)

where q decomposes into a multiplet of SU(5)F and a doublet charged under
SU(2)F . The low-energy coupling is m̃ = (Λm/Λcutoff)

4.

Consider the interesting case of a mass matrix µ2 =

(
µ2

5 0
0 µ2

2

)
with

µ2 > µ5. This superpotential admits an R-symmetry8 and we can choose the
R-charges as R(q) = −R(q̃) = 1, R(M) = 2. Here we cannot choose R(q) = 0

8The absence of an antibaryon operator in the superpotential is crucial to have this
nontrivial R-symmetry. An antibaryon would break explicitly the R-symmetry of this
model and modify completely the vacuum structure of the model.
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because of the baryon term and therefore we expect to find a runaway di-
rection. Note that the vacuum equations with R = 0 are the same as in
the ISS model, therefore SUSY is spontaneously broken and there are no su-
persymmetric vacua (and also no supersymmetric runaway vacua). However
the usual ISS vacuum does not exists, because the potential coming from the
R = 0 equations is minimized by taking the vev of the doublet component and
this is not compatible with the equations Mrjq

α
j +m̃ǫrsǫαβqsα = 0, q̃jαMjr = 0.

In the absence of the ISS vacuum, we look for runaway directions in
this model. The vacuum equations have R = 0, 1, 3 and it is easy to solve
the R = 1, 3 equations at infinity by rescaling the fields with complexified R-
symmetry transformations. In fact we can find a runaway direction if we take
the vevs that minimize the R = 0 equations and we rescale them as ϕ(ǫ) =
ǫ−R(ϕ)ϕ(0), ǫ → 0. This direction goes to a non-supersymmetric minimum
at infinity, therefore SUSY is broken along this direction. Away from the
origin, this runaway direction resembles a flat direction and the Coleman-
Weinberg potential lifts it, leaving only a vacuum along this direction that
breaks R-symmetry spontaneously.

Extra-ordinary gauge mediation

Cheung, Fitzpatrick and Shih studied gauge mediation considering the most
general messenger sector with an R-symmetry [68]:

W = λijXφiφ̃j +mijφiφ̃j (7.60)

Conditions: R(W ) = R(X) = 2, mij , λij complex matrices with mij 6= 0 ⇒
R(φi)+R(φ̃j) = 2, λij 6= 0 ⇒ R(φi)+R(φ̃j) = 0 This model can be completed
with a linear term ∆W = FX to a model of direct (gauge) mediation. In this
way it resembles our model (7.16). It can be easily used for direct mediation
taking the fields in the 55̄ of SU(5) ⊃ SU(3) × SU(2) × U(1). This case
is interesting because the coupling constants of the triplet and the doublet
can be different and we have doublet-triplet splitting, leading to interesting
phenomenology.

The phenomenology of the model is related to this splitting and to the
R-symmetry of the superpotential9. It includes peculiar features such as
gauge coupling unification even with doublet-triplet splitting, gaugino mass
relations m̃1

α1
= m̃2

α2
= m̃3

α3
, modified sfermion masses (peculiar squark/slepton

mass ratios), effective messenger number Neff < 1, small µ and Higgsino
NLSP in some part of the parameter space.

9It should be noted that the absence of other pseudomoduli Ya with R = 2 is crucial
for some of these results.
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Non-abelian vortices in N = 2
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Chapter 8

Introduction

Vortices play a relevant role in many areas of physics, from condensed mat-
ter and phase transitions to cosmology. In theoretical physics, vortices are
interesting objects that can arise as solitons in quantum field theories and
particularly in gauge theories.

Abrikosov-Nielsen-Olesen vortex solitons are well-known to exist in U(1)
gauge theories in the Higgs phase. They are an important ingredient in the
usual picture of confinement of magnetic charges in abelian superconductors,
while their role in the confining phase of gauge theories with an unbroken
non-abelian gauge group is still not clear.

In the basic mechanism proposed by ’t Hooft and Mandelstam, confine-
ment of electric charges at strong coupling can be understood in terms of
confinement of magnetic charges in the Higgs phase of a dual theory. The
chromoelectric string between a quark-antiquark pair should correspond to a
magnetic vortex on the dual side. An important example of this mechanism
is at work in N = 2 SYM, where confinement is driven by condensation of
dual quarks in the Seiberg-Witten dual theory. However in this theory dy-
namical abelianization takes place and the flux of BPS vortices of the dual
theory is essentially abelian.

Non-abelian vortices have been introduced some years ago in the Higgs
phase of N = 2 theories with gauge group U(N) [69] and SU(N + 1) [70].
Confined monopoles in this phase exist as string junctions between vortices
of different orientation and can be seen as confined kinks in the worldsheet
theory, explaining the correspondence between BPS spectra in 2d and 4d
theories [71, 72].

Here we are interested in a different (although similar) system. We con-
sider N = 2 theories softly broken to N = 1. In these theories it is possible
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to have a hierarchical symmetry breaking

G
〈φ〉−→H

〈q〉−→1 〈q〉 ≪ 〈φ〉 (8.1)

In this system the heavy regular monopoles of mass 〈φ〉/g2 that live in the
theory above 〈q〉 are not topologically stable in the full theory, because of
the complete breaking of the gauge group at 〈q〉. The system is equivalent
to a non-abelian superconductor and the flux of these monopoles is con-
fined in flux tubes that are vortex solutions arising at low energy from the
complete gauge symmetry breaking. Both vortices and monopoles carry a
non-abelian magnetic flux. This line of thought reveals a correspondence
between monopoles in the high-energy theory and vortices in the low-energy
theory, that will be discussed in these chapters.

In this chapter we briefly recall the physics of Abrikosov-Nielsen-Olesen
vortices and confinement of magnetic charges in superconductors. Then we
discuss regular Goddard-Nuyts-Olive monopoles, that are the generalization
of the usual SU(2) ’t Hooft-Polyakov monopole to other gauge groups, and
we present a picture of topological solitons in N = 2 gauge theories and their
properties.

In the next chapter we present non-abelian vortices. In section 9.1 we
discuss non-abelian vortex solutions in the simplest case of SU(N) × U(1)
theories. In section 9.2 we study non-abelian vortex solutions in SO(N) ×
U(1) theories. These are the simplest example of vortices in theories with
gauge group different from SU(N). Then in section 9.3 we discuss the relation
between non-abelian vortices and heavy monopoles and its implication for the
moduli space of non-abelian vortices. We also show non-trivial examples of
this correspondence. In appendices A and B the reader interested in technical
aspects can find the details contained in the papers [73] and [74].

8.1 Abrikosov-Nielsen-Olesen vortices and su-

perconductivity

The simplest system where vortex solutions with finite tension exist is the
abelian Higgs model described by the Lagrangian

L = − 1

4g2
1

F 0µνF 0
µν + |Dµq|2 −

g2
1

2

∣∣q†q − 2ξ
∣∣2 . (8.2)

This is simply a U(1) gauge theory coupled to a complex scalar field of
charge 1. The potential for this field has a minimum away from the origin,
triggering gauge symmetry breaking. The photon is massive and electric and



8.1. ABRIKOSOV-NIELSEN-OLESEN VORTICES AND SUPERCONDUCTIVITY119

magnetic field cannot enter this system more than a length of order 1/ 〈q〉.
This lagrangian can be thought as an effective model of the second order
transition to low-temperature superconductivity.

We discuss the physics of this system. When electric charges are inserted
into a superconductor like the one in (8.2), their electric field is screened by
the condensate 〈q〉, while magnetic charges cannot be screened in this way
and their magnetic flux is conserved. This flux inside the superconductor is
in an unstable configuration of higher energy. To pass to a configuration of
lower energy, the flux can be expelled from the superconductor or shrinked
into a flux tube: this is the Meissner effect. In the latter case, there is a
thin cylindrical region of space where the background condensate goes to
zero and the magnetic field can penetrate the superconductor while being
confined there. These flux tubes can be seen as vortices in the above model
[75, 76].

Vortex solutions are time-independent and z-independent solutions that
can be obtained by minimizing the tension T = E/Lz where Lz is the lenght
of the vortex. They carry a nonzero magnetic flux concentrated in the center
of the solution where the scalar field vanishes. These solutions are not always
stable: depending on the ratio of the gauge and the quartic coupling of the
model, vortices can attract or repel each other, and a vortex solution of high
flux can break up in vortices with lower flux. The coupling constants of the
model (8.2) are fine tuned in a regime where solutions are stable for any
choice of winding and relative position: this will be explained in the next
section as a consequence of supersymmetry. With this choice, we can write
the tension as a sum of squares plus a boundary term. This form is called
Bogomol’ny form and gives immediately a bound on the tension. For this
model the tension is

T =

∫
d2x

{ ∣∣∣∣
1

2 g1

F 0
ij ±

g1

2
εij

(
q†q − 2ξ

)∣∣∣∣
2

+
1

2
|Diq ± iεijDjq|2 ± εij ξF

0
ij

}

(8.3)

and the Bogomol’ny-Prasad-Sommerfield (BPS) bound on the tension is [77,
78]

T ≥
∣∣∣∣ξ
∫
d2x εij F

0
ij

∣∣∣∣ . (8.4)

We can look for solutions of the equations of motion that saturate this bound.
These solutions satisfy first (instead of second) order equations:

1

2 g1

F 0
ij + η

g1

2
εij

(
q†q − 2ξ

)
= 0 (8.5)

Diq + ηiεijDjq = 0 , η = ±1 (8.6)
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Figure 8.1: The orientation of the fields in the plane x, y for a vortex of
minimal winding n = 1. The Higgs field q is represented with red arrows
(radial), while blue arrows (tangent to the circles) correspond to the gauge
field Ai.

Note that at large distance, the natural ansatz for the scalar field is

q(r, θ) ≃
√

2ξeinθ , n ∈ Z (8.7)

and the vanishing of the covariant derivative at infinity implies that the form
of the gauge field is

A0
i ≃ nεij

rj

r2
. (8.8)

From this we can see that the flux is quantized in terms of1 2π and read
the value of the tension

T = 2ξ

∣∣∣∣
∫

R2

~B0 · d~S
∣∣∣∣ = 4πξ|n| . (8.9)

So the flux of the vortex obeys a quantization condition of topological nature,
related to the homotopy group π1 (U(1)) = Z which describes the possible
windings n ∈ Z of the scalar field at infinity. This quantization condition
corresponds to the analogous condition for Dirac monopoles in this theory.
The link between these two solitons appears in more general theories, as we
will see later.

1With the canonical definition of the gauge coupling the flux is quantized in multiples
of 2π/g1, obtaining the usual Dirac quantization condition of electric and magnetic charges
qmagg1 = 2π.
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8.2 Topological solitons in N = 2 gauge theo-

ries

In this section we briefly introduce some of the topological properties of
solitons appearing in gauge theories. We also review the features of solitons
and their moduli spaces coming from N = 2 extended supersymmetry.

8.2.1 Topology

Solitons are extended field configurations classified by their codimension, de-
fined as the number of spacetime dimensions on which these fields depend.
In the hyperplane spanned by these dimensions, their energy density is tipi-
cally concentrated in a region of finite size. If we consider this size to be
negligible, we can simply read their codimension from the difference between
the dimensionality of the spacetime where they live and the dimensionality of
their worldspace. In four dimensional theories, domain walls are membrane-
like objects having worldspace dimension 3 and codimension 1, vortices are
string-like object with worldsheet dimension 2 and codimension 2, monopoles
are particle-like objects with worldline dimension 1 and codimension 3, in-
stantons have dimension 0 and codimension 4. In this work we will mainly
discuss vortices and monopoles.

We are interested in solitons appearing in the Higgs phase of non-abelian
gauge theories. Consider the case of an Higgs field φ in some representation of
the gauge symmetry and a potential inducing a symmetry breaking pattern

G
〈φ〉−→H (8.10)

The moduli space of the theory, i.e. the space of possible vevs of the field φ,
is described by the coset space G/H , that is a quotient of the space of trans-
formations UG ∈ G of 〈φ〉 over the group of transformations UH ∈ H ⊂ G
leaving 〈φ〉 invariant. In fact all the possible vevs are related by transforma-
tions of G, then to obtain all the vevs from a given 〈φ〉 we transform it as
〈φ〉′ = UG 〈φ〉. However these transformations do not always give different
vevs: in particular UG and UGUH give the same result because UH 〈φ〉 = 〈φ〉.

Consider first solitons of codimension 2, i.e. vortices. These are solutions
of the equations of motion which do not depend on z, t. Their energy is
proportional to their lenght and is therefore infinite, but we require that their
tension T = E/Lz is finite. Then the vev of the Higgs field at infinity in the
x, y plane should lie in G/H . The boundary of the plane x, y is the circle
at infinity S1

∞, then the Higgs field describes a map from S1 to G/H . If we
consider two of these maps Π,Π′ that cannot be continuously deformed one
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into the other, the same is true for the corresponding physical configurations
of the Higgs field. This means that the theory contains separated sectors
that are classified by the topologically inequivalent maps Π : S1 → G/H .
The space of these maps is the fundamental homotopy group π1(G/H) and
vortices are classified by non-trivial elements of this group.

Solitons of codimension 3, i.e. monopoles, can be classified in a similar
way. The Higgs field describes a map from the surface at infinity S2

∞ to
the space of vacua G/H , and inequivalent maps Π : S2 → G/H correspond
to elements of the homotopy group π2(G/H). Monopoles are classified by
non-trivial elements of this group.

If G and H are Lie groups and H ⊂ G, there is an important topological
relation between the homotopy groups discussed above [79, 80, 81] :

π2(G/H) = π1(H)/π1(G) (8.11)

This means that there is a one-to-one correspondence between the elements
of π2(G/H) and the elements of π1(H) that correspond to the trivial element
of π1(G), which means that they can be contracted to a trivial loop when H
is embedded in G.

Domain walls and instantons can also be classified using the homotopy
groups π0(G/H) and π3(G), but they will not be discussed here.

Solitonic solutions are often part of a multi-parameter family of solutions
with the same energy. The parameters labeling these solutions are called
collective coordinates, and the space of solutions characterized by the same
energy and topological charge is called the moduli space of the soliton. The
fluctuations of the collective coordinates correspond to zero-modes in the
soliton background. There is a natural metric on the moduli space coming
from the overlapping of these zero-modes, but this metric will not play any
role in these chapters.

8.2.2 N = 2 supersymmetry

We will study vortices and monopoles in the framework of N = 2 supersym-
metric gauge theories. Extended supersymmetry provides interesting features
that can simplify the theoretical analysis. The most interesting point is re-
lated to the role of the BPS bound in supersymmetric theories. The N = 2
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algebra takes the form

{Qi
α, Q̄

j
ᾱ} ∝ Pαᾱδij (8.12)

{Qi
α, Q

j
β} ∝ εαβεijZ (8.13)

{Q̄i
ᾱ, Q̄

j

β̄
} ∝ εᾱβ̄εijZ

∗ (8.14)

(8.15)

where Z is called a central charge. Considering this algebra in the rest
frame we can get a bound for the mass of the system M ≥ const · |Z|.
When this bound is saturated, half of the supersymmetry acts trivially on
the representation and the above algebra admits representations with 1/2 of
the usual states for a massive N = 2 multiplet, hence they are called short
BPS multiplets. It is possible to evaluate Z for a quantum field theory with
spontaneously broken gauge symmetry with 〈φ〉 = v, obtaining as a result
[82]

Z = v(Qe + iQm) (8.16)

where Qe and Qm are the electric and magnetic charge of the system. This
means a bound on the mass of fields in this theory:

M ≥ const · |v|
√
|Qe|2 + |Qm|2 (8.17)

This bound applies also to solitonic states like monopoles and vortices and
implies that their masses and tensions are protected against quantum correc-
tions, because quantum corrections cannot modify the number of states and
therefore cannot turn a short BPS multiplet into a long one. The BPS equa-
tions can be also derived asking that the soliton solution is annihilated by half
of the supersymmetries, obtaining first-order equations for the background
fields.

Extended supersymmetry also has implications on the structure and the
metric of the moduli spaces of vortices and monopoles. Moduli spaces of BPS
monopoles are hyperKähler manifolds while moduli spaces of BPS vortices
are Kähler manifolds.

8.3 Goddard-Nuyts-Olive magnetic monopoles

Magnetic monopoles appear in abelian gauge theories as singular objects.
Instead, in some broken gauge theories there are solitonic solutions of codi-
mension 3 that carry magnetic flux. These magnetic monopoles, discovered
by ’t Hooft and Polyakov [83, 84] , are interesting and important objects.
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The original ’t Hooft-Polyakov monopole appears in an SU(2) theory with
a field φ in the adjoint representation. The vev 〈φ〉 triggers spontaneous
symmetry breaking

SU(2)
〈φ〉−→U(1) (8.18)

The Higgs field describes a map from the sphere at infinity S2
∞ to the quotient

SU(2)/U(1) ∼ S2, therefore monopoles are classified by their winding n ∈
Z = π2(SU(2)/U(1)). The configuration of minimal winding can be written
in the form (that is usually called an hedgehog)

Aa
i (r) = εaij

rj

r2
h(r) φa(r) =

ra

r
ϕ(r) , ϕ(∞) = v h(∞) = −1 (8.19)

where the functions h(r) and ϕ(r) satisfy the equations of motion and their
behaviour at infinity is determined by the requirement of finite energy. In

N = 2 theories, the monopole satisfies a BPS bound M ≥ v
∣∣∣Φ( ~B)

∣∣∣ and the

equations for h(r), ϕ(r) are first-order differential equations.
The magnetic field Ba

i = εijk∂jA
a
k has a nonzero flux on the surface at

infinity that is equal to Φ( ~B) = 4π. By definition (and by Stokes theorem)
the magnetic charge Qm contained in a region of space equals the flux of
the magnetic field on its surface, therefore the charge of the monopole is
qm = Φ( ~B) = 4π. We can recover the Dirac quantization condition redefining
the gauge fields in the canonical way, obtaining in this way qm = 4π/g2 where
g2 is the SU(2) gauge coupling, and observing that the minimal electric
charge present in the theory is qe = g2/2 and therefore obtaining the usual
quantization condition qmqe = 2π.

When we consider more general groups, we find many different embed-
dings of this solution. These Goddard-Nuyts-Olive-Weinberg nonabelian
monopoles [80, 85, 86, 81] appear in systems with the gauge symmetry break-
ing

G
〈φ〉−→H (8.20)

where the homotopy group π2(G/H) is nontrivial and the unbroken gauge
group H is nonabelian. We use

∑
α αiαj = δij for the metric of the root

space and Tr(tatb) = δab/2 for the normalization of the generators.
The vev of the Higgs field has the form

〈φ〉 = h · H, (8.21)

where H1, . . .Hr are the generators in the Cartan subalgebra of G, r is
the rank of G and the root vectors orthogonal to h belong to the unbro-
ken subgroup H . The monopole solutions are essentially ’t Hooft-Polyakov
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monopoles embedded in SU(2) subgroups of G that are broken by 〈φ〉. The
corresponding generators are

S1 =
1√
2α2

(Eα +E−α) S2 = − i√
2α2

(Eα −E−α) S3 = α∗ ·H (8.22)

where α is the root vector of the broken subgroup and α∗ is its dual root,
defined by

α∗ =
α

α · α. (8.23)

The subgroup generated by the generators (8.22) has a symmetry break-
ing SU(2) → U(1), therefore we can simply embed the ’t Hooft-Polyakov
monopole solution in this subgroup and add a constant term to φ so that it
goes to the correct vev at infinity:

Ai(r) = Aa
i (r,h ·α)Sa φ(r) = χa(r,h ·α)Sa + (h− (h ·α)α∗) ·H, (8.24)

where

Aa
i (r) = ǫaij

rj

r2
h(r) χa(r) =

ra

r
ϕ(r) ϕ(∞) = h · α (8.25)

is the ’t Hooft-Polyakov solution. The flux Φ( ~B) is nonabelian and is given

by Φ( ~B) = 4πα∗ · H in the gauge where the Higgs field is constant.
For some gauge groups there are other monopole solutions [86]that are

not embeddings of ’t Hooft-Polyakov monopoles. These solutions are char-
acterized by nonabelian gauge fields that live only in a finite radius from the
center of the monopole, while abelian fields go to infinity, and the solution
appears as a purely abelian monopole far away from its core. These solutions
are more complicated and will play a role in our discussion of the relation
between vortices and monopoles.
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Chapter 9

Non-abelian vortices and
monopoles

9.1 Non-abelian vortices in SU(N)

We study an N = 2 gauge theory with gauge group SU(N +1) and Nf > N
hypermultiplets of mass m in the fundamental representation of the gauge
group. There are interesting nonperturbative results for the low-energy
regime of these theories [87, 88] , but here we analyze the system in a semi-
classical regime. We add to the theory a small term ∆LN=1 =

∫
d2θµφ2,

µ ≪ m that breaks softly N = 2 supersymmetry to N = 1. This induces a
pattern of symmetry breaking

SU(N + 1)
〈φ〉−→SU(N) × U(1)

〈q〉−→1 (9.1)

as can be seen from the vacuum equations

φ†T aφ = 0 (9.2)

q†At
aqA − q̃At

aq̃A† = 0 (9.3)
√

2φata∗q̃A +mq̃A = 0 → 〈φ〉 ∼ m if 〈q〉 6= 0 (9.4)√
2φataqA +mqA = 0 (9.5)√
2q̃AtaqA + µφa = 0 → 〈q〉2 ∼ µm . (9.6)

The vev that breaks the high-energy group is

〈φ〉 =
m√
2




1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · −N




(9.7)
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and the low-energy Lagrangian that describes the system at energies lower
than 〈φ〉 is

L = − 1

4g2
1

F 0µνF 0
µν −

1

4g2
N

F bµνF b
µν + |DµqA|2 +

∣∣∣Dµq̃
†
A

∣∣∣
2

(9.8)

−g
2
N

2

∣∣∣q†AtbqA − q̃At
bq̃†A

∣∣∣
2

− 2g2
N

∣∣q̃AtbqA
∣∣2

−g
2
1

2

∣∣∣q†AqA − q̃Aq̃
†
A

∣∣∣
2

− 2g2
1 |q̃AqA − 2N(N + 1)µm|2 + · · ·

where we are neglecting fluctuations of φ and higher orders in µ/m. The
Higgs vacuum of this low-energy theory is given by

〈q〉 =
√
|2N(N + 1)µm|




1 0 0 · · ·
0 1 0 · · ·
0 0 1 · · ·
...

...
...

. . .


 ,

∣∣〈q̃
〉∣∣ =

∣∣〈q†
〉∣∣ (9.9)

where each column represents the color components of a single flavor. Note
that this color-flavor locked form of the vev preserves a global symmetry
SU(N)C+F ⊂ SU(N)×SU(Nf ) acting on the matrix form of q as q′ = UqU †.

The term ξ = |2N(N+1)µm| plays the role of a Fayet-Iliopoulos term and
does not break N = 2 supersymmetry, therefore we can find a Bogomol’ny
form for the tension

T =

∫
d2x

{ ∣∣∣∣
1

2 gN
F b

ij ± gNεij q̃At
bqA

∣∣∣∣
2

+

∣∣∣∣
1

2 g1
F 0

ij ± g1εij (q̃AqA − ξ)

∣∣∣∣
2

+
1

2

∣∣∣DiqA ± iεijDj q̃
†
A

∣∣∣
2

+
1

2

∣∣∣Diq̃
†
A ± iεijDjqA

∣∣∣
2

+
g2

N

2

∣∣∣q†AtbqA − q̃At
bq̃†A

∣∣∣
2

+
g2
1

2

∣∣∣q†AqA − q̃Aq̃
†
A

∣∣∣
2

± εij ξF
0
ij

}
.

(9.10)

and obtain the nonabelian BPS equations

1

2 g1
F 0

ij + η g1 εij

(
q†AqA − ξ

)
= 0 , (9.11)

1

2 gN
F b

ij + η gN εij q
†
At

bqA = 0 , (9.12)

DiqA + i η εij DjqA = 0 , η = ±1 , (9.13)

and the corresponding BPS bound on the tension

T = η

∫
d2x ξ εij F

0
ij . (9.14)
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We can work out the explicit structure of the vortex solutions choosing the
ansatz

q = q̃† (9.15)

and looking for squarks of the form

q(r, ϑ) =




ein1ϑϕ1(r) 0 0 · · ·
0 ein2ϑϕ2(r) 0 · · ·
0 0 ein3ϑϕ3(r) · · ·
...

...
...

. . .


 (9.16)

and gauge fields of the form

Ai
αβ = εij

rj

r2
hα(r)δαβ . (9.17)

The asymptotic conditions can be obtained from the requirement of finite
energy: φi(∞) =

√
ξ, hα(∞) = −nα. Regularity of the squark fields at the

origin requires that all nα have the same sign, and the tension of the vortex
string can be obtained from the bound (9.14):

T =
4πξ

N
|n1 + n2 + · · ·+ nN | . (9.18)

The vortex solutions obtained with this ansatz are described by N pos-
itive (or negative) integers nα. Vortices of minimal flux are classified by
(1, 0, 0 . . .), (0, 1, 0 . . .), . . .. The SU(N)C+F transformations interpolate be-
tween all these configurations. To find the moduli space of these vortices, we
notice that each solution breaks SU(N)C+F to U(N−1) and then the internal
collective coordinates are coordinates on the coset space SU(N)/U(N−1) ∼
CPN−1. There are also two translational coordinates describing the position
of the center of the vortex in the plane, therefore the full moduli space is
CPN−1 × C. In the rest of the chapter we will discuss only the internal
moduli space of vortices.

The winding around the U(1) subgroup is given by
∑N

α=1 nα/N . The
reason for this non-integer winding is the topology of the low-energy gauge
group, that is not SU(N)×U(1), but SU(N)×U(1)

ZN
, because the elements e2πik/N

are contained both in SU(N) and in U(1). Vortices are classified by the

homotopy group π1(
SU(N)×U(1)

ZN
) = Z where the minimal element of this ho-

motopy group Z is a loop going from 1 to e2πi/N in U(1) and then going back
to 1 through SU(N).
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9.2 Non-abelian vortices in SO(N)

We consider the bosonic part of an N = 2 theory with gauge group SO(2N)×
U(1) and Nf = 2N hypermultiplets (qA, q̃

†
A) in the (2N,+1) representation

of the gauge group. We include a Fayet-Iliopoulos term ξ to break the gauge
symmetry. The Higgs vacuum of the theory has a SO(2N)C+F color-flavor
global symmetry. Using the ansatz q̃† = φ = 0, the tension can be written in
the Bogomol’ny form

T =

∫
d2x

{ ∣∣∣∣
1

2 g2N

F b
ij ∓ g2Nεijq

†
At

bqA

∣∣∣∣
2

+

∣∣∣∣
1

2 g1

F 0
ij ±

g1√
2
εij(q

†
AqA − ξ)

∣∣∣∣
2

+

+ |DiqA ∓ iεijDjqA|2 ±
ξ√
2
εijF

0
ij

}
(9.19)

and the ansatz for the solution [74] is Ai = ha(r) t
a εij

rj

r2 for the gauge fields
and

qiA(r, ϑ) =
1√
2




ein+
1 ϑϕ+

1 (r) ein−

1 ϑϕ−
1 (r) 0 0 · · ·

iein+
1 ϑϕ+

1 (r) −iein−

1 ϑϕ−
1 (r) 0 0 · · ·

0 0 ein+
2 ϑϕ+

2 (r) ein−

2 ϑϕ−
2 (r) · · ·

0 0 iein+
2 ϑϕ+

2 (r) −iein−

2 ϑϕ−
2 (r) · · ·

...
...

...
...

. . .




(9.20)
for the squark fields, with the finite-energy conditions

ϕ±
a (∞) =

√
ξ

2N
n±

a =
1√
2

(h0(∞) ∓ ha(∞)) (9.21)

Vortex solutions obtained with this ansatz are therefore classified by 2N+
1 integers N0,n

±
a which satisfy the following conditions:

n+
a +n−

a = N0 , sign(n+
a ) = sign(n−

a ) = sign(N0) a = 1 . . . 2N (9.22)

N0 is related to the winding around the U(1) part of the gauge group. The
U(1) factor is needed to stabilize the BPS solutions, therefore N0 enters also
the tension T = 2πξ|N0|.

The minimal solutions N0 = 1 are classified by
(
n+

1 · · · n+
N

n−
1 · · · n−

N

)
=

(
1 1 · · · 1 1
0 0 · · · 0 0

)
,

(
1 1 · · · 1 0
0 0 · · · 0 1

)
, . . . (9.23)

We can always apply SO(2N)C+F tranformations to these solutions, obtain-
ing new solutions. However solutions of the form (9.20) belong to the same
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orbit if they are connected by an SO(2N) transformation. All the solutions
with N0 = 1 lie in two different orbits of SO(2N)C+F , generated from solu-
tions of the form (9.20) with

∑
a n

+
a even or odd. Therefore the moduli space

corresponds to two copies of the quotient space M = SO(2N)/U(N).
More generally, two solutions which differ only by the exchange (n+

i , n
+
j ) ↔

(n−
i , n

−
j ) or (n+

i , n
−
i ) ↔ (n+

j , n
−
j ) for some i,j, belong to the same orbit. Note

that it is possible that the moduli space for vortices of higher winding cannot
be obtained simply by SO(2N)C+F and the details of its structure are not
known.

The topology of these vortex solitons follows the general arguments of sec-
tion 8.2.1 but the construction of the homotopy groups π1(G/H) is nontrivial.

The relevant homotopy group is π1

(
SO(2N)×U(1)

Z2

)
= Z × Z2 and vortices are

classified by these windings. The details can be found in appendix B.
There is an interesting interpretation of these results. If we consider

an high-energy N = 2 theory with gauge group SO(2N + 2), Nf = 2N
hypermultiplets of mass m in the adjoint representation and a soft N = 2-
breaking term µφ2, and then 〈φ〉 ∼ m breaks the gauge group to SO(2N)×
U(1), the low-energy theory belowm corresponds to the one considered above
[74]. In fact it is easy to get the tension (9.19) if we use the ansatz q = q̃†

and define ξ = µm.
Note that the high-energy theory at scale m contains heavy almost-BPS

monopoles coming from the breaking pattern SO(2N + 2) → SO(2N) ×
U(1), while the low-energy theory at scale

√
µm contains the vortices studied

in this section, which are almost stable (they are unstable under creation
of monopole-antimonopole pairs, but this process is heavily suppressed if
µ ≪ m). Monopoles and vortices also appear with other gauge groups and
symmetry breaking patterns in a similar way. In all these systems there is an
apparent relation between monopoles and vortices, which will be discussed
in the next section.

9.3 Monopole-vortex correspondence

We consider N = 2 gauge theories with gauge group G and Nf matter
hypermultiplets (q, q̃) of mass m, usually in the fundamental representation
(the model discussed above is an exception). We also add a small mass term
µφ2 for the chiral superfield in the vector hypermultiplet which breaks softly
N = 2 to N = 1. When µ ≪ m there are vacua in the Higgs phase with a
hierarchical pattern of symmetry breaking

G
〈φ〉−→H

〈q〉−→1 (9.24)
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where 〈q〉 ∼ √
µm ≪ m ∼ 〈φ〉. The simplest case is G = SU(N + 1)

and H = U(N), but examples of such patterns include G = SO(2N) and
H = U(N) or SO(2N − 2) × U(1), G = SO(2N + 1) and H = U(N) or
SO(2N − 1)×U(1), G = USp(2N) and H = U(N) or USp(2N − 2)×U(1).

In the high-energy theory at scale m there are regular monopoles coming
from the symmetry breaking G→ H , which are not BPS because of

√
µ/m

corrections. In the low-energy theory below scale m there are regular vortices
which come from the breaking H → 1 and are stable in the limit m → ∞
with

√
µm fixed.

We are interested in the case when H is non-abelian. In these systems
the regular monopoles are Goddard-Nuyts-Olive non-abelian monopoles [81]
which transform under the dual group H̃ , while the vortices of the low-energy
theory are non-abelian vortices in a theory with gauge group H and Fayet-
Iliopoulos parameter ξ ∼ √

µm. There is an interesting relation between
monopoles and vortices which has been discussed in [70, 89, 73].

We explain this relation starting from the topological classification of
solitons in these theories. The relevant homotopy group for regular GNO
monopoles is π2(G/H), while singular Dirac monopoles are classified by
π1(G). After the breaking H → 1, the only regular monopoles which are
topologically stable are those classified by π2(G), which is trivial.

The fate of monopoles classified by a nontrivial element of π2(G/H) is
related to the vortices coming from the breakingH → 1. In fact the monopole
magnetic flux cannot disappear, but it shrinks into a flux tube of width
1/
√
µm which is precisely a vortex of the low-energy theory. So for each

monopole in the high-energy theory there should exist a vortex of the low-
energy theory which carries the same flux.

This correspondence can be seen from a topological point of view. Vortex
solutions are classified by π1(H). The topological relation

π2(G/H) = π1(H)/π1(G) (9.25)

has a simple interpretation if G is simply connected: in this case the ho-
motopy groups for monopoles and vortices are the same. When π1(G) is
nontrivial, the relation (9.25) states that regular monopoles are sources for
vortices which correspond to trivial elements of π1(G).

A simple way, when possible, to establish this correspondence is flux
matching [89]: the magnetic flux integrated over a plane orthogonal to the
axis of the vortex should match the magnetic flux integrated over a sphere
surrounding the corresponding monopole, as in figure 9.3. Obviously, the
abelian magnetic flux coming from the monopole and the flux carried by the
vortex must match precisely, but this is only a check, because the U(1) flux
cannot determine the non-abelian orientation of the soliton.
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Figure 9.1: A monopole-vortex configuration, illustrating the idea of flux
matching.

Matching non-abelian fluxes is an effective way to match a monopole
with the corresponding vortex. The problem with non-abelian flux is that
it does not obey a conservation law as the abelian flux because of the term
i[Aj , Ak] in the magnetic field. Non-abelian flux matching could be reliable
only for monopole and vortex solutions which satisfy [Aj, Ak] = 0. This is the
case for solutions obtained using an ansatz like (9.20) and the corresponding
monopoles. All vortices of minimal winding belong to this case.

Unfortunately [Aj, Ak] = 0 is generally not true for vortices of higher
winding, as can be seen from the explicit expression for vortex solutions of
double winding in U(2) [166]. The same problem occurs for the corresponding
monopoles, whose explicit expression was discovered by E.Weinberg [91]. In
this case flux matching can only be established in an approximate, thus not
very useful, way.

The general claim of this section is that for each monopole in the high-
energy theory there is a corresponding vortex in the low-energy theory and
that their topological classification and fluxes should match. This claim leads
to an interesting corollary about the moduli spaces of monopoles and vortices:
in a theory where monopoles correspond to vortices of winding k, the internal
moduli space of coaxial vortices of winding k should contain a subspace which
has the same structure of the internal space of degenerate monopoles. This
is an interesting point because the moduli space of non-abelian monopoles
is not well-defined due to the non-normalizability of zero-modes, but it can
be matched with the moduli space of vortices, which only have normalizable
zero-modes.

In the next sections we will discuss some explicit examples of symmetry
breaking patterns to check the correspondence discussed above.
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9.3.1 SU(N + 1) → U(N)

This theory contains matter multiplets in the fundamental representation of
SU(N + 1). The vacuum is invariant under a SU(N)C+F global symme-
try. Non-abelian vortex solutions can be constructed with an ansatz sim-
ilar to (9.20) and are classified by a set of positive integers (n1, n2 . . . nN )
where

∑
i ni corresponds to the winding of the vortex. All the solutions

with minimal winding belong to the same orbit of SU(N)C+F . Monopoles
are simply embeddings of ’t Hooft-Polyakov monopoles in various SU(2)
subgroups. Vortices and monopoles in this theory are both classified by
π2(SU(N + 1)/U(N)) = π1(U(N)) = Z, so fundamental monopoles corre-
spond to vortices of minimal winding classified by (1, 0 . . . 0) etc. The moduli
space of these vortices is simply CPN−1 with SU(N) isometry and Fubini-
Study metric and it corresponds to the configuration space of monopoles.
Flux matching can be easily checked and the correspondence works perfectly.

9.3.2 SO(2N) → U(N)

This theory contains matter multiplets in the fundamental representation
of SO(2N). The vacuum respects a SU(N)C+F global symmetry. Vortex
solutions are identical to the previous case, while monopoles are embed-
dings of ’t Hooft-Polyakov ones in SU(2) ⊂ SO(4) subgroups. The fact that
π1(SO(2N)) = Z2 and π2(SO(2N)/U(N)) = π1(U(N))/Z2 = Z/Z2 implies
that fundamental monopoles correspond to vortices of winding 2, while flux
matching calculations suggest that they correspond precisely to the vortices
classified by (2, 0 . . . 0) etc. and their SU(N)C+F orbit. Both these vor-
tices and the corresponding monopoles have a configuration space which is
CPN−1 with SU(N) isometry. However the moduli space of k = 2 vortices
is much bigger [92]. In the simplest case N = 2 the moduli space is the
weighted projective space WCP 2

(2,1,1) with SU(2) isometry, which contains

a CP 1 corresponding to the vortices discussed above. So in this case the
correspondence works correctly, but it seems unable to explain the presence
of a bigger moduli space of vortices.

9.3.3 SO(2N + 1) → U(N)

This is the same theory as the previous case but with gauge group SO(2N +
1). They differ mainly because some of the monopoles are embeddings of
’t Hooft-Polyakov monopoles in SO(3) and SU(2) subgroups, while others
form a continuous family of solutions interpolating between these two em-
beddings [91]. In this case flux matching is only partially useful because
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[Aj , Ak] 6= 0 for the interpolating solutions. Topological arguments suggest
that monopoles correspond to k = 2 vortices, because π1(SO(2N + 1)) = Z2

and π2(SO(2N + 1)/U(N)) = π1(U(N))/Z2 = Z/Z2 as in the previous
case. Fluxes of (2, 0 . . .0) vortices agree with those of monopoles embed-
ded in SU(2) subgroups, while fluxes of (1, 1 . . . 0) vortices agree with those
of monopoles embedded in SO(3) subgroups.

This case is an interesting check of the correspondence as both moduli
spaces of monopoles and vortices are known in the N = 2 case. The moduli
space of vortices is WCP 2

(2,1,1), which is a CP 2 with a conical singularity. It

contains the CP 1 discussed in the previous case and the rest of the moduli
space corresponds to C2/Z2. The metric of this moduli space is unknown.
The moduli spaces of monopoles and its metric have been found in [93]: it has
the topological structure of C2/Z2, with a separated CP 1 which represents
monopoles with long-range magnetic fields. Therefore the correspondence
seems to work also for this case and the existence of vortices which do not
belong to CP 1 finds a natural explanation in the existence of a large class of
monopoles in this theory.

Flux matching

Here we review briefly the non-Abelian flux matching [89, 73] for the system
SO(5) → U(2) → 1. We use the notation Si, S̃i for the group generators:

S1 =
1

2




0 0 i 0 0
0 0 0 −i 0
−i 0 0 0 0
0 i 0 0 0
0 0 0 0 0




S2 =
1

2




0 0 0 i 0
0 0 i 0 0
0 −i 0 0 0
−i 0 0 0 0
0 0 0 0 0




S3 =
1

2




0 i 0 0 0
−i 0 0 0 0
0 0 0 i 0
0 0 −i 0 0
0 0 0 0 0




(9.26)

Ŝ2 =
1

2




0 0 −i 0 0
0 0 0 −i 0
i 0 0 0 0
0 i 0 0 0
0 0 0 0 0




Ŝ1 =
1

2




0 0 0 −i 0
0 0 i 0 0
0 −i 0 0 0
i 0 0 0 0
0 0 0 0 0



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Ŝ3 =
1

2




0 −i 0 0 0
i 0 0 0 0
0 0 0 i 0
0 0 −i 0 0
0 0 0 0 0




(9.27)

The monopole flux can be obtained in the gauge where φ = const:
∫

S2

d~S · ~B =

∫

S2

d~S · ~rS
(m)
3

r3
= 4πS

(m)
3

where S
(1)
3 = S3 for the singlet monopole, S

(2)
3 = S3 + S̃3 for the doublet1.

The vortex flux can be obtained from the explicit solution in [166], using
the expressions for the gauge fields Aµ = Ai

µS̃i + A0
µS3:

∫

R2

d~S· ~B =

∫

R2

dS(~∂∧ ~A−i[ ~A, ~A])3 = 4πS3+2π(1+cosα)S̃3+2π sin2 α INAS̃3

where INA =
∫∞
0
dr(1 − g)h/r is a (generally small) contribution from the

commutator [A1, A2] which is not relevant for α = 0, π because of the sin2 α
factor. For α = π (corresponding to the singlet monopole) the flux is 4πS3,
while for α = 0 (corresponding to the doublet) the flux is 4π(S3 + S̃3), in
perfect agreement.

9.3.4 SO(2N + 2) → SO(2N) × U(1)

This case has been discussed at the end of section 9.2. This theory contains
matter hypermultiplets in the adjoint representation, but the only compo-
nents which become massless after the breaking SO(2N + 2) → SO(2N)
transform in the fundamental representation of SO(2N), so we end up with
a low-energy theory containing squarks in the (2N,+1) representation. Non-
abelian monopoles are embeddings of ’t Hooft-Polyakov ones in SU(2) ⊂
SO(4) subgroups. The topological structure of the groups in this breaking
pattern is SO(2N+2)/Z2 → (SO(2N) × U(1)) /Z2 → 1 and therefore the re-
lation π2(SO(2N+2)/ (SO(2N) × U(1))) = π1((SO(2N) × U(1)) /Z2)/π1(SO(2N+
2)/Z2) implies that monopoles should correspond to vortices of winding
N0 = 2. Flux matching suggests that monopoles correspond to vortices
in the SO(2N)C+F orbit of

(
2 1 1 . . . 1
0 1 1 . . . 1

)
(9.28)

1The exact evaluation of non-Abelian flux for interpolating solutions [91] is not possi-
ble without some knowledge of the monopole-vortex junction, because non-Abelian fields
contribute to the flux only in a region of finite radius around the monopole.
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This orbit corresponds to the complex quadric surface SO(2N)/(SO(2N −
2) × U(1)) = Q2N−2(C) [74]. However, the whole moduli space of N0 = 2
vortices is much bigger and its structure is not known. It should be possible
to obtain it using the techniques of [94] .
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Appendix A

Non-abelian duality from
vortex moduli

In this appendix it is argued that the dual transformation of non-Abelian
monopoles occurring in a system with gauge symmetry breaking G −→ H
is to be defined by setting the low-energy H system in Higgs phase, so that
the dual system is in confinement phase. The transformation law of the
monopoles follows from that of monopole-vortex mixed configurations in the
system (with a large hierarchy of energy scales, v1 ≫ v2)

G
v1−→ H

v2−→ 1,

under an unbroken, exact color-flavor diagonal symmetry HC+F ∼ H̃ . The
transformation property among the regular monopoles characterized by π2(G/H),
follows from that among the non-Abelian vortices with flux quantized ac-
cording to π1(H), via the isomorphism π1(G) ∼ π1(H)/π2(G/H). Our idea
is tested against the concrete models – softly-broken N = 2 supersymmetric
SU(N), SO(N) and USp(2N) theories, with appropriate number of flavors.
The results obtained in the semiclassical regime (at v1 ≫ v2 ≫ Λ) of these
models are consistent with those inferred from the fully quantum-mechanical
low-energy effective action of the systems (at v1, v2 ∼ Λ).

A.1 Introduction and discussion

A system in which the gauge symmetry is spontaneously broken

G
〈φ1〉6=0−→ H (A.1)

where H is some non-Abelian subgroup of G, possesses a set of regular mag-
netic monopole solutions in the semi-classical approximation, which are nat-
ural generalizations of the ’t Hooft-Polyakov monopoles [101] found in the

139
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system G = SO(3), H = U(1). A straightforward generalization of the
Dirac’s quantization condition leads to the GNOW (Goddard-Nuyts-Olive-
E.Weinberg) conjecture, i.e., that they form a multiplet of the group H̃, dual
of H . The group H̃ is generated by the dual root vectors

α∗ =
α

α · α, (A.2)

where α are the non-vanishing roots ofH [151]-[153]. There are however well-
known difficulties in such an interpretation. The first concerns the topologi-
cal obstruction discussed in [155]: in the presence of the classical monopole
background, it is not possible to define a globally well-defined set of gener-
ators isomorphic to H . As a consequence, no “colored dyons” exist. In the
simplest example of a system with the symmetry breaking,

SU(3)
〈φ1〉6=0−→ SU(2) × U(1), (A.3)

this means that no monopoles exist which carry the quantum number, e.g.,

(2, 1∗) (A.4)

where the asterisk indicates the dual, magnetic U(1) charge.
The second can be regarded as the infinitesimal version of the same diffi-

culty: certain bosonic zero-modes around the monopole solution, correspond-
ing to the H gauge transformations, are non-normalizable (behaving as r−1/2

asymptotically). Thus the standard procedure of semiclassical quantization
leading to the H multiplet of the monopoles does not work. Some progress
on the check of GNO duality along this orthodox approach has been reported
nevertheless in [156] for N = 4 supersymmetric gauge theories, which how-
ever requires the consideration of particular multi-monopole systems neutral
with respect to the non-Abelian group (more precisely, non-Abelian part of)
H .

Both of these difficulties concern the transformation properties of the
monopoles under the subgroup H , while the truly relevant question is how
they transform under the dual group, H̃. As field transformation groups,
H and H̃ are relatively non-local; the latter should look like a non-local
transformation group in the original, electric description.

Another related question concerns the multiplicity of the monopoles; take
again the case of the system with breaking pattern Eq. (A.3). One might
argue that there is only one monopole, as all the degenerate solutions are
related by the unbroken gauge group H = SU(2).1 Or one might say that

1This interpretation however encounters the difficulties mentioned above. Also there
are cases in which degenerate monopoles occur, which are not simply related by the group
H , see below.



A.1. INTRODUCTION AND DISCUSSION 141

there are two monopoles as, according to the semiclassical GNO classification,
they are supposed to belong to a doublet of the dual SU(2) group. Or,
perhaps, one should conclude that there are infinitely many, continuously
related solutions, as the two solutions obtained by embedding the ’t Hooft
solutions in (1, 3) and (2, 3) subspaces, are clearly part of the continuous set
of (i.e., moduli of) solutions. In short, what is the multiplicity (#) of the
monopoles:

# = 1, 2, or ∞ ? (A.5)

Clearly the very concept of the dual gauge group or dual gauge transfor-
mation must be better understood. In attempting to gain such an improved
insight on the nature of these objects, we are naturally led to several general
considerations.

The first is the fact when H and H̃ groups are non-Abelian the dynamics
of the system should enter the problem in an essential way. It should not be
surprising if the understanding of the concept of non-Abelian duality required
a full quantum mechanical treatment of the system.

For instance, the non-AbelianH interactions can become strongly-coupled
at low energies and can break itself dynamically. This indeed occurs in
pure N = 2 super Yang-Mills theories (i.e., theories without quark hyper-
multiplets), where the exact quantum mechanical result is known in terms
of the Seiberg-Witten curves [107]. Consider for instance, a pure N = 2,
SU(N + 1) gauge theory. Even though partial breaking, e.g., SU(N + 1) →
SU(N)×U(1) looks perfectly possible semi-classically, in an appropriate re-
gion of classical degenerate vacua, no such vacua exist quantum mechanically.
In all vacua the light monopoles are Abelian, the effective, magnetic gauge
group being U(1)N .

Generally speaking, the concept of a dual group multiplet is well-defined
only when H̃ interactions are weak (or, at worst, conformal). This however
means that one must study the original, electric theory in the regime of strong
coupling, which would usually make the task of finding out what happens
in the system at low energies exceedingly difficult. Fortunately, in N = 2
supersymmetric gauge theories, the exact Seiberg-Witten curves describe the
fully quantum mechanical consequences of the strong-interaction dynamics
in terms of weakly-coupled dual magnetic variables. And this is how we
know that the non-Abelian monopoles do exist in fully quantum theories
[108]: in the so-called r-vacua of softly broken N = 2 SQCD, the light
monopoles interact as a point-like particle in a fundamental multiplet r of
the effective, dual SU(r) gauge group. In the system of the type Eq. (A.3)
with appropriate number of quark multiplets (Nf ≥ 4), we know that light
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magnetic monopoles carrying the non-Abelian quantum number

(2∗, 1∗) (A.6)

under the dual SU(2) × U(1) appear in the low-energy effective action (cfr.
Eq. (A.4)). The distinction between H and H̃ is crucial here.

In general N = 2 SQCD with Nf flavors, light non-Abelian monopoles

with SU(r) dual gauge group appear for r ≤ Nf

2
only. Such a limit clearly

reflects the dynamical properties of the soliton monopoles under renormaliza-
tion group: the effective low-energy gauge group must be either infrared free
or conformal invariant, in order for the monopoles to emerge as recognizable
low-energy degrees of freedom [160]-[163].

A closely related point concerns the phase of the system. Even if there
is an ample evidence for the non-Abelian monopoles, as explained above,
we might still wish to understand them in terms of something more famil-
iar, such as semiclassical ’t Hooft-Polyakov solitons. An analogous ques-
tion can be (and should be) asked about the Seiberg’s “dual quarks” in
N = 1 SQCD [113]. Actually, the latter can be interpreted as the GNOW
monopoles becoming light due to the dynamics, at least in SU(N) theories
[114]. For SO(N) or in USp(2N) theories the relation between Seiberg duals
and GNOW monopoles are less clear [114]. For instructive discussions on
the relation between Seiberg duals and semiclassical monopoles in a class of
N = 1 SO(N) models with matter fields in vector and spinor representations,
see Strassler [177].

Dynamics of the system is thus a crucial ingredient: if the dual group were
in Higgs phase, the multiplet structure among the monopoles would get lost,
generally. Therefore one must study the dual (H̃) system in confinement
phase.2 But then, according to the standard electromagnetic duality argu-
ment, one must analyze the electric system in Higgs phase. The monopoles
will appear confined by the confining strings which are nothing but the vor-
tices in the H system in Higgs phase.

We are thus led to study the system with a hierarchical symmetry break-
ing,

G
〈φ1〉6=0−→ H

〈φ2〉6=0−→ 1, (A.7)

where

|〈φ1〉| ≫ |〈φ2〉|, (A.8)

2The non-Abelian monopoles in the Coulomb phase suffer from the difficulties already
discussed.
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instead of the original system Eq. (A.1). The smaller VEV breaks H com-
pletely. Also, in order for the degeneracy among the monopoles not to be
broken by the breaking at the scale |〈φ2〉|, we assume that some global color-
flavor diagonal group

HC+F ⊂ Hcolor ⊗GF (A.9)

remains unbroken.
It is hardly possible to emphasize the importance of the role of the mass-

less flavors too much. This manifests in several different aspects.

(i) In order that H must be non-asymptotically free, there must be sufficient
number of massless flavors: otherwise, H interactions would become
strong at low energies and H group can break itself dynamically;

(ii) The physics of the r vacua [160, 162] indeed shows that the non-Abelian

dual group SU(r) appear only for r ≤ Nf

2
. This limit can be understood

from the renormalization group: in order for a non-trivial r vacuum to
exist, there must be at least 2 r massless flavors in the fundamental
theory;

(iii) Non-Abelian vortices [168, 169], which as we shall see are closely related
to the concept of non-Abelian monopoles, require a flavor group. The
non-Abelian flux moduli arise as a result of an exact, unbroken color-
flavor diagonal symmetry of the system, broken by individual soliton
vortex.

The idea that the dual group transformations among the monopoles at the
end of the vortices follow from those among the vortices (monopole-vortex
flux matching, etc.), has been discussed in several occasions, in particular
in [171]. The main aim of the present work is to enforce this argument, by
showing that the degenerate monopoles do indeed transform as a definite
multiplet under a group transformation, which is non-local in the original,
electric variables, and involves flavor non-trivially, even though this is not too
obvious in the usual semiclassical treatment. The flavor dependence enters
through the infrared regulator. The resulting, exact transformation group is
defined to be the dual group of the monopoles.

A.2 SU(N + 1) model with hierarchical sym-

metry breaking

Our aim is to show that all the difficulties about the non-Abelian monopole
moduli discussed in the Introduction are eliminated by reducing the problem
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to that of the vortex moduli, related to the former by the topology and
symmetry argument.

A.2.1 U(N) model with Fayet-Iliopoulos term

The model frequently considered in the recent literature in the discussion
of various solitons [172]-[127], is a U(N) theory with gauge fields Wµ, an
adjoint (complex) scalar φ, and Nf = N scalar fields in the fundamental
representation of SU(N), with the Lagrangian,

L = Tr

[
− 1

2g2
FµνF

µν − 2

g2
Dµ φ

†Dµφ−DµH DµH† − λ
(
c 1N −HH†)2

]

+ Tr [ (H†φ−M H†)(φH −HM) ] (A.10)

where Fµν = ∂µWν − ∂νWµ + i [Wµ,Wν ] and DµH = (∂µ + iWµ) H , and H
represents the fields in the fundamental representation of SU(N), written
in a color-flavor N × N matrix form, (H)i

α ≡ qi
α, and M is a N × N mass

matrix. Here, g is the U(N)G gauge coupling, λ is a scalar coupling. For

λ =
g2

4
(A.11)

the system is BPS saturated. For such a choice, the model can be regarded
as a truncation

(H)i
α ≡ qi

α, q̃α
i ≡ 0 (A.12)

of the bosonic sector of an N = 2 supersymmetric U(N) gauge theory. In the
supersymmetric context the parameter c is the Fayet-Iliopoulos parameter.
In the following we set c > 0 so that the system be in Higgs phase, and so
as to allow stable vortex configurations. For generic, unequal quark masses,

M = diag (m1, m2, . . . , mN), (A.13)

the adjoint scalar VEV takes the form,

〈φ〉 = M =




m1 0 0 0
0 m2 0 0

0 0
. . . 0

0 0 0 mN


 , (A.14)

which breaks the gauge group to U(1)N . In the equal mass case,

M = diag (m,m, . . . ,m), (A.15)
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the adjoint and squark fields have the vacuum expectation value (VEV)

〈φ〉 = m1N , 〈H〉 =
√
c




1 0 0

0
. . . 0

0 0 1


 . (A.16)

The squark VEV breaks the gauge symmetry completely, while leaving an
unbroken SU(N)C+F color-flavor diagonal symmetry (remember that the
flavor group acts on H from the right while the U(N)G gauge symmetry acts
on H from the left). The BPS vortex equations are

(D1 + iD2) H = 0, F12 +
g2

2

(
c 1N −HH†) = 0. (A.17)

The matter equation can be solved by use of the N×N moduli matrix H0(z)
whose components are holomorphic functions of the complex coordinate z =
x1 + ix2, [173, 124, 125]

H = S−1(z, z̄)H0(z), W1 + iW2 = −2 i S−1(z, z̄) ∂̄zS(z, z̄). (A.18)

The gauge field equations then take the simple form (“master equation”)
[173, 124, 125]

∂z (Ω−1∂z̄ Ω) =
g2

4
(c 1N − Ω−1 H0H

†
0). (A.19)

The moduli matrix and S are defined up to a redefinition,

H0(z) → V (z)H0(z), S(z, z̄) → V (z)S(z, z̄), (A.20)

where V (z) is any non-singular N ×N matrix which is holomorphic in z.

A.2.2 The Model

Actually the model we are interested here is not exactly this model, but is
a model which contains it as a low-energy approximation. We take as our
model the standard N = 2 SQCD with Nf quark hypermultiplets, with a
larger gauge symmetry, e.g., SU(N + 1), which is broken at a much larger
mass scale as

SU(N + 1)
v1 6=0−→ SU(N) × U(1)

ZN
. (A.21)

The unbroken gauge symmetry is completely broken at a lower mass scale,
as in Eq. (A.16).



146APPENDIX A. NON-ABELIAN DUALITY FROM VORTEX MODULI

Clearly one can attempt a similar embedding of the model Eq. (A.10) in
a larger gauge group broken at some higher mass scale, in the context of a
non-supersymmetric model, even though in such a case the potential must
be judiciously chosen and the dynamical stability of the scenario would have
to be carefully monitored. Here we choose to study the softly broken N = 2
SQCD for concreteness, and above all because the dynamical properties of
this model are well understood: this will provide us with a non-trivial check
of our results. Another motivation is purely of convenience: it gives a definite
potential with desired properties.3

The underlying theory is thus

L =
1

8π
ImScl

[∫
d4θΦ†eV Φ +

∫
d2θ

1

2
WW

]
+ L(quarks) +

∫
d2θ µTrΦ2 + h.c.;(A.22)

L(quarks) =
∑

i

[∫
d4θ {Q†

ie
VQi + Q̃ie

−V Q̃†
i} +

∫
d2θ {

√
2Q̃iΦQi +mi Q̃iQi} + h.c.

]
(A.23)

where m is the bare mass of the quarks and we have defined the complex
coupling constant

Scl ≡
θ0
π

+
8πi

g2
0

. (A.24)

We also added the parameter µ, the mass of the adjoint chiral multiplet,
which softly breaks the supersymmetry to N = 1. The bosonic sector of this
model is described, after elimination of the auxiliary fields, by

L =
1

4g2
F 2

µν +
1

g2
|DµΦ|2 + |DµQ|2 +

∣∣∣Dµ
¯̃Q
∣∣∣
2

− V1 − V2, (A.25)

where

V1 =
1

8

∑

A

(
tAij [

1

g2
(−2) [Φ†,Φ]ji +Q†

jQi − Q̃jQ̃
†
i ]

)2

; (A.26)

V2 = g2|µΦA +
√

2 Q̃ tAQ|2 + Q̃ [m+
√

2Φ] [m+
√

2Φ]† Q̃†

+ Q† [m+
√

2Φ]† [m+
√

2Φ]Q. (A.27)

3Recent developments [128, 129] allow us actually to consider systems of this sort within
a much wider class of N = 1 supersymmetric models, whose infrared properties are very
much under control. We stick ourselves to the standard N = 2 SQCD, however, for
concreteness.
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In the construction of the approximate monopole and vortex solutions we
shall consider only the VEVs and fluctuations around them which satisfy

[Φ†,Φ] = 0, Qi = Q̃†
i , (A.28)

and hence the D-term potential V1 can be set identically to zero throughout.
In order to keep the hierarchy of the gauge symmetry breaking scales,

Eq. (A.8), we choose the masses such that

m1 = . . . = mNf
= m, (A.29)

m≫ µ≫ Λ. (A.30)

Although the theory described by the above Lagrangian has many degenerate
vacua, we are interested in the vacuum where (see [162] for the detail)

〈Φ〉 = − 1√
2




m 0 0 0

0
. . .

...
...

0 . . . m 0
0 . . . 0 −N m


 ; (A.31)

Q = Q̃† =




d 0 0 0 . . .

0
. . . 0

... . . .
0 0 d 0 . . .
0 . . . 0 0 . . .


 , d =

√
(N + 1)µm. (A.32)

This is a particular case of the so-called r vacuum, with r = N . Although
such a vacuum certainly exists classically, the existence of the quantum r = N
vacuum in this theory requires Nf ≥ 2N , which we shall assume.4

To start with, ignore the smaller squark VEV, Eq. (A.32). As π2(G/H) ∼
π1(H) = π1(SU(N)×U(1)) = Z, the symmetry breaking Eq. (A.31) gives rise
to regular magnetic monopoles with mass of order of O(v1

g
), whose continuous

transformation property is our main concern here. The semiclassical formulas
for their mass and fluxes are well known [153, 157] and will not be repeated
here.

4This might appear to be a rather tight condition as the original theory loses asymptotic
freedom for Nf ≥ 2 N + 2. This is not so. An analogous discussion can be made by
considering the breaking SU(N) → SU(r) × U(1)N−r. In this case the condition for the
quantum non-Abelian vacuum is 2 N > Nf ≥ 2 r, which is a much looser condition. Also,
although the corresponding U(N) theory Eq. (A.10) with such a number of flavor has
semilocal strings [130, 125, 127], these moduli are not directly related to the derivation of
the dual gauge symmetry, which is our interest in this work. We shall come back to these
questions elsewhere.
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A.2.3 Low-energy approximation

At scales much lower than v1 = m but still neglecting the smaller squark VEV
v2 = d =

√
(N + 1)µm≪ v1, the theory reduces to an SU(N)×U(1) gauge

theory with Nf light quarks qi, q̃
i (the first N components of the original

quark multiplets Qi, Q̃
i). By integrating out the massive fields, the effective

Lagrangian valid between the two mass scales has the form,

L =
1

4g2
N

(F a
µν)

2 +
1

4g2
1

(F 0
µν)

2 +
1

g2
N

|Dµφ
a|2 +

1

g2
1

|Dµφ
0|2 + |Dµq|2 + |Dµ

¯̃q|2

− g2
1

∣∣∣∣− µm
√
N(N + 1) +

q̃ q√
N(N + 1)

∣∣∣∣
2

− g2
N |
√

2 q̃ taq |2 + . . . (A.33)

where a = 1, 2, . . . N2 − 1 labels the SU(N) generators, ta; the index 0 refers
to the U(1) generator t0 = 1√

2N(N+1)
diag(1, . . . , 1,−N). We have taken into

account the fact that the SU(N) and U(1) coupling constants (gN and g1)
get renormalized differently towards the infrared.

The adjoint scalars are fixed to its VEV, Eq. (A.31), with small fluctua-
tions around it,

Φ = 〈Φ〉(1 + 〈Φ〉−1 Φ̃), |Φ̃| ≪ m. (A.34)

In the consideration of the vortices of the low-energy theory, they will be
in fact replaced by the constant VEV. The presence of the small terms
Eq. (A.34), however, makes the low-energy vortices not strictly BPS (and
this will be important in the consideration of their stability below).5

The quark fields are replaced, consistently with Eq. (A.28), as

q̃ ≡ q†, q → 1√
2
q, (A.35)

where the second replacement brings back the kinetic term to the standard
form.

We further replace the singlet coupling constant and the U(1) gauge field
as

e ≡ g1√
2N(N + 1)

; Ãµ ≡ Aµ√
2N(N + 1)

, φ̃0 ≡ φ0

√
2N(N + 1)

.(A.36)

5In the terminology used in Davis et al. [132] in the discussion of the Abelian vortices
in supersymmetric models, our model corresponds to an F model while the models of
[172, 170, 124] correspond to a D model. In the approximation of replacing Φ with a
constant, the two models are equivalent: they are related by an SUR(2) transformation
[133, 134].
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The net effect is

L =
1

4g2
N

(F a
µν)

2 +
1

4e2
(F̃µν)

2 + |Dµq|2 −
e2

2
| q† q − c 1 |2 − 1

2
g2

N | q† taq |2,(A.37)

c = 2N(N + 1)µm. (A.38)

Neglecting the small terms left implicit, this is identical to the U(N) model
Eq. (A.10), except for the fact that e 6= gN here. The transformation property
of the vortices can be determined from the moduli matrix, as was done in
[167]. Indeed, the system possesses BPS saturated vortices described by the
linearized equations

(D1 + iD2) q = 0, (A.39)

F
(0)
12 +

e2

2

(
c 1N − q q†

)
= 0; F

(a)
12 +

g2
N

2
q†i t

a qi = 0. (A.40)

The matter equation can be solved exactly as in [173, 124, 125] (z = x1+ix2)
by setting

q = S−1(z, z̄)H0(z), A1 + i A2 = −2 i S−1(z, z̄) ∂̄zS(z, z̄), (A.41)

where S is an N ×N invertible matrix over whole of the z plane, and H0 is
the moduli matrix, holomorphic in z.

The gauge field equations take a slightly more complicated form than in
the U(N) model Eq. (A.10):

∂z (Ω−1∂z̄ Ω) = −g
2
N

2
Tr ( ta Ω−1 q q†) ta − e2

4N
Tr ( Ω−1q q† − 1), Ω = S S†.(A.42)

The last equation reduces to the master equation Eq. (A.19) in the U(N)
limit, gN = e.

The advantage of the moduli matrix formalism is that all the moduli
parameters appear in the holomorphic, moduli matrix H0(z). Especially, the
transformation property of the vortices under the color-flavor diagonal group
can be studied by studying the behavior of the moduli matrix.

A.3 Topological stability, vortex-monopole com-

plex and

confinement

The fact that there must be a continuous set of monopoles, which transform
under the color-flavorGC+F group, follows from the following exact homotopy
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sequence

· · · → π2(G) → π2(G/H) → π1(H)
f→ π1(G) → · · · , (A.43)

applied to our systems with a hierarchical symmetry breaking, Eq. (A.7),
with an exact unbroken symmetry, Eq. (A.9). π2(G) = 1 for any Lie group,
and π1(G) depends on the group considered. Eq. (A.43) was earlier used to
obtain the relation between the regular, soliton monopoles (represented by
π2(G/H)) and the singular Dirac monopoles, present if π1(G) is non-trivial.
The isomorphism

π1(G) ∼ π1(H)/π2(G/H) (A.44)

implied by Eq. (A.43) shows that among the magnetic monopole config-
urations Aa

i (x) classified according to π1(H) [136], the regular monopoles
correspond to the kernel of the map f : π1(H) → π1(G) [154].

When the homotopy sequence Eq. (A.43) is applied to a system with
hierarchical breaking, in which H is completely broken at low energies,

G
v1−→ H

v2−→ 1,

it allows an interesting re-interpretation. π1(H) classifies the quantized flux
of the vortices in the low-energy H theory in Higgs phase. Vice versa, the
high-energy theory (in which the small VEV is negligible) has ’t Hooft-
Polyakov monopoles quantized according to π2(G/H). However, there is
something of a puzzle: when the small VEV’s are taken into account, which
break the “unbroken” gauge group completely, these monopoles must disap-
pear somehow. A related puzzle is that the low-energy vortices with π1(H)
flux, would have to disappear in a theory where π1(G) is trivial.

What happens is that the massive monopoles are confined by the vortices
and disappear from the spectrum; on the other hand, the vortices of the
low-energy theory end at the heavy monopoles once the latter are taken into
account, having mass large but not infinite (Fig. A.2). The low-energy vor-
tices become unstable also through heavy monopole pair productions which
break the vortices in the middle (albeit with small, tunneling rates [138]),
which is really the same thing. Note that, even if the effect of such string
breaking is neglected, a monopole-vortex-antimonopole configuration is not
topologically stable anyway: its energy would become smaller if the string
becomes shorter (so such a composite, generally, will get shorter and shorter
and eventually disappear).

In the case G = SU(N + 1), H = SU(N)×U(1)
ZN

we have a trivial π1(G), so

π2

(
SU(N + 1)

U(N)

)
= π2(CP

N) ∼ π1(U(N)) = Z : (A.45)



A.3. TOPOLOGICAL STABILITY, VORTEX-MONOPOLE COMPLEX ANDCONFINEMENT151

Figure A.1: A pictorial representation of the exact homotopy sequence,
Eq. (A.43), with the leftmost figure corresponding to π2(G/H).

each non-trivial element of π1(U(N)) is associated with a non-trivial element

of π2(
SU(N+1)

U(N)
). Each vortex confines a regular monopole. The monopole

transformation properties follow from those of the vortices, as will be more
concretely studied in the next section.

In theories with a non-trivial π1(G) such as SO(N), the application of
these ideas is slightly subtle: these points will be discussed in Section A.5.

In all cases, as long as the group H is completely broken at low ener-
gies and because π2(G) = 1 always, none of the vortices (if π1(G) = 1) and
monopoles are truly stable, as static configurations. They can be only ap-
proximately so, in an effective theory valid in respective regions (v1 ≃ ∞ or
v2 ≃ 0).

However, this does not mean that, for instance, a monopole-vortex-antimonopole
composite configuration cannot be dynamically stabilized, or that they are
not relevant as a physical configuration. A rotation can stabilize easily such
a configuration dynamically, except that it will have a small non-vanishing
probability for decay through a monopole-pair production, if such a decay is
allowed kinematically.

After all, we believe that the real-world mesons are quark-string-antiquark
bound states of this sort, the endpoints rotating almost with a speed of light!
An excited meson can and indeed do decay through quark pair productions
into two lighter mesons (or sometimes to a baryon-antibaryon pair, if allowed
kinematically and by quantum numbers). Only the lightest mesons are truly
stable. The same occurs with our monopole-vortex-antimonopole configura-
tions. The lightest such systems, after the rotation modes are appropriately
quantized, are truly stable bound states of solitons, even though they might
not be stable as static, semiclassical configurations.

Our model is thus a reasonably faithful (dual) model of the quark con-



152APPENDIX A. NON-ABELIAN DUALITY FROM VORTEX MODULI

Monopole Moduli Vortex Moduli

~ CPN-1

SU(N)

1
(H)2

(G/H)

Figure A.2: The non-trivial vortex moduli implies a corresponding moduli of
monopoles.

finement in QCD.

A related point, more specific to the supersymmetric models we consider
here as a concrete testing ground, is the fact that monopoles in the high-
energy theory and vortices in the low-energy theory, are both BPS saturated.
It is crucial in our argument that they are both BPS only approximately;
they are almost BPS but not exactly.6 They are unstable in the full theory.
But the fact that there exists a limit (of a large ratio of the mass scales,
v1

v2
→ ∞) in which these solitons become exactly BPS and stable, means

that the magnetic flux through the surface of a small sphere surrounding the
monopole and the vortex magnetic flux through a plane perpendicular to the
vortex axis, must match exactly. These questions (the flux matching) have
been discussed extensively already in [171].

Our argument, applied to the simplest case, G = SO(3), and H = U(1),
is precisely the one adopted by ’t Hooft in his pioneering paper [101] to

6The importance of almost BPS soliton configurations have also been emphasized by
Strassler [177].
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argue that there must be a regular monopole of charge two (with respect to
the Dirac’s minimum unit): as the vortex of winding number k = 2 must
be trivial in the full theory (π1(SO(3)) = Z2), such a vortex must end at
a regular monopole. What is new here, as compared to the case discussed
by ’t Hooft [101] is that now the unbroken group H is non-Abelian and
that the low-energy vortices carry continuous, non-Abelian flux moduli. The
monopoles appearing as the endpoints of such vortices must carry the same
continuous moduli (Fig. A.2).

The fact that the vortices of the low-energy theory are BPS saturated
(which allows us to analyze their moduli and transformation properties el-
egantly, as discussed in the next section), while in the full theory there are
corrections which make them non BPS (and unstable), could cause some con-
cern. Actually, the rigor of our argument is not affected by those terms which
can be treated as perturbation. The attributes characterized by integers such
as the transformation property of certain configurations as a multiplet of a
non-Abelian group which is an exact symmetry group of the full theory, can-
not receive renormalization. This is similar to the current algebra relations
of Gell-Mann which are not renormalized. Conserved vector current (CVC)
of Feynman and Gell-Mann [139] also hinges upon an analogous situation.7

The results obtained in the BPS limit (in the limit v2/v1 → 0) are thus valid
at any finite values of v2/v1.

A.4 Dual gauge transformation among the monopoles

The concepts such as the low-energy BPS vortices or the high-energy BPS
monopole solutions are thus only approximate: their explicit forms are valid
only in the lowest-order approximation, in the respective kinematical re-
gions. Nevertheless, there is a property of the system which is exact and
does not depend on any approximation: the full system has an exact, global
SU(N)C+F symmetry, which is neither broken by the interactions nor by
both sets of VEVs, v1 and v2. This symmetry is broken by individual soliton
vortex, endowing the latter with non-Abelian orientational moduli, analo-
gous to the translational zero-modes of a kink. Note that the vortex breaks
the color-flavor symmetry as

SU(N)C+F → SU(N − 1) × U(1), (A.46)

7The absence of “colored dyons” [155] mentioned earlier can also be interpreted in this
manner.
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leading to the moduli space of the minimum vortices which is

M ≃ CPN−1 =
SU(N)

SU(N − 1) × U(1)
. (A.47)

The fact that this moduli coincides with the moduli of the quantum states
of an N -state quantum mechanical system, is a first hint that the monopoles
appearing at the endpoint of a vortex, transform as a fundamental multiplet
N of a group SU(N).

The moduli space of the vortices is described by the moduli matrix (we
consider here the vortices of minimal winding, k = 1)

H0(z) ≃




1 0 0 −a1

0
. . . 0

...
0 0 1 −aN−1

0 . . . 0 z


 , (A.48)

where the constants ai, i = 1, 2, . . . , N − 1 are the coordinates of CPN−1.
Under SU(N)C+F transformation, the squark fields transform as

q → U−1 q U, (A.49)

but as the moduli matrix is defined modulo holomorphic redefinition Eq. (A.20),
it is sufficient to consider

H0(z) → H0(z)U. (A.50)

Now, for an infinitesimal SU(N) transformation acting on a matrix of the
form Eq. (A.48), U can be taken in the form,

U = 1 +X, X =

(
0 ~ξ

−(~ξ)† 0

)
, (A.51)

where ~ξ is a small N − 1 component constant vector. Computing H0X and
making a V transformation from the left to bring back H0 to the original
form, we find

δai = −ξi − ai (~ξ)
† · ~a, (A.52)

which shows that ai’s indeed transform as the inhomogeneous coordinates
of CPN−1. In other words, the vortex represented by the moduli matrix
Eq. (A.48) transforms as a fundamental multiplet of SU(N).8

8Note that, if a N vector ~c transforms as ~c → (1+X)~c, the inhomogeneous coordinates
ai = ci/cN transform as in Eq. (A.52).
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As an illustration consider the simplest case of SU(2) theory. In this case
the moduli matrix is simply [140]

H
(1,0)
0 ≃

(
z − z0 0
−b0 1

)
; H

(0,1)
0 ≃

(
1 −a0

0 z − z0

)
. (A.53)

with the transition function between the two patches:

b0 =
1

a0

. (A.54)

The points on this CP 1 represent all possible k = 1 vortices. Note that
points on the space of a quantum mechanical two-state system,

|Ψ〉 = a1|ψ1〉 + a2 |ψ2〉, (a1, a2) ∼ λ (a1, a2), λ ∈ C, (A.55)

can be put in one-to-one correspondence with the inhomogeneous coordinate
of a CP 1,

a0 =
a1

a2
, b0 =

a2

a1
. (A.56)

In order to make this correspondence manifest, note that the minimal vortex
Eq. (A.53) transforms under the SU(2)C+F transformation, as

H0 → V H0 U
†, U =

(
α β

−β∗ α∗

)
, |α|2 + |β|2 = 1, (A.57)

where the factor U † from the right represents a flavor transformation, V is
a holomorphic matrix which brings H0 to the original triangular form [167].
The action of this transformation on the moduli parameter, for instance, a0,
can be found to be

a0 →
αa0 + β

α∗ − β∗ a0
. (A.58)

But this is precisely the way a doublet state Eq. (A.55) transforms under
SU(2),

(
a1

a2

)
→
(

α β
−β∗ α∗

) (
a1

a2

)
, (A.59)

The fact that the vortices (seen as solitons of the low-energy approxima-
tion) transform as in the N representation of SU(N)C+F , implies that there
exist a set of monopoles which transform accordingly, as N . The existence
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of such a set follows from the exact SU(N)C+F symmetry of the theory, bro-
ken by the individual monopole-vortex configuration. This answers questions
such as Eq. (A.5) unambiguously.

Note that in our derivation of continuous transformations of the monopoles,
the explicit, semiclassical form of the latter is not utilized.

A subtle point is that in the high-energy approximation, and to lowest
order of such an approximation, the semiclassical monopoles are just certain
non-trivial field configurations involving φ(x) and Ai(x) fields, and therefore
apparently transform under the color part of SU(N)C+F only. When the full
monopole-vortex configuration φ(x), Ai(x), q(x) (Fig. A.2) are considered,
however, only the combined color-flavor diagonal transformations keep the
energy of the configuration invariant. In other words, the monopole trans-
formations must be regarded as part of more complicated transformations
involving flavor, when higher order effects in O(v1

v2
) are taken into account.9

And this means that the transformations are among physically distinct
states, as the vortex moduli describe obviously physically distinct vortices
[169].

A.4.1 SU(N) gauge symmetry breaking and Abelian

monopole-vortex systems

Recently there has been considerable amount of research activity [168],[172]-
[127], on systems closely related to ours. As the terminology used and con-
cepts involved are often similar but physically distinct, a confusion might
possibly arise.

As should be clear from what we said so far, it is crucial that the color-
flavor diagonal symmetry SU(N) remains exactly conserved, for the emer-
gence of non-Abelian dual gauge group. Consider, instead, the cases in which
the gauge U(N) (or SU(N) × U(1)) symmetry is broken to Abelian sub-
group U(1)N , either by small quark mass differences (cfr. Eq. (A.14) and
Eq. (A.16)) or dynamically, as in the N = 2 models with Nf < 2N [120, 170].
From the breaking of various SU(2) subgroups to U(1) there appear light ’t
Hooft-Polyakov monopoles of mass O(∆m

g
) (in the case of an explicit break-

ing) or O(Λ) (in the case of dynamical breaking). As the U(1)N gauge group
is further broken by the squark VEVs, the system develops ANO vortices.

9Another independent effect due to the massless flavors is that of Jackiw-Rebbi [141]:
due to the normalizable zero-modes of the fermions, the semi-classical monopole is con-
verted to some irreducible multiplet of monopoles in the flavor group SU(Nf ). The
“clouds” of the fermion fields surrounding the monopole have an extension of O( 1

v1

), which
is much smaller than the distance scales associated with the infrared effects discussed here
and should be regarded as distinct effects.
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Figure A.3: Monopoles in U(N) systems with abelianization are confined by
two Abelian vortices.

The light magnetic monopoles, carrying magnetic charges of two different
U(1) factors, look confined by the two vortices (Fig. A.3). These cases have
been discussed extensively, within the context of U(N) model of Subsec-
tion A.2.1, in [168],[172]-[124]. In Hanany et al. [172, 120] and Shifman et
al. [170, 122], furthermore, the dynamics of the fluctuation of the orienta-
tional modes along the vortex, described as a two-dimensional CPN−1 model,
is studied. It is shown that the kinks of the two-dimensional sigma model
precisely correspond to these light monopoles, to be expected in the under-
lying 4D gauge theory. In particular, it was noted that there is an elegant
matching between the dynamics of two-dimensional sigma model (describing
the dynamics of the vortex orientational modes in the Higgs phase of the
4D theory) and the dynamics of the 4D gauge theory in the Coulomb phase
[142, 172, 120, 170].

Note that this is also a reasonably close (dual) model of what would oc-
cur in QCD if the color SU(3) symmetry were to dynamically break itself
to U(1)2, i.e., with generators Q1 = diag (1,−1, 0), Q2 = diag (0, 1,−1),
respectively. Confinement would be described in this case by the conden-
sation of magnetic monopoles carrying the Abelian charges Q1, or Q2, and
the resulting ANO vortices will be of two types, 1 and 2 carrying the related
fluxes. The quark q1 will be confined by the vortex 1, the quark q2 by the
composite of the vortices 1̄ and 2 (just as the light monopoles discussed above
– Fig. A.3) and the quark q3 by the vortex 2̄.
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A.4.2 Non-Abelian duality requires an exact flavor sym-

metry

In the N = 2 supersymmetric QCD, the presence of massless flavor and the
exact color-flavor diagonal symmetry is fundamental for the emergence of the
dual (non-Abelian) gauge transformations. It is well known in fact that the
continuous non-Abelian vortex flux moduli - hence the non-Abelian vortex
- disappear as soon as non-zero mass differences mi −mj are introduced.10

Also in order for the SU(N)C+F color-flavor symmetry not to be destroyed
by the gauge dynamics itself, it is necessary to have the number of flavors
such that Nf ≥ 2N . These points have been emphasized already in the first
paper on the subject [169].

It is illuminating that the same phenomenon can be seen in the fully
quantum behavior of the theory of Section A.2.2, in another regime,

µ,mi ∼ Λ (A.60)

(cfr. Eq. (A.30)). Indeed, this model was analyzed thoroughly in this
regime in [162]. The so-called r vacua with the low-energy effective SU(r)×
U(1)N+1−r gauge symmetry emerges in the equal mass limitmi → m in which
the global symmetry group SU(Nf )×U(1) of the underlying theory become
exact. When the bare quark masses are almost equal but distinct, the theory
possesses a group of

(
Nf

r

)
nearby vacua, each of which is an Abelian U(1)N

theory, with N massless Abelian magnetic monopole pairs. The jump from
the U(1)N to SU(r) × U(1)N+1−r theory in the exact SU(Nf ) limit might
appear a discontinuous change of physics, but is not so. What happens is
that the range of validity of Abelian description in each Abelian vacuum,
neglecting the light monopoles and gauge bosons (including massless parti-
cles of the neighboring vacua, and other light particles which fill up a larger
gauge multiplet in the limit the vacua coalesce), gradually tends to zero as
the vacua collide. The non-Abelian, enhanced gauge symmetry of course
only emerges in the strictly degenerate limit, in which the underlying theory
has an exact SU(Nf) global symmetry.

10Such an alignment of the vacuum with the bare mass parameters is characteristic of
supersymmetric theories, familiar also in the N = 1 SQCD [143]. In real QCD we do not
expect such a strict alignment.
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A.5 SO(2N + 1) → SU(r) × U(1)N−r−1 → 1

Let us now test our ideas about duality transformations against another class
of theories,

SO(2N + 1)
〈φ1〉6=0−→ SU(r) × U(1)N−r+1 〈φ2〉6=0−→ 1. (A.61)

One of the reasons why this case is interesting is that the semiclassical

monopoles arising from the symmetry breaking SO(2N + 1)
〈φ1〉6=0−→ U(N)

appear to belong to the second-rank symmetric tensor representation of
SU(N) [156, 157]. Another, related reason is the fact that since π1(G) =
π1(SO(2N + 1)) = Z2, the homotopy map Eq. (A.43) is less trivial in this
case. Thirdly, according to the detailed analysis of the softly-broken N = 2
theories with SO(N) gauge group [111] the quantum mechanical behavior of
the monopoles is different for r = N and for r < N . Non-Abelian monopoles
belonging to the fundamental representation of the dual SU(r) group appears
only for r ≤ Nf/2, and because of the requirement of asymptotic freedom of
the original theory (Nf < 2N − 1), this is possible only for r < N. It is very
encouraging that such a difference in the behavior of non-Abelian monopoles
indeed follows, as we shall see, from the way we define the dual group though
the transformation properties of mixed monopole-vortex configurations and
homotopy map.

A.5.1 Maximal SU factor; SO(5) → U(2) → 1

Let us first consider the case the SU(N) factor has the maximum rank,

SO(2N + 1)
〈φ1〉6=0−→ U(N).

To be concrete, let us consider the case of an SO(5) theory, where a scalar
VEV of the form

〈Φ〉 =




0 i v 0 0 0
−i v 0 0 0 0

0 0 0 i v 0
0 0 −i v 0 0
0 0 0 0 0




(A.62)

breaking the gauge group as SO(5) → H = SU(2) × U(1)/Z2 = U(2). We
assume that at lower energies some other scalar VEVs break H completely,
leaving however a color-flavor diagonal SU(2) group unbroken. This model
arises semiclassically in softly broken N = 2 supersymmetric SO(5) gauge
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theory with large, equal bare quark masses, m, and with a small adjoint
scalar mass µ, with scalar VEVs given by v = m/

√
2 in Eq. (A.62) and

Q = Q̃† =

√
µm

2




1 0 0 · · ·
i 0 0 · · ·
0 1 0 · · ·
0 i 0 · · ·
0 0 0 · · ·



. (A.63)

(See Appendix A.7, also the Section 2 of [111], for more details).
The SO(4) ∼ SU(2) × SU(2) subgroup living on the upper-left corner is

broken to SU(2)× U(1), giving rise to a single ’t Hooft-Polyakov monopole.
On the other hand, by embedding the ’t Hooft-Polyakov monopole in the
two SO(3) subgroups (in the (125) and (345) subspaces), one finds two more
monopoles. All three of them are degenerate. Actually, E. Weinberg [144]
has found a continuous set of degenerate monopole solutions interpolating
these, and noted that the transformations among them are not simply related
to the unbroken SU(2) group.11

From the point of view of stability argument, Eq. (A.43), this case is very
similar to the case considered by ’t Hooft, as π1(SO(5)) = Z2: a singular
Z2 Dirac monopole can be introduced in the theory. The minimal vortex of
the low-energy theory is truly stable in this case, as a minimal non-trivial
element of π1(H) represents also a non-trivial element of π1(G). This can be
seen as follows. A minimum element of π1(H) = π1(U(2)) ∼ Z corresponds
to simultaneous rotations of angle π in the (12) and (34) planes (which is
a half circle of U(1)), which brings the origin to the Z2 element of SU(2),
diag (−1,−1,−1,−1, 1), followed by an SU(2) transformation back to the
origin, an angle −π rotation in the (12) plane and an angle π rotation around
(34) plane. The net effect is a 2π rotation in the (34) plane, which is indeed
a non-trivial element of π1(SO(5)) = Z2. Such a vortex would confine the
singular Dirac monopole, if introduced into the theory (See Fig. A.1).

On the other hand, there are classes of vortices which appear to be stable
in the low-energy approximation, but are not so in the full theory. In fact
non-minimal k = 2 elements of π1(H) = π1(SU(2) × U(1)/Z2) ∼ Z are
actually trivial in the full theory. This means that the k = 2 vortices must
end at a regular monopole. Vice versa, as π2(SO(5)) = 1, the regular ’t
Hooft Polyakov monopoles of high-energy theory must be confined by these
non-minimal vortices and disappear from the spectrum.

The transformation property of k = 2 vortices has been studied recently
in [145, 166], and in particular, in [167]. It turns out that the moduli space

11This and similar cases are sometimes referred to as “accidentally degenerate case” in
the literature.
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of the k = 2 vortices is a CP 2 with a conic singularity. It was shown that
the generic k = 2 vortices transform under the SU(2)C+F group as a triplet.
At a particular point of the moduli - an orbifold singularity - the vortex is
Abelian: it is a singlet of SU(2)C+F . 12

As the full theory has an exact, unbroken SU(2)C+F symmetry, it follows
from the homotopy-group argument of Section A.3 that the monopoles in the
high-energy SO(5) → U(2) theory have components transforming as a triplet
and a singlet of SU(2)C+F .

Note that it is not easy to see this result – and is somewhat mislead-
ing to attempt to do so – based solely on the semi-classical construction of
the monopoles or on the zero-mode analysis around such solutions, where
the unbroken color-flavor symmetry is not appropriately taken into account.
Generically, the “unbroken” color SU(2) group suffers from the topological
obstruction [155] (or perturbatively, from the pathology of non-normalizable
gauge zero-modes [155, 156]), as we noted already.

Nevertheless, there are indications that the findings by E. Weinberg [144]
are consistent with the properties of the k = 2 vortices. In the standard way
to embed SU(2) subgroups through the Cartan decomposition (we follow
here the notation of [144]),

t1(ν) =
1

(2 ν2)−1/2
(Eν + E−ν); t2(ν) =

−i
(2 ν2)−1/2

(Eν − E−ν); t3 = (ν2)−1 νj Tj ,(A.64)

where ν denotes the non-vanishing root vectors of SO(5) (Fig. A.4), the
unbroken SU(2) group is generated by γ. The monopole associated with the
root vector β and the (equivalent) one given by µ naturally form a doublet
of the “unbroken” SU(2), while the monopole with the α charges is a singlet.
The continuous set of monopoles interpolating among these monopoles found
by Weinberg are analogous to the continuous set of vortices we found, which
form the points of the CP 2, which transform as a triplet. (See the Fig. A.5
taken from [167]).

An even more concrete hint of consistency comes from the structure of
the moduli space of the monopoles. The moduli metric found in [144] is

ds2 = M dx2 +
16π2

M
dχ2 + k

[
db2

b
+ b(dα2 + sin2 α dβ2 + (dγ + cosα dβ)2)

]
.(A.65)

By performing a simple change of coordinate, B ≡ 2
√
b, it becomes evident

12In another complex codimension-one subspace, they appear to transform as a doublet.
However quantum states of any triplet of SU(2) contains such an orbit. The state of
maximum Sz, |1, 1〉, transforms under SU(2) as an SO(3) vector, staying on a subspace
S2 ∼ CP 1 ⊂ CP 2.
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Figure A.4: Non-zero root vectors of SO(5)
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Figure A.5: Moduli space of k = 2 vortices of U(2) theory. See [167] for more
details.
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that the moduli space has the structure

C2/Z2, (A.66)

apart from the irrelevant factor R3 (the position of the monopole) and S1

(U(1) phase).13 Eq. (A.66) coincides with the moduli space of the k = 2
co-axial vortices, seen in the central (1, 1) patch [167].

These considerations strengthen our conclusion that the continuous set
of monopoles found in [144] belongs to a singlet and a triplet representations
of the dual SU(2) group. Although the detailed properties of the moduli
spaces for monopoles and vortices are different14, this could be related to the
fact that one should ultimately consider a smooth monopole-vortex mixed
configurations in the full theory, not each of them separately. Also, related
to this point, there remains the fact that the dual group which is exact and
under which monopoles transform, is not the original SU(2) subgroup but
involves the flavor group essentially.

Note that our conclusion is based on the exact symmetry, and should be
reliable. However, the degeneracy among all the vortices (or the monopoles)
lying in the entire moduli space CP 2/Z2 found in the BPS limits, is an ar-
tifact of the lowest-order approximation. Only the degeneracy among the
vortices (or among the monopoles) belonging to the same multiplet is ex-
pected to survive quantum mechanically. 1 and 3 vortex tensions (monopole
masses) will split. Which of the multiplets (1 or 3) will remain stable, after
quantum corrections are taken into account, is a question just lying beyond
the power of semiclassical considerations.

In the context of asymptotically-free N = 2 supersymmetric models,
there are no indications that the triplet monopoles of SO(5) → U(2) theory
survive quantum mechanically. This result can be actually understood by a
simple renormalization-group argument:

• In a SO(2N + 1) theories with N = 2, 1 supersymmetries, the condi-
tion for the original theory to be asymptotic-free (Nf less than 2N −1,
3(2N−2)

2
, respectively)15 is not compatible with the low-energy SU(N)

theory being non-asymptotic-free (Nf ≥ 2N and Nf ≥ 3N , respec-
tively.)

13The monopole modulus due to the unbroken U(1) ⊂ U(2) is not present in the full
system, where the gauge group is completely broken.

14The first is known to be hyper-Kähler and the second Kähler – indeed CP 2/Z2 does
not admit hyper-Kähler structure.

15The counting is made for the appropriate supersymmetry multiplets, Nf hypermulti-
plets for N = 2; Nf chiral multiplets for N = 1 supersymmetric SO(N) theory.
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The problem would not arise if the rank of the unbroken SU(r) were
smaller. That such a “sign-flip” of the beta function is a necessary condition
for the emergence of low-energy non-Abelian monopoles has been pointed
out some time ago by one of the authors [147], even though the validity of
such an argument for non-supersymmetric theories is perhaps not obvious.

If the condition of asymptotic freedom of the ultraviolet theory is dropped,
then there are no such constraints, and it makes sense to consider symmetry
breaking patterns such as SO(2N + 1) → U(N). Our conclusion that the
monopoles of SO(5) → U(2) system transform as a triplet or a singlet would
apply under such conditions. Analogously, we expect the monopoles in the
system SO(2N + 1) → U(N) to transform as a second-rank symmetric or
antisymmetric representation.

A.5.2 SO(2N + 1) → SU(r) × U(1)N−r−1 → 1 (r < N)

Consider now the cases in which the unbroken SU(r) factor has a smaller
rank, SO(2N + 1) → SU(r) × U(1)N−r+1 → 1, where r < N . For concrete-
ness, let us discuss the case of an SO(7) theory,

SO(7)
〈φ1〉6=0−→ U(2) × U(1)

〈φ2〉6=0−→ 1. (A.67)

As we are interested in a concrete dynamical realization of this, we consider
the softly broken N = 2 theory, with Nf = 4 quark hypermultiplets. Such
a number of flavors ensures both the original SO(7) theory being asymp-
totically free and the SU(2) subgroup being non-asymptotically free. The
low-energy gauge group U(2) × U(1) is completely broken by the squark
VEV’s similar to Eq. (A.63). The large VEV 〈φ1〉 has the form:

〈φ1〉 =




0 iv0 0 0 0 0 0
−iv0 0 0 0 0 0 0

0 0 0 iv0 0 0 0
0 0 −iv0 0 0 0 0
0 0 0 0 0 iv1 0
0 0 0 0 −iv1 0 0
0 0 0 0 0 0 0




, v1 6= v0. (A.68)

The “unbroken” U(2) lies in SO(4)1234 ∼ SU(2) × SU(2) while the U(1)
factor corresponds to the rotations in the 56 plane (see Appendix A.7). The
semiclassical monopoles of high-energy theory are 16

16Within the softly broken N = 2 theory, the quantum mechanical vacua with SU(2)×
U(1)2 gauge symmetry, in the limit mi = m ≃ Λ, appears to arise from the semiclassical
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(i) a triplet of degenerate monopoles of mass 2 |v0|/g (they arise as in the
SO(5) theory discussed above);

(ii) a doublet of degenerate monopoles of mass |v0 − v1|/g: they arise from
the breaking of SU+(2) ⊂ SO(4)1256 and SU+(2) ⊂ SO(4)3456 (see
Appendix A.7);

(iii) a doublet of degenerate monopoles of mass |v0 + v1|/g: they also arise
from the breaking of SU−(2) ⊂ SO(4)1256 and SU−(2) ⊂ SO(4)3456;

(iv) a singlet monopole of mass 2 |v1|/g arising from the breaking of SO(3)567.

Which of these semiclassical monopoles are the lightest and which of them
are stable against decay into lighter monopole pairs, depend on the various
VEVs. It is possible that the monopoles (ii) or (iii) are the lightest of all. Of
course more detailed issues such as which of the degeneracies survives quan-
tum effects, are questions which go beyond the semiclassical approximations.

In fact, when v0, v1 ∼ Λ the standard semi-classical reasoning fails to
give any reliable answer: a fully quantum-mechanical analysis is needed.
Fortunately, in the softly broken N = 2 theory such analyses have been
performed [111] and we do know that the light monopoles in the fundamental
representation (2) of SU(2) appear in an appropriate vacuum.

Knowing this, we might try to understand how such a result may follow
from our definition of the dual group. At low energies the gauge group
U(2) × U(1) is completely broken, leaving a color-flavor diagonal SU(2)C+F

symmetry unbroken. The theory possesses vortices of

π1(U(2) × U(1)) = Z × Z. (A.69)

The minimal vortices corresponding to π1(U(2)) = Z transform as a 2 of
SU(2)C+F .

A minimum element of π1(U(2) × U(1)) such as an angle 2π rotation in
the U(1)56 factor, or the minimal U(2) loop, corresponds to vortices stable
in the full theory. They would confine Dirac monopoles associated with
π1(SO(7)) = Z2, if the latter were introduced in the theory.

vacua of the form of Eq. (A.68), with v0 = m/
√

2 ≫ Λ, v1 = 0, with classical symmetry
SU(2) × U(1) × SO(3)567. The SO(3)567 gauge sector (pure N = 2 theory) becomes
strongly-coupled at low energies and breaks itself to U(1). Thus it would be more correct
to say v1 ∼ Λ, but then the discussion about semiclassical monopole masses ∼ v1/g, etc.,
should not be taken too literally. If one wishes, one could consider a larger gauge group,
e.g., SO(9), to do a straightforward semiclassical analysis for an unbroken SU(2) group.
In general, the relation between the classical vacua and the fully quantum mechanical
vacua is a rather subtle issue. See for instance the discussions in [114].
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The regular monopoles in which we are interested in, are instead confined
by some non-minimal (k = 2) vortices of the low-energy theory. However,
in contrast to the SO(5) theory discussed in the preceding subsection, this
does not necessarily imply a second-rank tensor representation of SU(2)C+F

of these monopoles. In fact, the monopoles of the (ii) group, for instance,
carry the minimum charge of U(2) and an unit charge of U(1). Therefore, the
relevant k = 2 vortex corresponds to the minimum element both of π1(U(2))
and of π1(U(1)), generated by a 2π rotation in the 56 plane together with a
minimal loop of π1(U(2)), analogous to the one discussed in the preceding
subsection. As a consequence the monopoles confined by such vortices, by
our discussion of Section 3, transform as a doublet of the dual group S̃U(2) ∼
SU(2)C+F .

This discussion naturally generalizes to all other cases with symmetry
breaking, SO(2N+1) → SU(r)×U(1)N−r+1 → 1, r < N . The dual magnetic
SU(r) group observed in the low-energy effective theory [111], under which
the light monopoles transform as a fundamental multiplet, thus matches
nicely with the properties of the dual S̃U(r) ∼ SU(r)C+F group.

The cases of SO(2N) → SU(r)×U(1)N−r+1 → 1, r < N − 1 are similar.
We expect that there is a qualitative difference between the breaking with
the maximum (or next to the maximum) rank SU factor and smaller SU(r)
unbroken groups. Such a difference is indeed observed in the fully quantum
mechanical analysis of SO(N) theory [111].

The behavior of monopoles in asymptotic-free USp(2N) theories (Nf <
2N+2) is more similar to those appearing in the SU(N) theories, because of
the property, π1(USp(2N)) = 1. All monopoles are regular monopoles due
to the partial symmetry breaking, USp(2N) → SU(r)×U(1)N−r+1, r ≤ N .
The transformation property of these monopoles, in the theory with exact
unbroken SU(r)C+F global symmetry, is deduced from the transformation
properties among the non-Abelian vortices of the low-energy system SU(r)×
U(1)N−r+1 → 1 : they transform as r of SU(r)C+F . Such a result is consistent
dynamically, as long as r ≤ Nf/2. It is comfortable that these are precisely
what is found from the quantum mechanical analysis [162].

A.5.3 Other symmetry breaking patterns and GNOW

duality

Before concluding this section, let us add a few remarks on other symmetry
breaking patterns such as SO(2N+3) → SO(2N+1)×U(1) and USp(2N +
2) → USp(2N) × U(1), and the resulting GNOW monopoles. These cases
might be interesting as the GNOW dual groups are different from the original
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one: the dual of SO(2N + 1) is USp(2N) and vice versa. It is possible to
analyze these systems, again setting up models so that the “unbroken group”
is completely broken at a much lower mass scales by the set of squark VEVs.
Such a preliminary study has been made in [174].

However, the quantum fate of these GNOW dual monopoles is unclear.
More precisely, within the concrete N = 2 models we are working on where
the exact quantum fate of the semiclassical monopoles is known from the
analyses made at small m,µ [111], we know that these GNOW monopoles
do not survive quantum effects. Only the monopoles carrying the quantum
numbers of the SU(r) subgroups discussed in the previous subsection appear.
On the other hand, there is clearly a reason why the GNOW monopoles
cannot appear at low energies in these cases: the low-energy effective action
would have a wrong global symmetry. GNOW monopoles are not always
relevant quantum mechanically 17. These and other peculiar (but consistent)
quantum properties of non-Abelian monopoles have been recently discussed
in [114].

A.6 Conclusion

In this appendix we have examined an idea about the “non-Abelian monopoles”,
put forward some time ago [171], more systematically and by using some re-
cent results on the non-Abelian vortices. According to this idea, the dual
transformation of non-Abelian monopoles occurring in a system with gauge
symmetry breaking G −→ H is to be defined by setting the low-energy H
system in Higgs phase, so that the dual system is in confinement phase. The
transformation law of the monopoles follows from that of monopole-vortex
mixed configurations in the system

G
v1−→ H

v2−→ 1, (v1 ≫ v2)

under an unbroken, exact color-flavor diagonal symmetry HC+F ∼ H̃ . The
transformation properties of the regular monopoles (classified by π2(G/H))
follow from those among the non-Abelian vortices (classified by π1(H)), via
the isomorphism π1(G) ∼ π1(H)/π2(G/H). Our results, obtained in the
semiclassical approximation (reliable at v1 ≫ v2 ≫ Λ) of softly-broken N = 2
supersymmetric SU(N) and SO(N) theories, are – very non-trivially – found
to be consistent with the fully quantum-mechanical low-energy effective ac-
tion description (valid at v1, v2 ∼ Λ), available in these theories.

17Seiberg duals of N = 1 supersymmetric theories with various matter contents, provide
us with more than enough evidence for it.



168APPENDIX A. NON-ABELIAN DUALITY FROM VORTEX MODULI

ForG = SU(N+1), H = U(N), GF = SU(Nf), Nf ≥ 2N , this argument
proves that the monopoles induced by the G/H breaking transform as N of
H̃ = SU(N). Analogous result holds for G = SU(N + 1), H = U(r),
GF = SU(Nf ), r ≤ Nf/2, where the semi-classical monopoles transform
as in the fundamental multiplets (r) (as well as some singlets) of SU(r).
These results are in agreement with what was found in the fully quantum
mechanical treatment of the system [160, 162].

For G = SO(2N + 1), H = U(r) × U(1)N−r, GF = SU(Nf) (with
r ≤ Nf/2, r < N) we find monopoles which transform in the fundamen-

tal representation of the dual S̃U(r) = SU(r)C+F group. This result is again
consistent with the fully quantum mechanical analysis of N = 2 supersym-
metric SO(N) models [111] and in agreement with the universality of certain
superconformal theories discovered in this context by Eguchi et. al. [149].

In the case of maximal-rank SU subgroup, such asG = SO(5),H = U(2),
there is a qualitative difference both in our duality argument and in the full
quantum results. For instance the set of monopoles found earlier by E.
Weinberg is shown to belong to a singlet and a triplet representations of the
dual SU(2) group, but their quantum fate is not known. In supersymmetric
models a renormalization-group argument suggests (and the explicit analysis
of softly broken N = 2 theory shows) that the triplet does not survive the
quantum effects, as long as the underlying SO(5) theory is asymptotically
free.

For G = SO(2N), H = U(r) × U(1)N−r, GF = SU(Nf ) the situation is
similar. When r < N − 1, r ≤ Nf/2 we find monopoles transforming in the

r representation of the dual S̃U(r) = SU(r)C+F , whereas the maximal and
next-to-maximal cases, r = N,N − 1, encounter the same renormalization-
group constraint as in SO(2N + 1).

Finally for G = USp(2N), H = U(r) × U(1)N−r, GF = SU(Nf ) the pic-
ture is very much like in SU(N +1). We have monopoles in the fundamental

representation of the dual S̃U(r) = SU(r)C+F as long as Nf ≥ 2 r.

Summarizing, in the context of softly-broken N = 2 supersymmetric
gauge theories with SU , SO and USp groups, where fully quantum me-
chanical results are available by combining the various knowledges such as
the Seiberg-Witten curves, decoupling theorem, Nambu-Goldstone theorem,
non-renormalization of Higgs branches, N = 1 ADS instanton superpo-
tential, vacuum counting, universality of conformal theories, etc., our idea
on non-Abelian monopoles is in agreement with these known exact results.
Although such an agreement is comfortable, our arguments, based on the
homotopy-map-stability argument on almost BPS solitons and on some ex-
act symmetries, should be of more general validity.
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A.7 Appendix: Monopoles in SO(N) theories

Here are some formulae useful for the discussion of Section A.5. The min-
imal SU(2) embeddings (i.e., with the smallest Dynkin index, TrT aT b) in
SO(N) groups are obtained through various SO(4) ⊂ SO(N) subgroups.
For instance the SU(2) × SU(2) ⊂ SO(5) subgroups are generated by

T±
1 = − i

2
(Σ23 ± Σ41) , T

±
2 = − i

2
(Σ31 ± Σ42) , T

±
3 = − i

2
(Σ12 ± Σ43) ,(A.70)

where e.g.

Σ23 =

(
0 1
−1 0

)
,

is a rotation in the 23 plane. Non-minimal embeddings correspond to various
SO(3) subgroups, acting in 125 and 345 subspaces, for instance, in the SO(5)
example.

The VEV Eq. (A.62) is proportional to T+
3 : it leaves SU−(2) × U+(1)

unbroken. An SO(5) solution can be obtained [152, 153] by embedding the
’t Hooft-Polyakov monopoles [101] in the broken SU(2) as (Sa ≡ T+

a )

Ai(r) = Aa
i (r,h·α)Sa; φ(r) = χa(r,h·α)Sa+[h−(h·α)α∗]·H, (A.71)

where

Aa
i (r) = ǫaij

rj

r2
A(r); χa(r) =

ra

r
χ(r), χ(∞) = h · α. (A.72)

Note that φ(r = (0, 0,∞)) = φ0. In the above formula the Higgs field vacuum
expectation value (VEV) has been parametrized in the form

φ0 = h · H, (A.73)

where h = (h1, . . . , hrank(G)) is a constant vector representing the VEV. The
root vectors orthogonal to h (∝ α in Fig. A.4) belong to the unbroken
subgroup H (γ in Fig. A.4).

The above consideration is basically group-theoretic and is valid in any
types of theories, supersymmetric or not. Now we specialize to the concrete
dynamical models we are working on: N = 2 supersymmetric gauge theories.
Under the symmetry breaking SO(5) → U(2) the quark superfields Q and Q̃
in the first four components of the vector representation rearrange themselves
as follows. Recall that the relevant superpotential terms have the form,
Q(m1 +

√
2Φ)Q̃, summed over diagonal flavor indices, A = 1, 2, . . . , Nf left
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implicit. For each flavor, the adjoint scalar VEV of the form Eq. (A.62), with
v = m/

√
2, gives rise to a 2 × 2 block-diagonal mass matrix

m1 +
√

2Φ =

(
V 0
0 V

)
V = m

(
1 i
−i 1

)
(A.74)

in color. V has one vanishing and one massive eigenvalues. Thus the four
fields

Q̂1 =
1√
2
(Q1 + iQ2), Q̂3 =

1√
2
(Q3 + iQ4), ˆ̃Q

1

=
1√
2
(Q̃1 + iQ̃2), ˆ̃Q

3

=
1√
2
(Q̃3 + iQ̃4),

(A.75)

are massless. The orthogonal combinations such as 1√
2
(Q1 − iQ2) become

massive and decouple from the low-energy theory.
The massless quark superfields of the low-energy SU(2) theory are the

combinations

q1 =
1√
2
(Q̂1 + iQ̂3); q2 =

1√
2
(iQ̂1 + Q̂3), (A.76)

which form a 2, and

q̃1 =
1√
2
( ˆ̃Q

1

− i ˆ̃Q
3

); q̃2 =
1√
2
(−i ˆ̃Q

1

+ ˆ̃Q
3

), (A.77)

which form a 2∗. 18

It is straightforward to generalize the above construction to SO(2N +
1) → SU(r)×U(1)N−r+1, r < N . Nf quark hypermultiplets in the SO(2N+
1) vector representation yield precisely Nf flavors of massless quarks in r of
SU(r) plus a number of singlets.

18For a general change of basis vectors from SO(2N) to U(N) see the Appendix A of
[162].



Appendix B

Non-abelian vortices in SO(N )
theories

In this appendix we show how non-Abelian BPS vortex solutions can be
constructed in N = 2 theories with gauge groups SO(N)×U(1). The model
has Nf flavors of chiral multiplets in the vector representation of SO(N),
and we consider a color-flavor locked vacuum in which the gauge symmetry is
completely broken, leaving a global SO(N)C+F diagonal symmetry unbroken.
Individual vortices break this symmetry, acquiring continuous non-Abelian
orientational moduli. By embedding this model in high-energy theories with
a hierarchical symmetry breaking pattern such as SO(N + 2) → SO(N) ×
U(1) → 1, the correspondence between non-Abelian monopoles and vortices
can be established through homotopy maps and flux matching, generalizing
the known results in SU(N) theories. We find some interesting hints about
the dual (non-Abelian) transformation properties among the monopoles.

B.1 Introduction

Recently some significant steps have been made in understanding the non-
Abelian monopoles [150, 151, 152, 153, 154, 155, 156, 157], occurring in
spontaneously broken gauge field theories [158, 159]. The basic observation
is that the regular ’t Hooft-Polyakov-like magnetic monopoles occurring in a
system

G
v1−→ H , (B.1)

where H is a non-Abelian “unbroken” gauge group, are not objects which
transform among themselves under the unbroken group H , but which trans-
form, if any, under the magnetic dual ofH , namely H̃. As field transformation
groups, H and H̃ are relatively non-local, thus a local transformation in the

171
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magnetic group H̃ would look like a non-local transformation in the electric
theory. Although this was implicit in the work by Goddard-Nuyts-Olive [151]
and others [152, 153], the lack of the concrete knowledge on how H̃ acts on
semiclassical monopoles has led to long-standing puzzles and apparent diffi-
culties [155, 156].

Detailed study of gauge theories with N = 1 or N = 2 supersymmetry
and quark multiplets, on the other hand, shows that light monopoles trans-
forming as multiplets of non-Abelian magnetic gauge group H̃ do occur quite
regularly in full quantum systems [160, 161, 162, 163]. They occur under cer-
tain conditions, e.g., that there is a sufficiently large exact flavor symmetry
group in the underlying theory, which dresses the monopoles with flavor
quantum numbers, preventing them from interacting too strongly. Also, the
symmetry requirement (i.e. the symmetry of the low-energy effective theory
describing the light monopoles be the correct symmetry of the underlying
theory) seems to play an important role in determining the low-energy de-
grees of freedom in each system [164]. There are subtle, but perfectly clear,
logical reasons behind these quantum mechanical realizations of dual gauge
symmetries in supersymmetric models. Since there are free parameters in
these supersymmetric theories which allow us to move from the fully dy-
namical regime to semiclassical regions, without qualitatively changing any
physics, it must be possible to understand these light degrees of freedom in
terms of more familiar soliton-like objects, e.g., semiclassical monopoles.

This line of thought has led us to study the system (B.1), in a regime of
hierarchically broken gauge symmetries

G
v1−→ H

v2−→ 1 , v1 ≫ v2 , (B.2)

namely, in a phase in which the “unbroken” H gauge system is completely
broken at much lower energies (Higgs phase), so that one expects − based
on the standard electromagnetic duality argument − the H̃ system to be in
confinement phase. The “elementary monopoles” confined by the confining
strings in H̃ theory should look like ’t Hooft-Polyakov monopoles embedded
in a larger picture where their magnetic fluxes are frisked away by a magnetic
vortex of the H theory in Higgs phase.

Indeed, in the context of softly broken N = 2 models, this kind of systems
can be realized concretely, by tuning certain free parameters in the models,
typically, by taking the bare quark masses m (which fix the adjoint scalar
VEVs, 〈φ||=〉v1 ∼ m) much larger than the bare adjoint scalar mass µ (which
sets the scale for the squark VEVs, 〈q||=〉v2 ∼ √

µm). In a high-energy ap-
proximation, where v2 is negligible, one has a system, (B.1), with a set of ’t
Hooft-Polyakov monopoles. In the class of supersymmetric models consid-
ered, these monopoles are BPS, and their (semiclassical) properties are well



B.1. INTRODUCTION 173

understood. In the low-energy approximation (where the massive monopoles
are integrated out and v1 is regarded as infinitely large) one has the H theory
in Higgs phase, with BPS vortices whose properties can also be studied in
great detail.

When the full theory is considered, with “small” corrections which in-
volves factors of v2

v1
, there is an important qualitative change to be taken into

account at the two sides of the mass scales (high-energy and low-energy).
Neither monopoles of the high-energy approximation nor the vortices of the
low-energy theory, are BPS saturated any longer. They are no longer topo-
logically stable. This indeed follows from the fact that π2(G) is trivial for any
Lie group (no regular monopoles if H is completely broken) or if π1(G) = 1
(there cannot be vortices). If π1(G) 6= 1 there may be some stable vortices
left, but still there will be much fewer stable vortices as compared to what
is expected in the low-energy theory (which “sees” only π1(H)). As the two
effective theories must be, in some sense, good approximations as long as
v2

v1
≪ 1, one faces an apparent paradox.
The resolution of this paradox is both natural and useful. The regular

monopoles are actually sources (or sinks) of the vortices seen as stable soli-
tons in the low-energy theory; vice versa, the vortices “which should not
be there” in the full theory, simply end at a regular monopole. They both
disappear from the spectrum of the respective effective theories. This con-
nection, however, establishes one-to-one correspondence between a regular
monopole solution of the high-energy theory and the appropriate vortex of
the low-energy theory. As the vortex moduli and non-Abelian transformation
properties among the vortices, really depend on the exact global symmetry of
the full theory (and its breaking by the solitons), such a correspondence pro-
vides us with a precious hint about the nature of the non-Abelian monopoles.
In other words, the idea is to make use of the better understood non-Abelian
vortices to infer precise conclusions about the non-Abelian monopoles, by-
passing the difficulties associated with the latter as mentioned earlier.

A quantitative formulation of these ideas requires a concrete knowledge
of the vortex moduli space and the transformation properties among the
vortices [165, 166, 167]. This problem has been largely clarified, thanks to
our generally improved understanding of non-Abelian vortices [168, 169, 170,
171, 172], and in particular to the technique of the “moduli matrix” [173],
especially in the context of SU(N) gauge theories. Also, some puzzles related
to the systems with symmetry breaking SO(2N) → U(N), or SO(2N) →
U(r) × U(1)N−r, have found natural solutions [158].

In this article, we wish to extend these analyses to the cases involving
vortices of SO(N) theories. In [174] the first attempts have been made
in this direction, where softly broken N = 2 models with SO(N) gauge
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groups and with a set of quark matter in the vector representation, have been
analyzed. In the case of SO(2N + 3) theory broken to SO(2N + 1) × U(1)
(with the latter completely broken at lower energies) one observes some hints
how the dual, USp(2N) group, might emerge. In the model considered in
[174], however, the construction of the system in which the gauge symmetry
is completely broken, leaving a maximum exact color-flavor symmetry (the
color-flavor locking), required an ad hoc addition of an N = 1 superpotential,
in contrast to SU(N) theories where, due to the vacuum alignment with bare
quark masses familiar from N = 1 SQCD, the color-flavor locked vacuum
appears quite automatically.

In this article we therefore turn to a slightly different class of SO(N)
models. The underlying theory is an SO(N + 2) gauge theory with matter
hypermultiplets in the adjoint representation, with the gauge group broken
partially at a mass scale v1. The analysis is slightly more complicated than
the models considered in [174], but in the present model the color-flavor
locked vacua occur naturally. Also, these models have a richer spectrum of
vortices and monopoles than in the case of [174], providing us with a finer
testing ground for duality and confinement.

At scales much lower than v1, the model reduces to an SO(N) × U(1)
theory with quarks in the vector representation. Non-Abelian vortices arising
in the color-flavor locked vacuum of this theory transform non-trivially under
the SO(N)C+F symmetry. We are interested in their role in the dynamics of
gauge theories, but these solitons also play a role in cosmology and condensed
matter physics, so the results of sections B.3 and B.4 of this work could be
of more general interest (for example they can be useful for cosmic strings,
see [178]).

In section B.2 of this article, we present the high-energy model with gauge
group SO(2N + 2) . In section B.3 we study its low-energy effective theory
and present the vortex solutions. In section B.4 we study the model with
gauge group SO(2N + 3). Finally, in section B.5 we discuss the correspon-
dence between monopoles and vortices.

B.2 The model

We shall first discuss the SO(2N + 2) theory; the case of SO(2N + 3) group
will be considered separately later. We wish to study the properties of
monopoles and vortices occurring in the system

SO(2N + 2)
v1−→ SO(2N) × U(1)

v2−→ 1 . (B.3)
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To study the consequences of such a breaking, we take a concrete example
of an N = 2 supersymmetric theory with gauge group SO(2N + 2) and Nf

matter hypermultiplets in the adjoint representation. All the matter fields
have a common mass m, so the theory has a global U(Nf ) flavor symmetry.
We also add a small superpotential term µφ2 in the Lagrangian, which breaks
softly N = 2 to N = 1. For the purpose of considering hierarchical symmetry
breaking (B.3), we take

m≫ µ . (B.4)

The theory is infrared-free for Nf > 1, but one may consider it as an ef-
fective low-energy theory of some underlying theory, valid at mass scales
below a given ultraviolet cutoff. In any case, our analysis will focus on the
questions how the properties of the semiclassical monopoles arising from the
intermediate-scale can be understood through the moduli of the non-Abelian
vortices arising when the low-energy, SO(2N) theory is put in the Higgs
phase.

The superpotential of the theory has the form,

W =
√

2
∑

A

Tr ζ̃A [φ, ζA] +m
∑

A

Tr ζ̃AζA +
µ

2
Trφ2 . (B.5)

In order to minimize the misunderstanding, we use here the notation of ζA,
ζ̃A for the quark hypermultiplets in the adjoint representation of the high-
energy gauge group SO(2N + 2) (or SO(2N + 3)), with A = 1, 2, . . . , Nf

standing for the flavor index. We shall reserve the symbols qA, q̃A for the
light supermultiplets of the low-energy theory, which transform as the vector
representation of the gauge group SO(2N) (or SO(2N + 1)). The vacuum
equations for this theory therefore take the form

[
φ, φ†] = 0 , (B.6)

∑

A

[
ζA, ζ

†
A

]
=
∑

A

[
ζ̃†A, ζ̃A

]
, (B.7)

∑

A

√
2
[
ζA, ζ̃A

]
+ µφ = 0 , (B.8)

√
2 [φ, ζA] +mζA = 0 , (B.9)

−
√

2
[
φ, ζ̃A

]
+m ζ̃A = 0 . (B.10)

We shall choose a vacuum in which φ takes the vacuum expectation value
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(VEV)

〈φ〉 =




0 −iv 0 · · · 0
iv 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . . 0
0 0 0 0 0




, (B.11)

which breaks SO(2N+2) to SO(2N)×U(1) and is consistent with Eq. (B.6).
We are interested in the Higgs phase of the theory. In order for the

SO(2N)×U(1) symmetry to be broken at energies much lower than v1 ≡ v,
we have to find non-vanishing VEVs of the squarks which satisfy Eqs. (B.9),(B.10).
This means that v ∼ O(m). The magnitude of squark VEVs is then fixed
by Eq. (B.8) to be of the order of (µm)1/2 ≪ m and defining v2 ≡ |〈q|||〉 =
O(

√
µm) we obtain the hierarchical breaking of the gauge group (B.3). The

D-term condition (B.8) can be satisfied by the ansatz

ζ = ζ̃† . (B.12)

One must also determine the components of the fields ζ, ζ̃ which do not
get a mass of the order of O(v) ≃ O(m). We see from Eq. (B.5) that
the light squarks are precisely those for which Eqs. (B.9),(B.10) are satis-
fied non-trivially, i.e., by non-vanishing “eigenvectors” ζ , ζ̃. The conditions
(B.9),(B.10) require that the light components correspond to the generators
of SO(2N) which are lowering and raising operators for 〈ϕ〉. This condition
implies also

v =
m√
2
. (B.13)

To find the light components of ζ, ζ̃, we note that for a single flavor,
Eqs. (B.8)-(B.10) together have the form of an su(2) or so(3) algebra, T1, T2, T3,

φ ∝ T3 , ζA ∝ T− = T1 − iT2 , ζ̃A ∝ T+ = T1 + iT2 , (B.14)

with appropriate constants.
The simplest way to proceed is to consider the various SO(3) subgroups,

SO(3)12j, lying in the (12j) three-dimensional subspaces (j = 3, 4, 5, . . .),
with

T3 = H(0) = −iΣ12 =




0 −i 0
i 0 0
0 0 0




12j

, (B.15)

T− = T1 − iT2 = Lj,− ≡




0 0 1
0 0 −i
−1 i 0




12j

, T+ = T1 + iT2 = L†
j,− .

(B.16)
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The light fields which remain massless can then be expanded as

ζA(x) =
∑

j=3,4,5,...

1

2
qjA(x)Lj,− , ζ̃A(x) =

∑

j=3,4,5,...

1

2
q̃Aj(x)Lj,+ (B.17)

for each flavor A = 1, 2, . . . , Nf . Written as a full SO(2N) matrix, Lj,− looks
like

Lj,− =




0 0 . . . 1 . . .

0 0 −i ...
...

. . .

−1 i
...

... . . . . . . 0




, Lj,+ = L†
j,− . (B.18)

In Lj,− the only non-zero elements (1 and −i) in the first two rows appear
in the (2 + j)-th column; the only two non-zero elements in the first two
columns (−1 and i) appear in the (2 + j)-th row.

An alternative way to find the combinations which do not get mass from
〈φ|〉 is to use the independent SU(2) subgroups contained in various SO(4)
subgroups living in the subspaces (1, 2, j, j + 1), j = 3, 5, . . . , 2N − 1. As is
well known, the so(4) algebra factorizes into two commuting su(2) algebras,

so(4) ∼ su(2) × ŝu(2) , (B.19)

where for instance for SO(4)1234 one has

S1 = − i

2
(Σ23+Σ41) , S2 = − i

2
(Σ31+Σ42) , S3 = − i

2
(Σ12+Σ43) , (B.20)

Ŝ1 = − i

2
(Σ23−Σ41) , Ŝ2 = − i

2
(Σ31−Σ42) , Ŝ3 = − i

2
(Σ12−Σ43) , (B.21)

where

Σ23 =

(
0 1
−1 0

)

23

,

is (up to a phase) the rotation generator in the 23 plane, etc.
Since √

2

m
〈φ||=〉H(0) = −iΣ12 = S3 + Ŝ3 , (B.22)

it follows from the standard su(2) algebra that both S− = S1 − iS2 and
Ŝ− = Ŝ1 − iŜ2 satisfy the relation,

[√
2

m
〈φ||,〉S−

]
= −S− ,

[√
2

m
〈φ||,〉Ŝ−

]
= −Ŝ− . (B.23)
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One can choose the two combinations

L− = S− + Ŝ− ; L′
− = S− − Ŝ− , (B.24)

which satisfy the required relation,

[√
2

m
〈φ||,〉L−

]
= −L− ,

[√
2

m
〈φ||,〉L′

−

]
= −L′

− . (B.25)

These constructions can be done in all su(2) subalgebras living in SO(4)1,2,j,j+1,
j = 3, 5, . . . , 2N − 1.

Explicitly, Sj −, Ŝj −, and Lj,−, L′
j,− have the form (j = 3, 5, . . .)

Sj − =
1

2




0 0 1 i
0 0 −i 1
−1 i 0 0
−i −1 0 0




(1,2,j,j+1)

, Ŝj − =
1

2




0 0 1 −i
0 0 −i −1
−1 i 0 0
i 1 0 0




(1,2,j,j+1)

;

(B.26)

Lj,− =




0 0 1 0
0 0 −i 0
−1 i 0 0
0 0 0 0




(1,2,j,j+1)

, L′
i,− =




0 0 0 i
0 0 0 1
0 0 0 0
−i −1 0 0




(1,2,j,j+1)

.

(B.27)
Clearly, one can write

L′
j,− = i Lj+1,− ; (B.28)

and use the first of Eq. (B.27) to define Lj,− for all j = 3, 4, 5, . . ., j even or
odd. With this definition, Lj,− coincide with those introduced in Eq. (B.16)
by using various SO(3) subgroups.

Eqs. (B.5),(B.23),(B.25) show that the light fields (those which do not
get mass of order m) are the ones appearing in the expansion (B.17). Alter-
natively, the basis of light fields can be taken as

ζA(x) =
1√
2

∑

i=3,5,...

[
QiA(x)Si,− + Q̂iA(x)Ŝi,−

]
, ζ̃A =

1√
2

∑

i=3,5,...

[
Q̃Ai(x)Si,+ + ˆ̃QAi(x)Ŝ

(B.29)
The relation between the qiA(x) and QiA(x) fields is (i = 3, 5, . . .):

QiA(x) =
qiA(x) + i qi+1,A(x)√

2
; Q̂iA(x) =

qA,i(x) − i qA,i+1(x)√
2

= Qi+1,A(x) .

(B.30)
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All other components get a mass of order m. There are thus precisely 2N
light quark fields (color components) qiA (i = 1, 2, . . . , 2N) for each flavor.
These are the light hypermultiplets of the theory.

Each of the two bases {qiA} or {QiA} has some advantages. Clearly the
basis qiA (i = 1, 2, . . . , 2N) corresponds to the usual basis of the fundamental
(vector) representation of the SO(M) group (M = 2N), appearing in the
decomposition of an adjoint representation of SO(M + 2) into the irreps of
SO(M):

(M + 2)(M + 1)

2
=
M(M − 1)

2
⊕M ⊕M ⊕ 1 . (B.31)

The low-energy effective Lagrangian can be most easily written down in terms
of these fields, and the symmetry property of the vacuum is manifest here.

On the other hand, the basis (QjA, Q̂jA), j = 3, 5, 7, . . ., is made of pairs
of eigenstates of the (a ≡ (j − 1)/2)-th Cartan subalgebra generator,

H(a) = −iΣj,j+1 = Sj,3 − Ŝj,3 , a =
j − 1

2
= 1, 2, . . . , N , (B.32)

(see Eqs. (B.20),(B.21),(B.22)), with eigenvalues ±1, so that the vortex equa-
tions can be better formulated, and the symmetry maintained by individual
vortex solutions can be seen explicitly in this basis. QiA, (i = 3, 5, . . .),
form an N of SU(N) ⊂ SO(2N); Q̂iA, (i = 3, 5, . . .), form an N̄. In other
words, it represents the decomposition of a 2N of SO(2N) into N + N̄ of
SU(N) ⊂ SO(2N). The change of basis from the vector basis (q) and U(N)
basis (Q, Q̂) is discussed more extensively in Appendix A.

B.3 Vortices in the SO(2N) × U(1) theory

B.3.1 The vacuum and BPS vortices

The low-energy Lagrangian for the theory with gauge group SO(2N)×U(1)
and squarks qA,q̃A in the fundamental representation of SO(2N) is

L = − 1

4g2
1

F 0µνF 0
µν −

1

4g2
2N

F bµνF b
µν + |DµqA|2 +

∣∣∣Dµq̃
†
A

∣∣∣
2

(B.33)

−g
2
2N

2

∣∣∣q†AtbqA − q̃At
bq̃†A

∣∣∣
2

− 2g2
2N

∣∣q̃AtbqA
∣∣2

−g
2
1

2

∣∣∣q†AqA − q̃Aq̃
†
A

∣∣∣
2

− 2g2
1

∣∣∣∣q̃AqA +
µm√

2

∣∣∣∣
2

+ · · ·

where the dots denote higher orders in µ/m and terms involving δφ = φ−〈φ〉.
Note that to this order, the only modification is a Fayet-Iliopoulos term which
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does not break N = 2 SUSY. The covariant derivative acts as

DµqA = ∂µqA − iA0
µ qA − iAb

µt
bqA , (B.34)

where ta is normalized as
Tr (ta)2 = 1 , (B.35)

and

ta =
1√
2
H(a) =

1√
2

(
0 −i
i 0

)

2a+1,2a+2

, (B.36)

where H(a) is the a-th Cartan generator of SO(2N), a = 1, 2, . . . , N , which
we take simply as

H(a) =

(
0 −i
i 0

)

2a+1,2a+2

. (B.37)

As we have seen already, each light field carries unit charge with respect to
H(0); the pair (QA,j, Q̂A,j), j = 3, 5, 7, . . ., furthermore carries the charge ±1
with respect to H(a) (a = (j − 1)/2) and zero charge with respect to other
Cartan generators.

Let us define
ξ =

µm

2
, (B.38)

which is the only relevant dimensional parameter in the Lagrangian. We
set Nf = 2N , which is enough for our purposes1. By writing qiA, q̃Ai as
color-flavor mixed matrices q, q̃, the vacuum equations are now cast into the
form

Tr
(
qq†
)

= Tr
(
q̃†q̃
)
, (B.39)

qq† −
(
qq†
)T

= q̃†q̃ −
(
q̃†q̃
)T

, (B.40)

Tr
(
qq̃
)

= ξ , (B.41)

Tr
(
tbqq̃

)
= 0 . (B.42)

The vacuum we choose to study is characterized by the color-flavor locked
phase

〈qA,j〉 =
〈
q̃†A,j

〉
= δA,j v2 , v2 =

√
ξ

2N
, (B.43)

or

〈q〉 =
〈
q̃†
〉

= v2 1 = v2




1 0 0 0
0 1 0 0

0 0
. . . 0

0 0 0 1


 , (B.44)

1Higher Nf are interesting because of semilocal vortex configurations arising in these
theories. These solutions will be discussed elsewhere.
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which clearly satisfies all the equations above. The gauge (O) and flavor (U)
transformations act on them as

q → O q UT , q̃ → U∗ q̃ OT O ∈ SO(2N) × U(1) , U ∈ U(2N) :
(B.45)

the gauge group is completely broken, while a global SO(2N)C+F ×U(1)C+F

group (U = O) is left unbroken.
When looking for vortex solutions, one suppresses time and z dependence

of the fields and retains only the component Fxy of the field strength. The
vortex tension can be cast in the Bogomol’nyi form

T =

∫
d2x

{ ∣∣∣∣
1

2 g2N
F b

ij ± g2Nεij q̃At
bqA

∣∣∣∣
2

+

∣∣∣∣
1

2 g1
F 0

ij ± g1εij (q̃AqA − ξ)

∣∣∣∣
2

+
1

2

∣∣∣DiqA ± iεijDj q̃
†
A

∣∣∣
2

+
1

2

∣∣∣Diq̃
†
A ± iεijDjqA

∣∣∣
2

+
g2
2N

2

∣∣∣q†AtbqA − q̃At
bq̃†A

∣∣∣
2

+
g2
1

2

∣∣∣q†AqA − q̃Aq̃
†
A

∣∣∣
2

± εij ξF
0
ij

}
.

(B.46)

The terms with the square brackets in the last line of Eq. (B.46) automatically
vanish with the ansatz [169]

qiA = q̃†iA : (B.47)

thus we shall use this ansatz for the vortex configurations. The resulting
BPS equations are

1

2 g1
F 0

ij + η g1 εij

(
q†AqA − ξ

)
= 0 , (B.48)

1

2 g2N

F b
ij + η g2N εij q

†
At

bqA = 0 , (B.49)

DiqA + i η εij DjqA = 0 , η = ±1 , (B.50)

where we have used the ansatz (B.47). The tension for a BPS solution is

T = η

∫
d2x εij ξ F

0
ij . (B.51)

To obtain a solution of these equations, we need an ansatz for the squark
fields. It is convenient to perform a U(2N)F transformation (B.30), where
the vacuum takes the block-diagonal form

〈Q〉 = 〈Q̃†〉 =

√
ξ

2N
· 1√

2




1 1 0 0 · · ·
i −i 0 0 · · ·
0 0 1 1 · · ·
0 0 i −i · · ·
...

...
...

...
. . .




, (B.52)
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In this basis, the ansatz is:

Ai = ha(r) t
a εij

rj

r2
; t0 ≡ 1√

2
, ta =

1√
2

(
0 −i
i 0

)

2a+1,2a+2

; (B.53)

Q(r, ϑ) =
1√
2




ein+
1 ϑϕ+

1 (r) ein−

1 ϑϕ−
1 (r) 0 0 · · ·

iein+
1 ϑϕ+

1 (r) −iein−

1 ϑϕ−
1 (r) 0 0 · · ·

0 0 ein+
2 ϑϕ+

2 (r) ein−

2 ϑϕ−
2 (r) · · ·

0 0 iein+
2 ϑϕ+

2 (r) −iein−

2 ϑϕ−
2 (r) · · ·

...
...

...
...

. . .



,

(B.54)
where tas are the generators of the Cartan subalgebra of SO(2N). The
conditions for the fields at r → ∞ are fixed by the requirement of finite
energy configurations:

ϕ±
a (∞) =

√
ξ

2N
, (B.55)

n±
a = n(0) ∓ n(a) , n(0) ≡ 1√

2
h0(∞) ; n(a) ≡ 1√

2
ha(∞) , (B.56)

where n(0) and n(a) are the winding numbers with respect to the U(1) and
to the a-th Cartan U(1) ∈ SO(2N) defined in Eq. (B.37).

Clearly

N0 ≡ n+
a + n−

a = 2n(0) , (B.57)

is independent of a. The regularity of the fields requires that the QAs come
back to their original value after a 2π rotation, and this yields the quantiza-
tion condition,

n±
a ∈ Z , ∀a , (B.58)

implying that the U(1) winding numbers n(0) and n(a) are quantized in half in-
teger units, consistently with considerations based on the fundamental groups
(see Appendix B.8 and below).

We need only the information contained in Eqs. (B.53),(B.56) to evaluate
the tension for a BPS solution:

T = 2 η ξ lim
r→∞

∫
dϑ r A0

ϑ(r) = 2
√

2π η ξ h0(∞) = 2π η ξ N0 = 2π ξ |N0| .
(B.59)

The last equality comes from the requirement for the tension to be positive,
so η = sign(N0). Note that the tension depends only on |N0|, which is twice
the U(1) winding.
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From the BPS equations we obtain the differential equations for the profile
functions h0, ha, ϕ

±
a :

dh0

dr
= −2

√
2 η g2

1 r

(
∑

a

(
|ϕ+

a |2 + |ϕ−
a |2
)
− ξ

)
, (B.60)

dha

dr
= 2

√
2 η g2

2N r
(
|ϕ+

a |2 − |ϕ−
a |2
)
, (B.61)

dϕ±
a

dr
= η

(
n±

a − h0 ∓ ha√
2

)
ϕ±

a

r
. (B.62)

In order to cast them in a simple form, we define f0 = h0 − N0√
2

and fa =

ha + n+
a −n−

a√
2

and obtain

df0

dr
= −2

√
2 η g2

1r

(
∑

a

(
|ϕ+

a |2 + |ϕ−
a |2
)
− ξ

)
, (B.63)

dfa

dr
= 2

√
2 η g2

2Nr
(
|ϕ+

a |2 − |ϕ−
a |2
)
, (B.64)

dϕ±
a

dr
= −η

(
f0 ∓ fa√

2

)
ϕ±

a

r
. (B.65)

The boundary conditions at r → ∞ are

ϕ±
a (∞) =

√
ξ

2N
, f0(∞) = fa(∞) = 0 , (B.66)

There are also regularity conditions at r = 0 for the gauge fields h0(0) =
ha(0) = 0 which are

f0(0) = −N0√
2
, fa(0) =

n+
a − n−

a√
2

, (B.67)

Solving Eq. (B.65) for small r with the conditions (B.67), we obtain ϕ±
a ∼

rn±
a η. To avoid a singular behavior for these profile functions we need

sign
(
n±

a

)
= η . (B.68)

This condition is consistent with η = sign(N0). With this condition there
are no singularities at r = 0 and the equations (B.63),(B.64),(B.65) can be
solved numerically with boundary conditions (B.66),(B.67).

The profile functions for the simplest vortex N0 = 1, n+
1 = 1, n−

1 = 0 in
the SO(2)×U(1) theory are shown in Figure B.1, B.2. The profile functions
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Figure B.1: Numerically integrated minimum vortex solution with N0 = 1, where we
have taken the couplings to be 4g2

1 = 4g2
2N = 1. (χi ≡

√
2fi).

(f0, fa, ϕ
+
a , ϕ

−
a ) for the minimal vortex N0 = 1, n+

i = 1, n−
i = 0 in the

SO(2N) × U(1) theory can be obtained by rescaling g2
2N → g2

2N/N and
then taking all ϕ±

a equal to the profile functions shown above rescaled by a
factor 1/

√
N . Similarly, solutions corresponding to the exchange (n+

a , n
−
a ) =

(1, 0) ↔ (0, 1) can be obtained by exchanging fa ↔ −fa and ϕ+
a ↔ ϕ−

a .
The typical length scale of the profile functions is 1/

√
ξ, which is the only

dimensional parameter in the Bogomol’nyi equations.

B.3.2 Vortex moduli space

To study the space of solutions of the BPS equations we have obtained above,
it is convenient to rewrite the ansatz (B.54) for the squark fields in the original
basis:

q(r, ϑ) =




M1(r, ϑ) 0 0 · · ·
0 M2(r, ϑ) 0 · · ·
0 0 M3(r, ϑ) · · ·
...

...
...

. . .


 , (B.69)

Ma(r, ϑ) =
1

2


 ein+

a ϑϕ+
a (r) + ein−

a ϑϕ−
a (r) −i

(
ein+

a ϑϕ+
a (r) − ein−

a ϑϕ−
a (r)

)

i
(
ein+

a ϑϕ+
a (r) − ein−

a ϑϕ−
a (r)

)
ein+

a ϑϕ+
a (r) + ein−

a ϑϕ−
a (r)


 .

In this basis the action of the SO(2N)C+F transformations on squark fields is
simply q′ = O qOT . The first observation is that if q̂(r, ϑ) is a solution to the
BPS equations, O q̂(r, ϑ)OT is also a solution. Note also that these solutions
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Figure B.2: Numerically integrated minimum vortex solution with N0 = 1, where we
have taken the couplings to be 4g2

1 = 1 and 4g2
2N = 2 for the left panel and 4g2

1 = 2 and
4g2

2N = 1 for the right panel. (χi ≡
√

2fi).

are physically distinct because they are related by a global symmetry. In
this way, from a single solution of the form (B.54), we can obtain a whole
continuous SO(2N) orbit of solutions. Any given vortex solution is a point
in the moduli space and SO(2N)C+F acts as an isometry on this space.

From Eqs. (B.56) and (B.68), we see that regular solutions are described
by a set of 2N + 1 integers N0,n

±
a which satisfy the following conditions:

n+
a + n−

a = N0 , ∀a , (B.70)

sign(n+
a ) = sign(n−

a ) = sign(N0) , ∀a , (B.71)

where N0 ∈ Z is related to the winding around the U(1) and is the only
parameter of the solution which enters the tension T = 2πξ|N0|.

Let us study the solutions with the minimum tension. Minimal vortices
have N0 = ±1 and T = 2πξ. Note that solutions with N0 < 0 can be
obtained by taking the complex conjugate of solutions with N0 > 0, so from
now on we will consider only solutions with positive N0. These vortices can
be divided into two groups, the first has 2N−1 representative (basis) vortices
which are

N0 = 1,




n+
1 n−

1

n+
2 n−

2
...

...
n+

N−1 n−
N−1

n+
N n−

N




=




1 0
1 0
...

...
1 0
1 0



,




0 1
0 1
1 0
...

...
1 0



, . . . , (B.72)
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which all have an even number of n−
i ’s equal to 1; and the second set is

represented by 2N−1 vortices, characterized by the integers

N0 = 1,




n+
1 n−

1

n+
2 n−

2
...

...
n+

N−1 n−
N−1

n+
N n−

N




=




1 0
1 0
...

...
1 0
0 1



,




1 0
...

...
1 0
0 1
1 0



, . . . , (B.73)

with an odd number of n−
i ’s equal to 1.

These two sets belong to two distinct orbits of SO(2N)C+F . To see this
one must study the way they transform under SO(2N)C+F . Consider for

instance the case of N = 2: the SO(4)C+F transformations

(
σ3 0
0 σ3

)
and

(
0 −1
1 0

)
exchange (n+

1 , n
+
2 ) ↔ (n−

1 , n
−
2 ) and (n+

1 , n
−
1 ) ↔ (n+

2 , n
−
2 ), respec-

tively. In the general SO(2N) case, two solutions differing by the exchange
(n+

i , n
+
j ) ↔ (n−

i , n
−
j ) or (n+

i , n
−
i ) ↔ (n+

j , n
−
j ) for some i,j, therefore belong

to the same orbit of SO(2N)C+F . The vortices in the set (B.72) belong to a
continuously degenerate set of minimal vortices; the set (B.73) form the “ba-
sis” of another, degenerate set. The two sets do not mix under the SO(2N)
transformations.

In order to see better what these two sets might represent, and to see how
each vortex transforms under SO(2N)C+F , let us assign the two “states”,
|↑〉j, |↓〉j of a j-th (1

2
) spin, j = 1, 2, . . . , N , to the pair of vortex wind-

ing numbers (n+
j , n

−
j ) = (0, 1), (1, 0). Each of the 2N minimum vortices

(Eqs. (B.72),(B.73)) can then be represented by the 2N spin state,

|s1|⊗〉|s2|⊗〉 · · · |sN | 〉, |sj|=〉|↑|=〉(0, 1) , or |↓|=〉(1, 0) . (B.74)

For instance the first vortex of Eq. (B.72) corresponds to the state, |↓↓ . . . ↓〉.
Introduce now the “gamma matrices” as direct products of N Pauli ma-

trices acting as

γj ≡ τ3 ⊗ · · · ⊗ τ3︸ ︷︷ ︸
j−1

⊗τ1 ⊗ 1 ⊗ · · · ⊗ 1 , (j = 1, 2, . . . , N) ; (B.75)

γN+j ≡ τ3 ⊗ · · · ⊗ τ3︸ ︷︷ ︸
j−1

⊗τ2 ⊗ 1 ⊗ · · · ⊗ 1 , (j = 1, 2, . . . , N) . (B.76)

γk, k = 1, 2, . . . , 2N satisfy the Clifford algebra

{γi, γj} = 2 ηij , i, j = 1, 2, . . . , 2N ,
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and the SO(2N) generators can accordingly be constructed by Σij = 1
4i

[γi, γj].
SO(2N) transformations (including finite transformations) among the vortex
solutions can thus be represented by the transformations among the N -spin
states, (B.74).

As each of Σij (i 6= j) flips exactly two spins, the two sets (B.72) and
(B.73) clearly belong to two distinct orbits of SO(2N). In fact, a “chirality”
operator

Γ5 ≡ P

2N∏

j=1

γj , {Γ5, γj} = 0 , j = 1, 2, . . . , 2N , (B.77)

anticommutes with all γj’s, where P = 1 (N even) or P = i (N odd), hence
commutes with SO(2N). The two sets Eq. (B.72), Eq. (B.73) of minimal
vortices thus are seen to transform as two spinor representations of definite
chirality, 1 and −1, respectively (with multiplicity 2N−1 each).

Every minimal solution is invariant under a U(N) group embedded in
SO(2N)C+F . This can be seen from the form of the first solution in (B.72)
in the basis (B.69):

q(1) = f+(r, ϑ)




1
. . .

1


+ f−(r, ϑ)



σ2

. . .

σ2


 . (B.78)

This solution is invariant under the subgroup U(N) ⊂ SO(2N) acting as
U q(1) U

T , where U ∈ U(N) commutes with the second matrix in (B.78).
In theN -spin state representation above, the vortex (B.78) corresponds to

the state with all spins down, |↓↓ . . . ↓〉. In order to see how the N -spin states
transform under SU(N) ⊂ SO(2N), construct the creation and annihilation
operators

aj =
1

2
(γj − i γN+j) ; a†j =

1

2
(γj + i γN+j) ,

satisfying the algebra,

{aj, ak} = {a†j, a†k} = 0 , {aj , a
†
k} = δjk .

SU(N) generators acting on the spinor representation, can be constructed
as [176]

T a =
∑

j,k

a†j (ta)jk ak ,

where ta are the standard N × N SU(N) generators in the fundamental
representation. The state |↓↓ . . . ↓〉 is clearly annihilated by all T a, as it is
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annihilated by all

ak = τ3 ⊗ · · · ⊗ τ3︸ ︷︷ ︸
k−1

⊗τ− ⊗ 1 ⊗ · · · ⊗ 1 , k = 1, 2, . . .N :

thus, the vortex (B.78) leaves U(N) invariant.
All other solutions can be obtained as R q(1)R

T with R ∈ O(2N), so each
solution is invariant under an appropriate U(N) subgroup RU RT . This
means that the moduli space contains two copies of the coset space

M = SO(2N)/U(N) . (B.79)

The points in each coset space transform according to a spinor representa-
tion of definite chirality, each with dimension 2N−1. When discussing the
topological properties of vortices, we will see that these disconnected parts
correspond to different elements of the homotopy group.

Vortices of higher windings are described by N0 > 1. In the simplest
non-minimal case, the vortices are described by:

N0 = 2 ,




2 0
2 0
...

...
2 0
2 0



,




2 0
2 0
...

...
2 0
0 2



,




2 0
2 0
...

...
2 0
1 1



. . .




2 0
1 1
...

...
1 1
1 1



,




1 1
1 1
...

...
1 1
1 1



. (B.80)

These orbits correspond to parts of the moduli space whose structure cor-
responds to the coset spaces SO(2N)�U(N − k) × SO(2k), where k is the
number of (1, 1) pairs. Analogously vortices with N0 ≥ 3 can be constructed.

The argument that the minimum vortices transform as two spinor rep-
resentations implies that the N0 = 2 vortices (B.80) transform as various
irreducible antisymmetric tensor representations of SO(2N)C+F , appearing
in the decomposition of products of two spinor representations: e.g.

2N−1 ⊗ 2N−1 or 2N−1 ⊗ 2N−1 , (B.81)

Although all these vortices are degenerate in the semi-classical approxima-
tion, non-BPS corrections will lift the degeneracy, leaving only the degener-
acy among the vortices transforming as an irreducible multiplet of the group
SO(2N)C+F . For instance the last vortex n+

a = n−
a = 1, for all a, carries only

the unit U(1) winding and is a singlet, the second last vortex and analogous
ones belong to a 2N, and so on.

Due to the fact that the tension depends only on N0 = 2n(0) (twice the
U(1) winding) the degeneracy pattern of the vortices does not simply reflect
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Figure B.3: Numerically integrated minimum vortex solution with N0 = 2, where we
have taken the couplings to be 4g2

1 = 4g2
2N = 1. In the left panel we have shown the

element (n+, n−) = (1, 1) and in the right panel the element (n+, n−) = (2, 0). The
dependence of the couplings turns out to be similar to the case of the minimal vortex
(n+, n−) = (1, 0). (χi ≡

√
2fi).

the homotopy map which relates the vortices to the massive monopoles. The
monopole-vortex correspondence will be discussed in Section B.5 below.

The profile functions (f0, fa, ϕ
+
a , ϕ

−
a ) for the simplest non-minimal vortex,

N0 = 2 are illustrated in Figure B.3. In the figure is just considered the two
simplest elements (n+, n−) = (1, 1) and (n+, n−) = (2, 0). Adding elements
of the same type corresponds just to a rescaling of the coupling g2

2N and of
the functions ϕ±

a as in the minimal vortex case (N0 = 1). Adding elements
of different types ((2, 0) or (1, 1)) does not induce new behavior.

B.4 Vortices in SO(2N + 1) theories

Consider now the case of a theory with symmetry breaking

SO(2N + 3)
v1−→ SO(2N + 1) × U(1)

v2−→ 1 . (B.82)

The fields which remain massless after the first symmetry breaking can be
found exactly as in the even SO theories by use of various SO(3) groups,
leading to Eq. (B.17), with A = 1, 2, . . . , Nf where we now take Nf = 2N+1.
The light quarks can get color-flavor locked VEVs as in Eq. (B.44), leading
to a vacuum with global SO(2N + 1)C+F symmetry.
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The ansatz (B.69) must be modified as follows

q(r, ϑ) =




M1(r, ϑ) · · · 0 0
...

. . .
...

...
... · · · MN (r, ϑ) 0
0 · · · 0 ein̂ϑϕ̂(r)


 , (B.83)

introducing a new integer n̂ and a new profile function ϕ̂(r). The equation
(B.63) becomes

df0

dr
= −2

√
2 η g2

1r

(
∑

a

(
|ϕ+

a |2 + |ϕ−
a |2
)

+ |ϕ̂|2 − ξ

)
, (B.84)

while the condition of finite energy gives

ϕ̂(∞) =

√
ξ

2N + 1
, (B.85)

n̂ =
h0(∞)√

2
=
N0

2
, (B.86)

and the equation for ϕ̂(r) is

dϕ̂

dr
= η

(
n̂− h0√

2

)
ϕ̂

r
= −η f0√

2

ϕ̂

r
. (B.87)

Note that the condition (B.86) fixes n̂ in terms of N0: as n̂ must be an
integer, this theory contains only vortices with even N0. This can be traced
to the different structure of the gauge groups. In fact, SO(2N + 3) has no
center, so the pattern of symmetry breaking is

SO(2N + 3) → SO(2N + 1) × U(1) → 1 , (B.88)

and there are no vortices with half-integer winding around the U(1), or
around any other Cartan U(1) subgroups.

The vortices are classified by the same integers n±
a as before, but now

there are SO(2N + 1)C+F transformations which exchange n+
a ↔ n−

a singly.
The minimal vortices are labeled by

(n+
a , n

−
a ) =




2 0
2 0
...

...
2 0
2 0



,




2 0
2 0
...

...
2 0
1 1



. . .




2 0
1 1
...

...
1 1
1 1



,




1 1
1 1
...

...
1 1
1 1



, n̂ = 1 . (B.89)
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Figure B.4: Numerically integrated minimum vortex solution of the SO(2N +1) theory,
with N0 = 2 and we take the couplings to be 4g2

1 = 4g2
2N = 1. In the left panel we have

(n+
1 , n−

1 ) = (1, 1) and in the right panel (n+
1 , n−

1 ) = (2, 0). The dependence of the couplings
turns out to be analogous to the case of the (n+

1 , n−

1 ) = (1, 0) vortex. (χi ≡
√

2fi).

The moduli space contains subspaces corresponding to these orbits, whose
structure is that of the coset spaces SO(2N +1)� (U(N − k) × SO(2k + 1))
where k is the number of (1, 1) pairs.

The vortex profile functions are shown in Figure B.4.

B.5 Monopoles, vortices, topology and con-

finement

B.5.1 Homotopy map

The multiplicity of vortex solutions depends on the particular topology of
the symmetry-breaking pattern of our model.

Usually, in systems with a gauge Lie group G and a symmetry-breaking
pattern

G
v1−→ H

v2−→ 1 , (B.90)

there are:

• Stable Dirac monopoles, classified by π1(G);

• Regular monopoles, classified by π2(G/H); topologically stable only in
the limit v2 → 0;
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• Vortices, classified by π1(H); if they correspond to a non-trivial element
of π1(G), they are topologically stable; otherwise they are topologically
stable only in the limit v1 → ∞.

Monopoles and vortices are related by the topological correspondence [157]

π2(G/H) = π1(H)/π1(G) , (B.91)

so regular monopoles correspond to vortices which are trivial with respect to
π1(G), while vortices which are non-trivial with respect to π1(G) correspond
to Dirac monopoles.

In our theories of type DN , however, the center CG = Z2 acts trivially on
all fields and the breaking pattern is

G
v1−→ H

v2−→ CG , (B.92)

and the topological relation (B.91) is not directly useful. In fact, vortices
are classified by π1(H/CG), which is a richer homotopy group than π1(H) ∼
π2(G/H) × π1(G). In our example the relevant group is

π1

(
SO(2N) × U(1)

Z2

)
= Z × Z2 . (B.93)

The failure of (B.91) would mean that the correspondence between monopoles
and vortices is lost.

Actually, it is better to formulate the problem as follows. The theory
contains only fields in the adjoint representation, so we can neglect the center
CG from the beginning and consider the gauge group as G′ = G/CG. In
our example, the gauge group of the high-energy theory can be taken as
G′ = SO(2N + 2)/Z2, broken to H ′ = (SO(2N) × U(1))/Z2 at scale v1 and
then completely broken at scale v2:

G′ v1−→ H ′ v2−→ 1 . (B.94)

instead of Eq. (B.92). Then the relation (B.91) reads

π2

(
SO(2N + 2)

SO(2N) × U(1)

)
=
π1

(
SO(2N)×U(1)

Z2

)

π1

(
SO(2N+2)

Z2

) . (B.95)

Regular monopoles are classified by the same homotopy group as before,
because

SO(2N + 2)/Z2

(SO(2N) × U(1))/Z2
=

SO(2N + 2)

SO(2N) × U(1)
, (B.96)
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while for Dirac monopoles the situation is different: the relevant homotopy
group is not π1 (SO(2N + 2)), but the larger group π1 (SO(2N + 2)/Z2) (see
Appendix B.8)

π1

(
SO(4J)

Z2

)
= Z2 × Z2 , (B.97)

while

π1

(
SO(4J + 2)

Z2

)
= Z4 , (B.98)

so that the Dirac monopoles have quantized Z2 × Z2 or Z4 charges.
This means that the theory has a larger set of monopoles, and the cor-

respondence between monopoles and vortices (which confine them) is rather
subtle2.

In appendix B.8 we briefly review the structure of the homotopy groups
which are relevant for this analysis.

Finally, for the groups of type BN , the situation is slightly simpler as there
is no non-trivial center. The non-trival element of π1 (SO(2N + 3)) = Z2 rep-
resents the (unique type of) Dirac monopoles; the elements of π1 (SO(2N + 1) × U(1)) =
Z2 ×Z label the vortices of the low-energy theory. The vortices whose (non-
trivial) winding in the group SO(2N+1)×U(1) corresponds to a contractible
loop in the parent theory, confine the regular monopoles.

B.5.2 Flux matching

To establish the matching between regular GNO monopoles and low-energy
vortices, we use the topological correspondence discussed in the previous sec-
tion. Dirac monopoles are classified by π1 (SO(2N + 2)/Z2) or by π1 (SO(2N + 3))

depending on the gauge group, but regular monopoles are classified by π2

(
SO(2N+2)

SO(2N)×U(1)

)

or by π2

(
SO(2N+3)

SO(2N+1)×U(1)

)
, i.e. homotopically non-trivial paths in the low-

energy gauge group, which are trivial in the high-energy gauge group. Reg-
ular monopoles can be sources for the vortices corresponding to these paths.

The vortices of the lowest tension which satisfy this requirement are those
with N0 = ±2 and

∑
a(n

+
a −n−

a )/2 odd, so vortices corresponding to minimal
GNO monopoles belong to the SO(2N)C+F orbits classified by (B.80) with
an odd number of (±2, 0) pairs.

For a better understanding of this correspondence, we can also use flux
matching between vortices and monopoles [171]. There are 2N GNO monopoles

2Note that the Lagrangian and fields for the two theories with gauge group SO(2N +2)
and SO(2N + 2)/Z2 are the same. The set of vortices is the same for both theories and
has a topological correspondence with the larger set of monopoles.
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obtained by different embeddings of broken SU(2) ⊂ SO(4) in SO(2N + 2).
In a gauge where φ is constant, their fluxes are

∫

S2

d~S · ~Bata = 2
√

2π(t0 ± ti) , (B.99)

where t0 ± ti is the unbroken generator of the broken SU(2) subgroup. In
the same gauge, the flux of a vortex is

∫

R2

d2xBa
z t

a = −N0

√
2πt0 +

(
n+

j − n−
j

)√
2πtj , (B.100)

so the fluxes agree for N0 = −2, n+
j − n−

j = ±2δij . The antimonopoles
correspond to the opposite sign N0 = 2.

B.5.3 Monopole confinement: the SO(2N) theory

We have now all the tools needed to analyze the duality in the SO theories at
hand. The general scheme for mapping the monopoles and vortices has been
set up in Section B.5.1. An important point to keep in mind is that, while
the vortex tension depends only on the U(1) flux in our particular model
(Eq. (B.59)), the classification of vortices according to the first homotopy
group reflects the other Cartan charges (windings in SO(2N) or SO(2N+1)).
It is necessary to keep track of these to see how the vortices in the low-energy
theory are associated with the monopoles of the high-energy system.

First consider the theories of type DN , with the symmetry breaking

SO(2N + 2)
v1−→ SO(2N) × U(1)

v2−→ 1 . (B.101)

studied in detail in the preceding sections. The vortices with minimum wind-
ing, N0 = 1, of Eqs. (B.72), (B.73), correspond to the minimum non-trivial
element of π1 ((SO(2N) × U(1))/Z2), which represent also the minimal ele-
ments of π1 (SO(2N + 2)/Z2). This last fact means that they are stable in
the full theory. They would confine Dirac monopoles of the minimum charge
in the underlying theory, 1 of Z4 or (1, 0) or (0, 1) of Z2 × Z2, see Appendix
B.8.2.

Consider now the vortices Eq. (B.80) with N0 = 2. As the fundamental
group of the underlying theory is given by either Eq. (B.97) or Eq. (B.98),
some of the vortices will correspond to non-contractible loops in the under-
lying gauge group: they would be related to the Dirac monopoles and not to
the regular monopoles. Indeed, consider the last of Eq. (B.80):

(
n−

a

n+
a

)
=

(
1 1 1 . . . 1
1 1 1 . . . 1

)
. (B.102)
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It is characterized by the windings n(0) = 1, n(a) = 0 for all a. Thus it is
an ANO vortex of the U(1) theory, with no flux in the SO(2N) part. It
corresponds to a 2π rotation in (12) plane in the original SO(2N + 2) group
– the path P in Appendix B.8.1: it is to be associated with a Dirac monopole
of charge 2.

The vortices of the type
(

0 1 1 . . . 1
2 1 1 . . . 1

)
, (B.103)

and analogous ones (with (2, 0) or (0, 2) appearing in different positions) are
characterized by the two U(1) windings only: a flux n(0) = 1 and one of the
Cartan flux of SO(2N), e.g., n(1) = 1 (n(a) = 0, a 6= 1). They correspond
to a simultaneous 2π rotations in (12) and in (34) planes in the gauge group
and it represents a contractible loop in the high-energy gauge group. They
confine regular monopoles, as can be seen also by the flux matching argument
discussed in section B.5.2.

Part of the continuous moduli of these vortex solutions include

SO(2N)�U(1) × SO(2N − 2) , (B.104)

as the individual soliton breaks SO(2N)C+F symmetry of the system. This
space corresponds to the complex quadric surface Q2N−2(C). As these vor-
tices are not elementary but composite of the minimal vortices, determining
their correct moduli space structure is not a simple task.

Nevertheless, there are some indications that these correspond to a vec-
tor representation 2N of SO(2N)C+F , appearing in the decomposition of
the product of two spinor representations, Eq. (B.81). In fact, the vortex
Eq. (B.103) arises as a product

(
0 0 0 . . . 0
1 1 1 . . . 1

)
⊗
(

0 1 1 . . . 1
1 0 0 . . . 0

)
: (B.105)

i.e., a product of two spinors of the same chirality if N is odd; vice versa,
of spinors of opposite chirality if N is even. This corresponds precisely to
the known decomposition rules in SO(4m+2) and SO(4m) groups (see e.g.,
[176], Eq. (23.40)).

In order to establish that these vortices indeed transform under the SO(2N)C+F

as a 2N one needs to construct the moduli matrix [173] for these, and study
explicitly how the points in the moduli space transform. This problem will
be studied elsewhere.

It is interesting to note that there seems to be a relation between the
transformation properties of monopoles under the dual GNO group S̃O(2N)
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and the transformation properties of the corresponding vortices under the
SO(2N)C+F group. In fact, vortices transforming as a vector of SO(2N)C+F

have precisely the net magnetic flux of regular monopoles in 2N of S̃O(2N),
as classified by the GNO criterion.

Other vortices in Eq. (B.80) correspond to various Dirac (singular) or
regular monopoles in different representations of SO(2N)C+F .

B.5.4 Monopole confinement: the SO(2N + 1) theory

In the BN theories with the symmetry breaking

SO(2N + 3)
v1−→ SO(2N + 1) × U(1)

v2−→ 1 . (B.106)

the minimal vortices of the low-energy theory have N0 = 2. Reflecting the
difference of π1 group of the underlying theory as compared to the DN cases
(Z2 as compared to Z2 × Z2 or Z4), the N0 = 1 vortices (with half winding
in U(1) and SO(2N)) are absent here.

The minimal vortices (B.89) again correspond to different homotopic
types and to various SO(2N + 1) representations. The vortex

(
1 1 1 . . . 1
1 1 1 . . . 1

)
, n̂ = 1 , (B.107)

has the U(1) charge n(0) = 1 and no charge with respect to SO(2N + 1). It
is associated to the non-trivial element of π1 (SO(2N + 3)) = Z2: it is stable
in the full theory. Its flux would match that of a Dirac monopole. This is a
singlet of SO(2N + 1)C+F (its moduli space consists of a point).

Consider instead the vortices
(

0 1 1 . . . 1
2 1 1 . . . 1

)
, n̂ = 1 , (B.108)

and analogous ones, having the winding numbers n(0) = 1, n(a) = ±1,
n(b) = 0, b 6= a, and n̂ = 1. These would correspond to regular monopoles
which, according to GNO classification, are supposed to belong to a 2N rep-
resentation of the dual group USp(2N). Again, though it is not a trivial task
to establish that these vortices do transform as 2N of such a group, there are
some hints they indeed do so. It is crucial that the symmetry group (broken
by individual soliton vortices) is SO(2N+1): it is in fact possible to identify
the 2N generators constructed out of those of SO(2N + 1), that transform
them appropriately (Appendix). Secondly, the flux matching argument of
Section B.5.2 do connect these vortices to the minimum, regular monopoles
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appearing in the semiclassical analysis. As in the DN theories these observa-
tions should be considered at best as a modest hint that dual group structure
as suggested by the monopole-vortex correspondence is consistent with the
GNO conjecture.

B.6 Conclusions

In this appendix we have explicitly constructed BPS, non-Abelian vortices
of a class of SO(N) × U(1) gauge theories in the Higgs phase. The models
considered here can be regarded as the bosonic part of softly broken N = 2
gauge theories with Nf quark matter fields. The vortices considered here rep-
resent non-trivial generalizations of the non-Abelian vortices in U(N) models
widely studied in recent literature.

The systems are constructed so that they arise as low-energy approx-
imations to theories in which gauge symmetry suffers from a hierarchical
breaking

SO(N + 2)
v1−→ SO(N) × U(1)

v2−→ 1 , v1 ≫ v2 , (B.109)

leaving an exact, unbroken global (SO(N) × U(1))C+F symmetry. Even
though the low-energy SO(N) × U(1) model with symmetry breaking

SO(N) × U(1)
v2−→ 1 , (B.110)

can be studied on its own right, without ever referring to the high-energy
SO(N + 2) theory, consideration of the system with hierarchical symmetry
breaking is interesting as it forces us to try (and hopefully allows us) to
understand the properties of the non-Abelian monopoles in the high-energy
approximate system with SO(N + 2)

v1−→ SO(N) × U(1) and their confine-
ment by the vortices – language adequate in the dual variables – from the
properties of the vortices via homotopy map and symmetry argument. Note
that in this argument, the fact that the monopoles in the high-energy the-
ory and the vortices in the low-energy theory are both almost BPS but not
exactly so, is of fundamental importance [158, 177].

In the models based on SU(N) gauge symmetry, the efforts along this
line of thought seem to be starting to give fruits, giving some hints on the
nature of non-Abelian duality and confinement. Although the results of this
work are a only a small step toward a better and systematic understanding
of these questions in a more general class of gauge systems, they provide a
concrete starting point for further studies.
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B.7 Appendix: SO(2N), USp(2N), SO(2N + 1)

The change of basis to the one where a vector multiplet 2N of SO(2N)
naturally breaks to N + N̄ under U(N), is given by (see Eq. (B.30))




Q̂3
...

Q̂2N+1

−iQ3
...

−iQ2N+1




=

(
1/
√

2 −i1/
√

2

−i1/
√

2 1/
√

2

)




q3
...

q2N+1

q4
...

q2N+2




. (B.111)

The SO(2N) generators, (
E F

− tF D

)
, (B.112)

where D, E, F are all pure imaginary N ×N matrices, with the constraints
tE = −E, tD = −D, are accordingly transformed as

(
1/
√

2 −i/
√

2

−i/
√

2 1/
√

2

)(
E F

− tF D

)(
1/
√

2 i/
√

2

i/
√

2 1/
√

2

)

=
1

2

(
(E +D) + i(F + tF ) i(E −D) + (F − tF )
−i(E −D) + (F − tF ) (E +D) − i(F + tF )

)
. (B.113)

Since both E, D are anti-symmetric, (E + D) in the 1st block is the most
general anti-symmetric imaginary matrix, while i(F + tF ) is the most general
symmetric real matrix. Their sum gives the most general N × N hermitian
matrix, which corresponds to generators of U(N). In other words, the sub-
group U(N) ⊂ SO(2N) is generated by those elements with E = D, F = tF .

On the other hand, the generators of USp(2N) group have the form

(
B A
C − tB

)
, (B.114)

with the constraints, tA = A, tC = C, A∗ = C, B† = B. The fact that A is
symmetric while the non-diagonal blocks in Eq. (B.113) are antisymmetric,
means that there is no further overlap between the two groups, that is, the
maximal common subgroup between SO(2N) and USp(2N) is U(N).

It is possible to get a hint on how USp(2N) groups can appear as trans-
formation group of the vortices. In order to see transformations among the
vortices (Q̂, Q) under which the latter could transform as 2N, it is necessary
to embed the system in a larger group, such as SO(2N+1) model considered
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in Section B.4. The idea is to build a map 3 between the SO(2N + 1) gener-
ators (antisymmetric matrices) and the USp(2N) generators which have the
form, Eq. (B.114). The ith SO(4) ∼ SU(2) × SU(2) subgroup is generated
by (with a simplified notation (1, 2, 3, 4) ≡ (1, 2, 2i+ 1, 2i+ 2))

T±
1 = − i

2
(Σ23 ± Σ41) , T±

2 = − i

2
(Σ31 ± Σ42) , T±

3 = − i

2
(Σ12 ± Σ43) .

(B.115)
The two vortices living in this SO(4) group are taken to be i-th and (N + i)-
th components of the fundamental representation of USp(2N). The pairs
can be transformed to each other by rotations in the (2i+ 2, 2N + 3) plane
(⊂ SO(2N + 1)), thus

Ai,i = −iΣ2i+2,2N+3 . (B.116)

On the other hand, the two vortices associated with subgroups T± living in
the (1, 2, 2i+ 1, 2i+ 2) subspace and those living in the (1, 2, 2j + 1, 2j + 2)
subspace, j 6= i, are transformed into each other by rotations in the (2i +
1, 2i + 2, 2j + 1, 2j + 2) space: they transform in SO(2N) (in the subspace
i = 3, 4, . . . , 2N + 2). We have already seen that they actually do transform
as a pair of U(N) representations, in the basis Eq. (B.111). As the U(N)
elements are generated by the SO(2N) infinitesimal transformations with
E = D, F = tF , one finds the map,

Bi,j = −i (Σ2i,2j + Σ2i+1,2j+1) + (Σ2i,2j+1 − Σ2i+1,2j) . (B.117)

Non-diagonal elements Aij , i 6= j, can be generated by commuting the actions
of (B.116) and (B.117).

B.8 Appendix: Fundamental groups

Let’s briefly discuss the (first) homotopy groups relevant to us:

B.8.1 SO(2N + 2)

There is only one non-trivial closed path P in this case, the rotation from 0
to 2π around any axis. The rotation from 0 to 4π is homotopically equivalent
to the trivial path, so P 2 = 1 and the homotopy group is

π1 (SO(2N + 2)) = Z2 , (B.118)

3This correspondence can be applied equally well to the minimal regular monopoles
constructed semi-classically, and has been discussed in this context in [174].
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B.8.2 SO(2N + 2)/Z2

Actually, in the model discussed in this appendix, all the fields are in the
adjoint representation of SO(2N+2): the gauge group effectively corresponds
to SO(2N+2) modulo identification −1 = 1. The path P is again non-trivial,
but now there are also two inequivalent closed paths P+ and P− going from 1
to −1, defined as P+P

−1
− = P . Explicitly, they can be taken as simultaneous

rotations in N + 1 planes

P+ : eiβ12Σ12

∏

i=3,5,...,N−1

eiβi i+1Σi,i+1 ; β12 : 0 → π , βi,i+1 : 0 → π .

(B.119)

P− : eiβ12Σ12

∏

i=3,5,...,N−1

eiβi i+1Σi,i+1 ; β12 : 0 → −π , βi,i+1 : 0 → π .

(B.120)

When N + 1 is even, P 2
+ = P 2

− = 1 and P+P− = P . The homotopy group is
generated by P+, P−:

π1

(
SO(4N)

Z2

)
= Z2 × Z2 , (B.121)

When N + 1 is odd, P 2
+ = P 2

− = P and P+P− = 1, so the homotopy group is
generated by P+ only, and is of cyclic order four

π1

(
SO(4N + 2)

Z2

)
= Z4 . (B.122)

B.8.3 (SO(2N) × U(1))/Z2

After the symmetry breaking at the higher mass scale v1, the theory reduces
to an (SO(2N) × U(1))/Z2 theory. The division by Z2 corresponds to the
identification (−1,−1) = (1, 1), inherited from the underlying theory. From
the point of view of the low-energy effective theory, it is due to the fact that
all the light matter fields qA,j , q̃A,j are in the vector representation of SO(2N)
but they carry at the same time the unit charge with respect to U(1).

The non-trivial paths of SO(2N) × U(1) are combinations of Q (a 2π
rotation in any plane in SO(2N)) and the paths Rn winding n times around
the U(1). The simplest non-trivial closed paths that arise after the Z2 quo-
tient are P+, 1

2
, P+,− 1

2
, P−, 1

2
, P−,− 1

2
going from (1, 1) to (−1,−1) with a half

winding around U(1). By taking U(1) to act in the (12) plane, SO(2N) in
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the (34 . . .N) space, they can be explicitly chosen as simultaneous rotations
in (12), (34), (56) . . . planes

eiγ12Σ12 eiβ34Σ34

∏

i=5,7,...,N−1

eiβi i+1Σi,i+1 ; (B.123)

with

P+, 1
2

: γ12 : 0 → π , β34 : 0 → π , βi,i+1 : 0 → π . (B.124)

P+,− 1
2

: γ12 : 0 → −π , β34 : 0 → π , βi,i+1 : 0 → π . (B.125)

P−, 1
2

: γ12 : 0 → π , β34 : 0 → −π , βi,i+1 : 0 → π . (B.126)

P−,− 1
2

: γ12 : 0 → −π , β34 : 0 → −π , βi,i+1 : 0 → π . (B.127)

Note that P+, 1
2

and P+,− 1
2

correspond respectively to the P+ and P− paths

in the SO(2N + 2) theory.
When N is even, P+,aP+,b = P−,aP−,b = Ra+b and P+,aP−,b = QRa+b, so

every group element can be written as (P+,1/2)
k Qδ with k ∈ Z, δ = {0, 1}.

The homotopy group is

π1

(
SO(2N) × U(1)

Z2

)
= Z × Z2 , N even , (B.128)

When N is odd, P+,aP+,b = P−,aP−,b = QRa+b and P+,aP−,b = Ra+b, and
every group element can again be written as (P+,1/2)

k Qδ with k ∈ Z, δ =
{0, 1}, as in the N even case. The homotopy group is

π1

(
SO(2N) × U(1)

Z2

)
= Z × Z2 , N odd , (B.129)

Even though the homotopy group is the same for the two cases (N even
or odd), its embedding in π1 (SO(2N) × U(1)) = Z × Z2 is different: Rn

corresponds to k = 2n, δ = 0 for N even and to k = 2n, δ = 1 for N odd. In
other words

R1 = (P+,1/2)
2Q , (N odd) ; R1 = (P+,1/2)

2 (N even) . (B.130)

B.8.4 Relation between the smallest elements of the

high-energy and low-energy fundamental groups

There are simple relations among the smallest elements of the groups π1

(
SO(2N+2)

Z2

)

and π1

(
SO(2N)×U(1)

Z2

)
. From the above explicit constructions one sees that

P+ = P+, 1
2

; P− = P+,− 1
2

= R−1 P+, 1
2

; (B.131)
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and by using Eq. (B.130), one has

P+,− 1
2

=

{
(P+, 1

2
)−1Q , odd N ,

(P+, 1
2
)−1 , even N .

(B.132)

B.8.5 SO(2N + 3)

The fundamental group is Z2 as in the SO(2N + 2) cases, and the smallest
closed path being

P : eiβijΣij : βij = 0 → 2π , (B.133)

in any plane (ij). P 2 = 1 and the homotopy group is

π1 (SO(2N + 3)) = Z2 . (B.134)

B.8.6 SO(2N + 1) × U(1)

At the mass scales below v1 the theory reduces to an SO(2N+1)×U(1) theory
with matter in the fundamental representation, q and q̃ carrying charges ±1
with respect to U(1). The fundamental group is

π1 (SO(2N + 1) × U(1)) = Z2 × Z , (B.135)

where Z represents the number of winding (charge) in the U(1) part and Z2

a 2π rotation in any plane in SO(2N + 1).
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