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I want you to go on to picture the enlightenment or ignorance of
our human conditions somewhat as follows. Imagine an underground chamber,
like a cave with an entrance open to the daylight and running a long way
underground. In this chamber are men who have been prisoners there since
they were children, their legs and necks being so fastened that they can
only look straight ahead..... Behlnd them and above them a fire is
burning...." o i -

"An odd picture and an odd sort of prisoner."

"They are drawn from life,”" I replied. "For, tell me, do you think
our prisoners could see anything of themselves or their fellows except
the shadows thrown by the fire on the wall of the cave opposite them?"

! "How could they see anything else if they were prevented from
moving their heads all their lives?" -

i "Then if they were able to talk to eachother, would they not assume
that the shadows they saw were real things?"

! "Inevitably."

I "And if the wall of their prison:opposite them reflected sound
don't you think that they would suppose, whenever one of the passers-by
on the road spoke, that the voice belonged to the shadow passing before

. them?" i

"They would be bound to think so."

"And so they would believe that the shadows of the objects we
mentioned were in all respects real.” "

"Yes, inevitably." v

Plato, The Republic, Book VII,
The Simile of the Cave

ABSTRACT

Classical Hamilton-Jacobi theory, suitably interpreted in terms of a funda-
mental and irreducible concept of "guiding field", is proposed as the basis of
classical physics, independent of and more fundamental than Newtonian mechanics.
The "pilot-wave'' approach is then seen as a natural unified basis for classical,
quantum, and subquantum physics, whereby all interactions are seen as forms of
EPR-entanglement. We attempt to clarify the emergence of standard quantum theory
as an equilibrium phenomenology, thereby accounting for its "conspiratorial"
relation with relativity theory, as well as clarifying its peculiar features with
regard to "measurement". We emphasise the phenomenological nature of classical
language, and the essentially illusory nature of the classically-inspired theory
of quantum "measurement” (the "Plato's Cave effect"). A subquantum statistical
mechanics and H-theorem are developed, establishing P=|&f|2 as an equilibrium
distribution.

The pilot-wave theory is extended in its scope. A field theory of massive
Yparticles®", which explains these in terms of "field lumps", is given, as well as
a Grassmann field theory of spin. The Lorentz absolute 3+1 view of special rela-
tivity is adopted, Lorentz symmetry being explained as a maximum-entropy equili-
brium symmetry. This leads to an absolute 3+1 theory of electrodynamics in terms
of a pure 3-vector potential, which avoids the troublesome time-component "non-
dynamical" degree of freedom. A similar approach is applied to gravitation, which
drops from the outset the non-dynamical time-components of the metric. Subquantum
nonlocality is assumed to provide an absolute 3+1 slicing of spacetime. leading
to a straightforward pilot-wave theory of quantum gravity, which describes the
evolution of absolute 3-space geometry in absolute time. This approach overcomes
the fundamental conceptual problems of standard quantum gravity and quantum cos-
mology. Cosmological implications are discussed.

The theory of measurement is extended to the subquantum domain, leading to
the consideration of subquantum automata and enhanced parallel computation. It is
shown how a subquantum automaton or "observer" could function as an essential
part of a "system", in a manner outside the scope of standard quantum theory. It
is also shown that the pilot-wave theory is in principle experimentally distinct
from standard quantum theory, in particular for finite-ensembles and in the
presence of residual disequilibrium or rare fluctuations.

Various other aspects of the theory are also discussed. An attempt is made
throughout to view the theory in an appropriate historical and philosophical
perspective.
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" particular by Bell

1. INTRODUCTION

Standard quantum theory génerally makes only statistical assertions, giving
no account of individual eventé; Further, it does not provide a desc;iption of a
system in the absence of apparatus or observers. Related to this is the very
remarkable fact that quantum theory uses classical concepts (such as energy and
momentum) to discuss the nonclassical microworld - even though, since any macro-
scopic system, apparatus or observer is necessarily made of nonclassical atoms,
the classical theory;from which these concepts are taken can only be a phenomeno-
logical approximation. This reliance on classical concepts in quantum theory is

especially striking in the theory of "measurement": The standard theory based on

. operators and their eigenvalues is inspired by the close analogy between the be-

haviour of these operators and that of the corresponding classical variables.
This analogy makes it appear reasonable that, when the state vector is an eigen-
vector of the operator Q with eigenvalue q, the variable be said to "have

the value q". The entire quantum theory of measurement has been inspired by this
analogy with the language of classical physics, and by classical notions of interac-
tion, in accordance with Bohr's view that the classical language is fundamental.
However, excessive faith in this classically—ihspired definition of "measurement"

has contributed, aa:we shall see, to today's confused picture of the quantum

;world.

In addition to these unsatisfactory features, standard quantum theory con-

:tains a serious, and rather obvious, logical flaw, which has been stressed in

( ¥): The theory concerns "measurements" performed by an essen-
tially classical "observer" on a "system" using an “apparatus". But the distinc-
tion between these three objects is fundamentally ambiguous, as was once admitted

by Bohr‘(2 ). While this ambiguity has no practical importance at present, it

| might do in the future, in particular in quantum cosmology (where everything is

part of the system),fand possibly in future experiments with nonclassical auto-

mata (see below). And in any casé, a theory which is in principle ambiguous

., cannot be fundamental.

A natural way to avoid these difficulties. is to consider a '"realistic" and
perhapé deterministic theory which is "universal", in the sense that it applies
equally well (in principle) to aﬁy system, apparatus, or observer. Not only would
such a theory provide a more detailed understanding of the quantum world: it
should also show howgour classical concepts emerge as an approximation, from a
deeper level where such conceptst(or some of them) are irrelevant.

A "realistic" theory is essentially one in which certain variables A are

' regarded as having a definite existence, with no regard for what has been or could

be‘measured by macroscopic human experimenters. And these variables, which may in

practice be "hidden" from human view, are regarded as in principle providing a
deeper foundation for all of physical reality, and for the statistical predictions
of quantum theory in particular. Such an approach to physics was of course widely
taken for granted, at least since the Ionian philosophers of the sixth century
B.C., and until comparatively recent times. However in the 1920s physicists, led
in particular by Heisenberg and Bohr, abandoned this approach, mainly on philo-
sophical grounds; apart from a few dissenters - notably Einste;n and Schrgdinger.

An attempt at a realistic interpretation of quantum theory was made by
deBroglie in 1927, who proposed( 3)1:he existence of definite electron trajectories
with velocity given by the gradient of the phase of Schrodinger's wavefunction or
"pilot-wave". However deBroglie abandoned this approach, apparently because of
objections to the theory raised by Pauli. A similar approach was taken by Einstein
who wrote and submitted a paper in 1927, associating definite electron trajector-
ies with the wavefunction. However, Einstein realised that such a theory had to
be nonlocal, and withdrew his paper‘(4 )(which survives in the Einstein archives).
Similar pilot-wave ideas had been considered by Einstein around 1922, according
to which(4 ) particle~like light quanta were guided by "ghost fields" (Gespenster—
felder) - the electromagnetic field, ideas which influenced Born's later inter-
pretation of the wavefunction. And of course deBroglie's work of 1924 was a pilot-
wave theory in which electron trajectories were guided by the law of "phase har-
mony" between a hypothetical internal oscillation and the external pilot-wave.

However in 1932 Von Neumann proved a mathematical theorem( 5)which appeared
to be a severe blow for realism; for according to Von Neumann this theorem showed
that no realistic hidden variables theory, of any kind, could possibly exactly
reproduce the statistical predictions of quantum theory, a claim which was widely
accepted by physicists (and which is still quite commonly believed today).

Nevertheless in 1952 Bohm( 6) elaborated the earlier pilot-wave ideas of
Einstein and deBroglie into a systematic alternative formulation of quantum
theory, and answered Pauli's objections. While Bohm unfortunately presented the
theory in the inappropriate language of Newtonian mechanics, in terms of an uncon-
vincing and inelegant "quantum potential", the complete equivalence to standard
quantum theory was shown, assuming an appropriate initial probability distribu-
tion, despite Von Neumann's claim that such an equivalence was mathematically
impossible.

The error in Von Neumann's reasoning was made clear by Bell( 7)in 1964. Bell
showed that Von Neumann's apparently reasonable axioms contained a covert assump-
tion, which amounted to assuming that quantum measurements performed on a system
directly reveal the value of a pre-existing system-quantity, the apparatus and
experimental set-up playing no active role in determining the outcome. It is now

(8)

known, and has been proved in various ways ; that this cannot be so, that so-



called quantum !"measurements" are actually "contextual": The ouﬁcomes of "measure-
ments" cannot be accounted for simply’by hidden variables in the system alone;
the apparatus variables, and the apparatus-system interaction, must also play an
active role in bringing about the result. Indeed one might today reverse Von
Neumann's argument, and say that his theorem really ;ndicates that hidden varia-
bles theories must be contextual, and that quantum "measurements" are not usually
true measurements. '

A further necessary property of hidden variables theories was demonstrated

(9)

by Bell in 1964, namely nonlocality. In order to account for EPR-correla-
tions(IO) between distant systems, whose joint wavefunction does not factorise,
in particular for the case of a pair of spin-1/2 particles in the singlet state,
Bell showed that the outcome of a spin "measurement" for one particle must depend
instantaneously on the setting of the distant apparatus used to "measure" the
other particle, as well as depending on the unknown hidden variables. (This might
be regarded as a form of contextuality at a distance). This was shown by deriving
an inequality, which expressed the maximum possible degree of statistical corre-
latiod which the particles could show, if there were no such nonlocal dependence,
3this maximum being surpassed by the statistical predictions of quantum theory
(ll)). That quantum theory is fundamen-
(12) 4, 1048,

' The pilot—ﬁave theory, being both realistic and in agreement with standard

(which have been experimeqtally confirmed

tally nonlocal was also stressed by Einstein

. quantum theory, gives a clear picture of both contextuality and nonlocality. All
variables in the pilot-wave theory, whether they belong to widely separated sys-
tems or to apparata, evolvekin time by following the gradient of the phase of the
nggl wavefunction. If theitotal wavefunction does not factorise, i.e. is "entan-
gled", then the phase is not a separable function, implying a direct mutual depen-
dence of the evolution of the variables. And such wavefunction entanglement gen-
erally occurs between system and apparatus during "measurement", thereby explain-
ing the contribution of the apparatus to "measurement outcomes", and in EPR-type
systems, thereby explaining the instantaneous connections implied‘by Bell's in-
equality. Contextuality and nonlocality are thus given a unified explanation, in
terms of entanglement in fhe pilot-wave.
Despite its success, the pilot—wéve theory has not been adopted as a defini-
tive foundation for quantum physics, éven by its originators (see below). For in-
,stance in 1954 Bohm and Vigier(la) introduced arbitrary background "fluid fluctu-
‘étions" into the theory, in particular in order to explain how the initial proba-
'bility distribution - réqufred to reproduce quantum theory - came about, though
also in order to generate testable'departures from quantum theory (hardly a con-

vincing motivation). And similar views have been more recently proposed by Bohm

(14). In the author's opinion, such arbitrary departures from the orig-

and Hiley
inal theory are unnecessary, if not unfortunate: If the latter is correctly inter-
preted and developed, it is quite capable of providing a coherent and complete
foundation for all of contemporary physics, as we shall attempt, to show.

Although Bohm in 1952 took a mechanical view, in terms of a nonlocal "quantum
potential", the pilot-wave theory is radically different ffom Newtonian mechanics
based on force and acceleration. The pilot-wave theory is much better regarded in
terms of an abstract "guiding field" (pilot-wave) in configuration spaée, whose
gradient determines the velocities of the system variables, this field being of
the same nature as the phase function (or action) S of classical Hamilton-Jacobi
theory. Indeed, as we shall see below, a very natural viewpoint is obtained if
one begins with classical Hamilton-Jacobi theory, regarding this per se as a phy-
Eiggi theory of classical physics, completely independent of Newtonian mechanics.
By elevating the function S to a fundamental and irreducible status, classical
physics becomes conceptually identical to the pilot-wave theory, and the latter
is mathematically but a small step from the former. From this point of view, all
interactions are regarded as effects of nonseparability, even classically: Class—

ical "forces", and coupling between neighbouring field elements in classical field

theory, are actually manifestations of EPR-entanglement in S . Thus, rather than

explaining nonlocal EPR-entanglement effects in terms of a mechanical 'quantum
potential®, we take the opposite view: Even classical "forces" are actually mani-
festations of such entanglement.

The pilot-wave theory is profoundly nonlocal (distant systems may be entan-—
gled), as well as contextual (system and apparatus may be entangled). And this
nonlocality led Einstein to withdraw his pilot-wave paper of 1927. While nonlo-
cality may have been reasonably rejected in 1927, there is now considerable evi-
dence for its existence, suggesting that Einstein's judgement in 1927 was mis-
taken.

It is widely held that experimental violation of Bell's inequalities rules
out "realism", because the implied nonlocality at the hidden variable ("subquan-
tum") level would conflict with relativity theory. But it could be that relativ-
ity is not valid at that level. If one assumes this, one must then convincingly
account for the validity of relativity, and of locality, at the statistical level
of standard quantum theory.

This brings us to a further motivation for the study of a realistic theory:
To explain the mysterious "conspiracy" between relativity and quantum theory. By
this we mean the remarkable fact that, despite the nonlocality inherent in quantum
theory, instantaneous communication at a distance is not possible in practice.

Roughly speaking, the uncertainty principle seems to prevent one from making
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practical use of quantum noniécality for sigﬁalling. Why should the nonlocality
be hidden in this manner? If the world contains an essential nonlocal element,
why should this not show up directly, instead of having to be deduqed indirectly
via Bell's theorem? As Bell himself put it: "It is as if there is some kind of
conspiracy, that something is going on behind the scenes which is not allowed to

(15) This conspiracy is all the more remarkable when one

(16)

appear on the scenes."
considers an inequality derived by Roy and Singh » for hidden variable theor-
ies (not necessarily local ones) which have the constraint of no practical instan-
taneous signalling at the statistical level. Quantum theory precisely saturates
the inequality, 36 fhat it only just avoids practical signalling at a distance.

In other words, the conspiracy whereby uncertainty principle noise masks quantum
nonlocality, so as to preserve relativity, just barely works.

We regard this!extraordinary conspiracy, or "peaceful coexistence"(17). be-
tween relativity and quantum theory as being of fundamental significance, and as
psinting to a deep-rooted connection between these two theories. In seeking a
deeper understanding of relativity and quantum theory, one should surely be guided
by the aim of explaining this conspiracy. v

The apparent fine-tuning between uncertainty and nonlocality strongly
suggests that quantum theory is really an equilibrium theory, in which the statis-
tical distribution has arriveq at some sort of balance, such that the underlying
nbnlocality is effectively hidden. Perhaps, then, the distribution P=|EEI2 of
quantumktheory is not fundamental, but rather represents a special equilibrium,
as was indeed suggeéted by Bohm. °

‘This motivates a helpful analogy with classical statistical thermodynamics:

Consider a box of gas at someidefinite temperature T, and a Maxwell demon which

kf attempts to observe'the molecular trajectories. As is well known, with the aid

of a "trap~door", the demon wqgld be able to decrease the entropy of the gas, if
his temperature weré lower thén T. Ih practice, however, the demon will eventu-
ally come into thermél equilibrium with the gas, and will thereafter be unable to
pérform this task without generating an additional entropy.which at least compen-
‘sates for the said decrease. Qur analogy with quantum theory considers a "subquan-
tum demon" which observes the‘(nonlocally connected) hidden variables at the sub-
quantum level, for some ensemble of quantum systems. Such a subquantum demon would
presumably be able to use his knowledge for practical signalling at a distance.
However, if the demon's activities are restricted by the equilibrium distribution
P=|3¥|2 (i.e. by thé uncertaihty principle), then the demon would be unable to
operate with sufficient preéisién, and nonlocal signalling would in practice be
impossible. ‘ k s )

" This analogy auggestsbthat P=IH{|2 be heuristically regarded as a subquantum

analogue of the classical thermodynamic "heat death", where all systems are in

i

equilibrium with eachother. In the classical heat death, no further macroscopic
changes are possible (in the absence of a rare thermal fluctuation). In the "sub-
quantum heat death", where all systems are subject to the same uncertainty noise,
the underlying nonlocal connections may no longer be used for practical instantan-
eous signalling (in the absence of a rare fluctuationvalﬂflz away from equili-
brium - see below). )

To explain the above conspiracy, then, we suggest that su?h a subquantum
analogue of Boltzmann's heat death has actually happened in our observed universe.
A detailed theory of how this came about may be developed on the basis of the
pilot-wave theory, explaining why locality works in practice, despite the funda-
mental nonlocality. The possibility of such an explanation for the above ({other-
wise mysterious) conspiracy is a major motivation for this work.

(18),(19) how the above thermodynamic analogy, and a

We have shown elsewhere
theory of the "subquantum heat death" P—) IEH]Z, is concretely realised on the
basis of the pilot-wave theory: We have demonstrated a subquantum H-theorem,
which accounts for the relaxation P—3 Iﬂflz. Further, we have shown that instan-
taneous signalling (and violation of the uncertainty principle) is possible if
and only if P#Iﬁﬁlz. The close analogy between P=|ﬂﬂ|2 and the classical heat
death is then clear.

These results also lead to an appealing relation between the three "impossi-
bility principles" of physics - the principle of signal-locality, the uncertainty
principle, and the law of entropy increase: To signal nonlocally in the pilot-
wave theory, one must circumvent the uncertainty principle, which requires a
distribution P#lﬂflz. And to obtain such a distribution requires that one decrease
the "subquantum entropy" introduced earlier(ls)(and see below), this entropy being
maximised for equilibrium P=|§£I2.

In what follows we develop, as an appropriate conceptual setting for the
pilot-wave theory, the "guiding field" approach to both classical and quantum
physics. Some effort is made to conceptually clarify the emergence of standard
quantum theory as an equilibrium phenomenology. The subquantum statistical mechan-
ics initiated earlier is more fully developed, and the relaxation P—3» Iﬂ{lz is
studied in more detail. The pilot-wave theory is also extended in its scope: The
theory of fields, which has been developed by Bohm et al. for the massless case,
is extended to massive fields, showing how apparent localised "particles'" emerge
as "field lumps"; and a Grassmann field theory of spin is given. The Lorentz ab~-
solute 3+1 view of special relativity is discussed. Relativistic Poincaré symme-
tries are seen as stemming from the invariance (in equilibrium) of an ensemble of
field configurations, under an active deformation in absolute space and time at

the subquantum level, An absolute 3+1 theory of electrodynamics, in terms of



a Qure 3-vector potential;yis given.jon the basis of absolute 3+1 slicing of
spacetime, at the nonlocal subquantum level, a theoby of gravitation is developed,
which overcomes the conceptual problems of standard quantum gravity. The theory
is applied to quantum cosmology. Cosmological implications of a possible disequi-
librium P#IS{IZ in the remote past are briefly considered. The theory of measurew-
ment is extended to the subquantum dbmain, leading to the consideration of sub-
quantum automata and enhanced parallel computation. It is shown how a subquantum
automaton or "observer" could function as an essent;al part of the "system", in a
manner outside the scope of standard quantum theory. It is also shown that the
pilot-wave theory is in principle experimentally distinct from standard quantum
theory, in particular for'finite ensembles and in the presence of residual dis-
equilibrium or rare fluctuations. Various other aspects of the theory are also
discussed. ;

‘ It is a thesis of this work thﬁt the pilot-wave theory deserves to be devel-
oped to its logical conclusions, without adding any arbitrary modifications. And
the pilot-wave theory, if correctly interpreted, is a very natural and elegant
extension of classical physics, having nothing artificial or arbitrary about it,
contrary to what is commonly thought. Indeed the theory seems to be adequate, both
conceptually and formally, as a foundation for all of presently known physics,
including gravitation. Further, following the theory to its logical conclusions

opens up new possibilities beyond thgfscope of standard quantum theory which, as

we shall see below, could eventually become experimentally accessible.

2. PILOT-WAVE FORMULATION OF CLASSICAL, QUANTUM, AND SUBQUANTUM PHYSICS

2.1.1 Holistic "guiding field" description of individual systems

There generally exist alternative, and mathematically equivalent, formula-
tions of the same physical laws, each offering particular advantages depending
on the situation. The predominant "mechanical' view favours equations of motion,
or field equations, containing the physical variables and space-time parameters,
while the Lagrangian view favours a teleological principle of stationary action.
The latter has generally been regarded as a convenient mathematical tool, rather
than as representing a realistic physical viewpoint. A third view, the so-called
Hamilton-Jacobi "method", is sometimes used as a mathematical tool. But apart
from when SchrSdinger constructed wave mechanics, it seems to have been ignored
as a realistic physical theory.

One may ask: Which formulation would be most appropriate as a starting point
for a subquantum theory? Which formulation could yield a "quantisation" procedure
whose end result is the deterministic subquantum physics of an individual system,
rather than (as is usual) the statistical quantum physics of an ensemble? Clearly,
since the subquantum domain is nonlocal, one should begin with classical physics
written in a language suited to nonlocality. And just such a language is provided,
és we shall see, by classical Hamilton-Jacobi theory, suggesting that it is the
appropriate starting point for a theory of subquantum physics.

Let us then take the view that Hamilton-Jacobi theory is an actual physical
theory, conceptually and mathematically independent of the usual mechanical for-
mulation. In this theory all physical variables (particles, fields, or the geo-
metry of 3-space) are guided in their time evolution, not by mechanical laws or
field equations, but rather by a multidimensional "guiding field" (or pilot-wave)
S which has an autonomous existence in configuration space. Indeed we shall re-
verse the usual view and say that the mechanical concepts of "force", "momentum",
and even “energy", arise from mere mathematical reformulations of this more fun-
damental physical theory - and such derivative mechanical concepts prove to be
inappropriate for extension to the subquantum domain.

Consider first the elementary classical theory of n moving mass points
(mass m), with trajectory X(t) in configuration space. The motion X(t) is deter-

mined by the guiding function, or pilot-wave, S via
dX
m3E = s (2.1)
where S is itself governed by the Hamilton-Jacobi equation

3s/dt + (Us)?/em + V=0 (2.2)
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Here thére is a definite actual path X(t), while the function S(X,t) is of course
defined for all arguments X . The form of V=V(X,t) depends on the system under
consideration. In the mechanical formulation V is referred to as the "potential
energy". But in our view V isfsimply a characteristic of the system, related to
the evolution of S.- . )

From (2.1) and (2.2) it is clear that S is a scalar with reégégg_%ngggggfnt)
formations X—3) X! of configuration space coordinates, dX/dt and ¥S both being
configuration space vectors: S'(X',t)=S(X,t).

i It should be noted that the above theory is not quite the same as standard
‘Hamilton—Jacobi theory. For in the latter S is not only a function of X and t,
but also of n "congtant momenta". These latter arise from a canonical transfor-
mation to a vanishing Hamiltonian, performed in the usual derivation of the Ham-
ilton-Jacobi equation. In our view, this is an artifact of regarding the mechan-
ical formulation as primary. For in the mechanical formulation, the complete
initial data are X(0) and i(o). and the latter half of this data lead to the
appearance of n cqnstant momenta on transformation to the Hamilton-Jacobi picture.
But if instead one takes the Hamilton-Jacobi picture as fundamental, one's initial
data are X(0O) ahd S(X,0), where S(X,0) is given for all arguments X. The unknown
constant momenta are then replaced mathematically by S(X,0). In this view then,the
equations (2.1) and (2.2) are a complete representation of the classical motion,
given the initial position X(0) and the initial "pilot-wave" S(X,0).

Not only do the constant momenta make no appearance; we shall see below that
the concepts of momentum, force, and energy, play no fundamental role. The theory
takes place in configuration space, predicting the rate of change of configuration
space variables, and phase space plays no role. Among the many advantages gained
by this approach, we may mention the mathematical simplicity of the subquantum
H-theorem given below, based on a statistical mechanics in configuration space.

! | We shall avoid the consideration of generalised coordinates p and q, which
fénd to obscure the physical nature of the theory.

Consider now the notion of "interaction". How should this be defined? Only
one definition makes sense: Two bodies A and B are "interacting" if and only if
the trajectories XA(t) and XB(ﬁ) (which are components of X(t)) are not indepen-
dent. This occurs if and onlyfif S is nonseparable in the coordinates XA and XB .
S# SA+SB . For the above case of particles, such nonseparability will generally
arise only if VZ0 . The definition is then equivalent to the usual mechanical
_one. (But as we shall see this equivalence does not hold for field theory).

Physically then, at the nonrelativistic level, the elliptical orbit of the
Earth around the Sun arises not from a "force" emanating from the Sun, but rather

from the entangled guiding field S(X X

Earth’ Sun‘t)' And generally, we regard all
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classical mechanical "forces" as large-scale manifestations of nonseparability,

of a form identical to that associated with the Einstein-Podolsky-Rosen experi-

TEEE’ (For classical field theory, the interaction between neighbouring field
elements is seen as a manifestation of nonseparability in S - see below).

Its fundamental holism is one of the reasons why Hamilton-Jacobi theory comes
into its own as an approach to the subquantum domain. Another reason is the non-
mechanical character of the theory, in this sense: The same function S determines
the path taken for any initial point X(0). One might say that the future evolu-
tion of all possible initial points is "encoded" in the guiding field, this infor-
mation being '"read" from the gradient ¥ S. (This “"potentia" aspect of S is of
course reminiscent of quantum theory).

Turning nowc%gi§%g?é theory, the evolution 4)(x,t) of a massless scalar
field at the point x in space is determined by (with c=1)

_a_ag_(x,t) _ 6S[¢rt]/8¢ (2.3)

where, for the massless case,
9s/at + (1/2)de[(65/5¢)2 + (v4>)2] =0 (2.4)

Here S=S[¢(x),tﬂ, a functional of ¢(x), has no connection to ordinary space X,
and transformations of coordinates x—) x' leave S invariant: ¢(x.t)—-—} (i)'(x' ,t)
=4)(x,t) and S‘[4)',t] = S[¢),t]. The equations (2.3) and (2.4) are to be solved
subject to initial conditions ¢(x,0) and S[¢ ,O], the initial pilot-wavefunc-
tional being of course given for all arguments ¢(x).

The notion of "interaction" now strictly speaking differs from the usual one,
for the above would normally be considered to be a free field. But the rate of
change &(x,t) will generally depend on field values at neighbouring points:

Owing to the term (Vd’)z in (2.4), the functional S[¢ ,t] cannot separate into
a sum of functions Sx(¢(x),t), one for each point x. (The field system may be
considered as the continuum limit of a system of "masses" with "displacements"
oA ¢)(x), coupled to nearest neighbours by "springs" with "potential energy"

X (§7¢)2, making clear the nonseparability of the system). This nonseparability
does not of course act across finite spatial distances, and field distributions
propagate at finite speed. Nevertheless it effects an "interaction" between
neighbouring field values. And it is amusing to note that this nonseparability
is responsible for the continuity of classical fields. For what might have been a
completely discontinuous field ¢(x) is in fact held smoothly together by the
entanglement of S[%,t], which ensures that evolutions of field values at neigh-
bouring points are not independent. Thus we regard the continuity of classical

fields as a residue, in the classical approximation, of quantum nonseparability.



Indeed, such continuity contains a clear hint of nonlocality: If for instance
tt)(xo):o, then for any €, O there exists some & > 0 such that |¢(x)|< £
for all Ix—xol < § , so that field values in a finite neighbourhood 5 ofix  are

not completely arbitrary. In the quahtised theory, on the other hand, this con-

tinuity is lost, while the entanglement of S acts across finite spatial distances.

The quantum generalisation of the above classical theory was effectively

carried out by Schradinger(ZO)

in 1926, the Hamilton-Jacobi equation for S being
replaced by the Schrddinger equation for Y- Y] e(i/h)s. This replacement may
be seen as the generalisation of the‘classical pilot-wave theory to finite wave-
lengths. In the generalised theory, the evolution of physical variables is still
given by (2.1) and (2.3), The only difference is that the guiding phase function

S is now governed by :the Séhrgdinger equation
. a i - 3
iho¥/at = HY : o : (2.5)

H : H N a i
where the classical H(dS/2 X, X) is replaced by H(-ihd/3 X, X), or H($§ 5/64;,1#)
A
— fi-1h §/6¢ ,§ ) for field theory. The function § =himin¥ itself obeys

Y
2s + Re(:*_ﬂjg_) =0 i

5 (2.6)
t 2 : R o :
o ¥l I ‘
which is often written, for example in the particle;case, as
R L y2 g2
S
%Eu-i(as/ax, x)—,%y—l—%.—.o (2.7)

with a rather inelegant "quantum potential" Q added to the classical Hamilton-
Jacobi equation. It will ﬁowever become clear below that this quasimechanical
g concept is inappropriate in the pilot-wave theory. !

We emphasise that this generalised theory is conceptually exactly the same
as thezabove Hamilton-Jacobi pilot-wave view of classical physics. Both theories
regard'all variables as being guided by S via (2.1) and (2.3), where the guiding
function S (or'ff ) may be regarded as a fundamental and irreducible entity. The
only difference between the two theories is in the equation governing S itself.
This leads, 6f course,'to major qualitative differences. In particular, the line-
arity of (2.5) ensures that S5 is generally nonseparable (since one is able to
linearly superpose different products EHl(xl)Hfz(xz) ), yielding further nonlocal
and contextual connections which are not present classically. But nevertheless
the whole of quantum theory may be regarded as a simple and natural extension of
classical Hamilton-Jacobi-based physics, i.e. of classical pilot-wave theory.

In contrast the quasimechanical '"quantum potential" viewpoint has, unfortun-

‘ately, created the widespread and erroneous impression that the pilot-wave theory

is inelegant and artificial, with trajectories being arbitrarily "appended" to the
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wavefunction. This is indeed one of the ironies of history, since the Schradinger
equation itself actually arose historically from pilot-wave ideas, Schradinger's
work of 1926 being inspired by deBroglie's elementary pilot-wave theory of 1924
(and by Hamilton's analogy between classical mechanics and geometrical optics).
Given this historical fact, it is then no wonder that the pilot-wave theory is

so strongly suggested by the Schrgdinger equation alone, and has been indepen-
dently suggested by several workers (the local conservation of |H£l2 in configur-

ation space being strongly suggestive of trajectories).

2.1.2 Remarks on the "guiding field" concept

Historically, unlike deBroglie, Einstein, and Bohm, Schrédinger did not take
the above "dual' view of physical variables being guided by EB , and instead took
the view that particles were simply wavepackets. We shall see below that some-
thing similar to the Schrodinger view of "particles" does emerge from pilot-
wave field theory, but there one still has the "dualism" of field variables on
the one hand being guided by a wavefunctional on the other.

Indeed the view taken here, that the abstract notion of "guiding field" is
fundamental, has generally not been taken by workers on the pilot-wave theory.
DeBroglie saw EE as a field in 3-dimensional space, and assumed that the guiding
condition (2.1) (or relativistic version thereof) arose as some sort of consis-
tency condition for the motion of a singularity in a nonlinear field. Other mech-

(21) (13)

anistic views have been proposed by Bohm , Bohm and Vigier , and Bohm and

Hiley(la)

, which regard EE as representing some sort of background "fluctuating
fluid". Further, as we have said, Bohm's systematic development of the pilot-
wave theory in 1952 was presented in the unfortunate guise of a quasimechanical
theory with a "quantum potential". We propose an abandonment of all such mechan-
ical ideas, and suggest instead that the notion of guiding field be taken as fun-
damental and irreducible: The rate of change of all physical variables is given
by the gradient or functional derivative of S, with no need for further explana-
tion.

Of course a future theory will surely provide a deeper basis for the guiding
field concept. But we suggest that, at the present time, it is adequate as it
stands, and that the existing theory deserves to be developed to its logical con-
clusions. In particular, we suggest that attempts at an explanation in terms of
conventional mechanical concepts are logically misguided. For as we shall see
these latter concepts are more naturally seen as entirely derivative, arising
phenomenologically from statistical equilibrium and in particular from the class-
ical limit of equilibrium. Further, taking the view that the conventional mechan-

ical concepts are merely phenomenological, it becomes illogical to object to the
theory, as is often done, on the grounds that it does not respect these concepts
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(such‘aé energy—moméntum conservétion) at the subquantum level.

It seems worthﬁhile to propose in more detail what we hope to be an adequate
philosophical background to the pilot-wave concept, not least because this concept
is so widely regarded as unphysical or artificial, even by the originators of the
theory.

Consider the widespread criticism according to which it is '"unphysical'' that
WY guides the evolution of physical variables X(t) without itself being influenced
by these variables. This criticism has two aspects: (i) That physics should not
contain such "ghostly" constructs, and (ii) That the theory does not respect
energy and momentum conservation at the subquantum level.

Regarding (i) we point out that there already exist similar constructs in
physical theory, which "guide" without themselves being affected. One example is
Maxwell's equations, which may reasonably be said to guide the behaviour of, say,
a radio. Another example would be the "attracting states" of dynamical systems
theory. Of course one could take the view that physical laws such as Maxwell's
equations do not have a "realkexistence", that they are merely a convenient
mathematical summary of the behaviour of physical systems. But then in this case
one could take a similar view with regard to ¥ , i.e that it is a convenient

summary of the real motion X(t), and there would again be no reason to expect EE

to be influenced by X(t). In this latter viewpoint, the world consists purely of
the evolving variables X(t), wbose time evolution may be summarised mathematically
by EE , which has an abstract existence in configuration space (in the sense that
classical attractors have an abstract existence in phase space). One never dir-
ectly "sees" fk , just as one never sees gravitational “force" in Newtonian mech-
anics. One sees only the variables X(t) and their movements. (This view also re-
moves the supposed mystery that Ef , like the classical S; has no "source").

Regarding (ii), it is of course true that the lack of a backreaction on ¥

prevents the definition of a conserved energy and momentum for individual systems.

However the classical principles of energy and momentum conservation are important
and powerful only if they are lgsgl principles, whereby the decrease of energy-
momentum in a local region is seen as arising from a local outward flux. One may
then expect that such conservation laws will EEE play a role in a fundamentally
holistic theory. As discussed below, energy and momentum conservation may reason-—
ably be seen as phenomenological aspects of equilibrium.

These issues recall the bistorical oscillation {since ancient times) between,
roughly speaking, "mechanigtib" and "dynamistic" explanations in physics(zz).
Newton's concept of gravitational "attraction" or "force" was widely regarded by
his contemporaries as an obscure (if not occult) idea, which should be “explained"
in terms of Cartesian direct contact between bodies or fluids (presumably filling

space). Faraday's introduction of "fields" as irreducible entities had a similar
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reception, it being widely thought (even by Maxwell) that these should be ex-
plained in terms of the Newtonian mechanics of a fluid medium. Interestingly
enough, the notion of guiding field Y , which arises so naturally from Hamilton-
Jacobi theory and which is so appropriate for quantum physics, is once more re-
garded as an abstraction in need of a mechanistic explanation (in terms of con-
ventional fields, particles, or fluids). Indeed the hesitant and tortuous devel-
opment of the pilot-wave concept (beginning with Hamilton in the early nineteenth
century) may be seen as a general reluctance to accept a nonmechanical realism:
Einstein rejected his own early pilot-wave constructions owing to their nonlocal
"spooky" nature. DeBroglie's approach is largely an attempt to retain conserva-
tion of energy and momentum, while Bohm's early path-breaking work was cast in an

(23),(24)

inappropriate mechanical language. More recently, Bohm and Hiley
introduced the concept of "active information", whereby the quantum potential Q

is seen as an "information potential" which organises the activity of energy.

This idea has influenced the viewpoint taken here, where S! itself is regarded

as something similar to a "guiding field of active information". But again, Bohm
and Hiley claim that this concept cannot be in itself a definitive explanation,
that it rather must be explained in more conventional terms, in particular by a
hypothetical complex structure in the interior of electrons and other particles
(whose complexity, they suggest, would be "at least comparable to that of a
radio"(za)). We suggest instead that conventional mechanism, which inspires such
a view, is merely an equilibrium phenomenology, so that such proposals appear

very unnatural. Further, as shown below, “"particles" are best regarded as pheno-
menological "field lumps", so that one is ultimately really trying to explain how
field variables ¢ are guided by the wavefunctional \2[47 .t]. Given the generality
and simplicity of the pilot-wave formalism, which for example enables one to write
a greatly simplified theory of quantum electrodynamics and gravitation (see
below), it is natural to simply regard the guiding field &B as a general and fun-
damental concept, in no need of any such mechanical explanation. Indeed even
classical physics may, as we have seen, be regarded as just such a theory based

on an “active information" field S . We stress that while deeper theories will
surely one day arise, one should be careful not to assume that such theories will
use conventional mechanistic concepts.

Another curious aspect of this controversy is that the prejudice against a
non-mechanical realism, in particular a nonlocal one contrary to relativity
theory, has led many to a preference for no realsim at all. Even more curious is
the fact that those who regard "realism" as old-fashioned and naive are inclined
to reject the pilot-wave theory on the grounds that it does not conform to tradi-
tional mechanical ideas.

This clinging to conventional mechanical concepts has not only hindered the



geﬁeral undersianding of .quantum phyéics, but is élqo responsible for much of the
confusion in the quantum theory of measurement. For the behaviour of creatures on
the Earth's surface is in many respects approximately classical, and such orea-
tures naturally gather and store information in the language most naturalvto them:
That appropriate to the approximately ciassical macroscopic world. Unfortunately,
on encountering microscopic phenomena, these creatures have continued to think in
their phenomenological language, which is incommensurable with the more fundamen-—
tal microworld. By defining an abstract "measurement theory" inspired by this
classical language, these creatures have been led in various ways to deny the real
existence of a microworld (from which they are built), to deny the logical prin-
ciple of excluded middle ("quantum logic" and "quantum probability"), to introduce
negative "quasiprobabilities", and even to assert that the universe is continually
splitting into distinct copies. We shall see below how these assertions result
frdm the uncautious application of classical language to nonclassical systems.
This vindicates Einstein's prediction‘zs). in a conversation with Heisenberg in
1926, that "your theory will one day get you into hot water", because "when it
comes to observation, you behave as if everything can be left as it was, that is,

as if you could use the old descriptive language" (my emphasis).

We take the view that human beings, and physicists in particular, are in a
situation resembling that‘of the priscners in Plato's Cave, who mistake the sha-
dows on the wall for reality. This reversal of the (Btill popular) "operational"
philosophy suggests that our elementary mechanical éoncepts and so-called "opera-
tlonal terms" really derive from a deeper and perhaps simpler structure, to which
such terms cannot be applied. And insistence on such application only creates the
need for more and more "“epicycles" (complementarity, quantum logic, negative
prdbabilities, many worlds). These may be removed by an appropriate "Copernican
revolution" against the sfill prevalent instrumental philosophy, according to
which one should not speak of that which cannot be "directly observed". The flaw
in this philosophy is thaf "direct observations" simply do not exist, since '"ob-
servations" are impossible, and indeeé meaningless, without some prior body of
theory. For instance even today, nobody has "directly observed" an atom. One
; might point to the images generated by electron microscopes, but these are Jjust
. patterns of light and shade on photographic paper. Their interpretation in terms
of "atoms" depends on an extensive theoretical structure (involving deBroglie
waves). And indeed this ;g true of even everyday "observations". As Einstein put
it: "It is quite wrong tb‘try founding a theory on observable magnitudes alone.

In reality the very opposite happéns.“(uy emphasis). "It is the theory which de-

cides what we can observe......we must know the natural laws at least in practical
terms, before we can claim to have observed anything at all. Only theory.sceoos
enables us to deduce the underlying phenomena from our sense impressions".(zs)
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One could say, with Wittgenstein, that "the limits of our language are the limits
of our world". But we interpret this not as indicating that the subquantum world
is beyond us, but rather that our language must be changed in order to comprehend
that world.

The work of Bell indicates that reality is holistic and "contextual“ indica-
ting the need for a change in our thinking, perhaps along the lines suggested by
the pilot-wave theory. If instead one continues to study and discuss this reality
in terms of classically-inspired language, it inevitably has an ambiguous and
schizophrenic appearance, which in our view is entirely the fault of classical
perception. (The illusions created by classical perception may be quite spectacu-
lar: For instance a single subquantum automaton will appear by normal standards
of perception to be effectively multiple, imitating the behaviour of a multiple
set of classical automata (see below)).

Our perspective with regard to the pilot-wave theory is somewhat in the
spirit of the following remark by Schrgdinger, in a letter to Einstein in 1950:
After pointing out that the emphasis on accelerations by Galileo and Newton
"seems to work no longer", Schrddinger wrote that "One must therefore go back
300 years and reflect on how one could have proceeded differently at that time,

(26)Thls is pre-—

and how the whole subsequent development would then be modified"
cisely the idea behind our suggestion that the Hamilton-Jacobi theory of the early
nineteenth century be reinterpreted as a fundamental physical theory, independent
of Newtonian mechanics. In this context we note that Galileo did at one time con-
template a purely geometrical "dynamic foundation” for kinematics, while he intro-
duced the abstract notion of "force" and stressed the role of acceleration only
later(27). These latter ideas were of course taken up by Newton and were later
widely accepted. In our view, however, even at the classical Newtonian level,

a falling body such as a cannon ball is actually following a Hamilton trajectory
guided by the pilot-wave S, and we interpret the gravitational "force" as a form
of entanglement in S between the body and the Earth.

It should be stressed that the variables X(t) are completely free to follow
whatever 9! dictates. There are no restrictions on X per se, and no preassigned
(independently of W ) relations or interactions between different components of
X. These interactions depend entirely on the form which 33 happens to take. As
stressed by Bohm(ae), the essence of "mechanism" is the interaction between parts
according to preassigned and fixed rules, and since there are no such rules in
the pilot-wave theory we do not have a mechanical theory in the usual sense.

The pilot-wave theory is mathematically deterministic, and may reasonably be
termed "causal" provided one is willing to identify \H as a “"cause". If one wishes
to think in terms of cause and effect one must then regard Y as being "real",

and not merely as a summary of the motion X(t). But in what sense could !3 be
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regarded as a cause? A sound ihtuitive view is probably best obtained by thinking
in terms of Aristotle's "formal cause", rather than in terms of the “efficient

cause" of traditional classical causality. Thus, rather than conceiving “f as an

 efficient cause analogous to force in classical mechanics, one could think of it

as a formal cause or "guiding form", somewhat in the spirit of Aristotle's view
that "motion is the fulfilling of what exists potentially".(29)(Russell notes the
incompatibility of this idea with the relativity of motion). One could say that
the "potentia" in &f is physically realised by placing a variable at a given
point (bearing in mind that there are no preassigned interactions between parti-
cles or field elements from which the motion could be seen as mechanically aris-
ing). This view is reminiscent of Spengler's notion of "destiny", which according

to Spengler "still awaits itsktheoretical formulation"(s?) Perhaps the pilot-wave

. theory should be seen as just such a formulation.

- From the viewpoint of standard mechanism, the idea of H{ as a "guiding form"
may seem like an "unscientific vitalism", as the concept of "gravitational attrac-
tion" once seemed to be. (And even the introduction of the universal concept of
"energy" by Helmholtz and others in the last century was widely greeted as being

(22)),

either "vitalist" or simply empty of physical content Of course, while the

notion of formal cause may aid physical understanding, one can in principle avoid

~using this concept altogether by taking the pragmatic view that 33 is simply a

mathematical summary of the time evolution X(t). Though such a pragmatic view does
not really do justice to the physics. For example the possibility of "storage'" of
"spooky" connections between very distant objects, where one object could be in
the laboratory and the other in a box beneath the ocean, suggests that Hﬂ is
"real"; in the same sense that the existence of travelling electromagnetic waves
suggests that the electromagnetic field is "real" (rather than just being a con-
venient way of expressing forces between charges). The most succinct interpreta-
tioﬁ of ﬁf y free of complications while still doing justice to its physical sig-

nificance, is thenksurely as a field of formal cause in the Aristotlean sense.

- Thus one would be justified in‘referring to Y as an informative field, which

"informs" the time evolution X(t).

2.2 The phenomenological emergence of standard quantum theory
N i N

We now discuss how the theory for individual (subquantum) systems reproduces

the usual statistical quantum theory of ensembles. In particular we would like to

show how the classical language and the standard theory of "measurement", to-
gether with locality, uncertainty, and energy-momentum conservation, are all
emergent and phenomenologica1 aspects of statistical equilibrium.

Consider first a real ensemble of n similar but independent systems, each
represented by a point X in configuration space, where X generally varies over
i ! i
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the ensemble. Let each X be guided by the same wavefunction 3! . (Thus if the
ensemble is considered as a single super-system, then the total wavefunction is
just a product of n wavefunctions ¥ ). The actual fractional distribution P(X,t)

will then be

n
POX,E) = (1/n)) (XX, (8)) ‘ (2.8)
i=1
where Xi is the value of X for system i, and P(X,t)AX gives the fraction of sys-
tems occupying A X. In the limit of large n, P(X,t) may for our purposes be re-
placed by a purely theoretical smooth function, again denoted just P(X,t), which
in practical circumstances will behave like a probability distribution. The sub-

(18)

quantum H-theorem (see below) establishes that, for appropriate initial con~
ditions at t=0, there exists a finite time interval (0,T) during which the coarse-

grained subquantum entropy

§=- dxﬁlntﬁ/l‘jfl‘?) (2.9)

cannot decrease (where overbars indicatg_ggarae—graining). Further, § is bounded
above by zero and is maximised by P = IEE[Z. If X represents the configuration of
some complicated system (such as a large number of interacting particles), we
assume that in most physical circumstances S does actually reach its maximum, so
that P=l§EIz is actually attained in a coarse-grained sense. It may then be shown
that, if a single component of the multidimensional X is extracted to form an in-
dependent system, guided by a reduced wavefunction w’ , then its distribution
will be just e = l\flz. (Detailed discussion of this, and of coarse-graining,

is deferred to Section 3).

Once one has the equilibrium distribution IY‘]Z, the usual theory of "meas-
urement" follows along the lines given by Bohm( 6). Before discussing this and
other matters, we should stress that the equilibrium e =IW’|2 is only an approxi-
mation, in three senses: (i) If the "mixing" of P and IEEIB described by the H-
theorem has occurred for only a finite time (perhaps since the big bang), then
one expects that at a sufficiently small fine-grained level there will be a diff-
erence P#IEE{z. (ii) The distribution P=]§£|2 is purely a statistical result, in
the same sense as is Maxwell's distribution of molecular speeds. The possibility
is open for the existence of extremely rare large fluctuations P#IEHIZ, similar
to those of classical statistical mechanics. (iii) The very concept of a smooth

distribution P or Q is limited, being strictly valid only in the purely theoret-

ical limit of an infinite ensemble (n—) 00 ). This implies for example that in

a laboratory consisting of a finite number of atoms, the actual distribution (say
of electron positions) has the discrete form (2.8), so that one necessarily has

some disequilibrium Q # I\Vlz on a fine-grained level.
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Thus the very concept of equilibfium. together with its properties such as
locality, can never be exactly validkin real experience (an explicit example is
given below). In the real world then, standard quantum theory can only be-a good
approximation, as is the case with classical statistical mechanics and thermo-
dynamics. These points are important with regard to the possibility of distin-
guishing the pilot-wave theory from standard quantum theory, and are discussed

further in Section 8.

2.2.1 The phenomenological emergence of standard 'measurement' theory

Taking the distribution I"VI2 as given, let us briefly review the theory of
measurement as given by Bbhm, before‘turning to some subtleties which need clari-
fication. : ‘ ‘

If the system "observable" Q has eigenvalues q, with "corresponding" appara-
tué eigenvalues Aq , then a standard quantum-theoretical "measurement" has

occurred if the total wavefunction

W =Z cq\vquq ; (2.10)
q . . o

where \Vq and :x“q are system and apparatus eigenfunctions respectively. Here
distinct QLAq have essentially no overlap in configuration space. (In standard
measurement theory distinct 7qu may be orthogonal in Hilbert space and yet still
. overlap in configuration space - e.g. if Aq is an energy. Nevertheless at a later
po;nt in the measurement chain a set of disjoint eigenfunctions in configuration
spéce is always eventually encountered in a real experiment, so there is no loss
of generality here). In the theory as given by Bohm, and discussed by Bell, the
apbaratus variable is treated as if it were simply "seen" by a macroscopic exper-
imenter. This picture of how the Von Neumann chain ends is rather vague, and an
atfempt at greater precision will be made below. For the moment, following Bohm,
if the experimenter "perceives an actual value" Aq:Ar;eas , he may deduce that the
total configuration X (system + apparatus) lies somewhere in the region where
’X“Eeas # 0 (and of course ﬂf# 0). Since the distinct GLAq do not overlap, this
restricts the actual X to a single branch of the superposition (2.10), and we
thereby deduce that “"the value of Q is qmeas".‘And the associated probability is
easily shown to be just |c |2. ‘

. Remark: Given P=|Y|? it follows that X can never be in a finite region where
|W|=0 , which would otherwise lead to difficulties in the definition of the
guiding phase S. Without P=|§f|2,fsuch problems are avoided by assuming that in
any case [EEI#O everywhere. (Except at infinity and at isolated points. In the
latter case S is still well-defined by continuity.) This is reasonable since one

expects that, for example, infinite potentials would be required to make |¥|

[
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strictly vanish throughout a finite region.

The above presentation is incomplete in several respects: (i) At the funda-
mental level, the pilot-wave theory sees the Egglg world ("system', "apparatus",
and "experimenter") as a single configuration space point guided by a univeral
wavefunction. How does the system-apparatus—experimenter division arise? (ii) The
theory deals simply with the path in configuration space and is entirely non-
mechanical. Yet the above "measurement" theory chooses '"observables'", such as
energy and momentum, by analogy with classical mechanical physics. Why? (iii) How
exactly does a wavefunction chq lead to the experimenter '"seeing" a value Aq?
(iv) Indeed what does it mean, for a general Q,to say that "Q has the value q'?
(v) What approximations (such as "classicality") must the experimenter satisfy?
(vi) Without being, as Shimony has put it, "parasitic on standard quantum mechan-—
ics" , why should one ever, in the pilot-wave theory, define (2.10) as corres-
ponding to "measurement"? (vii) Contextuality shows, as stressed by Bell, that the
usual language of "measurement" is misleading, and indeed contextuality makes a
mockery of the word “measurement" as currently used. Is a more logical view not
possible?

In order to clarify this extremely confusing situation, the following ele-
mentary (but usually forgotten) point is crucial: In the pilot-wave theory, the
entire mechanical "language of classical physics" derives from a deeper level
and emerges merely as a phenomenological approximation. In particular the standard

Von Neumann "measurement' scheme is merely a phenomenological book-keeping device,

which is inspired by the classical limit of equilibrium, i.e. the domain of
common human experience, and it must be seen as such if it is to be correctly un-
derstood. A clear point of view may then be arrived at by considering things from
the deeper and more objective level, and seeing just how the phenomenological
concepts arise.

Our task then, is to understand in physical terms just why human experimen~-
ters have come to regard the world, even at the quantum level, in phenomenological

classically-inspired language (the "Plato's Cave effect"). This requires, in part,

an understanding of the emergence of approximately classical behaviour for the
experimenter and his macroscopic surroundings.

As a first step, consider the behaviour of a single particle. It is usually
said that the classical limit emerges in the pilot-wave theory when the "quantum
potential" Q is negligible. But things are not so simple. For instance if the
wavefunction is a plane wave eipx' then Q=0 and the particle trajectory i=p/m
appears to be "“classical'. But if the plane wave strikes a macroscopic two-slit
screen, the nonclassicality of the system will become apparent. Conversely, if a
particle is guided by an appropriately peaked packet, the behaviour of the system

will appear to be classical on the macroscopic level. And yet within the packet,
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near the actual loéation of thé partible, thg quantum potential Q may be by no
means negligible, and the particle might even undergo a nonclassical jittering
motion within the packet. So the condition "QX 0" is actually a poor characteris-
ation of the classical limit. A better one is that taken from standard quantum
theory, based on Ehrenfest's theorem: "If the wavepacket is narrowly peaked in an
appropriate manner, so that its centroid follows an approximately classical path
and its spread remains small (over the relevant timescale), then the system be-
haves approximately classically". This may be adopted in the pilot-wave theory
even for a §iggls system, by adding the assumption that the actual position X is
located somewhere near the bulk of the packet (which is virtually certain if the
particle is extracted from an ensemble P=IEE|2).

We note that this characterisation of the classical limit refers principally

’tp the behaviour of the wavepacket, and only secondarily to the particle itself,

which is merely stipulated to lie near the peak of the packet. That the actual
variables play a somewhat secondary role is also true even at the quantum level.

For at the quantum level, if a variable X is isolated (by "measurement") within a

‘branch \y of the wavefunction, then the precise value of X within \V is never

actually seen without performing a further division of ﬂ' into sub—branches. And
if this is done then the precise value of X within the subsequent sub-branch con-
taining it is in turn never actually seen. The reason for this is that the uncer-
tainty principle would otherwise be violated,ysince one would effectively be di-
rectly seeing the subquantum variable inside the wavepacket. That Fhis does not
happen is clear from (2.10): The nonoverlapping apparatus wavepackets 76Aq(y)
have a typical "uncertainty" width [Sy in "pointer position" y, and a typical

macroscopic separation d>>Ay . A "reading" A Ar;eas

then takes place on the

basis of an accuracy 6y<<d but of course 6y > Ay - In other words the meas-
urement takes place in terms of an accuracy 6,y in "pointer reading" y which is
sufficient to dlstingu;sh alternative packets "A (y) and yet is not so small as

to be within the uncertainty 11mit Dy . The important point we wish to make here

is then that, while the pre01se value of the apparatus variable y does single out

tthe realised packet, the precise value of y within the packet is never actually

(1)

seen. Bell's statement , to the effect that the pilot-wave hidden-variables

are not really hidden, might then be somewhat misleading. The precise values are

k‘hidden, and they merely singlékout the packet containing the system.

These seemingly pedantic points suggest the following important observation:

The standard theory of "measurement" is really a set of rules for the evolution

of EH and of its sub-branches in configuration space, and has little to do with

the actual values of the physical variables X . Before showing how this is dir-

ectly connected with the "Plato's Cave effect", and therefore with the confusion

in the quantum theory of “measurement", let us first justify this point in more
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detail.

At first sight one might think that there is in general such a close corres-
pondence between the motion of X and the evolution of the sub-branches of H{ that
the above distinction should be unimportant. But the following examples show that
standard "measurement" theory may lead to completely erroneous conclusions as to
the motion X(t).

Let an electron with coordinate x be fired at a two slit screen. On the imme-
diate far side of the screen, we have an electron wavefunction *Jl(x)4~q%(x) emer-
ging from the pair of slits, where at early times \Pl and \Vz do not overlap. Let
us place a detector with internal variable r near slit 2, while for simplicity no
detector is placed near slit 1. (The case with a detector near each slit is simi-
lar and yields the same conclusions). We say in the usual language that "there is
an interaction V(x,r) between the electron and the detector", by which we really
mean that there is a term V(x,r) in the Schradinger equation, which in the class-
ical limit is indeed "an interaction V(x,r) between electron and detector". In
the language of standard quantum theory we say that the detector "remains in its
original state D1 if the electron passes slit 1", while it is "changed to state

D, if the electron passes slit 2". Thus the initial wavefunction

2
(Y, + Y,(x))p, (r)

evolves into

‘\’l(x)Dl(r) + \{lz(x)nz(r) (2.11)

where during the interaction the wavefunction is of the form \Vl(x)Dl(r)+f(x,r).
Note that throughout the interaction (assumed to take place sufficiently rapidly),
the two branches do not overlap, since at early times \Vl and \VZ do not overlap.
This implies that the actual variable r will move (i.e. F#0) if and only if the
actual electron position x lies within the packet \VZ . Thus, if D1 and D2 are
also nonoverlapping, so that they correspond to the final stage of a standard
"measurement", the actual r will occupy the displaced packet D2 if and only if
the electron actually passed slit 2. For this case we have then correctly deter-
mined the path x(t) taken. But consider now the case where Dl and D2 do overlap.
For instance if the "detector' is a single Hydrogen atom, D1 and D2 could be the
first two energy eigenfunctions Dl(r)nve—r/ao y Dz(r)au(2—r/a°)e'r/230 which over-
lap completely. (The detector could of course just as well be macroscopic, with
for example D1 and D2 being two overlapping packets in r-space with very diff-
erent macroscopic velocities). In standard quantum theory the state of the detece
tor would be believed (and in a sense defined) to accurately provide "which-path"

information, accessible at any later time by measuring this state. And the ortho-
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gonality (D |D2> = 0 ensures that interference is lost at later times when
and \YZ overlap, the probability distribution for x being just I\Vll +]‘Y2 .
But things are very different in the pilot-wave picture. ;
Certainly, at later times when \Yl and \Ve overlap, the probabllity distri-

bution for x will indeed be just

Sar 1¥,00+ ¥o0p1% = 1Y, (241,12

since gerIDZ = 0 . However, the overlap between D1

branches in (2.11) are not disjoint in configuration space, and so they both

and D2 implies that the two

affect the motion x(t) from screen to backstop. Thus there is still "interference"
at the subquantum level,keven if this disappears upon averaging over r . More im-
portantly, the outcome (Fl or E2) éfVa measurement of the detector's state need
not have any relation at all to the path taken through slit 1 or 2.

[ To see this, first note again that the nonoverlapping of the two branches at
early times implies that r#0 during the electron-detector interaction if and only
if the actual x is in \rz , i.e. if x(t) actually passes slit 2. This r#0 results
in a displacement of r which, sincg D1 and D2 completely overlap, is noticeable
only at the subquantum or sub-uncertainty level. At our level, we introduce a
further apparatus with variable y, to "measure the energy state of the detector".

Beginning with the wavefunction
(Y, 000, (r) + Y, 0n,en A (3)
wé have during the apparatus-detector interaction a wavefunction
A ACULROY AT \]’2<x)g(r.y)
whlch settles into )
o \}' Gapy (X (v) + \{lz(x)n (r)‘X, o)

ﬁherey’bl'and aﬁz do not overlap. The pilot-wave bicture now depends crucially on
when the energy measurement is performed.

If this energy measurement is done at early times when ﬁll and \FZ still do
not overlap then, again, the apparatus coordinate y will move (and occupy the dis-~
placed packet 752) if and only if x occupies *’2 , yielding a correct determina-
tion of the slit passed by the electron. But this breaks down completely if,
before the energy measurement isjperformed, the electron wavefunctions \Yl and
\Yz are first allowed to spread and to overlap (towards the backstop). This is
most easily seen at large times, whepe \Yl ~ \Vz far from the screen may be fac-

tored out, and the energy measurement essentially begins with

ge
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(D, (r) + D, (r)X (¥)
and ends with
Dl(r)xl(y) + Dz(r)xz(y)

Here y either moves into the displaced packet 7(2 or it remains in 7‘1 . Now if
this outcome is to be determined by the slit passed by x(t), this determination
can only take place via the value of r . But the outcome is not completely deter-
mined by the initial value of r : Since D1 and D overlap, the same initial r may
clearly lead to either result, depending on the inltial y and on the form of the
apparatus-detector interaction {an example of "contextuality"). Thus the outcome
will be E. or E2 with probability ratio 1:1 , regardless of which slit was passed.

1
If for example the electron passed slit 1, and yet we find y in 752 , this is due

to the component D_ of the detector wavefunction, where this component arose from

Schrgdinger—equatiin "interaction" with the empty packet \Pz . And this "ghost"
branch of the wavefunction manages to affect y , owing to the overlap of \Vl and
\VZ at large distances, which reoverlaps the branches of the total wavefunction
after the supposed "which-path detection" has taken place.

In standard quantum theory, if the electron is finally found at a point x on
the backstop, and the detector near slit 2 is then measured to have energy El (or
Ez). one would conclude that the electron "took path 1 (or 2)". According to the
pilot-wave theory this conclusion is false. Thus the quantum theory of "measure-
ment" need not be reliable if it deals with a total wavefunction whose branches
reoverlap in configuration space in the above manner. This is to be expected,
since the said theory is inspired by the classical limit of narrowly-peaked wave-
functions (see below).

In the above example, the finally "measured" energy actually tells nothing
as to which slit was really passed. Conversely, as stressed by Bell( 1), in a
two-slit experiment where one makes no explicit attempt to measure the path, the
pilot-wave theory predicts that particles arriving on the upper half of the back-
stop actually passed the upper slit. Though of course, in experiments performa-
ble at present, these claims of the pilot-wave theory cannot be checked by obser-
vation.

As a final example, we consider a '"scattering experiment". To put the matter
graphically, consider a stone of mass -+ 10 grams whose wavefunction is very
sharply peaked at X, with a very small but nonzero tail extending up to and be~-
yond ten metres from X . (We assume in any case that all wavefunctions have a non-

zero tail extending to all finite points). It will very rarely happen that the

stone is actually at ten metres from X Now let an experimenter ("Dr. Johnson")
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attempt: to klck the stone. In equlllbrlum P—IEHI it will usually happen that the
experimenter's foot is deflected, corresponding to an apparent impact with a stone
at xo , and it will usually be that the stone was actually at xo. But such deflec-
tion will occasionally occur with the stone actually at ten metres from X, since
position measurements are always subject to error, and the error may happen to be
many standard deviations. Of course such very rare "ghost" events are equally
present in standard guantum theory, and do not conflict with standard measurement
theory, being simply "errors". Nevertheless this example drives home the point
that, from the viewpoint of the pilot-wave theory, the standard measurement scheme
has really to do with the motion of wavepackets, and is only marginally related to

the actual variables.

Such examples show that tha standard measurement scheme cannot always be
trusted to yield objective information, and must be regarded merely as a phenome-
nological book-keeping, consistent as long as precise access to the true variables
is barred. At this point one aould object that perhaps the fault lies with the
path predicted by the pilot-wave theory, and not with standard measurement theory.
In the absence of direct evidence we are of course unable to refute this. In
support of the view taken here, however, one may cite, apart from the simplicity
and naturalness of{the pilot-wave thepry, the following point: The pilot-wave
theory gives a clear picture of how standardimeasurement theory arises phenomeno-
logically at the macroscopic human level, and allows one to understand just how
and why the very peculiar features of the standard theory arise (see below). This
point is of course not a proof. But on the other hand it is perhaps the main
raason which favours the abandonment of the Earth-centred astronomy based on epi-
cycles, and the adoption of the heliocentric system. Continuing this analogy be-
tween standard quantum mechanics and Ptolemaic astronomy, we now outline the

"Copernican" explanation for the very peculiar "epicycles" of standard measure-

ment theory. Given the points made so far, this will be straightforward.

We would like to understand why human experimenters have constructed a

cia351cally—inspired “measurement" theory which has more to do with the evolution

‘of S{ than with the actual variables. This has come about in something like the

following manner: As far as regards his manipulation of laboratory equipment, a
human experimenter, together w1th his apparatus, behaves approximately classic-
ally. If the experimenter consists of variables ¢ guided by ﬁl(¢ t), it must

be that \v is narrowly peaked with centroid satisfying an approximately classical
evolution. At the same tima, the experimenter is oblivious to the precise actual
values of 4’ within the “uncertainty" range A¢ of the packet \I‘ , and operates
only to an accuracy ?, A¢ (at most). Roughly speaking the experimenter functions

on the level of accuracy of wavepackets and not directly at the hidden variable
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level. (If his senses operated at the finer hidden variable level, he would dir-
ectly perceive nonlocal connections, as well as having other remarkable charac-
teristics - see Section 7). Note that if 1’ consists of a superposition of non-
overlapping narrowly-peaked packets, only one of these.is relevant, this being
the one containing the actual value of 4) . (This is in contrast to the Everett
many-worlds interpretation, where all packets would be regarded as equally real).
In the pilot-wave theory, 'reality" is by definition the actual value of ¢) , the
wavefunction merely guiding its motion. The experience of the uniquely real ex-
perimenter rests on this unique actual value, even if he is sensitive to it only
to an accuracy :?[Sd) . As in the above discussion of quantum measurement, the
actual 4) singles out the realised packet, even though its precise value within
the packet is irrelevant. (This might seem to argue in favour of abandoning the
hidden-variable altogether, and retaining only the wavefunction, thereby leading
to the many-worlds theory. But the situation is really the same here as in class—
jical mechanics: An experimenter built from classical atoms has a reality which
rests on the precise configuration ¢ of all his atoms, and yet his functioning
is completely insensitive to ¢ beyond a certain level of accuracy). Just as the
human ear is insensitive to Brownian motion "hiss", so the human experimenter is
generally insensitive (as far as we know) to the hidden-variable level of his own
constitution and of his surroundings. And this is the root of the "Plato's Cave
effect". For at this gross level of accuracy, the experimenter's macroscopic
world may be well represented by classical equations which are, as it were, the
"shadow" of the underlying equations for the evolution of narrowly-peaked wave-
packets. The experimenter, being unaware of this (at least prior to the 1920s),
conceives the world in terms derived from this "shadow", these terms being Jjust
the classical notions of locally interacting forces, noncontextual variables,
energy, and so forth. Thus the experimenter's basic concepts are from the beginn-
ing based on (narrow) wavepacket evolution only, and have little direct relation
with the true variables themselves. Armed with these conceptions, the experimenter
is then of course surprised and confused on entering the atomic domain. Indeed his
experience is somewhat as if the wavelength of light were increased to say 10 cm.,
diffraction then causing havoc with any geometrical-optics attempt to make visual
sense of one's everyday surroundings. Performing a two-slit experiment with elec-
trons, for example, which divides and reoverlaps the narrow wavepackets on which
the experimenter's worldview is based, he is led to believe that the electron
"takes both paths" in some very obscure sense. For after some experience with the
"non-geometrical-optics" level of finite wavepackets, the experimenter, for posi-
tivistic and other philosophical motives, decides in any case to retain his phe-

nomenological macroscopic notions, regarding them as a fundamental “classical
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level" in tefms of whichVall experiments and "measurements" must be discussed
(Heisenberg, Bohr). This ‘can indeed work in a formal sense, and a definlte mathe-

matical theory may be constructed, for the following reason: Since the experlmen—

ter's classical concepts result from the behaviour of narrow wavepackets, and

since the SchrSdinger equation is linear, there does exist a formal mathematical

analogy between the classical variables and the general mathematics of (even

broad) wavepackets, this analogy being of course just the correspondence between

classical variables and the linear operators on the Hilbert space associated

mathematically with the linear wave equation. And the positivist experimenter

constructs a vaguely plausible "measurement" theory on the basis of this formal

correspondence. It is then no wonder that his '"measurement" scheme is primarily

concerned with the evolution of the wavefunction, the actual variables playing a
secondary role. ? ’,

' To see how this formal analogy works, consider an electron in the post-'"mea-
surement" situation described by (2.10). If the electron observable Q is say an
energy, the various eigenfunctions \Yq may overlap, and yet only one of these
subsequently affects the electron (owing to the nonoverlapping of the apparatus
wavepackets). In this situation our éxperimenter (in "Plato's Cave'") usually
states that "Q has the value gq". But what does this mean, and on what grounds
does he say 1t? Since the \y s overlap, the fact that the electron lies within
one of these packets is not the important aspect of the post-"measurement" situ-
ation. The important point is that the electron is thereafter gulded by only a

szngle branch w‘ . Thus we have the correspondence

"Q has the value q"}

"
X is guided by \rq' (2.12)

(Pilot-wave theory)

(Standard quantum theory)

But why does guidance by \P lead the experimenter to say that "Q has the

value q"? The reason is simply this. In the classical approximation on which the
experimenter's language is based, guidance by a narrow packet which approximates
\V ("approximates" in the sense of  Q-spectrum content) does indeed lead to

Q having the value q in the sense Df classical mechanics. (This is an example of
the formal correspondence between c13551ca1 varlables and linear operators).
Whlle outside the classical 1limit the statement "Q has the value q" is, from the
pllot-wave viewpoint, quite meaningless. It is merely a semantic convention adop-
ted by‘our positivist exgerimenter, énd this purely linguistic assignment of
“values" is done purely in order to ﬁaintain an analogy with classical mechanics,
and ultimately in order to satisfy the peculiar philosophy propounded by Heisen-

berg and Bohr. The entire language of "measurements", and of Hamiltonians formally
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representing apparatus-system "interaction", is constructed according to a formal
correspondence between linear operators and classical variables, in order to
formally resemble the classical-mechanical “shadow in Plato's Cave". And we may
see in the pilot-wave theory how the shadow arises, and why this formal parallel
is possible.

From this perspective it is no surprise that the so-constructed theory of
“"measurement” is, while superficially consistent, quite baffling on closer analy-
sis. Apart from the numerous perplexities which such experimenters have encoun-
tered since the 1920s, perhaps the most damning evidence against this whole enter-
prise is the necessary "contextuality" of the nonclassical level, which proves
that the outcome of a quantum-theoretical "measurement" does not reveal the value
of a pre-existing system-quantity, and indeed is not even determined by some such
quantity or quantities, the experimental apparatus and set-up necessarily playing
an active role in determining the value of this outcome. This means that, as

stressed by Bell, gquantum-theoretical '"measurements" simply are not measurements

in general, and should really be referred to as "experiments" of a particular
kind, in which two systems ("apparatus" and "system") are coupled in a particular
way. Acceptance of contextuality, which is clearly present in the pilot-wave
theory, immediately disposes of the commonly accepted "epicycle" according to
which the experimenter's choice of measurement somehow "creates reality". For
example for a measurement of spin-1/2, where operators along different axes do
not commute, the standard theory gives the impression that the reality of spin
along an axis depends directly on the content of the experimenter's consciousness
(his subjective choice of axis), an impression which disappears if one includes
the active physical role of the apparatus (such as a Stern-Gerlach magnetic field)
in bringing about the result.

For the case of two-slit interference it is the classical concepts of local-
ity and noncontextuality which blind the experimenter to the possibility that the
particle only traverses one slit, while nonlocally or "holistically" responding
to the whole screen. The experimenter must of course somehow acknowledge the
effect of the whole screen in producing the interference pattern, but his clinging
to classical language and concepts forces him to deny the logical principle of
excluded middle, and to assert that the particle '"traverses both slits and

(32) . _(33)

neither". As pointed out by Koopman and discussed by Ballentine , Feyn-

(34) that standard probability theory cannot account for the two-slit

man's claim
experiment rests on a failure to appreciate the importance of conditional proba-
bilities in this experiment, the crucial conditional statements (omitted by
Feynman) being those regarding the arrangement of the whole apparatus (such as

whether or not one of the slits is covered). Inclusion of these statements shows

|
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that standard probability theéry is satisfied, there being no need for "quantum
probability” or "quantum logic". '

A further “epicycle", namely negative joint probabilities, is produced if
the experimenter attempts to account for the statistical predictions of quantum
theory by means of a noncontextual joint distribution P(x,p) for position and

(35). This distribution is found to be not positive definite, and the

momentum
reaspn is surely simply this: "Measurement" of momentum is contextual, so that
the distributions for position and momentum necessarily refer to different ex-
perimental arrangements (where these play an active role) i.e. to different phy-
sical situations. By mathematically uniting these into a single joint distribu-
tion, one creates pegative prqbabilities. somewhat inversely to the situation in

(36), the appearance

relativistic quantum field théqry where, according to Bartlett
of negative probabilities is due to the "mathematical segregation of systems or
states which physically exist only in combination".

Perhaps the most spectacular “epicycle" is the "many-worlds" theory, an
alternative to the usual "double-think" regarding the two-slit experiment.

(37) has proposed an experiment, involving a self-measuring quantum com-

Deutsch
puter, which would seem to sdpport the many-worlds theory (assuming the experimen-
tal results to be as one would expect). But again, Deutsch's interpretation of
this experiment reiies on taking to extremes our faith in the classically-inspired
definitions of "measurement", in terms of the operator formalism. Essentially ,
Deutsch considers an operator with eigenstates corresponding to the computer hav-
ing formally "seen two worldsiwithout recording which one", and gives an experi-
ment whereby the final internal state of the computer is just such an eigenstate,
after having performed an interference experiment with a spin (leaving the final
spin in a superposition). In our view the computer's conclusion of having "seen
two Qorlds" is an illusion créated by taking the phenomenological Von Neumann
scheme too seriously, somewhat as diffraction might lead to an apparent multi-
plicity from a geometrical—optics point of view. While the many-worlds view does

in a sense avoid the “classical level' of the Copenhagen interpretation, in

‘another sense it does just the opposite, and builds physics on the basis of an

abstract formal language which is inspired ultimately from the classical approxi-
mation. Deutsch's parallel computer processing, also held to support many-worlds,
is discussed in Section 7. Roughly speaking it could be said that a single holis-
tic quantum computer, when analysed in local and noncontextual classical language,

appears to be multiple.

:°2.2.2 General remarks

The assignment of a central role to the "observer" in standard quantum
theory is often regarded, from a philosophical point of view, as having in a
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sense undone the Copernican revolution which displaced Man from his central posi-
tion in the Universe. The above view of the emergence of classical concepts, and
of standard quantum theory, effectively reverses the situation once more, and sees
today's experimenters as a modern version of the prisoners in Plato's Cave, misled
by the illusory shadow of "classical language". In proposing this viewpoint, we
do not by any means wish to claim that the pilot-wave theory, or indeed any
theory, is a complete and final description of reality. Nor is our above dis-—
cussion of an approximately classical experimenter intended to suggest that the
pilot-wave theory is adequate to describe in all respects the behaviour of human
beings. The relationship between "theory" and "reality", like the relationship
between "mind" and "matter", has as yet not been fully clarified, and perhaps
never can be. While on self-referential grounds, the possibility of human beings
constructing a theory which fully describes their own behaviour might itself be
questioned. We do suggest, however, that in experiments currently performed in
physics, the actions of human beings such as the turning of a switch are better
seen in "objective" terms. We further suggest that the present confusion in quan-
tum theory (and also in the interpretation of the pilot-wave theory) may be elim-
inated by dropping the observer-centred viewpoint, and explicitly considering how
the observer's classical concepts, together with his ideas with regard to "meas-
urement", arise from a deeper "objective" level, as we have done in the above.
There is an intriguing parallel between Ptolemaic astronomy and standard
quantum theory. In the second century B.C., Aristarchus of Samos devised a helio-
centric model of the solar system, which in the words of Arthur Koestler '"was re-
jected in favour of a monstrous system of astronomy [Ptolemy‘s], which strikes us
today as an affront to human intelligence, and which reigned supreme for fifteen

(38)

hundred years". This occurred despite the fact that the ancients' astronomical
data was just as accurate as that available to Copernicus (who actually relied on
their data). According to Koestler the explanation is that, during the decline of
Classical Greece, the craving for stability in a disintegrating culture led to a
general turning away from realism. The ancients retreated into a "sublunary world",
which supposedly had no common link with the "divine" heavenly bodies. With the
rise of Platonism, visible and "imperfect" bodies were no longer of concern. The
purpose of astronomical systems became merely to '"save the appearances', i.e. to
successfully predict the apparent motions in the sky. "Astronomy, after Aristotle,

(38)

becomes an abstract sky-geometry, divorced from physical reality". The intro-
duction of "epicyclic" motions was done with no regard for whether or not these
motions were true. All that mattered was that it "worked" as a calculating device
(and indeed the predictions of the Ptolemaic system were very accurate). No one

understood why it worked, and nobody seemed to care. Science became paralysed by
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(38) of Ptolemaic astronomy: (i) The dualism of

the "three fundamental conceits"
the celestial and sublunary worlds, (ii) The immobile and central Earth, and
(iii) The belief that all heavenly @otion must be described in terms of "perfect"
circles (dubbed "Plato's curse" by Koestler).

The eerie parallel with standard quantum theory is rather clear. In 1927
Louis deBroglie proposed the pilot-wave interpretation of SchrEdinger's equation,
but, as Bell put it, deBroglie's straightforward and natural ideas were "simply

(39) This was done in favour of a highly abstract, antirealist, and

trampléd on".
formal scheme, which enables one to successfully predict the outcome of laboratory
experiments without providing a physical understanding. Now the antirealist ten-

dency in the culture of post-World War I Europe, and in Germany in particular, in

(4OL(4£Lhose roots lie partly

both the Arts and the Sciences, is a historical fact
in the rise of the German Romantic movement in the latter half of the eighteenth
century, when, as the Art historian Arnold Hauser put it, "German scientific style
successively assumed thatfoften vague, coquettish character, iridescent with half-
expressed ihtimations. which differentiates it so sharply from the style of West

(a2) The parallel with ancient Greece has been

European scientific language"
stressed by Hauser, according to whom "Plato's theory of Ideas fulfils the same
social function for Athéns of the fourth century as German Idealism did for the
nineteenth century; it furnishes thé privileged minority with arguments against
realism;..."(as) And the Weimar Republic of the 19208 represented an unstable and
disintegrating culture if ever there was one, whose widespread influence on con-
temporary thought has recently been stressed by the political bhilosopher Allan
Blobm(aé),‘who refers to the thought behind it as "the profound philosophical
reflection [Nietsche, Heidegger] that broke with and buried the philosophic tra-
dition,‘with the most ambiguous intellectual, moral and political consequences".
Physicists, stimulated by Mach and encouraged by Einstein's subjectivist presen-
tation of "relativity" theory, had by the 1920s retreated into the '"sublunary"
world of the immediate senses, claiming that a realistic representation of atomic
behaviour was "purely metaphysical®, As long as quantum theory could "save the
appearances" at the labaratory level, this was considered to be "operationally
adequate". And indeed, to do bettervwas considered to be probably impossible and
certainly philosophically unsound. Ihere thus arose the extraordinary "“three fun-
damental conceits" of standard quantum theory: (i)kThe dualism of the quantum and
classical worlds, (ii) The central "observer", apparently outside the domain of
physical law (i.e. "immobile"), and (iii) The belief that all experiments must be
described in classical terms ("Bohr's curse").

The fate of deBroglie in 1927, like that of Aristarchus, seems indeed to
have marked the beginning of another Dark Age in fundamental physics. According

(34)

to Feynman physicists have “given up" trying to make exact predictions, as if
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they had capitulated after intense effort. But the fact that deBroglie's ideas
were "simply trampled on" (at the 1927 Solvay Congress in Brussels) betrays the
powerful irrationalism that gave shape to modern physics. To quote Koestler once
more: "The medieval astronomers manipulated their epicyclic symbols as modern
physics manipulates Schrodinger's wave equation.....Exact Science has ceased to
be the Philosophy of Nature, and no longer has much inspiration to offer to the
questing human mind.....At what point was the new version of Plato's curse
uttered: "Thou shalt think in circles"?" The new version of "Plato's curse", we
suggest, is "Bohr's curse" that "Thou shalt speak in classical terms", where such

terms implicitly assume locality and noncontextuality.

2.2.3 The emergence of locality, uncertainty, and energy-momentum conservation

Locality: Consider two "boxes" A and B, separated by a large distance, each
containing a single particle with coordinate XA and XB respectively. If each box
has ground state 4)0 and excited state 4)1 , take the initial wavefunction to

be entangled as
o¥ar¥Xg) ™ ¢O(XA)¢1(XB) + ¢1(XA)¢0(XB)

Consider now an ensemble of such systems, with initial distribution f?o(XA,XB).
(The ensemble could consist of distinct box-plus-particle pairs, or equally of a
single pair of boxes containing an ensemble of noninteracting particles guided by
the same wavefunction). If the Hamiltonian of box B is suddenly altered, say by
moving the walls, then entanglement implies that the actual va;ues of XA are non-
locally affected. But what about the box-A distribution QO(XA)= deBeo(xA’xB) ?
Is this affected too? Standard quantum theory tells us that, in equilibrium, where
e(}(XA,XB)=|\y°|2, the partial distribution at A is not affected at a distance,
and practical nonlocal signalling is not possible. However, any initial deviation
610# I‘VOI2 from equilibrium leads to a breakdown of signal-locality, i.e. non-
locality becomes apparent at the statistical level, and the distribution at A ig
affected at a distance. This is easily seen as follows.

If we take 4)0 and ¢1 to be real functions then X, and X_ , and any distri-

A
bution thereof, will be static if the Hamiltonian remains fixed. But a sudden

change of box-B Hamiltonian from H_ to Hé#HB leads, after a small time € , toa

B
change l&Q(XA) in the distant distribution at A, given by (the calculations have

been published elsewhere(lg))

2, 2 (Rg — 1¥o1®)
AQ(XA’ =-€ /Zmﬁ(agdeb TAE ) (2.13)

)

(to leading order in € ) where
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alx,) 4’1“‘;\’3&;‘ $,0x,)/ ¢ (x,))

4)1(xB)(xBiHBl¢ »- 4)°(xB)(x IHB|¢71)+ (E,-E )¢1(XB)¢ (xg)

If Hé=HB then b vanishes and so does Z&Q(XA), as it must. But for Hé#HB the dis-

it

.b(XB)
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gj i tribution at A responds nonlocally to the sudden wall motion (say) at B.
. Thus nonlocal signalling at the statistical level occurs if and only

L ERAINF

According to Bohm and Hiley

(24)

practical nonlocal signalling does not occur
because the "quantum potential" Q is "too fragile and nonlinear". While in our
view signal-locality is really a property of the equilibrium distribution Q =PY[2
. for which nonlocal effects are "washed out" by "uncertainty noise", and has noth-
ing to do with anyéproperty of Q per se. (For even in equilibrium, if */ is entan-
} gled, there are subquantum nonlocal connections, so that Q does act nonlocally,
and the effect of this only vanishes upon averaging over e B3 IY]
We have noted that the smooth distribution e -l\vl is a purely theoretical
limit for infinite ensembles. For any finite number n of systems, the actual dis-

tribution has the discrete form (2.8), so that e#l\\’lz on a fine-grained scale.

This implies that, for any finite n, the right-hand-side of (2.13) cannot vanish
for Hé#HB , and the nonlocal response Z&(:(XA) can never be strictly zero in real

experience. Thus in any real (finite) laboratory, weak nonlocal influences must

be occuring, for example between two separate large collections of atoms, and

13 locallty is never exactly valid.

! ‘( ' Uncertainty: In equilibrium the statlstical dispersions Ax in position and
Ap in "measured" momentum satisfy 8xQp 2 > 4/2 , while if e;é I‘VI this "uncer-

k tainty principle" is generally violated, as pointed out by Bohm( 6). We have given

% ? a simple explicit example of this elsewhere( 9)
‘  The “disturbancef aspect of the uncertainty principle arises from contextu-
alify, i.e. from entanglement between the system and apparatus wavefunctions
: (which causes the unknown apparatus hidden variables to affect the "measured"
oqtcome). Thus the nonlocal aspect of entanglement, which is masked in equilibrium
’ by the uncertainty principle, is really rendered unobservable in equilibrium by
ﬁhe effects of entanglement itself. Roughly speaking, in equilibrium, quantum

holism prevents itself from being seen directly.

Energy-momentum conservation: The autonomous (independent of X(t)) evolution

of Ey prevents the definition of a conserved energy or momentum. We argue that
this is quite reasonable,vas‘follows.
Firstly, the physical variables X(t) are subject to no preassigned mechanic-

al rules of interaction. They are, as it were, "freely floating", ready to follow
[
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whatever \Y dictates. And this guidance takes place in configuration space, not
phase space, determining the first time derivative of X(t). This profound differ-
ence from standard mechanics suggests that the usual mechanical energy-momentum
conservation need not play a fundamental role. A second argument, already noted,
is that energy-momentum conservation is powerful as a fundamental physical prin-
ciple only if it is a local principle. Thus its absence at the‘nonlocal subquantum
level is not unreasonable. Thirdly, standard quantum theory i; in any case simply
silent with regard to energy-momentum conservation for individual events (apart
from when the state is an eigenstate of energy or momentum). For these reasons
we propose that energy-momentum conservation may be reasonably abandoned as a
fundamental principle, and regarded purely as a phenomenological property of
equilibrium.

The actual (as opposed to "measured") value of momentum m X , according to
the pilot-wave theory, is Ppw= dS/9X . If one insists on defining an actual value
for "energy", the natural choice is Bohm's

E = (P )2/2m +V +Q
pw pw

Let us see how these compare with their counterparts in equilibrium quantum theory.

For a general distribution e , we define the mean values

Epw = \dX eEpw
Ppw = SdXQ Ppw
while for equilibrium e = {\'lz these means are, as is readily shown,

(Epw)eq = (H)
(B )eq = {p)

i.e. they are equal to the quantum-theoretical expectation values, as shown by

(6

Bohm ). However, even in equilibrium, the mean-square values are generally un-

equal,
2
B2 )eq # SHD
2 2)
(B2 ) oq # (P
For instance it is easy to show that

(e?) - (Piw)eq + de @1Y1/2%7?

(2.14)



Thisgmeans that the equilibrium probaﬁility:distribqtions for Epw y Ppw are gen-
erally not equal to the probability distributions for the "measured values" of
the operators H and P. The physical éeason for this:is of course contextuality,
and the inequality in (2.14) is a meésure of this contextuality.

Using the continuity equation for Q , together with dEpw/dt =9Q/9t and
de H’IzaQ/at = 0 one finds

di:’pw/dt = d(H)/dt +'de(Q - I\rlz)aolat ; (2.15)

while using 8S/9t + E

ow =0, withSde |\\J|23 Q/9 X =0, it follows that

daF /dt = a(p)/at + ‘de(e - H’l?)(—?v/ax - 20/9X) (2.16)

where of course d{H)/dt = 0 and

P ; o
d{P)/dt = de Y1%(-av/ax) ,
i | | i
Thus one recovers the usual energy-momentum conservation if and only if e =I*’Iz,
i

for which one has d(E_ ) /dt = O and {
: . Pw eq :

(P )gqdt = dewlz(-av/axj,— 90/9x)

i

i
tl

Given the emergence of standard physics in equilibrium P=|§El2, it is clear-
ly important to study in detail how this equilibriuﬁ arises, a subject to which

we now turn. g : .
: i BT |
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3. SUBQUANTUM STATISTICAL MECHANICS

At the fundamental level there exists a definite path X(t) guided by Y,
and there is of course no mention of probabilities. In practice one usually deals
with an ensemble P(X,t) of paths, each guided by the same 3£'. We must now derive
equilibrium P=lﬁf[2 for the ensemble, on the basis of the pair of deterministic
equations 1} =9s/9x , id0¥/9¢t = ?IY , in analogy with classical statistical
mechanics.

First we shall derive a general H-theorem, which implies P—> Iﬂfle in a
coarse-grained sense provided the system is "sufficiently chaotic". After consi-
dering the definition of subquantum entropy and the statistical mechanics of
equilibrium, we address the question of relaxation P—>» Iﬂflz for real systems.

The "probability' or "distribution" P may be conceived of in various ways,
according to circumstances. For instance in Section 2.2 we defined P as the ac-
tual distribution of a real collection of n systems, P then being a sum of delta-
functions. As n —>» OO0 , this sum may be replaced by a theoretical smooth func-
tion representing the infinite ensemble (rather as one defines a smooth density
in classical fluid dynamics). However one might also view P as a probability ass-
ociated with a single system, where the system is considered to be an element of
an imagined theoretical (and infinite) ensemble. For a system such as the entire
universe such an ensemble is purely theoretical, while for say a box of gas one
may realistically contemplate an at least very large ensemble. We need not re-
strict ourselves to any particular interpretation of P, since the mathematical
theorems given below will be valid regardless. The H-theorem may then be applied
to the whole universe, invoking a theoretical ensemble, or it may be applied to a
real ensemble of sub-systems. This freedom in the definition of P reflects the
fact that probabilities play no fundamental role. They are merely useful practi-

cal tools, whose definition may be varied according to convenience.

3.1 H-theorem

Consider an initial distribution P(X,0) of configurations X(0}, each guided
by the same ¥ , where P(X,0)# |‘£(x,o)|2. We take X to be the configuration of a
complicated system, consisting of a large number N of interacting variables Xi s
s0 that the path X(t) is generally very complicated. (For instance our system
might be a box of N interacting particles). As is the case with the classical H-
theorem, there is no simple and general specification of an "appropriately com-
plex" system, though some comments on this are made below (Section 3.3). It is of
course assumed that all regions where |Y|#0 are accessible to at least some of
the trajectories X(t).

By definition the distribution P(X,t) must satisfy the continuity equation
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‘crostructure® in the initial conditions
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| . o
3r/at + Ve(xp)=0 |
while the Schrodinger equation implies that ‘this is also satisfied, by ]S![z. As
: 45
pointed out by Bohm( ). this implies that the ratio f=P/}S!|2 is preserved along

trajectories,
df/at = 3£/t + XY =0

This means that initial deviations P#Iﬂflz, or f#1, are forever carried along the
trajectories and can never disappear, which at first sight seems to imply that
equilibrium can never be reached. But the situation here is exactly the same as
in the classical statistical mechanics of an isolated system, where the phase-
space probability density p is also preserved along the system trajectories
(Liouville's theorem). In the classical case what happens is that p evolves in a
highly complex "filamentary" manner over the energy surface so that, despite
dp/dt=0, on a coarse-grained level p does become uniform. In the subquantum case
P and IHZIZ are so thoroughly mixed by X as to become indistinguishable on a
coarse-grained level (this is rather like the classical stirring of two fluids).

(18)

Elsewhere we introduced the quantity

H= dem{laflnf= dax P 1n(p/|¥]?) ‘ (3.1)

by analogy to the classical Sdllpljlp, replacing the phase-space volume element
an ;—> l}Elde and p —) f . The continuity equation and df/dt=0 together imply
that dH/dt=0 , i.e. the exact fine-grained H is constant, as occurs classically

for an isolated system, reflecting the lack of fine-grained mixing. Dividing con-

figuration-space into cells of volume 8\/ , we define the coarse-grained quanti-

~ ties

P=(1/6v)\ axp
sv

P12 = (1/6V)S ax g2
év

i

(definihg P and IH!IZ as constant in each cell), and a coarse-grained H

i= dxﬁln(f’/l‘j!lz) ; ‘ (3.2)

i
{
i

The classical H—theorgm for an isolated system relies on the assumption
p(0) = p(0) in phase-space; i.e. it is assumed that there is no fine-grained "mi-
(46) L
. Some such assumption is of course
necessary owing to the time-reversibility of the theory, and the situation is si-

milar in the subqugntum case. We assume the initial conditions
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A A L Ak (3.3)

These will hold to high accuracy if P and |§2|2 are initially almost constant
over the volume &V (and to arbitrary accuracy as §V-~» 0 if P and ]ﬂg!a are
smooth functions).

Defining ?'= 5/[3!]2 , and using the facts that the exact H is constant in
time and that ??is constant over 5V, we have shown elsewhere(le) that

o

A -f= de IYIZ[fln(f/?) + - ]

- Y]
where H , Y , I, £ denote values at any time t#0 . Since x1ln(x/y)+ y - x? 0

for all x,y we have the subquantum H-theorem

H(t)< HA(0) for all t (3.4)

Note that H decreases on either side of t=0 (reflecting time-symmetry), so
the conditions (3.3) imply that t=0 is a local maximum (as in the classical H-

L7

theorem The result (3.4) of course does not imply that H(t) decreases mono-
tonically on t>»0 . But it does imply that there exists a time interval (0,T)
during which H either decreases or remains constant, i.e. dA/dt<0 throughout
(0,T). Further, it is easily shown(la) that A2 0 , so that H is bounded from
below.

We assume our system to be such that H closely approaches its minimum value
after some time tequil , and that experimental observations take place at a time

tnow satisfying

3.5
tequil< < tnow << trecux‘ ( )
where t is the subquantum recurrence time (see Section 3.3). With these ass-
recur _ ~ — (18)
umptions, and the fact that H is minimised if and only if P = I!EI everywhere H

the equilibrium 5=|§f|2 on the coarse-grained level is established. (Similar ass-
umptions are of course required to establish the equilibrium p = uniform on the
energy surface for the classical isolated system).

Now let a single variable X1 be extracted from X=(X1,X2,...XN) and prepared
in a state \Vq . (Here X includes the apparatus variables, where the apparatus is
assumed to be constructed from material which is in equilibrium). This means that,
given the observed value of the apparatus variable, the only nonvanishing part of
Y is the branch N\Vq(xl)'x, , where 'x

other other_
other variables. If this is done with an ensemble P=|¥|“ of X, the coarse-grained

represents the apparatus and

distribution of X1 will be
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]

- L - —
((xl.t) = Saxg.... deﬂp = dez““ deu Y1

which, using the constancy of IEEIZ in each cell, may be recast as

((Xl.t) = (1/§V )S gdx ....de |\£|
6v

(where 6V_ 8‘1 P SV ) so that

- 2 2
’Q(xl,t) =23 (1/5v1)S dx, l‘fq(xl)l dXyeeee dxul‘x,otherl

ov,y

or éimply

e o L TU G
i« Q(xl.t) = I\Vq(xl)l | (3.6)
| ‘

We thus recover the equilibrium probability distribution for a single extracted
variable.
| The result (3.6) might at first sight appear problematic. For \V will often

be a simple smooth function, such as the_zgxg{unctlon of the electron 1n the
ground state of Hydrogen (in which case I\v I I\\‘q for 6\! << (1 A) ). The
total configuration X is then at a point in configuration-space where the total
wavefuncﬁion Y is ~\Yq'x’other which is smooth in the variable X, . But Q ()(l,t)
will be very "spiky", so that only on coarse-graining does one obtain a smooth
function Q I*’ | . The apparent paradox, then, is that in this region of confi-
guratlon-space Iﬁfl is smooth while P is not (with respect to Xl)' For how can
this be so, if !ﬂ{l and P are both "stirred" by the same velocity field X in the
continuity equation? The answer is that i is related to the evolution of 3{ by
the Schradinger equation, as well as by the continuity equation, while no such
additional relation exists between X and P . This has the effect that if X varies

‘ very rapidly across configuration-space, i.e. is a "gpiky" function of X, then
this leads to a highly filamentary and "chaotic" P while nevertheless Iﬁf[a
mains relatively smooth. The simple picture of P and I\Elz both being "stirred"
by i,zin'a manner analogous to the classical stirring of two fluids, is then

" somewhat misleading. and |S{|2 generally remains smoother than P . (An explicit
numerical model confirms this - see Section 3.3).

Remarks on alternative approaches to deriving equilibrium: We have developed

the subquantum H-theorem by analogy with the classical treatment of isolated sys-
tems. It would be interesting to develop an alternative approach based on exter-
nal perturbations, perhaps obviating the need for coarse-graining. With an exter-
nal "“dissipator", this might also leéd to a fluctuation-dissipation theorem,

which would enable one to calculate the relaxation rate from equilibrium fluctua-

i
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tions.

The classical theory may alternatively be developed using only a single sys-—
tem, by taking the equilibrium distribution to be a statement as to the fraction
of time spent in each region of phase-space, an approach used in particular by
Einstein. The subquantum analogue of this would be to try to prove that a single
(complicated) system occupies the region dX for a fractlon IH{I dX of the time.
Unfortunately, the time-dependence of the measure Iﬂfi renders such a statement
meaningless. And indeed a time-dependent measure is usually not considered in dy-
namical systems theory. One might try to avoid this problem by a change of varia-
bles such that the new measure is time-independent.

Finally, a highly controversial approach to deriving P=Iﬂ{l2, which could
readily be adapte? to the pilot-wave theory, is that taken in the many-worlds
(a8

interpretation . However in this approach measurement of an infinite ensemble
supposedly (almost) always yields the equilibrium distribution. This seems to con-
firm the commonly made criticism that the result Iﬁflz is really assumed at the
outset. For in the pilot-wave theory, if one begins with an infinite nonequili-
brium ensemble P#IEHIZ at t=0, then measurements of X soon after t=0 will clearly
yield a nonequilibrium distribution. Further, there is a time-dependence in the

relaxation P—> IEEI2 , which is absent in the many-worlds approach.

3.2 Subquantum entropy. Equilibrium fluctuations. Random instantaneous signals.

The significance of the subguantum entropy

§=-H=-~ dep 1n(P/l‘£|2) (3.7)

deserves elaboration. This expression may seem peculiar in comparison with the
classical entropy, but it becomes completely natural if one considers entropy in
terms of "relative information".

The quantity
I = \dXP(X) In[P(X)/M(X)]

is known as the "renormalised information" of P with respect to density M(X), or
(49)  gpis

quantity is widely used in mathematical statistics. It is the information for

otherwise simply as the relative information of P with respect to M

discrimination in favour of the hypothesis that the distribution is P(X), against
the hypothesis that it is M(X). %) For our purposes it is sufficient to note
that it measures the amount of information contained in the distribution P(X), in
comparison with M(X). We stress that the word ninformation" need not refer to
anything subjective. One may take it to be just a measure of the mathematical

complexity of the function in question, which is a perfectly objective property
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if P represents a real ensemble.

Classically, the equilibrium distmbution is uniform, peq=constant (on the
energy surface). For a general p, the classical dflp lnp then measures the in-
formation contained in p relative to peq . '

For the subquantum case, the equilibrium distribution is P —IYI , and the
expression dXPln(P/|£I ) measures the information (negentropy) contained in
an arbitrary P relative to that contained in Peq=|§2| . Thus, measuring entropic

information relative to the equilibrium state leads inevitably to the expression

@),

given :
It is also useful to consider how S may befa ln(number of ways) definition.
To do this, at a fixed time t we transform the variables X—> X' such that the

new volume elementf%
v = 1Y) %ax , ‘ (3.8)

and the new probability distribution is P'= P/Iﬂ{lz (so that P'dX'=PdX). The
subquantum entropy is then )
s = —de"P'lnP' e i (3.9)
|

which may be given a ln(number of ways) definition as follows.

| Consider a large but finite number n of systems, whose distribution in X'
approaches P' in the limit n—3 @0 . For large n we have a fraction P'dX' of
systems occupying dX'. We then define W[P'] ,. the number of ways in which the n
points in X'-space may be arranged without altering the distribution P'(X'), and

the subquantum entropy is naturally defined by

s o 1nw[p'] ' ; ‘ (3.10)

s ; That this indeed leads to the subquantum entropy is seen upon calculation of

‘ W[P'] . Dividing X'-space into Yy equal cells of volume £ , let ng be the number

of systems occupying the ith cell. The set ini} is then equivalent to P', where
Pc(xi)g = ni/n as n—>» 00 . The n points may then be arranged in w[{ni}] ways,
without altering the set {ni} + where

w[{nl}] = nl/nll....nv! ‘;

Stirling's formula, with Eni=n , implies that
i
-\1/2
W= - -
in 1nn! | ¥1n(27W) +n Zl: ni(1+1/2ni)lnn;.l

For n—3 00 , we may take (1+1/2ni) =1, so that
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wﬁnj}] oA exp(- Znilnni)
i

where the proportionality factor depends on n and ¥ but not on ini} . Since

n.= nP'(X!)€ , we then have
i i

wP'] o4 exp[- \dX'nP'(InP' + In(ng))]
or, using SdX'P'=1

wlp'] o expl-n SdX'P'lnP']

The quantity lnw[P'] gives us an entropy associated with the ensemble of n sys-
tems. Dividing this by n we obtain (3.9), which on transforming back to X-space
yields the desired result (3.7) for S .

This ln(number of ways) definition of S enables it to be related to "equili-
brium fluctuations". If n systems are extracted from an infinite equilibrium en-
neas” |3{|2 while
— IEV_I as n—) 00 . Transforming again to X'-space and dividing it into

semble, their measured configurations will have a distribution P

meas

A ' Lo X ; . \ s _
cells, the probability rn‘[Pmeas] of obtaining the distribution Pmeas is just pro

portional to the number of ways of arranging n points with distribution Pl;ueas

(since in equilibrium the ensemble probability is uniform on X'-space). Thus

'ﬂ' [Pr;\eas] o exp(- Zini 1n ni)

which for large n may be written, transforming back to X-space,

e

which is just

2
meas] X exp[—n dxpmeasln(Pmeas/IYI )J
S [Pneas) |0
TP eae] X (7525

Since S[P
a dlstrlbutlon #I\HI has vanishing probability, and the distribution I‘_«EI has

] Lo, belng zero only for P S~|3{| , it is clear that for n——)oa

probability '\T =1 , as must of course be the case.

The subquantum entropy thus yields, by exponentiation, the probability for
"fluctuations" P # ly]e, which are always obtained for a finite ensemble.
These fluctuations are of course expected on simple statistical grounds, and they
are equally present in standard quantum theory. Nevertheless a very large (and
extremely rare) fluctuation, analogous to the macroscopic rare fluctuations of
classical statistical mechanics, may effectively give rise to nonequilibrium

physics (see Section 8.3).
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Fof an ensemble of gairs of systems with configurations X1 and X2 , the total
subquantum entropy separates into 5= Sl+52 if and only if P-Ple and Y = ‘fl‘fz ’
in which case the fluctuations Pl meas# I)y | and P, meas” Iﬂ{ |2 will be sta-
tistlcally independent, 'TY = 1 2
are entangled Y#Y Yz , the entropy will be nonseparable so that the fluctua-
tlons for each system will be correlated,111#TT'TT . As a simple example, consi-

. While if the two (perhaps distant) systems

der an ensemble of EPR-correlated spin-1/2 particles, 1 and 2, in the singlet
state. If oht of 100 measurements 53 of the particles-1 are found with spin-up,
then 47 of the particles—2 will be found with spin-up, the fluctuations being
completely correlated. Again, such correlated fluctuations are equally present in
standard quantum theory, and their probability is easily calculated by applying
P-Iﬂ!l to each outcome. !

From the point of viéw of the pilot-wave theory, where nonlocality is only-
juét—hidden by equilibrium, these nonlocally-correlated equilibrium fluctuations

‘may be interpreted as random instantaneous signals , analogous to the random en-

tropic fluctuations of classical statistical mechanics. The attempt to make prac-
tical use of these random instantaneous signals is analogous to the attempt to
extract useful work from classical thermal fluctuations. Occasional small-scale
"violations" of the classical Second Law are usually of no practical value, and
tﬂe Second Law holds in an average sense. However, from an extremely rare thermal
fluctuation (such as the spontaneous boiling of the oceans) useful work may

clearly be extracted. Similarly, extremely rare large-scale fluctuations P#Iﬂflz
would give rise to macroscopic instantaneous signals, which however could only
be controlled by a subguantum demon or automaton (see Section 8.3).

3.3 The approach to equilibrium

The subquantum H-theorem is a general result which tells us that, for appro-
priate initial conditions, the mixing P—> Iﬂfl begins to occur on a coarse-~
grained level., The initial conditions are "appropriate" if they contain no fine-
gfained microstructure, which could lead to "unlikely" entropy-decreasing behav-
iour, as we have assumed in (3.3). ; !

- This general result does not in itself guarantee that equilibrium is actually
reached. Nor does it indicate the magnitude of the’relaxation time. The extent to
which equilibrium is reached and theitime taken for this to bccur depend on the
dgtails of the system, as in classical statistical mechanics. It is clearly impor-
tént that explicit models be studied in detail, not only as a point of principle,
but also for the possible experiqental and cosmological implications (see belaw).
In this Section, some initial stéps are taken in this direction.

\ We have, in multidimensional configuration-space, two "fluids" of density P
and Iﬂﬁlz. each stirred by the same velocity field X which varies rapidly with X.
How fast does P—) I&!I? ? This clearly depends on the size of the coarse-graining
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volume 6V and on the form of the velocity field k . (As we have already noted, i
is related to [3ﬂ| by the Schrodinger equation, so the "stirring" actually depends
on the density Iﬂflz of one of the "fluids", and the analogy with Gibbs stirring
is not entirely accurate).

Relaxation Time: Let us define a typical relaxafigﬂ_time T , given an ini-
tial P_ , ‘fo , and §V , where the r‘e{axation P—> IYI2 is equivalent to H—3 0.
One might at first try taking 1/1:_= —HO/HO . However, with the initial conditions
(3.3), the initial rate of change ﬁo actually vanishes. The reasons for this are
that H is at a local maximum at t=0 and that the dynamics is continuous and diff-
erentiable. Thus the time-curve of fl is smoothly peaked at t=0, and ﬁo must van-
ish. This is in contrast with the classical H-theorem where, owing to the sudden-

ness of molecular collisions, the tlme~curve of H may be sharply peaked and

Class (47)

H may be discontinuous, so that H need not vanish near t=0 .

Class Class
Let us show explicitly that HO-O . From (3.7) it follows that

dii/at = de [25/2 6 1n(F/1¥1%) - B 1¥1%/2 ¢ (B/1¥1%)]

or, using the continuity equation,

dfi/dt = de [-V-()'(p)ln(ﬁ/l‘;\{lz + V-()'(I\flz)(ﬁ/ltklz)]

The constancy of P and Iﬂﬁlz in each coarse-graining cell implies that

de(.v-d( P) 1n(B/ Y 1%)] = de [-¥- (xP) 1n(3/1¥I%)]
and similarly for the second term. Integration by parts then yields
- 2 ~ . ~
dH/dt = de IWI“(£/f = 1)X-VT (3.11)

(where f=P/|ﬂ!|2 and ?:5/[3{[2 as before). Since f0=?o we indeed have ﬁo=0 .
though of course generally i #0 for t>»0 .
Thus in order to define a relaxation time in terms of the initial quantities

we must go to second-order time-derivatives. Let us define

/%% = - /A (3.12)

.

and express H  in terms of P, Y  and 8V . It will be seen that H <O .

From (3. 11) we have, rememberlng f —f »

E13 2 . S
Hy = \ax Y | (xo-Vfo)B(r/f)/atltzo

while the continuity equation together with df/@t + ).(-Vf = 0 implies

ot e TR
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Using the fact that £ and |\y |

are essentially constant over each cell, one
then finds

(13 2 . 0 .
A, = _de(|3{°| /£ )X -V [(X V£ - (x,:V1,)]

which may be written

2
- 2 B 2 °
H) = - \ax(|¥ | /fo)[fxo-Vfo) - (X,+91) ] (3.13)

iwhere =
i

-(x vr)

(X, V£, )2 = Var().( -Vfﬁ) (3.14)

is the variance of X Vfo over the coarse-graining cell. Since Gz> 52 for any
function G, we have i 5 0 as it must be. And of course if the coarse-graining
overbars are dropped, one confirms that the exact H remains constant in time.

: The result (3.13) may then be used to.define the relaxation time v given by
(3.12).

This relaxation time is governed by the variance (3.14): If ).(0 and Vfo
vary greatly over the cell, and if Xo is in the direction of Vfo

, then ¥ will
be small.
Note that while we assume fo to be essentially constant over each cell, this

‘does not of course imply that Vfo vanishes, but only that IVfo-dX|<< lfol for

'a displacement dX within a éell, as will be true for sufficiently small 6v. In-

deéd the initial conditions (3.3) are satisfied to any desired accuracy £ , pro-
vided §V is everywhere less than some & » assuming P and I‘_fol2 to be smooth
functions. In this rigorous sense the above is consistent.

Is there any general relationship between T and the timescale At ~*h/ AE
.éssociated with the Schrodinger evolution of q_) ? It seems not, firstly because
A’c depends only on Y » and secondly becauée roughly speaking 1/ At is propor-
“tional to the Imlz-weighted "mean" of X while 1/'t:2
‘ance of X over the coarse-graining cells. And numerical calculations for a simple

that T may be a small fraction of At.

is proportional to the vari-

:'model, to which we now turn; - show

Numerical Calculations with a Simple Model: Consider the simplest possible

model, where X consists of just a single variable, the position of a particle in
a one-dimensional box with wavefunction \Y . Considering an ensemble distribution
P of such systems, each guided by the same Y , we study the evolution of an ini-
tial PO#I Yola . This simple model is a totally unrealistic setting for the H-
theorem, a theorem which should be applied to an ensemble of complicated many-
variable systems. Nevertheless the model is instructive.

A box with infinite barriers at X=0,L has energy eigenfunctions

o=~/ Ve + (/I P V- (K1Y, Pe) = /1Y 1DV 115
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$,00 = @ einmlx) L eeL2,8,

with eigenvalues E = (1/2)(T\'n/L)2 funits m=h=1]. Our initial \IJO(X) is taken to

be a superposition of the first M eigenfunctions

M .
(X) = w7230 )
Yo n

n=1
with coefficients of equal modulus (so each energy state is equally likely in
The phases Gn

equilibrium). are randomly chosen at t=0 (and of course fixed

thereafter). For t>0 one then has
M
- i(@,~E t)
Yx,t) = E M 1/2<fln(x)e n~n
n=1

with trajectory
X(t) = (Re} aIm\\J/ax - Iny ane\\'/ax)/l\\"l2 (3.15)

We begin with an initially uniform ensemble Po=1/L and calculate P at later
With L=100 we begin with 99 points X at X=1,2,40..,99 and num-

times as follows:
erically calculate the trajectory X of each from (3. 15) Each point, during its
motion, carries with it the initial value of f =P /I \i) | , so that P(Xt,t) at

the 99 later points is easily determined from

P(X,6) = [0, 1%P(x,,00/1§(x,,0 | (3.16)

(The lattice of points is unfortunately distorted by this method).

Note that, since the trajectories never cross eachother (the velocity field
being single-valued), in this one-dimensional model the ordering of points along
the line never changes.

The velocity field X is generally found to vary with X much more rapidly

than does |\V|2 In particular, X shows very sharp spikes at the turning points

of |YI?

For all M) 1, \V is periodic in time, with period T=2T|'/E1'.$ 12700 in our
units. For M=2 I have calculated the evolution for a whole period and found, as

one might expect, a subquantum recurrence. All trajectories recur to their initial

points after time T, and therefore so does any initial distribution Po' For Po=
1/100 the evolution of P is not particularly interesting, developing a single
sharp peak several times higher than the maximum value of I‘i’l2 After time T/2
this peak begins to disappear as P recurs to P . From (3.18), it is clear that
such sharp peaks in P originate from small values of I‘V(X O)I

It is clear that, speaking generally, a periodic flow X(t) must yield a pe-

2
riodic I\ill and P, yet the converse is not necessarily true. For instance a
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H

l.“lgld translation of l‘f] = coszx ylelds a perlodlc I\YI and yet X(t) never re-
curs. Nevertheless we expect that in most cases, if I‘Yl is periodic then so are
the trajectories X(t), and we have subquantum recurrence. Certainly this is the
case for our box. "

For a superposition of M=10 energy states, P approaches l‘*’lz to a degree
which is quite good considering the extreme simplicity of the model, though any
approach to IYIZ is eventually unravelled again for this periodic system.

Some results for M=10 are sketched in Figures 1-4. The key features of inter-
est are: (i) P changes drastically by t=40 even though |\|-'|2 has changed only a
little ( At—ﬂ/AE ~ 60 for M=10). There is as yet little correlation between P
and I\YI (Figure 2). \vle«expect that P will generally, also in more realistic
models, change greatly over timescales less than At. (ii) P becomes very irregu-
lar and sharply peaked while I‘le remains relatively smooth, despite both being
“stirred" by the same velocity field ).( . As already noted, this is explained by
X being tied to ‘f by the Schrodinger equation. (iii) From t ~~ 80 onwards, many
~ of the sharp peaks of P coincide with the smooth peaks of I‘fl (Figure 3 for
t=120). While the coincidence of P with W"[ is by no means good, already in
this extremely simple model an experimenter with a "blunt" measuring device (say
. with resolution §X 2 10) would conclude that at t=120, on this approximate
: coarse—grained level, P and l\\‘lz are very roughly equal over most of the box
(see Figure 3). (iv) Several sharp peaks of P may form within a single smooth
peak of I\rl , as occurs by t=400 (Figure 4). This resolves the apparent paradox
raised near the end of Section 3.1 for a single extracted variable: It EE possi-
ble for the wavefunction to remain smooth while the initially smooth distribution
becomes (relat:}vely) highly irregular, the latter yielding the former on coarse-
: gréining. : ' : :
| The "relaxation" time ¢’ at t=0, defined by (3.12), may be evaluated numer-
ically, given a coarse-graining length 5X for the above P and “l . For §x=2
one finds for M=10 that T ~ 2 : so that ¥/At~ 1072 (For- M=20,%F ~ 0.005
while At~ 15 and ¥/At ~ 10~ ). Evidently T merely indicates the timescale
over which P changes significantly, this being a small fraction of At. The time
tequil for equilibrium to be reached is, at least in this simple case (where equ-
" ilibrium is "reached" only in a very approximate sense), actually considerably
larger than 't' and more comparable with Ac.

This simple one-dimensional mpdel, where the ordering of the points cannot
change, serves an illustrative purpose only. Multidimensional models, with inter-
actions, ‘will ‘presumably show a mﬁre realistic approach to equilibrium, though
this remains to be studied.

Random Phase Conjecture: The derivation of the master equation of quantum

statistical mechanics from the Schrddinger equation assumes that the phases of

P
X
2
Yl
X
Fig.l: Initial conditions at t=0
P
X
2
i
X

Fig.3: At t=120, strong coincidence
between sharp peaks of P and smooth
peaks of |¥|2.
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IyI?

Fig.2: At t=40, P has drastically
altered despite the small change
in [YI2. As yet there is llttle
coincidence between P and |W|2.

P

yI2

Fig.4: At t=400, in the region
around X=84 sketched here, three

sharp peaks _coincide with a single
peak of |Y|2.
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the wavefunction (in the energy basis) at t=0 are chosen randomly. While quantum
and subquantum statistical mechanics are of course very different, the following
conjecture seems reasonable: That there exists a large class of many-variable
systems, with interactions between the variables, for which if the initial wave-
function has randomly chosen phases in the energy basis, then the motion X(t)

will be sufficiently irregular for coarse-grained equilibrium to be reached for

an ensemble.

. . Ve . .
On Subquantum Recurrence: The classical Poincare recurrence time for an iso-

lated system is veby sensitive to the initial starting point. Thus for an ensem-
ble, at any time the probability distribution will be scrambled with respect to
the initial distribution, and only a few points will have recurred. In the sub-

. s e P
quantum case there is a much stronger form of Poincare recurrence for finite sys-

'tems. For the discreteness of the energy spectrum implies that the wavefunction

is quasiperiodic, i.e. returns arbitrarily closely to its initial value. Presuma-
bly this will usuaily imply that most of the trajectories will (quasi)recur as
well. Almost all elements of the ensemble will then recur simultaneously, thereby
unscrambling the probability distribution. A similar phenomenon occurs of course
in quantum statistical mechanics, where ensemble averages for finite systems are

(51)

quasiperiodic . There are two ways of facing this situation, in both the quan-

! tum and subquantum cases: (i) Assume the recurrence time to be much larger than

" the eqqilibrium time, and that our observations take place somewhere inbetween.

(ii) Work with infinite systems. The nondiscreteness of, the energy spectrum then

eliminates the quasiperiodicity.

i
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4, FIELD THEORY OF "PARTICLES" AND SPIN

(6)

The pilot-wave theory of fields has so far been developed, by Bohm and

: (24)
by Bohm, Hiley and Kaloyerou

, for massless fields only, in particular for the
electromagnetic and scalar cases. Bohm's 1952 treatment of the electromagnetic
field uses the usual four-component AP = ( ¢,A) written in the Coulomb gauge. In
Section 5 we shall develop a more natural pilot-wave theory of electrodynamics
based on an "absolute 3+1" version of the classical theory, without AO. And in
Section 6 we give an analogous pilot-wave theory of gravitation. In the present
Section we are concerned with the case of massive fields, first scalar and then
spin-1/2. In particular we wish to show how massive localised "particles" (with
or without spin) may be naturally described with pilot-wave field theory. This is

(52)

in contrast with the theory of electrons and positrons given by Bohm , based

on particle trajectories, where positrons are treated as "holes" in the negative
energy sea 3 la Dirac. Not only is the latter theory very inelegant, it also cre-
ates an unsatisfactory dualism: Particle description for the massive case versus
field description for the massless case. Here we shall see that the field des-
cription may be applied to all cases.

A realistic field description of particles might at first sight seem untena-
ble, for two reasons: (i) One may ask how a field distributed over all space can
account for the highly localised massive particles seen in the laboratory. How-
ever, exactly the same query may be put to standard quantum field theefy: For say
the scalar case, the basic "observable" is surely the field operator ¢ (x,t),
whose eigenvalues are the set of definite field configurations qb(x), associated
with eigenstates |¢ hc)) . How do "particles" localised in space emerge? We show
below how this happens, in terms of localised "field lumps", thereby clarifying
both the pilot-wave and the standard quantum field theories. (ii) Fermion fields

(24)

anticommute, a fact which according to Bohm et al. makes it necessary to
abandon field theory and use particle trajectories for the fermion case. However
a pilot-wave field theory of fermions may be straightforwardly based on fields of
anticommuting Grassmann numbers, these being an extension of the complex numbers,
as given below.

(24)

It has been suggested that it is "premature” to try to develop a coher-
ent pilot-wave interpretation of relativistic quantum mechanics. We hope to make
it clear in this and the subsequent two Sections that the pilot-wave theory of
fields is not only as generally applicable as is standard canonical field theory,
but is actually superior to it when it comes to quantising the electromagnetic

and gravitational fields.



f 4.1 Field theory of massive "particles"

Let us consider the (real) massive scalar case. Restricting ourselves to
equilibrium probability distributions, we may use the formalism of standa}d quan-
tum field theory. (We work 1n the Schrodlnger picture). The issue is this: Given

the quantum field operator ¢(x), how does one account in terms of field configu-

rations for the observed well-localised objects known as "particles"?

"In the basis I¢(x)) of definite field configurations, the state vector m{)
is just,K the wavefunctional Y[cf .’c] .« To make contact with "localised particles",
say for simplicity a single slowly—ﬁoving "particle", we need to construct a
basis Ix) representing approximately-definite particle positions. Given [x) , if
the state vector of our field system has the form
> = \Ex O Y £s (4.1)
¢ :
thén this will correspond to the nonrelativistic particle system with wavefunc-
tion *’(x). But as we shall see: (i) The [x) may be defined entirely in terms of
fields, (ii) The strictly localised |x) are (as is well known) only a low energy
approximation, {(iii) The physics may be viewed entirely in terms of field config-
urations. : i

For }x) to exist we muat have an associated "position operator" X defined in
terms of the field operator 47(x) The latter may always be expanded in terms of

. annihilatjon and creation operators as

A : / . 1
¢(x) = E (2VE)-1/2(Qpeip.x + g:e—lp-x) i
3 p . .

whebe v is a normalisation volume and E= (m2+p

face type for 3-vectors. Here p:x = p1x1+p2x2+p3x ). Restricting ourselves to low

2)1/2 (Note: We do not use bold-

energy states we may take EXm , and define the low energy positive frequency

field operator

(x) -Z(zv ) 1/2" X (4.2)
and the operator
MoA L ;
- 2n daxx4>+(x)¢;+(x) (4.3)

i The usual states |p) = QIIO) may be used to define |x) by
- 3 - o p :
Ixy = (271) 3/2 d°pe ip xlp) # (4.4)

. A at o -
Writing X in terms of ap ’ ap , and |x) in terms of Ip) , one easily shows that
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le) = x|x) (4.5)

A
establishing X as a nonrelativistic position operator. Since

24 3 ,1/2
¢ 010> = (v/1emm) 2 x)y (4.6)
the ¢j."creates a particle" at |x) . (There is of course a considerable litera-
53
ture on position operators in relativistic quantum mechanics( ). The simple

approach just given suffices for what follows).

Given the basis Ix) , one may now contemplate a field state of the form

(4.1), with wavefunctional

] - Sdax Py (4.7)

where (¢lx) is the amplitude for field configuration ¢(x') in the state |x) .
This field state must somehow represent a nonrelativistic "particle" whose wave-~
packet \f(x) could be, for instance, a localised Gaussian. The question is: What
does the probability distribution Iﬂf[¢][2 of field configurations look like,

and how does one comprehend in terms of these field configurations the apparently
well-localised "particle"? The answer, as we now show, is simply that the most
likely field configuration is that corresponding to a "lump"of‘theformhﬂKx)#f*(x).

The wavefunctional for the vacuum is
{P10>= P [$] X exp[-(1/26T%) \ @ d3x-4>(x)95<x')x(x-x->] (4.8)

where

I(x-x') = \a’p(m+p 2)1/2 tp: (x=xt)

(54)

(this is just the generalisation of the well known result for the massless
case). The quantity I(x-x') is proportiocnal to the second time-derivative of the

Feynman propagator at equal times, and it is well—known(ss) that the latter dies

off exponentially ﬁ“e—mlx—x'l for spacelike separations. This means that, in the
vacuum, field values at x and x' are statistically uncorrelated for lx—x'lab 1/m
(the Compton wavelength). And the most probable configuration in the vacuum is of
course just ¢ =0 everywhere.

We would now like an explicit expression, in terms of fields only, for the
wavefunctional (4.7) for our single-particle state. From (4.6), and the fact that

A
ap|0) = 0 , one may write
A
Ixy= (6T w2 (x) 10y

so that
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<Plxd> ot Py, (9] 'f
and so0 C : | .

Y1 A W9\ PP ’ ; (4.9)
We thus have a probability distribution

P[] A |Y0[¢]!2|Sd3x¢(x>\r(x)l2 | (4.10)

(24), for '"wavepackets" in

(Aﬁalogous results have been obtained by Bohm et al.
the massless case,approximating classical electromagnetic waves). Superimposed on
the background vacuum fluctuatigps lﬂfola we now have an additional statistical
factor related to Y(x). ‘ '

; What will be thé most probable field configuration? This is obtained by

‘ ‘ putting 6?[4’]/64) =0 , though the calculation is easier in momentum space. Re-

taining only momentum components such that Ex&m , we have
o : ~ ~ ~ ~
P[§(0)] ot exp[~(n/2) Sa3p¢(p> pe-p] | \&’o o) )1

where

i

; Lo d . ;’ !
b = @M\ R )
© ‘rand similarly for Y(p). The condition

6P[$(p>3/8$(p)=o ]

~—

;1 ~ ~ i
' then implies (remembering that ¢*(p) = ¢(—p)‘

i

‘; ;}‘(p) = Gl o) Priop) + ot Pio))

fon’»allk p where iy o | ‘k
kfol‘ = \d%» t’ft’(p‘f):i;(--p)‘= d23x4)(x)‘f(X) ’ (4.11)

The r!l(;st probable field configur;tion is then
¢ = Y‘(x)/ern’ot s proa/zmet (4.12)

which is simply a linear combination of \l' and \1!* . If Y happens to be real,
then so is ©| , and we have ¢ = \Il/ma( .

Multiplying by \r and integrating over
x then implies that e = 1/mel or o = m

1/2. The most likely field configuration

is then just
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P = \y(x)/ml’2 (4.13)

It also follows from (4.10) that the ratio

PLPG-] /Pl = | \xPa-a) Y01/ \a*xp oy o l®

s0 the probability is small that deviates significantly from \Y .

Thus the field (P tends to "imitate" what we call the nonrelativistic wave-
function \" . For the ground state wavefunction \vo(x) of Hydrogen, with a spin-
less "electron", the most likely configuration of the electron field is
4) = \"O/ml/2 , 50 the "particle" is actually spread over a Bohr radius. And in
general the most likely field is (being just a linear combination of \i) and Y*)
spread over space like a wavepacket. If \V is a well localised Gaussian of width
Ax, corresponding to an approximately classical “particle", then the field will
simply be a "lump" of size Dx.

We also note that at time t when the wavefunctional is

Y19 o oty 1 (it propn

®
(where Eo is the vacuum energy) the field velocity ¢ = 65/6¢= ImﬁlnY/6¢ is

g0/t = mlYix, )/ Sds"‘f"*"f‘x"‘)]l § o= Pix,t)

The field velocity at any point within the packet ‘Y therefore depends on the
field throughout the packet. Our '"particle" is then an entangled lump of field,
moving on a chaotic vacuum background. (If ‘\) is real, then ¢ is static).
According to field theory, then, a "particle" is rﬁg a pointlike object
lying somewhere within the nonrelativistic wavepacket ‘V . It is rather a "field
lump" of the form A~/ \y + ‘{l* , where the actual field configuration lies, of
course, somewhere within the wavefunctional Y [¢,t]. The nonrelativistic pilot-
wave theory of "particles", with trajectory mX=g@S/g X , is then incorrect. There
are no such pointlike particles and :10 trajectories. There are only field varia-
bles with an evolution of the form ¢ = 65/64) , and the apparent "particles"
are merely phenomenological field structures. Strictly speaking then, the H-

theorem and other results of this work must be applied to field variables only.

Nevertheless, as one often does in standard quantum theory, one may for simplic-
ity use the nonrelativistic particle model for illustrative purposes.

In this view what appears classically as the motion of a permanent body
through space is in actuality the propagation of a field disturbance: The dis-
appearance of a field disturbance in one region, accompanied by the appearance of

a similar disturbance in a nearby region, leads to the apparent "motion of matter!



One may of course consider “two-particle“ states, built from Ip p2)~ + + |0y,
w1th symmetric two—particle wavefunctions, and the: 11ke1y field conflguratlon 5111
now consist of a pair of "lumps" representing the pair of “particles'". )

Finally, one may ask what happens during a "position measurement”, from the
field viewpoint. Consider first a nonrelativistic wavefunction consisting of a
superposition of two distinct peaks, \t‘ = ‘Vl + ‘vz » localised near X, and Xy -
The wavefunctional will still be just (4.7), and the most likely field is again
N\P+ \y* , now yielding two lumps near x and Xy . If one now performs a measure-

1
ment of position, with aq apparatus variable y, the total wavefunctional evolves

i

into

Y[¢.y]o< Y, [4’] ['Ll(y)gd x¢<x>~y1(x> RE" (y)Sd x § ) P, (x)]

where the apparatus wavefunctions 7‘1 and 7(2 do ngt overlap. If y occupies say
7‘1 , then the second branch vanishes, and the most likely field is then just
"‘Yl YI , i.e. localised near x:l » The "measurement process" has thus con-
strained the field ¢ to evolve towards a narrow regwn peaked near X the
“measured position". But this "outcome" x, has no SJmple relation to the actual

initial field configuration (which was dlstributed near both x. and x2), and de-

pends as much on the 1n;tial apparatus variables as it does onlthe initial
In other words the "particle positioﬁ" is actuallysa contextual variable, and
only the field variables themselves are noncontextual. ‘ '

Thus in the two-slit experiment with a single "partlcle",‘the field is actu-
a}ly spread over both waygpackets emgrging from the two slits. It is only upon
"ﬁeasuremept" at the backstop that yhe field concentrates into a small region.
This pictufe of particles somewhat resembles that of other interpretations of
quantum theory, where th;:particle,is in a sense spread over space until a meas-
urement takes place. Though of courée our fundamental variables - the fields, have
unique and definitervalueé at all times, in sharp distinction from other inter-

pretations.

) Pl S ’ CoEE .
: A / ; 4.2 Grassmann field theory of spin

isj In the path-integral formulatlon of standard quantum field theory, operators
do not appear, and one is obliged to maka use of anticommuting c-numbers or

(56)

Grassmann flelds for thekfermion case . The situation is similar in pilot-wave
field theory. We may represent fermiqné by an objective field of Grassmann numbers
evolving in time, guided by a wavefunctional EE . |

- We shall concentraté on theécasé of massive spin—1/2. This is usually des-

cribed by a four-component Dirac field *ﬂ* with Lagrangian density
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& = waryyFopy - @ Prytyl - npy
However, this is not appropriate for the pilot-wave theory, for the following

reason: The momentum 1§ canonically conjugate to \V is TT- (1/2)*’ so that the

actual evolution of the "hidden variable" field will be

(1/2)\Y (x,t) = 68/6\3‘1 (4.14)

where S is the phase of the wavefunctional W = Y [\Y,YT,t] . Thus, rather than
telling us the rate of change of any given actual field, the functional derivative
§ S/&\Y apparently tells us the actual field configuration. But (4.14) will imply
an untenable restriction on the possible initial field. As a simple analogy, if
the nonrelativistic particle trajectory were given by Xol @S/9 X, instead of
)'(o(as/ax , then for S=kX the only possible particle position would be Xolk.

The origin of this difficulty is,of course, that the Dirac field obeys a
wave-equation which is first order in time, in contrast with all other physical
fields. To proceed, we must therefore use the Van der Waerden field, which is
equivalent to the Dirac field, but whose wave-equation is second-order in time.

The Van der Waerden field(57) ¢ is a Eﬁg—component complex field satisfying

the wave-equation
2°p /04 - (@-)?p +n’d =0 (4.15)

where (Il are Pauli spin matrices. (All this discussion of wave-equations of

course refers to the "prequantisation" level or, equivalently, to the operator

(57}

level of quantum theory in the Heisenberg picture). If one defines
- ¢
Pf - /m-13/9t + 10wV ¢

then

(¢4
¢R L

obeys the Dirac equation

W‘La}*\v -my =0
(57)

As shown by Feynman and Brown » the complex two—component(ﬁ is just as
suitable as the Dirac field for the description of electrons and positrons, des-

pite the common belief that four-component fields are necessary. For since a sin-
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gle-component Klein-Gordon fiéld acc&unts foﬁvboth particle and antiparticle
states, its two-component generalisation accounts for spin as well. As is well
known, the historical reasons which led Dirac to devise a first-order wave-
equation were erroneous. Further, from a general viewpoint, it is unsatisfactory
to have one physical field obeying a first-order equation, in contrast with all
the other known physical fields. And from the'pilot-wave viewpoint, this first-
order field is in any case actually untenable. We therefore propose an abandon-
ment of the four-component Dirab field, viewing it as a historical curiosity, and
shall work instead with two—coﬁponent fields. As Feynman put it: "I was tempted
to teach quantum electrodynamics with a two-component wavefunction [1 e. fleld]

" The only dlfficulty ‘is that you could not read any of the literature"(ss)
the pilot-wave theéry the two-cdmponent field is forced upon us.

The complex Grassmann fields ¢ol » ¢& (ol =1,2) obey anticommutation rela-

tions

i%(x)v. %(y)} - i4>;(x)v(.{¢§(y)} ={¢;;x). ng(y)} -0 (4.16)

k where ia,b} = ab + ba . We briéfly review their mathematical theory (see Berezin
for details). By forming polynomials, these fields are the generators of an infi-
‘nite dimensional Grassmann algebra. This algebra is a direct sum of two subspaces,
"even" and "odd", consisting respectlvely of linear combinations of monomial ele-—
ments of even and odd degree.. An "even" element such as 4) d(x) (”P(y) commutes

i with all other elements, and behaves like an ordinary complex number. Denoting a
general element by f, the involutive mapping fé&—» f* satisfies (fle) =f2*fl .
Left and right differentiation are respectively defined by

y
6(“ ;x)'\w)) - 63(x-z)Y‘(Y) - §lu-2

: ‘ (V\(X)%T 63(y—2)“(x) - 63(x—z}Y\(y)

where V\ represents any generator ¢ or ¢ . The following properties are used

gﬁ,

56" 6¢

below. '

%6? Eqb’”‘
o5

L
TR )

" ' which imply
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-
[8,(1‘3)] g(r« )
867 69 6¢° «P
If f2 is an arbitrary element then .
g .3 fl i; fz ’/
5 ‘s‘
(£,6, )2 f(l)t(z

271 6¢) 2 6¢ ¢

with + or - according as f is even or odd respectively.

For a time-dependent Grassmann field, the time-derivatives ¢d ¢ o re
also included among the anticommuting generators.
For the pilot-wave theory of electrons and positrons, we take the Lagrangian

density for the Van der Waerden field

& - ‘i’& éa’ (050 -V, - n°P s b,

(where ol is summed over) with canonical momenta

L =
T-T - Zsah* A

(4.17)

Our Hamiltonian density is then
R - T (0'-V¢)‘;(O'-V¢)d + "‘2‘#&4’0( (4.18)

Introducing the operators
@.

Ay A*dhi'g
- 64»“ U ¥ ¥

*
-3

we have the anticommutation relations

acting on 3ﬁ from the right, and

i¢;(x), -i_a-f_g;—)z - 168 520

acting on Y from the left.
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We may then write a Sphr'o'dinger equation for Y = Y [¢d ,¢‘; ,t]

> =
1-%% = Sd3x[_‘6-%:< 5g¢d) + (0’-V¢);(G.v¢)dw + m2¢§¢d§!] {4.19)

where ¥ is of course an even element of the Grassmann algebra, as are || and
the phase S . ‘

Using the above properties of differentiation, (4.19) implies the continuity
equation ‘ 1
s )
219% _ 2 85

3 [ 2 S!; S
L - L \a'x (e ) o+ (¥ )
t # 3t
2 6 9u 5¢a 563 64x
We may then identify the evolution of the actual "hidden variable" fields

® . I . (4.20)

bo- 22

i

which are as one expects from (4.17);
! The equations (4.19) and (4.20) define a pilot-wave theory of the free

massive spin-1/2 field. As we have shown in the scalar case, localised "particles"

emerge as phenomenological field "lumps" which imitate the nonrelativistic wave-

function. Here such "lumps" may be thought of in terms of "even" quantities such

as 91 P -
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6. THEORY OF LORENTZ INVARIANCE AND ELECTRODYNAMICS

5.1.1 "Active" view of Lorentz invariance: an equilibrium symmetry

(1),(15) (60)

, Popper

(23),(24)
It has been suggested by Bell ,

, and thm et al.
that in flat spacetime there exists a preferred frame singled out by quantum non-
locality. While this frame is well defined at the hidden-variable level, it happ-
ens to be undetectable in practice at the statistical level of standard quantum
theory, and hence in the classical approximation. Adopting this view, our aim
here is to show how, in the context of the pilot-wave theory, this view may be
made quite natural and plausible.

Let us first consider the purely classical level, where the preferred frame
has absolute time t and coordinates x on absolute space. Lorentz invariance may
be viewed in terms of an "active" symmetry (rather than in terms of passive coor-
dinate transformations), a view which is essentially based on Lorentz's original
(pre-Einsteinian) principle of "corresponding states"(SI). We shall first illus-—
trate this view in terms of a free scalar field ¢(x,t).

If the function ¢(x,t) satisfies the wave-equation

,]I»“'j_ 2 <f(x,t) =0

oxP Ixv

then 4)(x,t) is a physically allowed field configuration (in space and time).

Given a definite ¢ , one may contemplate active transformations
$xt) — $rix,t)

to new physically allowed configurations (the coordinate system (t,x) is fixed
throughout). The general class of transformations ¢ —_—> ¢' is vast, and ranges
over all physically allowed configurations. However there exists a special class,
the "field deformations", defined as follows: The new field configuration ¢'(x,t)
is constructed by taking the old field value ¢ at xP and moving it to the new
point x* = £(x"), so that

¢'(xy") = ¢(x")

This amounts to a redistribution of field values in absolute space and time,
é
according to the active mapping <P —> ¥ . If we require the resulting mathe-

matical configuration ¢'(x,t) to be physically allowed, i.e. that

Y
N2y 254w = o

then what are the possible f ? (Note that ¢' is required to obey the ''same law"

as ¢ , i.e. the same field equation). The answer is simply that f must leave in-
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variant the wave-operator:

W , 2 va 2
O R

Thus the allowed f correspond to translations, rotations, and Lorentz boosts of
¢ , these being the deformations which lead to new allowed configurations.

For a vector field wh , the field deformation
)

. ‘w)"’(xl\' ) = %‘ w?(x}) j

consists of a mapping from x* to xxl accompanied of course by a "rotation" of the
4-vector wY by the matrix ax""/a x¥ , leading again to a new allowed configura-
tion (if wY satisfies the wave-equation).

Generalising to general tensors, one may view the broad validity of Poincaré
symmetry as arising from the ubiquitous presence in Nature of the wave-operator
0 2/31? -»‘72, whose symmetries are represented by the Poincaré group, these
symmetries being maintained by the known interaction terms (excluding gravity -
see below). ;

Now a "system" together with "apparatus" and "experimenter" may be regarded
as a single super-system, represented for instance (for simplicity) by a scalar
field anfiguration ¢(x,t). A deformation ¢ -—§¢)' ,» where xF —_— x"', is a Lor-
entz transformation, then corresponds to imparting a velocity to the whole super-
system, yielding a new "moving" configuration satisfying the same laws in the ab-
solute frame (t,x), In this new physical situation, the‘"deformed" experimenter
may if he wishes uée coordinates xP! ¢ with the same equations , and his
expefience in terms of xF! is then identical to that of the original experimenter
in terms of x“ ’ 50 that he is unable to detect his own absolute motion. And of
course the deformed experimenter will in practice naturally use the coordinates
xrd (and of course the “rotated" wv! if one includes vector fields), and thereby
Jsees the same physical laws in the moving frame".

This situatioé was summarised by Lorentz as follows, in the context of elec~
tromagnetic theory: "If, in thé system without translation, there is a state of

motion in which, at a definite place, the components of P,D, and H are certain

" functions of the time, then the same system after it has been put in motion (and

thereby deformed) can be thejseat of a state of motion in which, at the corres-
ponding place, the components of P',D', and H' are the same functions of the
. 61 i

local tlme“.( )[The transformed t' is Lorentz's "local time"]. That this Lorentz
interpretation, with a true rest-frame, is fully equivalent to Einstein's inter-
pretation in terms of "special relativity", has been stressed in particular by

(1),(15) (60)
Bell and by Popper o

However, at the purely classical level,. the Lorentz view does seem artifi-
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cial, since the true frame is not singled out by any physical process. Any iner-
tial experimenter may consistently regard himself as being truly at rest, sugges-
ting Einstein's view that there is no true rest. On the other hand, if one goes
beyond the classical level, this unsatisfactory feature of the Lorentz view dis-
appears. And indeed the Lorentz view becomes the most natural one, for the nonlo-
cality of the subquantum level may define an absolute simultaneity, singling out
the true rest-frame and the true time t (which defines a fundamental causal se-
quence). This happens by simply assuming that quantum nonlocality acts instantan-
eously across the true 3-space.

But if this is so, and there exists a physically preferred frame, then why
does Lorentz invariance hold in standard quantum theory and in the classical
limit? The answer according to the pilot-wave theory (at least as interpreted

here) is that the statistical equilibrium P=|§ﬂ|2 has symmetries, such as trans-

lational and Lorentz invariance, which the underlying subquantum physics does not

possess, as one would expect for a statistical equilibrium. For instance, for a
general distribution of gas molecules in a box, the velocity distribution is not
rotationally invariant, and yet this is the case for the Maxwell equilibrium dis-
tribution. Similarly, in equilibrium P=]§£|2 the actual ("hidden") variables of
the ensemble may be altered in certain ways, without affecting the ensemble sta-
tistics.

As a simple example of such equilibrium symmetry, consider translational in-

variance for the vacuum. In the vacuum, 3.). = ,Yoe‘iEOt

where Yo , given by (4.8),
is real, so that any initial field configuration will remain static: ¢ (x,t)=

¢ (x,0)= ¢(x). Now an arbitrary ensemble of such vacuum field configurations,
with distributionl’[¢(x)], is generally not translationally invariant: If each
field configuration is deformed by ¢(x) —> ¢'(x)=¢(x-—a), the new ensemble

will have distribution

p'[¢;-(x)] = p£¢-(x+a)] 4 p[¢>-(x)]

and measurements performed on this new ensemble will yield different statistical
results. If however P[¢] is such that P[¢(x+a)]=P[¢)(x)] , then the new distri-
bution will be statistically indistinguishable from the old, P‘[¢'(x)]:P[¢'(x)].

R 2 .
In particular, this happens in equilibrium P=|§E0| , since

Y[ e 1? = 1Y [P0]I2

In equilibrium it is of course only the ensemble statistics which are transla-
tionally invariant; each individual field system is not.
Thus an individual vacuum system is not invariant under "active" translation

of the field. While for an ensemble in statistical equilibrium, a translation of



the individual fields will be undetectable at the;étatistical level, the change
being masked, roughly speaking, by uncertainty-prinbiple "noise".

This example illustrates a gene;al principle: équilibrium statistics show
symmetries which are not shared by the underlying theory. It is possible, in equi-
librium, to actively change the values of the hidden-variables in ways which leave
thé statistics unaltered, the change being detectable only at the sub-uncertainty
level. This possibility 1s,kin our view, the root of the Poincarg symmetry group.

Lorentz invariance is also clearly broken by an individual vacuum system(24).

And generally, disequilibrium P#IH{IZ will break both translational and Lorentz

invariance at the statistical level. As we have shown in Section 2.2.3, disequi-

librium leads to instantaneous signalling at the statistical level. One is then
able; out of equilibrium, to detect the true rest-frame, this being simply the
one where such signals oc¢ur purely across space.

© While it is quite natural for equilibrium to show extra symmetries, one may

ask just why the Poincarg group in particular should arise. The immediate reason,

' at least for free fields, is of course the appearance of the wave-operator
o 2/at‘?—v2 at the equilibrium operator level (and therefore at the classical
level); even the anticommuting spin-1/2 field obeys the wave-equation at the oper-
ator level. And the wave-equation arises because,at the fundamental level, the
Hamiltonian is always of the quadratic form - 62/6¢2+(V¢)2, whether the field
be scalar, spinor (see (4.18)), or vector (see below). But what about interacting
fields? The known interaction terms all arise from gauge symmetries, and the
total Hamiltonian is agaih of quadratic form: For example the term H7¢12 in the
Hamiltoﬂian for the charged scalar field is replaced, on introducing the electro-
magnetic interaction, by the term h)¢|2 where D(P is the gauge-covariant deriva-
tive (this quadratic term containing the "“interaction" terms). This suggests that

: the Poincarg group is somehow related to gauge-symmetry. Of course the few
fields found in Nature may in any case all be aspects of a single Poincaré—invari—
ant field, explaining at a stroke the ubiquity of Poincéré invariance.

;? fThere is however onekfield in Nature which actually breaks Poincaré invari-
ance evenfat the classical level, namely gravity: When space is curved, if an ex-
perimenter énd his (finite) laboratory is for instance translated, the gravita-
tional tidal forces will generally alter. Thus neither Lorentz nor translational

‘invariance will hold in the "active" sense. It is only when space is perfectly
flat (which will never occur in Nature), or has some other highly symmetric geo-
metry, that such global symmetriestcaq arise. Of course Poincarg symmetry will
approximately hold in a small local region of curved space, though never exactly
if the region is finite,kFurther,;as stressed by Bohm and Hiley(la), for suffi-
ciently small regions violent quahtum fluctuations of the metric should eventu-

3,( ally become dominant, again breaking‘local flatness (in the smooth sense of cla-

4
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ssical spacetime). From this viewpoint Lorentz invariance is in any case not as
fundamental as it might seem, even at the statistical level, being approximately

valid only in an intermediate region, on scales which are neither too small nor

too large.

5.1.2 Remarks on special relativity

According to the above, both special relativity and standard quantum theory
are equilibrium theories only. That these two theories are two sides of the same
coin is in fact suggested by a remark in Einstein's 1905 relativity paper: "It is
remarkable that the energy and the frequency of a light complex vary with the
state of motion of the observer in accordance with the same law"(sl). No doubt
Einstein had in mind his paper on light quanta of the same year. That special
relativity is an equilibrium theory, analogous to classical thermodynamics, is
also suggested by the manner in which it may be derived, like classical thermo-
dynamics, from a few simple principles of an "operational” nature such as the con-
stancy of the speed of light. Indeed Einstein himself regarded his approach to
special relativity as analogous to basing classical thermodynamics on the imposs-
ibility of perpetual motion(sz). (For a discussion of the role played by thermo-

dynamics in Einstein's early thought, see Klein(es)). It is satisfying that the
pilot-wave theory, as developed here, bears out these hints. And, as mentioned
in the Introduction, it is satisfying to see the "impossibility principle" of
signal-locality, as well as that of the undetectability of uniform motion (the
"principle of relativity"), arising statistically alongside standard quantum
theory and the uncertainty principle (via a principle of subquantum entropy in-
crease, which leads to equilibrium).

That locality and the relativity of motion emerge together is satisfying in
another respect. For locality is closely related to the reductionist "particle"
view of Nature, which sees the world as consisting of separate, localised, and
permanent bodies or "parts". Now, psychologically speaking, the concept of a per-
manent body moving around in space would never have arisen were it not for trans-
lational invariance and the relativity of motion. For it is these which guarantee
that a macroscopic body remains invariant, and thus permanent in identity, when
translated or set in motion. The particulate view, and therefore the local vision
of Nature, is thus suggested by the relativity of motion. It is then gratifying
to see locality and relativity emerge together as related aspects of equilibrium.
Both depend crucially on P=|EE|2, and both break down at the fundamental level,
where a translated "body" (consisting of field disturbances) actually differs,
at the sub-uncertainty level, from the original, and all bodies are generally
nonlocally connected at this level. The "building block" view of Nature, resting

as it does on the twin pillars of locality and relativity, is then an illusion
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peculiar to ‘the present state bf subquantum'équilibrium or "heat death".

Quantum nonlogality defines an absolute 3+1 slicing of spacetime, leading us
back to what is surely a more natural view: ?hat the world is a 512533 three-~
dimensional spatially—extendéﬂ(reality, thisyworld being capable of change, para-
meterised by the "time" t. Iﬁ contrast if special relativity were fundamental, so
that' there is no unique "present moment®, then one cannot speak of an objective
"present" world in space. The only sensible definition of "reality" would be as

a four-dimensional world, as suggested of course by Minkowski. But such a view has

“the following very peculiar consequence: Considering the world-tube of an obser-

| ver, such as the reader, laid out in spacetime, and regarding this 4-dimensional

picture as “realit&", then clearly all 3-dimensional spacelike slices of this

. world-tube are equélly real. This means that the 3-dimensional observers at proper

;times tl’ t2' té,

«ss0sy are all equally real. There is nothing in the space-

' time picture which singles out one of these observers as being more real than the

others. Thus, though the reader may while reading this paper have the idea of
peing more real than his/her bast or future,?according to Minkowski this is a
mistake; the Eeader at say t=1992 A.D. is no more real than the (3-dimensional)
rgader at t=1982 A.D. or 20025A.D. The impligation of Minkowski's interpretation
of special relativity, then, is that there iﬁ reality exists an uncountable mul-
tibl}city of equally real 3-dimensional observers. This view is, like the many-
Qoilds interpretation of quantum theory, logically possible of course. But it is
surely better to‘tgke the view, if one can, that there exists a single real 3-
dimensional world, capable ofkéhange, so that the reader at present is indeed the
reader. And spacetime slicing by quantum nonlocality enables one to take this
view. : L

As  opposed tb?the absolute 3+1 view, oné might try to graft subquantum non-

locality onto the background bf conventional relativistic spacetime. The follow-

"1ing remarks are intended to show that such attempts are physically unreasonable.

‘A fundamentally relativistic approach would of course lead to backwards-in-
time 51gnals at tha subquantum level though one might claim that such 51gnals
are not;necessarily problematig, by arguing that (i) Distributions P#I&‘I
nevef become available, making such signals unobservable in practice, or (ii)Even
if ' they should be observable,~back-in—time signals need not by unphysical, or
might be reinterpreted as "anti" signals propagating fofward in time (3 la
Whéeler—Feynman). ‘ . ‘

Regarding (i): There are reasons to doubt that nonequilibrium will never be
observed (see Section 8). But even if this is so, if one is interested in physics

at the subquantum level, then it is quite irrelevant to point out that macroscopic

beings may never, in practiceQ control the nonlocality at that level. For Bell's
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theorem enables us to indirectly deduce the real presence of such nonlocality.

And while our‘physical constitution may limit our capacity for "direct" observa-
tion, these limits should not play a fundamental role in the theory, since reason-
ing via theory effectively enlarges our capacity for "observation". And to declare
as "meaningless" that which cannot be "directly observed" is simply an untenable
philosophy, since gll observations are theory-laden. (For example. despite the
brevity of human life, geologists have deduced via theory that some stalactites
found in caves have taken hundreds of thousands of years to form).

Considering (ii): It is possible, by means of currently-performable experi-
ments, to generate arbitrarily large and unacceptable "“conspiracies" in relativ-
istic spacetime, at the subquantum level. For example, in the usual EPR-Bohm-Bell
experiment, with a set of correlated photon pairs, let photon A remain on Earth
while photon B moves towards the Sun. Setting aside the pilot-wave theory, Bell's
theorem tells us that the angle é; of the polariser (set at time tA) on Earth is
not independent of the outcome TT at time t© —tA for the polarisation measured at
B near the Sun. Now let us assume that the angle eA is adjusted according to a
fixed algorithm, whose input is for instance the mean atmospheric pressure at the
Earth's surface (while 613 is set by an experimenter near the Sun). According to
special relativity, in addition to the Earth-Sun rest-frame S, there exists a
supposedly physically equivalent frame S' in which the angle E?A is adjusted a
time tA - té:> [¢] gfggg measuremnent at B takes place, i.e. after the outcome 1Tg
is recorded, while nevertheless the values of OA‘and TTh are not independent
(for an ensemble). But this implies that, during the time-interval (t',tA), the
evolution of the Earth's atmosphere is, according to Bell's theorem, not indepen-
dent of the past polarisation outcome at B. There would seem to be a "conspiracy"
between the past photon measurement near the Sun and, not merely the future angle
6, on Earth, but the future evolution of the entire Earth's atmosphere. For in

A
S', the atmospheric evolution leading to the choice of eA;at tA takes place after

the time té , thereby inextricably involving the atmosphere in the peculiar entan-
glement across time. (In contrast, since tA=tB in S, one would simply say in S
that the setting of 91\ , which was caused by a certain past atmospheric evolu-
tion, in turn instantaneously affected the outcome at B). Now one might argue
that in a deterministic world, there is nothing wrong with such "conspiracies".
However, one must do justice to the fact that such experiments may be performed
apparently "at will", that they may be repeated, with ever more complex systems
determining the choice of 9A , thereby magnifying the "conspiracy" to arbitrar-
ily large proportions. And not only could such conspiracies be created at will in
any frame, according to special relativity; if such experiments are done in more
than one rest-frame, then no frame will be free of these conspiracies. Of course

it is logically conceivable in a deterministic world that the initial conditions
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of'the univefse happen to pe such that nobody evef ﬁerforms such an experiment,
so that such gross conspirAcies are néver created. For instance it could be that,
whenever such an experiment is attempted, the experimenter involved happens to be
struck by a bolt of lightning. But it is more probable that such experiments will
be performed, and to explain the arbitrarily large conspiracies, a relativist
could invoke arbitrarily large conspiracies in the initial conditions of the uni-
verse. But this seems rather like taking the logically consistent view that the
fossil record in the Earth's crust was created intact in 4004 B.C. To avoid all
this, it seems preferable to introduce a physically preferred time t, defining a
fundamental:causal sequence, whose associated rest-frame is that in which Bell-
type entanglement occurs purely across space. ;

If practical instantaneous signalling ever becomes possible, then despite
the preferred frame in which this is perfectly sensible, one may still feel un-
comfortable with the idea that a moving observer will "see" the signal propagate
'j apparently "back in time'". But of course no experimenter ever directly "sees" the
global time of his Lorentz frame. Rather, his collection of clocks distributed
over space have to be set according to his choice. If he chooses Einstein's so-
called "synchronisation" using light pulses, which are defined to always have

speed c=1, then at absolutg time t the moving clock at x will read the Lorentz
"local time" Eh ‘ »

.
e = (s /(D) R

(5.1)

: and the clocks distributed along x>0 have been ngyto read progfessively earlier

| times, by deliberate convention, so that an instantaneous signal propagating

: along +x appears to go "back in time". But this is inlno way more mysterious than
the fami;iar,"jet lag" which occurs upon travelling rapidly from one time zone to
anotheé on the Earth's surface. If one adopts the convention of setting all clocks

‘fto‘midday when the Sun ié seen to be at a certain point in the sky, then a jet

: passénger may to no-one's surprise travel '"back in time".

"iIf it is known, perhaps via nonequilibrium effects, that (t,x) is the pre-

~ ferred frame, then the uniformly moving experimenter need not adopt the Einstein
synchronisation, even if he only has access to the classical level. If the moving
experimenﬁerywants his time to respect the fundamental causal sequence defined by
t, he may set his clécks‘as follows: Each moving clock, as it passes a ﬂiEEEZ
stationary clock, at t=0 in the preferred frame, receives from the stationary
clock a signal, which sets the mowing clock to read tébs=0 (this set-up could be

agreed upon beforehand). At later times £>» 0, the moving clocks at all positions
x will read '
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t' = t/(l-v2)1/2

abs (5.2)

owing to Larmor time-dilation from the absolute motion of the clocks. In this
manner, a surface t=constant corresponds to a surface t;bs=constant, and the ab-
solute simultaneity has been copied by the moving frame. Of course the speed of
light in the moving frame will then no longer be the same in all directions. For
example if a light pulse is emitted in all directions from the centre of Ein-
stein's moving train carriage, then the pulse will reach the back of the carriage
first, in both frames.

Alternatively, this system of absolutely synchronised moving clocks could be
constructed simply by beginning with a synchronised set at absolute rest, and
simultaneously (in the absolute frame) subjecting each clock to an equal (and gen-
tle) acceleration to velocity v. (To obtain (5.2) the moving clock should be ini-
tially set at tébs=0 and switched on only at the end of the period of accelera-
tion, which should be arranged to end at t=0). The resulting perfectly reasonable
synchronisation yields the absolute (5.2) as opposed to the Lorentz-Einstein (b.1).

Of course one has to be sure that the "stationary" clocks are indeed at ab-
solute rest, and to check this one needs access to the subquantum level. But once
the absolute rest is known, it might be most reasonable and useful for the moving
experimenter, even at the purely classical level, to set his own clocks in abso-
lute synchronism, by these or other methods, and thereby avoid altogether the
illusory "jet lag" effects which would otherwise arise should he encounter non-
equilibrium instantaneous signals.

It should be noted, as stressed by Bell( l), that a single absolute frame is
gsufficient to describe all of physics, including the physical response of moving
apparatus and experimenters - an elementary but often unappreciated point. With
this in mind, once one has a sensible description at all levels - classical ,
quantum, and subquantum, - in the preferred frame (t,x), then the theory is com--
plete. It follows from the classical (e.g. Maxwell) equations in terms of (t,x)

-1/2

that an absolutely moving clock is slowed by (l—v2) while an absolutely mov-

ing rod is contracted by (1—v2)1/2. There is no need, in principle, to define
time and space coordinates "for the moving experimenter", though this may be use-
ful in practice. If one does do this, one may define mathematical "moving coor-
dinates" in any convenient manner. For some purposes the Lorentz-Einstein (t',x')
may prove useful, while for others the absolutely synchronised t;bs might be

better. A reasonable moving length coordinate, to accompany t;bs is the usual

x! = (x—vt)/(l—vz)l/2

With this choice, if a light pulse is sent along +x between two moving clocks with

i P 22 b TR et

i v e e -

e e e TR

AP e B s et 8

SRR A N

St Ty e e beb iy



69

absolute separation| .1 , then this pulse will require an absolute time At=l+v At
or At= 1/(1—\’) i.e Atébs= b[(l-v)(l—vz)]'/zj , to travel the "length" Ax'=
Jl./(l—vz)l/2 , and the moving experimenter "sees" a light speed st}/ZStébs=1—v B

Alternatively the factor (1-v2)1/2

in x' may be obtained by defining the light
speed to be 1-v , We stress once more that such mathematical definitions of "mov-
ing coordinates" are quite unnecessary at the fundamental level,where all pro-
cesses, including "observations" by moving experimenters, take place unambiguously
in absolute space and time.

In special relativity the global time is constructed by patching together,
via light signals, many local times (one clock for each point of space). While
the wholeness of quantum theory automatically generates a global time, which
corresponds to the ticking of a single universal *'clock": the entire universe.

We note the following remark by Einstein: "What really matters is not merely
the greatest possible simplicity of the geometry alone, but rat?er)the greatest
64

possible simplicity of all of physics (inclusive of geometry)." Given the

nonlocality of quantum theory, it is the absolute 3+1 viewpoint which, in the

author's opinion, offers the simplest description of all of contemporary physics.
Finally, we note that the "observer'-centred philosophy of physics, which

emphasises "finding" or "obsex‘ving'i rather than "being", and which led to such

. confusion in quantum theory, became fashionable largely owing to the influence of

Einstein's 1905 “relativity" paper. It is remarkable that an abandonment of this
philosophy in quantum theory naturally leads to the abandonment of Einstein's

theory of space and time (this philosophy being the radically new content of the

' 1905 work, in comparison with fhe earlier view of Lorentz and others).

"; (65)

Note added: A recent paper by Hardy seems to demonstrate that, in any
case, no Lorentz-invariant hidden variables theory can reproduce quantum mech-

anics.

’5.2 Absolute 3+1 classical electrodynamics

’Having abandoned Lorentz covariance at the fundamental level, we shall now

. recést classical electrodynamics into absolute 3+1 terms, i.e. in terms of a 3-
- vector potential A; (i=1,2,3) evolving in absolute space and time. The "time-
' component" Ao will make no appearance whatever, even in the presence of charges.

We regard the usual A® as an unfortunate mathematical artifact arising from the

usual insistence onkLorentz covariance (another "Plato's Cave effect"), an arti-
fact which causes complicat;ons in standard quantum electrodynamics, such as the
appearance of negative norm states for "scalar photons" associated with AO (it

being usually said that Ao is not a true dynamical variable, since its canonical

momentum vanishes). By abandoning Lorentz covariance and dropping A° from the

70

outset, these problems do not arise, and the pilot-wave theory of quantum electro-
dynamics is straightforward.
The classical 3-vector potential A is taken to obey the field equations, on

absolute space and time,

-%V-A --e (5.3)
IX(TXA) + D
+ 212 = J (5.4)

in the presence of charge and current densities e and j .

The electric and magnetic fields, entering in the Lorentz force law, are de-

fined by
2 A
E = - 33 (56.5)
B = VXA (5.6)

The E and B are invariant under gauge transformations of A,
Alx,t) —P A'(x,t) = Alx,t) + VA(x) (5.7)

where A is time-independent (otherwise E would not be gauge-invariant). Thus we
are restricted to purely spatial gauge-transformations, as expected in a 3+1
theory.

Equations (5.3)-(5.6) are equivalent to Maxwell's equations. From the defi-
nitions (5.5) and (5.6) follow the identities YXE = -B and VB = 0 , while (5.3)
and (5.4) yield the remaining two Maxwell equations. Once one has the usual Max-
well equations one may of course introduce a four-component Ar'in the usual
manner, and write a Lorentz covariant theory, reflecting the fact that the pre-
ferred frame is undetectable at the purely classical level. However, in prepara-
tion for subquantum electrodynamics, let us hold fast to the underlying 3+1
theory (at the classical level), in the preferred frame, as defined by the above
equations.

Despite the clear equivalence to Maxwell's equations, one may be puzzled as
to how the theory can account for Coulomb interactions, which are usually thought
to be generated by A° together with the longitudinal part Aj of A . However A

alone is actually sufficient. Writing
A=A +Ay

where ¥ +A; = VXA = 0, the A may be written as



h- Ve |

for some f . We then have B = VXA ar}d i :

E=-A - vt

i . i
so that the (f, A ) replace the usual (Ao, Ai) . A static Coulomb field, for exam-—

ple, is then represented by A, = O and Ay = tv¢Coul (or £ = t¢Cou1) where ¢Coul
is the usual 1/r Coulomb potential. Generally, writing 4) = f , (5.3) implies

v

: The above theory is more elegant and natural in the holistic language of

i

Hamilton—Jacobl classical pilot—wave theory. Let us consider the case =3 =0.

The 3-vector field A is guided by the classical pilot-wave S = S[A ,t] according
to :

§s/§4a L gy : (5.8)
where S satisfies the Hamilton-Jacobi equation
‘ as/at + (1/2)\d x[(6$/6 m24B% =0 (5.9)

(B is of course Just shorthand for VXA). Gauge~invariance of the theory is

secured b_y requiring S to be gauge—invariant, which lmplles that

V (6S/6A)  ‘ o (5.10)
This f_‘ollows simply by putting 6S=0 for an (infinitesimal) gauge change
i§A = YA(x) . It is easily shown that the condition (5.10) on S is preserved in
time by the Hamilton-Jacobi evolution (5.9), and that (5.9) and (5.10) imply the
classical field equations (5.4) and (5.3) respectively (with Q =j=0).

5.3 Subquantum electrodynamics

- The abové classical theory is easily generalised to the quantum (or rather,
subquantum) level. The actual 3-vector potential is of course still guided by

| (5.8), where now S is the phase of w . For the free electromagnetlc field,

Y y[A t] satisfies

i

10¥/9¢ = (1/2) \a%[- 62/6;\‘2 + B2y (5.11)

(the canonical momentum A in the classical Hamiltonian being replaced by -iﬁ/&A),

together with the gauge-invariance condition

i
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V- (6¥/6a =0 (5.12)

which is preserved by (5.11).

From (5.11) and (5.12) follow the Heisenberg-picture operator field equations
corresponding to (5.4) and (5.3) respectively (with e = j = 0). In equilibrium
the theory may of course be represented by Heisenberg operator equations. Since
the operator field ﬁ is a 3-vector, the troublesome '"scalar photons" associated

with the "nondynamical variable" Ao make no appearance.

The full theory of subquantum electrodynamics of course includes interaction
with the charged 2-component (anticommuting) spinor field of Section 4.2. For
simplicity we consider here interaction with the charged scalar field only

("scalar electrodynamics').

First, the theory for the free charged scalar field. The guiding field

Y =-9Y[$, ¢~ t] satisties
1Yt = \ox[- 62/5¢5¢* ¢ 117+ n%1$ 17]Y (5.13)

»

‘
where, in the classical Hamiltonian, the canonical momenta Tl = (f* y TT*= ¢ are
replaced by TF — -i 6/5¢ m —> -i 6/5(# . The continuity equation for

|Yl , following from (5.13), shows that the actual fields ¢ ¢* are guided by
S via

:p = 6s/5¢* , &;* = 65/54, (5.14)

as expected. The theory is invariant under global gauge transformations

¢ -5 (b' - ¢eie)\ , ¢* — ¢|* = ¢*e_iex (5.15)

where )\ = constant. Putting 652:0 under such an (infinitesimal) transformation,

it follows that Y_ must satisfy the condition

Sd?’x@% - 4,*—2-%—*) =0 (5.16)

which is preserved by (5.13). [Fr‘om (5.13) it follows that

w( )64’() ¢()M,()]—[¢*<x)v¢(x>-¢(x)v¢*<x>]

which vanishes upon integration over x].

In the interacting theory, Y =Y[¢ , ¢*, Ai.t} is required to be invariant
under local gauge transformations ¢ —_— ¢eieA ’ 4)*——) ¢*e_ie s, A —» A -V)‘ '
where A = A(x) . Putting 8Y¥Y = 0 for infinitesimal A(x) implies the condition

¥
i
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V- (6¥/6a) = ;e(cﬁ*%—%h'-' ¢ 8¢, E . (5.17)
Gauge-invariance of the total Hamiltonian of éourse requires replacement of Y7¢

| by the gauge-covariant derivative

ch -—-)04» =v¢ + ieA4>_ : ’ Co (5.18)
so that ‘ Hi,{ |
19Wat= \a’x[-(1/2)87/64° + 8%/2 - 6%/5p5¢* + n’Ip1® + I0§I*]Y (5.19)

whichipreserves (5.17), and the actual fields are of course guided by S via (5.8)
and (5.14). This defines our theory of subquantum electrodynamics.

At the operator level (5.17) and (5.19) of course lead to the operator
equivalents of the classical field equations (5.3) and (5.4) respectively, with
th¢ usual Klein-~Gordon charge and current density operators, as well as to the
usual minimally-coupled Klein-Gordon equation {without A%). We note that local
charge conservation is, like the concept of "particle", only a feature of the op-
erator level of statistical equilibrium. :

While we write ‘.‘E=‘£[¢, ¢*, Ai.t]. Q is of course a function, not on the

" space of gauge~dependent fields, but on the space of equivalence classes of fields

’ connected by gauge transformations. Equivalently, fE is a function of the abstract
(gauge}independent) ﬁFaraday geometry" associated with the electromagnetic inter-
action, where, as is well knowd. the vector pdtential may be regarded as an affine
.connection appearing in the gauge-covariant derivative (5.18). (Our 3-vector A
yields a "curvature tensor'" Fij whose components are just the magnetic field).
Thus Sﬂ is a function on an "electrodynamic superspace', a point of which is a
4kFaraday geometry. And the time-evolution of the actual Faraday geometry is guided
by S via (5.8) and (5.14). . ‘

'f We note how physically natural it is, in the holistic pilot-wave theory, to
E’ha\;e a global geometry as a dynamical variable, rather than just local fields.

:j This point is amplified in the theory of gravity, to which we now turn.

i
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6. THEORY OF GRAVITATION AND COSMOLOGY

In the absence of gravitation, we have an absolute (flat) 3-space, and an
absolute time t, singled out by gquantum nonlocality. We now show how gravitation
may be represented by a curvature of this absolute 3—s§ace, rather than as a cur-
vature of relativistic spacetime.

At first sight one might think that a curvature of 3-space only, with an ab-
solute time, would yield too few degrees of freedom. But it is easily seen that
in fact one is able to reproduce any classical gravitational field (apart from an
obvious restriction on spacetime topology). Further, dropping the time-components
(4)go of the 4-metric actually eliminates precisely those "nondynamical" degrees
of freedom which give so much trouble in standard quantum gravity. (This situa-
tion is similar to that of quantum electrodynamics, with (4)g° playing the role
of Ao). Indeed, this "absolute 3+1" view of gravity enables one to straightfor-
wardly quantise gravity using the pilot-wave theory, in a manner which immediate-
ly resolves the fundamental conceptual problems which beset standard canonical

quantum gravity, and which leads to a conceptually clear and simple iheory of

quantum cosmology.

6.1 Absolute 3+1 classical gravitation

In flat space, if a clock moves a spatial distance ds in time dt, then the

proper time d¥ ticked is given by
at 2= at® - as® (6.1)

We have adopted the view that there is an absolute frame (or 3-space), and abso-
lute time t, singled out by nonlocality at the subguantum level. And of course
this view does reproduce ordinary special relativity at the classical level,
where the true frame is undetectable.

Now let the absolute 3-space become curved,

ds"m g. .dx dx’ (6.2)
13

with (time-dependent) metric gij=gij(xk,t), and arbitrary coordinates xk. We
assume that (6.1) continues to hold, so that a clock moving through curved space

1/2

with absolute speed v=ds/dt is slowed by the factor (1—v2) . And it is easily

seen that this view does reproduce general relativistic spacetime at the classi-
cal level.

For beginning with a spacetime with line element

ar?s (4, Jaxtax” (6.3)

3



the 4—metric may always be written in the ADM form(6 ) (using 4-metric signature

:,.,...._._) ‘,: ; i . o i

. : n G . 5

in terms of‘;he lapse function N, the shift vector Ni, and a 3-metric gij . And

if the topology is a simple product of timelike and spacelike manifolds, then
coordinates may be chosen so that Ni;O and N=1 everywhere. i.e. so that time and
: space are completely separated. The iihe element (6.3) is then reduced to the
" form (6.1) and (6. 2), showing that our curved absolute 3-space, with appropriate
3-metric, can indeed represent an aroltrary general relativistic spacetime (with

the obvious topological restriction);

We may thus describe grav1ty in’ terms of curved 3—space only, whose geometry

;:evolves in a fixed absolute time t . And this true slicing of classical spacetime

E;':is generally singled out by nonlocality at the subquantum level. As in the case
iof special relativity, the true time is strictly speaking undetectable at the
classical level: Given any initial spgcelike slice, coordinates may be continued
. orthogonally off this surface, so thaf Ni=0.kN=1, and there is strictly speaking
. no oreférfedjinitial slice at the classical level. (Though note that, given the
‘initial slice, the subsequent slicing defined by t=constant is unique). In prac-

" tice, howover. there may bg a preferréd slicing even at the classical level, sin-
gled out by the global distribution of matter, whicﬁ may define a cosmic "rest".
; A partigolar slicing may then be "preferred" in the sense of providing a simpler
W‘i descripéion of the physics, in the same sense that Newtonian time is "preferred"

. in Newtonian mechanics. Now such a preferred classical slicing does indeed exist

for our observed universe at the cosmological level, and the question arises as
to whether this agrees with the absolute slicing at the subquantum level. This
seeps;possible, by virtue of nonlocality from P#IEE[? being operative in the

early uniVerse (see below), though it is of course unproblematic if these slic-

ings happen to not 001ncide. The true 3-space must ultlmately be determined at

" the nonlocal ‘subquantum level.

The situation here should be dlstxnguished from that in speczal relativity.

oFirstly, as we have just seen, it is p0881ble that in practice the true slicing

is visible even classically, on the cosmological scale. Secondly, and more gener—
ally, once the true slicing is knoyn (perhaps via subquantum experiments), and if
the absolute 3-geometry is given,‘ihen absolute motion through the 3-space will

ogenerally'be detectable even classically, by an experimenter working in an arbi-
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trarily small but finite region. For the variation of local tidal effects will

depend on the motion of the experimenter through the true 3-space. (There is of
course no contradiction here with the usual principle of equivalence, which em-
phasises the vanishing of tidal effects in the limit of an ipfinitely small re-

7 68
gion). This illustrates the fact, stressed by Fock(e ) and DeWitt( )

, that "gen-
eral relativity" is really less '"relativistic" than special relativity. It is
only for very special gravitational fields that one has global "active" symme-
tries such as Lorentz and translational invariance. An arbitrarily small but
finite apparatus displaced through absolute 3-space will generally feel tidal
stresses which differ from those which it would have felt had it remained undis-
placed. No such effects occur in special relativity. A general gravitational
field thus actually breaks global Poincaré symmetry and allows one to define, if
one wishes, a state of absolute rest. One is of course not obliged to do this at
the purely classical level: Changing tidal stresses felt by a "moving' apparatus
may be ascribed to the time-dependence of the 3-metric, the apparatus remaining
Yat rest". However, as we shall see, the view that classical spacetime is really
curved 3-gpace evolving in absolute time is greatly favoured for the quantisation
of gravity.

The absolute 3+1 viewpoint is of course quite contrary to the so-called
"gpirit of relativity". On the other hand it may be worth noting that, historic-
ally, the furor over "relativity" in the 1920s and 1930s was largely powered by
the philosophical, social, and political connotations which this word carried at

the timef4l)

To motivate further our view of classical .gravitation, consider a quantised
(massless) scalar field ¢ propagating on a classical background of flat space.

Using arbitrary spatial coordinates xk with metric gij , the Lagrangian density
_ 1/2¢ %2 i o
& = 2 ?(§% - 52" 0% ]
and the canonical momentum T{ = g1/2¢ . And at the level of operators
A A 3
[¢(x.t). Tr(x'.t)] =i 8 (x—x")
A
Replacing TIT —» —16/6¢ in the Hamiltonian density
1/2 2 i J
= 2 (e + gija¢a¢j
the wavefunction §E=Y[¢,tj obeys
3. 1/2 —l
id¥/9t = (1/2)Sd et (2716 /54, +giJa¢a ¢]§E (6.4)

Here 5! is invariant under coordinate transformations x —p x',
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so’that g' -1 Y /6¢
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(where ¢ (x')= #(x)), and the functional derivative BY/6¢ is defined in the

usual (coordinate-dependent) manner

Y - Sds" (6L/695¢

Y/6¢ and (6 4) is indeed 3-covariant. Slnce
-1/2 &s /6¢ 88/6* , the actual ("hidden-vamable") evolution ¢
g-1/265/6¢ is of course also 3-covariant, this evolution being consistent with

the continuity equation following from (6. 4)

1
“a'\ma/atis __5_”!” -1/263
;] 8¢ T

"«‘ 1 The theory is thus 3-covariant, and the true 3-space is, as we have seen,
singled out by quantum nonlocality. The actual field evolution ¢ ot 65/5? gene~
rally shows nonlocal connections across 3-space, distinguishing the true time t.

A glance at (6.4) suggests that it be adopted as the Schrodinger equation

even when the (classical) 3-space is curved, the nonlocal connections in ¢ still

acting across this true S—Bpacé, and singling out the absolute time t. Indeed,
the whole of the above formalism may be assumed to carry over intact to the case
of curved 3-space. We thus have a 3-covariant pilot-wave theory of ¢ propagating
on a classical background cux'ved 3-space w1th,metrlc g. .(x yt).

At the statistical level of equilibrium, (6.4) may be transformed into the

: He;senberg pictur-e, yielding the field equatlon. for the static case g (x )

R Rt (gl’z “ajﬁ’ =0

-‘7‘01

$ lJVV¢—0 (6.5)

;f where v is the S—covariant derlvatlve. In the Heisenberg picture the state-vec-

" tor H{) is fixed, independent of (absolute) time, and of the arbitrary spatial

coordinates. And at this level the nonlocality in the actual tp is of course no

glonger directly visible.

" Now observers working in equilibrium on the Earth's surface are not directly

aware of subquantum nonlocality and absolute time. They therefore insist on using

(4)

arbitrary 4-coordinates xP’; and introduce the 4-metric

(4), _§  ana

OP 0,‘-

v (where of course

g = —gij in absolute 3+1 coordinates). They then write (6.5)

" in 4-covariant form
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A
(4)g"vv,‘v.,¢

where V is the 4-covariant derivative. This procedure is often useful mathema-
tically. However it creates severe problems of principle for our observers. For
we have seen that IY) is a fixed global object, defined with respect to the ab-
solute slicing and time t. Since these observers cannot distinguish t from any
other t', they are unable to clearly define this global object. This problem be-
comes especially severe if the observer believes, as many do, that IY) ""collapses"
upon measurement: Along which spacelike hypersurface does the collapse occur?
Such problems are of course illusory in our view, being again "Plato's Cave
effects" - which disappear at the deeper subquantum level.
It should be noted that the actual evolution & = g°1/26 S/5¢ is generally
sensitive to the ﬂr_‘_t_a_ 3-geometry, since S is generally nonseparable. Thus the
usual "principle of equivalence", in the sense of the local indistinguishability
of gravity and acceleration, breaks down at the subquantum level: Local measure-
ments are generally sensitive, by virtue of nonlocality, to the geometry at a
distance. On the other hand, in equilibrium, the metric in the operator equation
(6.5) may be locally transformed away, so that the equivalence principle appears
as another equilibrium symmetry, valid if and only if P=|¥Y |2. Another way to see

(69)

this is based on work by Candelas and Sciama in the context of standard quan-
tum field theory. They show, for an explicit example, that a detector falling

freely in a classical gravitational field perceives the same spectrum of vacuum-
fluctuations as does a similar free detector in Minkowski spacetime, thus uphold-
ing the equivalence principle. However, this result assumes that P=|}E12 for each

field vacuum, and must break down for P#IYIZ

6.2 Subquantum gravitation

Given the above absolute 3+1 view, it is now straightforward to quantise
gravity. Considering the case of the pure gravitational field, our dynamical ob-
ject is the geometry of 3-space, which evolves in absolute time t. And this evo-
lution is guided by EE in the usual manner. The 3-geometry itself is then connec-
ted by quantum nonlocality, in the sense that the evolution of the 3-metric in
one region will usually depend instantaneously on the 3-metric everywhere else.
In this manner, at the subquantum level, the effects of holistic guidance by v
distinguish and maintain the absolute slicing of spacetime.

The basis of pilot-wave quantum gravity is simply the following: Let }E be a
3-scalar function of the 3-geometry and of absolute time t. If one writes
Y = w[gij.t] and demands that this be invariant under change of spatial coor-

dinates then one arrives, as is well known, at the condition
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(6Y/6g1J =0 R - (6.6)

where Ijkis the 3-covariant derivatibe. (This follows by putting Y =0 under a

diffeomorphism which changes the metric by g ——) giJ + & ). This con-

+ €., .
il 7 Fild
dition is of course the analogue of the gauge-lnvariance condition (5.12) of pure
electrodynamics. It ensures that \H is a function on superspace, the space of 3~
geometries, and is actually independent of the coordinate-dependent part of the
3-metric giJ .
Inserting N —0 N=1 into the usual Hamiltonian density of canonical quantum
' gravity, one obtains (with units G=c=h=1)

- - lﬁTfGimTT“Ti“ - (/16m)g 2R

Here TTlJ is the canonical momentum density, related to éij by the (invertible)
equation : 1

By; < 321TG13k11T

| where Gijkl is the superspace metric
-1/2

= (1/2)&

61 3k1 (2385 + 8185, = 838

| i !
Of course g=detg and R is the 3-scalar curvature.:

; Replacing ']T“-j --) -16/6 g4 in the Hamiltonian leads to the Schrodinger
equation fon S! :

L, _ 3 r_ '5 § _ ' 1/2
19¥/at = Sd x[ 16.?'-36% G jk1 B (1/167)g™ “R]Y (6.7)

which preserves the éondition (6.6).;An explicit operator ordering has been adop-
ted in (6.7). ‘

The classical relation between gij and 1T implies that the actual ("hidden
variable") metric gij is guided by

o 68 f L
Cg, . = 32WG, ., —m—— i 6.8
:giJ m 130 5E, ’ , (6.8)

this belng consistent with the continu1ty equation

2 |$I?/at + d3x’66 (32“G13‘k13—l§“ =0

" which follows from (6.7). i
The equations (6.6), (6 7) and (6 8) define our pllot—wave theory of
(sub)quantum gravity. Before discussing the consequences, the following must be

noted: In (6.7) we have not included the boundary term at spatial infinity in the

i
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Hamiltonian, thus restricting ourselves to closed, or compact, 3-geometries. Now
in the usual approach to quantum gravity, the noncompact case is complicated by
the arbitrariness of the asymptotic hypersurface(70). But since our 3-space is
absolute, we have no such arbitrariness. We thus expect that the above theory
will be adequate for the noncompact case as well, by simply adding the usual

(70)

boundary term

1/2 ij
(1/16TT)Sng (g; K, i 1J.’k)
[ I

to the Hamiltonian in (6.7).

The quantum level again arises for an equilibrium ensemble P=|3ﬁ|2 of 3-
geometries, where the path (6.8) is no longer observable in practice. While (6.6)
and (6.7) may be recast as Heisenberg-picture operator equations which define
statistical predictions. It is well known that the operator equivalent of (6.6)

(4)4

implies ,=0 , while the dynamical operator equations arising from (6.7)
imply (4 ) J—O (where the 4-d1mensional Einstein tensor is written in our abso-
lute 3+1 coordinates xP = (t,x ) with g,y = 50 ). The remaining component
(4)600=0 of the operator Einitein equatig;s arises in the standard approach from
the Wheeler-DeWitt equation REE =0 . Since our Y obeys a more general equation,
there cannot be a general opeﬁator relatlon of this form. However if one assumes
the wavefunction to satisfy (R) _SDg\ll 8{}[ 0, where Dg is an appropriate proba
bility measure on superspace, then one obtalns, at the classical level, the c-
number equation (4 ) =0 . (The case(ﬂl)#o is discussed below).

Thus, ﬁF obtaln (4)G°0=0 at the classical level only if 3{ happens to be

such that (i{) =0 . The physical reason for this is as follows: In the classical
limit s{ =(4) 00 l/2/"3’“’ , and (A)Goo is equal to (one half of) the difference
between the extrinsic and intrinsic curvature of space. Now the extrinsic curva-
ture Kinij~K2 (where K, iy —(1/2)g ) is essentially the square of the rate of
change of the 3-metric, and in the pilot—wave theory the actual g . is determined
by 55/5g i.e by Y . Thus a classical relation of the form (4)6 —O between
éij and the intrinsic curvature R will only arise if }H obeys some speclal condi-
tion, which is clearly just (;ﬁ) =0 .

The pilot-wave approach to gravity overcomes the following fundamental prob-
lems of the standard approach:

(i) Extraneous variables. The "nondynamical" variables (4)g0 greatly complicate

the standard approach. We dispose of these from the outset, by recognising the
fundamental entity to be absolute 3-space evolving in absolute time.
(ii) Definition of time. Time is usually said to emerge in a phenomenological

(70)

manner using quantum clocks , an approach which is not without difficulties.

Here we have a unique time t, which is physically distinguishable at the level of

i PW— st = med TRt
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nonlocél hidden variables (by a “subquantum demon"). In the classical limit this
time coincides with one of the classical time functions, as is clear from the way
in which the classical Einstein equations emerge, this time—functign probably
being the one which is cosmologically preferred (see below). Outside the classical
1imit it should be stressed that the time t, like the hidden variables themselves,
has a unique objective existence, defined in terms of the global and nonlocal
hidden variable evolution, and conceived independently of practical macroscopic
observations (this being after all the philosophy behind hidden variables theo-
ries).

One might object and claim that, outside the classical limit, one must nece-
ssarily introduce a tquantum clock" to define time, the presence of this clock

having a non-negligible effect on the evolution of the system, this evolution be-

'ing then parameterised by the ?clock reading”. While one may of course do this if

one wishes, it must be emphasised that such a procedure is quite unnecessary for
a fundamental definition of time. For in the pilot-wave theory we simply have an
objective 3-metric evolving in an absolute time, the latter being perfectly well
defined at the fundamental level. If one wishes to consider, for instance, the
very early universe as it actually was in the past, it suffices to consider the
objective variables and their evolution in that epoch. It is irrelevant to con-
sider what would have happened had macroscopic observers or "clocks" been present;
for while that may be an intefesting exercise, as far as we know no such observers

tuall .
or clocks we?gkggesgnt in the early universe. The description of 'that early epoch

" is therefore already complete without the "quantum clocks". In the present epoch,

of course, one could envisage experiments performed by macroscopic experimenters,
involving quantum or subquantum gravitational effects, and these experiments might
involve nonclassical apparatus and "clocks". In this case it might be useful in
practice to calculate, on the basis of the fundamental theory, the dependence of
the "system" evolution on the "clock reading". But it should be stressed that this
would be a purely phenomenological and highly arbitrary procedure, and that the

fundamental time is that of the subgquantum level.

(iii) Commutation relations.‘In the usual theory there is no unique hypersurface
on which to define "equal-time" commutation relations, | and the notion of space-
like separation is ambiguous; Whereas here two space points x'# x at given t are
by definition spécelike separated. And at the statistical level of operators,
glj(x,t) represents an equilibrium ensemble of 3-geometries at time t, which may
be regarded as an ensemble of functions gij(x,t) on a fixed 3-manifold with coor-
dinates x. Since the 3-manifold is completely separate from time, two points x'#x
at time t are clearly spacelike separated whatever the value of the 3-metric gij .

Our Heisenberg-picture operators then obey the usual commutation relations
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at equal absolute time t .

(iv) Probability interpretation. In the usual approaéh based on the Wheeler-DeWitt

equation, the probability interpretation is very obscure, and the space of solu-
tions has no satisfactory norm. It is often said that, since the Wheeler-DeWitt
equation imposes an infinity of constraints on &f the existence of normalisable
solutions is doubtful. Here however, (6.7) gives only a single constraint on 3{
at each time t . One then naturally adopts the usual probability density IEEl
superspace, with the norm DgIﬂfl (Here, and throughout this work, we do not
address the question of the rigorous mathematical definition or existence of such
entities, and are only concerned with the fundamentals at a physical level).

(v) Initial-value formulation. Here the initial conditions take the simple form,

just ﬂf at t=0 (and the hidden variable 3-geometry with metric gij at t=0, or some
distribution thereof). In contrast, attempts at an initial value formulation for
the Wheeler-DeWitt equation have led to great confusion.

The assumption of a preferred time defined by quantum nonlocality thus re-
solves a number of fundamental difficulties which plag?gothe interpretation and

formulation of standard quantum gravity. This approachkleads to some new features,

in particular at the cosmological level, to which we now turn.

6.3 Subquantum cosmology

(i) Disequilibrium near the big bang:An explanation for the observed cosmological

rest-frame? In this theory nonlocality defines a state of absolute rest, and one
might suspect that for our universe this state of rest coincides with that defined
by the uniform cosmic microwave background. But how did this background become so
uniform? It could be that this came about via ordinary processes bounded by the
speed of light, as indicated by theories of inflation. On the other hand, this
uniformity which defines the observed rest-frame might be directly linked to the
fundamental source of absolute rest, i.e. quantum nonlocality, as follows: In
principle one may contemplate distributions P#IH{Iz near the big bang, which

later relax to equilibrium via the H-theorem, perhaps on a timescale of the order
of a Planck time. The resulting nonlocality at very early times might then be
responsible for the uniformity seen today(lg), though a detailed cosmological
model incorporating this effect has yet to be developed. (This effect is of course
completely outside the scope of standard quantum theory). If this theory is corr-

ect then the state of absolute rest does indeed coincide with the observed rest-



frame. And if guantum nonlocality evef becomes‘dire§tly observable, it will be
found to propagate along the hypersurface defined by the observed cosmological
rest-frame. The possibility that the observed rest-frame defined by the micro-
wave background may be related to some form of nonlocal physics at very eérly
times has been advocated in particular by Sciama(7l).

If indeed P#IH{IZ near the big bang, with the relaxation P—3» |§HI2 taking
place soon after, then it could be said that quantum noise is a remnant of the
big bang.

(ii) "Dark matter". If one includes nongravitational fields, with Hamiltonian

density ‘S(, , then the "00" component of the classical field eqL’x‘ations (A)G'n,=

=BT Ty ‘(where SE 1/2 ) is obtained only if one imposes {}{ + ) =0 . But
the theory contalns the possibillty (‘R+ 2 1/2€ # 0 leading to 4 GVW=

._BTI'(T'W + T"_y) where T'W" 6?‘ 6,( descm.bes an effective pressure-free "energy"
density or "dust", whose only interaction with ordinary matter is via gravity. We

Land
note that an observer at absolute rest measures an energy density T00+Too , and

the frame in which "i",w is a pure energy density distinguishes the absolute time
at the classical level. 1
~
Ir % # 0 , this may have cosmological implications. If Q) 0 one effective~

ly has a distribution of "cold dark matter" in addition to ordinary matter. And a
positive € ,» with Sdsx g1/2é > 0, is possible since the gravitational Hamil-
tonian is not positive definite, according to the minisuperspace model given
below. (This apparently confirms the suspicion that quantum gravity does not
possess a ground state. The situation is then roughly speaking like that of New-

tonian gravity, where gravitational potential energy has no lower bound).

(iii) Minisuperspace Friedmann universe. Let us apply the above theory to a mini-

superspace model of gquantum cosmology. Consider a closed Friedmann universe with

expansion parameter a(t), containing a total nongravitational mass M—Sd xgl/2 00 *
70

Following DeW1t’c( ) the Schrodinger equation (6.7) for \Y = Y(a,t) may be

written

1Y/t = [(1/311)B/aa(1/a)a{aa - (3W/4)a + M]Y = (ﬁm)‘f (6.9)
whke‘r‘e the canonical momentum ﬁ'a= -1:a/aa is symmetric on (0,09) if we impose
‘V:O at a=0 and a= 00 (ignoring the issue of rigorous self-adjointness), while
our operator ordering is as in (6.7). The actual hidden variable a(t) is governed
by a = -(2/3TM)(1/a)@S/da (as is clear from the continuity equation following
from (6.9)). :

72
We note that Vink( )

has recently used this minisuperspace pilot-wave tra-

" Jectory for ‘a(t) to motivate a pérticular approach to the emergence of time and

i
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of classical trajectories, in the context of the standard theory involving quantum
clocks, general relativistic time, and the Wheeler-DeWitt equation. The approach
taken here is of course very different.

The usual Wheeler-DeWitt equation leads to the Vanishing of the right hand
side of (6.9) which, as noted by DeWitt(7o), restricts the mass content M to
specific eigenvalues. This peculiarity does not occur in our approach, where M is
arbitrary. Expanding \r in terms of eigenfunctions (ﬁ+M)"’E= E\YE , we impose

R .2 _ ;
\VE(O)= ‘fE(w)=O . The change of variables x=1/a", ¢E—x \"E , then yields

~(1/2p)2%¢ /9" + v Py = 0

on the space x>0 , with boundary conditions ¢ (0)=0 and ¢E(w) =lim (1/a )YE(a)
a=p0
=finite (since (H+M)U(E_E ‘\JE implies that 3'~VE/3 a=0 at a=0), where ,A. =31/8 and

V(x) = 3TT/4x + (E-—M)/x7/2

This has no solution for E ) M, while for EXM the WKB method shows that

(E_-m)~ —(n+1/2)Y/2 N=0,1,2,00nns

so that En<0 for sufficiently large n. Thus (Q+M) may indeed be negative, as
stated above. Indeed in this minisuperspace model the gravitational Hamiltonian
ﬁ is actually negative definite. Note that if we impose (Q+M> = 0 on Y , this
does not restrict M .

Using the Hamiltonian

A A A A a
Hypoy = -(1/3M Tl'a(l/a)ﬂa - (3M/a)4 + M

in the Heisenberg picture corresponding to (6.9), one readily derives the class-

ical limit of quantum equilibrium
2(%/a) = -(a/a)? - (1/a)?

which is the usual "acceleration" equation for a pressure-free closed Friedmann

) = i and using the classical limit TJ_ =
total = =M and using e classlca imli a =

-(3Tr/2)aa , one readily sees that

. A
universe. Further, writing (H

(a/2)% = ~(1/2)% + (8T1/3)(@ +§)

where e M/21T a and Q = M/ZT\' a , yielding the "0O" component of the class-
ical Einstein equations with effective energy density e e . The discussion of
time and the emergence of the classical limit is clearly much simpler and clearer

in this approach to quantum cosmology.
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" theory shows

" to new physics as discussed above.

Do

(iv) A mechanism for the big bang? So-called %operational" theories tend to de-

clare as "meaningless" any attgmpt to discuss physics beyond the levels of meas-
urement accessible to present ﬁechnology. Thus any attempt to explain why an
atomic decay occurred at a particular moment is said to be, according to standard
quantum theory, "metaphysical®. The combination of the two great operational
theories, relativity and quantum theory, as applied to cosmology, has led to per-
haps the most spectacular statement of this type: That it is "meaningless" to ask
for an explanation for the enormous explosion which seems to have occurred some

ten or twenty billion years ago, the big bang. For the treatment of the big bang

as_a quantum event makes it as incomprehensible as an atomic decay, while general

" relativity encouraées the idea?that time itself began'" at the big bang. But it

seems extraordinary that the most _cataclysmic event known to science should be
regarded as having had no cause. . /

’ The philosophy behind the pilot—wave theory suggests otherwise. If singula-
rities are avoided by quantum effects, one might in principle calculate back to
an absolute time prior to the bié'bang. Indeed it is a tantalising task for sub-

quantum cosmology to find a plausible explanation for the big bang event. The

' following seems suggestive: When an atom absorbs a light quantum, the pilot-wave

(24

) how, via nonlocality, the energy spread over space as an electro-

. magnetic wave becomes suddenly:concentrated into a small region centred on the

‘atom,fand absorbed,  leading toqa sudden "quantum jump". Could this sudden concen-

tration of energy into a small -region, which occurs all the time on the every day

level, be somehow analogous to the mechanism behlnd the big bang?

It is a daunting task to distingulsh alternative formulations of quantum

. theory at the‘laboratory level, But at the cosmological level the above pilot-

wave theory is not only arguably much clearer in its application , it also leads
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7. SUBQUANTUM MEASUREMENT, SUBQUANTUM AUTOMATA, AND PARALLEL PROCESSING

At the fundamental level all things consist of variables guided by ff . In
certain situations, the ones generally known so far, one may apply an approxima-
tion in the pilot-wave theory, whereby the world breaks up into system + apparatus
+ classical experimenter, three entities which are fairly distinct and well-
defined for practical purposes. In this approximation, the standard quantum theory
of "measurement" emerges. And it is only in the context of this approximation
that standard quantum theory may "speak". Generally, however, this neat break
need not occur at all, and one may have more general situations which are outside
the domain of standard quantum theory, but which may of course be described by
the pilot-wave theory.

We have seen in Section 2.2.1 how standard quantum theory is constructed by
experimenters who, with their everyday surroundings, operate in a manner which is
insensitive to the sub-uncertainty level, leading them to adopt the usual "meas~
urement" theory based on the analogy with classical physics, whereby linear oper-
ators are in formal correspondence with classical variables.

What would happen if an experimenter, or "intelligent" automaton, operated
at the subquantum level? The automaton's senses, being directly receptive to the
actual ("hidden") variables, would enable it for instance to directly perceive
nonlocal connections. But how would such a "subquantum demon" define 'measure-
ment"? And how would it function?

We adopt the view that it is theory which decides what may be observed, and
how it should be measured. And we assume that our subquantum demon understands
and believes the pilot-wave theory.

A true measurement, at the subquantum level, would be for instance of the
following form: If two variables X1 and X2 are coupled by a nonseparable guiding

field S(Xl,xz.t), then the value of X2 could be deduced from the relation

ax, /dt = JS(X,, £)/9X;

1’ 2'

by observation of the change in X1 over a short time, thus effecting a measurement
of X2 . One might object that this ignores the issue of how %o observe X1 , but
Newtonian mechanics, say, contains the same circularity, the value of X2 being
deduced from that of X1 via Newton's laws. This is quite reasonable if the obser-
ver himself operates on and is directly sensitive to the level of the variables

in question (so that X, could be directly read by his senses). It is of course
assumed that S is known, perhaps from a previous "state" (i.e. wavefunction) pre-
paration, just as one assumes in Newtonian mechanics that the forces are somehow

known in practice.
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We emphaéise that, in the pilot-wave theory, the basic conception of true

measurement must be of thé above form, in terms of the actual variables, while

"quantum measurements'" are merely a phenomenological book-keeping used by ‘macro-
scopic experimenters. It is only ougfgross constitution which prevents us from
performing and using true measurements in practice.

As an illustration of subquantum measurement, let us consider the two-slit
experiment from a subquantum viewpoint. Instead of firing a single particle at
a two-slit screen, one might imagine firing our (small) subquantum demon at the
screen, where the demon's memory operates at the subquantum level, while its
centre-of-mass suffers thé usual interference effects at the backstop. (Our demon
is then both "system" gggd"observer"). For instance the demon might have an inter-
nal memory variable Xm ,1iocated somewhere within a packet \Vm (initially centred
on Xm=0) of .width l&xm , with "bit element" O or 1 according to which half of the
interval (-AXm/Z, Axm/z) the actual Xm occupies. pne could then have interfer-
ence at the backstop, while nevertheless the demon could later tell us which slit
he traversed, as follows: Let xm be initially near ﬁhe centre of O-Axm/Z, [&xm/z)
(we assume the timescale of the experiment to be such that any natural spreading
of \?m and consequent motion of Xm mgy be ignored). The demon with his memory is
fired at the screen. Near each slit is applied an external electric field, that
near slit 1 being in a direction opposite to that near slit 2. If the variable Xm
is’éay the position of a gharged part%cle, then the packet *Jml traversing slit 1
will (in appropriate conditions) be approximately simply displaced by + 6 , while
the packgt ‘Vma traversing slit 2 wili be similarly displaced by - 6 . And the
actual Xm will be approxi@ately displéced by * 6 according to the slit which is
actually traversed by the demon. (This crude treatment is sufficient for illus-
tration). The final wavefunction far:from the screen will be of the form

(bl ml(x;n) "¢4)2\Vm,2(xm)

@

If 6 ;5 [&Xm ’ then the ﬁemory variaﬁle has overstepped the bounds of the sub-
uncertainty level, the displacement‘s being capable of registration by a classi-
cgl automatbn.kThe packets \le and wlmZ will not overlap, and there will be no
interference at the backstop (the distributionbeing |¢1|2+I¢2|2). In this way
the memory of a classical observer inevitably destroys interference by deactivat-
ing the empty nonoverlapping packet . On the other hand, if 6 -~ [&Xm , then
q’ml and q)mZ still overlap, and if § < [SXm then one has an interference
distribution 2J |¢1+ ¢2|2 at thel backstop while nevertheless the information as

to the slit traversed is recorded at the sub-uncertainty level, in the demon's

' memory. And assuming the demon to be sufficiently “intelligent", he could transmit

this information to classical experimenters simply by arranging for the actual
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value of Xm to determine the outcome of a macroscopic event. Or more simply, a
classical experimenter could simply measure the (noncontextual) memory variable
Xm , confident that the intelligent demon has performed his task correctly.

A subquantum automaton, then, not only directly perceives holistic connec-
tions, it can also perform measurements without destroying the effect of different
overlapping branches of the wavefunction. This comes about by functioning at the
sub-uncertainty level, so that the demon is roughly speaking operating "inside
the wavefunction".

Let us briefly consider some further properties of subquantum automata.

73
Deutsch( )

has developed a theory of quantum computers, where these operate
according to standard quantum theory. Briefly, a quantum computer has a wavefunc-
tion spanned in Hilbert space by a set of "computational basis states" which
correspond to states of classical Turing machines. For appropriate unitary evolu-
tion of the wavefunction, one may effectively simulate several Turing machines,
with .different branches of the wavefunction performing different computations in
the same time as that required for an analogous classical Turing machine to per-
form a single similar computation. (These parallel computations take place in
"different universes" according to the many-worlds interpretation). However, while
the final state of the quantum computer may contain the results of an arbitrarily
large number N of separate computations, "unfortunately, at most one of these
results is accessible in each universe"(73). limiting the usefulness of parallel
quantum computation. This limitation could be overcome, however, if access to the
subquantum level were possible.

For consider a quantum computer, augmented by a "subquantum sensor" which is
able to directly read the actual value of a variable XB attached to the device.
Let the computer perform N separate computations, one in each of N branches of
the wavefunction, as described by Deutsch, and let the results be coded into N'
energy eigenvalues Ei (i=1 to N') chosen from a set iEiIi=O to 003 associated
with the variable xs , such that the final wavefunction guiding Xs is the freely

evolving

NI
Yot = N,—l/zZ ¢El(xs)e-wit (7.1)
-1t

where qSE' is the eigenfunction with eigenvalue Ej'_ . We assume that §¢E |i=0 to m}
is a knowﬁ set of functions built into the device, and that these functions all
overlap with eachother (as occurs for instance with energy eigenfunctions for a

box). The actual evolution Xs(t) will be governed by (units "m=1")
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and since none of the 4)5:. vanish except at i”solated points, they all contribute
to the motion Xs(t) . ;

If the path Xs(t) is read by the sensor over a finite time period, then the
set of Ei present in (7.1) may: be deduced from (7.2) by Fourier analysis, thus
yielding the result of all N computations. Since each computation could have been
arbitrarily long, the time needed to decipher the N' values Ei from the path Xs(t)
is usually negligible, of course. We may thus perform, and read the results of,

N computations in essentially the same time 1: required for an analogous classi-
cal Turing machine to perform a single similar computation.

Without the subquantum sensor, a quantum computer requires a mean running
time of at least NT to make all the results available to a user. However, by
repeating appropriate measurements(73), a user will occasionally obtain the equi-
valent of a time NT worth of classical processing, in only a time T . One may
then ask "where" these N computations were performed, suggesting Everett's "“many-

(73

‘worlds" as an answer, ). However from the viewpoint of the pilot-wave theory,
the parallel computations are simply "performed" by the Schr3dinger evolution of
the wavefunction Y in configuration space, and the results are encoded in the

' path X(t) if the various branches overlap.

As we have stressed in Section 2.2.1 , the “observables" at the basis of
classical and quantum theory are abstractions in the minds of classical experi-
menters, these abstractions deriving from the evolution of the wavefunction. Any
.theory of quantum computation ié then necessarily, as is quantum "measurement",
‘concerned primarily with the evolution of HE , the actual X(t) playing a marginal
ro;e. For instance, our example in Section 2.1.1 » which shows how a quantum

''measurement" may give an erroneous result for the path taken in a two-slit ex—

M periment, shows equally how "quantum memory" may in fact have little relation to

the actuality X(t). (As discussed in Section 2.1.1 , Deutsch's self-measuring

)

. quantum computer( » which apparently "'sees two worlds", in our view illustrates
the breakdown of the phenomenological book~keéping device, known as quantum
“measurement" theory} which has been constructed by classical experimenters).

" The various branches of EE » containing different "computations", are regar-
ded in the many-worlds interpretation as representing real parallel universes.
While "reality" in the pilot-wave theory is by definition the variables X(t),
these being merely guided by !f » and occupying a definite point in configuration

. space. Since clasaicgl language derives from marrowly peaked wavefunctions, the
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various branches of !Q appear, in the classically-inspired language of quantum
"measurement", as "ghost worlds". And a subquantum demon or automaton would be
sensitive to these '"ghost worlds". (For instance each of the above N computations
could be identified with a "ghost world history"). But we emphasise that these
are not real parallel universes, and a subquantum demon familiar with the pilot-
wave theory would not regard them as such. As a very crude analogy, one might
consider a ship being guided by external radio waves(74). Imagine that the ship
is programmed to move orthogonally to the wave crests. Then while there is only
one ship trajectory, the radio waves effectively contain a whole set of unactual-
ised ship trajectories, which would have occurredd had the ship started elsewhere.
And if the radio waves undergo reflection or two-slit diffraction, and reoverlap
near the ship, then the trajectory will become more complicated while of course
remaining unique. Yet if an outside observer based his worldview on the behaviour
of radio wavepackets, he might say that the ship is receiving instructions from
“more than one world".

Quantum computation is a generalisation of classical computation. Given the
classical theory the quantum generalisation follows compellingly, in a manner
quite analogous to the way in which quantum "measurement" is inspired by classical
theory, the memory and other Turing machine variables being promoted to operators.
We have seen that the addition of a subquantum sensor enables one to make full
use of the parallel processing power of quantum computers. But what about having
a fully subquantum computer?

One might try the following approach: The processor and memory of a fully
subquantum computer could be built from two-state systems, each consisting of a
particle in a box with state "O" or "1" if the particle is on the left or right-
hand-side respectively. (In view of the field theory view of "particles'" in Sec-
tion 4, one should really of course work with field variables, such as magnetic
fluxes). In addition to these processor and memory variables Xp and Xm , one needs
of course an "address' number X , which could be the integer part of the position
of a further particle, free to move parallel to a string of our boxes (X then

i
classical-mechanical realisation of a Turing machine (given appropriate inter-

being Turing's "tape position"). So far {X }:{xp,xm,x} could just as well be a

particle interactions). However these variables are generally guided in the pilot-

wave theory by

: [7)
X, = Im
i aXi

and each ki generally depends on all the other Xj (j#i). 1f EH is appropriately

1n \.B(xl,...xn,...,t) (7.3)

narrowly peaked, corresponding to the classical limit, then one effectively has a

classical computer. But what will happen for more general “f ? An arbitrary Hf



would of course not resulf in a usefﬁl evolution of the Xj « Though presumably
there do exist some nonclassical EB which would yield something interesting.
The question is: Is there a useful @ and general specification of a subquantum
automaton? - ) ; ;

That there might not be is suggested by the following: The classical theory
of computation, and its quantum generalisation, is inspired by local mechanistic
physics, i.e. computers are usually devices constructed from parts which interact
locally according to preassigned rules. Now not only locality, but also the usual
idea of "mechanism', fails in the pilot-wave ;heory, where the "puppet" variables
X are free to follow whatever H! dictates. It then seems that a general simple
theory, analogous to Turing's for the classical case, may not be possible at the
subquantum level; that any such theofy would be restricted to a particular class
of wavefunction EB (such as those yielding classical behaviour), in contrast to
the situation with quantum computers. (For this reason we have not attempted a
precise definition of subquantum automata). On the other hand, it might be that
the holistic subquantum level offers entirely new possibilities. For while current
theo£ies of computation are inspired by local mechanism, an entirely new "holis-
tic" approach to computation might be necessary in order to realise the possibil-
ities inherent in the pilpt—wave theory, leading to holistic computers which
might be bettep termed "oigana“ than "automata". And such a development might
throw light on theories of human and artificial intelligence: According to
| Pribram(75) the brain stores memories "holographically" (involving spatial Fourier

transforms). This of course need not have anything directly to do with the sub-
quéntum level; holistic structures like holograms ekist even at the purely class—
ical level. Nevertheless a subquantum approach to computation might help stimulate
a ﬁew line of thought, which might aid the understanding of human intelligence
(even if the latter should prove to be an essentially classical phenomenon) and
wh}ch might lead to a better theory of artificial intelligence.

. Our present inability to control the subquantum level of course bars the
deliberate construction of a Bubquantﬁm automaton or "sensor!'". But could such a
; structure perhaps arise spontaneously,'if not by chance then by a process of

' Meyvolution" analogous to that which has taken place on the Earth's surface appar-
ently at the purely classical level? For the possibility of parallel processing
k anq of nonlocal remote sensing would‘perhaps endow such a structure with an evo-

lutionary advantage. Biological evolution requires classical disequilibrium, and

" has thus been possible because the classical heat death of the universe has not

occurred, while the subquantum heat death of the universe apparently has, sugges-
.ting that a subquantum automaton éannot spontaneously evolve, such evolution pre-

sumably requiring disequilibrium P#]ﬂflz. However, very small or rare disequili~
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brium P#f“{lz, of which we are at present unaware, must in fact exist in our uni-
verse (see Section 8), so that if operation at the subquantum level should offer
a sufficiently large evolutionary advantage, then it might be that this disequili-
brium could lead to the development of some such automata.

It may seem gratuitous to speculate that perhaps the human mind operates to
some extent at the subquantum level. Amusingly, such a suggestion could straight-
forwardly be tested, given the means to (gently) accelerate a human being to near
light speed. For as we have seen, Lorentz symmetry and universal time dilation
for moving systems are merely properties of equilibrium. Thus, if for instance
conscious thought makes use of the subquantum level, then the thoughts of a
rapidly moving human being should not be simply slowed by (1_V2)-1/2' as presum-

ably the bodily processes would be.
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8. DEVIATIONS FROM STANDARD QUANTUM THEORY

Qur aim in this Section islto show that tﬁe pilot-wave theory ig} contrary
to widespread belief, in princigle distinguishable from standard quantum theory.
No practical test will be proposed here. However, once two theories are krown to
be in principle experimentally distinct, it is likely that a practical method for
distinguishing them may eventually be found.

When one derives a well understood theory from a deeper but less familiar
one, it is all too easy to convince oneself that the latter is completely equiva-
lent to the former. And given the equilibrium distribution P=l§£|2, the pilot-
wave theory indeed seems to .merely reproduce standard quantum theory. (Apart from
in the theory of gravitation, in Section 6, where the pilot-wave theorybnaturally
leads to the possibility of an effective "cold dark matter" in addition to ordin-

ary matter). However this is not the whole story.

8.1 Finite-ensemble corrections

. As pointed out in Section 2.2, the very c6ncept of a smooth distribution
2 : )
P={¥ | being realised in Nature is strictly valid only in the purely theoretical
limit of an infinite ensemble. For a finite ensemble of n systems with configura-
X
1)

tions;x sessese Xn , the acgual fractional distribution will be the sum of

delta—fénctiins in (2.8). For any finite n, the fraction of systems occupying the
configuration space vblume 6\1 can only approximate Nizév , so that equilibrium
can only approximately be attained. (Just as for instance the salinity of sea
water can never be exactly uniform, owing to the particulate nature of salt).

Thus any finite ensemble necessarily departs from equilibrium, so that in any

finite region, such as a finite laboratory consisting of a finite number of atoms,
equilibrium quantum and relativity theory can never be exactly valid.
! One might object that even in a finite laboratory, by repeating measurements

with even just a single system, one may generate an arbitrarily large "time-

- ensemble", so that an arbitrarily exact distribution P=I\E|2 is possible, even

in the absence of a real infinitéiensemble (i.e. of an infinite collection of

‘  simultaneously present and separate similar objects). This is of course true,

. provided the same state preparation is repeated prior to each measurement. How-

ever, if we confine ourselves to a single moment, or finite period, of time, we
may ask if the actual state of affairs in Nature (i.e. tﬁe actual momentary dis-—

tribution of physical variablgs). in a finite region, may correspond exactly to

i 2
. P=|EEI . If the number of variables is finite, such exact correspondence is im-

possible, with the implication that properties which are specific to P=|EEIZ.
such as locality, cannot be exaqtly valid at or during the said time in the said

region.

94

Thus the distribution P=|H!|2 can be a general result, actually realised in
Nature, only for real infinite ensembles, where these may not exist in Nature at
all (if the universe is finite), and which certainly do not arise in a finite
region.

This elementary point implies that, in a finite region, equilibrium proper-
ties such as signal-locality, translational invariance, and Lorentz symmetry,
cannot be exact. (This situation is similar to that of classical thermodynamics,
which becomes exact in the purely theoretical "thermodynamic limit" of systems
with infinite volume, but which is never exact for any finite system).

As an explicit example, noted already, the instantaneous change [&Q (given
by (2.13)) in the distribution of particles in a box, owing to a sudden change in
the Hamiltonian of a distant entangled box, can only strictly vanish if the ini-
tial joint distribution Q(;ﬂ\vola exactly, which is only possible for an infinite
number of particles. It must then be concluded that in real experience there are
always weak instantaneous signals connecting distant macroscopic bodies, and the
magnitude of such signals may be straightforwardly estimated from (2.13). To claim
that such signals would be masked by the uncertainty principle is of course un-
tenable, since the uncertainty principle is itself only exactly valid in exact
equilibrium. (Appeal to the uncertainty principle would of course be in any case
irrelevant, should the instantaneous connections in question be between a distant
macroscopic body and the "brain" of an intelligent subquantum automaton. This
latter example, while extreme, nevertheless serves our purpose of showing how
the pilot-wave theory in principle leads to physics beyond the scope of standard
quantum theory).

Thus standard quantum theory and relativity are merely coarse-grained approx-
imations, like classical thermodynamics, which become exact only in the theoreti-
cal "thermodynamic" limit n — ¢0 of infinite ensembles (and in the approxima-
tion where experimenters behave classically). While these approximations cover a
huge range of real experience, they cannot cover the whole of reality, and it is
clear that, at some level of accuracy, they must break down (as must classical
thermodynamics): Since no finite region of the universe can be in exact equili-
brium P=|§f|2, there must exist small corrections to these theories in real
experience.

Apart from these small corrections, which certainly must exist, it might be
suggested that finite-ensemble disequilibrium could lead to systematic effects
whose net results could build up and become large over time. For instance there
might exist a macroscopic quantum phenomenon, perhaps involving superconductivity,
which is sensitive to the fine-grained disequilibrium P#lEBIZ of, for instance,
the finite number of electrons in a finite sample. (This possibility, and others,

are presently under investigation).
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It may a}so be worthkremarkingfthat, for finipe n, an initial approximate
equilibrium Po::l ﬂﬁolz need not necessarily remain so, the theorem of preservation

of P=|¥ |2 in time strictly holding only if p°=l&e°|2 exactly.

u

8.2 Residual disequilibrium

Besides the above irreducible finite-ensemble disequilibrium , there
may exist an additional disequilibrium reflecting a lack of thorough mixing P—p
|§E|2, a disequilibrium which may be present even for infinite ensembles (in an
infinite universe). Assuming, for definiteness, that the relaxation P—> IH!I2
took placeisoon after the big bang, where a finite time has elapsed since that
epoch, one expects that, below a sufficiently small coarse-graining volume 6\h
there is a residual disequilibrium P#Iﬂfla. For example: Consider an infinite
ensemble of Hydrogen atoms in the ground state, distributed over infinite space.
In exact equilibrium, the actual fractional distribution of electron radial posi-
tions r (with respect to their nuclei) would be the smooth function Q(Jr) =4
exp(—2r/ao) where a, is the Bohr radius. (Again, we use the nonrelativistic par-
ticle picture for illustration, despite our "field lump" view of '"particles" in
Section 4). However, the actual distribution might contain fine-grained irregu-
larities, left over from disequilibrium at early times. For instance the actual
distribution could be &4 éxp(-Zr/ao) cosakrf where 1/k<<<ao , this distribution
approximating eo(r) _ only on a coarse-grained level »»1/k . And such irregulari-
ties would be detectable by sufficiently precise position measurements, performed
on a sample which is sufficiently large for typical statistical fluctuations (for
finite samples) to be small compared to the irregularities being sought. Any es-
timate of the magnitude of such. residual disequilibrium, and of the relevant scale
6V. must of course éwait;a detailed model of P—3 |§E|2 near thé big bang. For
the time béing. one wondebs to what accuracy the distribution P=]}le, for in-
stance in Hydrogen, has actually been tested so far;

. 1At issue is the extent of occurrence of the subquantum heat death of the
universe.EWe note the contrast with fhe classical case: A classical physicist
familiar Qith Boltzmann's H-theorem cpuld reasonably guess, a priori, that the
observed universe should to good accufacy be in a state of classical heat death.
Indeed, the fact that it manifestly is not was once claimed by Culverwe11(76), a
century ago, to be evidence against the validity of the H-theorem (a claim which
Boltzmann countered with the suggqsgion that our universe has arisen from a rare
fluctuation, which we happen to o?cupy gince a (more likely) equilibrium universe
could not contain observers). In,éontrast, the subquantum heat death, expected on
the basis of the pilot-wave theory and the subquantum H-theorem, has in fact

occurred to good accuracy at least for systems presently accessible to us. On the

i
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other hand, there could conceivably exist distant regions of the universe which
are still significantly out of equilibrium, due to inefficient mixing (for example).
Possible cosmological implications of large-scale disequilibrium, both in the
present epoch and at early times, deserve investigation. For instance, distant
matter which is far from equilibrium would obviously have nonstandard relative
intensities in its emission spectrum, conceivably observable from Earth. And the
possible effect of disequilibrium at early times has been noted in Section 6.3 .
It is thus not only conceivable that there exists a residual disequilibrium
throughout the universe, left over from early times but too small to have been
noticed so far; it could also be that there exist distant regions of the universe
containing, say, clouds of Hydrogen gas which is far from equilibrium. (Inversely
to the classical case, it could be that we happen to inhabit a region of the uni-
verse which is to good accuracy in subquantum equilibrium). Once disequilibrium
were discovered, it could be put to practical use - for example for instantaneous
signalling; just as one makes use of a chance concentration of gold in the Earth's
crust. And as noted in Section 7, the presence of such disequilibrium implies the
theoretical possibility of the spontaneous evolution of subquantum automata.

Let us consider more carefully how, for example, a cloud of gas in disequili-
brium could be found and utilised. Imagine first of all that a detailed theory of
the big bang, and of the accompanying relaxation P—) lﬂE!z, predicts a non-negli-
gible probability 6 for finding such a cloud somewhere within our local region
of the universe. (The theory is presumed to be trustworthy on other grounds. Some
such theoretical prediction is necessary, in order to distinguish from the case
of rare fluctuations ~ see below). Imagine further that an experimenter, on draw-
ing a random sample of atoms from a gas cloud, finds a distribution (say of elec-
tron positions) which is far from equilibrium. And assume the sample to be so
large that the probability £ for such a nonequilibrium distribution to be drawn
purely by chance, from a cloud actually in equilibrium, is € <<< 6 . The experi-
menter must then conclude that the cloud as a whole is almost certainly out of
equilibrium, and almost certainly has the distribution indicated by his sample;
i.e. he must assume on statistical grounds that he has come across one of the dis-
equilibrium clouds predicted by the theory which he believes. Assuming the rest
of the cloud to have the said distribution, he may then make practical use of it.
For instance he could use it for instantaneous signalling, by means of a pair of
entangled boxes of atomic electrons drawn from the cloud, as in Section 2.2.3 :

If the initial distribution e O#I‘VOIE is known, the nonlocal response ZS(: may
be calculated from (2.13). In this way, various experimenters could use the cloud
atoms for signalling to eachother at a distance.

It should be noted that all this could, strictly speaking, be accounted for
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by standard quantum fheory, whidh predicts a definite distribution P=|!¥|2 only

for an infinite ensemble: For finite samples any distribution is in principle

" allowed, finite distributions &% IEEI2 being merely more likely. Singe no real

experiment can ever measure an infinite sample, any real (finite) sequence of
results, however abnormal, may in principle be ascribed to "pure chance", inclu-

ding the above experimenter's apparent discovery and use of a disequilibrium

;cloud, Standard quantum theory could simply claim that the initial sample was

found;to be far from\equilibrium by pure chance, and that the rest of the atoms

continued to follow the dsitribution indicated by this sample again purely by

-+ chance. Even the experimenters“apparent success in "communicating” with eachother

at a distance could be seen as pure chance: The distant atoms just happened to

' yield results corresponding to the intended message. Such an interpretation, while
| logically possible, is of course highly artificial. For such a cloud could in the

' future, in principle; become a resource used on an everyday basis for practical

communication, and quantum theory would simply lose all explanatory power. And in

 any case, the probability of such a pureiy chance sequence occurring is fantas-
‘tically small in comparison with the probability 8 of finding a disequilibrium
‘cloud predicted by the pilot-wave theory (as we have assumed); so that if such a

- cloud were actually found and successfully used, one would sensibly take this as

clear evidence in favour of the pilot-wave theory against quantum theory.

We note also the contrast between pilot-wave and quantum theory: The experi-

i menter's deduction above, on the basis of the pilot-wave theory, that the cloud

" as a whole is in disequilibriumk(despite having measured only part of it), is

only possible because the pilot-wave theory assumes a past causal history behind
the outcomes, this history not necessarily being one which leads simply to P=|%¥|%

In contrast standard quantum theory assigns a probability P=|§H|2 to all events,

. and admits of no cauéal history behind these.

8.3 Rare fluctuations

i

At the turn of the century, atomic theory was able to account for classical

‘thermodynamics, and yet made no ﬂecisive new predictions, enabling many physicists
 to take a sceptical view as to the reality of atoms. Now one way to distinguish,

‘in principle, betﬁeen classical kinetic theory and classical thermodynamics, is

f: to simply wait fob an extremely long time: For according to the former, the oceans

- will occasionally spontaneously boil, while classical thermodynamics firmly pre-

dicts that this will never happen. And if such a rare thermal fluctuation did

- occur, human experimenters could clearly extract useful work from it.

The question then arises as to whether or not an extremely rare large scale

fluctuation P#IH{IQ could effectively lead to nonequilibrium physics. Indeed it

could, though some care is requiped in the interpretation, and in the comparison

|
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with standard quantum theory.

Consider an ensemble of systems, such as a cloud of Hydrogen atoms in some
region of the universe, which is believed to have undergone thorough mixing. The
actual distribution Q of electron positions is then almost certainly 2:!‘?[2
(though it might not be). An experimenter extracts a random sample of atoms, and
happens to find a distribution far from equilibrium (he may for example find all
the electrons of his sample to be exceptionally near their nuclei). What should
he conclude with regard to the distribution for the rest of the cloud? Unlike in
the earlier case of residual disequilibrium, he should EEE suppose the rest of
the cloud to be far from equilibrium. For while the probability is very small
of drawing a far-from-equilibrium sample from an equilibrium distribution, the
probability is nevertheless very much smaller that the whole cloud happens to be
far from equilibrium, since we know it to have been thoroughly mixed. Indeed,
thorough mixing implies that each atom has an independent probability distribu-
tion ]ﬂ’la associated with it, and any irregular sample drawn implies nothing as
to the distribution of the remaining atoms, and must be ascribed to pure chance
in the sampling. In contrast, in the case of residual disequilibrium, theory pre-
dicted a non-negligible probability of finding a badly mixed cloud, this probabil-
ity being much larger than that of drawing a nonequilibrium sample from an equi-
librium cloud, justifying the experimenter's opposite conclusion in that case.

To make clear the distinction between the case of residual disequilibrium,
and the case of rare fluctuations despite thorough mixing, consider a simple
analogy: One hundred boxes, each containing a thousand coins, are prepared,
shaken, and then buried in random locations. For the case of 'residual disequi-
librium", let each box be initially prepared with all coins showing "heads", and
let each box be shaken only once (and gently), and then buried. Suppose, by
analysis of the physics of the (gentle) shaking process, one calculates the pro-
bability for each box to remain far from equilibrium, i.e. to remain with nearly
all coins showing heads,»to be 10_2. An experimenter who knows the past history
of the boxes finds one of them by chance, and assigns a probability 10"2 for it
to be far from equilibrium. If he extracts, at random, one hundred coins, and
finds them all showing heads, what does he conclude? The probability 10_'2 that
he has dug up a nonequilibrium box is fairly small, but nevertheless the proba-
bility =~ 1/2100 of extracting one hundred heads from a 50:50 mix of one thousand
heads/tails is far smaller, so the experimenter may be virtually certain that he
has indeed come across one of the one-in-a-hundred nonequilibrium boxes predicted
by theory, and that the remaining nine hundred coins are mostly heads. In contrast,
for the case of "rare fluctuations", let each box be thoroughly shaken before

burial. The same experimenter, who again knows this past history, upon finding
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a bo&, assigns: (for example) the probﬁbility 1/21009 for all the coins to be
heads. If he finds that a random sample of one hundfed coins are all heads he
will nevertheless assume‘that the rest of the box is almost certainly a roughly
even mix, each coin being effectivel}‘independently tossed by the thorough shak-
ing. Thus he would assume that his sémple of one hundred heads was pure chance,
i.e. he would assume the sample to have been a "rare fluctuation", and not that
the whole box contains a rare fluctuation.

¢ This example makes clear the essential role played by theory, and by know-
ledge of past history, in the application of probability theory and in particular
in the proposal of a "best hypothesig" on statistical grounds applied to a sample.
If a gas cloud is known, ér believed; to have been Ehoroughly mixed, it could of
course be that, by a chanée fluctuation, it is in fact far from equilibrium.
Nevertheless, our pilot-wave experimenter drawing samples from the cloud can
never conclude anything with regard to the rest of the cloud, and will discover
such disequilibrium only by actually measuring all (or most of) the atoms in the
cloud. This implies that rare fluctuations cannot bé straightforwardly put to
practical use, since to become aware of them one must essentially measure the
whole ensemble, and thereby disturb gt least the wavefunction of each system.
In contrast, in the classical analogy'of a spontaneously boiling ocean, the dis-
equilibrium may be confirmed by measurements of temperature throughout the ocean,
without significantly disturbing the system.

‘Nevertheless, a rareifluctuationiwould spontaneously create effective non-
equilibrium phenomena, such as large-scale nonlocal connections (the "random in-
stantaneous signals" of Section 3.2), these phenomena being however uncontrollable
by us. And they would be gxplained just as easily by standard quantum theory,
which predicts exactly the same fluctuations for finite samples. However, even in
this case, the pilot-wave theory contains a further possibility, completely out-
side the scope of quantum theory: In principle, in a region of the universe con-
taining a large scale rare fluctuation, there could spontaneously evolve a race
of subquantum automata, as discussed in Section 7, and they would be able to make
practical use of the disequilibrium in which they find themselves (c.f. the exam-
ple in Section 7 of an automaton opefating "inside the wavefunction"). Further,
such automata might send instantaneous signals on request from us, thus enabling
us to indirectly make use of the disequilibrium, or otherwise they could simply
communicate to us the actual disequilibrium distribution for a rare fluctuation
gas cloud, enabling us to make direct‘use of it for ourselves. (Again, this extreme
example serves the purpose of showing that the pilot-wave theory is in principle
distinct from standard quantum theory).

The probability for a rare fluqtuation, assuming thorough mixing, may be
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readily calculated from P=|\y|2. Consider for instance a universe containing 10%°
Hydrogen atoms in the ground state. Let ro be such that the probability, in equi-
librium, of the electron being at a distance r & r, from its nucleus is P(r§ ro)
=1/2 . Dividing the universe into lOBO/N localised regions of N atoms each, the
probability p of finding a localised region with all N electrons such that r< ry
is p "U(l/ZN)(IOBO/N). For N "1023, p is vanishingly small. To obtain p ~1
requires N ~ 200. It is therefore likely that, in the said universe, there exists
somewhere a localised bunch of ¥ 200 atoms whose electron distribution is far
from the expected & PV[Z. Hardly an encouraging result. On the other hand, in
an infinite universe, there will exist somewhere, with probability=1, arbitrarily
large regions which are far from equilibrium.

In the classical case, the task of distinguishing between kinetic theory and
thermodynamics was accomplished as follows: The fluctuations predicted by kinetic
theory were eventually shown to lead to observable effects, such as Brownian
motion, which contradict classical thermodynamics. One might then search for an
analogous effect by which to test the pilot-wave theory. However, quantum theory
is already a statistical theory which predicts fluctuation effects: Indeed quantum
theory might be compared with the fluctuation formulas of classical statistical
mechanics deprived of their kinetic/mechanical basis. To distinguish quantum and
pilot-wave theory purely on the basis of rare fluctuations is then a much more
difficult task, as we have seen in the above. (Though a systematic effect analo-
gous to Brownian motion might arise from finite-ensemble disequilibrium, as

hinted in Section 8.1).
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‘corrected by the action of the gorce =V ( 5
i E./Z + Summing over all initial points Xo , weighted by the amplitude cK(Xo,Xﬁ*KXO,O)
>;yields the pilot-wave i . Thus the velocity predicted by the pilot-wave theory is
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9. FURTHER REMARKS

9.1 Connection to the path-ihtegral formulation

i

In the path-integral formulation of standard quantum theory, the holistic
néture of the quantum level is accounted for by summing over alternative paths,
which roughly speaking effectively '"sense" the whole environment. In the pilot-
wave theory, in contrast, there is only one trajectory associated with each event,
and this trajectory is itself directly sensitive to the whole environment. The
question then naturally arises: What is the relation between the pilot-wave theory
trajectory and the alternative Feynman paths? A simple and appealing relation in
fact exists.

Consider a single nonrelativistic particle over an infinitesimal time inter-

~ val (0, £). The wavefunction may be written in the path-integral form

Y, E) et \ax \V(x ,0)exp 1[(1/z)m(“ 2 - v(iEee ;_:deoo((xo,x)‘f(xo,o)

so that the velocity X of the pilot—wave theory trajectory, at time £ and posi-

tion X, is

de ot (x, x)[x'x° é%v'(x;—x")]‘{)(xo,o) )
9.1

- (1/m>1m($%) = Re
: , » deod(xo.x)Y(xo,o)
A .

" where ci(xo.x) is the so-called "amplitude to>go from Xo to X".

The interpretation of (9.1) is clear: The Feynman path velocity at time g

and position X is just the velocity (X—X )/ E at time €/2 (and position (X+X)/2)
X+ o

) over the remaining time interval

"simply the amplitude-weighted "mean" of the Feynman path velocities.

9.2 Against subquantum stochasticity

The  above connection to the path-integral formulation might, at first sight,

‘suggest that the velocity predicted by the pilot-wave theory is merely an average

'kover some underlying statistical distribution of veloc§y1es, perhaps suggesting

the existence of stochastic "fluid fluctuations" at the subquantum level. However,

" the "amplitudes" ci(xo,x) are complex numbers and are not added to yield total

probabilities according to the rules of probability theory. And as already men-
tioned, Koopman and Ballentine have shown the fallacy of 'quantum probability".

Thus.‘while the relation (9.1) is heuristically appealing as a "mean", there is
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no justification for regarding it as a true mean value.

A relation analogous to (9.1), expressing the pilot-wave theory velocity as
the "mean" of an underlying distribution, has been found by Sonego(77), in the
context of a "hydrodynamical" formulation of quantum theory which makes use of
joint position-momentum probability distributions which may become negative
("quasiprobabilities"). We have already argued in Section 2.2.1 that the attain-
ment of negative values by such joint distributions is an "epicycle" which arises
from ignoring the contextual nature of momentum "“measurements", thus undermining
the suggestion by Sonego, on the basis of the said relation, that trajectories
predicted by the pilot-wave theory are merely average values.

The relation (9.1), and that found by Sonego, as well as the well known
analogies between the SchrSdinger and diffusion equations, may nevertheless seem
vaguely suggestive of an underlying stochasticity at the subquantum level. For
one may ask why it should be, if there is no such stochasticity, that such rela-
tions exist at all. This question may be answered as follows: As stressed through-
out this work, classical concepts such as energy, momentum, and force, are to be
regarded as mere equilibrium phenomenology, arising from the deeper pilot-wave
theory. If one takes this view, it is then really not at all surprising that, if
one views the situation the wrong way round, i.e. if one tries to explain quantum
or pilot-wave theory on the basis of these derivative classical concepts, then one
sees tantalising but physically obscure mathematical relations which seem to
support such an enterprise.

The addition ?fs?ackground "fluid fl?f:?ations" to the pilot-wave theory,

by Bohm and Vigier and Bohm and Hiley , was done partly in order to derive
the equilibrium distribution P=I!£|2. This motivation is undermined by our sub-
quantum H-theorem.

Attempts at a realistic explanation for quantum theory have often, almost by
instinct, begun by assuming an underlying stochastic process. At least part of
the reason for this is the contextuality of quantum theory which, if ignored,
generates an apparent stochasticity.

(78)

For instance Von Neumann argued that if there were a hidden variable ex-
planation for quantum theory, then these hidden variables would have to fluctuate
arbitrarily rapidly. His argument went essentially as follows: If a spin-1/2
particle with state |+z) (spin up the z-axis) is measured along x , one obtains
either +x or -x with equal probability. If the same particle is then measured
along z, one obtains either +z or -z with equal probability, and the particle

appears to have no memory whatever of having previously had spin +z . And since

this sequence of measurements could have been performed arbitrarily rapidly, it

appears that the hidden variables determining the outcomes must be fluctuating
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arbitrarily rapidly. The fallacy in this reasoning is of course that it ignnores
contextuality: The "measurement" outcomes also depend on the apparatus, for in-

" stance on the orientation of the Stern-Gerlach magnetic field (this is clear in
the pilot-wave theory). If the sequence of measurements is performed rapidly, the
magnetic field orientation must be changed equally rapidly, with the consequent
rapidly changing effect on the outcomes.

,The illusory stochasticity in (9.1), and in the relation derived by Sonego,
is of course also indirectly due to ignoring contextuality: For it is contextual-
ity which shows the fallacious nature of "probability amplitudes" and of '"quasi-

probabilities".

9.3 Possible extensions of the pilot-wave theory

i We have adopted the ﬁilot—wave theory in its simplest possible form, with
the trajectory TT = @S/@X , without the addition of any arbitrary features such
as background "fluid fluctuations"; and we have been able to derive P=lﬂ£|2 on
this basis (with certain~feasonable assumptions). This is analogous to the kinetic
theory of gases of Maxwell and Boltzmann, which assumed the simplest possible form
for the hypothetical atoms and molecules: colliding elastic spheres governed by
Newtonian mechanics. The gimple motion T = aS/aX may turn out to be merely a
crude model, as did the elastic spheres of kinetic theory. But one may reasonably
hope that the main features are more or less correct -~ as is the case with the
' elastic spheres. It is surely best to adopt the simplest assumptions as to hypo-
thgtical elements of a theory, and to follow these to their logical conclusions.
Ontthis ground we maintain that the simple pilot-wave theory offers the best
starting point for further research, and that modifications to it should be con-
sidered only for compelling theoretical or experimental reasons.

i Experimental hints as to how the pilot-wave theory might break down are of
course absent at the present time. Compelling theoretical reasons for modifying the
theory might include the following: (i) As we have discussed, the guiding field L4
may be pragmatically regarded simply as a convenient mathematical summary of the
motion X(t), while a more illuminating theoretical interpretation sees ¥ as an
“"informative field". Either view might be taken as provisional, and a deeper ex-
planation for-!! might be sought. And a compelling explanation might naturally
lead to corrections to the pilot—wavé-theory. However, as stressed already, in
making such an attempt one shouldysurely not assume that the deeper level is based
on our phenomenological classicalfmechanical concepts (as are "fluctuating fluids"
for instance). (ii) A way to unify the various fields found in Nature might matur-
ally suggest, or'be suggested by, a modification of the simple pilot-wave theory.
For instance the relation between gauge symmetries pf fields and phase symmetries

i

i
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of H! might be worthy of study. (iii) The subquantum H-theorem shows that evolu-
tion towards equilibrium may be accounted for by the simple pilot-wave theory, but
nevertheless it might turn out, on studying concrete models, that some sort of
perturbations to the path“=aS/3X need to be added in order for an ensemble to
actually reach equilibrium. This seems unlikely but might be the case. If so, such
perturbations could be very small: For all known physical systems have had a long
and violent astrophysical history, providing ample opportunity for "mixing" of P
and Iﬁflz. Given this past history , very small perturbations should be sufficient
to ensure that equilibrium is reached, just as the celebrated "speck of dust" en-
sures that equilibrium is reached, after a sufficiently long time, for the radia-
tion in a blackbody cavity. (The violent perturbations for single systems, sugges—
ted by Bohm and Hiley, should certainly be unnecessary). And the magnitude and form
of the required perturbations, if any, might be suggested by detailed study of

concrete models.

9.4 On the abandonment of "Cartesian order

79 80
(@1),(79) and suggested by the insights of Bohr( ) (with

As stressed by Bohm
regard to the role played by the whole experimental arrangement), quantum theory
seems to point to a new kind of "order", very different in spirit from the usual
"Cartesian coordinate order" of classical physics; a new order which roughly
speaking resembles more that of the hologram than of the photographic plate
(the "whole" versus the "sum~of-parts"). Does this mean, as suggested by Bohm,
that the very concepts of space and time must be abandoned? While this might of
course be the case, we point out that a change to a radically new kind of order
need not be accompanied by an abandonment of older concepts; that a change of
viewpoint with regard to these may be sufficient.

As an example, one might compare the two approaches to geometry, (i) Euclid-
ean geometry as understood in ancient Greece, and (ii) The coordinate geometry
initiated by Descartes. In the former, "extension" was associated with bodies
rather than with space itself, and shapes such as triangles and spheres were
abstractions from physical objects. As Einstein put it(al), the Euclidean approach
does '"not really deal with space as such". In contrastyin coordinate geometry, by
introducing coordinates covering empty space, this space itself came to be regar-
ded as the object of study. And the outlook provided by coordinate geometry was
of course crucial for the subsequent development of mathematics and physics.
(Further, at least according to Speng]er(so), the difference in spirit behind
these two systems parallels with the fundamental differences between the Classical
and Western cultures). Here we have a case, then, where a highly significant

change in "“order" took place, not by throwing away the old concepts, but rather
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by shifting our viewpeint withjregard to theﬁ, .

Similarly, a further shift of viewpoint Qith regard to space and matter may
be é éufficient stép away from the "Cartesian order". For historically, the order
conceived by Descartes included the mechanical idea of bodies or flﬁids filling
space and interactihg by contiguous action. Cartesian order, then, does not only
refer to a certain approach to space, but also (and perhaps especially) to a par-
ticular mechanical conception of matter. (The "coordinate grid" might be seen as

a convenient means of describiné such contiguous mechanical actions). This Carte-

~ sian conception was of course an inspiration for the development of classical

' mechanics (explainiqg both theiresistance, especially in France, to Newton's

"spooky" gravitatioﬁal "attraction" at a distance, and the attempts to explain

’ it in terms of the contiguous action of fluids, "vortices", etc.). And in class-
‘ v ical field theory, the Cartesian order survives as the contiguous interaction of
i‘geighbouring field elements by local differential equations. In the pilot-wave
) thebry. all this iskchanged: Mechanical principles of interaction between differ-
. ent parts, or between localised variables of any kind, are completely banished

- from physical three-dimensional space. This space remains purely as a "puppet

theatre", the evolution of physical variables (and of the spatial geometry itself)
being controlled fiom configurétion space, by ﬂf » And this banishment of mechan-
ical actions from space is the essence of the nonlocal "spookiness'" of EPR-entan-
glement. In this way, while retaining the concept of space (and of time), the old

Cartesian order has nevertheless disappeared.
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10. CONCLUSION

When all is said and done, however, the number of
original contributions to art made since 1925 is probably
very small: it seems likely that the remainder of the
20th century will be needed to digest the innovations
made in its first quarter. Anyone confronted with the
bewildering profusion of present-day art may well con-
sider this a surprising statement; we are always being
persuaded that there has never been a more revolutionary
period, never an age when art was more experimental. This
remark, however, has been made about contemporary art
for a great many years now - certainly since Manet exhib-
ited at the Salon des Refuses, and probably since the
time of the French Revolution and the rise of Romanticism.

- Alan Bowness, Modern European Art (1972)

(82), in a letter to Hedwig Born, of the "“tragic' inva=

In 1927 Einstein wrote
sion of irrationalism in physics at the time. If one believes that in the Europe
of the 1920s, a highly questionable philosophy gave shape to modern physics, then
it is natural to go back to the early 1920s to see how things looked before phy-
sics took the path which led to standard quantum theory. And one finds, following
the lead of the early realist pilot-wave constructions of Einstein and deBroglie,
in the first years of that critical decade, that the pilot-wave theory was the
obvious and natural alternative path which could have been taken -~ in particular
if nonlocality had been acceptable at the time.

Development of the pilot-wave theory leads to a rich harvest of insights,
and to considerable simplification of the foundations of contemporary physics:

The probability distributions of quantum theory may be derived, and need not be
postulated. The conspiratorial relation between relativity and quantum theory is
explained. Standard "measurement' theory may be derived as a phenomenological
device, and its peculiarities explained. Contextuality and nonlocality are clear-
ly comprehensible. There need be no distinction in principle between systems,
apparatus or observers. One arrives at a unified view of classical, quantum and
subquantum physics, based on the concept of guiding fields. The field theory un-
derstanding of "particles" is made sharper. One may write a simplified theory of
electrodynamics. Poincar$ invariance is explained in terms of equilibrium symm-
etry. Thgiéﬁ:g?;T;f gravitation and cosmology overcomes the fundamental conceptual
problems of the usual approach, and suggests alternative approaches to certain
cosmological problems. There are intriguing implications for the theory of compu-
tation. And the whole theory is based on just a few simple assumptions.

The pilot-wave approach suggests a revival of "realism'", and in particular

of the view that it is the task of physics to propose conceptual and mathematical
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representations of a world held to ;xist behind thé illusory veil of appearances
(the philosophy suggested, for example, by Plato'sfsimile of the prisoners in the
cave). Just as Newtonian mechanics éees Aristotlean physicists as being misled by
their confinement to a friction-dominated environment, so the pilot-wave theory
sees quantum physicists as being misled by their confinement to an environment
which is to high accuracy in equilibrium P=|Hf|2, and by their own limited sensi-
tivity which is essentially classical. Is this "physics" or "metaphysics"? Two
millenia after the first proposal of @he atomic theory, history suggests that it
may indeed be "physics"; though thereyare no clear divisions between physics,
metaphysics, and philosophy, and any choice in favour of the pilot-wave theory
must be made in part on philosophical grounds. At the same time it is of course
incumbent upon proponents of the pilot-wave theory to find a practical means of

testing it. As we have seen, the prospects of such a test are not entirely remote.
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