
International School for Advanced Studies

Gutzwiller Approximation applied to

inhomogeneous lattice models

and solid state systems

Thesis submitted for the degree of

Doctor Philosophiæ

Candidate: Supervisors:

Giovanni Borghi Prof. Michele Fabrizio

and Prof. Erio Tosatti

Trieste, October 2011





“It is you who are unpoetical,” replied the poet Syme. “If what you say of clerks is

true, they can only be as prosaic as your poetry. The rare, strange thing is to hit the

mark; the gross, obvious thing is to miss it. We feel it is epical when man with one

wild arrow strikes a distant bird. Is it not also epical when man with one wild

engine strikes a distant station? Chaos is dull; because in chaos the train might

indeed go anywhere, to Baker Street or to Bagdad. But man is a magician, and his

whole magic is in this, that he does say Victoria, and lo! it is Victoria. No, take

your books of mere poetry and prose; let me read a time table, with tears of pride.

G.K. Chesterton (The Man Who Was Thursday)
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Introduction

The search for the ground-state of a many-electron system has not ceased to be a

challenge for theoretical condensed-matter and solid state physics, since the complex-

ity of the exact solution increases exponentially with the number of particles, and, in

most interesting cases, it is still not affordable by modern computers. This in spite of

the relentless improvement of computational power that characterized the last thirty

years.

The most promising tool for seeking the exact ground-state of many-body systems,

Quantum Monte Carlo, suffers from the well-known sign problem, and can provide

reliable results only for a limited class of models. Whenever there is need of investi-

gating the electronic structure of large molecules, or crystalline systems, indispensable

for understanding real materials, one has to resort to effective theories, and to find the

most reliable approximations that correctly grasp the physical properties one aims to

describe.

The simplest option is to bring the many-body problem back to a one-body one,

by treating each particle as independent from the others, and modeling all interac-

tion effects among particles at a mean-field level. This approximation, though often

successful, fails to describe all physical phenomena that are driven by the effects

of inter-particle entanglement. Whenever the effects, usually referred to as correla-

tion effects, are determinant in the description of physical observables, one needs to

engineer new way to re-introduce them into the effective theory.

Density Functional electronic structure calculations

One of the most popular methods used for electronic structure simulations is Density

Functional Theory (DFT) within the Kohn-Sham framework [1, 2], which solves the

many-electron problem by means of a system of auxiliary independent particles with

the same density as actual electrons and moving in a fictitious external potential

that accounts for the interaction effects in the real system. The solution of the

Schrödinger equation for independent particles does not suffer from the exponential

complexity of the correlated many-body problem, while the use of the density, instead

of the wavefunction, as independent variable for the energy minimization made Kohn
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Sham DFT extremely competitive, and soon even preferable in large scale simulations,

to other theoretical tools of Quantum Chemistry such as the Hartree-Fock (HF)

method [3].

In spite of its great successes, Kohn-Sham DFT has many weaknesses, which come

from the fact that all the intricate quantum corrections to the classical electrostatic

Hartree potential, divided into exchange and correlation effects, are included in the

total energy only in an approximate way, through a fairly simple functional of the

density.

The historically oldest and most simple approximation to the exchange and cor-

relation energy is the Local Density Approximation (LDA) [2, 4–6], which gives the

exact energy for a uniform electron gas. When applied to realistic crystalline sys-

tems, this approximation tends to underestimate band gaps and equilibrium lattice

constants, while in the simulations of molecular systems and adsorption processes it

shows a preference for higher coordination and shorter bond lengths [7, 8]. For the

same reason, its performance in calculating dissociation properties of molecules is also

unsatisfactory [9].

In general, LDA and its spin-resolved version Local Spin Density Approximation

(LSDA), perform better in systems with slowly-varying density. On the contrary, the

inability of these approximations in subtracting the electron self-interaction contained

in the classical Hartree potential makes them less reliable in describing systems with

strongly localized electrons. This limitation is particularly severe for 3d transition

metal elements and compounds, where for geometrical reasons the Bloch functions

with energies in the vicinity of the Fermi level keep most of the atomic character, and

hence are not very spread in real space.

Many-body properties of transition metals and compounds

The strongly localized nature of electrons in transition metal compounds effectively

enhances electron-electron interactions, to such an extent that in particular temper-

ature and pressure conditions, electronic correlations, i.e. all effects that deviate

from the independent-particle picture, can induce a transition from a metallic to an

insulating phase. This correlation-driven metal-insulator transition, known as Mott

transition [10, 11], makes some 3d metal compounds, as vanadium oxides, a natural

laboratory for intriguing many-body physics.

With the discovery of high-temperature superconductivity [12] in cuprates, the

importance of transition metal compounds increased even more, together with the

theoretical efforts for a better understanding of their magnetic and conductive prop-

erties. Contrary to the Bardeen-Cooper-Schrieffer (BCS) superconductivity [13],

which can be understood by means of mean-field independent-particle methods, high-
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temperature superconductivity is described only through a correct inclusion of elec-

tronic correlations in the ground-state wavefunction, and appears often in materials

which display in their phase diagram also a Mott insulating state.

Lattice models as the Hubbard model (HM) [14] were of great help in providing

a fictitious environment where correlations can be accurately described by methods

such as Quantum Monte Carlo (QMC) [15], Density Matrix Renormalization Group

(DMRG) [16] and Dynamical Mean-Field Theory (DMFT) [17]. For the purpose of a

quantitative understanding of experimental data, it was however of key importance

to bring the expertise gained on lattice models over to realistic simulations of the

solid state.

This was attempted for example through ad-hoc improvements of Density Func-

tional Theory, with the inclusion of a local Hubbard correction in the Kohn-Sham

Hamiltonian, solved either through static (LDA+U) [18, 19] or, more recently, dynam-

ical (LDA+DMFT) [20] mean-field methods. A few years ago, also the Variational

Quantum Monte Carlo (VQMC) approach [21, 22] was proved successful in repro-

ducing electronic properties of atoms and simple molecules [23], and its development

appears to be promising for more ambitious applications.

The Gutzwiller Variational Method

In this thesis we focus on a different approach, which is the Gutzwiller Variational

Method (GVM). The GVM [24], proposed by Martin C. Gutzwiller in 1963, consists

of introducing local many-body parameters to enlarge the variational freedom of a

mean-field wavefunction such as a Slater determinant or BCS wavefunction, whose

variational energy was previously optimized within an independent-particle frame-

work. Its original formulation, with one variational parameter tuning the double

occupation probability of each site of the single-band HM, is still exploited today in

most VQMC calculations. Indeed the exact calculation of the expectation value of a

lattice model Hamiltonian on the Gutzwiller variational wavefunction (GVW) can be

computed in general only numerically.

An analytic approximation for these expectation values was suggested by the same

Gutzwiller [25, 26], and later proved to become exact in the limit of infinite coordi-

nation lattices. This analytic approximation, widely adopted also in lattices of finite

coordination, is known in literature as the Gutzwiller Approximation (GA). The

GA can be understood as a further approximation to DMFT, a more refined tool

for simulating strongly-correlated systems, which relies on an ansatz – the locality of

the lattice self-energy – that again is strictly valid only in the limit of infinite lattice

coordination [17].
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The GA is not as accurate as DMFT. Nevertheless, it does provide qualitatively, and

often quantitatively, correct descriptions of strongly correlated conducting materials

that are insulators “in disguise” [27], i.e. materials whose thermodynamic, conduction

and magnetic properties depend on correlations that are already present in their Mott

insulating phase, and that continue to play an important role after their insulator-

to-metal transition. The Resonating Valence Bond (RVB) picture, an intuition due

to P.W. Anderson [28], describes this type of situation, and is an intriguing example

of how high-Tc superconductivity can be partially explained through a Gutzwiller

approach.

The advantage of the GA with respect to independent-particle methods such as

HF is the possibility to describe the effects of electron-electron interaction on the

band energy of a lattice system through an effective renormalization of the inter-site

hopping. The hopping renormalization can be seen, in a Fermi liquid picture, as a

renormalization à la Landau of the electronic band mass.

While the HF quasi-particles are electrons whose single-particle states have been

renormalized by interactions, but whose effective mass and Fermi distribution remain

unchanged with respect to the non-interacting case, the quasi-particles described by

the GA are Landau quasi-particles with a reduced Fermi step and with enhanced

mass, whose divergence signals the onset of many-body localization and of the metal-

insulator transition. The transition to the insulating state does not require within

GA any opening of a gap in the quasi-particle spectrum, which is instead a necessary

condition to describe an insulator within the HF method.

Understanding surface sensitive ARPES spectra and studying correlation

effects at interfaces and junctions

An experimental tool for the investigation of quasi-particle properties in strongly

correlated materials displaying a Mott metal-insulator transition is Photoemission

Spectroscopy (PES) [29], which is able to give access to the spectral function of a

crystalline sample through the analysis of the electrons – also named photoelectrons

– that are emitted after a photoelectric process has taken place below its surface.

The finite mean-free path of electrons inside a crystal makes PES sensitive mainly to

a sample surface properties. However, recent improvements of photoemission tech-

niques provided photoelectrons with a larger probing depth [30–32], and introduced

the possibility of sensing also the bulk spectral properties, and comparing them to

the surface ones [33].

Stimulated by the recent progress in the photoemission spectroscopy on vanadium

oxides, we apply the GVM to study the effects of a surface on the quasi-particle prop-

erties of a slab of a strongly correlated HM with layer-dependent Hubbard-U . For
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this purpose we choose as variational wavefunction a Slater determinant renormal-

ized by layer-dependent Gutzwiller projectors. In order to optimize the parameters

of this wavefunction, we devise a two-step self-consistent method where the energy

minimization with respect to Gutzwiller parameters is followed by a diagonalization

of an effective single-particle Hamiltonian with renormalized hopping [34].

We find that, due to the lack of surface coordination, the quasi-particle band mass

renormalization is always stronger near the surface, even when the Hubbard parame-

ter U has the same value on all lattice sites. We further notice that that the difference

between the Hubbard parameter U and its critical value Uc provides the system with

a new length-scale, which determines the distance over which the larger surface quasi-

particle mass decays to the bulk value.

Taking advantage from a known sum-rule for the spectral weight, we are able to

provide an approximation to the layer-resolved spectral function of the Hubbard lat-

tice, which shows from surface to bulk an increase of the peak due to quasi-particle

low-energy excitations. The spectral weight of high-energy excitations not taking

part in the conduction process, building the so-called Hubbard bands, is shown to be

very weakly dependent on the layer distance from the surface, agreeing qualitatively

with the recent photoemission data of Rodolakis et al. for a sample of vanadium

sesquioxide [33].

Using the same theoretical approach based on the GA, we investigate the proper-

ties of an interface between strongly correlated metals with different bulk Hubbard

parameters and between a metal and a Mott insulator [35]. We also address the be-

havior of quasi-particles crossing a metal-Mott insulator-metal junction. Our results

are compared to simulations on similar interface and junction geometries performed

with different theoretical tools, such as linearized-DMFT [36] and DMFT+NRG [37],

in the light of which we discuss the possibility of quasi-particle tunneling across Mott

insulating barriers.

While the first part of this thesis exploits a lattice model as a laboratory for re-

producing the physics of strongly correlated materials, the second part is devoted

to the discussion of a Gutzwiller-improved Density Functional Theory (DFT), and

of its performance in the realistic description of the relevant physical properties of

transition metals.

The Gutzwiller Density Functional: definition, implementation and a case

study

A Gutzwiller density functional can be defined as an extension of the Local Density

Approximation plus Hubbard-U (LDA+U) functional where the Hubbard energy and

the kinetic energies are computed as the expectation value of Hubbard and kinetic
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operator on a Gutzwiller projected Slater determinant. The expectation value can be

computed analytically through a recent multi-band formulation of the GA [38]. This

recipe gives more flexibility to the total energy minimization, providing the possi-

bility of renormalizing the mass of the auxiliary Kohn-Sham particles, and therefore

improving the results of conventional Local Density Approximation (LDA).

Within the Gutzwiller approach, the interaction Hamiltonian of LDA+U can be

generalized to an interaction operator enforcing Hund’s rules at the atomic level.

The expectation values of all local many-body operators, such as the total spin and

angular momentum, are accessible via the parameters of the GVW, and provide a

new tool for discussing magnetic moment formation also in unpolarized calculations.

We choose to implement our version of Gutzwiller Density Functional (GDF) code

by combining the Siesta electronic structure code [39], which we exploit to optimize

total energy with respect to the Slater determinant, with a Levenberg-Marquardt

algorithm implemented from scratch and used to optimize the GDF with respect to

Gutzwiller parameters. The exchange-correlation potential of the GDF calculation is

computed as a straightforward extension of LDA, so that we refer to our functional

method as Local Density Approximation plus Gutzwiller Method (LDA+G).

We test the performance of LDA+G to compute the electronic structure of body-

centered cubic iron, a system that can be described successfully even by calcula-

tions with a more standard density functional such as the Generalized Gradient

Approximation (GGA), whose outcome can be compared with our data. The crystal

field of bcc Iron splits the d-type orbitals into two different multiplets, doubly degen-

erate and triply degenerate at the Γ point respectively, corresponding to the eg and

t2g irreducible representations of the cubic group.

In agreement with previous theoretical works [40–42], a recent Local Density Ap-

proximation plus Dynamical Mean-Field Theory (LDA+DMFT) study of paramag-

netic Iron by Anisimov and coworkers [43] suggested that this metal may display

an orbital selective localization of only the eg multiplet, with the t2g electrons re-

maining itinerant. This picture appears favorable to the development of double-

exchange driven magnetism [44], a typically many-body phenomenon where the spin-

polarization is accompanied by a gain of kinetic energy.

This kinetic gain distinguishes double exchange from Stoner magnetism [45], where

the energy gain due to the emergence of magnetism is mainly of potential origin.

Though our data for the band mass renormalization of eg electrons does not show

evidence for an orbital-selective full localization, a careful check of energy differences

between polarized and unpolarized density functional calculations gives a hint that

correlation effects may have a non-negligible role in the magnetism of Iron. While the

GGA and LDA kinetic and electrostatic energy differences point to the prevalence of
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Stoner magnetism, the LDA+G calculations suggest that a great fraction of it may

be due to double-exchange.

When compared to simple LDA calculations, the LDA+G functional shows an im-

provement similar to the GGA functional in predicting a larger lattice parameter

for both paramagnetic and ferromagnetic Iron, and a larger total magnetization and

greater energy separation between up and down spin bands in the spin polarized

phase.

On top of this, the possibility of accessing local magnetic moments already in the

unpolarized phase makes the LDA+G functional able to distinguish between the en-

hancement of magnetic moment due to many-body localization, and the enhancement

which is due to magnetic ordering, uncovered only in spin-polarized calculations. The

fact that most of the local moment of ferromagnetic Iron is already present in its

paramagnetic phase is another clue of the role of double-exchange, which predicts

magnetic ordering to emerge from the alignment of large local moments increased by

many-body localization.

Plan of the thesis

The plan of this thesis is as follows. Chapt. 1 is devoted to the explanation of the main

theoretical tool of our work, namely the GVM and GA. After introducing their earliest

formulation by Martin C. Gutzwiller, we discuss their effectiveness in describing the

physics of strongly correlated conductors, emphasizing the improvements they bring

in comparison with mean-field, independent-electron approximations such as HF, and

their limitations with respect to more refined, though computationally more costly,

methods like DMFT and VQMC.

We mention how the GA was initially exploited as an approximate tool for analytical

calculation of expectation values on the GVW, and how later studies proved its

exactness in the limit of infinite lattice coordination. After that, we discuss its more

recent multi-band formulation which, together with the mixed-basis parametrization

of Gutzwiller parameter matrix, is particularly important for combining the GVM

with DFT.

In Chapt. 2 we present our results for the strongly correlated Hubbard lattice with

broken translational invariance due to the presence of a surface (panel (a) in Fig. 1), a

metal-metal or metal-insulator junction (panel (b)), or a “sandwich” of Mott insulator

or strongly correlated metal between metallic leads (panel (c)). For all geometries,

we show the layer dependence of the quasi-particle weight and provide approximate

analytical fits for the data, together with a comparison with DMFT calculations on

similar systems.
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Figure 1: The three types of layered geometry for the HM that we solved within GVM

and GA in Chapt. 2.

In Chapt. 3, we introduce the formalism of DFT, the Kohn-Sham self-consistent

equations for the functional minimization and the LDA for exchange and correlation

functionals. We further discuss the performance and limitations of LDA and present

the LDA+U method as a way to correct the self-interaction error of LDA.

We explain the details of the GDF in Chapt. 4, and underline its similarities and

differences with respect to the LDA+U functional. In the same chapter we present our

data for paramagnetic and ferromagnetic bcc iron obtained through our implementa-

tion of LDA+G in the Siesta code. We show energy differences between spin-polarized

and unpolarized Iron computed within LDA, GGA and LDA+G and with different

basis sets. We compare the band structure, lattice parameters and magnetic moments

(some sample data is shown in Table 1) obtained with these functionals, and discuss

the implications of our results on the understanding of the origin of magnetism in

transition metals.

In the appendices we list some important results that we believed too detailed or

too marginal to be presented in the main body of the thesis. Appendix A is devoted

to some proofs and detailed explanations related to the GVM. In Appendix B we

include all details related to the calculations on the layered geometries of Chapt. 2.

In Appendix C we explain how to implement spin and orbital symmetries in the

parametrization of the Gutzwiller projector, while in Appendix D we give the details

of the minimization algorithm we implemented for optimizing the variational energy of

the LDA+G calculation with respect to Gutzwiller parameters. Finally, Appendix E
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m 2|S|
LDA para 1.77

GGA para

LDA ferro 2.02 2.96

GGA ferro 2.33

LDA para(s) 1.77

LDA ferro(s) 2.066 2.61

LDA+G para 2.10

LDA+G ferro 2.35 2.90

LDA+G para(s) 2.47

LDA+G ferro(s) 2.44 3.04

Table 1: Magnetic moment and magnetization of paramagnetic and ferromagnetic iron,

in units of Bohr magnetons. The results were computed within single-ζ (label (s)) and

double-ζ Siesta basis sets, and with LDA, GGA and LDA+G density functionals.

contains various topics of DFT and LDA+U that are important for the understanding

of the GDF we implemented and discussed in Chapt. 4.
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Chapter 1

The Gutzwiller

Variational Method

In this chapter we introduce the main theoretical tools exploited in our thesis, which

are the Gutzwiller Variational Method (GVM) and the Gutzwiller Approximation

(GA). Their aim is to improve a description of physical systems where each particle

is treated independently from the others (as it happens for example in Hartree-Fock

(HF) method), by accounting for the effects of local correlations between particles.

After discussing the limits of the independent-particle approaches, we introduce

the GVM for fermions as initially formulated by Gutzwiller, and discuss its results

for the single-band Hubbard model (HM) for different lattice dimensionalities. We

explain its advantages and limitations in describing metal-insulator transitions due

to interactions, and we compare its performance with that of Variational Quantum

Monte Carlo (VQMC) methods using more sophisticated variational wavefunctions

and of Dynamical Mean-Field Theory (DMFT). We end this chapter by expounding

the recent multi-band formulation of Gutzwiller method, whose formalism is at the

basis of all the results of this thesis.
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CHAPTER 1. The Gutzwiller Variational Method

1.1 Ground-state calculations in the independent- electron ap-

proximation

The many-fermion problem in solid state systems is as difficult in its solution as it is

simple in its formulation. According to the Rayleigh-Ritz variational principle, finding

the ground-state of a system of fermions consists of minimizing the expectation value

of the Hamiltonian

EGS = min
Ψ
〈Ψ|Ĥ|Ψ〉 = 〈ΨGS|Ĥ|ΨGS〉 (1.1)

over all possible many-electron wavefunctions |Ψ 〉 which are antisymmetric for par-

ticle exchange. For a N -fermion problem

〈r1, σ1; r2, σ2; . . . ; rNσN |Ψ〉 = Ψ(r1, σ1; r2, σ2; . . . ; rNσN)

= −Ψ(r2, σ2; r1, σ1; . . . ; rNσN) . (1.2)

Whenever a many-electron Hamiltonian Ĥ can be written as the sum of single-

electron Hamiltonians, the problem of finding its variational ground-state is greatly

simplified. We will refer from now on to a Hamiltonian with this property as a

Hamiltonian of independent or, we will use this term equivalently, non-interacting

electrons. Any ground-state of an independent-electron Hamiltonian can be written

as a the Slater determinant (or anti-symmetrized product) of single-electron orbitals.

Ψ0(r1, r2, . . . , rn) =
∑

{j}

(−1){j}φ1(rj1)φ2(rj2) . . . φn(rjn) , (1.3)

where (−1){j} is equal to plus or minus one according to the parity of permutation

{j}.
When minimizing the expectation value of the Hamiltonian of a system on all the

Slater determinants with fixed number of particles that can be built from M single

particle orbitals φα, one deals with M2 degrees of freedom, which is the number of

independent matrix elements of a unitary transformations within the orbital space.

In fact, given the creation ĉ†α and annihilation ĉα operators on the chosen original set

of orbitals, obeying fermionic anticommutation relations

{ĉ†αĉβ} = 1δαβ , (1.4)

{ĉαĉβ} = {ĉ†αĉ†β} = 0 , (1.5)

any independent electron state of N particles can be obtained from vacuum as

|Ψ0 〉 =
∏

d̂†α1
d̂†α2

. . . d̂†αN |0 〉 , (1.6)
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where the creation operator d̂†α1
= Uα1,β ĉ

†
β is linked to the original creation operators

ĉ†β through a unitary transformation Uαβ.

The most general many-body wavefunction of N electrons is however built from

linear combinations of more Slater determinants of the type (1.6). We will refer to a

wavefunction that cannot be built by applying a single product of creation operators

to the vacuum as a “correlated” wavefunction, as opposed to the “uncorrelated” Slater

determinant.

Using the full space of uncorrelated and correlated wavefunctions as variational

space means minimizing the expectation value of the Hamiltonian with respect to an

exponential number of parameters. Searching for the exact ground-state of a system

of interacting electrons is therefore an unfeasible task already when the number of

particles N and orbitals M is quite small. The HF method overcomes this problem

by minimizing also the expectation value of an interacting Hamiltonian on the class

of Slater determinants,

EHF = min
|Ψ0 〉
〈Ψ0|Ĥ|Ψ0〉 . (1.7)

This means that every particle is treated as independent from the others. The effect

of interaction on each particle is accounted for by an effective interaction potential

which depends only on the average position of all other particles. The restriction of

the variational space to the class of non-interacting wavefunctions implies that one

can always find a residual energy Ec < 0 such that

EHF + Ec = Eexact , (1.8)

where the exact energy Eexact is given formally by Eq. (1.1), and involves a minimiza-

tion of the variational energy over the whole many-body Hilbert space. The energy Ec

is called correlation energy, since it contains all effects beyond the independent elec-

tron approximation, in particular those caused by the fluctuations of the interaction

potential that have been disregarded by its mean-field approximation.

From the stationary condition for the HF energy we find an eigenvalue equation

εηφη =
∂EHF

∂φη
, (1.9)

that can be solved to compute the single-particle eigenvectors φη and eigenvalues

εη, which in the case of a crystal with discrete translational symmetry, build the

single-particle energy bands εkα.

1.1.1 Failure of the independent-electron theory of conductivity

In an independent electron description of crystals, a material is predicted to be metal-

lic if the density of states at the Fermi level is non vanishing (D(εF) 6= 0), while in
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the case of D(εF) = 0, the material is predicted to be insulating. For this defini-

tion to hold, translational invariance is crucial, since disorder effects like Anderson

localization may spoil conductivity even in the case of D(εF) 6= 0. In a system with

translational invariance as a crystal, the density of states can be computed from a

band calculation with the formula

D(E) =
1

Nk

∑

α,k

δ(εαk − E) , (1.10)

where Nk is the number of k-points in the first Brillouin Zone. From Eq. (1.10) it

follows that the system is predicted to be insulating if εF lies between the top of the

uppermost filled band and the bottom of the lowermost empty band. In which case

there is usually a gap separating the two bands.

If spin symmetry is not broken, in order to have an insulating material, it is therefore

necessary to have an even number of electrons per unit cell, because a full band

can accomodate as many electrons with spin up as electrons with spin down. This

condition is necessary, but not sufficient, since another requirement is that there is

no energy overlap between valence and conduction bands.

While the insulating behavior of some materials can be accounted for without even

including the effect of electron-electron interactions on their band structure, others

are such that a nonzero D(εF) is found at the non-interacting level, but the band

renormalization caused by the HF mean-field potential is sufficient to open a gap.

When the material has an odd number of electrons per unit cell, the opening of a

gap in the single-particle spectrum is possible only through the breaking of some spin

symmetry or translational symmetry, which can lift the degeneracy of some bands

and enable them to separate in energy.

The limits of the HF method become evident when we try to explain materials

whose insulating phase is not accompanied by any spin or translational symmetry

breaking, and where therefore the conductivity is suppressed as a result of the sole

electronic correlations. One of the oldest-known compounds exhibiting such a puz-

zling insulating phase is Cobalt Oxide (CoO) [46]. Its zero temperature ground-state

is antiferromagnetic, but at sufficiently high temperature the antiferromagnetic order

sustaining its magnetic supercell vanishes, so that the chemical unit cell contains an

odd number of electrons. The independent electron theory would therefore predict

this system to be conducting. However, in reality this is not the case, and the dis-

appearance of the magnetic order as temperature raises is not accompanied by any

transition from insulator to metal.

22



1.2 The Gutzwiller projector

1.2 The Gutzwiller projector

The Gutzwiller method is based, in its most general formulation, on a wavefunction

|ΨG 〉 that can be obtained from a wavefunction of non-interacting particles by the

application of independent local projectors acting on separate lattice sites R. For our

purposes this independent-particle wavefunction will always be a Slater determinant

|Ψ0 〉 of single-electron orbitals, though in Sect. 1.5 we show how the Gutzwiller

projector can be also applied to a Bardeen-Cooper-Schrieffer (BCS) wavefunction.

The expression for ΨG is

ΨG = P̂|Ψ0 〉 =
∏

R

P̂R|Ψ0 〉 . (1.11)

While the Slater determinant must be constructed from the single-particle eigen-

functions of an independent electron calculation such as HF, which can be linear

combinations of either plane waves or local orbitals like Gaussians or Wannier func-

tions, the local projectors are defined on the basis of many-body configurations on a

single lattice site.

Once a local single-particle basis set has been defined, with Nl local spin-orbitals,

P̂R will be a M × M hermitian matrix, with M = 2Nl being the size of the local

many-body space built of electronic configurations on the local single-particle basis.

Martin C. Gutzwiller introduced this method in 1963 [24] with the aim of better

describing correlations between electrons of opposite spin in transition metals. As

a minimal realization of the conduction band of a transition metal he considered

an effective tight-binding model with one Wannier function per lattice site, with

hopping strength t between nearest-neighbors (〈R,R′〉), and with an on-site repulsion

of strength U to mimic the short-range nature of the Coulomb interaction on d-type

bands

ĤHM = −t
∑

〈R,R′〉σ

ĉ†σRĉσR′ + U
∑

R

n̂↑Rn̂↓R . (1.12)

His next suggestion was to consider, on every lattice site of the crystal, a local

projector of the type:

P̂R(η) = 1̂− (1− η) n̂↑Rn̂↓R , (1.13)

where n̂↑Rn̂↓R is the double occupation operator of either electrons or holes at lattice

siteR. Written in the subspace of many-body configurations on the site, the projector
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becomes the following matrix1:

| 0 〉
| ↑ 〉
| ↓ 〉
| ↑↓ 〉




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 η



, (1.14)

which shows that the parameter η is tuning the probability that two electrons of

opposite spins are dwelling on the same site. For every system where the short-

range effects of the Coulomb repulsion are dominant, this parameter is crucial for the

minimization of the energy.

The action of the projector can be seen, from another point of view, as a suppression

of Hamiltonian matrix elements between Slater determinants which have a finite

fraction of doubly occupied sites. In the limit of infinite U , one expects these matrix

elements to give no contribution to the ground-state energy of the system.

The simple model showed in Eq. (1.12), known as the Hubbard model [14] is to

the problem of electron correlations as the Ising model is to the problem of spin-spin

interactions: it is the simplest possible model displaying many “real world” features.

It is, however, much more difficult to analyze qualitatively than the Ising model.

While its one-dimensional realization has been exactly solved by Bethe ansatz [47],

the ground-states of its two-dimensional and three-dimensional realizations can only

be approximated variationally.

The Gutzwiller variational wavefunction (GVW) with Gutzwiller parameter matrix

defined as in Eq. (1.13) and with as Slater determinant |Ψ0 〉 the Fermi sea of non-

interacting electrons (U = 0) was considered to be a sensible ansatz for variational

calculations beyond HF in the HM. It has indeed the quality of providing not only

an exact solution for U = 0 – when also the HF method is exact – but also for

U = +∞, where an independent-particle approach fails. In spite of the simplicity of

these two solutions, obtained for η = 1 and η = 0 respectively, there is no general way

of computing the expectation value 〈ΨG|ĤHM|ΨG〉 analytically for general 0 < η < 1

without approximations. In the next section we will present the most popular one,

whose more recent multi-band formulation will be exploited throughout this thesis.

1The term “projector” is used improperly, since P̂2
R is in general different than P̂R when η > 0.

In accord with the literature, we will continue using this term throughout the thesis, remembering

that it should not be taken literally and that P̂R can be chosen as a general hermitian matrix.
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1.3 The Gutzwiller approximation

Immediately after the introduction of his variational wavefunction [25, 26], Martin C.

Gutzwiller provided an approximate analytical expression for the expectation value

of the Hubbard Hamiltonian on the projected Fermi sea, with projector defined in

Eq. (1.13). His result can be found by counting the number of many-body configura-

tions with ND doubly occupied sites out of L sites, given the total number of particles

N , and the number of spin up N↑ and spin down N↓ electrons on the lattice. The

analytical value for the energy follows from supposing the many-body configurations

at different lattice sites to be independent from one another.

For a translationally invariant HM with spin rotational symmetry and at half-filling

(N↓ = N↑ = L/2), one finds that the expectation value of the double occupation

operator in the limit L→∞ has the simple expression

〈ΨG|n̂↑Rn̂↓R|ΨG〉 = D(η) =
η

2(1 + η)
, (1.15)

while the expectation value of a hopping operator ĉ†σRĉσR′ (with R 6= R′), on the

GVW is renormalized with respect to its value computed on the Fermi by a factor

Z(η) independent of R and R′, so that

〈ΨG|ĉ†σRĉσR′|ΨG〉 = Z(η)〈Ψ0|ĉ†σRĉσR′|Ψ0〉 , (1.16)

with

Z(η) =
4η

(1 + η)2
. (1.17)

The energy per site of the HM computed within the GA reads therefore

1

L
〈ΨG|ĤHM|ΨG〉 ≈ εGA(η) = 2Z(η)εkin + UD(η) , (1.18)

where εkin is the average kinetic energy per particle per spin of the unprojected wave-

function

εkin = − t

2L
〈Ψ0|

∑

{R,R′}σ

ĉ†σRĉσR′|Ψ0〉 . (1.19)

In Appendix A.1 we report, for this special case of the Half-filled paramagnetic HM,

a “thermodynamic argument” which is equivalent to the counting argument explained

by Gutzwiller and reframed by Vollhardt [26, 48], and through which we can retrieve

equations from (1.15) to (1.18).
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In a Landau Fermi liquid picture, Z(η) equals both the effective mass renormal-

ization m/m∗ of the Landau quasi-particle [49] and the discontinuity at the Fermi

surface of the quasi-particle occupation number (see Appendix A.2). A HF approach

to the HM is not able to directly access these two quantities, which can be recovered

only through a linear response calculation of correlation energy starting from the HF

ground-state [50]. Results similar to Eq. (1.15), (1.17) and (1.18) can be found away

from half-filling, and will be presented after the multi-band generalization of GA,

discussed in section 1.6.

1.3.1 The Brinkman Rice transition

We have already mentioned how the GVW provides the exact ground-state of the HM

in the limit U → ∞. In the case of half-filling, the correct value of the variational

parameter is η = 0, so that the double occupation probability of the infinite-U system

is completely suppressed. The GA result for the mass renormalization parameter à

la Landau Z(η) and for the double occupation D(η) consistently predicts these two

quantities to vanish in the infinite-U HM, describing a system with infinite quasi-

particle mass and therefore fully localized electrons.

Brinkman and Rice [51] discussed how the GA predicts, for the half-filled HM, a

phase with Z(η) = 0 – and therefore infinite quasi-particle mass – already for a finite

value of U . We can see this by noticing that the value of η which minimizes εGA(η) is

η̄ =





1− U/Uc

1 + U/Uc

, U < Uc

0 , U ≥ Uc

(1.20)

where Uc = 16|εkin|. An expression in terms of U and Uc can be found also for the

double occupation probability and the hopping renormalization, both becoming zero

for U = Uc

D(U) =





1

4

(
1− U

Uc

)
, U < Uc

0 , U ≥ Uc

, (1.21)

Z(U) =





1−
(
U

Uc

)2

, U < Uc

0 , U ≥ Uc

. (1.22)

By looking at Eq. (1.18), we can find the GA prediction for the total energy of the

Hubbard model

ε̄GA(U) = −2|εkin|
(

1− U

Uc

)2

θ(U − Uc) , (1.23)
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which also becomes identically zero for U > Uc.

The reason for the vanishing Z(U) as U approaches Uc depends on the fact that

the complete suppression of doubly occupied configurations prevents any hopping of

particles between sites. The vanishing hopping matrix element is the symptom of a

transition to an insulating phase where every electron is localized on a single site.

For U ≈ Uc, and U < Uc, the GA describes therefore a metal-insulator transi-

tion, which was named Brinkman-Rice transition after its discoverers. As an order

parameter for the metallic side of the transition one can choose either η or the dou-

ble occupation probability. In both cases the transition is of second order, with a

discontinuous second derivative of the energy with respect to the order parameter.

It can be shown that the Brinkman-Rice transition is also accompanied by the

disappearance of the jump Z in the quasi-particle distribution function at |k| = kF,

an event that normally signals the transition from a Fermi liquid to a non Fermi

liquid state. The HF method does not allow any renormalization of the quasi-particle

distribution, which remains always equal to the Fermi-Dirac distribution, and, as we

mentioned in Sect. 1.1.1, it cannot account for any metal-insulator transition in a

system with an odd number of electrons per unit cell unless it is accompanied by the

breaking of spin or translational symmetry that enables the opening of a gap. The

Brinkman-Rice transition does not lead to any broken symmetry state, and can be

considered therefore the simplest example of critical phenomenon beyond the reach

of independent-particle approaches.

1.3.2 Correlation energy and magnetic susceptibility within the

Gutzwiller Approximation

Remaining on the metallic side of the Brinkman-Rice transition, where a non-trivial

expression for the energy is at hand, we can compute the correlation energy per site

included within GA from Eq. (1.8), setting Eexact/L ≈ εGA and inserting the HF

energy of the paramagnetic Half-filled Hubbard model

EHF/L = 2εkin +
U

4
, (1.24)

and we find the result

Ec/L = − U2

128|εkin|
, (1.25)

which is an approximate expression for the interaction energy of the HM up to second-

order in U .

It is now worth mentioning the main point that makes the Brinkman-Rice corre-

lated metal interesting beyond its description of the paramagnetic HM. One effect
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of the vanishing double occupation probability in the GVW is the enhancement of

spin fluctuations. This can be seen by looking at the variance σM of the local spin

magnetization σM , which equals

σM = 〈ΨG|(M̂z,j)
2|ΨG〉 − 〈ΨG|M̂z,j|ΨG〉2 =

= 〈ΨG|(n̂i↑ − n̂i↓)2|ΨG〉 = 1− 2D =
1

2

(
1 +

U

Uc

)
. (1.26)

Contrary to the HF result, where it is always equal to 1/2, the GA result for σM
increases linearly with U for U < Uc. This suggests that correlations have a non

trivial effect on the response of the system to spin perturbations.

When Brinkman and Rice computed the inverse spin susceptibility of the metallic

phase within GA, they found the following expression

1

χs

=
1− (U/Uc)

2

D0(εF)

{
1−D0(εF)U

[
1 + U/(2Uc)

(1 + U/Uc)2

]}
, (1.27)

where D0(εF) is the density of states at the Fermi energy of the uncorrelated Fermi

sea. Eq. (1.27) shows that the spin susceptibility of the system is enhanced by a factor

1/Z = m∗/m. This implies that, since the density of states D(εF) of the correlated

system is also proportional to the mass m∗, the enhancement of both quantities does

not affect their ratio

D(εF)

χs

≈ const . (1.28)

The Stoner theory of magnetism [45], based on the HF description of the HM,

predicts a linear response susceptibility enhancement which depends on exchange

rather than correlation effects, with enhancement factor

1

χs

∝ 1−D0(εF)U , (1.29)

and an instability towards a ferromagnetic state for U ∝ 1/D0(εF). Within the same

theory [52], the linear response mass enhancement factor2 results proportional to the

logarithm of the right-hand side of Eq. (1.29), with the result that

D(εF)

χs

→ 0 , (1.30)

while the paramagnet to ferromagnet transition is approached.

2Since the Stoner theory is a linear response theory, its prediction for the mass enhancement can

be computed from Random Phase Approximation [50].
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|εkin| =





2t
π

, 1D
8t
π2 , 2D

t , 3D

; Uc ≈





10.20t , 1D

12.96t , 2D

16t , 3D

.

Table 1.1: Values of average hopping energy per site per spin, and critical U for

half-filled cubic lattices in 1, 2 and 3 dimensions.

The result of Eq. (1.28) derived by Brinkman and Rice is in agreement with the

measurements of the spin susceptibility and thermodynamic density of states [53] of

vanadium sesquioxide (V2O3), which predict a comparable enhancement of the two

quantities.

In spite of its simplicity, the theory of Brinkman and Rice ruled out the Stoner

paramagnetic instability as an explanation for the susceptibility enhancement, and

suggested that correlations should be given a major role in describing both the mag-

netic and transport properties of the metallic phase of a class of transition-metal

oxides in the vicinity of the metal-insulator transition.

1.3.3 The Gutzwiller Approximation and the limit of infinite lattice

coordination

The nature of the GA is such that the Brinkman Rice metal-insulator transition is

found for every type of lattice, regardless of the dimensionality. Only the value of Uc

changes, as a result of the changing of εkin with lattice geometry and dimensionality

(see Table 1.1). This independence of the Brinkman-Rice transition on lattice and

dimensionality features must be due to the neglect of the correlation between many-

body configurations at different lattice sites. Such correlation is partly built in the

GVW, but is completely discarded in the counting argument of Gutzwiller.

Metzner and Vollhardt devised an η expansion of expectation values of local and

hopping operators on the GVW, with which they could access the exact value of the

Gutzwiller variational energy (GVE), beyond the GA. The expansion for the energy

of the one dimensional HM can be summed up analytically [54], and its minimization

with respect to η provides the following large-U results for D(U) and the jump in the
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Figure 1.1: Ground-state energy per particle of the one-dimensional HM, computed

with GVM and GA, and Bethe-ansatz [47] for different values of filling n. From refer-

ence [55]. .

quasi-particle distribution Z(U)

D(U) ≈ 4|εkin|2
U2

[
ln

(
U

2|εkin|

)]−1

, (1.31)

Z(U) ≈ 8
|εkin|
U

[
ln

(
U

2|εkin|

)]−1

, (1.32)

and for the energy per particle

ε
(d=1)
Gw (U) =

〈ΨG|Ĥ|ΨG〉
L

≈ −
(

4

π

)2
t2

U

[
ln

(
U

2|εkin|

)]
. (1.33)

The above equations show that, while the variational energy remains finite for

arbitrary U , Z(U) does not vanish for any finite U , as a Mott transition would require.

This proves that the GVW is not able to describe a metal-insulator transition in one

dimension. By means of the same η expansion for the energy of a cubic lattice of

dimensionality d, the same conclusion was drawn for any d <∞.

The Brinkman Rice transition for the half-filled lattice is recovered in the infinite-

dimensional limit, where the η expansion of the GVE leads to the results of the GA

with an appropriate scaling of hopping coefficient t [56]. The result of Metzner and

Vollhardt [55] proves that the GA is an exact way of computing expectation values

on the GVW for lattices of infinite coordination, or, an equivalent statement when

dealing with hyper-cubic lattices, for lattices of infinite dimensionality.

For every finite lattice coordination, the GA grossly fails to approximate the GVE

for U > Uc in the half-filled HM, where it wrongly predicts a zero-energy phase. This

is shown in Fig. 1.1 in the case of one dimension. In the same figure we can see how
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for fillings n 6= 0.5 and for half filling when U � Uc the GA provides reasonable

approximations to the GVE. The agreement between the exact GVE and the GA

result increases very rapidly with increasing lattice dimensionality, and while being

perfect for d = ∞, it is already very good for d = 3 [56]. For general d, half filling

and U < Uc, we can give a reasonable upper bound for the U below which the GA

performs well, by requiring

εGA(U) / ε
(d)
Gw(Uc) , (1.34)

where ε
(d)
Gw(Uc) is the exact GVE for dimensionality d.

The mismatch between the result of GA and the exact calculations with GVW in

finite dimensionality can be traced back to the fact that the GA is unable to account

for any off-site renormalization of the exchange hole (the charge depletion around a

particle due to the Pauli principle) caused by interactions, since it treats only local

correlations beyond mean-field. The range of the exchange hole can be shown to

decrease with increasing dimensionality, and to become strictly on-site for d = ∞,

which is the reason why in this limit the GA result for the GVE becomes exact.

It is important to stress that the optimized GVW is far from being the exact ground-

state for the system under consideration. The GVE provides only an approximation

to the exact ground-state energy of the HM, both in the case of finite and infinite

dimensionality.

In the case of infinite dimensionality we have seen how the description of the Mott

insulating phase of the half-filled HM provided by the GA (which in this case gives

exactly the GVE) is trivial. In Sect. 1.3.4 we will show that the GA picture can be

improved by DMFT, which provides the exact properties of the many-body insulating

state in infinite-coordination lattices.

When it comes to finite coordination lattices, an improvement over the GVW can be

obtained with more complex variational wavefunctions, optimized through VQMC. In

Sect. 1.4 we show how extending the GVW to account for long-range correlations en-

ables to recover a non-trivial paramagnetic metal-insulator transition also for lattices

of finite coordination.

1.3.4 The Gutzwiller Approximation from the spectral point of view

To understand better the reason for the inability of the GA to describe the Mott-

insulating phase of the paramagnetic HM, it is useful to look at the way it describes

the spectral function of an interacting system. The results presented in this section

are valid for an electron liquid with translational and rotational invariance. It is

however straightforward to extend them to a crystalline system by considering k

as the quasi-momentum label inside the first Brillouin zone, and by meaning with
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|k| = kF the fact that k is a vector of the (not necessarily spherical) Fermi surface.

It is known that the spectral function of a system of non-interacting particles with

translational invariance is a simple delta-function

A0(k, ~ω) = δ[ω − εk/~] (1.35)

where εk is the non-interacting single-particle energy.

If interactions are switched on to their physical value adiabatically, so that k can be

still used as approximate quantum number, the spectral function of the interacting

system can be written in terms of the retarded self-energy Σ(k, ~ω) as

A(k, ~ω) = −~
π

=mΣ(k, ~ω)

[~ω − εk −<eΣ(k, ~ω)] + [=mΣ(k, ~ω)]2
. (1.36)

In spite of the fact that for most systems of interest the exact expression for Σ(k, ~ω)

is unknown, any approximation to the spectral function Eq. (1.36) has to be bound

to fulfill the sum-rule ∫
A(k, ~ω) dω = 1 . (1.37)

The spectral function A(k, ~ω) is the probability distribution of a momentum eigen-

state in the frequency space. When the interactions are absent, every eigenstate of

momentum is also an eigenstate of the Hamiltonian, and its spectral weight is con-

centrated at a frequency ω = εk. When the system is interacting, the above spectral

weight is transferred to a variety of coherent and incoherent modes, and spread over

a wide range of frequencies.

The definition of normal Fermi liquid is that there exists a Fermi surface in k

space such that the probability distribution in frequency of momentum states with

wavevector on this surface is a sharp peak even in the presence of interactions. Close

to this surface, the width of the peak should be much smaller than the distance

between the peak frequency and the chemical potential. This is equivalent to require

that

|=mΣ(|k| ≈ kF, ε̃k)| � ε̃k − µ , (1.38)

where ε̃k = εk +<eΣ(k, εk) is the quasi-particle energy renormalized by interactions.

In other words, the excitations of a Landau Fermi liquid in the vicinity of the

Fermi surface are long-lived coherent excitations. Long-lived because they have a

very small frequency spread, and coherent because their peak corresponds to a mode

with definite k. We can approximate the spectral weight due to the quasi-particle

with a Lorentzian distribution

Aqp(k, ~ω) ≈ Zk
π

1/(2τk)

(ω − ε̃k/~)2 + [1/(2τk)]2
, (1.39)

32



1.3 The Gutzwiller approximation

with a peak of strength Zk (that we call quasi-particle weight) and finite lifetime

(diverging for |k| → kF) τk depending on the self-energy through

~
2τk

= Zk|=mΣ(k, ε̃k)| (1.40)

Zk =

(
1− 1

~
∂

∂ω
<eΣ(k, ~ω)

∣∣∣
~ω=ε̃k

)
. (1.41)

Eq. (1.38) tells us that the approximation Eq. (1.39) is valid only for a small range

of frequencies ω close to the chemical potential. The value of Zk for an interacting

system is lower than 1, since the sum-rule (1.37) is fulfilled also thanks to the contri-

bution of all incoherent structureless modes that arise due to interactions, and that

we can include in a function Aincoh(k, ~ω), so that the following decomposition holds

for the spectral function

A(k, ~ω) = Aqp(k, ~ω) + Aincoh(k, ~ω) . (1.42)

Within the GA, the incoherent part of the spectral function is not taken into ac-

count. The same Lorentzian peak of Eq. (1.39) is recovered for the quasi-particle,

but with always an infinite lifetime τk = +∞ and with a k-independent strength

Z = ZkF
. The infinite quasi-particle lifetime comes from the fact that the GA makes

use of a purely real self-energy, equal to

ΣGA(k, ~ω) =

(
Z − 1

Z

)
~ω − U

2Z
. (1.43)

The GA describes successfully the Mott transition on the metallic side because it

correctly portrays the suppression of the quasi-particle peak. It however fails on the

insulating side since, as soon as U becomes larger than Uc, the quasi-particle peak

disappears, and the sum-rule Eq. (1.37) is fulfilled only by virtue of the incoherent

excitations included in Aincoh(k, ~ω) that the GA is completely unable to describe.

Dynamical Mean-Field theory: accounting for the full spectral weight of

the system

The advent of DMFT [17] enabled a more accurate description of the HM, with an

approximate spectral function that fulfills the sum-rule Eq. (1.37) for all values of

the Hubbard parameter U . This happens because DMFT provides an approximation

to the the self-energy which is less näıve than Eq. (1.43), and relies on the only

assumption of locality

Σ(k, ω) ≈ Σ(ω) . (1.44)
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With the above approximation one finds again that the HM undergoes a Mott tran-

sition independently of dimensionality and lattice type, and whose onset is signaled

by the complete suppression of the quasi-particle peak in the spectral function. How-

ever, the high-energy excitations caused by electron-electron interactions and absent

in the quasi-particle approximation are also taken into account, both on the metal-

lic side, where they coexist with the quasi-particle peak, and on the insulating side,

where they fully account for the sum-rule (1.37).

The DMFT self-energy of a HM is computed from the solution of an auxiliary

impurity model, describing a single-site with Hubbard interactions and coupled to an

effective bath, self-consistently determined to mimic the local properties of the lattice

model. The impurity-model Hamiltonian reads (setting ĉ†σ ĉσ = n̂σ)

Ĥ =
∑

κσ

εκσ b̂
†
κσ b̂κσ +

∑

κσ

(
Vκσ ĉ

†
σ b̂κσ + V ∗κσ b̂

†
κσ ĉσ

)
+ Un̂↑n̂↓ − µ

∑

σ

n̂σ , (1.45)

where the couplings Vκσ between impurity and bath and the energy levels εκσ of the

bath can be used to build the hybridization function

∆σ(ω) =
∑

κ

|Vκσ|2
~ω − εκ + iη

. (1.46)

In the absence of interactions (U = 0), the Green’s function of the Hamilto-

nian (1.45) is simply the non-interacting Green’s function

G0σ(ω) = [~ω + µ−∆σ(ω)]−1 . (1.47)

In the presence of a finite U , instead, the self-energy of the system can be found from

the relation

Σσ(ω) = G−1
0σ (ω)−G−1

σ (ω) , (1.48)

where G is the interacting Green’s function of the impurity model, computed by

means of a suitable impurity-solver like Quantum Monte Carlo, exact diagonalization,

or even GVM.

Once the self-energy of the impurity-model Σσ(ω) is known, it is set equal to the

actual local self-energy of the HM, and can be used to build its approximate (exact

in the limit of infinite lattice coordination) local Green’s function G
(l)
σ (ω) through an

integration over the density of states D0 of the non-interacting system

G(l)
σ (ω) =

∫
dε

D0(ε)

~ω − ε+ µ− Σσ(ω)
. (1.49)
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1.3 The Gutzwiller approximation

The above expression enters, together with the self-energy, in the definition of the

new hybridization function ∆σ(~ω), which is

∆σ(ω) = ~ω + µ− Σσ(ω) +
[
G(l)
σ (ω)

]−1
. (1.50)

The new parameters Vκσ and εκσ are found by inverting Eq. (1.46), so that a new

Hamiltonian (1.45) can be set up to close the self-consistent cycle.

The convergence of cycle ∆ → G → G(l) → ∆ provides the dynamical mean-field

solution of the HM. From the converged self-energy Σσ(ω) it is possible to compute

the full spectral function A(ω) of the impurity, which features, both on the metallic

and insulating sides, two broad bands of high-energy excitations that do not take part

in the conduction process.

The so called Hubbard bands, shown on the spectral function plots of Fig. 1.2,

belong to the incoherent part of the spectral function, and contain excitations with

a finite value of double-occupation probability.

Figure 1.2: Plots of the DMFT spectral

function A(ω) for the HM. The value of U

is increasing from top to bottom. Only the

top three plots refer to the metallic phase,

where there is a finite spectral weight for

ω = 0. The Hubbard bands, whose spec-

tral weight cannot be accounted for by

GA, are clearly visible in the last three

plots. The last two plots refer to the in-

sulating phase, for which the GA predicts

A(ω) = 0 everywhere. Adapted from ref-

erence [17].

Both GA and DMFT make use of a spectral function with pure frequency depen-

dence. This has the consequence that for both theories, on the metallic side of the

transition, the weight of the quasi-particle peak Zk for |k| = kF (we refer to it as Z),

which can be proved to be equal to the jump in the quasi-particle distribution at kF,

can be identified also with the quasi-particle mass renormalization m/m∗, by virtue

of the following formula of Landau Fermi liquid theory [50] 3 (k = |k|)
m

m∗
= ZkF

(
1 +

m

~2kF

∂

∂k
<eΣ(k, µ)

∣∣∣
k=kF

)
. (1.51)

3This formula, valid for a spherical Fermi surface, can be extended for a liquid with a non-spherical

Fermi surface, for which it will provide the renormalization of the mass tensor.
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CHAPTER 1. The Gutzwiller Variational Method

1.4 Variational wavefunctions describing the Mott transition in

lattices of finite coordination

In Sect. 1.3.3 we mentioned the absence of a Mott transition from paramagnetic metal

to paramagnetic insulator on the HM of finite dimensionality, when described with the

GVM. It is now worth asking what other ingredients must be present in a variational

wavefunction in order to make it suitable for computing the ground-state properties

of a finite-dimensional system across this type of transition.

Whenever the value of the Hubbard U is large, but not infinite, both exact results for

the expectation values of the double occupation operator n̂↑n̂↓ (as shown in Sect. 1.3.3)

and of the hopping operator ĉ†iσ ĉjσ computed on the GVW are finite. This is not an

unphysical result, since a finite hopping matrix element and double occupation are

necessary for the energy to have a non-trivial expression in terms of the variational

parameter η.

What prevents the GVW from describing an insulator is the non-vanishing value (1.32)

of the jump in the quasi-particle distribution function, which for finite coordination

lattices is different from the renormalization of the hopping matrix element. In the

exact ground-state of a Mott insulator the former is expected to become zero even

when the latter is finite. It is natural to expect off-site correlations to have an essential

role in determining this behavior.

Kaplan et al. pointed out [57] that the transition to the insulating phase might be

connected to a non-local phenomenon which is already present in the metallic phase of

the HM and becomes more important near the Mott transition, which is the decrease

of the average distance between doubly occupied (doublon) and empty (holon) sites

with the increase of the Hubbard-U . This effect is due to the fact that a doublon

cannot disappear through a single hopping process driven by the kinetic part of the

Hubbard Hamiltonian, unless it has a holon as nearest-neighbor. For large U the

lifetime of a doublon on the ground-state wavefunction is expected to be small, and

this requires a holon to be close to it, in order to make the annihilation process more

likely.

It was shown [58] that extending the Gutzwiller projector with the inclusion of

nearest-neighbor or next-nearest-neighbor parameters accounting for short-range cor-

relations is not sufficient to describe the holon-doublon binding, and therefore the

Mott transition. The description of the Mott metal-insulator transition in the half-

filled HM became possible only through the inclusion in the variational wavefunction
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1.5 Gutzwiller Variational Method and RVB wavefunctions

of a Jastrow factor [59] of the type (n̂R = n̂↑R + n̂↓R)

∏

RR′

JRR′ = exp

[
1

2

∑

RR′

vRR′(n̂R n̂R′)

]
, (1.52)

which, containing a sum over all lattice vectors R and R′, ensures that correlations

of arbitrary long range are taken into account.

1.5 Gutzwiller Variational Method and RVB wavefunctions

Among the successes of the Gutzwiller projective wavefunction, it is worth mention-

ing its representation of the Resonating Valence Bond (RVB) state, which was first

introduced by Anderson [60] in 1973 and later proposed as an explanation of the

properties of a class of oxide superconductors, among which La2CuO4 [28].

The superconducting phase of these compounds arises upon doping the stoichiomet-

ric phase that is an antiferromagnetic Mott insulator. In the insulator, each Cu ion

has one hole in the d-shell. The large Coulomb repulsion and the Cu-O charge trans-

fer gap prevent the holes from moving coherently, which leads to localized spin-1/2

moments. These latter are coupled among each other by an antiferromagnetic super-

exchange across the filled oxygen p-orbitals, so that an anti-ferromagnetic quantum

Heisenberg model describes the low energy physics:

Ĥexch = J
∑

〈R,R′〉

ŜR · ŜR′ , (1.53)

Classically, the ground-state of the antiferromagnetic Heisenberg model is a Néel

state, with antiparallel neighboring spins. Quantum fluctuations are known to reduce

the classical order parameter, the greater the lower the dimensionality. In fact, in

one-dimension, the quantum Heisenberg model is not magnetically ordered and is

in a sort of spin-liquid phase with gapless spin-waves, without any spin-symmetry

breaking.

Anderson imagined that in the two-dimensional Cu-O planes (the cuprates, how

high-Tc materials are universally known, are layered ceramics) quantum fluctuations

were still quite substantial so that the actual ground state was Néel ordered, but

very close in energy to a so-called Resonating Valence Bond (RVB) state. The RVB

state is a spin-singlet wavefunction where pairs of spins are coupled into singlets in

all possible ways, and different singlet coverings resonate among each other.

If singlet-pairs long distance apart are allowed, the wavefunction tends asymptoti-

cally to a Néel ordered state. If the singlet pairs extend up to a maximum distance,
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CHAPTER 1. The Gutzwiller Variational Method

e.g. just to neighboring sites – what is denoted as short-range RVB – the wavefunc-

tion is not anymore magnetically ordered, yet its energy is quite close to the actual

ground state, which is indeed antiferromagnetically ordered.

Anderson’s idea was that, once doping has melted the antiferromagnetic Mott insu-

lator, the true long-range order is lost, but there remains still a substantial short-range

antiferromagnetic order that can be well described by a short-range RVB wavefunc-

tion with inclusion of holes. The variational wavefunction that Anderson proposed

for the RVB state is

|ΨRVB 〉 = P̂NP̂d
∏

k

[
1√

1 + a2
k

+
ak√

1 + a2
k

ĉ†k,↑ĉ−k,↓

]
|0 〉 . (1.54)

One recognizes the uncorrelated wavefunction to be of BCS-type, the symme-

try of the order parameter being controlled by the function ak. If ak = a−k and

akx,ky = −aky ,kx , the pairing is in the d-wave singlet channel, the correct symmetry

for cuprates. The Gutzwiller operator P̂d is actually a full projector that excludes all

double occupancies. Finally, the operator P̂N projects the wavefunction, which alone

would not be number-preserving, onto the manifold with fixed electron number N .

At half-filling the wavefunction describes an insulator and, depending on the spatial

range of the pair-wavefunction, the Fourier transform of ak, it can also describe a Néel

ordered phase, as aforementioned.

As soon as one dopes the insulating system described by the RVB state Eq. (1.54),

removing the constraint of half-filling, the additional carriers build a superconducting

pairing, which is already implicit in the BCS nature of the insulating wavefunction,

and which is driven by the same parameter J as the antiferromagnetic pairing of the

insulator. In spite of the more complex issues concerning high-temperature super-

conductivity which are rising in recent years [61], Anderson’s Gutzwiller BCS-RVB

wavefunction has remained a widely used ansatz for numerical simulations [62].

1.6 The Gutzwiller Approximation for multiband systems

The success of the GA for describing strongly correlated single-band models encour-

aged its application to more complex systems, where the local Gutzwiller projector

depends on a great number of many-body variational parameters.

Bünemann, Gebhard and collaborators [38, 63, 64] developed a rigorous formulation

of the GA for multiband models. With the works of Fabrizio [65] and Lanatà et

al. [66], this formulation was further elucidated and extended with the suggestion of

practical parametrizations of the Gutzwiller parameter matrix suitable for numerical

calculations.
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We now briefly expound the state of the art of the GA, by giving the recipe for

computing expectation values of general operators on the multi-band GVW. We

will show how the multi-band Gutzwiller formalism, where the GA is found from a

perturbative expansion of the Gutzwiller projector, leads to the same results of the

counting argument of references [26, 48] when applied to the single-band model.

1.6.1 Expectation values in the limit of infinite lattice coordination

The expectation value of a general local operator ÔR on the GVW |ΨG 〉 = P̂|Ψ0 〉 is

〈Ψ0|P̂†ÔRP̂|Ψ0〉 , (1.55)

where P̂ is defined in Eq. (1.11) as

P̂ =
∏

R

P̂R . (1.56)

Bünemann and collaborators realized that the expression Eq. (1.55) reduces, on

infinite-coordination lattices, to the simpler form

〈Ψ0|P̂†ÔRP̂|Ψ0〉 → 〈Ψ0|P̂†RÔRP̂R|Ψ0〉 , (1.57)

provided that the two following constraints (known as Gutzwiller constraints) are

imposed on the Gutzwiller wavefunction

〈Ψ0|P̂†RP̂R|Ψ0〉 = 1 (1.58)

〈Ψ0|P̂†RP̂Rn̂R,αβ|Ψ0〉 = 〈Ψ0|n̂R,αβ|Ψ0〉 , (1.59)

where n̂R,αβ = ĉ†RαĉRβ is the local single-particle density matrix operator on site R.

Imposing constraints (1.58) and (1.59) for local quantities causes also the expectation

value of a quadratic off-site operator ĉ†RαĉR′β to become equal to

〈Ψ0|P̂†ĉ†RαĉR′βP̂|Ψ0〉 → 〈Ψ0|P̂†Rĉ†RαP̂RP̂†R′ ĉR′βP̂R′|Ψ0〉 (1.60)

on an infinite-coordination lattice.

By expanding the above expectation value in Wick products, we see that it can be

rewritten as

〈Ψ0|P̂†Rĉ†RαP̂RP̂†R′ ĉR′βP̂R′|Ψ0〉 =
∑

γδ

Rαγ〈Ψ0|ĉ†Rγ ĉR′δ|Ψ0〉R†δβ , (1.61)

where the parameters Rαβ are computed from the equality

〈Ψ0|P̂†Rĉ†RαP̂RĉRβ|Ψ0〉 =
∑

γ

R†αγ〈Ψ0|ĉ†Rγ ĉRβ|Ψ0〉 . (1.62)
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Eq. (1.61) shows that, when appearing in the calculation of expectation values of

off-site quadratic operators, every creation operator is effectively renormalized to

ĉRα → P̂†ĉRαP̂ =
∑

γ

R†γαĉRγ . (1.63)

The role of constraints Eq. (1.58) and (1.59) in determining expectation values

in the limit of infinite lattice coordination can be understood as follows. Since a

projector P̂R at lattice site R commutes with projectors and operators at different

lattice sites, the expectation value (1.55) can be written as

〈Ψ0|P̂†ÔRP̂|Ψ0〉 = 〈Ψ0|P̂†RÔRP̂R
( ∏

R′ 6=R

P̂†R′P̂R′

)
|Ψ0〉 . (1.64)

The last term in brackets in Eq. (1.64) may be considered as an “interaction prop-

agator” and expanded in multi-particle operators around the identity, devising a

perturbative scheme for the calculation of expectation values on the GVW.

It can be proven that any term in the perturbative expansion where more than two

fermionic lines come out of P̂†R′P̂R′ vanishes on an infinite-coordination lattice [38],

so that only terms with zero or two fermionic lines are left. Enforcing Gutzwiller

constraints causes also the contribution of terms where exactly two fermionic lines

come out of the propagator to vanish, so that Eq. (1.64) becomes exactly equal to

Eq. (1.57) in infinite dimensions.

To see how terms with two Fermionic lines disappear, it is enough to remark that

the Wick decoupling of the left-hand side of (1.59) can be written as the sum of a

disconnected term plus a connected term

〈Ψ0|P̂†R′P̂R′n̂αβ,R′|Ψ0〉 = 〈Ψ0|P̂†R′P̂R′|Ψ0〉〈Ψ0|n̂αβ,R|Ψ0〉+ 〈Ψ0|conn.|Ψ0〉 . (1.65)

Due to the first Gutzwiller constraint Eq. (1.58), the disconnected term is sufficient to

satisfy the equality established in Eq. (1.59), and therefore all connected terms where

two fermionic lines come out of P̂†R′P̂R′ are bound to vanish (see Appendix A.4). This

remains true when P̂†R′P̂R′ is averaged with multi-particle operators on different sites,

like the operator P̂†RÔRP̂R in Eq. (1.64).

As a result, only the zeroth-order term of the expansion of the operator in brackets

in (1.64) is not discarded, and provides the expectation value of ÔR on the GVW for

a lattice of infinite coordination. The same argument is valid also in order to prove

the result of Eq. (1.60) for the renormalization of quadratic off-site operators.

1.6.2 The mixed-basis representation

With the introduction of Gutzwiller constraints, we are able to simplify the calcu-

lation of expectation values of local operators by considering in Eq. (1.55) only the
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contribution of the projector on the same site. A general multi-band local projector

P̂R can be parametrized as

P̂R =
∑

Γκ

ΛΓκ,R|Γ,R 〉〈κ,R| , (1.66)

where Γ and κ label the different many-body states. From now on, in order to simplify

the notation of this section, we will leave out the index R and we will refer to the

local projector with the symbol P̂. The most intuitive many-body basis on which to

write this projector can be built once a set of local single-particle spin-orbitals φασ is

given. We will call this set, which may be for example the basis set provided by an

electronic structure code, the original single-particle basis (OSB), and absorb from

now on the spin index σ in the spin-orbital label α.

From the orbitals φα we can construct all possible local multi-particle Slater de-

terminants, as many as 22M , where 2M is the total number of orbitals (the factor 2

accounts for spin degeneracy). We will refer to this basis of Slater determinants as

the basis of electronic configurations (BC) on original orbitals. This is a local Fock

basis that can be obtained by filling the zero-particle state |0 〉 through the applica-

tion of all combinations of creation operators ĉ†α obeying fermionic anticommutation

relations.

However, the definition of Eq. (1.66) allows for a mixed basis representation of P̂R,

where, while the index Γ runs on the configurations on the original basis, the index

κ runs over the configurations on a different single-particle basis, i.e. a Fock basis

built by filling the vacuum with operators d̂†α creating fermions on another set ψa of

spin-orbitals.

We can choose as ψa the “natural orbitals”, i.e. the basis orbitals which diagonalize

the local single-particle uncorrelated density matrix n
(0)
αβ = 〈Ψ0|ĉ†αĉβ|Ψ0〉, so that

n
(0)
ab = 〈Ψ0|d̂†ad̂b|Ψ0〉 = n(0)

a δab = U †aαn
(0)
αβUβb . (1.67)

From now on we will refer to the local single-particle basis ψa as natural single-particle

basis (NSB), and to n
(0)
a as local “natural density matrix”.

It is now convenient to introduce the local uncorrelated many-body density matrix

P̂0, which is such that, for every local operator Ô,

〈Ψ0|Ô|Ψ0〉 = Tr{P̂0Ô} . (1.68)
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When written in the BC on the natural orbitals, also the many-body uncorrelated

density matrix is diagonal, with the explicit form 4

P0κκ′ = 〈Ψ0||κ′ 〉〈κ||Ψ0 〉 = δκκ′P0κ (1.69)

P0κ =
∏

a∈κ

(n(0)
a )
∏

b/∈κ

(1− n(0)
b ) , (1.70)

where |κ′ 〉〈κ| is a projector on local configurations. The factor n
(0)
a appears on the

right-hand side of Eq. (1.70) only if orbital ψa is full in configuration κ, while 1−n(0)
b

appears if ψb is empty.

From Eq. (1.69) it is clear that the operator P̂0 is positive-definite, and as a conse-

quence we can define its square root
√
P̂0 with matrix elements

√
P0κδκκ′ , and such

that for any local operator Ô

〈Ψ0|Ô|Ψ0〉 = Tr{
√
P̂0Ô

√
P̂0} , (1.71)

and in particular

〈Ψ0|P̂†P̂|Ψ0〉 = Tr{
√
P̂0P̂†P̂

√
P̂0} = Tr{Φ̂†Φ̂ } , (1.72)

where the auxiliary operator Φ̂ has matrix elements between configurations Γ and κ

equal to

ΦΓκ = ΛΓκ

√
P0κ . (1.73)

This operator enables us to rewrite Gutzwiller constraints no longer as an expecta-

tion value, but rather as a trace, namely (setting d̂†ad̂b = n̂ab)

Tr{Φ̂†Φ̂ } = Tr{P̂0} = 1 , (1.74)

Tr{Φ̂ n̂abΦ̂
†} = Tr{P̂0n̂ab} = n(0)

a δab . (1.75)

In the same way we can compute the expectation value of a local projected operator

as

〈Ψ0|P̂†ÔP̂|Ψ0〉 = Tr{Φ̂†ÔΦ̂ } , (1.76)

and the value of the hopping renormalization matrices Rαβ from

R†αb =
Tr{Φ̂†ĉ†αΦ̂ d̂b}√
n

(0)
b (1− n(0)

b )
, (1.77)

4The expression for P0 in terms of n(0)a is obtained if we suppose the
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where now R†αb transforms original basis creation (annihilation) operators to renor-

malized natural basis creation (annihilation) operators as

ĉRα → P̂†ĉRαP̂ =
∑

b

R†bαd̂Rb , (1.78)

ĉ†Rα → P̂†ĉ†RαP̂ =
∑

b

Rαbd̂
†
Rb . (1.79)

The explicit derivation of Eq. (1.77), Eq. (1.74) and Eq. (1.75) can be found in a

the work of Lanatà et al. [66] and in Appendix A.5. In Appendix A.3 we prove that

the diagonal elements of Rαα are lower or equal than one, which means that, at least

for diagonal Rαβ, the effect of hopping renormalization is that of increasing the value

of the kinetic energy, the squares Zα = |Rαα|2 acting, as in the single-band case, as

enhancement factors for the band mass.

It is important to stress that the uncorrelated local density matrix on natural

orbitals

n(0)
a δab = Tr{Φ̂ n̂abΦ̂

†}
and the Gutzwiller-renormalized local density matrix

nαβ = Tr{Φ̂†n̂αβΦ̂ }

are in general not the same matrix, since the above definitions differ from the position

of Φ̂† and Φ̂ with respect to the operator n̂αβ in the trace. Not only each matrix

is written in a different single-particle basis – the NSB and the OSB respectively –

but even in the cases in which the two bases coincide, they are not equal unless the

operator Φ̂ commutes with the density-matrix operator n̂ab. When Φ̂ is a number-

conserving operator, as the one we will use throughout this thesis, we can only say

that the trace of both density matrices is the same.

The great advantage that comes from the use of the mixed basis and of the trace

representation of expectation values, is that this representation makes the knowledge

of the natural orbitals ψa superfluous. While in a variational calculation the OSB is

fixed once and for all, the NSB depends in general on the parameters of the variational

wavefunction, and should be computed, if needed, at every variational optimization

step from the diagonalization (1.67) of n
(0)
αβ .

The use of Φ as matrix of variational parameters is such that the many-body unitary

change ÛΓκ from configurations on the original basis to configurations on the natural

basis is included in the mixed-basis projector ΛΓκ in Eq. (1.73). As a result, the same

matrix representation of Fock operators ĉ†a and ĉb on the original basis can be used for

creating and annihilating particles on the natural basis, provided that their matrix

elements are being “sandwiched” between a bra and a ket representing a many-body
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state in the natural Fock space, indeed, omitting the lattice vector R,

〈Γ|ĉ†α|Γ′ 〉 = (−1)NΓ′<αδΓ′+{α},Γ (1.80)

〈κ|d̂†a|κ′ 〉 = (−1)Nκ′<aδκ′+{a},κ , (1.81)

where δΓ+{α},Γ′ is equal to one when the configuration Γ differs from Γ′ only by one

more particle in orbital α, and where NΓ′<α counts the number of particles in Γ′ with

orbital index smaller than α.

The matrix representations of Eq. (1.80) and Eq. (1.81) are valid for all creation

operators written in their own Fock basis. We can use Eq. (1.81) in traces whenever

the operators d̂ and d̂† are multiplied on the left by the operator Φ̂ , and on the right

by Φ̂†, which is exactly the case for Eq. (1.75) and Eq. (1.77).

The matrix ΦΓκ defined in Eq. (1.73) and the subsequent equations, Eqs. (1.74)

and (1.75), constitute a formalism that can be applied for a lattice model with an

arbitrary number of bands. The expectation value of whatever Hamiltonian on the

GVW reduces to a function

〈ΨG|Ĥ|ΨG〉 ≈
GA
E(Ψ0, Φ̂ ) (1.82)

of the Slater determinant and Φ̂ , subject to the normalization constraint 〈Ψ0|Ψ0〉 = 1

and the Gutzwiller constraints.

The number of free parameters contained in ΦΓκ is expected to scale as (22M)2, but

the symmetries of the system can make this number much smaller, as we will show in

Chapt. 4 for our calculations on iron. In particular, imposing particle-number conser-

vation and spin and orbital rotational symmetries, i.e. by requiring the commutation

rules
[
Φ̂ , N̂

]
= 0 (1.83)

[
Φ̂ , Ŝx,y,z

]
= 0 (1.84)

[
Φ̂ , L̂x,y,z

]
= 0 , (1.85)

one can reduce the parameters of a 5-band model from around one million to a few

thousands.

1.6.3 An application to the single-band paramagnetic Hubbard model

In this section we give the simplest example of the use of the formalism introduced in

Sect. 1.6.1 and Sect. 1.6.2, by applying it to the single-band paramagnetic HM away

from half-filling. The paramagnetic HM is particle-conserving and spin-rotationally
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invariant. By requiring commutation rules Eq. (1.83) and (1.84), we find that the

most general ΦΓΓ′ is diagonal in the basis of spin configurations of the single local

orbital of the model, and depends on three different parameters.

ΦΓΓ′ = δΓΓ′ΦΓ =




Φ0 0 0 0

0 Φ1 0 0

0 0 Φ1 0

0 0 0 Φ2




| 0 〉
| ↑ 〉
| ↓ 〉
| ↑↓ 〉

. (1.86)

In the single-band HM with spin rotational symmetry the NSB coincides therefore

with the two local spin-orbitals φ↑ and φ↓, both having equal filling n. The Gutzwiller

constraints Eq. (1.74) and (1.75) imply therefore that

|Φ0|2 + 2|Φ1|2 + |Φ2|2 = 1 (1.87)

2|Φ2|2 + 2|Φ1|2 = 2n , (1.88)

which result in |Φ0|2 = |Φ2|2 + 1− 2n and |Φ1|2 = n− |Φ2|2.

All parameters Φj can therefore be written as functions of n and Φ2. The square

of the latter provides the expectation value of the double occupation probability,

through

Tr{Φ̂†n̂↑n̂↓Φ̂ } = |Φ2|2 , (1.89)

while hopping renormalization operator R can be written in terms of n and Φ2 as

R =
Φ∗1Φ2 + Φ∗0Φ1√

n(1− n)
=

=
√
n− |Φ2|2

Φ2 +
√
|Φ2|2 + 1− 2n

√
n− |Φ2|2√

n(1− n)
, (1.90)

so that, using a hermitian Φ̂ , the final variational energy has the form (εkin was

defined in Eq. (1.19))

εGA = −|εkin|
2Φ2

1(Φ2 + Φ0)2

n(1− n)
+ U |Φ2|2 = (1.91)

= −|εkin|
2(|Φ2|2 − n)(Φ2 +

√
|Φ2|2 + 1− 2n)2

n(1− n)
+ U |Φ2|2 . (1.92)

When n = 1/2, the minimization of the above energy gives the same result as

Eq. (1.23). A plot of the energy and Z as a function of U is shown in Fig. 1.3

both for half-filling and for n = 0.49. The Brinkman-Rice transition disappears im-

mediately as n 6= 0.5, showing that the energy per site is very sensitive to filling when

U is large.
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Figure 1.3: Left panel, GA results for the energy per site εGA in units of |εkin|.
The energy is plotted as a function of U/Uc, for fillings n = 0.49 (green line) and

n = 0.5 (blue line). In the three-dimensional half-filled single-band HM on a cubic

lattice |εkin| = t. The right panel shows a plot of the U dependence of the quasi-particle

mass renormalization Z for the same two fillings.

1.7 Final remarks

We can sum up the discussion of this chapter with some important remarks regarding

the reliability of GA and GVW for describing the strongly correlated HM and the

Mott transition.

We saw how the GVW improves the HF description of the HM by accounting for

the suppression of the double occupation probability that is driven by the electron-

electron interaction parameter U . The GVW cannot be used to describe systems with

finite dimensionality that are expected to display a metal-insulator transition with

no spin or translational symmetry breaking; a more refined variational wavefunction

including a Jastrow factor is necessary for the purpose.

For a lattice of infinite coordination, the exact treatment of the GVW corresponds

to the GA, which correctly predicts a metal-insulator transition for a finite value

Uc of the interaction parameter U . The infinite-dimensional limit can be used as an

approximation for systems of finite, not too low (d > 2) dimensionality. In particular,

the GA can be applied to study the metallic phase of realistic three dimensional

systems with Hubbard-type interactions in the vicinity of a Mott transition. The

electronic correlations leading to the transition play an important role in the metallic

phase, and their effect in determining quasi-particle mass renormalization and spin

susceptibility can be correctly accounted for by the GA.
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A drawback of the GA is that it describes a paramagnetic Mott insulator very

poorly, for reasons that we elucidated in Sect. 1.3.4 and that depend on the inability

of the GA to account for the incoherent many-body excitations of a strongly correlated

system. A correct description of the many-body insulator in the limit of infinite lattice

dimensionality can be retrieved within DMFT.

The multiband formulation of the GA explained in this chapter will be useful in

Chapt. 4, where we will take advantage from the effectiveness of the GA in accounting

for electronic localization and magnetic moment formation and we will apply its

formalism to electronic structure calculations in the solid state.
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Chapter 2

Interfaces and junctions between

metals and Mott insulators

In this chapter we address the problem of describing the quasi-particle properties

of strongly correlated systems with broken translational invariance. We will discuss

how a metallic crystal close to its metal-insulator transition can display surface quasi-

particle properties different from those in the bulk. The stronger correlation between

particles near the surface, where the kinetic energy is suppressed due to the reduced

coordination, causes the surface layers to become worse conductors than the bulk.

The motivation of the work of Sect. 2.2 is the better understanding of the photoe-

mission spectra of transition metal oxides. We will draw inspiration in particular from

the recent data of Rodolakis et al. in vanadium sesquioxide (V2O3) [33]. This material

displays a phase diagram (shown in Fig. 2.1) with both a paramagnetic metallic and

paramagnetic insulating phase. The phase boundary between the two can be crossed

by either increasing doping or temperature, and the paramagnetic metal-insulator

transition can be simulated, at least qualitatively, as a Brinkman-Rice transition on

the HM.

We will mimic the photoemission sample by a layered HM with two surfaces and

layer-dependent Hubbard parameter U , and solve this model within GVM and GA. In

Sect. 2.3 we will exploit the same model to study various types of interfaces between

lattices with different values of U , larger or smaller than the critical value Uc for the

Brinkman Rice transition. Using the same numerical technique developed in Sect. 2.2,

we will address the intriguing problem of the tunneling of quasi-particles into a Mott

insulator.
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Figure 2.1: Phase diagram of vanadium sesquioxide. The experiments mentioned

in this chapter were performed for the paramagnetic metal (PM), close to the transi-

tion (showed by the vertical solid boundary line) to the paramagnetic insulating (PI)

phase. The other region of the phase diagram refers to the antiferromagnetic insulating

(AFI) phase. The photoemission data of Rodolakis et al. are obtained from different

temperatures (200, 300 and 400 K) along the dashed line. Adapted from reference [32].

2.1 Photoemission spectroscopy of strongly correlated systems

Photoemission Spectroscopy (PES) [29] is a technique based on the photoelectric

effect, which was developed in the second half of the last century along with the

technology of ultra-high vacuum and the physics of surfaces. Its experimental setup

consists in a sincrotron light emitter providing the necessary photon beam, and of a

properly aligned crystalline sample.

When the photons of the beam have a sufficiently high energy, their scattering with

the electrons of the sample can provide the latter with a sufficient energy to escape

from the crystal. The electrons are then collected by a detector analyzing their kinetic

energy Ekin and, in Angle-Resolved Photoemission Spectroscopy (ARPES), also the

outgoing angle θ. By knowing the crystal work-function it is possible to use these two

values to compute the electron energy EB and crystalline momentum ~k‖ parallel to

the surface of the sample

Ekin = ~ωph −W − |E(k)
B | , (2.1)

~k‖ =
√

2mEkin sin θ . (2.2)
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If Ĥe−ph is the Hamiltonian ruling the photoelectric process, the connection between

photoemission intensity and spectral function can be recovered from the Fermi golden

rule for the transition probability between a N -electron bound state |ΨN
i 〉 and a state

|ΨN
f 〉 with N − 1 bound electrons plus one free electron

Pfi =
2π

~
|〈ΨN

f |Ĥe−ph|ΨN
i 〉|2δ(EN

f − EN
i − ~ωph) , (2.3)

where EN
i = EN−1

i − Ek
B and EN

f = EN−1
f + Ekin are the initial and final energy of

the N -particle system, and where Ek
B is the binding energy of the photoelectron of

kinetic energy Ekin and crystal momentum k. The transition probability in Eq. (2.3)

can be reframed as

Pfi =
∑

f,i

|Mk
f,i|2

∑

m

A−(k, ~ωph − Ekin) , (2.4)

in terms of the matrix element |Mk
f,i|2, which is a single-particle property, and the

spectral function A−(k, ~ω)

A−(k, ω) =
∑

n

|〈φ(N−1)
n |ĉk|φ(N)

0 〉|2δ(ω − ξn0) , (2.5)

which measures the total strength of all excitations of energy ω = ξn0 removing one

particle of momentum k from the system, and which is connected to the full spectral

function A(k, ~ω) discussed in Sect. 1.3.4 through

A(k, ω) = A−(k, ω) + A+(k, ω) , (2.6)

A+(k, ω) =
∑

n

|〈φ(N+1)
n |ĉ†k|φ

(N)
0 〉|2δ(ω − ξn0) . (2.7)

where A+(k, ω) is related to an inverse-photoemission process, and sums up the spec-

tral weight of all excitations adding one particle to the system. At zero temperature,

A−(k, ω) carries spectral contributions only for ω < 0, while A+(k, ω) is nonzero only

for ω > 0.

There are a few complications in obtaining experimental data for A−(k, ω) in three-

dimensional samples, which arise from the fact that the extracted photoelectrons

have to cross the crystal surface. First, the Fermi golden rule Eq. (2.3) has to be

supplied with an extra multiplicative factor that describes the transition probability

of electrons through the surface. Second, when a bulk electron is excited, one also

needs to remember that its journey to the surface is subject to a finite mean free path,

which causes the final signal to be decreased by an amount depending on the depth

at which the photoelectric process has occurred. Third, the orthogonal component of

the crystal momentum k⊥ is not conserved through the crossing of the crystal surface,

so that only a k‖-resolved spectral function is directly accessible.
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Expecially this last limitation makes ARPES less predictive for 3d samples, and

unable to have the access to their full band structure. Fortunately, this is not a major

problem for the validation of DMFT predictions on strongly correlated materials.

A DMFT simulation provides indeed only the k-integrated spectral function A(ω),

which can be compared with simple non-angle-resolved PES spectra.

We have seen in Sect. 1.3.4 how the DMFT-predicted spectral function for strongly

correlated materials near their Mott metal-insulator transition features a sharp quasi-

particle peak for ω ≈ 0 and two broad Hubbard bands for higher frequency. Early

photoemission experiments [67–70] for metallic Chromium-doped vanadium sesquiox-

ide (V1−xCrx)2O3 near its metal-insulator transition, failed to reveal the sharp quasi-

particle peak predicted by DMFT. The electronic spectrum was simply dominated

by the lower Mott-Hubbard band with barely a hint of metallic weight at the Fermi

energy.

A similar puzzle was actually reported much earlier in f -electron materials [71], and

was soon ascribed to large surface effects in the presence of strong correlations [72];

the same conclusion was reached by the more recent photoemission experiments of

other authors [73–79].

Only by using an higher frequency photon beam (~ν of the order of 300 eV), it was

eventually possible to observe in V2O3 a prominent quasi-particle peak coexisting

with the incoherent Mott-Hubbard bands [30–32]. This was due to the fact that the

photon beam could excite photoelectrons of larger energy and longer mean-free path,

and thus able to travel all the way out of the crystal even when originated deep into

the bulk. It was soon clear that the quasi-particle peak was caused by bulk electrons,

and the question was risen about what could be the cause of the apparent absence of

quasi-particles nearer to the surface.

The quasi-particle suppression in surface-sensitive probes was initially attributed [30]

to surface-modified Hamiltonian parameters with a reduced atomic coordination.

This can push the surface closer to the Mott transition than the underlying bulk,

due to the lack of kinetic energy of surface electrons. The effects of larger electronic

correlations at the surface have been later discussed by several authors through ad-

hoc formulations of DMFT [36, 80, 81]. In their works there is general agreement on

the fact that even if all Hamiltonian parameters were to remain identically the same

up to the outermost atomic layer, the surface quasi-particle properties might still be

intrinsically different [36].

More recently, the low-energy photon, bulk-sensitive ARPES measurements by

Rodolakis et al. [33], showed that the coherent part of the spectral function of

V2O3 reacts to the presence of the surface differently from the incoherent electronic
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states over a length scale which is larger than the surface region as normally defined

in surface science, and that can reach the value of tens of Angstroms.

This remark raises a more fundamental question. A metal does not possess any

intrinsic length-scale at long distances other than the Fermi wavelength, thus an

imperfection like a surface can only induce at large depth a power-law decaying

disturbance such as that associated with Friedel’s oscillations. Since one does not

expect Luttinger’s theorem to break down, even in a strongly correlated metal these

oscillations should be controlled by the same Fermi wavelength as in the absence of

interaction, irrespectively of the proximity of the Mott transition.

However, a strongly correlated metal does possess an intrinsic energy scale, the

parametric distance of the Hamiltonian from the Mott transition, where that dis-

tance could be associated with a length scale. The surface as a perturbation should

alter the quasi-particle properties within a depth corresponding to that length, a bulk

property increasing near the Mott transition, unlike the Fermi wavelength that re-

mains constant. In this respect, it is not a priori clear whether the recovery of bulk

quasi-particle spectral properties with increasing depth should be strictly power-law

with an oscillatory Friedel-type behavior, a picture compatible with the common

view of a metal as an inherently critical state of matter, or whether it should be ex-

ponential, as one would expect by regarding the Mott transition as any other critical

phenomena where power laws emerge only at criticality.

We find here in the simple half-filled HM that the quasi-particle spectral weight be-

low the surface is actually recovered exponentially inside the bulk with a length-scale

that depends only on the bulk properties and diverges approaching the continuous

Mott transition.

2.2 Modeling the photoemission sample: a Hubbard slab with

two surfaces

We model the crystalline sample for photoemission with a half-filled cubic lattice

with nearest-neighbor hopping t, and electron-electron interactions included through

a Hubbard term with Hubbard U resolved in the site index R

H = −t
∑

{RR′}σ

ĉ†Rσ ĉR′σ +H.c.+
∑

R

UR n̂R↑n̂R↓ . (2.8)

Conventionally, the Mott transition of the half-filled HM is studied restricting to the

paramagnetic sector of the Hilbert space [17, 51, 82] so as to avoid spurious effects due

to magnetism. We assume the cubic lattice of spacing a to have periodic boundary
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Figure 2.2: Pictorial representation of the layered HM used to mimic the photoemis-

sion sample. The layers are labeled from 1 to L. Periodic boundary conditions are set

within each layer.

conditions in x and y directions and open boundary conditions in the z direction, in

an L-layer slab geometry with two surfaces at z = 0 and z = La (see Fig. 2.2).

We choose a z-dependent Hubbard electron-electron interaction parameter UR =

Uz=R⊥ equal to U everywhere except at the top surface layer (z = 0), where it takes a

generally higher value Us > U . In this way we can compare effects at the ideal lower

surface (z = La), where ULa = U , with the more correlated upper surface (z = 0).

Following the Gutzwiller ansatz, we study Eq. (2.8) by means of the variational

wavefunction

|Ψ〉 =
∏

R

PR |Ψ0〉 , (2.9)

where |Ψ0〉 is a paramagnetic Slater determinant. The parametrization of the pro-

jector must keep into account the spin rotational invariance of the system and the

particle-hole symmetry arising from the bipartite character of the cubic lattice, and

which implies the following equality between Fock operators

c†Rσ → σ (−1)R cR−σ . (2.10)

For a half-filled system, particle-hole symmetry causes every site to be occupied on

average by exactly one electron, so that 〈Ψ0|n̂R↑ + n̂R↓|Ψ0〉 = 1. The equivalence of

spin up and spin down electrons results in the identity

〈Ψ0|n̂R↑|Ψ0〉 = 〈Ψ0|n̂R↓|Ψ0〉 = 1/2 . (2.11)

Following the formalism of Sect. 1.6.2 in the mixed-basis representation, we find

that the most general z-dependent operator Φ̂ (z) compatible with symmetries is a
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diagonal matrix in the space of electronic configurations, and its matrix elements

ΦΓκ(z) = ΦΓ(z)δΓκ at every site are equal to the ones presented in Eq. (1.86) for the

homogeneous case, with the simplification that, for each z, Φ2(z) = Φ0(z).

Imposing the two Gutzwiller constraints 1.74 and 1.75 gives the further condition

Φ2
1(z) =

√
1/2− Φ2

2(z). The expectation value of Eq. (2.8) is equal to (remembering

that z = R⊥ and z′ = R′⊥)

E =
〈Ψ|H |Ψ〉
〈Ψ|Ψ〉 =

∑

R

UR Φ2
2(z) (2.12)

− t
∑

<RR′>σ

R(z)R(z′) 〈Ψ0|c†Rσc†R′σ +H.c.|Ψ0〉 ,

where the quasi-particle hopping renormalization factorsR(z) depend on Φ2(z) through

R(z) = 4Φ2(z)
√

1/2− Φ2
2(z) . (2.13)

We chose to invert this equation and to express Φ2(z) as function of R(z), which

become the actual variational parameters together with the Slater determinant |Ψ0〉.
In order to minimize E in Eq. (2.12) we assume that the Slater determinant |Ψ0〉 is

built with single-particle wavefunctions that, because of the slab geometry, have the

general expression φεk||(R) =
√

1/A eik||·R φεk||(z), where A is the number of sites per

layer and k|| the momentum in the x-y plane.

The stationary value of E with respect to variations of φεk||(z) and R(z) corresponds

to the coupled equations

ε φεk||(z) = R(z)2 εk|| φεk||(z)− t R(z)
∑

p=±

R(z + p a)φεk||(z + p a), (2.14)

R(z) =
4
√

1−R(z)2

U(z)A

occupied∑

εk||

[
− 2R(z) εk|| φεk||(z)2+

+ t φεk||(z)
∑

p=±

R(z + p a)φεk||(z + p a)

]
, (2.15)

where εk|| = −2t (cos kxa+ cos kya) and the sum in Eq. (2.15) runs over all pairs of(
ε,k||

)
that are occupied in the Slater determinant |Ψ0〉.

The first equation has the form of a Schrœdinger equation that the single-particle

wavefunctions φεk||(z) must satisfy, depending parametrically on R(z). The second

equation has been intentionally cast in the form of a map

Rj+1(z) = F [Rj(z), Rj(z + a), Rj(z − a)]
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Figure 2.3: The quasi-particle weight

Z(z) = R2(z) as function of the coordi-

nate z perpendicular to the surface (in

units of the lattice spacing) for a 100-layer

slab. The interaction parameter at z = 0

is Us = 20t, while the bulk U is 15.98t in

the upper panel and 15t in the lower one

(while Uc =16). The insets show the be-

havior of Z close to the two surfaces; the

highest curve corresponding to the surface

with bulk-like interactions, the other to

Us = 20t.

whose fixed point we have verified to coincide with the actual solution of Eq. (2.15)

in the parameter region of interest.

We can solve Eq. (2.14) and Eq. (2.15) through a two-step procedure. We first solve

the Schrœdinger equation at fixed Rj(z); next we find the new Rj+1(z) using the old

Rj(z) and the newly determined wavefunctions φεk||(z). With the new Rj+1(z), we

repeat the above steps and iterate until convergence. Because of the large number

of variational parameters, this iterative scheme is much more efficient than a direct

minimization the energy E in Eq. (2.12).

In the case of z-independent Gutzwiller parameters, the solution of Eq. (2.14)

and (2.15) goes back to the Brinkman-Rice result for the half-filled paramagnetic

homogeneous HM. Looking at Table 1.1, we take the value Uc = 16t for the Brinkman-

Rice transition in the homogeneous cubic lattice as a reference value for our inhomo-

geneous calculation, and we study the behavior of the quasi-particle weight Z(z) as

a function of z for Ubulk / Uc.

In Fig. 2.3 we plot Z(z) = R2(z) (the total spectral weight carried by quasi-

particles), calculated as function of z (in units of the lattice spacing a) for Us = 20t, for

two different bulk values 15t and 15.98t of U below the critical Mott-transition value.

Coming from the bulk, the quasi-particle weight Z(z) decreases monotonically on

approaching both surfaces, where it attains much smaller values than in bulk. As ex-

pected, the more correlated surface has a smaller quasi-particle weight, Z(0) < Z(L).

Note however that as long as the slab interior (the “bulk”) remains metallic, the

surface quasi-particle weight never vanishes no matter how large Us[36]. Mathemati-

cally, this follows from Eq. (2.15), which is not satisfied by choosing R(0) = 0 while

R(z > 0) 6= 0. Physically, some metallic character can always tunnel from the interior

to the surface, as long as the bulk is metallic.
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Figure 2.4: Log scale plot of Rbulk −
R(z) versus z for U = 15.99, Us = 20t and

for different thicknesses of the slab L =

60, 100, 200, 400.

The quasi-particle weight approaches the surface with upward curvature when U is

closest to Uc (see upper panel in Fig. 2.3) whereas the behavior is linear well below

Uc, as found earlier within linearized DMFT [36]. We note that an upward curvature

is in better accord with photoemission spectra of Rodolakis et al. on V2O3 [83]. The

curvature becomes more manifest if the number of surface layers where Us > U is

increased, as shown in Fig. 2.5.

Next, we analyze the dependence of R(z) at large distance 1� z � L/2 below the

surface. As Fig. 2.4 shows, we find no trace of a power law, and R is best fit by an

exponential

R(z) = Rbulk +

(
Rsurf −Rbulk

)
e−z/ξ , (2.16)

where Rbulk is the bulk value (a function of U only) and Rsurf < Rbulk. Rsurf now

depends on both U and on Us, and vanishes only when Rbulk does at U > Uc. A

detailed study by varying U and Us shows that the surface “dead layer” thickness ξ

depends only on bulk properties and diverges at the Mott transition as

ξ ∼ (Uc − Ubulk)−ν . (2.17)

Numerically we find ν = 0.53 ± 0.3 ' 0.5, a typical mean-field exponent [37]. The

same conclusion can actually be drawn by analyzing Eqs. (2.14) and (2.15) deep inside

the bulk. We note that the precise behavior at the outermost surface layers would

in a real system depend on details, such as lack of electron-hole symmetry and/or

surface dipoles, not included in our model.

Layer-resolved spectral function

In order to have a better connection with photoemission data, we compute a quantity

that is naturally related to a bulk-sensitive photoemission experiment, which is the

spectral function resolved in the layer index z of the crystal. If we indicate by R⊥
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U = 15 t

U = 15.98 t

Figure 2.5: Quasi-particle weight dependence on the distance z from the surface

for two different bulk U values and for two cases: one where only the first layer has

Us = 20 t > U (upper curve in each panel), the other where five surface layers have

Us = 20 t.

the component of the lattice vector perpendicular to the crystal surface, this spectral

function has the following definition.

A−(z, ω) =
1

A

∑

R(R⊥=z)

∑

n

|〈φ(N−1)
n |ĉR|φ(N)

0 〉|2δ(ω − ξn0) . (2.18)

where ĉR is the creation operator on the lattice site R. The above function measures

the strength of the quasi-particle peak and Hubbard bands at every depth z below

the crystal surface, and can therefore be compared, at least qualitatively, to the bulk-

sensitive photoemission data of Mo [32] and Rodolakis et al. [33] for a paramagnetic

metallic slab of vanadium sesquioxide near the transition to a paramagnetic insulator.

Exactly as the k-resolved spectral function, A−(z, ω) can be divided in two con-

tributions. One, A
(qp)
− (z, ω), due to the coherent quasi-particle excitations, and the

other, A
(Hub)
− (z, ω), due to the incoherent Hubbard bands. The second is not directly

accessible through the GA, but can be retrieved by requiring that the sum of the

coherent and incoherent spectral functions fulfills the sum-rule
∫
A−(z, ω)dω =

∫
A

(qp)
− (z, ω)dω +

∫
A

(Hub)
− (z, ω)dω = n(z) , (2.19)

where n(z) is the filling of layer z, which in our model is always equal to 1/2 due to

particle-hole symmetry. The coherent spectral function has the following expression

A
(qp)
− (z, ω) =

Z(z)

A

∑

R(R⊥=z)

∑

n

|〈Ψn,qp|ĉR|Ψ0,qp〉|2δ(ω − εn,qp) , (2.20)
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where Ψ0,qp is the ground-state Slater determinant built from the single-particle eigen-

states that are solution of the coupled equations (2.14) and (2.15), while Ψn,qp spans,

from different n, all excited states with one particle removed from an eigenstate with

energy εn,qp and with a finite overlap with layer z.

If U
k‖
zη is the unitary transformation diagonalizing the kernel of Eq. (2.14) with

eigenvalues εk‖,η and occupations f(k‖, η), A
(qp)
− (z, ω) can be rewritten as

A
(qp)
− (z, ω) =

Z(z)

A

∑

k‖,η

f(k‖, η)|Uk‖zη |2δ(ω − εk‖,η) . (2.21)

A good candidate for the incoherent spectral function, fulfilling the sum-rule (2.19)

is the function

A
(Hub)
− (z, ω) =

1− Z(z)

A

∑

k‖,η

f(k‖, η)|Ũk‖zη |2δ(ω − ε̃k‖ .η −∆) . (2.22)

In the above expression, the wavefunction Ψ0,Hub is a fictitious Slater determinant for

the Hubbard bands. It can be built from the single-particle orbitals that are solutions

of (2.14), where the double occupation and hopping renormalizations are computed

from a Gutzwiller projector (1̂ − P̂(z)) which is “orthogonal” to the quasi-particle

projectors P̂(z) minimizing the system ground-state energy.

It can be proved that the squared hopping renormalization factors resulting from

this modified projector are equal to 1 − Z(z), while the fictitious double occupation

of Hubbard bands is D̃ ≈ (1 − Z)/4. The eigen-energies ε̃k‖ .η and unitary transfor-

mations Ũ
k‖
zη can be computed from the diagonalization of the modified Eq. (2.14),

while the value of ∆ is the difference between the average energy per site of Hubbard

excitations and quasi-particles.

In spite of the fact that Eq. (2.22) is just a rough guess of the incoherent contribution

to the spectral function, our predictions for A−(z, ω), plotted in Fig. 2.7, show the

clear difference in surface-sensitivity between the quasi-particle peak and the Hubbard

bands which is evident also from the photoemission data of Fig. 2.8. Rodolakis et al.

noted that the region of k space along the ΓZ line of the Brillouin zone of vanadium

sesquioxide provides the largest contribution to the spectral weight of the system.

The photoelectrons excited from this region are emitted around a direction normal

to the (001) crystallographic plane of V2O3, so that the probing depth is maximized

when the crystal is cleaved along that plane.

When instead the cleaving is along the (102) surface, the photoelectrons emitted

normally to this surface provide a much smaller probing depth, as is pictorially shown

in Fig. 2.6. As shown in Fig. 2.8, the incoherent part of spectrum is not subject to

significant modifications with the change in cleaving plane, which instead greatly

affects the strength of the quasi-particle peak.
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Figure 2.6: Pictorial representation of the change in probing depth that occurs when

the crystal of vanadium sesquioxide is cleaved along a different lattice plane. Above left,

the (100) plane is perpendicular to the photoemission direction of the photoelectrons

providing the most intense signal, while on the right the (102) cleaving is shown, with

the wavevector of emitted photoelectrons forming an angle of 58.2◦ with the crystal

surface. Only the properties of photoelectrons excited within the green shaded region

can be probed.

Figure 2.7: GA result for A−(z, ω) for the first few layers beneath the lattice surface,

with a contribution of the Hubbard bands included through Eq. (2.22). For both panels,

we used a slab of 200 layers, with a value of U equal for all layers. The left panel, where

U < Uc = 16t, shows a more pronounced quasi-particle peak whose spectral weight

saturates to the bulk value already after three layers. On the right panel, where U / Uc,

the healing length of the quasi-particle is larger than seven layers.
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Figure 2.8: Plot of photoemission intensity for a sample of vanadium sesquioxide

cleaved along the (102) (panel a), and the (100) plane (panels b,c,d) and different

temperatures. The colors correspond to different photoemission angles, from normal

(red) to grazing (violet). The angle of 58.2◦ between the (102) and the (100) directions

causes the probing depth in panel a to be diminished by an amount 58.2◦ ≈ 1/2 with

respect to the one in panel b, so that the red curve shows the bulk quasi-particle

peak only in the second case. The angle resolution around the direction normal to the

surface is a further tool for varying the probing depth of detected photoelectrons. From

reference [33].
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CHAPTER 2. Interfaces and junctions between metals and Mott insulators

Figure 2.9: The three different inhomogeneities studied in this paper: (a) free sur-

face geometry, already discussed in Sect. 2.2 (b) junction between metals with different

strength of correlation, (c) Mott (or strongly correlated metallic) slab sandwiched be-

tween metallic leads (sandwich geometry). The values for U in all the three cases shown

are: (a) Usurface = 20t, Ubulk = 15.9712t; (b) Uleft = 15.9198t, Uright = 15.9712t; (c)

Uleft = Uright = 15.9198t, Ucenter = 16.0288t (which is the case of a Mott central slab).

In panel (c) the region with electron-electron interaction U = Ucenter is indicated by the

green-shaded area.

2.3 Investigation of other metal-insulator interfaces and junc-

tions

Motivated by the qualitative success of the GA in depicting effects of strong correla-

tions at the surface between a metal and vacuum, we applied the method elucidated

in the previous section to different types of model interfaces that might be relevant for

experiments: the junction between two different correlated metals and the tunneling

between two metallic leads through a strongly correlated, possibly Mott insulating,

region.

Although both cases were in fact previously studied by DMFT [37, 84, 85], the

results were interpreted in contrasting ways. While Helmes et al. [37] concluded that

the Mott insulator is impenetrable to the electrons coming from the metallic leads,

Zenia et al. [85] drew the opposite conclusion that a conducting channel always opens

up inside the insulator at sufficiently low temperature.

The present study, which is certainly less accurate than DMFT but can deal with

much larger sizes, will also serve to clarify this issue. In particular, the large sizes allow

us to address the asymptotic behavior and to identify the magnitude and interface

role of the critical length associated with the bulk Mott transition.
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2.3 Investigation of other metal-insulator interfaces and junctions

Figure 2.10: Spatial dependence of Z(z)

for Uleft = 2t and Uright = 15.9712t. The

lower panel shows the same data as the

upper one but closer to the interface.

Figure 2.11: Same as in Fig. 2.10, for

Uleft = 15.9198t and Uright = 15.9712t.

2.3.1 Geometry (b): Weakly correlated metal-strongly correlated metal

interface

The junction between a metal and a Mott insulator or a strongly correlated metal was

studied recently by Helmes, Costi and Rosch [37], who used the numerical renormal-

ization group as a DMFT impurity solver. With our simpler method we can address a

broader class of interfaces, including the general case of a correlated metal-correlated

metal junction, with different values of electron-electron interaction in the left (Uleft)

and right (Uright) leads.

The system we consider, shown on Fig. 2.9(b), is made of two blocks of 100 layers

each, with the junction center situated at z = L/2. Figs. 2.10 and 2.11 show the z

dependence of the quasi-particle weight for fixed Uright ' Uc and two different values

of Uleft < Uright. Even if U(z) is changed stepwise from left to right, we find that the

closer Uleft is to Uc, the smoother the function Z(z) for z < L/2.

On the right side of the junction, after a characteristic length ξright, the quasi-

particle weight Z reaches exponentially its bulk value. We find for z > L/2 that the

layer dependence of R(z) is well represented by the form1

R(z) = Rright + (Rleft −Rright) e−(z−L/2)/ξright . (2.23)

The dependence of ξright on Uright is again given by Eq. (2.17), i.e

ξright ∝ (Uc − Uright)
−ν , (2.24)

1For a better fit see Eq. (B.13) with the minus sign.
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Figure 2.12: Above left, plot of Z(x)x2 versus the renormalized coordinate

x
√
|1− U/Uc| for U < Uc (upper blue curves: U = 15.7939t triangles, U = 15.8424t

crosses, U = 15.9198t pluses, U = 15.9712t points, U = 15.9968 tiny dots) and U > Uc

(lower red curves: U = 16.2571t triangles, U = 16.2035t crosses, U = 16.1148t pluses,

U = 16.0511t points, U = 16.0128 tiny dots). This figure can be compared with the

inset of Fig. 3 in reference [37], showed on the right, and displaying the same scaled

results for various values of U R Uc, obtained with DMFT with a NRG impurity solver.

with ν ≈ 0.5. By symmetry, the same holds in the left side too, upon interchanging

the subscripts right and left.

Our results for weak Uleft and Uright ' Uc can be directly compared with those of

Helmes et al. [37], who proposed that a strongly correlated slab (our right lead with

Uright ' Uc), in contact with a non-interacting metal (our left lead), has a quasi-

particle weight Z(x) that, close to criticality, displays the scaling behavior

x2 Z(x) ' C f

(
x

∣∣∣∣
U − Uc

Uc

∣∣∣∣
1/2
)
, (2.25)

where f(0) = 1 and x is the distance from the interface, translated in our notation

x = z − L/2 and U = Uright. The prefactor C ' 0.008 and the asymptotic behavior

f(ζ → ∞) = 0.15ζ2 of the scaling function were extracted by a DMFT calculation

with a 40-layer correlated slab in contact with a 20-layer wide, almost uncorrelated

metal [37].

In Fig. 2.12 we show the quantity x2 Z(x) extracted by our Gutzwiller technique

and plotted versus x |1− U/Uc|1/2 for different U ’s across the Mott transition value.

The results are qualitatively similar to those of Ref. [37], but differs in two aspects.
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2.3 Investigation of other metal-insulator interfaces and junctions

First of all we find that f(ζ) defined in Eq. (2.25) shows a plateau only when

z∗ � x�
∣∣∣∣1−

U

Uc

∣∣∣∣
−1/2

, (2.26)

where an approximate expression for the offset value z∗ is given in Appendix B.2 (see

Eqs. (B.14) and (B.27)). For x � z∗, f(ζ) ∼ ζ2 so that Z(x) approaches its surface

value at the interface. In our data the crossover between the two different regimes is

clearly visible, unlike Ref. [37].

More importantly, the coefficient C ' 0.08 found by Helmes et al. [37] is almost two

orders of magnitude smaller than ours, which is numerically around ' 0.4 2. In the

same appendix we also show that, within the linearized DMFT approach introduced

by Potthoff and Nolting [36] one would extract yet another value of the coefficient

C = 9/11 ∼ 0.82, of the same order as ours, and again larger than that found by

Helmes et al. [37].

This disagreement is not just quantitative. Mainly because of the smallness of the

prefactor, Helmes and coworkers [37] concluded that the strongly correlated slab with

U ' Uc hence Zbulk = Z(x→∞)� 1 is very weakly affected by the proximity of the

good metal, a conclusion later questioned by Zenia et al. [85], who however considered

a different geometry.

Our results, as well as those that could be obtained by linearized DMFT, do not

allow such drastic conclusion. Yet, since straight DMFT should be more reliable

than either linearized DMFT or our Gutzwiller approach, it is likely that our Z(x) is

strongly overestimated and that Helmes et al.’s conclusions are basically correct. It

seems worth investigating further this important question with full DMFT calcula-

tions on wider slabs.

2.3.2 Geometry (c): Correlated metal-Mott insulator (Strongly

correlated metal)-correlated metal double junction

In this section we consider geometry (c) of figure 2.9, in which a strongly correlated

slab of d layers is sandwiched between two weakly correlated metal leads, a setup

already studied by DMFT [84, 85].

In Figs. 2.13, 2.14 and 2.15 we show the layer dependence of the quasi-particle

weight for different values of the interaction parameters, the Hubbard U in the leads,

Uright = Uleft < Uc, and in the central slab, Ucenter

>
< Uc, and slab thickness d. From

those results one can draw the following conclusions:

2The approximate analytical expressions discussed in Appendix B give a slightly larger value of

2/3, see Eqs. (B.19) and (B.30).
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Figure 2.13: Spatial dependence of Z(z)

for Uleft = Uright = 2t and Ucenter =

15.9712t. The upper panel refers to a cen-

tral region of d = 20 layers, while the

lower panel to d = 40

Figure 2.14: Same as in Fig. 2.13,

for Uleft = Uright = 15.9198t and

Ucenter = 15.9712t.

� For any finite thickness d, the quasi-particle weight in the central slab never

vanishes, as better revealed in Figs. 2.16 and 2.17, even for Ucenter > Uc, fed as

it is by the evanescent metallic quasi-particle strength from the metallic leads.

This result agrees perfectly with recent DMFT calculations [85].

� For Ucenter > Uc, see Fig. 2.15, the minimum value Zmin in the central region

decreases when d increases;

� The behavior of Z(z) across the interface is smoother and smoother the closer

and closer Uright = Uleft are to Ucenter.

Looking more in detail at Figs. 2.14, 2.15 and at the log-scale plots in Fig. 2.16

and 2.17, we can identify the characteristic differences between a Mott insulating slab

and a strongly correlated metallic slab, when sandwiched between metallic leads. In a

strongly correlated metallic slab, the central quasi-particle weight ultimately settles to

the self-standing value it would have in a homogeneous system with U = Ucenter < Uc.

This value is independent of the junction width and of lead correlations. On the

contrary, the quasi-particle weight inside the insulating slab is completely borrowed

from the leads, and strongly depends therefore on their separation and correlation.

What depends strictly on the central slab interaction Ucenter > Uc is the quasi-particle

decay length ξcenter from the lead to the center of the slab, which increases for increas-

ing slab correlation according to the law (Ucenter − Uc)
−ν , with ν ≈ 0.5, a value that

matches perfectly that found in section 2.2.
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2.3 Investigation of other metal-insulator interfaces and junctions

Figure 2.15: Same as in Fig. 2.13, for Uleft = Uright = 15.9198t and Ucenter = 16.0288t.

These considerations suggest that, if we look at the problem from a transport point

of view, we are confronted with two completely different mechanisms. In a strongly

correlated metallic central slab, ξcenter has the role of a screening length, exactly the

same role of ξright in section 2.3.1. If instead the central slab is insulating, the meaning

of ξcenter becomes completely different, and it now becomes a tunneling length. No

local quasi-particle peak would survive in a homogeneous Mott insulator: the residual

quasi-particle peak that we find inside the central slab is therefore the evanescent lead

electron wavefunction that tunnels into the slab.

A special case occurs exactly at criticality when Ucenter ≈ Uc, where neither of

the previous two pictures is valid. The crossover from the two opposite exponential

decays describing either screening or tunneling is characterized by the absence of

any characteristic length, which results in a power law variation of the quasi-particle

strength upon the slab width d

Zmin(d) ∼ 1

d2
+O

(
1

d3

)
, (2.27)

pictorially represented by the plots in Fig. 2.18. A simple analytical justification of

the critical 1/d2 behavior is provided in Appendix B. We find that the 1/d2 behavior

is, within our accuracy, independent of the specific properties of the metallic leads,

while its prefactor, as well as the sub-leading terms in Eq. (2.27) do depend on them,

as it can be understood by looking at Fig. 2.19.
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Figure 2.16: Logarithm of the quasi-particle weight Z as a function of layer index z for

a 20-sites wide (solid line) and 40-sites wide (dashed line) strongly correlated metallic

slab (U = 15.9712t < Uc) sandwiched between two weakly correlated metal leads (with

U = 15.88438t, 15.79388t, 15.67674t, 15.53236t.). The entire system is 200-sites wide;

the interfaces between the leads and the slab are at z = 80 and z = 120 for the 40-sites

wide slab and z = 90 and z = 110 for the 20-sites wide slab. The figure shows that for

increasing slab width the quasi-particle weight goes to a value that is independent of

lead correlation.

2.4 Final remarks

In this chapter we discussed how the spatial inhomogeneity of interfaces affects the

physics of a strongly correlated electron system. To address this problem, we ex-

tended the conventional GA technique to account for inhomogeneous Hamiltonian

parameters.

Moreover, to efficiently cope with the larger number of variational parameters in

comparison with the homogeneous case, we derived iterative equations fully equiva-

lent to the saddle point equations that identify the optimal variational solution, sim-

ilarly to what is commonly done within unrestricted HF or ab-initio Local Density

Approximation (LDA) calculations. These iterative equations can be solved without

much effort for very large system sizes; an advantage with respect to more rigorous

approaches, like e.g. DMFT calculations, which are numerically feasible only for small

systems.

We applied the method to various interface geometries in three dimensions; specif-

ically the interface of a strongly correlated metal with the vacuum, the interface

between two differently correlated metals and the junction between two weakly cor-

related metals sandwiched by a strongly correlated slab. All these geometries had
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2.4 Final remarks

Figure 2.17: Same as in Fig. 2.16, but the central layers have now U = 16.1148 > Uc.

In this case the quasi-particle weight at the center of the junction is strongly dependent

both on barrier width and on the strength of electron correlation in the leads. The

central layer remains metallic for arbitrary values of U > Uc, but its quasi-particle

weight decreases exponentially with the slab width.

been already studied by DMFT [36, 37, 80, 81, 84–87], which allowed us to directly

compare our results with more rigorous ones, thus providing a test on the quality of

our approximation, which is then applied to much larger sizes.

Our main result is that the effects of an interface decay exponentially in the interior

of a strongly correlated system on a very long length-scale proportional to the corre-

lation length of the incipient Mott transition, a bulk property independent upon the

details of the interface. [34] In particular, at the surface of a strongly correlated metal

we find a significant suppression of the metallic properties, e.g. of the quasi-particle

weight, which persists at a large depth controlled by the Mott transition correla-

tion length. This results in the appearance of a “dead layer” [34], due to effective

correlations being larger on the surface than in the bulk, which is consistent with

photoemission experiments [83].

Conversely, metallic features from a metal lead penetrate inside a Mott insulator

within a depth that, once again, diverges on approaching the Mott transition. As a

consequence, a conducting channel always exists inside a Mott insulating slab con-

tacted to two metallic leads, in agreement with recent DMFT analyses [85], implying

a finite conductance at zero bias and temperature that decays fast on increasing both

external parameters on an energy scale exponentially small in the length of the slab

in units of the Mott transition correlation length.

The method that we have developed is very simple and flexible, so it can in principle

be applied to a variety of realistic situations of current interest, not only for studying

69



CHAPTER 2. Interfaces and junctions between metals and Mott insulators

Figure 2.18: Numerical results for Zmind
2/4 and Ucenter = 15.999t (crosses), 16t

(squares), 16.0002t (dashed line), 16.0004t (diamonds), 16.002t (pluses) for the sandwich

geometry with Uleft = Uright = 2t. The constant value approached for U = 16.0002t ≈ Uc

and large junction width should be compared to the one we find in Eq. (B.57).

interfaces but also for more general inhomogeneities, as those arising by impurities or

other defects, and can easily incorporate additional features like magnetism, which

we have disregarded throughout this work.
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Figure 2.19: Numerical results for Zmind
2/4 for Uleft = Uright = 2t [Ucenter = 16t

(squares), 16.0002t (dashed line), 16.0004t (diamonds)], and for Uleft = Uright = 15.8t

[Ucenter = 16.0002t (crosses), 16.0004t (hexagons), 16.0006t (pluses)]. The stronger lead

correlation in the lower curves pushes the plateau of the function Zmind
2/4 towards

larger values of d.
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Chapter 3

Basic concepts of Density Functional
Theory

This chapter is devoted to the introduction to Density Functional Theory (DFT)

as a tool for electronic structure simulations in crystals and molecules. We start

by defining the density functional both through Legendre-transformation and con-

strained search, and by providing its parametrization in terms of the wavefunction of

an auxiliary system of non-interacting particles and a scheme for its self-consistent

minimization. We discuss the various terms composing the density functional of in-

teracting electrons, and the most widely used approximations for its exchange and

correlation part. The topics of this chapter are preparatory for the definition of the

Gutzwiller Density Functional in Chapt. 4.
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3.1 The electronic Hamiltonian for crystalline and molecular

systems

The Hamiltonian for the electronic degrees of freedom of an interacting electron sys-

tem in an external electrostatic potential can be written as the sum of three operators

Ĥ = T̂ + V̂ee + V̂ext . (3.1)

The first two operators, the kinetic operator T̂ and the electron-electron interaction

operator V̂ee are independent of the system of interest, and can be written in first-

quantized form as

T̂ = − ~2

2m

N∑

i=1

∇̂2
i , (3.2)

V̂ee =
1

2

∑

i 6=j

e2

|r̂i − r̂j|
. (3.3)

All differences between one fermionic system and another are included in the external

potential, which is caused by the positive ions of the molecule or crystal of interest,

treated as fixed within the Born-Oppenheimer approximation [88]. The explicit form

for V̂ext is

V̂ext =

∫
V (r)n̂(r)dr , (3.4)

where n̂(r) =
∑N

i=1 δ(r− r̂i) is the density operator, whose expectation value on the

fermionic wavefunction |Ψ 〉 of the ground-state yields the electronic density of the

system

nΨ(r) = 〈Ψ|n̂(r)|Ψ〉 = N
∑

σi...σN

∫
dr1 . . . drN |Ψ(r, σ1; r2σ2; . . . ; rNσN)|2 . (3.5)

3.2 Density Functional from Legendre transformation

From Eq. (3.1) and Eq. (3.4) it is clear that, in spite of the enormous number of

many-body wavefunctions that compose the Hilbert space where the minimization

Eq. (1.1) is performed, and in spite of the fact that the real-space representation of

the ground-state wavefunction depends on N electronic coordinates, the ground-state

energy of the system is a functional of a simple local scalar function of the coordinate

r, which is the external potential.
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3.2 Density Functional from Legendre transformation

If we indicate with ΨGS the wavefunction minimizing the expectation value of the

Hamiltonian,

EGS[Vext] = 〈ΨGS|T̂ + V̂ee|ΨGS〉+

∫
Vext(r)nΨGS

(r)dr . (3.6)

The functional EGS[Vext] is also differentiable, by virtue of the Hellman-Feynman

theorem it follows that

δEGS[Vext(r)]

δVext(r)
= nΨGS

(r) . (3.7)

Combining Eq. (3.6) and Eq. (3.7) we see that the energy functional provides also a

map between external potentials and ground-state densities. Hohenberg and Kohn [1]

proved that this map is invertible, which means that any non-negative function n(r)

determines up to an additive constant the external potential that generates it as its

ground-state density.

Their result enables us to define the Hohenberg-Kohn functional FHK from the

Legendre transformation of EGS[Vext(r)]

FHK[n(r)] = EGS[Vext(r)]−
∫
δEGS[Vext(r)]

δVext(r)
Vext(r)dr =

= EGS {Vext[n(r)]} −
∫
n(r)Vext(r)dr , (3.8)

which depends no longer on the external potential Vext(r), but only on the density

n(r).

By adding the Hohenberg-Kohn functional and the external potential contribution

to the ground-state energy, we are able to write EGS as the minimum of a density

functional

EGS[n(r)] = min
n(r)
F [n(r)] , (3.9)

F [n(r)] =

{
FHK[n(r)] +

∫
Vext(r)n(r)

}
. (3.10)

If we restrict to density variations preserving the number of particles (
∫
n(r)dr = N)

and add the reasonable – though apparently to date unproven – assumption that the

Hohenberg-Kohn functional is differentiable at constant particle density, its density

derivative provides the inverse map from density to potentials. When computed

for n(r) equal to the ground-state density nGS(r) = nΨGS
(r), it is equivalent the

stationary condition for the ground-state energy

δFHK[n(r)]

δn(r)

∣∣∣
n(r)=nGS(r)

= Vext(r) . (3.11)
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An important remark about the proof of the Hohenberg and Kohn theorem is that

the one-to-one correspondence between densities and potentials, up to an additive

constant, is only valid for densities that are pure state v-representable (also referred

to simply as v-representable), i.e. that can be computed from the ground-state wave-

function of an interacting Hamiltonian in some local external potential.

It is possible to find examples [50] of simple densities that do not have this property,

and that can arise only from an ensemble of degenerate ground-states of a Hamiltonian

with a suitable local potential. This property, called ensemble v-representability, is

rigorously granted only for densities on a lattice [89], while is itself an assumption for

continuous systems.

3.2.1 Kohn-Sham decomposition of the Hohenberg-Kohn functional

The consequence of the Hohenberg-Kohn definition of the Density Functional is that

the knowledge of the universal functional FHK[n(r)] would imply in principle the

possibility of finding the ground-state density of any electronic system in a local

external potential, which in turn would mean the knowledge of the electronic structure

of all molecules and crystals.

Unfortunately, and not surprisingly in view of the astonishing generality of the

previous statement compared to the complexity of the many body problem, the exact

knowledge of FHK[n(r)] is not affordable for most relevant physical systems. The

formal definition provided by Eq. (3.30) is in most cases inapplicable, and in any case

equivalent to using the Rayleigh-Ritz variational principle Eq. (1.1) directly for the

computation of the ground-state energy.

In their original work Hohenberg and Kohn decomposed FHK[n(r)] as a sum of the

classical Hartree electron-electron interaction functional EH[n(r)] plus a term G[n(r)]

including kinetic energy and all quantum corrections to the interaction

FHK[n(r)] = EH[n(r)] +G[n(r)] , (3.12)

where

EH[n(r)] =

∫
n(r)n(r′)

|r − r′| drdr
′ , (3.13)

and where G[n(r)] was approximated by the Thomas-Fermi expression valid for

slowly-varying densities.

A parametrization of the Hohenberg and Kohn functional providing more physical

insight than Eq. (3.12) was found by Kohn and Sham. Following their work we can

further decompose the functional G[n(r)] into a kinetic contribution Ts[n(r)] and

an exchange and correlation contribution Exc[n(r)]. The kinetic functional can be
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3.2 Density Functional from Legendre transformation

defined from constrained-search as

Ts[n(r)] = min
Ψ→n(r)

〈Ψ|T̂ |Ψ〉 . (3.14)

Being the kinetic operator T̂ a sum of single-particle operators, the wavefunction

yielding the minimum expectation value at fixed density in Eq. (3.14) must be a

Slater determinant. The exchange-correlation functional is simply defined as the

difference

Exc[n(r)] = FHK[n(r)]− Ts[n(r)]− EH[n(r)] , (3.15)

an expression which is of little help for practical calculations.

A reasonable approximation to Exc[n(r)] comes from the knowledge of the physical

properties of the uniform electron gas. The widely known Local Density Approximation

to the exchange-correlation functional, prescribes to compute the latter as the inte-

gral over volume of an energy-density which is equal, at every point r in space, to

the exchange-correlation energy-density n(r)ε
(eg)
xc [n(r)] of a uniform electron gas of

density n(eg) = n(r).

Exc[n(r)] ≈
∫
n(r)ε(eg)

xc [n(r)]dr . (3.16)

The value of ε
(eg)
xc [n(r)] was parametrized from the Diffusion Quantum Monte Carlo

data of Ceperley and Alder [6] and from the analytical high-density expansion of

Gell-Mann and Brückner [4].

In spite of neglecting the dependence of exchange and correlation energy from den-

sity fluctuations in space, LDA reveals to be a good approximation also for a variety

of physical systems where the density is not slowly-varying.

The whole Kohn-Sham decomposition of the Density Functional reads finally

F [n(r)] = Ts[n(r)] + EH[n(r)] + Exc[n(r)] +

∫
Vext(r)n(r)dr . (3.17)

The introduction of the kinetic term Ts[n(r)] suggests that the minimization of

the functional Eq. (3.17) for interacting electrons can be performed by considering

an auxiliary system of non-interacting fermions, of which Ts[n(r)] is the universal

Hohenberg-Kohn functional.

The Density Functional for non-interacting particles

FKS[n(r)] = Ts[n(r)] +

∫
VKS(r)n(r)dr , (3.18)
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involves also an external potential VKS(r) which we assume can be chosen so that

the minimum of FKS[n(r)] is achieved for a density equal to the ground-state density

nGS(r) of the functional F [(r)] for interacting electrons.

When n(r) = nGS(r), VKS(r) can be operatively defined by equating the right-hand

sides of the two stationary conditions

δTs[n(r)]

δn(r)

∣∣∣
n(r)=nGS(r)

= −VKS(r) (3.19)

δTs[n(r)]

δn(r)

∣∣∣
n(r)=nGS(r)

= −Vext(r)− δ {EH[n(r)] + Exc[n(r)]}
δn(r)

∣∣∣
n(r)=nGS(r)

, (3.20)

with the result

VKS[n(r)] = Vext(r) + VH[n(r)] + Vxc[n(r)] . (3.21)

The knowledge of the Kohn-Sham potential enables us to minimize FKS[n(r)], given

an initial density n(r), by means of the following iterative procedure:

1. compute VKS(r) corresponding to n(r) from Eq. (3.21) and insert it into Eq. (3.18)

in order to define the non-interacting Density Functional FKS[n(r)];

2. minimize FKS[n(r)] by diagonalizing the quadratic hamiltonian T̂ + V̂KS and by

constructing the Slater determinant |Ψ0 〉 of the N lowest-energy single-particle

states φiσ(r);

3. retrieve the minimizing density nGS(r) through Eq. (3.5), which in the case of

a Slater determinant is equivalent to

n(r) =
N∑

i=1

∑

σ

|φiσ(r)|2 ; (3.22)

4. feed n(r) back into Eq. (3.21) and repeat the procedure until convergence.

The final ground-state energy of the system can be computed from the eigenvalues

εη of the occupied single-particle orbitals of the auxiliary system1

EGS =
N∑

η=1

εη + EH[nGS(r)] + Exc[nGS(r)]−
∫
nGS(r)[VH(r) + Vxc(r)]dr , (3.23)

where the self-consistent potentials VH(r) and Vxc(r) are computed at convergence.

1In density functional calculations one must add to EGS also the electrostatic energy of the ions,

which depends only on their position, while it is independent, within Born-Oppenheimer Approxi-

mation, from the electronic degrees of freedom.
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The Kohn-Sham eigenvalues εη and eigenvectors do not have in general any par-

ticular physical meaning, since they refer to a fictitious system of particles which is

linked to the real physical system only by having its same ground-state density. For

a finite system, such as an atom or molecule, the eigenvalue of the highest-occupied

Kohn-Sham eigenvector can be shown to be equal to minus the ionization energy,

which governs the long-distance decay of the density profile.

We end this section by remarking two main requirements – silently taken for granted

in most electronic structure calculations – that we need for the electronic systems

under study in order to validate the self-consistent procedure above, and by discussing

their range of validity.

Non-interacting v-representability

It is not always possible to find a local potential such that the Kohn-Sham functional

Eq. (3.18) for non-interacting particles has the same minimizing density as the Density

Functional Eq. (3.17). Every ground-state density nGS(r) of the interacting problem

that minimizes the non-interacting functional with a suitable VKS(r), is said to be

non-interacting v-representable.

Without non-interacting v-representability, which is a stronger condition than v-

representability, the first step of the Kohn-Sham iterative minimization is meaning-

less. Unfortunately this property is not granted for every density and is in general

taken as an assumption.

Even given this property, no-one expects the density dependence of VKS(r) to be

trivial, since it has to mimic all the effects of a non-local operator as the electron-

electron interaction Hamiltonian. This is why the decomposition Eq. (3.21) is de-

ceivingly simple, hiding in Vxc(r) all the enormous difficulties of defining an accurate

Kohn-Sham potential.

Non-interacting N-representability

The third step of the iterative minimization requires that the ground-state density

nGS(r), which comes from the true N -particle ground-state wavefunction of the in-

teracting system, should be generated also by a suitable Slater determinant of N

particles.
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This requirement, known as non-interacting N -representability, was proved to be

fulfilled by every function n(r) with the properties

n(r) ≥ 0 (3.24)∫
n(r)dr = N (3.25)

∫ |∇n(r)|2
n(r)

dr <∞ , (3.26)

i.e for every non-negative n(r) arising from a system of N particles and with a deriva-

tive satisfying a mild criterion of smoothness [90, 91]. The conditions (3.24) to (3.26)

are expected to be true for all ground-state densities arising from reasonable external

potentials.

3.2.2 Local Spin Density approximation

The most simple generalization of LDA, which is the Local Spin Density Approximation

(LSDA), introduces two spin-dependent densities n↑(r) and n↓(r) as minimization

variables for the density functional. The two spin densities enter the definition of the

kinetic functional

Ts[n↑(r), n↓(r)] = min
Ψ→n↑(r),n↓(r)

〈Ψ|T̂ |Ψ〉; , (3.27)

where the ground-state wavefunction of auxiliary non-interacting particles is explicitly

allowed to be spin polarized.

Accordingly, the Local Density exchange-correlation functional is generalized to

E(LSDA)
xc [n↑(r), n↓(r)] =

∫
n(r)ε(eg)

xc [n↑(r), n↓(r)]dr , (3.28)

where ε
(eg)
xc [n↑(r), n↓(r)] is the exchange-correlation energy per particle of a uniformly

polarized electron gas. From the functional derivatives of the above functional, added

to the Hartree and external potential, one can compute the spin-resolved Kohn-Sham

potentials V
(↑)

KS (r) and V
(↓)

KS (r).

Within this scheme, Density Functional Theory (DFT) can be generalized to elec-

tronic systems in an external space-dependent, axial magnetic field B
(z)
ext(r). In the

absence of a magnetic field driving the magnetization, LSDA can account for the

spontaneous breaking of spin-symmetry in ferromagnets and antiferromagnets. Even

in paramagnetic systems, the introduction of spin densities can be helpful in provid-

ing more flexibility to the functional minimization, which is carried out in a wider

functional space.
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As a critique of LSDA, it is important to remember that the result of the Hohenberg

and Kohn theorem cannot be applied as such to ground-state spin densities. This is

due to the fact that one can in general choose couples of V
(↑)

ext and V
(↓)

ext differing by

more than a constant shift that result in the same ground-state wavefunction.

Starting from the spin-resolved version of the stationary equations Eq. (3.11), Vi-

gnale [92] argued that the non-uniqueness of the external potentials yielding a par-

ticular set of spin densities implies that in general the spin-resolved Hohenberg-Kohn

functional FHK[n↑(r), n↓(r)] is a non-differentiable functional of spin-densities.

One, often underestimated, limitation of the smooth LSDA functional is of not being

able to describe correctly physical observables for which this non-differentiability has

a key role. One of these is the spin gap of half-metallic ferromagnets.

3.3 Density Functional Theory from constrained search

An alternative way of deriving the Hohenberg and Kohn functional was proposed

independently by Levy [93, 94] and Lieb [95]. They converted the Rayleigh-Ritz

variational principle for the wavefunction into a variational principle for the density

through a constrained minimization at fixed density n(r)

EGS[Vext(r)] = min
n(r)

{
min

Ψ→n(r)
〈Ψ|T̂ + V̂ee|Ψ〉+

∫
Vext(r)n(r)

}
. (3.29)

By comparing Eq. (3.9) with Eq. (3.29), we can find the constrained-search defini-

tion of the Hohenberg-Kohn functional, i.e.

FHK[n(r)] = min
Ψ→n(r)

〈Ψ|T̂ + V̂ee|Ψ〉 , (3.30)

which is, as expected, independent of the external potential Vext. The stationary

condition for the ground-state energy implies that the Hohenberg-Kohn functional

is differentiable, and provides through Eq. (3.11) the map from density to external

potential.

The whole Kohn-Sham decomposition of the density functional can be recovered

in a constrained-search scheme. Namely, while the kinetic functional Ts[n(r)] was

already introduced through a density-constrained search in Eq. (3.14), the exchange

and correlation functionals can be defined separately as

Exc[n(r)] = Ex[n(r)] + Ec[n(r)] , (3.31)

Ex[n(r)] = 〈Ψ̄(n)
0 |T̂ + V̂ee|Ψ̄(n)

0 〉 − EH[n(r)] , (3.32)

Ec[n(r)] = min
Ψ→n(r)

〈Ψ|T̂ + V̂ee|Ψ〉 − 〈Ψ̄(n)
0 |T̂ + V̂ee|Ψ̄(n)

0 〉 , (3.33)
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where |Ψ̄(n)
0 〉 is the (Slater determinant) minimizing the expectation value of T̂ at

fixed density n(r).

Through the constrained search formulation of DFT, we can understand better the

differences between DFT and HF electronic structure calculations.

The former is in principle an exact theory, provided the Hohenberg-Kohn func-

tional (3.30) is known. The latter is always an approximate method, where correla-

tion effects are never taken into account, and corresponds to an effective DFT whose

Hohenberg-Kohn functional is defined as a constrained minimization in the space of

Slater determinants only

F
(HF)
HK [n(r)] = min

Ψ0→n(r)
〈Ψ0|T̂ + V̂ee|Ψ0〉 . (3.34)

Once the Slater determinant |Ψ̄(n)
0 〉minimizing the above expression has been found,

one can plug it in the definition (3.32) and find the HF exchange functional, while

the kinetic functional is equal to

THF[n(r)] = 〈Ψ̄(n)
0 |T̂ |Ψ̄(n)

0 〉 , (3.35)

where now |Ψ̄(n)
0 〉 is the Slater determinant minimizing the expectation value of T̂ +

V̂ee [96], and not of T̂ only, as in DFT, so that the inequality holds Ts[n(r)] ≤
THF[n(r)].

3.4 Going beyond LDA

The requirement of v-representability is that the Kohn-Sham potential should be local

in space. This property does not necessarily mean that the value of VKS at a point r

cannot depend on the value of the density at a different point in space. The Hartree

potential VH[n(r)], for example, depends on the values of n(r) at every point in space,

through the Coulomb integral

VH(r) =

∫
n(r′)

|r − r′|dr
′ . (3.36)

In general, also the value of the exchange-correlation potential Vxc(r) is expected

to depend on the values of the density at different points in order to account for all

quantum interaction effects enclosed in the ground-state wavefunction (within HF,

the exchange potential is not only a non-local functional of the density, but also a

non-local potential itself).

In spite of this, LDA approximates it as a local functional of the local density, by

assuming it coincides with the functional derivative of only the zeroth-order term of
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the – formally exact – asymptotic gradient expansion

Exc[n(r)] =

∫
n(r)ε(eg)

xc [n(r)]dr +

∫
|∇n|2ε(2)

xc [n(r)]dr + . . . (3.37)

of the exchange-correlation energy.

In the simulation of the electronic structure of a crystal, keeping only the first term

in Eq. (3.37) implies disregarding the effects of the lattice potential which squeezes

the density around the nuclei, and treating the quantum effects at each point in space

as those of an effective jellium model.

While this is reasonable for a metallic crystal where the density profile of conduction

electrons is slowly varying, the same cannot be said for an interface between a metal

and the vacuum, for a molecule, or for a single atom.

An advantage of the LDA exchange-correlation functional is that it is is locally able

to account exactly for the global strength of the exchange-correlation hole, given by

the sum-rule
∫

[gxc(r, r
′)− 1]n(r)dr = −1 , (3.38)

where g(r, r′) is the pair correlation function of a homogeneous electron gas of density

n(r′), with ground-state wavefunction |Ψ(eg)
0 〉

gxc(r, r
′) =

1

n2(r′)
〈Ψ(eg)

0 |
∑

i 6=j

δ(r − ri)δ(r′ − rj)|Ψ(eg)
0 〉 , (3.39)

and corresponds to the probability of finding a particle in r′ once we know that an

electron is located at point r.

Thanks to the property 3.38, LDA is able to provide reasonable results even for some

systems where the density profile is not slowly varying. However, the LDA functional

tends in general to underestimate both band gaps and equilibrium lattice constants

in crystals, while in the simulations of adsorption processes it shows the preference

for increased coordination and shorter bond lengths [7, 8]. A way to partially correct

these flaws is to compute Vxc from higher-order terms of the gradient expansion (3.37).

Unfortunately, an uncritical inclusion of a few gradient corrections does improve the

short-range part of Vxc, but results in an exchange-correlation hole that violates the

sum-rule Eq. (3.38) for large |r − r′|, and may therefore perform worse than LDA in

determining the total energy of systems in which the long-range part of the Coulomb

potential dominates the interaction energy.

The well known Generalized Gradient Approximation (GGA) and its spin-resolved

version σ-GGA are able to cure the spurious long-range part of the exchange-correlation
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hole through a real-space cutoff procedure. Here we show the GGA expression for

the exchange-only functional

Ex[n(r)] =

∫
n(r)ε(eg)

x [n(r)]f [s(r)]dr , (3.40)

which contains the LDA exchange energy per particle ε
(eg)
x = −3/4e2[3n(r)/π]1/3 , and

where the dependence on the gradient is included through s(r) ∝ ∇n(r)/n4/3(r).

The choice of f determines the type of GGA, the most popular being that of

Perdew and Wang [97] and Perdew, Burke and Ernzerhof [98], while, for f [s(r)] = 1,

Eq. (3.40) recovers the LDA result.

3.4.1 Overcoming self-interaction

One severe flaw of the LDA functional and of its spin-resolved generalization LSDA

which is not corrected within GGA, is that they contain spurious energy terms

coming from the interaction of every Kohn-Sham quasi-particle with itself. This

self-interaction energy is introduced by the classical Hartree functional EH[n(r)]

Eq. (3.13), and fails to be subtracted out by the approximate exchange-correlation

functional.

Within the HF theory, this subtraction is exact, by virtue of the explicit orbital

dependence of the Fock term. In fact, given a basis φα of single-particle spin-orbitals,

the HF interaction energy reads

E
(HF)
int = 〈Ψ0|V̂ee|Ψ0〉 =

∑

αβ

fαfβ

[ ∫ |φα(r)|2|φβ(r′)|2
|r − r′| drdr′+

−
∫
φ∗α(r)φα(r′)φ∗β(r′)φβ(r)

|r − r′| drdr′
]
, (3.41)

and is such that no term with α = β gives contribution to the total energy of the

system.

In order to solve the self-interaction problem of LDA, Perdew and Zunger [99]

suggested the following correction to the LDA exchange-correlation functional

ExcSIC[n(r)] = E(LDA)
xc [n(r)]−

∑

i occ.

{
EH[ni(r)] + E(LDA)

xc [ni(r)]
}

(3.42)

that makes use of the densities ni(r) = fi|φi(r)|2 resolved on a set of orbitals φi of

occupation fi which can both be optimized in order to maximize the self-interaction

removal.

The above Self-Interaction Correction (SIC) contribution to the total energy is

larger for rapidly varying densities and strongly localized electrons, while it vanishes
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in the jellium fully delocalized limit, where the LDA is already self-interaction free.

While being always exact for a density arising from a single electron, the SIC sub-

traction is only approximately correct for a system of many electrons. Moreover,

due to the optimization of the self-interaction removal, the minimization of the SIC

functional cannot be straightforwardly included in a Kohn-Sham scheme.

The SIC functional was shown [100] to be very effective in predicting band gaps

and magnetic moments of several transition metal oxides which are poorly described

by LSDA.

In the following section we discuss another method that proved equally successful

in removing self-interaction from the LSDA functional, which is the Local Density

Approximation plus Hubbard-U (LDA+U) method. This method draws inspiration

from the HM for strongly correlated electrons, and provides therefore more physical

insight to electronic structure calculations of materials where the electron-electron

interactions play an important role.

3.5 A local effective Hamiltonian: LDA+U

It can be argued that the self-interaction problem of LDA is connected to the fact

that the LDA functional is not N -representable. It is in fact a known property of

N -representable functionals to be self-interaction free [101]. The definition of N -

representability for an approximate Hohenberg and Kohn functional F ′HK[n(r)], is

that for each density n(r) there exists a N -particle wavefunction |Ψ 〉 yielding that

density and such that

F ′HK[n(r)] = 〈Ψ|T̂ + V̂ee|Ψ〉
Ψ→n(r)

. (3.43)

This condition is satisfied by HF, as can be clearly undestood from Eq. (3.34).

The same is not true for the LDA functional, whose exchange-correlation is implic-

itly computed at every point in space from a different wavefunction, each being the

ground-state of an electron gas with a different number of particles.

A minimal way to improve LDA and LSDA can be therefore to re-introduce an

explicit wavefunction dependence only in the part of interaction energy which is sup-

posed to contain the largest self-interaction, as is the case for the interaction energy

between localized electrons (see Appendix E.1).

For this purpose, Anisimov and coworkers [18] devised the LDA+U scheme (more

precisely called Local Spin Density Approximation plus Hubbard-U (LSDA+U) in the

case of spin-resolved calculations) by introducing a Hubbard-U interaction operator

defined on selected sets of atomic orbitals of transition metals or transition metal
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compounds (usually the d orbitals of the transition metal atom, labeled with magnetic

quantum number m)

ĤHub =
U

2

∑

mm′,σσ′

ĉ†mσ ĉ
†
m′σ′ ĉm′σ′ ĉmσ , (3.44)

and reframed the Kohn-Sham functional as

F [n(r)] = Ti0[n(r)] + EH[n(r)] + Exc[n(r)]− Edc[n(r)] +

∫
dr Vext(r)n(r) , (3.45)

where now the N -representable modified kinetic functional is defined as the minimum

of the kinetic operator plus the Hubbard operator on the class of Slater determinants

Ti0[n(r)] = min
Ψ0→n(r)

〈Ψ0|T̂ + ĤHub|Ψ0〉 , (3.46)

and where the double-counting energy Edc[n(r)] is a guess of the amount of Hubbard

interaction energy already accounted for within LDA.

In the so called fully localized limit, better elucidated in Appendix E.3, the double-

counting term is computed from the expectation value of Eq. (3.44) by neglecting

fluctuations of the number operator N̂ on d-orbitals around its expectation value

N = 〈Ψ0|N̂ |Ψ0〉, with the result

Edc[n(r)] =
U

2
N(N − 1) . (3.47)

Subtracting the Edc[n(r)] from the expectation value of ĤHub on the Slater deter-

minant minimizing the right-hand side of Eq. (3.46), one finds that the total term

added to the LDA energy functional can be written in terms of the density matrix on

d-orbitals n (of matrix elements nmm′,σσ′ = 〈Ψ0|n̂mm′,σσ′|Ψ0〉) as

∆EHub[n(r)] =
U

2
Tr{n(1− n)} . (3.48)

The effect of the correction in Eq. (3.48) can be understood by thinking the localized

d-orbitals as the single-particle states of an atomic impurity connected to a reservoir

of electrons provided by the Bloch states of the crystal. For any fractional number

of particles (1 − λ)N + λ(N + 1) sitting on the impurity, the ground-state of the

latter is a statistical mixture of states with exactly N and N + 1 particles, and the

impurity energy Eloc[N + λ] is equal to the linear combination of the energies of the

two integer-particle systems (1− λ)Eloc[N ] + λEloc[(N + 1)].

The second derivative of the impurity energy with respect to λ is therefore expected

to be zero for any 0 < λ < 1. This is not the case within LDA and LSDA, where the

value

S(N) =
d2Eloc(N

′)

dN ′2

∣∣∣
N ′=(1−λ)N+λ(N+1)

(3.49)
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Figure 3.1: Illustration of the mechanism with which LDA+U subtracts self-

interaction from the LDA energy for any fractional occupation of the set of local orbitals.

The zero second derivative of the local energy with respect to N means that the atomic

ground state is a statistical mixture of states with different number of particles. Adapted

from [102].

can be considered as a measure of self-interaction on the impurity.

As shown in Fig. 3.1, the addition of ∆EHub[n(r)] to Eloc is meant to correct the

finite value of the double derivative, so that the LDA+U local energy Eloc(N) +

∆EHub(N) becomes piecewise linear in N for a suitable value of U .

Cococcioni and De Gironcoli [102] suggested a self-consistent approach for comput-

ing U from the condition S(N) = 0, making LDA+U a fully ab-initio method. From

their calculations it becomes clear that the value of the Hubbard parameter can be

fairly dependent on the environment surrounding the transition metal atom on which

the Hubbard Hamiltonian 3.44 is defined.

This is due to the lattice-induced hybridization of the d-orbitals with the other

atomic bands, which can result in a weaker or stronger d-electron localization accord-

ing to the properties of the crystal under study. The choice of the radial function for

the d-orbitals may also slightly influence the value of U in a minor fashion, the less

the more localized the orbitals are.
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3.6 Final remarks

The advantages of using DFT as a tool for electronic structure calculations come from

the universality of the Hohenberg and Kohn functional, which is in principle the same

for all Hamiltonians of electrons with Coulomb interactions, and from the use of a

single-particle observable as the density as a minimizing variable for the energy of a

many-body system.

Unfortunately, the exact form of the Hohenberg and Kohn functional is inaccessible,

and has to be guessed by using physical insight and by making assumptions. Kohn

and Sham suggested to decompose it into a kinetic and an interaction part, where

the kinetic part is computed from a reference system of non-interacting electrons.

The interaction part can be written as the sum of a classical (Hartree) term plus

all quantum corrections, the exchange-correlation energy, which within Local Density

Approximation are computed by integrating at every point in space the exchange-

correlation energy density of a uniform electron gas with pointwise the same density

as the physical system of interest.

The LDA exchange-correlation functional is unable to subtract from the Hartree

energy the interaction of every electron with itself, bringing a bias into the calculation

that needs to be corrected every time it jeopardizes correct physical predictions. The

LDA+U functional subtracts self-interaction from a selected set of atomic orbitals by

adding to the LDA functional the mean-field expectation value of a Hubbard inter-

action operator. This can improve the description of systems with strongly localized

electrons as crystals of transition metals and transition metal compounds.

Whenever electrons are strongly localized, many-body effects beyond mean-field

usually play an important role in determining relevant physical observables as spin

susceptibility and magnetization. In the next chapter we will present the Gutzwiller

Density Functional as an improvement of LDA+U where the Hubbard energy is com-

puted beyond mean-field. This makes the investigation of a typically many-body

phenomenon as double-exchange magnetism possible.
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Chapter 4

Gutzwiller approach to

Density Functional Theory

In this chapter we explain the advantages that a Gutzwiller-based DFT can bring to

electronic structure simulations on the solid state. In the first section, Sect. 4.1 we

point out some physical phenomena that conventional Density Functional approaches

to realistic systems like LSDA and LSDA+U fail to describe correctly. One example

is the dissociation of diatomic molecules, the other is magnetism driven by double-

exchange. The Gutzwiller method is expected to provide a tool for dealing with both

phenomena in a successful way. For this purpose, in Sect. 4.2 we define the Gutzwiller

Density Functional, while in the following sections we show how it can be exploited

to describe the electronic structure of a simple transition metal like body-centered

cubic iron, where double-exchange is proved to have a relevant role in determining

magnetic order.

4.1 Stoner Magnetism and Mott localization

within LSDA and LDA+U

In Chapt. 3, we mentioned how LSDA fails, sometimes even grossly, to reproduce ex-

perimental band gaps and magnetic moments in transition metal oxides. The reason is

that the local spin density functional suffers from spurious self-interaction effects that

prevent electronic localization and magnetic moment formation on weakly dispersive

orbitals.
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For transition metal elements and compounds, these orbitals are Bloch functions

built out of weakly hybridized atomic-like orbitals of d-type. The lack of hybridization

is due to the particular arrangement of atoms in the lattice, and makes electron-

electron interaction a relevant actor that is expected to further localize d-electrons

and increase their band mass.

Removing self-interaction should be sufficient to correct the severe flaws of LSDA

in transition metal compounds, a task that both the SIC and the LSDA+U schemes

seem to perform efficiently. The reason why the removal of self-interaction favors

localized states and local magnetic moments can be understood as follows.

If the electron-electron interaction on a local orbital is modeled with the Hubbard-

U interaction operator, the energy gap of order U that opens between a singly and

a doubly occupied local configuration in the absence of self-interaction gives the pos-

sibility for the half-filled state to lie well below the Fermi energy, where it does not

take part in conduction processes.

Within LDA, the energy of a local orbital with fractional filling must lie at the Fermi

level, where both its charge and spin configurations become subject to fluctuations

which spoil localization and magnetic moment.

The only mechanism through which electronic localization can occur within the

LSDA formalism is by explicitly breaking spin symmetry. The effect of the charge

gap between singly and doubly occupied sites is now caused by the gap between

atomic levels of majority and minority spin components, so that the former can have

energies below the Fermi level and host localized electrons with a definite magnetic

moment and a definite polarization. In this picture, the energy of a minority spin

orbital lies above that of a majority spin orbital by an amount proportional to the

coupling which drives spin polarization, which is in principle distinct from the pure

Hubbard interaction U .

Gunnarsson [103] was the first to realize that the LSDA calculations on transition

metals are mimicked by an effective Stoner model for the d-electrons, where the role

of the Stoner interaction parameter in driving the spin polarization is played by the

atomic Hund’s rule exchange J , which has similar values for all 3d metals.

This actually means that magnetism can be stabilized in LSDA only in orbitally

degenerate situations where the effective Hubbard-U is small enough to allow the

inter-orbital exchange, driven by J , to overcome the effects of self-interaction. This

is what happens in pure transition metals, where the large conduction bandwidth

efficiently screens the Coulomb repulsion hence making the Hubbard U comparable

to J , which instead remains practically unscreened. In these cases LSDA performs

well.
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In other cases, specifically transition metal oxides, screening is less efficient and

U can be more than twice the value of J , which makes LSDA unable to reproduce

a magnetic behavior that in reality occurs. It may even happen that the d-orbital

degeneracy is lost completely and only a single d orbital lies around the Fermi energy.

This is known to occur for instance in cuprates, where J is ineffective, and there is

no way to stabilize magnetism within LSDA.

When these situations arise one is forced to resort to schemes beyond LDA that

suffer less from self-interaction effects, as for instance LDA+U [18], which however

has other drawbacks. For instance, within LDA+U one retrieves an effective Stoner

model with Stoner parameter proportional to the Hubbard U . This model can cor-

rectly account for electron localization and magnetic moment formation, but cannot

determine, being U pure charge repulsion, the temperature at which magnetism sets

in, which is controlled by the smaller energy scale involved in magnetic ordering.

In the next two sections we will try and answer to the following questions: what

features can a DFT based on a GVW add to an electronic structure simulation of a

molecule or a crystal? In particular, can it add anything more to the description of

transition metals, where the LSDA functional already gives satisfactory results?

The answer to these questions comes from the discussion of Sect. 1.3.1, where we

understood how the Stoner approach to magnetic ordering is able to describe both

mass and spin-susceptibility enhancement, but fails to account for the behavior of

their ratio while approaching a phase transition.

The reason for this fact is that no enhancement of local spin moment can be de-

scribed within a HF or LSDA calculation unless a global symmetry is broken, while

the GVW can enhance local moments even irrespectively from any magnetic order.

The Gutzwiller enables to differentiate between the mechanism of Mott localization

and that of magnetic order, two phenomena that are distinct and controlled by dif-

ferent energy scales.

4.1.1 Localization mechanisms in the dissociation of H2

The simplest example where to discuss the capabilities of the GVW compared to the

performance of existing density functional methods is the dissociation of a hydrogen

molecule. In the limit of infinite inter-atomic distance, the LDA energy of H2 does

not become twice the energy of a single hydrogen, as it should [9]. This well known

result is due to the fact that the bonding orbital remains fully occupied for every

lattice separation, so that inter-atomic fluctuations fail to be completely suppressed

even at very large atomic distance, where we expect the wavefunction of each electron

to localize on a single hydrogen at a time.
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Within the LSDA formalism, the correct dissociation limit for the energy can be

reached through the gradual alignment of the spin of the two electrons. The gain in

exchange energy caused by spin polarization changes the ground-state from a doubly

occupied bonding orbital to a state with bonding and anti-bonding orbitals occupied

with one electron, corresponding to the single-determinant state

|ΨLSDA
0,loc 〉 =

1√
2

[φA(1)φB(2)− φB(1)φA(2)]⊗ [χ↑(1)χ↑(2)] , (4.1)

where φA and φB are orbitals centered on atom A and atom B respectively, and

where χ↑ and χ↓ are up and down spinors There is of course no physical reason why

the magnetic moments of two hydrogen atoms separated by a large distance should

be parallel to each other, and it is clear that the spontaneous magnetization of the

system is just an artifact of LSDA. Moreover, the fact that the final spin state is a

triplet implies that the ground-state Slater determinant is odd under inversion, while

the exact ground-state should be inversion-symmetric.

Even if one searches for a solution where the two spins are anti-parallel, still in-

version symmetry is lost, while spin rotational symmetry is not recovered because

the anti-parallel spin configuration is not a singlet state. No qualitative improvement

with respect to LSDA can be obtained within LSDA+U.

Within the multi-band formulation of the GA, it is instead possible to obtain the

correct dissociation limit of the hydrogen molecule with a ground-state wavefunction

for the dissociated state that does not break spin rotational or inversion symmetries.

Different than |ΨLSDA
0,loc 〉, this wavefunction is a multi-determinant state, with explicit

form

|Ψg,sing
loc 〉 =

1

2
[φA(1)φB(2) + φB(1)φA(2)]⊗ [χ↑(1)χ↓(2)− χ↓(1)χ↑(2)] . (4.2)

Starting from the doubly occupied bonding orbital, which is the solution of the

LDA calculation, one can apply a Gutzwiller projector P̂ defined on the inversion-

symmetric, spin-singlet many-body configurations of two electrons. There are only

two configurations of this type, namely

|Ψg,sing
0,bond 〉 =

1√
2

[φb(1)φb(2)]⊗ [χ↑(1)χ↓(2)− χ↓(1)χ↑(2)] ∼ | ↑ 〉 , (4.3)

|Ψg,sing
0,antibond 〉 =

1√
2

[φa(1)φa(2)]⊗ [χ↑(1)χ↓(2)− χ↓(1)χ↑(2)] ∼ | ↓ 〉 . (4.4)

One configuration has two electrons in the bonding orbital φb(1), while the other has

two electrons in the anti-bonding orbital φa. The two configurations build a reduced
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many-body space where they can be effectively treated as two pseudo-spinors | ↑ 〉
and | ↓ 〉.

If we use the representation in terms of the Φ̂ operators described in Sect. 1.6.2, we

can show that in this reduced many-body space there is only one degree of freedom

related to the Gutzwiller projector. The natural single-particle basis of this problem

is that of the bonding and anti-bonding orbital, with the first being fully occupied

on the Slater determinant. It follows that the natural density matrix n
(0)
i δij has the

form

n
(0)
i =

{
1 ; i = b (bonding)

0 ; i = a (antibonding)
. (4.5)

In the relevant many-body space we have

Φ̂† = cos(θ/2)σ̂+σ̂− + sin(θ/2)σ̂+ , (4.6)

where σ̂+ and σ̂− are the spin raising and lowering operators in the pseudo-spinor

basis. The operator Φ̂† defined above correctly fulfills the first Gutzwiller constraint

Tr{Φ̂†Φ̂ } = cos2(θ/2) + sin2(θ/2) = 1 . (4.7)

By virtue of the fact that the number operator on the bonding orbital n̂bb = ĉ†bĉb (we

omit the spin index which is irrelevant when matrix elements are computed between

singlet states), restricted to our space of two many-body states, is a projector on

|Ψg,sing
0,bond 〉, while n̂aa projects on |Ψg,sing

0,antibond 〉, it easy to show that Φ fulfills also the

second Gutzwiller constraint on the natural density matrix.

Using the fact that n̂bb = σ̂+σ̂−, and n̂aa = σ̂−σ̂+, we find

Tr{Φ̂†Φ̂ n̂bb} = 1 = n
(0)
b , (4.8)

Tr{Φ̂†Φ̂ n̂aa} = 0 = n(0)
a , (4.9)

Tr{Φ̂†Φ̂ n̂ab} = 0 = n(0)
a , (4.10)

where the last equality is due to the fact that n̂ab has matrix elements only between

states of different inversion symmetry, while Φ̂†Φ̂ has only matrix elements between

states with the same inversion symmetry.

The value of the Gutzwiller-renormalized density matrix can be found from

Tr{Φ̂†n̂bbΦ̂ } = cos2(θ/2) , (4.11)

Tr{Φ̂†n̂aaΦ̂ } = sin2(θ/2) , (4.12)

Tr{Φ̂†n̂abΦ̂ } = 0 , (4.13)

so that θ = 0 represents the bound state, while θ = π/2 represents the fully dissociated

state |Ψg,sing
loc 〉. All values of θ between zero and π/2 interpolate between the two limits,

and hence can describe the dissociation curve of H2.
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4.1.2 Exchange-driven and Correlation-driven magnetism

At the beginning of Sect. 4.1, we discussed how both LSDA and LSDA+U describe

the effects of electron-electron interactions on magnetism through an effective Stoner

theory. Stoner theory explains how an electron liquid can spontaneously develop

a finite magnetization in order to lower its total energy. Such an energy lowering

takes place through an increase in kinetic energy accompanied by a larger decrease

in interaction energy.

We can see this by starting from the standard single-band HM with hopping energy

leading to a non-interacting density of states D0(ε), and by computing the mean-field

total energy for a filling n = (N↑ +N↓)/L and spin imbalance m = (N↑ −N↓)/L:

E(n,m) =

∫ εF↑

0

εD(ε) +

∫ εF↓

0

εD(ε)dε+
LU

4
(n2 −m2) , (4.14)

where εF↑ and εF↓ are implicit functions of N↑ and N↓ through

∫ εF↑(↓)

0

D(ε) = N↑(↓) . (4.15)

For a small imbalance m = N↑−N↓, we can expand the two integrals on the right-hand

side of Eq. (4.14) around the value at m = 0, with the result

E(n,m) ≈ E(n,m = 0) +

(
2

χ
(0)
P

− LU
)
m2

4
, (4.16)

where χ
(0)
P is the positive Pauli magnetic susceptibility of the non-interacting system,

which is a measure of spin fluctuations.

The non-interacting static homogeneous susceptibility χ
(0)
P is twice the density of

states D0(εF), so that by taking the second derivative of E(n,m) the Stoner suscepti-

bility is recovered. The minus sign in front of the Hubbard-U in Eq. (4.16) indicates

that the term favoring magnetism is the exchange part of the electron-electron in-

teraction energy. From the same equation it is also clear how the polarized phase

appears at the expense of the total kinetic energy, and is more favored the larger is

the spin susceptibility of the system.

We would like to give another example of magnetism arising in systems of weakly

compressible electrons, a type of magnetism that is driven by a physical mechanism

completely different than direct exchange, which is double-exchange.

Spin polarization due to double-exchange can arise only in correlated systems with

more than one band, and with a sufficiently strong Hund’s first rule making local

parallel spin configurations advantageous. The simplest way to model it is through a
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two-band HM, with bands α and β, Hubbard-U and exchange J :

Ĥ =
∑

γ=α,β

tγ
∑

{i,j}σ

ĉ†iσγ ĉjσγ + Uα
∑

i

n̂i↑αn̂i↓α + Uβ
∑

i

n̂i↑βn̂i↓β − J
∑

i

Ŝ2
i , (4.17)

where Ŝ2
i is the square of the total spin operator at site i. We assume that the α

band is half-filled, and that the whole system is more than quarter-filled.

If Uα is large enough with respect to the hopping tα, the double occupancy of the α

band is suppressed and the α electrons localize, giving rise to well-formed, unordered

local moments. If the β electrons were localized as well, Hund’s first rule would force

parallel spins on each site, with no necessity for ordering among different sites.

If instead Uβ is small enough compared to tβ to allow for sizable inter-site fluc-

tuations, every β electron is itinerant, and the different sites through which it is

delocalized are subject to an effective exchange potential tending to align the α spins

to the underlying β magnetic moments.

It can be seen that when this happens, and the α band becomes fully polarized,

the motion of the β electron is favored with respect to the unpolarized case, since

no hopping process will violate Hund’s first rule. This implies a kinetic energy gain

of the ordered phase with respect to the disordered one. A pictorial explanation of

the double-exchange mechanism is shown in Fig. 4.1. The phenomenon of double-

exchange magnetism is peculiar since it happens only in cases where the itineracy

and strong localization of electrons coexist. As in the case of Stoner magnetism, it is

caused by strong local interactions. However, in this case localization and ordering,

two phenomena treated on the same footing by the Stoner theory, are physically

decoupled, with the Hubbard U driving the magnetic moment formation on the heavy

fermion band, and the inter-band exchange J causing the magnetic ordering indirectly

through hopping processes.

The transition metals and their compounds offer a natural laboratory where both

localization and itineracy can survive. Double-exchange physics was shown to have

an important role in the electronic structure of manganites [44]. In the following

sections we show how a Gutzwiller-improved Density Functional can describe the

role of double-exchange in determining the electronic structure of a simple transition

metal as body-centered cubic iron.

4.2 The Gutzwiller density functional

Proceeding along the lines of chapter 3, we would like to introduce a functional which

is devoid of self-interaction, as the LDA+U functional, and with the supplementary

capability of accounting for an explicit renormalization of the electronic band mass.
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Figure 4.1: Pictorial representation of the double-exchange mecha-

nism. The red circles represent localized electrons, the green ellipse

a delocalized electron hopping between two sites. The wavefunc-

tion of delocalized spins on the upper level creates an effective ex-

change coupling aligning clusters of localized moments on the lower

level. The maximum kinetic gain is obtained when all moments are

aligned, so that the motion of delocalized electrons is not penalized

by Hund’s rule potential barriers (pictured by the dashed line) due

to anti-parallel local moments.

This can be done by defining the new kinetic functional TiG[n(r)] as

TiG[n(r)] = min
ΨG→n(r)

〈ΨG|T̂ + Ĥat|ΨG〉 , (4.18)

where Ĥat is an atomic interaction Hamiltonian including the Hubbard-U term ĤHub

and a Coulomb exchange locally enforcing Hund’s rules. The above wavefunction

|ΨG 〉 spans all Gutzwiller-type wavefunctions with fixed n(r), namely it is of the

form

|ΨG 〉 = P̂|Ψ0 〉 , (4.19)

where |Ψ0 〉 is a Slater determinant.

Analogously to Eq. (3.45), we can write the density functional as

F [n(r)] = TiG[n(r)] + EH[n(r)] + Exc[n(r)]− Edc[n(r)] +

∫
dr Vext(r)n(r) . (4.20)

Similarly to the LDA+U modified kinetic functional Ti0[n(r)] in Eq. (3.46), which

introduces an explicitly wavefunction-dependent mean-field interaction energy for in-

dependent particles, the Gutzwiller modified kinetic functional TiG[n(r)] contains

an interaction energy for correlated particles, computed within the Gutzwiller frame-

work. The constrained-search definition Eq. (4.18) of the Gutzwiller kinetic functional
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implies the inequality

TiG[n(r)] ≤ Ti0[n(r)] , (4.21)

which is a result of the fact that the GVW has a larger variational freedom than

a simple Slater determinant, or, from another point of view, that the Gutzwiller

Density Functional (GDF) includes some correlations between quasi-particles already

at the kinetic level. When the atomic interaction operator Ĥat is set equal to zero,

both TiG[n(r)] and Ti0[n(r)] functionals become equal to the Kohn-Sham kinetic

functional (3.14).

If we define with Ψ̄
(n)
G the GVW minimizing the expectation value of T̂ + Ĥat at

fixed n(r), and as Ψ̄
(n)
0 the same wavefunction where the Gutzwiller projector has

been set equal to identity, we can formally divide Exc[n(r)] into three contributions

Exc[n(r)] = Ex[n(r)] + E(G)
c [n(r)] + E ′c[n(r)] , (4.22)

where

Ex[n(r)] = 〈Ψ̄(n)
0 |V̂ee|Ψ̄(n)

0 〉 − EH[n(r)] , (4.23)

E(G)
c [n(r)] = 〈Ψ̄(n)

G |T̂ + V̂ee|Ψ̄(n)
G 〉 − 〈Ψ̄

(n)
0 |T̂ + V̂ee|Ψ̄(n)

0 〉 , (4.24)

Ec
∗[n(r)] = min

Ψ→n(r)
〈Ψ|T̂ + V̂ee|Ψ〉 − 〈Ψ̄(n)

G |T̂ + V̂ee|Ψ̄(n)
G 〉 . (4.25)

The first contribution is the well known exchange functional, which within LDA has

the simple form (E.5). Within LDA+U

Ex[n(r)] = 〈Ψ̄(n)
0 |Ĥat|Ψ̄(n)

0 〉+
(
〈Ψ̄(n)

0 |V̂ee − Ĥat|Ψ̄(n)
0 〉 − EH[n(r)]

)
, (4.26)

i.e. Ex[n(r)] is partially parametrized as an explicitly wavefunction-dependent term,

the expectation value of Ĥat on the ground-state Slater determinant, plus a remain-

der (the term in brackets in Eq. (4.26)) that is approximated by the conventional

LDA exchange functional minus the double-counting energy. The second contribu-

tion E
(G)
c [n(r)] embodies the improvement of the GDF over the LDA+U density

functional. It can be again decomposed as

E(G)
c [n(r)] = 〈Ψ̄(n)

G |T̂ + Ĥat|Ψ̄(n)
G 〉 − 〈Ψ̄

(n)
0 |T̂ + Ĥat|Ψ̄(n)

0 〉+
+
(
〈Ψ̄(n)

G |V̂ee − Ĥat|Ψ̄(n)
G 〉 − 〈Ψ̄

(n)
0 |V̂ee − Ĥat|Ψ̄(n)

0 〉
)
, (4.27)

with an explicitly wavefunction-dependent term plus a part (in brackets) that needs

to be accounted for through a correlation functional of the LDA type. The term

E
(G)
c [n(r)] of the GDF contains correlation effects beyond LDA both through the

Gutzwiller renormalization of the local interaction Ĥat and through the band-mass

97



CHAPTER 4. Gutzwiller approach to Density Functional Theory

renormalization, while the LDA+U functional can include part of these effects only

indirectly by modifying the density profile so as to change the value of the LDA

correlation functional. The functional Ec
∗[n(r)] in Eq. (4.25) is the part of correlation

energy that is not included in the GVW, and should be added in as an LDA-like

correlation functional in order to retrieve the approximate ground-state energy of the

real system. We define

E ′x[n(r)] = Edc[n(r)] +
(
〈Ψ̄(n)

0 |V̂ee − Ĥat|Ψ̄(n)
0 〉 − EH[n(r)]

)
, (4.28)

E ′c[n(r)] =
(
〈Ψ̄(n)

0 |V̂ee − Ĥat|Ψ̄(n)
0 〉 − EH[n(r)]

)
+ (4.29)

+
(
〈Ψ̄(n)

G |V̂ee − Ĥat|Ψ̄(n)
G 〉 − 〈Ψ̄

(n)
0 |V̂ee − Ĥat|Ψ̄(n)

0 〉
)

+ Ec
∗[n(r)] . (4.30)

4.3 Gutzwiller density functional, an implementation and a case

study

We decided to test the performance of the GDF by simulating the electronic structure

of paramagnetic and ferromagnetic body-centered cubic iron, motivated by a recent

Local Density Approximation plus Dynamical Mean-Field Theory (LDA+DMFT)

study by Anisimov [43] and coworkers. The formalism of LDA+DMFT incorpo-

rates the DMFT self-consistent equations described in Sect. 1.3.4 into the realistic

electronic structure calculation scheme provided by Kohn-Sham DFT [20]. The pa-

rameters of the DMFT impurity-model Hamiltonian are obtained from first-principles

calculations, and the impurity Green’s function can be afterwards used to compute a

renormalized density (and therefore renormalized Kohn-Sham potential) via

−~
π
=m

∫ εF

−∞
dω G(r, r, ω) , (4.31)

where G(r, r, ω) is obtained from the local lattice Green’s function G
(l)
µν (introduced

in Eq. (1.49) for the single band case) as

G(r, r, ω) =
∑

µν,R

G(l)
µν(ω)φ∗µ,R(r)φ∗ν,R(r) . (4.32)

The LDA+DMFT equations are therefore a tool to investigate the effects of strong

correlations in realistic solid state systems. In the case of a bcc crystal, the atomic d-

type orbitals of an iron atom are split by the cubic crystal field into two multiplets, the

doubly degenerate eg and triply degenerate t2g orbitals respectively, whose distinct

orientations with respect to the lattice are shown in Fig. 4.2. The eg orbitals are

weakly hybridized and more localized, while the t2g orbitals are more spread in space,
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Figure 4.2: Pictorial explanation of the lack of hybridization experienced by eg or-

bitals compared to the t2g orbitals. The square moduli of the wavefunctions of (green)

eg orbitals are larger towards the center of the bcc cell faces, while zero at the vertices,

where the iron ions sit. On the contrary, the square moduli of the (red) t2g wavefunc-

tions are nonzero on the vertices, thus causing a stronger hybridization with orbitals at

different lattice sites.

and have a larger inter-site hopping matrix element. When part of the bcc crystal,

the iron atom is in a configuration close to the 3d7 4s1, which is displayed in Fig. 4.3,

and which is different than the one of the isolated atom, the 3d6 4s2.

In their work, the authors suggest that bcc iron might be an orbital-selective Mott

insulator, where the weakly dispersive eg-type electrons become fully localized due

to interactions, while the conduction phenomena occur only within the t2g manifold.

This picture is in agreement with previous theoretical models [40–42], and is consistent

with the conditions that lead to double-exchange magnetism, and that we elucidated

in Sect. 4.1.2 (the eg orbitals playing the role of the α orbital in that section).

We therefore exploit a Gutzwiller-renormalized LDA functional to try and grasp

both the orbital selectivity of band mass renormalization in eg and t2g orbitals and

to look for some clues of a double-exchange origin of the magnetism in iron.
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Figure 4.3: In the picture above we show the eg and t2g configurations corresponding to

the atomic 3d7 4s1 configuration, which is the nearest one to the actual d configuration

of an iron atom in a bcc lattice. The spin configuration shown above is already fulfilling

Hund’s first rule.

Calculation of renormalized density

We start by introducing the density operator for a translational invariant system with

one atom per unit cell

n̂(r) =
∑

αβ,R

n̂αβ,Rφ
∗
α,0(r)φβ,R(r) , (4.33)

where n̂αβ,R = ĉ†α,0ĉβ,R is the density matrix operator written on a basis of atomic

orthonormalized orbitals φα,R(r) centered on every lattice site R.

From the expectation value of n̂(r) on the ground-state Slater determinant of the

system we can compute the uncorrelated density n(0)(r)

n(0)(r) =
∑

αβ,R

D
(0)
αβ,Rφ

∗
α,0(r)φβ,R(r) (4.34)

in terms of the density matrix D
(0)
αβ,R = 〈Ψ0|n̂αβ,R|Ψ0〉. In similar way we can compute

the renormalized density n(r) as the expectation value of n̂(r) on the GVW

n(r) =
∑

αβ,R

Dαβ,Rφ
∗
α,0(r)φβ,R′(r) , (4.35)

where now we made use of the correlated density matrix Dαβ,R = 〈ΨG|n̂αβ,R|ΨG〉. In

the Siesta calculation we use as φα,R, for everyR, a set of s, p and d-type orbitals, with

the angular parts of p and d-orbitals being real spherical harmonics. These transform

already as irreducible representations of the cubic group, a property that makes our

local original basis φα,0 also equal to the natural basis diagonalizing D
(0)
αβ,R=0, and

simplifies the calculations. In analogy with LDA+U, we make the site-independent

Gutzwiller projector act in a non-trivial way only on the many-body space of d-orbital

configurations, while we set it equal to identity on the remaining space 1.

1The full many-body space of the system can be written as a tensor product Cd ⊗ Crem of the

configuration space Cd for d-orbitals, and Crem of the remaining orbitals. The Gutzwiller projection

operator acts as P̂ ⊗ 1̂
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From now on, when there is the need of explicitly distinguishing between the “cor-

related” d-orbitals – subject to Gutzwiller projection – and the “uncorrelated” s and

p-orbitals – which are left untouched –, we will use the Greek indices µ and ν for

the former, and Latin indices i and j for the latter. From Eq. (1.76), Eq. (1.61) and

Eq. (1.77) in Sect. 1.6.1 and 1.6.2, we can find the GA recipe for renormalizing the

uncorrelated density matrix D
(0)
αβ,R.

The symmetry properties of our original (and natural) single-particle basis φα and

of the Gutzwiller parameter matrix Φ̂ for this system (we show the recipe for its

parametrization in Appendix C) are such that the hopping renormalization matrix

Rµν is diagonal. The off-site density matrix on correlated orbitals is therefore renor-

malized according to

Dµν,R 6=0 = RµµD
(0)
µν,R 6=0Rνν , (4.36)

while the on-site density matrix is computed from Gutzwiller parameters as

Dµν,R=0 = Tr{Φ̂†n̂µν,R=0Φ̂ } . (4.37)

The density matrix on uncorrelated orbitals has the same value when computed on

the Slater determinant and on the GVW

Dij,R 6=0 = D
(0)
ij,R 6=0 , (4.38)

Dij,R=0 = D
(0)
ij,R=0 , (4.39)

while the density matrix terms coming from the hybridization – occurring only for

R 6= 0 – between correlated and uncorrelated orbitals changes according to

Dµj,R 6=0 = RµµD
(0)
µj,R 6=0 . (4.40)

Calculation of kinetic, external potential and atomic interaction energy

The modified functional TiG[n(r)] can be divided in a purely kinetic term TkG[n(r)] =

〈ΨG|T̂ |ΨG〉 and atomic interaction term Eat[n(r)] = 〈ΨG|Ĥat|ΨG〉.
Once the renormalized density n(r) is known, the sum of external potential and

kinetic energy is simply

TkG[n(r)] +

∫
n(r)Vext(r)dr =

∑

αβ,R

(Tαβ,R + V
(ext)
αβ,R)Dαβ,R , (4.41)

where

V
(ext)
αβ =

∫
φ∗α,0(r)Vext(r)φβ,R(r)dr , (4.42)

Tαβ = − ~2

2m

∫
φ∗α,0(r)[∇2φβ,R(r)]dr (4.43)
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are two density-independent matrices, the only density dependence coming through

Dαβ.

The atomic interaction Hamiltonian is entirely defined on correlated d-orbitals, and

its expectation value on the GVW can be computed as indicated by Eq. (1.76)

Eat[n(r)] = Tr{Φ̂†ĤatΦ̂ } . (4.44)

Our Ĥat is composed, apart from the Hubbard-U term ĤHub, by a Hund term ĤHund

with an inter-orbital exchange operator depending on the parameter J . Below we

write their explicit form in terms of creation and annihilation operators on orbitals

with definite magnetic quantum number m:

Ĥat = ĤHub + ĤHund (4.45)

ĤHub =
U

2

∑

mm′,σσ′

ĉ†mσ ĉ
†
m′σ′ ĉm′σ′ ĉmσ , (4.46)

ĤHund =
J

2

∑

m 6=m′,σσ′

ĉ†mσ ĉ
†
m′σ′ ĉmσ′ ĉm′σ . (4.47)

The dependence of Eat[n(r)] on the density n(r) is implicit through the Gutzwiller

constraints. We will discuss below on how to enforce them during the functional

minimization.

For the double-counting energy Edc we choose the expression in the fully-localized

limit [104], supplemented with an additional mean-field term, which is important in

enforcing the positivity of Eat − Edc with our definition of ĤHund (see Appendix E.3

and Appendix E.4)

Edc[n
(0)(r)] =

U

2
N(N − 1)− J

2
[N↑(N↑ − 1) +N↓(N↓ − 1)]− J

2l + 1
N↑N↓ . (4.48)

As in standard LDA+U, this double-counting energy is a function of the den-

sity n(0)(r) through the single-particle density matrix on local orbitals n
(0)
mm′,σ, with

N =
∑

mσ n
(0)
mm,σ, Nσ =

∑
m n

(0)
mmσ. The relationship between n

(0)
mm′,σ and the nat-

ural density matrix n
(0)
a δab introduced in Sect. 1.6.2 is just a single-particle unitary

transformation that does not affect the value of Edc as far as sz is a good quantum

number. For this reason Edc[n
(0)(r)] can be written as Edc[n

(0)
a ], i.e. as a function of

the natural density matrix.

Choice of Hartree and exchange-correlation functional

We assume that the LDA exchange-correlation functional is a good approximation for

the sum of the two functionals E ′xc[n(r)] = E ′x[n(r)] + E ′c[n(r)] defined in Eq. (4.29)
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and Eq. (4.30), i.e.

E ′xc[n(r)] = E(LDA)
xc [n(r)] =

∫
dr n(r) εxc[n(r)] , (4.49)

For the feasibility of the GDF calculation we need to approximate E
(LDA)
xc [n(r)] with

its first-order expansion around n(0)(r). Defining the quantity δn(r) = n(r)−n(0)(r),

we have

E ′xc [n(r)] ≈ E(1)
xc

[
n(r), n(0)(r)

]
=

∫
dr n(0)(r)εxc[n

(0)(r)]+

+

∫
drvxc[n

(0)(r)]δn(r) , (4.50)

where

vxc[n
(0)(r)] =

d(nεxc[n])

dn

∣∣∣
n=n(0)(r)

. (4.51)

Similarly, we take a first-order expansion of the Hartree potential

E ′H [n(r)] ≈ E
(1)
H

[
n(0)(r), n(r)

]
=
e2

2

∫
drdr′

n(0)(r)n(0)(r′)

|r − r′| +

+

∫
dr δn(r) vH[n(0)(r)] , (4.52)

where

vH[n(0)(r)] =
e2

2

∫
dr′

n(r′)

|r − r′| . (4.53)

The term we are neglecting in Eq. (4.52) is

∆EH
[
n(0)(r), n(r)

]
=
e2

2

∫
drdr′

δn(r) δn(r′)

|r − r′| , (4.54)

and contains the electrostatic energy of the density fluctuations induced by the

Gutzwiller projector. The above choice for the Hartree and exchange-correlation

functionals has the great advantage that they depend on the Gutzwiller-renormalized

density n(r) only linearly. This enables to write the following decoupling

E
(1)
H [n(0)(r), n(r)] = E

(0)
H [n(0)(r)] +

∑

αβ,R

V
(H)
αβ,RDαβ,R , (4.55)

E(1)
xc [n(0)(r), n(r)] = E(0)

xc [n(0)(r)] +
∑

αβ,R

V
(xc)
αβ,RDαβ,R , (4.56)
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where the first terms on the right-hand sides are functions of the uncorrelated density

only

E
(0)
H [n(0)(r)] = −e

2

2

∫
drdr′

n(0)(r)n(0)(r′)

|r − r′| , (4.57)

E(0)
xc [n(0)(r)] = −

∫
dr [n(0)(r)]2

dεxc[ξ(r)]

dξ(r)

∣∣∣
ξ(r)=n(0)(r)

, (4.58)

while the second terms have a linear dependence on the Gutzwiller-renormalized

density matrix analogous to the one displayed in Eq. (4.41), where the coefficients

are the matrix elements of the two potentials

V
(H)
αβ,R[n(0)] =

∫
φ∗α,0(r)vH(r)φβ,R(r)dr , (4.59)

V
(xc)
αβ,R[n(0)] =

∫
φ∗α,0(r)vxc(r)φβ,R(r)dr , (4.60)

that depend self-consistently on n(0)(r). As shown in Appendix E.2, the first-order

approximation for the exchange-correlation potential does not spoil the sum-rule for

the exchange-correlation hole Eq. (3.38), which is one of the main strengths of LDA .

It is important to stress that, in spite of being explicitly defined as functions of two

variables, E
(1)
H

[
n(0)(r), n(r)

]
and E

(1)
xc

[
n(0)(r), n(r)

]
can be thought as functionals of

renormalized density n(r) only. In fact, the uncorrelated density n(0)(r) is itself a

functional of n(r) via the constrained minimum condition

min
P̂|Ψ0 〉→n(r)

〈Ψ0|P̂†ĤP̂|Ψ0〉 , (4.61)

which selects for every density n(r) a minimizing projector P̂ and Slater determinant

|Ψ0 〉, from which n(0)(r) can be recovered.

We will refer to our particular choice of GDF, with exchange-correlation terms

explained in this section and with an atomic interaction Hamiltonian Ĥat draw-

ing inspiration from LDA+U, as the Local Density Approximation plus Gutzwiller

Method (LDA+G). In the following sections we discuss its minimization and its

performance when applied to bcc iron.

4.3.1 Three-step minimization of the LDA+G functional

The two densities n(r) and n(0)(r) must be such that Gutzwiller constraints are

fulfilled. When, as in body-centered cubic iron, D
(0)
µν,R=0 is already diagonal with

respect to the indices µ and ν of the Gutzwiller-correlated orbitals, the constraints

on the density matrix can be written as
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D
(0)
µν,R=0 = n(0)

µ δµν , (4.62)

Tr{Φ̂†Φ̂ n̂µν} = n(0)
µ δµν , (4.63)

where we introduced the local uncorrelated density matrix on natural orbitals n
(0)
µ δµν

as additional variable for the density functional. The above constraints can be en-

forced with Lagrange multipliers, together with the first Gutzwiller constraint

Tr{Φ̂†Φ̂ } = 1 . (4.64)

Summing all the contributions defined in the previous paragraphs, we find that the

functional we want to minimize has the form

F [n(r), n(0)(r), n(0)
µ ] = max

λµνλ′µνλ0

K[n(r)] + Eat[n(r)]− Edc[n
(0)
µ ]+

+ E
(0)
H [n(0)(r)] + E(0)

xc [n(0)(r)]+

− λ′µν
(
D

(0)
µν,R=0 − n(0)

µ δµν

)
− λµν

(
Tr{Φ̂†Φ̂ n̂µν} − n(0)

µ δµν

)

− λ0

(
Tr{Φ̂†Φ̂ } − 1

)
, (4.65)

where the functional K[n(r)] contains all terms which depend on n(r) linearly through

the renormalized density matrix D, namely

K(D) =
∑

αβ,R

{
Tαβ,R + V

(H)
αβ,R + V

(xc)
αβ,R + V

(ext)
αβ,R

}
Dαβ,R . (4.66)

For every fixed value of n
(0)
µ δµν , we can optimize F [n(r), n(0)(r), n

(0)
µ ] with respect

to the two densities n(0)(r) and n(r). In practice, by looking at equations (4.34, 4.35)

and (4.36, 4.37) one can see that this is equivalent to a minimization with respect to

the Slater determinant |Ψ0 〉 and the Gutzwiller parameters contained in the operator

Φ̂ . This minimization can be carried out in two separate steps:

1. a Siesta self-consistent calculation is performed in order to find the Slater deter-

minant Ψ0 that optimizes F [n(r), n(0)(r), n
(0)
µ ] with respect to n(0)(r), enforcing

the constraint (4.62) on D
(0)
µν through an Augmented Lagrangian Method. The

Gutzwiller parameters, and therefore the hopping renormalization parameters

Rµµ, are kept fixed throughout this optimization. The atomic energy Eat[n(r)]

does not change, nor does the double-counting energy Edc[n
(0)(r)], which is a

function of n(0)(r) only through n
(0)
a . The self-consistent single-particle Kohn-

Sham equations allowing the minimization with respect to |Ψ0 〉 are

(Kαβ,R + V
(0)
αβ,R − λ′αβ)ψβ,R = εψα,0 , (4.67)

105



CHAPTER 4. Gutzwiller approach to Density Functional Theory

where

Kαβ,R = Tαβ,R + V
(H)
αβ,R + V

(xc)
αβ,R + V

(ext)
αβ,R , (4.68)

V
(0)
αβ,R =

∫
dr φ∗α,0(r)

[
δE

(0)
H [n(0)(r)]

δn(0)(r)
+
δE

(0)
xc [n(0)(r)]

δn(0)(r)

]
φβ,R(r) . (4.69)

2. a Lanczos-improved Levenberg-Marquardt (LM) algorithm (see Appendix D)

optimizes F with respect to Gutzwiller parameters, enforcing the constraints (4.63)

and (4.64). During this optimization, only the term K[n(r)] and the atomic en-

ergy Eat[n(r)] in Eq. (4.65) are modified. These two quantities, together with

the terms enforcing constraints for Gutzwiller parameters, build a quartic func-

tional of the matrices Φ̂ , with explicit form (using Greek indices everywhere

for simplicity)
∑

αβ

{
Kαβ,R=0 Tr{Φ̂†n̂αβΦ̂ }+RααταβRββ

}
+ Tr{Φ̂†ĤatΦ̂ }+

−λαβ
(

Tr{Φ̂†Φ̂ n̂αβ} − n(0)
α δαβ

)
− λ0

(
Tr{Φ̂†Φ̂ } − 1

)
, (4.70)

where ταβ is a hopping matrix computed from

ταβ =
∑

R 6=0,αβ

Kαβ,RD(0)
αβ,R , (4.71)

and where Rαα depends on Φ̂ through Eq. (1.77), in which the creation operator

d̂α coincides with ĉα,0, since the NSB and OSB of our problem coincide. Namely

(omitting the index R = 0)

R†αα =
Tr{Φ̂†ĉ†αΦ̂ ĉα}√
n

(0)
α (1− n(0)

α )

, (4.72)

with α labeling eg or t2g states.

These two steps are repeated one after the other until self-consistency is achieved

over both densities n(r) and n(0)(r). Once converged, we are left with a total energy

functional depending on the diagonal matrix elements n
(0)
α , and that can be optimized

with respect to them by steepest descent, so as to fulfill the stationary equations

∂K[n(r)]

∂n
(0)
α

− ∂Edc[n
(0)(r)]

∂n
(0)
α

+ λαα + λ′αα = 0 . (4.73)

The terms appearing in the above equations are the only ones depending on the

local uncorrelated density matrix n
(0)
α . The double-counting energy is a function of

this density matrix only, while the functional K, containing the renormalized density

matrix Dαβ,R, depends on n
(0)
α through the hopping renormalization parameters Rαα.
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4.3.2 Siesta basis set

The Siesta LDA+G calculations we performed on bcc iron exploits a Siesta basis

set of either 10 or 15 local Siesta orbitals, with a double-ζ [105] basis for s-orbitals,

to which we add 3 p-like polarization orbitals, and either a single-ζ (5 orbitals) or

double-ζ (10 orbitals) set of d-orbitals. All the GGA calculations we will show were

performed with double-ζ d-orbitals, while the LDA or LDA+G calculations were done

both with a double-ζ and a single-ζ set for d-orbitals; the latter type of calculation

will be referred to with the extra label (s) in all the tables of Sect. 4.3.3.

In all LDA and LDA+G calculations we defined the local basis of original single-

particle orbitals from the symmetric orthogonalization of the Siesta atomic orbitals.

The local many-body space on which the Gutzwiller projector P̂ and operator Φ̂

are defined is the configuration space of these orbitals. The angular part of Siesta

d-orbitals are the real spherical harmonics, which are irreducible representations of

the cubic group. This ensures that the local single-particle density matrix D
(0)
ab,R=0 is

already diagonal. The Gutzwiller constraints on this matrix are imposed as in (4.62).

A complication arises in all the double-ζ calculations, where the Siesta basis set

contains two d-orbitals with different radial functions for each spin and orbital quan-

tum number m. In this case, D
(0)
αβ,R=0 has couples of indices running over orbitals of

identical spin and angular wavefunction. We decided to impose the second constraint

(4.62) in this case as
∑

i≡µ,j≡ν

D
(0)
ij,R=0 = n(0)

µ δµν , (4.74)

where the indices µ and ν contain spin and angular quantum numbers only once,

where i and j run over all the Siesta d-type orbitals. Nothing changes instead in the

definition of the second constraint, Eq. (4.63).

In fact, even when the Slater determinant |Ψ0 〉 is built from a double-ζ basis, we

defined the Gutzwiller projector P̂ on the configuration space of a single set of d-type

orbitals. The radial function of this set will be the linear combination of the radial

functions of the two d-type sets that optimizes the Siesta functional minimization.

An objection to this method in the double-ζ case may be that the atomic interaction

Hamiltonian happens to be defined on the configuration space of a set of d-orbitals

that is modified by the Siesta optimization, when it would seem more reasonable to

define it on a fixed basis set. While the first-ζ radial function is of atomic type, as in

LDA+U calculations, the second-ζ is more spread in space, since it has the function

of better accounting for changes in the density shape around the positive ions of the

lattice. A Hubbard Hamiltonian is traditionally defined on atomic-like orbitals, while

in our double-ζ case the basis orbitals have the freedom of changing their localization

during the energy optimization.
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Taking these remarks into account, we still present the data we found for a double-ζ

calculation along with the single-ζ results. The double basis set gives more flexibility

to the Siesta optimization, and can provide more information for the discussion of the

physical properties of iron arising from our simulations. It is of course clear that any

comparison between different sets of data will be physically meaningful only when

the calculations are made with the same type of basis set.

4.3.3 Results and discussion

The results we find for paramagnetic and ferromagnetic bcc iron by our implemen-

tation of LDA+G on the Siesta code are summarized in Fig. 4.4. There we plot the

band structure for an unpolarized LDA+G calculation where we take the LDA value

of the natural density matrix n
(0)
a , i.e. without the third step of the minimization

procedure explained in Sect. 4.3.1.

Since the double-counting energy Edc plays a role in determining the band structure

only through the third optimization step, we do not worry about its explicit form,

and introduce a quite general atomic interaction Hamiltonian

Ĥat = U/2N̂(N̂ − 1̂)− J |Ŝ2| − κ|L̂2|

with both first and second Hund’s rules enforced by the parameter J and κ.

The value of κ ≈ 0.2 eV can be estimated from the spectroscopic data of Corliss

and Sugar [106], while an estimation of the correct value of J comes both from

spectroscopy and from its expression in terms of Slater integrals F2 and F4 (see Ap-

pendix E.4), which we computed from the electronic structure program by Cowan [107]

that yields a value in agreement with spectroscopic data. In the Table of Fig. 4.4 we

also show the band mass renormalization factors Zeg and Zt2g for different values of

Hubbard parameters U .

Contrary to the claim of a full Mott localization of the eg orbitals made by Anisimov

and coworkers [43], we find only a minor localization of both eg and t2g orbitals,

driven both by the Hubbard interaction U and by the Hund exchange J . The latter

parameter has in fact a major role in the orbital-selectivity of the mass enhancement,

as can be seen from Table 4.4.

The minor enhancement of eg band mass with respect to the DMFT results may

be connected to the fact that a sizable hybridization connects eg orbitals on a site to

s-orbitals on neighboring sites. Such a hybridization is ineffective close to the Γ point,

where the eg band remains quite flat, but is able to induce an appreciable dispersion

in the rest of the Brillouin zone, especially close to the H point.

The local Gutzwiller projector can only provide a k-independent renormalization

Z, which is thus unable to distinguish between the flat dispersion around the Γ
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Figure 4.4: Results for a Siesta LDA+G calculation on bcc iron with a double-ζ

basis set for d-orbitals, without optimization of the natural density matrix n
(0)
a . The

atomic interaction Hamiltonian we used is Ĥat = ĤHub +ĤHund, with a slightly different

Hund Hamiltonian than that presented in Eq. (4.47), including also Hund’s second rule,

ĤHund = −J |Ŝ2| − κ|L̂2|. The value of κ is 0.2 eV and the value of J we used was

always −1.2 eV, except for the rows marked with asterisk (∗), for which J = 0 when

U = 0, and J = −2.2 when U = 10. The band structure results corresponding to the

last four rows of the table are plotted on the left upper panel, and show the effects of

the band mass renormalization factors Zeg = R2
eg and Zt2g = R2

t2g on the bandwidth of

d-type orbitals. The renormalization of total spin |S| and of total angular momentum

|L| on d-orbitals are also shown, together with the variance of the number of d-electrons

〈(∆N)2〉 = 〈N̂2〉 − 〈N̂〉2. The last line of the table shows how orbital selectivity is

enhanced by an increase in Hund’s exchange J .

U (eV) 〈(∆N)2〉 |S| |L| Zeg Zt2g

0∗ 2.30 0.89 3.22 1. 1.

2.5 1.37 1.00 3.27 0.94 0.96

5 1.10 1.03 3.29 0.90 0.93

10 0.82 1.04 3.31 0.82 0.87

10∗ 0.78 1.25 3.05 0.72 0.82
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point, and e.g. the wider bandwidth in the H point. Somehow, Z can be regarded

as an average of the quasi-particle residue on the whole Brillouin zone, which is a

major limitation of the GA. Moreover, the hybridization with the weakly correlated

s-orbitals prevents a full localization of eg orbitals also for another reason. When

a nonzero inter-orbital hopping is present between eg and s orbitals, its Gutzwiller

renormalization consists in multiplying it by a single Reg factor, since the s-orbitals

are assumed to be non-correlated, see Eq. (4.40).

A condition for a – possibly orbital selective – Mott transition to occur is that the

loss in kinetic energy Ekin due to hopping renormalization cannot be compensated

by a gain in Hubbard energy EHub. In the single-band HM we saw that R2 ≈ 1 −
U/Uc ≈ D in the vicinity of the transition, so that Ekin/t ∝ EHub/U , and for large

enough U the compensation cannot occur. When, as in this case, a part of kinetic

energy is renormalized with a single R, we have that Ekin/t ∝
√
EHub/U , so that the

suppression of kinetic energy will never be large enough not to be compensated by a

gain in EHub.

However, as pointed out in Chapt. 1, our main interest here is to understand if some

features typical of a strongly correlated insulating state can have a role in determining

the electronic structure of conducting iron. We therefore proceed to investigate the

effects of spin polarization on kinetic, potential energy and mass renormalization of

iron, trying to understand if its magnetic properties can be traced back, at least up

to a certain amount, to a double-exchange mechanism.

In Tables 4.1 to 4.4 we list the data of the electronic structure of bcc iron with

optimized n
(0)
a and lattice parameters. The values of U and J used for these calcu-

lations are 2.5 eV and 1.2 eV respectively, both slightly larger than the values used

by Anisimov and coworkers [43]. In the discussion that follows we will use the labels

LDA and LDA+G for both non-spin-resolved and spin-resolved calculations, specify-

ing when necessary if the system is unpolarized or polarized. We see from the second

column of Table 4.1 that the optimization of n
(0)
a in the LDA+G unpolarized case

causes only small changes in the matrix elements of the natural density matrix with

respect to the LDA result.

This suggests that such a value is mainly determined by electrostatic balance, which

is well captured by LDA and does not require a better account of correlation effects.

The Gutzwiller parameters do provide the wavefunction with more flexibility, but do

not seem to give any important feedback on the natural density matrix.

This feedback becomes more important in the polarized case, where it contributes to

an increase in total magnetization m. Furthermore, the renormalization of the Slater

determinant has the additional important effect of increasing the lattice parameters,

as can be seen by comparing the values in the second column of Table 4.2.
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Orb. dens. QP mass renorm.

LDA para 0.606,0.685 1.,1.

LDA ferro 0.921,0.823,0.313,0.520 1.,1.,1.,1.

LDA para(s) 0.597,0.685 1.,1.

LDA ferro(s) 0.920,0.823,0.303,0.515 1.,1.,1.,1.

LDA+G para 0.607,0.685 0.977,0.986

LDA+G ferro 0.936,0.868,0.281,0.478 0.990,0.988,0.993,0.993

LDA+G para(s) 0.599,0.673 0.925,0.953

LDA+G ferro(s) 0.936,0.880,0.277 0.457 0.969,0.967,0.984,0.984

Table 4.1: Orbital densities n
(0)
a and quasi-particle mass renormalization parameters

R2
aa for the different types of simulations performed, with a = eg, t2g and eg ↑, t2g ↑, eg ↓

, t2g ↓ for unpolarized and polarized calculations respectively. The labels of the first

column are the explained in Table 4.2.

In reality, the optimization of the lattice parameter suffers from the flaw that the

Pulay force due to the atomic energy term Eat−Edc is not implemented in the code we

used. Although its effect on the total forces should be checked in future calculations,

we believe that it is small with respect to the effects of the Gutzwiller renormalization

of the density through the parameters Raa, which determines the increase of lattice

parameter in the LDA+G calculation with respect to the simple LDA. Similarly to

what one expects for LDA+U, the addition of a Hubbard and exchange term increases

the magnetization of the polarized system, as well as its lattice constant, as can be

seen in the second and third columns of Table 4.2.

Within our Gutzwiller approach we are also able to compute the local spin moment

|S| on d-type orbitals, from the expectation value of Ŝ2

S(S + 1) = Tr{Φ̂†Ŝ2Φ̂ } (4.75)

and calculate its percentage saturation, i.e. how much of the spin moment is aligned

in the z-direction (fourth column of Table 4.2), thus contributing to the total magne-

tization m, which is instead computed from the Gutzwiller-renormalized density n(r)

as

m =

∫
dr [n↑(r)− n↓(r)] . (4.76)

The percentage saturation increases from simple LDA to LDA+G calculations with

the same basis set. In the case of double-ζ polarized calculations, the increase of total
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alat (Å) m md 〈Ŝ2〉 (2|S|) [%Sat.]

LDA para 2.73 1.68 (1.77)

GGA para 2.80

LDA ferro 2.78 2.02 2.10 3.68 (2.96) [71%]

GGA ferro 2.87 2.33

LDA para(s) 2.77 1.69 (1.77)

LDA ferro(s) 2.83 2.066 2.14 3.0 (2.61) [82%]

LDA+G para 2.75 2.16 (2.10)

LDA+G ferro 2.83 2.35 2.49 3.55 (2.90) [86%]

LDA+G para(s) 2.86 2.76 (2.47)

LDA+G ferro(s) 2.87 2.44 2.58 3.83 (3.04) [85%]

Exp. 2.87 2.22

Table 4.2: Results for optimized lattice parameter alat, total magnetization m, mag-

netization md on d-type orbitals, and total spin squared (magnetic moment in Bohr

magnetons) [magnetic moment saturation] on d orbitals. The labels on the first column

refer to unpolarized (para) and polarized (ferro) calculations, with single-ζ (label (s)), or

double-ζ (no label (s)) basis set on d-orbitals, performed with GGA, LDA, or LDA+G.

The magnetic moment saturation is the percentage of atomic magnetic moment 2|S|
which contributes to the magnetization md. The last row shows the experimental val-

ues for lattice parameter and magnetization.
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magnetization from LDA to LDA+G is not accompanied by an equivalent increase in

|S|, which means that in both case there exist local moments of similar magnitude but

LDA+G is more capable to align them than LDA. In the case of single-ζ calculations,

the increase of |S| from LDA to LDA+G is instead significantly larger than the

increase in magnetization, suggesting that the latter is mainly due to the larger local

moment available in LDA+G.

At this point we think is worth discussing what physics lies beyond the difference

between calculations that use a double or a single set of d-orbitals. As we mentioned,

a double set gives more variational freedom to LDA hence should provide a better

estimate of the ground-state energy. However, since the two types of d-orbitals have

a different spread in real space, one should in principle treat them differently, each

having its own U , hence its own renormalization factor.

Particularly, the more localized orbital must have a larger U thus a smaller Z. The

weight of each orbital in the eg Wannier function should be determined variationally,

and we would expect that the more correlated the system the larger the weight of the

localized d-orbital set with respect to the other. For convenience, we have treated the

two orbital sets on equal footing, with the same U and Z. Because of this assumption,

the Gutzwiller projector is less efficient when using the double set with respect to the

single one.

For this reason, we tend to believe more in the physics uncovered by the single

set calculation, although we have decided to present both results. In the future, we

intend to improve the calculation by differentiating the two sets, as explained above,

which we think will finally lead to the same physical scenario as in the single set with

improved accuracy.

Therefore, let us concentrate for the moment on the single-ζ calculation and com-

pare LDA with LDA+G. In the paramagnetic calculation, LDA+G predicts that a

well established local moment exists on each lattice site even in the absence of net mag-

netization along z. A spin-resolved calculation provides all local moments with the

possibility of becoming aligned, which indeed happens in iron since the ferromagnetic

ground-state is energetically favored over the paramagnetic one. When magnetism is

allowed, the magnetization due to d-type orbitals computed within LDA+G is roughly

coincident, only slightly smaller than the moment that was available in the param-

agnetic phase, as can be understood by comparing the magnetization and magnetic

moments of unpolarized and polarized LDA+G calculations, shown on Table 4.2. On

the contrary, the local moment obtained in paramagnetic single-ζ LDA is sensibly

smaller than the magnetization found in the polarized LDA. Such a difference should

have its counterpart in the balance of the various contributions to the total energy,

which could provide further useful insights. In Table 4.3 we list the total energies
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CHAPTER 4. Gutzwiller approach to Density Functional Theory

of the different density functional calculations we carried out, divided into atomic

interaction, kinetic, electron-ion, Hartree and exchange-correlation.

The next table, Table 4.4, shows that the errors due to the first-order expansion in

n(r)− n(0)(r) of Hartree and exchange-correlation potentials – discussed in Sect. 4.3

– are very small, so that they are not expected to change our results in a significant

way, even when we draw our conclusions from the calculation of energy differences.

Finally, in Table 4.5 we display the energy differences between couples of polarized

and unpolarized calculations performed with the same functional and basis set. The

last column of this table shows the percentage of local moment of the polarized

calculation which was already present in the unpolarized calculation.

Focusing on the single-ζ calculations, on last two rows in Table 4.5, we note a quite

surprising fact. While in LDA magnetism is accompanied by a loss of kinetic energy

overwhelmed by a gain in electron-ion, Hartree and exchange energies, the opposite

occurs in LDA+G. This is a clear sign that within LDA+G bcc iron is described as a

correlated material, where magnetism sets in as an ordering of pre-existing moments

which is driven by kinetic rather than potential energy.

A reason for the gain in kinetic energy is the fact that the quasi-particle weigths Z

increase when a finite magnetization is allowed to appear, as can be seen in Table 4.1.

This results is suggestive that the ferromagnetism of iron could actually be caused by

a double-exchange mechanism, even though we could firmly establish it only by having

a resolution in momentum space of the renormalization of quasiparticle weights.

In the double-ζ calculations the above features are less pronounced, as we could

anticipate by the previous discussion; the kinetic energy now increases instead of

decreasing upon allowing magnetism in LDA+G, although much less than in LDA.

A good assessment for the accuracy of this Gutzwiller approach is provided by the

plots of band structures and density of states obtained within LDA , LDA+G and

GGA, shown from Fig. 4.5 to Fig. 4.8. All GGA results are obtained with a double-ζ

basis set, which is necessary in order to better describe the gradient changes in the

density profile, a key ingredient in this density functional.

The spin-polarized GGA is generally considered as a reliable approach to transition

metals, as it is able to provide a very good estimation of their lattice constants and

magnetic moments. The Siesta GGA prediction for the iron lattice parameter is

2.87 Å, in good agreement with the experimental value, while its magnetic moment

is slightly overestimated (2.33 vs. 2.22 Bohr magnetons). The polarized LDA+G

band structure and density of states show a very good agreement with the GGA

results, both when single-ζ and double-ζ basis set are used. In addition, LDA+G

corrects the underestimation of lattice parameter which is a well known flaw of LDA,

and increases the total magnetic moment from the under-estimated LDA value to an
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Etot Eat−Edc Ekin Eie EH Exc

LDA para -780.599 764.261 -802.506 74.864 -385.988

LDA ferro -780.920 766.959 -810.420 79.062 -386.640

GGA para -781.625 765.108 -809.044 80.195 -389.121

GGA ferro -782.235 769.901 -821.585 86.285 -390.533

LDA para(s) -780.196 777.255 -821.272 80.940 -386.943

LDA ferro(s) -780.567 777.947 -828.430 85.475 -387.308

LDA+G para -777.202 2.752 766.440 -806.749 76.926 -385.943

LDA+G ferro -777.831 2.707 767.115 -816.181 82.873 -386.095

LDA+G para(s) -777.231 1.92 777.099 -830.914 87.494 -385.682

LDA+G ferro(s) -777.499 2.35 774.182 -828.716 87.564 -386.117

Table 4.3: Total energy for bcc iron computed with the different basis sets and func-

tionals (see the caption of Table 4.2 for the explanation of labels), divided in atomic

interaction contribution minus double-counting energy, kinetic energy, ion-electron in-

teraction, Hartree and exchange-correlation energy.

∆EH ∆Exc

LDA+G para 0.0001 ≈ 0

LDA+G ferro 0.0011 -0.0004

LDA+G para(s) 0.0083 -0.0012

LDA+G ferro(s) 0.0054 -0.0020

Table 4.4: Estimated errors due to the approximate expressions (4.50) and (4.52) for

the Hartree and exchange-correlation energies respectively, listed for the four types of

simulation performed. The meaning of the labels on the first column is explained in

the caption of Table 4.2. The quantities listed in the second and third columns are

∆EH = EH [n(r)]−E(1)
H

[
n(r), n(0)(r)

]
and ∆Exc = E

(LDA)
xc [n(r)]−E(1)

xc

[
n(r), n(0)(r)

]
,

in units of eV.
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δEtot δ(Eat−Edc) δEkin δ(Eie+EH) δExc δEion %|S|
LDA -0.32 2.70 -3.72 -0.652 1.35 60%

GGA -0.61 4.79 -6.45 -1.412 2.45

LDA+G -0.63 -0.04 0.68 -3.49 -0.15 2.48 72%

LDA(s) -0.37 0.692 -2.623 -0.365 1.93 68%

LDA+G(s) -0.27 0.43 -2.92 2.27 -0.44 0.38 90%

Table 4.5: Energy differences between the spin-polarized and unpolarized ground-

states, taken from Table 4.3, apart the seventh column, which shows the differences in

ionic energies, which we did not list in Table 4.3. The last column shows the percentage

of magnetic moment of the polarized system which is already accounted for by the

unpolarized calculation. The LDA+G functional seems to limit the loss of kinetic energy

and the gain in potential electrostatic energy of the electrons when the spin polarization

along z is allowed. In the case of the single-ζ calculation the energy trends are even

reversed, and spin polarization causes a decrease of kinetic energy and an increase in

potential energy.

over-estimated one, especially in the single-ζ case, where it becomes larger than the

GGA result.

Comparing the unpolarized LDA+G single-ζ band structure and the unpolarized

GGA band structure, we notice a slight disagreement, which may be connected to

the use of a too large value of Hubbard parameter U . This is probably also the cause

of the over-estimation of the total magnetization in the polarized case.

Therefore, even if the values of U and J we used for these calculations prove to be

reasonable estimates of the Hubbard interaction and Hund’s rules in iron, we believe

that a finer tuning of these parameters will be necessary to achieve more quantitative

results and discuss the advantages brought by GVM into the electronic structure

calculations in transition metals.

Previous Quantum Espresso LDA+U calculations on iron [102] also pointed out the

advantages of using an around-mean-limit instead of a fully-localized-limit expression

for the double-counting energy. It is worth investigating the effects of this differ-

ent double-counting in determining lattice constants, magnetic moments, and energy

differences between polarized and unpolarized electronic structures.
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Figure 4.5: Comparison of projected density of states and band structure between

unpolarized single-ζ LDA+G (solid lines) and double-ζ LDA (dotted lines).
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Figure 4.6: Comparison of projected density of states and band structure between

unpolarized single-ζ LDA+G (solid lines) and double-ζ GGA (dotted lines).
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Figure 4.7: Comparison of projected density of states and band structure between

polarized single-ζ LDA+G (solid lines) and double-ζ LDA (dotted lines). The line

colors blue and black refer to minority and majority spin component respectively.
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Figure 4.8: Comparison of projected density of states and band structure between

polarized single-ζ LDA+G (solid lines) and double-ζ GGA (dotted lines). The line

colors blue and black refer to minority and majority spin component respectively.
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4.4 Final remarks

In this chapter integrated the formalism of Kohn-Sham DFT with that of GA, and

applied the resulting LDA+G method to the calculation of the electronic structure of

body-centered cubic iron. While we were not able to find a significant orbital-selective

localization of electrons, as suggested by previous LDA+DMFT calculations [43], our

results suggest that the magnetism of iron is, at least partially, driven by the double-

exchange mechanism, which is a typically many-body phenomenon that cannot be

described by conventional DFT.

The Gutzwiller approach enables to compute the magnetic-moment enhancement

due to interactions already at the unpolarized LDA level, while the spin-polarized cal-

culation provides the energy gain caused by magnetic ordering. The two phenomena,

which are considered on the same footing within simple LDA, LSDA and LDA+U,

appear correctly as distinct within LDA+G.

Our calculations of the electronic structure of iron through LDA+G implemented

in the Siesta code can be perfected with the inclusion of two separate hopping renor-

malization factors on each eg and t2g multiplet of a double-ζ basis set, through which

we will be able to better account for the effects of Hubbard-U and Hund’s parameter

J on electron localization. The estimation of lattice constants can be improved by a

calculation of forces and stress including the Pulay force due to the expectation value

of the atomic interaction Hamiltonian, while the prediction on the magnetic moment

may be corrected through a better guess for the Hubbard-U and through the use of

an AMF double-counting energy.

An application of the Gutzwiller method to realistic electronic structure calcula-

tions has been implemented by other authors in recent years. Bünemann, Weber

and Gebhardt [108–110] implemented a non self-consistent Gutzwiller approach to

electronic structure calculations, where a tight-binding model is set up from effective

hopping parameters computed through a Kohn-Sham density functional calculation,

and afterwards solved within the multi-band GA.

Fang and collaborators [111, 112] proposed a LDA+G approach where both density

and Gutzwiller parameters are optimized self-consistently. To our knowledge, their

method is in principle very similar to ours, with the difference that it does not include

the possibility of using a projector with nonzero off-diagonal matrix elements, which

is instead a natural feature of our mixed-basis parametrization with Φ̂ operators.

In spite of the great number of parameters contained in Φ̂ , the Lanczos-enhanced

LM algorithm we implemented for the minimization of the energy with respect to

Gutzwiller parameters is stable and fast, and can be easily parallelized to deal with
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more complex system as crystals having more than one atom per unit cell as transition

metal compounds.
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Although the Gutzwiller Variational Method is not able to grasp the physics of the

Mott transition on its insulating side, it is very effective when used to describe the

properties of conducting materials that are “insulators in disguise”, i.e. of strongly

correlated metallic systems whose relevant physical observables are determined by

the same many-body effects that drive the Mott transition to the insulating region of

their phase diagram.

For finite lattice coordination, and for dimensionality larger than one, there is no

exact method for computing the expectation value of a Hamiltonian on the Gutzwiller

variational wavefunction (GVW) analytically, and one has to resort to the Gutzwiller

Approximation (GA). The GA, which gives exact results for the variational en-

ergy in infinite-coordination lattices, reveals to be quite accurate already for three-

dimensional systems.

When investigating the properties of single-band models, the GA can account cor-

rectly for the increased spin susceptibility due to the many-body localization of elec-

trons, providing a reasonable explanation for magnetism where the Stoner theory

appears to fail. Similar advantages characterize its multi-band formulation, which

enables to describe the effects of inter-band correlations on magnetic moment forma-

tion and magnetic ordering.

The description of GVM and GA in Chapt. 1 is introductory to the results of

Chapt. 2, where we proved the GA to be successfully applicable to lattice models with

broken translational invariance. We showed that the GA leads to a good qualitative

description of the decay of quasi-particle weight near interfaces between a strongly

correlated metal and the vacuum, which can be applied to the understanding of

Angle-Resolved Photoemission Spectroscopy (ARPES) spectra of realistic strongly

correlated crystals as vanadium sesquioxide.

Within the same GA framework, we provided a characterization of quasi-particle

properties across metal-insulator junctions that agrees in many aspects with the

one obtained with more refined but computationally expensive methods such as

DMFT+NRG [37, 113]. Our results were limited to half-filled cubic lattices with
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no spin imbalance, but the GA was recently applied to a spin-polarized honeycomb

lattice in order to investigate the magnetic properties of graphene ribbons [114].

After an introduction to Density Functional Theory in Chapt. 3, we devoted Chapt. 4

to discuss the application of the multi-band GA to realistic molecular and solid state

systems, in synergy with DFT. As an extension of the LDA+U formalism, the Local

Density Approximation plus Gutzwiller Method (LDA+G) method can correct the

self-interaction error of Local Density Approximation (LDA), while at the same time

allowing for a better description of correlations through the renormalization of the

kinetic energy of the system.

We implemented our version of Local Density Approximation plus Gutzwiller Method

method in the Siesta code, and showed its results for body-centered cubic paramag-

netic and ferromagnetic iron, examining the role of electron-electron interactions in

the magnetic moment formation and magnetic ordering.

The LDA+G functional can reproduce the GGA band structure of iron, while it is

able to account for the enhancement of local magnetic moments also in unpolarized

calculations, where the densities of spin up (n↑(r)) and spin down (n↓(r)) electrons

coincide. The many-body driven increase in local moments, and the phenomenon

of magnetic ordering, whose energy gain can be computed when the magnetization

m(r) = n↑(r) − n↓(r) is allowed to appear, are treated separately within LDA+G.

In particular, magnetic ordering is shown to be accompanied by a kinetic energy gain

which is typical of double-exchange magnetism.

The flexibility of the GVM as a zero-temperature, ground-state method for lattice

models was recently extended to account for time-dependent correlations [115] in

the single-band Hubbard model (HM), and is due for some further development in

multi-band systems [116].

We believe that the LDA+G formalism can be implemented in the future in Car-

Parrinello molecular dynamics codes, where the Gutzwiller parameters would act as

many-body degrees of freedom to be optimized together with the electronic Slater

determinant through damped dynamics. The major difficulty is the enforcement of

Gutzwiller constraints, which are different than the simpler wavefunction orthogo-

nality constraints imposed in molecular dynamics simulations. The integration of

LDA+G and molecular dynamics can be the prelude to a time-dependent description

of molecular and solid state systems.
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Appendix A

Useful proofs and identities

This appendix contains some proofs and equations that help the understanding of the

main ideas related to the Gutzwiller Variational Method (GVM) and expounded in

Chapt. 1. We begin by proving the result of the Gutzwiller Approximation (GA) for

the hopping renormalization and double occupation probability of the paramagnetic

half-filled Hubbard model (HM). We next show how the hopping renormalization

within GA is equal to the jump at kF in the quasi-particle distribution function. In

the subsequent sections we prove some of the results of the multi-band and mixed-

basis formulation of the GA that are presented in Sect. 1.6.

A.1 The Gutzwiller Approximation via a thermodynamic argu-

ment

In this section we prove the GA result for the half-filled HM via a thermodynamic

approach that is equivalent to the counting argument introduced by Gutzwiller [26]

and better elucidated by Vollhardt [48].

If we suppose that the many-body configuration at a lattice site R is independent

of the configurations on all other sites, we can consider every site as a subsystem of

the global lattice, in thermodynamic equilibrium with the latter.

Tracing out the global density matrix of the system with respect to the degrees of

freedom of all other sites, we are left with a 4 × 4 grand canonical density matrix

whose entries can depend only on the parameters of the Gutzwiller projector and on
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the average occupation of each site. The fermionic nature of the electrons is kept into

account only at the local level, by restraining the occupation of the local orbital to

be at most equal to 2.

The effect of the local Gutzwiller projector (1.13) is that of tuning the probabil-

ity density of the “higher-energy” doubly occupied local configuration through an

effective temperature depending on the parameter η. The double-occupation proba-

bility can be thought itself as an “entropy” which is minimum when the number of

many-body configurations corresponding to the same local filling 1/2 is minimum, i.e.

when each site can be only singly occupied, while it is maximum when all many-body

configurations of a site are equally populated.

From the probability densities predicted by the Gutzwiller variational wavefunction

(GVW) for each configuration |ΓR 〉,

W (ΓR) = 〈ΓR|P̂†RP̂R|ΓR〉 , (A.1)

we can build a grand-canonical partition function. Leaving out the index R, we can

easily see from Eq. (1.14) that W (Γ) = exp(−βDΓ), where β = −2 ln(η) and where

DΓ is the double occupation of configuration Γ, equal to 1 only for Γ = | ↑↓ 〉 and

zero in all other cases. The partition function can be written as

Z(β, µ) =
∑

Γ

exp(−βDΓ) exp(µNΓ) , (A.2)

where NΓ is the number of electrons (0,1 or 2) of a configuration Γ. The configurations

| ↑ 〉 and | ↓ 〉 are equivalent due to spin rotational symmetry.

Imposing the average number of particles per site to be equal to one, we find

〈N〉 =

∑
j NΓ exp(−βDΓ + µNΓ)

Z(β, µ)
=

2 exp(µ) + 2 exp(2µ− β)

1 + 2 exp(µ) + exp(2µ− β)
= 1 , (A.3)

an equation which is true only for µ = β/2. With this value of the chemical potential,

we can compute the expectation value of the double occupation probability as

D =

∑
ΓDΓ exp(−βDΓ + µNΓ)

Z =
1

2 + 2 exp(β/2)
=

η

2 + 2η
, (A.4)

which is the GA result already introduced in Eq. (1.15).

In order to find the value of the hopping renormalization, we need to consider two

sites, whose many-body configurations we suppose again independent of each other.

The expectation value of the hopping operator ĉ†↑,Rĉ↑,R′ for an up spin between site

R and R′ can be computed from the amplitude

P (R,R′) =
∑

ΓRΓ′
R′Γ

′′
RΓ′′′

R′

〈ΓRΓ′R′|P̂†R′P̂†Rĉ†↑,Rĉ↑,R′P̂RP̂R′|Γ′′RΓ′′′R′〉 , (A.5)
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which, in the independent-site approximation, becomes

P (R,R′) =
∑

ΓRΓ′
R′Γ

′′
RΓ′′′

R′

〈ΓR|P̂†Rĉ†↑,RP̂R|Γ′′R〉〈Γ′R′ |P̂†R′ ĉ↑,R′P̂R′|Γ′′′R′〉 =


∑

ΓRΓ′′
R

〈ΓR|P̂†Rĉ†↑,RP̂R|Γ′′R〉




 ∑

Γ′
R′Γ

′′′
R′

〈Γ′R′ |P̂†R′ ĉ↑,R′P̂R′|Γ′′′R′〉


 . (A.6)

Using the Fock representation for creation and annihilation operators

[ĉ†↑R]ΓΓ′ = δΓ,|↑ 〉δΓ′,|0 〉 + δΓ,|↓ 〉δΓ′,|↑↓ 〉 , (A.7)

[ĉ↑R]ΓΓ′ = [ĉ†↑R]Γ′Γ , (A.8)

one can easily see that each factor on the rightmost side of Eq. (A.6) is equal to

2 exp(−β/2)/Z, so that

P (ΓRΓ′R′ → Γ′′RΓ′′′R′) =
4 exp(−β)

Z2
=

η2

(1 + η)2
. (A.9)

The hopping renormalization Z(η) is the ratio between the above amplitude and

the same amplitude in the absence of correlations, which can be found by setting

η = 1 in the equation above. The final result for Z(η) is therefore

Z(η) =
4η2

(1 + η)2
, (A.10)

which proves the statement of Eq. (1.17).

A.2 Hopping renormalization and discontinuity in the quasi-

particle distribution function

The Gutzwiller hopping renormalization Z can be shown to be equal to the jump

Z in the quasi-particle distribution function. We prove this fact for the single-band

half-filled paramagnetic HM. We use the notation |k| < kF, |k| = kF and |k| > kF to

mean that a wavevector k is inside, onto or outside the Fermi surface respectively.

In the non-interacting case, the quasi-particle distribution nk at zero temperature

is simply equal to a step function

nk = 〈Ψ0|ĉ†kĉk|Ψ0〉 = θ(|k| < kF) . (A.11)

The above nk can be written as the Fourier transform of the particle distribution in

real space. For a translationally invariant system

nk =
∑

R

nR exp(ik ·R) , (A.12)
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where

nR = 〈Ψ0|ĉ†RĉR′=0|Ψ0〉 . (A.13)

In the presence of a nonzero Hubbard U , the GA recipe for the calculation of expec-

tation values on the GVW provides the renormalized value for nR

ñR =

{
〈Ψ0|ĉ†RĉR′=0|Ψ0〉 , R = 0

Z(U)〈Ψ0|ĉ†RĉR′=0|Ψ0〉 , R 6= 0 ,
(A.14)

where Z(U) is given by Eq. (1.22).

Therefore, given a k with |k| = kF and a δk such that |k− δk| < kF and |k+ δk| >
kF, we have

Z(U) = ñk−δk − ñk+δk = 2iZ(U)
∑

R 6=0

nR exp(ik ·R) sin(δk ·R) =

= Z(U) (nk−δk − nk+δk) = Z(U) , (A.15)

where the last equality comes from the fact that the jump in the Fermi-Dirac distri-

bution for the unprojected Fermi sea is exactly equal to 1.

A.3 Inequality for the quasi-particle renormalization factors R

In this section we prove that the absolute value of the diagonal hopping renormaliza-

tion factor |Rαα| computed within the multi-band Gutzwiller formalism is lower than

or equal to 1. This shows, at least in the case of diagonal Rαβ, that the Gutzwiller

projector always suppresses the hopping between different sites, and therefore always

enhances the band mass. To begin with, we notice that, given two matrices A and B,

S(A,B) = Tr{A†B} (A.16)

is a positive-definite scalar product.

From the definition of R†αβ in Eq. (1.77), using for simplicity two Greek indices, we

find

R∗αα =
Tr{Φ̂†ĉ†αΦ̂ d̂α}√
n

(0)
α (1− n(0)

α )

, (A.17)

where n
(0)
α is the diagonal element of the (uncorrelated) natural density matrix.

Since d̂α is sandwiched between a Φ̂ and a Φ̂†, its matrix representation is the same

as ĉα, so that we can formally write it exactly as the latter:

R∗αα =
Tr{Φ̂†ĉ†αΦ̂ ĉα}√
n

(0)
α (1− n(0)

α )

. (A.18)
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Now we can use Eq. (A.16) to write the trace at the numerator of the previous

equation as

Tr{Φ̂†ĉ†αΦ̂ ĉα} = S(ĉαΦ̂ , Φ̂ ĉα) . (A.19)

The Schwarz inequality can be applied to the scalar product on the right-hand side

of Eq. (A.19), with the result

|S(ĉαΦ̂ , Φ̂ ĉα)| ≤
√
S(ĉαΦ̂ , ĉαΦ̂ )S(Φ̂ ĉα, Φ̂ ĉα) =

√
nαα(1− n(0)

α ) , (A.20)

where nα is the diagonal element of the (correlated) density matrix. The same trace

can be rewritten as S(Φ̂†ĉα, ĉαΦ̂†), and by applying the Schwarz inequality to this

expression, we get

|S(Φ̂†ĉα, ĉαΦ̂†)| ≤
√
S(Φ̂†ĉα, Φ̂†ĉα)S(ĉαΦ̂†, ĉαΦ̂†) =

√
n

(0)
α (1− nαα) . (A.21)

Now we consider the two cases where nαα ≤ n
(0)
α , and where n

(0)
α < nαα (both values

of the density matrix are bound to assume values between 0 and 1). In the first case,

by using Eq. (A.20), we have

|Tr{Φ̂†ĉ†α, Φ̂ ĉα}| ≤
√
nαα(1− n(0)

α ) ≤
√
n

(0)
α (1− n(0)

α ) , (A.22)

while in the second case, by using Eq. (A.21), we find

|Tr{Φ̂†ĉ†α, Φ̂ ĉα}| ≤
√
n

(0)
α (1− nαα) <

√
n

(0)
α (1− n(0)

α ) , (A.23)

and in both cases, from Eq. (A.17), we conclude that Rαα ≤ 1.

A.4 Expectation values in the limit

of infinite lattice dimensionality

In this section, related to Sect. 1.6.1, we elucidate better the reason for the exactness

of the expression (1.57) in the limit of infinite lattice dimensionality. We explain how

all terms in the Wick expansion of the expectation value (1.64) where two fermionic

lines are extracted from operators P̂†R′P̂R′ withR′ 6= R, become equal to zero because

of Gutzwiller constraints, while terms with four and more fermionic lines vanish in

the limit of infinite lattice coordination.
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Terms with two fermionic lines

The product P̂†RP̂R of two number-preserving Gutzwiller projectors on the same site

can be expanded as

P̂†RP̂R =
∑

j{α}{β}

Θj{α}{β}ĉ
†
α1,R

ĉ†α2,R
. . . ĉ†αj ,Rĉβ1,R

ĉβ2,R
. . . ĉβj ,R , (A.24)

where each term in the sum contains exactly j creation and j annihilation operators,

and where {α} and {β} correspond to sets of indices labeling local single-particle

orbitals.

We can rewrite the second Gutzwiller constraint Eq. (1.59) in the following way

〈Ψ0|P̂†RP̂Rd̂†γ,Rd̂δ,R|Ψ0〉 = 〈Ψ0|d̂†γ,Rd̂δ,R|Ψ0〉 . (A.25)

Here the use of operators d̂†γ,R and d̂δ,R in the definition of the density matrix instead

of ĉ†γ,R and ĉδ,R is just a symbolic way to distinguish them from the creation and anni-

hilation operators belonging to the definition of the two-projector product Eq. (A.24).

With this notation, we can see how the connected term in Eq. (1.65) looks like

(using the short-hand notation 〈·〉 = 〈Ψ0| · |Ψ0〉)
〈P̂†RP̂Rd̂†γ,Rd̂δ,R〉 = 〈P̂†RP̂R〉〈d̂†γ,Rd̂δ,R〉+ 〈conn.〉 (A.26)

〈conn.〉 =
∑

pq

〈ĉ†p,Rd̂δ,R〉〈ĉq,Rd̂†γ,R〉〈remainderpq〉 . (A.27)

The above remainder, labeled with indices p and q, is the operator

remainderpq =
∑

j{α}{β}

Θj{α}{β}δ(p ∈ {α}, q ∈ {β})s(p{α}, q{β})

ĉ†α1,R
ĉ†α2,R

. . .
�
��ĉ†p,R . . . ĉ

†
αj ,R

ĉβ1,R
ĉβ2,R

. . .
�
��ĉq,R . . . ĉβj ,R , (A.28)

where δ(p ∈ {α}, q ∈ {β}) is one if indices p and q belong to sets {α} and {β}, and

zero otherwise, while s(p{α}, q{β}) accounts for the sign in the Wick decoupling. The

dash on operators ĉ†p,R and ĉq,R means that they have been removed from the above

sum.

Since the right-hand side of Eq. (A.27) has to be zero for every γ and δ, and since

〈ĉ†p,Rd̂δ,R〉 is a positive-definite matrix with indices p, δ (it is a single-particle density-

matrix), one can conclude that the expectation value of the remainder has to be

identically zero for every p and q.

This proves that even if we had operators d̂†δ,R′ and d̂γ,R′ from a different site than

the one where P̂†RP̂R is defined, the connected term in Eq. (A.28) would still vanish.

In short, the expectation value on the Slater determinant of every term which has

two fermionic lines coming out of the operator P̂†RP̂R is bound to vanish by virtue of

Gutzwiller constraints.
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Terms with four fermionic lines

In this paragraph we prove that all terms in the Wick decoupling (1.64) which connect

two sites R and R′ with four fermionic lines will vanish in the limit of infinite lattice

dimensionality d.

Metzner and Vollhardt [56] remark that the only way to obtain a HM with a non-

trivial kinetic energy in infinite dimensions is to rescale the hopping constant t as

t′ =
t√
d
. (A.29)

Summing the hopping matrix elements over all nearest-neighbors of a site R, one gets

t′
∑

R′,〈R,R′〉

〈Ψ0|ĉ†RĉR′ |Ψ0〉 ∝ dt′〈〈Ψ0|ĉ†RĉR′ |Ψ0〉〉R′ ∝
√
d〈〈Ψ0|ĉ†RĉR′ |Ψ0〉〉R′ , (A.30)

where 〈〈Ψ0|ĉ†RĉR′|Ψ0〉〉R′ is the average value of the hopping matrix element between

nearest-neighbors R′.

From the above equation one finds that, for large dimensionality d, the kinetic

energy for site R is finite only for

〈〈Ψ0|ĉ†RĉR′ |Ψ0〉〉R′ ∝ 1√
d
. (A.31)

A connected term of the Wick decoupling of Eq. (1.64) where four fermionic lines

join two sites R and R′ consists of a product of four terms of the kind of Eq. (A.31),

so that it behaves like 1/d2. Summing over all nearest-neighbors R′, one finds a

contribution of order 1/d, which vanishes in the limit of infinite d.

It should be noted that the propagator in brackets in Eq. (1.64) contains a product

over all sites R′, not only the nearest-neighbors of R. However, a scaling argument

similar to the above one can be applied for next-nearest and further neighbors, since

〈〈Ψ0|ĉ†RĉR′ |Ψ0〉〉R′ ∝ 1

dl/2
, (A.32)

where the average on the left-hand side is meant over all R′ with a fixed metropolis

distance l from R. Each four-leg term for fixed R and R′ behaves therefore as 1/d2l.

The number nl of sites with Metropolis distance l is, for large d, proportional to (the

asymptotic result is exact for a cubic lattice)

nl ≈
(1 + 0.693147 l dl)

l!
, (A.33)

so that the sum over R′ behaves like 1/dl, and vanishes for large d. It goes without

saying that terms with a higher number of fermionic lines will vanish even faster for

d→∞.
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A.5 A proof of some equations of the mixed-basis Gutzwiller

formalism

In this section we provide a brief derivation of Eq. (1.74), (1.75) and (1.77) in

Sect. 1.6.2. From Eq. (1.62), we can pass to the mixed-basis representation, re-

membering that R†αa transforms natural to original basis as well as renormalizing the

hopping, and leaving out the index R,

〈Ψ0|P̂†ĉ†αP̂d̂b|Ψ0〉 =
∑

a

R†αa〈Ψ0|d̂†ad̂b|Ψ0〉 = R†αbn
(0)
b . (A.34)

Using the recipe of Eq. (1.71), we can rewrite the above equation as

Tr{
√
P̂0P̂†ĉ†αΦ̂ P̂d̂b

√
P̂0} = R†αbn

(0)
b . (A.35)

Exploiting the matrix representation of P̂0 in the basis of configurations on natural

orbitals Eq. (1.70), we find that

d̂b

√
P̂0 =

√√√√ n
(0)
b

1− n(0)
b

√
P̂0d̂b , (A.36)

so that Eq. (A.35) can be rewritten as

Tr{
√
P̂0P̂†ĉ†αP̂

√
P̂0d̂b}√

n
(0)
b (1− n(0)

b )
= R†αb . (A.37)

From Eq. (1.66) and (1.73), we can write Φ̂ = P̂
√
P̂0, so that Eq. (A.34) becomes

Tr{Φ̂†ĉ†αΦ̂ P̂0d̂b}√
n

(0)
b (1− n(0)

b )
= R†αb , (A.38)

which is exactly Eq. (1.77).

Starting from Eq. (1.59) written in the natural basis

〈Ψ0|P̂†P̂d̂†ad̂b|Ψ0〉 = 〈Ψ0|d̂†ad̂b|Ψ0〉 = n(0)
a δab , (A.39)

we can rewrite it remembering Eq. (1.71), so that

Tr{
√
P̂0P̂†P̂d̂†ad̂b

√
P̂0} = 〈Ψ0|d̂†ad̂b|Ψ0〉 = n(0)

a δab . (A.40)
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We can now use the fact that

d̂†b

√
P̂0 =

√√√√1− n(0)
b

n
(0)
b

√
P̂0d̂

†
b , (A.41)

together with Eq. (A.36), and by inserting again the definition of Φ̂ , we get

√√√√(1− n(0)
a )n

(0)
b

n
(0)
a (1− n(0)

b )
Tr{Φ̂†Φ̂ d̂†ad̂b} = 〈Ψ0|d̂†ad̂b|Ψ0〉 = n(0)

a δab . (A.42)

Since only the term with a = b is nonzero on the rightmost side of Eq. (A.42),

provided that the pathological situation with n
(0)
a = 0 or n

(0)
b = 0 is avoided, we can

safely divide the leftmost expression with a 6= b by the square-root, so as to find

Tr{Φ̂†Φ̂ d̂†ad̂b} = n(0)
a δab , (A.43)

which is the same expression as Eq. (1.75), with n̂ab = d̂†ad̂b. The result of Eq. (1.74)

can be trivially proved with the same arguments as above.
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Appendix B

Analytical expressions for

quasi-particle weight
in the layered Hubbard Model

In this appendix, entirely related to Chapt. 2, we show how to derive simple analytical

expressions for the layer dependence of the quasi-particle residue Z(z) in the half-filled

HM with broken translational invariance near criticality, i.e. in the limit U → Uc for

some of the Hubbard-Us involved in the calculation.

B.1 Equations for the hopping renormalization R parameters

near criticality

We assume a three dimensional slab geometry with constant hopping but inhomo-

geneous interaction U(z) and with particle-hole symmetry. We define as 2ε||(z) and

2ε⊥(z−1/2) the average over the uncorrelated Slater determinant |Ψ0〉 of the hopping

energy per bond within layer z and between layers z and z − 1, respectively.

With these definitions, the equation Eq. (2.15) can be written as

0 = 4R(z)

(
4 ε||(z) + ε⊥(z − 1/2) + ε⊥(z + 1/2)

)
+

+ 2

(
ε⊥(z − 1/2) + ε⊥(z + 1/2)

)(
R(z + 1) +R(z − 1)− 2R(z)

)
+

+ 2

(
ε⊥(z + 1/2)− ε⊥(z − 1/2)

)(
R(z + 1)−R(z − 1)

)
+
U(z)

4

R(z)√
1−R2(z)

.

(B.1)
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Near criticality, we expect that the layer dependence should appear as a dependence

upon the scaling variable z/ξ, and, since ξ � 1, we are allowed to regard z/ξ as a

continuous variable and expand Eq. (B.1) in the leading gradients.

Because of the breaking of translational invariance due to the interface, both ε||(z)

and ε⊥(z− 1/2) must acquire a Friedel-like z-dependence. However, as shown explic-

itly in Fig. B.1, ε||(z) and ε⊥(z−1/2)+ ε⊥(z−1/2) vary appreciably only close to the

interfaces, while ε⊥(z − 1/2) − ε⊥(z − 1/2) is negligible. Indeed, we found that the

amplitude of the Friedel’s oscillations is strongly reduced near criticality, while the

period stays invariant, so that it is legitimate to neglect the z dependence of ε||(z)

and ε⊥(z±1/2) and use for them their large-z bulk values, ε|| and ε⊥. Noting that the
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Figure B.1: Upper panel, plot of |εkin|/t for the sandwich geometry (c) in Fig. 2.9,

with 40 central layers, Uleft = Uright = 2t and Ucenter = 15.9712t. The value deviates by

2 to 4% from the value it would have in a homogeneous system (for which |εkin| = t).

Middle panel, plot of |ε⊥sum| = ε⊥(z+1/2)+ ε⊥(z−1/2). Lower panel, plot of |ε⊥diff | =
ε⊥(z + 1/2)− ε⊥(z − 1/2)

average hopping energy per site per spin in the homogeneous case is εkin = 4ε||+ 2ε⊥,

we can write the above Eq. (B.1) in the continuous limit as

4R(z) εkin +
U(z)

4

R(z)√
1−R2(z)

+ 4ε⊥
∂2R(z)

∂z2
= 0 , (B.2)

and proceed to solve it for a region of space with a uniform value of U ≈ Uc.
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Eq. (B.2) admits an integral of motion, namely

E = 2ε⊥

(
∂R(z)

∂z

)2

+ 2εkinR
2(z)+

+
U

4

(
1−

√
1−R2(z)

)

≡ 2ε⊥

(
∂R(z)

∂z

)2

+ E [R(z)] , (B.3)

where E [R(z)] is the Gutzwiller variational energy (GVE) for a homogeneous system

calculated at fixed R = R(z), i.e. without optimization.

The constant of motion E must be chosen to correspond to E [R(z0)] = E[R0],

where z0 is the layer coordinate at which we expect vanishing derivative. In a single

interface, we expect that R(z) will reach a constant value only asymptotically far

from the interface, i.e. z0 →∞, where R0 becomes equal to its bulk value

R0 =
√

1− u2, (B.4)

and where E[R0] becomes equal to the optimized energy in a homogeneous system

E = E[R0] = −Uc

8
(1− u)2 θ(1− u), (B.5)

where u = U/Uc and Uc = −16εkin.

In the case of a correlated slab sandwiched between two metal leads, we expect

that R(z) will reach a minimum somewhere at midway between the two interfaces. If

the leads are identical, the minimum occurs right in the middle, so that R0 becomes

an unknown parameter that has to be fixed by imposing that the actual solution

R[z, R0], which depends parametrically on R0, has zero slope ∂z R[z, R0] = 0 when z

is in the middle of the slab.

With the same definitions as above,

E [R(z)] = −Uc

8
R2(z) +

Uc

4
u
(

1−
√

1−R2(z)
)
. (B.6)

Since in a homogeneous cubic lattice ε⊥ = εkin/6 = −Uc/96, Eq. (B.3) can be rewritten

as

1

6

(
∂R(z)

∂z

)2

= R2
0 + 2u

(
1−

√
1−R2

0

)
+

−R2(z) + 2u
(

1−
√

1−R2(z)
)
, (B.7)

where

R2
0 + 2u

(
1−

√
1−R2

0

)
= (1− u)2 θ(1− u) (B.8)
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in the case of a single interface. The prefactor 6 of the (∂R(z)/∂z)2 comes from the

homogeneous relation εkin/ε⊥ = 6. As we shall see, the numerical data can be better

interpreted if εkin/ε⊥ is considered as a free fitting parameter.

The differential equation Eq. (B.7) controls the z-dependence of R(z > 0), hence of

the quasi-particle residue Z(z) = R2(z), assuming that the interface affects only the

boundary condition R(z = 0) = Rsurf . Therefore, a surface less correlated than the

bulk should be described by Eq. (B.7) with Rsurf > Rbulk =
√

1− u2 θ(1 − u), while

the opposite case (as for instance the interface with the vacuum of section 2.2) should

be obtained by setting Rsurf < Rbulk.

We now consider separately the case of a single junction and of the double junc-

tion, with either metallic or insulating bulk. With “bulk” we refer to the region of

space where we seek a solution near criticality, i.e. in the scaling regime where the

continuum limit for Eq. (B.1) can be taken.

B.2 Single interface with metallic bulk

In the case of a single interface between a weakly and a strongly correlated metal, we

solve Eq. (B.1) on the side of the strongly correlated metal by using Eq. (B.8) with

u ≤ 1. The differential equation Eq. (B.7) reads

1

6

(
∂R(z)

∂z

)2

=

(√
1−R2(z)− u

)2

, (B.9)

so that

∂R(z)

∂z
=
√

6

(√
1−R2(z)− u

)
, (B.10)

with equivalent integral form

∫ R(z)

Rsurf

dR√
1−R2 − u

=
√

6 z . (B.11)

This integral equation can be solved exactly, leading to the implicit formula

√
6 z =

∫ arcsinR(z)

arcsinRsurf

cosx dx

cosx− u = arcsinR(z)− arcsinRsurf+

+
u√

1− u2
tanh−1

(
R(z)Rbulk

1−
√

(1−R2
bulk) (1−R2(z))

)
+

− u√
1− u2

tanh−1

(
Rsurf Rbulk

1−
√

(1−R2
bulk) (1−R2

surf)

)
. (B.12)
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Close to criticality, u ' 1, one can neglect the arcsines in the right-hand side of the

first line of the above equation, and find the explicit expression

R(z) =
Rbulk sinh ζ

cosh ζ ±
√

1−R2
bulk

, (B.13)

where the plus sign refers to the case Rsurf < Rbulk, and the minus sign to the opposite

case, and where

ζ =
√

6 (1− u2) z + tanh−1

(
Rsurf Rbulk

1−
√

(1−R2
bulk) (1−R2

surf)

)
≡
√

6 Rbulk (z + z∗) .

(B.14)

The above solution provides a definition of the correlation length for u ≈ 1

ξ =
1√

6 (1− u2)
' 0.289

(
Uc

Uc − U

)1/2

, (B.15)

which is quite close to the Dynamical Mean-Field Theory value [37].

We note that, for ζ � 1, Eq. (B.13) becomes

R(z →∞) ' Rbulk

(
1∓

√
1−R2

bulk e−ζ
)
, (B.16)

and therefore

Z(z) = R2(z) ' Zbulk

(
1∓ 2

√
1−R2

bulk e−x/ξ
)

(B.17)

tends exponentially to its bulk value on a length scale ξ, from below or above according

to Rsurf ≷ Rbulk, respectively.

Near criticality, i.e. Rbulk =
√

1− u2 � 1, Eq. (B.13) becomes

R(z) ' Rbulk coth
ζ

2
, (B.18)

so that Z(z) shows a simple scaling behavior [37]

(z + z∗)
2 Z(z) = (z + z∗)

2 R(z)2 =
4

6

(
1

4
ζ2 coth2 ζ

2

)
≡ 2

3
fu<1(ζ) . (B.19)

The scaling function fu<1(ζ) that we find has the asymptotic behavior: fu<1(0) = 1

and fu<1(ζ →∞) ' ζ2/4.

Another case of interest is that of the interface with vacuum discussed in section 2.2,

which is equivalent to the interface between a Mott insulator and a strongly-correlated
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Figure B.2: Numerical results for Z(z) in the surface geometry, with U = 15.9872t

(crosses), 15.9712t (diamonds), 15.9487t (squares), 15.9198t (circles). The solid curve

is tanh2(ζ/2), i.e. R2(ζ) as defined in Eq. (B.13) (with plus sign) and expanded to first

order in Rbulk � 1. In order to define ζ the same expansion has been carried out in

Eq. (B.14), where we set the quantity εkin/ε⊥ equal to 9.427 instead of 6, in order to fit

the numerical data.

metal. Solving on the metallic side requires Rsurf � 1, so that from Eq. (B.14) it

follows that

z∗ '
Rsurf√

6(1− u)
� 1 . (B.20)

Away from criticality and for ζ � 1, which is allowed since z∗ � 1, we find through

Eq. (B.13) with the plus sign that

R(z) '
√

6 (1− u) (z + z∗) , (B.21)

so that

Z(z) ' 6 (1− u)2 (z + z∗)
2 , (B.22)

showing that the quasi-particle residue approaches its surface value with a finite

curvature.

In Fig. B.2 and Fig. B.3 we show the rescaled numerical data for an interface

between a 200-layer-wide correlated metal slab and the vacuum and for a junction

between a weakly correlated metal and a strongly correlated metal. It is easy to fit this

data with the function R2(z) displayed in Eq. (B.14) by tuning just one parameter,
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which, as discussed above, is the value of εkin/ε⊥ (equal to 6 in the homogeneous

problem). The fact that the ideal theoretical result, relying on homogeneous values

for hopping and kinetic energy, fits the numerical data with just a single tunable

parameter, is a pleasant feature.

Figure B.3: Numerical results for Z(z) in the single junction geometry with metallic

bulk, the position of the junction is chosen as the origin for the spatial coordinate, the

metal on the left side is very weakly correlated (U = 2t); the values for U on the right

side are the same of Fig. B.2. The solid curve is now the function 1/ tanh2(ζ/2), i.e.

the second power of Eq. (B.13) (with minus sign) expanded to first order in Rbulk. As

in Fig. B.2, the definition of ζ has been obtained from Eq. (B.14) by expanding to first

order in Rbulk. The value of εkin/ε⊥ that fits the data is now 8.254.

B.3 Single interface with insulating bulk

In this case of an interface between a weakly correlated metal and a Mott insulator,

we solve Eq. (B.1) on the insulating side, for which purpose we have to set u ≥ 1 in

Eq. (B.8). Eq. (B.7) now reads

1

6

(
∂R(z)

∂z

)2

= −R2(z) + 2u
(

1−
√

1−R2(z)
)
, (B.23)

leading to
∫

dR√
2u−R2 − 2u

√
1−R2

= −
√

6

∫
dz , (B.24)
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where we have assumed that on the surface Rsurf is finite, while R decays into the

bulk, so that the derivative is negative.

The above integral equation can be solved with an implicit solution

−
√

6 (u− 1) z = 2
√
u− 1 arcsin

(
cos y(z)√

u

)
− 2
√
u− 1 arcsin

(
cos ysurf√

u

)

− tanh−1

(√
u− 1 cos y(z)√
u− cos2 y(z)

)
+ tanh−1

(√
u− 1 cos ysurf√
u− cos2 ysurf

)
, (B.25)

where R(z) = sin 2y(z), Rsurf = sin 2ysurf .

As before the arcsines can be neglected near criticality, so that we can obtain the

explicit solution

R2(z) = 1−
(

1− 2 (u− 1)

u cosh2 ζ − 1

)2

, (B.26)

with

ζ =
√

6 (u− 1) z + tanh−1

(√
u− 1 cos ysurf√
u− cos2 ysurf

)
≡
√

6 (u− 1) (z + z∗) . (B.27)

In the case of an insulating bulk, the correlation length defined through Eq. (B.28) is

therefore

ξ =
1√

6 (u− 1)
' 0.408

(
Uc

U − Uc

)1/2

, (B.28)

with a different numerical prefactor, actually a
√

2 greater, with respect to the metallic

bulk Eq. (B.15).

Near criticality, u ' 1,

R(z)2 = Z(z) ' 4 (u− 1)

sinh2 ζ
, (B.29)

so that, as before,

(z + z∗)
2 Z(z) =

4

6

(
ζ2

sinh2 ζ

)
≡ 2

3
fu>1(ζ) , (B.30)

has a scaling behavior with fu>1(0) = 1 and

fu>1(ζ →∞) ' 4ζ2 e−2ζ . (B.31)
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B.4 Double junction

We model the double junction as a slab of length 2d in contact with two leads. In this

case we need to use Eq. (B.7) with a R0 that has to be fixed by imposing that the

desired solution R(z) becomes equal to R0 at some z0 within the slab. If we assume

that both leads are less correlated than the slab, then R(z) always decreases moving

away from any of the two interfaces, and we can determine R0 by imposing either of

the two conditions:
∫ R0

R<surf

dR√
R2

0 + 2u
√

1−R2
0 −R2 − 2u

√
1−R2

= −
√

6 z0, (B.32)

∫ R>surf

R0

dR√
R2

0 + 2u
√

1−R2
0 −R2 − 2u

√
1−R2

=
√

6 (2d− z0) , (B.33)

where R<
surf and R>

surf are the values of R(z) at the left and right surfaces, respectively.

Taking the difference Eq. (B.33) minus Eq. (B.32) we find

√
6 2d =

(∫ R>surf

R0

+

∫ R<surf

R0

)
dR√

R2
0 + 2u

√
1−R2

0 −R2 − 2u
√

1−R2

, (B.34)

which has to be solved to find R0 as function of the other parameters. Once R0 is

found, one can determine z0.

In order to simplify the calculations, we will assume two identical leads, i.e. R<
surf =

R>
surf = Rsurf , so that z0 = d and Eq. (B.34) becomes

√
6 d =

∫ Rsurf

R0

dR√
R2

0 + 2u
√

1−R2
0 −R2 − 2u

√
1−R2

=
2√

(a− c)(b− p)

[
(c− b) Π

(
φ,
c− p
b− p, k

)
+ b F (φ, k)

]
, (B.35)

with parameters a > b > c > u ≥ p. The last expression can be derived eas-

ily after the change of variable R =
√

1− x2, and seemingly R0 =
√

1− x2
0 and

Rsurf =
√

1− x2
surf . Π(φ, n, k) and F (φ, k) are elliptic integrals of third and first

kind, respectively

F (φ, k) =

∫ φ

0

dx√
1− k2 sin2 x

, (B.36)

Π(φ, n, k) =

∫ φ

0

dx
(
1− n sin2 x

)√
1− k2 sin2 x

, (B.37)
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and

φ = arcsin

√
(b− p)(c− u)

(c− p)(b− u)
, (B.38)

k =

√
(a− b)(c− p)
(a− c)(b− p) . (B.39)

The various parameters are, when 2u− x0 ≥ 1,




a = 2u− x0 ,

b = 1 ,

c = x0 ,

p = −1 ,

u = xsurf ,

(B.40)

so that

φ = arcsin

√
2 (x0 − xsurf)

(x0 + 1) (1− xsurf)
, (B.41)

k =

√
(2u− x0 − 1) (x0 + 1)

4 (u− x0)
. (B.42)

On the contrary, if 2u− x0 < 1, then




a = 1 ,

b = 2u− x0 ,

c = x0 ,

p = −1 ,

u = xsurf ,

(B.43)

hence

φ = arcsin

√
(2u− x0 + 1)(x0 − xsurf)

(x0 + 1)(2u− x0 − xsurf)
, (B.44)

k =

√
(1− 2u+ x0)(x0 + 1)

(1− x0)(2u− x0 + 1)
. (B.45)

We rewrite

(c− b) Π

(
φ,
c− p
b− p, k

)
+ b F (φ, k) =

=

∫ φ

0

dx

(
p(b− c) + b(c− p) cos2 x

(b− c) + (c− p) cos2 x

)
1√

1− k2 sin2 x
, (B.46)
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and note that, at x = φ

p(b− c) + b(c− p) cos2 φ

(b− c) + (c− p) cos2 φ
= xsurf ≥ 0 . (B.47)

and in addition that b− c in both cases is very small.

Indeed, for 2u − x0 > 1, which corresponds to an insulating slab where R0 =√
1− x2

0 → 0 for large d, we have that b− c = 1− x0 � 1. In the opposite case of a

weakly correlated slab, it is still true that b− c = 2u− x0 − x0 � 1 since x0 → u for

large d. Therefore, the quantity

p(b− c) + b(c− p) cos2 x

(b− c) + (c− p) cos2 x
(B.48)

is practically constant and equal to b everywhere but close to the extreme of integra-

tion, where it rapidly decays to xsurf . To leading order we can then write

(c− b) Π

(
φ,
c− p
b− p, k

)
+ b F (φ, k) ' b F (φ, k) , (B.49)

so that the equation to be solved becomes
√

6 d =
2b√

(a− c)(b− p)
F (φ, k) =

=
2b√

(a− c)(b− p)

[
K(k)− F

(
arcsin

cosφ√
1− k2 sin2 φ

, k

)]
, (B.50)

where K(k) = F (π/2, k), and where the last expression is more convenient since

φ ' π/2. In order to find x0 as function of the other parameters, we have to consider

separately three different cases.

Insulating off-critical behavior: u� 1

In this case 2u−x0 > 1. We note that k as a function of u at fixed x0 ' 1 is equal to

k2 =
x0 + 1

4
' 1

2
, (B.51)

for u = 1, and increases very rapidly to its asymptotic u� 1 value

k2 =
x0 + 1

2
' 1 . (B.52)

Therefore Eq. (B.50) is, at leading order,

√
6 d =

1√
u− 1

K

(√
1 + x0

2

)
' 1

2
√
u− 1

ln
32

1− x0

, (B.53)

so that in this limit we have a value

Z0 = R2
0 ' 64 e−

√
24(u−1) d (B.54)

which vanishes exponentially with the width of the slab.
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Critical behavior: u = 1

In this case

k2 =
x0 + 1

4
' 1

2
, (B.55)

hence at leading order Eq. (B.50) reads

√
6 d =

1√
1− x0

K

(
1√
2

)
=

1

4
√
π
√

1− x0

[
Γ

(
1

4

)]2

, (B.56)

from which it follows that

Z0 = R2
0 =

1

48π

[
Γ

(
1

4

)]4
1

d2
' 1.146

d2
. (B.57)

Once again we find a critical behavior d2Z0 ' const., with a sizable constant 1.146.

Metallic off-critical behavior: u� 1

This is the case in which 2u− x0 < 1 and x0 ' u, so that

1− k2 =
4(u− x0)

(2u− x1 + 1)(1− x0)
' 4(u− x0)

1− u2
. (B.58)

Therefore Eq. (B.50) is

√
6 d ' u√

1− u2
ln

16

1− k2
=

u√
1− u2

ln
4(1− u2)

u− x0

, (B.59)

whose solution is

u− x0 = 4(1− u2) e−
√

6
√

1−u2 d/u . (B.60)

Since Zbulk = 1− u2, it follows that

Z0 ' Zbulk

(
1 + 8u e−

√
6
√

1−u2 d/u
)
. (B.61)

B.5 Comparison with Dynamical Mean-Field Theory

Near the Mott transition, U ' Uc, Potthoff and Nolting in Ref. [36] introduced a

set of linearized DMFT recursive equations for the layer dependent quasi-particle
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residue. Taking, as before, the continuous limit of their Eq. (37), with q = 4 p = 1

and Uc = 6t
√

6, one finds the following differential equation

1

6

∂2Z(z)

∂z2
+ 2Z(z) (1− u)− c Z(z)2 = 0 . (B.62)

The numerical constant is estimated to be c = 11/9 [117]. The limiting behavior for

u→ 1 is the solution of

1

6

∂2Z(z)

∂z2
= c Z(z)2 , (B.63)

namely

z2 Z(z) =
1

c
=

9

11
' 0.82 . (B.64)

Let’s consider instead our Eq. (B.2) that, divided by 4εkin = −Uc/4, can be written

as

0 =
1

6

∂2R(z)

∂z2
+R(z)− u R(z)√

1−R(z)2

' 1

6

∂2R(z)

∂z2
+ (1− u) R(z)− 1

2
R(z)3 . (B.65)

At criticality, u→ 1, the solution

z2R(z)2 = z2 Z(z) =
2

3
' 0.66 , (B.66)

is just the limiting value of Eqs. (B.30) and (B.19) for ζ = 0. The numerical coefficient

2/3 that we find is slightly smaller than the linearized DMFT one, 9/11, but both

are much bigger than the value extracted by straight DMFT calculations in Ref. [37],

namely 0.008. Supposedly, straight DMFT is a better approximation than linearized

DMFT, which in turn should be better than our Gutzwiller technique. It is therefore

likely that our results overestimate the quasi-particle residue Z.
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Appendix C

Building the symmetric Gutzwiller pro-
jector

Whenever we wish to define a Gutzwiller projector P̂, or generalized Gutzwiller pro-

jector Φ̂ in the mixed-basis formalism, we need to choose a local many-body basis

for its matrix representation. The most intuitive basis for this purpose is the basis of

electronic configurations (BC), or in other words the basis of single Slater determi-

nants, built with occupied local single-particle spin-orbitals (in Sect. 1.6.2 we referred

to these single-particle orbitals with the term original single-particle basis (OSB)).

If represented on this basis of configurations, the number operator N̂ and the z-

component of the spin operator Ŝz are diagonal matrices.

When the angular part of the orbitals in the OSB is built from spherical harmonics,

the BC diagonalizes also the z-projection L̂z of total angular momentum. However,

it does not diagonalize neither the square modulus of the total spin operator Ŝ2, nor

that of the total angular momentum L̂2.

In sections C.1 and C.2 we explain the procedure we used to linearly combine the

Slater determinants of the BC in order to build states labeled by the quantum numbers

{N,S, Sz, L, Lz}. For this purpose, we need to perform a unitary transformation in

the local many-body space, so as to switch from the BC what we will call the many-

body symmetric basis (MSB) for full rotational symmetry, i.e. the basis diagonalizing

the generators of the group of spin (SU(2)) and orbital rotations (O(3)).

In Sect. C.3 we show how to linearly transform the MSB in the case of full rotational

symmetry to the MSB in the case of a lower symmetry as the cubic crystal symmetry.

The last section, Sect. C.4, contains the recipe to build the Gutzwiller parameter
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matrix Φ̂ that commutes with all the generators of the symmetry group of the given

system.

C.1 Implementation of spin rotational symmetry

It is a known fact [118] that Young Tableaux can be used to combine SU(2) states to

form eigenstates of total spin operators Ŝ2 and Ŝz. We use this knowledge to build

the spin-symmetric many-body basis for our Gutzwiller calculations.

A single electronic configuration, i.e. a Slater determinant of local orbitals, can be

built by specifying which orbitals are doubly occupied (we will pictorially represent

them with the symbol �), which are empty (�), and which are occupied by just a

single up ^ or down _ spin. Electronic configurations on M orbitals can therefore

be thought as “words” that are M characters long, built with only four (�, �, ^,

_) types of letters. Above and below left in Table C.1 are shown examples of these

configurations.

Since both singly and doubly occupied sites are spin-singlets, only the ^ and _

letters, carrying a spin of 1/2, are of some importance for building eigenstates of

total spin. The Young Tableaux provide us with the unitary transformation that

diagonalizes Ŝ2 and Ŝz in the subspace of all configurations with the same number

and position of singly occupied orbitals, and with the same � and � symbols on the

remaining ones.

C.1.1 Counting of spin states

The total number of configurations Na with a singly occupied sites on M orbitals is

equal to

Na =

(
M

a

)
2M−a 2a , (C.1)

where the first factor counts the ways of choosing a singly occupied states, the second

accounts for their degeneracy due to the –irrelevant for labeling the spin configuration

– � and � configurations, and the third counts the spin degrees of freedom of a set of a

spins. The position of the singly occupied sites and the configuration of the remaining

empty and doubly occupied sites will not be altered by the unitary transformation to

the basis of eigenstates of Ŝz and Ŝ2.

We can therefore restrict our discussion to a set of a spins sitting on different spa-

tial orbitals, without having to specify any information about their orbital quantum

number. On this set, the total spin along z can have values between a/2 and −a/2.
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|� � � � � 〉 |� � � � � 〉

| ↑ ↓ ↑ ↑ ↓ 〉 1√
2

(
| ↑ ↓ � � � 〉 − | ↓ ↑ � � � 〉

)

Table C.1: Above and below left, examples of Slater determinants composing the BC

of a set of 5 orbitals (as the atomic d-orbitals of a transition metal), 10 spin-orbitals.

Above left, empty configuration; above right, full configuration. Below left, a Slater

determinant belonging to the set of half-filled configurations. Below right, example of a

singlet S = 0 configuration of four particles, which is found by unitary transforming the

BC. The matrix elements of the unitary transformation that diagonalizes the operator

Ŝ2 are the same between configurations that have the same position and number of

squares, irrespective of their color.

The states with exactly Sz = −a/2 +N↓ are

(
a

N↓

)
, (C.2)

if N↓ is the number of spin-down electrons in the set.

C.1.2 Young Tableau classification of a set of 5 spins

Given a set of 5 spins 1/2, we have exactly 25 = 32 different spin states. The state

with maximum Sz component (Sz = 5/2) can be built only from the totally symmetric

Young Tableau

↑ ↑ ↑ ↑ ↑ , (C.3)

which corresponds to S = 5/2. This particular state is a single Slater determinant,

already belonging to the basis of spin configurations.

The application of the operator Ŝ− provides us with the totally symmetric state

↑ ↑ ↑ ↑ ↓ (C.4)

with S = 5/2 and Sz = 3/2. This state is a combination of 5 different Slater deter-

minants. However, this is not the only state which can be built with Sz = 3/2. Four

other ones can be built from a tableau of different shape

4× ↑ ↑ ↑ ↑↓ . (C.5)
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The number 4 tells that the above tableau refers to four states with the same sym-

metry. The tableau degeneracy number depends only on its shape, and not on the

symbols that fill the boxes of the tableau. The tableau shape in Eq. (C.5) cannot

be obtained for four electrons with the same spin because the elements along every

column are antisymmetrized. It corresponds to the S = 3/2 and Sz = 3/2 spin state.

When the spin lowering operator is applied again to the tableaux (C.4) and (C.5),

we find three different tableau shapes

↑ ↑ ↑ ↓ ↓ , 4× ↑ ↓ ↑ ↑↓ , 5× ↑ ↑ ↑↓ ↓ (C.6)

which are spin states with S = 2, S = 1 and S = 0 respectively, and all with

Sz = 1/2. The sum of all tableau degeneracies for states with Sz = 1/2 gives the

result of Eq. (C.2) with a = 5 and N↓ = 2. Just to give another example, we can

mention the case of two spins (a = 2), where two possible tableaux represent states

with Sz = 0, and they are the symmetric tableau

↑ ↓ , (C.7)

for the triplet state, and the antisymmetric tableau

↑
↓ , (C.8)

for the singlet, also shown below right in Table C.1 for a 5-band model with two

singly-occupied orbitals.

The tableau representations of states are symmetrizations/antisymmetrizations of

sets of Slater determinants. In order for these representations to be used as a basis

of orthonormal many-body states, they need both to be normalized and, in case

they carry a degeneracy, orthogonalized within the space of all tableaux of the same

shape and Sz quantum number. Once this has been done, they build the unitary

transformation from the basis of spin configurations to the spin symmetric basis.

C.2 Implementation of space rotational symmetry

Thanks to Young Tableaux we are able to label states with the quantum numbers

{N,S, Sz, Lz}. For each of these sets of quantum numbers, there are several states

with different values of the square modulus L(L+ 1) of total angular momentum.

If the OSB of our Gutzwiller calculation is already built from single-particle eigen-

states of L̂z and L̂2, as for instance the 3d orbitals of a transition metal (l = 2), it is

very easy to build the angular momentum raising operator explicitly

L̂+ =
l−1∑

m=−l

√
l(l + 1)−m(m+ 1) ĉ†m+1ĉm . (C.9)
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From L̂2 = L̂+L̂− + L̂z(L̂z − 1) we can build the operator L̂2, which will be block-

diagonal in every subspace with fixed {N,S, Sz, Lz}. The diagonalization of every

block gives the desired set of states, labeled by {N,S, Sz, L, Lz}. For large many-

body spaces, as for instance the one built from d-electrons of a transition metal,

another index θ might be needed, in order to distinguish between different states

having the same set of quantum numbers listed above.

C.3 Implementation of crystal cubic symmetry

Provided that a set of many-body eigenstates of spin and angular momentum opera-

tors has been given, it is easy to break the rotational symmetry of the MSB in favor

of some lower crystal symmetry when necessary. In this section we will treat, as an

example, the case of cubic symmetry. What we need for this purpose are just the

following:

1. the 3 × 3 matrix representation G(g)ij of the action of each element g of the

cubic group on a three-dimensional vector r ,

2. the character table of the group, for the cubic group it is shown in Table C.2 ,

3. the r-space representation in spherical coordinates of an external potential with

the symmetry of the group; an example for a potential with cubic symmetry is

v[r̂(θ, φ)] = cos(θ)4 +
1

4
[3 + cos(4φ)] sin(θ)4 , (C.10)

where r̂ is the radial unit vector.

E 8C3 3C2(C2
4) 6C2 6C4

A1 1 1 1 1 1

A2 1 1 1 -1 -1

E 2 -1 2 0 0

T1 3 0 -1 -1 1

T2 3 0 -1 1 -1

Table C.2: Character table of the cubic group. The first row lists all the group

classes along with the number of symmetry operations they contain. The following

rows list the irreducible representations, and their character on each symmetry class.

From reference [119].

Once these three ingredients are at hand, we proceed as follows:
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� for each set of spherical harmonics YL,m(θ, φ) with given L, we compute (by

means of the algorithm of Gimbutas et al. [120]) and diagonalize the matrix

C
(L)
m,m′ =

∫
Y ∗L,m(r̂)v(r̂)YL,m′(r̂) dΩ ; (C.11)

� for each set of spherical harmonics with given l and for each group element g,

we calculate the matrix elements

M(g)Lm,m′ =

∫
Y ∗L,m(r̂)YL,m′(G(g)−1r̂) dΩ ; (C.12)

� for each eigenvalue ε of the matrix C(L), and for all eigenvectors cε,L,i relative

to this eigenvalue, we compute the character

χ(C, L, ε) =
∑

i

∑

j

cε,L,ij M(g ∈ C)Ljkcε,L,ik (C.13)

relative to the class C. The value of the character enables us to assign the

correct label of irreducible representation I to the eigenvectors cε,L,i.

The matrices U
(L)
ij = cε,L,ij are the unitary matrices we need to apply to every block

of may-body basis states with a given value of L in order to switch from a basis labeled

with {N,S, Sz, L, Lz} to a basis indicated by {N,S, Sz, L, I, ι}1, where ι labels the

states within the same irreducible representation I.

C.4 Building the most general Gutzwiller parameter matrix

In this section we show how to parametrize the matrix Φ of Gutzwiller parameters

in the case of full spin and orbital rotational symmetry. The procedure is similar in

the case of cubic symmetry.

We can easily construct the most general Gutzwiller parameter matrix Φ commuting

with the operators Ŝ2, L̂2, Ŝx,y,z and L̂x,y,z by the following procedure. Operatively,

1. we find the quantum numbers that uniquely identify the irreducible represen-

tation of the symmetry group, in this case spin and spatial rotations SU(2) ×
O(3) . These quantum numbers are α = {N,S, L}. The same representation

can appear multiple times, so we will add another quantum number θ to distin-

guish between equivalent representations. Each irreducible representation has

1The quantum number L is still used to label states since each irreducible representation of

the cubic group comes from a definite representation of the rotation group O(3). However, in the

case of cubic symmetry L is no longer a conserved quantum number, and the ground-state of the

Hamiltonian will not necessarily have a definite L.
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a degeneracy n{α,θ} = L(L + 1)× S(S + 1); we will distinguish between states

that are a basis for the same irreducible representation {α, θ} = {N,S, L, θ}
through the index ι = ι(αθ). In the case of spin and rotational symmetry ι lists

all the eigenstates of Ŝz and L̂z within the same S and L.

2. With the previous definitions, the matrix elements of Φ are labeled

Φαθι,βθ′ι′ = δαβδιι′φ
α
θθ′ , (C.14)

where φαθθ′ is a reduced matrix element. The labels αθι and βθ′ι′ identify

univocally one state of the MSB, so that our parametrization of Φ is complete.

The same recipe holds when the spatial symmetry is, for example, the crystal cubic

symmetry. In this case α = {N,S, I}.
The result expressed by Eq. (C.14) comes directly from Schur’s lemma, which states

that a matrix commuting all the matrices of an irreducible representation of a group

G must be a multiple of identity. The matrix Φαθι,βθ′ι′ must be nonzero only for

α = β since, if Ĝ is a generator of the group and εα its eigenvalue with respect to

any basis vector belonging to irreducible representation α, the commutation relations

[Φ̂ , Ĝ] = 0 imply that

ĜΦ̂ |α 〉 = Φ̂ Ĝ|Ψα 〉 = εαΦ̂ |Ψα 〉 (C.15)

and that Φ̂ |α 〉 must be a vector with the same quantum numbers α.

Again from the condition of zero commutator, we have that Φαθι,αθ′ι′ , seen as a

matrix in the indices ιι′ with fixed θ = θ′, must commute with all the matrices of irre-

ducible representation α, and by Schur’s lemma it must be a multiple of the identity

matrix. For θ 6= θ′ the same statement does not hold, since the representations are

distinct.

However, their equivalence implies that the matrices of the first are related to

the matrices of the second through a unitary transformation. We can choose this

transformation to be the identity, and this enables us to draw for θ 6= θ′ the same

conclusions as for θ = θ′, so that Φαθι,αθ′ι′ is diagonal in ιι′ irrespectively of θ and θ′.
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Appendix D

Minimization algorithm for

Gutzwiller parameters

The minimization of the variational energy Eq. (4.65) with respect to the matrix

elements of Φ̂ is performed by a Lanczos-enhanced sparse constrained Levenberg-

Marquardt (LM) algorithm (the part of the energy functional depending only on

Gutzwiller parameters is shown in Eq. (4.70)).

We expound the unconstrained LM algorithm [121] in the first section of this ap-

pendix, in the second section we discuss how to enforce general constraints on the

minimization parameters and in the third and last section we explain how we imple-

mented the algorithm for sparse matrices, and with a Lanczos approximation of the

Hessian matrix.

D.1 The Levenberg-Marquardt algorithm

Given a generic functional F(Φ), whose arguments are organized in a matrix Φ, a

minimization step of this algorithm starts with expanding F(Φ) up to second order

around some point Φ̄ in parameter space, so as to work with the effective quadratic

expression

F2(Φ) = F(Φ̄) +
∑

αβ

gαβ(Φ̄)︷ ︸︸ ︷
∂F(Φ)

∂Φαβ

∣∣∣
Φ=Φ̄

δΦαβ +
1

2
δΦ†αβ

hαβγδ(Φ̄)︷ ︸︸ ︷(
∂2F(Φ)

∂Φαβ∂Φγδ

∣∣∣
Φ=Φ̄

)
δΦγδ , (D.1)
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where g and h are the gradient and Hessian of the functional F computed at point

Φ̄.

This second order approximation is used to find a direction in parameter space

along which to carry out a line minimization. The required direction is the solution

δΦj of the equation:

hij(Φ̄)δΦj = −gi(Φ̄) , (D.2)

where for simplicity we indicated with i the couple of indices αβ, and with j the

couple γδ.

In order for a solution of Eq. (D.2) to exist, we need the matrix hij to be invertible.

A further requirement on the Hessian h is that it is positive-definite, so that the

second order expansion Eq. (D.1) has itself a minimum. This is not always the case,

since a non-quadratic functional like F can feature also saddle-points and maxima,

and as long as the minimization is not completed the expansion point Φ̄ may happen

to be in the vicinity of these points.

Whenever h happens to be non-positive-definite, one can substitute it with the

positive matrix

h′ = h− η1 , (D.3)

where η is larger than the smallest eigenvalue of h, and then solve Eq. (D.2) by

inverting h′. After a direction δΦ is found, a steepest descent minimization of the

full functional F(Φ) can be carried out along δΦ. The advantage of this procedure

is that it converges in exactly one step for a quadratic F(Φ). If the functional is

quartic, as in the case of our work (see Eq. (4.70)), more than one step is needed, but

usually just few ones are sufficient to get satisfactorily close to the required minimum

Φ = Φmin.

D.2 Enforcing constraints

Constraints in the LM algorithm are enforced via both Lagrange multipliers and

penalty functional. In our case all constraints are quadratic, so they can be expressed

as

C(a)(Φ) = ΦjΦiC
(a)
ij − κ(a) . (D.4)

The quantity that has to be added to the functional F in order to manage constraints

is itself a quartic functional of Φ, with explicit form

L(Φ,ν,Υ) = −
∑

a

νaC(a)(Φ) +
Υa

2

[
C(a)(Φ)

]2
. (D.5)
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D.3 LM algorithm with Lanczos approximation for the Hessian

After performing a minimization of F(Φ) + L(Φ,ν,Υ) at fixed ν and Υ, it is

necessary to update the Lagrange multipliers ν, and this can be done through the

formula

ν ′a = νa −
∑
M−1

ab C(b) (D.6)

Mab = (∇C(a))†ih
−1
ij (∇C(a))j , (D.7)

where h−1 is matrix inverse of either the Hessian h defined in Eq. (D.1) (if that is

already positive-definite), or of the modified one h′ of Eq. (D.3), and where

(∇C(a))i =
∂C(a)

∂Φi

∣∣∣
Φ=Φmin

. (D.8)

The advantage of using Lagrange multipliers together with penalty functionals is

that the constraints can be fulfilled exactly even without the need of increasing the

value Υa of each penalty up to very large values, which would jeopardize the efficiency

of the unconstrained convergence. The value of Υa can be either kept constant, or

moderately increased as C(a) approaches zero, in order to speed up convergence.

D.3 LM algorithm with Lanczos approximation for the Hessian

Depending on the quantity of single-particle orbitals involved in the definition of

the Gutzwiller parameter matrix, the number of parameters in the block-diagonal

matrix Φαβ can be very large, which makes it computationally very expensive to

solve Eq. (D.2), or to find the inverse of the Hessian for the multiplier updates in

Eq. (D.6). It can be convenient to write the second order approximation Eq. (D.1)

in a smaller parameter space, defined by taking several Lanczos steps through the

positive-definite Hessian matrix h (or h′).

Also the memory storage of the algorithm can take great advantage from this pos-

sibility, since the definition of the Lanczos basis does not have as a requirement the

knowledge of the full matrix hij, but only the knowledge of products hijΦj. Keeping

in memory the full Hessian matrix is possible only for a small number of parame-

ters, while it implies a considerable slow down of simulations in the case of a 5-band

Gutzwiller projector like the one we need for dealing with transition metals.

Whenever we choose the starting Lanczos vector, we need to remember that find-

ing an accurate solution for Eq. (D.2) requires this solution δΦj to have a nonzero

component on the first vector of the Lanczos chain. We now give some reasons why a

good starting vector is the gradient gi itself. The first reason is that with this choice,

a single Lanczos step is equivalent to solving the whole minimization problem with

the steepest descent algorithm. The second reason is that the gradient has a nonzero
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projection on δΦ, since by virtue of the positive-definiteness of h (or h′)

∑

ij

δΦ∗ihijδΦj > 0 , (D.9)

but
∑

j hijδΦj = −gi, which means that

g∗i δΦi < 0 . (D.10)

We can say more than this, namely that there is a nonzero component of δΦ also

on hg, since

∑

ij

δΦ∗jhijgi = −
∑

ij

(g∗i hijδΦj)
∗ = −

∑

j

gjg
∗
j < 0 . (D.11)

Finally, there is a nonzero component of δΦ also on h2g, again due to the positive-

definiteness of the Hessian

∑

ij

δΦ∗i (h
2)ijgj =

∑

ij

(g∗i (h
2)ijδΦj)

∗ = −
∑

i

(g∗i hijgj)
∗ < 0 . (D.12)

This means that three Lanczos steps will certainly improve a steepest descent problem.

Any further step will further refine the approximation to the correct descent direction

δΦ.
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Appendix E

Various topics of Density Functional
theory

In this appendix we discuss in more depth some concepts of Local Density Approxi-

mation plus Hubbard-U (LDA+U) and Local Density Approximation plus Gutzwiller

Method (LDA+G) that are introduced in Chapt. 3 and Chapt. 4. We show in practice

how Local Density Approximation (LDA) is unable to subtract the self-interaction

from the Hartree energy of a single electron, and we prove how our first-order ap-

proximation for the exchange-correlation functional of LDA+G fulfills the sum-rule

for the exchange-correlation hole. The last two sections are devoted to LDA+U and

the definition of the atomic Hamiltonian Ĥat = ĤHub + ĤHund that we exploit in

Chapt. 4.

E.1 Self-interaction in the LDA functional

If we compute the self-interaction of a single-electron density with a Gaussian profile

na(r) =

(
1

2πa2

)3/2

exp

(
− r2

2a2

)
, (E.1)

we find

SICa =
e2

2

∫
drdτ

na(r)na(r + τ )

τ
=

1√
πa
≈ 0.282

a
, (E.2)

where the energy unit is the Hartree (units of e2/aBohr) when a is expressed in units

of the Bohr radius aBohr. The previous result tells us that the narrower the density

profile, the larger will be the self-interaction.
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The exact self-interaction energy per particle corresponding to a Gaussian electron

is a non-local function of the density na(r)

SIa =

∫
drna(r)ε(SI)[na](r) (E.3)

ε(SI)[na](r) =
e2

2

∫
dτ
na(r + τ )

τ
. (E.4)

This non-locality is absent from the LDA self-interaction, where ε(SI)[na](r) is com-

puted from the local value of the density na(r). Since a uniform electron gas has no

other length scale than 1/V 1/3, where V is the volume of the gas, the LDA exchange

contribution to its self-interaction energy per particle for must scale as [na(r)]1/3

(any logarithmic term is included in the correlation contribution to self-interaction);

in fact, the LDA exchange kernel is equal to

ε(LDA)
x [n(r)] = −3e2

4

(
3

π

)1/3

[n(r)]1/3 , (E.5)

an expression which is known as Stoner-exchange. Changing the sign of the above

expression, we find the LDA exchange-only approximation to the self-interaction ker-

nel

ε(SI ;LDA)
x [na(r)] =

3e2

4

(
3

π

)1/3

[na(r)]1/3 . (E.6)

When we compute the integral Eq. (E.3) with the above kernel, we find the value

of the LDA self-interaction

SI(LDA)
a =

∫
drna(r)ε(SI ;LDA)

x [na(r)] =
9
(

3
π

)5/6

32
√

2a
≈ 0.191

a
, (E.7)

with the same units as Eq. (E.2). This shows that approximately 30% of the self-

interaction energy of a Gaussian electron is not subtracted by the LDA exchange

functional. For a = aBohr the error is about 2.5 eV.

If we add the correlation to the self-interaction calculation, we will find that the

LDA subtracts an excess of self-interaction for Gaussians with standard deviation

larger than 4 Bohr radii [122], while for smaller Gaussians the exchange-only result

remains approximately valid, and the total self-interaction error scales as 1/a. The

average distance between a 3d electron and the nucleus of atomic iron is less than

half a Bohr radius, and similarly small result are found for all transition metals. In

all crystals containing transition metal atoms with atomic-like d-type orbitals, the

self-interaction error is therefore expected to be important.
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E.2 First order approximation to the exchange-correlation func-

tional

In this section we want to prove rigorously that the first order expansion 4.50 to the

LDA exchange-correlation functional satisfies the exchange-hole sum-rule Eq. (3.38).

To begin with, we remind that the exchange-correlation energy can be defined rigor-

ously as

Exc[n] =

∫
dr εxc[n](r)n(r) , (E.8)

where the general expression for the exchange-correlation kernel εxc[n](r) is provided

by coupling-constant integration

εxc[n](r) = −e
2

2

∫
dr′

n(r′)

|r − r′|

∫ 1

0

dγ h(γ)
xc [n](r, r′) . (E.9)

The quantity h
(γ)
xc [n](r, r′) = 1 − g(γ)

xc [n](r, r′) is the probability density of finding a

hole at point r′ when a particle is in r, and is computed for a system of density n(r)

where the electronic charge has been rescaled as e′ = e
√
γ.

The electron-electron interaction operator of such a system results to be rescaled by

γ, so that for γ = 0, h
(0)
xc [n](r, r′) is the hole probability density for a system of non-

interacting electrons, while h
(1)
xc [n](r, r′) equals to the hole probability density of the

real system. The sum-rule (3.38) is of course true when the value of h
(γ)
xc [n](r, r′) is

computed, for every γ and r, from a reference homogeneous system of equal coupling

constant γ, and of uniform density equal to n(r), i.e. when we choose to approximate

the exchange and correlation functionals within LDA. In this case the Local Density

ansatz requires that εxc[n](r) = ε
(eg)
xc [n(r)], and that in the definition of Eq. (E.9)

n(r′) is set everywhere equal to n(r), so that we find the following expression for the

energy kernel

εxc[n(r)] = −e
2

2

∫
dr′

n(r)

|r − r′|

∫ 1

0

dγ h(γ)
xc [n(r)](r, r′) , (E.10)

where h
(γ)
xc [n(r)](r, r′) is the hole probability density in a system with constant density

n(r) and coupling constant γ. Since Eq. (3.38) is valid for any density, it is in

particular valid for a convex combination of n(0)(r) and n(r). Within LDA

∫
dr′ h(γ)

xc [nλ(r)] (r, r′)nλ(r) = 1 (E.11)

nλ(r) = n(0)(r) + λ
[
n(r)− n(0)(r)

]
, (E.12)

165



APPENDIX E. Various topics of Density Functional theory

where λ is a positive parameter smaller than 1. We can rewrite Eq. (E.11) by using

well known theorems of calculus, and we find

λ

∫
dr′

{
h(γ)

xc [nλ(r)](r, r′) + nλ(r)
∂h

(γ)
xc [n(r)](r, r′)

∂n(r)

∣∣∣
n(r)=nλ′ (r)

}
δn(r) =

= 1−
∫
dr′ h(γ)

xc [n(0)(r)](r, r′)n(0)(r) , (E.13)

where δn(r) = n(r)− n(0)(r), and λ′ ≤ λ is a suitable positive constant. The right-

hand side of Eq. (E.13) is identically zero, due to the sum-rule for a density n(0)(r).

The left-hand side must therefore be zero for every value of λ. Supposing that the

integrand on the left-hand side is a well-behaved function, we can therefore say that

the integral must be zero for every λ. For λ = 0 we have that λ′ must be zero, and

we find

∫
dr′

{
h(γ)

xc [n(0)](r, r′) + n(0)(r′)
∂h

(γ)
xc [n](r, r′)

∂n

∣∣∣
n=n(0)

}
δn(r) = 0 . (E.14)

The integrand of Eq. (E.14) is the same that appears in the definition of the difference

between E
(1)
xc

[
n(r), n(0)(r)

]
in Eq. (4.50) and E

(LDA)
xc

[
n(0)(r)

]
, indeed

E(1)
xc

[
n(r), n(0)(r)

]
− E(LDA)

xc

[
n(0)(r)

]
=

= −e
2

2

∫
dr′

n(0)(r)δn(r)

|r − r′|

∫
dγ

{
h(γ)

xc [n(0)](r, r′) + n(0)(r)
∂h

(γ)
xc [n](r, r′)

∂n

∣∣∣
n=n(0)

}
.

(E.15)

This is a proof that the additional term in E
(1)
xc

[
n(r), n(0)(r)

]
does not add any

contribution to the sum-rule (3.38), which is fulfilled for E
(LDA)
xc

[
n(0)(r)

]
and remains

fulfilled for our choice of the exchange-correlation functional E
(1)
xc

[
n(r), n(0)(r)

]
in

LDA+G.

E.3 LDA+U and double-counting terms

We want derive here the formula for LDA+U energy used by many authors, in primis

Dudarev et al [123], and more recently Cococcioni and De Gironcoli [102], and pre-

sented in Sect. 3.5 of this thesis. The formula is:

ELDA+U =
U

2
Tr{n(1− n)} , (E.16)

where n is the single-particle density matrix on a selected set of orbitals (usually the

d orbitals when dealing with transition metals), and includes double-counting.
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In order to prove this result we firstly remind that the philosophy of LDA+U is

to add to the density functional the expectation value on the Kohn-Sham Slater

determinant of a Hubbard interaction term

EHub = 〈Ψ0|ĤHub|Ψ0〉 =
U

2
〈Ψ0|

∑

mm′,σσ′

ĉ†mσ ĉ
†
m′σ′ ĉm′σ′ ĉmσ|Ψ0〉 . (E.17)

This expectation value will carry a Hartree contribution and a Fock contribution.

Part of these contributions are already present in the LDA Hamiltonian, since the

Hartree and Exchange-correlation functionals are able, though in an approximate

way, to account for electron-electron interaction. We should therefore subtract from

Eq. (E.17) the contribution to the Hubbard energy which has supposedly been already

included through LDA.

There is no agreement on how this contribution should be subtracted from the

density functional, so that more than one guess based on physical insight is available.

Since within LDA the Kohn-Sham potential is a function of local density n(r) with

no dependence on spin and orbital quantum numbers, we suppose that the LDA

functional is able to account only for those mean-field terms of the interaction that

are independent of spin and angular momentum, and therefore likely to be of the

form
U

2
(α 〈n̂〉〈n̂〉+ β〈n̂〉) . (E.18)

The two expressions for the double-counting energy that are most widely used in

electronic structure calculations are both of the above type, and give the exact sub-

traction in two relevant limits, the around-mean-field (AMF), and the fully-localized

(FLL) limit. In the next section we show how to recover both of them starting from

Eq. (E.17).

E.3.1 The fully-localized limit

We begin by writing the Hubbard operator in Eq. (E.17) in a different way, using

commutation rules of fermionic operators:

ĤHub = −U
2

∑

mm′,σσ′

[ĉ†mσ(1mm′,σσ′ − ĉmσ ĉ†m′σ′)ĉm′σ′ ] =

=
U

2

∑

mm′,σσ′

[−1mm′,σσ′ ĉ†mσ ĉm′σ′ + ĉ†mσ ĉmσ ĉ
†
m′σ′ ĉm′σ′ ] . (E.19)

In terms of the orbital occupation operators n̂mσ, the previous term becomes

ĤHub =
U

2

∑

mm′,σσ′

[n̂mσn̂m′σ′ − n̂mσδmm′σσ′ ] , (E.20)

167



APPENDIX E. Various topics of Density Functional theory

and assume now that LDA can account for only the Hartree part of 〈Ψ0|ĤHub|Ψ0〉
with the Hubbard operator in the form (E.20)1, so that

〈Ψ0|ĤHub|Ψ0〉 →
LDA

U

2

∑

mm′,σσ′

[nmσnm′σ′ − nmσδmm′,σσ′ ] =
U

2
N (N − 1) = Edc ,

(E.21)

where nmσ = 〈n̂mσ〉 and N =
∑

m,σnmσ.

If instead we do a full HF decoupling of the expectation value of Eq. (E.19), we

find (shortening the notation by writing 〈·〉 instead of 〈Ψ0| · |Ψ0〉)

EHub = 〈ĤHub〉 →
HF

U

2
〈
∑

mm′,σσ′

[ĉ†mσ ĉmσ ĉ
†
m′σ′ ĉm′σ′ − 1mm′,σσ′ ĉ†mσ ĉm′σ′ ]〉 =

=
U

2

∑

mm′,σσ′

[〈ĉ†mσ ĉmσ〉〈ĉ†m′σ′ ĉm′σ′〉
Hartree

+ 〈ĉ†mσ ĉm′σ′〉〈ĉmσ ĉ†m′σ′〉
Fock

− 〈1mm′,σσ′ ĉ†mσ ĉm′σ′〉] =

=
U

2

∑

mm′,σσ′

[nmσnm′σ′
Hartree

+ δσσ′nmm′,σ(���
��δmm′,σσ′ − nm′m,σ)︸ ︷︷ ︸

Fock

−(((((((δmm′,σσ′nmσ] , (E.22)

where nmm′,σ = 〈ĉ†mσ ĉm′σ〉, nm,σ = 〈ĉ†mσ ĉmσ〉, and where we omitted all spin-flip

terms (nmm′,σ 6=σ′ = 0), which are zero for an unpolarized or spin-polarized collinear

calculation. Note how two terms of the Wick decoupling cancel already in Eq. (E.22).

Now we can subtract the LDA double-counting energy Edc from the HF Hubbard

energy EU , with the result

ELDA+U = EHub − Edc =
U

2

∑

mm′,σσ′

(nmσδmm′,σσ′ − δσσ′nmm′,σnm′m,σ) =

=
U

2
Tr{n(1− n)} . (E.23)

where n has matrix elements nmm′σσ′δσσ′ . This is the formula used also by Cococcioni

et al. [102].

E.3.2 The around-mean-field limit

In the around mean-field limit, the double-counting energy is computed directly as

the Hartree part of the expectation value Eq. (E.17), without changing the form of

ĤHub,

〈Ψ0|ĤHub|Ψ0〉 →
LDA

U

2

∑

mm′,σσ′

[nmσnm′σ′ ] =
U

2
N2 = Edc . (E.24)

1Only if both Hartree and Fock contribution to the expectation value of ĤHub are taken into

account, the result is independent of the way one writes ĤHub.
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Following this recipe, the LDA+U energy is simply the Fock term in Eq. (E.22)

ELDA+U = −U
2

Tr{nn} . (E.25)

Interpretation of FLL and AMF double-counting in terms of probability

distributions

The around-mean-field expression for the double-counting energy is exact when the

electron distribution on the local orbitals is Poissonian, i.e.

σ2
N̂

= 〈N̂2〉 −N2 =
LDA

N . (E.26)

This would be true if the eigenstate of the electronic Hamiltonian were plane waves,

and is approximately true when LDA describes electrons as itinerant rather than

localized.

Instead, the double-counting energy in the fully-localized limit (E.21) is exact when

the LDA particle distribution on the local orbitals has zero variance, i.e. when

σ2
N̂

= 〈N̂2〉 −N2 =
LDA

0 . (E.27)

This is of course never true, since the local atomic orbitals used in LDA+U are

not the single-particle basis of an isolated system, and their electrons can hop to

neighboring sites and to other local orbitals that are not subject to the Hubbard

interaction. In general, the correct recipe for double-counting energy is a mixture of

the fully-localized and around-mean-field expressions.

E.4 Definitions for the Hubbard and Hund operators used in

LDA+G

From Eq. (E.20) we see that the Hubbard Hamiltonian can be written in terms of the

number operator on the local atomic orbitals as

ĤHub =
U

2
N̂(N̂ − 1̂) , (E.28)

which is the result we used for the Hubbard Hamiltonian of our LDA+G functional

in Sect. 4.3. The form we chose for the inter-orbital Hund exchange operator, defined

in Eq. (4.47), can also be recast in terms of more familiar operators as the number

and spin operators

ĤHund = −J
{
Ŝ2 +

N̂2

4
− N̂ +

∑

m

n̂m↑n̂m↓

}
. (E.29)
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The double-counting term that subtracts the LDA contribution to the Hund ex-

change in the fully-localized limit reads

Edc
(FLL) = −J

2
[N↑(N↑ − 1) +N↓(N↓ − 1)] , (E.30)

and can be obtained from the expectation value of the first three terms of Eq. (E.29) by

supposing that within LDA 〈N̂〉 = N↑+N↓ and 〈Ŝ2〉 = (N↑−N↓)2/4, i.e. that particle

numbers N↑, N↓ and spin projection Sz do not fluctuate around their expectation

values.

In order to account for the expectation value of the last term in Eq. (E.29), we

supplement Eq. (E.30) with another mean-field term2, so that our choice for the

double-counting energy reads

Edc = −J
2

[N↑(N↑ − 1) +N↓(N↓ − 1)]− J

2l + 1
N↑N↓ . (E.31)

Rotationally-invariant definitions for U and J (see [124] ) can be found from an ex-

plicit calculation of matrix elements of the electron-electron interaction Hamiltonian

between local atomic states of angular momentum azimuthal quantum number l (l=2

for d-orbitals), and magnetic quantum numbers m, m′, m′′ and m′′′. This calculation

relates them to the strength Fn of the multi-poles of order n of the Coulomb operator,

also named Slater integrals. The value of Hubbard-U can be proved to be equal to

the monopole integral F0, through the expression

U =
1

(2l + 1)2

∑

m,m′

Um,m′ = F0 , (E.32)

where

Umm′ = 〈m,m′|Vee|m,m′〉 . (E.33)

In the case of l = 2, J can be defined from the quadrupole (F2) and octupole (F4)

Slater integrals by combining Eq. (E.32) with

U − J =
1

2l(2l + 1)

∑

m,m′

[Um,m′ − Jm,m′ ] = F0 −
(F2 + F4)

14
, (E.34)

where

Jmm′ = 〈m,m′|Vee|m′,m〉 , (E.35)

so that we find

J =

(
1

2l(2l + 1)

∑

m,m′

Jm,m′

)
− U

2l
=
F2 + F4

14
. (E.36)

2There is no FLL form for the double-counting term related to the last operator in Eq. (E.29).

Being a sum of orbital-resolved double-occupation operators, we chose to treat it, within each orbital,

with the around-mean-field recipe.
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A way to compute the values of Fn is from HF calculations of atomic energy levels,

implemented for instance in the code by Cowan [107].
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